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Abstract

This thesis studies dense constraint satisfaction problems (CSPs), and other related
optimization and decision problems that can be phrased as questions regarding para-
meters or properties of combinatorial objects such as uniform hypergraphs. We con-
centrate on the information that can be derived from a very small substructure that is
selected uniformly at random.

The research focused on theoretic foundations of the properties of very large combin-
atorial objects has received increasing attention in recent years, substantial part of this
development was influenced by advances in the topic of approximation algorithms.
Complex graphs and hypergraphs are in particular ubiquitous in this regard due to
their application in modeling of real-world networks and community structures, re-
spectively. The enormous size of such systems makes it practically impossible to
capture them completely at any given moment, usually only a random substructure
of bounded size is available for investigation.

The development of a self-contained theory of convergence and limit objects was
initiated for dense graphs by Lovász-Szegedy, that was soon recognized to be a melting
pot of several related areas, and poses fundamental connections to classical real ana-
lysis. The concept had appeared in a different form earlier in the work of Arora-Karger-
Karpinski and Alon-de la Vega-Kannan-Karpinski dealing with dense instances of
NP-hard optimization problems in terms of approximation.

In this thesis, we present a unified framework on the limits of CSPs in the sense
of Lovász-Szegedy which depends only on the remarkable connection between graph
sequences and exchangeable arrays established by Diaconis-Janson without recourse
to the Frieze-Kannan type weakly regular partitions of graphs. In particular, we
formulate and prove a representation theorem for compact colored r-uniform directed
hypergraphs and apply this to rCSPs.

We investigate the sample complexity of testable r-graph parameters, and discuss
a generalized version of ground state energies (GSE) and demonstrate that they are
efficiently testable. The GSE is a term borrowed from statistical physics that stands for
a generalized version of maximal multiway cut problems from complexity theory, and
was studied in the dense graph setting by Borgs-Chayes-Lovász-Sós-Vesztergombi.

A notion related to testing CSPs that are defined on graphs, the nondeterministic
property testing, was introduced by Lovász-Vesztergombi, which extended the graph
property testing framework of Goldreich-Goldwasser-Ron in the dense graph model.
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The novel characteristic requires the existence of a testable certificate property of
edge colored graphs that connects to the original property through a certain general
edge coloring operation. Lovász-Vesztergombi verified that any nondeterministically
testable property is indeed testable in the original sense, the question regarding the
relationship of the sample complexity of the original and the certificate property was
left open.

In this thesis, we study the sample complexity of nondeterministically testable
graph parameters and properties and improve existing bounds by several orders of
magnitude. Further, we prove the equivalence of the notions of nondeterministic
and deterministic parameter testing for uniform dense hypergraphs of arbitrary rank.
This generalizes the result previously known only for the case of simple graphs. By
a similar method we establish also the equivalence between nondeterministic and
deterministic hypergraph property testing. We provide the first effective upper bound
on the sample complexity of any nondeterministically testable r-uniform hypergraph
parameter as a function of the sample complexity of its witness parameter for arbitrary
r. The dependence is of the form of an exponential tower function with the height
linear in r. Our argument depends crucially on the new upper bounds for the r-cut
norm of sampled r-uniform hypergraphs. We employ also our approach for some other
restricted classes of hypergraph parameters, and present some applications which give
previously not known positive testability results.
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CHAPTER 1

Introduction

The topic of Constraint Satisfaction Problems (commonly abbreviated as CSPs) is a
central subject of research in the field of theoretical computer science, considerable
effort has been invested into understanding their computational complexity. Instances
of such decision and optimization problems can be described in a simplified way
as a finite collection of variables taking values from a finite domain together with a
family of boolean expressions called constraints defined over some subsets of these
variables, together these comprise a CSP formula. The goal is to resolve whether all
the constraints can be made true simultaneously, or maximize the number of satisfied
constraints over all possible assignments of values to the variables.

As an example, consider a graph G that constitutes of a vertex set V(G) = [n] and
an edge set E(G) ⊂

(︀[n]
2

)︀
, the formula corresponding to the bipartition problem (the

possibility of splitting the vertex set into two parts so that no edge runs between
vertices falling into the same class) is ∧i j∈E(G)(xi ⊕ x j), where the variables are Boolean
and the constraints are the sums in the clauses. In this case the graph G is bipartite if
and only if each of the constraints is satisfied, that means that there exist an assignment
of 0s and 1s to the variables that whenever i j ∈ E(G), then xi and x j have to be different.
Another common example is 3-SAT, that is a conjunction of disjunctions of the form
a ∨ b ∨ c, where the symbols stand for Boolean variables xi or their negations ¬xi.

The task in the decision problem version is to determine whether there is an assign-
ment of values to the variables so that all the constraints are satisfied, this problem
class is known as CSP. In a broader sense, one can also ask for a quantitative state-
ment, namely, if it is not possible to satisfy all of them, what is the maximal number
of constraints that can be turn into a true statement at the same time, we refer to these
counting problems as MAXCSP. In the above example this corresponds to finding a
bipartition of the graph that cuts as many edges as possible, this is the so-called MAX-
CUT problem. Complementary, one can examine the number of constraints that have
to be satisfied by any assignment, the so-called MINCSP, and MIN-CUT, respectively.
Further, the condition may be added that each constraint contains the same number
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1 Introduction

of r variables, the general term for these problems is MAX-rCSP, or impose weights
corresponding to the constraints, numerous other advanced generalizations appear
in literature in several topics. We wish to clarify that the tasks of delivering only a
verdict, and giving also the accompanying assignment are quite different but related
endeavors, in the main part of this thesis we mostly deal with the (a priori easier) first,
but for the time being we stick to the latter algorithmic problem in order to provide a
more complete background. All these discussed problems are known to be NP-hard
in general.

The common question one can ask in this setup in the complexity sense is to determ-
ine the range of resources (time, space, or measure of error possibilities in any sense
imaginable) that are required in order to be able to solve these problem instances in
general or under some additional restrictions. If one settles for some trade-off in the
output a dramatical improvement regarding the above factors is possible. For count-
ing problems, such as MAXCSP, approximation algorithms have been developed that
are computationally feasible.

1.1 From approximation algorithms to sampling

The most frequent way to define the quality of the approximation algorithm 𝒜 is in
the case of maximization problems to relate the output value given by the algorithm
𝒜(I) to the optimal value OPT(I) the following way: one has to determine the maximal
value of 𝒜(I)/OPT(I) over all instances I, if this is larger than some c ≤ 1, then
the problem is c-approximable, and the largest such c is called the approximation
ratio of the algorithm (sometimes the reciprocal is referred to under this name). The
measurement of the quality in this sense is often called multiplicative approximation.
For one of the most prominent problems, MAX-CUT, being given an arbitrary ordering
of the vertices, the trivial stepwise greedy choice for the placing of the vertices provides
an approximation ratio of 1/2. A significant breakthrough in this direction was the
now classical approximation result by Goemans and Williamson [62] delivering a ratio
of 0.878....

Polynomial time approximation schemes This concept raises the question whether
an NP-hard problem is c-approximable in a computationally feasible way for every
c < 1, with other words, does it have a so-called polynomial time approximation scheme
(PTAS). Several NP-hard problems are known to permit PTAS, such as the euclidean
traveling salesman problem or the minimal vertex cover on planar graphs. However,
for the MAX-rCSPs we are dealing with there are genuinely such barriers so that
beyond them the approximation is also hard, see [19].

