Biodiversity of leaf beetles (Coleoptera: Chrysomelidae) in a tropical montane rainforest ecosystem assessed with DNA barcoding

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn
vorgelegt von
Birthe Thormann
aus Prüm

Bonn, Juli 2015

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

© koenig

Die Dissertation wurde am Zoologischen Forschungsmuseum Alexander Koenig (ZFMK) in Bonn durchgeführt.

Erstgutachter: Prof. Dr. Johann Wolfgang Wägele
Zweitgutachter: Prof. Dr. Thomas Wagner
Kommissionsmitglied (fachnah): Prof. Dr. Maximilian Weigend
Kommissionsmitglied (fachfremd): Prof. Dr. Christian Borgemeister

Tag der Promotion: 7.12.2015
Erscheinungsjahr: 2016

When the distinguished British biologist J.B.S. Haldane, who found himself in the company of a group of theologians, was asked what one could conclude as to the nature of the Creator from a study of his creation, Haldane is said to have answered "An inordinate fondness for beetles".

Anecdote

Summary

The aim of the present study was the assessment of an unknown tropical insect fauna without traditional taxonomy. For this purpose, the diversity of leaf beetles (Coleoptera: Chrysomelidae) in the montane rainforest of the Reserva Biológica San Francisco (RBSF) and parts of the Podocarpus National Park in southern Ecuador was investigated. Beetles were sampled at three different elevations, '1000 m' (Bombuscaro; 1020-1075 m a.s.l.), '2000 m' (Estación Científica San Francisco - ECSF; 1913-2089 m a.s.l.), and '3000 m' (Cajanuma; 2805-2891 m a.s.l.) with a set of different collection methods. Beetles were mainly sampled with sweep netting, beating, and hand-collection from the lower understorey vegetation of 36 sampling plots (12 per elevation, six of them in the valleys, six on the ridges) following a standardized sampling protocol. A total of 4286 leaf beetles have been collected, 1775 of these (usually one of each morphospecies per sample) were sorted into 515 different morphospecies, DNA barcoded, and assigned to molecular operational taxonomic units (MOTUs).

The study covers aspects of community structure and its changes with increasing elevation. Methodological aspects of rapid biodiversity assessment are evaluated: Different collection methods and morphological and sequence-based methods for species delimitation are compared.

General leaf beetle diversity patterns in an Andean mountain forest

Leaf beetle assemblages showed patterns typical for tropical arthropods: They were species-rich, with few common species but a high percentage of rare species. 1583 specimens were sorted into 473 morphospecies, and for 1334 of them a DNA barcode could be obtained. They belong to 416 morphospecies and were grouped into 459 MOTUs. Species accumulation curves showed no saturation indicating a further increase in species numbers with additional sampling. Species number estimates ranged up to 916 morphospecies (chao2) for the 1583 analysed individuals, and 705 morphospecies, respectively 805 MOTUs for the 1334 barcoded individuals. The higher MOTU number compared to morphospecies number suggests a high level of potential cryptic diversity that was not recognized by the morphospecies approach alone. The leaf beetle community showed an uneven distribution of incidence and abundance with very few common morphospecies (5% found in more than ten samples, 10% represented by more than ten individuals) and a high percentage of uniques (morphospecies found in one single sample; 50% of all morphospecies), respectively singletons (one single individual found; 45% of all morphospecies). The singleton curve did not reach saturation. Most morphospecies were restricted to one single elevational level (91%), indicating a high turnover of communities with elevation. This pattern was even more apparent for MOTUs (96\%) and haplotypes (99\%). More than half of the morphospecies belonged to Alticinae (53%), 21% were Galerucinae, 14% Eumolpinae, 5% Hispinae, and 4% Cassidinae. Criocerinae, Chrysomelinae, Lamprosomatinae, and Cryptocephalinae together accounted for 3% of all morpho-
species. Rank order remained the same when number of individuals was considered. Composition of the subgroups changed slightly with elevation.

Diversity patterns along an elevational gradient inferred with DNA barcode data

Leaf beetle assemblages from the 36 study plots were sampled and differences between the three elevations and the two microhabitats (forest on ridges and in valleys) were analysed based on DNA barcode data. The importance of small-scale topography for elevational diversity patterns was evaluated: It was tested whether elevational diversity differs between ridge and valley forests and if the species turnover between and within habitats varies with elevation and changes patterns of elevational diversity when scaling up from the local (sampling plot) to the regional (elevational belt) level. MOTUs were determined using PTP modelling and data was analysed using permutational MANOVA analysis and ordinary linear models.
When study sites of both habitats were pooled, local leaf beetle diversity showed a clear mid-elevational peak pattern. However, only leaf beetle diversity in ridge forests peaked at mid-elevations, while the diversity in valley forests was similarly high at 1000 and 2000 m a.s.l. and declined at highest elevations. When scaling up to the regional scale, levels of diversity were generally similar at the two lower elevations and declined at 3000 m a.s.l. The scale-dependent shift in diversity patterns was caused by a higher turnover of species communities between and within habitats at lower than at mid-elevations, suggesting more specialized herbivore communities in the more productive lower elevations. The study underscores the importance of topography and spatial scale for the inference of diversity patterns. Changes in ecosystem productivity but also area and temperature with elevation might also influence the genetic diversity within species, however, levels of genetic diversity (haplotype diversity per MOTU) did not differ among elevational levels. Biodiversity patterns along the elevational gradient were revealed by MOTUs and morphospecies in the same way.

Comparison of morphospecies sorting and DNA barcoding

1475 barcoded individuals were assigned to MOTUs and the results were compared with the morphospecies sorting. The barcode approach estimated 10% higher species numbers (448 morphospecies, 493 MOTUs). This was caused by a higher number of splittings than lumpings of morphospecies. The similar numbers of morphospecies and MOTUs arose partly due to the fact that splittings and lumpings compensated one another. However, the number of perfect matches was comparatively low: 63% of all morphospecies corresponded exactly with one MOTU. Most lumpings united individuals of two morphospecies in one MOTU (76%), in some cases, individuals of up to five morphospecies (4%) were lumped. Similarly, most splittings divided a morphospecies in two networks (69%), only once a morphospecies was split into six MOTUs (1\%). The subgroups most challenging for morphospecies sorting were Galerucinae and especially Alticinae. Difficulties most probably arose due to the large number of specimens and species.

DNA barcoding showed to be a valuable tool in cases were morphospecies sorting is exacerbated by pronounced intraspecific variation in colour, shape, or size, and may reveal cryptic diversity. Especially in species that are small and/or lack conspicuous external characters barcoding is a useful tool to complement morphospecies sorting. Particularly in large, specimen- and species-rich data sets DNA barcoding can facilitate morphospecies sorting and can result into a more accurate species delimitation.

Influence of different species delimitation methods on species richness estimates

For a subset of 674 barcoded specimens, a set of four different DNA-based species delimitation methods and their influence on species richness estimates were compared. Distance-based clustering, statistical parsimony analysis, GMYC-, and PTP modelling led to highly similar results. The reason probably lies within the structure of the underlying data set: It is geographically restricted and undersampled with a high proportion of singletons what turns it insensitive against differences in species delimitation methods. Several cases of splittings and lumpings led to discrepancies between morphospecies and MOTU assignment and generally MOTU numbers were $\sim 8 \%$ higher than morphospecies numbers.

Morphospecies sorting and DNA barcoding allow similar conclusions on leaf beetle diversity: The leaf beetle fauna is species-rich with a strong turnover among elevations. Most morphospecies where found only at a single elevational level, also when singletons and doubletons have been excluded. This pattern was even more visible for MOTUs and haplotypes. The high turnover between leaf beetle communities at the different elevations is also visible in the species accumulation curves: If to the specimens of one elevation the specimens of a second elevation where added, the curves showed once more a further increase.

Comparison of sampling methods

Within the present study a total of 1174 samples were taken. They varied considerably in size and effort as different sampling methods were used. The focus was on standardized sampling with sweep netting, beating, and hand-collection on the sampling plots. Malaise trapping, light trapping, and additional hand-collection completed the sampling.

In sweep netting-, beating-, hand-collection-, and light trap samples on average only few individuals and morphospecies were caught per single sample (less than five). In contrast, the Malaise traps were highly efficient on a per sample basis: They yielded a mean of 31 individuals and 15 morphospecies per sample. Collection efficiency for certain subgroups slightly differed between the different methods. Even after 298.5 sampling hours the species accumulation curve of the standardized plot samples showed no saturation indicating that a further increase of morphospecies number is expected with further sampling.

Contents

1 General introduction 1
1.1 Background of the study 1
1.2 DNA barcoding 3
1.3 Chrysomelidae Latreille, 1802 6
1.3.1 Biology and ecology 6
1.3.2 Systematics and taxonomy 12
1.4 Chrysomelidae research in Ecuador 18
1.5 Aims and structure of the dissertation 21
2 Methods 23
2.1 Study area 23
2.2 Sampling methods and sampling design 25
2.3 Further handling of the specimens 27
2.4 Laboratory protocols 28
2.5 Analyses 30
3 General patterns of leaf beetle diversity 35
3.1 Introduction 35
3.2 Methods 36
3.3 Results 38
3.4 Discussion 48
3.5 Conclusions 55
4 Habitat specialization and its influence on elevational diversity pat- terns inferred by DNA barcode data 57
4.1 Introduction 57
4.2 Methods 59
4.3 Results 62
4.4 Discussion 66
4.5 Conclusions 69
5 Comparison of morphological and molecular species delimitation approaches 71
5.1 Introduction 71
5.2 Methods 73
5.3 Results 74
5.4 Discussion 89
5.5 Conclusions 94
6 Comparison of rapid species delimitation methods and their influ- ence on species richness estimates 97
6.1 Introduction 97
6.2 Methods 99
6.3 Results 102
6.4 Discussion 109
6.5 Conclusions 111
7 Comparison of sampling methods 113
7.1 Introduction 113
7.2 Methods 114
7.3 Results 115
7.4 Discussion 121
7.5 Conclusions 123
8 General discussion and future prospects 125
Bibliography 129
A List of abbreviations 179
B Additional information: Sampling site information 181
C Additional information: Specimen list 183
D Additional information: Data sets 205
E Additional information: Species delimitation results 227
F Acknowledgement 233
G Erklärung 235
H Curriculum Vitae 237

Chapter 1

General introduction

1.1 Background of the study

We are right in the middle of an anthropogenic mass extinction with rates of decline in biodiversity comparable to previous mass extinction events in the fossil record (Barnosky et al., 2011; Dirzo et al., 2014; Pimm et al., 1995). This rapid loss in biological diversity has been termed the global biodiversity crisis, and at least since the signature of the Convention on Biological Diversity (CBD) at the United Nations Conference on Environment and Development in Rio de Janeiro in 1992, the problem has been acknowledged by politics and entered public awareness (https://www.iucn.org). Biodiversity is threatened mainly by habitat loss and degradation, but also invasive alien species, over-exploitation of natural resources, pollution and diseases, and climate change (Bradshaw et al. (2009); Primack (2014); https://www.iucn.org). Human activity is responsible for most of those perils.

Most biodiversity concentrates in tropical habitats (Bradshaw et al., 2009; Dirzo and Raven, 2003). Especially tropical rainforests are among the most species-rich and ecologically complex ecosystems: Although they cover only seven percent of the Earth's surface, it is estimated that they harbour more than half of all existing species on the planet (Bradshaw et al., 2009; Primack, 2014; Wilson, 1988). Threats to tropical forests are manifold. The rapidly progressing deforestation with fragmentation and overexploitation entails a string of adverse consequences that interact and create negative synergisms (Laurance, 1999; Laurance and Peres, 2006)

Whereas the gravity of habitat destruction and biodiversity loss as well as the urgent need for action are unmistakable, we are still not even able to specify the global number of species. It lies probably within the range of five to 15 million (Chapman, 2009; May, 2000, 2010; Mora et al., 2011; Wilson, 2003). The best known and most intensively studied components of tropical rainforests are mammals, birds, and higher plants that make up only a small fraction, probably less than one percent of the total number of species (Corlett and Primack, 2011). In contrast, most of those groups that account for the majority of biodiversity remain clearly understudied. Invertebrates, and especially insects, are the dominant animals of the rainforest contributing the majority of species, individuals, and biomass (Corlett and Primack, 2011; Primack, 2014). Unfortunately, the so-called taxonomic impediment is especially severe in those groups: Most species cannot be identified and millions are still undescribed due to a shortage of trained taxonomists and curators and a lack of simple-to-use identification guides (http://www.cbd.int).

To alleviate the problem of rapid biodiversity-loss with the concurrent gaps in our
taxonomic knowledge, an acceleration of biodiversity assessment is necessary. One possible way is the integration of DNA barcoding for exploring unknown biodiversity. On the one hand it can help to discover and describe species, a task that has never been more urgent (Frézal and Leblois, 2008; Hebert et al., 2003a; Scheffers et al., 2012). On the other hand it can reveal patterns of biodiversity and community ecology while the long lasting process of thorough taxonomic identification and formal description of new species is postponed (Smith et al., 2005; Tänzler et al., 2012). Initially developed as a global species identification system, during the last decade it has proven to be very useful in various fields of research and has also been used successfully in beetle communities (Baselga et al., 2013; Papadopoulou et al., 2013; Tänzler et al., 2012).

In the present study, DNA barcoding is used to investigate the unknown leaf beethe fauna (Coleoptera: Chrysomelidae) in a tropical montane rainforest in Ecuador. DNA barcode data is used along with a morphospecies approach. It is tested, how the methods agree and which conclusions they allow about the diversity and change of leaf beetle communities along an elevational gradient. For that purpose Neotropical Chrysomelidae are particularly attractive study organisms as they are megadiverse and hitherto taxonomically considerably understudied. As an integral component of the herbivorous insect fauna in rainforests they have important functions within ecosystems and are of great relevance for ecosystems' diversity (Andrew and Hughes, 2004; Basset, 2001; Coley and Barone, 1996; Janzen, 1970; Price, 2002; Wagner, 2000).

The investigated region is located in southern Ecuador in the Tropical Andes, a designated biodiversity hotspot for various taxa (Brummitt and Lughadha, 2003; Myers et al., 2000). In tropical mountains, the peaking species richness at low latitudes is enhanced by a high species turnover along elevational gradients (Brühl et al., 1999; Gaston, 2000; Smith et al., 2014). This leads to the exceptional species numbers of tropical montane rainforests that can even exceed those of lowland rainforests (Beck and Kottke, 2008; Rodriguez-Castaneda et al., 2010). With some exceptions (e.g. Brehm and Fiedler (2003, 2004); Brehm et al. (2003a,b); Escobar et al. (2007, 2005, 2006); Hilt et al. (2006, 2007); Janzen et al. (1976); Moret (2009); Olson (1994)), the insect diversity of the Tropical Andes is still understudied and comparatively little is known about diversity patterns in Andean montane forests (for an overview see Larsen et al. (2011)). Montane rainforests face many of the same threats as other tropical forests, however, especially cloud forests are particularly susceptible to climate change due to their unique ecology and their location on mountain slopes (Bubb et al., 2004; Hamilton et al., 1995). Ecuador is a megadiverse country: On a comparatively small area, it harbours an outstanding variety of habitats along pronounced elevational and wet-dry gradients. High beta-diversity along these gradients favours an enormous biological diversity (Brehm et al., 2008a; Dangles, 2009). It shelters one of the most species-rich but also most endangered insect faunas on Earth (Dangles, 2009). Ecuador's dense population (55 inhabitants $/ \mathrm{km}^{2}$) puts strong pressure on its natural ecosystems (Dangles, 2009). The country suffers the highest annual deforestation rate (-1.9%) in South America (FAO, 2010), mainly
caused by conversion of forest into agropastoral land (Mosandl et al., 2008).

1.2 DNA barcoding

DNA barcoding as a global identification system based on a standard molecular method was proposed by Hebert et al. in 2003 in order to accelerate species discovery and identification, and to overcome the limitations of morphological identification (Hebert et al., 2003a). However, the term 'DNA barcodes' was already used by Arnot et al. (1993) and use of DNA sequence differences for identification and discrimination of species has been established for many years for morphologically scarcely identifiable groups such as viruses, bacteria, protists, or fungi (Allander et al., 2001; Bruns et al., 1991; Hamels et al., 2001; Nanney, 1982; Pace, 1997).

Also for higher organisms a DNA based practice approach to taxa recognition is highly expedient and beneficial (Savolainen et al., 2005). It can help to lighten the taxonomic impediment, the lack of taxonomic expertise to effectively identify and describe the remaining biodiversity on Earth. This problem is especially pressing in the light of the rapid biodiversity loss and notably severe with highly diverse arthropod taxa (Cardoso et al. (2011); Evenhuis (2007); CBD Guide to the Global Taxonomy Initiative, http://www.cbd.int). The traditional means of studying biodiversity depend on expert knowledge from taxonomists with years of education and training. This knowledge is limited to certain taxa and furthermore, the identification of species is time intensive (Harris and Bellino, 2013). The focus of taxonomic expertise is biased towards vertebrates, flowering plants, or certain insect taxa, whereas in contrast many important groups as e.g. nematodes, mites, or diatoms, are neglected (Tautz et al., 2003). Several authors claimed that traditional taxonomy will not be able to cover all requested identification of biodiversity, but that new approaches are needed to modernize taxonomy (Frézal and Leblois, 2008; Godfray, 2002; Hebert et al., 2003a; Stoeckle, 2003).

DNA barcoding represents the idea of a unique DNA sequence for each species in analogy to industrial 'barcodes', universal product codes which can be used to identify retail products (Hebert et al., 2003a,b; Savolainen et al., 2005). A fragment of the mitochondrial gene cytochrome c oxidase I (COI) established as a standard marker for animal species identification (more information about COI as barcode marker is given in Chapter 2.4). This fragment can be amplified with universal markers across a broad range of species (Folmer et al., 1994; Hebert et al., 2003a). The principle of DNA barcoding has been extended to other organisms like fungi (Begerow et al., 2010; Schoch et al., 2012; Seifert, 2009; Seifert et al., 2007) and plants (Chase et al., 2007; Dunning and Savolainen, 2010; Kress and Erickson, 2007; Kress et al., 2005; Pennisi, 2007; Rubinoff et al., 2006) where the search for a universal barcode marker turned out to be difficult.

In 2004, the Consortium for the Barcode of Life (CBOL, http://www.barcodeof life.org) was founded as an international initiative for promoting the development of DNA barcoding as a global standard for species identification with numerous
member organizations such as natural history museums, zoos, herbaria, botanical gardens, university departments, as well as private companies and governmental organizations. Major CBOL projects are e.g. the All Birds Barcoding Initiative (ABBI), the Bee Barcode of Life Initiative (Bee-BOL), the Mosquito Barcode Initiative (MBI), or the International Network for Barcoding Invasive and Pest Species (INBIPS).

The objective of the international Barcode of Life project (iBOL, http://www.bar codeoflife.org) is the creation of large numbers of barcodes with a construction of a barcode reference library and the development of instruments and informatics tools for application. The library, Barcode of Life Data Systems (BOLD, http://www.bold systems.org), is also a public workbench for researchers who can assemble, test, and analyse their data in BOLD. iBOL has members in 25 nations and different working groups are devoted to certain taxonomic groups or habitat types (e.g. vertebrates, land plants, fungi, marine bio-surveillance, polar life).

DNA barcoding claims being a rapid and cost-efficient method that moreover is potentially applicable by everyone irrespective of their background training (Hebert and Gregory, 2005; Stoeckle, 2003; Stoeckle et al., 2003). It is also supposed to help in cases where phenotypic plasticity or intraspecific variability impede morphological identification and to facilitate discovery of cryptic diversity (Hebert et al., 2003a). It is applicable to all life forms (whereas keys are often only for one particular life stage or gender) as well as processed or parts of organisms (Hebert et al., 2003a; Stoeckle, 2003; Stoeckle et al., 2003).

Indeed, a vast number of studies within the last decade affirmed the value of DNA barcoding across a broad range of possible applications: It has been shown to be especially useful in difficult groups where morphological traits do not clearly discriminate species. These include very small organisms where body-size precludes visual identification (meio- and micro-fauna, zooplankton), species only distinguishable by subtle or geographically variable morphological characters, as well as species with polymorphic life cycles and/or pronounced phenotypic plasticity (Blaxter et al., 2004; Bucklin et al., 2007; Decaëns et al., 2013; Frézal and Leblois, 2008; Plaisance et al., 2009; Vences et al., 2005). It has also helped in studying cryptic diversity (Hebert et al., 2004; Smith et al., 2006) and has been successfully used for identifying immature stages (e.g. eggs, larvae, seedlings) and assort them to adults (Ahrens et al., 2007; Janzen et al., 2005; Vences et al., 2005). Barcoding of gut contents can give information about an organism's diet (Blankenship and Yayanos, 2005; Zeale et al., 2010). This variety of applications makes barcoding a useful tool in ecology, forensics, and biosecurity (Armstrong and Ball, 2005; Besansky et al., 2003; Chen et al., 2004; Joly et al., 2014; Valentini et al., 2008; Wells and Sperling, 2001). The identification of damaged or processed organisms or fragments is important for food safety and consumer protection as well as for conservation issues as it can help preventing poaching and illegal trade of endangered species (Ardura et al., 2010; Dalton and Kotze, 2011; Eaton et al., 2010; Galimberti et al., 2013; Wong and Hanner, 2008; Yan et al., 2013). It has successfully supported biodiversity inventories and can substitute or complement taxonomically valid species or morphospecies in
community ecology studies of unknown faunas (Janzen et al., 2005; Tänzler et al., 2012).

Despite a broad acceptance and utilization of DNA barcoding, since its beginnings it has aroused criticism as well (DeSalle et al., 2005; Moritz and Cicero, 2004; Will et al., 2005; Will and Rubinoff, 2004). On the one hand there is criticism on the part of taxonomists that are apprehensive of competition or being booted out by barcoding (Ebach and Holdrege, 2005; Lipscomb et al., 2003; Wheeler, 2004). Another point where criticism tackles is the premise that genetic variation among species is normally lower than between species (Hebert and Gregory, 2005; Hebert et al., 2003b). That phenomenon is called the 'barcoding gap', however, in practice there may be overlap between inter- and intraspecific distances, or the barcoding gap may be artificially exaggerated by inappropriate sampling: It has been argued that DNA barcoding fails when a comprehensive sampling exists, i.e. when the whole genetic variance of a species across a broad geographic range is assessed and many closely related species are included. Intra- and interspecific distance can overlap, on the one hand because the intraspecific distances are larger than when only analysing a narrow cut-out of all intraspecific distances, and on the other hand increasing geographical scale of sampling decreases the interspecific divergence due to encountering more closely related, allopatrically distributed species in a geographically expanding data set (Bergsten et al., 2012; Meyer and Paulay, 2005; Wiemers and Fiedler, 2007). In contrast, the barcoding gap is more pronounced on a local scale and for data sets lacking large numbers of closely related species (Moritz and Cicero, 2004).
Certain aspects concerning the use of COI as single marker that require cautiousness are explained in Chapter 2.4.

Methodological approaches that are demarcated from DNA barcoding sensu strictu, but still closely tied to the concept of DNA barcoding and partly overlapping are DNA taxonomy, reverse taxonomy, and integrative taxonomy:
DNA taxonomy sets the DNA based identification in the focus of taxonomy with DNA being the scaffold of a taxonomic reference system (Tautz et al., 2003). In contrast to DNA barcoding that can be understood as a means of identifying a priori entities by sequence similarity, DNA taxonomy concerns the circumscription and delineation of species using evolutionary species concepts (Vogler and Monaghan, 2006).

Reverse taxonomy is a sequence-based approach to access unknown diversity. Taxa are at first only identified via their signature sequences that can be re-identified unequivocally in future collections, but are not yet morphologically analysed and formally described (Markmann and Tautz, 2005). Reverse taxonomy can be based on COI sequences but often other markers have been used (Markmann and Tautz, 2005; Randrianiaina et al., 2011).
Integrative taxonomy aims at delimiting species boundaries from multiple and complementary perspectives. Traditional morphology-based taxonomy is combined with e.g. molecular, behavioural, developmental, or ecological data (Dayrat, 2005). In
many studies COI is included, often in combination with other markers (Damm et al., 2010; Gibbs, 2009; Heethoff et al., 2011; Mengual et al., 2006; Roe and Sperling, 2007).
In the context of DNA barcoding and DNA taxonomy, often the MOTU concept appears (Blaxter, 2004; Floyd et al., 2002). MOTU signifies 'molecular operational taxonomic unit', i.e. a group of specimens defined by sequence identity: If two specimens yield sequences that are identical within some defined cut-off, they are assigned to the same MOTU (Blaxter, 2004). In this study, the term MOTU is used in a broader sense meaning a group of specimens that is delimited by any molecular species delimitation method (e.g. a GMYC-, PTP-, distance-cluster, or a haplotype network). Different methods of molecular species delimitation are explained in Chapters 2.5 and 6.

1.3 Chrysomelidae Latreille, 1802

1.3.1 Biology and ecology

General biology and ecology

Chrysomelidae (leaf beetles; Coleoptera: Polyphaga: Cucujiformia: Chrysomeloidea) belong with Cerambycidae (longhorn beetles) to Chrysomeloidea that together with the Curculionoidea (weevils) make up the megadiverse lineage of 'Phytophaga' that constitute about 40% of all known beetle species (Farrell, 1998; Gómez-Zurita et al., 2007; Riley et al., 2002). With over 37,000 described species and more than 2,000 genera Chrysomelidae are one of the largest beetle families (Jolivet et al., 1988). The total number of existing leaf beetle species is probably 60,000 or higher (Jolivet, 1988; Reid, 1995). Chrysomelidae have a worldwide distribution (except arctic regions) with the by far greatest diversity found in the tropics (Riley et al., 2002).

Leaf beetles have a highly variable body shape from elongate-cylindric to ovalconvex or depressed (Riley et al., 2002). Size varies from less than one to $\sim 27 \mathrm{~mm}$ (Jolivet and Petitpierre, 1981; Jolivet et al., 1988). They show various colours, commonly bright or metallic, often dorsally bicoloured and formed into distinctive patterns (Riley et al., 2002).

Chrysomelidae bear five tarsomeres and are characterized by a bilobed third tarsomere that hides the reduced fourth tarsomere (pseudotetramerous condition). Also typical are large ventral tarsal pads with adhesive hairs that likely aid attachment and locomotion on plants (Fig. 1.1). Antennae are generally short to medium-length with usually eleven antennomeres (Jolivet et al., 1988; Riley et al., 2002).

Chrysomelidae are phytophagous during larval and adult stage (Jolivet and Petitpierre, 1981). Adult chrysomelids usually feed on green parts of plants. Some groups secondarily feed on pollen, flowers, roots, seeds, and ant nests debris. Also leaf beetle larvae have a variety of feeding habits: Besides feeding on leaves or subterranean parts of plants there are also leaf-miners or consumers of dead plant material (Riley et al., 2002).

Figure 1.1: Dorsal and ventral view of the tarsus of a typical leaf beetle (Chrysomelinae) with pilose tarsal pads (Lawrence and Britton, 1994).

Traditionally, a restriction of tropical rainforest herbivorous insects to a narrow set of host plants is assumed (Coley and Barone, 1996; Erwin, 1982) and indeed a lot of species seem to be specialists for a certain species, genus, or family (Barone, 1998; Janzen, 1988). However, there is growing evidence that many tropical insects are less specialized than was previously thought (Basset, 1992; Descampe et al., 2008; Novotny et al., 2002b). Assumptions about host plant range that are derived from field observations are often skewed towards specialization as often only a fraction of a (geographical) broader range of host plants is observed (Descampe et al., 2008). In contrast, insects often only sit on plants for resting, shelter, sun-basking, or sexual display, but without feeding on them (Descampe et al., 2008; Moran and Southwood, 1982; Novotny and Basset, 2000).

For leaf beetles, food plant records are estimated to exist for $\sim 30 \%$ of described species, especially well studied and important chrysomeline, alticine, and galerucine genera (Jolivet, 1988; Jolivet and Hawkeswood, 1995). A broad variety of plant families are selected by Chrysomelidae (several are discussed in detail by Jolivet and Hawkeswood (1995)). They mainly belong to angiosperms, both monocotyledons (≥ 28 families) and dicotyledons (≥ 120 families) with most leaf beetle subfamilies preferring dicotyledons. However, also gymnosperms and even pteridophytes are chosen, mostly by Alticinae (Jolivet and Hawkeswood, 1995; Riley et al., 2002). There is scarce evidence for leaf beetles (only alticines) feeding on bryophytes (Jolivet and Hawkeswood, 1995; Konstantinov et al., 2013; Konstantinov and Chamorro-Lacayo, 2006). Among the dicotyledon families that are most often recorded in the literature as host plants are Asteraceae, Convolvulaceae, Brassicaceae, Cucurbitaceae, Lamiaceae and Verbenaceae, Fabaceae (and other legumes), Rosaceae, and Solanaceae (Jolivet and Hawkeswood, 1995).

Some Chrysomelidae feed on myrmecophilous plants and developed protective adaptations against the ants e.g. avoiding contact with the ants, mining into the leaf, toxicity, reflex bleeding, stomach discharges, or larval cycloalexy (circular defence; Jolivet et al. (1990)) (Jolivet and Hawkeswood, 1995). Generally, many defensive strategies have evolved within Chrysomelidae, probably in adaptation to their life on the leaf surface where they are prone to numerous biotic and abiotic perils
(predation, desiccation, plant chemical and physical defences; Vencl et al. (2004)). These defensive mechanisms range from crypsis (e.g. cassidines), mechanical devices (e.g. spines of hispines), and sudden escape (Alticinae) to chemical defence in many brightly coloured, aposematic species (Pasteels et al., 1988). An interesting behaviour in leaf beetles is the defensive use of faecal material. Adults and immature stages of species in several subfamilies developed elaborate faecal constructions that are used as camouflage, clubs, and protective covers (Chaboo, 2007; Chaboo et al., 2008; Furth, 1982a, 2004; Müller and Hilker, 2004; Riley et al., 2002). Larval egg cases from faecal material may also serve as protection against desiccation (Furth, 1982a, 2004).

Chrysomelidae have a broad range of reproduction ways. Whereas laying of eggs is most common there is also viviparity and intermediate ways with laying eggs containing more or less developed embryos (Jolivet and Petitpierre, 1981). In some species of Cassidinae and Chrysomelinae a kind of parental care has been observed where females sit on top of the eggs, larvae, and pupae in order to protect them (Buzzi, 1988; Chaboo, 2007; Windsor and Choe, 1994).

Significance for humans: Chrysomelidae as pests and biological control agents

Many leaf beetles are serious pests of agricultural crops and forests, especially in the subfamilies of Criocerinae, Eumolpinae, Galerucinae, Alticinae, Hispinae, and Chrysomelinae (Jolivet et al., 1988). One of the most well-known and destructive agricultural insect pests worldwide is the Colorado potato beetle (Leptinotarsa decemlineata Say, Chrysomelinae) (Alyokhin, 2009; Bishop and Grafius, 1996; Hare, 1990; Weber, 2003). Originating in Mexico, populations quickly spread throughout North America from the 1800's and throughout Eurasia since 1922 (Alyokhin, 2009; Bishop and Grafius, 1996). Adults and larvae of the Colorado potato beetle severely damage potato crops by defoliation (Alyokhin, 2009; Bishop and Grafius, 1996). The species has an impressive ability to evolve insecticide resistance (Alyokhin et al., 2008; Forgash, 1985).

Many significant pests of North American agriculture belong to the diabroticine group of Galerucinae. Diabrotica virgifera virgifera LeConte (western corn rootworm), Diabrotica barberi Smith \& Lawrence (northern corn rootworm), and Diabrotica undecimpunctata howardi BARBER (southern corn rootworm) are major pests of cultivated corn, Zea mays L., with their larvae feeding on the roots (Ciosi et al., 2008; Roehrdanz et al., 2003). Corn rootworms also attack additional crops as cucurbits and legumes (Krysan, 1986; Metcalf, 1986). They are native to North America but the highly invasive D. virgifera is also a serious threat of European agriculture (Ciosi et al., 2008; Gray et al., 2009; Miller et al., 2005; Moeser and Vidal, 2004). Other diabroticite pests are the Mexican corn rootworm (D. virgifera zeae Krysan \& Smith), the banded cucumber beetle (D. adelpha Harold) and the western spotted cucumber beetle (D. undecimpunctata undecimpunctata Mannerheim), and the bean leaf beetle (Cerotoma trifurcata Forster and other Cerotoma species), feeding on a variety of leguminous host plants, especially soybean (Kogan et al., 1980;

Krysan, 1986; Lam and Pedigo, 2004). Among Alticinae there are to name several pests in the genus Epitrix: the potato or tuber flea beetles (E.cucumeris Harris, E. similaris Gentner, E. tuberis Gentner) that attack potato tubers and foliage (Gentner 1944), and the tobacco flea beetle E. hirtipennis Melsheimer. Other serious pests, especially of crucifer field crops, are found within the genus Phyllotreta, e.g. the cabbage or crucifer flea beetle P. cruciferae Goeze, and the striped flea beetle P. striolata Fabricius. Especially among Hispinae, there are found important pests of palm trees (Mariau, 2004). Numerous species live off oil and coconut palms (Mariau, 2004). The coconut hispine beetle or coconut leaf beetle (Brontispa longissima Gestro) is a serious pest of palms, especially Cocos nucifera L. It has enormously expanded and is listed in the Global Invasive Species Database (2010) (Takano et al., 2011, 2012). The hispine Coelaenomenodera lameensis Berti \& Mariau, the most serious oil palm pest throughout West Africa has caused severe defoliation over wide areas of oil palm distribution (Mariau, 2004). The tortoise beetle Paropsis atomaria Olivier represents an emergent pest of Eucalyptus plantations in Australia (Schutze et al., 2006). Economically important Criocerinae that damage cereals are the cereal leaf beetle Oulema melanopus L., the rice leaf beetle O. oryzae Kuwayama, and the cereal pest O. gallaeciana von Heyden (Wellso and Hoxie, 1988). Among Eumolpinae, there are some cacao pests in Brasil (Ferronatto, 1988) and several species attacking sweetpotato, e.g. Typophorus nigritus viridicyaneus Crotch, Colasposoma dauricum Mannerheim, and C. sellatum Baly (Alaijos and Lee, 2005; Jackson et al., 2003; Reid and Storey, 1993). Eumolpinae of the genus Eucolaspis cause economic loss on apple orchards (Doddala et al., 2013) and the eumolpine Tricliona nigra Jacoby has been recently reported to cause severe feeding damage on pomegranate in India (Jayanthi and Verghese, 2014).

On the other hand, benefit can be derived from the chrysomelids' herbivory and host-specificity: Several leaf beetle species are used for biological control of imported noxious weeds that can cause enormous ecological and economical damage (Jolivet et al., 1988).

Several invasive species of Asian saltcedars (Tamarix sp.) cause great damage of riparian ecosystems in the western United States. The galerucine Diorhabda elongata Brullé deserticola Chen from Asia has been introduced as biological control agent (DeLoach et al., 2003; Lewis et al., 2003). The common ragweed (Ambrosia artemisiifolia L., Asteraceae) is a harmful agricultural weed that is native in North America. Its pollen are highly allergenic. It has invaded Europe as contaminant of agricultural products and spread first slowly but booming since the 1990's facilitated by socio-economic factors (Kiss, 2007). Ophraella communa LeSAGE, a galerucine from North America, is the most promising biocontrol agent of ragweed (Kiss, 2007). Several species of European Aphthona flea-beetles (Alticinae) have been introduced into North America to control leafy spurge (Euphorbia esula L.), a weed introduced from Eurasia that is very persistent and invades a variety of habitats (Gassmann et al., 1996; Kirby et al., 2000; Lym and Nelson, 2000). In an attempt to control Lantana camara L. (Verbenaceae) (and allied Lantana species), an aggressive, vig-
orously growing weed that has become a plague over most of the tropics (Sharma et al., 2005), Hispinae (e.g. Octotoma scabripennis GuÉrin-MÉneville, Uroplata girardi PIC) have been introduced into several regions of the world (Broughton, 2001; Cilliers and Neser, 1991; Harley, 1969). Chrysolina quadrigemina Suffrian (Chrysomelinae; released in California to control Klamath weed Hypericum perforatum L., Clusiaceae), Uroplata girardi Pic (a hispine leaf-miner supposed to control Lantana camara L. in Australia), and Zygogramma bicolorata Pallister (released in India for control of the parthenium weed Parthenium hysterophorus L., Asteraceae) belong to the very few recorded examples of biocontrol agents attacking also non-target plant species (McFadyen, 1998).

Evolution and fossil history

Despite an abundance of available material, the fossil history of Chrysomelidae is relatively poorly documented (Chaboo and Engel, 2009; Santiago-Blay, 1994). The great species diversity of leaf beetles and other phytophagous insects is commonly ascribed to their co-evolution with the rapidly radiating land plants in the Tertiary (Ehrlich and Raven, 1964; Farrell, 1998; Farrell et al., 1992). The phylogeny of Chrysomelidae is thought to reflect that of major lineages of angiosperms i.e. the available host plant lineages at that time (contemporaneous lineage diversification). The most basal lineages of Chrysomelidae are supposed to be associated with primitive cycads and conifers followed by a large diversification of lineages on di- and monocotyledonous angiosperms (Farrell, 1998; Farrell and Sequeira, 2004; McKenna and Farrell, 2006). Based on these assumptions, the origin of Chrysomelidae seems to be early- to mid-cretaceous leading to a discrepancy between the molecular calibrations and the fossil record (Gómez-Zurita et al. (2007) and references therein). The attribution of Jurassic fossils to Chrysomelidae (Santiago-Blay, 1994) is doubtful, and also in the Cretaceous chrysomelid fossils are essentially absent (Chaboo, 2007; Gómez-Zurita et al., 2007). Most appear only in the Eocene ($34-56 \mathrm{Ma}$), representing most major subfamilies. An exception is a Canadian Mesozoic fossil dated to 72 Ma and identified as a primitive chrysomelid probably representing an early lineage which pre-dates the diversification of major extant subfamilies. The oldest clearly identifiable record is Donacia wightoni Askevold from the Canadian Palaeocene ($\sim 58 \mathrm{Ma}$; Askevold (1990)) (for an overview see GómezZurita et al. (2007) and references therein). Feeding damage on fossil leaves that has been ascribed to hispines is dated $\geq 60 \mathrm{Ma}$ and marks the beginning of the hispine/Zingiberales association (Wilf et al., 2000).

An alternative to the co-evolution hypothesis is a time-displaced diversification of the herbivores with radiation of herbivores being based on a pre-existing diversity of host plants (sequential evolution; Jermy (1976)). This scenario is supported by a study proposing a later origin of Chrysomelidae (end of the Cretaceous, 74-79 Ma) than the previous studies suggest and consequently a basal chrysomelid diversification substantially younger than the radiation of their hosts (Gómez-Zurita et al., 2007). A time lag between host radiation and the colonization by herbivores has been shown for several insects (Lopez-Vaamonde et al., 2006; McKenna et al., 2009).

Leaf beetle biology and ecology - State of the art

The qualities that distinguish Chrysomelidae as interesting study organisms are their species richness as well as their herbivorous mode of life. Herbivorous insects are an extremely species-rich feeding guild with important functions in ecosystems and great relevance for ecosystems' diversity (Coley and Barone, 1996; Janzen, 1970; Metcalfe et al., 2014; Price, 2002; Rinker and Lowman, 2004). According to the Janzen-Connell hypothesis host-specific herbivores maintain the high plant diversity of tropical forests (Clark and Clark, 1984; Connell, 1971; Janzen, 1970; Wright, 2002). Herbivorous insects are major consumers of plant material and in turn an important resource as prey or host for predators and parasitoids (Coley and Barone, 1996; Janzen, 1987; Mattson and Addy, 1975; Price, 2002). Especially herbivorous beetles, particularly Chrysomelidae, and their degree of host-specificity have played a fundamental role in species number estimates (Erwin, 1982; Novotny et al., 2002b; Ødegaard, 2000). In many habitats (e.g. tropical rainforest canopy) leaf beetles represent a large part of the herbivorous insect fauna (Andrew and Hughes, 2004; Basset, 2001; Wagner, 2000) and are essential for a true understanding of insect communities or plant-herbivore-interactions (Flowers and Hanson, 2003). An advantage is that they are easily collected and readily noticed even by non-specialists (Flowers and Hanson, 2003). Therefore, beside a multitude of studies on leaf beetle morphology and biology (e.g. Jolivet (1994); Jolivet et al. (1988); Schmitt (1994); Suzuki (1994)), a focus in Chrysomelidae research lies on their plant-herbivoreinteractions (e.g. Adati and Matsuda (1993); Descampe et al. (2008); Flowers and Janzen (1997); García-Robledo et al. (2013a); Hawkeswood (1986); Jolivet (1999); McKenna and Farrell (2005); Meskens et al. (2008)).

Studies on diversity of leaf beetle communities usually address biodiversity of a certain region and often analyse the turnover along environmental gradients (e.g. Andrew and Hughes (2004); Aslan and Ayvaz (2009); Baselga and Novoa (2007); Şen and Gök (2009); Furth (2013); Gavrilović and Ćurčić (2013); Lesage et al. (2008); Linzmeier et al. (2006); Ohsawa and Nagaike (2006); Sánchez-Reyes et al. (2014)).

So far there have been comparatively few studies of leaf beetle diversity in Neotropical ecosystems (Flowers and Hanson (2003); e.g. Charles and Bassett (2005); Farrell and Erwin (1988); Furth (2013); Linzmeier et al. (2006); Linzmeier and Ribeiro-Costa (2009); Sánchez-Reyes et al. (2014)). As for Neotropical Chrysomelidae the poor taxonomic situation impedes species-level identification (see Chapter 1.4) methods postponing species-level identification and using morphospecies or MOTUs instead are standing to reason. Recently, DNA barcoding approaches have been used for studying leaf beetle diversity and ecology (e.g. García-Robledo et al. (2013a,b, 2015); Germain et al. (2013); Jurado-Rivera et al. (2009); Kubisz et al. (2012); Papadopoulou et al. (2013)).

1.3.2 Systematics and taxonomy

Chrysomelidae are considered monophyletic (Duckett et al., 2004; Gómez-Zurita et al., 2007; Reid, 1995), but basal relationships within Chrysomelidae are not yet ultimately agreed on (Gómez-Zurita et al., 2008). For recent phylogenies see e.g. Reid (1995), Farrell (1998), Duckett et al. (2004), Farrell and Sequeira (2004), and Gómez-Zurita et al. (2008). Orsodacnidae (Orsodacninae and Aulacoscelidinae) and Megalopodidae (Megalopodinae, Zeugophorinae and Palophaginae) that have been included in Chrysomelidae by several authors are currently considered to be basal Chrysomeloidea (Duckett et al. (2004); Reid (1995); overview in Gómez-Zurita et al. (2008)). In contrast to former classifications into up to 16 subfamilies (Seeno and Wilcox, 1982), there are currently 12 well delineated taxonomic groups: Bruchinae, Cassidinae (including hispines), Chrysomelinae, Criocerinae, Cryptocephalinae, Donaciinae, Eumolpinae, Galerucinae (including alticines), Lamprosomatinae, Sagrinae, Spilopyrinae, and Synetinae (Bouchard et al., 2011; Gómez-Zurita et al., 2007). Seed beetles (Bruchinae) have traditionally been treated as a separate family (Riley et al., 2002) and are not included in the present study. Protoscelidinae is an extinct subfamily (Bouchard et al., 2011).

The following taxa are relevant for the present study and therefore briefly described:

Galerucinae Latreille, 1802 and Alticinae Spinola, 1844

Galerucinae s.l. (= Galerucinae sensu Reid (1995), or 'Trichostoma') are morphologically diverse. Their monophyly is generally acknowledged and they are typically treated as two groups, Alticinae/Alticini and Galerucinae s.str./Galerucini (Duckett et al. (2004); Lingafelter and Konstantinov (1999); and references therein).

Alticinae (flea beetles; Fig. 1.2A) comprise around 8,000 species (Furth et al., 2003). Their body shape is compactly ovate and convex (Reid and Beatson, 2013). They are easily recognized by their thickened hind femora which contain the metafemoral spring (Furth, 1982b, 1988), an internal structure allowing the beetle to perform huge jumps to escape from predators (Maulik, 1929). It has been widely used as distinguishing character between Alticinae and Galerucinae (Furth, 1988). In contrast, Galerucinae s.str. (Fig. 1.2B) with ~ 6000 species (Ge et al., 2012; Jolivet, 1988) are more loosely elongate and depressed and lack the metafemoral spring (Reid and Beatson, 2013).

Galerucinae usually feed on dicotyledons (Mariau, 2004). They are basically Cucurbitaceae, Leguminosae, or Verbenaceae feeders and adapted to many plant families; host plants from almost 100 families have been recorded (Jolivet, 1988). A very large New World genus that includes several significant agricultural pests is Diabrotica with 300 (s.str.), respectively 600 (s.l.) species (Hammack and French, 2007; Jolivet, 1988). Alticinae have an especially complex food selection (Jolivet, 1988). Most are specialized and well-adapted to their host plant (Jolivet, 1988). It has been observed that Alticinae chew completely different plants at the end of the season (Jolivet, 1988).

Figure 1.2: Alticinae (A), Galerucinae (B). Specimens 2050_Alticinae_sp_123 and 3438_Galerucinae_sp_031.

Relationships between the closely related Galerucinae s.str. and Alticinae are controversial (Duckett et al., 2004): Alticinae have been treated as a separate subfamily or as a tribe (Alticini) within Galerucinae (Furth and Suzuki, 1994; Lingafelter and Konstantinov, 1999; Reid, 1995; Seeno and Wilcox, 1982). The monophyly of either Alticinae and/or Galerucinae (i. Alticinae nested within Galerucinae: Lingafelter and Konstantinov (1999), ii. reciprocal monophyly of the two groups: Gómez-Zurita et al. (2008), or iii. monophyletic Galerucinae within flea beetles: Duckett et al. (2004); Kim et al. (2003); Reid (1995)) has been challenged by Ge et al. $(2011,2012)$ who included several problematic taxa considered 'incertae sedis' and propagated multiple origins of the complex jumping mechanism.

For a better understanding in this study the terms Galerucinae and Alticinae are retained (according e.g. Furth and Suzuki (1994); Jolivet and Petitpierre (1981); Seeno and Wilcox (1982)) keeping in mind that their status as subfamilies of equal rank and also their respective monophyly is in question (e.g. Crowson and Crowson (1996); Lingafelter and Konstantinov (1999); Reid (1995); for an overview see Lingafelter and Konstantinov (1999)).

Cassidinae Gyllenhal, 1813 and Hispinae Gyllenhal, 1813

Cassidinae s.l. (Cassidinae s.str. + Hispinae, or 'Cryptostoma') are noteworthy for their specialized plant associations with monocots and eudicots, diverse morphologies in immatures and adults, and a range of social behaviours from solitary to subsocial (Chaboo and Engel, 2009). They are cosmopolitan but primarily tropical, and most species are found in the Neotropics (Chaboo, 2007). New and Old World fauna show little overlap (Chaboo, 2007). They have a broad variation in host plant selection, from polyphagous to oligophagous or monophagous to plant species (Chaboo, 2007).

Until recently, two groups of Cassidinae s.l. have been treated as two subfamilies by most authors (e.g. Farrell (1998); Seeno and Wilcox (1982); Verma (1996)):

B

Figure 1.3: Cassidinae (A), Hispinae (B). Specimens 3861 _Cassidinae_sp_015 and 4783_Hispinae_sp_016.

Hispinae Gyllenhal s.str. (leaf-mining beetles) and Cassidinae Gyllenhal s.str. (tortoise beetles). A detailed history of the classification of the two groups is given by Borowiec (1995) and Staines (2002) and research on their relationships is reviewed in Chaboo (2007). Morphologically and biologically there is no valid reason for retaining Hispinae and Cassidinae as separate subfamilies; intermediate forms (e.g. Cephaloleiini, Imatidiini) bridge the subfamilies (Borowiec, 1995; Staines, 2002). Currently, Cassidinae is the correct name for the clade Hispinae + Cassidinae with the hispine or hispiform genera being considered as a basal grade of Cassidinae (Borowiec, 1995; Chaboo, 2007; Chaboo and Engel, 2009; Staines, 2002). However, as the two groups reflect two characteristic, complex morphologies and ecologicalbehavioural forms and for a better understanding in this study the terms Hispinae and Cassidinae (meaning Cassidinae s.str.) are used.

There are ca. 3000 species (Jolivet, 1988) of Cassidinae s.str. (tortoise beetles). They are one of the most specialized chrysomelid subfamilies (Jolivet, 1988). They have a characteristic tortoise-like form induced by broadly expanded elytral and pronotal margins that frequently shield the heads (Chaboo and Engel (2009); Fig. 1.3A). They are reluctant flyers and there are brachypterous and wingless cassidine species (Chaboo, 2007). Tortoise beetles show an extremely diverse colouration, including metallic, iridescent, transparent, silver, and golden (Chaboo, 2007). Colour change and colour polymorphism occur frequently (Buzzi, 1988; Chaboo, 2007).

Although Cassidinae feed on 32 plant families, Convolvulaceae and Asteraceae are preferred (Borowiec and Świętojańska, 2014; Chaboo, 2007; Jolivet, 1988). Especially many tropical species feed on Convolvulaceae (Jolivet, 1988). Genera close to Hispinae (e.g. Imatidium) feed on palm trees (Jolivet, 1988).

Cassidinae show an interesting behavioural repertoire, especially concerning reproduction: Courtship behaviour has been described for several species and in some species post-copulatory attendance has been observed (Chaboo, 2007). Mating can last more than 24 hours (Chaboo, 2007). Some cassidine larvae construct a shield
from faecal material and exuviae that is carried over the dorsum and is retained by some pupae (Chaboo, 2007; Chaboo and Engel, 2009). Those shields can be very sophisticated and show a remarkable variety of architectures (Chaboo, 2007). They protect the immature cassidines from predation and desiccation (Chaboo and Engel, 2009). In many cassidines larval gregariousness is common (Chaboo, 2007). For 17 cassidine species maternal care has been observed, a behaviour that is very rare in beetles and insects in general (Chaboo, 2007). Females have been observed sitting on top of the eggs, larvae, and pupae in order to protect them (Buzzi, 1988; Chaboo, 2007). They guard the immatures until the young adults emerge and attack threatening predators such as ants or reduviids (Chaboo, 2007). Females herd their larvae and, in the face of threats, even guide them to new leaves by prodding and pushing them (Chaboo, 2007).

Cassidinae are almost worldwide distributed, although they have a much greater diversity in the tropics, especially in tropical South America (Borowiec and Świętojańska, 2014). According to Blackwelder (1947) there are ~ 2000 Neotropical cassidine species. Ecuador's Cassidinae (s.str.) seem quite well studied compared to the other subfamilies (e.g. Borowiec (1998, 2000a,b); Flowers and Chaboo (2009); Sekerka and Windsor (2012)). A checklist of 200 species of Cassidinae recorded for Ecuador has been provided by Borowiec (1998) who estimated the total number of species living in Ecuador at ca. 250. The only chrysomelid type specimens deposited at the Invertebrate Section of the Museum of Zoology at the Pontifical Catholic University of Ecuador, Quito, are all Cassidinae (Donoso et al., 2009).

The approximately 3000 species of Hispinae (leaf-mining beetles) contain typically spiny or strongly sculptured beetles (Chaboo and Engel (2009); Jolivet (1988); Fig. 1.3B). Their immatures are broadly characterized as leaf-miners, although their biology ranges from leaf-tube scrapers to stem-miners, and even to open-leaf feeders (Chaboo, 2007; Chaboo and Engel, 2009). Most Hispinae feed on Monocotyledons, however others on Dicotyledons, in at least 37 plant families (Jolivet, 1988). Many Hispinae feed on palm trees (Jolivet, 1988). Noteworthy are the Neotropical 'rolledleaf' hispine beetles (or 'hispoid Cassidinae', principally the tribe Cephaloleiini, >380 Neotropical species; Descampe et al. (2008)). They are found in tightly rolled apical leaves of monocots, mostly closely associated with Zingiberales, some with Arecaceae (Descampe et al., 2008; McKenna and Farrell, 2005). The close association of Hispinae with Zingiberales probably exists for $>60 \mathrm{ma}$ (Wilf et al., 2000). A review of the hispine/Zingiberales interaction was published by Staines (2004).

Seeno and Wilcox (1982) recorded 83 genera of hispines from the New World (Staines, 2002). There have been several regional revisions of New World hispines (e.g. Monrós and Viana (1947); Sanderson (1967); Staines (1996)), however none especially for Ecuador.

Eumolpinae Hope, 1840

With more than 7000 species in 500 genera the subfamily Eumolpinae is the third in species diversity after Galerucinae s.l. and Cassidinae s.l. (Chaboo, 2007; Jolivet and Verma, 2008). They are worldwide distributed but basically a tropical group

Figure 1.4: Eumolpinae with shiny, rugose, and hairy elytra (from left to right). Specimens 0312_Eumolpinae_sp_021, 0719_Eumolpinae_sp_043, and 0553_Eumolpinae_sp_042.
where they are especially numerous (Jolivet and Verma, 2008). Their typical body forms are oblong, convex, and globose, but some are quite elongated. Antennae are usually filiform and insertions are not closely approximated. Eumolpinae have elytra with well-defined shoulders and are generally smooth, often shiny with metallic colours. In contrast, some are dull coloured, some rugose, and some have elytra and body densely hairy (Jolivet and Verma (2008); Fig. 1.4).

From a basic oligophagy on Asclepiadaceae, Apocynaceae and Convolvulaceae, Eumolpinae became in many genera polyphagous and feed on many wild and cultivated plants (Jolivet, 1988). Food plants are recorded from 116 plant families (Jolivet, 1988). Eumolpine larvae are root feeders (Jolivet and Verma, 2008). Neotropical eumolpine fauna is mostly constituted by the tribe Eumolpini (Flowers, 1999). Blackwelder (1947) lists 44 species for Ecuador. A new genus and several species have been described for Ecuador by Flowers (2004a,b, 2009a,b, 2004c).

Criocerinae Latreille, 1804

With ~ 1400 species Criocerinae (shining leaf beetles) is a relatively small subfamily (Schmitt, 1988; Vencl et al., 2004). Most species belong to five species-rich genera (Crioceris, Lilioceris, Lema, Oulema, and Neolema) (Matsumura et al., 2014). Criocerinae live in the temperate, subtropical, and tropical zones of all continents (Schmitt, 1988). They are glabrous with a brilliant metallic sheen (Vencl et al., 2004). They are typically narrow, elongate, depressed to cylindrical, with the pronotum medially or basally constricted ('hourglass-shape') and often differently coloured from the rectangular elytra (Cooter and Barclay, 2006; Reid and Beatson, 2013). Head and pronotum are narrower than the elytra (Fig. 1.5).

A characteristic of all Criocerinae is the ability to produce chirping sounds by means of an elytro-abdominal stridulatory apparatus (Schmitt, 1988). They probably use these sounds to deter predators (Schmitt, 1988; Schmitt and Traue,

Figure 1.5: Criocerinae. Specimen 4209_Criocerinae_sp_007.
1990). Detailed information about stridulation of Criocerinae is given in the study by Schmitt and Traue (1990).

Criocerinae are quite well-studied because of their economic interest, feeding on both Mono- (six plant families) and Dicotyledons (12 families) (Jolivet, 1988). The main feeding habit of both adults and larvae is leaf surface grazing (Vencl et al., 2004). For the New World, over 460 species are described (Vencl et al., 2004).

Chrysomelinae Latreille, 1802
Chrysomelinae comprise ca. 3000 species (Daccordi, 1996; Reid and Beatson, 2013). They are generally ventrally flattened and dorsally convex, with ovate body shape (Reid and Beatson (2013); Fig. 1.6). Neotropical chrysomelines comprise beside cassidines some of the largest and most colourful representatives of Chrysomelidae. In Costa Rica they are popularly known as 'confites con patas' (walking candies) (Flowers, 2004c).

Figure 1.6: Chrysomelinae. Specimen 0201_Chrysomelinae_sp_002.

For Chrysomelinae, 47 families of dicotyledonous host plants have been recorded (Jolivet, 1988). Most genera are monophagous or polyphagous on related host plants (Jolivet, 1988). In the New World, Solanaceae is the mostly selected family (Jolivet, 1988). In the Neotropical region chrysomelines are very numerous (Daccordi, 1996). A key for Chrysomelinae genera for Venezuela by Bechyné and Springlová de Bechyné (1965) was adapted for Costa Rica by Flowers (2004c).

Cryptocephalinae Gyllenhal, 1813 and Lamprosomatinae Lacordaire, 1848

Cryptocephalinae and Lamprosomatinae together with Clytrinae and Chlamisinae (often placed within Cryptocephalinae; Bouchard et al. (2011); Reid (1995)) share several morphological characters and are often referred to as 'Camptosomata' (Erber, 1988). They are also called 'case-bearers' because one common feature is a mantle, females cover their eggs with and that is worn as protective case by the larvae (Erber, 1988). As many camptosome species live cryptically or let themselves fall at the least disturbance, relatively little is known about their life-habits, e.g. feeding habits (Erber, 1988).

There are ~ 3900 species of Cryptocephalinae (Reid and Beatson, 2013). Cryptocephalinae have a cylindrical body that is obtusely rounded in front and behind, and almost circular in cross-section (Erber, 1988). The prothorax is in most cases at its base as broad as the elytra and joined to them without any suture and it tapers slightly in front (Erber, 1988). The head is placed closely against the prothorax, without a neck and hypognathous (Erber, 1988). Antennae are relatively short (Erber, 1988). Although colouring varies there are many shining metallic species (Erber (1988); Fig. 1.7A). Some cryptocephaline species feed on the leaves of woody plants, many on herbs, some feed on petals and there are even pollen-feeders (Erber, 1988).

Lamprosomatinae are a small subfamily with ~ 120 species (Reid and Beatson, 2013). The body-outline from Lamprosomatinae tapers in front and behind and is oval, like an egg (Erber, 1988). In side-view they are strongly convex, tapering away posteriorly, and they are ventrally flattened (Chamorro and Konstantinov, 2011; Erber, 1988). They are shiny and usually iridescent (Chamorro and Konstantinov (2011); Fig. 1.7B). Lamprosomatine diet seems to be restricted to herbs (Erber, 1988).

1.4 Chrysomelidae research in Ecuador

Ecuador, situated within the peak of species richness at tropical low latitudes, is considered a megadiverse country. On a comparatively small area it harbours pronounced elevational and wet-dry gradients with a large variety of habitats and high beta-diversity (Brehm et al., 2008a). The Ecuadorian leaf beetle fauna can be expected to be megadiverse, however has hitherto scarcely been studied.

Although entomology has a long history in Ecuador as in South America in

B

Figure 1.7: Cryptocephalinae (A), Lamprosomatinae (B). Specimens 0924_Cryptocephalinae_sp_001 and 1242_Lamprosomatinae_sp_003.
general (Barragan et al., 2009), with respect to the knowledge of its invertebrate fauna it remains like many other tropical countries a white spot on the map (Beck and Kottke, 2008). Whereas the diversity of certain charismatic groups such as plants, birds, and frogs has been the focus of numerous publications, data on the entomological fauna in Ecuador are scarce (Dangles, 2009). The Ecuadorian research in entomology was dominated by taxonomic studies during the past decades.

In general, Neotropical beetle fauna with exception of certain taxa such as Cerambycidae or Scarabaeoidea is considerably understudied and there are no general books or treatises about that region (Costa, 2000). Accordingly, also the available data records for Ecuadorian chrysomelid fauna is very sparse: Blackwelder's 'Checklist of the coleopterous insects of Mexico, Central America, the West-Indies, and South America' (1947) compiled between 1944 and 1957 (complemented by Bechyné (1952)) is still regarded as standard reference for South American beetle diversity and was only complemented by extensions and revisions for certain taxa or countries (e.g. Bechyné (1953): Eumolpinae, Maes and Staines (1991): Chrysomelidae of Nicaragua, Furth and Savini (1996): Alticinae, Borowiec (1998): Cassidinae). Explicitly for Ecuador, Blackwelder lists ~ 450 chrysomelid species (another ~100 listed for tropical or South America; Blackwelder (1947)). This number is certainly far below the true species number. Furth et al. (2003) claim that 'all central American countries certainly have a much higher actual diversity than is recorded in the literature'. This surely applies as well to South America in general and Ecuador in particular. A recent review particularly for Ecuador exists only for Cassidinae (Borowiec, 1998) with 200 recorded and ~ 250 estimated species.

In the Neotropics, a few regions experienced an extensive collecting and research activity. For example, in the 1960s, the entomologists Jan and Bohumila Bechyné who studied Neotropical leaf beetles more extensively than most previous workers collected intensively in Venezuela and described over 90 alticine genera as well as hundreds of species (Furth and Savini, 1996). Mainly due to their work, the collection of the Museo del Instituto de Zoología Agrícola 'Francisco Fernández Yepez', Venezuela, is one of the most important collections of Neotropical Chrysomelidae, especially Alticinae. It harbours more than 1100 alticine species, giving an idea of the
true species richness of the South American countries. Another example of a better study situation compared to most Neotropical countries is Costa Rica that during the last years became a focus area for Neotropical biodiversity research resulting in a lot of publications, a number of them about Chrysomelidae (e.g. Flowers (1991); Flowers and Janzen (1997); Furth et al. (2003); Staines (2011)). In a study about Alticinae in Costa Rica, the species number recorded in literature was more than doubled resulting in a total of ~ 350 known species for the whole country (and maybe a total number of 1000 species appearing realistic; Furth et al. (2003)). However, these examples of well-studied countries are exceptions. A similar high diversity as in those countries should be expected for Ecuador, however, Blackwelder lists only ~ 65 species of alticines (Halticinae) for Ecuador and a recent review is lacking. Most Neotropical countries' leaf beetle diversity remains barely explored.

Although Chrysomelidae are attractive study organisms (see Chapter 1.3), the sheer diversity of the family presents a challenge for studying their diversity in tropical ecosystems. Species-level identification is often impossible. For Neotropical Chrysomelidae, the few existing keys are mostly quite dated: The only key to Neotropical alticine genera by Scherer is from 1962 (Furth et al., 2003; Scherer, 1962); the first revised key for New World genera of Hipines since Weise (1911) was only in 2002 published by Staines. Others are restricted to certain regions (Flowers, 2004c; Staines, 2009), genera (Flowers, 2004a,b; Staines, 2013), or small groups of related genera (Furth, 1992; Konstantinov and Konstantinova, 2011). An exception is the interactive manual 'Cassidinae of the World' (Borowiec and Świętojańska (2014); http://culex.biol.uni.wroc.pl/cassidae/katalog\ internetowy/index.htm) that provides a comprehensive key to cassidine genera worldwide. However, reliable identification keys to genera are still lacking for genera of some of the largest and most ubiquitous subfamilies of Neotropical Chrysomelidae (Flowers and Hanson, 2003). None exists particularly for Ecuadorian leaf beetle fauna.

Whereas most studies about Ecuadorian Chrysomelidae are records or descriptions of individual species or genera (e.g. Borowiec (1998, 2000a,b); Flowers (2009a,b); Sekerka and Windsor (2012); Staines and Zamorano (2012); Świętojańska and Borowiec (2000)) or host records (e.g. Flowers and Chaboo (2009)), there are no studies about the diversity of leaf beetle communities in Ecuador. Also a thorough inventory of mountain forests is missing.

The high discrepancy between recorded and true diversity is also reflected by its collections: The Invertebrate Section of the Museum of Zoology at the Pontifical Catholic University of Ecuador in Quito comprises with almost two million specimens Ecuador's largest collection of native taxa. It harbours 24,215 Chrysomelidae, most of them still awaiting identification. 10.83% of all specimens are determined to species, 13.6% to genus, but 75.56% have no identification at all (Clifford Keil, pers. comm.). There are only nine chrysomelid type specimens deposited, all of them belong to the subfamily of Cassidinae (Donoso et al., 2009). The distribution of type localities (for all invertebrates) showed that collection sites are clustered geographically with most of them found towards the northern region of Ecuador. Sites are mainly located in highly accessible areas near highways and towns (Donoso et al.,
2009). Donoso et al. (2009) advise that 'future fieldwork should include localities in the southern region of Ecuador but also target less accessible areas'.

Concerning the study area of the present study, among insects only certain taxa of Lepidoptera (Bodner et al., 2010; Brehm et al., 2003a, 2005, 2003b; Fiedler et al., 2008; Häuser et al., 2008; Hilt and Fiedler, 2006) and Orthoptera (Braun, 2008) have been studied up to now. The large insect orders of Coleoptera, Hymenoptera and Diptera remain completely unstudied so far (Brehm et al., 2008b). Notably Chrysomelidae are mentioned by Brehm et al. (2008b) to be desirable to be studied in the study area as they have high impact on forest ecosystems. A first attempt of studying beetle diversity in the study area was made by Schmidl (2007-2008, pers. comm.). He confined himself on the bark-living fauna and reported ~ 50 morphospecies of Chrysomelidae.

1.5 Aims and structure of the dissertation

Objectives

This study aims at testing a combined morphological and molecular approach for assessing rapidly the biodiversity of an unknown leaf beetle fauna in a mountain forest in southern Ecuador. The performance of DNA barcodes as substitutes for Linnean taxonomic information is evaluated for identification of species-like units. In detail, the following questions are addressed:

1. How diverse are leaf beetles in the studied Andean mountain forest?

How can barcode and morphospecies data characterize an unknown leaf beetle community? What assertions can be made about species richness, abundance, incidence, and subfamily composition of the community?
2. How do local and regional species richness change with elevation?

Can barcode data analyse patterns of species richness, turnover, and community composition along an elevational gradient? Does DNA barcode data reveal diversity patterns in a comparable way as morphospecies do? Which ecological conclusions can be drawn from DNA barcode data?
3. How congruent are the morphospecies method and the DNA based identifications?
Which discrepancies are there, in which taxa do they occur, and what are their reasons?
4. Which influence do different methods of species delimitation have on species richness estimates?
How congruent are different DNA based species delimitation methods? How relevant is the choice of the species delimitation method?
5. How do different sampling methods perform?

Which sampling methods are advisable in terms of sampled specimens and time efficiency?

Structure of the thesis

The 'Methods' section provides extensive and detailed general information about study area, sampling, and further handling of specimens as well as subsequent laboratory and data analyses. In the individual chapters, specific methodological information relevant for the respective part is given.
Each of the five chapters on leaf beetle biodiversity and ecology and methodological aspects of rapid biodiversity assessment represents a separate study and can be understood by itself. Each follows the standard structure for a scientific publication (introduction, methods, results, discussion, and conclusion) as they are meant to be published as separate publications in scientific journals. Therefore, some content is recurring throughout the thesis.
In the 'General discussion and future prospects' section, conclusions are drawn from the complete study and some future perspectives are outlined.

This thesis was conducted within the framework of the research programme 'ABAEcuador: Acceleration of biodiversity assessment - Development of tools and application in a tropical mountain ecosystem'. The project on Chrysomelidae was funded by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG), grant Wa 530/46-1.

Teamwork

Chapter 4 is prepared as a manuscript for publication in a scientific journal: Thormann, Birthe; Ahrens, Dirk; Marín Armijos, Diego; Wagner, Thomas; Wägele, J. Wolfgang; Peters, Marcell K. Topography effects on elevational alpha-, beta-, and gamma-diversity of Neotropical leaf beetles.
B. Thormann, M.K. Peters, and J.-W. Wägele developed the study. B. Thormann conducted sampling, preparation of specimens, laboratory work, and data compilation. B. Thormann and Th. Wagner conducted morphospecies sorting. B. Thormann and D. Ahrens conducted molecular species delimitation. B. Thormann and M.K. Peters performed the statistical analyses and developed the first version of the manuscript.
The contents of Chapter 6 are supposed to be published as:
Thormann, B.; Ahrens, D.; Marín Armijos, D.; Peters, M.K.; Wagner, Th.; Wägele, J.-W. Exploring the leaf beetle fauna (Coleoptera: Chrysomelidae) of an Ecuadorian mountain forest with DNA barcoding.
B. Thormann, D. Ahrens, M.K. Peters, and J.-W. Wägele developed the study. B. Thormann conducted sampling, preparation of specimens, laboratory work, and data compilation. B. Thormann and Th. Wagner conducted morphospecies sorting. B. Thormann and D. Ahrens conducted molecular species delimitation. B. Thormann and M.K. Peters performed the statistical analyses. All co-authors provided ideas and suggestions for the text.

The study was carried out in close cooperation with the Universidad Técnica Particular de Loja (UTPL), Ecuador.

Chapter 2

Methods

2.1 Study area

The study area is situated within the Reserva Biológica San Francisco (RBSF) and the adjacent Podocarpus National Park (NP) in southern Ecuador. The RBSF is a small private nature reserve $\left(\sim 11.2 \mathrm{~km}^{2}\right)$ owned by the foundation Nature and Culture International, NCI. It is located between the province capitals Loja and Zamora and harbours the research station 'Estación Científica San Francisco' (ECSF; $3^{\circ} 58^{\prime} 17.19^{\prime} \mathrm{S}$, $79^{\circ} 4^{\prime} 44.06^{\prime} \mathrm{W}$; Fig. 2.1). Podocarpus NP was created in 1982, comprises $\sim 1463 \mathrm{~km}^{2}$, and is part of the Podocarpus - El Condor Biosphere Reserve. Politically, the study area belongs to the provinces of Loja and Zamora-Chinchipe. The study sites are situated in three different areas: (i) ECSF area next to the research station, belonging to RBSF, (ii) Bombuscaro area in the Bombuscaro sector of Podocarpus NP, close to Zamora, and (iii) Cajanuma area in the Cajanuma sector of Podocarpus NP, close to Loja (Fig. 2.1). In Bombuscaro and Cajanuma are the two main entrances to Podocarpus NP.

Figure 2.1: Map of Podocarpus National Park, Ecuador, with location of study sites. Bombuscaro (1000 m), ECSF (=San Francisco; 2000 m), Cajanuma (3000 m) (Homeier et al., 2012).

The region is located in the Cordillera Real or Eastern Cordillera of the Andes and is part of the Huancabamba depression. In contrast to central and north Ecuador with impressive volcanoes of up to 6000 m a.s.l. and above, in the Huan-
cabamba depression there are no volcanoes, the crest of the Cordillera Real does not exceed $2800-3400 \mathrm{~m}$ a.s.l., and the treeline is comparatively low (Beck et al., 2008b; Richter et al., 2009, 2008). Eastern and Western Cordillera, the two main cordilleras forming the Ecuadorian Andes, are interconnected by transverse mountain bridges forming ten interandean basins. The complex topography creates a landscape with extreme climatic differences (Dangles et al., 2009).

The research area has a tropical humid climate with annual mean precipitation of 2230 mm in Bombuscaro, 1950 mm in ECSF, and up to 4500 mm in Cajanuma (Moser et al., 2007). Precipitation is high throughout the year, however with the main rainy season from April to August and a less humid period from September to December (Bendix et al., 2006, 2008). Annual mean air temperature decreases from $19.4^{\circ} \mathrm{C}$ in Bombuscaro and $15.7^{\circ} \mathrm{C}$ at ECSF to $9.4^{\circ} \mathrm{C}$ in Cajanuma (Moser et al. (2007); Tab. 2.1).

Table 2.1: Temperature and precipitation at the three study sites (Moser et al., 2007).

	Bombuscaro	ECSF	Cajanuma
Annual mean air temperature $\left({ }^{\circ} \mathrm{C}\right)$	19.4	15.7	9.4
Min.	11.5	7.9	3.1
Max.	30.2	29.4	18.8
Relative air humidity (\%)	88,7	90,8	93,5
Min.	15.5	15.7	28.6
Max.	100	100	100
Soil moisture (vol \%)	29.7	35.4	49.1
Min.	15.3	27.4	39.5
Max.	38.5	44.7	59.5
Annual mean precipitation $\left(\mathrm{mm} \mathrm{y}^{-1}\right)$	2230	1950	4500

The study area is a rugged mountainous area with valleys and differently exposed slopes mostly covered with evergreen (pre-)montane rainforests. An overview of vegetation types of the region can be found in Homeier et al. (2008). Its steep elevational gradients and great topographic heterogeneity create a broad matrix of environmental conditions and a mosaic of different habitats in close proximity to each other leading to a high diversity of animals and plants (Homeier et al., 2010, 2008). This is reinforced by the geographic position of the area: Its location between the humid eastern Andean slope and the dry Inter-Andean region on the one hand, and between the Central and Northern Andes on the other hand allows an intermingling of the respective characteristic species pools (Homeier et al., 2010).

The region is part of a biodiversity hotspot, the Tropical Andes (Myers et al., 2000). It is ranked as a top hotspot of diversity of vertebrates and vascular plants (Brummitt and Lughadha, 2003). There exist only little information about its insect fauna but an exceptionally high level of diversity and endemism is certain (Larsen et al., 2011). The outstandingly high plant diversity has extremely high proportions of endemism (Barthlott et al., 2005; Richter et al., 2009; Weigend, 2002; Young
and Reynel, 1997). In particular the flora of Podocarpus NP is known for its high endemism (Homeier et al., 2008). The tree diversity is higher than in comparable montane forests in northern Ecuador, and also for vascular epiphytes, bryophytes, and orchids extremely high species numbers have been recorded (see references in Brehm et al. (2008b)).

Knowledge of the region's fauna is still very incomplete. Podocarpus NP is one of Ecuador's most important bird areas with more than 550 species recorded (Rahbek et al., 1995). Among the most charismatic mammals of the area are the Spectacled Bear (Tremarctos ornatus Cuvier) and the Mountain Tapir (Tapirus pinchaque Roulin). Podocarpus NP is one of the 137 most irreplaceable protected areas of the world (Le Saout et al., 2013).

For the RBSF there exist inventories of birds, bats, and parts of Lepidoptera, Orthoptera, and Arachnida showing high diversity of these taxa (Brehm et al., 2008b). Notably the diversity of geometrid moths (Lepidoptera: Geometridae) has been intensively studied by G. Brehm and colleagues. Besides analysing e.g. the diversity along elevational or successional gradients, their recorded species numbers are the highest ever counted in a single study on such a small spatial scale (e.g. Brehm (2002); Brehm et al. (2003a, 2005, 2003b); Hilt et al. (2006)). In contrast, amphibians, molluscs, and the vast majority of arthropods, including Coleoptera, Hymenoptera, and Diptera, have not been studied at all (Brehm et al., 2008b).

The manifold habitats of the region with their outstanding biodiversity are threatened by deforestation. Ecuador's dense population (55 inhabitants $/ \mathrm{km}^{2}$) puts strong pressure on natural ecosystems (Dangles et al., 2009). Ecuador suffers the highest deforestation rate (-1.9% per year) in South America (FAO, 2010). The main reason is the conversion of forest into agropastoral land (Mosandl et al., 2008).

2.2 Sampling methods and sampling design

Sampling was conducted in November and December 2010 and from 08.05.2011 to 26.04.2012. Mainly three different methods were used to collect leaf beetles from the lower to medium understorey vegetation: (i) sweep netting, (ii) beating of shrubs and smaller trees using a beating-tray, and (iii) hand-collection (picking up beetles individually from the vegetation). Those methods are widely used and promising for sampling of leaf beetles (Thomas Wagner, pers. comm.). All kind of vegetation within reach was sampled (up to ca. 2.5 m). In addition, Malaise- and flight interception-, as well as light-trapping was used. Pitfall traps have been tested but only in individual cases. The sampling methods are described in more detail in Chapter 7.

Sampling was conducted in three different areas within Podocarpus NP and RBSF (see Chapter 2.1): (i) Bombuscaro (' 1000 m '; elevation 1020-1075 m a.s.l.; premontane rainforest), (ii) ECSF (in the vicinity of the Estación Científica San Francisco; '2000 m'; elevation 1913-2089 m a.s.l.; lower montane rainforest), and (iii) Cajanuma (' 3000 m '; elevation 2805-2891 m a.s.l.; upper montane rainforest or

Figure 2.2: Contour map of the study area. Contour lines within the study area and location of the three sampling areas Bombuscaro, ECSF (San Francisco), and Cajanuma (Jantz et al., 2014).
cloud forest) (Classification of vegetation: Homeier et al. (2008); Fig. 2.2). Linear distance between each of the three sampling areas is $\sim 20 \mathrm{~km}$.

To analyse biodiversity and community patterns and make comparisons along the altitudinal gradient, most of the sampling was conducted in a standardized way on defined study sites: The study sites are the so called Matrix-Plots which have been established in 2007 by C. Leuschner and E. Veldkamp and colleagues (University Göttingen). They are $20 \times 20 \mathrm{~m}$ squares situated within homogeneous mature forest representative for the elevation in question and without visible recent natural or human disturbance (Homeier et al., 2010). At each elevational area, 12 plots were studied, resulting in a total of 36 plots. At each elevational level, six plots are situated in the valley, near creeks, the so-called 'Lower slope plots' (L-Plots), and six near ridge crests ('Upper slope plots', U-Plots).

The two slope positions (U and L) correspond to two habitat types that differ in several environmental parameters and harbour two distinct forest types. Compared to ridge habitats, valley habitats have a higher productivity, are more nutrient-rich, have a minor organic layer thickness and a lower C:N ratio. The sites in valleys are vegetated with a forest which differs in species composition, has a smaller canopy openness, consists of higher trees, has a higher biomass and harbours a higher diversity of tree species (Homeier et al. (2010); Werner and Homeier (2015); Homeier pers. comm.). Figure 2.3 shows a typical ridge and a typical valley forest. Further information about the location and coordinates of the plots are given in Appendix Tab. B.1.

The sampling on the plots followed a standardized procedure carried out by a team of two persons: Sweep netting alongside two edges of the plot for 30 min by one person; simultaneous beating alongside the other two edges of the plot for 30

Figure 2.3: Typical ridge forest (left) and valley forest (right) in the ECSF area. Photos courtesy of F. Werner.
min by the other person; subsequent hand-collection within the plot for 30 min (by both persons simultaneously for 15 min). The standardized sampling on the plots was complemented with other sampling methods (see above) and additional handsampling. A sample is defined as the total of leaf beetles either caught by 30 min sweep netting, beating, or hand-collection on a plot (standardized samples), or by hand-collection during one sampling day (non-standardized hand-collection), or the content of a Malaise-, light-, flight interception- or pitfall trap when emptied.

Being killed and collected in 70% ethanol, beetles were subsequently transferred into 96% ethanol and stored at $4-20^{\circ} \mathrm{C}$ to ensure optimal preservation of DNA.

2.3 Further handling of the specimens

For each sample, Chrysomelidae were sorted into preliminary morphospecies. Usually one specimen of each morphospecies of each sample was selected and used for the subsequent morphological and molecular analysis. In single cases up to three specimens have been analysed (the remaining individuals of a preliminary morphospecies are termed duplicate specimens hereafter and have been included in some analyses; see below, paragraph 'Morphospecies sorting').

Each selected individual was used for both, morphological classification and molecular analyses. For DNA extraction, one to three legs of the beetle were dissected, depending on its size. The specimen was then dry mounted and labeled to allow subsequent morphological investigation. Each sequence remains linked to its voucher specimen and all connected sampling information. Voucher specimens will be deposited in the collections of the Zoological Research Museum Alexander Koenig (ZFMK), Bonn, and the Universidad Técnica Particular de Loja (UTPL), Ecuador (Specimen List in the Appendix Tab. C.1). Photos of a number of the specimens will be available through the ZFMK collection database and all DNA samples are stored in the Biobank of the ZFMK. The sequences from Chapters 4 and 6 are available
from GenBank (accession numbers KJ677272-KJ677945/KR424781-KR425417; see also Appendix Tab. C.1), the rest will also be submitted.

2.4 Laboratory protocols

The DNA barcode marker COI

The cytochrome c oxidase I (COI) gene is one of 13 protein-coding genes of the mitochondrial genome. The COI complex consists of several subunits and plays an important role in the respiratory chain (Steinke and Brede, 2006). A 658 base pair (bp) long fragment at the 5^{\prime} half of the COI gene has established as the standard marker sequence for DNA barcoding of animals. Due to highly conserved sequence positions, this fragment can be amplified with so-called 'universal primers' in a wide variety of animal taxa (Folmer et al., 1994; Hebert et al., 2003a). In this study, the term 'COI' refers to this 658 bp long fragment of the cytochrome c oxidase I gene.

Advantages of mitochondrial genes are the lack of introns and the limited exposure to recombination as a result of the maternal mode of inheritance (Hebert et al., 2003a; Steinke and Brede, 2006). In contrast to the rRNA coding genes, the protein-coding genes usually do not contain indels that complicate analyses. The COI marker gene has a greater range of phylogenetic signal than other mitochondrial genes and is supposed to evolve rapidly enough to allow discrimination of not only closely allied species but also phylogeographic groups within a single species (Cox and Hebert, 2001; Hebert et al., 2003a,b; Wares and Cunningham, 2001).

Universal primers are necessary for identifying specimens that are not known a priori. Highly conserved sequence positions allow amplification of the COI marker with the universal primers LCO1490 and HCO2198 in a wide variety of animal taxa (Folmer et al., 1994; Hebert et al., 2003a; Zhang and Hewitt, 1997). However, often specific primers have been used for certain taxa and the use of more than one pair of primers can be necessary to derive sequences from all individuals of a taxonomic group (e.g. Hebert et al. (2004); Smith et al. (2005); Ward et al. (2005)). For degenerated DNA mini-barcodes of 100 to 250 bp have been developed (Meusnier et al., 2008).

There are several general problems of mitochondrial markers that must be considered:
Nuclear mitochondrial pseudogenes (numts): Numts are non-functional copies of mitochondrial DNA (mtDNA) sequences that have been translocated into the nuclear genome (Bensasson et al., 2001; Lopez et al., 1994). They can be amplified with conserved universal primers aimed at mitochondrial copies and can complicate or confound analyses in various taxa (Bensasson et al., 2001; Buhay, 2009; Richly and Leister, 2004; Song et al., 2008).
Wolbachia infections: DNA barcoding studies usually assume a lower sequence variation within species than between species and a monophyly of mitochondrial DNA within species. Infections with maternally inherited symbionts can have direct influence on reducing the diversity of mtDNA and lead to identical mtDNA sequences
among different species and so disrupt this pattern and confound DNA barcode data (Hurst and Jiggins, 2005). Especially to mention is Wolbachia, an intracellular bacterium that is widely spread among insects (Hurst and Jiggins, 2005; Werren and Windsor, 2000; Werren et al., 1995). Detailed information about the impact of Wolbachia on DNA barcoding is given by Smith et al. (2012). Wolbachia infections have also been reported for Chrysomelidae and there are propositions for Wolbachia-mediated pest control and -management (Clark et al., 2001; Keller et al., 2004; Kondo et al., 2011; Roehrdanz et al., 2006; Werren and Windsor, 2000; Werren et al., 1995).
Mitochondrial heteroplasmy: The mixture of more than one type of mitochondrial genome within a single individual, and therefore the coamplification of different heteroplasmic copies of mtDNA, can confound species numbers and lead to artificial clades (Hebert et al., 2004; Hulcr et al., 2007; Rubinoff et al., 2006).
Other problems that are linked with single-gene approaches and can complicate DNA barcoding are introgression and hybridization as well as incomplete lineage sorting (Chase et al., 2005; Funk and Omland, 2003; Meyer and Paulay, 2005; Rosenberg and Tao, 2008).

DNA-extraction, amplification and sequencing

Total genomic DNA was extracted from one to three legs of each specimen, using the Qiagen DNeasy ${ }^{\circledR}$ BloodTissue Kit or Qiagen Biosprint 96BS following the manufacturers ${ }^{\text {' potocol. COI (} 658 \mathrm{bp} \text {) was amplified with the primers LCO1490 }}$ and HCO2198, or with LCO and Nancy (for primer information see Tab. 2.2) using the Qiagen ${ }^{\circledR}$ Multiplex PCR Kit. Amplification reactions were carried out in a 20 $\mu \mathrm{l}$ volume containing $10 \mu \mathrm{l}$ QIAGEN Multiplex PCR Mastermix, $2 \mu \mathrm{l}$ Q-Solution, $1.6 \mu \mathrm{l}$ of each primer (both $10 \mathrm{pmol} / \mu \mathrm{l}$), and $2.5 \mu \mathrm{l}$ DNA template, and filled up to $20 \mu \mathrm{l}$ with sterile $\mathrm{H}_{2} \mathrm{O}$. The PCR temperature profile consisted of an initial denaturation at $95^{\circ} \mathrm{C}(15 \mathrm{~min})$, followed by 15 cycles at $94^{\circ} \mathrm{C}(35 \mathrm{~s}$, denaturation), $55^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}\left(90 \mathrm{~s}\right.$, annealing temperature decreasing with every cycle about $1^{\circ} \mathrm{C}$; Touch down-PCR), $72^{\circ} \mathrm{C}\left(90 \mathrm{~s}\right.$, extension), 25 cycles at $50^{\circ} \mathrm{C}$ annealing temperature, and a final extension at $72^{\circ} \mathrm{C}(10 \mathrm{~min})$. Products were checked by electrophoresis on a 1.5% agarose gel containing GelRed ${ }^{T M}$ (Biotium Inc.). Successfully amplified DNA fragments were purified using Illustra ${ }^{T M}$ ExoStar (GE Healthcare) following the manufacturers' protocol. PCR products were sequenced in both directions by Macrogen Europe (Amsterdam, Netherlands; http://www.macrogen.com) using the same primers.

Table 2.2: Primer information.

Name	Sequence	Direction	Reference
LCO1490	5'- GGT CAA CAA ATC ATA AAG ATA TTG G -3',	forward	Folmer et al. (1994)
HCO 2198	5'- TAA ACT TCA GGG TGA CCA AAA AAT CA -3'	reverse	Folmer et al. (1994)
Nancy (C1-N-2191)	5'- CCC GGT AAA ATT AAA ATA TAA ACT TC -3'	reverse	Simon et al. (1994)

2.5 Analyses

All sequences were assembled and edited with Geneious version 5.4.4-version 7.1.5 (Biomatters Ltd.; http://www.geneious.com/). Detailed information about alignment of sequences and reconstruction of trees as well as programs used are given in the respective chapters. Statistical analyses were performed in R version 2.15.1version 3.1.1. Detailed information is provided in the respective chapters. Data plottings were created in R, too, or with Microsoft Office Excel 2003-2010.

Species delimitation

For biodiversity analyses or ecological studies based on invertebrate data, species richness and species turnover are important measures (Oliver and Beattie, 1996). However, the aim of this study is the evaluation of rapid methods for the assessment of an unknown diversity of leaf beetles without existing species information. As a surrogate for species, morphological and molecular working units that are fast to apply are used. They are supposed to be proxies for species and therefore be at species level, but they do not have to correspond exactly to species. It is not the aim to infer true species limits as it is e.g. the aim of integrative taxonomy.

Morphospecies sorting

As the aim of this study is the evaluation of rapid methods for biodiversity assessment, a thorough taxonomic analysis was relinquished and instead a parataxonomic morphospecies approach was used as it is common in tropical arthropod biodiversity studies. The dry mounted voucher specimens were sorted into morphospecies that were revised and verified by Dr. Thomas Wagner who is an experienced taxonomist for Chrysomelidae with afrotropical Galerucinae being his focus of expertise (see e.g. Wagner (2004, 2007a,b); Wagner and Kurtscheid (2005)). Specimens were sorted considering only external characters, without the use of dissected parts and without identification literature. Characters for morphospecies delimitation are shape of head, pronotum and total body, surface structures, and hairs or spines. Body size or colours may be used carefully considering that they may vary e.g. due to recent ecdysis. More information about morphospecies sorting and the concept of parataxonomy is given in Chapter 5. Morphospecies received a subfamily name and a number. It is to note that Hispinae and Cassidinae (meaning Cassidinae s.str.) are treated as separate subfamilies although they both belong to the subgroup Cassidinae (s.l.). The same applies to Alticinae and Galerucinae: For a better understanding the traditional view of two distinct subfamilies is retained although their status as subfamilies of equal rank and also their respective monophyly is in question. For information about the relations between Cassidinae and Hispinae as well as Alticinae and Galerucinae see Chapters 1.3 and 3.

For certain analyses of general diversity and comparison of sampling methods (Chapters 3 and 7) the remaining individuals of the preliminary morphospecies (duplicate specimens, see above '2.3 Further handling of the specimens') that have not been dry mounted and sequenced have been used, too (data sets 2a and 3a). They
have been assigned to the same morphospecies as the dry mounted and sequenced voucher specimen. It is to note that their classification to morphospecies is admittedly more superficial, but as the sorting of specimens of a single sample into preliminary morphospecies is quite reliable due to the small number of individuals and species per sample, it is likely that similar specimens of a sample were correctly classified as the same morphospecies. Furthermore, usually only one individual per morphospecies was found in one sample ($\sim 80 \%$), in 12% there were two individuals and only in $\sim 8 \%$ more than two (only in ten cases ten or more individuals of the same morphospecies were found in one sample). So the number of specimens affected is quite low and the error rate can be considered low (see also Chapter 7.3).

Molecular species delimitation

Four different molecular methods for species delimitation have been used:
Statistical parsimony analysis (Templeton, 2001; Templeton et al., 1992) as implemented in TCS v.1.21 (Clement et al., 2000) (95% connection limit) was used to group sequences into separate haplotype networks. The term network is used for all entities delimited by the program, also if they are no true networks or consist of only one sequence.
Distance-based clustering was based on the results obtained by SpeciesIdentifier v.1.7.7-dev3 (Meier et al., 2006) from the TaxonDNA package (http://taxondna. sourceforge.net/). The program generates clusters of sequences based on pairwise uncorrected distances at user-defined thresholds. All individuals that are connected directly to each other by distances below this threshold are grouped into a cluster (Meier et al., 2006).
Generalized mixed Yule-coalescent (GMYC) modelling (Monaghan et al., 2009; Pons et al., 2006) as implemented in the SPLITS package (https://www.r-forge.r-project.org /projects/splits/) for the R environment (R Development Core Team, 2009) was used to estimate species boundaries directly from the phylogenetic tree (Monaghan et al., 2009; Pons et al., 2006) produced with COI data. This procedure exploits the differences in the rate of lineage branching at the level of species and populations, recognizable as a sudden increase of apparent diversification rate when ultrametric node height (distance to tips) is plotted against the log number of nodes in a lineage-through-time plot (Nee et al., 1992).
Poisson tree processes (PTP) modelling was used as implemented on the PTP web server (http://species.h-its.org/ptp/) (Zhang et al., 2013). This method is similar to GMYC modelling but uses directly the number of substitutions (instead of the time) to identify branching rate transition points and therefore avoids the potentially error-prone process of making the tree ultrametric (Zhang et al., 2013).

The results of the different molecular species delimitation methods (networks, distance-, GMYC-, and PTP-clusters) are species-like units and often identical with species discerned by taxonomists. In this study they are summed up in the term molecular operational taxonomic units (MOTUs). The molecular species delimitation methods are described more detailed in Chapter 6.

Haplotype diversity

Additionally, for the analyses in Chapters 4 and 6 haplotype diversity was inferred as a further independent measure for molecular diversity (Papadopoulou et al., 2011).

Data sets

Due to capacity restrictions not all collected specimens could be analysed, so a selection had to be made. Generally, only one (in some cases two or three) specimen of each preliminary morphospecies per sample was processed, i.e. assigned to a morphospecies and sequenced. For the different analyses, different data sets of the totality of processed specimens have been used. For some analyses also the duplicate specimens were included, for others only those specimens for that a DNA barcode could be obtained were used (Tab. 2.3):
Data set 1 (data set of total analysed specimens): Consists of all specimens that have been processed (sorted into morphospecies and sequenced; 1775 specimens). It comprises data set 2 and several additional specimens of specific interest that were processed as well. All specimens have been assigned to a morphospecies and those with a barcode (data set 1b; 1475 specimens) to a haplotype network, too. Data set 1 was used for counting the total number of found morphospecies (Chapter 3) and for comparison of the sampling methods (Chapter 7). Data set 1 b was used for the comparison of morphological and molecular species delimitation approaches (Chapter 5).
Data set 2 (complete data set): Comprises specimens of 199 standardized plot samples (consisting of 199 sweep net, 199 beating, and 199 standardized handcollection subsamples; 186 of the subsamples contained no chrysomelid specimen) and additional 65 non-standardized samples (hand-collection, light-, Malaise-, flight interception-, and pitfall-traps). All these samples have been analysed completely: From each sample, usually one (sometimes up to three) specimen per morphospecies has been processed. The data set 2 comprises all those processed individuals (1583 specimens). For some analyses, also the not processed specimens from these samples (duplicate specimens per morphospecies per sample) have been included (data set 2a; 2227 specimens), for others only those specimens with a barcode (data set $2 b$; 1334 specimens). Data sets $2,2 \mathrm{a}$, and 2 b were used for general diversity analyses (Chapter 3), data set 2a also for sampling method analyses (Chapter 7).
Data set 3 (plot data set): The data set is a subset of the complete data set. It is based only on the 199 standardized plot samples (consisting of 199 sweep net, 199 beating, and 199 standardized hand-collection subsamples). One (in exceptions up to three) specimen of each morphospecies of each subsample was processed (1200 specimens). It was used for comparison of subfamily composition between the different elevations (Chapter 3). For sampling method analyses (Chapter 7) also the not processed duplicate specimens per morphospecies per sample were included (data set $3 a ; 1578$ specimens). The biodiversity analyses along the gradient in Chapter 4 were based on a data set with only those specimens for that a barcode could be obtained (data set $3 b ; 995$ specimens).
Data set 4 (preliminary data set): The data set was used for the comparison of
the different molecular species delimitation methods (Chapter 6). It contains 674 specimens that were sampled in November and December 2010 and from May 2011 until 11.08 .2011 . It is a preliminary data set containing all those specimens that were available at mid of August 2011 for that a barcode could be obtained until June 2012. Several specimens from that sampling time period have been chosen only later to be analysed and for some specimens a barcode could be obtained afterwards. They are not included in this data set. The data set includes four sequences that have been later on excluded from further analyses as they were in retrospect considered to be doubtful or probably contaminated.
Tab. D. 1 in the Appendix lists for each specimen the data sets it was used for.
Table 2.3: Overview of the different data sets.

Name	Content	\# Specimens	
Data set 1	data set of total analysed specimens	all processed specimens (data set 2 + several additional specimens of specific interest) all specimens of data set 1 with a barcode specimens from 199 plot samples and 65 additional samples	1775
Data set 1b Data set 2	complete data set	all specimens of data set 2 plus duplicate specimens	1475
Data set 2a		all specimens of data set 2 with a barcode	1583

General patterns of leaf beetle diversity

3.1 Introduction

Despite an increasing effort in discovering Earth's biodiversity (Dirzo and Raven, 2003; Novotny and Miller, 2014) it is not yet ultimately known how many species of organisms there are. Estimates range from 3.6 to 100 million species, most probable the species number is an order-of-magnitude of ten million (Chapman, 2009; May, 2010; Mora et al., 2011; Wilson, 2003). Although it is clear that only a small fragment of species has been formally identified and named, there is still uncertainty about the exact numbers (1.4-2.2 million) (Chapman, 2009; Grove and Stork, 2000; Mora et al., 2011; Wilson, 2003).

The largest fraction of all species is made up by the tremendous but largely unexplored fauna of arthropods, predominantly insects, with ~ 1.1 million named distinct species (Chapman, 2009). The majority of them live in the most speciesrich tropical ecosystems, especially the rainforests, where they contribute a large part of diversity in numbers of species as well as individuals (Corlett and Primack, 2011; Novotny et al., 2006). Therefore, in biodiversity research and global species richness estimates tropical arthropods, and especially tropical beetles, play a key role (Grove and Stork, 2000; Hamilton et al., 2010; May, 2010). Beetles are both functionally diverse and the most species-rich animal order, making up about onequarter of all species on Earth (Hunt et al., 2007; Ødegaard, 2000). Since Erwin's (1982) spectacular estimation based on the number of beetle species associated with an individual tropical rainforest tree species, numerous studies led to widely varying estimates of global insect species numbers (Pimm et al., 1995; Stork, 1988, 1993). Those between four and six million arthropod species seem the most probable (Basset et al., 2012; Hamilton et al., 2010, 2013; Novotny et al., 2002b). Global and regional insect diversity estimates have often been plant-based estimates, i.e. the number of plant species is multiplied by the number of insect species that are effectively specialized to them (Erwin, 1982; Novotny and Miller, 2014). Therefore, especially herbivorous beetles, including Chrysomelidae, and their degree of hostspecificity have played a fundamental role in species number estimates (Erwin, 1982; Ødegaard, 2000). Herbivorous insects are an extremely species-rich feeding guild and play essential functional roles in ecosystems (Coley and Barone (1996); Janzen (1970, 1987); Mattson and Addy (1975); Price (2002); see also Chapter 1.3).

Whereas research has focused mainly on lowland rainforests, tropical mountain
forests have received comparatively little attention (Beck et al., 2008a). And yet they are very exceptional habitats with an extraordinary flora and fauna that is extremely diverse, even more diverse than the tropical lowland rainforests (Beck and Kottke, 2008). The study area in the tropical Andes of southern Ecuador belongs to a biodiversity hotspot. Studies on e.g. geometrid moths, birds, vascular epiphytes, bryophytes, or orchids, revealed high species numbers for the respective groups (Brehm et al., 2008b). For beetles as for most other insect taxa there is still a gap and explicitly studies on Chrysomelidae are missing (Brehm et al., 2008b). For more information about biodiversity research in the study area see Chapters 1.4 and 2.1.

Data that can be adduced for comparison are scarce: The state of knowledge of leaf beetle diversity in Ecuador and in the Neotropics in general is poor (more detailed information about research on Neotropical Chrysomelidae is given in Chapter 1.4). Inventories or biodiversity studies on Neotropical leaf beetles are quite rare and often focus on single taxa (e.g. Flowers and Hanson (2003); Furth et al. (2003); Linzmeier and Ribeiro-Costa (2008, 2012, 2013); Staines (2011)). Especially their diversity in montane ecosystems has scarcely been studied (Furth, 2013; SánchezReyes et al., 2014).

This study is a first attempt to assess the leaf beetle diversity of the herbaceous and shrubby understorey vegetation in the mountain forest of the Reserva Biológica San Francisco (RBSF) and Podocarpus National Park in southern Ecuador. Although it does provide neither a complete inventory nor a taxonomic checklist, it can serve as basis for future research on chrysomelid diversity.

3.2 Methods

All leaf beetles were sampled between November 2010 and June 2012 in parts of Podocarpus NP and RBSF, Ecuador (detailed information about the study area is given in Chapter 2.1). They were mainly collected by sweep netting, beating, and hand-collection of the lower vegetation. Additionally, light- and Malaise-traps have been used (detailed information about sampling methods and design is given in Chapters 2.2 and 7).

Due to capacity restrictions, not all collected specimens could be analysed but a selection had to be made: Usually the specimens of one sample were sorted into preliminary morphospecies and of each morphospecies per sample only one specimen (in some cases up to three) was selected for sequencing and final morphospecies assignment. However, for some analyses also the not selected specimens (duplicate specimens) were included (data set 2a). This procedure is described more detailed in Chapters 2.3 and 2.5. Laboratory analyses are described in Chapter 2.4, for information on morphospecies sorting please refer to Chapters 2.5 and 5.

For different analyses different subsets of specimens have been used; these are described detailed in Chapter 2.5 and summarized in Appendix Tab. D.1. The total number of morphospecies was counted for all processed specimens (data sets 1, 1b). For all obtained barcode sequences (1475 specimens, data set 1b), a statistical
parsimony analysis as implemented in TCS v.1.21 (95\% connection limit) was used to group sequences into separate haplotype networks (more detailed information about statistical parsimony analysis is given in Chapters 2.5 and 6). For the further biodiversity analyses the data sets 2 , 2 a , and 2 b were used. For comparisons between the elevational levels the plot data set (data sets 3, 3b) was used. Individuals of this data set with a barcode were grouped into PTP-clusters (Poisson tree processes (PTP) modelling is explained in Chapters 2.5 and 6). Elevational levels were also compared on the basis of haplotypes. The term MOTU (molecular operational taxonomic unit) in this chapter refers to the haplotype networks and PTP-clusters.

Species accumulation curves were calculated with R version 2.15 .1 using the package VEGAN 2.0-10 (function specaccum). They show the increase in number of found species with growing number of sampled individuals or analysed samples. They can be used to visualize the completeness of the sampling. Species richness estimates were carried out with R and the VEGAN package using the function specpool. The function estimates the extrapolated species richness in a species pool. It is based on incidences in sample sites, and gives a single estimate for a collection of sample sites. In a collection of sample plots, many species will remain undetected. The function specpool uses some popular ways of estimating the number of the unseen species and adding them to the observed species richness: The variants of extrapolated richness in specpool are chao, first and second order jackknife, and bootstrap (Oksanen et al., 2013). These are widely used non-parametric estimators that consider information on the rare species in an assemblage to estimate the minimum number of species in the assemblage (Gotelli and Colwell, 2011). The methods have found to perform well in several comparative studies on species richness estimation (e.g. Colwell and Coddington (1994); Walther and Moore (2005); Walther and Morand (1998)). As different estimators are sensitive to the properties of the assemblage and sampling design, a set of different estimators was used to allow a range of estimates (Samways et al., 2010).

Morphospecies incidence (number of samples in which the morphospecies was found) and abundance (number of individuals per morphospecies collected) were divided into five categories: 1) uniques (morphospecies found in only one sample) respectively singletons (morphospecies of which only one individual occurred in the data set), 2) duplicates (single morphospecies found in two samples) respectively doubletons (single morphospecies of which two individuals were found in all samples), 3) rare morphospecies (found in 3-10 samples, respectively represented by 3-10 individuals), 4) common morphospecies (11-20 samples/individuals), and 5) very common morphospecies (>20 samples/individuals).

Data plottings were created in R 3.3.1 (using the packages vegan, reshape2, gdata, and MuMIn) or with Microsoft Office Excel 2003. For Figure 3.6, a NJTree (Saitou and Nei, 1987) based on a MUSCLE alignment (Edgar, 2004) was constructed for representatives of each network of the plot data set 3b (370 sequences). For a better illustration branch lengths were made ultrametric with PATHd8 software (Britton et al., 2007) using relative ages of nodes and setting the root to an arbitrary age of 1 . The Neighbor-Net of Cassidinae plus Hispinae (Fig. 3.10) was
constructed with SplitsTree v.4.12.3 (Huson and Bryant, 2006) using uncorrected p-distances.

3.3 Results

General Results

Within the complete project, 1174 samples have been taken resulting in a total of 4286 collected Chrysomelidae. Due to capacity restraints not all specimens could be analysed. A total of 1775 specimens (belonging to 515 morphospecies) have been processed (barcoded, mounted, and assorted to morphospecies) (data set 1). They comprise the specimens from the 662 samples that have been analysed completely and additional individuals of specific interest. For 1475 of these individuals (448 morphospecies, 493 MOTUs), barcoding has been successful (data set 1b). Selection of the specimens and the different data sets are explained in Chapters 2.3 and 2.5.

Found and estimated species richness

Figure 3.1: Species accumulation curves (mean $\pm \mathbf{9 5 \%}$ confidence interval) showing increase in number of found species with increasing number of sampled individuals. Shown are curves for all processed specimens plus duplicate specimens (a; data set 2a), all processed specimens (b; data set 2), and all specimens with barcode (data set 2b; c: morphospecies curve, d: MOTU (haplotype network) curve).

For the following biodiversity analyses a data set was used consisting of all individuals from the 662 samples that have been analysed completely (data set 2 a). It contained a total of 2227 specimens of which 1583 belonging to 473 morphospecies were processed (1-3 per preliminary morphospecies per sample) (data set 2). Barcoding has been successful for 1334 specimens (84.3%) belonging to 416 morphospecies and 459 MOTUs (data set 2b). Species accumulation curves did not reach saturation indicating that additional sampling would yield more species (Fig. 3.1). When the duplicate specimens where included (data set 2a; 2227 specimens), the curve levelled out but still did not reach saturation (Fig. 3.1a). It is to note that the inclusion of the duplicate specimens did not increase species number because duplicate specimens were assigned to the same morphospecies as the processed voucher specimen (see Chapters 2.3 and 2.5).

The expected total number of morphospecies estimated with the chao2 estimator was highest when calculated for all 1583 analysed specimens (915.53). When not processed duplicate specimens per morphospecies per sample were included it was slightly lower (905.07). When based on the specimens for which a barcode was obtained it was 705 morphospecies, compared to an estimated MOTU number of 804.72. Species numbers found and estimated by different estimators are given in Table 3.1.

Table 3.1: Species numbers found and estimated by different estimators for data sets 2, 2a, and 2b. Data set 2a: all processed individuals plus duplicate specimens, data set 2: processed individuals, data set 2b: individuals with barcode.

	Specimens	Found Species	Estimated Morphospecies Numbers				
		Morphospecies	chao	jack1	jack2	boot	n Samples
Data set 2a	2227	473	905.07 ± 80.34	709.5 ± 24.48	880.92	572.18 ± 12.98	477
Data set 2	1583	473	915.53 ± 82.42	710.5 ± 24.58	883.91	572.42 ± 12.96	477
Data set 2b	1334	416	705 ± 55.56	619.55 ± 20.75	751.13	503.46 ± 11.35	454
		MOTUs	Estimated MOTU Numbers				
Data set 2b	1334	459	804.72 ± 61.26	699.47 ± 23.31	855.96	561.44 ± 12.4	454

Incidence and abundance of morphospecies

The studied leaf beetle community shows an uneven distribution of incidence and abundance with very few common morphospecies while the vast majority is rare. Half of all found morphospecies (237) were collected in only one sample (uniques), and 14% in two samples (duplicates) (Fig. 3.2). Almost one third were rare (found in three to ten samples). The proportion of common and very common species was very low (three, respectively two percent). A similar pattern is visible for the abundance of morphospecies, where ten percent of the morphospecies accounted for 52% of the individuals: The number of singletons (213) is slightly lower than the number of uniques making up 45% of all morphospecies. Proportion of doubletons and common morphospecies remains almost equal, whereas common and very common morphospecies was slightly higher with one morphospecies (Alticinae sp. 118)

Figure 3.2: Proportion of uniques/singletons, duplicates/doubletons, rare, common, and very common morphospecies. Incidence: number of samples in which the morphospecies was found, abundance: number of individuals per morphospecies collected.
showing an extremely distant number of 136 found individuals.
Figure 3.3 A is another illustration of the incidence of morphospecies showing that the vast majority was collected in very few samples. A similar pattern is visualized for the abundance of morphospecies (Fig. 3.3B): Most morphospecies were represented by very few individuals.

When the increase in singletons is plotted against the number of individuals, the curve shows a steep incline without any sign of approaching saturation (Fig. 3.4). Therefore, adding further specimens will increase the number of singletons.

Figure 3.5 shows the incidence and abundance of the most frequent, respectively most abundant morphospecies. Of the 19 most abundant morphospecies, 17 were also among the 19 most frequently found ones. Of the most frequently found morphospecies, 14 belonged to Alticinae, four to Eumolpinae, and one to Galerucinae. Of the most abundant morphospecies, 13 belonged to Alticinae, (the same) four to Eumolpinae, and two to Galerucinae. Of the 237 uniques, 213 are singletons. Those uniques that are no singletons are represented by two (in 19 cases), three (in three cases), or four (in two cases) individuals. All morphospecies with five or more specimens were found in at least two samples.
The similar results for incidence and abundance arose from the fact that morphospecies were usually represented by one or few individuals in one sample (one individual: 78%, two individuals: $13 \%, 3-10$ individuals: $8 \%,>11$ individuals: $<1 \%$). So, usually a high incidence accounts for the high abundance of morphospecies. Fig. 3.6 illustrates the incidence of species on the different sampling sites for data set 3b.

Figure 3.3: Incidence (A) and abundance (B) of morphospecies.

Figure 3.4: Singleton curve. The curve shows the increase in singletons with increasing number of individuals.

Figure 3.5: Incidence (A) and abundance (B) for the most frequent, respectively abundant morphospecies.

The majority of morphospecies was found at only one elevation (91\%) and no morphospecies was found at all three elevations (Fig. 3.7). This stenoecy is even more pronounced for MOTUs (PTP-clusters; 96\%) and haplotypes (99\%). Only three haplotypes were found in Bombuscaro and also ECSF. If morphospecies, MOTUs, and haplotypes that occur only once in the data set are removed, the proportion of species/haplotypes restricted to one elevation slightly decreases, however still remains the majority $(82 \%, 91 \%, 98 \%)$. Of the species/haplotypes that occur on two elevations, the majority was found in Bombuscaro and ECSF (83% of morphospecies, 93% of MOTUs, and 100% of haplotypes), the others in ECSF and Cajanuma. Only one morphospecies (Alticinae sp. 095), but no MOTUs or haplotypes occur in Bombuscaro and Cajanuma. Probably the two specimens have been erroneously assigned to the same morphospecies. Cajanuma has the highest proportion of species/haplotypes that were found only there: 90% of morphospecies, 98%

Figure 3.6: NJ-tree of one representative of each MOTU (haplotype network) with incidence of MOTUs. Of each MOTU one specimen was chosen; its vouchernumber and its morphospecies name is given as this is rather informative than the MOTU name. Coloured boxes indicate elevational area (Bombuscaro, 1000 m ; ECSF, 2000 m ; Cajanuma, 3000 m) and habitat ($\mathrm{L}=$ 'lower plot', valley; $\mathrm{U}=$ 'upper plot', ridge) where the MOTU was found, numbers therein indicate in how many samples (sweep netting, beating, hand-collection) the respective MOTU was found. Based on plot data set 3b.

Figure 3.7: Proportion of morphospecies, MOTUs (PTP-clusters) and haplotypes found at one (light grey), respectively two (dark grey) elevations. Shown for data set 3 b . Left column: complete data set 3 b , right column: without morphospecies, MOTUs, and haplotypes that occur only once in the data set.
of MOTUs and all haplotypes found at Cajanuma were found exclusively there. For ECSF $(83 \%, 91 \%, 99 \%)$ and Bombuscaro $(82 \%, 91 \%, 99 \%)$ the percentage was very similar.

Species richness and abundance of subgroups

The 2227 specimens of the complete data set for biodiversity analyses (data set 2a) belonged to nine subfamilies (Galerucinae s.str., Alticinae, Cassidinae s.str. and Hispinae are regarded as separate subfamilies, see Chapter 1.3): Alticinae, Galerucinae, Eumolpinae, Cassidinae, Hispinae, Criocerinae, Chrysomelinae, Lamprosomatinae, and Cryptocephalinae. The numbers of found individuals and morphospecies are given in Table 3.2.

Table 3.2: Numbers of found specimens and morphospecies for subfamilies.

	Morphospecies	Individuals
Alticinae	251	1326
Galerucinae	99	433
Eumolpinae	68	340
Cassidinae	19	65
Hispinae	22	38
Criocerinae	8	19
Chrysomelinae	3	3
Lamprosomatinae	2	2
Cryptocephalinae	1	1
total	473	2227

Alticinae showed the highest species richness and abundance, accounting for more than half of all found morphospecies (53%) as well as individuals (60%; Fig. 3.8). The second species- and individual-rich subgroup was Galerucinae (21% of morphospecies, 19% of individuals). Eumolpinae represented 14% of all found morphospecies and 15% of all found individuals, Cassidinae accounted for four percent, respectively three percent, and Hispinae for five percent, respectively two percent. Criocerinae, Chrysomelinae, Lamprosomatinae, and Cryptocephalinae together accounted for three percent, respectively one percent.

Figure 3.8: Composition of Chrysomelidae subfamilies. The proportion of the different subfamilies is shown in terms of morphospecies and number of individuals.

When the proportion of the different subfamilies in the total number of morphospecies is regarded for each altitude separately (for the plot data set 3), the rank order remains the same (Fig. 3.9). However, there are small differences among the elevations: Whereas the proportion of Alticinae plus Galerucinae remains similar (77% at Bombuscaro and ECSF, 74% at Cajanuma), there is a shift towards Alticinae with increasing elevation (51% at Bombuscaro, 59% at ECSF, 68% at Cajanuma). At Bombuscaro and ECSF, there are almost equal portions of Hispinae and Cassidinae; in contrast, at Cajanuma Cassidinae are not found at all.

Figure 3.9: Proportion of subfamilies in number of morphospecies for the different elevations.

It is to note that for the most part barcoding grouped the morphospecies correctly into subfamilies (see Fig. 3.6). Cassidinae + Hispinae, Eumolpinae, and Criocerinae formed clusters each. Also Alticinae + Galerucinae formed a cluster but with Chrysomelinae placed within. With single exceptions, within Galerucinae s.l., Galerucinae s.str. and Alticinae formed several well distinguished clusters. Also within the subfamily-clusters, COI-sequences form clearly distinguishable clusters (as an example see Fig. 3.10).

3.4 Discussion

Species richness

So far, there exist no published records of leaf beetle species for the studied area. The Chrysomelidae found under tree bark in RBSF by J. Schmidl (2007-2008) were sorted into ~ 50 morphospecies, but not identified taxonomically. The only Chrysomelidae checklist for Ecuador (and whole Central and South America) by Blackwelder (1947) is outdated. Since then, numerous species have been newly described from Ecuador (Borowiec, 1998, 2000a,b; Flowers, 2009a,b; Sekerka and Windsor, 2012; Staines and Zamorano, 2012; Świętojańska and Borowiec, 2000), but only for Cassidinae a more recent checklist has been published (Borowiec, 1998).

Blackwelder lists ~ 450 chrysomelid species explicitly for Ecuador, a number even below the number of morphospecies found in this rather small-scale study. In this study, 515 morphospecies have been found, and one has to keep in mind that due to capacity restraints not all of the collected specimens have been assigned to morphospecies. The not processed specimens are likely to entail more not yet identified morphospecies. These numbers illustrate the striking discrepancy between the de-

Figure 3.10: Neighbor-Net of Cassidinae plus Hispinae. Visualization of clustering within Cassidinae + Hispinae showing that information content of the data is useful to discriminate species but not for phylogenies.
scribed and the true Ecuadorian leaf beetle diversity. That Ecuador still provides much unknown diversity to be discovered is also reflected by its collections: The Invertebrate Section of the Museum of Zoology at the Pontifical Catholic University of Ecuador in Quito comprises with almost two million specimens Ecuador's largest collection of native taxa. It harbours over 24,000 Chrysomelidae, most of them still awaiting identification: Only $\sim 11 \%$ of all specimens are determined to species, $\sim 14 \%$ to genus, but $\sim 75 \%$ have no identification at all (Clifford Keil, pers. comm.). There are only nine chrysomelid type specimens deposited in the collection, all of them belonging to Cassidinae (Donoso et al., 2009). In most other Neotropical countries the situation is similar (see Chapter 1.4).

The present study focused on the analysis of leaf beetle biodiversity and its changes along an altitudinal gradient. It was not attempted to create a complete inventory. The species accumulation curves indicate that additional sampling would further increase the number of found morphospecies. Estimated morphospecies numbers even range up to more than 900 (chao). It is to note that analyses of assemblages with low evenness (few dominating and many rare species) tend to underestimate species richness (Magurran, 2004). The number of found MOTUs for those individuals with a DNA barcode was even higher than the respective number of
morphospecies.
As this is one of the first known studies of site-specific data on leaf beetle richness and diversity for Ecuador there are no published data with which the present results can be compared. Studies of other Neotropical regions are difficult to compare due to differences in geograhical scale, sampling effort, and methods. Some of them focus on certain subfamilies or study different habitats (e.g. Furth et al. (2003); SánchezReyes et al. (2014)). If a careful comparison is still attempted, and considering that sampling in this study is far from being complete, species numbers seem comparable to or rather higher than in other Neotropical regions (Charles and Bassett, 2005; Flowers and Hanson, 2003; Furth et al., 2003; Linzmeier and Ribeiro-Costa, 2009, 2011, 2012; Ødegaard, 2006; Sánchez-Reyes et al., 2014).

It is to note that in this study mainly a selected habitat was investigated, the herbaceous and shrubby understorey vegetation. The canopy that is considered to be the most diverse habitat in tropical rainforests and harbouring an especially high leaf beetle diversity (Basset et al., 2001; Charles and Bassett, 2005; Farrell and Erwin, 1988) was completely neglected. Also the inclusion of particular habitats as the tree bark that was studied by Schmidl (2007-2008, pers. comm.) could further increase species number. Studies that include the rainforest canopy or are part of large-scale studies and inventories are likely to yield comparatively higher species numbers (e.g. Farrell and Erwin (1988) who found >650 species in a Peruvian rainforest canopy). Large-scale research programmes (e.g. IBISCA (http://www.ibisca.net/): Basset et al. (2012, 2007); Basset and Leponce (2005), ALAS (http://viceroy.eeb.uconn.edu/ALAS/): e.g. Furth et al. (2003); Staines (2011)) are capable of more intense sampling due to a much longer available time period and more manpower compared to the present study (Basset et al., 2007; Staines, 2011). They often include a comprehensive set of sampling methods (Basset et al., 2007; Longino and Colwell, 1997). For certain taxa they can aim at complete inventories, e.g. the hispine species at La Selva, Costa Rica, resulting in a quite impressive number of 139 species (Staines, 2011).

In the studied area a high leaf beetle diversity had been expected. The region is part of the Tropical Andes, a biodiversity hotspot, and especially known for its outstanding rich plant diversity (see Chapter 2.1). Particularly the diversity of herbivorous insects is closely tied to plant diversity and can be expected to be especially rich in regions with diverse vegetation. The diversity of the moth family Geometridae has been intensely studied in the study area (Bodner et al., 2010; Brehm and Fiedler, 2003, 2004, 2005; Brehm et al., 2003a, 2013, 2003b; Hilt et al., 2007; Strutzenberger et al., 2011) and found to be much higher than anywhere else in the world documented (Brehm et al., 2005). Although the leaf beetle diversity seems comparatively high in the region, a more complete sampling should be attempted to allow more thorough propositions about the true species numbers for the area.

Abundance and incidence of morphospecies

Abundance and incidence of the studied leaf beetle assemblage showed a pattern with
a few common species and an overabundance of rare species that is characteristic for many taxa of tropical rainforests and was also found for Neotropical leaf beetles (Furth et al., 2003; Linzmeier and Ribeiro-Costa, 2012; Sánchez-Reyes et al., 2014). A low evenness delays the saturation of the species accumulation curve (Magurran, 2004). Whereas 'rare species' are often defined as those species at the lower end of the distribution of species abundance (the cut-off often placed at the first quartile; Magurran (2004)), the term is also used synonymously with singletons (species represented by a single individual in the data set) (Novotny and Basset, 2000). The latter often prevent the species accumulation curves from attaining an asymptote even in much larger-scaled studies than the present one (Novotny and Basset, 2000). Usually, additional sampling turns some singletons into doubletons, but new singletons appear (Lim et al., 2012). In the present study, half of all morphospecies were sampled only once (uniques), most of them were represented by only one individual in the whole data set (singletons; 45% of all morphospecies). This proportion is comparable to many other studies of rainforest arthropods, where the proportion of singletons is on average 32% (Coddington et al., 2009) and often up to half and more (Allison et al., 1993; Erwin, 1997; Janzen and Schoener, 1968).

A high proportion of singletons often results from undersampling even in very large and ambitious tropical arthropod surveys (Coddington et al. (2009) and references therein). Although there are many genuinely rare species in the tropics, most are not as rare as they seem: Sampling flaws can make species appear rare when they were sampled in marginal times or places (insufficient seasonal or spatial replication; Novotny and Basset (2000)) or with inadequate methods (Longino et al., 2002). Rare species in a sample might also be common elsewhere, e.g. in adjacent regions or well-known from collections or literature (Longino et al., 2002). In host plant based surveys of herbivorous insects, many rare species are transient species or 'tourists' that do not use the studied plant as host plant but rather as a site for resting, sun-basking or sexual display (Moran and Southwood, 1982; Novotny and Basset, 2000; Ødegaard, 2004). However, feeding and rearing trials showed that many rare species are indeed associated with the studied hosts (Novotny and Basset, 2000). They might be generalists feeding occasionally on the host examined but with relatively high overall population levels when all potential host plant species are considered or specialists feeding on the host examined but preferring, and being more abundant on other hosts (Novotny and Basset, 2000). Probably few are specialists with genuinely low population levels (Novotny and Basset, 2000).

The circumstance that the assemblage in this study is clearly undersampled (as the species accumulation curves show) is the most likely explanation for the high percentage of singletons, rather than any more biological explanation (Coddington et al., 2009). With additional sampling effort, the percentage of singletons might decrease, but is expected to remain quite high. Biological reasons for singletons in this study cannot be evaluated as insect-plant-relationship is not addressed. Furthermore, species are not described and therefore there is no information about their distribution outside of the study area.

The finding that most morphospecies, MOTUs, and haplotypes were found exclusively at one elevational level, whereas none was found at all three elevations, indicates ecological specialization and the presence of different leaf beetle communities at the different sites. Also the differences in the composition of subfamilies at different levels confirm this. It is not surprising that the three elevations harbour a different leaf beetle fauna: Although the three sites are as close as $\sim 20 \mathrm{~km}$, there are 1000 m elevation difference and the areas exhibit remarkable differences in climate and vegetation. The turnover of tropical insect communities along elevational gradients is generally rapid (Brühl et al., 1999; Ghalambor et al., 2006; Janzen, 1967) and there are often large differences in insect communities in considerably smaller ranges than 1000 m (e.g. Olson (1994); Smith et al. (2014)). For a detailed analysis of the change of communities with increasing altitude see Chapter 4.

Methodological considerations

DNA barcode data generally revealed similar results as morphospecies data. However, there are certain advantages and disadvantages of each method that should be considered: When morphospecies and MOTU richness was compared, for those specimens for that a barcode was obtained (data set 2b), found and estimated MOTU numbers were higher than morphospecies numbers. The morphospecies sorting probably overlooks differences between species ('cryptic diversity') and is likely to underestimate true species richness. However, there are specimens where sequences could not be obtained at all or could not be used as they were contaminated, too short, or of insufficient quality. In contrast, morphospecies can be determined for every specimen (as long it is not severely damaged). Those specimens for that no barcode could be obtained can be assigned to a morphospecies and do not have to be excluded from the data set. If they are included, found and estimated morphospecies richness is higher than MOTU richness.

Aside from those specimens where barcode generation failed, often not all sampled specimens can be barcoded: Temporal or financial restrictions usually require a selection (this might not apply in metabarcoding studies). In the present study, usually only one specimen (sometimes up to three specimens) of each morphospecies per sample was sequenced leading to a number of 644 specimens (duplicate specimens) for which no barcodes were produced. Therefore, in this case, morphospecies can provide abundance data in contrast to barcode data. Although this is actually additional data that the barcode data cannot provide, there are no severe differences between inclusion or exclusion of the duplicate specimens, i.e. incidence and abundance data was very similar. For example, of the 19 most abundant morphospecies, 17 were also among the 19 most incident ones. Furthermore, 90% of the uniques are also singletons. This supports the decision to select one morphospecies per sample for sequencing, at least when, like in this study, usually only few individuals of a morphospecies occur in one sample.

Species richness and abundance of subgroups

It is to note that for a better understanding Hispinae and Cassidinae are treated
as separate subgroups although they both belong to the subfamily Cassidinae (s.l.). The same applies to Alticinae and Galerucinae: The traditional view of two distinct subgroups is retained although their status as subfamilies of equal rank and also their respective monophyly is in question. For information about the classification and relations of Cassidinae and Hispinae as well as Alticinae and Galerucinae see Chapter 1.3.

In the present study Galerucinae s.l. make up the largest fraction of found leaf beetles in terms of morphospecies as well as individuals. This is in accordance with subfamiliy composition worldwide (Chaboo, 2007; Reid and Beatson, 2013) and other studies on Chrysomelidae in different regions (Kalaichelvan et al., 2005; Linzmeier and Ribeiro-Costa, 2012; Sánchez-Reyes et al., 2014; Wagner, 1999). Especially Alticinae, the largest leaf beetle subfamily (Furth et al., 2003), are often extremely abundant and species-rich (Farrell and Erwin, 1988; Flowers and Hanson, 2003; Freund, 2005; Linzmeier and Ribeiro-Costa, 2012; Wagner, 2003). In this study they accounted for more than half of all individuals and morphospecies at each elevational level. The Neotropical region harbours the most diverse Alticinae fauna in terms of genera and species (Scherer, 1988). Almost half of the known alticine genera occur in the Neotropics (Furth, 2005). More than 200 genera are known from South America, compared to ~ 40 Nearctic genera and ~ 65 genera in Africa (Furth, 2005; Scherer, 1988). All of the South American alticine genera are endemic, except Chaetocnema, Epitrix, Longitarsus, and Terpnochlorus (Scherer, 1988).

After Alticinae and Galerucinae s.str., the next most abundant and species-rich subfamily in this study was Eumolpinae. This was reported likewise in other studies on Neotropical leaf beetles (Farrell and Erwin, 1988; Linzmeier and Ribeiro-Costa, 2012), however not in the study of Sánchez-Reyes et al. (2014) on leaf beetle assemblages in forest and thorny scrub vegetation, who found Cassidinae more abundant and species-rich. Cassidinae and Hispinae are a dominant element of the Neotropical region, distinguishing it from any other area of the world (Kimoto, 1988). Worldwide, Cassidinae s.l. is the second largest subfamily of Chrysomelidae with 324 genera and ~ 6000 species (Chaboo, 2007). There is little overlap between Old World and New World cassidine fauna (Chaboo, 2007). Despite the high Cassidinae and Hispinae diversity in the Neotropics, they make up only a small portion in this study, as in studies using canopy fogging in lowland forest or Malaise trapping (Farrell and Erwin, 1988; Flowers and Hanson, 2003). This is probably due to the used methods as different sampling methods are more efficient for certain subfamilies. The composition of subfamilies depends on the sampling methods and a focus on other sampling methods could alter the composition of subfamilies. For example, Cassidinae are reluctant flyers that are mainly collected by hand-collection, whereas light trapping seems to be suited especially for Galerucinae (see Chapter 7).

The comparison of subfamily composition between the different elevations showed an increasing proportion of Alticinae at the expense of Galerucinae. A dominance of Alticinae with increasing elevation was also observed by Flowers and Hanson (2003) along an elevational gradient in Costa Rica. Alticinae and Galerucinae in tropical mountains can survive up to elevations where the vegetation ends (Jolivet and

Hawkeswood, 1995). Notably Alticinae are known to occur at very high altitudes in the Andes as well as on the Venezuelan Tepuys (Jolivet and Hawkeswood, 1995). The fact that most fern-feeding leaf beetles are found among Alticinae could be related to the scarcity of other suitable food plants at high altitudes (Jolivet and Hawkeswood, 1995).

Phylogenetic considerations

It is well-known that COI has only limited information content at deeper phylogenetic levels (Moritz and Cicero, 2004) and it is not the purpose of this study to infer a phylogeny of leaf beetles. However, it is to note that for the most part DNA barcoding grouped the morphospecies correctly into subfamilies.

Eumolpinae and Criocerinae form monophyletic clusters. Both are taxonomically quite well defined subfamilies considered to be monophyletic (Duckett et al. (2004); Gómez-Zurita et al. (2005); Jolivet and Verma (2008); Matsumura et al. (2014); Reid (1995); Schmitt (1985a,b); but see Gómez-Zurita et al. $(2007,2008)$ who recovered Eumolpinae as paraphyletic). Also Cassidinae plus Hispinae form a monophyletic cluster that is consistent with current taxonomy. Both taxa are placed by many authors into one subfamily, the Cassidinae (Borowiec (1995); Chaboo (2007); Staines (2002); = Hispinae sensu Reid (1995)). Morphologically and biologically there seems to be no valid reason for retaining Hispinae and Cassidinae as separate subfamilies and there exist intermediate genera (e.g. in the tribes Cephaloleiini, Imatidiini) (Borowiec, 1995; Staines, 2002). At least three morphospecies in this study seem to belong to these taxa: Cassidinae spp. 8 and 17 probably belong to the genus Imatidium Fabricius (presumably the species I. buckleyi Spaeth, respectively I. thoracicum Fabricius, both known from Ecuador). Morphospecies Hispinae sp. 10 could belong to the genus Demotispa Baly. Imatidium and Demotispa belong to the tribe Imatidiini that has been synonymized with Cephaloleiini that have been traditionally classed with hispines (Borowiec, 1995; Staines, 2002). The genus Imatidium has been placed in hispines as well as in cassidines at one time or another (Staines, 2002). For further information about classification and relationships of Cassidinae and Hispinae see Chapter 1.3.

Also Alticinae plus Galerucinae form a monophyletic cluster, however with Chrysomelinae placed as a monophyletic cluster within. With single exceptions, within Galerucinae s.l., the Galerucinae s.str. and Alticinae appear in several well separated clusters. Whereas the monophyly of the group Galerucinae plus Alticinae is generally acknowledged, often subsuming the alticines (flea-beetles) in Galerucinae s.l. (Lingafelter and Konstantinov, 1999; Reid, 1995; Riley et al., 2002), relationships between the groups are controversial (see Chapter 1.3). Chrysomelinae seem to be closely related to Galerucinae s.l. (Duckett et al., 2004; Gómez-Zurita et al., 2008; Reid, 1995). Duckett et al. (2004) recovered Chrysomelinae as the sister group to the Galerucinae s.str. A recent study based on RNA data found a 'chrysomeline' clade with Galerucinae (with alticines) and paraphyletic Chrysomelinae (Gómez-Zurita et al., 2008).

In the NJ-tree in Figure 5.1 (Chapter 5) that includes one specimen of Crypto-
cephalinae and Lamprosomatinae each, both cluster together. This agrees with the placement of both groups in the 'Camptosomata' (Erber, 1988).

For relationships between the subfamilies see the leaf beetle phylogenies of e.g. Duckett et al. (2004); Farrell (1998); Farrell and Sequeira (2004); Reid (1995), and Gómez-Zurita et al. (2008). The relationships between cassidines and hispines, respectively galerucines and alticines are discussed in detail in Borowiec (1995); Staines (2002), and Chaboo (2007), respectively Duckett et al. (2004); Ge et al. (2012); Lingafelter and Konstantinov (1999) and references therein.

3.5 Conclusions

This study is the first attempt to investigate the leaf beetle fauna of the herbaceous and shrubby understorey vegetation of Podocarpus NP and RBSF in southern Ecuador. Considering that mainly one type of vegetation was sampled and that sampling is far from being complete, the more than 500 found morphospecies are rather a glimpse on the true diversity of the area. Further sampling as well as inclusion of the canopy fauna is likely to raise species numbers immensely. Given the poor taxonomic recording of leaf beetles in Ecuador, many of the found species are probably not yet recorded for Ecuador or might even be not yet described.

