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Introduction

Making decisions in an uncertain environment is a complex task and information

can help to reach a sound decision. For example, a committee may aggregate in-

dividual knowledge about a candidate before deciding whom to hire, a firm may

conduct a market study before choosing a product design, or a student may learn

over time how much effort is necessary to achieve a success.

This dissertation studies the role of information in three different microeco-

nomic environments and introduces for each an independent theoretical model. In

all three models agents face uncertainty about the state of the world and seek infor-

mation to take actions that maximize their expected outcome. A common feature

of all three models is that the state is two-dimensional whereas the action is one-

dimensional. As will be seen, this difference allows interesting effects to come into

play. In the first two chapters the information has to be communicated between dif-

ferent players. In Chapter 1 members of a committee share their two-dimensional

information before voting on a binary outcome. In Chapter 2 one division of a

firm obtains two-dimensional information and communicates with another divi-

sion that has to take the one-dimensional action. In the third chapter a single agent

faces two-dimensional uncertainty about her type and the production function. In

each period, the agent gathers information by experimentation with the level of ef-

fort; the effort choice as well as the output are binary. The remainder of the introduc-

tion explains the modeling assumptions and the findings of each chapter in more

detail.

In the first chapter, members of a committee deliberate before voting on an out-

come. The question is whether truthful communication of individual information

is possible, given that committee members have heterogeneous preferences. This

chapter, “Consistency and Communication in Committees”, is based on joint work

with Felix Ketelaar and Mark T. Le Quement (Deimen et al. (2015)). We generalize the

classical binary Condorcet jury model by introducing a richer state and signal space,

thereby generating a concern for consistency in the evaluation of aggregate informa-

tion. For concreteness, a jury aims at determining whether a defendant is guilty or

innocent. If guilty, he must have committed the crime at one specific point in time. If
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Introduction

innocent, he must have been engaged in some activity at the moment of the crime.

Different scenarios constitute different variants of guilt and innocence. Jurors re-

ceive private signals, generated by the trial hearing, and before voting whether to

acquit or convict the defendant, they share their information. More consistent ag-

gregate information yields stronger evidence and is therefore more convincing.

Formally, we consider a deliberation and voting model in which rich state and

signal spaces combine with a binary action space. In our model there are two basic

states, each of which splits into a set of sub-states. Each signal is informative with

respect to a basic state and a particular sub-state. More consistent signals provide

stronger evidence for the corresponding state. Members of a heterogeneous com-

mittee communicate via cheap talk before voting on a binary outcome. In contrast

to results obtained in the classical binary signal setup (e.g. Coughlan (2000)), we

find that the truthful communication and sincere voting equilibrium is virtually al-

ways compatible with a positive probability of ex-post conflict among agents. Key

is the aspect of consistency in the information structure; individual information is

interpreted within the context of aggregate information.

By contrast, in the second chapter individual pieces of information are commu-

nicated as aggregate information; key is the choice of the information structure. The

second chapter, “Information, Authority, and Smooth Communication in Organiza-

tions”, is based on joint work with Dezső Szalay (Deimen and Szalay (2015)). Two

divisions, overarched by a headquarters, need to reach a decision that affects the

payoffs of all three parties involved. The organization and the roles of the divisions

are exogenously fixed: division one gets to observe information about the ideal deci-

sions from both divisions’ perspectives. Division two retains the right to determine

the common decision. Hence, the divisions are bound to communicate with each

other. Headquarters’ influence on the decision process is reduced to controlling the

informational environment that division one gets to observe.

Formally, we study strategic information transmission in a sender-receiver game.

We frame our game in a set-up, where the information structure is chosen by a

third party, the headquarters who has the objective to maximize the joint surplus

of sender and receiver, the two divisions. The uninformed receiver has to take a

decision and seeks advice from the informed sender. Optimally, the headquarters

chooses the information structure such that equilibrium communication is smooth:

the sender precisely suggests his preferred policy and the receiver takes the sender’s

advice at face value. We show that communication of unverifiable information

without commitment may be a constrained-efficient decision mechanism - unsur-

passed even by optimal delegation. The crucial conditions under which this works
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are that conflicts are stochastic and unsystematic and that information is endoge-

nous.

Opposed to the two previous setups where information is shared between differ-

ent players, in the third chapter a single agent experiments with the level of effort to

gather information. The third chapter, “A Bandit Model of Two-Dimensional Uncer-

tainty – Rationalizing Mindsets” is based on joint work with Julia Wirtz. We analyze a

new type of bandit where an agent is confronted with two-dimensional uncertainty.

The agent does not know whether ability or effort is required to succeed at a given

task. Moreover, the agent does not know her own ability level. In each period, af-

ter deciding whether to exert effort or not, the agent observes a success or a failure

and updates her beliefs about both the task and her ability accordingly. In contrast

to a standard bandit model, the agent gains information even when she is not ex-

erting effort. In our setting we find that different agents react to failure in different

ways; while some agents find it optimal to resign others prefer to increase their effort.

Given an infinite-time horizon agents may start and stop exerting effort repeatedly.

A possible interpretation of different reactions to failure is given by the educa-

tional psychologist Carol Dweck. In particular, Dweck (2006) attributes diverging be-

havior in response to failure to different mindsets. In this literature, agents that have

a “fixed mindset” believe that success is based on innate ability, whereas agents with

“growth mindset” believe that success comes from hard work. Consequently, when

facing a failure fixed types stop exerting effort whereas growth types start exerting

more effort. We show that different effort costs and beliefs about the own ability

and the production function together with Bayesian updating can explain the differ-

ences in behavior.
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1 Consistency and

Communication in Committees

1.1 Introduction

This chapter considers a deliberation and voting model in which rich state and sig-

nal spaces combine with a binary action space. A committee consisting of privately

informed agents with known heterogeneous preferences engages in simultaneous

information exchange prior to voting. Our information structure generates a con-

cern for consistency in the aggregation of individual signals; a given signal is inter-

preted differently depending on how it matches other available evidence. We find

that in contrast to the classical model featuring binary state and signal spaces, full in-

formation sharing and sincere voting can constitute an equilibrium although agents

with some probability disagree ex post.

Consider the example of a jury aiming at determining whether a defendant is

guilty or innocent. If guilty, he must have committed the crime at one specific point

in time, for example on one particular day of a given week. If innocent, he must

have been engaged in some activity at the moment of the crime; for example work-

ing, watching TV, or doing sports. Different days of the week constitute mutually

exclusive variants of the guilty state while different activities constitute mutually ex-

clusive variants of the innocent state.

Jurors gather evidence through a trial hearing which generates private signals.

Before deciding whether to acquit or convict, jurors retire to deliberate and share

their private signals. Consider two possible scenarios. In the first scenario, half of the

jurors received a signal indicating that the defendant committed the crime on Mon-

day, while the other half received a signal indicating that he committed the crime

on Wednesday. In the second scenario, all jurors received a signal indicating Mon-

day. The latter scenario is more consistent than the first and therefore provides more

convincing evidence of guilt. Jurors do not as such care about the time at which the

crime was committed but wish to establish with sufficient certainty whether the de-

fendant is guilty or innocent. More consistent profiles yield stronger evidence.
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1 Consistency and Communication in Committees

The core elements of the above description apply to many other situations. Con-

sider a group of investment bankers that contemplates investing in shares of a large

manufacturer, e.g. Chrysler. Committee members need to assess whether Chrysler

will avoid bankruptcy in the near future. This may happen if either the US Federal

State provides a bailout package or if some private company (e.g. Fiat) decides to

step in. On the other hand, if Chrysler does go bankrupt, this may happen accord-

ing to different chapters of the bankruptcy code. Another example is that of a board

of directors that seeks to predict whether a Democrat or a Republican will win the

next US presidential election. Different Democratic (Republican) candidates consti-

tute different variants of the Democratic (Republican) state.

We incorporate the key features of the above examples into a model of collective

decision making. There are two basic states, each of which splits into a set of sub-

states. Each signal is informative with respect to a basic state and a particular sub-

state. In this context, the consistency of signals matters as illustrated above; more

consistent signals provide stronger evidence for the corresponding state. Members

of a heterogeneous committee communicate via cheap talk before voting on a bi-

nary outcome. In contrast to results obtained in the classical binary signal setup,1

we find that the truthful communication and sincere voting equilibrium (TS equi-

librium) is virtually always compatible with a positive probability of ex post conflict

among agents.

The intuition for our result comes out clearly when compared to the classical

binary signal model.2 In the latter, in the putative TS equilibrium, pivotality at the

communication stage pins down uniquely the information held by remaining com-

mittee members. Disagreement about the optimal decision rule implies that there is

always at least one agent for whom this pivotal profile implies a suboptimal decision

on the equilibrium path. Consequently, this agent profitably deviates and bends the

decision rule in his favored direction.

In our model, the set of pivotal profiles is not a singleton anymore: different sig-

nal profiles can yield similar posteriors because the conditional probability of guilt

depends on two aspects, the total number of signals indicating respectively guilt or

innocence as well as the consistency of signals within these subsets. A smaller to-

tal number of guilty signals can be compensated by a higher degree of consistency

among guilty signals. The multiplicity of pivotal scenarios in our model allows two

effects to come into play. First, there exist pivotal profiles for which all agents agree

1 See Coughlan (2000), Austen-Smith and Feddersen (2006), Meirowitz (2007), Van Weelden (2008).

2 See in particular Coughlan (2000).
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1.2 Model

with the decision taken on the equilibrium path. At these profiles a deviation is dis-

advantageous (consensus effect). Second, the impact of an agent’s announcement

depends on the signals of the whole committee. He faces uncertainty as to which

announcement is more or less consistent with other agents’ signals and is thus suit-

able to shift the outcome in a desired direction (uncertainty effect).

Building on the theory of strategic voting as information aggregation (E.g.

Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1998), Bhattacharya

(2013)), different classes of contributions have analyzed communication in hetero-

geneous committees by modifying the baseline model (Coughlan (2000)). Austen-

Smith and Feddersen (2006), Meirowitz (2007), and Le Quement (2013) examine the

implications of preference uncertainty. Van Weelden (2008), Hummel (2012), and

Le Quement and Yokeeswaran (2015) analyze alternative communication protocols.

Gerardi et al. (2009), Gerardi and Yariv (2007), and Wolinsky (2002) adopt a mecha-

nism design approach. Additionally, experimental work has analyzed communica-

tion behavior in groups (E.g. Goeree and Yariv (2011) and Dickson et al. (2008)). Our

contribution lies in the introduction of a novel information structure that captures

the idea that individual information is interpreted within the context of aggregate

information.

1.2 Model

A jury of n agents, n ∈N, n ≥ 3 has to decide whether to acquit (A) or convict (C ) a

defendant. The defendant is either innocent (I ) or guilty (G). Both innocence and

guilt occur in finitely many different variants i1, ..., imI and g1, ..., gmG , respectively,

with mI ,mG ∈N, mI ,mG ≥ 2.3 The state space is hence given asΩ= I ∪G where I ={
i1, ..., imI

}
and G = {

g1, ..., gmG

}
. We denote the state byω and say that the defendant

is innocent if ω ∈ I and guilty if ω ∈ G . The state is drawn from a publicly known

prior distribution such that P (ω ∈ I ) + P (ω ∈G) = 1, P (il ) = P (ω∈I )
mI

∀l ∈ {1, ...,mI },

and P
(
gl

)= P (ω∈G)
mG

∀l ∈ {1, ...,mG }.

The jury implements an action a ∈ {A,C } by voting according to a voting rule

k ∈ {1, . . . ,n}. Each agent j ∈ {1, . . . ,n} casts a vote in favor of one of the two actions. If

the number of votes cast for conviction is greater than or equal to k, the defendant

is convicted while otherwise he is acquitted.

3 The case of mI = mG = 1 corresponds to the classical model analyzed by Coughlan (2000) and
others.
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1 Consistency and Communication in Committees

The utility of agent j from action a conditional on ω ∈Ω is given by

u j (a,ω) =


0 if (a,ω) ∈ {(A, I ) (C ,G)}

−q j if (a,ω) = (C , I )

−(
1−q j

)
if (a,ω) = (A,G).

The commonly known preference parameter q j ∈ (0,1) characterizes the relative im-

portance assigned to the two types of errors.4 As agent j maximizes expected utility,

he prefers conviction over acquittal if and only if the probability of the defendant

being guilty exceeds the cut-off q j . We mainly focus on the case of a committee fea-

turing two preference types qH < qD referred to as hawks and doves.

Prior to the voting stage, each agent receives a private signal s ∈ S = Ω. Signals

are i.i.d. across agents conditional on ω. If ω= il for some l ∈ {1, ...,mI }, then

P (s = il |ω= il ) = λ · p

λ+ (mI −1)
,

P (s = ir |ω= il ) = p

λ+ (mI −1)
∀r ∈ {1, ...,mI } , r 6= l ,

P
(
s = gr |ω= il

) = 1−p

mG
∀r ∈ {1, ...,mG } ,

with p ∈ (1
2 ,1

)
and λ> 1. If ω= gl for some l ∈ {1, ...,mG }, respective expressions ap-

ply after permuting i and g as well as I and G .5 Applying Bayes’ law, p measures up

to priors the probability that the signal correctly reveals whether the defendant is

innocent or guilty. λ = P (s=il |ω=il )
P (s=il |ω=ir ) =

P(s=gl |ω=gl )
P(s=gl |ω=gr ) measures the relative informative-

ness of signals with respect to the particular variant of innocence or guilt. We finally

assume that

P (s = il |ω= ir )

P
(
s = il |ω= g t

) ≥1 ∀l ,r ∈ {1, ...,mI } , t ∈ {1, ...,mG } and

P
(
s = gl |ω= gr

)
P

(
s = gl |ω= it

) ≥1 ∀l ,r ∈ {1, ...,mG } , t ∈ {1, ...,mI } ,

which is equivalent to requiring a lower bound p ≥ max
{

mG−1+λ
2mG−1+λ , mI−1+λ

2mI−1+λ
}

on the

4 Existing results (Austen-Smith and Feddersen (2006)) indicate that truthful communication is
easier to achieve if there is uncertainty about preference types. By assuming observable prefer-
ence types, we isolate the truth-telling incentives that are specific to our model.

5 Note that whenever λ > 1 our signal generating process is not reducible to a process that gen-
erates i.i.d. signals conditional on I and G . It is however reducible to a process that generates
correlated signals conditional on I and G .
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1.3 Simple Example

informativeness of signals with respect to innocence and guilt.

A collection of signals constitutes a signal profile σ = (
x1, ..., xmI , y1, ..., ymG

)
where xr denotes the number of ir -signals, r ∈ {1, ...,mI } and yl denotes the number

of gl -signals, l ∈ {1, ...,mG }. Conditional on signal profileσ, the posterior probability

of guilt is given by

β (σ) ≡ P (ω ∈G|σ) = P (ω ∈G) ·P (σ|ω ∈G)

P (ω ∈G) ·P (σ|ω ∈G)+P (ω ∈ I ) ·P (σ|ω ∈ I )
.

In terms of utilities agents only care whether ω ∈ I or ω ∈G , hence the number β (σ)

is a sufficient statistic for the favored action of each individual agent for any signal

profile σ.

The timing of the game is as follows. Nature draws the state ω. Each agent re-

ceives a private signal s. Subsequently, agents simultaneously send a public cheap

talk message m ∈ M = S.6 Finally, each agent casts a vote, the action a ∈ {A,C } is

implemented according to the voting rule, and payoffs are realized.

Our equilibrium concept is Perfect Bayesian Equilibrium. We focus on the so-

called TS equilibrium: agents truthfully reveal their private information by sending

a message m = s at the communication stage and (correctly) believe that others

also communicate truthfully. Subsequently, agents vote sincerely, i.e. they vote for

conviction if and only if they favor conviction given their beliefs.

1.3 Simple Example

Consider a three persons committee consisting of two doves and one hawk. The vot-

ing rule is k = 2, i.e. simple majority. Let I = {i1, i2} and G = {
g1, g2

}
. Referring to the

example given in the introduction, think of i1 as “innocent and working”, i2 as “in-

nocent and doing sports”, g1 as “guilty on Monday”, and g2 as “guilty on Wednesday”.

Aggregate signal profiles are ordered as follows

β (3,0,0,0)

β (0,3,0,0)
< . . . < β (1,0,0,2) ,β (1,0,2,0)

β (0,1,0,2) ,β (0,1,2,0)
< β (0,0,1,2)

β (0,0,2,1)
< β (0,0,0,3)

β (0,0,3,0)
.

Suppose qH , qD are such that a dove favors conviction if and only if the aggregate

signal profile is either (0,0,0,3) or (0,0,3,0) while a hawk in addition favors convic-

tion for profiles (0,0,1,2) and (0,0,2,1), so that the committee disagrees for these

two profiles. While both types require three g -signals to prefer conviction, doves fur-

6 See end of Section 1.3 for a comment on sequential communication.
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1 Consistency and Communication in Committees

thermore require these g -signals to be consistent. In this setting the TS equilibrium

exists, as we now show.

An agent never has an incentive to deviate from sincere voting as this weakly

decreases the probability that his favored decision ensues. This holds true indepen-

dently of his announcement at the communication stage. Moreover, given that the

voting rule is simple majority doves can always enforce their favored decision and

thus have no incentive to deviate from truth-telling.

We now analyze the truth-telling incentives of the hawk. The hawk’s announce-

ment is pivotal if the remaining two agents hold signal profiles (0,0,2,0) or (0,0,0,2).

In the first (second) case, a g1- (g2-) announcement triggers conviction while any of

the remaining announcements causes acquittal. Given the symmetry of the model,

conditions ensuring truth-telling when the hawk holds an i1- or an i2-signal are

identical modulo an exchange of subscripts. We can therefore without loss of gener-

ality focus on deviation incentives conditional on an i1-signal. An equivalent argu-

ment applies when the hawk holds a g1- or a g2-signal.

Let the hawk hold an i1-signal and be pivotal at the communication stage. The

aggregate signal profile is then (1,0,2,0) or (1,0,0,2). In either case, the committee

decision given the true signal profile is acquittal and coincides with the decision

favored by the hawk. Accordingly, he has no incentive to deviate from truth-telling.