A general multiplicative approximation scheme 𝒜 is a parametrized family of ap-
proximation algorithms (𝒜(ε, .))ε>0, where for each ε > 0 and instance I we have
𝒜(ε, I)/OPT(I) ≥ 1 − ε, for the PTAS case𝒜(ε, .) runs in polynomial time in the size of
the instance, but perhaps in exponential time in the inverse of the proximity parameter
ε.
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1.1 From approximation algorithms to sampling

The conditions a PTAS has to fulfill can be modified by replacing 𝒜(ε, I)/OPT(I) ≥
1 − ε by the requirement |OPT(I) − 𝒜(ε, I)| ≤ ε|I|, where |I| is the size of the instance,
or the whole size of the data needed to describe it, which is problem-dependent. For
example, in the case of optimization problems concerning dense graphs |I| can be the
square of the size of the vertex set, but for a parameter of bounded degree graphs it
mostly means the cardinality of the vertex set. With this alteration we speak about
additive approximation, this is also our main concern in this work.

There is no straightforward way to construct an additive PTAS from multiplicative
one in general, or vice versa, but in case of dense MAX-rCSP (meaning that only
instances are considered with at least ρnr constraints with n being the number of
variables) one can derive from an additive one a multiplicative PTAS. First note that
OPT(I) ≥ (ρ/2r)nr as the expected value for a uniform random assignment is at least
this large. This implies for the additive scheme 𝒜 that 𝒜(α, I)/OPT(I) ≥ 1 − αnr

OPT(I) ≥

1−2rα/ρ, which can be arbitrary close to 1 by settingα sufficiently small. The analogous
reasoning cannot be carried out for MIN-rCSP even in the dense case.

The first systematic work delivered on the existence of PTAS for dense instances of
optimization problems through additive PTAS was carried out by Arora, Karger, and
Karpinski [18], it was shown using exhaustive sampling and smooth integer programs
for several subfamilies of dense MAX-rCSP, such as MAX-CUT or MAX-r-SAT, that
there exist additive PTAS, and a scheme that is suitable for general MIN-rCSP was
presented. The algorithms suggested a required a sample size of Θ(log n), giving
also the algorithm for finding a near-optimal assignment, but no information about
properties of random subproblems was obtained. In this thesis we focus almost entirely
on the behavior of the subproblems.

Random sampling in approximation algorithms Research sparked by approxim-
ation schemes employing the sampling method motivates the concept of the sample
complexity that is one of the central subjects of the current thesis. In short, the question
is what can the observer of a randomly chosen subproblem tell about the solution of
the original one with the knowledge of the mechanisms of the random process that
generates the sample. The answer may and in general does depend on the amount of
the perceived random data, the least size that meets our expectations is called sample
complexity.

Subsequently to [18], Goldreich, Goldwasser, and Ron [66] introduced the frame-
work of property testing for combinatorial structures, and derived from their testers
the first constant time approximation schemes for partition problems on graphs drawing
on ideas presented in [18], including setups that give additive PTASs for the value of
MAX-2CSP. However, the method of [66] does not provide a feasible assignment, and
this is certainly not possible in constant time.

A graph property is a subset of graphs invariant under isomorphism. Property
testers in the most general sense are algorithms that can distinguish between the cases
that an instance is having the property and that it is ε-far from any instance that has it,
with sufficiently large probability. A property is testable if such an algorithm exists.
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1 Introduction

Accordingly, the tester in [66] for example for the property of a graph of size n
having a cut with at least ρn2 cut edges was designed as follows. First a uniform
random vertex sample of size poly(1/ε) is taken, and after making some calculations
on the induced subgraph (perhaps without accessing the information regarding all of
its adjacencies), and the tester provides a decision whether the graph has the property
or no modification of at most εn2 adjacencies would result a graph with the property.
This was a major breakthrough in the area, since it was shown that the MAX-CUT
value of G (more precisely, the density of the maximal cut) can be approximated well
by observing a uniformly sampled subgraph whose size is independent of the order of
the original graph, the approach is reminiscent of methods in mathematical statistics.

Using similar techniques Andersson and Engebretsen [17] obtained PTAS for MAX-
rCSP with non-Boolean domain. Parallel to these developments Frieze and Kannan
[59] proposed an algorithmically efficient version of Szemerédi’s Regularity Lemma,
which is later in literature often referred to as the Weak Regularity Lemma, in order
to handle the MAX-2CSPs. The original version due to Szemerédi [115] has risen
to the single most important tool in several branches of combinatorics. Informally
it states that for every graph the vertex set can be partitioned into a bounded (as a
function of an error parameter ε) number of classes so that for most pairs of classes
the bipartite graph spanned between the two parts is random-like. It eluded practical
algorithmic applications, since the upper bound regarding the number of classes of
the partition provided was an exponential tower of height 1/ε in magnitude, this
bound later turned out to be sharp. Actually, it was implicitly used to derive testing
algorithms that sample subgraphs whose size only depends on 1/ε (but, as above, in
a computationally infeasible way) for k-colorability by Rödl and Duke [103], and for
triangle-freeness by Ruzsa and Szemerédi [111] a decade before the introduction of the
concept of property testing.

The variant in [59] introduced the cut norm of matrices ‖A‖� = maxS,T⊂[n] |A(S,T)|,
and reads as follows: For every square matrix A there exists a partition of rows and
columns (the same for the two) such that the matrix B obtained from A by taking the
average on the rectangles determined the by pairs of classes is close to A in the cut
norm, that is ‖A−B‖� ≤ εn2. The lemma admits partitions into parts whose number is
only exponential in 1/ε2, therefore it is a suitable tool for designing PTAS. The authors
of [59] applied the lemma to the MAX-CUT problem and the quadratic assignment
problem among others combined with uniformly sampling exp(poly(1/ε)) vertices,
but did not establish any connection between the solution of the subproblem and of
the original one.

A meta-algorithm called canonical testing was first employed for MAX-CUT by
Alon, Fernandez de la Vega, Kannan, and Karpinski [14] for finding a suitably good
value estimation that runs in constant time. The method itself is remarkably simple:
One takes a random sample of size depending on ε, evaluates the optimum on the
sample by brute force (analogously to the exhaustive sampling method), taking as
output that value satisfies the permitted error condition in an additive sense, although
only with high probability. The related approach for testing properties also turned out
to be fruitful.
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1.2 Sampling from large combinatorial structures

Inspired by the regularity approach of [59], Alon, Fernandez de la Vega, Kannan,
and Karpinski [14] also improved on the speed of the PTAS for MAX-rCSP instances
with Boolean domain, and refined the analysis regarding the optimal value on the
random subproblems. Using the so-called cut decomposition method and linear pro-
gramming duality they were able to obtain the upper bound O(ε−4 log(1/ε)) for the
sample complexity.

The original motivation for our research in the current thesis in a broader sense is
formulated in the following question.

Question. What decision and optimization problems admit such constant time approximation
schemes as in [14]? What is the exact magnitude of the sample complexity in these cases?

We will not be concerned with approximation algorithms that find an actual certi-
ficate, instead we will consider very large problems.

1.2 Sampling from large combinatorial structures

Any family of CSP formulas can be interpreted as a class of combinatorial objects:
consider a hypergraph such that each variable of the formula corresponds to a vertex,
whereas constraints can be thought of as edges with certain colors. This way, MAXCSP
is a parameter of the hypergraph, and further, the satisfiability characteristic transforms
to a property of edge colored directed hypergraphs. We demonstrated how this goes
in the opposite direction at the start of the chapter with the maximal cut of graphs.

One consequence of the graph representation is the ability to formulate and study
structural questions in the graph theory framework beyond the objective function
of the optimization problem. This motivates the wide scope of the thesis, we cover
topics beyond the complexity theory range and deal with recent developments in
combinatorics.

