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Chapter 1

Introduction

Subject of this dissertation is the low dimensional representation of random func-

tions. There is a close connection to traditional statistics where usually the prop-

erties of a random variable or a multivariate random variable is studied. Dur-

ing the last three decades Functional data analysis (FDA) becomes popular to

carry out an statistical analysis of functions as objects of interest, see for exam-

ple Ramsay and Silverman (2005) or Ferraty and Vieu (2006). In this context

let (Ω,F , P ) be a probability space and L2(Ω) be the space of all random vari-

ables X : Ω → L2(I), where L2(I) is the space of square integrable functions

on a compact interval I. Accordingly then for X ∈ L2(Ω) the functional anal-

ogy of mean and covariance is given by E(X(u)) =
∫

Ω
X(w, u)dP (w), u ∈ I

and E(X(u)X(s)) =
∫

Ω
X(w, u)X(w, s)dP (w), u, s ∈ I the covariance function

is de�ned by K : I × I → R, K(u, v) = cov(X(u), X(v)) = E(X(u)X(s)) −

E(X(u))E(X(s)). Sloppy speaking functions can thus be considered as �highly

multivariate objects�. However, considering random functions rises new questions

which have no analogues in the analysis of multivariate random variables because

a major di�erence between the two approaches is that for functions observation

has to be considered as ordered in I.
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One major aspect of statistical data analysis is to reduce the dimensionality of

the data to make interpretation easier. Oftentimes this provides an opportunity

for further analysis, for example: clustering or prediction. A popular tool for mul-

tivariate data is Principal Component Analysis (PCA) invented at the beginning

of the last century by Pearson (1901) and independently by Hotelling (1933). PCA

is a method to structure multivariate data sets, to do so the n-dimensional data

space is projected into a q-dimensional subspace but loosing as little information

as possible. Among others Dauxois et al. (1982) developed a functional counter-

part to PCA (FPCA) based on an eigendecomposition of the covariance operator

(Γγ)(u) =
∫
I K(u, v)γ(v)dv.

Usually L2(Ω) is not directly observable but only a discrete i.i.d sample i =

1, . . . , n, j = 1, . . . , T often contaminated with noise εij such that Yi(tj) = Xi(tj)+

εij is observed. Functional Data of such type often occurs in reality for exam-

ple considering Weather data, Stock prices or even statistical objects like density

functions. In a functional context dimension reduction means �nding a low dimen-

sional functional subspace. First attempts here by using FPCA to derive estimates

if a sample of discrete noisy data is observed where for example made by Besse

and Ramsay (1986). The important theoretical framework was then carried out by

Hall and Hosseini-Nasab (2006). Using FPCA as low dimensional representation

has the advantages that orthogonal components are obtained and these compo-

nents span the best low dimensional subspace in terms of the L2 error function.

In Chapter 2 a detailed introduction to FPCA and suitable estimators are given

for the case where I = [0, 1]g, g ∈ N.

The ordering in I rises new chances and problems which have no analogues

in the analysis of multivariate random variables. For example smoothing tech-

niques can be applied to handle the εij term. In Chapter 2 a local polynomial is

used, prominent alternatives are for example using splines as done by Rice and
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Silverman (1991) or kernel smoothing as done by Benko et al. (2009). Further

the so called registration problem where the observed functions are additionally

warped by some strictly increasing function hi such that Yi(tj) = Xi(hi(tj)) + εij

has no comparable counterpart in the analysis of multivariate data. In Chapter 3

we illustrate that due to warping structurally very di�erent curves can share the

same covariance and thus the corresponding eigenfunctions are identically. But

in presence of warping using traditional covariance based methods like FPCA or

even easier representations like the mean are not meaningful anymore. In general

it is hard to model hi using linear basis expansions because by construction such

expansions mostly explain amplitude variation.

FPCA can be considered as an �all-rounder� suitable to analyze most data

sets because it always gives the best low dimensional subspace representation.

In various speci�c cases where additional knowledge of the structure of the data

set is present or speci�c questions are posed it is often better to stick to another

decomposition which not necessary ful�lls the best basis property but is tailored for

the corresponding data set. For example if a sample of density functions f1, . . . , fn

is considered, then in general the low dimensional approximation of fi using FPCA

as done by Kneip and Utikal (2001) is not a density function anymore. Petersen

and Müller (2016) presents a di�erent low dimensional representation not based on

a linear basis decomposition of fi but of Ψ◦fi were Ψ is suitably chosen. The choice

of Ψ then ensures that the low dimensional approximation of Ψ ◦ fi �reversed� by

Ψ−1 is still a density. Another decomposition di�erent from FPCA is given by

the Principal Di�erential Analysis (PDA) by Ramsay (1996) which is based on the

linear di�erential operator L = Dm−
∑m−1

j=0 wjD
j. Here the task is to estimate wj ∈

L2(I) minimizing n−1
∑n

i=1(LYi)
2(t) = n−1

∑n
i=1{

∑m
j=0wj(t)D

jYi(t)}2 instead of

estimating eigenfunctions of the covariance operator. A possible advantage of this

decomposition is of course given if the curves are of simple di�erential equation

3



nature but also a general decomposition can bene�t since this approach makes

explicit use of smoothness properties due to the derivatives.

In this context two alternative ways to present functional data not using tradi-

tional FPCA are presented. In Chapter 2 for observed discrete noisy Y1, . . . , Yn the

aim is to estimate a low dimensional decomposition for derivatives X
(d)
i , d ∈ Ng

+

of high dimensional spacial curves I = [0, 1]g. The reason not to stick to tradi-

tional FPCA in this case is that the usual estimators which rely on some kind

of smoothing su�er from the curse of dimensionality. Thus a di�erent estimator

closely related to classical FPCA is used where the curse of dimensionality has an

lesser impact. Therefore better rates of convergence are obtained and the presented

method usually gives better estimates. Chapter 2 is joined work with Maria Grith,

Wolfgang K. Härdle and Alois Kneip and is planned to be submitted to �Statistica

Sinica�. In Chapter 3 the registration problem is discussed, in particular regis-

tration deals with separating amplitude and phase variation. While traditional

registration procedures usually register the observed curves to a single template,

oftentimes some kind of structural mean, a method to register the curves to a �nite

dimensional linear function space is presented. The curves are then decomposed

in this �nite dimensional space. It turns out that a sample of curves can always

be registered to a �nite dimensional space if the curves have a special structure

such that the number of extrema per curve is �nite. We use the term �curves of

bounded shape variation� to classify these curves. Assuming a sample of �curves

of bounded shape variation� seems to be a very natural condition in many appli-

cations in biomedicine, technics, chemometrics, etc. Chapter 3 is joined work with

Alois Kneip and has been submitted to �Journal of the Royal Statistical Society:

Series B�.

The presented methods were applied to various real data sets from di�erent

scienti�c �elds. In Chapter 2 an empirical study is carried out where the state

4



price density (SPD) surfaces from call option prices is estimated. Three main

components were identi�ed, which can be interpreted as volatility, skewness and

kurtosis factors. Also e�ects introduced by the term structure variation could

be identi�ed. Chapter 3 provides applications to human growth curves, genetic

data and the Aneurisk65 data-set. Using registration we were able to get a better

data classi�cation and may discover patterns unobservable before. The juggling

data-set discussed in Chapter 4 as well as the Aneurisk65 data-set are 3D-curves

R3 → R. A method to register and to analyze these kind of data is presented.

Chapter 4 is joint work with Dominik Poss and was an implication of the CTW:

�Statistics of Time Warpings and Phase Variations� at the Ohio State University

and has been published in the �Electronic Journal of Statistics� (Poss and Wagner

(2014)).
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Chapter 2

Functional Principal Component

Analysis for Derivatives of

High-Dimensional Spatial Curves

Abstract

We present two approaches based on the functional principal component analysis
(FPCA) to estimate smooth derivatives of noisy and discretely observed high-
dimensional spatial curves. One method is based on the eigenvalue decomposition
of the covariance operator of the derivatives and the other assumes the operator
of the curves. To handle observed data, both approaches rely on local polynomial
regressions. We analyze the requirements under which the methods are asymp-
totically equivalent, and establish that the �rst approach requires very strong
smoothness assumptions to achieve similar convergence rates to the second one. If
the curves are contained in a �nite-dimensional function space, we show that using
both our methods provides better rates of convergence than estimating the curves
individually. We illustrate the methodology in a simulation and empirical study,
in which we estimate state price density (SPD) surfaces from call option prices.
We identify three main components, which can be interpreted as volatility, skew-
ness and convexity factors. We also �nd e�ects introduced by the term structure
variation.

7



2.1 Introduction

Over the last two decades, functional data analysis became a popular tool to han-

dle data entities that are random functions. Usually, discrete and noisy versions

of them are observed. Oftentimes, these entities are high-dimensional spatial ob-

jects. Examples include brain activity recordings generated during fMRI or EEG

experiments, e.g., Majer et al. (2015). In a variety of applications though the

object of interest is not directly observable but it is a function of the observed

data. Typical examples in the �nancial applications include functionals that can

be retrieved from the observed prices by means of derivatives, such as implied state

price density, e.g., Grith et al. (2012), pricing kernel, e.g., Grith et al. (2013) or the

market price of risk, e.g., Härdle and Lopez-Cabrera (2012). Motivated by such

data analysis situations, we address the problem of estimating high-dimensional

spatial curves that are not empirically observable but can be recovered from the

existing discrete and noisy data by means of derivatives.

Functions, which are objects of an in�nite-dimensional vector space, require

speci�c methods that allow a good approximation of their variability with a small

number of components. FPCA is a convenient tool to address this task because it

allows us to explain complicated data structures with only a few orthogonal prin-

cipal components that ful�ll the optimal basis property in terms of its L2 accuracy.

These components are given by the Karhunen-Loève theorem, see for instance Bosq

(2000). In addition, the corresponding principal loadings to this basis system can

be used to study the variability of the observed phenomena. An important con-

tribution in the treatment of the �nite dimensional PCA was done by Dauxois

et al. (1982), followed by subsequent studies that fostered the applicability of the

method to samples of observed noisy curves. Besse and Ramsay (1986), among

others, derived theoretical results for observations that are a�ected by additive

errors. Some of the most important contributions for the extension of the PCA

8



to functional data belong to Cardot et al. (1999), Cardot et al. (2007), Ferraty

and Vieu (2006), Mas (2002) and Mas (2008). To date, simple, one-dimensional

spatial curves are well understood from both numerical and theoretical perspec-

tive. In one-dimensional case FPCA is also easy to implement. High-dimensional

objects, with more complicated spatial and temporal correlation structures, or

not-directly observable functions of these objects, such as derivatives, lack a sound

theoretical framework. Furthermore, the computational issues are not negligible

in high-dimensions.

To our best knowledge, FPCA for derivatives has been tackled by Hall et al.

(2009) and Liu and Müller (2009). The �rst study handles one-dimensional direc-

tional derivatives and gradients. The second paper analyses a particular setup in

one-dimension where the observations are sparse. This method can be applied to

non-sparse data but may be computationally ine�cient when dealing with large

amounts of observations per curve. There are no studies of derivatives using FPCA

in more than one spatial dimension. For the study of observed functions, there are

a series of applied papers for the two-dimensional case, see Cont and da Fonseca

(2002) for an application close to our empirical study. Other complicated attempts

to implement FPCA when the object of interest are the observed functions, rather

than their derivatives, have been done in more than two dimensions, in particu-

lar in the area of brain imaging. For example, Zipunnikov et al. (2011) split the

recorded data into smaller parts to make it manageable. This method, called mul-

tilevel FPCA, developed through previous studies, see Staicu and Carroll (2010),

Di et al. (2009), is well suited to analyze di�erent groups of individuals. However,

a thorough derivation of the statistical properties of the estimators is missing in

these papers.

In this paper, we aim to �ll in the existent gaps in the literature on FPCA

for the study of derivatives of functions in high-dimensional space. We present
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two alternative approaches to obtain the derivatives. The paper is organized as

follows: the theoretical framework, estimation procedure and statistical properties

are derived through Section 2.2. Our empirical study in Section 2.3 is guided by the

estimation and the dynamics analysis of the option implied state price densities.

It includes a simulation study and a real data example.

2.2 Methodology

2.2.1 Two approaches to the derivatives of high-dimensional

functions using FPCA

The representation of derivatives of high-dimensional spatial curves requires a

careful choice of notation. In this section, we review the FPCA from a technical

point of view and make the reader familiar with our notations.

Let X be a centered smooth random function in L2([0, 1]g), where g denotes

the spatial dimension, with �nite second moment
∫

[0,1]g
E [X(t)2] dt < ∞ for t =

(t1, . . . , tg)
>. The underlying dependence structure can be characterized by the

covariance function σ(t, v)
def
= E [X(t)X(v)] and the corresponding covariance op-

erator Γ

(Γϑ)(t) =

∫
[0,1]g

σ(t, v)ϑ(v)dv.

Mercer's lemma guarantees the existence of a set of eigenvalues λ1 ≥ λ2 ≥ . . . and

a corresponding system of orthonormal eigenfunctions γ1, γ2, . . . called functional

principal components s.t.

σ(t, v) =
∞∑
r=1

λrγr(t)γr(v), (2.1)

where the eigenvalues and eigenfunctions satisfy (Γγr)(t) = λrγr(t). Moreover,
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∑∞
r=1 λr =

∫
[0,1]g

σ(t, t)dt. The Karhunen-Loève decomposition for the random

function X gives

X(t) =
∞∑
r=1

δrγr(t), (2.2)

where the loadings δr are random variables de�ned as δr =
∫

[0,1]g
X(t)γr(t)dt that

satisfy E [δ2
r ] = λr, as well as E [δrδs] = 0 for r 6= s. Throughout the paper the

following notation for the derivatives of a function X will be used

X(d)(t)
def
=

∂d

∂td
X(t) =

∂d1

∂td11

· · · ∂
dg

∂t
dg
g

X(t1, . . . , tg), (2.3)

for d = (d1, ..., dg)
> and dj ∈ N the partial derivative in the spatial direction

j = 1, . . . , g. We denote |d| =
∑g

j=1 |dj| and require that X is at least |d|+1 times

continuously di�erentiable.

Building on equations (2.1) and (2.2), we consider two approaches to model

a decomposition for derivatives X(d). The �rst one is stated in terms of the

Karhunen-Loève decomposition applied to their covariance function. We de�ne

σ(d)(t, v)
def
= E

[
X(d)(t)X(d)(v)

]
and λ

(d)
1 ≥ λ

(d)
2 ≥ . . . be the corresponding eigen-

values. The principal components ϕ
(d)
r are solutions to

∫
[0,1]g

σ(d)(t, v)ϕ(d)
r (v)dv = λ(d)

r ϕ(d)
r (t). (2.4)

For nonderivatives, i.e., |d| = 0, we introduce the following notation ϕ
(0)
r (t) ≡ γr(t).

Similarly to (2.2), the decomposition of X(d) with principal components ϕ
(d)
r (t) is

X(d)(t) =
∞∑
r=1

δ(d)
r ϕ(d)

r (t), (2.5)

for δ
(d)
r =

∫
[0,1]g

X(d)(t)ϕ
(d)
r (t)dt.

A di�erent way to think about a decomposition for derivatives, is to take the
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derivatives of the functional principal components in (2.2)

X(d)(t) =
∞∑
r=1

δrγ
(d)
r (t), (2.6)

where the d-th derivative of the r-th eigenfunction is the solution to

∫
[0,1]g

∂d

∂vd
(σ(t, v)γr(v)) dv = λrγ

(d)
r (t). (2.7)

In general, for |d| > 0 it holds that ϕ
(d)
r (t) 6= γ

(d)
r (t), but both basis systems

span the same function space. In particular, there always exists a projection

with arp =
〈
γ

(d)
p , ϕ

(d)
r

〉
=
∫

[0,1]g
γ

(d)
p (t)ϕ

(d)
r (t)dt such that

∑∞
r=1 arpϕ

(d)
r (t) = γ

(d)
p (t).

However, if we consider a truncation of (2.2) after a �nite number of components

this is no longer true in general. An advantage of using ϕ
(d)
r instead of γ

(d)
r is that

the decomposition of covariance function of the derivatives gives orthonormal basis

that ful�ll the best basis property, such that for any �xed L ∈ N and every other

orthonormal basis system ϕ′

E||X(d) −
L∑
r=1

〈
X(d), ϕ(d)

r

〉
ϕ(d)
r || ≤ E||X(d) −

L∑
r=1

〈
X(d), ϕ′r

〉
ϕ′r||. (2.8)

This guarantees that by using ϕ
(d)
r , r = 1, . . . , L we always achieve the best L di-

mensional subset selection in terms of the L2 error function. In the next section we

show that estimating the basis functions with such desirable features, for nonzero

derivatives, comes at the cost of inferior rate of convergence. However, if the true

underlying structure lies in a L-dimensional function space, which is equivalent

to a factor model setup, the advantage of deriving the best L-orthogonal basis

vanishes, because it is possible to derive a basis system with the same features

using span(γ(d)). This is achieved by performing a spectral decomposition of the
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�nite-dimensional function space of γ
(d)
r , r = 1, . . . , L to get an orthonormal basis

system ful�lling (2.8).

2.2.2 Sample inference

LetX1, . . . , XN ∈ L2([0, 1]g) be a sample of i.i.d. realizations of the smooth random

function X. The empirical approximation for the covariance function based on the

N curves is given by the sample counterpart

σ̂(d)(t, v) =
1

N

N∑
i=1

X
(d)
i (t)X

(d)
i (v) (2.9)

and for the covariance operator by

Γ̂
(d)
N ϕ̂(d)

r (t) =

∫
[0,1]g

σ̂(d)(t, v)ϕ̂(d)
r (v)dv, (2.10)

where the eigenfunction ϕ̂
(d)
r corresponds to the r-th eigenvalue of Γ̂

(d)
N . For in-

ference, it holds that ||ϕ(ν)
r − ϕ̂(ν)

r || = Op(N−1/2) and |λ(ν)
r − λ̂(ν)

r | = Op(N−1/2),

see for instance Dauxois et al. (1982) or Hall and Hosseini-Nasab (2006). The

loadings corresponding to each realization Xi can be estimated via the empirical

eigenfunctions as δ̂
(d)
ri =

∫
[0,1]g

X
(d)
i (t)ϕ̂

(d)
r (t)dt.

2.2.3 The model

In most applications, the curves are only observed at discrete points and data

is corrupted by additive noise. To model these aspects, we assume that each

curve in the sample is observed at independent randomly-distributed points ti =

(ti1, . . . , tiTi)
>, tik ∈ [0, 1]g, k = 1, . . . , Ti, i = 1, . . . , N from a continuous distribu-
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tion with density f such that inf
t∈[0,1]g

f(t) > 0. Our model is then given by

Yi(tik) = Xi(tik) + εik =
∞∑
r=1

δriγr(tik) + εik, (2.11)

where εik are i.i.d. random variables with E [εik] = 0, Var (εik) = σ2
iε and εik is

independent of Xi.

2.2.4 Estimation procedure

Dual method

An alternative to the Karhunen-Loève decomposition relies on the duality relation

between the row and column space. The method was �rst used in a functional

context by Kneip and Utikal (2001) to estimate density functions and later adapted

by Benko et al. (2009) for general functions. Let ν = (ν1, . . . , νg)
>, νj ∈ N,

|ν| < ρ ≤ m and M (ν) be the dual matrix of σ̂(ν)(t, v) from (2.9) consisting of

entries

M
(ν)
ij =

∫
[0,1]g

X
(ν)
i (t)X

(ν)
j (t)dt. (2.12)

Let l
(ν)
r be the eigenvalues of matrix M (ν) and p

(ν)
r = (p

(ν)
1r , . . . , p

(ν)
Nr) be the corre-

sponding eigenvectors. For ν = d, the estimators for the quantities in the right-

hand side of equations (2.4) and (2.5) are given by

ϕ̂(d)
r (t) =

1√
l
(d)
r

N∑
i=1

p
(d)
ir X

(d)
i (t) , λ̂(d)

r =
l
(d)
r

N
and δ̂

(d)
ri =

√
l
(d)
r p

(d)
ir . (2.13)

Important for the representation given in equation (2.6) are the eigenvalues and

eigenvectors of M (0) denoted by lr
def
= l

(0)
r , pr

def
= p

(0)
r and the corresponding or-
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thonormal basis γ̂r
def
= ϕ̂

(0)
r and loadings δ̂ri

def
= δ̂

(0)
ri . It is straightforward to derive

γ̂(d)
r (t) =

1√
lr

N∑
i=1

pirX
(d)
i (t). (2.14)

Quadratic integrated regression

Before deriving estimators ofM (0) andM (d) using the model from Section 2.2.3, we

outline some results needed to construct these estimators. For any vectors a, b ∈ Rg

and c ∈ Ng, we de�ne |a| def
=
∑g

j=1 |aj|, a−1 def
= (a−1

1 , . . . , a−1
g )>, ab

def
= ab11 ×· · ·×a

bg
g ,

a ◦ b def
= (a1b1, . . . , agbg)

> and c!
def
= c1!× · · · × cg!.

Consider a curve Y observed at points tl, l = 1, . . . , T generated as in equation

(2.11). Let k = (k1, . . . , kg)
>, kl ∈ N and consider a multivariate local polynomial

estimator β̂(t) ∈ Rρ that solves

min
β(t)

T∑
l=1

Y (tl)−
∑

0≤|k|≤ρ

βk(t)(tl − t)k
2

KB(tl − t). (2.15)

KB is any non-negative, symmetric and bounded multivariate kernel function and

B a g× g bandwidth matrix. For simplicity, we assume that B has main diagonal

entries b = (b1, . . . , bg)
> and zero elsewhere.

As noted by Fan et al. (1997) the solution of the minimization problem (2.15)

can also be represented using a weight functionW T
ν , see Appendix 2.5.2, such that

X̂
(ν)
b (t) = ν!β̂ν(t) = ν!

T∑
l=1

W T
ν

(
(tl − t) ◦ b−1

)
Y (tl). (2.16)

Local polynomial regression estimators are better suited to estimate integrals

like (2.12) than other kernel estimators, e.g., Nadaraya-Watson or Gasser-Müller

estimator, since the bias and variance are of the same order of magnitude near the
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boundary as well as in the interior, see for instance Fan and Gijbels (1992). We pro-

pose the following estimator for the squared integrated functions
∫

[0,1]g
X(ν)(t)2dt

θν,ρ =

∫
[0,1]g

ν!2
T∑
k=1

T∑
l=1

W T
ν

(
(tk − t) ◦ b−1

)
W T
ν

(
(tl − t) ◦ b−1

)
Y (tl)Y (tk)dt

−ν!2σ̂2
ε

∫
[0,1]g

T∑
k=1

W T
ν

(
(tk − t) ◦ b−1

)2
dt.

(2.17)

where σ̂2
ε is a consistent estimator of σ

2
ε . The second term is introduced to cancel

the bias in E [Y 2(tk)] = X(tk)
2 + σ2

ε .

Lemma 2.2.1 Under Assumptions 1- 4, X is m ≥ 2|ν| times continuously dif-

ferentiable, the local polynomial regression is of order ρ with |ν| ≤ ρ < m and

|σ̂2
ε − σ2

ε | = OP (T−1/2). Then as T →∞ and max(b)ρ+1b−ν → 0, log(T )
Tb1×···×bg → 0 as

Tb1 × · · · × bgb4ν →∞, then conditioned on t1, . . . tT

E [θν,ρ]−
∫

[0,1]g
X(ν)(t)2dt = Op

(
max(b)ρ+1b−ν +

1

T 3/2(b2νb1 × · · · × bg)

)
Var(θν,ρ) = Op

(
1

T 2b1 × · · · × bgb4ν
+

1

T

)
,

(2.18)

where the expectation and variance denote the conditional operators with respect

to the observations Y . The proof of Lemma 2.2.1 is given in Appendix 2.5.2.

Estimation of M (0) and M (d)

The curves Yi in equation (2.11) are assumed to be observed at di�erent random

points. For uniformly sampled points t1, . . . , tT ∈ [0, 1]g with T = min
i∈1,...,N

Ti, we

16



replace the integrals in (2.17) with the Riemann sums, such that

M̂
(ν)
ij =

ν!2
∑Ti

k=1

∑Tj
l=1 w

T
ν (tik, tjl, b)Yj(tjl)Yi(tik) if i 6= j

ν!2
(∑Ti

k=1

∑Ti
l=1w

T
ν (tik, til, b)Yi(til)Yi(tik)− σ̂2

iε

∑Ti
k=1w

T
ν (tik, tik, b)

)
if i = j.

where wTν (tik, tjl, b) := T−1
∑T

m=1 W
T
ν ((tik − tm) ◦ b−1)W T

ν ((tjl − tm) ◦ b−1). The

estimator for M (0) is given by setting ν = (0, . . . , 0)> and the estimator for M (d)

by ν = d.