Here, the consensus effect is the source of truth-telling: a hawk holding an i1-signal

agrees with the doves on the preferred action in all pivotal scenarios.

Assume next that the hawk holds a g1-signal and is pivotal at the communication

stage. The signal profile of the entire committee is then either (0,0,1,2) or (0,0,3,0).

The hawk disagrees with the acquittal ensuing from truth-telling at (0,0,1,2) while

he agrees with the conviction ensuing from truth-telling at (0,0,3,0). If the hawk

deviates to announcing some i -signal, the signal profile observed by others at the

voting stage is either (1,0,2,0), (1,0,0,2), (0,1,0,2) or (0,1,2,0), in all cases leading

to an undesired acquittal. If the hawk deviates to a g2-announcement, the signal

profile observed by the remaining agents at the voting stage is (0,0,0,3) or (0,0,2,1).

The deviation beneficially overturns an acquittal in the first case but adversely over-

turns a conviction in the second case. The hawk thus faces uncertainty about the

impact of his statement. Among the two pivotal profiles, (0,0,0,2) incentivizes lying

while (0,0,2,0) incentivizes truth-telling. We call this the uncertainty effect. Which

incentive dominates depends on the relative likelihood assigned to these two pro-

files, the latter itself depending on the probability assigned to the states g1 and g2.

An agent holding a g1-signal assigns a higher probability to state g1 than to state

g2 and accordingly to profile (0,0,2,0) than to profile (0,0,0,2). The signal profile

10



1.4 Analysis of the TS Equilibrium

that incentivizes truth-telling is thus considered more likely than the one that incen-

tivizes lying. Hence the hawk does not prefer to announce a g2-signal. We conclude

that the TS equilibrium exists despite the existence of signal profiles generating ex

post conflict.

We close with two remarks. By the same arguments as above, the TS equilibrium

also exists under unanimity when k = 3. Moreover, the TS equilibrium continues to

exist under sequential communication if the hawk speaks first. Indeed, the hawk’s

incentives then replicate those arising under simultaneous communication while

doves still determine the outcome and hence have no incentives to deviate.7

1.4 Analysis of the TS Equilibrium

The example of Section 1.3 shows that the TS equilibrium can exist despite poten-

tial disagreement after full pooling of information. In what follows, we provide an

equilibrium analysis for the general model.

For any signal s ∈ S, let σs denote the signal profile that consists of one signal s

only. Moreover, for a given agent j , we denote the signal profile of all other agents

by σ− j . The following lemma addresses the effect of shifting mass from one entry

of σ to another. This replicates the change in other agents’ beliefs achievable by

misreporting a signal in the putative TS equilibrium.

Lemma 1.1. For any signal profile σ = (
x1, ..., xmI , y1, ..., ymG

)
, the function β (σ) is

invariant under any permutation of x-entries and any permutation of y-entries of σ.

Moreover, the following inequalities hold:

β
(
σ+σgr

)>β(
σ+σil

) ∀l ∈ {1, ...,mI } ,r ∈ {1, ...,mG } , (1.4.1)

β
(
σ+σgl

)≥β(
σ+σgr

) ∀l ,r ∈ {1, ...,mI } , yr ≤ yl , (1.4.2)

β
(
σ+σil

)≤β(
σ+σir

) ∀l ,r ∈ {1, ...,mI } , xr ≤ xl . (1.4.3)

Conditions (1.4.2) and (1.4.3) hold with equality if and only if respectively yl = yr and

xl = xr .

Proof. See Appendix.

Lemma 1.1 shows that three factors determine the posterior probability of guilt;

an increase in the total number of g -signals and in the consistency of the profile of

7 The existence of the TS equilibrium under unanimity and sequential communication stands in
contrast to the impossibility results of Austen-Smith and Feddersen (2006) and Van Weelden
(2008).
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1 Consistency and Communication in Committees

g -signals leads to an increase in the posterior probability of guilt. An increase in the

consistency of the profile of i -signals has the opposite effect.

Note that if λ = 1 or mG = mI = 1 the impossibility result shown in Coughlan

(2000) applies: the TS equilibrium exists if and only if either 1) at least k agents (n−k

agents) favor conviction (acquittal) for any realization of signals or 2) all agents favor

the same action for any realization of signals. The existence of the TS equilibrium

beyond these trivial cases thus requires both an enlarged state and signal space as

well as the assumption that signals are informative with respect to the variant of

innocence or guilt that applies.

Introducing terminology, we say that hawks have critical mass if the number of

hawks is weakly greater than k, so that hawks are sufficiently many to impose convic-

tion whenever they wish. Otherwise, doves have critical mass. We call a signal profile

σ a conflict profile if conditional on σ hawks and doves favor different actions, that

is if qH <β (σ) < qD . We impose the following simple assumption on preferences of

hawks and doves.

Assumption 1.1 (No partisans). The preferred action of each agent depends on the

aggregate signal profile. Moreover, hawks require less than the maximal possible ev-

idence of guilt to prefer conviction and doves require less than the maximal possible

evidence of innocence to prefer acquittal.

Let q denote the threshold of the type that has critical mass and consider an

agent j of the type that does not have critical mass. We denote the set of signal pro-

files σ− j at which an ir -report by agent j triggers an acquittal while a gl -report trig-

gers a conviction by

Pi vir ,gl

(
q
)≡ {

σ− j :β
(
σ− j +σir

)< q ∧ β
(
σ− j +σgl

)≥ q
}

.

Our main result reads as follows.

Theorem 1.1. Let k be non-unanimous and impose Assumption 1.1.

a) Assume hawks have critical mass. The TS equilibrium exists if and only if

qD ≤ q̂D
(
qH

) ≡ 1

P
(
σ− j ∈ Pi vir ,gl

(
qH

) |s j = gl
) ∑
σ− j ∈Pi vir ,gl (qH )

P
(
σ− j |s j = gl

) ·β(
σ− j +σgl

)
.

b) Assume doves have critical mass. The TS equilibrium exists if and only if

qH ≥ q̂H
(
qD

) ≡ 1

P
(
σ− j ∈ Pi vir ,gl

(
qD

) |s j = ir
) ∑
σ− j ∈Pi vir ,gl (qD )

P
(
σ− j |s j = ir

) ·β(
σ− j +σir

)
.

12



1.4 Analysis of the TS Equilibrium

c) If hawks have critical mass and qD = q̂D (qH ) there exists at least one conflict profile.

If doves have critical mass and qH = q̂H
(
qD

)
there exists at least one conflict profile.

Proof. See Appendix.

Theorem 1.1 provides a general existence result for the TS equilibrium. Part a)

states the existence of a critical dove type q̂D (qH ) such that the TS equilibrium ex-

ists if and only if qD ∈ (
qH , q̂D (qH )

]
. The threshold q̂D (qH ) corresponds to the prob-

ability of guilt conditional on all pivotal profiles σ− j where a truthful gl -report of

agent j leads to conviction while an ir -report leads to acquittal. Part b) states the

corresponding result for the case where doves have critical mass. Part c) yields the

fundamental qualitative statement that the TS equilibrium is compatible with the

existence of conflict profiles. It stands in stark contrast to Coughlan’s impossibility

result.

We outline the main steps of the proof of Theorem 1.1 in what follows. A first

observation is that agents of the type that has critical mass never have an incen-

tive to deviate as their preferred action given aggregate information is always imple-

mented. A second observation is that under a non-unanimous voting rule, an agent

of the type that does not have critical mass is never pivotal at the voting stage, irre-

spective of whether he deviated at the communication stage. Assuming hawks have

critical mass, given sincere voting a dove’s vote can only influence the outcome if

hawks vote for acquittal. The reciprocal argument holds for the case of doves hav-

ing critical mass. In both cases, however, all other agents will vote unanimously and

thus the agent’s vote cannot be pivotal. A third observation is that a hawk never has

an incentive to misreport a g -signal as an i -signal while a dove never has an incen-

tive to misreport an i -signal as a g -signal. This immediately follows from (1.4.1). A

deviation of the above described type would only worsen the implemented decision

rule.

A fourth observation is that no agent has an incentive to misreport an i -signal

as a different i -signal or to misreport a g -signal as a different g -signal. Here, the

uncertainty effect is key. Consider a juror holding signal ir and contemplating an-

nouncing il 6= ir instead. The set of signal profiles σ− j splits into pairs of profiles

that are identical up to a simple permutation of the numbers of ir - and il -signals. If

both reports trigger identical actions for both these profiles, the reporting decision

is irrelevant. Otherwise, a truthful ir -report will lead to an acquittal for the profile

that features more ir -signals and lead to a conviction for the other profile. Deviating

to an il -report overturns both outcomes. If the defendant is guilty, both profiles are

equally likely to occur and agent j is thus indifferent between the two reports. If the

13



1 Consistency and Communication in Committees

defendant is innocent, the profile that is more consistent with agent j ’s own signal

is more likely than the other one given λ> 1. Hence agent j has an incentive to trig-

ger acquittal for the former profile rather than the latter and thus to tell the truth.

Deviations from one g -signal to another are ruled out by a similar argument.

Given the four above observations, the only deviations that remain to be ex-

cluded involve doves reporting an i -signal instead of a g -signal and hawks reporting

a g -signal instead of an i -signal. These deviations have a clear effect on the out-

comes via (1.4.1). Here, the multiplicity of pivotal profiles allows the consensus ef-

fect to provide truth-telling incentives. While hawks and doves have diverging in-

terests for some pivotal profiles, their preferred outcome coincides for others. This

(partial) consensus is more pronounced the smaller qD − qH . Accordingly, we get

an upper bound for qD in Part a) and a lower bound for qH in Part b). As for Part

c), a type who is indifferent between truth-telling and lying necessarily faces pivotal

profiles that incentivize truth-telling and pivotal profiles that incentivize deviating.

For the sake of concreteness, consider a dove holding a gl -signal and let hawks have

critical mass. Let σ be a signal profile such that a hawk prefers conviction precisely

for those signal profiles that yield at least as much evidence for the defendant being

guilty as σ does. Whenever qD > β (σ), the profile σ is a conflict profile and incen-

tivizes lying. On the other hand, Assumption 1.1 guarantees the existence of another

signal profile σ̃ that satisfies β (σ̃) > β (σ) and β
(
σ̃−σgl +σir

) < β (σ). An example

of such a profile σ̃ is one that has the same total number of i - and g -signals as σ

but is either slightly less consistent with respect to its i -signals or slightly more con-

sistent with respect to its g -signals. Now, if β (σ̃) > qD > β (σ) then σ̃ incentivizes

truth-telling and this incentive dominates the deviation incentive from σ if qD is

sufficiently close to β (σ).8

We finally sketch how our results generalize to arbitrary preference types. For

j ∈ {1, ...,n} let q j be juror j ’s preference parameter and assume without loss of

generality q1 ≤ ... ≤ qn . Let k ∈ {2, ...,n −1} denote the voting rule. The TS equilib-

rium then implements juror k’s optimal decision rule. For any juror j < k, the im-

plemented decision rule is (weakly) “dovish” as q j ≤ qk while for any juror j > k

the decision rule is (weakly) “hawkish” as q j ≥ qk . The insights from the two type

case suggest that the TS equilibrium exists if and only if for all j ∈ {1, ...,n} we have

8 Numerical simulations show that the parameter area that is compatible with the existence of the
TS equilibrium in our model is typically larger than in the binary model in Coughlan (2000). More-
over, the number of conflict profiles compatible with the TS equilibrium becomes large when
committee size increases, contrasting e.g. Le Quement (2013).
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1.5 Conclusion

q j ∈
[
q̂H

(
qk

)
, q̂D

(
qk

)]
with q̂H (·) and q̂D (·) defined as in Theorem 1.1.

The problem is that a juror is now pivotal at the voting stage if exactly k −1 other

jurors favor conviction given the aggregate signal profile.9 Consider a juror j < k

holding an i -signal. If this juror reports a g -signal instead, an irreversible convic-

tion is triggered only if in addition to juror k also juror k +1 prefers to convict based

on the reported evidence. Indeed, if only jurors 1 to k prefer conviction based on

reports, juror j can veto a conviction. As a consequence, for profiles σ− j where a

particular g -announcement causes jurors 1 to k to favor a conviction based on re-

ported evidence, a deviation to this announcement can only be advantageous as

juror j can implement his favored decision at the voting stage.

Given these considerations, the following result holds. The TS equilibrium exists

if and only if q j ∈
[

q
(
qk , qk+1

)
, q

(
qk , qk−1

)]
for all j ∈ {1, ...,n} where the noteworthy

aspect is that the bounds now depend on two preference types instead of only one.

Furthermore, if jurors k and k + 1 favor the same action for each signal profile we

have q
(
qk , qk+1

) = q̂H
(
qk

)
. Likewise, if jurors k and k −1 favor the same action for

each signal profile we have q
(
qk , qk−1

) = q̂D
(
qk

)
. It follows that if jurors k − 1, k,

and k +1 share the same optimal decision rule the TS equilibrium exists if and only

if q j ∈ [
q̂H

(
qk

)
, q̂D

(
qk

)] ∀ j ∈ {1, ...,n} . These insights provide some guidance re-

garding the optimal composition of heterogeneous committees with an eye to maxi-

mizing truth-telling incentives. In a committee too polarized for the TS equilibrium

to exist, the inclusion of moderate agents endowed with decision power through a

suitably chosen voting rule can help to overcome lying incentives. However, a single

moderate agent will not suffice to ensure truth-telling.

1.5 Conclusion

In our collective decision model with pre-vote communication, a positive proba-

bility of ex post disagreement among agents is frequently compatible with the ex-

istence of the truthful communication and sincere voting equilibrium. The driving

forces underlying our positive result are the consensus and uncertainty effects, both

of which originate in the multiplicity of pivotal scenarios at the communication

stage. The latter feature follows from the role played by consistency given our in-

formation structure. From a conceptual perspective, the key and novel feature of

our information structure is that a given signal is interpreted in the light of other

available information; meaning is determined in context. We find this aspect worth

9 This is ruled out in the two-type setup by excluding unanimous voting rules.
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exploring within other communication games.

1.6 Appendix

Proof of Lemma 1.1. We write x ≡ ∑mI
t=1 xt and y ≡ ∑mG

t=1 yt . The statements follow

immediately from p ≥ max
{

mG−1+λ
2mG−1+λ , mI−1+λ

2mI−1+λ
}

and

β (σ) =
[

1+ P (ω ∈ I )

P (ω ∈G)
· mG

mI
·
(

p ·mI(
1−p

) · (λ+mI −1)

)x

·
((

1−p
) · (λ+mG −1)

p ·mG

)y

·
∑mI

r=1λ
xr∑mG

l=1λ
yl

]−1

.

Note that if λ= 1 then β (σ) only depends on x and y .

Proof of Theorem 1.1. Observations 1 to 3 from the main text are obvious. To show

observation 4, suppose first that agent j who is not of the type having critical mass

holds a signal s = il and considers to report m = ir with r 6= l , l ,r ∈ {1, ...,mI }.

Consider two candidates for σ− j , namely σ̂= (
x1, ..., xl , ..., xr , ..., xmI , y1, ..., ymG

)
and

σ̂xl←→xr = (
x1, ..., xr , ..., xl , ..., xmI , y1, ..., ymG

)
and assume without loss of generality

that xl ≥ xr . We compare the expected utility of the reports m = il and m = ir con-

ditional on σ− j ∈
{
σ̂, σ̂xl←→xr

}
. If both reports m = il and m = ir trigger identical ac-

tions, the reporting decision does not matter. In particular, this is the case if xl = xr

by (1.4.3). If the reports trigger different actions, then xl > xr and thus m = il will

trigger acquittal for σ− j = σ̂ and conviction for σ− j = σ̂xl←→xr while m = ir will trig-

ger conviction for σ− j = σ̂ and acquittal for σ− j = σ̂xl←→xr , again by (1.4.3). Hence

Eu
[
m = il |σ− j ∈

{
σ̂, σ̂xl←→xr

}]−Eu
[
m = ir |σ− j ∈

{
σ̂, σ̂xl←→xr

}]
= −

mG∑
t=1

P
(
ω= g t |s = il

) ·P
(
σ− j = σ̂|ω= g t ,σ− j ∈

{
σ̂, σ̂xl←→xr

}) · (1−q
)

+
mG∑
t=1

P
(
ω= g t |s = il

) ·P
(
σ− j = σ̂xl←→xr |ω= g t ,σ− j ∈

{
σ̂, σ̂xl←→xr

}) · (1−q
)

−
mI∑
t=1

P (ω= it |s = il ) ·P
(
σ− j = σ̂xl←→xr |ω= it ,σ− j ∈

{
σ̂, σ̂xl←→xr

}) ·q

+
mI∑
t=1

P (ω= it |s = il ) ·P
(
σ− j = σ̂|ω= it ,σ− j ∈

{
σ̂, σ̂xl←→xr

}) ·q

=
P (ω∈I )

mI
· p
λ−1+mI

P (ω∈I )
mI

·p + P (ω∈G)
mG

· (1−p
) · −λxr +1 −λxl +λxr +λxl+1

λxr +λxl
·q

> 0.

