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Introduction

Uncertainty is a feature of many economic decision problems, processes and situations

of economic interaction. Through research and learning agents reduce this uncertainty

and thereby create informational externalities to others. For example, consumers trying a

new product (for example, a new movie or electronic device) or a novel service share their

experiences with friends and acquaintances, and even with strangers through customer

reviews in the internet. A recommendation by a friend, say for a movie, reduces the

uncertainty about the quality of the movie, as this friend’s opinion provides a signal about

the movie’s quality. In this way the experience of others influences our opinions and

consequently our decisions. Another example in which informational externalities play

an important role is research or innovation. Firms invest in R&D in the search of new

technologies. However, inventions of one firm often reveal information or knowledge to

other (possibly competing) firms that have been acquired by the inventor in a lengthy

and expensive process. Without proper protection of its intellectual property firms may

find their invention copied and possibly improved shortly after releasing the original

innovation, because of the informational externalities created by their discovery.

Economic agents that interact strategically take into account the informational ex-

ternalities created by themselves and others when deciding which products to buy or

whether to invest in R&D. Models of strategic experimentation are a useful tool to study

and analyze strategic interaction with uncertainty and informational externalities. The

idea of these models is that agents can invest money or effort into a risky project (often

referred to as the risky arm of a multi-armed bandit machine), where ex ante it is not clear

whether the payoff from the risky alternative is higher than the payoff from investing into

a safe alternative with known return. By trying out the risky alternative repeatedly (that

is, by experimenting) agents learn about its quality from observing the outcomes of their
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own actions, but also from observing the outcomes of others’ actions. In a situation where

agents can observe each others experimentation decisions and outcomes, a public good

problem arises and agents have an incentive to free-ride on the experimentation effort of

others.

The first models of strategic experimentation were introduced in Bolton and Harris

(1999) and Keller, Rady and Cripps (2005). In the first, the payoff generating process fol-

lows a Brownian motion with drift. Additional to the free-riding effect an encouragement

effect arises, which means that the experimentation of one agent motivates other agents

to experiment. In Keller et al. (2005) agents face an exponential bandit machine in which

the first high payoff realization reveals that the risky alternative is good. These two pa-

pers laid the foundation for a growing body of literature on strategic experimentation

and particularly the exponential bandit framework has been modified and studied in dif-

ferent settings. A more detailed discussion of the related literature can be found in the

corresponding chapters of the thesis.

The aim of this thesis is to contribute to our understanding of uncertainty, learning

and informational externalities in strategic interaction. To be more precise, the follow-

ing questions are answered: How are the incentives of strategic agents to invest in risky

and innovative activities affected by the monitoring protocol and monitoring imperfec-

tions? In particular, under which conditions does a fast and perfect diffusion of informa-

tion maximize welfare and when can monitoring imperfections or incomplete interaction

structures be beneficial? Different monitoring structures can be represented in the form of

social or economic networks. Comparing different network structures shows how experi-

mentation effort is influenced by a delay in information transmission or who experiments

and who free-rides in a given network. From this analysis suggestions can be derived

on how to structure teams, how to organize information flows in multinational corpora-

tions and when a fast diffusion of information is beneficial for society. Moreover, I study

monitoring imperfections stemming from intransparencies (or uncertainties) in the patent

system and show how these intransparencies affect the incentives of firms to invest in in-

novative activities. The Federal Trade Commission (2011) emphasizes the importance of

a clear patent notice to attain efficiency. However, before implementing policies to in-

crease transparency, it is important to understand the links between intransparencies in
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the patent system and R&D investment to be able to assess the consequences of such

policies.

Besides monitoring imperfections and different monitoring structures, I analyze how

informational externalities interact with different types of payoff externalities - not only

within one line of research or sector but also across sectors. The decision of firms in which

research lines to invest depends on inter- and intrasectoral R&D spillovers as well as on

intellectual property rights and competition. Understanding how informational external-

ities interact with different levels of inter- and intrasectoral spillovers can tell us how to

design intellectual property rights to encourage firms to choose a line of research that is

beneficial for society.

To answer these questions I study variants of the exponential bandit model, which

was introduced by Keller et al. (2005). This modeling framework is particularly suitable

to model fundamental research, where researchers spend considerable time and effort to

tackle unsolved problems that might not have a solution and even if a solution exists, it is

highly uncertain when it will be discovered. Yet, also other situations feature these types

of uncertainty, as e.g., farmers experimenting with a new type of crop or fertilizer where

it is unclear whether output can be increased by changing to the new technology. In the

first two chapters, I study a discrete time version of the exponential bandit model similar

to Heidhues, Rady and Strack (2015). In Chapter 1, I consider a team problem in which

one discovery has perfect positive spillovers and study how different network structures

affect the incentives of agents to experiment. In Chapter 2, I analyze the impact of inter-

and intrasectoral R&D spillovers on the decision of competing firms in which research

lines to invest. Finally, in Chapter 3, I investigate a stopping game in continuous time in

which heterogeneous (competing) firms invest in R&D and intransparencies in the patent

system affect R&D investment.

The first chapter of the thesis analyzes a dynamic model of rational strategic learning

in a network. It complements existing literature on learning in networks by providing

a detailed picture of the short-run learning dynamics. Agents are located on the nodes

of a social network and can observe the actions and outcomes of their direct neighbors

immediately, while information generated by agents more far away in the network trav-
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els along the links in the network with delay. The complete network, the ring and the

star network are compared in terms of their experimentation intensities in equilibrium.

The delay in information transmission caused by incomplete network structures induces

players to increase own experimentation efforts. As a consequence the complete network

can fail to be optimal even if there are no costs for links. This means that in the design

of networks there exists a trade-off between the speed of learning and accuracy. Further-

more, the combination of delay and specialization, where only some agents exert effort,

can be beneficial for society.

The second chapter analyzes R&D investment with inter- and intrasectoral R&D spill-

overs, in which the profitability of an invention in one sector increases if there is an in-

novation in another sector. In the selection of research lines firms face a trade-off; joint

research in the same sector increases the probability of an invention, while working in

different sectors increases profits in case of two complementary discoveries. Interpreting

intrasectoral R&D spillovers as a measure of intellectual property rights I characterize in-

tellectual property rights for which firms select optimally between research lines. In the

presence of intersectoral R&D spillovers imitating an invention in the sector benefiting

from the spillover is facilitated.

In the third chapter, I analyze how monitoring imperfections in the form of intrans-

parencies in the patent system affect R&D investment. Two firms invest in research of

uncertain quality and file an application at the patent office upon an invention. In an

intransparent patent system the scope as well as the content of a patent can be unclear. If

the patent race is a winner-takes-all competition, the R&D investment of the weaker firm

increases in the level of transparency, while the stronger firm’s investment only increases

if the difference in the firms’ R&D productivities is not too severe. In the presence of pos-

itive R&D spillovers, R&D investment is non-monotonic in the level of transparency and

maximal under full intransparency. An optimal information disclosure policy enables

firms to assess whether a new discovery leads to a patent. The risk of litigation or diffi-

culties in identifying relevant patents, however, increase the likelihood that firms invest

in R&D. Thus, full transparency is not necessarily optimal provided that the costs of R&D

are sufficiently low.
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To sum up, in the presence of informational externalities, the incentives of strategic

agents to invest in innovative and risky activities are affected by different monitoring

structures and monitoring imperfections. A fast and perfect information transmission is

not certainly optimal due to the strong incentives of firms to free-ride on the experimenta-

tion efforts of others. Incomplete interaction structures or monitoring imperfections such

as uncertainties in the patent system can encourage firms to invest in R&D and thereby

increase welfare.

The proofs to each chapter can be found in the corresponding sections of the Ap-

pendix. All references are collected in the end of the thesis.
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Chapter 1

Learning faster or more precisely?

Strategic experimentation in networks

“Some people will never learn anything, for this reason, because they understand everything too

soon." Alexander Pope

1.1 Introduction

The experience of others plays an important role when individuals have to take decisions

about alternatives that they cannot perfectly evaluate themselves. This is the case if pay-

offs associated with one or more alternatives are uncertain. For example, when it comes

to the adoption of new technologies it can be ex ante difficult to evaluate whether a new

technology will be superior to the status quo. In such situations a person will base his

or her decision on own past experiences, ask friends and coworkers about their opinions,

and additionally collect information via other sources as for instance, customer reviews

on the internet. One way to model learning situations where people have to take deci-

sions under uncertainty is by so called bandit models (see e.g., Bolton & Harris, 1999 or

Keller, Rady and Cripps, 2005 [KRC, hereafter]). The idea of these models is that play-

ers have to choose between different options (different arms of a bandit machine) under

imperfect knowledge of their relative advantage, that is, the outcomes of the arms are un-

certain. By playing repeatedly, the agents can learn about the type of the arm, however,

this learning or experimentation is costly as future payoffs are discounted. Such bandit
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models can provide a framework to discuss different (economic) situations as for example

specific problems of product choice, technology adoption, research or innovation.

So far, most models of strategic experimentation assume that agents interact with ev-

eryone else in society. That is, each agent can observe or communicate with all other

individuals and as actions and payoffs are publicly observable, a common belief about

the state of the world prevails. We relax this assumption by letting agents interact di-

rectly only with a subset of agents that is determined by the structure of connections in

a social network. This extension of the model is thought to better reflect interaction pat-

terns in reality, where without doubt the structure of relationships in shaping beliefs and

opinions plays an important role. Empirical work in economics highlights the impact of

network structures in labor markets (e.g., regarding information about job vacancies, see

Calvo-Armengol and Jackson, 2004) or finds evidence of the importance of interaction

patterns in learning about a new technology (see e.g., Conley and Udry, 2010). In general,

learning and innovation are influenced by the structures of information exchange be-

tween different sources. For example, in the field of research, workshops and conferences

bring together researchers from dispersed geographical regions and different fields of

specialization to enable exchange of ideas. Similarly, innovation plays an important role

for firms to secure competitiveness, and the structure of information exchange between

subsidiaries of multinational organizations might be a key to success. For example, Nobel

and Birkinshaw (1998) analyze communication patterns between subsidiaries of multina-

tional corporations and find that innovation is associated with comparatively high levels

of communication within the firm and outside. Teece (1994) emphasizes the importance

of organizational structures that enable an easy flow of communication between business

units and guarantee a high speed of learning.

The aim of our model is to provide insight into how the structure of relations influ-

ences the evolution of beliefs, decisions and incentives of rational agents who need to

acquire information. More precisely, we consider a dynamic model of strategic learning

in which individuals can generate own information through experimentation and learn

about the experimentation of others. The information generated by other agents diffuses

along the links of a social network and only information generated by direct neighbors

can be observed immediately. The model is built on a discrete time version of the expo-
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nential bandit model by KRC as in Heidhues, Rady and Strack (2015) [HRS hereafter].

Agents can choose between a safe and a risky option. The payoff of the risky option

depends on an unknown state of the world which is either good or bad for all players.

A good risky option generates high payoffs with positive probability, while a bad risky

option never generates a high payoff. Thus, it is not clear whether a high payoff can

be obtained and if so when it will occur. These two types of uncertainties are common

features of research and innovation. Examples include pharmaceutical firms working on

the development of a new drug, mathematicians tackling a Millennium Prize Problem, or

farmers experimenting with a new fertilizer as in Conley and Udry (2010). Agents decide

between the two options based on their belief, i.e., the probability attached to the good

state of the world and their beliefs depend on their observations and hence the interaction

structure. This interaction structure will be fixed and imposed on the agents before the

game starts.

First, we characterize symmetric equilibria in Markovian strategies in three different

network structures, the complete network, the ring and the star network. Further, ex-

perimentation intensities in equilibrium are compared across these structures. In a net-

work structure in which agents learn from unobserved players (neighbors of neighbors)

with a delay, players increase their experimentation intensity or effort to compensate for

the worse possibility to learn from others. Depending on the structure and the belief,

agents are able to fully outweigh this loss and thereby keep expected utilities unaltered

compared to interaction in a complete network. The agents’ strategies depend on their

beliefs and there exists an upper cut-off belief above which agents experiment with full

intensity and a lower cut-off below which experimentation ceases. These cut-off beliefs

depend on the network structure and take into account whether agents still expect infor-

mation that was generated by unobserved individuals to arrive. Specialization, where

only some players experiment, arises in networks where agents are not symmetric with

respect to their position, as in the star network. As part of a welfare comparison, we ob-

serve a trade-off between interaction structures that enable fast learning and structures

in which learning is more precise, or put differently between delay and free-riding. How

this trade-off is resolved depends on the discount factor. Additionally to the trade-off

between delay and free-riding, we show that also specialization, which occurs naturally
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in the star network, motivates agents to exert higher effort. For pessimistic beliefs welfare

in the star network is strictly higher than in the ring or complete network because of a

combination of delay and specialization.

The chapter contributes to the theory of rational strategic learning in networks and

aims to fill the gap between static models and dynamic models that focus on long-run

results and conditions for complete learning. Due to the complexity that network set-

tings can create, attention was often restricted to the behavior of myopic or boundedly

rational agents to ensure tractability.1 In a recent contribution Sadler (2014) analyzes a

strategic experimentation problem as in Bolton and Harris (1999) in a network setting

with boundedly rational agents. In the field of rational learning, there are several exam-

ples of Bayesian learning models focusing on asymptotic long-run results and conditions

for complete learning or convergence of actions or payoffs (see e.g., Gale and Kariv, 2003,

Rosenberg, Solan and Vieille, 2009, Acemoglu and Ozdaglar, 2011, Acemoglu, Bimpikis

and Ozdaglar, 2014, Arieli and Mueller-Frank, 2015 and Mossel, Sly and Tamuz, 2015).

These results, however, offer little insight into how social relations shape incentives in

early stages of the learning process and how this influences expected payoffs.

One closely related paper is Bramoullé and Kranton (2007) [BK hereafter] who inves-

tigate a public goods game in a network in a static framework. The authors show that

networks can lead to specialization and that this specialization can have welfare bene-

fits, features that are confirmed within our framework. The main difference between the

model of BK and our model is that BK consider a static setting. As learning, innovation

and research have a dynamic character, a dynamic perspective might be better suited

to analyze these processes. Such a perspective yields additional insights concerning the

updating rules agents use, the effects of different beliefs within a society that are a conse-

quence of asymmetric positions, and the impact of network structures on the speed and

accuracy of learning.

Besides the literature on learning in networks the chapter relates to the growing lit-

erature on strategic experimentation. In strategic experimentation models where agents

1See e.g. Jackson (2008), Chapter 8 or Goyal (2009), Chapter 5 for different types of learning models in a

network setting.
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can observe the outcomes and actions of others, strong incentives to free-ride on the ex-

perimentation effort of others prevent the socially optimal outcome (see e.g., Bolton and

Harris, 1999, KRC or HRS). Bonatti and Hörner (2011) show that when actions are private

agents do not only experiment too little, but also too late. If actions can be observed but

payoffs are private free-riding can be ameliorated when agents have access to cheap talk

communication (see HRS). Bimpikis and Drakopoulos (2014) show that (full) efficiency

can be obtained in the model of KRC if information is aggregated and released with an

optimal delay. An incomplete network structure also causes time lags in the information

transmission that can increase experimentation efforts and mitigate free-riding. Addi-

tionally to the trade-off between delay and free-riding that is also present in Bimpikis

and Drakopoulus (2014) we show that in asymmetric network structures as the star net-

work specialization arises in equilibrium. Furthermore, the combination of delay and

specialization can be beneficial for society.

The contribution of the chapter is twofold. First, we introduce delay into a model

of rational (and farsighted) learning in networks. Thereby we are able to highlight the

importance of the trade-off between delay and free-riding for social learning when the

delay is determined by the interaction structure. Second, by adding a network structure

to a game of strategic experimentation we show how equilibrium experimentation varies

with the interaction structure. As a consequence of asymmetric positions in the network

specialization can arise in equilibrium.

The chapter is structured as follows: Section 1.2 introduces the basic model. In Section

1.3 the complete network is analyzed to set up a benchmark case for future comparison.

Section 1.4 analyzes a simple incomplete interaction structure, namely a ring, to see how

spatial structures change the problem at hand. In Section 1.5, the star network as the

simplest irregular network is considered. A welfare analysis is conducted in Section 1.6.

Section 1.7 contains a discussion and conclusion. All proofs are relegated to Appendix A.

1.2 Model

First, we describe the underlying bandit model. After that, main concepts of the network

structure are outlined and the timing and information structure are specified. With the
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help of a short example we briefly show how a network structure affects updating rules.

Finally, strategies as well as the equilibrium concept are discussed.

1.2.1 A two-armed bandit model

The model is based on the two-armed exponential bandit model as described by KRC or

more specifically the discrete time version thereof by HRS. There are agents i ∈ N and we

denote the cardinality of N by n. Time is discrete and players discount future payoffs by

a common discount factor δ ∈ (0, 1).

Players can experiment with an uncertain technology. To be more precise, in each time

period t = 1, ..., T each agent is endowed with one unit of a perfectly divisible resource

(e.g., effort or money) that can be allocated between a risky and safe technology (which

correspond to the risky and the safe arm of two-armed bandit machine). Let φi,t ∈ [0, 1]

denote the fraction of the unit resource that is allocated to the risky arm and 1 − φi,t is

allocated to the safe arm. Subsequently we will refer to φi,t as experimentation effort or

experimentation intensity, however, φi,t can be also interpreted as R&D investment.

The safe arm yields a fixed deterministic payoff normalized to 0. The risky arm (de-

noted by R) yields an uncertain reward Xi,t ∈ {0, XH} with XH > 0. The distribution of

the risky payoffs is independent across players and time and only depends on the state

of the world, which is either good (θ = 1) or bad (θ = 0) for all players. In the bad state of

the world the probability of obtaining a high payoff XH is zero. If the state of the world

is good, R yields a high payoff XH with positive probability. This probability is propor-

tional to the level of effort invested and given by φi,tπ, where π > 0. Consequently, the

first high payoff realization (also called a breakthrough) perfectly reveals that the risky

arm is good. Further, investing into the risky arm is costly and costs are proportional

to effort invested. That is, an agent choosing effort level φi,t pays costs of φi,tc at time t

where c > 0. Thus, φi,t is a pure action that on the one hand determines the costs an agent

has to pay for experimenting with the risky technology and on the other hand scales the

probability of success.

In any given time period the expected risky payoff conditional on the state of the

world equals −φi,tc if the state is bad and φi,tπXH − φi,tc if the state is good. In what
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follows we will denote the expected low payoff −c by E0 and the expected high payoff

πXH − c by E1. Additionally to the fact that E0 < 0 we assume that E1 > 0, which means

that it is optimal for all players to use the risky arm if θ = 1 and use the safe arm if θ = 0.

Players hold a belief p about the risky arm being good, and it is assumed that they

start with a common prior. Agents influence each other only through the impact of their

action on the belief of others, meaning there are only informational externalities and no

payoff externalities. In the model of HRS and KRC all players interact with everyone else

in the society and hence agents hold a common posterior belief. This will no longer be

true when players interact only with a subset of society. A player’s belief depends on

whether she learns about a breakthrough. Once she does, her uncertainty about the type

of the arm is resolved and the posterior belief jumps to 1. As long as agents experiment

without learning about a breakthrough, beliefs are updated according to Bayes’ rule and

decrease (no news is bad news). Players are said to experiment if they use the risky arm

before knowing its type.

1.2.2 Introducing a network structure

Given a set of nodes N (representing individuals), a network or graph g is an n× n inter-

action matrix that represents the relationships in the society. The typical element of g is

denoted by gij ∈ {0, 1}. If gij = 1, a link between i and j exists and implies that agent i

observes agent j’s actions and outcomes immediately without delay. The matrix is sym-

metric (gij = gji), meaning links are undirected, and always has 1 on the main diagonal

(every individual can observe her own actions and outcomes, i.e., gii = 1 for all i). The

structure of relations is assumed to be common knowledge. If a link between two indi-

viduals exists, those agents are considered to be neighbors. The neighborhood of agent i is

denoted by Ni and defined as Ni(g) = {j 6= i : gij = 1}.

Subsequently a fixed interaction structure g will be imposed. The game is analyzed in

three different network structures: the complete network2 as a benchmark case; the ring,

an incomplete but regular3 structure; and the star network with one player in the center

and all other n− 1 players only connected to the central player (see Figure 1.1).
2A complete network is a network in which every agent is connected to everyone else.
3Regular networks are networks where all players have the same number of neighbors.
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(a) Complete Network (b) Ring Network (c) Star Network

Figure 1.1: Network structures for n = 6.

1.2.3 Timing and information structure

The timing of the game is as follows: agents start in t = 1 with a common prior belief p1.

Each agent chooses an experimentation intensity or effort φi,1 ∈ [0, 1], determining how

much effort is invested in the risky option. At the end of t = 1 players observe their own

outcomes as well as the actions and outcomes of their neighbors and update their prior

accordingly to pi,2. Those agents who have not observed a success choose φi,2 ∈ [0, 1]. That

is, φi,2 is the experimentation effort conditional on not having observed a breakthrough

in t = 1. Agents then observe outcomes and actions in their neighborhood and exchange

verifiable reports about previous experiments by unobserved agents, i.e., in t = 2 agent i

knows φm,1 as well as Xm,1 for all agents m ∈ Nj\Ni where j ∈ Ni. This process of infor-

mation transmission continues in the subsequent periods. Agents do not need to draw

inferences from the actions of their neighbors as they receive this information through

the report. The exchange of reports in our game takes place automatically and agents can

neither choose whether they want to exchange reports nor the information these reports

contain.4 That is, agents can only choose their experimentation effort φi,t.

Formally, agent i’s information at a given point in time t consists of

Ii,t = {Hi,t, ri,t},

where Hi,t = {φi,1, Xi,1, ..., φi,t, Xi,t} is the complete history of actions and outcomes for

agent i up to time t and ri,t = (ri,1, ..., ri,t) is the history of reports agent i received. Each

4If agents are allowed to freely choose any message, they may find it optimal to report a breakthrough

although there was none in order to induce additional experiments. See HRS for a strategic experimentation

game in which payoffs are privately observed and agents exchange cheap talk messages.
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element ri,t is a vector that contains for each agent j ∈ Ni the history Hj,t up to this point

in time as well as the reports j received up to t− 1, i.e., rj,t−1.

For t > T agents cannot experiment anymore, i.e., they are restricted to the safe option

(φi,t = 0 for all t > T ) if they did not learn about a success up to time T . Information

diffusion still takes places after T and agents can switch to the risky option in case they

learn that the state of the world is good.5 After learning about a breakthrough the agent

continues to use the risky option forever.

As soon as the network is incomplete at least some of the agents do not possess com-

plete information about (past) actions and payoffs of others. Consequently, when inter-

acting with their neighbors, agents obtain information through them about (past) actions

and payoffs of unobserved agents and use this information to make inferences about

the true state of the world. In incomplete networks the probability of learning about a

breakthrough at a given point in time depends on the entire structure of relations, and in-

formation about a breakthrough will travel along the paths in the network. This implies

that players will not necessarily hold a common belief about the state of the world. We

will illustrate the impact of the network structure on the updating of beliefs with the help

of a short example.

1 2 3

Figure 1.2: The star network, n = 3.

Example 1 There are three agents i = 1, 2, 3, whose connections can be described by

the following interaction matrix (see Figure 1.2)

g =


1 1 0

1 1 1

0 1 1

 .

5Restricting the experimentation period allows us to solve for the equilibrium experimentation effort

by backward induction. Besides this, in many situations arbitrarily long experimentation might not be

possible. For example, research funds are often granted for a certain time period and not prolonged in

the absence of a success or new (risky) technologies with more promising success probabilities will cause

agents to stop experimenting with a less attractive alternative.
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As g2j = 1 for all j ∈ N, agent 2 has complete information and can observe all actions and

payoffs at any point in time. The other two agents only observe agent 2 and their own

actions and payoffs, and they receive information through agent 2. A success by agent

2 immediately reveals to everyone that the risky arm is good. If agent 1 has a break-

through, only 1 and 2 know about it. However, agent 3 learns about the breakthrough

through agent 2 so that agent 3 knows about it one period later. As long as there is no

breakthrough, agents update their beliefs depending on how many unsuccessful experi-

ments they learn about. That is, player 2 updates her belief according to

p2,t+1 =

p2,t

3∏
i=1

(1− φi,tπ)

p2,t

3∏
i=1

(1− φi,tπ) + 1− p2,t

if no breakthrough occurs, where
3∏
i=1

(1 − φi,tπ) reflects the experiments conducted by 2

and her neighbors. The numerator is the probability of not observing a breakthrough

on a good risky arm and the denominator gives the total probability of not observing a

breakthrough. In case of a breakthrough the posterior jumps to 1. Player 1 updates her

belief according to

p1,t+1 =

p1,t

2∏
i=1

(1− φi,tπ)(1− φ3,t−1π)

p1,t

2∏
i=1

(1− φi,tπ)(1− φ3,t−1π) + 1− p1,t

,

if there is no breakthrough. At time t agent 1 observes the outcome of her own experi-

ment as well as agent 2’s experiment. While agent 1 does not observe agent 3’s current

experiment she gets informed about the experiment performed in t−1, which is captured

by the term (1− φ3,t−1π). Agent 3’s belief at time t is derived analogously.

1.2.4 Strategies and equilibrium concept

Players are fully rational and maximize their expected payoffs. In period t, agent i obtains

a payoff of φi,tXi,t, with Xi,t ∈ {0, XH}, and player i’s total expected (normalized and

discounted) payoff is given by

(1− δ)E

[
∞∑
t=1

δt−1φi,tXi,t

]
, (1.1)
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where the expectation is taken w.r.t. pi,t and φi,t. Players are restricted to pure strategies

that only depend on payoff relevant information. In the complete network this corre-

sponds to the Markov perfect equilibrium with the common posterior belief as the state

variable. In incomplete network structures the agents’ strategies depend on the state of

the world as described by the past beliefs of the agents and additional information about

the network structure and the positions of the agents in the network. In what follows we

restrict attention to equilibria in which agents who are symmetric with respect to their

position in a network use symmetric strategies.

1.3 The empty and the complete network

Before we analyze experimentation in incomplete networks we first explain how the ex-

perimentation problem is solved by a single agent. After that, we look at the model with n

agents, where each individual can observe everyone else. Expressed in terms of networks

this corresponds to the empty and the complete network.

1.3.1 The empty network

The agent maximizes expected payoffs by choosing a sequence of actions {φi,t}Tt=1 in t = 1,

where φi,t+1 is the effort chosen in t+1 conditional on not having observed a breakthrough

until time t. The expected payoff at time t can be written recursively as

U(pt) = φi,t(1− δ)Ept + δE1ptφi,tπ + δ(1− ptφi,tπ)U(pt+1), (1.2)

with Ep = E1p+ (1− p)E0. The agent’s posterior belief is given by

pi,t+1 =
pi,t(1− φi,tπ)

1− pi,tφi,tπ
(1.3)

if she does not observe a breakthrough. The posterior jumps to 1 after a success. In

expression (1.2) the first part, φi,t(1−δ)Ept , is the expected and normalized current payoff

the agent obtains in period t by exerting effort φi,t. A good risky arm generates a payoff

of E1, while a bad risky arm gives E0. The remaining terms represent the discounted

expected continuation payoff. The continuation payoff is E1 with the probability ptφi,tπ

that the risky arm is good and a breakthrough occurs. If the agent does not observe a
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success she can experiment again in t+1. The probability of not observing a breakthrough

consists of the probability that the risky arm is bad, 1 − pt, and the probability that it is

good, but the agent nevertheless did not have a breakthrough, pt(1− φi,tπ).

For a given prior the expected (normalized) payoff can also be written as

U(p1) = (1− δ)

{
(1− p1)E0

T∑
t=1

δt−1φi,t + p1E1

(
1 +

δπ

1− δ

) T∑
t=1

δt−1φi,t

t−1∏
r=1

(1− φi,rπ)

}
, (1.4)

and consists of two parts. First, the player obtains a low expected payoff E0 in every

period she experiments, if the state of the world is bad. Second, if the state of the world is

good, the agent may obtain a high payoff. More precisely,
t−1∏
r=1

(1−φi,rπ) is the probability of

not having had a success up to period t andE1
δπ

1−δ is the discounted expected continuation

payoff after a breakthrough. The expected payoff is linear in the prior p1 and in effort, i.e.,

linear in each element of the sequence {φi,t}Tt=1. Linearity in effort implies that in case

expected payoffs of experimenting in period t are strictly positive, the risky option is

strictly preferred to the safe option and the agent allocates the entire resource to the risky

option, i.e., φi,t = 1. If expected payoffs of experimenting are negative it is optimal not to

experiment and the agent chooses φi,t = 0. In case expected payoffs of experimenting are

equal to zero, the agent is indifferent between all φi,t ∈ [0, 1].

Expected payoffs are increasing in the belief and the belief decreases over time in the

absence of a success. Thus, the agent experiments for optimistic beliefs and stops for

pessimistic beliefs. At time T the continuation payoff U(pT+1) = 0 if there was no success

so far and the payoff of experimenting one more time, (1− δ)EpT + δπE1pT , is higher than

the expected payoff of stopping for any belief pT greater or equal to

pa =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π
, (1.5)

where a stands for autarky. Using backward induction we can solve for φT−1 given φT

and show that it is never optimal to postpone experimentation as future payoffs are dis-

counted. This means that for pessimistic prior beliefs the agent never experiments, for

more optimistic priors the agent experiments only in t = 1, and so forth, where experi-

menting one more time at time t is optimal if pt ≥ pa (see Figure 1.3).

Lemma 1.1. Each period a single agent either uses the safe arm exclusively or the risky arm
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exclusively, and for t ≤ T her action only depends on the belief in the given period, that is,

φai,t =

 1 for pt ≥ pa,

0 otherwise.

U(·)

p1
p1 = pa p1 = p∗

U(1, 1)

U(1, 0)

Figure 1.3: Expected payoffs of experimenting for the single agent. U(1, 0) represents

the expected payoff of experimenting in t = 1 only and U(1, 1) the expected payoff of

experimenting in t = 1, 2 only. The point of intersection of U(1, 0) with U(1, 1), denoted

by p1 = p∗, is the prior belief at which p2 = p∗(1−π)
1−p∗π = pa.

The single agent’s strategy depends only on the current belief, as this belief captures

all payoff-relevant information. Agents stop experimenting at pa > 0, which means that

it is possible that they abandon the risky arm although it is good. The cut-off belief pa

decreases in δ, which means that as agents are getting more patient, complete learning

becomes more likely. That is, the final posterior belief in case all experiments fail is smaller

and hence the probability of mistakenly switching from the risky to the safe arm although

the risky arm is good decreases. We will subsequently refer to this final posterior also as

the precision of learning and say that learning is more precise the lower this final posterior.

1.3.2 The complete network

In a complete network each player maximizes her expected utility given her belief and

the strategies of the other players. Let φ̃−i,t denote
n∏
j=1

(1 − φj,tπ) for all j 6= i. That is,

φ̃−i,t represents the probability that none of the agents j 6= i has a breakthrough at time t.
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Agent i’s expected payoff at time t is given by

Ui(pt) = φi,t(1− δ)Ept + δE1pt(1− φ̃−i,t(1−φi,tπ)) + δ
(

1− pt(1− φ̃−i,t(1− φi,tπ))
)
Ui(pt+1),

(1.6)

where

pt+1 =
ptφ̃−i,t(1− φi,tπ)

ptφ̃t(1− φi,tπ) + 1− pt
. (1.7)

The continuation payoff of agent i now also depends on the actions of the other players.

Otherwise, the problem is similar to the single agent, that is, payoffs are linear in the belief

and in effort. Proposition 1.1 describes the optimal experimentation effort in a symmetric

equilibrium.

Proposition 1.1. In the symmetric equilibrium in a complete network with n agents

(i) the common strategy for t ≤ T is given by

φct =


1 for pt ∈ [pc, 1],

1
π
− 1

π

(
(1−δ)|E0|
δE1πpt

− (1−δ)(|E0|+E1)
δE1π

) 1
n−1

for pt ∈ (pa, pc),

0 for pt ∈ [0, pa],

(1.8)

where

pc =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− π)n−1
;

(ii) there is at most one time period in which φct ∈ (0, 1).

The players’ strategies depend only on the common belief pt as this belief captures

all payoff relevant information (actions and payoff realizations) up to time t. An agent’s

experimentation effort at time t depends on the current (and future) actions of the other

players which are determined by the current belief. Any deviation will be captured by

the belief and we assume that after a deviation every agent plays optimally given the

common posterior.

