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Introduction

This thesis consists of five chapters on topics in mechanism design. In Chapters 1 to 4,
we consider collective decision problems, where groups of agents decide jointly which
alternative is to be implemented. In Chapter 5, we study the allocation of a private
good. Moritz Drexl coauthored Chapters 1, 2, and 5, Chapter 3 is joint work with
Benny Moldovanu, and Chapter 4 is joint work with Albin Erlanson.

The general problem we study is how to make joint decisions if the optimal decision
depends on information that is privately held by strategic agents. Specifically, we
consider agents that are privately informed about their preferences. A designer chooses
a social choice function, a function mapping the preferences of the agents into social
outcomes, to maximize some objective function. A prime example is a designer acting
as a social planner, who maximizes utilitarian welfare (that is, the expected aggregate
utility). Because preferences are private information, agents might misreport their
preferences if simply asked for the information, and the designer has to be careful
to provide the right incentives. She does so by choosing a mechanism, for example
an auction format or a voting procedure, which induces a game. If agents play an
equilibrium of this game, their preferences are mapped into social outcomes, thereby
inducing an incentive-compatible social choice function. We study which mechanisms
the designer should choose to achieve her objectives.

In Chapter 1, we study a group of agents deciding whether to implement a given
reform or to keep status quo. Each agent is privately informed about his willingness-
to-pay for the reform, and the designer wants to maximize utilitarian welfare. The
first-best decision rule implements the reform whenever the average willingness-to-pay
is positive. However, simply using this decision rule is not incentive-compatible, because
any strategic agent would overstate his preference intensity to get his preferred decision.
Instead, simple voting rules are commonly used, where each agent votes “yes” or “no”
and the reform is implemented if there are sufficiently many “yes”-votes. Voting rules
are criticized for being inefficient as the median willingness-to-pay decides, whereas
using the average willingness-to-pay would yield better decisions. We ask whether
one can design better decision rules, potentially using transfers, that induce robust
incentives for the agents to tell the truth. We show that preference intensities can only
be elicited if agents have to make transfers. Moreover, we prove that these transfers



cannot be given to other members of the group without distorting incentives. The
designer therefore faces a trade-off: she can use a “good” decision rule that takes
detailed information into account, but then agents have to make transfers that leave
the group. We solve for the decision rule that solves this trade-off optimally and find
that qualified majority voting is optimal in a broad range of settings. This implies that
although transfers could be used, it is optimal to rely on simple procedures that do not
use transfers. Our results thereby shed new light on the inefficiency of voting: while
voting indeed sometimes leads to inefficient decisions, in many circumstances there are
simply no better procedures available.

We consider a dynamic version of the above framework in Chapter 2. Two agents face
in each period a policy proposal that they can jointly accept or reject. While we do not
allow for monetary transfers in this chapter, we consider general dynamic mechanisms.
These mechanisms can be used to model institutions that allow, for example, the storage
of votes, vote trading, or the use of budgeted veto rights. We argue that such dynamic
mechanisms can, to some extent, be used to replicate monetary transfers by changing
the expected continuation values of the agents. The flexibility of dynamic mechanisms
thereby allows the construction of procedures that take cardinal preferences finely into
account. However, we show that dynamic mechanisms can induce similar trade-offs
as the ones we studied in Chapter 1: while the induced fine-tuning can improve the
decision rule that is used in the current period, it requires distortions in future periods.
We show that this detrimental effect often dominates the efficiency gains in the current
period and that it is therefore optimal not to use the dynamic structure and instead to
repeatedly employ a static voting procedure.

In Chapter 3, we study sequential, binary voting procedures. These procedures are
commonly used to select one out of several alternatives by repeatedly making binary
decisions until only one alternative remains, which is then formally elected. Such pro-
cedures are used, for example, in US Congress (the so-called amendment procedure)
and in many European parliaments (in Germany, for example, the successive voting
procedure). We analyze the incentives for agents with single-peaked preferences to
strategically manipulate their votes, that is, to vote against their most preferred alter-
native. We characterize those voting procedures for which sincere voting is a robust
equilibrium and for which there is consequently no space for manipulations. These pro-
cedures are easy to use for the voters and always select the Condorcet winner, both of
which are desirable properties of voting procedures. For procedures that do not satisfy
our characterization, we show via case studies that manipulations actually do occur
and undesirable outcomes do arise in legislative decision-making.

We consider a model of costly verification in Chapter 4. In a collective decision
problem without transfers, the principal can learn the agents’ information using a ver-
ification technology, but it is costly for him to do so. When should the principal incur
the cost to learn an agent’s information in order to make better decisions? Although
the principal could learn all the information to make the efficient decision, it would be



excessively costly to do so. We show that it is better, and indeed optimal, to use a
procedure we call voting-with-evidence. In this procedure, agents cast votes in favor
or against a new proposal; in addition, they can provide evidence about information
they have. If they do so, they get additional weight in the voting procedure, and their
evidence will be verified whenever it is pivotal for the outcome. The new policy is imple-
mented whenever there are sufficiently many weighted votes favoring it. This procedure
achieves the optimal trade-off between making correct decisions on the one hand and
saving costs of verification on the other. Additionally, we derive an equivalence between
Bayesian and robust implementation for this model.

We study the allocation of a private good among two agents in Chapter 5. Agents
are privately informed about their valuation for an object, and the designer is looking
for a robustly incentive-compatible mechanism to maximize utilitarian welfare. We
consider two settings: either the designer owns the object initially, or one of the agents
owns the good initially (bilateral trade setting). We show that the optimal mechanism
is either a posted price mechanism (one of the agents gets the object unless they agree
to trade at a prespecified price) or an option mechanism (one of the agents gets the
object, the other agent has the option to buy it at a prespecified price). Although
mechanisms that lead to better allocations could be implemented, they would require
money burning and are therefore inferior to the budget-balanced mechanisms that we
find to be optimal. This trade-off and its solution relate this part to Chapters 1 and 2,
where, in different settings and using different methods, we also found budget-balanced
(respectively, static) mechanisms to be optimal.






CHAPTER 1

Why Voting? A Welfare Analysis

A committee decides collectively whether to accept a given proposal or to
maintain the status quo. Committee members are privately informed about
their valuations and monetary transfers are possible. According to which
rule should the committee make its decision? We consider strategy-proof
and anonymous social choice functions and solve for the decision rule that
maximizes utilitarian welfare, which takes monetary transfers to an exter-
nal agency explicitly into account. For regular distributions of preferences,
we find that it is optimal to exclude monetary transfers and to decide by
qualified majority voting. This sheds new light on the common objection
that criticizes voting for its inefficiency.

1. Introduction

Majority voting is inefficient from a utilitarian perspective because the decision rule
does not condition on preference intensities. Consider, for example, a municipality
that decides whether to adopt a new law. Suppose a majority has a weak preference
against the law, but there is a minority that strongly prefers the proposed law. Even
if implementing the law maximizes utilitarian welfare, the law will be defeated if the
decision is made by majority voting. Can this municipality benefit from a more complex
decision rule that enables voters to signal their preference intensities, for example by
allowing lobbying activities or even direct payments?

A specific suggestion is to implement the efficient decision rule (i.e. the one that
always chooses the decision that is best from a utilitarian perspective) by using a
Vickrey-Clarke-Groves (VCG) mechanism. However, if agents are privately informed
this requires that agents make payments and it is well-known that these payments
cannot balance the budget. Do agents prefer the efficient rule if they have to make
payments in turn? More generally, we show that whenever a decision rule conditions on
preference intensities money is lost, which introduces a trade-off for the agents: they can
choose a “good” decision rule, but then they will lose money. We study this trade-off
and solve for the decision rule that maximizes utilitarian welfare in a class of plausible
decision rules. Majority voting turns out to be optimal in our model.

Our analysis follows standard models of collective decision making: A finite popula-
tion of voters decides collectively whether to accept a given proposal or to maintain the



status quo. Agents are privately informed about their valuations and have quasi-linear
utilities. Monetary transfers are feasible as long as they create no budget deficit and as
long as agents are willing to participate in the decision process. In contrast to much of
the literature, we consider a utilitarian welfare function that takes monetary transfers
to an external agency into account. We investigate which strategy-proof and anony-
mous social choice function maximizes expected utilitarian welfare. Strategy-proofness
ensures that the rule can be robustly implemented, while anonymity seems to be a
reasonable fairness requirement for a society of equals.

Our main result is that the optimal anonymous social choice function is imple-
mentable by qualified majority voting. Under such schemes, agents simply indicate
whether they are in favor or against the proposal, and the proposal is accepted if the
number of agents being in favor is above a predetermined threshold. This implies that,
even though it is possible to use monetary transfers, it is optimal not to use them.
Specifically, we show that any anonymous decision rule that relies on monetary trans-
fers wastes money to such an extent that, for regular distributions of types, it is inferior
to voting. In our model it is therefore not possible to improve upon voting without
giving up reasonable properties of the social choice function.

Our finding that voting performs well from a welfare perspective stands in sharp
contrast to parts of the previous literature, which suggest to implement the value-
maximizing public decision. However, this does not achieve the first-best because it
induces budget imbalances (see, e.g., 7). While it is traditionally assumed that money
wasting has no welfare effects, we consider a social planner that cares about aggregate
transfers.! Our approach seems reasonable for at least two reasons: First, a utilitar-
ian planner is interested in implementing the decision rule that maximizes the agents’
expected utility. Since agents care about money, the planner in turn cares about aggre-
gate transfers. Second, groups often choose the rule by which they decide themselves,
and when making this choice they take the payments they have to make into account.
Hence, our approach characterizes decision rules that are likely to prevail in practice.

Our derivation that transfer-free voting schemes dominate more complex decision
rules can be summarized as follows. To prevent agents from overstating their preference
intensities, one has to impose incentive payments whenever a decision rule conditions
on preference intensities. Strategy-proof implementation severely restricts how these
payments can be redistributed to the agents: the redistribution payment an agent
receives must not depend on his own reported preference. For anonymous decision rules,
we show that this restriction prevents any redistribution; hence, all incentive payments
that are collected to induce truthful reports have to be wasted. This implies as a
corollary that an anonymous social choice function is implementable with a balanced
budget if and only if it can be implemented by qualified majority voting. The result that
no money can be redistributed fixes the trade-off between increasing efficiency of the
public decision and reducing the waste of monetary resources. For regular distribution

LAn early exception is ?, who argue that the budget imbalances of VCG mechanisms are not
important because they vanish as the populations grow and hence are quantitatively negligible in
many practical applications. We review their argument in Section 4. Note that the nature of the
objective function would be irrelevant if we considered social choice functions that are implementable
in Bayesian equilibrium, as the expected externality mechanism (?, ?) achieves the first best in our
setting.



functions, we show that this trade-off is solved optimally by not using money at all. This
implies that the optimal social choice function is implementable by qualified majority
voting. We characterize the minimum number of votes that is optimally required for
the adoption of the proposal.

Related Literature

The literature evaluating public decision rules by the utilitarian criterion was initiated
by ?, who compares expected welfare of different voting rules and shows that simple
majority voting (where a proposal is accepted if at least half of the population votes
for it) is optimal if preferences are symmetric across outcomes. Recently, this approach
was generalized using insights from the mechanism design literature to include more
general decision rules (?), to allow for correlated valuations (?) and to consider en-
vironments with more than two alternatives (7). While we extend this approach to
allow for monetary transfers, the resulting optimal decision rules relate our study to
this literature.

Our results contribute to studies that try to explain why voting rules are used
instead of mechanisms that rely on transfers: ? argue that voting rules are unique in
being robust and coalition-proof. ? argue that voting rules are easy to implement and
show that they approximate the efficient decision rule in large populations. In contrast,
our results also apply for fixed finite populations; together with the limit results in ?
for VCG mechanisms our results also imply that voting approximates the efficient rule.

In independent and contemporaneous work, ? analyze the optimal mechanism for
the provision of a costly public good. They show that equal cost sharing mechanisms are
optimal (in expectation) among dominant-strategy incentive compatible and feasible
mechanisms that satisfy an additional kindness axiom. Our results are not logically
related (anonymous mechanisms do not necessarily satisfy their kindness axiom, the
pivot mechanism being a counterexample; a “kind” mechanism need not be anonymous
on the other hand). However, our results are related in spirit: both papers show that
if there is a trade-off between balancing the budget or having a more efficient decision
rule, it is often preferable to balance the budget. We provide in addition results for
general (and potentially correlated) type distributions and on ex-post dominance.

Our modeling approach is related to a small part of the literature, which evaluates
allocation rules for the allocation of a private good according to an average efficiency
criterion and considers money burning to be welfare reducing (?, 7, 7). An alterna-
tive criterion to evaluate allocation rules is to rank them in terms of their worst-case
efficiency (see, for example, 7, 7, ?)

The paper is structured as follows: We present the model in Section 2, derive our
main result in Section 3 and discuss the role of the assumptions in Section 4.

2. Model

A population of n agents, N = {1,...,n}, decides collectively on a binary outcome
X € {0,1}. We interpret this as agents deciding whether they accept a proposal (in
which case X = 1) or reject it and maintain the status quo (X = 0). Given a collective
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decision X, the utility of agent ¢ is given by ;- X +t;, where 6; is the agent’s valuation
for the proposal and t; is a transfer to agent i.> Each agent is privately informed about
his valuation, which is drawn independently from a type space © := {Q, @] according
to a distribution function F' with positive density f. To make the problem interesting
we assume that § < 0 < 6.3 Both, type space and distribution function, are common
knowledge. Let ©™ denote the product type space consisting of complete type profiles
with typical element 6 = (6;,0_;).

A social choice function in this setting determines for which preference profiles the
proposal is accepted and which transfers are made to the agents. Formally, a social
choice function is a pair (z,t) consisting of a decision rule

r " — {0,1}

and a transfer rule
t:0" > R"

such that, for any realized preference profile 6, x(0) is the decision on the public outcome
and ¢;(0) is the transfer received by agent 7.

Not all social choice functions can plausibly be implemented. In the following, we
describe several restrictions on the social choice functions that we consider.

We require that social choice functions are feasible in the sense that for any re-
alization of preferences no injection of money from an external agency is necessary,

i.e.,
> t(6) <. (F)
ieN

Given that preferences are observed privately by the agents, a social choice function
must induce the agents to report their types truthfully. We are interested in social
choice functions that are strategy-proof, i.e., for which there exists a mechanism and an
equilibrium in dominant strategies for the strategic game induced by this mechanism
such that, for any realized type profile, the equilibrium outcome corresponds to the
outcome that the social choice function stipulates. This is a strong equilibrium concept
that ensures that the social choice function can be implemented irrespective of the
exact information structures. Requiring social choice functions to be strategy-proof is
a standard approach in social choice theory (see, e.g., 7) and is equivalent to robust
implementation in the spirit of ? in our model (see ?).

In many situations agents have the outside option to abstain from the decision pro-
cess and leave the decision to the other agents. In this case, they cannot be forced
to make payments that relate to the decision process. However, they are nonetheless
affected by the public outcome, and the choice of the outcome if agent ¢ does not par-

20ur analysis applies to costless projects as well as to costly projects with a given payment plan,
in which case the valuation of agent 7 is interpreted as her net valuation taking her contribution into
account. Also note that the analysis accommodates more general utility functions: Take any quasi-
linear utility function such that the utility difference between X = 1 and X = 0 is continuous and
strictly increasing in 6;. Redefining the type to equal the utility difference, we can proceed with our
analysis without change.

3The analysis directly extends to cases where § = —oo and/or = oo.



ticipate in the decision process, x;(6_;) € {0, 1}, becomes part of the design problem.*
Given the outside option of abstaining from the decision process, it is without loss of
generality to consider social choice functions that ensure universal participation (see,
e.g., 7) in the sense that all agents prefer to participate in the decision process:

This constraint is weaker than the requirement that every agent derive utility of at least
zero (often called individual rationality) and better suited for public good environments.
For instance, majority voting and the Pivotal mechanism satisfy universal participation
but in general are not individually rational.’

We also require social choice functions to be anonymous:

Definition 1. We call a social choice function (z,t) anonymous if the decision rule
is independent of the agents’ identities, i.e. if, for each permutation m : N — N and
corresponding function #(0) = (0, ..., 0zw)), it holds that x(0) = x(7(0)) for all 6.

This is a weak notion of anonymity, requiring only that the names of the agents do
not affect the public decision. One reason to impose anonymity is that many fairness
concepts build on this assumption (e. g., equal treatment of equals). This requirement
has a long tradition in social choice theory; see for example ?.°

Throughout the paper we focus on feasible and strategy-proof social choice functions
that are anonymous and satisfy universal participation.

3. Results

In this section, we characterize incentive-compatible mechanisms and derive an impor-
tant auxiliary result about redistribution payments. Using this result, we show that
simple majority voting is the ex-post dominant mechanism and show that qualified
majority voting maximizes ex-ante expected welfare.

To implement a given social choice function, we invoke the revelation principle (?).
It follows that we can focus without loss of generality on direct revelation mechanisms in
which it is a dominant strategy for agents to report their valuations truthfully. Hence,
we denote a mechanism simply by a tuple (z,t), where z : ©" — {0, 1} maps reported
types into a collective decision and, for each agent i, ¢; : ©™ — R maps reported types

41t turns out that the participation constraint is binding only for agents with valuation 0. Therefore,
the design of the outside option is irrelevant for our results.

5The unique voting rule that is individually rational is unanimity voting where the proposal is
accepted if and only if all agents vote for the proposal. Our analysis implies that it is optimal to decide
by unanimity voting if we impose individual rationality instead.

SNote that this assumption would be without loss of generality if we allowed for stochastic decision
rules. Given any social choice function (z,t), apply this function after randomly permuting the agents.
This defines a new social choice function (#,%) that is anonymous and achieves the same utilitarian
welfare. While this new rule treats all agents equally ex-ante, it is possible that agents with the same
valuations are treated very differently after the uncertainty about the randomization is resolved. The
important restriction by focusing on deterministic rules is to prevent that the anonymity requirement
can by circumvented this way.



into the payment received by that agent. The requirement that a social choice function
be strategy-proof translates to

0;x(0;,0_;) + t:(6;,0_;) > 9i90(éi, 0_;) + ti(éu 0_;) (IC)

for all realized preferences 6; and all reports §, and 6_;.

An indirect mechanism is called qualified majority voting (with threshold k), if each
agent has the message set {yes, no} and the proposal is implemented if and only if at
least k agents send message yes and no monetary transfers are made, i.e., ¢;(#) = 0 for
all 7 and 6.

The following lemma is a standard characterization of strategy-proof mechanisms.
Lemma 1. A mechanism is strategy-proof if and only if, for each agent i,
1. x(0;,0_;) is non-decreasing in 0; for all 6_; and

2. there exists a function h;(0_;), such that for all 0,
0;
£4(05,0_5) = —0i2(0,,6_,) + /0 2(8,0_)dB + ha(6_s). (1)

We call the first two terms on the right-hand side the “incentive payment” and the
last term “redistribution payment”.
Equation (1) suggests the following definition:

Definition 2. Agent i is pivotal at profile 6, if 0,2(0) # foei x(B,0_;)dpS.

A necessary condition for agent ¢ to be pivotal at 6 is that z(6) # x(0,6_;). If agent
i is not pivotal at a given profile (6;,0_;) then her payment equals h;(f_;). If she is
pivotal at this profile, her transfer is reduced by 6;z(8) — [ z(53,0_;)dS.

The following lemma shows that redistribution payments are fixed for any anony-
mous and strategy-proof mechanism.

Lemma 2. Suppose a strategy-proof mechanism (x,t) is anonymous and satisfies uni-
versal participation. Then h;(0_;) =0 for all i and 0_;.

To obtain Lemma 2, first we use anonymity to argue that for any profile of reports
0_;, there is a report by agent ¢ such that no agent has to make an incentive payment.
This implies that all redistribution payments are zero: Suppose for a contradiction that
there is a report profile 6_; such that agent i receives a strictly positive redistribution.
From the previous step we know that there is a profile (6;,6_;) such that no agent makes
an incentive payment, and since the redistribution payment of agent ¢ does not depend
on 6; (Lemma 1), it is strictly positive at this profile. However, due to universal partic-
ipation each redistribution payment has to be weakly positive and feasibility requires
that their sum is weakly negative, which yields the desired contradiction.

Proof. The proof consists of two steps.

Step 1: For alli and 0_;, there exists 0; such that no agent is pivotal at (0;,0_;).

10



Note first that all agents that are pivotal at profile # submit reports of the same
sign: If z(#) = 1 then monotonicity implies that x(0,0_;) = 1 for all agents i with
0; < 0 and hence only agents with positive reports can be pivotal (and similarly for
x(f) = 0).

Fix an arbitrary agent ¢ and a report profile §_; € ©"~!. Suppose z(0,6_;) = 1
and hence that all pivotal agents submit positive reports (if no agent is pivotal at this
profile, we are done; if (0, 60_;) = 0 analogous arguments hold). We show that no agent
is pivotal at profile 6 := (0;-,0_;), where j* € argmax; ;. Monotonicity implies that
x(f) = x(0,0_;) = 1 and hence agent 7 is not pivotal. Anonymity implies that agent j*
is not pivotal.

It remains to show that if j is not pivotal at 6 and 6; < 6;, then j" is not pivotal at
6. Assume to the contrary that j' is pivotal at ¢; hence, z(0) = 1 and z(e,0_;/) = 0 for
some € > 0. If ;  : O™ — ©" is the function permuting the j-th and j’-th component,
then 7, ;/[(e,0-;)] < (e,6_;/). From monotonicity it follows that z (7 ;[(e,0-,)]) = 0
and anonymity implies that x(e,0_;) = 0, contradicting the assumption that j is not
pivotal at 6.

Step 2: For all i and 0_; we have h;(0_;) = 0.

Universal participation immediately implies that an agent with valuation 0 gets
a weakly positive utility: 0 - 2(0,60_;) + ¢;(0,6_;) > 0 - z(6_;). From (1) it follows
that h;(0_;) > 0 for all 4, 6_;. To obtain a contradiction, suppose that there exists
an agent j and a report profile §_; € ©"~! such that h;(f_;) > 0. By step one, we
can choose 6; such that no agent is pivotal at 6 := (0;,6_;), implying by (1) that
> ti(0) = > hi(0_;) > 0, which contradicts feasibility. O

As an easy consequence, Lemma 1 and Lemma 2 permit a characterization of the
set of strategy-proof social choice functions that have a balanced budget.

Corollary 1. A feasible and anonymous social choice function satisfying universal par-
ticipation has a balanced budget if and only if it is implementable by qualified majority
voting.

Proof. By Lemmas 1 and 2, the budget is balanced if and only if no agent is pivotal. This
implies that the decision rule is constant in the interior of each orthant. Consequently,
the decision rule can be implemented via qualified majority voting. O]

A related result has been obtained by ?, who in addition require weak Pareto effi-
ciency but do not impose participation constraints.

Definition 3. A mechanism (x,t) dominates another mechanism (x',t") if, for every
0, a majority of the agents prefers the outcome of mechanism (x,t) compared to the
outcome of mechanism (z';t'). Formally, for all 0,

#H{ilbix(0) + 1.(9) > 6.2/(9) + (0)} > 7.

? showed that simple majority voting dominates the pivotal mechanism in a public
good setting with logarithmic utilities and ? obtained the same result for the model

11



we study. Lemma 2 also allows us to extend this result to a much larger class of
mechanisms.

Proposition 1. Let (z,t) be any feasible and strateqy-proof mechanism that is anony-
mous and satisfies universal participation. Then simple majority voting dominates

(x,t).

Proof. Lemma 2 implies that ¢;(#) < 0 for all ¢ and #. Under simple majority voting,
there is always a majority that gets its preferred alternative. These agents are weakly
worse off under mechanism (z,t), because they make weakly positive payments and
potentially get their less preferred alternative. O]

Utilitarian Social Planner

The above result takes an ex-post dominance perspective and therefore does not take
preference intensities into account. Even though there will always be a majority that
ex-post prefers the outcome of simple majority voting, this does not imply that agents
would choose majority voting from an ex-ante viewpoint (because the minority pre-
ferring a different mechanism might have stronger preferences). Therefore we take an
ex-ante perspective in this section and study a utilitarian planner who chooses a social
choice function to maximize expected utilitarian welfare given by

N
U (z,t) :=Eg lz [6:2(6) + ti(e)” .
i=1

The expectation is taken with respect to the prior distribution of #; hence, the
planner uses prior information on the distribution of types to evaluate decision rules.
Note that the specification of this information does not affect the incentives of the agents
(as we focus on robust implementation), but only how different rules are compared.” A
social choice function is optimal if it maximizes this expression.

We concentrate first on distribution functions that satisfy the following condition:

£(05)

TF (o 18 non-

Definition 4. A distribution function F' has increasing hazard rates if

f(0:)
(

decreasing for 0; > 0 and — 9;)

s non-decreasing for 6; < 0.

This assumption is well-known from the literature on optimal auctions and procure-
ment auction design; it is satisfied by many commonly employed distribution functions,
for example by the uniform, (truncated) normal, and exponential distributions.

We are now ready to state our main result.

Theorem 1. Suppose F' has increasing hazard rates and consider the class of feasible
and strategy-proof social choice functions that are anonymous and satisfy universal par-
ticipation. The optimal social choice function in this class is implementable by qualified
magority voting with threshold [k|, where

k= .
E[6:]6; > 0] — E[6,] 6, < 0]

"We relax the assumption that the planner perfectly knows the type distribution below.

12



That is, the optimal decision rule does not rely on monetary transfers at all and can
be implemented using a simple indirect mechanism where each agent indicates whether
she is in favor of or against the proposal. The proposal is accepted if more than [k]
voters are in favor.®

The following example illustrates how voting mechanisms compare to the first-best
and the pivotal mechanism.

Example 1. Let n = 2 and 0; be independently and uniformly distributed on [—3, 3] for
1=1,2.

If valuations were publicly observable, the first-best could be implemented which
would yield welfare Upg = %E[@l +605]0,4+60,>0]=1.

The best mechanism that decides efficiently is the pivotal mechanism, where each
agent pays the externality she creates on other agents. It gives a welfare of Uycg = %
(see the Appendiz).

Unanimity voting, that is, accepting the proposal if and only if both agents have a
positive valuation, is an optimal voting rule (together with the voting rule that rejects
the proposal if and only if both agents have a negative valuation). These rules yield
welfare Upy = iE[& +0510,>0,00>0]= %.

Hence, the welfare loss due to private information is twice as large under the best
VCG mechanism as compared to unanimity voting.

The role of the underlying assumptions is discussed in Section 4 and a formal proof
for Theorem 1 is provided in the Appendix. In the following, we build some intuition
for this result.

Lemma 2 shows that money cannot be redistributed in anonymous social choice
functions, and hence there is a direct trade-off between improving the decision rule
and reducing the outflow of money. We show that under increasing hazard rates, this
conflict is resolved optimally in favor of no money burning. To gain some intuition, fix
a type profile of the other agents, 6_;. Strategy-proofness implies that there is a cutoff
07 such that the proposal will be accepted if the type of agent ¢ is above 67. To solve for
the optimal decision rule we need to find the optimal cutoff. Assume that the sum of
valuations »;; 0; + 67 is negative. Marginally increasing the cutoff leads to a rejection
of the proposal which in this case increases efficiency (with a positive effect on welfare
proportional to f(6;)). On the other hand, strategy-proofness implies that agents with
a type above the cutoff make a payment equal to the cutoff. Increasing the cutoff
increases these payments (with a corresponding negative effect on welfare proportional
to 1 — F(6})). Monotone hazard rates imply that if the positive effect outweighs the
negative effect at 07 and if it is therefore beneficial to marginally increase the cutoft,
then it is optimal to set the cutoff to the highest possible value. Symmetric arguments
imply that it is optimal to set all cutoffs either equal to zero or to the boundary of the
type space, and hence that the optimal mechanism can be implemented by a voting
rule.

