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Introduction

This thesis consists of three self-contained chapters in applied and theoretical econometrics.

The first chapter presents a Lagrange Multiplier test for detecting shock triggered asymmetries

in time series and investigates its properties. Chapter 2 links variance bounds tests to forecast

evaluation tests. Exploiting the cointegration relation between prices and dividends, we find

rejections of the null hypothesis of market efficiency. The last chapter analyses the effect of

social networks on wealth and wealth components on the basis of a novel dataset. Distributional

effects are investigated in an instrumental variable quantile regression framework.

In particular, Chapter 1, joint work with Nazarii Salish, develops a Lagrange Multiplier test

statistic and its variants to test for the null hypothesis of no asymmetric effects of innovations

on time series. The test is built on asymmetric time series models that allow for different re-

sponses to positive and negative past shocks, and for which the likelihood functions, in general,

are discontinuous. By making use of the theory of generalized functions, the Lagrange Multi-

plier type tests as well as the resulting asymptotics are derived. The suggested test statistics

possess a standard asymptotic limiting behaviour under the null hypothesis. Monte Carlo ex-

periments illustrate the accuracy of the asymptotic approximation. Moreover, it is shown that

conventional model selection criteria can be used to estimate lag lengths required for the imple-

mentation of the suggested tests. Empirical applications to the quarterly U.S. unemployment

rate and to the monthly U.S. industrial production index are provided.

Chapter 2 contributes to the variance bounds literature. There is a long-standing debate

whether stock prices are more volatile than traditional models imply. The chapter links variance

bounds tests to the forecast evaluation literature. The Diebold Mariano test is introduced as a

robust tool to overcome drawbacks of former testing procedures. Contrary to previous studies,
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we find that naive forecasts are not able to outperform the market price as a predictor for

the ex post rational price. We further estimate a panoply of multivariate models to construct

more sophisticated forecasts based on the cointegration relation between prices and dividends.

Moreover, we distinguish between iterated and direct multi-step forecasts. We provide an

application of our test procedure based on the Standard & Poor’s 500 Composite Price Index.

When we test the null hypothesis of market efficiency, we find rejections for longer holding

periods of the underlying asset.

Chapter 3, joint work with Anna Louisa Bindler, uses data from a novel dataset to estimate

the effect of social networks on the distribution of wealth in Germany. In particular, we study

the relationship between wealth and church as an example for a strong social network. First, we

exploit the natural experiment of Germany’s reunification to identify the local average treatment

effect on wealth. Second, we use an IV-quantile regression framework to show heterogenous

effects along the distribution of wealth and estimate conditional as well as unconditional quantile

treatment effect models. Our results show that church affiliation indeed has a positive impact

on wealth that is driven by church attendance. We argue that this can be interpreted as

evidence that the effect of church affiliation is driven by specific social network effects. We test

for confounding factors such as risk aversion and other personality traits to single out the social

network mechanism. Given the very rich dataset, we are able to disaggregate the results for

different asset types and show heterogeneous effects for different asset classifications.
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Chapter 1

LM Tests for Shock Induced

Asymmetries in Time Series

1.1 Introduction

In the last decades there has been a significant increase in findings from empirical studies in

economics and finance which indicate that the response of the economic processes is asymmetric

with respect to positive or negative shocks (see, for instance, Elwood, 1998; Koutmos, 1999;

Karras and Stokes, 1999; Kilian and Vigfusson, 2011; Brännäs et al., 2012, among others). In

the univariate time series literature this led to an asymmetric time series paradigm as introduced

by Wecker (1981). Wecker suggested asymmetric moving average models (henceforth AsMA)

to model the asymmetries triggered by the sign of innovations.

In this chapter, we consider alternative generalizations of time series models in the context

of asymmetries. In particular, an extension of (linear) autoregressive to asymmetric processes

(henceforth AsAR) is suggested in Section 1.2. Here, the asymmetry is generated by a distinct

influence of positive and negative past shocks on the underlying process. To the best of our

knowledge, this type of model has not been considered in the literature before. Alternative

extensions of classical time series models could be relevant, too, in which the potential presence

of asymmetries triggered by shocks rises the question of (pre)testing for the correct model

specification.

This testing problem has been discussed in the literature. Wecker (1981) suggested the use
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of the likelihood ratio test to test for the conventional moving average model against AsMA.

Brännäs and De Gooijer (1994) constructed a Wald-type test to choose the correct model

specification. Brännäs et al. (1998) considered a test statistic based on the artificial regression

constructed from the Lagrange multiplier (henceforth LM) principle. Yet, these studies focus

on presenting the idea of new asymmetric time series models and do not elaborate on the

discontinuous nature of these models. More precisely, in the setting of AsMA models, the

respective log-likelihood function is always discontinuous. Therefore, the standard approach of

deriving the gradient and the Hessian from the log-likelihood function as well as the asymptotic

behaviour of likelihood based statistics are not valid anymore.

In this chapter we contribute to the literature by suggesting new test statistics based on the

Lagrange multiplier approach which account for discontinuities in the log-likelihood function.

The tests are aimed for asymmetric time series models such as AsMA and AsAR. However, the

suggested techniques can be used for other asymmetric time series models, too. We apply the

treatment of non-differentiability as offered by Phillips (1991) for LAD estimators in order to

deal with the non-smooth log-likelihood function. The main idea is to examine our problem

in the mathematical space of generalized functions (distributions) whose derivatives do not

exist in the classical sense, however can be formalized as (accommodated by) distributional

derivatives. This solution allows us to operate with first order conditions and thereby derive

LM type test statistics.

In fact, with this generalization of the classical approach, the asymptotic properties of

the test statistics can be obtained. It is shown that the limiting distribution is a standard

χ2 distribution under the null of no asymmetric effects. Further, by means of Monte Carlo

simulations the finite sample properties of the new test statistics are explored in different

setups. Finally, in order to make testing procedures more applicable, we suggest a solution to

select an appropriate model specification for the test implementation. We show in Monte Carlo

experiments that the use of standard model selection criteria, such as the BIC or HQ, applied

to a linear time series model provide a reliable estimate of the required lag length.

We apply these methods to the U.S. unemployment rate and the U.S. industrial production

4



index. We find strong evidence that the growth of the unemployment rate as well as the U.S.

industrial production index are affected by an asymmetric impact of positive/negative shocks.

The outline of this chapter is as follows. Section 1.2 introduces the notation as well as

the modelling framework. The construction of the LM type tests is described in Section 1.3.

Section 1.4 presents variants of the LM test. In Section 1.5 the asymptotic properties of the

statistics are investigated. In Section 1.6 we present results from simulation studies. Two

empirical examples are given in Section 1.7. The final section contains concluding remarks.

1.2 Preliminaries

This section introduces the asymmetric time series models as a counterpart to the conven-

tional linear moving average and autoregressive models. The main characteristic of this model

class which distinguishes it from other, well established, nonlinear models (such as threshold

AR models for instance) is that two distinct filters, one for positive and one for negative inno-

vations, are used. Wecker (1981) advocates the use of the asymmetric moving average model

which takes the following form:

yt = εt + α1εt−1 + ...+ αpεt−p + β1ε
+
t−1 + ...+ βpε

+
t−p, (1.1)

where ε+
t = εt1 (εt ≥ 0) and 1 (·) defines an indicator function. We extent Wecker’s approach

by considering the asymmetric autoregressive model defined as:

yt = εt − α1yt−1 − ...− αpyt−p − β1y
+
t−1 − ...− βpy+

t−p, (1.2)

where y+
t = yt1 (εt ≥ 0). In both models, it is assumed that yt = 0 for t ≤ 0 and that the

random disturbance term εt is a real i.i.d. sequence with a N(0, σ2) distribution. Note that

the normality assumption is necessary for the derivation of the LM statistics only. For the

applications as well as for the derivations of asymptotic results this assumption can be relaxed.

In general, it is necessary for the asymptotic analysis that the process yt is stationary and

invertible under the null hypothesis of no asymmetric effects. For this reason it is assumed that
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the roots of α(z) = 1 +
∑p

i=1 αiz
i lie outside the unit circle.1

To express models (1.1) and (1.2) in matrix notation, define B as a T × T backshift matrix

with typical element Bij = 1 if i − j = 1 and zero otherwise. D1(ε) = diag{1 (ε1 ≥ 0) , ...,

1 (εT ≥ 0)} is a T × T diagonal matrix and α ≡ (α1, ..., αp)
′, β ≡ (β1, ..., βp)

′ are parameter

vectors. Therefore, models (1.1) and (1.2) can be rewritten as:

y =
(
Mα + MβD1(ε)

)
ε, (1.3)

and (
Mα + MβD1(ε)

)
y = ε, (1.4)

where Mα =
∑p

k=0 αkB
k and Mβ =

∑p
k=1 βkB

k, with α0 = 1 and B0 = I being the identity

matrix. y = (y1, ..., yT )′ denotes a T × 1 vector of time series observations and ε = (ε1, ..., εT )′

is a T × 1 vector of error terms.

The matrix representations (1.3) and (1.4) are convenient for our discussion, as deviations

from the conventional symmetric MA(p) or AR(p) models are now represented in both cases

by the matrix Mβ. Therefore, the main hypothesis of interest can be formulated as follows:

H0 : Mβ = 0, (or β = 0)

The null hypothesis is tested against the two alternatives that

HA : {yt} is generated by (1.3) or

HB : {yt} is generated by (1.4).

1To complete the discussion we further outline implications of a violation of the stationarity assumption for
the asymptotics. See Remark 1 of Section 1.5 for details.
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1.3 The Lagrange Multiplier Test

In this section we derive the Lagrange multiplier test. The corresponding log-likelihood

function for time series processes (1.3) and (1.4) is given by

L
(
α,β, σ2

)
= const− T

2
ln
(
σ2
)
− 1

2σ2
ε′ε, (1.5)

where ε =
(
Mα + MβD1(ε)

)−1
y for the AsMA(p) and ε =

(
Mα + MβD1(ε)

)
y for the

AsAR(p) model. Let θ = (α
′
,β

′
)
′

be the parameter vector of interest and θ̂0 = (α̂
′
,0)

′

the restricted ML estimator of θ0 =
(
α

′
,0
)′

for the LM test. The parameter σ2 can

be concentrated out. Furthermore, let s (θ) = ∂L (θ) /∂θ denote the score and H (θ) =

− plimT→∞ T
−1∂2L (θ) /∂θ∂θ′ the asymptotic Hessian of the log-likelihood (1.5). It is con-

venient in this testing framework to use a partitioning of the score s (θ) =
(
sα (θ)′ , sβ (θ)′

)′
,

with sα (θ) = ∂L (θ) /∂α and sβ (θ) = ∂L (θ) /∂β, respectively. The asymptotic Hessian

matrix can then be expressed as:

H (θ) =

 Hαα (θ) Hαβ (θ)

Hβα (θ) Hββ (θ)

 .
Here, Hαα (θ) = − plimT→∞ T

−1∂2L (θ) /∂α∂α′, Hαβ (θ) = − plimT→∞ T
−1∂2L (θ) /∂α∂β′,

etc.. Hence, the conventional LM test statistic for testing H0 against HA or HB can be written

as:

LMT =
1

T
sβ

(
θ̂0

)′
V−1
β

(
θ̂0

)
sβ

(
θ̂0

)
, (1.6)

where Vβ (θ) represents the variance of the score sβ (θ) and is taken from the respective

diagonal block of the H (θ) matrix, i.e. Vβ (θ) = Hββ (θ)−Hβα (θ)Hαα (θ)−1Hαβ (θ) .

Note that the indicator function in the log-likelihood function (1.5) results in discontinuities

of the function. Therefore, the standard framework for deriving the LM test and its asymptotics

is, in general, not applicable. Phillips (1991) suggests a solution to non-regular problems like

discontinuities in the criterion function as for the example of LAD estimator’s. In particular,

if derivatives do not exist in the usual sense, this may be accommodated directly by the use
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of generalized functions or distributions.2 As presented in the following, this generalization

does not only provide a justification for the LM test derivation, but it also helps to develop

generalized Taylor series expansions of the first order conditions. These, in turn, are useful in

order to derive asymptotic properties.

We start with the derivative of the indicator function which can be written as the Dirac

delta (generalized) function:

∂1(x≥0)/∂x = δ(x)

Details on the required properties of the δ(x) function are given in Appendix A and Lemma 3.

In order to simplify the notation we define the matrix Mαβ ≡Mα+MβD1(ε) which essentially

represents the filtering structure of processes (1.3) and (1.4). The derivative of Mαβ with

respect to θ can be compactly written as:

∂Mα,β

∂θi
=

 Bi + MβDδ(ε)D∂ε/∂θi

BiD1(ε) + MβDδ(ε)D∂ε/∂θi

for θi = αi

for θi = βi

, (1.7)

where Dδ(ε) is a T × T diagonal matrix defined as diag{δ(ε1), ..., δ(εT )} and D∂ε/∂θi =

diag{∂ε1/∂θi, ..., ∂εT/∂θi}. Further, under the null hypothesis Mβ = 0 and ∂Mα,β/∂θi takes

a simple matrix form Bi or BiD1(ε). Finally, using standard results for matrix derivatives (see

e.g. Lütkepohl, 1996), the elements of the score vector sβ

(
θ̂0

)
under the null hypothesis can

be presented in a quadratic form as:

sβ,i

(
θ̂0

)
=

1

σ̂2
ε̂′
(
M̂−1
α BiD̂1(ε)

)′
ε̂, (1.8)

for process (1.3) and as:

sβ,i

(
θ̂0

)
= − 1

σ̂2
ε̂′
(
BiD̂1(ε)M̂

−1
α

)′
ε̂, (1.9)

for process (1.4), where i = 1, ..., p, ε̂ is the ML estimate of ε under H0 and D̂1(ε) =

diag{1(ε̂1≥0), ..., 1(ε̂T≥0)}. The vector ε̂ is estimated by an MA process as M̂−1
α y or by an

AR process as M̂αy, respectively, where M̂α =
∑p

k=0 α̂kB
k.

2See e.g. Gelfand and Shilov (1964) for a more detailed overview of the theory of generalized functions.
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1.4 Variants of the LM Test

There are a number of methods to compute the LM statistic (1.6), as there are different

asymptotically valid ways to estimate the covariance matrix Vβ (θ0). So far, we have assumed

that Vβ (θ0) is derived from the asymptotic Hessian matrix evaluated under the null hypothesis.

However, any method that allows to consistently estimate Vβ (θ0) is valid. In what follows,

several approaches that are widely used in the literature are discussed.

1.4.1 Empirical Hessian and information matrix

The most straightforward method, based on (1.6), is to compute the negative of the Hessian

evaluated at the restricted vector of ML estimates θ̂0. This is referred to as the empirical

Hessian estimator:

V
(H)
β

(
θ̂0

)
=

1

T

(
Hββ

(
θ̂0

)
−Hβα

(
θ̂0

)
Hαα

(
θ̂0

)−1

Hαβ

(
θ̂0

))
,

where Hαα

(
θ̂0

)
= −∂2L

(
θ̂0

)
/∂α∂α′, Hαβ

(
θ̂0

)
= ∂2L

(
θ̂0

)
/∂α∂β′, etc.. However, this

estimator is complex to estimate in practice due to the Dirac delta functions and its derivatives

even under the null.

Yet, it can be shown that taking expectations eliminates terms that include delta functions

in the expression of Vβ (θ0). This comes from the definition of the function itself and the so

called sifting property of the delta functions (see Lemma 3). That means that the information

matrix approach can be applied instead of the empirical Hessian in order to obtain an efficient

and applicable estimator of Vβ (θ0). Hence, in what follows the estimator V
(IM)
β

(
θ̂0

)
is defined

as:

V
(IM)
β

(
θ̂0

)
=

1

T

(
Jββ

(
θ̂0

)
− Jβα

(
θ̂0

)
Jαα

(
θ̂0

)−1

Jαβ

(
θ̂0

))
, (1.10)

where Jαα (θ) = E
[
sα (θ) sα (θ)′

]
, Jαβ (θ) = E

[
sα (θ) sβ (θ)′

]
, etc..

Finally, in order to derive an analytical expression for V
(IM)
β we relax the Gaussian distribu-

tional assumption of εt for more specific restrictions on the existence of higher-order moments.
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This allows to robustify the estimator V
(IM)
β

(
θ̂0

)
to non-normal disturbances.

Assumption 1 (i) {εt} is an iid sequence with zero mean and E [ε2
t ] = σ2 > 0.

(ii) There is a positive constant B > 0 such that E |εt|4+r ≤ B <∞ for some r > 0 and all t.

(iii) The density function of εt, defined as fε (·), is continuous and differentiable at zero.

Assumption 1 is sufficient to fulfill all conditions required for the asymptotic properties derived

in this chapter. While part (i) and (ii) are standard identification assumptions in the time

series literature, part (iii) restricts the analysis to innovations with a smooth density function

at point zero.

The matrix Jαα (θ0) can be calculated by using standard results for quadratic forms (see

e.g. Ullah, 2004, Appendix A.5) and has the same form for both HA and HB alternatives, with

typical element Ji,j (θ0):

Ji,j (θ0) ≡ E [sα,i (θ0) sα,j (θ0)] = tr
[
(M−1

α Bi)(M−1
α Bj)′

]
, (1.11)

for i, j = 1, ..., p. However, the results for the other components of the matrix differ depending

on the modeling framework as outlined below. Note, that in the following Lemmas we omit

the argument θ0 in Ji,j, sα,i and sβ,i in order to ease notation.

Lemma 1 Let φk = E
(
ε+
t

)k
for k = 1, 2. Then, under data generating process (1.3), assump-

tion 1 and the null hypothesis,

E [sα,isβ,j] = γ1Ji,j, (1.12)

E [sβ,isβ,j] = (γ1 − γ2) Ji,j + γ2Wi,j (1.13)

where 1 ≤ i, j ≤ p, γ1 = φ2/σ
2, γ2 = (φ1)2 /σ2 and Wi,j = l′(M−1

α Bi)(M−1
α Bj)′l with l being a

T × 1 vector of ones.

The invertibility of the process yt ensures that the inverse of Mα exists under the null.

Hence, we can write

M−1
α =

(
p∑

k=0

αkB
k

)−1

=
∞∑
k=0

ψkB
k, (1.14)

10



where ψ0 = 1 and
∑∞

k=0 |ψk| <∞.

Lemma 2 Let φk = E
(
ε+
t

)k
for k = 1, 2. Then under data generating process (1.4), assump-

tion 1 and the null hypothesis,

E [sα,isβ,j] =

 F0Ji,j for i > j

F0Ji,j + γ1ψ|i−j| fori ≤ j
, (1.15)

E [sβ,isβ,j] =

 F0Ji,j + γ1 for i = j

F2
0Ji,j + γ2 for i 6= j

, (1.16)

where 1 ≤ i, j ≤ p, F0 = (1 − Fε (0)) and Fε(·) denote the distribution function of ε; γ1 =

(T − i)(φ2 − σ2F0)/σ2, γ2 = γ1F0ψ|i−j| + φ2
1/σ

2 (T −max(i, j)).

Therefore, to test for the null of no asymmetric effects of innovations, it is sufficient to estimate

parameter vector α and error vector ε under the null and use the estimates to construct the

components of the LM test (1.6), i.e.,

LM
(IM)
T = s

(
θ̂0

)′ [
V

(IM)
β

(
θ̂0

)]−1

s
(
θ̂0

)
, (1.17)

where s
(
θ̂0

)
is given by (1.8) or (1.9) and V

(IM)
β

(
θ̂0

)
is derived as in (1.11) and Lemma 1 or

Lemma 2 for the null hypothesis of interest, respectively.

1.4.2 OPG variant

The second method is the most straightforward option. It is based on the outer product

of the gradient and is referred to as the OPG estimator. First, recall that the inverse of Mα

under the null is given as M−1
α =

∑∞
k=0 ψkB

k =
∑T−1

k=0 ψkL
k, where ψ0 = 1 and

∑∞
k=0 |ψk| <∞.