As the set of signal profiles possibly held by other agents splits into pairs of the form
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1.6 Appendix

{
σ̂, σ̂xl←→xr

}
this shows that the proposed deviation is not profitable. Deviations

from one g -signal to another are ruled out in the same way. It remains to analyze

under which circumstances a dove holding some g -signal wants to deviate by re-

porting some i -signal instead (Part a) and under which circumstances a hawk hold-

ing some i -signal wants to deviate by reporting some g -signal (Part b).

a) + b) Assume that agent j is a dove holding signal s j = gl for some l ∈ {1, ...,mG }

and considers reporting m = ir for some r ∈ {1, ...,mI }. By (1.4.1), for any profile

σ− j ∈ Pi vir ,gl

(
q j

)
a truthful report m = gl will trigger conviction while reporting

m = ir will trigger acquittal. Truthful reporting hence constitutes an equilibrium iff

0 ≤ Eu
(
m j = gl

)−Eu
(
m j = ir

)
= ∑

σ− j∈Pi vir ,gl (qH )
P

(
σ− j |s j = gl

) ·β(
σ− j +σgl

)−P
(
σ− j ∈ Pi vir ,gl

(
qH

) |s j = gl
) ·qD

which proves Part a). Part b) follows similarly.

c) Consider the case where hawks have critical mass. Let σH be a profile such

that β (σH ) ≥ q j and β (σ̃) < q j for all signal profiles σ̃ satisfying β (σ̃) <β (σH ). Such

a profile exists by Assumption 1.1. We need to show that q̂D
(
qH

) > β (σH ) in which

case σH is a conflict profile. Suppose agent j is a dove holding a g1-signal and con-

siders deviating by reporting m j = i1. By Part a) it suffices to show that there exists

σ− j ∈ Pi vi1,g1

(
qH

)
such that

β
(
σ− j +σi1

)<β (σH ) <β(
σ− j +σg1

)
. (A1.1)

After reshuffling x- and y-entries, we may assume without loss of generality that

σH satisfies x1 ≥ ... ≥ xmI , y1 ≥ ... ≥ ymG . First, assume that y2 > 0. Then the profile

σ− j =σH −σg2 satisfies (A1.1). Similarly, if x2 > 0 then profileσ− j =σH −σi2 satisfies

(A1.1). Suppose x2 = y2 = 0. If y1 = 0 then x1 = n and σH = (n,0, ...,0), so hawks

would want to convict irrespective of any information. If x1 = 0 then y1 = n and

σH = (
0, ...,0, y1 = n,0, ...,0

)
, so hawks would want to convict only given the maximal

possible evidence of guilt. Both cases contradict Assumption 1.1. Finally, assume

x1 6= 0 6= y1. Since n ≥ 3 we must have x1 ≥ 2 or y1 ≥ 2. In the former case, σ− j =
σH −σi1 −σg1 +σi2 satisfies (A1.1) while in the latter case σ− j =σH −σi1 −σg1 +σg2

satisfies (A1.1). This concludes the proof for the case of hawks having critical mass.

The proof for the case of doves having critical mass is alike.
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2 Information, Authority, and

Smooth Communication in

Organizations

2.1 Introduction

Sound decision making requires good information. The success of organizations de-

pends crucially on the quality of information their decision-makers have and on

the alignment of interests within the organization. Most of the time, organizations

do not have automatic access to information but must actively acquire it prior to

decision-making. The search for information is subject to choices and must be con-

sidered as part of the decision-making process. How and where the information

enters the organization is by and large determined by the organization’s existing

structure. Inside the organization the information needs to be communicated to

the decision-maker. Such communication is prone to strategic manipulation; on

the way towards the decision-maker, inferences are drawn, details can be dropped,

things can be swept under the rug. The present chapter tries to shed light on how

organizations with given communication channels can cope with such problems.

We show that an appropriate acquisition of information can ensure sound decision-

making despite strategic communication, provided that a priori known conflicts are

eliminated.

Our way to demonstrate this result builds on the following insights. Conflicts

within the organization depend critically on the information available. As a result

of this, feeding better information into the organization does not necessarily imply

better decision-making; it may instead result in more relevant things being swept

under the rug. Due to their ability to withhold information, those who can filter

information along its way have a significant influence on the decisions that are

made. Rational information acquisition by the organization takes all these factors

into account and eliminates conflicts to the point where this is possible. As a conse-

quence, based on the information that reaches the decision-maker, all parties would

19
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make the same decision; communication and delegation are outcome equivalent.

In other words, everything is as if the informed party were formally legitimized to

make choices.

Our conclusions stem from an analysis of a stylized model of a multidivisional

organization with a common headquarters. For concreteness, we have in mind a

car manufacturer with a European and a US-American division. The firm wishes

to build a new model that will be sold on both markets. To learn about customers’

tastes, the firm launches a market study. Due to economies of scale, market research

is directed by the US division, production is directed by the European division. The

tastes of Europeans and US-Americans are positively but not perfectly correlated.

No systematic taste differences between the continents are expected; prior conflicts

are absent. But, depending on the results of the study, different designs could turn

out to be optimal for each market and conflicts could arise between the divisions ex

post. Hence, communication is strategic and prone to manipulation.

We show that at most the inferences from the study, the optimal design from

the US-division’s perspective, but not the observed results themselves can be com-

municated in equilibrium. What inferences the European receiver infers from the

US sender’s inference depends critically on the nature of information that enters

the organization. Headquarters shapes the communication process with a view to

reaching the highest feasible joint surplus for the two divisions. Its only influence is

through the attention devoted to the two markets in the study. The optimal way to

do this is to equalize the residual uncertainty that remains for each division when

information is used optimally from the receiver’s point of view. Communication is

not completely honest, as details are dropped, but unbiased: based on the optimal

information, the sender’s recommendation is an unbiased estimate of the receiver’s

preferred course of action. To achieve this unbiasedness, the market study devotes

relatively more attention to the receiver’s market. The sender needs to be forced to

base his inference more heavily on receiver relevant facts and so sender relevant

facts need to be observed with noise. Since optimal information eliminates biases,

it does not matter where the decision is taken; it is always the same. Moreover, as

the sender transmits the maximal amount of information he is willing to provide,

the mechanism reaches the highest payoff for the organization among all direct

communication protocols where the sender gets to see the information first. Hence,

decision-making is arguably sound, as claimed.

Several lines of thought in our theory appear already, without a formal model, in

March and Simon (1958). In their description of problem-solving, the authors note
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that: “The design of the search process is itself often an object of rational decision.”

(p.140). In their discussion of communication processes inside an organization, the

authors coin the term uncertainty absorption and describe its consequences as fol-

lows:

“Uncertainty absorption takes place when inferences are drawn from

a body of evidence and the inferences, instead of the evidence itself, are

then communicated. [. . . ] Both the amount and the locus of uncertainty

absorption affect the influence structure of the organization. Because of

this, uncertainty absorption is frequently used, consciously or uncon-

sciously, as a technique for acquiring and exercising power. [. . . ] What-

ever may be the position in the organization holding the formal author-

ity to legitimize the decision, to a considerable extent the effective dis-

cretion is exercised at the points of uncertainty absorption.”

(March and Simon (1958), pp 165–167, emphasis in original)

In our model, uncertainty absorption corresponds to the sender drawing a unidi-

mensional inference - a conditional expectation - from multiple signals. And indeed,

although the receiver is formally legitimized to make the decision, the effective dis-

cretion is in fact exercised by the sender. This goes so far that communication and

delegation become outcome equivalent. Given optimal information, allocating for-

mal authority to the informed sender or bringing the information to the receiver are

two ways to reach exactly the same outcome.

Our opening lines are inspired by the picture of organizations drawn by Cyert

and March (1963), in particular their insightful discussion of communication and in-

formation acquisition (chapter 4). The ideas that information needs to be acquired,

that the search for information is endogenous, and that the communication system

influences the information that is acquired, all appear in their work. Our contribu-

tion is to offer a formal model that puts these elements together and hopefully ad-

vances our understanding of them. Our main result is that decisions can be steered

indirectly by choosing what issues to look into and how deeply to probe into them.

While it may be surprising how well this works in principle, it seems obvious that it

does work in practice. Indeed, Cyert et al. (1958) offer case study evidence consis-

tent with our theory. The authors followed a medium-large manufacturing concern

in the 1950s in the process of installing an electronic data-processing system. It was

quickly decided that an outside consulting firm was needed. An offer was obtained

from a consulting firm named Alpha in the study. There was an important person

21



2 Information, Authority, and Smooth Communication in Organizations

in the manufacturing concern, named the controller. After Alpha had made its of-

fer, the controller decided that a competing offer should be requested from another

firm; he selected a firm Beta out of a list of candidates that had been prepared be-

forehand. Beta delivered its offer. A memorandum was prepared at the request of

the controller that listed the criteria that should be looked at to compare the offers

and reach a decision. The final staff memorandum on the decision clearly recom-

mended to hire Beta, a recommendation that the controller accepted. The controller

is cited with the words: “I asked the boys to set down the pros and cons. The decision

was Beta. It was entirely their decision.”(Cyert et al. (1958), p.332)

Of course, we will never know why the boys favored Beta over Alpha; it could be

that they wanted to please the controller or that Beta made the better offer. How-

ever, there is no account of explicit manipulation in the study. The point is that the

controller can steer the decision indirectly to the point that it doesn’t really matter

who takes the decision. This chapter shows that this is precisely how a benevolent

controller should act.

We are not the first to take up Simon’s concept of authority. Aghion and Tirole

(1997) distinguish formal from real authority. The allocation of formal authority has

important effects on initiative and participation when there are private costs of in-

formation acquisition. In contrast, we abstract from such costs and information is

acquired by the organization itself. On top of this, our concept of real authority is

different, allowing the receiver to amend proposals as in Crawford and Sobel (1982),

the seminal paper on strategic information transmission between a sender and a

receiver. Dessein (2002) studies the allocation of formal authority in the Crawford-

Sobel model and shows that delegating decision rights to the informed sender is al-

ways better than communicating whenever meaningful communication is possible

at all. The essential differences to the present chapter are the nature of biases and in-

formation. In the Crawford-Sobel model, the sender wishes to induce an action that

exceeds the ideal action of the receiver in each state of the world by some constant.

Moreover, the sender’s information is exogenously given. In our model, the informa-

tion is endogenously determined by the organization and influences the magnitude

and direction of biases, which both depend on the realized state of the world. If the

organization can adapt to the situation along the informational margin, then dele-

gation and communication become perfect substitutes.

Alonso et al. (2008) study the allocation of formal authority in an organization

where two divisions interact with a headquarters. Both divisions have some informa-

tion and need to make choices, preferably in a coordinated way. The organization
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can choose between vertical communication where all information flows upwards

to a headquarters or horizontal communication where one division communicates

with the other and the latter is in charge of decision making for both divisions. De-

pending on the relative importance of coordinating actions and of adapting choices

to local conditions either one or the other form of communication is optimal.1 We

study the same organization, however, in a quite different situation where the form

of the organization is exogenously given and information instead is endogenous.

Allowing the firm to choose the information that enters the organization makes dif-

ferent allocations of formal authority perfect substitutes in our model.

Communication works so well in our model, because the organization acquires

information that eliminates conflicts to the point where this is possible. Although

communication is not completely honest about the observed evidence, it is honest

about the inference drawn from the evidence. Following the sender’s advice one-

for-one is optimal for the receiver, because remaining conflicts are orthogonal to

the sender’s recommendation. Battaglini (2002) studies a multi-sender multidimen-

sional cheap talk problem and uses an orthogonal construction to elicit perfect in-

formation from the senders. Although we rely on orthogonality as Battaglini does,

we cannot apply his construction because there is only one sender in our model and

a unidimensional choice needs to be made. Instead, we need to adjust the informa-

tion that the sender obtains to ensure orthogonality.2 Preferences over information

are not studied in Battaglini (2002).3

Controlling the access to information in a communication game is first studied

in Ivanov (2010), showing that communicating with an expert who has partial in-

formation is better for the receiver than talking to a an expert who is perfectly in-

formed whenever meaningful communication is possible. Moreover, communica-

tion with controlled information can even outperform optimal delegation to a per-

1 An important difference between Dessein (2002) and Alonso et al. (2008) and the current chapter
are that biases are state dependent in the latter. Such biases have also been analyzed, e.g., by
Stein (1989), Ottaviani and Sørensen (2006a), Ottaviani and Sørensen (2006b), Kawamura (2015),
and in the most general model by Gordon (2010).

2 In a model with a privately known bias, Li and Madarász (2008) remark that communication
works well if the bias is independent of the state and symmetrically distributed around zero. How-
ever, these authors study mandatory disclosure of given biases, whereas biases arise from infor-
mation in our model. For further analyses of privately known unidirectional biases, see Morgan
and Stocken (2003) and Dimitrakas and Sarafidis (2005).

3 For other approaches to multidimensional cheap talk, see Meyer et al. (2013), Chakraborty and
Harbaugh (2007), Chakraborty and Harbaugh (2010), and Levy and Razin (2007). These papers
are not concerned with the impact of the quality of multidimensional information on communi-
cation.
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fectly informed expert from the receiver’s point of view. The common ground with

the present chapter is the comparison of institutions, one of which involves con-

trolling the quality of information, broadly speaking.4 However, there are substan-

tial differences, the most important one is that Ivanov (2010) analyzes senders who

are systematically biased in one direction. Moreover, we study noisy information

structures within a class that induces smooth posteriors whereas Ivanov (2010) in-

vestigates partitional information structures. Our main result is the outcome equiv-

alence of optimal delegation and communication, which does not arise in Ivanov’s

model.5

The optimal information structure is noisy in our model, in order to make the

sender willing to share his information and the receiver willing to use it; so, noise

helps to facilitate communication as in Blume et al. (2007) or Goltsman et al. (2009).

However, in Blume et al. (2007), the sender has perfect information and noise is

added to the sender’s message, while our sender is endowed with noisy information

but communicates without further noise. Goltsman et al. (2009) compare the out-

comes of different decision protocols and show, among other results, that the noise-

mechanism of Blume et al. (2007) is an optimal mediation mechanism. Moscarini

(2007) assumes Gaussian noisy information and noiseless communication to study

central bank competence. Communication equilibria are partitional in his analy-

sis and information is exogenously given in his approach; our comparative statics

predictions are similar. Gordon and Nöldeke (2013) combine Gaussian noise in in-

formation and communication. Similar to this chapter, the communication equilib-

ria are in linear strategies. However, Gordon and Nöldeke (2013) restrict attention

to the class of equilibria in linear strategies a priori and use the resulting equilib-

rium strategies to explain figures of speech, such as exaggeration, understatement,

and irony. The existence of these equilibria depends on the noise that is added ex-

ogenously to the sender’s message. In contrast, communication is noiseless in our

model and we are interested in an unrestricted optimum of our game.

Preferences over information in markets have been studied extensively. Vives

(1999) surveys the literature on product market competition with information fric-

tions, Vives (2008) the literature on financial markets. A more recent overview is

4 Argenziano et al. (2013) compare delegation and communication when the sender has a one-
sided bias and acquires costly information.

5 A further difference is that Ivanov (2010) studies information structures that are optimal for the re-
ceiver whereas we study optimality from the perspective of joint surplus. For an analysis of sender
optimal information structures, see, e.g., Szalay (2005) and Eső and Szalay (2015). Kamenica and
Gentzkow (2011) analyze sender optimal persuasion rules; the difference to the present problem
is the commitment to information that reaches the decision-maker.
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given in Pavan and Vives (2015). Angeletos and Pavan (2007) investigate the so-

cial value of information in large markets with strategic complementarity or sub-

stitutability, externalities, and heterogeneous information. This literature relies

on Gaussian noise and, depending on the context, either CARA preferences or

quadratic payoffs, to find equilibria in linear strategies. Nöldeke and Tröger (2006)

prove the existence of linear strategy equilibria in a market microstructure model for

the wider class of elliptical distributions, which contains the Normal distribution as

a special case. We allow at the same time for general payoff functions and elliptical

distributions. We are not aware of any other contribution that does so too. Note also

that in the literature on strategic market interactions, agents observe information

and choose actions directly. Cheap talk communication of unverifiable information

followed by a common action that affects the payoffs of a sender and a receiver is

not analyzed in this literature.

The remainder of the chapter is organized as follows. In Section two, we present

the model. In Section three, we analyze communication and derive an upper bound

on the amount of information that can be transmitted in any equilibrium. In Section

four, we analyze optimal information acquisition from the organization’s perspec-

tive. A final section concludes and discusses extensions. Lengthy proofs are gath-

ered in the Appendix.

2.2 Model

We consider a firm, comprised of two divisions with a common headquarters. A de-

cision x ∈ R needs to be taken that affects the payoffs of all three parties. Division

one has preferences described by

uS (
x,η

)=−`(
x −η)

;

division two has preferences

uR (x,ω) =−` (x −ω) .

The loss function `
(
q
)

is symmetric around its minimizer, q = 0, twice differentiable,

and at least as convex as the quadratic function. More precisely, we assume that the

Arrow-Pratt measure of relative curvature of the loss function satisfies
q`′′(q)
`′(q) ≥ 1

for all q 6= 0.6 In addition, ` rises sufficiently slowly to make expected utility well-

6 Examples include `
(
q
)= q2n for n ∈N.
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defined. η and ω are random variables - the tastes of consumers that are served by

the two divisions - whose realizations describe the ideal policies from each division’s

point of view. These ideal policies are given by xR (ω) =ω and xS(η) = η, respectively.

The realizations ofω and η are unknown at the outset. Headquarters is interested in

joint surplus7

uH (
x,η,ω

)=−`(
x −η)−` (x −ω) .

The decision process in the firm is organized as follows. Division one, henceforth

the sender, gets to observe noisy signals

sω =ω+εω and sη = η+εη,

where εω and εη are uncorrelated noise terms. Division two, henceforth the receiver,

is in charge of making the decision. Headquarters shapes the communication be-

tween the divisions by controlling the research that division one conducts. Formally,

headquarters chooses the amount of noise in the sender’s signals, that is the vari-

ances σ2
εω

and σ2
εη

of the noise terms εω and εη. This choice is publicly observable.

However, the realizations of signals sω and sη are privately observed by the sender.

The sender communicates with the receiver, who finally chooses x. There is no cost

of sending messages and the receiver is unable to commit to the action x as a func-

tion of the information he receives, so communication is modeled as cheap talk in

the sense of Crawford and Sobel (1982).

To make the updating about the underlying states tractable we place restric-

tions on the joint distribution of ω,η,εω and εη. We focus on an environment

where conditional means are linear functions of the observed information. More-

over, linear transformations of the underlying random variables follow the same

class of distribution as the underlying random variables do. As is well known, these

assumptions are satisfied, e.g., if ω,η,εω and εη are jointly normally distributed.

However, these assumptions are generally fulfilled by all members of the class of

elliptical distributions, which includes the Normal distribution as a special case.