There are two possible sources of error in the construction of the estimator

M̂ (ν). One is coming from smoothing noisy curves at a common grid, and has been

analyzed in Lemma (2.2.1). The other one is from approximating the integral in

(2.17) by a sum, see equation above. In Appendix (2.5.3) we show that the error

of the integral approximation is of order T−1/2.

Proposition 2.2.2 Under the requirements of Lemma 2.2.1

|M (ν)
ij − M̂

(ν)
ij | = OP

(
max(b)ρ+1b−d +

(
1

T 2b1 × · · · × bgb4d
+

1

T

)1/2
)
.

By Proposition 2.2.2 estimating M (d) gives an asymptotic higher bias and also a

higher variance than estimating M (0). This e�ect becomes more pronounced in

high-dimensions. However, by using local polynomial regression with large ρ one

can still get parametric rates within each method.

Remark 2.2.3 Under the assumptions of Lemma 2.2.1 and using Proposition

2.2.2 we can derive estimators forM (ν), which attain parametric rates. If m > ρ ≥
g
2
−1+3

∑g
l=1 νl, b = T−α with 1

2(ρ+1−
∑g
l=1 νl)

≤ α ≤ 1
g+4

∑g
l=1 νl

then |M (ν)
ij −M̂

(ν)
ij | =

OP (1/
√
T ).

We can see that the orders of polynomial expansion and the bandwidths for esti-

mating M (ν) will di�er for ν = (0, . . . , 0)> and ν = d. In particular, the estimator
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of M (d) requires higher smoothness assumptions - via m > ρ - and a higher band-

width to achieve the same parametric convergence rate as the estimator for M (0).

In Lemma 2.2.1 it is required that |σ2
iε − σ̂2

iε| = Op(T−1/2), which ensures

parametric rates of convergence for M̂ (ν) under the conditions of Remark 2.2.3.

By Assumption 2, in the univariate case, a simple class of estimators for σ2
iε, which

achieve the desired convergence rate, are given by successive di�erentiation, see

von Neumann et al. (1941) and Rice (1984). However, as pointed out in Munk et al.

(2005), di�erence estimators are no longer consistent for g ≥ 4 due to the curse

of dimensionality. A possible solution is to generalize the kernel based variance

estimator proposed by Hall and Marron (1990) to higher dimensions with

σ̂2
iε =

1

vi

Ti∑
l=1

(
Yi(til)−

Ti∑
k=1

wilkY (tik)

)2

, (2.19)

where wilk = Kr,H(til− tik)/
∑Ti

k=1Kr,H(til− tik) and vi = Ti−2
∑

l wilk +
∑

l,k w
2
ilk

and Kr,H is a g-dimensional product kernel of order r with bandwidth matrix H.

Munk et al. (2005) show that if 4r > g and if the elements of the diagonal matrix

H are of order O(T−2/(4r+g)) then the estimator σ̂εi in equation (2.19) achieves

parametric rates of convergence.

Note that if the curves are observed at a common random grid with T = Ti =

Tj, i, j = 1, . . . , N , a simple estimator for M (0) is constructed by replacing the

integrals with Riemann sums in (2.12). This estimator is given by

M̃
(0)
ij =


1
T

∑T
l=1 Yi(tl)Yj(tl) if i 6= j

1
T

∑T
k=1 Yi(tl)

2 − σ̂2
iε if i = j

. (2.20)

In Appendix (2.5.3) we verify that the convergence rate of M̃
(0)
ij does not depend

on g.
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When working with more than one spatial dimension, in practice data is of-

ten recorded using an equidistant grid with T points in each direction. For our

approach, this strategy will not improve the convergence rate of M̃ (0) due to the

curse of dimensionality. If one can in�uence how data is recorded, we recommend

using a common random grid, which keeps computing time and the storage space

for data to a minimum and still gives parametric convergence rates for the estima-

tor of M
(0)
ij . If T � N equation (2.20), gives a straightforward explanation why

the dual matrix is preferable to derive the eigendecomposition of the covariance

operator, because taking sums has a computational cost that is linear.

Estimating the basis functions

We keep notations ν = d to refer to the speci�cation in equation (2.5) and ν =

(0, . . . , 0)> to (2.6). A spectral decomposition of M̂ (ν) is applied to obtain the

eigenvalues l̂
(ν)
r and eigenvectors p̂

(ν)
r for r, j = 1, . . . , N . This gives straightforward

empirical counterparts λ̂
(ν)
r,T = l̂

(ν)
r /N and δ̂

(ν)
rj,T =

√
l̂
(ν)
r p̂

(ν)
rj .

To estimate ϕ
(d)
r and γ

(d)
r , a suitable estimator for X

(d)
i , r, j = 1, . . . , N is

needed. Given a set of T observations Y = {Y (t1), . . . , Y (tT )} of variable X, we

use a local polynomial kernel estimator, denoted X̂
(d)
i,h , similarly to (2.16), with

a polynomial of order p and bandwidth vector h = (h1, . . . , hg). Here, h is not

equal to b, the bandwidth used to smooth the entries of the M̂ (0) and M̂ (d) matrix.

In fact, we show below that the optimal order for the bandwidth vector h di�ers

asymptotically from that of b derived in the previous section. An advantage of

using local polynomial estimators, compared for example to spline or wavelet esti-

mators, is that the bias and variance can be derived analytically. For the univariate

case these results can be found in Fan and Gijbels (1996) and for the multivariate

case in Masry (1996) and Gu et al. (2015). We summarize them in terms of order
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of convergence below conditioned on t1j, . . . tTjj

E

[
X

(d)
j (t)− X̂(d)

j,h (t)
]

= Op(max(h)p+1h−d)

Var
(
X̂

(d)
j,h (t)

)
= Op

(
1

Th1 × · · · × hgh2d

)
.

(2.21)

Let max(h)p+1h−d → 0 and
(
max(h)p+1Th−d

)−1 → 0 as T →∞. If p is chosen

such that p− |d| is odd then

E

 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir

(
X

(d)
i (t)− X̂(d)

i,h (t)
) =

1√
l
(ν)
r

N∑
j=1

p
(ν)
jr Bias

(
X̂

(d)
j,h (t)

)
+ Op

(
max(h)p+1h−d

)
=Op(max(h)p+1h−d)

Var

 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir X̂

(d)
i,h (t)

 =
1

l
(ν)
r

N∑
j=1

(
p

(ν)
jr

)2

Var
(
X̂

(d)
j,h (t)

)
+ Op

(
1

NTh1 × · · · × hgh2d

)

=Op
(

1

NTh1 × · · · × hgh2d

)
.

We show that under certain assumptions the asymptotic mean squared error of

ϕ̂
(d)
r,T and γ̂

(d)
r,T is dominated by the two terms.

Proposition 2.2.4 Under the requirements of Lemma 2.2.1, Assumptions 6 and

7, Remark 2.2.3, and for inf
s 6=r
|λr − λs| > 0, r, s = 1, . . . , N and max(h)p+1h−d → 0

with NTh1 . . . hgh
2d →∞ as T,N →∞ we obtain

a) |γ(d)
r (t)− γ̂(d)

r,T (t)| = Op
(
max(h)p+1h−d

)
+Op

(
(NTh1 × · · · × hgh2d)−1/2

)
b) |ϕ̂(d)

r (t)− ϕ̂(d)
r,T (t)| = Op

(
max(h)p+1h−d

)
+Op

(
(NTh1 × · · · × hgh2d)−1/2

)
A proof of Proposition 2.2.4 is provided in Appendix 2.5.4. As a consequence,

the resulting global optimal bandwidth is given by hr,opt = Op
(
(NT )−1/(g+2p+2)

)
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for both basis and all r = 1, . . . , N . Even if the optimal bandwidth for both

approaches is of the same order of magnitude, the values of the actual bandwidths

may di�er. A simple rule of thumb for the choice of bandwidths in practice is

given in Section 2.3.1.

2.2.5 Properties under a factor model structure

Often, the variability of the functional curves can be expressed with only a few

basis functions modeled by a truncation of (2.2) after L basis functions. If a true

factor model is assumed, the basis representation to reconstruct X(d) is arbitrary,

in sense that

X(d)(t) =
L∑
r=1

δrγ
(d)
r (t) =

Ld∑
r=1

δ(d)
r ϕ(d)

r (t). (2.22)

Here L is always an upper bound for Ld. The reason for this is that by taking

derivatives it is possible that γ
(d)
r (t) = 0 or that there exits some ar ∈ RL−1 such

that γ
(d)
r (t) =

∑
s 6=r asrγ

(d)
s (t).

Based on the methodology described in Section 2.2.4, the two estimators for

derivatives are given by

X̂
(d)
i,FPCA1

(t)
def
=

L∑
r=1

δ̂ir,T γ̂
(d)
r,T (t) ≈ X̂

(d)
i,FPCA2

(t)
def
=

Ld∑
r=1

δ̂
(d)
ir,T ϕ̂

(d)
r,T (t). (2.23)

Proposition 2.2.5 Assume that a factor model with L factors holds for X. For

NT−1 → 0, together with the requirements of Proposition 2.2.4, the true curves

can be reconstructed

a) |X(d)
i (t)−X̂(d)

i,FPCA1
(t)| = Op

(
T−1/2 + max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
b) |X(d)

i (t)−X̂(d)
i,FPCA2

(t)| = Op
(
T−1/2 + max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
.

A proof of Proposition (2.2.5) is given in Appendix (2.5.5). Compared with the
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convergence rates of the individual curves estimators, see (2.21), the variance of

our estimators reduces not only in T but also in N . Equations (2.13) and (2.14)

can be interpreted as an average over N curves for only a �nite number of L

components. The intuition behind it is that only those components are truncated

that are related to the error term and thus a more accurate �t is possible. If N

increases at a certain rate, it is possible to get close to parametric rates. Such

rates are not possible when smoothing the curves individually.

For the estimation of X̂
(d)
i,FPCA2

, as illustrated in Remark 2.2.3, additional as-

sumptions on the smoothness of the curves are needed to achieve the same rates of

convergence for the estimators M̂ (d) and M̂ (0). With raising g and dj, j = 1, . . . , g

it is required that the true curves become much smoother which makes the appli-

cability of estimating X̂
(d)
i,FPCA2

limited for certain applications. In contrast, the

estimation of M (0) still gives almost parametric rates if less smooth curves are

assumed. In addition, if the sample size is small, using a high degree polynomial

needed to estimate M (d) might lead to unreliable results. To learn more about

these issues, we check the performance of both approaches in a simulation study

in Section 2.3.2 using di�erent sample sizes.

2.3 Application to state price densities implied from

option prices

In this section we analyse the state price densities (SPDs) implied by the stock

index option prices. As state dependent contingent claims, options contain in-

formation about the risk factors driving the underlying asset price process and

give information about expectations and risk patterns on the market. Mathe-

matically, SPDs are equivalent martingale measures for the stock index and their

existence is guaranteed in the absence of arbitrage plus some technical condi-
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tions. In mathematical-�nance terminology they are known as risk neutral den-

sities (RNDs). A very restrictive model, with log-normal marginals for the asset

price, is the Black-Scholes model. This model results in log-normal SPDs that cor-

respond to a constant implied volatility surface across strikes and maturity. This

feature is inconsistent with the empirically documented volatility smile or skew

and the term structure. Therefore, richer speci�cations for the option dynamics

have to be used. Most of earlier works adopt a static viewpoint; they estimate

curves separately at di�erent moments in time, see the methodology reviews by

Bahra (1997), Jackwerth (1999) and Bliss and Panigirtzoglou (2002). In order to

exploit the information content from all data available, it is reasonable to consider

them as collection of curves.

The relation between the SPDs and the European call prices has been demon-

strated by Breeden and Litzenberger (1987) and Banz (1978) for a continuum of

strike prices spanning the possible range of future realizations of the underlying

asset. For a �xed maturity, the SPD is proportional to the second derivative of

the European call options with respect to the strike price. In this case, SPDs

are one-dimensional functions. A two-dimensional point of view can be adopted

if maturities are taken as an additional argument and the SPDs are viewed as a

family of curves.

Let C : R2
≥0 → R denote the price function of a European call option with

strike price k and maturity τ such that

C(k, τ) = exp (−rττ)

∫ ∞
0

(sτ − k)+q(sτ , τ) dsτ , (2.24)

where rτ is the annualized risk free interest rate for maturity τ , sτ the unknown

price of the underlying asset at maturity, k the strike price and q the state price
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density of sτ . One can show that

q(sτ , τ) = exp (rττ)
∂2C(k, τ)

∂k2

∣∣∣∣
k=sτ

. (2.25)

Let s0 be the asset price at the moment of pricing and assume it to be �xed. Then

by the no-arbitrage condition, the forward price for maturity τ is

Fτ =

∫ ∞
0

sτq(sτ , τ)dsτ = s0 exp(rττ). (2.26)

Suppose that the call price is homogeneous of degree one in the strike price. Then

C(k, τ) = FτC(k/Fτ , τ). (2.27)

If we denote m = k/Fτ the moneyness, it is easy to verify that

∂2C(k, τ)

∂k2
=

1

Fτ

∂2C(m, τ)

∂m2
. (2.28)

Then one can show that for d = (2, 0), C(d)(m, τ)|m=sτ/Fτ = q(sτ/s0, τ) = s0q(sτ , τ).

In practice, it is preferable to work with densities of returns instead of prices when

analyzing them jointly because prices are not stationary. Also, notice that call

price curves are not centered. This imply that equations (2.4) and (2.6) will in-

clude an additional additive term, which refers to the population mean. We show

in the next section how to handle this in practice.

In the application, X will refer to the rescaled call price C(m, τ). Therein, we

also assume that the index i = 1, . . . , N refers to ordered time-points.
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2.3.1 Implementation

Centering the observed curves

Throughout the paper it is assumed that the curves are centered. To insure this

assumption, we subtract the empirical mean X̄(ν)(tk) = 1
N

∑N
i=1 X̂

(ν)
i,b (tk) from the

the observed call prices to obtained centered curves. A centered versionM
(ν)
, ν =

(0, d) is given by

M
(ν)

ij = M̂
(ν)
ij −

1

T

T∑
k=1

(
X̄(ν)(tk)X̂

(ν)
i,b (tk) + X̄(ν)(tk)X̂

(ν)
j,b (tk)− X̄(ν)(tk)

2
)
. (2.29)

There is still space for improvement when centering of the curves. One possibil-

ity is to use a di�erent bandwidth to compute the mean because averaging will

necessarily lower the variance. Secondly, by the arguments of Section 2.2.4, the

1
T

∑T
k=1 X̄

(ν)(tk)
2 term can be improved accordingly to Lemma 2.2.1 by subtracting

σ̂ε weighted by suitable parameters. We decide to omit these �ne tunings in our

application because it would involve a huge amount of additional computational

e�ort in contrast to only minor improvements in the results.

Bandwidth selection

To get parametric rates of convergence for M̂ (d) related to Remark 2.2.3 we choose

ρ = 7 and b has to lie between O(T−1/10) and O(T−1/12). The choice of b to

estimate M̂ (0) is similar, with the di�erence that ρ > 0, we choose ρ = 1 and b

has to lie between O(T−1/3) and O(T−1/5). We use a very easy criteria to choose

the bandwidth because by Proposition 2.2.4 the dominating error depends mainly

on the choice of h. Let tik = (tik1, . . . tikg), then the bandwidth for direction j is

determined by bj = ((maxk(tikj)−mink(tikj))Ti)
α. When estimating state price

densities tik = (τik,mik) and Ti is replaced by the cardinality of τi = {τi1, . . . τiTi}
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and mi respectively. In the estimation of M̂ (d) we set α = −1/10 and α = −1/3

for M̂ (0).

The choice of bandwidths h is a crucial parameter for the quality of the esti-

mators. To derive an estimator for the bandwidths �rst note that in the univariate

case (g = 1) the theoretical optimal univariate asymptotic bandwidth for the r-th

basis is given by

hd,νr,opt = Cd,p(K)

T−1

∫ 1

0

∑N
i=1(p

(ν)
ir )2σ2

εi(t)fi(t)
−1dt∫ 1

0

{∑N
i=1 p

(ν)
ir X

(p+1)
i (t)

}2

dt


1/(2p+3)

, (2.30)

Cd,p(K) =

[
(p+ 1)!2(2d+ 1)

∫
K∗2p,dj(t)dt

2(p+ 1− d){
∫
up+1K∗d,p(t)dt}2

]1/(2p+3)

.

Like in the conventional local polynomial smoothing case Cd,p(K) does not depend

on the curves and is an easily computable constant. It only depends on the chosen

kernel, the order of the derivative and the order of the polynomial, see for instance

Fan and Gijbels (1996).

For our bandwidth estimator we treat every dimension separately, as if we

have to choose an optimal bandwidth for derivatives in the univariate case, and

correct for the asymptotic order, see Section 2.2.4. In practice, we can not use

equation (2.30) to determine the optimal bandwidth because some variables are

unknown and only discrete points are observed. As a rule-of-thumb, we replace

these unknown variables using approximations. Estimates of p
(0)
ir from M̂ (0) and

p
(d)
ir from M̂ (d) are further used. With these approximations, a feasible rule for

computing the optimal bandwidth in direction j for the r-th basis function hjr is
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given by

hd,νjr,rot =

T−1
C2p+3
d,p σ̂2

ε

fj
∫ 1

0

{∑N
i=1 p̂

(ν)
ir X̃

(p+1)
i (tj)

}2

dtj


1/(g+2p+2)

. (2.31)

In our application as well as our simulation we have g = 2, d = (0, 2) and do

a third order local polynomial regression. The integrals are approximated by

Riemann sums.

• The density of the observed points is approximated by a uniform distribution

with f1 = maxi,j(τij)−mini,j(τij) and f2 = maxi,j(mij)−mini,j(mij).

• To get a rough estimator for X
(p+1)
i based on Xi, we use a polynomial regres-

sion. For our application, we take p = 3 and are thus interested in estimates

for X
(4)
i (m) and X

(4)
i (τ). We expect the curves to be more complex in the

moneyness direction than in the maturity direction and we adjust the degree

of the polynomials to re�ect this issue. The estimates are then given by

a∗i = arg min
ai

(
Xi(m, τ)− ai0 +

5∑
l=1

ailm
l +

9∑
l=6

ailτ
(l−5)

)
X̃

(4)
i (m) =24a∗i4 + 120a∗i5m

X̃
(4)
i (τ) =24a∗i9.

(2.32)

• To estimate the variance for each curve we use the kernel approach given in

(2.19) using a Epanechnikov kernel with a bandwidth of T−2/(4+g) for each

spatial direction. These estimates are used as well to correct for the diagonal

bias when M̂ (0) and M̂ (d) are estimated. In (2.31) the average over all σ̂iε is

used.

For technical reasons, we use the product of Gaussian kernel functions to con-
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struct local polynomial estimators. The reason for is that, as we can verify from

Proposition 2.2.4, the optimal bandwidth h will decrease in N . By using a global

bandwidth and a compact kernel the matrix given in equation (2.43) may become

singular when N is large and T is small.

In our simulation and application we use the mean optimal hd,νi,rot = L−1
∑L

r=1 h
d,ν
ir,rot

for each γ̂
(d)
r , ϕ̂

(d)
r to save computation time. Since we had to demean the sample in

(2.29), �nally we add N−1
∑N

i=1 X̂
(d)

i,hd,νi,rot
to the resulting truncated decomposition

to derive the �nal estimate.

Estimation of the number of components

In Section 2.2.5 we assumed that the number of components is given. In general,

the number of basis functions needed is unknown a priori. For the case |d| = 0

there exists a wide range of criteria that can be adapted to our case to determine

the upper bound L. The easiest way to determine the number of components

is by choosing the model accuracy by an amount of variance explained by the

eigenvalues. In (2.69) we show that under the conditions from Proposition 2.2.4

λ̂
(d)
r − λ̂(d)

r,T = Op(N−1/2T−1/2 +T−1) and λ
(d)
r − λ̂(d)

r = Op(N−1/2). The assumptions

in Corollary 1 from Bai and Ng (2002) can be adapted to our case and give several

criteria for �nding L or Ld by generalizing Mallows (1973) Cp criteria for panel

data settings. These criteria imply minimizing the sum of squared residuals when k

factors are estimated and penalizing the over�tting. One such formulation suggests

choosing the number of factors using the criteria

PC(ν)(k∗) = min
k∈N,k≤Lmax

[(
N∑

r=k+1

λ̂(ν)
r

)
+ k

(
N∑

r=Lmax

λ̂(ν)
r

)(
log(C2

NT )

C2
NT

)]
, (2.33)

for the constant CNT = min(
√
N,
√
T ) and a prespeci�ed Lmax < min(N, T ). Bai

and Ng (2002) propose an information criteria that do not depend on the choice
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of Lmax. We consider the above modi�ed version

IC(ν)(k∗) = min
k∈N,k≤L

[
log

(
1

N

N∑
r=k+1

λ̂(ν)
r

)
+ k

(
log(C2

NT )

C2
NT

)]
. (2.34)

Here using ν = (0, . . . , 0)> will give L while using ν = d will give the factors Ld.

Another possibility for the choice of number of components is to compute the

variance explained by each nonorthogonal basis by

Var(δ̂
(d)
r,T γ̂

(d)
r,T ) = 〈γ̂(d)

r,T , γ̂
(d)
r,T 〉λ̂r, (2.35)

sort them in decreasing order and use equations (2.33) or (2.34) to select the

number of components.

2.3.2 Simulation Study

We investigate the �nite sample behavior of our estimators in a simulation study,

which is guided by the real data application in Section 2.3.3. Simulated SPDs are

modeled as mixtures of G components, q(m, τ) =
∑G

l=1wlq
l(m, τ), where ql are

�xed basis functions and wl are random weights. For �xed τ we consider ql(·, τ)

to be a log-normal density functions, with mean
(
µl − 1

2
σ2
l

)
τ and variance σ2

l τ ,

and simulate weights wil with
∑G

l=1 wil = 1, where i = 1, . . . , N is the index for

the day, then

qi(m, τ) =
G∑
l=1

wil
1

m
√

2πσ2
l τ

exp

−1

2

{
log (m)−

(
µl − 1

2
σ2
l

)
τ

σl
√
τ

}2
. (2.36)
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Following Brigo and Mercurio (2002) the prices of call options for these SPDs are

Ci(m, τ) = exp (−riττ)
G∑
l=1

wil {exp(µlτ)Φ(y1)−mΦ(y2)} (2.37)

where y1 =
log(m−1)+(µl+ 1

2
σ2
l )τ

σl
√
τ

, y2 =
log(m−1)+(µl− 1

2
σ2
l )τ

σl
√
τ

and Φ is the standard

normal cdf. This representation corresponds to a factor model in which the mixture

components are densities associated with a particular state of nature and the

loadings are equivalent with probabilities of states.

We illustrate the �nite sample behavior for G = 3 with µ1 = 0.4, µ2 = 0.7,

µ3 = 0.1, and σ1 = 0.5, σ2 = 0.3, σ3 = 0.3. The loadings are simulated from the

positive half-standard normal distribution, then standardized to sum up to one.

One can verify that the correlation matrix for the loadings is

R =


1 −0.5 −0.5

−0.5 1 −0.5

−0.5 −0.5 1

 ,

which is singular with rank(R) = 2. As a result, the covariance operator of the

SPD curves has L = G−1 nonzero eingenvalues. This implies that in this example,

using a mixture of 3 factors only 2 principal components are necessary to explain

the variance in the true curves.

Without loss of generality, we set riτ = 0, for each day i = i, . . . , N . We

construct a random grid for each observed curve Xi by simulating points tik =

(mik, τik), k = 1, . . . , T from a uniform distribution with continuous support

[0.5, 1.8] × [0.2, 0.7]. Finally, we record noisy discrete observations of the call

functions with the additive error term i.i.d. εik ∼ N(0, 0.12).

The true SPDs given by equation (2.36) are used to verify the performance

of X̂
(d)
FPCA1

, X̂
(d)
FPCA2

and of the individually estimated curves X̂
(d)
Indiv., in terms of
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T 50 250

N X̂
(d)
• Mean Var Med IQR Mean Var Med IQR

10
FPCA1 0.1876 0.0367 0.1300 0.1325 0.0780 0.0025 0.0643 0.0546
FPCA2 0.2238 0.1212 0.1295 0.1466 0.0762 0.0026 0.0630 0.0518
Indiv. 0.2709 0.0900 0.1928 0.1838 0.1105 0.0054 0.0916 0.0708

25
FPCA1 0.0917 0.0066 0.0680 0.0580 0.0404 0.0006 0.0336 0.0223
FPCA2 0.1553 0.0966 0.0878 0.0887 0.0586 0.0016 0.0489 0.0406
Indiv. 0.2691 0.0995 0.1889 0.1848 0.1111 0.0052 0.0916 0.0719

Table 2.1: Results of the simulation described in Section 2.3.2 with di�erent values for T and N .
FPCA1 and FPCA2 are superior in sense of MSE over the individual estimation of the derivatives
in each setting. FPCA1 is better than FPCA2 except for N = 10, T = 250. For FPCA1 and
FPCA2 the estimation improves with raising N and T . These results support our asymptotic results
given by Proposition 2.2.2 and 2.2.5.

mean integrated squared error (MSE), i.e., T−1
∑T

k=1

{
X(d)(tik)− X̂(d)

• (tik)
}2

, for

d = (2, 0). For evaluation we generate a common grid of 256 points from a uniform

distribution. To derive the optimal bandwidth in each case we stick to the rule-

of-thumb approach presented in Section 2.3.1. The bandwidth for the individually

smoothed curve i is derived by replacing p̂
(ν)
ir in (2.31) by one and zero otherwise.

