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Summary

This thesis lies at the crossroads of representation theory and combinatorics. It is sub-

divided into two parts, each of which is devoted to a particular combinatorial technique

in the study of weight modules.

In the first part, we start out by a short review of crystal bases for finite-dimensional

simple modules of the quantum group Uq(sln(C)) and for Kirillov–Reshetikhin modules

of the quantum affine algebra Uq(s̃ln(C)). We identify crystal bases with combinatorially

defined particle configurations on a lattice. Such particle configurations consist of a finite

number of particles distributed along a line segment (the finite/classical case) or along a

circle (the affine case). There are two versions present: Fermionic configurations where

only one particle is allowed at each position, and bosonic configurations where arbitrarily

many particles are admissible. Under this identification, Kashiwara crystal operators

correspond to particle propagation operators, pushing particles from one position in the

lattice to another. These operators satisfy the plactic relations, and we want to describe

the algebras that act faithfully on the particle configurations.

It is known that the nilTemperley–Lieb algebra acts faithfully on fermionic particle

configurations on a line segment. For bosonic particle configurations on line segments,

we prove faithfulness of the action of the so-called partic algebra, which we define as

a quotient of the plactic algebra. We construct a basis of the partic algebra, and we

describe its center.

The question becomes substantially harder in the affine case. For fermionic particle

configurations on a circle it is the affine nilTemperley–Lieb algebra that acts faithfully.

This is an infinite dimensional algebra defined by generators and relations. Our main

results for the affine nilTemperley–Lieb algebras include different bases of the algebra, an

explicit description of its center, and a classification of its simple modules. Furthermore,

we define embeddings of the affine nilTemperley–Lieb algebra on N generators into the

affine nilTemperley–Lieb algebra on N + 1 generators.

For bosonic particle configurations on a circle we find an interesting family of additional

relations that are not obvious from the classical case.
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Summary

The second part of the thesis exhibits a different combinatorial approach to weight

modules, namely that of discrete geometry applied to the support of a module. This time

we consider the representation theory of generalized Weyl algebras, a class of algebras

that generalizes the definition of the Weyl algebra, the algebra of differential operators

on a polynomial ring. Its weight modules allow a beautiful description in terms of lattice

points and hyperplanes.

We apply a theorem by Musson and Van den Bergh [MB98] to a special class of gener-

alized Weyl algebras, thereby proving a Duflo type theorem stating that the annihilator

of any simple module is in fact given by the annihilator of a simple highest weight

module.
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Introduction

The interplay of representation theory and combinatorics builds on a long tradition. In

particular the study of algebras that admit a notion of highest weight modules has turned

out to be remarkably fruitful. Famous examples are provided by universal enveloping

algebras of Lie algebras, quantum groups and Weyl algebras. Within the usually un-

fathomable category of all modules over such an algebra, it is the subcategory of weight

modules that allows for neat combinatorial descriptions. Weight combinatorics have been

studied extensively over the past decades, and they continue to be a source of beautiful

results with many applications in algebra, geometry and mathematical physics.

In all of the examples above, the algebra is generated by a nice subalgebra whose rep-

resentation theory is well understood – e.g. a commutative subalgebra – together with

some additional generators that come in pairs (often called “positive” and “negative”

generators) so that the product or the commutator of each such pair lies in the nice

subalgebra. Weight modules are fully reducible modules over the nice subalgebra, the

irreducible summands are called the weight spaces of the module. The labelling set of the

isomorphism classes of simple modules over the nice subalgebra is called set of weights.

The positive and negative generators take weight spaces to weight spaces (or 0) in a

controlled way – ideally, each weight space is taken to one particular other weight space,

so one gets an action of the positive and negative generators on the set of weights.

The classical example is the simple Lie algebra sln(C) with its triangular decomposition

into upper and lower triangular matrices and the commutative subalgebra of diagonal

matrices h, together with its highest weight modules in category O with weights in h∗,

see [BGG76], [Hum08]. This can be generalized to a theory of Lie algebras with a

triangular decomposition as in [MP95, Sections 2.1, 2.2], [RCW82]. Also the notion of

category O can be extended to Lie algebras with a triangular decomposition [Kha15].

Some characterizations of simple highest weight modules carry over from the complex

semisimple Lie algebra case to more general Lie algebras with a triangular decomposition

[MZ13].
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Introduction

An important result about highest weight modules for semisimple complex Lie algebras

is Duflo’s theorem [Duf77]. It states that inside the universal enveloping algebra, all the

annihilators of simple modules are given by the annihilators of simple highest weight

modules. In contrast, the simple modules themselves are far from being classified in

general. This theorem underlines the significance of highest weight modules inside the

category of all modules over a semisimple complex Lie algebra. There are some Duflo

type theorems for other families of algebras known, see Section II.1.1. One result of this

thesis is the proof of a Duflo type theorem for a class of generalized Weyl algebras.

The definition of weight modules opens many possibilities to apply combinatorics to

representation theoretic questions. Some of the tools that also appear in this thesis

include crystal bases, Young tableaux, and geometry of weight lattices. But also further

combinatorial techniques like gradings, central characters, diagrammatical calculus, and

(affine) cellular structures are present.

Certain crystal bases for highest weight modules of the quantum group Uq(sln(C)) and

the quantum affine algebra Uq(s̃ln(C)) can be identified with particle configurations on

a lattice, so that the Kashiwara operators correspond to particle propagation opera-

tors. Such particle configurations were used in [KS10, Theorem 1.3] to describe the

ŝln(C)-Verlinde algebras, which in turn can be identified with a quotient of the quantum

cohomology ring of the Grassmannian, see e.g. [Buc03], [Pos05] and see [ST97] for a

presentation by generators and relations. An alternative combinatorial realisation in

terms of vicious and osculating walkers is given e.g. in [Kor14].
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Introduction

Overview of the thesis

The thesis consists of two parts. The first part on “Particle configurations and crystals”

is split into three chapters, the second part on “Generalized Weyl algebras” contains

a single chapter. All chapters are independent from each other, although we include

cross-references to indicate connections among them.

Conventions and notation

In both parts of the thesis we use the following conventions unless stated otherwise:

By a module, we always mean a left module. All rings and algebras are associative and

unital.

We denote our ground field by k. If the ground field should satisfy any additional

properties (uncountable, algebraically closed and/or of characteristic 0) we indicate this

in the beginning of the chapter or section where it applies. In Chapter I.1 we work over

the complex numbers k = C. In most of Chapters I.2 and I.3 it suffices to assume that k

be a (commutative) ring, for details see Remark I.2.1.3.

We use δ to denote the Kronecker symbol, i.e. δxy = 1 if x = y and δxy = 0 if x ≠ y. The

symmetric group generated by m− 1 simple transpositions (i, i+ 1) is denoted by Sm.

Part I: Particle configurations and crystals

The first part of the thesis deals with the (classical and affine) plactic algebra, and

two interesting quotients: The affine nilTemperley–Lieb algebra, a quotient of the affine

local plactic algebra that has been known before, and the partic algebra, a quotient of

the classical local plactic algebra that we introduce in this thesis. These algebras are

defined by generators and relations over the ground field (or ground ring) k, and they

appear in the study of representation theory and crystal combinatorics of U(sln(C)) and

U(s̃ln(C)).

Let us briefly introduce these algebras and explain where they come from and why they

are interesting. After that we give an overview of our results. For precise definitions and

statements see the cross-references.
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The classical (local) plactic algebra is generated by a1, . . . , aN−1 subject to the so-called

plactic relations

aiaj = ajai for ∣i − j∣ > 1,

aiai−1ai = aiaiai−1 for 2 ≤ i ≤ N − 1,

aiai+1ai = ai+1aiai for 1 ≤ i ≤ N − 2.

For the affine version of the plactic algebra, take generators a1, . . . , aN−1, a0 with “the

same” relations, except that the indices of the generators are now read modulo N .

In particular we have additional relations a0aN−1a0 = a0a0aN−1 and a0aN−1aN−1 =

aN−1a0aN−1, and the generators a0 and aN−1 are neighbours that do not commute (Def-

inition I.3.1.2).

The classical plactic algebra was studied in [FG98]. It is a quotient of the algebra over

the “monoide plaxique” defined by Lascoux and Schützenberger [LS81]. These relations

are also known as 0-Serre relations from a specialisation of the negative or positive half

of Uq(slN(C)) to q = 0 (Remark I.1.1.9), and they are precisely the relations satisfied

in the Hall monoid from [Rei01], [Rei02] (classical type A) and [DD05] (affine type Â).

Moreover, the Kashiwara operators on certain crystals of type A and Â satisfy the above

relations (Section I.1.1). These are the crystals B(ωk) and B(kω1) associated with

the alternating representation Λk(CN) and the symmetric representation Symk(CN)

of slN(C), and in the affine case the corresponding Kirillov-Reshetikhin crystals, as

discussed in Chapter I.1.

In [KS10], the plactic algebra appears in the study of certain particle configurations. This

is also our point of view in Chapter I.2 and I.3: Combinatorially, a particle configuration

is defined as a tuple (k1, . . . , kN−1, k0) in ZN≥0 (called bosonic) or in {0,1}N (fermionic).

One can think of such a tuple as a finite number of particles distributed on a discrete

lattice of N positions on a line segment (the finite/classical case) or along a circle (the

affine case). In bosonic configurations, arbitrarily many particles are admissible, while

in fermionic configurations at most one particle is allowed at each position.

1 2 3 4 5 6 7 0

0
1

2

3
4

5

6

7

Example for N = 8: A bosonic particle configuration on a line segment and a fermionic

particle configuration on a circle.

14



Introduction

The generators ai act on the particle configurations (or their k-span) by lowering ki

by 1 and increasing ki+1 by 1, if possible. If not possible, i.e. because ki = 0 or, in

the fermionic case, ki+1 = 1, the result is 0. In the picture this would correspond to

(clockwise) propagation of a particle from position i to i + 1 (Sections I.2.4 and I.3.4).

This action can be identified with the action of Kashiwara operators f̃i on crystals B(ωk)

and B(kω1) (Section I.1.2).

On affine particle configurations, the additional generator a0 takes a particle from po-

sition 0 and moves it to position 1. If we consider the k[q]-span instead of the k-span,

we can keep track of the application of a0 by multiplication with an additional factor q

(bosonic) or ±q (fermionic).

In Chapter I.2 we describe a quotient of the affine plactic algebra that acts faithfully

on the k[q]-span of fermionic particle configurations on a circle. This is the affine

nilTemperley–Lieb algebra nT̂LN : It is defined by the additional nil relation a2
i = 0 for

all i. Together with the plactic relations we obtain immediately that also aiai±1ai = 0

for all i, where we take the indices modulo N . The subalgebra of nT̂LN generated by

a1, . . . , aN−1 is the (classical/finite) nilTemperley–Lieb algebra nTLN .

Chapter I.3 is devoted to the quotient of the classical plactic algebra that acts faithfully

on the k-span of the bosonic particle configurations on a line segment. The additional

defining relation is aiai−1ai+1ai = ai+1aiai−1ai for all 2 ≤ i ≤ N −2. We call this the partic

algebra because of its faithful action on the particle configurations. The corresponding

action of the affine plactic algebra on bosonic particle configurations on a circle is much

harder to describe: We encounter an infinite family of additional relations of the form

ami+1a
m
i+2 . . . a

m
i−2a

m
i−1a

2m
i ami+1a

m
i+2 . . . a

m
i−2a

m
i−1

= amj+1a
m
j+2 . . . a

m
j−2a

m
j−1a

2m
j amj+1a

m
j+2 . . . a

m
j−2a

m
j−1 for all i, j ∈ Z/NZ, m ∈ Z≥1,

and it is not yet clear whether these relations together with aiai−1ai+1ai = ai+1aiai−1ai

for all i ∈ Z/NZ suffice to produce a faithful action.
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The following picture recaps the relationship among the algebras studied in Part I:

aiaj = ajai if ∣i − j∣ > 1

aiai−1ai = a
2
i ai−1

aiai+1ai = ai+1a
2
i

aiaj = ajai if ∣i − j∣ > 1

aiai−1ai = 0

aiai+1ai = 0

a2
i = 0

aiaj = ajai if ∣i − j∣ > 1

aiai−1ai = a
2
i ai−1

aiai+1ai = ai+1a
2
i

ai+1a
2
i ai−1 = aiai−1ai+1ai

(affine) plactic algebra

(affine) partic algebra(affine) nilTemperley–Lieb algebra

a2
i = 0 ai+1a

2
i ai−1 = aiai−1ai+1ai

acts on acts on

classical and affine versions of

fermionic particle configurations/

crystal B(ωk)

classical and affine versions of

bosonic particle configurations/

crystal B(kω1)
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Chapter I.1: Crystal bases and particle configurations

The first chapter is mainly devoted to a review of crystals of classical type A and affine

type Â. We briefly recall the basic definitions of quantum groups and quantum affine alge-

bras, their finite dimensional irreducible modules, and their crystal bases in Section I.1.1.

We consider the action of Kashiwara operators on the crystals B(ωk) and B(kω1) for

the simple Uq(slN(C))-modules Lq(ωk) and Lq(kω1), corresponding to the alternating

representation Λk(CN) and the symmetric representation Symk(CN) of U(slN(C)), re-

spectively. In affine type Â we study the crystals of the Kirillov-Reshetikhin modules

W k,1 and W 1,k that are isomorphic to Lq(ωk) and Lq(kω1) as Uq(slN(C))-modules, re-

spectively. In this special case it is particularly easy to describe this operation. We make

the following two observations for classical type A, as well as the analogous observations

for Kirillov–Reshetikhin crystals in affine type Â:

� On B(ωk) and B(kω1), the Kashiwara operators satisfy the plactic relations, i.e. the

0-Serre relations.

� The crystals B(ωk) and B(kω1) can be identified with fermionic and bosonic particle

configurations, so that the action of the Kashiwara operators is identified with particle

propagation operators. These fermionic and bosonic particle configurations are defined

purely combinatorially in Section I.1.2.

Chapter I.2: Affine nilTemperley–Lieb algebras

The main result of this chapter is a description of the center of the affine nilTemperley–

Lieb algebra nT̂LN over any ground field. Only two tools are used: a fine grading

on nT̂LN and a faithful representation of nT̂LN on fermionic particle configurations

on a circle. We give another, more direct proof of the faithfulness result from [KS10,

Proposition 9.1] by constructing a basis for nT̂LN that is especially adapted to the

problem. This basis has further advantages: It can be used to prove that the affine

nilTemperley–Lieb algebra is finitely generated over its center. Hence, central quotients

are finite dimensional. Also, it can be used to exhibit an explicit embedding of nT̂LN

into nT̂LN+1 defined on basis elements that otherwise would not be apparent, since

the defining relations of these algebras are affine, and there is no embedding of the

corresponding Coxeter graphs.

As mentioned above, the affine nilTemperley–Lieb algebra nT̂LN acts faithfully on

fermionic particle configurations on a circle. This is the graphical representation from

[KS10] (see also [Pos05]), which we use in our description of the center of nT̂LN . We

17
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consider circular particle configuration having N positions, where k ≤ N particles are

distributed among the positions on the circle so that there is at most one particle at

each position. On the space

spank[q] {fermionic particle configurations of k particles on a circle with N positions},

the generators ai of nT̂LN act by sending a particle lying at position i to position i + 1.

Additionally, the particle configuration is multiplied by ±q when applying a0. The precise

definition is given in Section I.2.4, here is a picture that illustrates the action:

0
1

2

3
4

5

6

7
0

1

2

3
4

5

6

7
0

1

2

3
4

5

6

7

Example for N = 8: Application of a3a2a5 to the particle configuration (0,1,2,5) gives

(0,1,4,6).

We proceed as follows: In Section I.2.1, we introduce our notation. In Section I.2.2

we explain the connection between affine nilTemperley–Lieb algebras and many other

algebras, such as the affine plactic algebra and the affine Temperley–Lieb algebra, and

we briefly recall the relationship with the small quantum cohomology ring of the Grass-

mannian. The ZN -grading of nT̂LN is given in Section I.2.3, and its importance for

the description of the center is discussed. In Section I.2.4, we give a detailed definition

of the nT̂LN -action on fermionic particle configurations on a circle. Theorem I.2.4.5 of

that section recalls [KS10, Proposition 9.1] stating that the representation is faithful. In

[KS10], this fact is deduced from the finite nilTemperley–Lieb algebra case, as treated

in [BJS93] and [BFZ96, Proposition 2.4.1]. We give a complete, self-contained proof

in Section I.2.6. Our proof is elementary and relies on the construction of a basis in

Section I.2.5. We use a normal form algorithm that reorders the factors of a nonzero

monomial. Our basis is reminiscent of the Jones normal form for reduced expressions

of monomials in the Temperley–Lieb algebra, as discussed in [RSA14], and is charac-

terised in Theorem I.2.5.7 as follows (see also Theorem I.2.10.1 which gives a different

description):

Theorem (Normal form). Every nonzero monomial in the generators aj of nT̂LN can

be rewritten uniquely in the form

(a
(m)
i1

. . . a
(m)
ik

) . . . (a
(n+1)
i1

. . . a
(n+1)
ik

)(a
(n)
i1

. . . a
(n)
ik

) . . . (a
(1)
i1
. . . a

(1)
ik

)(ai1 . . . aik)
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with a
(n)
i`

∈ {1, a0, a1, . . . , aN−1} for all 1 ≤ n ≤m, 1 ≤ ` ≤ k, such that

a
(n+1)
i`

∈

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{1} if a
(n)
i`

= 1,

{1, aj+1} if a
(n)
i`

= aj .

The factors ai1 , . . . , aik are determined by the property that the generator ai`−1 does not

appear to the right of ai` in the original presentation of the monomial. Alternatively,

every nonzero monomial is uniquely determined by the following data from its action on

the graphical representation:

� the input particle configuration with the minimal number of particles on which it acts

nontrivially,

� the corresponding output particle configuration,

� the power of q by which it acts.

For the proof of this result, we recall a characterisation of the nonzero monomials in

nT̂LN from [Gre02]. Al Harbat [Alh13] has recently described a normal form for fully

commutative elements of the affine Temperley–Lieb algebra, which differs from ours

when passing to nT̂LN .

In Section I.2.7 we define special monomials that serve as the projections onto a single

particle configuration (up to multiplication by ±q). Based on this, in Section I.2.8 we

state the main result (Theorem I.2.8.5) of the chapter:

Theorem. The center of nT̂LN is the subalgebra

CN = Cent(nT̂LN) = ⟨1, t1, . . . , tN−1⟩ ≅
k[t1, . . . , tN−1]

(tkt` ∣ k ≠ `)
,

where the generator tk = (−1)k−1
∑

∣I∣=k
a(̂i) is the sum of monomials a(̂i) corresponding

to particle configurations given by increasing sequences i = {1 ≤ i1 < . . . < ik ≤ N} of

length k. The monomial a(̂i) sends particle configurations with n ≠ k particles to 0 and

acts on a particle configuration with k particles by projecting onto i and multiplying by

(−1)k−1q. Hence, tk acts as multiplication by q on the configurations with k particles.

Our N − 1 central generators tk are essentially the N − 1 central elements constructed

by Postnikov. Lemma 9.4 of [Pos05] gives an alternative description of tk as product

of the k-th elementary symmetric polynomial (with factors cyclically ordered) with the

(N −k)-th complete homogeneous symmetric polynomial (with factors reverse cyclically

ordered) in the noncommuting generators of nT̂LN . The above theorem shows that in

19



Introduction

fact these elements generate the entire center of nT̂LN . In Section I.2.9, we establish that

nT̂LN is finitely generated over its center. In Section I.2.10 we describe an alternative

normal form for monomials in nT̂LN using the generators tk of the center. Using the

faithfulness of the graphical representation, we define monomials eij that move particles

from positions j = {1 ≤ j1 < . . . < jk ≤ N} to i = {1 ≤ i1 < . . . < ik ≤ N} so that the power

of q in this action is minimal. Then the main result is Theorem I.2.10.1:

Theorem. The set of monomials

{1} ∪ {t`keij ∣ ` ∈ Z≥0, 1 ≤ ∣i∣ = ∣j∣ = k ≤ N − 1, 1 ≤ k ≤ N − 1}

defines a k-basis of the affine nilTemperley–Lieb algebra nT̂LN .

In Section I.2.11, we define yet another monomial basis for nT̂LN indexed by pairs of

particle configurations together with a natural number indicating how often the particles

have been moved around the circle. With this basis at hand, we obtain inclusions

nT̂LN ⊂ nT̂LN+1. The inclusions are not as obvious as those for the nilCoxeter algebra

nCN having underlying Coxeter graph of type AN−1, since one cannot deduce them from

embeddings of the affine Coxeter graphs. Our result, Theorem I.2.11.1, reads as follows:

Theorem. For all 0 ≤ m ≤ N − 1, there are unital algebra embeddings εm ∶ nT̂LN →

nT̂LN+1 given by

ai ↦ ai for 0 ≤ i ≤m − 1, am ↦ am+1am, ai ↦ ai+1 for m + 1 ≤ i ≤ N − 1.

In Section I.2.12 we turn towards the representation theory of nT̂LN : In this section

and the remainder of Chapter I.2 we have to assume that the ground field k of nT̂LN

is restricted to be an uncountable algebraically closed field (of arbitrary characteristic).

Let χ be an algebra homomorphism CN → k. Then with the help of localisations with

respect to central elements, we classify the simple modules over nT̂LN with central

character χ in Theorem I.2.12.3 as follows.

Theorem. Up to isomorphism, there is precisely one simple module of nT̂LN with

central character χ. The simple modules of nT̂LN are given up to isomorphism by

i) the trivial onedimensional module k with trivial central character,

ii) the (
N
k
)-dimensional module ⋀k kN with central character χ(tk) ∈ k∖{0}, χ(t`) = 0

for all ` ≠ k.
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The localisation with respect to multiplicative subsets of the center can be considered as

pseudo-commutative localisation since the Ore conditions are for free. In Section I.2.13

we use these localisations together with a rank argument to show that nT̂LN is not free

over its center.

In analogy to the affine Temperley–Lieb algebra one would expect that also the affine

nilTemperley–Lieb algebra can easily be equipped with the structure of an affine cellular

algebra in the sense of [KX12]. Then the classification of simple modules for nT̂LN would

follow from the general approach for affine cellular algebras. However, affine cellularity

does not pass in an obvious way to the nil-case. In Section I.2.14 we discuss three

approaches to identify nT̂LN as an affine cellular algebra.

Chapter I.3: The plactic and the partic algebra

Analogous to the results for the affine nilTemperley–Lieb algebra in Chapter I.2, our

main results in this chapter are a description of the center of the partic algebra and the

construction of a basis. Using this basis we prove that the action of the partic algebra

on bosonic particle configurations is faithful. Again here is a picture illustrating this

action:

1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0

Example for N = 9: The particle configuration (3,0,0,1,0,1,2,0,1), and the element

a6a5a4 acting on it.

In Section I.3.1 we recall the definition of the classical and affine plactic algebra, and we

put it into the context of the existing literature.

First we study the classical plactic algebra: In Section I.3.2 we discuss an action on

bosonic particle configurations on line segments, and we define the quotient of the clas-

sical plactic algebra named partic algebra by the additional relation

aiai−1ai+1ai = ai+1aiai−1ai for 2 ≤ i ≤ N − 2.
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Since these relations only involve permutations of the generators we can define two

gradings on the partic algebra, by the word length and by how often each generator

occurs, similar to the affine nilTemperley–Lieb algebra before.

In Section I.3.3 we construct a normal form of the monomials in the partic algebra. Our

main result of this section is Theorem I.3.3.1

Theorem. The partic algebra P
part
N has a k-basis given by monomials of the form

{adN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 ∣ di ≤ di−1 + ki−1 for all 3 ≤ i ≤ N − 1, d2 ≤ k1}

where di, ki ∈ Z≥0 for all 1 ≤ i ≤ N − 1.

In Section I.3.4 we consider the action of the classical plactic and the partic algebra

on bosonic particle configurations, and we obtain the following faithfulness result in

Theorem I.3.4.2

Theorem. The action of the partic algebra P
part
N on bosonic particle configurations is

faithful.

This allows us to define a labelling of the monomials in normal form. We get an alter-

native description of the basis from Theorem I.3.3.1 in Proposition I.3.4.5. If we write

aij = a
dN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 , it can be reformulated as follows:

Theorem. The set of monomials

{1} ∪ {aij ∣ j = (k1, k2, k3 . . . , kN−1,0), i = (0, k1 − d2, k2 + d2 − d3, . . . , kN−1 + dN−1)}

with k1, . . . , kN−1 ∈ Z≥0 and di ≤ di−1 + ki−1 ∈ Z≥0 for all 3 ≤ i ≤ N − 1, d2 ≤ k1, defines a

k-basis of the partic algebra.

In Section I.3.5 we describe the center of the partic algebra:

Theorem. The center of the partic algebra P
part
N is given by the k-span of the elements

{arN−1a
r
N−2 . . . a

r
2a
r
1 ∣ r ≥ 0}.

Finally, in Section I.3.6 we turn to the affine case. We define the affine partic algebra

and we consider its action on affine bosonic particle configurations. This is substantially

harder to understand than the classical case, in particular we find a new type of relations

of the form

ami+1a
m
i+2 . . . a

m
i−2a

m
i−1a

2m
i ami+1a

m
i+2 . . . a

m
i−2a

m
i−1

= amj+1a
m
j+2 . . . a

m
j−2a

m
j−1a

2m
j amj+1a

m
j+2 . . . a

m
j−2a

m
j−1 for all i, j ∈ Z/NZ, m ∈ Z≥1.
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We have not yet found a nice normal form for monomials for the affine partic algebra (and

neither for its quotient with respect to the new type of relations). For the construction

of the normal forms of the partic algebra and the affine nilTemperley–Lieb algebra, it

was helpful to know the faithful representations on particle configurations. The particle

configurations could be used for labelling sets of the basis elements. This approach fails

for the affine partic algebra since it does not act faithfully on affine bosonic particle

configurations. It is unclear whether faithfulness holds for the quotient with respect to

the new type of relations.

Part II: Generalized Weyl algebras

Generalized Weyl algebras (GWA’s) were introduced by Bavula in [Bav92]. A GWA is

defined over a unital associative commutative k-algebra R that is a noetherian domain,

where k is an algebraically closed ground field of characteristic 0. For any choice of n

nonzero elements t = (t1, . . . , tn) in R and n pairwise commuting algebra automorphisms

σ = (σ1, . . . , σn) in Aut(R) such that σi(tj) = tj for all i ≠ j the corresponding GWA

A = R(σ, t) is the k-algebra generated over R by 2n additional generators Xi, Yi, 1 ≤ i ≤ n,

with relations

Xir = σi(r)Xi, XiYi = σi(ti), [Xi,Xj] = 0,

Yir = σ−1
i (r)Yi, YiXi = ti, [Yi, Yj] = 0,

[Xi, Yj] = 0

for all 1 ≤ i, j ≤ n with i ≠ j and all r ∈ R. It is a Zn-graded algebra with deg(Xi) = ei

and deg(Yi) = −ei where we denote by ei the i-th standard basis vector of Zn.

Chapter II.1: Duflo Theorem for a Class of Generalized Weyl Algebras

The main result of this chapter is a Duflo type theorem for a class of generalized Weyl

algebras (GWA’s).

For the universal enveloping algebra of a semisimple Lie algebra over k, Duflo’s Theorem

[Duf77] states that all its primitive ideals (i.e. the annihilators of simple modules) are

given by the annihilators of simple highest weight modules. In contrast, the simple

modules themselves are far from being classified in general.

Now it is possible to define highest weight modules for GWA’s and therefore natural to

ask whether an analogous statement holds. We prove a Duflo type theorem for a special
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class of GWA’s using a theorem by [MB98] that relates the annihilator of a simple weight

module to its support.

This chapter is subdivided as follows: In Section II.1.1 we provide a quick overview of

Duflo type theorems. In Section II.1.2 we review generalized Weyl algebras, and we

introduce our special class of GWA’s. In particular, our base ring is always a polynomial

ring R = k[T1, . . . , Tn] and the automorphisms are given by translations σi(Tj) = Tj−δijbi

as considered already in [Bav92]. We discuss highest weight modules and graded modules

over generalized Weyl algebras. We characterize moreover the highest weight modules

as those modules with a locally nilpotent action of the Xi.

In Section II.1.3 we prepare to apply the result from [MB98] to our class of GWA’s: We

recall the description of weight modules by their support which is given in terms of lattice

points and hyperplanes from [Bav92]. These hyperplanes “break” the weight lattice into

regions, and a weight module can be characterised by these regions and its defining

“breaks”. This is made precise in Definition II.1.3.3. We give a careful description of

the break conditions.

In Section II.1.4 we formulate and prove the main theorem of the chapter:

Theorem. Let A = R(σ, t) be a GWA of rank n as defined in Section II.1.2 where we

assume R = k[T1, . . . , Tn], σi(Tj) = Tj − δijbi for bi ∈ k∖{0} and ti ∈ k[Ti] ⊂ k[T1, . . . , Tn],

ti ∉ k. Then all primitive ideals of A, i.e. the annihilator ideals of simple A-modules,

are given by the annihilators of simple highest weight A-modules L(m) of highest weight

m ∈ mspec(R).

The main tool is the Duflo type theorem from [MB98]. We show it applies to our

situation and improve it by showing that it is enough to consider the much smaller class

of highest weight modules (as in the classical Duflo theorem).

We provide a list of important examples of GWA’s to which the main theorem applies,

e.g. central quotients of the universal enveloping algebra U(sl2(C)) and its generalisa-

tions by [Smi90] as discussed in [Bav92, Example 1.2.(4)]. We include a discussion why

we require our assumptions on the special class of GWA’s.

In Section II.1.5 we conclude the chapter by some examples that illustrate the relation-

ship between the annihilator and the support of simple highest weight modules.
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I.1. Crystal bases and particle

configurations

In this chapter we discuss the relationship of particle configurations on a lattice with

crystal combinatorics in type A and Â. It can be seen as a motivation for the definitions of

the affine nilTemperley-Lieb algebra, the plactic and the partic algebra that we discuss in

the following chapters. This chapter is otherwise independent of the following chapters.

In Section I.1.1 we review crystal bases for the quantum group Uq(sln(C)) and the

quantum affine algebra Uq(s̃ln(C)), and we discuss relations among Kashiwara opera-

tors. In Section I.1.2 we describe particle configurations following [KS10] and we discuss

identifications of crystal and particle combinatorics.

Throughout the chapter we work over the complex numbers k = C for convenience. For

tensor products over C we write ⊗ instead of ⊗C. We write C(q) for the field of rational

functions in the variable q.

I.1.1. Quantum groups and crystal bases of type An and Ân

In this section we review crystal bases for the quantum groups Uq(sln(C)) and Uq(s̃ln(C))

and fix our notation. We follow mainly [HK02] and [Jan96] unless otherwise stated. We

focus on type An and Ân, for more general statements see the references.

I.1.1.1. Finite case

Let sln(C) be the Lie algebra of traceless complex n × n-matrices with standard Cartan

subalgebra h consisting of the diagonal matrices generated by hi = eii − e(i+1)(i+1) for

1 ≤ i ≤ n − 1. Here eii denotes the elementary matrix where the (i, i)th entry is one and

all other entries are zero. The root decomposition of sln(C) with respect to the adjoint h-

action is given by sln(C) = ⊕
α∈Φ

sln(C)α and simple roots αi = εi−εi+1 ∈ h
∗. Here εi denotes
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the function on h that returns the ith diagonal entry, and Φ = spanZ{α1, . . . , αn−1} is the

root lattice of sln(C). In our notation we do not distinguish between linear functions on

h and linear functions on the diagonal matrices. The fundamental weights are given by

ωi = ε1 + . . . + εi. We denote the weight lattice by P = spanZ {ω1, . . . , ωn−1}. It contains

the dominant integral weights P + = spanZ≥0 {ω1, . . . , ωn−1}.

The finite dimensional simple sln(C)-modules L(λ) are labelled by their dominant in-

tegral highest weights λ ∈ P + ⊂ h∗ = spanC {εi ∣ 1 ≤ i ≤ n}/spanC {ε1 + . . . + εn}.

Such a dominant integral highest weight can be represented by an element of the form

λ = λ1ε1 + . . . + λn−1εn−1 with coefficients λ1 ≥ . . . ≥ λn−1 ∈ Z≥0. This in turn is identified

with partitions (λ1, . . . , λn−1) with n − 1 rows of length λi.

Now we turn to the quantum group:

I.1.1.1 Definition. The quantum group Uq(sln(C)) is the unital associative C(q)-

algebra generated by formal generators Ei, Fi,K
±1
i for 1 ≤ i ≤ n − 1 with relations

KiK
−1
i = 1 = K−1

i Ki for 1 ≤ i ≤ n − 1,

KjEi = qαi(hj)EiKj for 1 ≤ i, j ≤ n − 1,

KjFi = q−αi(hj)FiKj for 1 ≤ i, j ≤ n − 1,

[Ei, Fj] = δij
Ki −K

−1
i

q − q−1
for 1 ≤ i, j ≤ n − 1,

E2
i Ei±1 − [2]qEiEi±1Ei +Ei±1E

2
i = 0,

[Ei,Ej] = 0 for ∣i − j∣ > 1,

F 2
i Fi±1 − [2]qFiFi±1Fi + Fi±1F

2
i = 0,

[Fi, Fj] = 0 for ∣i − j∣ > 1,

where [n]q =
qn−q−n
q−q−1 is the usual notation for quantum integers, so [2]q = q + q

−1. It can

be equipped with a Hopf algebra structure where in particular the comultiplication ∆

applied to Fi is given by ∆(Fi) = Fi ⊗ 1 +Ki ⊗ Fi, the comultiplication applied to Ei is

∆(Ei) = Ei ⊗K
−1
i + 1⊗Ei, and the elements K±1

i are grouplike, for 1 ≤ i ≤ n − 1.

I.1.1.2 Remark. This is the adjoint form of Uq(sln(C)) in the sense of [BG02], where

the generators Ki correspond to the generators αi of the root lattice Φ of sln(C). Alterna-

tive forms of the quantum group Uq(sln(C)) can be defined for the (finer) weight lattice

or any other lattice lying in between those two, see [BG02, Section 1.6.3], [CP95a, Sec-

tion 9.1.A]. Furthermore, there is the Drinfeld-Jimbo quantum algebra whose elements

are formal power series in ei, fi and hi over the field C[[h]], see [CP95a, Definition 6.5.1],

[Kas95]. There is a map of Hopf algebras from the quantum group defined above into
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the Drinfeld-Jimbo quantum group by q ↦ e
h
2 , K±1

i ↦ e±
h
2
hi , Fi ↦ e−

h
4 fi and Ei ↦ e

h
4 ei,

see [Kas95, Proposition XVII.4.1] for n = 2. ◊

We are only interested in weight modules, i.e. Uq(sln(C))-modules with a weight space

decomposition with respect to the action of Ki, 1 ≤ i ≤ n−1, so that the Ki act by scalars

in C(q)× on the weight spaces. In particular, we consider weight modules with weights

of the form ±qµ for µ ∈ P ⊂ h∗, meaning that Ki acts by ±qµ(hi), for all 1 ≤ i ≤ n − 1.

All finite dimensional Uq(sln(C))-modules are completely reducible into simple highest

weight modules of highest weight ±qλ with λ ∈ P +, see [CP95a, Propositions 10.1.1, 10.1.2].

In other words, the finite dimensional highest weight modules are labelled by partitions

λ together with a choice of (n − 1) signs, so that Ki acts by ±qλi , for all 1 ≤ i ≤ n − 1.

One usually prefers the choice of all signs equal to +1 since the subcategory of these

so-called type 1 modules is closed under tensor products. The abelian subcategory of

finite dimensional Uq(sln(C))-modules with a fixed choice of signs is equivalent to the

abelian category of finite dimensional sln(C)-modules. For type 1, this is an equivalence

of monoidal categories.

Under this equivalence, the finite dimensional simple sln(C)-module L(λ) is mapped

to the simple Uq(sln(C))-module Lq(λ) of type 1 with the same character, see [BG02,

Section I.6.12]. Here and in the following we adopt the shorthand notation of writing λ

for +qλ.

Let us now recall the combinatorics of some special crystals for sln(C). We do not

introduce Kashiwara operators and crystal bases in detail. We refer to [Kas91], but also

e.g. to [HK02, Section 4] for the general statements and background material and to

[HK02, Sections 7.4, 8.2] for details about type An.

Let f̃i denote the Kashiwara operator on a Uq(sln(C))-module M associated with the

operator Fi ∈ Uq(sln(C)), i.e. f̃iu = ∑k F
(k+1)
i uk for a weight vector u ∈Mµ written in the

form u = ∑k F
(k)
i uk with uk ∈Mλ+kαi ∩ ker(Ei). Here F

(k)
i = 1

[k]q !F
k
i is the notation for

divided powers. The Kashiwara operator ẽi associated with Ei is defined analogously.