In what follows, we term the joint distribution of ω,η, sω and sη the information

structure. An information structure is feasible if it belongs to the elliptical class,

has a density function, finite first and second moments, and if the marginal joint

distribution of ω and η equals the prior distribution. Given these assumptions,

the joint density of a random vector Y of dimension n can be written as fY
(
y
) =

7 As shown by Alonso et al. (2008), profit sharing between headquarters and the divisions gives rise
to such headquarters preferences.
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cn |Σ|− 1
2 φ

((
y−µ)′

Σ−1
(
y−µ))

, where µ is the mean vector, Σ is up to a constant fac-

tor equal to the covariance matrix, φ (·) is a given function, and cn a scale factor,

which we simply denote c = c1 in the one-dimensional case.8

We assume that all the differences in preferences are unsystematic and random.

Formally, we assume that E [ω] = E[
η
]

. This amounts to saying that systematic differ-

ences in preferences - where one division wishes to push the decision in a particu-

lar direction relative to the other division’s preferred choice - have been eliminated

prior to the current interaction. This does not imply that preferences are aligned.

It only implies that based on prior information no differences of opinions are ex-

pected. In addition, we impose the innocuous normalization that E [ω] = E
[
η
] =

E [εω] = E[
εη

]= 0. The covariance matrix is described byσ2
ω ≡V ar (ω),σ2

η ≡V ar
(
η
)

,

σ2
εi
≡V ar (εi ) for i =ω,η, andσωη ≡Cov

(
ω,η

)
. The covariances involving the noise

terms are zero by assumption. The coefficient of correlation between ω and η is de-

fined as

ρ ≡ σωη

σωση
.

To complete the description of the model, consider the ideal policies from each

division’s perspective if each of them had access to the information sω and sη.

Lemma 2.1. As functions of the underlying signal realizations, sω, sη, the ideal choice

functions of the receiver and the sender are

xR (
sω, sη

)≡ argmax
x
E
[

uR (x,ω)
∣∣ sω, sη

]= E[
ω| sω, sη

]=αR sω+βR sη

and

xS (
sω, sη

)≡ argmax
x
E
[

uS (
x,η

)∣∣ sω, sη
]= E[

η
∣∣ sω, sη

]=αS sω+βS sη,

where αi ,βi for i = R,S are weights, independent of sω, sη.

Unless σ2
ω =σ2

η =σωη, xR
(
sω, sη

) 6= xS
(
sω, sη

)
for all sω, sη 6= 0.

The optimal choice functions correspond to the conditional expectations and

conditional expectations are linear in our statistical framework. The intuition is fa-

miliar from the Normal distribution-quadratic loss case; we state the result as a

lemma, because we prove the generalization both with respect to a wider class of

distributions and loss functions.

8 The Normal distribution corresponds to the case φ (u) = e−
u
2 and Σ identically equal to the co-

variance matrix. The factor cn depends on n to make f a density. Other members of the elliptical
class include, e.g., the exponential power distribution (and as a special case the Laplace) or the
logistic distribution. For more details on elliptical distributions see, e.g., Fang et al. (1990).
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The divisions disagree on the optimal course of action for almost all signal real-

izations unless the tastes of their customers are perfectly correlated with identical

marginal distributions, in which case their customers are essentially identical. The

coefficient of correlation captures the alignment of interests in an intuitive way. It is

easy to show that no meaningful communication is possible if ρ ≤ 0.9 To focus on

the interesting case, we assume that 0 < ρ < 1.

It is worth pausing for a minute to discuss the crucial assumptions and differ-

ences to other approaches in the literature. The main difference is the way we cap-

ture conflicts of interests. We assume identical loss functions for sender and receiver

and capture all the differences between them by the random variables ω and η and

their distributions. The first moments describe ideal policies, the second moments

shape expected utilities. Assuming equal prior expectations amounts to saying that

differences of opinion prior to the current interaction have been eliminated. The

remaining conflicts are random and unsystematic, in the sense that their expected

value is zero. We make these assumptions, because it is by now well known that com-

munication does not work well with systematic differences of opinions. In contrast,

it is not yet known how well communication can work with unsystematic differences

of opinions.

We analyze the game proceeding backwards, starting with the inference that the

sender draws from observing facts and the ensuing communication continuation

games. We then reduce the model to one where communication is about inferences

instead of facts and discuss the receiver’s inferences drawn from the sender’s infer-

ence. Building on this analysis, we discuss the optimal organizational response to

filtering information this way, the optimal amount and kind of information that the

organization acquires.

2.3 The Sender as a Strategic Information Channel

Suppose that headquarters has chosen a research policy - formally, an information

structure - and the sender gets to observe the results of the research. What part of

the observed information is the sender willing to share with the receiver at all?

2.3.1 Limits to Communication

We focus on Bayesian equilibria in the communication game. After observing signal

realizations sω, sη, the sender sends a message m ∈M to the receiver. The message

9 A formal proof of this statement is available from the authors upon request.
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space is sufficiently rich; we do not impose any restrictions on M. It is enough to

consider pure message strategies for the sender.10 A pure sender strategy maps the

sender’s information into messages M : R2 →M,
(
sω, sη

) 7→ m. A pure receiver strat-

egy maps messages into actions, X : M→ R, m 7→ x. The receiver updates his be-

lief about the sender’s type after observing the sender’s message and acts optimally

against this belief. The following lemma derives an upper bound on the informa-

tion that can be communicated in any equilibrium of the communication game. In

particular, the sender is willing to share his inference but not the underlying facts.

Lemma 2.2. In any equilibrium, all sender types sω, sη such that αS sω + βS sη =
constant induce the same action.

Define the statistic

θ ≡αS sω+βS sη.

All sender types with signal realizations sω, sη adding up to θ share the same ideal

policy, θ. Moreover, with symmetric loss functions, the sender’s preferences over

distinct actions depend only on the distance of these actions to θ. Hence, the set of

types who share the same θ induce at most two distinct actions, and these actions

need to be equidistant from θ in any equilibrium. However, any attempt to separate

sender types whose signals aggregate to θ into subsets that induce distinct actions

gives some other types, whose signals aggregate to some value close to θ, a strict

incentive to lie. Hence, no such equilibrium can exist. Obviously, the lemma also

implies that it is impossible to elicit the information sω, sη from the sender, unless

the ideal policies of sender and receiver coincide altogether.

Corollary 2.1. Truthful communication of the underlying information, sω, sη, is an

equilibrium if and only if σ2
ω =σ2

η =σωη.

Since induced actions depend only on the realization of θ, the sender is willing

to reveal at most the inference he draws from the facts, that is θ, but never the un-

derlying facts. Hence, we can characterize any equilibrium of the communication

game in terms of communication about the sender’s inference, θ, only.11

10 More specifically, it is standard in the literature to look at the most informative equilibria and
these equilibria involve pure strategies in our game. Therefore, we abstain from introducing the
notational clutter to deal formally with mixed strategies.

11 Note the close connection between this result and the process of uncertainty absorption de-
scribed in March and Simon (1958).
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2.3.2 Inference from Inference and Con�icts

>From the ex ante perspective, before the signals are realized, the sender’s inference

is random itself. Any given choice of information structure gives rise to a joint dis-

tribution of ω,η, and θ. Given that ω,η,εω and εη follow a joint elliptical (Normal)

distribution, the random variables ω,η, and θ follow a joint elliptical (Normal) dis-

tribution as well.12 One can show that the moments involving θ are given by E [θ] = 0

as well as

V ar (θ) =σ2
η

σ2
εω

σ2
ω
+ σ2

εη

σ2
η
ρ2 +1−ρ2

(
1+ σ2

εω

σ2
ω

)(
1+ σ2

εη

σ2
η

)
−ρ2

, (2.3.1)

Cov (ω,θ) =σωη
σ2
εη

σ2
η
+ σ2

εω

σ2
ω
+1−ρ2

(
1+ σ2

εω

σ2
ω

)(
1+ σ2

εη

σ2
η

)
−ρ2

, (2.3.2)

and

Cov
(
η,θ

)=V ar (θ) . (2.3.3)

Equations (2.3.1) and (2.3.2) depend crucially on the normalized noise variances,
σ2
εω

σ2
ω

and
σ2
εη

σ2
η

. By construction of θ, only covariance matrices with Cov
(
η,θ

)=V ar (θ)

are possible. For all that matters in terms of induced choices and payoffs, we can

analyze our model in terms of this reduced form joint distribution of inference and

underlying states.

What inference would the receiver draw if the sender communicated his infer-

ence? Since the joint distribution of ω,η, and θ is firmly within the class that has

linear conditional means, the receiver’s ideal policy conditional on observing θ is

E [ω|θ] = Cov (ω,θ)

V ar (θ)
·θ. (2.3.4)

The conditional expectation corresponds to the linear regression of the unknown

state on the observed information. To understand the slope of the regression, note

that the regression of η on θ is simply

E
[
η
∣∣θ]= Cov

(
η,θ

)
V ar (θ)

·θ = θ. (2.3.5)

Clearly, given that θ is the conditional expectation of η given the underlying facts,

the sender does not revise his conditional expectation if shown θ again. In contrast,

12 The proof of this statement follows from Fang et al. (1990) Theorem 2.16.
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the receiver’s inference corrects for the relative informational content of the sender’s

inference, θ, with respect to the underlying states ω and η: by equation (2.3.3), the

slope Cov(ω,θ)
V ar (θ) corresponds to Cov(ω,θ)

Cov(η,θ) . If the sender gets to observe information that

is relatively more informative aboutω than about η, then Cov (ω,θ) >Cov
(
η,θ

)
and

the receiver’s ideal policy attaches a higher weight to the information θ than the

sender’s ideal policy. The situation is reversed if the sender gets to see information

that is relatively more useful to the sender. The regressions have identical slopes if

the sender’s inference is equally informative about ω and η.

xR(θ) > θ

xR(θ) = θ

xS(θ) = θ

xR(θ) < θ

xR(θ)

xS(θ)

θ

Figure 2.3.1. Con�icts with respect to θ between sender and receiver.

The difference θ−E [ω|θ] describes the bias of the sender relative to the receiver.

If the sender observes information that is relatively more informative about η, then

the sender has incentives to exaggerate. If the sender’s information is relatively more

informative aboutω, then the sender has incentives to downplay. Finally, there is no

bias when communicating about the sender’s inference when the sender’s inference

θ is equally informative aboutω andη. For convenience, the three cases are depicted

in Figure 2.3.1.

2.4 Optimal Information Structures

We now address headquarters’ problem of choosing an optimal information struc-

ture. What information should the sender get to observe about each of the underly-

ing taste parameters,ω and η? The sender’s information impacts on payoffs through

two channels. Firstly, assuming honest transmission of the sender’s inference, the

relative informational content of θ impacts directly on the sender’s and the receiver’s

expected payoff from making a receiver-optimal decision based on θ. Secondly, the

relative informational content determines the sender’s bias in the communication

game and thus impacts on the amount of information that is transmitted through

communication. It is helpful to look at the two margins separately. Therefore, we

begin our analysis with the clearly unrealistic case where the sender’s inference θ
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becomes publicly available.13 In a second step, in Section 2.4.2, we look at the case

of main interest, where θ is private information.

To streamline the exposition, we present our analysis first assuming that

marginals are identical. That is, we assume σ2
ω = σ2

η. We discuss the role of this as-

sumption and abandon it in Section 2.4.4 below.

2.4.1 Public Inferences

2.4.1.1 Headquarters Problem

If the receiver observes the sender’s inference θ, then he follows the policy xR (θ) =
E [ω|θ] = Cov(ω,θ)

V ar (θ) ·θ, resulting in a loss of `
(

Cov(ω,θ)
V ar (θ) θ−ω

)
for the receiver and a loss

of `
(

Cov(ω,θ)
V ar (θ) θ−η

)
for the sender. Both losses depend only on sums of the underlying

random variables, ζ ≡ Cov(ω,θ)
V ar (θ) θ−ω and τ ≡ Cov(ω,θ)

V ar (θ) θ−η, which are again elliptical

(Normal). Let σ2
ζ

and σ2
τ denote the variances of ζ and τ and let z ≡ ζ

σζ
and t ≡ τ

στ

denote the standardized arguments of the loss functions. As demonstrated formally

in the Appendix, we can write headquarters’ problem as

max
Cov(ω,θ),V ar (θ)

−
∫
`

(
σζz

)
cφ (z)d z −

∫
` (στt )cφ (t )d t

s.t . Cov (ω,θ) ,V ar (θ) feasible.

where z and t follow a spherical (Standard Normal) distribution with density cφ (·) .

Each division’s expected utility depends negatively on a residual variance that

measures the residual uncertainty after using θ optimally from the receiver’s per-

spective. Naturally, the residual uncertainty for the receiver is

σ2
ζ =σ2

ω−
Cov (ω,θ)2

V ar (θ)
=V ar (ω|θ) , (2.4.1)

where the second equality holds because θ is used optimally from the receiver’s per-

spective.14 In contrast, θ is in general not used optimally from the sender’s perspec-

tive. The residual uncertainty that the sender faces when θ is used according to the

policy xR (θ) is

σ2
τ =σ2

η−
(
2Cov (ω,θ)− Cov (ω,θ)2

V ar (θ)

)
, (2.4.2)

13 We can think of this as some form of mediated information transmission; the sender’s informa-
tion sω, sη is aggregated to αS sω+βS sη = θ and then mechanically transmitted to the receiver.

14 For the derivation of the conditional second moments see Lemma 2.4 in the Appendix.
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which differs from V ar
(
η
∣∣θ)=σ2

η−V ar (θ) unless (2.3.5) and (2.3.4) are identically

equal to each other.

Consider now the feasible set of information structures. Not any joint distribu-

tion of ω,η,θ is a feasible reduced form information structure, because θ must be

derived from Bayesian updating by the sender about η, conditioning on the infor-

mation that the sender gets to see. Thus, a joint distribution of ω,η and θ is feasible

only if there are noise variances σ2
εω

and σ2
εη

that, together with the prior distribu-

tion, induce the joint distribution. The following lemma makes the restrictions from

Bayesian updating explicit.

Lemma 2.3. A joint distribution of ω,η,θ can be generated through Bayesian updat-

ing if and only if Cov (ω,θ) ∈ [
0,σωη

]
and for any given Cov (ω,θ) = C , V ar (θ) ∈[

ση
σω
ρC ,

ση
σω

1
ρ

C
]

.

σωη

σ2
ηρ2σ2

η

Cov(ω, θ)

V ar(θ)

Figure 2.4.1. The feasible set of information structures, Γ.

V ar (θ) and Cov (ω,θ) are jointly constrained to lie in the triangle described in

Figure 2.4.1. We call the feasible set Γ. To understand the shape of Γ, note that any

pair of normalized noise variances,
σ2
εη

σ2
η

,
σ2
εω

σ2
ω

≥ 0, results in a Cov (ω,θ) ≤ σωη. The

covariance is maximal if at least one of the signals is perfectly precise. In the limit-

ing case of infinitely noisy signals, the sender does not revise his prior at all and so

both V ar (θ) and Cov (ω,θ) are zero. If the sender observes a signal sη without noise,

σ2
εη

= 0, then his posterior mean becomes identically equal to η and the resulting

variance is V ar (θ) = σ2
η. If the sender observes sω without noise, σ2

εω
= 0, and the

signal sη is infinitely noisy, σ2
εη

→∞, then V ar (θ) = ρ2σ2
η, because the sender’s pos-

terior mean rises less than one for one with the sender’s observation. By continuity,

any pair of covariance and variance in the interior of the triangle can be generated

by some pair of noise variances. Finally, Γ is always nonempty, because the lowest

feasible V ar (θ) for any given Cov (ω,θ) is below the highest feasible V ar (θ) by the

Cauchy-Schwarz inequality, σ2
ωη ≤σ2

ησ
2
ω.15

15 We include edges and vertices in the feasible set that result from taking limits. The limiting pos-
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2.4.1.2 Equalizing Residual Uncertainty

We can now restate headquarters’ problem as

max
Cov(ω,θ),V ar (θ)

−
∫
`

(
σζz

)
cφ (z)d z −

∫
` (στt )cφ (t )d t

s.t . Cov (ω,θ) ,V ar (θ) ∈ Γ,

whereσζ andστ are defined in (2.4.1) and (2.4.2). Headquarters maximizes a contin-

uous objective function on a compact domain, so the problem is well defined and a

solution exists. The solution takes the following form:

Theorem 2.1. Suppose that the sender and the receiver are equally uncertain ex ante,

σ2
ω =σ2

η. If the loss function satisfies
q`′′(q)
`′(q) > 1 for al l q 6= 0, then headquarters’ prob-

lem of choosing an optimal information structure has a unique solution, which is

given by V ar (θ)∗ = Cov (ω,θ)∗ = σωη. If the loss function satisfies
q`′′(q)
`′(q) = 1 for al l

q 6= 0 (corresponding to the quadratic case), then any information structure satisfying

Cov (ω,θ) =σωη is optimal.

We solve the problem by maximizing sequentially with respect to V ar (θ) and

Cov (ω,θ). For a given level of Cov (ω,θ), headquarters’ problem resembles a risk

sharing problem. Both divisions dislike higher residual uncertainty and an increase

of V ar (θ) increases (2.4.1), the residual uncertainty the receiver faces, and de-

creases (2.4.2), the residual uncertainty the sender faces. For a sufficiently convex

loss function, the problem is single-peaked in V ar (θ) and has a unique maximum

at the point where the residual uncertainty for both divisions is equalized. Equating

(2.4.1) and (2.4.2) and solving for V ar (θ), we obtain

V ar (θ)∗ =Cov (ω,θ) .

The residual uncertainty for both divisions is then equal to the residual uncertainty

that the receiver faces, V ar (ω|θ) = σ2
ω−Cov (ω,θ). Since this is a decreasing func-

tion of Cov (ω,θ), it is optimal to choose Cov (ω,θ) as high as possible,

Cov (ω,θ)∗ =σωη.

The unique optimum corresponds to the intersection of the dashed and the solid

terior distributions and moments when one noise variance goes out of bounds converge to the
distribution when only one signal is received; the limiting case when both noise variances go out
of bounds converges to the distribution when no signal at all is received, the prior.
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line in Figure 2.4.2. The role of the curvature condition is to guarantee uniqueness of

the optimal V ar (θ). For the quadratic loss function, headquarters’ payoff becomes

linear in the residual variances, which implies that the receiver’s loss from increas-

ing V ar (θ) just offsets the sender’s gain and thus the sum of their payoffs becomes

independent of V ar (θ). Hence, any information structure with the highest feasible

Cov (ω,θ), depicted as the solid line in the figure, is optimal.