The optimal number of votes required in favor of a proposal is given by the smallest
integer number k such that the expected aggregate welfare of a proposal, given that

8This indirect implementation also alleviates the commitment problem of the planner: Given the
information she obtains in this mechanism, the decision rule promised to the agents is optimal.
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k out of n voters have a positive valuation, is positive. Hence, the optimal threshold
required for qualified majority voting depends on the conditional expected values given
that the valuation is either positive or negative. Simple majority voting is optimal if
valuations are distributed symmetrically around 0. If, however, opponents of a proposal
are expected to have a stronger preference intensity, then it is optimal to require a
qualified majority that is larger than simple majority.

General distributions and correlated types

In this section we generalize our analysis in two directions. First, we allow for more
general distribution functions, not only those having increasing hazard rates. Second,
we relax the assumption that the planner knows perfectly the type distribution. If
types are drawn independently conditionally on some unknown state of the world, but
the distribution depends on the state of the world, this potentially creates correlated
types from the planner’s perspective. Therefore, we first state the general optimization
problem allowing for correlated types. Lemma 2 still applies and shows that all redis-
tribution payments are equal to zero. Hence, in analogy to Lemma 3, we can state the
problem as

0<z<1

max / [pr(eiye_»}x(e)d(;(e)
s. t. x being point-wise non-decreasing,

where G (g) denotes the joint cdf (pdf) and

{ GUl0-) i g < ()

—g(6:]0_4)

9(0:]0—) if ; > 0.

If types are independently distributed (that is, if G(0) = II; F'(6;)), and if F' has
decreasing hazard rates, then the monotonicity constraint is not binding and conse-
quently the efficient decision rule is optimal and can be implemented by the pivot
mechanism. More generally, as long as types are independently distributed, a standard
ironing procedure can be used to determine the optimal decision rule.

While standard procedures cannot be applied if types are not independently dis-
tributed, we can immediately deduce the optimal mechanism in two special cases.
First, if the conditional hazard rates are decreasing (—2((96;"99_*;)) and 1;?;5?5'_9;)” are non-
decreasing for each 6_;) and types are affiliated, then the pivot mechanism is optimal.
Affiliation implies that an increase in 6; increases W(6;|6_;) for all j (see, for exam-
ple, ?), and hence that the monotonicity constraint is not binding. Analogously, one
can show that if the conditional hazard rates are increasing and types are negatively
affiliated, then a voting mechanism is optimal.

These results are not fully satisfying because both, negatively affiliated types and
decreasing hazard rates, are strong assumptions. If types are positively affiliated and
the conditional distributions have increasing hazard rates, then the optimal mechanism
usually depends on the details of the distribution function. To gain additional insights,
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we analyze the problem that arises if the planner has imperfect information about the
distribution from which types are drawn. Specifically, we assume that there are finitely
many states of the world, w € 2, and that types are drawn independently from a
distribution function F,,.

Corollary 2. Suppose that F,, has increasing hazard rates and that Eg,[t;|t; > 0] =
Er , [ti|t: > 0] and Eg,[t;|t; < 0] = Eg, [tilt; < 0] for all w," € Q. Then qualified
magority voting is optimal among all feasible and strategy-proof social choice functions
that are anonymous and satisfy universal participation.

Under the assumptions made in the corollary, uncertainty about the state of the
world only affects the expected number of supporters of status quo, but not the expected
type of a supporter of status quo. Consequently, in each state of the world the same
qualified majority rule is optimal and therefore it is optimal ex-ante.

Proposition 2. Suppose there are two states of the world, wy and ws, each occurring
with strictly positive probability. Suppose that Ep, [t;] > 0 > Ep, [t:], and that the
expected number of supporters of status quo is the same in both states. Then, for large
enough populations, the pivot mechanism achieves a higher expected welfare than any
qualified majority voting rule.

Proof. As the population grows, the aggregate payments in the pivot mechanism con-
verge to 0, and consequently aggregate welfare converges to the first-best (see Theorem
6 in 7). For a voting procedure to approach the first-best, it must implement reform
with probability approaching 1 in state w; and with probability approaching 0 in state
wy. However, since the expected number of supporters of status quo is the same in both
states, no voting procedure can differentiate between the two states. Consequently, if
the population is large enough, the pivot mechanism outperforms any voting mecha-
nism. O

If the state of the world influences the type distributions, but not the expected num-
ber of supporters of reform, the optimal majority requirement differs between the states
of the world. Because the planner cannot choose the correct majority requirements, wel-
fare under any voting procedure does not converge to first-best welfare. Because the
welfare under the pivot mechanism converges to the first-best, it outperforms any voting
rule for large populations.

4. Discussion

The fact that the efficient decision rule cannot be implemented with a balanced budget
introduces a trade-off for a utilitarian planner: Should she choose a more efficient
decision rule or one that requires less payments by the agents? We model this trade-
off explicitly and solve for the welfare maximizing social choice function. For regular
type distributions, it is optimal not to waste any monetary resources and to decide by
majority voting.

The characterization of majority voting as the optimal social choice function relies
on the specifics of our environment. In particular, the result that no money can be
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redistributed hinges on the anonymity requirement. If we relax this requirement (or
allow for stochastic decision rules), majority voting is no longer optimal. The best
budget-balanced social choice function for distributions that are symmetric around 0 is
a “sampling Groves approach”: pick a default agent, implement the efficient decision
for the remaining agents, and award all incentive payments to the default agent (?).

Example 2 (cont.). Let n = 4 and 0; be independently and uniformly distributed on
(-3, 3].

By Theorem 1, the optimal deterministic and anonymous mechanism is given by an
optimal voting rule (which accepts the proposal if either at least 2 or at least 3 agents
are in favor). This yields a welfare of Upry = %.

A sampling Groves scheme would, for example, implement the decision that is jointly
optimal for agents 1,2, and 3. All incentive payments that are collected from these agents
would then be awarded to agent 4. This yields welfare Usgroves = %. If stochastic mecha-
nisms are allowed, the same welfare can be achieved via an anonymous mechanism, that
permutes the names of the agents at random and then applies the mechanism described

above.

In contrast to the anonymity (respectively, non-randomness) requirement, the par-
ticipation constraint seems not to be a driving force of our results. Imposing universal
participation simplifies the analysis and allows for the clear-cut result that no redistri-
bution is possible for anonymous decision rules. Without it, a characterization of the
optimal redistribution payments is hard; our numerical results suggest nonetheless that
voting is often optimal even if one does not impose participation constraints.

Considering a richer set of possible alternatives, the results depend on the specifi-
cation of agents’ preferences. While in many cases similar trade-offs as in our model
are present, our results do not extend in general; for example, in an environment with
quadratic utilities and a continuum of alternatives, the efficient decision rule can be
implemented with a balanced budget (7).

In an early contribution, ? argued that implementing the pivotal mechanism is a
welfare-superior way to decide on public projects, even if the payments that accrue in
the decision process are wasted. They suggest that aggregate payments vanish as the
number of agents gets large and argue that we should implement the efficient decision
rule instead of relying on inefficient voting procedures. The same argument has more
recently been put forward by ?, who showed formally that aggregate payments in the
pivot mechanism vanish and concluded that this mechanism produces higher welfare
than voting. Our result contrasts with this suggestion: we show that voting can be
welfare-superior to the pivot mechanism for any number of agents. More generally, we
show that the problem of money wasting is not specific to the efficient decision rule, but
is present in any anonymous decision rule that conditions on preference intensities. Our
results thereby shed a new light on the widespread criticism that voting is inefficient:
despite sometimes imposing the “wrong” decision, it can be optimal to ban monetary
transfers and decide by majority voting.
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Appendix

Verification of Example 1. Welfare of the pivot mechanism can be expressed as the
difference between the welfare of the first-best and the transfers needed to implement
the efficient decision:

Uvea = Upp — */ / —0,) dby db, =

Here, we used the fact that transfers are symmetric in the four regions {6 | 6; > 0,6; <
0,0; +0; = = 0} and zero everywhere else. O

The following lemma shows how utilitarian welfare of a social choice function can
be expressed as the sum of two terms. The first only depends on the allocation rule,
and the second consists of the redistribution payments.

Lemma 3. Let (z,t) be an incentive compatible direct mechanism for social choice rule
G = (X% T and define

—F(:;)
=2 qf0; <0,

P(0:) =< 1%, / iy (2)
f(ei)l otherwise.

Then we have

U(XC, TC) = / [Zz/z 1 6)dFN (6 +Z/ ha(6_)dFN1(6_,).

ieEN 1EN

Proof. Note that for all 6_;,

/90 [/ "als, —i)dﬂl £(6:)d6

{ o(6,8-3)48 F®) - /exw,e_i)dﬁg@ - /;xwi,e_,-)F(ei)dei
e ) F0) . 5_yar(s
_/ ( 2(6:,0_)dF (6, +/ Foy 00-)4F (@)
= /9 ¥(0:) (0, 0_5)dF (6;), (3)

where the first equality follows from integrating by parts, the second from rearranging
terms and the third from the definition of W.
Now rewrite

U(XC,TC) = /@NZ [6:2(6) + t:(6) | dF N (6)

iEN

- [ / [/ B+ hl0- >] AF(0)dF"(6-,)

1EN
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L;Vz/; 1 0)dFN (6 +§V/ 6_)dFNY(0_,),

where the first equality follows by definition, the second from Lemma 1 and the third
by plugging in equation (3). ]

For any subset S C N of the agents, define the corresponding orthant as Og = {0 €
ON |6, >0ifie S0, <0ifi¢ S}

Lemma 4. Suppose that 1)(0) is non-increasing in 6 and [(0)dFN(0) < oco. Let Og
be the orthant corresponding to some subset of agents S. Then the problem

max /O (0 - 2(0)aF™ (0

s.t. x is non-decreasing in 0
0<z(0) <1

is solved optimally either by setting x*(0) = 1 or z*(0) = 0.

The objective is to find a non-decreasing function that maximizes the integral over
the product of this function with a non-increasing function. Extending Chebyshev’s
inequality to multiple dimensions yields that the objective function is maximized by
choosing the non-decreasing function to be constant.

Proof. Suppose to the contrary that there exists a function Z(6) that achieves a strictly
higher value. Let a; := inf{6; | (0;,0_;) € Os}, b; := sup{#; | (0;,0_;) € Os} and define

M (@y,0_,) = m f;ll 2(5,0_1)dF(F). This function is constant in 6;, feasible
for the above problem given that z is feasible and, by Chebyshev’s inequality, for all
0717

/abl b(01,0-)2(61,6_1)dF(6,)

1
b1

< w(el,e 1)dF(61)

by

1
F(b1) — Flar) /
_/ G(01,0-)2D (01, 0_1)dF(6:).

2(01,0-1)dF(6,)

Since this inequality holds point-wise, we also have

/OS P(O)2(O)dFN () < [ w(0)2M(0)dFN(6).

Os

Iteratively defining z(9)(6;,0_;) = mffj 2U=V(B,0_;)dF(B) for j =2,...,N
we get a function () (f) that is constant in . Repeatedly applying Chebyshev’s

inequality along every dimension, we get

[ w000 < [ v ),

Os
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Since the objective function is linear in z, the constant function 2V) is weakly domi-

nated by either z* =1 or x* = 0, contradicting the initial claim. O

Proof of Theorem 1. Lemma 2 and Lemma 3 together imply that for any anonymous
social choice function G = (X% T%) it holds that

vxe19) = [ |5 v a0aro)

1EN

where 1) is defined in (2) and z is the decision rule of the corresponding strategy-proof
direct revelation mechanism. Lemma 4 then implies that the optimal allocation rule is
constant and equal to 0 or 1 in each orthant. Symmetry of the problem implies that
the optimal choice depends only on the number of agents with positive types.
Hence, it remains to determine the optimal cutoff for qualified majority voting. Let
k solve
KE[6; |0; > 0] + (N — k)E[6; | 6; < 0] = 0.

Then the expected aggregate valuation, given that &’ < k agents are in favor of the
proposal, is negative. Therefore, it is optimal to accept the proposal if and only if at
least [k] agents have a positive valuation. O

Proof of Corollary 1. Lemma 2 implies that for any social choice function satisfying
the requirements of the corollary, one cannot redistribute money back to the agents.
Lemma 1 then implies that any budget balanced social choice function must be constant
in each orthant. Monotonicity and anonymity then imply that these social choice
functions can be implemented by qualified majority voting. O]
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CHAPTER 2

Preference Intensities in Repeated
Collective Decision-Making

We study welfare-optimal decision rules for committees that repeatedly take
a binary decision. Committee members are privately informed about their
payoffs and monetary transfers are not feasible. In static environments,
the only strategy-proof mechanisms are voting rules which are inefficient as
they do not condition on preference intensities. The dynamic structure of
repeated decision-making allows for richer decision rules that overcome this
inefficiency. Nonetheless, we show that often simple voting is optimal for
two-person committees. This holds for many prior type distributions and
irrespective of the agents’ patience.

1. Introduction

Simple voting rules are known to be inefficient when a majority with weak preferences
outvotes a minority with strong preferences. For instance, if ten out of one hundred
citizens of a village are willing to pay $20 for changing a law, but the rest has a
willingness-to-pay of $1 for keeping the old one, votes would be 90 to 10 against the
new law, although it would be efficient to pass it.

Money could be used as a tool to elicit preference intensities and thereby to imple-
ment the efficient allocation, but in many situations there are moral or other consid-
erations that prevent the use of monetary means. Instead, this chapter examines the
possibilities of using the dynamic structure of environments where group decisions have
to be made repeatedly in order to provide incentives for truthful preference revelation.
In fact, repeated decision problems are ubiquitous in everyday life, ranging from exam-
ples in parliament to hiring committees. In these environments, it is sensible to assume
that agents will not proceed myopically from period to period and therefore will not
vote sincerely. As ? emphasize, “any rule must be analyzed in terms of the results it
will produce, not on a single issue, but on the whole set of issues.” Consequently, it is
not only reasonable to look at equilibrium behavior under a specific decision rule, but
to search for rules that maximize a given objective like, for example, the welfare of the
agents.

Consider the following example, which illustrates the possibility of increasing sen-
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sitivity to preference intensities: Assume that the decision rule prescribes to accept if
at least one of two agents is in favor of the project, unless the other agent uses one
of his limited possibilities to exercise a veto. In this situation, agents are faced with
a trade-off between the current and future periods. If an agent exercises a veto now,
the decision rule decides in her favor, but at the cost of fewer possibilities to use a
veto in the future, which reduces the agent’s continuation value. Intuitively, agents
will use their veto right only if their preference against the proposed project exceeds
some threshold. This has the effect that more refined information about the agents’
preferences is elicited and potentially a more efficient allocation can be implemented.

Given these ideas, the question is why we see so many decision rules that use simple
majority voting in every period, and, more generally, which decision rule is the best in
terms of providing the highest welfare to the agents. In this chapter, we tackle the latter
question and show that, surprisingly, voting rules are optimal among many reasonable
decision rules. This provides a hint to the answer for the former question on why voting
is used so universally.

More specifically, we analyze a model with two agents who are repeatedly presented
a proposal that they need to either accept or reject. Each agent has a positive or
negative willingness-to-pay for accepting the proposal, which is private information and
drawn from a distribution function. Due to the revelation principle, we focus on direct
mechanisms that simply map past preferences and decisions, and preferences in the
current period, into a probability of accepting the current proposal. This allows for the
modeling of many conceivable decision rules. We require that decision rules be incentive
compatible, so that reporting preferences truthfully is a periodic ex-post equilibrium.
This means that in any period, given any history, it is a dominant strategy to report
the preference truthfully. This requirement renders incentives robust to uncontrolled
changes in the information structure as well as deviations of the other player.

We provide a characterization of incentive compatible decision rules in terms of the
allocation in a given period and the continuation values the rule promises. Viewing the
continuation values as a substitute for money enables us to treat any given decision rule
as a static mechanism which can then be improved upon while preserving incentives.
The new continuation values of the improved static mechanism can then be implemented
by specifying a new dynamic decision rule. As a result, we are able to show that if
the preference distributions satisfy an increasing hazard rate condition, then voting
rules are optimal within two classes of mechanisms. First, they are optimal among
decision rules that satisfy unanimity, i.e., rules that never contradict the decision that
both agents would unanimously agree on. This is a reasonable robustness requirement
since one could expect that the agents will not adhere to the decision rule if they
unanimously agree to do something else. Second, if the type distributions are neutral
across alternatives, i.e., the density is symmetric around zero, then voting rules are also
optimal among all deterministic decision rules.

Therefore, if the type distributions are neutral across alternatives, we get the sum-
marizing result that any decision rule yielding higher welfare than every voting rule has
both weaknesses of not satisfying unanimity and not being deterministic. This provides
a strong rationale for the use of voting rules in the setting we consider and also provides
hints on why rules other than voting are not considered in settings with more agents
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either.

Relation to the Literature

We build upon literature studying decision rules for dynamic settings. 7 note that

much of the traditional discussion about the operation of voting rules seems
to have been based on the implicit assumption that the positive and negative
preferences of voters for and against alternatives of collective choice are of
approximately equal intensities. Only on an assumption such as this can the
failure to introduce a more careful analysis of vote-trading through logrolling
be explained.

? proceed to analyze vote trading. They argue that agents can benefit if they trade
their vote on a decision for which they have a weak preference intensity, and in turn
get a vote for a future decision. However, it has early been noted that a trade in votes,
while being beneficial for the agents involved, might actually reduce aggregate welfare
of the whole committee, a fact sometimes called “the paradox of vote trading” (7). A
formal analysis of vote trading has been missing until recently, when ? examined in a
competitive equilibrium spirit a model of vote trading. They show that vote trading
can actually increase welfare in small committees, but is certain to reduce welfare for
committees that are large enough.

Instead of relying on agents playing an equilibrium with non-sincere voting so that
they can express their preference intensities, one can design specific decision rules that
explicitly take intensities into account. ? is the first to take this approach in a dynamic
setting, in which agents repeatedly decide on a binary choice. He proposes the concept
of storable votes: In each period, each agent receives an additional vote and can use
some of his votes for the current decision or, alternatively, he can store his additional
vote for future usage. By shifting their votes inter-temporally, agents can concentrate
their votes on decisions for which they have a strong preference. ? shows that this
procedure increases welfare of the committee if there are two members and conjectures
that in many circumstances this also holds for larger committees. ? analyzes a similar
proposal for a static setting (meaning that agents are completely informed about their
preferences in all decision problems when making the first decision), in which agents
face a number of binary decisions.

Going one step further, one can systematically look for the “best” decision rule.
? take a mechanism design approach and show that for a static setting the efficient
outcome can be approximated even in the absence of money, by linking a large number
of independent copies of the decision problem. This result extends to dynamic settings,
as long as individuals are arbitrarily patient. This surprising result hinges critically on
a number of strong assumptions: each decision problem has to be an identical copy,
the designer is required to have the correct prior belief, agents need to be arbitrarily
patient and their beliefs about other agents have to be identical to the common prior.
In an attempt to find more robust decision rules, ? characterizes the set of strategy-
proof decision rules for a static problem. Given that strategy-proofness is a strong
requirement in multi-dimensional settings, it is not too surprising that voting rules are
the only decision rules that satisfy this restriction.
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In contrast, our focus on periodic ex-post equilibrium implies that on the one hand,
the set of implementable decision rules is very rich, but on the other hand our results
are robust and the optimal mechanism is bounded away from attaining the first-best.

The chapter is structured as follows: In Section 2 we present our model in detail.
The results are presented in Section 3 and discussed in Section 4. Some proofs are
omitted from the main text and relegated to the appendix.

2. Model

There are two agents who are repeatedly faced with a proposal and have to accept or
reject each proposal. Periods are indexed by t = 0,1,... € T' = N. The type of an
agent 7 in a given period t is denoted by 6;; and indicates his willingness-to-pay for the
proposal. Type spaces and distribution functions are the same for each period and each
agent, denoted by ©; and F' respectively, and types are drawn independently across
time and agents. We denote by 6;; the random variable corresponding to the type of
agent 7, and by 0; a type profile which is an element of the product type space ©.

In each period, a decision x; € {0, 1} has to be made. We denote the sequence of
decisions up to period ¢ by x*, and similarly for a sequence of types 6. Accordingly, for

an infinite sequence we write z”.

Mechanisms

In this model a dynamic version of the revelation principle holds (?), hence we can
focus on truthfully implementable direct revelation mechanisms.

Definition 1. A mechanism x is a sequence of decision rules {xi}ier that map past
decisions and type profiles into a distribution over decisions in the current period:

xi: ©F x {0,131 = [0,1].

Preferences

Agents have linear von-Neumann-Morgenstern utility functions and there are no mone-
tary payments. Given a period t and a decision x; for this period, the utility of agent ¢
with type 0y is vy (05, ) = 0. Agents discount the future with the common discount
factor 6 € [0,1). Consequently, utility of agent ¢ with type sequence 67 is

QT T Z (S taxt

teT

for the decision sequence z”.

Equilibrium Concept and Incentive Compatibility

In every period ¢, agent ¢ learns about his preference type 6;;, which is his private
information, and then sends a report r;;. The history known to the designer in period
t, ht = (21, r'=1), consists of past decisions and past reports.
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Given a mechanism Y, we can write the value function for agent ¢:

Will',60) = sup Guoxe(h', i, 6-is) + OBey, Wil ", Bisa) (1)
Tit A

Here, h'™! is the history in the next period, consisting of x;(h', 7, 0_i) and (74,0 _s)
appended to h!. The valuation function specifies, given any history ht, and the current
type profile 6;, the highest utility the agent can possibly obtain for some report r;,
assuming that she reports optimally in the future and the other agents report truthfully.
Given a specific history h’, the mechanism y induces an allocation rule and continuation
functions which we will denote

..'L't(et) = Xt(ht, 0,5) and
wit(et) = 5]E®t+1vvi(h't+17 9t+1>'

If the current period is clear from the context, we will also drop the subscript ¢. The pair
(x4, wy) is called the stage mechanism after history hy and we say that w; is generated by
the mechanism y. A stage mechanism is admissible if it is generated by some mechanism

X-
Definition 2. A mechanism is periodic ex-post incentive compatible (IC) if for every
period t and for all histories ht the following holds: For every 0_; and every 0; we have
that

st (Oit, 0_st) + wig(Oe, 0_it) > O (rie, 0—it) + wit(riz, 0_s1) (2)
for all reports r; € ©;.

See, e.g., 7, or 7. The definition in particular states that if a mechanism is incen-
tive compatible, then every stage mechanism for all histories is incentive compatible.
The following lemma can be proved using the Envelope Theorem (which is a standard
exercise in mechanism design).

Lemma 1. A mechanism is IC if and only if for each agent i the following two condi-
tions hold:

1. Monotonicity of x: z(0;,0_;) < x(0},0_;) for 6; < 0.

2. Payoff equivalence: Fiz 0; € ©;. Then for all 6

A A A 0;
Qz‘x(@i, 9—2‘) + wz(Qz’, 0—1’) = eix(&z, 9—z’) + wz’(eia 9—z’) +/g x(ﬁa 9—z‘)d5- (3)
Since the term élx(éz, i)+ wi(éi, 0_;) is independent of 6;, we will write h;(6_;) for
it. Note, however, that h;(f_;) does depend on the particular choice of 6;.

Objective

For a given stage mechanism we can write down the expected welfare going forward
from period t as

Un(x) = Une(,w) := Eo, [ (01 + 02)34(6) + w14(0) + w2 (6)].
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This is the period-t expected discounted welfare that the agents receive after history h’.
The aim of this chapter is to identify welfare-optimal mechanisms, that is, mechanisms
x that solve

max U(x) :==Up(x), s.t. xislIC.

Lemma 2 in the appendix provides a useful way to rewrite the objective function in
terms of the allocation rule x and h;(6-;).

3. Results

The aim of this section is to identify mechanisms that are optimal in the above stated
sense. The following conditions on F’ which we need to derive our results are standard
in the mechanism design literature.

Condition 1 (Monotone Hazard Rates). The hazard rate - f l(f(igi) is mon-decreasing in
f(0:)

F(6;) s non-increasing in 01

0; and the reversed hazard rate

A woting rule x is a rule where x(f) only depends on {sgn(6;)}i=12. A voting
mechanism is a mechanism where the allocation rule after all histories is a voting rule.
In each of the two subsections below we will present a setting in which the welfare-
maximizing dynamic decision rule is a voting mechanism.

The proofs in each part will proceed as follows: First, we show that under the
appropriate assumptions stage mechanisms consisting of a voting rule and promising
the same continuation payoffs for all type profiles are weakly welfare-superior to all
other stage mechanisms. Then we make use of the following proposition to deduce that
also the best dynamic mechanism uses a voting rule in every period. For this step
to work it is helpful that optimal stage mechanisms are of as simple a form as voting
mechanisms.

Proposition 1. Assume that for every history h' and admissible stage mechanism
(x4, wy) in period t, there exists an admissible stage mechanism (&, W), where Ty is a
voting rule and w; is constant, and such that

Uht<$t;wt) < Uht(i’t,wt)-
Then a voting mechanism is among the optimal mechanisms.

Proof. We start with any dynamic mechanism x and transform it into a mechanism
that uses a voting rule in every period and such that U weakly increases. Start with

= 0. The assumption states that there exists a voting stage mechanism (2, o) with
constant 1wy and such that U(Zg, o) > U(xg,wp). Since the voting stage mechanism is
admissible and promises constant continuations, these continuations can be generated
by a mechanism that is independent of h'. Denote by y’ this new dynamic mecha-
nism. Since 7} and w] are independent of h!, we know (again by the assumption)
that there exists a voting stage mechanism (%, ;) with constant @; and such that
Upi (21,101) > Up (2, wy) for all h'. Again, ; can be generated by a mechanism that
does not condition on histories h?. Now if we let x” be the mechanism that arises
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if one exchanges the stage mechanism (z,w]) in x’ for (Z;,;), we know that x” is
still incentive compatible: All promised continuations in period 0 change by the same
amount, independent of the history h! and in particular independent of §,. Repeating
this argument inductively for ¢ > 2 completes the proof. [

Unanimity

Unanimity requires the mechanism to always adhere to a decision to which both agents
agree. For example, if both types in some period are positive the mechanism has to
choose x; = 1 for sure. Formally, the condition is defined as follows:

Definition 3. A mechanism is called unanimous if, for every period and all possible
histories, x(0) =1 if 0 > 0 and x(#) =0 if § < 0.

Note that mechanisms not satisfying this requirement will probably have legitimacy
problems: Although all parties involved in the decision process opt in favor of the
proposal, the mechanism forces its rejection. Furthermore, if agents are not able to
collectively commit to the decision prescribed by the mechanism, then mechanisms
satisfying unanimity are the only feasible mechanisms. Also note that mechanisms
proposed in the literature are not excluded by this assumption (see, e.g., 7, 7). In
the next subsection we will see that even when relaxing this restriction, for certain
distribution functions only non-deterministic decision rules can yield a higher expected
welfare than voting rules.

Theorem 1. Suppose that F satisfies Condition 1. Then a voting mechanism is optimal
among all unanimous mechanisms.

Proof. The proof consists of establishing the preconditions of Proposition 1. So let
(x,w) be a stage mechanism after some history h' (since we are only concerned with
unanimous mechanisms,  satisfies unanimity). Set (61,6) = (0,0) and let &; be the
resulting redistribution functions implied by Lemma 1. Let §* € argmaxyq, h1(0) +
ha(0). We first show that setting hy(62) = hy(6*) for all 6 and ho(6;) = hy(0*) for all
0, does not decrease Upt(z, w).

Since so far we have not changed x, by Lemma 2 it is enough to show that the terms
involving the redistribution functions do not decrease in this step. But this follows from

7
[ he(60dF @) + [ m(6)dF () = [ [ha(8) + ()] dF ()

0

0

< [ [ha(67) + ha(67)]dF(67).