By [Kas91] there exists a crystal basis (L(λ),B(λ)) for the simple Uq(sln(C))-module

Lq(λ). Here L(λ) denotes the crystal lattice, the minimal lattice over the rational

functions regular at 0 that contains a highest weight vector vλ of Lq(λ) and that is stable

under the action of the Kashiwara operators f̃i, ẽi. The subset B(λ) of L(λ)/qL(λ) is

given by all nonzero elements of the form f̃i1 . . . f̃ir(vλ) + qL(λ).
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One defines the crystal graph to be an oriented graph with vertices B(λ) and edges

labelled by 1, . . . , n− 1, so that there is an i-labelled edge from b to b′ ∈ B(λ) if and only

if f̃i(b) = b
′ modulo qL(λ). This is the case if and only if ẽi(b

′) = b modulo qL(λ). By

abuse of notation, the crystal graph is also denoted by B(λ).

Crystal bases are particularly suitable for the computation of tensor products. Given

Lq(λ) with crystal basis (L(λ),B(λ)) and Lq(λ
′) with crystal basis (L(λ′),B(λ′)),

one can easily determine a crystal graph for L(λ) ⊗C(q) L(λ
′) on the set of vertices

B(λ)⊗B(λ′) ∶= B(λ)×B(λ′). The tensor product rule prescribes on which tensor factor

the Kashiwara operator f̃i acts, see [HK02, Theorem 4.4.1].

In type An, for any simple Uq(sln(C))-module Lq(λ), the set B(λ) can be realized by

semistandard Young tableaux of shape λ with entries 1, . . . , n. The highest weight vector

vλ of Lq(λ) is represented by the “standard” semistandard Young tableau of shape λ

where all entries in the kth row are equal to k. In the crystal graph B(λ), if two

semistandard Young tableaux are connected by an i-labelled edge, then their entries are

the same except that in one box the entry i is replaced by i+1. Let us recall the details: In

Figure I.1.1.1 we depict the crystal graph for the standard/vector representation Lq(ω1)

of Uq(sln(C)). As a C(q)-vector space, Lq(ω1) ≅ C(q)n.

1 2 . . . n
1 2 n − 1

Figure I.1.1.1.: The crystal graph for the standard/vector representation of Uq(sln(C)).

Here, a crystal basis of Lq(ω1) is given by (L(ω1),B(ω1)). The crystal lattice L(ω1) is

spanned over the rational functions regular at 0 by the standard basis vectors v1, . . . , vn

on which Fi acts by Fivi = vi+1, Fivj = 0 for i ≠ j. The set B(ω1) is given by the residue

classes of the standard basis vectors in L(ω1)/qL(ω1). In Figure I.1.1.1 a box with entry

i is identified with the residue class of the ith standard basis vector vi of C(q)n.

The vertices of the crystal graph of Lq(λ) can be identified with the set of semistandard

Young tableaux of shape λ as follows: The tensor product rule allows to compute the

crystal graph of Lq(ω1)
⊗(λ1+...+λn−1). Then the crystal graph B(λ) is identified with

a connected component in B(ω1)
⊗(λ1+...+λn−1) by an admissible reading. The tensor

product rule prescribes on which tensor factor the Kashiwara operator f̃i acts, hence, in

which box the entry i is turned into i + 1. In general there are many possible choices of

admissible readings, but the crystal structure on B(λ) does not depend on this choice,

see [HK02, Theorem 7.3.6].
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For a tensor product a1 ⊗ a2 ⊗ . . . ⊗ ad in B(ω1)
⊗d, the tensor product rule can be

summarized as follows: We need to determine the box with entry i on which f̃i has

to act. The boxes with entries j ≠ i, i + 1 are irrelevant and thus removed. Then all

“increasing pair of boxes” are removed, that is, a box with entry ar = i which is followed

immediately by a box with entry ar+s = i + 1 in the remaining tensor product (where

all boxes with entries ar+1, . . . , ar+s−1 have been previously removed). This process is

repeated for the remaining tensor factors until no increasing pair of boxes remains. If

the final result does not contain any box with entry i, then f̃i acts by zero. If there are

some boxes with entry i left, then f̃i acts on the leftmost such box.
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3 3 3

1

1 2

1 2 1

1 22

12

2

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3

2 2
3

1 3
3

2 3
3

1 2

2 1

1 2

12

1
2

1
3

2
3

2

1

1
2

1
3

2
3

1
4

2
4

1
5

3
4

2
5

3
5

4
5

2

13

4 1 3
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Figure I.1.1.2.: Examples of crystal graphs for Lq(3ε1), Lq(2ε1 + ε2), Lq(ε1 + ε2) ∈

Uq(sl3(C))−mod and Lq(ε1 + ε2) ∈ Uq(sl5(C))−mod.
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The examples in Figure I.1.1.2 illustrate the crystal graphs for the Uq(sl3(C))-modules

Lq(3ε1), Lq(2ε1 + ε2), Lq(ε1 + ε2), and for the Uq(sl5(C))-module Lq(ε1 + ε2). For

Lq(2ε1 + ε2) this is Example 7.4.3 from [HK02].

The crystal graphs B(λ) for λ = kω1 = and λ = ωk = are special. Recall that

B(kω1) is the crystal graph corresponding to the symmetric representation Symk(Cn) of

sln(C), and B(ωk) is the crystal graph for the alternating representation Λk(Cn). The

tensor product rule is particularly easy to formulate for B(kω1) and B(ωk), and the

action of the Kashiwara operators on semistandard Young tableaux of shape kω1 or ωk

is independent of the relative positions of the boxes with entries i, i + 1. Let us discuss

this in detail:

Let us start with Young tableaux of shape kω1. There is precisely one admissible reading.

It is given by

i1 i2 . . . ik ; ik ⊗ . . .⊗ i2 ⊗ i1 .

Since the sequence i1, i2, . . . , ik ∈ {1, . . . , n} is (weakly) increasing, the “reversed” se-

quence obtained from the admissible reading ik, . . . , i2, i1 is decreasing. In particular,

there are no “increasing pairs” of boxes. In this case, the tensor product rule for crystals

simply amounts to the following rule:

I.1.1.3 Lemma. Let 1 ≤ i ≤ n − 1 and k ∈ Z≥0. On semistandard Young tableaux

of shape kω1 that contain a box with entry i the Kashiwara operator f̃i acts on the

rightmost box with entry i, replacing it by i + 1. On semistandard Young tableaux of

shape kω1 that do not contain any box with entry i the Kashiwara operator f̃i acts by

zero.

For Young tableaux of shape ωk, there is precisely one admissible reading given by

i1
i2
. . .
ik ; i1 ⊗ i2 ⊗ . . .⊗ ik .

The sequence i1, i2, . . . , ik ∈ {1, . . . , n} is strictly increasing. In particular, no entry is

repeated, and a quick case-by-case analysis gives the following rule equivalent to the

tensor product rule:

I.1.1.4 Lemma. Let 1 ≤ i ≤ n − 1 and 1 ≤ k ≤ n − 1. On semistandard Young tableaux

of shape ωk that contain a box with entry i and that do not contain any box with entry

i+ 1 the Kashiwara operator f̃i acts on (the only) box with entry i, replacing it by i+ 1.
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I.1.1. Quantum groups and crystal bases of type An and Ân

On any other semistandard Young tableaux of shape ωk the Kashiwara operator f̃i acts

by zero.

I.1.1.5 Remark. The rules from Lemma I.1.1.3 and Lemma I.1.1.4 are formulated in-

dependently of the relative positions of the boxes with entries i, i + 1. ◊

I.1.1.6 Remark. For hooks of the form there is only one admissible reading, too.

But it is not guaranteed that the sequence we obtain from the admissible reading is

decreasing or strictly increasing, and the result of the application of f̃i depends on the

exact positions of the boxes with entries i, i + 1 in the Young tableau. For example, in

Figure I.1.1.2 we have seen that f̃2 maps

1 3
2 to

1 3
3 , whereas

1 2
3 is mapped to

zero. ◊

Let us now investigate some of the relations among the Kashiwara operators f̃i.

I.1.1.7 Lemma. i) Let k ∈ Z≥0. On B(kω1) ∪ {0} we have

f̃if̃j = f̃j f̃i for all 1 ≤ i, j ≤ n − 1 so that ∣i − j∣ > 1,

f̃if̃i−1f̃i = f̃2
i f̃i−1 for all 2 ≤ i ≤ n − 1,

f̃if̃i+1f̃i = f̃i+1f̃
2
i for all 1 ≤ i ≤ n − 2,

f̃if̃i−1f̃i+1f̃i = f̃i+1f̃
2
i f̃i−1 for all 2 ≤ i ≤ n − 2.

ii) Let 1 ≤ k ≤ n − 1. On B(ωk) ∪ {0} we have

f̃if̃j = f̃j f̃i for all 1 ≤ i, j ≤ n − 1 so that ∣i − j∣ > 1,

f̃2
i = 0 for all 1 ≤ i ≤ n − 1,

f̃if̃i−1f̃i = 0 for all 2 ≤ i ≤ n − 1,

f̃if̃i+1f̃i = 0 for all 1 ≤ i ≤ n − 2.

Proof. This follows from the explicit realisation of the Kashiwara operators in Lemma

I.1.1.3 and Lemma I.1.1.4. ◻

In particular, Lemma I.1.1.7 implies that the relations

f̃if̃i−1f̃i = f̃2
i f̃i−1 and f̃if̃i+1f̃i = f̃i+1f̃

2
i (I.1.1)

hold for all crystals B(kω1) and B(ωk). In contrast, the relation f̃if̃i−1f̃i+1f̃i = f̃i+1f̃
2
i f̃i−1

is special for B(kω1) and does not hold for B(ωk). For example, for n = 5 and ω2 we

have

f̃2f̃1f̃3f̃2 (
1
2 ) =

3
4 ≠ 0.
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The relations given in Lemma I.1.1.7 are not a complete list of relations, e.g. we have

in adddition f̃k+1
i = 0 on B(kω1) ∪ {0}.

One can also define abstract crystals in a purely combinatorial way as a set B together

with some maps, including operators B → B ∪ {0}, that satisfy a list of axioms, see

[HK02, Definition 4.5.1]. These axioms are satisfied by crystal graphs and Kashiwara

operators obtained from integrable highest weight modules of quantum symmetrizable

Kac–Moody algebras, in particular from finite-dimensional Uq(sln(C))-modules.

For abstract crystals of simply laced finite and affine type, [Ste03] gives a list of relations

that hold if and only if the abstract crystal graph can be realized as a crystal graph of an

integrable highest weight representation. These relations are formulated using i-strings

in the crystal graph. An i-string is defined at a node x to be the path of maximum

(finite) length of the form

ẽdi x Ð→ . . . Ð→ ẽix Ð→ x Ð→ f̃ix Ð→ . . . Ð→ f̃ ri x.

In this case, write ε(x, i) = r, where we adopt the notation from [Ste03].

A subset of these relations is equivalent to the abstract crystal axioms. The additional

relations are given by f̃if̃jx = f̃j f̃ix or f̃if̃
2
j f̃ix = f̃j f̃

2
i f̃jx at nodes x of the crystal graph

where f̃i, f̃j are both defined, i.e. f̃ix ≠ 0 and f̃ix ≠ 0 (analogously for ẽi). Stembridge

gives precise conditions in terms of the i-strings to determine which of the two relations

must hold for a pair of Kashiwara operators f̃i, f̃j , see Relations (P5’), (P6’) in [Ste03].

These additional relations can be considered as crystal versions of the Serre relations.

For crystals of type A and hence for all crystals of finite-dimensional Uq(sln(C))-modules

this result implies

f̃if̃jx = f̃j f̃ix for all i, j with ∣i − j∣ > 1,

f̃if̃
2
i+1f̃ix = f̃i+1f̃

2
i f̃i+1x if ε(x, i + 1) − ε(f̃ix, i + 1) = −1 = ε(x, i) − ε(f̃i+1x, i)

at nodes x of the crystal graph where f̃i, f̃j (respectively f̃i, f̃i+1) are both defined.

Notice that f̃i, f̃i+1 cannot both be defined at a node x of the crystal B(ωk): For f̃i+1x ≠ 0

we need a box labelled i + 1 in the semistandard Young tableau corresponding to x, in

which case f̃ix = 0.

For the crystals B(kω1), B(ωk) considered in Lemma I.1.1.7 one can deduce the relation

f̃if̃
2
i+1f̃ix = f̃i+1f̃

2
i f̃i+1x for all nodes x of the crystal graph from the relations (I.1.1).

One does not need the condition that f̃i, f̃i+1 have to be defined at x in this special case.
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I.1.1.8 Remark. The relations from [Ste03] are necessary and sufficient to determine

the crystals of integrable highest weight representations, but they do not form a complete

list of relations. In particular, the relation

f̃if̃i−1f̃i+1f̃i = f̃i+1f̃
2
i f̃i−1

that holds for Kashiwara operators on B(kω1) does not appear in [Ste03]. Still it is

surprisingly similar to the Stembridge relation

f̃if̃
2
i+1f̃i = f̃i+1f̃

2
i f̃i+1.

I.1.1.9 Remark. The theory of crystal bases and Kashiwara operators is often under-

stood as a theory of quantum groups “at q = 0”, see e.g. [HK02, Chapter 4.2]. There

are different approaches to define quantum groups “at q = 0”, but these approaches do

not necessarily give the same result.

In particular, one can only define specializations at q = 0 of the negative (or positive)

half of the quantum groups after desymmetrizing the quantum Serre relations so that

they can be rewritten without appearance of q−1. For this one uses a twisted version of

the quantum group Uq(sln(C)). The nonsymmetrised Euler form gives on simple roots

⟨αi, αi⟩ = 1, ⟨αi, αi−1⟩ = −1 and ⟨αi, αj⟩ = 0 for all j ≠ i, i−1. Then the twisted product in

the negative half of the quantum group Uq(sln(C)−) is defined by Fi ∗Fj = q
−⟨αi,αj⟩FiFj .

From the q-Serre relations one computes new assymmetric relations of the form

Fi ∗ Fj − Fj ∗ Fi = 0, ∣i − j∣ > 1, (I.1.2)

Fi ∗ Fi ∗ Fi−1 − (1 + q2
)Fi ∗ Fi−1 ∗ Fi + q2Fi−1 ∗ Fi ∗ Fi = 0, (I.1.3)

Fi ∗ Fi−1 ∗ Fi−1 − (1 + q2
)Fi−1 ∗ Fi ∗ Fi−1 + q2Fi−1 ∗ Fi−1 ∗ Fi = 0. (I.1.4)

The twisted negative half of the quantum group Uq(sln(C)) is defined to be the Q[[q2]]-

subalgebra of (Uq(sln(C)),∗) generated by F1, . . . , Fn−1 with respect to the twisted mul-

tiplication ∗. In order to compare Hall algebra constructions and quantum groups one

needs to twist the usual multiplication in one of the algebras in question. In [Rei02]

it is proven that the twisted (positive) half of the quantum group specialized to q = 0

is isomorphic to the linearisation of the Hall monoid, see also Section I.3.1. The rela-

tions that are given by (I.1.2), (I.1.3) and (I.1.4) with q = 0 are known as (local) plactic

relations.

By Lemma I.1.1.7, the Kashiwara operators f̃i satisfy the plactic relations on crystals

B(kω1) and B(ωk), see in particular equation (I.1.1).
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I.1. Crystal bases and particle configurations

In general, the Kashiwara operators f̃i cannot be identified with the operators Fi in the

above specialisation of the quantum group at q = 0. For example, while F2 ∗ F1 ∗ F1 =

F1 ∗ F2 ∗ F1 in the above specialisation, we can read off from the crystal graph of the

Uq(sl3(C))-module Lq(2ε1 + ε2) that f̃2f̃
2
1 ≠ f̃1f̃2f̃1, see Figure I.1.1.2. ◊

I.1.1.2. Affine case

The extended loop algebra is a Lie algebra defined by

s̃ln(C) = sln(C) ⊗C[T±1
] ⊕C ⋅ c

with Lie bracket so that c is central and

[g ⊗ Tm, g′ ⊗ Tm
′
] = [g, g′] ⊗ Tm+m

′
+mδm,−m′(g, g′)c

for g, g′ ∈ sln(C), where (⋅, ⋅) denotes the Killing form on sln(C). Its standard Cartan

subalgebra is given by h̃ = h ⊕ C ⋅ c. Denote h0 = c − ∑i hi. By abuse of notation we

write λ ∈ h̃∗ for the linear function that restricts to λ ∈ h∗ and is extended by 0 to

C ⋅ c. The extended loop algebra decomposes into h̃-root spaces s̃ln(C) = ⊕
α∈Φ

s̃ln(C)α

with s̃ln(C)α = sln(C)α ⊗ C[T±1], where the roots α ∈ Φ are seen as elements of h̃∗ by

extension by 0 to C ⋅ c.

The loop algebra sln(C) ⊗C[T±1] is a quotient of the extended loop algebra. Represen-

tations of the loop algebra can be lifted to representations of the extended loop algebra

where c acts trivially.

The extended loop algebra is the derived Lie subalgebra of the affine Kac-Moody Lie

algebra ŝln(C) of type Ân = A
(1)
n , see [Kum02, Chapter 13.1]. The nontrivial simple

modules for ŝln(C) are all infinite dimensional, see [HK02, Section 10] or [Sen10]. In

contrast, the (extended) loop algebra s̃ln(C) has finite dimensional simple modules, see

[Sen10]. A class of examples is provided by the evaluation modules: For any number

a ∈ C× and λ ∈ P + one can lift the finite dimensional irreducible sln(C)-module L(λ)

along the evaluation map

eva ∶ s̃ln(C) → sln(C), T ↦ a, c ↦ 0.

Since the evaluation map is an algebra homomorphism which restricts to the identity

on sln(C), the result is a finite dimensional s̃ln(C)-module which is indeed irreducible.

See also [Sen10] for a classification of finite dimensional irreducible modules of the loop

algebra in terms of tuples of so-called Drinfeld polynomials with constant term equal to

1.
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I.1.1. Quantum groups and crystal bases of type An and Ân

Let us now turn to the quantum affine algebra:

I.1.1.10 Definition. The quantum affine algebra Uq(s̃ln(C)) is the unital associative

C(q)-algebra generated by formal generators Ei, Fi,K
±1
i for 0 ≤ i ≤ n − 1 with defining

relations

KiK
−1
i = 1 = K−1

i Ki for i ∈ Z/nZ,

KjEi = qαi(hj)EiKj for i, j ∈ Z/nZ,

KjFi = q−αi(hj)FiKj for i, j ∈ Z/nZ,

[Ei, Fj] = δij
Ki −K

−1
i

q − q−1
for i, j ∈ Z/nZ,

E2
i Ei±1 − [2]qEiEi±1Ei +Ei±1E

2
i = 0,

[Ei,Ej] = 0 for j ≠ i ± 1,

F 2
i Fi±1 − [2]qFiFi±1Fi + Fi±1F

2
i = 0,

[Fi, Fj] = 0 for j ≠ i ± 1,

where now all indices are understood modulo n.

I.1.1.11 Remark. i) There are many different definitions of the quantum affine al-

gebra Uq(s̃ln(C)) available in the literature. We follow here the definition given

in [CP95a, Theorem 12.2.1, Section 9.1]. Several presentations of Uq(s̃ln(C)) are

available, see e.g. the overview in [CP95a], [Bec94], [CP95b]. The Drinfeld pre-

sentation is more complicated, but also makes it more obvious that Uq(s̃ln(C))

is a quantisation of the extended loop algebra. In particular, the central element

c ∈ s̃ln(C) corresponds to the central element K0Kθ ∈ Uq(s̃ln(C)), where Kθ is a

certain product of Ki, 1 ≤ i ≤ n − 1, see [Cha01, Section 2].

ii) Often the quantum affine algebra is denoted U′
q(ŝln(C)) or U′

q(sln(C)).

iii) The name quantum affine algebra is sometimes also used for quantisations of the

(non-extended) loop algebra sln(C) ⊗C[T±1] or the affine Kac-Moody Lie algebra

ŝln(C). See e.g. [Cha01] for a definition of the quantum group associated with the

loop algebra as quotient of Uq(s̃ln(C)).

iv) As expected, there is an embedding of algebras Uq(sln(C)) → Uq(s̃ln(C)) given by

Ei ↦ Ei, Fi ↦ Fi and Ki ↦Ki. This is a nontrivial result, a proof can be found in

[MP95, Proposition 2 of Section 3.4]. ◊

A Uq(s̃ln(C))-module is said to be a (classical) weight module if it decomposes into

weight spaces with respect to the action of Ki, 1 ≤ i ≤ n − 1, just as in the non-affine

case. Again we write µ for weights of the form +qµ, where µ ∈ P originally denotes
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an integral weight of sln(C), see Section I.1.1.1. A Uq(s̃ln(C))-module is called highest

weight module if it is highest weight as Uq(sln(C))-module, and the central element

K0K acts by 1.

The finite dimensional irreducible Uq(s̃ln(C))-modules are all highest weight up to some

sign twist. By [CP95b, Theorem 3.3] the finite dimensional irreducible Uq(s̃ln(C))-

modules (of type 1) are parametrized by (n − 1)-tuples of polynomials in one variable

with constant term 1, see also [CP91] (and note that the results from [CP91], [CP95b]

have been obtained for q = ε ∈ C× transcendental). In general it is difficult to describe

these modules explicitly. In the quantum case it is only possible in type Â to construct

finite dimensional irreducible Uq(s̃ln(C))-modules from Uq(sln(C))-modules via evalu-

ation homomorphisms, see [CP95b, Section 4.1] and [CP91, Proposition 4.1] for the

definition in case n = 2.

In general, an important class of finite dimensional irreducible Uq(s̃ln(C))-modules is

given by Kirillov–Reshetikhin modules W i,r. The name originally refers to evaluation

modules of the Yangian developed in [KR87]. They are labelled by a node i of the

Dynkin diagram of classical type An−1 and a positive integer r ∈ Z>0. In [Cha01] a

definition of the Kirillov–Reshetikhin modules W i,r in terms of generators and relations

is given. They are constructed for the quantum loop algebra which is a quotient of

Uq(s̃ln(C)), so the central element K0Kθ acts by zero on W i,r. Chari proved a decom-

position theorem for Kirillov–Reshetikhin modules as Uq(sln(C))-modules conjectured

in [Hat+02, Conjecture 2.1]. The Kirillov–Reshetikhin modules are minimal affinizations

in the sense of [CP95b, Section 6], see [CH10, Section 8]. In particular, for type Â there

is an isomorphism W i,r ≅ Lq(rωi) as Uq(sln(C))-modules [CP96, Theorem 3.1].

Abstract crystals can be defined similarly to the finite case situation from Section I.1.1.1,

see e.g. [Kan+92]. It is proven in [Kan+92] that Kirillov–Reshetikhin modules admit

crystal (pseudo)bases. Previously, results for type Â have been obtained in [MM90] and

[Jim+91], see furthermore [Shi02] and the overview in [Kus13], [Kus16]. In type Â these

Kirillov-Reshetikhin crystals are perfect [Kan+92, Theorem 1.2.2], see also [Par12].

The vertices of the crystal graph of a Kirillov–Reshetikhin module of type Â can be

realised by semistandard Young tableaux of rectangular shape, see [Shi02, Theorem 3.9].

The Kashiwara operators f̃i, ẽi for 1 ≤ i ≤ n−1 act as described in Section I.1.1.1 - this is

the crystal version of the isomorphism of W i,r ≅ Lq(rωi) as Uq(sln(C))-modules. Then

the Kashiwara operator f̃0 (and similarly ẽ0) can be defined combinatorially as follows.

Recall the rotation automorphism of the Dynkin diagram of type Â given on the nodes by

i↦ i+1 ∈ Z/nZ. It induces an isomorphism on crystals for Young tableaux of rectangular

shape (this fails if the shape is not rectangular). This automorphism ψ is given by the
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Schützenberger promotion operator realised in [Shi02, Proposition 3.15], according to

which, ψ is applied to a semistandard Young tableau by the following steps: (i) remove

all entries n, (ii) perform jeu-de-taquin to slide the remaining entries to the empty boxes,

(iii) add 1 to all entries, (iv) fill the vacated boxes by 1.

For general Young tableaux, jeu-de-taquin is defined by a combinatorial rule e.g. in

[Ful97, Section 1.2]. For Young tableaux of shape kω1 or ωk that consist of a single row

or column, respectively, it is simply given by sliding all entries to the left or downwards,

respectively.

I.1.1.12 Example. Let n = 5 and consider the following semistandard Young tableau

of shape 6ω1:

1 2 2 3 5 5 (i)
; 1 2 2 3 ⋅ ⋅

(ii)
; ⋅ ⋅ 1 2 2 3

(iii)
; ⋅ ⋅ 2 3 3 4

(iv)
; 1 1 2 3 3 4 . ◊

Then ψ−1 is given by the reversed application of these steps: i) remove all entries 1,

ii) subtract 1 from all remaining entries, iii) perform jeu-de-taquin to slide the remaining

entries to the empty boxes, iv) fill the vacated boxes by n.

Finally, the Kashiwara operator f̃0 applied to a rectangular semistandard Young tableau

is given by f̃0 = ψ
−1f̃1ψ, see [Shi02, Equation 3.7].

I.1.1.13 Example. Let n = 5 and consider again the semistandard Young tableau of

shape 6ω1 from Example I.1.1.12:

1 2 2 3 5 5 ψ
z→ 1 1 2 3 3 4 f̃1

z→ 1 2 2 3 3 4 ψ−1
z→ 1 1 2 2 3 5 .

For other nonexceptional types, the Kirillov–Reshetikhin crystals were constructed ex-

plicitly in [FOS09].

1 2 . . . n
1 2 n − 1

0

Figure I.1.1.3.: The Kirillov–Reshetikhin crystal graph for W 1,1 ≅Uq(sln(C)) Lq(ω1), ana-

logue of the standard/vector representation for Uq(s̃ln(C)).
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We focus on Kirillov–Reshetikhin modules W 1,k (k ∈ Z>0) and W k,1 (1 ≤ k ≤ n − 1). In

this case the action of the Kashiwara operators f̃i for 0 ≤ i ≤ n− 1 is particularly simple:

For 1 ≤ i ≤ n − 1 the action has been described in Lemma I.1.1.3 and Lemma I.1.1.4

for the finite case. For i = 0 the jeu-de-taquin rule is simply given by sliding all entries

downwards for W k,1, respectively to the right for W 1,k. Therefore ψ−1f̃1ψ applied to

a semistandard Young tableau of shape kω1 or ωk is given by replacing the (unique or

rightmost, respectively) box with entry n by a box in the top left corner with entry 1, if

possible, otherwise the result is zero. We obtain the following two lemmata:

I.1.1.14 Lemma. Let i ∈ Z/nZ and k ∈ Z≥0. On semistandard Young tableaux of shape

kω1 that contain a box with entry i the Kashiwara operator f̃i replaces a box with entry i

by a box with entry i+1 mod n so that the result is again a semistandard Young tableau

of shape kω1. On semistandard Young tableaux of shape kω1 that do not contain any

box with entry i the Kashiwara operator f̃i acts by zero.

Proof. For f̃i, 1 ≤ i ≤ n − 1, this follows from Lemma I.1.1.3 together with the isomor-

phism W 1,k ≅ Lq(kω1) of Uq(sln(C))-modules. For i = 0 this is an application of the

identity f̃0 = ψ−1f̃1ψ [Shi02, Equation 3.7] together with the simplified jeu-de-taquin

rule for Young tableaux of shape kω1. ◻

I.1.1.15 Lemma. Let i ∈ Z/nZ and 1 ≤ k ≤ n − 1. On semistandard Young tableaux

of shape ωk that contain a box with entry i mod n and that do not contain a box with

entry i + 1 mod n the Kashiwara operator f̃i replaces the box with entry i mod n by a

box with entry i + 1 mod n so that the result is again a semistandard Young tableau of

shape ωk. On semistandard Young tableaux of shape ωk that do not contain a box with

entry i mod n or that do contain a box with entry i + 1 mod n the Kashiwara operator

f̃i acts by zero.

Proof. For f̃i, 1 ≤ i ≤ n − 1, this follows from Lemma I.1.1.4 together with the isomor-

phism W k,1 ≅ Lq(1ωk) of Uq(sln(C))-modules. For i = 0 this is an application of the

identity f̃0 = ψ−1f̃1ψ [Shi02, Equation 3.7] together with the simplified jeu-de-taquin

rule for Young tableaux of shape ωk. ◻

I.1.1.16 Remark. The rules from Lemma I.1.1.14 and Lemma I.1.1.15 are formulated

independently of the relative positions of the boxes with entries i, i + 1 mod n . ◊
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Figure I.1.1.4.: The crystal graph for W 2,1 ∈ Uq(s̃l5(C))−mod obtained from the crystal

graph for L(ω2) ∈ Uq(sl5(C))−mod.

I.1.2. Combinatorics of particle configurations

In this section we identify the crystal combinatorics described in Section I.1.1 with certain

particle configurations following [Jim+91], [KS10]. Notice that the representations of the

affine Kac-Moody Lie algebra considered in [KS10] factor indeed over the extended loop

algebra s̃ln(C).

The particle configurations are discussed in more detail in Chapters I.2 and I.3, where

also graphical realisations are given. Combinatorially they can be defined as follows:
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I.1. Crystal bases and particle configurations

I.1.2.1 Definition. i) For k ∈ Z>0, n ≥ 2, classical and affine bosonic particle con-

figurations of k particles on n positions are defined to be partitions of k with n

parts, i.e. tuples (k1, . . . , kn) ∈ Zn≥0 with ∑i ki = k. For classical bosonic particle

configurations, particle propagation operators ar are defined for 1 ≤ r ≤ n − 1 by

ar(k1, . . . , kr, kr+1, . . . , kn) = (k1, . . . , kr − 1, kr+1 + 1, . . . , kn) if kr > 0,

ar(k1, . . . , kr, kr+1, . . . , kn) = 0 else.

For affine bosonic particle configurations, the particle propagation operators are

defined for 1 ≤ r ≤ n − 1 in the same way. Additionally, there is a propagation

operator a0 given by

a0(k1, . . . , kn) = (k1 + 1, . . . , kn − 1) if kn > 0,

a0(k1, . . . , kn) = 0 else.

Similarly, a reversed particle propagation operator a∗r is defined for classical or

affine bosonic particle configurations (k1, . . . , kn) with 1 ≤ r ≤ n− 1 or 0 ≤ r ≤ n− 1,

respectively, by

a∗r(k1, . . . , kr, kr+1, . . . , kn) = (k1, . . . , kr + 1, kr+1 − 1, . . . , kn) if kr+1 > 0,

a∗r(k1, . . . , kr, kr+1, . . . , kn) = 0 else.

ii) For 1 ≤ k ≤ n − 1, n ≥ 2, classical and affine fermionic particle configurations of k

particles on n positions are defined to be tuples (i1, . . . , in) ∈ {0,1}n with ∑r ir = k.

For classical fermionic particle configurations, particle propagation operators ar are

defined for 1 ≤ r ≤ n − 1 by

ar(k1, . . . , kr, kr+1, . . . , kn) = (k1, . . . , kr − 1, kr+1 + 1, . . . , kn) if kr = 1, kr+1 = 0,

ar(k1, . . . , kr, kr+1, . . . , kn) = 0 else.

For affine fermionic particle configurations, the particle propagation operators are

defined for 1 ≤ r ≤ n − 1 in the same way. Additionally, there is a propagation

operator a0 given by

a0(k1, . . . , kn) = (k1 + 1, . . . , kn − 1) if kn = 1, k1 = 0,

a0(k1, . . . , kn) = 0 else.

Similarly, define the reversed particle propagation operator a∗r for a classical or

affine fermionic particle configuration (k1, . . . , kn) with 1 ≤ r ≤ n−1 or 0 ≤ r ≤ n−1,

respectively, by

a∗r(k1, . . . , kr, kr+1, . . . , kn) = (k1, . . . , kr + 1, kr+1 − 1, . . . , kn) if kr+1 = 1, kr = 0,

a∗r(k1, . . . , kr, kr+1, . . . , kn) = 0 else.
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I.1.2. Combinatorics of particle configurations

Hence, if ai(k
′
1, . . . , k

′
n) = (k1, . . . , kn) ≠ 0, then we have a∗i (k1, . . . , kn) = (k′1, . . . , k

′
n).

One can identify particle configurations and crystals as follows, see [KS10, Remark 5.9]:

I.1.2.2 Proposition. i) Let k ∈ Z>0. There are bijections of sets

{semistandard Young tableaux of shape kω1 with entries 1, . . . , n}

↔ {classical bosonic particle configurations of k particles with n positions},

{semistandard Young tableaux of shape kω1 with entries in Z/nZ}

↔ {affine bosonic particle configurations of k particles with n positions}

that identify the unique semistandard Young tableaux of shape kω1 with entries

(i1, . . . , ik) so that kr ∶= #{j ∣ 1 ≤ j ≤ k, ij = r} with the particle configuration

(k1, . . . , kn). These bijections identify the Kashiwara operators f̃i with particle

propagation operators ai for 1 ≤ i ≤ n and i ∈ Z/nZ, respectively. The Kashiwara

operators ẽi are identified with particle propagation operators a∗i for 1 ≤ i ≤ n and

i ∈ Z/nZ, respectively.

ii) Let 1 ≤ k ≤ n − 1. There are bijections of sets

{semistandard Young tableaux of shape ωk with entries 1, . . . , n}

↔ {classical fermionic particle configurations of k particles with n positions},

{semistandard Young tableaux of shape ωk with entries in Z/nZ}

↔ {affine fermionic particle configurations of k particles with n positions}

that identify the unique semistandard Young tableaux of shape ωk with entries

(i1, . . . , ik) so that kr ∶= #{j ∣ 1 ≤ j ≤ k, ij = r} with the particle configuration

(k1, . . . , kn). These bijections identify the Kashiwara operators f̃i with particle

propagation operators ai for 1 ≤ i ≤ n and i ∈ Z/nZ, respectively. The Kashiwara

operators ẽi are identified with particle propagation operators a∗i for 1 ≤ i ≤ n and

i ∈ Z/nZ, respectively.

Proof. For the bijections between semistandard Young tableaux and particle config-

urations it suffices to observe that semistandard Young tableaux of shape ωk or kω1

are uniquely determined by their entries without recording the precise position of each

entry. The identification of Kashiwara operators with particle propagation operators fol-

lows from Lemma I.1.1.3, Lemma I.1.1.14, Lemma I.1.1.4 and Lemma I.1.1.15 together

with the property of crystals graphs that there is an edge from node x to node x′ labelled

f̃i if and only if there is an edge from node x′ to x labelled ẽi. ◻

45



I.1. Crystal bases and particle configurations

I.1.2.3 Remark. By Proposition I.1.2.2 one can identify Kashiwara operators with

particle propagation operators. In Chapters I.2 and Chapter I.3 we see that one can

identify the particle propagation operators with generators of the (affine) plactic algebra.

The (affine) plactic algebra is isomorphic to the specialisation of one half of the (affine)

quantum group at q = 0 by desymmetrized Serre relations, see Remark I.1.1.9.

Thereby the two different approaches of specialisation of the quantum group at q = 0 – by

crystals and by desymmetrized Serre relations – are related in the special case of Young

diagrams of shape kω1, ωk. This fails for other crystals, see Remark I.1.1.9. It is special

about kω1 and ωk that the action of Kashiwara operators, particle propagation operators

and plactic operators is uniquely determined by the list of entries in the Young tableaux,

independently of the position of the entries. In general, the Kashiwara operators are

sensitive to the position of the entries, see Figure I.1.1.2 ◊
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algebra

This chapter is structured as follows: In Section I.2.1 we define the affine nilTemperley–

Lieb algebra nT̂LN and fix some notation. In Section I.2.2 we give an overview over

algebras related to the affine nilTemperley–Lieb algebra. In Section I.2.3 we discuss two

gradings of nT̂LN that are important tools when we compute the center of the algebra.

The second main tool for the computation of the center is the faithfulness of the action

on affine fermionic particle configurations: In Section I.2.4 we define this action, in

Section I.2.5 we describe a normal form for monomials and hence a basis of nT̂LN that

we use in Section I.2.6 to give an elementary proof of faithfulness.

In Section I.2.7 we define certain projectors inside nT̂LN that sum up to central elements.

Then in Section I.2.8 we show that the center of nT̂LN is in fact generated by these

special central elements. In Section I.2.9 we show that nT̂LN is finitely generated over

the center. In Section I.2.10 we describe another normal form for the monomials that

makes use of the center. At that moment we have collected enough information to

construct inclusions nT̂LN ⊂ nT̂LN+1 in Section I.2.11.