Although incomplete, the analysed selection of beetles provides a good insight into the characteristics of the leaf beetle assemblage: The chrysomelid fauna is species-rich and composed of few common and an overabundance of rare species, as it is typical for tropical arthropod assemblages. However, the number of rare species is likely to be overestimated due to undersampling. Communities differ between the three elevational levels, an issue that is investigated in detail in the following chapter (Chapter 4). The composition of leaf beetle subfamilies seems to be representative of a Neotropical leaf beetle fauna.

DNA barcode data led to higher species richness estimates and similar patterns in the comparison between elevational levels. The barcodes grouped morphospecies correctly into subfamilies.

Chapter 4

Habitat specialization and its influence on elevational diversity patterns inferred by DNA barcode data

4.1 Introduction

One pivotal pattern of biodiversity is the variation of species richness along elevational gradients (Körner, 2000; McCain and Grytnes, 2010). In montane regions across the world the diversity of most plant and animal taxa can be described by one of three different patterns: a decreasing pattern, a low-elevation plateau pattern, or a mid-elevation peak pattern (McCain, 2009; Nogués-Bravo et al., 2008; Rahbek, 2005). Elevational diversity patterns were shown to systematically vary among taxa or geographic regions (McCain and Grytnes, 2010) but are usually assumed to be constant for one taxon on a single mountain. However, tropical mountains exhibit a complex topography shaping spatially heterogeneous habitats within elevational belts (Homeier et al., 2010; Takyu et al., 2002; Werner and Homeier, 2015). While spatial heterogeneity has been identified as a significant determinant of diversity (Stein et al., 2014), the influence of small-scale topography on patterns of diversity remains little understood.

Mountains are ideally described by a simple conical shape (Körner, 2000). However, the terrain formed by geological and hydrological processes over time is more complex and exhibits 'small-scale' geomorphological elements like mountain ridges or valleys (Beck et al., 2008b; Oesker et al., 2008). These habitats may strongly differ in abiotic conditions. For example, soils at ridge crests have higher rates of nutrient losses due to down slope fluxes, lower nutrient contents and lower rates of decomposition which significantly influence structural characteristics of the vegetation, e.g. species richness, forest canopy height and the production of wood and foliage (Takyu et al., 2002; Werner and Homeier, 2015). The variable abiotic and biotic conditions in different habitats may influence species richness of consumer taxa and may lead to habitat-specific differences in the elevational distribution of species. Moreover, community turnover between habitats may be heterogeneous along elevational gradients and lead to systematic changes in diversity patterns when scaling up from the local scale (including one habitat) to the regional multi-habitat scale.

Chapter 4. Habitat specialization and its influence on elevational

Theory and empirical data support the hypothesis that higher temperatures, higher primary productivity, and more land area at lower elevations may foster habitat specialization and consequently species turnover between habitats. First, species turnover increases with productivity due to a higher importance of stochastic relative to deterministic assembly processes in highly productive environments (Chase and Leibold, 2002; Chase, 2010). Second, the benign warm climate at lower elevations has a positive effect on evolutionary rates (Allen et al., 2006; Rohde, 1992) and increases the importance of biotic interactions driving niche segregation and the evolution of specialization (Dobzhansky, 1950; Mittelbach et al., 2007; Pellissier et al., 2012; Schemske, 2002). Third, everything else being the same, higher amounts of land and the often higher productivity at lower elevations translate into a higher total amount of specific resources (e.g. total leaf biomass of a particular plant species) in lowland elevations than in highland elevations, which increases the probability of specialists' populations to persist. In contrast, populations in higher elevations may have to be generalists to persist over longer intervals of time (Srivastava and Lawton, 1998).

In this study, species diversity and turnover rates of leaf beetle communities are compared between montane ridge crest and valley forest habitats of southern Ecuador and it is inferred how differential turnover rates affect patterns of elevational species richness when scaling up from the local study site to the regional elevational belt scale. Leaf beetles (Coleoptera: Chrysomelidae) are major tropical herbivores and constitute one of the most speciose families in the whole tree of life (Basset and Samuelson (1996); Farrell and Erwin (1988); Wagner (2000); more detailed information on leaf beetles is given in Chapter 1.3). Their considerable specialization on host plants and large contribution to total biodiversity explains their key importance for estimating the total species richness on Earth. However, the extreme diversity, the little developed taxonomy of tropical beetle species and a suspected large proportion of cryptic diversity make the family particularly challenging for ecological studies (Costa, 2000; Flowers and Hanson, 2003; Furth et al., 2003; Gómez-Zurita et al., 2008; Jolivet et al., 1988) advocating the use of molecular approaches for species delimitation (Craft et al., 2010; Hebert et al., 2003b; Pfenninger et al., 2007; Smith et al., 2009, 2005; Tänzler et al., 2012). Molecular methods also allow inference of levels of intraspecific genetic diversity contributing to the understanding of trends in elevational species richness.

DNA barcoding was used to study the elevational diversity of leaf beetles in Podocarpus National Park and RBSF in southern Ecuador. The study region is considered to be one of the most diverse regions of the world (Brehm et al., 2005). Its steep slopes harbour two forest types at different topographic positions which differ in abiotic conditions and species composition of plant communities: ridge habitats at the upper slopes and valley habitats at the lower slopes (Homeier et al., 2010). For more detailed information on study area and sampling sites please refer to Chapters 2.1 and 2.2.

The following four predictions were tested:

1. Patterns of elevational diversity differ between ridge and valley forests.
2. Higher levels of productivity, area, and temperature provide increasing opportunities for habitat specialization and stochastic processes of community assembly (Chase, 2010). Therefore higher levels of species turnover between habitats at lower elevation than at higher elevations can be expected.
3. Elevational patterns of species richness are depending on the spatial scale of analysis (Nogués-Bravo et al., 2008) and may particularly depend on the variation in the rates of species turnover in space (Chase and Leibold, 2002). Due to higher species turnover between habitats at lower elevations stronger increases in species richness at lower than at higher elevation are expected with the spatial scale of the analysis increasing.
4. A decrease in productivity and increasing climatic harshness at high elevations may lead to higher levels of population bottlenecks or extinctions with subsequent recolonization of habitats by lineages from lower elevation (Ehinger et al., 2002; Gilles et al., 2007; Shama et al., 2011). Genetic diversity, here measured as haplotype diversity per species, can be therefore expected to decrease with increasing elevation.

4.2 Methods

Beetles were sampled on sampling sites within the Podocarpus NP and the adjacent RBSF, Ecuador. The study area is described in detail in Chapter 2.1. Sampling was conducted between May 2011 and April 2012 following a standardized design at the three different elevational levels Bombuscaro ('1000 m', premontane rainforest), ECSF ('2000 m', lower montane rainforest), and Cajanuma ('3000 m', upper montane rainforest or cloud forest) (classification of vegetation: Homeier et al. (2008)).

At each elevational level, 12 sites were sampled. Sampling sites were $20 \times 20 \mathrm{~m}$ plots situated within homogeneous mature forest representative for the elevation in question and without visible recent natural or human disturbance (Homeier et al., 2010). At each elevational level, the 12 sites were located in two different types of habitats, six sites in valleys and six on ridges. Habitat types harbour different forest types and differ in several environmental parameters: Compared to sites on ridges, the sites in valleys are vegetated with a forest which differs in species composition, has a smaller canopy openness, consists of higher trees, has a higher biomass, and harbours a higher diversity of tree species. Furthermore, valley habitats are more nutrient-rich, have a minor organic layer thickness, a higher productivity, and a lower C:N ratio (Homeier et al. (2010); Werner and Homeier (2015); Homeier pers. comm.). With increasing elevation, the aboveground biomass of trees decreased as well as height of trees. The tree growth at higher elevation seems to be limited

Chapter 4. Habitat specialization and its influence on elevational

by decreasing temperatures but also by shortage in nutrients and/or adverse soil chemical and physical conditions (Homeier et al., 2010).

Leaf beetle assemblages were sampled with a combination of three different collection methods: (1) Sweep netting, (2) beating of shrubs and smaller trees using a beating tray, and (3) hand-collection from the vegetation. All vegetation within reach was sampled (up to ca. 2.5 m). Each sampling-site was sampled following a standardized procedure: Sweep netting alongside two edges of the plot for 30 min ; beating alongside the other two edges of the plot for 30 min ; hand-collection within the plot for 30 min .

Beetles were killed and collected in 70% ethanol but transferred into 96% ethanol the following day. For each subsample (a subsample is either 30 min sweep netting, 30 min beating, or 30 min hand-collection) Chrysomelidae were sorted into preliminary morphospecies and one specimen of each morphospecies of each subsample was used for following morphological classification and molecular analyses.

Processing of the specimens and procedure of DNA barcoding of COI is described in Chapters 2.3 and 2.4. Sequences were submitted to GenBank (accession numbers KR424781-KR425417; see also Appendix Tab. C.1). All plot-samples resulted in a total of 995 leaf beetle specimens for which a barcode could be obtained (data set 3b, plot data set; Chapter 2.5, Appendix Tab. D.1).

Specimens were sorted into morphospecies (for information about morphospecies sorting see Chapters 2.5 and 5) and assigned to MOTUs using the different molecular species identification methods that are described in Chapter 6. As there were only few discrepancies between the methods (the methods were more or less conservative) only the results of Poisson tree processes (PTP) modelling were used for biodiversity analyses.

Analyses of biodiversity patterns

For analyses of biodiversity patterns, a standardized data set was used which was based on four replicate samplings on each study site. All statistical analyses and data plottings were conducted in R 3.0.2 using the add-on packages Reshape2, veGAN and SCIPLOT.
Species richness patterns on the local scale: Studies on insect diversity in the tropics always suffer from undersampling and correlation of sampling intensity with species richness causing strong biases in observed data (Brose et al. 2003). Therefore, asymptotic species richness of leaf beetles per study site was estimated using the non-parametric individual-based chaol estimator provided in the VEGAN package and the estimated species richness was used for all main analyses (Chao et al., 2005; Gotelli and Colwell, 2011; Oksanen et al., 2013). The effect of elevation on species richness per site was analysed with ordinary linear models with estimated species richness per plot as the response (continuous) and elevational level (factorial) as the explanatory variable. In case of significant differences between elevational levels in the general model, post-hoc pairwise t-tests with pooled standard deviations were conducted to test for differences between pairs of elevational levels. In addition to the above mentioned analysis in which it was not differentiated between valley and
ridge crest habitats, trends in species richness with elevation were analysed for the two forest habitats separately using the same procedures as described for the total data set.
Species richness patterns on the regional scale: To calculate patterns of species richness with elevation at the regional scale the data of all study plots per elevational level were pooled and the asymptotic cumulative species richness ($\pm \mathrm{SE}$) was estimated using the non-parametric chaol estimator (Chao et al., 2005; Gotelli and Colwell, 2011). Regional species richness was estimated for plots of ridge and valley forests separately and for all plots per elevational level combined. To compare patterns of species richness for a standardized (rarefied) number of sampled individuals per elevational level individual-based species accumulation curves were calculated for each elevational level. Species accumulation curves were calculated using the method 'random' which adds up individuals in a random order with 1000 iterations and calculates the mean $\pm 95 \%$ confidence interval.

Trends in species turnover across elevations and habitats were visualized using non-metric multidimensional scaling (NMDS) and statistically analysed using permutational multivariate analysis of variance (MANOVA) provided in the VEGAN package. For measuring the dissimilarity in species composition between the communities of different plots the chao dissimilarity index was used (Chao et al., 2005). The chao dissimilarity index is recommended for samples that differ in the intensity and completeness of sampling and which is particularly suited for data which are known or suspected to contain high numbers of rare or undetected species, and therefore seems appropriate for highly speciose leaf beetle communities in which typically a large number of singletons appear and many species remain undetected. The function adonis in the R package vegan (Oksanen et al., 2013) was used to partition the variation in overall beta-diversity among the effects of elevation, habitat and the elevation-habitat interaction and the significances were tested with permutation tests with 10,000 permutations. In case the beta-diversity between habitats was heterogeneous along the elevational gradient the interaction term was expected to be significant. With a partial Mantel test it was tested if the patterns of betadiversity could be explained by differences in distance and elevation between the plots of different altitudinal levels.

To test for differences in relative genetic diversity an index of haplotype diversity was calculated for each elevational level. Haplotype diversity was defined as the probability that two individuals of one MOTU show different haplotypes. Probabilities were calculated based on a data set of all individuals collected per elevational level. Only species were considered for which more than two individuals per elevation were collected. The effect of elevation on haplotype diversity was analysed with ordinary linear models.

Chapter 4. Habitat specialization and its influence on elevational
 diversity patterns inferred by DNA barcode data

4.3 Results

Local and regional patterns in species richness

A total of 271 morphospecies and 453 haplotypes were detected which were differentiated by Poisson tree processes (PTP) modelling into 294 MOTUs. The estimated species richness (i.e. MOTU richness; for better readability hereafter simply 'species richness' is used) per site (local level) significantly varied among the three elevations ($\mathrm{F}_{2,33}=11.79, \mathrm{p}=0.0001$) and was highest at 2000 m a.s.l. and significantly lower at 1000 and 3000 m a.s.l. (post-hoc pairwise t-test with pooled SD: 1000-2000 m: $\mathrm{p}<0.05,1000-3000 \mathrm{~m}: \mathrm{p}<0.01,2000-3000 \mathrm{~m}: \mathrm{p}<0.0001$; Fig. 4.1A). When patterns were analysed for the two forest habitats separately, a mid-elevation peak pattern was evident in forests on ridges but not in valleys where species richness peaked at the lowest elevation but did not significantly differ from species richness at 2000 m a.s.l. (paired t -test: $\mathrm{p}=0.8$). However, for both habitats the lowest species richness was found at 3000 m a.s.l.

When species richness patterns were analysed at a regional level (i.e. by estimating the cumulative MOTU richness of all plots per elevational level), species richness did not differ between 1000 and 2000 m a.s.l. (Fig. 4.1B). When corrected for differences in the number of sampled individuals, species richness was even slightly higher at 1000 m a.s.l. than at 2000 m a.s.l. (Fig. 4.1C). When cumulative species richness was analysed for each habitat separately, the mid-elevation peak of diversity which was detected in ridge forests at the local scale was strongly reduced at the regional level. Regional level diversity in valley forests did not differ between 1000 and 2000 m a.s.l. Regional species richness was in all cases lowest at 3000 m a.s.l.

β-diversity between habitats and elevational levels

NMDS and permutational MANOVA analyses revealed a clear differentiation in the composition of leaf beetle communities among the three elevations (Fig. 4.2A, Tab. 4.1). The differences between 2000 and 3000 m a.s.l. were more pronounced than between 1000 and 2000 m a.s.l. Communities at 1000 and 3000 m a.s.l. differed most strongly in the composition of MOTUs. A significant interaction between habitat and elevation was found (Tab. 4.1): While communities of ridge and valley habitats strongly differed at 1000 m a.s.l., differences were less strong but still significant at 2000 m a.s.l. and non-significant at 3000 m a.s.l., suggesting a reduced habitat differentiation of species communities in higher elevations. Even though no significant difference was found in the leaf beetle composition of ridge and valley forests at 3000 m a.s.l., the turnover of MOTU between plots was generally very high and similar among the plots of one habitat as among the plots of two different habitats (Fig. 4.2B).

The higher beta-diversity between habitats in lower elevations could not be explained by differences in distance and elevation between the sites at different elevational levels (Mantel test, $\mathrm{p}>0.05$).

Figure 4.1: Mean ($\pm \mathbf{S E}$) number of estimated MOTUs per study plot (A), total number of estimated MOTUs per elevational level (B) and the cumulative number of MOTUs with increases in the number of sampled individuals (C). A: Barplots and the error bars show the mean number of estimated species richness \pm standard error found on plots of both habitats; the black and white dots with error bars show the values for plots in valley and ridge forests, respectively. The hump-shaped pattern is most pronounced for the plots on ridges (pairwise t-test: 1000-2000 m: p $<0.02,2000-3000 \mathrm{~m}: \mathrm{p}$ $<0.01,1000-3000 \mathrm{~m}: \mathrm{p}=0.4$). B: Barplots and the corresponding error bars show the total number of estimated species \pm standard error for each elevational level; the black and white dots with error bars show the values for plots in valley and ridge forests, respectively. C: Species accumulation curves (mean $\pm 95 \%$ confidence interval) show the increase in species richness with increasing number of sampled individuals.

Chapter 4. Habitat specialization and its influence on elevational

Figure 4.2: NMDS ordination of MOTU data (A) and mean ($\pm \mathbf{S E}$) community dissimilarity among plots within elevational levels (B). A: Different symbols indicate different elevational levels (square $=1000 \mathrm{~m}$, diamond $=2000 \mathrm{~m}$, triangle $=3000$ m) and habitats (black $=$ forests in valleys, white $=$ forests on ridges). Size of symbols is proportional to the number of estimated MOTUs per plot. B: Bars show mean estimates of community dissimilarity \pm SE among the plots on one elevational level: all $=$ dissimilarity among all plots; between = dissimilarity among plots of different habitats; within $=$ dissmilarity among plots of the same habitat.

Table 4.1: Results of permutational MANOVA analysis testing on the effects of elevation and habitat on the species composition of leaf beetle communities. At 1000 m and 2000 m communities in ridge and valley habitats significantly differed in their composition, which was, however, not the case at 3000 m ($1000 \mathrm{~m}: \mathrm{F}=2.27, \mathrm{p}=0.006$; $2000 \mathrm{~m}: \mathrm{F}=3.19, \mathrm{p}=0.031 ; 3000 \mathrm{~m}: \mathrm{F}=1.25, \mathrm{p}=0.211$).

	\mathbf{F}	$\mathbf{d f}$	\mathbf{r}^{2}	\mathbf{p}
Elevation	7.43	2	0.29	0.001
Habitat	2.05	1	0.04	0.006
Elevation \times Habitat	2.07	2	0.08	0.002
Residuals		30	0.59	

Genetic diversity

Haplotype diversity (defined as the probability that two individuals of one MOTU show different haplotypes) did not significantly differ among elevational levels (ANOVA, $\mathrm{F}_{2,33}=0.57, \mathrm{p}=0.57$; Fig. 4.3).

Figure 4.3: Estimates of relative genetic diversity in different elevation levels, i.e. the haplotype diversity for MOTUs for which more than one individual was sampled per elevational level.

Chapter 4. Habitat specialization and its influence on elevational

4.4 Discussion

The complex topography of mountains produces habitats with strongly differing environmental conditions across and within elevational levels. The patterns of elevational diversity in the studied leaf beetles differed between ridge and valley forests. Moreover, a higher turnover of communities between and within forest habitats at lower elevations shifted mid-elevational diversity patterns towards lower plateau patterns when scaling up from the local study site level (α-diversity) to the regional elevational belt level (γ-diversity).

Differences in patterns of elevational α-diversity between ridge crest and valley habitats

While being largely ignored in elevational gradient studies, the results show the importance of small scale topography (here: topography within elevational belts) for patterns of elevational diversity. Sites on ridges strongly vary in several environmental parameters from sites in valleys: They have less nutrient-rich soils, a thicker humus layer, a lower productivity, and a higher C:N ratio of foliage. The forests on ridges have a different plant species composition from those in valleys, a lower and more open canopy layer, lower biomass and lower diversity of tree species (Homeier et al., 2010; Werner and Homeier, 2015). Differences in soil nutrient availability influence leaf quality and concentrations of phenolics (Werner and Homeier, 2015) which likely affect herbivore diversity. While there is insufficient data to directly relate leaf beetle diversity to the variation in characteristics of the vegetation, this study underscores the value of considering the small scale topography in studies of elevational diversity. Differences in the kind of sampled habitats among studies may explain some of the variation in patterns of elevational diversity found for single taxa in meta-analyses (McCain and Grytnes, 2010). Moreover, as some environmental variables vary more strongly between the habitats of one elevational level than others (primary productivity and plant species richness strongly differ between ridge and valley habitats while average temperature or O_{2} concentration remain similar), incorporating the spatial habitat heterogeneity within elevational belts in the design of macroecological studies may allow more clear tests of the hypotheses commonly used to explain diversity gradients.

Habitat-differentiation of communities and the influence on patterns of elevational γ-diversity

Mid-elevational peaks of diversity as found for the pooled data in the present study are frequently reported in the ecological literature (Nogués-Bravo et al., 2008; Rahbek, 2005), in particular also for beetles on tropical mountains (Escobar et al., 2005; Furth, 2009; Sánchez-Reyes et al., 2014). In most montane regions, these patterns are in conflict with major climate-based hypotheses to explain large scale diversity gradients, e.g. the temperature hypothesis, the productivity hypothesis, or the area hypothesis (Brown et al., 2004; Currie et al., 2004; Mittelbach et al., 2007; Rosenzweig, 1995). Like in most other montane areas, in the study region tempera-
ture, primary productivity, and area decrease with elevation (Homeier et al., 2010; Körner, 2000; Moser et al., 2007; Wolf et al., 2011) suggesting monotonous positive correlations of elevation and species richness. Also plant species richness, a variable often positively correlated to herbivorous insect diversity is declining with elevation in the study area (Homeier et al., 2010, 2008) and cannot explain the mid-elevation peak pattern of species richness found at local scales.

By using leaf beetle diversity from two different forest habitats at multiple sites the study shows that mid-elevational peak patterns may disappear when increasing the spatial scale of diversity from local alpha-diversity to regional gamma-diversity. Study sites in the middle of the elevational gradient exhibited highest levels of species richness at local scales but showed lowest rates of species turnover between sites. It is widely recognized that spatial scale is a crucial factor influencing species richness patterns along environmental gradients (Gaston, 2000; McCoy, 1990; Nogués-Bravo et al., 2008; Rahbek, 2005). Local assemblage structure is inseparable from the regional context (Gaston, 2000), and it has been shown that, similar to the present study, the same data can show different diversity patterns on a local than on a regional level (Black and Prince, 1983; Chase and Leibold, 2002).

As beta-diversity often increases with increasing productivity, rates of species turnover were expected to decrease with elevation (Bai et al., 2007; Bonn et al., 2004; Chase and Leibold, 2002; Evans et al., 2008; Harrison et al., 2006). However, this prediction could only be confirmed for the two lower elevational levels while species turnover at 3000 m a.s.l. was nearly as high as at 1000 m a.s.l. Interestingly, at 1000 m a.s.l., the high turnover is related to a clear differentiation of leaf beetle communities between forests on ridge crests and in valleys. This habitat differentiation is most pronounced at 1000 m a.s.l., less strong but still significant at 2000 m a.s.l. (where turnover is generally lower), whereas absent at 3000 m a.s.l. The larger and more productive lower elevations seem to offer more opportunities for specialization (More Specialization Hypothesis; Srivastava and Lawton (1998)) and possibly allow habitat differentiation of herbivore communities into valley and ridge forest habitats.

However, in general turnover rates were very high between elevations with only a small overlap in leaf beetle community composition between 1000 and 2000 m a.s.l. and no species overlap at all with 3000 m a.s.l.: Although the linear distance between each of the three areas is only $\sim 20 \mathrm{~km}$, there are striking differences in climate and vegetation (pers. observ.). The turnover of tropical insect communities along elevational gradients is generally rapid (Brühl et al., 1999; Ghalambor et al., 2006; Janzen, 1967) and there are often large differences in insect communities in considerably smaller ranges than 1000 m (e.g. Olson (1994); Smith et al. (2014)).

It should be emphasized that spatial issues are not considered to be of sole importance for explaining mid-elevational peak patterns. In some mountain regions, land area and/or productivity exhibit hump-shaped distributions along the elevational gradient and reflect patterns in species diversity (Brown, 2001; McCain and Grytnes, 2010; Sanders, 2002). Whereas the mid-domain effect has been rejected as a general explanation of mid-elevational peak pattern it may, nevertheless, ex-

Chapter 4. Habitat specialization and its influence on elevational

plain patterns of diversity in some taxa, particularly in those with large elevational ranges (Mid-domain effect; Brehm et al. (2007); Colwell and Lees (2000); Colwell et al. (2004)). Nevertheless, the high proportion of mid-elevational peak patterns in the ecological literature and the fact that they are often incongruent to major biogeographic hypotheses for explaining diversity gradients calls for further general explanations and issues of spatial scale could be an important factor to consider in future analyses. In this respect, the mismatch between a high proportion of humpshaped diversity patterns reported from elevational gradient studies and a near lack of those patterns along latitudinal gradients may be due to systematic differences in the spatial scale of analyses. While most studies along elevational gradients are conducted at local scales and measure alpha-diversity, a high percentage of latitudinal gradient studies measure regional richness in large quadrats (often $>100 \mathrm{~km}^{2}$), i.e. in areas which incorporate multiple habitats. If species turnover among habitats varies along environmental gradients (or the diversity of habitats) this may cause systematic differences in diversity patterns of studies conducted at local versus regional scales.

Haplotype-diversity

In contrast to the expectations, the haplotype-diversity of species did not differ significantly between elevational levels. Species populations at higher elevations were expected to be less genetically diverse because limited resources and a harsher climate with extreme climatic events may lead to smaller and temporally less stable populations (Ehinger et al., 2002; Frankham, 1996; Gilles et al., 2007; Shama et al., 2011; Srivastava and Lawton, 1998). Population bottlenecks or local extinction with subsequent immigration from other mountain areas were expected to cause a lower diversity of haplotypes within populations (Glenn et al., 1999; Hoelzel et al., 2002; Nei et al., 1975; Weber et al., 2004). In contrast, the warm and favourable climatic conditions at low elevations were assumed to lead to larger and more stable populations holding higher levels of genetic diversity over time. In addition, higher metabolic rates and related nucleotide substitutions in warmer climates may foster higher levels of genetic diversity (Allen et al., 2006; Rohde, 1992). Indeed, elevational gradients in genetic diversity have been reported e.g. for species of shrews (Ehinger et al., 2002) and salamanders (Giordano et al., 2007).

An explanation for the lack of any systematic differences in haplotype diversity among elevational levels could be the high connectivity between the Andean mountains regions. The large and connected high elevation habitats may facilitate the sustenance of large and stable populations with high levels of genetic diversity.

It is also possible that high altitude communities contain generalist rather than specialist species that are less susceptible to adverse environmental influences and have a lower risk of extinction as they can adapt to the harsh conditions at higher elevations (Packer et al., 2005). For example, it has been shown that alpine Chrysomelidae species show a more broadly oligophagous or polyphagous feeding behaviour (Lopatin, 1996). An indication for this could be the slightly higher haplotypediversity of species at 3000 m a.s.l. that may indicate the prevalence of generalist
species. It has been shown that specialist species have a reduced genetic variation (due to a smaller effective population size) (Kelley et al., 2000; Packer et al., 2005; Zayed et al., 2005). This agrees with the notion that usually low productivity communities are dominated by generalists as some plant resources are too scarce to support viable specialist populations (Srivastava and Lawton, 1998). The finding that habitat specialization in this study is most pronounced at 1000 m a.s.l. and absent at 3000 m a.s.l. is in line with the idea of a higher prevalence of generalist species at higher elevations, too.

Methodological considerations

All results have been revealed in a similar way by morphospecies- and MOTU-based analyses. The total number of found species is $\sim 8 \%$ higher for MOTUs compared to morphospecies. This may be explained by species indiscernible by the morphospecies approach (cryptic diversity). Possibly, integration of DNA barcoding into biodiversity studies can prevent an underestimation of diversity (Hebert et al., 2004; Witt et al., 2006). Due to a high number of uniques in the data set, cryptic diversity has a rather small influence on species number as morphospecies found only once cannot be split by the molecular approach. This is enhanced by the study design, analysing only one specimen per morphospecies per sample. However, communities with many species but a low abundance of each individual species and many rare species are typical for tropical insects. It has been shown that in such data sets and on a geographically restricted level, different methods of morphological and molecular species delimitation can lead to very similar results (Chapter 6).

DNA barcoding is often integrated in biodiversity studies not only to consider cryptic diversity but also to provide additional information at the infra-specific level (García-Lopez et al., 2013; Monaghan et al., 2009; Papadopoulou et al., 2011). It is especially useful for a rapid analysis of unknown tropical insect faunas where taxonomic identification is still missing and where it usually reveals diversity patterns in a similar way as morphological approaches (Smith et al., 2005; Tänzler et al., 2012).

4.5 Conclusions

First, the study highlights the complexity of insect communities in tropical montane regions that are so far severely understudied. It confirms the findings by Werner and Homeier (2015) who showed the relevance of topographic positions because contrasting biotic and abiotic conditions found along short topographical gradients are an important source of beta-diversity in tropical mountains and should therefore be considered in the sampling design. Furthermore, the study affirms the importance of spatial scale for the analysis of diversity patterns along elevational gradients.

Second, the study shows the suitability of DNA barcoding to examine even complex ecological questions. It is a practical example demonstrating the useful implementation of routine DNA barcoding for analysis of biodiversity patterns and their ecological implications. It is a further example showing that barcoding goes beyond
the mere function of species discovery and identification. Patterns of community composition and turnover can be analysed and interpreted even without taxonomic information.

Finally, the study suggests that despite a strong loss of diversity of local communities at the species level, genetic diversity within species may remain relatively stable along the elevational gradient. It would be interesting to use the DNA barcode data for further phylogenetic measures of the leaf beetle community structure along the elevational gradient, such as phylogenetic diversity (PD) or nearest taxon index (NTI) (Brehm et al., 2013; Smith et al., 2014).

Comparison of morphological and molecular species delimitation

 approaches
5.1 Introduction

In studies on biodiversity of tropical arthropods that are hyperdiverse and extremely abundant (although most individual species taken by themselves are not abundant) often many thousand individuals may accrue (see summary in Coddington et al. (2009)). The sheer mass of individuals and the high species richness usually prevents thorough taxonomic analyses as this is very time consuming. Especially in the light of the fast rates of habitat conversion and destruction threatening particularly ecosystems with the highest biodiversity (e.g. tropical rainforests; Corlett and Primack (2011); Laurance and Peres (2006); Primack (2014)), less time intensive methods of assessing this diversity are urgently required.

Difficult access to taxonomic expertise also impedes taxonomic identification: In large taxa, a single taxonomist is specialized only on certain subgroups and usually is not able to identify all species of a set of samples. For example, in Neotropical Chrysomelidae, the taxonomic expertise for the whole family is covered by the sum of experts for certain subfamilies (e.g. Borowiec (1998); Chaboo (2007); Chaboo and Borowiec (2003); Flowers (2004a,b,c); Flowers and Chaboo (2009); Furth and Savini (1996); Furth (2007); Staines (2002); Windsor et al. (1995)). Additionally, identification literature and keys for many taxa are incomplete, old, or not existing at all. In Neotropical Chrysomelidae, identification keys are scarce and exist only for certain subgroups or regions and are often not at species-level (Borowiec and Świętojańska, 2014; Furth, 1992; Staines, 2002, 2013, 2009). There is also a lack of easily accessible and reliably identified reference collections (Furth et al., 2003).

Due to such adverse circumstances, for most studies on tropical arthropod diversity, working units as surrogate for species serve well while taxonomic identification and description of new species has to be postponed. Traditionally, morphospecies are used as working units, but these have been recently complemented by molecular working units.

Morphospecies in the broad sense are species discerned with morphology-based taxonomic techniques but not necessarily named (Basset et al., 2008, 2004; Oliver and Beattie, 1996). The distinction of morphospecies may be performed on different levels of preciseness, for example, dissection of genitalia might be included. However,
usually the term morphospecies refers to species-like groups of specimens sorted more superficially on the basis of external morphology and without the use of identification keys (Krell, 2004; Oliver and Beattie, 1996; Pik et al., 1999). In this study the term 'morphospecies' is used in this sense.

The morphospecies approach is sometimes used synonymously with parataxonomy. The term parataxonomy was originally coined by Janzen (Janzen, 1991, 2004; Janzen et al., 1993). It described a concept of training local people to support inventorying and monitoring tropical biodiversity and so improve the flow of primary information on tropical biodiversity (Basset et al., 2004). Beside preliminary sorting into morphospecies, the expertise of the trained parataxonomists comprises collecting and preparing specimens and databasing the associated information (Basset et al., 2004). Parataxonomy is widely used in terrestrial arthropod research (Basset et al., 2008; Longino and Colwell, 1997; Novotny et al., 2002a). However, the term parataxonomist may also be applied to local collectors, students, professional zoologists and botanists focusing on ecological studies, or taxonomists operating outside of their range of expertise (Basset et al., 2004).

The morphospecies approach is widely used and is a standard method in studies on tropical arthropod biodiversity (Basset et al., 2004; Springate and Basset, 2004; Wagner, 2000). It is not only applied to study tropical rainforest arthropods but also other taxa that are extremely abundant, speciose, and/or morphologically hard to identify (e.g. terrestrial nematods: Bernard and Schmitt (2005); Lawton et al. (1998), or benthic macroinvertebrates: Costa and Melo (2008); Duncan and Brusven (1985)). However, some authors criticize a low accuracy and the problem of lacking comparability and replicability (Krell, 2004).

Indeed, the superficial morphospecies sorting relying only on external characters (as used in this study) has its shortcomings. Morphospecies sorting may be confounded by cryptic diversity, sexual dimorphism, polymorphism, or juvenile forms. This may result into splittings of morphospecies into two or more species and lumping of morphospecies into a species. Furthermore, for certain organisms, even morphospecies sorting might be difficult. These may include premature stages, very small organisms (meio- and micro-fauna, zooplankton) and species only distinguishable by subtle or geographically variable morphological characters (Blaxter et al., 2004; Bucklin et al., 2007; Decaëns et al., 2013; Plaisance et al., 2009; Vences et al., 2005).

In such cases, species-like working units based on molecular characters are a useful tool. The DNA barcode marker cytochrome c oxidase I (COI) has been established as a species-specific identification marker (Hebert et al., 2003a). According to differences in the sequences, specimens can be classified into molecular operational taxonomic units (MOTUs; Floyd et al. (2002)). There exist a variety of methods to derive species limits from DNA sequence data, several methods are described in Chapter 6.

The barcode/MOTU approach is comparable between studies and sites (Floyd et al., 2002) whereas morphospecies at this point can be flawed (Krell, 2004). However, both methods should be followed by a thorough taxonomic analysis with de-
scription and naming to allow connection of the species-specific facts with existing literature.

Neotropical Chrysomelidae are a very diverse and species-rich taxon. Due to the lack of data and/or difficult access to taxonomic information, an approach with rapid identification of (morphological and molecular) working units is standing to reason. As leaf beetles are extremely diverse, very abundant, feature many small species and species where cryptic diversity, colour-polymorphism or sexual dimorphism occurs, it is advisable to complement the widely used morphospecies approach with a DNA barcode approach.

5.2 Methods

Chrysomelidae were sampled between November 2010 and June 2012 in parts of Podocarpus National Park and RBSF, Ecuador (detailed information about the study area is given in Chapter 2.1). Beetles were mainly collected by sweep netting, beating, and hand-collection of the lower vegetation. Additionally, light-, Malaise-, flight interception-, and pitfall traps have been used (detailed information about sampling methods and design is given in Chapters 2.2 and 7). Laboratory analyses and handling of the specimens are described in Chapters 2.3 and 2.4.

The dry mounted specimens were sorted into morphospecies. Classification into morphospecies was revised and verified by Dr. Thomas Wagner who is an experienced taxonomist for Chrysomelidae with afrotropical Galerucinae being his area of expertise (see e.g. Wagner (2004, 2007a,b); Wagner and Kurtscheid (2005)). Only ectoskeletal characters were considered, without the use of dissected parts and without identification literature. Characters for morphospecies delimitation are shape of head, pronotum, and total body, surface structures, and hairs or spines. Body size or colours may be used carefully considering that they may vary e.g. due to recent ecdysis (more information about the morphospecies concept is given in the introduction of this chapter). Morphospecies received a subfamily name and a number. Hispinae and Cassidinae are treated as separate subfamilies, likewise Alticinae and Galerucinae.

For all specimens for which a barcode sequence could be obtained (1475 specimens, data set 1b), a statistical parsimony analysis as implemented in TCS v.1.21 (95% connection limit) was used to group sequences into separate haplotype networks (more detailed information about statistical parsimony analysis is given in Chapters 2.5 and 6). The haplotype networks are termed MOTUs hereafter. All 1475 specimens that were assigned to a morphospecies and a MOTU were included in the analysis of congruence between both methods.

A Neighbor-Joining-Tree (NJ-Tree; Saitou and Nei (1987)) based on a MUSCLE alignment (Edgar, 2004) of all 1475 sequences was constructed in Geneious version 7.1.5 (Biomatters Ltd.; http://www.geneious.com/). Figures 5.2-5.5, 5.9, $5.10,5.13,5.14$, and 5.15 showing splittings and lumpings in certain groups are excerpts from the NJ-Tree of all 1475 specimens. Figure 5.1 shows a NJ-Tree of
representatives of all MOTUs (493 sequences).

5.3 Results

The barcode approach with species delimitation using haplotype networks estimated ten percent higher species numbers compared to the morphospecies approach (448 morphospecies, 493 MOTUs). This discrepancy arose due to splittings of morphospecies into two or more MOTUs or lumpings of two or more morphospecies (respectively parts of them) into one MOTU. The occurrence of more splittings than lumpings resulted in a higher number of MOTUs than morphospecies. The similar numbers of morphospecies and MOTUs arose partly due to the fact that splittings and lumpings compensated one another. However, the number of perfect matches was comparatively low: 63% of all morphospecies corresponded exactly with one MOTU, i.e. contained specimens of only one MOTU and at the same time all of them. Five percent of all morphospecies were both split and some specimens were placed into other morphospecies at the same time. An overview of all splittings and lumpings is given in Figure 5.1.

In most cases, individuals of two (76% of all lumpings) or three (16%) morphospecies were united into one MOTU, in four percent four, respectively five morphospecies were fused. Similarly, most splittings divided a morphospecies into two (69%) or three (21%) MOTUs. In eight percent of all cases, a morphospecies was split into four MOTUs and only once a morphospecies was split into five (1%) or six MOTUs (1%).

There were slight differences between the five most abundant subfamilies. Whereas in Alticinae and Galerucinae MOTUs estimated species number 14% higher compared to morphospecies, in Hispinae it was only five percent and in Cassidinae splittings and lumpings compensated resulting in an equal number of MOTUs and morphospecies. In Eumolpinae there were more lumpings than splittings resulting in a lower estimation of species number by MOTUs by nine percent. Morphospecies that were split and lumped at the same time occurred only in Alticinae (19 cases) and Galerucinae (three cases). The proportion of perfect morphospecies (matching exactly with one MOTU) was highest in Hispinae (95% of all morphospecies). It was considerably lower in Cassidinae (67%), Galerucinae (65%), Alticinae (59%), and Eumolpinae (54\%).

Despite a comparatively low 'accuracy' relative to morphospecies, Eumolpinae seemed to be one of the less challenging subfamilies beside Cassidinae and Hispinae. Only two or three complete morphospecies were lumped into one MOTU or morphospecies were split into two or three MOTUs. No morphospecies was split and lumped at the same time. The most challenging subfamilies were Galerucinae and especially Alticinae. The difficulties most probably arose due to the large number of specimens and species. Furthermore, the Alticinae in the data set contained many very small species $(<5 \mathrm{~mm})$ and many species looking similar (e.g. Alticinae spp. 097, 197, 198, 199, 253, and 254) exacerbating morphospecies sorting.

Cassidinae_sp_020 1

Cassidinae_sp_021 1
Alticinae_-sp_208

Chapter 5. Comparison of morphological and molecular species

 $=$
2.
いいいエロー・
Alticinae_sp_088
Allicinae_sp_110
Alticinae_sp_017 1 Alticinae_sp_048 1 Alticinae_sp_054 1 Alticinae_sp_203

Figure 5.1: Overview of splittings and lumpings. NJ-Tree with ultrametric branch lengths of all MOTUs. Each MOTU is represented by one sequence. Branch labels indicate name/number of the MOTU. Morphospecies names behind the MOTU name represent the one or more morphospecies the specimens of the MOTU belong to and the numbers how many specimens of the respective morphospecies there are. Coloured bars indicate splitting of a morphospecies into several MOTUs; morphospecies split into MOTUs next to each other are indicated by blue bars.

Figure 5.2: Splittings and lumpings within a group of several small alticine morphospecies. Coloured bars behind morphospecies names indicate splitting of the morphospecies into more than one MOTU; morphospecies that are lumped into one MOTU are bordered by a coloured box. Abbreviations behind the individuals indicate the sampling area $(B=$ Bombuscaro, $E=E C S F)$, respectively the plot where the specimen was collected. Information on collection plots is given in Tab. B. 1 (Appendix).

The case of Alticinae spp. 097, 197, 198, 199, 253, and 254 is an example where morphospecies were both split and lumped as well (Fig. 5.2). Each of them (except Alticinae sp. 199) was split into two or three MOTUs and also lumped (two, respectively four morphospecies lumped into one MOTU). The morphospecies were completely resorted into six MOTUs. The six morphospecies consisted of very small (<5 mm), black specimens all looking very much alike, making morphospecies sorting very confounding. Another example for morphospecies that were split and lumped (Alticinae sp. 149) is given below ('Precarious taxa').

Two hundred and six morphospecies occurred only once in the data set (uniques). One hundred sixty-five of them were perfect morphospecies, 41 were lumped. Certainly, uniques cannot be split into two or more MOTUs. Therefore, for experimental reasons, uniques have been removed from the data set and again splittings and lumpings were counted. Estimation of species number by MOTUs increased to 33% higher than morphospecies. The number of splittings remained equal, but the number of lumpings decreased in this data set. Not only the agreement between MOTU and morphospecies number decreased, also the proportion of perfect morphospecies decreased (52%).

Perfect morphospecies were mostly uniques (59\%). However, 39% occurred with two to ten individuals and two percent with even more than ten specimens. Whereas in the second most frequent perfect morphospecies (Galerucinae sp. 034, 19 individuals) all individuals looked very similar, the individuals of the most frequent one (Alticinae sp. 087, 21 individuals) varied in colour and size.

Splittings of morphospecies

Figure 5.3: Splitting of the morphospecies Galerucinae sp. 028 into three MOTUs. Abbreviations behind the individuals indicate the sampling area ($\mathrm{B}=$ Bombuscaro), respectively the plot where the specimen was collected.

An example for splitting of morphospecies by the molecular approach is Galerucinae sp. 028 that was split into three MOTUs (Fig. 5.3). Galerucinae sp. 029 was even split into four MOTUs (Fig. 5.4). All specimens of Galerucinae sp. 029 show a conspicuous bicoloured pattern (black and yellow) that is shared by Galerucinae spp. 021, 025, and 110 (it is as well found in Alticinae sp. 163, see Fig. 5.13). The four morphospecies formed a monophyletic cluster in the molecular analyses.

Figure 5.4: Splitting of the morphospecies Galerucinae sp. 029 into four MOTUs. Abbreviations behind the individuals indicate the sampling area ($\mathrm{B}=$ Bombuscaro, $\mathrm{E}=\mathrm{ECSF}$), respectively the plot where the specimen was collected.

Alticinae spp. 051, 052, and 152 formed a monophyletic cluster with another orange (Alticinae sp. 056), a fawn (Alticinae sp. 213), and three black (Alticinae spp. $063,103,194)$ morphospecies (Fig. 5.5). They were split into six, four, respectively two MOTUs, however other morphospecies were not lumped into these groups.

Figure 5.5: Splittings within a group of several orange alticine morphospecies. Coloured bars behind morphospecies names indicate splitting of the morphospecies into more than one MOTU. Abbreviations behind the individuals indicate the sampling area (B $=$ Bombuscaro, $\mathrm{E}=\mathrm{ECSF}, \mathrm{C}=$ Cajanuma), respectively the plot where the specimen was collected.

Lumpings of morphospecies

Alticinae spp. 017, 048, 054, 071, and 203 that all have different colours belong to the same MOTU (Fig. 5.6). Likewise, Eumolpinae spp. 002, 005, and 014 are lumped by the molecular approach (Fig. 5.7).

Figure 5.6: Five alticine species with different colours that belong to the same MOTU. From left to right: Alticinae spp. 017, 048, 054, 071, and 203.

Figure 5.7: Three eumolpine species with different colours that belong to the same MOTU. From left to right: Eumolpinae spp. 014, 002, 002, and 005.

Galerucinae spp. $051,052,055,056$, and 087 show four different colourations but belong to the same MOTU. Also Galerucinae spp. 015 and 079 with two different patterns belong to one MOTU (Fig. 5.8A, B). Galerucinae spp. 065 and 090 that have different colour patterns belong to the same MOTU but within the MOTU the specimens with the respective pattern clustered (Fig. 5.9). Galerucinae sp. 065 (two individuals) occurs at 2000 m , and Galerucinae sp. 090 (two individuals) at 1000 m . Also the specimens of Galerucinae spp. 092, 024, and 059 belong to the same MOTU but form two distinct clusters (Galerucinae sp. 092 distinct from Galerucinae spp. 024 and 059) (Fig. 5.10). On the other hand, specimens with different colours or patterns may even share the same haplotype e.g. Galerucinae spp. 070 and 084 (Fig. 5.11).

B

Figure 5.8: Galerucine morphospecies with different colourations that belong to the same MOTU. A: Galerucinae spp. 052, 055, 056, and 087 (from left to right). B: Galerucinae sp. 015 (left), Galerucinae sp. 079 (right).

Figure 5.9: Two galerucine morphospecies with two different patterns that were found at different elevational levels cluster in the same MOTU.

Figure 5.10: Specimens of three galerucine morphospecies form two distinct clusters within one MOTU.

Figure 5.11: Two galerucine specimens show different colouration despite of sharing the same haplotype. Specimen 0463_Galerucinae_sp_070 (left), specimen 3038_Galerucinae_sp_084 (right).

Precarious taxa

Several cases of discrepancy between morphospecies and MOTUs were found in a certain group of large Alticinae $(\sim 5-11 \mathrm{~mm})$ characterized by a pronotum with a broad margin (Fig. 5.13). Many of them show striking patterns with a partly broad variance between individuals. The group contains morphospecies that were split and lumped at the same time (Alticinae sp. 149) and several cases of colour dimorphism (Alticinae spp. 002, 007, and 218; Alticinae spp. 005 and 163; Alticinae spp. 222 and 155; Alticinae spp. 037 and 039). Noteworthy are the patterns of Alticinae spp. 163, 155 , and 222: They are very similar to those of certain galerucine species (Galerucinae sp. 029, respectively Galerucinae spp. 005 and 011; see Figs. 5.4 and 5.14). Alticinae sp. 155 and Galerucinae sp. 005 share an eye-spot pattern. It is to note that an eye-like pattern is also found in some cassidines: Cassidinae spp. 009, 010, and 011 have an eye-like appearance in their general habitus (Fig. 5.12).

Figure 5.12: Three cassidine species with an eye-like appearance in their habitus. From left to right: Cassidinae spp. 009, 010, and 011.

A challenging group concerning morphospecies sorting was a group of Galerucinae most probably belonging to the genus Diabrotica. They have a similar bodyshape and a variety of striking colours and patterns confounding morphospecies sorting (Fig. 5.14). Many splittings occurred in a group of slender Galerucinae that are all dark blue or green and have an orange to yellow pronotum and head (only Galerucinae sp. 032 has a black pronotum and head) (Fig. 5.15). Several of them have also orange legs and antennae.

Figure 5.13: Splittings and lumpings within a group of several large alticine morphospecies. Coloured bars behind morphospecies names indicate splitting of the morphospecies into more than one MOTU; morphospecies that are lumped into one MOTU are bordered by a coloured box. Abbreviations behind the individuals indicate the sampling area $(\mathrm{B}=$ Bombuscaro, $\mathrm{E}=\mathrm{ECSF}, \mathrm{C}=$ Cajanuma), respectively the plot where the specimen was collected.

Figure 5.14: Splittings and lumpings within a group of galerucine morphospecies, presumptively diabroticites. Coloured bars behind morphospecies names indicate splitting of the morphospecies into more than one MOTU; morphospecies that are lumped into one MOTU are bordered by a coloured box. Abbreviations behind the individuals indicate the sampling area ($\mathrm{B}=$ Bombuscaro, $\mathrm{E}=\mathrm{ECSF}, \mathrm{C}=$ Cajanuma), respectively the plot where the specimen was collected.

Figure 5.15: Splittings and lumpings within a group of several galerucine morphospecies that are dark blue or green and have an orange to yellow pronotum and head. Coloured bars behind morphospecies names indicate splitting of the morphospecies into more than one MOTU; morphospecies that are lumped into one MOTU are bordered by a coloured box. Abbreviations behind the individuals indicate the sampling area ($\mathrm{B}=$ Bombuscaro, $\mathrm{E}=\mathrm{ECSF}, \mathrm{C}=$ Cajanuma), respectively the plot where the specimen was collected.

5.4 Discussion

Splittings of morphospecies

The splitting of morphospecies into two or more MOTUs may arise due to several reasons: cryptic diversity, too liberal morphospecies sorting / a too restrictive molecular approach, mistakes in morphospecies sorting, and mistakes during sequencing or sequence analyses.

Cryptic diversity: Cryptic species are two or more distinct species that have been classified as a single species because they are at least superficially morphologically indistinguishable (Bickford et al., 2007; Pfenninger and Schwenk, 2007). In some taxa, cryptic species can be discriminated by differences in mating pheromones or behaviour, e.g. mating calls (Haruyama et al., 2008), however, the increasing availability of DNA sequence data has become a valuable tool for detecting cryptic diversity fuelling research on this phenomenon (Bickford et al., 2007; Hebert et al., 2004). Nowadays, a high proportion of newly described species is being discovered in cryptic complexes (Ceballos and Ehrlich, 2009). Cryptic diversity is widely distributed in most types of organisms and habitats (Bickford et al., 2007) and is also found in Chrysomelidae (Laroche et al., 1996; McKenna and Farrell, 2005; Takano et al., 2011). The unexpected high genetic diversity within species has implications for estimates of biodiversity and potentially for future conservation decisions (Bickford et al., 2007; Witt et al., 2006). In herbivorous insects, cryptic diversity may concern host plants (Blair et al., 2005).

Galerucinae sp. 028 that was split into three MOTUs (Fig. 5.3) might be an example for cryptic diversity, likewise Galerucinae sp. 029 that was split into four MOTUs forming a monophyletic cluster (Fig. 5.4). Cryptic diversity is also found within the orange Alticinae (spp. 051, 052, and 152) that are split into six, four, respectively two MOTUs (Fig. 5.5). Their lack of conspicuous external features seems to hamper the distinction of species.

In most cases of splittings, the resulting MOTUs were next to each other in the NJ-Tree or at least very close, sometimes containing also other morphospecies. In Eumolpinae, Cassidinae, Hispinae, and Chrysomelinae all split morphospecies were split into MOTUs next to each. They are probably sister species. So, usually it seemed to be closely related species that have not been separated by the morphospecies sorting (e.g. Eumolpinae sp. 007, Galerucinae sp. 038, Hispinae sp. 025).

Eumolpinae sp. 024 was split into two MOTUs, one of which (23 individuals) occurred only at Bombuscaro, the other one (two individuals) at ECSF. It is an example for very similar species or cryptic species that occur at different altitudinal levels. They are possibly two recently ecologically diverged species that do not yet have differentiated morphologically.

The term cryptic diversity / cryptic species as used in this study acknowledges that there might be morphological differences but they were not recognized during the applied superficial morphospecies separation. A further taxonomic analysis and dissection of genitalia would possibly resolve those cases.

Too liberal morphospecies sorting / a too restrictive molecular approach: Characters of different but related species might be taken as intraspecific variation. Sequence data can help to discover the real significance of slight morphological variation. On the other hand, the molecular species delimitation methods could be too restrictive and overestimate sequence differences, e.g. the genetic distance in COI could be within the range of intraspecific variance. With the applied approach it cannot be told whether the morphospecies or the MOTUs represent true species. The use of another marker could give more information.

Mistakes in morphospecies sorting: In this case, specimens have been erroneously grouped into the same morphospecies because differences have not been noticed.

Mistakes during sequencing or sequence analyses: Contaminations of DNA-samples cannot be excluded and due to the high number of analysed specimens, the risk of erroneous assignment or denotation of sequences, specimens, and names is given, too. However, all cases with hints at such errors (e.g. conspicuously different individuals sharing the same haplotype) have been rigorously excluded prior to analyses.

Lumpings of morphospecies

There are several reasons for lumpings of morphospecies into one MOTU: sexual dimorphism, intraspecific morphological variability / polymorphism, too strict morphospecies sorting / insufficient resolution of the molecular approach, mistakes in morphospecies sorting, mistakes during sequencing or sequence analyses. Sexual dimorphism and intraspecific morphological variability / polymorphism may cause erroneous sorting of conspecific individuals into different morphospecies. The molecular method will unite those morphospecies into one MOTU.

Sexual dimorphism: Morphological differences between males and females occur in many animal species (Emlen and Nijhout, 2000; Lande, 1980; Poissant et al., 2010; Shine, 1989). Especially a difference in body size (sexual size dimorphism) is a widespread phenomenon (Fairbairn, 2005; Stillwell et al., 2010).

Beetles contain a large number and a great diversity of sexually dimorphic species (Kawano, 2006) ranging from inconspicuous dimorphism to highly developed male traits such as the horns of rhinoceros beetles (Scarabaeidae: Dynastini), the enlarged mandibles of Lucanidae (e.g. Cyclommatus elaphus Gestro) or some Cerambycidae (e.g. Macrodontia cervicornis L.), or elongated legs of e.g. long-arm beetles (Scarabaeidae: Euchirinae) (Emlen and Nijhout, 2000; Kawano, 2006).

In Chrysomelidae, there are several forms of sexual dimorphism: Mandibular sexual dimorphism is frequent in leaf beetles (Reid and Beatson, 2013), as well as tarsal specialization (Hammack and French, 2007; Voigt et al., 2008) or modified antennae (Mohamedsaid, 2004). Modified male antennal segments that occur especially in Galerucinae are larger in size and differ from the usual shape of unmodified antennae (Maulik, 1932; Mohamedsaid, 2004). Galerucinae sp. 022 could be an ex-

Figure 5.16: Different shape of antennae in two individuals of Galerucinae sp. 022.
ample for sexual dimorphic antennae (Fig. 5.16). Generally, in Galerucinae strongly expressed sexual dimorphism is common with abundant secondary sexual modifications of head, thorax, abdomen and appendages (Mohamedsaid and Furth, 2011; Reid and Beatson, 2013). In contrast, in some subfamilies (e.g. Criocerinae) there is little external sexual dimorphism (Reid and Beatson, 2013).

Certain male modifications in Cassidinae s.l. are associated with behaviour: Acromis sparsa Boheman males use elongated corners of the elytra to flip over rivals (Windsor, 1987) and in several hispoid genera a head elongation is used for dislodging rival males (Beaman (1980), cited in Chaboo (2007); Reid and Beatson (2013)).

The sexual dimorphism in Chrysomelidae is often subtle, not affecting the characters considered for morphospecies separation (e.g. mandibles: Reid and Beatson (2013); tarsi: Hammack and French (2007)). Therefore it is less likely to affect morphospecies sorting in this study.

Polymorphism: Phenotypic plasticity (the ability of a single genotype to produce more than one alternative form of morphology, physiological state, and/or behaviour in response to environmental conditions; West-Eberhard (1989)) and emerging from this polymorphism (existence of morphologically distinct alternatives in a population; West-Eberhard (1989)) are quite common in insects and also Chrysomelidae (Verma and Kalaichelvan, 2004; Whitman and Agrawal, 2009).

Often, polymorphism concerns colouring and patterns. As in many other insect groups, intraspecific variation in elytral colour pattern is considerable in Chrysomelidae (Verdyck et al., 1996) and although most species of leaf beetles are not polymorphic for body colour and elytral markings, some of them show different morphs (Petitpierre, 1988).

Whereas the frequency of the two colour forms in Chrysolina aurichalcea MANNERHEIM correlates with altitude in mountainous areas (Fujiyama, 1979; Fujiyama

Chapter 5. Comparison of morphological and molecular species
and Arimoto, 1988), the colour pattern polymorphism in Chelymorpha cribraria Fabricius (Cassidinae) with eight different phenotypes is explained by mimicry (Vasconcellos-Neto, 1988). The case of Galerucinae spp. 065 and 090 that have different colour patterns and form two distinct clusters occurring at different elevational levels (Fig. 5.9) does indicate ecological speciation.

Another case where specimens belonging to the same MOTU where assigned into different morphospecies due to colour-polymorphism concerns Alticinae spp. $017,048,054,071$, and 203. Due to the different colours of the specimens, the morphological similarity that indicates belonging to the same morphospecies has been overlooked (Fig. 5.6). In a large data set with hundreds of species it is likely to overlook similarities. Barcoding may reveal those similarities that then can be confirmed by a direct comparison of specimens or morphospecies to preclude errors or contaminations. Another example where specimens due to colour-polymorphism are sorted into erroneous morphospecies that are lumped by the molecular approach are Eumolpinae spp. 002, 005, and 014 (Fig. 5.7). Other examples of colour-polymorphism confounding morphospecies sorting are Galerucinae spp. 051, 052, 055, 056, and 087 that show three different colourations but belong to the same MOTU and Galerucinae spp. 015 and 079 with two different patterns (Fig. 5.8A, B).

From published literature other known prominent cases of colour polymorphisms in Chrysomelidae are e.g. Chrysomela lapponica L. (Gross et al., 2004; Zvereva et al., 2002), Plateumaris sericea L. (Kurachi et al., 2002), Phyllotreta cruciferae Goeze (Verdyck et al., 1996), and Chrysophtharta agricola Chapuis (Nahrung and Allen, 2005) (Nie et al., 2012). Also the Colorado potato beetle Leptinotarsa decemlineata SAY shows polymorphism (Verma and Kalaichelvan, 2004).

It is noteworthy that beside colour polymorphism, also the phenomenon of colour change has been observed in Chrysomelidae: Maybe unique among insects, adult cassidines of certain species are able to reversibly change their structural, metallic colours within minutes (Barrows, 1979; Manson, 1929). This behaviour was observed during mating or was caused by disturbance in Charidotella ($=$ Metriona) bicolor Fabricius (Barrows, 1979). There is also colour changing in phases during the life cycle, e.g. in Physonotha helianthi Randall (Cassidinae) (Kirk, 1971). Although most frequently occurring in Cassidinae, there is also colour change in individual species of Chrysomelinae and Alticinae (Buzzi, 1988).

Polymorphism is not only restricted to colouring and patterns. For example there is also wing polymorphism in Chrysomelidae (Furth, 1980) or polymorphism regarding the ability to use an atypical host plant (de Jong and Nielsen, 1999).

Too narrow morphospecies sorting / a too liberal molecular approach: Specimens have been assigned to different morphospecies based on differences that only represent intraspecific variation. It can also be the case that COI does not provide sufficient resolution.

In a few cases, when two or more morphospecies were lumped into one MOTU, the specimens of each morphospecies formed separated clusters within the MOTU. Here, a more restrictive molecular analysis (e.g. using a very low distance thresh-
old) would have recovered the morphospecies. However, usually lumped morphospecies did not form distinct clusters when placed in one MOTU. Erroneous sorting into different morphospecies occurred due to colour-polymorphism, overlooking of morphological similarities, or misinterpretation of intraspecific variability. When morphospecies showed a distinct colour-dimorphism or different patterns, this was usually not reflected in the genetic distances. Specimens with different colours or patterns may even share the same haplotype (e.g. Galerucinae spp. 070 and 084; Fig. 5.11). On the other hand, in some cases, morphospecies with different colouring or pattern were lumped into one MOTU but within the MOTU the specimens with the respective pattern clustered, e.g. Galerucinae spp. 065 and 090 (see Fig. 5.9) or Galerucinae spp. 092, 024, and 059 (Galerucinae sp. 092 distinct from Galerucinae spp. 024 and 059; Fig. 5.10).

Mistakes in morphospecies sorting: Due to the large amount of species and specimens there is the probability of an erroneous assignment of a specimen into a new morphospecies instead of assigning it to an already existing one. In this case the molecular approach of course lumps those (erroneous) morphospecies into one MOTU.

Precarious taxa

In the group of large Alticinae with the pronotum with a broad margin (Fig. 5.13), the discrepancies are mainly caused by the striking patterns with a partly broad variance between individuals and several cases of colour dimorphism.

A challenging group concerning morphospecies sorting was a group of Galerucinae most probably belonging to the genus Diabrotica. Diabroticites are New World Chrysomelidae that include several significant agricultural pests (Hammack and French, 2007). The diabroticites in the data set had a similar body-shape and a variety of striking colours and patterns confounding morphospecies sorting (Fig. 5.14). Certain patterns are found in different morphospecies and MOTUs, at the same time individuals of one morphospecies or MOTU can show more than one of those patterns.

The manyfold splittings within the blue or green galerucines with orange to yellow pronotum and head (Fig. 5.15) can be explained by the similarity of body shape and colouring that complicated morphospecies sorting. Within this group morphospecies sorting maybe was too liberal with features indicating belonging to different species being interpreted as intraspecific variation.

Some patterns of alticine species (spp. 163, 155 and 222) are very similar to those of certain galerucines (Galerucinae sp. 029 respectively Galerucinae spp. 005 and 011; see Figs. 5.4 and 5.14). There have been cases observed where galerucine and criocerine species share the same colouring. This could be explained by mimicry where species imitate toxic or unpalatable species (Balsbaugh, 1988). Eye-spot patterns that are found in Alticinae sp. 155 and Galerucinae sp. 005 are widely distributed among insects and other animals as well (Balsbaugh, 1988). There are several ex-
amples of Chrysomelidae with eye-like markings which could be involved in eye-spot mimicry (Balsbaugh, 1988). Several Neotropical cassidine species have an eye-like appearance in their general habitus as it is found in Cassidinae spp. 9, 10, and 11 (Fig. 5.12; Balsbaugh (1988); Sekerka and Windsor (2012)).

5.5 Conclusions

Although biodiversity can be assessed at different levels of classification, the significance of the species as a biological unit is widely recognized and for ecological studies based on invertebrate data species richness and species turnover are important measures (Gaston, 2000; Oliver and Beattie, 1996). Therefore, it is reasonable that the morphospecies as well as the MOTUs are at species-level. In this regard, the morphospecies- as well as the barcode approach are facing the same challenge: to decide where to draw a line between species using character differences. Using sequence data, it must be decided if e.g. differences in genetic distances (Meier et al., 2006) or in branching rates (Pons et al., 2006) are used to delimit species and which values allow assigning of specimens to different species. Different molecular species delimitation methods (Distance-based clustering: Barrett and Hebert (2005); Blaxter et al. (2005); Statistical parsimony analysis: Templeton (2001); Templeton et al. (1992); Generalized mixed Yule-coalescent (GMYC) modelling: Monaghan et al. (2009); Pons et al. (2006); Poisson tree processes (PTP) modelling: Zhang et al. (2013)) are described in Chapter 6 where also their performance and influence on species richness estimates is evaluated. In analogy, the taxonomist or parataxonomist uses morphological characters. As in molecular species delimitation, it must be decided how small or large the differences in those characters must be to assign specimens to the same or to different species.

Exacerbating the morphospecies approach is that external morphological differences are not always categorical (e.g. number of spines) but gradual (e.g. width of pronotum). Furthermore, an experienced taxonomist or parataxonomists has an eye or intuition e.g. for the significance of certain shapes of body or body parts. The problem is that his decisions are not always open to scrutiny and replicable by third persons in the same way (Krell, 2004). In addition, different persons might interpret differences differently: They may be less or more strict, i.e., based on visible differences they may separate or fuse two morphospecies (so-called 'splitters' or 'lumpers'). In contrast, all molecular species delimitation methods, disregarding their particular advantages and disadvantages, have the merit that they are third-party-verifiable and comparable among sites, and they can be applied irrespective of a person's taxonomic knowledge.

Another advantage of DNA barcoding is that it may reveal cryptic diversity that otherwise remains undiscovered. It also performs well in cases were morphospecies sorting is confounded by pronounced intraspecific variation in colour, shape, or size. Additionally, when a huge amount of specimens and species is handled, the probability increases that a specimen is assigned erroneously to a new morphospecies
and it is overlooked that this morphospecies already exists. Especially in species that are small and/or lack conspicuous external characters barcoding is a useful tool to complement morphospecies sorting. Its inclusion, especially in large, specimenand species-rich data sets is advisable, if possible, as it can facilitate morphospecies sorting and can result into a more accurate species delimitation. The collection and storing of barcode data in taxonomic databases together with information as comprehensive as possible (e.g. photos, sound records) will facilitate future identification. The general accessibility of information is supposed to be an advantage of DNA barcoding (Hebert and Gregory, 2005; Savolainen et al., 2005).

DNA barcode data can be used to infer biodiversity patterns in a similar way as morphospecies data (see Chapter 4) and thus provides a variety of information even without the species being exactly identified and described. Mass-sequencing methods completely rely on sequence data alone and provide a considerable saving of time (Ji et al., 2013; Yu et al., 2012). However, in most cases a combined voucher-based morphospecies and barcode workflow is desirable and necessary. Morphological and molecular approaches should be seen as a feedback loop with both analyses profiting from each other (Page et al., 2005). When an unknown fauna with many probably undescribed species is studied, barcode data might give valuable information about its diversity, but at least in the longer term it is necessary that the species are taxonomically identified and described. This is important as for conservation decisions it is necessary to not only compile species-lists and inventories but also to understand the species' ecology. Although the species' ecology can be studied without valid names, the taxonomic identification, species description, and naming allow the connection with existing knowledge and therefore comments on endemism or threat levels to specific species, for instance (Samways et al., 2010; Schlick-Steiner et al., 2010).

In addition, the voucher-based workflow provides the possibility to check for contaminations or errors in sequencing or naming. It should also be kept in mind that there is the possibility that COI might not be able to discriminate between certain species. It is only one of several possible markers, with advantages and shortcomings (see Chapter 2.4). Sometimes it may be advisable to include other markers than COI into analyses.

It is noteworthy that an advantage of the morphospecies sorting in comparison with barcoding is its possible application for each specimen of the data set (provided that the specimen is not damaged). In contrast, there are cases where for some individuals no barcode can be obtained. It may also be, that when specimens are sequenced individually via Sanger sequencing, usually due to financial restrictions a selection must be chosen and not all specimens can be barcoded. Therefore, in a certain way, the morphospecies approach may also provide additional information not given by the barcode approach, an aspect that also supports the combination of morphospecies sorting and barcoding.

A large amount of singletons/uniques in the data set is disadvantageous for morphospecies as well as molecular approaches: Morphospecies assignment is easier with long series of specimens (Charles and Bassett, 2005) and most techniques for

Chapter 5. Comparison of morphological and molecular species
molecular species delimitation consider rarity insufficiently (Lim et al., 2012).

Comparison of rapid species delimitation methods and their influence on species richness estimates

6.1 Introduction

Species richness is an important measure in biodiversity research and conservation biology. At a global level, as well as at a local level where diversity of communities is assessed and compared, often the first intuitional question is 'How many species are there?'. Besides, knowledge of species numbers is important for providing a reference point to estimate biodiversity loss (Mora et al., 2011). There is still debate about the total number of species living on Earth. While estimates range from 3.6 to 100 million species, most probable is a number between 5 and 15 million (Chapman, 2009; May, 2000, 2010; Mora et al., 2011; Wilson, 2003). Only a small percentage of them has been formally identified and named (Chapman, 2009; Grove and Stork, 2000; Mora et al., 2011; Wilson, 2003).

It is widely accepted that the most species-rich ecosystems are in the tropics, especially the tropical rainforests (Connell, 1978; Corlett and Primack, 2011; Dirzo and Raven, 2003; Novotny et al., 2006; Wilson, 1988; Wright, 2002), and furthermore, that arthropods with ~ 1.1 million named distinct species make up the largest fraction of all species on Earth (Chapman, 2009). Therefore, efforts to estimate the total number of species are often based on tropical arthropods, especially tropical beetles (Grove and Stork, 2000; Hamilton et al., 2010; May, 2010). Beetles are extremely rich both in functionality and species numbers, making up about onequarter of all species on Earth (Hunt et al., 2007; Ødegaard, 2000). Since Erwin's (1982) spectacular estimation based on the number of beetle species associated with an individual tropical rainforest tree species, numerous studies led to widely varying estimates of global insect species numbers (Pimm et al., 1995; Stork, 1988, 1993). Those between four and six million arthropod species seem the most probable ones (Basset et al., 2012; Hamilton et al., 2010, 2013; Novotny et al., 2002b). Global and regional insect diversity estimates have been often plant-based, i.e. the number of plant species is multiplied by the number of insect species effectively specialized to them (Novotny and Miller, 2014). Especially herbivorous beetles, including

Chapter 6. Comparison of rapid species delimitation methods and

Chrysomelidae, and their degree of host-specificity have played a fundamental role in species number estimates (Erwin, 1982; Ødegaard, 2000).

At a local level where diversity of assemblages is assessed and compared, the number of species is an intuitive and natural index of community structure (Gotelli and Colwell, 2011). However, despite the familiarity with species richness, analysis of this variable is complex (Gotelli and Colwell, 2011). Species are important biological units and the 'currency' of conservation biology (Agapow et al., 2004). There are several species concepts and debates on how a species should be defined (for overviews see e.g. Mayden (1997); Wägele (2005)). Different species concepts may lead to different species numbers and have potential impact on decisions of conservation management (Agapow et al., 2004). However, it is not aim of this study to delve into this subject and to determine 'real' species. The focus is rather on the practical application of working units that are recognizable and resemble species but do not necessarily correspond exactly to species. Traditionally, morphospecies have been used as such units in studies where detailed taxonomic identification is prevented, e.g. in studies of tropical arthropod diversity (Basset et al., 2008; Longino and Colwell, 1997; Novotny et al., 2002a). Recently, such studies have also profited from DNA barcoding (Janzen et al., 2005, 2009). When an unknown diversity is studied, the interpretation of the sequences is crucial, i.e. how the sequences can be linked to species. There exist several methods for species delimitation, e.g. the use of genetic distances between sequences and a defined threshold to form molecular operational taxonomic units (MOTUs) or clusters, a method which is highly discussed due to the arbitrary choice of a threshold (Blaxter et al., 2005; Hebert et al., 2003a; Meier et al., 2006); statistical parsimony analysis grouping sequences into haplotype networks that are supposed to correspond to species (Hart and Sunday, 2007; Templeton, 2001); the Generalized mixed Yule-coalescent (GMYC)- and the PTP (Poisson tree processes) modelling, a deduction of species boundaries inferred from the data itself by identifying a shift in branching rates between coalescent and speciation (Monaghan et al., 2009; Pons et al., 2006; Zhang et al., 2013). The choice of delimitation method can have a smaller or larger effect on estimates of local and regional species richness.

In this study, a set of different sequence-based species delimitation methods is used to investigate the unexplored leaf beetle fauna in the study area. Resulting predictions of species diversity are compared to estimates from morphospecies sorting. It is evaluated how these different treatments might affect estimates of species richness.

So far, there is no information at all about leaf beetle diversity in the study area or in other regions of Ecuador. In general, leaf beetle diversity is severely understudied in most Neotropical countries (Costa, 2000). More information about leaf beetle research in Ecuador is given in Chapters 1.4 and 3. In contrast to the scarce taxonomic information available for this group, a high actual species richness of Chrysomelidae may be expected: The study area is part of a megadiverse biodiversity hotspot (Brummitt and Lughadha, 2003; Myers et al., 2000), where climates and habitat types change rapidly along elevational gradients resulting
in a high turnover of communities (Brehm and Fiedler, 2003; Brehm et al., 2003a).
This study should be understood as a first glance on the Chrysomelidae fauna in the studied area and an estimation of species richness and differences between elevations. The focus is on the comparison of the different species delimitation methods. General diversity patterns and especially their change along the elevation gradient is analysed in detail in Chapters 3 and 4.

6.2 Methods

Study area and specimen sampling

Analysed leaf beetles represent a set of beetles sampled in November and December 2010 and between May and August 2011 (data set 4, see Chapter 2.5). Beetles were collected in the Reserva Biológica San Francisco (RBSF) and parts of Podocarpus National Park. Chapter 2.1 gives detailed information about the study area. Sampling was conducted at all three elevational zones (Bombuscaro: 1000 m a.s.l., ECSF: 2000 m a.s.l., Cajanuma: 3000 m a.s.l.); however, Cajanuma was sampled only marginally due to logistical reasons.

Chrysomelidae were collected by standardized sampling with sweep netting, beating, and hand-collection from the vegetation. To complete the overview of species diversity for DNA based species delimitation, standardized sampling was complemented with additional hand-collection and Malaise- as well as light-trapping collections (detailed information about sampling methods and design is given in Chapters 2.2 and 7).

One specimen (in some cases up to three specimens) of each preliminary morphospecies per sample was used for morphological sorting and molecular analysis. More detailed information about laboratory analyses and handling of the specimens is given in Chapters 2.3 and 2.4.

Specimens were sorted into morphospecies on the basis of external morphology but without genital dissection or the use of identification literature. Morphospecies were subsequently provided with the subfamily name and numbered (detailed information about morphospecies sorting is provided in Chapters 2.5 and 5).

Sequences were assembled and edited with Geneious version 5.4.4 (Biomatters Ltd.; http://www.geneious.com/) being subsequently aligned using the implemented MUSCLE algorithm (Edgar 2004). The default settings were retained except for the maximum number of iterations (maxiters) that were set to 500. A Maximum Likelihood (ML) Tree was generated in RAxML version 7.3.2 (Stamatakis, 2006) using a GTR $+\mathrm{I}+\Gamma$ model and 5000 bootstrap replicates. Three species of weevils (Coleoptera: Curculionidae; sequences were obtained from GenBank and BOLD) were chosen as outgroup taxa to root the tree (Anthonomus eugenii Cano, Dichromacalles dromedarius Boheman, and Acalles camelus Fabricius; Appendix Tab. C.1). They were not included in the further analyses. Branch lengths were made ultrametric with PATHd8 (Britton et al., 2007) using relative ages of nodes and setting the root to an arbitrary age of 1 .

Chapter 6. Comparison of rapid species delimitation methods and 100 their influence on species richness estimates

Sequence-based species delimitation

Four different sequence-based methods of species delimitation were used and results were compared with results obtained from morphospecies sorting:
Statistical parsimony analysis (Templeton, 2001; Templeton et al., 1992) as implemented in TCS v.1.21 (Clement et al., 2000) (95% connection limit) was used to group sequences into separate haplotype networks. These networks consist of closely related haplotypes connected by mutational paths free from homoplasy with a probability of 95% (Posada and Crandall, 2001; Templeton, 2001). TCS-networks have been shown in various studies to correspond reliably to species across a broad range of taxa (e.g. Ahrens et al. (2007); Astrin et al. (2012); Cardoso and Vogler (2005); Hart and Sunday (2007); Pons et al. (2006); Templeton (2001)). All entities that were given out by TCS were called haplotype networks, even though they may contain only one haplotype or haplotypes that are connected linearly and not necessarily by loops.
Distance-based clustering is, despite wide criticism (Cognato, 2006; Meier et al., 2006), widely used as it is fast and easy to apply (Barrett and Hebert, 2005; Blaxter et al., 2005). SpeciesIdentifier v.1.7.7-dev3 (Meier et al., 2006) from the TaxonDNA package (http://taxondna.sourceforge.net/) was used to generate clusters of sequences based on pairwise uncorrected distances at user-defined thresholds (function 'Cluster'). All individuals that are connected directly to each other by distances below this threshold are grouped into a cluster (Meier et al., 2006). Clusters may also contain individuals that are connected to each other indirectly, i.e. some distances may exceed the threshold (e.g. A-B: 2.9%, A-C: 2.9%; B-C: 4.8%) (Meier et al., 2006). Different threshold values of $3 \%, 5 \%$, and 7.5% were tested. As optimal thresholds could not be unambiguously estimated with the underlying data set (Fig. 6.1), only the results of the 3%-threshold are presented. The 3%-threshold has been initially suggested in early barcoding studies by Hebert et al. (2003a) and is often used as standard in insect barcoding (e.g. Hendrich et al. (2010); Smith et al. (2005); Strutzenberger et al. (2011); Tänzler et al. (2012)). It was successfully used to discriminate beetle species of well-known faunas (Astrin et al., 2012; Raupach et al., 2010) and analyses of Papadopoulou et al. (2013) using a combination of mtDNA loci confirmed this value.
Generalized mixed Yule-coalescent (GMYC) modelling (Monaghan et al., 2009; Pons et al., 2006) as implemented in the SPLITS package (https://www.r-forge.r-project.org /projects/splits/) for the R environment (R Development Core Team, 2009) was used to estimate species boundaries directly from the phylogenetic tree (Monaghan et al., 2009; Pons et al., 2006) produced with COI data. This procedure exploits the differences in the rate of lineage branching at the level of species and populations, recognizable as a sudden increase of apparent diversification rate when ultrametric node height (distance to tips) is plotted against the log number of nodes in a lineage-through-time plot (Nee et al., 1992). Its likelihood is compared then with that of the null hypothesis assuming no shift in branching rate (no separate species), and subsequently the threshold value (time) is estimated which is the cut-

Figure 6.1: Calibration of distance clusters with morphospecies to determine the best threshold. Squares $=$ number of delimited clusters, triangles $=$ number of clusters congruent with morphospecies.
off point between speciation and coalescence (Fujisawa and Barraclough, 2013). As the single-threshold value does not differ significantly from the multiple-threshold value, the single threshold value was used for the input tree (Monaghan et al., 2009) which has been already applied successfully to selected groups of organisms (Ahrens et al., 2007; Astrin et al., 2012; Fontaneto et al., 2011; Monaghan et al., 2009; Papadopoulou et al., 2013; Pons et al., 2006).
Poisson tree processes (PTP) modelling was used as implemented on the PTP web server (http://species.h-its.org/ptp/) (Zhang et al., 2013). This method is similar to GMYC modelling but uses directly the number of substitutions instead of the time to identify branching rate transition points and therefore avoids the potentially error-prone process of making the tree ultrametric (Zhang et al., 2013).

Results of the different molecular species delimitation methods (haplotype networks, distance-, GMYC-, and PTP-clusters) are summed up in the term molecular operational taxonomic units (MOTUs). Additionally, haplotype diversity was inferred as a further independent measure for molecular diversity (Papadopoulou et al., 2011).

Species richness estimates

For species richness estimates only sweep netting, beating, and hand-collection samples were included, as light-trapping was conducted at Bombuscaro infrequently and Malaise-trapping not at all. The samples from Cajanuma were excluded because the area was significantly understudied. Because the sampled individuals result from the first field trips where the workflow just had to be developed, it was not possible to sample more frequently at Cajanuma due to logistic restrictions. The adverse weather conditions at each of the few sampling trips to Cajanuma contributed to the extremely low number of sampled specimens there.

Chapter 6. Comparison of rapid species delimitation methods and

Species accumulation curves were used to visualize the increase in total species diversity in relation to the number of analysed individuals and to check the completeness of the faunal survey. The method 'random' adds up the samples in a random order with 1000 iterations and calculates the mean $\pm 95 \%$ confidence interval (Fig. 6.3), whereas the method 'collector' adds up samples in the order they appear in the data (Fig. 6.5). The expected total number of species was estimated using chao2 (Chao, 1987), and first- and second-order Jackknife estimator using the incidence-based estimation provided by the specpool function of the R package VEGAN 2.0-5 (Oksanen et al., 2012). These are widely used non-parametric estimators that use information on the rare species in an assemblage to estimate the minimum number of species in the assemblage (Gotelli and Colwell, 2011) and have found to perform well in several comparative studies on species richness estimation (Colwell and Coddington, 1994; Walther and Moore, 2005; Walther and Morand, 1998). As different estimators are sensitive to the properties of the assemblage and sampling design, a set of different estimators was used (Samways et al., 2010). Please refer also to Chapter 3.2.

As sampling effort was different between Bombuscaro and ECSF, species richness is hard to compare. To still get an assessment, the number of analysed individuals was standardized to allow comparison of mean species richness: A Jackknifing analysis was performed by randomly drawing 10,000 times 153 individuals (the number of individuals collected at Bombuscaro) from the individuals from ECSF and calculating mean and 95% confidence interval of these samples. For this procedure, the sample function of the R base was used within a simple loop.

6.3 Results

General results

The 674 Chrysomelidae specimens belonged to seven different subfamilies: Galerucinae s.str. (represented by 163 specimens), Alticinae (371 specimens), Eumolpinae (90 specimens), Cassidinae s.str. (25 specimens), Hispinae (14 specimens), Criocerinae (ten specimens) and Chrysomelinae (one specimen). Specimens showed 426 different haplotypes. Galerucinae + Alticinae ($=$ Galerucinae s.l.), Eumolpinae, as well as Cassidinae + Hispinae ($=$ Cassidinae s.l.) formed monophyletic clusters in the COI Maximum Likelihood tree (Fig. 6.2), only Criocerinae appeared paraphyletic and the chrysomeline specimen was placed within the Galerucinae. This can be ascribed to the inaptitude of COI to resolve phylogenetic groups reliably. Galerucinae s.str. and Alticinae formed several well distinguished clusters within Galerucinae s.l.

Species delimitation

Morphospecies sorting resulted in a total number of 266 morphospecies. TCSNetwork analyses led to a total number of 289 networks and distance-based cluster analyses to a number of 284 clusters. GMYC- and PTP modelling resulted in a

Chapter 6. Comparison of rapid species delimitation methods and

Figure 6.2: ML-Tree providing an overview about morphospecies and MOTUs and differences between the methods. Column 1: Split morphospecies are connected by brackets or numbers and share the same colour. Columns 2-6 + 7: MOTUs (Networks, $3 \%-, 5 \%-, 7.5 \%-$, GMYC-/PTP-clusters) and haplotypes splitting a morphospecies are indicated by dark blue fields, those lumping morphospecies by light blue fields, those splitting and lumping morphospecies at the same time by green fields. Red fields indicate differences between the different molecular species delimitation methods.
total of 288 identical GMYC- and PTP-clusters (for results of species delimitation for each specimen see Appendix Tab. E.1).

Despite the high congruence in species numbers, it must be noted that there were several cases of conflicts between morphospecies and MOTUs (Fig. 6.2). These contradictions arise from splitting (in sequence-based analyses a morphospecies is split into two or more MOTUs, respectively parts of them) or lumping events (in sequence-based analyses two or more morphospecies, respectively parts of them, are lumped into one MOTU) (Tab. 6.1). Therefore, despite a high agreement between the number of MOTUs and the number of morphospecies (partially due to the fact that splitting and lumpings compensate one another) perfect congruence was rather low: In total there were 178 perfect matches between morphospecies and networks, 180 between morphospecies and distance-clusters, and 179 between morphospecies and GMYC-/PTP-clusters (see Tab. 6.1).

Table 6.1: Overview of splittings and lumpings.