1.2.1 Testing properties of graphs
The combinatorial representation brings us back to property and parameter testing for
hypergraphs in the dense model with CSPs being a special case, the general question
above reads in this setting as follows.

Question 1. Which properties and parameters of edge colored hypergraphs are testable, what
is the magnitude of the sample complexity?

Whereas in the design of PTASs the goal is fast estimation of graph or hypergraph
parameters and also giving a nearly optimal assignment, in the case of constructing
related property testers one only attempts to distinguish between graphs having a
given property, and the ones that are far from having it.

Rubinfeld and Sudan [109] studied testing first in the setup of functions, for in-
stance, when the task is deciding about linearity. Subsequently, as also mentioned
above, Goldreich, Goldwasser, and Ron [66] initiated the systematic research in the
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1 Introduction

field for combinatorial objects by obtaining various results and establishing the con-
nection to the topic of approximation algorithms. The first framework that in [66] was
investigated was the dense graph model. The distance here is measured between two
graphs by the minimal number of edges that have to be modified to arrive from one
at an isomorphic copy of the other (modification is meant for exchanging an edge for
a non-edge or vice versa), this is called edit distance. Queries of two types are per-
mitted: one may demand to be given an uniformly chosen random vertex, or ask for
the information whether an edge runs between two previously received vertices. The
answers are assumed to be given by a probabilistic oracle machine, the construction
method of such an oracle is not of interest here.

This model suits best the cases when most graphs that have the property are dense,
but density alone does not imply the property. Other models subsequently defined
deal with the bounded degree case or a mixture of these two, see Goldreich and Ron
[64]. In the dense framework, that is the main subject of the current work, a tester for
the graph property 𝒫 is an algorithm𝒜 that for an n-vertex graph G and a proximity
parameter ε > 0 runs with q(n, ε) queries and (i) accepts G with probability at least 2/3,
if G ∈ 𝒫, and (ii) accepts G, if it is ε-far from 𝒫 (that is, no modification of at most εn2

edges results in an element of 𝒫 ) with probability at most 1/3.
In our setup, we assert testability only in the situation, when the number of required

queries does not depend on the size of the graph. Furthermore, a tester is called one-
sided if it always accepts instances that satisfy the property, and non-adaptive, if the
queries made are not dependent on the outcome of previously made ones. We restrict
ourselves to obtaining a so-called canonical tester. The algorithm 𝒜 is a canonical
tester for 𝒫, if there exists a function k : R+

→N and another graph property 𝒫′, such
that

(i) P(G(q,G) ∈ 𝒫′) ≥ 2
3 for every G ∈ 𝒫 and q ∈N, and

(ii) for every ε > 0 and G that is ε-far from 𝒫with at least k(ε) vertices, and for every
q ≥ k(ε) we have P(G(q,G) ∈ 𝒫′) ≤ 1

3 ,

where G(q,G) is the random induced subgraph of G on a uniformly chosen subset of
V(G) of cardinality q. The minimal function k(.) that satisfies the above conditions is
called sample complexity of the property.

Every tester can be turned into a canonical tester accepting at most a quadratic
trade-off in the query complexity, see [65], also, canonical testers are non-adaptive.
Designing PTAS from testers is possible for some threshold-like properties, in [66]
it was noted for ρ-cut (the property that the density of the MAX-CUT is at least ρ)
that their result does in fact yield an algorithm that finds a large cut of size at least
MAX-CUT(G) − εn2 in sublinear time. However, there is no straightforward way to
construct such an algorithm from general testers.

A major step towards understanding which properties are testable, and to what
extent with regard to query complexity, was taken by Alon, Fischer, Newman, and
Shapira [16]. The authors provided the first combinatorial characterization of graph
testability using Szemerédi’s Regularity Lemma. They proved that the property of
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1.2 Sampling from large combinatorial structures

having a particular fixed regular partition is testable, and introduced the notion of
regular reducibility. A property has this characteristic if there is a finite number of
regular partitions such that at least one applies to any graph that has the property. It
was shown that regular reducibility is equivalent to testability. However, as a result
of the application of the Regularity Lemma, upper bounds on the sample complexity
were outperformed by previous efforts for known special cases. On the other hand,
the characterization lead to the first example of natural graph properties that are not
testable, namely being isomorphic to a copy of the Erdős-Rényi graph. Subsequently
it was shown by Alon [3] that triangle-freeness is testable, but it requires strictly more
than poly(1/ε) queries.

Property testing serves as a major motivation for the study of limits of graph se-
quences. Several testability result can be proven or re-proven in a concise analytic
fashion (however, non-effectively) using limit theory notions and theorems together
with the fundamental concepts in real analysis, see [49] and [94]. We will cover this
aspect of the limit theory in Chapter 3 in greater detail.

1.2.2 Emergence of graph limits

As we mentioned above, in this thesis CSPs are considered with an extremely large
number of variables, therefore the corresponding hypergraphs are also huge. Ima-
gine an evolving, ever-growing random hypergraph, that we can only access through
sampling, what can be said about the driving model if the data we gain shows some
patterns? Equivalently, we would like to make sense of some limit structure that car-
ries the important features of the random model with the noise filtered out, perhaps a
hypergraph on a countably infinite vertex set.

From the traditional perspective of computer scientists, the input data (G for example
for MAX-CUT(G)) in its raw form is of central importance, and the goal is often to
determine exact parameter values of graphs, problems are analyzed with regard to
computational hardness (running time or memory space) depending on the size of the
graph.

In numerous applications one has to deal with large random objects with completely
unknown or parameterized underlying distribution, with ones whose data is corrupted
by random noise, or with instances that are simply too large to store and analyze,
therefore it is sensible to write off exactness in favor of resource optimization. At
this point a statistical perspective enters the picture and approximate solutions are
sufficient for the problems above. The recently emerged limit theory of discrete objects
captures this aspect, see [89]. The concept has gained considerable attention and fueled
a large amount of research output, and also open questions have been raised within
this framework. One important advantage of the limit theory is that it encompasses
the methodology of how to deal with the problems defined on very large graphs in a
conceptual way corresponding to the theory of classical statistics and analysis.

Question 2. How can we interpret extremely large structures so that we can tackle the first,
qualitative part of Question 1?

7
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The idea to identify and study the limit space for relational structures originates
from the fact that recent technological development has made it possible to capture
large graph-like data sets emerging in the real-world, common examples are social
networks or protein interaction networks, where pair-wise interaction between points
is observable. These turn out to be too huge to be able process their whole data, may
be heavily time-dependent, and are often driven by some random process. The central
question is whether methods of mathematical analysis successful in other branches of
natural sciences are applicable or can be adapted to these complex networks in order
to extract meaningful statistics that are robust in some sense.

In a series of papers Lovász and Szegedy [91], Borgs, Chayes, Lovász, Sós, and
Vesztergombi [30, 32], Borgs, Chayes, and Lovász [31] laid out the foundation of the
limit theory in the case of simple dense graphs. This class seems to be the most
straightforward choice as a starting point from the mathematical viewpoint and the
results beautifully correspond with the framework of measure theory and functional
analysis. On the other hand the vast majority of real-world complex networks are
sub-dense, therefore other classes are of similarly high interest.