Then write the score vector s
(
θ̂0

)
as the sum of T contributions

sθ,i

(
θ̂0

)
=

T∑
t=1

gt,i

(
θ̂0

)
, (1.18)

where gt,i

(
θ̂0

)
=
∑t−i

s=1 εtεsψ̂t−s−i for θi = αi. If θi = βi then gt,i

(
θ̂0

)
=
∑t−i

s=1 εtε
+
s ψ̂t−s−i for

the AsMA model and gt,i

(
θ̂0

)
=
∑t−i

s=1 εtεs1(εt−1 ≥ 0)ψ̂t−s−i for the AsAR model. Define the
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T × 2p matrix G
(
θ̂0

)
with typical element gt,i

(
θ̂0

)
. Then, if the OPG estimator is used in

(1.6) the test statistic becomes

LM
(OPG)
T = s

(
θ̂0

)′ [
G
(
θ̂0

)′
G
(
θ̂0

)]−1

s
(
θ̂0

)
. (1.19)

This statistic can be computed using an artificial regression which has the form

l = G
(
θ̂0

)
c+ u, (1.20)

where l is the unity vector, c is a parameter vector and u is a residual vector. The explained

sum of squares obtained from (1.20) is numerically equal to the OPG variant of the LM statistic

(1.19).

This OPG variant has an advantage of being relatively easy to compute and also is known

to provide a heteroskedasticity robust version of the LM test (1.6). However, it should be used

with caution since there is evidence suggesting that this form tends to be less reliable for finite

samples (see e.g. Davidson and MacKinnon, 1983 among many others). Section 1.6 provides a

further discussion on this issue.

1.4.3 Other regression based variants

Alternatives of the LM test presented in the form of artificial regressions can be used for our

tests. In this section we discuss one of the best known artificial regression forms of the LM test

which is based on the Gauss-Newton regressions.3 This approach simply involves regressing the

disturbances from the restricted model on the derivatives of the criterion function with respect

to all parameters of the unrestricted model.

More precisely, consider the following auxiliary regression

ε̂ = Xα

(
θ̂0

)
ρα + Xβ

(
θ̂0

)
ρβ + v, (1.21)

3For a review of other available regression based procedures see for instance Davidson and MacKinnon
(2001).
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where Xα

(
θ̂0

)
=
[
∂ε
∂α1

(
θ̂0

)
, . . . , ∂ε

∂αp

(
θ̂0

)]
and Xβ

(
θ̂0

)
=
[
∂ε
∂β1

(
θ̂0

)
, . . . , ∂ε

∂βp

(
θ̂0

)]
. Both

regression matrices Xα

(
θ̂0

)
and Xβ

(
θ̂0

)
can be easily computed using the expressions for

∂ε
∂θi

derived in items (ii) and (ii’) of Lemma 3 (see Appendix A). Testing the null hypothesis

H0 : β = 0 is asymptotically equivalent to test whether ρβ = 0 in the regression (1.21).

Therefore, the test statistic can be readily computed as the standard Wald test from the

Gauss-Newton regressions (1.21). In what follows we will refer to this variant of the LM test

as regression based and denote it as LM
(RB)
T .

Further, a careful inspection shows that this form of the statistic for the HA alternative

closely resembles the test suggested by Brännäs et al. (1998). Therefore, the arguments and

the results obtained in this chapter can be used to justify the derivation of the statistics in

Brännäs et al. (1998) and to establish its asymptotics.

1.5 Asymptotics

The difference between the different LM-type test statistics described above lies in the esti-

mation of Vβ. Since all considered approaches provide consistent estimators for the covariance

matrix of the score vector under the null, LM
(IM)
T , LM

(OPG)
T and LM

(RB)
T are asymptotically

equivalent and follow a χ2 distribution with p degrees of freedom. This result is summarized

in the following theorem.

Theorem 1 For both processes (1.3) and (1.4), under assumption 1 and the null hypothesis

LMT → χ2
p,

as T →∞.

Remark 1 Note that if the stationarity assumption is violated under the null hypothesis, the

underlying asymptotics differ from the ones obtained in Theorem 1. For instance, consider the

underlying process yt to be near integrated, i.e.,

yt = (1 +
c

T
)yt−1 + εt, (1.22)

13



then the LM test in order to test for an AsAR(1) process behaves asymptotically with

LMT
p→

(∫ 1

0
Jc(r)dW (r)

)2

∫ 1

0
J2
c (r)dr

, (1.23)

where Jc(r) is an Ornstein-Uhlenbeck process and W (r) is a Brownian motion.4 However, at

this point it is not evident how to distinguish non-stationarity from asymmetry. Therefore,

pretesting for a unit root before applying the LM test for asymmetries might provide invalid

results. We do not pursue this problem in this chapter but would like to point out that this is

an interesting line of research.

1.6 Monte Carlo Simulations

After deriving LM-type tests for testing shock induced asymmetries in time series and their

asymptotics, we now turn to study the small sample properties of the test and its variants. The

main aim of this section is to evaluate the performance of the tests in terms of their size and

power in several setups. Moreover, for completeness of analysis we compare the LM variants to

tests available in the literature for AsMA setups, namely the LR test (cf. Wecker, 1981) and

the Wald test (cf. Brännäs and De Gooijer, 1994).

1.6.1 Normally distributed errors

As a benchmark specification we consider two types of time series processes given as

yt = εt + αε−t−1 + βε+
t−1 (1.24)

yt = εt + αy−t−1 + βy+
t−1, (1.25)

with εt ∼ N (0, 1) , (1.26)

where (1.24) corresponds to an AsMA(1) and (1.25) to an AsAR(1) model. We examine different

combinations of α and β selected from the set {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and

three sample sizes T = 50, T = 100 and T = 200. All Monte Carlo simulations are based on

4The proof of this fact is almost identical to the proof presented in Phillips (1997).
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N = 2000 replications and are executed for tests of a nominal size of 10%, 5% and 1%, but

only the results for the size of 5% are reported, since no qualitative differences were observed.

The left panel of Table 1.1 (see Appendix B) shows rejection frequencies under the null

hypothesis when the underlying process is an MA(1) (i.e., α = β in (1.24)) with a lag coefficient

α. For this specification we are able to compare the variants of the LM test with the LR test

and the Wald test. We observe that the LR test tends to overreject in small samples, when

α is close to unity. Our study also supports the finding of Brännäs and De Gooijer (1994)

who observe serious size distortions of the Wald test for most of the values of α. Turning to

the LM type tests we see clear improvements in the size performance compared to the LR and

Wald approaches. However, in the case of T = 50 we observe moderate deviations from the

nominal size for the LM
(OPG)
T and the LM

(RB)
T test when the parameter α is close to unity, which

disappear fast as T increases. The right panel of Table 1.1 shows rejection frequencies under

the null of an AR(1) process. The obtained results show that the LM
(OPG)
T and the LM

(RB)
T

perform equally well, while LM
(IM)
T slightly underrejects, especially when α is close to one.

Figure 1.1 (see Appendix C) illustrates the corresponding rejection frequencies under the

alternative. In particular, parameter β in (1.24) and (1.25) is fixed to zero, while α takes

values from the interval [0, 1) as described above. At this point we point out that fixing α

and allowing β to change produces symmetric results but is omitted from the discussion here.

The left panel of Figure 1.1 shows the results for the AsMA alternative and the right one for

the AsAR alternative. All three tests perform comparably well except for the case of T = 50

where the LM
(IM)
T test has marginally higher power than the other variants for the AsMA

alternative and suffers slightly from a power loss relative to the other tests in the case of the

AsAR alternative.

1.6.2 Errors with skewed distribution

In the following, we investigate the behaviour of the LM type tests when the errors are

not normally distributed. Since we construct test statistics that are aimed to distinguish the

contribution of positive and negative errors, it is of particular interest to study if the obtained
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tests are robust to skewed distributions of the underlying errors. Therefore, we allow the errors

in (1.24) and (1.25) to be generated from a beta distribution, i.e.,

εt ∼ B(µ, σ, ξ, κ), (1.27)

where the parameters (µ, σ, ξ, κ) are fixed to the values such that assumption (1) is satisfied. In

particular, µ = 0 refers to the mean of the distribution, σ = 1 refers to the standard deviation,

ξ = 0.8 and κ = 3 refer to the skewness and to the kurtosis respectively.5 All other specifications

of the MC design remain as in section 1.6.1.

Table 1.2 (see Appendix B) shows the rejection frequencies under the null hypothesis for

setups (1.24), (1.25) with (1.27). The reported results show only marginal changes to those

obtained in Table 1.1. This indicates that all three tests are successful in controlling for the

type I error in the setups where innovations are drawn from a skewed distribution.

Turning to the power analysis, an interesting observation is made. Figures 1.3, 1.4 and

1.5 (see Appendix C) illustrate the obtained power of the tests. As a deviation point from the

benchmark design in Section 1.6.1 each panel reports two setups, one with fixed α and β ∈ [0, 1)

and one with fixed β and α ∈ [0, 1). It is clear from Figure 1.3 to 1.5 that while the power

properties of the LM
(OPG)
T and LM

(RB)
T do not qualitatively change compared to the scenario

with normal errors, a practical weakness of LM
(IM)
T is revealed. In particular, the power results

are asymmetric with respect to the fixed α and fixed β. The problem vanishes with growing T .

Yet, the LM
(IM)
T test seems to be less robust for small samples with skewed error distributions.

A simple solution to this issue is to use a maximum statistic that is based on the LM
(IM)
T+ ≡

LM
(IM)
T test and the LM

(IM)
T− test. The latter is constructed against alternatives where negative

errors enter our modeling framework (1.3) or (1.4) instead of positive errors, i.e.,

maxLM
(IM)
T = max

{
LM

(IM)
T+ ,LM

(IM)
T−

}
. (1.28)

As suggested by the standard theory on multiple comparison problems we use a Bonferroni

5Figure 3 in Appendix C illustrates the density function of this distribution.
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correction to control for possible size distortions.6 An additional Monte Carlo experiment (see

Figure 1.6 in Appendix C) shows that this approach can successfully resolve the issue of asym-

metric power loss previously detected for the case of AsMA models. As an alternative solution

one could construct a test statistic that is jointly built on positive and negative residuals.

1.6.3 Conditional heteroskedasticity

To investigate the effect of conditional heteroskedasticity on the performance of the proposed

LM type tests, instead of (1.26) we use a GARCH(1,1) specification to generate errors for the

processes (1.24) and (1.25), i.e.,

εt =
√
htνt, where (1.29)

ht = κ+ δht−1 + θε2
t−1, and (1.30)

νt ∼ N (0, 1) (1.31)

with κ = 0.01, δ = 0.08 and θ = 0.9. We do not show other results for alternative parameter

combinations as this would exceed the scope of this study. However, estimating a GARCH(1, 1)

on daily stock market returns usually yields estimates close to the ones we have chosen here

(see e.g., Pelagatti and Lisis, 2009).

Table 1.3 presents type I errors for this setup. For the case of an underlying MA(1), the

LM
(IM)
T and the LM

(RB)
T tests are oversized for all sample sizes. The OPG variant of the LM

test shows a good size control. However, when α is close to unity it overrejects for T=50 and

T=100. When the underlying process is an AR(1), the LM
(OPG)
T test performs equally well for

all sample sizes. The regression based version of the LM test is again oversized. The LM
(IM)
T

test is oversized for T=200, but performs nearly as well as the OPG variant for T=50 and

T=100.

Based on our findings, LM
(OPG)
T is the best alternative in case of conditional heteroskedas-

ticity. Therefore, we report the power of LM
(OPG)
T in Figure 1.7 only. In comparison to our

6See Table 1.4 for additional insights on the size properties of the maxLM
(IM)
T with and without Bonferroni

correction.
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benchmark specification 1.6.1 we observe a small drop in power.

1.6.4 Model Selection

In practice the knowledge of the lag length is required prior to the implementation of the

LM test. Hence, in this section, we study the estimation of the true order, which shall be

called p0, and its impact on the test statistics. Our primary aim is to establish the small

sample behaviour of p̂ estimated using a standard model selection approach within a linear

time series model when the true underlying model is in fact an AsMA(p0) or an AsAR(p0)

model. Specifically, the lag length is estimated from a linear MA(p) or AR(p) model with

1 ≤ p ≤ Pmax where Pmax is known a priori. The model selection criteria such as the AIC, BIC

or HQ are used for the estimation of p0. The second aim of this section is to investigate the

influence of the estimated lag length on the size-power properties of the LM test.

Therefore, in a first step we investigate the performance of the three mentioned model

selection criteria in two model setups, each with two different parameterizations. In particular,

we use the following specifications:

yt = εt + α1ε
−
t−1 + α2ε

−
t−2 + β1ε

+
t−1 + β2ε

+
t−2 (1.32)

yt = εt + α1y
−
t−1 + α2y

−
t−2 + β1y

+
t−1 + β2y

+
t−2 (1.33)

where the first corresponds to an AsMA(2) and the latter to an AsAR(2). We use the parameter

combinations α1 = 0.5, α2 = 0.4, β1 = 0.3, β2 = 0.2 and α1 = 0.5, α2 = 0.3, β1 = 0.1, β2 = 0.1.

Further, we calculate the selected lag length frequencies up to a lag of six periods (i.e., Pmax = 6)

for sample sizes T = 100, T = 200, T = 400 and T = 600 using N = 2000 replications.

The results are presented in Table 1.5 and 1.6 and are qualitatively similar for both model

specifications. For T = 100 the BIC has a clear tendency to under-select the lag length for

both parameterizations. However, this improves rapidly with increasing T . Furthermore the

BIC shows the highest percentage of correct lag selection (above 94%). Similar observations

are made for the HQ criterion. As for the linear time series models, the AIC has a tendency to

over-select the lag length for all sample sizes. As before, for the ’less linear’ parameterization
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(the second specification) and T = 100 the correct lag decision frequency is only about 50%.

Overall the correct decision frequencies are in the range from 50−75%. Interestingly, we observe

an improvement of the performance from T = 100 to T = 400 but a decrease for T = 600. The

performance of the HQ criterion is kind of a mixture between the aforementioned criteria.

Which criterion is preferable is nevertheless always context specific. For our purposes it is

important to note that the standard criteria can be used to determine the lag length in finite

samples, although one should be aware of a potential over-selection of the AIC criterion.

Eventually, we investigate the influence of a preliminary model selection stage on the power

of the LM test. To be able to compare the performance with the results from our benchmark

model in (1.6.1) we use the BIC in our baseline setup with normally distributed errors. BIC

values are calculated up to a lag of six periods. The results are shown in Figure 1.8. In this

setup we only observe a minor power loss compared to the case with a known time series process.

1.7 Application

The question whether macroeconomic variables exhibit asymmetries over the business cycle

has a long tradition in macroeconomic research. In his General Theory Keynes (1936, p. 314)

notes that ”the substitution of a downward for an upward tendency often takes place suddenly

and violently, whereas there is, as a rule, no such sharp turning-point when an upward is substi-

tuted for a downward tendency.” Although this asymmetric pattern was recognized very early,

the majority of business cycle models rely on a linear specification. However, standard linear

models are not capable to explain this asymmetric behaviour. As a result, the development of

tools to detect and to understand the nature of these asymmetries was of vast interest during

the last decades (see e.g., Neftci, 1984; Beaudry and Koop, 1993; Elwood, 1998; Hansen and

Prescott, 2005).

In the following, we provide two examples. We apply the LM test to two time series which

are directly related to business cycles: The quarterly U.S. unemployment rate as well as the

monthly U.S. industrial production index.
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1.7.1 U.S. Unemployment Rate

It is a well known stylized fact that shocks are transmitted asymmetrically to the labour

market (e.g. Blanchard and Summers, 1987).

A typical observation from unemployment time series data is shown in Figure 1.9. The figure

shows the quarterly seasonally adjusted U.S. unemployment rate (all persons) for the period

1955Q1 to 2013Q3.7 The unemployment rate is increasing sharply and fast during a contraction

phase (grey shaded area) while it is moving downward slowly during an expansion phase of the

business cycle. As a result the unemployment rate is often considered as a countercylical

indicator for business cycles.8

Therefore, we test for asymmetries in the quarterly U.S. unemployment rate. Unit root

tests, like the augmented Dickey-Fuller test, suggest that the unemployment rate has a unit

root and hence we work with the first difference of the series to ensure stationarity. As our

linear specification of the series, we use an AR(4) (without a constant), as this appears to be

the necessary minimum to describe the short run dynamics. For this specification, the Breusch-

Godfrey LM test shows no remaining serial correlation at the 5% significance level. The areas

in the graph of the unemployment rate where we observe positive shocks for the AR(4) model

are marked red in Figure 1.9. Positive shocks mostly coincide with recessions. This finding

supports the presence of asymmetries of the form presented in this chapter. Hence, we run the

LM
(IM)
T test for the given specification. With an empirical value of 15.01 and a critical value

of 13.28 (at the 1% significance level) we strongly reject the null hypothesis of no asymmetric

effects.

1.7.2 U.S. Industrial Production

Industrial production is one of the main indicators for the actual state of the economy. It

is considered as a procyclical and coincident indicator for business cycles.

The monthly seasonally adjusted U.S. Industrial Production Index for the period January

7We have taken the data from the website of the OECD http://stats.oecd.org/index.aspx?queryid=

36324.
8Dates for the recessions are taken from the NBER website http://www.nber.org/cycles.html.
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1919 to September 2014 is shown in Figure 1.10 (the basis year of the index is 2007).9 As in the

first application, the grey shaded areas in the graph mark recessions during the sample period.

Contractions often coincide with sharp decreases in industrial production. During times of

economic growth, industrial production increases slowly.

We transform the index into growth rates by taking log differences in order to achieve

stationarity. A suitable linear specification appears to be an AR(8) with a constant. After

demeaning the series, we apply the LM
(IM)
T test. The empirical value of our test is 19.11

while the critical value is 15.51 at the 5% level. Hence, we again have a clear indication for

asymmetries in the U.S. business cycle.

1.8 Conclusion

In this article, we derive different variants of an LM test to detect asymmetries which

are triggered by a different persistence of positive and negative past shocks. Further, we

investigate the asymptotic properties of the test. In an extensive simulation study, we examine

the small sample properties of the LMT test under different model specifications. The test has

favourable small sample properties compared to already existing tests. Furthermore, it is easy

to implement, as it only requires estimation of the model under the null hypothesis. Moreover,

we show by means of Monte Carlo simulations that standard model selection criteria are still

applicable for the implementation of the test.

In an application to business cycle related macroeconomic time series, we demonstrate the

relevance of our testing procedure.

9We have taken the data from the website of the Federal Reserve Bank of St. Louis https://research.

stlouisfed.org/fred2/series/INDPRO/.
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A Appendix: Proofs

First, some auxiliary results are collected in the following Lemma to simplify the exposition

of the following proofs.

Lemma 3

(i) Sifting property of delta functions

∫
Ω

δ (x) f (x) dx = f (0) and

∫
Ω

δ̇ (x) f (x) dx = −ḟ (0) ,

where δ̇ (x) defines the derivative of the delta function and ḟ(x) is the derivative of f (x);

(ii) For process (1.3) it holds under the alternative that

∂ε

∂βi
= −M̃−1

α,βB
iD1(ε)ε,

where M̃α,β = Mα + MβD̃, with D̃ = D1(ε) + Dδ(ε)Dε;

(iii) Given a stochastic sequence {xt,T}Tt=1 such that plimT→∞ xt,T = 0, ‖xt,T‖ ≤ ‖xt−1,T‖

and x1,T = op (T−1) then

plim
T→∞

∥∥∥∥∥
T∑
t=1

xt,T

∥∥∥∥∥ = 0.

Proof. Sifting property (i) summarizes some of the features of delta functions (see e.g. Gelfand

and Shilov, 1964).

Property (ii) comes directly from differentiation of (1.3), i.e.,

∂ε

∂θi
= −M−1

α,β

[
BiD1(ε) + MβDδ(ε)D∂ε/∂θi

]
ε

= −M−1
α,βB

iD1(ε)ε+ MβDδ(ε)Dε∂ε/∂θi.

solving the last equality for ∂ε
∂θi

will yield the required result.

Finally, the last property (iii) follows from the triangle inequality, i.e.,

∥∥∥∥∥
T∑
t=1

xt,T

∥∥∥∥∥ ≤
T∑
t=1

‖xt,T‖ ≤ T ‖x1,T‖ ,
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where T ‖x1,T‖ behaves as op (1).