σωη

σ2
ηρ2σ2

η

Cov(ω, θ) = V ar(θ)Cov(ω, θ)

V ar(θ)

Figure 2.4.2. The optimal information structure maximizes Cov(ω,θ). For su�ciently

convex loss functions it is unique and satis�es Cov(ω,θ) =V ar (θ).

The optimum can be understood by decomposing information into its common

and idiosyncratic content. Since Cov
(
ω,η

∣∣θ) = σωη −Cov (ω,θ) , Cov (ω,θ) mea-

sures the amount of common information. Naturally, the optimal information struc-

ture contains all the common information there is,

Cov
(
ω,η

∣∣θ)∗ =σωη−Cov (ω,θ)∗ = 0,

implying that conditional on θ, the taste parameters become uncorrelated. V ar (θ)

measures the amount of idiosyncratic information. Since there is only one signal, θ,

idiosyncratic information necessarily involves a trade-off: V ar (ω|θ) is increasing in

V ar (θ) , while V ar
(
η
∣∣θ)

is decreasing in V ar (θ) .

In terms of the underlying signals, headquarters allows the sender to observe ω

without noise,σ2
εω

= 0, but adds noiseσ2
εη

= 1−ρ2

ρ
σ2
η to the signal about η. If the signal

sη were perfectly precise, then the sender would not pay any attention to the signal

sω. While θ would still contain the maximum amount of common information, θ

would not be informative enough about ω and so the receiver would face too much

residual uncertainty. Hence, noise is needed to keep the sender from using the signal

that is of primary importance to him exclusively.

2.4.2 Private Inferences

We now consider the case of main interest where the sender has private informa-

tion about θ and thus is free to make up any statement he likes. As is standard in
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the literature, we assume that the sender and the receiver are able to coordinate on

the ex ante Pareto optimal equilibrium in the communication game. The optimal

information structure eliminates conflicts in a certain, well defined sense:

Theorem 2.2. Let the sender and the receiver face equal prior uncertainty, σ2
ω = σ2

η.

Then, the unique optimal information structure chosen by headquarters satisfies

V ar (θ)∗ = Cov (ω,θ)∗ = σωη. The Pareto best equilibrium of the ensuing continu-

ation game involves smooth strategies; the sender truthfully announces θ, m∗ (θ) =
θ ∀θ, and the receiver takes the sender’s advice at face value, x∗(m) = m ∀m. All par-

ties’ payoffs are the same as if the sender were given the right to choose the action x

directly.

The theorem is a straightforward implication of our preceding results in conjunc-

tion with a verification that the described strategies constitute an equilibrium of

the communication game. Since headquarters cannot improve upon its payoff com-

pared to the case where θ is public information, the situation corresponds to an op-

timum if this payoff is reached. Suppose the receiver believes that the sender plays

the message strategy m (θ) = θ for all θ. Then, his best reply is the action strategy

x∗ (m) = Cov(ω,θ)∗
V ar (θ)∗ ·m = m for all m. The sender, who anticipates this policy, induces

his ideal policy by being truthful about θ, so the construction is indeed an equilib-

rium. Note that in this equilibrium the strategies of both players are smooth - in fact,

linear - functions.

Since x∗ (m∗ (θ)) = θ for all θ, the sender’s optimal policy is implemented for all

θ. Consequently, whether the sender communicates with the receiver or whether

the sender is given the right to choose the policy, the payoffs of all parties involved

are exactly the same.16 The intuition is that, for equal marginals, an information

structure that equalizes residual uncertainty automatically eliminates any bias in

the use of information. Formally, Cov (ω,θ)∗ =V ar (θ)∗ implies

xR (θ)−xS (θ) =
(

Cov (ω,θ)∗

V ar (θ)∗
−1

)
·θ = 0 ∀θ.

Note that there remains a conflict between sender and receiver with respect to us-

ing the underlying signals, sω and sη. However, the receiver simply cannot do bet-

ter than follow the sender’s advice, because based on observing the sender’s infer-

ence θ, a garbled piece of information, the receiver’s ideal choice coincides with

the sender’s ideal choice based on observing the underlying signals. The sender is

16 Note that the problem of multiple solutions for the quadratic loss case if θ is public information
is eliminated, because truthful communication now requires that Cov(ω,θ)∗

V ar (θ)∗ = 1.
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willing to share his inference despite disagreement too. The sender knows that the

receiver would ideally like to choose an action that matches the state ω, not θ. How-

ever, under the optimal information structure, the sender’s recommendation θ and

the difference ω−θ become uncorrelated. Put differently, the optimal information

structure orthogonalizes the conflict between the divisions and the recommenda-

tion and hence removes any impediments to communication.

Communication is in fact unsurpassed by any form of delegation, even opti-

mal delegation. Even if headquarters or the receiver had the right to constrain the

sender’s discretion under delegation, they would not want to make use of this right.

The sender’s optimal choice is necessarily a function of his inference θ only, and

the sender uses this inference in the receiver’s best interest. Hence, constraining the

sender’s discretion under delegation decreases the receiver’s payoff and joint sur-

plus.

2.4.3 The Quality of Decision Making

Under the optimal information structure information is lost because only infer-

ences are transmitted. How much is lost by such garbling and how does this depend

on the underlying conflicts?

We can measure the amount of information transmitted in equilibrium by the

variance of induced choices; the higher this variance, the more information is trans-

mitted. Headquarters throws in just enough noise to ensure that V ar (θ) =σωη. For

identical priors, the variance of the induced choice is thus

V ar (θ) = ρσ2
η.

The higher is ρ, the more variable the induced choice. In the limit as ρ → 1, the

sender truthfully announces η and the variance of choices approaches σ2
η. There

are two reasons why increasing ρ results in an improvement of information trans-

mission. Recall that the sender always observes ω without noise. The higher is ρ,

the higher the attention the sender pays to this signal and the more this signal is

reflected in the sender’s preferred choice. Moreover, the sender observes η with an

amount of noise equal to σ2
εη

= 1−ρ2

ρ
σ2
η, a decreasing function of ρ. The higher is

ρ, the more precise the sender’s signal about the sender-relevant random variable

η. So, senders with better aligned interests are more trustworthy to begin with and

get endowed with more precise information, rendering their advice even more valu-
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able.17

2.4.4 Extensions: Unequal Priors

We now drop the assumption of equal prior uncertainty and allow for σ2
ω 6= σ2

η. For

quadratic loss functions, the canonical case studied in the literature, our result gen-

eralizes to asymmetric priors.

Proposition 2.1. Assume quadratic loss functions and suppose that min
{
σ2
ω,σ2

η

}
≥

σωη. Then, headquarters’ optimal choice of information structure is unique and given

by V ar (θ)∗ = Cov (ω,θ)∗ = σωη. All parties receive the same expected payoff, regard-

less of who has the right to choose x.

Recall that by Theorem 2.1 any information structure satisfying Cov (ω,θ) =σωη
is optimal for quadratic losses if θ is public. Hence, to show that headquarters can

reach the same expected payoff under communication of unverifiable information

- and under delegation - it suffices to show that the admissible set of information

structures contains the element V ar (θ) = Cov (ω,θ) = σωη. The condition in the

proposition is equivalent to
ση

σω
ρ ≤ 1 ≤ ση

σω

1

ρ
,

which guarantees that the 45◦ line is an element of the feasible set,Γ. We need to rule

out very asymmetric priors whereσ2
ω >σωη >σ2

η orσ2
η >σωη >σ2

ω that would render

the solution V ar (θ)∗ = Cov (ω,θ)∗ = σωη infeasible. Note that by Cauchy-Schwarz,

it is impossible that both prior variances exceed the covariance.

Note that nonverifiability makes the solution unique. While the sum of resid-

ual variances is constant for all information structures with the highest feasible

Cov (ω,θ) , there is only one information structure among them that makes the sig-

nal θ equally useful for both sender and receiver and thus ensures that truthful com-

munication about θ is an equilibrium.

2.5 Conclusions

Two divisions, overarched by a headquarters, need to reach a decision that affects

the payoffs of all parties involved. Division one privately gets to observe informa-

17 In the limit, the feasible set of information structures converges to the 45◦ line and any piece
of information is equally informative about ω and η. Hence endowing the sender with perfect
information becomes optimal. At the same time the underlying interests of sender and receiver
become perfectly correlated.
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tion about ideal policies from both divisions’ perspectives. Division one draws infer-

ences from the information and communicates them to division two. Division two,

who retains the right to make the decision, draws its own inferences from division

one’s inferences. Anticipating the chain of inferences within the organization, head-

quarters chooses what information to acquire at the outset. Choosing what to look

into is a powerful tool. When properly done, conflicts within the organization are

diminished, making it less important who has the right to make decisions: commu-

nication and delegation become outcome equivalent.

Almost by definition, an equivalence result raises nearly as many questions as it

answers. In particular, one may wonder what happens if not headquarters but the

sender has discretion over the acquisition of information. Quite clearly, it seems,

that the benchmark of no loss through communication cannot be reached. Much

to our surprise, we show in companion work that this conclusion is unwarranted.

For a special case of the current environment, we are able to show that the sender

acquiring orthogonalized information remains an equilibrium of the game. There

are also other equilibria, but the sender cannot gain from making the information

more useful to himself - precisely, because its usefulness would be lost in commu-

nication. Many other interesting questions can be pursued in our environment. We

leave these for future work.

2.6 Appendix

Lemma 2.4. Let Y follow an elliptical distribution, Y ∼ ECn(µ,Σ,φ). Further let

Y = (Y1,Y2) , µ= (
µ1,µ2

)
, Σ=

(
Σ11 Σ12

Σ21 Σ22

)
,

where the dimensions of Y1, µ1 and Σ11 are m, m, and m ×m.

i) The elliptical distribution is symmetric about µ.

ii) Linear combinations of elliptically distributed random variables are again el-

liptical.

iii) The conditional distribution of (Y1|Y2 = y2) is elliptical, with conditional mean

vector

E
[
Y1|Y2 = y2

]=µ1 +
(
y2 −µ2

)
Σ−1

22Σ21 (A2.1)

and conditional covariance matrix satisfying

Σ∗ =Σ11 −Σ12Σ
−1
22Σ21. (A2.2)
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Proof of Lemma 2.4. i) by definition, ii) Fang et al. (1990) Theorem 2.16, iii) Fang

et al. (1990) Theorem 2.18.

Proof of Lemma 2.1. Let u ≡ uR = uS and z =ω,η. Consider the problem

max
x

∞∫
−∞

u (x − z) f
(

z| sω, sη
)

d z,

where f
(

z| sω, sη
)

is the conditional density of z = ω,η given the signals. Since the

utility depends only on the distance between x and z we have u′ (x − z) > 0 for z < x,

u′ (x − z) = 0 for x = z, and u′ (x − z) < 0 for z > x.

Consider the candidate solution x∗ = µz ≡ E
[

z| sω, sη
]

. The first-order condition

can be written as

∞∫
−∞

u′ (x∗− z
)

f
(

z| sω, sη
)

d z =
∞∫

−∞
u′ (µz − z

)
f
(

z| sω, sη
)

d z = 0.

Consider two points z1 =µz −∆ and z2 =µz +∆ for arbitrary ∆> 0. By symmetry

of u around its bliss point and symmetry of the distribution around µz , we have

u′ (∆) f
(
µz −∆

∣∣ sω, sη
)=−u′ (−∆) f

(
µz +∆

∣∣ sω, sη
)

.

Since this holds point-wise for each ∆, it also holds if we integrate over ∆. Thus, the

first-order condition is satisfied at x∗ = µz . By concavity of u in x, only one value of

x satisfies the first-order condition.

Applying equation (A2.1), the conditional expectations are

E
[
η|sω, sη

]=αS sω+βS sη (A2.3)

and

E
[
ω| sω, sη

]=αR sω+βR sη, (A2.4)

where the weights in the sender’s ideal choice are

αS =σ2
εη

ρσωση

(σ2
ω+σ2

εω)(σ2
η+σ2

εη)− (ρσωση)2

and

βS =σ2
η

σ2
εω

−σ2
ωρ

2 +σ2
ω

(σ2
ω+σ2

εω)(σ2
η+σ2

εη)− (ρσωση)2
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and the weights in the receiver’s ideal choice are

αR =σ2
ω

σ2
εη
+σ2

η−σ2
ηρ

2(
σ2
ω+σ2

εω

)(
σ2
η+σ2

εη

)
− (
ρσωση

)2

and

βR =σ2
εω

σησωρ(
σ2
ω+σ2

εω

)(
σ2
η+σ2

εη

)
− (
ρσωση

)2
.

First, suppose σ2
εη

and σ2
εω

are both positive and finite. Equations (A2.3) and

(A2.4) are identical for all sω and sη if and only if

σ2
εη
ρσωση =σ2

ω

(
σ2
εη
+σ2

η−σ2
ηρ

2
)

and

σ2
η

(
σ2
εω

−σ2
ωρ

2 +σ2
ω

)=σησωρσ2
εω

.

This requires that

σ2
η

(
1−ρ2)= (

ρση

σω
−1

)
σ2
εη

and

σ2
ω

(
1−ρ2)= (

σωρ

ση
−1

)
σ2
εω

.

A necessary and sufficient condition for these two conditions to hold simultane-

ously is σωη =σ2
η =σ2

ω.

Consider now the limiting cases where one of the variances goes out of bounds.

Applying l’Hôpital’s rule to (A2.3) and (A2.4) , we get in the limit as σ2
εη

→∞

E [ω|sω] = σ2
ω

σ2
ω+σ2

εω

sω and E
[
η|sω

]= ρωησωση

σ2
ω+σ2

εω

sω,

so that

E [ω|sω] ≡ E[
η|sω

] ⇔ ρση =σω.

Likewise, for the case where σ2
εω

→∞, we get

E
[
ω|sη

]= ρσωση

σ2
η+σ2

εη

sη and E
[
η|sη

]= σ2
η

σ2
η+σ2

εη

sη,

so

E
[
ω|sη

]≡ E[
η|sη

] ⇔ ρσω =ση.
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Proof of Lemma 2.2. Let u ≡ uR = uS . Recall from Lemmas 2.1 and 2.4 that θ =
E
[
η|sω, sη

]
and that the conditional distribution of η given sω, sη is symmetric about

θ. We first show that the sender’s preferences over messages depend only on the dis-

tance between induced actions and θ. Let x ′−E[
η
∣∣ sω, sη

]= E[
η
∣∣ sω, sη

]− x ′′ ≡ z > 0,

then ∫
u

(
x ′−η)

f
(
η
∣∣ sω, sη

)
dη=

∫
u

(
z − (

η−E[
η
∣∣ sω, sη

]))
f
(
η
∣∣ sω, sη

)
dη.

The random variable η̂ ≡ η− E[
η
∣∣ sω, sη

]
has mean zero and follows a symmetric

distribution. Let f̂
(
η̂
∣∣ sω, sη

)
denote the standardized distribution (with mean zero).

Then, we have

f
(
η
∣∣ sω, sη

)= f̂
(
η−E[

η
∣∣ sω, sη

]∣∣ sω, sη
)= f̂

(
η̂
∣∣ sω, sη

)
.

Take two realizations η̂′ and η̂′′ = −η̂′ of η̂. By construction, we have
∣∣z − η̂′∣∣ =∣∣−z − η̂′′∣∣ and hence by symmetry of u around 0, u

(
z − η̂′) = u

(−z − η̂′′) . Symmetry

of the distribution around zero is equivalent to f̂
(
η̂′

∣∣ sω, sη
) = f̂

(
η̂′′

∣∣ sω, sη
)

. There-

fore, for all η̂′ we have u
(
z − η̂′) f̂

(
η̂′

∣∣ sω, sη
)= u

(
η̂′− z

)
f̂
(
η̂′

∣∣ sω, sη
)

, implying that∫
u

(
z − η̂)

f̂
(
η̂
∣∣ sω, sη

)
d η̂=

∫
u

(
η̂− z

)
f̂
(
η̂
∣∣ sω, sη

)
d η̂.

By symmetry of the distribution, η̂ and −η̂ follow the exact same distribution, and

we can write ∫
u

(
η̂− z

)
f̂
(
η̂
∣∣ sω, sη

)
d η̂=

∫
u

(−z − η̂)
f̂
(
η̂
∣∣ sω, sη

)
d η̂.

Hence,∫
u

(
z − η̂)

f̂
(
η̂
∣∣ sω, sη

)
d η̂=

∫
u

(−z − η̂)
f̂
(
η̂
∣∣ sω, sη

)
d η̂

=
∫

u
(−z − (

η−E[
η
∣∣ sω, sη

]))
f
(
η
∣∣ sω, sη

)
dη

=
∫

u
(
x ′′−η)

f
(
η
∣∣ sω, sη

)
dη,

that is, the sender is indifferent between actions that are equidistant from θ. By con-

cavity of the sender’s payoff, the sender prefers action x ′ over x ′′ if and only if x ′ is

closer to θ.

Suppose now that an equilibrium transmits more information to the receiver
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than θ. Then it must be that the sender is indifferent between the induced actions,

x ′, x ′′, that is they must satisfy
∣∣θ−x ′∣∣= ∣∣x ′′−θ∣∣ .

Suppose for sender type θ, the equilibrium induces two actions, equidistant from

θ, with some distance ε> 0. Now take a type θ̃ = θ+δ for some δ> 0. We distinguish

three cases. Suppose first type θ̃ induces one action x(θ̃) ≥ θ̃. Then, to discourage

any deviation, we need to have

x (θ) < θ < x (θ) ≤ θ̃ ≤ x(θ̃). (A2.5)

However, for all δ< ε we have x (θ) = θ+ε> θ+δ= θ̃ contradicting condition (A2.5)

and implying that some types have a strict incentive to lie. If type θ̃ induces one

action x(θ̃) ≤ θ̃, or two actions that are equidistant from θ̃ and satisfy x(θ̃) ≤ θ̃ ≤ x(θ̃),

then condition (A2.5) needs to be amended to

x (θ) < θ < x (θ) ≤ x(θ̃) ≤ θ̃ (≤ x(θ̃)
)

,

where the last inequality is absent if type θ̃ induces only one action x(θ̃) ≤ θ̃. Since

the new condition is even more difficult to satisfy than (A2.5), the same reasoning

applies.