There exists an interval of beliefs such that in a symmetric equilibrium players simul-

taneously use both arms. In this interval φct is chosen such that agents are indifferent

between the risky and the safe arm, or to be more precise between all φt ∈ [0, 1]. There

exists an upper cut-off belief, pc,which is the belief above which agent i experiments with

intensity 1 even if all others also experiment with full intensity. Starting from pc agents
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decrease their experimentation intensity as the belief decreases, down to the point where

φct = 0, which holds for any belief below pa. Figure 1.4 depicts the equilibrium strategy.

1

1p̄cpa

φct

pt

Figure 1.4: Experimentation effort in a symmetric equilibrium in the complete network

(π = 0.2, δ = 0.9, n = 12, E1 = 1, E0 = −1, pa ≈ 0.26 and p̄c ≈ 0.46).

Several features of the equilibrium experimentation strategy are worth noting. First,

there is at most one time period in which agents simultaneously use both arms. In fact,

for any n ≥ 2, n failed experiments from p̄c generate a posterior belief below pa, and the

common effort φc(pt) at beliefs pt ∈ (pa, p̄c) also causes the posterior to fall below the sin-

gle agent cut-off if there is no success. Second, agents do not have an incentive to delay

any experiments: if φct > 0, then φct−1 = 1. Third, the upper cut-off pc is increasing in n,

whereas the lower threshold is given by pa. Social optimality requires experimentation

beyond the single agent cut-off, pa, since agents benefit from each others experimenta-

tion effort. However, agents do not experiment below pa and even stop experimenting

with full intensity earlier as the number of agents increases, which is a particularly stark

manifestation of the free-riding effect (see also HRS or KRC).

1.4 The ring network

Let us now turn to the strategic experimentation problem when agents are located on a

ring. In the ring network every agent has two direct neighbors. As players are symmetric
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there again exists a symmetric equilibrium. The underlying structure is illustrated in

Figure 1.1b for n = 6.

Expected payoffs in the ring network for a given prior and strategy profile are

Ui(p1) = φi,1(1− δ)Ep1 + δE1p1[1− (1− φj,1π)2(1− φi,1π)]

+δ[1− p1 + p1(1− φj,1π)2(1− φi,1π)]Ui(p2);

as we are solving for symmetric equilibria, we are assuming here that all agents j 6= i use

the same strategy. The term

Ui(p2) = φi,2(1− δ)Ep2 + δE1p2[1− (1− φj,2π)2(1− φi,2π)(1− φj,1π)2]

+δ[1− p2 + p2(1− φj,2π)2(1− φi,2π)(1− φj,1π)2]Ui(p3),

as well as Ui(p3), Ui(p4) and so on, is determined by the information about past exper-

iments traveling through the network. In t = 1 the agents start with a prior belief p1,

choose their experimentation intensity φi,1 and receive their payoffs. Then each agent

either knows that the state of the world is good if there was a breakthrough in her neigh-

borhood, or she chooses her optimal experimentation intensity φi,2 based on her updated

belief pi,2. That is, with the probability that at least one experiment agent i learns about in

t = 1 is successful, p1[1− (1− φj,1π)2(1− φi,1π)], she gets a continuation payoff of E1 from

the next period onwards. These are the two experiments of the neighbors as well as the

own experiment. In case all these experiments were unsuccessful, she and her neighbors

can experiment again in t = 2. Further there is the chance that neighbors of neighbors

had a breakthrough in t = 1 about which agent i will learn in t = 2. That is, in t = 2 the

agent receives information about the outcome of the first period experiment of the neigh-

bors of neighbors. In Ui(p2), the factor (1− φj,1π)2 in 1− (1− φj,2π)2(1− φi,2π)(1− φj,1π)2

represents the experiments of neighbors of neighbors in t = 1, (1− φj,2π)2 the two exper-

iments of the direct neighbors in t = 2, and 1 − φi,2π the own experiment in t = 2. This

process continues until either all agents stopped and all information has reached agent

i, or every agent knows that the state is good. The information transmission takes the

longer the more players there are. The posterior belief of an agent, who did not observe a
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breakthrough so far, for symmetric actions is given by

pi,t+1 =

pi,t(1− φri,tπ)3
min{t−1,d−1}∏

l=1

(1− φri,t−lπ)2

1− pi,t + pi,t(1− φri,tπ)3
min{t−1,d−1}∏

l=1

(1− φri,t−lπ)2

, (1.9)

where d denotes the diameter of the network.

In contrast to the complete network, equilibrium cut-off beliefs vary with time. This

can be ascribed to the fact that after one period of experimentation, information is travel-

ing through the network and agents anticipate that this information will reach them. For

example, in t = 2 the lower cutoff belief pr
2

is above pa, because of the two experiments

conducted by neighbors of neighbors in t = 1 that agent i learns about in t = 2. In or-

der to analyze the equilibrium behavior of the agents we introduce the expression Irt . I
r
t

represents the difference in expected payoffs from experimenting with full intensity and

not experimenting at all for symmetric actions of the other players in period t with no

experimentation in t+ 1. This means that Irt > 0 implies that payoffs from experimenting

are higher than payoffs from not experimenting in t and at Irt = 0 agents are indifferent.

Proposition 1.2 describes the symmetric equilibrium in the ring network. The expression

for Irt and the equilibrium cut-off beliefs can be found in Appendix A.

Proposition 1.2. In the symmetric equilibrium in the ring network for t ≤ T each player chooses

the following action:

• φrt = 1 for pi,t ∈ [prt , 1],

• φrt = 0 for pi,t ∈ [0, pr
t
], where pr

1
= pa and,

• φrt ∈ (0, 1) is defined uniquely by the root of Irt on [0, 1] for pi,t ∈ (pr
t
, prt ) and chosen

such that each player is indifferent between all φt ∈ [0, 1] for symmetric actions of the other

players. There is at most one time period in which φrt ∈ (0, 1).

The agents’ actions depend on their belief about the state of the world. In contrast to

the complete network, agents in the ring network do not hold a common posterior belief.

The threshold beliefs of the agents depend on the state of the world in period t − d + 1,

where the state of the world is described by a vector of beliefs and corresponding network
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positions for each agent. The diameter of the network, d, determines the maximum delay

in the network. Consequently at time t the belief (together with the network position) of

each agent in the network at time t − d + 1 is common knowledge and all information

up to time t − d + 1 can be ignored.6 The best response of agent i depends on the state

of the world at time t − d + 1 as well as on her private information, i.e., her own private

belief at time t, the beliefs of her direct neighbors in t− 1 and so forth. When anticipating

the actions of the other players, each player assumes that everyone plays a best response

given the commonly known state in t− d+ 1.7

As can be seen in Proposition 1.2 the lower cut-off below which experimentation

ceases in the first period is equal to the single agent cut-off. The upper cut-off in the

ring

pr1 =
(1− δ)|E0|

(1− δ)(|E0|+ E1) + δE1π[(1− π)2 − [1− (1− π)2]
∑d−1

t=1 δ
t(1− π)2t]

is smaller than the upper cutoff in the complete network pc with the difference pc − pr1

monotonically increasing in n. This difference increases in the number of players because

information needs longer to be transmitted in the ring. The longer agents have to wait

for information, the more likely they will find it optimal to experiment themselves in the

meantime.

We are interested in the difference between the complete network and the ring in terms

of experimentation effort in equilibrium. Proposition 1.3 below shows that in the ring

network effort is never lower than in the complete network. In t = 1 for high beliefs

all agents in both networks experiment, for pessimistic beliefs no one experiments and

for intermediate beliefs where agents use both options, the experimentation intensity is

higher in the ring. This shows that agents compensate a worse possibility to learn from

others through increased own effort. Figure 1.5 illustrates this finding.

If all experiments in t = 1 fail, beliefs in the two networks in t ≥ 2 are different as

agents in the complete network are already more pessimistic. Taking the difference in

6For t < d it is the state of the world in t = 1 that is commonly known by all agents.
7Note that this implies that the threshold belief does in fact not depend on time and is constant for any

d ≤ t ≤ T.
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1

1p̄cp̄r1pa

φ1

p1

Figure 1.5: Equilibrium experimentation effort in a ring network (dashed line) and the

complete network (solid line) in t = 1 (π = 0.2, δ = 0.9, n = 12, E1 = 1, E0 = −1,

pa ≈ 0.26, p̄c ≈ 0.46 and p̄r1 ≈ 0.34).

posterior beliefs into account, it can be shown that experimentation effort in the ring and

the complete network is either the same, or that effort is higher in the ring. To compare

efforts in t ≥ 2 across different networks, we express beliefs in terms of pct . This means

that we make use of the fact that in equilibrium the relationship between the posterior

beliefs in the two networks is given by

pct =
prt (1− π)yt−1

prt (1− π)yt−1 + 1− prt
, (1.10)

where

yt = (n− 3)t− 2

min{t−1,d−1}∑
x=1

(t− x) (1.11)

is the difference between the number of experiments an agent in the complete network

observed and the number of experiments an agent in the ring observed until time t (if

everyone experiments until time t with full intensity).8

8Note that the expression for yt in (1.11) describes the situation when n is odd. For an even number of

players the term 1{t>d}(t− d) has to be added.
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Proposition 1.3. Experimentation intensities in the symmetric equilibrium in the ring network

are at least as high as in the symmetric equilibrium in the complete network. More precisely,

φrt > φct

φrt = φct

for pct ∈ (p̃r
t
, pc),

for pct ∈ [0, p̃r
t
] ∪ [pc, 1],

for t ≤ T , where

p̃r
t

=
pr
t
(1− π)yt−1

pr
t
(1− π)yt−1 + 1− pr

t

≤ pa.

Over certain intervals of beliefs agents in the ring network exert higher effort than

agents in the complete network. Further, agents in the ring network experiment in t ≥ 2

at beliefs for which the posterior after tn failed experiments is below pa. That is, p̃r
t

is the

posterior belief in the complete network pct at time t that corresponds to a posterior of pr
t

in the ring network. If information arrives with delay, agents might be better off experi-

menting themselves instead of waiting for information generated by others. However, as

this information will eventually reach them, the final posterior belief in the ring network

can be more pessimistic than in the complete network. That is, the probability of mis-

takenly abandoning a good risky project decreases and learning is more accurate. This

is in line with the finding of Bimpikis and Drakopoulos (2014) that delaying information

revelation increases experimentation. The speed of learning, measured by the number of

time periods until information has traveled to every node in the network, decreases due

to the incomplete network structure. Free-riding, however, is reduced as players increase

effort over certain intervals of beliefs when information arrives with a delay.

1.5 The star network

To obtain a better understanding of the role of different interaction structures, we now

turn to the star network to explore the impact of asymmetric positions on equilibrium

experimentation. In the star network one player, called the hub, is located in the center

and has a link to each of the other n − 1 players. The players at exterior positions, also

called peripheral players, are only connected to the hub. The expected payoff of the hub
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is given by

Uh(pht , p
s
t) = φht (1− δ)Epht + δE1p

h
t

(
1− (1− φht π)

∏
i 6=h

(1− φsi,tπ)

)
+

δ

(
1− pht + pht (1− φht π)

∏
i 6=h

(1− φsi,tπ)

)
Uh(pht+1, p

s
t+1),

where

pht+1 =

pht (1− φht π)
∏
i 6=h

(1− φsi,tπ)

1− pht + pht (1− φht π)
∏
i 6=h

(1− φsi,tπ)
,

and

pst+1 =

pst(1− φht π)(1− φsi,tπ)
∏
j 6=i,h

(1− φsj,t−1π)

1− pst + pst(1− φht π)(1− φsi,tπ)
∏
j 6=i,h

(1− φsj,t−1π)
.

For the agents in the periphery we have

U s
i (pst , p

h
t ) = φsi,t(1− δ)Epst + δE1p

s
t

(
1− (1− φht π)(1− φsi,tπ)

∏
j 6=i,h

(1− φsj,t−1π)

)
+

δ

(
1− pst + pst(1− φht π)(1− φsi,tπ)

∏
j 6=i,h

(1− φsj,t−1π)

)
U s
i (pst+1, p

h
t+1).

Players are no longer symmetric and hence an equilibrium in which all players use the

same strategy does not exist. In Proposition 1.4 we construct an equilibrium where pe-

ripheral players use symmetric strategies and the hub exerts less effort than agents in a

symmetric equilibrium in the complete network. More precisely, the hub exerts full effort

until pc and does not experiment at all for beliefs below pc. The peripheral players exert

higher effort than the players in the complete network in equilibrium.

In the star network the cutoff beliefs in t = 1 differ from later periods in which the

peripheral agents anticipate the arrival of information generated by unobserved players

in the previous period. For t ≥ 2 in every period the peripheral agents learn about n − 2

experiments with one period delay. The diameter of the star network d = 2 and conse-

quently the state of the world in t− 1 is commonly known by all players. Proposition 1.4

describes the equilibrium where Ist is the respective counterpart to Irt for the peripheral

players in the star network. The expressions for the cut-off beliefs and Ist can again be

found in Appendix A.
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Proposition 1.4. The strategic experimentation game in the star network where peripheral agents

use symmetric strategies has an equilibrium in which the experimentation intensity of the hub for

t ≤ T satisfies

φht =

 1 for pt ∈ [pc, 1],

0 otherwise.

For the peripheral players equilibrium experimentation intensities in t = 1 are

• φs1 = 1 for p1 ∈ [ps1, 1],

• φs1 = 0 for p1 ∈ [0, pa],

• φs1 ∈ (0, 1) is defined uniquely for p1 ∈ (pa, ps1) by the root of Is1 on [0, 1] and is chosen such

that each peripheral player is indifferent between all φ1 ∈ [0, 1] for symmetric actions of the

other peripheral players and φh1 = 0.

Experimentation intensities for t = 2, .., T are

• φst = 1 for pt ∈ [ps2, 1],

• φst = 0 for pt ∈ [0, ps
2
],

• φst ∈ (0, 1) is defined uniquely for pt ∈ (ps
2
, ps2) by the root of Is2 on [0, 1] and is chosen such

that each peripheral player is indifferent between all φt ∈ [0, 1] for symmetric actions of the

other peripheral players and φht = 0.

In equilibrium there is at most one time period in which φst ∈ (0, 1).

Agents are no longer in symmetric positions and the hub faces a different problem

than the peripheral players. In particular, the central player is completely informed about

all experiments like in a complete network. Hence, it is optimal for the hub to experiment

with full intensity for any belief above p̄c. If the peripheral players exert higher effort than

agents in the complete network, that is if φst > φct , the best response for the hub is not to

experiment at all. As it can be shown that p̄s1 < p̄c, we know that in the interval [p̄s1, p̄
c) the

hub does not experiment. Further, the best response for the peripheral players to φh1 = 0

in (pa, p̄c) is to exert higher effort than agents in the complete network. We will refer to

a strategy profile in which some agents experiment while others do not exert any effort
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also as specialization.9 For priors above or below the interval (pa, p̄c) there will be full or

no experimentation respectively. This is illustrated in Figure 1.6.

1

1p̄cp̄s1pa

φ1

p1

Figure 1.6: Equilibrium experimentation effort of the peripheral players in the star net-

work (bold dotted line), the central player in the star network (dashed line) and in a

complete network (solid line) in t = 1 (π = 0.2, δ = 0.9, n = 12, E1 = 1, E0 = −1,

pa ≈ 0.26, p̄c ≈ 0.46 and p̄s1 ≈ 0.42).

Remark 1. For some values of the model parameters there exists a second equilibrium in which the

peripheral players use symmetric strategies. In t = 1 in this equilibrium the hub exerts full effort

for beliefs p1 ∈ [pa, ps1) ∪ [pc, 1] and no effort for p1 ∈ [0, pa) ∪ [ps1, p
c). This means that the effort

of the hub is non-monotonic in the belief. The peripheral agents exert full effort for beliefs above

ps1. For any belief in [pa, ps1) their experimentation intensity is lower than the experimentation

intensity that makes the hub indifferent, that is, φs1 < φc1. The second equilibrium only exists if

n is small and δ and π are large. For this reason we will subsequently restrict attention to the

equilibrium described in Proposition 1.4 which exists for all parameter values.

Whether there will be more experiments in the star or the complete network depends

on the possibility of the peripheral agents to counterbalance the decreased experimenta-
9This terminology is taken from BK, who also refer to equilibria in the star network where some agents

contribute to the public good and others do not contribute as specialized.
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tion intensity of the hub. In the equilibrium described in Proposition 1.4 the experimenta-

tion effort of the hub is below or equal to the effort level of the peripheral players, that is

φht ≤ φst . For beliefs close to p̄c (i.e., pc− ε) the agents in the complete network experiment

almost with full intensity while hub does not experiment and the agents in the star net-

work cannot increase their effort any more. Consequently, for beliefs right below pc, total

experimentation effort is higher in the complete network. The interesting interval are

beliefs at which agents in both networks invest in both arms simultaneously. As will be

shown in Proposition 1.5, except for a combination of parameter values where n is small

and δ and π are large, overall experimentation intensities in the star network are higher

or equal to experimentation effort in the complete network in this interval of beliefs.

Proposition 1.5. Comparing effort exerted in the symmetric equilibrium in the complete network

and in the equilibrium in the star network of Proposition 1.4 we obtain

(n− 1)φs1 + φh1 = nφc1 for all p1 ∈ [0, pa] ∪ [pc, 1]

and

(n− 1)φst + φht = nφct for all pct ∈ [0, p̃s
2
] ∪ [pc, 1]

where

p̃s
2

=
ps

2
(1− π)n−2

ps
2
(1− π)n−2 + 1− ps

2

< pa.

For p1 ∈ (pa, ps1) there exists a strict subset Sn(p1) of [0, 1]2 such that

(n− 1)φs1 + φh1 > nφc1 if and only if (δ, π) ∈ Sn(p1).

Moreover, λ(Sn(p1))→ 1 as n→∞ with λ denoting the Lebesgue measure on R2. Similarly, for

t ≥ 2 and pct ∈ (p̃s
2
, p̃s2), where

p̃s2 =
p̄s2(1− π)n−2

p̄s2(1− π)n−2 + 1− p̄s2
,

there exists a strict subset Sn(pt) of [0, 1]2 such that

(n− 1)φst + φht > nφct if and only if (δ, π) ∈ Sn(pt)

and λ(Sn(pt))→ 1 as n→∞.
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The first part of Proposition 1.5 states the intervals of beliefs in which experimentation

effort in equilibrium in the complete network is equal to the star network, because there is

either no experimentation or all agents exert full effort. For beliefs outside these intervals

we know that φht = 0. The region Sn(p1) is defined as all combinations of δ and π for which

total effort in t = 1 in the complete network is strictly smaller than in the star network for

p1 ∈ (pa, p̄s1). By analyzing this expression (see Appendix A) numerically, one can see that

the value for δ below which (n− 1)φs1 ≥ nφc1 is in general "quite close" to 1. For example,

for n = 3, (n− 1)φs1 ≥ nφc1 as long as δ ≤ 8
9

even if π takes values arbitrarily close to 1. As

n increases, the threshold value for δ increases and already for relatively small n (n = 6)

δ ≤ 0.99 suffices to guarantee that (n− 1)φs1 ≥ nφc1 again assuming values of π close to 1.

The lower π, the higher is δ below which (n− 1)φs1 ≥ nφc1.

The total experimentation intensity in the interval where agents use both arms in the

star network, is higher in the star network except for a combination of parameter values

with high δ, high π and small n. That is, unless agents are very patient, effort in the star

is higher even though the hub does not experiment. This indicates that the peripheral

agents increase own efforts accordingly to outweigh the missing experimentation of the

hub as well as the payoff disadvantage that arises from delayed information transmission.

We now turn to a comparison of experimentation intensities in the ring and the star

network. As the number of agents increases, more information arrives with a greater

number of time lags in the ring. In the star network on the other hand, the delay does

not change if the number of players changes. Restricting attention to intervals of beliefs

in which neither φrt = φst = 0 nor φrt = φst = 1, we show in Proposition 1.6 that for small n,

experimentation intensities in the star network are no smaller than those in the ring while

for a large number of players it depends on δ and π.

Proposition 1.6. Comparing φst to φrt for all pt from the interval in which at least in one of the

two networks agents are indifferent between the safe and the risky option, we have that

(i) there exists nt ∈ N such that for all n < nt, φst ≥ φrt for all (δ, π) ∈ [0, 1]2 and

(ii) as n→∞ the region of (δ, π) in which φst ≥ φrt is a strict subset of [0, 1]2.
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δ

1

φs1 > φr1

0 1

Figure 1.7: Equilibrium experimentation effort in t = 1 in the ring network compared to

the star network for n→∞. In the light region φs1 > φr1 and in the dark region φs1 < φr1.

The first point of Proposition 1.6 tells us that for a small number of players effort in

the star is higher (in the interval of beliefs where agents use both arms) or equal to effort

in the ring. For a larger number of agents this is no longer true in general. Part (ii) of

the proposition says that as n becomes large, the set of (δ, π) for which effort in the star

network is higher becomes a strict subset of [0, 1]2. As a consequence of part (ii) and the

fact that φrt and φst intersect only at one belief (e.g., in t = 1 at pa), we can conclude that

there exists some finite natural number such that for all n above this number there exists

a non-empty set of parameters (δ, π) for which φst < φrt .

Proposition 1.6 shows that the effect of incomplete network structures on experimen-

tation intensities depends on the discount factor δ and the success rate π. Suppose in both

networks all agents experiment in t = 1. Then, in t = 1 peripheral agents in the star net-

work learn about one experiment fewer than agents in the ring network. For δ close to 1

this does not matter to these agents as it makes little difference to them at which point in

time information arrives. On the other hand, the closer δ is to zero, the more agents in the

star network care about this one experiment, making them increase own effort. Figure

1.7 compares φs1 and φr1 for n → ∞. In the light region φs1 > φr1 and vice versa in the dark

region. For example, φr1 > φs1 only if π is not too large. If the probability of a breakthrough

is low, it is relatively more likely that agents will learn about a breakthrough later in the

ring than in the star network. Thus, agents in the ring increase their effort to balance this

effect.
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Before turning to the question which network generates the highest welfare among

the three structures considered, let us briefly repeat the main findings of the previous

sections. First, we showed that agents increase own effort if information arrives with

delay as they are better off experimenting themselves instead of waiting for information

generated by others. Second, in irregular structures there can be specialization over some

intervals of beliefs where some agents experiment while others free-ride. Experimenting

agents increase their effort to outweigh the missing experiments as well as the delay in

the information transmission.

1.6 Welfare analysis

In the preceding sections it was shown that effort exerted in equilibrium varies with the

network structure. In this section we want to analyze the implications of these differences

for expected payoffs in equilibrium.

1.6.1 The optimal network

Assuming that it is costly to establish a communication or interaction structure, we are

now interested in which of the three networks would be chosen (before the agents engage

in the experimentation game) by a social planner who aims to maximize welfare given

the strategic behavior of the players. There are fixed costs k ≥ 0 per link that have to be

paid ex ante. The total number of links in network g depends on the network structure

and is n(n − 1)/2 in the complete network, n in the ring and n − 1 in the star network.

The main criterion to measure the performance of different structures are equilibrium

payoffs. Welfare is defined as the total expected payoff in equilibrium minus total costs

for building the infrastructure. For the complete network this is

W c(p1) = nU c(p1)− n(n− 1)

2
k.

For the other networks it is defined in an analogous way, that is W r(p1) = nU r(p1) − nk

and W s(p1) = (n − 1)U s(p1) + Uh(p1) − (n − 1)k. A network g ∈ {c, r, s} is optimal for a

given prior belief p1 and set of parameters (δ, π, k, n) if and only if

W g(p1) ≥ W g′(p1), for all g′ ∈ {c, r, s}.
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We write g � g′ if network g generates strictly higher welfare than network g′ and g ∼ g′

if W g(p1) = W g′(p1).

Proposition 1.7 below states which network is optimal when k = 0 and the prior belief

p1 is such that in case all experiments in t = 1 fail, there are no experiments in t = 2,

that is, p2 ≤ pg
2

for all g. For simplicity of exposition, in the subsequent analysis we

impose E1 = 1 and E0 = −1. Note that we do not include the empty network in our

analysis, which would be optimal for very high costs. Without the empty network, the

star network is optimal for sufficiently high costs. Moreover, the star network is strictly

optimal for a certain interval of priors even if links do not incur any costs.

Proposition 1.7. The following conditions determine which network is optimal for k = 0 and for

p1 such that in case all experiments in t = 1 fail, p2 ≤ pg
2

for all g :

(i) For p1 ∈ [0, pa] : c ∼ r ∼ s;

(ii) for p1 ∈ (pa, ps1] : s � c, r and the relation between c and r is given in (iii);

(iii) c ∼ r for p1 ∈ [0, pr1] and c � r for p1 ∈ (p̄r1, 1];

(iv) for p1 ∈ (ps1, p
c] : c � s if and only if

(1− δ)(2p1−1)+ δp1[(1−π)n−1[1+ δ(n−1)]+(1− δ)(n−1)(1−π)−n(1−φc1π)n] > 0.

(v) For p1 ∈ (pc1, 1]: c � r, s.

For p1 ∈ (pa, ps1] the complete network is never optimal even if costs for links are zero.

This result is somewhat surprising as one might think that it is optimal to have as many

links as possible if they are costless to allow a fast flow of information. However, in this

interval of beliefs the star network is strictly optimal for two reasons. First, average ex-

pected payoffs in the star (where the hub does not experiment) are higher than in the

complete network or the ring, because the hub does not bear the costs of experimenta-

tion but receives the informational benefits. Second, up to ps1 the peripheral players can

increase their experimentation effort so as to fully compensate for both the lack of exper-

imentation of the hub as well as the delay in the information transmission. Therefore, up

to this threshold, therefore, welfare in the star network is strictly higher than in the ring or
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the complete network. At some belief above this threshold this result is reversed and the

missing experiment of the central player implies that average expected payoffs are lower

in the star network than in the other networks. Corollary 1.1 summarizes this result.

Corollary 1.1. Specialization in the star network, where φh1 = 0 and φs1 > 0, can be beneficial as

well as detrimental to overall welfare.

Another interesting observation can be made by comparing the complete network to

the ring. For beliefs in the interval (pa, p̄r1] agents exert higher effort in the ring network

than in the complete network (see Section 1.4). More precisely, agents increase their effort

to exactly offset the payoff disadvantage resulting from the delay with which information

arrives. This means that expected payoffs in the ring and the complete network are iden-

tical for beliefs at which the players in the ring use interior experimentation intensities if

there are no costs for links.10 If all agents in both networks experiment with full intensity

agents learn faster in the complete network and are better off. This implies that, as stated

in Corollary 1.2, there exists a trade-off between delay and free-riding.

Corollary 1.2. In the selection of the optimal network structure there exists a trade-off between

the speed of learning and the accuracy of learning.

This trade-off is also apparent when looking at a situation where some agents exper-

iment in t = 2 after a round of failed experimentation in t = 1. It is possible that in

equilibrium in t = 2 only the peripheral players in the star network experiment. One

main advantage of the complete network compared to incomplete structures lies in the

speed of learning, making it increasingly attractive the stronger future payoffs are dis-

counted. In the interval of beliefs in which only the peripheral players experiment in

t = 2, whereas agents in other networks experiment only in t = 1, it can be shown that for

values of the discount factor δ close to 1, the star network is always optimal. On the other

hand, for δ close to 0, the complete network is optimal for k = 0. This comparison stresses

again the existing trade-off between learning faster and more precisely, or put differently,

between delay and free-riding. How this trade-off is resolved depends on the discount

factor.
10For k > 0 the ring network is strictly optimal in the interval (pa, p̄r1].
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Figure 1.8: Optimal networks for k = 0, n = 4 and p1 such that p2 ≤ pg
2

for all g if all

experiments in t = 1 fail, for different intervals of the prior. The dotted line between p̄s1

and p̄c1 indicates the belief at which peripheral players in the star network can no longer

compensate for the missing experiment of the hub and the delay in information transmis-

sion.

Whether a certain network is optimal, depends on the agents’ possibility to increase

their experimentation effort in order to compensate for the disadvantage of delayed in-

formation arrival in incomplete structures. For costs of links equal to zero, the complete

network can only be optimal for prior beliefs p1 such that φs1 = φr1 = 1, as otherwise

agents can increase their experimentation effort in order to outweigh the delayed arrival

of information. In the star network an additional effect comes into play, namely the pay-

off advantage of the non-experimenting hub, which explains why even for zero costs the

star is strictly preferred for low priors. At some belief in the interval (ps1, p
c
1] the periph-

eral players in the star can no longer compensate for the nonexperimenting hub and total

experimentation effort is lower than optimal. Figure 1.8 graphically illustrates for n = 4

which of the three networks is optimal on different intervals of priors.

A fast flow of information does not necessarily maximize welfare even if informa-

tion can be distributed to all players immediately at no cost due to the strong incentive to

free-ride. This contradicts the findings of Teece (1994) that innovation has to be associated

with a fast transmission of information. Information is a public good and the underpro-

vision of this public good can be ameliorated by delaying the arrival of information. Our

analysis confirms two results of BK. First, it shows that under certain circumstances spe-

cialization (that is, some agents exert effort while others free-ride) might benefit society,

and second, welfare can be higher in incomplete interaction structures. However, we can

also show the opposite effect, namely that for certain beliefs specialization can have a

negative impact on overall welfare.
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Network structures can also be interpreted as organizational structures that determine

the flow of information within an organization. When deciding on the optimal organiza-

tional structure (for example, centralized vs. decentralized structures), decision-makers

might pursue various objectives. For instance, if the objective is to minimize the costs

of information transmission, a centralized structure such as the star network is optimal.

Centralization enables a comparatively fast flow of information at lowest possible costs.

From the perspective of the management of a firm centralization additionally offers the

advantage that a central authority can accumulate and disseminate information.

1.6.2 The complete network with a specialist

The star network is strictly optimal for low prior beliefs in the interval where the hub does

not experiment, i.e., in the interval where the asymmetry of the network structure leads

to an asymmetry of actions. Asymmetric equilibria in the complete (or ring) network

will most likely generate higher welfare than the symmetric one (see KRC or Bramoullè,

Kranton, D’Amours, 2014). Consequently, it is not clear whether the star is still strictly

preferred once the restriction to symmetric actions in the complete network or the ring

is relaxed. In this section we want to find out whether the star network is still optimal

in case we allow for some asymmetry in the complete network. There are potentially

many asymmetric equilibria and a thorough characterization of these equilibria is in gen-

eral difficult. Hence, instead of focusing on asymmetric equilibria directly we introduce

asymmetry by exogenously imposing specialization: One agent in the complete network,

who will be referred to as the "specialist", never exerts any effort and this is commonly

known. All other agents choose the optimal experimentation effort prescribed by the

symmetric equilibrium of the experimentation game given the specialist.

For beliefs where the hub does not experiment, expected utility in the star network

is strictly higher than in the complete network with one specialist . To be more precise,

the expected payoff of the peripheral players in the star network is equal to the expected

payoff of the working agents in the complete network. Hence, any difference in payoffs

results from the difference between the hub and the specialist. Both of them have the

same number of direct neighbors, n − 1, and can observe them directly. The peripheral

agents, however, exert higher effort than agents in the complete network to counterbal-
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ance the delay with that information arrives. Thus, the probability of a success in the star

network is higher and as a consequence the hub obtains higher expected payoffs than the

specialist.

Proposition 1.8. For p1 ∈ (pa, ps1] expected payoffs in the star network are strictly higher than

expected payoffs in the symmetric equilibrium in the complete network with one non-working

specialist.

Proposition 1.8 implies that the star network is optimal for pessimistic priors even if

we allow for some asymmetry in the complete network. Thus, the star network does not

only generate higher welfare than the complete network because the network structure

leads to specialization, but because of a combination of specialization and delay.

1.6.3 Numerical example

In this section we present numerical results that complement the preceding analytical

discussion. While up to this point we focused on the role of the prior, we now want

to obtain a better understanding of the role of different parameters. In our numerical

example we show which network is optimal in a (π, δ)-grid given fixed values of the

other parameters.

Figure 1.9 illustrates the results. It shows which network is optimal for E0 = −1

and E1 = 1 if agents can only experiment in t = 1, 2. The results are calculated for

π ∈ [0.01, 0.99] and δ ∈ [0.01, 0.99] both in steps of 0.01. In white areas all networks are

optimal as in this region there is no experimentation (that is, we have indifference). Light

gray areas indicate all combinations of δ and π in which the ring network is optimal,

in dark gray the star network is optimal, and black means that the complete network is

optimal. The three panels on the left display the results for n = 5, while those on the

right have n = 25. In the first row p1 = 0.45 and k = 0, in the second row the prior belief

is increased to p1 = 0.96 while k = 0, and in the last row we look at p1 = 0.96 for costs

k = 0.001.