Proof of Lemma 1

Recall that invertibility of the process yt ensures the existence of the inverse of Mα under

the null, i.e.,

M−1
α =

(
p∑

k=0

αkB
k

)−1

=
∞∑
l=0

ψlB
l =

T−1∑
i=0

ψlB
l,

where ψ0 = 1 and
∑∞

k=0 |ψk| <∞.

(i) We have that

sα,i =
1

σ2
ε′
(
M−1
α Bi

)′
ε =

1

σ2

T∑
t=1+i

t−i∑
s=1

εtεsψt−s−i,

sβ,j =
1

σ2

(
ε+
)′ (

M−1
α Bj

)′
ε =

1

σ2

T∑
t=1+j

t−j∑
s=1

εtε
+
s ψt−s−j.

Hence, the expectation of sα,isβ,j can be rewritten as

E [sα,isβ,j] =
1

σ4

T∑
t=1+i

t−i∑
s=1

T∑
l=1+j

l−j∑
k=1

ψt−s−iψl−k−jE
[
εtεsεlε

+
k

]
.

Note that the above expectations are non-zero only if the four indices of εt are pairwise equal.

More precisely, the only possible case is when t = l and s = k. We thus obtain the following

expression

E [sα,isβ,j] =
φ2

σ2

T∑
t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−iψt−s−j =
φ2

σ2
tr
[(
M−1
α Bi

) (
M−1
α Bj

)′]
.

(ii) Proof of the fact (1.13) goes along the same line. Rewrite expectation of sβ,isβ,j as

E [sβ,isβ,j] =
1

σ4

T∑
t=1+i

∑
s≤t−1

T∑
l=1+j

∑
k≤l−1

ψt−s−iψt−s−jE
[
εtε

+
s εlε

+
k

]
.

In this situations the expectations are non-zero only if the indices of ε satisfy conditions t =
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l 6= s = k and s 6= k 6= t = l. This in turn leads to (1.13) since

E [sβ,isβ,j] =
φ2

σ2

T∑
t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−iψt−s−j

+
φ2

1

σ2

T∑
t=1+max(i,j)

∑∑
1≤s 6=k≤t−max(i,j)

ψt−s−iψt−k−j,

where
T∑

t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−iψt−s−j = tr
[(
M−1
α Bi

) (
M−1
α Bj

)′]
,

T∑
t=1+max(i,j)

t−max(i,j)∑
s=1

ψt−s−i

t−max(i,j)∑
k=1

ψt−k−j = l′(M−1
α Bi)(M−1

α Bj)′l,

where l being a T × 1 vector of ones.

Proof of Lemma 2

(i) Consider the following decomposition of sβ,i elements into two terms

sβ,i = − 1

σ2

T∑
t=1+i

t−i−1∑
s=1

εtεs1 (εt−i ≥ 0)ψt−s−i −
1

σ2

T∑
t=1+i

εtε
+
t−i, (1.34)

for i = 1, ..., p. Hence, the expectation of sβ,isβ,j can be expressed as

E [sβ,isβ,j] =
1

σ4

T∑
t=1+i

t−i−1∑
s=1

T∑
l=1+j

l−j−1∑
k=1

E [εtεsεlεk1 (εt−i ≥ 0) 1 (εl−j ≥ 0)]ψt−s−iψl−k−j

+
1

σ4

T∑
t=1+i

t−i−1∑
s=1

T∑
l=1+j

E
[
εtεsεlε

+
l−j1 (εt−i ≥ 0)

]
ψt−s−i (1.35)

+
1

σ4

T∑
t=1+j

t−j−1∑
s=1

T∑
l=1+i

E
[
εtεsεlε

+
l−i1 (εt−j ≥ 0)

]
ψt−s−j

+
1

σ4

T∑
t=1+i

T∑
l=1+j

E
[
εtε

+
t−iεlε

+
l−j
]
.

Consider first i = j. Then the second and the third term in (1.35) are both zero. The only

relevant cases for the first term are when t = l, s = k and for the fourth term when t = l.
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These facts and the fact that

F0 := E [1 (εt−i ≥ 0)] =

∫ ∞
0

dFε (x) = 1− Fε (0) ,

imply that

E [sβ,isβ,i] = F0

T∑
t=1+i

t−i−1∑
s=1

ψ2
t−s−i +

φ2

σ2
(T − i)

= F0

T∑
t=1+i

t−i∑
s=1

ψ2
t−s−i +

φ2 − σ2F0

σ2
(T − i) (1.36)

= F0 tr
[
(M−1

α Bi)(M−1
α Bi)′

]
+
φ2 − σ2F0

σ2
(T − i). (1.37)

When i > j, the second term in (1.35) is zero as well and the only relevant case for the first term

is when t = l, s = k and for the fourth term when t = l. However, the third term in (1.35) when

t = l and s = t− i has non zero expectation and can be expressed as σ2φ2 (1−F0)
∑T

t=1+i ψi−j.

This results in the following outcome

E [sβ,i, sβ,j] = F2
0 tr

[
(M−1

α Bi)(M−1
α Bj)′

]
+

(T − i)
σ2

(
(φ2 − σ2F0)F0ψi−j + φ2

1

)
. (1.38)

Finally, for i < j the results are identical to those obtained for i > j due to the symmetry of

the variance covariance matrix.

(ii) Same techniques are used to find the covariance between sα,i and sβ,j. For the case

when j < i we have that

E [sα,isβ,j] = F0

T∑
t=1+i

t−i∑
s=1

ψ2
t−s−i (1.39)

= F0 tr
[
(BiM−1

α )(BjM−1
α )′
]
, (1.40)

and for j ≥ i additional terms enter the expression, i.e.,

E [sα,isβ,j] = F0 tr
[
(BiM−1

α )(BjM−1
α )′
]

+
(φ2 − σ2F0)

σ2
ψi−j (T − j) , (1.41)
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which completes the proof of the Lemma.

Proof of Theorem 1

To ease the notation in what follows, we omit the argument θ0. Rewrite the score vector as

sβ = 1
σ2

∑
tZt,T , where Zt,T =

(
Z

(1)
t,T , ..., Z

(p)
t,T

)′
with Z

(i)
t,T defined as

Z
(i)
t,T =

t−i∑
s=1

εtε
+
s ψt−s−i = εtξt−i,

and ξt−i denotes
t−1∑
s=1

ε+
s ψt−s−i. To investigate the limiting behaviour the Cramer-Wold device

is applied which tells that it is sufficient to study the limiting distribution of the sequence of

scalars ηt,T = λ′Zt,T , where λ is a p× 1 vector such that ‖λ‖ = 1 and ‖·‖ defines an L2 vector

norm.

The central limit theorem for martingale difference sequences (henceforth mds) applies to

the {ηt,T} if the following holds:10

(i) {ηt,T ,Ft,T} is mds, where Ft,T is defined as an associated σ-algebra to the sequence ηt,T

such that ηt,T is measurable with respect to Ft,T ;

(ii) E |ηt,T |2+r < B <∞ for some r > 0 and all t;

(iii) Define σ2
η,T ≡ 1

T
E

[(∑
t

ηt,T

)2
]

, where σ2
η,T > r′ > 0 and

1

T

∑
t

η2
t,T − σ2

η,T

p→ 0.

It is straightforward to see that condition (i) is satisfied since E [ηt,T |Ft−1,T ] =

λ′E [Zt,T |Ft−1,T ] = 0 and the given assumptions on εt assure that E |ηt,T | < ∞. To verify

condition (ii) notice first that by the Cauchy-Schwarz inequality and the Minkowski’s inequal-

ity

E |ηt,T |2+r ≤ ‖λ‖2+r E ‖Zt,T‖2+r ≤

(∑
i

(
E
∣∣∣Z(i)

t,T

∣∣∣2+r
) 1

2+r

)2+r

.

Hence, condition (ii) follows from uniform L4+r boundedness of εt, uniform L4+r boundedness

10see e.g. White (2001), Corollary 5.26
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of ε+
t (implied by assumption 1) and the following arguments

E
∣∣∣Z(i)

t,T

∣∣∣2+r

≤
(
E |εt|4+r E |ξt−i|4+r) 1

2

≤ C

(
t−i∑
s=1

(
E
∣∣ε+
s ψt−s−i

∣∣4+r
) 1

4+r

)2+r

≤ C1

(
t−1∑
s=1

|ψt−s−i|

)2+r

<∞,

where the second inequality follows from the Minkowski’s inequality and the last one from

invertibility and stability of the process.

Regarding the last condition (iii), it is clear that σ2
η,T is bounded away from zero, i.e.,

σ2
η,T =

1

T
E

(∑
t

λ′Zt,T

)2
 =

1

T
λ′Vβλ > 0.

Finally, to show the convergence of 1
T

∑
t η

2
t,T − σ2

η,T it is sufficient to show convergence of

1

T

∑
t

Z
(i)
t,TZ

(j)
t,T −

1

T
Vβ(i, j) =

1

T

∑
t

(
ε2
t − σ2

)
ξt−iξt−j +

1

T
σ2
∑
t

Xt−1, (1.42)

where Xt−1 ≡
∑

t

(
ξt−iξt−j − γ2

(∑T
t=1+max(i,j) ψ

(i)

t ψ
(j)

t − Ji,j
))

. The first term on the r.h.s. of

(1.42) satisfies the mds property and E
∣∣(ε2

t − σ2) ξ2
t−1

∣∣2+r
< ∆ < ∞. Therefore, the law of

large numbers for mds gives that 1
T

∑
t (ε2

t − σ2) ξt−iξt−j
p→ 0. Moreover, the given assumptions

with standard arguments (see e.g. Hamilton, 1994, Chapter 7, pp.192-193) imply that Xt−1 is

uniformly integrable L1 mixingale which in turn gives that 1
T

∑
tXt−1

p→ 0.

Proofs of the limiting results for the AsAR model are similar to those given for the AsMA

model and hence are omitted.
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B Appendix: Tables

Table 1.1: Rejection frequencies (in %) under the null of no asymmetric effects for AsMA processes (left
panel) and AsAR processes (right panel); the nominal size is 5%. εt ∼ N(0, 1).

MA(1) AR(1)

α LR Wald LM
(IM)
T LM

(OPG)
T LM

(RB)
T LM

(IM)
T LM

(OPG)
T LM

(RB)
T

T = 50
0.0 6.0 6.7 7.9 6.3 6.5 5.8 6.0 4.9
0.1 6.3 11.2 6.1 7.2 5.6 4.2 6.5 6.1
0.2 7.2 16.2 7.1 5.8 4.7 4.4 5.5 5.1
0.3 7.9 21.4 6.6 7.7 6.3 4.2 5.3 4.8
0.4 7.5 29.0 6.7 8.0 6.9 3.8 5.5 4.3
0.5 8.4 35.9 7.3 6.5 5.1 3.0 5.0 4.7
0.6 10.3 45.7 7.4 7.8 5.8 2.6 6.0 5.2
0.7 14.0 55.8 8.3 8.4 6.4 3.2 5.1 4.4
0.8 21.7 67.0 8.7 10.9 7.4 1.9 5.3 4.7
0.9 34.1 77.6 7.9 11.9 9.6 3.0 5.7 4.6

T = 100
0.0 5.5 5.4 5.9 5.2 4.7 5.1 5.8 5.3
0.1 6.3 9.0 5.5 5.8 5.4 4.7 6.0 4.9
0.2 5.5 13.4 5.0 5.5 4.5 4.1 5.7 4.6
0.3 5.3 18.0 5.7 5.3 4.8 4.3 5.6 4.8
0.4 5.2 25.2 5.0 5.3 4.7 3.8 5.9 4.9
0.5 6.6 34.6 5.4 5.1 4.6 3.5 5.8 4.8
0.6 6.2 40.7 4.5 6.4 5.7 3.6 5.3 5.3
0.7 8.1 52.8 4.9 5.3 4.8 3.2 5.3 5.1
0.8 9.0 64.7 5.2 6.2 6.4 3.3 5.7 4.8
0.9 19.3 75.5 5.3 7.4 7.7 3.7 5.2 4.3

T = 200
0.0 4.7 5.2 4.8 6.1 5.9 5.0 5.5 5.1
0.1 5.5 9.3 4.2 5.4 4.8 4.6 5.6 4.6
0.2 5.8 13.9 5.0 5.1 5.1 4.8 5.4 5.0
0.3 5.1 18.9 4.2 5.4 5.2 5.2 6.5 5.9
0.4 5.9 27.7 4.3 6.7 6.5 4.1 4.7 4.4
0.5 5.4 31.8 4.7 5.0 5.2 4.9 5.7 5.5
0.6 5.5 41.0 4.0 5.1 5.0 4.1 4.8 4.5
0.7 6.2 53.1 4.5 5.7 5.9 3.8 5.0 4.6
0.8 6.3 62.0 4.4 4.9 4.6 4.1 5.7 5.3
0.9 14.4 72.2 4.5 6.3 7.2 3.9 4.4 4.5
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Table 1.2: Rejection frequencies (in %) under the null of no asymmetric effects for AsMA
processes (left panel) and AsAR processes (right panel); the nominal size is 5%.
εt ∼ B(0, 1, 0.8, 3).

MA(1) AR(1)

α LM
(IM)
T LM

(OPG)
T LM

(RB)
T LM

(IM)
T LM

(OPG)
T LM

(RB)
T

T = 50
0.0 5.6 7.4 5.7 4.8 7.1 4.8
0.1 6.6 7.7 5.9 4.6 7.3 5.9
0.2 5.5 5.4 5.6 4.1 6.4 5.2
0.3 6.4 8.0 6.1 3.4 7.3 5.2
0.4 6.0 7.9 5.4 2.7 6.8 5.8
0.5 6.8 7.1 4.9 2.5 6.1 4.8
0.6 7.8 8.5 6.1 2.4 5.8 4.7
0.7 8.1 9.9 6.7 2.1 7.0 5.1
0.8 9.4 11.5 8.0 2.3 5.1 3.5
0.9 8.9 13.9 9.0 2.6 5.6 4.5

T = 100
0.0 4.8 6.3 5.3 4.9 5.8 5.4
0.1 4.5 6.2 4.9 4.7 6.2 5.3
0.2 4.9 6.7 5.8 5.2 5.2 4.3
0.3 4.0 5.8 4.5 4.5 6.6 5.5
0.4 5.1 5.8 5.5 3.9 6.3 5.4
0.5 4.4 5.0 4.6 3.5 5.6 4.6
0.6 4.3 6.1 6.2 2.6 4.7 4.2
0.7 4.4 6.1 5.7 3.0 5.7 4.7
0.8 5.2 6.2 5.8 3.4 5.3 4.1
0.9 5.9 8.5 6.3 3.2 5.2 4.1

T = 200
0.0 4.1 5.6 5.5 4.9 6.1 5.5
0.1 4.7 6.3 5.8 5.5 5.5 5.3
0.2 4.0 5.8 5.6 5.3 6.4 5.7
0.3 3.8 4.6 4.1 4.9 6.0 5.9
0.4 4.3 5.2 5.1 5.0 5.6 4.6
0.5 4.4 5.7 5.2 3.8 5.2 4.2
0.6 3.4 5.3 5.0 4.8 6.1 5.3
0.7 3.8 6.4 6.8 3.5 5.3 4.6
0.8 4.8 5.4 5.1 3.7 6.3 5.4
0.9 5.4 5.6 5.5 3.5 4.4 4.1
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Table 1.3: Rejection frequencies (in %) under the null of no asymmetric effects for AsMA
processes (left panel) and AsAR processes (right panel); the nominal size is 5%.
εt ∼ GARCH(1, 1).

MA(1) AR(1)

α LM
(IM)
T LM

(OPG)
T LM

(RB)
T LM

(IM)
T LM

(OPG)
T LM

(RB)
T

T = 50
0.0 9.1 6.6 8.8 7.8 6.3 8.9
0.1 9.1 6.8 8.9 6.5 5.0 7.5
0.2 8.9 6.4 9.1 6.9 6.2 9.0
0.3 8.5 6.0 8.2 6.1 5.3 8.3
0.4 8.4 5.0 8.8 5.3 5.2 7.5
0.5 8.4 6.1 8.9 4.5 4.8 7.0
0.6 8.1 6.0 9.1 3.5 5.0 7.2
0.7 8.5 7.1 10.9 3.4 5.1 7.4
0.8 8.6 8.8 12.2 4.1 5.5 7.7
0.9 7.1 11.8 12.2 5.0 5.8 8.7

T = 100
0.0 8.0 6.1 8.9 7.9 5.2 8.2
0.1 9.2 5.9 9.0 8.5 6.0 9.0
0.2 8.7 6.1 8.7 7.3 5.8 8.1
0.3 8.3 4.9 7.6 6.1 4.8 7.8
0.4 8.5 4.8 8.7 6.4 5.5 7.8
0.5 8.3 4.8 7.1 5.0 4.6 6.8
0.6 7.6 5.4 8.5 5.4 5.7 7.4
0.7 8.0 4.7 8.9 3.9 4.0 6.0
0.8 7.2 5.5 8.9 5.4 5.0 7.2
0.9 6.8 8.1 10.8 6.4 5.6 8.2

T = 200
0.0 8.3 5.1 8.4 9.4 6.2 9.5
0.1 9.5 6.0 9.5 7.8 5.2 8.2
0.2 8.2 4.6 7.8 9.3 6.3 9.4
0.3 9.6 6.0 9.4 7.6 4.9 7.9
0.4 7.8 4.7 7.7 7.1 5.3 8.0
0.5 9.1 5.3 8.7 7.0 5.5 8.2
0.6 8.0 5.1 8.1 6.1 4.8 7.9
0.7 7.5 4.5 7.7 7.0 5.7 8.3
0.8 7.3 5.2 8.5 7.2 6.5 9.2
0.9 7.7 6.5 10.2 6.4 5.3 7.7
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Table 1.4: Size of the maxLMT (IM) test without and with Bon-
ferroni correction in case of an MA(1); the nominal size
is 5%

MA(1)

maxLM
(IM)
T maxLM

(IM)
T

α (Bonferroni)
T=50

0.0 11.0 6.8
0.1 10.1 6.1
0.2 10.4 6.7
0.3 10.8 6.5
0.4 10.7 6.7
0.5 10.3 6.2
0.6 11.9 8.2
0.7 13.7 8.9
0.8 13.5 9.6
0.9 11.4 7.3

T=100
0 9.1 5.7
0.1 9.3 5.6
0.2 10.4 6.3
0.3 7.8 4.6
0.4 7.3 4.2
0.5 8.5 5.5
0.6 8.4 5.1
0.7 9.2 5.5
0.8 9.3 5.4
0.9 8.7 5.0

T=200
0 7.6 4.7
0.1 8.7 4.9
0.2 9.6 5.6
0.3 7.6 4.4
0.4 6.8 4.0
0.5 7.0 4.1
0.6 7.0 4.0
0.7 7.2 4.2
0.8 7.2 4.3
0.9 8.4 4.9
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Table 1.5: Model Selection based decision frequencies (in %) un-
der different AsMA DGPs

AsMA(2): yt = εt + 0.5ε−t−1 + 0.4ε−t−2 + 0.3ε+t−1 + 0.2ε+t−2

p=1 p=2 p=3 p=4 p=5 p=6

T=100

AIC 3.90 67.00 12.20 6.30 5.60 5.00
BIC 20.05 75.95 3.20 0.50 0.15 0.15
HQ 9.85 77.50 7.60 2.75 1.25 1.05

T=200

AIC 0.25 73.75 10.85 6.70 4.75 3.70
BIC 2.10 95.45 2.05 0.40 0.00 0.00
HQ 0.45 89.95 5.80 2.40 0.85 0.55

T=400

AIC 0.00 74.40 11.75 6.90 3.95 3.00
BIC 0.00 97.85 1.90 0.25 0.00 0.00
HQ 0.00 90.90 6.40 2.00 0.40 0.30

T=600

AIC 0.00 72.20 11.35 7.55 5.15 3.75
BIC 0.00 98.35 1.60 0.05 0.00 0.00
HQ 0.00 91.90 5.45 1.75 0.65 0.25

AsMA(2): yt = εt + 0.5ε−t−1 + 0.3ε−t−2 + 0.1ε+t−1 + 0.1ε+t−2

T=100

AIC 19.45 53.20 10.40 6.95 5.65 4.35
BIC 49.95 46.70 2.35 0.80 0.15 0.05
HQ 32.65 55.80 6.55 2.70 1.65 0.65

T=200

AIC 4.80 65.10 13.25 7.45 5.15 4.25
BIC 23.45 71.40 2.00 0.25 0.20 0.00
HQ 10.65 78.00 2.40 2.40 0.90 0.65

T=400

AIC 0.15 67.95 14.05 7.75 5.30 4.80
BIC 2.65 94.30 2.70 0.35 0.00 0.00
HQ 0.50 88.10 7.50 2.40 0.95 0.55

T=600

AIC 0.00 63.50 16.20 9.35 5.80 5.15
BIC 0.30 98.65 2.55 0.20 0.10 0.00
HQ 0.00 87.40 8.45 3.00 0.80 0.35

32



Table 1.6: Model Selection based decision frequencies (in %) un-
der different AsAR DGPs