=

Next we show that changing x to a voting rule does not decrease welfare. It is enough
to consider the regions where #; < 0,0, > 0 and 6; > 0,6, < 0 because the mechanism
is unanimous. By Lemma 3 and the choice of (fy,6,), we know that the first term in
(4), which for the region 6; < 0,6, > 0 amounts to

KL Fos oy onomareiartn
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is maximized by setting = to 1, as soon as Condition 1 holds. Since the same is true for
the region where #; > 0,6, < 0, we have constructed a voting stage mechanism that is
weakly welfare superior to the old stage mechanism.

Let (2/,w") denote the new stage mechanism. The proof is complete if we can
show that w’ is constant and can be generated. Constancy of w’ holds for any stage
mechanism where 2’ is a voting rule and the functions A/ are constant. More specifically,
w; is equal to h;(0*). Since the old mechanism was unanimous, w;(6*,6*) = h;(0").
Because w;(0*,0*) could be generated, it follows that w’ can be generated. ]

Neutrality of Alternatives

In this section, we show that in some situations we can derive optimality of voting
mechanisms even if unanimity does not hold. This shows that the restriction imposed
in the previous section does in many cases not reduce welfare.

We assume that the distribution of types is neutral across alternatives, i.e., it is
symmetric around 0. This is an important special case of our general model and has been
analyzed, among others, by ?. For instance, this assumption is satisfied if a committee
has to decide among two proposals that are valued equally ex ante. Specifying one
alternative as the default, the distribution of valuations for changing from the default
to the alternative proposal is symmetric around 0.

Theorem 2. Suppose F' satisfies Condition 1 and is neutral across alternatives. Then
a voting mechanism is optimal among all deterministic mechanisms.

The proof of Theorem 2 is presented in the appendix. Similar arguments as in
the last subsection can be given for restricting attention to deterministic mechanisms:
First, stochastic mechanisms are difficult to implement and face legitimacy problems in
practice. It is barely conceivable that a parliament would introduce decision protocols
that involve random elements. Second, all proposed mechanisms in the literature and
mechanisms observed in practice are usually deterministic and therefore not excluded
from our analysis. Numerical simulation also suggests that expected welfare can be
improved only slightly using stochastic mechanisms. The following corollary combines
Theorem 1 and Theorem 2 and summarizes all properties one has to give up in order
to improve upon voting rules.

Corollary 1. Assume F' satisfies Condition 1 and is neutral across alternatives. Then
every decision rule that is strictly welfare-superior to any voting rule is stochastic and
does not satisfy unanimity.

4. Discussion

We have seen that despite the absence of money as a means for implementing rules
other than majority voting, the possibility to condition decision rules on the past gives
us the possibility to design dynamic decision rules that take preference intensities into
account. However, we have shown that for committees consisting of two players the
welfare maximizing dynamic decision rule nonetheless consists of simple majority voting
in every period. This holds unless desirable properties of the decision rule are given
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up. We therefore provide a possible explanation for why majority voting is used almost
universally in practice.

One extension of our model is to allow for correlation of agent types over time. How-
ever, this restricts the class of incentive compatible mechanisms since the quasi-linear
separation of continuation payoffs from the payoff in the current period disappears.
While voting rules would still be optimal in this restricted class, our model without
correlation shows that voting rules are also optimal in the larger class.

A major open problem is the question as to what extent our results generalize to
more than two agents. We believe that a substantial difficulty towards progress in this
direction is to understand in how far continuation values can be redistributed among
the agents.

Appendix

Helpful Lemmata

The following shows how the welfare of every incentive compatible mechanism can be
expressed in terms of the allocation function and the functions h; defined following
Lemma 1.

Lemma 2. Let x be an incentive compatible mechanism and define

—F(®:) )
( i v

l}fe(gi) otherwise.

~—

w(@-) =

Then for every history ht we have

Une(0) = [ [0060) +0(02)[e(O)dF©) + [ ha(00)aF(0) + [ ma(6)aF (). (4)

0, O3
Proof. First note that
U0 = [ [ [0:00) + 6200) + w,(0) + wn®@] ap )8 6),  (5)
and by Lemma 1 )
wi(0) = / 2(53,0_5)dB — 0,2(8) + hi(6_,). (6)

k3

Using integration by parts, we first rewrite the term

/99 [/99 f(ﬁ,ﬁ_i)dﬁl f(0;)do;

0 . 9 0
- /9 x(ﬁ,e_i)dﬁi@—/@ v(8,6-)d8 F(6) —/9 (0,65 F(0,)d6;

=1 =0
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01— (6
= 0)dF (0 0)dF (0 7
L) )+ / (6:). (7)
Now plug (6) into (5) and use (7) to complete the proof. O

The next lemma implies, together with Condition 1, that the first part of (4) is
maximized by a constant allocation function whenever only one part of the function v
is considered.

Lemma 3. Suppose that (01, 02) is non-increasing in 61 and 03, and that [1p(0)dF(0) <
oo. Then the problem

max / / (61, 05) - (61, 05)dF (6,)dF (6,)

s.t. & is non-decreasing in 0
0<z(f) <1

is solved optimally either by setting v*(0) =1 or x*(0) = 0.

Proof. Suppose to the contrary that there exists a function &(6) that achieves a strictly

higher value. Define 2'(6;,0) = m J%2(6,, B)dF(B). This function is feasible

for the above problem given that z is feasible and, by Chebyshev’s inequality, for all 6,

/d¢(91,92)§;<01,92)dF(92)
< /Cd¢(01,92)dF(92)M/cdrﬁ(é)l,@z)dF(%)
_ /de(el,@)x'(el,eg)dﬂeg).

Since this inequality holds for every 6;, we also have

// D01, 602)2(01, 05)dF (8:)dF (6)) <// (61, 85)2" (61, 65)AF (8:)AF ().

Defining z"(0y,02) = F(bi [P 2/(6y,6,)dF(6;) and again applying Chebyshev’s in-

equality as above, we get that

b pd b pd
/Ll/cw(ﬁl,Qg)x’(el,ﬁg)dF(Qg)dF(Ql)S/a / D601, 05)2" (01, 05)AF (6,)AF ().

Since the objective function is linear in x, the constant function x” is weakly dominated
by either x = 1 or x = 0, contradicting the initial claim. [

Proof of Theorem 2

Proof. We establish the preconditions of Proposition 1. Fix an arbitrary history h; and
consider the stage mechanism (z, w) employed after this history. Let w := maxg{w;(0)+
wy(A)} and let 6, be an optimizer. We normalize w such that w;(6,,) = wa(0,,) = 0 by
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Figure 1: Proof of Theorem 2. The shaded area indicates the profiles § where
z(0) = 1.

decreasing w; by w;(6,,) for all 7. This does not affect incentive compatibility. After the
normalization we have

We start with some preliminaries where we derive a set of inequalities that are satisfied
by every incentive compatible stage mechanism for which the above inequality holds.

Preliminaries:

Set (A1,0,) := (0,0), let h; denote the resulting redistribution functions implied by
Lemma 1 and define ¢;(0) := 0,x(0) — fgix(ﬁ,ﬁ_i)dﬁ. It follows from Lemma 1 that

wi(0) = —g;(0) + hi(0_;). Let h* := maxg{hi(0) + ha(—0)} — 6 and 6* be a maximizer.
Normalize h such that hy(0*) = h* + 6 and he(—60*) = 0 by increasing h(x2) and
decreasing ho(z1) by ho(—0*). The definition of A* implies

hi(0) + ho(—0) < h*+6  forall 0, (8)
and wy (0, —0) + wy(0, —0) < 0 implies

—0 0
=— [ w(s.0)a5 — [ x(=0.5)d5
. o
< /ax(ﬁ,e)dﬁ <f+0. (9)
By plugging 6* into (9) and using the definition of h*, it follows that h* < §*.

Define a := inf{6; | x(6;, h*) = 1}. If there does not exist 6y such that z(f;, h*) =1,
set a := 0. Without loss we can assume that a > —h*, since otherwise we can “mirror”

31



the mechanism on the dotted line shown in Figure 1.} Let 6; > a. Then expanding and
rearranging wi (01, 0%) + ws (0, 6*) < 0 yields

ho(61) < —(h* +0) + g1(61,0%) + g2(61,0%)
_ 01 o*
R 046, —/g 2(8,0°)dB + 0" — /9 (61, B)dp

h*

=—h*+0"—0"+h* — /9 x(01, B)dp
_ _/ (6y, B)dB, (10)

where in the second equality we made use of the fact that z(3,0*) = 1 for § > a and
x(6h,0) = 1 for 6, > a, h* < B < 0* (see Figure 1). Similar arguments will be used
more often in the equalities below.

Define b := inf{fy | x(—h*,05) = 1} (if there is no Oy such that z(—h*,6;) = 1, set
b:=0) and let 0y < b. Then wy(—0*,0y) + wo(—0*,05) < 0 implies

hi(62) < g1(0%,02) + g2(07, 02)
—0* 2
_0 —% 2(8,6,)dB —/9 2(—6%, B)dp

- / (5, 02)d (11)

Since by Lemma 1 an incentive compatible stage mechanism is completely deter-
mined by x and h, we will in the following change x and h in a number of consecutive
steps while making sure that z stays monotone and we never decrease the welfare
Uht(z,h) := UM (z,w). At the end of the proof we will make sure that the resulting
mechanism is admissible. First, we increase hy(6;) for 8; > a and hy(6s) for 6 < b until
(10) and (11) hold with equality since this trivially weakly increases welfare.

Step 1:

In this step we will change the variables x(6) with § € A := {(01,02) | 61 > a,05 <
h*}, he(01) with 61 > a and hq(6,) with 6y < h*. If we change h; and hs such that (11)
and (10) continue to hold with equality, we can express changes of all the variables in
terms of changes of . Making use of the fact that for 6, < h*, (11) is equivalent to

hi(05) = / ’ (8,02)a5,

and by substituting (11) and (10), we can rewrite the the part of Uy that depends on

Let (2#,w#) be the mirrored mechanism, then z#(0y,05) = 1 — z(—0y,—01), w¥(0,60,) =
w_;(—02,—01). The new mechanism is IC iff. the old mechanism is IC and by our symmetry as-
sumptions the mirrored mechanism yields the same welfare. Also, h* and 6* will not be changed by
this operation.
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changes of the variables x(#) for § € A as

/ /h* l— (61) 1 ;({;2()92)1 x(01,0,)dF (05)dF (6,)

+// (8, 05)dB dF (6, /j'&,www

:/a@/e [1 }((91)01 + _f%f;)l 2(0y,05)dF (05)dF (6;).

Lemma 3 implies that this term is maximized by setting z(#) = 0 or 1 for § € A. To
see that we cannot gain by setting x(6) = 1 we bound

Une(1,h) = // [1_ _fj?e(fi)]dF(Hg)dF(él)
“h Efg; o | AFF0)
- F(6:
-}, /1 [féa; f<(>)]dﬁxeﬁdﬁmeﬂ
<0 = Up(0,h).

Here, the second equality is due to the symmetry of F' around zero, the third equality
is because the integral over [#, —a] x [6, —a] vanishes, and the inequality is due to log-
concavity of F' and the fact that —a < h*. Hence, we weakly increase welfare by setting
=01in A and h; and hy according to (11) and (10), respectively.
Step 2:

For this step define the set B = {¢) > —h*,0 > h* | x(01,02) = 0}. Set z(0) =1
for € B and hy(02) = h* + @ for all 6 for which there is a 6; such that (6;,0,) € B.
We claim that this does not decrease Uy:. Since allocative efficiency improved in this
step, we only need to check that the sum of promised continuations increased. First,
let (61,05) € B. Then (11) is equivalent to

me) = [ Hh* (8, 0)dp.

Continuations before this change are given by

)+ u(60) + [ 2(8.0d8 = hao) + [ (505 + [ 2(5.0.)45 = ha(6)

After the change we get

ho(0r) + h* + 0 — m+/ &%Mﬁ @+/ B)dj = hs(6).

71

Fixing (01,02) € B, the claim can similarly be shown for points of the form (¢, 8,) and
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(01,0%) where 0 > 605.

Step 3:

We claim that setting x(6) = 1 or x(f) = 0 for 8 € [0, —h*] x [h*, 0] increases
Up+. This follows from the fact that, since, ignoring the part which depends on h;, the
objective function in the area where we change x has the form required by Lemma 3.
Symmetry implies that z(f) = 0 gives the same welfare as z(0) = 1.

Step 4:

Note that the original mechanism satisfied
hi(—0) + hy(0) < h* + 6.

Therefore, welfare is not decreased by setting ho() := 0 and hy(—0) = h* + @ for
0 < —b.

Note that the changed mechanism satisfies wy (0, —0) + wy(0, —0) < 0: For a < 0
this holds as we assumed (10) and (11) to be binding in Step 1, hence g,(0, —60) =
g2(0, —0) = hi(—0) = ha(8) = 0. For —h* < 0 < q, this holds as continuations weren’t
changed for these values (changed Pivot payments were offset by changes in the h
functions, as (11) was assumed to hold with equality in Step 1). For —b < 6§ < —h*
this holds as constraints were assumed to bind in Step 2. For § < 6 < —b this holds as
hi(—0) + ha(0) < h* 4+ 0 = g1(0, —0) + g2(6, —0).

The fact that wy (0, —0) + wq(0, —0) < 0 implies that hy(—0) + ho(6) < g1(6,—0) +
g2(0, —0). We can increase h so that equality holds, thereby again improving the mech-
anism, ending up with the following stage mechanism:

(1 > h
z(0) = { 0 else,
[0 if 0, < B
h(02) = { h* +8 else,
h2(91) == 0

We call this class of mechanisms phantom dictatorship with parameter h*.

Step 5:

So far we have shown that every stage mechanism can be modified until it is a
phantom dictatorship while weakly improving welfare. To prove that for every stage
mechanism there is a simple voting stage mechanism with weakly higher welfare, we
show that simple voting weakly welfare-dominates every phantom dictatorship: Indeed,
the optimal phantom dictatorship is given by the parameter h* = E[f]. Therefore,
symmetry of F" around 0 implies that the optimal phantom dictatorship is characterized
by h* = 0, which has the same aggregate welfare as unanimity voting.

The voting stage mechanism we have constructed so far has the continuations profile
wy(0) = we(0) = 0 for all #. It remains to show that this mechanism is admissible. But
this follows from the fact that (0,0) was an implementable continuation profile of the
original mechanism (namely, at the type profile 0,). We therefore established the
conditions for Proposition 1, which completes the proof of the theorem. O
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CHAPTER 3

Sophisticated Sincerity under Incomplete
Information

We study binary, sequential voting procedures in settings with privately in-
formed agents and single-peaked (or single-crossing) preferences. We iden-
tify two conditions on binary voting trees, convexity of divisions and mono-
tonicity of qualified majorities, ensuring that sincere voting at each stage
forms an ex-post perfect equilibrium in the associated extensive form game
with incomplete information. We illustrate our findings with several case
studies: procedures that do not satisfy our two conditions offer ample space
for strategic manipulations. Conversely, when the agenda satisfied our con-
ditions, sincere behavior was indeed the most likely outcome.

1. Introduction

Sequential, binary voting procedures are widely used in democratic legislatures and com-
mittees. A very large literature in the fields of Economics, Law and Political Science
has studied both their theoretical and their institutional/empirical aspects.! Almost
the entire previous literature assumes that agents are completely informed about the
preferences of others. Under complete information and simple majority, a Condorcet
winner - which always exists with single-peaked preferences - must be selected by so-
phisticated voters independently of the particular structure of the binary voting tree
and its particular agenda. Thus, at least for the many real life examples where the
single-peakedness assumption is justified, the existing explanations of “strategic ma-
nipulations” found in the literature are somewhat strained. If preferences are known,
why do some manipulations succeed, while others backfire? Why the “victims” of an
attempted manipulation cannot anticipate it, and respond by changing their strategy?

We analyze sequential, binary voting in settings where several privately informed
agents have single-peaked preferences on a finite set of alternatives, and we focus on
robust equilibria that do not depend on assumptions about the players’ beliefs about
each other. We identify voting procedures in which sincere voting is a robust equilibrium
and there is consequently no space for strategic manipulations. We also discuss several

ISee for example ?, ?, ?, and ? for theoretical treatments, ? and ? for institutional aspects, and
?7,?7,?7, 7 and ?7 for case studies and empirical analyses.
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case studies from the Legal and Political Science literature in the light of our results
and illustrate how manipulations can succeed/backfire in voting procedures violating
our conditions.

At each stage of a process described by a binary voting tree, one among two subsets
of alternatives is adopted by (possibly qualified) majority. This process is repeated until
a unique alternative is singled out, and formally elected. Under complete information,
the associated extensive form games are amenable to analysis by backward induction,
and the resulting, so called sophisticated, strategies and equilibrium outcomes are com-
pared to the sincere ones that would result from naive (or myopic) behavior. The
empirical strand is mostly concerned with the identification of strategic behavior or
its absence, and their respective causes and consequences. Both, the theoretical and
the empirical strand, emphasize the crucial role played by the agenda - the particu-
lar order in which alternatives appear in the voting tree/get eliminated from further
consideration - and its control by interested parties.

The reason behind the focus on complete information is mainly technical: even with
restrictions on the set of admissible preferences (such as single-peakedness), the anal-
ysis of the extensive form games represented by voting trees can be daunting if agents
are privately informed. Optimal strategies generally depend on the specific, cardinal
representation of utilities and on the beliefs about others. In turn, these beliefs are
influenced by inferences that can be drawn from the ex-ante probabilities attached to
the different possible profiles of preferences, and from new information generated by
the employed strategies in the respective institutional setting. In particular, manip-
ulations may occur also via voting behavior that attempts to influence the beliefs of
other voters, and hence their future behavior (signaling effects), an effect that is absent
under complete information. A pioneering analysis of strategic, sequential voting under
incomplete information is 7 who construct Bayesian equilibria for an amendment proce-
dure with three alternatives and with three possible preference profiles that potentially
lead to a Condorcet paradox.?

Given the technical difficulties, our present analysis takes a different route, focusing
instead on the much more robust, ex-post perfect equilibrium: in such an equilibrium,
the resulting optimal strategies do not depend on ex-ante beliefs, and continue to be
optimal irrespective of the information that is revealed during the sequence of votes.
This is the strongest form of equilibrium possible in our setting since a dynamic im-
plementation in dominant strategies is generally impossible if there are more than two
alternatives. Not surprisingly, it is easy to construct simple examples - even with single-
peaked preferences - where robust, dynamic equilibria do not exist.?

Our main results identify two intuitive conditions on binary voting trees ensuring
that sincere voting at each stage forms an ex-post perfect equilibrium in the associated
extensive form game with incomplete information. In other words, in the identified game
trees sincere voting constitutes the sophisticated equilibrium for any possible profile of
single-peaked preferences, for any ex-ante probabilities governing the agents’ private

2See also 7, who study the voting on the school construction bill of 1956 as an incomplete information
game.

3Ex-post equilibria in settings with cardinal utility and with monetary transfers have been studied
in the literature on robust mechanism design, e.g., by 7 and ?.
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information, and for any information disclosure policy along the voting sequence. In
addition, the equilibrium is strong Nash, which means that no coalition of voters can
profitably deviate from sincere voting. This last robustness result is particularly impor-
tant in legislatures where voting is mostly according to party lines, so that coordinated
deviations are likely.

The two conditions are:

1) Convezity of divisions (CONV). Recall that in procedures governed by binary
voting, each vote is taken by (possibly qualified) majority among two, not necessarily
disjoint, subsets of alternatives. Convexity says that if two alternatives a and ¢ belong to
the left (right) subset at a given node, then any alternative b such that a < b < ¢ (in the
order governing single-peakedness) also belongs to the left (right) subset. Intuitively,
each of the Yes-No votes in the sequence must be among two options that cover a
well-defined, coherent segment of positions in the respective ideological spectrum.

2) Monotonicity of qualified majorities (MON). This condition says that, after a
vote that resulted in the adoption of a left (right) subset of alternatives, a subsequent
movement left (right) requires a qualified majority that is at least as large as the one
that governed the previous move in the same direction. Intuitively, adopting consecutive
and more “extreme” positions should become more and more difficult. The standard
case of keeping a constant majority requirement at each vote - such as simple majority
- satisfies monotonicity.

In order the understand the role of the above two conditions, note that, under incom-
plete information, the main determinants of optimality are the decisions at pivotality
events: only such instances offer the opportunity to directly influence the outcome, and
hence the optimal strategy must recommend a “correct” action whenever an agent is
pivotal. In particular, agents should be able to make accurate inferences about future
events, conditional on being pivotal.* Roughly speaking, the combined effect of CONV
and MON is to finely tune this inference: for example, in a voting tree which satisfies
these two assumptions, a pivotal agent can infer that a more preferred alternative will
be ultimately elected, either because there are anyway enough other supporters for this
alternative, or because the agent will continue to remain pivotal (and hence in control
of the decision) at future stages. Thus, sincere voting - according to the preference
relation restricted to the remaining set of alternatives - is optimal at each and every
stage of the voting process.

Many ubiquitous voting procedures satisfy both conditions if simple and intuitive
rules of agenda formation are respected. Let us consider two prominent examples:

1) The amendment procedure is predominantly used by legislatures in the English
speaking world, Switzerland and Scandinavia. Alternatives are paired, and the winner
competes against the next alternative on the agenda, until all alternatives are exhausted.
The amendment procedure will satisfy convexity if the pairing is such that the most
“extreme” alternatives compete against each other at each round of voting. If the single-
peakedness order is 1 < 2 < ... < A, the first vote should be among alternatives 1 and
A. If 1 wins this contest then the next vote is among 1 and A — 1, whereas if A won at
the first round, the second vote should be between A and 2, and so on. Monotonicity
holds, for example, if the qualified majority needed to keep alternative 1 in the process

4This point has been forcefully made by ?.
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Sequential Voting Amendment Proce-
dure

Always Vote on Most | Austria, Denmark, France, | Finland
Extreme Alternative Germany, Greece, Hun-
gary, Iceland, Ireland,
Italy, Netherlands, Norway,
Poland, Slovenia, Spain,
European Parliament
Other procedural rule || Belgium, Czech Republic, | Sweden, Switzer-
Luxembourg, Portugal, Slo- | land, UK, (US)
vakia

Table 1: Parliamentary Floor Voting Procedures. Source: Rasch (2000)

is not decreasing along the voting tree.

2) The successive procedure is predominantly used in continental Europe. Voters
consider alternatives one after the other, and the process stops as soon as one alterna-
tive garners the required majority. It satisfies convexity if, at each stage, the consid-
ered alternative is one of the two most extreme ones. If the single-peakedness order is
1 <2< ..< A, convex agendas are, for example, to vote on the alternatives in the or-
der 1,2,3,..., A% in the order A, A—1,...,1 or even in a left-right alternating order such
as 1,A,2, A —1,..., A/2. If the successive procedure uses the order 1,2,3, ..., A, mono-
tonicity says, for example, that the qualified majority required to continue the voting
process cannot decrease (i.,e, the majority needed to accept the current alternative does
not increase).

Hence, for our conditions to be satisfied, the content of proposals (rather than purely
procedural considerations) should determine the agenda. Of course, the interpretation
of content may be ambiguous - leading to possible manipulations that could be pre-
vented by more rigid, procedural rules. Table 1 (reporting findings by ?) shows that
the basic idea of a content-based agenda is anchored in the rules governing many leg-
islatures. For example, the Standing Orders of the Slovenian parliament prescribes in
its Article 192 that

“if several amendments are proposed to an article of a proposed law,
deputies shall vote first on the amendment which departs most from the
content of the article in the proposed law, and then, following this criterion,
on other amendments” (see 7).

The present general treatment of varying qualified majorities at each node of the
voting tree - generalizing the constant, simple majority rule assumed in almost the
entire literature - has both an empirical and a theoretical content.

5For this particular procedure and agenda, monotonicity of qualified majorities has been shown to
be necessary for a robust dynamic implementation by ?. These authors were mainly concerned with
identification of welfare maximizing mechanisms in settings where monetary transfers are not possible.
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Firstly, many legislatures and committees use special, sometimes staggered, su-
permajorities for the passing of various, special laws. Prominent among these are
the supermajorities required for laws that represent constitutional amendments in all
democracies, and the Taxes and Expenditure laws (TELSs) in most states in the U.S.
For example, the legislature of Nebraska can vote to increase property taxes reflecting
changes in the Consumer Price Index by simple majority, while larger increases up to
5% require a three-quarters majority. Further increases above 5% require a referendum
in the population. Another good example, discussed in more detail below, is the U.S.
Supreme court where accepting a case for review (certiorari) requires 4 out of 9 votes,
but decisions on the accepted cases need to garner a simple majority (5 votes out of 9).

Secondly, varying the qualified majority at each node in the voting tree, allows
us to theoretically replicate, via any binary voting procedure that satisfies convexity,
the entire set of anonymous, unanimous and dominant strategy implementable social
choice functions for the domain of single-peaked preferences. The resulting dynamic
implementation in an ex-post perfect and sincere equilibrium necessarily satisfies our
monotonicity condition. The proof of these results builds upon the seminal contribution
of 7 where he identified the strategy proof social choice functions on the domain of
single-peaked preferences as generalized medians. These are direct revelation mecha-
nisms that choose the median peak among the reported peaks of real voters and other
peaks of “phantom” voters (the phantom peaks are fixed by the mechanism, and do
not vary with the reports of the real voters). Our results offer both a realistic imple-
mentation - via binary sequential voting procedures - of a rich class of non-dictatorial
social choice functions, and a transparent interpretation of the “phantom voters” that
play the main role in Moulin’s analysis.

We also discuss below several case studies from the Legal and Political Science
literature in the light of our results. We show below that, under incomplete information,
procedures that do not satisfy our two conditions CONV and MON offer ample space
for strategic manipulations that may or may not succeed, depending on the particular
beliefs that voters entertain and on the actually realized profile of preferences (which
is not common knowledge). As a consequence, the Condorcet winner need not be
elected in equilibrium. Conversely, we illustrate examples where the agendas satisfied
our conditions and where sincere behavior was indeed the most likely outcome.

A lively debate in the Political Science literature has revolved around the question
whether strategic behavior is a common phenomenon in real life voting situations (see,
for example, 7, 7, 7, 7). Several explanations have been advanced for the relative rarity
of clear, unambiguous examples where such behavior has been postulated: 1) Legis-
lators may be bound either by party discipline or by the need to fulfill constituents’
expectations, and hence cannot act opportunistically at each instance (?, ?); 2) Real life
agendas are endogenous, and sincere voting is an equilibrium in the resulting game (of
complete information) where the agenda is chosen in a first step (7). These, and other
explanations, require additional features beyond those captured by the simple, isolated
model of voting via a given, sequential binary procedure. In contrast, our results of-
fer a simple explanation for the relative rarity of observed strategic voting based on
robustness to the potential presence of private information: sincere voting constitutes
the most compelling equilibrium for all situations that can be described by convex and
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Figure 1: Illustration of an amendment procedure

monotone voting procedures, and hence it cannot be empirically distinguished from
sophisticated voting (with which it simply coincides) in those cases. Conversely, our re-
sults also delineate the conditions under which strategic behavior may be advantageous
for some parties.

The rest of the paper is organized as follows. In Section 2 we present several simple
examples that illustrate our results. In Section 3 we present the voting model, and
the convexity and monotonicity conditions. In Section 4 we present our main results
for voting procedures where sincere voting is a robust equilibrium. In Section 5 we
characterize the class of social choice functions that can be robustly and dynamically
implemented our setting. In Section 6 we discuss several case studies in light of our
findings. Section 7 concludes.

2. Illustrative Examples

The purpose of this section is to illustrate the main ideas and results in the simplest
non-trivial setting with three privately informed agents and three alternatives, labeled
{1,2,3}. We assume that preferences are strict and single-peaked with respect to the
order on natural numbers.® This assumption yields four possible individual preferences:
1>=2%3,2>1>3,2>3>1,and 3> 2> 1.