While all results so far hold over an arbitrary ground field k (see Remark I.2.1.3), we have

to assume that k is an uncountable algebraically closed field in the remaining sections. In

Section I.2.12 we compute localisations with respect to central elements and we classify

the simple modules over nT̂LN . In Section I.2.13 we use these localisations together

with a rank argument to show that nT̂LN is not free over its center. In Section I.2.14 we

discuss possible approaches to equip nT̂LN with an affine cellular structure in the sense

of [KX12] based on our knowledge of different normal forms for monomials in nT̂LN .

I.2.1. Notation

Let k be any field, denote by k[q] the polynomial ring in an indeterminate q, and assume

N is a positive integer. Throughout we will assume N ≥ 3.
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I.2. The affine nilTemperley–Lieb algebra

I.2.1.1 Definition. The affine nilTemperley–Lieb algebra nT̂LN of rank N is the unital

associative k-algebra generated by elements a0, . . . , aN−1 subject to the relations

a2
i = 0 for all 0 ≤ i ≤ N − 1,

aiaj = ajai for all i − j ≠ ±1 mod N,

aiai+1ai = ai+1aiai+1 = 0 for all 0 ≤ i ≤ N − 1,

where all indices are taken modulo N , so in particular aN−1a0aN−1 = a0aN−1a0 = 0.

The finite nilTemperley–Lieb algebra nTLN is the subalgebra of nT̂LN generated by

a1, . . . , aN−1. We adopt the convention that nTL1 = k1.

We fix the following notation for monomials in nT̂LN and nTLN : For an ordered index

sequence j = (j1, . . . , jm) with 0 ≤ j1, . . . , jm ≤ N − 1, we define the element

a(j) = aj1 . . . ajm

and we call it (ordered) monomial. Unless otherwise specified, we use the letters i, j for

indices from Z/NZ, in particular, we identify the indices 0 and N in this case.

I.2.1.2 Example. For N = 5, the monomial associated with the ordered index sequence

j = (1,3,2,0,1,4,3) is given by

a(j) = a(1,3,2,0,1,4,3) = a1a3a2a0a1a4a3.

I.2.1.3 Remark. Except for Sections I.2.12, I.2.13 and I.2.14, all of our results hold

over an arbitrary ground field k, even one of characteristic 2, simply by ignoring signs

in that case.

In fact, our arguments in Sections I.2.1 – I.2.7 work for any associative unital ground

ring R if we adapt our notation: We need to replace k-vector spaces and k-algebras with

free R-modules and R-algebras, respectively. In particular, the affine nilTemperley–Lieb

algebra over k is replaced by the R-algebra with the same generators and relations, and

the polynomial ring k[q] is replaced by R[q]. In addition, in Sections I.2.8 – I.2.11 we

have to assume in addition that R is commutative unless we modify our statements

slightly, e.g. replace R by its center in Proposition I.2.8.2 and Theorem I.2.8.5 and

assume that R is finitely generated over its center in Theorem I.2.9.1.

This is possible because our arguments mainly rely on investigating monomials in the

generators of nT̂LN . However, for simplicity we have chosen to assume k is a field

throughout the chapter. ◊
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I.2.2. Related algebras

I.2.2. Related algebras

The affine nilTemperley–Lieb algebra appears in many different settings, some of which

we describe in this section.

I.2.2.1. The affine nilCoxeter algebra

nT̂LN is a quotient of the affine nilCoxeter algebra of type ÂN−1:

The affine nilCoxeter algebra nĈN of type ÂN−1 over a field k is the unital associative

algebra generated by elements ui, 0 ≤ i ≤ N−1, satisfying the relations u2
i = 0; uiuj = ujui

for i − j ≠ ±1 mod N ; and uiui+1ui = ui+1uiui+1 for 1 ≤ i ≤ N − 1, where the subscripts

are read modulo N . The algebra nT̂LN is isomorphic to the quotient of nĈN obtained

by imposing the additional relations uiui+1ui = ui+1uiui+1 = 0 for 1 ≤ i ≤ N − 1.

The nilCoxeter algebra nCN has generators ui,1 ≤ i ≤ N − 1, which satisfy the same

relations as they do in nĈN . It first appeared in work on the cohomology of flag varieties

[BGG73] and has played an essential role in studies on Schubert polynomials, Stanley

symmetric functions, and the geometry of flag varieties (see for example [LS89], [Mac91],

[KK86], [FS94]). The definition of nCN was inspired by the divided difference operators

∂i on polynomials in variables x = {x1, . . . , xN} defined by Demazure operators

∂i(f) =
f(x) − f(σix)

xi − xi+1
,

where the transposition σi fixes all the variables except for xi and xi+1, which it in-

terchanges. The operators ∂i satisfy the nilCoxeter relations above, and applications

of these relations enabled Fomin and Stanley [FS94] to recover known properties and

establish new properties of Schubert polynomials.

The algebra nCN belongs to a two-parameter family of algebras having generators ui,

1 ≤ i ≤ N −1, which satisfy the relations uiuj = ujui for ∣i−j∣ > 1 and uiui+1ui = ui+1uiui+1

for 1 ≤ i ≤ N−2 from above, together with the relation u2
i = αui+β for all i, where α,β are

fixed parameters. In particular, the specialization α = β = 0 yields the nilCoxeter algebra;

α = 0, β = 1 gives the standard presentation of the group algebra of the symmetric group

kSN ; and α = q − 1, β = q gives the Hecke algebra HN(q) of type A.

Khovanov [Kho01] introduced restriction functors FD and induction functors FX corre-

sponding to the natural inclusion of algebras nCN ↪ nCN+1 on the direct sum C of the

categories CN of finite-dimensional nCN -modules. These functors categorify the Weyl
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I.2. The affine nilTemperley–Lieb algebra

algebra of differential operators with polynomial coefficients in one variable and cor-

respond to the Weyl algebra generators ∂ and x (derivative and multiplication by x),

which satisfy the relation ∂x − x∂ = 1.

Brichard [Bri11] used a diagram calculus on cylinders to determine the dimension of the

center of nCN and to describe a basis of the center for which the multiplication is trivial.

In this diagram calculus on N strands, the generator ui corresponds to a crossing of the

strands i and i + 1. The nil relation u2
i = 0 is represented by demanding that any two

strands may cross at most once; otherwise the diagram is identified with zero.

For convenience let us include an overview of the various 0- and nil-versions of Hecke

and Coxeter algebras of type A or Â over the ground ring k (e.g. k = C(q)). Let ν ∈ k×

be a unit (e.g. ν = q).

i) The nilCoxeter algebra nCN of type A with its defining relations u2
i = 0; uiuj = ujui

for ∣i − j∣ > 1; and uiui+1ui = ui+1uiui+1 for 1 ≤ i ≤ N − 2 is sometimes also called

nilHecke algebra [GR04]. See [Kha16] for generalizations of the nilCoxeter algebra.

ii) The (polynomial) affine nilHecke algebra of type A is the algebra generated by ui,

1 ≤ i ≤ N − 1, and Xi, 1 ≤ i ≤ N , with relations u2
i = 0; uiuj = ujui for ∣i − j∣ > 1;

uiui+1ui = ui+1uiui+1 for 1 ≤ i ≤ N − 2; XiXj = XjXi for all i, j; and with mixed

relations Xjui = uiXj for all j ≠ i, i + 1 and

uiXi+1 = Xiui + 1, Xi+1ui = uiXi + 1.

It contains the nilCoxeter algebra nCN and the polynomial ring k[X1, . . . ,Xn] as

subalgebras. Many authors use the name nilHecke algebra for this algebra [KK86],

[KL09]. Because of this ambiguity we avoid to use the terminology “nilHecke

algebra”. In [KL09, Examples 2.2 3)] a graphical realisation for the affine nilHecke

algebra is given. Every monomial corresponds to a string diagram connecting N

points in the bottom with N points in the top of the diagram. The generator Xi

is given by the identity diagram with a dot on the i-th strand, while ui is given by

the crossing of the strands connecting i, i + 1.

iii) The (localised) affine nilHecke algebra of type A is the localisation of the affine

nilHecke algebra at all Xi, 1 ≤ i ≤ N .

iv) The Hecke algebra or Iwahori–Hecke algebra HN(ν) of type A is “the” Hecke alge-

bra defined by generators Ti, 1 ≤ i ≤ N−1, with defining relations (Ti−ν)(Ti+1) = 0;

TiTj = TjTi for ∣i−j∣ > 1; and TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ N−2. Since ν ∈ k× one

can deduce frome these relations in addition that there exists T−1
i = ν−1(Ti + 1− ν)

for all 1 ≤ i ≤ N − 1.
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v) The (polynomial) affine Hecke algebra of type A is given by generators Ti, 1 ≤ i ≤

N −1, and Xi, 1 ≤ i ≤ N , with relations (Ti−ν)(Ti+1) = 0; TiTj = TjTi for ∣i−j∣ > 1;

and TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ N −2; XiXj =XjXi for all i, j; and with mixed

relations TiXiTi = νXi+1 for 1 ≤ i ≤ N − 1 and TiXj = XjTi for j ≠ i, i + 1. One

can deduce frome these relations that there exists T−1
i = ν−1(Ti + 1 − ν) for all

1 ≤ i ≤ N − 1, and furthermore

TiXi = Xi+1Ti +Xi+1 − νXi+1, XiTi = TiXi+1 +Xi+1 − νXi+1.

Although these relations have been deduced using ν ∈ k×, they also make sense

for ν = 0, so they will appear again in the definition of the affine 0-Hecke algebra

below.

vi) The (localised) affine Hecke algebra or extended Iwahori–Matsumoto Hecke algebra

of type A is equal to the polynomial affine Hecke algebra localised at Xi for all

1 ≤ i ≤ N [IM65], [MS16].

vii) The 0-Hecke algebra of type A is defined by generators Ti, 1 ≤ i ≤ N−1 and relations

T 2
i = −Ti; TiTj = TjTi for ∣i − j∣ > 1; and TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ N − 2.

For alternative generators H i = Ti+1 the relations read H2
i =H i; H iHj =HjH i for

∣i−j∣ > 1; and H iH i+1H i =H i+1H iH i+1 for 1 ≤ i ≤ N −2. Notice that some authors

call this algebra as well nilHecke algebra, see [Kha16] and references therein.

viii) Define the (polynomial) affine 0-Hecke algebra of type A as the algebra generated

by Ti, 1 ≤ i ≤ N − 1, and Xi, 1 ≤ i ≤ N , and relations T 2
i = −Ti; TiTj = TjTi for

∣i− j∣ > 1; TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ N − 2; XiXj =XjXi for all i, j; and with

mixed relations TiXj =XjTi for j ≠ i, i + 1; and furthermore

TiXi = Xi+1Ti +Xi+1, XiTi = TiXi+1 +Xi+1.

From this it follows that TiXiTi = 0 for 1 ≤ i ≤ N − 1. For alternative generators

H i = Ti + 1 the relations read H2
i = H i; H iHj = HjH i for ∣i − j∣ > 1; H iH i+1H i =

H i+1H iH i+1 for 1 ≤ i ≤ N − 2; XiXj = XjXi for all i, j; and with mixed relations

TiXiTi = 0 for 1 ≤ i ≤ N − 1 and H iXj =XjH i for j ≠ i, i + 1; and furthermore

H iXi = Xi+1H i +Xi, XiH i = H iXi+1 +Xi.

ix) The (localised) affine 0-Hecke algebra of type A is the localisation of the affine

0-Hecke algebra at all Xi, 1 ≤ i ≤ N .

x) We use the name cyclic affine Hecke algebra when we refer to the Hecke algebra

associated with the affine Coxeter group of type Â. It is defined by generators Ti,

0 ≤ i ≤ N − 1, with relations (Ti − q)(Ti + 1) = 0; TiTj = TjTi for ∣i − j∣ > 1; and

TiTi+1Ti = Ti+1TiTi+1 for 0 ≤ i ≤ N − 1, where all indices are understood modulo N .
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It is not immediate how these algebras defined by generators and relations are related.

One can check that there is an isomorphism between the (localised) affine nilHecke

algebra and the (localised) affine 0-Hecke algebra given by

(Localised) affine nilHecke algebra ≅ (Localised) affine 0-Hecke algebra

ui ↦ −X−1
i H i

X±1
i ↦ X±1

i .

Although the affine nilCoxeter algebra nĈN of type Â and the localised affine nilHecke

algebra of type A are defined in quite different ways, there is hope that they can be

related similarly to the group algebras of “cyclic” affine symmetric group C[S̃N ] and

the “extended” affine symmetric group C[SN ] ⋉ C[X±1
1 , . . . ,X±1

N ]. In fact, C[SN ] ⋉

C[X±1
1 , . . . ,X±1

N ] is isomorphic to the C-algebra defined by generators si, 1 ≤ i ≤ N ,

and τ , so that s2
i = 1; sisj = sjsi for ∣i − j∣ > 1; sisi+1si = si+1sisi+1 for 1 ≤ i ≤ N − 2;

siτ = τsi+1 for all i; and all indices are understood modulo N , see [GJ11, Section 6.2].

Indeed, for the (localised) affine Hecke algebra it is known that the “cyclic” presentation

(x) and the “extended” presentation (vi) are equivalent, see [MS16, Lemma 3.2]. The

Bernstein and the Iwahori-Matsumoto presentation are related by [HP02].

I.2.2.2. The universal enveloping algebra of the Lie algebra of affine

type A

nT̂LN is a quotient of the negative part of the universal enveloping algebra of the affine

Kac–Moody Lie algebra ŝlN :

The negative part U−(ŝlN) of the universal enveloping algebra U(ŝlN) of the affine Kac–

Moody Lie algebra ŝlN has generators fi, 0 ≤ i ≤ N − 1, which satisfy the Serre relations

f2
i fi+1 − 2fifi+1fi + fi+1f

2
i = 0 = f2

i+1fi − 2fi+1fifi+1 + fif
2
i+1 and fifj = fjfi for i − j ≠

±1 mod N (all indices modulo N). Factoring U−(ŝlN) by the ideal generated by the

elements f2
i , 0 ≤ i ≤ N − 1, gives nT̂LN whenever the characteristic of k is different from

2.

I.2.2.3. The affine plactic algebra

The affine nilTemperley–Lieb algebra is a quotient of the affine plactic algebra and the

local affine plactic algebra that we encounter again in Chapter I.3. The local affine

plactic algebra P̂N is the unital associative k-algebra generated by a0, a1, . . . , aN−1 with

defining relations aiaj = ajai for i− j ≠ ±1 mod N ; aiai−1ai = aiaiai−1 for i, i−1 ∈ Z/NZ;
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and aiai+1ai = ai+1aiai for i, i+1 ∈ Z/NZ. The name “local” refers to the commutativity

relation aiaj = ajai. See the discussion of the plactic algebra in Chapter I.3 for references

and more details about this algebra.

After we quotient out the additional relation a2
i = 0 for all i, we obtain the affine

nilTemperley–Lieb algebra.

I.2.2.4. Combinatorial actions

nT̂LN acts on the small quantum cohomology ring of the Grassmannian:

As in [Pos05, Section 2] (see also [KS10]), consider the cohomology ring H●(Gr(k,N))

with integer coefficients for the Grassmannian Gr(k,N) of k-dimensional subspaces of

kN . It has a basis given by the Schubert classes [Ωλ], where λ runs over all partitions

with k parts, the largest part having size N − k. By recording the k vertical and N − k

horizontal steps that identify the Young diagram of λ inside the northwest corner of

a k × (N − k) rectangle, such a partition corresponds to a (0,1)-sequence of length N

with k ones (respectively and N − k zeros) in the positions corresponding to the vertical

(respectively horizontal) steps.

As a Z[q]-module for an indeterminate q, the quantum cohomology ring of the Grassman-

nian is given by qH●(Gr(k,N)) = Z[q]⊗ZH●(Gr(k,N)) together with a q-multiplication,

[Buc03], [FGP97, Theorem 1.3] (see also [FGP97, Theorem 1.2] for an identification of

Schubert classes with quantum Schubert polynomials, analogously to [BGG73], and ref-

erences therein).

The nT̂LN -action can be defined combinatorially on

qH●
(Gr(k,N)) ≅ spanZ[q] {(0,1)-sequences of length N with k ones}

as described in the next item, and the multiplication of two Schubert classes [Ωλ] ⋅ [Ωµ]

is equal to sλ ⋅ [Ωµ] where sλ is a certain Schur polynomial in the noncommutative

generators of nT̂LN as defined in [Pos05, Corollary 8.3].

nT̂LN acts faithfully on fermionic particle configurations on a circle:

First, a (0,1)-sequence with k ones is identified with a circular particle configuration

having N positions, where the k particles are distributed at the position on the circle
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I.2. The affine nilTemperley–Lieb algebra

that corresponds to their position in the sequence, so that there is at most one particle

at each position. On the space

spank[q] {fermionic particle configurations of k particles on a circle with N positions},

the generators ai of nT̂LN act by sending a particle lying at position i to position

i + 1. Additionally, the particle configuration is multiplied by ±q when applying a0.

The generator ai acts by zero if there is no particle at position i. This is the graphical

representation from [KS10] (see also [Pos05]), which we use in our description of the

center of nT̂LN . The precise definition is given in Section I.2.4, here is a representative

picture:
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Figure I.2.2.1.: Example for N = 8: Application of a3a2a5 to the particle configuration

(0,1,2,5) gives (0,1,4,6).

nT̂LN acts on Young diagrams:

This is another combinatorial description of the action described above. Here the gen-

erator ai adds a box in the (i − k)-th diagonal of a Young diagram that is contained in

a rectangle of size k × (N − k) whose diagonals are numbered from −k to N − k. The

generator a0 removes a rim hook from the Young diagram. See [Pos05], [KS10, Remark

9.2], and for the finite case also [FG98, Example 2.4].

I.2.2.5. The creation/annihilation algebra

The finite nilTemperley–Lieb algebra is a subalgebra of the creation/annihilation algebra,

a Clifford algebra having generators {ξi, ξ
∗
i ∣ 0 ≤ i ≤ N − 1} and relations ξiξj + ξjξi = 0,

ξ∗i ξ
∗
j + ξ

∗
j ξ

∗
i = 0, ξiξ

∗
j + ξ

∗
j ξi = δij . The Clifford generators ξi (respectively ξ∗i ) act on

the fermionic particle configurations by annihilation (respectively creation) of a particle

at position i. The finite nilTemperley–Lieb algebra appears inside the Clifford algebra

via ai ↦ ξ∗i+1ξi. For the affine version one can take the scalar extension with k[q] of

the Clifford algebra on 2(N + 1) generators {ξi, ξ
∗
i ∣ 0 ≤ i ≤ N} and identify ξN = q−1ξ0,

ξ∗N = qξ0 as discussed in [KS10, Section 8].
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I.2.2.6. The affine Temperley–Lieb algebra

nT̂LN is the associated graded algebra of the affine Temperley–Lieb algebra:

The affine Temperley–Lieb algebra T̂LN(δ) generated by a0, . . . , aN−1 has the usual

commuting relations and the relations aiai±1ai = ai and a2
i = δai for some parameter

δ ∈ k instead of the nil relations (where again all indices are mod N). It contains the

famous Temperley–Lieb algebra TLN(δ) as the subalgebra generated by a1, . . . , aN−1,

see [TL71], [Kau90]. Both are filtered algebras with `-th filtration space generated by

all monomials of length at most `. Since the associated graded algebra of T̂LN(δ) is

nT̂LN for any value of δ, elements of nT̂LN can be identified with reduced expressions

in T̂LN(δ).

The Temperley–Lieb algebra TLN(δ) is known for its diagrammatical realisation by

crossingless string diagrams in the plane that connect 2N points. Multiplication of

diagrams is given by connecting and smoothing the strands. Whenever the strands

form a circle, this is removed from the diagram at the expense of multiplying by the

parameter δ. This is an example for a diagram algebra, in the sense that it is a quotient

of an algebra with a presentation by generators and relations so that the generators

can be identified with string diagrams (possibly with labelled strands and additional

decoration, e.g. dots) inside [0,1] ×M, where M is a compact manifold. The strands in

such a diagram form closed loops or connect a finite number of end points in {0,1}×M,

multiplication is given by stacking the diagrams on top of each other and connecting

the strands at the end points, and isotopy relations hold. See [Koe08] for an overview

of diagram algebras.

The diagram algebra structure of T̂LN(δ) is given by the same pictures as for the

Temperley–Lieb algebra, but now the diagrams are wrapped around the cylinder (see

e.g. [FG99], [KX12]). The top and bottom of the cylinder each have N nodes. Monomi-

als in the affine Temperley–Lieb algebra are represented by diagrams of N non-crossing

strands, each connecting a pair of those 2N nodes. Multiplication of two monomials is

realized by stacking the cylinders one on top of the other, and then proceeding as for

TLN(δ). The relation aiai±1ai = ai corresponds to the isotopy between a strand that

changes direction and a strand that is pulled straight.

In contrast, the affine nilTemperley–Lieb algebra is not a diagram algebra in this sense.

The relation aiai±1ai = 0 implies that isotopy would identify zero and nonzero elements.

Nevertheless, the diagram of a reduced expression in T̂LN may be considered as an

element of nT̂LN . Such a diagram consists of a number (possibly zero) of arcs that

connect two nodes on the top of the cylinder, the same number of arcs connecting two
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nodes on the bottom, and arcs that connect a top node and a bottom one. The latter

arcs wrap around the cylinder either all in a strictly clockwise direction or all in a strictly

counterclockwise way. Since the multiplication of two such diagrams may give zero, we

will not use this diagrammatic realization here.

In quantum Schur-Weyl duality the Temperley–Lieb algebra appears as the quotient

of the Iwahori–Hecke algebra HN(q) that acts faithfully on tensor powers of the two-

dimensional simple module of Uq(sl2) of type 1. More precisely, the Temperley–Lieb

algebra TLN(δ) is the following quotient of the Iwahori–Hecke algebra HN(q) over Z[q±
1
2 ]

of type (A) [Jon87, Section 11]:

HN(q)/(TiTi+1Ti + TiTi+1 + Ti+1Ti + Ti + Ti+1 + 1 ∣ 1 ≤ i ≤ N − 2) ≅ TLN(q
1
2 + q−

1
2 )

Ti ↦ q
1
2ai − 1.

The standard basis of HN (q) consists of monomials labelled by elements of SN , the

Coxeter group of type A. According to [Fan96, Proposition 1], the subset of monomials

labelled by 321-avoiding permutations is mapped under the quotient map to a basis of

TLN(q
1
2 + q−

1
2 ) (see also [GL01] and the reference [Gra95, Theorem 6.2] therein). The

leading term in the image of a monomial Tw ∈ HN(q) for a 321-avoiding permutation

w = si1 . . . sir is the reduced monomial ai1 . . . air in the Temperley–Lieb algebra.

Likewise, the Kazhdan-Lusztig basis elements of HN(q) labelled by 321-avoiding permu-

tations are mapped to the canonical basis of TLN(q
1
2 + q−

1
2 ), see [GL01, Lemma 2.2.1]

and [GL99] for the canonical basis of the Temperley–Lieb algebra. There are many

further bases known for TLN , see e.g. [Jon83, Aside 4.1.4], [Mur95], [RSA14], [Här99],

[Gob15] and references therein.

Also in the affine case, the affine Temperley–Lieb algebra T̂LN(q
1
2 +q−

1
2 ) is a quotient of

the affine Hecke algebra H̃N(q) of type Â, although by [GL98] the affine Temperley–Lieb

algebra defined in terms of diagrams on a cylinder is slightly larger than the quotient

of the affine Hecke algebra: The additional elements are given by so-called twists that

allow strands to wrap around the cylinder, see the picture in [GL98, p. 182].

One can define generalized Temperley–Lieb algebras as a quotient of the Hecke algebra

associated with a Coxeter group of any type. Then for any type, the subset of the

standard basis or the Kazhdan-Lusztig basis of the Hecke algebra that is labelled by

fully commutative elements induces a basis of the Temperley–Lieb quotient, see [GL01,

Proposition 2.1.3 and Lemma 2.2.1]. Fully commutative elements of a Coxeter group are

defined to be those elements for which any two words that represent this element differ

only by a sequence of transpositions applied to adjacent pairs of commuting generators
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[Ste96]. Then one can identify the fully commutative elements (considered as equiva-

lence classes of words in the Coxeter group) with a basis of the corresponding generalized

Temperley–Lieb algebra. For certain types (in particular type A), the fully commutative

elements of the Coxeter group form a union of twosided Kazhdan–Lusztig cells. Equiva-

lently, the Kazhdan–Lusztig basis elements not labelled by fully commutative elements

are mapped to zero under the quotient map [GL01, Theorem 2.2.3].

In particular, the reduced expressions in the affine Temperley–Lieb algebra T̂LN(δ)

can be identified with fully commutative elements in the affine Coxeter group of type

ÂN−1 [Fan96], see also [FG99, Section 2.1]. This is similar to the finite case: The

monomials in the nilTemperley–Lieb algebra nTLN correspond to reduced monomials in

the Temperley–Lieb algebra TLN , which are also known to be labelled by 321-avoiding

permutations in the symmetric group [Fan96]. By [BJS93, Theorem 2.1], being 321-

avoiding is equivalent to being fully commutative for the words in the symmetric group.

In [HJ10] abacus diagrams are used in order to find a generating function for the num-

ber of fully commutative elements of a given Coxeter length in type Â. This can be

interpreted as a graded dimension formula for the affine (nil)Temperley–Lieb algebra.

Descriptions in terms of heaps and generating functions can be found for any affine type

in [BJN15], together with an overview of the literature, see in particular [BJN15, Sec-

tion 2.6] for type Â. More on the properties of the generating functions can be found

e.g. in [Nad15] Al Harbat [Alh13] has recently described a normal form for the fully

commutative elements of type Â.

For the Temperley–Lieb algebra TLN(δ) there are several elements of the center known,

e.g. the Jones-Wenzl projectors, see [RSA14, Appendix A]. Some description of the

center of the affine Temperley–Lieb algebra T̂LN(δ) is available in [Vla04]. In [HMR09]

a commuting family of elements in the affine Temperley–Lieb algebra analogous to the

Jucys-Murphy elements is defined.

The (diagrammatically defined) affine Temperley–Lieb algebra is known to be affine

cellular in the sense of Koenig and Xi [KX12], see Proposition 2.5 therein. Affine cel-

lularity generalizes the notion of cellularity for finite dimensional algebras from [GL96].

The Temperley–Lieb algebra TLN(δ) is known for being cellular, even graded cellular

[PRH14] with grading induced from the grading on cyclotomic quiver Hecke algebras

[BK09]. Therefore it is very tempting to ask whether the affine nilTemperley–Lieb alge-

bra is affine cellular, too. This is far from being obvious, and we come back to this in

Section I.2.14.
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I.2.3. Gradings

One of the ingredients needed in Section I.2.8 to study the center of nT̂LN is a fine

grading on the algebra. Gradings by abelian groups faciliate the computation of the

center of an algebra, as the following standard result reduces the work to determining

homogeneous central elements.

I.2.3.1 Lemma. Let A = ⊕
g∈G

Ag be an algebra graded by an abelian group G. The

center of A is homogeneous, i.e. it inherits the grading.

Proof. Let a = ∑
g∈G

ag be a central element of the graded algebra A = ⊕
g∈G

Ag. We have

for bh ∈ Ah that ∑
g∈G

agbh = abh = bha = ∑
g∈G

bhag. Since this equality must hold in every

graded component, we get agbh = bhag for all homogeneous elements bh. Now take any

element b = ∑
h∈G

bh in A, then agb = ∑
h∈G

agbh = ∑
h∈G

bhag = bag, hence ag is central. ◻

Since the defining relations are homogeneous, both nT̂LN and nTLN have a Z-grading

by the length of a monomial, i.e. all generators ai have Z-degree 1. This can be refined

to a ZN -grading by assigning to the generator ai the degree ei, the i-th standard basis

vector in ZN . In either grading, we say that the degree 0 part of an element in nT̂LN

or nTLN is its constant term.

I.2.3.2 Remark. We exclude the case of N ≤ 2 from our considerations since there are

isomorphisms nT̂LN ≅ nTLN+1 for N = 1,2, and in these cases the center is known (and

uninteresting). The algebra nT̂L1 is 2-dimensional and commutative; while nT̂L2 has

dimension 5, and its center can be computed by hand making use of Lemma I.2.3.1 and

can be shown to be the k-span of 1, a0a1, a1a0. ◊

I.2.3.3 Remark. The affine (or finite) Temperley–Lieb algebra, which has relations

aiaj = ajai for i − j ≠ ±1 (mod N), aiai±1ai = ai, and a2
i = δai for some δ ∈ k, is a filtered

algebra with respect to the length filtration. For this algebra, the `-th filtration space

is generated by all monomials of length ≤ `. Its associated graded algebra is nT̂LN (or

nTLN ). Thus, nT̂LN is infinite dimensional when N ≥ 3, while nTLN has dimension

equal to the N -th Catalan number 1
N+1

(
2N
N

). ◊
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I.2.4. The graphical representation of the affine

nilTemperley–Lieb algebra

The second ingredient we use to determine the center is a faithful representation of

nT̂LN . Here we recall the definition of the representation from [KS10] and describe its

graphical realization, which is very convenient to work with.

Fix a basis v1, . . . , vN of kN . Consider the vector space V =
N

⊕
k=0

(k[q] ⊗ ⋀k kN). It has a

standard k[q]-basis consisting of wedge products

v(i) ∶= vi1 ∧ . . . ∧ vik for all (strictly) increasing sequences i = {1 ≤ i1 < . . . < ik ≤ N}

(I.2.1)

for all 0 ≤ k ≤ N , where the basis element of k = ⋀
0 kN is denoted v(∅). Recall that

unless otherwise stated all tensor products are taken over k, and we omit the tensor

symbol in k[q]-linear combinations of wedge products.

It is helpful to visualize the basis elements v(i) as particle configurations having 0 ≤ k ≤ N

particles arranged on a circle with N positions, where there is at most one particle at

each site, as pictured below for N = 8 and v(1,5,6) = v1 ∧ v5 ∧ v6. The vector v(∅)

corresponds to the configuration with no particles. Then V is the k[q]-span of such

circular particle configurations.
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Figure I.2.4.1.: The element v1 ∧ v5 ∧ v6 in the graphical realization.

There is an action of the affine nilTemperley–Lieb algebra nT̂LN defined on the basis

vectors v(i) of V as follows:

I.2.4.1 Definition. For 1 ≤ j ≤ N − 1,

ajv(i) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

vi1 ∧ . . . ∧ vi`−1 ∧ vj+1 ∧ vi`+1 ∧ . . . ∧ vik , if i` = j for some `,

0, otherwise.
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For the action of a0, note that vN appears in the basis element v(i) if and only if it

occurs in the last position, i.e. vik = vN , and define

a0v(i) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q ⋅ vi1 ∧ . . . ∧ vik−1 ∧ v1, if ik = N,

0, otherwise;

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(−1)k−1q ⋅ v1 ∧ vi1 ∧ . . . ∧ vik−1 , if ik = N,

0, otherwise.

I.2.4.2 Remark. The indices of the vectors vj can be interpreted modulo N , in the

sense that we make no distinction between v0 and vN and often use the two interchange-

ably. This does not affect the order of factors in the wedge basis. We identify e.g.

v1 ∧ v3 ∧ v4 ∧ v6 and v1 ∧ v3 ∧ v4 ∧ v0 for N = 6. ◊

I.2.4.3 Remark. It follows that ajv(i) = 0 if the sequence i contains j + 1 or if it does

not contain j. In other words, aj acts by replacing vj by vj+1. If this creates a wedge

expression with two factors equal to vj+1, the result is zero. Thus, for any monomial

a(j) there is a unique increasing sequence j = {1 ≤ j1 < . . . < jk ≤ N} with k minimal

on which the monomial acts nontrivially. Under the identification of basis elements v(j)

with particle configurations, we refer to j as the minimal particle configuration on which

a(j) acts nontrivially. ◊

In the graphical description, aj moves a particle clockwise from position j to position

j + 1, and one records “passing position 0” by multiplying by ±q as illustrated by the

particle configurations below.
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(a) a6(v1∧v5∧v6) = v1∧v5∧v7
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(b) a7a1a6(v1∧v5∧v6) = v2∧v5∧v0
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⋅(−q)

(c) a0(v5 ∧ v0) = −q ⋅ v1 ∧ v5.

Figure I.2.4.2.: Examples for the action of nT̂LN on a particle configuration.

It is easy to verify that the defining relations for nT̂LN hold for this action, assuming

that N ≥ 3. Hence we obtain

I.2.4.4 Lemma. i) Definition I.2.4.1 gives a representation of nT̂LN on V.

ii) The number of wedge factors (i.e., the number of particles) remains constant under

the action of the generators ai, so that V =
N

⊕
k=0

(k[q] ⊗ ⋀k kN) is a direct sum

decomposition of V as an nT̂LN -module.

The following crucial statement is taken from [KS10, Proposition 9.1.(2)], see also

[BFZ96, Proposition 2.4.1]. We will give a detailed proof adapted to our notation in

Section I.2.6.

I.2.4.5 Theorem. The action from Definition I.2.4.1 gives a faithful representation of

nT̂LN on V when N ≥ 3.

The spaces k[q] ⊗ ⋀0 kN and k[q] ⊗ ⋀N kN are trivial summands in V on which every

generator ai acts as 0, and so they are not needed for the faithfulness of the graphical

representation from Theorem I.2.4.5.
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I.2.4.6 Remark. From now on we identify elements of nT̂LN with the corresponding

operators on the particle configurations of the graphical representation. ◊

I.2.5. A normal form of monomials in the affine

nilTemperley–Lieb algebra

In this section we present a normal form algorithm for nonzero monomials in the affine

nilTemperley–Lieb algebra nT̂LN .

I.2.5.1 Remark. Observe that the defining relations of nT̂LN only allow to replace

a monomial expression by another monomial expression or 0. In other words, nT̂LN

is the semigroup algebra of the semigroup defined by generators a0, a1, . . . , an−1,∅ and

relations from Definition I.2.1.1 (where in addition the zero ∅ of the semigroup – also

called the absorbing element – is identified with the zero of the semigroup algebra), see

also [Hey00, Proposition 2.1]. This implies that

i) a nonzero monomial can only be manipulated using the commutativity relation,

and

ii) any set of pairwise distinct nonzero monomials is linearly independent.

Hence, the construction of a normal form for nonzero monomials gives a basis for nT̂LN .

We automatically get a basis for the affine Temperley–Lieb algebra T̂LN(δ) for any δ

since nT̂LN is the associated graded algebra of T̂LN(δ). ◊

The following lemma characterises nonzero monomials in nT̂LN . They correspond to

fully commutative elements in T̂LN(δ), see [Gre02] and the discussion in Section I.2.2.6.

I.2.5.2 Lemma. The monomial a(j) is nonzero if and only if for any two neighbouring

appearances of ai in a(j) there are exactly one ai+1 and one ai−1 in between, apart from

possible factors a` for ` ≠ i − 1, i, i + 1 (indices to be understood modulo N).

Formulated differently, two consecutive factors ai have to enclose ai+1 and ai−1, i.e.

ai . . . ai±1 . . . ai∓1 . . . ai, with the dots being possible products of a`’s with ` ≠ i±1, i. This

lemma is a special case of [Gre02, Lemma 2.6]; here is a quick proof for the convenience

of the reader.
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Proof. The monomial a(j) is zero if and only if we can bring two neighbouring factors ai

together so that we obtain either a2
i (“square”) or aiai±1ai (“braid”). But expressions of

the form ai . . . ai±1 . . . ai∓1 . . . ai cannot be resolved this way by commutativity relations.

On the other hand, if there are two neighbouring factors ai with either none or only

one of the terms ai±1 in between, we immediately get either a2
i or aiai±1ai. If there are

at least two factors ai+1 (or ai−1) in between the two ai, one can repeat the argument:

Either we can create a square or a braid, or we have at least two factors of the same

kind in between. In the case of a square or a braid we are done; otherwise we pick

two neighbouring ai+k in the k-th step of the argument. Since we always consider

the space in between two neighbouring factors ai, ai+1, . . . , ai+k, none of the previous

ai, ai+1, . . . , ai+k−1 occurs between the two neighbouring ai+k. Unless we found a square

or a braid in an earlier step, we end up in step N − 1 with a subexpression of the form

ara
m
r±1ar which is zero for any m ≥ 0. ◻

I.2.5.3 Definition. For any i ∈ {0,1, . . . ,N − 1}, we define a (clockwise) order
i
≺ on

the set {0,1, . . . ,N − 1} starting at i by

i
i
≺ i + 1

i
≺ . . .

i
≺ i +N − 1.