The performance is recorded for sample sizes N of 10 and 25 with T observations

per day of size 50 and 250. This procedure is repeated 500 times to get reliable

results, mean, variance and the inter quartile distance based at the MSE of the

repetitions are given in Table 2.1.

Both FPCA based approaches give better estimates for the derivative of the call

functions than an individually applied local polynomial estimator of the individual

curves. Both the mean and the median of the MSE are smaller which is a result of

the additional average over N for the basis functions as given by Proposition 2.2.5.

However, the FPCA1 method performs decisively better for small T than the other

two both in terms of mean and standard deviation of the mean squared error. In

addition FPCA1 bene�ts more from increasing N than FPCA2. With small T for

FPCA2 and individual smoothing the variability of MSE is much bigger than for

FPCA1 while the median of FPCA1 and FPCA2 are comparable. This means
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individual smoothing and FPCA2 must behave much worse than FPCA1 in some

instances while FPCA1 was able to stabilize the estimates. To get the same e�ect

using FPCA2 a much bigger T is needed. A possible explanation for this behavior

is given by Proposition 2.2.2. The rates of convergence for the estimators of the

dual matrix entries rely on T . Thus in �nite sample, when T is small, the estimated

loadings might be biased.

2.3.3 Real Data Example

Data description

We use daily settlement European call option prices written on the underlying

DAX 30 stock index. The sample spans the period between January 2, 2002 and

December 3, 2011 and includes a total of 2557 days. The option prices are com-

puted at the end of the trading day by EUREX based on the recorded intraday

transaction prices. The expiration dates for the options are set on every third Fri-

day of a month. Therefore, only option prices with a few maturities are available

on a particular day, see Figure 2-1. The distance between two consecutive matu-

rities is increasing with the maturity, while the distance between two consecutive

strikes for the settlement option prices is relatively constant. This data structure,

with only a few available maturities daily, still allow the use of local polynomial

method for smoothing in our application because the estimates in the maturity

direction can be interpreted as weighted averages of the neighboring estimates for

�xed observed maturities. This is similar to interpolation that is often used in

practice for option prices. We include call options with maturity between one

day and one year. Our sample contains prices of options with an average of six

maturities and sixty-�ve strikes per day.

We assume 'sticky' coordinates for the daily observations, see equation (2.27),
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and standardize both the strike and the call prices within one day by the forward

stock index value to ensure that the observation points are in the same range.

We then apply the estimation methodology to the rescaled call prices observed

at discrete moneyness and maturity points and report the decomposition results

for their second derivative with respect to moneyness. Our proxy for the risk-free

interest rates are the EURIBOR rates, which are listed daily for several maturities.

We perform a linear interpolation to calculate the rate values at desired maturities.

In our subsequent analysis we use the VDAX index computed by the Deutsche

Börse AG from the prices of call and put options. It re�ects the market expectation

for the 30 day ahead square root of implied variance for the DAX log-returns under

the risk neutral measure, which is then annualized.

r, Lmax 1 2 3 4 5 6 7 8 9 10

λ̂r,T × 106 133.29 18.90 2.69 1.62 0.49 0.34 0.26 0.09 0.08 0.05

λ̂r,T/λ̂r+1,T 7.05 7.01 1.66 3.28 1.44 1.31 2.83 1.18 1.70 1.35
k∗(PC(0)) - - - - - - 7 8 9 9
k∗(IC(0)) - - - - - - 7 - - -

Table 2.2: Estimated eigenvalues and eigenvalue ratios. Number of factors by PC(0) criterion

Estimation results

The �rst eigenvalue of the dual covariance matrix M̂0 for the call option sur-

faces has a dominant explanatory power. The order of magnitude of the following

eigenvalues decreases by a factor of ten for every few additional components. To

detect the relative contribution of consecutive components, we construct the ratio

of two adjacent estimated eigenvalues in descending order, see Ahn and Horenstein

(2013). The �rst two terms are dominating the sequence and there are spikes at

the fourth and seventh component ratio. PC(0) criterion suggests at least seven

33



components, see values of k∗ for Lmax ≥ 7 in Table 2.2. IC(0) criterion, which does

not depend on the truncation parameter Lmax, suggests seven components.

We assess the quality and importance of estimated components by looking �rst

at equation (2.26), which expresses the pricing rule under the risk neutral measure

Q. After rearranging we obtain that EQi (si+τ/Fi) =
∫∞

0
mqi(m, τ)dm = 1 and

VarQi (si+τ/Fi) =
∫∞

0
m2qi(m, τ)dm, where Fiτ = si exp(riττ). By equation (2.6)

1 =

∫ ∞
0

mq̄(m, τ)dm+
∞∑
r=1

δir

∫ ∞
0

mγ(d)
r (m, τ)dm, (2.38)

where q̄ is the population mean. Similarly

VarQi (si+τ/si)

{exp(riττ)}2 − 1 =

∫ ∞
0

m2q̄(m, τ)dm+
∞∑
r=1

δir

∫ ∞
0

m2γ(d)
r (m, τ)dm. (2.39)

Equations (2.38) and (2.39) can be used to select those components used to min-

imize the di�erence between the left-hand side and a linear combination of their

loadings, over the entire sample. We �t such linear regressions for di�erent combi-

nations of components and assess their goodness in a MSE sense for τ = 1 month.

For the left hand side of equation (2.39) we use the square of VDAX index in the

numerator. While this index refers to the standard deviation of the log-returns

under the risk neutral measure, it can still be used in the regression because the

transformation q(logm, τ) = mq(m, τ) maintains the linear-relationship between

the dependent variable and the loadings. The �rst eight loadings explain over 99%

of the variance of the interest rate and respectively risk neutral variance. A higher

adjusted R2 is obtained by regressing VDAX on the loadings instead of VDAX2.

Among the regressors, δ̂1,T , δ̂2,T , δ̂3,T , δ̂7,T explain most of the variation in the

system of equations. In particular, δ̂1,T is highly correlated with VDAX (-94.90%)

and VDAX2 (-91.15%), and δ̂3,T with the one-month EURIBOR rate (-65.54%).

A closer look at the dynamics of the loadings δ̂2,T shows an unusual behavior
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Figure 2-1: The e�ect of the expiration date on δ̂2,T

between mid-February 2007 through mid-June 2008. This interval spans the period

before the beginning of the �nancial crisis and extends to the end of the recession

in the Euro Area - according to the Center for Economic and Policy Research

(CEPR) recession indicator. The loadings are extremely volatile and display a

certain time regularity of jumps. We identify these jumps with the Mondays

following an expiration date (options expire at a monthly frequency, always on a

Friday). Figure 2-1 highlights the dynamics of δ̂2,T on and following an expiration

day. After roughly two weeks, they revert to a 'normal' level.

During this period, there are few observations available for the call prices with

strikes larger than the current stock index price for small maturities. Together

with the absence of a call string with close enough maturity on the following

trading Monday, this introduces bias in the smooth estimated call surface, for grid

values outside the range of observation points. However, we cannot rule out the
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Figure 2-2: Estimated components γ̂
(d)
1,T , γ̂

(d)
3,T and γ̂

(d)
7,T and their loadings obtained by the decom-

position of the dual covariance matrix M̂ (0)
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possibility that the importance of the second component is not due to an error in

pre-smoothing of the call options used for the estimation of M (0) because even if

we recalculate the explained variance for all the components after excluding the

estimated loadings from this time interval, this factor still remains the second most

important. The shape of the second estimated component γ̂
(d)
2,T , displayed in Figure

2-1, suggests that it is related to the short end of the SPD term structure e�ect.

The estimated components γ̂
(d)
1,T , γ̂

(d)
3,T and γ̂

(d)
7,T together with their loadings

are displayed in Figure 2-2, in order of their explained variance, see equation

(2.35). These three components describe three types of asymmetry present in the

dynamics of the SPDs. The �rst component, has a long tail on the left side of the

peak, similarly to the mean SPD curve. It takes positive values around the peak

and negative around the tails and is closely related to the volatility of the SPD

dynamics. An increase in the loadings of this component decreases the volatility of

SPD. γ̂
(d)
3,T has a relatively symmetric 'valley-hill' pattern, which shifts mass around

the central region of the density. It also in�uences the density far left tail. A

positive shock in the direction of this components increases the negative skewness,

while a large enough negative shock will render the SPD positively skew. This

component is interpreted as the sign of skewness factor. γ̂
(d)
7,T has a lean 'valley' at

the left of the sample mean, which takes negative values, and a more pronounced

'hill' at the right, which feature positive values. This component emphasized the

dynamics of negative skewness and induces changes in the kurtosis of the density

as well. We interpret it as the negative skewness factor.

A negative skewness of the SPD re�ects the market expectation that the future

stock index will be above its forward value. Usually, the negative skew increases

together with the implied volatility. While negative skewness risk can bear ex-

cess returns, during periods of economic downturn, the investors prefer positively

skewed distributions. This can be seen when looking at the large negative values

37



of δ̂3,T which, in e�ect, shift the SPD mass from the positive to the negative side

of the distribution, in conformity with an increase in the risk aversion of investors.

The functional principal components for the reduced model
∑

r∈{1,3,7} δ̂r,T γ̂
(d)
r,T

resemble closely the three components from Figure 2-2. Further analysis shows that

if we add any of the term structure components, whose loading feature a behavior

similar to δ̂2,T , with their inherent jump before, the shape of the components

changes slightly. In addition, the loadings of all orthogonalized components are

'contaminated' with jumps. In fact, all the loadings of the estimated components

(not displayed here) by decomposing M̂ (d), for d = (2, 0) display the jump-behavior

we described before between mid-February 2007 and mid-September 2008. In that

sense, previous approach seems to provide more accurate estimates that allow for a

better interpretation of the results. The other components γ̂
(d)
4,T , γ̂

(d)
5,T , γ̂

(d)
6,T and γ̂

(d)
8,T

have similar shape features to the four components discussed so far: γ̂
(d)
1,T , γ̂

(d)
2,T , γ̂

(d)
3,T

and γ̂7,T . Their loadings have �jumps� alike δ̂2,T . We contend that they are related

to the asymmetric behavior of the option prices along the maturity direction, i.e.,

the term structure e�ect of the SPDs.

Dynamic analysis of the loadings

In this section, we investigate the dynamics of the loadings in the reduced model.

The loadings times series have serial autocorrelations that decay slowly similarly to

the integrated processes that feature a stochastic trend. Unit root and stationarity

test results (not reported here) are mixed. Whenever the null hypothesis assumes

the existence of a unit root (augmented Dickey-Fuller unit-root test, Phillips-

Perron test, variance-ratio test for random walk) the tests reject the null, while

stationary tests that have the unit root hypothesis as an alternative (KPSS test,

Leybourne-McCabe stationarity test) favor the alternative. Based on these results,

we further investigate if the loadings feature fractional integration between zero
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and one, typical to long-memory processes. This means that a current shock

impacts their future levels over a long period and eventually dissipates. To detect

the long-range dependence in each series, we employ Lo (1991) modi�ed R/S

statistic with [N1/4] = 9 and obtain N1/2R1
9 = 5.1582, N1/2R3

9 = 4.5248 and

N1/2R7
9 = 4.9893, with 95% con�dence interval (0, 809, 1, 862). The tests reject the

hypothesis that loadings have short-memory. We also apply Geweke and Porter-

Hudak (1983) log-periodogram regression model to estimate the Hurst exponent.

The estimates are H1
GPH = 1.3736, H3

GPH = 1.1761 and H7
GPH = 1.1433 for the

cuto� [N1/2] = 50 and the 95% con�dence interval for the the GPH estimator

(0.2981, 0.7019) is calculated by Weron (2002) using the bootstrapping procedure.

This implies an estimated order of integration d̂r = Hr
GPH−0.5. The simplest long-

memory formulation is an autoregressive fractionally integrated moving-average

model ARFIMA(0, d̂r, 0). Additional AR and MA terms can be estimated but the

estimation is nontrivial. For the purpose of the current work we do not pursue

this endeavor.

Another way of analyzing the loading dynamics is to use a moving average

window. Examining closer the dynamic relation for the loadings �rst di�erence,

represented in Figure 2-3 through the 100-days moving window correlation coe�-

cient, we see that for most of the times the volatility and negative skewness factors

move together. Oftentimes the correlation of their di�erence corr = (∆δ̂i1,∆δ̂i7)

is close to −1 and its strength weakens and is sometimes reversed, in a strong

connection to the movements of the volatility of implied volatility index (V olIV ),

computed as a 100-days moving window standard deviation of the daily implied

volatility index. The reversion in the correlation sign following the �nancial crises

means that the OTM put options become more expensive as volatility increases.

This phenomenon is explained in the empirical �nancial literature through the

net buying pressure of index options (Bollen and Whaley (2004), Gârleanu et al.
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Figure 2-3: 100-days moving window correlation coe�cient for the �rst-di�erence of the loadings
and volatility of implied volatility
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(2009)). Overall, δ̂7,T is linked to sudden and short-term changes in volatility.

After sustained periods of increases in the implied volatility, particularly be-

tween 2006 to the end of 2008, δ̂3,T decreases substantially, giving rise to more

expensive OTM puts and relatively cheaper deep OTM options. The overall �at-

tening of the left tail together with volatility increases is a manifestation of the

implied volatility skew puzzle, as documented by Constantinides and Lian (2015).

The authors explain it through the reduction in supply of put options from credit-

constrained market makers when the demand for puts increases. Our �ndings

according to which the di�erence between the prices of OTM and ATM put op-

tions decreases during the �nancial crisis, is consistent with their observation that

the implied volatility skew declines.

Comparison with the existing literature on DAX implied volatility sur-

faces

The analysis of the call options traditionally takes place within the implied volatil-

ity framework. There exists a direct mapping - based on the Black-Scholes formula

- between the call prices and the implied volatility. A large body of literature is

concerned with the dynamics of the implied volatility surfaces. The focus is on

a stylized asymmetric U-shape feature that varies across di�erent maturities and

strike prices. This pattern is called the 'smile' or 'smirk' e�ect. Application of

PCA or FPCA to the implied volatility curves or surfaces of index options reveal

usually three driving sources for its variability: a shift or level e�ect, a Z-shaped

slope twist that impacts the skewness of the implied density, a curvature or but-

ter�y mode that changes the convexity in the IV surface e.g. Cont and da Fonseca

(2002), Fengler et al. (2003). When looking at the term structure of implied

volatility, usually for �xed moneyness at the money, one factor explains most of

the variability for the maturities between one month and one year, e.g. Mixon
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(2002) for a study of S&P 500 index implied volatility. Fengler et al. (2002) �nd

that the dynamics of term structure in implied volatility as measured by VDAX

subindices can be represented as a two-factor model.

The decomposition of SPD variation is important because it gives the coun-

terpart of the implies volatility surface variation, which is already fairly well un-

derstood in the �nancial literature. The level changes in the implied volatility

surfaces are well represented for the case of SPDs by the �rst component. In

our model, changes in skewness and kurtosis occur simultaneously and manifest

through two distinct mechanisms: one a�ects the degree of negative skewness and

the other one in�uences the sign of the skewness. We do not identify in our model

a separate residual kurtosis factor. This is because either changes in skewness and

kurtosis are manifestations of the same phenomenon or (and) usually, the amount

of variance explained by the kurtosis factor is quite small.

2.4 Conclusions

We present two methods for estimating the derivatives of high-dimensional curves

using FPCA techniques. In the �rst approach, FPCA is applied to the dual co-

variance matrix of the curve derivative. The second approach considers in the

decomposition of the dual covariance for the original curves, whereas derivatives

are applied to their functional principal components. Thus, the second approach

explains the dynamics of derivatives in terms of orthogonal loadings but the com-

ponents are no longer orthonormal. When an underlying factor model is assumed,

we show that when estimating the curves from the observed discrete and noisy

data, the second method performs better both asymptotically and in �nite sam-

ple. In the real data example we �nd that three components can explain most of

the variability in the data. Additional factors describe the variation of the term
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structure of the SPD. The empirical analysis provides new insights into the eco-

nomics behind the option pricing, which suggest the need to reconsider the last

generation of arbitrage-free models for option pricing, see representative Bates

(2006).
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2.5 Appendix

2.5.1 Assumptions summary

Assumption 1 The curves Yi, i = 1, . . . , N are observed at a random grid ti1, . . . , tiTi,

tij ∈ [0, 1]g having a common bounded and continuously di�erentiable density f

with support supp(f) = [0, 1]g and the integrand u ∈ supp(f) and inf
u
f(u) > 0.

Assumption 2 E(εik) = 0, Var(εik) = σ2
iε > 0 and εik are independent of Xi, and

E [ε4
ik] <∞,∀i, k.

Assumption 3 Let KB(u) = 1
b1×···×bgK(u ◦ b). K is a product kernel based on

symmetric univariate kernels. B is a diagonal matrix with b = (b1, . . . , bg)
> at the

diagonal. The kernel K is bounded and has compact support on [−1, 1]g such that

for u ∈ Rg
∫
uuTK(u)du = µ(K)I where µ(K) 6= 0 is a scalar and I is the g × g

identity matrix. Conditions 2 and 3 from Masry (1996) are ful�lled.

Assumption 4 ρ−
∑g

l=1 dl and p−
∑g

l=1 dl are odd.

Assumption 5 |σ̂2
iε − σ2

iε| = OP (T−1/2)

Assumption 6 We require that it holds

sup
r∈N

sup
t∈[0,1]g

|ϕ(d)
r (t)| <∞ , sup

r∈N
sup
t∈[0,1]g

|γ(d)
r (t)| <∞ (2.40)

∞∑
r=1

∞∑
s=1

E

[(
δ

(ν)
ri

)2 (
δ

(ν)
si

)2
]
<∞ ,

∞∑
q=1

∞∑
s=1

E

[(
δ

(ν)
ri

)2

δ
(ν)
si δ

(ν)
qi

]
<∞, ν = (0, d)

(2.41)

for all r ∈ N.
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Assumption 7 We require that the eigenvalues are distinguishable such that for

any T and N and �xed r ∈ 1, . . . , L there exists 0 < C1,r <∞, 0 < C2,r ≤ C3,r <

∞ such that

NC2,r ≤ l(ν)
r ≤ NC3,r

min
s=1,...,N ;s6=r

|l(ν)
r − l(ν)

s | ≥ NC1,r.
(2.42)

2.5.2 Proof of Lemma 2.2.1

Univariate case (g=1)

In the following proof we use d instead of ν. As noted by Ruppert and Wand (1994)

equation (2.16) can be stated up to a vanishing constant using equivalent kernels.

Equivalent kernels can be understand as an asymptotic version of W T
d . Let el be a

vector of length ρ with 1 at the l+ 1 position and zero else. Then W T
d (t) evaluates

the function at point u and is de�ned as (Tbd+1)−1eTd ST (u)−1(1, t, . . . , tρ)TK(t).

ST (u) is a ρ × ρ matrix with entries ST,k(u) = (Tb)−1
∑T

l=1 K
(
tl−u
b

)
( tl−u

b
)k such

that

ST (u) =


ST,0(u) ST,1(u) . . . ST,ρ(u)

ST,1(u) ST,2(u) . . . ST,ρ+1

...
...

. . .
...

ST,ρ(u) ST,ρ+1(u) . . . ST,2ρ(u)

 . (2.43)

Accordingly

E(ST,k(u)) =(Tb)−1

∫ 1

0

T∑
l=1

K

(
x− u
b

)(
x− u
b

)k
f(x)dx

=b−1

∫ 1+u

u

K
(x
b

)(x
b

)k
f(x)dx =

∫ (1+u)b−1

ub−1

K (t) tkf(tb)dt.

(2.44)

SinceK(t) has compact support and is bounded, for a point at the left boundary
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with c ≥ 0 u is of the form u = cb and at the right boundary u = 1−cb respectively.

We de�ne Sk,c =
∫∞
−c t

kK(t)dt and Sk,c =
∫ c
−∞ t

kK(t)dt respectively and for interior

points Sk =
∫∞
−∞ t

kK(t)dt. Further we construct the p × p Matrix corresponding

to (2.43) with

S(u) =

Sc = (Sj+l,c)0≤j,l≤ρ , u is a boundary point

S = (Sj+l)0≤j,l≤ρ , u is an interior point

. (2.45)

The equivalent kernel is then de�ned as Ku∗
d,ρ (t) = eTd S(u)−1(1, t, . . . , tρ)TK(t) and

the estimator can be rewritten as

X̂
(d)
b (u) = d!βd(u) =

d!

Tf(u)bd+1

T∑
l=1

Ku∗
d,ρ

(
tl − u
b

)
Y (tl){1 + OP (1)}. (2.46)

The only di�erence between W T
d and Ku∗

d,ρ is that ST (u) is been replaced by

f(u)S(u). Regarding Masry (1996) we can further state that with a bandwidth

ful�lling log(T )
Tb
→ 0 we have uniformly in u ∈ [0, 1] that ST (u)−1 → S(u)−1

f(u)
almost

surely as T → ∞. We will drop the u∗ index concerning the equivalent kernel

from now on.

By construction, the equivalent kernel ful�lls that using the Kronecker-Delta δ

∫
ukK∗d,ρ (u) du = δd,k 0 ≤ d, k ≤ ρ. (2.47)

As mentioned by Fan et al. (1997), the design of the kernel automatically adapts

to the boundary which gives the same order of convergence for the interior and

boundary points, see Ruppert and Wand (1994). The estimator can be rewritten
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as

∫
d!2

T∑
j=1

T∑
l=1

W T
d

(
tj − u
b

)
W T
d

(
tl − u
b

)
Y (tl)Y (tj)du

=

∫
d!2

T 2f(u)2b2d+2

T∑
l=1

T∑
j=1

K∗d,ρ

(
tj − u
b

)
K∗d,ρ

(
tl − u
b

)
Y (tl)Y (tj){1 + OP (1)}du.

(2.48)

For the expectation we get

E (θd,ρ|t1, . . . , tT )

=

∫ 1

0

d!2
T∑
j=1

T∑
l=1

W T
d

(
tj − u
b

)
W T
d

(
tl − u
b

)
X(tl)X(tj)du

+ d!2
(
σ2
ε − σ̂2

ε

) ∫ 1

0

T∑
j=1

W T
d

(
tj − u
b

)2

du

=

{
d!2
∫ 1

0

∫ 1

0

∫ 1

0

f(x)f(y)

b2(d+1)f(z)2
K∗d,ρ

(
x− z
b

)
K∗d,ρ

(
y − z
b

)
X(x)X(y)dxdydz

+OP
(

1

T 3/2b2d+1

)}
{1 + OP (1)}

=

{∫ 1

0

X(d)(z)X(d)(z)dz

+ 2
d!

(ρ+ 1)!

∫ 1

0

bρ+1

bd

(∫ 1

0

uρ+1K∗d,ρ (u) du

)
X(ρ+1)(z)X(d)(z)dz

+
d!2

(ρ+ 1)!2

∫ 1

0

b2ρ+2

b2d

(∫ 1

0

uρ+1K∗d,ρ (u) du

)2

X(ρ+1)(z)X(ρ+1)(z)dz

+OP
(

1

T 3/2b2d+1

)}
{1 + OP (1)}

(2.49)

These results where obtained by substitution with x = z+ub, y = z+vb and using

a ρ + 1 order Taylor expansion of X(z + ub) and X(z + vb) together with (2.47).

We get
∫

[0,1]g
X(u)2du− E(θd,ρ|t1, . . . , tT ) = Op

(
bρ+1−d +

(
T 3/2b2d+1

)−1
)
.
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First note that using the second mean value integration theorem there exits

some c ∈ (0, 1) and we can write

∫
f(z)−2K∗d,ρ

(
y − z
b

)
K∗d,ρ

(
x− z
b

)
dz = f(c)−2

∫
K∗d,ρ

(
y − z
b

)
K∗d,ρ

(
x− z
b

)
dz.

(2.50)

We introduce a kernel convolution with

KC
d,ρ (y − x)

def
=

∫
K∗d,ρ (y − z)K∗d,ρ (x− z) dz (2.51)

and thus using z = u
b

KC
d,ρ

(
y − x
b

)
=

∫
K∗d,ρ

(y
b
− z
)
K∗d,ρ

(x
b
− z
)
dz =

∫
b−1K∗d,ρ

(
y − u
b

)
K∗d,ρ

(
x− u
b

)
du.