A simple graph G = (V(G),E(G)) is given by its vertex set V(G) and edge set E(G) ⊂(︀V(G)
2

)︀
, we use the abbreviation uv for sets {u, v}. The graph G can be represented

by a {0, 1}-valued symmetric square matrix AG of size |V(G)| dubbed the adjacency
matrix of G. Two graphs G and G′ are said to be isomorph if there exists a bijection
φ between V(G) and V(G′) that preserves edges and non-edges, that is uv ∈ E(G) if
and only if φ(u)φ(v) ∈ E(G′). We speak about labeled graphs if we wish to stress the
vertex set, and about unlabeled graphs if isomorphism classes are meant, the first
will be considered as default in this work. The map φ : V(G) → V(G′), without the
condition of being a bijection, is a graph-homomorphism when it preserves only the
presence of edges, not necessarily their absence. Graph limits are defined in terms of
the densities of homomorphisms of small graphs: a sequence (Gn)∞n=1 is convergent if
for any simple graph F the numerical sequences (t*(F,Gn))∞n=1 converge, where t*(F,G) =
hom(F,G)/|V(G)||V(F)| is the homomorphism densityof F in G, and hom(F,G) is the
number of maps from V(F) to V(G) that are homomorphisms [91]. The measurable
functions W : [0, 1]2

→ [0, 1] that are symmetric in the sense that W(x, y) = W(y, x) for
every pair x, y ∈ [0, 1] are referred to as graphons, they can be interpreted as graphs
with vertex sets that have continuum cardinality. The homomorphism densities can
analogously be defined for graphons as the integral

t*(F,W) =

∫︁
[0,1]k

∏︁
i j∈E(F)

W(xi, x j)dλ(x),

where V(F) = [k]. The most important result of [91] is that for every convergent graph
sequence (Gn)∞n=1 there exists a limit graphon W in the sense that for each simple F the
sequence t*(F,Gn) tends to t*(F,W). Moreover, the converse is also true, that is, every
graphon W serves as the limit object of some convergent graph sequence.

Another major contribution in [30] was the natural metrization of the topology
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described above, which was also extended to the limit space. The definition of the
metric itself originates from the concept of the cut norm introduced by Frieze and
Kannan [59]. Various other equivalent convergence criteria were enlisted in [32], we
elaborate on this aspect in the main body of the thesis. Uniqueness of the limit W up
to a certain measure-preserving equivalence was subsequently verified in [31].

Testability of graph parameters is a central concept around which the topics of this
thesis are assembled, it is also the combinatorial analog to additive approximation for
the optimal value of discrete optimization problems. A graph parameter f is testable,
if for every margin of error ε > 0 the value f (G) for a graph G can be additively
ε-estimated by looking at a random induced subgraph of bounded size independent
of the size of G. The estimation is allowed to fail with probability at most ε.

A characterization of this property in terms of graph limits was given in [30] mainly
reformulating the definition in the light of the results outlined above. Namely, the
testability of a parameter f is equivalent to the statement that for every convergent
sequence (Gn)n≥1 of simple graphs with |V(Gn)| → ∞, the numerical sequence of the
values ( f (Gn))n≥1 also converges. However, in [30] no attempt was made to determine
the magnitude of the required sample size as a function of f and ε, the current work
endeavors to shed some light on this issue.

Question 3. Can we derive results for discrete problems by studying their counterparts in the
limit space?

The topic of this thesis is at the intersection of complexity theory,statistics, and graph
theory. Each of the general problems we addressed in the above questions have been
subject of ongoing and extensive study, partial answers are available, but there are still
blind spots, see Section 1.4 for an overview. In the next section we will outline our
attempts and results on more concrete problems in the context of the above questions.
Their thorough discussion gives the bulk of the thesis.

1.3 Our contribution

Substantial parts of the thesis previously appeared in the preprints Karpinski and
Markó [79, 80, 81, 82], and in the paper Krámli and Markó [86].

Nondeterministic hypergraph testing (to Question 1)

Lovász and Vesztergombi [97] introduced the framework of nondeterministic graph
property testing. A simple graph property 𝒫 has this characteristic if it can be certified
by a property𝒬 of edge-colored graphs that is testable in the sense that for any element
G ∈ 𝒫 there is a G ∈ 𝒬 such that if we omit edges with certain colors and disregard the
colors of the remaining edges then we obtain G, see Definition 6.1.2. It was shown by
Lovász and Vesztergombi [97] and Gishboliner and Shapira [61] that nondeterministic
testability is equivalent to testability in the graph case.

9
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We study this question in the context of graph parameters and obtain an upper
bound on the sample complexity of a nondeterministically testable parameter that is a
3-fold exponential of the sample complexity of its certifying witness parameter, The-
orem 6.1.5. We generalize the result to the case of r-uniform hypergraphs (definitions
are analogous), and obtain an upper bound on the sample complexity int terms of the
witness as in the graph case that is an l(r)-fold iteration of the exponential function,
where l is linear in r, Theorem 6.1.6. We further show that these results also hold
for properties, Theorem 6.1.7. Our main tools are variants of Szemerédi’s Regularity
Lemma, Lemma 3.3.15 and Lemma 3.3.27.

We apply these results to some hypergraph parameters and properties, and show
their testability, some of these are new results. We also consider more restrictive
forms of nondeterministic testability, and obtain improvements in these cases over the
general upper bounds. The results regarding graphs can also be found in the preprint
[80], whereas the results in the hypergraph case appeared in the preprints [81, 82].

Limits of colored hypergraphs (to Question 2)

We give a characterization for the limit space of r-uniform edge colored hypergraphs
for arbitrary r in the situation when edge colors are taken from a compact Polish space.
We present two methods, both generalizations of previous approaches of Diaconis and
Janson [43] using exchangeability principles, and of Elek and Szegedy [49] relying on
non-standard analysis, respectively. We combine these methods with the concept of
Lovász and Szegedy [93] employed to deal with sequences of graphs with compact
edge colors. The first framework is more straight-forward and gives insight regarding
random graph models, whereas the second one allows for more applications such as
direct testability assertions and regularity lemmas.

We prove a suitable representation of the limit space following the program of [43]
developed for simple graphs. The crucial ingredient is a deep result regarding the
representation of exchangeable r-arrays. Our main result here, Theorem 2.2.10, states
that the limit objects are r-graphons that take probability measure values. We apply
the result to formulate the representation theorem for the limits of CSP formulas,
Corollary 2.3.2. These contributions appeared also in the first part of the preprint [79].

Our motivation for the second approach to hypergraph limits comes from a variant
of the ground state energy problem that is reminiscent of MAX-rCSP, where in the 3-
graph case we optimize over vertex pair colorings rather than simple vertex colorings,
see Definition 5.3.1. We refer to them as r-GSE.

The ultralimit method for combinatorial structures was first employed by Elek and
Szegedy [49]. With the main link between discrete and continuous objects, the sep-
arable realization, it enabled proofs for qualitative results, such as the testability of
hereditary properties or the Hypergraph Regularity Lemma that are rather direct con-
sequences of measurability in the limit [49]. This structural connection is the main
advantage over the exchangeability correspondence principle.

First we consider the case when the edges of the hypergraphs are colored with
colors from a finite set. Using the analogous statement to the separable realization of
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[49], Corollary 5.2.14, we manage to prove the existence and the uniqueness statement
regarding the limit objects, Corollary 5.2.9 and Theorem 5.2.15, respectively. Building
on this we are able verify that r-GSEs are testable, Theorem 5.3.4. This part appeared
previously as a section of the preprint [81].

We generalize the limit representation for sequences of colored hypergraphs, where
the colors are taken from a compact Polish space in Theorem 5.4.11. Here the limit
space is similar to the previous case, the r-graphons are probability measure valued.
We also formulate the condition of two limit objects being equivalent similar to the
finite color case in Theorem 5.4.12.

An application of these results is a new proof of (a version of) the Hypergraph
Regularity Lemma for r-graphs with compact colors, see Theorem 5.5.2.

Testability of the ground state energies (to Question 3)

We introduce a generalization of the ground state energies borrowed from statistical
physics that were studied first in [32] regarding their testability in a qualitative way,
see Definition 4.1.2. This new notion also encompasses MAX-rCSP.