A normal form algorithm

Now we are ready to describe an algorithm that reorders the factors of any given nonzero

monomial in nT̂LN so that the resulting expression is independent of the choice of repre-

sentative (as shown in Lemma I.2.5.6). Hence we describe a normal form for monomials

in the affine nilTemperley–Lieb algebra.

The basic idea of the algorithm is as follows. Recall the defining relations of the affine

nilTemperley–Lieb algebra: We have zero relations a2
i = 0, aiai+1ai = 0 = ai+1aiai+1 that

we cannot apply because our monomial is assumed to be nonzero. According to Remark

I.2.5.1 we can only apply the commutativity relations aiaj = ajai for j ≠ i ± 1, where

all indices are taken modulo N . Inside a monomial we can freely move around a factor

ai as long as we never commute it with ai±1. In particular, whenever we find a factor

ai without ai±1 to the right of it, we may push it all the way to the right end of the

monomial.

Now we give the algorithm in detail. Let a(j) be an arbitrary nonzero monomial in

nT̂LN . As usual, the indices are considered modulo N . Reorder its factors according to

the following algorithm:
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i) Find all factors ai in a(j) with no ai−1 to their right. We denote them by

ai1 , . . . , aik , ordered according to their appearance in a(j); in other words, a(j)

is of the form

a(j) = . . . ai1 . . . ai2 . . . . . . aik .

ii) Move the ai1 , . . . , aik to the far right, without changing their internal order,

a(j) = a(j′) ⋅ (ai1ai2 . . . aik) = a(j′) ⋅ a(j(0))

for j(0) = (i1, . . . , ik) and some sequence j′ = (j with i1, . . . , ik removed). This is

possible because

a) by assumption, there is no ai−1 to the right of an ai in this list;

b) if for some i, ai+1 occurs to the right of some ai, then either ai . . . ai+1 . . . ai

would occur as a subword without ai−1 in between, hence a(j) = 0, or else

ai+1 does not have ai to its right, so it is one of the ai1 , . . . , aik itself, and will

be moved to the far right of a(j), too;

c) ai commutes with all a` for ` ≠ i − 1, i + 1.

iii) Repeat for a(j′) until we get

a(j) = a(j(m)
) ⋅ a(j(m−1)

) ⋅ . . . ⋅ a(j(1)) ⋅ a(j(0))

for sequences j(m), . . . , j(1) obtained successively the same way as described above.

Notice:

� Inside a sequence j(n), every index occurs at most once. If two consecutive

indices occur within j(n), they are increasingly ordered using the order
ik
≺ from

Definition I.2.5.3.

� For two consecutive sequences j(n+1), j(n) and for every index i
(n+1)
r occurring

in j(n+1), we can find some index i
(n)
s in j(n) such that i

(n+1)
r = i

(n)
s + 1.

� From that property, it also follows that the length of j(n+1) is less or equal than

the length of j(n).

iv) Reorder the factors a(j(m)), . . . , a(j(1)), a(j(0)) internally:

a) Start with a(j(0)). There is some 0 ≤ ı̂ ≤ N − 1 which does not occur in j(0),

but ı̂ − 1 occurs. For example, this is satisfied by ı̂ = ik + 1, as ik occurs in

j(0) and is to the right of every other factor of a(j). Choose the largest such

ı̂ (with respect to the usual order). Then we can move ı̂ − 1 to the very right

of the sequence j(0), because ı̂ is not present, and ı̂− 2 may only occur to the

left of ı̂− 1 due to the construction of j(0). We proceed in the same way with

those indices ı̂ − 2, ı̂ − 3, . . . , ı̂ − (N − 1) that appear in j(0). The result is a
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reordering of the sequence j(0) so that it is increasing from left to right with

respect to
ı̂
≺.

b) Repeat with all other factors a(j(1)), a(j(2)), . . . , a(j(m)) taking as the initial

right-hand index of the sequence ı̂, ı̂+1, . . . , ı̂+m−1 respectively, and reordering

within each a(j(n)) so that the indices are increasing from left to right with

respect to
ı̂+n
≺ .

The resulting monomial is called the normal form of the monomial a(j) that we started

with.

I.2.5.4 Example. As an example for nT̂L7, suppose a(j) = a(4 3 5 4 2 0 6 1 3 2 5).

(We omit the commas to simplify the notation.)

Find all ai without ai−1 to their right: a(4 3 5 4 2 0 6 1 3 2 5)

Move them to the far right, and a(4 3 5 4 2 0 6 3) ⋅ a(1 2 5)

do not change their internal order:

Repeat: a(4 3 5 4 2 0 6 3) ⋅ a(1 2 5)

a(4 3 5 4 0) ⋅ a(2 6 3) ⋅ a(1 2 5)

a(4 3 5 4 0) ⋅ a(2 6 3) ⋅ a(1 2 5)

a(4 5) ⋅ a(3 4 0) ⋅ a(2 6 3) ⋅ a(1 2 5)

Reorder the factors in each a(j(n)), a(4 5) ⋅ a(3 4 0) ⋅ a(2 3 6) ⋅ a(1 2 5).

increasingly with respect to
ı̂+n
≺ :

Then the monomial a(4 5)⋅a(3 4 0)⋅a(2 3 6)⋅a(1 2 5) is the normal form of the monomial

a(4 3 5 4 2 0 6 1 3 2 5). ◊

As a shorthand notation, in the following we often identify the index sequence j with

a(j) (and manipulate j according to the same relations as a(j)) as demonstrated in the

following example.

I.2.5.5 Example. LetN = 6. In our shorthand notation we identify the index sequences

(5 1 2 3 0 4 1 5 0 2 3 1 4 5 0 2 3 1 4 2)

= (1)(5 0 2)(3 4 5 1)(2 3 4 0)(1 2 3 5)(0 1 2 4)

= (1 5 0 2 3 4 5 1 2 3 4 0 1 2 3 5 0 1 2 4),
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where we omit the commas to simplify the notation again. ◊

I.2.5.6 Lemma. Let a(j) be an arbitrary nonzero monomial in nT̂LN . We consider

the monomials a(j(m)), a(j(m−1)), . . . , a(j(1)), a(j(0)) constructed from a(j) by the al-

gorithm above.

i) The equality a(j) = a(j(m))a(j(m−1)) ⋯ a(j(1))a(j(0)) holds in nT̂LN .

ii) Given any two representatives a(j), a(j#) of the same element in nT̂LN , the above

algorithm creates the same representative a(j(m))a(j(m−1)) ⋯ a(j(1))a(j(0)) for

both a(j) and a(j#).

Proof. i) The algorithm only uses the defining relations of nT̂LN : It never inter-

changes the order of two factors ai, ai±1 with consecutive indices within a(j).

Hence, the reordering of the factors of a(j) uses only the commutativity relation

aiaj = ajai for i − j ≠ ±1 mod N of nT̂LN .

ii) Two nonzero monomials a(j), a(j#) in nT̂LN are equal if and only if they only

differ by applications of commutativity relations aiaj = ajai for i − j ≠ ±1 mod N ,

hence, if and only if they contain the same number of factors ai for each i and the

relative position of each ai and ai±1 is the same. Since the outcome of the algo-

rithm depends only on the relative positions of consecutive indices, the resulting

decomposition a(j(m))a(j(m−1)) ⋯ a(j(1))a(j(0)) is the same. ◻

Subsequently, whenever we refer to monomials in normal form, we assume the monomial

is nonzero and nonconstant, in particular the sequence j is nonempty.

I.2.5.7 Theorem. Assume N ≥ 3.

i) The algorithm above provides a normal form for nonzero monomials a(j) in the

generators ai of nT̂LN , or equivalently for nonzero fully commutative monomials

in T̂LN , so that

a(j) = (a
(m)
i1

. . . a
(m)
ik

) . . . (a
(n+1)
i1

. . . a
(n+1)
ik

)(a
(n)
i1

. . . a
(n)
ik

) . . . (a
(1)
i1
. . . a

(1)
ik

)(ai1 . . . aik),

where a
(n)
i`

∈ {1, a0, a1, . . . , aN−1} for all 1 ≤ n ≤m, 1 ≤ ` ≤ k, and

a
(n+1)
i`

∈

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

{1} if a
(n)
i`

= 1,

{1, aj+1} if a
(n)
i`

= aj .

The factors ai1 , . . . , aik are determined by the property that the generator ai`−1

does not appear to the right of ai` in the original presentation of the monomial.

The internal ordering of the factors is increasing with respect to the relation
ı̂
≺

as in Definition I.2.5.3, where ı̂ is the largest value in {0,1, . . . ,N − 1} such that

ı̂ − 1 ∉ {i1, . . . , ik}, but ı̂ ∈ {i1, . . . , ik}.
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ii) The set {a(j) in normal form} ∪ {1} is a k-basis of nT̂LN .

Proof. We have shown in Lemma (I.2.5.6.i) that any nonzero nonconstant monomial

can be rewritten by the algorithm as a monomial in normal form. By Lemma (I.2.5.6.ii)

these monomials are in pairwise distinct equivalence classes with respect to the defining

relations of nT̂LN . Then by Remark I.2.5.1, the set of monomials in normal form together

with 1 is linearly independent. ◻

I.2.5.8 Corollary. The set of monomials obtained by the normal form algorithm re-

garded as elements in T̂LN forms a k-basis of the positively graded part (T̂LN)>0 in

the filtration by length of monomials. In other words, {a(j) in normal form} ∪ {1} is a

k-basis of T̂LN .

Proof. Recall that the affine nilTemperley–Lieb algebra nT̂LN is the associated graded

algebra for the affine Temperley–Lieb algebra T̂LN with respect to the filtration by

length of monomials. A k-basis for nT̂LN is automatically a k-basis for T̂LN and vice

versa. ◻

I.2.5.9 Remark. We obtain a different normal form for monomials in nT̂LN if we

replace the steps

i) Find all factors ai in a(j) with no ai−1 to their right,

ii) Move them to the far right, without changing their internal order

in our algorithm by the alternative steps

i) Find all factors ai in a(j) with no ai+1 to their left,

ii) Move them to the far left, without changing their internal order.

After we fix some rule for the internal reordering of factors, we obtain the following two

versions of normal forms in Example I.2.5.5:

(5 1 2 3 0 4 1 5 0 2 3 1 4 5 0 2 3 1 4 2)

= (1)(5 0 2)(3 4 5 1)(2 3 4 0)(1 2 3 5)(0 1 2 4)

= (5 1 2 3)(4 0 1 2)(3 5 0 1)(2 4 5 0)(1 3 4)(2).

Here, the first expression is the given monomial, the second expression is the normal form

obtained by the original algorithm, and the third expression is the alternative normal

form. However, we do not use the alternative normal form in the following. ◊
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I.2.6. Faithfulness of the graphical representation

In this section, we prove Theorem I.2.4.5 which we recall here:

Theorem. For N ≥ 3, V is a faithful nT̂LN -module with respect to the action described

in Definition I.2.4.1.

For the proof, we explicitly show the linear independence of the matrices representing

the monomials in nT̂LN . We proceed in two steps: First, we find a bijection between

the monomials in normal form constructed in Section I.2.5 and certain pairs of particle

configurations together with a power of q. In other words, we find a labelling for the

basis of nT̂LN from Theorem I.2.5.7. The final step is the description of the action of a

monomial on V using its matrix realization. The matrices representing the monomials

have a distinguished nonzero entry that is given in terms of the particle configurations

and the power of q from the bijection, and for most matrices, this is the only nonzero

entry. From this description it will quickly follow that all these matrices are linearly

independent.

I.2.6.1. Labelling of basis elements

In this section we use the following shorthand notation:

I.2.6.1 Definition. i) Given a tuple (n1, . . . , nr) ∈ Zr for some r > 0 we write m ∈

(n1, . . . , nr) if there exists some index 1 ≤ ` ≤ r so that m = n`. Similarly, for

(n1, . . . , nr) ∈ (Z/NZ)r we write m ∈ (n1, . . . , nr) if there exists some index 1 ≤ ` ≤ r

so that m = n` mod N .

ii) Given two tuples (n1, . . . , nr) ∈ Zr or (Z/NZ)r, and (n′1, . . . , n
′
r′) ∈ Zr

′
or (Z/NZ)r

′
,

we write

(n1, . . . , nr) ⋅ (n
′
1, . . . , n

′
r′) = (n1, . . . , nr, n

′
1, . . . , n

′
r′) ∈ Zr+r

′

for their concatenation, where r, r′ > 0.

iii) For two tuples (n1, . . . , nr) ∈ Zr or (Z/NZ)r, and (n′1, . . . , n
′
r′) ∈ Zr

′
or (Z/NZ)r

′
,

with pairwise distinct elements n` ≠ nm and n′` ≠ n
′
m for ` ≠m, we write

(n1, . . . , nr) ⊂ (n′1, . . . , n
′
r′)

if there is an inclusion {n1, . . . , nr} ⊂ {n′1, . . . , n
′
r′} of the underlying sets.

We need the following notion of blocks and strands of index sequences:
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I.2.6.2 Definition. Let a(j) = a(j(m))a(j(m−1)) ⋯ a(j(1))a(j(0)) be a normal form

monomial.

i) We call j(`) the `-th block of j.

ii) A string of indices of maximal length of the form is ∈ j
(0), is+1 ∈ j(1), is+2 ∈ j(2), . . .

(modulo N) is called the s-th strand of j.

I.2.6.3 Example. Let N = 6, and consider Example I.2.5.5 once again, where

j = (1 5 0 2 3 4 5 1 2 3 4 0 1 2 3 5 0 1 2 4).

The blocks are j(0) = (0124), j(1) = (1235), j(2) = (2340), j(3) = (3451), j(4) = (502), and

j(5) = (1). The strands are [3210], [54321], [105432] and [21054]. In particular, strands

(and blocks) can have different lengths, but the longest strand has length m = 6. ◊

Each monomial a(j) ∈ nT̂LN determines two sets iinj , i
out
j and an integer `j ∈ Z≥0 as

follows:

iinj = {i ∈ {0,1, . . . ,N − 1} ∣ no i − 1 to the right of i in j} (I.2.2)

iout
j = {i ∈ {0,1, . . . ,N − 1} ∣ no i + 1 to the left of i in j}

`j = the number of zeros in j.

These are well defined because, as in the proof of Lemma I.2.5.6, any element of nT̂LN is

uniquely determined by the number of factors ai and the relative position of each ai and

ai±1, for all i. The set iinj equals the underlying set of j(0) in the normal form from the

algorithm above. All strands of j begin with an element in iinj and end with an element

from iout
j .

The goal of this subsection is to show

I.2.6.4 Proposition. The mapping

ψ ∶ {a(j) ∈ nT̂LN in normal form} → PN ×PN ×Z≥0 (I.2.3)

a(j) ↦ (iinj , i
out
j , `j),

is injective, where PN is the power set of {0,1, . . . ,N − 1}.

I.2.6.5 Remark. i) The map ψ is defined so that in the graphical description of

the representation V of nT̂LN , the set iinj equals the set of positions where a(j)

expects a particle to be. The set iout
j equals the set of positions where a(j) moves

the particles from iinj , but each one is translated by 1, that is,

a(j) applied to a particle at i ∈ iinj gives a particle at j + 1 for some j ∈ iout
j .
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ii) The map ψ is far from being surjective. An obvious constraint is that ∣iinj ∣ = ∣iout
j ∣,

and furthermore, for some pairs (iinj , i
out
j ), one can only obtain sufficiently large

values `j . ◊

We start by proving injectivity of the restriction ψ0 of ψ to those monomials a(j) in

normal form whose first element i1 of j(0) is 0. The proof itself will amount to counting

indices.

I.2.6.6 Proposition. The map

ψ0 ∶ {a(j) ∈ nT̂LN in normal form, with i1 = 0} → PN ×PN ×Z≥0,

a(j) ↦ (iinj , i
out
j , `j)

that sends a basis element in normal form with rightmost index i1 = 0 to the tuple

(iinj , i
out
j , `j) defined in Equation I.2.2 is injective.

Before beginning the proof of this result, we note that for monomials a(j) with i1 = 0,

the inequality ik < N −1 must hold in iinj , since i1 = 0 implies that i1−1 = N −1 is not an

element of iinj . Consequently, the ordering of the indices in iinj agrees with the natural

ordering of Z, so we can regard (iinj ,<) as a subset of (Z,<) and replace the modular

index sequence j by an integral index sequence jZ such that jZ( mod N) = j.

I.2.6.7 Definition. Assume j = j(m) ⋅ . . . ⋅ j(1) ⋅ j(0) is a normal form sequence with

j(0) = {0 = i1 < . . . < ik < N − 1} and j(n) = (ih1 + n, . . . , ihk(n) + n) ⊆ (i1 + n, . . . , ik + n),

where indices in j(n) are modulo N and 1 ≤ k(n) ≤ k for all 1 ≤ n ≤ m. The integral

normal form sequence for j is

jZ
= (j(m)

)
Z
⋅ . . . ⋅ (j(1))Z

⋅ j(0) where (j(n))Z
∶= (ih1 + n, . . . , ihk(n) + n) ∈ Zk(n)

for n = 1, . . . ,m.

I.2.6.8 Example. We illustrate our notation with our running Example I.2.5.5 for N =

6.

If j = (1 5 0 2 3 4 5 1 2 3 4 0 1 2 3 5 0 1 2 4),

then jZ
= (7 5 6 8 3 4 5 7 2 3 4 6 1 2 3 5 0 1 2 4). ◊

Our proof of Proposition I.2.6.6 will hinge upon the following technical lemma.

I.2.6.9 Lemma. Let jZ be the integral normal form sequence for j and let [is, . . . , is +

ns] for s = 1, . . . , k be the strands of jZ in the sense of Definition I.2.6.2. Assume i1 = 0.

Then
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i) n1 = i1 + n1 < i2 + n2 < . . . < ik + nk,

ii) ik + nk < i1 + n1 +N = n1 +N .

Assume this lemma for the moment. We postpone the proof of this result and proceed

directly to proving the proposition.

Proof (Proposition I.2.6.6). Since we will fix the sequence j throughout the proof,

we will drop the subscript j on iinj , iout
j , `j . To show the injectivity of ψ0, we consider

the factorization ψ0 = γ ○ β ○ α given by

ψ0 ∶ a(j)
α
z→ a(jZ

)
β
z→ ((iin)Z, (iout

)
Z
)

γ
z→ (iin, iout, `),

where (iin)Z = iin and (iout)Z = {i ∈ jZ ∣ no i+ 1 to the left of i} similar to the definition

of iout. The map α replaces indices in Z/NZ by indices in Z as in Definition I.2.6.7

above. The map β is given by reading off (iout)Z and (iin)Z from jZ. The map γ sends

the pair ((iin)Z, (iout)Z) to a triple consisting of the respective images iin, iout modulo

N of the pair and the integer ` = 1 + ∑ `r where `r = ⌊
jr
N ⌋ for each jr ∈ (iout)Z. The

summand 1 corresponds to 0 = i1; all other occurrences of 0 are counted by ∑ `r.

Now we check injectivity of all factors of ψ0 in the factorisation ψ0 = γ ○ β ○ α.

The map α is clearly injective since jZ ↦ jZ( mod N) is a left inverse map.

To see that β is injective, we need to know that jZ can be uniquely reconstructed

from ((iin)Z, (iout)Z). Observe that jZ is determined by knowing all the “strands”

is, is + 1, is + 2, . . . , is +ns for 1 ≤ s ≤ k, hence by assigning an element is +ns ∈ (iout)Z to

each is ∈ (iin)Z. But it follows from Lemma (I.2.6.9.i) that i1 + n1 must be the smallest

element of (iout)Z, i2+n2 the second smallest, etc., so that the element is+ns is assigned

to the s-th element in iin, that is, to is.

Now to see that γ is injective, we need to recover ((iin)Z, (iout)Z) in a unique way

from (iin, iout, `). Write iin = {0 = i1 < . . . < ik < N − 1}, and set (iin)Z ∶= iin. By

Lemma (I.2.6.9.i), we know that (iout)Z is of the form (i1 +n1 < . . . < ik +nk), and since

the elements of iout have to be equal to the elements of (iout)Z modulo N , we can write

ir + nr = N`r + dr for `r = ⌊ ir+nrN ⌋ and some dr ∈ i
out. Comparing `r and `s for r < s, we

have

N`r ≤ N`r + dr = ir + nr < is + ns = N`s + ds ≤ N(`s + 1).

So `r < `s + 1, i.e. `r ≤ `s. Similarly, we obtain from Lemma (I.2.6.9.ii) that `k ≤ `1 + 1.

As a result,

N`k ≤ N `k + dk = ik + nk < i1 + n1 +N = N(`1 + 1) + d1 ≤ N(`1 + 2),
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i.e. `k < `1 + 2. Together we have `1 = . . . = `s < `s+1 = . . . = `1 + 1 for some 1 < s ≤ k

(where we treat the case s = k by `1 = . . . = `k). Set ̃̀∶= `1. Then

ir + nr = N ̃̀+ dr for 1 ≤ r ≤ s,

ir + nr = N(̃̀+ 1) + ds for s + 1 ≤ r ≤ k.

As a first consequence,

` = 1 +∑
r

`r = 1 + k̃̀+ (k − s),

which determines ̃̀= ⌊ `−1
k ⌋, and hence all `r, as well as the index s. Using Lemma I.2.6.9,

we determine that

is+1 + ns+1 < . . . < ik + nk < i1 + n1 +N < . . . < is + ns +N,

and so

N (̃̀+ 1) + ds+1 < . . . < N (̃̀+ 1) + dk < N (̃̀+ 1) + d1 < . . . < N (̃̀+ 1) + ds.

Therefore, ds+1 < . . . < dk < d1 < . . . < ds, which fixes the choice of dr for all r. We

conclude that given (iin, iout, `), we can reconstruct (iout)Z by setting ir +nr ∶= N `r +dr.

This completes the proof of Proposition I.2.6.6. ◻

Proof (Lemma I.2.6.9). i) Let jZ be a nonempty integral normal form sequence

with 0 = i1 < . . . < ik ≤ N − 1 and strands [ir, . . . , ir + nr] for 1 ≤ r ≤ k (recall

Definitions I.2.6.2 and I.2.6.7). Assume that there is some index 1 ≤ t ≤ k − 1 such

that it + nt ≥ it+1 + nt+1. Since it < it+1, we have nt > nt+1. So

jZ
= . . . (. . . it + nt . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the ntth bracket

. . . (. . . it + nt+1 it+1 + nt+1 . . .)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

the nt+1th bracket

. . . .

From it+nt+1 < it+1+nt+1 ≤ it+nt it follows that there is some integer nt+1 < p ≤ nt

such that it+1 + nt+1 = it + p appears in the strand [it, . . . , it + nt], i.e.

jZ
= . . . (. . . it + nt . . .)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the ntth bracket

. . . (. . . it + p . . .)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

the pth bracket

. . . (. . . it + nt+1 it+1 + nt+1 . . .)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

the nt+1th bracket

. . .

with it+p = it+1+nt+1. But by the definition of the strands, there is no it+1+nt+1+1

appearing to the left of it+1 + nt+1. Due to Lemma I.2.5.2, we know that (even

modulo N) there is no repetition of it+1 + nt+1 to the left. Thus it + p = it+1 + nt+1

is not possible, and we obtain i1 + n1 < i2 + n2 < . . . < ik + nk.

72



I.2.6. Faithfulness of the graphical representation

ii) For the second statement of Lemma I.2.6.9, assume ik +nk ≥ i1 +n1 +N . It is true

generally that N > ik, so we get ik+nk ≥ i1+n1+N > ik+n1. Hence i1+n1+N = ik+b

for some n1 < b ≤ nk, i.e. i1 + n1 +N appears in the strand [ik, . . . , ik + nk] and we

have

jZ
= . . . (. . . ik + nk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the nkth bracket

. . . (. . . ik + b . . .)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

the bth bracket

. . . (i1 + n1 . . . ik + n1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
the n1th bracket

. . . .

Here it may be that the nk-th bracket and the b-th bracket coincide, but in any

case, we find that ik + b = i1 + n1 +N = i1 + n1 mod N , and so ik + b appears to

the left of i1 + n1. By the definition of the strands, there is no i1 + n1 + 1 to the

left of i1+n1, and from Lemma I.2.5.2 we deduce that in j = jZ mod N there is no

i1 +n1 mod N to the left of i1 +n1 allowed, which leads to a contradiction. Hence

ik + nk < i1 + n1 +N must hold. ◻

Having established that ψ is injective when restricted to sequences with i1 = 0, we now

show the injectivity of ψ in general.

Proof (Proposition I.2.6.4). We have the following disjoint decompositions accord-

ing to the smallest value i1 in j(0) for j:

{a(j) in normal form} = ∐
i

{a(j) in normal form, i1 = i}

{(iinj , i
out
j , `j)} = ∐

i

{(iinj , i
out
j , `j) ∣ i1 = i ∈ iinj }

ψ = ∐
i

ψi

where ψi ∶ {a(j) in normal form, i1 = i} → {(iinj , i
out
j , `j) ∣ i1 = i ∈ iinj }.

By Proposition I.2.6.6, the map ψ0 ∶ a(j) ↦ (iinj , i
out
j , `j) restricted to those a(j) with

i1 = 0 is injective. We argue next that by an index shift this result is true for all other

ψi. It follows from Proposition I.2.6.6 that the map ψ̂0 defined by

ψ̂0 ∶ {a(j) ∈ nT̂LN in normal form, with i1 = 0} → {(iinj , i
out
j , ̂̀j) ∣ i1 = 0 ∈ iin}

is injective, where ̂̀
j = ̂̀

j(i) counts the occurences of N − i in j. Recall that

`j = ∑
r

`r+1 where `r is the number of 0 in the rth strand [ir, . . . , ir+nr] of j mod N.

Now observe that we can obtain `j from ̂̀
j as

`j = ̂̀
j − ∣{dr ∈ iout

j ∣ dr ≥ N − i}∣ + ∣{ir ∈ iinj ∣ ir > N − i}∣ + 1,
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which follows from a computation using ̂̀
j = ∑r

̂̀
r and

̂̀
r = the number of N − i in the rth strand [ir, . . . , ir + nr] mod N

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⌊ ir+nr+iN ⌋ if ir ≤ N − i

⌊ ir+nr+iN ⌋ − 1 if ir > N − i

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⌊N`r+dr+iN ⌋ if ir ≤ N − i

⌊N`r+dr+iN ⌋ − 1 if ir > N − i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

`r + 1 if ir ≤ N − i and dr + i ≥ N

`r if ir ≤ N − i and dr + i < N

`r if ir > N − i and dr + i ≥ N

`r − 1 if ir > N − i and dr + i < N.

We obtain ψi by first shifting the indices of j by subtracting i from each index, j −

(i, . . . , i), then applying ψ̂0, and finally shifting the indices from iinj and iout
j by adding

i to each. Hence, ψi is injective for each i, and ψ is injective because the unions are

disjoint. ◻

I.2.6.2. Description and linear independence of the matrices

Recall that the standard k-basis of the representation V =
N

⊕
k=0

(k[q] ⊗ ⋀k kN) is given

by

{q` ⋅ vi1 ∧ . . . ∧ vik ∣ ` ∈ Z≥0, 1 ≤ i1 < . . . < ik ≤ N, 0 ≤ k ≤ N}

where (i1, . . . , ik) is identified with the particle configuration having particles in those

positions in the graphical description. Now we describe, with respect to this basis,

the matrix representing a nonzero nonconstant monomial a(j) ∈ nT̂LN as a 2N × 2N -

matrix with entries in k[q]. Since V decomposes as a nT̂LN -module into submodules

k[q] ⊗ ⋀k kN for k = 0,1, . . . ,N , the matrix of a(j) is block diagonal with N + 1 blocks

A0,A1, . . . ,AN , where A0 = AN = (0) corresponding to the trivial representation.

a(j) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0

0 A1 ⋮

⋱

⋮ AN−1 0

0 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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The block Ak is a (
N
k
)×(

N
k
)-matrix, with entries from k[q] indexed by the standard basis

of ⋀k kN , corresponding to all possible particle configurations whose number of particles

is equal to k.

Now fix a nonzero monomial a(j) in normal form specified by the triple (iinj , i
out
j , `j)

defined in the previous subsection. Let k = ∣iinj ∣. All blocks A1, . . . ,Ak−1 are zero since

a(j) expects at least k particles. For r > k, there might be nonzero blocks (unless the

particles from iinj are moved around the whole circle with no position left out, in which

case there are no surplus particles allowed. This occurs if a(j) contains at least every

other generator ai, ai+2, . . .). More importantly, the block Ak has precisely one nonzero

entry, and this is given by

(Ak)iinj ,i
out
j

= ±q`j .

Now we can show the following lemma:

I.2.6.10 Lemma. The set of matrices representing monomials a(j) in normal form is

k-linearly independent.

Proof. First of all we observe that the matrices representing monomials a(j) in normal

form with ∣iinj ∣ = N −1 are k-linearly independent. There is only one nonzero entry which

is equal to ±q`j at position (iinj , i
out
j ).

Furthermore, if all matrices representing monomials a(j) in normal form with ∣iinj ∣ ≥ k

are k-linearly independent, then also all matrices representing monomials a(j) in normal

form with ∣iinj ∣ ≥ k − 1 are k-linearly independent. This follows because the additional

monomials a(j) with ∣iinj ∣ = k−1 have nonzero entries (Ak−1)iinj ,i
out
j

= ±q`j in the (k−1)-th

block which is zero for all a(j) with ∣iinj ∣ ≥ k. So by induction, all matrices representing

monomials a(j) in normal form are k-linearly independent. ◻

I.2.6.11 Corollary. The representation of nT̂LN on V is faithful.

Proof. According to Theorem I.2.5.7, {a(j) in normal form}∪{1} is a k-basis of nT̂LN .

According to Lemma I.2.6.10, the set of matrices representing monomials a(j) in normal

form is k-linearly independent. Since all of the matrices representing some a(j) in normal

form have a zero entry in the upper left (and lower right) corner, we may include the

identity matrix into the linearly independent set of matrices, and it remains linearly

independent. ◻

The submodule
N−1

⊕
k=1

(k[q] ⊗ ⋀k kN) is already faithful. This can be seen directly from

the following modification of the proof of Corollary I.2.6.11: Since the diagonal entries
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of the matrices representing some a(j) in normal form are either 0 or ±q`j for `j ≥ 1, we

may add the identity matrix to the linearly independent set of matrices, and it remains

linearly independent over k.

Section I.2.5 has given a normal form for each monomial. Section I.2.6 has provided an

alternate proof of the faithfulness of the representation of nT̂LN by elementary argu-

ments.

I.2.7. Projectors

This section describes certain projectors for the graphical representation. They turn out

to be the main ingredients in the definition of central elements in Section I.2.8. Here and

in the following, we use the name projector for a map that is a nonzero k[q]-multiple of

a proper projection.

For a standard basis element v(i) of 1 ≤ k ≤ N − 1 wedge factors corresponding to an in-

creasing sequence i = {1 ≤ i1 < . . . < ik ≤ N}, the next lemma defines a certain monomial

a(̂i) that projects v(i) onto (−1)k−1q v(i) and sends v(i′) to zero for an increasing se-

quence i′ ≠ i of any length. Before stating the result, we give an example to demonstrate

in the graphical description how this projector will be defined.

I.2.7.1 Example. Let N = 8, and consider the particle configuration v(i) = v1 ∧ v5 ∧ v6.

Up to some factor in k[q] we want to map v1 ∧ v5 ∧ v6 to itself:

0
1

2

3
4

5

6

7

⋅q

Figure I.2.7.1.: The action of a(1̂ 5 6) on the particle configuration v1 ∧ v5 ∧ v6

We read off from the picture that the monomial a(1̂ 5 6) = (a0a7) ⋅ (a4a3a2) ⋅ (a1a5a6)

sends v1 ∧ v5 ∧ v6 to (−1)2q ⋅ v1 ∧ v5 ∧ v6:

The factor a1a5a6 moves every particle one step forward clockwise. It is critical that

we start by moving the particle at position 6 before moving the particle at position 5,
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as otherwise the result would be zero. But since there is a “gap” at position 7, we can

move the particle from site 6 to 7, and afterwards the particle from site 5 to 6, without

obtaining zero. The assumption that k < N ensures such a gap always exists.

After applying a1a5a6, the particles are at positions 2, 6, and 7. The particle previously

at position 5 is now at position 6, which is where we want a particle to be. The particle

currently at position 2 can be moved to position 5 by applying the product a4a3a2.

The particle now at position 7 can be moved by a0a7 to position 1. Hence, the result of

applying (a0a7)⋅(a4a3a2)⋅(a1a5a6) is the same particle configuration as the original one.

However, the answer must be multiplied by ±q, since applying a0a7 involves crossing the

zero position once. To determine the sign, note from Definition I.2.4.1 that (a0a7) ⋅

(a4a3a2) ⋅ (a1a5a6)(v1 ∧ v5 ∧ v6) = q ⋅ v5 ∧ v6 ∧ v1 = (−1)2q ⋅ v1 ∧ v5 ∧ v6, so the sign is +.◊

Now we describe the general procedure that defines the projector a(̂i):

I.2.7.2 Lemma. Assume v(i) is a particle configuration, where i = {1 ≤ i1 < . . . < ik ≤

N} is an increasing sequence and 1 ≤ k ≤ N − 1. Then there exists an index ` such that

i` + 1 < i`+1 (or ik + 1 < i1), i.e. the sequence has a “gap” between i` and i`+1. Split the

sequence i into the two parts {i1 < . . . < i`} and {i`+1 < . . . < ik}. Set

a(̂i) ∶= (ai1−1ai1−2 . . . aik+2aik+1) ⋅
k−1

∏
s=1

(ais+1−1ais+1−2 . . . ais+2ais+1) (⋆)

⋅ (ai`+1ai`+2 . . . aik−1aik) ⋅ (ai1ai2 . . . ai`−1ai`),

where the indices are modulo N in the factor (ai1−1ai1−2 . . . aik+2aik+1). Then

a(̂i)v(i′) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(−1)k−1q ⋅ v(i) if i′ = i,

0 for all i′ ≠ i (of any length),

and a(̂i) has ZN -degree (1,1, . . . ,1).

Proof. The assertions can be seen using the graphical realization of V. The terms in

the second line of equation (⋆) move a particle at site ij ∈ i one step forward to ij + 1

for each j, while the terms in the first line send the particle from ij + 1 to the original

position of ij+1.

Consider first a(̂i)v(i). By applying (ai`+1ai`+2 . . . aik−1aik) ⋅ (ai1ai2 . . . ai`−1ai`), every

particle is first moved clockwise by one position. By our choice of the index i`, we

avoid mapping the whole particle configuration to zero. After that step, every particle

is moved by one of the factors (ais+1−1ais+1−2 . . . ais+2ais+1) to the original position of its

successor in the sequence i, so the particle configuration remains the same. One of the
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particles has passed the zero position, so we have to multiply by ±q. Definition I.2.4.1

tells us the appropriate sign is (−1)k−1.

Now consider a(̂i)v(i′) for i′ ≠ i. The term (ai`+1ai`+2 . . . aik−1aik) ⋅ (ai1ai2 . . . ai`−1ai`)

expects a particle at each of the sites i1, . . . , ik, so if any of these positions is empty in

v(i′), the result of applying a(̂i) is zero. If the positions i1, . . . , ik are already filled, and

there is an additional particle somewhere, multiplication by (ai`+1−1ai`+1−2 . . . ai`+2ai`+1)

will cause two particles to be at the same position, hence the result is again zero.

Since every aj appears in a(̂i) exactly once, the ZN -degree of a(̂i) is (1,1, . . . ,1). ◻

I.2.7.3 Example. In the previous example, N = 8, i = (1,5,6), and we may assume

the two subsequences are (1) and (5,6). Then the terms in the second line of (⋆)

are (a5a6) ⋅ (a1) = a1a5a6. The term corresponding to j = 1 in the product on the

first line of (⋆) is a4a3a2, and the expression corresponding to j = 2 is empty, hence

taken to be 1. The first factor on the first line is a0a7. Thus, for i = (1,5,6), a(̂i) =

(a0a7) ⋅ (a4a3a2) ⋅ (a1a5a6), as in Example I.2.7.1. If the gap between 6 and 0 is used

instead, the right-hand factor of the second line is a1a5a6 and the left-hand factor is 1.

The factors in the first line remain the same, and so one obtains the same expression for

a(̂i). ◊

I.2.7.4 Corollary. For i ≠ j the product {a(̂i) ⋅ {a(ĵ) of two distinct projectors defined

in Lemma I.2.7.2 is zero. In particular, the subalgebra generated by the set of projectors

{a(̂i) ∈ nT̂LN ∣ i increasing sequence}

is commutative.

Proof. This follows from Lemma I.2.7.2 together with the faithfulness of the particle

configuration module V, see Theorem I.2.4.5. ◻

I.2.7.5 Remark. Because V is a faithful module (Theorem I.2.4.5), a(̂i) is, as an el-

ement in nT̂LN (i.e. up to reordering according to the defining relations), uniquely

determined by the increasing sequence i. One can read off i from a(̂i) as follows: In

the defining equation (⋆) of a(̂i), the factors in the first line are pairwise commuting.