2.1 The Role of Convexity

Assume that the voters use an amendment procedure where the first vote is by simple
majority between alternative 1 and 2, and the second vote is by simple majority between
the winner of the first vote and alternative 3. This can be represented by the voting
tree illustrated in Figure 1.

The second (and last vote) is either between 1 and 3, or between 2 and 3. Voting sin-
cerely at the last vote (which is always a simple binary choice between two deterministic
outcomes) is clearly optimal for all types of all agents.

Consider now the first vote between alternatives 1 and 2. Sincere voting calls for
agents with peaks on 1 to vote for alternative 1, and for agents with peaks on 2 and
3 to vote for alternative 2. But, these actions cannot be part of an ex-post perfect

6By relabeling alternatives, this is without loss of generality.
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Figure 2: Illustration of an amendment procedure satisfying CONV

equilibrium: consider for example the case where our three agents have the following
profile of preferences: 1 >~ 2 > 3, 2 > 3 > 1, 3 > 2 > 1. Then alternative 2 is
ultimately chosen under sincere voting, but a deviation to the left of the agent with
peak on alternative 3 at the first vote (vote for 1) would result in a second vote among
alternatives 1 and 3, where 3 would win. Hence such a deviation may be profitable, and
our agent may regret his first sincere vote. Thus, sincere voting is not an equilibrium,
and the reader may easily work out that an ex-post perfect equilibrium does not exist
in this game.

Consider now the same amendment procedure, but with a different agenda: the first
vote is between alternatives 1 and 3, and the second vote between the winner of the first
vote and alternative 2. This procedure can be represented by the voting tree illustrated
in Figure 2.

The second vote is either between 1 and 2, or between 2 and 3, and voting sincerely
at the last vote is again optimal for all types of all agents. Consider now the first
vote between alternatives 1 and 3. Sincere voting calls for agents with peaks on 1
to vote for alternative 1 and this is indeed optimal since every outcome that can be
reached following the left branch at the origin is (weakly) preferred by such a player to
any outcome than can be reached following the right branch. An analogous reasoning
shows that sincere voting is optimal for agents with peaks on alternative 3.

Consider next an agent ¢ with preference profile 2 > 1 > 3, for whom sincere voting
recommends voting for alternative 1 at the first vote. This vote matters only if such
an agent is pivotal, thus only in case there is exactly one other agent that votes for
alternative 1, and exactly one agent that votes for alternative 3. But then our agent ¢
can be sure that voting sincerely at the first vote will ultimately lead to a second vote
between 1 and 2 where his most preferred alternative is elected. An analogous reasoning
for an agent ¢ with preference profile 2 > 3 > 1 completes the proof that sincere voting
is an ex-post perfect equilibrium in this amendment procedure.

As we shall see below, the crucial difference between the two agendas is a (discrete)
convexity idea: given the order under which preferences are single-peaked, the votes in
the second example are always among sets of alternatives “without holes”: the generated
divisions are {12|23}, {1]|2} and {2|3}. In contrast, in the first example, the divisions
are {13|23},{1|3} and {2|3} and the division {13|23} contains the non-convex set {13}
with a “hole” in place of alternative 2. This creates an uncertainty about the actions
of others (and hence about the outcome) that cannot be satisfactorily resolved - i.e.,
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Figure 3: Illustration of a successive voting procedure

without ever experiencing regret - under incomplete information.

2.2 The Role of Monotonicity

In order to explain the role of our second condition, let us look at the successive voting
procedure illustrated in Figure 3.

At the first vote the agents decide whether to accept or reject alternative 1. If 1
is accepted voting ends, and otherwise a vote is taken whether to accept or reject
alternative 2. If this alternative is accepted voting ends, and otherwise alternative 3 is
elected.

Assume first that alternative 1 is adopted by simple majority (so that two votes
are sufficient to reject it) while alternative 2 is adopted by unanimity (so that one
vote is sufficient to reject it, and hence elect alternative 3). Consider an agent ¢ with
preferences 2 > 1 > 3. Then sincere voting calls for such an agent to vote against
alternative 1 at the first vote. However, in case there is one agent with a peak on 1 and
one agent with a peak on 3, sincere voting would lead to alternative 3 being elected.
Agent ¢ would then be better off by deviating and voting for alternative 1 at the first
vote, which would lead to the implementation of alternative 1. Therefore, sincere voting
is not an ex post perfect equilibrium for the above voting procedure.

Note that the partitions generated by this procedure are convex, without “holes”:
these are {1|23} at the first vote and {2|3} at the second. So the difficulty lies here
elsewhere, namely in the specific thresholds for rejection of consecutive alternatives.

To correct the problem consider the same voting tree, but where alternative 1 is
adopted by unanimity (so that one vote is sufficient to reject it) while alternative 2 is
adopted by simple majority (so that two votes are required to reject it, and hence to
elect alternative 3) (see Figure 4).

Then sincere voting is an ex-post perfect equilibrium: this is obvious for the agents
with peaks on alternative 1 and 3 and for an agent with preferences 2 > 3 > 1, so
consider again an agent ¢ with preferences 2 > 1 > 3. If such an agent is pivotal at the
first vote (to accept or reject 1) then there are at least two other agents with peaks on
alternative 1, so that, at the next vote it must be the case that alternative 2 will be
chosen. Hence it is optimal for our agent to also vote sincerely.”

"Claims in the literature indicate that sincere voting should be a dominant strategy for this proce-
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Figure 4: Successive voting procedure satisfying MON

This example shows that the thresholds at consecutive votes must be such that
pivotal agents can infer (from the instance of them being pivotal) that, roughly speaking,
they can still control the outcome at future stages.

3. The Sequential, Binary Voting Model

There is a finite set of alternatives, A = {1,2,...,|A|}, and a finite set of voters, N. Each
voter ¢ € N has a strict preference ordering ; over the elements of A. A preference
ordering >; is single-peaked (with respect to the natural order < on A) if there is an
alternative a € A such that ¢ < b < aora < b < cimply b =; c. We denote by PP
the set of preference profiles that are single-peaked, and assume below that each voter
has single-peaked preferences.

A binary tree is a pair V = (V, Q) where V' is a set whose elements are called nodes,
and Q C V x V is a partial ordering over V' whose elements are called branches. V'
is assumed to have a unique least element o called the origin, and for any v,v" € V
there is at most one ()-chain between v and v'. Any maximal element of V' is called a
terminal node, and we denote by V' the set of non-terminal nodes. If v Q v for v # v/,
we say v’ is a successor of v. Every non-terminal node has exactly two successors. If
two distinct nodes are successors of the same node, we call them neighbors. If there are
nodes vy = v, vy, ...,v; = v’ such that v,_; Q v, for k =1, ..., 1, we say that v follows v.

A division correspondence L : V = A associates with each node a subset of alter-
natives such that

1. L(o) = A for the origin o,
2. L(w) = L(u) U L(v) if v and v are successors of w,
3. L(u) C L(w) if u follows w, and

4. |L(t)| = 1 for each terminal node t.

dure. This is not true as the following example illustrates: Suppose agent 1 has preferences 2 > 1 > 3,
agent 2 votes left in the first vote and right in the second, and agent 3 always votes right. Then sincere
voting by agent 1 yields alternative 3 being selected. However, if agent 1 deviates and votes left in the
first vote instead, then alternative 1, which he prefers to alternative 3, will be selected.
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A set L(v) denotes the alternatives that are under consideration by the voters at
node v. A division L is partitional if L(u) N L(v) = ) for all neighbors u,v. We denote
by mingp L(v) and maxgp L(v) the smallest and largest alternatives of the set L(v) in
the order underlying the single-peaked preferences.

A woting tree (V, L) is a binary tree V together with a division correspondence L.

Definition 1. A wvoting tree (V, L) satisfies convexity of divisions (CONV) if,
forallveV, a<b<canda,c€ Lv) imply b € L(v).

Given a voting tree (V, L) and two neighbors u,v € V', we label one of the branches
leading to u by ¢ and the other by r. If (V, L) satisfies CONV, we label the branches
leading to u and v as follows: If mingp L(u) < mingp L(v), we label the branch leading
to node u by ¢, the left branch, and the branch leading to v by r, the right branch (and
vice versa).®

We can identify a node in terms of the branches that lead to this node starting from
the origin. Given a path v € {r,£}*, we denote by v @ r the path of length k + 1 whose
first k& entries coincide with the entries of v and whose last entry is r (and similarly for
0).

A system of thresholds for a voting tree (V, L) is a tuple of functions 7¢ : V! —
{1,2,...,n} and 7" : V' — {1,2,...,n} such that for any v € V',

() +177(v) = n + 1.

For any non-terminal node, the thresholds determine the number of votes needed in
order to continue to the successor node according to the left and right branch, respec-
tively. The sum of the two thresholds is n + 1, so that no ties can occur. A wvoting
procedure (V, L, T) is a voting tree (V, L) together with a system of thresholds 7.

Definition 2. A wvoting procedure (V, L, T) satisfies monotonicity of thresholds (MON)
if

(i) for every u,v € V' such that maxgp L(u @& ¢) = maxgp L(v ® ¢) = k and
mingp L(u @ r) = mingp L(v & 1) = k + 1, it holds that 7°(u) = 7°(v), and

(it) for every u,v € V' and s € {{,r} such that v follows u @ s, it holds that 7°(u) <
7°(v).

For voting procedures with convex divisions, part (7) is a mild consistency condition
requiring that, whenever the vote is among the same set of alternatives, the same
threshold is used, irrespective of the previous voting history. This consistency condition
allows us to unambiguously define the threshold 7(k) that is used whenever k is the
largest alternative associated with the left branch and k + 1 is the lowest alternative
associated with the right branch:

7(k) = 7%(v) for any v such that max L(v® )=k, and rgl}an Lver)=k+1.

8This labeling procedure is well-defined given that (V, L) satisfies CONV.
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Figure 5: Example of a voting procedure satisfying CONV and MON.

Condition (i7) states that after a vote that resulted in the adoption of the left (right)
division, a subsequent movement left (right) requires a qualified majority that is at least
as large as the one that governed the previous move in the same direction.

Figure 5 shows an example of a general voting procedure satisfying CONV and
MON.

Together with a given set of agents and their preferences and beliefs, any voting
procedure describes a game of incomplete information. At each non-terminal node,
players simultaneously vote either for the left or the right branch. If there are at least
7!(v) voters voting for the left branch at node v, then the game advances to node v @ ¢;
otherwise the game advances to node v @ r. If a terminal node v’ is reached, then
alternative L(v') is implemented.

Let H! denote the part of the history of play that is observable to player ¢ at node v.
One sensible specification is that H consists of the aggregate number of left and right
votes at each previous node, and ¢’s own voting behavior at all previous nodes. Another
possible specification is that H? includes the individual voting behavior of every player
at all previous nodes. A strategy of player ¢ associates to each node and each history

a (possibly mixed) action. None of our results below depend on the exact specification
of H}.

Definition 3. A strategy profile constitutes an ex-post perfect equilibrium if for every
non-terminal node, following any history, and for every realization of preferences, the
continuation strategies form a Nash equilibrium of the game in which the realization of
preferences is common knowledge.

The ex-post equilibrium embodies a notion of no-regret: even if all private informa-
tion is revealed, no voter regrets her sincere strategy, given the sincere strategies of the
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other voters. It is particularly robust because it does not depend on the beliefs voters
entertain.

For any preference ordering >=; over A we denote, by the same symbol, its lexi-
cographic extension over sets of alternatives. This allows us to define sincere voting
as:

Definition 4. A wvoting strategy is sincere given preference =—; if it prescribes at each
node v € V' to vote £ if and only if L(v & €) =; L(v ®r).

Under sincere voting, each voter votes for the set that contains his most preferred
alternative. If this alternative is contained in both sets, he votes for the set containing
his second-most preferred alternative, and so on. This definition of sincere voting goes
back to 7 (see also ? for a recent discussion of this definition).

4. Sophisticated Sincerity

In order to make our arguments as transparent as possible, we first treat the class
of partitional voting procedures, where the sets of alternatives associated with two
neighbors (i.e., successors of the same node) are disjoint. A well known example is the
successive voting procedure: alternatives are considered one at a time, so that, for any
non-terminal node, one successor node leads to a single alternative while its neighbor
leads to all other remaining alternatives that were not yet eliminated. We will turn
next to the somewhat more complex case where the voting tree need not be partitional.

4.1 Partitional Voting Procedures

Theorem 1. Consider any partitional voting procedure satisfying CONV and MON.
Then the profile of strategies where each player votes sincerely constitutes an ex-post
perfect equilibrium.

Proof. Suppose the result is not true. Then there exist a preference profile >, a voter i,
and a node v such that sincere voting prescribes a left vote for ¢ at v, but this is not a
best response to the sincere strategies used by the others (the arguments are analogous
if sincere voting prescribes a right vote). Because the voting procedure is partitional
and satisfies CONV| there exists an alternative k such that maxgsp L(v @ ¢) = k and
mingp L(v @ r) = k + 1. Because sincere voting prescribes a left vote for ¢ and because
preferences are single-peaked, i prefers k to any alternative in the right branch, k >; [
foralll € L(v @ ).

We now show that, if ¢ always votes for the branch containing alternative k, then k
will ultimately be selected. This contradicts our initial hypothesis that a right vote at
v was a best response.

Since, by assumption, a left vote is not a best response for voter i at v, it must be
that i is pivotal at v. Hence,

#{j 7£ l | j votes ¢ at ’U} = TE(U) — ]_’

which implies that there are at most 7°(v) — 1 voters with a peak which is situated
(weakly) left to of alternative k.

46



Since the voting procedure satisfies CONV, for every node v’ following v & ¢ it holds
that, for some alternative [ < k,

max L(v' @ ¢) =1l and min L(v'®&r) =1+ 1
SP SP

Therefore, only agents with a peak (weakly) to the left of [ will vote for the left branch
at v’ and hence at most 7%(v) — 1 of the other voters will vote left at v’. Since the
voting procedure satisfies MON, 7¢(v) < 7%(v'). Therefore, if i votes right at v, the
right branch is chosen. Since this holds for all nodes v" following v & ¢, and since the
right branch always contains alternative & (which is the largest remaining alternative),
this alternative is selected at the final node. [

4.2 Non-Partitional Voting Procedures

We focus first on a particular, very prominent example of a non-partitional voting
scheme, the amendment procedure. We then offer our general result about non-partitional
voting procedures.

The Amendment Procedure

At each stage of an amendment procedure, a vote is taken among two alternatives,
with the winner advancing to the next stage. Thus, for any two neighbors, the inter-
section of the corresponding sets of alternatives is generally non-empty, and consists of
all alternatives that were not yet eliminated, and that are not directly considered at
the respective stage.

Definition 5.

1. An amendment tree is a voting tree (V, L) such that, at each non-terminal node,
two alternatives are voted on and the losing alternative is eliminated.

2. An amendment procedure satisfies CONV if and only if for every non-terminal
node v there exist alternatives k <1 € A such that

min L(v ®¢) = k<k+1=minL(v® /)
sp SP
max L(v® /() = I<l+1=maxL(vér).
SP SP

Theorem 2. Consider an amendment procedure satisfying CONV and MON. Then
the profile of strategies where each player votes sincerely constitutes an ex-post perfect
equilibrium.

Proof. Assume, by contradiction, that sincere voting is not an equilibrium. Then, there
exist a preference profile >, an agent i, and a node v such that sincere voting prescribes
a left vote for ¢ at v, but this is not a best response to the sincere strategies used by the
others voters (the arguments are analogous if sincere voting prescribes a right vote).
Suppose that the final outcome is alternative k if i votes right at v and plays best
responses thereafter.
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Since, by assumption, a left vote is not a best response for voter i at v, it must be
the case that ¢ is pivotal at v. If ¢ votes left at v and right at all following nodes, then
an alternative in the intersection set L(v & ¢) N L(v & r) is chosen (because thresholds
are monotone, and because the other voters vote sincerely). Because sincere voting
prescribes a left vote at v, it must hold that L(v@¢) >=; L(v@r). Since preferences are
single-peaked, all alternatives in the intersection set L(v @ ¢) N L(v @ r) are preferred
to the largest available alternative, maxgsp L(v @ 7). Therefore, we can conclude that
k # maxgp L(v @ r) and hence that k € L(v ® £) N L(v & r).

Since alternative k is selected following the right branch at v, a node v’ is reached
such that the left branch (which contains alternative k) is chosen, and such that k41 ¢
L(v' @ ¢). By Lemma 1 (i) in the Appendix, the fact that the left branch is chosen
at v' implies that at least 7(k) voters voted left; consequently, there are at least 7(k)
voters having a peak weakly left of alternative k. If k£ # min L(v & r), then a node
v" is reached such that the right branch (which contains alternative k) is chosen and
k—1¢ L(v" ®r). By Lemma 1 (ii), there are at most 7(k — 1) voters having a peak
weakly left of alternative k — 1. If k = mingp L(v @ ), the fact that 7 is pivotal at v
implies that there are exactly 7(k — 1) — 1 voters with peak weakly left of alternative
k—1.

We now show that if ¢ always votes for a branch containing alternative k, then £ is
chosen also following the left branch at v. Consider any node v’ following v @ ¢ such
that k is compared to a larger alternative, that is k € L(v' © () and k ¢ L(v' @ r). By
Lemma 1 (iii), 7%(¢') < 7(k). Since at least 7(k) — 1 of the other voters have a peak
weakly left of alternative k, the left branch is chosen at v'.

Analogous arguments imply that the right branch is chosen whenever alternative
k is only in the right branch. As a consequence, the branch containing alternative k
is chosen at each node, and k is finally elected in the left branch starting at v. This
contradicts the initial assumption that a sincere left vote was not a best response for ¢
at node v. O

General, Non-Partitional Voting Procedures

? argue that the theoretical concept of amendment procedures as defined above is
too narrow, and that many realistic agendas take a different form. Therefore we now
extend our results to a much broader class of voting procedures. Specifically, we show
that for any voting procedure satisfying MON and CONV| sincere voting is an ex-post
perfect equilibrium. Therefore, our characterization extends, for example, to asymmet-
ric and non-uniform amendment agendas in Ordeshook and Schwarz’s terminology.’
Note, however, that among amendment procedures, only their continuous agendas can

satisfy CONV.10

Theorem 3. Consider a voting procedure satisfying CONV and MON. Then sincere
voting is a strong ex-post perfect equilibrium.

9An amendment procedure is symmetric if the voting tree splits into two subtrees that are alike
except for an interchange of alternatives. It is uniform if all branches have the same length.

1An amendment procedure is continuous if, at every stage, the winner of the previous stage is
contested at the current stage (i.e., it is contained in only one of the following divisions.
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The proof of Theorem 3 is found in the Appendix. Note that this theorem shows that
sincere voting is even a strong, ex-post perfect equilibrium, implying that there is no
coalition that can achieve a better outcome by deviating from sincere voting. Moreover,
it also immediately implies that sincere voting is the sophisticated, strong equilibrium
of any procedure that satisfies CONV and MON for any complete information game
where agents have single-peaked preferences.

4.3 Single-crossing preferences

It is well known that consistent aggregation of preferences with desirable properties
is also possible on the domain of single-crossing preferences. (7, 7, 7, 7). We briefly
discuss here several implications for this important domain.

Given a linear order < on alternatives and a linear order on preferences, we say that
a set of preferences is single-crossing if >'being larger than > and a < b imply b >’ a
whenever b > a.

Under single-crossing preferences, a Condorcet winner exists and it is the most
preferred alternative of the median voter. Our next result provides conditions under
which sincere voting is an ex-post perfect equilibrium if preferences are single-crossing.
As a consequence, any voting tree satisfying CONV can be used to elect the Condorcet
winner under incomplete information.

Theorem 4. Suppose that n is odd, that preferences are single-crossing, and consider
a voting procedure satisfying CONV that uses simple majority thresholds at each node.
Then sincere voting is an ex-post perfect equilibrium.

The proof of the theorem is found in the Appendix. Theorem 4 can be generalized
to allow for more general qualified majority requirements. However, sincere voting
need not constitute an ex-post perfect equilibrium for every voting procedure satisfying
CONYV and MON, as the following example illustrates. Consequently, compared to the
analysis under single-peaked preferences, there is less freedom in choosing the majority
requirements with single-crossing preferences. The additional problem arises because,
under single-crossing preferences, an alternative need not be the peak of some admissible
profile.

Example 1. Suppose there are two voters and three possible preferences: 1 = 2 > 3,
1>=3%> 2, and 3 = 1 = 2. Note that this set of preferences is single-crossing (if
preferences are listed in increasing order).

Consider a successive voting procedure in which alternative 1 is selected at the first
stage if both voters vote in favor of it. Otherwise the game proceeds to the second stage,
at which alternative 2 is selected if at least one voter votes for it, and alternative 3 is
selected otherwise. Note that this procedure satisfies MON and CONYV.

Sincere voting prescribes a right vote at the first stage for voter 1 with preferences
3> 1= 2. If voter 1 is pivotal at the first stage, he can conclude that voter 2 prefers
alternative 1 to the others. If voter 2 has preferences 1 = 2 = 3, alternative 2 will be
selected under sincere voting. But, voting left at the first stage is a profitable deviation
for voter 1 since it leads to alternative 1 being implemented. Hence, sincere voting is
not an ex-post perfect equilibrium.
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The above voting procedure facilitates the adoption of an alternative that is not one
of the voters’ peaks. This introduces here a potential incentive to deviate from sincere
voting since a pivotal voter cannot be certain about the outcome of sincere voting.

5. Dynamic Implementation

In this section we generally characterize the social choice functions (seen as mappings
that associate to each profile of single-peaked preferences a social alternative) that
can be implemented by the sincere, ex-post perfect equilibria of sequential, binary
voting procedures. To do so, let us first focus on the social choice functions that are
anonymous, unanimous and dominant-strategy implementable (DIC) on the domain of
single-peaked preferences. Unanimity is a weak form of Pareto-Optimality, and requires
that an alternative is selected as the social choice when it is preferred by all agents to
all other alternatives. Anonymity requires invariance of the social choice with respect
to permutations of the voter’s names. Note that we do not require neutrality since
sequential, binary voting schemes and their agenda are per-se non-neutral.

The set of anonymous, unanimous and DIC social choice functions has been elegantly
characterized by ? and further refined by ? and 7. Moulin showed that any such
mechanism can be described as choosing the median peak among n reported real peaks
and n—1 phantom peaks (these are constant for each mechanism, and do not depend on
the reports of the real voters).!! In their study about optimal, utilitarian voting schemes
? showed that the successive voting procedure with a particular convex agenda can be
used to replicate, in ex-post perfect equilibrium, every anonymous, unanimous and
DIC mechanism. This is done by varying the adoption threshold associated with each
alternative in the successive procedure.!? Our result below extends their observation to
any convex, not necessarily partitional, voting procedure.

Theorem 5. Consider any unanimous, anonymous, and DIC social choice function
f: PSP — A | and an arbitrary voting tree (V, L) satisfying CONV. Then there exists
a system of thresholds satisfying MON such that sincere voting is an ex-post perfect
equilitbrium that implements f.

Proof. Tt follows from ? and ? that f is a generalized median voting rule, with p, > 0
phantom voters with peak on alternative k, such that >7,c4 pr = n — 1. For each node
ve V! set

maxgp L(vel) maxgp L(vl)
™ (v) =n — > pm and 7(v) = > pmtl
m=1 m=1

By construction, 7°(v) + 7" (v) = n + 1 for all v € V', and this system satisfies the
consistency condition (i) in the definition of MON. We now show that it also satisfies the
monotonicity condition (ii). Suppose that node v follows u@®¢. Then L(v®l) C L(udl)
and hence 7°(v) > 7%(u). Similarly, if v follows u @ r, then L(v & r) C L(u & r).

' Moulin assumed that the social choice functions depend only on the reported peaks, while Border
and Jordan, among others, showed that the peak-only assumption is not needed.
12Note that in that procedure each alternative appears at a unique terminal node.
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Hence, 7¢(v) < 7%(u), which is equivalent to 7"(v) > 7"(u). Therefore, the system of
thresholds 7 satisfies MON, and Theorem 3 implies that sincere voting is an ex-post
perfect equilibrium.

Fix now a preference profile > in P°F and suppose that f(>=) = k. We show that
k is selected in the sincere voting equilibrium. Because f(>) = k, there are at least
n— Sk _| pm agents with a peak weakly to the left of k and at most n — >F"1 p,, — 1

voters with a peak strictly to the left of k. By construction

, maxgp L(vel) k
" (v) =n — S <n=) pn
m=1 m=1

for any node v € V' such that k € L(v @ £). Since there are at least n — >F _ p,,
agents voting for left, the left branch is chosen in this case. If k ¢ L(v & (), then, by
construction,

maxgp L(vel) k—1
)= > pmtl<) pntl
m=k m=1
k

By the above argument, there are at least >-%!, p,, +1 voters with a peak weakly to the
right of k, and therefore the right branch is chosen. Hence, at each node, a branch that
contains alternative k is chosen, and consequently the final choice must be alternative

k. []

6. Case studies

In this Section we present several case studies in light of our findings. In particular, we
illustrate cases where a probable Condorcet winner has not been chosen under sophis-
ticated voting, a phenomenon that cannot be satisfactorily explained under complete
information.

6.1 Pension and Women’s Status in Switzerland (Senti, 1998)

This case is about a pension reform (pertaining to the status of married women), de-
bated in the Swiss Chamber of Cantonal Representatives.!®> The alternatives were:

(1) keep the status quo where women'’s benefits are mainly defined by their husband’s
contribution

(2) a moderate reform®

(3) a radical reform, that would make pension contributions and benefits individual
rather than family based.

The likely (but not certain) preferences where:

4

e 1 > 2 > 3 for a group of 18 legislators associated with the ruling, conservative
party.

I3This is the second Chamber of the Swiss Parliament, similar to the U.S. Senate.
141n fact there were two moderate proposals, but this does not change the conclusions. We use the
simplified version, following Senti.
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e 2>1%3o0or2>3>1foragroup of 21 legislators associated with moderate
parties

e 3> 2> 1 for a group of 6 legislators associated to left leaning parties (7).

The first vote was among alternatives 2 and 3. Although 2 is the Condorcet winner,
alternative 3, the radical proposal, won 24-19. The only possible explanation is that the
conservatives voted strategically for their worst alternative in order to eliminate the
Condorcet winner and likely outcome of the overall vote from further consideration.'®
In the second vote, alternative 1, the status quo preferred by the Conservatives easily
won 30-13 against the radical proposal 3.

This is exactly the kind of manipulation we illustrated in our introductory example
(see Figure 1) and is typical of "both extremes against the middle” example of successful
strategic voting discussed in the literature. But note that, under complete information
such a manipulation should never be successful since a Condorcet winner should be
elected irrespective of the agenda! In the present example, the 6 left leaning legisla-
tors could have shifted their vote to alternative 2, the moderate reform, causing it to
advance to the next stage where it would have most probably won against alternative
1. Thus, the above outcome can be explained by a complete information model only
by attributing sophistication to some legislators and naivete to others, a not very sat-
isfactory hypothesis. Instead, under incomplete information and a non-convex agenda,
sincere voting is not an equilibrium, and hence various beliefs can lead to maneuvers
that succeed in some circumstances while failing in others.

The following example illustrates the strategic deviations from sincerity that are
part of many Bayesian equilibria.

Example 2. There are 3 voters that use the voting procedure illustrated in Figure 1.
Each of the four possible single-peaked ordinal preferences is associated with a “type”:
preference 1 = 2 = 3 with type t1, 2 = 1 > 3 with type ty, 2 = 3 > 1 with type t3, and
3 = 2 > 1 with type ty. Types are I.1.D. and, for each agent, type t; is realized with
probability q;. In addition, for the analysis of Bayesian equilibria, we need a cardinal
description of utilities: we assume that each voter values his most preferred alternative
by 1, his second-most preferred alternative by v, and his least preferred alternative by
0. We show in the Appendix that, if v < %, then the following strategies form
a Bayes-Nash equilibrium: all types except ty vote sincerely, and voters of type ty vote
left at the first stage and vote sincerely at the second.