We prove a quantitative bound for the ground state energies inspired by the approach
of Alon, Fernandez de la Vega, Kannan, and Karpinski [14], Theorem 4.1.4. Our result
reproves the sample complexity upper bound O(log(1/ε)(1/ε)4) obtained in [14] for
MAX-rCSPs, extends it for CSPs with non-Boolean domain, additionally, our bound
regarding the error probability is tighter.

We further use this result to obtain similar conclusions for the ground state energy
variant with an external magnetic field, Theorem 4.3.2, and the microcanonical ver-
sion, Theorem 4.3.6. Another application is a related testability result for quadratic
assignment problems, Corollary 4.3.9. These results previously appeared in the second
part of the preprint [79]. Additionally, we prove testability for ground state energies
of graphs with non-negative unbounded weights Theorem 4.4.3 under an Lp-bound
condition.

We investigate the separation quality of ground state energies, more precisely under
what conditions these energies determine a graph. In the course of this, we prove a
convergence hierarchy of the lower threshold ground state energies, Theorem 4.5.11.
This former result can also be found in the paper [86].

All the above results are proved first in the limit space, and as an application the
discrete counterparts are deduced in the spirit of [32].

1.4 Related work

In this section we provide a review of results in the different areas we touch in the
course of the thesis.
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Further polynomial time approximation schemes

Inspired by the regularity approach of Frieze and Kannan [59], Alon, Fernandez de la
Vega, Kannan, and Karpinski [14] improved on the speed of the PTAS for MAX-rCSP
instances with boolean domain, and refined the analysis regarding the optimal value
on the random subproblems. Using the so-called Cut Decomposition method and
linear programming duality they were able to obtain the upper bound O(ε−4 log(1/ε))
for the sample complexity. One key tool that is proved in [14] is that the cut norm
(or its density, depending on the definition) of a large matrix is preserved under
row/column sampling in the sense of graph parameter testing, the required sample
size can be upper bounded by O(ε−4 log(1/ε)). This auxiliary result also happens to
be a an important ingredient in showing that the δ� distance of graphs defines the
same topology as graph convergence in the context of graph limits, see below. The
upper bound on the sample complexity of the cut norm was further improved to
O(ε−2 log(1/ε)) in a weaker sense by Rudelson and Vershynin [110] using the singular
value decomposition (SVD) and decoupling: it holds that E‖AS‖�ε4

≤ C‖A‖�/n2 for
some C > 0 large enough, where A is an arbitrary n × n matrix, and AS is its randomly
sampled ε−2

× ε−2 submatrix.
Continuing the research initiated in [14], Fernandez de la Vega, Kannan, and Karp-

inski [53] extended the sample complexity result to MAX-rCSP with additional global
constraints, such as MAXBISECTION. In the same line of work Fernandez de la Vega
and Karpinski [51, 50] obtained PTAS for slightly subdense instances with Ω(n2/ log n)
constraints, and for weighted families of graphs with unbounded edge-weights obey-
ing a certain density condition, respectively. As a further contribution, Fernandez de la
Vega, Kannan, Karpinski, and Vempala [52] developed PTAS for core-dense instances
which can be subdense and contain quasi-metrics using tensor decomposition of ar-
rays (a method resembling the singular value decomposition of matrices) and uniform
sampling.

Departing from regularity approaches, Mathieu and Schudy [98] described a surpris-
ingly simple PTAS for MAX-rCSP running in quadratic time consisting of exhaustive
sampling and greedy steps, analysis was conducted by martingale methods using
a fictitious cut construction that is updated at each step of the generating process,
proving also the best sample complexity upper bound O(ε−4) known to date. Their
technique was then refined by Karpinski and Schudy [83] to produce a PTAS that runs
in sublinear time, see also Yaroslavtsev [118].

All the above PTAS take advantage of sampling arguments and therefore by default
provide a satisfactory output only with high probability. Nevertheless, all of them
can be derandomized in a trivial way to obtain a feasible value estimation (except for
[18], where a random walk on an expander has to be performed, but this is also a
standard method) with a trade-off in the running time that remains still polynomial in
the problem size.

We note that additive PTAS cannot be obtained when the factor determining the
magnitude of the permitted deviation (|V(G)|2 in case of MAX-CUT) is substantially is
reduced. Ailon and Alon [1] proved inapproximability bounds for non-trivial families
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of rCSP (a trivial situation is for example, when the number of edges of graphs is
given as the MAX-rCSP, then it can be calculated in polynomial time, so studying
approximation hardness is redundant), even in the fully dense case, where each r-
tuple carries at least one constraint, it is NP-hard in general to give an approximate
solution within an additive error at most nr−δ for any δ > 0 in permitted time.

Approximation algorithms beyond PTAS
It is well-known that MAX-rCSP is contained in the class of NP-hard problems,
therefore considerable effort has been made towards the design of approximation
algorithms. For one of the most prominent problems, MAX-CUT, being given an ar-
bitrary ordering of the vertices, the trivial stepwise greedy choice for the placing of
the vertices provides an approximation ratio of 1/2.

A significant breakthrough in this direction was the now classical approximation
result by Goemans and Williamson [62] delivering a ratio of 0.878... using the semi-
definite programming (SDP) relaxation of maxx∈{−1,1}n

1
2

∑︀
i, j Ai j(1 − xix j) and random

hyperplane rounding. This result is optimal under the Unique Games Conjecture, the
technique employed in [62] was a highly influential contribution to the area.

Semidefinite programs are special convex optimization problems that are known
to be solvable in polynomial time, see for example Grötschel, Lovász, and Schrijver
[70], in the relaxation above one replaces the domain of variables from {−1, 1} to the
n-dimensional unit sphere Sn−1. Clearly, the optimum of the relaxed version is at least
as large as that of the original, therefore the task is to obtain an integer solution with
only a small decrease in the value from the former. This approach has been adapted
to other MAXCSPs, however, the approximation ratio gained through this method is
highly problem-dependent and is connected to the shape of the objective function.
The estimation of Charikar and Wirth [35] considering maxx∈{−1,1}n xTAx achieved a
ratio Ω(1/ log n) that is decreasing in the size n of the problem using SDP relaxation
and randomized rounding.

The cut norm of matrices with both positive and negative entries is a central subject in
graph limit theory, it is used to measure closeness of two graphs by calculating the norm
of the difference of their adjacency matrices. Alon and Naor [6] algorithmically ap-
proximated the cut-norm relying on Grothendieck’s inequality, by the virtue of the cut-
norm and the ‖.‖∞→1 operator norm being equivalent they obtained an approximation
through considering maxx,y∈{−1,1}n xTAy, and relaxing this to maxu,v∈(Sn−1)n

∑︀
i j Ai j⟨ui, v j⟩.

The optimal values of the two expressions are known to be at most a constant factor K
away from each other, it is referred to as Grothendieck’s constant in functional analysis,
whose exact value is not known, however K ≤ 1.782... is true. In [6], three different
rounding methods were presented: an approach using orthogonal arrays of strength
4, one with Gaussian rounding, and the original argument leading to the proof of
Grothendieck’s inequality. Subsequently, Alon, Makarychev, Makarychev, and Naor
[15] introduced the Grothendieck constant KG of an arbitrary graph G. It holds by
definition that KG maxx∈{−1,1}n

∑︀
i j∈E(G) Ai jxix j ≥ maxu,v∈(Sn−1)n

∑︀
i j∈E(G) Ai j⟨ui, v j⟩ for any real

square matrix A, where the integer program appears in the study of spin glass models.
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It was verified in [15] that the integrality gap is at most O(log(θ(Gc))), where θ is the
Lovász Theta Function. For a more complete picture we refer to the recent survey
of Khot and Naor [84] on the application of SDP relaxations and Grothendieck-type
inequalities in combinatorial optimization.