The underlying subsequence (is+1 − 1, is+1 − 2, . . . , is + 2, is + 1) corresponding to the fac-

tor ais+1−1ais+1−2 . . . ais+2ais+1 of a(̂i) is a decreasing sequence. After all such decreasing

sequences are removed from a(̂i), what remains is a product of generators aj with an

increasing subsequence of indices or a product of two such subsequences corresponding

to the factors in the second line. This is i. Given any monomial a(r) of ZN -degree

(1, . . . ,1), one can rewrite it using the relations in nT̂LN so that it is of the form a(̂i) for
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some increasing sequence i. Then v(i) is the unique standard basis element upon which

a(r) = a(̂i) acts by multiplication by ±q. ◊

I.2.8. Description of the center

In this section, we give an explicit description of the center CN of nT̂LN . We start with

the following initial characterisation of the central elements:

I.2.8.1 Lemma. Any central element c in nT̂LN with zero constant term is a linear

combination of monomials a(j) = aj1 ⋅ . . . ⋅ ajm where every generator ai, 0 ≤ i ≤ N − 1,

appears at least once. In particular, a homogeneous nonconstant central element c has

Z-degree at least N .

Proof. Assume c = ∑
j
cja(j), where cj ∈ k for all j. By Lemma I.2.3.1, we can assume c

is a homogeneous central element with respect to the ZN -grading. By our assumption,

c ∉ k. For all i, we need to show that ai occurs in each monomial a(j) appearing in c.

Without loss of generality, we show this for i = 0. Suppose some summand is missing

a0, then no summand contains a0 because c is homogeneous. Hence a0a(j) ≠ 0 and

a(j)a0 ≠ 0 for all j with cj ≠ 0, and since a0c = ca0, none of the a(j) can contain the

factor a1 either, as otherwise the factor a0 cannot pass through c from left to right (so

also aN−1 cannot be contained in the a(j)). Proceeding inductively, we see that all a(j)

must be a constant, contrary to our assumption. ◻

The next proposition states that on the standard wedge basis vector v(i) of V defined in

Equation I.2.1, any central element acts via multiplication by a polynomial pk ∈ k[q] that

only depends on the length k = ∣i∣ of the increasing sequence i = {1 ≤ i1 < . . . < ik ≤ N}. In

other words, the decomposition of V into the summands k[q]⊗⋀k kN is a decomposition

with respect to different central characters (apart from the two trivial summands for

k ∈ {0,N}).

I.2.8.2 Proposition. For any central element c ∈ nT̂LN and all increasing sequences i

with fixed length 0 ≤ k ≤ N , there is some element pk ∈ k[q] depending only on c and the

length k such that cv(i) = pk v(i).

Proof. By Lemma I.2.3.1 we may assume c is a ZN -homogeneous central element of

nT̂LN . If c is constant, then pk = c for any 0 ≤ k ≤ N , independently of i. Now assume

that c is nonconstant.
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For k ∈ {0,N}, the action of a generator ai on a monomial of length k is 0, so pk = 0 for

such values of k. Now consider 1 ≤ k ≤ N − 1, and suppose that i = {1 ≤ i1 < . . . < ik ≤ N}

is an increasing sequence of length k. According to Lemma (I.2.4.4.ii), the number of

wedges in a vector remains constant under the action of the ai. Hence cv(i) = ∑
∣I′∣=k

cI′ v(i
′)

for some polynomials cI′ ∈ k[q]. We want to prove that cI′ = 0 for all i′ ≠ i.

We have shown in Lemma I.2.7.2 that to each increasing sequence j ⊂ {1, . . . ,N} there

corresponds a monomial a(ĵ) ∈ nT̂LN that allows us to select a single basis vector:

a(ĵ)v(i) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(−1)k−1qv(j) if i = j,

0 otherwise.

Thus, for j ≠ i, we see that

0 = c(a(ĵ)v(i)) = a(ĵ)(cv(i)) = a(ĵ)
⎛

⎝
∑

∣I′∣=k
cI′ v(i

′
)
⎞

⎠
= cJ (−1)k−1qv(j),

implying cJ = 0 for j ≠ i. Hence, we may assume for each increasing sequence i that

cv(i) = pI v(i) for some polynomial pI ∈ k[q]. Now it is left to show that pI = pI′ for all i′

with ∣i′∣ = ∣i∣ = k. It is enough to verify this for i, i′ which differ in exactly one entry, i.e.

is = i, i
′
s = i + 1, and i` = i

′
` for all ` ≠ s, for some 1 ≤ s ≤ k and i ∈ Z/NZ. If 1 ≤ i ≤ N − 1,

we have

pI′ v(i
′
) = cv(i′) = c(aiv(i)) = ai(cv(i)) = ai(pI v(i)) = pI v(i

′
),

and if i = 0, we get

(−1)k−1qpI′ v(i
′
) = (−1)k−1qcv(i′) = c(a0v(i)) = a0(cv(i)) = a0(pI v(i))

= (−1)k−1qpI v(i
′
).

Hence, pI′ = pI, and this common polynomial is the desired polynomial pk. ◻

I.2.8.3 Corollary. Any central element in nT̂LN with constant term 0 acts on a stan-

dard basis vector v(i) ∈ V as multiplication by an element of qk[q].

Proof. According to Lemma I.2.8.1, each summand of such a central element must

contain the factor a0, and a0 acts on a wedge product by 0 or multiplication by ±q. ◻

Now we are ready to introduce nontrivial central elements in nT̂LN . For each 1 ≤ k ≤

N − 1, set

tk ∶= (−1)k−1
∑
∣i∣=k

a(̂i), (I.2.4)

where the monomials a(̂i) correspond to increasing sequences i = {1 ≤ i1 < . . . < ik ≤ N}

of length k as defined in Lemma I.2.7.2.
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I.2.8.4 Example. In nT̂L3 the elements t1, t2 look as follows:

t1 = a2a1a0 + a0a2a1 + a1a0a2,

t2 = −a0a1a2 − a1a2a0 − a2a0a1.

In nT̂L4 we have

t1 = a3a2a1a0 + a0a3a2a1 + a1a0a3a2 + a2a1a0a3,

t2 = −a0a3a1a2 − a0a2a1a3 − a3a2a0a1 − a1a0a2a3 − a1a3a0a2 − a2a1a3a0,

t3 = a0a1a2a3 + a1a2a3a0 + a2a3a0a1 + a3a0a1a2. ◊

In the graphical realization of V, tk acts by annihilating all particle configurations whose

number of particles is different from k. For particle configurations having k particles,

every particle is moved clockwise to the original site of the next particle. Hence, the

particle configuration itself remains fixed by the action of tk (and it is multiplied with

(−1)2(k−1)q = q, since a particle has been moved through position 0). All the tk have

ZN -degree equal to (1, . . . ,1) and Z-degree equal to N . Any monomial whose ZN -degree

is (1, . . . ,1) occurs as a summand in some central element (after possibly reordering the

factors), and the number of summands of tk equals (
N
k
) = dim(⋀

k kN), see Remark

I.2.7.5.

Now we formulate our main theorem of this section:

I.2.8.5 Theorem. Let nT̂LN be the affine nilTemperley–Lieb algebra for N ≥ 3.

i) The tk defined in Equation I.2.4 are central for all 1 ≤ k ≤ N − 1, and the center of

nT̂LN is generated by 1 and the tk, 1 ≤ k ≤ N − 1.

ii) The subalgebra generated by tk is isomorphic to the polynomial ring k[q] for all

1 ≤ k ≤ N − 1. Moreover tkt` = 0 for all k ≠ `. Hence the center of nT̂LN is the

subalgebra

CN = k⊕ (t1k[t1] ⊕ . . .⊕ tN−1k[tN−1]) ≅
k[t1, . . . , tN−1]

(tkt` ∣ k ≠ `)
.

Proof. i) The action of tk on V is the projection onto the nT̂LN -submodule k[q] ⊗

⋀
k kN followed by multiplication by q. This commutes with the action of every

other element of nT̂LN . Since V is a faithful module, tk commutes with any

element of nT̂LN . As we have seen in Proposition I.2.8.2, any central element c

without constant term acts on the summand k[q] ⊗ ⋀k kN via multiplication by

some polynomial pck ∈ qk[q]. Once again using the faithfulness of V, we get that

c =
N−1

∑
k=1

pck(tk).
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ii) Note that k[q] ⊗ ⋀k kN is a free k[q]-module of rank (
N
k
). Since tk acts by mul-

tiplication with q on that module, the subalgebra of nT̂LN generated by tk must

be isomorphic to the polynomial ring k[q]. Since a(ĵ)a(̂i) = 0 for all j ≠ i, in

particular for j, i of different length, we get tkt` = 0 for k ≠ `, as they consist of

pairwise different summands. ◻

Theorem I.2.8.5 enables us to describe the endomorphism algebra EndnT̂LN
(W) of the

space of nontrivial particle configurations W ∶=
N−1

⊕
k=1

(k[q] ⊗ ⋀k kN) ⊂ V. We first observe

that on W multiplication by q is given by the action of a central element in CN , therefore

it is justified to speak about k[q]-linearity of a nT̂LN -endomorphism of W.

I.2.8.6 Lemma. Any nT̂LN -module endomorphism ϕ of W is k[q]-linear, that is, we

have EndnT̂LN
(W) ⊂ Endk[q](W).

Proof. Observe that ∑N−1
k=1 tk ∈ nT̂LN acts by multiplication by q on every element in W.

Therefore multiplication by q commutes with the application of every ϕ ∈ EndnT̂LN
(W).◻

I.2.8.7 Proposition. The endomorphism algebra EndnT̂LN
(W) is isomorphic to a di-

rect sum of N − 1 polynomial algebras k[T1] ⊕ . . .⊕ k[TN−1].

Proof. The proof is very similar to the one of Proposition I.2.8.2. First we show that

ϕ(v(i)) is a k[q]-linear multiple of v(i) for any ϕ ∈ EndnT̂LN
(W) and any increas-

ing sequence i. This statement holds if and only if ±qϕ(v(i)) ∈ k[q] v(i). Indeed, by

Lemma I.2.7.2 and Lemma I.2.8.6 we get

±qϕ(v(i)) = ϕ(±qv(i)) = ϕ(a(̂i)v(i)) = a(̂i)ϕ(v(i)) ∈ k[q] v(i).

Therefore, we can write ϕ(v(i)) = pi ⋅ v(i) for some polynomial pi ∈ k[q]. Note that this

implies

EndnT̂LN
(
N−1

⊕
k=1

(k[q] ⊗ ⋀kkN)) =
N−1

⊕
k=1

(EndnT̂LN
(k[q] ⊗ ⋀kkN)) .

What remains is to show that these polynomials only depend on the number of particles

in i, in other words there exists pk ∈ k[q] so that pi = pk for all i with ∣i∣ = k. Again it

suffices to show this for two sequences i, i′ of length k which differ in exactly one entry.

So say is = i, i
′
s = i + 1, and i` = i

′
` for all ` ≠ s, for some 1 ≤ s ≤ k and i ∈ Z/NZ. When

1 ≤ i ≤ N − 1,

pi′ v(i
′
) = ϕ(v(i′)) = ϕ(aiv(i)) = aiϕ(v(i)) = ai(pi v(i)) = pi v(i

′
),
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and when i = 0,

(−1)k−1qpi′ v(i
′
) = (−1)k−1qϕ(v(i′)) = ϕ(a0v(i)) = a0ϕ(v(i)) = a0(pi v(i))

= (−1)k−1qpi v(i
′
).

Hence we can write ϕ = ∑
N−1
k=1 pkπk where πk is the projection onto k[q]⊗⋀k kN , and we

get that

EndnT̂LN
(k[q] ⊗ ⋀kkN) = k[Tk],

where Tk denotes the multiplication action of the central element tk, which is indeed a

nT̂LN -module endomorphism of W. Thus, EndnT̂LN
(W) is isomorphic to a direct sum

of polynomial algebras as claimed. ◻

I.2.8.8 Remark. The arguments in the proof of Proposition I.2.8.7 remain valid even

if we specialize the indeterminate q to some element in k ∖ {0}. In this case, we obtain

that the summands ⋀k kN are simple modules and

EndnT̂LN
(
N−1

⊕
k=1

k

⋀kN) ≅ kN−1.

For q = 0, the situation is more complicated: If q is specialized to zero, the generator a0

acts by zero on the module. The action of nT̂LN factorizes over nTLN and the module

⋀
k kN is no longer simple. Instead it has a one-dimensional head spanned by the particle

configuration v(1, . . . , k), and any endomorphism is given by choosing an image of this

top configuration. It is always possible to map it to itself and to the one-dimensional

socle spanned by v(N − k, . . . ,N), but in general there are more endomorphisms.

For example, in ⋀
4 k8, the image of v(1,2,3,4) may be any linear combination of

v(1,2,3,4), v(2,3,4,8), v(3,4,7,8), v(4,6,7,8) and v(5,6,7,8), so that EndnT̂L8
(⋀

4 k8)

is 5-dimensional.

In ⋀3 k8, the image of v(1,2,3) may be any linear combination of v(1,2,3), v(2,3,8),

v(3,7,8) and v(6,7,8), so its endomorphism algebra is 4-dimensional. ◊

I.2.9. The affine nilTemperley–Lieb algebra is finitely

generated over its center

In this section we prove that nT̂LN is finitely generated over its center (it is not free

over its center, as we will see in Section I.2.13). We show this using a basis of nT̂LN
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I.2. The affine nilTemperley–Lieb algebra

that is adapted to the problem, but recall the normal form constructed in Section I.2.5

and the labelling thereof from Section I.2.6.

The affine nilTemperley–Lieb algebra is infinite dimensional when N ≥ 3; however, the

following finiteness result holds:

I.2.9.1 Theorem. The algebra nT̂LN is finitely generated over its center.

Proof. Given an arbitrary monomial a(j) ∈ nT̂LN , we first factor it as a(j′) ⋅ a(j(0)) in

the following way: Take the minimal particle configuration j = {1 ≤ j1 < . . . < jk ≤ N} on

which the monomial a(j) acts nontrivially, in the sense of Remark I.2.4.3. The monomial

a(j) moves all of the particles by at least one step, because the particle configuration was

assumed to be minimal. Using the faithfulness of the representation, we know that we

may reorder the monomial a(j) so that first each particle is moved one step clockwise,

and afterwards the remaining particle moves are carried out. Hence, we may choose

some factorization a(j) = a(j′) ⋅ a(j(0)), where j(0) is a sequence obtained by permuting

j1, . . . , jk. The remaining particle moves are carried out by a(j′). In Section I.2.5, this

decomposition is explicitly constructed (not using the faithful representation). Next, we

want to find an expression of the form

a(j) = afin ⋅ t
n
k ⋅ a(j

(0)
),

where afin is a monomial of some subalgebra inTLN of nT̂LN , tnk is in the center of

nT̂LN , and a(j(0)) is the above factor. Here

inTLN = ⟨a0, . . . , ai−1, ai+1, . . . , aN−1⟩ (I.2.5)

is a copy of the finite nilTemperley–Lieb algebra nTLN sitting in nT̂LN . To accomplish

this, we have to subdivide the action of a(j) on the particle configuration j = {j1 < . . . <

jk} one more time. There are two cases:

i) There is an index i not appearing in j′: In this case, a(j′) is an element of inTLN

and we are done.

ii) All indices appear at least n ≥ 1 times in j′: Let us investigate the action of a(j′)

on the particle configuration v(i) = a(j(0))v(j), where i = {j1+1, . . . , jk +1}. Note

that i is the minimal particle configuration for a(j′) in the sense of Remark I.2.4.3.

Each of the particles in i is moved by a(j′) to the position of the next particle in

the sequence i, because there is no index missing (a missing index is equivalent

to a particle being stopped before reaching the position of its successor), before

possibly continuing to move along the circle. Again invoking the faithfulness of the

representation, we can rewrite a(j′) = a(j′′) ⋅ a(̂i)n, with the monomial a(̂i) from
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Lemma I.2.7.2. For maximal n, the remaining factor a(j′′) is an element of inTLN

for some i. Observe that a(̂i)na(j(0)) = tnka(j
(0)), which follows immediately from

the definition of tk and Lemma I.2.7.2.

Therefore, we have shown that

a(j) = a(j′) ⋅ a(j(0)) = afin ⋅ a(̂i)
n
⋅ a(j(0)) = afin ⋅ t

n
k ⋅ a(j

(0)
),

where n = 0 in the first case. Since there is only a finite number of monomials in
0nTLN ,

1nTLN , . . . ,
N−1nTLN and only finitely many monomials a(j(0)) such that every

index 0,1, . . . ,N−1 occurs at most once in the sequence j(0), the affine nilTemperley–Lieb

algebra is indeed finitely generated over its center. ◻

I.2.10. An alternative normal form using the center

Motivated by the proof of Theorem I.2.9.1 we introduce another basis of nT̂LN . In this

section we use faithfulness of the graphical representation V from Theorem I.2.4.5 and

our knowledge of the center CN of nT̂LN from Theorem I.2.8.5. Therefore the approach

given here is much simpler that the elementary but lengthy computation of a normal

form in Sections I.2.5 and I.2.6.

For any two particle configurations with the same number 1 ≤ k ≤ N − 1 of particles

corresponding to the increasing sequences i = {1 ≤ i1 < . . . < ik ≤ N} and j = {1 ≤ j1 <

. . . < jk ≤ N}, there is a monomial in nT̂LN moving particles at the positions j to the

positions i. We require that every particle from j is moved by at least one step, but

we do not prescribe explicitly which of the j’s is mapped to which of the i’s. For i ≠ j,

take eij to be the monomial such that the power of q in eijv(j) = ±q`v(i) is minimal

(under the assumption that every particle from j must be moved). By faithfulness of

the graphical representation, eij is uniquely determined. For i = j, we have eii = a(̂i),

the special monomial defined in Section I.2.7, hence eiiv(i) = ±qv(i). Observe that one

can write tk = ∑∣i∣=k eii, where the sum runs over all possible increasing sequences i of

length k, and that t`keij is a monomial, since all but one summand vanish for k = ∣i∣.

The condition that eij moves all particles from j by at least one step guarantees that it

acts by zero on all particle configurations with fewer particles than ∣i∣ = ∣j∣. For example,

when N = 7,

e(2)(1) = a1, e(0,2)(0,1) = a6a5a4a3a1a2a0a1.

(Note that a1 moves v(0,1) to v(0,2), but this does not satisfy the requisite property

that all the particles must be moved by at least one step.) If we apply the factorization
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of monomials from Theorem I.2.9.1 to eij, the minimality condition implies that eij =

afin ⋅1 ⋅a(j
(0)), where if j = {j1 < . . . < jk}, then j(0) is a sequence obtained by permuting

the elements of j.

I.2.10.1 Theorem. The set of monomials

{1} ∪ {t`keij ∣ ` ∈ Z≥0, 1 ≤ ∣i∣ = ∣j∣ = k ≤ N − 1, 1 ≤ k ≤ N − 1}

defines a k-basis of the affine nilTemperley–Lieb algebra nT̂LN .

Proof. First, observe that t`keij is indeed a monomial since ∣i∣ = k. We show that

the elements t`keij act k-linearly independently on the graphical representation V =
N

⊕
k=0

(k[q] ⊗ ⋀k kN). By definition, the monomial eij acts by zero on summands k[q] ⊗

⋀
k′ kN for k′ < ∣i∣. On k[q]⊗⋀∣i∣ kN , the matrix representing the action of t`keij relative to

the standard basis has exactly one nonzero entry, and this one distinguishes all monomi-

als with the same minimal number of particles ∣i∣ = ∣j∣. From these two observations, the

linear independence follows. On the other hand, given any nonzero monomial in nT̂LN ,

there exists a minimal particle configuration j on which it acts nontrivially. Recording

the image particle configuration i and the power of q, we conclude that there is some ` so

that the element t`keij acts on the minimal particle configuration j in the same way as the

given monomial does. The action of a monomial on the minimal particle configuration

determines its action on the module V. Due to the faithfulness of this representation

(see Theorem I.2.4.5 or Section I.2.6), the proposition follows. ◻

The following proposition describes the multiplication of the monomials eij from the

k-basis in Theorem I.2.10.1.

I.2.10.2 Proposition. The product of basis elements eij and ekl for any particle con-

figurations given by i, j, k, l is given by

eij ⋅ ekl =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if ∃k ∈ k ∶ k ∉ j but k ∈ j(0) ∪ j(1) ∪ . . . ∪ j(m−1) ∪ i

0 if ∃j ∈ j ∶ j ∉ k but j ∈ l ∪ l(0) ∪ . . . ∪ l(n−2) ∪ l(n−1)

±tr
∗

∣i∗∣ei∗l∗ else, where l∗ = l ∪ (j ∖ (j ∩ k)), i∗ = i ∪ (k ∖ (j ∩ k)),

where

v(j(s)) = a(j(s)) . . . a(j(1))a(j(0))v(j)

for eij = a(j
(m))a(j(m−1)) . . . a(j(1))a(j(0)) in the normal form from Theorem I.2.5.7.

Similarly,

v(l(s)) = a(l(s)) . . . a(l(1))a(l(0))v(l)

for ekl = a(l
(n))a(l(n−1)) . . . a(l(1))a(l(0)) in normal form. The power r∗ depends on

all particle configurations i, j, k and l.
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Proof. This can be seen using the graphical representation: The product eij ⋅ekl is zero

if and only if it acts by zero on the particle configuration l∗ = l ∪ (j ∖ (j ∩ k)). This is

the case if ekl acts by zero on l∗, or if eij acts by zero on

k ∪ j = k ∪ (j ∖ (j ∩ k)) = ekl applied to l∗, if nonzero.

Example I.2.10.3 illustrates the dependence of the power r∗ in the product

eij ⋅ ekl = tr
∗

∣i∗∣ei∗l∗

from Proposition I.2.10.2 on the particle configurations i, j, k and l.

I.2.10.3 Example. Let N = 10. Let i = (8), j = k = (5) and l = (3). Then eij ⋅ekl = eil.

If we replace i by i′ = (4) we obtain ei′j ⋅ ekl = t1
1ei′l. For j′ = k′ = (1) we have

eij′ ⋅ ek′l = t1
1eil. ◊

I.2.10.4 Remark. The bases from Section I.2.10 and Section I.2.5 are both labelled by

pairs of particle configurations (pairs of increasing sequences) together with a natural

number `, see also Section I.2.6.1. The labelling sets agree up to an index shift in the

output configuration i and a shift of the natural number `. ◊

I.2.10.5 Remark. From a monomial eij, we can read off the sequences

j = {i ∣ no ai−1 occurs to the right of ai in the monomial eij},

i = {i ∣ no ai occurs to the left of ai−1 in the monomial eij} ◊

I.2.11. Embeddings of affine nilTemperley–Lieb algebras

In this section we use the basis constructed in Section I.2.10 and construct embeddings

of affine nilTemperley–Lieb algebras nT̂LN ⊂ nT̂LN+1.

In the proof of Theorem I.2.9.1, we have used the N obvious embeddings of nTLN

into nT̂LN coming from the N different embeddings of the Coxeter graph AN−1 into

ÃN−1. For finite nilTemperley–Lieb algebras there are obvious embeddings of nTLN into

nTLN+1 coming from the embeddings of the Coxeter graphs AN−1 into AN .

Embeddings for affine nilTemperley–Lieb algebras cannot be defined in an obvious way.

There are no corresponding embeddings of Coxeter graphs. Instead our embeddings of

nT̂LN into nT̂LN+1 correspond to the subdivision of an edge of ÃN−1 by inserting a

vertex on the edge to obtain ÃN .
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I.2.11.1 Theorem. For any number 0 ≤ m ≤ N − 1, there is a unital embedding of

algebras εm ∶ nT̂LN → nT̂LN+1 given by

ai ↦

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ai for 0 ≤ i ≤m − 1,

am+1am for i =m,

ai+1 for m + 1 ≤ i ≤ N − 1.

(I.2.6)

Let us make some remarks before we prove the theorem.

I.2.11.2 Remark. It is not difficult to see that (I.2.6) defines an algebra homomorphism

εm from nT̂LN to nT̂LN+1 when N ≥ 3. Due to the circular nature of the relations, it

suffices to check this for ε0. This amounts to showing the following, since all the other

relations are readily apparent. To avoid confusion, we indicate generators of nT̂LN+1 in

these calculations by ãi:

(ã1ã0)(ã1ã0) = ã1(ã0ã1ã0) = 0,

ã2(ã1ã0)ã2 = (ã2ã1ã2)ã0 = 0, ãN(ã1ã0)ãN = ã1(ãN ã0ãN) = 0,

(ã1ã0)ã2(ã1ã0) = (ã1ã2)(ã0ã1ã0) = 0, (ã1ã0)ãN(ã1ã0) = (ã1ã0ã1)(ãN ã0) = 0. ◊

I.2.11.3 Remark. One can visualize the action of εm(nT̂LN) ⊂ nT̂LN+1 on the particle

configurations on a circle with N + 1 positions as follows: Except for am, all generators

of nT̂LN are mapped to corresponding generators of nT̂LN+1. They will act as before,

by moving a particle one step clockwise around the circle. Since am is mapped by εm

to the product ãm+1ãm in nT̂LN+1, it will move a particle from m to m + 2, ignoring

position m + 1, as depicted below.

0
1

2

3
4

5

6

7

⋅q

◊

Figure I.2.11.1.: ε5(nT̂L7) ⊂ nT̂L8: The action of ε5(a0a6a5a4) = ã0ã7ã6ã5ã4 on the

particle configuration v(4).

I.2.11.4 Remark. Formulas similar to our embeddings appear in [Mak15, Section 3.5]

in the construction of s̃lN -categorical actions from s̃lN+1-categorical actions in the sense

of [Mak15, Section 3.4]. They come from embeddings of loop algebras s̃lN ⊂ s̃lN+1, see

also [Mak15, Section 3.3] and [Kum02, Section 13.1]. ◊

88



I.2.12. Classification of simple modules

Proof (Theorem I.2.11.1). Recall the basis given by {1} ∪ {t`keij ∣ ` ∈ Z≥0, 1 ≤

∣i∣ = ∣j∣ = k ≤ N − 1} defined in Section I.2.10. We have already noted in Remark

I.2.11.2 that εm is an algebra homomorphism. Using Remark I.2.11.3, observe that the

monomial eij ∈ nT̂LN is mapped to a monomial ẽi′j′ ∈ nT̂LN+1 (tilde again indicates in

nT̂LN+1), where the new index sets are obtained by i ↦ i for 0 ≤ i ≤m and i ↦ i + 1 for

m + 1 ≤ i ≤ N − 1. The injectivity follows since distinct basis elements (∑∣K∣=k eKK)
`
⋅ eij

of nT̂LN are mapped to distinct basis elements (∑∣K′∣=k ẽK′K′)
`
⋅ ẽi′j′ of nT̂LN+1. ◻

I.2.11.5 Remark. It is possible to verify this theorem on generators and relations in

the language of Section I.2.5 without using the graphical description. The idea is that

from a monomial eij, we can read off the sequences

j = {i ∣ no ai−1 occurs to the right of ai in the monomial eij},

i = {i ∣ no ai occurs to the left of ai−1 in the monomial eij}

as in Remark I.2.10.5. Now using Lemma I.2.5.2 one checks that the image of eij under

εm is a nonzero monomial, which must be equal to the monomial ẽi′j′ determined by

{i ∣ no ãi−1 occurs to the right of ãi in the monomial εm(eij)} = j′,

{i ∣ no ãi occurs to the left of ãi−1 in the monomial εm(eij)} = i′. ◊

I.2.11.6 Remark. These embeddings work specifically for the affine nilTemperley–Lieb

algebras but fail for the ordinary Temperley–Lieb algebras. The relation that fails to

hold is the braid relation for Temperley–Lieb algebras, i.e. aiai±1ai = ai. Interestingly,

the relation a2
i = δai is respected for δ = 1. ◊

I.2.12. Classification of simple modules

In this section we have to assume that the ground ring k of nT̂LN is restricted to be an

uncountable algebraically closed field of arbitrary characteristic.

The classification of simple modules for nT̂LN uses central characters.

I.2.12.1 Definition. Let A be a k-algebra over some field k. An A-module M has

central character χ ∶ C(A) → k if χ is an algebra homomorphism such that cv = χ(c)v

for all c ∈ C(A) and all v ∈M . In case χ is the central character of M we denote it by

χM .

Recall the following fact:
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I.2.12.2 Proposition. Let k be an algebraically closed field and A be a k-algebra with

dim(A) < ∣k∣. Then every simple A-module has central character.

This is proven e.g. in [CG97, Corollary 8.1.2] for the affine Hecke algebra, and in

[Maz10, Theorem 4.7] for A = U(sl2), compare Section II.1.4. The general statement can

be proven analogously.

Let us now turn to the affine nilTemperley–Lieb algebra nT̂LN . From now on, the ground

ring k of nT̂LN is an uncountable algebraically closed field. Denote the category of left

nT̂LN -modules by nT̂LN−mod. We will use two main facts about nT̂LN to describe

its simple modules: The finiteness of nT̂LN over its center, and the explicit description

of the center CN ≅
k[t1,...,tN−1]
(tkt`∣k≠`) . Observe that due to the relation tkt` = 0 in CN

the only nonzero algebra homomorphisms χ ∶ CN → k are given by the choice of some

χ(tk) = ζ ∈ k ∖ {0}, χ(t`) = 0 for all ` ≠ k. The following theorem classifies all simple

nT̂LN -modules:

I.2.12.3 Theorem. Let k be an uncountable algebraically closed field of arbitrary char-

acteristic. Let χ be an algebra homomorphism CN → k. Then up to isomorphism there

is precisely one simple module of nT̂LN with central character χ.

The simple modules of nT̂LN are given up to isomorphism by

i) the trivial onedimensional module k with trivial central character,

ii) the (
N
k
)-dimensional module ⋀k kN with central character χ(tk) ∈ k∖{0}, χ(t`) = 0

for all ` ≠ k.

Proof. Thanks to our assumption that k is an uncountable algebraically closed field we

know that every simple module of nT̂LN has central character.

Let us first consider the case χ = 0. Given any simple nT̂LN -module M with χM = 0,

we have that M is simple as nT̂LN/⟨t1, . . . , tN−1⟩-module. This quotient algebra is

graded by the length of monomials (since CN ⊂ nT̂LN is homogeneously generated) and

furthermore finite dimensional by Theorem I.2.9.1. Its degree 0 component equals k.

Its Jacobson radical is given by all positively graded elements (nT̂LN/⟨t1, . . . , tN−1⟩)>0
.

Since the simple modules over an algebra can be identified with the simple modules over

the quotient with respect to the Jacobson radical, we only need to determine all simple

modules of the quotient (nT̂LN/⟨t1, . . . , tN−1⟩) / (nT̂LN/⟨t1, . . . , tN−1⟩)>0
, which is k. By

the Artin-Wedderburn Theorem [Lam01, Chapter 1.3] (or directly by the lack of nontriv-

ial maximal ideals in k), the only simple module of k and hence of nT̂LN/⟨t1, . . . , tN−1⟩

is the one-dimensional (trivial) module k.
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Now we turn to the case χ ≠ 0, i.e. χ is given by χ(tk) = ζ ∈ k ∖ {0}, χ(t`) = 0

for all ` ≠ k. In this case we want to form the localisation nT̂LN [t−1
k ]. There are

two possibilities to convince oneself that one can localise nT̂LN with respect to the

multiplicative subset generated by tk: Either one checks that localisation with respect

to a multiplicative subset for commutative rings as in [AM69, Chapter 3] can be easily

imitated for multiplicative central subsets in an arbitrary ring. Or one applies Ore

localisation as discussed in [Lam99, Chapter 4, Section 10] to the noncommutative ring

nT̂LN and the (right and left) denominator set {1, tk, t
2
k, . . .}, where the Ore conditions

are automatically satisfied since {1, tk, t
2
k, . . .} is central (see [Lam99, (10.15)]). The

resulting right and left ring of fractions is unique up to unique isomorphism. We denote

the localisation of nT̂LN with respect to the set {1, tk, t
2
k, . . .} by nT̂LN [t−1

k ].

Now our goal is to show that the functor nT̂LN [t−1
k ] ⊗nT̂LN

− induces a bijection

{simple nT̂LN -modules with tk acts by ζ ≠ 0}/ ≅ (I.2.7)

1∶1
←→ {simple nT̂LN [t−1

k ]-modules with tk acts by ζ ≠ 0}/ ≅

that preserves the k-dimensions of the simple modules. First of all, localisation is exact,

see [Lam99, Exercise 10.18] or [Mat89, Theorem 4.5] for the commutative version of the

statement. Therefore nT̂LN [t−1
k ] ⊗nT̂LN

L is a simple nT̂LN [t−1
k ]-module for any simple

nT̂LN -module L.

Let L be a simple nT̂LN -module so that tk acts by ζ ≠ 0 on L. In this case the

dimension of L is preserved under localisation since L ≅ nT̂LN [t−1
k ] ⊗nT̂LN

L even as

nT̂LN [t−1
k ]-modules. The nT̂LN [t−1

k ]-action on L is given by letting t−1
k act by ζ−1.

More precisely, by the universal property of localisation ([Lam99, Proposition 9.2]), any

ring homomorphism from nT̂LN that maps {1, tk, t
2
k, . . .} into the units of the codomain

ring factors uniquely over nT̂LN [t−1
k ]. In this way we can see a simple nT̂LN -module L

as nT̂LN [t−1
k ]-module. The natural map L → nT̂LN [t−1

k ] ⊗nT̂LN
L is injective since its

kernel is given by {m ∈ L ∣ tnkm = ζnm = 0 for some n} = {0}. It is also surjective since

t−1
k ⊗nT̂LN

m = 1⊗nT̂LN
ζ−1m for all m ∈ L.

Vice versa, any simple nT̂LN [t−1
k ]-module L′ so that tk acts by ζ(≠ 0) on L′ is naturally

an nT̂LN -module. As such, L′ is simple: Let 0 → N ′ → L′ → M ′ → 0 be a short exact

sequence of nT̂LN -modules. The central element tk acts by ζ on N ′, L′ and M ′. Now

apply the exact functor nT̂LN [t−1
k ] ⊗nT̂LN

−. We have 0 = nT̂LN [t−1
k ] ⊗nT̂LN

N ′ ≅ N ′

or 0 = nT̂LN [t−1
k ] ⊗nT̂LN

M ′ ≅ M ′, where we use again that the natural map is an

isomorphism.

These two maps are inverses of each other on isomorphism classes of simples, and we get

the bijection from Equation (I.2.7).
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Next we show that nT̂LN [t−1
k ] ≅ Endk (k[q±1] ⊗ ⋀

k kN):

Consider the composition of the k-linear embedding of nT̂LN into the k[q]-algebra of

endomorphisms of its faithful module V =
N

⊕
k=0

(k[q] ⊗ ⋀k kN) with the k-linear embedding

of Endk[q](V) ↪ Endk[q±1](k[q
±1] ⊗k[q] V). Then

nT̂LN ↪ Endk[q±1](k[q
±1] ⊗k[q] V)

is a k[tk]-linear map where tk acts on the affine nilTemperley–Lieb algebra nT̂LN by

(left) multiplication and on the endomorphism space Endk[q±1](k[q
±1] ⊗k[q] V) by mul-

tiplication with q times the projection map onto the summand k[q±1] ⊗k ⋀
k kN .

Localisation with respect to tk gives an embedding of nT̂LN [t−1
k ] into the k[q±1]-algebra

of endomorphisms of
N

⊕
k=0

(k[q±1] ⊗ ⋀
k kN). Since tk acts by zero on k[q±1] ⊗ ⋀

` kN for

all ` ≠ k, we obtain an embedding

nT̂LN [t−1
k ] ↪ Endk (k[q±1

] ⊗
k

⋀kN) .

This map is an isomorphism – surjectivity follows from the fact that the basis element

eij is mapped to qm times the elementary matrix Eij, where i labels the basis element

v(i) of ⋀k kN and m equals the number of appearances of a0 in eij. In other words,

t−mk eij is mapped to the elementary matrix Eij.

Finally it suffices to observe that the only simple module of the k[q±1]-linear matrices

of size (
N
k
)×(

N
k
) where qId acts by multiplication with ζ ≠ 0 is the vector representation

k(N
k
). ◻

I.2.13. The affine nilTemperley–Lieb algebra is not free

over its center

In this section we have to assume that the ground ring k of nT̂LN is restricted to be an

uncountable algebraically closed field of arbitrary characteristic.

I.2.13.1 Theorem. The affine nilTemperley–Lieb algebra is not free (as a module) over

its center.