AsAR(2): yt = εt + 0.5y−t−1 + 0.4y−t−2 + 0.3y+t−1 + 0.2y+t−2

q=1 q=2 q=3 q=4 q=5 q=6

T=100

AIC 6.05 68.15 12.00 5.40 4.35 4.05
BIC 20.75 75.85 2.65 0.50 0.25 0.00
HQ 11.70 77.45 7.15 1.75 1.30 0.65

T=200

AIC 0.15 73.55 12.65 6.00 4.50 3.15
BIC 2.35 94.95 2.60 0.05 0.05 0.00
HQ 0.75 88.50 7.85 1.40 1.25 0.25

T=400

AIC 0.00 71.05 13.9 5.90 5.30 3.85
BIC 0.05 97.10 2.60 0.20 0.05 0.00
HQ 0.00 88.9 8.35 1.75 0.50 0.50

T=600

AIC 0.00 67.55 15.65 5.95 6.20 4.65
BIC 0.00 97.30 2.35 0.35 0.00 0.00
HQ 0.00 88.15 8.90 1.50 1.05 0.40

AsAR(2): yt = εt + 0.5y−t−1 + 0.3y−t−2 + 0.1y+t−1 + 0.1y+t−2

T=200

AIC 21.10 55.50 10.05 5.80 4.40 3.15
BIC 50.20 47.85 1.45 0.35 0.15 0.00
HQ 34.50 56.75 5.20 1.90 1.30 0.35

T=200

AIC 5.05 69.35 11.30 5.90 5.05 3.35
BIC 22.05 76.15 1.30 0.45 0.05 0.00
HQ 10.90 81.20 4.70 2.05 0.85 0.30

T=400

AIC 0.15 67.25 10.70 8.20 7.25 6.45
BIC 2.30 95.45 1.70 0.45 0.10 0.00
HQ 0.70 89.15 4.80 2.95 1.70 0.70

T=600

AIC 0.00 62.75 8.80 8.80 10.30 9.35
BIC 0.10 98.90 0.50 0.35 0.15 0.00
HQ 0.05 90.55 4.35 2.35 1.90 0.80
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C Appendix: Figures
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Figure 1.1: Power of the LMT Variants when εt ∼ N (0, 1)
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Figure 1.2: Kernel Density Estimate of εt ∼ B(0, 1, 0.8, 3)
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Figure 1.3: Power of the LM
(IM)
T Test when εt ∼ B(0, 1, 0.8, 3)
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Figure 1.4: Power of the LM
(OPG)
T Test when εt ∼ B(0, 1, 0.8, 3)
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Figure 1.5: Power of the LM
(RB)
T Test when εt ∼ B(0, 1, 0.8, 3)
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Figure 1.6: Power of the Robustified Version of the LM
(IM)
T Test when εt ∼ B(0, 1, 0.8, 3)
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Figure 1.7: Power of the LM
(OPG)
T Test when εt ∼ GARCH(1, 1)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ej

ec
tio

n 
F

re
qu

en
ci

es



AsMA(1), T=50, =0

LM_OPG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ej

ec
tio

n 
F

re
qu

en
ci

es



AsMA(1), T=100, =0

LM_OPG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ej

ec
tio

n 
F

re
qu

en
ci

es



AsMA(1), T=200, =0

LM_OPG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ej

ec
tio

n 
F

re
qu

en
ci

es



AsAR(1), T=50, =0

LM_OPG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ej

ec
tio

n 
F

re
qu

en
ci

es



AsAR(1), T=100, =0

LM_OPG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
ej

ec
tio

n 
F

re
qu

en
ci

es



AsAR(1), T=200, =0

LM_OPG

41



Figure 1.8: Power of the LMT Variants when the Lag Length is Determined in a Prelim-
inary Stage on the basis of the BIC
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Figure 1.9: Quarterly U.S. Unemployment Rate in %
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Figure 1.10: Monthly U.S. Industrial Production Index
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Notes: The observation period of the index is January 1919 to September 2014
and the basis year is 2007 (2007=100). The data is seasonally adjusted. The grey
shaded areas mark recessions.
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Chapter 2

Variance Bounds Tests and Forecast

Evaluation

2.1 Introduction

More than three decades ago, Shiller (1981) and LeRoy and Porter (1981) initiated a dis-

course about whether stock prices are more volatile than traditional models would imply. Shiller

derived a theoretical upper bound for the variance of the price of a stock in the present value

model. He showed that the variance of the stock price has to be smaller than or equal to the

variance of the ex post rational price. This descriptive measure is known as Shiller’s variance

bounds test. In an empirical application to the S&P 500 Composite Price Index, Shiller found

that bound dramatically violated. As part of an explanation, the author pointed out that stock

prices are five times too volatile to be accounted for by changes in fundamentals.

Although the evidence against the variance bound seemed to be striking at first glance,

Shiller’s findings were criticized in the subsequent discourse: The testing procedure was said

to be prone to severe statistical problems under more realistic assumptions about the data

generating process (Flavin, 1983; Kleidon, 1986a,b; Marsh and Merton, 1986). The critique led

to the development of theoretical upper bounds under more general conditions (e.g. Mankiw

et al., 1985; Engel, 2005; Lansing, 2015) as well as to a second generation of variance bounds

tests in order to meet the aforementioned scepticism (e.g. West, 1988; Mankiw et al., 1991).

Although empirical applications of these procedures still provided evidence against the view
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that stock prices are driven by fundamentals, the rejections of the hypothesis of market effiency

are only marginal (Mankiw et al., 1991).

In this chapter, we show that the variance bounds test by Mankiw et al. (1991) is directly

linked to the well known forecast encompassing test (e.g. Harvey et al., 1998). This observation

gives rise to the idea of incorporating other evaluation techniques into the testing procedure.

We argue that the Diebold-Mariano test (Diebold and Mariano, 1995) is a natural candidate:

While the forecast encompassing test relies on a set of assumptions that are not necessarily

satisfied in the financial market context, the Diebold-Mariano test (henceforth DM) is generally

known to be a very robust evaluation tool. We apply the testing procedure to the monthly S&P

500 Composite Price Index. In contrast to Mankiw et al. (1991) we find that naive forecasts

are not able to outperform the market price as a predictor for the ex post rational price.

Yet, using more sophisticated forecasting models allows us to find better predictors. Here,

we exploit the fact that the price and the dividend series of the S&P 500 Composite Price

Index are cointegrated. Based on this observation, Vector Autoregressive (henceforth VAR) and

Vector Error Correction Models (henceforth VECM) are estimated in different specifications

as a forecasting exercise. In addition, we employ two distinct forecasting approaches: First,

we build a multi-step forecast by reiterating the one-step ahead forecast (iterated multi-step,

henceforth IMS). Second, we construct forecasting models for specific time horizons (direct

multi-step forecasts, henceforth DMS). Both procedures are commonly used in practice and

the preference for one over the other of the two approaches usually is an empirical matter (see

e.g. Stock and Watson, 2004; Marcellino et al., 2006). The results suggest that the VECM

based on logarithmised price and dividend values and using IMS forecasts outperforms the

actual stock price as a predictor for the ex post rational price at least for sufficiently long

holding periods of the underlying stock.

The remainder of this chapter is structured as follows. In Section 2.2 and 2.3 we briefly

discuss variance bounds tests of the first and second generation (for a more detailed overview

see e.g. Gilles and LeRoy, 1991). In Section 2.4 we link these tests to the forecast evaluation

literature. An application to the S&P 500 Composite Price Index is presented in Section 2.5.
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In the last section we conclude.

2.2 First Generation Tests: Shiller’s Test

In this section we describe the first generation test. In the following we first introduce the

necessary notation before discussing Shiller’s (1981) test procedure in more detail.

The standard present value model is given by:

Pt = γEt(Dt + Pt+1) (2.1)

=
∞∑
i=0

γi+1EtDt+i

= Et(
∞∑
i=0

γi+1Dt+i)

= Et(P
∗
t ),

where

Pt = the price of the stock at time t;

Dt+i = the dividend paid at the end of period t+ i;

Et = the expectation operator conditional on information available at time t;

γ = the discount factor
1

1 + r
, with r being the constant rate of return;

P ∗t = the ex post rational price.

In that standard present value model the price of a stock is equal to the expected present value

of its future dividends. This implies that the price Pt is an optimal forecast for the ex post

rational price P ∗t . The forecast error εt is then defined as:

εt = P ∗t − Pt.

Under rational expectations, the forecast error is uncorrelated with information up to time t,

i.e. Et(εt|It) = 0 where It corresponds to an information set including all information available
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at time t. It follows that

V ar(P ∗t ) = V ar(Pt) + V ar(εt).

Based on the non-negativity property of variances, that decomposition leads to the following

inequality (Shiller, 1981):

V ar(P ∗t ) ≥ V ar(Pt).

In other words, the variance of the forecast Pt is smaller than the variance of the forecasted

variable P ∗t .

Shiller assumes the dividend Dt to be stationary or at least stationary after detrending the

dividend series. If that assumption holds, we know that Dt has a moving average representa-

tion:1

Dt = φ(L)εt,

where φ(L) is the moving average operator with φ0 = 1 and V ar(Dt) =
∑∞

i=0 φ
2
iσ

2.

Consider now the innovation operator δt = Et−Et−1, where Et again denotes the conditional

expectation operator. Applying this operator to the present value model one can show that the

innovation in price is related to the innovation in dividends as follows:

δtPt =
∞∑
k=0

γi+1δtDt+i

= γεt + γ2φ1εt + γ3φ2εt + ...

= γφ(γ)εt.

Further, one can use the Cauchy-Schwarz inequality in order to derive the following inequality:

(∑
γi+1φi

)2

≤
(∑

γ2(i+1)
)(∑

φ2
i

)
.

1We set the mean of the dividends to zero since a nonzero mean would drop out of all variance expressions.
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The above leads to an upper bound for the variance of δtPt given the variance of Dt:

V ar(δtPt) ≤
γ2

1− γ2
V ar(Dt)

≤ V ar(Dt)

(1 + r)2 − 1
.

These upper bounds are known as ’Shiller’s variance bounds test’, although the author does not

provide a significance test in a statistical sense. In particular, Shiller’s violation of the variance

bounds result is purely based on descriptive statistics.

Moreover, Shillers’ procedure is prone to some econometric pitfalls.2 Flavin (1983) outlines

that the variances of the actual price Pt and the ex post rational price P ∗t are estimated

with downward bias. When estimating the variance of a population with unknown mean the

estimator is given by

σ̂2 =
n∑
i=1

(xi − x)2

n− 1
.

Yet, this estimator is only unbiased if the xi are uncorrelated. However, both Pt and P ∗t are

positively autocorrelated and, as Flavin (1983) points out, the persistence of P ∗t is stronger than

that of Pt. As a result, the variance of P ∗t is estimated with a larger downward bias. Based on

that argument, violations of the variance bounds might be due to an increased probability of a

type I error.

Moreover, Flavin finds that Shiller’s method to calculate an approximation for the unob-

servable variable P ∗t induces an additional bias towards rejection.3 In order to see why, notice

that the ex post rational price is the solution to the following recursive problem:

P ∗t = β(P ∗t+1 +Dt)

satisfying

limt→∞β
tP ∗t = 0.

2For a more detailed overview see e.g. Gilles and LeRoy (1991).
3See also Shea (1989) for a more general discussion.
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On the contrary, Shiller calculates P ∗t by solving the recursion satisfying the terminal condition

P ∗T = 1
T

∑T
t=1 Pt. In general, the resulting estimates for P ∗t are biased. However, this issue can

be overcome when generating P ∗t|T by the recursion and the terminal condition P ∗T |T = PT . Yet

it is important to notice that even then the sample variance is still biased. However, this effect

is negligible in sufficiently large samples.

Kleidon (1986a) shows that the variance bounds test is problematic for small sample sizes.

The author finds that the test tends to be biased towards rejection of the null hypothesis of

market efficiency.

In another article, Kleidon (1986b) points out that Shiller’s inequalities are based on a cross

sectional and not on a time series perspective: If one was able to replicate the economy a large

number of times, one would observe the following:

V̂ ar(Pt) =

∑
i(Pit − Pt)2

n− 1
≤ V̂ ar(P ∗t ) =

∑
i(P

∗
it − Pt

∗
)2

n− 1
,

where the summation refers to replications i = 1, ..., N . Kleidon finds that if N=1, as in the

present case, one can not be sure that the variance bound is satisfied.

Marsh and Merton (1986), Kleidon (1986b) and Durlauf and Phillips (1988) argue that

Shiller’s variance bounds rely on the stationarity of the underlying series. In the context of

prices and dividends that assumption is highly questionable even after deflating and detrending

the series (see e.g. Nelson and Plosser, 1982). In that line of argumentation, Engel (2005) derives

a reverse result to Shiller’s inequality for nonstationary time series expressing prices in first-

differences. However, Lansing (2015) more recently shows that this reversal does only hold for

a very specific setting.

2.3 Second Generation Tests: Mankiw, Shapiro and Romer’s Test

The critique of Shiller’s test opened ground for the so called second generation tests which

are described in this section. The procedure by Mankiw et al. (1985, 1991) is the most prominent

among the tests of the second generation. The idea is the following: Suppose Pt is an optimal

predictor for P ∗t with Et(P
∗
t − Pt) = 0. Let P ◦t be any other (naive) predictor that can be
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derived from information which is available to agents at time t. Consider the following identity:

P ∗t − P ◦t ≡ (P ∗t − Pt)︸ ︷︷ ︸
εt

+(Pt − P ◦t ).

Alternatively, accounting for potential heteroscedasticity in the variables, that identity can be

written as:

Et

(
P ∗t − P ◦t

Pt

)2

= Et

(
P ∗t − Pt
Pt

)2

+ Et

(
Pt − P ◦t
Pt

)2

. (2.2)

The test statistic can now be derived in two steps. First, define:

dt =

(
P ∗t − P ◦t

Pt

)2

−
(
P ∗t − Pt
Pt

)2

−
(
Pt − P ◦t
Pt

)2

=
P ∗t P

◦
t + P 2

t − P ∗t Pt − PtP ◦t
P 2
t

. (2.3)

Second, notice that equation (2.2) implies that E(dt) = 0. That leads to a linear regression

model of dt:

dt = α + ηt,

where α is a constant and ηt is a zero mean error term. That model allows to test if α = 0 and

thus if the theoretical results hold up.

Mankiw et al. (1985) suggest that their test is unbiased4 and does not rely on the stationarity

of the dividend series. Moreover, they incooperated Flavin’s (1983) ideas by using noncentral

instead of central variances.5 Yet, Shea (1989) critizises that the test procedure is sensitive to

the choice of the terminal date in the approximation of the ex post rational price P ∗t . Therefore,

4As noted by Gilles and LeRoy (1991), the terms ’test’ and ’unbiased test’ in the variance bounds litera-
ture are not equivalent with their common meaning in the econometric literature (this is also in line with the
observation that Shiller’s procedure is only based on descriptives). These variance bounds tests reject the null
hypothesis of market efficiency, if the sample estimates of the variances don’t reflect the theoretical variance
bounds inequalities. A confidence region is not specified. Furthermore, ’unbiased test’ means that the expec-
tation of the test statistic is unbiased. This does not ensure that the test is unbiased in the usual econometric
sense.

5Mankiw et al. (1985) do not center the variances around the sample mean but around a naive forecast.
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Shea suggests to use a fixed holding period h instead of h = T − t to calculate P ∗t in

P ∗ht =
h−1∑
i=0

γi+1Dt+i + γhPt+h. (2.4)

There are two obvious disadvantages of that approach. On the one hand, the resulting P ∗t|t+h

does not equal the expectation of P ∗t conditional on the whole sample. On the other hand

the loss of observations leads to less precise estimates. Taking these notions into account,

Mankiw et al. (1991) calculate their test statistic on the basis of different holding periods

h = 1, 2, 5, 10, T − t using annual S&P 500 data.

2.4 Variance Bounds Tests and Forecast Evaluation

In this section, we link the variance bounds tests to forecast evaluation results. In particular,

it is interesting to note that the variance bounds test by Mankiw et al. (1991) is directly linked

to the well-known forecast encompassing test (e.g. Harvey et al., 1998). In the current context,

the test regression for the classical forecast encompassing test can be written as follows:

(
P ∗ht − Pt

)︸ ︷︷ ︸
e1t

= λ (P ◦t − Pt) + εt

= λ
((
P ◦t − P ∗ht

)
+
(
P ∗ht − Pt

))︸ ︷︷ ︸
e1t−e2t

+εt,

where eit denotes the respective forecast error from the actual price Pt or the naive forecast P ◦t

and εt is a zero mean error term. We are interested in testing the null hypothesis whether λ

equals zero: Under the null hypothesis, the naive forecast does not add any valuable information.

In that case, Granger and Newbold (1973) describe the actual stock price as ’conditionally

efficient’ with respect to the naive forecast. The resulting OLS estimator for λ is given by:

λ̂ =
1
T

∑T
t=1 (P ◦t − Pt)

(
P ∗ht − Pt

)
1
T

∑T
t=1 (P ◦t − Pt)

2
.
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Expanding the numerator yields:

(P ◦t − Pt)
(
P ∗ht − Pt

)
= P ∗ht P ◦t + P 2

t − P ∗ht Pt − PtP ◦t .

Comparing this expression with the numerator of equation (2.3) demonstrates the direct link

between the two statistics. However, as Harvey et al. (1998) point out, the classical forecast

encompassing test relies on the restrictive assumption of normality distributed forecast errors.

This assumption is highly optimistic in a financial market context, where one would intuitively

expect fat-tailed error distributions. A violation of the normality assumption results in size

distortions of substantial magnitude.

Therefore, in order to receive reliable results, one needs to apply more robust techniques in

the assessment of variance bounds. One obvious candidate is the Diebold-Mariano test (Diebold

and Mariano, 1995). As before, let Pt and P ◦t denote two competing forecasts for the ex post

rational price P ∗t . The forecast erros from the two models can be written as:

ε1
t = P ∗t − P ◦t

ε2
t = P ∗t − Pt.

The accuracy of a forecast can be measured with a chosen loss function, e.g. squared error loss.

Let qt denote the loss differential:

qt = (P ∗t − P ◦t )2 − (P ∗t − Pt)2

= (ε1
t )

2 − (ε2
t )

2.

Based on that loss differential we are able to evaluate whether the current stock price is a better

predictor for the ex post rational price than any other forecast. In statistical terms that means

we can formulate the null and alternative hypothesis in terms of the expected loss differential:

H0 : E(qt) ≥ 0 vs. H1 : E(qt) < 0.
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An appropriate test statistic is developed in Diebold and Mariano (1995):

DM =
√
T
q

σq
∼ N (0, 1),

where q corresponds to the mean of qt, σq to a consistent estimate of the standard deviation of

q and T to the sample size. Hence, we reject the null hypothesis of market efficiency at the 5%

significance level if DM< −1.64.

Note that the Diebold-Mariano as well as the forecast encompassing test are companion

tests: While the latter tests an orthogonality condition of the forecast errors that allows for

assessing whether a combined forecast has a lower squared error than one of the single forecasts,

the DM test compares the accuracy of the competing forecasts in a more direct approach.

Moreover, the DM test has the advantage over the forecast encompassing test of good size and

power properties under minimal assumptions. The only assumption that needs to be satisfied

refers to the covariance stationarity of the loss differential.

2.5 Application

In the following, we apply the DM test to a monthly series of the S&P 500 Composite Price

Index.6 The data set contains monthly dividend and price series from January 1871 to June

2013. Here, we use real prices and dividends to account for inflation specific effects. In order

to deflate the series, Shiller used the Producer Price Index (PPI) published by the U.S. Bureau

of Labor Statistics from 1913 onwards and the Warren and Pearson price index for the years

before.