Recently, Raghavendra and Steurer [102] presented a rounding scheme originated
from the SDP relaxation of MAXCSPs that achieves the optimal integrality gap for any
CSP family in consideration. Building on this, Barak, Hardt, Holenstein, and Steurer
[25] investigated the testability behavior of mathematical relaxations of combinatorial
optimization problems in the fashion of property testing, and among other results
presented a sample complexity result for MAX-rCSPs that applies to a more general
class of problems, than the dense case. For dense instances poly(1/ε) sample size is
sufficient according to their analysis, for the bounded degree case at least Ω(n) size
is required, testability also holds for BasicSDPs and BasicLPs that are relaxations of a
special form. Negative results involving relaxations with higher levels of the Lasserre
and Sherali-Adams hierarchies, respectively, were provided showing the limitations
of the uniform sampling method.

As another approach, Drineas, Kannan, and Mahoney [46], designed an approxim-
ation algorithm for the MAX-CUT problem for the case of heterogeneous weighted
graphs. The desired proximity magnitude is modified in [46] in comparison to addit-
ive PTASs, the tolerated deviation of the output from the optimal is at most εn

√︀
|E(G)|

instead of εn2. The sampling method was adapted to the heterogeneous setting: nodes
are picked following a non-uniform distribution through the employment of the CŨR
matrix decomposition.

More on limits of combinatorial structures, exchangeability
methods

The developments described in Section 1.2.2 fueled a significant amount of research
generalizing the limit theory of dense graph in any possible direction. For the dense
case we have an almost complete picture now, questions that come up regarding limits
are first posed in this context. What is most important for the current thesis is the para-
meter testing framework established in [32] and the connections revealed to statistical
physics. Lovász and Szegedy [95] defined a distance on the space of vertices of a given
graph instance measuring the similarity of vertices as part of the global network, in
particular two vertices are close if they have a close number of common neighbors with
a randomly chosen third vertex. This similarity distance has advantages in the design
of PTASs for MAX-2CSPs. The same authors generalized the Regularity Lemma, both
the weak and Szemerédi’s version to an approximation result in Hilbert spaces in [92],
translating its statement it into a compactness and a covering result with respect to the
topology inside the graphs from the previously mentioned paper [95]. Among other
results of algebraic nature Lovász and Szegedy [96] introduced the notion of finitely
forcible graphons, that are exactly determined by a certain finite set of subgraph dens-
ities. Prior to this, Lovász and Sós [90] introduced a generalized quasi-randomness
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condition for graphs that is fulfilled by being infinitesimally close to a certain graphon
in the cut distance. The graphon here is a step function whose steps are rectangles cor-
responding to a partition of [0, 1] akin to the driving models of stochastic block models,
the notion itself is similar to regular reducibility in testing. In [90] it was shown that
such graphons are finitely forcible. In [96], the authors gave necessary conditions and
expanded the class by graphons that mostly resemble well-known extremal graphs.

Existence and uniqueness of limit objects, as well as the existence of a regularity
lemma were subsequently extended to hypergraphs by Elek and Szegedy [49] via
the ultralimit method using non-standard analysis. The limit objects of sequences
of r-uniform hypergraphs turned out to be the measurable functions defined on the
unit cube [0, 1]2r

−2 that take values in [0, 1]. The coordinates of the domain [0, 1]2r
−2

correspond to non-trivial subsets of [r], the functions serving as a limit object must be
invariant under coordinate permutations induced by any permutation of the symmet-
ric group Sr. Using similar techniques, Elek [48] described the limit space of metric
spaces and analyzed the emergence of observables in the limit.

The case of bounded degree graph limits is quite different, less measure theoretical
and more algebraic arguments are entering the picture. This line of research was
initiated by Benjamini and Schramm [26], subsequent progress has been made by
Elek [47]. In this case the similarity of graphs is measured locally, the condition of
convergence is defined by the convergence of the probability distribution of rooted
l-neighborhoods of a uniformly chosen random root vertex for each l ∈N, this is called
local convergence. The limit objects can be represented by unimodular distributions
on rooted countable graphs with bounded degree, or by graphings, that are bounded
degree graphs whose vertex set is a Borel probability space, the edge set is a measurable
set, that satisfies a measure preserving property analogous to symmetry in the case of
dense simple graphs.

Another line of investigation studies the limits of dense graphs with unbounded
weights. Note that this setup is analogous to the sub-dense case excluding bounded
degree graphs. The original definition of convergence quickly falls apart as in general
the subgraph densities are infinite in this region. Since the cut distance, with prior
1-norm normalization of the weights of the graphs, is still meaningful, the definition
of convergence by the Cauchy property is justified. Research in this direction was
initiated by Bollobás and Riordan [29], further progress has been made by Borgs,
Chayes, Cohn, and Zhao [33, 34] expanding the considered class of graphs to those
that are in Lp as functions for some p ≥ 1, they showed the equivalence of the energy
convergence to the metric convergence analogously to the results in [32].

Connected to the latter developments, limits with edge colors from sets with topo-
logical but without algebraic structure were considered, compact decorated graphs
were explored by Lovász and Szegedy [93], whereas Banach space decorated graphs
were analyzed by Kunszenti-Kovács, Lovász, and Szegedy [87]. In both cases the limit
objects resemble graphons, for the first model they are graphons whose values are
probability distributions on the compact space, in the second case values are taken
from the dual of the Banach space.

The work by Diaconis and Janson [43] placed the limit theory of graphs in the context
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of previous efforts in probability theory, the authors shed some light on the corres-
pondence between combinatorial aspects (that is, graph limits via weak regularity)
and the probabilistic viewpoint of sampling: Graph and hypergraph limits provide
an infinite random graph model that has the property of array exchangeability. An
infinite sequence with random elements is said to be exchangeable if the distribution of
the sequence is invariant under finite permutations of the elements. Similar definition
applies for arrays, where the distribution has to be invariant under row and column
permutations of finite range.

According to de Finetti’s Theorem, the exchangeable {0, 1}-valued sequences are
mixtures of i.i.d.’s in the sense that first a random p ∈ [0, 1] is generated obeying some
distribution, and subsequently independent Bernoulli(p) trials are executed for the
entries. In the case of arrays the characterization is a bit more complicated. To obtain
a typical exchangeable random infinite matrix, a [0, 1]-valued symmetric function f
on the unit square has to be fixed. First, one has to color the rows and columns by an
exchangeable sequence with [0, 1] values, and afterwards independent coin tosses for
every i j entry with success probability f (xi, x j) have to be carried out, where xi is the
color of the ith row, and x j of the jth column obtained in the preliminary stage of the
generating process. This construction clearly produces an exchangeable matrix, and it
is non-trivial to show that there is basically no other way to generate one. Similar level-
wise independent coloring schemes apply for higher dimensional cases, the proof that
this construction delivers every exchangeable random r-array was proved first by de
Finetti [41] (for {0, 1} entries) and Hewitt and Savage [72] (in the case of general Polish
space entries) for r = 1, independently by Aldous [2] and Hoover [74] for r = 2, and
by Kallenberg [78] for r ≥ 3.

The meta-correspondence between the distribution of exchangeable arrays and
graph limits presented in [43] turned out to be quite fruitful, we enlist some classes
where an analogous starting approach was taken in order to describe the limit objects.

• Diaconis, Holmes, and Janson [44] considered threshold graphs, one of the char-
acterizations for them is that there are weights {wi} and a threshold t such that
i j ∈ E(G) if and only if wi + w j ≥ t. The authors extracted the limit object using ex-
changeability principles, the limits can be represented as symmetric, increasing,
{0, 1}-valued functions on the unit square [0, 1]2.