In Figure 1.9a we see that for low values of δ and π no network is strictly optimal,

as no agent experiments. For medium values of δ, e.g., δ = 0.4, we have indifference
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(a) p1 = 0.45, k = 0, n = 5.
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(b) p1 = 0.45, k = 0, n = 25.
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(c) p1 = 0.96, k = 0, n = 5.
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(d) p1 = 0.96, k = 0, n = 25.
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(e) p1 = 0.96, k = 0.001, n = 5.
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(f) p1 = 0.96, k = 0.001, n = 25.

Figure 1.9: Optimal networks for E0 = −1 and E1 = 1.
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for low values of π and the star network dominates for high π. As δ and π increase,

expected welfare is highest in the complete network. More precisely, in 1.9a the complete

network is optimal in 37.4% of the cases, the star in 17.6%, the ring network in 7.4%

and in 37.6% of the cases we have indifference. If we increase n to 25 (see Figure 1.9b)

the ring network is never optimal and the complete network is optimal for values of the

parameters where for n = 5 the star is optimal. The percentages change to 61.2% for

the complete network, 1.3% for the star and 37.5% for indifference. This implies that

although agents face better opportunities to free-ride on the experimentation of others in

the complete network, welfare is higher than in the incomplete networks.

In Figures 1.9c and 1.9d agents are very optimistic and experiment with certainty. That

is, there is no region of indifference. As expected, the complete network is optimal in this

case for a large combination of parameters (92.4% in 1.9c and 97.6% in 1.9d). However,

for intermediate values of π there exists an area in which the star network or the ring

generate higher welfare. Increasing the number of players to n = 25 shifts the region in

which the star network dominates to the left, that is, to lower values of π. Moreover, the

ring network is never optimal as there is too much delay.

In the last row in Figures 1.9e and 1.9f we introduce positive costs for links. Naturally,

the region in which the complete network is optimal shrinks for n = 5 and completely dis-

appears for n = 25. In fact, for n = 25 and k ≥ 0.001 the complete network is suboptimal

for all δ, π, and p1.

1.7 Discussion

In this chapter we analyzed a dynamic game of strategic experimentation in three dif-

ferent network structures, the complete network, the ring network and the star network.

Relative to the complete network agents in the ring network increase their experimen-

tation effort to balance the payoff disadvantage resulting from the delay in information

transmission. In the star network there is an equilibrium where the hub experiments with

full intensity up to a threshold belief and then stops completely. Although the peripheral

players increase their effort relative to the complete network in the interval where the
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hub stops "too early", for some beliefs they are not able to fully compensate for the non-

experimenting hub. Hence, depending on the belief this specialization where the hub

does not experiment can be beneficial as well as detrimental for society.

The obtained results offer insights into the incentives that drive the behavior of ratio-

nal agents. Taking research or innovation as examples, a welfare analysis of the model

provides insights which might be relevant to government authorities or companies for

structuring and subsidizing research projects. Objectives of decision makers can be man-

ifold as for instance, cost minimization, utility maximization, the maximization of the

speed of learning through fast information transmission or completeness (that is, more

precise learning which implies that the probability of mistakenly abandoning a good

risky arm is minimized). Different network structures have different effects on the out-

come of the experimentation game and consequently on welfare. While the star network

minimizes the costs for links, the complete network maximizes the speed of learning. In

which of the three networks learning will be most accurate depends on the prior belief

as well as the parameters of the model. In general, there exists a trade-off between faster

learning and more accurate learning.

Our analysis showed that it is possible to investigate details of rational learning pro-

cesses in a network without being restricted to focus on asymptotic results or introduce

some form of myopia or bounded rationality. Nevertheless, the model considered here

captures very particular learning situations due to its special structure with fully reveal-

ing breakthroughs. This implies that our results cannot be easily generalized to other

payoff generating processes. Another shortcoming of the analysis is the restriction to

symmetric equilibria which may not be innocuous. However, comparing expected pay-

offs in the star network to payoffs in the complete network with one non-working "spe-

cialist" showed that allowing for some degree of asymmetry does not change the basic

intuition of our results. In incomplete network structures the delay mitigates free-riding

and increases the probability of success, which may increase welfare. An incomplete net-

work generates strictly higher payoffs than the complete network only in case both forces,

delay and specialization, are present.

Despite the complexity network structures can create, we showed that they affect the
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behavior of agents in an intuitive way. This offers some suggestions as to how equilibrium

outcomes and strategies could be characterized in other settings (e.g., for other payoff

generating processes) as well. Further, the network structures considered in this chapter

can be understood as specific monitoring structures, and it would be possible to analyze

the strategic experimentation game for monitoring structures which are not derived from

networks. What should be clear, however, is that the empty and the complete network are

two opposite ends of the spectrum. Consequently, for symmetric monitoring structures

we expect the main conclusions of the network case to remain valid. Of course, it would

be desirable to obtain a generalization of the results for irregular structures as well, which

seems to be considerably more involved and will most likely imply specialization as in the

star network. The second equilibrium in the star network in which the central player uses

a strategy that is non-monotonic in the belief already points at the potential complexity

of equilibria in more complex network structures.
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Chapter 2

Innovation, intersectoral R&D spillovers

and intellectual property rights1

2.1 Introduction

The importance or profitability of a new idea or innovation often depends on how in-

novations in different areas complement each other. For example, the effectiveness of a

new drug in the treatment of a certain disease might depend on the availability of ma-

chines or tests to diagnose the disease at an early stage. The diffusion of new software or

applications depends on the ability of existing hardware to operate such programs. Pro-

duction of a new product might be facilitated if new machines are available or progress in

resource extraction lowers the costs of production. Park (2004) shows that manufacturing

R&D has a substantial intersectoral R&D spillover effect on the productivity growth of

the nonmanufacturing sector. Consequently, the profitability of innovation activities in

one field is linked to the success of developments in other areas and these intersectoral

R&D spillovers are the subject of our research.

In this chapter we offer a model to analyze situations in which the aforementioned

complementarities in the innovation process are present. We consider a situation where

firms operate in one of two sectors (for example, software and hardware). Each firm

can engage in research in its respective field of specialization where the profit that can

1This chapter originated from a joint research project in collaboration with Michael Metzger on comple-

mentarities in models of strategic experimentation.
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be earned from an invention depends not only on own effort or R&D investment, but

also on innovation efforts and outcomes in the other field. More precisely, we analyze

a game of strategic experimentation with externalities between different sectors. Our

model is based on the discrete time version of the exponential bandit model by Keller et

al. (2005) as offered in Heidhues et al. (2015). In games of strategic experimentation2 firms

commonly face identical two-armed bandit machines where the outcomes of the arms are

uncertain. Firms learn about the type of the arms by playing repeatedly and observing the

outcomes. This active learning is also called experimentation. In our interpretation firms

can invest in research projects of unknown quality which is either good or bad. A bad

project never leads to an invention and it is optimal not to invest, whereas investment in

a good project leads to a discovery with positive probability and investment is profitable.

Such a setup describes situations in which firms invest in research where they do not

know whether the research will be successful at all and if so, when they will observe a

success. Besanko and Wu (2010) refer to this as research projects facing "if" and "when"

uncertainty.

In what follows we analyze the innovation processes in two sectors where innovation

activities within one sector are considered as substitutes as in Keller et al. (2005). Inno-

vation activities in one sector, however, are complements to innovation activities in the

other sector. To be more specific, we assume that the payoffs in the first sector are in-

dependent of what happens in the second sector, while payoffs that can be earned from

an invention in the second sector are higher if there was a discovery in the first sector.

Hence, we will refer to the first sector as the independent sector and to the second sector

as the dependent sector.3

Economic policies that influence the R&D activities of firms can have unexpected con-

sequences if the policy maker is not aware of spillovers across sectors. For instance, the

2See Bergemann and Välimäki (2008) for a survey on multi-armed bandit models and their application

in economics.
3Given the findings of Park (2004) that manufacturing R&D has an intersectoral spillover effect on non-

manufacturing productivity growth while nonmanufacturing R&D does not have the same effect on man-

ufacturing productivity, we find it plausible to assume an asymmetric relationship between innovations

in the two sectors. This allows us to compare research projects that have a complementary character to

research projects without this feature.
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Federal Trade Commission (2011) [FTC] states that especially in the IT sector, patent no-

tification is characterized by a lack of transparency which might cause firms to postpone

investing. At the same time the U.S. National Science Foundation invests into ICT re-

search emphasizing the importance of this research for other fields.4 Hence, if policies are

implemented that increase transparency in the ICT sector, this affects other research areas

as well. In this chapter it is shown what effects one can expect to observe in the presence

of spillovers across sectors, which seems to be particularly relevant given the inter- and

multidisciplinary character of present day research. More precisely, besides analyzing the

effects of a change in intellectual property rights [IPR] on investment within a sector, we

as well study the impact on investment in a complementary sector. In particular, we want

to know how project choice (that is, which sector a firm selects) is influenced by intersec-

toral R&D spillovers, and how IPR that guarantee the optimal choice for independent

sectors differ from those for dependent sectors.

To answer these questions we analyze a dynamic two-firm model of R&D investment

with inter- and intrasectoral R&D spillovers. Our first finding is that whether a firm in

the dependent sector invests more in research in the presence of intersectoral spillovers

depends on how fast firms reach a belief about the viability of the research at which in-

vestment is no longer profitable. If the firm in the independent sector learns fast, it stops

investing earlier after a history of failures. This implies that a firm in the dependent sec-

tor knows sooner that it will not be able to obtain the high profit that results from two

complementary inventions. The firm then invests the same amount as without comple-

mentarities. On the other hand, if the firm in the independent sector makes a discovery or

learns comparatively slowly, research investment in the dependent sector in the presence

of complementarities exceeds investment without complementarities.

Similarly to Besanko and Wu (2010, 2013) we allow for different levels of intrasectoral

spillovers. Without intrasectoral spillovers only the firm making the discovery can profit

from it, while positive spillovers allow the unsuccessful firm to copy an invention and

4See CIF21 (Cyberinfrastructure Framework for 21st Century Science and Engineering). Also in the UK,

the (2010) report of the Department of Business, Innovation and Skills on the allocation of research funding

shows that research funds are dedicated to bring together ICT research with other areas (as e.g., medicine)

to enable multidisciplinary research.
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generate profits as well. The easier it is to imitate the invention of another firm (i.e., the

higher the level of intrasectoral spillovers), the more firms should invest in R&D from the

perspective of a welfare-maximizing social planner. However, R&D investment of strate-

gic firms decreases in the level of intrasectoral spillovers, because the easier it becomes to

imitate, the stronger is the incentive of firms to reduce own R&D investment and free-ride

on the R&D investment of the other firm.

After analyzing R&D investment for a given choice of sectors or research lines, we

concentrate on the interplay between inter- and intrasectoral R&D spillovers when firms

select the line of research in the beginning of the game. If welfare does not depend on

the level of intrasectoral R&D spillovers, a social planner prefers joint research in the

independent sector (to increase the probability of a discovery) for beliefs where strategic

firms pursue different lines of research. Whether the social planner prefers joint research

in the dependent sector depends on the level of intersectoral spillovers. More precisely,

the social planner faces a trade-off between increasing the probability of success in the

dependent sector through joint research, and having firms work in different sectors which

allows the firm in the dependent sector to obtain a higher payoff after two complementary

discoveries. Which effect dominates depends on the extra payoff associated with two

complementary innovations and the probability of a discovery. If welfare is increasing in

intrasectoral spillovers, the social planner prefers diversification if firms face a winner-

takes-all competition to avoid too much competition on one line. For perfect positive

spillovers the social planner prefers joint research in the independent sector, while joint

research in the dependent sector is only preferred if intersectoral spillovers are low.

Finally, we ask how firms can be encouraged to choose the socially optimal research

line. We assume that this decision can be influenced through the design of IPR, which

are interpreted as policies that influence the level of intrasectoral spillovers. If consumer

surplus is decreasing in the level of intrasectoral spillovers, imitating a successful inven-

tion in the dependent sector is exacerbated to encourage an entering firm to locate in the

independent sector and thereby create positive intersectoral R&D spillovers. If welfare

is increasing in intrasectoral spillovers, imitating an invention in the dependent sector is

facilitated to foster joint research.
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This chapter is the first to study intersectoral R&D spillovers in a model of innovation

with uncertainty. While Steurs (1995) studies intersectoral spillovers without uncertainty,

Besanko and Wu (2010, 2013) focus on the impact of uncertainty on R&D investment, if re-

search is concentrated in one sector only. The combination of intersectoral R&D spillovers

and uncertainty determines not only R&D investment within a sector but also the selec-

tion of research lines. Knowing how such spillovers affect a firm’s decision to invest in

a certain research line offers insights into how intellectual property rights interact with

intersectoral spillovers and how they can be used to influence the firms’ investment deci-

sions.

This chapter is structured as follows. Section 2.2 introduces the model. In Section 2.3

we analyze strategic and and socially optimal R&D investment after firms have selected a

sector. After that, in Section 2.4, we analyze the decision of selecting a sector in the begin-

ning of the game, before discussing IPR in Section 2.5. Section 2.6 contains a discussion

and conclusion. All proofs are relegated to Appendix B.

2.1.1 Related literature

Intersectoral R&D spillovers have been studied by Steurs (1995) in a two-industry, two

firms-per-industry model. Intersectoral spillovers affect R&D investment directly and

indirectly through changing the influence of intrasectoral spillovers. Further, research co-

operatives across sectors might be more socially beneficial than cooperatives in one sector.

Unlike in the model considered subsequently R&D in Steuers (1995) is not associated with

uncertainty regarding feasibility or timing. That is, research leads to a cost reduction with

certainty. Moreover, while Steurs (1995) focuses on the impact of intersectoral spillovers

on output and profits, we concentrate on the selection of research lines and investigate

how intrasectoral spillovers (or IPR) can be used to encourage firms to select optimally

between research lines.

A few papers consider complementarities in innovation and the consequences of com-

plementarities for the design of intellectual property rights (see e.g., Gancia and Zilibotti,

2005 or Young, 1993). More recently, Chen (2012) analyzes the innovation frequency of

durable goods that are perfect complements and shows that interdependencies of inno-
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vation decisions lead to coordination failures between producers. While Chen (2012)

focuses on product complementarity Bessen and Maskin (2009) consider technological

complementarities. More precisely, they show that when innovation is sequential (each

successive innovation builds on its predecessors) and complementary (each innovator

takes a different research line), patent protection is not necessarily useful for encouraging

innovation. Hunt (2004) also studies sequential innovation in a model with endogenous

industry structure and shows that there is a unique patentability standard that maximizes

the rate of innovation. Our model differs from these papers in the following ways. First,

we explicitly assume that, while inventions might complement each other, a success in

one sector is not necessary to generate profits from innovations in other fields, so we do

not have perfect complements. Second, we do not consider a sequential setting in which

innovations build on each other. That is, a success in one sector does not affect the prob-

ability of success in the other sector.

Amir et al. (2003) analyze cooperative and non-cooperative R&D investment and char-

acterize the profit-maximizing R&D cartel when both R&D investment and intrasectoral

spillovers are cooperatively chosen. In the profit-maximizing cartel the spillover is either

maximal and firms cooperatively choose their R&D investment or only one firm invests

and the spillover is minimal. Miyagiwa and Ohno (2002) analyze the impact of uncer-

tainty on cooperative R&D in the presence of "when"-uncertainty and show that firms

want to coordinate R&D investment but not necessarily share the innovation.

Besides this, the chapter relates to the literatures studying the role of competition in

models of strategic experimentation. Akcigit and Liu (2015) investigate the effect of com-

petition if firms can choose between a risky and a safe research line and do not observe the

actions and failures of others. Two types of inefficiencies arise; one due to firms switch-

ing to the safe alternative too early and one due to wasteful duplication of R&D effort.

Besanko and Wu (2010, 2013) and Das (2013) study investment in an exponential bandit

framework with payoff externalities. Acemoglu et al. (2011) show that patents improve

the allocation of resources in a model of experimentation. These models differ from ours

in that they consider only one sector and there are no intersectoral R&D spillovers or

complementarities between different lines of research.
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2.1.2 Examples

Firms can invest in uncertain research in different fields or sectors. For instance, the

development of a new drug in the pharmaceutical industry or medical sciences, and new

techniques for data analysis in the field of computer sciences or statistics. In general, it

is not clear whether a success can be achieved or when it will be achieved. While firms

invest in research (e.g., on the drug), they become more and more pessimistic that the

development of a new drug is feasible if they do not achieve a breakthrough. After the

first discovery both firms know that this research line is viable and, for example, a cure

of the disease is possible. If one firm conducts research on a new drug while the other

develops new tools for data analysis, a success of either one does not tell the other firm

whether it will be successful as well. New techniques for data analysis or advances in

ICT might, however, facilitate the analysis of clinical trials and thereby lower the costs

of development for the drug. This example incorporates several features of our model.

First, the discovery of a new drug does not affect the profitability of new data analysis

techniques. Second, even without progress in data analysis a drug that was found to be

effective can be profitably sold, and third, improvements in data analysis alone do not

generate any profit for the pharmaceutical firm if it cannot develop the drug.

There are several empirical examples of inventions that feature intersectoral R&D

spillovers. For instance, researchers at the Mayo clinic conducted a study on gene ex-

pression in the brain to improve understanding of Alzheimer’s disease. The researchers

used genetic interaction studies in which effects of pairs of gene changes are studied. This

process involves the analysis of billions of DNA base pairs and requires substantial com-

putational processing time. By using the Blue Waters supercomputer the computation

time was reduced from more than a year to merely two days.5

2.2 Model

The model is based on the discrete time strategic experimentation model of Heidhues

et al. (2015) with the main difference that there are two sectors (research lines, projects)

5See U.S. National Science Foundation (2015).
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s = 1, 2. There are two firms i = 1, 2 that can invest in R&D in discrete time in t = 1, 2, ..., T

and discount future payoffs by a common discount factor δ ∈ (0, 1).

2.2.1 Timing

The game proceeds in three stages.

Stage 1: Selecting a sector

In the first stage of the game, in t = 0, firms decide which research line to pursue, i.e., they

decide in which of the two sectors to locate. This decision is irreversible and determines

in which of the two research lines a firm can invest in stage 2. For example, high sunk

costs to start research on a particular research line might make a later change to a different

field too costly.

Stage 2: R&D investment

In the second stage, the research stage, in each sector s = 1, 2 firms can invest up to one

unit of an available resource (e.g., money or effort) in research in each period of time until

time T < ∞. The action or investment decision at time t is denoted by ks,t ∈ [0, 1].6 If

ks,t = 0 the firm does not invest in research, and ks,t = 1 means that the firm invests its

entire resource. Firms are not allowed to experiment after time T , that is, ks,t is restricted

to be 0 for all t > T .7 R&D investment is costly and costs c > 0 are proportional to

investment meaning that a firm choosing investment level ks,t pays costs ks,tc at time t.

R&D investment can lead to a discovery depending on the state of the world. The

state of the world in sector 1 is independent of the state in sector 2 and for each sector it

can be either good or bad. If it is bad no discovery can be made and benefits of research

are zero. If it is good discoveries occur with probability ks,tλs. Discoveries in sector 1 and

sector 2 are independent of each other and independent across time and across players.

Upon the first discovery (also called breakthrough) firms know that a sector is good. A

6Clearly ks,t depends on i as well, but we do not make this explicit in the notation (unless necessary) to

enhance readability.
7This assumption allows us to solve for the optimal strategy using backward induction. Moreover, in

many instances research funds are granted for a limited period of time and are only prolonged in the case

of a success, so that arbitrarily long experimentation without success is not possible.
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discovery is the beginning of the third stage in which the invention is sold in the product

market. That is, a discovery in period t generates profits from period t+ 1 onwards.

Stage 3: Product market competition

The profit firms earn from an invention depends on the situation in the product market

and we distinguish two scenarios. First, each firm can be in a different sector and hence

acts as a monopolist in this sector. Second, firms compete in the product market in the

same sector.

Upon discovery a monopolist in sector s = 1, 2 sells one unit each period at zero

marginal costs and price xs. We assume that the monopolist is able to reap the entire

consumer surplus and hence the price equals the consumers’ willingness to pay for the

discovery. Payoffs in sector 1 are unaffected by sector 2 and conditional on a successful

discovery the monopolist receives a per period profit of x1 which we normalize to 1. In

sector 2 we have the following situation. If sector 2 is good a monopolist obtains x in case

there was a discovery in sector 1, and x in case there was no discovery in sector 1, where

we assume that x > x. Subsequently we will refer to sector 1 as the independent sector

and to sector 2 as the dependent sector.

In case both firms are in the same sector competition in the product market affects

profits and consumer surplus. We assume that after a discovery every period each firm

sells one unit and collusive behavior is prohibited. We denote the consumer surplus in

sector s if both firms compete in this sector in the product market by ψs and assume

ψs > 0. Further, competition lowers the profit each firm obtains to αxs, where α ∈ (0, 1).

2.2.2 Intrasectoral R&D spillovers

If both firms work on the same research line intrasectoral R&D spillovers determine how

easily the discovery of one firm can be imitated or used by the unsuccessful firm. In the

benchmark models by Keller et al. (2005) or Heidhues et al. (2015), all firms benefit equally

from one success so that it does not matter who achieves the breakthrough. While this

seems to be a plausible assumption if players are members of a team who share a com-

mon goal, we might as well find situations in which the agent who has a breakthrough

receives some sort of reward. For example, firms might enjoy some periods of monopoly

50



profits in which other firms are not allowed or able to copy their innovation, employees

might receive a bonus on top of their salary, or players might simply gain utility from the

achievement of a discovery itself.

More precisely, we assume that the firm who has the breakthrough receives αxs, while

the other firm receives γsαxs in sector s = 1, 2, with γs ∈ [0, 1]. If γs = 0 we have a winner-

takes-all race in which only the inventor receives a high profit, while γs > 0 corresponds

to a situation in which a discovery has positive spillovers and can be profitably imitated

by the unsuccessful firm. In case both firms simultaneously make a discovery, payoffs

have to be shared and each firm obtains a share of 1+γs
2
. Besanko and Wu (2010) use the

same way to model intrasectoral spillovers, whereas in Besanko and Wu (2013) nega-

tive spillovers are possible because an invention has a negative impact on an established

product of the unsuccessful firm.8

The parameter γ can also be interpreted as a measure of intellectual property rights.

A small γ reflects a situation in which an invention cannot be imitated by a competitor

easily. This can be due to long patent periods or strong patent protection in which patents

are wide in scope. A high γ corresponds to an environment in which an innovation can

be easily copied and profitably used by an imitator, for example, because patent periods

are short or patents are narrow so that an imitator can sell a similar product. In particular,

inventions might be adapted for sale in a different geographical region or the technique

of the inventor might be applied by the imitator in a different context.

2.2.3 Beliefs and informational externalities

Firms attach a probability to each sector being good and we assume that they start with

common priors. At time t the probability firms attach to sector s = 1, 2 being good is

denoted by ps,t. We assume that all actions and outcomes are perfectly observable by all

players. When talking about firms in different sectors this assumption might seem unre-

alistic. One can, however, simply consider the problem of a corporation with subsidiaries

being active in different branches interpreting player 1 as an employee in one department

8Negative spillovers correspond to γs < 0 and are not considered in the subsequent analysis.
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or subsidiary and player 2 as an employee in another one. Apart from that, players can

also be interpreted as researchers in different institutes or departments at one university.

Beliefs depend on the occurrence of a breakthrough and in a situation where all ac-

tions and outcomes are perfectly observable common posterior beliefs prevail. Beliefs are

updated according to Bayes’ rule meaning that the subjective probability that sector s is

good after investing ks,t without a discovery is given by

ps,t+1 =
ps,t(1− ks,tλs)

ps,t(1− ks,tλs) + 1− ps,t
, (2.1)

where 1− ks,tλs is the probability of experimenting without success in s conditional on s

being good. In case of a breakthrough the posterior belief jumps to 1. Every time firms

experiment without success, they become more pessimistic about the research being vi-

able. Firms are risk neutral expected profit maximizers and a firm is said to experiment

(or invest in R&D) if it invests (chooses ks,t > 0) before knowing the state of the world.

In a good sector 2 the expected profit is x2 = x+ (x− x)p1,tqt, where qt equals k1,tλ1 +

λ1

∑T
r=t+1 δ

r−tk1,r

∏r−1
l=t (1 − λ1k1,l) if there was no breakthrough in sector 1 up to time t,

and 1 otherwise. Denoting x−x by x̃, x2 = x+ x̃p1,tqt equals x if there was a breakthrough

in sector 1, as in this case qt = 1 and p1,t = 1. To avoid the trivial case where it is never

optimal to invest in R&D we impose

δλsxsα > c(1− δ), (2.2)

which implies that in a good sector expected profits exceed the costs of research. That is,

in each sector it is optimal to invest (ks,t = 1) in case the state of the world is good and

choose ks,t = 0 if the state is bad.

2.2.4 Producers, consumers and welfare

Producer surplus is increasing in γs, i.e., producers are better off, the easier it is to imitate

the invention of the other firm. Consumer surplus, however, might be decreasing in γs.

In what follows we will distinguish two possible cases. First, we consider the case where

consumer surplus is decreasing in γs and welfare does not depend on γs. This means

that γs shifts the available surplus between consumers and producers. Suppose the con-

sumers’ valuation of two units is given by xs(1 + α) and the firms generate a profit of
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xsα(1 + γs), which also equals the price that has to be paid by the consumers. Then the

consumer surplus ψs is given by xs(1− αγs) and welfare Ws = xs(1 + α). Second, we an-

alyze the case where consumer surplus does not depend on intrasectoral R&D spillovers

and hence welfare is increasing in γs. This means that γs does not simply shift the surplus

between consumers and producers, but determines the size of the surplus. Subsequently

we will focus on the results for ψs = 0.9

2.2.5 Investment strategies and equilibrium concept

Starting from t = 1 firms choose their R&D investment ks,t ∈ [0, 1] given their own loca-

tion as well as the location of the other firm. An investment strategy for a firm in sector

1 is a mapping that assigns to each belief p1,t a player can have about sector 1 an action

k1,t ∈ [0, 1] for t = 1, 2, ..., T . In sector 2 a pure strategy assigns to each tuple (p1,t, p2,t)

an action k2,t ∈ [0, 1] for t = 1, 2, ..., T . We focus on equilibria in Markovian strategies.

Moreover, if both firms are located in the same sector they are restricted to symmetric

strategies. In the next section we analyze R&D investment for a given choice of sectors,

before turning to the selection of a sector in Section 2.4.

2.3 R&D investment with intersectoral R&D spillovers

As a first step we derive the investment strategy for a given sector, that is, we start our

analysis in stage 2. We start by analyzing the R&D investment of firms when each firm is

located in a different sector in the presence of intersectoral R&D spillovers from the inde-

pendent sector (e.g., computer sciences) to the dependent sector (e.g., medical research).

After that, we look at the situation where both firms research in the same sector. Strate-

gic R&D investment is compared to the welfare-maximizing R&D investment of a social

planner who takes the profit of both firms and the consumer side into account.

9The results do not change qualitatively if we consider a different payoff specification as long as welfare

is increasing in γs. For example, suppose the consumers value two units at x(1+α), and the price they have

to pay equals 2αx, which means that consumer surplus is given by x(1 − α). Moreover, the imitator has

to pay costs for imitating the discovery that are decreasing in γs and given by xα(1 − γs). Then producer

surplus equals xα(1 + γs) and welfare x(1 + αγs).
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2.3.1 One firm in each sector

First, we analyze the behavior of firms when one firm is located in each sector, where we

assume that firm 1 is located in sector 1 and firm 2 in sector 2.

Strategic R&D investment

Let us start by looking at the independent sector 1. The firm maximizes its total expected

profit given by

(1− δ)E

[
∞∑
t=1

δt−1(δX1,t − k1,tc)

]
(2.3)

by choosing an optimal action profile {k1,t}Tt=1. The expectation is taken w.r.t. the belief

p1,t and the strategy, and X1,t ∈ {0, 1} is the profit resulting from research in sector 1

at time t. By Bellman’s Principal of Optimality we can rewrite the profit maximization

problem recursively so that the value function of the firm in the independent sector at a

given point in time satisfies

u1(p1,t) = max
k1,t∈[0,1]

{−(1− δ)k1,tc+ δE[u1(p1,t+1)|p1,t, k1,t]}. (2.4)

The first term on the r.h.s., −(1− δ)k1,tc, represents the normalized costs of research. The

second term, δE[u1(p1,t+1)|p1,t, k1,t], represents the discounted expected continuation pay-

off. This continuation payoff equals 1 with the probability p1,tk1,tλ1 that the sector is good

and the firm has a breakthrough at time t. The continuation payoff equals u1(p1,t+1) with

the probability 1− p1,tk1,tλ1 that there is no breakthrough, where p1,t+1 = p1,t(1−λ1k1,t)

1−p1,tλ1k1,t
. If a

firm invests without success its belief declines, and as expected payoffs are increasing in

the belief, expected payoffs from investing decrease over time in the absence of a break-

through. Consequently, the firm invests for high or optimistic beliefs and stops for low

or pessimistic beliefs. Lemma 2.1 states the optimal investment strategy for a monopolist

in sector 1. The firm follows a time-invariant cutoff strategy with cutoff belief pa1. This

threshold belief is increasing in costs and decreasing in δ and λ1. That is, as firms become

more patient or the probability of a success increases, firms invest more in R&D and the

likelihood of a discovery increases.
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Lemma 2.1. In the independent sector the monopolist’s optimal investment strategy for t ≤ T is

ka1,t =

 1 for p1,t ∈ [pa1, 1],

0 otherwise,

where

pa1 =
(1− δ)c
δλ1

.

Let us now turn to the dependent sector. The firm’s value function satisfies

u2(p1,t, p2,t) = max
k2,t∈[0,1]

{
−(1− δ)k2,tc+ δE[u2(p1,t+1, p2,t+1)|p1,t, p2,t, k1,t, k2,t]

}
. (2.5)

The first term in braces on the r.h.s. again represents the costs of R&D. The continua-

tion payoff is x2 = x+ x̃p1,tqt with the probability p2,tλ2k2,t that firm 2 observes a success,

u2(1, p2,t+1) with the probability (1−p2,tλ2k2,t)p1,tλ1k1,t that firm 2 does not make a discov-

ery but firm 1 does, and u2(p1,t+1, p2,t+1) with the probability (1− p2,tλ2k2,t)(1− p1,tλ1k1,t)

that neither makes a discovery. As above, we can derive the belief below which invest-

ing is no longer optimal in the dependent sector. This belief depends on the actions and

outcomes in the independent sector as can be seen in Lemma 2.2.

Lemma 2.2. In the dependent sector the monopolist’s optimal investment strategy for t ≤ T is

ka2,t =

 1 for p2,t ∈ [pstop2 (p1), 1],

0 otherwise,

where

pstop2 (p1) =
(1− δ)c

δλ2(x+ p1,tqt(p1)x̃)
,

and

qt(p1) =

 1 for p1,t = 1,

ka1,tλ1 + λ1

∑T
r=t+1 δ

r−tka1,r
∏r−1

l=t (1− λ1k
a
1,l) otherwise.

If firm 1 stops investing before firm 2, then qt(p1) = 0 and we denote the autarky cutoff

pstop2 at qt = 0 by pa2. This is also the belief at which the firm in sector 2 stops investing in

case there are no intersectoral spillovers, meaning x̃ = 0. How many time periods it takes

until the posterior belief falls below the respective cutoff depends, among others, on the

success probabilities λ1 and λ2, as they determine how strong the belief declines after ob-

serving a failure. Additionally, they specify the value of the stopping cutoff. If λ1 > λ2, p1
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declines faster than p2, but the stopping cutoff pa1 is smaller or more pessimistic than pa2. If

all parameters of the model are the same (prior, discount factor and payoffs), firms with a

higher λ might stop at an earlier or later point in time, as it is not clear which effect domi-

nates (see also Halac, Kartiv and Liu, 2013). Following a breakthrough in the independent

sector, qt = 1 and p1,t = 1 and the firm in the dependent sector experiments until pstop2 at

qt(p1) = 1, which we denote by pb2. In case firm 1 still experiments but there was no break-

through in the independent sector so far, qt(p1) = ka1,tλ1+λ1

∑T
r=t+1 δ

r−tka1,r
∏r−1

l=t (1−λ1k
a
1,l)

and the corresponding cutoff is denoted by p′2(p1). We have pa2 > p′2(p1) > pb2. The prob-

ability of making a discovery in the independent sector decreases over time and so does

qt, which means that p′2(p1) increases and goes to pa2 as qt(p1) decreases.