The ex post rational price P ∗t is a latent variable. Hence, one needs to approximate the true

value of this variable. In order to calculate the ex post rational price we apply the following

trading strategies: The S&P 500 is bought at time t and held for h periods. Up to period h,

a stream of dividends is paid. We consider holding periods of h = 1, 6, 12 and T − t months.

6The data can be downloaded from the website http://www.irrationalexuberance.com/ by Robert
Shiller.
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Thus, an approximation for the ex post rational price can be written as

P ∗ht =
h−1∑
i=0

γi+1Dt+i + γhPt+h.

The discount factor γ corresponds to the inverse of 1 + r12 where r12 is the monthly analog

of the constant annual interest rate r. The rate of return is a latent variable and hence we

follow Mankiw et al. (1991) in calibrating the interest rate to the values r = 0.05, 0.06, 0.07.

Alternatively, one can estimate the constant interest rate r on the basis of equation (2.1)

using observable variables as described in West (1988) or Gürkaynak (2005). In any case,

the corresponding estimate of the interest rate r̂ is afflicted with high uncertainty and varies

between 2% and 6%.

2.5.1 Simple Forecasts

In order to construct our naive forecast P ◦t , we assume that the dividend series follows a

random walk or a random walk with drift, respectively. The respective forecasts are hence

given by (e.g. Evans, 1991):

PRW
t =

Dt

r

PRWD
t =

1 + r

r2
µ+

Dt

r
.

These naive types of forecasts are often used as benchmarks for competing forecasts in the lit-

erature. In the following, we define µ as the average month-to-month difference of the dividend

series over the past six and twelve months, respectively:7

µ6
t =

1

6

t∑
i=t−6+1

∆Di

µ12
t =

1

12

t∑
i=t−12+1

∆Di.

7We do not consider actual month-to-month differences directly in order to reduce the influence of possible
outliers.
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We apply the Diebold-Mariano test for the forecasts as described above. We correct for the

autocorrelation of the multi-period forecast errors: An efficient h-period forecast has forecast

errors that follow an MA(h-1) process. As recommended by Diebold and Mariano, we hence

use a Newey-West type estimator for the sample variance of the loss differential.

The results are shown in the left panel of Table 2.1 for the baseline version of the test and for

the normalized variant in the right panel of Table 2.1, repectively. The normalization is based

on the non-covariance stationarity of the loss differential in the standard test with h = T − t.

The forecast errors are normalized by dividing them by Pt as in Mankiw et al. (1991). As can

be seen in Table 2.1, values for the test statistic exceed the critical value of −1.64. That means

that we don’t find evidence for simple forecast models, as the random walk or the random walk

with drift, being able to outperform the actual price in terms of the mean squared error. This

is indeed an important observation, since it contradicts Mankiw et al. (1991) who found that

naive forecasts often outperform the market price at least over long holding periods.

2.5.2 Cointegration

As outlined in Section 2.2, the stationarity assumption in Shiller (1981) with respect to the

dividend and the price series has been challenged in the literature (e.g. Kleidon, 1986b). In

line with that, the plots of both series in Figure 2.1 seem to confirm the scepticism about the

stationarity. In order to evaluate statistically whether we have unit roots in our data, we apply

the Augmented Dickey-Fuller (ADF) test to the different components of the net present value

model.8

The lag length selection for this testing procedure was conducted using an automatic search

based on the Schwarz Information Criterion (SIC). The results are illustrated in Table 2.2. The

null hypothesis of a unit root is accepted for all series. Furthermore, taking a closer look at the

p-values acceptance of nonstationarity is not a marginal issue. Therefore, we have to bear in

mind that we have to forecast in a nonstationary environment.

The notions above lead directly to the concept of cointegration: Any reasonable forecast P ◦t

8For the calculations of the test statistics for the ex post rational price P ∗
t we assume an interest rate r of

5%. The results remain qualitatively the same for r = 6% and r = 7%.
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Table 2.1: Diebold-Mariano Test: Simple Forecasts

Standard Normalized
Random walk Random walk with Random walk Random walk Random walk with Random walk

drift (µ6
t ) with drift (µ12

t ) drift (µ6
t ) with drift (µ12

t )
r=5%

h
1 14.464 13.638 13.918 26.661 13.679 27.301
6 0.707 4.055 3.836 4.517 3.835 3.577
12 1.210 3.702 3.323 3.806 3.724 3.582
T-t - - - -0.972 3.661 3.403

r=6%
h
1 15.319 13.851 14.041 34.121 13.602 34.301
6 0.757 3.716 3.344 4.526 3.774 2.985
12 1.193 3.372 2.965 3.608 3.698 3.581
T-t - - - 2.665 3.533 3.264

r=7%
h
1 16.004 14.592 14.749 42.450 13.724 14.623
6 0.744 3.305 2.846 5.319 3.761 3.018
12 1.187 3.002 2.566 4.394 3.728 3.666
T-t - - - 6.361 3.495 3.251

Notes: The table contains DM statistics for the simple forecasting models described in section 2.5.1. The models are evaluated
for different holding periods h and different interest rates r. The null hypothesis is rejected at the 5% significance level if
DM< −1.64.
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Figure 2.1: Real Stock Price and Real Dividend Series
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Notes: Whilst the upper panel shows the price and the dividend series in levels, the middle
panel shows both series in log-levels. The two panels at the bottom contain scatterplots of
both series in levels and in log-levels respectively.
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Table 2.2: Augmented Dickey-Fuller Test: Price, Dividend, Ex
Post Rational Price

t-statistic p-value
Pt -0.112 0.946
Dt -0.182 0.938
log(Pt) -1.002 0.754
log(Dt) -1.331 0.617
P ∗1t -0.187 0.938
P ∗6t -0.400 0.907
P ∗12
t 0.147 0.969
P ∗T−tt 4.035 1.000

Notes: The table contains test statistics and p-values for the augmented Dickey-Fuller Test
without a trend in the test regression.

should be cointegrated with the variable being predicted. In technical terms this means that

the resulting forecast error series P ∗ht − P ◦t is I(0) and hence the variance exists. In order to

test whether there exists a cointegration relationship between the variables can be evaluated

by means of cointegration tests. Here we use the Johansen as well as the Engle-Granger

cointegration tests applied to the entire sample period.

The order of the VAR for the Johansen test is determined as follows: First of all, a search

method based on the SIC is used up to a lag of twelve periods. Afterwards, we check for

remaining autocorrelation using the LM test and increase the number of lags until no further

autocorrelation can be detected. Yet, in the case of the level price and the dividend series

it is not possible to entirely eliminate the autocorrelation9, whereas in the case of log-levels

this is not a concern. For the Engle-Granger cointegration test we use an automated search

based on the SIC as well. The results for both testing procedures are shown in Table 2.3. As

recommended by Gonzalo and Lee (1998), we have used both tests in order to avoid pitfalls of

the respective testing procedure. As such, the Johansen test collapses for h = T − t due to a

(near) singular error covariance matrix in the VAR representation.

All combinations of the different series are cointegrated of order one at least at the 10%

significance level. That might not be a suprising but still an interesting result: It does not only

tell us that all series stick in some sense to the predicted variable, but also that alternative

9One higher order lag was still significant.
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forecasts based on the respective cointegration relation can be constructed.

Table 2.3: Johansen and Engle-Granger Cointegration Test

Johansen Cointegration Test

r= Ltrace p-value Leigenvalue p-value
Dt, P

∗1
t 0 14.679 0.066 14.630 0.044

1 0.049 0.824 0.049 0.824
Dt, P

∗6
t 0 20.431 0.008 20.277 0.005

1 0.154 0.695 0.154 0.695
Dt, P

∗12
t 0 19.650 0.011 19.595 0.007

1 0.055 0.814 0.055 0.814
Dt, P

∗T−t
t 0 - - - -

1 - - - -
Dt, Pt 0 13.939 0.085 13.916 0.057

1 0.023 0.879 0.023 0.879
log(Dt), log(Pt) 0 34.324 0.000 33.503 0.000

1 0.821 0.365 0.000 0.365

Notes: The table contains empirical values and p-values of the Johansen trace and the
Johansen maximum-eigenvalue statistic for different combinations of prices and dividends; r
denotes the cointegration rank. Cases with singularity issues are marked by ’-’.

Engle-Granger Cointegration Test

τ -statistic p-value z-statistic p-value
Dt, P

∗1
t -3.866 0.011 -30.860 0.006

Dt, P
∗6
t -4.061 0.006 -35.706 0.002

Dt, P
∗12
t -3.905 0.010 -32.827 0.004

Dt, P
∗T−t
t -4.176 0.004 -35.567 0.002

Dt, Pt -3.514 0.032 -25.473 0.018
log(Dt), log(Pt) -4.474 0.001 -39.822 0.001

Notes: The table contains empirical values and p-values of the Engle-Granger cointegration
τ - and z-statistic for different combinations of prices and dividends.

2.5.3 Multivariate Forecasts

In this section we describe and estimate a panoply of multivariate forecasting models. A

common feature of the models described in the following is that they all exploit the cointegration

relation between the actual stock price, the ex post rational price and the dividend series, even

if to a different extend.
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For now, consider the following regression equation:

P ∗ht = µ+ αDt + ut, (2.5)

where µ is an intercept and ut is a zero mean error term. This equation reflects the long run

relation between the ex post rational price and the dividend series. It is equivalent to the first

step in the Engle-Granger procedure for error correction models. We estimate the parameters

of this model by using a rolling window of 300 observation. The rolling window allows for

changing parameters over the sample.

The dividend payment for the next period is known in advance. Hence, we can create a

forecast for the ex post rational price using the estimates from the preceding observation period

in the following manner

P ◦t = µ̂+ α̂Dt.

The first column of Table 2.4 (REG) shows the results of the DM test comparing the

performance of the forecasts from this model with the actual stock market prices as predictors

for the ex post rational price. All results are statistically significant at the 5% level: Our forecast

is a better predictor for the ex post rational price than the actual stock price. Compared to

earlier studies which found significance only for long holding horizons of the underlying asset,

this is a very interesting result. However, the results presented here are only valid for holding

periods of one month. In terms of longer holding periods, one has to keep in mind that P ∗t

is based on information from future values of Pt and Dt. Therefore, the results for longer

horizons are inflicted by the assumption of known future stock payments. Consequently, we

turn to procedures that avoid these complications.

In the following, we consider forecasts based on bivariate vector autoregressions (VARs). In

the case stated here the model can be written as

yt = c+ A1yt−1 + ...+ Apyt−p + εt, (2.6)
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where yt = (Pt, Dt)
′ denotes the vector of observed variables including the price and the dividend

series, c is a vector of equation specific constants, Ai (i=1,...,p) are (2× 2) parameter matrices

and εt is a zero mean error term. Notice that in contrast to model (2.5) this model does

not explicitly include the ex post rational price P ∗t and as a result avoids the aforementioned

difficulties.

For the forecasting exercise we choose again a rolling regression approach with a moving

window of 600 observations. The lag order of the VAR is determined by an automated search

based on the SIC up to a maximum of twelve lags. Based on that choice of lags we reestimate

the parameters of the model for every period and construct out of sample forecasts for the

dividend and the price series up to a horizon of twelve months:

ŷt+h|t = ĉ+ Â1ŷt+h−1|t + ...+ Âpŷt+h−p|t, (2.7)

where ŷt+h|t denotes the h-step ahead forecast of yt at time t, Âi with i=1,...,p represents the

estimated coefficient matrices of the system, and ŷt+h−i|t = yt+h−i if h − i ≤ 0. Hence, in the

case of a one-step ahead forecast (h=1), the prediction can be derived by just inserting the

observed values of the time series in equation (2.7). For longer horizons, predicted values of

the dividend and the price series are recursively inserted into the formula, resulting in iterated

multi-step forecats (IMS).

We exploit levels and log-levels of both series respectively for our forecasting exercise. As

noted by Lütkepohl and Xu (2012) the log-transformation, although often applied without

fundamental reasons, can help to stabilize the volatility and therefore improves the forecasting

ability of our model. That stabilizing effect is illustrated in Figure 2.2 at least for the price

which is the main building block in the construction of a forecast for the ex post rational price

(at least for the holding periods being studied here).

The forecasted values, and in the case of the log-levels the forecasted values transformed

back to levels respectively, are inserted into equation (2.4). This allows us to construct a

forecast for the ex post rational price P ∗t out of these values.

Another, and potentially more natural way to proceed is to create a vector error correction
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model (VECM) for the price and the dividend series. Phillips (1998) shows that forecasts

based on a VECM that explicitly estimates cointegrating relationships -as far as cointegration

is present- are consistent and asymptotically optimal. Here, the VECM can be represented as

follows:

∆yt = Πyt−1 + Σ1∆yt−1 + ...+ Σk∆yt−k + ηt, (2.8)

where ∆yt = yt − yt−1 denotes the first difference of yt, Π represents the long-run parameters,

Σj the short-run parameters for j = 1, ..., k and ηt a zero mean error term of the VECM. To

specify the model, we use the same procedure as in the case of the VAR. Hence, the h-step

ahead forecast is given by:

∆ŷt+h|t = Π̂ŷt+h−1|t + Σ̂1∆ŷt+h−1|t + ...+ Σ̂k∆ŷt+h−k|t, (2.9)

where ŷt+h−j|t = yt+h−j if h − j ≤ 0. As before, multi-step forecasts are constructed by

reiterating the one-step ahead forecast.

Columns 3 to 6 of Table 2.4 report results of the Diebold-Mariano test for the different VAR

and VECM specifications. The results show that the VECM approach leads to forecasts that

outperform the actual price as a predictor when using log-levels for holding periods of 6 and 12

months. All of the resulting values are smaller than the critical value of −1.64 and hence we

have strong rejections at the 5% significance level.

These findings are in line with past empirical evidence that shows that in the presence of

cointegration VECMs are superior to VARs for long horizon forecasts, while the evidence is

somewhat mixed for the very short run. For all other specifications the resulting forecasts for

the ex post rational price are less successful compared to the actual market price. However,

the perfomance of the VAR and VECM forecasts seems to improve with increasing forecast

horizon. We discuss that finding in more detail later on.

We test the robustness of our results by choosing different numbers of observations for the

rolling window of the VAR and the VECM. The results remain qualitatively the same.
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Figure 2.2: Differenced Real Stock Price and Real Dividend Series
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Notes: The left panel contains plots of the differenced price and dividend series in levels. The
right panel shows the same for log-levels.
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Table 2.4: Diebold-Mariano Test: Multivariate Forecasts

Iterated multi-step forecasts Direct multi-step forecasts

REG(normalized) VECM VECM VAR VAR VECM VECM VAR VAR
Functional form levels levels logs levels logs levels logs levels logs

r=5%
h
1 -11.301 8.339 6.617 8.590 8.502 8.339 6.617 8.590 8.502
6 -1.758 2.877 -2.588 2.635 3.304 3.510 3.513 2.797 3.067
12 -2.145 1.590 -3.979 1.896 1.877 1.963 1.974 2.830 2.734
T-t -2.911 - - - - - - -

r=6%
h
1 -11.264 8.400 6.675 8.652 8.556 8.400 6.675 8.652 8.556
6 -1.731 2.634 -2.162 2.730 4.661 3.605 3.594 2.852 3.104
12 -2.079 2.161 -3.892 2.352 1.882 1.508 1.518 2.856 2.699
T-t -2.902 - - - - - - -

r=7%
h
1 -11.228 8.457 6.730 8.711 8.606 8.457 6.730 8.711 8.606
6 -1.703 2.963 -2.030 3.007 4.697 3.623 3.598 2.901 3.134
12 -2.008 2.600 -3.802 2.732 1.884 1.121 1.128 2.874 2.655
T-t -2.902 - - - - - - - -

Notes: The table contains DM statistics for the multivariate forecasting models described in section 2.5.3. The models
are evaluated for different holding periods h and different interest rates r. Moreover we distiguish between iterated
and direct multi-step forecasts. The null hypothesis is rejected at the 5% significance level if DM< −1.64.
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Direct Forecasts

Up to this point we have built our multi-step forecasts on iterating the one-step ahead

forecasts. The one-step ahead estimation minimizes the square of the one-step ahead residuals.

Further, one might be interested in whether iterating the one-step ahead forecast yields the

best predictors for multi-step forecasts.

An alternative to the above is the direct multi-step forecast approach (DMS). The intuition

behind that method is to estimate a model for a specific forecast horizon h and thereby min-

imizing the square of the h-step ahead residuals. From a theoretical perspective DMS can be

superior to IMS in specific scenarios (see e.g. Clements and Hendry, 1996; Schorfheide, 2005;

Chevillon and Hendry, 2005). However, there is a trade-off when choosing the best suited ap-

proach: On the one hand, the IMS approach leads to more efficient parameter estimates. On

the other hand it can be severely biased if the model for the one-step-ahead forecast is mis-

specified. In contrast, the DMS approach is more robust to model misspecification. Therefore,

the question of superiority of one of the two approaches remains an empirical one.10

The direct h-step multi period forecasting model is obtained from regressing yt+h on p lags

of yt. As before, p is determined by the SIC with a maximum number of twelve lags. Based on

the resulting models, we forecast the stock price and the dividend series for all horizons. We

then substitute these values into equation (2.4) in order to construct a forecast for the ex post

rational price.

The right panel of Table 2.4 shows the results from comparing the forecasts obtained by

using the DMS approach and the actual stock price. We find no evidence that the DMS

forecasts -neither in VAR settings nor in VECM settings- outperform the actual stock price as

a predictor for the ex post rational price. However, as before, we observe that the performance

of the actual stock price deteriorates with the length of the holding period of the underlying

asset.

10This is reflected by several empirical studies that cannot determine whether IMS or DMS is preferable (see
e.g. Stock and Watson, 2004; Marcellino et al., 2006).
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Horizons

The above results raise the question about the mechanisms between the forecast horizon and

the declining empirical Diebold-Mariano test values. A plausible explanation can be inferred by

a close inspection of Figure 2.1 as well as the formula of the ex post rational price approximation,

restated here for convenience:

P ∗ht =
h−1∑
i=0

γi+1Dt+i + γhPt+h

Comparing the graphs of the price and the dividend series it becomes apparent that the

latter follows a smoother pattern. Thus, we argue that our forecasting models account for the

dynamics of the dividend series better than those of the price series resulting in lower forecast

errors.

The equation above describes the ex post rational price (approximation) P ∗ht as a weighted

average of future dividends and the terminal stock payment. Increasing the holding period of

the underlying stock implies giving more weight to the dividend payments compared to the

market price in the final period. Again, we argue that the dividend series is easier to forecast

than the price series. Hence, giving more weight to this series in the construction of the forecast

of the ex post rational price lowers the overall forecast error, which is one potential explanation

for declining DM statistics with increasing holding periods.

2.6 Conclusion

In this chapter we review the two most prominent approaches to assessing variance bounds

as implied by the present value model, namely the procedures by Shiller (1981) and Mankiw

et al. (1985). A direct link between Mankiw et al. (1991) test and the well known forecast

encompassing test is established. Moreover, we suggest the Diebold-Mariano test, which works

under a minimal set of assumptions, as an alternative and more robust tool in this context.

In an application to the monthly S&P 500 Composite Price Index, we find no evidence that

naive forecasts, such as the random walk or the random walk with drift, can outperform the
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market price as a predictor for the ex-post rational price. This result is in conflict with findings

in earlier studies (e.g. Shiller, 1981; Mankiw et al., 1991).

In a next step, we show that the price and the dividend series are cointegrated. Based

on the cointegration relation between these two series, we estimate a panoply of multivariate

forecasting models for different transformations of the data. In the case of multi-step ahead

forecasts we consider iterated as well as direct forecasting approaches. The resulting forecast

for the price and the dividend series serve as components in the construction of forecasts for

the ex post rational price.

For the case of a VECM in logarithms, these forecasts perform better than the actual price

in terms of mean squared error loss at least for longer holding periods. We find clear rejections,

and hence provide evidence against the view that stock prices are driven by fundamentals only.

Moreover, we provide an explanation for the horizon specific improvements in the forecasting

performance.
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Chapter 3

Social Networks and the Distribution

of Wealth

3.1 Introduction

Do social networks play a role in determining the distribution of wealth in an economy?