(2.52)

Note that the integral over KC
d,ρ is computed over an parallelogram D bounded

by the lines x + y = 2, x + y = 0, x − y = 1, x − y = −1. Using the substitution

x = v+u
2
b, y = u−v

2
b

∫ ∫
D

KC
d,ρ

(
y − x
b

)
dydx =

b

2

∫ 2

0

∫ 1

−1

KC
d,ρ

(
v + u− u+ v

2

)
dvdu = b

∫
KC
d,ρ (v) dv.

(2.53)
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Note that the variance can be decomposed

Var (θd,ρ|t1, . . . , tT ) (2.54)

=
d!4

T 4(b4d+2)f(c)4

{
T∑
l=1

KC
d,ρ (0)2 Var(Y (tl)

2) (2.55)

+ 2
T∑
l=1

T∑
k 6=l

Var(KC
d,ρ

(
tl − tk
b

)
Y (tl)Y (tk)) (2.56)

+ 4
T∑
l=1

T∑
k 6=l

T∑
k′ 6=k

Cov(KC
d,ρ

(
tk − tl
b

)
Y (tk)Y (tl), K

C
d,ρ

(
tl − tk′
b

)
Y (tl)Y (tk′))

(2.57)

+ 24
T∑
l=1

T∑
k 6=l

T∑
k′ 6=k

T∑
l′ 6=k′

Cov(KC
d,ρ

(
tl − tk
b

)
Y (tl)Y (tk), K

C
d,ρ

(
tl′ − tk′

b

)
Y (tl′)Y (tk′))

}
(2.58)

+OP
(

1

T

)
. (2.59)

Expression (2.58) vanishes and (2.55) given by d!4

T 3(b4d+2)f(c)4

∫
KC
d,ρ (0)2 Var(Y (y)2)f(y)dy{1+

OP (T−1)} is dominated by (2.56) because

2d!4

T 4(b4d+2)f(c)4

T∑
l=1

T∑
k 6=l

KC
d,ρ

(
tl − tk
b

)2

Var(Y (tl)Y (tk))

=
2d!4

T 4(b4d+2)f(c)4

T∑
l=1

T∑
k 6=l

KC
d,ρ

(
tl − tk
b

)2 {
E(Y (tl)

2Y (tk)
2)− E(Y (tl)Y (tk))

2
}

=
2d!4

∫
(σ4

ε + 2σ2
εX(x)2)f(x)2dx

T 2b4d+1f(c)4

∫ (
KC
d,ρ(u)

)2
du+ OP

(
1

T 2b4d+1

)
.

(2.60)
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Before looking at expression (2.57), note that with m ≥ 2d

∫ ∫
d!2

b2d+1
KC
d,ρ

(
x− y
b

)
X(x)dxdy

=
d!2

b2d

∫ ∫ ∫
K∗d,ρ (m)K∗d,ρ (z)X {y + (m− z)b} dzdmdy

=(−1)d
∫ 1

0

X(2d)(y)dy + OP (1)

(2.61)

by performing two Taylor expansions with mb �rst and then −zb.

We can thus derive for expression (2.57) that

H(T )
T∑
l=1

T∑
k 6=l

T∑
k′ 6=k

Cov(KC
d,ρ

(
tk − tl
b

)
Y (tk)Y (tl), K

C
d,ρ

(
tl − tk′
b

)
Y (tl)Y (tk′))

=H(T )
T∑
l=1

T∑
k 6=l

T∑
k′ 6=k

KC
d,ρ

(
tk − tl
b

)
KC
d,ρ

(
tl − tk′
b

){
E
(
Y (tk)Y (tl)

2Y (tk′)
)

−E (Y (tk)Y (tl))E (Y (tl)Y (tk′))}

=H(T )
T∑
l=1

T∑
k=1

T∑
k′=1

KC
d,ρ

(
tk − tl
b

)
KC
d,ρ

(
tl − tk′
b

)
X(tk)σ

2
εX(tk′)

− 2d!4

T 4(b4d+2)f(c)4

T∑
k=1

T∑
k′=1

KC
d,ρ

(
tl − tk′
b

)2

X(tk)σ
2
εX(tk′)

=
4σ2

ε

Tf(c)

∫
X(2d)(y)X(2d)(y)dy −OP

(
1

T 2(b4d+1)

)
,

where H(T )
def
= 4d!4

T 4(b4d+2)f(c)4
. Thus Var (θd,ρ|t1, . . . , tT ) = OP

(
1

T 2(b4d+1)

)
.

Multivariate case (g > 1)

The same strategy also works in the multivariate case by using multivariate Tay-

lor series. Using the multi-index notation introduces in section 2.2.4 and a =
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(a1, ..., ag), al ∈ N+ a multivariate taylor series of degree k < ρ is given by

X(x− u ◦ b) =
∑

0≤|a|≤k

X(a)(x)

a!
(u ◦ b)a + OP

(
uk+1 max(b)k+1

)
. (2.62)

Using the equivalent kernel by Ruppert and Wand (1994) extended to the case

and using Masry (1996) we can further state that with a bandwidth ful�lling

log(T )
Tb1×···×bg → 0 we have uniformly in u ∈ [0, 1]g that ST (u)−1 → S(u)−1

f(u)
almost surely

as T →∞. Furthermore, the multivariate equivalent kernel has the properties that

with v = (v1, . . . , vg), vl ∈ N+

∫
uvK∗d,ρ (u) du = δd,v, |v| ≤ ρ, 0 ≤ di ∀i = 1, . . . g. (2.63)

Let c be the position of max(b) in b and ρ̃ be a vector of length g which is ρ+ 1

at the c− th position and 0 else. Then for the bias

E (θd,ρ|t1, . . . , tT )

=

{∫
[0,1]g

X(d)(z)X(d)(z)dz

+ 2
d!

(ρ+ 1)!

∫
[0,1]g

max(b)ρ+1

bd

(∫
uρ̃K∗d,ρ (u) du

)
X(ρ̃)(z)X(d)(z)dz

+OP
(

max(b)ρ+1

bd
+

1

T 3/2(b2db1 × · · · × bg)

)}
{1 + OP (1)}

(2.64)

Further note that for the convoluted kernel we get

KC
d,ρ

(
(y − x) ◦ b−1

)
=

∫
(b1 × · · · × bg)−1K∗d,ρ

{
(y − u) ◦ b−1

}
K∗d,ρ

{
(x− u) ◦ b−1

}
du.
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Accordingly, we get for the multivariate equivalent of expression (2.56) that

2d!4

T 4f(c)4(b2
1 × · · · × b2

gb
4d)

T∑
l=1

T∑
k 6=l

KC
d,ρ

(
(tl − tk) ◦ b−1

)2
V ar(Y (tl)Y (tk))

=
2d!4

∫
(σ4

ε + 2σ2
εX(x)2)f(x)2dx

T 2f(c)4b1 × · · · × bgb4d

∫ (
KC
d,ρ(u)

)2
du{1 + OP (1)}

and because we assume that m ≥ 2|d| we get for the multivariate equivalent of

expression (2.57) that

A(T )
T∑
l=1

T∑
k 6=l

T∑
k′ 6=k

Cov(KC
d,ρ

(
(tk − tl) ◦ b−1

)
Y (tk)Y (tl), K

C
d,ρ

(
(tl − tk′) ◦ b−1

)
Y (tl)Y (tk′))

=A(T )
T∑
l=1

T∑
k 6=l

T∑
k′ 6=k

KC
d,ρ

(
(tk − tl) ◦ b−1

)
KC
d,ρ

(
(tl − tk′) ◦ b−1

)
X(tk)σ

2X(tk′)

=
4σ2

ε

Tf(c)

∫
X(2d)(y)X(2d)(y)dy +OP

(
1

T 2(b4db1 × · · · × bg)

)

where A(T )
def
= 4d!4

T 4(b4db21×···×b2g)f(c)4
.

2.5.3 Proof of Proposition 2.2.2

Asymptotic results

We �rst have look at the estimator M̃ (0) for the special case when a common

random grid is present. The only error here comes from approximating the integral
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in equation (2.12) with a sum.

M
(0)
ij − M̃

(0)
ij =

∫
[0,1]g

Xi(t)Xj(t)dt−
1

T

T∑
l=1

Yi(til)Yj(tjl) + I(i = j)σ̂2
iε

=

∫
[0,1]g

Xi(t)Xj(t)dt−
1

T

T∑
l=1

(Xi(tl) + εil) (Xj(tl) + εjl) + I(i = j)σ̂2
iε

=

∫
[0,1]g

Xi(t)Xj(t)dt−
1

T

T∑
l=1

Xi(tl)Xj(tl)

− 1

T

T∑
l=1

Xi(tl)εjl −
1

T

T∑
l=1

Xj(tl)εil −
1

T

Ti∑
l=1

εilεjl + I(i = j)σ̂2
iε.

(2.65)

By construction, it hold that E [εilεjl] = 0, i 6= j, E [εil
2] = σ2

iε and E [Yi(tl)εjl] =

0. All sums for example 1
T

∑T
l=1 Xi(tl)Xj(tl) are the corresponding empirical esti-

mator for the mean, i.e.,
∫

[0,1]g
Xi(t)Xj(t)dt = E [XiXj]. By the law of large num-

bers, it converges in probability to the theoretical mean as T →∞. Using the cen-

tral limit theorem we can further state that
∫

[0,1]g
Xi(t)Xj(t)dt− 1

T

∑T
l=1 Xi(tl)Xj(tl)

is approximately normal, which gives an error of order T−1/2 regardless of dimen-

sion g. By requiring that σ̂iε is also T
−1/2 consistent we get T−1/2 for all elements.

To understand M̂ (0) we investigate two possible sources of error in the construc-

tion of the estimator. One coming from interpolation and smoothing at a common

grid and the other from approximating the integral with a sum. First note that

by the same arguments as for M̃ (0) the error of the integral approximation is of

order T−1/2. Besides the error for the o� diagonal elements is smaller than for

the diagonal, thus the leading error source is given by Lemma 2.2.1. The same

arguments also work to derive asymptotic results for M̂ (d).
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2.5.4 Proof of Proposition 2.2.4

Under the assumptions of Proposition 2.2.4 together with the requirements of

Lemma 2.2.2 for ν = (0, d) and the setup of Remark 2.2.3

||M̂ (ν) −M (ν)|| ≤ tr

{(
M̂ (ν) −M (ν)

)> (
M̂ (ν) −M (ν)

)}1/2

= Op
(
NT−1/2

)
.

(2.66)

Given that
∑T

l=1 p
(ν)
lr = 0,

∑T
l=1

(
p

(ν)
lr

)2

= 1 ∀r and applying Cauchy-Schwarz

inequality gives
∑N

l=1 |p
(ν)
lr | = O

(
N1/2

)
. This together with Lemma A from Kneip

and Utikal (2001) leads to

E

[(
p(ν)
r

)>
(M̂ (ν) −M (ν))p(ν)

r

]2

= Op
(
N

T

)
(2.67)

We are now ready to make a statement about the basis that span the factor

space.∣∣∣∣∣∣ 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir X

(d)
i (t)− 1√

l̂
(ν)
r

N∑
i=1

p̂
(ν)
ir X̂

(d)
i,h (t)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1√
l
(ν)
r

N∑
i=1

p
(ν)
ir

[
X

(d)
i (t)− X̂(d)

i,h (t)
]∣∣∣∣∣∣+

∣∣∣∣∣∣
N∑
i=1

 1√
l
(ν)
r

p
(ν)
ir −

1√
l̂
(ν)
r

p̂
(ν)
ir

 X̂
(d)
i,h (t)

∣∣∣∣∣∣ .
(2.68)

The �rst term is discussed in equation (2.2.4). Therefore we take a look at the

second term here. As a consequence of Assumption (7), Lemma A (a) from Kneip

and Utikal (2001) together with equation (2.67) gives

l(ν)
r − l̂(ν)

r = (p(ν)
r )T (M̂ (ν) −M (ν))p(ν)

r ) +Op(NT−1) = Op(N1/2T−1/2 +NT−1),

(2.69)
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where

1√
l̂
(ν)
r

− 1√
l
(ν)
r

=
l
(ν)
r − l̂(ν)

r√
l̂
(ν)
r

√
l
(ν)
r (

√
l̂
(ν)
r +

√
l
(ν)
r )

= Op
(
T−1/2N−1 + T−1N−1/2

)
.

(2.70)

Using Lemma A (b) from Kneip and Utikal (2001) we further get

|p̂(ν)
ir − p

(ν)
ir | = Op

(
(NT )−1/2

)
and ||p̂(ν)

r − p(ν)
r || = Op

(
T−1/2

)
. (2.71)

Putting all results together for the second term gives∣∣∣∣∣∣
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)
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√
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(
X̂

(d)
j,h (t)

)
+
∣∣∣X(d)

i,h (t)
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(2.72)

Using Cauchy-Schwarz and equation (2.70) we see that �rst term is of order

(NT )−1/2. For the second term remember that l
(ν)
r is of order N together with

(2.71) this also leads to order (NT )−1/2. Inserting the right hand side, equation
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(2.68) becomes

Op
(
max(h)p+1h−d

)
+Op

(
(NTh1 . . . hgh

2d)−1/2
)

+Op
(
(NT )−1/2

)
Op
(
max(h)p+1h−d

)
+Op

(
(NT )−1/2

)
Op
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2d)−1/2
)

+Op
(
(NT )−1/2

)
= Op

(
max(h)p+1h−d

)
+Op

(
(NTh1 . . . hgh

2d)−1/2
)
.

2.5.5 Proof of Proposition 2.2.5

Note that

√
l
(v)
r −

√
l̂
(v)
r = (l(v)

r − l̂(v)
r )(

√
l
(v)
r +

√
l̂
(v)
r )−1 = Op(T−1/2 +N1/2T−1), (2.73)

together with (2.71) gives
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√
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(v)
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(v)
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√
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r p̂
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)
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(v)
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√
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(v)
r

(
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(v)
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= Op(T−1/2 +N1/2T−1).

(2.74)

Using Proposition 2.2.4 it follows that

|Yi(t)− Ŷi(t)| = |
K∑
r=1

δ̂irγ̂
(v)
r (t)−

K∑
r=1

δ̂ir,T γ̂
(v)
r,T (t)|

=|
K∑
r=1

(δ̂ir − δ̂ir,T )γ̂r + δ̂ir,T (γ̂r − γ̂r,T )|

=Op
(
T−1/2 +N1/2T−1 + max(h)p+1h−d + (NTh1 × · · · × hgh2d)−1/2

)
.

(2.75)
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Chapter 3

Nonparametric Registration to

Low-Dimensional Function Spaces

Abstract

Registration aims to decompose amplitude and phase variation of samples of
curves. Phase variation is captured by warping functions which monotonically
transform the domains. Resulting registered curves should then only exhibit am-
plitude variation. Most existing registration method rely on aligning typical shape
features like peaks or valleys to be found in each sample function. It is shown that
this is not necessarily an optimal strategy for subsequent statistical data explo-
ration and inference. In this context a major goal is to identify low dimensional
linear subspaces of functions that are able to provide accurate approximations
of the observed functional data. In this paper we present a registration method
where warping functions are de�ned in such a way that the resulting registered
curves span a low dimensional linear function space. Problems of identi�ability
are discussed in detail, and connections to established registration procedures are
analyzed. The method is applied to real and simulated data.

3.1 Introduction

The data that we consider are a sample of i.i.d. smooth random functions x1, . . . , xn

de�ned over a closed interval on the real line. Registration literature focuses on
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the situation that all functions share a common set of shape features, such as

peaks and valleys. The curves displayed in the top panel of Figure 3-1 provide

an example. The sizes of the features vary, and we refer to this as amplitude

variation. The locations of the features also vary from curve to curve, which indi-

cates the existence of phase variation. Generally speaking, registration deals with

separating amplitude and phase variation in a statistically meaningful way. The

aim is to search for a set of smooth strictly monotonic functions hi, called warping

functions, which eliminate phase variation such that the registered functions yi(t)

of the form yi(t) = xi (hi(t)) = (xi ◦ hi)(t) represent amplitude variation. Since

monotone transformations do not destroy shape features the registered functions

will possess the same sequences of peaks and valleys as the original functions xi.

It is well-known that phase variation is present in many important applications,

and it poses severe problems for the application of functional versions of commonly

used multivariate data analyses such as computing pointwise means, variances

and correlations, principal components analysis and canonical correlation analyses

(Ramsay and Silverman (2005); Silverman (1995)).

Traditional literature on the registration problem aims to de�ne warping func-

tions in such a way that registered functions yi have all shape features aligned. A

frequently used method in older studies is landmark registration, see e.g. Book-

stein (1978, 1997), Kneip and Gasser (1992) and Gasser and Kneip (1995). Many

other methods not using landmarks have also been developed, partly in response

to situations where shape features used as landmarks are not clearly identi�able in

all curves. A common property of the most important methods proposed in this

context is to determine warping functions hi by minimizing a distance d(xi ◦hi, γ)

between registered functions yi(t) = xi(hi(t)) and a template γ(t). There is a

considerable literature proposing algorithms which aim to minimize the distance

d2(xi ◦hi, γ) = ‖xi ◦hi−γ‖2, where ‖·‖2 denotes the L
2-distance, see, for example,
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Sakoe and Chiba (1978). Ramsay (1998), Ramsay and Li (1998), or Kneip et al.

(2000). Usually additional regularization techniques are applied.

Well-known problems with these techniques have lead to the development of

more sophisticated techniques based on alternative distance measures. For ex-

ample, Ramsay and Silverman (2005), Wang and Gasser (1997, 1998, 1999), or

Srivastava et al. (2011)) propose to minimize semi-metrics with the property that

d(xi ◦ hi, γ) = 0 if xi ◦ hi = aiγ for some ai ∈ R.

All these methods share a common point of view. The success of a registra-

tion method is assessed in terms of how well it is able to align visible features.

Templates are often determined iteratively from the sample and their construction

aims to establish a �structural mean� which possess all common shape features at

mean locations and with mean amplitude. Hence, traditionally registration tends

to concentrate on establishing a most informative mean curve summarizing the

sample functions.

However, more recent work also tends to apply registration procedures in the

context of more complex problems of statistical data exploration and inference.

In functional data analysis the most frequently applied procedures are based on

identifying low dimensional linear subspaces of functions that are able to

provide accurate approximations of the observed functional data. An essential

tool is functional principal component analysis (FPCA), where sample curves are

approximated as elements of the linear space generated by a few leading functional

principal components. For functions exhibiting a registration problem, Hadjipan-

telis et al. (2015) use a norm based method for aligning functions, and then apply

FPCA separately for registered curves and warping functions. Gervini and Gasser

(2005), Claeskens et al. (2010), or Slaets et al. (2012) present multi-resolution ap-

proaches to registration. Assuming on discretized observations, they rely on pre-

speci�ed basis expansions for amplitude and phase variation and use algorithms
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designed for �tting mixed-e�ect models.

For clustering functions, Sangalli et al. (2010) propose a procedure which is

based on several templates instead of only a single �structural mean�. The �k

mean� approach assumes, that each observed curve belongs to one of k speci�c

clusters. The method then tries to determine the mean (template) of each cluster

iteratively and uses scale and shift to align the curves within the clusters.

In this paper we consider registration from a more general point of view. Regis-

tration may be used as a tool for statistical analysis whenever the random functions

xi possess �bounded shape variation�, i.e. there exists a �xed value q < ∞ such

that with probability 1 the number of shape features to be found within each

possible realization does not exceed q. Our approach is based on an observa-

tion already made by Kneip and Ramsay (2008) that for random functions with

bounded shape variation there exists a �nite K and warping functions hi such that

with probability 1

xi(hi(t)) =
K∑
j=1

aijγj(t). (3.1)

for some basis functions γ1, . . . , γK and individually di�erent coe�cients ai1, . . . , aiK .

We are going beyond Kneip and Ramsay (2008) by studying decomposition

(3.1) from a theory-guided, conceptional point of view and by deriving some basic

inference results for situations, where the true functions have to be reconstructed

from discrete, noisy observations. Appropriate values ofK depend on the structure

of xi, and possible non-uniqueness of solutions to (3.1) are resolved by selecting the

registration procedure with the least complex warping functions. Furthermore, we

present a new algorithm which estimates the components of (3.1) for all possible

values of K and seems to work well for many applications.

Assuming that functional shapes are of bounded complexity does not seem to
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Figure 3-1: Example for curves generated by (3.1) withK = 2. The lower left Figure provides the log
eigenvalues of an FPCA decomposition for the three types of registration given in the upper �gures.
The alignment of the peaks increases the model complexity (log-Eigenvalues) and the complexity of
the warping functions compared to a registration using K = 2.

be restrictive in important applications for instance consider biomedicine, technics,

chemometrics, etc., and often the presence of phase variation is already imposed

from a substantial point of view (di�erent reactions times, etc.). Our approach

then generalizes the rather limited range of applicability of traditional registration

techniques. Together with a suitable analysis of warping functions, the method

allows to decompose functional data in a way that might be more informative than

standard functional principal component analysis (FPCA).

If K ≥ 2, then an optimal registration based on (3.1) will usually not align

shape features, since for the registered curves yi(t) = xi(hi(t)) existence and lo-

cations of shape features will depend on the interplay between the coe�cients

ai1, . . . , aik. Our approach is illustrated by Figures 3-1 and 3-2. They represent

simulated data, and a description of the underlying data generating processes is

given in the online appendix.

Figure 1 corresponds to the type of data usually considered in a registration
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Figure 3-2: Registration of curves generated by Simulation 3.6.2 using our algorithm from Section
3.4. The upper right �gure shows a registration using K = 1 which results in a visible curve pinching
in order to archive some kind of peak alignment. The registration to K = 2 shown in the lower right
�gure does not align peaks but reduces the model complexity as seen due to the log eigenvalues of
an FPCA presented in the lower right �gure.

context and satis�es (3.1) with K = 2. There is a typical sequence of shape

features which can be found in all curves. Registration aiming at peak alignment

is done with the R-package �fdasrvf� by Tucker (2014). The package implements

the method proposed by Srivastava et al. (2011), where the Fisher-Rao metric is

used to determining warping functions by minimizing d(xi ◦ hi, γ) with respect

to a suitably de�ned template functon γ. Since d(xi ◦ hi, γ) = 0 if and only

if xi ◦ hi = aiγ for some ai ∈ R, this may be interpreted as an algorithm for

�tting (3.1) with K = 1. Indeed, it is shown in Section 2 that peak alignment in

tendency corresponds to adjusting a one dimensional model. At the same time,

the �gure shows that an optimal selection of warping functions depends on K, and

less complex functions are determined by the K = 2 dimensional registration. As

can be seen from an FPCA decomposition of yi = xi ◦ hi, for the one dimensional

approximation the space of the registered functions is more complex and cannot

be described by two components anymore.
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The functional data presented in Figure 3-2 are qualitatively di�erent from

those of Figure 3-1 in the sense that the functions do not possess a clearly visible

�common shape�. But a closer look at the unregistered curves also shows that

there exist structurally similar curves which quite obviously exhibit some phase

variation. Nevertheless, these are not the type of data that may be registered

by any conventional method. Indeed, �tting a K = 1 dimensional model leads

to unreasonable results with extreme warping functions. On the other hand, the

number of local extrema of these functions varies between 1 and 3, and these ran-

dom functions are of bounded shape variation. Indeed the true minimal dimension

is K = 2, and the �gure shows that K = 2 dimensional registration rests upon

structurally simple warping functions.

The paper is organized as follows. In Section 3.2 we study the qualitative

model (3.1) and discuss resulting problems of identi�ability. Minimal variability of

warping functions is introduced as a criterion to choose between di�erent possible

solutions. In Section 3.3 established connections to usual FPCA are studied in

detail. Any suitable subspace registration should be based on a sophisticated

algorithm which provides an e�ective solution to the �tting problem introduced

by (3.1). In Section 3.4 we describe an algorithm based on nonlinear programming

which works well in many applications. Section 3.5 provides applications to human

growth curves and genetic data.

Supplementary material is presented in an online appendix. In Section A of

this appendix all simulated examples used for illustration purposes are discussed

in detail. The section also contains a Monte-Carlo simulation to verify the results

of Theorem 1 in a small sample environment as well as a comparison with exiting

methods. Proofs of theorems are given in Section 3.7.
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3.2 Registering to low dimensional linear spaces

3.2.1 Random functions with bounded shape complexity

We consider observations consisting of a sample of smooth, at least twice contin-

uously di�erentiable random functions x1, . . . , xn de�ned on a common interval,

that we may take as [0, 1] without losing generality. Let X denote the function

space containing these observations, i.e. P(xi ∈ X ) = 1 and additionally assume

that the random functions possess bounded variation, E (supt xi(t)
2) <∞.