	Morphospecies	Networks	Distanceclusters	GMYC-/PTPclusters	Haplotypes
Species number	266	289	284	288	426
Singleton specimens	140	161	156	160	324
Doubleton specimens	94 (47 pairs)	104 (52 pairs)	98 (49 pairs)	102 (51 pairs)	94 (47 pairs)
Congruence with morphospecies number	-	108.65\%	106.77\%	108.27\%	160.15\%
$\begin{aligned} & \text { \# perfect matches } \\ & \text { morphospecies / MOTUs } \end{aligned}$	-	178	180	179	154
\# perfect matches that are not singletons	-	62	65	63	28
```# perfect matches relative to # morphospecies```	-	$66.92 \%$	$67.67 \%$	67.29\%	$57.9 \%$
\# Split morphospecies	-	42	39	41	88
\# Lumped morphospecies	-	60	61	60	42
\# Morphospecies that were both split and lumped	-	14	14	14	18

Splittings and lumpings were almost identical for networks, distance-, and GMYC-/PTP-clusters. For all approaches, the number of morphospecies being split into several MOTUs was higher than the number of cases where several morphospecies were lumped into one MOTU. The congruence between the different species delimitation methods (groups that have been identically delimited by the respective methods) was very high (see Tab. 6.2). There were only five cases of discrepancies where one or another method was more or less restrictive than the others, and there was no case where three methods disagreed, i.e. grouped specimens in three different ways (Fig. 6.2).

The morphological sorting revealed a large amount of singletons in the data set: 140 morphospecies ( $52.6 \%$ ) were represented by only one specimen (representing $20.8 \%$ of all analysed individuals), 47 ( $17.7 \%$ ) by only two specimens (doubletons, $14 \%$ of all analysed individuals). Of the 140 singleton morphospecies, 115 (distanceclusters), respectively 116 (networks and GMYC-/PTP-clusters) were also 'molecu-

Chapter 6. Comparison of rapid species delimitation methods and

Table 6.2: Congruence between the different species delimitation methods. Shown are the numbers of perfectly matching morphospecies/MOTUs, i.e. groups that have been identically delimited by the respective methods.

	Morpho-   species	Networks	Distance-   clusters	GMYC-/PTP-   clusters
Morpho-   species   Networks	266	178	180	179
Distance-   clusters	-	289	279	287
GMYC-/PTP-   clusters	-	-	284	280

lar singletons', i.e. they were the unique representatives of a MOTU, while 126 were the unique representatives of a haplotype. The remaining 25 , respectively 24 singletons were lumped with other specimens into one MOTU. One hundred and sixty-one networks ( $55.7 \%$ ), 156 distance-clusters ( $54.9 \%$ ), and 160 GMYC-/PTPclusters ( $55.6 \%$ ) were represented by only one specimen; 324 haplotypes ( $76.1 \%$ ) occurred only once (see Tab. 6.1).

## Species richness

Sweep netting, beating, and hand-collection samples of Bombuscaro and ECSF resulted in 525 individuals belonging to 219 morphospecies. The species accumulation curve did not reach saturation, suggesting that additional sampling would significantly increase the number of morphospecies (Fig. 6.3). Molecular species delimitation resulted in 241 networks and GMYC-/PTP-clusters as well as 239 distanceclusters represented by 334 haplotypes. The curves of the methods were in their slope similar to the morphospecies curve, none of them showed saturation.

The expected total number of morphospecies estimated with the chao2 estimator was $413.6 \pm 49.8$ (first-order Jackknife: $338.2 \pm 21.2$; second-order Jackknife: 420.3) while the expected number of networks, GMYC- and PTP-clusters was $481.1 \pm 56.9$ (first-order Jackknife: $382 \pm 24$; second-order Jackknife: 480.9) and of distanceclusters $469 \pm 54.9$ (first-order Jackknife: $377 \pm 23.7$; second-order Jackknife: 473). Total number of haplotypes was estimated $1134.1 \pm 164.1$ (first-order Jackknife: $585.2 \pm 35.1$; second-order Jackknife: 795.5). Leaf beetle communities in the sampled areas of the Podocarpus National Park were estimated to be considerably richer by the molecular approaches than by the morphological one.

As sampling effort was different at the two elevations, the number of analysed individuals was standardized to compare species richness at the two elevational levels. At ECSF, 372 individuals were sampled belonging to 146 morphospecies, 151 networks and GMYC-/PTP-clusters, 150 distance-clusters, and 215 haplotypes. The 153 individuals from Bombuscaro were assigned to 90 morphospecies, 96 networks


Figure 6.3: Species accumulation curves. Increase in the number of morphospecies (a), distance-clusters (b), networks (c), GMYC- and PTP-clusters (d/e), and haplotypes (f) with increasing number of analysed individuals. Coloured polygons indicate $95 \%$ confidence intervals.
and GMYC-/PTP-clusters, 95 distance-clusters, and 120 haplotypes. Standardizing the results of Bombuscaro and ECSF to the same number of analysed individuals (153; Jackknifing) revealed no significant difference in mean morphospecies richness between the two areas (Tab. 6.3). The same was valid for networks, distance- and GMYC-/PTP-clusters as well as for haplotype numbers.

Table 6.3: Comparison of species- and haplotype richness between Bombuscaro and ECSF. Results standardized with Jackknifing to the same number of analysed individuals (153 analysed individuals from Bombuscaro).

		Species richness		Haplotype richness	
	Morphospecies	Networks	Distance-clusters	GMYC-/PTP-clusters	Haplotypes
	Bombuscaro   ECSF	90	96	95	96

The majority of all found morphospecies occurred exclusively at a single elevational level (only $8 \%$ occurred at two elevational levels and no morphospecies was found at all three elevational levels; Fig. 6.4). This pattern was even more pronounced when using genetic clusters: Almost all MOTUs occurred at only one elevational level, only $3 \%$ at two levels. All haplotypes were restricted to one elevational level. When singletons and doubletons (morphospecies, MOTUs or haplotypes represented by one or two specimens) were removed from the data set results were similar: The percentage of species found at one single elevational level was still the vast majority ( $80 \%$ of all morphospecies and $91 \%$ of all distance-clusters and $92 \%$

Chapter 6. Comparison of rapid species delimitation methods and


Figure 6.4: Barplots illustrating occurrence of species at elevational levels. Morphospecies, networks, distance- and GMYC-/PTP-clusters, and haplotypes found at one (white) or two (grey) elevational levels. Complete data set (left column) for each method and data set without singletons and doubletons (right column).
of networks and GMYC-/PTP-clusters).
The difference in species composition between the different elevations was also reflected in the species accumulation curve of specimens from Bombuscaro and ECSF (Fig. 6.5) which showed for neither of the elevations and none of the delimitation methods saturation. When species from Bombuscaro were added to the data, the slope of the curve steeply increased.


Figure 6.5: Species accumulation curves for ECSF (2000 m a.s.l.) and Bombuscaro ( $\mathbf{1 0 0 0} \mathbf{m}$ a.s.l.). Increase in the number of morphospecies (a), distance-clusters (b), networks (c), GMYC-and PTP-clusters (d/e), and haplotypes (f) with increasing number of analysed individuals.

### 6.4 Discussion

The study revealed a very diverse Chrysomelidae fauna with observed and estimated species numbers being higher for molecular species delimitation methods than for morphological species sorting. This indicates a significant amount of species that could not be discerned by the morphospecies approach and could contain potential cryptic diversity. Among the different DNA based species delimitation methods, there were only slight differences in observed and estimated species numbers. Species turnover in beetle communities seems to be high between the elevational levels. All findings revealed by MOTUs are similar to morphospecies data, confirming the qualification of DNA barcoding as a tool for assessing biodiversity of an unknown fauna, at least at a geographically restricted scale as in this study.

## Chrysomelid diversity

A high observed and estimated species number was expected as the study area is part of a biodiversity hotspot (Brummitt and Lughadha, 2003; Myers et al., 2000). Even when singletons and doubletons were excluded, most species are restricted to one elevational level indicating a high species turnover.

As frequently found for samples from rainforest communities of insects (e.g. Novotny and Basset (2000); Wagner (2000)), the species accumulation curve did not reach saturation indicating that further sampling would increase the species number. It also lets assume that most species are rather rare, and there is indeed a large proportion of singletons ( $53 \%$ and $55-56 \%$ of the morphospecies and MOTUs, respectively). These 'rare species' are an important part of rainforest communities of insect herbivores, often representing from $30 \%$ up to more than half of all species in tropical arthropod samples (Coddington et al., 2009; Novotny and Basset, 2000; Wagner, 2000). They may prevent the species accumulation curve from getting saturated even in very large sample series achieved with a huge sampling effort. As the number of specimens included in this study is rather small compared to many tropical arthropod surveys (see Coddington et al. (2009)), the percentage of singletons might decrease with additional sampling effort, but is expected to remain quite high.

It could be expected that the two locations harbour a different chrysomelid fauna, even though the turnover of communities might be overestimated due to undersampling. Mountains have different habitats close to each other as the elevational gradients result in differences in climate, soil, vegetation etc. Although the two sampling areas Bombuscaro and ECSF are as close as $\sim 20 \mathrm{~km}$, there are 1000 m elevation difference and the areas exhibit remarkable differences in climate and vegetation. The turnover of tropical insect communities along elevational gradients is generally rapid (Brühl et al., 1999; Ghalambor et al., 2006; Janzen, 1967) and there are often large differences in insect communities in considerably smaller ranges (e.g. Olson (1994); Smith et al. (2014)).

However, there is no significant difference in mean species richness. A difference could have been expected, as insect species richness often declines with increasing

## Chapter 6. Comparison of rapid species delimitation methods and 110 their influence on species richness estimates

elevation or shows a hump-shaped distribution (Olson, 1994; Rahbek, 1995, 2005). As Cajanuma was considerably undersampled in this study, it was excluded from the comparison of elevational levels. Species richness along the elevational gradient is analysed more detailed in Chapter 4.

The high species numbers found in this study illustrate how understudied Ecuador is when compared with the records listed by Blackwelder (1947): He lists $\sim 450$ species explicitly for Ecuador and in contrast 266 morphospecies were found in this preliminary survey that is far from being complete and restricted to a very small area. A comparison with species numbers found in other Neotropical countries (Charles and Bassett, 2005; Flowers and Hanson, 2003; Furth et al., 2003; Linzmeier and Ribeiro-Costa, 2009, 2011, 2012; Ødegaard, 2006; Sánchez-Reyes et al., 2014) or e.g. kept in the collection of the Museo del Instituto de Zoología Agrícola 'Francisco Fernández Yépez' (MIZA), Venezuela, also suggests a high discrepancy between recorded and actual species numbers. It should be noted that mainly one kind of habitat was sampled, the herbaceous and shrubby vegetation in a local forest including only small trees up to a height of ca. 2.5 m . Malaise- and light-trapping was performed additionally, adding on specimens with different ecology (flying and/or nocturnal species). So, besides further sampling with the same methods, the inclusion of other habitats would add more species. For example, a thorough sampling of the canopy would probably increase species numbers by far as a considerable part, perhaps the majority, of the arthropod diversity of tropical rainforests lives in the canopy (Basset et al., 2007; Didham, 2002; Didham and Fagan, 2003; Erwin, 1982) with communities distinct from understorey (Charles and Bassett, 2005). In Chapter 3 the leaf beetle species richness of the study area is compared more detailed with existing taxonomic information and with studies in other regions.

## Implications of DNA barcoding on species richness estimates

The successful application of DNA based species delimitation to the studied leaf beetle fauna is not surprising, as it has been proven a reliable method for identification, detection and delimitation of species for a broad variety of taxa, including beetles, in numerous studies (e.g. Astrin et al. (2012); Kubisz et al. (2012); Papadopoulou et al. (2013); Raupach et al. (2010); Tänzler et al. (2012)). It was able to indicate distinct clusters of sequences across all subfamilies of Chrysomelidae of this study, which is an important premise if a large assemblage of unknown species is to be studied. In all analyses the species numbers inferred by molecular methods were considerably higher than morphospecies numbers. Therefore, molecular methods of species delimitation should be included in biodiversity studies, as the morphospecies approach alone may considerably underestimate species richness. These molecular data are a very effective tool for taxonomists for species delimitation and descriptions.

Statistical parsimony analysis, distance-based clustering, and GMYC- and PTP modelling were compared and validated empirically. The high congruence among these different DNA based species delimitation methods indicates a minor relevance of the choice of the particular delimitation methods, at least when sampling as in this study is geographically restricted (but see Bergsten et al. (2012)). A geo-
graphically complete sampling of a species is usually very time and labour-intensive and, therefore, beyond the scope of most ecological studies at the species community level. Often, populations or locations are isolated, either naturally or induced by the progressive fragmentation of habitats, preventing a comprehensive covering of the complete diversity. This is even more valid for tropical insects, where a complete inventory of a certain area is, even if desirable, unachievable, as tropical species in general are high in numbers, but rare and often very localized (Kricher, 1999; Novotny and Basset, 2000). While Lim et al. (2012) argue that this bias may hamper semi-automated DNA based species delimitation, however, the congruence of results of the different delimitation methods used, seems to demonstrate the opposite. Despite a high percentage of singletons and doubletons the species richness estimates remain robust.

## Haplotypes as a measure for diversity

Although biodiversity is usually measured in species, the entire genetic diversity of a species, including the diversity of haplotypes, is crucial for conservation. The use of haplotype diversity seems to be an even more objective measure for biodiversity as it is completely independent from species concepts or delimitation methods including their assumptions (García-Lopez et al., 2013; Monaghan et al., 2009; Papadopoulou et al., 2011). Therefore haplotypes are in these analyses an independent estimator and a proxy for diversity in concert with DNA based species delimitation. It has been shown that mtDNA barcode accumulation curves lead to similar results as curves generated using morphology or nuclear genetic markers (Smith et al., 2009). Likewise, in the present study the haplotype accumulation curve was similar in shape to those based on morphospecies and MOTUs and differed only in scale. Therefore, 'haplotype diversity' can be a valuable tool for comparing diversity at a finer scale, which also allows the analysis of diversity of taxonomically unknown organisms, being transparent and reproducible and can be compared among sites (Smith et al., 2009). The distribution of haplotypes within species at different elevations with a strict restriction of haplotypes to a single elevation suggests a separation of populations that are occurring at different elevational zones. Thus the barcodes contain additional information compared to MOTUs or morphospecies. The barcodes are unique identifiers that allow the discovery of a specific haplotype in different samples. However, it should be expected that they will be more informative if applied in a wider geographical scale with much more extended intraspecific sampling (Papadopoulou et al., 2011).

### 6.5 Conclusions

This study provides a rapid biodiversity assessment of the hitherto unstudied leaf beetle fauna of the understorey vegetation of a tropical montane rainforest in Ecuador. Based on a comparatively small data set compiled in only five months of field work, it revealed a remarkable diversity of Chrysomelidae in the study area and is a good

Chapter 6. Comparison of rapid species delimitation methods and
starting point for future, more detailed research on this fauna. Both morphospecies and DNA barcode data suggest a high turnover along the elevational gradient that is studied more detailed in Chapter 4.

Whereas the integration of different DNA based approaches for estimating species richness is strongly recommended (Carstens et al., 2013), the choice of the molecular species delimitation method seems at least with this data of minor relevance. All results illustrate the high potential of DNA barcoding for exploring communities of hyperdiverse taxa even before being taxonomically identified and formally described (Pons et al., 2006). It can be a useful complement to morphological approaches due to its capability of revealing cryptic diversity, and an effective tool for taxonomic species delimitation and description. Also in cases where experts are not available, applications of DNA barcoding are a suitable method. Nevertheless, an accurate taxonomic description with binary Linnaean names is highly desirable. An advantage of biodiversity assessment with DNA barcoding is that the results are verifiable and comparable among studies and sites. This is an important requirement if barcoding is used as a tool for direct biodiversity measurement. However, it should be established how far the results can be extrapolated also for other organismic groups and larger spatio-temporal scales.

## Chapter 7

## Comparison of sampling methods

### 7.1 Introduction

The current biodiversity crisis is considered as a global mass extinction event (Myers (1993) and references therein; Brook et al. (2006); Dirzo et al. (2014); Myers (2003)). Biodiversity loss proceeds at a worrisome rapid pace. Most species are not described yet and there is even no ultimate consensus on total species numbers on Earth. Therefore, exact values of extinction should be considered with caution, but rates seem to be several hundred times their pre-human levels (Pimm et al., 1995). Tens of thousands of species are likely to go extinct per year (Myers, 2003). Probably alone from tropical forests, two to five species disappear per hour (Singh, 2002).

As most biodiversity is found in the tropics, also with regard to biodiversity loss these regions can be considered hotspots (Bradshaw et al., 2009; Dirzo and Raven, 2003; Laurance, 1999). The main cause of tropical biodiversity loss is habitat destruction (Bradshaw et al., 2009; Pimm and Raven, 2000). Especially tropical forests that are extraordinarily species-rich and ecologically complex are subjected to a multitude of threats and are disappearing at alarming rates (Dirzo and Raven, 2003; Laurance, 1999; Laurance and Peres, 2006; Pimm and Raven, 2000). Tropical cloud forests face many of the same threats as other tropical forests. However, their unique ecology and their location on mountain slopes make them particularly susceptible to climate change (Bubb et al., 2004).

In view of those circumstances, there is a necessity for faster methods of biodiversity assessments. One way is to postpone the time-intensive taxonomic identification and description of species. Instead of valid species, often morphospecies are used that are identified by external morphology but without dissection or use of identification literature. They have established in tropical arthropod research to handle the huge amount of accruing specimens and species (detailed information about the morphospecies approach is given in Chapters 2.5 and 5).

In addition, DNA barcoding can help to identify and discover species and has become a valuable method for discovering cryptic diversity (e.g. Hebert et al. (2004); Johnson et al. (2008); Lara et al. (2010); Witt et al. (2006)). Generation of DNA barcode data with standard laboratory protocols has become very efficient (Hajibabaei et al., 2005; Ivanova et al., 2006; Knebelsberger and Stöger, 2012). With metabarcoding of mass samples even more sequences can be compiled with small time effort (Ji et al., 2013; Yu et al., 2012).

However, also the collection of study organisms in the field as a fundamental step of biodiversity research should be streamlined and must therefore be carefully
planned. Sampling methods and sampling design must be appropriate for the studied organisms, habitats, and the aims of the study. The volume of the studied organisms (number of individuals and species) depends directly on sampling effort. Often a sampling as comprehensive as possible is desired, e.g. for inventories. However, tropical arthropod samples usually remain incomplete, even in large-scale studies. This is typically due to the large number of rare species which can cause analytical problems (Coddington et al., 2009; Novotny and Basset, 2000). For certain questions a statistically relevant number of sampling replicates is needed and the choice of sampling time or period has to be considered.

This study focused on the leaf beetles of the low and medium understorey vegetation up to a height of ca. 2.5 m , including grasses, herbs, shrubs, and small trees in a montane rainforest in Ecuador. Although the leaf beetle fauna of the respective area has not been studied yet, it was not the aim to make a complete inventory. The focus was rather on the analysis and comparison of communities at different habitats and different elevational levels as a test for the application of rapid assessment methods in tropical habitats.

### 7.2 Methods

Chrysomelidae were sampled in RBSF and adjacent parts of Podocarpus National Park during November and December 2010 and from May 2011 to April 2012. The study area is described in Chapter 2.1.

Mainly three standardized sampling methods have been used for collecting leaf beetles from the lower vegetation on the study plots (plot sampling; for details of the study plots see Chapter 2.2): sweep netting, beating, and standardized handcollection (picking up beetles from vegetation). All kind of vegetation within reach was sampled (up to ca. 2.5 m ).
Sweep netting: Sweep netting was carried out using a standard insect net with 30 cm diameter on a pole. The net was emptied into a bottle containing ethanol. Sweep netting was made alongside two edges of a plot for 30 min (edge of a plot $=20 \mathrm{~m}$ ). Beating: Vegetation was jarred with a stick to dislodge insects alongside two edges of the plot for 30 min . Insects falling on a horizontal beating tray made of canvas were collected individually from the tray with an aspirator or funnelled into an ethanol-filled collecting jar.
Standardized hand-collection: Insects were individually picked from vegetation either with an aspirator or directly into an ethanol-filled jar. This was carried out within the plot for 15 min by a team of two collectors (= 30 sampling minutes).
Plot sampling has been supplemented with the following methods:
Non-standardized hand-collection: Additional picking up of beetles from vegetation outside the sampling plots was carried out, e.g. on the way to or from the plots.
Malaise traps: Malaise traps are open-sided tents with a collecting head filled with ethanol in which flying or crawling arthropods are trapped (Furth et al., 2003). Bidirectional Malaise traps have been used and collecting heads were usually emptied
after three to four weeks. In some cases the interval was shorter or longer.
Light trapping: For light trapping, a light tower with two 15 W tubes (one black light, one superactinic) was used.
Occasional flight interception traps with $\sim 40 \times 60 \mathrm{~cm}$ panels were placed in trees at $\sim 5 \mathrm{~m}$ height and emptied after four weeks. On trial pitfall traps were emptied after two days.

Being killed and collected in $70 \%$ ethanol, beetles were subsequently transferred into $96 \%$ ethanol and stored at $4--20^{\circ} \mathrm{C}$. A total of 662 samples has been selected to be analysed. For each of these samples, Chrysomelidae were sorted into preliminary morphospecies. One specimen of each preliminary morphospecies was dry mounted, labeled, and sorted into morphospecies (more detailed description of morphospecies sorting is given in Chapters 2.5 and 5). The remaining specimens (duplicate specimens) were included in the comparison of sampling methods (data set 2a). The sorting of specimens of a single sample into preliminary morphospecies is quite reliable due to the small number of individuals and species per sample. Therefore, it is likely that similar specimens were correctly classified as the same morphospecies. Furthermore, the number of affected specimens is quite low as usually ( $\sim 80 \%$ ) only one individual per morphospecies was found in one sample. More detailed information about selection and processing of specimens and about the different data sets is given in Chapters 2.3 and 2.5.

### 7.3 Results

Within the present study a total of 1174 samples (refer to Chapter 2.2 for definition of sample) were taken. They varied considerably in size and effort as different sampling methods were used. A total of 4286 Chrysomelidae was collected. As the focus of the study was the community analysis of the study sites (plots), most samples have been taken on these plots: 306 samples of each standard collection method yielded a total of 2364 leaf beetles. Of these specimens, 1091 came from the 306 sweep netting samples, 980 from the 306 beating samples, and 293 from the 306 standardized hand-collection samples. Further 947 specimens were collected with 134 non-standardized hand-collection samples, 816 specimens with 45 Malaise trap samples, and 114 specimens with 27 light trap samples. Flight interception traps (32 samples) and pitfall traps ( 18 samples) yielded very few specimens (43, respectively two) and are disregarded hereafter (Fig. 7.1).

For the following comparison of sampling methods the same data set as for the general biodiversity analyses in Chapter 3 was used (data set 2a; for explanation of the data sets see Chapter 2.5): It contained 2227 specimens from 662 samples. The samples were biased towards sweep netting, beating, and standardized handcollection samples (plot samples). Number of analysed samples, collected specimens, and identified morphospecies for the different methods is given in Tab. 7.1. Fig. 7.2 illustrates the proportion of samples and specimens. For morphospecies found by the respective method the composition is similar to the composition of collected


Figure 7.1: Proportion of all within the project taken samples and yielded individuals for the different sampling methods. Note the comparatively high number of individuals in non-standardized hand-collection and Malaise trap samples.
specimens: Sweep netting covered $54 \%$ of all 473 morphospecies, beating $45 \%$, handcollection (standardized and non-standardized hand-collection combined) $47 \%$, light traps $6 \%$, and Malaise traps $12 \%$. Flight interception and pitfall traps covered $\leq 1 \%$.

Table 7.1: Comparison of the number of analysed samples, collected specimens, and identified morphospecies for the different methods.

Method	\# Samples	\# Individuals	\# Morphospecies
Sweep Netting	199	749	255
Beating	199	635	214
Hand-Collection (standardized \& non-standardized combined)	233	597	222
Light Trap	20	54	27
Malaise Trap	6	187	58
Flight Interception Trap	3	3	3
Pitfall Trap	2	2	2
Total	662	2227	473



Figure 7.2: Proportion of taken samples and corresponding proportion of number of specimens collected with the different methods for data set 2a.


Figure 7.3: Species accumulation curves showing the correlation between morphospecies number and number of samples (left) and sampled individuals (right) for all five sampling methods separately and for all methods combined. Sweep netting (dark blue), beating (red), hand-collection standardized and non-standardized combined (green), light trap (yellow), and Malaise trap (light blue) samples, addition of all methods (black).

Species accumulation curves (Fig. 7.3) illustrate how the number of morphospecies grows with increasing number of samples (left), and individuals (right) for each sampling method and for all methods combined. In contrast to the sample based curve, the individual based curve shows for all sampling methods combined a higher efficiency in collecting the leaf beetle fauna of the studied area than each single method. The figures show that Malaise traps collected more morphospecies per sample than all other methods taken together whereas they were among the least efficient methods when based on number of individuals. None of the curves shows saturation.

The individual samples varied considerably in the number of sampled specimens and morphospecies (Fig. 7.4). In sweep netting, beating, hand-collection, and light trap samples, on average only few individuals and morphospecies were caught per single sample (less than five). The maximum in single standard samples was 28 specimens, in the very heterogeneous non-standardized hand-collection samples even up to 68. In contrast, the Malaise trap samples yielded a mean of 31.2 sampled individuals and 14.8 morphospecies per sample.

Regarding the sampling methods sweep netting, beating, hand-collection (standardized and non-standardized combined), light-, and Malaise trapping, more than half of all morphospecies ( $59 \%$ ) were sampled by only one method. Twenty-three percent were sampled by two, $14 \%$ by three and only four percent by four methods. Only two morphospecies were sampled by all five methods. This is partly due to the high proportion of 'uniques': $49 \%$ of the morphospecies occurred in only one sample (were sampled only once).


Figure 7.4: Number of morphospecies and individuals per sample. Found morphospecies (left column) and individuals (right column) per sample for sweep netting, beating, hand-collection, light trap, and Malaise trap samples. The boxplots show the median, the lower and upper hinge, the minimum, and the maximum.

The presence of the most frequent subfamilies accounting for $97 \%$ of all morphospecies revealed slight differences in the collection efficiency of different methods for certain subfamilies (Fig. 7.5). On average, most morphospecies belonged to Alticinae. Of the morphospecies found in Malaise trap samples, even $71 \%$ were Alticinae. In contrast, in light trap samples only $30 \%$ were Alticinae, whereas more than half of all morphospecies ( $52 \%$ ) caught with light traps belonged to Galerucinae. Cassidinae that on average made up four percent of the morphospecies accounted for eight percent of non-standardized and standardized hand-collection samples.


Figure 7.5: Percentage of collected morphospecies according to subfamily for different sampling methods.

## Standardized sampling methods

A total of 199 plot sample replicates has been analysed (199 sweep net, beating, and standardized hand-collection samples) resulting in 1578 specimens and 379 morphospecies (data set 3a). Sweep netting and beating resulted in highest morphospecies numbers ( 255 respectively 214), whereas only 106 morphospecies were found in hand-collection samples (Fig. 7.6). However, when corrected for the number of individuals (sweep netting: 749, beating: 635, hand-collection: 194), morphospecies richness was marginally higher for hand-collection than for beating samples. The combination of the three methods did not increase the efficiency in terms of collected morphospecies compared to sweep netting alone.


Figure 7.6: Species accumulation curves for plot samples showing the correlation between the number of morphospecies and the number of specimens, based on 199 samples of each method: sweep netting (blue), beating (red), standardized hand-collection (green); all three methods combined (black line without confidence interval). The trend for the standardized collection methods is the same as for all methods (see Fig. 7.3 left). Coloured polygons indicate $95 \%$ confidence intervals.

Most morphospecies of the plot data set were found by only one sampling method ( $61 \%$ ). Twenty-seven percent were found by two methods and only $12 \%$ by all three methods. Sweep netting showed the highest percentage of morphospecies that occurred exclusively in samples of this method ( $45 \%$ ). Thirty-nine percent of the morphospecies in beating samples and $29 \%$ of the morphospecies in standardized handcollection samples were found only in samples of the respective sampling method. Of the morphospecies that were found by two methods, most occurred in sweep netting and beating samples ( $73 \%$ ), $18 \%$ were shared by sweep netting and hand-collection, and ten percent by beating and hand-collection.


Figure 7.7: Number of morphospecies and individuals per plot sample. Number of morphospecies (left column) and individuals (right column) per sample for sweep netting, beating, and standardized hand-collection samples.

For the most part, a morphospecies was represented by a single individual per sample ( 826 times). In 137 cases, a morphospecies was represented by two specimens in a sample, in 58 cases by three or four specimens, and in 23 cases by five to eight specimens. Only occasionally more than eight specimens of the same morphospecies were found in one sample, maximally 26 specimens. Therefore, the mean number of morphospecies was similar to the mean number of individuals per sample (sweep netting: 3.3 morphospecies vs. 4.4 individuals, beating: 2.7 vs. 4.0 , standardized hand-collection: 1.9 vs. 2.3). Generally, the number of individuals and morphospecies caught per sample is very low, however with a very large variance (Fig. 7.7). In sweep netting and beating samples up to 26 , respectively 28 individuals could be found. In standardized hand-collection samples maximally nine specimens have been found. Also the maximum number of morphospecies per sample was considerably lower for hand-collection than for sweep netting or beating samples.

The species accumulation curve of the plot samples showed no saturation after 298.5 hours of sampling indicating that a further increase of morphospecies number is expected with further sampling (Fig. 7.8).


Figure 7.8: Species accumulation curve (mean $\pm 95 \%$ confidence interval) showing the number of morphospecies discovered with increasing number of plot samples. One plot sample is equivalent to 1.5 hours of sampling: 30 min sweep netting, 30 min beating, and 30 min hand-collection.

### 7.4 Discussion

The main sampling methods (sweep netting, beating, hand-collection) are widely used for sampling of Chrysomelidae in the selected habitat, the lower vegetation of the study plots within the forest (Flowers and Chaboo, 2009; Furth, 2009; SánchezReyes et al., 2014; Staines, 2011). As the comparison of communities at the study sites is an essential aspect of the project (see Chapter 4), an advantage is that the beetles are sampled more or less directly from the vegetation, so their provenance is known. In contrast, when Malaise-, light- or flight interception traps are used, the provenance of the flying insects is not known. These methods should not be used for a fine-scale sampling on sampling sites as close to each other as in this study, where they are sometimes only several meters apart, because samples will not be independent (Ozanne, 2005a). In those cases, especially light traps are not well suited because e.g. moths are attracted from a distance of up to 25 m or more (references in Brehm (2002)).

Comparing the three methods for standard sampling on the plots, sweep netting seems to be the most successful method in terms of collected specimens and species, slightly more efficient than beating (Fig. 7.6). The combination of all three methods did not result into a higher number of found species when corrected for the number of sampled individuals. In contrast, hand-collection on the plots was not very efficient, resulting in considerably lower specimen and morphospecies numbers than sweep netting and beating, in total (less than one third of the specimens and less than half of the morphospecies, Fig. 7.6) and on average (Fig. 7.7). However, when corrected for the number of sampled individuals, this method yields a comparable number of species (Fig. 7.6). The high numbers of individuals and morphospecies for the combined standardized and non-standardized hand-collection samples (Fig. 7.3,

Fig. 7.4) result from cases where extensive hand-collection was conducted under favorable weather conditions and at sites well suited for collection of Chrysomelidae. Although hand-collection on plots was less efficient, it was reasonable to be included to find additional species, as e.g. Cassidinae and Hispinae were mostly found by hand-collection.

Light trapping seems little appropriate for sampling Chrysomelidae as it was not very efficient in terms of specimens and morphospecies. This is probably because in tropical forests the majority of chrysomelids are active during daytime (Basset et al., 2001).

Malaise traps, on the contrary, show a favourable proportion between sample number and number of collected specimens and morphospecies. They seem to be an efficient method for sampling of tropical leaf beetles. They have been widely used, especially for sampling of Alticinae (Flowers and Hanson, 2003; Furth et al., 2003; Linzmeier and Ribeiro-Costa, 2008, 2009, 2012, 2013). Whereas Malaise trapping is less efficient than sweep netting, beating, and hand-collection, when based on the number of individuals, it is the most efficient method considering collected morphospecies per sampling effort (Fig. 7.3). However, compared to the other methods, Malaise trapping often generated larger numbers of a few common morphospecies, which resulted in a lower species richness per collected individuals (Fig. 7.4). The fact that Malaise traps collected the highest mean number of individuals and morphospecies per sample is not surprising because of the longer collecting time of up to $\sim 30$ days, meanwhile many insects can accrue in the collecting head of the trap.

Beside the numbers of collected specimens and species, the time effort required is a crucial factor to evaluate the effectiveness of different sampling methods. A disadvantage of the standard methods is the high workload and time requirement compared to the output: Although almost 300 hours have been spent on plot sampling, no saturation of species accumulation curves has been achieved. In addition to the pure sampling time of 298.5 hours, the time to arrive at the sampling plots can be considerable: It takes roughly one hour to arrive at the areas of Bombuscaro or Cajanuma by bus and car. The subsequent walk to the plots may require even more time. So, a team of two persons could accomplish sampling of not more than three plots per day. Although the required collection time for all of the three methods is equal, it is to note that in comparison with beating and hand-collection the processing of the sweep net samples takes a considerable amount of time: The samples contain lots of leaves and other parts of vegetation that must be carefully screened for insects, and sorting out of the specimens requires some effort.

Whereas it costs a considerable effort to carry the light trap equipment to the respective study sites, the Malaise traps are comparatively easy to handle: They can be readily placed at the sampling sites, even at remote sites, and just have to be cleared (preferentially after a few days to ensure good quality of the samples). Both light traps as well as Malaise traps could be used at a larger scale when sampling sites are further apart but are less suitable when sites are close to each other.

The methods seem differently efficient for certain subfamilies. Therefore, a mix of methods seems advisable if whole communities of leaf beetles are addressed, espe-
cially for inventories as it has been shown for ant fauna (Longino et al., 2002). However, the incomplete sampling impedes an exact comparison between the methods: The finding that most morphospecies were found by only one sampling method may be due to the high amount of morphospecies that were found only once (uniques). Therefore, differences in taxon-specific efficiency of collection methods can hardly be documented with the present data. A complete coverage of all species and a saturation of species accumulation curves was not attempted and expected because no complete inventory of the study area was intended.

The data indicate that the area is species-rich, but species usually occur with a low abundance, as it is typical for tropical rainforests. Therefore, it seems advisable to sample at several sites with a set of methods and with a statistically relevant number of sampling replicates over a certain time period. If the number of specimens that can be analysed (morphologically and molecular) is restricted, the decision to analyse only one specimen per morphospecies per sample seems reasonable: As most morphospecies were found only once per sample, the number of omitted specimens is rather low, and leaf beetle diversity of the region still can be characterized well.

Some habitats that have not been addressed explicitly in this study require special sampling methods: Schmidl et al. (2007-2008, unpublished) studied the arthropod fauna living under tree bark in parts of RBSF using an insecticide. There was no opportunity to sample canopy beetles for this project. Especially the canopy of tropical rainforests is known to harbour an extraordinarily high richness of insects in general and Chrysomelidae in particular (Basset et al., 2001; Charles and Bassett, 2005; Farrell and Erwin, 1988; Wagner, 1999, 2000, 2003). However, for Alticinae a redundancy between canopy fogging and Malaise trapping has been shown (Furth et al., 2003). Canopy fauna can be accessed directly from platforms, walkways, canopy rafts, sledges, balloons, towers, or cranes (Basset et al., 2001; Charles and Bassett, 2005; Ozanne, 2005b; Samways et al., 2010). Those structures that allow the application of different collecting methods in the canopy are very sophisticated and costly and are usually operated as part of large projects, e.g. IBISCA (www.ibisca.net; Basset et al. (2007)), or by major research institutes, e.g. the Smithsonian Tropical Research Institute in Panama (www.stri.si.edu). Other common methods involve climbing into the canopy or chemical knockdown (fogging or mist-blowing). For knockdown sampling, usually pyrethrum or related substances are used and fallen insects are captured on collecting trays, hoops, or mats (Farrell and Erwin, 1988; Ozanne, 2005b; Samways et al., 2010; Wagner, 2000).

### 7.5 Conclusions

Facing the rapid advance of biodiversity loss in tropical rainforests, an acceleration of biodiversity assessment is indispensable. Whereas molecular methods such as DNA barcoding, with laboratory protocols becoming more and more efficient, have been propagated to accelerate analysis and understanding of biodiversity, the sampling of specimens in the field is still the most important and basal step and can constitute
a bottleneck in the workflow.
In this study, especially the standardized sampling on the plots has been proven to be quite time and work intensive, also because the considerable way to the plots must be included. However, there seems to be no alternative method of more efficiently collecting the leaf beetles from the low vegetation of the plots. Especially sweep netting is an excellent method, however, with the disadvantage that the sorting of the samples takes time. Beating yielded only slightly fewer specimens and species with sorting of the samples being less time-consuming. Because there is no great difference in efficiency between the methods, a combination of both can be recommended. Hand-collection yielded comparatively few specimens, but raises the probability for also catching Cassidinae and Hispinae and therefore should be included as well if the study focuses on a broad variety of subfamilies. To further analyse leaf beetle diversity in the studied area, further sampling with the same methods could be performed in order to approach a saturation of the species accumulation curve.

For qualitative sampling, also hand-collection at selected spots can be recommended: Especially in sunny weather at dry days or after rainfall, various leaf beetles appear quite abundant at forest edges or gaps sun-basking or feeding on leaves where they can easily be collected.

A further implementation of Malaise traps can be highly recommended, however only for qualitative sampling (e.g. inventories) or when study sites at a certain distance are used (e.g. to compare the communities between the different elevational levels Bombuscaro, ECSF, and Cajanuma). In this case they seem to be very well suited for flying leaf beetle species. They can be used to obtain a high number of specimens and species with comparatively low workload and time-effort. Sampling can be even more facilitated if the changing of collection bottles is automated. This method would also allow a fine-scale study of temporal turnover, e.g. by sampling nocturnal and diurnal species separately.

Finally, it would be interesting to include the canopy, probably the most diverse habitat, into the study. Canopy fogging provides an efficient sampling method yielding very large numbers of individuals and species per sample.

## Chapter 8

## General discussion and future prospects

This study is exceptional in two aspects: It is the first detailed, site-specific study about the diversity of leaf beetles (Chrysomelidae) in Ecuador, a hyperdiverse taxon that is severely understudied in the Neotropical region. Furthermore, the implementation of DNA barcoding makes it an important contribution towards the integration of DNA based methods into exploring and understanding the diversity and ecology of tropical insect assemblages.

Therefore, the lessons learned from this study cover those two aspects: On the one hand, it provides first data and insights of the hitherto unstudied leaf beetle fauna of the study area that can serve as a starting point for future research. On the other hand, it demonstrates the value of DNA barcoding for hyperdiverse arthropod assemblages, showing that even complex ecological questions can be analysed relying on DNA barcode data alone. The study provides baseline-data that can be used for future research, e.g. monitoring effects of climate change or anthropogenic disturbance on leaf beetle diversity, as well as the necessary tools.

## Perspectives for future research

Although the study area has not been completely inventoried and only a certain habitat was sampled, a considerable number of morphospecies, respectively MOTUs was found. This has been expected as the study area within the Tropical Andes is known as a biodiversity hotspot for different taxa. Besides a high turnover of communities between the three elevational levels, also a microhabitat-differentiation between ridge and valley forests was observed.

The standardized plot-based sampling design allows a detailed research on leaf beetle community ecology. In future, intermediate plots situated on the slopes between ridge and valley plots could be included in the study to allow finer-grained analyses. Furthermore, the gradient should be complemented with intermediate elevational levels and also its range should be extended: Whereas the tree line is almost reached in the present study, lower elevations should be included as well. The integration of lowland forest would allow more complex comparisons between low and high altitude fauna and could help to understand general diversity patterns along elevational gradients and their underlying causes.

As this study is the first of its kind in Ecuador and locally very restricted, nothing is known about how unique the leaf beetle fauna is in comparison with other regions even close by. Elevational gradients nearby or in other parts of Ecuador
should be investigated to interpret the observed patterns in a broader context. Apart from diversity changes along elevational gradients, also the response of leaf beetle communities to anthropogenic disturbance could be studied.

Another direction in which further research could lead concerns the role of leaf beetles as a model group of tropical herbivorous insects. A detailed analysis of hostspecificity and species ranges along altitudinal gradients is necessary to understand general mechanisms that maintain high biodiversity in tropical mountain forests. The sampling design allows studying correlations of leaf beetle diversity with their potential host-plants on the sampling plots.

Another possibility for future research on Chrysomelidae in Podocarpus National Park and RBSF would be the continuation and intensification of the sampling towards a more complete inventory. This would allow an easier comparison with the fauna of other Neotropical regions. For an inventory also the canopy should be included that is supposed to harbour a largely different and very diverse fauna. Therefore, the comparison between understorey and canopy leaf beetle communities would be interesting as well.

In addition, once the beetles are investigated taxonomically by experts, the efforts made in this study are likely to lead to the description of a number of new species.

## Integration of DNA barcoding into biodiversity assessments

Facing the rapid advance of biodiversity loss in tropical rainforests, an acceleration of biodiversity assessment is indispensable. The traditional taxonomic approach is extremely time-intensive and for most tropical arthropods not possible at all: There is a severe lack of taxonomic expertise (taxonomic impediment), and if it is available, it is quite expensive.

Usually studies on tropical arthropod diversity rely on morphospecies instead of valid taxonomic species. Although this is a more superficial morphological approach, a precise morphospecies sorting is in many taxa quite challenging still and requires taxonomic expertise, too. Therefore, especially for individual- and species rich samples even a 'mere' morphospecies approach can be time- and cost-intensive if a high level of precision is attempted. In addition, even if precisely sorted, morphospecies always contain a certain degree of subjectivity and are hardly comparable among studies.

During the last years, molecular methods such as DNA barcoding have been propagated to accelerate analysis and understanding of biodiversity, with the timeintensive taxonomic identification and description of species being postponed or even completely relinquished. In this study, it could be shown that indeed DNA barcodes can be used for analysing diversity and ecology of leaf beetle communities even without valid taxonomic species information.

The use of DNA barcoding brings along plenty advantages: Whereas even the morphospecies sorting requires a certain degree of taxonomic expertise, in contrast DNA barcode sequences can be easily generated in any molecular laboratory with standard equipment and without any taxonomic knowledge. Furthermore, the
method is open to scrutiny and replicable by third persons. The barcode-based MOTUs can be re-identified and allow e.g. a comparison with leaf beetle fauna of other regions. DNA barcoding can help to delimit species by facilitating and enhancing morphospecies sorting and therefore might prevent underestimation of species richness. Moreover, the method allows interesting follow-up studies as e.g. the exploration of phylogenetic diversity along the elevational gradient.

In the present study, a voucher-based approach of Sanger-sequencing of individuals was applied. Compared to a metabarcoding approach, this is more time-intensive and probably more costly, too. Usually not all collected specimens of a large sample but only a selection can be barcoded. In contrast, recent advances in metabarcoding allow compilation of large data sets with comparatively small time effort. On the other hand, the voucher-based approach can provide abundance data and it facilitates the connection of the specimen with all information connected to the individual. Especially when working with an unknown fauna it is advisable that as much information as possible stays connected to the sampled specimens: Specimens should be archived in collections together with comprehensive sampling information, DNA sequences, and photos that can be accessed via collection databases. This facilitates further research on the samples. In the long term, it is also desirable that the collection is complemented with formal Linnean species names. Although tropical samples contain many unknown species, in those cases where it is possible the specimens should be taxonomically identified. The Linnean names allow the linkage with existing knowledge of species' biology and ecology and are relevant for conservation issues as the compilation of red lists. The beetles from this study will be sent to taxonomic specialists for the respective subtaxon to be identified as far as possible and to formally describe new species. Whereas DNA barcoding certainly should be integrated into biodiversity assessments, it should create a feedback-loop with taxonomy and not replace it.

An essential factor influencing the efficacy of biodiversity assessment, regardless of whether morphology or DNA barcoding is used, is the sampling. Whereas, indeed, laboratory protocols for DNA sequencing have become more and more efficient during the last decades, the sampling that provides the specimens can constitute a bottleneck in the workflow because it can be quite effortful, as shown in this study. Although quite an effort was made, leaf beetle diversity is so rich that it could not be assessed exhaustively with the used methods, a circumstance implicating problems with the analyses. In this study, especially the plot-based sampling design is quite time-consuming as some plots are difficult to access and several replicates temporally scattered over the whole sampling period were sampled. However, it is exactly this sampling design that allows many possibilities of community analyses on a small-grained level. Sampling methods as Malaise trapping or canopy fogging could accelerate the sampling.

## Résumé

In the present study it could be shown that important knowledge about a very diverse unknown leaf beetle fauna can be derived using DNA barcodes instead of
taxonomic identifications. Beside information about species richness also more complex ecological issues such as species turnover and microhabitat specialization could be addressed. DNA barcoding allows an identification of species-like units without taxonomic expertise that is required even for a reliable morphospecies sorting when dealing with species- and individual rich assemblages. However, in the long term a taxonomic identification and the description of new species should be attempted. The chosen approach allows a variety of insights and offers many possibilities for subsequent research in both, the ecological and the methodological aspect.

This study shows once more how diverse and complex the insect fauna of tropical forests is and how much there is still to discover. Especially for tropical mountain forests there are large knowledge gaps although they are probably more diverse and more vulnerable than lowland forests. Although a considerable proportion of the country is protected area, Ecuador suffers the highest annual deforestation rate in South-America ( $-1.9 \%$ ) and the Andean mountain forests are converted rapidly. To preserve Ecuador's outstanding and precious biodiversity, protection efforts should be intensified especially turning attention to the highly endangered mountain ecosystems.

## Bibliography

Adati, T. and Matsuda, K. (1993). Feeding Stimulants for Various Leaf Beetles (Coleoptera, Chrysomelidae) in the Leaf Surface Wax of Their Host Plants. Applied Entomology and Zoology, 28(3):319-324. (Cited on page 11.)

Agapow, P., Bininda-Emonds, O., Crandall, K., Gittleman, J., Mace, G., Marshall, J., and Purvis, A. (2004). The impact of species concept on biodiversity studies. Quarterly Review of Biology, 79(2):161-179. (Cited on page 98.)

Ahrens, D., Monaghan, M., and Vogler, A. (2007). DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera : Scarabaeidae). Molecular Phylogenetics and Evolution, 44(1):436-449. (Cited on pages 4, 100 and 101.)

Alaijos, O. and Lee, J. (2005). Longevity and fecundity of Colasposoma dauricum mannerheim (Coleoptera : Chrysomelidae : Eumolpinae), a pest of sweet potato in Korea. Philippine Agricultural Scientist, 88(2):171-174. (Cited on page 9.)

Allander, T., Emerson, S., Engle, R., Purcell, R., and Bukh, J. (2001). A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species. Proceedings of the National Academy of Sciences of the United States of America, 98(20):11609-11614. (Cited on page 3.)

Allen, A. P., Gillooly, J. F., Savage, V. M., and Brown, J. H. (2006). Kinetic effects of temperature on rates of genetic divergence and speciation. Proceedings of the National Academy of Sciences of the United States of America, 103(24):9130-9135. (Cited on pages 58 and 68.)

Allison, A., Samuelson, G., and Miller, S. (1993). Patterns of beetle species diversity in New Guinea rain forest as revealed by canopy fogging: preliminary findings. Selbyana, 14:16-20. (Cited on page 51.)

Alyokhin, A. (2009). Colorado potato beetle management on potatoes: current challenges and future prospects. Fruit, Vegetable and Cereal Science and Biotechnology, 3(1):10-19. (Cited on page 8.)

Alyokhin, A., Baker, M., Mota-Sanchez, D., Dively, G., and Grafius, E. (2008). Colorado Potato Beetle Resistance to Insecticides. American Journal of Potato Research, 85(6):395-413. (Cited on page 8.)

Andrew, N. and Hughes, L. (2004). Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change. Ecological Entomology, 29(5):527-542. (Cited on pages 2 and 11.)

Ardura, A., Linde, A. R., Moreira, J. C., and Garcia-Vazquez, E. (2010). DNA barcoding for conservation and management of Amazonian commercial fish. Biological Conservation, 143(6):1438-1443. (Cited on page 4.)

Armstrong, K. and Ball, S. (2005). DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1813-1823. (Cited on page 4.)

Arnot, D., Roper, C., and Bayoumi, R. (1993). Digital Codes from Hypervariable Tandemly Repeated Dna-Sequences in the Plasmodium-Falciparum Circumsporozoite Gene Can Genetically Barcode Isolates. Molecular and Biochemical Parasitology, 61(1):15-24. (Cited on page 3.)

Askevold, I. (1990). Classification of Tertiary fossil Donaciinae of North America and their implications about evolution of Donaciinae (Coleoptera: Chrysomelidae). Canadian Journal of Zoology, 68(10):2135-2145. (Cited on page 10.)

Aslan, E. G. and Ayvaz, Y. (2009). Diversity of Alticinae (Coleoptera, Chrysomelidae) in Kasnak Oak Forest Nature Reserve, Isparta, Turkey. Turkish Journal of Zoology, 33(3):251-262. (Cited on page 11.)

Astrin, J. J., Stüben, P. E., Misof, B., Wägele, J., Gimnich, F., Raupach, M. J., and Ahrens, D. (2012). Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-, character- and tree-based species delineation. Molecular Phylogenetics and Evolution, 63(1):1-14. (Cited on pages 100, 101 and 110.)

Bai, Y., Wu, J., Pan, Q., Huang, J., Wang, Q., Li, F., Buyantuyev, A., and Han, X. (2007). Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44(5):1023-1034. (Cited on page 67.)

Balsbaugh, E. (1988). Mimicry and the Chrysomelidae. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 261-284. Kluwer Academic Publishers. (Cited on pages 93 and 94.)

Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., and Ferrer, E. A. (2011). Has the Earth's sixth mass extinction already arrived? Nature, 471(7336):51-57. (Cited on page 1.)

Barone, J. (1998). Host-specificity of folivorous insects in a moist tropical forest. Journal of Animal Ecology, 67(3):400-409. (Cited on page 7.)

Barragan, A. R., Dangles, O., Cardenas, R. E., and Onore, G. (2009). The History of Entomology in Ecuador. Annales de la Société Entomologique de France, 45(4):410-423. (Cited on page 19.)

Barrett, R. and Hebert, P. (2005). Identifying spiders through DNA barcodes. Canadian Journal of Zoology-Revue Canadienne de Zoologie, 83(3):481-491. (Cited on pages 94 and 100.)

Barrows, E. (1979). Life cycles, mating, and color change in tortoise beetles (Coleoptera: Chrysomelidae: Cassidinae). The Coleopterists Bulletin, pages 9-16. (Cited on page 92.)

Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G., and Kreft, H. (2005). Global centers of vascular plant diversity. Nova Acta Leopoldina NF, 92(342):61-83. (Cited on page 24.)

Baselga, A., Fujisawa, T., Crampton-Platt, A., Bergsten, J., Foster, P. G., Monaghan, M. T., and Vogler, A. P. (2013). Whole-community DNA barcoding reveals a spatio-temporal continuum of biodiversity at species and genetic levels. Nature Communications, 4. (Cited on page 2.)

Baselga, A. and Novoa, F. (2007). Diversity of Chrysomelidae (Coleoptera) at a mountain range in the limit of the Eurosiberian region, northwest Spain: species richness and beta diversity. Entomologica Fennica, 18(2):65-73. (Cited on page 11.)

Basset, Y. (1992). Influence of Leaf Traits on the Spatial-Distribution of Arboreal Arthropods Within An Overstory Rain-Forest Tree. Ecological Entomology, 17(1):8-16. (Cited on page 7.)

Basset, Y. (2001). Communities of insect herbivores foraging on saplings versus mature trees of Pourouma bicolor (Cecropiaceae) in Panama. Oecologia, 129(2):253260. (Cited on pages 2 and 11.)

Basset, Y., Aberlenc, H., Barrios, H., Curletti, G., Berenger, J., Vesco, J., Causse, P., Haug, A., Hennion, A., Lesobre, L., Marques, F., and O'Meara, R. (2001). Stratification and diel activity of arthropods in a lowland rainforest in Gabon. Biological Journal of the Linnean Society, 72(4):585-607. (Cited on pages 50, 122 and 123.)

Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Guilhaumon, F., Missa, O., Novotny, V., Ødegaard, F., Roslin, T., Schmidl, J., Tishechkin, A. K., Winchester, N. N., Roubik, D. W., Aberlenc, H. P., Bail, J., Barrios, H., Bridle, J. R., Castaño Meneses, G., Corbara, B., Curletti, G., da Rocha, W. D., de Bakker, D., Delabie, J. H., Dejean, A., Fagan, L. L., Floren, A., Kitching, R. L., Medianero, E., Miller, S. E., de Oliveira, E. G., Orivel, J., Pollet, M., Rapp, M., Ribeiro, S. P., Roisin, Y., Schmidt, J. B., Sørensen, L., and Leponce, M. (2012). Arthropod Diversity in a Tropical Forest. Science, 338(6113):1481-1484. (Cited on pages 35, 50 and 97.)

Basset, Y., Corbara, B., Barrios, H., Cuénoud, P., Leponce, M., Aberlenc, H.P., Bail, J., Bito, D., Bridle, J., Castaño Meneses, G., Cizek, L., Cornejo, A.,

Curletti, G., Delabie, J., Dejean, A., Didham, R., Dufrêne, M., Fagan, L., Floren, A., Frame, D., Hallé, F., Hardy, O., Hernandez, A., Kitching, R., Lewinsohn, T., Lewis, O., Manumbor, M., Medianero, E., Missa, O., Mitchell, A., Mogia, M., Novotny, V., Ødegaard, F., Oliveira, E., Orivel, J., Ozanne, C., Pascal, O., Pinzón, S., Rapp, M., Ribeiro, S., Roisin, Y., Roslin, T., Roubik, D., Samaniego, M., Schmidl, J., Sørensen, L., Tishechkin, A., Osselaer, C., and Winchester, N. (2007). IBISCA-Panama, a large-scale study of arthropod beta-diversity and vertical stratification in a lowland rainforest: rationale, study sites and field protocols. Bulletin de l'institut royal des scineces naturelles de Belgique Entomologie, 77. (Cited on pages 50, 110 and 123.)

Basset, Y. and Leponce, M. (2005). IBISCA: Towards a census of canopy life. What's up? The newsletter of the International Canopy Network. (Cited on page 50.)

Basset, Y., Missa, O., Alonso, A., Miller, S., Curletti, G., De Meyer, M., Eardley, C., Lewis, O., Mansell, M., Novotny, V., and Wagner, T. (2008). Changes in Arthropod Assemblages along a Wide Gradient of Disturbance in Gabon. Conservation Biology, 22(6):1552-1563. (Cited on pages 71, 72 and 98.)

Basset, Y., Novotny, V., Miller, S., Weiblen, G., Missa, O., and Stewart, A. (2004). Conservation and biological monitoring of tropical forests: the role of parataxonomists. Journal of Applied Ecology, 41(1):163-174. (Cited on pages 71 and 72.)

Basset, Y. and Samuelson, G. (1996). Ecological characteristics of an arboreal community of Chrysomelidae in Papua New Guinea. In Jolivet, P. and Cox, M., editors, Chrysomelidae biology 2, pages 243-262. SPB Academic Publishing. (Cited on page 58.)

Beaman, N. (1980). Dispersion, dispersal and phenotypic variability of Xenarescus monocerus, a Neotropical rolled-leaf hispine beetle. PhD thesis, George Washington University. (Cited on page 91.)

Bechyné, J. (1952). Nachträge zu den Katalogen von Blackwelder und JunkSchenkling der neotropischen echten Chrysomeliden. Entom. Arb. Mus. Frey, $3(1): 1-62$. (Cited on page 19.)

Bechyné, J. (1953). Katalog der neotropischen Eumolpiden. Entom. Arb. Mus. Frey, 4:26-303. (Cited on page 19.)

Bechyné, J. and Springlová de Bechyné, B. (1965). Notes sur les Chrysomelidae s.str. de Venezuela et des pays limitrophes. Revista de la Facultad de Agronomía, 3:44-110. (Cited on page 18.)

Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. (2008a). Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer, Berlin, Heidelberg. (Cited on page 36.)

Beck, E., Makeschin, F., Haubrich, F., Richter, M., Bendix, J., and Valerezo, C. (2008b). The Ecosystem (Reserva Biológica San Francisco). In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador, pages 41-48. Springer. (Cited on pages 24 and 57.)

Beck, E. H. and Kottke, I. L. (2008). Facing a hotspot of tropical biodiversity. Basic and Applied Ecology, 9(1):1-3. (Cited on pages 2, 19 and 36.)

Begerow, D., Nilsson, H., Unterseher, M., and Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87(1):99-108. (Cited on page 3.)

Bendix, J., Homeier, J., Ortiz, Cueva, E., Emck, P., Breckle, S., Richter, M., and Beck, E. (2006). Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. International Journal of Biometeorology, 50(6):370-384. (Cited on page 24.)

Bendix, J., Rollenbeck, R., Richter, M., Fabian, P., and Emck, P. (2008). Climate. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador, pages 63-73. Springer. (Cited on page 24.)

Bensasson, D., Zhang, D., Hartl, D., and Hewitt, G. (2001). Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology $\varepsilon \mathcal{E}$ Evolution, 16(6):314321. (Cited on page 28.)

Bergsten, J., Bilton, D. T., Fujisawa, T., Elliott, M., Monaghan, M. T., Balke, M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G. N., Ribera, I., Nilsson, A. N., Barraclough, T. G., and Vogler, A. P. (2012). The Effect of Geographical Scale of Sampling on DNA Barcoding. Systematic Biology, 61(5):851-869. (Cited on pages 5 and 110.)

Bernard, E. and Schmitt, D. (2005). Nematode assemblages in native plant communities of Molokai, Hawaii. Journal of Nematology, 37(2):242-248. (Cited on page 72.)

Besansky, N., Severson, D., and Ferdig, M. (2003). DNA barcoding of parasites and invertebrate disease vectors: what you don't know can hurt you. Trends in Parasitology, 19(12):545-546. (Cited on page 4.)

Bickford, D., Lohman, D., Sodhi, N., Ng, P., Meier, R., Winker, K., Ingram, K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology \& Evolution, 22(3):148-155. (Cited on page 89.)

Bishop, B. and Grafius, E. (1996). Insecticide resistance in the Colorado potato beetle. In Jolivet, P. and Cox, M., editors, Chrysomelidae biology 1, pages 355377. SPB Academic Publishing. (Cited on page 8.)

Black, R. and Prince, J. (1983). Fauna Associated with the Coral PocilloporaDamicornis at the Southern Limit of Its Distribution in Western Australia. Journal of Biogeography, 10(2):135-152. (Cited on page 67.)

Blackwelder, R. (1947). Checklist of the coleopterous insects of Mexico, Central America, the West-Indies, and South America (1944-1957). (Cited on pages 15, 16, 19, 48 and 110.)

Blair, C., Abrahamson, W., Jackman, J., and Tyrrell, L. (2005). Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetle. Evolution, 59(2):304-316. (Cited on page 89.)

Blankenship, L. and Yayanos, A. (2005). Universal primers and PCR of gut contents to study marine invertebrate diets. Molecular Ecology, 14(3):891-899. (Cited on page 4.)

Blaxter, M. (2004). The promise of a DNA taxonomy. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359(1444):669-679. (Cited on page 6.)

Blaxter, M., Elsworth, B., and Daub, J. (2004). DNA taxonomy of a neglected animal phylum: an unexpected diversity of tardigrades. Proceedings of the Royal Society of London Series B-Biological Sciences, 271:S189-S192. (Cited on pages 4 and 72.)

Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., and Abebe, E. (2005). Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1935-1943. (Cited on pages 94, 98 and 100.)

Bodner, F., Brehm, G., Homeier, J., Strutzenberger, P., and Fiedler, K. (2010). Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador. Journal of Insect Science, 10. (Cited on pages 21 and 50.)

Bonn, A., Storch, D., and Gaston, K. (2004). Structure of the species-energy relationship. Proceedings of the Royal Society B-Biological Sciences, 271(1549):16851691. (Cited on page 67.)

Borowiec, L. (1995). Tribal classification of the cassidoid Hispinae (Coleoptera: Chrysomelidae). In Pakaluk, J. and Slipinski, S., editors, Biology, phylogeny, and classification of Coleoptera: papers celebrating the 80th birthday of Roy A. Crowson. Volume 1, pages 541-558. Muzeum i Instytut Zoologii PAN; Warsaw, Poland. (Cited on pages 14, 54 and 55.)

Borowiec, L. (1998). Review of the Cassidinae of Ecuador, with a description of thirteen new species (Coleoptera: Chrysomelidae). Genus, 9(2):155-246. (Cited on pages $15,19,20,48$ and 71.)

Borowiec, L. (2000a). Cyrtonota montana, a new species from Ecuador (Coleoptera: Chrysomelidae: Cassidinae). Genus, 11(1):49-52. (Cited on pages 15, 20 and 48.)

Borowiec, L. (2000b). Two new species of Miocalaspis Weise, 1899 from Ecuador and Peru (Coleoptera: Chrysomelidae: Cassidinae). Genus, 11(2):229-233. (Cited on pages 15, 20 and 48.)

Borowiec, L. and Świętojańska, J. (2014). Cassidinae of the world - An interactive manual (Coleoptera:Chrysomelidae); http://www.biol.uni.wroc.pl/cassidae/ katalog (Cited on pages 14, 15, 20 and 71.)

Bouchard, P., Bousquet, Y., Davies, A. E., Alonso-Zarazaga, M. A., Lawrence, J. F., Lyal, C. H., Newton, A. F., Reid, C. A., Schmitt, M., Slipinski, Adam, S., and Smith, A. B. (2011). Family-group names in Coleoptera (Insecta). Zookeys, (88):1-895. (Cited on pages 12 and 18.)

Bradshaw, C. J., Sodhi, N. S., and Brook, B. W. (2009). Tropical turmoil: a biodiversity tragedy in progress. Frontiers in Ecology and the Environment, 7(2):79-87. (Cited on pages 1 and 113.)

Braun, H. (2008). Orthoptera: Tettigoniidae-checklist Reserva Biológica San Francisco and Parque Nacional Podocarpus (Prov. Zamora-Chinchipe and Loja, S. Ecuador). In Liede-Schumann, S. and Breckle, S., editors, Provisional checklists of flora and fauna of the San Francisco Valley and its surroundings (Reserva Biológica San Francisco, Prov. Zamora-Chinchipe, Southern Ecuador), pages 215-220. (Cited on page 21.)

Brehm, G. (2002). Diversity of geometrid moths in a montane rainforest in Ecuador. PhD thesis, University of Bayreuth, Bayreuth, Germany. (Cited on pages 25 and 121.)

Brehm, G., Colwell, R. K., and Kluge, J. (2007). The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography, 16(2):205-219. (Cited on page 68.)

Brehm, G. and Fiedler, K. (2003). Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest. Journal of Biogeography, 30(3):431-440. (Cited on pages 2, 50 and 99.)

Brehm, G. and Fiedler, K. (2004). Bergmann's rule does not apply to geometrid moths along an elevational gradient in an Andean montane rain forest. Global Ecology and Biogeography, 13(1):7-14. (Cited on pages 2 and 50.)

Brehm, G. and Fiedler, K. (2005). Diversity and community structure of geometrid moths of disturbed habitat in a montane area in the Ecuadorian Andes. Journal of Research on the Lepidoptera, 38:1-14. (Cited on page 50.)

Brehm, G., Fiedler, K., Häuser, C., and Dalitz, H. (2008a). Methodological challenges of a megadiverse ecosystem. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador, pages 41-48. Springer. (Cited on pages 2 and 18.)

Brehm, G., Homeier, J., and Fiedler, K. (2003a). Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Diversity and Distributions, 9(5):351-366. (Cited on pages 2, 21, 25, 50 and 99.)

Brehm, G., Homeier, J., Fiedler, K., Kottke, I., Illig, J., Nöske, N., Werner, F., and Breckle, S.-W. (2008b). Mountain rain forests in southern Ecuador as a hotspot of biodiversity. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador, pages 15-24. Springer. (Cited on pages 21, 25 and 36.)

Brehm, G., Pitkin, L., Hilt, N., and Fiedler, K. (2005). Montane Andean rain forests are a global diversity hotspot of geometrid moths. Journal of Biogeography, $32(9): 1621-1627$. (Cited on pages 21, 25, 50 and 58.)

Brehm, G., Strutzenberger, P., and Fiedler, K. (2013). Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography, $36(11): 1247-1253$. (Cited on pages 50 and 70.)

Brehm, G., Süßenbach, D., and Fiedler, K. (2003b). Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography, 26(4):456466. (Cited on pages 2, 21, 25 and 50.)

Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S., and Bremer, K. (2007). Estimating divergence times in large phylogenetic trees. Systematic Biology, 56(5):741-752. (Cited on pages 37 and 99.)

Brook, B., Bradshaw, C., Koh, L., and Sodhi, N. (2006). Momentum drives the crash: Mass extinction in the tropics. Biotropica, 38(3):302-305. (Cited on page 113.)

Broughton, S. (2001). Parasitism and predation of the lantana leafmining beetles Octotoma scabripennis Guérin-Méneville and Uroplata girardi Pic (Coleoptera: Chrysomelidae : Hispinae) in Australia. Australian Journal of Entomology, 40:286-293. (Cited on page 10.)

Brown, J. (2001). Mammals on mountainsides: elevational patterns of diversity. Global Ecology and Biogeography, 10(1):101-109. (Cited on page 67.)

Brown, J., Gillooly, J., Allen, A., Savage, V., and West, G. (2004). Toward a metabolic theory of ecology. Ecology, 85(7):1771-1789. (Cited on page 66.)

Brühl, C., Mohamed, V., and Linsenmair, K. (1999). Altitudinal distribution of leaf litter ants along a transect in primary forests on Mount Kinabalu, Sabah,

Malaysia. Journal of Tropical Ecology, 15:265-277. (Cited on pages 2, 52, 67 and 109.)

Brummitt, N. and Lughadha, E. (2003). Biodiversity: Where's hot and where's not. Conservation Biology, 17(5):1442-1448. (Cited on pages 2, 24, 98 and 109.)

Bruns, T., White, T., and Taylor, J. (1991). Fungal Molecular Systematics. Annual Review of Ecology and Systematics, 22:525-564. (Cited on page 3.)

Bubb, P., May, I., Miles, L., and Sayer, J. (2004). Cloud forest agenda. Technical report, UNEP World Conservation Monitoring Centre. (Cited on pages 2 and 113.)

Bucklin, A., Wiebe, P., Smolenack, S., Copley, N., Beaudet, J., Bonner, K., FarberLorda, J., and Pierson, J. (2007). DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). Journal of Plankton Research, 29(6):483493. (Cited on pages 4 and 72.)

Buhay, J. (2009). "COI-like" Sequences Are Becoming Problematic in Molecular Systematic and DNA Barcoding Studies. Journal of Crustacean Biology, 29(1):96110. (Cited on page 28.)

Buzzi, Z. (1988). Biology of Neotropical Cassidinae. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 559-580. Kluwer Academic Publishers. (Cited on pages 8, 14, 15 and 92.)

Cardoso, A. and Vogler, A. (2005). DNA taxonomy, phylogeny and Pleistocene diversification of the Cicindela hybrida species group (Coleoptera : Cicindelidae). Molecular Ecology, 14(11):3531-3546. (Cited on page 100.)

Cardoso, P., Erwin, T. L., Borges, V, P. A., and New, T. R. (2011). The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144(11):2647-2655. (Cited on page 3.)

Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology, 22(17):4369-4383. (Cited on page 112.)

Ceballos, G. and Ehrlich, P. R. (2009). Discoveries of new mammal species and their implications for conservation and ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 106(10):3841-3846. (Cited on page 89.)

Chaboo, C. (2007). Biology and phylogeny of the Cassidinae Gyllenhal sensu lato (tortoise and leaf-mining beetles) (Coleoptera: Chrysomelidae). Bulletin of the American Museum of Natural History, (305):1-250. (Cited on pages 8, 10, 13, 14, $15,53,54,55,71$ and 91 .)

Chaboo, C. and Borowiec, L. (2003). Annotated checklist of tortoise beetles of Trinidad and Tobago (Coleoptera: Chrysomelidae: Cassidinae). Coleopterists Bulletin, 57(1):71-78. (Cited on page 71.)

Chaboo, C. S., Brown, C. G., and Funk, D. J. (2008). Faecal case architecture in the gibbosus species group of Neochlamisus Karren, 1972 (Coleoptera: Chrysomelidae : Cryptocephalinae: Chlamisini). Zoological Journal of the Linnean Society, 152(2):315-351. (Cited on page 8.)

Chaboo, C. S. and Engel, M. S. (2009). Eocene tortoise beetles from the Green River Formation in Colorado, USA (Coleoptera: Chrysomelidae: Cassidinae). Systematic Entomology, 34(2):202-209. (Cited on pages 10, 13, 14 and 15.)

Chamorro, M. and Konstantinov, A. S. (2011). Cachiporrini, a remarkable new tribe of Lamprosomatinae (Coleoptera, Chrysomelidae) from South America. Zookeys, (78):43-59. (Cited on page 18.)

Chao, A. (1987). Estimating the Population-Size for Capture Recapture Data with Unequal Catchability. Biometrics, 43(4):783-791. (Cited on page 102.)

Chao, A., Chazdon, R., Colwell, R., and Shen, T. (2005). A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 8(2):148-159. (Cited on pages 60 and 61.)

Chapman, A. D. (2009). Numbers of living species in Australia and the world. Technical report, Canberra, Australia. (Cited on pages 1, 35 and 97.)

Charles, E. and Bassett, Y. (2005). Vertical stratification of leaf-beetle assemblages (Coleoptera: Chrysomelidae) in two forest types in Panama. Journal of Tropical Ecology, 21:329-336. (Cited on pages 11, 50, 95, 110 and 123.)

Chase, J. and Leibold, M. (2002). Spatial scale dictates the productivity-biodiversity relationship. Nature, 416(6879):427-430. (Cited on pages 58, 59 and 67.)

Chase, J. M. (2010). Stochastic Community Assembly Causes Higher Biodiversity in More Productive Environments. Science, 328(5984):1388-1391. (Cited on pages 58 and 59.)

Chase, M., Salamin, N., Wilkinson, M., Dunwell, J., Kesanakurthi, R., Haidar, N., and Savolainen, V. (2005). Land plants and DNA barcodes: short-term and longterm goals. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1889-1895. (Cited on page 29.)

Chase, M. W., Cowan, R. S., Hollingsworth, P. M., van den Berg, C., Madriñán, S., Petersen, G., Seberg, O., Jørgsensen, T., Cameron, K. M., Carine, M., Pedersen, N., Hedderson, T. A., Conrad, F., Salazar, G. A., Richardson, J. E., Hollingsworth, M. L., Barraclough, T. G., Kelly, L., and Wilkinson, M. (2007). A proposal for a standardised protocol to barcode all land plants. Taxon, 56(2):295299. (Cited on page 3.)

Chen, W., Hung, T., and Shiao, S. (2004). Molecular identification of forensically important blow fly species (Diptera: Calliphoridae) in Taiwan. Journal of Medical Entomology, 41(1):47-57. (Cited on page 4.)

Cilliers, C. and Neser, S. (1991). Biological-Control of Lantana-Camara (Verbenaceae) in South-Africa. Agriculture Ecosystems \& Environment, 37(1-3):57-75. (Cited on page 10.)

Ciosi, M., Miller, N., Kim, K., Giordano, R., Estoup, A., and Guillemaud, T. (2008). Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Molecular Ecology, 17(16):3614-3627. (Cited on page 8.)

Clark, D. and Clark, D. (1984). Spacing Dynamics of A Tropical Rain-Forest Tree - Evaluation of the Janzen-Connell Model. American Naturalist, 124(6):769-788. (Cited on page 11.)

Clark, T., Meinke, L., Skoda, S., and Foster, J. (2001). Occurrence of Wolbachia in selected Diabroticite (Coleoptera : Chrysomelidae) beetles. Annals of the Entomological Society of America, 94(6):877-885. (Cited on page 29.)

Clement, M., Posada, D., and Crandall, K. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10):1657-1659. (Cited on pages 31 and 100.)

Coddington, J., Agnarsson, I., Miller, J. A., Kuntner, M., and Hormiga, G. (2009). Undersampling bias: the null hypothesis for singleton species in tropical arthropod surveys. Journal of Animal Ecology, 78(3):573-584. (Cited on pages 51, 71, 109 and 114.)

Cognato, A. (2006). Standard percent DNA sequence difference for insects does not predict species boundaries. Journal of Economic Entomology, 99(4):1037-1045. (Cited on page 100.)

Coley, P. and Barone, J. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27:305-335. (Cited on pages 2, 7, 11 and 35 .)

Colwell, R. and Coddington, J. (1994). Estimating Terrestrial Biodiversity Through Extrapolation. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 345(1311):101-118. (Cited on pages 37 and 102.)

Colwell, R. and Lees, D. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology E Evolution, 15(2):70-76. (Cited on page 68.)

Colwell, R., Rahbek, C., and Gotelli, N. (2004). The mid-domain effect and species richness patterns: What have we learned so far? American Naturalist, 163(3):E1E23. (Cited on page 68.)

Connell, J. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of populations, 298:312. (Cited on page 11.)

Connell, J. (1978). Diversity in Tropical Rain Forests and Coral Reefs - High Diversity of Trees and Corals Is Maintained Only in A Non-Equilibrium State. Science, 199(4335):1302-1310. (Cited on page 97.)

Cooter, J. and Barclay, M. (2006). A coleopterist's handbook. (Cited on page 16.)
Corlett, R. and Primack, R. (2011). Tropical rain forests: an ecological and biogeographical comparison. John Wiley \& Sons. (Cited on pages 1, 35, 71 and 97.)

Costa, C. (2000). Estado de conocimiento de los Coleoptera neotropicales. In Proyecto Iberoamericano de Biogeografía y Entomología Sistemática: PRIBES 2000: trabajos del 1er taller iberoamericano de entomología sistemática. (Cited on pages 19, 58 and 98.)

Costa, S. S. and Melo, A. S. (2008). Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia, 598:131-138. (Cited on page 72.)

Cox, A. and Hebert, P. (2001). Colonization, extinction, and phylogeographic patterning in a freshwater crustacean. Molecular Ecology, 10(2):371-386. (Cited on page 28.)

Craft, K. J., Pauls, S. U., Darrow, K., Miller, S. E., Hebert, P. D., Helgen, L. E., Novotny, V., and Weiblen, G. D. (2010). Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 107(11):5041-5046. (Cited on page 58.)

Crowson, R. and Crowson, E. (1996). The phylogenetic relations of GalerucinaeAlticinae. In Jolivet, S. and Cox, M., editors, Chrysomelidae biology 1, pages 97-118. SPB Academic Publishing. (Cited on page 13.)

Şen, I. and Gök, A. (2009). Leaf beetle communities (Coleoptera: Chrysomelidae) of two mixed forest ecosystems dominated by pine-oak-hawthorn in Isparta province, Turkey. Annales Zoologici Fennici, 46(3):217-232. (Cited on page 11.)

Currie, D., Mittelbach, G., Cornell, H., Field, R., Guégan, J., Hawkins, B., Kaufman, D., Kerr, J., Oberdorff, T., O’Brien, E., and Turner, J. (2004). Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7(12):1121-1134. (Cited on page 66.)

Daccordi, M. (1996). Notes on the distribution of the Chrysomelinae and their possible origin. In Jolivet, P. and Cox, M., editors, Chrysomelidae biology 1, pages 399-412. SPB Academic Publishing. (Cited on pages 17 and 18.)

Dalton, D. L. and Kotze, A. (2011). DNA barcoding as a tool for species identification in three forensic wildlife cases in South Africa. Forensic Science International, 207(1-3):E51-E54. (Cited on page 4.)

Damm, S., Schierwater, B., and Hadrys, H. (2010). An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Molecular Ecology, 19(18):3881-3893. (Cited on page 6.)

Dangles, O. (2009). Entomology in Ecuador. Annales de la Société Entomologique de France, 45(4):409-409. (Cited on pages 2 and 19.)

Dangles, O., Barragan, A., Cardenas, R. E., Onore, G., and Keil, C. (2009). Entomology in Ecuador: Recent developments and future challenges. Annales de la Société Entomologique de France, 45(4):424-436. (Cited on pages 24 and 25.)

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85(3):407-415. (Cited on page 5.)
de Jong, P. and Nielsen, J. (1999). Polymorphism in a flea beetle for the ability to use an atypical host plant. Proceedings of the Royal Society B-Biological Sciences, 266(1414):103-111. (Cited on page 92.)

Decaëns, T., Porco, D., Rougerie, R., Brown, G. G., and James, S. W. (2013). Potential of DNA barcoding for earthworm research in taxonomy and ecology. Applied Soil Ecology, 65:35-42. (Cited on pages 4 and 72.)

DeLoach, C., Lewis, P., Herr, J., Carruthers, R., Tracy, J., and Johnson, J. (2003). Host specificity of the leaf beetle, Diorhabda elongata deserticola (Coleoptera : Chrysomelidae) from Asia, a biological control agent for saltcedars (Tainarix : Tamaricaceae) in the Western United States. Biological Control, 27(2):117-147. (Cited on page 9.)

DeSalle, R., Egan, M., and Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1905-1916. (Cited on page 5.)

Descampe, A., Meskens, C., Pasteels, J., Windsor, D., and Hance, T. (2008). Potential and realized feeding niches of neotropical hispine beetles (Chrysomelidae : Cassidinae, Cephaloleiini). Environmental Entomology, 37(1):224-229. (Cited on pages 7, 11 and 15.)

Didham, R. (2002). Living the high life. The Weta, 24:1-4. (Cited on page 110.)
Didham, R. and Fagan, L. (2003). Project IBISCA-investigating the biodiversity of soil and canopy arthropods. The Weta, 26:1-6. (Cited on page 110.)

Dirzo, R. and Raven, P. (2003). Global state of biodiversity and loss. Annual Review of Environment and Resources, 28:137-167. (Cited on pages 1, 35, 97 and 113.)

Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., and Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195):401-406. (Cited on pages 1 and 113.)

Dobzhansky, T. (1950). Evolution in the tropics. American Scientist, 38(2):209-221. (Cited on page 58.)

Doddala, P., Trewick, S., Rogers, D., and Minor, M. (2013). Predictive Modelling of Adult Emergence in a Polyphagous Eucolaspis (Chrysomelidae: Eumolpinae) Leaf Beetle. Journal of Economic Entomology, 106(2):899-904. (Cited on page 9.)

Donoso, D., Salazar, F., Maza, F., Cárdenas, R., and Dangles, O. (2009). Diversity and distribution of type specimens deposited in the Invertebrate section of the Museum of Zoology QCAZ, Quito, Ecuador. Annales de la Société entomologique de France, 45(4):487-499. (Cited on pages 15, 20, 21 and 49.)

Duckett, C., Gillespie, J., and Kjer, K. (2004). Relationships among the subfamilies of Chrysomelidae inferred from small subunit ribosomal DNA and morphology, with special emphasis on the relationship among the flea beetles and the Galerucinae. In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 3-18. SPB Academic Publishing. (Cited on pages $12,13,54$ and 55 .)

Duncan, W. and Brusven, M. (1985). Benthic macroinvertebrates in logged and unlogged low-order southeast Alaskan streams. Freshwater Invertebrate Biology, pages 125-132. (Cited on page 72.)

Dunning, L. T. and Savolainen, V. (2010). Broad-scale amplification of matK for DNA barcoding plants, a technical note. Botanical Journal of the Linnean Society, 164(1):1-9. (Cited on page 3.)

Eaton, M. J., Meyers, G. L., Kolokotronis, S. O., Leslie, M. S., Martin, A. P., and Amato, G. (2010). Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conservation Genetics, 11(4):1389-1404. (Cited on page 4.)

Ebach, M. and Holdrege, C. (2005). DNA barcoding is no substitute for taxonomy. Nature, 434(7034):697-697. (Cited on page 5.)

Edgar, R. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5:1-19. (Cited on pages 37 and 73.)

Ehinger, M., Fontanillas, P., Petit, E., and Perrin, N. (2002). Mitochondrial DNA variation along an altitudinal gradient in the greater white-toothed shrew, Crocidura russula. Molecular Ecology, 11(5):939-945. (Cited on pages 59 and 68.)

Ehrlich, P. and Raven, P. (1964). Butterflies and plants: a study in coevolution. Evolution, 18:586-608. (Cited on page 10.)

Emlen, D. and Nijhout, H. (2000). The development and evolution of exaggerated morphologies in insects. Annual Review of Entomology, 45:661-708. (Cited on page 90. )

Erber, D. (1988). Biology of Camptosomata Clytrinae - Cryptocephalinae Chlamisinae - Lamprosomatinae. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 513-552. Kluwer Academic Publishers. (Cited on pages 18 and 55.)

Erwin, T. (1997). Biodiversity at its utmost: tropical forest beetles. In ReakaKudla, M., Wilson, D., and Wilson, E., editors, Biodiversity II. Understanding and protecting our biological resources, pages 27-40. Joseph Henry Press. (Cited on page 51.)

Erwin, T. L. (1982). Tropical forests: their richness in Coleoptera and other arthropod species. Coleopterists Bulletin, 36(1):74-75. (Cited on pages 7, 11, 35, 98 and 110.)

Escobar, F., Halffter, G., and Arellano, L. (2007). From forest to pasture: an evaluation of the influence of environment and biogeography on the structure of beetle (Scarabaeinae) assemblages along three altitudinal gradients in the Neotropical region. Ecography, 30(2):193-208. (Cited on page 2.)

Escobar, F., Lobo, J., and Halffter, G. (2005). Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Global Ecology and Biogeography, 14(4):327-337. (Cited on pages 2 and 66.)

Escobar, F., Lobo, J. M., and Halffer, G. (2006). Assessing the origin of Neotropical mountain dung beetle assemblages (Scarabaeidae: Scarabaeinae): the comparative influence of vertical and horizontal colonization. Journal of Biogeography, 33(10):1793-1803. (Cited on page 2.)

Evans, K. L., Newson, S. E., Storch, D., Greenwood, J. J., and Gaston, K. J. (2008). Spatial scale, abundance and the species-energy relationship in British birds. Journal of Animal Ecology, 77(2):395-405. (Cited on page 67.)

Evenhuis, N. L. (2007). Helping solve the "other" taxonomic impediment: Completing the Eight Steps to Total Enlightenment and Taxonomic Nirvana. Zootaxa, (1407):3-12. (Cited on page 3.)

Fairbairn, D. (2005). Allometry for sexual size dimorphism: Testing two hypotheses for Rensch's rule in the water strider Aquarius remigis. American Naturalist, 166(4):S69-S84. (Cited on page 90.)

FAO (2010). FAO. Global Forest Resources Assessment 2010 Main Report. Technical report. (Cited on pages 2 and 25.)

Farrell, B. (1998). "Inordinate fondness" explained: Why are there so many beetles? Science, 281(5376):555-559. (Cited on pages 6, 10, 12, 13 and 55.)

Farrell, B., Mitter, C., and Futuyma, D. (1992). Diversification at the Insect-Plant Interface. Bioscience, 42(1):34-42. (Cited on page 10.)

Farrell, B. and Sequeira, A. (2004). Evolutionary rates in the adaptive radiation of beetles on plants. Evolution, 58(9):1984-2001. (Cited on pages 10, 12 and 55.)

Farrell, B. D. and Erwin, T. L. (1988). Leaf-beetle community structure in an amazonian rainforest canopy. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 73-90. Kluwer Academic Publishers. (Cited on pages 11, 50, 53, 58 and 123.)

Ferronatto, E. (1988). Eumolpinae associated with cacao trees in Southeast Bahia. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 553-558. Kluwer Academic Publishers. (Cited on page 9.)

Fiedler, K., Brehm, G., Hilt, N., Süßenbach, D., and Häuser, C. (2008). Variation of diversity patterns across moth families along a tropical altitudinal gradient. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador. (Cited on page 21.)

Flowers, R. (1991). Aggregations of Cassidinae (Chrysomelidae) in Santa-Rosa-National-Park and Guanacaste-National-Park, Costa-Rica. Biotropica, 23(3):308310. (Cited on page 20.)

Flowers, R. (1999). Internal structure and phylogenetic importance of male genitalia in the Eumolpinae. In Cox, M., editor, Advances in Chrysomelidae biology 1, pages 71-93. Backhuys Publishers. (Cited on page 16.)

Flowers, R. (2004a). New flightless Eumolpinae of the genera Apterodina Bechyné and Brachypterodina n. gen.(Coleoptera: Chrysomelidae) from the Neotropics. Zootaxa, 549:1-18. (Cited on pages 16, 20 and 71.)

Flowers, R. (2004b). A review of the neotropical genus prionodera chevrolat (coleoptera, chrysomelidae, eumolpinae) with description of a new genus. Zootaxa, 631:1-54. (Cited on pages 16, 20 and 71.)

Flowers, R. (2009a). A new genus and species of Eumolpinae (Coleoptera: Chrysomelidae) from the western dry forest of Ecuador. Zootaxa, 2132:65-68. (Cited on pages 16, 20 and 48.)

Flowers, R. (2009b). A second species of Apterodina (Chrysomelidae: Eumolpinae) from Ecuador. Zootaxa, 2131:65-68. (Cited on pages 16, 20 and 48.)

Flowers, R. and Hanson, P. (2003). The diversity of the Chrysomelidae fauna in Costa Rica: Insights from a Malaise trapline. In Furth, D. G., editor, Special topics in leaf beetle biology, pages 25-51. Pensoft. (Cited on pages 11, 20, 36, 50, $53,58,110$ and 122.)

Flowers, R. and Janzen, D. (1997). Feeding records of Costa Rican leaf beetles (Coleoptera: Chrysomelidae). Florida Entomologist, 80(3):334-366. (Cited on pages 11 and 20.)

Flowers, W. (2004c). The genera of Chrysomelinae (Coleoptera: Chrysomelidae) in Costa Rica. Revista de biología tropical, 52(1):77-83. (Cited on pages 16, 17, 18, 20 and 71.)

Flowers, W. and Chaboo, C. (2009). Novel host records of some cassidine leaf beetles from Ecuador (Coleoptera: Chrysomelidae: Cassidinae). Insecta Mundi, 0095:1-8. (Cited on pages 15, 20, 71 and 121.)

Floyd, R., Abebe, E., Papert, A., and Blaxter, M. (2002). Molecular barcodes for soil nematode identification. Molecular Ecology, 11(4):839-850. (Cited on pages 6 and 72 .)

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5). (Cited on pages 3, 28 and 29.)

Fontaneto, D., Iakovenko, N., Eyres, I., Kaya, M., Wyman, M., and Barraclough, T. G. (2011). Cryptic diversity in the genus Adineta Hudson \& Gosse, 1886 (Rotifera: Bdelloidea: Adinetidae): a DNA taxonomy approach. Hydrobiologia, 662(1):27-33. (Cited on page 101.)

Forgash, A. (1985). Insecticide Resistance in the Colorado Potato Beetle. Massachusetts Agricultural Experiment Station Research Bulletin, (704):33-52. (Cited on page 8.)

Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conservation Biology, 10(6):1500-1508. (Cited on page 68.)

Freund, W. (2005). Effects of fragmentation and degradation of an afrotropical rain forest on the diversity structure of leaf beetle communities (Coleoptera, Chrysomelidae). PhD thesis, Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. (Cited on page 53.)

Frézal, L. and Leblois, R. (2008). Four years of DNA barcoding: Current advances and prospects. Infection Genetics and Evolution, 8(5):727-736. (Cited on pages 2, 3 and 4.)

Fujisawa, T. and Barraclough, T. G. (2013). Delimiting Species Using SingleLocus Data and the Generalized Mixed Yule Coalescent Approach: A Revised Method and Evaluation on Simulated Data Sets. Systematic Biology, 62(5):707724. (Cited on page 101.)

Fujiyama, S. (1979). On the colour polymorphism in Chrysolina aurichalcea (Mannerheim)(Coleoptera: Chrysomelidae) collected from four mountain districts. Journal of the Faculty of Science Shinshu University, 14:99-106. (Cited on page 91.)

Fujiyama, S. and Arimoto, K. (1988). Genetics of the two colour forms of Chrysolina aurichalcea (Mannerheim) (Coleoptera: Chrysomelidae) and their gene frequencies in two mountainous areas of central Honshu, Japan. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 205-215. Kluwer Academic Publishers. (Cited on page 91.)

Funk, D. and Omland, K. (2003). Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 34:397-423. (Cited on page 29.)

Furth, D. (1980). Wing polymorphism, host plant ecology, and biogeography of Longitarsus in Israel (Coleoptera: Chrysomelidae). Israel Journal of Entomology, pages 125-148. (Cited on page 92.)

Furth, D. (1982a). Blepharida biology, as demonstrated by the sacred sumac flea beetle (B. sacra Weise) (Coleoptera: Chrysomelidae: Atticinae). Spixiana Supplement, pages 43-52. (Cited on page 8.)

Furth, D. (1982b). The metafemoral spring of flea beetles (Chrysomelidae: Alticinae). Spixiana Supplement, pages 11-27. (Cited on page 12.)

Furth, D. (1988). The jumping apparatus of flea beetles (Alticinae)-The metafemoral spring. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 285-297. Kluwer Academic Publishers. (Cited on page 12.)

Furth, D. (1992). The New-World Blepharida Group, with A Key to Genera and Description of A New Species (Coleoptera, Chrysomelidae). Journal of the New York Entomological Society, 100(2):399-414. (Cited on pages 20 and 71.)

Furth, D. (2005). The Current Status of Knowledge of the Alticinae of Mexico (Coleoptera: Chrysomelidae). Bonner zoologische Beiträge, 54(4):209-237. (Cited on page 53.)

Furth, D. (2009). Flea beetle diversity of the Sierra Tarahumara, Copper Canyon, Mexico (Chrysomelidae: Alticinae). In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, Research on Chrysomelidae 2, pages 131-151. Brill. (Cited on pages 66 and 121.)

Furth, D., Longino, J., and Paniagua, M. (2003). Survey and quantitative assessment of flea beetle diversity in a Costa Rican rainforest (Coleoptera: Chrysomelidae: Alticinae). In Furth, D., editor, Special topics in leaf beetle biology, pages 1-24. Pensoft. (Cited on pages 12, 19, 20, 36, 50, 51, 53, 58, 71, 110, 114, 122 and 123.)

Furth, D. and Savini, V. (1996). Checklist of the Alticinae of Central America, including Mexico Coleoptera: Chrysomelidae. Insecta Mundi, 10:1-4. (Cited on pages 19 and 71.)

Furth, D. and Suzuki, K. (1994). Character correlation studies of problematic genera of Alticinae in relation to Galerucinae (Coleoptera: Chrysomelidae). In Proceedings of the Third International Symposium on the Chrysomelidae, Beijing, 1992, pages 116-135. Backhuys. (Cited on page 13.)

Furth, D. G. (2004). Fun with flea beetle feces. Chrysomela, 43.2:10-10. (Cited on page 8.)

Furth, D. G. (2007). A new genus and species of flea beetle (Coleoptera : Chrysomelidae : Alticinae) from the rainforest canopy in Costa Rica. Proceedings of the Entomological Society of Washington, 109(1):90-101. (Cited on page 71.)

Furth, D. G. (2013). Diversity of Alticinae in Oaxaca, Mexico: A preliminary study (Coleoptera, Chrysomelidae). Zookeys, (332):1-32. (Cited on pages 11 and 36.)

Galimberti, A., De Mattia, F., Losa, A., Bruni, I., Federici, S., Casiraghi, M., Martellos, S., and Labra, M. (2013). DNA barcoding as a new tool for food traceability. Food Research International, 50(1):55-63. (Cited on page 4.)

García-Lopez, A., Micó, E., Múrria, C., Galante, E., and Vogler, A. P. (2013). Beta diversity at multiple hierarchical levels: explaining the high diversity of scarab beetles in tropical montane forests. Journal of Biogeography, 40(11):2134-2145. (Cited on pages 69 and 111.)

García-Robledo, C., Erickson, D., Staines, C., Erwin, T., and Kress, W. (2013a). Tropical Plant-Herbivore Networks: Reconstructing Species Interactions Using DNA Barcodes. Plos One, 8(1):e52967. (Cited on page 11.)

García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Kress, W., and Erwin, T. L. (2013b). Using a comprehensive DNA barcode library to detect novel egg and larval host plant associations in a Cephaloleia rolled-leaf beetle (Coleoptera: Chrysomelidae). Biological Journal of the Linnean Society, 110(1):189-198. (Cited on page 11.)

García-Robledo, C., Staines, C. L., and Kress, W. (2015). A new species of bromeliad-feeding Cephaloleia Chevrolat (Coleoptera, Chrysomelidae, Cassidinae) from Costa Rica: evidence from DNA barcodes, larval and adult morphology and insect diets. Zookeys, (477):143-155. (Cited on page 11.)

Gassmann, A., Schroeder, D., Maw, E., and Sommer, G. (1996). Biology, ecology, and host specificity of European Aphthona spp (Coleoptera, Chrysomelidae) used as biocontrol agents for leafy spurge, Euphorbia esula (Euphorbiaceae), in North America. Biological Control, 6(1):105-113. (Cited on page 9.)

Gaston, K. (2000). Global patterns in biodiversity. Nature, 405(6783):220-227. (Cited on pages 2, 67 and 94.)

Gavrilović, B. and Ćurčić, S. (2013). The Diversity of the Family Chrysomelidae (Insecta: Coleoptera) of the Obedska Bara Special Nature Reserve (Vojvodina Province, Serbia), with Special Reference to the Host Plants. Acta Zoologica Bulgarica, 65(1):37-44. (Cited on page 11.)

Ge, D., Chesters, D., Gómez-Zurita, J., Zhang, L., Yang, X., and Vogler, A. P. (2011). Anti-predator defence drives parallel morphological evolution in flea beetles. Proceedings of the Royal Society B-Biological Sciences, 278(1715):2133-2141. (Cited on page 13.)

Ge, D., Gómez-Zurita, J., Chesters, D., Yang, X., and Vogler, A. P. (2012). Suprageneric systematics of flea beetles (Chrysomelidae: Alticinae) inferred from multilocus sequence data. Molecular Phylogenetics and Evolution, 62(3):793-805. (Cited on pages 12, 13 and 55.)

Germain, J. F., Chatot, C., Meusnier, I., Artige, E., Rasplus, J. Y., and Cruaud, A. (2013). Molecular identification of Epitrix potato flea beetles (Coleoptera: Chrysomelidae) in Europe and North America. Bulletin of Entomological Research, 103(3):354-362. (Cited on page 11.)

Ghalambor, C., Huey, R., Martin, P., Tewksbury, J., and Wang, G. (2006). Are mountain passes higher in the tropics? Janzen's hypothesis revisited. Integrative and Comparative Biology, 46(1):5-17. (Cited on pages 52, 67 and 109.)

Gibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, (2032):1-38. (Cited on page 6.)

Gilles, J., Litrico, I., Tillard, E., and Duvallet, G. (2007). Genetic structure and gene flow along an altitudinal gradient among two stomoxyine species (Diptera : Muscidae) on La Réunion Island. Journal of Medical Entomology, 44(3):433-439. (Cited on pages 59 and 68.)

Giordano, A. R., Ridenhour, B. J., and Storfer, A. (2007). The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactylum). Molecular Ecology, 16(8):1625-1637. (Cited on page 68.)

Glenn, T., Stephan, W., and Braun, M. (1999). Effects of a population bottleneck on Whooping Crane mitochondrial DNA variation. Conservation Biology, 13(5):1097-1107. (Cited on page 68.)

Godfray, H. (2002). Challenges for taxonomy - The discipline will have to reinvent itself if it is to survive and flourish. Nature, 417(6884):17-19. (Cited on page 3.)

Gómez-Zurita, J., Hunt, T., Kopliku, F., and Vogler, A. P. (2007). Recalibrated Tree of Leaf Beetles (Chrysomelidae) Indicates Independent Diversification of Angiosperms and Their Insect Herbivores. Plos One, 2(4). (Cited on pages 6, 10, 12 and 54.)

Gómez-Zurita, J., Hunt, T., and Vogler, A. P. (2008). Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae). Cladistics, 24(1):34-50. (Cited on pages $12,13,54,55$ and 58.)

Gómez-Zurita, J., Jolivet, P., and Vogler, A. (2005). Molecular systematics of Eumolpinae and the relationships with Spilopyrinae (Coleoptera, Chrysomelidae). Molecular Phylogenetics and Evolution, 34(3):584-600. (Cited on page 54.)

Gotelli, N. and Colwell, R. (2011). Estimating species richness. In Magurran, A. and McGill, B., editors, Biological diversity: frontiers in measurement and assessment, pages 39-54. Oxford University Press. (Cited on pages 37, 60, 61, 98 and 102.)

Gray, M. E., Sappington, T. W., Miller, N. J., Moeser, J., and Bohn, M. O. (2009). Adaptation and Invasiveness of Western Corn Rootworm: Intensifying Research on a Worsening Pest. Annual Review of Entomology, 54:303-321. (Cited on page 8.)

Gross, J., Schmolz, E., and Hilker, M. (2004). Thermal adaptations of the leaf beetle Chrysomela lapponica (Coleoptera : Chrysomelidae) to different climes of Central and Northern Europe. Environmental Entomology, 33(4):799-806. (Cited on page 92.)

Grove, S. and Stork, N. (2000). An inordinate fondness for beetles. Invertebrate Taxonomy, 14(6):733-739. (Cited on pages 35 and 97.)

Hajibabaei, M., DeWaard, J., Ivanova, N., Ratnasingham, S., Dooh, R., Kirk, S., Mackie, P., and Hebert, P. (2005). Critical factors for assembling a high volume of DNA barcodes. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1959-1967. (Cited on page 113.)

Hamels, S., Gala, J., Dufour, S., Vannuffel, P., Zammatteo, N., and Remacle, J. (2001). Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species, and methicillin resistance. Biotechniques, 31(6):1364-1372. (Cited on page 3.)

Hamilton, A. J., Basset, Y., Benke, K. K., Grimbacher, P. S., Miller, S. E., Novotny, V., Samuelson, G., Stork, N. E., Weiblen, G. D., and Yen, J. D. (2010). Quantifying Uncertainty in Estimation of Tropical Arthropod Species Richness. American Naturalist, 176(1):90-95. (Cited on pages 35 and 97.)

Hamilton, A. J., Novotny, V., Waters, E. K., Basset, Y., Benke, K. K., Grimbacher, P. S., Miller, S. E., Samuelson, G., Weiblen, G. D., Yen, J. D., and Stork, N. E. (2013). Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia, 171(2):357-365. (Cited on pages 35 and 97.)

Hamilton, L., Juvik, J., and Scatena, F. (1995). The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. In Hamilton, L., Juvik,
J., and Scatena, F., editors, Tropical montane cloud forests, pages 1-18. Springer US. (Cited on page 2.)