In this paper, we study the role of one particular social network, namely church, on wealth.

The literature so far has provided some evidence for the importance of religious attitudes

for economic choices (see e.g. Iannaccone, 1998; Noussair et al., 2013). According to Keister

(2003), two mechanisms directly link religion to wealth: First, religion and in particular church

affiliation provide individuals with a network of information and (potentially) risk sharing. In

that sense, one expects religiously active individuals to be advantaged with respect to financial

decisions and hence to accumulate more wealth over time than the non-religious counterfactual.

Imagine for example a person who attends church services on a regular basis and socialises

with the church community. That person has access to a wider social network and may receive

information for example about local real estate investment opportunities that he or she would

otherwise have missed out on. Second, religious attitudes are to some extend related to risk

attitudes in general and risk aversion in particular. Now, more risk averse individuals may on

the one hand be more likely to save and on the other hand be more likely to invest in less risky

assets than risk neutral or risk loving individuals. If less risky assets lead to lower returns, then

the more risk averse person accumulates on average less wealth over time than the less risk
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averse counterfactual.

In this paper, we use data from a novel dataset, the German Panel on Household Finances

(PHF), to estimate the effect of church as a social network on wealth and its distribution in

Germany. In particular, we are able to differentiate between church affiliation and actual church

attendance. In addition, the dataset provides measures of risk aversion and further personality

traits which we exploit in order to disentangle the two mechanisms described above. Indeed

we find that the effect of church affiliation on wealth is driven by what we call network effects.

Moreover, we are able to disaggregate our results considering different types of assets and we

find that the effect of religion on wealth is heterogeneous across asset types.

In estimating the impact of church affiliation on wealth we have to overcome the problem of

self-selection. Religious individuals may differ in attitudes towards financial risks compared to

less religious individuals. This in turn may affect savings and investment decisions, and hence

wealth accumulation. In order to identify the effect of interest and to quantify the impact of

religion on wealth we exploit the natural experiment of the German Reunification: Between

1949 and 1990, Germany was split into two parts, the Federal Republic of Germany (FRG)

and the German Democratic Republic (GDR). The separation of the country was an exogenous

shock to the population, as was the reunification of the country in 1990. Up to that point,

political and cultural systems in both parts of the country were substantially different from

each other, a fact that has been used in the literature to explain long-lasting differences in

preferences and economic behaviour. In this paper, we argue that growing up in different

political and cultural systems has contributed to differences in religious attitudes. We exploit

that natural experiment (see Section 3.4 for more details) in order to quantify the impact of

church as a social network on wealth in Germany.

We show that even 20 years after Germany’s reunification there are differences with respect

to wealth and religiosity between individuals who used to live in the FGR and the GDR in

1989, one year before the reunification. We discuss different measures of religion and church

affiliation and show first stage results for each specification. Our first stage estimates indeed

reveal differences in church affiliation between both sub-populations. Exploiting the natural

70



experiment with a quasi-random allocation of the population to different political and cultural

systems allows us to identify the impact of religion on wealth in Germany in an instrumental

variable (IV) setting. Our results show that religion has a positive effect on wealth. We find

evidence that this effect is associated with the social aspects of church attendance rather than

risk aversion or other personal characteristics.

The IV model identifies the average effect of religion on wealth. Yet, we are particularly

interested in the heterogenous impact of social networks over the distribution of wealth. There-

fore, we estimate conditional and unconditional quantile regression models which allow us to

quantify the impact of church affiliation on wealth at different quantiles of the wealth distri-

bution, as opposed to the mean wealth. We find that individuals in the higher quantiles of the

wealth distribution have higher benefits from the social networks described above than those

individuals in the lower quantiles of the distribution. Again, we also demonstrate heterogeneous

effects across asset types.

The remainder of this paper is structured as follows. We give an overview of the related

literature in the next section. Section 3.3 and Section 3.4 describe the data and the institutional

setting, respectively. The empirical approach is presented in Section 3.5, the respective results

are discussed in Section 3.6. The last section concludes.

3.2 Previous Literature

Our paper relates to different strands of the literature. First, the paper contributes to

the literature that analyses the impact of religion on wealth and the mechanisms as described

above. Second, the paper contributes to the literature that studies the natural experiment

of Germany’s division and reunification. In the following, we discuss research papers in both

strands of the literature.

The literature which links religion to economic outcomes dates back to Weber ([1905],

1958) in Sociology and to Smith ([1776], 1965) in Economics. Since that time, the relationship

between religion and economic outcomes has been documented in a growing number of articles,

as for example reviewed by Iannaccone (1998). Our study relates to Keister (2003) who in
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her analysis links religion to wealth. The author finds two channels through which religion

directly affects wealth ownership: First, religion shapes values and priorities which in turn

affects wealth. Second, religion potentially provides important social contacts. In this study,

we base our argumentation on these findings and break the impact of religion on wealth down

into a risk aversion and an information and social network effect.

Noussair et al. (2013) present evidence of a relationship between religion and risk aversion

from incentivised experimental measures. Based on the LISS panel, they find that risk aver-

sion is positively correlated with religiosity, as measured by church membership. The authors

find that the correlation is driven by social aspects rather than by religious beliefs. Bartke

and Schwarze (2008) analyse the relationship between risk aversion on the one hand and re-

ligion and nationality on the other hand using data from the German Socio Economic Panel

(GSOEP). The authors find that individuals with a religious affiliation appear to be signifi-

cantly less risk tolerant than atheists. Using the same dataset, Köbrich Leon and Pfeifer (2013)

provide evidence that religious individuals are significantly more risk averse than non-religious

individuals. Moreover, their findings document an increasing relationship between risk aversion

and religious activities: Risk aversion increases with religious activities, and the higher the risk

aversion the less individuals are willing to invest in risky assets.

Previous research has been done in order to identify the relationship between risk aversion

and economic outcomes exploiting the experiment variation from the German Reunification.

The majority of these studies uses data from the GSOEP. Fuchs-Schündeln and Schündeln

(2005) study household savings in response to the German Reunification. They base their

analysis on the assumption that income risk was not correlated with risk aversion in the com-

munist system of the former GDR. In that context, the reunification induced an exogenous

reassignment of income risk to different occupational groups for individuals in East Germany.

Exploiting that institutional setting, the authors show that risk aversion influences occupational

choice and that individuals act in line with the predictions from the precautionary savings the-

ory. Based on the same dataset and using data from 1992 to 2000, Fuchs-Schündeln (2008) finds

that individuals who lived in the former GDR still show higher saving rates than those who
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lived in the FRG before 1990. The author demonstrates that the difference is more pronounced

for older birth cohorts and decreases over time for every cohort. She shows furthermore that

a standard life-cycle model is able to predict these stylised facts. Again based on the GSOEP,

Alesina and Fuchs-Schündeln (2007) present empirical evidence of long-lasting differences in

preferences resulting from the division of Germany. In particular, the authors show that indi-

viduals from East Germany are more likely to favour state interventions than those from West

Germany. They find that the difference in preferences is largely due to the communist political

system in the former GDR. Hence, one of their main results is that the politico-economic sys-

tem which individuals experience in their direct environment profoundly shapes their respective

preferences. In our analysis we use a similar argument, however studying religious attitudes

rather than political preferences.

For the following analysis we follow the arguments by Keister (2003). We proxy the two

channels through which religion directly affects wealth by a measure of risk aversion on the one

hand1 and the frequency of attending religious events on the other hand.

3.3 Data

We use data from the German Panel on Household Finances (PHF) for our empirical anal-

ysis. The dataset is provided and managed by the Deutsche Bundesbank. The PHF is a novel

dataset and an integral part of the Household Finance and Consumption Survey (HFCS) which

consists of surveys on households’ finances and consumption in every country of the Euro area.

It is designed as a panel dataset of which the first wave was conducted in 2010 and 2011. Up

to date, only one wave of the survey is available and hence only cross-sectional variation can

be exploited at this point.2

The PHF comprises 3,565 randomly selected households. Household heads as well as other

household members are surveyed. In this paper, we focus our analysis on data related to

household heads. Individuals respond to survey questionnaires which consist of a number of

1Our measure of risk aversion may be a somewhat narrower concept than the idea introduced in Keister
(2003). In our approach we follow standard measures of risk aversion in the Economics literature.

2The second wave started in spring 2014 and was not yet available at the time of this analysis.
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modules. Modules are linked to topics such as demographics, consumption, real assets and

their financing, other liabilities and credit constraints, private businesses and financial assets,

intergenerational transfers and gifts, employment, pension and insurance policies as well as

income.

The PHF is designed to oversample wealthy households by enhancing the selection proba-

bility of these units. That is done by using a number of different stratifications on the basis

of micro-geographic information. The procedure allows for a meaningful econometric analysis

in the wealthy subpopulation, as it overcomes the problem of limited representation of wealthy

households in a fully random sampling design. A complex weighting scheme is then used in

order to correct for the bias that is introduced by the oversampling of wealthy households (de-

sign weights), for the bias that is introduced by non-responding units (non-response weights)

and for a bias due to non-representativeness (calibration weights). Moreover, the PHF provides

a solution to the non-response problem by a multiple imputations approach: Missing values

due to non-response are simulated by repeatedly drawing from a sample of estimates from the

conditional distribution of the data. That procedure is carried out five times to improve the

efficiency of the estimates.

In this study, we are specifically interested in wealth and wealth components. The PHF

provides two alternatives to measure overall wealth: On the one hand, the PHF includes a

variable on self-reported overall wealth. On the other hand, we are able to construct a wealth

variable by adding up the self-reported components of wealth. We prefer the latter for two

reasons: First, we believe that adding up the components leads to a more accurate measure

of wealth. Individuals are likely to be informed about the precise components of wealth which

they hold, e.g. bank accounts and the value of real estate or stocks, but may introduce substan-

tial measurement error when providing an ad hoc overall estimation of their wealth. Second,

one contribution of this paper is to estimate heterogeneous effects of social networks and risk

aversion with respect to disaggregated wealth. Hence, it is consistent with the empirical design

to define aggregate wealth as the sum of the disaggregated wealth components. The PHF is

very rich in information on wealth and its component, and hence we construct the aggregate

wealth variable as follows:

net wealth = safe assets + risky assets + non-financial assets + real estate− debt (3.1)
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The categorisation of the different assets is documented in Table 3.1 of the Appendix. In this

study we measure all quantities in levels. Taking logarithms would erase information about

households with negative wealth.3

In this study, we are interested in the effect of social networks on wealth. As detailed before,

we study religion or church affiliation as one example for a strong social network. In order to

proxy religion for our empirical analysis, we construct a dummy variable indicating church

membership based on church tax. All members of the (Christian) church in Germany pay a

monthly church tax which is linked to the income tax. That means that we can identify church

membership by church tax payments and construct a dummy variable as follows: If an individual

pays church tax the dummy takes the value 1, and 0 otherwise. One might be worried that some

religious groups do not have a separate tax system and hence our variable does not capture

religious group membership for the whole population. However, the majority of religious groups

in Germany are Christian and hence are subject to tax payments. In addition, and perhaps

more convincing, we can show that our results hold when we use a different measure of religion

which is independent of church taxes (see below for details).

As pointed out in the previous section, we follow the argumentation of Keister (2003) and

proxy the channels through which church affiliation affects wealth by the intensity of church

attendance on the one hand and risk aversion on the other hand. Church offers a platform

for social contacts through a number of social and church related activities. We assume that

the development and intensity of these networks depend on the frequency of attending these

events. Therefore, church attendance serves as a proxy for networking effects. We construct a

dummy variable that takes the value 1 if the individual attends church on a regular basis, and

0 if seldom or never. This measure is independent of being a church tax payer or not.

An essential ingredient of our analysis is the measurement not only of religion but also of

risk aversion. The PHF contains a question asking the respondent to rate her risk aversion on

a scale from 1 (risk averse) to 10 (risk loving). As the survey response may be reference point

dependent and hence to some extent subject to measurement error, we construct two measures

3For the interested reader, we have also run regressions with logarithmised wealth and income; the results
are qualitatively robust.
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from that self-assessment: ’Risk aversion a’ takes the value 1 if the risk assessment is smaller

or equal to 3, and 0 otherwise. ’Risk aversion b’ has a lower threshold; it takes the value 1 if

risk aversion ranges from 0 to 5, and 0 otherwise. In other words, ’risk aversion a’ selects those

individuals who are severely risk averse, while ’risk aversion b’ is a more moderate measure.

We similarly construct variables to measure individuals’ trust, patience, and life satisfaction.

Using these measures as well as our measure of church as a social network, we are thus able to

disentangle the two mechanisms described above.

3.4 The Institutional Background

In order to identify the impact of church affiliation on individuals’ wealth we have to over-

come the problem of self-selection: Unobserved factors that are correlated with religious atti-

tudes and financial success (wealth) may confound the effect of interest. Such factors could be

general attitudes towards risks or types of financial investments, for example. In this paper,

we exploit the natural experiment of the German reunification in order to identify and quan-

tify the impact of church affiliation on wealth. In the following, we describe the institutional

environment and discuss the identifying assumptions of our empirical analysis.

Between 1949 and 1990 Germany was split into two parts, the Federal Republic of Germany

(FRG) and the German Democratic Republic (GDR) as shown in figure 3.1. The separation of

the country was an exogenous shock to the population following the events from WWII. The

politico-economic systems in both parts of the country subsequently differed substantially one

from each other, a fact that has been used in the literature to explain long-lasting differences

in preferences and economic behaviours: While the FRG was shaped by the German economic

miracle, the politico-economic system in the GDR has typically been described as a communist

regime. Importantly, there was no preference-based selection into one part of the country or the

other. The border between the two parts of Germany was strictly enforced and migration from

East to West Germany practically impossible.4 The reunification of the country in October

1990 again could not have been anticipated by the population before the fall of the Berlin Wall

4For more details and the exceptional case of refugees see e.g. Sheffer (2007) and Alesina and Fuchs-
Schündeln (2007).

76



Figure 3.1: West and East German Territories

Notes: The figure shows a map of the West and East German territories. The light shaded area represents the

West German territories before 1989/1990, the darker shaded area the East German territories. The darkest

shaded area represents Berlin which was divided into two parts (West and East Berlin).

on November 9, 1989.

We argue that the different, exogenously assigned politico-economic environments shaped

individuals religious attitudes which in turn has contributed to long-lasting differences in eco-

nomic behaviour. Whilst East Germany had traditionally been a mostly Protestant area, the

political environment of the GDR is typically described as hostile towards religion and church

leading to a repression of both in the East German territories before the reunification.5

In our sample, we observe whether individuals lived in West or East Germany in 1989. Based

on the observations above, that offers implicit information about the location of the individual

in the years before 1989. We exploit that information by instrumenting church affiliation by

the individual’s location in 1989: At the first stage, we estimate the effect of living in West

Germany before the reunification on individual’s church affiliation today. We then rely on the

exogenous variation introduced by the instrument to estimate the impact of religion on wealth

5For an overview see e.g. Sammet (2012).
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at the second stage.

The instrumental variable approach heavily relies on two assumptions. First, we assume

that individuals did not select into living in the FGR or GDR based on their current wealth.

Second, we assume that living in the FGR or GDR in 1989 is exogenous with respect to the

individual’s current church affiliation. To reiterate, we exploit a natural experiment in which

selection into one part of Germany or the other was not possible and the separation of the

country was an exogenous shock to the population. We thus argue that the assumptions for a

suitable instrument hold and that our empirical strategy identifies the causal impact of church

affiliation on wealth.

3.5 Empirical Approach

In the following, we describe our empirical approach for this study. For ease of exposition,

we start with the standard treatment effect notation. Let Yi(1) and Yi(0) denote the potential

outcomes for the head of household i, where i = 1, ..., N . As explained before, the outcome

variable Yi stands for household wealth and its respective components. Consequently, Yi(1) is

the outcome for the head of the household i if assigned to the treatment group, and Yi(0) if

assigned to the control group. We denote the realisation of the treatment assignment by a binary

variable Ri ∈ {0, 1}. To reiterate, treatment here is church affiliation. We additionally test

for potentially confounding treatments such as risk aversion and other personal characteristics.

The treatment effect on household i is then given by δi = Yi(1) − Yi(0). Only one of the two

potential outcomes is observed in practice, leading to the well known problem of unobserved

counterfactuals. In our case, for example, one individual can only be religious or not at one

fixed point in time.

As explained in the above, there is a potential risk that the estimated effect is contaminated

by a self-selection bias. We tackle this issue using an instrumental variable approach. Let

Zi ∈ {0, 1} denote our binary instrument where the dummy takes the value 1 for individuals

living in West Germany in 1989, and 0 otherwise. As is well known from the literature, this

model identifies the local average treatment effect (LATE) which can be formulated as βIV =
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E[Yi(1) − Yi(0)|complier]. The validity of that approach crucially depends on the exclusion

restriction and the random assignment to treatment assumption as discussed in section 3.4. If

the assumptions hold, then our baseline specification, written as follows, identifies the LATE

of church affiliation on wealth:

Yi = β0 + β1Ri(Zi) + β′2Xi + εi (3.2)

where Yi denotes wealth (or its respective component), Ri is a dummy for church affiliation (or

one of the alternative treatments), Zi is the binary instrument indicating location in 1989, and

Xi is a vector of individual and household characteristics.

For the purpose of this study, we use the LATE model as a starting point only. We are

particularly interested in whether the treatment effect is heterogenous along the distribution

of the outcome variable. In other words, is the impact of church as a social network on wealth

different at different points of the wealth distribution? Quantile treatment effect models (QTEs)

allow us to answer that question as discussed in the following. In particular, the QTE estimators

(other than the LATE estimator) are robust to outliers in the data - a feature that is highly

desirable when working with wealth data as in this study.

A suitable method to estimate conditional quantile treatment effects was introduced by

Koenker and Bassett (1978). Subsequently, the econometric literature has suggested estimators

which are valid in the case of endogenous regressors (e.g. Abadie et al., 2002; Chernozhukov

and Hansen, 2005). These conditional QTEs are very useful, yet one may furthermore be

interested in unconditional QTEs. Firpo (2007) introduced estimators applicable in the case of

an exogenous treatment variable, whereas Frölich and Melly (2010) and Frölich and Melly (2013)

extend that to the case of endogenous treatment variables. It is important to stress at that

point that conditional or unconditional QTEs lead to different interpretations. The conditional

QTE identifies the treatment effect on the distribution of the dependent variable conditional

on the covariates. Hence, adding further covariates may shift the distributional location of

an individual and thus may change the limit of the estimated conditional QTEs. In contrast

to the standard average treatment effect models this may even be true when the covariates
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are independent of the treatment. Compared to that, the unconditional QTE describes the

difference in the quantiles for different values of the variable of interest, irrespective of the

covariates. However, the addition of covariates improves the efficiency of the estimate and helps

the plausibility of the identifying assumptions. Following Abadie et al. (2002) and Frölich and

Melly (2010, 2013), we estimate both conditional as well as unconditional QTEs. As especially

the latter method is relatively new in the literature and as applications up to date are scarce,

we briefly summarise the key assumptions and features in what follows.

Let us denote the conditional QTEs by δτ = Qτ
Y (1)|X −Qτ

Y (0)|X and the unconditional QTEs

by ∆τ = Qτ
Y (1) − Qτ

Y (0) where Qτ
Y refers to the τ -Quantile of the distribution of Y. Same as

in the case of the LATE model, the QTE model includes an endogenous regressor which we

instrument for, using the binary instrument from above. That implies that the model still

identifies the treatment effect for the compliers only.

In terms of the conditional QTE model, Abadie et al. (2002) suggest a linear potential

outcomes model which can be written as:

Yi = δτRi + (βτ )′Xi + εi and Qτ
εi

= 0.