Even though they are aware of the deviation by type t4 voters, it is optimal for type
t1 wvoters to vote sincerely because a deviation would significantly reduce their chances
of getting their most preferred alternative. Type t, voters vote strategically (for their
worst alternative!) at the first stage in order to increase the chances of their most
preferred alternative at the second stage. This is optimal for type ty voters as long as
v 18 small enough, but this behavior entails a risk that their worst alternative will be
finally adopted. The following case study provides exactly such an instance.

15This is analogous to the “killer amendments” discussed in the literature about the U.S. Congress.

92



6.2 Gun Control in Sweden (Bjurulf and Niemi, 1978)

The Swedish parliament, composed of two chambers, had to decide among three alter-
natives:

1 : appropriate 500.000 crown for the riflemen’s association.

2 : appropriate 470.000 crowns;

3 : no appropriation.

The main difference between 1 and 2, and the reason for controversy was an extra
sum for young riflemen aged 12-15. The Social Democrats had clear preferences 3 >
2 > 1, while the Conservatives had opposed preferences 1 > 2 > 3. The Farmers had
preference 2 > 1 > 3, while the preferences of the Liberals were more uncertain, but
most probably did not have a peak on alternative 1.

In each chamber the procedure was an amendment agenda with 1 and 3 competing
against each other at the first stage, and with the winner against 2 at the second
stage. This is a convex agenda, so that, according to our theory, we should not observe
strategic manipulations, e.g. of the type “both extremes against the middle”.

In one Chamber the result was unspectacular, with alternative 3 winning over alter-
native 2 with a 81-72 margin. But, this case is particularly interesting because of the
entire structure of the legislative process: each Chamber decides independently, and if
the outcomes are different, a joint vote is taken among the respective winners in the two
Chambers. This may lead to a violation of convexity. See Figure 6 for an illustration.

The binary supra-structure can induce the same incentives for manipulation as a
non-convex agenda: Indeed, the Social Democrats tried to achieve their preferred out-
come by letting alternative 1 - their worst outcome - win in the other Chamber, so that
the final contest would be against 1 and 3, where 1 was expected to loose. They were
wrong: in the final vote alternative 1 defeated 3 with 197 to 168 votes, and the ma-
nipulation replaced the likely Condorcet winner, alternative 2, with the worst outcome
for the manipulators (7). It should be clear that, under an assumption of complete
information, such a failure should never occur.

6.3 Roll Calls in the U.S. Congress (Ladha, 1994)

This study is unusual because it looks at 200 votes selected from more than 8000 roll
calls over a period of 8 years (7). The criterion for selection - the existence of several
comparable votes on the same issue - was driven by the author’s aim of carefully testing
several direct empirical implications of a model proposed by ? in their monumental
book on the U.S. Congress. It turns out that series of votes that are presented, which
cover quite diverse areas of legislation, describe situations where the order of votes
on amendments closely follows their position on the Liberal-Conservative ideological
spectrum. Let us illustrate these general findings with one of Ladha’s examples: this
concerns a series of 1977 Senate votes on the level of tip credit enabling hotels and
restaurants to pay less than the minimum wage to employees who receive part of their
earnings from tips. The Human Resources Committee has proposed a 20% credit, i.e.,
allowing pay 20% under the minimum wage. Three amendments were considered at
levels of 50%, 40% and 30%, respectively. Since the proposals are mutually disjoint and
concern the entire issue at hand, the voting tree suggested by the actual order of votes
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Figure 6: Gun control in Sweden

o4



Figure 7: Successive voting procedure satisfying MON

is depicted, together with the voting results, in Figure 7.

Note that sincere voting is an equilibrium (the agenda is convex) and one should
expect the number of Yes votes (of legislators who prefer higher levels of credit) to
increase and the number of No votes (of legislators who prefer lower levels) to decrease,
as voting advances from the high to the low proposal.!® This is what the actual re-
sults suggest for this case, and basically the same picture emerges in all 200 examined
cases: smooth increases of the number of Yes votes paralleled by smooth decreases in
the number of No votes (or vice versa) as the amendment becomes more and more
liberal or more and more conservative. Thus, there are never instances of large swings
characteristic of strategic voting, as illustrated above.

Although we do not have precise information about the hypothetical complete
agenda in all these cases, Ladha’s many examples suggest indeed that trees with a
convex agenda lead to sincere voting.

6.4 Certiorari at the U.S. Supreme Court (Caldeira et al., 1999)

Most cases decided by the U.S.Supreme Court arise from petitions to review decisions of
lower courts.!” The decision process is successive: first, a decision to grant or deny the
cert is made, where granting requires at least 4 out of the 9 judges to be in favor (thus
less than a simple majority!).!® This decision need not be explained to outsiders (the
process is rather secretive), and a denial does not constitute per-se an acknowledgment
of the earlier decision. If a cert is granted, a decision “on merits”, roughly speaking to
affirm, or to reverse the opinion of the lower court, follows by simple majority (5 out
of 9). Thus, the basic decision procedure is binary and successive and does not use a
constant adoption threshold (see Figure 8).

The main source of uncertainty about the preferences of others is the presence of

160ne senator voted only for the 40% level, which explains the small increase, from 46 to 47.

17Certiorari (or certs) is the Latin name for requests of more information, used because the Supreme
Court requests the relevant documents from the lower court.

18See 7 for an analysis of this rule.
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Figure 8: Structure of the decision process at the U.S. Supreme Court

“moderate” judges who do not have strong ideological convictions that could be used
to predict their opinions with high probability. Unless the earlier “status quo” decision
is clearly on one side of the possible decisions on merit, i.e., more “liberal” or more
“conservative” or obviously wrong on pure judicial terms, the procedure is not convex:
a convex successive procedure must start with the decision on one of the most extreme
alternatives, which is simply infeasible here. In particular, the monotonicity of the
adoption thresholds is only apparent.

Most certs are denied because they are deemed frivolous, but it has been argued,
and frequently documented, that some cert decisions are “defensively” denied, for ex-
ample, by liberal (conservative) judges that are afraid of a reversal (affirmation) of an
earlier liberal decision. In other words, the vote at the first stage is not sincere, on the
potential merits of the cert. Such a strategic vote is indeed optimal in this non-convex
procedure for beliefs that attach a sufficiently high probability to a subsequent unfa-
vorable outcome, and is more likely to occur for courts where the number of moderates
is high enough, so that pivotality at both stages matters. 7 identify 18 such potential
cases in 1982.

7. Conclusion

This paper offers a tractable, robust theoretical framework for analyzing ubiquitous
voting procedures where voters are privately informed about their preferences. If the
outcome of a voting procedure should not be sensitive to beliefs about others, nor to
the deployment of strategic skills, the agenda needs to be built “from the extremes to
the middle” so that more extreme alternatives are both more difficult to adopt, and are
put to vote before other, more moderate options.

Our results illuminate the empirical discussion about the relative frequency of strate-
gic voting in real life situations. Firstly, they imply that sincere voting is often a very
robust, ex-post perfect equilibrium, and hence that sincere and sophisticated voting
are observationally equivalent in many relevant cases. Secondly, for all reviewed case
studies where strategic deviations from sincere voting are found, our theoretical results
predict that sincere voting is not an ex-post perfect equilibrium, and hence that prof-
itable deviations matching the observed actions do exist for some types of agents and
some of their beliefs.
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Appendix

Arguments for Example 2.

Sincere voting by all types in the second stage is a weakly dominant strategy. More-
over, sincere voting at the first stage is optimal for voters of type ¢ and ¢3: Whenever
they are pivotal, they can be sure to obtain their most preferred alternative given the
sincere strategies used by the others.

It is optimal for voters of type t; to vote left if, conditional on being pivotal, they
prefer the left branch:

1
q1\q2 + q3) + quq
(1 + q4)(q2 + q3) [ (e ) ! 2}
a1 4244
= +
a+a (@ +qu)(e+a)
EU(r|t;, pivotal) = v

EU(¢|t,, pivotal) =

Similarly, it is optimal for type t4 to vote left if, conditional on being pivotal, they
prefer the left branch:

1
EU (¢|ty, pivotal) = +q3) +
( |4 p ) (CI1 +q4)(q2+q3) [q4(qQ Q3) QIQS}
4 4143
= +
a+a (@ +aq)(e+ )
1
EU(r|ty, pivotal) = +q3) + + q3)v
( |4 p ) (q1+Q4)(q2+Q3) [94(612 613) Q1(Q2 613) }
q4 q1

—+ V.
G1t+q G+ q

It can be easily verified that, given the strategies of the others, if v < %, then

voting left in the first stage is a best response for voters of type t; and t4.

Lemma 1. Consider an arbitrary voting procedure satisfying CONV and MON. Given
anyu € V such that maxgp L(u®f) = k and mingp L(u®r) = k+1, let 7(k) = 7°(u).*®
Then the following statements hold:

(i) If k€ L@ {) but k+1 ¢ L(v® (), then °(v) > 7(k).
(i) If k—1¢ Llv®r) but k € L(v®r), then 78(v) < 7(k — 1).
(iii) If k € Lo ® ) but k & L(v @), then 7°(v) < 7(k).

(iv) If k ¢ Llv® l) but k € L(v @), then 7¢(v) > 7(k).

19Gince the voting procedure satisfies MON, this definition is independent of the exact choice of w.
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Proof.

(i) If Llwer) = {k+1,...}, then we are done. If Llv & r) = {...,k + 1,...}, then
a node v" will be reached s.t. L(v' @ ¢) = {...,k} and L(v" @& r) = {k+1,...}. Hence,
(v") = 7(k). MON implies 7¢(v) > 7¢(v").

(ii) Analogously.

(iii) If Llve £) = {..., k}, then we are done. If L(v&® () = {..., k, ...}, then there is a
node v’ following v & ¢ such that L(v' & /¢) = {...,k} and L(v'®r) ={k+1,...}. Hence,
(v') = 7(k). Because of MON, 7¢(v) < 7¢(v') = 7(k).

(iv) Analogously. O

Proof of Theorem 3.

Fix a preference profile >, a coalition C' C N, and a node v. We show that there
is no profitable deviation for C starting at v. This is done by proving that, for any
possible deviation, the members of coalition C' are weakly better off by voting sincerely
at v and following specific strategies afterwards. Since this holds for any v, this implies
that there is no coalition that has a profitable deviation, and hence that sincere voting
is a strong ex-post perfect equilibrium.

To obtain a contradiction, suppose that C' has a profitable deviation starting at
v. If the decision at v was the same as under sincere voting, then the members of
coalition C' could, without incurring a loss, vote sincerely at v and then follow the
actions prescribed by the deviation from the next node on. This holds because all other
voters are assumed to vote sincerely, which is a Markovian strategy, i.e., a strategy that
does not condition on the past history of play.

Therefore, there exists a subset C' C C such that sincere voting prescribes a left
vote at v for i € C, but the deviation prescribes a right vote (or vice-versa, which yields
an analogous argument). Moreover, the left branch must be selected if all members of
coalition C vote left, but the right branch is selected if all members follow the deviation
and vote right. Let k be the alternative chosen if coalition C plays its deviation strategy
profile, while all other voters vote sincerely. Hence, k must be contained in the right
branch at v. We show first that & is also contained in the left branch.

Claim 1: k € L(v @ ()

We show that £ ¢ L(v @ ¢) implies that the outcome after the deviation is strictly
worse for some members of C'; contradicting the assumption that the deviation was
profitable. Let [ be chosen under sincere voting. By CONV, [ < k. Because the
deviation is profitable for C, k =; [ for all i« € C'. Since preferences are single-peaked,
this implies [ + 1 =; [ for all i € C.

We now show that maxgp L(v & ¢) = [. Suppose instead that [ +1 € L(v & ¢),
and consider any node v’ following v @ ¢ such that [ + 1 ¢ L(v' @ £). At this node,
the right branch is chosen under sincere voting because, by MON, the threshold for a
consecutive left decision is weakly higher than at v, and because coalition C votes for
the right branch at v’. This implies that [ + 1 is never rejected, which contradicts the
assumption that [ is selected. Thus, we can conclude that I +1 ¢ L(v @ {).

Because [ is the largest alternative in the left branch, and because a sincere vote at
v for i € C is to vote left, single-peaked preferences imply that [ =; k for all i € C.

o8



This implies that the deviation is not profitable for i € C, which contradicts our initial
assumption. Thus, we can conclude that k € L(v & /).

Claim 2: If coalition C wotes sincerely at v, and afterwards always votes for the
branch containing alternative k, then alternative k will be selected.

Because alternative k is contained in the both branches at v, the right branch must
contain a strictly larger alternative. Condition CONV implies then that k+1 € L(v®r).
Since alternative k is selected if the right branch is chosen at v and since coalition C'
plays its profitable deviation, a node v" following v @ r is reached such that the left
branch is chosen at v' and k+1 ¢ L(v' @ ¢). By Lemma 1 (i), 7°(¢") > 7(k). Since the
left branch is chosen at node ', there are at least 7°(k) — |C] voters in N \ C having a
peak weakly to the left of alternative k.

Since alternative k is selected if the right branch is chosen at v and since coalition
C plays its profitable deviation, a node v” following v is reached such that the right
branch is chosen and k — 1 ¢ L(v” @ 7). By Lemma 1 (ii), 7(v”) < 7(k — 1). Since the
right branch is chosen, at most 7(k — 1) — 1 of the voters in NV \ C have a peak weakly
lower than alternative k — 1.

We show now that, if coalition C' always votes for a division containing alternative
k, then k is chosen following the left branch at v as well. Consider any node v’ following
v @ ¢ such that k is contained in the left branch, but not in the right branch: that is,
ke LW @/f) and k ¢ L(v' ®r). By Lemma 1 (i), 7%(v’) < 7(k). Since there are at
least 7¢(k) — |C| voters in N \ C having a peak weakly lower than alternative k, the left
division is chosen if coalition C' votes left.

Analogous arguments imply that the right branch is chosen whenever alternative k
is only in the right branch and when C' votes for the right branch. As a consequence,
the branch containing alternative k is chosen at each node, and k is finally selected even
if the left branch is chosen at v. To conclude, we have shown that, for any deviation
of coalition C' at v, the same outcome can be obtained by voting sincerely at v and
following specific strategies thereafter. O]

Proof of Theorem 4.

Note that, starting at an arbitrary node, sincere voting by all voters results in the
election of the alternative preferred by the median type among all remaining alterna-
tives. This holds because the procedure satisfies CONV, because simple majority is
used at each stage of the voting process and because, at each stage, if the median voter
votes left, all voters with smaller types will vote left as well (an analogous argument
holds if the median voter votes right). Sincere voting is an ex-post perfect equilibrium
if there are no profitable one-shot deviations, .

Fix now an arbitrary profile of preferences, an arbitrary node, and an arbitrary
voter . We show that voter ¢ cannot gain by voting insincerely at this node and voting
sincerely afterwards. If i’s most preferred alternative is in the left branch, but the
median type’s most preferred alternative is in the right branch, then by the previous
arguments the right branch will be chosen no matter how i votes. Analogous arguments
apply if 2’s most preferred alternative is in the right branch, but the median type’s most
preferred alternative is in the left branch.
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Hence, suppose the median votes left and ¢’s sincere vote would be to vote left
as well (analogous arguments apply if both vote right under sincere voting). If the
median type’s most preferred remaining alternative, say alternative m, is also in the
right branch, a deviation is not profitable as m will be elected no matter how ¢ votes
at this node. If m is only in the left branch and i is pivotal, then CONV implies that
if © deviates then a larger alternative will be elected, say alternative k.

Suppose ¢’s type is smaller than the median type. Because the median prefers m to
any larger alternative still available, and because the median’s type is larger than 7’s
type, m »>; k follows by single-crossing. Hence, the deviation is not profitable.

Suppose instead that i’s type is weakly larger than the median type. Then ¢ is
pivotal only if his type equals the median type, but then sincere voting yields his most
preferred remaining alternative. Hence, there is no profitable deviation, and sincere
voting is consequently an ex-post perfect equilibrium.

O
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CHAPTER 4

Costly Verification in Collective Decisions

We study how a principal should optimally choose between implementing
a new policy and keeping status quo when the information relevant for the
decision is privately held by agents. Agents are strategic in revealing their
information, but the principal can verify an agent’s information at a given
cost. We exclude monetary transfers. When is it worthwhile for the prin-
cipal to incur the cost and learn an agent’s information? We characterize
the mechanism that maximizes the expected utility of the principal. This
mechanism can be implemented as a weighted majority voting rule, where
agents are given additional weight if they provide evidence about their in-
formation. The evidence is verified whenever it is decisive for the principal’s
decision. Additionally, we find a general equivalence between Bayesian and
ex-post incentive compatible mechanisms in this setting.

1. Introduction

The decision on whether a newly approved pharmaceutical drug should be subsidized
in Sweden is determined by the Dental and Pharmaceutical Benefits Board (TLV).
The producer of the drug can apply for a subsidy by providing arguments for clinical
and cost-effectiveness of the drug. Other stakeholders are also given an opportunity
to participate in the deliberations by contributing with relevant information for TLV’s
decision. Importantly, the applicant and other stakeholders should provide documen-
tation supporting their claims made to the board. Clinical effectiveness is documented
by reporting the results of clinical trials, evidence for cost-effectiveness should be pro-
vided through analysis in a health economic model. TLV can verify the information
provided, but it is costly to do so. For example, TLV occasionally has to build their
own health-economic models or hire external experts to evaluate the evidence that was
provided, which induces significant costs. When should TLV invest effort and money
to verify the evidence? What decision rule should TLV use to decide on the subsidy?
The usual mechanism design paradigm cannot be applied to address these questions,
because it assumes that information is not verifiable. To learn about costly verification
we consider a setting with a principal that decides between introducing a new policy
and maintaining status quo. The principal’s optimal choice depends on agents’ private
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information. Agents can be in favor or against the new policy, and they are strategic in
revealing their information since it influences the decision taken by the principal. We
exclude monetary transfers, but before deciding the principal can learn the information
of each agent at a given cost. We show that the principal’s optimal mechanism can
be implemented as a weighted majority voting rule, where agents are given additional
weight if they provide evidence supporting their position on the new policy. The ev-
idence is verified by the principal whenever it is decisive for the principal’s decision.
Moreover, we show that for any decision rule there exists an equivalent decision rule
that can be robustly implemented without requiring additional verification.

To analyze our model, we show first that the principal can, without loss of gen-
erality, use an incentive compatible direct mechanism, and it can be implemented as
follows. In the first step, agents communicate their information. For each profile of
reports, a mechanism then provides answers to three questions: Firstly, which reports
will be verified (verification rules)? Secondly, what is the decision regarding the new
policy (decision rule)? Lastly, what is the punishment when someone is revealed of
lying? Because we can focus on incentive compatible mechanisms, punishments will be
imposed only off the equilibrium path. The principal can therefore always choose the
severest possible punishment, as this weakens incentive constraints but does not affect
the decision taken on the equilibrium path. In general, the principal can implement
any decision rule by always verifying all agents. However, the principal has to make
a trade-off between using detailed information for “good” decisions and incurring the
costs of verification.

Key to solving the principal’s problem is that incentive constraints have a tractable
structure. A mechanism is incentive compatible if and only if it is incentive compatible
for the “worst-off” types. These are the types that have the lowest probability of
getting their preferred alternative. If there is a profitable deviation for some type, this
deviation will also be profitable for the worst-off types because they have the lowest
probability of getting their preferred alternative on the equilibrium path. Because
only incentive constraints for the worst-off types matter and additional verification is
costly the optimal verification rule makes the worst-off types exactly indifferent between
reporting truthfully and lying. This is true independent of what the optimal decision
rule is.

The optimal mechanism can be implemented as a voting rule with flexible weights.
Each agent votes in favor or against the new policy. The decision rule compares the sum
of weighted votes in favor with the sum of weighted votes against the new policy, and
the alternative with the highest sum is chosen. Agents that do not provide evidence
have baseline weights attached to their votes. If an agent claims to have evidence
strongly supporting his preferred alternative, he gains additional weight in the voting
rule corresponding to the importance of his information. We say that an agent provides
decisive evidence if the decision on the policy changes if the agent merely voted for his
preferred alternative, instead of providing the evidence. In the optimal mechanism, all
decisive evidence is verified. Consequently, in equilibrium agents with weak evidence in
favor of their preferred alternative will merely cast a vote, and only agents with strong
evidence in favor of their preferred alternative will provide the evidence to the principal.

In the optimal mechanism, an agent is verified whenever he presents decisive evi-
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dence. This implies that he cannot gain by deviating, no matter what the others’ types
are. The strategies we describe therefore form an ex-post equilibrium, which does not
depend on the beliefs of the agents. This is a desirable feature of any mechanism because
it implies that it can be robustly implemented and does not rely on detailed information
about the beliefs of the agents. We show that this is not a coincidence, but a general
feature of our model. The principal can obtain this robustness of any Bayesian incentive
compatible mechanism without requiring additional verification costs; for any Bayesian
incentive compatible mechanism there exists an equivalent mechanism, that induces the
same interim expected decision and verification rules, and for which truth-telling is an
ex-post equilibrium. As a technical tool to establish this equivalence we show that for
any measurable function there exists a function with the same marginals and for which
the expectation operator commutes with the infimum/supremum operator.

For purposes of practical applications, there are three main features to be learned
for the design of real-world mechanisms. First, only types with strong evidence in
support of their preferred alternative should be asked to provide evidence, and types
with weak evidence should be bunched together. This reduces the incentives for types
with weak evidence to mimic types with stronger evidence, and thereby saves costs of
verification since types with stronger evidence can be verified less frequently. Second,
evidence should not always be verified. Instead, the principal should determine which
agents are decisive and verify only those agents. Third, the principal should take the
verification cost into account when evaluating an agent’s information.

Related Literature

There is a large literature on collective choice problems with two alternatives when
monetary transfers are not possible. One particular strand of this literature, going
back to the seminal work by 7, assumes that agents have cardinal utilities and com-
pares decision rules with respect to ex-ante expected utilities. Because money cannot
be used to elicit cardinal preferences, Pareto-optimal decision rules are very simple and
can be implemented as voting rules, where agents indicate only whether they are in
favor or against the policy (?, ?).! Introducing a technology to learn the agents’ infor-
mation allows for a much richer class of decision rules that can be implemented. Our
main interest lies in understanding how this additional possibility opens up for other
implementable mechanisms, and changes the optimal decision rule.

? introduces costly verification in a principal-agent model. Our model differs from
his, and the literature building on it (see e.g. 7, 7) since monetary transfers are not fea-
sible in our model. Allowing for monetary transfers yields different incentive constraints
and economic trade-offs than in a model without money.

Recently there has been growing interest in models with state verification that do not
allow for transfers. The closest paper to ours is the seminal work by ?. They consider
a principal that wishes to allocate an indivisible good among a group of agents where
each agent’s type can be learned at a given cost. The principal’s trade-off is between
allocating the object efficiently and incurring the cost of verification. BDL characterize
the optimal mechanism, i.e., the mechanism that maximizes the expected utility of

1See also ? for a recent extension to settings with more than two alternatives.
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the principal subject to the incentive constraints. While we also study a model with
costly verification and without transfers, we are interested in optimal mechanisms in a
collective choice problem, where voting rules are optimal in the absence of a verification
technology. Having derived the optimal mechanism in our model allows us to analyze
and understand which features of the optimal mechanism found by BDL carry over
to other models with costly verification. We discuss this question in more detail in
Section 6. ? also study the allocation of an indivisible good, though in contrast to
BDL the principal always learns the private information of the agents, but only after
having made the allocation decision and the principal has only limited punishment at
disposal. Glazer and Rubinstein (2004, 2006) consider a situation when an agent has
private information about several characteristics and tries to persuade a principal to
take a given action, and the principal can only check one of the agent’s characteristics.?

Our result on the equivalence between Bayesian and ex-post incentive compati-
ble mechanisms relates our work to several papers establishing an equivalence be-
tween Bayesian and dominant-strategy incentive compatible mechanisms in settings
with transfers (7, 7). Since incentive constraints take a different form in our model,
the economic mechanisms underlying our equivalence are also different. To prove the
equivalence, we use mathematical tools due to 7 that have been introduced to the
mechanism design literature by ?.

The remainder of the paper is organized as follows. In Section 2 we present the
model and describe the principal’s objective. In Section 3 we introduce voting-with-
evidence mechansims and discuss their optimality, while Section 5 contains the proof
of the optimality of the voting-with-evidence mechanisms. We establish an equivalence
of Bayesian and ex-post incentive compatible mechanisms in Section 4. In Section 6 we
discuss in detail the relation of our paper and BDL. Section 7 concludes the paper.

2. Model and Preliminaries

There is a principal and a set of agents Z = {1,2,...,1}. The principal decides between
implementing a new policy and maintaining status quo. FEach agent holds private
information, summarized by his type ¢;. The payoff to the principal is Y, t; if the new
policy is implemented, and it is normalized to zero if status quo remains. Monetary
transfers are not possible. The private information held by the agents is verifiable. The
principal can check agent i at a cost of ¢;, in which case he perfectly learns the true
type of agent ¢. For an agent it induces no costs to be verified. Agent ¢ with type t;
obtains a utility of u,(t;) if the policy is implemented and zero otherwise. For example,
if w;(t;) = t; for each agent, the principal maximizes utilitarian welfare. Types are
drawn independently from the type space T; C R according to the distribution function
F; with finite moments and density f;. Let t = (¢;);eny and T =1, T;.

We show in Appendix 7 that it is without loss of generality to focus on direct mecha-
nisms with truth-telling as a Bayesian equilibrium. To allow for stochastic mechanisms
we introduce a correlation device as a tool to correlate the decision rule with the ver-
ification rules. Assume that s is a random variable that is drawn independently of

2For papers on mechanism design with evidence, see also ?, ?, 7, 7.
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the types from a uniform distribution on [0, 1], and only observed by the principal. A
direct mechanism (d,a,l) consists of a decision rule d : T x [0,1] — {0,1}, a profile
of werification rules a = (a;);ez, where a; : T x [0,1] — {0, 1}, and a profile of penalty
rules £ = ({;)iez, where £; : T'x T; x [0,1] — {0,1}. In a direct mechanism (d, a, ¢), each
agent sends a message m; € T; to the principal. Given these messages the principal
verifies agent i if a;(m, s) = 1. If nobody is found to have lied, the principal implements
the new policy if d(m,s) = 1.3 If the verification reveals that at least one agent has
lied, the principal considers the lie by the agent with the lowest index, call it agent j*,
and implements the new policy if and only if ¢;«(m,t;«,s) = 1, where ¢;- is agent j*'s
true type.

For each agent 4, let T;" := {t; € T;|u;(t;) > 0} denote the set of types that are
in favor of the new policy, and let T, := {t; € T;|u;(t;) < 0} denote the set of types
that are against the policy. We assume t; <t} for all t; € T, , tf € T;". To simplify
notation we assume T; = T;" UT; .

Truth-telling is a Bayesian equilibrium for the mechanism (d, a, ¢) if and only if the
mechanism (d, a, £) is Bayesian incentive compatible, formally defined as follows.

Definition 1. A mechanism (d, a,{) is Bayesian incentive compatible (BIC) if, for all
1 €Z and all t;,t, € T;

U,Z(t;) . Et_,-,s[d(t;w t_i, S)] Z uz(t;) . Et_i,s[d(ti; t_l‘, S)[l — ai(ti, t_i, S)] + ai(ti, t_i, S)ei(ti, t_z', t;, S)]

The left-hand side is the interim expected utility if agent ¢ reports his type ¢, truth-
fully and all others report truthfully as well. The right-hand side is the interim expected
utility if agent ¢ instead lies and reports to be of type ;.

The aim of the principal is to find an incentive compatible mechanism that maxi-
mizes his expected utility. The expected utility of the principal for a given mechanism
(d,a,l) is

Et{z(d(zﬁ)ti ~at)e)],
(2
where expectations are taken over the prior distribution of types.