• Diaconis, Holmes, and Janson [45] regarded interval graphs that are graphs, that
can be equipped with a collection of intervals on the real line corresponding to
the nodes in such a way that an edge is present if and only if the intersection of
the intervals assigned to its vertices is nonempty. The limit space consists here of
probability measures on the triangle {(a, b) | 0 ≤ a ≤ b ≤ 1}.

• Partially ordered sets were analyzed by Janson [76] with respect to their limiting
behavior, the limit objects can be represented by measurable kernels W : 𝒮×𝒮 →
[0, 1] on an ordered probability space (𝒮,ℱ , µ,≺) (that is, ≺ is a partial order
satisfying that {(x, y) | x ≺ y} is ℱ × ℱ -measurable), such that (i) W(x, y) > 0
implies x ≺ y, and (ii) W(x, y)W(y, z) > 0 implies W(x, z) = 1. Later Hladky,
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Mathe, Patel, and Pikhurko [73] proved that 𝒮 can always be chosen to be the
uniform measure on [0, 1] with the usual total ordering.

• Hoppen, Kohayakawa, Moreira, Ráth, and Menezes Sampaio [75] dealt with
the nature of limits of permutation sequences, it turned out that the limits can be
described as measurable functions Z : [0, 1]2

→ [0, 1], where Z(x, .) is a distribution
function for any x ∈ [0, 1], and it holds for each y ∈ [0, 1] that

∫︀ 1

0
Z(x, y)dx = y.

As yet another analogy to classical probability theory Chatterjee and Varadhan [37]
developed a large deviation (LD) result for dense random graphs, showing among
other things that the conditional distribution of the Erdős-Rényi graphs does not re-
semble the unconditioned when it is imposed for it to have a large number of triangles,
furthermore it was shown that there is a double phase transition dependent on the
triangle density. Based on these concepts Chatterjee and Diaconis [36] studied the
LD behavior of exponential graph models with distribution p(G) ∼ exp(

∑︀k
i=1 βi fi(G)),

where the fi’s are graph parameters, and deduced that in many cases this setup leads
to Erdős-Rényi graphs in the long run.

On a further note, in order to highlight the impact of the concept we mention
that results by Olhede and Wolfe [100] and Orbanz and Roy [101] provide evidence
that principles developed in graph limit theory are entering the toolbox of Bayesian
statistics.

Most of the above are presented comprehensively in the recent survey textbook by
Lovász [89] with all the necessary details and further background.

Property testing for dense graphs
We give an overview of the state of the art in property testing in the dense graph
and hypergraph model. Roughly said, two main groups of graph properties emerged
that are testable: the partition problem type, and the forbidden subgraph type. The
k-colorability property can be regarded as being in the intersection of the two groups.

A partition problem is given by two non-negative k-vectors serving as lower and
upper bounds for the desired class sizes, and two matrices of order k that contain the
desired bounds for the edge densities between classes. A graph satisfies the partition
problem property, if it has a k-partition of its vertex set satisfying the bounds in the
description of the problem. This family contains several natural properties such as
k-colorability, having a cut with at least ρn2 edges, having a bisection into equal classes
such that at least ρn2 edges are crossing, or having a clique of size at least ρn. It was
shown in [66] that all these properties are 2-sided testable, with a sample complexity
at most Õ( k2

ε )2k+8, with some problem specific approaches leading to somewhat better
upper bounds.

Some special cases corresponding to MAX-rCSP were subsequently improved in
[59], [17], [14], and [98] which we discussed in the part on PTAS earlier in this section.
In the direction of partition problems testable with 1-sided testers we mention the
results that deliver improvements for proper k-colorability [5], for satisfiability for [7]

17



1 Introduction

graphs, and the generalization of colorability for hypergraphs [40]. Recently, Sohler
[114] proved the generalization for hypergraphs regarding satisfiability using a refined
analysis on the sampling procedure building on the previous approaches to obtain the
upper bound O((1/ε) log(1/ε)) on the sample complexity, which is optimal up to the
log-factor. For the general hypergraph partitioning problem given by density arrays
instead of matrices Fischer, Matsliah, and Shapira [57] showed testability with at most
polynomial sample complexity. The latter approach also incorporated the study of
simultaneous partitioning of a finite number of hypergraphs perhaps of different rank
making it suitable for testing regularity instances. That means a graph that satisfies
the property has not only a vertex partition where the edge densities are as desired,
but the partition is also ε-regular.

We turn to review the developments for properties corresponding to forbidden
substructures. As also discussed above, Alon and Shapira [7] showed that the property
of an rCSP (referred to by them as (r, d)-Function-SAT) being completely satisfiable is
testable using a sample size of O(ε−2), generalizing the result obtained for graph
and hypergraph node colorability problems. A more general class of properties of
graphs formulated as special ∃∀-type first order logical formulas had been shown to
be testable by Alon, Fischer, Krivelevich, and Szegedy [13]. The property studied
there is for a tester equivalent to the existence of a vertex coloring such that the colored
graph avoids some finite family of vertex colored subgraphs, and hereby encompasses
triangle-freeness as well as k-colorability. The approach, as several others below, use
the Regularity Lemma and give impractical bounds for the sample complexity.

It was shown subsequently by Alon and Shapira [11] that every monotone graph
property is testable, followed by a complete characterization of properties admitting
a one-sided tester [10] by the same authors. They showed that every hereditary prop-
erty (closed under taking induced subgraphs) is testable, and the converse, that every
property that is testable without false negatives is semi-hereditary. The same authors
investigated properties obtained by forbidding a single subgraph, all these are testable
as a consequence of the Graph Removal Lemma, but H-freeness is polynomially test-
able exactly when H is bipartite [8]. The case for forbidden induced subgraphs is quite
different, these require super-polynomial tests except for the cases K1,K2,P3(path with
3 edges), and C4(cycle of length 4) [9]. The first two are trivially polynomially testable,
the same was shown by Alon and Fox [4] for P3, while the situation for C4 remains
open. Also, in Alon and Fox [4] it was demonstrated that perfectness is not polyno-
mially testable. As a result regarding hypergraphs, it was established that hereditary
uniform hypergraph properties are testable by Rödl and Schacht [104], this was later
generalized to edge colored hypergraphs by Austin and Tao [24].

A complete combinatorial characterization of the class of testable properties was
given by Alon, Fischer, Newman, and Shapira [16] in terms of graph regularity. As
seen above, a regularity instance problem is a singleton partition problem with the
additional requirement that a satisfying partition of a graph has also to be regular.
The result of [16] can be roughly formulated as follows: If a property is testable, then
it is equivalent to satisfying a regularity instance taken from a finite family, which
characteristic is referred to as regular reducibility. Another characterization by Fischer
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and Newman [56] says that testability of any property is equivalent to the estimability
(or testability) of the numerical parameter of the edit distance to the property.

We mention that in all these cases one can employ canonical testers with at most
polynomial blow-up in the sample complexity, see Goldreich and Trevisan [65]. Fur-
ther, some well-studied properties are trivially testable: planarity is not satisfied by
any dense graph, having a prefect matching (or a triangle) can always be achieved by
adding a very little number of edges. Finally we would like to point out that although
most natural properties are testable, some are not: Fischer and Matsliah [55] showed
that it is not possible to tell the difference by oblivious (size-independent) sampling
between the cases that a graph is a disjoint union of two isomorphic ones, or is ε-far
from being such.