Hammack, L. and French, B. W. (2007). Sexual dimorphism of basitarsi in pest species of Diabrotica and Cerotoma (Coleoptera : Chrysomelidae). Annals of the Entomological Society of America, 100(1):59-63. (Cited on pages 12, 90, 91 and 93.)

Hare, J. (1990). Ecology and Management of the Colorado Potato Beetle. Annual Review of Entomology, 35:81-100. (Cited on page 8.)

Harley, K. (1969). The suitability of Octotoma Scabripennis Guer and Uroplata Girardi Pic (Col Chrysomelidae) for Control of Lantana (Verbenaceae) in Australia. Bulletin of Entomological Research, 58:835-843. (Cited on page 10.)

Harris, S. E. and Bellino, M. (2013). DNA Barcoding from NYC to Belize. Science, 342(6165):1462-1463. (Cited on page 3.)

Harrison, S., Davies, K., Safford, H., and Viers, J. (2006). Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. Journal of Ecology, 94(1):110-117. (Cited on page 67.)

Hart, M. and Sunday, J. (2007). Things fall apart: biological species form unconnected parsimony networks. Biology Letters, 3(5):509-512. (Cited on pages 98 and 100.)

Haruyama, N., Naka, H., Mochizuki, A., and Nomura, M. (2008). Mitochondrial Phylogeny of Cryptic Species of the Lacewing Chrysoperla nipponensis (Neuroptera: Chrysopidae) in Japan. Annals of the Entomological Society of America, 101(6):971-977. (Cited on page 89.)

Häuser, C., Fiedler, K., Bartsch, D., Brehm, G., Kling, M., Süßenbach, D., and Onore, G. (2008). Lepidoptera: Papilionoidea (Butterflies). In Liede-Schumann, S. and Breckle, S., editors, Provisional checklists of flora and fauna of the San Francisco Valley and its surroundings (Reserva Biológica San Francisco, Prov. Zamora-Chinchipe, Southern Ecuador). Society of Tropical Ecology. (Cited on page 21.)

Hawkeswood, T. (1986). New Food Plants for Adults of Three Species of the Australian Genus Lamprolina (Coleoptera: Chrysomelidae). The Coleopterists Bulletin, pages 104-104. (Cited on page 11.)

Hebert, P., Cywinska, A., Ball, S., and DeWaard, J. (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences, 270(1512):313-321. (Cited on pages 2, 3, 4, 28, 72, 98 and 100.)

Hebert, P. and Gregory, T. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5):852-859. (Cited on pages 4, 5 and 95.)

Hebert, P., Penton, E., Burns, J., Janzen, D., and Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101(41):14812-14817. (Cited on pages 4, 28, 29, 69, 89 and 113.)

Hebert, P., Ratnasingham, S., and DeWaard, J. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B-Biological Sciences, 270:S96-S99. (Cited on pages 3, 5, 28 and 58.)

Heethoff, M., Laumann, M., Weigmann, G., and Raspotnig, G. (2011). Integrative taxonomy: Combining morphological, molecular and chemical data for species delineation in the parthenogenetic Trhypochthonius tectorum complex (Acari, Oribatida, Trhypochthoniidae). Frontiers in Zoology, 8. (Cited on page 6.)

Hendrich, L., Pons, J., Ribera, I., and Balke, M. (2010). Mitochondrial Cox1 Sequence Data Reliably Uncover Patterns of Insect Diversity But Suffer from High Lineage-Idiosyncratic Error Rates. Plos One, 5(12). (Cited on page 100.)

Hilt, N., Brehm, G., and Fiedler, K. (2006). Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes. Journal of Tropical Ecology, 22:155-166. (Cited on pages 2 and 25.)

Hilt, N., Brehm, G., and Fiedler, K. (2007). Temporal dynamics of rich moth ensembles in the montane forest zone in southern Ecuador. Biotropica, 39(1):94104. (Cited on pages 2 and 50.)

Hilt, N. and Fiedler, K. (2006). Arctiid moth ensembles along a successional gradient in the Ecuadorian montane rain forest zone: how different are subfamilies and tribes? Journal of Biogeography, 33(1):108-120. (Cited on page 21.)

Hoelzel, A., Fleischer, R., Campagna, C., Le Boeuf, B., and Alvord, G. (2002). Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal. Journal of Evolutionary Biology, 15(4):567-575. (Cited on page 68.)

Homeier, J., Breckle, S. W., Günter, S., Rollenbeck, R. T., and Leuschner, C. (2010). Tree Diversity, Forest Structure and Productivity along Altitudinal and Topographical Gradients in a Species-Rich Ecuadorian Montane Rain Forest. Biotropica, 42(2):140-148. (Cited on pages 24, 26, 57, 58, 59, 60, 66 and 67.)

Homeier, J., Hertel, D., Camenzind, T., Cumbicus, N. L., Maraun, M., Martinson, G. O., Nohemy Poma, L., Rillig, M. C., Sandmann, D., Scheu, S., Veldkamp, E., Wilcke, W., Wullaert, H., and Leuschner, C. (2012). Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs-Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest. Plos One, 7(10). (Cited on page 23.)

Homeier, J., Werner, F., Gradstein, S., Breckle, S., and Richter, M. (2008). Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer, Berlin, Heidelberg. (Cited on pages 24, 25, 26, 59 and 67.)

Hulcr, J., Miller, S., Setliff, G., Darrow, K., Mueller, N., Hebert, P., and Weiblen, G. (2007). DNA barcoding confirms polyphagy in a generalist moth, Homona mermerodes (Lepidoptera : Tortricidae). Molecular Ecology Notes, 7(4):549-557. (Cited on page 29.)

Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O., Wild, R., Hammond, P., Ahrens, D., Balke, M., Caterino, M., Gómez-Zurita, J., Ribera, I., Barraclough, T., Bocakova, M., Bocak, L., and Vogler, A. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318(5858):1913-1916. (Cited on pages 35 and 97.)

Hurst, G. and Jiggins, F. (2005). Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proceedings of the Royal Society B-Biological Sciences, $272(1572): 1525-1534$. (Cited on page 29.)

Huson, D. and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2):254-267. (Cited on page 38.)

Ivanova, N. V., deWaard, J. R., and Hebert, P. D. (2006). An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6(4):998-1002. (Cited on page 113.)

Jackson, D., Lawrence, J., Dalip, K., Chung, P., Clarke-Harris, D., Bohac, J., Tolin, S., Edwards, C., and Seal, D. (2003). The sweetpotato leaf beetle, Typophorus nigritus viridicyaneus (Coleoptera : Chrysomelidae), an emerging pest in Jamaica: Distribution and host plant resistance. Tropical Agriculture, 80(4):235-242. (Cited on page 9.)

Jantz, N., Homeier, J., and Behling, H. (2014). Representativeness of tree diversity in the modern pollen rain of andean montane forests. Journal of Vegetation Science, 25(2):481-490. (Cited on page 26.)

Janzen, D. (1967). Why mountain passes are higher in the tropics. American Naturalist, 101(919):233-249. (Cited on pages 52, 67 and 109.)

Janzen, D. (1970). Herbivores and the number of tree species in tropical forests. American Naturalist, 104:501-528. (Cited on pages 2, 11 and 35.)

Janzen, D. (1987). Insect Diversity of A Costa Rican Dry Forest - Why Keep It, and How. Biological Journal of the Linnean Society, 30(4):343-356. (Cited on pages 11 and 35.)

Janzen, D. (1988). Ecological Characterization of A Costa Rican Dry Forest Caterpillar Fauna. Biotropica, 20(2):120-135. (Cited on page 7.)

Janzen, D. (1991). How to save tropical biodiversity: The national biodiversity institute of Costa Rica. American Entomologist, 37:159-171. (Cited on page 72.)

Janzen, D. (2004). Setting up tropical biodiversity for conservation through nondamaging use: participation by parataxonomists. Journal of Applied Ecology, $41(1): 181-187$. (Cited on page 72.)

Janzen, D., Ataroff, M., Fariñas, M., Reyes, S., Rincon, N., Soler, A., Soriano, P., and Vera, M. (1976). Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica, 8(3):193-203. (Cited on page 2.)

Janzen, D., Hajibabaei, M., Burns, J., Hallwachs, W., Remigio, E., and Hebert, P. (2005). Wedding biodiversity inventory of a large and complex Lepidoptera fauna with DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1835-1845. (Cited on pages 4, 5 and 98.)

Janzen, D., Hallwachs, W., Blandin, P., Burns, J., Cadiou, J., Chacon, I., Dapkey, T., Deans, A., Epstein, M., Espinoza, B., Franclemont, J., Haber, W., Hajibabaei, M., Hall, J., Hebert, P., Gauld, I., Harvey, D., Hausmann, A., Kitching, I., Lafontaine, D., Landry, J., Lemaire, C., Miller, J., Miller, J., Miller, L., Miller, S., Montero, J., Munroe, E., Green, S., Ratnasingham, S., Rawlins, J., Robbins, R., Rodriguez, J., Rougerie, R., Sharkey, M., Smith, M., Solis, M., Sullivan, J., Thiaucourt, P., Wahl, D., Weller, S., Whitfield, J., Willmott, K., Wood, D., Woodley, N., and Wilson, J. (2009). Integration of DNA barcoding into an ongoing inventory of complex tropical biodiversity. Molecular Ecology Resources, 9:1-26. (Cited on page 98. )

Janzen, D., Hallwachs, W., Jiménez, J., and Gómez, R. (1993). The role of the parataxonomists, inventory managers, and taxonomists in Costa Rica's national biodiversity inventory. In Reid, W., Laird, S., Meyer, C., Gómez, R., Sittenfeld, A., Janzen, D., Gollin, M., and Juma, C., editors, Biodiversity prospecting: using genetic resources for sustainable development. World Resources Institute. (Cited on page 72. )

Janzen, D. and Schoener, T. (1968). Differences in Insect Abundance and Diversity Between Wetter and Drier Sites During A Tropical Dry Season. Ecology, 49(1):96110. (Cited on page 51.)

Jayanthi, K. P. and Verghese, A. (2014). The leaf beetle, Tricliona nr nigra Jacoby (Coleoptera: Chrysomelidae), a new pest damaging pomegranate, Punica granatum. Phytoparasitica, 42(1):53-55. (Cited on page 9.)

Jermy, T. (1976). Insect-host-plant relationship-co-evolution or sequential evolution? Symposia Biologica Hungarica, 16:109-113. (Cited on page 10.)

Ji, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., Kitching, R., Dolman, P. M., Woodcock, P., Edwards, F. A., Larsen, T. H., Hsu, W. W., Benedick, S., Hamer, K. C., Wilcove, D. S., Bruce, C., Wang, X., Levi, T., Lott, M., Emerson, B. C., and Yu, D. W. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16(10):1245-1257. (Cited on pages 95 and 113.)

Johnson, S. B., Waren, A., and Vrijenhoek, R. C. (2008). DNA barcoding of Lepetodrilus limpets reveals cryptic species. Journal of Shellfish Research, 27(1):43-51. (Cited on page 113.)

Jolivet, P. (1988). Food habits and food selection of Chrysomelidae. Bionomic and evolutionary perspectives. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 1-24. Kluwer Academic Publishers. (Cited on pages $6,7,12,14,15,16,17$ and 18.)

Jolivet, P. (1994). Aptérisme et brachyptérisme chez les coléoptères chrysomélides ou le malheur de ne pas voler. Insectes, 92(1). (Cited on page 11.)

Jolivet, P. (1999). Les espèces du genre Aulacophora Chevrolat sont-elles polyphages comme celles des Diabrotica Chevrolat? L' Entomologiste, 55(5):251-258. (Cited on page 11.)

Jolivet, P. and Hawkeswood, T. (1995). Host-plants of Chrysomelidae of the world. Backhuys Publ., Leiden. (Cited on pages 7, 53 and 54.)

Jolivet, P. and Petitpierre, E. (1981). Biology of Chrysomelidae (Coleoptera). Butlleti de la Institucio Catalana d'Historia Natural, 47:105-138. (Cited on pages 6, 8 and 13.)

Jolivet, P., Vasconcellos-Neto, J., and Weinstein, P. (1990). Cycloalexy: a new concept in the larval defense of insects. Insecta Mundi, 4(1-4):133-142. (Cited on page 7.)

Jolivet, P. and Verma, K. (2008). Eumolpinae-a widely distributed and much diversified subfamily of leaf beetles (Coleoptera, Chrysomelidae). Terrestrial Arthropod Reviews, 1(1):3-37. (Cited on pages 15, 16 and 54.)

Jolivet, E, P., Petitpierre, E., and Hsiao, T. (1988). Biology of Chrysomelidae. Series Entomologica. Kluwer Academic Publishers, Dordrecht. (Cited on pages 6, 8, 9, 11 and 58.)

Joly, S., Davies, T., Archambault, A., Bruneau, A., Derry, A., Kembel, S. W., Peres-Neto, P., Vamosi, J., and Wheeler, T. A. (2014). Ecology in the age of DNA barcoding: the resource, the promise and the challenges ahead. Molecular Ecology Resources, 14(2):221-232. (Cited on page 4.)

Jurado-Rivera, J., Vogler, A., Reid, C., Petitpierre, E., and Gómez-Zurita, J. (2009). DNA barcoding insect-host plant associations. Proceedings of the Royal Society B-Biological Sciences, 276(1657):639-648. (Cited on page 11.)

Kalaichelvan, T., Verma, K., and Sharma, B. (2005). Checklist of leaf beetles (Coleoptera: Chrysomelidae) of Bhilai-Durg. Zoos' Print Journal, 20(4):18381842. (Cited on page 53.)

Kawano, K. (2006). Sexual dimorphism and the making of oversized male characters in beetles (Coleoptera). Annals of the Entomological Society of America, 99(2):327-341. (Cited on page 90.)

Keller, G., Windsor, D., Saucedo, J., and Werren, J. (2004). Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha alternans Boh. (Chrysomelidae, Cassidinae). Molecular Ecology, 13(8):2405-2420. (Cited on page 29.)

Kelley, S., Farrell, B., and Mitton, J. (2000). Effects of specialization on genetic differentiation in sister species of bark beetles. Heredity, 84(2):218-227. (Cited on page 69.)

Kim, S., Kjer, K., and Duckett, C. (2003). Comparison between molecular and morphological-based phylogenies of galerucine/alticine leaf beetles (Coleoptera : Chrysomelidae). Insect Systematics $\mathcal{B}$ Evolution, 34(1):53-64. (Cited on page 13.)

Kimoto, S. (1988). Zoogeography of the Chrysomelidae. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 107-114. Kluwer Academic Publishers. (Cited on page 53.)

Kirby, D., Carlson, R., Krabbenhoft, K., Mundal, D., and Kirby, M. (2000). Biological control of leafy spurge with introduced flea beetles (Aphthona spp.). Journal of Range Management, 53(3):305-308. (Cited on page 9.)

Kirk, V. (1971). Color changes by adults of the tortoise beetle, Physonota helianthi (Randall)(Coleoptera: Chrysomelidae). The Coleopterists Bulletin, pages 91-93. (Cited on page 92.)

Kiss, L. (2007). Why is biocontrol of common ragweed, the most allergenic weed in Eastern Europe, still only a hope? In Vincent, C., Goettel, M., and Lazarovits, G., editors, Biological control: A global perspective, pages 80-91. (Cited on page 9.)

Knebelsberger, T. and Stöger, I. (2012). DNA extraction, preservation, and amplification. In Lopez, I. and Erickson, D., editors, DNA Barcodes, volume 858, pages 311-338. Springer. (Cited on page 113.)

Kogan, M., Waldbauer, G., Boiteau, G., and Eastman, C. (1980). Sampling bean leaf beetles on soybean. In Kogan, M. and Herzog, D., editors, Sampling methods in soybean entomology, pages 201-236. Springer New York. (Cited on page 8.)

Kondo, N. I., Tuda, M., Toquenaga, Y., Lan, Y. C., Buranapanichpan, S., Horng, S. B., Shimada, M., and Fukatsu, T. (2011). Wolbachia Infections in World Populations of Bean Beetles (Coleoptera: Chrysomelidae: Bruchinae) Infesting Cultivated and Wild Legumes. Zoological Science, 28(7):501-508. (Cited on page 29.)

Konstantinov, A., Chamorro, M. L., Prathapan, K., Ge, S. Q., and Yang, X. K. (2013). Moss-inhabiting flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini) with description of a new genus from Cangshan, China. Journal of Natural History, 47(37-38):2459-2477. (Cited on page 7.)

Konstantinov, A. and Konstantinova, A. (2011). New genus and species of flea beetles (Coleoptera, Chrysomelidae, Galerucinae, Alticini) from Puerto Rico, with comments on flea beetle diversity in the West Indies and a key to the West Indian Monoplatini genera. Zookeys, (155):61-87. (Cited on page 20.)

Konstantinov, A. S. and Chamorro-Lacayo, M. L. (2006). A new genus of mossinhabiting flea beetles (Coleoptera : Chrysomelidae) from the Dominican Republic. Coleopterists Bulletin, 60(4):275-290. (Cited on page 7.)

Körner, C. (2000). Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology \& Evolution, 15(12):513-514. (Cited on pages 57 and 67.)

Kozak, K. H. and Wiens, J. J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60(12):2604-2621. (Not cited.)

Kozak, K. H. and Wiens, J. J. (2007). Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society B-Biological Sciences, 274(1628):2995-3003. (Not cited.)

Kozak, K. H. and Wiens, J. J. (2010). Niche Conservatism Drives Elevational Diversity Patterns in Appalachian Salamanders. American Naturalist, 176(1):4054. (Not cited.)

Krell, F. (2004). Parataxonomy vs. taxonomy in biodiversity studies - pitfalls and applicability of 'morphospecies' sorting. Biodiversity and Conservation, 13(4):795812. (Cited on pages 72 and 94.)

Kress, W. and Erickson, D. L. (2007). A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region. Plos One, 2(6). (Cited on page 3.)

Kress, W., Wurdack, K., Zimmer, E., Weigt, L., and Janzen, D. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23):8369-8374. (Cited on page 3.)

Kricher, J. (1999). A neotropical companion: an introduction to the animals, plants, and ecosystems of the New World tropics. Princeton University Press. (Cited on page 111.)

Krysan, J. (1986). Introduction: biology, distribution, and identification of pest Diabrotica. In Krysan, J. and Miller, T., editors, Methods for the study of pest Diabrotica, pages 1-23. Springer-Verlag. (Cited on pages 8 and 9.)

Kubisz, D., Kajtoch, L., Mazur, M., and Rizun, V. (2012). Molecular barcoding for central-eastern European Crioceris leaf-beetles (Coleoptera: Chrysomelidae). Central European Journal of Biology, 7(1):69-76. (Cited on pages 11 and 110.)

Kurachi, M., Takaku, Y., Komiya, Y., and Hariyama, T. (2002). The origin of extensive colour polymorphism in Plateumaris sericea (Chrysomelidae, Coleoptera). Naturwissenschaften, 89(7):295-298. (Cited on page 92.)

Lam, W. and Pedigo, L. (2004). Ecology and management of the bean leaf beetle Cerotoma trifurcata. In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 579-589. SPB Academic Publishing. (Cited on page 9.)

Lande, R. (1980). Sexual Dimorphism, Sexual Selection, and Adaptation in Polygenic Characters. Evolution, 34(2):292-305. (Cited on page 90.)

Lara, A., Luis Ponce de León, J., Rodríguez, R., Casane, D., Côté, G., Bernatchez, L., and García-Machado, E. (2010). DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts. Molecular Ecology Resources, 10(3):421-430. (Cited on page 113.)

Laroche, A., DeClerckFloate, R., LeSage, L., Floate, K., and Demeke, T. (1996). Are Altica carduorum and Altica cirsicola (Coleoptera: Chrysomelidae) different species? Implications for the release of A. cirsicola for the biocontrol of Canada thistle in Canada. Biological Control, 6(3):306-314. (Cited on page 89.)

Larsen, T. H., Escobar, F., and Armbrecht, I. (2011). Insects of the tropical Andes: diversity patterns, processes and global change. In Martínez, R., Jørgensen, P., and Tiessen, H., editors, Climate Change and Biodiversity in the Tropical Andes, pages 228-244. São José dos Campos: Inter-American Institute for Global Change Research. (Cited on pages 2 and 24.)

Laurance, W. (1999). Reflections on the tropical deforestation crisis. Biological Conservation, 91(2-3):109-117. (Cited on pages 1 and 113.)

Laurance, W. and Peres, C. (2006). Emerging threats to tropical forests. University of Chicago Press. (Cited on pages 1, 71 and 113.)

Lawrence, J. and Britton, E. (1994). Australian beetles. Melbourne University Press, Carlton, Australia. (Cited on page 7.)

Lawton, J., Bignell, D., Bolton, B., Bloemers, G., Eggleton, P., Hammond, P., Hodda, M., Holt, R., Larsen, T., Mawdsley, N., Stork, N., Srivastava, D., and Watt, A. (1998). Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391(6662):72-76. (Cited on page 72.)

Le Saout, S., Hoffmann, M., Shi, Y., Hughes, A., Bernard, C., Brooks, T. M., Bertzky, B., Butchart, S. H., Stuart, S. N., Badman, T., and Rodrigues, A. S. (2013). Protected Areas and Effective Biodiversity Conservation. Science, 342(6160):803-805. (Cited on page 25.)

Lesage, L., Bouchard, P., and Goulet, H. (2008). Leaf beetle diversity and abundance in two Quebec vineyards (Coleoptera, Chrysomelidae). Nouvelle Revue d'Entomologie, 25(1):3-16. (Cited on page 11.)

Lewis, P., DeLoach, C., Knutson, A., Tracy, J., and Robbins, T. (2003). Biology of Diorhabda elongata deserticola (Coleoptera : Chrysomelidae), an Asian leaf beetle for biological control of saltcedars (Tamarix spp.) in the United States. Biological Control, 27(2):101-116. (Cited on page 9.)

Lim, G., Balke, M., and Meier, R. (2012). Determining Species Boundaries in a World Full of Rarity: Singletons, Species Delimitation Methods. Systematic Biology, 61(1):165-169. (Cited on pages 51, 96 and 111.)

Lingafelter, S. and Konstantinov, A. (1999). The monophyly and relative rank of alticine and galerucine leaf beetles: A cladistic analysis using adult morphological characters (Coleoptera : Chrysomelidae). Entomologica Scandinavica, 30(4):397416. (Cited on pages 12, 13, 54 and 55.)

Linzmeier, A., Ribeiro-Costa, C. S., and Marinoni, R. (2006). Fauna de Alticini (Newman)(Coleoptera, Chrysomelidae, Galerucinae) em diferentes estágios sucessionais na Floresta com Araucária do Paraná, Brasil: diversidade e estimativa de riqueza de espécies. Revista Brasileira de Entomologia, 50(1):101-109. (Cited on page 11.)

Linzmeier, A. M. and Ribeiro-Costa, C. S. (2008). Seasonality and temporal structuration of Alticini community (Coleoptera, Chrysomelidae, Galerucinae) in the Araucaria Forest of Parana, Brazil. Revista Brasileira de Entomologia, 52(2):289295. (Cited on pages 36 and 122.)

Linzmeier, A. M. and Ribeiro-Costa, C. S. (2009). Spatio-temporal dynamics of Alticini (Coleoptera, Chrysomelidae) in a fragment of Araucaria Forest in the state of Parana, Brazil. Revista Brasileira de Entomologia, 53(2):294-299. (Cited on pages 11, 50, 110 and 122.)

Linzmeier, A. M. and Ribeiro-Costa, C. S. (2011). Body size of Chrysomelidae (Coleoptera, Insecta) in areas with different levels of conservation in South Brazil. Zookeys, (157):1-14. (Cited on pages 50 and 110.)

Linzmeier, A. M. and Ribeiro-Costa, C. S. (2012). Spatial-temporal composition of Chrysomelidae (Insecta: Coleoptera) communities in southern Brazil. Journal of Natural History, 46(31-32):1921-1938. (Cited on pages 36, 50, 51, 53, 110 and 122.)

Linzmeier, A. M. and Ribeiro-Costa, C. S. (2013). Seasonal pattern of Chrysomelidae (Coleoptera) in the state of Parana, southern Brazil. Biota Neotropica, 13(1):153-162. (Cited on pages 36 and 122.)

Lipscomb, D., Platnick, N., and Wheeler, Q. (2003). The intellectual content of taxonomy: a comment on DNA taxonomy. Trends in Ecology \& Evolution, 18(2):6566. (Cited on page 5.)

Longino, J., Coddington, J., and Colwell, R. (2002). The ant fauna of a tropical rain forest: Estimating species richness three different ways. Ecology, 83(3):689-702. (Cited on pages 51 and 123.)

Longino, J. and Colwell, R. (1997). Biodiversity assessment using structured inventory: Capturing the ant fauna of a tropical rain forest. Ecological Applications, 7(4):1263-1277. (Cited on pages 50, 72 and 98.)

Lopatin, I. (1996). High altitude fauna of the Chrysomelidae of central Asia: biology and biogeography. In Jolivet, P. and Cox, M., editors, Chrysomelidae biology 3, pages 3-12. SPB Academic publishing. (Cited on page 68.)

Lopez, J., Yuhki, N., Masuda, R., Modi, W., and Obrien, S. (1994). Numt, A Recent Transfer and Tandem Amplification of Mitochondrial-Dna to the Nuclear Genome of the Domestic Cat. Journal of Molecular Evolution, 39(2):174-190. (Cited on page 28.)

Lopez-Vaamonde, C., Wikstrom, N., Labandeira, C., Godfray, H., Goodman, S., and Cook, J. (2006). Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. Journal of Evolutionary Biology, 19(4):1314-1326. (Cited on page 10.)

Lym, R. and Nelson, J. (2000). Biological control of leafy spurge (Euphorbia esula) with Aphthona spp. along railroad right-of-ways. Weed Technology, 14(3):642-646. (Cited on page 9.)

Maes, J. and Staines, C. (1991). Catálogo de los Chrysomelidae (Coleoptera) de Nicaragua. Revista Nicaraguense de Entomología, 18:1-53. (Cited on page 19.)

Magurran, A. (2004). Measuring biological diversity. Blackwell Science Ltd. (Cited on pages 49 and 51.)

Manson, C. (1929). Transient colour changes in the tortoise beetles (Coleoptera: Chrysomelidae). Entomological News, 40(52):56. (Cited on page 92.)

Mariau, D. (2004). Leaf beetles of oil palm (Elaeis guineensis) and coconut palm (Coco nucifera). In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 603-612. SPB Academic Publishing. (Cited on pages 9 and 12.)

Markmann, M. and Tautz, D. (2005). Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1917-1924. (Cited on page 5.)

Matsumura, Y., Yao, I., Beutel, R. G., and Yoshizawa, K. (2014). Molecular phylogeny of the leaf beetle subfamily Criocerinae (Coleoptera: Chrysomelidae) and the correlated evolution of reproductive organs. Arthropod Systematics \& Phylogeny, 72(2):95-110. (Cited on pages 16 and 54.)

Mattson, W. and Addy, N. (1975). Phytophagous insects as regulators of forest primary production. Science, 190(4214):515-522. (Cited on pages 11 and 35.)

Maulik, S. (1929). On the structure of the hind femur in halticine beetles. Proceedings of the Zoological Society of London, 99(2). (Cited on page 12.)

Maulik, S. (1932). On a Structure in the Antennae of Beetles of the Chrysomelid Genus Agetocera. Proceedings of the Zoological Society of London, 102(4):943-956. (Cited on page 90.)

May, R. M. (2000). The dimensions of life on earth. In Raven, P., editor, Nature and human society-The quest for a sustainable world, pages 30-45. National Academy Press, Washington, D.C. (Cited on pages 1 and 97.)

May, R. M. (2010). Tropical Arthropod Species, More or Less? Science, 329(5987):41-42. (Cited on pages 1, 35 and 97.)

Mayden, R. L. (1997). A hierarchy of species concepts: the denouement in the saga of the species problem. In Claridge, M. F., Dawah, H. A., and Wilson, M. R., editors, Species: The units of biodiversity. Chapman \& Hall Ltd, London. (Cited on page 98.)

McCain, C. and Grytnes, J. (2010). Elevational gradients in species richness. In Encyclopedia of Life Sciences (ELS), pages 1-10. John Wiley \& Sons. (Cited on pages 57, 66 and 67.)

McCain, C. M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18(3):346-360. (Cited on page 57.)

McCoy, E. (1990). The Distribution of Insects Along Elevational Gradients. Oikos, 58(3):313-322. (Cited on page 67.)

McFadyen, R. (1998). Biological control of weeds. Annual Review of Entomology, 43:369-393. (Cited on page 10.)

McKenna, D. and Farrell, B. (2005). Molecular phylogenetics and evolution of host plant use in the Neotropical rolled leaf 'hispine' beetle genus Cephaloleia (Chevrolat) (Chrysomelidae: Cassidinae). Molecular Phylogenetics and Evolution, 37(1):117-131. (Cited on pages 11, 15 and 89.)

McKenna, D. D. and Farrell, B. D. (2006). Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proceedings of the National Academy of Sciences of the United States of America, 103(29):10947-10951. (Cited on page 10.)

McKenna, D. D., Sequeira, A. S., Marvaldi, A. E., and Farrell, B. D. (2009). Temporal lags and overlap in the diversification of weevils and flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 106(17):7083-7088. (Cited on page 10.)

Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. (2006). DNA barcoding and taxonomy in diptera: A tale of high intraspecific variability and low identification success. Systematic Biology, 55(5):715-728. (Cited on pages 31, 94, 98 and 100.)

Mengual, X., Ståhls, G., Vujić, A., and Marcos-García, M. A. (2006). Integrative taxonomy of Iberian Merodon species (Diptera, Syrphidae). Zootaxa, (1377):1-26. (Cited on page 6.)

Meskens, C., Windsor, D., and Hance, T. (2008). A comparison of hispine beetles (Coleoptera: Chrysomelidae) associated with three orders of monocot host plants in lowland Panama. International Journal of Tropical Insect Science, 27(3-4):159171. (Cited on page 11.)

Metcalf, R. (1986). Coevolutionary Adaptations of Rootworm Beetles (Coleoptera, Chrysomelidae) to Cucurbitacins. Journal of Chemical Ecology, 12(5):1109-1124. (Cited on page 8.)

Metcalfe, D. B., Asner, G. P., Martin, R. E., Silva Espejo, J. E., Huaraca Huasco, W., Farfán Amézquita, F. F., Carranza-Jimenez, L., Galiano Cabrera, D. F., Durand Baca, L., Sinca, F., Huaraca Quispe, L. P., Alzamora Taype, I., Eguiluz Mora, L., Rozas Dávila, A., Mamani Solórzano, M., Puma Vilca, B. L., Laupa Román, J. M., Bustios, P. C., Salinas Revilla, N., Tupayachi, R., Girardin, C. A., Doughty, C. E., and Malhi, Y. (2014). Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecology Letters, 17(3):324-332. (Cited on page 11.)

Meusnier, I., Singer, G., Landry, J., Hickey, D., Hebert, P., and Hajibabaei, M. (2008). A universal DNA mini-barcode for biodiversity analysis. BMC Genomics, 9. (Cited on page 28.)

Meyer, C. and Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. Plos Biology, 3(12):2229-2238. (Cited on pages 5 and 29.)

Miller, N., Estoup, A., Toepfer, S., Bourguet, D., Lapchin, L., Derridj, S., Kim, K., Reynaud, P., Furlan, L., and Guillemaud, T. (2005). Multiple transatlantic introductions of the western corn rootworm. Science, 310(5750):992-992. (Cited on page 8.)

Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., Harrison, S. P., Hurlbert, A. H., Knowlton, N., Lessios, H. A., McCain, C. M., McCune, A. R., McDade, L. A., McPeek, M. A., Near, T. J., Price, T. D., Ricklefs, R. E., Roy, K., Sax, D. F., Schluter, D., Sobel, J. M., and Turelli, M. (2007). Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters, 10(4):315-331. (Cited on pages 58 and 66.)

Moeser, J. and Vidal, S. (2004). Do alternative host plants enhance the invasion of the maize pest Diabrotica virgifera virgifera (Coleoptera : Chrysomelidae, Galerucinae) in Europe? Environmental Entomology, 33(5):1169-1177. (Cited on page 8.)

Mohamedsaid, M. (2004). Modified antennae of Malaysian Galerucinae and its taxonomic significance. In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 231-247. SPB Academic Publishing. (Cited on page 90.)

Mohamedsaid, M. and Furth, D. (2011). Secondary sexual characteristics in the Galerucinae (sensu stricto)(Coleoptera: Chrysomelidae). International Scholarly Research Network, 2011. (Cited on page 91.)

Monaghan, M., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D., Lees, D., Ranaivosolo, R., Eggleton, P., Barraclough, T., and Vogler, A. (2009). Accelerated Species Inventory on Madagascar Using Coalescent-Based Models of Species Delineation. Systematic Biology, 58(3):298-311. (Cited on pages 31, 69, 94, 98, 100, 101 and 111.)

Monrós, F. and Viana, M. (1947). Revisión sistemática do los Hispidae argentinos (Insecta, Coleop., Chrysomeloid.). Anales del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", 42:125-324. (Cited on page 15.)

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., and Worm, B. (2011). How Many Species Are There on Earth and in the Ocean? Plos Biology, 9(8). (Cited on pages 1, 35 and 97.)

Moran, V. and Southwood, T. (1982). The Guild Composition of Arthropod Communities in Trees. Journal of Animal Ecology, 51(1):289-306. (Cited on pages 7 and 51.)

Moret, P. (2009). Altitudinal distribution, diversity and endemicity of Carabidae (Coleoptera) in the paramos of Ecuadorian Andes. Annales de la Société Entomologique de France, 45(4):500-510. (Cited on page 2.)

Moritz, C. and Cicero, C. (2004). DNA barcoding: Promise and pitfalls. Plos Biology, 2(10):1529-1531. (Cited on pages 5 and 54.)

Mosandl, R., Günter, S., Stimm, B., and Weber, M. (2008). Ecuador Suffers the Highest Deforestation Rate in South America. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer, Berlin, Heidelberg. (Cited on pages 3 and 25.)

Moser, G., Hertel, D., and Leuschner, C. (2007). Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems, 10(6):924-935. (Cited on pages 24 and 67 .)

Müller, C. and Hilker, M. (2004). Ecological relevance of fecal matter in Chrysomelidae. In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 693-705. SPB Academic Publishing. (Cited on page 8.)

Myers, N. (1993). Questions of Mass Extinction. Biodiversity and Conservation, $2(1): 2-17$. (Cited on page 113.)

Myers, N. (2003). Conservation of biodiversity: how are we doing? Environmentalist, 23(1):9-15. (Cited on page 113.)

Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772):853-858. (Cited on pages 2, 24, 98 and 109.)

Nahrung, H. and Allen, G. (2005). Maintenance of colour polymorphism in the leaf beetle Chrysophtharta agricola (Chapuis) (Coleoptera : Chrysomelidae : Paropsini). Journal of Natural History, 39(1):79-90. (Cited on page 92.)

Nanney, D. (1982). Genes and Phenes in Tetrahymena. Bioscience, 32(10):783-788. (Cited on page 3.)

Nee, S., Mooers, A., and Harvey, P. (1992). Tempo and Mode of Evolution Revealed from Molecular Phylogenies. Proceedings of the National Academy of Sciences of the United States of America, 89(17):8322-8326. (Cited on pages 31 and 100.)

Nei, M., Maruyama, T., and Chakraborty, R. (1975). Bottleneck Effect and GeneticVariability in Populations. Evolution, 29(1):1-10. (Cited on page 68.)

Nie, R. E., Xue, H. J., Hua, Y., Yang, X. K., and Vogler, A. P. (2012). Distinct species or colour polymorphism? Life history, morphology and sequence data separate two Pyrrhalta elm beetles (Coleoptera: Chrysomelidae). Systematics and Biodiversity, 10(2):133-146. (Cited on page 92.)

Nogués-Bravo, D., Araújo, M., Romdal, T., and Rahbek, C. (2008). Scale effects and human impact on the elevational species richness gradients. Nature, 453(7192):216-220. (Cited on pages 57, 59, 66 and 67.)

Novotny, V. and Basset, Y. (2000). Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos, 89(3):564-572. (Cited on pages 7, 51, 109, 111 and 114.)

Novotny, V., Basset, Y., Miller, S., Drozd, P., and Cizek, L. (2002a). Host specialization of leaf-chewing insects in a New Guinea rainforest. Journal of Animal Ecology, 71(3):400-412. (Cited on pages 72 and 98.)

Novotny, V., Basset, Y., Miller, S., Weiblen, G., Bremer, B., Cizek, L., and Drozd, P. (2002b). Low host specificity of herbivorous insects in a tropical forest. Nature, pages 841-844. (Cited on pages 7, 11, 35 and 97.)

Novotny, V., Drozd, P., Miller, S. E., Kulfan, M., Janda, M., Basset, Y., and Weiblen, G. D. (2006). Why are there so many species of herbivorous insects in tropical rainforests? Science, 313(5790):1115-1118. (Cited on pages 35 and 97.)

Novotny, V. and Miller, S. E. (2014). Mapping and understanding the diversity of insects in the tropics: past achievements and future directions. Austral Entomology, 53(3):259-267. (Cited on pages 35 and 97.)

Ødegaard, F. (2000). How many species of arthropods? Erwin's estimate revised. Biological Journal of the Linnean Society, 71(4):583-597. (Cited on pages 11, 35, 97 and 98.)

Ødegaard, F. (2004). Species richness of phytophagous beetles in the tropical tree Brosimum utile (Moraceae): the effects of sampling strategy and the problem of tourists. Ecological Entomology, 29(1):76-88. (Cited on page 51.)

Ødegaard, F. (2006). Host specificity, alpha- and beta-diversity of phytophagous beetles in two tropical forests in Panama. Biodiversity and Conservation, 15(1):83-105. (Cited on pages 50 and 110.)

Oesker, M., Dalitz, H., Günter, S., Homeier, J., and Matezki, S. (2008). Spatial heterogeneity patterns-a comparison between gorges and ridges in the upper part of an evergreen lower montane forest. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador. Springer. (Cited on page 57.)

Ohsawa, M. and Nagaike, T. (2006). Influence of forest types and effects of forestry activities on species richness and composition of Chrysomelidae in the central mountainous region of Japan. Biodiversity and Conservation, 15(4):1179-1191. (Cited on page 11.)

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., Stevens, M., and Wagner, H. (2012). vegan: Community Ecology Package. R package version 2.0-5. The $R$ Project. (Cited on page 102.)

Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Simpson, G., Solymos, P., Stevens, M., and Wagner, H. (2013). vegan: Community Ecology Package. R package version 2.0-10. The $R$ Project. (Cited on pages 37, 60 and 61.)

Oliver, I. and Beattie, A. (1996). Designing a cost-effective invertebrate survey: A test of methods for rapid assessment of biodiversity. Ecological Applications, 6(2):594-607. (Cited on pages 30, 71, 72 and 94.)

Olson, D. (1994). The Distribution of Leaf-Litter Invertebrates Along A Neotropical Altitudinal Gradient. Journal of Tropical Ecology, 10:129-150. (Cited on pages 2, 52, 67, 109 and 110.)

Ozanne, C. (2005a). Sampling methods for forest understory vegetation. In Leather, S., editor, Insect sampling in forest ecosystems, pages 58-76. John Wiley \& Sons. (Cited on page 121.)

Ozanne, C. (2005b). Techniques and methods for sampling canopy insects. In Leather, S., editor, Insect sampling in forest ecosystems, pages 146-167. John Wiley \& Sons. (Cited on page 123.)

Pace, N. (1997). A molecular view of microbial diversity and the biosphere. Science, 276(5313):734-740. (Cited on page 3.)

Packer, L., Zayed, A., Grixti, J., Ruz, L., Owen, R., Vivallo, F., and Toro, H. (2005). Conservation genetics of potentially endangered mutualisms: Reduced levels of genetic variation in specialist versus generalist bees. Conservation Biology, 19(1):195-202. (Cited on pages 68 and 69.)

Page, T., Choy, S., and Hughes, J. (2005). The taxonomic feedback loop: symbiosis of morphology and molecules. Biology letters, 1(2):139-142. (Cited on page 95.)

Papadopoulou, A., Anastasiou, I., Spagopoulou, F., Stalimerou, M., Terzopoulou, S., Legakis, A., and Vogler, A. P. (2011). Testing the Species-Genetic Diversity Correlation in the Aegean Archipelago: Toward a Haplotype-Based Macroecology? American Naturalist, 178(2):241-255. (Cited on pages 32, 69, 101 and 111.)

Papadopoulou, A., Cardoso, A., and Gómez-Zurita, J. (2013). Diversity and diversification of Eumolpinae (Coleoptera: Chrysomelidae) in New Caledonia. Zoological Journal of the Linnean Society, 168(3):473-495. (Cited on pages 2, 11, 100, 101 and 110.)

Pasteels, J., Braekman, J., and Daloze, D. (1988). Chemical defense in the Chrysomelidae. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of

Chrysomelidae, volume 42, pages 233-252. Kluwer Academic Publishers. (Cited on page 8.)

Pellissier, L., Fiedler, K., Ndribe, C., Dubuis, A., Pradervand, J. N., Guisan, A., and Rasmann, S. (2012). Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution, 2(8):1818-1825. (Cited on page 58.)

Pennisi, E. (2007). Taxonomy - Wanted: A barcode for plants. Science, 318(5848):190-191. (Cited on page 3.)

Petitpierre, E. (1988). Cytogenetics, cytotaxonomy and genetics of Chrysomelidae. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 131-159. Kluwer Academic Publishers. (Cited on page 91.)

Pfenninger, M., Nowak, C., Kley, C., Steinke, D., and Streit, B. (2007). Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology, 16(9):1957-1968. (Cited on page 58.)

Pfenninger, M. and Schwenk, K. (2007). Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology, 7. (Cited on page 89.)

Pik, A., Oliver, I., and Beattie, A. (1999). Taxonomic sufficiency in ecological studies of terrestrial invertebrates. Australian Journal of Ecology, 24(5):555-562. (Cited on page 72 .)

Pimm, S. and Raven, P. (2000). Biodiversity - Extinction by numbers. Nature, 403(6772):843-845. (Cited on page 113.)

Pimm, S., Russell, G., Gittleman, J., and Brooks, T. (1995). The Future of Biodiversity. Science, 269(5222):347-350. (Cited on pages 1, 35, 97 and 113.)

Plaisance, L., Knowlton, N., Paulay, G., and Meyer, C. (2009). Reef-associated crustacean fauna: biodiversity estimates using semi-quantitative sampling and DNA barcoding. Coral Reefs, 28(4):977-986. (Cited on pages 4 and 72.)

Poissant, J., Wilson, A. J., and Coltman, D. W. (2010). Sex-Specific Genetic Variance and the Evolution of Sexual Dimorphism: A Systematic Review of Cross-Sex Genetic Correlations. Evolution, 64(1):97-107. (Cited on page 90.)

Pons, J., Barraclough, T., Gómez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., Kamoun, S., Sumlin, W., and Vogler, A. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4):595-609. (Cited on pages 31, 94, 98, 100, 101 and 112.)

Posada, D. and Crandall, K. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology \& Evolution, 16(1):37-45. (Cited on page 100.)

Price, P. (2002). Resource-driven terrestrial interaction webs. Ecological Research, 17(2):241-247. (Cited on pages 2, 11 and 35.)

Primack, R. (2014). Essentials of Conservation Biology, volume Sixth Edition. Sinauer Associates, Sunderland, MA. (Cited on pages 1 and 71.)

Rahbek, C. (1995). The elevational gradient of species richness: a uniform pattern? Ecography, 18(2):200-205. (Cited on page 110.)

Rahbek, C. (2005). The role of spatial scale and the perception of large-scale speciesrichness patterns. Ecology Letters, 8(2):224-239. (Cited on pages 57, 66, 67 and 110.)

Rahbek, C., Bloch, H., Poulsen, M., and Rasmussen, J. (1995). The avifauna of the Podocarpus National Park - the "Andean jewel in the crown" of Ecuador's protected areas. Ornitología Neotropical, 6:113-120. (Cited on page 25.)

Randrianiaina, R. D., Strauss, A., Glos, J., Glaw, F., and Vences, M. (2011). Diversity, external morphology and 'reverse taxonomy' in the specialized tadpoles of Malagasy river bank frogs of the subgenus Ochthomantis (genus Mantidactylus). Contributions to Zoology, 80(1):17-65. (Cited on page 5.)

Raupach, M., Astrin, J., Hannig, K., Peters, M., Stoeckle, M., and Wägele, J. (2010). Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in Zoology, 7(26). (Cited on pages 100 and 110.)

Reid, C. (1995). A cladistic analysis of subfamilial relationships in the Chrysomelidae sensu lato (Chrysomeloidea). Biology, phylogeny and classification of Coleoptera: papers celebrating the 80th birthday of Roy A.Crowson, 2:559-631. (Cited on pages 6, 12, 13, 18, 54 and 55.)

Reid, C. and Beatson, M. (2013). Chrysomelid males with enlarged mandibles: three new species and a review of occurrence in the family (Coleoptera: Chrysomelidae). Zootaxa, 3619(1):79-100. (Cited on pages 12, 16, 17, 18, 53, 90 and 91.)

Reid, C. and Storey, R. (1993). Redescription of adult and larva of Colasposoma sellatum Baly (Coleoptera: Chrysomelidae: Eumolpinae): a pest of sweet potato in Australia. Journal of Natural History, 27(3):669-681. (Cited on page 9.)

Richly, E. and Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution, 21(6):1081-1084. (Cited on page 28.)

Richter, M., Diertl, K.-H., Emck, P., Peters, T., and Beck, E. (2009). Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online, 12:1-35. (Cited on page 24.)

Richter, M., Diertl, K.-H., Peters, T., and Bussman, R. (2008). Vegetation structures and ecological features of the upper timberline ecotone. In Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., editors, Gradients in a Tropical Mountain Ecosystem of Ecuador, pages 123-135. Springer. (Cited on page 24.)

Riley, E., Clark, S., Flowers, R., and Gilbert, A. (2002). Chrysomelidae Latreille 1802. In Arnett, R., Thomas, M., Skelley, P., and Frank, J., editors, American Beetles: Polyphaga: Scarabaeoidea through Curculionoidea. Vol. 2., pages 617691. CRC Press. (Cited on pages 6, 7, 8, 12 and 54.)

Rinker, H. and Lowman, M. (2004). Insect herbivory in tropical forests. In Rinker, H. and Lowman, M., editors, Forest Canopies. Academic Press. (Cited on page 11.)

Rodriguez-Castaneda, G., Dyer, L. A., Brehm, G., Connahs, H., Forkner, R. E., and Walla, T. R. (2010). Tropical forests are not flat: how mountains affect herbivore diversity. Ecology Letters, 13(11):1348-1357. (Cited on page 2.)

Roe, A. D. and Sperling, F. A. (2007). Population structure and species boundary delimitation of cryptic Dioryctria moths: an integrative approach. Molecular Ecology, 16(17):3617-3633. (Cited on page 6.)

Roehrdanz, R., Olson, D., Bourchier, R., Sears, S., Cortilet, A., and Fauske, G. (2006). Mitochondrial DNA diversity and Wolbachia infection in the flea beetle Aphthona nigriscutis (Coleoptera : Chrysomelidae): An introduced biocontrol agent for leafy spurge. Biological Control, 37(1):1-8. (Cited on page 29.)

Roehrdanz, R., Szalanski, A., and Levine, E. (2003). Mitochondrial DNA and ITS1 differentiation in geographical populations of northern corn rootworm, Diabrotica barberi (Coleoptera : Chrysomelidae): Identification of distinct genetic populations. Annals of the Entomological Society of America, 96(6):901-913. (Cited on page 8.)

Rohde, K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos, pages $514-527$. (Cited on pages 58 and 68.)

Rosenberg, N. A. and Tao, R. (2008). Discordance of species trees with their most likely gene trees: The case of five taxa. Systematic Biology, 57(1):131-140. (Cited on page 29.)

Rosenzweig, M. (1995). Species diversity in space and time. Cambridge University Press. (Cited on page 66.)

Rubinoff, D., Cameron, S., and Will, K. (2006). A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification. Journal of Heredity, 97(6):581-594. (Cited on pages 3 and 29.)

Saitou, N. and Nei, M. (1987). The Neighbor-Joining Method - A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4(4):406425. (Cited on pages 37 and 73.)

Samways, M., McGeoch, M., and New, T. (2010). Insect Conservation - A handbook of approaches and methods. Techniques in Ecology and Conservation Series. Oxford University Press, Oxford. (Cited on pages 37, 95, 102 and 123.)

Sánchez-Reyes, U. J., Niño Maldonado, S., and Jones, R. W. (2014). Diversity and altitudinal distribution of Chrysomelidae (Coleoptera) in Peregrina Canyon, Tamaulipas, Mexico. Zookeys, (417):103-132. (Cited on pages 11, 36, 50, 51, 53, 66,110 and 121.)

Sanders, N. (2002). Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography, 25(1):25-32. (Cited on page 67.)

Sanderson, M. (1967). New West Indian Hispinae, with notes and keys (Coleoptera: Chrysomelidae). Caribbean Journal of Science, 7:135-139. (Cited on page 15.)

Santiago-Blay, J. A. (1994). Paleontology of leaf beetles. In Jolivet, P., Cox, M., and Petitpierre, E., editors, Novel aspects of the biology of Chrysomelidae, pages $1-68$. Springer. (Cited on page 10.)

Savolainen, V., Cowan, R., Vogler, A., Roderick, G., and Lane, R. (2005). Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1805-1811. (Cited on pages 3 and 95.)

Scheffers, B. R., Joppa, L. N., Pimm, S. L., and Laurance, W. F. (2012). What we know and don't know about Earth's missing biodiversity. Trends in Ecology \& Evolution, 27(9):501-510. (Cited on page 2.)

Schemske, D. (2002). Ecological and evolutionary perspectives on the origins of tropical diversity. In Chazdon, R. and Whitmore, T., editors, Foundations of Tropical Forest Biology: Classic Papers with Commentaries, pages 163-173. University of Chicago Press. (Cited on page 58.)

Scherer, G. (1962). Bestimmungsschlüssel der neotropischen Alticinen-Genera (Coleoptera: Chrysomelidae: Alticinae). Entom. Arb. Mus. Frey, 13(2):497-607. (Cited on page 20.)

Scherer, G. (1988). The origins of the Alticinae. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 115-130. Kluwer Academic Publishers. (Cited on page 53.)

Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., and Crozier, R. H. (2010). Integrative Taxonomy: A Multisource Approach to Exploring Biodiversity. Annual Review of Entomology, 55:421-438. (Cited on page 95.)

Schmitt, M. (1985a). On the phylogeny of the Criocerinae (Coleoptera, Chrysomelidae). Entomography, 3:393-401. (Cited on page 54.)

Schmitt, M. (1985b). Versuch einer phylogenetisch-systematischen Analyse der Criocerinae (Coleoptera, Chrysomelidae). Zoologische Beiträge N.F., 29:35-85. (Cited on page 54.)

Schmitt, M. (1988). The Criocerinae: biology, phylogeny and evolution. Series Entomologica (Dordrecht), 42:475-495. (Cited on page 16.)

Schmitt, M. (1994). Stridulation in leaf beetles (Coleoptera, Chrysomelidae). In Jolivet, P., Cox, M., and Petitpierre, E., editors, Novel aspects of the biology of Chrysomelidae, pages 319-325. Springer. (Cited on page 11.)

Schmitt, M. and Traue, D. (1990). Morphological and Bioacoustic Aspects of Stridulation in Criocerinae (Coleoptera, Chrysomelidae). Zoologischer Anzeiger, 225(5$6): 225-240$. (Cited on pages 16 and 17.)

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C., Chen, W., and Fungal Barcoding Consortium (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109(16):6241-6246. (Cited on page 3.)

Schutze, M. K., Mather, P. B., and Clarke, A. R. (2006). Species status and population structure of the Australian Eucalyptus pest Paropsis atomaria Olivier (Coleoptera : Chrysomelidae). Agricultural and Forest Entomology, 8(4):323-332. (Cited on page 9.)

Seeno, T. and Wilcox, J. (1982). Leaf beetle genera (Coleoptera, Chrysomelidae. Entomography, 1:1-221. (Cited on pages 12, 13 and 15.)

Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9:83-89. (Cited on page 3.)

Seifert, K. A., Samson, R. A., deWaard, J. R., Houbraken, J., Levesque, C., Moncalvo, J. M., Louis-Seize, G., and Hebert, P. D. (2007). Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proceedings of the National Academy of Sciences of the United States of America, 104(10):3901-3906. (Cited on page 3.)

Sekerka, L. and Windsor, D. (2012). Two New Species of Plagiometriona from Bolivia and Ecuador (Coleoptera: Chrysomelidae: Cassidinae: Cassidini). Annales Zoologici, 62(4):669-677. (Cited on pages 15, 20, 48 and 94.)

Shama, L. N., Kubow, K. B., Jokela, J., and Robinson, C. T. (2011). Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations. BMC Evolutionary Biology, 11. (Cited on pages 59 and 68.)

Sharma, G., Raghubanshi, A., and Singh, J. (2005). Lantana invasion: An overview. Weed Biology and Management, 5(4):157-165. (Cited on page 10.)

Shine, R. (1989). Ecological Causes for the Evolution of Sexual Dimorphism - A Review of the Evidence. Quarterly Review of Biology, 64(4):419-461. (Cited on page 90. )

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6):651-701. (Cited on page 29.)

Singh, J. (2002). The biodiversity crisis: A multifaceted review. Current Science, 82(6):638-647. (Cited on page 113.)

Smith, M., Bertrand, C., Crosby, K., Eveleigh, E. S., Fernandez-Triana, J., Fisher, B. L., Gibbs, J., Hajibabaei, M., Hallwachs, W., Hind, K., Hrcek, J., Huang, D. W., Janda, M., Janzen, D. H., Li, Y., Miller, S. E., Packer, L., Quicke, D., Ratnasingham, S., Rodriguez, J., Rougerie, R., Shaw, M. R., Sheffield, C., Stahlhut, J. K., Steinke, D., Whitfield, J., Wood, M., and Zhou, X. (2012). Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems. Plos One, 7(5). (Cited on page 29.)

Smith, M., Fernandez-Triana, J., Roughley, R., and Hebert, P. (2009). DNA barcode accumulation curves for understudied taxa and areas. Molecular Ecology Resources, 9:208-216. (Cited on pages 58 and 111.)

Smith, M., Fisher, B., and Hebert, P. (2005). DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):18251834. (Cited on pages 2, 28, 58, 69 and 100.)

Smith, M., Hallwachs, W., and Janzen, D. H. (2014). Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography, 37(8):720-731. (Cited on pages 2, 52, 67, 70 and 109.)

Smith, M., Woodley, N., Janzen, D., Hallwachs, W., and Hebert, P. (2006). DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proceedings of the National Academy of Sciences of the United States of America, 103(10):3657-3662. (Cited on page 4.)

Song, H., Buhay, J., Whiting, M., and Crandall, K. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105(36):13486-13491. (Cited on page 28.)

Springate, N. and Basset, Y. (2004). IBISCA 2003-2005 Panama: Progress Report. Bulletin of the Bristish Ecological Society, 2:21-23. (Cited on page 72.)

Srivastava, D. and Lawton, J. (1998). Why more productive sites have more species: An experimental test of theory using tree-hole communities. American Naturalist, 152(4):510-529. (Cited on pages 58, 67, 68 and 69.)

Staines, C. (1996). The Hispinae (Coleoptera: Chrysomelidae) of Nicaragua. Revista Nicaraguense de Entomología, 37-38A:1-32. (Cited on page 15.)

Staines, C. (2002). The new world tribes and genera of hispines (Coleoptera : Chrysomelidae: Cassidinae). Proceedings of the Entomological Society of Washington, 104(3):721-784. (Cited on pages 14, 15, 54, 55 and 71.)

Staines, C. (2013). A review of the genus Alurnus Fabricius, 1775 (Coleoptera: Chrysomelidae: Cassidinae). Insecta Mundi, 0291:1-34. (Cited on pages 20 and 71.)

Staines, C. and Zamorano, L. (2012). Two new genera of hispines (Coleoptera: Chrysomelidae: Cassidinae) from Ecuador. Insecta Mundi, 0232:1-6. (Cited on pages 20 and 48.)

Staines, C. L. (2004). Cassidinae (Coleoptera, Chrysomelidae) and Zingiberales: a review of the literature. In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 307-319. SPB Academic Publishing. (Cited on page 15.)

Staines, C. L. (2009). The Hispine Beetles (Coleoptera: Chrysomelidae: Cassidinae) of the Caribbean Basin with a Key to the Species of Hispaniola. Annals of Carnegie Museum, 78(1):17-28. (Cited on pages 20 and 71.)

Staines, C. L. (2011). Hispines (Chrysomelidae, Cassidinae) of La Selva Biological Station, Costa Rica. Zookeys, (157):45-65. (Cited on pages 20, 36, 50 and 121.)

Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21):26882690. (Cited on page 99.)

Stein, A., Gerstner, K., and Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7):866-880. (Cited on page 57.)

Steinke, D. and Brede, N. (2006). DNA-Barcoding. Taxonomie des 21. Jahrhunderts. Biologie in unserer Zeit, 36(1):40-46. (Cited on page 28.)

Stillwell, R., Blanckenhorn, W. U., Teder, T., Davidowitz, G., and Fox, C. W. (2010). Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution. Annual Review of Entomology, 55:227-245. (Cited on page 90.)

Stoeckle, M. (2003). Taxonomy, DNA, and the bar code of life. Bioscience, 53(9):796-797. (Cited on pages 3 and 4.)

Stoeckle, M., Janzen, D., Hallwachs, W., Hanken, J., and Baker, J. (2003). Taxonomy, DNA, and the Barcode of Life. Draft conference report. http://phe.rockefeller.edu/barcodeconference/index.html. (Cited on page 4.)

Stork, N. (1988). Insect Diversity - Facts, Fiction and Speculation. Biological Journal of the Linnean Society, 35(4):321-337. (Cited on pages 35 and 97.)

Stork, N. (1993). How many species are there? Biodiversity and Conservation, 2(3):215-233. (Cited on pages 35 and 97 .)

Strutzenberger, P., Brehm, G., and Fiedler, K. (2011). DNA barcoding-based species delimitation increases species count of Eois (Geometridae) moths in a well-studied tropical mountain forest by up to $50 \%$. Insect Science, 18(3):349-362. (Cited on pages 50 and 100.)

Suzuki, K. (1994). Comparative morphology of the hindwing venation of the Chrysomelidae. In Jolivet, P., Cox, M., and Petitpierre, E., editors, Novel aspects of the biology of Chrysomelidae, pages 337-354. Springer. (Cited on page 11.)

Świętojańska, J. and Borowiec, L. (2000). Two new species of Charidotis Boheman from Ecuador and Brazil (Coleoptera: Chrysomelidae: Cassidinae). Genus, 11(4):607-612. (Cited on pages 20 and 48.)

Takano, S. i., Mochizuki, A., Konishi, K., Takasu, K., Alouw, J. C., Pandin, D. S., and Nakamura, S. (2011). Two Cryptic Species in Brontispa longissima (Coleoptera: Chrysomelidae): Evidence From Mitochondrial DNA Analysis and Crosses Between the Two Nominal Species. Annals of the Entomological Society of America, 104(2):121-131. (Cited on pages 9 and 89.)

Takano, S. i., Takasu, K., Fushimi, T., Ichiki, R. T., and Nakamura, S. (2012). Life history traits and damage potential of an invasive pest Brontispa longissima (Coleoptera: Chrysomelidae) on Satakentia liukiuensis. Entomological Science, 15(2):238-245. (Cited on page 9.)

Takyu, M., Aiba, S., and Kitayama, K. (2002). Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecology, 159(1):35-49. (Cited on page 57.)

Tänzler, R., Sagata, K., Surbakti, S., Balke, M., and Riedel, A. (2012). DNA Barcoding for Community Ecology - How to Tackle a Hyperdiverse, Mostly Undescribed Melanesian Fauna. Plos One, 7(1). (Cited on pages 2, 5, 58, 69, 100 and 110.)

Tautz, D., Arctander, P., Minelli, A., Thomas, R., and Vogler, A. (2003). A plea for DNA taxonomy. Trends in Ecology \& Evolution, 18(2):70-74. (Cited on pages 3 and 5.)

Templeton, A. (2001). Using phylogeographic analyses of gene trees to test species status and processes. Molecular Ecology, 10(3):779-791. (Cited on pages 31, 94, 98 and 100.)

Templeton, A., Crandall, K., and Sing, C. (1992). A Cladistic-Analysis of Phenotypic Associations with Haplotypes Inferred from Restriction Endonuclease Mapping and DNA-Sequence Data. 3. Cladogram Estimation. Genetics, 132(2):619633. (Cited on pages 31, 94 and 100.)

Valentini, A., Pompanon, F., and Taberlet, P. (2008). DNA barcoding for ecologists. Trends in Ecology छ Evolution, 24(2):110-117. (Cited on page 4.)

Vasconcellos-Neto, J. (1988). Genetics of Chelymorpha cribraria, Cassidinae: colour patterns and their ecological meanings. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 217-232. Kluwer Academic Publishers. (Cited on page 92.)

Vences, M., Thomas, M., Bonett, R., and Vieites, D. (2005). Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophical Transactions of the Royal Society B-Biological Sciences, 360(1462):1859-1868. (Cited on pages 4 and 72 .)

Vencl, F. V., Levy, A., Geeta, R., Keller, G., and Windsor, D. M. (2004). Observations on the natural history, systematics and phylogeny of the Criocerinae of Costa Rica and Panama. In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 423-454. SPB Academic Publishing. (Cited on pages 8, 16 and 17.)

Verdyck, P., De Wolf, H., Backeljau, T., and Hulselmans, J. (1996). A genetic study of two colour forms of Phyllotreta cruciferae (Chrysomelidae: Alticinae). In Jolivet, P. and Cox, M., editors, Chrysomelidae biology 1, pages 389-397. SPB Academic Publishing. (Cited on pages 91 and 92.)

Verma, K. (1996). Inter-subfamily relations among Chrysomelidae (Coleoptera) as suggested by organization of the male genital system. In Jolivet, P. and Cox, M., editors, Chrysomelidae biology 1, pages 317-351. SPB Academic Publishing. (Cited on page 13.)

Verma, K. and Kalaichelvan, T. (2004). Polymorphism and microtaxonomy in Chrysomelidae. In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 213-224. SPB Academic Publishing. (Cited on pages 91 and 92.)

Vogler, A. and Monaghan, M. (2006). Recent advances in DNA taxonomy. Journal of Zoological Systematics and Evolutionary Research, 45(1):1-10. (Cited on page 5.)

Voigt, D., Schuppert, J., Dattinger, S., and Gorb, S. (2008). Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata
(Coleoptera : Chrysomelidae) to rough substrates. Journal of Insect Physiology, 54(5):765-776. (Cited on page 90.)

Wägele, J. (2005). Foundations of phylogenetic systematics. Pfeil. (Cited on page 98.)

Wagner, T. (1999). Arboreal chrysomelid community structure and faunal overlap between different types of forests in Central Africa. In Cox, M., editor, Advances in Chrysomelidae biology 1, pages 247-270. Backhuys Publishers. (Cited on pages 53 and 123.)

Wagner, T. (2000). Influence of forest type and tree species on canopy-dwelling beetles in Budongo Forest, Uganda. Biotropica, 32(3):502-514. (Cited on pages 2, $11,58,72,109$ and 123.)

Wagner, T. (2003). Seasonality of canopy beetles in Uganda. In Basset, Y., Novotny, V., Miller, S., and Kitching, R., editors, Arthropods of tropical forests: spatiotemporal dynamics and resource use in the canopy, pages 146-158. Cambridge University Press. (Cited on pages 53 and 123.)

Wagner, T. (2004). Phylogeny of Afrotropical Monolepta and related taxa (Galerucinae). In Jolivet, P., Santiago-Blay, J., and Schmitt, M., editors, New developments in the biology of Chrysomelidae, pages 75-84. SPB Academic Publishing. (Cited on pages 30 and 73.)

Wagner, T. (2007a). Monolepta Chevrolat, 1837, the most speciose galerucine taxon: redescription of the type species Monolepta bioculata (Fabricius, 1781) and key to related genera from (Chrysomelidae, Coleoptera). Journal of Natural History, 41(1-4):81-100. (Cited on pages 30 and 73.)

Wagner, T. (2007b). Revision of Afrocrania (Coleoptera : Chrysomelidae: Galerucinae) Part II: Species in which the males lack head cavities or extended elytral extrusions. European Journal of Entomology, 104(4):801-814. (Cited on pages 30 and 73.)

Wagner, T. and Kurtscheid, A. (2005). Revision of Candezea chapuis, 1879 (Coleoptera, Chrysomelidae, Galerucinae) from continental Africa. Journal of Natural History, 39(28):2591-2641. (Cited on pages 30 and 73.)

Walther, B. and Moore, J. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6):815-829. (Cited on pages 37 and 102.)

Walther, B. and Morand, S. (1998). Comparative performance of species richness estimation methods. Parasitology, 116:395-405. (Cited on pages 37 and 102.)

Ward, R., Zemlak, T., Innes, B., Last, P., and Hebert, P. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society BBiological Sciences, 360(1462):1847-1857. (Cited on page 28.)

Wares, J. and Cunningham, C. (2001). Phylogeography and historical ecology of the North Atlantic intertidal. Evolution, 55(12):2455-2469. (Cited on page 28.)

Weber, D. (2003). Colorado beetle: pest on the move. Pesticide Outlook, 14(6):256259. (Cited on page 8.)

Weber, D., Stewart, B., and Lehman, N. (2004). Genetic consequences of a severe population bottleneck in the Guadalupe fur seal (Arctocephalus townsendi). Journal of Heredity, 95(2):144-153. (Cited on page 68.)

Weigend, M. (2002). Observations on the biogeography of the AmotapeHuancabamba Zone in northern Peru. Botanical Review, 68(1):38-54. (Cited on page 24.)

Weise, J. (1911). Coleoptera Phytophaga fam. Chrysomelidae, subfam. Hispinae. In Wystman, P., editor, Genera Insectorum. (Cited on page 20.)

Wells, J. and Sperling, F. (2001). DNA-based identification of forensically important Chrysomyinae (Diptera : Calliphoridae). Forensic Science International, 120(1$2): 110-115$. (Cited on page 4.)

Wellso, S. and Hoxie, R. (1988). Biology of Oulema. In Jolivet, P., Petitpierre, E., and Hsiao, T., editors, Biology of Chrysomelidae, pages 497-511. Kluwer Academic Publishers. (Cited on page 9.)

Werner, F. A. and Homeier, J. (2015). Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Functional Ecology, 29(3):430-440. (Cited on pages 26, 57, 59, 66 and 69.)

Werren, J. and Windsor, D. (2000). Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proceedings of the Royal Society B-Biological Sciences, 267(1450):1277-1285. (Cited on page 29.)

Werren, J., Windsor, D., and Guo, L. (1995). Distribution of Wolbachia Among Neotropical Arthropods. Proceedings of the Royal Society B-Biological Sciences, 262(1364):197-204. (Cited on page 29.)

West-Eberhard, M. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology, Evolution and Systematics, 20:249-278. (Cited on page 91.)

Wheeler, Q. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359(1444):571-583. (Cited on page 5.)

Whitman, D. and Agrawal, A. (2009). What is phenotypic plasticity and why is it important. Phenotypic plasticity of insects, 10:1-63. (Cited on page 91.)

Wiemers, M. and Fiedler, K. (2007). Does the DNA barcoding gap exist? - A case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology, 4. (Cited on page 5.)

Wilf, P., Labandeira, C., Kress, W., Staines, C., Windsor, D., Allen, A., and Johnson, K. (2000). Timing the radiations of leaf beetles: Hispines on gingers from latest Cretaceous to recent. Science, 289(5477):291-294. (Cited on pages 10 and 15.)

Will, K., Mishler, B., and Wheeler, Q. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54(5):844-851. (Cited on page 5.)

Will, K. and Rubinoff, D. (2004). Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics, 20(1):47-55. (Cited on page 5.)

Wilson, E. (1988). The current state of biological diversity. In Wilson, E., editor, Biodiversity, pages 3-18. National Academy Press, Washington, DC. (Cited on pages 1 and 97.)

Wilson, E. (2003). The encyclopedia of life. Trends in Ecology \& Evolution, 18(2):7780. (Cited on pages 1, 35 and 97.)

Windsor, D. (1987). Natural history of a subsocial tortoise beetle, Acromis sparsa Boheman (Chrysomelidae, Cassidinae) in Panama. Psyche: A Journal of Entomology, 94(1-2):127-150. (Cited on page 91.)

Windsor, D., Demacedo, M., and Siqueiracampos, A. (1995). Flower Feeding by Species of Echoma Chevrolat (Coleoptera, Chrysomelidae, Cassidinae) on Mikania (Asteraceae) in Panama and Brazil. Coleopterists Bulletin, 49(2):101-108. (Cited on page 71.)

Windsor, D. M. and Choe, J. C. (1994). Origins of parental care in chrysomelid beetles. In Jolivet, P., Cox, M., and Petitpierre, E., editors, Novel aspects of the biology of Chrysomelidae, pages 111-117. Springer. (Cited on page 8.)

Witt, J. D., Threloff, D. L., and Hebert, P. D. (2006). DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology, 15(10):3073-3082. (Cited on pages 69, 89 and 113.)

Wolf, K., Veldkamp, E., Homeier, J., and Martinson, G. O. (2011). Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochemical Cycles, 25. (Cited on page 67.)

Wong, E. H. and Hanner, R. H. (2008). DNA barcoding detects market substitution in North American seafood. Food Research International, 41(8):828-837. (Cited on page 4.)

Wright, S. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130(1):1-14. (Cited on pages 11 and 97.)

Yan, D., Luo, J. Y., Han, Y. M., Peng, C., Dong, X. P., Chen, S. L., Sun, L. G., and Xiao, X. H. (2013). Forensic DNA Barcoding and Bio-Response Studies of Animal Horn Products Used in Traditional Medicine. Plos One, 8(2). (Cited on page 4.)

Young, K. and Reynel, C. (1997). Huancabamba region, Peru and Ecuador. In Heywood, V. and Davis, S., editors, Centers of Plant Diversity, a guide and strategy for their conservation 3, pages 465-469. World Conservation Union. (Cited on page 24.)

Yu, D. W., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., and Ding, Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 3(4):613-623. (Cited on pages 95 and 113.)

Zayed, A., Packer, L., Grixti, J., Ruz, L., Owen, R., and Toro, H. (2005). Increased genetic differentiation in a specialist versus a generalist bee: implications for conservation. Conservation Genetics, 6(6):1017-1026. (Cited on page 69.)

Zeale, M. R., Butlin, R. K., Barker, G. L., Lees, D. C., and Jones, G. (2010). Taxonspecific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources, 11(2):236-244. (Cited on page 4.)

Zhang, D. and Hewitt, G. (1997). Assessment of the universality and utility of a set of conserved mitochondrial COI primers in insects. Insect Molecular Biology, $6(2): 143-150$. (Cited on page 28.)

Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22):2869-2876. (Cited on pages 31, 94, 98 and 101.)

Zvereva, E., Kozlov, M., and Kruglova, O. (2002). Colour polymorphism in relation to population dynamics of the leaf beetle, Chrysomela lapponica. Evolutionary Ecology, 16(6):523-539. (Cited on page 92.)

## List of abbreviations

Table A.1: List of abbreviations used in this thesis.

ANOVA	analysis of variance
a.s.l.	above sea level
B	Bombuscaro
BOLD	Barcode of Life Data Systems
bp	base pair
C	Cajanuma
CBOL	Consortium for the Barcode of Life
COI	cytochrome $c$ oxidase I
E, ECSF	Estación Científica San Francisco
Fig.	Figure
GMYC	Generalized mixed Yule-coalescent
iBOL	international Barcode of Life project
MANOVA	multivariate analysis of variance
ML	Maximum Likelihood
MOTU	molecular operational taxonomic unit
mtDNA	mitochondrial DNA
NJ-Tree	Neighbor-Joining-Tree
NMDS	non-metric multidimensional scaling
PCR	Polymerase Chain Reaction
Podocarpus NP	Podocarpus National Park
PTP	Poisson tree processes
RBSF	Reserva Biológica San Francisco
rRNA	ribosomal RNA
SD	standard deviation
SE	standard error
Tab.	Table
UTPL	Universidad Técnica Particular de Loja
ZFMK	Zoologisches Forschungsmuseum Alexander Koenig

# Additional information: Sampling site information 

Table B.1: Sampling site information.

Site	Elevation (a.s.l.)	Latitude (S)	Longitude (W)
C-U1	2891	$4^{\circ} 6^{\prime} 31.194^{\prime \prime}$	$79^{\circ} 10^{\prime} 44.184^{\prime \prime}$
C-U2	2885	$4^{\circ} 6^{\prime} 30.3804$ "	$79^{\circ} 10^{\prime} 44.022^{\prime \prime}$
C-U3	2869	$4^{\circ} 6^{\prime} 30.7692^{\prime \prime}$	$79^{\circ} 10^{\prime} 42.9852^{\prime \prime}$
C-U4	2886	$4^{\circ} 6^{\prime} 30.5568^{\prime \prime}$	$79^{\circ} 10^{\prime} 49.6632^{\prime \prime}$
C-U5	2890	$4^{\circ} 6^{\prime} 30.618^{\prime \prime}$	$79^{\circ} 10^{\prime} 48.8208^{\prime \prime}$
C-U6	2893	$4^{\circ} 6^{\prime} 29.4804^{\prime \prime}$	$79^{\circ} 10^{\prime} 48.6948^{\prime \prime}$
C-L1	2818	$4^{\circ} 6^{\prime} 31.212^{\prime \prime}$	$79^{\circ} 10^{\prime} 37.3116^{\prime \prime}$
C-L2	2805	$4^{\circ} 6^{\prime} 31.896^{\prime \prime}$	$79^{\circ} 10^{\prime} 37.0488^{\prime \prime}$
C-L3	2798	$4^{\circ} 6^{\prime} 30.3048^{\prime \prime}$	$79^{\circ} 10^{\prime} 39.2268^{\prime \prime}$
C-L4	2865	$4^{\circ} 6^{\prime} 32.5404^{\prime \prime}$	$79^{\circ} 10^{\prime} 48.6552^{\prime \prime}$
C-L5	2878	$4^{\circ} 6^{\prime} 30.9492^{\prime \prime}$	$79^{\circ} 10^{\prime} 50.4084^{\prime \prime}$
C-L6	2880	$4^{\circ} 6^{\prime} 31.698^{\prime \prime}$	$79^{\circ} 10^{\prime} 50.3112^{\prime \prime}$
B-U1	1075	$4^{\circ} 6^{\prime} 49.8528^{\prime \prime}$	$78^{\circ} 58^{\prime} 1.0128^{\prime \prime}$
B-U2	1066	$4^{\circ} 6^{\prime} 50.8608^{\prime \prime}$	$78^{\circ} 58^{\prime} 0.7824^{\prime \prime}$
B-U3	1072	$4^{\circ} 6^{\prime} 50.2092$ "	$78^{\circ} 57,59.94 "$
B-U4	1268	$4^{\circ} 7^{\prime} 15.7008^{\prime \prime}$	$78^{\circ} 58^{\prime} 40.5588^{\prime \prime}$
B-U5	1257	$4^{\circ} 7^{\prime} 15.8592$ "	$78^{\circ} 58^{\prime} 40.008^{\prime \prime}$
B-U6	1266	$4^{\circ} 7^{\prime} 16.8672^{\prime \prime}$	$78^{\circ} 58^{\prime} 39.648^{\prime \prime}$
B-L1	1020	$4^{\circ} 6^{\prime} 59.238^{\prime \prime}$	$78^{\circ} 58^{\prime} 5.2356^{\prime \prime}$
B-L2	1026	$4^{\circ} 6^{\prime} 59.5008^{\prime \prime}$	$78^{\circ} 58^{\prime} 5.916^{\prime \prime}$
B-L3	1046	$4^{\circ} 6^{\prime} 58.5648^{\prime \prime}$	$78^{\circ} 58^{\prime} 8.7384^{\prime \prime}$
B-L4	1054	$4^{\circ} 7^{\prime} 17.7888^{\prime \prime}$	$78^{\circ} 58^{\prime} 29.856^{\prime \prime}$
B-L5	1056	$4^{\circ} 7^{\prime} 18.0516$ "	$78^{\circ} 58^{\prime} 31.1844^{\prime \prime}$
B-L6	1044	$4^{\circ} 7^{\prime} 19.614^{\prime \prime}$	$78^{\circ} 58^{\prime} 30.8568^{\prime \prime}$
E-U1	2002	$3^{\circ} 58^{\prime} 27.7896^{\prime \prime}$	$79^{\circ} 4^{\prime} 30.378^{\prime \prime}$
E-U2	2026	$3^{\circ} 58^{\prime} 29.8704^{\prime \prime}$	$79^{\circ} 4^{\prime} 30.2124^{\prime \prime}$
E-U3	2089	$3^{\circ} 58^{\prime} 37.9488^{\prime \prime}$	$79^{\circ} 4^{\prime} 32.1384^{\prime \prime}$
E-U4	2063	$3^{\circ} 58^{\prime} 32.1276$ "	$79^{\circ} 4^{\prime} 20.0316^{\prime \prime}$
E-U5	2054	$3^{\circ} 58^{\prime} 31.0512^{\prime \prime}$	$79^{\circ} 4^{\prime} 20.4204^{\prime \prime}$
E-U6	2039	$3^{\circ} 58^{\prime} 30.108^{\prime \prime}$	$79^{\circ} 4^{\prime} 20.3916^{\prime \prime}$
E-L1	2039	$3^{\circ} 58^{\prime} 34.9536^{\prime \prime}$	$79^{\circ} 4^{\prime} 31.4328^{\prime \prime}$
E-L2	1993	$3^{\circ} 58^{\prime} 32.61^{\prime \prime}$	$79^{\circ} 4^{\prime} 32.5056^{\prime \prime}$
E-L3	2030	$3^{\circ} 58^{\prime} 34.63^{\prime \prime}$	$79^{\circ} 4^{\prime} 31.21^{\prime \prime}$
E-L4	1913	$3^{\circ} 58^{\prime} 26.13^{\prime \prime}$	$79^{\circ} 4^{\prime} 15.83 \prime \prime$
E-L5	1954	$3^{\circ} 58^{\prime} 27.3576^{\prime \prime}$	$79^{\circ} 4^{\prime} 12.8784^{\prime \prime}$
E-L6	1933	$3^{\circ} 58^{\prime} 28.7904$ "	$79^{\circ} 4^{\prime} 12.972^{\prime \prime}$
Cajanuma	Cajanuma area, unspecified Bombuscaro area, unspecified ECSF area, unspecified		
Bombuscaro			
ECSF			
E-Station	1826	$3^{\circ} 58^{\prime} 17.19^{\prime \prime}$	$79^{\circ} 4^{\prime} 44.06^{\prime \prime}$
E-Q2 (Quebrada 2)	1990	$3^{\circ} 58^{\prime} 36$ "	$79^{\circ} 4^{\prime} 32$ "
E-Q3 (Quebrada 3)	1990	$3^{\circ} 58^{\prime} 27^{\prime \prime}$	$79^{\circ} 4^{\prime} 23^{\prime \prime}$
E-Q5 (Quebrada 5)	1990	$3^{\circ} 58^{\prime} 28^{\prime \prime}$	$79^{\circ} 4^{\prime} 13^{\prime \prime}$
E-Lichtung	1900	$3^{\circ} 58^{\prime} 24^{\prime \prime}$	$79^{\circ} 4^{\prime} 33^{\prime \prime}$
El Tiro	2590	$3^{\circ} 59.55$ '	$79^{\circ} 07.30^{\prime}$

# Additional information: Specimen list 


#### Abstract

Table C.1: Specimen list with sampling information and GenBank accession numbers. All sampling sites are within Podocarpus National Park/Reserva Biológica San Francisco, Ecuador. Specimens 02270237, 0246, 0679-0737 were collected by G. Brehm, M. Adams, and L. Lehner, specimens 4572 and 4581 were collected by F. Bodner. All other specimens were sampled by B. Thormann, D. Sotomayor, J. Castillo, T. Klug, P. Schwalb, and J. Struwe. Coordinates of the sampling sites are provided in Tab. B.1. Hand-Coll.( $\mathbf{N}$ ) $=$ Nonstandardized Hand-Collection, Hand-Coll. $(\mathbf{S})=$ Standardized HandCollection, Flight-Intercept. = Flight Interception Trap.


SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_0001_Eumolpinae_sp_001	N1	KJ677921	ECSF	Station	11/122010	Hand-Coll. (N)
$\mathrm{BT}^{-} 00022^{-}$Alticinae_sp_0 ${ }^{\text {a }}$	N1	KJ677411	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0003^{-}$Alticinae $-\mathrm{sp}_{-}^{-} 042$	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0004$ _Eumolpinae $\bar{e}^{\text {sp }}$ _ 042	N1	KJ677862	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0005-Galerucinae_sp_040	N1	KJ677774	ECSF	Station	11/122010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0006- Galerucinae-sp_040	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0006 \bar{a}_{\text {- }}$ Galerucinae ${ }^{\text {- }}$ sp ${ }_{-} 040$	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
BT-0007_-Galerucinae_sp ${ }^{\text {- }} 38$	N1	KJ677526	ECSF	Station	11/12 2010	Hand-Coll. (N)
	N1	KJ677417	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0009$-Eumolpinae_-sp_022	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0010$ - Eumolpinae_sp_022	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0011{ }^{-}$Eumolpinae-sp-022	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0012-$ Eumolpinae-sp-021	N1	KJ677897	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0013{ }^{-}$Eumolpinae-sp-021	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0014{ }^{-}$Eumolpinae-sp-021	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0015-Galerucinae_sp_076	N1	KJ677559	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-0016-G a l e r u c i n a e-s p-076 ~}$	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0017{ }^{-}$Alticinae_sp_0 ${ }^{\text {a }}$ -	N1	KJ677407	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0018^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-} 043$	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0019{ }^{-}$Alticinae- ${ }^{\text {sp }}{ }^{-043}$	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0020_{-}^{-}$Alticinae-_sp_043	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 00211^{-}$Alticinae_-sp_-007	N1	KJ677705	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 00222^{-}$Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-}} 219$	N1	KJ677711	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0024{ }^{-}$Galerucinae _${ }^{\text {sp }}$-_001	N1	KJ677550	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0025^{-}$Galerucinae-${ }_{-}^{\text {sp }}$-001	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0026{ }^{-}$Galerucinae-sp-001	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0027_{-}^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 001$	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 00288^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 001$	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0029^{-}$Galerucinae-sp-001	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0030{ }^{-}$Galerucinae-sp-001	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0031-Galerucinae_sp_001	N1		ECSF	Station	11/122010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0032{ }^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 001$	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0033{ }^{-}$Galerucinae_sp_037	N1	KJ677555	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0034{ }^{-}$Eumolpinae-sp-014	N1	KJ677931	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-0035}$ - Eumolpinae-sp-006	N1	KJ677907	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0036{ }^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 011$	N1	KJ677532	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0043^{-}$Galerucinae-sp-${ }^{-}{ }^{-} 005$	N1	KJ677545	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0044_-Galerucinae-sp_005	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0045{ }^{-}$Galerucinae- ${ }^{\text {sp }}$-005	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0045 \mathrm{a}$ - Galerucinae ${ }^{\text {- }}$ - ${ }^{\text {P }}$ - 005	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
	N1		$\underset{\text { ECSF }}{\text { ECSF }}$	Station Station	$11 / 122010$ $11 / 122010$	Hand-Coll.(N) Hand-Coll.(N)
	N1 N 1	KJ677412	$\underset{\text { ECSF }}{\text { ECSF }}$	Station Station	$11 / 122010$ $11 / 122010$	Hand-Coll.( N$)$ Hand-Coll.(N)
$\mathrm{BT}^{-} 0049$-Galerucinae_sp-041	N1	KJ677775	ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0050{ }^{-}$Galerucinae-sp. 002	N1		ECSF	Station	11/122010	Hand-Coll. (N)
$\mathrm{BT}^{-} 00511^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/122010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0052{ }^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0053{ }^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/122010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0054{ }^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/122010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0055^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0056{ }^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0057{ }^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0058^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0059{ }^{-}$Galerucinae sp. 002	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0060{ }^{-}$Galerucinae sp. 004	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0061$-Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 00622^{-}$Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0063{ }^{-}$Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0064{ }^{-}$Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0065^{-}$Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0066^{-}$Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0067{ }^{-}$- ${ }^{\text {Galerucinae sp. }}$ - 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0068{ }^{-}$-Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0069^{-}$Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0070^{-}$Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0071^{-}$-Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll.(N)

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { SD }}{\text { Sample }}$	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_0072_Galerucinae sp. 007	N1		ECSF	Station	11/12 2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0085{ }^{-}$Eumolpinae_sp_048	N2		Bombuscaro	L1	20.11 .2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0088^{-}$-Galerucinae--sp-007	N4	KJ677543	ECSF	Station	20.11 .2010	Light Trap
$\mathrm{BT}^{-} 0089^{-}$Eumolpinae-${ }_{-}^{\text {sp }}{ }^{-} 001$	N4	KJ677922	ECSF	Station	20.11 .2010	Light Trap
$\mathrm{BT}^{-} 0090-$ Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-076}$	N5	KJ677558	ECSF	Station	21.11 .2010	Light Trap
$\mathrm{BT}^{-} 0091^{-}$Eumolpinae- ${ }^{-} \mathrm{sp}_{-}^{-001}$	N5	KJ677923	ECSF	Station	21.11 .2010	Light Trap
$\mathrm{BT}^{\text {BT }}$-0092-Eumolpinae-sp-001	N5		ECSF	Station	21.11 .2010	Light Trap
$\mathrm{BT}^{-} 0093-$ Eumolpinae-sp-001	N5		ECSF	Station	21.11 .2010	Light Trap
$\mathrm{BT}^{-} 0094{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}^{-} 011$	N6	KJ677533	ECSF	U1	22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0095{ }^{-}$Cassidinae_ $\overline{\mathrm{sp}}$ - $\overline{0} 01$	N7	KJ677873	ECSF		22.11 .2010	Hand-Coll. (N)
BT-0096-Alticinae_sp_ō10	N7	KJ677729	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-0097-}{ }^{-}$Alticinae- ${ }^{-}{ }^{-} 010$	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0098- ${ }^{-}$Galerucinaee_sp_002	N7	KJ677547	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0099-Galerucinae-sp_007	N7	KJ677512	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0100_{-}^{-}$Galerucinae-sp-007	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0101^{-}$Galerucinae- ${ }^{-} \mathrm{sp}_{-}^{-} 007$	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0102-Alticinae_sp_0 ${ }^{-14}$	N7	KJ677374	ECSF		22.11 .2010	Hand-Coll. (N)
BT-0103-Eumolpināe_sp_038	N7	KJ677927	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0104-${ }^{-}$Eumolpinae-${ }_{-}^{\text {sp }}$-038	N7		ECSF		22.11 .2010	Hand-Coll.( N )
$\mathrm{BT}^{-} 0105^{-}$Eumolpinae-sp-038	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0106^{-}$Eumolpinae-${ }_{-}^{\text {sp }}$	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0107^{-}$Galerucinae-sp-046	N7	KJ677632	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0108^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 046$	N7		ECSF		22.11 .2010	Hand-Coll. (N)
	N7	KJ677459 KJ677497	ECSF		22.11 .2010 22.11 .2010	Hand-Coll.( Hand-Coll.(
BT-0111-Alticinae_sp-087	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0112{ }^{-}$Alticinae-sp-087	N7		ECSF		22.11 .2010	Hand-Coll.(N)
$\mathrm{BT}^{-} 0113^{-}$Alticinae-sp-087	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0114-_Galerucinae_-sp_062	N7	KJ677756	ECSF		22.11 .2010	Hand-Coll. (N)
BT-0115-Alticinae_sp_o ${ }^{-} \overline{9}_{8}$	N7	KJ677286	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0116^{-}$Alticinae_-sp_098	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0117^{-}$Eumolpinae_-sp_036	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0118$ - Eumolpinae- ${ }^{-10}{ }^{-} 019$	N7	KJ677877	ECSF		22.11 .2010	Hand-Coll. (N)
BT-0119-Alticinae_sp ${ }^{-1 \overline{2} 4}$	N7	KJ677494	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0120-$ Alticinae_-sp_-064	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0121_{-}^{-}$Alticinae-sp_${ }^{-} 107$	N7	KJ677776	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0122_{-}^{-}$Alticinae_-sp_107	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0123-$ Alticinae_-sp_129	N7	KJ677769	ECSF		22.11 .2010	Hand-Coll. ${ }^{(N)}$
$\mathrm{BT}^{-} 0124$-Alticinae-sp_129	N7		ECSF		22.11 .2010	Hand-Coll. (N)
BT-0125-Alticinae_sp_097	N7	KJ677311	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0126^{-}$Alticinae-sp_123	N7	KJ677618	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0127^{-}$Hispinae-sp_-001	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0128^{-}$Eumolpinae_sp_009	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0129$-Eumolpinae-sp-009	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0130^{-}$Galerucinae-sp-034	N7	KJ677691	ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0131$-Galerucinae-sp ${ }^{-}$- 034	N7		ECSF		22.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0133{ }^{\text {- Cassidinae - }{ }^{\text {sp }} \text { - } \overline{0} 03}$	N8		ECSF	L6	24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0134^{-}$Galerucinae -sp _007	N8	KJ677513	ECSF	L6	24.11 .2010	Hand-Coll. (N)
	N9	KJ677878	$\underset{\text { ECSF }}{\text { ECSF }}$		24.11 .2010 24.11 .2010	Hand-Coll. Hand-Coll.(N)
BT-0137-Cassidinae_sp_004	N9	KJ677850	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0138-Cassidinae-sp ${ }^{-}{ }^{-} 004$	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0139^{-}$Alticinae_- $\overline{\mathrm{sp}}$ - 010	N9	KJ677730	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0140-$ Alticinae-sp_028	N9	KJ677346	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0144-Eumolpinae_- $\overline{\mathrm{s}}$-_038	N9	KJ677926	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0145-Galerucinae- ${ }^{-} \mathrm{sp}^{-} 061$	N9	KJ677514	ECSF		24.11 .2010	Hand-Coll. (N)
BT-0146-Alticinae_sp_o ${ }^{-}$- 9	N9	KJ677442	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0147^{-}$Alticinae-sp_-062	N9	KJ677421	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0148$-Alticinae-sp_066	N9	KJ677468	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0149$ - Alticinae-sp_249	N9	KJ677456	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0150-$ Alticinae_-sp_249	N9		ECSF		24.11 .2010	Hand-Coll. (N)
BT-0151-Alticinae_sp_249	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0152^{-}$Alticinae_-sp_249	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0153-$ Alticinae-sp_109	N9	KJ677669	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0154-Alticinae_-sp_-115	N9	KJ677287	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0155$-Alticinae_sp_193	N9	KJ677671	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0156^{-}$Alticinae_-sp_019	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0157^{-}$Alticinae-sp-097	N9	KJ677300	ECSF		24.11 .2010	Hand-Coll. (N)
BT-0158-Eumolpinae_-sp_002	N9	KJ677932	ECSF		24.11 .2010	Hand-Coll. ${ }^{(N)}$
$\mathrm{BT}^{-} 0159$ - Galerucinae-sp-096	N9	KJ677683	ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0160-Galerucinae_-sp_096	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0161-Galerucinae-sp-096	N9		ECSF		24.11 .2010	Hand-Coll. (N)
BT-0162-Galerucinae_-sp_096	N9		ECSF		24.11 .2010	Hand-Coll. (N)
	N9		$\underset{\text { ECSF }}{\text { ECSF }}$		24.11 .2010 24.11 .2010	Hand-Coll.(N) Hand-Coll.(N)
$\mathrm{BT}^{-}$-0165-Galerucinae_-sp_096	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0166 - Galerucinae_-sp-096	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0167 ${ }^{-}$Galerucinae_-sp-096	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0168 ${ }^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 096$	N9		ECSF		24.11 .2010	Hand-Coll. (N)
	N9		$\underset{\text { ECSF }}{\text { ECSF }}$		24.11 .2010 24.11 .2010	Hand-Coll.(N) Hand-Coll.( N$)$
${ }_{\text {BT }}{ }^{-} 0170^{-}$- Galerucinae ${ }^{-}{ }^{\text {Gal }}$ - ${ }^{-096}$	N9		$\underset{\text { ECSF }}{\text { ECSF }}$		24.11 .2010 24.11 .2010	Hand-Coll.(N) Hand-Coll.(N)
	N9		$\underset{\text { ECSF }}{\text { ECSF }}$		24.11 .2010 24.11 .2010	Hand-Coll.( ${ }^{\text {N }}$ ) Hand-Coll.(
$\mathrm{BT}^{-}$-0173-Galerucinae_-sp-096	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0174-Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 046$	N9	KJ677633	ECSF		24.11 .2010	Hand-Coll. (N)
BT-0175-Galerucinae_-sp_046	N9		ECSF		24.11 .2010	Hand-Coll. (N)
	N9	KJ677636	ECSF		24.11 .2010	Hand-Coll. (N)
BT-0177 - Galerucinae_-sp_046	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0178^{-}$Galerucinae-sp_046	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0179-Galerucinae-_sp_046	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0180-$ Galerucinae-sp-046	N9		ECSF		24.11 .2010	Hand-Coll. (N)
	N9 N 9		$\underset{\text { ECSF }}{\text { ECSF }}$		24.11 .2010 24.11 .2010	Hand-Coll.( Hand-Coll.(N)
$\mathrm{BT}^{-}{ }^{\text {- }}$-183-Galerucinae_-sp-034	N9	KJ677692	ECSF		24.11 .2010	Hand-Coll.( N )
$\mathrm{BT}^{-} 0184^{-}$Galerucinae ${ }^{-} \mathrm{sp}{ }^{-} 034$	N9		ECSF		24.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-0188}$-Galerucinae - ${ }^{\text {sp }}$-011	N10	KJ677535	ECSF	Station	24.11 .2010	Light Trap
	N10 N10	KJ677361	$\underset{\text { ECSF }}{\text { ECSF }}$	( Station	24.11 .2010 24.11 .2010	Light Trap
	N10	KJ677924	ECSF	Station	24.11 .2010	Light Trap
$\mathrm{BT}^{-}$-0195--Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 045$	N11		Bombuscaro		25.11.2010	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{O196}^{-}$-Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 010$	N11	KJ677807	Bombuscaro		25.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0197^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 033$	N11		Bombuscaro		25.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{\text {BT-0198-Alticinae }}$ - $\mathrm{sp}^{\text {d }}$ - $1 \overline{37}$	N14		ECSF	U1	27.11 .2010	Pitfall Trap
$\mathrm{BT}^{-} 0199^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-118}$	N16	KJ677667	ECSF		27.11 .2010	Hand-Coll. (N)
	N18	KJ677759	Bombuscaro	L3	29.11 .2010	Hand-Coll. (N)
BT-0202-Galerucinae_sp BT-0203-Galerucinae_-sp - O32	N19 N 19		Bombuscaro Bombuscaro		29.11 .2010 29.11 .2010	Hand-Coll.(N) Hand-Coll.(N)
${ }^{\text {BT }}{ }^{-0204}{ }^{\text {- Hispinae_sp_002 }}$	N19	KJ677856	Bombuscaro		29.11 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-0206-A l t i c i n a e-s p-} 085$	N24		ECSF	U1	01.12 .2010	Pitfall Trap
BT_O207_-Galerucinàe_sp_069	N25	KJ677778	ECSF		01.12 .2010	Hand-Coll.(N)

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr .	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_0208 Eumolpinae sp 019	N26	KJ677879	ECSF	L2	02.12 .2010	Hand-Coll. ( N )
BT-0209-Cassidinae_sp_005	N27	KJ677822	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{O}^{210} \mathrm{C}^{-}$Cassidinae- ${ }^{-} \mathrm{sp}^{-} 006$	N27		ECSF		02.12 .2010	Hand-Coll. (N)
BT-0211-Alticinae_ $\overline{\text { sp }}$ - 087	N27	KJ677495	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0212$-Galerucinae_-sp_066	N27	KJ677794	ECSF		02.12 .2010	Hand-Coll. (N)
	N27	KJ677733	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0214-Alticinae_sp_0 ${ }^{\text {- }}$ - ${ }^{\text {d }}$	N27	KJ677349	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0215^{-}$Alticinae-sp-028	N27		ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0216$-Eumolpinae_-sp_038	N27		ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0217$ - Eumolpinae-sp_038	N27		ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0218- Galerucinae_-sp_031	N27	KJ677751	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0219^{-}$Eumolpinae-sp ${ }^{-} 073$	N27	KJ677831	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{O220} \mathrm{O}^{-}$Alticinae $\mathrm{sp}_{-}{ }^{115}$	N27	KJ677288	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$O221-Eumolpinae_sp_010	N27	KJ677906	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0223-Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 034$	N27	KJ677689	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0224--Galerucinae-sp ${ }^{-}{ }^{-} \mathrm{O} 34$	N27		ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0227-Cassidinae_sp_014	N28	KJ677874	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0228{ }^{-}$Cassidinae-sp-007	N28	KJ677837	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-0229-}{ }^{\text {- Cassidinae-sp- }} 0007$	N28		ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0230-Eumolpinae_sp ${ }^{-}$- 022	N28		ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0231-$ Hispinae_sp_00]	N28	KJ677842	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0232{ }^{-}$Hispinae_sp-004	N28	KJ677272	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0233-$ Alticinae_sp_061	N28	KJ677282	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0234{ }^{-}$Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-097}$	N28	KJ677308	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0235{ }^{-}$Alticinae-sp-010	N28	KJ677728	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0236{ }^{-}$Alticinae-${ }_{\text {- }}{ }_{\text {- }}^{-} 156$	N28	KJ677727	ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0237^{-}$Alticinae-sp-156	N28		ECSF		02.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0239^{-}$Galerucinae_- ${ }^{\text {sp }}$ _002	N29	KJ677548	ECSF		03.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0240$ - Eumolpinae-sp-021	N29	KJ677898	ECSF		03.12 .2010	Hand-Coll. (N)
	N29 N29		ECSF		03.12 .2010 03.12 .2010	Hand-Coll.(N)
BT-0243-Alticinae_sp ${ }^{-1 \overline{1} 8}$	N29	KJ677666	ECSF		03.12.2010	Hand-Coll.( N )
BT-0244-Alticinae-sp-097	N29	KJ677309	ECSF		03.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0245$-Galerucinae_sp_034	N29	KJ677693	ECSF		03.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0246$ - Galerucinae-sp-030	N30	KJ677701	ECSF	Q3	03.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0247{ }^{-}$Criocerinae-sp-001	N31	KJ677813	ECSF		05.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0249^{-}$Criocerinae ${ }^{-} \mathrm{sp}^{-} 001$	N31	KJ677814	ECSF		05.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-}$0250-Alticinae ${ }^{\text {sp }}$ - $1 \overline{1} 5$	N31		ECSF		05.12.2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0251^{-}$Alticinae- ${ }^{-} \mathrm{sp}^{-115}$	N31		ECSF		05.12.2010	Hand-Coll. (N)
	N31	KJ677694	${ }_{\text {ECSF }}$		05.12.2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0254_{-}^{-}$Eumolpinae-sp_-023	N31	KJ677899	ECSF		05.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 02555^{-}$Eumolpinae-sp ${ }^{-} 023$	N31		ECSF		05.12 .2010	Hand-Coll. (N)
	N32	KJ677625	ECSF	Station	03.12 .2010	Light Trap
BT-0257-Galerucinae_-sp_001	N32	KJ677551	ECSF	Station	03.12 .2010	Light Trap
$\mathrm{BT}^{-} 0258$-Galerucinae ${ }^{-} \mathrm{sp}^{-} 005$	N32	KJ677546	$\underset{\text { ECSF }}{\text { ECS }}$	Station	03.12.2010	${ }_{\text {Light Trap }}$
BT-0259-Alticinae_sp_0 ${ }^{-}$-	N36	KJ677469	ECSF		08.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 02600^{-}$Eumolpinae - ${ }^{\text {sp }}$ - 038	N36		ECSF		08.12 .2010	Hand-Coll. (N)
$\mathrm{BT}^{-} 0261{ }^{-}$Eumolpinae-sp ${ }^{-} 038$	N36		ECSF		08.12.2010	Hand-Coll. (N)
BT-0266-Alticinae_sp ${ }^{145}$	N37		ECSF	Lichtung		Flight-Intercept.
${ }^{\text {BT- }}$-0267 ${ }^{-}$Alticinae-sp-029	N39	KJ677443	ECSF	Lichtung	08.12 .2010	Malaise Trap
${ }^{\text {BT }}{ }^{-0268-}{ }^{\text {- }}$ Alticinae $-\mathrm{sp}-158$	N39 N39	KJ677582	ECSF	Lichtung	08.12.2010	Malaise Trap
	N39	KJ677396	ECSF	Lichtung	08.12.2010	Malaise Trap
$\mathrm{BT}^{-} 0271$ - Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 064$	N39	KJ677447	ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0272^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 064$	N39		ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0273^{-}$Alticinae-sp-141	N39	KJ677585	ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0274{ }^{-}$Alticinae-sp-${ }_{-}^{-141}$	N39		ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-}$0275-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-141}$	N39		ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-}{ }^{\text {0276-Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-122}$	N39	KJ677777	ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-}{ }^{\text {0277 }}{ }^{-}$Alticinae-sp- ${ }^{-122}$	N39		ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0278 \mathrm{C}^{-}$Alticinae-sp-124	N39	KJ677491	ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0279^{-}$Alticinae-sp-115	N39	KJ677289	ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0280$ - Eumolpinae_-sp_022	N39		ECSF	Lichtung	08.12 .2010	Malaise Trap
BT-0281-Eumolpinae-sp_-038	N39		ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-0282}$ - Eumolpinae-sp-038	N39		ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0283{ }^{-}$Eumolpinae-sp ${ }^{-}{ }^{\text {- }} 020$	N39	KJ677941	ECSF	Lichtung	08.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 02844^{-A l t i c i n a e ~} \mathrm{sp} \overline{\mathrm{P}}^{087}$	N39	KJ677496	$\underset{\text { ECSF }}{\text { ECS }}$	Lichtung	08.12.2010	Malaise Trap
$\mathrm{BT}^{-} 02855^{-}$Galerucinae - ${ }^{\text {sp }}{ }^{\text {d }} 022$	N39	KJ677556	ECSF	Lichtung	08.12 .2010	Malaise Trap
BT-0286-Alticinae_sp_ō²	N41		ECSF			Hand-Coll. (N)
$\mathrm{BT}^{-} 0287$-Eumolpinae_-sp_038	N41		ECSF			Hand-Coll. (N)
$\mathrm{BT}^{-} 02888^{-}$Eumolpinae-sp_-017	N42	KJ677909	ECSF	Station	12.12 .2010	Light Trap
${ }_{\text {BT }}{ }^{-0289}{ }^{-}$Eumolpinae-sp-001	N42	KJ677925	$\underset{\text { ECSF }}{\text { ECSF }}$	Station	12.12.2010	${ }_{\text {Light }}$ Trap
	N42		${ }_{\text {ECSF }}$	Station Station	12.12 .2010	${ }_{\text {Light }}^{\text {Light Trap }}$
$\mathrm{BT}^{-} 02922_{-}^{-}$Galerucinae-${ }^{-}{ }^{-}{ }_{-}^{-} 076$	N42	KJ677557	ECSF	Station	12.12 .2010	Light Trap
$\mathrm{BT}^{-} 0293{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 076$	N42		ECSF	Station	12.12 .2010	Light Trap
BT-0294-Galerucinae-sp-076	N42		ECSF	Station	12.12 .2010	Light Trap
$\mathrm{BT}^{-} 0295{ }^{-}$Galerucinae-${ }^{\text {- }}{ }^{-}{ }^{-} 031$	N43	KJ677752	ECSF		12.12 .2010	Hand-Coll. ( N )
BT-0296-Alticinae_sp_ō5	N44	KJ677652	ECSF	Lichtung	12.12 .2010	Malaise Trap
$\mathrm{BT}^{-}$-0297-Alticinae-sp_-142	N44	KJ677593	ECSF	Lichtung	12.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0298{ }^{-}$Alticinae-sp-${ }^{\text {- }}$ - ${ }^{\text {d }}$	N44	KJ677342	ECSF	Lichtung	12.12 .2010	Malaise Trap
$\mathrm{BT}^{\text {- }}$-0299-Alticinae-sp_-064	N44		ECSF	Lichtung	12.12 .2010	Malaise Trap
${ }^{\text {BT- }}$-0300-Alticinae-sp ${ }^{-}{ }^{-} 064$	N44	KJ677334	$\underset{\text { ECSF }}{\text { ECSF }}$	Lichtung	12.12 .2010	Malaise Trap
	N44	KJ677398	ECSF	Lichtung	12.12 .2010	Malaise Trap
BT-0303-Alticinae-sp_-086	N44		ECSF	Lichtung	12.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0304{ }^{\text {- Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 086$	N44		ECSF	Lichtung	12.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0305_{-}^{-}$Alticinae_-sp_081	N44	KJ677765	ECSF	Lichtung	12.12 .2010	Malaise Trap
	N44	KJ677297	$\underset{\text { ECSF }}{\text { ECSF }}$	Lichtung	12.12.2010	Malaise Trap
BT $\mathrm{BT}^{-0307-}{ }^{\text {0308 }}-$ Alticinae $-\mathrm{sp}-115$ Altinae -sp 018	N44		ECSF	${ }_{\text {Lichtung }}$	12.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0309^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 256$	N44	KJ677301	ECSF	Lichtung	12.12 .2010	Malaise Trap
BT-0310-Eumolpinae_sp_017	N44		ECSF	Lichtung	12.12 .2010	Malaise Trap
BT-0311-Eumolpinae-sp_042	N44	KJ677863	ECSF	Lichtung	12.12 .2010	Malaise Trap
	N44	KJ677900		Lichtung		
BT-0313-Alticinae_sp ${ }^{\text {- }}$ - 22	N44		$\underset{\text { ECSF }}{\text { ECSF }}$	Lichtung	12.12 .2010	Malaise Trap
	N44 N 50	KJ677809	$\underset{\text { ECSF }}{\text { ECSF }}$	$\underset{\text { Li } 6}{\text { Lichtung }}$	12.12 .2010 14.12 .2010	Malaise Trap Malaise Trap
$\mathrm{BT}^{-0319}{ }^{-}$Galerucinae ${ }^{\text {sp }}$ - 026	N50		ECSF	L6	14.12 .2010	Malaise Trap
$\mathrm{BT}^{-} 0320-$ Galerucinae--sp ${ }^{-} 061$	N50		ECSF	L6	14.12 .2010	Malaise Trap
	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0323-E u m o l p i n a ̀ e}$ - ${ }^{\text {sp }}$ - 011	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0336^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 056$	S1	KJ677740	Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0337$ - Galerucinae-sp-056	S1	KJ677741	Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0338-G a l e r u c i n a e-s p-055}$	S1	KJ677742	Bombuscaro	L1	20.11 .2010	Sweep Netting
	S1	KJ677330	${ }^{\text {Bombuscaro }}$ Bombuscaro	L1	20.11 .2010 20.11 .2010	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {P341- }}$ Alticinae-sp-073	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
BT-0342-Galerucinae_-sp_051	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0343-G a l e r u c i n a e-s p-052 ~}$	S1	KJ677743	Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0344{ }^{-}$- Galerucinae-${ }^{-}{ }^{\text {sp }}{ }^{-} 052$	S1		Bombuscaro	L1	20.11.2010	Sweep Netting
$\mathrm{BT}^{-} \mathrm{O}^{345}{ }^{-}$Alticinae $\mathrm{sp}^{-} \mathrm{O51}$	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr.	Sampling Area	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	$\underset{\text { Date }}{\text { Sampling }}$	Sampling   Method
BT_0346_Alticinae_sp_051	S1	KJ677366	Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0347^{-}$Alticinae-sp-051	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0348}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 051$	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
${ }_{\text {BT }}{ }^{\text {BT }}{ }_{0350}^{0349}-{ }_{\text {Eumolpinae }}$ Eumolpinae $-\frac{\mathrm{sp}}{\text { sp }}-{ }_{045}^{020}$	S1	KJ677940	Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-}$-0351- ${ }^{\text {- }}$-umolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{\text {- }} 045$	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0352}$ - Alticinae_sp ${ }^{\text {d }} 130$	S1	KJ677771	Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0353^{-}$Alticinae-${ }_{-}^{-\mathrm{sp}_{-}^{-}} 132$	S1	KJ677732	Bombuscaro	L1	20.11.2010	Sweep Netting
$\mathrm{BT}^{-} 0354{ }^{-}$Alticinae-sp-125	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0355^{-}$Alticinae- ${ }^{-}{ }^{-125}$	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0356-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-128}$	S1	KJ677509	Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0357}{ }^{-}$Alticinae-sp-128	S1		Bombuscaro	L1	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0358^{-}$Alticinae-${ }_{-}^{-\mathrm{sp}_{-}^{-} 128}$	S1		Bombuscaro	L1	20.11.2010	Sweep Netting
	S1		Bombuscaro	L1	${ }_{20}^{20.11 .2010}$	Sweep Netting
	S2	KJ677381	Bombuscaro Bombuscaro	L1	$\begin{aligned} & 20.11 .2010 \\ & 20.11 .2010 \end{aligned}$	Beating Beating
BT-0363-Alticinae_sp-051	S2	KJ677373	Bombuscaro	L1	20.11 .2010	Beating
BT-0364-Eumolpinàe_sp_018	S2		Bombuscaro	L1	20.11 .2010	Beating
$\mathrm{BT}^{-} \mathbf{0 3 6 5}{ }^{-}$Galerucinae-${ }_{-} \mathrm{sp}_{-}^{-} 049$	S2	KJ677645	Bombuscaro	L1	20.11 .2010	Beating
$\mathrm{BT}^{-} 0366^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 049$	S2		Bombuscaro	L1	20.11 .2010	Beating
	S2		Bombuscaro	L1	20.11 .2010	Beating
$\mathrm{BT}^{-0369}{ }^{\text {- Galerucinae }}$ - ${ }^{\text {sp }}$ - ${ }^{\text {c49 }}$	S2		Bombuscaro	L1	20.11.2010	${ }^{\text {Beating }}$ Beating
$\mathrm{BT}^{-} 0370_{-}^{-}$Galerucinae_-sp-049	S2		Bombuscaro	L1	20.11.2010	Beating
$\mathrm{BT}^{-}$-0371_-Eumolpinae-${ }_{-}^{\text {sp }}{ }_{-}^{-} 006$	S3		Bombuscaro	L1	20.11.2010	Hand-Coll. (S)
BT-0372-Alticinae_spp_0 ${ }^{\text {- }} 9$	S3	KJ677723	Bombuscaro	L1	20.11.2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0373^{-}$Alticinae ${ }_{-} \mathrm{sp}{ }^{-} 009$	S3		Bombuscaro	L1	20.11.2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0374$-Alticinae-sp-024	S4	KR424908	Bombuscaro	U2	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-}$-0375-Eumolpinae_- ${ }^{\text {sp }}$ - 032	S4	KJ677904	Bombuscaro	U2	20.11 .2010	Sweep Netting
$\mathrm{BT}^{-0376-A l t i c i n a e ~ s p ~}{ }^{\text {c }} 051$	S4	KJ677367	Bombuscaro	U2	20.11 .2010	Sweep Netting
	S4	KJ677912	Bombuscaro Bombuscaro	U2	20.11 .2010 20.11 .2010	Sweep Netting
BT ${ }^{-} 0380$ - Eumolpinae- ${ }^{\text {- }}$	S5	KJ677918	Bombuscaro	U2	20.11 .2010	Beating
BT-0381_-Galerucinae_-sp_089	S5		Bombuscaro	U2	20.11 .2010	Beating
$\mathrm{BT}^{-} 0382^{-}$-Galerucinae ${ }_{-}^{-} \mathrm{sp}^{-} 013$	S6	KJ677537	Bombuscaro	U2	20.11.2010	Hand-Coll. (S)
BT-0383-Alticinae_sp-087	S7	KJ677501	ECSF	U1	22.11 .2010	Sweep Netting
$\mathrm{BT}^{-}$0384-Eumolpinae_- ${ }^{\text {sp }}$ - 039	S7	KJ677883	ECSF	U1	22.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0385$-Alticinae_sp ${ }^{\text {a }}$ - ${ }^{\text {ch4 }}$	S7		ECSF	U1	22.11 .2010	Sweep Netting
${ }_{\text {BT }}{ }^{\text {BT }}-0386-$ Alticinae $-\mathrm{sp}-064$	S7 S7	KJ677324	$\underset{\text { ECSF }}{\text { ECSF }}$	U1	22.11 .2010 22.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 03888^{-}$Alticinae_sp-104	S7		ECSF	U1	22.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0389^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-105}$	S7		ECSF	U1	22.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0390-$ Alticinae-sp-090	S7	KJ677453	ECSF	U1	22.11 .2010	Sweep Netting
BT-0391-Alticinae-sp-090	S7	KJ677454	ECSF	U1	22.11 .2010	Sweep Netting
BT-0392-Eumolpinae_-sp_074	S7	KJ677832	ECSF	U1	22.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0395$-Eumolpinae-sp-074	S7	KJ677833	ECSF	U1	22.11 .2010	Sweep Netting
$\mathrm{BT}^{-0396-C a s s i d i n a e ~}{ }^{\text {- }}$ - ${ }^{\text {O }} 04$	S8	KJ677851	ECSF	U1	22.11 .2010	Beating
BT-0397-Alticinae_ ${ }^{\text {sp }}$ - ${ }^{\text {P31 }}$	S8	KJ677654	ECSF	U1	22.11 .2010	Beating
	S9		ECSF	U1	22.11 .2010	Hand-Coll. (S)
	S10	KJ677437	Bombuscaro	U4	25.11 .2010	Sweep Netting
	S10		Bombuscaro	U4	${ }^{25.11 .2010}$	Sweep Netting
$\mathrm{BT}^{-} 0402{ }^{-}$Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 044$	S10	KJ677603	Bombuscaro	U4	25.11.2010	Sweep Netting
$\mathrm{BT}^{-} 0403{ }^{-}$Galerucinae_-sp-044	S10	KJ677604	Bombuscaro	U4	25.11.2010	Sweep Netting
$\mathrm{BT}^{-} 0404{ }^{-}$-Galerucinae-${ }_{-}^{\text {sp }}$-044	S10		Bombuscaro	U4	25.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0405^{-}$-Galerucinae-sp_045	S10	KJ677630	Bombuscaro	U4	25.11 .2010	Sweep Netting
BT-0406-Galerucinae_sp_045	S10		Bombuscaro	U4	25.11.2010	Sweep Netting
BT-0407-Galerucinae_sp_049	S10	KJ677642	Bombuscaro	U4	25.11.2010	Sweep Netting
$\mathrm{BT}^{-0408-E u m o l p i n a e-s p-024 ~}$	S10	KJ677913	Bombuscaro	U4	25.11 .2010	Sweep Netting
BT-0409-Eumolpinae sp ${ }^{\text {- }}$ - 24	S10	KJ677914	Bombuscaro	U4	25.11 .2010	Sweep Netting
	S10	KJ6677350	Bombuscaro Bombuscaro	U4	25.11 .2010 25.11 .2010	Sweep Netting
$\mathrm{BT}^{-}$0412-Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 058$	S10		Bombuscaro	U4	25.11.2010	Sweep Netting
$\mathrm{BT}^{-} 0413$-Alticinae-sp-058	S10		Bombuscaro	U4	25.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0414$-Alticinae_-sp-058	S10		Bombuscaro	U4	25.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0415{ }^{-}$Alticinae-sp_-242	S10	KJ677611	Bombuscaro	U4	25.11 .2010	Sweep Netting
BT-0416-Alticinae-sp-242	S10		Bombuscaro	U4	25.11 .2010	Sweep Netting
	S10	KJ677799	Bombuscaro	U4	25.11.2010	Sweep Netting
	S10		Bombuscaro Bombuscaro	U4	25.11 .2010 25.11 .2010	Sweep Netting Beating
$\mathrm{BT}^{-} 0420-$ Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-} 128}$	S11	KJ677506	Bombuscaro	U4	25.11.2010	Beating
$\mathrm{BT}^{-} 0421^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-073}$	S11		Bombuscaro	U4	25.11 .2010	Beating
$\mathrm{BT}^{-0422}$-Galerucināe_-sp_028	S11		Bombuscaro	U4	25.11 .2010	Beating
	S11	KJ677915	Bombuscaro	U4	25.11 .2010	Beating
$\mathrm{BT}^{-}$- 0425 - Eumolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{\text {- }} 007$	S12	KJ677876	Bombuscaro	U4	25.11 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-0426}$ - Alticinae sp ${ }^{\text {a }}$ - 150	S13	KJ677715	ECSF	U2	27.11.2010	Sweep Netting