Proof of Lemma 2.3. Letting a ≡ σ2
εω

σ2
ω

and b ≡ σ2
εη

σ2
η

we can rewrite Cov (ω,θ) and

V ar (θ) as

Cov (ω,θ) =σωη a +b +1−ρ2

(1+a) (1+b)−ρ2
,

and

V ar (θ) =σ2
η

a +bρ2 +1−ρ2

(1+a) (1+b)−ρ2
.

Consider first the set of feasible levels of Cov (ω,θ) = C . Note that for a = 0 or

b = 0, the covariance is constant and equal to σωη. Moreover, the covariance is de-

creasing in a for given b and decreasing in b for given a. By l’Hôpital’s rule, we have

lim
b→∞

a +b +1−ρ2

(1+a) (1+b)−ρ2
= 1

1+a
,

and

lim
a→∞

a +b +1−ρ2

(1+a) (1+b)−ρ2
= 1

1+b
.

So, letting both a and b (in whatever order) go to infinity results in a covariance of

zero. By continuity, any C ∈ (
0,σωη

]
can be generated by finite levels a,b. Including

the case where no signal is observed at all, we can generate all C ∈ [
0,σωη

]
.

43



2 Information, Authority, and Smooth Communication in Organizations

Consider next the set of feasible V ar (θ) for any given level Cov (ω,θ) =C . Distin-

guish two cases, i) C =σωη and ii) C ∈ [
0,σωη

)
.

Case i) requires that a = 0 or b = 0 or both. If b = 0, then a+bρ2+1−ρ2

(1+a)(1+b)−ρ2 = 1 and thus

V ar (θ) =σ2
η for all a. If a = 0, then

V ar (θ) =σ2
η

bρ2 +1−ρ2

(1+b)−ρ2

is decreasing in b and attains value V ar (θ) =σ2
η for b = 0. Moreover,

lim
b→∞

bρ2 +1−ρ2

(1+b)−ρ2
= ρ2.

Hence, for C = σωη, V ar (θ) ∈
[
ρ2σ2

η,σ2
η

]
; the lower limit is included because we

allow for the case where only one signal is observed.

Case ii) C ∈ [
0,σωη

)
requires that a > 0 and b > 0. Let γ≡ C

σωη
∈ [0,1) . The combi-

nations of a and b that generate C satisfy

a +b +1−ρ2

(1+a) (1+b)−ρ2
= γ.

Solving for a as a function of b, we obtain

a
(
b;γ

)= (
1−γ)(

1+b −ρ2
)

γb − (
1−γ) =

(
1+b −ρ2

)
γ

1−γb −1
.

The function a
(
b;γ

)
is decreasing in b and has the limit

lim
b→∞

1+b −ρ2

γ
1−γb −1

= 1−γ
γ

.

In the limit as b → 1−γ
γ

, we obtain a →∞. Hence, C can be generated for b > 1−γ
γ

and

a = (1+b−ρ2)
γ

1−γb−1
. Substituting for (1+b−ρ2)

γ
1−γb−1

into V ar (θ) , we obtain

V ar
(
θ;b, a

(
b;γ

)
,γ

)=σ2
η

(1+b−ρ2)
γ

1−γb−1
+bρ2 +1−ρ2(

1+ (1+b−ρ2)
γ

1−γb−1

)
(1+b)−ρ2

=σ2
η

bγρ2 +1−ρ2

1+b −ρ2
.

The derivative of this expression in b is (γρ2−1)(1−ρ2)
(1+b−ρ2)2 < 0, so V ar

(
θ;b, a

(
b;γ

)
,γ

)
is
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continuous and monotone decreasing in b. In the limit as b tends to infinity, we

obtain

lim
b→∞

σ2
η

bγρ2 +1−ρ2

1+b −ρ2
=σ2

ηγρ
2 =σ2

η

C

σωη
ρ2 = ση

σω
ρC .

In the limit as b → 1−γ
γ , we obtain

lim
b→ 1−γ

γ

σ2
η

bγρ2 +1−ρ2

1+b −ρ2
=σ2

η

1−γ
γ
γρ2 +1−ρ2

1+ 1−γ
γ −ρ2

= γσ2
η =

ση

σω

1

ρ
C .

Hence, we have shown that for any given C ∈ [
0,σωη

)
, V ar (θ) ∈

[
ση
σω
ρC ,

ση
σω

1
ρC

]
. We

include the lower limit, because the case where b →∞ is equivalent to the case with

one signal only.

Proof of Theorem 2.1. Let u ≡ uR = uS , C ≡Cov(ω,θ), and V ≡V ar (θ). We prove the

theorem in two steps. In step i) we derive the standardized distributions. In step ii)

we solve the maximization problem.

i) Let fωθ (ω,θ) = ∫
f
(
ω,η,θ

)
dη and let fηθ (ω,θ) = ∫

f
(
ω,η,θ

)
dω denote the

marginal joint densities of ω,θ and η,θ. Consider first the expected utility of the

sender.

Let τ ≡ C
V θ−η and let g (·) denote the density of τ. The expected utility of the

sender satisfies∫ ∫
u

(
C

V
θ−η

)
fηθ

(
η,θ

)
dηdθ =

∫ ∫
u (τ) fηθ

(
C

V
θ−τ,θ

)
dτdθ

=
∫

u (τ)
∫

fηθ

(
C

V
θ−τ,θ

)
dθdτ=

∫
u (τ) g (τ)dτ=

∫
u (στt )cφ (t )d t .

For the first equality, substitute τ and apply the switch of variables theorem.

For the second, apply Fubini’s theorem. For the third, note that Pr
[C

V θ−η≤ τ
] =

Pr
[C

V θ−τ≤ η
]

and that by Leibniz’s rule

g (τ) = ∂

∂τ
Pr

[
C

V
θ−η≤ τ

]
= ∂

∂τ

∞∫
−∞

∞∫
C
V θ−τ

fηθ
(
η,θ

)
dηdθ =

∞∫
−∞

fηθ

(
C

V
θ−τ,θ

)
dθ.

Since τ is a linear function of θ and η, we can use Fang et al. (1990) Theorem 2.16

to conclude that g (τ) is the density of an elliptical distribution that has the same
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characteristic generator, φ (·) , as f has. The variance of τ is

σ2
τ = C 2

V 2
V ar (θ)−2

C

V
Cov

(
θ,η

)+V ar
(
η
)

= C 2

V
−2C +σ2

η.

Standardizing to t = τ
στ

, we transform to a spherical (standardized elliptical) distri-

bution with density cφ(·).

To derive the receiver’s expected utility, we let ζ≡ C
V θ−ω , let h (·) denote the den-

sity of ζ. Going through the exact same steps one finds that h (ζ) = ∫
f
(C

V θ−ζ,θ
)

dθ,

again an elliptical density with the same characteristic generator. The variance of ζ

is

σ2
ζ =σ2

ω−
C 2

V
.

Hence, with z = ζ
σζ

, we can write

∫ ∫
u

(
C

V
θ−ω

)
fωθ (ω,θ)dωdθ =

∫
u

(
zσω|θ

)
cφ (z)d z.

ii) An optimal information structure solves:

max
C ,V

∫
u

z

(
σ2
ω−

C 2

V

) 1
2

cφ (z)d z +
∫

u

(
C 2

V
−2C +σ2

η

) 1
2

t

cφ (t )d t .

We solve the problem by maximizing sequentially wrt C and V . For given C , the

derivative wrt V is

1

2

C 2

V 2

∫
z

(
σ2
ω−

C 2

V

)− 1
2

u′
z

(
σ2
ω−

C 2

V

) 1
2

cφ (z)d z

−1

2

C 2

V 2

∫ (
C 2

V
−2C +σ2

η

)− 1
2

tu′
(

C 2

V
−2C +σ2

η

) 1
2

t

cφ (t )d t . (A2.6)

Recall that σ2
η =σ2

ω. First, suppose V =C . Then, the derivative wrt V satisfies

∫
1

2
z
(
σ2
ω−V

)− 1
2 u′

(
z
(
σ2
ω−V

) 1
2

)
cφ (z)d z

−
∫

1

2

(
−V +σ2

η

)− 1
2

tu′
((
−V +σ2

η

) 1
2

t

)
cφ (t )d t

= 0.
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Now suppose V 6= C . Note that both integrands in (A2.6) have the common repre-

sentation ∫
1

a
ku′ (ak)cφ (k)dk. (A2.7)

Differentiating wrt a, we observe that (A2.7) is monotone decreasing in a,

− 1

a3

∫
aku′ (ak)cφ (k)dk + 1

a3

∫
a2k2u′′ (ak)cφ (k)dk ≤ 0,

where the inequality follows from the curvature condition

q
u′′ (q

)
u′ (q

) = q
`′′

(
q
)

`′
(
q
) ≥ 1. (A2.8)

V < C implies C 2

V − 2C +σ2
η > σ2

ω − C 2

V . The curvature condition (A2.8) implies

monotonicity and therefore

1

2

C 2

V 2

∫
z

(
σ2
ω−

C 2

V

)− 1
2

u′
z

(
σ2
ω−

C 2

V

) 1
2

cφ (z)d z

≥ 1

2

C 2

V 2

∫ (
C 2

V
−2C +σ2

η

)− 1
2

tu′
(

C 2

V
−2C +σ2

η

) 1
2

t

cφ (t )d t .

Hence the derivative is non-negative for V <C . By symmetry, the derivative is non-

positive for V > C . These inequalities become strict for functions that satisfy the

curvature condition (A2.8) with strict inequality. It follows that the problem is maxi-

mized in V for V =C .

The second step is now to maximize over C , given that V =C .

max
C

∫
u

(
z
(
σ2
ω−C

) 1
2

)
cφ (z)d z +

∫
u

((
σ2
η−C

) 1
2

t

)
cφ (t )d t .

The derivative wrt C is given by

−
∫

1

2
z
(
σ2
ω−V

)− 1
2 u′

(
z
(
σ2
ω−V

) 1
2

)
cφ (z)d z

−
∫

1

2

(
σ2
η−C

)− 1
2

tu′
((
σ2
η−C

) 1
2

t

)
cφ (t )d t

> 0.

The payoff is unambiguously increasing in C . The solution is thus C =C max.

Proof of Proposition 2.1. By Theorem 2.1, for quadratic loss functions all informa-
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tion structures satisfying Cov(ω,θ) = σωη are optimal for θ public. By Theorem

2.2, smooth communication is an equilibrium if and only if Cov(ω,θ) = V ar (θ).

By Lemma 2.3, the candidate solution V ar (θ)∗ = Cov(ω,θ)∗ = σωη is feasible if
Cov(ω,θ)∗

V ar (θ)∗ = 1 ∈
[
ση
σω
ρ,

ση
σω

1
ρ

]
. This is guaranteed by the assumption min

{
σ2
ω,σ2

η

}
≥

σωη.
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3 A Bandit Model of

Two-Dimensional Uncertainty �

Rationalizing Mindsets

3.1 Introduction

Will I succeed if I work hard? Or, is ability more important than effort? Do I change

my effort in the face of failure? These questions are often encountered, e.g. by kids at

school and workers at the workplace. As it is well-known, people differ enormously

in their response to failures. Our goal is to understand how failure impacts on the

effort choice when the own ability as well as the production function for the task at

hand are unknown.

In this chapter, we address these questions in a theoretical framework of optimal

experimentation. We introduce a new type of bandit where the agent is confronted

with two-dimensional uncertainty. There are two possible tasks; in task E high ef-

fort, whereas in task A high ability is necessary for a success. The agent repeatedly

faces the same task but does not know whether the task is E or A, i.e. whether effort

or ability is required to succeed. In addition, the agent is uncertain about her own

type, whether she has high or low ability. In every period, the agent chooses whether

to exert effort at known cost or not. After both decisions she observes a success or

a failure, depending on the task and possibly on her choice of effort and her ability.

Hence differently from the standard model, there are always outcomes and informa-

tion in each period, regardless of effort. Nevertheless, the informational content of

the outcome depends on the effort choice. Whether effort or no effort conveys more

information depends on the agent’s beliefs about her ability and the task. In our

model, the agent updates her belief about the type of the bandit (task A or E) and

her own type (ability L or H) at the same time and her belief about one influences

her learning about the other.

We find four different patterns of behavior when analyzing our model with two

periods. For low cost, the agent persistently exerts effort regardless of observing a
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success or a failure and despite the fact that with a positive probability effort is not

needed to succeed. For medium cost and a low belief about her ability, the agent

starts by exerting effort but gives up when facing a failure. By contrast, an agent

with medium cost and a high belief about her ability initially does not exert effort,

but starts to exert effort when facing a failure. Finally, for very high cost of effort the

agent never exerts effort even though with a positive probability effort is necessary

and a success would outweigh the cost. When considering an infinite-time horizon

only the number but not the order of outcomes is relevant. After observing a success

once, the agent will stick to her effort choice forever. An agent that only observes

failures, tolerates only a maximal number of failures with effort before she stops

exerting effort forever. Before this maximal number is reached, the agent may start

and stop exerting effort repeatedly.

The intuition for our results relies on the fact that the choice of effort determines

the kind of information for future periods. The outcome after each period is the

pair of effort choice (yes or no) and result (success or failure). The agent observes

different outcomes when exerting effort and not exerting effort, and both types of

outcomes may be informative about the task and the agent’s ability. Besides the

agent’s cost, also her beliefs determine the optimal effort choice. For example, we

find that for the same effort cost, agents with low-ability belief rely more on effort,

while agents with high ability belief initially avoid exerting effort in the hope that

their ability will be sufficient. Moreover, a higher belief that the task is E results in a

higher willingness to exert effort. Hence, in our model three factors determine the

optimal effort strategy: the agent’s cost of exerting effort, her beliefs about the pro-

duction function as well as the beliefs about her ability.

In this chapter, we give a theoretical explanation for different reactions to failure.

In applied research in educational psychology, in particular Dweck (2006) attributes

diverging behavior in response to failure to different mindsets. Agents that have a

“fixed mindset” believe that success is based on innate ability, whereas agents with

“growth mindset” believe that success comes from hard work. Consequently, when

facing a failure fixed types stop exerting effort whereas growth types start exerting

more effort, as documented in this literature (e.g. Dweck (2000)). Given that it often

is not clear whether effort or ability are needed for a success, at a first glance it

seems intuitive that having a growth mindset and not giving up is desirable. But

then, why do we find both types of behavior? Dweck (2006) emphasizes the role of

education and feedback to establish the mindset beliefs. In our model, we show

that observed responses to failure can also be explained as the result of different

effort costs and beliefs about the own ability together with Bayesian updating about
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the sources of success.

In a standard bandit model, the agent has the option of pulling the arm of a ban-

dit machine with an unknown output distribution. Pulling the arm is costly either

because it requires costly effort or because of the opportunity cost of forgoing the

known output of a safe arm. On the other hand, by pulling the risky arm the agent

receives information about its output distribution which can be beneficial in the

future. No output is generated when the risky arm is resting and no information is

revealed. The first bandit problem in economics is developed in Rothschild (1974);

a single firm has to determine the optimal price in a market with unknown demand.

Weitzman (1979) studies where to allocate effort optimally when different opportu-

nities with unknown rewards are available. Berry and Fristedt (1985) gives a sum-

mary of results for bandit problems. For a survey of the literature on multi-armed

bandits see Bergemann and Valimaki (2006).

Similarly to a standard bandit model, in our model the output distribution is un-

known and exerting effort is costly. By contrast to the literature, the agent receives

an output and information with and without exerting effort in every period. More-

over, the agent faces a two-dimensional uncertainty, the production function as well

as the own ability are unknown. We are not aware of any model that shares these fea-

tures.

A bandit model where the inactive arm evolves over time, a “restless bandit”, is

first introduced in Whittle (1988). Fryer and Harms (2015) models human capital

formation as a restless bandit. In their model the bandit is “bi-directional” since pay-

offs go up when the arm is used but they go down when the arm rests. The authors

show that stopping rules are optimal. In our model, the bandit does not evolve over

time but the agent obtains information in every period. The agent’s beliefs change

depending on the number of observed outcomes and the agent may repeatedly start

and stop exerting effort.

In Heidhues et al. (2015) the agent’s outcome depends on her action, her abil-

ity and some external factor. The agent is assumed to be overconfident about her

ability and the authors analyze the impact of the overconfidence on the inferences

the agent draws about other variables. We consider a rational agent that simultane-

ously learns about her ability and the production function and her belief about the

one influences the learning about the other.

Bolton and Harris (1999) and Keller et al. (2005) analyze two-armed bandit mod-

els with many agents in continuous time. In Bolton and Harris (1999) the uncer-

tainty of the risky arm is driven by a Brownian motion and both good and bad
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news arrive continuously. Keller et al. (2005) considers a model with exponential

distributed uncertainty. An arm could be either good or bad, where the good arm

has a certain arrival rate of a breakthrough, while at the bad arm a breakthrough

never occurs. The analysis is complemented in Keller and Rady (2010), where high

payoffs arrive in both states of the world, but the arrival rate is higher if the state is

good. Since information is a public good in these contributions, a free-riding prob-

lem arises. However, the latter paper shows that the presence of other players en-

courages at least one of them to continue experimenting with the risky arm. By con-

trast, in our model time is discrete and the uncertainty does not follow a stochastic

process. In the two-agents extension of our model we not only observe free-riding

but also co-ordination as equilibrium behavior, some types of agents prefer to exert

effort if and only if the other agent exerts effort as well.

In Lizzeri and Siniscalchi (2008) a child tries to learn the mean of his normally

distributed task by choosing an action in every period. The parent of the child may

manipulate the outcome; she faces the trade-off between allowing the child to learn

from his mistakes and sheltering him from the consequences. By contrast, in our

model the task is constant over time and a single player learns about the task and

the own ability simultaneously.