We are particularly interested in whether intersectoral spillovers induce firms to invest

more in research than they would in the absence of the complementarity, that is, whether

experimentation beyond the autarky solution is possible. From Lemma 2.2 we see that

a breakthrough in the independent sector increases expected profits from a discovery in

the dependent sector and causes firm 2 to experiment longer. Experimentation below

pa2 in the dependent sector without a breakthrough in the independent one is, however,

only possible if pa1 is reached after the firm in the dependent sector reaches pa2. This can

happen if, for example, firm 1 is sufficiently more optimistic in the beginning. Further, it

is possible that firm 2 already stopped experimenting, but invests again if firm 1 makes a

discovery after firm 2 stopped. Corollary 2.1 summarizes these results.

Corollary 2.1. A firm in the dependent sector experiments for beliefs below the autarky cutoff pa2

if and only if one of the following is satisfied:

(i) There is a breakthrough in the independent sector.

(ii) In the absence of a breakthrough, the firm in the independent sector reaches the cutoff belief

pa1 after the firm in the dependent sector reaches pa2.

Welfare-maximizing R&D investment

Suppose now that a welfare-maximizing social planner, who takes the profits of the firms

and the benefits to consumers into account, can choose the optimal R&D investment of
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both firms. With one firm in each sector consumer surplus is zero and the socially optimal

R&D investment coincides with the optimal R&D investment of firms in a research coop-

eration aiming to maximize joint profits. Expected aggregate payoffs from action profile

(k1,t, k2,t) after a history of failures are given by

W (p1,t, p2,t, k1,t, k2,t) = −(1− δ)c(k1,t + k2,t) + δp1,tλ1k1,t + δp2,tλ2x2k2,t +

δ(1− p1,tλ1k1,t)u1(p1,t+1) + δ(1− p2,tλ2k2,t)u2(p1,t+1, p2,t+1).

Expected aggregate payoffs W (p1,t, p2,t, k1,t, k2,t) are linear in k1,t and k2,t. Therefore, the

socially optimal strategy can be found by calculating and comparing the aggregate payoff

for (k1,t, k2,t) = {(0, 0), (1, 0), (0, 1), (1, 1)} assuming there are no experiments in t + 1.

Denoting W as a function of (k1,t, k2,t) only, we see that the same cutoff beliefs as for

strategic R&D investment, pa1 and pa2, determine when W (1, 0) ≥ W (0, 0) and W (0, 1) ≥

W (0, 0) respectively. Furthermore, W (1, 1) ≥ W (1, 0) if p2 ≥ p′2(p1), which is as well the

same cutoff as in the strategic setting. Finally, W (1, 1) ≥ W (0, 1) if p1 is greater than or

equal to
(1− δ)c

δλ1(1 + λ2p2x̃)
< pa1. (2.6)

In the dependent sector strategic and welfare-maximizing R&D investment coincide, that

is, firms experiment until the same cutoff belief. In the independent sector, however, the

social planner experiments beyond the single firm cutoff, because of the positive effect

on expected payoffs in the dependent sector (see also Figure 2.1). A strategic firm in

the independent sector does not take the effect of its investment on the other firm into

account and stops at too optimistic a belief. This inefficiency can be completely ascribed

to the complementarity between sectors.

2.3.2 Two firms in one sector

Let us now analyze R&D investment if both firms are in the same sector. In this case

intrasectoral spillovers γs indicate how easily the discovery of one firm can be imitated

by the other firm and moreover competition in the product market decreases profits to

αxs and αγsxs respectively. We assume that also for γs = 0 (which implies a profit of zero

for the imitator) the unsuccessful firm imitates the inventor and the consumer surplus in

sector s is positive.
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Figure 2.1: Action profiles (k1, k2) for different combinations of beliefs. In the dark region

the socially optimal action profile (1, 1) differs from the strategic one (0, 1) or (0, 0) for

parameter values δ = 0.8, c = 0.3, λ1 = 0.2, λ2 = 0.25, x = 0.75 and x̃ = 0.5.

Strategic R&D investment

Subsequently we characterize the symmetric equilibrium when both firms are in the same

sector so that intersectoral spillovers are irrelevant. In this equilibrium both firms choose

ks,t = 1 above a certain threshold belief ps and ks,t = 0 for beliefs below ps > pas . In

between each firm invests ks,t ∈ (0, 1) to make the other firm indifferent towards its level

of R&D investment.

Proposition 2.1. If both firms are in the same sector s = 1, 2 in the symmetric equilibrium each

firm chooses

k∗s,t =


1 for ps,t ∈ [ps, 1],

−(1−δ)c+δps,tλsxsα
δps,tλ2

s
1+γs

2
xsα

for ps,t ∈ (p
s
, ps),

0 otherwise,

for t ≤ T , where x1 = 1, x2 = x,

p
s

=
(1− δ)c
δλsxsα

, and Hps =
(1− δ)c

δλs
(
1− λs 1+γs

2

)
xsα

.
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p1,t

k1,t

1

1p
1 p1

Figure 2.2: R&D investment in equilibrium if both firms are in sector 1 for δ = 0.8, c = 0.3,

α = 0.95, λ1 = 0.2 and γ1 = 1.

Two failed experiments from ps yield a posterior belief below p
s
. Similarly, if both firms

choose k∗s,t ∈ (0, 1) for beliefs ps,t ∈ (p
s
, ps), the posterior belief is below the lower cutoff

belief in the absence of a success. This implies that in the symmetric equilibrium there

is at most one time period in which firms choose k∗s,t ∈ (0, 1). Further, as future payoffs

are discounted firms do not have an incentive to postpone experimentation. Figure 2.2

depicts the relationship between the belief and R&D investment in equilibrium.

R&D investment increases if firms become more patient or if the profit from a dis-

covery rises. An increase in the costs of R&D increases the cutoff and hence decreases

investment. While the lower cutoff belief is decreasing in the success probability λs, the

effect on the upper cutoff is ambiguous. The upper cutoff decreases in λs if intrasectoral

spillovers are small. Moreover, we see that ps is increasing in γs, which implies that R&D

investment is lower the higher γs. As it becomes easier to imitate the success of the other

firm, each firm reduces its own investment in equilibrium. Compared to the monopolist

firms invest less, i.e., p
s
> pa, because competition in the product market reduces the

expected profits from a discovery (note that p
s

= pas for α = 1).
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Welfare-maximizing R&D investment

To compare the R&D investment of strategic firms to the socially optimal investment, we

also restrict the social planner to symmetric strategies. If both firms are in sector s, welfare

is given by Ws = ψs + xsα(1 + γs), where xsα(1 + γs) is the producer surplus if each firm

sells one unit.

Proposition 2.2. The R&D investment of a welfare-maximizing social planner, who is restricted

to symmetric strategies, is given by

kws,t =


1 for ps,t ∈ [pws , 1],

−(1−δ)c
δpsWsλ2

s
+ 1

λs
for ps,t ∈ (pw

s
, pws ),

0 otherwise,

for t ≤ T , where

pw
s

=
(1− δ)c
δλsWs

, and Hpws =
(1− δ)c

δλs(1− λs)Ws

,

and Ws = x(1 + α) for ψs = x(1− αγs) and Ws = xα(1 + γs) for ψs = 0.

Comparing the lower cutoff belief of a social planner to the respective threshold used

by strategic firms, we see that the social planner experiments until a more pessimistic

belief after a history of failures. This is independent of the specification of consumer

surplus. Furthermore, socially optimal R&D investment is (weakly) increasing in intra-

sectoral spillovers γs. This is the main difference to strategic investment for which we

obtained the opposite result. While the social planner invests more if both firms can ben-

efit from one successful discovery, for strategic firms the incentive to free-ride increases

and investment decreases.10

The upper cutoff belief of the social planner lies below the one for strategic firms if

intrasectoral spillovers are high or the success probability λs is small. For high levels

of γs, for example γs = 1, kws ≥ k∗s for all ps ∈ [0, 1]. In this case the probability of

a discovery is higher under the socially optimal R&D investment than if firms choose

their R&D investment strategically. In a winner-takes-all competition (γs = 0), welfare-

maximizing investment can be higher or lower than strategic investment, depending on

the parameters of the model.
10See e.g. Bolton and Harris (1999), Heidhues et al. (2015), or Keller et al. (2005) for more details on the

free-riding problem in games of strategic experimentation.
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Let us briefly summarize the main points of this section. If firms are in different sec-

tors intrasectoral spillovers are irrelevant, but intersectoral spillovers affect R&D invest-

ment. The firm in the independent sector does not invest enough from the perspective

of a social planner, as it ignores the effect of its investment on profits in the dependent

sector. When firms are in the same sector, the complementarity is irrelevant and intrasec-

toral spillovers determine the difference between strategic and welfare-maximizing in-

vestment. For high intrasectoral spillovers welfare-maximizing R&D investment exceeds

strategic investment as strategic firms free-ride on the R&D investment of the competitor.

2.4 Selecting a sector

Now we want to analyze the effects of inter- and intrasectoral R&D spillovers on the se-

lection of research lines, that is, when firms choose one of the two sectors in the beginning

of the game. Firms are not allowed to change their decision later on. Together with the

assumption that firms cannot invest simultaneously in both research lines, this reflects the

idea that selecting a certain research line is associated with high sunk costs, for instance,

because specialized equipment has to be bought or staff has to be trained. R&D invest-

ment after sector choice is assumed to be given by the optimal strategic R&D investment

as described in Lemma 2.1, Lemma 2.2 and Proposition 2.1.11

First, consider the choice of research lines in t = 0 for strategic firms. The expected

profit of firm i if both firms are in sector s is
T∑
t=1

δt−1k∗s,t

(
ps

(
δα(1 + γs)λs

(
1−

k∗s,tλs

2

)
− (1− δ)c

) t−1∏
r=1

(1− k∗s,rλs)2 − (1− δ)c(1− ps)

)
.

The first term describes the expected profit if the state of the world is good, while the last

term represents the bad state of the world. If the state of the world is bad, no discovery

will occur and the firm pays the costs of R&D until it stops to invest. If firms invest in

different sectors the firm in the independent sector obtains

T∑
t=1

δt−1ka1,t

(
p1 (δλ1 − (1− δ)c)

t−1∏
r=1

(1− ka1,rλ1)− (1− δ)c(1− p1)

)
,

11The main results stated in Propositions 2.3 and 2.4 do not change if R&D investment after sector choice

is the socially optimal R&D investment. This only shifts the intervals of beliefs in which the social planner

decides differently from the firms.
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while the firm in the dependent sector receives

T∑
t=1

δt−1ka2,t

(
p2 (δλ2(x+ x̃p1qt(p1))− (1− δ)c)

t−1∏
r=1

(1− k2,rλ2)− (1− δ)c(1− p2)

)
.

Firms are more likely to choose the same sector s, the higher ps and xs and the higher

α and γs. The belief and the expected profit xs increase the likelihood that a firm invests

in a given sector independently of strategic considerations. The other two parameters,

α and γs, reflect how competition affects the firms’ decisions. If competition is fierce

and imitation difficult, i.e., if α and γs are both low, agents are more likely to invest in

different sectors. Intersectoral R&D spillovers increase the likelihood that a firm invests

in the dependent sector instead of joining a firm in the independent sector.

Let us now compare which research line is chosen by strategic firms to the choice of

a social planner. In the sequel we assume that the social planner can only influence the

selection of a research line, but not R&D investment after sector choice. Let us,n denote

the individual expected payoff of a firm in sector s if the other firm is in sector n and

Ws,n(ps, pn) denotes welfare if one firm is in sector s and the other in sector n for s = 1, 2

and n = 1, 2. First, we consider the case where consumer surplus is decreasing in γs and

welfare does not depend on γs, i.e., ψs = xs(1 − αγs) and Ws = xs(1 + α). The results for

this case are summarized in Proposition 2.3. Second, we analyze the case where consumer

surplus ψs = 0 (see Proposition 2.4).

If welfare does not depend on γs, the social planner prefers joint research in the in-

dependent sector for beliefs, where strategic firms research in different sectors. Whether

there exists an interval of beliefs for which the social planner prefers joint research in

the dependent sector depends on the level of intersectoral spillovers. If intersectoral

spillovers are high, i.e., if x̃ is large, the social planner lets the firms pursue different

lines of research for beliefs at which the strategic firms both invest in the dependent line.

Proposition 2.3. Suppose one firm chooses the line of research in t = 0 for a given choice of the

other firm and consumer surplus is given by ψs = xs(1−αγs). Then the strategic choice coincides

with the choice of a social planner except that for all γs ∈ [0, 1]

(i) for sufficiently optimistic priors, p1 ≥ p1, the social planner lets the firm join the indepen-

dent sector for beliefs where a strategic firm starts research in the dependent sector;
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(ii) if x̃ is small the social planner lets the firm join the dependent sector for beliefs at which a

strategic firm starts research in the independent sector, and if x̃ is large the social planner

lets the firm start research in the independent sector for beliefs at which a strategic firm joins

the dependent sector.

Part (i) of Proposition 2.3 states that there exists an interval of beliefs for which the

social planner prefers if the firm joins the independent sector while a strategic firm starts

research in the dependent sector. The reason for this is the following: If both firms invest

in R&D in the same sector, they benefit from each others’ investment as this increases the

probability of a discovery. A firm choosing the sector strategically does not take the posi-

tive effect of its R&D investment on the other firm and consumers into account. However,

when deciding whether to start research in the dependent sector both the strategic firm as

well as the social planner account for the positive impact of R&D investment in the inde-

pendent sector on expected profits in the dependent sector. Hence, intersectoral spillovers

do not lead to any difference between the choice of the strategic firm and the social plan-

ner in a situation where one firm is already located in the independent sector and the

other firm decides whether to join. Differences in the selection of research lines are then

driven by intrasectoral spillovers and consumer surplus. Note that for pessimistic priors

p1 close to pa1 each firm invests very little into R&D and joint research does not increase

the probability of a success. In fact the probability of a discovery if both firms invest little

in R&D is lower than if one firm invests its entire resource. Thus, for pessimistic beliefs

the social planner prefers diversification over joint research in the same sector.

In part (ii) the firm decides whether to join the dependent sector. It depends on the

complementarity between sectors x̃ whether the social planner is more likely to start re-

search in the independent sector. If the benefit associated with two complementary suc-

cesses is high, there exists an interval of beliefs for which the social planner lets the firm

start research in the independent sector while a strategic firm joins the dependent sec-

tor, and vice versa if this benefit is rather small. This means that the social planner faces

a trade-off between letting firms experiment jointly in the dependent sector, which in-

creases the probability of a discovery, and experimenting in different sectors to potentially

exploit the complementarity.
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If welfare is increasing in the level of intrasectoral spillovers, it depends on the combi-

nation of inter- and intrasectoral R&D spillovers whether the social planner is more likely

to let firms research jointly in the same sector.

Proposition 2.4. Suppose one firm chooses the line of research in t = 0 for a given choice of the

other firm and consumer surplus is given by ψs = 0. Then the strategic choice coincides with the

choice of a social planner except that

(i) for sufficiently optimistic priors, p1 ≥ p1, there exists an interval of beliefs for which the

social planner lets firms research jointly in the independent sector while a strategic firm

starts research in the dependent sector if γ1 = 1 and vice versa if γ1 = 0;

(ii) a strategic firm joins the dependent sector for beliefs where the social planner lets firms

research in different sectors if γ2 = 0. For γ2 = 1 the social planner prefers joint research

in the dependent sector for beliefs where the strategic firm starts research in the independent

sector if and only if x̃ is small.

If consumer surplus is zero, the decision of the social planner and strategic firms dif-

fers because of the diverse influence of intrasectoral spillovers. For γ1 = γ2 = 0 the

social planner lets firms research in different sectors for beliefs where strategic firms en-

ter the same sector. If only one firm can obtain the profits from a discovery there exists

an interval of beliefs where aggregate expected profits are higher if firms do not work

on the same research line and thereby compete for the breakthrough. In case of perfect

spillovers, γs = 1, the social planner prefers joint research in the independent sector for

beliefs where strategic firms pursue different lines of research. Joint research in the de-

pendent sector is, however, only preferred if x̃ is small. In this case specialization in

which all research efforts are concentrated in one field yields higher expected payoffs

than investing in two complementary sectors. If the extra payoff is small firms are bet-

ter off increasing the probability of success in the dependent sector than exploiting the

complementarity.
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2.5 Intersectoral R&D spillovers and intellectual property

rights

Finally, we want to explore how firms can be induced to select the socially optimal re-

search line. We assume that the social planner can design IPR, which we interpret as

policies that determine the level of intrasectoral spillovers γs. As a measure of IPR γs

can, for instance, be influenced through changes in the duration or strength of patents,

or the transparency of the patent system. While a rise in patent duration or strength

corresponds to a decrease in γs, an increase in transparency reduces the likelihood of

duplication, which can be modeled through an increase in γs.

We are interested in finding γs such that the decision of strategic firms which research

line to pursue is aligned with the decision of a social planner. As the exact value of this

γs depends on how long firms experiment in equilibrium, we focus on the difference be-

tween IPR designed for two independent sectors and IPR that take the complementarity

into account. IPR that guarantee the socially optimal selection of research lines in t = 0

for complementary sectors are denoted by γ̃∗s and for independent sectors by γ∗s .

Proposition 2.5. Intellectual property rights that ensure that in t = 0 strategic firms select the

same research line as a social planner are such that γ∗1 = γ̃∗1 and

(i) γ∗2 > γ̃∗2 if consumer surplus is decreasing in γ2 while welfare does not depend on γ2;

(ii) γ∗2 < γ̃∗2 if consumer surplus does not depend on γ2, while welfare is increasing in γ2.

Intrasectoral spillovers in the independent sector that align the socially optimal choice

of sectors with the strategic choice are unaffected by the complementarity. This is intu-

itive as a firm deciding between joining the independent sector or starting research in the

dependent sector benefits from the complementarity and hence takes the positive impact

of investment in the independent sector on the dependent sector into account. For sector

2 it depends on the impact of intrasectoral spillovers (or IPR) on consumer surplus and

welfare, whether they are higher or lower for dependent sectors. Due to the intersectoral

spillovers research in different sectors becomes more attractive compared to joint research

in the dependent sector. If consumer surplus is decreasing in γ2, the social planner prefers
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research in different sectors and IPR are designed such that it is more difficult to imitate

an invention in the dependent sector if there is a complementary. Hence, IPR that induce

firms to select the socially optimal line of research encourage firms to work in different

sectors. If welfare is increasing in γ2, imitating an invention is facilitated to encourage

firms to both research in the dependent sector.

2.6 Discussion

In this chapter we analyzed a model of innovation in which the profitability of an in-

vention depends on the success of another research project. First, we showed that the

number of time periods until firms reach their stopping belief determines whether the

complementarity encourages additional R&D investment. Second, we compared strate-

gic and welfare-maximizing R&D investment for a given choice of sectors. In addition to

the free-riding inefficiency that occurs for high intrasectoral spillovers, there is another

source of inefficiency. If firms work on different research lines, the firm working in the in-

dependent sector ignores the positive effect of its investment on profits in the dependent

sector.

After that we analyzed the impact of inter- and intrasectoral R&D spillovers on the

decision of a firm which research lines to pursue. The social planner prefers more joint

research in the independent sector than strategic firms, but more joint research in the de-

pendent sector is only preferred if intersectoral spillovers are small. There exists a trade-

off between working in different sectors to exploit the complementary and experimenting

jointly which increases the probability of success.

Further, we investigated the possibility to encourage firms to select the socially opti-

mal line of research in the beginning of the game. Intrasectoral R&D spillovers in the

dependent sector that align the socially optimal and the strategic choice are lower in

case sectors are dependent if consumer surplus is decreasing in the level of intrasectoral

spillovers, that is, it is more difficult to imitate an invention in the dependent sector. The

complementary leads to an interval of beliefs in which it is socially optimal to work in

different sectors and exploit the complementary, but strategic firms enter the same sector.

By decreasing intrasectoral spillovers in the dependent sector joint research becomes less
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attractive and the strategic firm is more likely to start research in the independent sector.

If welfare is increasing in the level of intrasectoral spillovers, imitation in the dependent

sector is facilitated to foster joint investment.

Our results emphasize that research and innovation are influenced by both inter- and

intrasectoral spillovers, and especially their combination determines which research lines

are and should be pursued. Based on the report of the FTC (2011), the U.S. government

might consider implementing policies to increase the transparency of patents in the IT

sector: on the one hand to encourage investment within the sector, and on the other hand

to create positive spillovers to other sectors. Our model suggests that investment in the

IT sector can additionally be fostered by decreasing intrasectoral spillovers in a depen-

dent sector (e.g., medicine) to discourage firms from jointly pursuing research in the de-

pendent sector and encourage them to research in different fields. Hence, strong patent

protection, long patent periods or financial incentives solely available to inventors in the

dependent sector might lead to the same desired effects as an increase in transparency

in the independent sector. Such measures at the same time also increase strategic R&D

investment within the dependent sector and hence the likelihood of a discovery.

In this chapter we focused on positive intersectoral R&D spillovers in which profits in-

crease due to a complementary discovery. The opposite case, however, can arise as well.

That is, new inventions in one sector might have a negative impact on the profitability

of another invention. Negative intersectoral spillovers can be modeled by reversing the

order of x and x. This implies that x̃ is negative and the results in Section 2.3 are reversed.

More precisely, if a firm in the independent sector makes a discovery, the firm in the de-

pendent sector experiments less. Similarly, under the socially optimal R&D investment

firm 1 experiments less when it takes the negative impact of its investment on firm 2 into

account. Also the results of Section 2.4 are reversed. Negative intersectoral spillovers

strengthen the result that the social planner prefers firms to experiment jointly for beliefs

where strategic firms separate. Further, the social planner faces a trade-off between let-

ting firms compete for a discovery in the same sector and separating, where the firm in

the dependent sector suffers in case both make a discovery. As for positive spillovers it

depends on the magnitude of the profit reduction and success probabilities which effect

dominates.
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Chapter 3

The transparency of the patent system

and its impact on innovation

3.1 Introduction

Innovation benefits society by creating novel products and processes that raise the stan-

dard of living, meet unsatisfied needs, and offer solutions to society’s challenges in areas

such as energy, health or economic growth. The main goal of the patent system is to foster

innovation by granting exclusivity rights to the inventor, taking into account that inno-

vation is a complex process which can be expensive, risky and highly unpredictable (The

Federal Trade Commission [FTC], 2011). To promote innovation and enhance consumer

welfare the patent system and competition policies have to be synchronized. One area of

patent law that affects how well the patent system and competition policy work together

is notice, i.e., "how well a patent informs the public of what technology is protected" (FTC, 2011,

p. 2).

According to the FTC (2011) a clear patent notice promotes innovation by spurring

collaboration and by helping firms to identify relevant technologies. A patent notice that

lacks clarity might be unable to fulfill these tasks. In particular, uncertainties regarding

the scope or content of a patent might cause firms to hesitate to invest in innovative ac-

tivities or encourage them to engage in expensive clearance searches. Besides this, the

risk for post-launch patent assertions and litigation is high and, moreover, a clear patent

notice reduces wasteful duplication of research efforts. For these reasons the FTC (2011)
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identifies the need to improve the transparency of the patent notice.

While there have been numerous discussions in the economics literature whether,

when and what kind of patents are necessary to appropriate R&D investment and pro-

mote innovation, limited attention has been paid to issues arising from uncertainty as-

sociated with granted patents. This is somewhat surprising given that the incentives to

invest in R&D are determined by the reliability of patent protection. Thus, to understand

the incentives to invest in risky activities it is necessary to investigate the underlying

mechanisms explaining how R&D investment reacts to uncertainties in the patent system.

To this end, we develop a theoretical model to analyze how the level of transparency af-

fects R&D investment and to find out under which conditions more transparency indeed

increases welfare. Once we know how strategic firms react to changes in the level of

transparency, we can analyze whether the patent office can increase welfare by changing

the level of transparency and characterize the optimal information disclosure policy of

the patent office.

To answer these questions we consider a dynamic model of R&D investment in which

two firms invest in R&D of uncertain quality (i.e., it is not clear whether research can lead

to a discovery and if so, when a discovery will occur). The firms choose a stopping time

at which they irrevocably stop investing if they did not observe a success up to this point

in time. Each firm’s investment decision is private, i.e., unobservable by the competitor.

Upon a discovery a firm files a patent application at the patent office. In a transparent

system the patent office grants the patent and releases a notice that informs the public

(that is, the unsuccessful firm) about the discovery and the patent. In an intransparent

system the content of a patent can lack clarity (implying that firms might not be able to

identify patents relevant to them) and the scope of protection can be uncertain (meaning

that it is not clear whether new inventions lead to a patent and whether new inventions

infringe the existing patent).

First, we characterize the optimal stopping times of a monopolist and of firms that

cooperate in R&D. In both cases only intransparencies regarding the scope of a patent af-

fect the firms’ investment decisions, as in the absence of competition firms always know

which patents exist. A lack of clarity regarding patent scope reduces the expected profit
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of a patent and consequently R&D investment and welfare are increasing in the level of

transparency. When firms compete for patents, different degrees of R&D spillovers are

possible. First, we consider a winner-takes-all competition in which only the first discov-

ery obtains a patent and the game ends afterward. If no follow-up inventions are pos-

sible, intransparencies regarding the scope of the patent are irrelevant and the stronger

firm (i.e., the firm that is more likely to make a discovery) invests more in R&D. Further-

more, the R&D investment of the weaker firm is increasing in the level of transparency,

while for the stronger firm it depends on the difference in the firms’ R&D productivities.

If the two firms are relatively equally strong, the R&D investment of both firms increases

in the level of transparency. If, however, the stronger firm is considerably more likely

to innovate, her R&D investment is decreasing in the level of transparency. The reason

for this is the following. The probability that the weaker firm has an unobserved patent

is higher the less transparent the system. At the same time a lack of transparency de-

creases the R&D investment of the weaker firm and thereby the probability that this firm

has an unobserved patent. Depending on which of these two effects dominates, the R&D

investment of the stronger firm is increasing or decreasing in the level of transparency.

Second, we consider positive spillovers meaning that the unsuccessful firm can ben-

efit from an invention of the innovator. In this case there does not necessarily exist a

(unique) pure strategy equilibrium for certain levels of transparency. While for low and

high levels of transparency there exists a unique equilibrium, for intermediate levels no

equilibrium in pure strategies exists or two equilibria exist. More precisely, for certain

levels of transparency each firm wants to invest in R&D if the competitor does not invest.

As firms cannot observe each others’ R&D investment, it is possible that both invest, none

of them invests or each one of them. In the unique equilibrium the firms’ stopping times

are non-monotonic in the level of transparency and maximal in a perfectly intransparent

patent system in which firms never observe a patent by the rival.

The findings of the FTC further suggest that firms try to influence the clarity of the

patent notice through their patent application. Hence, we are interested in knowing what

happens if firms can influence the level of transparency, and whether firms have an in-

centive to do so, e.g., by obscuring their patent applications. In a winner-takes-all com-

petition the weaker firm has no incentive to change the level of transparency, while the
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stronger firm wants to be as intransparent as possible to discourage the R&D investment

of the weaker firm. If firms can profit from an invention of the competitor, both firms

want their competitor to invest as long as possible and select the level of transparency so

as to encourage the other firm to invest. As each firms’ investment is maximal under full

intransparency, high levels of intransparency prevail.

Furthermore, we want to know when the patent office (acting as a benevolent so-

cial planner) prefers full transparency. In a winner-takes-all competition the patent of-

fice prefers full transparency if the firms are similar in terms of their R&D productivities

(which implies that the R&D investment of both firms is increasing in the level of trans-

parency). However, if one firm is considerably more likely to make a discovery and ad-

ditionally also invests more in R&D in equilibrium, full transparency is not necessarily

optimal. A lack of transparency increases welfare if the R&D investment of the stronger

firm is decreasing in the level of transparency, while the weaker firm’s R&D investment

increases. In general, the optimal level of transparency depends on the difference be-

tween the expected costs of R&D (which are decreasing in the level of transparency) and

the value of a discovery. The higher the value of a discovery, the more the patent office

wants to encourage the firms to invest in R&D and thereby increase the chances of an

innovation. For perfect positive spillovers, the firms’ R&D investment is maximal in a

perfectly intransparent system. Hence, the patent office prefers high levels of intrans-

parency as long as the consumer surplus is sufficiently high compared to the costs of

R&D.

Finally, we consider the case of sequential innovation, where the first discovery paves

the way for follow-up inventions (as e.g., improvements of the original technology). This

means that intransparencies regarding patent scope and patent content affect R&D in-

vestment simultaneously. Depending on the value of the follow-up invention, sequential

innovation is similar to positive spillovers (if this value is high), or to a winner-takes-all

competition (if this value is low). If firms are uncertain whether new discoveries will

lead to a patent because the patent office might see them as a duplication of the exist-

ing technology, the likelihood that firms invest in R&D as well as the expected value of

the follow-up invention decrease. The risk of ex post legal disputes on the other hand

increases the likelihood that the inventor invests in R&D to obtain a second discovery
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despite its negative effect on the expected profit of the firm. By investing in R&D the

inventor might be able to prevent the imitator from infringing the first patent. A similar

observation can be made for a lack of clarity regarding patent content. In the presence of

positive R&D spillovers firms are more likely to invest in R&D for follow-up inventions

if the probability of not observing a patent of the competitor is high, because firms cannot

as easily free-ride on the R&D investment of the competitor.

A thorough economic analysis of R&D investment has to take into account the risky

nature of innovation as well as uncertainties stemming directly from the patent system.

Intellectual property rights as an instrument to promote innovation heavily depend on

how reliable those instruments are and ignoring possible uncertainties may lead to mis-

leading conclusions. For example, if the inventor has to fear infringement, the starting

situation for follow-up inventions for the inventor and the imitator is not the same and

their incentives to invest or obscure their patent application differ. This in turn implies

that R&D investment for the original discovery is affected and contrary to what one might

conjecture, R&D investment and welfare are not inevitably higher if this risk is elimi-

nated. Our results suggest that certain types of uncertainties can actually encourage R&D

investment. Thus, in any attempt to increase the transparency of the patent system, it

is important to carefully consider different types of intransparencies separately and how

each of them interacts with the market situation (e.g., the heterogeneity of the firms, com-

petition and R&D spillovers).

3.1.1 Related literature

In a broader context, this chapter is related to the literature studying the impact of intel-

lectual property rights on innovation.1 In particular, it relates to work focusing on optimal

disclosure of information, i.e., whether or when firms patent and thereby disclose novel

technologies. For example, Scotchmer and Green (1990) study how the stringency of the

novelty requirement affects the pace of innovation, while more recently, Hopenhayn and

Squintani (2016) analyze optimal patents with respect to the timing of information dis-

closure. So far, optimal information disclosure and the timing of information disclosure

1See, e.g., Rocket (2010) for a survey.
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were studied under the presumption that information disclosure and patent protection

are perfect in the sense that there is no uncertainty associated with the patent once it

is granted. Only limited attention has been dedicated to questions related to the trans-

parency of the patent system. One exception is Lemley and Shapiro (2005), who discuss

uncertainty associated with intellectual property rights, propose reforms to reduce this

uncertainty and finally discuss the effects of uncertainty on the incentives of firms to set-

tle disputes or litigate. Bessen and Meurer (2008) discuss problems of uncertainty (or

intransparency) of intellectual property rights as well as reform suggestions to improve

patent notice. Similar to the FTC (2011) the authors argue that clarity is central to attain

efficiency. However, none of these papers investigates the linkages between (strategic)

R&D investment, uncertain patent protection and competition in detail.