Proof. Recall that the algebra nT̂LN is finitely generated over its center by Theo-

rem I.2.9.1. If nT̂LN was freely generated over its center, its rank as a module over

the center would agree with its rank as a module over any localisation of the center
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since localisation commutes with direct sums, see [Lam99, Exercise 10.18] or [Mat89,

Theorem 4.4] for the commutative algebra version of this statement. In particular, its

rank as a module over any localisation of the center would be constant. In the proof

of Theorem I.2.12.3 we have seen that the localisation with respect to tk is a matrix

algebra over C (nT̂LN) [t−1
k ] = k[t±1

k ] of size (
N
k
) for 0 ≤ k ≤ N . Hence the rank is not

constant and nT̂LN is not freely generated over the center. ◻

I.2.14. Affine cellularity of the affine nilTemperley–Lieb

algebra

In this section we assume that the ground ring k of nT̂LN is restricted to be an uncount-

able algebraically closed field of arbitrary characteristic.

In [KX12] Koenig and Xi introduce the notion of affine cellular algebras generalizing the

concept of cellular algebras from [GL96]. One of the motivating examples is given by

affine Temperley–Lieb algebras that can be equipped with an affine cellular structure

[KX12, Proposition 2.5]. It would be interesting to know whether this is the case for the

affine nilTemperley–Lieb algebra nT̂LN as well. In this section we first recall the basic

properties of affine cellular algebras from [KX12]. Then we discuss possible approaches

to the construction of an affine cellular structure for nT̂LN (and their limitations).

By definition, a k-algebra A together with a k-linear anti-algebra involution i is called

affine cellular if

A ≅ J ′1 ⊕ . . .⊕ J
′
n as k-vector spaces (I.2.8)

for some J ′1, . . . , J
′
n stable under i so that Jk ∶=

k

⊕
`=1
J ′` is a twosided ideal of A, and n ≥ 1.

The subquotient Jk/Jk−1 is required to be an affine cell ideal in A/Jk−1 for 1 ≤ k ≤ n,

where J0 ∶= {0}. This means that

Jk/Jk−1 ≅ Vk ⊗k Bk ⊗k Vk as (A/Jk−1 −A/Jk−1)-bimodules, (I.2.9)

where Bk is a quotient of a polynomial ring in finitely many variables and Vk is some

finite-dimensional k-vector space. The tensor product Vk ⊗k Bk is equipped with a

left A/Jk−1-action that commutes with the right multiplication with elements in Bk.

This also induces a right A/Jk−1-action on Bk ⊗k Vk by twisting with the anti-algebra

involution i (to be precise, i is identified with the induced map on the quotient A/Jk−1),

which commutes with the left multplication action of Bk. Under the identification (I.2.9),

the anti-algebra involution i is required to be of the form

i ∶ v ⊗ b⊗ v′ ↦ v′ ⊗ σk(b) ⊗ v for v, v′ ∈ Vk, b ∈ Bk, (I.2.10)
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where σk is some involution of Bk.

The monomial basis of nT̂LN from Section I.2.10 suggests that one can equip nT̂LN with

an affine cellular structure in the following natural way. Namely, one can decompose

nT̂LN ≅ J ′1 ⊕ . . .⊕ J
′
N as a k-vector space with

J ′k = {t`N−keij ∣ ∣i∣ = ∣j∣ = N − k} for 1 ≤ k ≤ N,

Jk = {t`N−keij ∣ ∣i∣ = ∣j∣ ≥ N − k} for 1 ≤ k ≤ N,

Vk = spank {i ∣ ∣i∣ = N − k} for 1 ≤ k ≤ N,

Bk = k[tN−k] for 1 ≤ k ≤ N,

so that there is an isomorphism of k-vector spaces Jk/Jk−1 ≅ Vk ⊗kBk ⊗k Vk given by

t`N−keij ↦ i⊗ t`N−k ⊗ j.

For k = N , we identify e∅∅ = t0 = 1, so we have J ′N ≅ k. An involution that matches

these definitions is given by

i ∶ nT̂LN → nT̂LN defined by t`keij ↦ t`keji.

A left nT̂LN/Jk−1-action on Vk ⊗k Bk can be given by tdN−keji(i ⊗ t`N−k) = j ⊗ t`+d+r
∗

N−k
for N − k = ∣j∣ = ∣i∣ and r∗ is the power of tN−k from Proposition I.2.10.2. It naturally

commutes with the right Bk-action since Bk = k[tN−k] is central.

But there are several problems about this definition: The involution i fails to be an

anti-algebra homomorphism, as can be seen from the following example for N = 5, where

we have i(e{4}{3}e{3}{2}) = i(e{4}{2}) = e{2}{4}, but i(e{3}{2})i(e{4}{3}) = e{2}{3}e{3}{4} =

t1
1e{2}{4}. Likewise, products do not obey the multiplication rule for affine cellular alge-

bras from [KX12, Proposition 2.2]: The power `′′ of tN−k in the product

(i⊗ t`N−k ⊗ j)(i′ ⊗ t`
′
N−k ⊗ j′) = i⊗ δji′t

`+`′+`′′
N−k ⊗ j′ ∈ Vk ⊗Bk ⊗ Vk

depends on all of i, j = i′ and j, see Example I.2.10.3. According to the multiplication

rule for affine cellular algebras, an additional factor in Bk (apart from t`+`
′

N−k) may only

depend on j and i′.

Let us discuss another approach to defining an affine cellular structure on nT̂LN , based

on the labelling set of monomials from Proposition I.2.6.4, see also Section I.2.5 and

Remark I.2.10.4. There we have seen that a monomial a(j) can be uniquely identified

by the triple (iinj , i
out
j , `j) where

iinj = {i ∈ {0,1, . . . ,N − 1} ∣ no i − 1 to the right of i in j}

iout
j = {i ∈ {0,1, . . . ,N − 1} ∣ no i + 1 to the left of i in j}

`j = the number of zeros in j.
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We define an affine cellular algebra by the following data (see [KX12, Proposition 2.3]):

Vk = spank {i ∣ ∣i∣ = N − k} for 1 ≤ k ≤ N − 1,

Bk = k[q] for 1 ≤ k ≤ N − 1,

VN = k,

BN = k,

A+ =
N

⊕
k=1

Vk ⊗Bk ⊗ Vk,

i ∶ i⊗ q` ⊗ j ↦ j⊗ q` ⊗ i.

The multiplication on A+ is defined for i, j ∈ Vk, i
′, j′ ∈ Vk′ and `, `′ ∈ Z≥0 by

(i⊗ q` ⊗ j)(i′ ⊗ q`
′
⊗ j′) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

i∗ ⊗ q`+`
′
⊗ j∗ if eijei′j′ ≠ 0,

0 else,

where i∗, j∗ are defined precisely like in Proposition I.2.10.2 by

i∗ = i ∪ (i′ ∖ (j ∩ i′)), j∗ = j′ ∪ (j ∖ (j ∩ i′)).

In particular, the induced multiplication on the subquotient Vk ⊗Bk ⊗Vk of A+ is given

by

(i⊗ q` ⊗ j)(i′ ⊗ q`
′
⊗ j′) = i⊗ δji′q

`+`′
⊗ j′. (I.2.11)

I.2.14.1 Lemma. There is a proper embedding of algebras

nT̂LN ⊂ A+, t`keij ↦ i⊗ q`+rij ⊗ j,

where rij is the number of generators a0 appearing in the basis monomial eij.

Proof. This map is a k-linear embedding of vector spaces. By definition of the multi-

plication, it is an algebra homomorphism. An element of the form i ⊗ qr ⊗ j ∈ A+ with

r < rij does not have a preimage in nT̂LN . ◻

In this approach, we find an affine cellular algebra A+, but the problem is that the

embedding nT̂LN ⊂ A+ is not surjective.

Let us now modify this approach slightly to obtain another affine cellular algebra A−:

As a k-vector space, we define A− = A+, and also the involution i remains the same. We

define a new multiplication on A− by

(i⊗ q` ⊗ j)(i′ ⊗ q`
′
⊗ j′) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

i∗ ⊗ q∣j∩i
′∣+`+`′ ⊗ j∗ if eijei′j′ ≠ 0,

0 else,
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where we use the notation from above. For the induced multiplication on the subquotient

Vk ⊗Bk ⊗ Vk of A− we obtain

(i⊗ q` ⊗ j)(i′ ⊗ q`
′
⊗ j′) = i⊗ (δji′q

N−k
)q`+`

′
⊗ j′, (I.2.12)

I.2.14.2 Lemma. There is a proper embedding of algebras

A− ⊂ nT̂LN , i⊗ q` ⊗ j ↦ t`+k−rijk eij,

where rij is the number of generators a0 appearing in the basis monomial eij.

Proof. This map is a k-linear embedding of vector spaces. By definition of the multi-

plication, it is an algebra homomorphism. A basis element of the form eij ∈ nT̂LN with

rij < k does not have a preimage in A−. ◻

We obtain that the affine nilTemperley–Lieb algebra is sandwiched between two affine

cellular algebras:

I.2.14.3 Corollary. There are proper inclusions of algebras

A− ⊂ nT̂LN ⊂ A+,

where A−, A+ are affine cellular algebras that are isomorphic as k-vector spaces.

Proof. This is precisely the statement of Lemma I.2.14.1 and Lemma I.2.14.2. ◻

The reason why we work in this section over an uncountable algebraically closed field

k (instead of an arbitrary field or commutative ring) is that we will now compare the

classifications of simple modules for the algebras A− and A+ with the classification of

simple modules of nT̂LN from Section I.2.12.

I.2.14.4 Proposition. The isomorphism classes of simple modules of the affine cellular

algebra A− are labelled by the set

{(N,0)} ∪ {(k,m) ∣ 1 ≤ k ≤ N − 1, m ⊂ k[q] maximal ideal with q ∉ m}.

The isomrphism classes of simple modules of the affine cellular algebra A+ are labelled

by the set

{(N,0)} ∪ {(k,m) ∣ 1 ≤ k ≤ N − 1, m ⊂ k[q] maximal ideal}.

96



I.2.14. Affine cellularity of the affine nilTemperley–Lieb algebra

Proof. This is an immediate consequence of [KX12, Theorem 3.12] together with the

multiplication laws (I.2.11), (I.2.12) for subquotients of A+ and A−. ◻

It is not clear yet whether the affine nilTemperley–Lieb algebra nT̂LN can be equipped

with an affine cellular structure or not. Nevertheless, nT̂LN contains a slightly smaller

affine cellular algebra, so that the classifications of simple modules for both algebras

agree:

I.2.14.5 Corollary. The labelling sets of the isomorphism classes of simple modules

agree for nT̂LN and the affine cellular algebra A−.

Proof. This follows from Proposition I.2.14.4 and Theorem I.2.12.3. ◻
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This chapter is devoted to the plactic algebra and its action on bosonic particle configu-

rations. It turns out that this action factors over a quotient algebra that we call partic

algebra, whose induced action on bosonic particle configurations is faithful.

The chapter is subdivided as follows: In Section I.3.1 we recall the definition of the clas-

sical and affine plactic algebra, and we give a short overview over the literature so far.

We dedicate the following sections to the classical case: In Section I.3.2 we discuss the

action of the classical plactic algebra on classical bosonic particle configurations, and we

define a quotient of the classical plactic algebra named partic algebra. In Section I.3.3

we construct a normal form of the monomials in the partic algebra. In Section I.3.4 we

discuss the action of the classical plactic and the partic algebra on bosonic particle con-

figurations, and we prove faithfulness of the action of the partic algebra. In Section I.3.5

we describe the center of the partic algebra.

Finally, in Section I.3.6 we turn to the affine case. We define the affine partic algebra

and we consider its action on affine bosonic particle configurations. This is substan-

tially harder to understand than the classical case, in particular we find a new type of

relations.

I.3.1. The classical and the affine plactic algebra

Let k be a field. Similar to Chapter I.2 our results hold over an arbitrary unitary

associative ring, see the discussion in Remark I.2.1.3, but for simplicity we choose to

work over a field.

I.3.1.1 Definition. Define the (local) plactic algebra PN to be the unital associative

k-algebra generated by a1, . . . , aN−1 subject to the plactic relations

aiaj = ajai for ∣i − j∣ > 1, (I.3.1)

aiai−1ai = aiaiai−1 for 2 ≤ i ≤ N − 1, (I.3.2)

aiai+1ai = ai+1aiai for 1 ≤ i ≤ N − 2. (I.3.3)
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In order to distinguish PN from the affine plactic algebra defined in Definition I.3.1.2 we

refer to it as classical plactic algebra.

An affine version of the plactic algebra can be obtained by a very similar construction,

except that the indices of the generators are now read modulo N .

I.3.1.2 Definition. Define the affine plactic algebra P̂N to be the unital associative

k-algebra generated by a0, a1, . . . , aN−1 subject to the plactic relations

aiaj = ajai for i − j ≠ ±1 mod N, (I.3.4)

aiai−1ai = aiaiai−1 for i, i − 1 ∈ Z/NZ, (I.3.5)

aiai+1ai = ai+1aiai for i, i + 1 ∈ Z/NZ. (I.3.6)

The plactic relations go back to Lascoux and Schützenberger [LS81]. They study the

monoid defined by the “plaxic relations” (in the original, “plaxique” or “a placche”)

(I.3.2), (I.3.3) and the non-local Knuth relation, a slightly weaker commutativity relation

(aiaj)ak = (ajai)ak, ak(aiaj) = ak(ajai) for i < k < j (in particular for ∣i − j∣ > 1).

This monoid is isomorphic to the monoid of semistandard Young tableaux with entries

1, . . . ,N − 1 (and multiplication defined by row bumping) by reading off the entries of a

tableau from left to right and bottom to top, see [Ful97, Section 2.1] for the details.

The name local plactic algebra for the algebra defined by the relations (I.3.1), (I.3.2) and

(I.3.3) goes back to [FG98] due to the additional “local” commutativity relation (I.3.1).

Fomin and Greene develop a theory of Schur functions in noncommutative variables that

applies in particular to the (local) plactic algebra (and to the nilTemperley-Lieb algebra),

see [FG98, Example 2.6], including a generalized Littlewood-Richardson rule for Schur

functions defined over the plactic algebra. The plactic algebra acts on Young diagrams

by Schur operators, i.e. ai adds a box in the i-th column if possible, and otherwise maps

the diagram to zero [Fom95].

In [KS10], the plactic algebra appears in the study of bosonic particle configurations

in the finite as well as in the affine case that we discuss in Sections I.3.4 and I.3.6.

Schur functions in the generators of the affine plactic algebra are defined, using Bethe

Ansatz techniques to show that they are well-defined. One can identify bosonic particle

configurations with Young diagrams, then the operator ai acts by adding a box in the

(i+1)st row of the Young diagram. Up to an index shift and switching rows and columns,

in the finite case this is the same as the action on Young diagrams by Schur operators

from [FG98].
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The monoid defined by the plactic relations (I.3.1), (I.3.2), (I.3.3) appears as a Hall

monoid or “quantic monoid” of type AN−1 in [Rei01], [Rei02]: Reineke defines the

structure of a monoid on isomorphism classes of modules over kQ for an oriented

Dynkin quiver Q. The product of two isomorphism classes [M] and [M ′] is defined

by [M ∗M ′], the isomorphism class of the generic extension of M by M ′ in kQ −mod.

The generic extension is up to isomorphism uniquely determined to be the extension

with dimEndkQ(M ∗M ′) minimal among all possible extensions. Equivalently, the orbit

of the generic extension is dense in the subset of extensions of [M] and [M ′] inside

the representation variety of Q. In particular, Reineke shows that for Q = AN−1 (with

orientation given e.g. by i→ (i−1) for the vertices 2 ≤ i ≤ N −1 of Q), the k-linearisation

of the resulting monoid is isomorphic the plactic algebra as defined above, where the

isomorphism classes of the one-dimensional simple modules [Si] are mapped to the gen-

erators ai. This is furthermore identified with the positive half of the twisted quantum

group at q = 0, see Remark I.1.1.9. By Ringel’s theorem [Rin90] we know that the posi-

tive half of the twisted quantum group is isomorphic to the generic Hall algebra for any

Dynkin quiver Q. Hence, the specialisation of the generic Hall algebra at q = 0 gives the

Hall monoid. Different normal forms for monomials in the plactic algebra are given in

terms of enumerations of the roots [Rei02, Theorem 2.10].

In [DD05] a similar approach is taken for affine type ÂN−1. A normal form for monomials

in the affine plactic algebra is constructed using generic extensions of nilpotent represen-

tations of the quiver ÂN−1 with cyclic orientation. In [Wol07, Theorem 2.8] it is shown

that also for affine type ÂN−1, the specialisation of the generic Hall algebra at q = 0 gives

the Hall monoid of generic extensions. Schiffmann [Sch00] and Hubery [Hub05] describe

the center of the Hall algebra of nilpotent modules of the cyclic quiver.

I.3.2. The partic algebra

In this section we introduce a quotient of the classical plactic algebra:

I.3.2.1 Definition. Define the partic algebra P
part
N to be the quotient of PN by the

additional relation

aiai−1ai+1ai = ai+1aiai−1ai for 2 ≤ i ≤ N − 2. (I.3.7)

Note that one can interpret relations (I.3.2), (I.3.3) as commutativity of the product

(ai+1ai) with the generators ai+1 and ai. Relation (I.3.7) together with (I.3.2) implies in

particular that (ai+1ai) and (aiai−1) commute.
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I.3.2.2 Remark. This relation appears naturally in the study of bosonic particle con-

figurations, see Section I.3.4 and Section I.1.2. In contrast, in the Hall monoid of finite

type AN−1 one cannot expect [Si+1 ∗ Si] and [Si ∗ Si−1] to commute. This is because

precisely one of Si+1∗Si∗Si∗Si−1, Si∗Si−1∗Si+1∗Si is a nontrivial extension of Si+1∗Si

and Si ∗Si−1 (it depends on the choice of orientation which one is nontrivial) – in much

the same way as [Si] and [Si±1] do not commute. ◊

I.3.2.3 Remark. We have two gradings on both the plactic and the partic algebra:

i) All relations preserve the length of monomials, hence PN and P
part
N can be equipped

with a Z-grading by the length of monomials.

ii) All relations preserve the number of different generators in a monomial, hence PN

and P
part
N can be equipped with a ZN−1-grading that assigns to the generator ai

the degree ei, the i-th standard basis vector in ZN−1. This is a refinement of the

above length grading. ◊

I.3.2.4 Lemma. In the plactic (and hence also in the partic) algebra, the following

relations hold:

i) For all generators ai, ai−1, 2 ≤ i ≤ N − 1 and all m ≥ 0, we have

ami a
m
i−1 = (aiai−1)

m, (I.3.8)

ai(a
m
i a

m
i−1) = (ami a

m
i−1)ai.

ii) For all i ≥ k ≥ j we have

(aiai−1 . . . aj+1aj)ak = ak(aiai−1 . . . aj+1aj). (I.3.9)

Proof. i) The second equation of Lemma I.3.2.4.(i) follows from the first by the plac-

tic relation (I.3.2). By induction, ami a
m
i−1 = ai(aiai−1)

m−1ai−1 = (aiai−1)
m−1aiai−1 =

(aiai−1)
m.

ii) This equality follows from the calculation

(aiai−1 . . . aj+1aj)ak
(I.3.1)
= aiai−1 . . . ak+1akak−1ak . . . aj+1aj

(I.3.2)
= aiai−1 . . . ak+1akakak−1 . . . aj+1aj

(I.3.3)
= aiai−1 . . . akak+1akak−1 . . . aj+1aj

(I.3.1)
= ak(aiai−1 . . . aj+1aj). ◻
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I.3.3. A basis of the partic algebra

In this section we formulate the following main theorem:

I.3.3.1 Theorem. The partic algebra P
part
N has a basis given by monomials of the form

{adN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 ∣ di ≤ di−1 + ki−1 for all 3 ≤ i ≤ N − 1, d2 ≤ k1} (I.3.10)

where di, ki ∈ Z≥0 for all 1 ≤ i ≤ N − 1.

The proof consists of two steps: Since the partic algebra is defined by monomial relations,

it suffices to construct a normal form for monomials to obtain a k-basis for the algebra.

This is similar to the affine nilTemperley–Lieb algebra, see Remark I.2.5.1. In this section

we show that every monomial in the partic algebra is equivalent to a monomial of the

form (I.3.10). In Section I.3.4 we observe that these monomials act pairwise differently

on the particle configuration module, and we conclude that they must have been distinct.

I.3.3.2 Proposition. Every monomial in the partic algebra P
part
N is equivalent to a

monomial of the form (I.3.10), i.e. adN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 with di ≤ di−1+ki−1 for all

3 ≤ i ≤ N − 1 and d2 ≤ k1.

Proof. The proof works by induction on the length of monomials. If the length is equal

to 1, we have ai = a
ki
i for ki = 1, and the condition from (I.3.10) is preserved. For the

induction step our goal is to show that

ai ⋅ (a
dN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 ) = adN−1
N−1 . . . a

d′i
i . . . a

d2
2 a

k1
1 a

k2
2 . . . a

k′i
i . . . a

kN−1
N−1 , (I.3.11)

where d′i = di and k′i = ki + 1, or d′i = di + 1 and k′i = ki are such that the inequality

condition (I.3.10) is preserved. Since we can commute ai with all aj as long as j ≠ i ± 1,

we only need to consider

ai ⋅ (a
di+1
i+1 a

di
i a

di−1
i−1 . . . aki−1i−1 a

ki
i ) .

In order to prove that this can be rewritten as in (I.3.11), we have to show that either

we can pass ai through to the right hand side, increasing the exponent ki by one, or we

leave it at the left hand side, increasing di by one.

i) Case di+1 = di = di−1 = ki−1 = 0: Set k′i = ki + 1. The inequality condition (I.3.10)

is automatically satisfied if we increase one of the k’s, so there is nothing to

check. The equality (I.3.11) is obvious since we only apply the commutativity

relation (I.3.1).
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ii) Case di+1 = di = di−1 = 0, ki−1 > 0: Set d′i = 1. The inequality condition (I.3.10) is

preserved since ki−1 ≥ 1, and again we only apply the commutativity relation (I.3.1).

iii) Case di+1 = di = 0, di−1 > 0, ki−1 arbitrary: Set d′i = 1. The inequality condi-

tion (I.3.10) is preserved since di−1 ≥ 1, and as before we only apply the commuta-

tivity relation (I.3.1).

iv) Case di+1 = 0, di > 0, di−1 and ki−1 arbitrary so that di ≤ di−1 + ki−1:

� di < di−1 + ki−1: Set d′i = di + 1.

� di = di−1 + ki−1: We cannot increase di, hence we have to show that we can com-

mute ai past adi−1i−1 and aki−1i−1 to increase ki. Indeed, we can apply equality (I.3.8)

from Lemma I.3.2.4.(i) to obtain

ai (a
di
i a

di−1
i−1 . . . aki−1i−1 a

ki
i ) = adi−1+ki−1+1

i adi−1i−1 . . . aki−1i−1 a
ki
i

= aki−1+1
i (aiai−1)

di−1 . . . aki−1i−1 a
ki
i

= (aiai−1)
di−1aki−1+1

i . . . aki−1i−1 a
ki
i

= (aiai−1)
di−1 . . . aki−1+1

i aki−1i−1 a
ki
i

= (aiai−1)
di−1 . . . ai(aiai−1)

ki−1akii

= (aiai−1)
di−1 . . . (aiai−1)

ki−1aki+1
i

= (aiai−1)
di−1aki−1i . . . aki−1i−1 a

ki+1
i

= adi−1+ki−1i adi−1i−1 . . . aki−1i−1 a
ki+1
i .

v) Case di+1 > 0, di, ki and di−1, ki−1 arbitrary so that di+1 ≤ di + ki, di ≤ di−1 + ki−1:

We reduce to the previous cases by proving

aia
di+1
i+1 ⋅ (adii a

di−1
i−1 . . . aki−1i−1 a

ki
i ) = adi+1i+1 ai (a

di
i a

di−1
i−1 . . . aki−1i−1 a

ki
i ) .

� di+1 > di: Here we can apply Lemma I.3.2.4.(i) to obtain

ai(a
di+1
i+1 a

di
i ) = ai(ai+1ai)

di+1adi−di+1i = (ai+1ai)
di+1adi−di+1i = adi+1i+1 aia

di
i .

� di+1 ≤ di: In this case we have ki ≥ di+1 − di > 0. It suffices to prove that

aia
m
i+1a

di−1
i−1 . . . aki−1i−1 a

m
i = ami+1aia

di−1
i−1 . . . aki−1i−1 a

m
i

for any m > 0. Then the desired statement follows using equality (I.3.8) from

Lemma I.3.2.4.(i):

aia
di+1
i+1 a

di
i a

di−1
i−1 . . . aki−1i−1 a

ki
i = (ai+1ai)

di (aia
di+1−di
i+1 adi−1i−1 . . . aki−1i−1 a

di+1−di
i )aki+di−di+1i

= (ai+1ai)
di (adi+1−dii+1 aia

di−1
i−1 . . . aki−1i−1 a

di+1−di
i )aki+di−di+1i

= adi+1i+1 aia
di
i a

di−1
i−1 . . . aki−1i−1 a

ki
i .
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Now for di−1, di−2, . . . , dj > 0 and dj−1 = 0 (possibly j = i, or j = 1), we apply
equations (I.3.1), (I.3.7), (I.3.8) and (I.3.9) to pass the factor ai (distinguished by
bold print) through the whole expression, thereby proving the desired equality.

aiaiaia
m
i+1a

di−1
i−1 a

di−2
i−2 . . . a

dj
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami

(I.3.1)
= aiaiaia

di−1
i−1 a

di−2
i−2 . . . a

dj
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami+1a

m
i

(I.3.8)
= aiaiaia

di−1
i−1 a

di−2
i−2 . . . a

dj
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 (ai+1ai)

m

= (aiaiaiai−1)a
di−1−1
i−1 a

di−2
i−2 . . . a

dj
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 (ai+1ai)

m

(I.3.9)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . (aiaiaiai−1ai−2 . . . aj)a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 (ai+1ai)

m

(I.3.9)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j (aiaiaiai−1ai−2 . . . aj)a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 (ai+1ai)

m

(I.3.1)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 (aiaiaiai−1ai−2 . . . aj)a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 (ai+1ai)

m

(I.3.9)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1−1
j−1 (aiaiaiai−1ai−2 . . . ajaj−1)a

kj
j . . . a

ki−1
i−1 (ai+1ai)

m

(I.3.9)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1−1
j−1 a

kj
j . . . a

ki−1
i−1 (aiaiaiai−1ai−2 . . . ajaj−1)(ai+1ai)

m

(I.3.1)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1−1
j−1 a

kj
j . . . a

ki−1
i−1 (aiaiaiai−1)(ai+1ai)

m
(ai−2 . . . ajaj−1)

(I.3.7)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1−1
j−1 a

kj
j . . . a

ki−1
i−1 (ai+1ai)

m
(aiaiaiai−1)(ai−2 . . . ajaj−1)

(I.3.8)
= a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1−1
j−1 a

kj
j . . . a

ki−1
i−1 ami+1a

m
i (aiaiaiai−1)(ai−2 . . . ajaj−1)

(I.3.1)
= ami+1a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1−1
j−1 a

kj
j . . . a

ki−1
i−1 ami (aiaiaiai−1ai−2 . . . ajaj−1)

(I.3.9)
= ami+1a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 (aiaiaiai−1ai−2 . . . ajaj−1)a

kj−1−1
j−1 a

kj
j . . . a

ki−1
i−1 ami

= ami+1a
di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 (aiaiaiai−1ai−2 . . . aj)a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami

(I.3.1)
= ami+1a

di−1−1
i−1 a

di−2−1
i−2 . . . a

dj−1
j (aiaiaiai−1ai−2 . . . aj)a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami

(I.3.9)
= ami+1a

di−1−1
i−1 a

di−2−1
i−2 . . . (aiaiaiai−1ai−2 . . . aj)a

dj−1
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami

(I.3.9)
= ami+1a

di−1−1
i−1 (aiaiaiai−1ai−2)a

di−2−1
i−2 . . . a

dj
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami

(I.3.9)
= ami+1(aiaiaiai−1)a

di−1−1
i−1 a

di−2
i−2 . . . a

dj
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami

= ami+1aiaiaia
di−1
i−1 a

di−2
i−2 . . . a

dj
j a

dj−2
j−2 . . . a

kj−2
j−2 a

kj−1
j−1 a

kj
j . . . a

ki−1
i−1 ami .

This concludes the proof of Proposition I.3.3.2. ◻

Note that the relation special for the partic algebra (I.3.7) was only used once in the

proof of Proposition I.3.3.2, namely in the long computation at the end. All other

steps have been carried out using only the commutativity relation (I.3.1) and the plactic

relations (I.3.2) and (I.3.3). The following corollary recaps what we obtained for the

multiplication in the partic algebra:

I.3.3.3 Corollary. Assume we are given a monomial adN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 of the
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form (I.3.10) in the partic algebra. Then left multiplication with ai gives

ai ⋅ (a
dN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 ) (I.3.12)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

adN−1
N−1 . . . a

di
i . . . a

d2
2 a

k1
1 a

k2
2 . . . aki+1

i . . . akN−1
N−1 if di = di−1 + ki−1,

adN−1
N−1 . . . a

di+1
i . . . ad22 a

k1
1 a

k2
2 . . . akii . . . a

kN−1
N−1 if di < di−1 + ki−1.

Right multiplication with ai gives

(adN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 ) ⋅ ai (I.3.13)

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

adN−1
N−1 . . . a

di
i a

di+1+1
i+1 . . . ad22 a

k1
1 a

k2
2 . . . aki+1

i aki+1−1
i+1 . . . akN−1

N−1 if ki+1 ≥ 1

adN−1
N−1 . . . a

di
i a

di+1
i+1 . . . ad22 a

k1
1 a

k2
2 . . . aki+1

i a0
i+1 . . . a

kN−1
N−1 if ki+1 = 0,

with the result written again in the normal form (I.3.10).

Proof. For the left multiplication, equation (I.3.12) is contained in the proof of Propo-

sition I.3.3.2. For the right multiplication, equation (I.3.13) follows from the repeated

application of the rule for left multiplication of adN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 to ai. ◻

I.3.3.4 Example. The partic algebra has zero divisors, e.g. in P
part
3 ,

a2 ⋅ (a
5
3a

8
2a

8
1a

3
2a

1
3 − a5

3a
7
2a

8
1a

4
2a

1
3) = a5

3a
8
2a

8
1a

4
2a

1
3 − a5

3a
8
2a

8
1a

4
2a

1
3 = 0

(it follows from Theorem I.3.3.1 that a5
3a

8
2a

8
1a

3
2a

1
3 − a5

3a
7
2a

8
1a

4
2a

1
3 ≠ 0). ◊

I.3.3.5 Remark. Let us compare our normal form with the monomial bases of the

plactic algebra from [Rei02]: The plactic algebra PN surjects onto the partic algebra

P
part
N , mapping generators to generators and hence monomials to monomials. Given

a monomial of the normal form from Proposition I.3.3.2, finding the (finitely many)

preimages of basis monomials in the plactic algebra amounts to solving a system of linear

equations over the nonnegative integers, i.e. finding lattice points inside a polyhedron.

For example, consider the basis of the plactic algebra P5 from [Rei02, Theorem 2.10]

given by monomials

(a1)
n1(a2a1)

n21(a2)
n2(a3a2a1)

n321(a3a2)
n32(a3)

n3(a4a3a2a1)
n4321(a4a3a2)

n432(a4a3)
n43(a4)

n4

where all ni ∈ Z≥0 and compare it with the basis of the partic algebra P
part
5 from Propo-

sition I.3.3.2

{ad44 a
d3
3 a

d2
2 a

k1
1 a

k2
2 a

k3
3 a

k4
4 ∣ all ki, di ∈ Z≥0, di ≤ di−1 + ki−1}.

While a1a2a3a4 ∈ P
part
5 has only one preimage, namely (a1)

1(a2)
1(a3)

1(a4)
1 ∈ P5, we

find two preimages of a4a3a2a1a2 ∈ P
part
5 , namely (a2)

1(a4a3a2a1)
1, (a2a1)

1(a4a3a2)
1 ∈

P5. This corresponds to the number of possible applications of the additional partic

relation (I.3.7). ◊
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I.3.4. The action on bosonic particle configurations

In this section we discuss an action of the plactic algebra PN on the polynomial ring

k[x1, . . . , xN−1, x0] in N variables. It was defined in [KS10, Proposition 5.8]. We recall

the definition here: Let xk11 . . . xkN−1
N−1 x

k0
0 be a monomial in k[x1, . . . , xN−1, x0]. Set

ai ⋅ x
k1
1 . . . xkN−1

N−1 x
k0
0 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xk11 . . . xki−1
i xki+1+1

i+1 . . . xkN−1
N−1 x

k0
0 if ki > 0,

0 else,
(I.3.14)

aN−1 ⋅ x
k1
1 . . . xkN−1

N−1 x
k0
0 =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xk11 . . . xkN−1−1
N−1 xk0+1

0 if kN−1 > 0,

0 else.
(I.3.15)

This defines an action of the plactic algebra which factors over the partic algebra:

I.3.4.1 Lemma. Equations (I.3.14) and (I.3.15) define an action of the plactic algebra

PN on the polynomial ring k[x1, . . . , xN−1, x0]. This action factors over an action of the

partic algebra P
part
N .

Proof. This can be verified by direct computation. ◻

In this section our goal is the proof of the following main theorem:

I.3.4.2 Theorem. The action of the partic algebra P
part
N on k[x1, . . . , xN−1, x0] defined

by equations (I.3.14) and (I.3.15) is faithful.

I.3.4.3 Remark. In [KS10, Proposition 5.8] it is stated incorrectly that the action of

the plactic algebra PN on k[x1, . . . , xN−1, x0] is faithful. ◊

One can think of the monomials xk11 . . . xkN−1
N−1 x

k0
0 as configurations of particles on a line

with N positions, with ki particles at the i-th position. The 0-th position is regarded

as the deposit for particles moved to the end of the line. Then ai moves a particle from

position i to position i+1. We call k[x1, . . . , xN−1, x0] with the above action the (classical

bosonic) particle configuration module of PN or P
part
N , and we refer to the monomials

inside k[x1, . . . , xN−1, x0] as (classical bosonic) particle configurations.

I.3.4.4 Definition. We use the shorthand notation i ∶= (k1, . . . , kN−1, k0) ∈ ZN≥0 for the

monomial v(i) ∶= xk11 . . . xkN−1
N−1 x

k0
0 .
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1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0

Figure I.3.4.1.: Example for N = 9: The particle configuration (3,0,0,1,0,1,2,0,1)

corresponding to the monomial x3
1x

0
2x

0
3x

1
4x

0
5x

1
6x

2
7x

0
8x

1
0, and the element

a6a5a4 acting on it.

Now we investigate the action of the partic algebra on the particle configuration module.

I.3.4.5 Proposition. Fix a monomial adN−1
N−1 . . . a

d3
3 a

d2
2 a

k1
1 a

k2
2 a

k3
3 . . . akN−1

N−1 in the partic

algebra satisfying condition (I.3.10). There is a unique particle configuration with the

number of particles minimal, i.e. a monomial in k[x1, . . . , xN−1, x0] of minimal degree,

so that the monomial acts nontrivially on it. This minimal particle configuration is given

by

iin = (k1, k2, k3 . . . , kN−1,0).

The image of iin under the action of adN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1 is given by

iout = (0, k1 − d2, k2 + d2 − d3 . . . , kN−2 + dN−2 − dN−1, kN−1 + dN−1).

Proof. First we show that ak11 a
k2
2 a

k3
3 . . . akN−1

N−1 , hence adN−1
N−1 . . . a

d3
3 a

d2
2 a

k1
1 a

k2
2 a

k3
3 . . . akN−1

N−1
annihilates any particle configuration (r1, r2, r3, . . . , rN−1, r0) with ri < ki for some i. We
compute

ak11 ak22 . . . a
kj
j a

kj+1
j+1 . . . a

kN−1
N−1 (x

r1
1 xr22 . . . x

rj
j x

rj+1
j+1 . . . x

rN−1
N−1 xr00 )

=

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

ak11 ak22 . . . a
kj
j (x

r1
1 xr22 . . . x

rj
j x

rj+1−kj+1
j+1 . . . x

rN−1−kN−1+kN−2
N−1 x

r0+kN−1
0 ), ri ≥ ki for j < i ≤ N − 1

0 else

=

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

xr1−k11 xr2−k2+k12 . . . x
ri−ki+ki−1
i x

ri+1−ki+1+ki
i+1 . . . x

rN−1−kN−1+kN−2
N−1 x

r0+kN−1
0 , ri ≥ ki for all i

0 else.