${ }_{\text {BT }}{ }^{\text {BT }}{ }^{0428}$ - Alticinae - sp -104	S13 S13	KJ677317	${ }_{\text {ECSF }}^{\text {ECSF }}$	U2	27.11 .2010 27.11 .2010	Sweep Netting
BT-0429-Eumolpinae_-sp_039	S13	KJ677884	ECSF	U2	27.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0430{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{\text {- }}$-39	S13		ECSF	U2	27.11 .2010	Sweep Netting
BT-0431-Eumolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{\text {- }} 039$	S13		ECSF	U2	27.11.2010	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {O432}}$ - Eumolpinae $-\mathrm{sp}{ }^{-030}$	${ }_{\text {S13 }}$	KJ677902	ECSF	U2	27.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0433_{-}^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 069$	S14	KJ677780	ECSF	U2	27.11.2010	Beating
$\mathrm{BT}^{-} 0434{ }^{-}$Galerucinae ${ }_{-}^{-} \mathrm{sp}^{-} 072$	S14	KJ677805	ECSF	U2	27.11 .2010	Beating
BT-0436-Alticinae_sp_ 149	S16	KJ677708	Bombuscaro	L2	29.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0437{ }^{-}$Alticinae-sp ${ }^{-149}$	${ }_{S 16}$		Bombuscaro	L2	29.11 .2010	Sweep Netting
	S16 S16	KJ677747	Bombuscaro	L2	29.11.2010	Sweep Netting
	S16	KR424909	Bombuscaro Bombuscaro	$\mathrm{L}_{\mathrm{L} 2}$	29.11 .2010 29.11 .2010	Sweep Netting Sweep Netting
BT-0441-Galerucinae_sp_082	S16	KJ677687	Bombuscaro	L2	29.11 .2010	Sweep Netting
$\mathrm{BT}^{-}$-0442-Galerucinae - ${ }^{\text {sp }}$ - 042	${ }_{S 16}$	KJ677647	Bombuscaro	L2	29.11 .2010	Sweep Netting
	S17	KJ677368	Bombuscaro	L2	29.11.2010	Beating
BT BT $-0444-$ Alticinae - ${ }^{\text {sp }}-143$ Alticinae sp 153	S17 S17	KJ677574	Bombuscaro Bombuscaro	L2	29.11 .2010 29.11 .2010	Beating Beating
$\mathrm{BT}^{-} 0446^{-}$Alticinae-sp ${ }^{-153}$	S17		Bombuscaro	L2	29.11 .2010	Beating
$\mathrm{BT}^{-} 0447{ }^{-}$-Galerucinae_-sp_007	S17	KJ677541	Bombuscaro	L2	29.11.2010	Beating
	S17	KJ677648	Bombuscaro	L2	29.11 .2010	Beating
$\mathrm{BT}^{-}$-0449-Galerucinae-sp_049	S17	KJ677646	Bombuscaro	L2	29.11 .2010	Beating
$\mathrm{BT}^{-} 0451$-Galerucinae ${ }^{-} \mathrm{sp}^{-} 015$	S18	KJ677748	Bombuscaro	L2	29.11 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{\text {0452-Alticinae_sp }}$ - ${ }^{\text {- }}$ - 9	S18	KJ677722	Bombuscaro	L2	29.11.2010	Hand-Coll.(S)
BT-0453 ${ }^{\text {- }}$ Alticinae $-\mathrm{sp}-135$	S19 S19		Bombuscaro	L3	${ }_{29}^{29.11 .2010}$	Sweep Netting
	S19 S19	KJ677408	Bombuscaro Bombuscaro	L3	29.11 .2010 29.11 .2010	Sweep Netting Sweep Netting
BT ${ }^{-} 0456^{-}$Alticinae ${ }^{-}{ }^{\text {sp }}{ }^{-}{ }^{-026}$	S19		Bombuscaro	L3	29.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0457^{-}$Alticinae-sp-181	S19	KJ677279	Bombuscaro	L3	29.11 .2010	Sweep Netting
	S19 S19		Bombuscaro	L3	29.11 .2010 29.11 .2010	Sweep Netting
$\mathrm{BT}^{-0460}{ }^{-}$- Galerucinae ${ }^{\text {G }}$ - ${ }^{\text {sp }}$ - -045	S19	KJ677629	Bombuscaro	L3	29.11 .2010	Sweep Netting
$\mathrm{BT}^{-} 0461{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 045$	S19	KJ677628	Bombuscaro	L3	29.11.2010	Sweep Netting
$\mathrm{BT}^{-} 0462$ - Eumolpinae-_sp-042	S20	KJ677858	Bombuscaro	L3	29.11.2010	Beating
$\mathrm{BT}^{-} 0463-$ Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 070$	S20	KJ677803	Bombuscaro	L3	29.11 .2010	Beating
$\mathrm{BT}^{-}{ }^{\text {0464-Eumolpinae }}{ }^{-\mathrm{sp}}$ - 045	S20		Bombuscaro	L3	29.11 .2010	Beating
	S20 S20	KJ677382	Bombuscaro	L3	29.11 .2010	Beating Beating
${ }_{\mathrm{BT}}{ }^{\text {BT }}{ }_{0468}^{0467}-$ Eumolpinae ${ }^{\text {Alticinae }} \mathrm{sp} \mathrm{s}^{\text {sp }}{ }_{072}{ }^{018}$	-	KJ677620	Bombuscaro	L3	29.11.2010	Beating
						Beating

Table C. 1 - continued from previous page(s)

SpecimenID	Sample	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT 0469 Galerucinae sp _ 045	S20	KJ677631	Bombuscaro	L3	29.11 .2010	Beating
$\mathrm{BT}^{-} 0470^{-}$Galerucinae-sp-${ }^{-}{ }^{\text {- }}$ - ${ }^{\text {a }}$	S20		Bombuscaro	L3	29.11 .2010	Beating
$\mathrm{BT}^{-} 0471{ }^{-}$-Galerucinae-sp_-045	S20		Bombuscaro	L3	29.11.2010	Beating
$\mathrm{BT}^{-} \mathrm{OH72}^{-}$Galerucinae-sp-045	S20		Bombuscaro	L3	29.11.2010	Beating
$\mathrm{BT}^{-}$- $4733^{-}$-Galerucinae-sp ${ }^{-}$-069	S22	KJ677779	ECSF	U1	01.12 .2010	Sweep Netting
	${ }_{\text {S22 }}$	KJ677615	ECSF	U1	01.12 .2010 01.12 .2010	Sweep Netting
	S22		ECSF	U1	01.12 .2010	Sweep Netting
BT-0477-Alticinae_sp ${ }^{-1 \overline{0} 4}$	S22		ECSF	U1	01.12 .2010	Sweep Netting
$\mathrm{BT}^{-0478-}{ }^{-}$Alticinae-sp -104	S22		ECSF	U1	01.12 .2010	Sweep Netting
BT-0480-Hispinae_sp_005	S22		ECSF	U1	01.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0489$-Galerucinae_sp 067	S23	KJ677802	ECSF	U1	01.12 .2010	Beating
$\mathrm{BT}^{-} 0490^{-}$Hispinae $\mathrm{sp}^{-} 005$	S23	KJ677839	ECSF	U1	01.12 .2010	Beating
$\mathrm{BT}^{-} 0491$ - Alticinae-sp-157	S25	KJ677597	ECSF	L2	02.12 .2010	Sweep Netting
$\mathrm{BT}^{-0492-G a l e r u c i n a e}{ }^{\text {- }}$ - ${ }^{\text {sp }}$-061	S25	KJ677515	ECSF	L2	02.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0493-$ Eumolpinae-sp-037	S25		ECSF	L2	02.12 .2010	Sweep Netting
$\mathrm{BT}^{\text {- }}$-0494-Alticinae_sp ${ }^{\text {d }} 250$	S25	KJ677450	ECSF	L2	02.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0495^{-}$Alticinae $-\mathrm{sp}^{-148}$	S25		ECSF	L2	02.12 .2010	Sweep Netting
	S25 S25	KJ677782	$\underset{\text { ECSF }}{\text { ECSF }}$	L2	02.12 .2010 02.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0497_{-}^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 111$	S25		ECSF	L2	02.12 .2010	Sweep Netting
$\mathrm{BT}^{-} \mathrm{OH98}^{-}$Alticinae-${ }_{-}^{-\mathrm{sp}}{ }_{-113}$	S25		ECSF	L2	02.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0499^{-}$Alticinae-sp-044	S26	KJ677375	ECSF	L2	02.12 .2010	Beating
$\mathrm{BT}^{-0500-A l t i c i n a e-s p-044 ~}$	S26		ECSF	L2	02.12 .2010	Beating
BT-0501-Galerucinae_sp_066	S26	KJ677795	ECSF	L2	02.12 .2010	Beating
$\mathrm{BT}^{-0502}$ - Eumolpinae-sp-042	S26	KJ677864	ECSF	L2	02.12 .2010	Beating
BT-0503-Alticinae_sp ${ }^{1 T 1}$	${ }_{\text {S26 }}$	KJ677601	ECSF	L2	02.12 .2010	Beating
$\mathrm{BT}_{-}^{-} 0504{ }_{-}^{-}$Alticinae $-\mathrm{sp}_{-}^{-} 111$	S26		ECSF	L2	02.12 .2010	Beating
$\mathrm{BT}_{-}^{-} 0505_{-}^{-}$Alticinae ${ }_{-}^{\text {- } \mathrm{sp}_{-}^{-}} 096$	S27	KJ677470	ECSF	L2	02.12 .2010	Hand-Coll. (S)
$\mathrm{BT}_{-}^{-} 0506_{-}^{-}$Alticinae_-sp-092	S27	KJ677737	ECSF	L2	02.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0507_{-}^{-}$Alticinae ${ }_{-}^{\text {sp }}{ }_{-}^{-092}$	S27		ECSF	L2	02.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0508$-Galerucinae_- ${ }^{\text {sp }}$ - 053	S27	KJ677757	ECSF	L2	02.12 .2010	Hand-Coll. (S)
	S27		ECSF	L2	02.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0510^{-}$Cassidinae-sp-004	S27	KJ677852	ECSF	L2	02.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0511{ }^{-}$Cassidinae-sp-008	S27	KJ677821	ECSF	L2	02.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0512-$ Hispinae_sp $\overline{\mathrm{op}} 6$	S27	KJ677847	ECSF	L2	02.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-0513-}{ }^{-} \mathrm{Hispinae}-\mathrm{sp}-006$	S27		ECSF	L2	02.12 .2010	Hand-Coll. (S)
BT-0514-Eumolpinae_sp_074	S28	KJ677834	ECSF	U3	03.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0515{ }^{-}$Eumolpinae-sp ${ }^{-} 074$	S28		ECSF	U3	03.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0516^{-}$Alticinae_sp-126	S28	KJ677783	ECSF	U3	03.12 .2010	Sweep Netting
$\mathrm{BT}^{-0517-A l t i c i n a e-s p-104 ~}$	S28	KJ677325	ECSF	U3	03.12 .2010	Sweep Netting
	S28	KJ677388	ECSF	U3	03.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0519-$ Alticinae_-sp-068	S29	KJ677462	ECSF	U3	03.12 .2010	Beating
$\mathrm{BT}^{-} 0520-$ Alticinae ${ }_{-} \mathrm{sp}_{-}^{-159}$	S29	KJ677595	ECSF	U3	03.12 .2010	Beating
BT-0524-Eumolpinae -sp 039	S29	KJ677895	ECSF	U3	03.12.2010	Beating
$\mathrm{BT}^{-} 0525-$ Hispinae _sp_023	S29	KJ677844	ECSF	U3	03.12 .2010	Beating
BT-0526-Eumolpinae_sp_039	S30	KJ677886	ECSF	U3	03.12 .2010	Hand-Coll. (S)
BT-0527-Galerucinae-sp-036	S31	KJ677761	ECSF	L1	08.12 .2010	Sweep Netting
$\mathrm{BT}^{-0528-A l t i c i n a e}$-sp ${ }^{\text {- }} 150$	S31	KJ677714	ECSF	L1	08.12 .2010	Sweep Netting
$\mathrm{BT}^{-0529-A l t i c i n a e-s p-113 ~}$	S31	KJ677755	ECSF	L1	08.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0530$-Galerucinae_-sp_031	S32	KJ677750	ECSF	L1	08.12 .2010	Beating
$\mathrm{BT}^{-0531-G a l e r u c i n a e-s p-}{ }^{\text {- }}$ - 062	S32	KJ677758	ECSF	L1	08.12 .2010	Beating
	S32	KJ677800	ECSF	L1	08.12 .2010	Beating
BT-0533-Alticinae_sp ${ }^{\text {B }} 097$	S32	KJ677302	ECSF	L1	08.12 .2010	Beating
BT-0534-Alticinae_sp_111	S32		ECSF	L1	08.12 .2010	Beating
$\mathrm{BT}^{-} 0535{ }^{-}$Alticinae_sp_097	S33	KJ677310	ECSF	L1	08.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0536^{-}$Cassidinae ${ }^{\text {c }} \mathrm{sp} 003$	S33		ECSF	L1	08.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-0537}$ - Alticinae_ $\mathrm{sp}_{-} \mathrm{T}_{2} 2$	S34	KJ677591	ECSF	L3	08.12 .2010	Sweep Netting
$\mathrm{BT}^{-0538-}{ }^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 238$	S34	KJ677679	ECSF	L3	08.12 .2010	Sweep Netting
$\mathrm{BT}^{-0538 \mathrm{a}}$ - Alticinae ${ }^{\text {- }} \mathrm{sp}^{-} 238$	S34		ECSF	L3	08.12 .2010	Sweep Netting
$\mathrm{BT}^{-0539}$-Alticinae ${ }^{\text {sp }}$ - 013	S35	KJ677676	${ }_{\text {ECSF }}$	L3	08.12.2010	Beating
	S35	KJ677788	$\underset{\text { ECSF }}{\text { ECSF }}$	L3	08.12.2010	Beating
	S36		${ }_{\text {ECSF }}$	L3	08.12 .2010 08.12 .2010	$\xrightarrow{\text { Beating }}$ Hand-Coll.(S)
$\mathrm{BT}^{-}$-0544--Cassidinae-sp ${ }^{-}{ }^{-} 012$	S36	KJ677824	ECSF	L3	08.12 .2010	Hand-Coll. (S)
BT ${ }^{-} 0546{ }^{-}$Alticinae ${ }^{\text {- }}$ - ${ }^{\text {d }} 83$	S37	KJ677335	ECSF	L6	09.12 .2010	Sweep Netting
$\mathrm{BT}^{-0547}$-Alticinae-sp ${ }_{-}^{\text {- }} 096$	S37	KJ677471	ECSF	L6	09.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0548^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-112}$	S37		ECSF	L6	09.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0549$ - Alticinae-_sp ${ }^{-150}$	S37	KJ677716	ECSF	L6	09.12.2010	Sweep Netting
${ }^{\text {BT }}{ }^{-} 05500^{-}$Alticinae $-\mathrm{sp}^{-}{ }^{-125}$	S37	KJ677429	ECSF	${ }_{\text {L } 6}$	09.12.2010	Sweep Netting
	S38 S38	KJ677789	$\underset{\text { ECSF }}{\text { ECSF }}$	L6	09.12 .2010 09.12 .2010	Beating Beating
	S38	KJ677492	${ }_{\text {ECSF }}$	L6	09.12.2010	Beating Beating
$\mathrm{BT}^{-}{ }^{5554}$ - Galerucinae ${ }^{-} \mathrm{sp}$ - 071	S38	KJ677808	ECSF	L6	09.12.2010	Beating
BT-0555-Alticinae_sp ${ }^{\text {- }}$ - 086	S40	KJ677403	ECSF	L5	09.12 .2010	Sweep Netting
$\mathrm{BT}^{-0556-A l t i c i n a e-}{ }^{\text {sp }}$ - 096	S40	KJ677472	ECSF	L5	09.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0557_{-}^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 181$	S40	KJ677784	ECSF	L5	09.12 .2010	Sweep Netting
$\mathrm{BT}^{-0558-A l t i c i n a e-s p-149}$	S41	KJ677718	ECSF	L5	09.12 .2010	Beating
$\mathrm{BT}^{-0559-E u m o l p i n ̃ a e}$ - ${ }^{\text {sp }}$ - 042	S41	KJ677866	ECSF	L5	09.12 .2010	Beating
$\mathrm{BT}^{-} 05600^{-}$Galerucinae-sp_-064	S41	KJ677790	ECSF	L5	09.12 .2010	Beating
$\mathrm{BT}^{-} 0561$ - Galerucinae-sp ${ }^{-} 066$	S41	KJ677797	ECSF	L5	09.12 .2010	Beating
$\mathrm{BT}^{-} 0562{ }^{-}$Cassidinae_ $\overline{\mathrm{sp}}$ _ $\overline{0} 09$	S42		ECSF	L5	09.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 05633^{-}$Cassidinae_sp_009	S42		ECSF	L5	09.12.2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0564^{-}$Cassidinae ${ }^{-} \mathrm{sp}^{-} 009$	S42		ECSF	L5	09.12 .2010	Hand-Coll. (S)
BT-0565-Alticinae_sp ${ }^{\text {- }}$ - 50	S42	KJ677712	ECSF	L5	09.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-0566-}{ }^{-}$Hispinae-sp_-006	S42	KJ677848	ECSF	L5	09.12 .2010	Hand-Coll.(S)
$\mathrm{BT}^{-0567-}{ }^{\text {Alticinae }}$ - $\mathrm{sp}^{-} 104$	$\mathrm{S}_{\mathbf{S} 43}$	KJ677326	ECSF	U5	11.12.2010	Sweep Netting
${ }_{\text {BT }} \mathrm{BT}^{-0568-}{ }^{\text {- }}$ Alticinae $-\mathrm{sp}-118$	S43		$\underset{\text { ECSF }}{\mathrm{ECSF}}$	U5	11.12.2010	Sweep Netting
$\mathrm{BT}^{-}{ }_{0570}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}{ }_{118}$	S43		ECSF	U5	11.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0571-$ Alticinae ${ }_{-} \mathrm{sp}_{-}^{-118}$	S43		ECSF	U5	11.12 .2010	Sweep Netting
$\mathrm{BT}^{\text {BT }} 0572$ - Alticinae-sp-118	S43		ECSF	U5	11.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0573^{-}$Alticinae-sp_118	S43		ECSF	U5	11.12 .2010	Sweep Netting
	S44	KJ677887	ECSF	U5	11.12 .2010	Beating
	S45	KJ677570	$\underset{\text { ECSF }}{\text { ECSF }}$	U5	11.12 .2010 11.12 .2010	Hand-Coll.(S) Hand-Coll.(S)
BT ${ }^{-0577}{ }^{-}$Eumolpinàe ${ }^{\text {sp }}$ - 039	S46	KJ677888	ECSF	U4	11.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0578$ - Eumolpinae-sp-039	S46		ECSF	U4	11.12 .2010	Sweep Netting
BT-0579-Alticinae_sp ${ }^{1} \overline{0} 4$	S46	KJ677321	ECSF	U4	11.12 .2010	Sweep Netting
	S46		ECSF	U4	11.12 .2010 11.12 .2010	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {0582-Alticinae-sp-118 }}$	S46		ECSF	U4	11.12 .2010	Sweep Netting
$\mathrm{BT}^{\text {- }} 05883$-Alticinae- ${ }^{\text {sp }}$ - 118	S46		ECSF	U4	11.12 .2010	Sweep Netting
$\mathrm{BT}^{\text {B }}$-0584-Alticinae $-\mathrm{sp}-118$	${ }_{S} 46$		ECSF	U4	11.12 .2010	Sweep Netting
	S46		${ }_{\text {ECSF }}$	U4	11.12 .2010	Sweep Netting
	S46	KJ677583	$\underset{\mathrm{ECSF}}{\mathrm{ECSF}}$	U4	11.12 .2010 11.12 .2010	Sweep Netting Beating
	S47	KJ677781	ECSF	U4	11.12 .2010	Beating
BT-0589-Eumolpinae-sp-017	S47	KJ677910	ECSF	U4	11.12 .2010	Beating
$\mathrm{BT}^{-} 0590$-Alticinae_sp ${ }^{\text {d }} 1 \overline{40}$	S47	KJ677571	ECSF	U4	11.12 .2010	Beating
$\mathrm{BT}^{-0592-E u m o l p i n a e ~}{ }^{\text {a }}$ - ${ }^{\text {dp }} 039$	S47	KJ677889	ECSF	U4	11.12 .2010	Beating
	S47		ECSF	U4	11.12 .2010	Beating
	S488	KJ677663	ECSF	U4	11.12 .2010	Hand-Coll.(S)
					Continu	on next page(s)


SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_0596_Eumolpinae _sp 039	S49	KJ677890	ECSF	U6	14.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0597{ }^{-}$Alticinae sp${ }^{\text {c }} 104$	S49	KJ677322	ECSF	U6	14.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0598$-Alticinae_-sp-118	S49		ECSF	U6	14.12 .2010	Sweep Netting
BT-0599-Alticinae-sp-118	S49		ECSF	U6	14.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0600^{-}$Alticinae-${ }_{-}^{\text {sp }}$ - 118	S49		ECSF	U6	14.12 .2010	Sweep Netting
$\mathrm{BT}^{\mathrm{BT}} \mathrm{BT}^{0601}{ }^{-}$Alticinae- ${ }^{\text {dp }}{ }^{-118}$	S49		ECSF	U6	14.12 .2010	Sweep Netting
	S49		ECSF	U6	14.12 .2010 14.12 .2010	Sweep Netting Sweep Netting
	S49	KJ677840	ECSF	U6	14.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0605^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 087$	S50	KJ677498	ECSF	U6	14.12 .2010	Beating
BT-0606-Eumolpinae - ${ }^{\text {- }}$ - 039	S50	KJ677891	ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0607$-Alticinae_sp ${ }^{118}$	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0608_{-}^{-}$Alticinae_-sp-118	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0609^{-}$Alticinae- ${ }^{-}{ }^{-118}$	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0610-$ Alticinae-sp ${ }^{-118}$	${ }_{\text {S }} 50$		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0611^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-118}$	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0612-$ Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-} 118}$	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0613^{-}$Alticinae-sp-118	${ }_{\text {S }} 50$		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{\text {BT }} 0614-$ Alticinae $-\mathrm{sp}-118$	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{\mathrm{BT}} \mathrm{BT}^{\text {0615-Alticinae }}{ }^{-} \mathrm{sp}^{-} 118$	S50		ECSF	U6	14.12 .2010	Beating
	S50		$\underset{\text { ECSF }}{\text { ECSF }}$	U6	14.12 .2010 14.12 .2010	Beating Beating
$\mathrm{BT}^{-} 0618{ }^{-}$Alticinae-${ }_{-}^{\text {sp }}$ - 118	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-}$-0619-Alticinae_- ${ }^{-}{ }_{-}^{-} 118$	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0620-$ Alticinae_-sp_118	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-} 0621^{-}$Alticinae-sp-118	S50		ECSF	U6	14.12 .2010	Beating
$\mathrm{BT}^{-0622-A l t i c i n a e}-\mathrm{sp}-118$	S50 S50		$\underset{\text { ECSF }}{\text { ECSF }}$	U6	14.12 .2010	Beating
	S50 S50		$\underset{\text { ECSF }}{\text { ECSF }}$	U6	14.12 .2010 14.12 .2010	Beating Beating
$\mathrm{BT}^{-} 0625$ - Cassidinae - ${ }^{\text {sp }}$ - 003	S51		ECSF	U6	14.12 .2010	Hand-Coll. (S)
BT ${ }^{-} 0626^{-}$Alticinae_ ${ }^{\text {sp }}$ - 118	S51		ECSF	U6	14.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-} 0627_{-}^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-118}$	S51		ECSF	U6	14.12 .2010	Hand-Coll. (S)
	S52	KJ677825	ECSF	L4	14.12 .2010	Sweep Netting
BT-0629-Cassidinae-sp ${ }^{\text {- }} 012$	S52		ECSF	L4	14.12 .2010	Sweep Netting
BT-0630-Alticinae_sp_036	S52	KJ677610	ECSF	L4	14.12 .2010	Sweep Netting
BT-0631-Alticinae-sp-064	S52	KJ677451	ECSF	L4	14.12 .2010	Sweep Netting
BT-0632-Alticinae_sp_086	S52	KJ677392	ECSF	L4	14.12 .2010	Sweep Netting
BT-0633-Alticinae-sp-085	${ }_{\text {S }} 5$	KJ677404	ECSF	L4	14.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0634$ - Alticinae-sp-066	S52	KJ677473	ECSF	L4	14.12 .2010	Sweep Netting
BT-0635-Alticinae_sp_096	S52	KJ677474	ECSF	L4	14.12 .2010	Sweep Netting
$\mathrm{BT}^{-10636-A l t i c i n a e}{ }^{-} \mathrm{sp}{ }^{-} 096$	S52		ECSF	L4	14.12 .2010	Sweep Netting
${ }_{\text {BT }}^{\text {BT }}-0637$ - Alticinae- ${ }^{\text {sp }}$ - ${ }^{\text {sp }}$ - 0966	- ${ }_{\text {S52 }}$		${ }_{\text {ECSF }}$	$\mathrm{L} 44^{\text {L }}$	14.12 .2010 14.12 .2010	Sweep Netting
BT-0639-Alticinae_sp-096	S53		ECSF	L4	14.12 .2010	Beating
$\mathrm{BT}^{-} \mathrm{OCH0}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 018$	S53	KJ677425	ECSF	L4	14.12 .2010	Beating
$\mathrm{BT}^{-} 0641$ - Alticinae-sp-013	S53	KJ677674	ECSF	L4	14.12 .2010	Beating
$\mathrm{BT}^{-0642}$ - Eumolpinae- ${ }^{\text {sp }}$ - 042	S53	KJ677859	ECSF	L4	14.12 .2010	Beating
	S53		ECSF	L4	14.12 .2010	Beating
	S53 S54	KJ677796	ECSF	L 4	14.12 .2010 14.12 .2010	Beating Hand-Coll.(S)
BT-0646-Alticinae_sp_ $0 \overline{71}$	S54	KJ677379	ECSF	L4	14.12 .2010	Hand-Coll. (S)
BT-0647-Galerucinae - ${ }^{-}$p 035	S54	KJ677660	ECSF	L4	14.12 .2010	Hand-Coll. (S)
BT-0648-Alticinae_sp_ 140	S55	KJ677568	ECSF	U1	15.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0649^{-}$Alticinae ${ }_{-}^{\text {- }}{ }^{-}{ }^{-140}$	S55		ECSF	U1	15.12.2010	Sweep Netting
BT-0650-Eumolpinae-_sp_039	S55	KJ677892	ECSF	U1	15.12 .2010	Sweep Netting
$\mathrm{BT}^{-}$-0651- Eumolpinae- ${ }^{-} \mathrm{sp}^{-} 039$	S55		ECSF	U1	15.12.2010	Sweep Netting
BT-0652-Alticinae_sp ${ }^{\text {- }} 104$	S55	KJ677318	ECSF	U1	15.12 .2010	Sweep Netting
$\mathrm{BT}^{-} 0653-$ Alticinae-sp-104	S55		ECSF	U1	15.12.2010	Sweep Netting
${ }_{\text {BT }}{ }^{\text {PT }}$-0654-Alticinae - ${ }^{\text {sp }}$ - 104	S55		ECSF	U1	15.12 .2010	Sweep Netting
${ }_{\text {BT }}{ }^{\text {- }} 06656^{-}$- Alticinae - ${ }^{\text {sp }}$ - ${ }^{257}$	S56	${ }_{\text {KJ677351 }}$	${ }_{\text {ECSF }}$	U1	15.12 .2010	$\underset{\text { Sweep Netting }}{\text { Beating }}$
	S56		ECSF	U1	15.12.2010	Beating
BT-0657_Eumolpinae _s ${ }^{\text {¢ }}$ _ 039	S56	KJ677893	ECSF	U1	15.12.2010	Beating
$\mathrm{BT}^{-} 0658$ - Eumolpinae-sp-039	${ }_{\text {S }} 56$		ECSF	U1	15.12 .2010	Beating
$\mathrm{BT}^{-0659}$ - Eumolpinae ${ }^{\text {- }} \mathrm{sp}{ }^{-039}$	${ }^{\text {S }} 566$		ECSF	U1	15.12 .2010	Beating
${ }_{\text {BT }} \mathrm{BT}^{-0660-A l t i c i n a e ~-~}{ }^{\text {sp }}$ - ${ }^{\text {a }}$ - ${ }^{104}$	S56	KJ677327	$\underset{\text { ECSF }}{\text { ECSF }}$	U1	15.12 .2010 15.12 .2010	Beating Beating
$\mathrm{BT}^{-}{ }_{0662}{ }^{\text {- Alticinae }}{ }^{-} \mathrm{sp}{ }^{-} 126$	S56	KJ677313	ECSF	U1	15.12.2010	${ }^{\text {Beating }}$ Beating
$\mathrm{BT}^{-} 0663^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 150$	S56	KJ677713	ECSF	U1	15.12 .2010	Beating
BT ${ }^{-} 0664^{-}$Alticinae-sp ${ }^{-} 150$	S56	KJ677720	ECSF	U1	15.12.2010	Beating
$\mathrm{BT}^{-}$-0665-Alticinae-sp_- ${ }^{-} 50$	S56	KJ677717	ECSF	U1	15.12.2010	Beating
BT-0666-Alticinae-sp - 150	${ }_{\text {S }} 56$		ECSF	U1	15.12 .2010	Beating
BT-0667-Alticinae-sp-150	${ }_{\text {S }} 56$		ECSF	U1	15.12 .2010	Beating
BT- $0668{ }^{-}$Alticinae-sp_-150	S56		ECSF	U1	15.12.2010	Beating
BT-0669-Alticinae-sp_150	S56		ECSF	U1	15.12 .2010	Beating
$\mathrm{BT}^{-0670}$ - Alticinae ${ }^{\text {- }}$ sp- 150	S56		ECSF	U1	15.12 .2010	Beating
$\mathrm{BT}^{-}{ }_{0672}{ }^{\text {- Alticinae }}{ }^{\text {- }}$ sp -150	S56		ECSF	U1	15.12 .2010	${ }_{\text {Beating }}$
$\mathrm{BT}^{-} 0673^{-}$Alticinae-sp ${ }_{-}^{-150}$	S56		ECSF	U1	15.12.2010	Beating
$\mathrm{BT}^{-} 0674{ }^{-}$Alticinae-${ }_{-}^{-\mathrm{sp}_{-}^{-}} 150$	S56		ECSF	U1	15.12 .2010	Beating
$\mathrm{BT}^{-} 0675^{-}$Alticinae_-sp-008	S56	KJ677710	ECSF	U1	15.12.2010	Beating
$\mathrm{BT}^{-} 0676^{-}$Alticinae-sp_${ }^{-} 064$	S57	KJ677457	ECSF	U1	15.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{\text {0677 }}$ - Eumolpinae_-sp_039	S57	KJ677894	ECSF	U1	15.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-}$-0678-Eumolpinae-${ }^{-} \mathrm{sp}_{-}^{-} 044$	S57		ECSF	U1	15.12 .2010	Hand-Coll. (S)
$\mathrm{BT}^{-0679-E u m o l p i n a e-s p-001 ~}$	N60		ECSF	Station	21.03.2011	Light Trap
	N60 N60	KJ677560	ECSF	Station	21.03.2011	Light Trap
	N60		ECSF	Station	${ }_{21.03 .2011}^{21}$	$\xrightarrow[\text { Light }]{\text { Light }}$
$\mathrm{BT}^{-} 0683$-Alticinae_sp-115	N60	KJ677298	ECSF	Station	21.03 .2011	Light Trap
$\mathrm{BT}^{\text {BT }}$-0684-Alticinae-sp- 115	N60		ECSF	Station	21.03 .2011	Light Trap
$\mathrm{BT}^{-} 0685$ - Alticinae-sp-115	N60		ECSF	Station	21.03.2011	Light Trap
$\mathrm{BT}^{-} 0686^{-}$Eumolpinàe ${ }^{\text {sp }}{ }^{\text {d }} 023$	N61	KJ677901	ECSF		22.03 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0687^{-}$Alticinae sp ${ }^{\text {c }} 0 \overline{8} 7$	N61	KJ677499	ECSF		22.03.2011	Hand-Coll. (N)
${ }^{\text {BT }}$-0688 ${ }^{\text {- }}$ - Criocerinaee ${ }^{\text {sp }}$ - 001	N61	KJ677815	ECSF		22.03.2011	Hand-Coll. ( N )
$\mathrm{BT}^{-}$-0689-Criocerinae-sp ${ }^{-}{ }^{-} 001$	N61		ECSF		22.03.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0690-Alticinae_s $\mathrm{p}_{-} 1 \overline{2} 4$	N61	KJ677493	ECSF		22.03.2011	Hand-Coll. (N)
BT-0691-Galerucinae_-sp_031	N61	KJ677753	ECSF		22.03.2011	Hand-Coll.( N )
	N61	KJ677588	ECSF		22.03.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0693^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-} 014$	N61		ECSF		22.03.2011	Hand-Coll.(N)
BT-0694-Alticinae_sp_014	N61		ECSF		22.03.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0695-Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 014$	N61		ECSF		22.03.2011	Hand-Coll. (N)
	N61		ECSF		22.03.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0697_{-}^{-}$Alticinae_-sp-014	N61		ECSF		22.03.2011	Hand-Coll.(N)
BT-0698-Alticinae-sp-013	N62	KJ677675	ECSF		22.03 .2011	Light Trap
	N62	KJ677336	$\underset{\text { ECSF }}{\text { ECSF }}$		22.03 .2011 22.03 .2011	${ }_{\text {Light }}$ Trap
$\mathrm{BT}^{-} 0701^{-}$Alticinae-sp-083	N62		ECSF		22.03 .2011	Light Trap
$\mathrm{BT}^{-0705-G a l e r u c i n a e--\overline{s p}}$ - 008	N63	KJ677539	Bombuscaro		23.03 .2011	Light Trap
	N64		$\underset{\text { ECSF }}{\text { ECSF }}$		24.3.2011	Light Trap
	N65	KJ677791	${ }_{\text {ECSF }}$		24.03.2011	Light Trap
$\mathrm{BT}^{-} 0710^{-}$Alticinae sp ${ }^{-} 013$	N66	KJ677678	ECSF		25.03.2011	Light Trap
${ }_{\text {BT-0711-Galerucināe-sp_073 }}$	N67	KJ677785	Cajanuma		26.03.2011	Light Trap
$\mathrm{BT}^{-} 0712^{-}$Galerucinae-sp-073			Cajanuma		26.03.2011	Light Trap

Table C. 1 - continued from previous page(s)


Table C. 1 - continued from previous page(s)

SpecimenID	$\text { Sample }_{\text {ID }}$	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	$\begin{aligned} & \hline \begin{array}{l} \text { Site/ } \\ \text { Plot } \end{array} \end{aligned}$	$\underset{\text { Date }}{\text { Sampling }}$	Sampling   Method
BT_0835_Galerucinae_sp_029	N87	KJ677519	Bombuscaro		14.05.2011	Hand-Coll. (N)
BT ${ }^{-} 0836^{-}$Alticinae_sp-003	N87	KJ677703	Bombuscaro		14.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0837_{-}^{-}$Alticinae_-sp-009	N87	KJ677724	Bombuscaro		14.05.2011	Hand-Coll. (N)
BT-0838-Alticinae_-sp_059	N87		Bombuscaro		14.05.2011	Hand-Coll. (N)
BT-0839-Alticinae_-sp_040	N87	KJ677420	Bombuscaro		14.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0840-$ Alticinae_- ${ }^{-}{ }_{-}^{-140}$	N87	KJ677575	Bombuscaro		14.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0841-Alticinae-sp_${ }^{-} 127$	N87	KJ677277	Bombuscaro		14.05.2011	Hand-Coll. (N)
	N87		Bombuscaro		14.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0843-Alticinae-sp_-136	N87	KJ677659	Bombuscaro		14.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0844{ }^{-}$Alticinae-sp-138	N87		Bombuscaro		14.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{\text {0847 }}$ - Eumolpinae - ${ }^{\text {sp }}$ - 005	N89	KJ677933	ECSF	Lichtung	15.05.2011	Malaise Trap
$\mathrm{BT}^{-10848-A l t i c i n a e-s p}$ - 045	N89	KJ677419	${ }_{\text {ECSF }}^{\text {ECS }}$	Lichtung	15.05 .2011	Malaise Trap
${ }_{\text {BT }}{ }^{\text {BT }}$-0849-Alticinae $-\mathrm{sp}-045$	N89	KJ677607	${ }_{\text {ECSF }}$	${ }_{\text {Lichtung }}$	15.05.2011	Malaise Trap
$\mathrm{BT}^{-}$-0851-Alticinae_sp_-065	N89	KJ677476	ECSF	Lichtung	15.05.2011	Malaise Trap
$\mathrm{BT}^{-}$-0852-Alticinae-sp-133	N89	KJ677586	ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0853-Alticinae_sp_133	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0854-Alticinae-sp-133	N89		ECSF	Lichtung	15.05 .2011	Malaise Trap
BT-0855-Alticinae-sp-018	N89	KJ677426	ECSF	Lichtung	15.05.2011	Malaise Trap
$\mathrm{BT}^{-} 0856^{-}$Alticinae-sp-018	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0857-Alticinae-sp-018	N89		ECSF	Lichtung	15.05 .2011	Malaise Trap
$\mathrm{BT}^{-} 0858^{-}$Alticinae-sp-018	N89		ECSF	Lichtung	15.05 .2011	Malaise Trap
$\mathrm{BT}^{-}$-0859-Alticinae-sp_-018	N89		ECSF	Lichtung	${ }_{15} 5.05 .2011$	Malaise Trap
$\mathrm{BT}^{-} 0860-$ Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 018$	N89		ECSF	Lichtung	15.05 .2011	Malaise Trap
${ }^{\text {BT-0861- Eumolpinae }}$ - ${ }^{\text {sp }}$ - 020	N89	KJ677944	ECSF	Lichtung	15.05.2011	Malaise Trap
$\mathrm{BT}^{\text {BT- }} 0862$ - Alticinae ${ }^{\text {sp }}$ - 115	N89	KJ677293	$\underset{\text { ECSF }}{\text { ECSF }}$	Lichtung	15.05.2011	Malaise Trap
${ }_{\text {BT }}{ }^{\text {BT }}{ }_{0864}^{0863}$ - Alticinae ${ }^{\text {Altinae }}$ - ${ }_{\text {sp }}-{ }_{253}^{115}$	N89	KJ677306	ECSF	${ }_{\text {Lichtung }}$	15.05.2011	Malaise Trap
BT-0865-Alticinae_-sp_096	N89	KJ677477	ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0866-Alticinae_sp_096	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0867-Alticinae_sp_-096	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
$\mathrm{BT}^{\text {BT }} 08688^{-}$Alticinae-sp-122	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0869-Alticinae-sp_- 122	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
$\mathrm{BT}^{-}$0870-Alticinae_-sp_-122	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
$\mathrm{BT}^{-} 0871$ - Alticinae-sp-086	N89	KJ677391	ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0872-Alticinae_sp_086	N89		ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0873-Alticinae_sp_085	N89	KJ677397	ECSF	Lichtung	15.05.2011	Malaise Trap
BT-0877-Cassidinae _sp ${ }^{\text {- }}$ - 005	N90		ECSF		15.05.2011	Hand-Coll. (N)
BT-0879-Eumolpinaee_sp_ 043	N90		ECSF		15.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0880$-Criocerinae_sp_-001	N90		ECSF		15.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0892-Galerucinae-_ ${ }^{-}{ }^{-}{ }_{-}^{-} 035$	N90		ECSF		15.05.2011	Hand-Coll. (N)
BT-0893-Alticinae_sp_0 ${ }^{\text {- }}$	N90		ECSF		15.05.2011	Hand-Coll. (N)
BT-0895-Cassidinae ${ }^{\text {- }}$ s $\overline{\mathrm{p}}$ - 006	N91		ECSF		17.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0899^{-}$Chrysomelinae- ${ }^{-}$sp_001	N91		ECSF		17.05.2011	Hand-Coll. (N)
BT-_0900_Alticinae_sp_O33	N91		ECSF		17.05.2011	Hand-Coll. (N)
BT-0902-Alticinae_sp_062	N91		ECSF		17.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0903{ }^{-}$Alticinae-sp_-087	N91		ECSF		17.05.2011	Hand-Coll. (N)
BT-0904-Alticinae-sp-046	N91		ECSF		17.05 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0905-Galerucinae_-sp_060	N91		ECSF		17.05.2011	Hand-Coll. (N)
BT-0906-Galerucinae_sp_046	N91		ECSF		17.05.2011	Hand-Coll. (N)
BT-0907-Galerucinae_sp_046	N91		ECSF		17.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0908-Criocerinae-sp_-005	N91		ECSF		17.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-0909}{ }^{\text {- Criocerinae-sp }}$ - 001	N91		ECSF		17.05.2011	Hand-Coll. (N)
BT-0924-Cryptocephālināe sp_001	N91		ECSF		17.05.2011	Hand-Coll. ( N )
$\mathrm{BT}^{-}$-0925-Eumolpinae_sp_ $\overline{029}$	N91		ECSF		17.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0926^{-}$Lamprosomātināe sp_002	N91		ECSF		17.05.2011	Hand-Coll. ( ${ }^{\text {N }}$ )
$\mathrm{BT}^{-}$0930-Galerucinae_sp ${ }^{\text {- }}{ }^{46}$	N92		ECSF		18.05.2011	Hand-Coll. (N)
BT-0932-Alticinae_sp ${ }^{\text {- }}$-15	N92		ECSF		18.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$-0934-Alticinae_-sp_${ }^{-} 116$	N92		ECSF		18.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0935{ }^{-}$Alticinae-sp-082	N92		ECSF		18.05.2011	Hand-Coll. (N)
BT-0936-Eumolpinae_- ${ }^{\text {sp }}$ - 026	N92		ECSF		18.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0937$ - Alticinae sp ${ }^{\text {c }} 101$	N92		ECSF		18.05.2011	Hand-Coll. ( N )
$\mathrm{BT}^{-}$-0943-Galerucinae_-sp 033	N92		ECSF		18.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-1} 0949$-Cassidinae_sp_002	N93	KJ677871	Bombuscaro		20.05 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0950-$ Cassidinae-sp_010	N93	KJ677849	Bombuscaro		20.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-0951}{ }^{\text {- Cassidinae }}$ - ${ }^{\text {sp }}{ }^{-011}$	N93	KJ677872	Bombuscaro		20.05.2011	Hand-Coll. (N)
BT-0952-Alticinae_sp_ ${ }^{\text {- }} 69$	N93	KJ677331	Bombuscaro		20.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-0953}$-Galerucinae - ${ }^{\text {sp }}$-028	N93	KJ677434	Bombuscaro			
$\mathrm{BT}^{-}$-0954-Galerucinae_-sp_029	N93	KJ677520	Bombuscaro		20.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0955^{-}$Galerucinae ${ }^{-\mathrm{sp}}{ }^{-} 020$	N93	KJ677564	Bombuscaro		20.05 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0956^{-}$Alticinae_sp_0 ${ }^{\text {c }}$	N93		Bombuscaro		20.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-0957-G a l e r u c i n a e ~-~}{ }^{\text {sp }}$ - 036	N93	KJ677764	Bombuscaro		20.05.2011	Hand-Coll. (N)
BT-0958-Alticinae sp ${ }^{\text {- }}$ - 54	N93	KJ677376	Bombuscaro		20.05 .2011	Hand-Coll. (N)
BT-0959-Galerucinae_sp_052	N93	KJ677746	Bombuscaro		20.05.2011	Hand-Coll. (N)
BT-0960_-Galerucinae_sp ${ }^{-} 047$	N93	KJ677639	Bombuscaro		20.05 .2011	Hand-Coll. (N)
BT-0961-Alticinae_sp 0777	N93	KJ677489	Bombuscaro		20.05 .2011	Hand-Coll. (N)
BT-0962-Alticinae_sp_076	N93	KJ677343	Bombuscaro		20.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0963$-Eumolpinae $\overline{\text { sp }}{ }^{\text {c }} 033$	N93		Bombuscaro		20.05 .2011	Hand-Coll. (N)
$\mathrm{BT}^{\text {BT }} 09644^{-}$Alticinae sp ${ }^{\text {a }}$ - $0 \overline{30}$	N93	KJ677339	Bombuscaro		20.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-0965}$-Criocerinaee_sp_002	N93	KJ677812	Bombuscaro		20.05.2011	Hand-Coll. (N)
BT-0966_Criocerinae_sp_003	N93	KJ677274	Bombuscaro		20.05.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 0967{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 046$	N93	KJ677920	Bombuscaro		20.05.2011	Hand-Coll. (N)
BT-0968_Alticinae_sp_099	N93	KJ677440	Bombuscaro		20.05.2011	Hand-Coll. (N)
BT-0969-Alticinae-sp-099	N93		Bombuscaro		20.05.2011	Hand-Coll. (N)
	N93	KJ677341	Bombuscaro Bombuscaro		20.05.2011	Hand-Coll.(N)
$\mathrm{BT}^{-}$-0972-Alticinae_sp_-127	N93	KJ677276	Bombuscaro		20.05.2011	Hand-Coll. ( N )
BT-0973-Alticinae_sp_097	N93	KJ677285	Bombuscaro		20.05.2011	Hand-Coll.(N)
$\mathrm{BT}^{-0979-E u m o l p i n a e ~}{ }^{\text {a }}$ - ${ }^{\text {P }} 042$	N94		ECSF	Lichtung	23.05.2011	Malaise Trap
$\mathrm{BT}^{\text {BT }}$ 0980-Alticinae ${ }^{\text {sp }}$ - 0050	N94		ECSF	Lichtung	23.05 .2011	Malaise Trap
	N94		$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {Lichtung }}^{\text {Lichtung }}$	23.05 .2011	Malaise Trap
$\mathrm{BT}^{-}{ }_{0983}{ }^{\text {- Alticinae }}{ }^{\text {sp }}{ }^{\text {sp }}{ }_{052}$	N94		ECSF	Lichtung	${ }_{23.05 .2011}$	Malaise Trap
BT-1021-Galerucinae_-sp_027	N97		ECSF	L6	27.05.2011	Flight-Intercept.
$\mathrm{BT}^{-}{ }^{1025}{ }^{-}$Eumolpinae-${ }_{-}^{\text {sp }}$-038	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1026}{ }^{-}$Eumolpinae-${ }_{-}^{\text {sp }}$-038	N99		ECSF	L6	27.05.2011	Malaise Trap
	N99		$\underset{\text { ECSF }}{\text { ECSF }}$	L6	27.05.2011	Malaise Trap
	N99		ECSF	${ }_{\text {L6 }} 6$	27.05.2011	Malaise Trap
$\mathrm{BT}^{-}{ }_{1030}$ - Alticinae-sp- 240	N99	KJ677332	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-}{ }^{1031}{ }^{-}$Alticinae-sp-${ }^{-} 002$	N99	KJ677707	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1032}{ }^{-}$Alticinae-${ }^{\text {- }}$-_-002	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1033-A l t i c i n a e-s p-149}$	N99	KJ677719	ECSF	L6	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-}$1034-Alticinae-sp-${ }^{-}{ }^{-148}$	N99	KJ677377	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1035}$ - Alticinae-sp- ${ }^{\text {d }}$ - ${ }^{\text {d }}$	N99	KJ677721	ECSF	${ }_{\text {L6 }} 6$	27.05.2011	Malaise Trap
${ }_{\text {BT }}{ }^{1036}{ }^{1036}$ Alticinae $-\mathrm{sp}-062$	N99 N99	KJ677422	ECSF	L6 6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1038}{ }^{\text {- Alticinae_sp_}}{ }^{\text {- }} 065$	N99	KJ677478	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1039}{ }^{\text {- Alticinae-sp-}}{ }^{-} 065$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1040}$ - Alticinae-sp_-065	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1041}$ - Alticinae-sp_065	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1042}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{-065}$	N99		ECSF	L6	27.05.2011	Malaise Trap

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { SD }}{\text { Sample }}$	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_1043_Alticinae_sp_066	N99	KJ677479	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1044-}{ }^{\text {- Alticinae }}$ - $\mathrm{sp}_{-}^{-} 081$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1045-A l t i c i n a e-}{ }_{\text {- }}{ }^{\text {sp - }}$-086	N99		ECSF	L6	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-1046-A l t i c i n a e-s p-086}$	N99		ECSF	L6	$27.05 .2011$	Malaise Trap
	N99		$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {L6 }}$ 6	$\begin{aligned} & 27.05 .2011 \\ & 27.05 .2011 \end{aligned}$	Malaise Trap
$\mathrm{BT}^{-1049-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-} 086$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1050}{ }^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 086$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1051-A l t i c i n a e-s p-086}$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1052-A l t i c i n a e-s p-086}$	N99		ECSF	L6	27.05 .2011	Malaise Trap
	N99		$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {L6 }} 6$	27.05 .2011 27.05 .2011	Malaise Trap
BT- ${ }^{\text {- }} 0555^{-}$Alticinae $-\mathrm{sp}-085$	N99	KJ677393	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1056-}{ }^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 085$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1057}$ - Alticinae-sp-085	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1058-A l t i c i n a e-s p-085}$	N99		ECSF	L6	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-1059}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-} 081$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1060}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 085$	N99	KJ677399	ECSF	L6	${ }^{27.05 .2011}$	Malaise Trap
BT-1061-Galerucināe -sp_096	N99	KJ677684	ECSF	L6	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-1062}{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}-096$	N99		ECSF	L6	${ }^{27.05 .2011}$	Malaise Trap
	N99	KJ677592	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1065}$ - Alticinae-sp-020	N99	KJ677681	ECSF	${ }^{\text {L6 }} 6$	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-1066-}{ }^{\text {Alticinae-}}{ }^{-\mathrm{sp}_{-}^{-} 018}$	N99		ECSF	L6	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-1067}{ }^{-}$Alticinae- ${ }^{-}{ }^{-}{ }_{-}^{-018}$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1068-}{ }^{\text {- Alticinae- }}$ - ${ }^{-}{ }^{-} 018$	N99		ECSF	L6	${ }^{27.05 .2011}$	Malaise Trap
$\mathrm{BT}^{-1069-A l t i c i n a e-s p ~}{ }^{-123}$	N99		ECSF	L6	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-1070}$ - Alticinae-sp--097	N99	KJ677307	ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1071-}{ }^{\text {Alticinae-sp_096 }}$	N99	KJ677480	ECSF	L6	${ }^{27.05 .2011}$	Malaise Trap
$\mathrm{BT}^{-1072-A l t i c i n a e-}{ }^{-1}{ }^{-}{ }_{-}^{-096}$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1073-A l t i c i n a e-s p-096}$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1074-A l t i c i n a e-s p-096}$	N99		ECSF	L6	27.05 .2011	Malaise Trap
$\mathrm{BT}^{-1075}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 096$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1076-A l t i c i n a e-}{ }_{-}^{\text {- }}{ }_{-}^{-}{ }^{-096}$	N99		ECSF	L6	27.05.2011	Malaise Trap
$\mathrm{BT}^{-1079}$ - Alticinae ${ }^{-10} \mathrm{sp}^{-104}$	S58	KJ677328	ECSF	U1	07.05.2011	Sweep Netting
$\mathrm{BT}^{-1080}{ }^{-10}$ Eumolpinae - ${ }^{\text {sp }}$ - 074	S58	KJ677835	ECSF	U1	07.05.2011	Sweep Netting
	S59 S59	KJ677409	ECSF	U1	07.05.2011	Beating
	S61	KJ677481	${ }_{\text {ECSF }}$	L1	07.05.2011	Beating Sweep Netting
$\mathrm{BT}^{-1084}$ - Alticinae-sp-${ }^{\text {- }}$ - 096	S61		ECSF	L1	08.05.2011	Sweep Netting
$\mathrm{BT}^{-1085}{ }^{\text {- }}$ Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 061$	S61	KJ677283	ECSF	L1	08.05.2011	Sweep Netting
$\mathrm{BT}^{-1086}{ }^{-}$Alticinae-sp_-083	S61	KJ677337	ECSF	L1	08.05.2011	Sweep Netting
$\mathrm{BT}^{-1087}{ }^{-1}$ Alticinae-sp-109	S61	KJ677670	ECSF	L1	08.05.2011	Sweep Netting
BT-1088-Galerucināe_-sp_031	S61	KJ677754	ECSF	L1	08.05.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{1089}{ }^{-}$Galerucinae- ${ }^{-} \mathrm{sp}^{-} 031$	S61		ECSF	L1	08.05.2011	Sweep Netting
BT-1090-Alticinae_sp_ō19	S61	KJ677423	ECSF	L1	08.05.2011	Sweep Netting
$\mathrm{BT}^{-1091}{ }^{\text {- Cassidinae }}$-s $\overline{\mathrm{p}}^{\text {- }}$ - 012	S62	KJ677826	ECSF	L1	08.05.2011	Beating
$\mathrm{BT}^{-1092}{ }^{-}$Cassidinae- ${ }^{\text {- }}$ - ${ }^{-103}$	S62	KJ677854	ECSF	L1	08.05.2011	Beating
$\mathrm{BT}^{-1093}{ }^{\text {- Hispinae }} \mathrm{sp}^{\text {d }}$-007	${ }_{\text {S62 }}$	KJ677869	ECSF	L1	08.05.2011	Beating
$\mathrm{BT}^{-1094}{ }^{-}$Eumolpinae_-sp 038	S62	KJ677929	ECSF	L1	08.05.2011	Beating
$\mathrm{BT}^{-1095}$-Alticinae_sp ${ }^{\text {- }} 0 \overline{9} 6$	S62	KJ677464	ECSF	L1	08.05.2011	Beating
$\mathrm{BT}^{-1096}{ }^{-}$Galerucinàe_- ${ }^{\text {sp }}$ - 036	S62	KJ677762	ECSF	L1	08.05.2011	Beating
$\mathrm{BT}^{-}$1098-Alticinae_sp_ $0 \overline{97}$	S63	KJ677303	ECSF	L1	08.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}$1101-Alticinae-sp_-104	S64	KR424910	ECSF	U2	09.05.2011	Sweep Netting
$\mathrm{BT}^{-1104-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 140$	S68	KJ677569	ECSF	U3	10.05.2011	Beating
$\mathrm{BT}^{-1105-A l t i c i n a e-s p-}{ }^{-}{ }^{-} 74$	S68	KJ677680	ECSF	U3	10.05.2011	Beating
$\mathrm{BT}^{-1106}{ }^{-}$- Galerucinae - ${ }^{\text {sp }}$ - 064	S68	KJ677793	ECSF	U3	10.05.2011	Beating
	S70	KJ677672	ECSF	L5	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1108-}{ }^{-}$Alticinae-sp_-092	S70	KJ677738	ECSF	L5	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1109-A l t i c i n a e-s p-041 ~}$	S70	KJ677598	ECSF	L5	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1110}$-Galerucināe-_sp_046	S70	KJ677638	ECSF	L5	12.05 .2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{1111}{ }^{-}$Galerucinae- ${ }^{-} \mathrm{sp}^{-} 034$	S70		ECSF	L5	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1112}$ - Alticinae $\mathrm{sp}^{\text {P }}$ - 1112	S70	KJ677613	ECSF	L5	12.05 .2011	Sweep Netting
$\mathrm{BT}^{-1114-}{ }^{\text {Alticinae-}}{ }_{-}^{\text {sp }}{ }_{-}^{-041}$	S71	KJ677599	ECSF	L5	12.05.2011	Beating
$\mathrm{BT}^{-1116}{ }^{-}$Cassidinae ${ }^{\text {- }} \mathrm{s} \overline{\mathrm{p}}-006$	S72		ECSF	L5	12.05.2011	Hand-Coll. (S)
	S72	KJ677609	ECSF	L5	12.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1118-}{ }^{-}$Alticinae_-sp_123	S72	KJ677619	ECSF	L5	12.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1119-}{ }^{\text {- Alticinae-_sp_}}{ }^{-} 096$	S72	KJ677482	ECSF	L5	12.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1120-A l t i c i n a e-}{ }_{-}^{-} \mathrm{sp}_{-}^{-181}$	S72		ECSF	L5	12.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1121-A l t i c i n a e-s p-124 ~}$	S72	KJ677490	ECSF	L5	12.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{1122}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 265$	S72	KJ677430	ECSF	L5	12.05.2011	Hand-Coll.(S)
	S73	KJ677838	ECSF	L6	12.05 .2011	Sweep Netting
	S73 S73	KJ677734	$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {L6 }} 6$	12.05.2011	Sweep Netting
	S73 S73	KJ677843	ECSF	${ }_{\text {L6 }} 6$	12.05 .2011 12.05 .2011	Sweep Netting
	S73	KJ677280	ECSF	L6	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1129-A l t i c i n a e-s p-123 ~}$	S73	KJ677617	ECSF	L6	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1130-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 140$	S73	KR424911	ECSF	L6	12.05.2011	Sweep Netting
	S73	KJ677767	ECSF	L6	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1132-A l t i c i n a e-s p-086 ~}$	S73	KJ677400	ECSF	L6	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1133-A l t i c i n a e-s p-086 ~}$	S73		ECSF	L6		Sweep Netting
	S73 S73		$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {L } 66}$	12.05 .2011 12.05 .2011	Sweep Netting
	S73		ECSF	L6	12.05 .2011	Sweep Netting
$\mathrm{BT}^{-1137}{ }^{\text {- Alticinae-sp_- }}$ - ${ }^{\text {- }}$	S73		ECSF	L6	12.05.2011	Sweep Netting
	S73	KJ677394	ECSF	L6	12.05.2011	Sweep Netting
$\mathrm{BT}^{-1142}$-Alticinae-sp-096	S74	KJ677484	ECSF	L6	12.05 .2011	Beating
$\mathrm{BT}^{-1143-H i s p i n a e-s p-007}$	S74	KJ677870	ECSF	L6	12.05.2011	Beating
$\mathrm{BT}^{-} 1145$-Cassidinae_- ${ }^{-}$- ${ }^{\text {- }} 003$	S75	KJ677855	ECSF	L6	12.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{1146}{ }^{-}$Eumolpinae ${ }_{-} \mathrm{sp}^{\text {- }} 014$	S75	KJ677934	ECSF	L6	12.05.2011	Hand-Coll. (S)
	S75	KJ677355	$\underset{\text { ECSF }}{\text { ECS }}$	L6	12.05 .2011	Hand-Coll. (S)
${ }_{\text {BT }}{ }^{-1148}{ }^{11451}$ - Alticinae ${ }^{-}{ }^{\text {sp }}{ }^{-}{ }^{-096}$	S75 S76	KJ677485	$\underset{\text { ECSF }}{\text { Bombuscaro }}$	L6 ${ }^{\text {U }}$	12.05 .2011 14.05 .2011	Hand-Coll.(S)
$\mathrm{BT}^{-}{ }_{1152}$-Alticinae-sp-141	S79	KJ677773	Bombuscaro	L1	14.05 .2011	Sweep Netting
BT-1154-Alticinae ${ }^{\text {sp }}$ - ${ }^{\text {d }} 121$	S80	KR424912	Bombuscaro	L1	14.05 .2011	Beating
$\mathrm{BT}^{-1155}{ }^{-}$Alticinae-sp_-121	S80		Bombuscaro	L1	14.05.2011	Beating
$\mathrm{BT}^{-1157}{ }^{-11}$ Alticinae $-\mathrm{sp}{ }^{-149}$	S82	KJ677709	Bombuscaro	L2	14.05 .2011	Sweep Netting
$\mathrm{BT}^{-1158-A l t i c i n a e-s p-146 ~}$	S82	KJ677567	Bombuscaro	L2	14.05 .2011	Sweep Netting
$\mathrm{BT}^{-1160}$ - Alticinae_sp_- ${ }^{\text {- }}$ - ${ }^{\text {a }}$	S82	KJ677602	${ }^{\text {Bombuscaro }}$ Bombuscaro	L2	14.05.2011	Sweep Netting
$\mathrm{BT}^{-1161-}{ }^{-}$Alticinae-sp ${ }_{-}^{-143}$	S82	KJ677578	Bombuscaro	L2	14.05.2011	Sweep Netting
$\mathrm{BT}^{-1164-}{ }^{\text {Alticinae }}{ }_{-}^{-\mathrm{sp}_{-}^{-} 087}$	S85		ECSF	U4	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1165}$ - Alticinae-sp-061	S85	KJ677284	ECSF	U4	17.05 .2011	Sweep Netting
${ }_{\text {BT }}{ }^{-1166-}{ }^{-1167}$ - Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{140}$	S85	KJ677572	ECSF	U4	17.05.2011	Sweep Netting
	S85		$\underset{\text { ECSF }}{\text { ECSF }}$	U4	17.05 .2011 17.05 .2011	Sweep Netting
$\mathrm{BT}^{-1169}$ - Alticinae-sp-100	S85	KR424913	ECSF	U4	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1170-A l t i c i n a e-}{ }_{-}^{-\mathrm{sp}_{-}^{-} 105}$	S85	KJ677316	ECSF	U4	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1171-}{ }^{\text {Alticinae-}}{ }^{-}{ }^{-}{ }_{-} 085$	S85	KJ677386	ECSF	U4	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1175}{ }^{-}$Alticinae-sp_-087	S86	KJ677503	ECSF	U4	17.05.2011	Beating
$\mathrm{BT}^{-1176}{ }^{-}$Alticinae-sp-052	S86 S87	KJ677353	$\underset{\text { ECSF }}{\text { ECS }}$	U4	17.05 .2011	${ }_{\text {Beating }}^{\text {Bend }}$
${ }_{\text {BT }}^{\text {BT }}-1178$ - Alticinae - ${ }^{\text {sp }}$ - ${ }^{\text {a }}$ - 087	S87	KJ677504	$\underset{\text { ECSF }}{\text { ECSF }}$	U4	17.05 .2011 17.05 .2011	$\xrightarrow[\text { Hand-Colli.(S) }]{\text { Sweep Netting }}$
$\mathrm{BT}^{-1180}{ }^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 118$	S88		ECSF	U5	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1181-}{ }^{\text {- }}$ Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 118$	S88		ECSF	U5	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1182-}{ }^{\text {Alticinae }}{ }^{-} \mathrm{sp}^{-} 118$	S88		ECSF	U5	17.05.2011	Sweep Netting


SpecimenID	Sample	GenBank   Acc. Nr .	$\underset{\text { Area }}{\text { Sampling }}$	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	Sampling	Sampling   Method
BT_1183_Alticinae_sp_118	S88		ECSF	U5	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1184-A l t i c i n a e-}{ }^{\text {- }}{ }^{\text {dp }}-118$	S88		ECSF	U5	17.05.2011	Sweep Netting
BT-1185-Alticinae-sp - 118	S88		${ }_{\text {ECSF }}$	U5	17.05.2011	Sweep Netting
	S88		$\underset{\text { ECSF }}{\text { ECSF }}$	U5	$\begin{aligned} & 17.05 .2011 \\ & 17.05 .2011 \end{aligned}$	Sweep Netting Sweep Netting
$\mathrm{BT}^{-1188-A l t i c i n a e-s p-118}$	S88		ECSF	U5	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1189-A l t i c i n a e-}{ }_{\text {- }}{ }^{\text {dp }}$ - 1118	S88		ECSF	U5	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1190-A l t i c i n a e-}{ }_{-}^{-18}{ }_{-}^{-118}$	S88		ECSF	U5	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1191-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-118}$	S88		ECSF	U5	17.05.2011	Sweep Netting
$\mathrm{BT}^{-1192-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-118}$	S88		ECSF	U5	17.05 .2011	Sweep Netting
$\mathrm{BT}^{-1194-A l t i c i n a e-}{ }^{\text {- } \mathrm{sp}_{-}^{-1187}}$	S89	KJ677500	ECSF	U5	17.05.2011	Beating
$\mathrm{BT}^{-1195-A l t i c i n a e-}{ }^{-}{ }^{\text {sp }}$-087	S89		ECSF	U5	17.05 .2011	Beating
$\mathrm{BT}^{-1196-}{ }^{-}$Alticinae-${ }_{-}^{-\mathrm{sp}_{-}^{-}} 108$	S89	KJ677455	ECSF	U5	17.05.2011	Beating
$\mathrm{BT}^{-1197-}{ }^{\text {Alticinae }}$ - $\mathrm{sp}^{-104}$	S89 S89	KJJ677320	$\underset{\text { ECSF }}{\text { ECSF }}$	U5	17.05.2011	Beating
$\mathrm{BT}^{-1199-}{ }^{\text {- Alticinae }}$-sp_118	S90	KJ677661	ECSF	U5	17.05 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 1200{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 118$	S90		ECSF	U5	17.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1201-}{ }^{\text {- }}$ Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 118$	S90		ECSF	U5	17.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1202-}{ }^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 118$	S90		ECSF	U5	17.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1203-A l t i c i n a e-}{ }^{-1} \mathrm{sp}^{-} 118$	S90		ECSF	U5	17.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1204}{ }_{-}^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 111$	S90		ECSF	U5	17.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1205}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 052$	S91	KJ677357	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1206-A l t i c i n a e-}{ }^{-12}{ }^{-1}{ }^{-052}$	S91		ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1207}{ }^{-}$Alticinae-sp-052	S91		ECSF	L4	18.05 .2011	Sweep Netting
$\mathrm{BT}^{-1208}{ }^{\text {- }}$ - ${ }^{\text {dalerucinae }}$ - ${ }^{\text {sp }}$ - 046	S91	KJ677634	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1209}$ - ${ }^{\text {Galerucinae }}{ }^{-} \mathrm{sp}^{-} 046$	S91		$\underset{\text { ECSF }}{\text { ECSF }}$	L4	18.05 .2011	Sweep Netting
	S91 S91	KJ6777452	$\underset{\text { ECSF }}{\text { ECSF }}$	L4	18.05 .2011 18.05 .2011	Sweep Netting
$\mathrm{BT}^{-1212-A l t i c i n a e-s p-017 ~}$	S91	KJ677380	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1213-A l t i c i n a e ~}{ }^{-12}{ }^{\text {sp }}$ - 096	S91	KJ677486	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1214-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-104}$	S91	KJ677649	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1215-A l t i c i n a e-}{ }_{-}^{-} \mathrm{sp}_{-}^{-} 144$	S91	KJ677584	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1216-}{ }^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 049$	S91	KJ677606	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1217}{ }^{-}$Alticinae-sp-145	S91	KJ677579	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1219-A l t i c i n a e-s p-086}$	S91	KJ677406	ECSF	L4	18.05 .2011	Sweep Netting
BT- ${ }^{-1220}{ }^{-}$-Galerucinae-_sp_034	S91	KJ677696	ECSF	L4	18.05.2011	Sweep Netting
$\mathrm{BT}^{-1221-G a l e r u c i n a e ~}{ }_{-} \mathrm{sp}^{-}-034$	S91		ECSF	L4	18.05 .2011	Sweep Netting
$\mathrm{BT}^{-1222}$-Alticinae_sp ${ }^{\text {a }} 052$	S92	KJ677358	ECSF	L4	18.05 .2011	Beating
$\mathrm{BT}^{-1223-A l t i c i n a e-}{ }^{-1} \mathrm{sp}_{-}^{-} 028$	S92	KJ677348	ECSF	L4	18.05.2011	Beating
	S92	KJ677801	ECSF	L4	18.05.2011	Beating
$\mathrm{BT}^{-1225}$-Eumolpinae-sp-040	S92	KJ677867	ECSF	L4	18.05 .2011	Beating
$\mathrm{BT}^{-1226}{ }^{-}$Galerucinae-${ }_{-}^{\text {- }}{ }^{-}{ }_{-}^{-} 034$	S92	KJ677697	ECSF	L4	18.05.2011	Beating
$\mathrm{BT}^{-1227}{ }^{-}$-Galerucinae ${ }_{-}^{-} \mathrm{sp}^{-} 034$	S92		ECSF	L4	18.05.2011	Beating
$\mathrm{BT}^{-1228}{ }^{-12}$ Alticinae_sp $-0 \overline{96}$	S92	KJ677487	ECSF	L4	18.05 .2011	Beating
$\mathrm{BT}^{\text {B }} 1222$ - Alticinae-sp-096	S92		${ }_{\text {ECSF }}^{\text {ECS }}$	L4	18.05 .2011	Beating
$\mathrm{BT}_{-}^{-1230}{ }^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 115$	S92	KJ677295	ECSF	L4	18.05.2011	Beating
$\mathrm{BT}^{-1233-}{ }^{\text {- }}$ Alticinae-${ }_{-}^{-\mathrm{sp}_{-}^{-} 052}$	S93	KJ677356	ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1234-}{ }^{\text {- Alticinae_- }}{ }^{-}{ }_{-}^{-} 052$	S93		ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1235-}{ }^{\text {- Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 096$	S93	KJ677465	ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1236-}{ }^{-}$Alticinae_-sp_ 096	S93		ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{1237}{ }^{-}$-Galerucinae_-sp_034	S93		ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{1238}{ }^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 034$	S93		ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{1239}{ }^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 034$	S93		ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1240}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}_{-}^{-} 041$	S93	KJ677857	ECSF	L4	18.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1242}{ }^{-}$Lamprosomātināe_sp_003	S93		ECSF	L4	18.05.2011	Hand-Coll.(S)
$\mathrm{BT}^{-1244}$ - Alticinae_sp_118	S94		ECSF	U6	18.05 .2011	Sweep Netting
${ }^{\mathrm{BT}^{-}-1245} \mathrm{BT}^{-1248}$ - Alticinae $-\mathrm{sp}-085$	S94	KJ677389	$\underset{\text { ECSF }}{\text { ECSF }}$	U6	18.05.2011	Sweep Netting
${ }_{\text {BT }} \mathrm{BT}^{-1248}{ }^{1249}$ - Alticinae $-\mathrm{sp}-118$	S95	KJ677323	${ }_{\text {ECSF }}$	U6	18.05 .2011	Beating Beating
$\mathrm{BT}^{-1250}$ - Alticinae-sp-104	S95		ECSF	U6	18.05.2011	Beating
$\mathrm{BT}^{-1251}{ }^{\text {- }}$ Alticinae-${ }_{-} \mathrm{sp}_{-}^{-131}$	S95	KJ677656	ECSF	U6	18.05.2011	Beating
$\mathrm{BT}^{-1252}{ }^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-136}$	S95	KJ677401	ECSF	U6	18.05.2011	Beating
$\mathrm{BT}^{-1258}{ }^{\text {- }}$-Galerucināe_-sp_028	S97	KJ677438	Bombuscaro	U4	20.05.2011	Sweep Netting
$\mathrm{BT}^{-1259}{ }^{-}$-Galerucinae-${ }_{-} \mathrm{sp}_{-}^{-} 049$	S97	KJ677643	Bombuscaro	U4	20.05.2011	Sweep Netting
$\mathrm{BT}^{-1260}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-}-024$	S97	KJ677916	Bombuscaro	U4	20.05.2011	Sweep Netting
	S97	KR424914	Bombuscaro	U4	${ }^{20.05 .2011}$	Sweep Netting
$\mathrm{BT}^{-1262-A l t i c i n a e-}{ }^{-12}{ }^{-141}$	S97		Bombuscaro	U4	20.05 .2011	Sweep Netting
$\mathrm{BT}^{-1263-}{ }^{\text {- }}$ Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 051$	S97	KJ677369	Bombuscaro	U4	20.05.2011	Sweep Netting
$\mathrm{BT}^{-1264-A l t i c i n a e-s p-078 ~}$	S97	KJ677616	Bombuscaro	U4	20.05. 2011	Sweep Netting
$\mathrm{BT}^{\text {BT }} 1265$ - Alticinae- ${ }^{\text {sp }}$-093	S97		Bombuscaro	U4	20.05.2011	Sweep Netting
	S97 S98	KJ677510	Bombuscaro	U4	20.05 .2011	Sweep Netting
$\mathrm{BT}^{-1269}{ }^{\text {- Alticinae_sp_- }}$ - ${ }^{\text {- }}$	S99	KJ677725	Bombuscaro	U4	20.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 1270^{-}$Galerucinàe ${ }^{\text {sp }} \mathrm{p} 028$	S99	KJ677435	Bombuscaro	U4	20.05.2011	Hand-Coll. (S)
	S99	KJ677444	Bombuscaro	U4	20.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1272-A l t i c i n a e-s p-128 ~}$	S99	KJ677507	Bombuscaro	U4	20.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1273}{ }^{-}$-Galerucinae - ${ }^{\text {sp }}$ - 028	S100	KJ677436	Bombuscaro	U6	20.05.2011	Sweep Netting
	S100	KJJ677410	Bombuscaro	U6	20.05 .2011	Sweep Netting
	S100 S100	KJ677363	Bombuscaro Bombuscaro	U6	20.05 .2011 20.05 .2011	Sweep Netting
$\mathrm{BT}^{-1277}{ }^{\text {- }}$ - Alticinae-sp_-093	S100		Bombuscaro	U6	20.05 .2011	Sweep Netting
$\mathrm{BT}^{-1278-A l t i c i n a e-}{ }^{-12}{ }^{-143}$	S100	KJ677576	Bombuscaro	U6	20.05.2011	Sweep Netting
$\mathrm{BT}^{-1279-A l t i c i n a e-s p-125}$	S100		Bombuscaro	U6	20.05.2011	Sweep Netting
	S100 S100	KJ677461	Bombuscaro	U6	20.05 .2011	Sweep Netting
${ }_{\text {BT }}{ }^{\text {B }}{ }_{1282}^{1281}$-Galerucinae - ${ }^{\text {Galerucinae }}$-sp- ${ }^{\text {sp }}$ - ${ }_{052}$	S100	KJ677744	Bombuscaro	U6	20.05 .2011	Sweep Netting
$\mathrm{BT}^{-1283-G a l e r u c i n a e}-\mathrm{sp}-006$	S101	KJ677536	Bombuscaro	U6	20.05 .2011	Beating
$\mathrm{BT}^{-1284}$-Galerucinae-sp-063	S101	KJ677529	Bombuscaro	U6	20.05.2011	Beating
$\mathrm{BT}^{-1285}{ }^{-}$Galerucinae ${ }_{-}^{-} \mathrm{sp}^{-} 047$	S101	KR425305	Bombuscaro	U6	20.05.2011	Beating
	S101	KJ677441	Bombuscaro	U6	20.05 .2011	Beating
$\mathrm{BT}^{-1287}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 067$	S101	KJ677458	Bombuscaro	U6	20.05.2011	Beating
$\mathrm{BT}^{-1288-}{ }^{\text {- Alticinae-_sp-103 }}$	S101	KJ677364	Bombuscaro	U6	20.05.2011	Beating
$\mathrm{BT}^{-1289}{ }^{-12 l t i c i n a e}-\mathrm{sp}-102$	S101		Bombuscaro	U6	20.05 .2011	Beating
$\mathrm{BT}^{-1293-A l t i c i n a e-s p-050 ~}$	S101	KJ677383	Bombuscaro	U6	20.05.2011	Beating
	S101	KJJ677804	Bombuscaro	U6	20.05 .2011	Beating
BT- ${ }^{\text {BT }} 1295$-Alticinae_sp_057	S101	KJ677446	Bombuscaro	U6	20.05 .2011 20.05 .2011	Beating Beating
$\mathrm{BT}^{-1297}$ - Alticinae_-sp-057	S101		Bombuscaro	U6	20.05.2011	Beating
$\mathrm{BT}^{-1298-A l t i c i n a e-s p-057 ~}$	S101		Bombuscaro	U6	20.05 .2011	Beating
$\mathrm{BT}^{\mathrm{BT}}$ 1299-Alticinae-sp-057	S101		Bombuscaro	U6	20.05 .2011	Beating
$\mathrm{BT}^{-1300}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 057$	S101		Bombuscaro	U6	20.05.2011	Beating
	S101		Bombuscaro	U6	20.05 .2011	Beating
$\mathrm{BT}^{-1302-A l t i c i n a e-}{ }^{-130}{ }^{-} 057$	S101		Bombuscaro	U6	20.05.2011	Beating
	S101		Bombuscaro	U6	20.05 .2011	
	S102 S102	KJJ67641 KJ677359	Bombuscaro Bombuscaro	U6	20.05.2011 20.05 .2011	Hand-Coll.(S) Hand-Coll.(S)
$\mathrm{BT}^{-1306-}{ }^{\text {- Alticinae }}$-sp ${ }^{-125}$	S102		Bombuscaro	U6	20.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1307}{ }^{-}$Eumolpinae - ${ }^{\text {sp }}$ - 016	S102	KJ677938	Bombuscaro	U6	20.05.2011	Hand-Coll. (S)
BT-1308-Alticinae_sp ${ }^{\text {B/ }} 134$	$\mathrm{S}^{\text {S103 }}$	KJ677596	Bombuscaro	U5	20.05 .2011	Sweep Netting
$\mathrm{BT}^{-1309}{ }^{-}$Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-} 118$	S103		Bombuscaro	U5	20.05.2011	Sweep Netting
$\mathrm{BT}^{-1310}$ - Alticinae-sp ${ }^{\text {d }}$ - ${ }^{\text {d }}$	${ }_{S}{ }_{\text {S103 }}$	KJ677612	Bombuscaro	U5	20.05 .2011	Sweep Netting
	S103 S 103	KJJ677460 KJ677360	Bombuscaro Bombuscaro	U5	20.05 .2011 20.05 .2011	Sweep Netting
	S103	KJ677360	Bombuscaro	U5	20.05.2011	Sweep Netting
					Conti	on next page(s)

Table C. 1 - continued from previous page(s)

SpecimenID	Sample	GenBank   Acc. Nr .	$\underset{\text { Area }}{\text { Sampling }}$	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	$\underset{\text { Date }}{\text { Sampling }}$	Sampling   Method
BT_1314_Alticinae_sp_093	S103		Bombuscaro	U5	20.05.2011	Sweep Netting
$\mathrm{BT}^{-1315}$ - Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 093$	S103		Bombuscaro	U5	20.05.2011	Sweep Netting
$\mathrm{BT}^{-1318}$ - Eumolpinae - ${ }^{\text {sp }}$ - 024	S104	KJ677917	Bombuscaro	U5	20.05.2011	Beating
$\mathrm{BT}^{-1319-A l t i c i n a e ~ s p ~}{ }^{\text {- }} 051$	S104	KJ677370	Bombuscaro	U5	20.05 .2011	Beating
	S106 S106	KJ677517	ECSF   ECSF	${ }_{\text {L2 }}$	$23.05 .2011$	Sweep Netting
	S106 S106	KJ677424	$\underset{\text { ECSF }}{\text { ECSF }}$	$\mathrm{L}^{\mathrm{L} 2}$	23.05 .2011 23.05 .2011	Sweep Netting
$\mathrm{BT}^{-1324-A l t i c i n a e ~}{ }^{-13} \mathrm{sp}{ }^{-1} 092$	S106	KJ677739	ECSF	L2	23.05 .2011	Sweep Netting
$\mathrm{BT}^{-1325}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 019$	S107		ECSF	L2	23.05.2011	Beating
$\mathrm{BT}^{-1326}{ }^{-}$Eumolpināe ${ }^{\text {sp }}$ - 019	S108	KJ677880	ECSF	L2	${ }^{23.05 .2011}$	Hand-Coll. (S)
	S109 S109	KR424915	${ }_{\text {ECSF }}$	L1	23.05 .2011	Sweep Netting
$\mathrm{BT}^{-1329-}{ }^{\text {- }}$ Alticinae- ${ }^{\text {sp }}$ - 106	S109		ECSF	L1	${ }_{23.05 .2011}$	Sweep Netting
$\mathrm{BT}^{-1330}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-140}$	S110	KR424916	ECSF	L1	23.05.2011	Beating
$\mathrm{BT}^{-1331-}{ }^{-}$Cassidinae $-\mathrm{s} \overline{\mathrm{p}}$ - 004	S111	KR424783	ECSF	L1	23.05.2011	Hand-Coll.(S)
$\mathrm{BT}^{-} 1332{ }^{-}$Cassidinae ${ }^{-} \mathrm{sp}_{-}^{-} 004$	S111		ECSF	L1	23.05.2011	Hand-Coll. (S)
BT- ${ }^{\text {1334-Alticinae_sp_- }{ }^{\text {a }} 45}$	S112		Cajanuma	L6	24.05.2011	Sweep Netting
$\mathrm{BT}^{-1335-A l t i c i n a e-s p-118 ~}$	S112	KJ677662	Cajanuma	L6	24.05.2011	Sweep Netting
$\mathrm{BT}^{-1336-A l t i c i n a e-s p-244 ~}$	S112	KR424917	Cajanuma	L6	24.05 .2011	Sweep Netting
$\mathrm{BT}^{-1337}{ }^{-}$-Lamprosomatinae_sp_001	S112		Cajanuma	L6	24.05.2011	Sweep Netting
$\mathrm{BT}^{-1339-}{ }^{\text {Alticinae sp }}$ - $244^{-}$	S118	KR424918	Cajanuma	L4	24.05 .2011	Sweep Netting
$\mathrm{BT}^{-1340}$-Galerucinae - ${ }^{\text {sp }}$ - 066	S119	KJ677798	Cajanuma	L4	24.05 .2011	Beating
${ }_{\mathrm{BT}} \mathrm{BT}^{13447}{ }^{1349}$ - Alticinae_sp ${ }^{\text {Alticinae- }}$ sp $-0 \overline{92}$	${ }^{\text {S }} 123$	KJ677352	ECSF	L3	27.05.2011	Hand-Coll. (S)
$\mathrm{BT}^{-1350}{ }^{1349}$ - Alticinae-sp-_ ${ }^{\text {A }}$	S126	KJ677657	ECSF	U2	27.05.2011	Hand-Colli.(S)
$\mathrm{BT}_{-}^{-1756-}{ }^{-}$Alticinae_-sp_-014	N101		ECSF		01.06.2011	Hand-Coll. (N)
$\mathrm{BT}^{-1758-}{ }^{-}$Alticinae_-sp_014	N101		ECSF		01.06.2011	Hand-Coll. (N)
$\mathrm{BT}^{-1773}{ }^{\text {- Galerucinae }}$ - $\mathrm{sp}^{\text {P }} 030$	N102		ECSF		03.06.2011	Hand-Coll. (N)
BT-1775-Alticinae_sp_o ${ }^{\text {- }}$ - ${ }^{\text {a }}$	N102		ECSF		03.06.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{1776}{ }^{-}$Galerucinae_-sp_062	N102		ECSF		03.06.2011	Hand-Coll. (N)
BT-1784-_Lamprosomatinae_sp_001	N102		ECSF		03.06.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 1785^{-}$Chrysomelinae ${ }^{\text {sp }}$ - $0 \overline{0]}$	N102		ECSF		03.06. 2011	Hand-Coll. (N)
	N104		ECSF		09.06. 2011	Hand-Coll. (N)
	N104 N104		ECSF		09.06.2011 09.06 .2011	Hand-Coll.(N) Hand-Coll.(N)
BT-1809-Alticinae_sp_ooi -	N105		ECSF	L6	09.06.2011	Malaise Trap
$\mathrm{BT}^{-1810}{ }^{\text {- }}$ - ${ }^{\text {dumolpinae }}$ - ${ }^{\text {sp }}$-012	N105		ECSF	L6	09.06.2011	Malaise Trap
$\mathrm{BT}^{-1811-}{ }^{\text {- }}$ - ${ }^{\text {alerucinae }}{ }^{-} \mathrm{sp}^{-} 054$	N105		ECSF	L6	09.06.2011	Malaise Trap
BT-1812-Alticinae_sp ${ }^{\text {B }}$ - 002	N105		ECSF	L6	09.06.2011	Malaise Trap
$\mathrm{BT}^{-1813-A l t i c i n a e-s p-032}$	N105		ECSF	L6	09.06.2011	Malaise Trap
$\mathrm{BT}^{-1820-}{ }^{\text {Alticinae_-sp_}}{ }_{-142}$	N105		ECSF	L6	09.06.2011	Malaise Trap
$\mathrm{BT}^{-1821-}{ }^{\text {- }}$ Alticinae- ${ }^{-}{ }^{-}{ }_{-}^{-188}$	N105		ECSF	L6	09.06.2011	Malaise Trap
BT-1928-Galerucinàe_-sp_019	N109		ECSF		16.06.2011	Hand-Coll. ( N )
BT-1932-Eumolpinae_sp_042	N110		ECSF	Q2	16.06.2011	Malaise Trap
$\mathrm{BT}^{-1934}{ }^{\text {- Eumolpinae-}}{ }^{\text {- } \mathrm{sp}_{-}^{-} 014}$	N110		ECSF	Q2	16.06.2011	Malaise Trap
	N110		ECSF	Q2	16.06.2011	Malaise Trap
BT-1936-Alticinae_-sp_049	N110		ECSF	Q2	16.06.2011	Malaise Trap
$\mathrm{BT}^{-1954}{ }^{\text {- }}$ - ${ }^{\text {dalerucinae - }}$ - ${ }^{\text {p }} 041$	N113		ECSF		28.06.2011	Hand-Coll.(N)
BT- 1963-Alticinae_sp_o ${ }^{-17}$	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-1964}{ }^{\text {- Galerucinae-_sp_022 }}$	N115		ECSF	L6	05.07.2011	Malaise Trap
BT-1970-Eumolpinae-sp-007	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$1971- Eumolpinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 015$	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-1972}{ }^{-}$Eumolpinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 015$	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-1973}$ - Eumolpinae ${ }^{\text {- }} \mathrm{sp}-015$	N115		${ }_{\text {ECSF }}$	${ }^{\text {L6 }} 6$	05.07.2011	Malaise Trap
	N115		${ }_{\text {ECSF }}$	${ }_{\text {L } 6}$	05.07.2011	Malaise Trap
$\mathrm{BT}^{-1976}{ }^{-}$Galerucinae_-sp 102	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-1977}{ }^{-1}$ Alticinae_sp_007	N115		ECSF	L6	05.07.2011	Malaise Trap
BT-1978-Eumolpinàe_sp_040	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-1981}{ }^{\text {- }}$ - Galerucinae ${ }^{-} \mathrm{sp}^{-} 065$	N115		ECSF	L6	05.07.2011	Malaise Trap
BT- 1982-Alticinae_sp_o ${ }^{-12}$	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2050-$ Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 123$	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2054}{ }^{\text {- }}$ Alticinae-_sp_139	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$2055-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-145}$	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$2056-Alticinae-_sp_-141	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2059-A l t i c i n a e-s p-142 ~}$	N115		ECSF	L6	05.07.2011	Malaise Trap
${ }_{\text {BT }} \mathrm{BT}^{-2065-}{ }^{\text {a }}$ - Alticinae $-\mathrm{sp}-142$	N115		$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {L6 }} 6$	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}{ }_{2068}{ }^{\text {- Alticinae-ssp-142 }}$	N115		ECSF	L6	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} \mathrm{2073}^{-}$Alticinae ${ }^{-} \mathrm{sp}{ }^{-1} 022$	N116	KJ677340	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$2074-Galerucinae-_sp_034	N116	KJ677698	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2075}{ }^{\text {- Galerucinae }}$ - $\mathrm{sp}^{-034}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$2076-Alticinae_sp_ō̃	N116	KJ677706	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2077}{ }^{-}$-Galerucinae ${ }^{\text {a }}$ - $\mathrm{sp}^{\text {a }} 007$	N116	KJ677542	ECSF	Q2	05.07 .2011	Malaise Trap
$\mathrm{BT}^{-2078}$-Alticinae sp ${ }^{\text {c }} 265$	N116	KJ677431	ECSF	Q2	05.07.2011	Malaise Trap
BT-2079-Eumolpinae_sp_038	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2080}{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 065$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2081}$ - Eumolpinae ${ }^{\text {- }}$ - ${ }^{\text {- }}$-042	N116	KJ677860	${ }_{\text {ECSF }}$	Q2	05.07.2011	Malaise Trap
	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2084-A l t i c i n a e-s p-032 ~}$	N116	KJ677624	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}{ }^{\text {2085 }}$ - Eumolpinae_-sp_042	N116	KJ677861	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} \mathrm{2086}^{-}$Eumolpinae $-\mathrm{sp}^{-} 042$	N116		ECSF	Q2	05.07.2011	Malaise Trap
BT-2087-Alticinae_sp ${ }^{\text {- }}$ - 49	N116	KJ677608	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$2088-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 049$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2089}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 049$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2090}$ - Alticinae-sp-081	N116	KJ677766	${ }_{\text {ECSF }}$	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2092}{ }^{\text {- }}$ Alticinae ${ }^{\text {- }} \mathrm{sp}$ - ${ }^{\text {d }}$-81	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2093-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 096$	N116	KJ677466	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$2094-Alticinae-sp_-096	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2095-A l t i c i n a e-s p-096}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2096}{ }^{-}$Alticinae-sp-096	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2097}{ }^{-}$Alticinae ${ }^{-\mathrm{sp}}{ }^{-122}$	N116	KJ677685	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2098{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-122}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2099-A l t i c i n a e-s p-122 ~}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
${ }_{\text {BT }} \mathrm{BT}^{2100}$ - ${ }^{\text {d }}$ - Alticinae $-\mathrm{sp}-122$	N116 N116	KJ677402	$\underset{\text { ECSF }}{\text { ECSF }}$	Q2	05.07.2011 05.07.2011	Malaise Trap
$\mathrm{BT}^{-2102-A l t i c i n a e ~}{ }^{-} \mathrm{sp}{ }^{-}{ }^{-086}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2103-$ Alticinae-_sp-086	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}$2104-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 086$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2105-A l t i c i n a e-s p-086}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2106-}{ }^{\text {Alticinae }}$ - $\mathrm{sp}-086$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2107}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-085}$	N116	KJ677390	ECSF	Q2	05.07.2011	Malaise Trap
	N116		ECSF	Q2	05.07.2011	Malaise Trap
	N116	KJ677587	$\underset{\text { ECSF }}{\text { ECSF }}$	Q2	05.07 .2011 05.07 .2011	Malaise Trap
	N116		${ }_{\text {ECSF }}$	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 21122^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-133}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2113-A l t i c i n a e-}{ }_{\text {- }}{ }^{\text {d }}$ - 142	N116	KJ677594	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2114-A l t i c i n a e}-\mathrm{sp}-142$	N116		${ }_{\text {ECSF }}$	Q2	05.07.2011	Malaise Trap
${ }_{\text {BT }} \mathrm{BT}-{ }_{2116} 115$ - Alticinae-sp - sp -142	N116		${ }_{\text {ECSF }}$	Q2	05.07.2011 05.07 .2011	Malaise Trap
$\mathrm{BT}^{-} \mathrm{2117}_{-}^{-}$Alticinae-${ }_{\text {- }}{ }_{-}^{-} 142$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-}{ }^{2118}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{142}$	N116		ECSF	Q2	05.07.2011	Malaise Trap

Table C. 1 - continued from previous page(s)

SpecimenID	$\text { Sample }_{\text {ID }}$	GenBank   Acc. Nr .	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_2119_Eumolpinae_sp_016	N116	KJ677936	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2120^{-}$Eumolpinae-sp-${ }^{-}{ }^{\text {- }}$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2121$ - Eumolpinae-sp-016	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2122^{-}$Eumolpinae-sp-016	N116		ECSF	Q2	05.07.2011	Malaise Trap
BT-2123-Alticinae_sp_ols	N116	KJ677281	ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2124{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 018$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} \mathrm{2125}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 018$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-} 2126^{-}$Alticinae-sp-018	N116		ECSF	Q2	05.07 .2011	Malaise Trap
$\mathrm{BT}^{-} \mathrm{2127}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 018$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2128-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 018$	N116		ECSF	Q2	05.07 .2011	Malaise Trap
$\mathrm{BT}^{-2129-A l t i c i n a e-s p-018}$	N116		ECSF	Q2	05.07 .2011	Malaise Trap
$\mathrm{BT}^{-} 2130-$ Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 018$	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2131-A l t i c i n a e-}{ }_{\text {- }}{ }^{\text {d }}$-018	N116		ECSF	Q2	05.07 .2011	Malaise Trap
$\mathrm{BT}^{-2132-A l t i c i n a e-s p-018}$	N116		ECSF	Q2	05.07 .2011	Malaise Trap
$\mathrm{BT}^{\text {B }} 2133-$ Alticinae-sp-018	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2134-A l t i c i n a e}-\mathrm{sp}$-018	N116		ECSF	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{-2135-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-122}$	N116	KJ677686	ECSF	Q2	05.07 .2011	Malaise Trap
$\mathrm{BT}^{\text {B }} 2136-$ Alticinae - $\mathrm{sp}-110$	N116	KJ677673	${ }_{\text {ECSF }}$	Q2	05.07.2011	Malaise Trap
$\mathrm{BT}^{\text {BT }}$ 2137-Alticinae-sp ${ }^{\text {d }} 110$	N116		$\underset{\text { ECSF }}{\text { ECSF }}$	Q2	05.07.2011	Malaise Trap
${ }_{\text {BT }}{ }^{\text {BT }}{ }_{2143}^{2138}$ - Alticinae ${ }^{\text {Eumolpinae }}$ sp ${ }^{\text {sp }}{ }^{115} 042$	N116	KJ677294	${ }_{\text {ECSF }}$	L6	05.07.2011 05.07 .2011	Flight-Intercept.
$\mathrm{BT}^{-}$2152-Eumolpinae-sp_-038	N121	KJ677930	ECSF		14.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2153-${ }^{-}$Eumolpinae-sp_-038	N121		ECSF		14.07.2011	Hand-Coll. (N)
BT-2154-Galerucinae-sp-017	N121	KJ677554	ECSF		14.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{2155}^{-}$Alticinae_sp_115	N121	KJ677296	ECSF		14.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{2156}{ }^{-}$Cassidinae ${ }^{\text {- }}$ sp_012	N121	KJ677830	ECSF		14.07.2011	Hand-Coll. (N)
BT ${ }^{-}$2157 ${ }^{-}$Eumolpinae-sp ${ }^{\text {- }}$ - 024	N121	KJ677911	ECSF		14.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2158^{-}$Alticinae sp ${ }^{\text {c }} 0 \overline{8} 3$	N121	KJ677338	ECSF		14.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{2161}$ - Cassidinae -s $\mathrm{p}_{\text {- }}$ - 012	N122	KJ677827	ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{2162}^{-}$Cassidinae-sp-012	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{2163}^{-}$Cassidinae-sp-012	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{2164}^{-}$Cassidinae-sp-012	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{2165}{ }^{-}$Cassidinae-sp-012	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }_{2166}{ }^{-}$Cassidinae_sp-012	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{2167} 7^{-}$Cassidinae-${ }^{-} \mathrm{sp}_{-}^{-} 012$	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2168-Galerucinae ${ }^{\text {- }}$ - $\mathrm{p}_{\text {- }}$ - 036	N122	KJ677763	ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2169-- Galerucinae_sp_-033	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2170--Galerucinae-sp_-034	N122	KJ677699	ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-2171}{ }^{\text {-Galerucinae-sp_-034 }}$	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2172--Galerucinae_sp_-062	N122		ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2173 ${ }^{-}$Eumolpinae-sp-034	N122	KJ677882	ECSF		19.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{2176}^{-}$Galerucinae-sp_${ }_{-}^{-} 043$	N123	KJ677682	Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{2177}{ }^{-}$Galerucinae-sp-043	N123		Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2178- ${ }^{-}$Galerucinae- ${ }^{-} \mathrm{sp}^{-} 043$	N123		Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{2179}$-Alticinae_sp_ō 1	N123	KJ677726	Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2180-$ Alticinae_-sp_075	N123	KJ677621	Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2181-$ Alticinae_- ${ }^{-}{ }_{-}^{-} 251$	N123	KJ677508	Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2182$ - Galerucinae_sp_029	N123	KJ677521	Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{2183}{ }^{-}$-Galerucinae-sp-029	N123		Bombuscaro		${ }^{21.07 .2011}$	Hand-Coll. (N)
$\mathrm{BT}^{-2184-G a l e r u c i n a e-s p-029}$	N123		Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2185{ }^{-}$Galerucinae-sp-029	N123		Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2186$-Galerucinae_sp_029	N123		Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2187{ }^{-}$Galerucinae-sp-029	N123		Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2188$-Galerucinae-sp-029	N123		Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-2189}{ }^{-}$Hispinae _sp_008	N123	KJ677845	Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2190-{ }^{-}$Hispinae-sp_-022	N123		Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2191$-Criocerinae_sp_005	N123	KJ677820	Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$2192-Galerucinae_sp- 028	N123	KJ677433	Bombuscaro		21.07.2011	Hand-Coll. (N)
	N123	KJ677344	Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-2194-A l t i c i n a e}-\mathrm{sp}-127$	N123	KJ677275	Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2195^{-}$Alticinae- ${ }^{-}{ }^{-} 127$	N123		Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2196^{-}$Alticinae_-sp_127	N123	KJ677278	Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2197$ - Eumolpinae - ${ }^{\text {sp }}$ - 047	N123	KJ677919	Bombuscaro		21.07 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{2198}^{-}$Eumolpinae-sp-047	N123		Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2199^{-}$Eumolpinae-sp ${ }^{-} 035$	N123		Bombuscaro		21.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2^{203}$-Alticinae_sp ${ }^{\text {- }}$ - 16	N124		ECSF		26.07.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2208{ }^{-}$Alticinae-sp-112	N126	KJ677614	Bombuscaro		02.08.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 2218$ - Galerucinae_- ${ }^{\text {sp }}$ - 012	N128		ECSF	Q2	04.08.2011	Malaise Trap
$\mathrm{BT}^{-} 2219{ }^{-}$Eumolpinae-sp-042	N128		ECSF	Q2	04.08.2011	Malaise Trap
$\mathrm{BT}^{-2220-G a l e r u c i n a e-s p-007 ~}$	N128		ECSF	Q2	04.08.2011	Malaise Trap
${ }_{\text {BT }}^{\text {BT }}{ }_{2222}^{2221-G a l e r u c i n a e-s p-022 ~}$	N128		ECSF	Q2	O4.08.2011	Malaise Trap
$\mathrm{BT}^{-} 2229$ - Alticinae_sp ${ }^{\text {- }} 063$	N128		ECSF	Q2	04.08.2011	Malaise Trap
$\mathrm{BT}^{-2231-A l t i c i n a e-}{ }^{\text {- }}{ }^{\text {- }}$-087	N128		ECSF	Q2	04.08.2011	Malaise Trap
$\mathrm{BT}^{-} \mathrm{2232}^{-}$Alticinae-sp-087	N128		ECSF	Q2	04.08.2011	Malaise Trap
$\mathrm{BT}^{-2233-}{ }^{\text {Alticinae }}{ }^{-} \mathrm{sp}_{-}^{-} 087$	N128		ECSF	Q2	04.08 .2011	Malaise Trap
$\mathrm{BT}^{-} 2310^{-}$Cassidinae ${ }^{\text {s }} \mathrm{sp} 004$	N129 N129		ECSF	U1	04.08.2011	Malaise Trap
	N129 N129	KJ677413	$\underset{\text { ECSF }}{\text { ECSF }}$	U1	04.08.2011 04.08 .2011	Malaise Trap
$\mathrm{BT}^{-}$2313-${ }^{-}$Eumolpināe_sp_025	N129		ECSF	U1	04.08.2011	Malaise Trap
$\mathrm{BT}^{-}$2314-Eumolpinae-sp ${ }^{-} 030$	N129			U1	04.08.2011	Malaise Trap
$\mathrm{BT}^{-2317}$-Alticinae_sp ${ }^{\text {d }} 007$	N130		ECSF	L6	04.08.2011	Flight-Intercept.
	N134		ECSF		09.08.2011	Hand-Coll.(N)
$\mathrm{BT}^{-2383-G a l e r u c i n a e-s p ~}{ }^{\text {- }} 059$	${ }_{\text {S130 }} 131$		ECSF	L6	01.06.2011	Sweep Netting
$\mathrm{BT}^{-} 2399{ }^{-}$Alticinae_sp_0 ${ }^{\text {a }}$ -	S132		ECSF	L6	01.06.2011	Hand-Coll.(S)
	S133 S139	KJ677387	$\underset{\text { ECSF }}{\text { ECSF }}$	$\mathrm{L}_{\mathrm{U}} 4$	01.06.2011	Sweep Netting
$\mathrm{BT}^{-}{ }_{2492}{ }^{\text {- Alticinae-sp- }}$ - ${ }^{\text {d }}$	S139	KJ677329	ECSF	U4	03.06.2011	Sweep Netting
$\mathrm{BT}^{-} 2495{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 243$	S140	KJ677418	ECSF	U4	03.06.2011	Beating
$\mathrm{BT}^{-2496-A l t i c i n a e-s p ~}{ }^{-140}$	S140	KJ677573	ECSF	U4	03.06.2011	Beating
$\mathrm{BT}^{-2498}{ }^{-}$Alticinae-${ }_{\text {- }}{ }^{\text {d }}$ - 052	S141	KJ677354	ECSF	U4	03.06.2011	Hand-Colli.(S)
$\mathrm{BT}^{-2499-}{ }^{\text {- Alticinae }}$ - $\mathrm{sp}{ }^{-118}$	S143	KJ677668	Cajanuma	L2	07.06.2011	Beating
$\mathrm{BT}^{-} 2502-$ Alticinae $-\mathrm{sp}{ }_{-}^{-160}$	S151	KJ677362	ECSF	L4	14.06.2011	Sweep Netting
	${ }_{\text {S }}^{\text {S } 151}$	KJ677627	$\underset{\text { ECSF }}{\text { ECSF }}$	$\mathrm{L}_{\mathrm{L} 4}$	14.06.2011 14.06 .2011	Sweep Netting Sweep Netting
$\mathrm{BT}^{\text {- }}$ 2505-Galerucinae-sp-046	S151	KJ677635	ECSF	L4	14.06.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{2506}{ }^{-}$Alticinae_sp ${ }^{\text {d }} 047$	S152	KJ677735	ECSF	L4	14.06.2011	Beating
${ }_{\text {BT }}{ }^{-} 2507-$ Alticinae $-\mathrm{sp}^{-} 203$	${ }_{\text {S }} 152$	KR424919	$\underset{\text { ECSF }}{\text { ECSF }}$	L4	14.06.2011	Beating
$\mathrm{BT}^{-2508-G a l e r u c i n ̃ e e-s p-034}$	S152		ECSF	L4	14.06.2011	Beating
	S152 S 154		$\underset{\text { ECSF }}{\text { ECSF }}$	$\mathrm{L} 4_{\mathrm{L} 2}$	14.06.2011 16.06 .2011	Beating Sweep Netting
	${ }_{S} 154$		ECSF	L2	16.06.2011	Sweep Netting
$\mathrm{BT}^{-2516-G a l e r u c i n a e-s p ~}{ }^{\text {- }} 009$	S158	KJ677530	Bombuscaro	L1	21.06.2011	Beating
$\mathrm{BT}^{-}{ }^{2517}$ - Alticinae_sp_2010	S159	KJ677333	Bombuscaro	L1	21.06.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 2518-$ Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 070$	S159	KJ677511	Bombuscaro	L1	21.06.2011	Hand-Coll. (S)
$\mathrm{BT}^{-2519}$ - Alticinae-sp-153	S160	KJ677384	Bombuscaro	L2	21.06.2011	Sweep Netting
$\mathrm{BT}^{-2520}$ - Alticinae-sp-073	${ }_{\text {S1 }} 160$		Bombuscaro	L2	21.06.2011	Sweep Netting
	S161 S161	KJ677688	Bombuscaro Bombuscaro	L2	21.06 .2011 21.06 .2011	Beating Beating
$\mathrm{BT}^{-2523-A l t i c i n a e-s p-153 ~}$	S161	KJ677385	Bombuscaro	L2	21.06.2011	Beating
$\mathrm{BT}^{-} 2524{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 153$	S161		Bombuscaro	L2	21.06.2011	Beating
$\mathrm{BT}^{-} \mathrm{2525}^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-153}$	S161		Bombuscaro	L2	21.06.2011	Beating
$\mathrm{BT}^{-}$2526 $^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 153$			Bombuscaro	L2	21.06.2011	Beating

Table C. 1 - continued from previous page(s)

SpecimenID	Sample	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling   Method
BT_2528_Eumolpinae_sp_045	S162		Bombuscaro	L2	21.06 .2011	Hand-Coll.(S)
$\mathrm{BT}^{-}{ }^{2529}{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 055$	S163	KJ677745	Bombuscaro	L3	21.06.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{2531}$-Alticinae_sp-_008	S166	KR424920	ECSF	U1	23.06.2011	Sweep Netting
$\mathrm{BT}^{-} \mathrm{2544}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 097$	S178	KJ677312	ECSF	L3	28.06.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{2546}{ }^{-}$Cassidinae -sp _ 004	S180	KJ677853	ECSF	L3	28.06.2011	Hand-Coll.(S)
$\mathrm{BT}^{-} \mathrm{2547}^{-}$Cassidinae-sp_004	S180		ECSF	L3	28.06.2011	Hand-Coll.(S)
$\mathrm{BT}^{-} 2548^{-}$Cassidinae ${ }^{-} \mathrm{sp}^{-}-012$	S180	KJ677828	ECSF	L3	28.06.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{2549} \mathrm{C}^{\text {- Alticinae_sp }}$ - ${ }^{\text {sp }}$	S184		Cajanuma	U2	30.06.2011	Sweep Netting
$\mathrm{BT}^{-2550-A l t i c i n a e}-\mathrm{sp}-056$	S185	KJ677314	Cajanuma	U2	30.06.2011	Beating
$\mathrm{BT}^{-2551-}{ }^{\text {Alticinae }}$ - $\mathrm{sp}-246$	S185	KR424921	Cajanuma	U2	30.06 .2011 30.062011	Beating
	S185 S 187		${ }_{\text {Cajanuma }}^{\text {ECSF }}$	U2	30.06 .2011 07.07 .2011	Beating Sweep Netting
	S187 S 202	KJ677428	ECSF	U2	07.07.2011 14.07 .2011	Sweep Netting Sweep Netting
$\mathrm{BT}^{-2573}{ }^{-25}$-Cassidinae $-\mathrm{s} \overline{\mathrm{p}}_{-} 012$	S203	KJ677829	ECSF	L5	14.07.2011	Beating
	$\mathrm{S}^{\text {S203 }}$		${ }_{\text {ECSF }}$	L5	14.07 .2011	Beating
	S203	KJ677939 KJ677467	$\underset{\text { ECSF }}{\text { ECSF }}$	L5	14.07.2011	Beating
	S203	KJ677467	ECSF	L5	14.07 .2011 14.07 .2011	Beating Hand-Coll (S)
	S204	KJ677700 KJ677299	ECSF	${ }_{\text {L5 }} \mathrm{L} 5$	14.07 .2011 14.07 .2011	Hand-Coll.(S) Hand-Coll.(S)
$\mathrm{BT}^{-} 2594^{\text {- Galerucinae }}$ - ${ }^{\text {Sp }} 002$	S207		ECSF	L6	14.07.2011	Hand-Coll.(S)
$\mathrm{BT}^{-2600}$ - Alticinae_sp_008	S211	KR424922	ECSF	U5	19.07.2011	Sweep Netting
$\mathrm{BT}^{-} \mathrm{2601}^{-}$-Galerucinae_-sp 007	S212	KR425306	ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2602}$ - Alticinae_sp_085	S212	KR424923	ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{\text {- } 2603-E u m o l p i n a e ~}{ }^{\text {- }}$ - ${ }^{\text {d }}$ - 039	S212	KR424811	ECSF	U5	19.07 .2011	Beating
BT-2604-Alticinae_sp ${ }^{\text {- }} 106$	S212	KR424924	ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-}$2605-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-118}$	S212	KR424925	ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-}$2606 $_{-}$Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-} 118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-}$2607-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 118$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2608-}{ }^{\text {- Alticinae_-sp_}}{ }_{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} \mathrm{2609}^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 118$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} 2610-$ Alticinae ${ }_{\text {- }}{ }^{-}{ }_{-}^{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2611-A l t i c i n a e-s p-118 ~}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2612-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-} 118$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-}$2613-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 118$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} 2614{ }^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2615-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2616-}{ }^{\text {- }}$ Alticinae_-sp_-118	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} \mathrm{2617}_{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-}$2618-Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2619-}{ }^{\text {Alticinae }}$ - $\mathrm{sp}^{-118}$	${ }_{\text {S } 212}$		ECSF	U5	19.07.2011	Beating
	${ }_{\text {S212 }}$		${ }_{\text {ECSF }}$	U5	19.07.2011	Beating Beating
$\mathrm{BT}^{-} \mathrm{2622}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 118$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} \mathrm{2623}^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} 2624{ }^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-118}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} 2625^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 118$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-} 2626^{-}$Alticinae- ${ }^{-}{ }^{-}{ }_{-} 118$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2627}{ }^{-}$Alticinae-sp_-118	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-2628-}{ }^{\text {- Alticinae-sp_-118 }}$	S212		ECSF	U5	19.07.2011	Beating
$\mathrm{BT}^{-}{ }^{\text {2629-Eumolpinae_- }{ }^{\text {sp }} \text { - } 029}$	S215	KJ677903	ECSF	U6	19.07.2011	Beating
BT-2631-Alticinae_sp ${ }^{\text {- }} 1 \overline{35}$	S220	KJ677581	Bombuscaro	L6	21.07 .2011	Sweep Netting
$\mathrm{BT}^{-}$2632-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-143}$	S221	KJ677577	Bombuscaro	L6	21.07 .2011	Beating
$\mathrm{BT}^{-2634}{ }^{\text {- Alticinae-}}{ }^{-}{ }^{-}{ }_{-196}$	S223		Bombuscaro	L5	21.07 .2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{2637}$-Eumolpināe_- ${ }^{\text {sp }}$ - ${ }^{040}$	S226	KJ677868	ECSF	L2	26.07.2011	Sweep Netting
$\mathrm{BT}^{-} 2638{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}{ }^{-} 061$	${ }_{5} 226$	KJ677518	ECSF	L2	26.07.2011	Sweep Netting
${ }_{\text {BT }} \mathrm{BT}^{-2639}{ }_{2640}$ - Alticinae ${ }^{\text {Alticinae- }}$ sp $\mathrm{sp}-06104$	${ }_{\text {S }}{ }_{\text {S226 }}$	KR424926	ECSF	L2	26.07.2011 26.07.2011	Sweep Netting
BT ${ }^{2641}$ - Alticinae ${ }^{\text {sp }}$ - ${ }^{\text {d }}$-97	S226	KJ677304	ECSF	L2	26.07.2011	Sweep Netting
$\mathrm{BT}^{-2642}{ }^{\text {- Eumolpinae }}$ - ${ }^{\text {sp }} 019$	S227	KJ677881	ECSF	L2	26.07.2011	Sweepting
	S227	KJ677414	ECSF	L2	26.07.2011	Beating
	S227	KJ677816	ECSF	L2	26.07.2011	Beating
$\mathrm{BT}^{-} \mathrm{2645}^{-}$Eumolpinae-${ }^{-} \mathrm{sp}^{-} 038$	S227		ECSF	L2	26.07.2011	Beating
$\mathrm{BT}^{-} 2646^{-}$Alticinae_sp ${ }^{\text {- }} 0 \overline{96}$	S227	KJ677488	ECSF	L2	26.07.2011	Beating
$\mathrm{BT}^{-2657}{ }^{-}$Alticinae-sp-001	S232	KJ677704	ECSF	L1	26.07.2011	Sweep Netting
$\mathrm{BT}^{-2658}{ }^{-}$Alticinae-_sp_041	S232	KJ677600	ECSF	L1	26.07.2011	Sweep Netting
$\mathrm{BT}^{-2659}{ }^{-}$Alticinae-sp_086	S232	KJ677395	ECSF	L1	26.07.2011	Sweep Netting
$\mathrm{BT}^{-} 2660-$ Alticinae_-sp_-097	S232	KR424927	ECSF	L1	26.07.2011	Sweep Netting
$\mathrm{BT}^{-2661-}{ }^{\text {- }}$ Hispinae-sp_-009	S232	KJ677846	ECSF	L1	26.07.2011	Sweep Netting
$\mathrm{BT}^{-2662-A l t i c i n a e-s p-} 087$	S233	KJ677505	ECSF	L1	26.07.2011	Beating
$\mathrm{BT}^{-} 2663$ - Hispinae_sp_005	S233	KJ677841	ECSF	L1	26.07.2011	Beating
BT- $2664{ }^{-}$Cassidinae_- ${ }^{-1}$	S234		ECSF	L1	26.07.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 2665{ }^{-}$Criocerinae- ${ }^{-}{ }^{-} 004$	S234	KJ677819	ECSF	L1	26.07.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 2666{ }^{-}$Alticinae $\mathrm{sp}^{\text {P }} 0 \overline{0} 9$	S235	KJ677736	Cajanuma	L4	28.07 .2011	Sweep Netting
${ }^{\mathrm{BT}}$ - $26688^{\text {- Eumolpinae }}$ - ${ }^{\text {sp }}$ - 028	S236		Cajanuma	L4	28.07.2011	Beating
$\mathrm{BT}^{-} 2670$ - Alticinae sp ${ }^{\text {a }} 051$	S244	KJ677371	Bombuscaro	U1	02.08 .2011	Sweep Netting
$\mathrm{BT}^{-2671}{ }^{\text {- Galerucinae }}$ - ${ }^{\text {sp }} 072$	S247 S247	KJ677806	Bombuscaro	U2	02.08 .2011	Sweep Netting
	S247 S248	KJ677372 KJ677644	Bombuscaro Bombuscaro	U2	02.08 .2011 02.08 .2011	Sweep Netting Beating
$\mathrm{BT}^{-} 2675^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-}$-002	S253	KR425307	ECSF	L4	09.08 .2011	Sweep Netting
$\mathrm{BT}^{-} \mathrm{2676}^{-}$Galerucinae-${ }_{-}^{\text {sp }}$-046	S254	KR425308	ECSF	L4	09.08.2011	Beating
$\mathrm{BT}^{-2677}{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}-061$	S254	KR425309		L4	09.08.2011	Beating
	S254		$\underset{\text { ECSF }}{\text { ECSF }}$	L4	09.08 .2011	Beating
	S254	KR424928	${ }_{\text {ECSF }}$	L4	09.08.2011	Beating
	S255 S259	KR425411	${ }_{\text {ECSF }}^{\text {ECSF }}$	L4	09.08.2011 09.08 .2011	Hand-Coll.(S)
$\mathrm{BT}^{-2697}{ }^{-}$Alticinae-sp-053	S265	KJ677345	Cajanuma	U1	11.08.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {2698- }}$ - Eumolpinae ${ }^{\text {sp }}{ }^{\text {sp }} 071$	S266	KJ677908	Cajanuma	U1	11.08 .2011	Beating
$\mathrm{BT}^{-}$2699-Alticinae_sp $-0 \overline{60}$	S266	KR424929	Cajanuma	U1	11.08.2011	Beating
$\mathrm{BT}^{\text {B }}$ 2701-Alticinae- ${ }^{\text {sp }}$ - 056	S268		Cajanuma	L1	11.08 .2011	
${ }_{\text {BT }} \mathrm{BT}^{-2702-}{ }^{2703}-$ Alticinae $-\mathrm{sp}-056$	S268		Cajanuma	$\mathrm{L}_{\mathrm{L} 1}$	11.08 .2011 11.08 .2011	Sweep Netting Sweep Netting
	S268		Cajanuma	L1	11.08 .2011	Sweep Netting
$\mathrm{BT}^{-2705}{ }^{\text {- Alticinae }}{ }^{-\mathrm{sp}}$ - 094	S268	KJ677605	Cajanuma	L1	11.08 .2011	Sweep Netting
$\mathrm{BT}^{-2706-A l t i c i n a e-s p-120 ~}$	S268		Cajanuma	L1	11.08 .2011	Sweep Netting
$\mathrm{BT}^{-} 2707_{-}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 034$	S269	KJ677626	Cajanuma	L1	11.08.2011	Beating
$\mathrm{BT}^{-} 2708$ - Alticinae-sp_-224	S269	KR424930	Cajanuma	L1	11.08.2011	Beating
$\mathrm{BT}^{-2709-}{ }^{\text {BTispinae }-\mathrm{sp}}{ }^{-024}$	S269 S274		Cajanuma	L1	11.08.2011	$\underset{\text { Beating }}{\text { Bueep Netting }}$
	S274 S275	KR424931	ECSF	L1	16.08 .2011 16.08 .2011	$\underset{\text { Sweep Netting }}{\text { Beating }}$
$\mathrm{BT}^{-} 2719^{-}$Criocerinae ${ }^{\text {a }}$ - 001	S276	KR425412	ECSF	L1	16.08.2011	Hand-Coll. $(\mathrm{S})$
$\mathrm{BT}^{-2723}$ - Alticinae_sp ${ }^{2} \overline{2} 5$	S278	KR	ECSF	L2	16.08.2011	Beating
$\mathrm{BT}^{-} \mathrm{2F71}^{-}$-Galerucinae_-sp_100	S282		ECSF	L4	18.08.2011	Hand-Coll. (S)
${ }^{\text {BT }}{ }^{-2787}$-Galerucinae-sp-002	S285		ECSF	L5	18.08.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 2795$ - Galerucinae-sp-017	S286		ECSF	L6	18.08.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{2805}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}-006$	S292		Bombuscaro	U5	23.08.2011	Sweep Netting
$\mathrm{BT}^{-2806-A l t i c i n a e ~ s p ~}{ }^{\text {- }}$ - 050	S295	KR424933	Bombuscaro	U6	${ }_{2}^{23.08 .2011}$	Sweep Netting
	S295 S 296	KR424934	Bombuscaro Bombuscaro	U6	23.08.2011	Sweep Netting Beating
$\mathrm{BT}^{-} \mathrm{2810}^{-}$Galerucinae_- ${ }^{\text {sp }}$ - 072	S298	KR425310	ECSF	U1	25.08.2011	Sweep Netting
$\mathrm{BT}^{-}$2812-Alticinae_sp_104	S299	KR424936	ECSF	U1	25.08.2011	Beating
$\mathrm{BT}^{-2813-A l t i c i n a e-s p-}{ }_{-}^{-104}$	S299		ECSF	U1	25.08.2011	Beating
$\mathrm{BT}^{-2814-A l t i c i n a e}-\mathrm{sp}-104$	S299		ECSF	U1	25.08.2011	Beating
$\mathrm{BT}^{-} 2816^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-150}$	S301	KR424937	ECSF	U2	${ }^{25.08 .2011}$	Sweep Netting
$\mathrm{BT}^{-} 2817^{-}$Alticinae-sp-150	S301		ECSF	U2	25.08.2011	Sweep Netting
$\mathrm{BT}^{-2818}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 051$	S301	KR424938	ECSF	U2	25.08.2011	Sweep Netting

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_2819_Eumolpinae_sp_030	S302	KR424812	ECSF	U2	25.08.2011	Beating
$\mathrm{BT}^{-}{ }^{2820} \mathrm{BT}^{-}{ }^{\text {Eumolpinae }}$ - $\mathrm{sp}-030$	S302		${ }_{\text {ECSF }}$	U2	25.08 .2011	Beating
	S302	KR424813	ECSF	U2	25.08.2011	Beating
$\mathrm{BT}^{-} 28222^{-}$Galerucinae-${ }^{-} \mathrm{sp}^{-} 048$	S302	KR425311	ECSF	U2	25.08.2011	Beating
	S302	KR424939	ECSF	U2	25.08 .2011	Beating
$\mathrm{BT}^{-} 2824{ }^{-}$Alticinae-${ }_{-}^{\text {sp }}-129$	S302	KR424940	ECSF	U2	25.08.2011	Beating
BT-2825-Alticinae_-sp_126	S304	KR424941	ECSF	L3	25.08.2011	Sweep Netting
$\mathrm{BT}^{-} 2826^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 104$	S304	KR424942	ECSF	L3	25.08 .2011	Sweep Netting
BT-2827-Eumolpinàe_sp_067	S304	KR424814	ECSF	L3	25.08 .2011	Sweep Netting
$\mathrm{BT}^{-} \mathrm{2828}^{-}$Eumolpinae-${ }_{-} \mathrm{sp}_{-}^{-} 029$	S304		ECSF	L3	25.08 .2011	Sweep Netting
$\mathrm{BT}^{-2829}$ - Eumolpinae-sp-030	S305	KR424815	ECSF	L3	25.08 .2011	Beating
$\mathrm{BT}^{-} 2830$-Alticinae_sp ${ }^{\text {- }} 051$	S305	KR424943	ECSF	L3	25.08.2011	Beating
$\mathrm{BT}^{-2831}{ }^{\text {- }}$ - Cassidinae ${ }^{\text {s }} \mathrm{s} \overline{\mathrm{p}}^{\text {d }} 015$	S307	KR424784	Bombuscaro	L1	30.08 .2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{2832}{ }^{-}$Alticinae_ $\overline{\mathrm{sp}}$ - ${ }^{\text {O72 }}$	S311	KR424944	Bombuscaro	L2	30.08 .2011	Beating
$\mathrm{BT}^{-2833}{ }^{\text {- Alticinae-_sp-104 }}$	S313	KR424945	Bombuscaro	L3	30.08 .2011	Sweep Netting
$\mathrm{BT}^{-}$2834-Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-118}$	S316	KR424946	ECSF	U4	01.09.2011	Sweep Netting
$\mathrm{BT}^{-} 2835^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-118}$	S316		ECSF	U4	01.09 .2011	Sweep Netting
$\mathrm{BT}^{-} 2837_{-}^{-}$Alticinae-sp-118	S317		ECSF	U4	01.09.2011	Beating
$\mathrm{BT}^{-2838}$ - Alticinae-sp 118	S317		ECSF	U4	01.09.2011	Beating
$\mathrm{BT}^{-}{ }^{2839}{ }^{\text {- Eumolpinae }}$ - ${ }^{\text {sp }}$ - 066	S317	KR424816	$\underset{\text { ECSF }}{\text { ECSF }}$	U4	01.09 .2011	Beating
	S317 S317	KR425312	$\underset{\text { ECSF }}{\text { ECSF }}$	U4	01.09 .2011 01.09 .2011	Beating Beating
$\mathrm{BT}^{-2842}$-Galerucinae-sp-098	S317	KR425313	ECSF	U4	01.09.2011	Beating
$\mathrm{BT}^{-2843-}{ }^{\text {- }}$ Hispinae_sp-005	S317		ECSF	U4	01.09.2011	Beating
$\mathrm{BT}^{-} 2844$-Alticinae_-sp_-126	S319	KR424947	ECSF	U5	01.09.2011	Sweep Netting
$\mathrm{BT}^{-} 2845{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-118}$	S319		ECSF	U5	01.09.2011	Sweep Netting
$\mathrm{BT}^{-2846-A l t i c i n a e-}{ }_{\text {- }}{ }^{\text {- }}$ - 152	S319	KR424948	ECSF	U5	01.09 .2011	Sweep Netting
$\mathrm{BT}^{-2847}{ }^{-}$Alticinae-sp-152	S319		ECSF	U5	01.09.2011	Sweep Netting
BT-2848-Alticinae_sp_118	S320		ECSF	U5	01.09.2011	Beating
$\mathrm{BT}^{-} 2849$ - Alticinae-sp-118	S320		ECSF	U5	01.09.2011	Beating
$\mathrm{BT}^{\text {- } 2850-A l t i c i n a e-}{ }^{\text {sp }}$ - 118	S320	KR424949	ECSF	U5	01.09 .2011	Beating
$\mathrm{BT}^{-2851}$-Alticinae-sp-118	S320		ECSF	U5	01.09 .2011	Beating
$\mathrm{BT}^{\text {BT }} 2852$ - Alticinae- ${ }^{\text {sp }}{ }^{-1052}$	S320	KR424950	$\underset{\text { ECSF }}{\text { ECS }}$	U5	01.09.2011	Beating
$\mathrm{BT}^{-2853-A l t i c i n a e-s p ~}{ }^{-} \mathbf{0 5 2}$	S320		ECSF	U5	01.09.2011	Beating
$\mathrm{BT}^{-2854-E u m o l p i n a ̀ e-s p}{ }^{\text {a }}$ - 017	S320		ECSF	U5	01.09 .2011	Beating
$\mathrm{BT}^{-} 2855{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 098$	S320	KR425314	ECSF	U5	01.09 .2011	Beating
$\mathrm{BT}^{-}{ }^{2856}{ }^{-}$Cryptocephatinae ${ }^{\text {- }}$ - ${ }^{\text {dp }}$-002	S320		ECSF	U5	01.09.2011	Beating
$\mathrm{BT}^{-} 28633_{-}^{-}$Alticinae_sp_104	S321	KR424951	ECSF	U5	01.09.2011	Hand-Coll.(S)
BT ${ }^{-2864}{ }^{-}$Eumolpinae_- ${ }^{\text {sp }}$ - 039	S321	KR424817	ECSF	U5	01.09.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} \mathrm{2865}^{-}$Alticinae_sp - ${ }^{\text {P1 }} 8$	S321		ECSF	U5	01.09.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} \mathrm{2866}_{-}^{-}$Alticinae_-sp_${ }_{-}^{-118}$	S321		ECSF	U5	01.09.2011	Hand-Coll. (S)
$\mathrm{BT}_{-}^{-} \mathrm{2867}_{-}^{-}$Alticinae_-sp_${ }_{-}^{-118}$	S321		ECSF	U5	01.09.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} \mathrm{2868}_{-}^{-}$Alticinae_-sp_${ }_{-}^{-118}$	S321		ECSF	U5	01.09.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 2869^{-}$Alticinae- ${ }^{-}{ }^{-}{ }_{-118}$	S321		ECSF	U5	01.09 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-2870}$ - Alticinae-sp_-118	S322	KR424952	ECSF	U6	01.09.2011	Sweep Netting
$\mathrm{BT}^{-} 2871$ - Alticinae-_sp-213	S322	KR424953	ECSF	U6	01.09.2011	Sweep Netting
$\mathrm{BT}^{-} 28722^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 064$	S323	KR424954	ECSF	U6	01.09.2011	Beating
$\mathrm{BT}^{-2873-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 053$	S326	KR424955	Cajanuma	U1	06.09.2011	Beating
$\mathrm{BT}^{-2874-A l t i c i n a e-s p-094}$	S328		Cajanuma	U2	06.09.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{2876}{ }^{-}$Alticinae-sp-087	S334	KR424956	ECSF	U3	08.09 .2011	Sweep Netting
$\mathrm{BT}^{-} 2877$ - Eumolpinae_sp_024	S335	KR424818	ECSF	U3	08.09. 2011	Beating
$\mathrm{BT}^{-}{ }^{2878} \mathrm{O}^{-}$Eumolpinae ${ }_{-} \mathrm{sp}^{-} 024$	S335		ECSF	U3	08.09.2011	Beating
$\mathrm{BT}^{-2879}{ }^{\text {- }}$ Alticinae ${ }^{\text {sp }}$ - 164	S335	KR424957	ECSF	U3	08.09 .2011	Beating
${ }^{\text {BT }}{ }^{-2880}{ }^{\text {- Eumolpinae }}$ - ${ }^{\text {sp }}$ - 060	S335	KR424819	$\underset{\text { ECSF }}{ }$	U3	08.09.2011	Beating
BT-2881-Alticinae_sp ${ }^{\text {- }} 0 \overline{85}$	S335	KR424958	ECSF	U3	08.09.2011	Beating
$\mathrm{BT}^{-} 2900-$ Alticinae - ${ }^{\text {sp }}{ }^{-245}$	S343	KR424959	Cajanuma	U4	14.09 .2012	Sweep Netting
$\mathrm{BT}^{-2901}$ - Alticinae-sp-244	S343	KR424960	Cajanuma	U4	14.09 .2012	Sweep Netting
	S343	KR424961	Cajanuma	U4	14.09 .2012	Sweep Netting
	S347	KR424962	Cajanuma	U5	14.09 .2012	Beating Beating
$\mathrm{BT}^{-} \mathrm{2907}_{-}^{\text {- Alticinae-_sp-191 }}$	S350	KR424963	Cajanuma	U6	14.09.2012	Beating
$\mathrm{BT}^{-} \mathrm{2908}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-258}$	S350	KR424964	Cajanuma	U6	14.09.2012	Beating
BT- 2912-Galerucinae_-sp_014	S353		ECSF	U1	19.09.2012	Beating
$\mathrm{BT}^{-} 2935{ }^{\text {- Galerucinae }}$ - $\mathrm{sp}^{-} 106$	S362		Bombuscaro	U1	21.09 .2012	Beating
$\mathrm{BT}^{-2938}$ - Alticinae_sp ${ }^{\text {- }} 244$	S364	KR424965	Cajanuma	L1	27.09.2012	Sweep Netting
$\mathrm{BT}^{-} 2939{ }^{-}$Alticinae-sp-235	S364		Cajanuma	L1	27.09.2012	Sweep Netting
$\mathrm{BT}^{-} 2948$-Galerucinae_- ${ }^{\text {sp }}$ - 014	S373		ECSF	L4	29.09 .2012	Sweep Netting
$\mathrm{BT}^{-} 2949$ - Hispinae_sp-007	S374		ECSF	L4	29.09.2012	Beating
BT-2954-Hispinae-sp_-018	S374		ECSF	L4	29.09.2012	Beating
BT- ${ }^{\text {2969 }}$-Eumolpinae_-sp_013	S375		ECSF	L4	29.09.2012	Hand-Coll. (S)
BT-2999-Eumolpinae_sp_003	S379		ECSF	L6	29.09.2012	Sweep Netting
$\mathrm{BT}^{-} 3026^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 029$	S382	KR425315	Bombuscaro	L4	04.10.2011	Sweep Netting
BT-3027-Alticinae_sp_ ${ }^{\text {P/3 }}$	S382	KR424966	Bombuscaro	L4	04.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3028{ }^{-}$Alticinae-sp-${ }^{-} 204$	S382	KR424967	Bombuscaro	L4	04.10.2011	Sweep Netting
$\mathrm{BT}^{-3029-\text { Eumolpinae }}$ - ${ }^{\text {sp }} 017$	S383		Bombuscaro	L4	04.10.2011	Beating
	S383 S385	KR424968	Bombuscaro	$\mathrm{L}_{\mathrm{L}} 5$	04.10 .2011 04.10 .2011	${ }_{\text {Beating }}^{\text {Beep Netting }}$
$\mathrm{BT}^{-3032}{ }^{-}$Galerucinae ${ }_{-}^{\text {- }}{ }^{\text {sp }}$ - 106	S385	KR425316	Bombuscaro	L5	04.10.2011	Sweep Netting
BT- ${ }^{-} 3033-$ Alticinae_sp_ 254	S385	KR424969	Bombuscaro	L5	04.10.2011	Sweep Netting
$\mathrm{BT}^{-}$-3034-Alticinae-sp ${ }^{-} 181$	S385	KR424970	Bombuscaro	L5	04.10.2011	Sweep Netting
$\mathrm{BT}^{-3035}$-Galerucināe - $\overline{\mathrm{sp}}$ O51	S386	KR425317	Bombuscaro	L5	04.10 .2011	Beating
$\mathrm{BT}^{-} 3036^{-}$Alticinae_sp_${ }^{-}{ }^{\text {a }}$	S388	KR424971	Bombuscaro	L6	04.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3037_{-}^{-}$Alticinae-sp-135	S388	KR424972	Bombuscaro	L6	04.10.2011	Sweep Netting
BT-3038-Galerucinàe_sp_084	S389	KR425318	Bombuscaro	L6	04.10.2011	Beating
$\mathrm{BT}^{-3039}$ - Eumolpinae-sp-040	S389	KR424822	Bombuscaro	L6	04.10.2011	Beating
	S389 S389	KR424785	Bombuscaro Bombuscaro	L6	04.10 .2011 04.10 .2011	俍 $\begin{aligned} & \text { Beating } \\ & \text { Beating }\end{aligned}$
$\mathrm{BT}^{-3060}$ - Alticinae_ ${ }^{\text {sp }}$ - ${ }^{\text {115 }} 15$	S394	KR424973	ECSF	U5	06.10 .2011	Sweep Netting
	${ }_{\text {S }}$ S394		ECSF	U5	06.10 .2011	Sweep Netting
	S394 S394	KR424974	$\underset{\text { ECSF }}{\text { ECSF }}$	U5	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3064}$ - Alticinae-sp-253	S394	KR424975	ECSF	U5	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3065}$ - Galerucinae - $\overline{\text { sp }} 034$	S394	KR425319	ECSF	U5	06.10.2011	Sweep Netting
	S394 S394	KR424976	$\underset{\text { ECSF }}{\text { ECSF }}$	U5	06.10 .2011 06.10 .2011	Sweep Netting
$\mathrm{BT}^{-} 3068{ }^{\text {- Alticinae-sp-}}{ }^{\text {- }} 074$	S394		ECSF	U5	06.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3070$ - Eumolpinae_-sp_038	S395	KR424823	ECSF	U5	06.10.2011	Beating
$\mathrm{BT}^{-3071}$-Eumolpinae-sp-038	S395		ECSF	U5	06.10 .2011	Beating
$\mathrm{BT}^{-} 3072{ }^{-}$Eumolpinae-${ }_{-}^{\text {- }}{ }^{-}{ }_{-}^{-038}$	S395		ECSF	U5	06.10.2011	Beating
$\mathrm{BT}^{-3073-E u m o l p i n a e-s p-038 ~}$	S395		ECSF	U5	06.10.2011	Beating
	S395	KR424977	ECSF	U5	06.10 .2011	Beating
$\mathrm{BT}^{-3075}{ }^{-}$Alticinae-sp_-096	S395		ECSF	U5	06.10.2011	Beating
	S395 S395	KR425413	$\underset{\text { ECSF }}{\text { ECSF }}$	U5	06.10.2011	Beating
$\mathrm{BT}^{-} 3079^{-}$Alticinae-sp-104	S397	KR424978	ECSF	U6	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3080}$ - Alticinae-sp-112	S397	KR424979	ECSF	U6	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3081-A l t i c i n a e-s p-205}$	S397	KR424980	ECSF	U6	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3082}$ - Galerucinae - ${ }^{\text {sp }}$ - 012	S397	KR425320	ECSF	U6	06.10.2011	Sweep Netting
BT-3083-Alticinae_sp ${ }^{\text {B }}$ - ${ }^{\text {ch6 }}$	S397	KR424981	ECSF	U6	06.10.2011	Sweep Netting
	S397 S397	KR424982	$\underset{\text { ECSF }}{\text { ECSF }}$	U6	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3086}{ }^{\text {- Alticinae }}$-sp_ ${ }^{\text {- }}$ - 115	S397	KR424984	ECSF	U6	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3087}$ - Eumolpinae $\overline{\text { - }}$ - ${ }^{\text {d }} 038$	S397	KR424824	ECSF	U6	06.10.2011	Sweep Netting
$\mathrm{BT}^{-3088}{ }^{-}$Alticinae sp ${ }^{\text {c }} 061$	S397	KR424985	ECSF	U6	06.10 .2011	Sweep Netting
	S397	KR424825	ECSF	U6	06.10.2011	Sweep Netting

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr .	$\underset{\text { Srea }}{\text { Sampling }}$	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_3090_Eumolpinae_sp_065	S398	KR424826	ECSF	U6	06.10.2011	Beating
$\mathrm{BT}^{-3091}{ }^{\text {- Eumolpinae }}{ }^{-} \mathrm{sp}^{\text {- }}$ - 065	S398	,	ECSF	U6	06.10 .2011	Beating
$\mathrm{BT}^{-}$3092 $^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 002$	S398	KR424827	ECSF	U6	06.10.2011	Beating
$\mathrm{BT}^{-3093-A l t i c i n a e+s p}$	S398	KR424986	ECSF	U6	06.10 .2011	Beating
$\mathrm{BT}^{-3094-A l t i c i n a e-s p-051 ~}$	S398		ECSF	U6	06.10 .2011	Beating
$\mathrm{BT}^{-3095}{ }^{-}$Alticinae- $\mathrm{sp}^{-} 254$	S398	KR424987	ECSF	U6	06.10.2011	Beating
$\mathrm{BT}^{-} 3097{ }^{-}$Eumolpinae_- ${ }^{\text {sp }}$ - 038	S399	KR424828	ECSF	U6	06.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}$-3098 ${ }^{-}$Eumolpinae_- ${ }^{-}{ }_{\text {- }}^{-}{ }_{-038}$	S399		ECSF	U6	06.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3099^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 038$	S399		ECSF	U6	06.10 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-3100}$ - Alticinae_sp ${ }^{1772}$	S400	KR424988	Cajanuma	L4	11.10 .2011	Sweep Netting
$\mathrm{BT}^{-3101-A l t i c i n a e-}{ }^{\text {- }}$ - ${ }^{-} 245$	S400	KR424989	Cajanuma	L4	11.10 .2011	Sweep Netting
$\mathrm{BT}^{-3102-}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-244}$	S403	KR424990	Cajanuma	L5	11.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3103-$ Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 121$	S404		Cajanuma	L5	11.10.2011	Beating
$\mathrm{BT}^{-3104-}{ }^{\text {Alticinae }}$ - $\mathrm{sp}_{-}^{-124}$	S404	KR424991	Cajanuma	L5	11.10 .2011	Beating
$\mathrm{BT}^{-3105-}{ }^{\text {Alticinae }}{ }^{\text {- } \mathrm{sp}^{-}}{ }^{244}$	${ }_{\text {S }}$ S404		Cajanuma	${ }_{\text {L }} 5$	11.10 .2011	Beating
	S407 S407	KR424992	Cajanuma	${ }_{\text {L } 6}$	11.10 .2011 11.10 .2011	Beating Beating
	S409	KR424993	ECSF	U1	13.10.2011	Sweep Netting
BT-3109-Galerucinae_-sp_109	S409		ECSF	U1	13.10.2011	Sweep Netting
$\mathrm{BT}^{-3110-G a l e r u c i n a e-}{ }^{-} \mathrm{sp}^{-} 048$	S409	KR425322	ECSF	U1	13.10.2011	Sweep Netting
$\mathrm{BT}^{-3111-A l t i c i n a e ~ s p ~}{ }^{\text {a }}$ - $0 \overline{65}$	S409	KR424994	ECSF	U1	13.10 .2011	Sweep Netting
$\mathrm{BT}^{-} 31122_{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-197}$	S409	KR424995	ECSF	U1	13.10 .2011	Sweep Netting
$\mathrm{BT}^{-3113-}{ }^{\text {Alticinae }}{ }^{-} \mathrm{sp}_{-}^{-150}$	S409	KR424996	ECSF	U1	13.10.2011	Sweep Netting
$\mathrm{BT}^{-3114-A l t i c i n a e-s p-150}$	S409	KR424997	ECSF	U1	13.10 .2011	Sweep Netting
	S409 S409	KR425323	ECSF	U1	13.10 .2011 13.10 .2011	Sweep Netting
	S409 S409	KR424998	${ }_{\text {ECSF }}$	U1	13.10 .2011 13.10 .2011	Sweep Netting
BT-3118-Alticinae - ${ }^{\text {sp }}$ - ${ }^{\text {d }}$	S409	KR424999	ECSF	U1	13.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3120^{-}$Galerucinae -sp 098	S410		ECSF	U1	13.10.2011	Beating
$\mathrm{BT}^{-3121-H i s p i n a e}$-sp- 025	S410	KR424795	ECSF	U1	13.10 .2011	Beating
$\mathrm{BT}^{3122}$ Alticinae ${ }^{\text {sp }} 005$	S410		ECSF	U1	13.10 .2011	Beating
$\mathrm{BT}^{\text {- }} 3123$-Eumolpinae_ ${ }^{\text {sp }}$ - 065	S410		ECSF	U1	13.10.2011	Beating
$\mathrm{BT}^{-3124-A l t i c i n a e-s p}$ - 0877	S410	KR425000	ECSF	U1	13.10 .2011	Beating
$\mathrm{BT}^{\text {B125 }}$ - Alticinae ${ }^{\text {sp }} 065$	S410		ECSF	U1	13.10 .2011	Beating
$\mathrm{BT}^{-} 3126^{-}$Eumolpinae_- ${ }^{\text {sp }}$ - 039	S410	KR424829	ECSF	U1	13.10.2011	Beating
$\mathrm{BT}^{-3127}{ }^{-}$Eumolpinae-sp-039	S410		ECSF	U1	13.10 .2011	Beating
	S410		ECSF	U1	13.10.2011	Beating
$\mathrm{BT}^{-} 3143{ }^{-}$Galerucinae_-sp_017	S415		ECSF	L1	18.10.2011	Sweep Netting
$\mathrm{BT}^{-3157}{ }^{-}$Galerucinae - ${ }^{\text {sp }}$-024	S415		ECSF	L1	18.10 .2011	Sweep Netting