For an integerm letWm ⊂ L2[0, 1] denote the Sobolev space of all smooth func-

tions v with v(m) := Dmv ∈ L2[0, 1]. Our analysis is based on warping functions

h which are elements of the space H ⊂ W2[0, 1] of all smooth, strictly increasing

functions such that h(0) = 0, h(1) = 1, and h′(t) > 0 for all t. The functional

inverse h−1 with the property h−1 (h(t)) = (h−1 ◦ h)(t) = t for all t is uniquely

de�ned, and the identity warping function I given by I(t) = t for all t acts as

the unit element H for functional composition. Common start and end points of

h simplify the problem and are fairly natural in many applications. It is possible

to modify this requirement in speci�c situations. Similar to Kneip and Ramsay

(2008) higher order smoothness assumptions may also be imposed.

There exists numerous ways of representing warping functions. Examples are

linear combinations of warplets as introduced by Claeskens et al. (2010) or using

I-Splines from Ramsay (1988). We follow the representation used in Ramsay and

Silverman (2005), where for w ∈ W1[0, 1] a warping function is de�ned as

hw(t) =

∫ t
0
exp(w(u))du∫ 1

0
exp(w(u))du

. (3.2)

Note that for any constant a ∈ R the functions w and w + a lead to the same

warping function hw. We will thus only consider functions w ∈ W1
0[0, 1], where
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W1
0[0, 1] is the space of all w ∈ W1[0, 1] with

∫ 1

0
w(t)dt = 0. Then (3.2) de�nes

a bijection from W1
0[0, 1] onto H. Individual warping functions hi ≡ hwi , i =

1, . . . , n, can then equivalently be represented by the corresponding set w1, . . . , wn

of essentially unconstrained W1
0[0, 1]-functions. The latter are better suited for

further statistical analysis, as for example FPCA.

Registration is driven by the succession of shape features, i.e. the points where

the derivative of xi is zero. For any smooth function x one can determine the set

of all points τx = {t|x′(t) = 0}. If x does not possess a constant segment, i.e. if

there does not exist an interval [a, b] ⊂ [0, 1], a < b, such that x(t) = x(s) for all

t, s ∈ [a, b], then the number q(x) = |τx| of points in this set is �nite. One can then

determine the corresponding locations 0 ≤ τx1 < τx2 < · · · < τxq(x) ≤ 1 and heights

x(τx1 ), . . . , x(τxq(x)). Let Q(x) = (x(0), x(τx1 ), . . . , x(τxq(x)), x(1))T ∈ Rp(x) denote the

corresponding q(x) + 2-dimensional vector of heights of shape features (including

starting and end points).

For simplicity we will assume that P(x′i(0) = 0) = 0 as well as P(x′i(1) = 0) = 0

such that a.s. τxil ∈ (0, 1) for all l = 1, . . . , q(xi). Usually registration is only

applied in the context of functions xi possessing a typical succession of shape

features which can be identi�ed in each possible sample curve. In this paper we

adopt a more general point of view. Registration may be useful for functional data

possessing bounded shape variation, in the sense that the number of shape features

to be found in individual sample curves does not exceed a certain bound q < ∞.

More precisely, further analysis will be based on the following assumption:

Assumption 1 There exists a q < ∞ such that P(q(xi) ≤ q) = 1, and further-

more

P
(
x
′′
i (τ

xi
l ) 6= 0 for all l = 1, . . . , q(xi)

)
= 1.

The important structural restriction here is the existence of the upper bound

q < ∞. The additional requirement P(x
′′
i (τ

xi
l ) 6= 0 for all l = 1, . . . , q(xi)) =
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1, which assumes that a.s. all xi(τ
xi
l ), l = 1, . . . , q(xi) are strict local min-

ima/maxima, is a technical condition which simpli�es analysis. Functions with

�at parts as well as with additional in�ection points only occur in a subset of X

which has probability zero.

Assumption 1 seems to be a very natural condition in many applications in

biomedicine, technics, chemometrics, etc. In practice, functions may be observed

with error, and nonparametric estimates may show random wiggles. Problems of

identifying �true� shape feature will be considered in Section 3.

Note that for any continuous x and any warping function h the resulting func-

tion y = x ◦ h has the same vector Q(y) = Q(x) of heights of local extrema. This

means that the registered curves yi in (3.4) will exhibit the same visual shape

(in terms of the succession of local extrema) as the original functions xi. But for

smooth functions Q(xi) is essentially the only structural feature of xi which is

invariant against strictly monotone transformations. It is thus the driving force of

identi�ability of any registration procedure.

Using (3.2) a registration procedure can then formally be de�ned as a measure-

able mapping R from X into W1
0[0, 1] which assigns a warping function hR(x)

to

each x ∈ X .

A basic insight which provides the basis of our approach now is that random

functions satisfying Assumption 1 can always be registered to a �nite dimensional

linear function space. As usual, we will speak of a K-dimensional linear space

LK ⊂ W2[0, 1] if there exist K orthonormal functions γ1, . . . , γK ∈ W2[0, 1] such

that LK = span{γ1, . . . , γK}.

Proposition 1 Under Assumption 1

a) For some K ≤ q + 2 there exists a registration procedure R : X → W1
0[0, 1]

and a K-dimensional linear function space LK such that with wi := R(xi),
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hi := hwi we obtain

P(xi ◦ hi ∈ LK) = 1 (3.3)

b) For some integer K let LK = span{γ1, . . . , γK} denote a K-dimensional

linear function space generated by smooth, twice continuously di�erentiable

basis functions γ1, . . . , γj on [0, 1]. If P(Q(xi) ∈ {Q(γ)|γ ∈ LK}) = 1 there

then exists a registration procedure such that P(xi ◦ hi ∈ LK) = 1.

c) There exists a registration procedure such that (3.3) holds for K = 1 if and

only if P(q = q(xi)) = 1 as well as P (Q(xi) = aQ(xj) for some a ∈ R) = 1

for i 6= j.

Assertion a) of the proposition follows from Proposition 1 of Kneip and Ramsey

(2008). The proposition tells us that already the number of peaks and valleys to

be found in each curve xi may provide an idea about an appropriate choice of K

such that there exists a registration procedure and a suitable set of orthonormal

basis functions γ1, . . . , γk, span{γ1, . . . , γK} = LK , such that with probability 1

yi(t) := xi(hi(t)) =
K∑
j=1

aijγj(t) (3.4)

for all t ∈ [0, 1], where aij =
∫ 1

0
xi(hi(t))γj(t)dt, j = 1, . . . , K. In this qualitative

model only the linear subspace LK = span{γ1, . . . γK} can be identi�ed, while

there are many di�erent possible choices of basis functions. Our approach relies

on eigenfunctions of the second moment operator de�ned by My(y) = E(〈yi, y〉yi)

for y ∈ L2[0, 1]. Under (3.4) the operator My(y), only possesses K nonzero eigen-

values, and a suitable basis γ1, . . . , γK is given by the eigenfunctions corresponding

to these K leading eigenvalues.
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For random functions satisfying Assumption 1 there will thus exist a minimal

dimension K0 such that (3.3) holds for all K ≥ K0, while there does not exist a

registration procedure leading to (3.3) for K < K0.

By Proposition 1c) K0 = 1 can only hold for structurally very simple random

functions with a common set of q(xi) = q shape features. Obviously, xi(hi(t)) =

aiγ(t) can only hold if all possible vectors Q(xi) are proportional. Any shape fea-

ture of a registered function yi is then aligned to the location of the corresponding

feature of the template γ, i.e. τ yi = τ γ. In contrast, as already illustrated by

Figure 3-1, a suitable registration to a K ≥ 2 dimensional space will usually not

go along with an alignment of peaks.

Proposition 1b) shows that a structural analysis of observed realizations xi may

provide information about a suitable dimension and possible candidate spaces LK .

This property will be exploited in our application to yeast genes in Section 3.5.

To illustrate this point consider a simple example. Assume that with prob-

ability 1 each sample function is a smooth periodic function with period length

equal to 1, and assume that in each period every curve just possesses one local

maximum and one minimum. Then Assumption 1 is satis�ed with q = 2, and

xi(0) = xi(1) a.s. Obviously any linear combination of the three functions γ1(t) ≡

1, γ2(t) ≡ sin(2πt) and γ3(t) ≡ cos(2πt) possesses the proper functional structure,

and for any xi one can a.s. �nd an unique element yi ∈ L3 := span{γ1, γ2, γ3} with

Q(xi) = Q(yi). By Proposition 1b) there thus exists a registration procedure such

that yi(t) := xi(hi(t)) = ai1 + ai2 sin(2πt) + ai3 cos(2πt) holds a.s. for all t ∈ [0, 1].

This also implies that for such random functions we have K0 ≤ 3.

On the other hand, the example shows that a solution of (3.4) will usually not

be unique, since it is easy to construct alternative, K = 3 dimensional candidate

spaces L∗3 6= L3 such that P(Q(xi) ∈ {Q(γ)|γ ∈ L∗3}) = 1.
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3.2.2 Identi�ability

The above example also shows that there are serious issues with identi�ability.

Warping functions as well as the space LK may not be unique. A trivial non-

identi�ability consists in the fact that for an arbitrary function g ∈ H (3.4) remains

valid if hi and γj are replaced by h∗i = hi ◦ g and γ∗j := γj ◦ g, j = 1, . . . , K. This

e�ect can be eliminated by requiring that warping functions are standardized

such that w̄(u) = E(wi(u)) = 0 for all u ∈ [0, 1]. Note, that this is slightly di�erent

to the usual approach where the warping functions are standardized directly, such

that E(hi(u)) = E(hwi(u)) = u.

If K0 = 1, then it is easily seen that by requiring E(wi(u)) = 0 there exists

a unique registration procedure and a unique γ satisfying (3.4) for K = 1. But

standardizing can only be shown to solve problems of identi�ability in the case

K = K0 = 1. For K0 ≤ K ≥ 2 there may exist di�erent sets of standardized

warping functions h∗i 6= hi and di�erent subspaces L∗K 6= LK satisfying (3.4),

respectively.

Since a complete statistical analysis will require to analyze warping functions

hi in addition to registered functions yi, parsimony suggests to use the solution

where the least amount of warping is necessary. In our representation this means

that the functions wi(u) should be as close as possible to 0. This introduces

an additional requirement for a suitable selection of warping functions for given

dimension K ≥ K0:

• Under all possible registration procedures leading to (3.3) and w̄(u) = 0

choose the solution such that the mean variance E(
∫ 1

0
(wi(u))2du) of wi =

R(xi), is minimal.

If for a given K already the original functions are K-dimensional, i.e. X ⊂ LK
for some K dimensional linear space LK , then of course the solution with minimal
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E(
∫ 1

0
(wi(u))2du) is wi(u) = 0 and thus hi(t) = t for all i (i.e. no warping at all). If

the original (unregistered) sample itself is not low dimensional, then our approach

is to determine the linear subspace where the least amount of warping is necessary.

We want to note, however, that we do not have a formal proof of whether or not

the condition of minimal E(
∫ 1

0
(wi(u))2du) always leads to a unique solution.

By the minimal variance criterion there will exist a trade-o� between dimen-

sionality K and complexity of warping functions. Warping functions as well as

registered functions depend on K, i.e. yi ≡ yK,i, wi ≡ wK,i, and hi ≡ hwK,i . It is

easily seen that E(
∫ 1

0
(wK,i(u))2du)→ 0 as K →∞.

Analyses with K > K0 may be of interest for clustering. The criterion of

minimal variance of wi will then tend to incorporate additional basis functions

which de�ne centers of clusters of phase variation, where phase variation within

clusters is much lower than between clusters. In applications where a K = 1

dimensional model yields a good approximation, results may be comparable to

those to be obtained by the �k mean� method of Sangalli et al. (2010). Roughly

speaking, this approach assumes that each curve belongs to one of k di�erent

clusters, where within each cluster a one dimensional registration is possible. For

the example of Figure 3-1 a detailed comparison between our method and the

k-means approach is given in the online appendix.

3.2.3 The estimation problem for a sample of size n.

In practice, solutions will have to be estimated from an i.i.d. sample of n func-

tions x1, . . . , xn. For given K the aim is then to determine warping functions hwi

such that (3.4) provides a good approximation for all i = 1, . . . , n. The min-

imal variance condition has to be replaced by its empirical analogue Vn(w) :=

1
n

∑n
i=1

∫ 1

0
(wi(u))2du

More precisely, for given K we will consider the following minimization prob-
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lem. Let δij denote Kronecker's delta, and let 〈a, b〉 =
∫ 1

0
a(t)b(t)dt. Furthermore,

for an arbitrary (large) 0 < d <∞ letW1
d[0, 1] := {w ∈ W1

0[0, 1]| supu∈[0,1]|w′(u)| ≤

d}. Determine w = (w1, . . . , wn) ∈ (W1
d[0, 1])n with w̄(u) = 0 such that

Sn(w, K) = min
(γi):〈γi,γj〉=δij

1

n

n∑
i=1

||xi(hwi(t))−
K∑
j

γj(t)〈γj, xi(hwi(t))〉||2 (3.5)

is minimal with respect to all possible w1, . . . , wn ∈ W1
d[0, 1], and such that

Vn(w) ≤ Vn(w∗) for all w∗ ∈ (W1
d[0, 1])n with Sn(w, K) = Sn(w∗, K) (3.6)

If for a selected dimensionK the factor model (3.4) holds exactly, then Sn(w, K) =

0. Otherwise, one has to �nd the solution Sn(w, K) > 0 with the smallest L2-

approximation error. An algorithmic implementation is described in Section 3.4.

Introducing a bound |w′i(u)| ≤ d and requiring wi ∈ W1
d[0, 1] ensures a well-

de�ned minimization problem even if K ≤ K0. Weak second derivatives of the

resulting warping functions are then uniformly bounded, which means that func-

tions hwi are selected from a compact subspace of W2
0[0, 1]. This is important for

any norm-based minimization since W2
0[0, 1] is not a closed space. If K ≤ K0,

an in�mum of (3.5) may be obtained at the the boundary of the closed hull of

W2
0[0, 1]. This boundary contains functions h̃ with jumps and monotone segments

such that Q(x◦ h̃) 6= Q(x). A possible tendency towards extreme warping function

is known as the �pinching problem� (compare Ramsay and Li (1998)).

Figures 3-1 and 3-2 both show samples of random functions where (3.4) holds

with K = 2. For the data of Figure 3-1 a K = 1 dimensional model yields a

reasonable approximation. For suitable wi in the interior of W1
d[0, 1] we obtain a

small, although nonzero, value of Sn(w, 1). The situation is very di�erent for the

data of Figure 3-2. Fitting a K = 1 dimensional model leads to strong pinching,
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which indicates that in this case Sn(w, 1) does not possess a local minimum for w

in the interior of W1
0[0, 1].

3.3 Registration and the analysis of functional data

3.3.1 Registration versus FPCA

For analyzing functional data as displayed in Figure 3-2 most researcher would

probably rely on standard functional principal component analysis (FPCA). But

as illustrated by the �gure an analysis based on representation (3.4) may lead to

substantially di�erent results. In order to see the point �rst recall that FPCA is

based on the Karhunen-Loève decomposition

xi(t) = µ(t) +
∞∑
j=1

bijgj(t). (3.7)

Here, µ = E(xi) and for j = 1, 2, . . . gj is an eigenfunction corresponding to the

j − th largest eigenvalue λj of the covariance operator Γ, de�ned by (Γv)(t) =∫ 1

0
σ(t, s)v(s)ds, where σ(t, s) := E((xi(t) − µ(t))(xi(s) − µ(s)) is the covariance

function. Moreover, the coe�cients bij = 〈xi − µ, gj〉 are uncorrelated for di�erent

j, and V ar(bij) = λj.

FPCA then relies on a �nite dimensional approximation xi(t) ≈ x̃κ,i(t) :=

µ(t) +
∑κ

j=1 bijgj(t) for some suitable κ. But note that the functions g1, g2, . . . in

(3.7) only depend on the covariance σ(t, s). The exact distribution of xi, and in

particular shape features of possible realizations, will however additionally depend

on higher order moments of the scores bij. Many structurally very di�erent random

processes may possess the same functional principal components g1, . . . , gκ.

This e�ect is easily illustrated by an extreme, but analytically simple example.

Consider classes of random functions with mean µ(t) ≡ 0 and σ(t, s) = min{t, s}.
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Then λj = 1
(j−0.5)2π2 , j = 1, 2, . . . , while corresponding orthonormal eigenfunctions

are given by gj(t) = sin((j − 1/2)πt), j = 1, 2, . . . .

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

t

X

0.0 0.2 0.4 0.6 0.8 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

t

X

Figure 3-3: Sample of 5 random curves of the standard Brownian motion X∗ (left) and of the jump
process X (right)

If additionally the scores are independent normal variables, bij ∼ N(0, λj),

then the resulting process x∗i is a standard Brownian motion on [0, 1]. Possible

sample path are displayed in left part of in Figure 3-3. The Brownian motion does

not satisfy Assumption 1, for any q < ∞ we then obtain P(q(xi) > q) > 0. Any

attempt of registration is obviously futile.

Sample paths of a very di�erent process xi are displayed in the right part

of Figure 3-3. This process is de�ned as follows: For two independent random

variables Ti and Ai, where Ti ∼ U(0, 1) and Ai is a binary variable with P(Ai =

1) = P(Ai = −1) = 1
2
, we have xi(t) = 0 for 0 ≤ t < Ti and xi(t) = Ai for Ti ≤

t ≤ 1. This also implies µ(t) = E(xi(t)) = 0 and E (xi(t)xi(s)) = min{t, s}, and in

view of (3.7) the only di�erence to a Brownian motion consists in a complicated,

highly non-normal distribution of scores bij. Quite obviously, even for large κ

FPCA will not provide a reasonable approximation of these function xi. At the

same time phase variation obviously constitutes the main source of variability of

xi. Even though xi does not satisfy our smoothness condition, (3.4) holds for
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K = 1, xi(hi(t)) = aiγ(t), i = 1, . . . , n, where ai ∈ {−1, 1}, γ(t) = 0 for 0 ≤ t < 1
2

and γ(t) = 1 for 1
2
≤ t ≤ 1, while hi(

1
2
) = Ti. Since γ consist of two monotone

segments, only the values hi(0) = 0, hi(
1
2
) = Ti, and hi(1) = 1 are �xed, all other

values of hi(t) are arbitrary. But for any reasonable interpolation scheme, {hi}

will be a simple, one-dimensional family of functions.

In general, a stochastic process xi is Gaussian if and only if the scores are inde-

pendent normal variables, bij ∼ N(0, λj), j = 1, 2, . . . . The following proposition

shows that, unless X is already �nite dimensional, Gaussian random functions

cannot possess bounded shape variation.

Proposition 2 Let x∗i ∈ W2[0, 1], m ≥ 1, be a Gaussian random function with

bounded covariance operator Γ. If Γ has in�nitely many non-zero eigenvalues, then

P(q(x∗i ) > q) > 0 for any q <∞.

The proposition essentially tells us that mean and covariance structure of a random

process does not re�ect shape information. For any process xi with bounded

shape variation and nontrivial covariance operator Γ there will exists a Gaussian

process x∗i with the same mean and the same covariance operator which does not

satisfy Assumption 1. Both processes share structurally identical Karhunen-Loève

decompositions (3.7) which only di�er in higher moments of the distribution of

scores. Here (3.4) o�ers a generally applicable nonlinear decomposition which

provides an alternative to FPCA and explicitly exploits existing shape features.

• For κ > 0 FPCA is based on a variance decomposition which splits xi into

x̃κ,i and a residual function rκ,i = xi − x̃κ,i =
∑∞

j=κ+1 bijgj. Shape features

of xi depend on the interplay between x̃κ,i and rκ,i, and x̃κ,i alone may not

properly re�ect the shape of xi.

• For K ≥ K0 (3.4) decomposes xi into yK,i :=
∑K

j=1 aijγj(t) and a function

wi ≡ wK,i. The functions yK,i possess the same sequences of shape features
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as xi, while remaining variability of xi is explained by nonlinear �phase vari-

ation� quanti�ed by hi ≡ hwK,i . We then have xi = yK,i ◦ h−1
wK,i

instead of

xi = x̃κ,i + rκ,i for FPCA.

FPCA and a decomposition based on (3.4) will only coincide if the random

functions xi themselves are already low dimensional, i.e. if λκ > 0 while λκ+1 = 0

for some κ ≥ 1. Then xi = µ(t) +
∑κ

j=1 bijgj(t). If µ ∈ span{g1, . . . , gκ}, then

(3.4) holds with κ = K, LK = span{g1, . . . , gK} and wi(t) ≡ 0, hi(t) = t. If

µ 6∈ span{g1, . . . , gκ}, then (3.4) holds with K ≤ κ+ 1, LK = span{µ, g1, . . . , gK}

and wi(t) ≡ 0, hi(t) = t.

When using the decomposition based on (3.4) warping functions hwK,i quantify

phase variation. This may re�ect an important (nonlinear) source of variability of

xi, and a serious statistical analysis will also have to extract information contained

in the warping functions. Recall that the wK,i are essentially unconstrained ran-

dom functions, which in turn de�ne a corresponding covariance operator Γw. A

simple way to extract information on variability of wi is thus an FPCA using the

eigenfunctions ϕ1, . . . , ϕL corresponding to the L largest eigenvalues of Γw. The

functions wK,i are then represented by

w̃K,L;i(t) =
L∑
j=1

ϑijϕj(t), (3.8)

where ϑij = 〈wK,i, ϕj〉. Recall that, by de�nition, wK,i has mean zero. The part of

the warping function �explained� by FPCA is then given by hw̃K,L;i
. For selected

K,L the quality of approximating xi by yK,i ◦ h−1
w̃K,L;i

may then be measured by

RK,L =
E
(∫ 1

0
(xi(t)− yK,i(h−1

w̃K,L;i
(t)))2dt

)
E(
∫ 1

0
xi(t)2dt)

. (3.9)

This may also be compared to the results of an FPCA of xi by computing Rκ =
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E(
∫ 1
0 r

2
κ,idt)

E(
∫ 1
0 xi(t)

2dt)
.

3.3.2 Identifying K0 from noisy observations

In practice, the functions xi will often not be directly observed, but one will have

to deal with discrete, noisy observations contaminated with some error. Nonpara-

metric estimates x̂i of xi may then show some random wiggles, and Sn(w, K) may

be nonzero even for K ≥ K0.

In the following we will only consider a simple, standard error model: For T

equidistant design points t1, . . . , tT ∈ [0, 1] there are noisy observations Yil such

that

Yil = xi(tl) + εil, i = 1, . . . , n; l = 1, . . . , T, (3.10)

for i.i.d. zero mean error terms εil with �nite variance σ2 > 0 and E(ε4il) <∞.

Assume that for all i = 1, . . . , n estimates x̂i of xi are determined by local

linear estimators with bandwidth b and a continuous second order kernel function

K, where K has compact support [−1, 1] and V (K) ≡
∫ 1

−1
K(x)2dx <∞.

Registration now has to be based on these estimates, and for anyw = (w1, . . . , wn) ∈

(W1
d[0, 1])n let Ŝn(w, K) be de�ned by (3.5) when replacing xi by x̂i. For given

K ≥ 1 let ŵK = (ŵK,1, . . . , ŵK,n) denote a minimizer of Ŝn(w, K) under the side

condition (3.6). We will assume that the constant d in (3.5) is chosen such that

(3.4) holds for warping functions hi ≡ hwi with supu∈[0,1] |w′i(u)| ≤ d a.s.

For given K ≥ 1 let ĥK,i := hŵK,i , i = 1, . . . , n be the resulting warping func-

tions, and let âK;ij and γ̂K,j denote the corresponding estimates of coe�cients

and basis functions in (3.4). Some basic consistency results are now given by the

following theorem.
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Theorem 1 Under our setup additionally assume that E(supt∈[0,1]Dx
′′
i (t)

2) <∞.

We then obtain as n, T →∞ and b→ 0, Tb log T →∞.

a) There exists some c > 0 such that for all K < K0

P
(
Ŝn(ŵ, K) ≥ c

)
→ 1 for all K < K0, (3.11)

while Ŝn(ŵ, K) = OP (b4 + 1
Tb

) for all K ≥ K0.

b) If b = o(T−1/5), then for any constant A > 1

P
(
Ŝn(ŵ, K) ≤ A

σ2V (K)

Tb

)
→ 1 for all K ≥ K0 (3.12)

c) For all K ≥ K0

∫ 1

0

(xi(ĥK,i(t))−
K∑
j=1

âK;ij γ̂K,j(t))
2dt = OP (b4 +

1

Tb
) (3.13)

It is well-known the error variance σ2 can be estimated consistently by nonpara-

metric procedures. Theorem 1b) implies that the minimal dimension K0 is asymp-

totically identi�able by selecting the smallestK with Ŝn(ŵ, K) ≤ A σ̂2V (K)
Tb

for some

A > 1 and a suitable nonparametric variance estimate σ̂2.