Because the principal uses an incentive compatible mechanism, lies will occur only
off the equilibrium path and therefore will not enter the objective function directly.
The principal can therefore always choose the severest possible punishment for a lying
agent. This will not affect the outcome on equilibrium path, but it weakens the incentive
constraints. For example, if an agent is found to have lied and his true type supports
the new policy, the punishment will be to keep status quo. Henceforth, without loss of
optimality we assume that the principal uses this punishment scheme and we will drop
the reference to a profile of punishment functions when we describe a mechanism.

At this point we have all the prerequisites and definitions required to state the aim
of the principal formally:

max E, [Z(d@)ti —a(t)e) (P)

d,a -
i

3With a slight abuse of notation, we will drop the realization of the randomization device as an
argument whenever the correlation is irrelevant. In these cases, E;[d(m, s)] is simply denoted as d(m)
and Eg[a;(m, s)] is denoted as a;(m).
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s.t. (d,a) being Bayesian incentive compatible.

The following lemma provides a characterization of Bayesian incentive compatible
mechanisms.

Lemma 1. A mechanism (d,a) is Bayesian incentive compatible if and only if, for all
1 €1 and all t; € T;,

inf+ ]Et,i,s [d(t;, t,i, S)] 2 ]Et,i,s [d(tl, t,i, S)[l — ai(ti, t,i, S)H and
(A

sup By, s[d(t],t i, 5)] < By, s[d(ti, ti, 8)[1 — ailti, ti, 8)] + ai(ti t-i, 5)].
teT;

Proof. Let 1 € Z. We will consider two cases, one when agent ¢ is in favor of the policy
(t: € T;"), and the other case is when agent i is against the policy (t; € T}).

Since u;(t;) > 0 for t; € T;" and we can wlog set 4;(t',t;,s) = 0 for all ¢’ and t; € T;",
we get that agent i with type ¢; € T." has no incentive to deviate if and only if, for all
t; € 1;,

]Et—ms [d<t;> t—i, S)] > ]Et—hs [d<ti7 t—i, 3)[1 - ai(tiv t_i, 5)]] (1)

Since (1) is required to hold for all ¢, € T;", it must in particular hold for the infimum
over T;", which is equivalent to Definition 1 of BIC.

Similarly, since w;(t;) < 0 for t; € T, and we can wlog set ¢;(t',t;,s) = 1 for all ¢/
and t; € T, , a type t; € T;, has no incentive to deviate if and only if, for all ¢; € Tj,

Etihs[d(t;, t_i, S)] S Et,i,s[d(tiy t_l', S)[l — ai(ti, t_i, S)] + ai(ti, t_i, S)] (2)

Since (2) is required to hold for all ¢; € T;, it must in particular hold for the supremum
over T, , which is equivalent to Definition 1 of BIC. [

3. Voting-with-evidence

In this section we introduce and illustrate the class of voting-with-evidence mechanisms.
To describe any voting-with-evidence mechanism it is enough to specify for each agent
i a pair of scalars, one for supporting the new policy, a;, and one for opposing the new
policy, a; . We will show that a voting-with-evidence mechanism is optimal. Therefore,
the complex optimization problem of maximizing the expected utility of the principal
subject to incentive compatibility reduces to optimizing over a profile of cutoffs, a
significantly simpler problem.

In a voting-with-evidence mechanism each agent reports his type and this report
is altered by letting its absolute value being reduced by the verification cost (we call
the result net type), and reports in T;" below o; (in 7, above «; ) are replaced by
constants (which we call baseline reports). The decision rule d then implements the
decision that would be efficient if the altered reports were the true types.

To formally define a voting-with-evidence mechanism with cutoffs {a;", a; }iez, where

a; +c¢; < ai — ¢; we first formalize the concept of altered reports. For each report t;,
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the altered report is

al — ¢ ift; € T;F and t; < «
a; +¢ ift;eT; and t; > «
t; — ¢ iftiETfandti>oz

t; + ¢ ift; €T, and t; <

1

S

Sy ST

Figure 1 illustrates how the altered reports are determined.

T
+
Oéi - C’L P
— /// +
@ K &;
T . T," ti
- a; +¢

Figure 1: Example illustrating how altered reports are determined.

Given the altered reports, a voting-with-evidence mechanism uses the following de-
cision rule:
1 if (t;) >0
am =41 E )

An agent 7 is decisive at a profile of reports ¢ if his preferred outcome is implemented,
and if the decision were to change if his report is replaced by his relevant cutoff (a;
if he is in favor and «; if he prefers status quo). A voting-with-evidence mechanism
verifies an agent if and only if he is decisive.*

Remark 1 (Incentive compatibility of voting-with-evidence mechanisms). We will now
show that a voting-with-evidence mechanism is incentive compatible. Let t € T be a
profile of types and consider an agent i with type t;, and assume that agent ¢ is in
favor of the new policy, i.e., t; € T;". If d(t;,t_;) = 1, then agent i gets his preferred
alternative, and there is no beneficial deviation. Suppose instead that d(¢;,¢t_;) = 0,
then agent ¢ can only change the decision by reporting some t; > ¢; and ¢, > ;. But

4Qur definition of a voting-with-evidence mechanism does not specify a decision if the altered reports
add up to zero. This is a either a probability zero event, in which case the decision does not affect the
principal’s expected utility. Or this happens if the baseline reports add up to zero, in which case it is
an easy exercise to determine the optimal decision.
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if d(ti,t_;) = 1 then agent ¢ is decisive and will be verified. Agent i’s true type t;
will be revealed and the punishment is to keep status quo. Thus, agent ¢ cannot gain
by deviating to t;. A symmetric argument holds if agent 7 is against the new policy,
i.e., t; € T; . These argument in fact imply that a voting-with-evidence mechanism is
ex-post incentive compatible.

A voting-with-evidence mechanism can be interpreted as a weighted majority voting
rule, where agents have the additional option to make specific claims in order to gain
additional influence. To see this, consider the following indirect mechanism. Each
agent casts a vote either in favor or against the new policy. In addition, agents can
make claims about their information. If agent ¢ does not make such a claim, his vote
is weighted by a;” — ¢; and —a; — ¢; if he votes in favor respectively against the new
policy. If agent i supports the new policy and makes a claim ¢;, his weight is increased
to t; — ¢;. Similarly, if he opposes the new policy, his weight is increased to —t; — c¢;.
The new policy is implemented whenever the sum of weighted votes in favor are larger
than the sum of the weighted votes against the new policy. An agent’s claim will be
checked whenever he is decisive. This indirect mechanism indeed implements the same
outcome as a voting-with-evidence mechanism. Any agent with weak or no information
supporting their desired alternative will prefer to merely cast a vote, whereas agents
with sufficiently strong information will make claims to gain additional influence on the
outcome of the principal’s decision. Note that the cutoffs already determine the default
voting rule that is used if all agents cast votes.

We are now ready to state our main result.

Theorem 1. Voting-with-evidence mazimizes the expected utility of the principal.

Section 5 contains the proof of Theorem 1 for finite type spaces, and the proof is
extended to infinite type spaces through an approximation argument in Appendix 7.
Before illustrating a voting-with-evidence mechanism in a two-agent example we will
give an intuition for why voting-with-evidence mechanisms are optimal.

A voting-with-evidence mechanism differs in three respects from the first-best mech-
anism. We will argue that these inefficiencies have to be present in an optimal mecha-
nism, and that any additional inefficiencies will make the principal worse off. First of
all, the principal verifies all decisive agents and incurs the corresponding costs which
he need not do if the information was public. Clearly, verifying decisive agents is neces-
sary to satisfy the incentive constraints. Moreover, in a voting-with-evidence mechanism
the verification rules are chosen such that the incentive constraints are in fact binding.
Thus, the principal cannot implement the given decision rule with lower verification
costs.

The second inefficiency is introduced by replacing types with net types. More pre-
cisely any report t; € T;" above a; is replaced by the net type t; — ¢;. Similarly are
types t; € T; below «; replaced by the net type t; + ¢;. The reason why this is part of
an optimal mechanism has to do with decisiveness and when the decision on the policy
changes. If it is the case that by replacing ¢; with the net type t; — ¢; the outcome
changes, then agent ¢ must be decisive if his altered report were t;. But then the prin-
cipal has to verify him to induce truthful reporting and incurs the cost of verification.
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mechanism.

Figure 2: Illustration of a voting-with-evidence mechanism and optimal cutoffs in a
two agent example.

Therefore the actual contribution of agent i to the principal’s utility is his net type,
t; — ¢;, and not t;. Thus, the principal is made better off by using ¢’s net type t; — ¢;
when determining his decision.

The third inefficiency arises from the fact that all types below the cutoff a; of an
agent in favor of the policy are bunched together and receive the same altered report,
the baseline report o;f — ¢;. Similarly are all types above the cutoff o and against the
policy bunched together into the baseline report a; + ¢;. Suppose instead that in the
optimal mechanism there was a unique worst-off type. Increasing the probability with
which this type gets his most preferred alternative has no negative effect (because it is
realized with probability 0), but this allows the principal to verify all other types (which
are realized with probability 1) with a strictly lower probability. Therefore, bunching
of types that become the worst-off types must be part of any optimal mechanism.

To summarize, there is an optimal mechanism that bunches types in favor of the new
policy (and types against the policy) with weak information supporting their position,
and that uses net types instead of true types when determining the decision; these are
distinctive features of a voting-with-evidence mechanism.

We end this section by explaining a voting-with-evidence mechanism in an example
with two agents, and we show how to determine the optimal cutoffs in this example. We
assume that both agents prefer the new policy compared to status quo, independently
of their types. The voting-with-evidence mechanism is illustrated in Figure 2a. For
report profiles above the solid line the sum of the altered reports is positive. Thus, in
this region the policy will be implemented. If instead report profiles are below the solid
line the status quo remains.

If the reported types induce the status quo, no agent makes a decisive claim. The
same is true if both agents report a very high type, since a claim is not decisive when
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the claim reported by the other agent already induces the principal to implement the
policy. Both agents are decisive if both report intermediate types that induce the policy,
but if any of them were to replace their reported type by the baseline report the policy
would not be implemented.

To determine the optimal cutoffs we use a first-order approach.? Consider a slight
increase in the cutoff of agent 1 (illustrated in Figure 2b). This matters only if this
changes the decision given agent 2’s type th; that is, this is only relevant if af — ¢; +
th, —co = 0. Therefore, suppose that agent 2’s type is ¢, and that agent 1’s type is below
ai . If cutoff of is used, the policy will not be implemented.® However, if the cutoff is
slightly increased, then the new policy will be implemented, agent 2 becomes decisive,
and therefore agent 2 has to be verified. Hence, the principal’s expected utility changes
by

O¢+
folth) / C+ b — oy dF.

Since the new policy will be implemented at type profile (af,t,) under the higher
cutoff, agent 1 is not decisive at profiles (¢1,t5) for t; > ai (for these profiles he
would be decisive if the smaller cutoff was used). Consequently, the principal can save
verification costs, which increases his utility by

fg(tlg) /+ C1 dFl
a

At the optimal cutoffs these two effects add up to zero. Using that th — ¢y = —aj + ¢y,

this yields the following first-order condition for the optimal cutoff for agent 1:

at

/ ' tl - Oé;rdFl = —(C1.

A symmetric first-order condition can be derived for the optimal cutoff for agent 2:

oy
/ tg - Oé;rng = —Co.
—0o0

This implies that an increase in verification costs increases the optimal cutoff. Since
it is costlier to verify an agent, the principal adjusts the decision rule to ensure that this
agent is less often decisive. A first-order stochastic dominance shift in the distribution
of types similarly increases the optimal cutoff.

4. BIC-EPIC equivalence

A voting-with-evidence mechanism is not only Bayesian incentive compatible, it satisfies
the stronger notion of ex-post incentive compatibility (see Remark 1). This robustness

5This approach can be extended to the general case with I agents and general preferences for the
agents, but it becomes less tractable. The main reason for this is that the optimal cutoff for one
agent is in general not independent of the other agents’ optimal cutoffs. This makes the optimization
problem more convoluted and the first-order conditions are more complicated.

6 Assuming status quo remains if altered reports sum to 0.
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of the voting-with-evidence mechanism is a desirable property of any mechanism we wish
to use in real-life applications because optimal strategies are independent of beliefs and
information structure. By reducing the number of assumptions on common knowledge
and weakening the informational requirements the theoretical analysis underpinning
the design stands on firmer ground (? and 7).

Because the optimal mechanism is ex-post incentive compatible we conclude that
the principal cannot gain by weakening the incentive constraints. A natural question to
ask is why the principal cannot save on verification costs by implementing the optimal
mechanism in Bayesian equilibrium instead of ex-post equilibrium? We show that the
answer lies in a general equivalence between Bayesian and ex-post incentive compatible
mechanisms: for every BIC mechanism there exists an ex-post incentive compatible
mechanism that induces the same interim expected decision and verification rules; since
the interim expected decision and verification rules determine the expected utility of
the principal, this implies that an ex-post incentive compatible mechanism is optimal
within the whole class of BIC mechanisms.

Recall that a mechanism (d, a) is BIC if and only if, for all ¢ and ¢;,

inf Et_i,s [d(t;, t_z', S)] Z ]Et_i,s [d(tz, t_z', 8)[1 - ai(ti, t_i, S)]] and (3)
(A

sup Et,i,s [d(t;, t_i, S)] S ]Et,i,s [d(tz, t_i, S)[l — ai(t,-, t_i, S)] + a/i(ti7 t_i, S)] (4)
teT,

Analogously, a mechanism (d, a) is ex-post incentive compatible (EPIC) if and only
if, for all 7,¢; and t_;,

inf E, [d(ti,t_;, )] = Egld(t;, t_i, s)[1 — a;(ti, t_;, )]  and (5)
teT;

sup ES [d(t;, t,i, S)] S ]ES [d(tl, t,i, S)[l — ai(ti, t,i, 8)] + ai(ti, t,i, S)] (6)
tieT;

Not every BIC mechanism is EPIC. More importantly, not every decision rule that
can be implemented in a Bayesian equilibrium can be implemented in an ex-post equi-
librium with the same verification costs, as the following example illustrates.

Example 1. Suppose that T = {1,2} and that agent 2 is always in favor of the new
policy. Fach type profile is equally likely and the decision rule d is shown in Figure 3a.
The shaded areas indicate type profiles that induce the lowest probabilities of accepting
the new policy for agent 2. We focus on incentive constraints for agent 2.

Lemma 1 shows that it is enough to ensure incentive compatibility for the “worst-off”
types, which are the intermediate types in this example. Since intermediate types are
worst-off, they never need to be verified. If high (low) types are verified with probability
0.2 (0.6), then the Bayesian incentive constraints for the worst off types are exactly
binding. If we instead want to implement the decision rule d in an ex-post equilibrium,
the cost of verification increases. For example, intermediate types must be verified with
probability 0.5 if agent 1’s type is high. In expectation, agent 2 must be verified with
probability % if he has an intermediate type, with probability 13—1 if he has a high type,
and with probability 2—33 if he has a low type (the verification probabilities for each profile
of reports are given in Figure 3b).
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Figure 3: Failure of a naive BIC-EPIC equivalence.

As Example 1 above illustrates we cannot simply take a BIC mechanism, keep the
same decision rule, and expect that the mechanism will also be EPIC without increas-
ing the verification costs. This is in line what to be expected since for a mechanism to
be EPIC, incentive constraints must hold pointwise and not only in expectation. The
reason for this is that in general the left-hand side of (3) is greater than the expected
value of the left-hand side of (5); that is, infy, .p+ B, s[d(t], 1, s)] is generally larger

than E,_, [inft,_eT_+ Es[d(;,t_, s)]] . A decision rule can be implemented in ex-post equi-
librium at the same costs as in Bayesian equilibrium if and only if the expectation
operator commutes with the infimum/supremum operator, which is a strong require-
ment. However, it turns out that for every function there exists another function which
induces the same marginals and for which the expectation operator commutes with
the infimum /supremum operator. We will use this result to establish an equivalence
between BIC and EPIC mechanisms.

Theorem 2. Let A = X; A; C R, let t; be independently distributed with an absolutely
continuous distribution function F;, and let g : A — [0,1] be a measurable function.
Then there exists a function § : A — [0,1] with the same marginals, i.e., for all i,
E; .[g(-,t—:)] = E,_,[9(-,t_;)] almost everywhere, such that for all B C A;,

inf Et,i [f](t“ t_z)] = Etﬂ. [tHelfB f](t“ t_l)] and

t;€B
sup By, [9(ti,t-;)] = Eq_,[sup §(t;, t-3)].
t,eB t,eB

We will illustrate the idea behind the proof of Theorem 2 by assuming that A is
finite. The argument in our proof uses Theorem 6 in ?. This theorem shows that for any
matrix with elements between 0 and 1 and with increasing row and column sums, there
exists another matrix consisting of elements between 0 and 1 with the same row and
column sums, and whose elements are increasing in each row and column. To use this
result, we reorder A such that the marginals of g are weakly increasing. Then Theorem 6
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Figure 4: Illustration of the BIC-EPIC equivalence.

in ? implies that there exists a function g which induces the same marginals and which
is pointwise increasing. For this function, there is an argument ¢; for each ¢ which
independently of ¢_; minimizes §(-,¢_;). This implies that the expectation operator
commutes with the infimum operator, i.e., B, [inf,.cp §(t;,t_;)] = infep By [g(t:, t_5)].
The basic idea sketched above is extended via an approximation argument to a complete
proof in Appendix 7.

Building on Theorem 2, we can establish an equivalence between BIC and EPIC
mechanisms. To define this equivalence formally, we call E,  [d(t;,t_;)] the interim
decision rule and E,_ [a;(t;,t_;)] the interim verification rules of a mechanism (d, a).

Definition 2. Two mechanisms (d, a) and (CZ, a) are equivalent if they induce the same
interim decision and verification rules almost everywhere.

Now we can state the equivalence between BIC and EPIC mechanisms.

Theorem 3. For any BIC mechanism (d, a) there ezists an equivalent EPIC mechanism
(d,a).

There are two steps in the construction of an equivalent EPIC mechanism (d, a).
In the first step we use Theorem 2 to obtain a decision rule d with the same interim
decisions as d and such that for d the expectation operator commutes with the infi-
mum /supremum. This implies that the left-hand sides of (3) resp. (4) are equal to
the expected values of the left-hand sides of (5) resp. (6). In the second step we con-
struct a verification rule a such that all incentive constraints hold as equalities for
(ci, a); verification probabilities under this rule are therefore weakly lower than under
the original rule. If they are striclty lower, one can always add additional verifications
to obtain a verification rule a with the same interim verification rule as a. Thus, we
have constructed an equivalent EPIC mechanism (d, @) from the BIC mechanism (d, a).
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Example 1 (ctd). Figure 4a shows the decision rule ci, which has the same marginals
as d. Note that intermediate types of agent 2 always induce the lowest probability of
accepting the proposal, independently of the type of agent 1. This implies that the
expected value of the infimum equals the infimum of the expected value, that is,

inf Ey, [d(t)] = Ey, [inf d(t)].

Figure 4b shows a verification rule a such that (a?, a) is EPIC. The expected verification
probabilities are the same that are necessary for implementation in Bayesian equilib-
rium.

The economic mechanisms behind our equivalence are different from the ones under-
lying the BIC-DIC equivalence in a standard social choice setting with transfers (with
linear utilities and one-dimensional, private types (?)). In the standard setting, an
allocation rule can be implemented with appropriate transfers in Bayesian equilibrium
if and only if its marginals are increasing and in dominant strategies if and only if it
is pointwise increasing. In contrast, monotonicity is neither necessary nor sufficient for
implementability in our model.

Note that there is no equivalence between Bayesian and dominant-strategy incentive
compatible mechanisms in our setting, as the following example illustrates. The lack of
private goods to punish agents if there are multiple deviators implies that agents care
whether the other agents are truthful.

Example 2. Suppose T = {1,2,3}, verification costs are 0 for each agent, and T;" =
{t:|t; > 0} and T; = {t;|t; < 0}. Consider the voting-with-evidence mechanism with
cutoffs a7 = 1 and o = —1 for all i. Let t = (=5,2,2). Given truthful reporting
the voting-with-evidence mechanism specifies d(t) = 0. Suppose agent 2 deviates from
truth-telling and instead reports to be of type t, = 6. Now he is decisive and the
principal verifies him. After observing the true types (—5,2,2), the principal has to
punish the lie by agent 2 and keep the status quo to induce truthful reporting. But this
creates an incentive for agent 3 to misreport. He could report ti, = 6, and then no agent
is decisive, hence no one is verified, and the voting-with-evidence mechanism specifies
d(tq,th,t5) = 1. The voting-with-evidence mechanism is therefore not dominant-strategy
incentive compatible, no matter how we specify the mechanism off-equilibrium.

5. Proof of Theorem 1

In this section we show that a voting-with-evidence mechanism maximizes the expected
utility of the principal.

We will study the following problem, and show below that it is a relaxed version of
the principal’s maximization problem as defined in (P):

g B SOt = est)] + e (L (0) inf, Be [A(t 0-0)) = L () sup By [t -0)])
(R)

where 1, denotes the indicator function for the set A, and ¢;(t;) = ¢; if t; € T;" and
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Cz(tz) = —C; if tz c T;;_.
For each mechanism (d, a) let Vp(d, a) denote value of the objective in problem (P),
and for each decision rule d let Vg(d) denote the objective value in problem (R).

Lemma 2. For any Bayesian incentive compatible mechanism (d,a), Vp(d,a) < Vg(d).

Proof.

Vp(d,a) = E, [Z(d(t)[ti —ci(t)] + il g [d(t) — ai(t)] — el [d(t) + az‘(t)]l

N 3
7

<Eq Z(d(t) [ti = ci(ti)] + il [dD) (1 = ai(t))] = eilp-[d(E)(1 = ai(t)) + ai(t)]] (7)
<E, Z(d(t) [ti — ci(ts)] + cilyt tf.iean+ Ee_[d(t;, t_;)] — cily- /s.ujg E;_,[d(t, ti)]] (8)
=Vr(d).

The first inequality is obtained by multiplying a;(t) with d(t) when ¢; € T;% and mul-
tiplying d(t) with 1 — a;(t) when ¢; € T, , and since we multiplied negative terms
with terms that are less than or equal to one the first inequality follows. The second

inequality follows from the fact that (d, a) is BIC. O

The significance of the relaxed problem lies in the fact that for any optimal solution
d to problem (R), we can construct a verification rule a such that Vp(d,a) = Vz(d).
This implies that d is part of an optimal solution to problem (P).

We now describe an optimal solution to the relaxed problem.

Lemma 3. Problem (R) is solved by a voting-with-evidence mechanism.
Proof. We assume here that T is finite. We extend this proof in Appendix 7 via an
approximation argument to infinite type spaces.

Let d* denote an optimal solution to (R) and define ¢ = inf, .+ E; ,[d*(¢],t_;)]
and ¢; = supyep- By [d*(t;,t_;)]. Let

Foif teTt
at={ LN e
P 1 i € 712 )

and consider the following auxiliary maximization problem:
max B[ ¥, d(t)[t: — ei(t:)] (Aux)
s.t. for all v € Z:
E,_,d(t) > o] for all t; € T;", and
E; .d(t) < p; forallt; € T, ,

Suppose {¢;, ¢; }; is such that there exists a decision rule which satisfies the con-
straints in (Aux) as strict inequalities.” Clearly, d* also solves this problem. Let

7If this condition is not satisfied, consider the sequence of problems where {gb;", ¢; }i is replaced by
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o = inf e {alE_[d"(a,t5)] > ¢} and o = sup,cp-{alBe_[d"(a, t-i)] < @7}

The Kuhn-Tucker theorem (see page 217 in ?) implies that there exist Lagrange mul-
tipliers A;(t;), such that d maximizes

L(d, \") ]Et[Zd (ti — cilty }+ZZ<A* ) (E, ,[d(ti,t@-)]—%(ti)»

= g;d zz: ( ci(t;) + ;féf:;)f(t) + constant

We can assume that the multipliers A* are such that there are constants b} and b;
such that

i (2
ti—CZ"i‘ Z(z) :b+

filts)
for t; € T;" such that t; < o and
A:(ts)
fiteit -
fi(t:)

for t; € T, such that ¢; > o . If this were not the case, every solution d that maximizes
L(-, \*) would have either E,_[d(t;,t_;)] > i or By, [d(t;,t )] < ;i for some t; € T;"
such that ¢; < «;. Hence, it is either infeasible or it contradicts the definition of «;.
Analogous arguments apply for the second equation.

Moreover, we obtain A} (¢;) = 0 for ¢; € T;" such that t; > ;" and for ¢; € T, such
that t; < ;. Indeed, complementary slackness implies \f(a;") = 0. Moreover, for
every t; € T." such that t; > a;, t; — ¢; > «; — ¢; implies for every optimal solution to
the Lagrangian d that B,_,[d(¢;,t;)] > E,_,[d(o; ,t_;)] > ¢;, which implies A (t;) =0
again by complementary slackness. Analogous arguments for t; € T, such that ¢; < «a;
apply.

Feasibility implies that

i ()
ti — ¢+ L Z bj_
fi(ti)
for all t; € T;" and
A(t)
ti +c¢; + <b;
fi(t:)

for all t; € T; . Since \i(t;) > 0 for all ¢; € T;", we can take wlog b = aj — ¢;.
Similarly, since Af(t;) < 0 for all ¢; € T, , we can take wlog b; = a; + ¢;.
Hence, every solution to the Lagrangian can be described as follows:

af — ¢ ift; € T,V and t; < o
ri(ti) = a; + ¢ ift, € T; and t; >

7

t; — c;(t;)  otherwise

{oF — %, ¢, + %}1 for m = 1,2,.... These problems satisfy the above assumption. Taking m — oo,
the limit of a convergent subsequence of solutions is of the form claimed in Lemma 3.
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=10 if S ri(ti) < 0.

{1 if S ri(t;) > 0
Since d* maximizes the Lagrangian by assumption, we conclude that it is a voting-
with-evidence mechanism. O

Now we have all the parts required to establish our main result Theorem 1 that
voting-with-evidence mechanisms are optimal.

Proof of Theorem 1. Denote by d* the solution to problem (R). We first construct a
verification rule a* such that (d*,a*) is Bayesian incentive compatible and then ar-
gue that Vp(d*,a*) = Vg(d*). Given that Vp(d,a) < Vg(d) holds for any incentive
compatible mechanism, this implies that (d*,a*) solves (P).

Let a* be such that agent i is verified whenever he is decisive. Then af(t) = a}(t)d*(t)
for all t; € T, (if d*(t) = 0 then type t; € T;" is not decisive), and d*(t) = d*(¢)[1—a}(t)]
for all t; € T, (if af(t) = 1 then d*(¢) = 0). Hence, inequality (7) holds as an equality
for (d*,a*).

Note that in mechanism (d*, a*), all incentive constraints are binding and therefore
inequality (8) holds as an equality as well. We therefore conclude Vp(d*, a*) = Vgr(d*).

[

6. Relation to BDL

BDL consider a situation with a principal who wants to allocate one indivisible private
good among a group of agents without using money. Each agent has private information
regarding the value the principal receives if the good is assigned to him. The principal
does not know this value, but can learn it at a given cost. If the principal checks an
agent he learns the agent’s type perfectly. All agents strictly prefer to receive the object.
The principal’s objective is to maximize the expected payoff from assigning the object
minus the expected cost of verification. The optimal mechanism, i.e., the mechanism
that maximizes the expected utility of the principal, is a favored-agent mechanism: the
principal chooses one single threshold and a favored agent. If no agent other than the
favored agent reports a net type® above the threshold, then the object is allocated to
the favored agent and no one is verified. If at least one agent different from the favored
agent reports a net type above the threshold, the agent with the highest reported net
type is verified and obtains the object if he did not lie.