$\mathrm{BT}^{-3177}{ }_{-}^{\text {-Galerucinae_-sp-017 }}$	S418		ECSF	L3	18.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3191{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}{ }^{-} 017$	S420		ECSF	L3	18.10.2011	Hand-Coll.(S)
BT-3197-Alticinae_sp_258	S422		Cajanuma	U1	20.10 .2011	Beating
$\mathrm{BT}^{-3198-A l t i c i n a e-s p-119}$	S422		Cajanuma	U1	20.10 .2011	Beating
$\mathrm{BT}^{-3100}$ - Galerucinae - ${ }^{\text {sp }} 073$	S424	KR425324	Cajanuma	U2	20.10.2011	Sweep Netting
$\mathrm{BT}^{-3201}$ - Alticinae_sp ${ }^{\text {a }}$ 255	S425	KR425001	Cajanuma	U2	20.10 .2011	Beating
$\mathrm{BT}^{-3202-A l t i c i n a e-s p-184 ~}$	S425	KR425002	Cajanuma	U2	20.10 .2011	Beating
$\mathrm{BT}^{-3203-G a l e r u c i n a e ~-~}{ }^{\text {sp }}$ - 073	S427	KR425325	Cajanuma	U3	20.10 .2011	Sweep Netting
$\mathrm{BT}^{-3204-A l t i c i n a e ~ s p ~}{ }^{\text {a }} 172$	S427	KR425003	Cajanuma	U3	20.10 .2011	Sweep Netting
$\mathrm{BT}^{\text {- }}$ 3205-Eumolpinae_ ${ }^{\text {sp }}{ }^{\text {- }} 052$	S427	KR424830	Cajanuma	U3	20.10 .2011	Sweep Netting
$\mathrm{BT}^{-3206-}{ }^{-}$Alticinae_sp ${ }^{2}{ }^{245}$	S428	KR425004	Cajanuma	U3	20.10 .2011	Beating
BT-3207-Alticinae-sp-197	S430		ECSF	L4	24.10 .2011	Sweep Netting
BT-3208-Alticinae-sp_197	S430		ECSF	L4	24.10 .2011	Sweep Netting
$\mathrm{BT}^{-} 3209{ }^{-}$Alticinae-sp-123	S430	KR425005	ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-3210}$-Galerucinae - ${ }^{\text {sp }}$ - 066	S430	KR425326	ECSF	L4	24.10 .2011	Sweep Netting
$\mathrm{BT}^{-3211}$ - Alticinae ${ }^{\text {sp }}$ - 052	S430	KR425006	ECSF	L4	24.10 .2011	Sweep Netting
	${ }_{\text {S430 }}$	KR425414	ECSF	$\mathrm{L}_{4} 4$	24.10.2011	Sweep Netting
$\mathrm{BT}^{-}{ }_{3214}{ }^{\text {- Eumolpinae }}$ - $\mathrm{sp}^{\text {- }}$ - 014	S430		ECSF	$\mathrm{L}_{4}$	24.10.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {3215 }}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{\text {- }}$-14	S430		ECSF	L4	24.10 .2011	Sweep Netting
$\mathrm{BT}^{-} 3216^{-}$Galerucinae ${ }_{-}^{-\mathrm{sp}^{-} 104}$	S430	KR425327	ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3217_{-}^{-}$Alticinae_sp_087	S430	KR425007	ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3218{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 087$	S430		ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-3219-}{ }^{-}$Alticinae- ${ }^{-}{ }^{-} 087$	S430		ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3220$-Galerucinae_-sp_034	S430	KR425328	ECSF	L4	24.10 .2011	Sweep Netting
$\mathrm{BT}^{-}$3221-Galerucinae-${ }_{-}^{-\mathrm{sp}}{ }_{-}^{-} 034$	S430		ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3222_{-}^{-}$Galerucinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-034}$	S430		ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-3223-G a l e r u c i n a e-s p-034 ~}$	S430		ECSF	L4	24.10 .2011	Sweep Netting
$\mathrm{BT}^{-} 3224{ }^{-}$Galerucinae-${ }_{-}^{\text {sp }}$-034	S430		ECSF	L4	24.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3225{ }^{-}$Galerucinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-025}$	S431	KR425329	ECSF	L4	24.10 .2011	Beating
$\mathrm{BT}^{-3226}{ }^{-}$Galerucinae-sp-025	S431	KR425330	ECSF	L4	24.10 .2011	Beating
${ }_{\text {BT }}{ }^{-3227}{ }^{-}$-Galerucinae $-\mathrm{sp}-025$	${ }_{S} 431$		ECSF	L4	24.10.2011	Beating
	${ }_{\text {S431 }}$		${ }_{\text {ECSF }}$	L44	24.10.2011	Beating Beating
$\mathrm{BT}_{-}^{-} 3230^{-}$Alticinae_sp_ 052	S431	KR425008	ECSF	L4	24.10.2011	Beating
$\mathrm{BT}^{-3231-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 052$	S431		ECSF	L4	24.10.2011	Beating
$\mathrm{BT}^{-3232-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 064$	S431	KR425009	ECSF	L4	24.10.2011	Beating
$\mathrm{BT}^{-} 3233^{-}$Alticinae-sp-097	S431	KR425010	ECSF	L4	24.10.2011	Beating
$\mathrm{BT}^{-3234}$-Eumolpinae - ${ }^{\text {sp }}{ }^{\text {O }}$ O38	S431		ECSF	L4	24.10 .2011	Beating
	${ }_{\text {S431 }}$	KR425011	$\mathrm{ECSF}^{\text {ECSF }}$	L4	24.10 .2011	Beating
	${ }_{\text {S }}^{\text {S431 }}$	KR425331	ECSF	L4	24.10 .2011	Beating
	${ }_{\text {S431 }}$		${ }_{\text {ECSF }}$	L44	24.10.2011	Beating Beating
$\mathrm{BT}_{-}^{-} 3239^{-}$Galerucinae- ${ }^{-} \mathrm{sp}_{-}^{-}{ }^{\text {O34 }}$	S431		ECSF	L4	24.10 .2011	${ }_{\text {Beating }}$
BT-3241-Alticinae_sp_o ${ }^{-}$	S432		ECSF	L4	24.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{\text {3242 }}$-Galerucinae_- ${ }^{\text {sp }}$ - 025	S432	KR425332	ECSF	L4	24.10 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{3243}$ - Alticinae_sp_ $2 \overline{40}$	S432	KR425012	ECSF	L4	24.10 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3244{ }^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 052$	S432	KR425013	ECSF	L4	24.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3248{ }^{-}$Alticinae_-sp_${ }^{-} 116$	S432	KR425014	ECSF	L4	24.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3249^{-}$-Galerucinae_-sp_034	S432	KR425333	ECSF	L4	24.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3250-$ Galerucinae $-\mathrm{sp}_{-}^{-} 034$	S432		ECSF	L4	24.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}$3251-- Galerucinae_-sp-034	S432		ECSF	L4	24.10.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 32522^{-}$Galerucinae ${ }^{-} \mathrm{sp}{ }^{-034}$	S432		ECSF	L4	24.10 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-3253}$-Alticinae_sp 1115	S433	KR425015	ECSF	L5	24.10 .2011	Sweep Netting
${ }_{\text {BT }}{ }^{-3254}{ }^{\text {- }}$ - Alticinae $-\mathrm{sp}^{-115}{ }^{-155}$	${ }_{\text {S433 }}$		ECSF	${ }_{\text {L5 }}$	${ }_{24.10 .2011}$	Sweep Netting
$\mathrm{BT}^{-}{ }^{3256} \mathrm{C}^{-}$Galerucinae ${ }^{\text {- }}$ - ${ }^{\text {sp }}-061$	S433	KR425335	${ }_{\text {ECSF }}$	L5	${ }_{24.10 .2011}$	Sweep Netting
$\mathrm{BT}^{-} 3257^{-}$Alticinae_sp_212	S433	KR425016	ECSF	L5	24.10 .2011	Sweep Netting
$\mathrm{BT}^{-3258}$-Galerucinae - ${ }^{\text {sp }}$ - 066	$\mathrm{S}_{5} 433$	KR425336	ECSF	L5	24.10 .2011	Sweep Netting
$\mathrm{BT}^{-3259}$ - Galerucinae-sp-066	S433		ECSF	L5	24.10 .2011	Sweep Netting
	${ }_{\text {S433 }}$	KR425017	ECSF	L5	24.10 .2011	Sweep Netting
${ }_{\text {BT }}{ }^{-3261-}{ }^{\text {P262 }}$ - Alticinae $-\mathrm{sp}{ }^{-}{ }^{-029}$	S433 S434		$\underset{\text { ECSF }}{\text { ECSF }}$	L5	24.10 .2011 24.10 .2011	Sweep Netting
	${ }^{\text {S434 }}$	KR425018	${ }_{\text {ECSF }}$	L5	24.10 .2011 24.10 .2011	Beating Beating
$\mathrm{BT}^{-} 3264{ }^{-}$Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 026$	S434	KR425337	ECSF	L5	24.10 .2011	Beating
$\mathrm{BT}^{-} 3265^{-}$Eumolpinae_-sp_042	S434	KR424833	ECSF	L5	24.10.2011	Beating
$\mathrm{BT}^{-3266}{ }^{-}$- ${ }^{\text {alerucinae }}{ }^{-} \mathrm{sp}{ }^{-} 021$	${ }_{\text {S }}^{\text {S } 434}$	KR425338	${ }_{\text {ECSF }}$	L5	24.10 .2011	Beating
	S434 S435	KR425339	${ }_{\text {ECSF }}$	L5	24.10 .2011 24.10 .2011	Beating Hand-Coll. S )
	S435	KR425019	ECSF	L5	24.10 .2011	Hand-Coll.(S)
$\mathrm{BT}^{-3269}{ }^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-111}$	S436		ECSF	L6	24.10.2011	Sweep Netting
$\mathrm{BT}^{-3270}{ }^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 092$	S436	KR425020	ECSF	L6	24.10.2011	Sweep Netting
$\mathrm{BT}^{-} 3271$ - Alticinae-_sp-202	S436	KR425021	ECSF	L6	24.10.2011	Sweep Netting
$\mathrm{BT}^{-3272-A l t i c i n a e-s p-096}$	S436		ECSF	L6	24.10.2011	Sweep Netting
$\mathrm{BT}^{-3273-G a l e r u c i n a e-s p ~} 034$	S436	KR425340	ECSF	L6	24.10.2011	Sweep Netting
BT-3274-Alticinae_sp- 087	S437	KR425022	ECSF	L6	24.10 .2011	Beating

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_3275_Alticinae_sp_087	S437		ECSF	L6	24.10 .2011	Beating
$\mathrm{BT}^{-3276-}{ }^{-}$Alticinae $-\mathrm{sp}-087$	S437		ECSF	L6	24.10 .2011	Beating
$\mathrm{BT}^{-3277}$-Eumolpinàe_sp_039	S437	KR424834	ECSF	L6	24.10 .2011	Beating
$\mathrm{BT}^{-3278}{ }^{-}$Galerucinae ${ }_{-}^{-\mathrm{sp}^{-}} 061$	S437	KR425341	ECSF	L6	24.10 .2011	Beating
$\mathrm{BT}^{-3279}{ }^{-}$Alticinae_spp_0 $\overline{61}$	S438	KR425023	ECSF	L6	24.10 .2011	Hand-Coll. (S)
$\mathrm{BT}^{\mathrm{BT}}$-3280-Alticinae- ${ }^{\text {sp }}$-051	S439 S439		Bombuscaro	U3	01.11.2011	Sweep Netting
	S439	KR424835	Bombuscaro	U3	01.11 .2011	Sweep Netting
$\mathrm{BT}^{-} 3283{ }^{-}$Eumolpinae ${ }_{-} \mathrm{sp}^{-}{ }^{-} 024$	S440		Bombuscaro	U3	01.11 .2011	Beating
$\mathrm{BT}^{-3284-A l t i c i n a e}$ - $\mathrm{sp}_{\text {- }} 2 \overline{60}$	S440	KR425024	Bombuscaro	U3	01.11 .2011	Beating
$\mathrm{BT}^{-3299}$-Eumolpinae_-sp_039	S449	KR424836	ECSF	L2	03.11 .2011	Beating
$\mathrm{BT}^{-3300}{ }^{-}$Eumolpinae ${ }^{-\mathrm{sp}}{ }^{-} \mathrm{O} 39$	S449		ECSF	L2	03.11.2011	Beating
	S449 S449		ECSF	$\mathrm{L}^{\mathrm{L} 2}$	03.11 .2011 03.11 .2011	${ }^{\text {Beating }}$ Beating
BT-3303-Hispinae-sp-005	S449	KR424796	ECSF	L2	03.11 .2011	Beating
$\mathrm{BT}^{-} 3304$-Alticinae-sp- 260	S449	KR425025	ECSF	L2	03.11 .2011	Beating
$\mathrm{BT}^{-3305}{ }^{-}$Galerucinae - ${ }^{\text {sp }} 028$	S451	KR425342	Bombuscaro	U4	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3306-A l t i c i n a e ~ s p ~}{ }^{\text {- }}$ - 254	S451	KR425026	Bombuscaro	U4	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3307}{ }_{-}^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-181}$	S451	KR425027	Bombuscaro	U4	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3308-}{ }^{\text {Alticinae_-sp_}}{ }^{-} 051$	S452	KR425028	Bombuscaro	U4	08.11 .2011	Beating
$\mathrm{BT}^{-3309-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 051$	S452	KR425029	Bombuscaro	U4	08.11 .2011	Beating
$\mathrm{BT}^{-3310}{ }^{-}$Alticinae-sp-063	S452	KR425030	Bombuscaro	U4	08.11 .2011	Beating
$\mathrm{BT}^{\text {- }}$ 3311-Galerucinae-_sp_015	S452	KR425343	Bombuscaro	U4	08.11 .2011	Beating
$\mathrm{BT}^{-3312}{ }^{-}$Eumolpinae-sp-042	S452	KR424837	Bombuscaro	U4	08.11 .2011	Beating
$\mathrm{BT}^{-} 3313^{-}$Eumolpinae-sp-055	S452	KR424838	Bombuscaro	U4	08.11 .2011	Beating
$\mathrm{BT}_{-}^{-3314}{ }_{-}^{-}$Eumolpinae ${ }_{-}^{-} \mathrm{sp}^{-} 042$	S452	KR424839	Bombuscaro	U4	08.11 .2011	Beating
$\mathrm{BT}^{-} 3316^{-}$Alticinae_sp ${ }^{-1 \overline{1} 7}$	S453	KR425031	Bombuscaro	U4	08.11 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-3317}{ }^{-}$Eumolpinàe ${ }^{\text {sp }}$ - 051	S454	KR424840	Bombuscaro	U5	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3318}$-Alticinae_sp $2 \overline{10}$	S454	KR425032	Bombuscaro	U5	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3319-A l t i c i n a e-s p-173 ~}$	S454	KR425033	Bombuscaro	U5	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3320}$ - Galerucinae ${ }^{\text {a }}$ - ${ }^{\text {P }} 078$	S454	KR425344	Bombuscaro	U5	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3321-A l t i c i n a e ~ s p ~}{ }^{\text {che }} 035$	S454	KR425034	Bombuscaro	U5	08.11 .2011	Sweep Netting
BT-3322-Eumolpinàe_sp_042	S455	KR424841	Bombuscaro	U5	08.11 .2011	Beating
$\mathrm{BT}^{-} 3323{ }^{-}$Eumolpinae ${ }_{-} \mathrm{sp}_{-}^{-} 042$	S455		Bombuscaro	U5	08.11 .2011	Beating
$\mathrm{BT}^{-3324}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}{ }^{-} 042$	S455		Bombuscaro	U5	08.11 .2011	Beating
BT-3325-Galerucinae-sp-086	S455	KR425345	Bombuscaro	U5	08.11 .2011	Beating
$\mathrm{BT}^{-} 3326_{-}^{-}$Eumolpinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 017$	S455		Bombuscaro	U5	08.11 .2011	Beating
$\mathrm{BT}^{-} 3327^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 050$	S456	KR424842	Bombuscaro	U5	08.11 .2011	Hand-Coll. (S)
BT-3328-Alticinae_sp ${ }^{2}{ }^{210}$	S457	KR425035	Bombuscaro	U6	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3329-A l t i c i n a e-s p-210}$	S457		Bombuscaro	U6	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-} 3330-$ Alticinae ${ }_{-}^{-\mathrm{sp}}{ }_{-}^{-210}$	S457		Bombuscaro	U6	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3331-A l t i c i n a e-s p-210}$	S457		Bombuscaro	U6	08.11.2011	Sweep Netting
$\mathrm{BT}^{-3332-A l t i c i n a e-s p-035}$	S457	KR425036	Bombuscaro	U6	08.11 .2011	Sweep Netting
	S457	KR425037	${ }^{\text {Bombuscaro }}$ Bombuscaro	U6	08.11.2011	Sweep Netting
$\mathrm{BT}^{-3335}$ - Galerucinae-sp_045	S457	KR425346	Bombuscaro	U6	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-} 3336^{-}$Galerucinae-sp-045	S457		Bombuscaro	U6	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-3337}{ }_{-}^{-}$Eumolpinae-${ }_{-}^{\text {sp }}$-040	S457	KR424843	Bombuscaro	U6	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-} 3338{ }^{-}$Eumolpinae ${ }_{-} \mathrm{sp}^{-}{ }^{-} 050$	S457	KR424844	Bombuscaro	U6	08.11 .2011	Sweep Netting
$\mathrm{BT}^{-} 3339^{-}$Alticinae_sp ${ }^{\text {d }} 127$	S458	KR425039	Bombuscaro	U6	08.11 .2011	Beating
$\mathrm{BT}^{-3340}{ }^{-}$Eumolpinae ${ }^{\text {- }}{ }^{\text {sp }}{ }^{\text {c }} 053$	S458		Bombuscaro	U6	08.11 .2011	Beating
BT- ${ }^{\text {- }} 3341$-Alticinae_sp_ ${ }^{181}$	S458	KR425040	Bombuscaro	U6	08.11 .2011	Beating
$\mathrm{BT}^{-} 33422^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-169}$	S458	KR425041	Bombuscaro	U6	08.11 .2011	Beating
$\mathrm{BT}^{-3343-}{ }^{\text {Alticinae_-sp_}}{ }_{-}{ }^{-16}$	S458	KR425042	Bombuscaro	U6	08.11 .2011	Beating
$\mathrm{BT}^{-3344-}{ }^{\text {Alticinae }}{ }_{-}^{-\mathrm{sp}}{ }_{-}^{-} 076$	S458		Bombuscaro	U6	08.11 .2011	Beating
$\mathrm{BT}^{-} 3345{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 076$	S458	KR425043	Bombuscaro	U6	08.11 .2011	Beating
	S459	KR424786	Bombuscaro	U6	08.11.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3347_{-}^{-}$Galerucinae ${ }^{\text {- }}$ sp ${ }^{\text {B }} 108$	S459	KR425347	Bombuscaro	U6	08.11 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3348{ }^{\text {- }}$ Cassidinae_ ${ }^{\text {sp }}$ - $\overline{0} 18$	S459	KR424787	Bombuscaro	U6	08.11 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-3349}{ }^{\text {- Eumolpinae }}$ - $\mathrm{sp}^{\text {- }} 052$	S461		Cajanuma	U4	10.11.2011	Beating
$\mathrm{BT}^{-3350}$ - Hispinae ${ }^{\text {sp }}{ }^{-1 / 4}$	S462	KR424797	Cajanuma	U4	10.11.2011	Hand-Coll.(S)
$\mathrm{BT}^{-3351-A l t i c i n a e-s p-255}$	S464	KR425044	Cajanuma	U5	10.11.2011	Beating
$\mathrm{BT}^{-3352}$ - Alticinae-sp ${ }^{\text {d }} 236$	S464		Cajanuma	U5	10.11.2011	Beating
	S464		Cajanuma	U5	10.11.2011	Beating
$\mathrm{BT}^{\text {- }}$ 3354-Alticinae sp ${ }^{\text {a }} 172$	${ }_{\text {S }}^{\text {S } 466}$	KR425045	Cajanuma	U6	10.11.2011	Sweep Netting
$\mathrm{BT}^{-3355}$-Eumolpinae -sp_054	${ }_{\text {S } 466}$		Cajanuma	U6	10.11.2011	Sweep Netting
$\mathrm{BT}^{-3356}{ }^{-}$Eumolpinae $-\mathrm{sp}-054$	S466		Cajanuma	U6	10.11.2011	Sweep Netting
$\mathrm{BT}^{-3357}$ - Alticinae_sp 057	S469	KR425046	Bombuscaro	U1	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3358-A l t i c i n a e-s p-057 ~}$	S469		Bombuscaro	U1	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3359}{ }^{\text {- }}$-Galerucinae-_sp_074	S469	KR425348	Bombuscaro	U1	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3360}{ }^{-}$Galerucinae $-\mathrm{sp}-089$	S469	KR425349	Bombuscaro	U1	15.11.2011	Sweep Netting
	S469 S469	KR425047	Bombuscaro	U1	15.11.2011	Sweep Netting
	S469 S469	KR424845	Bombuscaro	U1	15.11 .2011 15.11 .2011	Sweep Netting
$\mathrm{BT}^{-3364}$ - Eumolpinae - ${ }^{\text {sp }}$ - 024	S470	KR424846	Bombuscaro	U1	15.11.2011	Beating
$\mathrm{BT}^{-} 3365^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 024$	S470		Bombuscaro	U1	15.11.2011	Beating
BT-3366-Alticinae_sp ${ }^{-152}$	S470	KR425049	Bombuscaro	U1	15.11.2011	Beating
$\mathrm{BT}^{-} 3367^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{-551}$	S470	KR425050	Bombuscaro	U1	15.11.2011	Beating
$\mathrm{BT}^{-} 3368{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 051$	S470		Bombuscaro	U1	15.11.2011	Beating
$\mathrm{BT}^{-3369}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 051$	S472	KR425051	Bombuscaro	U2	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3370-A l t i c i n a e-s p-051}$	S472		Bombuscaro	U2	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3371-A l t i c i n a e-s p-051}$	S472		Bombuscaro	U2	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3372-A l t i c i n a e-s p-051 ~}$	S472		Bombuscaro	U2	15.11.2011	Sweep Netting
	S472 S472	KR424847	Bombuscaro Bombuscaro	U2	15.11.2011 15.11 .2011	Sweep Netting
$\mathrm{BT}^{-3375}$ - Eumolpinae-sp_024	S473	KR424848	Bombuscaro	U2	15.11.2011	Sweating
$\mathrm{BT}^{-} 3376^{-}$Eumolpinae $-\mathrm{sp}-024$	S473		Bombuscaro	U2	15.11.2011	Beating
${ }^{\mathrm{BT}}{ }^{-3377}{ }^{-337}$ - Eumolpinae $-\mathrm{sp}-024$	${ }_{\text {S473 }}$		Bombuscaro	U2	15.11.2011	Beating
${ }^{\text {BT- }}$ - 3378 - Eumolpinae-sp-024	S473		Bombuscaro	U2	15.11.2011	
	S475 S475	KR424849 KR425350	Bombuscaro Bombuscaro	U3	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3381}{ }^{\text {- Galerucinae }}$ - ${ }^{\text {- }}$ - ${ }_{\text {- }}{ }^{\text {a }}$	S475		Bombuscaro	U3	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3382}{ }^{-}$Galerucinae-${ }_{-}^{-\mathrm{sp}_{-}^{-} 055}$	S475	KR425351	Bombuscaro	U3	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3383}$-Eumolpinae - ${ }^{\text {sp }}-024$	S475	KR4424550	Bombuscaro	U3	15.11.2011	Sweep Netting
$\mathrm{BT}^{-3384-A l t i c i n a e}$-sp -152	S475	KR425052	Bombuscaro	U3	15.11.2011	Sweep Netting
	S475 S 476	KR425053	${ }^{\text {Bombuscaro }}$ Bombuscaro	U3	15.11 .2011 15.11 .2011	Sweep Netting
$\mathrm{BT}^{-3387}{ }^{\text {- Eumolpinae_sp_024}}$	S476	KR424851	Bombuscaro	U3	15.11.2011	Beating
$\mathrm{BT}^{-} 3388{ }^{-}$Eumolpinae-${ }_{-}^{-\mathrm{sp}_{-}^{-} 024}$	S476	KR424852	Bombuscaro	U3	15.11.2011	Beating
$\mathrm{BT}^{-3389}{ }^{-}$Eumolpinae ${ }_{-}^{-} \mathrm{sp}^{-} 064$	S476	KR424853	Bombuscaro	U3	15.11.2011	Beating
BT-3390-Alticinae_sp ${ }^{\text {- }} 104$	S478	KR425054	ECSF	U4	17.11.2011	Sweep Netting
	S478	KR425055	ECSF	U4	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3392-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 052$	S478		ECSF	U4	17.11 .2011	Sweep Netting
$\mathrm{BT}^{-3393-A l t i c i n a e-s p-118 ~}$	S478	KR425056	ECSF	U4	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3394-A l t i c i n a e-s p-118}$	${ }_{\text {S478 }}$		$\underset{\text { ECSF }}{\text { ECSF }}$	U4	17.11.2011	Sweep Netting
	S478		${ }_{\text {ECSF }}$	U4	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3398}{ }^{\text {- Eumolpinae_-sp_039 }}$	S479		ECSF	U4	17.11.2011	Beating
$\mathrm{BT}^{-3399}$-Eumolpinae-sp-039	S479		ECSF	U4	17.11 .2011	Beating
	S479		ECSF	U4	17.11.2011	Beating
$\mathrm{BT}^{-3401}{ }^{-}$Eumolpinae-sp-039	S479		ECSF	U4	17.11.2011	Beating
	S479		ECSF	U4	17.11.2011	Beating
$\mathrm{BT}^{-3403}{ }_{-}^{-E u m o l p i n a e-}{ }_{-}^{\text {sp }}$-030	S479	KR424854	ECSF	U4	17.11.2011	Beating
$\mathrm{BT}^{-}{ }^{3405}{ }^{-}$Eumolpinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 039$	S480	KR424855	ECSF	U4	17.11.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3406{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{-039}$	S480		ECSF	U4	17.11.2011	Hand-Coll.(S)

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { SD }}{\text { Sample }}$	GenBank   Acc. Nr.	$\underset{\text { Area }}{\substack{\text { Sampling }}}$	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling   Method
BT_3407_Alticinae_sp_118	S480	KR425057	ECSF	U4	17.11 .2011	Hand-Coll.(S)
$\mathrm{BT}^{-3408}$ - Alticinae-sp- 104	S481	KR425058	ECSF	U5	17.11 .2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {340 }}$ - Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{\text {- }} 113$	S481	KR425059	ECSF	U5	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3410}{ }^{-}$Alticinae-sp-131	S481		ECSF	U5	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3411-}{ }^{-}$Alticinae- ${ }^{-} \mathrm{sp}^{-} 118$	S481		ECSF	U5	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3412}{ }^{-}$Eumolpinae-_sp_039	S482		ECSF	U5	17.11.2011	Beating
$\mathrm{BT}^{-3413-E u m o l p i n a e-s p-039}$	S482		ECSF	U5	17.11.2011	Beating
$\mathrm{BT}^{-} 3414{ }^{-}$Eumolpinae-${ }_{-}{ }^{\text {sp }}-039$	S482		ECSF	U5	17.11.2011	Beating
$\mathrm{BT}^{-3415}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 039$	S482		ECSF	U5	17.11.2011	Beating
$\mathrm{BT}^{-3416-}{ }^{\text {- Alticinae_sp }}$ - 118	S484		ECSF	U6	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3417}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-118}$	S484		ECSF	U6	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3418-}{ }^{-}$Alticinae-${ }_{-}^{-\mathrm{sp}_{-}^{-}} 118$	S484		ECSF	U6	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3419-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-118}$	S484		ECSF	U6	17.11 .2011	Sweep Netting
$\mathrm{BT}^{-3420}{ }^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-118}$	S484		ECSF	U6	17.11.2011	Sweep Netting
$\mathrm{BT}^{\text {B4 }} 3421$ - Alticinae- ${ }^{\text {sp }}$ - 118	S484		ECSF	U6	17.11.2011	Sweep Netting
$\mathrm{BT}^{-3422}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-118}$	S484		ECSF	U6	17.11 .2011	Sweep Netting
$\mathrm{BT}^{-3423-}{ }^{-}$Eumolpinae - ${ }^{\text {sp }}{ }^{029}$	S485	KR424856	ECSF	U6	17.11.2011	Beating
$\mathrm{BT}^{\text {BT }}$-3424-Alticinae ${ }^{\text {sp }}$ - 1118	S485		$\underset{\text { ECSF }}{\text { ECS }}$	U6	17.11.2011	$\xrightarrow{\text { Beating }}$
	S486 S488	KR425060 KR425352	$\xrightarrow[\text { ECSF }]{\text { Cajama }}$	U6	17.11 .2011 21.11 .2011	Hand-Coll.(S) Beating
BT-3427-Alticinae_sp ${ }^{\text {- }} 172$	S490	KR425061	Cajanuma	L5	21.11 .2011	Sweep Netting
	S490	KR424799	Cajanuma	L5	21.11.2011	Sweep Netting
$\mathrm{BT}^{-3429}{ }^{\text {-Galerucinae - }}$ - ${ }^{\text {dp }} 066$	S490	KR425353	Cajanuma	L5	21.11 .2011	Sweep Netting
BT-3430-Alticinae_sp -172	S491	KR425062	Cajanuma	L5	21.11 .2011	Beating
$\mathrm{BT}^{-} 3431^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}{ }_{248}$	S493	KR425063	Cajanuma	L6	21.11.2011	Sweep Netting
$\mathrm{BT}^{-3432-}{ }^{-}$Alticinae--sp-209	S493	KR425064	Cajanuma	L6	21.11.2011	Sweep Netting
$\mathrm{BT}^{-3433-E u m o l p i n a ̀ e ~}{ }^{\text {sp }}$ - 071	S494	KR424857	Cajanuma	L6	21.11 .2011	Beating
	S494	KR425065	Cajanuma	L6	21.11.2011	Beating
BT-3435-Eumolpināe_sp_019	S496	KR424858	ECSF	L1	23.11 .2011	Sweep Netting
$\mathrm{BT}^{-3436}{ }^{-}$Galerucinae-sp-061	S496	KR425354	ECSF	L1	23.11.2011	Sweep Netting
BT-3437-Galerucinae-sp-061	${ }_{S} 496$		ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3438}$-Galerucinae-sp-031	S496	KR425355	ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3439}$ - Alticinae_sp_olis	S496		ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3440-$ Alticinae $-\mathrm{sp}-117$	S496		ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3441-A l t i c i n a e-}{ }^{\text {- }}{ }^{\text {d }}$ - 174	S496	KR425066	ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3442-A l t i c i n a e-s p-207}$	S496		ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3443-$ Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 207$	S496		ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3444-A l t i c i n a e}{ }_{\text {- }} \mathrm{sp}_{-}^{-} 064$	S496		ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3445-A l t i c i n a e-s p-092 ~}$	${ }_{S} 496$	KR425067	ECSF	L1	23.11.2011	Sweep Netting
$\mathrm{BT}^{\text {B4 }} 3446^{-}$Alticinae- ${ }^{\text {sp }}$-083	S496		ECSF	L1	23.11.2011	Sweep Netting
	S497	KR425068	ECSF	L1	23.11.2011	Beating
$\mathrm{BT}^{-3448-}{ }^{\text {Alticinae }}{ }^{-} \mathrm{sp}_{-}^{-117}$	S497	KR425069	ECSF	L1	23.11.2011	Beating
$\mathrm{BT}^{-3449-A l t i c i n a e-s p-002 ~}$	S497	KR425070	ECSF	L1	23.11.2011	Beating
$\mathrm{BT}^{-3450}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 087$	S497	KR425071	ECSF	L1	23.11.2011	Beating
$\mathrm{BT}^{-3451-}{ }^{\text {Alticinae_-sp_}}{ }^{-} 087$	S497		ECSF	L1	23.11.2011	Beating
$\mathrm{BT}^{-3452-A l t i c i n a e-s p-065}$	S497	KR425072	ECSF	L1	23.11.2011	Beating
$\mathrm{BT}^{-3453}$-Galerucinàe - ${ }^{\text {sp }}$ - 061	S497	KR425356	ECSF	L1	23.11.2011	Beating
	S497 S499		${ }_{\text {ECSF }}$	L1	23.11.2011	Beating Sweep Netting
	S499 S499	KR425357 KR425073	${ }_{\text {ECSF }}$	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3457}{ }^{-}$Hispinae ${ }^{\text {sp }}$ - 003	S499	KR424800	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3458-E u m o l p i n ̃ a e-s p ~} 039$	S499	KR424859	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3459$ - Alticinae_sp ${ }^{\text {- }} 150$	S499	KR425074	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3460-$ Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{-196}$	S499	KR425075	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3461-}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-162}$	S499		ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3462{ }^{-}$Chrysometinae ${ }^{\text {e }}$ sp_001	S499	KR424781	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3463-$ Alticinae_sp_109	S499	KR425076	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3464-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 071$	S499		ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3465{ }^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 071$	S499	KR425077	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3466-}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-190}$	S499		ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3467}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-190}$	S499		ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3468$ - Alticinae-sp-197	S499	KR425078	ECSF	L3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 34711^{-}$Galerucinae-_sp_002	S500	KR425358	ECSF	L3	23.11.2011	Beating
$\mathrm{BT}^{-3472}{ }^{-}$-Galerucinae ${ }_{-} \mathrm{sp}^{-} 002$	S500		ECSF	L3	23.11.2011	Beating
BT-3473-Alticinae_sp-109	S500	KR425079	ECSF	L3	23.11.2011	Beating
$\mathrm{BT}^{-} 3474{ }^{-}$Alticinae-sp-197	S500	KR425080	ECSF	L3	23.11.2011	Beating
BT-3475-Galerucinae_sp_104	S501	KR425359	ECSF	L3	23.11.2011	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{3476}{ }^{-}$Eumolpinae $-\mathrm{sp}^{-}{ }^{-1065}$	S501		ECSF	L3	23.11.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3477$ - Alticinae_sp ${ }^{\text {d }} 1 \overline{9} 8$	S501	KR425081	ECSF	L3	23.11.2011	Hand-Coll.(S)
$\mathrm{BT}^{-3478-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-104}$	S502	KR425082	ECSF	U3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3479}{ }^{-}$Alticinae-sp-065	S502	KR425083	ECSF	U3	23.11.2011	Sweep Netting
	${ }_{\text {S }} 50202$	KR425360	$\underset{\text { ECSF }}{\text { ECSF }}$	U3	23.11 .2011 23.11 .2011	Sweep Netting
$\mathrm{BT}^{-3482}$ - Galerucinae - ${ }^{\text {sp }}$ - 054	S502		ECSF	U3	23.11.2011	Sweep Netting
BT-3483-Alticinae_sp_1 ${ }^{\text {- }}$ -	S502		ECSF	U3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-} 3484{ }^{-}$Alticinae $-\mathrm{sp}-123$	S502		ECSF	U3	23.11.2011	Sweep Netting
$\mathrm{BT}^{\text {- }} 3485$ - Alticinae-_sp-249	S502	KR425085	ECSF	U3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3486-}{ }^{-}$Alticinae ${ }^{-\mathrm{sp}}{ }^{-198}$	S502	KR425086	ECSF	U3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3487}{ }^{-}$Alticinae-${ }_{-}^{-\mathrm{sp}_{-}^{-}} 111$	S502		ECSF	U3	23.11.2011	Sweep Netting
$\mathrm{BT}^{-3488}{ }^{-}$Alticinae-sp-176	S503	KR425087	ECSF	U3	23.11.2011	Beating
$\mathrm{BT}^{\text {BT }}$ 3489-Galerucināe-sp_066	${ }_{\text {S }} 503$	KR425361	ECSF	U3	23.11.2011	Beating
	${ }_{\text {S }} \mathrm{S} 503$	KR425362	$\underset{\text { ECSF }}{\text { ECSF }}$	U3	23.11 .2011 23.11 .2011	Beating Beating
	S503		ECSF	U3		${ }^{\text {Beating }}$ Beating
$\mathrm{BT}^{-3493}$-Alticinae_s ${ }^{\text {- }}$ - 249	S503	KR425088	ECSF	U3	${ }_{23.11 .2011}$	Beating Beating
$\mathrm{BT}^{-3494}{ }^{\text {- Alticinae-_sp-}}{ }^{-249}$	S503		ECSF	U3	23.11.2011	Beating
$\mathrm{BT}^{-} 3495^{-}$Cassidinae ${ }^{\text {d }} \mathrm{sp} \overline{\mathrm{p}}^{012}$	S504	KR424788	ECSF	U3	23.11.2011	Hand-Coll. (S)
$\mathrm{BT}^{-3496}$ - Alticinae $\overline{\mathrm{sp}}$ - $\overline{104}$	S505	KR425089	ECSF	U2	28.11.2011	Sweep Netting
${ }^{\mathrm{BT}} \mathrm{BT}-3497^{-3498}$ - Alticinae ${ }^{-}$- ${ }^{\text {sp }}-061$	S505 S 505	KR425090	$\underset{\text { ECSF }}{\text { ECSF }}$	U2	28.11 .2011 28.11 .2011	Sweep Netting
$\mathrm{BT}^{-3499}$ - Alticinae-sp ${ }^{\text {- }}{ }^{\text {- }} 005$	S506	KR425091	ECSF	U2	28.11.2011	Sweep Neating
$\mathrm{BT}^{-3500}$-Galerucinae-_sp_066	S506	KR425363	ECSF	U2	28.11.2011	Beating
$\mathrm{BT}^{-3501}$-Galerucinae-sp-094	${ }_{\text {S }}$ S506	KR425364	ECSF	U2	28.11.2011	Beating
$\mathrm{BT}^{-} 35022_{-}$Eumolpinae-sp-017	S506		ECSF	U2	28.11.2011	Beating
$\mathrm{BT}^{-3503-E u m o l p i n a e-s p-039}$	${ }_{\text {S }}$ S506		ECSF	U2	28.11.2011	Beating
	S506 S506	KR425092	$\underset{\text { ECSF }}{\text { ECSF }}$	U2	288.11 .2011 $\mathbf{2 8 . 1 1 . 2 0 1 1}$	- ${ }_{\text {Beating }}^{\text {Beating }}$
	S506	KR425094	ECSF	U2	28.11 .2011	Beating
$\mathrm{BT}^{-} 3507_{-}^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 254$	S507		ECSF	U2	28.11.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3508-$ Alticinae ${ }_{\text {- }}{ }^{-}{ }_{-}^{-} 118$	S507		ECSF	U2	28.11.2011	Hand-Coll. (S)
$\mathrm{BT}^{\text {B }} 3509$ - Alticinae ${ }^{\text {sp }}$ - 073	${ }_{\text {S }} 508$		Bombuscaro	L1	30.11 .2011	Sweep Netting
	S508 S 508	KR424861	Bombuscaro Bombuscaro	${ }_{\text {L1 }} 1$	30.11 .2011 30.11 .2011	Sweep Netting Sweep Netting
$\mathrm{BT}^{-3512}$-Galerucinae-sp-079	S508	KR425365	Bombuscaro	L1	30.11.2011	Sweep Netting
$\mathrm{BT}^{-3513-A l t i c i n a e}$-sp ${ }^{\text {- }} 051$	S509	KR425095	Bombuscaro	L1	30.11 .2011	Beating
$\mathrm{BT}^{\text {BT }}$ 3514-Alticinae-sp-051	S509 S509		Bombuscaro	L1	30.11 .2011	Beating
	S509 S 509	KR425096	Bombuscaro Bombuscaro	L1	30.11 .2011 30.11 .2011	Beating Beating
$\mathrm{BT}^{-} 3517_{-}^{-}$Galerucinae- ${ }^{-} \mathrm{sp}_{-}^{-} 048$	S509	KR425366	Bombuscaro	L1	30.11 .2011	Beating
$\mathrm{BT}^{-3518}{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-}{ }^{-058}$	S510	KR425367	Bombuscaro	L1	30.11 .2011	Hand-Coll. (S)
	S511		Bombuscaro	L4	06.12 .2011	Sweep Netting
$\mathrm{BT}^{-3520-A l t i c i n a e-s p-181 ~}$	S511	KR425097	Bombuscaro	L4	06.12 .2011	Sweep Netting
$\mathrm{BT}^{-3521-}{ }^{\text {Alticinae_-sp-051 }}$	S512	KR425098	Bombuscaro	L4	06.12 .2011	Beating
$\mathrm{BT}^{-3522-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}{ }^{\text {- }} 181$	S513	KR425099	Bombuscaro	L4	06.12 .2011	Hand-Coll. ${ }^{\text {(S) }}$
BT-3528-Galerucinaee_sp_093	S517	KR425368	Bombuscaro	L6	06.12.2011	Sweep Netting

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr .	Sampling	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	Sampling	Sampling Method
BT_3529 Galerucinae sp 091	S517	KR425369	Bombuscaro	L6	06.12 .2011	Sweep Netting
$\mathrm{BT}^{-3530}$-Alticinae_sp_153	S517	KR425100	Bombuscaro	L6	06.12 .2011	Sweep Netting
$\mathrm{BT}^{-3531-A l t i c i n a e-}{ }_{\text {- }}{ }^{-}{ }_{-}{ }^{166}$	S518	KR425101	Bombuscaro	L6	06.12 .2011	Beating
$\mathrm{BT}^{-3532-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-149}$	S518	KR425102	Bombuscaro	L6	06.12 .2011	Beating
$\mathrm{BT}^{-} 3533-$ Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 247$	S520	KR425103	Cajanuma	L1	08.12 .2011	Sweep Netting
$\mathrm{BT}^{-3534-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 247$	S520		Cajanuma	L1	08.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 3535$-Alticinae ${ }^{-} \mathrm{sp}^{-} 172$	S520	KR425104	Cajanuma	L1	08.12 .2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {353 }} 36_{-}^{-}$Alticinae $-\mathrm{sp}-172$	S520	KR425105	Cajanuma	L1	08.12 .2011	Sweep Netting
$\mathrm{BT}^{-3537}{ }^{-}$Alticinae_-sp ${ }_{-} 172$	S520	KR425106	Cajanuma	L1	08.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 35388^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 244$	S522	KR425107	Cajanuma	L1	08.12 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-3539-A l t i c i n a e ~}{ }^{-\mathrm{sp}}{ }^{-241}$	S523	KR425108	Cajanuma	L2	08.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 3540{ }^{-}$Eumolpinae_-sp_058	S523	KR424863	Cajanuma	L2	08.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 3542{ }^{-}$Eumolpinae ${ }_{-}^{-\mathrm{sp}_{-}^{-} 049}$	S524	KR424864	Cajanuma	L2	08.12 .2011	Beating
$\mathrm{BT}^{-3543}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 069$	${ }_{\text {S } 524}$	KR424865	Cajanuma	L2	08.12 .2011	Beating
$\mathrm{BT}^{\text {B }} 3544$-Chrysomelinae ${ }^{\text {sp }}$ - ${ }^{\text {d }}$-004	S526	KR424782	Cajanuma	L3	08.12.2011	Sweep Netting
$\mathrm{BT}^{-3545}{ }^{\text {- Alticinae sp }}$ - ${ }^{\text {184 - }}$	S535	KR425109	Cajanuma	U3	13.12.2011	Sweep Netting
	S535 S538	KR425110	Cajanuma Bombuscaro	U3	13.12 .2011 15.12 .2011	Sweep Netting
	${ }^{\text {S533 }}$	KR424866	Bombuscaro	$\mathrm{L}_{1}$	15.12.2011	Sweep Netting
$\mathrm{BT}^{-} 3549^{-}$Hispinae_sp_012	S540	KR424801	Bombuscaro	L1	15.12.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3550$--Galerucinae_-sp_093	S540	KR425370	Bombuscaro	L1	15.12.2011	Hand-Coll. (S)
$\mathrm{BT}^{-3551}{ }^{-}$-Galerucinae-${ }^{-} \mathrm{sp}^{-} 093$	S541	KR425371	Bombuscaro	L2	15.12.2011	Sweep Netting
BT-3552-Alticinae_sp ${ }^{\text {P/ }}$ - $\overline{25}$	S541	KR425111	Bombuscaro	L2	15.12.2011	Sweep Netting
$\mathrm{BT}^{-3553-A l t i c i n a e-}{ }_{-}{ }^{\text {sp }}$ - 166	S541		Bombuscaro	L2	15.12.2011	Sweep Netting
$\mathrm{BT}^{-} 3554{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-1} 073$	S543		Bombuscaro	L2	15.12.2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 35555^{-}$Alticinae-sp-181	S544	KR425112	Bombuscaro	L3	15.12.2011	Sweep Netting
	S544	KR424867	Bombuscaro	L3	15.12.2011	Sweep Netting
$\mathrm{BT}^{-3557}$ - Eumolpinae-sp-070	S545	KR424868	Bombuscaro	L3	15.12.2011	Beating
$\mathrm{BT}^{-} 3558$ - Hispinae_sp_0 ${ }^{-11}$	S546	KR424802	Bombuscaro	L3	15.12.2011	Hand-Coll. (S)
BT-3559-Alticinae_sp_- ${ }^{-133}$	S547	KR425113	Cajanuma	U4	19.12.2011	Sweep Netting
$\mathrm{BT}^{-3560}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-188}$	S551	KR425114	Cajanuma	U5	19.12.2011	Beating
$\mathrm{BT}^{-3561-}{ }^{\text {Alticinae-}}{ }^{\text {sp }}$-056	S553		Cajanuma	U6	19.12.2011	Sweep Netting
$\mathrm{BT}^{-}$3562-Eumolpinàe_- ${ }^{\text {- }}$ - 057	S554	KR424869	Cajanuma	U6	19.12.2011	Beating
$\mathrm{BT}^{-3563-}{ }^{-}$Hispinae_sp_014	S554	KR424803	Cajanuma	U6	19.12 .2011	Beating
$\mathrm{BT}^{-} 3564{ }^{-}$Alticinae_sp-127	S556	KR425115	Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3565}{ }^{\text {- Alticinae-}}{ }^{\text {sp }}{ }^{-127}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3566-}{ }^{\text {- }}$ Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 127$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3567}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-127}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3568-A l t i c i n a e-s p-127 ~}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3569-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-127}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 3570-$ Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-127}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3571-A l t i c i n a e-s p-127 ~}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3572-}{ }^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-127}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3573-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-127}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3574-A l t i c i n a e-s p-227}$	S556	KR425116	Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {3575 }}$ - Alticinae $-\mathrm{sp}-227$	S556	KR425117	Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3576-A l t i c i n a e-}{ }_{-}^{-} \mathrm{sp}_{-}^{-} 196$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3577}{ }^{-}$Alticinae-sp ${ }^{-196}$	${ }_{\text {S }} 556$		Bombuscaro	U4	21.12.2011	Sweep Netting
$\mathrm{BT}^{\text {- }} 3578$-Alticinae- ${ }^{\text {sp }}$ - 196	${ }_{\text {S }} \mathrm{S} 556$		Bombuscaro	U4	21.12.2011	Sweep Netting
$\mathrm{BT}^{-3579-A l t i c i n a e-s p-196}$	S556		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3580-A l t i c i n a e-s p-196 ~}$	${ }_{\text {S }} 5556$		Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3581}{ }^{\text {- Alticinae-sp }}$ - 179	${ }_{\text {S }}$ S556	KR425118	Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3582}{ }^{-}$Galerucinae ${ }^{\text {- }}$ - ${ }^{\text {d }} 106$	${ }_{\text {S }} 555$		Bombuscaro	U4	21.12.2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{3583}$ - Alticinae_sp ${ }^{1 / 155}$	S556	KR425119	Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3584-A l t i c i n a e-s p-167}$	S556	KR425120	Bombuscaro	U4	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 3585{ }^{-}$Alticinae-sp-127	S557	KR425121	Bombuscaro	U4	21.12.2011	Beating
$\mathrm{BT}^{-3586-A l t i c i n a e-s p-127 ~}$	S557		Bombuscaro	U4	21.12 .2011	Beating
$\mathrm{BT}^{-3587}{ }^{-}$Alticinae-sp_${ }^{-127}$	S557		Bombuscaro	U4	21.12 .2011	Beating
$\mathrm{BT}^{-} 35888^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 127$	S557		Bombuscaro	U4	21.12 .2011	Beating
$\mathrm{BT}^{-3589}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-127}$	S557		Bombuscaro	U4	21.12 .2011	Beating
BT-3590-Alticinae-sp-127	S557		Bombuscaro	U4	21.12.2011	Beating
	S557	KR425122	Bombuscaro	U4	21.12 .2011	Beating
$\mathrm{BT}^{-3592-A l t i c i n a e}-\mathrm{sp}-196$	S557		Bombuscaro	U4	21.12 .2011 21.12 .2011	Beating
	S557	KR425123   KR425124	Bombuscaro Bombuscaro	U4	21.12 .2011 21.12 .2011	Beating Beating
$\mathrm{BT}^{-}{ }^{3596} \mathbf{-}^{\text {- Alticinae_-sp }}{ }^{-111}$	S558	KR425125	Bombuscaro	U4	21.12 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-} 3597_{-}^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 196$	S558	KR425126	Bombuscaro	U4	21.12 .2011	Hand-Coll. (S)
$\mathrm{BT}^{-3598}{ }^{-}$Alticinae-sp-196	S559		Bombuscaro	U5	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3599-A l t i c i n a e-s p-196}$	S559		Bombuscaro	U5	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3600}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 253$	S559		Bombuscaro	U5	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3601-A l t i c i n a e}-\mathrm{sp}-127$	S559	KR425127	Bombuscaro	U5	21.12 .2011 21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3602-A l t i c i n a e}-\mathrm{sp}{ }^{-138}$	S559		Bombuscaro	U5	21.12.2011	Sweep Netting
$\mathrm{BT}^{-3603-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-182}$	S560		Bombuscaro	U5	21.12 .2011	Beating
$\mathrm{BT}^{-3604-A l t i c i n a e}-\mathrm{sp}-076$	S560	KR425128	Bombuscaro	U5	21.12.2011	Beating
${ }_{\text {BT }}{ }^{\text {® }}$ 3605- Alticinae $-\mathrm{sp}-076$	S560 S560		Bombuscaro Bombuscaro	U5	21.12 .2011 21.12 .2011	Beating Beating
$\mathrm{BT}^{-3607}$-Alticinae-sp-138	S560		Bombuscaro	U5	21.12 .2011	Beating
$\mathrm{BT}^{-3608-}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}^{-} 253$	S560		Bombuscaro	U5	21.12 .2011	Beating
$\mathrm{BT}^{-3609}{ }^{-}$Eumolpinàe_ ${ }^{\text {sp }}$ - 047	S560	KR424870	Bombuscaro	U5	21.12 .2011	Beating
$\mathrm{BT}^{-3610}$ - Alticinae sp ${ }^{\text {a }}$ - $\overline{7}^{0} 6$	${ }_{\text {S }}{ }_{\text {S }} 561$	KR425129	Bombuscaro	U5	21.12 .2011	Hand-Coll.(S)
$\mathrm{BT}^{-3611-A l t i c i n a e-s p-181 ~}$	S562	KR425130	Bombuscaro	U6	21.12 .2011	Sweep Netting
	${ }_{\text {S }}$ S62	KR424871	Bombuscaro	U6	21.12 .2011 21	Sweep Netting
	S562	KR425415	Bombuscaro Bombuscaro	U6	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3615}$-Galerucinae-_sp-029	S562	KR425372	Bombuscaro	U6	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {3616-Galerucinae-}}{ }^{-}{ }^{\text {- }}$ - 029	S562	KR425373	Bombuscaro	U6	21.12 .2011	Sweep Netting
	S562	KR425131	Bombuscaro	U6	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-3618}$-Alticinae-sp-127	${ }_{\text {S }}$ S62		Bombuscaro	U6	21.12 .2011	Sweep Netting
	S562 S562		Bombuscaro Bombuscaro	U6	21.12 .2011 21.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 3621$ - Alticinae-sp- ${ }^{-127}$	S562		Bombuscaro	U6	21.12 .2011	Sweep Netting
$\mathrm{BT}^{-} 3622^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 254$	S563	KR425132	Bombuscaro	U6	21.12 .2011	Beating
$\mathrm{BT}^{-3623-A l t i c i n a e-}{ }^{-} \mathrm{sp}^{-} 253$	${ }_{\text {S }}$ S563	KR425133	Bombuscaro	U6	21.12 .2011	Beating
$\mathrm{BT}^{-3624}$-Alticinae-sp-127	${ }_{\text {S }} 563$	KR425134	Bombuscaro	U6	21.12.2011	Beating
$\mathrm{BT}^{-3625}$ - Alticinae-sp-051	S563	KR425135	Bombuscaro	U6	21.12 .2011	Beating
	${ }_{\text {S }} \mathrm{S} 565$	KR425416	$\underset{\text { ECSF }}{\text { Bombuscaro }}$	U1	21.12 .2011 26.12 .2011	Beating Sweep Netting
	-		$\underset{\text { ECSF }}{\text { ECSF }}$	U1	26.12 .2011 26.12 .2011	Sweep Netting Sweep Netting
$\mathrm{BT}^{-} 3630_{-}^{-}$Alticinae-${ }_{-}^{-s p}{ }_{-}^{-117}$	S566		ECSF	U1	26.12.2011	Beating
$\mathrm{BT}^{-3633-A l t i c i n a e-s p-109 ~}$	S566		ECSF	U1	26.12.2011	Beating
	${ }_{\text {S }} 5$		ECSF	L4	03.01.2012	Beating
	S572 S572		$\underset{\text { ECSF }}{\text { ECSF }}$	L4	${ }^{03.01 .2012}$	Beating
$\mathrm{BT}^{-}{ }_{3656}{ }^{-}$Alticinae ${ }^{-}{ }^{\text {sp }}{ }^{-115}$	S572		ECSF	L4	03.01 .2012	Beating Beating
$\mathrm{BT}^{-} 3658^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 198$	S573		ECSF	L4	03.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 3659^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 237$	S573		ECSF	L4	03.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-3660-A l t i c i n a e-s p-092}$	S573		ECSF	L4	03.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-3685}{ }^{-}$Alticinae-sp-018	S577	KR425136	$\underset{\text { ECSF }}{\text { ECS }}$	L6	03.01.2012	Sweep Netting
	S577 $\mathbf{S 5 7 7}$	KR425137	$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {L6 }} 6$	03.01 .2012 03.01 .2012	Sweep Netting Sweep Netting
	S578	KR425139	${ }_{\text {ECSF }}$	L6	03.01.2012	Sweep Netting
$\mathrm{BT}^{-} 3689{ }^{\text {- Eumolpinae }}{ }^{\text {- }}{ }^{\text {sp }} 040$	S578	KR424873	ECSF	L6	03.01.2012	Beating
	S578	KR425140	$\underset{\text { ECSF }}{\text { ECS }}$	${ }_{\text {L } 6}$	03.01.2012	Beating
$\mathrm{BT}^{-3691}{ }^{\text {- }}$ Alticinae-_sp-147	S578	KR425141	ECSF	L6	03.01.2012	Beating
BT_3692-Alticinae_-sp_147	S578		ECSF	L6	$\frac{\text { 03.01.2012 }}{\text { Continu }}$	Beating

Table C. 1 - continued from previous page(s)

SpecimenID	Sample	GenBank   Acc. Nr.	$\underset{\text { Area }}{\text { Sampling }}$	Site/   Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling   Method
BT_3693_Alticinae_sp_123	${ }^{\text {S } 578}$	KR425142	ECSF	L6	03.01.2012	Beating
$\mathrm{BT}^{-3694-}{ }^{\text {Alticinae-sp- }}$ - 197	S578	KR425143	ECSF	L6	03.01.2012	Beating
$\mathrm{BT}^{\text {BT }}$ 3698-Galerucinae_sp_089	${ }^{\text {S } 586}$	-	Bombuscaro	U3	05.01 .2012	Sweep Netting
$\mathrm{BT}^{-3699}$-Eumolpinae-sp-063	S586	KR424874	Bombuscaro	U3	05.01.2012	Sweep Netting
	S587 S590	KR424875	Bombuscaro	U3	05.01 .2012 09.01 .2012	Beating
	S590 S 991	KR425144	Cajanuma	L44	09.01.2012 09.01 .2012	Beating Hand-Coll.
$\mathrm{BT}^{-}{ }_{3703}$ - Alticinae ${ }^{-} \mathrm{sp}^{-} 206$	S591		Cajanuma	L4	09.01.2012	Hand-Coll.(S)
$\mathrm{BT}^{-} 3704{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 172$	S597	KR425145	Cajanuma	L6	09.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-3705-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 085$	S598		Bombuscaro	L4	11.01.2012	Sweep Netting
$\mathrm{BT}^{-3706-A l t i c i n a e-s p-}{ }^{-} 182$	S598		Bombuscaro	L4	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3707}{ }^{-}$Alticinae-sp_182	S598		Bombuscaro	L4	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-} 3708^{-}$Eumolpinae_sp ${ }^{\text {sp }} 059$	S598		Bombuscaro	L4	11.01.2012	Sweep Netting
$\mathrm{BT}^{-3710}$ - Alticinae_sp $-1 \overline{96}$	S598		Bombuscaro	L4	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3711}$ - Alticinae-sp-076	S598		Bombuscaro	L4	11.01 .2012	Sweep Netting
	S599 $\mathbf{S 5 9 9}$		Bombuscaro Bombuscaro	$\mathrm{L} 44^{\text {L }}$	11.01 .2012 11.01 .2012	Beating Beating
$\mathrm{BT}^{-3721-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 076$	S599		Bombuscaro	L4	11.01.2012	Beating
$\mathrm{BT}^{-} 3723_{-}^{-}$Eumolpinae_sp ${ }^{\text {sp }} 059$	S599		Bombuscaro	L4	11.01.2012	Beating
$\mathrm{BT}^{-} 3724$-Alticinae_sp_ ${ }^{127}$	S600		Bombuscaro	L4	11.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 3725^{-}$Alticinae-sp-${ }^{-} 138$	S600		Bombuscaro	L4	11.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{3726-}$ - Alticinae ${ }^{-} \mathrm{sp}^{-}{ }_{227}$	S601	KR425146	Bombuscaro	L5	11.01.2012	Sweep Netting
$\mathrm{BT}^{-3727}{ }^{-}$Alticinae-sp-253	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3728-}{ }^{\text {Alticinae-}}{ }^{\text {sp }}$-099	S601	KR425147	Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3729-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-104}$	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-} 3730^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 095$	S601	KR425148	Bombuscaro	L5	11.01.2012	Sweep Netting
$\mathrm{BT}^{-3731-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-127}$	S601	KR425149	Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{\text {- }} 3732$-Alticinae-sp-127	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3733-A l t i c i n a e-s p-127 ~}$	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3734-A l t i c i n a e-s p-127 ~}$	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3735-A l t i c i n a e-s p-}{ }^{-196}$	S601	KR425150	Bombuscaro	L5	11.01.2012	Sweep Netting
BT-3736-Alticinae-sp_ ${ }^{\text {B }}$ - ${ }^{\text {a }}$	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3737}{ }^{-}$Alticinae-sp_196	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3738-A l t i c i n a e-s p-196}$	S601		Bombuscaro	L5	11.01 .2012	Sweep Netting
	${ }_{\text {S }} \mathrm{S} 601$	KR425374	Bombuscaro	${ }_{\text {L5 }}$	11.01.2012	Sweep Netting
	S601		Bombuscaro	L5	11.01.2012	Sweep Netting
$\mathrm{BT}^{-3750-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 076$	S601	KR425151	Bombuscaro	L5	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3751-A l t i c i n a e-s p-}{ }^{-} 076$	S601		Bombuscaro	L5	11.01.2012	Sweep Netting
$\mathrm{BT}^{\text {- }}$ 3752-Eumolpinae_sp_038	S602	KR424876	Bombuscaro	L5	11.01.2012	Beating
	S602	KR425375	Bombuscaro	L5	11.01 .2012	Beating
BT-3754-Alticinae_sp_o ${ }^{\text {- }}$	S602	KR425152	Bombuscaro	L5	11.01.2012	Beating
$\mathrm{BT}^{-3755-A l t i c i n a e-s p-}{ }^{-} 076$	S602		Bombuscaro	L5	11.01.2012	Beating
$\mathrm{BT}^{-3756-}{ }^{\text {- }}$ Alticinae-sp- ${ }^{-127}$	S602	KR425153	Bombuscaro	L5	11.01.2012	Beating
$\mathrm{BT}^{-3757}$ - Alticinae-sp-127	S602		Bombuscaro	L5	11.01.2012	Beating
$\mathrm{BT}^{-} 3758^{-}$Alticinae-sp-127	S602		Bombuscaro	L5	11.01.2012	Beating
$\mathrm{BT}^{-3759-A l t i c i n a e-s p-127 ~}$	$\mathrm{S}_{\mathrm{S}} 602$		Bombuscaro	L5	11.01 .2012	Beating
$\mathrm{BT}^{-3760}$ - Alticinae-sp_-127	S602		Bombuscaro	L5	11.01 .2012	Beating
BT- ${ }^{-1761-A l t i c i n a e-s p-196 ~}$	S603	KR425154	Bombuscaro	L5	11.01.2012	Hand-Coll. (S)
$\mathrm{BT}_{-}^{-3762-}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-127}$	S603	KR425155	Bombuscaro	L5	11.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 3763_{-}^{-}$Alticinae-sp_- 127	S603		Bombuscaro	L5	11.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-3765}$ - Alticinae-sp-138	S604		Bombuscaro	L6	11.01 .2012	Sweep Netting
$\mathrm{BT}^{-3767}$ - Alticinae-sp ${ }^{\text {- }} 226$	S604		Bombuscaro	L6	11.01.2012	Sweep Netting
	${ }_{\text {S }} 604$		Bombuscaro	${ }_{\text {L6 }} \mathrm{L} 6$	11.01 .2012 11.01 .2012	Sweep Netting
	S604		Bombuscaro Bombuscaro	${ }_{\text {L6 }} 6$	11.01.2012	Sweep Netting
$\mathrm{BT}^{-3790}$ - Alticinae_sp_ ${ }^{\text {a }}$	S604		Bombuscaro	L6	11.01.2012	Sweep Netting
$\mathrm{BT}^{-} 3791-$ Alticinae-sp_${ }^{-} 232$	S604		Bombuscaro	L6	11.01.2012	Sweep Netting
$\mathrm{BT}^{-} 3792$-Alticinae-sp_ ${ }^{\text {- }}$	S604		Bombuscaro	L6	11.01.2012	Sweep Netting
$\mathrm{BT}^{-3793-A l t i c i n a e-s p-204 ~}$	S604		Bombuscaro	L6	11.01.2012	Sweep Netting
BT-3795-Hispinae -sp -019	S605		Bombuscaro	L6	11.01.2012	Beating
$\mathrm{BT}^{-} 3796^{-}$Galerucinae_sp 007	S605		Bombuscaro	L6	11.01.2012	Beating
BT-3807-Alticinae_sp_ 185	S607		Cajanuma	L1	16.01.2012	Sweep Netting
$\mathrm{BT}^{-3808-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 230$	S607		Cajanuma	L1	16.01.2012	Sweep Netting
$\mathrm{BT}^{-3809-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 234$	S607		Cajanuma	L1	16.01.2012	Sweep Netting
$\mathrm{BT}^{-3810}{ }^{-}$Alticinae-sp-${ }^{-} 217$	S608	KR425156	Cajanuma	L1	16.01.2012	Beating
BT-3811-Hispinae-sp_017	S610	KR424804	Cajanuma	L2	16.01.2012	Sweep Netting
$\mathrm{BT}^{-3812-}{ }^{-} \mathrm{Alticinae}_{-}^{-} \mathrm{sp}_{-}^{-} 118$	S610	KR425157	Cajanuma	L2	16.01.2012	Sweep Netting
$\mathrm{BT}^{-3813-}{ }^{\text {- Alticinae-_sp_109 }}$	S611	KR425158	Cajanuma	L2	16.01.2012	Beating
$\mathrm{BT}^{-}$3814-Alticinae- ${ }^{-}{ }^{-}{ }^{-118}$	S611	KR425159	Cajanuma	L2	16.01.2012	Beating
$\mathrm{BT}^{-} 3815$ - Alticinae-sp_-118	S611	KR425160	Cajanuma	L2	16.01.2012	Beating
$\mathrm{BT}^{-3816-A l t i c i n a e-s p-118}$	S611		Cajanuma	L2	16.01.2012	Beating
$\mathrm{BT}^{-3817}$ - Alticinae-sp_118	S611		Cajanuma	L2	16.01.2012	Beating
	${ }_{\text {S611 }} 611$		Cajanuma	$\mathrm{L}_{\mathrm{L} 2}$	16.01.2012 16.01 .2012	Beating
$\mathrm{BT}^{-3820}$ - Alticinae-sp ${ }^{\text {sp }}{ }_{216}$	S613	KR425161	Cajanuma	L3	16.01.2012	${ }_{\text {Sweep Netting }}^{\text {Beating }}$
$\mathrm{BT}^{-3824}$-Galerucinae_-sp 013	S619	KR425376	Bombuscaro	L2	18.01.2012	Sweep Netting
BT- ${ }^{\text {- }} 825$-Alticinae_sp_050	S619	KR425162	Bombuscaro	L2	18.01.2012	Sweep Netting
$\mathrm{BT}^{-} 3826^{-}$Alticinae-sp-${ }^{-} 201$	S619	KR425163	Bombuscaro	L2	18.01.2012	Sweep Netting
$\mathrm{BT}^{-3827}{ }^{\text {- }}$ Galerucinae - ${ }^{\text {sp }} 0090$	S620	KR425377	Bombuscaro	L2	18.01.2012	Beating
$\mathrm{BT}^{-3828-A l t i c i n a e}$-sp_ 211	S620	KR425164	Bombuscaro	L2	18.01 .2012	Beating
$\mathrm{BT}^{-} 3829$ - Alticinae-sp_- 181	S620	KR425165	Bombuscaro	L2	18.01.2012	Beating
$\mathrm{BT}^{-} 3830-$ Alticinae_sp_${ }^{-180}$	S623	KR425166	Bombuscaro	L3	18.01.2012	Beating
$\mathrm{BT}^{-} 3832{ }^{-}$Eumolpinae_ ${ }^{\text {sp }}{ }^{\text {d }} 050$	S624	KR424877	Bombuscaro	L3	18.01.2012	Hand-Coll. (S)
BT-3833-Alticinae_sp ${ }^{\text {P31 }}$	S631		Cajanuma	U3	23.01 .2012	Sweep Netting
$\mathrm{BT}^{\text {B }} 3834$-Alticinae-sp- 244	S631 S636	KR425167	Cajanuma	U3	23.01.2012	Sweep Netting
	S636 S 637	KR425168	ECSF	U4	${ }_{25.01 .2012}^{25.012}$	Hand-Coll.(S) Sweep Netting
$\mathrm{BT}^{-3847}$ - Alticinae ${ }^{\text {sp }}$ - 118	S637	KR425168	ECSF	U5	25.01 .2012	Sweep Netting
BT-3848-Eumolpinae_sp 039	S637	KR424878	ECSF	U5	25.01.2012	Sweep Netting
$\mathrm{BT}^{-3849}$ - Alticinae_sp_175	S637	KR425169	ECSF	U5	25.01.2012	Sweep Netting
$\mathrm{BT}^{-3850}$ - Alticinae-sp-140	S637 S638	KR425170	ECSF	U5	25.01 .2012	Sweep Netting
	S638 S638	KR425171	ECSF	U5	${ }_{25.01 .2012}^{25.01 .2012}$	Beating Beating
$\mathrm{BT}^{-3853}{ }^{\text {- Eumolpinae_-sp_039 }}$	S638	KR424879	ECSF	U5	25.01.2012	Beating
$\mathrm{BT}^{-} 38544^{-}$Eumolpinae-${ }^{-} \mathrm{sp}_{-}^{-} 039$	S638	RR2487	ECSF	U5	25.01.2012	Beating
$\mathrm{BT}^{\text {- }} 38555^{-}$Eumolpinae-sp-039	S638		ECSF	U5	25.01.2012	Beating
	S639	KR425173	ECSF	U5	25.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 3857_{-}^{-}$Alticinae_-sp_${ }^{-} 118$	S639		ECSF	U5	25.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-3858}{ }^{-}$Alticinae-sp-118	S639		ECSF	U5	25.01 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-3859}{ }^{-}$Alticinae-sp-118	S639		ECSF	U5	25.01 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-3860}{ }^{-}$Eumolpinae ${ }^{\text {sp }}{ }^{\text {sp }}{ }^{\text {O }}$ O30	S639 S639	KR424880	ECSF	U5	25.01.2012	Hand-Coll. (S)
	S639 S646	KR424789	$\underset{\text { ECSF }}{\text { ECSF }}$	${ }^{\text {U5 }}$	25.01.2012	Hand-Coll.(S)
BT-3870 ${ }^{-}$Eumolpinae ${ }^{\text {- }}$ sp ${ }^{\text {c }} 002$	S646		ECSF	L5	27.01.2012	Sweep Netting
$\mathrm{BT}^{-3871}{ }^{-}$Alticinae ${ }^{\text {sp }}$ - $0 \overline{8} 3$	S646	KR425174	ECSF	L5	27.01 .2012	Sweep Netting
$\mathrm{BT}^{-3872}{ }^{-}$-Eumolpinae ${ }^{\text {a }}$ - ${ }^{\text {sp }}$ - 040	S647	KR424881	ECSF	L5	27.01.2012	Beating
$\mathrm{BT}^{-3873-C a s s i d i n a e-\overline{s p}}{ }^{\text {- }}$ 20 20	S648	KR424791	ECSF	L5	27.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-3874}$ - Eumolpina ${ }^{\text {en }} \mathrm{sp} \overline{\mathrm{p}}^{\text {a }} 042$	S648	KR424882	ECSF	L5	27.01 .2012	Hand-Coll. (S)
	S653 S658		$\stackrel{\text { ECSF }}{\text { Bombuscaro }}$	L6	27.01 .2012 29.012012	Beating
	S658	KR425378	Bombuscaro Bombuscaro	U1	29.01.2012	Sweep Netting   Sweep Netting
$\mathrm{BT}^{-3893}$-Alticinae_sp-164	S658	KR425175	Bombuscaro	U1	29.01 .2012	Sweep Netting
$\mathrm{BT}^{-3894}{ }^{\text {- }}$ Alticinae- ${ }^{\text {sp }}$ - 200	S661	KR425176	Bombuscaro	L1	29.01.2012	Sweep Netting
BT-3895-Galerucinae - ${ }^{\text {- }}$ - 079	S662	KR425379	Bombuscaro	L1	29.01.2012	Beating

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { SD }}{\text { Sample }}$	GenBank   Acc. Nr .	$\underset{\text { Area }}{\text { Sampling }}$	Site/   Plot	Sampling	Sampling Method
BT_3896_Hispinae_sp_012	S663	KR424805	Bombuscaro	L1	29.01 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-3915}{ }^{\text {-Galerucinae -sp_007 }}$	S670	KR425380	ECSF	U4	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-3916}{ }^{-}$Galerucinae-${ }^{\text {- }}{ }^{\text {- }}$ - 007	S670		ECSF	U4	31.01 .2012	Sweep Netting
BT-3917-Alticinae_sp_0 ${ }^{\text {- }}$	S671	KR425177	ECSF	U4	31.01 .2012	Beating
$\mathrm{BT}^{-3918-}{ }^{-}$Alticinae-${ }_{-}^{\text {sp }}-096$	S671	KR425178	ECSF	U4	31.01 .2012	Beating
$\mathrm{BT}^{-3919-A l t i c i n a e-}{ }^{-}{ }^{\text {- }}$-096	S671		ECSF	U4	31.01 .2012	Beating
$\mathrm{BT}^{-3920-A l t i c i n a e}-\mathrm{sp}-165$	${ }_{\text {S } 671}$	KR425179	ECSF	U4	31.01 .2012	Beating
$\mathrm{BT}^{-3921-}{ }^{\text {- }}$ Eumolpinae_- ${ }^{\text {sp }}$ - 042	S671	KR424883	ECSF	U4	31.01.2012	Beating
BT-3922-Alticinae_sp ${ }^{\text {- }} 2 \overline{64}$	S671	KR425180	ECSF	U4	31.01 .2012	Beating
$\mathrm{BT}^{-3923}{ }^{-}$Cassidinae ${ }^{\text {e }}$ - $\mathrm{p}_{-} 006$	S672		ECSF	U4	31.01 .2012	Hand-Colll. (S)
$\mathrm{BT}^{-3947}{ }^{\text {- Eumolpinae }}{ }^{\text {sp }}{ }^{\text {p }} 019$	S679	KR424884	ECSF	L2	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-3948-A l t i c i n a e}$ - $\mathrm{sp}^{\text {P }}$ - 0444	S679 S679	KR425181	$\underset{\text { ECSF }}{\text { ECSF }}$	L2	31.01 .2012 31.012012	Sweep Netting
$\mathrm{BT}^{-3950}$ - Galerucinae ${ }^{\text {sp }}$ - 061	S679	KR425381	ECSF	L2	31.01 .2012	Sweep Netting
BT-3951-Alticinae_sp_238	S679	KR425183	ECSF	L2	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-3952}{ }^{-}$Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-092}$	S679	KR425184	ECSF	L2	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-3953-}{ }^{\text {- }}$ Alticinae-_sp_-112	S679	KR425185	ECSF	L2	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-3954}{ }^{\text {- }}$ Alticinae-${ }^{-} \mathrm{sp}_{-}^{-112}$	S679		ECSF	L2	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-3955-A l t i c i n a e-}{ }^{-}{ }^{-}{ }_{-112}$	S679		ECSF	L2	31.01 .2012	Sweep Netting
BT-3957-Galerucinae_-sp_066	S680	KR425382	ECSF	L2	31.01 .2012	Beating
$\mathrm{BT}_{-}^{-3958-}{ }^{-}$Eumolpinae-sp-019	S681	KR424885	ECSF	L2	31.01 .2012	Hand-Coll.(S)
BT-3959-Galerucinae- ${ }^{-}{ }^{-}{ }^{-} 069$	S681	KR425383	ECSF	L2	31.01 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-3960}$ - Alticinae sp ${ }^{\text {c }}$ - $0 \overline{96}$	${ }_{\text {S } 681}$	KR425186	ECSF	L2	31.01 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-3961-}{ }^{\text {- Cassidinae }}$ - $\mathrm{s} \overline{\mathrm{p}}$ - 004	S681	KR424792	ECSF	L2	31.01 .2012	Hand-Coll. (S)
	S682		ECSF	U6	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-} 3963{ }^{-}$Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-} 085$	S682	KR425187	ECSF	U6	31.01 .2012	Sweep Netting
$\mathrm{BT}^{-3964-A l t i c i n a e-}{ }^{-}{ }^{-}{ }^{-} 045$	S683	KR425188	ECSF	U6	31.01 .2012	Beating
BT-3965-Galerucinàe_-sp_034	S683		ECSF	U6	31.01 .2012	Beating
$\mathrm{BT}^{-} 3966_{-}^{-}$Galerucinae--sp-034	S683		ECSF	U6	31.01 .2012	Beating
$\mathrm{BT}^{-} 3967_{-}^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 034$	S683		ECSF	U6	31.01 .2012	Beating
$\mathrm{BT}^{-3968-E u m o l p i n a e-s p-061 ~}$	${ }_{\text {S } 683}$		ECSF	U6	31.01 .2012	Beating
BT-3969-Alticinae_sp ${ }^{\text {P }} 096$	S683	KR425189	ECSF	U6	31.01 .2012	Beating
$\mathrm{BT}^{-} 3970-$ Alticinae_-sp-085	S683	KR425190	ECSF	U6	31.01 .2012	Beating
$\mathrm{BT}^{-} 3971{ }^{-}$-Galerucinae - ${ }^{\text {sp }}{ }^{\text {c }} 026$	S684	KR425384	ECSF	U6	31.01.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 3972$ - Alticinae _sp ${ }^{\text {- }} 2 \overline{31}$	S686		Cajanuma	L6	03.02 .2012	Beating
$\mathrm{BT}^{-3973-A l t i c i n a e-s p-248}$	S694	KR425191	Cajanuma	U2	03.02 .2012	Sweep Netting
$\mathrm{BT}^{-3974-A l t i c i n a e-s p-094}$	S695	KR425192	Cajanuma	U2	03.02. 2012	Beating
$\mathrm{BT}^{-3975-}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-172}$	S697	KR425193	Cajanuma	L4	03.02.2012	Sweep Netting
$\mathrm{BT}^{-3976}$-Eumolpinàe_ ${ }^{\text {sp }}$ - 050	S700	KR424886	Bombuscaro	L4	06.02.2012	Sweep Netting
BT-3977-Hispinae _sp_olv	S701	KR424806	Bombuscaro	L4	06.02 .2012	Beating
BT-3986-Galerucinae_-sp_007	S705		Bombuscaro	U4	06.02.2012	Hand-Coll. (S)
$\mathrm{BT}^{-3988}{ }^{-}$Eumolpinae- ${ }^{-10}{ }^{-} 059$	${ }^{\text {S }} 706$	KR424887	Bombuscaro	L5	06.02 .2012	Sweep Netting
BT-3989-Alticinae_sp ${ }^{\text {BJ3 }}$	${ }^{\text {S7 }} 706$	KR425194	Bombuscaro	L5	06.02.2012	Sweep Netting
BT-3990-Alticinae-sp-173	S706	KR425195	Bombuscaro	L5	06.02 .2012	Sweep Netting
$\mathrm{BT}^{-3994}$ - ${ }^{\text {Hispinae }}$-sp-015	S713		Bombuscaro	L6	06.02 .2012	Beating
$\mathrm{BT}^{-3995}$-Galerucinae_sp 074	S715	KR425385	Bombuscaro	U6	06.02.2012	Sweep Netting
	S715	KR425196	Bombuscaro	U6	06.02 .2012	Sweep Netting
BT-3998-Galerucinae_-sp_007	S716	KR425386	Bombuscaro	U6	06.02.2012	${ }_{\text {Beating }}^{\text {Beating }}$
$\mathrm{BT}^{-3999}$-Alticinae_sp_ $0 \overline{0} 9$	S717	KR425197	Bombuscaro	U6	06.02.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4000-$ Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 175$	S718	KR425198	ECSF	U2	09.02.2012	Sweep Netting
$\mathrm{BT}^{-} 4001{ }^{-}$Alticinae- ${ }^{-}{ }^{-} 175$	S718		ECSF	U2	09.02.2012	Sweep Netting
BT-4002-Galerucinàe_-sp_066	S719	KR425387	ECSF	U2	09.02 .2012	Beating
$\mathrm{BT}_{-}^{-} 4003^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 083$	S720	KR425388	ECSF	U2	09.02.2012	Hand-Coll.(S)
$\mathrm{BT}_{-}^{-} 4004_{-}^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 083$	S720		ECSF	U2	09.02.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4005^{-}$-Galerucinae ${ }_{-}^{-} \mathrm{sp}^{-} 031$	S720	KR425389	ECSF	U2	09.02.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4006$-Alticinae_sp ${ }^{\text {- }} 251$	S722	KR425199	ECSF	L4	09.02 .2012	Beating
$\mathrm{BT}^{-4007-}{ }^{\text {Alticinae-_sp_145}}$	S722	KR425200	ECSF	L4	09.02 .2012	Beating
	S722	KR425390	ECSF	L4	09.02.2012	Beating
	${ }_{\text {S722 }}$	KR425201 KR424888	$\underset{\text { ECSF }}{\text { ECSF }}$	L4	09.02.2012	${ }_{\text {Beating }}^{\text {Beating }}$
$\mathrm{BT}^{-} 4011$ - Eumolpinae--sp-040	S722		ECSF	L4	09.02.2012	Beating
$\mathrm{BT}^{-} 4012{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{-040}$	S722		ECSF	L4	09.02 .2012	Beating
$\mathrm{BT}^{-} 4013{ }^{-}$Galerucinae-sp-046	S723	KR425391	ECSF	L4	09.02 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4014{ }^{-}$Cassidinae_- ${ }^{\text {sp }}$ _ $\overline{0} 05$	S723	KR424793	ECSF	L4	09.02 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-}$4015-Galerucinae - sp ${ }^{\text {- }}$ - 064	S723	KR425392	ECSF	L4	09.02.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4016{ }^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}^{-} 110$	S723	KR425393	ECSF	L4	09.02.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4017$-Alticinae_sp ${ }^{\text {- }} 104$	S724	KR425202	ECSF	U1	09.02 .2012	Sweep Netting
$\mathrm{BT}^{-} 4018$ - Alticinae-sp-104	S724		ECSF	U1	09.02.2012	Sweep Netting
$\mathrm{BT}^{-4019}{ }^{\text {- Eumolpinae_-sp_039 }}$	S724	KR424889	ECSF	U1	09.02 .2012	Sweep Netting
$\mathrm{BT}^{-4020}$ - Eumolpinae-sp-039	S724		ECSF	U1	09.02 .2012	Sweep Netting
$\mathrm{BT}^{-4021-A l t i c i n a e ~}{ }^{\text {sp }}{ }^{\text {- }}$ - $0 \overline{0} 8$	S725	KR425203	ECSF	U1	09.02 .2012	Beating
$\mathrm{BT}^{-} 4022{ }^{-}$Cassidinae ${ }^{\text {- }}$ s $\overline{\mathrm{p}}_{-} 004$	S726	KR424794	ECSF	U1	09.02 .2012	Hand-Coll. (S)
	S728 S730	KR425204	ECSF	${ }_{\text {L }} \mathrm{L} 6$	09.02 .2012 09.02 .2012	$\xrightarrow[\text { Beating }]{\text { Beep Netting }}$
BT-4032-Hispinae_sp_007	S731	KR424807	ECSF	L6	09.02.2012	Sweating
$\mathrm{BT}^{-} 4033{ }^{\text {-Eumolpinae_-sp_}} 037$	S731		ECSF	L6	09.02.2012	Beating
$\mathrm{BT}^{-} 4035{ }^{-}$Hispinae _sp_003	S732	KR424808	ECSF	L6	09.02 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4036{ }^{-}$Galerucinae -sp ${ }^{\text {- }} 078$	S741	KR425394	Bombuscaro	U3	11.02 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-4047}$ - Alticinae sp ${ }^{\text {d }} 181$	S748	KR425205	Bombuscaro	L3	11.02 .2012	Sweep Netting
$\mathrm{BT}^{-4048}{ }^{-}$Criocerinae ${ }^{\text {- }}{ }^{\text {sp }}{ }^{\text {d }} 001$	S751	KR425417	ECSF	L1	12.02 .2012	Sweep Netting
$\mathrm{BT}^{-4049-A l t i c i n a e ~} \mathrm{~s}^{\text {p }}$ - $1 \overline{1} 5$	S751	KR425206	ECSF	L1	12.02 .2012	Sweep Netting
$\mathrm{BT}^{-4050}$ - Eumolpinae - ${ }^{\text {sp }}$ - 042	S752	KR424890				Beating
	S752 S752	KR424891	$\underset{\text { ECSF }}{\text { ECSF }}$	$\mathrm{L}_{\mathrm{L} 1}$	12.02 .2012 12.02 .2012	${ }_{\text {Beating }}^{\text {Beating }}$
$\mathrm{BT}^{-4053}$ - Eumolpinae - ${ }^{\text {sp }}$ - 065	S752	KR425207	ECSF	L1	12.02 .2012	${ }^{\text {Beating }}$ Beating
$\mathrm{BT}^{-} 4054$-Alticinae_sp $-0 \overline{18}$	S752	KR425208	ECSF	L1	12.02 .2012	Beating
$\mathrm{BT}^{-4055-A l t i c i n a e-}{ }_{\text {- }}{ }^{\text {sp }}$ - 018	S752		ECSF	L1	12.02 .2012	Beating
$\mathrm{BT}^{-4056-A l t i c i n a e-s p-115}$	S752	KR425209	ECSF	L1	12.02 .2012	Beating
	S752		ECSF	L1	12.02 .2012	Beating
$\mathrm{BT}^{-}{ }^{4059} 9^{\text {- }}$ - Alterucinae--sp_107	S753	KR425395	ECSF	L1	12.02.2012	Beating Hand-Colli.(S)
$\mathrm{BT}^{-} 4060-$ Eumolpinae ${ }_{-} \mathrm{sp}^{-}{ }^{-} 038$	S753		ECSF	L1	12.02 .2012	Hand-Coll.(S)
$\mathrm{BT}^{-4061}$ - Alticinae_sp ${ }^{\text {d }} 106$	S754	KR425210	ECSF	L2	12.02 .2012	Sweep Netting
	S755	KR424892	${ }_{\text {ECSF }}$	L2	12.02.2012	Beating
	$\begin{array}{r}\text { S755 } \\ \mathrm{S} 755 \\ \hline\end{array}$		ECSF	$\mathrm{L}_{\mathrm{L} 2}$	12.02 .2012 12.02 .2012	${ }_{\text {Beating }}^{\text {Beating }}$
$\mathrm{BT}^{-} 4065{ }^{-}$Alticinae_-sp-018	S755	KR425212	ECSF	L2	12.02 .2012	Beating
$\mathrm{BT}^{-} 4066_{-}^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 115$	S756	KR425213	ECSF	L2	12.02.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4067^{-}$Alticinae-sp ${ }^{-} 115$	S756		ECSF	L2	12.02 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4182-$ Galerucinae-_sp_092	N149		ECSF		12.09 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 4186^{-}$Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 020$	N151		ECSF		19.09.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 4194{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}{ }_{-}^{-095}$	N155		Bombuscaro		04.10.2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 4195^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 029$	N155		Bombuscaro		04.10 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-1198}{ }^{-}$- Criocerinae-sp ${ }^{-1002}$	N155		Bombuscaro		04.10.2011	Hand-Coll. (N)
$\mathrm{BT}^{-4207-C a s s i d i n a e-s p ~}{ }^{\text {- }} 021$	N155		Bombuscaro		04.10 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 4208$ - Galerucinae -sp _028	N155		Bombuscaro		04.10 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-4209}{ }^{\text {- Criocerinae-sp }}$ - 007	N155		Bombuscaro		04.10 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}$4215-Alticinae_sp ${ }^{\text {- }} 2 \overline{3} 9$	N157		Cajanuma		11.10 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 4216{ }^{-}$Alticinae-sp_-187	N157		Cajanuma		11.10 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 4217^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 262$	N157		Cajanuma		11.10 .2011	Hand-Coll. (N)
	N162		ECSF		13.10 .2011	Hand-Coll.( N )
	N163 N163		$\underset{\text { ECSF }}{\text { ECSF }}$		18.10.2011 18.10 .2011	Hand-Coll.(N)
					Continu	n next page(

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr .	$\underset{\text { Area }}{\text { Sampling }}$	$\begin{aligned} & \text { Site/ } \\ & \text { Plot } \end{aligned}$	$\underset{\text { Date }}{\text { Sampling }}$	Sampling   Method
BT_4294_Hispinae_sp_020	N172		Bombuscaro		08.11 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{4295}{ }^{\text {- Galerucinae-sp }} 029$	N172		Bombuscaro		08.11 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{4306}{ }^{-}$Cassidinae - ${ }^{\text {sp }}{ }^{\text {- }} 19$	N172		Bombuscaro		08.11 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{\text {4321-Galerucinae }}$-s ${ }^{\text {- }}$ - 017	N175		ECSF		17.11.2011	Hand-Coll. (N)
$\mathrm{BT}^{-}{ }^{\text {4344 }}{ }^{-}$Galerucinae ${ }_{-} \mathrm{sp}^{-} 011$	N179		ECSF	L6	28.11.2011	Malaise Trap
$\mathrm{BT}^{-} 4350-$ Alticinae_sp_218	N179		ECSF	L6	28.11.2011	Malaise Trap
${ }^{\mathrm{BT}}{ }^{-4351}$ - Galerucinae ${ }^{\text {a }}$ - ${ }^{\text {dp }} 017$	N179		ECSF	${ }_{\text {L6 }} 6$	28.11.2011	Malaise Trap
	N184		Bombuscaro	L2	28.11.2011	Flight-Intercept.
$\mathrm{BT}^{-} 4421_{-}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 223$	N193		Bombuscaro		21.12 .2011	Hand-Coll. (N)
$\mathrm{BT}^{-} 4434{ }^{-}$Alticinae-sp-163	N194		ECSF	L6	26.12 .2011	Malaise Trap
$\mathrm{BT}^{-} 4468$ - Galerucinàe_- ${ }^{\text {sp }}$ - 007	N195		ECSF	U1	26.12.2011	Malaise Trap
BT-4477-Alticinae_sp_155	N201		Bombuscaro	U2	28.12 .2011	Malaise Trap
$\mathrm{BT}^{-} \mathrm{4500}^{-}$Galerucinae_-sp_097	N207		Bombuscaro		11.01.2012	Hand-Coll. (N)
BT-4509-Cassidinae_sp ${ }^{\text {- }} 18$	N207		Bombuscaro		11.01.2012	Hand-Coll.(N)
	N208		Cajanuma		16.01.2012	Hand-Coll. (N)
$\mathrm{BT}^{-} 4511-$ Alticinae_-sp_- 229	N208		Cajanuma		16.01.2012	Hand-Coll. (N)
$\mathrm{BT}^{-} 4550-$ Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 220$	N216		ECSF	L6	27.01.2012	Malaise Trap
$\mathrm{BT}^{-} 4572-$ Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 219$	N223		ECSF		30.01.2012	Light Trap
$\mathrm{BT}^{-}{ }^{\text {4581-}}$-Galerucinae_-sp_005	N223		ECSF		30.01.2012	Light Trap
$\mathrm{BT}^{-}{ }^{\text {4605 }}$ - Galerucinae- ${ }^{-} \mathrm{sp}_{-}^{-110}$	N225		ECSF		31.01.2012	Hand-Coll.(N)
BT-4684-Cassidinae_ ${ }^{\text {sp }}$ - ${ }^{\text {- }} 01$	N234		ECSF		09.02.2012	Hand-Coll. (N)
$\mathrm{BT}^{-} \mathrm{4687}^{-}$Galerucinae ${ }^{\text {- }} \mathrm{s} \overline{\mathrm{p}}^{\text {- }} 036$	N234		ECSF		09.02.2012	Hand-Coll.(N)
	S760	KR425214	Cajanuma	U4	16.02.2012	Sweep Netting
$\mathrm{BT}^{-4733}$-Eumolpinae ${ }^{\text {sp }}$ - 068	S760	KR424893	Cajanuma	U4	16.02.2012	Sweep Netting
$\mathrm{BT}^{-} 4734$-Alticinae_sp ${ }^{172}$	S763	KR425215	Cajanuma	U5	16.02.2012	Sweep Netting
BT-4735-Alticinae-sp 235	${ }^{\text {S763 }}$	KR425216	Cajanuma	U5	16.02.2012	Sweep Netting
	S766 S767	KR425217	Cajanuma	U6	16.02 .2012 16.02 .2012	Sweep Netting Beating
$\mathrm{BT}^{-4738-A l t i c i n a e-s p-172 ~}$	S767		Cajanuma	U6	16.02.2012	Beating
$\mathrm{BT}^{-} 4739^{-}$Eumolpinae_-sp_024	S769	KR424894	Bombuscaro	U4	27.02.2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {4740 }}$ - Eumolpinae-${ }^{-} \mathrm{sp}^{-} 024$	S769	KR424895	Bombuscaro	U4	27.02.2012	Sweep Netting
$\mathrm{BT}^{-} 4741$ - Alticinae_sp_073	S772		Bombuscaro	U5	27.02.2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{4742}{ }^{-}$Eumolpinae_- ${ }^{\text {sp }}$ - 024	S772	KR424896	Bombuscaro	U5	27.02.2012	Sweep Netting
$\mathrm{BT}^{-} 4743$-Alticinae_sp ${ }^{-1 \overline{8}}$	S775	KR425219	Bombuscaro	U6	27.02.2012	Sweep Netting
BT- ${ }^{-1744}$ - Eumolpinae_-sp_056	S781	KR424897	Bombuscaro	U2	29.02.2012	Sweep Netting
$\mathrm{BT}^{-} 4745$ - Galerucinae-sp-080	S781		Bombuscaro	U2	29.02. 2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {4746 }}{ }^{-}$Eumolpinae-${ }_{-}^{\text {sp }}{ }_{-}^{-024}$	S781	KR424898	Bombuscaro	U2	29.02.2012	Sweep Netting
$\mathrm{BT}^{-} 4747^{-}$Galerucinae_-sp-074	S781	KR425396	Bombuscaro	U2	29.02.2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {4748 }}{ }^{-}$Eumolpinae-${ }_{-}^{\text {sp }}{ }_{-}^{-024}$	S782	KR424899	Bombuscaro	U2	29.02.2012	Beating
$\mathrm{BT}^{-} 4749^{-}$- ${ }^{\text {alerucinae }}{ }_{-} \mathrm{sp}_{-}^{-} 074$	S785	KR425397	Bombuscaro	U3	29.02.2012	Beating
	S785	KR424900	Bombuscaro	U3	29.02.2012	Beating
$\mathrm{BT}^{-}$4751-Alticinae_sp ${ }^{-}$- 253	S787	KR425220	Bombuscaro	L4	06.03.2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {4753 }}$-Eumolpinae_- ${ }^{\text {sp }}{ }^{\text {- }} 038$	S788		Bombuscaro	L4	06.03.2012	Beating
BT-4754-Alticinae_sp $-1 \overline{95}$	S788	KR425221	Bombuscaro	L4	06.03.2012	Beating
BT-4772-Alticinae-sp-009	S793	KR425222	Bombuscaro	L6	06.03.2012	Sweep Netting
$\mathrm{BT}^{-} 4773{ }^{-}$Alticinae-sp_-127	S793	KR425223	Bombuscaro	L6	06.03.2012	Sweep Netting
	S794	KR425224	Bombuscaro	L6	06.03.2012	Beating
$\mathrm{BT}^{-} 4775^{-}$Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-}} 211$	S795	KR425225	Bombuscaro	L6	06.03.2012	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{\text {4776 }}{ }^{-}$Galerucinae_-sp 029	S798	KR425398	Bombuscaro	L1	08.03.2012	Hand-Coll. (S)
BT- ${ }^{-} 7777^{-}$Alticinae_sp_183	S799		Bombuscaro	L2	08.03.2012	Sweep Netting
$\mathrm{BT}^{-} 47788^{-}$Alticinae-sp-181	S799	KR425226	Bombuscaro	L2	08.03.2012	Sweep Netting
$\mathrm{BT}^{-} 4779^{-}$-Galerucinae_-sp 106	S800	KR425399	Bombuscaro	L2	08.03.2012	Beating
$\mathrm{BT}^{-} 4780{ }^{-}$-Alticinae_sp_ 252	S800	KR425227	Bombuscaro	L2	08.03.2012	Beating
BT- 4781 - Alticinae_-sp_141	S801		Bombuscaro	L2	08.03.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4782^{-}$Galerucinae_-sp_029	S801	KR425400	Bombuscaro	L2	08.03.2012	Hand-Coll. (S)
BT- ${ }^{\text {a }} 783$ - Hispinae _sp_ 016	S802	KR424809	Bombuscaro	L3	08.03.2012	Sweep Netting
BT-4784-Alticinae_sp_245	S805		Cajanuma	L1	13.03.2012	Sweep Netting
BT-4785-Hispinae-sp-027	S806		Cajanuma	L1	13.03.2012	Beating
$\mathrm{BT}^{-} 4786{ }^{-}$Alticinae_-sp_- 172	S814	KR425228	Cajanuma	L4	15.03.2012	Sweep Netting
$\mathrm{BT}^{-} 4787^{-}$Alticinae-sp-172	S814		Cajanuma	L4	15.03.2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{4788}{ }^{\text {- Eumolpinae }}{ }^{\text {sp }}$ - 058	S814	KR424901	Cajanuma	L4	15.03.2012	Sweep Netting
BT-4789-Alticinae_sp ${ }^{\text {- }} 172$	S815	KR425229	Cajanuma	L4	15.03.2012	Beating
$\mathrm{BT}^{\text {- }}$ - 7890 - Alticinae-sp-189	${ }_{S}^{5817}$	KR425230	Cajanuma	L5	15.03.2012	Sweep Netting
	S818	KR425231	Cajanuma	${ }_{\text {L } 6}$	15.03.2012	Beating Beating
$\mathrm{BT}^{-} 4793$-Alticinae-sp_- 263	S823	KR425233	ECSF	L4	20.03.2012	Sweep Netting
$\mathrm{BT}^{-} 4794{ }^{-}$Alticinae-${ }_{\text {- }}{ }_{-}^{-} 198$	S823	KR425234	ECSF	L4	20.03.2012	Sweep Netting
$\mathrm{BT}^{-} 4795^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 249$	S823	KR425235	ECSF	L4	20.03.2012	Sweep Netting
$\mathrm{BT}^{-} 4796^{-}$Alticinae-sp- ${ }^{-161}$	S824		ECSF	L4	20.03.2012	Beating
$\mathrm{BT}^{-}{ }^{\text {4797 }}$ - Galerucinàe_sp 034	S824	KR425401	ECSF	L4	20.03.2012	Beating
$\mathrm{BT}^{-} 4798^{-}$Alticinae sp- 115	S824	KR425236	ECSF	L4	20.03.2012	Beating
$\mathrm{BT}^{-} 4799^{-}$Eumolpinae_- ${ }^{\text {sp }}$ - 038	S824		ECSF	L4	20.03.2012	Beating
$\mathrm{BT}^{-}{ }^{4800}$ - Alticinae_sp ${ }^{\text {din }}$	S824	KR425237	ECSF	L4	20.03 .2012	Beating
$\mathrm{BT}^{-4801}$-Alticinae-sp-104	S824	KR425238	ECSF	L4	20.03.2012	Beating
$\mathrm{BT}^{-}$4802 $^{-}$Eumolpinae_- ${ }^{\text {sp }}$ - 038	S826		ECSF	L5	20.03.2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{4803}{ }^{-}$Alticinae_sp_ ${ }^{101}$	S826	KR425239	ECSF	L5	20.03.2012	Sweep Netting
$\mathrm{BT}^{-} 4804{ }^{-}$Alticinae_-sp_115	S826	KR425240	ECSF	L5	20.03.2012	Sweep Netting
$\mathrm{BT}^{-4805-}{ }^{-}$Alticinae-sp_-115	S827	KR425241	ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-} 4806^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-115}$	S827		ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-} 4807$ - Eumolpinàe_ ${ }^{\text {sp }}{ }^{\text {c }} 042$	S827	KR424902	ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-} 4808$-Alticinae $\mathrm{sp}^{\text {d }} 018$	S827	KR425242	ECSF	L5	20.03 .2012	Beating
	S827 S 827	KR425402	$\underset{\text { ECSF }}{\text { ECSF }}$	${ }_{\text {L5 }}$	20.03.2012 20.03.2012	Beating Beating
	S827	KR425244	ECSF	L5	20.03 .2012	Beating
$\mathrm{BT}^{-} 4812$ - Alticinae ${ }^{-} \mathrm{sp}^{-} 101$	S827	KR425245	ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-4813-A l t i c i n a e-s p-198 ~}$	S827	KR425246	ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-4814-A l t i c i n a e-s p-199}$	S827	KR425247	ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-} 4815{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 086$	S827	KR425248	ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-4816-A l t i c i n a e-s p-086}$	S827		ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-4817-A l t i c i n a e-s p-086 ~}$	S827		ECSF	L5	20.03.2012	Beating
$\mathrm{BT}^{-}{ }^{\text {4851-}}$ - Eumolpinae_- ${ }^{\text {sp }}{ }^{\text {- }} 024$	S845	KR424903	Bombuscaro	U1	29.03.2012	Beating
	S853	KR425249	Cajanuma	U4	03.04.2012	Sweep Netting
	S853 S 854	KR425250	Cajanuma	U4	03.04.2012	Sweep Netting
$\mathrm{BT}^{\text {BT }}{ }^{48589}$ - Alticinae - sp ${ }^{\text {sp }}-187$	S862	KR425252	Bombuscaro	U4	05.04.2012	Beating Sweep Netting
$\mathrm{BT}^{-} \mathrm{4860}^{-}$- Eumolpinae_- ${ }^{\text {sp }}$ - 046	S863	KR424904	Bombuscaro	U4	05.04.2012	Beating
$\mathrm{BT}^{-}{ }^{\text {4861-Alticinae_sp_}}{ }^{1 / 49}$	S863	KR425253	Bombuscaro	U4	05.04.2012	Beating
$\mathrm{BT}^{-} 48622^{-}$Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-} 149$	S863	KR425254	Bombuscaro	U4	05.04.2012	Beating
$\mathrm{BT}^{-4863-A l t i c i n a e-}{ }^{\text {- }}$ - ${ }^{-168}$	S863	KR425255	Bombuscaro	U4	05.04.2012	Beating
$\mathrm{BT}^{-} 4864{ }^{-}$Alticinae-sp-149	S863	KR425256	Bombuscaro	U4	05.04.2012	Beating
BT-4867 - Galerucinàe_sp_003	S866		Bombuscaro	U5	05.04.2012	Beating
BT-4875-Criocerinae-sp -009	S868		Bombuscaro	U6	05.04.2012	Sweep Netting
$\mathrm{BT}^{-4885}$ - Galerucinae ${ }^{-} \mathrm{sp}^{-} 056$	S871	KR425403	Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-4886}{ }^{-}$Alticinae_sp ${ }^{121}$	S871	KR425257	Bombuscaro	L4	10.04.2012	Sweep Netting
	${ }_{\text {S }}^{\text {S }} 871$	KR425258	Bombuscaro	L4	10.04.2012	Sweep Netting
	${ }_{\text {S }}^{\text {S } 871}$	KR424905	Bombuscaro Bombuscaro	$\mathrm{L} 44^{\text {L4 }}$	10.04.2012 10.04 .2012	Sweep Netting Sweep Netting
$\mathrm{BT}^{-} 4890$ - Alticinae-sp-051	S871		Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-}$4891-Galerucinae_- ${ }^{\text {- }}$ - 087	S871	KR425404	Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-} 4892$ - Alticinae_sp ${ }^{1449}$	S871	KR425260	Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-4893-A l t i c i n a e-s p-149}$	S871		Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-} 4894{ }^{-}$Alticinae-sp_${ }_{-}^{-149}$	S871		Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-} 4895{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-149}$	S871		Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-} \mathrm{4896}^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 149$	S871		Bombuscaro	L4	10.04.2012	Sweep Netting
					Continu	on next page(s)

Table C. 1 - continued from previous page(s)

SpecimenID	$\underset{\text { ID }}{\text { Sample }}$	GenBank   Acc. Nr.	Sampling Area	Site/ Plot	$\underset{\text { Date }}{\text { Sampling }}$	Sampling Method
BT_4897_Alticinae_sp_149	S871		Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{4898}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{168}$	S871	KR425261	Bombuscaro	L4	10.04.2012	Sweep Netting
BT-4899-Alticinae-sp-168	S871		Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-} 4900-$ Alticinae - $\mathrm{sp}_{-}^{-} 151$	S871	KR425262	Bombuscaro	L4	10.04 .2012	Sweep Netting
BT-4901-Galerucinàe_sp_057	S871	KR425405	Bombuscaro	L4	10.04.2012	Sweep Netting
$\mathrm{BT}^{-4902}{ }^{-}$Galerucinae- $\mathrm{sp}^{-}$-057	S871		Bombuscaro	L4	10.04 .2012	Sweep Netting
	S872	KR425263	Bombuscaro	L4	10.04 .2012	Beating
${ }_{\text {BT }}{ }^{\text {BT }}{ }_{4}^{4904-}{ }^{\text {- }}$ Alticinae - ${ }^{\text {sp }}$ - ${ }^{267}$	${ }_{\text {S } 872}$	KR425264	Bombuscaro Bombuscaro	$\stackrel{\mathrm{L} 4}{\mathrm{~L} 4}$	10.04.2012	Beating Beating
$\mathrm{BT}^{-} 4906^{-}$Alticinae- ${ }^{\text {- }}$ - ${ }^{-}{ }_{211}$	S873	KR425265	Bombuscaro	L4	10.04.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4907$ - Alticinae-sp-211	S873		Bombuscaro	L4	10.04.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4908$ - Hispinae_sp_013	S873	KR424810	Bombuscaro	L4	10.04.2012	Hand-Coll. (S)
BT-4909-Alticinae-sp-025	S873	KR425266	Bombuscaro	L4	10.04.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4910-$ Alticinae-sp-149	S873	KR425267	Bombuscaro	L4	10.04.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4911$ - Alticinae-sp_057	S873	KR425268	Bombuscaro	L4	10.04.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4912-$ Alticinae ${ }^{-} \mathrm{sp}^{-} 086$	S873	KR425269	Bombuscaro	L4	10.04 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-4914}$-Galerucinae_sp 003	S874	KR425406	Bombuscaro	L5	10.04.2012	Sweep Netting
$\mathrm{BT}^{-4915-A l t i c i n a e ~} \mathrm{sp}^{-} \mathbf{-} 050$	S874	KR425270	Bombuscaro	L5	10.04 .2012	Sweep Netting
BT-4916-Eumolpinae_sp 063	S874	KR424906	Bombuscaro	L5	10.04.2012	Sweep Netting
BT-4917-Alticinae_sp_ ${ }^{-166}$	S875	KR425271	Bombuscaro	L5	10.04 .2012	Beating
$\mathrm{BT}^{-4918}$-Alticinae-sp-050	S875	KR425272	Bombuscaro	L5	10.04 .2012	Beating
	S875	KR424907	Bombuscaro	L5	10.04 .2012	Beating
BT-4920-Alticinae_sp_057	S875	KR425273	Bombuscaro	L5	10.04.2012	Beating
$\mathrm{BT}^{-} 4921$ - Alticinae-sp-057	S875		Bombuscaro	L5	10.04 .2012	Beating
$\mathrm{BT}^{-} 49222^{-}$Alticinae-sp-009	S877		Bombuscaro	L6	10.04.2012	Sweep Netting
	S877	KR425407	Bombuscaro	L6	10.04.2012	Sweep Netting
BT-4924-Alticinae_sp_ ${ }^{\text {- }} 051$	S877	KR425274	Bombuscaro	L6	10.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4925$-Alticinae-sp-102	S878	KR425275	Bombuscaro	L6	10.04 .2012	Beating
$\mathrm{BT}^{-} 4926{ }^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-} 025$	S879	KR425276	Bombuscaro	L6	10.04.2012	Hand-Coll. (S)
$\mathrm{BT}^{-}{ }^{4927}{ }^{-}$Alticinae- ${ }^{-\mathrm{sp}_{-}^{-} 268}$	S880	KR425277	Cajanuma	L1	12.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4928$ - Alticinae-_sp_172	S882	KR425278	Cajanuma	L1	12.04.2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4929{ }^{-}$Alticinae- ${ }^{-1}{ }^{-} 172$	S884	KR425279	Cajanuma	L2	12.04 .2012	Beating
BT-4930-Alticinae-sp_172	S884	KR425280	Cajanuma	L2	12.04 .2012	Beating
$\mathrm{BT}^{-} 4931$ - Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-} 244$	S888	KR425281	Cajanuma	L3	12.04 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-} 4937-$ Alticinae - ${ }^{\text {sp }}{ }_{-127}$	S892	KR425282	Bombuscaro	U3	17.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4938{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-149}$	S893	KR425283	Bombuscaro	U3	17.04 .2012	Beating
BT-4939-Alticinae-sp-149	S893		Bombuscaro	U3	17.04 .2012	Beating
$\mathrm{BT}^{-} 4940-$ Alticinae $-\mathrm{sp}{ }_{-}^{-} 059$	S893	KR425284	Bombuscaro	U3	17.04 .2012	Beating
$\mathrm{BT}^{-} 4941$ - Alticinae- ${ }^{-} \mathrm{sp}_{-127}^{-127}$	S893	KR425285	Bombuscaro	U3	17.04 .2012	Beating
$\mathrm{BT}^{-} 4942-$ Alticinae $-\mathrm{sp}{ }_{-102}$	S893	KR425286	Bombuscaro	U3	17.04 .2012	Beating
BT-4944-Alticinae-sp-150	S895	KR425287	ECSF	L3	19.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4945$ - Eumolpināe_sp_002	S895		ECSF	L3	19.04 .2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{\text {4946 }}{ }^{-}$Eumolpinae ${ }_{-}^{\text {sp }}{ }^{-} 034$	S895		ECSF	L3	19.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4947$ - Alticinae_sp_199	S895	KR425288	ECSF	L3	19.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4948$ - Alticinae- ${ }^{-} \mathrm{sp}^{-150}$	S896	KR425289	ECSF	L3	19.04.2012	Beating
$\mathrm{BT}^{-4949}$ - Alticinae-sp-150	S896	KR425290	ECSF	L3	19.04.2012	Beating
$\mathrm{BT}^{-} 4950{ }^{-}$Galerucinae - ${ }^{\text {sp }}$ - 088	S896	KR425408	ECSF	L3	19.04.2012	Beating
BT-4951-Alticinae_sp_061	S896	KR425291	ECSF	L3	19.04 .2012	Beating
$\mathrm{BT}^{-} 4952^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-150}$	S896	KR425292	ECSF	L3	19.04 .2012	Beating
BT-4953-Alticinae-sp_199	S896	KR425293	ECSF	L3	19.04 .2012	Beating
$\mathrm{BT}^{-} 4954$ - Alticinae- $\mathrm{sp}_{-199}^{-}$	S896		ECSF	L3	19.04.2012	Beating
$\mathrm{BT}^{-} 4955^{-}$Alticinae-sp-199	S896		ECSF	L3	19.04 .2012	Beating
BT-4956-Alticinae_sp_086	S896	KR425294	ECSF	L3	19.04 .2012	Beating
$\mathrm{BT}^{-4957-A l t i c i n a e-s p-150 ~}$	S898	KR425295	ECSF	U3	19.04.2012	Sweep Netting
$\mathrm{BT}^{-} 49588^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-133}^{-}$	S898	KR425296	ECSF	U3	19.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4960-$ Alticinae ${ }^{\text {- }} \mathrm{sp}-086$	S898	KR425297	ECSF	U3	19.04.2012	Sweep Netting
$\mathrm{BT}^{-} 4961$ - Alticinae- ${ }^{\text {sp }}{ }^{-} 086$	S898		ECSF	U3	19.04.2012	Sweep Netting
$\mathrm{BT}^{-4962}$ - Alticinae-sp-086	S898		ECSF	U3	19.04 .2012	Sweep Netting
$\mathrm{BT}^{-} 4963-$ Alticinae $-\mathrm{sp}_{-}^{-} 215$	S899	KR425298	ECSF	U3	19.04.2012	Beating
$\mathrm{BT}^{-}$4964-Alticinae ${ }^{\text {- }}{ }^{\text {dp }}{ }^{-150}$	S899	KR425299	ECSF	U3	19.04.2012	Beating
$\mathrm{BT}^{-1965}$ - Eumolpināe $\overline{\text { sp }} 034$	S899		ECSF	U3	19.04 .2012	Beating
$\mathrm{BT}^{-4966-A l t i c i n a e ~}{ }^{\text {sp }}$ - 008	S899	KR425300	ECSF	U3	19.04.2012	Beating
	S899		ECSF	U3	19.04 .2012	Beating
BT-4968-Eumolpinae-sp ${ }^{-} 038$	S899		ECSF	U3	19.04.2012	Beating
$\mathrm{BT}^{-} 4969$ - Alticinae sp ${ }^{\text {- }} 0{ }^{\text {¢ }} 5$	S900	KR425301	ECSF	U3	19.04 .2012	Hand-Coll. (S)
$\mathrm{BT}^{-4970}$-Galerucinàe $\overline{\mathrm{s} p} 081$	S901	KR425409	Bombuscaro	U5	24.04 .2012	Sweep Netting
BT-4971-Alticinae_sp_ 19.92	S901	KR425302	Bombuscaro	U5	24.04 .2012	Sweep Netting
$\mathrm{BT}^{-}{ }^{4972}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 050$	S902	KR425303	Bombuscaro	U5	24.04 .2012	Beating
$\mathrm{BT}^{-} \mathrm{4986}^{-}$-Galerucinae_- ${ }^{\text {sp }} 101$	S908		Bombuscaro	L4	24.04 .2012	Beating
BT-4994-Alticinae sp ${ }^{\text {- }} 172$	S911	KR425304	Cajanuma	L1	26.04.2012	Beating
BT-4995-Galerucināe_sp_103	S918	KR425410	Cajanuma	U3	26.04 .2012	Hand-Coll. (S)
BT-5029-Galerucinae_sp ${ }^{\text {- }} 099$	N242		Bombuscaro		27.02 .2012	Hand-Coll. (N)
$\mathrm{BT}_{-}^{-} 5122_{-}^{-}$Alticinae_sp_ ${ }^{-} \overline{2 / 1}^{\text {d }}$	N266		Bombuscaro		24.04.2012	Hand-Coll.(N)

## Outgroup specimens:

Species	SequenceID/Accession Nr.	Source
Anthonomus eugenii	SequenceID ARBCP010-10	BOLD
Dichromacalles dromedarius	Accession number GU987917	GenBank
Acalles camelus	Accession number GU987989	GenBank

## Additional information: Data sets

## Table D.1: Specimen list with data sets for which the specimen was

 used.| Specimen | 1 | 1b | 2 | 2a | 2b | 3 | 3a | 3b | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BT_0001_Eumolpinae_sp 001 | X | X | X | X | X |  |  |  | X |
|  | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0003^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{-} 042$ |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0003 \overline{\mathrm{a}}$ Alticinae ${ }^{\text {e }}$ - $\mathrm{p}_{-} 042$ |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0004$ _Eumolpinae _s ${ }^{\text {c }}$ - 042 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0005$-Galerucinae-_sp-040 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0006_{-}^{-}$Galerucinae- ${ }^{\text {- }}{ }^{-}{ }_{-}^{-} 040$ |  |  |  | X |  |  |  |  |  |
|  |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-0007}$-Galerucinae $\overline{\text { sp }}$ - 038 | $\mathrm{X}_{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{X}}$ | $\mathrm{X}_{\mathrm{x}}$ | X | X |  |  |  | $\underset{\mathrm{X}}{\mathrm{X}}$ |
| $\mathrm{BT}^{-0008-A l t i c i n a e ~-~} \mathrm{sp}_{-} 243$ | X | X | X | X | X |  |  |  | X |
| BT-0009-Eumolpināe_sp_022 | X |  | X | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0010^{-}$Eumolpinae ${ }_{-}^{\text {sp }}{ }^{-} 022$ |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-}$-0011-Eumolpinae ${ }^{-} \mathrm{sp}^{-}{ }^{-022}$ |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0012{ }^{-}$Eumolpinae-${ }_{-} \mathrm{sp}_{-}^{-} 021$ | X | X | X | X | X |  |  |  | X |
| BT-0013-Eumolpinae-sp-021 |  |  |  | X |  |  |  |  |  |
|  |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0015{ }^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 076$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0016{ }^{-}$Galerucinae- $\mathrm{sp}_{-}^{-} 076$ |  |  |  | X |  |  |  |  |  |
| BT-0017-Alticinae_sp_0 ${ }^{-}$- ${ }^{\text {a }}$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0018$-Alticinae-sp-043 |  |  |  | X |  |  |  |  |  |
| BT-0019-Alticinae-sp-043 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0020-$ Alticinae-sp-043 |  |  |  | X |  |  |  |  |  |
| BT-0021-Alticinae-sp-007 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 00222^{-}$Alticinae-sp-219 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0024{ }^{-}$Galerucinae_- ${ }^{\text {sp }}$ _ 001 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0025{ }^{-}$Galerucinae- $\mathrm{sp}_{-}^{-} 001$ |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0026^{-}$Galerucinae-_sp-001 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0027_{-}^{-}$Galerucinae-_sp-001 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 00288^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 001$ |  |  |  | X |  |  |  |  |  |
| BT-0029-Galerucinae_sp_001 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0030^{-}$Galerucinae--sp-001 |  |  |  | X |  |  |  |  |  |
| BT-0031-Galerucinae_sp_001 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0032{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 001$ |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-0033-G a l e r u c i n a e-s p-037 ~}$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0034{ }^{-}$Eumolpinae-sp-014 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-0035-E u m o l p i n a e-s p-006}$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0036$-Galerucinae-sp-011 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-0043-G a l e r u c i n a e-s p-005}$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0044{ }^{-}$Galerucinae-sp-005 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0045^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 005$ |  |  |  | X |  |  |  |  |  |
|  |  |  |  | X |  |  |  |  |  |
| BT-0046_Alticinae_sp_243 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0047{ }^{-}$Alticinae-sp-042 | X | X | X | X | X |  |  |  | X |
| BT-0048-Galerucinae_sp_039 | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0049{ }^{-}$Galerucinae-sp-${ }^{-} 041$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0050-\mathrm{Galerucinae} \overline{\text { sp }}$ p. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0051{ }^{-}$Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0052^{-}$Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0053^{-}$Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0054{ }^{-}$Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| BT-0055-Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0056^{-}$Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0057{ }^{-}$Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0058^{-}$Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| BT-0059-Galerucinae sp. 002 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0060{ }^{-}$Galerucinae sp. 004 |  |  |  | X |  |  |  |  |  |
| BT-0061-Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0062{ }^{-}$Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0063-$ Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0064{ }^{-}$Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0065^{-}$Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0066^{-}$Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0067^{-}$Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0068$-Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| ${ }_{\text {BT }}{ }^{-0069-}{ }^{-}{ }^{-}$Galerucinae sp. 0077 |  |  |  | X |  |  |  |  |  |
| ${ }^{\text {BT }}$ - 0070 - Galerucinae sp. 0071 -Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0072^{-}$Galerucinae sp. 007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0085{ }^{-}$Eumolpinae_sp_048 | X |  | X | X |  |  |  |  |  |
| $\mathrm{BT}^{-0088-G a l e r u c i n a e-s p-007}$ | ${ }_{\mathrm{X}}^{\mathrm{X}}$ | X | X | X | X |  |  |  |  |
| BT-0089-Eumolpinae-sp-001 | X | X | X | X | X |  |  |  | X |
|  | X | X | $\underset{\mathrm{X}}{\mathrm{X}}$ | X X | X ${ }_{\text {X }}$ |  |  |  | X |
|  | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-0093-E u m o l p i n a e-s p-001 ~}$ |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0094{ }^{-}$Galerucinae- $\mathrm{sp}_{-}^{-} 011$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0095^{-}$Cassidinae $\overline{\text { sp }}$ - 001 | X | X | X | X | X |  |  |  | ${ }_{\text {x }}$ |
| ${ }_{\text {BT }}{ }^{\text {BT-0096-Alticinae }}$ - ${ }^{\text {sp }}$ - ${ }^{\text {O10 }}$ | X | X | X | X X | X |  |  |  | X |
|  | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0099{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 007$ | X | X | X | X | X |  |  |  | X |
| $\mathrm{BT}^{-} 0100-$ Galerucinae-sp-007 |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-0101-G a l e r u c i n a e-s p-007 ~}$ |  |  |  | X |  |  |  |  |  |
|  | $\mathrm{X}_{\mathrm{X}}$ | X X | $\mathrm{X}_{\mathrm{X}}$ | X X | X X |  |  |  | X ${ }_{\text {X }}$ |
| BT-0104-Eumolpinae-sp ${ }^{\text {- }}$ - ${ }^{\text {- }}$ |  |  |  | X |  |  |  |  |  |
| BT-0105-Eumolpinae-sp_-038 |  |  |  | X |  |  |  |  |  |
|  |  |  |  | X |  |  |  |  |  |
| $\mathrm{BT}^{-} 0107$ - Galerucinae-sp-046 | X | X | X | X | X |  |  |  | X |
|  | X | X | X | X | X |  |  |  | X |
| BT_010__Alticinae_sp_251 |  |  |  |  |  | inu |  |  |  |


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT 0110 Alticinae sp 087	x	x	x	x	x				X
BT-0111-Alticinae-sp-087				X					
BT-0112-Alticinae-sp-087				X					
	x	x	x	X	x				x
$\mathrm{BT}^{\text {- }}$-115-Alticinae_sp_ 098	x	x	x	x	x				x
	x		x	X					
	X	x	X	X	x				x
BT-0119-Alticinae_sp ${ }^{\text {sp }}{ }^{15}$	X	x	X	X	x				x
	X	x	X	X	x				x
$\mathrm{BT}^{-0122-A l t i c i n a e-s p-107}$				X	x				x
$\mathrm{BT}^{-0123-A l t i c i n a e-s p-129 ~}$	x	x	x	X	x				x
BT-0124-Alticinae-sp ${ }^{-129}$	x	x	x	¢	x				x
$\mathrm{BT}^{-}{ }_{0126}{ }^{\text {Aldicinae }}$ - $\mathrm{sp}^{\text {Ap }}{ }_{123}$	X	x	X	X	x				x
BT-0127-Hispinae-sp_001	X		X	X					
BT-0128-Eumolpi-sae -sp ${ }^{\text {con }}$	x		x	X					
	x	x	x	X	x				x
$\mathrm{BT}^{-0131-G a l e r u c i n a e}{ }^{-\mathrm{sp}}{ }^{-034}$				X					
	X	x	X	¢	x				x
	x	x	x	X	x				x
$\mathrm{BT}^{-0136}{ }^{\text {- Eumolpinae-sp }}$ - 019				X					
	X	x	x	X	x				x
$\mathrm{BT}^{-0139-A l t i c i n a e-}{ }^{\text {sp }}$ - ${ }^{\text {O }} 10$	x	x	x	X	x				x
$\mathrm{BT}^{-0140}$ - Alticinae-sp-028	x	X	X	X	x				${ }^{\mathrm{x}}$
	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X				X
	x	x	x	x	x				x
$\mathrm{BT}^{-} 0147^{-}$Alticinae-sp-062	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X	X				X
${ }^{\text {BT-0148-Alticinae }}$ - ${ }^{\text {sp }}$ - 01496	¢	${ }_{\text {x }} \mathrm{X}$	¢	${ }^{\mathrm{X}}$	X				${ }^{\mathrm{x}}$
$\mathrm{BT}^{-} \mathbf{0 1 5 0}$ - Alticinae-sp-249				X					
BT-0151-Alticinae-sp-249				X					
	x		x	X					
	X	x	x	x	x				x
BT-0155-Alticinae-sp_193	x	x	x	X	x				x
BT-0156- Alticinae -sp ${ }^{\text {- }}$	X	X	X	X					
$\mathrm{BT}^{-0158}{ }^{\text {- Eumolpinae }}$ - ${ }^{\text {sp }}$ - 002	X	x	X	x	x				x
$\mathrm{BT}^{-0159}$ - Galerucinae-sp-096	x	x	x	x	x				x
${ }^{\text {BT-0160 }}$ - ${ }^{\text {Galerucinae }}{ }^{\text {- } \mathrm{sp}^{-}-096}$				X					
BT-0162-Galerucinae ${ }^{\text {- sp }}$ - ${ }^{\text {- }}$				X					
BT-0163-Galerucinae-sp_096				x					
$\mathrm{BT}^{-} 01644^{-}$Galerucinae-sp-096				X					
ST-0165-Galerucinae-sp ${ }^{\text {B }}$				X					
				x					
BT-0168-Galerucinae-sp-096				x					
ST-0169-Galerucinae-sp ${ }^{\text {- }}$				x					
				x					
BT-0172-Galerucinae -sp-096				X					
BT-0173-Galerucinae-sp ${ }^{\text {sp }}$	x	x	x	X	x				x
BT-0175-Galerucinae-sp-046				X					
${ }^{\text {BT-0176- Galerucinae }}$ - ${ }^{\text {sp }}$	x	x	x	X	x				x
$\mathrm{BT}^{-0178}$ - Galerucinae-sp-046				x					
$\mathrm{BT}^{-} 0179 \mathrm{C}^{-}$Galerucinae-sp-046				X					
				X					
$\mathrm{BT}^{-0182}$ - Galerucinae-sp-046				x					
BT-0183-Galerucinae-sp_034	x	x	x	x	x				x
	X	X	x	X					
	${ }_{\text {x }}$	${ }_{\text {x }}$	${ }_{\text {x }}$	X	x				${ }_{\text {x }}$
	x	X	x	桇					
$\mathrm{BT}^{\text {-0195-Galerucinae }}$ - ${ }^{\text {sp }}$ - 045	X	X	X	X	x				
	X	x	X	X	x				x
	X	X	X	X	X				
	X	X	X	X	X				X
$\mathrm{BT}^{-} \mathrm{OL202}^{-}$-Galerucinae_sp_${ }^{\text {O32 }}$	x	x	x	X	x				x
	x		x	¢	x				x
BT-0206-Alticinae ${ }^{-}{ }^{\text {sp }}$ - 085	X	${ }_{\text {x }}$	X	X	${ }^{\mathrm{x}}$				
$\mathrm{BT}^{-0207}{ }^{-}$Galerucinae - ${ }^{\text {sp }}$ - 069	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X	X				X
	¢	${ }_{\mathrm{x}}$	¢	X	X				X
$\mathrm{BT}^{-0210-C a s s i d i n a e-s p-006}$	X		X	X					
	x	X	X	X	X				x
	X	x	X	¢	x				x
$\mathrm{BT}^{\text {B }}$-0214-Alticinae_sp ${ }^{\text {a }}$ - 228	X	x	X	X	X				x
${ }^{\text {BT }}$-0215- ${ }^{\text {Alticinae }}{ }^{\text {sp }}$ - 028				X					
	x		${ }^{\text {x }}$	¢					
BT-0218-Galerucinae-sp-031	x	x	x	X	x				x
	X   X	¢ ${ }_{\text {x }}$	X	¢	X				X
BT-0221-Eumolpinae_-sp 010	X	X	X	X	X				
		X	X	X					
$\mathrm{BT}^{-0222}{ }^{-}$-Cassidinae_sp_ ${ }^{\text {¹ }} 14$	X	X	x	X	x				X
	x	X	x	X	X				
$\mathrm{BT}^{-0230}$ - Eumolpinae ${ }^{\text {sp }}{ }^{\text {a }} 022$	X	X	x	X	x				
	X	x	x	¢	x				x
BT-0233-Alticinae-sp-061	x	X	X	X	x				${ }^{\text {x }}$
	X	-	X	X	x				X
BT-0236-Alticinae-sp-156	x	x	x	x	x				x
	x	x	x	X					
$\mathrm{BT}^{-0240}$ - Eumolpinae-sp-021	x	x	x	X	x				x
	X			X					


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT 0243 Alticinae sp 118	x	X	X	X	x				X
$\mathrm{BT}^{-0244}$-Alticinae-sp_097	x	x	x	x	x				x
	X	X	X	X	X				X
$\mathrm{BT}^{-0247}{ }^{\text {- Criocerinae-sp-001 }}$	X	${ }^{\text {x }}$	X	X	X				-
$\mathrm{BT}^{-0249}$ - Criocerinae-sp-001	$\underset{\mathrm{x}}{\mathrm{x}}$	${ }^{\mathrm{X}}$	X	X	X				x
	X	X	X	X	x				
$\mathrm{BT}^{-0252}$ - ${ }^{\text {Galerucinae - }}$ - ${ }^{\text {sp }}$ - 034	x	x	x	X	x				x
	x	x	x	X	x				x
				X					
$\mathrm{BT}^{-} \mathrm{O256}^{-}$Alticinae $\mathrm{sp}^{-} \mathrm{O}^{3} 1$	X	X	X	x	X				X
	x	X	X	x	X				X
	X	x	X	x	x				x
$\mathrm{BT}^{-0260-E u m o l p i n \bar{e}}$ - ${ }^{\text {spp }}$ - 038	x		x						
$\mathrm{BT}^{-}{ }_{0266}{ }^{\text {- Alticinae }}$ - ${ }^{\text {Pp }} 145$	x	x	x	x	x				
$\mathrm{BT}^{-0267-A l t i c i n a e-s p-029 ~}$	${ }^{\text {x }}$	${ }^{\mathrm{x}}$	x	x	x				x
	X	${ }^{\mathrm{x}}$	X	X	${ }^{\mathrm{x}}$				X
$\mathrm{BT}^{-}{ }^{\text {O270- }}$ Alticinae ${ }^{-}{ }^{\text {sp }}$ - 086	-	-	-	x	,				
$\mathrm{BT}^{-0271-A l t i c i n a e}{ }^{-{ }^{\text {sp }}-064}$	x	x	x	x	x				x
	x	x	x	X	x				x
	x	x	x	x	x				x
$\mathrm{BT}^{-0275-A l t i c i n a e-s p ~}{ }^{-141}$				X					
$\mathrm{BT}^{-} \mathrm{OL276}^{-}$Alticinae-sp ${ }^{-122}$	x	x	x	X	x				x
	x	x	x	x	x				x
BT-0279-Alticinae ${ }_{\text {- }}$	X	X	x	X	X				X
$\mathrm{BT}^{-0280}$ - Eumolpinae - ${ }^{\text {sp }}$ - 022	x		x	x					
	X		X	x					
BT-0283-Eumolpinae ${ }^{\text {- }{ }^{\text {sp }} \text { - } 020}$	x	${ }^{\mathrm{x}}$	X	X	x				x
	X	X	X	X	X				X
	${ }^{\text {x }}$	x	X	${ }^{\mathrm{x}}$	x				
	x	x	¢	x	x				x
BT-0289-Eumolpinae-sp-001	x	x	x	x	x				x
				X					
BT-0292-Galerucinae-sp-076	x	x	x	x	x				x
${ }_{\text {BT }}{ }^{\text {BT }}$ 0294-Galerucinae-sp ${ }^{\text {spalerucinae }}$-sp-076				x					
BT-0295-Galerucinae-sp-031	${ }^{\mathrm{x}}$	x	x	X	X				x
	x	X	x	x	X				X
$\mathrm{BT}^{-0298}$ - Alticinae ${ }^{\text {- } \mathrm{sp}_{-}^{-} 063}$	X	x	X	X	x				x
	X		X	x					
$\mathrm{BT}^{-0301-A l t i c i n a e-s p-083 ~}$	X	x	X	x	X				X
BT-0302-Alticinae ${ }^{\text {sp }}$ - 086				X					
				-					
${ }^{\text {BT }}$ - ${ }^{\text {0305 }}$ - Alticinae_sp ${ }^{\text {sp }} 081$	${ }_{\text {x }}$	x	${ }^{\text {x }}$	${ }^{\text {x }}$	x				x
	x	x	x	x	x				x
BT-0308-Alticinae-sp-018	X		X						
${ }^{\text {BT }}$ - $0309{ }^{\text {a }}$ - Alticinae ${ }^{\text {sp }}$ - ${ }^{256}$	X	x	${ }^{\text {X }}$	${ }^{\times}$	x				x
	x	x	x	X	x				x
$\mathrm{BT}^{\text {-0312 }}$-Eumolpinae ${ }^{-\mathrm{sp}^{-}-021}$	${ }^{\text {x }}$	x	x	x	x				x
	X	X	x	X	X				x
$\mathrm{BT}^{\text {-0318-Alticinae }}{ }^{\text {sp }}$ - 124	X								
	X	x							
$\mathrm{BT}^{\text {- }} 0322$-Alticinae sp ${ }^{143}$	X		X	x		X	x		
	X	x	x	X	x	X	X		
BT-0337-Galerucinae-sp_-056	${ }^{\mathrm{x}}$	x	x	x	x	X	x	x	x
	X	${ }^{\text {x }}$	¢	X	X	-	X	X	-
$\mathrm{BT}^{-} 0340$ - Alticinae-sp-064	X		x	x		X	X		
	X		X	-		X	$\times$		
$\mathrm{BT}^{\text {-0343-Galerucinae }}$-sp-052	x	x	x	X	x	x	X	x	x
	x		x	X		x	X		
	x	x	x	x	x	x	x	x	x
				X			X		
$\mathrm{BT}^{\text {- }} 03499^{-}$Eumolpinae_-sp_020	X	x	X	x	x	X	x	x	x
	x		x	X		x	${ }^{\mathrm{X}}$		
$\mathrm{BT}^{\text {B }}$ O352_Alticinae_sp ${ }^{\text {a }} 130$	x	x	x	X	x	x	X	x	x
BT-0353 Alticinae -sp ${ }^{\text {sp }}$ - ${ }^{\text {a }}$	X	X	X	X	X	X	X		
	x	x	x	X	x	x	X	x	x
$\mathrm{BT}^{-0357-A l t i c i n a e}{ }_{-} \mathrm{sp}_{-} 128$				x			x		
BT-0358_Alticinae_sp_128				X			X		
BT-0359 Alticinae -sp ${ }^{\text {sp }}$ - ${ }^{\text {P28 }}$	X	x	x	X	x	x	X	x	x
	x		x	x		x	x		
${ }^{\text {BT }}$-0363 ${ }^{-}{ }^{\text {Alticinae }}{ }^{\text {-sp }}{ }^{-051}$	${ }_{\text {x }}$	x	X	X	x	X	${ }^{\times}$	x	x
$\mathrm{BT}^{\text {- }} 0365$-Galerucinae-sp ${ }^{\text {- }}$	X	x	X	x	x	X	X	x	x
				X			X		
BT-0368-Galerucinae-sp-049				x			x		
BT-0369-Galerucinae_sp_049									
	x		x	x		x	X		
$\mathrm{BT}^{-0372-A l t i c i n a e-s p}$ - ${ }^{\text {OO9 }}$	x	x	x	X	x	x	${ }^{\mathrm{x}}$	x	x
BT-0373 Alticinae -sp ${ }^{\text {sp }}$ - 009	x			x		x	X	x	
$\mathrm{BT}^{-0375}{ }^{-}$Eumolpinae ${ }^{\text {a }}$ - ${ }^{\text {P }}$ - 032	${ }_{\text {x }}$	x	X	X	X	x	X	X	X
	X	X	${ }^{\mathrm{X}}$	${ }^{\times}$	X	${ }^{\mathrm{X}}$	${ }^{\times}$	${ }^{\mathrm{X}}$	X
	x	x	x	X	x	x	X	x	x
BT-0381-Galerucinae-sp-089	${ }^{\mathrm{X}}$		X	x		X	X		
BT_0382_Galerucinae_sp_013	X	X	X	X	X	X	X	X	X


Specimen	1	1b	2	2a	2b	3	3 a	3b	4
BT_0383_Alticinae_sp_087	X	X	X	X	X	X	x	X	x
BT-0384-Eumolpināe ${ }^{\text {- }}$ - ${ }^{\text {- }} 039$	X	X	X	X	X	X	X	X	X
BT-0385-Alticinae_sp $-0 \overline{64}$	X		X	X		x	X		
$\mathrm{BT}^{-0386-A l t i c i n a e}-\mathrm{sp}-064$	X	x	X	X	x	x	X	x	x
	X	x	X	X			X		
$\mathrm{BT}^{-}{ }_{0389}{ }^{\text {A Alticinae }}$ - $\mathrm{sp}^{\text {sp }}-105$	x		x	X		x	X		
BT-0390-Alticinae_-sp_090	X	x	X	X	X	X	X	x	X
$\mathrm{BT}^{-} 0391$ - Alticinae_-sp_090	X	X	X	X	X	X	X	X	X
BT-0392-Eumolpinàe_sp_074	X	X	x	X	X	X	X	X	X
BT-0395-Eumolpinae-sp-074	X	X	X	X	X	X	X	X	X
	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X X	X	X	X	X	X
BT-0398-Cassidinae ${ }^{\text {- }}$ sp ${ }^{\text {- }} 003$	X		X	X		X	X		
BT-0399-Galerucinae -sp ${ }^{\text {- }}$ - 028	X	X	X	X	x	x	X	x	X
$\mathrm{BT}^{-} 0400{ }_{-}^{-}$Galerucinae-${ }_{-}^{\text {sp }}$ - 028				X			X		
$\mathrm{BT}^{-}$-0401-Galerucinae-sp-054	X		X	X		X	X		
BT-0402_-Galerucinae_-sp_044	X	X	X	X	X	X	X	X	X
	X	x	x	X	x	x	X	x	x
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}{ }^{\text {0406 }}{ }^{-}$Galerucinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-} 045$				X			X		
$\mathrm{BT}^{-} 0407{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-049}$	X	X	X	X	X	X	X	X	X
BT-0408-Eumolpinae_sp_024	X	X	X	X	X	X	X	X	X
${ }_{\text {BT }}{ }^{-0409}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-} 024$	X	X	${ }^{\mathrm{X}}$	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
BT- 0412 -Alticinae ${ }^{\text {- }}$ - ${ }^{\text {Pp }}$ - 058				X			X		
$\mathrm{BT}^{-} 0413$-Alticinae-sp-058				X			x		
$\mathrm{BT}^{-} 0414{ }^{-}$Alticinae-sp_-058				X			X		
$\mathrm{BT}^{-} 0415^{-}$Alticinae-sp-242	X	X	X	X	X	X	X	X	X
BT-0416-Alticinae-sp-242				X			X		
BT-0417-Galerucinae_-sp_074	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-0418-E u m o l p i n a e-s p-045}$	${ }^{\mathrm{X}}$		X	X		X	X		
	X	X	X	X X	X	X	X X	X	X
	X		x	X		X	X		
BT-0422-Galerucinae_sp_028	x		x	X		x	x		
$\mathrm{BT}^{-}{ }^{\text {0 }}$ - $233^{-}$Eumolpinae-sp_-024	X	X	X	X	X	X	X	X	X
BT-0425-Eumolpinae-sp-007	X	X	X	X	X	X	X	X	X
BT-0426-Alticinae_sp ${ }^{150}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} \mathrm{O427}_{-}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-104}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-0428}{ }^{-}$Alticinae-sp-105	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
BT-0431-Eumolpinae-sp-039				X			X		
BT-0432-Eumolpinae-sp_-030	x	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}$-0433-Galerucinae-_sp_069	X	X	X	X	X	X	X	X	X
BT-0434-- Galerucinae-sp ${ }^{-} 072$	X	X	X	X	X		X	X	X
BT-0436-Alticinae_sp_ 149	X	X	X	X	X	X	X	X	x
$\mathrm{BT}^{-} \mathrm{OH37}^{-}$Alticinae-sp-149				X			X		
$\mathrm{BT}^{\text {B }}$-0438-Galerucinae - ${ }^{\text {sp }}$ - 015	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X		
$\mathrm{BT}^{-0441}{ }^{-}$Galerucinà ${ }^{\text {- }}$ - ${ }^{\text {d }} 082$	X	X	X	X	X	X	X	X	x
BT-0442-Galerucinae-sp-049	X	X	X	X	X	X	X	X	X
BT-0443-Alticinae_sp_o 051	X	X	X	X	X	X	X	X	X
BT-0444-Alticinae-sp_-143	X	X	X	X	X	X	X	X	X
BT-0445-Alticinae-sp_153	X		X	X		X	X		
BT-0446-Alticinae-sp_153				X			X		
$\mathrm{BT}^{-} 0447$-Galerucinae - ${ }^{\text {sp }}$ - 007	X	X	X	X	X	X	X	x	X
BT-0448-Galerucinae-sp-049	X	X	${ }^{\mathrm{X}}$	X	X	${ }^{\text {X }}$	X	X	X
$\mathrm{BT}^{-}$-0449-Galerucinae-sp-049	X	X	X	X	X	X	X	X	X
BT-0451-Galerucinae-sp-015	X	X	X	X	X	X	X	X	X
BT-0452-Alticinae_sp_ō9	X	X	X	X	X	X	X	X	x
$\mathrm{BT}^{-} \mathrm{OH53}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 135$	X		x	x		X	X		
$\mathrm{BT}^{-} 0454{ }^{-}$Alticinae-sp_-026	X	X	X	X	X	X	X	X	X
BT-0455-Alticinae-sp-026				X			X		
$\mathrm{BT}^{-} 0456^{-}$Alticinae-sp_-026				X			X		
BT-0457-Alticinae-sp_-181	X	X	X	X	x	X	X	X	X
$\mathrm{BT}^{-} 0458$ - Alticinae- ${ }^{-}{ }^{-} 181$				X			X		
BT-0459-Galerucinae__sp_050	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-0460}$-Galerucinae-sp-045	${ }^{\mathrm{X}}$	X	${ }^{\mathrm{X}}$	X	X	${ }_{\text {X }}$	X		X
BT-0461-Galerucinae_sp_045	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
BT ${ }^{-}{ }_{0464}{ }^{-}$Eumolpinae ${ }^{-}{ }^{\text {sp }}{ }^{-}{ }_{045}$	X		X	X		X	X		
BT-0465-Alticinae_sp ${ }^{-} 0 \overline{50}$	X	X	X	X	X	X	X	X	X
	X		X	X		$\underset{\mathrm{X}}{\mathrm{X}}$	X		
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}$-0470-Galerucinae-sp-045				x			x		
BT-0471-Galerucinae_-sp_045				X			X		
BT-0472-Galerucinae_-sp_045				X			X		
$\mathrm{BT}^{-0473-G a l e r u c i n a e-~}{ }^{\text {sp }}$-069	$\mathrm{X}_{\mathrm{X}}$	$\underset{\mathrm{X}}{\mathrm{X}}$	$\underset{\times}{\mathrm{X}}$	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X
	X	- X	X	X	X	X	X	X	X
BT ${ }^{-} 0476{ }^{-}$Eumolpinae-sp ${ }^{-} 039$				X			X		
BT-0477 - Alticinae_sp_ ${ }^{\text {- }}$	X		X	X		X	X		
$\mathrm{BT}^{-} 04788^{-}$Alticinae-sp_-104				X			X		
$\mathrm{BT}^{-} 0480-\mathrm{Hispinae}-\mathrm{sp}-005$	X		${ }^{\mathrm{X}}$	X		X	X		
	X	X	X	X	X	X	X	X	X
BT-0491-Alticinae-sp_ 157	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}$-0492-Galerucinae_sp_061	X	X	x	X	X	X	X	X	X
BT-0493-Eumolpinae-sp-037	X		X	X		X	X		
$\mathrm{BT}^{-0494}$ - Alticinae ${ }^{\text {sp }}$ - 250	X	X	${ }^{\mathrm{X}}$	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	$\underset{\mathrm{X}}{\mathrm{X}}$	$\stackrel{\mathrm{X}}{\mathrm{x}}$	x	X
	X		X	X		X	X		
$\mathrm{BT}^{-0496}$-Alticinae_sp_112	X		X	X		X	X		X
BT-0497-Alticinae-sp_-111	x		X	X		X	X		
BT-0498-Alticinae_-sp_-113	X		X	X		X	x		
$\mathrm{BT}^{-} 0499$ - Alticinae-sp-044	X	x	X	X	X	X	X	X	X
	X	X	X	X		X	X	X	
$\mathrm{BT}^{-} 0502$ - Eumolpinae-sp-042	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-0504-A l t i c i n a e-s p-111}$				X			X		
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0507_{-}^{-}$Alticinae-sp_-092				X			X		