In career concerns models (e.g. Holmström (1999), Dewatripont et al. (1999)) an

agent works in a competitive labor market and is paid his expected output that de-

pends on his private choice of effort and his unknown ability. In the earlier peri-

ods the agent has an incentives to exert effort to increase the beliefs about his abil-

ity. Bonatti and Hörner (2015) considers a continuous-time career concerns model,

where ability and effort are complements. In addition, effort levels at different dates

are strategic substitutes, increasing market expectation decreases incentives at ear-

lier stages. In a career-concerns version of our model, we find that indeed an agent

may exert effort in the first period to induce higher beliefs about her ability for the

second period.

Instead of inducing the agent to exert more effort, in Manso (2011) the optimal

incentive scheme motivates the agent to innovate; early failure is tolerated and long-

term success is rewarded. In our model future payoffs are discounted but do not

change over time.

Similarly to our trade-off between effort and ability, in Piketty (1995) a contin-

uum of agents tries to learn from their experienced income mobility whether pre-

determined (social) factors or individual effort are more important for high income.

The author explains different preferences over redistribution by showing that in any

long-run steady state in his model, types learn the importance of predetermined fac-
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tors on average but stay with different estimates about the influence of individual

effort. In our model some types of agents learn the production function and the role

of effort perfectly, while the other agents stay uninformed. Depending on effort cost

and beliefs some of the latter continue exerting effort forever, while others never

exert effort.

We proceed as follows. We state our model in Section 3.2. In Section 3.3 we an-

alyze the case where outcomes are certain. By contrast, in Section 3.4 we allow for

uncertainty of the outcome. We shortly discuss possible extensions in Section 3.5

and conclude in Section 3.6. All proofs are gathered in the Appendix.

3.2 Model

There is one agent who has unknown ability a ∈ {L, H }. Her prior belief that her abil-

ity is high is α = Pr (a = H) ∈ (0,1). Time is discrete, there are 0 < t ≤ T periods,

for T ∈ N∪ {∞}, and we discount the output of future periods with discount fac-

tor δ ∈ (0,1). In each period, the agent chooses a level of effort e ∈ {Y , N }. Exerting

effort, e = Y , has cost c ∈ (0,1−ε), while not exerting effort is costless.1 The param-

eter ε ∈ [0,1) denotes the probability of having “bad luck”, i.e. with probability ε the

agent observes a failure instead of a merited success. There are two possible tasks,

E and A, as shown in Table 3.1. In task E , the agent is successful with probability

1−ε only if she exerts effort, ability is irrelevant. By contrast, in task A high ability

determines success and effort is irrelevant.2 The agent’s prior belief is that with prob-

ability q ∈ (0,1) the task is E and with probability 1−q the task is A. Hence, there are

three distinguishable states, E , AH and AL that occur with probabilities q , (1−q)α,

and (1−q)(1−α), respectively. The state is fixed for all periods of the game.

E a = L a = H

e = N 0 0
e = Y 1−ε 1−ε

A a = L a = H

e = N 0 1−ε
e = Y 0 1−ε

Table 3.1. Probabilities of success in tasks E and A.

After each period, the agent observes either failure F or success S. For e = Y the

possible outcomes are F Y (failure, effort) or SY (success, effort). For e = N the possi-

ble outcomes are F N (failure, no effort) or SN (success, no effort). The agent’s payoff

1 The assumption that c is bounded by 1− ε ensures that exerting effort may be valuable for the
agent. For effort cost above this bound the agent never exerts effort.

2 We analyze the agent’s behavior when effort and ability are perfect substitutes and perfect com-
plements, and state a continuous version as possible benchmarks for ε= 0 in Appendix B.
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of success is 1, her payoff of failure is 0. However, due to the possibility of bad luck

the expected payoff of success is 1− ε. After observing the outcome, the agent up-

dates her beliefs about the task and her ability and decides about her level of effort

in the next period.

We split our analysis in two cases. In Section 3.3, the agent is not confronted with

the possibility of bad luck, i.e. ε = 0, and we characterize equilibrium behavior for

an arbitrary number of periods. In Section 3.4, we allow for uncertainty, i.e. ε > 0,

and examine equilibrium behavior for two as well as for infinitely many periods.

3.3 Certainty

In this section we analyze our model for ε = 0 and explain different patterns of be-

havior depending on the agent’s cost and beliefs.

In each period, after observing the outcome the agent updates her beliefs about

the task and her ability. In particular, after observing SN the agent knows that the

task is A and her ability is H , exerting effort is unnecessary. Similarly, the agent

knows after F Y that the state is AL and exerting effort is futile. By contrast, after

F N and SY the agent remains uncertain about the state and whether effort is nec-

essary or not. After F N she can rule out that the state is AH , while after SY the state

cannot be AL. In both cases she updates in favor of state E .

Pr (E |SN ) = 0,

Pr (E |F Y ) = 0,

Pr (E |F N ) = q

q + (1−q)(1−α)
≥ q,

Pr (E |SY ) = q

q + (
1−q

)
α
≥ q.

Note that for large α the updated probability that effort is necessary is higher after

F N than after SY ,

α≥ 1

2
⇔ Pr (E |F N ) ≥ Pr (E |SY ) .

Moreover, certainty implies that for the same level of effort the outcome will neces-

sarily always be the same, thus there is no further updating when facing the same

outcome repeatedly. Note further that the agent is always fully informed about the

state after changing the effort choice once and observing the outcomes.3 However,

3 E.g., if the agent exerts no effort after SY , and the result is F N she will know that the task is E . If
instead the result is SN she will know that she has high ability and faces task A.
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as we will see in Proposition 3.1 some types of agents in equilibrium never learn the

actual state.

As a reference it is useful to consider the optimal effort choice when the game is

only played once, T = 1. In this case the choice of effort does not affect the informa-

tion in later periods and hence it pays off to exert effort for q ≥ c. The cost of effort

c is weighed against the probability q that the state is E , i.e. that effort is necessary

for success. Note that for any finite-time horizon the last period is analogous to the

single-period game, since the agent will exert effort if and only if the cost is below

the updated probability that the state is E .

Now consider T > 1. In period t = 1 the choice of effort will not only affect the im-

mediate payoff but also the information available in all future periods. Recall that

we discount future periods with δ and that the agent obtains information with as

well as without exerting effort. The expected payoff will depend on how the agent

expects to behave after receiving the information. We can solve the finite-horizon

game by backward induction. Our analysis smoothly extends to an infinite-time

horizon, since only the effort choices of the first two periods are relevant.

Remark 1: After the second period, the agent will not change her effort choice

until the end of the game.

The reason is twofold. Either the uncertainty about the state is resolved and the

agent knows whether effort is required or not, or the agent is still uncertain but

nonetheless sticks to her choice of effort. The latter can be explained as follows. If

the agent observed F N or SY in the first period, she can get either fully informed

by changing the effort choice in the second period or remain uninformed. For F N

in t = 1 the decision to stay uninformed in t = 2 implies that the trade-off between

immediate cost and informational gain given the beliefs did resolve in favor of not

exerting effort. But since the updated beliefs stay constant given the same outcome

and the gain from information (weakly) declines over time, the same result of the

trade-off will hold in all future periods and the agent will never exert effort.4 On the

other hand, the outcome SY shows that it was valuable to exert effort in the first pe-

riod despite the outcome being uncertain. But after SY success after effort is certain.

Therefore, the agent will continue to exert effort forever.

The remark immediately implies that the agent will never change her choice of

effort after a success. The agent’s updated beliefs define cost thresholds for the de-

cision of effort in the second period. For costs identical to or below these beliefs the

4 For T =∞ the informational gain stays constant and the same argument holds.
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agent exerts effort.5 For T = 2, after observing F Y or SN the agent has learned that

effort is irrelevant for success, therefore her cost thresholds are cF Y ≡ 0 and cSN ≡ 0.

By contrast, after observing SY or F N the agent updates her belief about the task be-

ing E upward and would therefore exert effort for higher cost than in the one-shot

game, cSY ≡ q
q+(1−q)α ≥ q and cF N ≡ q

q+(1−q)(1−α)
≥ q . For T > 2, we additionally

have to incorporate the gain from information for all future periods. The following

cost thresholds depend on T and are useful to characterize the agent’s equilibrium

behavior. For any T ≥ 2, the cut-off cF N T (cSY T ) determines the agent’s upper-cost

limit for exerting effort in the second period after observing F N (SY ) in t = 1.

cF N T ≡ cF N (1−δT−1)

1−δ+ cF N
(
δ−δT−1

) ,

cSY T ≡ cSY (1−δ)

1− (1− cSY )δT−1 −δcSY
.

In the first period, the cut-offs c1T and c2T define the agent’s effort decision for low

and medium costs, respectively. The derivation can be found in the proof of Lemma

3.1.

c1T ≡ q

1+δ(1−q)
(
α(1−δT−1)

1−δ − (1−α)
) ,

c2T ≡ q(1−δT )

(1−δ)+ (q(1−α)+α)δ(1−δT−1)
.

The following lemma shows three different patterns of equilibrium behavior.

Lemma 3.1. Let ε = 0 and T ≤ ∞. There exist three different types of equilibrium

behavior:

1. Inert: If the cost is high, c > max{c2T ,cF N T }, the agent never exerts effort.

2. Growth: For medium cost, c ∈ (c1T ,cF N T ], the agent does not exert effort in t = 1,

but does in t = 2 after failure. Thereafter, the agent is fully informed and exerts

effort if and only if the task is E.

3. Fixed: For low cost, c ≤ min{c1T ,c2T }, the agent exerts effort in all periods unless

she observes a failure after which she stops exerting effort.

The agent’s effort choices are characterized by different cost thresholds. To get

an intuition for the result, recall that after the second period the effort choice and

5 Note that in our model in general the thresholds are not equal to the agent’s beliefs. The only
exception is the case of certainty and two periods, ε= 0 and T = 2.
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the corresponding outcome stay constant. In t = 2, the agent compares the contin-

uation values from exerting and not exerting effort given the outcome of the first

period. This implies the cost thresholds cSY T and cF N T that are depicted in Figure

3.3.1. These thresholds define four different areas in the cost-ability space. In t = 1,

the agent anticipates her second-period behavior that depends on the respective

area.6 Therefore, her choice of effort in the first period does not only determine the

immediate outcome but also influences the information available in the second pe-

riod; e.g. after e = Y only SY and F Y are possible outcomes. Taking also into ac-

count the expected resulting continuation values, the comparison of exerting and

not exerting effort in t = 1 results in the thresholds c1T and c2T that determine the

behavior in t = 1 for the respective area.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.4

0.6

0.8

1.0
c

Inert
Growth
Fixed

c_SY2

c_FN2

c_12

c_22

Figure 3.3.1. T = 2. Thresholds for e�ort in terms of c and α for q = 0.5,δ= 0.8.

Figure 3.3.1 illustrates the different types of behavior. In the white area, an agent

never exerts effort because her cost is too high. The agent remains inert regardless

of the outcome. In the light grey area, an agent does not exert effort in period t = 1

but starts exerting effort in case of a failure (F N ). After F N the probability that the

task is E is increased. Since the agent’s ability belief is relatively high and her cost is

low enough, she tries to succeed with effort in t = 2. In this case, a failure motivates

the agent to exert more effort than before. In the grey area, an agent exerts effort in

period t = 1, since her cost as well as her ability belief are relatively low. She only

continues after a success (SY ) in t = 2, when facing a failure the agent gives up

exerting effort.

Given our analysis we obtain the following result.

Proposition 3.1. For all T ≥ 1, there exist types of agents that never learn the actual

state. An inert-type agent never exerts effort even if the task is E. A fixed-type agent

with high ability exerts effort forever even if the task is A.

6 For example, for cSY T < c ≤ cF N T the agent exerts effort in t = 2 after observing F N but not after
SY .
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3 A Bandit Model of Two-Dimensional Uncertainty

The proposition follows from Lemma 3.1 and the observation that the agent will

never change her choice of effort after observing a success.

As q increases all thresholds rise. The agent becomes more willing to exert effort

in any period when the likelihood that effort leads to success increases.

Concerning patience, asδ increases both c1T and c2T become steeper inα. There-

fore, for low beliefs in ability, α ≤ δ
1+2δ , the agent exerts effort in t = 1 also for rela-

tively high cost. On the other hand, for high beliefs in ability, α ≥ δ
1+2δ , the agent

becomes less willing to exert effort in t = 1 as she becomes more patient. Instead,

it becomes more attractive for the agent to test in the first period whether success

is also possible without effort. This would potentially allow her to save the cost of

effort in the future. However, after a failure, she will start exerting effort.

The threshold cF N T is increasing in T , while cSY T is decreasing in T . This implies

that for large T (and δ not too small) the white area where the agent never exerts

effort and the grey area where the agent gives up exerting effort after a failure shrink,

whereas the light grey area where the agent does not exert effort in the first period

but exerts effort in the second period after F N grows. The longer the time horizon

the lower the level of beliefs in ability necessary to motivate the agent to experiment

whether effort is needed for success. Figure 3.3.2 illustrates equilibrium behavior for

T =∞.
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Figure 3.3.2. T =∞. Thresholds for e�ort in terms of c and α for q = 0.5,δ= 0.8.

Going back to the motivation given in the introduction, we relate the agent’s re-

sponse to failure to the two mindsets. Agents with growth mindset (light grey) in-

crease their effort level, while agents with fixed mindset (grey) stop exerting effort

after observing a failure.

3.4 Uncertainty

In this section we allow for uncertainty of the outcome in the sense that with prob-

ability ε ∈ (0,1) the agent has bad luck and observes a failure instead of a merited
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3.4 Uncertainty

success.7 We first analyze a finite-time horizon with two periods, then we consider

an infinite-time horizon.

Consider T = 2. In the second period, the agent updates her beliefs about the task

and her ability. In particular, after observing SN the agent knows that the task is A

and her ability is H , so exerting effort is unnecessary. After observing SY , the agent

knows that the state cannot be AL and she updates in favor of states E and AH . In

contrast, after a failure the agent cannot rule out any state with certainty. After F Y

she becomes less confident while after F N she becomes more confident that the

state is E .

Pr (E |SN ) = 0,

Pr (E |SY ) = q

q + (
1−q

)
α
≥ q,

Pr (E |F Y ) = εq

ε
[
q + (

1−q
)
α

]+ (1−q)(1−α)
≤ q,

Pr (E |F N ) = q

q +ε(1−q)α+ (1−q)(1−α)
≥ q.

The analysis is analogous to the case of certainty in Section 3.3. The agent will exert

effort in the second period for low enough costs. The threshold values for exerting

effort incorporate the probability of bad luck and are given by

chε ≡ Pr (E |h) · (1−ε) for h ∈ {SY ,F Y ,SN ,F N } .

In the first period, the agent’s effort choice affects the immediate cost as well as

the expected informational gains for the second period. The cost thresholds for the

first period are derived in the proof of Lemma 3.2, the relevant thresholds are

c1ε ≡ q(1−ε)

1+ (1−q)αδ(1−ε)
,

c2ε ≡ q(1−ε)(1−δε)

1+δ(−1+2α+q(1−2α)(1−ε)−2αε)
,

c3ε ≡ q(1+δ(1−ε))(1−ε)

1+δ(q(1−α)+α)(1−ε)
.

The following lemma is the analog to Lemma 3.1 in Section 3.3.

Lemma 3.2. Let ε ∈ (0,1) and T = 2. There are four different types of equilibrium

7 For the case of two periods, our results qualitatively do not change when we additionally allow
for the possibility that the agent has “good luck”, i.e. she observes a success instead of a merited
failure. We expect the same for the case of infinitely many periods.
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3 A Bandit Model of Two-Dimensional Uncertainty

behavior:

1. Inert: If the cost is high, c > max{c3ε,cF Nε}, the agent does not exert effort in

either period.

2. Growth: For medium high cost, c ∈ (min{c2ε,c1ε} ,cF Nε], the agent does not exert

effort in t = 1, but does exert effort in t = 2 after failure.

3. Fixed: For medium low cost, c ∈ (cF Y ε,min{c3ε,c2ε}], the agent exerts effort in

t = 1 and stops exerting effort after observing a failure.

4. Persistent: For low cost, c ≤ min{cF Y ε,c1ε} the agent exerts effort in both periods

regardless of the outcome.

Similarly to the case of certainty, we characterize the agent’s effort choices by dif-

ferent cost thresholds. Taking bad luck into account, in t = 2 the agent compares

her cost with her immediate expected outcome given the observation of the first

period. This implies the cost thresholds cSY ε,cF Y ε, and cF Nε for t = 2. The five re-

sulting areas in the cost-ability space influence the agent’s effort choice in t = 1. The

comparison of the sums of the expected outcomes in both periods when exerting

and not exerting effort in t = 1 results in the thresholds c1ε,c2ε, and c3ε.
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Figure 3.4.1. T = 2. Thresholds for e�ort for q = 0.5,δ= 0.8 and ε= 0.1.

Figure 3.4.1 illustrates the four different behavior patterns that depend on cost c

and beliefs α and q . We call them persistent, fixed, growth, and inert. In addition to

the patterns that exist under certainty already, a new “persistent” type arises (black

area). The agent persistently exerts effort in both periods regardless of the outcome.

The reason is that F Y does not rule out task E perfectly, with probability ε the agent

has had bad luck in t = 1. Therefore, types with very low cost try for a second time

to succeed with effort.
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3.4 Uncertainty

We now expand the time horizon to T =∞ periods. A history ht is a sequence of

outcomes from periods 1 to t . Recall that after the outcome SN the agent is certain

that the state is AH , while after SY the agent is certain that the state is not AL. The

updated beliefs of the agent about the state E after a history ht are given by

Pr [E |ht ] =1{SN∉ht }
qεnF Y

qεnF Y + (1−q)α ·εnF N+nF Y + (1−q)(1−α) ·1{SY ∉ht }
, (3.4.1)

where the integers nF Y and nF N count the number of experienced failures with and

without effort, respectively. Since the updated beliefs only depend on the numbers

of the outcomes, the order of outcomes in ht is irrelevant. Given equation (3.4.1),

the outcomes SY and F N increase the updated belief that the task is E , while the

outcomes SN and F Y decrease it.