3.4 The algorithm

3.4.1 Implementation for �xed dimension K

When considering the minimization problem de�ned by (3.5) and (3.6) for �xed

K, the values of Vn(w) and Sn(w, K) are in interdependency with each other. The

minimizing solution for Vn(w) is given by wi(u) = 0 for all i while in general this
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does not minimize Sn(w, K). Related multi-objective minimization problems are

important in many scienti�c �elds, for example in economics and engineering, and

are well studied in the literature (Ehrgott, 2000). So called Pareto optimal solu-

tions can be determined using weighted sum scalarization. We follow this concept

by replacing (3.5) and (3.6) by a single minimization problem in dependence of a

parameter 1 > ν > 0: Determine w = (w1, . . . , wn) ∈ L2([0, 1])n such that

S∗P (w, K) := [(1− ν)
Sn(w, K)

S0

+ νVn(w))] (3.14)

is minimal. Dividing Sn(w, K) by S0 := 1
N

∑N
i=1 ||xi(t)||2 eliminates possible scal-

ing e�ects. In view of (3.5) and (3.6) our main interest is to minimize Sn(w, K),

while reduction of phase variance is only secondary. This means that usually ν

has to be very small. In the simulations and applications presented in this paper

ν = 0.001 was used throughout.

The parameter ν serves two purposes. The �rst one is of course to choose the

solution with minimal variance of wi among several possible candidate spaces. In

this context a very small value of ν is clearly appropriate. The second role is reg-

ularization, i.e. excluding boundary solutions. As explained below, the functions

wi are approximated by spline functions. Thus ν > 0 implicitly imposes bounds

for the values |wi| and |w′i| of a possible solution of (3.14), since very large values

can only be achieved by very large spline coe�cients which in turn lead to large

Vn(w). In this context ν = 0.001 still allows for fairly extreme warping functions,

as can been seen for the K = 1 dimensional �t in Figure 2. Increasing ν would

lead to smoother warping functions, but not to a better registration since a K = 1

dimensional model simply does not provide any reasonable approximation of these

data. From this point of view a small value of ν might also be advantageous, since

an inappropriate choice of K will then be highly visible. Our recommended choice
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ν = 0.001 generally delivered good results for further analysis. An automatic

selection of ν > 0 is an open task for further research.

We rely on nonlinear programming algorithms to determine a solution of (3.14)

over a class of smooth warping functions. These algorithms are designed to min-

imize an objective function over a �nite set of variables, but not over functions.

To overcome this issue it is reasonable to require that for some m > 0, wi(u)

is su�cient smooth such that wi(u) ∈ S4,m+4 where S4,m+4 is the B-spline space

of order 4 with m + 4 equidistant knots. To fasten up the computation we use

a representation with m orthogonal splines Bj(u), j = 1, . . . ,m based on cubic

B-splines as described by Mason et al. (1993) which are additional normalized

such that
∫ 1

0
Bj(u)2du = 1. This leads to a representation based on coe�cents

ci := (ci1, . . . , cim) given by wi(u) =
∑m

1 Bj(u)cij. A warping function is therewith

describable by

h(t, ci) ≡ hwi(t) =

∫ t

0

exp(
m∑
j=1

Bj(u)cij)du/

∫ 1

0

exp(
m∑
j=1

Bj(u)cij)du. (3.15)

The choice of m determines the smoothness of the w(u) functions. In the sim-

ulations choosing m = 7 leads to warping functions su�cient close to the true

functions. From our experience even if the algorithm is used to process real data

the gain by using a bigger m compared to the additional computation time can

mostly be considered as negligible.

Since by construction B1, . . . , Bm are orthonormal we get

Vn(c) ≡ Vn(w) =
1

mn

∑
i,j

(c2
ij). (3.16)

To ensure that w̄(u) = 0 and
∫ 1

0
wi(u)du = 0 we impose the condition that c :=

(cij)i=1,...,n;j=1,...,m is such that 1
n

∑n
i=1 cij = 0, ∀j = 1, . . . ,m and 1

m

∑m
j=1 cij

∫ 1

0
Bj(u)du =

79



0, ∀i = 1, . . . , n.

Recall that Sn(c, K) ≡ Sn(w, K) =
∑∞

i=K+1 λi(c) with λ(c) being ordered

eigenvalues of the second-moment operator M(x) = 1
n

∑n
i=1〈xi(h(ci)), x〉xi(h(ci)).

To estimate these eigenvalues we use the duality relation from Härdle and Simar

(2012) where eigenvalues can be computed very fast if n is small. The duality

relation states that the eigenvalues λ(c) corresponds to the eigenvalues of the

n× n matrix D with elements

Dij(c) =
1

n

∫ 1

0

xi(h(t, ci))xj(h(t, cj))dt, i, j = 1, . . . , n. (3.17)

In our algorithm the integral is approximated by Riemann sums. If only discrete

observations are available the curves are interpolated using linear interpolation.

The �nal task is then to determine the vector c of size nm satisfying the above

conditions which minimizes

(1− ν)

∑∞
l=K+1 λl(c)

S0

+ νVn(c). (3.18)

This minimization problem is solved by using the �newuoa� algorithm developed

by Powell (2006) and implented in �R� by Bates et al. (2014) which is able to

handle a large amount of variables in endurable time. The algorithm is iterative

and requires initial values for cij. Here, our standard choice is to start with cij = 0

for all i, j which corresponds to hwi(t) = t. If a complicated warping problem is

given as is the case with simulation 3.6.3, it is useful to use di�erent starting values

as described in Section 3.4.2.

The optimal warping functions hi(t) = h(ci, t) are computed with (3.15) using

the �nal values of c minimizing (3.18). To get the optimal template decomposi-

tion we again rely to the duality relation. Let θj, j = 1, . . . , n be the ordered
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eigenvectors of D(c) then

γj(t) =
1√

nλj(c)

n∑
i=1

θijxi(h(ci, t)) (3.19)

aij = θij

√
nλj(c). (3.20)

If only discrete observations are available, again linear interpolation of xi is used

to get continuous γj(t) if necessary.

3.4.2 Determining a suitable dimension K

In practice, the minimal dimension K0 of model (3.4) is usually unknown. But it

follows from Proposition 1 and the discussion of Section 3.2 that usually the func-

tional structure of the sample curves provide some information about a maximal

value Kmax of K. Additionally note that in the above algorithm the computa-

tional complexity of the nonlinear minimization problem (3.18) only depends on

the number of warping coe�cients cij but not on the value of K. We thus propose

to proceed as follows:

1) Determine a maximal dimension Kmax ≤ p.

2) ForK = Kmax, Kmax−1, Kmax−2, . . . , 1 successively calculateK-dimensional

approximations of (3.4) by solving (3.18) for the given K. If K = Kmax

choose cij = 0 for all i, j as initial values for the nonlinear minimization

algorithm, while for K < Kmax use the coe�cients of the K + 1-dimensional

solution as initial values for the algorithm.

For example, to handle the growth data in Section 3.5.1 Kmax = 4 was used. We

want to emphasize that recursive updating of starting values for cij in step 2) is

of particular importance. Iterative, nonlinear minimization algorithms sometimes
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tend to get stuck in local minima if initial values are too far from actual solutions.

Complexity of warping functions decreases as K increases, and hence cij ≡ 0, i.e.

hwi(t) = t, may be a good starting point for K = Kmax. This will not necessarily

be true for K � Kmax, but then the warping functions obtained from a K + 1-

dimensional approximation may serve as a reasonable �rst guess. Therefore even

in the case of a pre-speci�ed, �xed dimension K accuracy of numerical results may

improve when following step 2) until the desired dimension K is reached.

Based on steps 1) and 2) one may then determine a minimal dimension by

determining the smallest K such that Sn(w, K) is su�ciently close to zero. In

practice data will usually consist of discrete observations contaminated with some

type of error, and Sn(w, K) > 0 even if the true functions xi satisfy (3.4). When

assuming the simple error model of Section 3.3.2, we may estimate K0 by choosing

the smallest dimension K such that Ŝn(ŵ, K) ≤ A σ̂2V (K)
Tb

for some A > 1. For

more complicated error models the criterion may be modi�ed accordingly.

We want to emphasize, however, that even for K < K0 a K-dimensional ap-

proximation may be useful for further analysis if Sn(ŵ, K) attains small, although

nonzero value. This is, for example, the case for the data of Figure 3-1, where

K0 = 2 but the mean of the registered functions for the K = 1 dimensional

�t provides a reasonable �structural mean� of the sample. As already mentioned

above, a completely inappropriate choice of K will often be highly visible (see

Figure 3-2).

3.5 Applications

3.5.1 Berkley Growth Data

The well-known Berkeley growth data (Tuddenham and Snyder (1954)) contain

height measurements for 93 children (38 boys and 54 girls), with 31 measurements
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taken over a time span of 18 years. In this section the growth acceleration functions

(second derivatives) are analyzed. The curves are estimated non parametrically

using a monotone smoothing procedure as described in Ramsay and Silverman

(2005). Growth over the �rst years of life can be considered as unstructured, thus

the �rst two and a half years are exclude after smoothing for further analyze.

Human growth exhibits considerable phase variation, and in a number of previ-

ous studies di�erent registration procedures have been applied to analyze growth

velocity functions (see, for example, Sangalli et al. (2010) or Srivastava et al.

(2011)). We use the Berkeley growth data in order to show exemplary how to

perform statistics using our method. In particular we will present a method for

classifying growth curves with respect to sex. From biology it is known that growth

features of boys and girls di�er in timing and amplitude. These preconditions are

comparable to the data of Figure 3-1 where two groups with slightly di�erent

structure were simulated.

For comparison a registration with K = 1 and K = 2 is carried out. In Figure

3-4 it can be observed that by going from K = 2 to K = 1 the information about

sex of a child seems to move from the amplitude to the warping space. When

choosing K = 1, the pubertal growth spurts of boys and girls are matched at one

single peak, while with K = 2 the basis is automatically chosen such that the

main peaks of boys and girls are separated. The opposite is true for the warping

functions. With K = 2 the resulting warping curves look similar for most boys

and girls, while for K = 1 warping functions of girls are usually below those of the

boys.

The following statistical analysis relies on the concepts developed at the end of

Section 3.3.1. The idea is to determine parsimonious models with high explanatory

power by using few functional components which are either taken from amplitude

functions yi or warping functions wi. We want to note that Poss and Wagner
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(2014) where able to improve their analysis of juggling curves by including an

FPCA of w in their model.

To classifying growth curves we rely on a logit approach. By Figure 3-4 we

deduce that there is a interdependency between the representation of information

in the warping and the amplitude space. To take this into account a logit model

is �tted in dependence of individual scores obtained from the decompositions of

the registered curves yi and warping functions wi.
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Figure 3-4: The upper left �gures shows smoothed second derivative of the observed unregistered
curves with girls colored red and boys black. The upper middle and upper right �gure shows a
registration using K = 2 and K = 1 accordingly while the �gures beneath the corresponding warping
functions. The lower left �gure exhibits the �st two components γ̂K,1, γ̂K,2 of an decomposition of
the registered curves with K = 2. The main puberty growth peak is clearly visible.

More precisely, we apply our method with K = 1 and K = 2 to the second

derivative xi(t) of the growth curves to get estimators ŵi,K and ŷi,K . For di�erent

values of K̃ and L, we then proceed as follows in order to �t a logit model as

introduced by Berkson (1944):

• Code outcome binary, Zi = 1 (girls) Zi = 0 (boys)

• Decomposition of ŷi,K(t) ≈ ŷK,K̃;i(t) =
∑K̃

j=1 âK,ij γ̂K,j(t) and ŵi,K(u) ≈

ŵK,L;i(t) =
∑L

j=1 ϑ̂K,ijϕ̂K,j(u)
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• Fit the logit model

P (Zi = 1, K, L, K̃) =
exp(fK,L,K̃(i))

1 + exp(fK,L,K̃(i))
, (3.21)

fK,L,K̃(i) = θ0 +
K̃∑
j=1

âK,ijθj +
K̃+L∑
j=K̃+1

ϑ̂K,i(j−K̃)θj (3.22)

In the presence of noisy observations or if K < K0 a decomposition based on

(3.4) with ŷK,K̃;i(t) or an approximation of the registered curves using FPCA with

ŷi,K(t) ≈ ŷK,κ,i(t) = µ̂(t) +
∑κ

j=1 b̂ij ĝj(t) can result in di�erent outcomes. For

comparison we therefore also include models based on FPCA of ŷi,K(t). Scores of

the principal components are then used instead of âK,ij.

To evaluate the performance of the di�erent approaches we rely on cross-

validated prediction errors. Separately for each child i, we determine P−i(Zi =

1, K, L, K̃) by �tting the respective model to the remaining observations. Let

Ẑi = 1 if and only if P−i(Zi = 1, K, L, K̃) ≥ 1/2, then the percentage of correct

assignments is given by CORK,L,K̃ = 1
n

∑n
i=1 I(Zi = Ẑi) while the mean squared

prediction error MSPEK,L,K̃ = 1
n

∑n
i=1(Zi − P−i(Zi = 1, K, L, K̃))2.

In order to quantify the quality in approximating the original functions xi for

di�erent choices of L and K̃ = κ we rely (3.9), but cross-validation is addition-

ally applied to minimize the in�uence of random �uctuations. We therefore com-

pute RK,L,K̃ := (
∑n

i=1

∫
h′wK,L;i

(t)(xi(hwK,L;i
(t))−yK,K̃;−i(t))

2dt)/(
∑n

i=1

∫
xi(t)

2dt).

Here, yK,K̃;−i(t) is based on the basis functions (3.4) when leaving the i-th curve

out, while yK,κ;−i(t) is based on mean and principal components when leaving the

i-th curve out.

Table 3.1 shows that already a model based on the �rst component of the

unregistered curves provide a fairly accurate classi�cation, however a better clas-

si�cation is possible when registering to K = 2. The ability of the unregistered
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Table 3.1: Model comparison. L = 0 is de�ned such that the sum in (3.22) vanishes. It is visible by
the bold expressions that the K = 2 model is better suited to identify the groups using one or two
variables, while the K = 1 model gives the best low dimensional representation using two or three
components. For comparison a standard FPCA with κ = K̃ for registered and unregistered curves is
included.

FPCA of registered curves with κ = K̃ Decomposition based on (3.4)
No registration K = 1 K = 2 K = 1 K = 2

K̃ L MSPE COR R MSPE COR R MSPE COR R MSPE COR R MSPE COR R
3 0 0.111 0.828 0.205 0.123 0.817 0.099 0.828 0.131 0.806 0.091 0.849
2 1 0.086 0.871 0.191 0.095 0.882 0.201 0.087 0.871 0.206 0.085 0.892 0.250
1 2 0.141 0.796 0.267 0.092 0.903 0.260 0.090 0.860 0.258 0.082 0.892 0.496
2 0 0.106 0.839 0.260 0.120 0.849 0.105 0.860 0.127 0.839 0.101 0.839
1 1 0.136 0.806 0.273 0.089 0.903 0.270 0.086 0.882 0.257 0.080 0.903 0.506
1 0 0.109 0.839 0.444 0.254 0.581 0.101 0.860 0.152 0.806 0.099 0.849

model to identify the groups does not improve using more components. The logit

model applied to the FPCA of the unregistered curves is always inferior to both

registered models based on (3.4) using L > 0, even if fewer variables are considered.

When considering approximation of xi, with rising κ the explanatory power

of the unregistered FPCA quite obviously improves. Approximation qualities of

unregistered FPCA with κ = 2 and registration with K = K̃ = 1, L = 1 are

almost identical, while using 3 components an FPCA of the registered curves with

K̃ = 2, L = 1 slightly outperforms the unregistered FPCA.

3.5.2 Yeast Genes

A yeast cell contains approximately 6000 genes. To save energy depending on the

actual task only a few genes are active. Activations are not directly observable,

but one can measure RNA or protein related to a speci�c gene over time. Di�erent

biological methods are then used to identify the activity of a certain gene.

The data used in this section comes from the α factor�based synchronization

experiment conducted by Spellman et al. (1998), who measured the gene expression

of all 6178 genes of a yeast cell during two cell cycles. The experiment lasted 2 hours

where time series of cDNA micro-arrays were gathered over 18 equally space time

points. Two cycles were observed because this allows to identify the active genes
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due to the presence of periodicity. Curves belonging to active genes are suspected

to have one peak and one valley within in each period. We follow the approach of

Zhao et al. (2004) by discarding all times series with missing observations, which

leaves 4489 genes.

Using techniques based on Fourier transforms, Spellman et al. (1998) identi�es

612 out of these 4489 genes as being periodic and thus active during the cell divi-

sion. Each of the selected genes is assigned to one of �ve so called "`phase groups"'

termed G1, S,G2,M , and M/G1, which possess important substantial interpreta-

tion (in the provided data �le the actual groups are named slightly di�erently and

given by G1,M/G1, G2/M, S/G2, S). Assignment is based on data analytic tools

together with some biological information.

In the following we will concentrate on two important questions: identi�cation

of active genes due to periodicity, and classi�cation into phase groups. As already

indicated by Zhao et al. (2004), the identi�cation provided by Spellman et al.

(1998) is not completely convincing, since some of the 612 genes are clearly not

periodic. Analysis is complicated by the fact that such micro-array data contains

a large amount of noise.

Using functional data analysis a statistical approach of identifying periodic

genes is given by Zhao et al. (2004). In a �rst step observations are rescaled and

considered as functions on the interval [0, 4π]. A Fourier transform is done, keeping

only even frequencies, and FPCA with κ = 2 is used for dimension reduction.

Principal components look much like sin and cos functions. This motivates the

�nal step of the analysis which consists in determining the parameters minimizing

the L2- distances between xi(t) and βi1sin(t)+βi2cos(t). The resulting coe�cients

are then intended to measure the periodicity. The idea is, that if ||βi|| is close to

zero there is no periodicity present. To identify periodic curves due to the size of

the coe�cients without applying any warping bears the risk to select the wrong
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curves since high coe�cients can have several origins. Thus, in the presented

results it is visible that still some non-periodic curves are chosen by the method.

Based on a pre-selected subset of 90 genes with clearly periodic trajectories,

Leng and Müller (2006a) and Leng and Müller (2006b) study classi�cation of

active genes into the �ve groups mentioned above. Division into phase groups

traditionally aims to re�ect di�erences in the time ordering of the dynamics of

gene coe�cients with the same genetic pathway. Leng and Müller (2006b) show

that time ordering may be quanti�ed by global time shifts. These time shifts

are estimated by minimizing suitably standardized pairwise L2 distances between

shifted curves.

Our approach now consists in a registration-based structural analysis of the

data. Trajectories may be represented by functions on [0, 4π]. Existing work

assumes that active genes correspond to 2π-periodic functions centered around 0,

possessing one peak and one valley within each period. More precisely, in the

notation of Section 3.2.1 one may assume that (up to error) shape features of such

functions satisfy Q(xi) ∈ {Q(α1 sin +α2 cos)| α1, α2 ∈ R}. On the other hand,

there is no substantial reason to expect that trajectories can be exactly described

via sin and cos functions. But Proposition 1b) then tells us that there then exists

warping functions hi such that

xi(hi(t)) = ai1sin(t) + ai2cos(t). (3.23)

for some real-valued coe�cients ai1 and ai2. Any such function is 2π-periodic if

and only if additionally hi(t) + 2π = hi(t+ 2π) for all t ∈ [0, 2π].

The general framework of registering to low-dimensional linear subspace dis-

cussed in this paper can be readily adapted to incorporate the structural infor-
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mation given by (3.23). For samples of periodic functions one may �t a K =

2 dimensional model with pre-speci�ed basis functions γ1(t) =
√

2 sin(t) and

γ2(t) =
√

2 cos(t). But for mixed samples with periodic and aperiodic function,

additional basis functions accounting for the structure of aperiodic genes have to be

determined nonparametrically. Some preliminary analysis showed that adding two

additional function γ3, γ4 seems to be su�cient to capture all important e�ects.

This translates into �tting a K = 4 dimensional model with two pre-speci�ed basis

functions.

The minimization is then similar to (3.14) and given by an alternation of (3.5)

with

Sn(w, 4) = min
(γi):〈γi,γj〉=δij

1

n

n∑
i=1

||xi(hwi(t))−
4∑
j=1

γj(t)〈γj, xi(hwi(t))〉||2 (3.24)

s.t γ1(t) =
√

2 sin(t), γ2(t) =
√

2 cos(t). (3.25)

For periodic functions the warping functions have to re�ect the periodicity of the

curves as well, in particular hwi(t)−t ≈ hwi(t+2π)−(t+2π), t ∈ (0, 2π). Therefore

also the minimum variance criteria is modi�ed with

Vn(w) = n−1

n∑
i=1

∫ 2π

0

(hwi(t)− hwi(t+ 2π) + 2π)2 dt. (3.26)

Each exactly 2π-periodic function with the appropriate shape features should

go along with ai3 = ai4 = 0 as well as with a warping function possessing the above

property. Distance from 2π-periodicity may then be measured by the following

�periodicity index�:

peri =

∑4
j=3 a

2
ij∑2

j=1 a
2
ij

+ ρ

∫ 2π

0

(hi(t)− hi(t+ 2π) + 2π)2 dt. (3.27)
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We shorten the notation for the optimal solution w∗ with aij := 〈γ∗j , xi(hw∗i (t))〉

and hi = hw∗i . ρ = median(
∑4
j=3 a

2
ij∑2

j=1 a
2
ij

) is used to scale between periodicity re�ected

by the warping and the amplitude space. If peri ≈ 0 then a curve is approximately

periodic.

In a �rst step the described method is applied to the 612 curves selected as

�periodic� by Spellman et al. (1998). Note than only for these genes the data also

contain information about the corresponding group a�liation. Observations are

slightly smoothed using a local polynomial smoother and a direct plug-in method

to choose the bandwidth. Resulting model �ts are displayed in Figure 3-5, while

in Figure 3-6 we additionally display each curve in dependence of its a�liation

to one of the phase groups. A number of individual genes lead to high values of

peri, indicating aperiodic structures. In the plots we thus introduce a grouping

according to the individual values of the periodicity index. The upper quartile Q3

of the empirical distribution of peri is used as threshold. When considering the

lower part of Figure 3-6, it is clearly seen that many function with peri > Q3 are

non-periodic.
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Figure 3-5: The two left pictures are the results of the registration to span(γ1, . . . , γ4) for the
subgroup of 612 genes selected by Spellman et al. (1998). The left �gure shows the curves with
peri > Q3 and alongside with peri ≤ Q3. The two right �gures are the corresponding warping
functions.
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Figure 3-6: Registered functions from Figure 3-5 in dependence of phase groups; from left to right:
G2/M → S/G2 → S → G1 → M/G1. The upper �gures show the curves with peri ≤ Q3, the
lower with peri > Q3.

Following the ideas of Leng and Müller (2006b), we can now study the question

whether group a�liation is connected to global shifts of an underlying functional

structure. In the context of our analysis shifts may be due to amplitude variation

as well as warping. Note that that

ai1sin(t) + ai2cos(t) = βisin(t+ φi), (3.28)

where φi :=

arccos(
ai2
βi

) for ai1 ≥ 0

2π − arccos(ai2
βi

) for ai1 < 0

, βi :=
√
a2
i1 + a2

i2. (3.29)

The coe�cients ai1 and ai2 in (3.23) therefore provide information about a global

shift φi of the basic sinusoidal structure. Although in the given context the

role of warping functions mainly consists in quantifying functional relationships

which cannot be exactly modelled by trigonometric functions, warping may ob-

viously results in shifts of corresponding shape features. To approximate addi-

tional �global� shifts, linear approximations of the estimated warping functions

with d∗i = argmind||hi(t) − t − d|| are used. This then leads to individual phase

coe�cients ŝi := (φi+d
∗
i )mod(2π), which are determined for each of the 459 curves
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Table 3.2: Five-number summary plus mean of the of the angles given by si grouped by the �Phase
Group�. Note that since we have to deal with angles we use the circular counterpart where one
rotation is 360 ◦ see for example Jammalamadaka et al. (2001).

G1 M/G1 G2/M S/G2 S
Min. 102.670 281.670 339.130 64.690 89.780

1st Qu. 257.770 312.030 52.480 141.860 184.260
Median 279.550 339.360 105.370 156.020 194.750
Mean 275.820 339.420 95.800 157.390 193.370
3rd Qu. 297.140 359.930 129.370 180.540 206.150
Max. 347.380 116.370 220.420 246.830 236.860

(out of the 612 selected by Spellman et al. (1998)) satisfying peri ≤ Q3. In Ta-

ble 3.2 it is clearly seen that the resulting phase coe�cients (expressed in angles)

yield very pronounced, clearly separated clusters for the di�erent cell cycle phases

G2/M → S/G2→ S → G1→M/G1.