Together with condition (I.3.10) it follows that the action of a monomial of the form

adN−1
N−1 . . . a

d3
3 a

d2
2 a

k1
1 a

k2
2 a

k3
3 . . . akN−1

N−1 on a particle configuration (r1, r2, r3, . . . , rN−1, r0) is

nontrivial iff ri ≥ ki for all i (recall that r0 ≥ 0 = k0 is automatically satisfied). This

proves that iin is indeed the minimal particle configuration on which the monomial acts

nontrivially. Now compute the image of iin under the action of the monomial: Plug in
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ri = ki for all i to see that

adN−1
N−1 . . . a

d3
3 a

d2
2 a

k1
1 a

k2
2 a

k3
3 . . . akN−1

N−1 (iin) = adN−1
N−1 . . . a

d3
3 a

d2
2 (x0

1x
k1
2 . . . xkN−2

N−1 x
kN−1
0 )

= iout.

This proves Proposition I.3.4.5. ◻

See also Remark I.2.4.3 for the notion of minimal (affine fermionic) particle configurations

for the affine nilTemperley–Lieb algebra.

Proof (of Theorem I.3.3.1). By Proposition I.3.3.2 any monomial in the partic alge-

bra is equivalent to one of the form (I.3.10). We have shown in Proposition I.3.4.5 that

the action on the particle configuration module distinguishes any two monomials of the

form (I.3.10), hence (I.3.10) describes a normal form for the monomials in the partic

algebra P
part
N , hence a basis of Ppart

N . ◻

Now Theorem I.3.4.2 follows as a corollary from Proposition I.3.4.5:

Proof (of Theorem I.3.4.2). We have seen in Proposition I.3.4.5 that the normal

form monomials, hence the basis elements in P
part
N act linearly independent on the par-

ticle configurations. In other words, the action of Ppart
N is faithful. ◻

I.3.4.6 Remark. The faithfulness of the action of the algebra P
part
N on the particle

configuration module motivates us to give P
part
N the name “partic” algebra. ◊

By Proposition I.3.3.2 and Proposition I.3.4.5, we can identify each monomial in the

partic algebra uniquely by the minimal particle configuration j ∈ ZN≥0 on which it acts

nontrivially and the output particle configuration i ∈ ZN≥0 that one gets back from the

action of the monomial on j. Hence the following is welldefined:

I.3.4.7 Definition. Given a monomial in normal form with di ≤ di−1 + ki−1 for all 3 ≤

i ≤ N − 1 and d2 ≤ k1, see Proposition I.3.4.5, we write

aij = a
dN−1
N−1 . . . a

d2
2 a

k1
1 a

k2
2 . . . akN−1

N−1

for bosonic particle configurations i = (0, k1−d2, k2+d2−d3 . . . , kN−2+dN−2−dN−1, kN−1+

dN−1) and j = (k1, k2, k3 . . . , kN−1,0). The number of particles ∣i∣ = ∣j∣ = ∑i ki in i and j

is the same.

This labelling is made so that aij ⋅ v(j) = v(i) in the notation of Definition I.3.4.4.
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I.3.4.8 Definition. For i = (r1, . . . , rN−1, r0) ∈ ZN≥0, we set

i ∪ {i} = (r1, . . . , ri + 1, . . . , rN−1, r0), i ∖ {i} = (r1, . . . , ri − 1, . . . , rN−1, r0),

where the latter is only defined for ri > 0.

With this notation we can rewrite Corollary I.3.3.3 to obtain the following multiplication

rule.

I.3.4.9 Corollary. Let aij be a monomial in normal form as in Definition I.3.4.7. Then

left and right multiplication by some generator ai ∈ P
part
N are given by

aiaij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ai′′j′′ if i ∈ i

ai′j′ if i ∉ i,

aijai =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ai′′′j′′′ if i + 1 ∈ j

ai′j′ if i + 1 ∉ j.

Here we denote

i′ = i ∪ {i + 1} i′′ = (i ∖ {i}) ∪ {i + 1} i′′′ = i

j′ = j ∪ {i} j′′ = j j′′′ = (j ∖ {i + 1}) ∪ {i}.

I.3.4.10 Example. Let N = 6, and consider the monomial aij = a
1
5a

2
2a

1
3a

2
4 with minimal

input configurataion j = (0,2,1,2,0,0) and output configuration i = (0,0,2,1,1,1). Now

consider the left and right multiplication with ai for i = 3:

a3 ⋅ a(0,0,2,1,1,1)(0,2,1,2,0,0) = a(0,0,1,2,1,1)(0,2,1,2,0,0),

with i′′ = (0,0,1,2,1,1),

j′′ = (0,2,1,2,0,0),

a(0,0,2,1,1,1)(0,2,1,2,0,0)a3 = a(0,0,2,1,1,1)(0,2,2,1,0,0),

with i′′′ = (0,0,2,1,1,1),

j′′′ = (0,2,2,1,0,0).

In contrast, left and right multiplication with ai for i = 1 gives

a1 ⋅ a(0,0,2,1,1,1)(0,2,1,2,0,0) = a(0,1,1,2,1,1)(1,2,1,2,0,0),

with i′ = (0,1,1,2,1,1),

j′ = (1,2,1,2,0,0),

a(0,0,2,1,1,1)(0,2,1,2,0,0)a1 = a(0,0,2,1,1,1)(1,1,1,2,0,0),

with i′′′ = (0,0,2,1,1,1),

j′′′ = (1,1,1,2,0,0).
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We observe that the product a1 ⋅ a(0,0,2,1,1,1)(0,2,1,2,0,0) requires an additional particle at

position 1, so that the cardinality of the minimal particle configuration of the product

a1 ⋅ a(0,0,2,1,1,1)(0,2,1,2,0,0) is by one higher than that of a(0,0,2,1,1,1)(0,2,1,2,0,0). ◊

I.3.5. The center of the partic algebra

Now that we have a basis of the partic algebra with a convenient labelling at our disposal,

the goal of this section is to describe the center of the partic algebra P
part
N .

I.3.5.1 Theorem. The center of the partic algebra P
part
N is given by the k-span of the

elements

{arN−1a
r
N−2 . . . a

r
2a
r
1 ∣ r ≥ 0}.

The monomial arN−1a
r
N−2 . . . a

r
2a
r
1 = (aN−1aN−2 . . . a2a1)

r = a(0,...,0,r)(r,0,...,0) acts on the

bosonic particle configurations by moving r particles from the first position 1 to the last

position 0 if there are at least r particles at position 1, and it acts by zero if there are

less than r particles at position 1. This action can be visualized as follows:

1 2 3 4 5 6 7 8 0

Figure I.3.5.1.: Example for N = 9: The action of the central element

(a8a7a6a5a4a3a2a1)
5 on the particle configuration (5,0,0,0,0,0,0,0,0).

Proof. Let z ∶= ∑
i,j
cijaij be an element in the center, where we label the monomial

aij by minimal input and output particle configurations as in Definition I.3.4.7, with

coefficients cij ∈ k. Notice that a(0,...,0,r)(r,0,...,0) commutes with all ai by equation (I.3.9)

from Lemma I.3.2.4.(ii). We show that cij = 0 for all j that contain some i ≠ 1, and for

all i that contain some i ≠ 0.

Let i ≥ 2. First we prove that cij = 0 for all j that contain a particle at position i. Since

z = ∑
i,j
cijaij is central, it commutes in particular with ai−1ai−2 . . . a2a1. Using Corollary
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I.3.4.9 we calculate

(ai−1ai−2 . . . a2a1)aij = a(i∪{i})(j∪{1}),

aij(ai−1ai−2 . . . a2a1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a(i∪{i})(j∪{1}) if i ∉ j,

ai((j∖{i})∪{1}) if i ∈ j.

Therefore (ai−1ai−2 . . . a2a1)aij = aij(ai−1ai−2 . . . a2a1) for i ∉ j. This we use to deduce

that we have (ai−1ai−2 . . . a2a1)z = z(ai−1ai−2 . . . a2a1) if and only if

(ai−1ai−2 . . . a2a1)

⎛
⎜
⎜
⎝

∑
i, j
i∉j

cijaij + ∑
i, j
i∈j

cijaij

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

∑
i, j
i∉j

cijaij + ∑
i, j
i∈j

cijaij

⎞
⎟
⎟
⎠

(ai−1ai−2 . . . a2a1),

which holds if and only if

(ai−1ai−2 . . . a2a1)

⎛
⎜
⎜
⎝

∑
i, j
i∈j

cijaij

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

∑
i, j
i∈j

cijaij

⎞
⎟
⎟
⎠

(ai−1ai−2 . . . a2a1).

The latter is precisely the equality

∑
i, j
i∈j

cija(i∪{i})(j∪{1}) = ∑
i, j
i∈j

cijai((j∖{i})∪{1}). (I.3.16)

Observe on the other hand that for fixed i the set of monomials

{ai((j∖{i})∪{1}) ∣ i, j such that i ∈ j}

is linearly independent since the sets ((j ∖ {i}) ∪ {1}) are all distinct for distinct j.

Next, we show by induction on the number ki of particles at position i in j that all

coefficients cij are zero for ki ≥ 1:

For ki = 1, the set (j ∖ {i}) ∪ {1} does not contain any particle at position i any more.

Hence the monomial ai((j∖{i})∪{1}) cannot appear in the left sum in equation (I.3.16),

and so its coefficient cij must have been zero. For the induction step, assume that the

coefficient cij is zero for all aij with at most ki particles at position i in the minimal

input particle configuration j. Consider some aij with ki + 1 particles at position i in j.

So the set (j ∖ {i}) ∪ {1} contains ki particles at position i in j, and so the monomial

ai((j∖{i})∪{1}) cannot appear in the sum (I.3.16). Therefore we see that the coefficient cij

must have been zero.

We have shown that any central element in P
part
N is of the form

z = ∑
i, j

cijaij,
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where the particle configurations j are of the form (r,0, . . . ,0), r ∈ Z≥0. We use the

convention that i + 1 = 0 for i = N − 1 which matches our definition of the action of the

partic algebra P
part
N on the bosonic particle configuration module. Notice that 0 is never

contained in the minimal input particle configuration, so that for 1 ≤ i ≤ N − 1 we have

that i + 1 ∉ j for all cij ≠ 0.

Now we use a similar induction argument to show that cij = 0 for all i that contain a

particle at position i ≠ 0. So let 1 ≤ i ≤ N − 1. Using Corollary I.3.4.9 we calculate that

aiaij =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a(i∪{i+1})(j∪{i}) if i ∉ i,

a((i∖{i})∪{i+1})j if i ∈ i,

aijai =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a(i∪{i+1})(j∪{i}) if i + 1 ∉ j,

ai((j∖{i+1})∪{i}) if i + 1 ∈ j.

Since we have shown already that i + 1 ∉ j, we know that aiz = zai is nothing but the

equality

ai

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
i, j
i+1∉j
i∉i

cijaij + ∑
i, j
i+1∉j
i∈i

cijaij

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
i, j
i+1∉j
i∉i

cijaij + ∑
i, j
i+1∉j
i∈i

cijaij

⎞
⎟
⎟
⎟
⎟
⎟
⎠

ai.

This in turn is equivalent to the equality

ai

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
i, j
i+1∉j
i∈i

cijaij

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∑
i, j
i+1∉j
i∈i

cijaij

⎞
⎟
⎟
⎟
⎟
⎟
⎠

ai,

which can be rewritten as

∑
i, j
i+1∉j
i∈i

cija((i∖{i})∪{i+1})j = ∑
i, j
i+1∉j
i∈i

cija(i∪{i+1})(j∪{i}). (I.3.17)

Again, we observe that the set of monomials {a((i∖{i})∪{i+1})j ∣ i + 1 ∉ j, i ∈ i} is linearly

independent for fixed i.

By induction on the number k′i of particles at position i in i we see that all coefficients

cij are zero for k′i ≥ 1:

For k′i = 1, the set (i∖{i})∪{i+1} does not contain any particle at position i any more.

Hence the monomial a((i∖{i})∪{i+1})j cannot appear in the right sum in equation (I.3.17),

and its coefficient cij must have been zero. For the induction step we assume that
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the coefficients for all aij with at most k′i particles at position i in the output particle

configuration i are zero. Consider some aij with k′i + 1 particles at position i in i. So

the set (i ∖ {i}) ∪ {i + 1} contains k′i particles at position i in j, and the monomial

a((i∖{i})∪{i+1})j cannot appear in the sum (I.3.16). Again we see that its coefficient cij

must have been zero.

We have deduced now that only those monomials labelled by minimal input particle

configurations j = (r,0, . . . ,0) and output particle configuration i = (0, . . . ,0, s) may

have nonzero coefficients. Since the number of particles has to be the same in i and j,

any central element is of the form

∑
r∈Z≥0

c(0,...,0,r)(r,0,...,0)a(0,...,0,r)(r,0,...,0)

as claimed. ◻

I.3.5.2 Remark. In the proof of Theorem I.3.5.1 one has to be careful: One cannot

simply compare the coefficients in equalities of the form

ai (∑ cijaij) = (∑ cijaij)ai

since the partic algebra P
part
N has zero divisors, see Example I.3.3.4. Therefore, when

we consider the coefficients cij, we first have to determine linearly independent sets of

monomials, e.g. of the form

{a((i∖{i})∪{i+1})j ∣ i + 1 ∉ j, i ∈ i}.

This is in fact an application of the faithfulness result from Theorem I.3.4.2 combined

with the normal form for monomials from Theorem I.3.3.1. ◊

I.3.5.3 Remark. The partic algebra is not finitely generated over its center: The center

is concentrated in degree Z≥0 ⋅ (1, . . .1) with respect to the ZN−1-grading from Remark

I.3.2.3. On the other hand one can see from the normal form in Proposition I.3.3.2 that

all ZN−1
≥0 -graded components of the partic algebra are nontrivial, hence the partic algebra

cannot be finitely generated over its degree Z≥0 ⋅ (1, . . .1) component. ◊

I.3.6. The affine partic algebra

In this section we discuss the affine situation. Analogously to the classical case we

introduce the following quotient of the affine plactic algebra P̂N defined in Definition

I.3.1.2:
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I.3.6.1 Definition. Define the affine partic algebra P̂
part
N to be the quotient of P̂N by

the additional relations

aiai−1ai+1ai = ai+1aiai−1ai for i − 1, i, i + 1 ∈ Z/NZ. (I.3.18)

The affine plactic algebra and the affine partic algebra both act on the polynomial ring

k[x1, . . . , xN , q] in N + 1 variables as follows:

ai ⋅ x
k1
1 . . . xkNN qt =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xk11 . . . xki−1
i xki+1+1

i+1 . . . xkNN qt if ki > 0,

0 else,
(I.3.19)

a0 ⋅ x
k1
1 . . . xkNN qt =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

xk1+1
1 . . . xkN−1

N qt+1 if kN > 0,

0 else.
(I.3.20)

Again one can verify by calculation that this defines indeed an action of the affine plactic

algebra which factors over the affine partic algebra:

I.3.6.2 Lemma. Equations (I.3.19) and (I.3.20) define an action of the affine plactic

algebra P̂N on the polynomial ring k[x1, . . . , xN , q]. This action factors over an action

of the affine partic algebra P̂
part
N .

We call this representation the affine bosonic particle representation of P̂N or P̂
part
N ,

respectively. We use the shorthand notation i = (k1, . . . , kN) ∈ ZN≥0 for the monomial

xk11 . . . xkNN and refer to it as (affine bosonic) particle configuration. Similar to the classical

bosonic case discussed in Section I.3.4 we can identify a monomial xk11 . . . xkNN with a

particle configuration on a circle with N positions, with ki particles lying at position i.

The indeterminate q protocols how often we apply a0 to a particle configuration.
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Figure I.3.6.1.: Example for N = 8: Application of a6a5a3a2a5 to the particle configura-

tion (3,1,0,0,2,0,0,1) gives (3,0,0,1,0,1,1,1).

Unlike in the case of the fermionic particle representation discussed in Chapter I.2,

the affine bosonic particle representation is very different from the classical bosonic

particle configuration. In the fermionic case, we have a faithful action of the affine/finite
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nilTemperley-Lieb algebra on affine/finite fermionic particle configurations, respectively.

In the bosonic case, although we have a faithful action of the partic algebra on classical

bosonic particle configurations, this is no longer true for the action of the affine partic

algebra on affine bosonic particle configurations:

Additionally, we get an infinite family of relations of the form

ami+1a
m
i+2 . . . a

m
i−2a

m
i−1a

2m
i ami+1a

m
i+2 . . . a

m
i−2a

m
i−1

= amj+1a
m
j+2 . . . a

m
j−2a

m
j−1a

2m
j amj+1a

m
j+2 . . . a

m
j−2a

m
j−1 for all i, j ∈ Z/NZ, m ∈ Z≥1, (I.3.21)

and in particular, neither the affine plactic nor the affine partic algebra act faithfully

on the affine bosonic particle representation. Faithfulness of the affine plactic algebra

action was claimed in [KS10, Proposition 5.8].

On the affine bosonic particle configuration the relation from equation (I.3.21) can be

visualized as depicted in Figure I.3.6.2: The minimal particle configuration on which

any such monomial ami+1a
m
i+2 . . . a

m
i−2a

m
i−1a

2m
i ami+1a

m
i+2 . . . a

m
i−2a

m
i−1 acts nontrivially is given

by (1,1, . . . ,1,1), i.e. one particle at each position. Each particle is moved by two

steps in total. The output configuration is the same as the input configuration, namely

(1,1, . . . ,1,1), which we have to multiply by q2m. We see immediately that i is not

recorded by the minimal input configuration, the output configuration or the power of

q. Therefore, these monomials cannot be distinguished by the affine bosonic particle

representation.
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Figure I.3.6.2.: Example for N = 8, i = 4, m = 1: Application of ai+1ai+2 . . . ai−2ai−1 fol-

lowed by a2
i followed by ai+1ai+2 . . . ai−2ai−1 to the particle configuration

(1,1,1,1,1,1,1,1) gives (1,1,1,1,1,1,1,1) (multiplied by an additional

factor q2 that we omit in the picture).

It follows that it is much harder to find a normal form for the affine partic algebra:

We cannot expect a labelling of monomials by input/output particle configurations to-

gether with a power of q as in the case of the (affine) nilTemperley-Lieb algebra and

the partic algebra. This labelling would be equivalent to faithfulness of the particle

116



I.3.6. The affine partic algebra

representation. Such a labelling allowed us to reorder monomials so that the indices of

the rightmost factors correspond to the the minimal particle configuration on which the

monomial acts nontrivially, see Proposition I.3.4.5, Section I.2.6, and also compare with

Theorem I.2.10.1. The whole approach fails for the affine partic algebra:

The minimal particle configuration does not indicate a natural reordering of factors. For

example, consider the following monomials in P̂
part
5 :

a2
1a2a3a4a0, a

2
2a3a4a0a1, a

2
3a4a0a1a2, a

2
4a0a1a2a3, a

2
0a1a2a3a4.

All of these expect precisely one particle at each position 1,2,3,4,0 in the minimal

particle configuration, but none of them can be reordered in any way. Of course the

output configurations are all different, so these five different monomials could even be

distinguished by the affine particle representation. In fact one cannot expect a basis

labelled by tuples of a minimal input configuration, the output configuration, and some

power of q.
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Generalized Weyl algebras
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II.1. A Duflo theorem for a class of

generalized Weyl algebras

II.1.1. An overview of Duflo type theorems

Let k be an algebraically closed field of characteristic 0. For the universal enveloping

algebra of a semisimple Lie algebra over k, Duflo’s Theorem [Duf77] states that all its

primitive ideals (i.e. the annihilators of simple modules) are given by the annihilators of

simple highest weight modules. In contrast, the simple modules themselves are far from

being classified in general. Fortunately, for several other classes of algebras the notion

of a highest weight module makes sense and the analogue of Duflo’s theorem holds:

In [Smi90], Smith introduced a family of algebras similar to U(sl2). These are C-algebras

generated by three elements E,F,H subject to the relations [H,E] = E, [H,F ] = −F

and [E,F ] = f(H) where f can be any polynomial. They share many properties with

U(sl2) (which is of course included in this family for f(H) = 2H). In particular it is

straightforward to generalize the notion of highest weight modules to these algebras

and indeed all primitive ideals are given by annihilators of highest weight modules (see

[Smi90, Theorem 3.3]).

For classical simple Lie superalgebras, Musson defines Z/2Z-graded highest weight mod-

ules depending on a choice of a triangular decomposition. Then all Z/2Z-graded primi-

tive ideals in the universal enveloping algebra of a classical simple Lie superalgebra are

given by the annihilators of Z/2Z-graded simple highest weight modules (see [Mus92,

Theorem 2.2]).

In [MB98], Musson and Van den Bergh introduce algebras that, roughly speaking, allow

a weight space decomposition with weight spaces cyclic over a commutative subalgebra.

This class of algebras is closed under taking certain graded subalgebras, tensor products

and central quotients. They show that (under some further assumptions, see Theo-

rem II.1.4.4 for details) all prime, hence all primitive ideals are given by the annihilators

of simple weight modules. In particular, this applies to localizations of Weyl algebras
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and their central subquotients (see [MB98, Chapter 6]). Note that for a classical Weyl

algebra, given by differential operators on a polynomial ring in n variables, the primitive

ideals are not very interesting: These algebras are simple, i.e. the only proper twosided

ideal is the zero ideal. Since an annihilator is always twosided, the only primitive ideal

of a classical Weyl algebra is the zero ideal.

Now it is natural to ask whether an analogous statement holds for generalized Weyl al-

gebras, a class of algebras that includes many interesting examples, in particular Smith’s

generalizations of U(sl2). These noncommutative algebras are generated by a commuta-

tive k-algebra R together with 2n elements X1, . . . ,Xn, Y1, . . . , Yn. For the relations see

Section II.1.2. They are Zn-graded by setting deg(Xi) = ei, deg(Yi) = −ei where ei de-

notes the i-th standard basis vector in Zn. Each graded component is a cyclic R-module.

In this situation, we can define highest weight modules and formulate a Duflo theorem.

We prove it for a special class of generalized Weyl algebras using a theorem by [MB98]

that relates the annihilator of a simple weight module to its support and obtain as main

result (see Theorem II.1.4.1):

Theorem. Let A = R(σ, t) be a GWA of rank n as defined in Section II.1.2 where we

assume R = k[T1, . . . , Tn], σi(Tj) = Tj − δijbi for bi ∈ k∖{0} and ti ∈ k[Ti] ⊂ k[T1, . . . , Tn],

ti ∉ k. Then all primitive ideals of A, i.e. the annihilator ideals of simple A-modules,

are given by the annihilators of simple highest weight A-modules L(m) of highest weight

m ∈ mspec(R).

In Section II.1.2 we recall the definition of generalized Weyl algebras, define highest

weight modules and discuss graded modules over generalized Weyl algebras. We char-

acterize moreover the highest weight modules as those modules with a locally nilpotent

action of the Xi. In Section II.1.4 we formulate and prove the main theorem. The

principal tool is the Duflo type theorem using weight modules from [MB98]. We show

it applies to our situation and improve it by showing that it is enough to consider the

much smaller class of highest weight modules (as in the classical Duflo theorem). In

Section II.1.5 we finally give some examples to illustrate the relationship between the

annihilator and the support of simple highest weight modules.
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II.1.2. Generalized Weyl algebras and graded modules

II.1.2.1. Definition of a GWA and first observations

Fix a base field k = k of characteristic 0. Fix a unital associative commutative k-algebra

R that is a noetherian domain. Given n nonzero elements t = (t1, . . . , tn) in R and

n pairwise commuting algebra automorphisms σ = (σ1, . . . , σn) in Aut(R) such that

σi(tj) = tj for all i ≠ j, define the corresponding generalized Weyl algebra (GWA)

A = R(σ, t) of rank n as follows: It is the k-algebra generated over R by 2n generators

Xi, Yi, 1 ≤ i ≤ n with relations given by

Xir = σi(r)Xi, XiYi = σi(ti), [Xi,Xj] = 0,

Yir = σ−1
i (r)Yi, YiXi = ti, [Yi, Yj] = 0,

[Xi, Yj] = 0

for all 1 ≤ i, j ≤ n with i ≠ j and all r ∈ R. It was introduced originally by Bavula in

[Bav92].

The GWA A = ⊕
α∈Zn

R ⋅ aα is a left and right R-module with generators

aα = aα1
1 ⋅ . . . ⋅ aαnn , aαii =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Xαi
i for αi ≥ 0

Y
∣αi∣
i for αi < 0.

Denote Aα = R ⋅ aα. Since Aα ⋅ Aβ ∈ Aα+β, any GWA A is a Zn-graded algebra with

deg(Xi) = ei and deg(Yi) = −ei where we denote by ei the i-th standard basis vector of

Zn, see eg. [Bav92, Section 1.1]. The degree 0 part of A is given by A0 = R. Notice

that the σ1, . . . , σn from the defining data of a GWA A = R(σ, t) give a Zn-action on

R by ei ↦ σi. Write σα = σα1
1 ⋅ . . . ⋅ σαnn . The following lemma summarizes [Bav92,

Proposition 1.3 (1)] and [Bav92, p. 1.1], [BO09].

II.1.2.1 Lemma. Let A = R(σ, t) be a GWA of finite rank. Then A is left and right

noetherian, and the tensor product over R or k of two GWA’s is again a GWA.

We give a detailed proof of the following statement from [BB00, Proposition 1.3 (2)] or

[BO09, Lemma 2.3]:

II.1.2.2 Lemma. Let A = R(σ, t) be a GWA, in particular R is a domain, ti ≠ 0 for all

i and σi(tj) = tj for all i ≠ j. Then A = ⊕
α∈Zn

R ⋅ aα is a free left and right R-module, and

A is a domain.
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II.1. A Duflo theorem for a class of generalized Weyl algebras

Proof. First we show that A ≅ R ⊗ k[Z±1
1 , . . . , Z±1

n ] as k-vector spaces. This implies

R⋅aα ≅ R and freeness of A as a left R-module. Freeness as a right R-module follows since

σα is a ring automorphism of R. For the proof, construct the following representation

of A: Consider the semidirect product R ⋉ k[Z±1
1 , . . . , Z±1

n ] with respect ot the action

of k[Z±1
1 , . . . , Z±1

n ] on R given by Z±1
i ⋅ r = σ±1

i (r). This is well defined since σi, σj are

pairwise commuting automorphisms of R for all i, j. Now define an A-module structure

on R ⋉ k[Z±1
1 , . . . , Z±1

n ] by

r(s, v) = (rs, v), Xi(s, v) = (σi(s), Ziv), Yi(s, v) = (σ−1
i (s) ⋅ ti, Z

−1
i v)

for (s, v) ∈ R ⋉ k[Z±1
1 , . . . , Z±1

n ]. One quickly checks that this defines indeed an A-

module structure because all defining GWA relations are satisfied. Here one needs again

that σiσj = σjσi, and additionally σi(tj) = tj for all i ≠ j. Next, one observes that

this is a faithful representation of A. Then a ↦ a(1,1) gives the desired isomorphism

A ≅ R⊗ k[Z±1
1 , . . . , Z±1

n ].

From R ⋅ aα ≅ R it follows that A is a domain, i.e. for any b, b′ ∈ A ∖ {0} their product

is nonzero: Write b = ∑α rαa
α and b′ = ∑α′ r

′
αa

α′ . By lexicographic ordering we can

compare the multiindices that appear, and we have bb′ = 0 if and only if rβa
β ⋅ rβ′a

β′ = 0

for rβ, rβ′ ≠ 0, where β > α for all α ≠ β with rα ≠ 0, α′ ≠ β′ with rα′ ≠ 0. Using

the defining relations of the GWA A we compute rβa
β ⋅ rβ′a

β′ = rβσ
β(rβ′)sa

β+β′ , where

s = s1 . . . sn ∈ R is given by

si =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if βi, β
′
i have the same parity,

σβi−1
i (ti) ⋅ . . . ⋅ σ

1
i (ti) ⋅ ti if ∣βi∣ ≤ ∣β′i ∣ and βi ≥ 0, β′i < 0,

σβi+1
i (ti) ⋅ . . . ⋅ σ

−1
i (ti) if ∣βi∣ ≤ ∣β′i ∣ and βi < 0, β′i ≥ 0,

σ
β′i−1
i (ti) ⋅ . . . ⋅ σ

1
i (ti) ⋅ ti if ∣β′i ∣ ≤ ∣βi∣ and β′i ≥ 0, βi < 0,

σ
β′i+1
i (ti) ⋅ . . . ⋅ σ

−1
i (ti) if ∣β′i ∣ ≤ ∣βi∣ and β′i < 0, βi ≥ 0.

as shown in the proof for [BO09, Lemma 2.3]. By R ⋅ aα ≅ R, injectivity of σβ and since

R is a domain and ti ≠ 0 for all i, we get that rβa
β ⋅ rβ′a

β′ is nonzero if and only if

rβ, rβ′ ≠ 0. This concludes the proof. ◻

Observe that the condition σi(tj) = tj for all i ≠ j is essential for A being a domain: Oth-

erwise (σi(tj)− tj)Xi =XiYjXj −YjXjXi =XiYjXj −XiYjXj = 0 is a counterexample.

II.1.2.2. A special class of GWA’s

We confine ourselves to the study of GWA’s with base ring R = k[T1, . . . , Tn], automor-

phisms σi(Tj) = Tj − δijbi for bi ∈ k ∖ {0} and ti ∈ k[Ti] ⊂ k[T1, . . . , Tn], ti ∉ k. This is
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II.1.2. Generalized Weyl algebras and graded modules

the tensor product of n GWA’s of rank 1 over the polynomial ring in one variable k[T ],

with σ ∈ Aut(k[T ]) of the form T ↦ T − b for some b ≠ 0 in k and a nonconstant element

t ∈ k[T ]. As k is algebraically closed, we can factorize t = (T − z1) ⋅ . . . ⋅ (T − zs) for some

z1, . . . , zs ∈ k (multiplying t by some nonzero scalar would give an isomorphic GWA, so

we can assume this scalar is 1).

II.1.2.3 Remark. With this choice of σ1, . . . , σn the Zn-action on R is free on R∖k (on

k the action is trivial). Additionally, the Zn-action on mspec(R) given by α●m ∶= σα(m)

is free. As freeness is defined pointwise, every orbit {σα(m) ∣ α ∈ Z} is infinite. So we

only deal with pure translations, i.e. a = 1 in a general automorphism σ ∶ T ↦ aT − b,

a ≠ 0, of k[T ]. For the application of [MB98], we need to work with Z-lattices, and we

want to keep things easy. ◊

II.1.2.3. Weight modules

In this section, A = R(σ, t) can be any GWA. By a module, we always mean a left

module unless stated otherwise. Denote by mspec(R) the set of maximal ideals of R.

For m ∈ mspec(R) define the m-weight space of an A-module M to be

Mm = {v ∈M ∣ m ⋅ v = 0}

and say that M is a weight module if M decomposes as vector space into its weight

spaces M = ∑m∈mspec(R)Mm. Define the support of the weight module M to be

Supp (M) = {m ∈ mspec(R) ∣ Mm ≠ 0}.

Furthermore, for a weight A-module M we have Xi(Mm) ⊂ Mσi(m) and Yi(Mm) ⊂

Mσ−1i (m). In other words, Aα ⋅Mm ⊂Mσα(m) for α ∈ Zn. M is called a highest weight A-

module if it is generated as A-module by Mm and Xi ⋅Mm = 0 for all 1 ≤ i ≤ n. In particu-

lar, for the support of a highest weight module M we have Supp(M) ⊂ {σα(m) ∣ α ∈ Zn≤0}.

II.1.2.4 Lemma. Let A be a GWA of finite rank.

i) Let M be a weight A-module. Then M = ⊕
m∈mspec(R)

Mm.

ii) Let M be a weight A-module, U ⊂M some A-submodule. Then U and hence M/U

inherit the weight decomposition from M , i.e. U is a homogeneous submodule.

iii) Let M,N be weight A-modules and f ∶M → N be a homomorphism of A-modules.

Then f(Mm) ⊂ Nm.

Proof. The proof uses standard arguments.
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II.1. A Duflo theorem for a class of generalized Weyl algebras

i) Let v1 + . . . + vn = 0 with vi ∈ Mmi , i.e. mi ⋅ vi = 0, and assume mi ≠ mj for all

i ≠ j. In particular, ∏
i≠j

mi /⊂ mj because mj is maximal and hence prime. Each vj

is zero: As ∏
i≠j

mi ∋ r annihilates all vi, i ≠ j, we get 0 = r ⋅ (v1 + . . . + vn) = r ⋅ vj .

So vj is annihilated by ∏
i≠j

mi and mj which generate the whole R. In particular

1 ⋅ vj = vj = 0 and the sum is direct.

ii) We have to check that U = ⊕
m∈mspec(R)

Um with Um ∶= U ∩Mm. Decompose v ∈ U as

element of M into v = v1 + . . . + vn with nonzero vj ∈Mmj . We show by a diagonal

argument that vj ∈ U for all j. Take some element r ∶= ∏
i≠j
ri, where the ri are some

nonzero elements of the maximal ideals mi. Hence r is nonzero, r ⋅vj ≠ 0 and r ∉ mj .

Thus there is some r′ ∈ R with r′r = 1 ∈ k ≅ R/mj . We get r′r ⋅ v = r′r ⋅ vj = vj
because mj annihilates vj . Therefore vj ∈ U . It follows that M/U is isomorphic to

⊕
m∈mspec(R)

Mm/Um.

iii) Since f is an A-module homomorphism, m ⋅ f(v) = f(m ⋅ v) for all v ∈ M . Hence

m ⋅ f(Mm) = 0, in other words, f(Mm) ⊂ Nm. ◻

From the lemma it follows that the weight A-modules together with A-module homomor-

phisms that preserve the weight spaces form a full abelian subcategory of the category

of left A-modules.

II.1.2.4. A characterization of highest weight modules for special

GWA’s

Here, A is a special GWA as defined in Section II.1.2.2. The following lemma character-

izes highest weight A-modules. A similar result for Lie algebras can be found in [MZ13].

II.1.2.5 Proposition. Let M be a simple left A-module. The following are equivalent:

i) M is a highest weight module.

ii) For all 1 ≤ i ≤ n, the action of Xi on M is locally nilpotent, i.e. for every v ∈ M

there exists a natural number ki such that Xki
i ⋅ v = 0.

iii) There exists v ∈M such that Xi acts nilpotently on v for all 1 ≤ i ≤ n.

Proof. (i)⇒(ii): Let M be a highest weight module with highest weight m and weight

space decomposition M = ⊕
α∈Zn≤0

Mσα(m). So any v ∈M decomposes as v = vα(1)+. . .+vα(r)

for weight vectors vα(j) ∈ Mσα(j)(m). In particular, X−α(j) ⋅ vα(j) = a
−α(j) ⋅ vα(j) ∈ Mm,
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II.1.2. Generalized Weyl algebras and graded modules

which is the highest weight space, hence X
−α(j)i+1
i ⋅ vα(j) = 0. Now choose ki ∈ Z such

that ki ≥ −α(j)i + 1 for all j. Then Xki
i ⋅ vα(j) = 0 for all j and therefore Xki

i ⋅ v = 0.

(ii)⇒(iii): Clear.

(iii)⇒(i): Assume we have an element v ∈ M such that Xki
i ⋅ v = 0 for some natural

numbers ki. We construct a nonzero element v′ in M that is annihilated by all Xi and

a maximal ideal m. Since M is simple, this suffices to prove that

M = A ⋅ v′ = ⊕
α∈Zn≤0

Aαv
′
= ⊕

α∈Zn≤0
Mσα(m)

is a highest weight module of highest weight m. Since the Xi commute, we can find for

all i a natural number βi such that 0 ≤ βi < ki and ṽ ∶= Xβ1
1 . . .Xβn

n ⋅ v ≠ 0 but Xi ⋅ ṽ = 0

for all i. Hence

ti ⋅ ṽ = YiXi ⋅ ṽ = 0.

Now according to our assumption ti ∈ k[Ti] is a polynomial, say ti = (Ti − a(i)1) . . . (Ti −

a(i)s(i)) for some s(i) ∈ Z>0 and a(i)r ∈ C. So there is a linear factor (Ti − a(i)r(i)) such

that

v(i) ∶= (Ti − a(i)r(i)+1) . . . (Ti − a(i)s(i))ṽ ≠ 0, and

(Ti − a(i)r(i))(Ti − a(i)r(i)+1) . . . (Ti − a(i)s(i))ṽ = 0.