Furthermore, this chapter is related to the growing literature on strategic experimenta-

tion, which offers a suitable framework for modeling situations where uncertainty plays

a crucial role in the innovative process.2 The modeling framework employed in this chap-

ter is closely related to the model of Bonatti and Hörner (2011), where innovations arrive

in the form of fully revealing breakthroughs. In Bonatti and Hörner (2011) discoveries

are public while R&D investment (or effort) is private.3 Many models of strategic exper-

imentation (including Bolton and Harris, 1999, Keller et al., 2005, Keller and Rady, 2010,

Bonatti and Hörner, 2011, Bimpikis and Drakopolous, 2014, Heidhues et al., 2015) study a

team problem in which the discovery of one team member has perfect positive spillovers

to the other members of the team. In these models severe forms of free-riding arise due

to the public goods character of information. More recently, competition has been intro-

duced into these models to study situations in which the inventor has some advantage

compared to the unsuccessful imitators. Examples include Besanko and Wu (2010, 2013),

Acemoglu et al. (2011), Das (2013), Akcigit and Liu (2015) and Wong (2015), where the

last three also allow for heterogeneity across agents. Akcigit and Liu (2015) study pri-

vate R&D investment of firms that compete for patents when an arrival can either lead

to a patent (which is publicly observable) or to a dead-end (which is only privately ob-

2See, e.g., Bergemann and Välimäki (2008) for a survey.
3In Bonatti and Hörner (2015), R&D investment is also private, but information arrives in the form of

fully revealing publicly observable breakdowns.
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served). Firms do not only compete on a risky research line, but also on a safe line and

thus have an incentive to keep any dead-end findings secret to avoid competition on the

safe line. Wong (2015) studies optimal patent protection in a setting without informa-

tional spillovers and shows that strict patent protection can lead to duplication of R&D,

while loose patent protection fosters free-riding.

Subsequently, we study a model in which two heterogeneous firms compete in R&D.

Additional to R&D investment being private as in Bonatti and Hörner (2011), also dis-

coveries may be private in case the patent system lacks transparency. In contrast to most

papers on strategic experimentation future payoffs are not discounted.

3.2 Model

3.2.1 Investment in uncertain research projects

There are two firms n = i, j that can invest in R&D in continuous time t ∈ [0,∞). R&D

investment is risky, meaning that the research in which firms can invest is of one of two

types, θ = {0, 1}. A bad research project, θ = 0, never leads to a discovery. In a good

project, θ = 1, discoveries occur at exponentially distributed random times, where the ar-

rival is independent across firms. Investment in research is costly and the marginal costs

of R&D are denoted by c, so that firm n pays cdt if she invests in R&D in the time interval

[t, t+dt). The probability that a firm makes a discovery is λnθdt if the firm invests in R&D,

where λn > 0 is a constant that can be interpreted as firm-specific R&D productivity and

is known to both firms. In what follows we assume that λi > λj and hence refer to firm

i also as the stronger firm and to firm j as the weaker firm. An arrival represents a dis-

covery or invention and the reward of a discovery (that is, the profit a firm obtains) is

determined by the value of the patent.
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3.2.2 The value of a patent and R&D spillovers

After a discovery, the firm files a patent application at the patent office.4 Once the patent

office grants patent y = 1, 2, ... the firm obtains a flow profit πy for length τ , so that the

value of patent y at the time of approval is πyτ. Furthermore, the discovery of one firm

might have positive R&D spillovers to the other firm that determine whether an imita-

tor can profit from the discovery as well. The unsuccessful firm obtains a flow profit of

ωy ≥ 0 also for length τ 5 and we distinguish two possibilities. First, πy = ωy, which means

we have perfect positive R&D spillovers, where a discovery by firm n can be profitably

used by firm −n as well. For example, firms might sell different products using similar

technologies and consequently are able to serve different markets. Second, ωy = 0 mean-

ing that firms face a winner-takes-all competition, where only the inventor profits from a

discovery. For example, a discovery might lead to the formation of a natural monopoly.

The total profit of the first discovery in a transparent patent system is given by

W1 = π1τ + ω1τ. (3.1)

After the first patent is granted, firms can continue to invest in R&D to obtain further

patents. Subsequent innovations occur on the same research line, that is, innovations are

sequential and one discovery builds on the previous discovery.6 We make the simplifying

assumption that there are at most two patents granted for discoveries in one research area

so that the game ends after the patent office grants the second patent.

3.2.3 Beliefs and informational spillovers

Firms have a belief about the research line being viable and both firms start with a com-

mon prior p. An arrival on the research line reveals that it is good and the firm’s belief
4For simplicity we assume that without applying for a patent, the new technology is immediately imi-

tated by many firms and payoffs are driven to zero. Hence, upon discovery firms always apply for a patent.

Moreover, an application is filed at the time of discovery and the patent office decides immediately whether

the patent is granted.
5This assumption is w.l.o.g. as we assume that the imitator obtains this payoff independently of the level

of transparency and the results would not change if we assumed τπ 6= τω instead.
6New inventions on the same line might replace existing technologies. As this happens independently

of the level of transparency of the patent system, we abstract from this possibility here and assume that

there are no negative externalities from a new discovery on existing technologies.
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jumps to 1. As long as firms invest in research without a success, they become increas-

ingly pessimistic about the feasibility of the project. Firms are said to experiment if they

invest in research before knowing the type of the project. To exclude trivial cases in which

investing is never optimal we assume that the ex ante expected benefits of R&D exceed

the costs.

Assumption 1. π1τpλn > c for n = i, j.

The types of the research project of firm i and firm j are assumed to be perfectly pos-

itively correlated. This means that a discovery of firm i reveals to firm j that the project

is good and vice versa. The idea is that two firms working in the same industry, e.g., the

pharmaceutical industry, both can potentially work on the same research line, as e.g., the

discovery of a new drug against a certain disease. If one firm succeeds this reveals to

the other firm that this research line is good and, say, a cure of this disease is achievable.

Possible interpretations are that firms use a similar approach or that the unsuccessful firm

can easily imitate the approach or technology of the inventor. Moreover, we assume that

the first success indicates that a second success is possible. That is, the first arrival is the

breakthrough or fundamental discovery that the project is good, while the second arrival

can be interpreted as an improvement of the existing technology. In the case of phar-

maceuticals this could be a reduction of side effects or better understanding of the right

dose.

3.2.4 Information structure and timing

In a perfectly transparent patent system a patent (notice) provides a clear indication of

what it protects. Hence, duplications as well as ex post legal disputes are ruled out.

Subsequently full transparency is interpreted as follows:

• The patent application is public information and consequently so is a discovery;

• the approval of the patent is public information;

• the inventor knows that her invention is protected and she obtains πyτ with cer-

tainty, that is, there is no risk of ex post legal disputes;
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• an imitator can modify her own invention such that a new patent can be obtained.

As the imitator is perfectly informed about the extent of protection, she can assess

which changes to the original discovery are necessary to avoid a violation of the in-

tellectual property of the inventor. This means that in fact every arrival (discovery)

obtains a patent.

Based on the FTC (2011) report two types of intransparencies can arise:

1. Unclear patent content: If the content of a patent is unclear, it is difficult for firms

to assess what innovations already exist. A transparent and effective patent notice

enables firms to identify the patents relevant to them. Even though there are online

databases providing this information, especially in the IT sector clearance searches

are almost prohibitively expensive, because of the large number of potentially rel-

evant patents. Additionally, the language used is often ambiguous and moreover

product life cycles in the IT industry are usually short implying that a thorough

search might be too time consuming. The FTC (2011, p. 90) refers to this as "dif-

ficulties in sifting through a multitude of patents". We capture this intransparency by

assuming that a patent is observed by the rival with probability 1 − ε. A firm that

does not observe a patent of the competitor at the time it is granted only learns

about it in case of an own success.

2. Unclear patent scope: Even if firms are able to identify all relevant patents, the scope

of a patent (or patent claim), which defines the extent of protection, might be un-

clear. That is, firms exhibit "difficulties in interpreting the boundaries of issued claims"

(FTC, 2011, p. 81). The main problems reported to the FTC were a lack of clarity

of the language, varying nomenclature, functional claiming (i.e., explaining what

the invention does rather than what it is), and institutional concerns7. We consider

two possible consequences of a lack of clarity regarding patent scope. First, a patent

holder does not know how well her invention is protected by the patent. That is,

with probability α an existing invention loses value if a second innovation obtains

a patent, for instance, because the firm has to enforce its intellectual property rights

7Litigation as the only available mechanism to test what a patent really covers is highly uncertain, ex-

pensive and causes delays.
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by law resulting in additional expenses. In this case the profit is reduced to π′1 < π1.
8

Second, a firm with a new discovery does not know whether this invention will ob-

tain a patent. To be more precise, a new patent is granted with probability 1 − β,

while with probability β it is seen as a duplication of an existing patent.

Let us now turn to the timing of the game. The game can be divided into two stages:

1. Stage 1, the experimentation stage: The firms start with prior belief p and decide how

long to experiment. That is, each firm n = i, j chooses a stopping time Tn at which

she stops to invest in R&D in case she does not observe a discovery (from her own

research or the research of the competitor). Each firm’s investment decision is pri-

vate, i.e., unobservable by the other firm. In a transparent patent system patents

are always observed, while in an intransparent system a patent of the competitor

is observed with probability 1 − ε. This stage ends for a firm if she stops to invest

once and for all or if she observes a success. After making a discovery, the firm files

an application at the patent office. If the patent is granted, the firm proceeds to the

second stage.

2. Stage 2, follow-up inventions: The first discovery always obtains a patent. The firm

with patent 1 receives the expected profit from this patent and can still research to

obtain a second patent which is granted with probability 1 − β. If the unsuccessful

firm is aware of the existing patent, she can as well invest in research to obtain the

second patent (which is granted with probability 1− β and reduces the profit of the

inventor with probability α). In case the unsuccessful firm is unaware of the existing

patent, she is still in stage 1 (or exited the game) and invests either until reaching

her stopping time in stage 1 or until an own discovery. The imitator receives ωy

conditional on knowing about patent y.

The game ends after the second patent is granted, after both firms have reached their

stopping times without a discovery in stage 1 or if both firms have unsuccessfully applied

for a patent in stage 2.

8Note that only the inventor faces the risk of litigation and consequently the imitator obtains ωy inde-

pendently of any intransparencies regarding patent scope.

78



3.2.5 Strategies and equilibrium concept

Firms are risk neutral expected profit maximizers and are restricted to pure stopping

strategies. Let T sn ∈ [0,∞) denote the stopping time of firm n in stage s, meaning that

at T sn firm n irrevocably stops to invest in R&D conditional on not having observed a

success in this stage. A strategy of firm n consists of a pair of stopping times (T 1
n , T

2
n), one

for each stage of the game.9 In equilibrium the stopping times jointly maximize the firm’s

expected profit given the stopping times of the competitor. A firm chooses its stopping

time in stage 1 anticipating the optimal decisions in stage 2. The solution concept is

subgame perfect Nash equilibrium.

3.2.6 Consumers

So far we only discussed the firm side, ignoring the impact of an invention on consumers.

Let ψy denote the value of discovery y for consumers. The consumer surplus of a discov-

ery is determined by the difference between its value and its price. We assume that the

price equals the profit of the firm (which implies that the marginal costs of production are

zero) and the consumer surplus can be written as CSy = ψy − πyτ − ωyτ . The producer

surplus for the two firms is the difference between the profit earned from a discovery and

the costs of development. As the price (=profit) is merely a transfer between firms and

consumers, a social planner who aims to maximize total welfare maximizes

E[ψy − Cy],

where Cy denotes the costs of development.

3.3 The monopolist

Let us start by considering the R&D investment decision of a single firm that acts as

a monopolist. In this case there is no competition and consequently intransparencies

regarding the content of a patent (i.e., ε) as well as ex post legal disputes (i.e., α) are

irrelevant. However, an unclear patent scope makes it difficult for a firm to evaluate

9For simplicity of exposition the superscript indicating the stage will be dropped in the remaining chap-

ter and Tn refers to the stopping of firm n in stage 1.
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whether additional inventions will lead to a new patent. We start in stage 2 assuming

that the monopolist already holds one patent and decides whether to invest in R&D to

obtain a second patent.

Stage 2: Suppose firm n holds patent 1. This patent generates a flow profit π1 for length

τ . As described in Section 2 we assume that the type of the first and the second discovery

are perfectly positively correlated. The firm knows that the risky project generates posi-

tive arrivals (p = 1) and compares the expected benefit of the next arrival with the costs

of research. As there is no learning or belief updating, investing in R&D in stage 2 for the

monopolist yields an expected payoff of

vmn = −cdt+ (1− β)π2τλndt+ (1− λndt)vmn .

The first term on the r.h.s. are the costs of research the firm pays in the interval [t, t + dt).

The second term describes the continuation payoff in case the firm obtains patent 2, which

happens with probability (1−β)λndt. With probability 1−λndt the firm does not observe

a success and invests again in the next period. The expected payoff from investing until

a discovery is given by

vmn =
λn(1− β)π2τ − c

λn
. (3.2)

If the expected benefit of patent 2 exceeds the costs of R&D, the firm invests in R&D in

stage 2. As beliefs do not change, the firm either does not invest at all in stage 2 or invests

until a discovery. The expected payoff associated with the second patent is increasing in

the arrival rate of the discovery and decreasing in the costs. Besides this, it is decreasing

in β, and hence it is less likely that a firm invests the higher the level of intransparency.

Stage 1: The expected payoff of firm n for a given prior p and stopping time Tn is

Un = −(1− p)cTn + p(λnW
m
n − c)

1− e−λnTn
λn

, (3.3)

where Wm
n = π1τ + max{0, vmn }.10 The first term on the r.h.s. captures the bad state of the

world, which occurs with probability 1− p. As in this case no discovery can be made, the

firm pays the costs of R&D until reaching her stopping time Tn. If the state of the world is

10In case the expected payoff of R&D in stage 2 is negative (vmn < 0), firm n does not invest in R&D in

stage 2 and obtains only π1τ after a success in stage 1.
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good, the firm pays -cdt and makes a discovery with probability λndt in any time interval

of length dt until Tn as long as there was no discovery before. Maximizing the expected

payoff w.r.t. the stopping time Tn we obtain the first order condition

−(1− p)c+ p(λnW
m
n − c)e−λnTn = 0. (3.4)

At the time of stopping the firm has to be indifferent between the expected payoff of

experimenting one last time and the payoff of stopping right now which equals zero.

Hence, for a monopolist the optimal time to stop investing in stage 1 equals

Tmn = − 1

λn

[
ln

(
1− p
p

)
+ ln

(
c

λnWm
n − c

)]
. (3.5)

The stopping time Tmn is increasing in the prior p and Wm
n and decreasing in the costs c.

The effect of an increase in the arrival rate λn on the stopping time is ambiguous. A higher

λn leads to a faster updating of beliefs, meaning that the firm becomes more pessimistic

in the absence of a success. At the same time a higher λn decreases the belief at which a

firm stops investing and it is not clear which effect dominates.11

Firm n experiments in stage 1 until it makes a discovery or stops at Tmn . The stopping

time is higher in a transparent system, because the expected benefit of R&D, Wm
n , is de-

creasing in β. That is, firms invest more and the probability of mistakenly abandoning a

good project is smaller the higher the level of transparency. However, this is only true if

the firm invests in stage 2 (i.e., if vmn > 0). If there is no investment in stage 2, the optimal

stopping time in stage 1 does not depend on the level of transparency.

In the case of a monopolist who is able to reap the entire consumer surplus, maxi-

mizing welfare is equivalent to maximizing expected monopoly profits. Thus, increas-

ing transparency increases welfare. If the monopoly profit lies below the valuation of

consumers, increasing transparency increases welfare as R&D investment and thus the

probability of an invention are increasing in the level of transparency.

3.4 Research cooperation

Now we turn to the optimal R&D investment of two firms in a research alliance, i.e., firms

that cooperatively maximize aggregate expected payoffs. Cooperation is restricted to the
11See also Halac et al. (2013).
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research stage meaning that firms remain competitors in the product market. If firms

cooperate, arrivals are always revealed as it can never be optimal to hide information

about a discovery. Hence, again only intransparencies about patent scope matter and ex

post legal disputes are precluded. In contrast to the previous section, positive spillovers

might allow the imitator to earn profits from a discovery of the inventor. As before, we

start in stage 2, where one firm already holds a patent.

Stage 2: The expected payoff of research in stage 2 in a research alliance where both

firms invest is given by

va = −2cdt+ Λ(1− β)(π2 + ω2)τdt+ (1− Λdt)va,

where Λ = λi + λj and in contrast to the monopolist profits for the imitator, ω2, enter as

well. The expected payoff of R&D in stage 2 is

va =
Λ(π2 + ω2)τ(1− β)− 2c

Λ
, (3.6)

if both firms invest in R&D, and

van =
λn(π2 + ω2)τ(1− β)− c

λn
,

if only firm n invests, but the imitator also obtains profits in case of a success. As firm i

is stronger in the sense that λi > λj , it follows that vaj < va < vai . Therefore, in a research

alliance only the stronger firm invests invest in R&D in stage 2 or none of the firms invests

in R&D.12

Stage 1: Let W a denote the sum of the total profit in stage 1 and the expected value of

research in stage 2 in a research alliance, that is, W a = π1τ + ω1τ + max{0, vai }. The total

expected payoff of firms in a research alliance is given by

Ua
i + Ua

j = pW a(1− e−λiTi−λjTj)− (1− p)c(Ti + Tj)−

pc

(
2

1− e−ΛTmin

Λ
+ e−λminTmin

e−λmaxTmin − e−λmaxTmax

λmax

)
, (3.7)

where Tmin = min{Ti, Tj}, Tmax = max{Ti, Tj} and λmin is the arrival rate corresponding to

the firm with the earlier stopping time, that is, if Tj = Tmin, then λj = λmin and λi = λmax.

12Homogenous firms, i.e., when λi = λj , either both invest or none of the two firms invests in R&D.
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The first term is the expected benefit of R&D investment. With the probability that the

state of the world is good and there will be at least one discovery, p(1 − e−λiTi−λjTj), the

firms obtain W a. If the state of the world is bad, both firms pay the costs of R&D until

reaching their stopping times. Moreover, firms also pay the costs of R&D in the good

state of the world as long as no one made a discovery. Here 21−e−ΛTmin

Λ
refers to the time

interval in which both firms invest, and the last term describes the time interval in which

one of the two firms already stopped investing, while the other firm still continues.

The firms maximize the sum of their expected profits given in (3.7) w.r.t. their stopping

times Ti and Tj . As stated in Lemma 3.1 in a research alliance also in stage 1 all R&D

investment is carried out by the stronger firm.

Lemma 3.1. The optimal stopping times of firms in a research alliance are T aj = 0 and

T ai = − 1

λi

[
ln

(
1− p
p

)
+ ln

(
c

λiW a − c

)]
.

Similar as in stage 2, only the stronger firm invests in R&D in a research cooperation.

Expected payoffs are higher if the stronger firm invests in two consecutive time periods

than if both firms invest simultaneously. The rate at which firms update their belief in

the absence of a success in a research alliance is the same as for the monopolist firm i.

The stopping time T ai equals the stopping time of the monopolist firm i, i.e., T ai = Tmi

if W a = Wm
i . Note that for T ai = Tmi also the final posterior belief in case there is no

discovery is the same in both situation. For W a > Wm
i cooperating firms invest more in

R&D, because the expected benefit of research is higher when both firms can profit from

one invention due to the positive spillovers.

In stage 2, if the benefits of R&D exceed the costs only the stronger firm invests and

hence similar patterns of R&D investment as for the monopolist are possible. If vai =

vmi , i.e., if the expected payoff a monopolist earns from investing in stage 2 equals the

expected payoff that both firms in a research alliance earn, the research alliance and the

monopolist firm i are equally likely to invest in R&D. If vai exceeds vmi it is more likely

that the research alliance invests in R&D and if vai < vmi , the monopolist is more likely to

invest.

If consumer surplus equals zero (ψy = πyτ + ωyτ ), the research alliance acts socially

optimally and as profits are increasing in the level of transparency, welfare is increasing
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in the level of transparency. If the consumer surplus is positive, i.e., for ψy > πyτ +

ωyτ , the more firms invest, the higher is the probability of a discovery and hence more

transparency is welfare enhancing.

3.5 Research competition

Commonly firms compete for patents and hence do not (or at least not fully) disclose their

research activities publicly. In contrast to R&D cooperation, competing firms choose their

R&D investment strategically without observing the R&D investment of the competitor.

Furthermore, in an intransparent patent system, a patent is not necessarily revealed to

both firms. The unsuccessful firm observes a discovery of the competitor with probability

1−ε,where ε ∈ [0, 1]. Here ε = 0 implies full transparency where discoveries are revealed

publicly immediately. A firm who does not observe the discovery of the competitor only

learns about it in case she makes a discovery herself. We assume that a firm is being

informed about an existing patent when filing an application at the patent office.

3.5.1 Winner-takes-all competition

Let us start by considering the simplest case in which only one patent can be obtained

and there are no positive R&D spillovers between the two firms. That is, the patent race

is a winner-takes-all race in which the first discovery receives a patent and the game

ends afterwards. If no follow-up inventions are possible, uncertainties about patent scope

(α and β) are irrelevant and only a lack of clarity regarding patent content affects R&D

investment.

Full transparency

First, we characterize the optimal stopping times for ε = 0. Suppose j follows a stop-

ping strategy with stopping time Tj . We are interested in finding i’s best response. The

expected payoff of firm n for a given combination of stopping times is given by

Un = p(πλn − c)
(

1− e−ΛTmin

Λ
+ e−λ−nTmin

e−λnTmin − e−λnTn
λn

)
− c(1− p)Tn, (3.8)
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where π is the profit associated with the patent, i.e., π = π1τ and ω1 = 0. At the time of

stopping each firm has to be indifferent between experimenting one last time and stop-

ping immediately given the stopping time of the competitor. For firm i this implies

−c(1− p+ pe−λiTi−λjTmin) + pπλie
−λiTi−λjTmin = 0. (3.9)

The first term represents the costs of R&D the firm pays in case it will indeed experiment

in this last instant, which happens with the probability that there was no discovery up to

this point in time. The second term is the expected continuation payoff the firm obtains

in case of a success. With the probability that the state of the world is good even though

no one made a discovery so far, the firm obtains a patent with instantaneous probability

λi. Similarly, at the time of stopping for firm j the following first order condition has to

be satisfied

−c(1− p+ pe−λiTmin−λjTj) + pπλje
−λiTmin−λjTj = 0. (3.10)

From equations (3.9) and (3.10) the optimal stopping times in equilibrium can be derived.

Furthermore, it can be shown that in equilibrium the stronger firm experiments longer,

i.e., Ti > Tj .

Lemma 3.2. The optimal stopping times of firms in a winner-takes-all competition with one patent

and full transparency (ε = 0) are given by

Tj = − 1

Λ

[
ln

(
1− p
p

)
+ ln

(
c

λjπ − c

)]
,

and

Ti = − 1

λi

[
ln

(
1− p
p

)
+ ln

(
c

λiπ − c

)
+ λjTj

]
= − 1

Λ

[
ln

(
1− p
p

)
+ ln(c)− Λ

λi
ln(λiπ − c) + λj ln (λjπ − c)

]
.

In this equilibrium

(i) the stronger firm invests more in R&D, i.e., Ti > Tj ;

(ii) in the absence of a discovery firms learn as much as under cooperation, i.e., the final posterior

belief

pf =
pe−λiTi−λjTj

1− p+ pe−λiTi−λjTj
,

is the same under competition and cooperation as λiTi + λjTj = λiT
a
i + λjT

a
j .
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Let us compare the optimal stopping times of competing firms to their respective

counterparts in the previous sections (assuming a winner-takes-all competition in which

only one patent is granted). The weaker firm j invests more than under cooperation but

less than as a monopolist, that is, 0 = T aj < Tj < Tmj . Further, the stopping time of the

weaker firm j is independent from the stopping time of the stronger firm i (it does how-

ever depend on λi), while the optimal stopping time of the stronger firm is decreasing in

the stopping time of the weaker firm. The stronger firm i invests less than under cooper-

ation, i.e., Ti < T ai = Tmi , where the difference between Ti and T ai is determined solely by

Tj. As Ti is decreasing in Tj and Tj > T aj this implies that Ti < T ai . Compared to the R&D

investment in a research alliance firm j invests too much, while firm i invests too little.

Each firm invests less than as a monopolist, because they can learn from each others

lack of success. Not observing a discovery from the opponent reduces the likelihood that

the state of the world is good. In equilibrium the firms correctly anticipate each others

stopping times. As firm j knows that firm i experiments until Ti, firm j learns more than

in autarky, i.e., her final posterior belief is more pessimistic. In particular, both firms have

the same final posterior belief at Ti, which equals the posterior of firm i in autarky.13

Imperfect transparency

Suppose ε > 0, which means that a firm that did not observe the patent of the competitor

at the time it is granted, only learns about it in case of an own discovery. The expected

payoff of firm n is given by

Un = pπλn

(
1− eΛTmin

Λ
+
e−ΛTmin − eλnTn−λ−nTmin

λn

)
− c(1− p)Tn − cpε

1− e−λnTmin

λn

−cp(1− ε)1− e−ΛTmin

Λ
− cp

(
ε+ (1− ε)e−λ−nTmin

) e−λnTmin − e−λnTn
λn

. (3.11)

13Deviations cannot be observed unless one of the two firms makes a discovery after reaching her stop-

ping time Tn. If this happens both firms know that the state of the world is good and the game ends. If

firm n stops before reaching her stopping time Tn, the other firm will never know about this deviation and

interpret the absence of a discovery mistakenly as a lack of success. Thus, the deviator will be more opti-

mistic than the firm that did not deviate. If a firm continues to invest after reaching her stopping time she

will be more pessimistic than the firm that did not deviate.
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The first term is the expected benefit of R&D investment, while the remaining terms rep-

resent the expected costs.14 As the costs are increasing in ε, the expected payoff Un is

decreasing in ε, i.e., the lower the level of transparency the lower is the expected payoff

for a given combination of stopping times. The optimal stopping times in equilibrium

have to satisfy

−c
(
1− p+ pe−λiTi

(
ε+ (1− ε)e−λjTmin

))
+ pπλie

−λiTi−λjTmin = 0, (F1)

and

−c
(
1− p+ pe−λjTj

(
ε+ (1− ε)e−λiTmin

))
+ pπλje

−λiTmin−λjTj = 0. (F2)

Now not observing an invention up to time Tn can either be due to the absence of a success

or due to a discovery of the competitor that was unobserved by firm n. Then firm n, being

unaware of the competitor’s success, continues to invest (pay c), but will never obtain a

patent as π can only be realized if there was no discovery.

Solving for the optimal stopping times explicitly as for ε = 0 is not possible, how-

ever, in the appendix it is shown that a solution to equations (F1) and (F2) exists and is

unique. In this equilibrium the stronger firm invests more in R&D than the weaker firm.

Furthermore, by making use of the implicit function theorem the impact of the level of

intransparency ε on the stopping times, that is, ∂Ti/∂ε and ∂Tj/∂ε can be derived. As

stated in Proposition 3.1 the stopping time of the weaker firm is decreasing in ε, while for

the stronger firm it depends on the difference in the firms’ R&D productivities.

Proposition 3.1. The optimal stopping times of firms in equilibrium in a winner-takes-all com-

petition with one patent and transparency level ε are uniquely determined by equations (F1) and

(F2). In this equilibrium

(i) the stronger firm invests more, i.e., Ti > Tj for all ε ∈ [0, 1];

(ii) the R&D investment of the weaker firm j is decreasing in ε, i.e., ∂Tj/∂ε < 0;

(iii) the R&D investment of the stronger firm i is decreasing in ε, i.e., ∂Ti/∂ε < 0 if and only if

(1− e−λjTj)(e−λiTjΛ(λjπ− c+ cε)− εcλj) > λj(λiπ− c+ εc)(1− e−λiTj)e−λjTj . (3.12)

14In the appendix the payoff function is derived and explained in more detail.
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The higher ε, the higher is the probability that the opponent has an unobserved patent

and hence the lower is the expected profit from experimenting. To be more precise, the ex-

pected costs of R&D increase in εwhile the expected benefit decreases. If inequality (3.12)

is satisfied the R&D investment of both firms is increasing in the level of transparency (or

decreasing in the level of intransparency ε). Otherwise the R&D investment of firm i in-

creases in ε. Inequality (3.12) holds if λi is close to λj and is reversed if λi is large relative

to λj . This implies that if the stronger firm is considerably more likely to make a discov-

ery, her stopping time is increasing in ε. If, however, the two firms are relatively equally

strong, then the stopping times of both firms are decreasing in ε. The intuition for this

result is the following. The probability that the opponent had an unobserved discovery

up to a certain point in time is increasing in ε and this decreases the expected benefit of

R&D investment. As a response, firms reduce their investment. However, for firm i at

the time of stopping the probability that firm j had an unobserved discovery is higher

the more j invested, i.e., the higher Tj . As Tj is decreasing in ε, there are two opposing

forces at play. On the one hand the probability that firm j had an unobserved discovery

increases in ε. On the other hand, the probability that firm j had an unobserved discovery

decreases, because firm j stops earlier the higher ε. If inequality (3.12) is satisfied (mean-

ing if firms are almost equally strong) the former effect dominates the later and vice versa

if the difference in the firms’ R&D productivities is more pronounced.

Do firms have an incentive to influence the level of transparency?

The FTC (2011) report suggests that firms deliberately try to influence the level of

transparency, for example, through vague formulations of their patent application, by

describing what the innovation does instead of what it is and so forth. Besides the patent

application itself, firms may have other possibilities to disclose more or less informa-

tion about their research activities (e.g., releasing information about research projects and

progress). To find out whether firms have an incentive to influence the level of trans-

parency (e.g., by obscuring the patent application) we have to analyze the impact of the

level of intransparency ε on expected payoffs in equilibrium. We assume that firms can

solely influence the transparency level (and hence the stopping time) of the competitor.

That is, each firm cannot influence overall ε but only the level of transparency faced by
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the opponent.15 Let εn denote the level of intransparency faced by firm −n (determined

by firm n) and let us see whether firms have an incentive to influence the level of trans-

parency. The expected equilibrium payoffs for a given combination of stopping times Ti

and Tj where Ti > Tj are

Ui = −c(1− p)Ti + p(πλi − c(1− εj))
1− e−ΛTj

Λ
− cpεj

1− e−λiTj
λi

+

pλiπ
e−ΛTj − e−λjTj−λiTi

λi
− cp

(
εj + (1− εj)e−λjTj

) e−λiTj − e−λiTi
λi

, (3.13)

and

Uj = −c(1− p)Tj + p(πλj − c(1− εi))
1− e−ΛTj

Λ
− cpεi

1− e−λjTj
λj

. (3.14)

The weaker firm (i.e., the firm stopping earlier) has no incentive to influence the stopping

time of the stronger firm, as Ti has no impact on firm j’s payoffs. To be more precise,

the weaker firm does not care about the level of transparency faced by its opponent. The

expected profit of the stronger firm i, however, is decreasing in the stopping time of the

competitor Tj . Hence, firm i has an incentive to increase the level of intransparency, as Tj

is decreasing in εi. Firm i prefers to be as intransparent as possible to discourage firm j’s

investment.

Proposition 3.2. Suppose firms face a winner-takes-all competition with one patent only and both

firms start with the same level of intransparency, εi = εj = ε, ex ante so that Ti > Tj . Then

(i) the stronger firm has an incentive to decrease the level of transparency;

(ii) the weaker firm has no incentive to change the level of transparency.

The stronger firm wants to discourage the weaker firm from investing by increasing

uncertainty and thereby decreasing the expected profit of R&D. As the R&D investment

of the firms is monotonic w.r.t. ε, the stronger firm would choose the highest possible level

of intransparency. If increasing intransparency does not incur any costs, the stronger firm

prefers high levels of intransparency, while the weaker firm is indifferent towards the

level of intransparency.16 Hence, ε∗i = 1, while ε∗j ∈ [0, 1] constitutes an equilibrium of

15We abstract here from the fact that changing the level of transparency might be associated with costs

as, for instance, a reduced probability of obtaining a patent.
16If the ex ante level of intransparency is not the same for both firms, Tj > Ti is possible. Then the weaker

firm has an incentive to increase the level of intransparency, while the stronger firm is indifferent.
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the game in which εn is chosen ex ante, if there are no bounds on the maximal level of

intransparency. Note that after a discovery firms are indifferent whether to reveal their

success to the competitor.

Is welfare maximal under full transparency?