In a �nal step of our analysis the gained information is used to search the

whole set of 4489 curves for periodic curves that may be overlooked before, and

to assign them automatically to a phase group. All functions are registered to

the pre-speci�ed space given by span(γ∗1 , . . . , γ
∗
4) obtained in �rst step, and per

is then computed for each curve. To determine the group a�liation a prediction

using multinomial logistic regression is carried out. The procedure is similar to

(3.22) but allows for more than two groups. The logistic model is calibrated

using the �rst two scores together with d∗i and the group a�liation of the prior

459 selected curves. The results for the 612 curves with the smallest peri and

a2
i1 + a2

i2 > median(a2
1 + a2

2) are displayed in Figure 3-7.
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Figure 3-7: The Figure shows the 612 curves out of the complete sample of 4489 genes with the
smallest per score. Group a�liations are obtained with an automatic clustering approach using a
multinomial logistic regression. The upper �gures show the unregistered functions, while the lower
provide the corresponding registered curves.

In summary, we believe that the structural analysis presented in this section

may constitute a promising path to achieve the goal of correctly identifying active

genes. But any substantial progress will require additional biological input. In

particular, any notion of �signi�cance� will have to be based on some type of

model for the random error contaminating micro-array data.

3.5.3 Aneurisk Data

Our method is used to analyze the AneuRisk65 data set Aneurisk-Team (2012).

This data set contains the centerline of either the left or the right Internal Carotid

Artery (ICA) of 65 Patients depending where an aneurism was suspected. One aim

of the anuerisk project is to explore the role of vessel morphology to determine

the pathogenesis of cerebral aneurysms. To detect the di�erences in the vessel

morphology a registration is needed, because lengths and also shapes of blood

vessels di�er from person to person. Studies in this direction where published, for

example, by Sangalli et al. (2009) using a K = 1 method, and by Sangalli et al.

(2010) using the k mean approach with k = 2.
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Our main goal is to link the position of the aneurysm to the vascular geom-

etry of the ICA. For our analysis we dropped the patients where no aneurism

was found, leaving 58 patients. The di�erent length of the ICAs are normalized

by scaling the data to t = (0, 1). The data can be interpreted as a function

xi : R → R3, i = 1 . . . , 58, where three dimensions x(t) = [xx(t), xy(t), xz(t)] are

necessary to describe the spatial coordinates of an ICA. To model a low dimen-

sional representation of the data we refer to chapter 8.5 of Ramsay and Silverman

(2005) where a multivariate FPCA is described. It is straightforward to adopt the

procedure to our needs. For three dimensional functions ξ : R→ R3 we de�ne an

inner product by 〈ξ1, ξ2〉 =
∫ 1

0

∑
m=(x,y,z)

ξ1,m(u)ξ2,m(u)du.

Analogous to (3.1) a K dimensional representation of the registered curves are

given by

xi(hi(t)) = yi(t) ≈
K∑
j=1

[γj,x(t), γj,y(t), γj,z(t)]aij

where aij = 〈yi, γj〉. For this application (3.5) was adjusted to work with three

spatial coordinates using the corresponding squared norm ||ξ||2 =
∑

m=(x,y,z)

||ξm||2 and

S(w, K) = min
(γi):〈γi,γj〉=δij

N∑
i=1

||xi(hwi(t))−
K∑
j=1

γj(t)〈γj, xi(hwi)〉||2

In most approaches the data is additionally a priori adjusted for observing left or

right ICA by �ipping the sign of the x-coordinate. By introducing an additional

dimension our method is capable to model such di�erences automatically, therefore

there is no need to �ip the sign manually. In addition one advantage of the above

described method is that it does not only captures correlations in a single spacial

direction, but also between the spacial coordinates. By using the data as raw as

possible, there is a chance that other structural di�erence of left and right ICA
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which does not only e�ect a simple coordinate �ip in the x-direction but also other

structural features possibly in other spacial directions becomes visible.
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Figure 3-8: The left �gure shows S(w,K) for di�erent K, the right picture provides the

corresponding values of V (w) (≡ V (w,K))

The Aneurisk data is slightly smoothed, and there does not seem to exist

a straightforward statistical model for the structure of the measurement error.

Therefore the strategy presented in Remark 3.4.2 does not apply here, instead

we use the graphical method proposed in Section 3.4.2 in order to determine a

dimension K which compresses the information in as few components as possible.

Looking at Figure 3-8 we argue that K = 3 is the best choice here. The gain in

S(w, K) by using more than K = 3 dimensions is negligible, while the complexity

of the warping does not decrease signi�cantly. On the other hand using less than

K = 3 dimensions comes at the cost of more complex warping functions. The

outcome of the registration with K = 3 is shown in Figure 3-9.
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H0 FU,1 = FL,1 FU,2 = FL,2 FU,3 = FL,3
p-value ) 0.2778 0.03562 0.0111

H0 Fr,1 = Fl,1 Fl,2 = Fr,2 Fl,3 = Fr,3
p-value 9.743e−08 6.584e−13 0.6153

Table 3.3: FU,j := F (aij |G1,i = U), FL,j := F (aij |G1,i = L), Fr,j := F (aij |G2,i = r),
Fl,j := F (aij |G2,i = l) denote the conditional probability distribution functions given di�erent

values of the binary variables G1 and G2.
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Figure 3-9: Upper pictures unregistered, Lower pictures registration to K = 3

For further analysis two groupings are introduced, G1 = {U,L} to describe if

the aneurism is observed in the upper (U) or in the lower (L) ICA, and G2 = {r, l}

which is used to code if the left (l) or right (r) ICA is observed. To check if

components γj, j = 1, . . . 3 are related to speci�c groups, we look for signi�cant

di�erences in the distributions of the respective scores aij, j = 1, . . . , k. The results

of a corresponding two-sided Kolmogorov-Smirnov tests are presented in Table 3.3.

It turns out that using a 5% signi�cance level we can state that the 1st compo-
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nent is connected to orientation of the ICA, while the 3rd component is related to

the position of the aneurism. The 2nd component is linked to both characteristics.
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Figure 3-10: Scores ai2 are plotted against ai3 and
clustered depending on the location. The color codes if
upper (red) or lower (black) ICA was observed.

Cluster Pj(U) Risk Group
C1 0.3333 Low
C2 0.5217 Medium
C3 0.8823 High

Figure 3-11: Risk classi�cation de-
pending on group a�liation Pj(U) :=
P (G1i = U |C(xi) = Cj).

The �upper aneurysm� is the most dangerous one, it is of big interest for clinical

reasons to identify the aneurysm position automatically. In Figure 3-10 the scores

ai2 of the second component are plotted against the scores ai3 of the third one.

We observe that these scores are clustered into 3 groups C = {C1, C2, C3}. These

clusters are related to the position of the aneurism and can be used to determine

risk groups depending on the cluster a�liation as shown in Table 3-11.

3.6 Simulations

In 3.6.1 the construction of Figure 3-1 is discussed in detail and clustering capa-

bility is compared with Sangalli et al. (2010). 3.6.2 gives a detailed description of

97



Figure 3-2 and a Monte Carlo simulation to inspect small sample behavior under

the presence of noisy observations is carried out. In 3.6.3 our method is compared

to the FR-Metric approach by Srivastava et al. (2011) where 3.6.3 is a replicate

of �Simulated Data 4� while 3.6.3 is very similar to �Simulated Data 3�. Besides

3.6.3 illustrates the behavior of V (w) for di�erent choices of K.

3.6.1 Detailed description of Figure 3-1 and comparison with

the �k-mean� approach

The introductory example of Figure 3-1 consists of a sample of n = 48 random

functions xi(t), i = 1, . . . , n, generated by the following process: For independent

random variables z1i ∼ N(0, 0.2) , z2i ∼ N(0, 0.1) and z3i ∼ N(0, 0.3). Let

t ∈ [0, 1], we de�ne

yi(t) =

(1.4 + z1i)sin(2πhi(t)) + (1 + z2i)sin(2πhi(t)
2) for i = 1, . . . , 24

(2.1 + z1i)sin(2πhi(t)) + (−1 + z2i)sin(2πhi(t)
2) for i = 25, . . . , 48

discretized at 128 equidistant points and xi = yi ◦ h−1
i . The warping functions are

given by

hi(t) =
exp(tz3i)− 1

exp(z3i)− 1
.

The data generating process implies that (3.1) holds with K = 2. The right

upper part of Figure 3-12 shows the �true� data generating functions yi. Using

ν = 0.0001 and 12 basis functions to approximate w(u), with K = 2 the algorithm

described in Section 3.4 recovers a two-dimensional linear function space with

S(w, 2)/S0 = 4.10 · 10−6. This error is mainly due to linear interpolation of the

curves as well as to some bias introduced by approximating the warping functions

using a �nite dimensional spline basis. Registered functions determined by the
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algorithm are shown in the left, middle part of Figure 3-12. The two clusters

introduced by the di�erences in the de�nition of yi for i ≤ 24 and i > 24, are

clearly visible in the scores (ai1, ai2) of the �tted model, as shown in the lower left

part of Figure 3-12. Indeed, for all functions belonging to the �rst group (i ≤ 24)

we have ai2 < 0, while ai2 > 0 for all functions belonging to the second group

(i > 24).

Not shown here, using our algorithm with K = 1 leads to results very similar

to the Fisher-Rao metric registration shown in Figure 3-1. Unlike a registration

with K = 2 the corresponding registered curves can no longer be described by two

components and S(w, 1)/S0 = 4.48 · 10−4.
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Figure 3-12: The left middle part show the registered curves determined by our algorithm;

the lower left part shows the scores ai1 and ai2 of the �tted model in dependence of indices

i = 1, . . . , 48 of the 48 functions. The right middle part show the registered curves calculated

by by the k-means algorithm using the R-package fdakma; the lower part part show the cluster

a�liations determined by k-means in dependence of indices i = 1, . . . , 48 of the 48 functions.

As already discussed in Section 3.2.2, our method may be reasonably for clus-

tering purposes and to be compared to the k-means approach of Sangalli et al.

(2010) (with k = 2). A Monte Carlo Simulation with 100 repetitions results in

an average correct classi�cation rate of 99.60% compared to 93.15% using the �k-

mean� approach with the �d0.pearson� option as similarity measure. We want to

note, however, that only an approximate solution of (3.1) can be obtained by the
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�k-mean� approach. One reason is that the data generating process, implies that

even within each cluster two components are necessary to capture amplitude vari-

ation. Another important point is that the �k-mean� algorithm as implemented

in the R-package �fdakma� by Parodi et al. (2015) only relies on a very simple

shift-scale model for warping functions. Consequently, resulting registered curves

are no longer de�ned over identical domains. This e�ect is clearly seen in the

right, middle part of Figure 3-12 for a given sample. The lower left part of Figure

3-12 shows that k-means is able to cluster the curves quite accurately, only six

misclassi�cations are to be observed.

3.6.2 Detailed description of Figure 3-2 and Monte Carlo

simulation

To derive the curves in Figure 3-2 a two dimensional factor model using the second

and fourth Legendre-polynomial is simulated, i.e. we generated i = 1, . . . , 15 curves

over the interval t ∈ [−1, 1] discretized at 101 equidistant points by:

xi(t) = ai1
1

2
(3hi(t)

2 − 1) + ai2
1

8
(35hi(t)

3 − 30hi(t)
2 + 3),

the warping functions hi are given by

hi(t) = 2
exp(zi(t+ 1)/2)− 1

exp(zi)− 1
− 1, zi 6= 0 and t otherwise

with ai1, ai2, zi are iid. N(0, 1).

Here, the generated true curves do not share the same peak locations or even

the same amount of peaks. Hence, any registration procedure which does not

register the given sample to a two dimensional space, but instead tries to register

to K = 1, will necessary fail to give an exact low dimensional representation.
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Using our algorithm with K = 2 we obtain the registration shown in the lower

right picture of Figure 3-2 with S(w, K)/S0 = 4.06 · 10−5. To get the extreme

warping shown in the the upper right picture using K = 1 it is necessary to let the

�newoua� algorithm iterate several thousand times since converging to an extreme

warping is harder to achieve for the algorithm.

Further a simulation with 1000 repetitions using discretizations with T = 101

and T = 201 points is carried out. The performance of the registration with an

additional error is evaluated due to x̃i(tj) = xi(tj) + εij, εij ∼ N(0, 0.1), i =

1, . . . 15, j = 1, . . . T . As described in Section 3.3.2 the noisy curves are pre-

smoothed using a local polynomial smoother using the �locpoly� function from

the R package �KernSmooth�. To determine the bandwidth we use a direct plug-in

method implemented with �dpill�. The smoothed curves are labeled as x̂i. To evalu-

ate the performance we use S̃(K, f) := n−1
∑n

i=1

∫ 1

0
(fi(ĥK,i(t))−

∑K
j=1 âK;ij γ̂K,j(t))

2dt

where ĥK,i, γ̂K,j minimize (3.14) in dependence of f and K. Using our criteria we

suggest a critical value A σ̂2V (K)
Tb

≈ 0.0045 for T = 101 and A σ̂2V (K)
Tb

≈ 0.0023 for

T = 201 with A = 1.1. This leads to a choice of K0 = 2 which corresponds to the

true value.

Table 3.4: It can be veri�ed that with increasing T , S̃(K, f) decreases for reliable choices for K
given by K = 2 or K = 3 while S̃(K = 1, f) ≈ 0.1 independent of T or the presence of noise.
While for K = 2 or K = 3 the variance and inter quartile range is very small which means that the
algorithm almost always works very well, for K = 1 the results are more �uctuating.

T=101 T=201
f = x f = x̂ f = x f = x̂

K = 3 K = 2 K = 1 K = 3 K = 2 K = 1 K = 3 K = 2 K = 1 K = 3 K = 2 K = 1
10 ·mean 0.0001 0.0001 1.116 0.019 0.036 1.075 0.0001 0.0001 1.103 0.014 0.023 1.063

103 · variance 0.00000 0.00000 2.420 0.0003 0.001 2.114 0.00000 0.00002 2.150 0.0001 0.0002 2.008

102 · iqr 0.001 0.001 6.362 0.060 0.106 6.147 0.001 0.001 6.285 0.042 0.060 6.057
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Figure 3-13: The �gure displays the same curves as Figure 3-2 but with additional noisy as described
in Section 3.6.2. The middle picture shows the pre-smoothed curves and registered curves using a
local polynomial smoother and our algorithm. The right picture shows the corresponding warping
functions.

3.6.3 Comparison with the FR-Metric approach for K0 = 1

For K0 = 1 Srivastava et al. (2011) did an elaborated simulation study where

the FR-Metric approach is compared to various other registration methods using

ls = n−1
∑n

i=1

∫
(yi(t)−(n−1)−1

∑n−1
j=1 yj(t))

2dt∫
(xi(t)−(n−1)−1

∑n−1
j=1 xj(t))

2dt
,

sls = n−1
∑n

i=1

∫
(y′i(t)−(n−1)−1

∑n−1
j=1 y

′
j(t))

2dt∫
(x′i(t)−(n−1)−1

∑n−1
j=1 x

′
j(t))

2dt
and pc =

∑
i6=j cc(yi(t),yj(t))∑
i6=j cc(xi(t),xj(t))

where cc(f, g)

is the pairwise Pearson's correlation between functions. Here the FR-Metric ap-

proach basically outperforms each of the other approaches. In this Section repli-

cates of �Simulated Data 4� and �Simulated Data 3� by Srivastava et al. (2011)

are constructed. We use ls, sls and pc to compare our registration outcome using

K = 1 to the FR-Metric approach, results are given in Table 3.5. We can conclude

that our method had a comparable performance which is a good result since the

FR-Metric approach is possibly the best K = 1 registration method.
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Table 3.5: Comparison between our approach and the FR-Metric approach using ls, sls and pc. The
left columns relate to Section 3.6.3 while the right columns belong to 3.6.3.

Simulation 3.6.3 Simulation 3.6.3
K=1 Reg. FR-Metric K=1 Reg. FR-Metric

ls 0.019 0.019 0.004 0.004
sls 0.018 0.020 0.003 0.002
pc 14.517 14.514 21.319 21.319

Replicate of �Simulated Data 4�
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Figure 3-14: Alignment using our algorithm, this K0 = 1 simulation is very demanding for most
algorithms because there is a tendency to stuck in a local minima and match the wrong peaks.

The curves shown by Figure 3-14 correspond to �Simulated Data 4� from Srivastava

et al. (2011). These curves are constructed by simulating 12 curves with a =

(0.8, 0.8333, . . . , 1.2) over the interval t ∈ [0, 9] discretized at 512 equidistant points

given by

xi(t) = ai(1− (hi(t)/9− 0.5)2)sin(πhi(t)), i = 1, . . . , 12.

The warping functions are given with z = (−1.2,−1, . . . , 1, 1.2) by

hi(t) = 9
ezit/9 − 1

ezi − 1
, zi 6= 0 and t otherwise.
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Even though this simulation has only one component it is very demanding for most

algorithm. The challenge is that the initial peak locations overlap and algorithms

that use a local registration approach will likely stuck in a local minima. Using

our approach we avoid this issue by starting a registration using Kmax = 4 and

gradually count down to K = 1 as described in Section 3.4.2. The resulting

registration outcome is shown in Figure 3-14 with S(w, K)/S0 = 1.01e−4.

Replicate of �Simulated Data 3�
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Figure 3-15: A registration using di�erent choices of K is carried out. At the lower left �gure the
connection between K and the complexity of the warping is documented.

The curves displayed in the upper left of Figure 3-15 are similar to �Simulated

Data 3� from Srivastava et al. (2011), constructed by simulating 29 di�erently

scaled and shifted beta distributions. To construct the curves we use an equally

spaced a = (0.25, . . . , 0.75) together with an interval t ∈ [0, 1] discretized at 512
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equidistant points, s(m) = 0.75− 0.5m, z(m) = 5 (s(m)−0.5)2

2
+ 1, then

xi(t) = z(ai)f (s(ai) + (1.5t− 0.75), 50, 50) , i = 1, . . . , 29

where f(x, α, β) = B(α, β)−1xα−1(1− x)β−1 and B(α, β) is the betafunction.

Figure 3-15 examine di�erent registrations where K decreases from K = 8 to

K = 1. It can be veri�ed that higher K results in less complex warping functions

while with K = 1 or K = 2 a high V (w) has to be accepted.

3.7 Proofs

3.7.1 Proof of Proposition 1

Proposition 1a) is an immediate consequence of Proposition 1 of Kneip and Ramsay

(2008). For proving Proposition 1 b) �rst note that by assumption a realization xi

of the random process a.s. satis�es x′i(τi,l) = 0, x
′′
i (τi,l) 6= 0 for all l = 1, . . . , q(xi)

and there a.s. exists a yi ∈ LK with Q(xi) = Q(yi). Since by de�nition yi is twice

continuously di�erentiable and Q(yi) contains all values of yi where y
′
i is zero, there

necessarily exist exactly q(xi) points τyi,l, l = 1, . . . , q(xi) with y′i(τyi,l) = 0, and

necessarily also y
′′
i (τyi,l) 6= 0. With τi0 = τyi,0 := 0 and τi,q(xi)+1 = τyi,q(xi)+1 := 1

the function xi and yi are therefore strictly monotone in each of the segments

[τi,l, τi,l+1] and [τyi,l, τyi,l+1], l = 0, . . . , q(xi), respectively. Hence, for each l =

0, . . . , q(xi) there exists a strictly monotonic function z−1
xi;l

: [xi(τi,l), xi(τi,l+1)] →

[τi,l, τi,l+1] such that z−1
xi;l

[zxi;l(t)] = t for all t ∈ [τi,l, τi,l+1]. De�ning then hil :

[τyi,l, τyi,l+1] → [τi,l, τi,l+1] by hil(t) = z−1
xi;j

[yi(t)], the above construction implies

that with hi(t) =
∑q(xi)

l=0 hil(t)I(t ∈ [τyi,l, τyi,l+1]) we obtain xi(hi(t)) = yi(t) for all

t ∈ [0, 1]. hi is a strictly monotonic function, and twice continuous di�erentiability

of xi and yi translates into hi ∈ W2[0, 1]. Note that h′i(t) =
y′i(t)

x′i[hi(t)]
for t 6∈
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{τyi,1, . . . , τyi,q(xi)}, and hi(τyi,l) = limt→τyi,l
y′i(t)

x′i[hi(t)]
= (

y
′′
i (τyi,l)

x
′′
i (τi,l)

)1/2. This proves

assertion 1b).

It remains to show assertion 1c). If P(q = q(xi)) = 1 as well as P(Q(xi) =

aQ(xj) for some a ∈ R) = 1, then for an arbitrary realization xj and L1 := {v| v =

axj for some a ∈ R} we have P(Q(xi) = Q(γ)|γ ∈ L1) = 1. It then follows from

Proposition 1b) that (3.3) holds forK = 1. On the other hand, if xi(hi(t)) = aiγ(t)

a.s. for all t ∈ [0, 1], then P(q = q(xi)) = 1 for q = q(γ). Furthermore, P(Q(xi) =

aQ(γ) for some a ∈ R) = 1, and hence also P(Q(xi) = aQ(xj) for some a ∈ R) =

1.

3.7.2 Proof of Proposition 2

Select an arbitrary integer q. Since the eigenfunctions γ1, γ2, . . . of Γ are a sequence

of orthornormal functions, there exists a an integer J such that the function γJ

has q∗ > q + 1 zero crossings in the interior of [0, 1]. Let µb,J := µ + bγJ . If

b is su�ciently large, then also µb,J has at least q∗ zero crossings. Choose some

a > 0. There then exists a ba <∞ and some t1, . . . , tq∗+1 such that |µba,J(tj)| ≤ a,

j = 1, . . . ,q∗ + 1, as well as sign(µba,J(tj)) = −sign(µba,J(tj+1)), j = 1, . . . ,q∗.

We have xi = µbij ,J + x̃i, where x̃i :=
∑

j,j 6=J bijγj. But obviously xi has at least

q∗−1 shape features in (0, 1) if sign(xi(tj))) = −sign(xi(tj+1)) for all j = 1, . . . ,q∗.

This is necessarily true if bij > ba and if at the same time (x̃i(t1), . . . , x̃i(tq∗+1))T ∈

(−a, a)q
∗+1. By assumption, the vector (x̃i(t1), . . . , x̃i(tq∗+1))T follows a multi-

variate normal distribution and is independent of bij ∼ N(0, λj)). Hence, the

proposition is an immediate consequence of

P(q(xi) ≥ q) ≥ P (bij ≥ ba) · P
(
(x̃i(t1), . . . , x̃i(tq∗+1)) ∈ (−a, a)q

∗+1
)
> 0
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3.7.3 Proof of Theorem 1

For x, y ∈ L2[0, 1] let 〈x, y〉 :=
∫ 1

0
x(t)y(t)dt, and ‖x‖2

2 :=
∫ 1

0
x(t)2dt.

Select some integer K. Since W1
d[0, 1] is a compact space, for all orthonormal

γ = (γ1, . . . , γK) ∈ (W1[0, 1])K

s(xi, w,γ) := ‖xi ◦ hw −
K∑
j=1

〈xi ◦ hw, γj〉γj‖2
2

attains a minimum wi,γ over all w ∈ W1
d[0, 1], and Rγ : xi → wi,γ is a measurable

operator. For c0 > 0 let W2
c0;1[0, 1] := {y ∈ W2[0, 1]| ‖y‖2 = 1, supu∈[0,1]|y

′′
(u)| ≤

c0}, and note that by assumption K < K0 implies E(s(xi, wi,γ , γ)) > 0 for all

γ ∈ (W2
c0;1[0, 1])K . By the Arzela�Ascoli theorem (W2

c0;1[0, 1])K is a compact

function space (with respect to supremum as well as L2-metrics), and therefore

a minimum r(c0, K) > 0 of E(s(xi, wi,γ,γ)) > 0 is attained for some element

γ ∈ (W2
c0;1[0, 1])K . We can thus conclude that if c0 is su�ciently large,

r(c0, K) := min
γ∈(W2

c0;1
[0,1])K

E(s(xi, wi,γ ,γ)) > 0 for K < K0, (3.30)

min
γ∈(W2

c0;1
[0,1])K

E(s(xi, wi,γ ,γ)) = 0 for K ≥ K0, (3.31)

Now consider minimizing Sn(w, K) with respect to the true functions xi, i =

1, . . . , n. For given w corresponding functions γj ≡ γj,w can then be determined

as eigenfunctions of the empirical second moment operator, i.e. for an eigenvalue lj

the functions γj satis�es ljγj(t) = 1
n

∑n
i=1〈xi ◦ hwi , γj〉xi(hwi(t)). This implies that

γj is twice di�erentiable, and it follows from our assumptions on the derivatives

of xi and wi that there exist some c0 <∞ such that with probability tending to 1
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supu |γ
′′
j (u)| ≤ c0 as n→∞. Therefore, with probability tending to 1

min
w∈(W1

d[0,1])n
Sn(w, K) = min

γ∈(W2

c0;1
[0,1])K

1

n

n∑
i=1

s(xi, wi,γ ,γ) (3.32)

For y ∈ (W2
c0;1[0, 1])K and δ > 0 let Uδ(y) := {z ∈ (W2

c0;1[0, 1])K | ‖yj − zj‖ ≤

δ for all j = 1, . . . , K}. Since (W2
c0;1[0, 1])K is compact, for any δ > 0 there exists

some m(δ) < ∞ and functions γ l ∈ (W2
c0;1[0, 1])K such that (W2

c0;1[0, 1])K ⊂⋃m(δ)
l=1 Uδ(γ

l). The triangle inequality implies that for any l = 1, . . . ,m(δ), all

y ∈ Uδ(γ l), and each w ∈ W1
d[0, 1] we have

( 1
n

∑n
i=1 s(xi, w, y))1/2 ≥

( 1
n

∑n
i=1 ‖xi ◦ hw −

∑K
j=1〈xi ◦ hw, yj〉γlj‖2

2)1/2

−( 1
n

∑n
i=1

∑K
j=1〈xi ◦ hw, yj〉2‖γlj − yj‖2

2)1/2.