As before, at every point in time the agent trades off the immediate cost of exert-

ing effort, which only depends on her belief about the likelihood of the state being E ,

and the informational returns of exerting effort or not, which in addition depends

on her belief about her ability. Differently from the finite-time case, this trade-off is

constant over time for T =∞.

We split the analysis in two cases. First, we look at the agent’s behavior after ob-

serving a success. Second, we focus on the case where the agent has observed fail-

ures only.

Remark 2: The agent will not change her effort level after observing a success;

she will never exert effort after the outcome SN and she will continue to exert effort

after observing SY .

To see this, suppose first that the agent observes the outcome SN in period t .

Since this immediately implies that the state is AH , the agent has no incentive to

exert effort in any future period. Suppose now that the agent observes the outcome

SY in period t . This implies that the state cannot be AL. Furthermore, the agent’s

updated belief in t + 1 about the likelihood that the state is E increases. But given

that it was profitable for the agent to exert effort in period t , this implies that it also

must be profitable for her exert effort in period t +1. The same argument holds for

period t +1 and so forth, and the agent continues to exert effort forever.

We can now calculate the agent’s continuation value after a success, i.e. the sums
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3 A Bandit Model of Two-Dimensional Uncertainty

of the expected payoffs of all future periods,

VSN =
∞∑

s=0
δs(1−ε) = 1−ε

1−δ ,

VSY =
∞∑

s=0
δs(1−ε− c) = 1−ε− c

1−δ .

We continue to analyze the agent’s behavior in the class of histories where the

agent has only experienced failures (F Y or F N ). We find that an agent is willing tol-

erate only a maximum number n̄F Y of outcomes F Y until she stops exerting effort

forever. Similarly, we can define the minimum number nF N of outcomes F N before

the agent exerts effort for the n̄F Y th time. Moreover, the number n̄F Y corresponds

to the following cost threshold depicted in Figure 3.4.2

c∞F N (n̄F Y ) ≡ q(1−ε)(1−δε)εn̄F Y

(1−q)(1−α)(1−δ)+qεn̄F Y (1−δε)
.

Before n̄F Y is reached, the agent may repeatedly start and stop exerting effort.

Lemma 3.3. There exists a threshold c∞F N (n̄F Y ) such that for effort cost c ≤
c∞F N (n̄F Y ) the agent is willing to observe at most n̄F Y times the outcome F Y before

she stops exerting effort forever. For any nF Y < n̄F Y the agent exerts effort at the earli-

est period where postponing effort is disadvantageous, this may occur before or after

nF N is reached.

The intuition for the result relies on the fact that the likelihood of the state being

E is decreasing in F Y and increasing in F N . Indifference between starting to exert

effort and continuing not to exert effort after infinitely many F N outcomes defines

the cost threshold c∞F N (n̄F Y ) for any maximal number of F Y outcomes. The key

step in the proof is the comparison of the expected utilities of exerting effort “today”

or “tomorrow”. We define the difference as a function β(nF Y ,nF N ) that is decreasing

in nF Y and increasing in nF N . The agent exerts effort whenever this comparison

is in favor of exerting effort today. Monotonicity implies that the agent may stop

after observing F Y and start after some number of F N until the maximum n̄F Y is

reached.

Figure 3.4.2 illustrates how the cost thresholds decline for an increase in n̄F Y .
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Figure 3.4.2. Cost thresholds c∞F N (n̄F Y ) for q = 0.5,δ= 0.8, and ε= 0.1.

3.5 Extensions

We shortly illustrate two possible extensions of our model with certainty.8 First, we

consider a competitive labor market where the agent is confronted with a principal.

Due to competition between employers and a lack of commitment power on either

side, in every period the agent is paid her expected output. Is the agent willing to

exert effort to increase the principal’s belief about her ability? In other words, do

career concerns arise? We find that under the assumption that the task is known to

the principal or to the agent, the agent does not exert effort due to career concerns.

However, if the task is unknown the agent may have incentives to exert effort in order

to protect or inflate her reputation. In the career-concerns version of our model

three different equilibria are present. For low cost, the principal correctly anticipates

the agent to exert effort, while for high cost, the principal correctly anticipates the

agent to not exert effort. For medium cost, the agent’s incentives are opposed to

the principal’s expectations. If the principal expects the agent to exert effort, she

would prefer not to and if the principal expects the agent not to exert effort, the

agent instead has an incentive to exert effort. Therefore, there is no equilibrium in

pure strategies in this case.9 Pursuing the principal-agent approach allows for other

interesting questions, for example how a principal would assign agents to tasks or

tasks to agents. We leave this for future research.

Second, we investigate on the following question. How does equilibrium behav-

ior change in the presence of other agents? We add a second agent with identical

8 A formal analysis of the findings can be obtained from the authors upon request.

9 More precisely, for medium cost, δ q(1−q)α
q+(1−q)α < c ≤ δq , the agent will follow a mixed strategy and

exert effort with probability p =α 1−q
q

(
δq
c −1

)
.
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3 A Bandit Model of Two-Dimensional Uncertainty

beliefs about task and ability to our model. Both agents face the same task and per-

fectly observe each others effort choices and outcomes. We can show that the equi-

librium behavior patterns of the single-agent model continue to exist. For most cost

and ability combinations, the agents play dominant strategies in equilibrium. How-

ever, for medium cost there are two areas where the optimal strategy depends on

the other agent’s effort choice. For medium-ability beliefs the agent tries to match

the other agent’s effort decision (co-ordination), while for low and high beliefs the

agent tries to oppose the other agent’s effort choice (free-riding). As a next step in a

setup with more agents we plan to add competition between the agents.

3.6 Conclusions

We introduce a new type of bandit model where an agent is confronted with two-

dimensional uncertainty. The agent does not know whether effort or ability is re-

quired to succeed. Moreover, her own ability is unknown and exerting effort is costly.

In each period after deciding whether to exert effort or not, the agent observes a suc-

cess or a failure and updates her beliefs about the task and her ability accordingly.

Importantly, the agent gains information with as well as without exerting effort.

We show that depending on cost and beliefs some agents stick with their initial ef-

fort decision forever, thereby potentially foregoing a benefit. By contrast, other types

of agents experiment with their effort level to gather information that is valuable for

future periods. Amongst the latter, agents with low-ability beliefs see an advantage

in starting by exerting effort while agents who believe their ability to be high start

by not exerting effort. However, when facing a failure both types adjust their effort

choice. For the case of uncertainty of the outcome in a infinite-time horizon, the

agent may start and stop exerting effort repeatedly.

Our theoretical analysis gives similar results as the observations in Dweck (2006),

where agents with growth mindset increase their effort level, while agents with fixed

mindset stop exerting effort when observing a failure. In contrast to this literature,

in our setup the ability level is rigid. The analysis of our model with ability as an

increasing function of effort is an interesting task for future research.

3.7 Appendix

Proof of Lemma 3.1. After F Y in t = 1, the expected payoff of all future periods is 0.

After SN in t = 1, the expected payoff in all future periods is 1 and amounts to

U 2
SN T (N ) =∑T−2

t=0 δ
t .
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After SY in t = 1, the expected payoff from exerting effort in period t = 2 and all

future periods is

U 2
SY T (Y ) =

T−2∑
t=0

δt · (1− c).

If the agent does not exert effort in t = 2 the uncertainty is resolved and the agent’s

payoff is

U 2
SY T (N ) = Pr (E |SY ) ·

T−2∑
t=1

δt · (1− c)+ (1−Pr (E |SY )) ·
T−2∑
t=0

δt .

Recall that cSY = Pr (E |SY ). It pays off for the agent to exert effort in t = 2 after

observing SY in t = 1 if and only if

U 2
SY T (Y ) ≥U 2

SY T (N ) ⇔ c ≤ cSY (1−δ)

1− (1− cSY )δT−1 −δcSY
≡ cSY T .

After F N in t = 1, the agent can resolve the uncertainty by exerting effort in pe-

riod t = 2. The expected payoff is

U 2
F N T (Y ) = Pr (E |F N ) ·

T−2∑
t=0

δt · (1− c)− (1−Pr (E |F N )) · c.

Recall that cF N = Pr (E |F N ). Since the agent receives a payoff of zero for sure with-

out effort, U 2
F N T (N ) = 0, it pays off for her after observing F N to exert effort in t = 2

if and only if

U 2
F N T (N ) ≤U 2

F N T (Y ) ⇔ c ≤ cF N · 1−δT−1

1−δ+ cF N
(
δ−δT−1

) ≡ cF N T .

For the first period we distinguish four cases. For low cost, c ≤ min{cSY T ,cF N T },

the agent will choose effort after both SY and F N in t = 2. In t = 1 we have

U 1
T (Y ) =q

[
(1− c)+δ ·U 2

SY T (Y )
]+ (1−q)α

[
(1− c)+δ ·U 2

SY T (Y )
]+ (1−q)(1−α) [−c +δ ·0] ,

U 1
T (N ) =q

[
0+δ ·U 2

F N T (Y )
]+ (1−q)α

[
1+δ ·U 2

SN T (N )
]+ (1−q)(1−α)

[
0+δ ·U 2

F N T (Y )
]

,

and

U 1
T (Y ) ≥U 1

T (N ) ⇔ c ≤ q

1+δ(1−q)
(
α(1−δT−1)

1−δ − (1−α)
) ≡ c1T .

Similarly, for cF N T ≤ c ≤ cSY T the agent will choose effort after SY but not after
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F N in t = 2. In t = 1 we have

U 1
T (Y ) ≥U 1

T (N ) ⇔ c ≤ q 1−δT

1−δ
1+ (q(1−α)+α)δ1−δT−1

1−δ
≡ c2T .

For cSY T ≤ c ≤ cF N T the agent will choose effort after F N but not SY in t = 2. In

t = 1 we have U 1
T (Y ) ≥U 1

T (N ) ⇔ c ≤ q(1−δ)
1−δ(q+(1−q)(1−α)) . This constraint is not binding.

For c ≥ max{cSY ,cF N } the agent will not choose effort after neither SY nor F N in

t = 2. In t = 1 we have U 1
T (Y ) ≥U 1

T (N ) ⇔ c ≤ q. This constraint is not binding.

Finally, by taking the limit T −→∞ in the above formulas, our results extend to

T =∞.

Proof of Lemma 3.2. The agent’s expected payoff from exerting effort in period t = 1

is given by

U (Y ) =−c +q

(1−ε)

1+δ
1−ε− c, if c ≤ cSY ε

0, otherwise

+εδ
1−ε− c, if c ≤ cF Y ε

0, otherwise


+ (1−q)α

(1−ε)

1+δ
1−ε− c, if c ≤ cSY ε

1−ε, otherwise

+εδ
1−ε− c, if c ≤ cF Y ε

1−ε, otherwise


+ (1−q)(1−α)δ

−c, if c ≤ cF Y ε

0, otherwise
.

Meanwhile, her expected payoff from not exerting effort in period t = 1 is given by

U (N ) =q

(1−ε)δ

1−ε− c, if c ≤ cF Nε

0, otherwise


+ (1−q)α

(1−ε) (1+δ(1−ε))+εδ
1−ε− c, if c ≤ cF Nε

1−ε, otherwise


+ (1−q)(1−α)δ

−c, if c ≤ cF Nε

0, otherwise
.

When comparing U (Y ) with U (N ), there are five different cases to consider depend-

ing on the agent’s cost and her beliefs about the task and her ability.

For low cost, c ≤ min{cSY ε,cF Nε,cF Y ε}, the agent exerts effort in period t = 1 if

her cost is below c1ε ≡ q(1−ε)
1+(1−q)αδ(1−ε) .

For medium cost, cF Y ε ≤ c ≤ min{cF Nε,cSY ε}, the agent exerts effort in period
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t = 1 if her cost is below c2ε ≡ q(1−ε)(1−δε)
1+δ[(−1+2α+q(−1+2α)(−1+ε)−2αε)] .

For highish cost and low ability cF Nε ≤ c ≤ cSY ε, the agent exerts effort in period

t = 1 if her cost is below c3ε ≡ q(1+δ(1−ε))(1−ε)
1+(q(1−α)+α)δ(1−ε) .

For highish cost and high ability, cSY ε ≤ c ≤ cF Nε, the agent does not exert effort

in period t = 1.

For high cost, c ≥ max{cSY ε,cF Nε}, the agent does not exert effort in period t =
1.

Proof of Lemma 3.3. To simplify notation for histories that only include failures we

define the updated beliefs about the states E and AH as follows

pE ≡ qεnF Y

qεnF Y + (1−q)α ·εnF N+nF Y + (1−q)(1−α)
,

p AH ≡ (1−q)α ·εnF N+nF Y

qεnF Y + (1−q)α ·εnF N+nF Y + (1−q)(1−α)
.

The probability of state AL is p AL ≡ 1−pE −p AH . The probabilities pE and p AL in-

crease in nF N , while p AH decreases. The limits of observing repeatedly the outcome

F N , are given by

lim
nF N→∞pE = q ·εnF Y

q ·εnF Y + (
1−q

)
(1−α)

,

lim
nF N→∞p AH = 0,

lim
nF N→∞p AL = (1−q)(1−α)

q ·εnF Y + (
1−q

)
(1−α)

.

Furthermore, p AL increases in nF Y , while pE and p AH decrease. The limits of ob-

serving repeatedly the outcome F Y , are given by

lim
nF Y →∞pE = 0,

lim
nF Y →∞p AH = 0,

lim
nF Y →∞p AL = 1.

We next calculate the expected payoffs in period t of exerting effort in t (“to-

day”) but not in t + 1 (“tomorrow”) and vice versa (i.e. (Y , N ) and (N ,Y )). Since

for the updating process only the number but not the order of the outcomes plays

a role, the continuation values after observing F Y and F N can be denoted as

VF F ≡ VF N F Y = VF Y F N . The expected utility of effort choices (Y , N ) and outcome
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F Y is given by

Uht (Y , N ) =− c +pE

{
(1−ε)

[
1+δ · 1−ε− c

1−δ
]
+ε ·0

}
+p AH

{
(1−ε)

[
1+δ · 1−ε− c

1−δ
]
+ε ·

[
0+δ · (1−ε)

(
1+δ · 1−ε

1−δ
)]}

+ (pE ·ε+p AH ·ε2 +p AL) ·VF F .

The expected utility of effort choices (N ,Y ) and outcome F N is given by

Uht (N ,Y ) =pE

{
0+δ

[
−c + (1−ε)

(
1+δ · 1−ε− c

1−δ
)]}

+p AH

{
(1−ε)

[
1+δ · 1−ε

1−δ
]
+ε ·

(
0+δ

[
−c + (1−ε)

(
1+δ · 1−ε− c

1−δ
)])}

+ (pE ·ε+p AH ·ε2 +p AL) ·VF F .

Define

β(nF Y ,nF N ) ≡Uht (Y , N )−Uht (N ,Y )

= pE (1−ε− c)(1−δε)+p AH (−c)
(1−δε)2

1−δ +p AL(−c)(1−δ)

= −c(1−q)(1−α)(1−δ)2 +εnF Y (1−δε)(q(1−δ)(1− c −ε)− c(1−q)αεnF N (1−δε))

(1−δ)(1−α+ (1−q)αεnF N+nF Y −q(1−α−εnF Y ))
.

In the second line, the first term of β is positive while the second and third term

are negative. The function β is monotonically increasing in nF N and monotonically

decreasing in nF Y . The intuition is that p AH is decreasing in nF N while the ratio pE
p AL

remains constant, and p AL is increasing in nF Y while the ratio pE
p AH

remains constant.

However, for large enough nF Y the function β stays negative for all nF N .

The agent prefers to exert effort today rather than tomorrow, Uht (Y , N ) ≥
Uht (N ,Y ) if and only if β(nF Y ,nF N ) ≥ 0. Moreover, 0 ≤ β(nF Y ,nF N ) implies 0 ≤
β(nF Y ,nF N+m) for m ≥ 0, provided that no success occurs; if the agent prefers effort

today rather than tomorrow in period t , she will also prefer effort today rather than

tomorrow in any later period. Monotonicity then implies that for a given nF Y , an

agent that prefers effort today rather than tomorrow also prefers effort today rather

than in any future period.

Consider the limit nF N → ∞. We define n̄F Y as the maximum number of F Y

outcomes an agent is willing to experience before stopping effort forever

n̄F Y ≡ max

{
nF Y | lim

nF N→∞β(nF Y ,nF N ) ≥ 0

}
.
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For a given n̄F Y we define nF N as the minimum number of periods with no effort

before the agent attempts effort for the n̄F Y th time (provided she experiences no

success),

nF N ≡ min
{
nF N |β(n̄F Y ,nF N ) ≥ 0

}
.

Recall that β is increasing in nF N and decreasing in nF Y . For nF Y ≤ n̄F Y we have

β(nF Y ,nF N ) ≥ 0; after not exerting effort for nF N periods, the agent exerts effort un-

til n̄F Y , the maximum number of F Y , is reached. On the other hand, for nF Y < n̄F Y it

is possible that β(nF Y ,nF N ) ≥ 0 also for nF N < nF N ; before reaching the maximum

n̄F Y , the agent prefers to not further delay effort before nF N periods of inactivity

have elapsed.

We can conclude that the optimal behavior of the agent is as follows: The

agent exerts effort whenever β(nF Y ,nF N ) ≥ 0. The agent starts exerting effort as

soon as β(0,nF N ) ≥ 0. After experiencing F Y , she stops exerting effort until again

β(1,nF N ) ≥ 0. This process continues until n̄F Y times the outcome F Y is observed

and the agent stops exerting effort forever, β(n̄F Y ,nF N ) < 0 for any nF N .

The cost threshold c∞F N (n̄F Y ) corresponds to an agent that chooses e = N after

observing an infinite number of F N outcomes

0 >−c + q ·εnF Y

q ·εnF Y + (
1−q

)
(1−α)

(1−ε)(1+δ1−ε− c

1−δ )

⇔ c > q(1−ε)(1−δε)εnF Y

(1−q)(1−α)(1−δ)+qεnF Y (1−δε)
≡ c∞F N (nF Y ).
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