Taking the benefits to consumers as well as the costs of R&D into account, the optimal

level of transparency from the perspective of a welfare maximizing social planner (e.g.,

the patent office) can be determined. We assume that the patent office commits to a certain

level of intransparency ε ex ante and that this level is the same for both firms. The patent

office aims to maximize welfare, which is given by

Ω = pψ(1− e−λiTi−λjTj)− c(1− p)(Ti + Tj)− cpε
(

1− e−λjTj
λj

+
1− e−λiTj

λi

)
−cp

(
2(1− ε)1− e−ΛTj

Λ
+
(
ε+ (1− ε)e−λjTj

) e−λiTj − e−λiTi
λi

)
. (3.15)

Welfare Ω equals the sum of the firms individual expected equilibrium payoffs, where

profit π is replaced by ψ, the value of a discovery for consumers. The welfare-maximizing

level of transparency depends on the difference between the costs of R&D and consumer

surplus, and the difference in the firms’ R&D productivities. In particular, if firms are

sufficiently heterogeneous in terms of their R&D productivities, positive levels of intrans-

parency can be optimal.

Proposition 3.3. If the patent office aims to maximize welfare by committing to the level of in-

transparency ε ex ante, then in a winner-takes-all competition with one patent,

(i) full transparency (ε∗ = 0) is optimal for ∂Ti/∂ε < 0 and ∂Ω/∂Tj > 0;

(ii) positive levels of intransparency (ε∗ > 0) are optimal for ∂Ti/∂ε > 0 while ∂Ω/∂Tj < 0, if

the costs of R&D are sufficiently low.

By analyzing the derivative of the welfare function w.r.t. ε, we can determine when

full transparency maximizes welfare. This derivative has the following form

∂Ω

∂ε
=
∂Ω

∂Ti

∂Ti
∂ε

+
∂Ω

∂Tj

∂Tj
∂ε

+ k. (3.16)

The last term k represents the direct increase in costs that occurs if ε increases and is

always negative. Moreover, welfare is increasing in the stopping time of the stronger firm
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(i.e. ∂Ω/∂Ti > 0), and the stopping time of the weaker firm is decreasing in ε (∂Tj/∂ε < 0).

If ∂Ti/∂ε < 0 while ∂Ω/∂Tj > 0, the derivative is negative for all ε ∈ [0, 1], welfare is

monotonically decreasing in ε and ε∗ = 0. From Proposition 3.1 we know that ∂Ti/∂ε < 0

if the two firms are roughly equally strong in terms of their R&D productivities λi and λj .

Now let us see under which condition welfare is increasing in the stopping time of the

weaker firm.
∂Ω

∂Tj
> 0⇔ λi(ψ − π)e−λiTi > c(1− ε)(e−λiTj − e−λiTi).

This inequality is satisfied if ψ is sufficiently large compared to c, if ε is high or if Ti is

close to Tj . Hence, if firms are relatively equally strong and have similar stopping times,

then welfare is maximal under full transparency. Yet, if the stronger firm is considerably

more likely make a discovery and also invests more in R&D in equilibrium, ∂Ti/∂ε > 0

while ∂Ω/∂Tj < 0 and the first two terms on the r.h.s. of (3.16) are positive. Hence,

depending on the parameters of the model, it is possible that welfare is not necessarily

maximal under full transparency, particularly if the costs of R&D are small (as this implies

that k is small). If firms are sufficiently heterogeneous, then by increasing ε the R&D

investment of the weaker firm can be reduced, while the R&D investment of the stronger

firm increases. This increases welfare if the social planner wants to replace some of firm

j’s investment by the investment of the stronger firm i. Firms that are similar in terms

of their research productivities both decrease their R&D investment if ε increases and the

risk of not observing a discovery of the competitor is higher.

3.5.2 Perfect R&D spillovers

Up to now we analyzed how the level of transparency affects R&D investment when firms

compete for a patent in a winner-takes-all competition. However, the invention of one

firm often creates positive R&D spillovers that also benefit other firms.17 In this section

we analyze the impact of transparency on R&D investment in the presence of positive

R&D spillovers but retain the assumption that the game ends after the first patent.

17See, e.g., Griliches (1992) or Henderson and Cockburn (1998).
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Full transparency

For now suppose ε = 0, and π1 = ω1, i.e., we have perfect positive spillovers. Let π again

denote the profit from a discovery, i.e., π = π1τ = ω1τ. The expected payoff of firm n is

given by

Un = p(Λπ − c)1− e−ΛT−n

Λ
+ pπe−λnTn(e−λ−nTmin − eλ−nT−n) +

p(λnπ − c)e−λ−nT−n
e−λnTmin − e−λnTn

λn
− (1− p)cTn. (3.17)

Now both firms can profit from one invention. Thus, the firm stopping earlier can still

obtain a positive payoff (as an imitator) after she stopped investing, if the other firm

makes a discovery. This is captured through the second term on the r.h.s. of Equation

(3.17). Furthermore, while both firms invest, the instantaneous probability of a discovery

is Λ as an own success is not necessary to generate profits. Taking the derivative of Ui and

Uj w.r.t. Ti and Tj respectively, the first order conditions for perfect spillovers are

−c(1− p+ pe−λiTi−λjTmin) + pπλie
−λiTi−λjTj = 0, (3.18)

and

−c(1− p+ pe−λiTmin−λjTj) + pπλje
−λiTi−λjTj = 0. (3.19)

From Equations (3.18) and (3.19) the optimal stopping times in equilibrium can be de-

rived. In this equilibrium the weaker firm experiments longer, i.e., Tj > Ti.

Lemma 3.3. The optimal stopping times of firms in equilibrium for perfect R&D spillovers and

full transparency (ε = 0) with one patent are given by

Ti = − 1

Λ

[
ln

(
1− p
p

)
+ ln

(
λiπ

λjπ − c
− 1

)]
,

and

Tj = − 1

λj

[
ln

(
1− p
p

)
+ ln

(
c

λjπ − c

)
+ λiTi

]
= − 1

Λ

[
ln

(
1− p
p

)
− ln(λjπ − c)

]
− 1

λj
ln(c) +

λi
λjΛ

ln(π(λi − λj)− c).

In this equilibrium

(i) the weaker firm invests more, i.e., Tj > Ti;
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(ii) the firms learn less than under cooperation, i.e., their final posterior belief in the absence of

a success is more optimistic as λiTi + λjTj < λiT
a
i + λjT

a
j .

In a winner-takes-all race the stronger firm invests more, while for positive spillovers,

the weaker firm invests more in R&D in a transparent patent system. The reason for this

is the following. The probability of a discovery is higher for the stronger firm and so are

the expected benefits of R&D. This implies that at the time of stopping the probability of

paying the costs c (and thus the probability of not having observed a success so far) has

to be lower for the weaker firm j, which implies that Tj has to be higher than Ti.

Also for positive spillovers, in a research alliance only the stronger firm invests in

R&D. Hence, similar to the winner-takes-all competition firm j invests too much (now

even more than firm i), and firm i free-rides on j’s research efforts when firms compete for

patents. For positive spillovers this free-riding is so severe that firms learn less (meaning

their final posterior at the time of stopping is more optimistic) than under cooperation.

Imperfect Transparency

Now suppose ε > 0. Then the expected payoff of firm n is

Un = pπ((1− ε)(1− e−λ−nT−n−λnTn) + ε(1− e−λnTn))− (1− p)cTn −

pc

(
ε

1− e−λnTn
λn

+ (1− ε)
(

1− e−ΛT−n

Λ
+ e−λ−nT−n

e−λnTmin − e−λnTn
λn

))
.(3.20)

In contrast to the winner-takes-all competition, a firm can profit from her discovery even

if the competitor had an unobserved success before and from a success of the competitor

after stopping herself. Hence, the optimal stopping times of firms in equilibrium have to

satisfy

−c(1− p+ pe−λiTi(ε+ (1− ε)e−λjTmin) + pπλie
−λiTi(ε+ (1− ε)e−λjTj) = 0, (F3)

and

−c(1− p+ pe−λjTj(ε+ (1− ε)e−λiTmin) + pπλje
−λjTj(ε+ (1− ε)e−λiTi) = 0. (F4)

Equations (F 3) and (F 4) together with Un for n = i, j can be used to analyze the equilibria

of the stopping game. For perfect positive R&D spillovers there does not exist a (unique)
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equilibrium for all levels of transparency. To be more precise, for ε sufficiently low and

sufficiently high there always exists a unique equilibrium, while for intermediate values

of ε two equilibria in pure strategies or no equilibrium exist.

Proposition 3.4. For perfect positive spillovers and transparency level ε ∈ [0, 1],

(i) the optimal stopping times of firms in equilibrium are determined by equations (F3) and

(F4). There exist ε and ε such that for all ε < ε and for all ε > ε there exists a unique pure

strategy equilibrium, where

ε =
c

λiπ

λiπp− c− (λi − λj)π
λjπp− c

and ε =
c

λjπ

λjπp− c+ (λi − λj)π
λiπp− c

.

For ε ∈ [ε, ε] there exist two pure strategy equilibria if and only if there exists Tn such that

1− p
εp

(
c

λ−nπ − c
1− ε

ε+ (1− ε)e−λnTn
− c

λnπe−λnTn

)
+
λnπ − c
λnπ

≥ c(1− ε)
λnπε

e−λ−nTn

(3.21)

for at least one n = i, j, otherwise there does not exist a pure-strategy equilibrium such that

(F3) and (F4) are satisfied;

(ii) the R&D investment of firms in equilibrium is non-monotonic w.r.t. the level of intrans-

parency ε. More precisely, there exist ε̂n < 1 for n = i, j and ε̃ ∈ (0, 1) such that

∂Tn(ε̂n)/∂ε = 0, limε→ε̃ |∂Tn(ε̃)/∂ε| =∞ and

∂Tn
∂ε

=


> 0 for ε < min{ε̂n, ε̃},

< 0 for min{ε̂n, ε̃} < ε < max{ε̂n, ε̃},

> 0 for max{ε̂n, ε̃} < ε.

For perfect positive R&D spillovers there does not exist a (unique) equilibrium for all

levels of transparency. For ε < ε the equilibrium is unique and the weaker firm invests

more in R&D, while for ε > ε depending on the parameter values the stronger or the

weaker firm invests more in the unique equilibrium. Note that ε = ε for λi = λj and the

difference between the two threshold values is increasing in the difference of the firms’

R&D productivities. In the interval [ε, ε] there exist two equilibria if (3.21) is satisfied

and zero otherwise. To be more precise, if (3.21) fails each firm wants to invest in R&D

if the competitor does not invest and vice versa. If firm n chooses Tn = 0 while the

competitor plays T−n = Tm−n, this pair of stopping times constitutes an equilibrium. As
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firms cannot observe each others actions, they cannot coordinate on who invests and

hence, there might be no equilibrium in pure strategies (because both or none of them

invests). At ε = 1 each firm chooses Tmn (the stopping time of a monopolist), because

they cannot learn anything from the competitor. This is the highest possible level of R&D

investment, as there is no combination of ε and T−n such that firm n invests more than

Tmn .

The firms’ R&D investment is non-monotonic in the level of transparency. Changes

in the level of transparency have a direct effect on expected profits and an indirect effect

through a change in the stopping time of the competitor. A higher level of intransparency

reduces the probability of observing a success from the competitor and this causes firms

to increase their own R&D investment. However, if the competitor increases her R&D

investment, this increases the probability of observing a success from her and hence each

firm has an incentive to decrease her own investment. As firms are heterogeneous in

terms of their R&D productivities, the magnitude of these effects is different for each

firm.

Do firms have an incentive to influence the level of transparency?

As before we are interested in whether firms have an incentive to influence the level of

transparency faced by their rival. The positive spillover allows firms to profit from a dis-

covery of the competitor. Consequently expected payoffs are increasing in the stopping

time of the competitor and each firm is better off the more the competitor invests.

Proposition 3.5. Suppose both firms start with the same level of transparency, εi = εj = ε, and

only one patent is granted. For perfect positive spillovers each firm n = i, j has an incentive to

influence the level of transparency faced by the competitor to maximize the stopping time of the

opponent as ∂Ui/∂Tj > 0 and ∂Uj/∂Ti > 0 for n = i, j.

Now both firms (i.e., also firm j) have an incentive to influence the stopping time of

the competitor. In contrast to the winner-takes-all competition where the stronger firm

wanted to discourage the R&D investment of the weaker firm, for positive spillovers

both firms want to encourage their competitor to invest. Hence, the level of transparency

is chosen so as to maximize the R&D investment of the competitor. If both firms choose

ε∗n = 1, then in the resulting equilibrium both firms invest as much as in autarky. This is
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the highest possible level of R&D investment that can be attained and none of the firms

can observe a patent of the competitor. This also constitutes an equilibrium in terms of

the level of intransparency as none of the firms has an incentive to change to a lower

level of intransparency given the choice of the opponent. In fact, if firm n chooses ε∗n = 1,

firm −n is indifferent towards the level of transparency faced by firm n. Hence, every

combination of εi and εj in which at least one of them chooses εn = 1 is an equilibrium

of the stopping game in which εn is chosen ex ante. As it is not clear what happens if ε is

between ε and εwe assume that firms do not choose a level of transparency in this region.

This is w.l.o.g. as it is always weakly optimal for each firm to choose ε∗n = 1 given that the

R&D investment of the competitor is maximal at ε = 1.

As described in Proposition 3.4, the R&D investment of the firms is non-monotonic

w.r.t. the level of transparency. Hence, if firms cannot choose εn = 1, because there are

bounds on the maximum level of intransparency, it is not clear whether firms would

choose this upper bound, as the R&D investment of the competitor might be higher at

lower levels of intransparency. The main difference to the winner-takes-all competition is

thus that both firms want to encourage each other to invest and that R&D investment is

non-monotonic in the level of transparency.

Is welfare maximal under full transparency?

Now we again turn to the optimal information disclosure policy of the patent office.

As we assume that the value of a discovery for consumer has to be at least as high as the

profit both firms can earn jointly, i.e., ψ ≥ 2π, welfare for perfect spillovers is given by

Ω = pψ(1− e−λnTn−λ−nT−n)− c(1− p)(Tn + T−n)− cp
(
ε

1− e−λ−nTn
λ−n

+ ε
1− e−λnTn

λn

)
−cp

(
2(1− ε)1− e−ΛTn

Λ
+
(
ε+ (1− ε)e−λnTn

) e−λ−nTn − e−λ−nT−n
λ−n

)
, (3.22)

for Tn < T−n. This is the same as in a winner-takes-all competition except that now it is

not necessarily true that Ti > Tj. The welfare-maximizing level of transparency depends

on the difference between the value of a discovery for consumers ψ and the costs of R&D

and can be positive if the consumer surplus is sufficiently large.

Proposition 3.6. If the patent office aims to maximize welfare by committing to the level of in-

transparency ε∗ ex ante, for positive spillovers welfare is not necessarily maximal under full trans-
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parency. If consumer surplus is sufficiently large, i.e., for ψ sufficiently large compared to c, wel-

fare is increasing in the R&D investment of both firms (∂Ω/∂Tj > 0 and ∂Ω/∂Ti > 0), and high

levels of intransparency (ε∗ = 1) are optimal.

Suppose Tj > Ti.18 Then the derivative of the welfare function w.r.t. ε is given by

∂Ω

∂ε
=

∂Ti
∂ε

λie
−λiTi

(
ψe−λjTj − π(ε+ (1− ε)e−λjTj) +

c(1− ε)(e−λjTi − e−λjTj)
λj

)
+

∂Tj
∂ε

λje
−λjTj

(
ψe−λiTi − π

(
ε+ (1− ε)e−λiTi

))
+ k.

As before (in the winner-takes-all competition), the last term k is negative and represents

the increase in costs associated with an increase in ε. Now ∂Ω/∂Tj > 0 if

ψe−λiTi > π(ε+ (1− ε)e−λiTi),

which is satisfied if ψ is sufficiently large compared to π, ε is small or Ti small. Thus, it

may depend on the stopping time of firm i whether welfare is increasing or decreasing

in the stopping time of firm j. If it is likely that firm i does not make a discovery until

reaching her stopping time, welfare is increasing in the R&D investment of firm j. If firm

i is likely to make a discovery, welfare can be decreasing in Tj. Furthermore, welfare is

increasing in Ti, if

ψe−λjTj − π(ε+ (1− ε)e−λjTj) +
c(1− ε)(e−λjTi − e−λjTj)

λj
> 0,

where the last term represents the costs that are saved if firm i invests more and thereby

replaces the R&D investment of firm j. For ψ sufficiently high welfare is increasing in

Ti and Tj (for Ti > Tj and Tj > Ti). Therefore, if consumer surplus is high, the patent

office might prefer high levels of intransparency to encourage both firms simultaneously

to invest in R&D.

The situation differs from the previous section (i.e., the winner-takes-all competition)

in the following ways. In a winner-takes-all competition for high levels of ψ welfare is

increasing in Ti and Tj. However, as Tj is monotonically decreasing in ε it was not clear

whether the negative effect of ε on Tj and c is outweighed by an increase in Ti. For positive

spillovers a higher ψ means that both firms should invest more in R&D. Furthermore,

18The corresponding expressions for Ti > Tj can be found in the appendix.
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-n R&D -n no R&D

n R&D β̃(λnπ+λ−nω−(1−e−Λτ )λ−nαπ̃)−c
Λ

, β̃(λ−nπ+λnω)−c
Λ

β̃λnπ−c
λn

, β̃(1− ε)ω

n no R&D β̃((1− ε)ω − (1− e−λ−nτ )απ̃), β̃λ−nπ−c
λ−n

0, 0

Table 3.1: Payoff matrix for R&D investment in stage 2 when firm n holds patent 1.

now welfare is not necessarily increasing in Ti (it depends j’s R&D investment and on

ε). Moreover, R&D investment is non-monotonic w.r.t. ε. Hence, it is possible that there

are high levels of ε for which Ti and Tj are high (both are maximal at ε = 1) and this

also increases welfare. This is particularly likely if ψ is sufficiently large and c sufficiently

small.

3.5.3 Sequential innovation

So far we analyzed the impact of transparency on strategic R&D investment for perfect

spillovers as well as in a winner-takes-all competition if the game ends after the first

patent is granted. Now we want to briefly discuss what changes if one innovation may

lead to follow-up innovations, i.e., innovation has a sequential character and after the first

patent is granted firms can invest in R&D to obtain another patent.

Stage 2: We start our analysis in the second stage and assume that firm n holds the first

patent. Now it is possible that both firms are aware of the patent or that the unsuccessful

firm −n is unaware of n’s success. If firm −n is not aware of the existing patent (meaning

she is still in stage 1 or exited), she is either informed about the existing patent after an

own discovery or she invests until reaching her stopping time. Suppose both firms are

aware of patent 1 and decide whether to invest in a second patent. Table 1 shows the

expected payoffs of firms in stage 2, where π2τ is denoted by π, ω2τ by ω and 1− β by β̃.

The patent holder (firm n) invests in R&D if (1−β)λnπ2τ ≥ c if firm−n does not invest

in R&D and if (1 − β)(λnπ2τ + (εΛ − λn)ω2τ + απ̃1(Λ(1 − e−λ−nτ ) − λ−n(1 − e−Λτ )) ≥ c if

firm−n invests in R&D. For the imitator investing is optimal as long as (1−β)λ−nπ2τ ≥ c

if the inventor does not invest and if (1− β)(λ−nπ2τ + (εΛ− λ−n)ω2τ) ≥ c, if the inventor

invests in R&D in stage 2.
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If a firm invests in R&D in stage 2 the expected payoff of R&D is decreasing in β and

α and does not depend on ε. The expected payoff of a firm that does not invest in stage

2 is decreasing in β and ε, and for the patent holder also in α. Thus, the expected payoff

for a given strategy profile is smaller the higher the lack of clarity regarding patent scope

and patent content. However, this is not true for the likelihood with that a firm invests

in R&D. To be more precise, R&D investment is more likely the smaller β, the higher α,

and the higher ε. The possibility that a new invention does not lead to a patent because it

is seen as a duplication of an existing patent (β), reduces the probability that firms invest

in R&D and the expected value of R&D. Uncertainty about the content of a patent or ex

post legal disputes on the other hand increase the probability of R&D investment, but

decrease the expected value of R&D. To avoid legal disputes and protect the first patent,

the inventor is more likely to invest the higher α. Similarly, for positive spillovers firms

are more likely to invest the higher the probability that the competitor has an unobserved

patent.

Stage 1 - unclear patent scope:

First, suppose ε = 0, but α, β > 0 and let us see how the equilibrium stopping times of

the firms in stage 1 depend on these types of uncertainties. Let πn denote π1τ + v1
n and ωn

denote ω1τ + v2
n, where v1

n denotes the expected payoff in stage 2 of the inventor and v2
n

the expected payoff of the imitator in stage 2. For sequential innovation the stronger firm

invests more in R&D (in a winner-takes-all competition and for perfect spillovers) as long

as there is no uncertainty about patent content.

Lemma 3.4. Suppose firms face a lack of transparency regarding patent scope, i.e., α, β > 0, but

not regarding patent content, ε = 0, and sequential innovations are possible. Then

(i) the equilibrium stopping times are given by

Ti = − 1

λi

[
ln

(
1− p
p

)
+ ln

(
c

λiπi − c

)
+ λjTj

]
,

and

Tj = − 1

Λ

[
ln

(
1− p
p

)
+ ln

(
c

λiπi − c

)
+ ln

(
λiπi − λjωj − c
λjπj − λjωj − c

)]
;

(ii) the stronger firm invests more in R&D in equilibrium, i.e., Ti > Tj.
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In general, it depends on the model parameters whether a welfare-maximizing social

planner wants to encourage firms to invest in R&D. For now assume that consumer sur-

plus is sufficiently high and the costs of R&D are low so that the social planner wants to

maximize the probability of a discovery. The probability of a discovery (if the state of the

world is good) is 1− e−λiTi−λjTj and in order to maximize this probability, λiTi + λjTj has

to be maximized. The sum λiTi + λjTj is increasing in ωy and πy and also in v1
n and v2

n.

Corollary 3.1. Suppose ε = 0 and a welfare-maximizing social planner aims to maximize the

likelihood of an invention, 1 − e−λiTi−λjTj , by influencing the transparency of the patent scope,

i.e., through the choice of α and β. Then

(i) α∗ > 0, if the inventor does not invest in stage 2 for α = 0, but does so for α > 0, as this

increases v1
n and consequently λiTi + λjTj;

(ii) β∗ = 0, as v1
n and v2

n are both decreasing in β and so is λiTi + λjTj .

While the social planner prefers β to be as low as possible, meaning high levels of

transparency are optimal, this is not certainly true for α, the probability of litigation. A

higher risk of legal disputes can motivate the inventor to invest in follow-up innovations

and thereby stimulate R&D investment.

Stage 1 - unclear patent scope and content:

Finally, let us discuss the situation where ε > 0 and α, β > 0, i.e., there is a lack of clarity

regarding patent scope and patent content. The first order conditions change to

e−λiTi
(
e−λjTminλiπi + λiωi(ε− e−λjTmin + (1− ε)e−λjTj)− c(ε+ (1− ε)e−λjTmin)

)
=

1− p
p

c,

and

e−λjTj
(
e−λiTminλjπj + λjωj(ε− e−λiTmin + (1− ε)e−λiTi)− c(ε+ (1− ε)e−λiTmin)

)
=

1− p
p

c,

These expressions can be used to analyze how the expected benefits of R&D investment

vary with a lack of clarity in patent content, ε, as well as patent scope, α and β. In a

winner-takes-all competition if the expected payoff of the imitator in stage 2 v2
n is low,

(e.g., because it is likely that a new discovery will not lead to a patent, meaning β is high),

the first order condition for sequential innovation is similar to a winner-takes-all com-

petition with one patent only. If v2
n is high the situation is similar to the perfect positive
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spillover case, meaning a winner-takes-all competition in which sequential innovation

is possible is comparable to a situation with positive (but not necessarily perfect) R&D

spillovers. The magnitude of v2
n (and particularly its difference to v1

n) determines the level

of R&D spillovers between firms. In general, v1
n = v2

n if firm −n does not invest in R&D

in stage 2 and v1
n < v2

n if −n does invest (because of the risk of legal disputes α). How-

ever, at the same time for α > 0, the inventor is more likely to invest. This means that it

is possible that the firm invests in stage 2 as an inventor but not as an imitator and this

would imply that v1
n > v2

n. The stage 2 payoff of the imitator, v2
n, is decreasing in β and

also in ε, yet the probability that the imitator invests is increasing in ε. Through the level

of transparency the patent office can to some extent control the level of R&D spillovers.

Higher levels of transparency however do not imply higher R&D spillovers. In general,

it depends on the type of intransparency and also how this intransparency interacts with

the spillover parameter ωy.

In the case of sequential innovation firms also ex post have an incentive to hide an

invention. By not disclosing a discovery the inventor can avoid infringement. If the

inventor can not profit from a follow-up invention of the imitator (as in a winner-takes-

all competition), then she will hide the first invention if possible. For positive spillovers

the inventor can profit from a second discovery even if she does not achieve this discovery

herself and hence, it is not clear whether she would like to hide the first patent to avoid

legal disputes or disclose it to increase the probability of obtaining ω2.

A benevolent social planner, who wants to maximize the likelihood of an invention,

prefers low levels of β. This means that a firm should be able to assess whether a new dis-

covery will receive a patent or what steps are necessary to guarantee that it is not seen as

a duplication of an existing patent. The picture is slightly more complex for the other two

types of uncertainty. An inventor that has to fear ex post legal disputes is more likely to

invest into improvements herself. A strong and clear patent protection (as reflected by a

low α) could then cause an inventor to rest on her primary success, while a lack of clarity

encourages further improvements. Nevertheless, the expected profit of R&D investment

is lower if a firm expects profit reductions in the future stemming from an uncertainty

of the extent of protection and this can in turn decrease the incentive to invest in R&D

ex ante. Hence, the impact of α on R&D investment is not clear (and this independently
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of the level of R&D spillovers). Similarly, a lack of clarity regarding patent content (ε)

increases the probability that firms invest in R&D in stage 2, while the expected payoff of

R&D decreases. Moreover, welfare in stage 1 is not necessarily maximal under full trans-

parency. Particularly if consumer surplus is high and costs are low, strategic firms invest

too little in R&D, because of the possibility to free-ride on the R&D investment of the

competitor. In this case higher levels of intransparency can encourage R&D investment.

On the other hand, if consumer surplus is low, the costs of R&D are high and the level

of transparency does not alter the decision of firms whether to invest in R&D in stage 2,

then welfare is increasing in the level of transparency.

3.6 Conclusion

This chapter investigated the consequences of a lack of clarity regarding the scope and

the content of a patent on the incentives of firms to invest in R&D and on the optimal

information disclosure policy of the patent office. Two heterogeneous firms compete for

patents and strategically choose their R&D investment. In a winner-takes-all competition

the R&D investment of the weaker firm is increasing in the level of transparency, while for

the stronger firm this is only the case if the firms are relatively equal in terms of their R&D

productivities. For positive spillovers the R&D investment of firms is non-monotonic

w.r.t. to the level of transparency and maximal in a perfectly intransparent system.

R&D investment and welfare are not necessarily maximal under full transparency. If

an innovation has positive R&D spillovers (either because the unsuccessful firm can easily

imitate and adapt the discovery for a different market or because it may lead to follow up

innovations), firms have an incentive to free-ride on each others R&D investment. This

means that there is not enough duplication from the perspective of a welfare-maximizing

social planner. As uncertainty about the content of a patent can lead to more duplication,

it might not be optimal for the patent office to encourage full information disclosure, i.e.,

full transparency. Similarly, a higher risk of legal disputes does not necessarily discourage

the inventor from investing. Despite the negative effect on the expected profit associated

with a patent, the inventor may be more likely to invest into follow-up inventions, if she

has to fear litigation.

102



The links between uncertainty in the patent system and strategic R&D investment are

complex. While some types of uncertainty seem to have mainly a negative effect (β),

others have positive as well as negative effects on R&D investment and welfare. Our

theoretical findings suggest that depending on the type of uncertainty, full transparency

is not necessarily optimal. Thus, increasing transparency might not only be associated

with advantages, and the costs and benefits of policies to increase transparency have to

be considered carefully.

During the analysis the length of a patent as well as profits π and ω were treated as

exogenous and could not be influenced by the social planner. In reality policy makers can

of course use these instruments, which might be controlled more easily than the trans-

parency level itself. Ideally, the patent office will choose an optimal combination of the

level of transparency, patent length and competition policies that influence ω. An inter-

esting question for future research can thus be an analysis of the optimal combination of

patent breadth, patent length and the certainty of patent protection.

Finally, we restricted attention to pure strategy equilibria, which is not entirely un-

problematic as for certain parameter values there does not necessarily exist an equilib-

rium in pure strategies. By allowing firms to use mixed strategies or considering other

strategies besides stopping strategies, we could extend our analysis and also study ques-

tions related to the timing of R&D investment or the timing of information disclosure.
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Appendix A

Proof of Lemma 1.1.

Expected payoffs of the single agent are linear in effort. Thus, to calculate the optimal

effort choice in T − 1 and T we compare expected payoffs at U(φT−1, φT ) for (φT−1, φT ) =

{(0, 0), (1, 0), (0, 1), (1, 1)} given that the continuation payoff U(pT+1) = 0. That is,

U(0, 0) = 0,

U(1, 0) = (1− δ)EpT−1
+ δpT−1E1π,

U(0, 1) = δ(1− δ)EpT−1
+ δpT−1E1π,

U(1, 1) = (1− δ)EpT−1
+ δE1πpT−1(1 + δ − δπ) + δ(1− δ)(1− pt−1π)EpT .

First, U(1, 0) ≥ U(0, 0) for pT−1 ≥ pa. Further, U(1, 1) ≥ U(1, 0) for pT ≥ pa and as pT ≥ pa

implies that pT−1 ≥ pa we know that U(1, 0) ≥ U(0, 1). Hence, U(1, 1) ≥ U(1, 0) implies

U(1, 1) ≥ U(0, 1). Finally, we can verify that U(1, 1) > U(1, 0) for

pT−1 ≥
(1− δ)|E0|

(1− δ)|E0|+ E1(1− π)(1− δ + δπ)
= p∗,

where pT = p∗(1−π)
1−p∗π = pa. These arguments can be extended to show that φT−2 = 1 is

optimal if and only if pT−2 ≥ pa and so forth. Thus, the agent experiments if pt ≥ pa and

stops otherwise. �

Proof of Proposition 1.1.

We first derive the optimal experimentation effort in T − 1 and T given that there are no

experiments in T +1, i.e., we want to find the optimal values for (φT−1, φT ) in a symmetric

equilibrium. Linearity in the maximand implies that the solution to the maximization

problem is on the boundaries of [0, 1] × [0, 1]. Hence, denoting the expected payoff from

action profile (φT−1, φT ) by U(φT−1, φT ), we compare U(0, 0), U(1, 0), U(0, 1) and U(1, 1).

Comparing expected payoffs at φi,T−1 = 0 and φi,T−1 = 1 (i.e., U(0, 0) and U(1, 0)) we find

that agent i is indifferent between experimenting and not experimenting at time T − 1
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with no experimentation in T as long as

IcT−1 ≡ (1− δ)EpT−1
+ δE1pT−1π(1− φj,T−1π)n−1

equals zero. If IcT−1 > 0 the best response is to choose φcT−1 = 1 and if IcT−1 < 0 the safe arm

is optimal. As players are symmetric, this is true for all agents. From IcT−1 we can derive

the optimal experimentation effort in a symmetric equilibrium with no experimentation

in T as

φcT−1 =
1

π
− 1

π

(
(1− δ)|E0|
δE1πpT−1

− (1− δ)(|E0|+ E1)

δE1π

) 1
n−1

which has φcT−1 = 0 as optimal solution for beliefs pT−1 below pa and φcT−1 = 1 for any

beliefs pT−1 above

pc =
(1− δ)|E0

(1− δ)(|E0|+ E1) + δE1π(1− π)n−1
.

A similar analysis shows that U(0, 1) > U(0, 0) for the same threshold beliefs pa and pc for

pT . U(1, 0) and U(0, 1) intersect at a belief pT−1 which is below pa. As U(1, 0) is steeper

than U(0, 1) we can conclude that it is not optimal for agents to postpone experimenting.