Theorem 4 (Theorem 1 in BDL). A favored-agent mechanism is optimal. Moreover,
every optimal mechanism is essentially a randomization over favored-agent mechanisms.

The crucial step in BDL to prove Theorem 4 is to establish the optimality of a
class of simple mechanisms, called threshold mechanisms. In a short note we provide
an alternative proof for the optimality of threshold mechanisms. Our proof makes a

8The net type for agent i with type t; and verification cost ¢; is t; — ¢;.
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connection to the literature on reduced form auctions.” In the private good environ-
ment—the case considered by BDL—the set of feasible reduced form auctions has an
explicit description (7) and a nice combinatorial structure (see e.g. 7). Using the fact
that the relevant incentive constraints can be formulated in terms of reduced form auc-
tions. We can write the optimization only in reduced forms, and optimize over them
instead of ex-post rules. The class of feasible reduced forms rules are readily available
due to Border’s characterization (?), and we can show that threshold mechanisms are
optimal. The approach to optimize directly over reduced forms, instead of the more
complicated ex-post rules, is not viable in our collective choice model. There cannot
exist a tractable description of the reduced forms for the model we consider (7). We
had to use other tools and methods for showing that a voting-with-evidence mechanism
is optimal in the collective choice environment.

Let us now look closer at the voting-with-evidence mechanism and the favored-agent
mechanism to see which properties of the optimal mechanisms are robust across the two
models. Note first that types are replaced by net types in both models: the principal
accounts for the costs he incurs in the verification step. This creates generally an
inefficiency in our model. In BDL however, the allocation is always efficient if all agents
have the same costs of verification and at least one agent reports above the threshold.
We conclude that a robust feature of the optimal mechanism is that net types are used
to determine the outcome, but that this has different implications in different models.

The second robust feature is that both optimal mechanisms bunch certain types.
In BDL, types are bunched as long as they are not too informative to the principal.
All types below the threshold are close to each other, and for this reason it does not
pay off to separate these types. In our model, the types below the threshold can
be very different and therefore have a large impact on the utility of the principal.
Instead, the incentive constraints dictate that it is very costly in terms of verifications
to separate these types. Another difference between the two optimal mechanisms is
that in the favored-agent mechanism there is only one threshold, whereas in the voting-
with-evidence mechanism individual specific thresholds are optimal in general.

Finally, BDL note that a favored-agent mechanism can be implemented in dominant
strategies. The observation that the optimal Bayesian incentive compatible mechanism
is dominant strategy incentive compatible (DIC) does not hold in our model, as Exam-
ple 2 shows. The reason is that in a collective choice setting without private goods there
is no possibility to punish an agent without affecting the other agents. It is therefore
not possible to induce truth-telling independent of what strategy is used by the others.
However, we have seen that the optimal mechanism in our model is EPIC and that this
follows from a general BIC-EPIC equivalence. As argued in Section 4, this equivalence
can be extended to BDL’s setting.

Theorem 5. In the setting of BDL, there exists for any BIC mechanism an equivalent
DIC mechanism.

9A reduced form auction maps the type of an agent into the expected probability of being allocated
the object.
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7. Conclusion

We have analyzed a collective decision model with costly verification where a principal
decides between introducing a new policy and maintaining status quo. Agents’ have
private information relevant for the collective choice, and their information can be
verified by the principal before he takes the decision. We have shown that a voting-with-
evidence mechanism is optimal for the principal. The voting-with-evidence mechanism
is not only Bayesian incentive compatible but ex-post incentive compatible. We show
that this feature of robust implementation is not only valid for the optimal mechanism,
but it is a general phenomenon. In future work, we plan to model and analyze imperfect
verification in this setting, and it would also be interesting to look closer at a model
with limited commitment.

Appendix
Revelation principle

In this section of the Appendix we show that it is without loss of generality to restrict
attention to the class of direct mechanisms as we define them in Section 2. We will
show this in two steps. The first step is a revelation principle argument where we
establish that any indirect mechanism can be implemented via a direct mechanism. In
the second step we show that direct mechanisms can be expressed as a tuple (d, a,?),
where d specifies the decision, a; specifies if agent ¢ is verified, and ¢; specifies what
happens if agent 7 is revealed to be lying.

Step 1: It is without loss of generality to restrict attention to direct mechanisms in
which truth-telling is a Bayes-Nash equlibrium.

Let (M, ..., My, Z,7) be an indirect mechanism, and M = X;cz M;, where each M;
denotes the message space for agent i, Z : M xT x [0, 1] — {0, 1} is the decision function
specifying whether the policy is implemented, and § : M x T x Z x [0,1] — {0,1} is
the verification function specifying whether an agent is verified.!® Fix a Bayes-Nash
equilibrium ¢ of the game induced by the indirect mechanism.!!

In the corresponding direct mechanism, let 7; be the message space for agent i.
Define x : T'x T x [0,1] — {0, 1} as z(¢',t,s) = Z(o(t'),t,s) and y : T'x T x I x [0,1] —
{0,1} asy(t',t,i,s) = g(o(t'),t,1,s). Since o is a Bayes-Nash equilibrium in the original
game, truth-telling is a Bayes-Nash equilibrium in the game induced by the direct
mechanism. This implies that in both equilibria the same decision is taken and the
same agents are verified.

10T describe possibly stochastic mechanisms we introduce a random variable s that is uniformly
distributed on [0, 1] and only observed by the principal. This random variable is one way to correlate
the verification and the decision on the policy.

1Tn the game induced by the indirect mechanism, whenever the principal verifies agent i nature
draws a type t; € T} as the outcome of the verification. Perfect verification implies that #; equals the
true type of agent i with probability 1. The strategies m; € M; specify an action for each information
set where agent ¢ takes an action, even if this information set is never reached with strictly positive
probability. In particular, they specify actions for information sets in which the outcome of the
verification does not agree with the true type. This implies that a mediator can simulate the strategies
in a direct mechanism.
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Step 2: Any direct mechanism can be written as a tuple (d,a, ), where
d:T x1[0,1] = {0,1}, a; : T x [0,1] = {0,1}, and ¢; : T x T; x [0,1] — {0, 1}.
Let

d(t,s) = z(t,t,s)
a;(t,s) = y(t,t,i,s) and
£Z<t’IL7 t*lﬁ ti? 8) - I‘(t;, t*iu ti7 t*lﬁ S>~

On the equilibrium path (d,a,?) implements the same outcome as (x,y) by defi-
nition. Suppose instead agent i of type ¢; reports ¢, and all other agents report ¢_;
truthfully. Denoting ¢ = (t,,t_;), the decision taken in the mechanism (d,a,?) if the
type profile is t and the report profile is ¢’ is

[1—a;(t',s)]d(t',s) + a;i(t’,s) b;(t,, t;, t_;, s)
= [1—y(t',t' i, 9)xt' ¢, s)+y(t' tis)z(tts)

Jzt,ts) if y(t,t,i,8) =1
B x(t',t,s)if y(t',t',i,s) =0,

If y(t',¢',i,s) = 0 then y(t',t,i,s) = 0 (since the decision to verify agent i cannot
depend on his true type), and hence x(t',t', s) = x(t', t, s). Therefore, the decision is the
same in both formulations if one agent deviates. Since truth-telling is an equilibrium in
the mechanism (z,y), it is an equilibrium in the mechanism (d, a, ¢), which consequently
implements the same decision and verification rules.

Omitted proofs from Section 5

Proof of Lemma 3 for infinite type spaces.

Let ;" and F, denote the conditional distributions induced by F; on T;% and T,
respectively. We first construct a discrete approximation of the type space: For ¢ € Z,
n>11=1,...,2"" let

e THEL < Fr(ty) < L —on
Si(n, ll) = {tz S JTL ‘ on ng E (tz) < 2”} i for l’L S 2
{t: € Ty |21 < Fy () < i52°) for i > 27,

which form partitions of 7;" and T, and denote by F7* the set consisting of all possible
unions of the S;(n,l;). Let | = (l,...,1,) and S(n,l) = [,z Si(n,1;), which defines a
partition of T', and denote by F" the induced o-algebra.

Let (R"™) denote the relaxed problem with the additional restriction that d is mea-
surable with respect to F™. Then the constraint set has non-empty interior and an
optimal solution to (R") exists. Define #;(t;) = m S5,y SAF; for t; € Si(n, i),
where p; denotes the measure induced by F;. The arguments for finite type spaces
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imply that the following rule is an optimal solution to (R") for some o™, o; ™:
ai” — ¢ if t; € T;" and #;(t;) < o™
ri(t) = ;" + ¢ if t; € T, and t;(t;) > a; "
ti(t;) — c;(t;)  otherwise
1 if Y (t) >0
0 if Y r(t;) <O0.
Let of := lima;™ and «; := lima; " (by potentially choosing a convergent subse-
quence). Define
+n

Oé;-i_ — C; if tl € 1?_ and £1<tz) S
; + ¢ if tl € jﬂ; and t~1<t1) Z

t; — ci(t;) otherwise

Then, for all i and t;, E;_;[d"(t;, ;)] = Prob[};; 77 (t;) > —7]'(t;)] converges point-
wise almost everywhere to E, [d(t;,—;)]. This implies that the marginals converge in
L'-norm and hence the objective value of d" converges to the objective value of d. This
implies that d is an optimal solution to (R), since if there was a solution achieving a
strictly higher objective value, there would exist F"-measurable solutions achieving a
strictly higher objective value for all n large enough. Therefore, a voting-with-evidence
mechanism solves problem (R). O

Omitted proofs from Section 4

Proof of Theorem 2.
The proof applies Theorem 6 in (?) to a discrete approximation of A and by taking
limits we establish Theorem 2.

Let S;(n, ;) denote the interval,

Si(n, 1) == [F7N (L, — 1D)27™), EH(1,27™)), i€Z,n>1andl;=1,..2"

For a given n the function S;(n, -) form a partition of A; such that each partition element
S;i(n, k) has the same likelihood. Let F!* denote the set consisting of all possible unions
of the S;(n,l;). Note further that F* C F*'. Let I = (Iy,...,l;) and S(n,l) =
[Ticz Si(n, ;). Thus, for a given n the function S(n,-) defines a partition of A such that
each partition element S(n, () has the same likelihood.
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Define the following averaged function,

1) := 2In / £\dF.
g(n,1) S(n’l)g()

The function g(n,!) is an I-dimensional tensor. Now consider the marginals of g(n, ()
with respect to [_;, i.e., E; [g(n,l;,{_;)], each such marginal in dimension 7 is nonde-
creasing in [;. By Theorem 6 in (?) there exists another tensor ¢'(n,[l) with the same
marginals as g(n,!) such that ¢'(n,!) is nondecreasing in [. Now define ¢/, : T"— [0, 1]
by letting g, (t) := ¢'(n,1) for all t € S(n,).

Note that g;, is nondecreasing in each coordinate and hence satisfies

/eiselélf g (tit_)dF_; = = oss mf/gn tit_; 9)
/ess sup g, (ti, t_;)dF_; = esssup [ g, (t;,t_;)dF_;. (10)
t,€B t,€B

Moreover,

/ / gti, t_)dF_; dF; = /( / gn(ti t_)dF_; dF;, (11)
(n,li) Si(n,l;)

and hence ¢(t) — g/, (t) integrates to zero over sets of the form S;(n,[;) x A_; for every

Draw a weak*-convergent subsequence from the sequence {g/,} (which is possible by
Alaoglu’s theorem) and denote its limit by §. This function rule satisfies 0 < § < 1 and
its marginals are equal almost everywhere to the marginals of g because of (11).

Since ¢/, —* g, we get
essinfy.cp g/, (t;,t_;) — essinf, cp §(t;,t_;) for almost every t_;. Moreover,
essinfy,cp [ g5 (ti,ti)dF_; — essinfycp [y §(ti,t_;)dF_;. Note further that,

B [inf, et g(ti,t—)] < infy opr By [g(t:, - )} always holds. By way of contradiction
suppose now that for some i,

inf G(t ) ) i G(t: ) 12
/eiselnfg(tz, zf_z)alF_Z < eiselnf g(tz, t_z)dF_l.
['his implies
3 , . . . ] , . . .
/ eiselnf g, (ti, t_)dF_; < eiselnf / G (tist—i)dF-;

for n large enough, contradicting (9) and thereby proving the first equality in the
theorem. Analogous arguments apply for the second equality in the theorem, thus
establishing our claim. O

Proof of Theorem 3. A
It follows from Theorem 2 that there exists a decision rule d : 7' x [0, 1] — {0, 1} that

121f the inequality only holds for the infimum but not for the essential infimum, we can adjust § on
a set of measure zero such that our claim holds.
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induces the same marginals almost everywhere and for which

inf By [d(t;,t_;,s)] = E,_ [ inf E.d(t;,t_;, s)] and

tiGT;r tz‘ET;r
sup ELhS[OZ(ti,t_i,s)] =E, ,[sup Esd(ti,t_i,s)}.
teT,” t, €T,

We now construct a verification rule @ such that the mechanism (d,a) satisfies the
claim. By setting

al(t S) - {Probs(d}(t,s)l) (Es’ [d(t, S/)] — inftgeTzf ]Es’ [d(t;, t_i, S/)]) if d(t7 S) =1

m (suptéeT; Es’ [d(t,’l, t,i, S,)] — ESI [d(t, 8/)]) if d(t, S) = 0,

the mechanism (d, &) satisfies (5) as an equality for all ¢;, t_;:

A

E,ld(t, s)(1 — a;(t, s))]

1 R A
= / 1-— - Ey[d(t,s")] — inf Egld(t,t_, s')]} ds
. Probg(d(t,s) =1) [ tert
s:d(t,s)=1
1 ~ A
- l/ 1 . / Proby (d(t, s') = 1)ds' — inf Ey[d(t),t_;,s)]| ds
) Probg(d(t,s) =1) | . teTt
s:d(t,s)=1 |s":d(t,s")=1
1 A
- / - [ inf Ey [d(tg,t_i,s')]l ds
) Probg(d(t,s) = 1) [tert
s:d(t,s)=1
— inf E[d(t),t_;,s)).
theTt

Similarly, the mechanism satisfies (6) as an equality and hence it is EPIC.
Moreover,

EMA@QJM:Emﬁh@ﬁy+ﬂa@u—m@ﬁn—ﬂu@u—maﬁﬂ

—E, | sup E.d(t),t_;,s) — inf Esg(tg,ti,s)]
teT, t;€T¢+
= sup E,_, ([d(t;,t_;,s)] — inf E, , ([d(t;,t_;,s)]
teT, t;eT;’

S Et,hs [ai(t7 S)]a

where the second equality follows from the fact that (5) and (6) are binding, the third
equality follows from Step 1 and the fact that d and d induce the same marginals, and
the inequality follows from the fact that (d,a) is BIC. Hence, by potentially adding
additional verifications one obtains an EPIC mechanism that induces the same interim
decision and verification probabilities. [
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CHAPTER 5

Optimal Private Good Allocation: The
Case for a Balanced Budget

In an independent private value auction environment, we are interested in
strategy-proof mechanisms that maximize the agents’ residual surplus, that
is, the utility derived from the physical allocation minus transfers accruing
to an external entity. We find that, under the assumption of an increas-
ing hazard rate of type distributions, an optimal deterministic mechanism
never extracts any net payments from the agents, that is, it will be budget-
balanced. Specifically, optimal mechanisms have a simple “posted price” or
“option” form. In the bilateral trade environment, we obtain optimality of
posted price mechanisms without any assumption on type distributions.

1. Introduction

Most parts of the mechanism design literature studying welfare maximization problems
focus on mechanisms implementing the efficient allocation. However, in general it is
not possible to implement the efficient allocation in dominant strategies using budget-
balanced mechanisms (?). Given this result, we study how to choose among different
mechanisms that cannot attain both, allocative efficiency and budget-balancedness.
Since we are concerned with welfare maximization, the social planner’s objective func-
tion should consist of the agents’ aggregate utility and therefore include aggregate
transfers. In other words, one seeks to find mechanisms that maximize what we call
residual surplus. This is the surplus, or utility, the agents derive from the chosen phys-
ical allocation, reduced by the amount of transfers that are lost to an external agency
(this is often called “money burning”).

A common approach is to implement the efficient allocation via Groves mechanisms
and to redistribute as much money to the agents as possible without distorting incen-
tives (7, 7, 7, 7). This approach aims at characterizing the optimal mechanism for
allocating private goods that implements the efficient allocation in dominant strategies,
is individually rational and never creates a budget deficit (ex-post).! However, if mech-
anisms that allocate inefficiently yield higher residual surplus (?) it is not clear why

In our setting, the best Groves mechanism is implemented by a second-price auction with two
bidders.
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one should use a mechanism that allocates efficiently.

Consequently, we drop the requirement that mechanisms allocate efficiently. In-
stead, we take an optimal mechanism design approach and consider mechanisms that
are comparable to the ones considered before in that they are strategy-proof, determinis-
tic, never run a deficit and satisfy ezx-post participation constraints. We analyze which
mechanism maximizes residual surplus when an indivisible good is auctioned among
two agents with independent private values that are distributed according to prior type
distributions. We show that under an increasing hazard rate assumption on type dis-
tributions, the optimal mechanism will never waste any payments, thereby deviating
distinctly from the efficient allocation (Theorem 1). In fact, our proof method reveals
that all mechanisms that allocate efficiently are worse than the simple mechanism where
the object is always given to the same agent (the one with the higher expected valu-
ation; Corollary 1), showing that our general mechanism design approach has clear
advantages over the previous approach to search for the optimal Groves mechanism.
We show that the optimal mechanism is either a “posted price” or an “option” mecha-
nism: The object is assigned to one of the agents unless both agents agree to trade at a
prespecified price (posted price mechanism) or unless the second agent uses his option
to buy the object at a fixed price from the first agent (option mechanism). Therefore,
the optimal mechanisms do not invoke money burning and are of a particularly simple
form. Moreover, numerical simulations indicate that these simple mechanisms obtain
a large share of first-best welfare (92 per cent on average in our simulations). In the
bilateral trade setting, we establish optimality of posted price mechanisms without any
restrictions on type distributions (Theorem 2). This provides an argument for the focus
on budget-balanced mechanisms (see 7, 7).

The requirement that a mechanism does not produce a budget deficit ex-post is
considerably stronger than the requirement that this holds in expectation. However, in
many situations it is reasonable that a budget breaker is infeasible and therefore ex-post
constraints need to be obeyed. This includes situations where there is no insurance or
where agents have restricted access to capital markets. Also, hidden information is-
sues towards a third party cannot always be resolved, and autarkic mechanisms that
can be implemented without explicit intervention by a third party might be preferable
(e.g., when mechanisms are used to model bargaining situations (?, 7)). If all these
considerations do not apply and mechanisms that create no deficit in expectation can
be implemented (for example, because the designer has unlimited liability), then one
can achieve the first-best solution (see Section 5). Similarly, we show that one can
achieve the first-best if mechanisms are only required to be Bayesian incentive compat-
ible (Proposition 1). In contrast to these two constraints, which are the main driving
forces behind our results, we argue that the participation constraint and the restriction
to deterministic mechanisms are not essential to the spirit of our results (Section 5).

Our work is part of a small literature that searches for mechanisms maximizing
residual surplus when the first-best is not achievable. ? studies a model of firms col-
luding in a Bertrand oligopoly. A mechanism used by a cartel to allocate market shares
should maximize residual surplus. Miller shows that under general conditions it is never
optimal to allocate market shares efficiently and gives numerical evidence that for some
type distributions it is optimal to give up efficiency in order to obtain a balanced budget.
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However, other examples indicate that this observation does not hold for all distribu-
tions. 7 study residual surplus maximization in a repeated bilateral trade setting and
obtain numerical results suggesting that for many type distributions the optimal mech-
anism is a posted price mechanism. Closely related to our paper is independent work
by ?, who obtain the characterization of our Theorem 1 when restricting to symmetric
distributions of types and allowing mechanisms to violate individual rationality.

The result that the efficient allocation is never optimal contrasts with the literature
cited above that restricts attention to efficient rules (?, ?, ?, 7). Recently, ? and
? relax this requirement. Similarly to our work, they focus on mechanisms that are
deterministic, strategy-proof, ex-post individually rational and create no deficit ex-post.
However, they require mechanisms in addition to be anonymous, which immediately
implies that whenever the object is allocated, it is allocated to the agent that values
it the most (weak assignment efficiency). This restricts the set of mechanisms severely
and excludes the mechanisms that turn out to be optimal in our analysis.

The restriction to efficient allocation rules has also been relaxed in a series of papers
that study specific mechanisms in a multi-unit setting. ? and ? propose simple mech-
anisms where one agent is designated as a residual claimant and is allocated one unit
(or no unit, respectively) independent of his type. The remaining units are auctioned
among the other agents and the residual claimant receives all payments accruing in the
auction. Faltings uses numerical examples to argue that his mechanism often outper-
forms the VCG mechanism. Moreover, Moulin shows that his mechanism provides a
higher worst-case welfare guarantee than any VCG mechanism given that there are suf-
ficiently many objects and agents. In our setting with two agents and one object, these
mechanisms always allocate the object to a fixed agent and therefore correspond to a
degenerate option mechanism. Our Corollary 1 supports Faltings’ numerical results in
the two agent setting by showing that under regular prior distributions his mechanism
indeed outperforms the VCG mechanism. Building on the ideas of Faltings and Moulin,
? provide worst-case welfare guarantees for two specific classes of mechanisms that al-
locate inefficiently: Burning allocation mechanisms burn a (random) number of units
and assign the remaining units efficiently. Partitioning mechanisms partition units and
agents randomly into two groups, allocate the objects in each partition efficiently to
the agents in the corresponding partition and distribute the payments to agents in the
other partition. Similarly, ? propose a deterministic mechanism where the burning
of items is contingent on the reports of the agents; they provide worst-case welfare
guarantees that converge to 0.88 asymptotically as the number of agents grows. Our
work differs from these papers by evaluating mechanisms according to a Bayesian prior,
restricting ourselves to the two agent setting and using a general optimal mechanism
design perspective.

Another related strand of the literature studies the expected residual surplus of
Bayesian incentive compatible mechanisms when it is not possible to redistribute any
payments among the agents (7, 7, 7). This implies that methods similar to those in
? can be applied. It is shown that for a large class of type distributions (those which
exhibit an increasing hazard rate) it is optimal to always assign the object to the same
agent. Maximization of residual surplus also plays a role in the analysis of optimal
mechanisms used by bidding rings (7). It is worth noting that the equivalence between
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Bayes-Nash and dominant strategy implementation (?, ?) does not apply to our model.?

We present the basic model for the auction environment in Section 2 and characterize
incentive compatible mechanisms in Section 3. The optimization problem is solved in
Section 4, the role of the assumptions is discussed in Section 5. We study this mechanism
design problem in the bilateral trade context in Section 6, and conclude in Section 7.

2. Model

An indivisible object is auctioned among two agents. Each agent ¢ = 1,2 has a
valuation z; for the object, which is his private information. Valuations are drawn in-
dependently from X; = [0, z;| according to distribution functions F; with corresponding
densities f;, which we assume to be bounded.? We denote by X = X; x X, the product
type space and by F' the joint distribution on X. For notational convenience, when
concentrating on agent i, we will write (z;, z_;) for z = (z1,22) € X.

If agent i is given a payment of p; (usually negative), his utility is z; + p; for winning
the object, and p; if the other agent gets the object.

Mechanisms

Due to the Revelation Principle we focus on truthfully implementable direct revelation
mechanisms for selling the object.

Definition 1. A mechanism M is a tuple (d,p), whered : X — {0,1}? andp : X — R?
are measurable functions, such that di(z) + dy(z) = 1.4

The interpretation is that d;(z) = 1 if and only if agent i gets the object. If the
agents report z, then agent i receives as payment the component p;(z) of p(x).

Equilibrium Concept

We consider strategy-proof mechanisms where truthful reporting is a dominant strategy
for both agents. Thereby, we ensure that the mechanisms can robustly be implemented
without specific assumptions on the beliefs of the agents. Hence, we define the following
notion of incentive compatibility:

Definition 2. A mechanism M is incentive compatible (IC) if for every agent i and
for each x; € X;, r; € X,

di(zi, =) - @ + piwi,r—;) > di(ri,r—;) - i + pi(ri, r—;)

2See Section 5 for more details.

3 Assuming that the lower bound of the type space is 0 simplifies the analysis. The details are
explained in footnote 7.

4For a discussion of stochastic mechanisms, see Section 5. We follow ? and ? and assume that
the good is always allocated. This is reasonable, for example, when considering how a cartel allocates
market shares, or how the government sells licenses to firms. While there can be welfare gains from
not allocating the good when one focuses on anonymous mechanisms (7), these gains seem to be minor
in our model. Moreover, the assumption that the good is always allocated is without loss of generality
in the trade setting (Section 6).
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holds for each r_; € X_;.

This definition is independent of the distribution of valuations, which reflects the ro-
bustness of strategy-proof mechanisms as compared to mechanisms that are Bayes-Nash
incentive compatible. Although the set of mechanisms we consider does therefore not
depend on F', the next section shows that the distributions determine which mechanism
is optimal.

Objective and Further Constraints

We aim at finding the mechanism that maximizes the sum of agents’ ex-ante (expected)
residual surplus, that is, utility derived from the physical allocation minus aggregate
payments. We impose the constraint that the mechanism has to be ex-post no-deficit
(ND), that is, for every type profile z, we require p;(z) + p2(z) < 0.°> Also, the mech-
anism has to be ex-post individually rational (IR), that is, for all type profiles x, we
require d;(x)x; + p;(x) > 0,4 = 1,2. Summarizing, we want to solve the following
optimization problem:

max | [dl(x)xl + do(2)72 + pr(2) + po(2)| dF (2) (1)

M=(d,p) /X
s.t. M satisfies IC, ND and IR.

We say that a mechanism is optimal if it solves problem (1).

3. Characterization of Incentive Compatibility

The aim of this section is to give a characterization of incentive compatibility in order to
simplify problem (1). The conditions characterizing incentive compatible mechanisms
involve a monotonicity and an integrability condition. We first define monotonicity.

Definition 3. The allocation function d is monotone if d; is non-decreasing in x; for
i=1,2.

Now given a monotone allocation function d, define the following functions for ¢ =
1,2:

gi(z_;) = inf{x; : d;(x;,x_;) = 1}.

If there is no x; such that d(z;,x_;) = 1, then we set g;(x_;) = z;. Note that if d is
monotone, these functions define d almost everywhere. The following lemma, which is
a corollary of 7, gives a characterization of incentive compatibility.

Lemma 1. A deterministic mechanism M = (d,p) is incentive compatible if and only
if the following two conditions are satisfied:

5Ex-post budget constraints are commonly imposed on mechanism design problems: see, for exam-
ple, the literature on optimal redistribution (?, 7, ?) and bilateral trade (?, ?), or ?. The role of this
assumption is discussed in Section 5.
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1. The allocation rule d is a monotone step function.

2. Forallxz; € X; and v_; € X_;,

pi(wi, i) = qi(v ) — gi(w—i)di(ws, v 3) (2)

for some function q; : X_; — R.

The interpretation of condition (2) is that an agent who receives the object is pun-
ished by receiving a lower payment: she receives g;(z_;) if she does not receive the
object, and this payment is reduced in case she gets the object to make the agent’s
marginal type g;(z_;) indifferent between receiving and not receiving the object.

This can be interpreted as a payoff-equivalence result: Payments are completely
determined by the allocation as soon as one fixes the payment for some type z;. Hence,
the only freedom that is left regarding the payment scheme, is to give the agent an
additional payment that is independent of his type. These additional payments can
serve as a possibility to redistribute certain amounts of payments to another agent.
Given an allocation rule d and a payment rule p, we say that the redistribution payment
q implicitly defined by the above equality is associated with p.

The simplified formulation of problem (1) is the following:

Jnax /X {dl(x)[fl — 91(@2)] + do(x)[z2 — g2(21)] + Q1(22) + 2(1) |dF (@)

s.t. M satisfies IR and ND, ¢ is associated with p and d is monotone.