In this way we construct successively nonzero elements v(1), . . . , v(n) in M that are

annihilated by all Xi since they differ from ṽ only by multiplication with elements in

the base ring R. Furthermore, v′ ∶= v(n) is annihilated by the maximal ideal m ∶=

(T1 − a(1)r(1), . . . , Tn − a(n)r(n)). ◻

II.1.2.5. Side remark on generalized gradings

Theorem II.1.4.4 describes primitive ideals of graded algebras in terms of annihilators

of graded simple modules. Although GWA’s are Zn-graded, their weight modules are

not Zn-graded in general. Instead, weight modules M decompose into weight spaces Mm

indexed by mspec(R). It makes sense to think of a weight module as a graded module,

but instead of the usual notion of graded modules over a graded algebra, where both

objects are graded over the same additive group, one needs to generalize it as follows:

II.1.2.6 Definition. Let G be an abelian group and X be a set with G-action. Let

A = ⊕
g∈G

Ag be a G-graded algebra. Then a (G↻ X)-graded module (or a module with
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X-grading respecting the G-action) is an A-module M with a decomposition M = ⊕
x∈X

Mx

such that Ag ⋅Mx ⊂Mgx.

This kind of graded modules was studied in [NRVO90], motivated by G-graded modules

over the group algebra k[G] of a group G: Take a k[G]-module graded by the group

G itself, but consider it now as k[H]-modules for a subgroup H ⊂ G. As a k[H]-

module, it is then naturally (H↻ G)-graded. In [BD96] an equivalence of the category

of (G ↻ X)-graded modules with the module category over a smash product ring is

given.

Weight modules over a GWA A are naturally (Zn ↻ mspec(R))-graded because Aα ⋅

Mm ⊂Mσα(m). Nevertheless, for our special GWA’s it is enough to change the indexing

set of both the GWA A and the module M to find a common index set with group

structure, with respect to which M is a classically graded A-module, see Section II.1.3.1.

So we will work with the classical grading.

II.1.3. Description of weight modules in terms of breaks

II.1.3.1. Grading of weight modules

Let A be again a special GWA as introduced in Section II.1.2.2. Consider the left

A-module M(m) = A/Am. As R-module it decomposes into

M(m) = ⊕
α∈Zn

Aα/Aαm,

and this decomposition is already a weight space decomposition because

Aα/Aαm ≅ {m ∈ A ∣ σα(m) ⋅m ∈ Am} ≅ {m ∈M(m) ∣ σα(m) ⋅m = 0} = M(m)σα(m).

Here we use σα(m) ⋅Aα = Aα ⋅m and that A is graded, so that one can study whether

σα(m) ⋅m is an element of Am for homogeneous m. For m = ma and the shorthand

notation M(ma)a′ = M(ma)ma′ and α ⋅ β defined componentwise by (α ⋅ b)i = αi ⋅ bi, we

obtain

M(ma) = ⊕
α∈Zn

M(ma)σα(ma) = ⊕
α∈Zn

M(ma)a+α⋅b

(notice that indeed σi(ma) = ma+bi). This weight space decomposition turns M(ma) into

a graded A-module, but only after reindexing the grading of A: The decomposition of

M(ma) does not respect the usual Zn-grading of A = ⊕
α∈Zn

Aα because Aα ⋅M(ma)a′ is
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a subset of M(ma)a′+α⋅b instead of M(ma)a′+α. We have to interpret the abstract Zn-

grading of the GWA A as a Zn ⋅ b-grading coming from the adjoint R-action as in (A1),

where we write Zn ⋅ b = {α ⋅ b ∣ α ∈ Zn}. Observe that

Aα = R ⋅ aα

= {a ∈ A ∣ r ⋅ a = a ⋅ σ−α(r) ∀ r ∈ R}

= {a ∈ A ∣ Ti ⋅ a = a ⋅ (Ti + αibi) ∀ 1 ≤ i ≤ n}

= {a ∈ A ∣ [Ti, a] = αibi ⋅ a ∀ 1 ≤ i ≤ n}

= Aα⋅b in the sense of (A1).

Then thanks to Aα⋅b ⋅Aα′⋅b ⊂ A(α+α′)⋅b,

A = ⊕
τ∈kn

Aτ with Aτ = 0 for τ ≠ α ⋅ b

is a kn-grading of A. Of course we do not change the decomposition of A, we only choose

a concrete realization for the abstract Zn-grading and added some 0-summands to A.

With respect to this new grading M(m) is a kn-graded A-module.

Let us recall some further properties of M(m):

� Since 1 ∈ A0/A0m = M(m)m, it follows that Aα ⋅M(m)m = M(m)σα(m) for all α ∈

Supp (A), therefore the support of M(m) is given by

Supp (M(ma)) = a + Supp (A) = a +Zn ⋅ b = {a + α ⋅ b ∣ α ∈ Zn},

i.e. as subset of mspec(R), the support equals the whole orbit {σα(m) ∣ α ∈ Z}.

� Every weight space of M(m) is one-dimensional since

M(m)σα(m) = Aα/Aαm ≅ R/σ−α(m) ≅ k

with Aαm = R ⋅ aα ⋅m = σ−α(m)Aα.

� Every submodule of M(m) is homogeneous (see Lemma II.1.2.4).

� M(m) has a unique simple top, denoted by L(m). It inherits the grading of M(m).

Its support is denoted by ⟨m⟩ ∶= Supp (L(m)). We usually consider ⟨m⟩ as subset of

kn.

� Notice that although the modules M(m) seem to be very similar (as k-vector spaces

they are all isomorphic to ⊕
α∈Zn

k), two modules M(m), M(m′) are only isomorphic iff

their simple tops L(m) and L(m′) are isomorphic, too, and the latter are isomorphic

iff they have the same support.

The weight space structure of the module M(m) = A/Am and the existence of its simple

top were discussed in [Bav92].
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II.1.3.2. Breaks and the submodule lemma

Now recall how the submodules of M(ma) can be described in terms of its support and

the breaks therein, see [Bav92] and [DGO96]. Later on we will see how this carries over

to the primitive ideals.

II.1.3.1 Definition. A maximal ideal m ∈ mspec(R) is called a break ideal in direction

i if ti ∈ m.

It deserves this name since the module M(ma) ‘breaks’ into submodules precisely be-

tween its weight spaces M(ma)m and M(ma)σi(m) for break ideals m:

II.1.3.2 Lemma. Let M =M(ma) for some ma ∈ mspec(R). Let m be in the support

of M . If ti ∈ m then Xi or Yi act by 0 between Mm and Mσi(m). Otherwise, Xi and Yi

act up to nonzero scalars as mutually inverse bijections between the weight spaces.

Proof. Every weight space of M(ma) is of the form M(ma)a+α⋅b of M(ma) and in

particular one-dimensional. Therefore,

Xi ⋅M(ma)a+α⋅b =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0, iff Xi ⋅ a
α ∈ Aα+eima;

M(ma)a+(α+ei)⋅b, else.

For αi ≥ 0, we have Xia
α = aα+ei ∉ Aα+eima. For αi < 0, the defining relations of a GWA

give Xia
α = σi(ti)a

α+ei . So Xia
α ∈ Aα+eima = σα+ei(ma)Aα+ei iff σi(ti) ∈ σα+ei(ma)

(use that Aα is a free R-module), iff ti ∈ σ
α(ma). Similarly, we obtain for Yi that

Yi ⋅M(ma)a+α⋅b = 0 iff αi > 0 and ti ∈ σ
α−ei(ma). In other words:

Xi acts by zero on M(m)σα(m) iff αi < 0 and ti ∈ σ
α
(m),

Yi acts by zero on M(m)σα(m) iff αi > 0 and ti ∈ σ
α−ei(m).

Together this proves the claim. ◻

Since σj(ti) = ti for i ≠ j, a maximal ideal m is a break ideal in direction i iff so is σj(m).

The break ideals that are in the same σj-orbits for j ≠ i lie on a common hyperplane.

II.1.3.3 Definition. We call a hyperplane in kn containing all σj-orbits of m for j ≠ i

a break in direction i.

Notice that every point inside a break is indeed a break ideal. If we identify once more

kn with mspec(R), the breaks correspond to hyperplanes parallel to the coordinate hy-

perplanes. From Lemma II.1.3.2 we know that breaks should be interpreted as ‘forward

breaks’. Examples will be given in Section II.1.5.
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II.1.3.4 Lemma. The module M(m) has at most 2

n

∏
i=1

(1+number of zeroes of ti)
submod-

ules. The subquotients occur with multiplicity 1. In particular, M(m) has finite length

bounded by
n

∏
i=1

(1 + number of zeroes of ti), independent of m.

Proof. Every submodule N inherits the weight space decomposition from M(m), and

because every weight space of M(m) is at most one-dimensional, we have

N = ⊕
m′∈Supp (N)

M(m)m′ .

The submodules are therefore completely determined by their supports, in the sense that

N = N ′ iff Supp(N) = Supp(N ′). From the discussion of the breaks we know that Xi and

Yi act as mutually inverse (up to multiplication by elements in R) bijections between

the weight spaces, unless we encounter a weight space that belongs to a break. If a

weight between two successive breaks belongs to the support of N , all the other weights

between these two breaks do as well. The choice of a submodule is thus equivalent

to the choice of the breaks (or no breaks at all) for each coordinate direction i. The

polynomial ti is contained in the maximal ideal ma = (T1 − a1, . . . , Tn − an) iff ai is a

zero of ti. In particular, ti can only be contained in finitely many maximal ideals in the

orbit {σαii (m) ∣ i ∈ Z}. So there are only finitely many breaks in each direction i, and

they all occur at zeros of ti. Since there are #(zeroes of ti) breaks in the i-th coordinate

direction, the statement of the lemma follows. ◻

The breaks provide in particular a description of the support of the simple modules

L(ma): We have Supp (L(ma)) ⊂ Supp (M(ma)). In other words, ⟨ma⟩ ⊂ a + Zn ⋅ b, i.e.

the support consists of lattice points. Since 1 ∈ L(ma)a, we know that a ∈ ⟨ma⟩. Again,

Xi and Yi act (up to multiplication by elements in R) as mutually inverse bijections

between the weight spaces, unless we encounter a weight space that belongs to a break

ideal. So informally speaking ⟨ma⟩ is given by those weights that can be reached from a

without crossing a break.

More precisely: For every i, pick the largest γ
LOW

i < 0 with ti ∈ σ
γ
LOW

i
i (ma) and the small-

est γ
UP

i > 0 with ti ∈ σ
γ
UP

i −ei
i (ma) (if they exist). Under the isomorphism mspec(R) ≅

kn, denote the i-th coordinate of the image of σ
γ
LOW

i
i (ma) by g

LOW

i and the image of

σ
γ
UP

i −ei
i (ma) by g

UP

i (and set g
LOW

i = −∞ resp. g
UP

i = ∞ in case this does not exist).

Then as a subset of kn,

⟨ma⟩ = Supp (L(ma)) = (a +Zn ⋅ b) ∩ {x ∈ kn ∣ g
LOW

i < xi ≤ g
UP

i for all i}

= (a +Zn ⋅ b) ∩ {x ∈ kn ∣ g
LOW

i + bi ≤ xi ≤ g
UP

i for all i}.
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As these inequalities involve only one coordinate each, the support has the shape of a

rectangle with sides consisting of hyperplanes parallel to the coordinate hyperplanes, in

case there exist g
UP

i and g
LOW

i (otherwise drop the corresponding hyperplane from the

picture). Of course g
LOW

i , g
UP

i are just two zeroes of ti chosen such that g
LOW

i < ai ≤ g
UP

i

and there is no other zero of the polynomial ti between them in the lattice ai + Z ⋅ bi.

The choice of these zeroes depends on a (so we should really write ag
UP

i if it wasn’t too

much index notation).

II.1.4. Primitive ideals of generalized Weyl algebras

II.1.4.1. The main result

Let A be the special GWA described in Section II.1.2.2. Denote by AnnA(M) ∶= {a ∈

A ∣ a ⋅M = 0} the annihilator of M . It is a twosided ideal of A. For a simple A-module

L, the annihilator AnnA(L) is called a primitive ideal. Then our main result reads as

follows:

II.1.4.1 Theorem. Let A be the GWA of rank n given by R = k[T1, . . . , Tn], σi(Tj) =

Tj−δijbi for some bi ∈ k∖{0} and some ti ∈ k[Ti] ⊂ k[T1, . . . , Tn], ti ∉ k. Then all primitive

ideals of A are of the form AnnA(L(m)) for some simple highest weight A-module L(m)

of highest weight m ∈ mspec(R). In other words, there is a bijection

{AnnA(L(m)) ∣ m ∈ mspec(R) such that L(m) is a highest weight module}

↔ {primitive ideals of A}.

This theorem is analogous to the classical Duflo theorem from [Duf77] for the universal

enveloping algebra U(g) of a semisimple Lie algebra g, stating that its primitive ideals

are given by the annihilators of highest weight modules L(λ) where λ ∈ h∗ for a Cartan

subalgebra h ⊂ g. The proof is an application of Theorem II.1.4.4 from [MB98], which we

recall in Section II.1.4.2. In Section II.1.3.1 we will give more details about the simple

highest weight module L(m). The proof itself follows in Sections II.1.4.3 and II.1.4.4.

From the proof it follows that

II.1.4.2 Corollary. A as above has only finitely many different primitive ideals.

We give some important examples of the class of GWA’s to which Theorem II.1.4.1

applies:
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II.1.4.3 Example. i) The classical Weyl algebras An = k[x1, . . . , xn, ∂1, . . . , ∂n] (see

[Bav92, Example 1.2.(1)]). Since these algebras are simple, every primitive ideal

is zero.

ii) The universal enveloping algebra

U(sl2) = C⟨e, f, h⟩/ ([h, e] = 2e, [h, f] = −2f, [e, f] = h)

is not included in this class of algebras: It is isomorphic to the GWA C[C,H](σ, t)

with σ(H) =H − 2, σ(C) = C and t = 1
4(C −H(H + 2)). The isomorphism is given

by X ↦ e, Y ↦ f , H ↦ h and C ↦ c where c = h(h + 2) + 4fe denotes the Casimir

element in the universal enveloping algebra. Hence t is mapped to fe. However,

every simple sl2-module L has central character, so for every simple module L

there is some χ ∈ C such that c ⋅ v = χ ⋅ v for all v ∈ L. Hence we have

{primitive ideals of U(sl2)} = ⋃
χ∈C

{primitive ideals of U(sl2) that contain (c − χ)}

↔ ⋃
χ∈C

{primitive ideals of U(sl2)/(c − χ)}.

But the central quotient U(sl2)/(c − χ) is isomorphic to the GWA C[H](σ ∶ H ↦

H + 2, t = 1
4(χ −H(H + 2)) (see [Bav92, Example 1.2.(3)]), to which our theorem

applies. Hence we recover the Duflo theorem in this case.

iii) More generally, for all k-algebras A with dim(A) < ∣k∣ it is true that every sim-

ple module has central character, see the argument in [CG97, Corollary 8.1.2] or

[Maz10, Theorem 4.7] (it is shown in [Maz10] that the Casimir element C of U(sl2)

acts by a scalar on any simple U(sl2)-module, but one can apply exactly the same

argument for a central element C ∈ A of any algebra with dim(A) < ∣k∣, eg. A with

countable dimension and k uncountable (and still algebraically closed!)). To obtain

a Duflo statement for A, it is enough to establish a Duflo theorem for all central

quotients A/(Z − χ(Z)), where Z denotes the center of A and χ ∈ Z∗ is a central

character - similarly to the U(sl2)-example. The primitive ideals in A/(Z −χ(Z))

can then be lifted to ideals in A, which are indeed primitive and exactly those

primitive ideals of A that contain (Z − χ(Z)) (all simple A-modules with central

character χ are lifts of the simple A/(Z −χ(Z))-modules). But notice that if some

Xi is central, a simple highest weight A/(Z − χ(Z))-module need not be highest

weight as A-module in the sense of the defintion given in Section II.1.2.3. However,

it seems to be adequate to adapt the notion of a highest weight module so that a

central Xi is not supposed to act by 0 on the ‘highest weight space’.

iv) More generally, Smith’s generalizations of U(sl2), defined in [Smi90], have central

quotients that are GWA’s in the special class we consider here. The realization
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as GWA is given in [Bav92, Example 1.2.(4)]. The primitive ideals were already

described in [Smi90, Section 3].

v) The class of GWA’s and all examples discussed in [Bav92, Section 1.2]: They agree

with our special GWA’s, except that the automorphism σ is given by translation

by 1 instead of any nonzero b. In [Bav92, Theorem 3.2, 3.8], a classification of

simple modules for these algebras is given. ◊

We confine ourselves to the special class of GWA’s because we want the following prop-

erties to hold, mainly for the application of Theorem II.1.4.4. Some of them could be

weakened slightly, but without greater insight and to the cost of additional technical

considerations (as illustrated in the enveloping algebra example).

� The base ring R is in particular noetherian, hence by Lemma II.1.2.1 the GWA A is

noetherian, too. This is a requirement of Theorem II.1.4.4.

� The base ring is the polynomial ring and not just a quotient of such since otherwise

we cannot guarantee that there are only finitely many ‘breaks’, see Section II.1.3.2.

But such a finiteness condition is needed in Theorem II.1.4.4.

� To satisfy σi(tj) = tj for i ≠ j, it is convenient to consider only tensor products of rank

1 GWA’s.

� The application of Theorem II.1.4.4 is only possible for a GWA where Zn acts freely

on R, i.e. σα = σβ iff α = β: This ensures that the graded components Aα are cyclic

over R, see (A2) below.

� The grading should come from a weight space decomposition with respect to the

adjoint action of R on A. In this case, any twosided ideal inherits the grading of

A, and this is fundamental for Theorem II.1.4.4. Therefore in the rank 1 case, some

automorphism of the polynomial ring σ ∶ T ↦ aT −b must be of the form σ ∶ T ↦ T −b.

� Furthermore, bi ≠ 0 because otherwise σi would be trivial. This contradicts the free

Zn-action on R.

II.1.4.2. The result of [MB98]

We would like to apply the following result of [MB98, Theorem 3.2.4], slightly reformu-

lated:

II.1.4.4 Theorem. Let k be an algebraically closed field of characteristic 0. Let A be

any unital associative k-algebra satisfying the following assumptions:
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II.1.4. Primitive ideals of generalized Weyl algebras

(A1) A carries a grading ⊕
τ∈kn

Aτ with A0 = R ∶= k[T1, . . . , Tn] commutative, where the

grading comes from the weight space decomposition of A with respect to the adjoint

action of spank {T1, . . . , Tn},

Aτ = {a ∈ A ∣ [Ti, a] = τia}.

(A2) R↠ Aτ = R ⋅aτ for all τ , i.e. each nonzero Aτ is generated by one element over R.

(A3) A is graded left noetherian.

(A4) For a maximal ideal m ⊂ R, the A-module M(m) ∶= A/Am has uniformly bounded

length, independent of m.

(A5) The number of different Zariski closed sets ⟨m⟩ ⊂ kn is finite.

Here, the set ⟨m⟩ is defined as follows: For an algebra A satisfying (A1) and

(A2), the A-module M(m) has a weight space decomposition which turns it into

a kn-graded module with M(m)a ∶= M(m)ma and ma = (T1 − a1, . . . , Tn − an) is

the maximal ideal corresponding to a = (a1 . . . , an) ∈ kn: Indeed Aτ ⋅M(m)α ⊂

M(m)α+τ . It is easy to see that M(m) has a unique maximal submodule, because

a submodule is proper iff it does not contain 1 ∈ A/Am. Hence M(m) has simple

top, denoted L(m). It inherits the grading of M(m). Its support is denoted by

⟨m⟩ ∶= Supp (L(m)). We usually consider ⟨m⟩ as subset of kn.

(A6) For all mα ∈ mspec(R) and all τ ∈ Supp (A) we have

(τ + ⟨m⟩) ∩ ⟨m⟩ = (τ + ⟨m⟩) ∩ ⟨m⟩.

Then all prime ideals, hence all primitive ideals of A are of the form AnnA(L(m)) =∶ J(m)

for some m ∈ mspec(R), and

{⟨m⟩ ∣ m ∈ mspec(R)} ↔ {J(m) ∣ m ∈ mspec(R)} ↔ {primitive ideals of A}.

The first bijection is given by J(m) = A ⋅ I(⟨m⟩) ⋅A where I(⟨m⟩) = ⋂
m′∈⟨m⟩

m′.

The formulation of the theorem is slightly modified: In [MB98] the subalgebra R can be

any finitely generated commutative subalgebra. We will obtain a slight refinement, by

finding the above correspondence for highest weight modules L(m).

As mentioned in Section II.1.3.1, the weight space structure of the module M(m) =

A/Am and the existence of its simple top were treated for GWA’s already in [Bav92].

But in fact they are a general consequence of conditions (A1) and (A2) (see [MB98,

Proposition 3.1.7]).
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II.1.4.3. The proof of Theorem II.1.4.1: Reduction to weight modules

We now check the conditions of Theorem II.1.4.4.

Condition (A1) is valid for any GWA (here we have to use the unusual grading as

described in Section II.1.3.1).

Condition (A2) holds for any GWA with free Zn-action on Aut(R). For σi given by

translations in coordinate direction i, it follows from σα = σβ that α = β, so the Zn-

action on Aut(R) is indeed free.

Condition (A3) holds for any GWA whose ground ring R is noetherian (Lemma II.1.2.1),

in particular in our case where R = k[T1, . . . , Tn] is the polynomial ring.

Condition (A4) is satisfied according to Lemma II.1.3.4, and the length is uniformly

bounded by
n

∏
i=1

(1 + number of zeroes of ti).

For the verification of (A5) and (A6), we first notice that there are only finitely many

breaks (i.e. hyperplanes consisting of those points in kn that correspond to maximal

ideals m ⊂ k[T1, . . . , Tn] containing one of the ti).

II.1.4.5 Remark. In case m is contained in an orbit without breaks, the support of

L(m) is the whole orbit ⟨m⟩ = Supp (A) ⋅ m. For our special choice of GWA’s A we

have Supp (A) ⋅m = Zn ⋅m which is dense in mspec(R), and therefore ⟨m⟩ = mspec(R).

So these closures give all the same contribution when we count the different closures to

verify (A5). Also, σα(⟨m⟩) = ⟨m⟩ for any σα ∈ Supp (A) and so (A6) is satisfied for those

m. ◊

For ma inside an orbit Zn ⋅ma containing a break, we can first translate the whole orbit

by −a to the origin. Then rescale in every coordinate direction by b−1
i , so that the

orbit becomes the standard Z-lattice in kn. In particular, the breaks gi, di ∈ (ai + Z ⋅ bi)

become points in Z (to be precise, g
UP

i ↦ ĝ
UP

i = b−1
i (g

UP

i − ai), g
LOW

i ↦ ĝ
LOW

i = b−1
i (g

LOW

i −

ai)). Rescaling and translation are isomorphisms of varieties, so these manipulations are

allowed when computing the closure. Furthermore, we can compute the closure of ⟨m⟩

over Q since ⟨m⟩k = k ⊗Q ⟨m⟩Q. Use the following results from [MB98, Section 7.1]:

II.1.4.6 Proposition. Consider Zn ⊂ Qn.

136



II.1.4. Primitive ideals of generalized Weyl algebras

i) Given any λ1, . . . , λm ∈ (Qn)∗, there is a unique decomposition of the index

set T = {1, . . . ,m} into two disjoint parts I∪̇J , such that there are e ∈ Qn, z =

(z1, . . . , zm) ∈ Qm with

m

∑
i=1

ziλi = 0, and ⟨λi, e⟩ = λi(e) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

> 0, for i ∈ I

= 0, for i ∈ J
and zi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

= 0, for i ∈ I

> 0, for i ∈ J.

ii) Given furthermore q1, . . . , qm ∈ Q, define E = ⋂j∈J ker(λj) and

C = {x ∈ Qn ∣ ⟨λi, x⟩ = λi(x) ≤ qi, ∀i ∈ T},

C ′
= {x ∈ Qn ∣ ⟨λj , x⟩ = λj(x) ≤ qj ∀j ∈ J},

then the Zariski closure of C ∩Zn equals C ∩Zn = C ′ ∩ (Zn +E) and C ′ ∩ (Zn +E)

is a finite union of translates of E.

iii) For x ∈ Zn, one has (x +C ∩Zn) ∩ (C ∩Zn) = (x +C ∩Zn) ∩ (C ∩Zn).

This proposition can be applied to the translated, rescaled support of L(m) given by

Zn ∩C with

C = {x ∈ Qn ∣ ĝ
LOW

i + 1 ≤ xi ≤ ĝ
UP

i for all i}

= {x ∈ Qn ∣ − εi(x) ≤ −ĝ
LOW

i − 1, εi(x) ≤ ĝ
UP

i , 1 ≤ i ≤ n}

= {x ∈ Qn ∣ λk(x) ≤ qk, 1 ≤ k ≤ 2n}

where εi denotes the i-th coordinate function, λk = εk, qk = ĝ
UP

k for 1 ≤ k ≤ n and

λk = −εk−n, qk = −ĝ
LOW

k−n − 1 for n+ 1 ≤ k ≤ 2n. Inequalities where ĝ
UP

i or ĝ
LOW

i are ±∞ are

dropped. In our easy situation, we can make the index set J ⊂ {1, . . . ,2n} concrete:

J = {i ∣ neither ĝ
UP

i nor ĝ
LOW

i = ±∞}

(choose eg. e = (ek)k with ek = ek+n = 0 for those 1 ≤ k ≤ n with neither ĝ
UP

k nor ĝ
LOW

k

are ±∞, and ek = 1 resp. en+k = −1 otherwise. Similarly, z = (zk)k with zk = zk+n = 1 for

those 1 ≤ k ≤ n with neither ĝ
UP

k nor ĝ
LOW

k are ±∞, and zk = 0 otherwise). We get

C ∩Zn = {x ∈ Qn ∣ ĝ
LOW

i + 1 ≤ xi ≤ ĝ
UP

i for all i st. ĝ
LOW

i and ĝ
UP

i ≠ ±∞} ∩ (Zn +Qn−J)

where we denote Qn−J = spanQ {ei ∣ 1 ≤ i ≤ n and i ∉ J}. Tensor with k and undo the

rescaling and translating, then we get

⟨m⟩ = {x ∈ kn ∣ g
LOW

i + bi ≤ xi ≤ g
UP

i for all i ∈ J, i.e. g
LOW

i and g
UP

i ≠ ±∞}

∩ (Zn ⋅ b + a + spank {bi ∣ 1 ≤ i ≤ n and i ∉ J})
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(note here that the inequalities still make sense over an arbitrary field k because in the

i-th coordinate for i ∈ J , we work in a lattice). But because there are only finitely

many breaks, there are only finitely many possibilities to choose g
UP

i and g
LOW

i corre-

sponding to a break, as well as for J ⊂ {1, . . . , n}. Therefore there are only finitely

many different Zariski closed sets ⟨m⟩, so (A5) holds. Finally, (A6) is the consequence

of Proposition (II.1.4.6.iii).

II.1.4.7 Remark. Of course in this easy case the closures can be computed by hands.

But this proposition indicates how to deal with (twisted) GWA’s where the breaks need

no longer be parallel to the coordinate hyperplanes (for twisted GWA’s, see [MT99]). ◊

II.1.4.4. The proof: The refinement

Given any primitive ideal a, Theorem II.1.4.4 assigns a simple weight module L(m) such

that AnnA(L(m)) = a. Now we show that it is possible to choose m′ to be highest weight

with AnnA(L(m
′)) = a, under the assumption that none of the ti is a unit. In that case

the tensor factor Ai of A = A1 ⊗ . . . ⊗ An would be a commutative algebra and not of

interest. Once the theorem gave us m, there are two possibilities:

� Either there are breaks σ
γ
UP

i
i (m) for γ

UP

i > 0 in all coordinate directions i. This means

that σγ
UP−1(m) =∶ m′ is a highest weight (where 1 = (1, . . . ,1)), and since m′ lies in

the support of L(m), we have L(m) ≅ L(m′). Hence J(m) = J(m′).

� Or we have some coordinate i for which g
UP

i = ∞, so in

⟨m⟩ = {x ∈ kn ∣ g
UP

i ≥ xi ≥ g
LOW

i + bi for all i ∈ J, i.e. g
UP

i and g
LOW

i ≠ ±∞}

∩ (Zn ⋅ b + a + spank {bi ∣ 1 ≤ i ≤ n and i ∉ J}),

there is no inequality restricting the coordinate xi of any element x ∈ ⟨m⟩. In other

words, ⟨m⟩ + k ⋅ ei = ⟨m⟩. We want to replace m by some other maximal ideal m′

so that their closures are the same, but L(m′) is a highest weight module. All we

need to do is to keep the inequalities and the index set J in the description of ⟨m⟩

unchanged. Replace for this purpose m = ma = (T1 − a1, . . . , Tn − an) by any other

maximal ideal of the form (T1 − a1, . . . , Ti − z, . . . , Tn − an) such that (Ti − z) is a root

of ti (recall that we assumed ti ∉ k). Assume that it is the smallest break in the orbit

σZ
i (T1 − a1, . . . , Ti − z, . . . , Tn − an). This is possible because ti has only finitely many

roots. Then σi(T1 − a1, . . . , Ti − z, . . . , Tn − an) =∶ m′ is a highest weight in the i-th

coordinate direction. Let us check that we preserved the closure ⟨m⟩ = ⟨m′⟩: Because

we chose the break to be smallest possible, we have g
UP

i = z and g
LOW

i = −∞, and in

the computation of the closure the corresponding i-th inequality will be dropped. The
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other coordinate directions are not concerned. Repeating this for all coordinates with

g
UP

i = ∞, we end up with a maximal ideal that is highest weight.

Notice that in the last case the two simple modules L(m) and L(m′) are no longer

isomorphic (we even changed the weight lattice), but their annihilators satisfy J(m) =

A ⋅ I(⟨m⟩) = A ⋅ I(⟨m′⟩) = J(m′), hence the result is the same primitive ideal we started

with.

II.1.5. Examples

In this section, our ground field k = C are the complex numbers.

II.1.5.1. The first Weyl algebra

The first Weyl algebra C[x, ∂] = C⟨x, ∂⟩/[∂, x] = 1 of differential operators on a poly-

nomial ring in one variable can be described as a GWA A of rank one with base ring

R = C[T ], defining element t = T and automorphism σ(T ) = T − 1, see [Bav92, Example

1.2 (1)]. In particular, since σ is a translation with b ∶= −1, it is a GWA of the special

form we discuss here. The defining element t has only one zero, namely z = 0, hence

only one orbit inside C ≅ mspec(C[T ]) contains a break, and this is 0 +Z ⋅ (−1) = Z. All

modules M(ma) with a ∉ Z are already simple, i.e. L(ma) =M(ma), and ⟨ma⟩ = a +Z is

dense in C, therefore AnnA(L(ma)) = A ⋅I(⟨ma⟩) ⋅A = (0). Instead, concentrate on those

L(ma) with a ∈ Z, eg. a = 2. The following picture shows the weight lattice of M(m2):

R ⊂ C

0

break

α

The action of X and Y on the weight spaces are bijective (gray arrows) except for

M(ms)m0 , where the break is: Here X ⋅M(m2)m0 = 0.

Y Y Y Y Y Y Y Y Y Y

X X X X X 0 X X X X
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Thus, M(m2) has one submodule generated by M(m2)m0 :

R ⊂ C
support of the submodule

break

0
α

So we see that also for the two simple weight modules with support Z≤0 resp. Z>0, the

closure of the support is ⟨m0⟩ = ⟨m1⟩ = C and AnnC[x,∂](L(m0)) = AnnC[x,∂](L(m1)) =

(0). In other words, the only primitive ideal in C[x, ∂] is (0), which matches the fact

that the Weyl algebra is simple, so there are no nontrivial twosided ideals.

II.1.5.1 Remark. Notice that we get a break at 0, while the computations in [MB98,

Section 6] correspond to a break at −1. This difference can be explained by the choice

of R. We follow the convention in [Bav92], where R = k[T ] = k[Y X], while in [MB98]

R = k[T ] = k[XY ]. Since Y X −XY = 1, it follows that

mBavula
0 = (Y X) = (XY + 1) = mMvdB

−1 ,

which explains the ‘shift by 1’. The same has to be kept in mind for the n-th Weyl

algebra. ◊

II.1.5.2. A rank 1 example with two breaks

We stay in the rank 1 case, we keep the translation σ(T ) = T − 1, but we change t

to be some other polynomial (these are the ‘main objects’ considered in [Bav92]). For

example, choose t = (T − 3)(T − 2)(T + 2
3)(T − (2 + i))(T − (4 + i)). Then we have three

orbits with breaks: Z, −2
3 + Z and i + Z. First we depict how these orbits lie inside the

complex plane mspec(C[T ]) ≅ C (not to be confused with the following discussion of the

rank 2 case!):
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R

iR

z1z2z3

z4 z5

Pick the blue orbit, it is the support of eg. M(m0+i). Determine its submodules: We

have two breaks in the orbit of 0 + i, namely z4 = 2 + i and z5 = 4 + i. We have observed

earlier that for α > 0,

Y Xα
= 0 iff σα−1

(t) ∈ m0+i,

iff (T − (2 + i))(T − (4 + i)) ∈ mα−1+i,

iff α = 3 or α = 5.

X3 and X5 are bijective, while Y X3 and Y X5 are zero. So there are two submodules,

one generated by X3 and the other by X5. This is depicted below, where we shade the

support of the two submodules blue.

i + Rz4 z5

0 0

X3

X5

0 + i

Notice that the support of M(mi+3) is the same, but the submodule structure is different

(still, the subquotients are of course isomorphic):

i + R

z4

z5

0

0
3 + i
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In our notation from above, the lower and upper break for 3 + i are g
LOW

= z4 and

g
UP

= z5, so the support of L(m3+i) is

⟨m3+i⟩ = Supp (L(m3+i)) = (i +Z) ∩ {x ∈ C ∣ z5 ≥ x > z4} = {3 + i, 4 + i}.

Since it consists only of two points, it agrees with its closure and hence

AnnA(L(m3+i)) = A ⋅ (m3+i ∩m4+i) ⋅A = A ⋅ (m3+im4+i) ⋅A.

There are up to isomorphism two more simple modules with support in the orbit i + Z,

namely L(m2+i) and L(m5+i), both of which have infinite support i + Z≤2 and i + Z>4,

resp. The closure of the support is in both cases equal to C, so the annihilators of both

simple modules are (0). The two other orbits containing breaks can be treated similarly.

We find only one more nonzero annihilator, namely AnnA(L(m3)) = Am3A, since an

orbit needs to contain at least two breaks to allow finite support.

II.1.5.3. A rank 2 example

Consider the GWA A with base ring R = k[T1, T2], with automorphisms σ1(T1) = T1 −1,

σ2(T2) = T2 −
3
2 and with defining elements t1 = (T1 + 2)(T1 − 1) and t2 = (T2 + 3)(T2 − 3).

Now choose m = m(0,0). The support of M(m(0,0)) is given by

Supp (M(m(0,0))) = (0,0) + Z ⋅ e1 +
3

2
Z ⋅ e2,

so it contains both breaks −2 and 1 for the first coordinate (corresponding to the maximal

ideals m(−2,α2) and m(1,α2) for arbitrary α2 ∈ 3
2Z) and both breaks −3 and 3 for the

second coordinate (corresponding to the maximal ideals m(α1,−3) and m(α1,3) for arbitrary

α1 ∈ Z). The left picture shows the breaks as (red) hyperplanes in k2. Since break ideals

are those ideals m for which

Mm
Xi=0
ÐÐÐ→Mσi(m) or Mm

Yi=0
←ÐÐMσi(m),

we furthermore depict σi(break in direction i) (light red). The right picture shows the

resulting submodule structure of M(m(0,0)):
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e1

e2−2 1

3

−3

e1

e2

From the break structure, read off the annihilators of the simple modules:

AnnA(L(m(2, 9
2
))) = AnnA(L(m(−2,−3))) = AnnA(L(m(2,−3))) = AnnA(L(m(−2, 9

2
)))

= (0)

AnnA(L(m(0, 9
2
))) = AnnA(L(m(0,−3))) = A ⋅ ((T1 + 1) ∩ (T1) ∩ (T1 − 1)) ⋅A

AnnA(L(m(−2,0))) = AnnA(L(m(2,0))) = A ⋅ ((T2 + 1) ∩ (T2) ∩ (T2 − 1) ∩ (T2 − 2)) ⋅A

AnnA(L(m(0,0))) = A ⋅ (m(−1,− 3
2
) ∩m(0,− 3

2
) ∩m(1,− 3

2
)

∩m(−1,0) ∩m(0,0) ∩m(1,0)

∩m(−1, 3
2
) ∩m(0, 3

2
) ∩m(1, 3

2
)

∩m(−1,3) ∩m(0,3) ∩m(1,3)) ⋅A

There is no further annihilator ideal in A since we considered already all the breaks.
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[BD96] M. Beattie and S. Dăscălescu. “Categories of modules graded by G-sets.

Applications”. In: J. Pure Appl. Algebra 107.2-3 (1996). Contact Franco-
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