In order to identify the quantile treatment effect in our model, the standard IV assumptions

must hold. In particular, for almost all values of X it must hold that:

Ass.1 (independence):

Ass.2 (non-trivial assignment):

Ass.3 (relevance):

Ass.4 (monotonicity):

(Y (0), Y (1), R(0), R(1)) ⊥⊥ Z|X

0 < Pr(Z = 1|X) < 1

E(R(1)|X) 6= E(R(0)|X)

Pr(R(1) ≥ R(0)|X) = 1

The conditional QTE estimator can be derived as the solution of the following weighted

minimization problem with weights WAAI
i = 1 − Ri(1−Zi)

1−Pr(Z=1|Xi) −
(1−Ri)Zi
Pr(Z=1|Xi) and check function

ρτ (u) = τu+ + (1− τ)u− where u+ = I(u ≥ 0) · |u| and u− = I(u < 0) · |u|:

(β̂τ , δ̂τ ) = argmin
βτ ,δτ

∑
i

WAAI
i × ρτ (Yi −Xiβ

τ −Riδ
τ ) (3.3)

80



Frölich and Melly (2013) provide an unconditional QTE estimator which - contrary to

the conditional case - can be estimated at the
√
n rate without any further parametric as-

sumptions. For the unconditional case, the relevance assumption can be slightly relaxed

and has to hold unconditionally only. The new minimization problem with weights W FM
i =

Zi−Pr(Z=1|Xi)
Pr(Z=1|Xi)[1−Pr(Z=1|Xi)](2Ri − 1) is given by the following:

(α̂τ , ∆̂τ ) = argmin
ατ ,∆τ

∑
i

W FM
i × ρτ (Yi − ατ −Ri∆

τ ) (3.4)

We estimate the conditional and unconditional QTE models as outlined above for overall

wealth as well as for the wealth components, i.e. different asset types. Yet, one has to be cau-

tious with comparing the results with respect to the different outcome variables: One problem

that arises with the QTE approach is that the distribution of households may change with

respect to the different asset types. For example, a household that lies in the top percentile

of the overall wealth distribution may hold a larger share in financial than in non-financial

assets. Hence, the same household finds itself in different percentiles of the distribution of

wealth in financial and non-financial assets, respectively. Whilst it is still reasonable to assume

that positions in the respective distribution do not differ substantially from the position in the

overall wealth distribution, we nevertheless construct a robustness check for that scenario. In

particular, we estimate a standard IV model interacting the treatment variable with a dummy

indicating the household’s quantile in the overall wealth distribution:

Yi = γ0 + γτ1 (Ri × qτi ) + γ′2Xi + εi (3.5)

where qτi corresponds to a dummy variable that takes the value 1 if household i belongs to

the τ -th quantile in the overall wealth distribution. The advantage of that approach is that

it allows us to hold constant the position of the household with respect to the overall wealth

distribution and hence improves the comparability across asset types. Yet, the disadvantage of

that specification is that multiplying the two dummy variables (treatment and quantile dummy)

may lead to a very small number of treated observations per subgroup. That may contribute
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to high standard errors and potentially to weak instrument issues. For that reason we do not

rely on the results of that approach too heavily but suggest to interpret them as an additional

robustness check.

3.6 Empirical Evidence

In the following, we present the empirical evidence. We first provide descriptive evidence

before discussing the results from estimating the econometric models outlined above.

3.6.1 Descriptive Evidence

Figures 3.2 to 3.7 show the empirical distributions of total wealth as well as its components,

each separately for the West and the East German sample. The West German sample comprises

those individuals who were located in the FRG in 1989, the East German sample those who

were located in the GDR, respectively. The assignment to West and East Germany depends

on the location in 1989 only, and not on the current location.

Figure 3.2 shows the empirical distribution of total wealth in our sample, measured according

to equation (3.1). Compared to the East German wealth distribution, the West German wealth

distribution is shifted to the right. Most importantly, the figure illustrates that 20 years after

the Reunification there are still differences in wealth between individuals who had been located

in the FRG and the GDR, respectively. Figures 3.3 to 3.7 show the empirical distributions of

different wealth components, i.e. asset types. For all the positive wealth components considered

here (safe assets, risky assets, non-financial assets, real estate) the distribution for the West

German sample is shifted to the right compared to the East German distribution. The most

striking differences can be seen for the distribution of real estate wealth, with a substantially

higher level being held by West Germans compared to East Germans. To reiterate at this

point, West and East German here refers to individuals who lived in West and East Germany,

respectively, in 1989 independent of their current location. In terms of debt, the peak of the

distribution for the West German sample is again shifted to the right compared to the East

German sample. In this paper, we argue that these observations can partially be explained by
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Figure 3.2: Total Wealth
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Figure 3.3: Safe Assets
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Figure 3.4: Risky Assets
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Figure 3.5: Real Estate
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Figure 3.6: Non-Financial Assets
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Notes: The solid line represents the empirical distribution of the overall wealth and the respective components

for the East German sample, the dashed line for the West German sample. Source: 2010 PHF and own

calculations.
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underlying differences in social networking and the mechhanisms described above.6

Table 3.2 (Appendix) shows the (weighted) descriptive statistics for our sample. In particu-

lar, the table displays sample means as well as the standard deviations in parentheses for each

variable. Column (1) refers to the entire sample, columns (2) and (3) to the West and East

German sample, respectively. The remaining columns show descriptive statistics separately for

the treatment and control groups with respect to the two treatments church affiliation (our

proxy for religion) and church attendance (our proxy for church related network effects).7

In line with our argumentation above, we indeed find that the share of church affiliated

individuals is higher in the West than in the East German sample (59% versus 25%). The same

is true for church attendance (54% versus 23%). In terms of risk aversion, we find that for both

alternative measures the share of risk averse households in the West and East German sample

is almost identical (60% versus 56% for risk aversion a and 83% versus 82% for risk aversion

b). In terms of risk aversion, the same pattern emerges when we compare the share of risk

averse individuals across those who are church affiliated and those who are not (56% versus

57%) as well as those who regularly attend church and those who do not (84% versus 80%).

Our instrument is a binary variable that indicates whether the individual was located in

the FRG or in the GDR in 1989. For the entire sample, we find that 20% of the individuals are

assigned to the East German sample. The share of individuals who are assigned to the East

German sample is higher among those who are classified as not affiliated to church compared

to those affiliated to church. That is perfectly in line with the observations above, and a similar

conclusion emerges from comparing individuals who regularly attend church to those who do

not.

All wealth and income variables are measured in 10,000 Euros. Mean overall wealth in the

entire sample amounts to 244,900 Euros. Confirming the graphical evidence, overall wealth is

on average substantially higher in the West compared to the East sample. Again, differences in

6In this study, we explicitly study the effect of social networks approximated by church affiliation on wealth.
We investigate alternative mechanisms that could potentially confound our results, but we do not investigate all
potential mechanisms that contribute to differences in wealth distributions. Indeed, that will be an interesting
strand for future research.

7For reasons that become obvious in what follows, we do not show any additional columns for the treatment
risk aversion here.
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wealth held in non-financial assets, safe assets and real estate seem to be particularly striking.

Both samples, West and East, are balanced in terms of observable characteristics. Differences

in the covariates’ sample means are within one standard deviation, and not significant.

3.6.2 First Stage, Reduced Form and IV Estimation

In the following, we present the results from the instrumental variable estimation according

to equation (3.2). Column 1 of Table 3.3 shows the first stage estimation results with respect

to our main variable of interest, church affiliation. Living in the FRG compared to the GDR

before the Reunification increases the probability of being affiliated to church by about 34%.

The effect is statistically significant at the 1% level. This is in line with what we argued before:

The different socio-economic conditions in the FRG and the GDR shaped cultural landscapes

and had a significant impact on attitudes towards religion and church affiliation.

As discussed in the above, we study the mechanisms through which religion - or church

affiliation in particular - affect wealth: Risk aversion on the one hand and a network and

information mechanism on the other hand. Columns 2 to 4 of Table 3.3 refer to the first

stage estimations of these specifications based on the variables risk aversion a, risk aversion b

and church attendance.8 With respect to risk aversion, neither of the specifications shown in

columns 2 and 3 yields results that are statistically different from zero.9 In contrast to that,

column 4 shows a strong first stage effect for church attendance - our proxy for the network and

information mechanism. Living in the FGR compared to the GDR before the Reunification

increases the probability of regular church attendance by about 32% - which is in terms of

magnitude almost identical to the effect for our main variable church affiliation as shown in

column 1.

Up to this point, our sample includes individuals who at the time of the Reunification

were at least 25 years old. This is based on the notion that individuals should have developed

8For more details on the variables, see Section 3.3.
9Again, we would like to point out that risk aversion might be a somewhat narrower concept than what

Keister (2003) has in mind: She claims that religion shapes values and priorities which in turn affect wealth.
Therefore, we also checked other personality related variables like patience, trust and life satisfaction as a
robustness check. However, none of the variables resulted in a strong first stage. The results can be found in
Table 3.4.
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their general religious attitudes at that age and are not affected by the Reunification in that

sense. Yet, one may be concerned that individuals may develop religious attitudes up to a

younger or older age than the age of 25. In that case our age cutoff would be too high or too

low, respectively. We can rule that concern out by re-estimating the first stage equation using

different age cutoffs. Columns 5 to 8 of Table 3.3 show the first stage results when we restrict

the sample to individuals who at the time of the Reunification are at least 20 or 30 years old,

respectively. The results prove to be very robust to these specifications. Hence, we adhere to

our original restriction; all following results refer to the sample with an age cutoff of 25 years.

Column 1 of Table 3.5 shows the estimation results from the reduced form, i.e. the long-

term effect of being located in the FGR compared to the GDR in 1989 on wealth in 2010.

Confirming the graphical evidence, we find that even 20 years after the Reunification there

are substantial wealth differences: Living in the FGR in 1989 on average increases wealth by

149,720 Euros compared to living in the GDR. The effect is statistically highly significant.10

Columns 2 to 9 of Table 3.5 show the results of the OLS and IV (2SLS), i.e. the impact

of church affiliation on wealth as well as the mechanisms risk aversion and church attendance.

The OLS estimation with respect to our main variable of interest - church affiliation - suggests a

positive correlation between church affiliation and overall wealth. When we instrument church

affiliation by the location in 1989, we find that being affiliated to church is associated with a

higher overall wealth of about 444,000 Euros. The estimated effect is statistically significant

at the 1% level. The OLS estimates are downwards biased compared to the IV estimates. As

outlined in the previous sections, the direction of the bias can be rationalised by an underlying

self-selection process: Individuals may self-select in and out of church based for example on

latent moral attitudes that correlate with their investment behaviour. When we do not take

that notion into account, we underestimate the impact of religion on wealth and hence we find a

10One may be concerned that the results are partly driven by the current location, based on the observation
that former West Germany performs economically better than former East Germany. Unfortunately, the data
does not allow us to control for the exact location of the individuals, but only for the region (North, West, South
and East). Yet, the current location as proxied by these regional indicators is very highly correlated with the
location in 1989 (∼ 80%). In order to avoid inaccurate estimates due to multicollinearity issues, we thus do not
control for the current location but include an extensive set of individual control variables in the regressions.
We argue that these variables reflect the individual’s economic environment, but - given the data used for this
study - we are not able to evaluate the impact of the current location beyond that point.
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downward bias of the OLS compared to the IV estimates. Further, in terms of the magnitude of

the bias, one should keep in mind that we identify a local average treatment effect - which alters

the interpretation of the IV coefficient compared to the interpretation of the OLS coefficient.11

We are further interested in understanding the mechanisms which drive the effect of church

affiliation on wealth. Again, we separately estimate the OLS and the IV (2SLS) models for risk

aversion and church attendance. We do not find a significant impact of risk aversion on overall

wealth, yet that might be due to a weak instrument problem for that specification. However,

studying the impact of regular church attendance on wealth, we find very similar results - both

in terms of magnitude and statistical significance - to the baseline specification. The results

suggest that the effect of church affiliation on overall wealth is indeed driven by the network

and information mechanism, i.e. the social network, and in our case cannot be attributed to

the correlation between church affiliation and risk aversion.

In the specifications which we have described in the above, we have estimated the effect

of church affiliation on level wealth in a linear model. One may be interested in whether

the results are sensitive to the specific functional form of equation (3.2). Table 3.6 shows

the results of our estimations when we change the functional form of the estimation equation

to a log-level relationship: We estimate the impact of church affiliation on log wealth and

hence obtain semi-elasticities of overall wealth with respect to church affiliation and church

attendance, respectively.12 Again, we find a statistically significant negative effect at the first

stage. Estimating the semi-elasticities at the second stage of our IV (2SLS) model, we find that

being affiliated to church is associated with 280% higher overall wealth, and attending church

with 250% higher overall wealth.

3.6.3 Conditional and Unconditional QTE Estimation

The instrumental variable model identifies the local average treatment effect: The average

effect of church affiliation on overall wealth. However, the impact of church affiliation could

11See Section 3.5 for more details.
12By computing the logarithms of our wealth variable we exclude negative or zero wealth observations from

our sample.
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reasonably be very different for individuals at distinct points of the wealth distribution. In

this study, we argue that church activities provide an individual with social contacts and offer

a network for information exchange and cooperations. Yet, that information might not be of

exactly the same value for everyone: For example, wealthier individuals might be more able to

exploit these networks for investments than less wealthy individuals. In that sense, we expect

the relatively high magnitudes of the IV model to be driven by the higher quantiles of the

wealth distribution.

These effects might again differ by type of investment. Someone who regularly attends

church services and socialises within the church community for example potentially receives

information about local real estate investment opportunities that he would have missed out on

otherwise, but not on riskier investment opportunities. Again, this could be a potential driver

for the higher magnitudes of the results from the IV model. In order to quantify the heteroge-

neous effects with respect to the wealth distribution and the different wealth components, we

estimate quantile treatment effect models for the different asset types and report the results in

what follows.

The results in this section correspond to equations (3.3) and (3.4). Having established in

the above that the wealth enhancing impact of church affiliation is almost entirely driven by

the church related network effects and not by risk aversion, we restrict our analysis to our main

variable of interest (church affiliation). We estimate the conditional and unconditional quantile

treatment effects on overall wealth and on particular asset types. In particular, we test the

following one-sided hypotheses, each evaluated at the respective point in the wealth distribution:

(H1):

(H2):

(H3):

(H4):

(H5):

(H6):

Church affiliation is associated to higher levels in wealth.

Church affiliated individuals hold more safe assets.

Church affiliated individuals hold less risky assets.

Church affiliated individuals own more real estates.

Church affiliation is associated to higher levels in non-financial assets.

Church affiliated individuals hold less debt.
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Figure 3.8: Conditional Quantile Treatment Effects
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Notes: The solid line represents the estimated coefficient for each quantile (specified on the x-axis), the dashed

line the 95%-confidence interval for the respective (one-sided) hypothesis based on 1000 bootstrap replications.

Source: 2010 PHF and own calculations.
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Figure 3.8 presents the results of the conditional quantile treatment effect estimation. For

overall wealth, the impact of church affiliation is indeed significantly larger than zero at every

point of the wealth distribution. In particular, the impact of church affiliation is substantially

larger for the higher quantiles of the wealth distribution: The information network that is

provided through church activities seems to be particularly useful for those individuals who are

initially wealthy enough to use the information efficiently.

When we disaggregate our wealth measurement into its components and estimate the quan-

tile treatment effect of church affiliation on wealth with respect to the particular asset type, we

also find heterogeneous results. For safe assets, the impact of church affiliation is significantly

larger than zero everywhere along the asset specific wealth distribution. Again, the effect is

substantially - more than 5 times - larger in the higher quantiles of the distribution. For risky

assets, the picture is quasi-mirrored: Church affiliated individuals seem to possess less risky

assets than their counterfactual, holding constant their position in the risky asset wealth dis-

tribution. However, the coefficient is not significantly negative. That provides (albeit weak)

support for the mechanisms outlined above, and in particular for the information network chan-

nel: If individuals are better informed about risks, they may restrain from it.13 In terms of real

estate assets, we find that church affiliated individuals hold more real estate assets than their

counterfactuals. The effect again increases in magnitude for the higher quantiles compared to

the lower quantiles of the real estate wealth distribution. The findings are in line with the ex-

planations and examples given above: Wealthier individuals benefit more from the information

sharing that the church related social network offers which seems to be particularly plausible

in the case of real estate. No significant impact of church affiliation is found on wealth held in

non-financial assets. In contrast, we find that we reject the hypothesis that church affiliated

individuals hold less debt.

So far, we have presented the results of the conditional QTE estimation. As discussed in

Section 3.5 we are further interested in the unconditional QTE of church affiliation on wealth

and the different asset types, keeping in mind the differences in interpretation between both

13At this point, the correlation between risk aversion and church affiliation also plays a role of course. If
church affiliated individuals are more risk averse on average, that could be mirrored in the fact that they invest
less in risky assets.
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Figure 3.9: Unconditional Quantile Treatment Effects
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Notes: The solid line represents the estimated coefficient for each quantile (specified on the x-axis), the dashed

line the 95%-confidence interval for the respective (one-sided) hypothesis based on 1000 bootstrap replications.

Source: 2010 PHF and own calculations.
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models.14 Figure 3.9 shows the corresponding estimation results. Similar to the conditional

QTE results, we find that church affiliation significantly increases overall wealth and that the

coefficients are larger for the upper tail of the wealth distribution. When we estimate the

unconditional QTE of church affiliation on wealth being held in the different types of assets,

the results differ to a certain extent from the results found in the conditional QTE estimation.

Contrary to the conditional QTE estimation, we do not find any significantly larger than

zero effects of church affiliation on wealth held in safe assets. For risky assets, the impact of

church affiliation is significantly negative for the higher deciles of the distribution. The pattern

is similar to the conditional QTE estimation, yet the precision is higher for the coefficients

corresponding to the higher quantiles. Similarly, we find that for real estate wealth the impact

of church affiliation increases with the position in the distribution. However, in that case the

unconditional QTE yields less precise estimates with coefficients significantly larger than zero

for the highest quantiles only. We do not find significantly positive effects for non-financial

assets, confirming the results from the conditional QTE estimation. In terms of debt, the

unconditional QTE estimation results suggest that indeed church affiliation decreases debt

holdings. Again, the coefficients are statistically significant for the higher quantiles of the debt

distribution only.

3.6.4 IV Estimation by Wealth and Asset Type

As mentioned before, the quantile treatment effects are estimated for the asset specific

wealth distribution. One problem that arises with that approach is that the position in the

distribution may not be the same for each individual and each asset type. For example, a person

who is in the 5th decile of the overall wealth distribution may be in another decile when looking

at the distribution of safe assets only. In order to further test the heterogenous effects of church

affiliation for the different asset types, we therefore estimate IV models holding constant the

position in the overall wealth distribution. That approach in particular allows us to estimate

14The unconditional QTE integrates out the covariates upon which the interpretation of the conditional
QTE relies. Our preferred specification and interpretation is the unconditional model. For further details, see
Section 3.5.
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the impact of church affiliation on asset wealth relative to the individual’s overall wealth. The

results correspond to equation (3.5) are shown in Table 3.7.

Column 1 of Table 3.7 shows the results for overall wealth. We find a significantly positive

impact of church affiliation on wealth for the lowest wealth decile as well as for the five highest

deciles. A similar pattern emerges for wealth in safe assets, non-financial assets and real estate,

though magnitudes are much smaller in that case. We only find significantly positive coefficients

for the highest two deciles in the risky asset wealth distribution, and we do not find any

significantly non-zero effects for debt. The results presented in this section must be interpreted

with caution, for the reasons explained in Section 3.5. Whilst we can not directly compare

the results from this IV estimation to the results from the QTE estimation for methodological

reasons, we can nevertheless observe some parallels. Most strikingly, the results presented

here suggest that church affiliation indeed has an impact on wealth and that the impact is

substantially stronger for wealthier individuals.

3.7 Conclusion

In this study, we analyse the impact of social networks on wealth using church as an example

for a strong social network. In order to quantify the relationship of interest, we exploit the

unique event of the German Reunification which offers a natural experiment with exogenous

variation in religiosity and church affiliation. Using a novel data set, the first wave of the

German Panel of Household Finances, we are not only able to study the impact of church

affiliation on wealth overall, but furthermore we can disaggregate our measurement of wealth

into its components (different types of assets) and gain more detailed insights.

In a first step, we estimate IV models and show that church affiliation indeed has a wealth

enhancing impact. The mechanisms through which religion affects wealth are non-singular. We

follow Keister (2003) who argues that religion impacts on wealth ownership by shaping values

and priorities as well as by providing important social contacts. In order to disentangle the

two mechanisms, we approximate the first by different measurements of risk aversion and the

second by the frequency of church attendance. In our empirical analysis we find evidence for
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the importance of the social network mechanisms, yet we do not find any evidence in support

of the risk aversion hypothesis.