We will write U(M) for the above integral and from now on only consider mechanisms
that are IC, IR and ND.

4. The Optimal Auction

In this section, we present the first main result of this paper: if we impose an increasing
hazard rate condition on the type distributions, then the optimal mechanism is always
budget-balanced. Specifically, it turns out that the optimal mechanism takes one of
two simple forms:

Either it is a posted price mechanism which by default allocates the object to one
of the agents (agent 1, say) and changes the allocation if and only if both agents agree
to trade at a prespecified price a, i.e., agent 1 reports a valuation below a fixed price a
and agent 2 reports a valuation above a. If agent 2 is allocated the object, he makes a
payment a to agent 1, otherwise no transfers accrue.

Or it is an option mechanism where the good is allocated by default to agent 1, but
agent 2 has the option to buy the object at price a. Hence, if agent 2’s valuation is
above the strike price a, he buys the object and pays a to agent 1 (see also 7).

Formally, these two mechanisms are defined as follows:

Definition 4. A mechanism M = (d, p) is a posted price mechanism with default agent
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1 and price a, if

dy(z) =1, p(z) = (a,—a) if 1 < a and x9 > a,
do(z) =0, p(x) = (0, 0) otherwise.

M is an option mechanism with default agent 1 and price a, if

da(z)
d2 (l’)

L p(z) =(a,—a)  ifxs = aq,
0, p(x) = (0, 0) otherwise.

Similarly, one can define posted price and option mechanisms with default agent 2.
If we do not specify the agent or price we just say that M is option or posted price.

Both classes of mechanisms are parameterized by the price a and it is easy to check
that all these mechanisms are budget-balanced as well as incentive compatible and
individually rational.

Our assumption on type distributions is the following:

Condition 1 (HR). The hazard rates of the type distributions are monotone. That is,
the functions h;(x;) = % are non-decreasing in x; € [0,z;) for i =1,2.
Theorem 1. Suppose that the hazard rates of the type distributions are monotone.
Then the optimal mechanism is either a posted price or an option mechanism.

It is known that if payments are wasteful by assumption, then for regular distribu-
tions it is optimal to make the allocation independent of reports (?): a more efficient
allocation is more than offset by the waste of payments that are required for incentive-
compatibility. Given that money can be redistributed in our model, there are better
budget-balanced mechanisms (essentially posted price and option mechanisms). One
might argue naively that, if wasting money is suboptimal in the setting of (?7), it must
also be suboptimal in this setting, and hence a budget-balanced mechanism must be
optimal. However, redistribution payments allow for additional flexibility, which makes
the argument more subtle and requires that we optimize jointly allocations and redis-
tribution payments.°

The proof can be sketched as follows: We first show the important auxiliary result
that either an option mechanism or a posted price mechanism is optimal in My, the
class of mechanisms such that g; is monotone and piecewise constant for each agent
(Lemma 2). We then argue that the residual surplus U(M) of a given mechanism
M can be approximated arbitrarily well by a mechanism in M, (Lemma 3). The
Theorem then follows by the following observation: Suppose there is a mechanism M
being strictly better than the best option or posted price mechanism, and denote the
difference in residual surplus by €. It follows from Lemma 3 that there is a mechanism

15

in the class M, whose residual surplus is within § of U(M), thus being better than

6Indeed, if the arguments from a model without redistribution could simply be extended, our
conclusion would also hold for stochastic mechanisms. However, numerical results in Section 5 show
that this is not the case.
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the best option or posted price mechanism. But this contradicts Lemma 2, hence there
cannot be a mechanism being better than the best option or posted price mechanism.

While the approximation part of the proof can be found in the Appendix, we state
and prove Lemma 2, which contains the essence of why Theorem 1 holds.

Lemma 2. Suppose that the hazard rates of the type distributions are monotone and
let M = (d,p) be any mechanism in My. Then there exists a mechanism M’ that is
posted price or option such that U(M') > U(M).

Proof. The proof consists of three steps: Step I determines for an arbitrary allocation
rule the maximal possible redistribution payments ¢;. Hence, the allocation rule from
this point on completely determines the optimal payments and we can constructively
manipulate the allocation rule in Steps 2 and & until we end up with an option or
posted price mechanism.

Step 1: We denote the jump points of go(z1) and g¢;(z2) by «; and §;, respectively
(see Figure 1). Note that, without loss of generality, we can assume that for the first
segment of g; we have g;(x2) = 0 since otherwise we could switch the roles of the agents.

We now claim that ¢o(z1) = 0, Va; € Xi; that is, no money is redistributed to
agent 2. To see this, pick arbitrary z; and observe that g;(0) = 07 and dy(zy,0) = 0;
therefore g1 (0)d;(x1,0) = g2(x1)da(z1,0) = 0. From (ND) it follows that ¢;(0)+q2(z1) =
p1(z1,0) + po(z1,0) < 0. Also, (IR) for agent 2 at (z1,0) implies ga(z1) > 0, and (IR)
for agent 1 at (0,0) implies ¢;(0) > 0, and therefore go(z1) = 0.

Next, we can assume that

¢1(r2) = min {91(22)dr (w1, 22) + g (1) o1, 72) } (3)

always holds, since by (ND) this relation always holds with < and changing it to equal-
ity does not reduce U(M). In this way, the complete payment-scheme is determined
through the allocation rule d. Note that setting the function ¢ this way implies that
(ND) and (IR) are always satisfied.

Step 2: In this step we argue that changing the allocation to the one shown in
Figure 1b does not increase money burning, but increases allocative efficiency and
hence aggregate welfare.

Define the set B = {z | 1 < 1 < x9,ds(x) = 0} and consider the sets By, By
and C' as shown in Figure 1la. We change the allocation rule and allocate the object to
agent 2 for types in B. Since x9 > 1 for x € B, this improves the physical allocation
and we can concentrate on payments. Note that ¢, as defined in (3), increases to the
same extent as g;, hence any additional payments in the set By can be redistributed.
Also, transfers are weakly increased for types in By and C'. As the change in allocation
has no effect outside these sets, the claim follows.

Step 3: This step studies the effects of shifting steps in the set R, shown as the
shaded area in Figure 1b, while fixing redistribution payments. Our condition on the

7At this step we use that 0 is the lower bound of the type space. This assumption implies that
participation constraints pin down the maximal redistribution payments. Without this assumption,
one would have to optimize over redistribution payments. If, for example, fi = f2 and f; is log-concave
then exactly the same results can be obtained.
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Figure 1: Illustration of the proof of Lemma 2.
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hazard rate ensures that each step should optimally be moved to either the lowest or
the highest possible position. Hence, proceeding iteratively, we obtain either an option
mechanism or a posted price mechanism. This will complete the proof.

Changing the allocation in R does not change ¢; as defined in (3) and we ignore the
functions ¢; from now on.

The following is a procedure to remove one step contained in R without decreasing
U(M). We do this exemplarily with the jump point at 3 (see Figure 1b). We vary [3
on the interval [y, B4] and show that welfare is quasi-convex in 3. This implies that
setting 55 = P or 4 increases U(M). The part of U(M) that depends on f33 is the
following:

as B3 Z2
/ [/5 (l’l — CYQ)dFQ(Z'Q) _'_/5 (33'2 — 63)dF2($2)] dFl(l'l)
as o 3

— /jl [/fg odFy (1) + /ﬁ?l a3dF2(:1:2)] dF (1)

a3

Differentiating with respect to 3 using Leibniz’ rule yields

7 [ — a) = [ = B |amie) + [ faBols — aslaFi(a).

a2 a3

Writing constants C7, Cs and Cj5 for the terms that do not depend on f5, we get

C1f2(Bs) — 02{1 — Fz(ﬁ:a)} + Cs f2(Bs).

Assuming Cy[1 — Fy(83)] > 0 (if either Cy = 0 or 1 — Fy(f3) = 0, we set 35 = (4 without
reducing U), we can divide by Cy[1 — F5(f3)] and get that the derivative is non-negative
if and only if

C - hy(B3) —1 >0,

where C' = (Cy + C3)/Cy > 0. Because hy(f33) is non-decreasing by condition (HR),

quasi-convexity follows and U (M) is increased by either setting £5 = 52 or 85 = f4. In

either case, we have decreased the number of steps by one and the procedure ends.
Iteratively applying this procedure establishes the lemma. [

A consequence of the theorem is that, given the increasing hazard rates of the agents’
type distributions, finding the best mechanism reduces to finding the best posted price
and option mechanisms and comparing these two. For example, if the agents have the
same distribution function, all option and posted price mechanisms with the same strike
price yield the same welfare and therefore the best mechanism is characterized by the
strike price a* satisfying

a* = E[z] = E[xq).

Our intermediate results (see the proof of Lemma 2) also allow for a refined judgment
of the welfare implied by the efficient allocation, which is employed by the literature
on optimal redistribution (?, ?, ?, ?). We provide a mechanism that improves upon
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Distribution Average share Minimum share

Weibull (IHR) 0.930% 0.788 %
Weibull (DHR) 0.916 % 0.753 %
Exponential 0.905 % 0.752 %

Table 1: Simulation results showing the share of first-best welfare that is obtained by
the optimal posted price or option mechanism. We solved a discretized model and ran
500 trials for each distribution using randomly drawn parameters.

8

all efficient mechanisms.® Surprisingly, this improvement can be achieved using an

extremely simple mechanism:

Corollary 1. If the hazard rates of the type distributions are monotone, then every
mechanism that allocates efficiently is dominated by a mechanism that always allocates
the good to the same agent.

More precisely, a mechanism that is better than every efficiently allocating mecha-
nism can be found simply by comparing the agents’ type distributions, giving the good
to the agent with the higher expected valuation and completely ignoring any reported
types.

Despite their simplicity, the optimal mechanisms obtain a surprisingly large share of
first-best welfare, as the following example suggests (see Table 1 for further numerical
estimates of the share of first-best welfare that the optimal mechanism obtains). Note
that randomly allocating the object to one of the agents provides a worst-case welfare
guarantuee of %; in all our numerical examples the optimal posted price or option
mechanism improves significantly over this lower bound.

Example 1. Suppose that 0; ~ U[0,1] for i = 1,2. First-best welfare is given by

1

Urp = %, whereas the optimal mechanism M is an option mechanism with price 3,

yielding U(M) = %. Hence, the optimal mechanism yields a 93.8 per cent share of
first-best welfare. In contrast, a random allocation yields only a 75 per cent share of

first-best welfare.

The following example shows that if Condition (HR) is not satisfied the optimal
mechanism need not be of the form stated in Theorem 1. The example also illustrates
the role of (HR) in establishing the result.

Example 2. Let the distribution function of two symmetric agents be given as

f@oz{og if 2; < 0.5

0.1 otherwise.

Due to the downwards jump at 0.5, f does not satisfy condition (HR). The optimal
posted price mechanism (which is as good as the optimal option mechanism) has a
strike price of a* = 0.275, attaining a social welfare of 0.0718. However, the following

8Indeed, this mechanism improves upon any mechanism that treats agents symmetrically in a
neighborhood of 0. This observation extends to settings with more than two agents.
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Figure 2: Mechanisms presented in Example 2

mechanism M attains a higher social welfare of 0.0741: Set
dy(x) =1 & (x9>a" and x1 < a*) or (z2 > 0.5 and x; < 0.5),
and set qga(x1) =0, as well as

0 ifxy <a*

q1(z2) = { %

a* otherwise.

This mechanism and the best option mechanism are depicted in Figure 2. One can
see that the allocation of mechanism M is more efficient. Because the induced higher
payments cannot be redistributed, payments of (0.5 — 0.275) = 0.225 are lost for type
profiles in the shaded area in Figure 2b. But still, since type profiles x with x1, x5 > 0.5
appear so rarely (with density 0.01), this does not counter the positive effect due to the
better allocation. In this sense, an increasing hazard rate ensures that lost payments
can never be weighed out by an improved efficiency of the allocation.

5. Relaxing the constraints
In this section, we in turn relax the no-deficit, incentive compatibility and participation

constraints as well as the restriction to deterministic mechanisms, and analyze how
sensitive our characterization in Theorem 1 is to these relaxations.

Ex-ante Budget Constraints

While ex-post budget constraints are imposed commonly in the literature and seem
appropriate for many settings, they would effectively be turned into ex-ante constraints
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if insurance against budget deficits was available.” Relaxing the no-deficit constraint

to an ex-ante constraint, thus requiring the mechanism to run at no deficit on average,
simplifies the problem and allows the planner to implement the first-best (i.e., the
efficient allocation and a balanced budget). This can be achieved by running the VCG
mechanism. This mechanism is ex-post individually rational and creates no deficit ex-
post. By redistributing the expected surplus in an arbitrary fixed way to the agents,
the mechanism becomes ex-ante budget-balanced and therefore achieves the first-best.

Bayesian Incentive Compatible Mechanisms

If stronger assumptions can be made on the information structure (namely, if the agents’
beliefs equal a common prior that is known to the designer), we can relax the con-
straints on the mechanisms to Bayesian incentive compatibility and interim individual
rationality. This allows the implementation of mechanisms that achieve higher expected
welfare. Notably, if the distribution of types is symmetric across agents, then the ex-
pected externality mechanism (7, ?7) achieves the first-best. To see this, observe that
this mechanism allocates efficiently, has a balanced budget, and has payments given by

T_; T;
M @) = [ e dFa) — [ wdFa). (4)
Therefore, an agent reporting a type of 0 receives a weakly positive transfer and hence
a weakly positive utility. The following Proposition shows that with ex-ante symmet-
ric agents, the expected externality mechanism is even ex-post individually rational.
More generally, it shows that the first-best can be achieved whenever virtual values are
increasing (in particular, under condition (HR)).

Proposition 1. Consider the problem of finding the optimal mechanism that is Bayesian
incentive compatible, interim individually rational and satisfies ex-post no-deficit.

1—F;(x;)
fi(@i)
then the optimal mechanism allocates efficiently and is ex-post budget-balanced.

1. If virtual valuations are increasing, (i.e., x; —

is increasing for i =1,2),

2. If agents are ex-ante symmetric (i.e., Fy = F,), then the expected externality
mechanism is optimal. It allocates efficiently, is ex-post budget-balanced, and ex-
post individually rational.

This implies that the equivalence of Bayesian and dominant strategy incentive com-
patible mechanisms established by ? does not apply. They show that in a large class
of mechanism design problems, for any Bayesian incentive compatible and interim in-
dividually rational mechanism, there exists an equivalent dominant strategy incentive
compatible mechanism that is ex-post individually rational. However, this equivalence
is established in the absence of budget constraints, and the above arguments imply that
it cannot be extended to our setting.

9Note also, that the exact form of the budget constraints can be irrelevant when considering Bayesian
incentive compatible mechanisms (7).
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Distribution Average loss Maximum loss Instances without loss

Random 0.018% 0.874 % 92.500 %
IHR 0.003 % 0.420 % 97.850 %
Weibull 0.000 % 0.000 % 100.000 %
All 0.007 % 0.874 % 96.785 %

Table 2: Simulation results comparing the welfare loss due to the restriction to
deterministic mechanisms.

Participation Constraints

While our general characterization of the optimal mechanism does not hold with relaxed
participation constraints, these constraints are not the main driving force behind our
results and the inefficiency of the optimal allocation. Indeed, our characterization can
be obtained without participation constraints if one restricts attention to settings where
agents are symmetric ex-ante (7).

Stochastic Mechanisms

In the previous section we restricted attention to deterministic mechanisms in order to
be able to analytically characterize the optimal mechanism. Deterministic mechanisms
have additional benefits: They are simpler to implement, and more plausible in some
settings (e.g., when modeling bargaining between agents).

While there are instances where the focus on deterministic mechanisms is not with-
out loss, numerical simulations suggest that the induced loss in welfare is small. We
generated n = 2000 random instances for three classes of distributions of types: Ran-
dom distributions, random distributions with an increasing hazard rate, and distribu-
tions from the Weibull class with different shape and scale parameters such that the
distribution has an increasing hazard rate. We then computed the optimal determinis-
tic and stochastic mechanism for every instance. The results are summarized in Table 2
which shows, for each distribution class, the average and maximum welfare loss of the
optimal deterministic mechanism, as a percentage of the welfare of the best stochas-
tic mechanism. The fourth column shows the percentage of instances where there is
no loss due to the restriction to deterministic mechanisms. As can be seen, instances
where the deterministic constraint is binding appear only rarely. Further, even if this
is the case, the percentage loss in expected welfare is very small. Note that whenever
a stochastic mechanism is strictly better in our simulations, the optimal mechanism is
not budget-balanced.

6. Bilateral Trade

? showed that one cannot implement the efficient allocation in the bilateral trade set-
ting in an ex-post budget-balanced and interim individually rational way, and charac-
terized the optimal mechanism satisfying these constraints. In the same environment, ?
study the set of dominant-strategy implementable mechanisms that are ex-post budget-
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balanced and individually rational, showing that essentially only posted price mecha-
nisms fulfill these conditions. However, a priori it is not clear why one should restrict
the search for the optimal mechanism to mechanisms with a balanced budget. After
all, it is conceivable that deviating from a balanced budget could improve incentives
and therefore lead to higher welfare. In fact, ? show by example that relaxing budget-
balancedness to a no-deficit constraint can improve upon posted price mechanisms. The
result in this section shows that this holds only for stochastic mechanisms; when looking
at deterministic mechanisms, the restriction to budget-balanced mechanisms does not
reduce aggregate welfare.

Let the model and notation be as in Section 2, but assume now that agent 1 (called
the “seller” from now on and indexed by S) is the owner of the good before participating
in the mechanism (whereas agent 2 is called the “buyer” and indexed by B). By a buyer
posted price mechanism we denote a posted price mechanism in which the buyer gets
the object if and only if he announces a type high enough, and the seller a type that
is low enough. Again, we are looking for a mechanism that maximizes the sum of the
expected utilities of the agents, taking monetary transfers into account. The fact that in
the bilateral trade setting the seller initially owns the good requires a stronger condition
for a mechanism to be individually rational: now the outside option for a seller is to
not participate in the mechanism and to keep the object. Hence, for a mechanism to
be individually rational,

ds(z)xs +ps(z) > x5  and  dg(x)zp+pp(z) >0 (IR”)

must hold for all z € X.
Thus, a mechanism is optimal if it solves

max /X {ds(x)xs +dp(x)xp + ps(z) + pp(x) |[dF (x) (5)

M=(d,p)

s.t. M satisfies IC, ND and IR

Theorem 2. There is a buyer posted price mechanism that solves problem (5).

Proof. We first show that (IR’) implies that the seller keeps the object whenever his
valuation is higher. Assume to the contrary that trade takes place at xg > . Then
(IR?) for the seller implies that the seller receives at least xg and (IR’) for the buyer
implies that he pays at most x g, violating (ND).

Recall that gp(0) denotes the smallest buyer type such that trade takes place when
xg = 0, and gg(Tp) denotes the highest seller type such that trade takes place when
rp = Tp. We claim that gs(Tp) < gp(0). Constraints (IC) and (IR’) for the seller
imply that he receives at least a payment of gs(Tp) whenever the buyer reports Tp and
trade takes place, in particular at (0,Zp) (if no trade takes place at (0,Zp), trade will
never happen, corresponding to a posted price mechanism with a price above the highest
possible valuation). Similarly, (IC) and (IR’) for the buyer imply that he pays at most
g5(0) whenever the seller reports 0, in particular at (0,Zg). Therefore, gs(ZTp) > g5(0)
would violate (ND) at (0,Zp).

Finally, we claim that the buyer posted price mechanism with strike price gg(0)
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Figure 3: Illustration of the proof of Theorem 2. The shaded area indicates the type
profiles where the initial mechanism differs from the posted price mechanism with
strike price gp(0) (dashed line).

weakly dominates the given mechanism. To see this, note that pg(x) + pg(x) < 0
by (ND) and a posted price mechanism is budget-balanced. Hence, the posted price
mechanism dominates the old mechanism with respect to payments. Since the allocation
only differs for = such that xp > ¢gp(0) > xg and the posted price allocation rule
prescribes dp(z) = 1 for such x (see also Figure 3), the posted price mechanism also
dominates the old mechanism with respect to the allocation rule. [

In contrast to Theorem 1, this result shows that a posted price mechanism is optimal
for any type distribution. The difference is due to the stronger individual rationality
constraint. While any allocation rule is compatible with (IR), the stronger constraint
(IR’) in the trade setting restricts the set of allocation rules that can be implemented
without a budget deficit. Within this smaller class of feasible allocation rules, for any
distribution of types a posted price mechanism is optimal.

The stronger individual rationality constraint also implies that mechanisms which
do not allocate the object are infeasible. This is because if the buyer does not get
the object, no money can be collected to compensate the seller for losing the object.
Therefore, assuming that the object is always allocated is without loss of generality in
this setting.

7. Discussion

We have studied the trade-off between efficiency and budget-balancedness in an inde-
pendent private values auction model. We incorporated this into the model by letting
the social welfare objective function include all payments, that is, by maximizing resid-
ual surplus.!® We showed that, if one focuses on robust implementation in dominant
strategies, an increasing hazard rate condition on agents’ type distributions guarantees
a resolution of the trade-off completely in favor of a balanced budget. In addition,
budget-balanced mechanisms have a very simple form and can easily be implemented

0For other ways to analyze the frontier that describes possible ways to resolve the trade-off between
efficiency and budget-balancedness, see, for example, 7 or 7.
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as posted price or option mechanisms. Further, we showed without any assumption on
the prior distribution of types that a posted price mechanism is optimal in the bilateral
trade setting. Our results imply that our approach of optimal mechanism design yields
higher welfare than approaches concentrating on the efficient allocation.

In the section on robustness we have seen that the restriction to deterministic and
ex-post individually rational mechanisms is not crucial for our main result. Instead, it
is primarily driven by the focus on strategy-proof mechanisms that satisfy the ex-post
no-deficit constraint: Without these constraints the first-best can be achieved, implying
that these two restrictions are relatively costly in terms of welfare.

An interesting open question is how the result generalizes to a model including more
than two agents. We strongly believe that the optimal mechanism will still be budget-
balanced. An important argument for this is that, as the number of agents gets large,
the efficient allocation can be approximated in a budget-balanced way: in the spirit of
?, allocate efficiently while ignoring one agent who then receives all payments from the
other agents. This can be implemented by tentatively giving the object to one of the
agents and then simulating a second price auction with reserve price where this agent
sells the object to the remaining agents.

Appendix: Proof of Theorem 1

The following lemma enables us to approximate any mechanism with mechanisms from

the class M.

Lemma 3. For every mechanism M = (d,p) and for every e > 0 there exists a mech-
anism M = (d,p) in My such that U(M) — U(M) < ¢.

Proof. Let the mechanism M = (d,p) and € > 0 be given and let g;(x2) and go(x;)
be defined as above. Define D; := {x € X : d;(z) = 1} as the set of type profiles
where agent i gets the object and define D; similarly. Since g, is a monotone function
it can be approximated uniformly by a monotone and piece-wise constant function g.
Denote the associated allocation rule by d. By choosing the step width small enough
the approximation can be done such that for given 6 > 0,

|91 — G1llec <0 and  |[g2 — Gollec <O

holds. The approximation can be chosen such that g;(z_;) = z; implies g;(z_;) = Z;
and g can be chosen such that g, < go, implying that D, C D;.

Without loss of generality, we can assume that go(z1) = 0 (see Step 1 in the proof of
Lemma 2). By construction of g, and since M satisfies (ND), we can define functions
Gi(x_;) such that g2(x1) = 0, 0 < Gi(x2) < inf,, {G1(x2)di (21, 22) + Go(x1)do(x1, 29)}
Vas € Xy and ||¢1 — q1]]|eo < 6. We then have:

U(d,p) = U(d.5) < [ ar(a2) = le2) dF (@)

+ /Dl 1 — g1(z2) dF(x) — /~ z1 — §1(x2) dF(z)

D,

+ /D2 Ty — ga(x1) dF () — /~ g = Ga(a1) dF (2)

Do
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<0+ 1 — qi(xe) dF (z)+ | 0 dF(z)

Dl\D1 Dy
+ / — ga(@1) AP (@) + [ 5 dF(a)
S 30 + le1§ + BQ.TQ(S’
where B; is an upper bound for f;(x;). Hence, by choosing § < 55 1o, it follows
that U(d,p) — U(d,p) < e. O

We combine the approximation lemma with Lemma 2 in order to prove the theorem.

Proof of Theorem 1. Without loss of generality, we restrict ourselves to posted price
mechanisms for agent 2. We first establish that U maps the set of all posted price
mechanisms to a compact subset of R. Let a = min{Z, Z»} and let a € [0,a] be some
price for a posted price mechanism M,. Then U(M,) can be written as

M,) = /0 ’ / " adF(x) + /0 /0 " pdF(2) + / / " dF(x)

Due to the continuity of F', this function is continuous with respect to a. Since [0, a] is
compact, so is {U(M,) |a € [0,a]} and therefore there exists an a* such that U(M,-)
is maximal among all posted prices.

Next, assume that the theorem is false, i.e., there exists a mechanism M and € > 0
such that U(M) > U(M,~) + €. Then apply Lemma 3 to M and ¢ to get a mechanism
M € Mg with U(M) > U(M,-). This contradicts Lemma 2, establishing the theorem.

[l

Proof of Corollary 1. The arguments in Step 1 in the proof of Lemma 2 imply that
agent 1 receives no redistribution payments; symmetric arguments imply that agent 2
also gets no redistribution payments. Hence, all payments that are collected must be
wasted. The result then follows from ?. m

Proof of Proposition 1.

(1) Let d* denote an efficient allocation rule. Given a mechanism (d*,t), let

Ui(x;) == /:_i xp A (g, ) + iz, x_y)dF_(x ;)

=Z—1

denote the interim expected utility, and S := —E[t;(z1, x2) + ta(21, 22)] the expected
budget surplus. Observe that

/Xl‘l . d;(l‘l,ftg) + 9 - d; (ZL‘l,I'Q)dF(.I‘l,(L'Q) S
Z/ Ui(z1) + Uz(z2)dF (21, 72)

=U;(0) + Us(0 —I—/ / (s, 9 d3+/ dy(x1,8)ds dF (xq,x3)
].—Fl(.Il) 1 —FQ((L’Q)

=U;(0) + Us(0 +/ @) Fo(a)

— o dy(zy, w2) + ds (w1, 2) dF (21, 72).
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Hence,

UL (0) + Us(0) + S = /X [xl - m] & (1, 25)
—71_]?2(%2) sz, xT1,%
+ |fC2 f2(x2> ] d2( 1, 2)dF< 1, 2).
We claim that
UL (0) + Us(0) + S > 0. (6)

Indeed, if U;(0) 4+ U2(0) + S < 0 were true, then

_il(xl) (21, T
ol = ey et <

would hold for some 7, as S > 0 follows from no-deficit. Together with the assumption
that virtual valuations are increasing, this would imply that

/X l:pz - 1—171(351)] (1 —df(z1,12)]dF (z) < 0.

fi(z:)
Hence Fie)
1 — Fiz:
z; — ————=| dF'(z) <0,
/X [ fi(w) ] )
contradicting the fact that [y z; — l}lz;(?)dﬂ(xl) =0.
Define t(z) := t{"M(2) — [x, t77M(0, 5)dF5(s) and to(x) := —t1(x). The mecha-

nism (d*,t) is ex-post budget balanced by construction (hence, S = 0); it is Bayesian
incentive compatible since payments differ from the payments in the expected exter-
nality mechanism only by a constant. Moreover, U;(0) = 0 by construction; therefore,
Us(0) > 0 follows from (6), showing individual rationality.

(2) Optimality of the expected externality mechanism follows from the observations
before Proposition 1. Ex-post individual rationality follows from the following two
facts: z; < x; implies t#¥M(z) > 0 by (4), and z; > x; similarly implies t7FM(z) =
— [FisdF;(s) > —x;. This implies that x; - di (x) + tFFM > 0 for all z. O

J
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