$\mathrm{BT}^{-0508}{ }^{\text {- Galerucinae }}{ }^{\text {sp }}$ - 053	X	x	X	X	x	X	X	x	x
BT-0509-Cassidinae_sp_003	X		X	X		X	X		
BT-0510-Cassidinae-sp-004	x	x	x	x	X	X	X	X	
BT-0511-Cassidinae-sp-008	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X


Specimen	$\frac{1}{\mathrm{x}}$	$\frac{1 \mathrm{~b}}{\mathrm{X}}$	$\frac{2}{\mathrm{x}}$	$\frac{2 a}{x}$	$\frac{2 \mathrm{~b}}{\mathrm{x}}$	$\frac{3}{\mathrm{x}}$	$\frac{3 a}{x}$	$\frac{3 \mathrm{~b}}{\mathrm{x}}$	$\frac{4}{x}$
$\begin{aligned} & \text { BT_0514_Eumolpinae_sp_074 } \\ & \text { BT_0515-Eumolpinae_sp_074 } \end{aligned}$									
	X			$\underset{\underset{\sim}{\mathrm{X}}}{\substack{2 \\ \hline}}$	$\mathrm{x}$	$\mathrm{x}$	x	$\mathrm{x}$	x
	x		x	-	x	x	X		x
$\mathrm{BT}^{-} 0517_{-}^{-}$Alticinae-sp_-104	X	x	x	X		X	X	X	X
$\mathrm{BT}^{-0518-A l t i c i n a e-s p-085}$	X	x	X	${ }^{\mathrm{X}}$	${ }_{\text {X }} \mathrm{X}$	${ }_{\text {X }} \mathrm{X}$	X	X	X
$\mathrm{BT}^{-} 0519-$ Alticinae-sp-068	X	X	X	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X	X	X	X
	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
BT-0526-Eumolpiñae-sp_039	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0527^{-}$Galerucinae ${ }_{-} \mathrm{sp}^{-}{ }^{\text {- }} 036$	X	X	X	x	X	X	X	x	X
BT-0528-Alticinae_sp_ 150	X		X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0529$ - Alticinae-sp-113	X	X	X	X	X	X	X	X	X
BT-0530-Galerucinae_-sp_031	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0531$ - Galerucinae-_sp-062	X	-	X	X	X	X	X	X	X
$\mathrm{BT}^{-0532}{ }^{-}$Galerucinae-${ }_{-} \mathrm{sp}^{-} 075$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0533-$ Alticinae_sp_o 097	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0534$ - Alticinae-sp_-111	X	X	X	X		${ }^{\mathrm{X}}$	X		
BT-0535-Alticinae ${ }^{-} \mathrm{sp}{ }^{-} 097$	X	X	X	X	x	X	X	x	X
$\mathrm{BT}^{-0536-}{ }^{\text {- Cassidinae }}$ - $\overline{\mathrm{p}}^{\text {c }} 003$	X		X	X		X	X		
$\mathrm{BT}^{-} 0533^{-}$Alticinae ${ }^{\text {sp }}$ - ${ }^{142}$	X	X	X	X	X	X	X	X	${ }_{\text {X }}$
$\mathrm{BT}^{-} 0538$ - Alticinae-sp- 238	X		X	X	X	X	X	X	X
	X		X	X	X	X	X		
BT-0540-Galerucinae_-sp_064	X	X X	X	X	X	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X
$\mathrm{BT}^{-}$-0541-Galerucinae ${ }_{-}^{\text {- }}{ }^{-}{ }^{-} 064$							X		
BT-0543-Cassidinae_sp_o ${ }^{\text {- }} 09$	X		X	x		x	X		
BT-0544-Cassidinae-sp - 012	X	X	X	X	X	X	X	X	X
BT-0546-Alticinae_sp_ $\overline{0} 83$	X	XXX	X	X	X	X	x	X	X
$\mathrm{BT}^{-0547}$ - Alticinae-sp_-096	X		X	X	X	${ }^{\mathrm{X}}$	X	X	X
BT-0548-Alticinae_sp-112	X		X	${ }^{\mathrm{X}}$		${ }_{\text {X }}$	X		
$\mathrm{BT}^{-0549-A l t i c i n a e-s p-150 ~}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-0550}$ - Alticinae-sp-265	X		X	${ }^{\mathrm{X}}$	X	${ }^{\mathrm{X}}$	X	X	X
$\mathrm{BT}^{-}$-0551-Galerucinàe_-sp 064	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0552^{-}$Alticinae_sp-117	X	X	X	X	X	X	X	x	X
$\mathrm{BT}^{\text {BT }}$-0553-Eumolpinaee_sp_042	X	X	X	${ }_{\text {x }}$	X	X	X	${ }_{\text {x }}$	X
$\mathrm{BT}^{-}$-0554-Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 071$	X	x	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-0556-A l t i c i n a e-s p-096}$	X	X	X	${ }^{\mathrm{X}}$	X	$\underset{\times}{\text { X }}$	X	X	X
${ }_{\text {BT }} \mathrm{BT}^{0557}$ - ${ }^{\text {a }}$ - Alticinae - sp -181	X		X	X		X	X		X
	X	XXXX	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	-	X	X	X
	X		X	X	X	X	X	X	X X
$\mathrm{BT}^{-}$-0561-Galerucinae ${ }_{-}^{\text {- }}{ }^{\text {- }}$-066	¢ ${ }_{\text {X }} \mathrm{X}$		X	X		X			
BT-0562-Cassidinae_sp_009		X	$\hat{\mathrm{x}}$	x		x	x		
$\mathrm{BT}^{-} 0563^{-}$Cassidinae-sp-009	X			X			X		
$\mathrm{BT}^{-} 05644^{-}$Cassidinae-sp-009	X			x	X	X	X		
$\mathrm{BT}^{-0565}$-Alticinae_ $\overline{\mathrm{sp}}$ - 150			X	X			x	x	$\underset{\mathrm{X}}{\mathrm{X}}$
BT-0566-Hispinae-sp_006	x	$\underset{\mathrm{X}}{\mathrm{X}} \mathrm{X}$	X	X	X	${ }_{\text {X }}$	X	X X	
$\mathrm{BT}^{-} 0567_{-}^{-}$Alticinae_-sp_104	X		X X		X	x	x		
$\mathrm{BT}^{-} 05688^{-}$Alticinae-sp_${ }^{-118}$				X		X	X		X
$\mathrm{BT}^{-} 0569^{-}$Alticinae-_sp_118				X			X		
$\mathrm{BT}^{-} 0570^{-}$Alticinae-sp_-118				X			X		
$\mathrm{BT}^{-} 0571$ - Alticinae-sp_-118				x			X		
$\mathrm{BT}^{-} 0572^{-}$Alticinae-sp-118				X			X		
$\mathrm{BT}^{-} 0573-$ Alticinae-sp-118	X	x	x	X			X		
BT-0574-Eumolpinà - ${ }^{\text {sp }}$ - 039					X X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	x	X
BT-0575-Alticinae_sp_ ${ }^{140}$	X	X	X	X				X	X
$\mathrm{BT}^{-0576-A l t i c i n a e-s p-118 ~}$	X		X	X		X	X		
BT-0577-Eumolpinaee-sp_039	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{\text {BT }}$-0579 - ${ }^{\text {Eumolpinae }}{ }^{\text {Alticinae }}{ }^{\text {sp }}{ }^{\text {sp }}{ }_{104}^{039}$	X	X	X	X	X	X	X	X	x
$\mathrm{BT}^{-} 0580$ - Alticinae-sp- 104				x			X		
$\mathrm{BT}^{-} 0581$ - Alticinae_-sp_118	X		X	X		X	X		
$\mathrm{BT}^{-} 0582^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-118}$				X			X		
$\mathrm{BT}^{-} 05833_{-}$Alticinae-sp_-118				X			X		
$\mathrm{BT}^{-} 0584{ }^{-}$Alticinae-sp-118				X			X		
$\mathrm{BT}^{-} 0585{ }^{\text {- Eumolpinae_- }{ }^{\text {sp }} \text { - } 044}$	X		X	X		X	X		
BT-0586-Alticinae_sp_ $0 \overline{91}$	X		X	X		X	X		
$\mathrm{BT}^{-} 0587^{-}$Alticinae-sp_-006	X	X	X	X	X	X	X	x	X
BT-0588-Galerucinae -sp_069	X	X	X	X	$\underset{\times}{\mathrm{X}}$	$\underset{\times}{\text { X }}$	X	X	X
	X	X	X X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	X
	X	X	X	X	X	X	X	X	X
BT-0593-Alticinae_sp_11 ${ }^{\text {- }}$	X		X	X		X	X		
$\mathrm{BT}^{-} 0594$-Alticinae_-sp_118	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-0595}$ - Alticinae- $\mathrm{sp}^{-118}$				X			X		
$\mathrm{BT}^{-} 0596^{-}$Eumolpinae_- ${ }^{\text {sp }}$ - 039	X	x	X	X	X	X	X	X	X
BT-0597-Alticinae_sp ${ }^{10}{ }^{104}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0598{ }^{-}$Alticinae-sp_-118	X		X	X		X	X		
$\mathrm{BT}^{-} 0599^{-}$Alticinae-sp-118				X			X		
$\mathrm{BT}^{-} 0600-$ Alticinae-sp_-118				X			X		
$\mathrm{BT}^{-} 0601-$ Alticinae-sp_${ }^{-} 118$				X			X		
$\mathrm{BT}^{-} 0602^{-}$Alticinae-sp-118				X			X		
$\mathrm{BT}^{-} 0603_{-}^{-}$Alticinae-sp-118				X			X		
BT-0604-Hispinae_sp_005	X	X	X	X	X	X	X		
$\mathrm{BT}^{-} 0605^{-}$Alticinae_sp_-087	X	X	X	X	X	X	X	X	X
	X	X	X	${ }^{\mathrm{X}}$	X	X	X	X	X
	X			X			X		
BT-0609-Alticinae ${ }^{-} \mathrm{sp}^{-} 118$				X			X		
$\mathrm{BT}^{-} 0610^{-}$Alticinae-sp-118				X			x		
$\mathrm{BT}^{-0611-A l t i c i n a e-s p-118 ~}$				X			X		
$\mathrm{BT}^{-0612-A l t i c i n a e-s p-118 ~}$				X			X		
$\mathrm{BT}^{-} 0613-$ Alticinae-sp_${ }^{-} 118$				X			X		
BT-0614-Alticinae-sp-118				X			X		
				X			X		
$\mathrm{BT}^{-} 0617^{-}$Alticinae_-sp-118				X			X		
$\mathrm{BT}^{-} 0618$ - Alticinae-sp_-118				X			X		
$\mathrm{BT}^{-} 0619^{-}$Alticinae-sp_${ }_{-}^{-118}$				X			X		
$\mathrm{BT}^{-} 0620-{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-118}$				X			X		
$\mathrm{BT}^{-} 0621$ - Alticinae-sp_118				X			X		
${ }_{\text {BT }}^{\text {BT }}-0622-$ Alticinae $-\mathrm{sp}-118$				X			X		
$\mathrm{BT}^{-} 0624$ - Alticinae ${ }^{-\mathrm{sp}}$ - 118	x		x	X		x	X		
$\mathrm{BT}^{-} 0625^{-}$Cassidinae ${ }^{\text {s }} \mathrm{s}^{\text {- }} 003$	X		X	X		X	X		
$\mathrm{BT}^{-} 0626^{-}$Alticinae_ ${ }^{\text {sp }}$ - ${ }^{\text {¹ }} 18$	X		X	X		X	X		
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}{ }_{0629}{ }^{\text {- }}$ - ${ }^{\text {asssidinae }}$ - ${ }^{\text {sp }}$ - ${ }_{012}$	x	x	X	X	x	X	X	x	X
$\mathrm{BT}^{-} 0630^{-}$Alticinae ${ }^{\text {sp }}$ - ${ }^{\text {o } 36}$	X	X	X	X	X	${ }_{\text {x }}$	X	X	X
BT-0631-Alticinae-sp-064	X	X	X	X	${ }_{\text {X }} \mathrm{X}$	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	$\stackrel{\mathrm{X}}{\mathrm{x}}$	$\stackrel{\mathrm{X}}{\mathrm{x}}$
$\mathrm{BT}^{-} 0632^{-}$Alticinae_sp_086	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 0633-$ Alticinae - $\mathrm{sp}-085$	X	X	X	${ }^{\mathrm{X}}$	$\underset{\mathrm{X}}{\mathrm{X}}$	$\underset{\mathrm{X}}{\mathrm{X}}$	X		
	X	X	X	X	X	X	X	X	X


Specimen	1	1b	2	2a	2b	3	3 a	3b	4
BT_0636_Alticinae_sp_096				X			x		
$\mathrm{BT}^{-} 0637^{-}$Alticinae-sp-096			x	X		x	X		
	X		X	X		X	X		
	${ }^{\mathrm{X}}$	X	X	X	X	X	${ }_{\mathrm{x}}^{\mathrm{x}}$	X	${ }_{\mathrm{x}}^{\mathrm{x}}$
	${ }^{\mathrm{x}}$	X	${ }^{\text {x }}$	X	x	X	X	${ }^{\text {x }}$	X
$\mathrm{BT}^{-0643-\text { Eumolpinae-sp-042 }}$				X			X		
	X	X	X	X	X	X	X	X	X
BT-0646-Alticinae sp ${ }^{\text {Sp }}$ - ${ }^{\text {c/ }}$	X	x	X	${ }^{\mathrm{x}}$	x	X	X	X	X
	X	X	X	X	X	${ }^{\mathrm{X}}$	$\stackrel{\mathrm{x}}{\mathrm{x}}$	X	${ }^{\mathrm{X}}$
BT-0649-Alticinae ${ }^{-}{ }_{\text {sp }}{ }^{\text {- }} 140$				X			x		
$\mathrm{BT}^{-}{ }^{\text {O650-Eumolpinae }}$ - ${ }^{\text {sp }}$ - 039	x	x	x	X	x	x	X	x	x
	x	x	x	X	x	x	X	x	x
$\mathrm{BT}^{-} 0653^{-}$Alticinae-sp ${ }^{-104}$				X			X		
	x	x	x	X	x	x	X	X	X
$\mathrm{BT}^{-}{ }^{0656}{ }^{-}$Alticinae ${ }^{-\mathrm{sp}_{-}} \mathbf{0 5 1}$	x	x	x	x	x	x	$\times$	x	x
	x	x	x	X	x	x	$\stackrel{\mathrm{x}}{\mathrm{X}}$	x	x
	x	x	x	X	x	x	X	x	x
$\mathrm{BT}^{\text {BT-0659-Eumolpinae }}$ - ${ }^{\text {a }}$ - 039	x	x	x	X	x	x	X	x	x
$\mathrm{BT}^{-} 0661-$ Alticinae ${ }^{-} \mathrm{sp}_{-104}$	x	x	x	x		x	x		
$\mathrm{BT}^{-0662}$ - Alticinae-sp-126	x	x	x	${ }^{\mathrm{x}}$	x	X	${ }^{\text {x }}$	X	X
	${ }^{\mathrm{X}}$	x	${ }_{\mathrm{X}}$	X	x	X	$\times$	x	X
	x	x	x	x	x	x	X	x	x
				x					
$\mathrm{BT}^{-}{ }^{0669}{ }^{-}$Alticinae ${ }^{-\mathrm{sp}^{-1} 150}$				x			x		
BT-0670-Alticinae-sp-150				x			x		
BT-0671, Alticinae_sp 150				X			x		
$\mathrm{BT}^{0672}{ }^{\text {a }}$ Alticinae_sp ${ }^{\text {sp }} 150$				${ }^{8}$			${ }^{\times}$		
				X			$\times$		
BT- $0675{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-}$-008	x	x	x	x	x	x	x	x	x
BT-0676-Alticinae-sp ${ }^{\text {- }} 064$	X	${ }_{\text {x }}$	${ }^{\text {X }}$	X	${ }_{\text {x }}$	${ }_{\text {x }}$	X	${ }^{\mathrm{X}}$	${ }_{\mathrm{x}}^{\mathrm{x}}$
	¢		X	X		X	X		
$\mathrm{BT}^{-}$-0679-Eumolpinae-sp-001	X		${ }_{\text {x }}$	X					
	x	X	x	X	x				X
BT-0682-Galerucinae-sp-076	x	x	x	X	x				x
$\mathrm{BT}^{-}{ }_{0684}{ }^{\text {- }}$ Alticinae ${ }^{-\mathrm{sp}^{\text {sp }}-115}$	x	x	x	X					x
BT-0685- Alticinae ${ }^{\text {sp }}$ - 115	x	x	x	X	x				x
	x	X	x	x	X				x
$\mathrm{BT}^{-}{ }^{\text {0688- }}$ - riocerinaee_ ${ }^{\text {sp }}$ - 001	x	x	x	x	x				x
	x	x	x	${ }^{\text {x }}$	x				x
BT-0691-Galerucinae -sp 031	${ }^{\mathrm{X}}$	X	${ }^{\mathrm{X}}$	X	${ }_{\mathrm{x}}^{\mathrm{x}}$				${ }^{\mathrm{X}}$
$\mathrm{BT}^{-0693}$ - Alticinae ${ }^{\text {spp }}$ - ${ }^{\text {sp }}$				x					
BT-0694-Alticinae-sp -014				X					
				${ }^{\times}$					
BT-0697-Alticinae-sp-014				x					
BT-0698-Alticinae-sp-013	${ }_{\text {x }}$	$\mathrm{x}_{\mathrm{x}}$				$\mathrm{x}_{\mathrm{x}}$			
	x	X	x	X	x				x
$\mathrm{BT}^{-0701-A l t i c i n a e ~}{ }^{\text {- }}$ - ${ }^{\text {sp }}$-083				X					
$\mathrm{BT}^{-0705-G \text { Galerucinae - }{ }^{\text {sp }} \text { - } 008}$	X	x	x	x	x				x
	X	x							
BT-0709-Galerucinae - ${ }^{\text {sp }}$ - 064	X	x	x	x	x				x
BT-0710-Alticinae sp ${ }^{\text {coil }} 0$	X	$\stackrel{\mathrm{x}}{\mathrm{x}}$	¢	${ }^{\mathrm{X}}$	X				${ }_{\text {x }} \mathrm{x}$
				x					
BT-0713-Galerucinae-sp-073	X	X	X	X	x				x
$\mathrm{BT}^{-0715}$-Galerucinae-sp-076	x	x	x	x	x				x
BT-0716-Galerucinae-sp -011	${ }_{\mathrm{x}}^{\mathrm{x}}$	${ }_{\text {x }}$	X	X	x				${ }_{\text {x }}$
BT-0717-Galerucinae -sp ${ }^{\text {sp }}$	X	X	X	${ }^{\mathrm{X}}$					X
BT-0719-Eumolpinae-sp-043	x	X	X	X	x				x
	x	x	x	X	x				x
	${ }_{\text {x }}$	${ }_{\text {x }}$	X	X	X				X
BT-0726-Alticinae ${ }^{-}{ }^{\text {sp }}$ - 243				x					
BT-0727- Galerucinae - ${ }^{\text {sp }}$ - 073	X	X	X	X	X				X
BT-0728-Galerucinae_sp ${ }^{\text {sp }}$ - 064	X	$\stackrel{\mathrm{x}}{\mathrm{x}}$	X	X	X				X
$\mathrm{BT}^{-} 0730-$ Alticinae_sp_ ${ }^{136}$	x	x	x	${ }^{\mathrm{x}}$	x				x
	x	X	X	X	x				x
BT-0733-Galerucinae-sp-097	x	${ }^{\mathrm{x}}$	X	x	x				x
	X	X	X	X	X				X
	x	x	x	X	x				x
	x		x	X					x
BT-0739-Galerucinae-sp-018	x	x	x	x	x				x
BT-0740-Galerucinae-sp-076	X	X	X	X	X				X
BT-074-Galerucinae-sp-019	X	${ }^{\text {x }}$	X	X	${ }^{\mathrm{x}}$				${ }^{\text {x }}$
	${ }_{\text {x }}$	x	X	X	X				X
BT-074-Galerucinae-sp-007				X					
BT-0746-Galerucinae - ${ }^{\text {sp }}$ - ${ }^{\text {co }}$	x	x	x	X	x				x
BT-0748-Galerucinae-sp-038				x					
	X	X	X	X	X				X
$\mathrm{BT}^{-0751-G a l e r u c i n a e ~}{ }^{\text {sp }}$ - 062	x	X	x	X	x				
	X	X	X	X	X				X
	${ }^{8}$		x	又					
$\mathrm{BT}^{-0755-\text { Galerucinae }}$ - $\mathrm{sp}^{-036}$	$\stackrel{\mathrm{x}}{\mathrm{x}}$	X	-	$\stackrel{\mathrm{x}}{\mathrm{x}}$	X				X
	x	x	x	X	x				x


Specimen	1	1b	2	2 a	2b	3	3a	3b	4
BT_0758_Eumolpinae_sp_022				x					
$\mathrm{BT}^{\text {BT }}$ - 759 - Eumolpinae-sp-038	x		x	X					
				X					
$\mathrm{BT}^{-}{ }_{0762}{ }^{-}$Eumolpinae ${ }^{-\mathrm{sp}^{\text {sp }}{ }^{-038}}$				x					
BT-0763-Eumolpinae-sp_-038				x					
BT-0764-Eumolpinae -sp -038				X					
	x	x	x	X	x				x
BT-0767-Alticinae-sp_096				x					
	x	x	x	X	x				x
	x	x	x	X	x				x
$\mathrm{BT}^{-0772}{ }^{\text {- Eumolpinae }}$-sp-016				x					
BT-0773-Eumolpinae-sp-016				X					
BT-0774-Eumolpinae-sp_016				X					
$\mathrm{BT}^{-0775}{ }^{-}$Eumolpinae ${ }^{\text {- }}{ }^{-016}$				x					
	x		x	X					
BT-0778-Alticinae-sp_018				x					
BT-0779-Alticinae-sp-115	x	x	x	X	x				x
	x	x	x	X	x				x
	x	x	x	x	x				${ }^{\mathrm{x}}$
	X	X	x	X	X				X
$\mathrm{BT}^{-0790-A l t i c i n a e-s p-014 ~}$				x					
	X	${ }_{\text {x }}$	X	X	X				x
BT-0793-Alticinae-sp-115									
BT-0794-Alticinae-sp 129	X	X	x	X	X				X
	x	X	x	X	x				x
$\mathrm{BT}^{-0799}$ - Cassidinae -sp ${ }^{\text {col }} 014$	x	X	X	x	x				
	X	x	X	X	x				x
$\mathrm{BT}^{-0802}{ }^{-}$Cassidinae-sp ${ }^{-806}$				x					
$\mathrm{BT}^{-0803-G a l e r u c i n a e ~}{ }^{\text {cp }}{ }^{\text {a }} 076$	x	x	X	X	x				X
BT-0805-Alticinae-sp-014	X	X	X	X	X				x
BT-0806-Alticinae-sp_013	x	x	x	x	x				x
BT-0807-Alticinae-sp_054	x	x	x	x	x				
	X	X	X	X	X				x
BT-0810-Galerucinae_sp_046	x	x	x	x	x				X
$\mathrm{BT}^{\text {- }}$-811-Criocerinae-sp-006	x	x	x	x	x				
$\mathrm{BT}^{-0813-\text { Criocerinae }}{ }^{\text {spp }}$ - ${ }^{\text {co4 }}$	x	x	x	X	x				x
	,	,	${ }^{\mathrm{x}}$	x	,				x
BT-0815-Alticinae-sp-032	x	x	x	X	X				X
BT-0817-Alticinae ${ }^{\text {sp }}$ - 087	X	X	X	X	X				x
BT-0818-Galerucinae -sp 061	x	x	x	x	x				x
BT-0819-Eumolpinae ${ }^{\text {sp }}$ - ${ }^{\text {B74 }}$	X	X	X	X	X				X
BT-0821-Eumolpinae-sp-038				X					
$\mathrm{BT}^{-0822-G a l e r u c i n a e-s p-033 ~}$	x		x	x					
$\mathrm{BT}^{-}{ }_{0824}{ }^{-}$Galerucinae ${ }^{-\mathrm{sp}^{\text {sp }}{ }^{\text {- }} \text {-34 }}$				X	x				x
BT-0825-Galerucinae-sp-034				X					
BT-0826-Galerucinae-sp-034				X					
	x	X	X	X	x				x
BT-0829-Alticinae-sp-115	X	X	X	X	X				X
BT-0830-Alticinae-sp-115	x	x	x	X					
	X	x	X	X	X				X
BT-0835-Galerucinae - ${ }^{\text {sp }} 029$	x	x	x	x	x				x
	x	X	X	X	X				${ }^{\mathrm{x}}$
BT-0838-Alticinae-sp-059	x		x	X					
	x	X	X	X	X				x
$\mathrm{BT}^{-0841}$ - Alticinae ${ }^{-\mathrm{sp}_{-}^{-127}}$	x	x	x	x	x				x
	x	x	x	X	x				x
$\mathrm{BT}^{-0844}$ - Alticinae-sp-138	x		x	,					
${ }_{\text {BT }}{ }^{\text {BT }}$ 0848 - Aumolpinae ${ }^{\text {Alticinae }}$ sp ${ }^{\text {sp }}{ }_{045} 005$	x	X	X	X	x				${ }_{\mathrm{x}}$
$\mathrm{BT}^{-0849}$ - Alticinae - ${ }^{\text {sp }}$-045				x					
${ }^{\text {BT }}$-0850- Alticinae-sp ${ }^{\text {sp }}$ - 049 - ${ }^{\text {a }}$	x	X	X	X	x				x
$\mathrm{BT}^{-0852}$-Alticinae-sp-133	x	x	x	x	x				x
BT-0853 Alticinae -sp 133				X					
BT-0855-Alticinae-sp-018	x	x	x	x	x				x
${ }^{\text {BT }}$-0856 - Alticinae -sp ${ }^{\text {sp }}$ - 018				X					
BT-0858-Alticinae-sp-018				x					
$\mathrm{BT}^{\text {BT }} 0859$-Alticinae-sp ${ }^{\text {a }}$				X					
$\mathrm{BT}^{-}{ }_{0861}{ }^{\text {Eumolpinae }}$ - ${ }^{\text {sp }}$ - 020	x	x	x	x					x
BT-0862-Alticinae_sp ${ }^{\text {- }} 155$	x	x	x	X	x				x
${ }_{\text {BT }}{ }^{\text {BT }}$ 0864- ${ }^{\text {Alticinae }}$-sp ${ }^{\text {sp }}-253$	x	x	x	X	x				x
BT-0865-Alticinae-sp-096	x	x	x	X	x				x
				X					
$\mathrm{BT}^{-} \mathbf{0 8 6 8}{ }^{-}$Alticinae ${ }^{\text {- } \mathrm{sp}_{-}-122}$	x	x	x	x	x				
$\mathrm{BT}^{-0870-A l t i c i n a e ~}{ }^{\text {- }}$ sp -122				X					
BT-0871-Alticinae-sp-086	x	x	x	x	x				x
	x	x	x	X	x				x
$\mathrm{BT}^{-0877}$ - Cassidinaè ${ }^{\text {sp }}$ - 005	x	X							
	X	X							
	x	X							
$\mathrm{BT}^{8893}$ - Alticinae ${ }^{\text {sp }}$ - 083	X	X							
$\mathrm{BT}^{-0899}{ }^{- \text {Chryssomelinae }^{\text {- }} \text { sp }} 001$	x	x							
BT-0900-Alticinae_sp_O33-	X	x							
${ }^{\text {BT }}$-0902 Alticinae-sp ${ }^{\text {sp }}$ - 062	8	${ }^{8}$							
	X	X							
BT-0905-Galerucinae _sp_060	x	x							
BT-0906_Galerucinae_sp_046	x	x							


Specimen	1	1b	2	2a	2b	3	3 a	3b	4
BT_0907_Galerucinae_sp_046	x	x							
$\mathrm{BT}^{\text {BT }}$-0908-Criocerinae-sp-005	X	X							
BT-0924-Criocerinae ${ }^{\text {sp }}$ - ${ }^{\text {BTa }}$ - ${ }^{\text {a }}$	x	X							
$\mathrm{BT}^{-0925-}{ }^{\text {- Eumolpinae }}$ sp_ ${ }^{\text {O29 }}{ }^{-}$	x	x							
	X	x							
$\mathrm{BT}^{-0932}{ }^{\text {- Alticinae_sp }}$ - 015	X	x							
$\mathrm{BT}^{-0934}$-Alticinae-sp-116	X	X							
$\mathrm{BT}^{\text {- }}$ 0935-Alticinae -sp - 082	X	${ }^{\mathrm{x}}$							
${ }^{\text {BT }}$	X	x							
${ }^{\text {BT-0943-Galerucinae }}$ - ${ }^{\text {sp }}$ - 033	$\times$		x						
	$\times$	x	x	x	x				x
BT-0951-Cassidinae-sp-011	x	x	x	x	x				x
BT-0952-Alticinae -sp 269	x	x	x	X	x				x
${ }^{\text {BT- }}$ O953-Galerucinae ${ }^{\text {sp }}$ - 028	x	${ }^{\text {x }}$	8	${ }^{8}$	${ }^{\mathrm{X}}$				
	X	x	X	X	X				x
	x	x	x	x	x				
BT-0957 ${ }^{\text {- }}$ Galerucinae ${ }^{\text {- }}$ - ${ }^{\text {Pp }} 036$	x	x	x	x	x				x
	X	X	X	X	X				X
$\mathrm{BT}^{-}{ }_{0960}{ }^{-}$Galerucinae ${ }^{-\mathrm{sp}}{ }^{\text {- }} 047$	x	X	X	x	X				x
BT-0961-Alticinae_sp 077	X	x	X	x	X				$\mathrm{x}_{\mathrm{x}}$
${ }^{\text {BT }}$-0962- Alticinae $-\mathrm{sp}-076$	X	x	X	X	x				x
	x	x	X	x	x				x
$\mathrm{BT}^{\text {B }}$-0965 ${ }^{\text {- Criocerinae }}$ - ${ }^{\text {sp }}$ - 002	X	x	X	x	x				X
	X	x	X	X	X				X
	X	x	X	x	X				x
BT-0969-Alticinae-sp_099									
BT-0970 Alticinae-sp ${ }^{\text {sp }}$ - ${ }^{\text {a }}$	X	x	X	X	x				x
BT-0972-Alticinae-sp_-127	x	x	x	x	x				x
BT-0973-Alticinae-sp_097	x	X	x	x	x				x
	X	X							
$\mathrm{BT}^{-0981}{ }^{-}$Eumolpinae ${ }^{\text {- }}$ - sp 006	x	x							
BT-0982-Alticinae_sp_0 ${ }^{\text {2 }}$	x	X							
	x	X							
$\mathrm{BT}^{-1025}{ }^{\text {- Eumolpinae-sp-0 }}$ - 038	x		x	x					
$\mathrm{BT}^{\text {BT }} 1026$ - Eumolpinae-sp-038				${ }^{\mathrm{X}}$					
	x	x	x	X	x				
$\mathrm{BT}^{-1029}$ - Alticinae ${ }_{-}^{\text {sp }}$ - 052			x	x					
$\mathrm{BT}^{-1030}$ - Alticinae-sp ${ }^{-240}$	x	X	X	X	X				$\mathrm{x}_{\mathrm{x}}$
	X	x	X	X	X				x
$\mathrm{BT}^{-1033}$-Alticinae-sp 149	x	x	x	x	x				x
BT-1034-Alticinae-sp ${ }^{\text {a }}$ - ${ }^{\text {a }}$	${ }_{\text {x }}$	X	${ }^{\mathrm{X}}$	X	x				${ }^{\mathrm{X}}$
	X	X	${ }^{\mathrm{x}}$	X	X				X
$\mathrm{BT}^{-1037}$ - Alticinae-sp-062				X					
	x	x	x	x	x				x
$\mathrm{BT}^{-1040}$ - Alticinae-sp-065				X					
$\mathrm{BT}^{-1043-}{ }^{\text {Alticinae }}{ }^{-\mathrm{sp}} \mathrm{sp}^{-066}$	x	x	x	x					x
BT-1044-Alticinae-sp-081	${ }_{\text {x }}$	x	${ }_{\text {x }}$	X	x				
				X					
$\mathrm{BT}^{-1047}$ - Alticinae ${ }^{-\mathrm{sp}}$-086				x					
BT-1048-Alticinae-sp-086				X					
				${ }^{8}$					
$\mathrm{BT}^{-1051}$ - Alticinae-sp-086				x					
$\mathrm{BT}^{-1052}{ }^{\text {- Alticinae-sp_-086 }}$				X					
$\mathrm{BT}^{-1055}$ - Alticinae-sp-085	x	x	x	x	x				x
BT-1056-Alticinae-sp-085				X					
				X					
$\mathrm{BT}^{-1059}$ - Alticinae-sp-081	x	x	x	x	x				
$\mathrm{BT}^{-1060}{ }^{-}$Alticinae ${ }^{\text {- }}$ - ${ }^{-085}$	X	X	$\stackrel{\mathrm{x}}{\mathrm{x}}$	X	X				X
	x	x	x	X	x				x
BT-1064-Alticinae sp ${ }^{\text {sp }} 142$	X	x	X	x	X				X
	X		X	X					
$\mathrm{BT}^{-1067}$ - Alticinae-sp-018				x					
	X		X	X					
BT-1070-Alticinae-sp-097	X	x	X	x	x				x
$\mathrm{BT}^{-1071}$ - Alticinae-sp-096	x	x	x	x	x				x
				X					
BT-1074-Alticinae -sp ${ }^{\text {sp }}$ - ${ }^{\text {che }}$				x					
$\mathrm{BT}^{-1075}$ - Alticinae-sp-096				x					
				X					
$\mathrm{BT}^{-1080}{ }^{\text {- }}$ Eumolpinae ${ }^{\text {a }}$ - ${ }^{\text {sp }}$ - 074	x		x	x		x	x	x	x
	X	X	X	x	X	X	X	X	X
	X	${ }^{\mathrm{X}}$	X	x	X	X	X	X	X
BT-1084-Alticinae-sp-096				x			X		
	X	x	x	X	X	X	X	x	${ }^{1}$
$\mathrm{BT}^{-1087}{ }^{\text {Alticinae }}$ - $\mathrm{sp}^{\text {d }}$ - 109	X	x	- ${ }^{\mathrm{X}}$	x	x	X	X	X	X
$\mathrm{BT}^{-1089}{ }^{-1089}$ Galerucinae $^{\text {- }}$ sp -031							X		
$\mathrm{BT}^{1090}$ - Alticinae ${ }^{\text {sp }}$ - ${ }^{\text {OT9 }}$	x	${ }^{\mathrm{x}}$	X	x	X	X	${ }^{\text {x }}$	X	x
	X	x	¢	X	X	X	X	¢	x
$\mathrm{BT}^{-1093}{ }^{\text {- }}$ Hispinae ${ }^{\text {sp }}$ - 007	X	X	X	x	X	X	X	X	X
$\mathrm{BT}^{-1095}$ - Alticinae ${ }^{\text {c }}$ - ${ }^{\text {sp }} 096$	X	x	-	x	x	X	X	x	x
$\mathrm{BT}^{-1096}{ }^{\text {- Galerucinae }}{ }^{\text {sp }}{ }^{\text {sp }} 036$	X	X	X	x	X	X	X	X	X
$\mathrm{BT}^{-1091}$ - Alticicinae ${ }^{\text {- }}$ - ${ }^{\text {dp }}-104$	x	x	x	X	x	X	X	x	
	X	X	X	X	X	X	X	X	X


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT 1106 Galerucinae sp 064	X	X	X	X	X	X	X	X	x
$\mathrm{BT}^{-1107}$ - Alticinae_sp-099	X	x	x	x	x	x	x	x	x
$\mathrm{BT}^{-1108-A l t i c i n a e-s p-092}$	X	X	X	X	X	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X
$\mathrm{BT}^{-1109-A l t i c i n a e-s p-041 ~}$	X	X	X	X	X	X	X	X	X
BT-1110-Galerucinaee_sp_046		X	X	${ }^{\mathrm{X}}$	X	X	X	X	X
$\mathrm{BT}^{-1111}{ }^{-}$Galerucinae ${ }^{-\mathrm{sp}}{ }^{-} 034$	X		X	X		X	X		
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1116}{ }^{-}$Cassidinae ${ }^{\text {- }}$ - $\mathrm{p}^{\text {P }} 006$	X		X	X		X	X		
$\mathrm{BT}^{-1117}{ }^{\text {- Alticinae - }}$ - ${ }^{\text {Pp }}$ - 49	X	x	X	X	x	X	X	x	x
$\mathrm{BT}^{-1118-A l t i c i n a e-s p-123}$	x	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1119-A l t i c i n a e-}{ }^{\text {- } \mathrm{sp}_{-}^{-} 096}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1120-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 181$	x		X	X		X	X		
$\mathrm{BT}^{-1121-}{ }^{\text {- Alticinae-_sp-124 }}$	X	x	x	X	x	X	X	x	x
$\mathrm{BT}^{-1122-}{ }^{-}$Alticinae-sp- ${ }^{-} 265$	X	X	X	X	X	X	X	X	X
	X	X	X	${ }^{\mathrm{X}}$	X	X	X	X	X
$\mathrm{BT}^{-1125}{ }^{\text {-Galerucinae }}$ - sp - 059	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1126-}{ }^{-}$Hispinae_sp_003	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1127-}{ }^{-}$Alticinae_sp_-066	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1128-}{ }^{\text {- Alticinae_-sp_-018 }}$	X	X	X	X	X	X	X	x	X
$\mathrm{BT}^{-1129-}{ }^{-}$Alticinae-sp_${ }^{-} 123$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1130}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 140$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-1131-}{ }^{\text {- }}$ Alticinae-sp_-081	X X X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1132-A l t i c i n a e-s p-086}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1133-}{ }^{\text {- Alticinae-}}{ }^{-} \mathrm{sp}^{-} 086$				X			X		
$\mathrm{BT}^{-1134-}{ }^{\text {- Alticinae_-sp_-086 }}$				X			X		
$\mathrm{BT}^{-1135-A l t i c i n a e-s p-086 ~}$				X			X		
$\mathrm{BT}^{-1136-A l t i c i n a e-}{ }^{\text {- }}$ - ${ }^{-} 086$				X			X		
$\mathrm{BT}^{-1137-}{ }^{-}$Alticinae-sp_-086				X			X		
$\mathrm{BT}^{-1138-A l t i c i n a e-s p-086}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1142-}{ }^{-}$Alticinae-sp-096	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1143-}{ }^{-}$Hispinae-sp_007	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{1145}$-Cassidinae ${ }^{\text {sp }}{ }^{003}$	X	X	X	X	X	X	X	${ }^{\text {X }}$	${ }^{\mathrm{X}}$
$\mathrm{BT}^{-1146}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{-}$- 014	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1147}$ - Alticinae_sp_152	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X	X	X	X	X	X	X
BT-1148_Alticinae_sp_096	X	X		X	X	X	X	X	X
	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X X	X	X X	X	X	X X
$\mathrm{BT}^{-1154-A l t i c i n a e-s p-121 ~}$	${ }_{\text {X }}^{\text {X }}$	X	X	x	X	X	X	X	
$\mathrm{BT}^{-1155}{ }^{\text {- Alticinae-}}{ }^{\text {- }}{ }^{-}{ }^{-121}$				X			X		
$\mathrm{BT}^{-1157}{ }^{-}$Alticinae-sp_${ }^{-149}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1158-A l t i c i n a e-s p-146 ~}$			X	X	X	X	X	X	X
$\mathrm{BT}^{-1159-A l t i c i n a e ~}{ }^{-1150}{ }^{\text {- }}{ }^{-146}$				X			X		
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1164}$ - Alticinae- ${ }^{\text {sp }}$ - ${ }_{087}$	X		X	X	X	X	X		
$\mathrm{BT}^{-1165-}{ }^{\text {- Alticinae-sp_-061 }}$	X	X	X	X	X	X	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$
$\mathrm{BT}^{-1166-A l t i c i n a e-s p-140 ~}$	X		X	X	x	X	X		
$\mathrm{BT}^{-1167}{ }^{-}$Alticinae-sp_${ }^{-140}$				X			X		
$\mathrm{BT}^{-1168-}{ }^{\text {- Alticinae-sp_}}{ }^{-140}$	XXXXXXXX			X			X		
$\mathrm{BT}^{-1169-A l t i c i n a e-s p-100 ~}$		XXXXXX	X	X	X	X X	X	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$
${ }_{\text {BT }}{ }^{\text {BT }}{ }^{11770-\text { Alticinae }}$ - ${ }^{\text {sp }}-105$			X	X	X				
${ }_{\text {BT }} \mathrm{BT}-1171$ - Alticinae - ${ }^{\text {sp }}$ - ${ }^{\text {a }}$ - 085			X	X	X	X	X	X	
$\mathrm{BT}^{-1176-A l t i c i n a e-s p-}{ }^{\text {- }}$ - ${ }^{\text {d }}$			X	X	X	X	X	X	
$\mathrm{BT}^{-1178-}{ }^{\text {- Alticinae-_sp-087 }}$			X	X	X	X	X	X	
$\mathrm{BT}^{-1179}{ }^{-}$Alticinae-sp-118			X	X	X	X	X	X	
$\mathrm{BT}^{-}{ }^{1180}{ }^{-}$Alticinae-sp_${ }^{-} 118$		X		X					
$\mathrm{BT}^{-1181-A l t i c i n a e-s p-118 ~}$				X			X		
$\mathrm{BT}^{-1183-A l t i c i n a e-s p-118 ~}$				X			X		
				X			X		
				X			X		
				X			X		
$\mathrm{BT}^{-1186}{ }^{-11 t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-1187}{ }^{-}$Alticinae-sp ${ }^{-118}$				X			X		
				X			X		
				X			X		
				X			X		
				X			X		
				X			X		
BT-1192-Alticinae-sp-118	X	X	X	X	X	X	X	X	X
BT-1195-Alticinae-sp-087				X					
	X	X	X X	X	X	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X X
	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1199-A l t i c i n a e-s p-118 ~}$ $\mathrm{BT}^{\text {- }} 1200-$ Alticinae sp 118				X			X		
$\mathrm{BT}^{-1201-A l t i c i n a e-s p-}{ }^{\text {- }}$ - ${ }^{\text {d }}$				X			X		
				X			X		
				X			X		
$\mathrm{BT}^{-1204-A l t i c i n a e-s p-111 ~}$	X	X	X	X	x	X	X	x	X
				x			X		
				X			X		
	X	X	X	X	X	X	X	X	X
				X			X		
	X X	X	X X	X	X	X X	X	X	X
	X	X	X	X	X	X	X	X	X
	x	x	x	x	x	X	X	x	x
$\mathrm{BT}^{-1214-A l t i c i n a e ~}{ }^{-} \mathrm{sp}^{-} 104$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1215}$ - Alticinae-sp-144	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1216-A l t i c i n a e-}{ }^{\text {- }}{ }^{\text {- }}$ - 049	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1222}{ }^{\text {- Alticinae }}$ - ${ }^{\text {- }}{ }^{\text {sp }} 052$				X			X	x	
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1224}$ - Galerucinae_-sp_075	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1225}$-Eumolpinae-sp_040	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1226}{ }^{-}$Galerucinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 034$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1227}{ }^{-}$Galerucinae ${ }^{-\mathrm{sp}}{ }^{-034}$									
	X	X	X	X	X	X	X X	X	X
$\mathrm{BT}^{-1230}$ - Alticinae_sp_115	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1233-A l t i c i n a e-s p-052 ~}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1234-A l t i c i n a e-s p-052}$				X			X		
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1237}{ }^{\text {- }}$ Galerucinae - ${ }^{\text {sp }}$-034	x		X	X		X	X		
$\mathrm{BT}^{-1238}{ }^{-}$-Galerucinae-${ }^{\text {- }}{ }^{\text {- }}$ - 034				X			X		
$\mathrm{BT}^{-1239}{ }^{-}$-Galerucinae-${ }_{-} \mathrm{sp}_{-}^{-} 034$				X			X		
$\mathrm{BT}^{-1240}$ - Eumolpinae ${ }^{-\mathrm{sp}}{ }^{-} 041$	X	X	X	X	x	X	X	x	X
$\mathrm{BT}^{-1242}$ - Lamprosomātinäe ${ }^{\text {a }}$ - ${ }^{\text {ap }}$ - 003	X		X	X		X			
	X	X	X	X	x	X X	X	X	X


Specimen	1	1b	2	2a	2b	3	3 a	3b	4
BT_1248_Alticinae_sp_118	x		x	x		x	x		
$\mathrm{BT}^{-1249-}{ }^{\text {- }}$ Alticinae- ${ }^{-}{ }^{-}{ }_{-}^{104}$	X	X	X	X	X	x	X	X	X
$\mathrm{BT}^{-1250}$ - Alticinae - $\mathrm{sp}-104$				X			X		
$\mathrm{BT}^{-1251}$ - Alticinae ${ }^{\text {sp }}$ - 131	$\underset{\mathrm{X}}{\mathrm{X}}$	¢ X	X	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	$\underset{\mathrm{x}}{\mathrm{X}}$
$\mathrm{BT}^{-1258}{ }^{\text {- Galerucinae }}$ - ${ }^{\text {sp }}$ - 028	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1259}{ }^{-}$-Galerucinae ${ }_{-} \mathrm{sp}_{-}^{-} 049$	X	X	X	X	X	X	X	x	X
$\mathrm{BT}^{-1260}{ }^{-}$Eumolpinae ${ }_{-} \mathrm{sp}^{-} 024$	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-1262-}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-141}$	X		x	x		X	X		
$\mathrm{BT}^{-1263-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 051$	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1265-}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 093$	X		X	x		X	X		
$\mathrm{BT}^{-1266-}{ }^{-}$Alticinae_-sp_-093				X			X		
$\mathrm{BT}^{-1267-}{ }^{-1}$ Alticinae- $^{-}{ }^{-}{ }^{-128}$	X	X	X	X	X	X	X	X	X
BT-1269-Alticinae-sp 009	X	¢	X	X	X	¢	X	X	X
${ }_{\text {BT }} \mathrm{BT}-1270$ - Galerucinae ${ }^{\text {Alticinae }}$ - ${ }^{\text {sp }}{ }_{057} 028$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1272-A l t i c i n a e-s p-128 ~}$	X	X	X	X	X	X	X	X	x
$\mathrm{BT}^{-1273-G a l e r u c i n a ̀ e ~}{ }^{\text {sp }}{ }^{\text {c }} 028$	${ }_{\text {X }}$	X	X	X	X	${ }^{\text {X }}$	X	X	X
$\mathrm{BT}^{-1274}$-Alticinae_sp_0 ${ }^{-12}$	x	X	x	x	X	X	X	X	X
$\mathrm{BT}^{-1275}{ }^{-}$Alticinae-_sp_051	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1276-A l t i c i n a e-s p-093}$	X		X	X		X	X		
$\mathrm{BT}^{-1277}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 093$				X			X		
$\mathrm{BT}^{-1278-}{ }^{-}$Alticinae-${ }_{\text {- }}{ }_{-}^{-} 143$	x	X	x	X	x	x	x	x	x
$\mathrm{BT}^{-1279-A l t i c i n a e-s p-125}$	X		X	X		X	X		
$\mathrm{BT}^{-1280}{ }^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-} 069$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{\text {BT }} 1281$-Galerucinae - ${ }^{\text {sp }}$ - 047	${ }_{\text {X }}$		X	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	${ }^{\mathrm{X}}$
$\mathrm{BT}^{-1282}{ }^{-}$Galerucinae-${ }_{-} \mathrm{sp}_{-}^{-052}$	X	X	X	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	${ }^{\mathrm{X}}$
$\mathrm{BT}^{-1283}$-Galerucinae-sp-006	$\underset{\mathrm{X}}{\mathrm{X}}$	¢	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	x	${ }_{\mathrm{x}}$
	X	${ }^{\mathrm{X}}$	X	X	X	X	X	X	X
$\mathrm{BT}^{-1286}$ - Alticinae_sp ${ }^{\text {- }} 0 \overline{2}_{1}$	x	X	X	x	x	X	x	x	x
$\mathrm{BT}^{-1287}{ }^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 067$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1288}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-103}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1289}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-102}$	X		X	X		X	x		
$\mathrm{BT}^{-1293-A l t i c i n a e-s p-050 ~}$	X	X	X	X	X	X	X	X	${ }^{\mathrm{X}}$
$\mathrm{BT}^{-1294}{ }^{-}$Galerucinae - ${ }^{\text {sp }}$ - 072	X	X	X	X	X	X	X	X	X
BT-1295-Alticinae_sp ${ }^{\text {B }} 057$	X	X	X	X	X	X	X	X	X
				X			X		
$\mathrm{BT}^{-1298-}{ }^{\text {- }}$ Alticinae_-sp-057				X			X		
$\mathrm{BT}^{-1299}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 057$				X			X		
$\mathrm{BT}^{-1300}{ }^{-}$Alticinae-_sp_057				X			X		
$\mathrm{BT}^{-1301-}{ }^{\text {- }}$ Alticinae-_sp-057				x			X		
$\mathrm{BT}^{-1302}{ }^{-}$Alticinae-_sp_${ }^{-} 057$				X			X		
$\mathrm{BT}^{-1303-A l t i c i n a e-s p-057 ~}$				X			X		
$\mathrm{BT}^{1304}$-Galerucināe ${ }^{\text {sp }}$ - 047	${ }_{\text {X }}$	X	X	X	X	$\stackrel{\mathrm{X}}{\mathrm{x}}$	X	X	${ }_{\text {X }}$
${ }_{\text {BT }} \mathrm{BT}^{1305}{ }_{1306}$ - Alticinae Alticinae - ${ }^{\text {sp }}$ - -093	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1307}{ }^{\text {- Eumolpinae }}$ - ${ }^{\text {sp }} 016$	X	X	X	X	X	X	X	x	X
BT- ${ }^{\text {1308-Alticinae_sp_ }} 134$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1309}{ }^{-131 t i c i n a e-}{ }_{-}^{-}{ }^{-}{ }_{-}^{-118}$	X		X	X		X	X		
$\mathrm{BT}^{-1310}{ }^{-}$Alticinae_-sp_-035	X	X	X	X	X	X	X	X	X
BT-1311-Alticinae-sp-069	${ }_{\text {X }}{ }^{\text {X }}$	X	X	X	X	$\mathrm{X}_{\mathrm{X}}$	X	X	${ }^{\mathrm{X}}$
$\mathrm{BT}^{-1312-A l t i c i n a e-}{ }^{-13}{ }^{-}{ }_{-}^{-093}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1313-A l t i c i n a e-}{ }^{-1}{ }^{-}{ }_{-}^{-} 093$				X			X		
$\mathrm{BT}^{-1314-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 093$				X			X		
$\mathrm{BT}^{-1315}{ }^{\text {- }}$ Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 093$				X			X		
$\mathrm{BT}^{-1318-}{ }^{\text {- Eumolpinae - }}$ - ${ }^{\text {P }}$ - 024	X	x	x	X	X	X	X	X	x
$\mathrm{BT}^{-1319}$ - Alticinae_sp ${ }^{-} 0 \overline{5} 1$	X	X	X	X	X	X	X	X	x
$\mathrm{BT}^{-1321}{ }^{-132}$ Galerucinae - ${ }^{\text {sp }}{ }^{061}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1322}$-Alticinae $\mathrm{sp}^{\text {P }}$ - 019	X	$\underset{\mathrm{X}}{\mathrm{X}}$	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	X	X X	X X	$\underset{\mathrm{X}}{\mathrm{X}}$
${ }_{\mathrm{BT}} \mathrm{BT}^{1323}$ 1324-Alticinae-sp- ${ }^{\text {sp }}$ - 104	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1325}{ }^{\text {- Alticinae }}{ }^{-} \mathrm{sp}^{-} 019$	X		x	X		X	X		
$\mathrm{BT}^{-1326-}{ }^{-}$Eumolpinae - ${ }^{\text {sp }}$ - 019	X	X	X	X	X	X	X	X	x
BT-1327-Alticinae_sp_ 097	X	X	X	X	X	X	X	X	
BT-1328-Alticinae_sp_106	X		X	X		X	X		
$\mathrm{BT}^{-1329-A l t i c i n a e-}{ }^{-1} \mathrm{sp}_{-}^{-106}$				X			X		
$\mathrm{BT}^{-1330}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 140$	X	x	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-1332}{ }^{-}$Cassidinae- $\mathrm{sp}^{-} 004$				X			X		
$\mathrm{BT}^{-1334-A l t i c i n a e}$ _sp_ ${ }^{\text {2 }} 45$	X		X	X		X	X		
BT-1335-Alticinae-sp-118	X	X	${ }^{\text {X }}$	X	X	${ }_{\text {x }}$	X	X	X
$\mathrm{BT}^{-1336-A l t i c i n a e-}{ }^{-13}{ }^{-} 244$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-1337}{ }^{-}$Lamprosomatinae_sp_001	X		X	X		X	X		
$\mathrm{BT}^{-1339}{ }^{\text {- }}$ Alticinae_sp_244-	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-1340}$-Galerucinae_-sp 066	X	X	X	X	X	X	X	X	X
	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X			X	X	x	
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-1756-}{ }^{\text {- }}$ Alticinae_-sp-014	X	X							
$\mathrm{BT}^{-1758-}{ }^{\text {- Alticinae- }} \mathrm{sp}{ }_{-}^{-014}$	X	X							
$\mathrm{BT}^{-1773}{ }^{\text {- Galerucinae }}$ - ${ }^{\text {sp }} 030$	X	X							
	X	X							
	X	X							
	X	X							
	X	X							
$\mathrm{BT}^{-1794-A l t i c i n a e ~}{ }^{\text {sp_ }} 0 \overline{0}^{\text {- }}$	X	x							
	X	X							
	X								
$\mathrm{BT}^{-1811}{ }^{-}$-Galerucinae ${ }_{-}^{\text {- }}{ }^{\text {- }}$ - 054	x								
	X								
$\mathrm{BT}^{-1813-A l t i c i n a e-}{ }^{-180}{ }^{-}{ }^{-} 032$	X	X							
$\mathrm{BT}^{-1820}$ - Alticinae-sp-142	X	X							
	X	X							
$\mathrm{BT}^{\text {- }} 1932$ - Eumolpinae ${ }_{-} \mathrm{sp}^{\text {- }}$-042	X	X							
$\mathrm{BT}^{-1934}$ - Eumolpinae ${ }^{-1935}{ }^{-1914}$	X								
	X	X							
$\mathrm{BT}^{\text {B }} 1954$-Galerucinae - ${ }^{\text {sp }} 041$	X	X							
BT-1963-Alticinae_sp_o37	X	X							
	X	X							
$\mathrm{BT}^{-1970}{ }^{-}$Eumolpinae-sp-007	X	X							
BT-1971-Eumolpinae_sp_015	X								
	X X								
$\mathrm{BT}^{-1974}$ - Alticinae_s ${ }^{\text {P }}$ - 015	X	x							
$\mathrm{BT}^{-1975}{ }^{-}$Alticinae- ${ }^{\text {sp }}$ - 015	X								
$\mathrm{BT}^{-1976}$ - Galerucinae - ${ }^{\text {sp }} 102$	X								
BT-1977-Alticinae_sp_ 0007	X	X							
$\mathrm{BT}^{-1978}$-Eumolpinàe_sp_040	X	X							


Specimen	1	1b	2	2a	2b	3	3 a	3b	4
BT_1982_Alticinae_sp_062	x	x							
$\mathrm{BT}^{-2050}$ - Alticinae $-\mathrm{sp}-123$	x	x							
	X	X							
BT-2056-Alticinae ${ }_{-}^{\text {sp }}{ }^{-141}$	x	x							
$\mathrm{BT}^{-}$2059-Alticinae ${ }_{-} \mathrm{sp}_{-}^{-142}$	X	X							
	X	X							
$\mathrm{BT}^{-2068-}{ }^{\text {Alticinae }}{ }^{-\mathrm{sp}_{-}} 142$	x	x							
$\mathrm{BT}^{-2073}$-Alticinae-sp-022	X	x	x	x	x				x
	x	x	x	X	x				x
	x	x	x	x	x				x
${ }^{\text {BT- }}$ 2077-Galerucinae ${ }^{\text {a }}$ - ${ }^{\text {sp }} 0007$	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	${ }^{\mathrm{X}}$	$\stackrel{\mathrm{x}}{ }$	$\stackrel{\mathrm{X}}{\mathrm{x}}$				x
	X		X	X	x				x
$\mathrm{BT}^{-2080}{ }^{\text {- Galerucinae }}$-sp-065	x	x	x	x	X				
	x	x	X	x	x				x
BT-2082- Alticinae ${ }^{\text {sp }}$ - ${ }^{\text {P644 }}$	x	x	x	¢	x				x
$\mathrm{BT}^{-} 2084{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 032$	X	x	X	X	X				X
	x	x	x	¢	x				x
	x	x	x	X	x				x
$\mathrm{BT}^{-2090}{ }^{-}$Alticinae ${ }^{-\mathrm{sp}^{\text {sp }}{ }^{\text {- }} \text { - }}$	x	x	x	x	x				x
	x	x	x	x	x				x
$\mathrm{BT}^{-2094}$ - Alticinae-sp ${ }^{\text {a }}$-096				X					
				x					
$\mathrm{BT}^{-2097} \mathrm{Cl}^{\text {Alticinae }}{ }^{\text {sp }}{ }^{\text {sp }} 122$	x	x	x	x	x				x
				X					
$\mathrm{BT}^{-} 2100-$ Alticinae ${ }^{-} \mathrm{sp}_{-122}$									
	x	x	x	X	x				x
$\mathrm{BT}^{-2103-A l t i c i n a e}{ }_{\text {- }}{ }^{\text {sp }}$				X					
$\mathrm{BT}^{\text {PT }}$ 21044 Alticinae_sp-086				X					
$\mathrm{BT}^{-2105}{ }^{-}$Alticinae-sp ${ }^{\text {a }}$ - ${ }^{\text {a }}$				X					
$\mathrm{BT}^{-2107}{ }^{\text {- Alticinae }}$ - ${ }^{\text {sp }}$ - 085	x	x	x	X	x				x
$\mathrm{BT}^{-2108}{ }^{-}$Alticinae-sp-085				X					
	x	x	x	x	x				x
$\mathrm{BT}^{-2111}$ - Alticinae $^{-\mathrm{sp}_{-}-133}$				X					
$\mathrm{BT}^{-2113-A l t i c i n a e ~}{ }_{\text {- }}{ }^{\text {sp }}$	x	x	x	x	x				x
${ }^{\text {BT }}$ - 2114 - Alticinae-sp ${ }^{\text {a }}$ - 142				X					
$\mathrm{BT}^{-2116}{ }^{-}{ }^{\text {Alticinae }}{ }^{-\mathrm{sp}^{\text {sp }}-142}$				¢					
$\mathrm{BT}^{-2117} \mathrm{C}^{\text {Alticinae }}{ }_{-} \mathrm{sp}_{-142}$				X					
	x	x	x	X	x				x
$\mathrm{BT}^{-2120}{ }^{\text {- Eumolpinae- }}$ - ${ }^{-}{ }^{-016}$				x					
${ }_{\text {BT }}{ }^{\text {BT }}$ 2121- ${ }^{\text {Eumolpinae }}{ }^{\text {sp }}$ - ${ }^{\text {sp }}$ - 016				-					
$\mathrm{BT}^{-2123}$ - Alticinae_sp ${ }^{\text {- }} 018$	x	x	x	X	x				x
				-					
$\mathrm{BT}^{-2126} \mathrm{Cl}^{\text {Alticinae }}{ }^{-\mathrm{sp}_{-}^{-} 018}$				X					
				x					
$\mathrm{BT}^{-2130}{ }^{\text {2 }}$ Alticinae ${ }^{-\mathrm{sp}_{-}^{-} 018}$				x					
$\mathrm{BT}^{-2133}{ }^{\text {a }}$ Alticinae ${ }^{-\mathrm{sp}^{\text {sp }}-018}$				x					
				X					
	${ }_{\mathrm{x}}^{\mathrm{x}}$	x	x	-	${ }_{\text {x }}$				${ }_{\mathrm{x}}$
$\mathrm{BT}^{-2137} \mathrm{C}^{\text {Alticinae }}{ }^{\text {- } \mathrm{sp}_{-}^{-110}}$				X					
	X	X	X	X	x				x
$\mathrm{BT}^{-2152}$ - Eumolpinae-sp-038	x	x	x	X	x				x
	X	x	X	X	X				
$\mathrm{BT}^{-2155}$ - Alticinae $\mathrm{sp}^{\text {a }} 115$	x	x	x	X	X				x
	x	X	x	x	-				x
$\mathrm{BT}^{-2158}$ - Alticinae ${ }^{\text {sp }}{ }^{\text {P }} 0{ }^{\text {® }} 3$	${ }_{\mathrm{x}}$	X	${ }_{\text {x }}$	X	X				${ }_{\text {x }}$
	X		X	X	X				
$\mathrm{BT}^{-2163}{ }^{\text {- Cassidinae_sp_- }}$ - ${ }^{\text {- }}$				x					
$\mathrm{BT}^{\text {Br }} 2164{ }^{\text {C Cassidinae_sp_012 }}$				X					
				X					
$\mathrm{BT}^{-2167-\text { Cassidinae -sp-012 }}$				,					
${ }^{\text {BT }}$ - 2168 - Galerucinae ${ }^{\text {sp }}$ - 036	${ }^{\mathrm{X}}$	x	x	X	x				x
	X	x	X	¢	x				x
	x		x	¢					
$\mathrm{BT}^{-2173}{ }^{-}{ }^{\text {Eumolpinae-sp-034 }}$	${ }_{\text {x }}$	X	${ }_{\text {x }}$	X	${ }_{\text {x }}$				x
				X					
$\mathrm{BT}^{-2178}{ }^{-}$- Galerucinae ${ }^{-\mathrm{sp}^{-}} \mathbf{0 4 3}$				x					
	X	X	X	X	X				X
$\mathrm{BT}^{-2181} \mathrm{C}^{\text {Alticinae }}{ }^{\text {- } \mathrm{sp}_{-}^{-} 251}$	x	x	x	x	X				x
${ }^{\text {BT }}$ - ${ }^{2182}$ - Galerucinae -sp ${ }^{\text {spa }}$ - 029	X	X	X	X	X				X
$\mathrm{BT}^{\text {- }} 2184$-Galerucinae-sp ${ }^{\text {- }}$				X					
				X					
$\mathrm{BT}^{-2187}{ }^{-} \mathrm{Galerucinae}_{-} \mathrm{sp}_{-}^{-} 029$				x					
	$x$	x	x	X	x				x
$\mathrm{BT}^{-2190}$ - Hispinae-sp-022			x	x					
	X	X	X	X	X				X
$\mathrm{BT}^{-2193}$-Alticinae_sp_076	x	x	x	x	x				x
	X	X	X	X	X				X
$\mathrm{BT}^{-2196}$ - Alticinae ${ }_{\text {- }}$	x	x	x	x	x				x


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT_2197_Eumolpinae_sp_047	x	x	x	x	x				x
$\mathrm{BT}^{-} 2198{ }^{-}$Eumolpinae-sp_-047				X					
$\mathrm{BT}^{-}{ }^{\text {2199 }}$ - Eumolpinae- ${ }^{\text {sp }}{ }^{-} 035$	X		X	X					
	X X	$\underset{\mathrm{x}}{\mathrm{X}}$	x	X	x				X
$\mathrm{BT}^{-} 2218$-Galerucinae_sp_012	X	X							x
$\mathrm{BT}^{-} 2^{2219}{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}^{\text {- }}{ }^{\text {- }} 042$	X	X							
$\mathrm{BT}^{-} 2220$-Galerucinae-_sp-007	X	X							
$\mathrm{BT}^{-} 2221{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}_{-}^{-} 022$	X	X							
$\mathrm{BT}^{-} 22222^{-}$Galerucinae-${ }^{-} \mathrm{sp}^{-} 076$	X	X							
$\mathrm{BT}^{-} 2229$-Alticinae_sp-0 ${ }^{\text {a }}$	X	X							
$\mathrm{BT}^{-2231-A l t i c i n a e-}{ }_{\text {- }}{ }^{\text {sp }}$ - 087	X	X							
$\mathrm{BT}^{-} 2232-$ Alticinae-sp-${ }^{-} 087$	X	X							
$\mathrm{BT}^{-} 2233^{-}$Alticinae-sp-${ }^{-} 087$	X	X							
	X	X	X	X	x				
$\mathrm{BT}^{-2311}$-Alticinae ${ }^{\text {sp }}$ - 074	X		X	X					
$\mathrm{BT}^{-}{ }^{2312}{ }^{-}$Alticinae $-\mathrm{sp}^{-} \mathbf{0 4 2}$	$\stackrel{\mathrm{X}}{\mathrm{x}}$	x	X	X	x				X
$\mathrm{BT}^{-}{ }^{2313}{ }^{\text {- }}$ Eumolpinae $-\overline{s p}$ - 025	$\stackrel{\mathrm{X}}{\mathrm{x}}$		X	X					
	X	X	X	X	X				
$\mathrm{BT}^{-} 2353{ }^{-}$Hispinae-sp_-006	X	X							
$\mathrm{BT}^{-}{ }^{2383}{ }^{-}$Galerucinae -sp 059	X	x							
$\mathrm{BT}^{-} 2399$-Alticinae_sp_ $0 \overline{38}$	X	X							
$\mathrm{BT}^{-} 2405_{-}^{-}$Alticinae-_sp-042	X	X							
$\mathrm{BT}^{-}$2491-Alticinae-sp-${ }^{-} 085$	X	X	X	X	x	X	X	x	x
$\mathrm{BT}^{-} \mathrm{2492}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-104}$	X	X	X	X	X	X	X	X	x
$\mathrm{BT}^{-} 2495{ }^{-}$Alticinae-sp-243	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2496-}{ }^{\text {Alticinae-}}{ }^{\text {sp }}{ }^{-140}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2498$ - Alticinae_-sp_052	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2499^{-}$Alticinae-_sp-118	X	X	x	X	X	X	X	x	X
$\mathrm{BT}^{-} 25022^{-}$Alticinae-sp_-160	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2503-A l t i c i n a e-}{ }^{-}{ }^{\text {sp }}$ - 079	X		X	X		X	X		
$\mathrm{BT}^{\text {- }}$ 2504-Galerucinae ${ }^{\text {sp }}$ - 098	${ }_{\text {X }}$	${ }_{\text {X }} \mathrm{X}$	X	X	${ }_{\text {X }} \times$	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	$\underset{\times}{\mathrm{X}}$	${ }_{\mathrm{X}}^{\mathrm{X}}$
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2507-$ Alticinae-sp- ${ }^{-203}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2508{ }^{-}$Galerucinae_sp_034	X		X	X		X	X		
$\mathrm{BT}^{-}{ }^{2509}$ - Galerucinae-sp-034				X			X		
$\mathrm{BT}^{-} 2510-$ Hispinae_sp-010	X								
BT-2511-Hispinae-sp_010	X	X							
$\mathrm{BT}^{-}{ }^{\text {2516-Galerucinae_sp }} 009$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2517-$ Alticinae_sp_ $2 \overline{\mathrm{O} 1}$	X	X	X	X	X	x	X	X	x
$\mathrm{BT}^{-} 2518-$ Alticinae-sp_-070	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2519-$ Alticinae ${ }^{-} \mathrm{sp}_{-}^{-153}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2520-$ Alticinae-sp_-073	X		X	X		X	X		
$\mathrm{BT}^{-}{ }^{\text {2521-Galerucinae_- }{ }^{\text {sp }} \text { - } 082}$	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}{ }^{\text {2523-Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 153$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2524$ - Alticinae-sp- ${ }^{-153}$				X			X		
$\mathrm{BT}^{-} 2525$ - Alticinae-sp_-153				X			X		
$\mathrm{BT}^{-} \mathrm{2526}^{-}$Alticinae-${ }^{-} \mathrm{sp}^{-} 153$				X			X		
	X		X	X		X	X		
$\mathrm{BT}^{-} 2529$ - Galerucinae-sp-055	X	X	X	X	X	X	X	X	X
BT-2531-Alticinae_sp_0 ${ }^{\text {- }}$	X	X	X	X	X	X	X	X	
	$\underset{\mathrm{X}}{\mathrm{X}}$	X ${ }_{\text {X }}$	X	X X	X	X ${ }_{\text {X }}$	X X	X ${ }_{\text {X }}$	$\mathrm{X}_{\mathrm{X}}$
$\mathrm{BT}^{-}{ }_{2547}{ }^{-}$Cassidinae-sp-004				X			X		
$\mathrm{BT}^{-}{ }^{2548}{ }^{-}$Cassidinae-sp ${ }^{-} 012$	x	x	x	x	x	X	X	x	x
$\mathrm{BT}^{-}$2549-Alticinae_- ${ }^{\text {sp }}$ - 094	X		X	X		X	X		
$\mathrm{BT}^{-2550} \mathrm{C}^{-}$Alticinae-_sp-056	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}{ }^{2551}{ }^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 246$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2552-$ Alticinae ${ }^{-} \mathrm{sp}^{-} 246$				X			X		
	X	X							
	X	X	X	X	X	X ${ }_{\text {X }}$	X	X	X
$\mathrm{BT}^{-} 2574{ }^{-}$Cassidinae-${ }^{-} \mathrm{sp}_{-}^{-} 012$				X			X		
$\mathrm{BT}^{-} 2575{ }^{-}$Eumolpinae ${ }^{\text {- }} \mathrm{s} \overline{\mathrm{p}}^{\text {- }} 031$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2576-A l t i c i n a e ~}{ }^{\text {sp }}$ - 096	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2578}{ }^{-}$-Galerucinae_-sp 034	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2579^{-}$Alticinae_sp ${ }^{-1 \overline{5}}$	X	X	X	X	X	X	X	X	X
	X	X							
	${ }_{\mathrm{X}}^{\mathrm{X}}$	${ }^{\mathrm{X}}$	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$		X	${ }_{\text {x }} \mathrm{x}$	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} \mathrm{2603}^{-}$Eumolpinae ${ }^{\text {sp }}$ - 039	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2604}$ - Alticinae_sp_106	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} \mathrm{2605}^{-}$Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 118$	X	x	X	X	X	X	X	X	
$\mathrm{BT}^{-}$2606- $^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-} \mathrm{2607}_{-}^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-118}$				X			X		
$\mathrm{BT}^{-}$2608-Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-} 2609$ - Alticinae-_sp-118				X			X		
$\mathrm{BT}^{-2610}$ - Alticinae- ${ }^{\text {sp }}-118$				X			X		
$\mathrm{BT}^{-} 2611$ - Alticinae_-sp_118				X			X		
$\mathrm{BT}^{-}$2612-Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-2613-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-118}$				X			X		
$\mathrm{BT}^{-}$2614-Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-} \mathrm{2615}^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-} 2616^{-}$Alticinae-${ }^{-}{ }^{-}{ }_{-}^{-118}$				X			X		
$\mathrm{BT}^{-} 2617_{-}^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-118}$				X			X		
$\mathrm{BT}^{-2618-}{ }^{\text {- }}$ Alticinae- ${ }^{-}{ }_{-}^{-118}$				X			X		
$\mathrm{BT}^{-}$2619-Alticinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-} 2620-$ Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{\text {P621-Alticinae }}$ - $\mathrm{sp}^{\text {- }} 1118$				X			X		
${ }_{\text {BT }} \mathrm{BT}-2622$ - Alticinae-sp ${ }^{\text {sp }}$ - 118				X			X		
$\mathrm{BT}^{-} 2624{ }^{-}$Alticinae-${ }_{-}{ }^{-}{ }_{-}^{-118}$				X			X		
$\mathrm{BT}^{-} 2625^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-} \mathrm{2626}^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-} 118$				X			X		
$\mathrm{BT}^{-} 2627^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-118}$				X			X		
$\mathrm{BT}^{\text {BT }} 2628{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-118}$				X			X		
	X	X	X	X	X	X	X	X	${ }_{\text {X }}$
	${ }_{\mathrm{X}}^{\mathrm{X}}$	X X	X	X X	X	X	X	X	X
$\mathrm{BT}^{-2634}$ - Alticinae ${ }^{\text {- }}$ - ${ }^{-196}$	X		X	X		X	X		
BT-2637-Eumolpināe_-sp_040	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-} 2638{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 061$	X	X	X	X	X	X	X	X	x
BT-2639-Alticinae_sp_ ${ }^{\text {B6] }}$	X	X	X	X	X	X	X	X	
${ }_{\text {BT }} \mathrm{BT}-2640$ - Alticinae- ${ }^{\text {sp }}$ - ${ }^{\text {a }}$ - 104	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{\text {B }} 2642$ - Eumolpinae ${ }^{\text {sp }}$ - 019	X	X	X	X	X	X	X	X	X
	${ }_{\text {X }}$	X	X	X	X	X	X	X	X
	X	x	X	X	X	X	X	X	X
$\mathrm{BT}^{-}{ }_{2646}$ - Alticinae_sp-096	X	x	X	X	x	X	X	x	x
$\mathrm{BT}^{-2657}{ }^{-}$Alticinae $-\mathrm{sp}_{-}^{-} 001$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2658}{ }^{-}$Alticinae-${ }_{-}^{\text {sp }}$-041	X	X	X	X	X	X	X	X	X
BT_2659_Alticinae_sp_086	X	X	X	X	$\mathrm{x}$	X	X		X


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT_2660_Alticinae_sp_097	x	x	x	x	x	x	x	x	
$\mathrm{BT}^{-}{ }_{2661}{ }^{\text {- Hispinae-sp-009}}$	X	X	X	x	x	X	X	X	x
	x	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2663-}{ }^{\text {- }}$ - ${ }^{\text {ispinae-sp-005 }}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2664}$ - Cassidinae-_sp_003	X		X	X		X	X		
$\mathrm{BT}^{-2665}{ }^{\text {- Criocerinae- }}{ }^{\text {- }}$ - 004	X	X	X	X	X	X	X	X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{\text {- } 2668-E u m o l p i n a e ~-~}{ }^{\text {sp }}$ - 028	${ }^{\text {X }}$		X	X		X	X		
$\mathrm{BT}^{-2670}{ }^{-}$Alticinae $\mathrm{sp}^{\text {P }}$ - 051	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\underset{ }{\mathrm{X}}$	X	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X	X
	X	X	X	X	X	X X	X X	X X	X
	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-}{ }_{2675}{ }^{-}$Galerucinae ${ }^{-\mathrm{sp}}$ - 002	x	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}$2676-Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 046$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2677^{-}$- Galerucinae- ${ }^{-}{ }^{-}{ }^{-061}$	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{-2678}$-Alticinae_sp_1T1	X		X	X		X	X		
$\mathrm{BT}^{-2679}{ }^{-}$Alticinae-${ }_{-}{ }^{-}{ }^{-} 096$	x	x	X	X	x	X	X	X	
$\mathrm{BT}^{-2681-}{ }^{\text {- Criocerinae }}{ }^{\text {- }}$ - ${ }^{\text {p }} 001$	x	x	X	x	x	X	X	X	
BT-2684-Alticinae_s ${ }^{\text {¢ }}$ - $04 \overline{49}$	X	X							
	X	X	X	x	X	X	X	x	X
$\mathrm{BT}^{-2698}{ }^{\text {- }}$ Eumolpinae _ ${ }^{\text {sp }} 071$	x	X	X	X	X	X	x	x	X
$\mathrm{BT}^{-2699}$-Alticinae_sp ${ }^{\text {- }} 0 \overline{60}$	X	X	X	x	X	X	X	X	
$\mathrm{BT}^{-2701-}{ }^{\text {- }}$ Alticinae-_sp_056	X		X	X		X	X		
$\mathrm{BT}^{-2702-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-} 056$	X		X	X		X	X		
$\mathrm{BT}^{-2703-}{ }^{\text {Alticinae_-sp_056 }}$				X			X		
$\mathrm{BT}^{-2704-}{ }^{\text {Alticinae }}{ }_{-}^{-\mathrm{sp}_{-}^{-} 246}$	X		X	x		X	X		
$\mathrm{BT}^{-} 2705^{-}$Alticinae-sp-094	x	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2706-}{ }^{-}$Alticinae-sp-120	X		X	X		X	X		
$\mathrm{BT}^{-2707}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}{ }^{\text {- }}$	X	X	X	X	X	X	X	X	X
$\mathrm{BT}^{-2708-}{ }^{\text {Alticinae }}{ }^{-} \mathrm{sp}_{-}^{-} 224$	x	X	X	X	x	X	X	X	
$\mathrm{BT}^{-2709-}{ }^{\text {- }}$ Hispinae_sp_-024	X		X	X		X	X		
$\mathrm{BT}^{-2717-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 001$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2718-}{ }^{\text {- }}$ Alticinae $-\mathrm{sp}{ }^{-} 096$	x	x	X	X	X	X	X	x	
$\mathrm{BT}^{-} 2719^{-}$Criocerināe ${ }^{\text {sp }} 001$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2723-$ Alticinae_sp${ }^{\text {P }}$ - $2 \overline{2} 5$	X	X							
BT-2771-Galerucinàe_sp_100	X	X							
$\mathrm{BT}^{-2787}{ }^{-}$Galerucinae-${ }_{-} \mathrm{sp}_{-}^{-002}$	X	X							
$\mathrm{BT}^{-} 2795{ }^{-}$Galerucinae-${ }_{-} \mathrm{sp}_{-}^{-017}$	X	X							
$\mathrm{BT}^{-2805}$ - Eumolpinae - $\mathrm{sp}^{\text {- }}$-006	X		X	X		$\stackrel{\mathrm{X}}{\mathrm{X}}$	$\underset{\mathrm{X}}{\mathrm{X}}$		
	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	
$\mathrm{BT}^{-2809}$ - Alticinae-sp- 259	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2810}{ }^{-}$Galerucinae -sp 072	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2812-$ Alticinae_sp_104	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2813-}{ }^{\text {Alticinae }}{ }_{-}^{\text {- }}{ }^{-}{ }_{-} 104$				X			X		
$\mathrm{BT}^{-}$2814-Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-104}$				x			X		
$\mathrm{BT}^{-2816-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-150}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2817}{ }^{-}$Alticinae-sp ${ }^{\text {- }}$ - ${ }^{\text {d }}$	x	x	x	X	x		X		
$\mathrm{BT}^{-} 2820$ - Eumolpinae-sp-030				X			X		
$\mathrm{BT}^{-2821}{ }^{-280}$ Eumolpinae-${ }_{-} \mathrm{sp}_{-}^{-} 074$	x	X	x	X	X	X	X	x	
$\mathrm{BT}^{-}$2822- Galerucinae-- ${ }^{-}{ }^{-}{ }^{-} 048$	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2824-A l t i c i n a e-}{ }_{-}^{-}{ }^{-}{ }_{-129}$	X	${ }_{\text {X }}$	X	X	X	X	X	X	
$\mathrm{BT}^{-2825-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-126}$	x	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} \mathrm{2826}^{-}$Alticinae-sp-104	x	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2827$ - Eumolpinàe_sp_067	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2828$ - Eumolpinae-sp-029	X		X	X		X	X		
$\mathrm{BT}^{-2829}$ - Eumolpinae- ${ }^{-\mathrm{sp}^{-} 030}$	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2832-$ Alticinae_sp_072	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2833-A l t i c i n a e-s p-104}$	${ }_{\text {X }}$	X	${ }^{\text {X }}$	X	X	X	$\stackrel{\text { X }}{\text { X }}$	X	
$\mathrm{BT}^{-2834-A l t i c i n a e-s p-118}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} \mathrm{2835}^{-}$Alticinae-${ }_{-} \mathrm{sp}_{-}^{-118}$				X			X		
$\mathrm{BT}^{-} \mathrm{2837}^{-}$Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-} 118}$	X		X	X		X	X		
$\mathrm{BT}^{-2838-A l t i c i n a e}{ }^{-} \mathrm{sp}-118$				X			X		
$\mathrm{BT}^{-2839}$ - Eumolpināe $\overline{\text { sp }}$ - 066	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$	$\stackrel{\mathrm{X}}{\mathrm{X}}$	x	
	X	X	X X	X X	X	X X	X X	X	
$\mathrm{BT}^{-} 28422^{-}$Galerucinae--sp-098	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2843-$ Hispinae_sp_005	X		X	X		X	X		
$\mathrm{BT}^{-} 2844{ }^{-}$Alticinae_-sp-126	X	X	X	x	X	X	X	X	
BT-2845-Alticinae-sp 118	X		$\stackrel{\mathrm{X}}{\mathrm{x}}$	X		X	X		
	X	x	X	X	X	X	X	X	
$\mathrm{BT}^{-2848-A l t i c i n a e-s p-118 ~}$	x		X	X		X	X		
$\mathrm{BT}^{-2849-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-118}$				X			X		
	X	X	X	X	x	X	X	X	
	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{-2853-A l t i c i n a e-s p-052 ~}$				X			X		
	X	X	X X	X	x	X	X	X	
${ }_{\text {BT }}{ }^{\text {BT }}$ 2856- Cryptocephainae ${ }^{\text {sp }}$ - ${ }^{\text {sp }}$ - 002	X		X	X	x	X	X		
$\mathrm{BT}^{-2863-}{ }^{-}$Alticinae_sp_104-	x	X	X	X	X	X	X	x	
	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	X	X	
$\mathrm{BT}^{-2865}$-Alticinae_s ${ }^{\text {P }}$ - 1118	X			X		X	X		
$\mathrm{BT}^{\mathrm{BT}} \mathrm{BT}_{2867} 886$ - Alticinae ${ }^{\text {Alticinae }}$-sp ${ }^{\text {- }} 1118$				X			X		
				X			X		
$\mathrm{BT}^{-2869-}{ }^{\text {Alticinae-}}{ }^{\text {sp }}$ - 118				X			X		
$\mathrm{BT}^{-2870}{ }^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-118}$	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-2871-}{ }^{\text {Alticinae }}{ }_{-} \mathrm{sp}_{-}^{-} 213$	x	X	X	X	X	x	X	X	
$\mathrm{BT}^{-2872-A l t i c i n a e}{ }^{-} \mathrm{sp}-064$	${ }_{\text {X }}$	$\stackrel{\mathrm{X}}{\mathrm{X}}$	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	X	X	
	X	X	X	X		X	X		
$\mathrm{BT}^{-2876-}{ }^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-} 087$	x	X	x	X	X	X	X	x	
$\mathrm{BT}^{-} 2877^{-}$Eumolpinae-_sp_024	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2878-}{ }^{-}$Eumolpinae-${ }^{-} \mathrm{sp}$-024				X			X		
	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	
	X	X	X	X	X	X X	X	X	
$\mathrm{BT}^{\text {- } 2900}$-Alticinae_sp-245	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2901-}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 244$	X	X	X	x	X	X	X	X	
$\mathrm{BT}^{-2902}{ }^{-}$Alticinae-sp-208	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2903-E u m o l p i n a ̄ e ~} \overline{\mathrm{~s}} \mathrm{~s} 071$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2905}{ }^{\text {- }}$ Alticinae_sp_ ${ }^{\text {245 }}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-2907}{ }^{-}$Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-} 191}$	X	x	X	X	X	X	X	X	
$\mathrm{BT}^{-} 2908$ - Alticinae- ${ }^{-}{ }^{-} 258$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}$2912-Galerucinae-_sp_014	X								
$\mathrm{BT}^{\text {BT }}$ 2935-Galerucinae $-\mathrm{sp}-106$	${ }_{\mathrm{X}}^{\mathrm{X}}$	X							
$\mathrm{BT}^{-} 2938$-Alticinae_sp ${ }^{\text {a }}$ - ${ }^{\text {44 }}$	X	X	${ }_{\text {X }}^{\text {x }}$	${ }_{\text {x }}$	X	X	X	X	
	X		X	X		X	X		
	X	X							


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT-2954_Hispinae_sp_018	x								
$\mathrm{BT}^{-2969-E u m o l p i-2 e-s p ~}{ }^{\text {sp }}$ - 013	X	x							
	X	x	x	x	x	x	x	X	
${ }^{\mathrm{BT}}-3027$ - Alticinae ${ }^{\text {sp }}$ - 173	${ }^{\mathrm{X}}$	${ }^{\mathrm{X}}$	X	X	X	X	${ }^{\mathrm{x}}$	X	
${ }^{\text {BT- }}$-3028 ${ }^{\text {a }}$ Alticinae -sp ${ }^{\text {sp }} 204$	x		$\stackrel{1}{\times}$	x		-	-		
	X	x	-	X	x	-	X	x	
	X	X	X	X	X	X	X	X	
	x	x	X	x	x	-	x	x	
BT-3034-Alticinae ${ }_{\text {- }}$	x	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3037-}{ }^{\text {Alticinae }}{ }^{-\mathrm{sp}^{\text {sp }} \text { - }} 135$	x	x	X	x	x	X	x	x	
BT-3038-Galerucinae_sp_084	x	x	x	X	X	X	x	X	
	x	x	x	X	x	x	$\stackrel{\mathrm{X}}{\mathrm{X}}$	x	
$\mathrm{BT}^{-3041}{ }^{\text {- Cassidinae }}$ - ${ }^{\text {sp }}$ - 017	x	x	x	x	x	X	x	X	
$\mathrm{BT}^{-3060}$-Alticinae_- ${ }^{\text {sp }}$ - 115	x	x	x	X	x	x	X	x	
	x	x	x	X	x	x	x	x	
	x	x	x	$\stackrel{\mathrm{X}}{\mathrm{X}}$	x	x	X	x	
$\mathrm{BT}^{-3065}{ }^{-}$Galerucinae ${ }^{\text {sp }}$ - 034	X	x	X	X	X	X	x	x	
$\mathrm{BT}^{-3066-A l t i c i n a e ~}{ }^{\text {sp }}{ }^{\text {P }} 1477$	x	x	x	X	x	x	X	x	
BT-3067- Alticinae -sp ${ }^{\text {sp }}$ - ${ }^{\text {d }}$	x		X	¢		x	X		
$\mathrm{BT}^{\text {- }}$ 3070-Eumolpinae_- ${ }^{\text {sp }}$ - 038	x	x	x	X	x	x	x	x	
${ }^{\text {BT }}$ - 3071-Eumolpinae-sp ${ }^{\text {a }}$ - 038				x			X		
				${ }^{\times}$			${ }_{\mathrm{x}}^{\mathrm{X}}$		
	x	x	x	x	x	x	X	x	
				X					
	X	x	X	X	x	X	X	X	
$\mathrm{BT}^{-3079}{ }^{\text {- Alticinae }}$-sp ${ }^{\text {- }} 104$	X	X	X	X	X	X	X	X	
	${ }^{\times}$	${ }^{\times}$	$\stackrel{\mathrm{X}}{\times}$	x	X	X	$\stackrel{\mathrm{x}}{\mathrm{x}}$	X	
	${ }_{\mathrm{x}}^{\mathrm{x}}$	X	X	X	X	X	X	${ }^{\mathrm{X}}$	
$\mathrm{BT}_{-}^{-3084}{ }_{-}^{\text {Alticinae }}$ - ${ }^{\text {sp }}$ - 062	x	x	-	X	X	-	X	x	
	X	X	X	X	X	X	X	X	
	x	x	x	X	x	X	${ }^{\mathrm{x}}$	X	
	X	X	X	X	X	X	X	${ }^{\mathrm{X}}$	
BT-3090-Eumolpinae ${ }_{\text {-sp }}{ }^{\text {sp }}$ - ${ }_{\text {-65 }}$	X	X	X	X	X	X	X	X	
${ }^{\mathrm{BT}^{-3091}} \mathbf{3 0 9 1}$ - Eumolpinae-sp ${ }^{\text {a }}$ - 065				x			-		
${ }^{\text {BT- }}$ - ${ }^{\text {3092- }}$	${ }_{\mathrm{x}}^{\mathrm{x}}$	${ }_{\mathrm{x}}$	${ }_{\mathrm{x}}$	${ }^{\times}$	X	${ }_{\mathrm{x}}$	x	x	
	x	x	x	X	x	x	x	x	
$\mathrm{BT}^{\text {- }} 3097$ - Eumolpinae ${ }^{\text {a }}$ - ${ }^{\text {sp }} 038$	x	x	X	x	X	X	x	x	
				X			X		
$\mathrm{BT}^{-3100}{ }_{\text {- Alticinae_s }}{ }^{\text {- }}$ - 172	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{\text {- }}$ 3101-Alticinae-sp-2 245	${ }^{\mathrm{x}}$	${ }_{\text {x }}$	X	X	${ }^{\mathrm{x}}$	X	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	
	X	X	¢	X	X	¢	X	X	
$\mathrm{BT}^{-3104}$ - Alticinae-sp ${ }^{-244}$	x	x	x	X	x	x	x	x	
	x	x	X	X	x	x	x	x	
	${ }^{\mathrm{X}}$	X	X	X	X	${ }^{\mathrm{x}}$	$\stackrel{\mathrm{x}}{\mathrm{x}}$	$\stackrel{\mathrm{x}}{\mathrm{x}}$	
$\mathrm{BT}^{-3109}{ }^{-} \mathrm{Galerucinae}^{\text {Ap }}$ - ${ }^{\text {dp }}$ - 109	X		X	X		X	X		
	X	X	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X	X	X	
$\mathrm{BT}^{-3112-A l t i c i n a e ~}{ }^{-\mathrm{sp}^{\text {sp }}-197}$	x	x	X	-	X	X	X	x	
	X	X	X	X	X	X	X	${ }_{\text {X }}$	
	X	X	X	X	X	X	X	X	
	x	x	X	X	x	x	X	x	
$\mathrm{BT}^{-3118}{ }^{-}$Alticinae ${ }^{\text {sp }}$ - 178	x	x	X	x	X	X	x	X	
$\mathrm{BT}^{\text {- }}$ 3120-Galerucinae - ${ }^{\text {sp }}$ - 098	X	x	X	X	x	X	X	x	
$\mathrm{BT}^{-3122}$ - Alticinae ${ }^{\text {sp }}$ - ${ }^{\text {sp }} 005$	x	x	X	X	x	X	X	x	
$\mathrm{BT}^{-3123}{ }^{-}$Eumolpinae ${ }^{\text {a }}{ }^{\text {sp }}{ }^{\text {d }} 065$	X	x	X	X	x	X	X	x	
	X	x	X	X	x	X	X	x	
	x	x	x	X	x	x	${ }^{\mathrm{x}}$	x	
				X			X		
$\mathrm{BT}^{-3143}$-Galerucinae-sp-017	X	X							
	X	X							
	X	x	x	x			x		
$\mathrm{BT}^{-3198}{ }^{\text {- Alticinae }}{ }^{\text {sp }}$ sp ${ }^{-119}$	X		X	X		x	x		
$\mathrm{BT}^{\text {3 }}$ 3200-Galerucinae - ${ }^{\text {sp }}$ - 073	X	${ }^{\mathrm{x}}$	X	X	x	X	${ }^{\mathrm{x}}$	X	
$\mathrm{BT}^{\text {- }}$ 3202-Alticinae $-\mathrm{sp} \mathrm{sp}^{-184}$	X	x	-	X	X	-	र	x	
$\mathrm{BT}^{-3203}{ }^{\text {- Galerucinae }}{ }^{\text {sp }}$ - 073	X	x	X	X	X	X	X	X	
	-	X	-	X	X	-	x	x	
BT-3206-Alticinae_sp_ 245	X	x	X	x	x	X	x	x	
${ }^{\text {BT- }}$	x		x	X		X	X		
	X	X	X	X	X	X	X	X	
${ }^{\text {BT- }}$ - ${ }^{\text {and }}$	X	${ }^{\mathrm{x}}$	X	X	${ }^{\mathrm{x}}$	X	X	${ }^{\mathrm{x}}$	
$\mathrm{BT}^{-3212-C r i o c e r i n \bar{e}}$ - $\mathrm{s}_{\mathrm{s}}$ - ${ }^{001}$	X	x	X	X	X	X	X	${ }_{\text {x }}$	
$\mathrm{BT}^{3214}-3214$ Eumolpinae ${ }^{\text {sp }}$ sp $-{ }_{014}$	¢		¢	X	x	X	X		
				X			X		
	${ }_{\mathrm{x}}^{\mathrm{x}}$	${ }_{\mathrm{x}}$	${ }_{\mathrm{x}}^{\mathrm{x}}$	X	X	X	X	${ }_{\text {x }}$	
$\mathrm{BT}^{3218}{ }^{\text {a }}$ - Alticinae-sp-087				X			${ }^{\mathrm{x}}$		
	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{\text {- }} 3221$-Galerucinae ${ }^{\text {- }{ }^{\text {sp }} \text { - } 034}$				x			x		
				x			${ }^{\mathrm{x}}$		
${ }^{\text {BT- }}$				X			X		
$\mathrm{BT}^{-3225}$ - Galerucinae ${ }^{-\mathrm{sp}_{-}{ }^{-025}}$	X	x	X	x	X	X	x	x	
BT-3226_Galerucinae-sp_025	x	x	x	x	x	X	x	x	



Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT_3362_Eumolpinae_sp_046	X	X	X	X	X	X	x	X	
$\mathrm{BT}^{-3363-A l t i c i n a e ~ s p}{ }^{-106}$	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	${ }_{\text {x }}$	X	X	X	X	X	
$\mathrm{BT}^{\text {B }}$ 3364-Eumolpinae - ${ }^{\text {sp }}$ - 024	X	X	X	X	X	x	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3367^{-}$Alticinae-${ }_{-}{ }^{-}{ }_{-}^{-} 051$	X	X	x	X	X	X	x	X	
$\mathrm{BT}^{-3368-}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-051}$				X			X		
$\mathrm{BT}^{\text {B }} 3369$-Alticinae-sp-051	X	X	X	X	x	x	X	x	
$\mathrm{BT}^{-3370-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 051$				X			X		
$\mathrm{BT}^{-3371-A l t i c i n a e}{ }^{-\mathrm{sp}}{ }^{-051}$				X			X		
	X	X	X	X	X	x	X	X	
$\mathrm{BT}^{-} 3374{ }^{-}$Eumolpinae-sp-072	X		X	X		X	X		
$\mathrm{BT}^{-} 3375{ }^{-}$Eumolpinae ${ }^{-} \mathrm{sp}{ }^{-}{ }^{-14}$	X	X	X	X	x	X	X	x	
$\mathrm{BT}^{-3376}{ }^{-}$Eumolpinae-${ }_{-}^{-s p}{ }_{-}^{-024}$				X			X		
$\mathrm{BT}^{-3377}{ }^{-}$Eumolpinae-${ }_{-} \mathrm{sp}_{-}^{-} 024$				X			X		
$\mathrm{BT}^{-3378}{ }^{-}{ }^{\text {Eumolpinae }}{ }^{-} \mathrm{sp}^{-} 024$				X			X		
$\mathrm{BT}^{-} 3379^{-}$Eumolpinae-${ }^{-} \mathrm{sp}_{-}^{-} 062$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3380}{ }^{-}$-Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 074$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3381-}{ }^{\text {-Galerucinae_-sp_074 }}$				X			X		
$\mathrm{BT}^{-} 3382^{-}$Galerucinae-${ }_{-}^{-} \mathrm{sp}_{-}^{-} 055$	x	X	x	X	X	X	X	x	
$\mathrm{BT}^{-} 3383$ - Eumolpinae-sp ${ }^{-} 024$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3384-A l t i c i n a e}$ - $\mathrm{sp}-152$	X	X	X	X	X	${ }^{\mathrm{X}}$	X	X	
$\mathrm{BT}^{-3385}{ }^{-}$Alticinae-sp-${ }^{-}{ }^{-1}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3386}{ }^{-}$Hispinae - ${ }^{\text {sp }}$ - $011{ }^{\text {d }}$	$\stackrel{\mathrm{X}}{\mathrm{X}}$	$\underset{\mathrm{X}}{\mathrm{X}}$	${ }_{\text {X }}^{\text {X }}$	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	
	${ }^{\text {X }}$	${ }^{\mathrm{X}}$	${ }^{\text {X }}$	X	X	X	X	X	
BT-3389-Eumolpinae ${ }^{-{ }^{\text {sp }} \text { - }{ }^{\text {- }} 064}$	X	X	X	X	X	X	X	X	
BT-3390-Alticinae_sp_ ${ }^{-1 \overline{0} 4}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3391}$ - Alticinae-sp_-052	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3392-A l t i c i n a e-s p-052 ~}$				X			X		
	X	x	X	X X	X	X	X X	X	
$\mathrm{BT}^{-} 3395{ }^{-}$Alticinae-sp_-118				X			X		
$\mathrm{BT}^{-3396-}{ }^{-}$Alticinae- ${ }^{-}{ }_{-}^{-118}$				X			X		
BT-3398-Eumolpināe_-sp_039	X		X	X		X	X		
$\mathrm{BT}^{-3399}{ }^{-}$Eumolpinae-_sp-039				X			X		
$\mathrm{BT}^{-} 3400-$ Eumolpinae_-sp_039				X			X		
$\mathrm{BT}^{-3401-E u m o l p i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 039$				X			X		
	X	X	X	X	X	x	X	x	
$\mathrm{BT}^{-3405}{ }^{-}$Eumolpinae-sp-039	X	X	X	X	X	x	X	x	
				X			X		
BT-3407-Alticinae_sp_118	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3408}{ }^{-}$Alticinae-sp_${ }^{-} 104$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3409}{ }^{-}$Alticinae-sp_${ }^{-} 113$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3410}{ }^{-}$Alticinae-sp_${ }^{-} 131$	X		${ }^{\mathrm{X}}$	X		X	X		
$\mathrm{BT}^{-3411-}{ }^{\text {- Alticinae-}}{ }^{\text {sp }}$-118	X		X	X		X	X		
BT-3412-Eumolpināe_-sp_039	X		X	X		X	X		
$\mathrm{BT}^{-3413-E u m o l p i n a e-s p-039}$				X			X		
$\mathrm{BT}^{-3414}{ }^{-}$Eumolpinae-sp_039				X			X		
$\mathrm{BT}^{-3415}{ }^{-}$Eumolpinae-sp-039				X			X		
$\mathrm{BT}^{-3416-}{ }^{-}$Alticinae_sp	X		X	X		X	X		
$\mathrm{BT}^{-3417}$ - Alticinae-sp-118				X			X		
$\mathrm{BT}^{-3418-A l t i c i n a e-s p-118}$	X		X	X		X	X		
				X			X		
$\mathrm{BT}^{-3421-}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-}^{-118}$				X			X		
$\mathrm{BT}^{-3422-}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-118}$				X			X		
$\mathrm{BT}^{-3423-}{ }^{\text {- }}$-umolpinàe $\overline{\mathrm{sp}}$ - 029	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{\text {B424-Alticinae_sp }} 1118$	${ }^{\mathrm{X}}$		${ }_{\mathrm{x}}$	X		${ }_{\mathrm{X}} \mathrm{x}$			
	X	X X	X	X	$\underset{\mathrm{x}}{\mathrm{X}}$	X	X	X	
$\mathrm{BT}^{-3427}$-Alticinae_sp ${ }^{\text {a }} 172$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3428}{ }^{-}$Hispinae-sp_-025	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3429}{ }^{\text {- Galerucinae - }}$ - ${ }^{\text {a }} 066$	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3431-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-} 248$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3432-}{ }^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-} 209$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3433-E u m o l p i n a e-~} \overline{\mathrm{~s} p}{ }^{\text {- }} 071$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3434-A l t i c i n a e ~} \mathrm{sp}^{\text {- }} 18$ 187	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	X	X	X	$\underset{\text { X }}{\text { X }}$	X	X	
$\mathrm{BT}^{-3435}$-Eumolpinàe_- $\overline{\text { sp }}$ - 019	X	X	X	X	X	X	X	X	
BT BT-3436- - -	X	X	X	X X	X	x	X X	X	
$\mathrm{BT}^{-3438}{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 031$	X	x	X	X	x	X	X	x	
BT-3439-Alticinae_sp 018	${ }_{\text {X }}$		$\underset{\mathrm{X}}{\mathrm{X}}$	X		$\underset{\times}{\mathrm{X}}$			
${ }_{\text {BT }} \mathrm{BT}-3440$ - Alticinae- ${ }^{\text {sp }}$ - 1177	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3442-}{ }^{\text {Alticinae }}{ }^{-} \mathrm{sp}_{-}^{-} 207$	X		X	X		x	x		
$\mathrm{BT}^{-3443-}{ }^{\text {Alticinae }}{ }_{-}^{-\mathrm{sp}_{-}^{-} 207}$				X			X		
$\mathrm{BT}^{-3444-}{ }^{\text {Alticinae-}}{ }^{-\mathrm{sp}_{-}^{-} 064}$	X		X	X		X	X		
$\mathrm{BT}^{-3445-A l t i c i n a e}{ }^{-} \mathrm{sp}-092$	X	X	${ }_{\text {X }}$	X	X	X	X	x	
$\mathrm{BT}^{-3446-A l t i c i n a e}-\mathrm{sp}-083$	X		${ }^{\mathrm{X}}$	X		X	X		
BT-3447-Alticinae-sp -150	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3449-}{ }^{\text {Alticinae-}}{ }^{\text {- }}{ }^{-}{ }_{-} 002$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3450-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 087$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3451-A l t i c i n a e}-\mathrm{sp}-087$	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3454}{ }^{-}$Galerucinae-sp-061				X			x		
$\mathrm{BT}^{-3455}{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 031$	X	X	${ }_{\text {x }}$	X	X	${ }_{\mathrm{X}}$	X	X	
BT-3456-Alticinae_sp 266	X	X	${ }^{\mathrm{X}}$	X	X	X	X	X	
	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X X	X	X	X X	X	
$\mathrm{BT}^{-3459}{ }^{\text {- Alticinae_s }}{ }^{\text {- }}$ - 150	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3460}$ - Alticinae-sp- ${ }_{-}{ }^{\text {- }}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3461-}{ }^{\text {Alticinae }}{ }^{-} \mathrm{sp}_{-}^{-162}$	X		${ }_{\text {x }}$	X		${ }^{\mathrm{X}}$	X		
$\mathrm{BT}^{-3462-C h r y s o m e l i n a e ~}{ }^{\text {- }}$ sp_001	X	X	X	X	X	X	X	X	
	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X X	X	X	X X	x	
$\mathrm{BT}^{-}{ }_{3465}$-Alticinae -sp - ${ }^{\text {a }}$	X	x	X	X	x	X	X	x	
$\mathrm{BT}^{-} 3466^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-} 190$	X		x	X		X	x		
$\mathrm{BT}^{-3467}$ - Alticinae_sp 190				${ }_{\text {X }}$			X		
$\mathrm{BT}^{-3468-A l t i c i n a e-s p-197 ~}$	X	X	X	X	X	X	X	X	
	X	X	X	X X	x	X	X ${ }_{\text {X }}$	x	
$\mathrm{BT}^{\text {- }} 3473$-Alticinae_sp ${ }^{\text {a }} 109$	X	x	X	X	X	x	X	X	
$\mathrm{BT}^{\text {B474-Alticinae- }}$ - ${ }^{\text {- }}$ - 197	X	X	${ }^{\text {X }}$	X	X	X	X	X	
$\mathrm{BT}^{-3475}{ }^{-}$-Galerucinae ${ }^{\text {d }}$ - sp _ 104	X	X	${ }_{\text {X }}$	X	X	${ }^{\mathrm{X}}$	X	X	
$\mathrm{BT}^{-3476-}{ }^{-}$Eumolpinae $-\mathrm{sp}-065$	X		X	X		X	X		
	¢ ${ }_{\mathrm{X}}$	X X	$\underset{\mathrm{X}}{\mathrm{X}}$	X X	X X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3480}{ }^{-}$Galerucinae - ${ }^{\text {sp }} 061$	x	X	x	x	x	X	x	X	
	X	X	X	X	X	X	X	X	
BT-3482-Galerucinaee_sp_054	X		X	X		X	X		


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT_3483_Alticinae_sp_123	x		X	x		x	x		
$\mathrm{BT}^{-} 3484$ - Alticinae- ${ }^{-} \mathrm{sp}^{-} 123$				X			X		
$\mathrm{BT}^{-3485-A l t i c i n a e-s p-249}$	${ }_{\text {x }}$	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3488}$ - Alticinae-sp_176	X	X	X	X	x	X	X	x	
$\mathrm{BT}^{-3489}{ }^{\text {- Galerucinae _sp_066 }}$	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{-3490}$-Galerucinae-sp-066	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}{ }^{\text {3491--Galerucinae-}}{ }_{-}^{\text {- }}$ - ${ }^{-} 066$				x			X		
$\mathrm{BT}^{-3492}$ - Galerucinae- ${ }^{\text {sp }}$ - 066				X			X		
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{\text {- }} 3495$ - Cassidinae ${ }^{\text {a }}$ - $\mathrm{sp}^{\text {a }} 012$	X	X	X	X	X	x	X	X	
$\mathrm{BT}^{-} 3496^{-}$Alticinae_-sp $\overline{104}$	X	X	x	X	x	X	X	X	
$\mathrm{BT}^{-3497}{ }^{-}$Alticinae- ${ }^{\text {sp }}$ - 061	X	X	X	${ }^{\mathrm{X}}$	X	X	X	X	
	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	X X	X X	$\underset{\mathrm{X}}{\mathrm{X}}$	
$\mathrm{BT}^{-3501}{ }^{\text {- Galerucinae }}{ }^{-} \mathrm{sp}^{\text {Sp }}$ - 094	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3502-E u m o l p i n a e-}{ }_{-}^{\text {sp }}-017$	X		X	X		X	X		
$\mathrm{BT}^{-3503-}{ }^{-}$Eumolpinae ${ }_{-}^{-\mathrm{sp}^{-}} 039$	X	X	X	X	x	X	X	x	
$\mathrm{BT}^{-} 3504$ - Alticinae_sp-019	x	x	x	x	x	x	X	x	
$\mathrm{BT}^{-3505-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 109$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3506^{-}$Alticinae-_sp-008	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3507^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-} 254$	x		x	x		X	x		
$\mathrm{BT}^{-} 3508$ - Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 118$	X		X	X		X	X		
$\mathrm{BT}^{-3509-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-} 073$	X		X	x		X	X		
$\mathrm{BT}^{-3510}$ - Eumolpināe_- $\overline{\text { sp }}$ - 024	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3511$ - Galerucinae--sp-079	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3512-G a l e r u c i n a e-}{ }^{-} \mathrm{sp}^{-} 079$				$\underset{\mathrm{X}}{\mathrm{X}}$			$\underset{\mathrm{X}}{\mathrm{X}}$		
	X	X	X	X	X	X	${ }^{\mathrm{X}}$	X	
$\mathrm{BT}^{-3515}$ - Alticinae-sp- 152	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{-} 3516^{-}$Eumolpinae - $\overline{\text { sp }}$-024	x	x	x	x	x	x	x	x	
$\mathrm{BT}^{-3517}{ }^{-}$Galerucinae-${ }_{-} \mathrm{sp}_{-}^{-} 048$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3518-G a l e r u c i n a e-}{ }^{-} \mathrm{sp}^{-} 058$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}$3519-Alticinae_sp ${ }^{\text {- }} 2 \overline{\mathrm{O} 1}$	x		X	x		X	X		
$\mathrm{BT}^{-3520}{ }^{-}$Alticinae ${ }_{-}^{-\mathrm{sp}_{-}^{-}} 181$	X	x	X	X	X	X	X	X	
$\mathrm{BT}^{-} 35211^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 051$	X	X	X	x	x	X	X	X	
$\mathrm{BT}^{-3522}{ }^{-}$Alticinae-${ }^{-}{ }^{-181}$	X	X	X	X	X	X	X	X	
BT-3528-Galerucinae_-sp_093	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-} 3529$ - Galerucinae- ${ }^{\text {- }}{ }^{-}{ }^{-} 091$	x	x	X	x	x	X	x	X	
BT-3530-Alticinae_sp_153	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3531-$ Alticinae-_sp-166	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}$3532-Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-} 149$	x	X	X	x	X	X	X	X	
$\mathrm{BT}^{-} 3533_{-}^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 247$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3534-A l t i c i n a e-s p-247 ~}$				${ }^{\mathrm{X}}$			X		
$\mathrm{BT}^{-3535-}{ }^{\text {Alticinae_-sp_}}{ }_{-172}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3536-}{ }^{\text {Alticinae }}{ }_{-} \mathrm{sp}_{-}^{-172}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3537^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 172$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 35388^{-}$Alticinae-sp-244	X	X	X	x	x	X	X	X	
$\mathrm{BT}^{-3539-}{ }^{\text {Alticinae- }}{ }^{\text {sp }}$ - 241	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3540-$ Eumolpinae-_sp_058	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-} 3542{ }^{-}$Eumolpinae-${ }_{-} \mathrm{sp}_{-}^{-} 049$	x	x	x	x	x	X	x	X	
$\mathrm{BT}^{-3543-}{ }^{-}$Eumolpinae- ${ }^{-} \mathrm{sp}_{-}^{-} 069$	X	X	X	X	X	X	X	X	
BT-3544-Chrysomelinae - ${ }^{\text {sp }}$ - 004	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3545}{ }^{-}$Alticinae_sp_184${ }^{-}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3546{ }^{-}$Eumolpinàe_${ }^{\text {sp }}$ - 054	X		X	X		X	X		
$\mathrm{BT}^{-3547}$ - Alticinae $\mathrm{sp}^{\text {P }}$ - $2 \overline{14}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{3548}$ - Eumolpinae-sp ${ }^{\text {a }} 063$	-	¢	${ }_{\mathrm{x}}$	${ }^{\mathrm{X}}$	-	X	-		
	X	- ${ }^{\mathrm{X}}$	X	${ }^{\mathrm{X}}$	${ }^{\mathrm{X}}$	X	X	X	
$\mathrm{BT}^{-} 35511^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 093$	X	X	X	x	X	X	X	X	
BT-3552-Alticinae_sp_ 025	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3553{ }^{-}$Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-166}$	X		X	X		X	X		
$\mathrm{BT}^{-} 35544^{-}$Alticinae-${ }_{\text {- }}{ }^{-}{ }_{-}^{-173}$	x		x	x		X	x		
$\mathrm{BT}^{-3555}{ }^{-}$Alticinae-sp-181	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3556-}{ }^{\text {- }}$ Eumolpinae-_${ }^{\text {sp }}$-_050	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-3557}{ }^{-}$Eumolpinae- ${ }^{-} \mathrm{sp}^{-} 070$	x	x	X	x	x	X	x	x	
BT-3558-Hispinae_sp-_ 021	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3559$ - Alticinae-_sp-233	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3560}$ - Alticinae-sp_-188	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3561^{-}$Alticinae ${ }^{-} \mathrm{sp}_{-}^{-} 056$	x		X	x		X	X		
$\mathrm{BT}^{-3562}$ - Eumolpinàe_ $\overline{\mathrm{sp}}$ - 057	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3563-H i s p i n a e}$-sp_014	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 35644^{-}$Alticinae_-sp_-127	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3565^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-127}$				X			X		
$\mathrm{BT}^{-} 3566^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-127}$				x			x		
$\mathrm{BT}^{-3567}{ }^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-127}$				X			X		
$\mathrm{BT}^{-3568-A l t i c i n a e-s p ~}{ }^{-127}$				X			X		
$\mathrm{BT}^{-3569-A l t i c i n a e-s p-127 ~}$				${ }^{\mathrm{X}}$			X		
				X			X		
${ }_{\text {BT }} \mathrm{BT}-3571-$ Alticinae - ${ }^{\text {sp }}$ - ${ }^{127}$				-			$\stackrel{\mathrm{X}}{\mathrm{X}}$		
$\mathrm{BT}^{-3573-A l t i c i n a e-s p-127 ~}$				X			X		
$\mathrm{BT}^{-3574-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-} 227$	X	X	x	X	X	X	X	X	
$\mathrm{BT}^{-3575}$ - Alticinae-sp- ${ }^{\text {- }}$ - 227	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-3576-}{ }^{\text {Alticinae }}$ - $\mathrm{sp}-196$	X		X	${ }^{\mathrm{X}}$		X	${ }^{\mathrm{X}}$		
$\mathrm{BT}^{-3577}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-196}$				X			X		
${ }^{\mathrm{BT}^{-} 3578-\text { Alticinae }}{ }^{\text {- }} \mathrm{sp}^{-}{ }^{196}$				${ }^{\mathrm{X}}$			X		
				X			X		
	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{-3582}$ - Galerucinae -sp 106	X		X	X		X	X		
$\mathrm{BT}^{-} 3583$ - Alticinae_sp-1 ${ }^{\text {d }}$	X	X	X	X	x	X	X	X	
	$\underset{\mathrm{X}}{\mathrm{X}}$	$\underset{\mathrm{X}}{\mathrm{X}}$	$\mathrm{X}_{\mathrm{X}}$	X	X	X X	X ${ }_{\text {X }}$	${ }_{\mathrm{X}}^{\mathrm{X}}$	
$\mathrm{BT}^{-}{ }_{3586}{ }^{-}$Alticinae- ${ }^{\text {dp }}$ - ${ }_{127}$				X			X		
$\mathrm{BT}^{-} 3587^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-127}$				x			x		
$\mathrm{BT}^{-3588-}{ }^{-}$Alticinae- ${ }_{-}^{-}{ }^{-} 127$				X			X		
$\mathrm{BT}^{-3589}$ - Alticinae-sp-127				X			X		
${ }_{\text {BT }}{ }^{\text {B }}$ - $3590-$ Alticinae $-\mathrm{sp}-127$				${ }^{\mathrm{X}}$			${ }^{\text {X }}$		
	X	X	X	X	X	X	X	X	
BT-3593-Alticinae_sp-076	x	X	x	X	x	x	X	x	
$\mathrm{BT}^{-3594-}{ }^{\text {Alticinae-}}{ }^{-} \mathrm{sp}_{-}^{-181}$	X	X	X	X	X	X	${ }^{\mathrm{X}}$	X	
$\mathrm{BT}^{-3596}{ }^{-}$Alticinae-sp_111	x	X	X	X	X	X	x	X	
$\mathrm{BT}^{-3597}{ }^{\text {- }}$ - Alticinae ${ }^{-} \mathrm{sp}^{-}{ }^{196}$	X	X	X	X	X	X	X	x	
			X	X			X		
$\mathrm{BT}^{-3600}$ - Alticinae-sp-253	X		X	X		X	X		
$\mathrm{BT}^{-3601-}{ }^{-}$Alticinae-${ }_{-}^{-}{ }^{-}{ }_{-127}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3602-A l t i c i n a e-}{ }^{-1}{ }^{-138}$	X		X	X		X	X		
$\mathrm{BT}^{-3603-A l t i c i n a e-s p-182 ~}$	${ }_{\text {x }} \mathrm{X}$		X	X		X	X		
	X	X	X	X	X	X	X X	X	
BT-3606-Alticinae ${ }^{\text {- }}$ - ${ }^{\text {dp }}$ - 127	X		X	X		X	X		


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT_3607_Alticinae_sp_138	x		x	x		x	x		
$\mathrm{BT}^{-3608}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 253$	X		X	x		X	x		
$\mathrm{BT}^{-3609}$ - Eumolpinae - $\mathrm{sp}^{\text {d }} 047$	X	X	X	X	X	X	X	X	
BT-3610-Alticinae_sp_o ${ }^{\text {- }}{ }^{\text {- }}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3611-}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-181}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3612$-Eumolpinae_-sp_059	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3613-C r i o c e r i n a e-s p-007 ~}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3614-E u m o l p i n a e-}{ }^{-} \mathrm{sp}^{-} 059$	X	X	X	X	X	X	X	X	
	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	X X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3618-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-127}$				X			X		
$\mathrm{BT}^{-} 3619^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 127$				X			x		
$\mathrm{BT}^{-} 3620$ - Alticinae-sp_- 127				x			x		
$\mathrm{BT}^{-} 3621$ - Alticinae-sp- ${ }^{-127}$				x			X		
$\mathrm{BT}^{-3622}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-} 254$	X	X	x	X	X	X	X	X	
$\mathrm{BT}^{-}{ }^{3623}{ }^{-}$Alticinae-sp-${ }^{-} 253$	x	X	x	x	X	x	x	x	
$\mathrm{BT}^{-} 3624{ }^{-}$Alticinae-sp_-127	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3625}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 051$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3626}$ - Criocerinaee_sp_010	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3627{ }^{-}$Eumolpinae-sp- ${ }^{-} 039$	X								
	X								
$\mathrm{BT}^{-3630}{ }^{-}$Alticinae-sp_${ }^{-} 117$	X								
$\mathrm{BT}^{-3633}{ }^{-}$Alticinae-sp_109	X								
$\mathrm{BT}^{-3651-G a l e r u c i n a e ~}{ }^{\text {- }}$ - ${ }^{\text {d }} 041$	X	X							
BT-3652-Alticinae_sp_o ${ }^{\text {- }} 6$	X								
$\mathrm{BT}^{-3653-A l t i c i n a e-s p-065}$	X								
$\mathrm{BT}^{-3656-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-115}$	X								
$\mathrm{BT}^{-} 3658^{-}$Alticinae-sp-198	X								
$\mathrm{BT}^{-} 3659^{-}$Alticinae-sp_-237	X								
$\mathrm{BT}^{-3660}{ }^{-}$Alticinae-sp_-092	X								
BT- ${ }^{\text {B685-Alticinae-_sp_-018 }}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3686^{-}$Alticinae-sp_${ }^{-177}$	x	X	X	X	X	X	x	x	
$\mathrm{BT}^{-3687}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-115}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3688}{ }^{-}$Alticinae ${ }^{-} \mathrm{sp}^{-} 087$	X	X	X	X	X	X	X	X	
	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 36922^{-}$Alticinae-sp-${ }^{-} 147$				X			X		
$\mathrm{BT}^{-3693}{ }^{-}$Alticinae-sp_${ }^{-123}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3694-$ Alticinae $-\mathrm{sp}{ }^{-197}$	X	X	X	X	x	X	X	x	
$\mathrm{BT}^{-3698}{ }^{\text {- }}$ Galerucinae_-sp_089	X		X	X		X	x		
$\mathrm{BT}^{-} 3699$ - Eumolpinae-sp-063	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3700-E u m o l p i n a e-s p-024 ~}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{\text {BT }} 3701$ - Alticinae spp ${ }^{2}{ }^{244}$	$\underset{\mathrm{X}}{\mathrm{X}}$	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	X	X	
${ }_{\text {BT }} \mathrm{BT}-3702-$ Alticinae $-\mathrm{sp}-206$	X		X	X		X X	X		
$\mathrm{BT}^{-3704-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-172}$	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{-3705-}{ }^{-}$Alticinae_sp_-085	X								
$\mathrm{BT}^{-} 3706^{-}$Alticinae-sp_-182	X								
$\mathrm{BT}^{-3707}{ }^{-}$Alticinae ${ }^{-\mathrm{sp}}{ }^{-182}$	X								
	X								
BT- ${ }^{\text {- }}$	X								
$\mathrm{BT}^{-3716-}{ }^{\text {- }}$ Alticinae-sp- ${ }^{-127}$	X								
BT-3719-Alticinae-sp_093	X								
$\mathrm{BT}^{-3721-A l t i c i n a e-}{ }^{-}{ }^{-}{ }^{-} 076$	X								
$\mathrm{BT}^{-3723-E u m o l p i n a ̄ e ~} \overline{\text { sp }}$ - 059	X								
BT-3724-Alticinae_sp ${ }^{\text {B }} 1 \overline{27}$	X								
$\mathrm{BT}^{-3725}{ }^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-138}$	X								
$\mathrm{BT}^{-3726-A l t i c i n a e-s p-227 ~}$	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	X	x	x	
$\mathrm{BT}^{-} 3727_{-}^{-}$Alticinae-sp_-253	X		X	x		X	X		
	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3731$-Alticinae-sp-127	x	X	x	x	X	X	x	X	
$\mathrm{BT}^{-3732-A l t i c i n a e-s p-127 ~}$				X			X		
BT-3733-Alticinae-sp_-127				X			X		
$\mathrm{BT}^{-} 3734{ }^{-}$Alticinae-sp_-127				X			x		
$\mathrm{BT}^{-} 3735^{-}$Alticinae-${ }^{-} \mathrm{sp}_{-}^{-196}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3736-A l t i c i n a e-s p-196}$				X			X		
BT-3737-Alticinae-sp 196				X			X		
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3740-$ Eumolpinae-sp ${ }^{-} 047$	X		X	X		X	X		
BT-3741-Alticinae_sp_ ${ }^{\text {- }} 38$	X		X	X		X	X		
BT-3750-Alticinae-sp-076	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{-3751-A l t i c i n a e-s p-076}$				X			X		
	X	X	X	X	X	X	X	${ }_{\text {X }}$	
	X	X X	X	X	X X	X	X	X	
$\mathrm{BT}^{-3755}$-Alticinae-sp_-076				X			X		
$\mathrm{BT}^{-3756-}{ }^{-}$Alticinae-sp_${ }_{-}^{-127}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3757}{ }^{-}$Alticinae-sp-127				X			X		
				X			X		
$\mathrm{BT}^{-3761-}{ }^{\text {- }}$ Alticinae-sp- ${ }^{-196}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3762}$ - Alticinae-sp_-127	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3763-A l t i c i n a e-s p-127}$				X			X		
BT-3765-Alticinae-sp 138	X								
	X								
$\mathrm{BT}^{-3771-A l t i c i n a e}$-sp ${ }^{\text {c/ }} 169$	$\stackrel{\mathrm{X}}{\mathrm{x}}$								
$\mathrm{BT}^{-3773-A l t i c i n a e-}{ }^{-} \mathrm{sp}_{-}^{-127}$	X								
$\mathrm{BT}^{-3790}$ - Alticinae-sp-196	X								
	X								
$\mathrm{BT}^{-3793-}{ }^{\text {- }}$ - ${ }^{\text {alticinae-sp_- } 204}$	X								
$\mathrm{BT}^{-3795}{ }^{-}$Hispinae-sp-019	X								
$\mathrm{BT}^{-3796-\text { Galerucinae -sp }} 007$	X	X							
$\mathrm{BT}^{-3807}$ - Alticinae_sp ${ }^{185}$	X		${ }_{\text {X }}$	X		X	X		
BT $\mathrm{BT}^{-3808}{ }^{\text {a }}$ - Alticinae $-\mathrm{sp}-230$ Alticinae -sp 234	X		X	X		X	X		
$\mathrm{BT}^{-3810}$ - Alticinae-sp-217	X	x	X	X	X	X	X	x	
$\mathrm{BT}^{-3811-}{ }^{-}$Hispinae-sp_017	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3812-}{ }^{-}$Alticinae_sp_-118	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3815}$ - Alticinae-sp_-118	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3816^{-}$Alticinae-sp_-118				x			x		
$\mathrm{BT}^{-3817}{ }^{-}$Alticinae-${ }_{-}{ }^{-}{ }_{-}^{-118}$				X			X		
$\mathrm{BT}^{-3818-A l t i c i n a e-s p-118}$				X			X		
$\mathrm{BT}^{-3819-A l t i c i n a e-s p-118}$				X			X		
$\mathrm{BT}^{-} 3820-$ Alticinae-sp_${ }^{-} 216$	X		X	X		X	X		
$\mathrm{BT}^{-3824-G a l e r u c i n a e-s p ~}{ }^{\text {- }}$ - 013	X	X	X	X	X	X	X	X	
	X		X			X		X	


Specimen	1	1b	2	2a	2b	3	3a	3b	4
BT_3826_Alticinae_sp_201	X	X	X	x	X	X	X	x	
$\mathrm{BT}^{-3827}{ }^{\text {- Galerucinae }}$-sp 090	x	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3828-A l t i c i n a e ~} \mathrm{sp}^{\text {- }}$ - $2 \overline{11} 1$	X	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X	X	${ }^{\mathrm{X}}$	
$\mathrm{BT}^{-3829-A l t i c i n a e-s p-181}$	X	X	X	$\underset{\mathrm{x}}{\mathrm{X}}$	$\underset{\sim}{\mathrm{X}}$	X	$\stackrel{\mathrm{X}}{\mathrm{X}}$	$\underset{\mathrm{y}}{\mathrm{X}}$	
$\mathrm{BT}^{-3830-A l t i c i n a e}-\mathrm{sp}-180$	X	X	X	X	X	X	X	X	
${ }_{\text {BT- }}{ }^{3832}$ - Eumolpinae ${ }^{\text {a }}$ - ${ }^{\text {d }}$ - 050	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3845}{ }^{\text {- }}$ Galerucinae ${ }^{\text {a }}$ - p 007	X	X							
$\mathrm{BT}^{-3846-A l t i c i n a e}$ - $\mathrm{sp}_{\text {- }}{ }^{\text {- }} 118$	X	X	x	X	x	x	X	x	
	X	X	X	X	X	X	X	X	
BT-3849-Alticinae sp ${ }^{-175}$	x	x	x	x	x	x	x	x	
$\mathrm{BT}^{-} 3850-$ Alticinae ${ }_{\text {- }}{ }^{-}{ }_{-}^{-140}$	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-3851-A l t i c i n a e-s p-118}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3852-}{ }^{\text {- }}$ Alticinae--sp-118	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3853}$-Eumolpinae-sp_039	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{\text {- }} 3854$ - Eumolpinae-sp-039				X			X		
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3857}{ }^{\text {- Alticinae }}{ }^{-} \mathrm{sp}{ }^{-118}$				X			X		
$\mathrm{BT}^{-3858}{ }^{\text {- }}$ Alticinae_-sp_${ }^{-} 118$				X			X		
$\mathrm{BT}^{-3859}{ }^{-}$Alticinae-sp-118				X			X		
$\mathrm{BT}^{-3860}$ - Eumolpinae -sp ${ }^{\text {sp }} 030$	X	X	X	X	X	X	X	${ }_{\text {X }}$	
BT-3861-Cassidinae_sp_ 015	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3869}{ }^{-}$Cassidinae-${ }^{-} \mathrm{sp}_{-}^{-} 012$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{\text {B }} 3870$ - Eumolpinae $\mathrm{sp}^{\text {a }} 002$	X		X	X		X	X		
BT-3871-Alticinae_sp_083	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3872}{ }^{-}$Eumolpinae ${ }^{\text {sp }}{ }^{\text {sp }} 040$	X	X	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$	X	X	X	
	X	X	X X	X	X X	X	X	X X	
$\mathrm{BT}^{\text {- }} 3885$-Alticinae_sp ${ }^{\text {a }} 007$	X	X							
$\mathrm{BT}^{-3891}$ - ${ }^{\text {Galerucinae_-sp_090 }}$	X	X	x	X	x	x	X	X	
$\mathrm{BT}^{\text {B }} 3892$-Galerucinae- ${ }^{\text {sp }}$-090				X			X		
${ }^{\mathrm{BT}}$-3893-Alticinae $\mathrm{sp}^{\text {sp }}-164$	X	X X	X	X X	$\underset{\mathrm{X}}{\mathrm{X}}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X X	$\underset{\mathrm{X}}{\mathrm{X}}$	
	X	X	X	X	X	X	X	X	
BT-3896-Hispinae _sp_012	X	X	X	X	X	X	X	X	
BT-3915-Galerucinae_sp_007	X	X	X	X	X	X	X	X	
${ }_{\text {BT- }}{ }^{\text {a }}$ 3916-Galerucinae $-\mathrm{sp}-007$				X			X		
	X	X	X	x	${ }_{\mathrm{X}}^{\mathrm{X}}$	X	X	${ }_{\mathrm{X}}^{\mathrm{X}}$	
				X			X		
$\mathrm{BT}^{-} 3920$ - Alticinae-sp-165	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-}$3921-Eumolpinàe-sp 042	x	x	x	x	x	x	x	X	
$\mathrm{BT}^{-3922}{ }^{-}$Alticinae_sp ${ }^{\text {a }}$ - ${ }^{\text {a }}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3923}{ }^{-}$Cassidinae ${ }^{\text {e }} \mathrm{sp} \mathrm{p}^{0} 006$	X		X	X		X	X		
$\mathrm{BT}^{-3947}$-Eumolpinae ${ }^{\text {cp }}$ - 019	X	X	X	X	X	X	X	${ }_{\text {x }}$	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3950{ }^{-}$Galerucinae ${ }^{\text {- }}$ - ${ }^{\text {d }} 061$	X	X	X	X	x	X	X	x	
BT-3951-Alticinae_sp_238	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 3952^{-}$Alticinae-sp_-092	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3953-}{ }^{\text {- Alticinae_-sp_}}{ }^{-} 112$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3954-A l t i c i n a e-s p-112 ~}$				X			${ }^{\mathrm{X}}$		
$\mathrm{BT}^{-3955}$ - Alticinae-sp_ 112				X			X		
$\mathrm{BT}^{-} 3957^{-}$Galerucinae_-sp_066	x	x	x	x	x	x	x	x	
BT-3958-Eumolpinae_sp_019	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3959}{ }^{-}$Galerucinae-${ }^{\text {- }}{ }^{-}{ }^{-} 069$	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3961}{ }^{-}$Cassidinae ${ }^{\text {- }} \mathrm{s} \overline{\mathrm{p}}_{-104}$	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{-} 3962$-Alticinae_ $\overline{\mathrm{sp}}$ _ 117	X		X	X		X	X		
$\mathrm{BT}^{-3963-A l t i c i n a e-s p-085}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3964-A l t i c i n a e-s p-045}$	X	X	X	X	X	X	${ }^{\mathrm{X}}$	X	
$\mathrm{BT}^{-}$-3965-Galerucinae_-sp_034	X		X	X		X	X		
BT-3966-Galerucinae_-sp_034				X			X		
BT-3967 - Galerucinae_sp_034				X			X		
$\mathrm{BT}^{-3968}{ }^{\text {-Eumolpinae-sp }}$-061	X		X	X		X	X		
BT-3969-Alticinae_sp $0 \overline{96}$	X	X	X	X	X X	X	X		
	X	X	X	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	X	X	X X	X	
$\mathrm{BT}^{\text {- }}$ 3972-Gaticinae ${ }^{\text {a }}$ - ${ }^{\text {sp }}{ }_{231}{ }^{\text {a }}$	X		X	X		X	X		
$\mathrm{BT}^{-3973-A l t i c i n a e-s p-}{ }^{-} 248$	X	x	X	X	X	X	X	X	
$\mathrm{BT}^{-3974-A l t i c i n a e-s p-094}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-3975}{ }^{-}$Alticinae-sp-172	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{\text {BT }}$-3976-Eumolpinae - ${ }^{\text {sp }}$ - 050	${ }^{\mathrm{X}}$	X	X	X	X	X	X	${ }^{\text {x }}$	
BT-3977-Hispinae_sp_016	X	X	X	X	X	X	X	X	
BT-3986-Galerucinae_sp_007	X	X							
$\mathrm{BT}^{\text {BT }} 3988$-Eumolpinae-sp 059	X	X	${ }_{\text {x }}$			X	X	X	
	X	X	- ${ }_{\text {X }}$	X	X	X	X	X	
${ }_{\text {BT }}{ }^{\text {BT }}$-3990-Alticinae $-\mathrm{sp}-173$	-	X							
BT ${ }^{\text {- }}$ 3995-Galerucinae ${ }^{\text {- }}$ - ${ }^{\text {sp }} 074$	X	X	x		x		x	x	
BT-3996-Alticinae_sp_042	X	X	X	X	X	X	X	X	
BT-3997-Galerucinae_sp_033	X		X	X		X	X		
	X	X	X	X	X	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$	
	X	X	X	X	X	X	X	${ }^{\mathrm{X}}$	
$\mathrm{BT}^{-} 4001$ - Alticinae-sp- ${ }^{-175}$				X			X		
BT-4002-Galerucinàe_sp_066	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4003}{ }^{\text {-Galerucinae }}$-sp-083	X	x	X	X	x	X	X	X	
	X			X	X		X		
$\mathrm{BT}^{-}{ }^{\text {- }}$	x	X	X	X	X	X	X	${ }^{\mathrm{X}}$	
$\mathrm{BT}^{-} 4007_{-}^{-}$Alticinae-sp- ${ }^{-145}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}{ }^{\text {4008 }}$ - ${ }^{\text {Galerucinae_- }}{ }^{\text {sp }} 061$	X	X	X	X	X	X	X	X	
	X	X	X	X X	X	X	X	X	
	X	X	X	X X	X	X	X X	X	
$\mathrm{BT}^{-} 4012{ }^{\text {- Eumolpinae }}{ }^{-} \mathrm{sp}^{\text {- }}$ - 040				X			X		
	X	X	X	X	X	X	X	X	
BT-4014-Cassidinae_- ${ }^{\text {sp }}$ - $\overline{0} 05$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4015$-Galerucinae ${ }^{\text {a }}$ - ${ }^{\text {p }}$ - 064	X		X	X	X	X	$\underset{\mathrm{X}}{\mathrm{X}}$		
	X	X	X X	X	X	X	X	X	
$\mathrm{BT}^{-} 4018$-Alticinae-sp-104				X			X		
$\mathrm{BT}^{-} 4019$-Eumolpinae_sp_039	X	x	X	X	X	X	X	X	
				X			X		
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4026^{-}$Galerucinae ${ }^{\text {a }}$ - ${ }^{\text {d }} 017$	X	X							
	X	X	X X	X	X	X	X	X ${ }_{\text {X }}$	
$\mathrm{BT}^{-}{ }_{4033}$-Eumolpinae -sp 037	X		X	X		X	X		
$\mathrm{BT}^{-} 4035-$ Hispinae _sp_003	x	X	X	X	X	x	x	x	
BT- ${ }^{-1036 \text { - }}$ - Galerucinae_-sp 078	X	X	X	X	X	X	X	X	
BT_ ${ }^{-1047}$ - Alticinae_sp ${ }^{\text {- }} 181$	X	X	X	X	X	X	X	X	


Specimen	1	1b	2	2 a	2b	3	3a	3b	4
BT_4048_Criocerinae _sp 001	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4049$ - Alticinae s s - $1 \overline{1} 5$	x	X	x	X	x	x	X	X	
$\mathrm{BT}^{-}{ }^{4050}{ }^{-}$Eumolpinae_-sp_042	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4051-E u m o l p i n a e}-\mathrm{sp}-042$	${ }^{\mathrm{X}}$	X	${ }^{\mathrm{X}}$	X	${ }_{\text {x }}$	X	X	X	
$\mathrm{BT}^{-}{ }_{4053}$ - Eumolpinae ${ }^{\text {a }}$ - ${ }^{\text {sp }}$ - 065	X	X	X	X		X	X	X	
$\mathrm{BT}^{-4054-A l t i c i n a e}$ _ $\mathrm{sp}^{\text {- }}$ - 018	X	x	x	X	x	X	X	x	
$\mathrm{BT}^{-4055-A l t i c i n a e-}{ }_{-} \mathrm{sp}_{-}^{-} 018$				X			X		
$\mathrm{BT}^{-} 4056^{-}$Alticinae ${ }_{-}^{-} \mathrm{sp}_{-}^{-} 115$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4057^{-}$Alticinae-sp ${ }^{-115}$				X			X		
	X	X	X	X	x	X	X	x	
$\mathrm{BT}^{-}{ }^{4060}{ }^{-}$Eumolpinae-${ }^{\text {- }}$ - ${ }^{\text {- }}{ }^{1038}$	X		X	X		X	X		
$\mathrm{BT}^{-}$4061-Alticinae_s $\mathrm{p}_{-106}$	X	x	X	X	x	x	X	x	
$\mathrm{BT}^{-} 4062{ }^{-}$- Eumolpinae - ${ }^{\text {sp }}$ - 038	X	X	X	X	X	X	X	X	
BT-4063-Alticinae_sp ${ }^{115}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-1064-}{ }^{\text {- }}$ - ${ }^{\text {Alticinae }}$ - $\mathrm{sp}^{-115}$				X			X		
${ }_{\text {BT }} \mathrm{BT}^{-4065-}{ }^{\text {- }}$ Alticinae $-\mathrm{sp}-018$	X	X	$\mathrm{X}_{\mathrm{x}}$	X	${ }_{\text {x }}$	${ }_{\text {x }}$	X	X	
$\mathrm{BT}^{-4066}$ - Alticinae -sp - ${ }_{115}$	X	X		X			X		
BT- ${ }^{-1822^{-} \text {Galerucinae_-sp_092 }}$	X	X							
$\mathrm{BT}^{-} \mathrm{4186}^{-}$Galerucinae-${ }_{-}^{-\mathrm{sp}_{-}^{-} 020}$	x	X							
$\mathrm{BT}^{-} 4194{ }^{-}$Galerucinae-${ }_{-}^{\text {sp }}$	X	X							
BT-4195-Galerucinae_-sp-029	X	X							
$\mathrm{BT}^{-}{ }^{\text {4198 }}$-Criocerinae_sp ${ }^{\text {- }}$-02	X	X							
$\mathrm{BT}^{-} 4207^{-}$Cassidinae_-sp_021	X	X							
	X	X							
$\mathrm{BT}^{4209}$-Criocerinae ${ }^{\text {a }}$ - ${ }^{\text {d }} 007$	${ }^{\mathrm{X}}$	X							
	X	X	X	X	X				
$\mathrm{BT}^{-4217}$ - Alticinae ${ }^{\text {sp }}$ - ${ }_{262}$	X	X	X	X	X				
$\mathrm{BT}^{-4241}{ }^{\text {- Cassidinae }}$ - $\mathrm{s} \overline{\mathrm{p}}_{-} 014$	X	X							
BT-4252-Galerucinaes_s ${ }^{\text {- }}$ - 007	X	X							
$\mathrm{BT}^{-}{ }^{4253}{ }^{-}$Galerucinae-${ }^{-} \mathrm{sp}^{-} 002$	X	X							
BT-4294-Hispinae_sp_020	X	X							
$\mathrm{BT}^{-}{ }^{\text {a }}$ 295-Galeruciñae_sp 029	X	X							
BT-4306-Cassidinae_- ${ }^{\text {sp }}$ - ${ }^{\text {- }} 19$	X								
BT-4321-Galerucinaes_sp ${ }^{-}$- 017	X	X							
$\mathrm{BT}^{-} 4344{ }^{-}$Galerucinae ${ }^{-} \mathrm{sp}^{-} 011$	X	X							
BT-4350-Alticinae_sp_ 218	X	X							
BT-4351-Galerucinae_-sp 017	X	X							
	X	X							
${ }_{\text {BT }} \mathrm{BT}-4422$ - ${ }^{\text {Alticinae }}$ - ${ }^{\text {sp }}$ - ${ }^{222}$	X	X	x	x	x				
$\mathrm{BT}^{-} 4434{ }^{-}$Alticinae- ${ }^{-}{ }^{-}{ }^{-} 163$	X	X							
$\mathrm{BT}^{-}{ }^{\text {4468 }}$-Galerucinae_- ${ }^{\text {sp }} 007$	X	X							
$\mathrm{BT}^{-} 4477^{-}$Alticinae_sp_155	X	X							
$\mathrm{BT}^{-4500}$-Galerucinaes_sp 097	X	X							
$\mathrm{BT}^{-} 4509$-Cassidinae - $\overline{\mathrm{sp}}$ - 118	X	X							
$\mathrm{BT}^{-} 4510-$ Hispinae_sp ${ }^{\text {- }}$ - 26	X	X	X	X	X				
$\mathrm{BT}^{-4511-A l t i c i n a e-s p-229 ~}$	X	X	X	X	X				
$\mathrm{BT}^{-4550-A l t i c i n a e-s p-220 ~}$	X	X							
$\mathrm{BT}^{-4572-A l t i c i n a e-}{ }^{\text {- }}{ }^{-}{ }^{-219}$	X	X							
BT-4581-Galerucinae_-sp_005	X	X							
$\mathrm{BT}^{-} 4605^{-}$Galerucinae- ${ }^{\text {- }}$ - 110	X	X							
$\mathrm{BT}^{-4684}{ }^{\text {- Cassidinae }}$ - $\overline{\mathrm{sp}}$ - 001	X	X							
BT-4687-Galerucinae ${ }^{-}$s ${ }^{\text {- }}$ - 036	X	X							
$\mathrm{BT}^{-} 4732$-Alticinae_sp $-0 \overline{95}$	X	X	x	X	X	x	X	X	
$\mathrm{BT}^{-}{ }^{\text {4733 }}$-Eumolpinae_- ${ }^{\text {sp }}$ - 068	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4734-A l t i c i n a e}$ - $\mathrm{sp}^{1} 172$	${ }^{\mathrm{X}}$		X	X					
BT-4735-Alticinae_sp_235	X	X	X	X	X	X	X X	X X	
${ }_{\text {BT }} \mathrm{BT}^{-4736-}{ }^{\text {d }}$ - Alticinae $-\mathrm{sp}-172$	X	X	¢	${ }^{\mathrm{X}}$	X	X	X	X	
	X	X	X	X			X		
$\mathrm{BT}^{-}{ }^{\text {4739 }}$ - Eumolpinae_- ${ }^{\text {sp }}$ - 024	x	X	x	X	X	X	X	X	
$\mathrm{BT}^{-}{ }^{4740}$ - Eumolpinae- ${ }^{-10}{ }^{-} 024$	X	X	X	X	X	X	X	X	
	X		X	X		X	X		
$\mathrm{BT}^{-}{ }^{\text {4742 }}$-Eumolpinae_s ${ }^{\text {sp }}$ - 024	X	X	X	X	x	X	X	X	
$\mathrm{BT}^{-} 47433^{-}$Alticinae_sp_1 ${ }^{\text {c }} 1$	X	X	X	X	X	X	X	X	
BT- ${ }^{-} 4744$ - Eumolpinae__sp_056	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} \mathrm{4745}^{-}$-Galerucinae-${ }^{-} \mathrm{sp}_{-}^{-} 080$	X		X	X		X	X		
BT-4746-Eumolpinae-sp-024	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4747{ }^{-}$- ${ }^{\text {alerucinae_-sp_074 }}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4748$ - Eumolpinae-sp-024	${ }^{\mathrm{X}}$	X	X	X	X	X	X	X	
	${ }^{\times}$	X	X	X	X	${ }^{\mathrm{X}}$	X	X	
BT-4751-Alticinae_sp ${ }^{\text {- }} 25 \overline{5}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4753$-Eumolpinàe_sp ${ }^{\text {sp }} 038$	X		X	X		X	X		
BT-4754-Alticinae_sp ${ }^{\text {- }} 1 \overline{95}$	X	X	X	X		X	X	X	
$\mathrm{BT}^{-} 4772^{-}$Alticinae ${ }_{-}^{-s p}{ }_{-}^{-109}$	X	x	x	X	X	X	X	X	
$\mathrm{BT}^{-4773-A l t i c i n a e-s p-127 ~}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4774{ }^{-}$Alticinae-${ }_{-}{ }^{-}{ }_{-}^{-} 050$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4775^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-} 211$	X	X	x	X	X	X	X	X	
$\mathrm{BT}^{-4776-\text { Galerucinae }}$ - ${ }^{\text {sp }}$ O29	X	X	X	X	X	X	X	X	
	X	X	X	X X	X	X	X X	X	
$\mathrm{BT}^{-} 4779^{-}$Galerucinae ${ }^{\text {- }}$ - 106	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4780$-Alticinae_sp ${ }^{\text {- }} 252$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4781-A l t i c i n a e-s p-141 ~}$	X		X	X		X	X		
$\mathrm{BT}^{-} 4782$ - Galerucinae_sp 029	${ }^{\mathrm{X}}$	X	X	X	${ }_{\text {X }}$	$\underset{\sim}{\mathrm{X}}$	X	X	
BT-4783-Hispinae_sp-016	X	X	X	X	X	X	X	X	
	X		X	X		X	X		
$\mathrm{BT}^{-}{ }^{\text {a }}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} 4787^{-}$Alticinae- ${ }^{-} \mathrm{sp}_{-}^{-172}$				X			X		
$\mathrm{BT}^{-}{ }^{4788}$ - Eumolpinae ${ }^{\text {sp }}$ - 058	X	X	X	X	X	X	X	X	
	X X	X	X	X	X	${ }_{\text {X }}$	X	X	
$\mathrm{BT}^{-4791}$ - Alticinae ${ }^{\text {sp }}$ - -172	${ }^{\mathrm{X}}$	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4792-A l t i c i n a e-s p-187}$	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4794-A l t i c i n a e-s p-198}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4795-A l t i c i n a e}-\mathrm{sp}-249$	X	X	X	X	X	X	X	X	
${ }_{\text {BT }}{ }^{-4796}{ }^{-}$Alticinae- ${ }^{-} \mathrm{sp}^{-} 261$	X		X	X		X	X		
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}{ }^{\text {4799 }}$-Eumolpinae_s ${ }^{\text {sp }}$ - 038	X		X	X		X	X		
$\mathrm{BT}^{-} 4800$-Alticinae_sp_115	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4801-A l t i c i n a e-}{ }^{-}{ }^{\text {sp }}$ - 104	X	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	x	
	${ }^{\mathrm{X}}$	X	X	X	${ }^{\mathrm{X}}$	X	X	X	
$\mathrm{BT}^{-} 4805$-Alticinae-sp-115	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-} \mathrm{4806}^{-}$Alticinae ${ }_{-} \mathrm{sp}_{-}^{-115}$				X			X		
BT-4807-Eumolpinae_ ${ }^{\text {- }}{ }^{\text {- }}$ - 042	X	X	x	X	X	X	X	X	
	X	X	X	X	X	X	X	X	


Specimen	1	1 b	2	2a	2b	3	3a	3b	4
BT_4810_Alticinae_sp_115	x	x	x	x	x	X	x	x	
${ }^{\mathrm{BT}^{-}-4811-\text { Alticinae }}{ }^{\text {- }}{ }^{\text {sp }}-115$	X	$\begin{aligned} & \widehat{x} \\ & \underset{x}{2} \end{aligned}$	$\begin{aligned} & \hat{\mathrm{x}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \hat{x} \\ & \underset{x}{x} \end{aligned}$	$\begin{aligned} & \hat{\mathrm{x}} \\ & \underset{x}{2} \end{aligned}$	$\begin{aligned} & \hat{\mathrm{x}} \\ & \mathrm{x} \end{aligned}$	X	X	
$\mathrm{BT}^{4813}$-Alticinae-sp-198	x	x	X	${ }^{\mathrm{x}}$	x	X	X	X	
$\mathrm{BT}^{-4814}$ - Alticinae-sp-199	- ${ }^{\mathrm{X}}$	X	X	X	X	¢	X	X	
				-			-		
				X			x		
$\mathrm{BT}^{-4851-E u m o l p i n a e ~}{ }^{\text {- }}$ - ${ }^{\text {P }} 024$	x	x	x	x	x	X	X	x	
BT-4856- Alticinae_sp ${ }^{186}$	X	X	X	${ }^{\mathrm{x}}$	x	X	X	x	
BT-4858-Alticinae- ${ }^{\text {sp }}$ - 187	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4859}{ }^{-}$- Alticinae-sp-057		x	X	X	X	x	X	x	
$\mathrm{BT}^{\text {BT }}$ 4860_Eumolpinae - ${ }^{\text {sp }}$ - 046		,	X	X	(	,	X	X	
$\mathrm{BT}^{-4861}$ - Alticinae_sp ${ }^{149}$		x	x	X	X	X	X	X	
$\mathrm{BT}^{-}{ }_{4863}{ }^{\text {Alticinae }} \mathrm{spp}^{\text {sp }}{ }_{168}$	x	x	X	x	X	X	X	X	
$\mathrm{BT}^{-4864}{ }^{-}$Alticinae-sp_-149	x	x	x	x	x	x	x	x	
${ }^{\text {BT }}$-4867- ${ }^{\text {Galerucinae - }}$ - ${ }^{\text {sp }}$ - 003	X	X							
$\mathrm{BT}^{-}{ }_{4885}{ }^{-}$Galerucinae ${ }^{-\frac{\mathrm{sp}}{\text { sp }}}{ }^{-} 056$	x	x	x	x	x	x	x	x	
BT-4886-Alticinae_sp_ ${ }^{121}$	X	X	x	x	X	X	x	x	
	X	X	x	X	X	X	X	X	
	X	x	X	x	X	X	X	X	
$\mathrm{BT}^{\text {B }}$ 4890-Alticinae-sp_051				x			X		
	${ }^{\mathrm{x}}$	X	${ }_{\mathrm{x}}$	X	X	${ }^{\mathrm{x}}$	¢	X	
$\mathrm{BT}^{-4893}{ }_{-}$Alticinae ${ }_{-}^{\text {sp }}$ - 149				x					
$\mathrm{BT}^{\text {- }}$ 4894-Alticinae_sp-149				x					
$\mathrm{BT}^{-4896}$ - Alticinae ${ }^{\text {-sp }}$ - 149				X			X		
BT-4897-Alticinae-sp_-149				x					
$\mathrm{BT}^{-4898}{ }^{\text {d }}$ Alticinae-sp-168	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{-4900}{ }^{-}$Alticinae ${ }_{\text {- }}{ }^{\text {sp }}-151$	x	x	x	x	x	x	X	x	
$\mathrm{BT}^{-4901-G a l e r u c i n a e-s p ~}{ }^{\text {- }}$ - ${ }^{57}$	x	x	x	x	x	x	x	x	
	x	x	x	x	x	x	x	x	
				x					
$\mathrm{BT}^{-4906}$ - Alticinae $^{\text {-sp }}$ - ${ }^{\text {- }}$ 211	X	x	x	X	X	X	x	X	
BT-4907-Alticinae-sp 211				X			X		
	X	X	$\times$		X	-	$\times$	x	
$\mathrm{BT}^{-} 4910-$ Alticinae ${ }_{-}^{\text {sp }}$ - 149	x	x	-	X	X	X	X	x	
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-}{ }_{4914}{ }^{\text {Galerucinae }}$ - ${ }^{\text {Sp }} 003$	X	x	X	x	x	x	x	x	
BT-4915-Alticinae_sp_050	x	X	X	X	X	X	X	X	
	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{-4918-A l t i c i n a e-s p-050}$	X	x	X	X	X	X	X	x	
	X	X	X	X	x	X	x	X	
$\mathrm{BT}^{-4921}$-Alticinae-sp-057				x			,		
	X	x	x	x	x	X	X	x	
$\mathrm{BT}^{-4924}{ }^{\text {- Alticinae_sp }}$ - 051	x	x	X	x	x	X	X	x	
	x	x	X	x	x	X	X	X	
$\mathrm{BT}^{-4927}{ }^{-}$Alticicinae-sp ${ }^{-268}$	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{\text {- }} 4929$ - ${ }^{\text {Alticicinae }}{ }^{\text {sp }}$ sp -172	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4930}{ }^{-}$Alticinae-sp ${ }^{-172}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4937}$ - Alticicinae ${ }^{\text {-sp }}{ }^{\text {sp }}{ }_{127}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4938}$ - Alticinae ${ }_{-} \mathrm{sp}_{-}-149$	x	x	x	x	x	x	x	x	
	X	X	X	X	x	x	X	x	
$\mathrm{BT}^{-4941}{ }^{\text {- }}$ Alticinae ${ }^{\text {a }}$ - $\mathrm{sp}^{-127}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4944}{ }^{-}$Alticinae ${ }^{-\mathrm{sp}^{\text {sp }}-150}$	x	x	X	x	x	x	x	x	
$\mathrm{BT}^{-4945}{ }^{\text {- Eumolpinae - }{ }^{\text {sp }} \text { - } 002}$	X		X	X		X	X		
$\mathrm{BT}^{-4947}$-Alticinae $\mathrm{sp}^{\text {a }}{ }^{\text {sp }} 199$	X	x	X	X	x	X	X	x	
$\mathrm{BT}^{-4948}{ }^{\text {- }}$ Alticinae-sp ${ }^{\text {- }} 150$	X	X	X	X	X	X	X	x	
$\mathrm{BT}^{-4950}{ }^{\text {- }}$ Galerucinae ${ }^{\text {a }}$ - ${ }^{\text {dp }} 088$	X	x	-	x	X	X	X	X	
$\mathrm{BT}^{-4951-A l t i c i n a e ~}{ }^{\text {sp }}$ - $06 \overline{1}$	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-4953}{ }^{\text {- Alticinae }}$ - $\mathrm{sp}^{\text {sp }}{ }_{199}$	x	X	X	x	X	X	x	X	
BT-4954-Alticinae-sp_-199				,			x		
	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{-4957}$ - Alticinae-sp-150	x	x	x	x	x	x	x	x	
$\mathrm{BT}^{-4960}{ }^{\text {- Alticinae }}{ }^{\text {sp }}{ }^{\text {sp }}{ }_{086}$	X	X	X	x	X	X	x	X	