In line with that observation, we argue that church activities widen individuals’ social

contacts and hence give rise to an exchange of information about financial and non-financial

products and investment opportunities. Whilst that information is particularly interesting for

those individuals who are easily able to invest, i.e. wealthier individuals, others might not

be affected to the same extend. In order to estimate these heterogeneous effects of religion

on wealth, we hence use an IV-QTE framework (conditional as well as unconditional QTE).

Our results suggest that church affiliation has a positive impact on wealth with respect to the

entire wealth distribution. Yet, the effects seem to be much stronger for the wealthier quantiles,

confirming the notion above. Our results furthermore suggest that the differences - at least

partially - stem from higher wealth in safe assets and real estate as well as from less debt.
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Appendix: Tables

Table 3.1: Wealth and Wealth Components

Risky financial assets: Shares (hd1010)
Securities (dhd0750)
Investment funds (dhd2420h)
Certificates (dhd910)
Bonds (dhd2520)
Stocks (dhd2610)
Other securities (dhd2310)

Safe financial assets: Current account (dhd3200)
Saving account (hd1210)
Occupational pension plans-except Riester or Rürup plans and direct insurance
policies (dpf1300f)
Non-state-subsidised whole life insurance policies (dpf1300h)
Other non-state-subsidised private pension plans (dpf1300i)
Riester or Rürup bank saving plans (dpf1300r)
Riester or Rürup savings and loan contracts (dpf1300s)
Riester or Rürup mutual fund saving plans (dpf1300t)
Classic Riester or Rürup pension plans (dpf1300u)
Riester or Rürup occupational pension plans - excluding direct insurance policies
(dpf1300w)
Other Riester or Rürup plans (dpf1300z)
Riester or Rürup plans (dpf1300y)
Building savings agreement (dhd0610)

Non-financial assets: Car (dhb0810)
Other vehicle (hb4600)
Other valuables likeWorks of art, Antiques, valuable jewellery etc. (hb4710)
Business equity (hd701, hd702,hd703, hd801, hd802, hd803, dhd851, dhd852, dhd853)
Value of additional assets in managed accounts (hd1620)
Other assets not mentioned in other categories (hd1920)
Debts owed to the household (hd1710)

Total real estate: Main residence (dhb200a, dhb200b, hb0900, hb0500)
Other properties (hb2701, hb2702, hb2703, hb2801, hb2801, hb2803, hb2900)

Debt: Debt on credit line (hc0220)
Debt on credit card (hc0320)
Student loan, Bafög (dhc0720)
Debt on mortgage (hb1701, hb1702, hb1703, hb3701, hb3702, hb3703)
Mortgage: Money still owed on all other loans (hb2100, hb4100)
Outstanding balance of loan (dhc6301, dhc6302, dhc6303)
Outstanding bills (dhc1150)
Total principal amount of all other loans (dhc0900)

Notes: Code identifiers correspond to http://www.bundesbank.de/Redaktion/EN/Downloads/Bundesbank/Research_Centre/

phf_codebook_en.pdf?__blob=publicationFile
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Table 3.2: Weighted Descriptive Statistics

By West 89 By Church Affiliation Church Attendance

Entire Sample West East Affiliated Not Affiliated Regular Seldom

(1) (2) (3) (4) (5) (6) (7)

Treatment:

Church Affiliation 0.52 0.59 0.25 0.67 0.38
(0.53) (0.55) (0.38) (0.51) (0.51)

Church Attendance 0.48 0.54 0.23 0.61 0.32
(0.53) (0.55) (0.37) (0.55) (0.47)

Risk Aversion A 0.57 0.56 0.60 0.56 0.57 0.57 0.57
N=2437 (0.50) (0.52) (0.40) (0.56) (0.50) (0.54) (0.52)

Risk Aversion B 0.82 0.82 0.83 0.84 0.80 0.85 0.80
N=2437 (0.41) (0.40) (0.31) (0.41) (0.40) (0.39) (0.43)

Instrument:

West 1989 0.20 0.09 0.31 0.09 0.29
(0.42) (0.33) (0.46) (0.32) (0.48)

Outcome Variables:

Wealth 24.49 28.66 7.46 34.20 13.91 29.30 20.12
(76.24) (87.40) (11.57) (103.49) (34.77) (87.04) (65.11)

Safe Assets 4.03 4.50 2.08 5.20 2.75 4.34 3.74
(7.75) (8.66) (3.23) (8.35) (6.85) (7.18) (8.18)

Risky Assets 1.61 1.86 0.61 1.93 1.26 1.76 1.48
(11.73) (13.49) (2.44) (11.40) (11.86) (10.34) (12.80)

Non-financial Assets 4.29 5.16 0.77 6.53 1.86 5.24 3.43
(38.55) (44.56) (2.98) (54.88) (10.73) (46.90) (29.43)

Real Estate 17.17 19.92 5.94 23.71 10.05 20.58 14.08
(47.44) (54.21) (9.37) (63.21) (24.19) (45.32) (48.94)

Debt 2.62 2.78 1.95 3.17 2.01 2.62 2.61
(8.20) (9.09) (4.39) (9.72) (6.42) (8.71) (7.72)

Covariates:

Income 0.24 0.25 0.17 0.27 0.20 0.24 0.23
(0.21) (0.24) (0.09) (0.25) (0.17) (0.23) (0.20)

Age 62.88 62.70 63.63 62.21 63.61 64.68 61.25
(13.03) (13.49) (10.86) (13.87) (12.05) (13.07) (12.75)

Age squared 4102.80 4079.07 4199.69 4022.19 4190.54 4328.70 3897.64
(1695.01) (1747.14) (1436.96) (1806.67) (1565.43) (1707.15) (1653.91)

Number of Kids 0.11 0.12 0.05 0.13 0.08 0.12 0.09
(0.47) (0.52) (0.26) (0.52) (0.42) (0.53) (0.42)

Number of Adults 1.75 1.77 1.67 1.87 1.62 1.77 1.74
(0.85) (0.91) (0.61) (0.97) (0.70) (0.89) (0.81)

Married 0.50 0.51 0.47 0.55 0.46 0.53 0.48
(0.53) (0.55) (0.44) (0.56) (0.50) (0.54) (0.53)

Sex 0.52 0.53 0.48 0.54 0.50 0.47 0.57
(0.53) (0.55) (0.44) (0.56) (0.50) (0.54) (0.52)

Urban 0.58 0.61 0.47 0.53 0.64 0.54 0.62
(0.53) (0.54) (0.44) (0.56) (0.48) (0.54) (0.51)

Retired 0.51 0.50 0.53 0.45 0.57 0.58 0.44
(0.53) (0.55) (0.44) (0.56) (0.50) (0.53) (0.52)

A-level 0.17 0.16 0.22 0.18 0.16 0.15 0.19
(0.40) (0.40) (0.37) (0.43) (0.37) (0.39) (0.41)

Notes: The sample is drawn from the 2010 PHF. The observational units are household reference persons aged 45 and older. Standard deviations
are in parentheses.
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Table 3.3: First Stage Estimation Results

i) First stage estimation ii) First stage estimation: Robustness check

Treatment (Ri): Church Risk Risk Church Church Affiliation Church Attendance
affiliation aversion a aversion b attendance age ≥ 40 age ≥ 50 age ≥ 40 age ≥ 50

(1) (2) (3) (4) (5) (6) (7) (8)

West89 0.337*** 0.001 -0.046 0.325 *** 0.344*** 0.298*** 0.329*** 0.313***
(0.036) (0.030) (0.040) (0.036) (0.034) (0.040) (0.033) (0.040)

Income 0.231** -0.091 -0.108 0.004 0.240*** 0.326*** -0.028 0.095
(0.090) (0.067) (0.095) (0.068) (0.087) (0.091) (0.072) (0.063)

Age -0.009 0.000 0.010 0.029 * -0.016 -0.025 0.015 0.040*
(0.015) (0.011) (0.017) (0.015) (0.011) (0.023) (0.011) (0.024)

Age squared 0.000 0.000 -0.000 -0.000 0.000* 0.000 -0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Number of Kids -0.007 -0.008 -0.001 0.076*** 0.008 -0.025 0.115*** 0.010*
(0.031) (0.028) (0.032) (0.029) (0.026) (0.058) (0.023) (0.053)

Number of Adults 0.076*** 0.003 0.037* 0.011 0.062*** 0.050** -0.007 -0.018
(0.021) (0.018) (0.022) (0.021) (0.020) (0.025) (0.020) (0.026)

Married -0.043 0.011 -0.057 0.054 -0.022 -0.039 0 .078** 0.046
(0.036) (0.030) (0.038) (0.037) (0.034) (0.040) (0 .035) (0.041)

Sex 0.032 -0.043* -0.050* -0.105 *** 0.027 0.024 -0.105*** -0.098***
(0.029) (0.023) (0.030) (0.029) (0.027) (0.033) (0.028) (0.033)

Urban -0.139*** -0.008 0.034 -0.097 *** -0.149*** -0.145*** -0.097*** -0.106***
(0.029) (0.024) (0.031) (0.029) (0.027) (0.032) (0.027) (0.032)

Retired -0.154*** 0.033 0.079* 0.049 -0.148*** -0.126*** 0.065 0.037
(0.043) (0.039) (0.046) (0.045) (0.042) (0.047) (0.043) (0.049)

A-level 0.042 -0.064* -0.141*** -0.007 0.041 0.028 -0.000 -0.025
(0.037) (0.035) (0.040) (0.040) (0.034) (0.039) (0.038) (0.044)

Constant 0.662 0.782** 0.187 -0.476 0.920*** 1.269 -0.010 -0.851
(0.478) (0.387) (0.541) (0.482) (0.353) (0.779) (0.356) (0.840)

N 2448 2448 2448 2437 2715 2084 2704 2073
F-Stat 21.05 2.73 4.61 11.51 24.59 14.92 15.93 8.76
R-Squared 0.134 0.025 0.039 0.113 0.142 0.119 0.122 0.110

Notes: The left hand side variable is the respective treatment. The sample is drawn from the 2010 PHF. The observational
units are household reference persons aged 45 and older if not stated otherwise. Robust standard errors are in parentheses.
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Table 3.4: Additional First Stage Estimation Results

First stage estimation

Treatment (Ri): Trust Trust Patience Patience Life Life
a b a b Satisfaction a Satisfaction b

(1) (2) (3) (4) (5) (6)

West89 0.050 0.066* 0.010 -0.029 0.017 0.182***
(0.033) (0.039) (0.041) (0.036) (0.025) (0.037)

Income 0.159*** 0.060 0.157*** 0.276*** 0.184*** 0.364***
(0.044) (0.097) (0.048) (0.053) (0.054) (0.074)

Age -0.002 -0.010 0.020 0.026** -0.006 -0.018
(0.012) (0.016) (0.016) (0.013) (0.008) (0.014)

Age squared 0.000 0.000 -0.000 -0.000* 0.000 0.000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Number of Kids -0.018 -0.007 -0.014 -0.002 -0.013 -0.009
(0.025) (0.031) (0.033) (0.030) (0.016) (0.044)

Number of Adults -0.017 -0.020 -0.028 -0.020 0.014 0.008
(0.017) (0.022) (0.022) (0.020) (0.016) (0.019)

Married 0.040 -0.033 0.103*** 0.084** 0.015 0.087**
(0.030) (0.038) (0.038) (0.036) (0.021) (0.034)

Sex -0.010 -0.002 -0.002 0.015 -0.023 -0.030
(0.025) (0.030) (0.031) (0.028) (0.018) (0.027)

Urban 0.020 -0.018 0.047 0.035 0.002 0.052**
(0.025) (0.031) (0.031) (0.027) (0.018) (0.027)

Retired -0.011 -0.096** -0.051 -0.026 -0.041 0.008
(0.039) (0.046) (0.046) (0.044) (0.037) (0.045)

A-level 0.041 0.124*** -0.066* -0.037 0.006 0.119***
(0.029) (0.040) (0.039) (0.036) (0.023) (0.031)

Constant 0.741** 0.630 -0.120 -0.591 0.933*** 0.817*
(0.375) (0.514) (0.508) (0.420) (0.268) (0.440)

N 2445 2445 2446 2446 2445 2445
F-Stat 2.80 2.32 2.48 5.04 2.64 12.22
R-Squared 0.018 0.021 0.019 0.029 0.038 0.105

Notes: The left hand side variable is the respective treatment. The sample is drawn from the 2010
PHF. The observational units are household reference persons aged 45 and older if not stated otherwise.
Robust standard errors are in parentheses.
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Table 3.5: Reduced Form, OLS and IV (2SLS) Results

Treatment (Ri): (i) West89 (ii) Church affiliation (iii) Risk aversion a (iv) Risk aversion b (v) Church attendance

Model: Reduced form OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment 14.972 *** 11.911*** 44.427*** -10.143*** -322.835 -6.069 0.000 7.915** 45.611***
(2.568) (3.389) (8.053) (3.780) (281.865) (4.117) (25.208) (3.469) (8.803)

Income 85.200*** 88.883 *** 74.922*** 91.483*** 50.317 92.271*** 90.709 92.050*** 84.932***
(30.249) (27.368) (29.275) (27.293) (41.436) (27.612) (91.018) (28.036) (31.879)

Age 2.849* 3.104** 3.236*** 3.098** 6.029 3.065** 2.914 2.935** 1.583
(1.553) (1.488) (1.556) (1.483) (5.836) (1.518) (20.341) (1.475) (1.646)

Age squared -0.018 -0.020* -0.022*** -0.020* -0.039 -0.019* -0.018 -0.019* -0.010
(0.011) (0.011) (0.011) (0.011) (0.043) (0.011) (0.126) (0.011) (0.012)

Number of Kids -4.657 * -4.668** -4.361 -4.506** -5.069 -4.418** -4.025 -5.032** -7.997***
(2.518) (2.192) (2.814) (2.159) (10.486) (2.140) (8.249) (2.297) (3.043)

Number of Adults 0.805 -0.426 -2.576 .822 12.657 .456 1.046 .016 .437
(3.151) (3.098) (3.269) (2.950) (12.216) (2.996) (11.846) (3.032) (3.268)

Married 9.574 10.140* 11.503 8.957 -8.885 9.599* 9.129 9.290 7.318
(6.007) (5.922) (6.263) (5.668) (20.055) (5.798) (8.299) (5.685) (5.852)

Sex 1.071 1.082 -0.335 .885 -15.180 1.116 1.485 2.319 6.104
(3.925) (3.801) (4.047) (3.874) (18.045) (3.720) (36.570) (3.585) (4.034)

Urban -1.473 1.609 4.691 .586 9.436 .302 .156 .835 3.041
(3.470) (3.648) (4.100) (3.451) (12.891) (3.450) (7.215) (3.518) (4.057)

Retired -13.084** -9.817 -6.234 -10.723* 12.532 -11.479* -12.786 -12.200* -15.398**
(6.521) (5.856) (6.370) (6.113) (27.066) (6.220) (10.364) (6.340) (6.779)

A-level 8.603 5.437 6.726 3.968 -36.782 4.955 6.672 5.788 8.954
(5.736) (5.256) (5.561) (5.352) (42.212) (5.304) (56.944) (5.251) (5.960)

Constant -100.021** -116.380** -129.438 -107.374** -39.538 -106.830** -107.578 -109.422 ** -79.594
(49.701) (47.943) (49.836) (47.509) (179.881) (49.374) (51.075) (47.702) (52.668)

N 2448 2527 2437 2527 2448 2527 2448 2515 2437
F-Stat 17.84 15.64 14.99 14.89 2.36 14.88 20.94 15.28 14.34
R-Squared 0.098 0.105 0.053 0.103 0.007 0.099 0.091 0.101 0.029

Notes: The left hand side variable is overall wealth. The sample is drawn from the 2010 PHF. The observational units are household reference
persons aged 45 and older if not stated otherwise. Robust standard errors are in parentheses.
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Table 3.6: Robustness Check - Functional Form (Log-Level)

Treatment (Ri): Church Church Church Church Church Church
affiliation attendance affiliation attendance affiliation attendance

Model: i) First stage (2SLS) ii) Second stage (2SLS) iii) OLS

(1) (2) (3) (4) (5) (6)

West89 0.302*** 0.326***
(0.039) (0.039)

Church affiliation 2.753*** 0.595***
(0.534) (0.114)

Church attendance 2.522*** 0.577***
(0.483) (0.112)

log(Income) 0.145*** 0.004 1.200*** 1.606*** 1.709*** 1.816***
(0.030) (0.029) (0.225) (0.215) (0.186) (0.189)

Age -0.002 0.025 0.086 0.020 0.103 0.098
(0.015) (0.015) (0.067) (0.074) (0.066) (0.068)

Age squared 0.000 -0.000 -0.001 -0.000 -0.001 -0.001
(0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

Number of Kids -0.006 0.069** -0.040 -0.226* -0.132 -0.163*
(0.032) (0.029) (0.135) (0.116) (0.099) (0.095)

Number of Adults 0.059*** -0.006 -0.155 -0.002 -0.025 -0.017
(0.021) (0.022) (0.107) (0.097) (0.091) (0.089)

Married -0.095*** 0.055 0.594*** 0.201 0.300** 0.216
(0.037) (0.039) (0.181) (0.156) (0.137) (0.137)

Sex 0.032 -0.106*** 0.143 0.506*** 0.236** 0.309***
(0.030) (0.031) (0.124) (0.133) (0.109) (0.110)

Urban -0.148*** -0.098*** -0.171 -0.334** -0.465** -0.506***
(0.030) (0.031) (0.148) (0.139) (0.116) (0.115)

Retired -0.134*** 0 .021 0.074 -0.338* -0.198*** -0.285
(0.045) (0.047) (0.211) (0.203) (0.176) (0.183)

A-level -0.007 -0.012 0.445*** 0.451*** 0.298 0.293*
(0.038) (0.042) (0.164) (0.168) (0.155) (0.156)

Constant 0.833* -0.339 -0.972 2.122 0.291 0.765
(0.504) (0.502) (2.057) (2.193) (2.085) (2.129)

N 2330 2320 2330 2320 2401 2390
F-Stat 20.29 9.27 31.10 31.34 40.88 38.21
R-Squared 0.141 0.105 0.119 0.159 0.369 0.371

Notes: The sample is drawn from the 2010 PHF. The observational units are household reference persons aged 45
and older if not stated otherwise. Robust standard errors are in parentheses.
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Table 3.7: IV (2SLS) Estimation - Wealth Decile Interactions

Treatment (Ri): Church affiliation

Outcome: Wealth Safe Risky Non-financial Real Debt
assets assets assets estate

Decile: 0.1 855.03** 105.26** 32.76 132.04* 588.58** 3.62
(345.12) (43.39) (22.82) (69.02) (236.59) (23.70)

Decile: 0.2 -7233.52 -890.53 -277.16 -1117.10 -4979.40 -30.66
(44172.29) (5435.54) (1697.43) (6828.79) (30404.80) (266.90)

Decile: 0.3 -1843.36 -226.94 -70.63 -284.68 -1268.93 -7.81
(3839.57) (473.51) (149.06) (598.90) (2643.47) (52.35)

Decile: 0.4 -2805.59 -345.40 -107.50 -433.28 -1931.31 -11.89
(7702.37) (948.38) (301.00) (1202.77) (5298.53) (84.51)

Decile: 0.5 601.00* 73.99* 23.03 92.82 413.72** 2.55
(313.75) (38.95) (17.57) (58.04) (216.55) (16.79)

Decile: 0.6 704.42 86.72 26.99 108.79 484.91 2.99
(510.06) (62.91) (24.91) (86.81) (352.24) (19.77)

Decile: 0.7 318.05** 39.15** 12.19 49.12* 218.94** 1.35
(133.38) (16.04) (8.43) (26.98) (92.61) (8.89)

Decile: 0.8 202.20*** 24.89*** 7.75 31.23** 139.19*** 0.86
(49.45) (6.80) (4.67) (31.23) (33.86) (5.63)

Decile: 0.9 174.63*** 21.50*** 6.69 26.97** 120.21*** 0.74
(34.67) (4.59) (3.81) (10.76) (24.39) (4.86)

Notes: The sample is drawn from the 2010 PHF. The observational units are household reference persons
aged 45 and older if not stated otherwise. Robust standard errors are in parentheses.
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