There obviously exists a constant D0 <∞ such that supt∈[0,1] |(h−1
w )′(t)| ≤ D0 for

all w ∈ W1
d[0, 1]. Therefore ‖xi ◦ hw‖2

2 =
∫ 1

0
(h−1

w )′(t)xi(t)
2dt ≤ D0‖xi‖2

2. For any

w we thus obtain 〈xi ◦ hw, yj〉2 ≤ D0‖xi‖2
2, and therefore

min
γ∈(W2

c0;1
[0,1])K

(
1

n

n∑
i=1

s(xi, wi,γ ,γ))1/2 ≥ (3.33)

min
l=1,...,m(δ)

(
1

n

n∑
i=1

s(xi, wi,γl ,γl))1/2 − (K
1

n

n∑
i=1

D0‖xi‖2
2)1/2δ (3.34)

At the same time, E(‖xi‖2
2) < ∞, as well as E(s(xi, wi,γl ,γl)) < ∞ for all l =

1, . . . .m(δ). Furthermore, for any l = 1, . . . ,m(δ), s(x1, w1,γl ,γl), . . . , s(xn, wn,γl ,γl)

are i.i.d. random variables, and the law of large numbers such implies that for each
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0 < δ∗ <∞

P

(
| 1
n

n∑
i=1

s(xi, wi,γl ,γl)− E(s(xi, wi,γl ,γl))| ≤ δ∗ for all l = 1, . . . ,m(δ)

)
→ 1

as n → ∞. Since 1
n

∑n
i=1 ‖xi‖2

2 → E(‖xi‖2
2) a.s. and since δ, δ∗ are arbitrary, we

can conclude from (3.30), (3.32), (3.33), and (3.35) that

lim
n→∞

P

(
min

w∈(W1

d[0,1])n
Sn(w, K) ≥ c̃K

)
= 1 for all K < K0 (3.35)

and each 0 < c̃K < r(c0, K) (3.36)

Now consider the local linear estimator x̂i of xi. The estimator can be written in

the form x̂i(t) =
∑T

l=1 v(t, tl, b)Yil, where for any t, l, b the the weights v(t, tl, b) can

be computed from the kernel function. We then have x̂i(t) = r1(xi, b; t) + r2i(b; t),

where r1(xi, b; t) =
∑T

l=1 v(t, tl, b)xi(tl) and r2i(b; t) =
∑T

l=1 v(t, tl, b)εil. Under our

assumptions r2(b; t) is independent of xi and . Since error terms are homoscedastic

and design points are equidistant, standard arguments (see e.g. Fan and Gijbels

(1996) ) can now be used to show that there exist constants D1, D2 <∞ such that

for all su�ciently large T

sup
t∈[0,1]

E((Xi(t)− r1(xi, b; t))
2) ≤ b4D1 sup

t∈[0,1]

E|x′′i (t)2|, (3.37)

sup
t∈[0,1]

E(r2i(b; t)
2) ≤ D2

Tb
, (3.38)

sup
t∈[0,1]

E((x̂i(t)− xi(t))2) = sup
t∈[0,1]

(
E((Xi(t)− r1(xi, b; t))

2) + E(r2i(b; t)
2))
)

(3.39)

≤ b4D1 sup
t∈[0,1]

E|x′′i (t)2|+ D2

Tb
, (3.40)
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while as Tb log T →∞

sup
t∈[b,1−b]

|E(r2i(b; t))
2 − σ2V (K)

Tb
| = o(1) (3.41)

By the triangle inequality it follows that for any w ∈ (W1
d[0, 1])n

Sn(w, K)
1
2 − (

1

n

n∑
i=1

∫ 1

0

(x̂i(hwi(t))− xi(hwi(t)))2dt)
1
2 (3.42)

≤ Ŝn(w, K)
1
2 ≤ Sn(w, K)1/2 + (

1

n

n∑
i=1

∫ 1

0

(x̂i(hwi(t))− xi(hwi(t)))2dt)
1
2 . (3.43)

Since
∫ 1

0
(x̂i(hw(t))− xi(hw(t)))2dt =

∫ 1

0
(h−1

w )′(t)(x̂i(t)− xi(t))2dt ≤ D0

∫ 1

0
(x̂i(t)−

xi(t))
2dt, we can thus infer from (3.40) that

sup
w∈(W1

d[0,1])n

|Ŝn(w, K)
1
2 − Sn(w, K)

1
2 | = OP (b2 +

1√
Tb

) (3.44)

min
w∈(W1

d[0,1])n
Ŝn(w, K)

1
2 = min

w∈(W1

d[0,1])n
Sn(w, K)

1
2 +OP (b2 +

1√
Tb

) (3.45)

Assertion a) of Theorem 1 are now immediate consequences of (3.31), (3.35), and

(3.45), while Assertion c) follows from (3.44) together with sup
w∈(W1

d[0,1])n
|Ŝn(w, K)

1
2 =

OP (b4 + 1
Tb

) for K ≥ K0.

It remains to prove Assertion b). Since K ≥ K0 there exist some wK ∈

(W1
d[0, 1])K with Sn(wK , K) = 0. Let hK,1 := hwK,1 , . . . , hK,n := hwK,n be the

resulting warping functions. Therefore,

Ŝn(ŵ, K) = min
w∈(W1

d[0,1])n
Ŝn(w, K) (3.46)

≤ Ŝn(wK , K) ≤ 1
n

∑n
i=1

∫ 1

0
(x̂i(hK,i(t))− xi(hK,i(t)))2dt (3.47)

Note that
∫ 1

0
(h−1

K,i)
′(t)dt = h−1

K,i(1) = 1 for all i. By (3.38) - (3.41), by the in-
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dependence of r2i(b; t) from xi and hi, and by our additional assumption on the

bandwidth sequence we thus obtain

E
(∫ 1

0

(x̂i(hK,i(t))− xi(hK,i(t)))2dt

)
= E

(∫ 1

0

(h−1
K,i)

′(t)(x̂i(t))− xi(t))2dt

)
= E

(∫ 1

0

(h−1
K,i)

′(t)E(r2i(b; t)
2)dt

)
+ o(

1

Tb
)

=
σ2V (K)

Tb
+ o(

1

Tb
)

Since E(ε4ij) <∞ it is easily veri�ed that E(r2i(b; t)
4) = O( 1

T 2b2
),

and thus 1
n

∑n
i=1 Tb

∫ 1

0
(h−1

K,i)
′(t)(r2i(b; t)

2)dt→P σ
2V (K). Hence, as n, T →∞

Tb
1

n

n∑
i=1

∫ 1

0

(x̂i(hK,i(t))− xi(hK,i(t)))2dt =
1

n

n∑
i=1

Tb

∫ 1

0

(h−1
K,i)

′(t)(r2i(b; t)
2)dt+ oP (1)

= σ2V (K) + op(1),

which together with (3.46) leads to the desired result.
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Chapter 4

Analysis of juggling data:

Registering data to principal

components to explain amplitude

variation

Abstract

The paper considers an analysis of the juggling dataset based on registration. An
elementary landmark registration is used to extract the juggling cycles from the
data. The resulting cycles are then registered to functional principal components.
After the registration step the paper then lays its focus on a functional principal
component analysis to explain the amplitude variation of the cycles. More results
about the behavior of the juggler's movements of the hand during the juggling
trials are obtained by a further investigation of the principal scores.
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4.1 Introduction

Functional Principal Component Analysis (FPCA) approximates a sample curve

f(t) as a linear combination of orthogonal basis functions γj(t) with coe�cients θj:

f(t) ≈
L∑
j=1

γj(t)θj. (4.1)

The principal components γj have the best basis property: for any �xed number

L of orthogonal basis functions, the expected total squared lose is minimized.

The choice of L is up to the operator, depending what accuracy is needed. It

is often possible to describe the essential parts of the variations of functional

data by looking only at a usually very small set of principal components and

the corresponding principal scores θj.

However, if the curves have phase variation, even the most elementary tools of

any data analysis like the pointwise mean or variance will not be able to describe

the data adequately Ramsay and Silverman (2005). In such a case not only are

more principal components needed to describe the same amount of variation in the

data, but also further analysis based on principal components will become more

di�cult to interpret. In order to analyze the juggling data, we use a registration

procedure introduced by Kneip and Ramsay (2008) in which the principal compo-

nents are the features which are aligned. The juggling data is a nice application,

because the data set contains many problems that have to be solved using di�erent

strategies.

After registering the data in Section 4.2, we perform a FPCA on the individual

juggling cycles in Section 4.2.1. In Section 4.2.2 we examine the evolution of

the scores of the juggling cycles over the trials where we additionally take the

information from the warping functions into account. Section 4.3 summarizes our

�ndings.

114



4.2 Registering the juggling data

During our analysis we are especially interested in the juggling cycles. We will

use the following notation: for t ∈ [0, 1] let f(t) = (fx(t), fy(t), fz(t)) be the

spatial coordinates of a typical juggling cycle, µ(t) = E(f(t)) their structural

mean and γj(t) = (γx,j(t), γy,j(t), γz,j(t)) be a typical principal component. We

refer to chapter 8.5 of Ramsay and Silverman (2005) for an instruction on how to

calculate the principal components in our multivariate case in practice. Referred

to Ramsay et al. (2014), a juggling cycle is observed on the �clock time scale� which

is the �juggling time� t transformed by a warping function h. As usual, we assume

h to be an element of the space H of strictly increasing continuous functions. We

hence observe

f [h(t)] = µ[h(t)] +
∞∑
j=1

γj[h(t)]θj, (4.2)

where θj =
∫ 1

0
γx,j(u)fx(u) + γy,j(u)fy(u) + γz,j(u)fz(u) du.

Note that by stating equation (2.37), we met the natural assumption that time

and therefore also the warping function has to be the same in all three directions

by introducing a common h function for all three spatial dimensions. In contrast

to Ramsay et al. (2014) where the tangential velocity function is used to avoid the

problem of facing three spatial dimensions at once, we will work in the original

three dimensional coordinate system. By doing so we hope to �nd e�ects which

are only observable within the raw data. We approach the registration of the

cycles with a two stage procedure by performing what we call �macro� and �micro�

warping. By macro warping we mean a very basic registration. The purpose of

this registration step is to normalize the overall juggling speed such that we can

properly extract the cycles from each trial. We adjusted the data for the di�erent

numbers of cycles per trial by trimming each trial down to the �rst 10 juggling

cycles. In order to preserve as much information of the cycles as possible for further
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Figure 4-1: A random trial along the x direction together with the chosen landmarks.

analysis, we chose the simplest possible landmark registration which consists only

of one landmark per cycle located at the local maxima occurring along the z-

direction and a linear interpolation of the h function between. Since we only select

one landmark per cycle, identifying it can be done very quickly.

The next step is to cut of all cycles at the landmarks such that we end up with

a set of data consisting of a total of 100 cycles. This cropping implies that each of

the cycles starts when one of the balls leaves the hand of the juggler to go up in

the air in a high arc as seen in Figure 4-1.

During the �micro� step, we register all 100 cycles simultaneously. By doing

this we perform a very precise warping on the cycles. This is in fact a more di�cult

task than the �macro� warping part, because a lot of di�erent features in the cycle

curves have to be taken into account. To clarify this point we displayed a random

sample of 20 cycles in Figure 4-2.

It is seen from Figure 4-2 that the data needs more than just one principal

component to be explained accurately. For example, by looking at the �rst half

of this random sample along the x direction (left plot in the �gure), we see varia-

tion which is obviously not induced by phase variation. Also a closer look at the

middle part in the z direction (right plot) reveals a lot of variation which can not

be explained by amplitude variation of a single component. Situations where we

encounter more complex amplitude variations are well suited for the registration
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method presented in Kneip and Ramsay (2008). This procedure has another ad-

vantage because it allows to control the intensity of the micro warping due to the

smoothing parameter in equation (16) of Kneip and Ramsay (2008).

The method can be easily adapted to the multivariate case. Let D be the

derivative operator, then a straightforward modi�cation of equation (15) of Kneip

and Ramsay (2008) now becomes

SSE(h̃) =

∫ 1

0

∑
k=(x,y,z)

{fk(u)− fk[h−1(u)]−Dfk[h−1(u)]h̃(u)}2 du (4.3)

which has to be minimized over h̃ ∈ H. Finding a common warping function for

multivariate data can easily be handled by using (4.3) for the SSE part occurring

in the procedure of Kneip and Ramsay (2008).

The result of our alignment is shown as the black curves in Figure 4-2 where we

registered the curves to 3 principal components. We observe that after the warping

procedure the main features along all directions are well aligned. By looking at the

�rst half of the left plot of Figure 4-2 one can observe the complexity of the juggling

cycles along the x direction: If the cycles would belong to a one dimensional space

(i.e. all cycles were random shifts from a mean curve), then all features would

have been aligned. However, a more complex model underlies the data along this
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Figure 4-2: The �gure shows a random sample of 20 cycles for the x, y and z direction. Registered
curves are displayed black, corresponding unregistered curves grey.
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Figure 4-3: The deformation functions estimate during the macro- and microwarping.

direction and any attempt to force the data to �t in a simpler model will destroy

the intrinsic features of the data; the alleged shift we are observing after the

registration is in fact a part of the data. The warping functions for our alignment

are displayed in Figure 4-3 through the deformation functions h(t) − t obtained

from the macro and micro step. Note that the deformation functions for the macro

step do not end at a value of 0 since we only displayed the part of the warping

functions corresponding to the �rst 10 cycles within the trials.

4.2.1 Analyzing the principal components

After the preprocessing steps we get suitable data to perform a FPCA. We chose

to use three components to represent the data, which explain more than 80 percent

of the total variance. The impact of the three principal components on each of the

spatial directions of the data is displayed in Figure 4-4 where we also pictured the

e�ect of adding and subtracting a multiple of each of the principal components

to max-normalized mean curves. A closer look at Figure 4-4 reveals that the �rst

component mainly explains the amplitude variation of the y direction while the
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Figure 4-4: The Figure shows the e�ect of adding or subtracting a multiple of each of the principal
components to the scaled mean curves. The columns are the spatial directions x,y,z and the rows
represent the �rst, second and third principal component respectively.
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Table 4.1: Variation of the j-th principal component due to the l-th spatial direction

Spatial direction

Principal Component x y z

1st 0.117 0.793 0.091
2nd 0.053 0.185 0.762
3rd 0.851 0.100 0.049

second component explains mainly the z direction and the third component the x

direction. While the e�ect of the �rst component of the movement of the jugglers

hand along the x and z direction only accounts for a small shift in the beginning

of the movement (the catch phase) it has an important impact for the variation

across the y direction. By looking at the impact of the �rst component along the

y direction we can see that, if the ball coming in at low arch during the catch

phase is juggled right in front of the juggler, then he will overcompensate for this

movement by throwing the next ball from a much greater distance to himself.

Such an compensation e�ect can also be seen for the second component along the

z direction and for the the third component along the x direction. While for the

y direction the latter two components mainly adjust for the two bumps, which are

in�uenced by the �rst component, individually.

The importance of the components for the three directions is summarized in

Table 4.1, where we capture the variability in the j-th principal component which

is accounted for by the variation in the l-th direction. More formally: for a typical

principal component γ we necessarily have
∫ 1

0
γ2
x(u) du+

∫ 1

0
γ2
y(u) du+

∫ 1

0
γ2
z (u) du =

1. And hence each of the summands can be interpreted to give the proportion of

the variability of the component which is accounted for by the spatial direction.

It is seen from the table that the y direction contributes 80% of the variation of

the �rst component while the z and x direction can be accounted for the variation

of the second and third component respectively. These values reveal that the
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Figure 4-5: The �gure shows the evolution of the scores for the cycles corresponding to the second
and third principal component over the ten trials. The solid line represents the estimated regression
function when we impose a quadratic model.

directions are somewhat independent in the way that each principal component

represents mainly a single direction. These observations where only possible by

keeping the data multivariate and not analyzing the tangential velocity function.

4.2.2 Analyzing the principal scores

If we perform activities like juggling several times, we expect something like a

learning e�ect to happen. For a juggler this e�ect could be measured by the

behavior of his hands along the directions, i.e. as the juggler gets more and more

used to the juggling, one would expect the movements to be more e�cient or

at least the executions of the movements should become more homogeneous. By

performing a FPCA we prepare our data for further statistical analysis which

support us to answer such claims. This analysis will be performed on the scores.

Figure 4-5 shows the evolution of the scores corresponding to the second and

third principal component over the ten trials. A typical principal score θ can
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be modeled as a function depending on trial k = 1, . . . , 10 and number of cycle

i = 1, . . . , 10. Figure 4-5 suggests that a polynomial regression model can capture

the main message of the data. i.e. we assume

θ(i, k) = α0 + α1k + α2k
2 + εi. (4.4)

Table 4.2 contains the coe�cients resulting from this regression. Before we inter-

pret the results, recall that the �rst component explains mostly the y direction

which is on one hand less complex in terms of its variability and on the other

hand is less important for a juggler. Indeed, one could imagine a perfect juggling

machine which would keep this direction constant such that a juggling cycle could

be described by looking solely at the x and z directions. Now, the non-signi�cant

coe�cients in the �rst row of Table 4.2 indicate that the movement across the y

direction can not be explained by the trials. This is reasonable as one would expect

that an experienced juggler mainly focuses about the movement in the other two

directions and any variation of his movement along the y direction from a constant

value should be random.

By the signi�cance of the coe�cients of the regressions for the scores corre-

sponding to the second and third principal component, we can conclude that there

exists indeed an evolution of the scores over the trials which can essentially be

described by our regression. This evolution can be regarded as some kind of a

Table 4.2: Least squares coe�cients obtained from a quadratic regression of the scores on the trials.
Signi�cance codes are added in parentheses where 0 '***'; 0.001 '**'; 0.01 '*'; 1 ' '

Scores Parameter Estimates

α0 α1 α2

1st -0.0040 ( ) 0.0014 ( ) -0.0001 ( )
2nd -0.0086 (***) 0.0031 (***) -0.0002 (***)
3rd -0.0029 (*) 0.0018 (**) -0.0002 (***)
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�learning e�ect�. For example, in Figure 4-5 we can see that the scores will have

a small value at the peak of our regression function, implying that in this area

the variation of the movement of the jugglers hand is not very high and has to be

close to the mean curve. This can be seen as an improvement in his juggling skills.

Interestingly, the slope of the regression function decreases at the end. While this

e�ect is subsidiary for the second principal score and could be seen as a nuisance

from the simple quadratic model, it is apparent in the evolution of the scores

corresponding to the third component.

Recall that the second component mainly quanti�es the variation of the jugglers

hand movement along the z-direction, which captures the up- and downwards

movement of his hand. A negative score in the beginning of the trials indicates

that he lunges out too far before throwing the ball up in the air. As the regression

function for the scores of the second component approaches values close to zero,

the �learning e�ect� becomes visible: getting used to the juggling in the later trials,

he performs almost identical movements along this direction.

If we take a more precise look at the regression function of the scores corre-

sponding to the third component, an interpretation is somewhat more complicated

as we experience a signi�cant downward slope at the last trials. Maybe the juggler

gets fatigued or the behavior is caused by some kind of a psychological e�ect, i.e.

the concentration of the juggler decreases as he knows that he only has to perform

a few more trials and gets more impatient.

Taking a look at the time frame around 0.2�0.5 of the the bottom left panel

of Figure 4-4, we see that a particular small value of the third component implies

that his hand for catching the ball coming in from a low arch is comparable moved

towards the other hand. Possibly e is learning to simplify the process of catching

the ball coming in from low arch. Unfortunately this implies that he has to wind

up more in order to throw the ball leaving in high arch.
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We were further interested in an analysis of the warping functions themselves

which was the reason to perform only a very basic �macro� warping. In this special

kind of data set it is not reasonable to assume that the warping function is only

a nuisance parameter because the speed of juggling might have an e�ect on the

manner of the juggling.

To check this hypothesis we performed some further analysis on the warping

functions. Note that we can not perform a FPCA on the warping functions directly,

because we can not guarantee that the resulting curves are still elements of H,

i.e. strictly monotonic functions. Instead we pursue the following way out. It is

well known from Ramsay and Silverman (2005) that any function h ∈ H can be

represented as

h(t) =

∫ t

0

eW (u) du,

where W (t) = log[Dh(t)] itself is an unrestricted function. In order to analyze the

warping functions h appropriately, we can use the unrestricted functionsW (t). We

approximateW (t) by using the �rst two principal components which explain more

than 95 Percent of the variations in W (t) and de�ne by θW,1, θW,1 a typical scores

corresponding to these two components. In Table 4.3 we computed the correlation

between the scores of W and θ.

We can determine that the speed a juggling cycle is performed with has nearly

no in�uence on the �rst component of a cycle. But this speed does have an e�ect

on the second and third component which explain mostly the x and z direction.

Obviously, this e�ect is occurs mainly through the �rst component of W .

Another interesting result occurs by computing the correlation between the

scores of the principal components of W and and the residuals resulting from

the polynomial regression in (4.4). It reveals a signi�cant amount of correlation

between these variables, i.e. a not negligible part of the residuals from (4.4) can

be explained by the juggling speed of the cycles. Moreover, running a regression of
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Table 4.3: The table shows the correlation between the scores corresponding to the �rst two com-
ponents of W and the scores corresponding to the �rst three components of the juggling cycles

Scores of W Scores of the cycles

θ1 θ2 θ3

θW,1 -0.0120 0.3044 -0.2351
θW,2 -0.0122 0.0355 0.0013

the scores of the warping functionW on the trials showed no signi�cant coe�cient.

From this we can conclude that, what we identi�ed as a learning e�ect, has no

signi�cant impact on the warping for a speci�c cycle. We hence can identify two

e�ects which in�uence the scores of a juggling cycle. The �rst is due to learning

and the second is a result which is related to the speci�c warping. The e�ects are

modeled by augmenting equation (4.4) by

θ(i, k) = α0 + α1k + α2k
2 + β1θW,1,i + β2θW,2,i + εi, (4.5)

where θW,j,i is the score of the i-th cycle corresponding to the j-th principal com-

ponent of the function W . Estimated coe�cients are given in Table 4.4, from

where it can be seen that neither the speed the juggling cycles are performed with,

nor the trials have an impact on the movement of the jugglers hand along the y

direction. Moreover, it can be seen that there is a connection between the scores

of a juggling cycles and the speed of the juggling.

Table 4.4: The table shows the results from an Regression of the cycle scores on the trial num-
ber, squared trial number as well as the scores from W with corresponding coe�cients β1 and β2.
Signi�cance codes are added in parentheses where 0 '***'; 0.001 '**'; 0.01 '*'; 1 ' '

Scores Parameter Estimates

α0 α1 α2 β1 β2

1st -0.0042 () 0.0014 () -0.0001 ( ) -0.0009 () 0.0000()
2nd -0.0081 (***) 0.0030 (***) -0.0002 (***) 0.0034 (**) 0.0025 ()
3rd -0.0033 (*) 0.0019 (***) -0.0002 (***) -0.0027 (*) -0.0009 ()
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4.3 Summary

We analyzed the juggling data by combining two registration methods. First we

used an elementary landmark registration in order to crop the individual juggling

cycles, which were the focus of our analysis. In order to perform a re�ned warping

of the juggling cycles in a second step, we generalized the registration method from

Kneip and Ramsay (2008) to the multivariate nature of the data. We analyze the

registered data by performing a FPCA using three principal components where we

observed that each of the components essentially quanti�ed the variation across a

single spatial direction.

More speci�c information about the behavior of the juggler is contained in the

scores which we studied in dependence on the trials. By doing so, we were able to

identify some kind of learning e�ect over the trials. The movement of the jugglers

hand for throwing a ball up in the air levels out over the trials. After applying

an alignment procedure one should not forget about the warping functions. In-

terpreting the warping functions can not only be a very interesting task for itself,

but they can contain important additional information which can be helpful to

analyze the data.
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