Further, U(1, 1) ≥ U(1, 0) for any belief

pT ≥
(1− δ)|E0|

(1− δ)(|E0|+ E1) + E1δπ(1− πφj,T )n−1
,

which is the same belief that determines when U(1, 0) ≥ U(0, 0) replacing pT−1 by pT and

φj,T−1 by φj,T . Finally, U(1, 1) ≥ U(0, 0) for any belief pT−1 above

(1− δ)|E0|(1 + δ)

(1− δ)(|E0|(1 + δ) + E1) + δE1(1− πφcT−1)n−1[1− δ + δπ(1− πφcT )n−1]
. (A.1)

The belief pT−1 at whichU(1, 1) intersects withU(0, 0) lies above p̄c (the belief above which

U(1, 0) > U(0, 0)) for all φcT−1, φ
c
T ∈ [0, 1]. This mean that if pT−1 is low φi,T−1 = φi,T = 0 for

all i ∈ N , for slightly more optimistic beliefs φi,T−1 > 0 while φi,T = 0 and for even more

optimistic belief φi,T−1 = φi,T = 1. As this argument extends for any two consecutive

periods in a symmetric equilibrium

φci(t) =


1 for pt ∈ [pc, 1),

1
π
− 1

π

(
(1−δ)|E0|
δE1πpt

− (1−δ)(|E0|+E1)
δE1π

) 1
n−1

for pt ∈ (pa, pc),

0 for pt ∈ [0, pa],

for all i ∈ N . In general, for any two consecutive periods we have either (φct , 0) or (1, φct+1)

where φct ,φct+1 ∈ [0, 1]. That is, n failed experiments from pc yield a posterior below pa
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so that there is at most one time period in which agents do not play exclusively risky or

exclusively safe. To be more precise, updating pc by n failed experiments yields

p̄c(1− π)n

1− p̄c + p̄c(1− π)n
=

(1− δ)|E0|(1− π)n

(1− δ)|E0|(1− π)n + E1(1− δ + δπ(1− π)n−1)

which is smaller than pa. �

Proof of Proposition 1.2.

For simplicity of exposition the main arguments are first discussed for the simpler case

when n = 4. We proceed analogously to the proof of Proposition 1.1. Expected payoffs

are linear in effort and hence to find the optimal experimentation effort (in a symmetric

equilibrium) it suffices to compare the expected payoffs from experimenting with full

intensity to not experimenting at all. For n = 4 the expected payoffs of different action

profiles U(φi,T−1, φi,T ) for given (symmetric) actions of the other players are

U(0, 0) = δpT−1E1[1− a[1− δ + δb]],

where a = (1− φj,T−2π)(1− φj,T−1π)2 and b = (1− φj,T−1π)(1− φj,Tπ)2(1− δφT,jπ)

U(1, 0) = (1− δ)EpT−1
+ δpT−1E1[1− (1− π)a[1− δ + δb]],

U(0, 1) = δ(1− δ)EpT (1− pT−1 + pT−1a) + δpT−1E1[1− a[1− δ + δ(1− π)b]],

U(1, 1) = (1 − δ)EpT−1
+ δE1pT−1[1 − (1 − π)a] + δ(1 − pT−1 + pT−1(1 − π)a)[(1 − δ)EpT +

δE1[1− (1− π)b]].

Thus, U(1, 0) > U(0, 0) for any belief p above

(1− δ)|E0|
(1− δ)(|E0|+ E1) + δπE1a[1− δ + δb]

. (A.2)

Similarly, U(1, 0) ≥ U(0, 1) as long as

p ≥ (1− δ)|E0|
(1− δ)(|E0|+ E1) + δE1(1− (1− π)a)

. (A.3)

It can be shown that (A.2) ≥ (A.3) for all a, b ∈ [0, 1], i.e., for all φT−2, φT−1, φT ∈ [0, 1].

Similarly to the complete network, this implies that agents have no incentive to delay

experimentation. Moreover, it can be shown that the belief at which U(1, 1) ≥ U(1, 0) is

strictly above (A.2) and hence, there is at most one time period in which agents use inte-

rior experimentation intensities. A change in the number of players n affects expressions

a and b. Independently of the number of players we have a, b ∈ [0, 1] and hence the con-

clusion remains the same.
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In the ring network we have to distinguish between an even and an odd number of play-

ers, as this determines how much information arrives in the last round where new infor-

mation reaches agent i. As the results are similar in both cases for simplicity we will only

discuss the case where n is odd here.

Let us first specify the indifference condition Irt for any point in time t, where up to time

t all agents experimented with full intensity. The amount of information (i.e., the number

of past experiments) agent i obtains in period t and subsequent periods depends on the

number of agents and on how many periods already passed. At time t we have

Irt = (1− δ)Ept + δE1ptπ{(1− φrπ)2(1− π)2 min{t−1,d−1}(1− δ) +

δ(1− φrπ)4(1− π)4 min{t−1,d−1}−2(1− δ) + ...+ δ
n−3

2 (1− φrπ)n−1(1− π)yt−1},

where we dropped the time index for φrt and yt = (n − 3)t − 2
∑min{t−1,d−1}

x=1 (t − x). If

Irt = 0 the agent is indifferent between experimenting and not experimenting at time t

given that there are no experiments in t+ 1. From this we can derive φrt as well as pr
t

and

prt for any t ≥ 1. In contrast to the complete network an explicit simple expression for φrt

cannot be derived. A proof that the root on [0, 1] exists and is unique can be found below.

The cutoff beliefs are increasing in t. Further, three failed experiments from prt take the

posterior below the lower cutoff pr
t+1

. Hence, there is at most one period in which agents

use interior intensities in the symmetric equilibrium in the ring network.

Existence and uniqueness of φrt : The expression for φr1 can be found by analyzing Ir1 = 0,

which can be rewritten as

(1− δ)Ep1

δE1p1π
+ (1− φ1π)2 − [1− (1− φ1π)2]

n−3
2∑
t=1

δt(1− φ1π)2t = 0, (A.4)

where the expression on the l.h.s is a polynomial of order n − 1 in φ1. To show that the

root on [0, 1] is unique, it is enough to show that (A.4) is strictly monotonically decreasing

for φ1 ∈ [0, 1]. We rewrite Ir1 = 0 as

0 = (1− φ1π)2 − δ(1− φ1π)2 − δ2(1− φ1π)4 − ....− δ
n−1

2
−1(1− φ1π)n−3 +

δ(1− φ1π)4 + δ2(1− φ1π)6 + ....+ δ
n−1

2
−1(1− φ1π)n−1 +

(1− δ)Ep1

δE1p1π

= (1− δ)
[
(1− φ1π)2 + δ(1− φ1π)4 + δ2(1− φ1π)6 + ....+ δ

n−1
2
−2(1− φ1π)n−3

]
−

δ
n−1

2
−1(1− φ1π)n−1 +

(1− δ)Ep1

δE1p1π
.
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Taking the derivative w.r.t. φ1 gives

(1− δ)[−2π(1− φ1π)− 4δπ(1− φ1π)3 − ...]− (n− 1)δ
n−3

2 π(1− φ1π)n−2,

which is negative for φ1 ∈ [0, 1]. A similar analysis can be carried out for Irt for t ≥ 2. �

Proof of Proposition 1.3.

For simplicity we first describe the proof if agents only experiment in t = 1, before we

extend the arguments for any t ≥ 2. In t = 1 if p1 ≥ pc, all agents experiment with in-

tensity 1 and if p1 ≤ pa, no agent experiments. We want to show that for p1 ∈ (pa, pc)

equilibrium experimentation intensities are higher in the ring than in the complete net-

work. For beliefs in [pr1, p
c) agents in the ring experiment with full intensity while players

in the complete network have effort levels below 1. For beliefs in (pa, pr1) we know that in

equilibrium Ir1 = 0 and Ic1 = 0. As prior beliefs are assumed to be identical it follows from

Ir1 = Ic1 that

(1− φc1π)n−1 − (1− φr1π)2

(
1− δ + δ

n−1
2 (1− φr1π)n−3[1− (1− φr1π)2]

1− δ(1− φr1π)2

)
= 0. (A.5)

Equation (A.5) holds for φr1 = φc1 = 0 and in case we set φr1 = φc1 = φ1 the l.h.s. of (A.5)

is monotonically decreasing in φ1 and negative for any φ1 > 0. Consequently, for (A.5) to

hold we need

φr1 > φc1.

In t ≥ 2 it has to be shown that for any prior p1 ≥ pc (which implies φr1 = φc1 = 1), the ex-

perimentation intensity in the ring, φrt , is at least as high as its counterpart in the complete

network, φct . A direct comparison is not possible, as agents hold different posteriors. For

φrt and φct that maximize the agents’ utility in the corresponding network in the interval

where agents use both arms, the corresponding beliefs are given by

prt = (1− δ)|E0|/{(1− δ)[|E0|+ E1] + δE1π[(1− φrπ)2(1− π)2 min{t−1,d−1}(1− δ) +

δ(1− φrπ)4(1− π)4 min{t−1,d−1}−2(1− δ) + ...+ δ
n−3

2 (1− φrπ)n−1(1− π)yt−1}(A.6)

for the ring and

pct =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− φctπ)n−1
(A.7)
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for the complete network. Further,

pct =
prt (1− π)yt−1

prt (1− π)yt−1 + 1− prt
. (A.8)

By replacing prt in Equation (A.8) by (A.6) and then solving for (A.8)=(A.7), it can be

shown that

φrt > φct .

�

Proof of Proposition 1.4.

Analogously to the proof of Proposition 1.1 and 1.2 it can be shown that players have no

incentive to delay experimentation and that there is at most one time period in which they

use interior experimentation intensities. Let us start with the central player. Comparing

expected utility from experimenting with intensity φht to not experimenting (with no ex-

perimentation in t+1), the risky arm is optimal as long as (1−δ)Ept+δE1ptπ(1−φstπ)n−1 ≥

0. The cut-off belief above which an experimentation intensity of 1 is optimal for the hub

is given by ph = pc, and the lower cut-off by ph = pa. If (1−δ)Ept +δE1ptπ(1−φstπ)n−1 = 0,

then φst is given by (1.8). This means that the hub is indifferent between experiment-

ing and not experimenting on the interval [pa, pc] if the peripheral players choose φst =

φct . If φst > φct for a given belief then (1 − δ)Ept + δE1ptπ(1 − φstπ)n−1 < 0 and conse-

quently the hub stops experimenting immediately. On the other hand if φst < φct , then

(1− δ)Ept + δE1ptπ(1− φstπ)n−1 > 0 and the hub will exclusively use the risky option.

Peripheral players are symmetric and receive all their information from the hub. In

t = 1 (with no experimentation in t = 2) they are indifferent between the risky and the

safe arm as long as Is1 = 0, where

Is1 = (1− δ)Ep1 + δE1p1π(1− φh1π)(1− δ + δ(1− φs1π)n−2).

From this we can derive φs1 and the corresponding cut-off beliefs ps
1

= pa, and

ps1 =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + E1δπ(1− φh1π)(1− δ + δ(1− π)n−2)
.

Existence and uniqueness of φs1 can be easily verified by analyzing the expression Is1 . The

minimum of this function is at 1
π

which implies that there is only one root on [0, 1] due

to the parabolic shape of the function. In t = 1 we have ph = pa =ps1 and ps1 < ph = pc,
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where the last inequality holds for all φh1 ∈ [0, 1]. Consequently, in the interval [ps1, p
h), the

peripheral players experiment with an effort level that violates the indifference condition

of the hub (φs1 > φc1) which implies that the central player will stop experimenting imme-

diately for any belief below ph = pc. For beliefs in (pa, ps1), if φh1 = 0, the experimentation

intensity of the peripheral players is higher than it would be in a symmetric equilibrium

in the complete network. Consequently, the hub does not experiment in this region either.

More precisely, comparing Is1 and Ic1 we see that φs1 > φc1 for all φh1 ∈ [0, φc1].

Let us turn to the problem in t ≥ 2. The posterior beliefs of the agents are pst+1 =

pt(1−π)2

pt(1−π)2+1−pt for the peripheral players and pht+1 =
pst+1(1−π)n−2

pst+1(1−π)n−2+1−pst+1
for the hub. Not only

do agents now hold different beliefs, also the upper and lower cut-offs for the peripheral

players are different due to the first round information that will reach them. For t ≥ 2 we

have

Is2 = (1− δ)Epst + δE1p
s
tπ(1− π)n−2(1− φht π)(1− δ + δ(1− φstπ)n−2)

where, by imposing Is2 = 0, we obtain

ps2 =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + E1δπ(1− π)n−2(1− φht π)(1− δ + δ(1− π)n−2))

and

ps
2

=
(1− δ)|E0|

(1− δ)[|E0|+ E1] + E1δπ(1− π)n−2
.

We have pht = pc > ps
2
> pa = ph and further ps2 > pc for φht = 1 and t ≥ 2. Now we

want to show that it is still optimal that either all agents choose effort level 1 (for high

beliefs), effort level 0 (for pessimistic beliefs) or the peripheral players choose φst ∈ (0, 1)

while the hub does not experiment. If agents in the complete network and the peripheral

players have the same φt as optimal effort level, then their beliefs are less than n − 2

failed experiments apart from each other. This means that if the distance (measured in

experiments) is n − 2, the belief and effort level of the peripheral players is higher than

for the complete network in the interval where agents use both arms. Then it is optimal

for the hub to stop experimenting completely below pc. As before, an optimal strategy

requires either (φsi,t, 0) or (1, φsi,t+1), i.e., there is at most one time period in which agents

use both arms simultaneously. For any belief in (ps
2
, p̄s2], if all peripheral players choose

the equilibrium experimentation effort φst , the posterior belief in case all experiments fail
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is given by

(1− δ)|E0|(1− πφst)(1− π)n−2

(1− δ)|E0|(1− πφst)(1− π)n−2 + (1− δ)E1 + E1δπ(1− π)n−2(1− δ + δ(1− πφst)n−2))
,

which is below ps
2
. Existence and uniqueness of φst for t ≥ 2 can be shown by analyzing

the expression Is2 based on the same arguments as for φs1. �

Proof of Proposition 1.5.

The proof consists of two parts. Part 1 is for beliefs such that in case all experiments

in t = 1 fail, there will be no experimentation in t = 2. Part 2 describes the proof for

beliefs where agents experiment in t ≥ 2. First, for prior beliefs in [0, pa] and [pc, 1] the

experimentation intensity in t = 1 is the same in both networks. Moreover, for beliefs pc−ε

the agents in the complete network experiment almost with full intensity while the agents

in the star network cannot increase their effort any more. Hence, for beliefs right below pc,

total experimentation effort is higher in the complete network. The interesting interval is

(pa, ps1) in which the hub does not experiment and in which agents both networks invest in

both arms simultaneously. Therefore, nφc1 has to be compared to (n−1)φs1. In this interval

along the equilibrium path

pc1 =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− φc1π)n−1
,

for the complete network and

ps1 =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− δ + δ(1− φs1π)n−2)
,

for the star. This implies that for a given fixed belief the relation between φc1 and φs1 can

be found through these expressions and is given by

φc1 =
1

π
− 1

π
(1− δ + δ(1− φs1π)n−2)

1
n−1 .

Now the difference between n−1
n
φs1 − φc1 can be defined as

Γn(δ, π, p1) := 1− δ −
(

1− n− 1

n
φs1π

)n−1

+ δ(1− φs1π)n−2.

Based on the expression for Γn(·) we can then define the region Sn(p1) ⊂ [0, 1]2 for p1 ∈

(pa, p̄c) as

Sn(p1) := {δ, π ∈ [0, 1]2 : Γn(δ, π, p1) > 0}.
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That is, Sn(p1) is the set of all combinations of δ and π for which nφc1 < (n− 1)φs1. Clearly,

Γn(δ, π, p1)→ 1− δ > 0 as n→∞ for all δ, π ∈ [0, 1]2 and hence λ(Sn(p1))→ 1 as n→∞.

If agents experiment in t ≥ 2 a similar argument as above can be used with addition-

ally making use of the fact that pct =
pst (1−π)n−2

pst (1−π)n−2+1−pst
. That is, setting

pct =
(1− δ)|E0|

(1− δ)[|E0|+ E1] + δE1π(1− φctπ)n−1
,

it can be solved for pst , which has to be equal to

(1− δ)|E0|
(1− δ)[|E0|+ E1] + δE1π(1− π)n−2(1− δ + δ(1− φstπ)n−2)

.

Expressing φct in terms of φst , to find out whether φct ≤ n−1
n
φst we analyze

Γn(δ, π, pt) := 1− δ −
(

1− n− 1

n
φstπ

)n−1

+ δ(1− φstπ)n−2 +
(1− δ)[1− (1− π)n−2]

δπ(1− π)n−2
,

by the same arguments as for Γn(δ, π, p1). Γn(δ, π, pt) is equivalent to Γn(δ, π, p1) up to

replacing φs1 by φst and adding a positive constant. Sn(pt) ⊂ [0, 1]2 can be defined in an

analogous way as

Sn(pt) = {δ, π ∈ [0, 1]2 : Γn(δ, π, pt) > 0}.

�

Proof of Proposition 1.6.

We start the proof by defining Fn,1(φ1), which is derived by considering the difference

between Is1 and Ir1 and imposing φr1 = φs1 = φ1, i.e.,

Fn,1(φ1) := {δ, π ∈ [0, 1]2 : Ir1 − Is1 ≥ 0},

where Ir1 − Is1 for φr1 = φs1 = φ1 is given by

[1− δ(1−φ1π)2][δ− 1− δ(1−φ1π)n−2 + (1−φ1π)2]− [1− (1−φ1π)2]δ
n−1

2 (1− (1−φ1π)n−1)].

This means Fn,1(φ1) represents all combinations of δ and π such that φs1 ≥ φr1. For proving

part (i) of the proposition it is easy to verify that for small n (e.g., n = 3) the inequality is

satisfied for all δ, π ∈ [0, 1]. This suffices to conclude that there exists some finite n1 ∈ N

such that for all n < n1 we have Fn,1(φ1) = [0, 1]2. For the second part we explore the

behavior of Fn,1(φ1) in the limit as n→∞ and obtain

F1(φ1) := {δ, π ∈ [0, 1]2 : [1− δ(1− φ1π)2][δ − 1 + (1− φ1π)2] ≥ 0},
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where it can be shown that the inequality fails to hold for some values of δ and π implying

that F1(φ1) is a strict subset of [0, 1]2.

If agents experiment in t ≥ 2 as well, we proceed in an analogous way replacing Is1

and Ir1 with Irt and Is2 and additionally make use of the fact that

prt =
pst(1− π)n−2−yt

pst(1− π)n−2−yt + 1− pst
.

�

Proof of Proposition 1.7.

Part (i) is obvious as for p1 ∈ [0, pa] no one experiments in any network and hence ex-

pected payoffs are zero in all networks.

To show (ii) we compare W c(p1) with W s(p1) making use of the fact that in the relevant

interval Ic1 = 0 and Is1 = 0 and further

1− δ + δ(1− φs1π)n−2 = (1− φc1π)n−1.

The result then follows from the fact that φs1 > φc1 in equilibrium.

For (iii) we obtain the following. By comparing W c(p1) and W r(p1) for p1 ∈ [0, p̄r1] it is

straightforward to show that c ∼ r, as in this interval Ic1 = 0 and Ir1 = 0. That c � r for

p1 ∈ (p̄r1, 1] follows from discounting, i.e., the fact that δ < 1.

For (iv), the condition

(1−δ)(2p1−1)+δp1[(1−π)n−1[1+δ(n−1)]+(1−δ)(n−1)(1−π)−n(1−φc1π)n] > 0. (A.9)

is derived from W c(p1) −W s(p1). That is, if (A.9) holds then W c(p1) > W s(p1) for p1 ∈

(p̄s1, p̄
c
1).

Finally, a comparison of W c(p1) and W s(p1) for the case when all agents in both networks

experiment with full intensity, shows that due to discounting, expected payoffs are higher

in the complete network, which proves part (v). �

Proof of Proposition 1.8.

Expected payoffs in the complete network with one agent who does not experiment and

no experimentation in t ≥ 2 are given by

U c′ = (n− 1)δp1[1− (1− φcπ)n−2] + δp1[1− (1− φcπ)n−1],
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where we made us of the fact that for p1 ∈ [pa, pc
′
] we have Ic′1 = 0. For the star network

expected payoffs are

U s = δp1[1− (1− φsπ)n−1] + δ2p1[1− (1− φsπ)n−2](n− 1).

The difference U c′ − U s is given by

δp1{(1− φsπ)n−1 − (1− φcπ)n−1 + (n− 1)[1− δ + δ(1− φsπ)n−2 − (1− φcπ)n−2]}. (A.10)

Expression (A.10) is negative, as the term in square brackets equals zero and the difference

(1− φsπ)n−1 − (1− φcπ)n−1 is negative for φs > φc.

�
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Appendix B

Proof of Lemma 2.1.

At time T firm 1 compares whether investing one more time yields a higher payoff than

stopping right now, i.e., when −(1 − δ)ck1,T + δp1,Tλ1k1,T ≥ 0. Linearity in k1,T implies

that k1,T = 1 for p1,T ≥ (1−δ)c
δλ1

= pa1. It is straightforward to verify that ka1,T = 1 implies

ka1,T−1 = 1, as beliefs are decreasing and future payoffs discounted. More precisely, for

any two consecutive periods we obtain

−k1,t(1− δ)c+ δp1,tλ1k1,t + δ(1− p1,tλ1k1,t)[−k1,t+1(1− δ)c+ δp1,t+1λ1k1,t+1].

Now suppose k1,t+1 = 1 which implies that p1,t+1 ≥ pa1 and −(1 − δ)c + δp1,t+1λ1 ≥ 0.

Rearranging terms around k1,t to find ka1,t, we see that ka1,t = 1 if (1 − δ)c(δp1,tλ1 − 1) +

δp1,tλ1(1− δp1,t+1λ1) ≥ 0. This inequality is always satisfied since p1,t ≥ p1,t+1. �

Proof of Lemma 2.2.

The proof is the same as for Lemma 2.1 taking the dependency between sectors into ac-

count. At time T the firm decides whether it is better to experiment one more time com-

pared to stopping right now, i.e., −(1 − δ)ck2,T + δp2,Tλ2k2,T [x + p1,T qT x̃] ≥ 0. If the firm

in sector 1 stopped experimenting qT = 0 and we obtain the autarky cutoff pa2 = (1−δ)c
δλ2x

for

sector 2. The other cutoffs can be found by distinguishing between the case when there

was no breakthrough in sector 1 but firm 1 still experiments and the case when there was

a breakthrough. As in Lemma 2.1, it is easy to verify that ka2,t+1 = 1 implies ka2,t = 1. �

Proof of Proposition 2.1.

For simplicity of exposition we drop the subscript indicating the sector for this proof. At

time t firm i = 1, 2 solves the following problem:

ui(pt) = max
ki,t∈[0,1]

{−(1− δ)ki,tc+ δptλα[ki,t(1− k−i,tλ1(1 + γ)/2) + k−i,tγ] +

δ(1− pt + pt(1− λki,t)(1− λk−i,t))ui(pt+1)}.
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If we substitute pt+1, where

pt+1 =
pt(1− λki,t)(1− λk−i,t)

pt(1− λki,t)(1− λk−i,t) + 1− pt
, (B.1)

we see that the term in brackets before ui(pt+1) cancels out with the denominator in (B.1)

and the maximization problem is linear in ki,t, ki,t+1 and pt. Similarly if we plug in for pt+2

we obtain linearity in ki,t+2 and so forth. After time T agents cannot experiment anymore

and ui(pT+1) = 0 if there was no success up to time T . Suppose T = t + 1 implying that

u(pt+2) = 0 and let us focus on finding the optimal values for ki,t and ki,t+1. Linearity in

the maximand implies that the solution to the maximization problem is on the boundaries

of [0, 1] × [0, 1]. Hence, denoting by U(ki,t, ki,t+1) the expected payoff of strategy profile

(ki,t, ki,t+1), we need to compare the values for U(0, 0), U(1, 0), U(0, 1), and U(1, 1). These

are given by

U(0, 0) = δptλk−i,tγα + δ2pt(1− k−i,tλ)k−i,t+1γλα,

U(1, 0) = −(1− δ)c+ δptλα[1− λk−i,t(1 + γ)/2 + k−i,tγ] + δ2pt(1− k−i,tλ)(1− λ)k−i,t+1γλα,

U(0, 1) = δptλk−i,tγα+ δ(1− ptk−i,tλ)[−(1− δ)c+ δpt+1λα[1− λk−i,t+1(1 + γ)/2 + k−i,t+1γ],

and

U(1, 1) = −(1 − δ)c + δptλα[1 − λk−i,t(1 + γ)/2 + k−i,tγ] − (1 − δ)δc(1 − p + p(1 − λ)(1 −

λki,t)) + δ2p(1− λ)(1− λk−i,t)λα[1− λk−i,t+1(1 + γ)/2 + k−i,t+1γ].

Thus, U(1, 0) ≥ U(0, 0) if

pt ≥
(1− δ)c

δλα[1− λk−i,t(1 + γ)/2− δγ(1− k−i,tλ)λk−i,t+1]
. (B.2)

As players are symmetric an equivalent expression holds for player −i. Hence, for sym-

metric actions where k−i,t+1 = 0, ki,t = 0 is a best response to k−i,t = 0 for pt < p, both

choose kt = 1 for pt ≥ p and in between they choose kt ∈ (0, 1) so that the other firm is

indifferent towards its level of R&D investment given by

k∗t =
−(1− δ)c+ δλαpt
δλ2ptα(1 + γ)/2

.

A similar comparison shows that for symmetric strategies U(0, 1) ≥ U(0, 0), at the same

threshold belief as in (B.2). Now let us compare U(1, 0) and U(0, 1). Both are linear and

increasing in pt and intersect with U(0, 0) at the same belief for symmetric actions. As

U(1, 0) is steeper than U(0, 1) we can conclude that U(1, 0) ≥ U(0, 1) for all beliefs above

the intersection with U(0, 0).
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Further, let us see for which beliefs the action profile (1, 1) is optimal. As we know

that (1, 0) dominates (0, 1) for all

pt ≥
(1− δ)c

δλα[1− k∗t λ1+γ
2

]
, (B.3)

we see that U(1, 1)− U(1, 0) is positive for

pt ≥
(1− δ)c

(1− δ)cλ(2− λ) + δλ(1− λ)2[1− kt+1λ
1+γ

2
]
. (B.4)

If we update this to

pt+1 =
pt(1− λ)2

pt(1− λ)2 + 1− pt
,

we obtain

pt+1 ≥
(1− δ)c

δλα[1− kt+1λ
1+γ

2
]
,

which is the same belief that determines when U(1, 0) ≥ U(0, 0) replacing kt by kt+1 and

pt by pt+1. Finally, we can show that U(1, 1) ≥ U(0, 0) for

pt ≥ (1− δ)c(1 + δ)/δλ[[1− λk−i,t(1 + γ)/2]α + (1− δ)c(1 + k−i,t(1− λ)) +

δα(1− k−i,tλ)[(1− λ)(1− λk−i,t+1(1 + γ)/2)− k−i,t+1γλ]].

This threshold belief is above (B.3) for all k−i,t, k−i,t+1 ∈ [0, 1] if and only if

c <
δλα(2− λ− (1 + γ)/2)

(1− δ)(2− λ)
. (B.5)

Further, the same condition guarantees that two failed experiments from p take the pos-

terior belief below p and that if both firms choose k∗s,t ∈ (0, 1) for beliefs ps,t ∈ (p
s
, ps), the

posterior is below the lower cutoff in the absence of a success. Hence, if (B.5) is satisfied,

there is at most one time period in which players use an interior action.

Note that U(kt, kt+1, pt) is linearly increasing in the belief. The threshold belief at

which U(1, 1, pt) ≥ U(1, 0, pt) (given by (B.4)) is above (B.3) where U(1, 0, pt) intersects

with U(0, 0, pt). Additionally, it is easy to verify that U(1, 1) is steeper than U(1, 0) which

immediately implies that the intersection of U(1, 1) with U(0, 0) is above (B.3) as well.

This implies that (B.5) is always satisfied. Hence, in a symmetric equilibrium for opti-

mistic beliefs (1, k∗t+1) is optimal, for low beliefs (0, 0) and for intermediate beliefs (k∗t , 0)

with k∗t , k∗t+1 ∈ [0, 1]. These arguments are valid for any two consecutive periods. �
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Proof of Proposition 2.2.

A social planner maximizes aggregate expected payoffs given by

W (ki,t, k−i,t, pt) = max
{ki,t,k−i,t}

{−c(1− δ)(ki,t + k−i,t) + δp1,tλ1(ki,t + k−i,t − ki,tk−i,tλ1)Ws +

δ(1− p1,t + p1,t(1− λ1ki,t)(1− λ1k−i,t))W (pt+1)}.

Setting W (pt+1) = 0 to compare when experimenting in t is better than stopping, we

obtain for symmetric actions

kw =
−(1− δ)c+ δp1,tλ1Ws

δλ2
1p1,tWs

,

which reaches its upper bound kw = 1 at pw1 and kw = 0 at pw
1

. Similar arguments as in

the proof of Proposition 2.1 show that two failed experiments from pw yield a posterior

belief below pw. This implies that also for the social planner there is at most one period in

which kw ∈ (0, 1). The second part for sector 2 can be derived in the same way. �

Proof of Proposition 2.3.

Part (i): Firm 1 is in sector 1 while firm 2 decides whether to join or start research in

(dependent) sector 2. To compare the cutoff beliefs of the strategic agent to the social

planner, we separate the analysis into different intervals of p1.

• For p1 ∈ [p1, 1]: If p2 < pa2, sector 1 is preferred by both the social planner and the

strategic firm. If p2 ≥ pa2, we have

u1,1 = −(1− δ)c+ δp1λ1α(1 + γ1)(1− λ1/2) + δ(1− p1λ1(2− λ1))u′1,1, and

u2,1 = −(1− δ)c+ δp2λ2(x+ p1q1x̃) + δ(1− p2λ2)u′2,1,

where u′s,n denotes the payoff in period t+ 1. For the social planner we obtain

W1,1 = −2(1− δ)c+ δp1λ1(2− λ1)(1 + α) + δ(1− p1λ1(2− λ1))W ′
1,1, and

W1,2 = −2(1− δ)c+ δp1λ1 + δp2λ2(x+ p1q1x̃) + δ(1− p2λ2)u′2,1 + δ(1− p1λ1)u′1,2.

From these expressions we can derive the cutoff beliefs for p2 such that for beliefs

above this threshold sector 2 is preferred to sector 1. The continuation payoff in sec-

tor 2 after observing a failure, δ(1− p2λ2)u′2,1, enters both decisions in the same way.

We are only interested in the difference between the socially optimal and strategic
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decision and the closed form solution of the cutoffs does not matter. Hence, we can

set u′2,1 = 0 as the expression is linearly increasing in p2. Then we have pw2 > p∗2 if

and only if

p1λ1[1−λ1 +α(1−γ1)(1−λ1/2)] + (1−p1λ1(2−λ1))(W ′
1,1−u′1,1)− (1−p1λ1)u′1,2 > 0.

(B.6)

The first term is always positive, which means that it depends on the continuation

payoffs whether the inequality is satisfied. We know from Heidhues et al. (2015)

that, if the optimal number of experiments for a single firm is given by K, the total

number of experiments that are performed by two firms that can observe each other

and interact strategically is given byK−1, K orK+1 (see Proposition 3 in Heidhues

et al., 2015). If there are no further experiments in any sector, i.e., u′1,2 = u′1,1 = W ′
1,1 =

0 (which implies K + 1 experiments for two firms), pw2 > p∗2. What we need to show

is that (B.6) is satisfied for any possible number of experiments in equilibrium. The

difference between W ′
1,1 and u′1,1 is positive. Hence, it suffices verify that (B.6) holds

for W ′
1,1 = u′1,1 = 0 while u′1,2 > 0. As there are at least K − 1 experiments if agents

experiment jointly we know that for W ′
1,1 = u′1,1 = 0 in equilibrium u′1,2 is bounded

above by

−(1− δ)c+ δp1,t+1λ1 + δ(1− p1,t+1λ1)[−(1− δ)c+ δp1,t+2λ1]. (B.7)

Plugging (B.7) back in (B.6) we see that the inequality is satisfied if p1 is smaller or

equal to

(1− δ)c(1 + δ)

λ1[(1− δ)c[1 + δ(2− λ1)]− (1− λ1)[1− δ − δ2(1− λ1)]− α(1− γ1)(1− λ1/2)]
:= p1.

Further we know that p1 is such that the posterior belief after two failed experiments

is below p
1
, because there are no more experiments if both firms experiment one

more time and fail. That is,

p1(1− λ1)2

p1(1− λ1)2 + 1− p1

< pa1,

which implies

p1 <
(1− δ)c

(1− δ)cλ1(2− λ1) + δλ1α(1− λ1)2
:= p2.