BT-4961-Alticinae-sp_086							x		
	x	x	x	X	x	x	X	x	
$\mathrm{BT}^{-4964}{ }^{\text {- Alticinae }}{ }^{\text {- }{ }^{\text {a }} \text { - } 150}$	X	x	X	x	x	X	X	x	
$\mathrm{BT}^{\text {- }} 4966$ - Alticinae ${ }^{\text {ap }}$ - ${ }^{\text {sp }} 088$	X	x	-	X	x	X	X	x	
$\mathrm{BT}^{-} 4967$-Eumolpinae_-sp_038	x		x	X		x	x		
	x	x	X	X	x	x	X		
$\mathrm{BT}^{-4970}{ }^{\text {- Galerucinae }}$ - ${ }^{\text {sp }} 081$	x	x	x	x	x	x	x	x	
$\mathrm{BT}^{-4971-\text { Alticinae }{ }^{\text {sp }} \text { - } 195}$	X	X	X	${ }^{\mathrm{x}}$	X	x	X	X	
$\mathrm{BT}^{-4986}$ - ${ }^{\text {Galerucinae }}$-sp ${ }^{\text {sp }} 101$	X	X							
	X	X	X	X	X	X	X	X	
$\mathrm{BT}^{-5029}{ }^{\text {- Galerucinae }}$-sp ${ }^{\text {- }} 099$	x	x							
BT-5122_Alticinae_sp_ 221	x	x							

## Appendix E

## Additional information: Species delimitation results

Table E.1: Results of species delimitation for each specimen. Only specimens from data set 4. D.-Cluster $=$ Distance-Cluster

Specimen	HaplotypeNetwork	$3 \%$ D.Cluster	5\% D.Cluster	$7.5 \% \text { D.- }$   Cluster	GMYCCluster	PTP-   Cluster	$\begin{aligned} & \text { Haplo- } \\ & \text { type } \end{aligned}$
BT_0001_Eumolpinae sp. 1	Network282	$3 \mathrm{Cl001}$	5C1001	$75 \mathrm{Cl001}$	GMYC008	PTP023	H416
$\mathrm{BT}^{-} 0002$ - Alticinae sp. 42	Network52	$3 \mathrm{Cl002}$	$5 \mathrm{Cl002}$	$75 \mathrm{Cl002}$	GMYC219	PTP114	H085
BT-0004-Eumolpinae sp. 42	Network257	$3 \mathrm{Cl003}$	$5 \mathrm{Cl003}$	$75 \mathrm{Cl003}$	GMYC001	PTP003	H388
$\mathrm{BT}^{-} 0005^{-}$Galerucinae sp. 40	Network216	3 Cl 004	$5 \mathrm{Cl004}$	$75 \mathrm{Cl004}$	GMYC100	PTP238	H329
$\mathrm{BT}^{-0007-}{ }^{-}$Galerucinae sp. 38	Network98	$3 \mathrm{3Cl005}$	${ }_{5}^{5 C 1005}$	$75 \mathrm{Cl005}$	GMYC117	PTP272	H154
$\mathrm{BT}^{-} 0008^{-}$Alticinae sp. 243	Network54	$3 \mathrm{Cl006}$	${ }_{5} \mathrm{Cl} 1006$	$75 \mathrm{Cl006}$	GMYC220	PTP115	H088
$\mathrm{BT}^{-0012-E u m o l p i n a e ~ s p . ~} 21$	Network270	$3 \mathrm{Cl007}$	${ }_{5}^{5 C 1007}$	$75 \mathrm{Cl007}$	GMYC022	PTP007	H401
$\mathrm{BT}^{-} 0015{ }^{-}$Galerucinae sp. 76	Network 118	$3 \mathrm{Cl008}$	$5 \mathrm{Cl008}$	$75 \mathrm{Cl008}$	GMYC113	PTP288	H185
$\mathrm{BT}^{-} 0017^{-}$Alticinae sp. 43	Network49	$3 \mathrm{Cl009}$	5 Cl 009	$75 \mathrm{Cl009}$	GMYC227	PTP122	H081
$\mathrm{BT}^{-} 0021$-Alticinae sp. 7	Network187	$3 \mathrm{Cl010}$	$5 \mathrm{Cl010}$	$75 \mathrm{Cl010}$	GMYC087	PTP204	H285
BT-0022-Alticinae sp. 219	Network190	$3 \mathrm{Cl115}$	$5 \mathrm{Cl011}$	$75 \mathrm{Cl011}$	GMYC089	PTP202	H288
$\mathrm{BT}^{-}$-0024- ${ }^{-}$Galerucinae sp. 1	Network112	$3 \mathrm{Cl011}$	$5 \mathrm{Cl012}$	$75 \mathrm{Cl012}$	GMYC138	PTP264	H176
$\mathrm{BT}^{-} 0033-$ Galerucinae sp. 37	Network116	$3 \mathrm{Cl012}$	${ }_{5}^{5 C 1013}$	$75 \mathrm{Cl013}$	GMYC115	PTP286	H181
$\mathrm{BT}^{-} 0034^{-}$Eumolpinae sp. 14	Network285	$3 \mathrm{Cl013}$	$5 \mathrm{Cl014}$	$75 \mathrm{Cl014}$	GMYC009	PTP016	H419
BT-0035-Eumolpinae sp. 006	Network275	$3 \mathrm{3Cl014}$	${ }_{5}^{5 C 1015}$	$75 \mathrm{Cl015}$	GMYC017	PTP025	H407
BT-0036-Galerucinae sp. 11	Network103	$3 \mathrm{Cl015}$	${ }_{5} 5 \mathrm{Cl016}$	$75 \mathrm{Cl1016}$	GMYC143	PTP258	H160
$\mathrm{BT}^{-0043-G a l e r u c i n a e ~ s p . ~} 5$	Network 110	$3 \mathrm{3Cl016}$	$5 \mathrm{Cl017}$	$75 \mathrm{Cl017}$	GMYC137	PTP265	H172
BT ${ }^{-} 0046$ - Alticinae sp. 243	Network53	3 Cl 006	$5 \mathrm{Cl006}$	$75 \mathrm{Cl006}$	GMYC221	PTP116	H087
BT-0047-Alticinae sp. 42	Network52	3 Cl 1002	$5 \mathrm{Cl002}$	$75 \mathrm{Cl002}$	GMYC219	PTP114	H086
BT-0048-Galerucinae sp. 39	Network97	$3 \mathrm{Cl017}$	$5 \mathrm{Cl018}$	$75 \mathrm{Cl018}$	GMYC118	PTP271	H153
BT-0049-Galerucinae sp. 41	Network217	$3 \mathrm{Cl018}$	$5 \mathrm{Cl019}$	$75 \mathrm{Cl019}$	GMYC101	PTP237	H330
BT ${ }^{-0088}{ }^{-}$Galerucinae sp. 7	Network109	$3 \mathrm{Cl019}$	5 Cl 020	$75 \mathrm{Cl020}$	GMYC134	PTP267	H170
$\mathrm{BT}^{-} 0089^{-}$Eumolpinae sp. 1	Network282	3 Cl 1001	$5 \mathrm{Cl001}$	$75 \mathrm{Cl001}$	GMYC008	PTP023	H416
$\mathrm{BT}^{-} 0090^{-}$Galerucinae sp. 76	Network118	$3 \mathrm{Cl008}$	$5 \mathrm{Cl008}$	$75 \mathrm{Cl008}$	GMYC113	PTP288	H184
$\mathrm{BT}^{-}$0091-Eumolpinae sp. 1	Network282	3 Cl 1001	$5 \mathrm{Cl001}$	$75 \mathrm{Cl001}$	GMYC008	PTP023	H416
$\mathrm{BT}^{-} 0094{ }^{-}$Galerucinae sp. 11	Network103	$3 \mathrm{Cl015}$	$5 \mathrm{Cl016}$	$75 \mathrm{Cl016}$	GMYC143	PTP258	H161
BT-0095-Cassidinae sp. 1	Network261	$3 \mathrm{Cl020}$	$5 \mathrm{Cl0} 21$	$75 \mathrm{Cl021}$	GMYC280	PTP038	H392
BT-0096-Alticinae sp. 10	Network195	$3 \mathrm{Cl021}$	$5 \mathrm{Cl022}$	$75 \mathrm{Cl022}$	GMYC097	PTP195	H303
$\mathrm{BT}^{-} 0098{ }^{-}$Galerucinae sp. 002	Network111	$3 \mathrm{ClO22}$	$5 \mathrm{Cl023}$	$75 \mathrm{Cl023}$	GMYC139	PTP263	H173
$\mathrm{BT}^{-}$-0099-Galerucinae sp. 7	Network92	$3 \mathrm{Cl023}$	$5 \mathrm{Cl024}$	$75 \mathrm{Cl024}$	GMYC126	PTP284	H147
$\mathrm{BT}^{-} 0102-$ Alticinae sp. 44	Network 42	$3 \mathrm{Cl024}$	${ }_{5} \mathrm{Cl} 1025$	$75 \mathrm{Cl025}$	GMYC214	PTP102	H060
$\mathrm{BT}^{-} 0103^{-}$Eumolpinae sp. 38	Network 284	$3 \mathrm{Cl025}$	${ }_{5} \mathrm{Cl} 1026$	$75 \mathrm{Cl026}$	GMYC010	PTP017	H418
BT-0107-Galerucinae sp. 46	Network155	3 Cl 1026	$5 \mathrm{Cl027}$	$75 \mathrm{Cl027}$	GMYC178	PTP249	H241
BT-0109-Alticinae sp. 251	Network 81	$3 \mathrm{Cl027}$	$5 \mathrm{Cl028}$	$75 \mathrm{Cl028}$	GMYC057	PTP156	H124
BT-0110-Alticinae sp. 87	Network88	$3 \mathrm{Cl028}$	$5 \mathrm{Cl029}$	$75 \mathrm{Cl029}$	GMYC061	PTP164	H136
BT-0114-Galerucinae sp. 62	Network205	$3 \mathrm{Cl029}$	$5 \mathrm{Cl030}$	$75 \mathrm{Cl030}$	GMYC111	PTP239	H317
BT-0115-Alticinae sp. 98	Network 10	$3 \mathrm{Cl030}$	$5 \mathrm{Cl031}$	$75 \mathrm{Cl031}$	GMYC253	PTP060	H010
BT-0118-Eumolpinae sp. 19	Network265	$3 \mathrm{Cl031}$	$5 \mathrm{Cl032}$	$75 \mathrm{Cl032}$	GMYC028	PTP004	H396
$\mathrm{BT}^{-}{ }^{\text {0 }} 119^{-}$Alticinae sp. 124	Network87	$3 \mathrm{Cl032}$	$5 \mathrm{Cl033}$	$75 \mathrm{Cl033}$	GMYC048	PTP166	H135
BT-0121-Alticinae sp. 107	Network218	$3 \mathrm{Cl033}$	$5 \mathrm{Cl034}$	$75 \mathrm{Cl034}$	GMYC062	PTP141	H331
$\mathrm{BT}^{-} 0123-$ Alticinae sp. 129	Network212	3 Cl 034	$5 \mathrm{Cl035}$	$75 \mathrm{Cl035}$	GMYC065	PTP098	H325
$\mathrm{BT}^{-} 0125^{-}$Alticinae sp. 97	Network13	$3 \mathrm{Cl035}$	${ }_{5}{ }_{5} \mathrm{Cl036}$	$75 \mathrm{Cl036}$	GMYC258	PTP065	H020
$\mathrm{BT}^{-} 0126^{-}$Alticinae sp. 123	Network148	$3 \mathrm{Cl036}$	$5 \mathrm{Cl037}$	$75 \mathrm{Cl037}$	GMYC070	PTP144	H228
$\mathrm{BT}^{-}{ }^{10130}{ }^{-}$Galerucinae sp. 34	Network183	$3 \mathrm{Cl037}$	5 Cl 038	$75 \mathrm{Cl038}$	GMYC103	PTP232	H280
$\mathrm{BT}^{-} 0134^{-}$Galerucinae sp. 7	Network92	$3 \mathrm{Cl023}$	$5 \mathrm{Cl024}$	$75 \mathrm{Cl024}$	GMYC126	PTP284	H148
$\mathrm{BT}^{-} 0135^{-}$Eumolpinae sp. 19	Network265	${ }_{3}^{3 C 1031}$	${ }_{5}^{5 C 1032}$	$75 \mathrm{Cl032}$	GMYC028	PTP004	H396
$\mathrm{BT}^{-} 0137^{-}$Cassidinae sp. 4	Network253	$3 \mathrm{Cl038}$	$5 \mathrm{Cl039}$	$75 \mathrm{Cl039}$	GMYC284	PTP053	H379
BT-0139-Alticinae sp. 10	Network195	$3 \mathrm{Cl021}$	$5 \mathrm{Cl022}$	$75 \mathrm{Cl022}$	GMYC097	PTP195	H304
$\mathrm{BT}^{-} 0140^{-}$Alticinae sp. 28	Network29	$3 \mathrm{Cl039}$	5 Cl 040	$75 \mathrm{Cl040}$	GMYC209	PTP129	H041
$\mathrm{BT}^{-}$0144-Eumolpinae sp. 38	Network283	$3 \mathrm{Cl040}$	$5 \mathrm{Cl041}$	$75 \mathrm{Cl041}$	GMYC011	PTP018	H417
$\mathrm{BT}^{-} 0145$ - Galerucinae sp. 61	Network93	${ }_{3}^{3 \mathrm{ClO} 11}$	$5 \mathrm{Cl042}$	$75 \mathrm{Cl042}$	GMYC131	PTP279	H149
BT-0146-Alticinae sp. 29	Network68	$3 \mathrm{Cl042}$	$5 \mathrm{Cl043}$	$75 \mathrm{Cl043}$	GMYC049	PTP168	H107
BT-0147-Alticinae sp. 62	Network57	$3 \mathrm{Cl043}$	$5 \mathrm{Cl044}$	$75 \mathrm{Cl044}$	GMYC224	PTP117	H092
$\mathrm{BT}^{-0148-A l t i c i n a e ~ s p . ~} 66$	Network85	$3 \mathrm{3Cl044}$	$5 \mathrm{Cl045}$	$75 \mathrm{Cl045}$	GMYC051	PTP169	H131
$\mathrm{BT}^{-} 0149^{-}$Alticinae sp. 249	Network 79	3 Cl 1045	5 Cl 046	$75 \mathrm{Cl046}$	GMYC037	PTP147	H121
BT-0153-Alticinae sp. 109	Network171	3 Cl 046	$5 \mathrm{Cl047}$	$75 \mathrm{Cl047}$	GMYC254	PTP062	H264
BT-0154-Alticinae sp. 115	Network10	3 Cl 1030	$5 \mathrm{Cl031}$	$75 \mathrm{Cl031}$	GMYC253	PTP060	H010
BT-0155-Alticinae sp. 193	Network 172	3 Cl 1047	$5 \mathrm{Cl048}$	$75 \mathrm{Cl048}$	GMYC243	PTP206	H266
BT- $0157^{-}$Alticinae sp. 97	Network11	$3 \mathrm{Cl048}$	$5 \mathrm{Cl049}$	$75 \mathrm{Cl049}$	GMYC256	PTP064	H015
$\mathrm{BT}^{-}$0158-Eumolpinae sp. 2	Network285	$3 \mathrm{Cl013}$	$5 \mathrm{Cl014}$	$75 \mathrm{Cl014}$	GMYC009	PTP016	H419
BT-0159-Galerucinae sp. 096	Network180	$3 \mathrm{Cl049}$	$5 \mathrm{Cl050}$	$75 \mathrm{Cl050}$	GMYC174	PTP252	H277
BT-0174-Galerucinae sp. 46	Network155	$3 \mathrm{Cl026}$	$5 \mathrm{Cl027}$	$75 \mathrm{Cl027}$	GMYC178	PTP249	H241
$\mathrm{BT}^{-0176-}{ }^{-}$Galerucinae sp. 46	Network156	$3 \mathrm{Cl050}$	${ }_{5} \mathrm{Cl051}$	$75 \mathrm{Cl051}$	GMYC179	PTP250	H242
BT-0183-Galerucinae sp. 34	Network183	3 Cl 1037	$5 \mathrm{Cl038}$	$75 \mathrm{Cl038}$	GMYC103	PTP232	H280
BT-0188-Galerucinae sp. 11	Network 103	$3 \mathrm{Cl015}$	$5 \mathrm{Cl016}$	$75 \mathrm{Cl016}$	GMYC143	PTP258	H162
BT-0189-Alticinae sp. 161	Network38	$3 \mathrm{Cl051}$	$5 \mathrm{Cl052}$	$75 \mathrm{Cl052}$	GMYC151	PTP071	H053
$\mathrm{BT}^{-} 0190^{-}$Eumolpinae sp. 1	Network282	$3 \mathrm{Cl001}$	$5 \mathrm{Cl001}$	$75 \mathrm{Cl001}$	GMYC008	PTP023	H416
BT-0196-Galerucinae sp. 10	Network232	$3 \mathrm{Cl052}$	5 Cl 1053	$75 \mathrm{Cl053}$	GMYC076	PTP228	H353
$\mathrm{BT}^{-}{ }^{\text {01919-}}{ }^{-}$Alticinae sp. 118	Network170	$3 \mathrm{Cl053}$	$5 \mathrm{Cl054}$	$75 \mathrm{Cl054}$	GMYC187	PTP108	H262
BT-0201-Chrysomelinae sp. 2	Network206	3 Cl 1054	5 Cl 1055	$75 \mathrm{Cl055}$	GMYC102	PTP236	H318
$\mathrm{BT}^{-} 0202{ }^{-}$Galerucinae sp. 32	Network2	$3 \mathrm{Cl055}$	$5 \mathrm{Cl056}$	$75 \mathrm{Cl056}$	GMYC175	PTP247	H002
$\mathrm{BT}^{-0204-H i s p i n a e ~ s p . ~} 2$	Network255	$3 \mathrm{Cl056}$	$5 \mathrm{Cl057}$	$75 \mathrm{Cl057}$	GMYC273	PTP051	H382
$\mathrm{BT}^{-} 0207^{-}$Galerucinae sp. 69	Network219	$3 \mathrm{Cl057}$	$5 \mathrm{Cl058}$	$75 \mathrm{Cl058}$	GMYC086	PTP215	H333
BT-0208-Eumolpinae sp. 19	Network265	3 Cl 1031	$5 \mathrm{Cl032}$	$75 \mathrm{Cl032}$	GMYC028	PTP004	H396
$\mathrm{BT}^{-0209}{ }^{-}$Cassidinae sp. 5	Network242	$3 \mathrm{Cl058}$	$5 \mathrm{Cl059}$	$75 \mathrm{Cl059}$	GMYC277	PTP043	H364
BT-0211-Alticinae sp. 87	Network88	$3 \mathrm{Cl028}$	${ }_{5} \mathrm{Cl} 1029$	$75 \mathrm{Cl029}$	GMYC061	PTP164	H136
$\mathrm{BT}^{-} 0212-$ Galerucinae sp. 66	Network223	$3 \mathrm{Cl059}$	${ }_{5}^{5 C 1060}$	$75 \mathrm{Cl060}$	GMYC079	PTP222	H341
$\mathrm{BT}^{-}$0213-Galerucinae sp. 24	Network197	3 Cl 1060	$5 \mathrm{Cl061}$	$75 \mathrm{Cl061}$	GMYC108	PTP230	H306
$\mathrm{BT}^{-0214-A l t i c i n a e ~ s p . ~} 28$	Network29	$3 \mathrm{Cl039}$	$5 \mathrm{Cl040}$	$75 \mathrm{Cl040}$	GMYC209	PTP129	H043
$\mathrm{BT}^{-} 0218^{-}$Galerucinae sp. 31	Network203	$3 \mathrm{Cl061}$	$5 \mathrm{Cl062}$	$75 \mathrm{Cl062}$	GMYC084	PTP217	H313
$\mathrm{BT}^{-} 0219$ - Eumolpinae sp. 073	Network244	$3 \mathrm{Cl062}$	$5 \mathrm{Cl063}$	$75 \mathrm{Cl063}$	GMYC031	PTP002	H368
$\mathrm{BT}^{-} \mathrm{0220} 0^{-}$Alticinae sp. 115	Network10	3 Cl 030	$5 \mathrm{Cl031}$	$75 \mathrm{Cl031}$	GMYC253	PTP060	H010
$\mathrm{BT}^{-} \mathrm{O221}^{-}$Eumolpinae sp. 10	Network274	3 Cl 063	5 Cl 1064	75 Cl 064	GMYC021	PTP008	H406


${ }^{\text {BT }}$-0223_Galerucinae sp. ${ }^{34}$	Network183	$3 \mathrm{Cl037}$	5 Cl 1038	75 Cl 1038	GMYC103	PTP232	H280
$\mathrm{BT}^{-0227-C a s s i d i n a e ~ s p . ~} 14$	Network 262	$3 \mathrm{Cl064}$	${ }_{5} \mathrm{Cl1065}$	${ }^{75 \mathrm{ClO}} \mathbf{6 5}$	GMYC281	PTP039	H393
$\mathrm{BT}^{-0228-\text { Cassidinae sp. } 7}$	Network245	$3 \mathrm{Cl1065}$	${ }_{5}{ }^{\text {Cl1066 }}$	${ }_{75 \mathrm{Cl066}}$	GMYC276	PTP042	H370
$\mathrm{BT}^{-0231}{ }^{-}$Hispinae sp. 3	Network247	$3 \mathrm{Cl1066}$	${ }_{5} \mathrm{C} 1067$	${ }_{75 \mathrm{Cl067}}$	GMYC272	PTP050	H372
$\mathrm{BT}^{-} 0232{ }^{-}$Hispinae sp. 4	Network1	$3 \mathrm{Cl1067}$	${ }_{5}{ }^{\text {Cl1068 }}$	${ }_{75 \mathrm{Cl068}}$	GMYC288	PTP033	H001
BT-023-Alticinae sp. 61	Network8	${ }_{3} \mathrm{Cl} 1068$	${ }_{5}^{5 \mathrm{Cl} 1069}$	${ }_{75 \mathrm{ClO69}} 7$	GMYC259	PTP066	H008
(ex-0234-Alticinae sp. 97	Network13		$5 \mathrm{Cl036}$	$75 \mathrm{Cl036}$	GMYC258	${ }^{\text {PTP }}$ O65 ${ }^{\text {a }}$	H019
${ }^{\mathrm{BT}^{-} \mathrm{O235}}{ }^{\text {- }}$ - Alticinae sp. ${ }^{\text {a }}$ - Alticinae sp. 156	Network ${ }^{\text {Network } 195}$	$3 \mathrm{Cl021}$	${ }_{5}^{5 C 1022}$	$75 \mathrm{Cl022}$	GMYC097	${ }^{\text {PTPTP195 }}$	H302
BT-0236-Alticinae sp. 156	Network194	${ }_{3}^{3 \mathrm{ClO}} \mathbf{3}$	$5 \mathrm{Cl070}$	$75 \mathrm{Cl022}$	GMYC098	PTP194	H301
	Network ${ }_{\text {Network } 270}$	${ }_{3}^{3 C 1007}$	${ }_{5}^{5 \mathrm{5Cl007}}$	${ }_{755 \mathrm{ClO}}^{75}$	GMYC138	${ }_{\text {PTP }}{ }^{\text {PTP007 }}$	${ }^{\text {H174 }}$
	Network ${ }^{\text {N }}$ (170	${ }_{3}{ }^{\text {Cl1053 }}$	${ }_{5}{ }_{5}$ C1054	${ }_{75 \mathrm{ClO}}^{5} 4$	GMYC187	${ }^{\text {PTP108 }}$	
BT-0244-Alticinae sp. 97	Network13	$3 \mathrm{Cl1035}$	$5 \mathrm{Cl036}$	${ }_{751036}$	GMYC258		
$\mathrm{BT}^{-}{ }^{0245}$ - Galerucinae sp. 34	Network183	${ }_{3 \mathrm{Cl1037}}$	$5 \mathrm{Cl038}$	${ }_{751038}$	GMYC103	PTP232	H280
$\mathrm{BT}^{-}{ }^{\text {0246 }}{ }^{-}$Galerucinae sp. 30	Network184	$3 \mathrm{Cl070}$		$75 \mathrm{Cl070}$	GMYC110	PTP240	H282
BT-0247-Criocerinae sp.	etwork237	$3 \mathrm{Cl071}$	${ }_{5}^{5 C 1072}$	${ }_{75 \text { C1071 }}$	GMYC264	PTP057	
BT-0249-Criocerinae sp.	etwork237	$3 \mathrm{Cl071}$	${ }_{5}^{5 C 1072}$	${ }^{75 C 1071}$	GMYC264	PTP057	H358
BT-0252 ${ }^{-}$Galerucinae sp. 34	etwork 183			$75 \mathrm{Cl03}$	GMYC103	PTP232	H280
molpinae sp. 23	work	${ }_{3} \mathrm{Cl007}$		75 C	GMYC022		H402
$\mathrm{BT}^{-0256}{ }^{-}$Alticinae sp. 31	etwork151	$3 \mathrm{Cl072}$	${ }_{5} \mathrm{Cl073}$	$75 \mathrm{Cl072}$	GMYC241	PTP083	H234
$\mathrm{BT}^{-0257}{ }^{-}$Galerucinae sp.	etwork112	$3 \mathrm{Cl011}$	$5 \mathrm{Cl012}$	$75 \mathrm{Cl012}$	GMYC138	PTP264	H177
BT-0258-Galerucinae sp. 5	rk			${ }_{75 \mathrm{ClO17}}$	GMYC137	PTP	H172
BT-0259-Alticinae sp. 96	work 1	${ }_{3}^{3 \mathrm{CClO44}}$	${ }_{\substack{5 \mathrm{SClO45} \\ 5 \mathrm{Cl043}}}$	${ }_{75 \mathrm{ClO43}}$	GMYC051		H131
	Network68	$3 \mathrm{SClO42}$   3 ClO 73	${ }^{5} 5 \mathrm{Cl1043}$	${ }_{75 \mathrm{ClO}}^{75} 4$	GMYC049	${ }^{\text {PTP168 }}$	H108
BT-0269-Alticinae sp. 86	Network48		5 C	$75 \mathrm{Cl074}$			
BT-0271-Alticinae sp. 64	Network71	$3 \mathrm{Cl1075}$	${ }_{5} \mathrm{Cl1076}$	${ }_{75 \mathrm{Cl} 1075}$	GMYC044	PTP153	H112
$\mathrm{BT}^{-} 0273^{-}$Alticinae sp. 141	Network130	$3 \mathrm{Cl1076}$	$5 \mathrm{Cl077}$	$75 \mathrm{Cl076}$	GMYC170	PTP192	H203
BT-0276_Alticinae sp. 122	Network218	${ }_{3} \mathrm{Cl033}$	${ }_{5} \mathrm{Cl034}$	${ }^{75 \mathrm{Cl} 1034}$	GMYC062	PTP141	H332
$\mathrm{BT}^{-}$-0278-Alticinae sp. 124	etwork87	$3 \mathrm{Cl0}$		${ }_{7551033}$	GMYC048	${ }^{\text {PTP166 }}$	
BT-0279-Alticinae sp. 115	twork10	${ }_{3 \mathrm{Cl1030}}$		${ }_{751031}^{75107}$	GMYC253		H010
BT-0283-Eumolpinae sp. 20	Network289	${ }_{3} \mathrm{Cl077}$	${ }_{5}^{5 \mathrm{Cl} 1078}$	${ }_{75 \mathrm{ClO77}}$		PTP010	H425
	Networks88	${ }_{3}{ }^{\text {Cl1078 }}$	${ }_{5}{ }^{\text {Cl1008 }}$	${ }_{75 \mathrm{ClO}}{ }^{\text {a }}$	GMYC114	${ }^{\text {PTP }} 164$	${ }_{\text {H182 }}$
BT-0288-Eumolpinae sp. 17	Network277	$3 \mathrm{Cl079}$	$5 \mathrm{Cl1079}$	$75 \mathrm{Cl078}$	GMYC018	PTP027	H409
$\mathrm{BT}^{-}$-0289-Eumolpinae	Network282	$3 \mathrm{Cl001}$	${ }_{5}^{5 C 1001}$	${ }_{75 \mathrm{Cl} 1001}$	GMYC008	PTP023	H416
BT-0292-Galerucinae sp. ${ }^{76}$	etwork118	3 Cl 100	5	75 Cl 10	GMYC113	PTP2	H183
	Network203	$3 \mathrm{3Cl061}$   $3 \mathrm{Cl080} 0$	- ${ }_{5}^{5 \mathrm{Cl1062}}$	${ }_{75 \mathrm{ClO}}^{75 \mathrm{Cl}}$	GMYC084	${ }^{\text {PTP }{ }^{\text {P }} \text { 217 }}$	${ }^{\text {H314 }}$
$\mathrm{BT}^{-}{ }^{\text {0297-Alticinae sp. }}$ - 142	Network 132	$3 \mathrm{Cl081}$	$5 \mathrm{Cl081}$	$75 \mathrm{Cl080}$	GMYC167	PTP189	H205
BT-0298-Alticinae sp. 63	etwork	$3 \mathrm{Cl1082}$	${ }_{5}^{5 \mathrm{Cl082}}$	${ }_{75 \mathrm{Cl081}}$	GMYC201	PTP131	H038
BT-0301-Alticinae sp. 83	Network22	(3C1083	- ${ }_{\text {5Cl083 }}^{5 \mathrm{Cl} 1075}$	${ }_{75 \mathrm{ClO}}^{752}$	GMYC230	${ }^{\text {PTP TP }} 105$	H033
	Network ${ }^{\text {Network }}$ 209	-3C1074	${ }_{5}^{5 \mathrm{Cl} 1084}$	${ }_{75 \mathrm{ClO}}^{75}$	GMYC069	${ }_{\text {PTP } 143}$	${ }_{\text {H } 322}$
BT-0307-Alticinae sp. 115	etwork10	$3 \mathrm{Cl030}$	$5 \mathrm{Cl031}$	$75 \mathrm{Cl031}$	GMYC253	PTP060	H012
BT-0309-Alticinae sp. 256	Network12	10		${ }_{75 \text { Cl084 }}$	GMYC257	3	
BT-031-Eumolpinae sp. ${ }^{42}$	twork257	${ }_{3}^{3 \mathrm{ClO}} 3$		${ }_{75 \text { clio03 }}$	GMYC001	${ }^{\text {PTPTP003 }}$	
${ }_{\text {BT }}{ }^{\text {B1a }}$ 0314-Eumolpinae sp. ${ }^{\text {Eumolpinae sp. }} 43$	Network ${ }^{\text {Netw }}$ 234	${ }_{3}^{3 \mathrm{3Cl} 1007}$	${ }_{5}^{5 \mathrm{Cl} 1086}$	${ }_{75 \mathrm{ClO}}^{75 \mathrm{Cl}}$	GMYC022	${ }^{\text {PTPTP009 }}$	$\begin{array}{r}\text { H402 } \\ \mathrm{H} 355 \\ \hline\end{array}$
$\mathrm{BT}^{-}{ }_{0336}{ }^{-}$Galerucinae sp. 56	Net	3 C		$75 \mathrm{Cl086}$	GMYC107	PTP231	H310
BT-0337-Galerucinae	Network201	3 Cl 10	$5 \mathrm{Cl1087}$	$75 \mathrm{Cl0}$	GMYC107	PTP231	H310
$\mathrm{BT}^{-0338-}{ }^{\text {Galerucinae sp. }} 55$	Network201	${ }_{3}^{3 \mathrm{Cl1087}}$	${ }_{5}^{5 \mathrm{Cl1087}}$	${ }_{75 \mathrm{Cl086}}$	GMYC107	PTP231	H310
${ }_{\text {BT }}{ }^{\text {O339-GAlticinae sp. }} 71$		${ }_{3}^{3 \mathrm{Cl} 1088}$	7	${ }^{75 C 1087}$			
$\mathrm{BT}^{\text {- }}$ 0346-Alticinae sp. 51	Network 41	$3 \mathrm{3C1089}$	$5 \mathrm{Cl1089}$	${ }_{751088}$	GMYC197	PTP126	H058
BT- ${ }^{-1449^{-} \text {Eumolpinae sp. } 20}$	Network288	$3 \mathrm{Cl090}$	$5 \mathrm{Cl090}$	$75 \mathrm{Cl089}$	GMYC004	PTP011	H424
BT-0352-Alticinae sp. 130	Network213	${ }_{3}{ }^{\text {C1091 }}$	91	${ }_{75 \mathrm{Cl090}}$	63	39	
$\mathrm{BT}^{-}$-353-Alticinae sp. ${ }^{\text {d }} 32$	Network196	${ }_{3}{ }^{\text {Cl0922 }}$	${ }_{5}^{5 C 1092}$	$75 \mathrm{Cl091}$	GMYC212	PTP101	H305
	Network91	${ }_{3}{ }_{3 \mathrm{Cl} 1094}$	${ }_{5}^{5 \mathrm{5Cl} 1094}$	${ }_{75 \mathrm{ClO93}}$	GMYC211	${ }_{\text {PTP10 }}{ }^{\text {P107 }}$	${ }^{\text {H144 }}$
BT ${ }^{-0363}{ }^{-}$Alticinae sp. 51	Network41	3 Cl 1089	5 Cl 089	$75 \mathrm{Cl088}$	GMYC197	PTP126	H059
$\mathrm{BT}^{-} 0365{ }^{\text {-Galerucinae sp }}$	Network160	${ }_{3}^{3 \mathrm{ClO95}}$	${ }_{5}^{5 \mathrm{Cl} 1095}$	${ }_{75 \text { Cl094 }}$	GMYC183	${ }^{\text {PTP } 246}$	H247
BT-0372-Alticinae sp. 9	Network 192	${ }^{3 \mathrm{Cl} 1096}$	${ }_{5}^{5 \mathrm{Cl} 1096}$	${ }^{75 \mathrm{Cl095}}$	GMYC099	TP196	
${ }^{\text {BT- }}$ - ${ }^{\text {O375- }}$ - Eummolpinae sp. ${ }^{\text {alticinae sp }} 51$	Network272	$3 \mathrm{Cl1097}$ $3 \mathrm{Cl089}$	${ }^{5} 5 \mathrm{Cl097}$	${ }_{75 \mathrm{ClO96}}$	GMYC007	${ }^{\text {PTP014 }}$	H404
	Network 279	${ }^{\text {c }}$		C1097	GMYC197		
BT-0380-Eumolpinae sp. 24	Network279	${ }_{3 \mathrm{Cl} 1098}$	${ }_{5} 5 \mathrm{Cl1998}$	${ }_{75 \mathrm{Cl097}}$	GMYC014	${ }^{\text {PTPO21 }}$	${ }_{\text {H413 }}$
BT-0382-Galerucinae sp. ${ }^{13}$	Network 105	$3 \mathrm{3C1099}$	${ }_{5}^{5 \mathrm{Cl} 1099}$	${ }_{75 \mathrm{Cl098}}$	GMYC144	PTP259	H164
BT-0383 Alticinae sp. 87	Network88	${ }_{3}^{3 \mathrm{Cl} 1028}$	${ }_{5}^{5 C 1029}$	$75 \mathrm{Cl029}$	GMYC061	${ }^{\text {PTP164 }}$	H138
	Network ${ }^{\text {Network } 17}$	(3C1100	- 5 5C1100	$75 C 1099$ 7551100	GMYC025	${ }^{\text {PTPTP088 }}$	H398
$\mathrm{BT}^{-} 0390^{-}$Alticinae sp. 90	Network76	$3 \mathrm{Cl1102}$	$5 \mathrm{Cl1102}$	$75 \mathrm{Cl101}$	GMYC041	PTP149	H118
BT-0391-Alticinae sp. 90	Network77	$3 \mathrm{Cl1103}$	${ }_{5}^{5 \mathrm{Cl102}}$	${ }_{75 \text { Cl101 }}$	GMYC040	PTP150	H119
$\mathrm{BT}^{-0392-E u m o l p i n a e ~ s p . ~} 074$	Network 244	${ }^{3} \mathrm{3C1062}$	${ }_{5}^{5 \mathrm{Cl1063}}$	${ }_{75 \text { 7 Cl063 }}$	GMYC031	${ }^{\text {PTPTP002 }}$	H368
	Network244	(3C1062	- ${ }^{5 \mathrm{Cl1063}}$	$75 \mathrm{ClO63}$ 75 ClO 99	GMYC031	${ }_{\text {PTP002 }}$	H368
$\mathrm{BT}^{-0397}{ }^{-}$Alticinae sp. 131	Network164	$3 \mathrm{Cl1104}$	$5 \mathrm{Cl1103}$	$75 \mathrm{Cl102}$	GMYC237	PTP077	H254
BT-0399-Galerucinae sp. 28	Network64	$3 \mathrm{Cl1105}$	${ }_{5}^{5 \mathrm{Cl1104}}$	${ }_{75 \text { Cl103 }}$	GMYC128	PTP283	H102
BT-0402-Galerucinae sp. 44	Network 139	${ }_{3}^{3 \mathrm{Cll106}}$	${ }_{5}^{5 \mathrm{Cl11} 5} 5$	${ }^{75 C 1104}$	GMYC176	${ }^{\text {PTP248 }}$	H214
$\mathrm{BT}^{\text {- }} 0405$-Galerucinae sp. ${ }^{\text {Galerucinae sp. }} 45$	Network 154	${ }_{3 C 1107}$	${ }_{5}^{5 C 1106}$	${ }_{75 \mathrm{Cl1105}}$	GMYC177	PTP251	H239
$\mathrm{BT}^{-0407}{ }^{-G} \mathrm{Galerucinae} \mathrm{sp}$.	Network 158	${ }_{3} \mathrm{Cl1108}$	${ }_{5} \mathrm{C} 1107$	${ }_{75 \mathrm{Cl106}}$	GMYC182	PTP244	H244
BT-0408-Eumolpinae sp. 24	Network ${ }^{\text {d }}$ ( ${ }^{\text {a }}$	${ }^{3 \mathrm{Cl} 1098}$	${ }_{5}^{5 \mathrm{Cl} 1098}$	${ }^{75 \mathrm{ClO97}}$	GMYC014	${ }^{\text {PTP021 }}$	H412
	Network ${ }^{\text {Network214 }}$	(3C1098 ${ }_{3}$	5C1098	$75 \mathrm{Cl097}$ $75 \mathrm{Cl107}$	GMYC014	${ }_{\text {PTP182 }}$	${ }_{\text {H412 }}$
$\mathrm{BT}^{-0411-A l t i c i n a e ~ s p . ~} 58$	Network30	$3 \mathrm{Cl1110}$	${ }_{5} \mathrm{Cl1109}$	${ }^{75 \mathrm{Cl108}}$	GMYC248	PTP094	H044
${ }^{\text {BT- }}$ - 4115 -Alticinae sp. 242	Network143	${ }_{3}{ }^{\text {Cl1111 }}$	${ }_{5}^{5 \mathrm{Cl111}}$	$75 \mathrm{Cl109}$	GMYC033	${ }^{\text {PTP }}$ 086	${ }^{\text {H221 }}$
	Network226	${ }_{3}^{3 \mathrm{Cl1112}}$	${ }_{5}^{5 \mathrm{Cl1111}}$	${ }_{75 \mathrm{Cl1111}}$	GMYC083	${ }_{\text {PTP }}{ }^{\text {PT }} 183$	H345
$\mathrm{BT}^{-0423-E u m o l p i n a e ~ s p . ~}{ }^{24}$	Network279	$3 \mathrm{Cl1098}$	$5 \mathrm{Cl1098}$	$75 \mathrm{Cl097}$	GMYC014	PTP021	H412
${ }^{\text {BT-0425-Eumolpinae sp. }}{ }^{7}$	Network ${ }^{\text {Network }}$	- ${ }^{3 \mathrm{ClH114}}$	${ }_{5}^{5 \mathrm{Cl1113}}$	${ }_{75 \text { ch1012 }}$	GMYC012	${ }^{\text {PTP019 }}$	
$\mathrm{BT}^{-0427}$-Alticinae sp. 104	Network 17	$3 \mathrm{Cl1101}$	${ }_{5}^{5 C 1101}$	${ }_{75 \mathrm{Cl100}}$	GMYC235	${ }^{\text {PTP }}$ O80 0	${ }^{\text {H2926 }}$
$\mathrm{BT}^{-0428}{ }^{-}$Alticinae sp. 105	Network 16	${ }_{3}{ }^{\text {Cl1116 }}$	${ }_{5}^{5 \mathrm{Cl1114}}$	${ }_{75 \mathrm{Cl113}}$	GMYC234	PTP079	H024
${ }^{\text {BT- }}$ - 0429 - Eumolpinae sp. 39	Network267	${ }^{3 \mathrm{Cl1100}}$	${ }_{5}{ }^{\text {SC100 }}$	C1099	GMYC025	${ }^{\text {PTPO28 }}$	
BT-0432 - Eumolpinae sp. 30	Network271	$3 \mathrm{Cl11}$	${ }_{5} 5 \mathrm{Cl1115}$	$75 \mathrm{Cl114}$	GMYC019	PTP024	H403
${ }_{\text {BT }}{ }^{\text {BT-0433-Galerucinae sp. }}$ - 69	etwork219	$3 \mathrm{Cl1057}$ $3 \mathrm{Cl1118}$	${ }^{5} 5 \mathrm{Cl1058}$	${ }_{75 \mathrm{Cl115}}^{75 \mathrm{Cl}}$	GMYC086	${ }^{\text {PTP }}$ 215 215	H335
BT-0434-Galerucinae sp. ${ }^{\text {a }}{ }^{72}$	Network231	${ }_{\substack{3 \mathrm{Cl1118} \\ 3 \mathrm{Cl119}}}$	${ }_{5}^{5 \mathrm{Cl1116}}$	${ }_{75 \mathrm{Cl1115}}^{75 \mathrm{Cl}}$	GMYC073	${ }^{\text {PTP }}$ P200	${ }_{\text {H286 }}^{\text {H35 }}$
$\mathrm{BT}^{-0438}{ }^{-}$Galerucinae sp. ${ }^{\text {d }}$	Network202	$3 \mathrm{Cl1120}$	$5 \mathrm{Cl1118}$	${ }^{75 \mathrm{Cl1117}}$	GMYC105	PTP234	H311
BT-0441-Galerucinae sp. 082	Network182	${ }_{3}^{3 \mathrm{Cl121}}$	${ }_{5}^{5 \mathrm{Cl1119}}$	${ }_{75 \text { cl118 }}$	GMYC106	PTP235	H279
	Network ${ }^{\text {Network } 411}$	$3 \mathrm{ClO95}$ $3 \mathrm{Cl089}$	- ${ }^{5 \mathrm{Cl} 1095}$	$75 \mathrm{ClO94}$ $75 \mathrm{Cl088}$	GMYC183	${ }_{\text {PTP }}{ }^{\text {PT26 }}$	H247 H058
$\mathrm{BT}^{-0444}$ - Alticinae sp. 143	Network 123	$3 \mathrm{Cl1122}$	$5 \mathrm{Cl1120}$	$75 \mathrm{Cl119}$	GMYC158	PTP186	H193
$\mathrm{BT}^{-0447}{ }^{-}$-Galerucinae sp. 7	Network 109	${ }_{3}^{3 \mathrm{ClO} 19} 9$	${ }_{5}^{5 \mathrm{ClO}}{ }^{\text {co }}$	${ }^{75 \mathrm{ClO20}}$	GMYC134	PTP267	H168
	Network160	(3C1095	${ }^{5} 5 \mathrm{Cl095}$	-75C1094	GMYC183	${ }^{\text {PTP }}$ P 246	- ${ }_{\text {H247 }}$
$\mathrm{BT}^{-0451-G a l e r u c i n a e ~ s p . ~} 15$	Network202	$3 \mathrm{Cl1120}$	$5 \mathrm{Cl1118}$	$75 \mathrm{Cl117}$	GMYC105	PTP234	H311
BT-0452-Alticinae sp. 9	Network 192	${ }_{3}^{3 \mathrm{Cl} 1096}$	${ }_{5}^{5 \mathrm{ClO} 1096}$	${ }^{75 \mathrm{ClO95}}$	GMYC099	${ }^{\text {PTP196 }}$	H296
BT-0454-Alticinae sp. ${ }^{\text {B6 }}$ - ${ }^{\text {BT }}$	Network50	- ${ }_{\text {3Cl123 }}$	${ }_{5}^{5 \mathrm{Cl1121}}$	${ }_{75 \mathrm{Cl120}}^{75120}$	GMYC213	${ }^{\text {PTPTP103 }}$	H082 HoO5
$\mathrm{BT}^{-} 0459^{-}$-Galerucinae sp. 50	Network61	$3 \mathrm{Cl1125}$	$5 \mathrm{Cl1123}$	75C1122	GMYC127	PTP280	H097
$\mathrm{BT}^{-0460-G a l e r u c i n a e ~ s p . ~}{ }^{\text {a }}$	Network 154	${ }_{3}^{3 \mathrm{Cl1107}}$	${ }_{5}^{5 \mathrm{Cl1106}}$	${ }_{75 \mathrm{Cl105}}$	GMYC177	${ }^{\text {PTP251 }}$	${ }^{\text {H238 }}$
	Network ${ }^{\text {Network254 }}$			${ }_{75 \mathrm{Cl1003}}^{75 \mathrm{Cl}}$	GMYC177	${ }^{\text {PTPTP251 }}$	${ }_{\text {H237 }}$
$\mathrm{BT}^{-0463}{ }^{-}$Galerucinae sp. 70	Network229	$3 \mathrm{Cl1126}$	$5 \mathrm{Cl1124}$	${ }^{75 \mathrm{Cl123}}$	GMYC081	PTP229	H349
BT-0465-Alticinae sp. 050	Network 45	${ }_{3}^{3 \mathrm{ClO} 1094}$	${ }_{5}^{5 \mathrm{Cl} 1094}$	${ }_{75 \text { Cl093 }}$	GMYC211	PTP107	H066
	(	( ${ }^{3 \mathrm{Cl1127}} \mathbf{3 \mathrm { Cl107 }}$	( ${ }_{5}^{5 \mathrm{Cl1125}}$	$75 \mathrm{Cl124}$ $75 \mathrm{Cl105}$	GMYC240	${ }_{\text {PTP082 }}$	+ H 230
BT_0469_Galerucinae sp. 45	Network154	$3 \mathrm{Cl107}$	$5 \mathrm{Cl106}$	$75 \mathrm{Cl105}$	GMYC177	PTP251	H240

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BT_0473_Galerucinae sp. 69 \& Network219 \& $3 \mathrm{Cl057}$ \& $5 \mathrm{Cl058}$ \& $75 \mathrm{Cl058}$ \& GMYC086 \& PTP215 \& H334 <br>
\hline BT-0474-Alticinae sp. 80 \& Network146 \& $3 \mathrm{Cl128}$ \& $5 \mathrm{Cl126}$ \& $75 \mathrm{Cl125}$ \& GMYC156 \& PTP171 \& H225 <br>
\hline BT-0475-Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{Cl100}$ \& $5 \mathrm{Cl1100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline BT-0489-- Galerucinae sp. 67 \& Network228 \& $3 \mathrm{Cl129}$ \& $5 \mathrm{Cl127}$ \& $75 \mathrm{Cl126}$ \& GMYC085 \& PTP216 \& H348 <br>
\hline BT-0490-Hispinae sp. 5 \& Network 246 \& $3 \mathrm{3Cl130}$ \& ${ }_{5}^{5 \mathrm{Cl128}}$ \& $75 \mathrm{Cl127}$ \& GMYC287 \& PTP034 \& H371 <br>
\hline BT-0491-Alticinae sp. 157 \& Network 135 \& $3 \mathrm{Cl131}$ \& $5 \mathrm{Cl129}$ \& $75 \mathrm{Cl128}$ \& GMYC169 \& PTP190 \& H209 <br>
\hline BT-0492-Galerucinae sp. 61 \& Network93 \& $3 \mathrm{Cl041}$ \& $5 \mathrm{Cl042}$ \& $75 \mathrm{Cl042}$ \& GMYC131 \& PTP279 \& H149 <br>
\hline $\mathrm{BT}^{-} 0494{ }^{-}$Alticinae sp. 250 \& Network74 \& $3 \mathrm{Cl132}$ \& $5 \mathrm{Cl130}$ \& $75 \mathrm{Cl129}$ \& GMYC039 \& PTP146 \& H115 <br>
\hline BT-0496-Alticinae sp. 112 \& Network220 \& $3 \mathrm{Cl133}$ \& $5 \mathrm{Cl131}$ \& $75 \mathrm{Cl130}$ \& GMYC071 \& PTP214 \& H336 <br>
\hline BT-0499-Alticinae sp. 44 \& Network42 \& $3 \mathrm{Cl024}$ \& ${ }_{5} \mathrm{Cl} 1025$ \& $75 \mathrm{Cl025}$ \& GMYC214 \& PTP102 \& H060 <br>
\hline BT-0501-Galerucinae sp. 66 \& Network223 \& $3 \mathrm{Cl059}$ \& 5 Cl 060 \& $75 \mathrm{Cl060}$ \& GMYC079 \& PTP 222 \& H341 <br>
\hline BT-0502-Eumolpinae sp. 42 \& Network257 \& $3 \mathrm{Cl003}$ \& $5 \mathrm{Cl003}$ \& $75 \mathrm{Cl003}$ \& GMYC001 \& PTP003 \& H388 <br>
\hline BT-0503-Alticinae sp. 111 \& Network137 \& $3 \mathrm{Cl134}$ \& $5 \mathrm{Cl132}$ \& $75 \mathrm{Cl131}$ \& GMYC192 \& PTP213 \& H212 <br>
\hline BT-0505-Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& ${ }_{5}^{5 \mathrm{Cl} 1045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline BT-0506-Alticinae sp. 92 \& Network200 \& $3 \mathrm{Cl135}$ \& $5 \mathrm{Cl133}$ \& $75 \mathrm{Cl132}$ \& GMYC191 \& PTP208 \& H309 <br>
\hline $\mathrm{BT}^{-} 0508{ }^{-}$Galerucinae sp. 53 \& Network205 \& $3 \mathrm{Cl029}$ \& 5 Cl 1030 \& $75 \mathrm{Cl030}$ \& GMYC111 \& PTP239 \& H317 <br>
\hline $\mathrm{BT}^{-} 0510{ }^{-}$Cassidinae sp. 4 \& Network253 \& $3 \mathrm{Cl038}$ \& $5 \mathrm{Cl039}$ \& $75 \mathrm{Cl039}$ \& GMYC284 \& PTP053 \& H379 <br>
\hline BT-0511-Cassidinae sp. 8 \& Network241 \& $3 \mathrm{Cl136}$ \& $5 \mathrm{Cl134}$ \& $75 \mathrm{Cl133}$ \& GMYC286 \& PTP032 \& H363 <br>
\hline BT-0512-Hispinae sp. 6 \& Network251 \& $3 \mathrm{Cl137}$ \& $5 \mathrm{Cl135}$ \& $75 \mathrm{Cl134}$ \& GMYC269 \& PTP048 \& H376 <br>
\hline BT-0514-Eumolpinae sp. 074 \& Network244 \& $3 \mathrm{Cl1062}$ \& $5 \mathrm{Cl063}$ \& $75 \mathrm{Cl063}$ \& GMYC031 \& PTP002 \& H368 <br>
\hline $\mathrm{BT}^{-} 0516{ }^{-}$Alticinae sp. 126 \& Network220 \& $3 \mathrm{Cl133}$ \& $5 \mathrm{Cl131}$ \& $75 \mathrm{Cl130}$ \& GMYC071 \& PTP214 \& H336 <br>
\hline BT-0517-Alticinae sp. 104 \& Network17 \& $3 \mathrm{Cl101}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H027 <br>
\hline BT-0518-Alticinae sp. 85 \& Network47 \& $3 \mathrm{Cl138}$ \& ${ }_{5} \mathrm{Cl1136}$ \& $75 \mathrm{Cl135}$ \& GMYC217 \& PTP104 \& H071 <br>
\hline $\mathrm{BT}^{-}$-0519-Alticinae sp. 68 \& Network84 \& $3 \mathrm{Cl139}$ \& $5 \mathrm{Cl137}$ \& $75 \mathrm{Cl136}$ \& GMYC052 \& PTP162 \& H127 <br>
\hline $\mathrm{BT}^{-} 0520-$ Alticinae sp. 159 \& Network133 \& $3 \mathrm{Cl140}$ \& $5 \mathrm{Cl138}$ \& $75 \mathrm{Cl137}$ \& GMYC164 \& PTP180 \& H207 <br>
\hline $\mathrm{BT}^{-} 0524{ }^{-}$Eumolpinae sp. 39 \& Network268 \& $3 \mathrm{Cl141}$ \& ${ }_{5} \mathrm{Cl1139}$ \& $75 \mathrm{Cl099}$ \& GMYC026 \& PTP029 \& H399 <br>
\hline BT-0525-Hispinae sp. 023 \& Network248 \& $3 \mathrm{Cl142}$ \& $5 \mathrm{Cl140}$ \& $75 \mathrm{Cl067}$ \& GMYC271 \& PTP049 \& H373 <br>
\hline $\mathrm{BT}^{-} 0526^{-}$Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{Cl100}$ \& $5 \mathrm{Cl100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline $\mathrm{BT}^{-} 0527{ }^{-}$Galerucinae sp. 36 \& Network208 \& $3 \mathrm{Cl143}$ \& $5 \mathrm{Cl141}$ \& $75 \mathrm{Cl138}$ \& GMYC146 \& PTP254 \& H320 <br>
\hline BT-0528-Alticinae sp. 150 \& Network191 \& $3 \mathrm{Cl115}$ \& ${ }_{5}^{5 C 1011}$ \& $75 \mathrm{Cl1011}$ \& GMYC088 \& PTP203 \& H290 <br>
\hline BT-0529-Alticinae sp. 113 \& Network204 \& $3 \mathrm{Cl144}$ \& ${ }_{5}^{5 \mathrm{Cl142}}$ \& $75 \mathrm{Cl139}$ \& GMYC064 \& PTP140 \& H316 <br>
\hline $\mathrm{BT}^{-} 0530{ }^{-}$Galerucinae sp. 31 \& Network203 \& $3 \mathrm{Cl061}$ \& ${ }_{5} \mathrm{Cl} 1062$ \& $75 \mathrm{Cl062}$ \& GMYC084 \& PTP217 \& H312 <br>
\hline $\mathrm{BT}^{-} 0531{ }^{-}$Galerucinae sp. 62 \& Network205 \& $3 \mathrm{Cl029}$ \& $5 \mathrm{Cl030}$ \& $75 \mathrm{Cl030}$ \& GMYC111 \& PTP239 \& H317 <br>
\hline $\mathrm{BT}^{-} 0532-$ Galerucinae sp. 75 \& Network227 \& $3 \mathrm{Cl145}$ \& ${ }_{5}^{5 \mathrm{Cl143}}$ \& $75 \mathrm{Cl110}$ \& GMYC082 \& PTP219 \& H346 <br>
\hline BT-0533-Alticinae sp. 97 \& Network13 \& $3 \mathrm{Cl035}$ \& $5 \mathrm{Cl036}$ \& $75 \mathrm{Cl036}$ \& GMYC258 \& PTP065 \& H017 <br>
\hline BT-0535-Alticinae sp. 97 \& Network13 \& $3 \mathrm{Cl035}$ \& 5 C 1036 \& $75 \mathrm{Cl036}$ \& GMYC258 \& PTP065 \& H019 <br>
\hline BT-0537-Alticinae sp. 142 \& Network 132 \& $3 \mathrm{Cl081}$ \& $5 \mathrm{Cl081}$ \& $75 \mathrm{Cl080}$ \& GMYC167 \& PTP189 \& H205 <br>
\hline BT-0538-Alticinae sp. 238 \& Network176 \& ${ }_{3}{ }^{\text {Cl146 }}$ \& ${ }_{5}^{5 \mathrm{Cl144}}$ \& $75 \mathrm{Cl140}$ \& GMYC189 \& PTP210 \& H273 <br>
\hline BT-0539-Alticinae sp. 13 \& Network175 \& $3 \mathrm{Cl147}$ \& ${ }_{5} \mathrm{Cl156}$ \& $75 \mathrm{Cl141}$ \& GMYC066 \& PTP090 \& H271 <br>
\hline $\mathrm{BT}^{-} 0540$ - Galerucinae sp. 64 \& Network222 \& $3 \mathrm{Cl148}$ \& $5 \mathrm{Cl145}$ \& $75 \mathrm{Cl060}$ \& GMYC080 \& PTP221 \& H339 <br>
\hline $\mathrm{BT}^{-} 0544{ }^{-}$Cassidinae sp. 12 \& Network243 \& $3 \mathrm{Cl149}$ \& ${ }_{5} \mathrm{Cl146}$ \& $75 \mathrm{Cl142}$ \& GMYC278 \& PTP044 \& H366 <br>
\hline $\mathrm{BT}^{-} 0546^{-}$Alticinae sp. 83 \& Network22 \& $3 \mathrm{Cl083}$ \& ${ }_{5} \mathrm{Cl} 1083$ \& $75 \mathrm{Cl082}$ \& GMYC230 \& PTP072 \& H034 <br>
\hline BT-0547-Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& $5 \mathrm{Cl045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline BT-0549-Alticinae sp. 150 \& Network191 \& $3 \mathrm{Cl115}$ \& $5 \mathrm{Cl011}$ \& $75 \mathrm{Cl011}$ \& GMYC088 \& PTP203 \& H292 <br>
\hline $\mathrm{BT}^{-} 0550-$ Alticinae sp. 265 \& Network60 \& $3 \mathrm{Cl150}$ \& $5 \mathrm{Cl147}$ \& $75 \mathrm{Cl143}$ \& GMYC068 \& PTP142 \& H096 <br>
\hline $\mathrm{BT}^{-}$-0551-Galerucinae sp. ${ }^{64}$ \& Network222 \& $3 \mathrm{Cl148}$ \& ${ }_{5}^{5 \mathrm{Cl145}}$ \& $75 \mathrm{Cl060}$ \& GMYC080 \& PTP221 \& H339 <br>
\hline $\mathrm{BT}^{-} 0552^{-}$Alticinae sp. 117 \& Network87 \& $3 \mathrm{Cl032}$ \& $5 \mathrm{Cl033}$ \& $75 \mathrm{Cl033}$ \& GMYC048 \& PTP166 \& H133 <br>
\hline $\mathrm{BT}^{-} 05533^{-}$Eumolpinae sp. 42 \& Network257 \& $3 \mathrm{Cl003}$ \& $5 \mathrm{Cl003}$ \& $75 \mathrm{Cl003}$ \& GMYC001 \& PTP003 \& H388 <br>
\hline $\mathrm{BT}^{-} 0554{ }^{-}$Galerucinae sp. 71 \& Network233 \& $3 \mathrm{Cl151}$ \& $5 \mathrm{Cl148}$ \& $75 \mathrm{Cl053}$ \& GMYC075 \& PTP 227 \& H354 <br>
\hline BT-0555-Alticinae sp. 86 \& Network48 \& $3 \mathrm{3C1074}$ \& ${ }_{5}^{5 C 1075}$ \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& H078 <br>
\hline $\mathrm{BT}^{-}$-0556-Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& $5 \mathrm{Cl045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline BT-0557-Alticinae sp. 181 \& Network220 \& $3 \mathrm{Cl133}$ \& $5 \mathrm{Cl131}$ \& $75 \mathrm{Cl130}$ \& GMYC071 \& PTP214 \& H336 <br>
\hline BT-0558-Alticinae sp. 149 \& Network191 \& $3 \mathrm{Cl115}$ \& $5 \mathrm{Cl011}$ \& $75 \mathrm{Cl011}$ \& GMYC088 \& PTP203 \& H293 <br>
\hline BT-0559-Eumolpinae sp. 42 \& Network257 \& $3 \mathrm{Cl003}$ \& ${ }_{5} \mathrm{Cl} 1003$ \& $75 \mathrm{Cl003}$ \& GMYC001 \& PTP003 \& H388 <br>
\hline BT-0560-Galerucinae sp. 64 \& Network222 \& $3 \mathrm{Cl148}$ \& $5 \mathrm{Cl145}$ \& $75 \mathrm{Cl060}$ \& GMYC080 \& PTP221 \& H339 <br>
\hline BT-0561-Galerucinae sp. 66 \& Network224 \& $3 \mathrm{Cl152}$ \& $5 \mathrm{Cl149}$ \& $75 \mathrm{Cl060}$ \& GMYC077 \& PTP224 \& H343 <br>
\hline BT-0565-Alticinae sp. 150 \& Network191 \& $3 \mathrm{Cl115}$ \& $5 \mathrm{Cl011}$ \& $75 \mathrm{Cl011}$ \& GMYC088 \& PTP203 \& H289 <br>
\hline BT-0566-Hispinae sp. 6 \& Network251 \& $3 \mathrm{Cl137}$ \& 5 C 1135 \& $75 \mathrm{Cl134}$ \& GMYC269 \& PTP048 \& H377 <br>
\hline BT-0567-Alticinae sp. 104 \& Network17 \& $3 \mathrm{Cl101}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H027 <br>
\hline BT-0574-Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{Cl100}$ \& $5 \mathrm{Cl100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline BT-0575-Alticinae sp. 140 \& Network122 \& $3 \mathrm{Cl153}$ \& $5 \mathrm{Cl150}$ \& $75 \mathrm{Cl144}$ \& GMYC157 \& PTP187 \& H191 <br>
\hline BT-0577- ${ }^{-}$Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{Cl100}$ \& ${ }_{5} \mathrm{Cl1100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline BT-0579-Alticinae sp. 104 \& Network17 \& $3 \mathrm{Cl101}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H027 <br>
\hline BT-0587-Alticinae sp. 6 \& Network128 \& $3 \mathrm{Cl154}$ \& $5 \mathrm{Cl151}$ \& $75 \mathrm{Cl145}$ \& GMYC153 \& PTP099 \& H201 <br>
\hline BT-0588-Galerucinae sp. 69 \& Network219 \& $3 \mathrm{Cl057}$ \& $5 \mathrm{Cl058}$ \& $75 \mathrm{Cl058}$ \& GMYC086 \& PTP215 \& H335 <br>
\hline $\mathrm{BT}^{-} 05899^{-}$Eumolpinae sp. 17 \& Network277 \& $3 \mathrm{Cl079}$ \& $5 \mathrm{Cl079}$ \& $75 \mathrm{Cl078}$ \& GMYC018 \& PTP027 \& H410 <br>
\hline BT-0590-Alticinae sp. 140 \& Network 122 \& $3 \mathrm{Cl153}$ \& $5 \mathrm{Cl150}$ \& $75 \mathrm{Cl144}$ \& GMYC157 \& PTP187 \& H191 <br>
\hline BT-0592-Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{Cl100}$ \& $5 \mathrm{Cl100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline $\mathrm{BT}^{-0594-A l t i c i n a e ~ s p . ~} 118$ \& Network169 \& $3 \mathrm{3Cl155}$ \& ${ }_{5}^{5 C 1152}$ \& $75 \mathrm{Cl054}$ \& GMYC188 \& PTP109 \& H260 <br>
\hline $\mathrm{BT}^{-} 0596$ - Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{3Cl100}$ \& $5 \mathrm{Cl1100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline BT-0597-Alticinae sp. 104 \& Network17 \& $3 \mathrm{Cl1101}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H027 <br>
\hline BT-0604-Hispinae sp. 5 \& Network246 \& $3 \mathrm{Cl130}$ \& ${ }_{5} \mathrm{Cl128}$ \& $75 \mathrm{Cl127}$ \& GMYC287 \& PTP034 \& H371 <br>
\hline $\mathrm{BT}^{-} 0605^{-}$Alticinae sp. 87 \& Network88 \& $3 \mathrm{Cl028}$ \& ${ }_{5}^{5 C 1029}$ \& $75 \mathrm{Cl029}$ \& GMYC061 \& PTP164 \& H136 <br>
\hline $\mathrm{BT}^{-} 0606^{-}$Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{Cl100}$ \& $5 \mathrm{Cl100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline $\mathrm{BT}^{-0628}$-Cassidinae sp. 12 \& Network243 \& $3 \mathrm{3C149}$ \& ${ }_{5}^{5 C 1146}$ \& $75 \mathrm{Cl142}$ \& GMYC278 \& PTP044 \& H366 <br>
\hline $\mathrm{BT}^{-} 0630^{-}$Alticinae sp. 36 \& Network142 \& $3 \mathrm{Cl156}$ \& $5 \mathrm{Cl153}$ \& $75 \mathrm{Cl146}$ \& GMYC035 \& PTP088 \& H220 <br>
\hline $\mathrm{BT}^{-} 0631^{-}$Alticinae sp. 64 \& Network 75 \& ${ }_{3}^{3 \mathrm{Cl157}}$ \& ${ }_{5}^{5 \mathrm{Cl1} 154}$ \& $75 \mathrm{Cl101}$ \& GMYC042 \& PTP148 \& H116 <br>
\hline $\mathrm{BT}^{-} 0632-$ Alticinae sp. 86 \& Network48 \& $3 \mathrm{3C1074}$ \& ${ }_{5}^{5 C 1075}$ \& $75 \mathrm{Cl174}$ \& GMYC216 \& PTP105 \& H075 <br>
\hline $\mathrm{BT}^{-} 0633$-Alticinae sp. 85 \& Network48 \& $3 \mathrm{Cl074}$ \& ${ }_{5} \mathrm{Cl} 1075$ \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& H078 <br>
\hline BT-0634-Alticinae sp. 66 \& Network85 \& ${ }_{3}^{3 \mathrm{Cl044}}$ \& ${ }_{5}^{5 \mathrm{ClO} 1045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline BT-0635-Alticinae sp. 96 \& Network85 \& $3 \mathrm{3Cl044}$ \& ${ }_{5}^{5 \mathrm{Cl} 1045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline BT-0640-Alticinae sp. ${ }^{\text {- }}$ - ${ }^{\text {a }}$ \& $\xrightarrow{\text { Network5 }}$ Network 174 \& $3 \mathrm{Cl1158}$
$3 \mathrm{Cl159}$
3 \& ${ }_{5}^{5 \mathrm{Cl} 1155}$ \& $75 \mathrm{Cl147}$
$75 \mathrm{Cl141}$ \& GMYC251 \& PTP067
PTP089 \& H095

$H 269$ <br>
\hline ${ }^{\text {BT }}$ - $0641-$ Alticinae sp. 13.12 \& Network174 \& $3 \mathrm{Cl159}$
$3 \mathrm{Cl003}$ \& ${ }_{5}^{5 \mathrm{Cl} 11003}$ \& $75 \mathrm{Cl141}$
$75 \mathrm{Cl003}$ \& GMYC067 \& PTP089
PTP003 \& H269
H385 <br>
\hline BT ${ }^{-0644}{ }^{-}$Galerucinae sp. 66 \& Network223 \& $3 \mathrm{Cl059}$ \& ${ }_{5}$ C1060 \& $75 \mathrm{Cl060}$ \& GMYC079 \& PTP222 \& H342 <br>
\hline $\mathrm{BT}^{-0645}{ }^{-}$Galerucinae sp. 11 \& Network113 \& $3 \mathrm{3Cl160}$ \& ${ }_{5}^{5 \mathrm{Cl1157}}$ \& $75 \mathrm{Cl148}$ \& GMYC140 \& PTP260 \& H178 <br>
\hline BT-0646-Alticinae sp. 71 \& Network44 \& ${ }_{3}^{3 \mathrm{Cl1}} \mathbf{3} 161$ \& ${ }_{5}^{5 \mathrm{Cl1158}}$ \& $75 \mathrm{Cl149}$ \& GMYC215 \& PTP123 \& H064 <br>
\hline  \& Network166

Network122 \& | $3 \mathrm{Cl1162}$ |
| :--- |
| $3 \mathrm{Cl153}$ | \& ${ }_{5}^{5 \mathrm{Cl1159}}$ \& $75 \mathrm{Cl1150}$

$75 \mathrm{Cl144}$ \& GMYC109 \& PTP241 \& H257
H 190 <br>
\hline  \& Network122 \& $3 \mathrm{Cl153}$
$3 \mathrm{Cl100}$ \& $5 \mathrm{Cl150}$
$5 \mathrm{Cl100}$ \& $75 \mathrm{Cl144}$
$75 \mathrm{Cl099}$ \& GMYC157
GMYC025 \& PTP187
PTP028 \& H190

$H 398$ <br>
\hline BT-0652-Alticinae sp. 104 \& Network17 \& ${ }_{3}{ }^{\text {Cl1 }}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H026 <br>
\hline BT-0655-Alticinae sp. 257 \& Network73 \& $3 \mathrm{Cl163}$ \& $5 \mathrm{Cl160}$ \& $75 \mathrm{Cl151}$ \& GMYC038 \& PTP151 \& H114 <br>
\hline BT ${ }^{-} 0656^{-}$Alticinae sp. 51 \& Network31 \& $3 \mathrm{Cl164}$ \& $5 \mathrm{Cl161}$ \& $75 \mathrm{Cl152}$ \& GMYC207 \& PTP135 \& H045 <br>
\hline $\mathrm{BT}^{-} 0657^{-}$Eumolpinae sp. 39 \& Network267 \& $3 \mathrm{3C1100}$ \& ${ }_{5}^{5 \mathrm{Cl1100}}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& H398 <br>
\hline BT-0660-Alticinae sp. 104 \& Network17 \& $3 \mathrm{3C1101}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H027 <br>
\hline $\mathrm{BT}^{-} 06622^{-}$Alticinae sp. 126 \& Network14 \& $3 \mathrm{3C1165}$ \& ${ }_{5}^{5 \mathrm{Cl162}}$ \& $75 \mathrm{Cl153}$ \& GMYC246 \& PTP093 \& H022 <br>
\hline $\mathrm{BT}^{-} 0663$ - Alticinae sp. 150 \& Network191 \& ${ }_{3}^{3 \mathrm{Cl115}}$ \& ${ }_{5}^{5 \mathrm{ClO11}}$ \& $75 \mathrm{Cl011}$ \& GMYC088 \& PTP203 \& H289 <br>
\hline  \& Network191 \& $3 \mathrm{Cl115}$
$3 \mathrm{Cl115}$
3 \& ${ }_{5}^{5 \mathrm{Cl1011}} 5$ \& $75 \mathrm{Cl011}$
$75 \mathrm{Cl011}$ \& GMYC088 \& PTP203 \& H 295
H 292 <br>
\hline $\mathrm{BT}^{-}{ }_{0675}{ }^{\text {- Alticinae sp. }} 8$ \& Network189 \& ${ }_{3}{ }^{\text {Cl1 }} 166$ \& ${ }_{5} \mathrm{Cl163}$ \& $75 \mathrm{Cl011}$ \& GMYC090 \& PTP201 \& H287 <br>
\hline BT-0676-Alticinae sp. 64 \& Network79 \& $3 \mathrm{Cl045}$ \& ${ }_{5}^{5 C 1046}$ \& $75 \mathrm{Cl046}$ \& GMYC037 \& PTP147 \& H122 <br>
\hline $\mathrm{BT}^{-0677}$ - Eumolpinae sp. 39 \& Network267 \& ${ }_{3}^{3 \mathrm{Cl1100}} 3$ \& $5 \mathrm{Cl1100}$ \& $75 \mathrm{Cl099}$ \& GMYC025 \& PTP028 \& $H 398$
$H 185$ <br>
\hline $\mathrm{BT}^{-} 0680$ - Galerucinae sp. ${ }^{76}$ \& Network118 \& $3 \mathrm{3Cl008}$ \& $5 \mathrm{Cl008}$ \& ${ }_{75} 75 \mathrm{Cl008}$ \& GMYC113 \& PTP288 \& H185 <br>
\hline ${ }_{\text {BT }}{ }^{\text {BT }}{ }_{0686}{ }^{0683}$-Alticinae sp. 115 \& Network10 ${ }^{\text {Network270 }}$ \& $3 \mathrm{Cl030}$
$3 \mathrm{Cl007}$ \& $5 \mathrm{Cl031}$
$5 \mathrm{Cl007}$ \& $75 \mathrm{Cl031}$
$75 \mathrm{Cl007}$ \& GMYC253 \& PTP060
PTP007 \& H013
H 402 <br>
\hline $\mathrm{BT}^{-} 0687^{-}$Alticinae sp. 87 \& Network88 \& $3 \mathrm{Cl028}$ \& ${ }_{5} \mathrm{Cl029}$ \& $75 \mathrm{Cl029}$ \& GMYC061 \& PTP164 \& H136 <br>
\hline $\mathrm{BT}^{-0688}$ - Criocerinae sp. 1 \& Network237 \& $3 \mathrm{Cl071}$ \& ${ }_{5}^{5 C 1072}$ \& $75 \mathrm{Cl071}$ \& GMYC264 \& PTP057 \& H359 <br>
\hline $\mathrm{BT}^{-} 0690^{-}$Alticinae sp. 124 \& Network87 \& $3 \mathrm{Cl032}$ \& $5 \mathrm{Cl033}$ \& $75 \mathrm{Cl033}$ \& GMYC048 \& PTP166 \& H134 <br>
\hline $\mathrm{BT}^{-}$-0691-Galerucinae sp. 31 \& Network203 \& $3 \mathrm{Cl061}$ \& ${ }_{5}^{5 C 1062}$ \& $75 \mathrm{Cl062}$ \& GMYC084 \& PTP217 \& H314 <br>
\hline $\mathrm{BT}^{-} 0692^{-}$Alticinae sp. 14 \& Network131 \& $3 \mathrm{3C1167}$ \& ${ }_{5}^{5 \mathrm{Cl164}}$ \& $75 \mathrm{Cl154}$ \& GMYC162 \& PTP188 \& ${ }^{\mathrm{H} 204}$ <br>
\hline $\mathrm{BT}^{-} 0698{ }^{-}$Alticinae sp. ${ }^{13}$ \& Network174 \& $3 \mathrm{3C159}$ \& $5 \mathrm{Cl156}$ \& $75 \mathrm{Cl141}$ \& GMYC067 \& PTP089 \& H270 <br>
\hline $\mathrm{BT}^{-} 0699^{-}$Alticinae sp. 83 \& Network22 \& $3 \mathrm{3Cl083}$ \& ${ }_{5}^{5 C 1083}$ \& $75 \mathrm{Cl082}$ \& GMYC230 \& PTP072 \& H034 <br>
\hline BT-0705-Galerucinae sp. 8 \& Network107 \& $3 \mathrm{Cl168}$ \& $5 \mathrm{Cl165}$ \& $75 \mathrm{Cl155}$ \& GMYC136 \& PTP266 \& H166 <br>
\hline  \& $\xrightarrow{\text { Network }}$ Network175 \& ${ }_{3}^{3 \mathrm{Cl14}} \mathbf{3} 148$ \& ${ }_{5}^{5 \mathrm{Cl} 1145}$ \& $75 \mathrm{Cl060}$
$75 \mathrm{Cl141}$ \& GMYC080 \& PTP221 \& H339

$H 272$ <br>
\hline  \& Networkitis \& ${ }_{3}^{3 C 1147}$ \& ${ }_{5}^{5 C 1166}$ \& ${ }_{75 \mathrm{Cl156}}$ \& GMYC072 \& PTP090 \& H237 <br>
\hline $\mathrm{BT}^{-} 0713{ }^{-}$Galerucinae sp. 73 \& Network221 \& $3 \mathrm{Cl169}$ \& $5 \mathrm{Cl166}$ \& $75 \mathrm{Cl156}$ \& GMYC072 \& PTP220 \& H337 <br>
\hline BT-0715-Galerucinae sp. 76 \& Network118 \& $3 \mathrm{Cl008}$ \& 5 Cl 008 \& $75 \mathrm{Cl008}$ \& GMYC113 \& PTP288 \& H185 <br>
\hline $\mathrm{BT}^{-} 0716^{-}$Galerucinae sp. 11 \& Network103 \& $3 \mathrm{Cl015}$ \& $5 \mathrm{Cl016}$ \& $75 \mathrm{Cl016}$ \& GMYC143 \& PTP258 \& H161 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BT-0717-Galerucinae sp. 002 \& Network114 \& \({ }_{3}^{3 \mathrm{Cl17}} \mathbf{}\) \& \({ }^{5 \mathrm{Cl} 1167}\) \& \({ }^{75 \mathrm{Cl1157}}\) \& GMYC141 \& PTP262 \& \(\mathrm{H}_{179}\) \\
\hline \({ }^{\text {BT }}\)-0719-Eumolpinae sp. \({ }^{\text {a }}\) - \({ }^{\text {a }}\) \& Network234 \& \({ }_{\substack{3 C 1086 \\ 3 \mathrm{ClO} \\ \\ \text { cli }}}\) \& - 5 5C1086 \& \(75 \mathrm{Cl085}\)
\(75 \mathrm{Cl077}\) \& GMYC020 \& \({ }^{\text {PTP009 }}\) \& \\
\hline \(\mathrm{BT}^{-0722-}{ }^{\text {- }}\) Cassidinae sp. \({ }^{\text {a }}{ }^{20}\) \& Network235 \& \({ }_{3 C 1171}\) \& \({ }_{5} \mathrm{Cl1168}\) \& \(75 \mathrm{Cl158}\) \& GMYC275 \& PTP041 \& H356 \\
\hline \(\mathrm{BT}^{-} 0725^{-}\)Alticinae sp. 243 \& Network53 \& \({ }_{3 C 1006}\) \& \(5 \mathrm{Cl1006}\) \& 75 Cl 1006 \& GMYC221 \& PTP116 \& H087 \\
\hline BT-0727-Galerucinae sp. \({ }^{73}\) \& Network221 \& \(3 \mathrm{Cl169}\) \& \(5 \mathrm{Cl1166}\) \& \(75 \mathrm{Cl156}\) \& GMYC072 \& PTP220 \& H338 \\
\hline BT-0728-Galerucinae sp. 64 \& Network222 \& \(3 \mathrm{Cl148}\) \& \(5 \mathrm{Cl145}\) \& 75 Cl 1060 \& GMYC080 \& PTP221 \& H339 \\
\hline BT-0729-Galerucinae sp. 15 \& Network 202 \& \({ }_{3} \mathrm{Cl1120}\) \& \({ }_{5}^{5 C 1118}\) \& \({ }_{75 \mathrm{Cl117}}\) \& GMYC105 \& PTP234 \& H311 \\
\hline \(\mathrm{BT}^{-} 0730-\) Alticinae sp. 136 \& Network 165 \& \({ }_{3 C 1172}\) \& \(5 \mathrm{Cl1169}\) \& \(75 \mathrm{Cl159}\) \& GMYC159 \& PTP185 \& H255 \\
\hline \(\mathrm{BT}^{\text {BT-0732-Galerucinae sp. }} 4\) \& Network 106 \& \({ }_{3}{ }^{\text {Cl17 }} 1\) \& \({ }_{5}^{5 \mathrm{Cl1170}}\) \& \({ }_{75 \mathrm{Cl160}}\) \& GMYC145 \& PTP257 \& H165 \\
\hline BT-0733-Galerucinae sp. 097 \& Network 108 \& \({ }_{3}^{3 \mathrm{Cl1174}}\) \& \({ }_{5}^{5 \mathrm{Cl1171}}\) \& \(75 \mathrm{Cl020}\)
\(75 \mathrm{Cl018}\) \& GMYC135 \& \({ }^{\text {PTP268 }}\) \& H167 \\
\hline BT-0734-Galerucinae sp. 39 \& Network97 \& \({ }_{3}^{3 \mathrm{3Cl1017}}\) \& \({ }_{\substack{5 \\ 5 \\ 5 \\ \text { Cl000 }}}\) \& \begin{tabular}{l}
\(75 \mathrm{Cl018}\) \\
\(75 \mathrm{Cl005}\) \\
\hline
\end{tabular} \& GMYC118 \& \({ }^{\text {PTP271 }}\) \& H153 \\
\hline BT-0735-Galerucinae sp. \({ }^{38}\) \& Network99 \& \({ }_{\substack{3 C 1175}}^{3 \mathrm{Cl176}}\) \& \({ }_{5}^{5 \mathrm{Cl1005}}\) \& \(75 \mathrm{Cl005}\)
\(75 \mathrm{Cl161}\) \& GMYC116 \& \({ }_{\text {PTP }}{ }^{\text {PTP }}\) 273 \& H155
H 24 \\
\hline BT-0738-Eumolpinae sp. \({ }^{4}\) \& Network273 \& \({ }_{3 C 1177}\) \& 5 C 1173 \& \(75 \mathrm{Cl162}\) \& GMYC024 \& PTP005 \& H405 \\
\hline \(\mathrm{BT}^{-0739-G a l e r u c i n a e ~ s p . ~} 18\) \& Network96 \& \({ }_{3 C 1178}\) \& \(5 \mathrm{Cl174}\) \& \(75 \mathrm{Cl163}\) \& GMYC119 \& PTP270 \& H152 \\
\hline BT-0740-Galerucinae sp. 76 \& Network118 \& \(3 \mathrm{Cl1008}\) \& \({ }_{5} \mathrm{Cl1008}\) \& \(75 \mathrm{Cl008}\) \& GMYC113 \& PTP288 \& H185 \\
\hline \(\mathrm{BT}^{-0741-G a l e r u c i n a e ~ s p . ~} 002\) \& Network 112 \& \({ }_{3}^{3 C 1011}\) \& \({ }_{5}^{5 \mathrm{ClO} 12}\) \& \({ }^{75 \mathrm{Cl012}}\) \& GMYC138 \& \({ }^{\text {PTP } 264}\) \& H175 \\
\hline BT-0742-Galerucinae sp. 19 \& Network 120 \& \({ }_{3}^{3 \mathrm{Cl1179}}\) \& \({ }_{5}^{5 \mathrm{Cl1175}}\) \& 75C1164 \& GMYC112 \& PTP285 \& H187 \\
\hline  \& Network 102 \& -3C1180 \&  \& \(75 \mathrm{Cl165}\)
\(75 \mathrm{Cl020}\) \& GMYC132 \& \({ }^{\text {PTP } 255}\) \& H159 \\
\hline  \& Network \({ }^{\text {Network99 }}\) \& \({ }_{\substack{3 C 1175}}^{3 \mathrm{ClO19}}\) \& \({ }_{5}^{5 \mathrm{Cl} 1005}\) \& \(75 \mathrm{ClO20}\)
75 Cl 005 \& GMYC134 \& \({ }_{\text {PTP267 }}\) \& H171 \\
\hline \(\mathrm{BT}^{\text {BT-0749-Galerucinae sp. } 39}\) \& Network97 \& \({ }_{3 \mathrm{Cl1017}}\) \& \({ }_{5}{ }_{5} \mathrm{Cl1018}\) \& \(75 \mathrm{Cl018}\) \& GMYC118 \& PTP271 \& H153 \\
\hline \(\mathrm{BT}^{-} 0750-\) Cassidinae sp. 5 \& Network242 \& \(3 \mathrm{Cl1058}\) \& \(5 \mathrm{C1059}\) \& \(75 \mathrm{Cl059}\) \& GMYC277 \& PTP043 \& H365 \\
\hline BT-0752-Alticinae sp. 39 \& Network163 \& \({ }_{3 C 1181}\) \& \(5 \mathrm{Cl177}\) \& \(75 \mathrm{Cl166}\) \& GMYC094 \& PTP198 \& H253 \\
\hline \(\mathrm{BT}^{-} \mathbf{0 7 5 3 -}{ }^{-}\)Alticinae sp. 10 \& Network 195 \& \({ }_{3}^{3 \mathrm{ClO21}}\) \& \({ }_{5}^{5 \mathrm{Cl} 1022}\) \& \({ }^{75 \mathrm{ClO22}}\) \& GMYC097 \& PTP195 \& H304 \\
\hline BT-0755-Galerucinae sp. 36 \& Network207 \& \({ }_{3 C 1182}\) \& \({ }_{5} \mathrm{Cl1178}\) \& \(75 \mathrm{Cl138}\) \& GMYC147 \& PTP253 \& H319 \\
\hline BT-0756-Eumolpinae sp. 22 \& Network269 \& \({ }_{3}{ }^{\text {C1183 }}\) \& \({ }_{5} \mathrm{Cl1179}\) \& \({ }_{75 \mathrm{Cl167}}\) \& GMYC023 \& \({ }^{\text {PTP }} 006\) \& H400 \\
\hline BT-0766- Alticinae sp. 96 \& Network85 \& \(3 \mathrm{Cl1044}\) \& \({ }_{5} \mathrm{Cl1045}\) \& \({ }_{75 \mathrm{Cl} 1045}\) \& GMYC051 \& PTP169 \& H131 \\
\hline \(\mathrm{BT}^{-}\)-777--Eumolpinae sp. 16 \& Network286 \& \({ }_{3} \mathrm{Cl184}\) \& \({ }_{5}^{5 \mathrm{Cl1} 180}\) \& \({ }_{75 \mathrm{Cl168}}\) \& GMYC002 \& PTP012 \& H422 \\
\hline BT-0779-Alticinae sp. \(115{ }^{\text {a }}\) \& Network \({ }^{\text {Network289 }}\) \& \({ }_{\substack{3 \mathrm{ClO} \\ 3 \mathrm{Cl0} \\ \\ \text { clo }}}\) \&  \& \begin{tabular}{l}
\(75 \mathrm{Cl031}\) \\
\(75 \mathrm{Cl077}\) \\
\\
\hline
\end{tabular} \& GMYC253 \& \({ }^{\text {PTP }}\) PTP060 010 \& \({ }^{\text {H010 }}\) \\
\hline \(\mathrm{BT}^{-0782-G a l e r u c i n a e ~ s p . ~} 34\) \& Network 183 \& \({ }_{3 \mathrm{Cl1037}}\) \& \({ }_{5} \mathrm{Cl} 1038\) \& \(75 \mathrm{Cl038}\) \& GMYC103 \& PTP232 \& \({ }_{\text {H280 }}\) \\
\hline \(\mathrm{BT}^{-} 0788^{-}\)Alticinae sp. 6 \& Network125 \& \(3 \mathrm{Cl185}\) \& \(5 \mathrm{Cl1181}\) \& \(75 \mathrm{Cl169}\) \& GMYC154 \& PTP100 \& H198 \\
\hline BT-0789-Alticinae sp. 14 \& Network 131 \& \({ }_{3 C 1167}\) \& \(5 \mathrm{Cl1164}\) \& \(75 \mathrm{Cl154}\) \& GMYC162 \& PTP188 \& H204 \\
\hline \(\mathrm{BT}^{-}\)-7991-Eumolpinae sp. 16 \& Network 286 \& \({ }_{3}^{3 C 1184}\) \& \({ }_{5}^{5 \mathrm{Cl1} 180}\) \& \({ }_{75 \mathrm{Cl168}}\) \& GMYC002 \& PTP012 \& \({ }^{\text {H421 }}\) \\
\hline BT-0792-Alticinae sp. 115 \& Network10 \& \(3 \mathrm{Cl1030}\) \& \({ }_{5}^{5 C 1031}\) \& \({ }_{75 \mathrm{Cl}}{ }^{\text {c }}\) \& GMYC253 \& PTP060 \& H010 \\
\hline \(\mathrm{BT}^{-} \mathbf{0 7 9 4 - A l t i c i n a e ~ s p . ~} 129\) \& Network 212 \& \({ }_{3}^{3 C 1034}\) \& \({ }_{5}^{5 \mathrm{Cl} 1035}\) \& \({ }_{75 \mathrm{Cl035}}\) \& GMYC065 \& PTP098 \& H325 \\
\hline BT-0795-Alticinae sp. 96 \& Network85 \& \({ }_{3} \mathrm{Cl1044}\) \& \({ }_{5}^{5 \mathrm{Cl} 1045}\) \& \({ }_{75 \mathrm{Cl045}}\) \& GMYC051 \& PTP169 \& H128 \\
\hline BT-0796-Alticinae sp. 97 \& Network13 \& 3 Cl 1035 \& \({ }_{5}^{5 C 1036}\) \& \({ }^{75 \mathrm{Cl} 1036}\) \& GMYC258 \& PTP065 \& H018 \\
\hline BT-0799-Cassidinae sp. 14 \& Network263 \& \({ }_{3}{ }^{\text {C1186 }}\) \& \({ }_{5} \mathrm{Cl1065}\) \& \({ }_{75 \mathrm{Cl} 1065}\) \& GMYC282 \& PTP040 \& H394 \\
\hline BT-080-Galerucinae sp. 30 \& Network 1184 \& \({ }_{3} 3 \mathrm{Cl1070}\) \& \({ }_{5}^{5 \mathrm{ClO} 11}\) \& \({ }^{75 \mathrm{Cl070}}\) \& GMYC110 \& PTP240 \& H282 \\
\hline \(\mathrm{BT}^{\text {BT-0803-Galerucinae sp. }} 76\) \& Network 118 \& 3C1008 \& \({ }_{\substack{5 \\ 5 \mathrm{Cl} 1008 \\ 5 \mathrm{Cl} 040 \\ \hline}}\) \& \({ }^{75 \mathrm{Cl008}}\) \& GMYC113 \& \({ }^{\text {PTP288 }}\) \& H185 \\
\hline BT-0805-Alticinae sp. 14 \& Network 131 \& \({ }_{3 \text { 3 } 1167}\) \& \({ }_{5} 5 \mathrm{Cl164}\) \& \(75 \mathrm{Cl154}\) \& GMYC162 \& PTP188 \& \({ }^{\text {H204 }}\) \\
\hline BT-0806-Alticinae sp. 13 \& Network175 \& \({ }_{3 C 1147}\) \& \(5 \mathrm{Cl1156}\) \& \(75 \mathrm{Cl141}\) \& GMYC066 \& PTP090 \& H271 \\
\hline BT-0807-Alticinae sp. 54 \& Network 44 \& \({ }_{3 C 1161}\) \& \(5 \mathrm{Cl1158}\) \& \(75 \mathrm{Cl149}\) \& GMYC215 \& PTP123 \& H063 \\
\hline BT-0809-Alticinae sp. 12 \& Network150 \& \({ }_{3} \mathrm{Cl1187}\) \& \({ }_{5}^{5 \mathrm{Cl182}}\) \& \({ }_{75 \mathrm{Cl170}}\) \& GMYC239 \& PTP084 \& \({ }^{\text {H231 }}\) \\
\hline BT-0810-Galerucinae sp. 46 \& Network 156 \& \({ }_{3} \mathrm{Cl1050}\) \& \({ }_{5}^{5 \mathrm{Cl} 1051}\) \& \({ }_{75 \mathrm{Cl051}}\) \& GMYC179 \& PTP250 \& H242 \\
\hline \({ }^{\text {BT }}{ }^{-0811}{ }^{\text {- Criocerinae sp. }}{ }^{6}\) \& Network 238 \& \({ }_{3} \mathrm{3C1188}\) \& \({ }_{5}^{5 \mathrm{Cl1183}}\) \& \({ }_{75 \mathrm{Cl171}}\) \& GMYC266 \& PTP058 \& H360 \\
\hline  \& Network \({ }_{\text {Network } 48}\) \& \begin{tabular}{l}
\(3 \mathrm{Cl189}\) \\
\(\begin{array}{l}\text { C1074 }\end{array}\) \\
\hline
\end{tabular} \&  \& \(75 \mathrm{Cl172}\)

$75 \mathrm{Cl074}$ \& GMYC262 \& ${ }^{\text {PTP } T P 1055}$ \& H361
H078 <br>
\hline BT ${ }^{-0815}{ }^{-}$Alticinae sp. 32 \& Network150 \& ${ }_{3 C 1187}$ \& $5 \mathrm{Cl1182}$ \& $75 \mathrm{Cl170}$ \& GMYC239 \& PTP084 \& H232 <br>
\hline BT-0816-Galerucinae sp. 19 \& Network 120 \& ${ }_{3}{ }^{\text {Cl17 }}$ \& ${ }_{5}^{5 \mathrm{Cl1175}}$ \& ${ }_{75 \mathrm{Cl164}}$ \& GMYC112 \& ${ }^{\text {PTP } 285}$ \& H188 <br>
\hline ${ }_{\text {BT }}{ }^{\text {O818-}}$ - ${ }^{\text {Galerucinae sp. }} 61$ \& Network93 \& ${ }_{3 \mathrm{ClO41}}$ \& ${ }_{5}{ }_{5} \mathrm{Cl} 10422$ \& ${ }_{75 \mathrm{Cl} 1042}$ \& GMYC131 \& PTP279 \& ${ }_{\text {H149 }}$ <br>
\hline $\mathrm{BT}^{-}{ }^{-819}{ }^{-}$Eumolpinae sp. 074 \& Network244 \& $3 \mathrm{Cl062}$ \& $5 \mathrm{Cl063}$ \& $75 \mathrm{Cl063}$ \& GMYC031 \& PTP002 \& H369 <br>
\hline $\mathrm{BT}^{-0820}{ }^{-08}$ Eumolpinae sp. 38 \& twork \& ${ }_{3}{ }^{3} 1025$ \& ${ }_{5}^{5 \mathrm{Cl} 1026}$ \& ${ }_{75 \mathrm{Cl026}}$ \& GMYC010 \& PTP017 \& H418 <br>

\hline BT-0823-Galerucinae sp. 34 \& Network 183 \&  \&  \& | $75 \mathrm{Cl038}$ |
| :--- |
| $75 \mathrm{Cl077}$ | \& GMYC103 \& ${ }^{\text {PTP }{ }^{\text {a }} \text { 232 }}$ \& H281 <br>

\hline ${ }^{\text {BT }}$-0827-Eumolpinae sp. ${ }^{\text {a }}$ \& Network289 \&  \& ${ }_{5}^{5 \mathrm{Cl1152}}$ \& $75 \mathrm{Cl077}$
$75 \mathrm{Cl054}$ \& GMYC003 \& ${ }^{\text {PTPTP109 }}$ \& H26 <br>
\hline $\mathrm{BT}^{-0829-A l t i c i n a e ~ s p . ~} 115$ \& + \& \& \& \& \& \& <br>
\hline  \& Network65 \& ${ }_{\substack{3 C 190}}^{3 C 1030}$ \& ${ }_{5}^{5 \mathrm{Cl185}}$ \& $75 \mathrm{Cl173}$ \& GMYC194 \& ${ }^{\text {PTP }}$ (P211 \& H104 <br>
\hline BT-0835-Galerucinae sp. 29 \& Network94 \& $3 \mathrm{Cl191}$ \& $5 \mathrm{Cl1186}$ \& $75 \mathrm{Cl174}$ \& GMYC125 \& PTP275 \& H150 <br>
\hline $\mathrm{BT}^{-0836}$ - Alticinae sp. ${ }^{3}$ \& Network 185 \& ${ }_{3}{ }^{\text {Cl192 }}$ \& $5 \mathrm{Cl1187}$ \& $75 \mathrm{Cl175}$ \& GMYC095 \& PTP197 \& H283 <br>
\hline $\mathrm{BT}^{-0837-\text { Alticinae sp. }}{ }^{\text {a }}$ \& Network ${ }^{\text {Network562 }}$ \& ${ }_{3}^{3 \mathrm{3ClO96}}$ \& ${ }_{5}^{5 C 1096}$ \& 75C1095 \& GMYC099 \& ${ }^{\text {PTP196 }}$ \& H298 <br>
\hline  \& Network ${ }^{\text {Netw }}$ \& ${ }_{3}{ }_{3} \mathrm{Cl1122}$ \& ${ }_{5}^{5 \mathrm{Cl1120}}$ \& -75C1119 \& GMYC158 \& PTP1186 \& ${ }_{\text {H194 }}$ <br>
\hline $\mathrm{BT}^{-}{ }^{-841}{ }^{-}$Alticinae sp. 127 \& Network4 \& $3 \mathrm{Cl194}$ \& $5 \mathrm{Cl1189}$ \& $75 \mathrm{Cl177}$ \& GMYC247 \& PTP092 \& H004 <br>
\hline BT ${ }^{-} 0843^{-}$Alticinae sp. 136 \& \& \& \& 75 \& \& \& <br>
\hline BT-0847-Eumolpinae sp. 5 \& Network285 \& 3 Cl 1 \& $5 \mathrm{Cl014}$ \& $75 \mathrm{Cl014}$ \& GMYC009 \& PTP016 \& H419 <br>
\hline BT-0848-Alticinae sp. 45 \& Network55 \& $3 \mathrm{Cl119}$ \& ${ }_{5}^{5 C 1190}$ \& ${ }_{75 \mathrm{Cl178}}$ \& GMYC225 \& PTP119 \& <br>
\hline BT-0850-Alticinae sp. 49 \& Network141 \& $3 \mathrm{Cl196}$ \& ${ }_{5}^{5 \mathrm{Cl191}}$ \& $75 \mathrm{Cl179}$ \& GMYC032 \& \& H218 <br>
\hline BT-0851-Alticinae sp. ${ }^{\text {B }}$ - ${ }^{\text {BT }}$ \& Network85 \&  \& ${ }_{\substack{5 \\ 5 \mathrm{Cl1045} \\ 5 \mathrm{ClO} 7}}$ \& $75 \mathrm{Cl045}$
$75 \mathrm{Cl076}$ \& GMYC051 \& ${ }^{\text {PTP169 }}$ \& ${ }_{\text {H131 }}{ }_{\text {H203 }}$ <br>
\hline $\mathrm{BT}^{-} 0855^{-}$Alticinae sp. 018 \& Network59 \& ${ }_{3 C 1158}$ \& $5 \mathrm{Cl1155}$ \& $75 \mathrm{Cl147}$ \& GMYC251 \& PTP067 \& H095 <br>
\hline BT-0861-Eumolpinae sp. 20 \& Network289 \& $3 \mathrm{Cl1077}$ \& 5 C 1078 \& 75 Cl 1077 \& GMYC003 \& PTP010 \& <br>
\hline BT-0862-Alticinae sp. 115 \& etw \& 1030 \& ${ }_{5}^{5 \mathrm{ClO} 31}$ \& ${ }_{75 \mathrm{Cl031}}$ \& GMYC253 \& ${ }^{\text {PTP }}$ 060 \& 10 <br>
\hline $\mathrm{BT}^{-} \mathbf{0 8 6 4}$ - Alticinae sp. ${ }^{\text {a }}$ 253 \& Network13 \& ${ }_{3} 3 \mathrm{Cl035}$ \& ${ }_{5}{ }^{\text {CliO36 }}$ \& ${ }^{75 \mathrm{C} 036}$ \& GMYC258 \&  \& H018 <br>
\hline BT-0865-Alticinae sp. 96 \& Network85 \& ${ }_{\substack{3 \mathrm{ClO44} \\ 3 \mathrm{ClO} \\ \hline}}$ \& ${ }_{5}^{5 C 1045}$ \& ${ }^{75 C 1045}$ \& GMYC051 \& ${ }^{\text {PTP169 }}$ \& H131 <br>
\hline BT-0873-Alticinae sp. 85 \& Network48 \& ${ }_{3 \mathrm{ClO}}^{3}$ \& ${ }_{5}{ }^{\text {Cll }}$ \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& H077 <br>
\hline BT-0949-Cassidinae sp. 2 \& Network259 \& ${ }_{3 C 1197}$ \& $5 \mathrm{Cl1192}$ \& $75 \mathrm{Cl180}$ \& GMYC283 \& PTP037 \& H390 <br>
\hline $\mathrm{BT}^{-0950}$ - Cassidinae sp. 10 \& Network 252 \& ${ }_{3} \mathrm{Cl198}$ \& ${ }_{5}^{5 \mathrm{Cl1193}}$ \& ${ }_{75 \mathrm{Cl181}}$ \& GMYC274 \& PTP036 \& H378 <br>
\hline BT-0951_Cassidinae sp. 11 \& Network 260 \& ${ }_{3} \mathrm{CCl199}$ \& ${ }_{5}^{5 \mathrm{Cl1194}}$ \& $75 \mathrm{Cl182}$ \& GMYC279 \& ${ }^{\text {PTP }}$ O45 \& H391 <br>
\hline  \& Network19 \& ${ }_{\substack{3 \mathrm{Cl2} \\ 3 \mathrm{Cl200}}}$ \& 5C1195 \& $75 \mathrm{Cl183}$
$75 \mathrm{Cl103}$ \& GMYC228 \&  \& H030 <br>
\hline BT-0954-Galerucinae sp. 29 \& Network95 \& 3 Cl 2 \& $5 \mathrm{Cl1197}$ \& $75 \mathrm{Cl184}$ \& GMYC124 \& \& H151 <br>
\hline BT-0955-Galerucinae sp. 20 \& Network119 \& $3 \mathrm{Cl203}$ \& $5 \mathrm{Cl198}$ \& $75 \mathrm{Cl185}$ \& GMYC122 \& PTP277 \& H186 <br>
\hline BT-0957-Galerucinae sp ${ }^{36}$ \& Network ${ }_{\text {Network }}$ \& - ${ }_{3}^{3 \mathrm{Cl143}}$ \& ${ }_{5}^{5 \mathrm{Cl1141}}$ \& 75C1138 \& GMYC146 \& ${ }^{\text {PTP } 254}$ \& H321 <br>
\hline ${ }_{\text {BT }}$ - 0959 - ${ }^{\text {Galerucinae sp. }} 52$ \& Network201 \& ${ }_{3}^{3 \mathrm{Cl2087}}$ \& $5 \mathrm{Cl1199}$
$5 \mathrm{Cl1087}$ \& $75 \mathrm{Cl186}$
$75 \mathrm{Cl086}$ \& GMYC226
GMYC107 \&  \& H061
H310 <br>
\hline BT-0960-Galerucinae sp. 47 \& Network 157 \& $3 \mathrm{Cl205}$ \& $5 \mathrm{Cl200}$ \& $75 \mathrm{Cl187}$ \& GMYC180 \& PTP242 \& H243 <br>
\hline BT-0961-Alticinae sp. 77 \& Network86 \& ${ }_{3}^{3 \mathrm{Cl206}}$ \& ${ }_{5}^{5 \mathrm{Cl} 201}$ \& $75 \mathrm{Cl188}$ \& GMYC047 \& ${ }^{\text {PTP } 165}$ \& H132 <br>
\hline BT-0962-Alticinae sp. 76 \& etwork27 \& - ${ }_{3}^{3 \mathrm{Cl207}} \mathbf{3 \mathrm { Cl20 }}$ \&  \& 75C1189 \& GMYC210 \& ${ }^{\text {PTP127 }}$ \& 39 <br>
\hline $\mathrm{BT}^{-0965}{ }^{\text {- Criocerinae sp. }} 2$ \& Network236 \& ${ }_{3 \mathrm{Cl209}}$ \& $5 \mathrm{Cl204}$ \& $75 \mathrm{Cl191}$ \& GMYC265 \& PTP054 \& H357 <br>
\hline BT-0966-Criocerinae sp. 3 \& Network3 \& ${ }_{3} 3 \mathrm{Cl210}$ \& ${ }_{5}^{5 \mathrm{Cl2} 205}$ \& ${ }_{75 \mathrm{Cl192}}$ \& GMYC030 \& PTP031 \& H003 <br>
\hline ${ }^{\text {BT-0967-Eumolpinae sp, }}{ }^{\text {ST- }}$ - ${ }^{46}$ \& Network ${ }^{\text {Network66 }}$ \& ${ }_{3}^{3 \mathrm{3Cl211}}$ \& ${ }_{5}^{5 \mathrm{Cl1206}}$ \& 75C193 \& GMYC006 \& ${ }^{\text {PTP015 }}$ \& H415 <br>
\hline $\mathrm{BT}^{-}$0971-Alticinae sp. 194 \& Network25 \& ${ }_{3 C 1213}$ \& ${ }_{5} \mathrm{Cl208}$ \& $75 \mathrm{Cl195}$ \& GMYC202 \& PTP130 \& Ноз7 <br>
\hline BT-0972-Alticinae sp. 127 \& Network4 \& $3 \mathrm{Cl194}$ \& ${ }_{5} \mathrm{5C1189}$ \& ${ }_{75 \mathrm{Cl177}}$ \& GMYC247 \& PTP092 \& H004 <br>
\hline BT-0973-Alticinae sp. 97 \& ork9 \& ${ }_{3}^{3 \mathrm{Cl2}}$ \& ${ }_{5}^{5 \mathrm{Cl2} 29}$ \& 75C196 \& GMYC252 \& \& H009 <br>
\hline $\mathrm{BT}^{-1031}$ - Alticinae sp. ${ }^{\text {a }}$ \& Network187 \& ${ }_{3 \mathrm{ClO}}$ \& ${ }_{5}{ }^{\text {Cl1010 }}$ \& $75 \mathrm{Cl010}$ \& GMYC087 \& PTP204 \& H285 <br>
\hline BT-1033-Alticinae sp. 149 \& Network 191 \& ${ }_{3 \mathrm{Cl1115}}$ \& ${ }_{5} \mathrm{Cl1011}$ \& $75 \mathrm{Cl011}$ \& GMYC088 \& PTP203 \& <br>
\hline BT-1034-Alticinae sp. 48 \& Network 44 \& ${ }_{3}{ }^{\text {Cl1 } 161}$ \& ${ }_{5} \mathrm{C} 1158$ \& $75 \mathrm{Cl149}$ \& GMYC215 \& PTP123 \& H062 <br>
\hline BT-1035-Alticinae sp. 150 \& Network191 \& ${ }_{3}^{3 C 1155}$ \& ${ }_{5}^{5 C 1011}$ \& ${ }^{75 \mathrm{Cl011}}$ \& GMYC088 \& ${ }^{\text {PTP }} 10317$ \& H295 <br>
\hline ${ }^{\text {BT }}$ - 1036 - Alticinae sp. 62 \& Networks ${ }^{\text {Network85 }}$ \& - ${ }_{3}^{3 \mathrm{ClO43}}$ \& 5-5C1044 \& $75 \mathrm{ClO44}$
$75 \mathrm{Cl045}$ \& GMYC224 \& ${ }^{\text {PTPTP169 }}$ \& H093 <br>
\hline $\mathrm{BT}^{-1043-A l t i c i n a e ~ s p . ~} 66$ \& Network85 \& ${ }_{3} 3 \mathrm{Cl044}$ \& ${ }_{5} \mathrm{5C1045}$ \& ${ }_{75 \mathrm{Cl045}}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline $\mathrm{BT}^{1055}$ - Alticinae sp. 85 \& Network48 \& ${ }_{3}{ }^{\text {ClO74 }}$ \& 5 \& C1074 \& c216 \& ${ }^{\text {PTP105 }}$ \& H075 <br>
\hline $\mathrm{BT}^{-1060}$ - Atticinae sp. ${ }^{\text {cherucinae sp. }} 096$ \& etwork48 \& ${ }_{3}$ \& ${ }_{5}^{5 \mathrm{Cl} 1050}$ \& ${ }_{75 \mathrm{Cl050}}$ \& GMYC174 \& PTP105 \& <br>
\hline $\mathrm{BT}^{-1064}$ - Alticinae sp. 142 \& Network 132 \& ${ }_{3 C 1081}$ \& $5 \mathrm{Cl1081}$ \& $75 \mathrm{Cl080}$ \& GMYC167 \& PTP189 \& H206 <br>
\hline $\mathrm{BT}^{-1065-}{ }^{\text {- }}$ Alticinae sp. 20 \& Network178 \& $3 \mathrm{Cl216}$ \& ${ }_{5}^{5 C 1211}$ \& $75 \mathrm{Cl198}$ \& GMYC152 \& PTP070 \& H275 <br>
\hline ${ }_{\text {BT }}{ }^{1070}$ - Alticinae sp. 97 \& Network13 \& ${ }_{3}^{3 C 1035}$ \& 5 \& 56 \& GMYC258 \& \& H0181 <br>
\hline BT-1071-Alticinae sp. 96 \& work85 \& ${ }_{3}$ \& S1 \& 75C1100 \& GMYC \& P \& H131 <br>
\hline BT_1079_Atticinae sp. 104 \& Network17 \& C1101 \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H027 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BT_1080_Eumolpinae sp. 074 \& Network244 \& ${ }_{3} \mathrm{Cl062}$ \& $$
5 \mathrm{Cl063}
$$ \& $$
75 \mathrm{Cl063}
$$ \& GMYC031 \& \& H368 <br>
\hline BT- ${ }^{-1081-}{ }^{-}$Alticinae sp. 27 \& Network51 \& $3 \mathrm{Cl217}$ \& 5 Cl 212 \& $$
75 \mathrm{C} 1199
$$ \& GMYC222 \& PTP113 \& H083 <br>
\hline $\mathrm{BT}^{-1} 1082^{-}$Alticinae sp. 104 \& Network17 \& $3 \mathrm{Cl101}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H026 <br>
\hline BT-1083-Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& $5 \mathrm{Cl045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline BT- ${ }^{\text {- }} 085^{-}$- Alticinae sp. 61 \& Network8 \& $3 \mathrm{Cl068}$ \& ${ }_{5} \mathrm{Cl} 1069$ \& $75 \mathrm{Cl069}$ \& GMYC259 \& PTP066 \& H008 <br>
\hline BT- ${ }^{-1086}{ }^{-}$Alticinae sp. 83 \& Network22 \& $3 \mathrm{Cl083}$ \& $5 \mathrm{Cl083}$ \& $75 \mathrm{Cl082}$ \& GMYC230 \& PTP072 \& H034 <br>
\hline $\mathrm{BT}^{-1087}$ - Alticinae sp. 109 \& Network171 \& $3 \mathrm{Cl046}$ \& $5 \mathrm{Cl047}$ \& $75 \mathrm{Cl047}$ \& GMYC254 \& PTP062 \& H265 <br>
\hline BT ${ }^{-1088}{ }^{-}$Galerucinae sp. 31 \& Network203 \& $3 \mathrm{Cl061}$ \& $5 \mathrm{Cl062}$ \& $75 \mathrm{Cl062}$ \& GMYC084 \& PTP217 \& H315 <br>
\hline BT-1090-Alticinae sp. 19 \& Network58 \& $3 \mathrm{Cl218}$ \& $5 \mathrm{Cl213}$ \& $75 \mathrm{Cl200}$ \& GMYC245 \& PTP097 \& H094 <br>
\hline $\mathrm{BT}^{-1091-}{ }^{-}$Cassidinae sp. 12 \& Network243 \& $3 \mathrm{Cl149}$ \& $5 \mathrm{Cl146}$ \& $75 \mathrm{Cl142}$ \& GMYC278 \& PTP044 \& H366 <br>
\hline $\mathrm{BT}^{-1092-C a s s i d i n a e ~ s p . ~} 3$ \& Network254 \& $3 \mathrm{Cl219}$ \& $5 \mathrm{Cl214}$ \& $75 \mathrm{Cl201}$ \& GMYC285 \& PTP052 \& H381 <br>
\hline $\mathrm{BT}^{-1093-}{ }^{-}$Hispinae sp. 7 \& Network258 \& $3 \mathrm{Cl220}$ \& $5 \mathrm{Cl215}$ \& $75 \mathrm{Cl202}$ \& GMYC267 \& PTP035 \& H389 <br>
\hline BT-1094-Eumolpinae sp. 38 \& Network284 \& $3 \mathrm{Cl025}$ \& $5 \mathrm{Cl026}$ \& $75 \mathrm{Cl026}$ \& GMYC010 \& PTP017 \& H418 <br>
\hline BT-1095-Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& 5 C 1045 \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H128 <br>
\hline BT-1096-Galerucinae sp. 36 \& Network208 \& $3 \mathrm{Cl143}$ \& $5 \mathrm{Cl141}$ \& $75 \mathrm{Cl138}$ \& GMYC146 \& PTP254 \& H320 <br>
\hline BT- ${ }^{-1098}{ }^{-}$Alticinae sp. 97 \& Network13 \& $3 \mathrm{Cl035}$ \& ${ }_{5} \mathrm{Cl} 1036$ \& $75 \mathrm{Cl036}$ \& GMYC258 \& PTP065 \& H017 <br>
\hline $\mathrm{BT}^{-1104-A l t i c i n a e ~ s p . ~} 140$ \& Network 122 \& $3 \mathrm{Cl153}$ \& $5 \mathrm{Cl150}$ \& $75 \mathrm{Cl144}$ \& GMYC157 \& PTP187 \& H190 <br>
\hline $\mathrm{BT}^{-1105}{ }^{-1}$ Alticinae sp. 74 \& Network177 \& $3 \mathrm{Cl221}$ \& $5 \mathrm{Cl216}$ \& $75 \mathrm{Cl203}$ \& GMYC244 \& PTP096 \& H274 <br>
\hline $\mathrm{BT}^{-1106}{ }^{-}$Galerucinae sp. 64 \& Network222 \& $3 \mathrm{Cl148}$ \& $5 \mathrm{Cl145}$ \& $75 \mathrm{Cl060}$ \& GMYC080 \& PTP221 \& H340 <br>
\hline $\mathrm{BT}^{-1107-}{ }^{-}$Alticinae sp. 099 \& Network173 \& $3 \mathrm{Cl222}$ \& $5 \mathrm{Cl217}$ \& $75 \mathrm{Cl204}$ \& GMYC242 \& PTP207 \& H267 <br>
\hline $\mathrm{BT}^{-1108}{ }^{-1}$ Alticinae sp. 92 \& Network200 \& $3 \mathrm{Cl135}$ \& $5 \mathrm{Cl133}$ \& $75 \mathrm{Cl132}$ \& GMYC191 \& PTP208 \& H309 <br>
\hline $\mathrm{BT}^{-} 1109^{-}$Alticinae sp. 41 \& Network136 \& $3 \mathrm{Cl223}$ \& ${ }_{5} \mathrm{C} 1218$ \& $75 \mathrm{Cl205}$ \& GMYC161 \& PTP177 \& H210 <br>
\hline BT- 1110 - Galerucinae sp. 46 \& Network156 \& 3 Cl 050 \& 5 Cl 051 \& $75 \mathrm{Cl051}$ \& GMYC179 \& PTP250 \& H242 <br>
\hline $\mathrm{BT}^{-1112-}{ }^{-}$Alticinae sp. 112 \& Network145 \& $3 \mathrm{Cl224}$ \& $5 \mathrm{Cl219}$ \& $75 \mathrm{Cl206}$ \& GMYC190 \& PTP209 \& H223 <br>
\hline $\mathrm{BT}^{-}$1114-Alticinae sp. 41 \& Network136 \& $3 \mathrm{Cl223}$ \& $5 \mathrm{Cl218}$ \& $75 \mathrm{Cl205}$ \& GMYC161 \& PTP177 \& H210 <br>
\hline $\mathrm{BT}^{-1117}{ }^{-}$Alticinae sp. 49 \& Network141 \& $3 \mathrm{Cl196}$ \& ${ }_{5} \mathrm{Cl191}$ \& $75 \mathrm{Cl179}$ \& GMYC032 \& PTP085 \& H219 <br>
\hline $\mathrm{BT}^{-1118-}{ }^{-}$Alticinae sp. 123 \& Network148 \& $3 \mathrm{Cl036}$ \& $5 \mathrm{Cl037}$ \& $75 \mathrm{Cl037}$ \& GMYC070 \& PTP144 \& H229 <br>
\hline BT-1119-Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& 5 C 1045 \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline $\mathrm{BT}^{-1121-}{ }^{-}$Alticinae sp. 124 \& Network87 \& $3 \mathrm{Cl032}$ \& $5 \mathrm{Cl033}$ \& $75 \mathrm{Cl033}$ \& GMYC048 \& PTP166 \& H133 <br>
\hline $\mathrm{BT}^{-1122-}{ }^{-}$Alticinae sp. 265 \& Network60 \& $3 \mathrm{Cl150}$ \& $5 \mathrm{Cl147}$ \& $75 \mathrm{Cl143}$ \& GMYC068 \& PTP142 \& H096 <br>
\hline $\mathrm{BT}^{-1124}{ }^{-}$Cassidinae sp. 7 \& Network245 \& $3 \mathrm{Cl065}$ \& ${ }_{5} \mathrm{Cl} 1066$ \& $75 \mathrm{Cl066}$ \& GMYC276 \& PTP042 \& H370 <br>
\hline $\mathrm{BT}^{-}{ }^{1125}{ }^{-}$Galerucinae sp. 59 \& Network197 \& $3 \mathrm{Cl060}$ \& $5 \mathrm{Cl061}$ \& $75 \mathrm{Cl061}$ \& GMYC108 \& PTP230 \& H306 <br>
\hline $\mathrm{BT}^{-1126}{ }^{-}$Hispinae sp. 3 \& Network247 \& $3 \mathrm{Cl066}$ \& 5 C 1067 \& $75 \mathrm{Cl067}$ \& GMYC272 \& PTP050 \& H372 <br>
\hline $\mathrm{BT}^{-}{ }^{1127}{ }^{-}$Alticinae sp. 66 \& Network85 \& $3 \mathrm{Cl044}$ \& ${ }_{5}^{5 C 1045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline $\mathrm{BT}^{-1128-}{ }^{-}$Alticinae sp. 18 \& Network6 \& $3 \mathrm{Cl225}$ \& $5 \mathrm{Cl220}$ \& $75 \mathrm{Cl207}$ \& GMYC260 \& PTP069 \& H006 <br>
\hline $\mathrm{BT}^{-1129-}{ }^{-1}$ Alticinae sp. 123 \& Network148 \& $3 \mathrm{Cl036}$ \& $5 \mathrm{Cl037}$ \& $75 \mathrm{Cl037}$ \& GMYC070 \& PTP144 \& H227 <br>
\hline $\mathrm{BT}^{-1131-}{ }^{-}$Alticinae sp. 081 \& Network210 \& $3 \mathrm{Cl084}$ \& 5 C 1084 \& $75 \mathrm{Cl083}$ \& GMYC069 \& PTP143 \& H323 <br>
\hline $\mathrm{BT}^{-} 1132^{-}$Alticinae sp. 86 \& Network48 \& $3 \mathrm{Cl074}$ \& 5 C 1075 \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& H079 <br>
\hline BT- ${ }^{1138}{ }^{-}$Alticinae sp. 86 \& Network48 \& $3 \mathrm{Cl074}$ \& $5 \mathrm{Cl075}$ \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& H075 <br>
\hline $\mathrm{BT}^{-}{ }^{1142}{ }^{-}$Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& $5 \mathrm{Cl045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline $\mathrm{BT}^{-1143-}{ }^{-}$Hispinae sp. 7 \& Network258 \& $3 \mathrm{Cl220}$ \& $5 \mathrm{Cl215}$ \& $75 \mathrm{Cl202}$ \& GMYC267 \& PTP035 \& H389 <br>
\hline $\mathrm{BT}^{-1145}{ }^{-}$Cassidinae sp. 3 \& Network254 \& $3 \mathrm{Cl219}$ \& ${ }_{5} \mathrm{Cl214}$ \& $75 \mathrm{Cl201}$ \& GMYC285 \& PTP052 \& H381 <br>
\hline BT- ${ }^{-146 \text { - Eumolpinae sp. } 14}$ \& Network285 \& $3 \mathrm{Cl013}$ \& ${ }_{5} \mathrm{Cl} 1014$ \& $75 \mathrm{Cl014}$ \& GMYC009 \& PTP016 \& H420 <br>
\hline $\mathrm{BT}^{-}{ }_{1147}{ }^{-}$Alticinae sp. 152 \& Network34 \& $3 \mathrm{Cl226}$ \& $5 \mathrm{Cl221}$ \& $75 \mathrm{Cl208}$ \& GMYC205 \& PTP134 \& H048 <br>
\hline $\mathrm{BT}^{-}{ }^{1148}{ }^{-}$Alticinae sp. 96 \& Network 85 \& $3 \mathrm{Cl044}$ \& 5 Cl 045 \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline $\mathrm{BT}^{-1151}{ }^{-11}$ Alticinae sp. 57 \& Network70 \& $3 \mathrm{Cl227}$ \& ${ }_{5}^{5 \mathrm{Cl222}}$ \& $75 \mathrm{Cl209}$ \& GMYC059 \& PTP159 \& H110 <br>
\hline $\mathrm{BT}^{-1152-A l t i c i n a e ~ s p . ~} 141$ \& Network215 \& $3 \mathrm{Cl228}$ \& $5 \mathrm{Cl108}$ \& $75 \mathrm{Cl107}$ \& GMYC172 \& PTP183 \& H328 <br>
\hline $\mathrm{BT}^{-1157}{ }^{-}$Alticinae sp. 149 \& Network188 \& $3 \mathrm{Cl119}$ \& $5 \mathrm{Cl117}$ \& $75 \mathrm{Cl116}$ \& GMYC091 \& PTP200 \& H286 <br>
\hline $\mathrm{BT}^{-1158-}$ - Alticinae sp. 146 \& Network121 \& $3 \mathrm{Cl229}$ \& $5 \mathrm{Cl223}$ \& $75 \mathrm{Cl210}$ \& GMYC160 \& PTP184 \& H189 <br>
\hline $\mathrm{BT}^{-}{ }^{1160}$ - Alticinae sp. 55 \& Network138 \& $3 \mathrm{Cl230}$ \& ${ }_{5} \mathrm{Cl224}$ \& $75 \mathrm{Cl211}$ \& GMYC250 \& PTP095 \& H213 <br>
\hline $\mathrm{BT}^{-1161-A l t i c i n a e ~ s p . ~} 143$ \& Network123 \& $3 \mathrm{Cl122}$ \& $5 \mathrm{Cl120}$ \& $75 \mathrm{Cl119}$ \& GMYC158 \& PTP186 \& H196 <br>
\hline BT- ${ }^{-165}{ }^{-}$Alticinae sp. 61 \& Network8 \& $3 \mathrm{Cl068}$ \& ${ }_{5} \mathrm{Cl} 1069$ \& $75 \mathrm{Cl069}$ \& GMYC259 \& PTP066 \& H008 <br>
\hline $\mathrm{BT}^{-} 1166^{-}$Alticinae sp. 140 \& Network122 \& $3 \mathrm{Cl153}$ \& $5 \mathrm{Cl150}$ \& $75 \mathrm{Cl144}$ \& GMYC157 \& PTP187 \& H191 <br>
\hline $\mathrm{BT}^{-1170}{ }^{-}$Alticinae sp. 105 \& Network16 \& $3 \mathrm{Cl116}$ \& ${ }_{5} \mathrm{Cl114}$ \& $75 \mathrm{Cl113}$ \& GMYC234 \& PTP079 \& H025 <br>
\hline BT-1171-Alticinae sp. 85 \& Network47 \& $3 \mathrm{Cl138}$ \& ${ }_{5} \mathrm{Cl136}$ \& $75 \mathrm{Cl135}$ \& GMYC217 \& PTP104 \& H070 <br>
\hline $\mathrm{BT}^{-1175}{ }^{-}$Alticinae sp. 87 \& Network88 \& $3 \mathrm{Cl028}$ \& $5 \mathrm{Cl029}$ \& $75 \mathrm{Cl029}$ \& GMYC061 \& PTP164 \& H140 <br>
\hline $\mathrm{BT}^{-1176}{ }^{-}$Alticinae sp. 52 \& Network33 \& $3 \mathrm{Cl231}$ \& $5 \mathrm{Cl225}$ \& $75 \mathrm{Cl212}$ \& GMYC199 \& PTP137 \& H047 <br>
\hline $\mathrm{BT}^{-1178}{ }^{-}$Alticinae sp. 87 \& Network88 \& $3 \mathrm{Cl028}$ \& ${ }_{5} \mathrm{Cl029}$ \& $75 \mathrm{Cl029}$ \& GMYC061 \& PTP164 \& H140 <br>
\hline $\mathrm{BT}^{-1179-}{ }^{-11 t i c i n a e ~ s p . ~} 118$ \& Network169 \& $3 \mathrm{Cl155}$ \& $5 \mathrm{Cl152}$ \& $75 \mathrm{Cl054}$ \& GMYC188 \& PTP109 \& H260 <br>
\hline $\mathrm{BT}^{-1194}{ }^{-}$Alticinae sp. 87 \& Network88 \& $3 \mathrm{Cl028}$ \& $5 \mathrm{Cl029}$ \& $75 \mathrm{Cl029}$ \& GMYC061 \& PTP164 \& H136 <br>
\hline $\mathrm{BT}^{-1196}{ }^{-}$Alticinae sp. 108 \& Network78 \& $3 \mathrm{Cl232}$ \& $5 \mathrm{Cl226}$ \& $75 \mathrm{Cl213}$ \& GMYC036 \& PTP145 \& H120 <br>
\hline $\mathrm{BT}^{-1197}{ }^{-}$Alticinae sp. 104 \& Network17 \& $3 \mathrm{Cl101}$ \& ${ }_{5} \mathrm{Cl1101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H026 <br>
\hline BT-1198-Alticinae sp. 131 \& Network164 \& $3 \mathrm{Cl104}$ \& $5 \mathrm{Cl103}$ \& $75 \mathrm{Cl102}$ \& GMYC237 \& PTP077 \& H254 <br>
\hline $\mathrm{BT}^{-1199}$ - Alticinae sp. 118 \& Network167 \& $3 \mathrm{Cl233}$ \& $5 \mathrm{Cl227}$ \& $75 \mathrm{Cl214}$ \& GMYC186 \& PTP110 \& H258 <br>
\hline BT- ${ }^{\text {1205-Alticinae sp. } 52}$ \& Network36 \& $3 \mathrm{Cl234}$ \& $5 \mathrm{Cl228}$ \& $75 \mathrm{Cl215}$ \& GMYC204 \& PTP132 \& H050 <br>
\hline $\mathrm{BT}^{-1208}{ }^{-}$Galerucinae sp. 46 \& Network155 \& $3 \mathrm{Cl026}$ \& $5 \mathrm{Cl027}$ \& $75 \mathrm{Cl027}$ \& GMYC178 \& PTP249 \& H241 <br>
\hline $\mathrm{BT}^{-1210}$ - Alticinae sp. 64 \& Network 75 \& $3 \mathrm{Cl157}$ \& $5 \mathrm{Cl154}$ \& $75 \mathrm{Cl101}$ \& GMYC042 \& PTP148 \& H117 <br>
\hline $\mathrm{BT}^{-1211}{ }^{-}$Alticinae sp. 18 \& Network59 \& $3 \mathrm{Cl158}$ \& $5 \mathrm{Cl1155}$ \& $75 \mathrm{Cl147}$ \& GMYC251 \& PTP067 \& H095 <br>
\hline $\mathrm{BT}^{-1212}{ }^{-}$Alticinae sp. 17 \& Network44 \& $3 \mathrm{Cl161}$ \& $5 \mathrm{Cl158}$ \& $75 \mathrm{Cl149}$ \& GMYC215 \& PTP123 \& H065 <br>
\hline $\mathrm{BT}^{-1213-}{ }^{-}$Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& $5 \mathrm{Cl045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline $\mathrm{BT}^{-1214-A l t i c i n a e ~ s p . ~} 104$ \& Network161 \& $3 \mathrm{Cl235}$ \& ${ }_{5}^{5 \mathrm{Cl} 229}$ \& $75 \mathrm{Cl216}$ \& GMYC236 \& PTP078 \& H249 <br>
\hline $\mathrm{BT}^{-1215}{ }^{-}$Alticinae sp. 144 \& Network129 \& ${ }_{3} 3 \mathrm{Cl236}$ \& ${ }_{5}^{5 \mathrm{Cl} 230}$ \& $75 \mathrm{Cl217}$ \& GMYC163 \& PTP178 \& H202 <br>
\hline $\mathrm{BT}^{-1216-}{ }^{-121 t i c i n a e ~ s p . ~} 49$ \& Network141 \& $3 \mathrm{Cl196}$ \& $5 \mathrm{Cl191}$ \& $75 \mathrm{Cl179}$ \& GMYC032 \& PTP085 \& H217 <br>
\hline $\mathrm{BT}^{-1217}{ }^{-}$Alticinae sp. 145 \& Network124 \& $3 \mathrm{Cl237}$ \& $5 \mathrm{Cl231}$ \& $75 \mathrm{Cl218}$ \& GMYC168 \& PTP191 \& H197 <br>
\hline $\mathrm{BT}^{-1219-A l t i c i n a e ~ s p . ~} 86$ \& Network48 \& ${ }_{3}{ }^{\text {CliO74 }}$ \& ${ }_{5}^{5 C 1075}$ \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& H078 <br>
\hline $\mathrm{BT}^{-1220}{ }^{-}$Galerucinae sp. 34 \& Network183 \& $3 \mathrm{Cl037}$ \& $5 \mathrm{Cl038}$ \& $75 \mathrm{Cl038}$ \& GMYC103 \& PTP232 \& H280 <br>
\hline $\mathrm{BT}^{-1222}{ }^{-}$Alticinae sp. 52 \& Network36 \& $3 \mathrm{Cl234}$ \& 5 C 1228 \& $75 \mathrm{Cl215}$ \& GMYC204 \& PTP132 \& H051 <br>
\hline $\mathrm{BT}^{-1223-}{ }^{-}$Alticinae sp. 28 \& Network29 \& $3 \mathrm{Cl039}$ \& ${ }_{5}^{5 \mathrm{Cl} 1040}$ \& $75 \mathrm{Cl040}$ \& GMYC209 \& PTP129 \& H042 <br>
\hline $\mathrm{BT}^{-1224-G a l e r u c i n a e ~ s p . ~} 75$ \& Network227 \& $3 \mathrm{Cl145}$ \& ${ }_{5}^{5 \mathrm{Cl143}}$ \& $75 \mathrm{Cl110}$ \& GMYC082 \& PTP219 \& H347 <br>
\hline $\mathrm{BT}^{-1225}$-Eumolpinae sp. 40 \& Network257 \& ${ }_{3}^{3 \mathrm{Cl0} 03}$ \& ${ }_{5}^{5 \mathrm{Cl0} 03}$ \& ${ }_{75} 75 \mathrm{Cl003}$ \& GMYC001 \& PTP003 \& H388 <br>
\hline $\mathrm{BT}^{-}{ }^{1226}{ }^{-}$Galerucinae sp. 34 \& Network183 \& $3 \mathrm{Cl037}$ \& $5 \mathrm{Cl038}$ \& $75 \mathrm{Cl038}$ \& GMYC103 \& PTP232 \& H280 <br>
\hline $\mathrm{BT}^{-1228-}{ }^{-}$Alticinae sp. 96 \& Network85 \& ${ }_{3}^{3 \mathrm{ClO44}}$ \& ${ }_{5}^{5 C 1045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& ${ }^{H} 131$ <br>
\hline $\mathrm{BT}^{-1230}$ - Alticinae sp. 115 \& Network 10 \& $3 \mathrm{3Cl030}$ \& ${ }_{5}^{5 \mathrm{Cl} 1031}$ \& $75 \mathrm{Cl031}$ \& \& PTP060 \& H011 <br>
\hline $\mathrm{BT}^{-1233}$ - Alticinae sp. 52 \& Network35 \& ${ }_{3}^{3 \mathrm{Cl238}}$ \& ${ }_{5}^{5 \mathrm{Cl228}}$ \& $75 \mathrm{Cl215}$ \& GMYC203 \& PTP133 \& H049 <br>
\hline  \& Network85
Network256 \& $3 \mathrm{Cl1044}$
$3 \mathrm{Cl239}$ \& ${ }_{5}^{5 \mathrm{Cl} 1245}$ \& $75 \mathrm{Cl045}$
$75 \mathrm{Cl219}$ \& GMYC051 \& PTP169 \& $\begin{array}{r}\text { H129 } \\ H \\ \\ \hline\end{array}$ <br>
\hline  \& ${ }_{\text {Network }}^{\text {Network } 47}$ \& $3 \mathrm{Cl239}$

$3 \mathrm{Cl1138}$

3 \& ${ }_{5}^{5 \mathrm{Cl1232}}$ \& $75 \mathrm{Cl219}$
$75 \mathrm{Cl135}$ \& GMYC029
GMYC217 \& ${ }^{\text {PTP001 }}$ \& H383
H072 <br>
\hline $\mathrm{BT}^{-1249}$ - Alticinae sp. 104 \& Network17 \& $3 \mathrm{Cl101}$ \& $5 \mathrm{Cl101}$ \& $75 \mathrm{Cl100}$ \& GMYC235 \& PTP080 \& H028 <br>
\hline $\mathrm{BT}^{-1251}{ }^{-12}$ Alticinae sp. 131 \& Network164 \& $3 \mathrm{3Cl104}$ \& ${ }_{5}^{5 C 1103}$ \& $75 \mathrm{Cl102}$ \& GMYC237 \& PTP077 \& H254 <br>
\hline $\mathrm{BT}^{-1252}$ - Alticinae sp. 86 \& Network48 \& ${ }_{3}^{3 \mathrm{Cl1074}}$ \& ${ }_{5}^{5 C 1075}$ \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& H079 <br>
\hline $\mathrm{BT}^{-1258-G a l e r u c i n a e ~ s p . ~} 28$ \& Network64 \& ${ }_{3} 3 \mathrm{Cl105}$ \& ${ }_{5}^{5 C 1104}$ \& $75 \mathrm{Cl103}$ \& GMYC128 \& PTP283 \& H103 <br>
\hline $\mathrm{BT}^{-1259}{ }^{-}$- Galerucinae sp. 049 \& Network158 \& ${ }_{3} 3 \mathrm{Cl108}$ \& ${ }_{5}^{5 \mathrm{Cl107}}$ \& $75 \mathrm{Cl106}$ \& GMYC182 \& PTP244 \& ${ }^{\mathrm{H} 245}$ <br>
\hline $\mathrm{BT}^{-1260}{ }^{-}$Eumolpinae sp. 24 \& Network279 \& $3 \mathrm{3Cl098}$ \& ${ }_{5}^{5 C 1098}$ \& $75 \mathrm{Cl097}$ \& GMYC014 \& PTP021 \& H412 <br>
\hline ${ }_{\text {BT }}{ }^{-1263}{ }^{\text {- }}$ Alticinae sp. ${ }^{\text {a }}$ - 512 \& Network41 \& $3 \mathrm{Cl089}$
$3 \mathrm{Cl240}$
3 \& ${ }_{5}^{5 \mathrm{Cl} 1089}$ \& $75 \mathrm{Cl088}$
75
751220 \& GMYC197 \& ${ }_{\text {PTP126 }}$ \& H058 <br>
\hline  \& Network147 \& ${ }_{3} 3 \mathrm{Cl1290} 3$ \& ${ }_{5}^{5 \mathrm{Cl} 1093}$ \& ${ }_{75 \mathrm{ClO92}}$ \& GMYC255 \& PTP061 \& H226
H 145 <br>
\hline $\mathrm{BT}^{-1269}{ }^{-}$Alticinae sp. 9 \& Network192 \& $3 \mathrm{Cl096}$ \& 5 Cl 096 \& $75 \mathrm{Cl095}$ \& GMYC099 \& PTP196 \& H299 <br>
\hline $\mathrm{BT}^{-1270}$ - ${ }^{\text {Galerucinae sp. }} 28$ \& Network63 \& $3 \mathrm{Cl201}$ \& ${ }_{5}^{5 C 1196}$ \& $75 \mathrm{Cl103}$ \& GMYC129 \& PTP282 \& H100 <br>
\hline BT-1271-Alticinae sp. 57 \& Network69 \& $3 \mathrm{3Cl241}$ \& ${ }_{5}^{5 \mathrm{Cl1234}}$ \& $75 \mathrm{Cl221}$ \& GMYC060 \& PTP158 \& H109 <br>
\hline $\mathrm{BT}^{-1272-A l t i c i n a e ~ s p . ~} 128$ \& Network89 \& ${ }_{3}^{3 \mathrm{Cl113}}$ \& ${ }_{5}^{5 \mathrm{Cl1112}}$ \& $75 \mathrm{Cl111}$ \& GMYC054 \& PTP163 \& H142 <br>
\hline  \& Network64 \& $3 \mathrm{Cl1105}$
$3 \mathrm{Cl002}$ \& ${ }_{5}^{5 \mathrm{Cl1104}}$ \& $75 \mathrm{Cl1103}$
$75 \mathrm{Cl002}$ \& GMYC128 \& PTP283 \& H101
H 084 <br>
\hline BT
BT
-1274-Alticinae sp.

- \& Network52

Network39 \& | $3 \mathrm{Cl1002}$ |
| :---: |
| $3 \mathrm{Cl242}$ |
|  |
| $3 \mathrm{Cl2}$ | \& $5 \mathrm{Cl1002}$

$5 \mathrm{Cl235}$
5 \& $75 \mathrm{Cl002}$
$75 \mathrm{Cl222}$ \& GMYC219
GMYC196 \& ${ }_{\text {PTP114 }}$ \& H084
H055 <br>
\hline $\mathrm{BT}^{-1278}{ }^{-12}$ - Alticinae sp. 143 \& Network123 \& $3 \mathrm{Cl122}$ \& $5 \mathrm{Cl120}$ \& $75 \mathrm{Cl119}$ \& GMYC158 \& PTP186 \& H194 <br>
\hline $\mathrm{BT}^{-}{ }^{1280}$ - Alticinae sp. 69 \& Network83 \& $3 \mathrm{Cl243}$ \& ${ }_{5} \mathrm{Cl236}$ \& $75 \mathrm{Cl223}$ \& GMYC045 \& PTP154 \& H126 <br>
\hline $\mathrm{BT}^{-1281-G a l e r u c i n a e ~ s p . ~} 47$ \& Network157 \& ${ }_{3}^{3 \mathrm{Cl2} 25}$ \& ${ }_{5}^{5 \mathrm{Cl200}}$ \& $75 \mathrm{Cl187}$ \& GMYC180 \& ${ }^{\text {PTP2 }}$ PTP 21 \& H243 <br>
\hline  \& Network201 \& $3 \mathrm{Cl1087}$
$3 \mathrm{Cl244}$ \& ${ }_{5}^{5 \mathrm{Cl1087}}$ \& ${ }_{75} 75 \mathrm{Cl086}$ \& GMYC107
GMYC133 \& ${ }_{\text {PTP231 }}$ \& H310 <br>
\hline $\mathrm{BT}^{-1283-G a l e r u c i n a e ~ s p . ~}{ }^{6}$ \& Network104 \& $3 \mathrm{3C1244}$ \& ${ }_{5}^{5 \mathrm{Cl237}}$ \& $75 \mathrm{Cl224}$ \& GMYC133 \& PTP256 \& H163 <br>
\hline $\mathrm{BT}^{-1284-}{ }^{\text {- Galerucinae sp. }} 63$ \& Network100 \& $3 \mathrm{3Cl245}$ \& ${ }_{5}^{5 \mathrm{Cl238}}$ \& $75 \mathrm{Cl225}$ \& GMYC121 \& PTP269 \& H157 <br>
\hline $\mathrm{BT}^{-1286-A l t i c i n a e ~ s p . ~} 21$ \& Network67 \& ${ }_{3}^{3 \mathrm{Cl} 1246}$ \& ${ }_{5}^{5 \mathrm{Cl239}}$ \& $75 \mathrm{Cl226}$
$75 \mathrm{Cl227}$ \& GMYC050 \& ${ }^{\text {PTP167 }}$ \& H106 <br>
\hline  \& Network 80
Network 40 \& $3 \mathrm{Cl247}$
$3 \mathrm{Cl248}$ \& $5 \mathrm{Cl240}$
$5 \mathrm{Cl241}$ \& $75 \mathrm{Cl227}$
$75 \mathrm{Cl228}$ \& GMYC058 \& ${ }^{\text {PTP155 }}$ \& H123
$H 056$ <br>
\hline $\mathrm{BT}^{-1293}{ }^{-128}$ - Alticinae sp. 50 \& Network 45 \& $3 \mathrm{Cl094}$ \& $5 \mathrm{Cl094}$ \& $75 \mathrm{Cl093}$ \& GMYC211 \& PTP107 \& H067 <br>
\hline $\mathrm{BT}^{-}{ }^{1294}{ }^{-}$Galerucinae sp. 72 \& Network230 \& $3 \mathrm{Cl118}$ \& ${ }_{5} \mathrm{Cl1116}$ \& $75 \mathrm{Cl115}$ \& GMYC074 \& PTP226 \& H350 <br>
\hline $\mathrm{BT}^{-1295}$ - Alticinae sp. 57 \& Network 70 \& $3 \mathrm{Cl227}$ \& $5 \mathrm{Cl222}$ \& $75 \mathrm{Cl209}$ \& GMYC059 \& PTP159 \& H111 <br>
\hline BT-1304-Galerucinae sp. 47 \& Network157 \& $3 \mathrm{Cl205}$ \& $5 \mathrm{Cl200}$ \& $75 \mathrm{Cl187}$ \& GMYC180 \& PTP242 \& H243 <br>
\hline $\mathrm{BT}^{-}{ }^{1305}{ }^{-}$Alticinae sp. 93 \& Network37 \& $3 \mathrm{Cl249}$ \& $5 \mathrm{Cl242}$ \& $75 \mathrm{Cl229}$ \& GMYC249 \& PTP091 \& H052 <br>
\hline BT-1307-Eumolpinae sp. 16 \& Network286 \& $3 \mathrm{Cl184}$ \& $5 \mathrm{Cl180}$ \& $75 \mathrm{Cl168}$ \& GMYC002 \& PTP012 \& H422 <br>
\hline $\mathrm{BT}^{-1308-}{ }^{-}$Alticinae sp. 134 \& Network134 \& $3 \mathrm{Cl250}$ \& $5 \mathrm{Cl243}$ \& $75 \mathrm{Cl230}$ \& GMYC166 \& PTP176 \& H208 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline BT_ ${ }^{1310}$-Alticinae sp. 35 \& Network144 \& ${ }_{3} \mathrm{Cl251}$ \& ${ }_{5} \mathrm{Cl110}$ \& $75 \mathrm{Cl109}$ \& GMYC034 \& PTP087 \& H222 <br>
\hline $\mathrm{BT}^{-1311-A l t i c i n a e ~ s p . ~}{ }^{\text {ch }}$ \& Network82 \& ${ }_{3}^{3 \mathrm{Cl252}}$ \& ${ }_{5}^{5 \mathrm{Cl2} 124}$ \& ${ }_{75 \mathrm{Cl231}}$ \& GMYC056 \& PTP157 \& ${ }^{H 125}$ <br>
\hline $\mathrm{BT}^{\text {BT }}$ 1312- Alticinae sp. 93 \& Network37 \& $3 \mathrm{Cl249}$
$3 \mathrm{Cl098}$
3 \& ${ }_{5}^{5 \mathrm{Cl242}}$ \& ${ }^{75 \mathrm{Cl229}}$ \& GMYC249 \& ${ }^{\text {PTPTP091 }}$ \& H052 <br>
\hline  \& Network ${ }^{\text {Network41 }}$ \& $3 \mathrm{Cl1098}$
3 Cl 1089 \& ${ }^{5} 5 \mathrm{Cl098}$ \& $75 \mathrm{ClO97}$
$75 \mathrm{Cl088}$ \& GMYC014 \& ${ }_{\text {PTP }}^{\text {PTP126 }}$ \& H412
$H 058$ <br>
\hline $\mathrm{BT}^{\text {- }} 1321$-Galerucinae sp. 61 \& Network93 \& $3 \mathrm{Cl1041}$ \& ${ }_{5} \mathrm{Cl042}$ \& 75 Cl 1042 \& GMYC131 \& PTP279 \& H149 <br>
\hline $\mathrm{BT}^{-1322-A l t i c i n a e ~ s p . ~} 19$ \& Network58 \& $3 \mathrm{Cl218}$ \& $5 \mathrm{Cl213}$ \& $75 \mathrm{Cl200}$ \& GMYC245 \& PTP097 \& H094 <br>
\hline $\mathrm{BT}^{-1323-A l t i c i n a e ~ s p . ~} 104$ \& Network 161 \& ${ }_{3}{ }^{\text {Cl2 } 235}$ \& ${ }_{5}^{5 \mathrm{Cl2} 29}$ \& ${ }_{75 \mathrm{Cl216}}$ \& GMYC236 \& PTP078 \& ${ }^{\text {H251 }}$ <br>
\hline $\mathrm{BT}^{-1324-A l t i c i n a e ~ s p . ~} 92$ \& Network 200 \& ${ }_{3}{ }^{\text {Cl135 }}$ \& ${ }_{5}^{5 \mathrm{Cl1333}}$ \& ${ }_{75 \mathrm{Cl132}}$ \& GMYC191 \& PTP208 \& H309 <br>
\hline  \& Network ${ }^{\text {Network }} 168$ \&  \& ${ }_{5}^{5 \mathrm{Cl1032}}$ \& ${ }_{75 \mathrm{ClO32}}$ \& GMYC028 \& ${ }^{\text {PTP }}$ PTP111 \& H396
+159 <br>
\hline $\mathrm{BT}^{-1340}$ - Galerucinae sp. 66 \& Network225 \& ${ }_{3 \mathrm{Cl} 1254}$ \& ${ }_{5} \mathrm{Cl246}$ \& $75 \mathrm{ClO60}$ \& GMYC078 \& PTP223 \& H344 <br>
\hline BT-1349-Alticinae sp. 51 \& Network32 \& $3 \mathrm{Cl1164}$ \& $5 \mathrm{Cl161}$ \& $75 \mathrm{Cl152}$ \& GMYC206 \& PTP136 \& H046 <br>
\hline BT-1350-Alticinae sp. 131 \& Network164 \& ${ }_{3}^{3 \mathrm{Cl1104}}$ \& ${ }_{5}^{5 \mathrm{Cl1103}}$ \& ${ }_{7551102}$ \& $\mathrm{GMYC2}^{\text {GM }}$ \& ${ }^{\text {PTP }}$ O77 ${ }^{\text {PTP }}$ \& H254 <br>
\hline  \& Network24 \& ${ }^{3 \mathrm{Cl1255}}$ \& ${ }_{5}^{5 \mathrm{Cl247}}$ \& $75 \mathrm{Cl233}$
$75 \mathrm{Cl038}$ \& GMYC231
GMYC103 \& ${ }^{\text {PTPTP232 }}$ \& H036 <br>
\hline  \& Network183 \& ( ${ }_{3}^{3 \mathrm{Cl} 1037} 3$ \& ${ }_{5}^{5 \mathrm{Cl} 1010}$ \& ${ }_{75 \mathrm{Cl010}}$ \& GMYC087 \& PTP204 \& H285 <br>
\hline $\mathrm{BT}^{-2077}{ }^{-}$Galerucinae sp. ${ }^{7}$ \& Network 109 \& ${ }_{3} \mathrm{Cl019}$ \& ${ }_{5}^{5 C 1020}$ \& ${ }_{75 \mathrm{Cl020}}$ \& GMYC134 \& PTP 267 \& H169 <br>
\hline $\mathrm{BT}^{-2078-}{ }^{\text {- Alticinae sp. } 265}$ \& Network60 \& ${ }_{3}{ }^{\text {Cl1 } 150}$ \& ${ }_{5}^{5 \mathrm{Cl1147}}$ \& $75 \mathrm{Cl143}$ \& GMYC068 \& ${ }^{\text {PTP142 }}$ \& H096 <br>
\hline $\mathrm{BT}^{-2081-}{ }^{\text {20 }}$ Eumolpinae sp. 42 \& Network 257 \& ${ }_{3}^{3 \mathrm{Cl1003}}$ \& ${ }_{5}^{5 \mathrm{ClO}} \mathbf{5}$ \& $75 \mathrm{Cl003}$ \& GMYC001 \& ${ }^{\text {PTP }}$ P003 \& H386 <br>
\hline BT-2082-Alticinae sp. 64 \& Network ${ }^{\text {d }}$ 2 \& $3 \mathrm{Cl1256}$
$3 \mathrm{Cl1187}$
3 \&  \& ${ }^{75 \mathrm{Cl234}}$ \& $\mathrm{GMYC043}^{\text {GMYC239 }}$ \& ${ }^{\text {PTP152 }}$ \& H113 <br>
\hline  \& Network ${ }^{\text {Network } 257}$ \& (3C1187 \& $5 \mathrm{5Cl182}$
$5 \mathrm{Cl003}$ \& $75 \mathrm{Cl170}$
75 Cl 1003 \& GMYC239
GMYC001 \& ${ }_{\text {PTP }}^{\text {PTP003 }}$ \& H233 <br>
\hline BT-2087-Alticinae sp. 49 \& Network141 \& ${ }_{3 C 1196}$ \& ${ }_{5} \mathrm{Cl191}$ \& $75 \mathrm{Cl179}$ \& GMYC032 \& PTP085 \& H218 <br>
\hline BT-2090-Alticinae sp. 81 \& Network209 \& $3 \mathrm{Cl084}$ \& $5 \mathrm{Cl1084}$ \& $75 \mathrm{Cl083}$ \& GMYC069 \& PTP143 \& H322 <br>
\hline BT-2093-Alticinae sp. 96 \& Network85 \& ${ }^{3 \mathrm{ClO}} \mathbf{3}$ \& ${ }_{5}^{5 \mathrm{ClO45}}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& ${ }^{\text {PTP169 }}$ \& H130 <br>
\hline  \& Network ${ }^{\text {Network48 }}$ \& (3C1257 \& ${ }^{5} \mathrm{Cl1249}$ \& $75 \mathrm{Cl235}$
$75 \mathrm{Cl074}$ \& GMYC149
GMYC216 \& ${ }^{\text {PTPTP174 }}$ \& H278 <br>
\hline  \& Network48 \&  \& ${ }_{5} \mathrm{Cl1075}$ \& $75 \mathrm{Cl074}$ \& GMYC216 \& PTP105 \& ${ }_{\text {H073 }}$ <br>
\hline $\mathrm{BT}^{-2109}{ }^{-210}$ Alticinae sp. ${ }^{\text {d }} 33$ \& Network 130 \& ${ }_{3} \mathrm{C} 1076$ \& ${ }_{5} \mathrm{Cl1077}$ \& ${ }_{75 \mathrm{Cl076}}$ \& GMYC170 \& PTP192 \& ${ }^{\text {H203 }}$ <br>
\hline BT-2113-Alticinae sp. 142 \& Network 132 \& 3 Cl 081 \& 5 C 1081 \& 75 Cl 1080 \& GMYC167 \& PTP189 \& H205 <br>
\hline $\mathrm{BT}^{-2119-}{ }^{\text {- }}$ Eumolpinae sp. ${ }^{16}$ \& Network 286 \& ${ }_{3}^{3 \mathrm{Cl1184}}$ \& ${ }_{5}^{5 \mathrm{Cl1180}}$ \& $75 \mathrm{Cl168}$ \& GMYC002 \& ${ }^{\text {PTP012 }}$ \& $\mathrm{H}_{4} 21$ <br>
\hline  \& Network7 \& ${ }_{3}^{3 \mathrm{Cl1258}}$ \& ${ }_{5}^{5 \mathrm{Cl1250}}$ \& ${ }_{75 \text { Cl236 }}$ \& GMYC261 \& PTP068 \& H007 <br>
\hline $\mathrm{BT}^{\text {BT }}$ 2136-Alticinae sp. ${ }^{2135}$ - ${ }^{\text {a }}$ (icinae sp. 110 \& Network ${ }^{\text {Network } 173}$ \& ${ }_{3}^{3 \mathrm{Cl122}}$ \& ${ }_{5}^{5 \mathrm{Cl} 1249}$ \& $75 \mathrm{Cl235}$
7501204 \& GMYC149 \& ${ }^{\text {PTPTP } 174}$ \& H268 <br>
\hline $\mathrm{BT}^{-2138}{ }^{-}$Alticinae sp. 115 \& Network10 \& 3 Cl 1030 \& $5 \mathrm{Cl031}$ \& $75 \mathrm{Cl031}$ \& GMYC253 \& PTP060 \& H010 <br>
\hline $\mathrm{BT}^{-2152}{ }^{\text {- }}$ Eumolpinae sp. 38 \& Network284 \& ${ }_{3}{ }^{\text {Cl1025 }}$ \& ${ }_{5}^{5 \mathrm{ClO}} 1026$ \& ${ }_{75 \mathrm{Cl026}}$ \& GMYC010 \& PTP017 \& H418 <br>
\hline $\mathrm{BT}^{-2154-G a l e r u c i n a e ~ s p ~}{ }^{17}$ \& Network ${ }^{\text {N }} 15$ \& $3 \mathrm{Cl1259}$
3 ClO 3
3 \& ${ }_{5}^{5 \mathrm{Cll251}}$ \& ${ }_{75 \text { 7 }}$ \& GMYC123 \& ${ }^{\text {PTP } 278}$ \& H180 <br>
\hline $\mathrm{BT}^{-2156}{ }^{-}$Cassidinae sp. 12 \& Network243 \& $3 \mathrm{Cl149}$ \& ${ }_{5} \mathrm{Cl146}$ \& $75 \mathrm{Cl142}$ \& GMYC278 \& PTP044 \& H367 <br>
\hline $\mathrm{BT}^{-}{ }^{2155}{ }^{-}$Eumolpinae sp. ${ }^{24}$ \& Network 278 \& ${ }_{3}^{3 \mathrm{Cl2} 260}$ \& ${ }_{5}^{5 \mathrm{Cl252}}$ \& ${ }_{75 \text { Cl097 }}$ \& GMYC013 \& ${ }^{\text {PTPO20 }}$ \& $\stackrel{H 41}{ }$ <br>
\hline  \& Network ${ }^{\text {Network224 }}$ \& $3 \mathrm{Cl1083}$
$3 \mathrm{Cl149}$ \& ${ }_{5}^{5 \mathrm{ClO83}}$ \& $75 \mathrm{Cl082}$
$75 \mathrm{Cl142}$ \& GMYC230 \& ${ }_{\text {PTP }}^{\text {PTP044 }}$ \& H034 <br>
\hline $\mathrm{BT}^{-2168}{ }^{-G}$ Galerucinae sp. 36 \& Network208 \& $3 \mathrm{Cl143}$ \& ${ }_{5} \mathrm{Cl141}$ \& $75 \mathrm{Cl138}$ \& GMYC146 \& PTP254 \& H320 <br>
\hline $\mathrm{BT}^{-}{ }^{2170} 0^{-}$Galerucinae sp. 34 \& Network183 \& 3 Cl 1037 \& $5 \mathrm{Cl1038}$ \& $75 \mathrm{Cl038}$ \& GMYC103 \& PTP232 \& H280 <br>
\hline $\mathrm{BT}^{-2173}{ }^{-}$-Eumolpinae sp. 34 \& Network 266 \& ${ }_{3}^{3 \mathrm{Cl1261}}$ \& ${ }_{5}^{5 \mathrm{Cll253}}$ \& ${ }_{75 \text { Cl238 }}$ \& GMYC027 \& ${ }^{\text {PTPO30 }}$ \& H397 <br>
\hline  \& Network ${ }^{\text {Network } 193}$ \& ( ${ }_{3}^{3 \mathrm{Cl1262}}$ \& ${ }_{5}^{5 \mathrm{Cll254}}$ \& $75 \mathrm{Cl239}$
$75 \mathrm{Cl022}$ \& GMYC120 \& ${ }_{\text {PTP } 274}$ \& H276
$H 300$ <br>
\hline $\mathrm{BT}^{-2180}$ - Alticinae sp. 75 \& Network149 \& ${ }_{3 \mathrm{Cl127}}$ \& ${ }_{5} \mathrm{Cl125}$ \& $75 \mathrm{Cl124}$ \& GMYC240 \& PTP082 \& H230 <br>
\hline $\mathrm{BT}^{-2181}{ }^{-}$Alticinae sp. 251 \& Network90 \& 3 Cl 264 \& ${ }_{5} \mathrm{Cl1256}$ \& $75 \mathrm{Cl240}$ \& GMYC053 \& PTP161 \& H143 <br>
\hline $\mathrm{BT}^{-2182}{ }^{-}$- Galerucinae sp. 29 \& Network95 \&  \& ${ }_{5}^{5 \mathrm{Cl1197}}$ \& $75 \mathrm{Cl184}$ \& GMYC124 \& ${ }^{\text {PTP }} 276$ \& H151 <br>
\hline $\mathrm{BT}^{-2189}{ }^{\text {- }}$ Hispinae sp. 8 \& Network 249 \& ${ }_{3}{ }^{\text {Cl1265 }}$ \& ${ }_{5}^{5 \mathrm{Cl257}}$ \& ${ }_{75 \mathrm{Cl241}}$ \& GMYC268 \& ${ }^{\text {PTPO46 }}$ \& H374 <br>
\hline $\mathrm{BT}^{-2191}{ }^{\text {- Criocerinae sp. }} 5$ \& Network 240 \& ${ }_{3}^{3 \mathrm{Cl2} 266}$ \& ${ }_{5}^{5 \mathrm{Cl258}}$ \& ${ }_{75 \mathrm{Cl242}}$ \& GMYC263 \& PTP056 \& H362 <br>
\hline  \& Network62 \&  \& ${ }_{5}^{5 \mathrm{Cl1252}}$ \& $75 \mathrm{Cl243}$
$75 \mathrm{Cl189}$ \& GMYC130 \& ${ }_{\text {PTP }}{ }^{28127}$ \& H098 <br>
\hline $\mathrm{BT}^{-}$2194-Alticinae sp. 127 \& Network4 \& $3 \mathrm{Cl194}$ \& $5 \mathrm{Cl189}$ \& $75 \mathrm{Cl177}$ \& GMYC247 \& PTP092 \& н004 <br>
\hline $\mathrm{BT}^{-}{ }^{\text {2196 }}{ }^{-}$Alticinae sp. 127 \& Network4 \& $3 \mathrm{Cl194}$ \& ${ }_{5} \mathrm{Cl1189}$ \& ${ }_{75 \mathrm{Cl177}}$ \& GMYC247 \& PTP092 \& ноо4 <br>
\hline $\mathrm{BT}^{-2197}{ }^{\text {- }}$ Eumolpinae sp ${ }^{\text {a }}{ }^{47}$ \& Network 280 \& ${ }_{\substack{3 \mathrm{Cl1268} \\ 3 \mathrm{Cl2} \\ \\ \\ \text { cle }}}$ \& ${ }_{\substack{5 \mathrm{Cll260} \\ 5 \mathrm{Cl219}}}$ \& ${ }^{75 \mathrm{Cl244}}$ \& GMYC015 \& ${ }^{\text {PTP022 }}$ \& H214 <br>
\hline  \& Network145 \&  \& ${ }_{5}^{5 \mathrm{Cll219}}$ \& $75 \mathrm{Cl206}$
$75 \mathrm{Cl0} 202$ \& GMYC190 \& ${ }_{\text {PTP }}{ }^{\text {PTP } 114}$ \& H224 <br>
\hline $\mathrm{BT}^{-2491}$-Alticinae sp. 85 \& Network 47 \& $3 \mathrm{Cl138}$ \& ${ }_{5} \mathrm{Cl1136}$ \& $75 \mathrm{Cl135}$ \& GMYC217 \& PTP104 \& но70 <br>
\hline $\mathrm{BT}^{-2492}{ }^{-}$Alticinae sp. 104 \& Network17 \& ${ }_{3}^{3 \mathrm{Cl1101}}$ \& ${ }_{5}^{5 \mathrm{Cl101}}$ \& ${ }_{75 \text { Cl100 }}$ \& GMYC235 \& PTP080 \& H027 <br>
\hline $\mathrm{BT}^{-2495}$ - Alticinae sp. 243 \& Network54 \& ${ }_{3}^{3 \mathrm{Cl} 1006}$ \& ${ }_{5}^{5 C 1006}$ \& $75 \mathrm{Cl1006}$ \& GMYC220 \& ${ }^{\text {PTP } 115}$ \& H089 <br>
\hline  \& Network 122 \& ${ }_{3}^{3 \mathrm{Cl1} 153}$ \& ${ }_{5}^{5 \mathrm{Cll150}}$ \& $75 \mathrm{Cl144}$ \& ${ }_{\text {GMYC157 }}$ \& ${ }^{\text {PTP } 187}$ \& H192 <br>
\hline BT-2499-Alticinae sp. 118 \& Network170 \& ${ }_{3}{ }^{\text {Cl053 }}$ \& ${ }_{5}{ }_{5} \mathrm{Cl1554}$ \& $75 \mathrm{Cl054}$ \& GMYC187 \& PTP108 \& H263 <br>
\hline BT-2502-Alticinae sp. 160 \& Network38 \& $3 \mathrm{Cl051}$ \& $5 \mathrm{Cl1052}$ \& $75 \mathrm{Cl052}$ \& GMYC151 \& PTP071 \& H054 <br>
\hline $\mathrm{BT}^{-2504}{ }^{\text {- }}$ Galerucinae sp. 098 \& Network 153 \& ${ }^{3 \mathrm{Cl} 1269}$ \& ${ }_{5}^{5 \mathrm{Cl261}}$ \& ${ }_{75 \mathrm{Cl245}}$ \& GMYC181 \& PTP243 \& H236 <br>
\hline $\mathrm{BT}^{-} 2505^{-}$Galerucinae sp. 46 \& Network 155 \& ${ }_{3}{ }^{\text {Cl026 }}$ \& ${ }_{5}^{5 \mathrm{ClO27}}$ \& ${ }_{7501027}$ \& GMYC178 \& PTP 249 \& ${ }^{\text {H241 }}$ <br>
\hline  \& Network ${ }^{\text {Network } 101}$ \& $3 \mathrm{Cll270}$
$3 \mathrm{Cl271}$ \& ${ }^{5} 5 \mathrm{Cl262}$ \& $75 \mathrm{Cl246}$
$75 \mathrm{Cl247}$ \& GMYC150 \&  \& $\begin{array}{r}\text { H307 } \\ \mathrm{H} 158 \\ \hline\end{array}$ <br>
\hline $\mathrm{BT}^{-2517}$ - Alticinae sp. 201 \& Network21 \& ${ }_{3 \mathrm{Cl} 1272}$ \& ${ }_{5} \mathrm{Cl1264}$ \& $75 \mathrm{Cl248}$ \& GMYC233 \& PTP076 \& H032 <br>
\hline BT-2518-Alticinae sp. 70 \& Network91 \& 3 Cl 1093 \& $5 \mathrm{Cl093}$ \& $75 \mathrm{Cl092}$ \& GMYC055 \& PTP160 \& H146 <br>
\hline $\mathrm{BT}^{-2519-}{ }^{\text {2 }}$ Alticinae sp. 153 \& Network46 \& ${ }_{3}^{3 \mathrm{Cl2} 273}$ \& ${ }_{5}^{5 \mathrm{Cl1265}}$ \& ${ }_{75 \mathrm{Cl249}}$ \& GMYC218 \& ${ }^{\text {PTP } 106}$ \& H068 <br>
\hline  \& Network 182 \& $3 \mathrm{Cl121}$
$3 \mathrm{Cl089}$ \& ${ }_{5}^{5 \mathrm{Cl1119}}{ }_{5} \mathrm{Cl089}$ \& ${ }^{75 \mathrm{Cl118}}$ \& GMYC106 \& ${ }^{\text {PTP } 235}$ \& H 279
$\mathrm{HO57}$ <br>
\hline ${ }_{\text {BT }}^{\text {BT }}$ - ${ }_{2523} 522$-Alticinae sp. ${ }^{\text {alicinae sp. }} 153$ \& Network41 \& $3 \mathrm{Cl1089}$
$3 \mathrm{Cl273}$ \& ${ }_{5}^{5 \mathrm{Cl1089}}$ \& $75 \mathrm{ClO88}$
$75 \mathrm{Cl249}$ \& GMYC197 \& ${ }_{\text {PTP }}{ }^{\text {PTP } 126}$ \& H057 <br>
\hline $\mathrm{BT}^{-2529-}$ - ${ }^{\text {alerucinae sp. }} 55$ \& Network201 \& $3 \mathrm{Cl1087}$ \& ${ }_{5} \mathrm{Cl1087}$ \& $75 \mathrm{Cl086}$ \& GMYC107 \& PTP231 \& н310 <br>
\hline BT-2544-Alticinae sp. 97 \& Network 13 \& ${ }^{3 \mathrm{ClO}} \mathbf{3} 5$ \& ${ }_{5}^{5 \mathrm{Cl} 1036}$ \& ${ }_{75 \mathrm{Cl036}}$ \& GMYC258 \& ${ }^{\text {PTP }} 065$ \& H021 <br>
\hline $\mathrm{BT}^{-2546}{ }^{-}$- Cassidinae sp. 4 \& Network 253 \& $3 \mathrm{3C1038}$ \& ${ }_{5}^{5 C 1039}$ \& $75 \mathrm{Cl039}$ \& GMYC284 \& ${ }^{\text {PTP053 }}$ \& H380 <br>
\hline  \& Network ${ }^{\text {Network } 15}$ \& $3 \mathrm{Cl1149}$
3
$3 \mathrm{Cl274}$ \& ${ }^{5} 5 \mathrm{Cl1146}$ \& $75 \mathrm{Cl142}$
$75 \mathrm{Cl1250}$ \& GMYC278 \& ${ }^{\text {PTP }}$ PTP44 ${ }^{\text {P }}$ \& H366
$\mathrm{HO23}$ <br>
\hline BT-257-Alticinae sp. 18 \& Network59 \& ${ }_{3}{ }^{\text {C1158 }}$ \& ${ }_{5} \mathrm{Cl1155}$ \& ${ }_{75 \mathrm{Cl147}}$ \& GMYC251 \& PTP067 \& H095 <br>
\hline $\mathrm{BT}^{-2573-}$ - Cassidinae sp. 12 \& Network243 \& $3 \mathrm{Cl1149}$ \& ${ }_{5} \mathrm{Cl1146}$ \& $75 \mathrm{Cl142}$ \& GMYC278 \& PTP044 \& H366 <br>
\hline $\mathrm{BT}^{-} 2575{ }^{-}$- Eumolpinae sp. ${ }^{31}$ \& Network 287 \& ${ }_{3}^{3 \mathrm{Cl1275}}$ \& ${ }_{5}^{5 \mathrm{Cl267}}$ \& $75 \mathrm{Cl251}$ \& GMYC005 \& PTP013 \& ${ }^{\mathrm{H} 423}$ <br>
\hline BT-2576-Alticinae sp. 96 \& Network85 \& - ${ }_{3}^{3 \mathrm{ClO} 1044}$ \& $5 \mathrm{ClO45}$
$5 \mathrm{Cl038}$

5 \& $75 \mathrm{ClO45}$
75 Cl 38 \& GMYC051
GMYC103 \&  \& H 131
H 280 <br>
\hline BT-2579-Alticinae sp. 115 \& Network 10 \& $3 \mathrm{Cl030}$ \& ${ }_{5} \mathrm{Cl031}$ \& $75 \mathrm{ClO31}$ \& GMYC253 \& PTP060 \& H014 <br>
\hline $\mathrm{BT}^{-2629-}{ }^{\text {- }}$ Eumolpinae sp. 29 \& Network271 \& ${ }_{3}{ }^{\text {Cl117 }}$ \& ${ }_{5}^{5 \mathrm{Cl115}}$ \& ${ }_{75 \mathrm{Cl114}}$ \& GMYC019 \& PTP024 \& ${ }^{\mathrm{H} 403}$ <br>
\hline $\mathrm{BT}^{-2631}$ - Alticinae sp. 135 \& Network 126 \& ${ }_{3}^{3 \mathrm{Cl1276}}$ \& ${ }_{5}^{5 \mathrm{Cl} 1268}$ \& ${ }_{75 \text { Cl252 }}$ \& GMYC173 \& ${ }^{\text {PTP181 }}$ \& H199 <br>
\hline  \& Network ${ }^{\text {Network25 }}$ \& (3C1122 \& ${ }^{5 \mathrm{5Cl120}} 5$ \& $75 \mathrm{Cl119}$
$75 \mathrm{Cl003}$ \& GMYC158
GMYC001 \& ${ }_{\text {PTP } 186}$ \& H195 <br>
\hline $\mathrm{BT}^{-2638}$ - ${ }^{\text {Gamorucinae sp. }}$ sp 61 \& Network93 \& $3 \mathrm{Cl041}$ \& ${ }_{5} \mathrm{Cl} 1042$ \& $75 \mathrm{ClO42}$ \& GMYC131 \& PTP 279 \& H149 <br>
\hline $\mathrm{BT}^{-2640-}{ }^{-}$Alticinae sp. 104 \& Network161 \& $3 \mathrm{Cl235}$ \& $5 \mathrm{Cl1229}$ \& $75 \mathrm{Cl216}$ \& GMYC236 \& PTP078 \& H250 <br>
\hline BT-2641-Alticinae sp. 97 \& Network 13 \& ${ }_{3} \mathrm{Cl1035}$ \& ${ }_{5}^{5 \mathrm{Cl1036}}$ \& ${ }_{75 \mathrm{Cl036}}$ \& GMYC258 \& ${ }^{\text {PTP }} 065$ \& H017 <br>
\hline $\mathrm{BT}^{-2642}{ }^{-}$Eumolpinae sp. 19 \& Network265 \& ${ }_{3}^{3 \mathrm{ClO} 1031}$ \& ${ }_{5}^{5 \mathrm{ClO} 32}$ \& $75 \mathrm{Cl032}$ \& GMYC028 \& PTP004 \& H396 <br>
\hline  \& Network52 \&  \& ${ }^{5} \mathrm{5C1002}$ \& $75 \mathrm{Cl002}$
$75 \mathrm{Cl071}$ \& \& ${ }_{\text {PTP }}{ }^{\text {PTP }} 114$ \& H086
H359 <br>
\hline $\mathrm{BT}^{-2646}$-Alticinae sp. 96 \& Network85 \& $3 \mathrm{Cl044}$ \& $5 \mathrm{Cl1045}$ \& $75 \mathrm{Cl045}$ \& GMYC051 \& PTP169 \& H131 <br>
\hline $\mathrm{BT}^{-2657} \mathrm{C}^{-}$Alticinae sp. 1 \& Network 186 \& ${ }_{3 \mathrm{Cl127}}$ \& ${ }_{5}^{5 \mathrm{Cl1269}}$ \& ${ }_{75 \mathrm{Cl25}}$ \& GMYC093 \& PTP199 \& H284 <br>
\hline $\mathrm{BT}^{-2658-}{ }^{\text {- }}$ Alticinae sp. ${ }^{41}$ \& Network136 \& ${ }_{\substack{3 \mathrm{Cll223} \\ 3 \mathrm{ClO} \\ 3}}$ \& ${ }_{\substack{5 C 1218}}^{5 \mathrm{Cl} 1075}$ \& ${ }_{75 \mathrm{Cl205}}$ \& GMYC161 \& ${ }^{\text {PTP } 177}$ \& ${ }^{\text {H211 }}$ <br>
\hline  \& Network48 \&  \& ${ }^{5} 5 \mathrm{ClO75}$ \& $75 \mathrm{ClO74}$
$75 \mathrm{Cl254}$ \& GMYC216 \& ${ }_{\text {PTP }}{ }^{\text {PTP47 }}$ \& H375 <br>
\hline $\mathrm{BT}^{-2662}{ }^{2}$ - Alticinae sp. 87 \& Network88 \& $3 \mathrm{Cl028}$ \& $5 \mathrm{Cl1029}$ \& $75 \mathrm{Cl029}$ \& GMYC061 \& PTP164 \& H140 <br>
\hline $\mathrm{BT}^{-2663}{ }^{-}{ }^{-}$Hispinae sp. 5 \& Network 246 \& ${ }_{3} \mathrm{Cl130}$ \& ${ }_{5}^{5 C 1128}$ \& ${ }_{75 \mathrm{Cl127}}$ \& GMYC287 \& PTP034 \& H371 <br>
\hline ${ }^{\text {BT }}{ }^{-2665}{ }^{2665}$ - Criocerinae sp. ${ }^{\text {Alticinae sp. }} 89{ }^{4}$ \& Network ${ }^{\text {Network } 199}$ \& $3 \mathrm{Cl1189}$
$\begin{aligned} & 3 \mathrm{Cl} 279\end{aligned}$
3 \& ${ }_{\substack{5 \mathrm{Cl1184} \\ 5 \mathrm{Cl271}}}$ \& $75 \mathrm{Cl172}$
75 Cl 255 \& GMYC262 \& ${ }^{\text {PTPTP }} 172$ \& H361 <br>
\hline ${ }^{\text {BT }}{ }^{\text {2670-Alticinae sp. }}$ 51 \& Network 41 \& ${ }_{3} \mathrm{Cl1089} 9$ \& ${ }_{5} \mathrm{C} 1089$ \& $75 \mathrm{Cl088}$ \& GMYC197 \& PTP126 \& H058 <br>
\hline $\mathrm{BT}^{-2671-}{ }^{\text {- }}$ Galerucinae sp. 72 \& Network 231 \& ${ }_{3}{ }^{\text {Cl118 }}$ \& ${ }_{5}^{5 \mathrm{Cl1116}}$ \& $75 \mathrm{Cl115}$ \& GMYC073 \& ${ }^{\text {PTP } 225}$ \& H352 <br>

\hline  \& Network41 \& | $3 \mathrm{3Cl1089}$ |
| :--- |
| $3 \mathrm{Cl280}$ | \& ${ }^{5} \mathrm{5C1089}$ \& $75 \mathrm{ClO88}$

$75 \mathrm{Cl1256}$ \& GMYC197
GMYC184 \& ${ }_{\text {PTP }}{ }^{\text {PTP } 266}$ \& H058 <br>
\hline $\mathrm{BT}^{-2697}$-Alticinae sp. 53 \& Network28 \& $3 \mathrm{Cl281}$ \& ${ }_{5} \mathrm{Cl1273}$ \& $75 \mathrm{Cl257}$ \& GMYC208 \& PTP128 \& H040 <br>
\hline ${ }^{\text {BT }}{ }^{-2698}{ }^{\text {2 }}$-Eumolpinae sp. 071 \& Network 276 \& ${ }_{3}{ }_{3} \mathrm{Cl282}$ \& ${ }_{5} \mathrm{Cl1274}$ \& $75 \mathrm{Cl258}$ \& GMYC016 \& PTP026 \& H408 <br>
\hline BT-2705-Alticinae sp. 94 \& Network140 \& ( ${ }_{\text {3Cl283 }}^{3 \mathrm{Cl284}}$ \& ${ }_{5}^{5 \mathrm{Cl275}}$ \& $75 \mathrm{Cl259}$
751260 \& GMYC148
GMYC238 \& PTP173
PTP081 \& H 216
H 235 <br>
\hline
\end{tabular}

## Appendix F

## Acknowledgement

Ich danke meinem Doktorvater Prof. Dr. J. Wolfgang Wägele dafür, dass er mir dieses spannende, vielseitige Projekt anvertraut hat, sowie für die Betreuung, jegliche Unterstützung und das Vertrauen in meine Arbeit.

Bei Prof. Dr. Thomas Wagner bedanke ich mich für die Übernahme des Zweitgutachtens sowie seine unverzichtbare Unterstützung bei der Sortierung der Blattkäfer und allen taxonomischen Aspekten des Projekts.

Prof. Dr. Maximilian Weigend und Prof. Dr. Christian Borgemeister danke ich für die Übernahme der Gutachtertätigkeit und ihre Teilnahme an der Prüfungskommission.

Besonders herzlich danke ich Dr. Marcell Peters für die nun schon jahrelang währende gute Zusammenarbeit. Seine Unterstützung bei der Erarbeitung und Konzeption von Fragestellungen, der Diskussion von Ergebnissen sowie seine Expertise in der ökologischen Statistik waren für mich von unschätzbarem Wert.

Auch Dr. Dirk Ahrens sei an dieser Stelle vielmals gedankt für seine Unterstützung und viele Diskussionen und Denkanstöße besonders zum Thema 'molecular species delimitation'. Prof. Dr. Michael Schmitt, der auch am Antrag für dieses Projekt beteiligt war, danke ich für eine Übersicht der Chrysomeliden-Literatur.

Ganz besonders möchte ich meinen Kooperationspartnern in Ecuador danken: Carlos Iñiguez Armijos, Dr. Carlos Iván Espinosa und Yadira González Rentería von der UTPL haben mir bei der Beantragung der Exportgenehmigungen geholfen. Besonders Carlos Iñiguez ist zu meinem wichtigsten Ansprechpartner vor Ort geworden und seine Hilfe bei administrativen Fragen war unersetzlich. Prof. Dr. Clifford Keil hat mich in der entomologischen Sammlung der Pontificia Universidad Católica del Ecuador in Quito willkommengeheißen und seine Hilfe beim Export der Proben angeboten. Ich danke dem Ministerio del Ambiente del Ecuador für die Erteilung von Forschungsgenehmigungen und Nature and Culture International (NCI) für den Zugang zu den Untersuchungsgebieten.

Dr. Jürgen Homeier und Dr. Gunnar Brehm haben mir viele Informationen und Materialien zum Forschungsgebiet und ihrer Arbeit im Podocarpus National Park zur Verfügung gestellt und Dr. Marcus Lehnert hat besonders in der Anfangsphase des Projekts viel Vorarbeit und Hilfe bei der Organisation geleistet. Ihnen möchte
ich an dieser Stelle vielmals danken. Gunnar Brehm danke ich außerdem sehr herzlich dafür, dass er beim Lichtfang Chrysomeliden für mich mitgesammelt hat. Auch Marc Adams und Dr. Florian Bodner haben mir Blattkäfer aus ihren Proben zur Verfügung gestellt und haben ebenso wie Daniel Kübler für ein gutes Zusammenarbeiten und -leben auf der ECSF gesorgt und mich häufig mit Rat und Tat unterstützt. Dankeschön! An dieser Stelle sei auch den beiden Stationsmanagern Dr. Felix Matt und Jörg Zeilinger für die logistische Unterstützung gedankt.
Weiterhin danke ich meinem Co-Doktoranden von ABA-Ecuador Fabian Fasshauer, der einen Teil meiner Proben mit nach Deutschland gebracht hat, Dr. Florian Werner für die Bereitstellung von Fotos und Dr. Jürgen Schmidl für Informationen über Barkspraying und rindenbewohnende Chrysomeliden im Podocarpus NP.

Des Weiteren danke ich meinen Hilfskräften, die mir geholfen haben, das enorme Pensum an Feld- und Laborarbeit zu bewältigen. Hier danke ich besonders Daniel Sotomayor und Jhon Castillo, die während meiner Abwesenheit in Ecuador zuverlässig weiter Käfer gesammelt, sortiert und für den Export vorbereitet haben, weiterhin Thorsten Klug, Jan Struwe, Peter Schwalb, Jana Thormann, Cathrin Conrad, Janine Schmidt und Philipp Erkeling, die mir beim Sammeln, Sortieren, Barcoden und Fotografieren der Blattkäfer geholfen haben.

Ich danke all meinen netten Kollegen und Freunden am ZFMK, die zu einer so schönen Arbeitsatmosphäre beigetragen haben. Ein besonderer Dank gilt Dr. Patrick Kück, der mich stets ermutigt und meine Arbeit unter anderem mit vielen nützlichen Perl-Skripten und seiner $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$-Expertise unterstützt hat. Vielen Dank! Ruth Moenikes-Peis danke ich für die Zusammenstellung von umfangreicher Literatur über Blattkäfer und Prof. em. Dr. Rainer Keller für die taxonomische Bestimmung einiger Cassidinen. Ich danke Yvonne Evertz, Claudia Etzbauer und Karin Ulmen für die Verwaltungsarbeit sowie die Hilfe beim Bestellen und Zusammentragen von Sammel-Equipment und die Bereitstellung von Labormaterialien bzw. Präparationsund Sammlungs-Utensilien.

Von ganzem Herzen danke ich meinen Eltern Sigrid und Thomas Thormann für ihren stetigen Rückhalt und ihr Vertrauen in mein Tun sowie meiner Schwester Jana, auf deren Unterstützung ich mich immer verlassen kann.

## Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfasst, keine anderen Quellen und Hilfsmittel als die angegebenen benutzt und die Stellen der Arbeit, die anderen Werken dem Wortlaut oder Sinn nach entnommen sind, kenntlich gemacht habe.

Diese Arbeit hat in dieser oder ähnlichen Form keiner anderen Prüfungsbehörde vorgelegen.

July 21, 2015