Now it suffices to show that p1 > p2.
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• For p1 ∈ [pa1, p1) the firm joins sector 1 if p2 < pa2 (the same is true for the social

planner). If p2 ≥ pa2 the social planner compares the expected utility from both firms

being in sector 1

W1,1 = −(1− δ)2k∗1c+ δp1k
∗
1λ1(2− λ1k

∗
1)(1 + α)

with expected payoffs if firms experiment in different sectors given by

W1,2 = −(1− δ)2c+ δp1λ1δp2λ2(x+ p1q1x̃) + δ(1− p2λ2)u′2,1 + δp1λ1.

The strategic firm compares expected payoffs from joining sector 1 to payoffs from

starting research in the dependent sector. Comparing the social planner to the strate-

gic firm we see that pw2 ≥ p∗2 if and only if

(1− δ)c(1− k∗1) + δp1λ1[k∗1(2− k∗1λ1)(1 + α)− 1− αk∗1(1 + γ)(1− k∗1λ1/2)] ≥ 0.

This inequality is always satisfied if k∗1 is sufficiently large, but fails to hold for small

k∗1 . Thus, for p1 close to p
1

the social planner is less likely to let both firms experiment

in sector 1.

• For p1 < p
1
, firm 2 prefers sector 2 if p2 ≥ pa2, otherwise the firm is indifferent. The

social planner applies the same decision rule.

The proof for the case when one firm is located in sector 2 and the other decides whether

to join proceeds along the same lines. �

Proof of Proposition 2.4.

See proof of Proposition 2.3. �

Proof of Proposition 2.5.

We assume that the social planner ignores the impact of γs on experimentation and only

cares about selecting the socially optimal sector. Expected aggregate payoffs are given by

W1,1 = −2(1− δ)c+ δp1λ1(2− λ1)W1 + δ(1− p1λ1(2− λ1))W ′
1,1,

W1,2 = −2(1− δ)c+ δp1λ1 + δ(1− p1λ1)u′1,2 + δp2λ2(x+ p1qx̃) + δ(1− p2λ2)u′2,1, and

W2,2 = −2(1− δ)c+ δp2λ2(2− λ2)W2 + δ(1− p2λ2(2− λ2))W ′
2,2.

For strategic firms expected profits are given by,
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u1,1 = −(1− δ)c+ δp1λ1(1− λ1/2)(1 + γ1)α + δ(1− p1λ1(2− λ1))u′1,1,

u2,1 = −(1− δ)c+ δp2λ2(x+ p1qx̃) + δ(1− p2λ2)u′2,1,

u1,2 = −(1− δ)c+ δp1λ1 + δ(1− p1λ1)u′1,2, and

u2,2 = −(1− δ)c+ δp2λ2(1− λ2/2)(1 + γ2)xα + δ(1− p2λ2(2− λ2))u′2,2.

To find the value for γs at which the strategic and the socially optimal sector choice coin-

cide, we have to find γ1 such that W1,1 −W1,2 = u1,1 − u2,1 and γ2 such that W2,2 −W1,2 =

u2,2 − u1,2. By analyzing the expression for W1,1 −W1,2 = u1,1 − u2,1 it is easy to see from

the way x̃ enters the l.h.s. and the r.h.s. that the optimal γ∗1 does not depend on this term.

From W2,2 −W1,2 = u2,2 − u1,2 we obtain for ψ2 = (1− αγ2)x,

γ̃∗2 =
p2λ2[x(1 + α− λ2 − λ2α/2)− p1q1x̃]− (1− p2λ2(2− λ2))(u′2,2 −W ′

2,2)− (1− p2λ2)u′2,1
p2λ2x(1− λ2/2)α

.

In this case x̃ enters negatively (directly and indirectly through u′2,1) and thus we have

γ̃∗2 < γ∗2 . If ψ2 does not depend on γ2, the sign is reversed. That is, for ψ2 = 0 we have

γ̃∗2 =
p2λ2[x+ p1q1x̃] + (1− p2λ2(2− λ2))(u′2,2 −W ′

2,2) + (1− p2λ2)u′2,1
p2λ2xα(1− λ2/2)

− 1.

In this case x̃ enters positively (directly and indirectly through u′2,1) and thus we have

γ̃∗2 > γ∗2 . �
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Appendix C

Proof of Lemma 3.1.

The research alliance solves the following problem

max
{Ti,Tj}

Ui + Uj, s. t. Ti, Tj ≥ 0.

Using the Kuhn-Tucker approach to deal with the nonnegativity constraints, the neces-

sary conditions for an optimum are ∂L
∂Ti
Ti = 0, Ti ≥ 0 while ∂L

∂Ti
≤ 0 and ∂L

∂Tj
Tj = 0, Tj ≥ 0

while ∂L
∂Tj
≤ 0. Suppose Ti ≥ Tj . The derivatives w.r.t. Ti and Tj are

∂L
∂Ti

= −(1− p)c+ pe−λiTi−λjTj(λiπ − c), and
∂L
∂Tj

= −(1− p)c+ pe−λiTi−λjTj λi
λj

(λiπ − c)− pce−ΛTj λi−λj
λi

.

Three possible cases have to be distinguished:

(i) Ti = Tj = 0: Then ∂L
∂Ti
≤ 0 and ∂L

∂Tj
≤ 0, which implies

−c+ λiπp ≤ 0, and − c+ λjπp ≤ 0.

This violates Assumption 3.1.

(ii) Ti, Tj > 0 : Then ∂L
∂Ti

= ∂L
∂Tj

= 0. Both derivatives cannot be zero simultaneously. If
∂L
∂Ti

= 0, then ∂L
∂Tj

< 0 and if ∂L
∂Tj

= 0, then ∂L
∂Ti

> 0. Thus, Ti and Tj cannot both be

strictly positive.

(iii) Ti > 0, Tj = 0 : Then ∂L
∂Ti

= 0 and we obtain

Ti = − 1

λi

[
ln

(
1− p
p

)
+ ln

(
c

λiW a − c

)]
,

and
∂L
∂Tj

= −c(1− p) + pe−λiTi
λj
λi

(λiπ − c) < 0.

122



It is easy to verify that for Ti < Tj there is no solution that satisfies the Kuhn-Tucker

conditions. �

Proof of Lemma 3.2.

(i) λi > λj =⇒ Ti > Tj :

Let Tmin = min{Ti, Tj}, then equations (3.9) and (3.10) imply that

e−λiTi−λjTmin(λiπ − c) = e−λjTj−λiTmin(λjπ − c).

Dividing by λjπ − c and e−λiTi−λjTmin and taking the logarithm yields

λiTi − λjTj − (λi − λj)Tmin = ln

(
λiπ − c
λjπ − c

)
.

As the r.h.s. of this equality is positive for λi > λj it follows that λiTi − λjTj − (λi −

λj)Tmin must be positive, which is only satisfied if Tmin = Tj.

(ii) λiTi + λjTj = λiT
a
i + λjT

a
j :

As T aj = 0, λiT ai + λjT
a
j equals

− ln

(
1− p
p

)
− ln

(
c

λiπ − c

)
,

while λiTi + λjTj is equal to

− ln

(
1− p
p

)
− ln

(
c

λiπ − c

)
− λjTj + λjTj.

�

Expected payoffs in a winner-takes-all competition with one patent for ε > 0:

The expected payoff of firm n consists of two parts: the benefit of R&D measured by the

value of the patent minus the costs of R&D. The expected benefit of firm n equals

pπλn

(∫ Tmin

0

e−Λtdt+ e−λ−nTmin

∫ Tn

Tmin

e−λntdt

)
.

Firm n receives the profit π with the probability that the state of the world is good and

she makes a discovery.Until Tmin this monopoly profit can only be obtained if none of the

two firms had a discovery before. Further, if Tn 6= Tmin, firm n can still make a discovery
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after firm −n stopped. If Tn = Tmin the second term in the brackets equals zero. The costs

of R&D are

c(1− p)Tn + pc

(∫ Tmin

0

e−λnt(ε+ (1− ε)e−λ−nt)dt+ (ε+ (1− ε)e−λ−nTmin)

∫ Tn

Tmin

e−λntdt

)
.

The first term, c(1− p)Tn, are the costs the firm pays in case the state of the world is bad.

As in this case there never will be a discovery, the firm pays until her stopping time Tn.

Further, the firm pays the costs cdt also in the good state of the world. The probability

that n does not observe a discovery in the interval [0, dt] (and hence pays the costs in

the subsequent time interval) equals e−λndt(e−λ−ndt + ελ−ndt), that is, the probability that

none of the two firms has a discovery e−Λdt or firm n did not have a discovery, while

firm −n had an unobserved discovery e−λndtελ−ndt. As firm −n stops to invest after a

discovery, the probability of not observing a discovery from firm −n in [0, t] is given by

e−λ−nt + ε(1− e−λ−nt).

Proof of Proposition 3.1.

In part 1 we show that the stronger firm invests more in R&D for all ε ∈ [0, 1]. In part 2

it is shown that for Ti, Tj ≥ 0 a solution to equations (F 1) and (F 2) exists and is unique.

Finally, in part 3 we apply the implicit function theorem to derive ∂Ti/∂ε and ∂Tj/∂ε.

Part 1: λi > λj implies Ti > Tj for all ε ∈ [0, 1] :

Equations (F 1) and (F 2) imply

cε(e−λjTj(1−e−λiTmin)−e−λiTi(1−e−λjTmin)) = e−λjTj−λiTmin(λjπ− c)−e−λiTi−λjTmin(λiπ− c).

(C.1)

The l.h.s. of equation (C.1) is always non-negative: As λi > λj it follows that 1−e−λiTmin >

1− e−λjTmin . Further, rewriting (F 1) and (F 2), yields

c(1− p)
p

= e−λiTi(e−λjTmin(λiπ − c(1− ε))− cε), (C.2)

and
c(1− p)

p
= e−λjTj(e−λiTmin(λjπ − c(1− ε))− cε). (C.3)

For λi > λj , e−λjTmin > e−λiTmin and consequently

e−λjTmin(λiπ − c(1− ε)) > e−λiTmin(λjπ − c(1− ε)).
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For equations (C.2) and (C.3) to be satisfied we thus need e−λjTj > e−λiTi , which implies

λiTi > λjTj for all ε ∈ [0, 1]. Hence, the l.h.s. of equation (C.1) is always positive and zero

only if ε = 0. Thus, also the r.h.s. of (C.1) has to be positive, i.e.,

e−λjTj−λiTmin(λjπ − c)− e−λiTi−λjTmin(λiπ − c) ≥ 0,

which can be rewritten as

e−λjTj−λiTmin+λiTi+λjTmin ≥ λiπ − c
λjπ − c

> 1.

Taking the logarithm yields λiTi + λjTmin − λjTj − λiTmin > 0, which implies Tmin = Tj.

Part 2: For Ti > Tj we want to show that a unique solution to the system of equations

−c(1− p+ pe−λiTi(ε+ (1− ε)e−λjTj)) + pπλie
−λiTi−λjTj = 0, (F1)

−c(1− p+ pe−λjTj(ε+ (1− ε)e−λiTj)) + pπλje
−ΛTj = 0, (F2)

exists. Equation (F1) can be solved for Ti uniquely, that is,

Ti = − 1

λi

[
ln

(
1− p
p

)
+ ln

(
c

λiπe−λjTj − c (ε+ (1− ε)e−λjTj)

)]
,

where λiπe−λjTj − c
(
ε+ (1− ε)e−λjTj

)
> 0 due to (F1). Hence it suffices to show that a

solution to equation (F2) w.r.t. Tj exists and is unique. Denoting y = e−ΛTj equation (F2)

can be rewritten as

εy
λj
Λ = −1− p

p
+ y

(
λjπ

c
− (1− ε)

)
. (C.4)

Note that 0 ≤ y ≤ 1,
λj
Λ
∈ (0, 1) and we assume ε > 0. Thus, f(y) = y

λj
Λ is a monotonically

increasing concave function going through the points (0, 0) and (1, 1). The r.h.s. of (C.4) is

linear in y and has a unique intersection with y
λj
Λ on 0 ≤ y ≤ 1 if and only if

1 ≤ −1− p
εp

+
1

ε

(
λjπ

c
− (1− ε)

)
.

That is, at y = 1, the r.h.s. of (C.4) has to be greater than the l.h.s. of (C.4). This inequality

is satisfied for any belief p above c
λjπ

. Hence, a solution to the system of equations exists

and is unique if and only if p ≥ c
λjπ

, which is always satisfied by Assumption 3.1.

Part 3: As we do not have an explicit expression for the optimal stopping times we will

use the implicit function theorem (IFT) to analyze the impact of ε on the stopping times in
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equilibrium. In part 2 we showed that a unique solution to (F 1) and (F 2) exists. Further-

more, both implicit functions are continuously differentiable. Let F l
x denote the derivative

of F l w.r.t. x for l = 1, 2. The IFT implies that ∂Ti/∂ε

∂Tj/∂ε

 = −

 F 1
Ti

F 1
Tj

F 2
Ti

F 2
Tj

−1 F 1
ε

F 2
ε

 .
Taking the derivative of (F1) and (F2) w.r.t. Ti and Tj yields

F 1
Ti

= −λipe−λiTi(e−λjTj(λiπ − c(1− ε))− εc) < 0,

F 1
Tj

= −λjpe−λiTi−λjTj(λiπ − c(1− ε)) < 0,

F 2
Ti

= 0, and

F 2
Tj

= −pe−λjTj(e−λiTjΛ(λjπ − c(1− ε))− λjεc) < 0.

The sign of the derivatives can be obtained by analyzing expressions (F 1) and (F 2). From

(F1) we know that

pe−λiTi
(
e−λjTj(λiπ − c(1− ε))− cε

)
= (1− p)c > 0.

Hence, e−λjTj(λiπ−c(1−ε))−cε > 0, which implies that F 1
Ti
< 0.A similar analysis can be

used to verify the signs of the other derivatives. The determinant of the Jacobian is given

by F 1
Ti
F 2
Tj

, which is positive. Taking the derivative of (F1) and (F2) w.r.t. ε yields

F 1
ε = −cpe−λiTi(1− e−λjTj) < 0,

F 2
ε = −cpe−λjTj(1− e−λiTj) < 0.

To obtain the effect of an increase in ε on equilibrium R&D investment we need to solve ∂Ti/∂ε

∂Tj/∂ε

 = −

 F 1
Ti

F 1
Tj

F 2
Ti

F 2
Tj

−1 F 1
ε

F 2
ε

 = − 1

F 1
Ti
F 2
Tj

 F 2
Tj
−F 1

Tj

0 F 1
Ti

F 1
ε

F 2
ε

 .
Thus, the derivatives can be calculated as

∂Tj
∂ε

= −
F 1
Ti
F 2
ε

F 1
Ti
F 2
Tj

= − F
2
ε

F 2
Tj

< 0,

and
∂Ti
∂ε

= − 1

F 1
Ti
F 2
Tj

[F 2
Tj
F 1
ε − F 1

Tj
F 2
ε ],
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where F 2
Tj
F 1
ε − F 1

Tj
F 2
ε equals

cp2e−λiTi−λjTj

 (1− e−λjTj)(e−λiTjΛ(λjπ − c+ cε)− εcλj)

−λj(λiπ − c+ cε)(1− e−λiTj)e−λjTj

 .
Thus, ∂Ti/∂ε < 0 if and only if

(1− e−λjTj)(e−λiTjΛ(λjπ − c+ cε)− εcλj) > λj(λiπ − c+ cε)(1− e−λiTj)e−λjTj . (C.5)

Rewriting (C.5) by denoting λj by λ, λi by λx, where x ≥ 1 and Tj by T, we see that

∂Ti/∂ε < 0 if

(1− e−λT )(e−λxT (1 + x)(λπ − c+ εc)− cε)− (λxπ − c+ cε)(1− e−λxT )e−λT

is positive. It is positive for x = 1 (λi = λj) and negative as x goes to ∞. Moreover, by

taking the derivative w.r.t. x we can show that the expression is decreasing in x. Hence,

∂Ti/∂ε > 0 for x sufficiently large. �

Proof of Proposition 3.2.

As Uj does not depend on Ti, firm j has no incentive to change the level of transparency.

The payoff of firm i depends on the stopping time of firm j and the derivative of Ui

w.r.t. Tj is
∂Ui
∂Tj

=
pλje

−λjTj

λi
(e−λiTi − e−λiTj)[πλi − c(1− ε)] < 0.

�

Proof of Proposition 3.3.

The derivative of the welfare function Ω w.r.t. ε equals

∂Ti
∂ε

(
e−λiTi−λjTjpψλi − pc(ε+ (1− ε)e−λjTj

)
e−λiTi − (1− p)c)+

∂Tj
∂ε

(
e−λiTi−λjTjpψλj − pc

(
ε+ (1− ε)

(
e−λiTj +

λj
λi

(e−λiTj − e−λiTi)
))

e−λjTj − (1− p)c
)

+pc
(

21−e−ΛTj

Λ
− 1−e−λjTj

λj
− 1−e−ΛTj−e−λiTi+e−λjTj−λiTi

λi

)
.

Adding and subtracting e−λiTi−λjTjπp
(
∂Ti
∂ε
λi +

∂Tj
∂ε
λj

)
and using equations (F 1) and (F 2),

the derivative can be rewritten as

∂Ω

∂ε
= pe−λiTi−λjTj(ψ − π)

(
∂Ti
∂ε

λi +
∂Tj
∂ε

λj

)
− ∂Tj

∂ε
c(1− ε)p(e−λiTj − e−λiTi)e−λjTj λj

λi
+

cp

(
2

1− e−ΛTj

Λ
− 1− e−λjTj

λj
− 1− e−ΛTj − e−λiTi + e−λjTj−λiTi

λi

)
.
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The last term represents the direct increase in costs associated with an increase in ε and

is negative. Further ∂Ω/∂Ti > 0, while ∂Ti/∂ε is negative for λi close to λj . Moreover,

∂Tj/∂ε < 0, while ∂Ω/∂Tj is positive if

λie
−λiTi(ψ − π) > c(1− ε)(e−λiTj − e−λiTi).

�

Proof of Lemma 3.3.

(i) λi > λj =⇒ Tj > Ti :

Let Tmin = min{Ti, Tj}. Then equations (3.18) and (3.19) imply that

c(e−λiTi−λjTmin − e−λjTj−λiTmin) = πe−λiTi−λjTj(λi − λj).

As the r.h.s. is positive for λi > λj this implies that

−λiTi − λjTmin > −λjTj − λiTmin,

which is only satisfied for Tmin = Ti.

(ii) λjTj + λiT < λiT
a
i + λjT

a
j :

As T aj = 0, λiT ai + λjT
a
j equals

− ln

(
1− p
p

)
− ln

(
c

λiπa − c

)
,

while λjTj + λiTi equals

λiTi − ln

(
1− p
p

)
− ln

(
c

λjπ − c

)
− λiTi,

which implies Tjλj + λiTi < λiT
a
i + λjT

a
j as

ln (λjπ − c) < ln (λiπ
a − c) ,

where πa = π1τ + ω1τ = 2π > π.

�
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Proof of Proposition 3.4.

The proof is similar to the proof of Proposition 3.1. In part 1 conditions for existence and

uniqueness are derived. In part 2 we analyze the impact of ε on the optimal stopping

times.

Part 1: Existence and uniqueness of a solution to the system of equations

−c(1− p+ pe−λiTi
(
ε+ (1− ε)e−λjTmin

)
) + pπλie

−λiTi
(
ε+ (1− ε)e−λjTj

)
= 0, (F3)

−c(1− p+ pe−λjTj
(
ε+ (1− ε)e−λiTmin

)
) + pπλje

−λjTj
(
ε+ (1− ε)e−λiTi

)
= 0. (F4)

First, note that e−λjTmin = max{e−λjTi , e−λjTj} and e−λiTmin = max{e−λiTi , e−λiTj}. Thus, we

can rewrite (F 3) and (F 4) as

−c(1− p) + εpx(λiπ − c) + (1− ε)px(λiπy − cmax{y, xµi}) = 0,

−c(1− p) + εpy(λjπ − c) + (1− ε)py(λjπx− cmax{x, yµj}) = 0,

where x = e−λiTi , y = e−λjTj , µi =
λj
λi

, µj = λi
λj

and x, y ∈ [0, 1]. Now two possible cases

have to be distinguished:

(i) y > xµi which implies e−λjTj > e−λjTi and hence Ti > Tj : Then we can solve (F 3)

for x given by

x =
c(1− p)
p(λiπ − c)

1

ε+ (1− ε)y
, (C.6)

which is monotonically decreasing in y for y ∈ [0, 1]. Solving (F 4) for x yields

x =
c(1− p)

(1− ε)pλjπ
1

y
− ε(λjπ − c)

(1− ε)πλj
+

c

πλj
yµj , (C.7)

which is convex and has one global minimum (possibly on [0, 1]) for y ∈ [0, 1]. The system

of equations (C.6) and (C.7) has at most two solutions. At y = 0, (C.6) is smaller than (C.7).

A necessary and sufficient condition for existence and uniqueness is that (C.6)>(C.7) at

y = 1, that is,
c(1− p)
p(λiπ − c)

>
c(1− p)

(1− ε)pλjπ
− ε(λjπ − c)

(1− ε)πλj
+

c

πλj
.

This is equivalent to

ε >
c

λjπ

π(λi − λj) + λjpπ − c
λipπ − c

= ε.
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A necessary and sufficient condition for the system of equations (C.6) and (C.7) to have

two solutions is that there exists Ti such that

1− p
p

(
c

λjπ − c
1

ε+ (1− ε)e−λiTi
− c

λiπ(1− ε)e−λiTi

)
+

ε

1− ε

(
1− c

λiπ

)
− c

λiπ
e−λjTi ≥ 0.

(ii) y < xµi , which implies Tj > Ti. By similar arguments as for (i) a necessary and

sufficient condition for existence and uniqueness is

ε <
c

λiπ

λipπ − c− π(λi − λj)
λjpπ − c

= ε.

Similarly as for Ti > Tj a necessary and sufficient condition for the system of equations

(C.6) and (C.7) to have two solutions is that there exists Tj such that

1− p
p

(
c

λiπ − c
1

ε+ (1− ε)e−λjTj
− c

λjπ(1− ε)e−λjTj

)
+

ε

1− ε

(
1− c

λjπ

)
− c

λjπ
e−λiTj ≥ 0.

Part 2: We again use the implicit function theorem to derive ∂Ti/∂ε and ∂Tj/∂ε. In part 1

we derived conditions for existence and uniqueness. Further, both equations are contin-

uously differentiable. The derivatives of (F3) and (F4) for Tj > Ti w.r.t. Ti and Tj are
∂F 3

∂Ti
= −λ2

i pπe
−λiTi

(
ε+ (1− ε)e−λjTj

)
+ cpe−λiTi(λiε+ (1− ε)Λe−λjTi),

∂F 3

∂Tj
= −pλjλi(1− ε)πe−λiTi−λjTj < 0,

∂F 4

∂Ti
= −pλi(1− ε)e−λiTi−λjTj (λjπ − c) < 0, and

∂F 4

∂Tj
= −pλje−λjTj (λjπ − c)

(
ε+ (1− ε)e−λiTi

)
< 0.

The determinant of the Jacobian |J | is given by F 3
Ti
F 4
Tj
− F 3

Tj
F 4
Ti
, and equals

p2λj(λjπ− c)e−λiTi−λjTj
 ε2((λ2

iπ − λic+ Λce−λjTi)(1− e−λiTi)− λ2
iπe

−λjTj)− Λce−ΛTi

+ε(e−λiTiλi(λiπ − c) + λ2
iπe

−λjTj − (1− e−λiTi)Λce−λjTi)

 .

Further, the derivatives w.r.t. ε are

F 3
ε = pe−λiTi

(
λiπ(1− e−λjTj)− c(1− e−λjTi)

)
> 0, and

F 4
ε = pe−λjTj(πλj − c)(1− e−λiTi) > 0.

Consequently,
∂Tj
∂ε

= − 1

F 3
Ti
F 4
Tj
− F 3

Tj
F 4
Ti

(
−F 4

Ti
F 3
ε + F 3

Ti
F 4
ε

)
,

and
∂Ti
∂ε

= − 1

F 3
Ti
F 4
Tj
− F 3

Tj
F 4
Ti

(
F 4
Tj
F 3
ε − F 3

Tj
F 4
ε

)
,
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where −F 4
Ti
F 3
ε + F 3

Ti
F 4
ε equals

p2e−λjTj−λiTi(λjπ − c)

 c(λiε− λie−λiTi + (1− ε)e−λjTi(Λ− λje−λiTi))+

λ2
iπ((1− ε)(e−λiTi − e−λjTj)− ε(1− e−λiTi))


and F 4

Tj
F 3
ε − F 3

Tj
F 4
ε is given by

p2e−λjTj−λiTiλj(λjπ − c)

 c(1− e−λjTi)(ε+ (1− ε)e−λiTi)+

λiπ
(
e−λjTj − ε− e−λiTi(1− ε)

)
 .

Thus,

∂Ti
∂ε

= −
c(1− e−λjTi)(ε+ (1− ε)e−λiTi) + λiπ

(
e−λjTj − ε− e−λiTi(1− ε)

)
λ2
iπε(1− ε)e−λjTj + (ε+ (1− ε)e−λiTi)(λiε(λiπ − c)− Λc(1− ε)e−λjTi)

,

∂Tj
∂ε

= − 1

λj

λi(ε− e−λiTi)(c− λiπ) + (1− ε)(e−λjTiΛc− λ2
iπe

−λjTj − cλje−ΛTi)

λ2
iπε(1− ε)e−λjTj + (ε+ (1− ε)e−λiTi)(λiε(λiπ − c)− Λc(1− ε)e−λjTi)

.

To analyze these expressions we start by considering the denominator, a quadratic func-

tion in ε of the shape b0 + b1ε+ b2ε
2, where b0 = −ce−ΛTiΛ < 0, b1 = λ2

iπ(e−λiTi + e−λjTj)−

c(Λe−λjTi(1 − 2e−λiTi) + e−λiTiλi) and b2 = λ2
iπ(1 − e−λiTi − e−λjTj) − c((1 − e−λiTi)λi −

Λe−λjTi(1− e−λiTi)). At ε = 1, b0 + b1 + b2 = λi(λiπ − c) > 0. This implies that on ε ∈ [0, 1]

there is exactly one root. Let ε̃ denote this root. The function 1/(b0 + b1ε+ b2ε
2) is negative

for ε < ε̃ and goes to −∞ as ε→ ε̃−, it is positive for ε > ε̃ and goes to∞ as ε→ ε̃+. Now

consider the nominator of ∂Ti/∂ε, which is linear in ε and of the shape a0 + a1ε, where

a0 = λiπ(e−λjTj − e−λiTi) + ce−λiTi(1− e−λjTi) and a1 = (1− e−λiTi)(c(1− e−λjTi)− λiπ) < 0.

∂Ti/∂ε = 0 at ε = ε̂i = −a0/a1 < 1. Multiplying (a0 + a1ε) by 1/(b0 + b1ε + b2ε
2) gives

us the sign of the derivative. A similar analysis can be used to the determine the sign of

∂Tj/∂ε, as well as the signs of the derivatives for Tj < Ti. �

Proof of Proposition 3.5.

For Tj > Ti, the expected payoffs are given by

Uj = −(1− p)cTj + p(λjπ − c)
(
εi

1− e−λjTi
λj

+ (1− εi)
1− e−ΛTi

Λ

)
+p(λjπ − c)(εi + (1− εi)e−λiTi)

e−λjTi − e−λjTj
λj

and

Ui = −(1−p)cTi+p(λiπ−c)
(
εj

1− e−λiTi
λi

+ (1− εj)
1− e−ΛTi

Λ

)
+pπe−λiTi(e−λjTi−e−λjTj).
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Hence,
∂Ui
∂Tj

= pπλj(1− εj)e−λiTi−λjTj > 0,

and
∂Uj
∂Ti

= p(1− εi)
λi
λj
e−λiTi

(
(λjπ − c)e−λjTj + ce−λjTi

)
> 0.

Similarly, ∂Ui/∂Tj > 0 and ∂Uj/∂Ti > 0 for Ti > Tj. �

Proof of Proposition 3.6.

Taking the derivative of Ω in (3.22) w.r.t. ε yields (for Ti < Tj)

∂Tj
∂ε

(
e−λiTi−λjTjpψλj − pc(ε+ (1− ε)e−λiTi

)
e−λjTj − (1− p)c)+

∂Ti
∂ε

(
e−λiTi−λjTjpψλj − pc

(
ε+ (1− ε)(e−λjTi − λi

λj
(e−λjTi − e−λjTj)

)
e−λiTi − (1− p)c

)
+pc

(
21−e−ΛTi

Λ
− 1−e−λiTi

λi
− 1−e−ΛTi−e−λjTj+e−λjTj−λiTi

λj

)
.

Adding and subtracting pπλie−λiTi(ε+(1−ε)e−λjTj)∂Ti
∂ε

and pπλje−λjTj(ε+(1−ε)e−λiTi)∂Tj
∂ε
,

the derivative can be rewritten as

∂Ω

∂ε
=

∂Tj
∂ε

λje
−λjTj(ψe−λiTi − πε+ (1− ε)e−λiTi) +

∂Ti
∂ε

λie
−λiTi

(
ψe−λjTj − π(ε+ (1− ε)e−λjTj) +

c(1− ε)(e−λjTi − e−λjTj)
λj

)
+

c

(
2

1− e−ΛTi

Λ
− 1− e−λiTi

λi
− 1− e−ΛTi − e−λjTj + e−λjTj−λiTi

λj

)
.

The last term is negative and represents the increase in costs associated with an increase

in ε. Now ∂Ω/∂Tj > 0 if

ψe−λiTi > π(ε+ (1− ε)e−λiTi).

Furthermore, welfare is increasing in Ti, if

ψe−λjTj − π(ε+ (1− ε)e−λjTj) +
c(1− ε)(e−λjTi − e−λjTj)

λj
> 0.

For Ti > Tj , the derivative changes to

∂Ω

∂ε
=

∂Tj
∂ε

λje
−λjTj

(
ψe−λiTi − π

(
ε+ (1− ε)e−λiTi

)
− c(1− ε)(e−λiTj − e−λiTi)

λi

)
+

∂Ti
∂ε

λie
−λiTi

(
ψe−λjTj − π(ε+ (1− ε)e−λjTj)

)
+

c

(
2

1− e−ΛTi

Λ
− 1− e−λiTi

λi
− 1− e−ΛTi − e−λjTj + e−λjTj−λiTi

λj

)
.
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�

Proof of Lemma 3.4.

The expected costs of R&D do not change compared to the previous sections, while the

expected benefit for firm n is given by

(πnλn + ωnλ−n)
(

1−e−ΛTmin

Λ

)
+ e−λ−nT−n e

−λnTmin−e−λnTn
λn

πnλn

+ωne
−λnTmin(e−λ−nTmin − e−λ−nT−n),

where πn = π1τ + v1
n and ωn = ω1τ + v2

n. Hence the first order conditions are given by

−(1− p)c+ pωiλie
−λjTj−λiTi + p(λi(πi − ωi)− c)e−λiTi−λjTmin = 0, (C.8)

and

−(1− p)c+ pωjλje
−λiTi−λjTj + p(λj(πj − ωj)− c)e−λjTj−λiTmin = 0. (C.9)

This implies

e−λiTi−λjTj
(
λiω1 + λiv

2
i − λjω1 − λjv2

j

)
= e−λjTj−λiTmin(λj(πj − ωj)− c)−

e−λiTi−λjTmin(λi(πi − ωi)− c).

For λi > λj the l.h.s. is always positive no matter whether both firms invest, only the

inventor invests, only the imitator invests or none of the firm invests. Thus,

e−λjTj−λiTmin(λj(πj − ωj)− c) > e−λiTi−λjTmin(λi(πi − ωi)− c),

which implies that

−λjTj − λiTmin + λiTi + λjTmin > ln

(
λi(πi − ωi)− c
λj(πj − ωj)− c

)
(C.10)

The r.h.s. of (C.10) is always greater or equal to 1, which implies Tmin = Tj. �

Proof of Corollary 3.1.

From Lemma 3.2 and 3.4 we know that in a winner-takes-all competition λiTi+λjTj equals

− ln

(
1− p
p

)
− ln

(
c

λiπi − c

)
,

which is increasing in πi. For perfect positive spillovers λiTi + λjTj equals

− ln

(
1− p
p

)
− ln

(
c

λjπj − c

)
,

which is as well increasing in πj. � ——————————
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