One main open question in the area is whether there is any property with exponential
sample complexity, since every positive result comes either with a polynomial or a
tower-type upper bound. Also, a characterization for properties with polynomial
sample complexity remains to be established. For a more complete picture we refer to
the surveys by Goldreich [63], and by Rubinfeld and Shapira [108].

1.5 Organization of the thesis

The organization of the thesis is as follows. In Chapter 2 we formally define CSP for-
mulas, give the connection to hypergraphs, and prove the representation theorem for
colored hypergraph and CSP limits by means of exchangeability. Chapter 3 presents
the concept of regular partitions of graphs, we prove some new version of the Reg-
ularity Lemma, afterwards we introduce graph parameter and property testing, and
demonstrate some results regarding them via limit theory. Chapter 4 continues with
the study of ground state energies in the limit space. Next, in Chapter 5, we estab-
lish the connection between colored hypergraph sequences and hypergraphons via
the ultralimit method, and use this link to derive results on a generalized version of
ground state energies, as well as a hypergraph version of the Regularity Lemma. In
the subsequent Chapter 6 we describe the concept of nondeterministic testing, prove
its equivalence to traditional testing for graphs and hypergraphs, which is followed by
some variants and applications. We conclude the thesis with Chapter 7 summarizing
our results, and giving an outlook on directions of further research.
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CHAPTER 2

Limits of hypergraphs and CSPs via
exchangeability

2.1 Introduction

In this chapter we develop a general framework for the CSP problems which de-
pends only on the principles of the array exchangeability without a recourse to the
weakly regular partitions used hitherto in the general graph and hypergraph set-
tings. Those fundamental techniques and results were worked out in a series of
papers by Borgs, Chayes, Lovász, Sós, Vesztergombi and Szegedy [30],[32],[91], and
[94] for graphs including connections to statistical physics and complexity theory,
and were subsequently extended to hypergraphs by Elek and Szegedy [49] via the
ultralimit method. The central concept of the r-graph convergence is defined through
convergence of sub-r-graph densities, or equivalently through weak convergence of
probability measures on the induced sub-r-graph yielded by uniform vertex sampling.
Our line of work particularly relies on ideas presented in [43] by Diaconis and Jan-
son, where the authors shed some light on the correspondence between combinatorial
aspects (that is, graph limits via weak regularity) and the probabilistic viewpoint of
sampling: Graph limits provide a countably infinite random graph model that has
the property of exchangeability. The precise definitions, references, and results will
be given below, here we only formulate our main contribution informally: We prove
a representation theorem for compact colored r-uniform directed hypergraph limits.
This says that every limit object in this setup can be transformed into a measurable
function on the (2r

− 2)-dimensional unit cube that takes values from the probability
distributions on the compact color palette, see Theorem 2.2.10 below. This extends the
result of Diaconis and Janson [43], and of Lovász and Szegedy [93]. As an application,
the description of the limit space of rCSP formulas is presented subsequent to the
aforementioned theorem.
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2 Limits of hypergraphs and CSPs via exchangeability

2.1.1 Definitions and preliminaries

General notation We provide here some standard notation that will be used through-
out the thesis. The setsN, Z, Z+, R, and R+ stand for the natural numbers, integers,
positive integers, real numbers, and positive real numbers, respectively. The set [n]
for some positive integer n is a short form for {1, 2, . . . ,n}. The expression Sn is the
symmetric group of degree n. The {0, 1}-valued function 1A is the indicator function
of the subset A of the domain, 1a is the indicator of an element a of the domain. For
a countable set S and an integer r the subset

(︀S
r

)︀
of the power set of S constitutes of

the subsets of S of cardinality r,
(︀n

r

)︀
is the cardinality of

(︀[n]
r

)︀
for non-negative integers

n and r, and as a common convention
(︀0

0

)︀
= 1. The symbols P and E denote the

probability of an event, and the expectation of a random variable, respectively. For
a real measurable function f defined on the measure space (Ω,𝒜, µ), and p ≥ 1 the
p-norm of f is ‖ f ‖p = (

∫︀
Ω
| f |pdµ)1/p, and the supremum or the maximum norm of f

is ‖ f ‖∞ = supω∈Ω | f (ω)|. If we talk about a measurable space (Ω,𝒜), then the space
of continuous functionals on Ω is C(Ω), whereas 𝒫(Ω) denotes the space of regular
probability measures on Ω.

CSP formulas We will consider the objects called rCSP formulas that are used to
define instances of the decision and optimization problems called rCSP and MAX-
rCSP, respectively. In the current framework a formula consists of a variable set and
a set of boolean or integer valued functions. Each of these functions is defined on a
subset of the variables, and the sets of possible assignments of values to the variables
are uniform. Additionally, it will be required that each of the functions, which we will
call constraints in what follows, depend exactly on r of the variables.

For the treatment of an rCSP (of a MAX-rCSP) corresponding to a certain formula we
are required to simultaneously evaluate all the constraints of the formula by assigning
values to each of the variables in the variable set. If we deal with an rCSP optim-
ization problem on some combinatorial structure, say on graphs, then the formula
corresponding to a certain graph has to be constructed according to the optimization
problem in question. The precise definitions will be provided next.

Let r ≥ 1, K be a finite set, and f be a boolean-valued function f : Kr
→ {0, 1} on

r variables (or equivalently f ⊆ Kr). We call f a constraint-type on K in r variables,
𝒞 = 𝒞(K, r) denotes the set of all such objects.

Definition 2.1.1 (rCSP formula). Let V = {x1, x2, . . . , xn} be the set of variables, xe =
(xe1 , . . . , xer) ∈ Vr and f a constraint-type on K in r variables. We call an n-variable function
ω = ( f ; xe) : KV

→ {0, 1} with ω(l1, . . . , ln) = f (le1 , . . . , ler) a constraint on V in r variables
determined by an r-vector of constrained variables and a constraint type.

We call a collection F of constraints on V(F) = {x1, x2, . . . , xn} in r variables of type 𝒞(K, r)
for some finite K an rCSP formula.

Two constraints ( f1; xe1) and ( f2; xe2) are said to be equivalent if they constrain the
same r variables, and their evaluations coincide, that is, whenever there exists a π ∈ Sr
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2.1 Introduction

such that e1 = π(e2) (here π permutes the entries of e2) and f1 = π̂( f2), where [π̂( f )](l) =
f (π(l)). Two formulas F1 and F2 are equivalent if there is a bijection φ between their
variable sets such that there is a one-to-one correspondence between the constraints
of F1 and F2 such that the corresponding pairs ( f1; xe1) ∈ F1 and ( f2; xe2) ∈ F2 satisfy
( f1;φ(xe1)) ≡ ( f2; xe2).

In the above definition the set of states of the variables in V(F) denoted by K is not
specified for each formula, it will be considered as fixed similar to the dimension r
whenever we study a family of rCSPs. We say that F is symmetric, if it contains only
constraints with constraint-types which are invariant under the permutations of the
constrained variables. When we relax the notion of the types to be real or 𝒦 -valued
functions on Kr with 𝒦 being a compact space, then we speak of weighted rCSP
formulas.

The motivation for the name CSP formula is immediately clear from the notation
used in Definition 2.1.1 if we consider constraints to be satisfied at some point in Kn,
whenever they evaluate to 1 there. Most problems defined on these objects ask for
parameters that are, in the language of real analysis, global or conditioned extreme
values of the objective function given by an optimization problem and a formula. A
common assumption is that equivalent formulas should get the same parameter value.

Definition 2.1.2 (MAX-rCSP). Let F be an rCSP formula over a finite domain K. Then the
MAX-rCSP value of F is given by

MAX−rCSP(F) = max
l∈KV(F)

∑︁
ω=( f ;xe)∈F

ω(l), (2.1)

and F is satisfiable, if MAX−rCSP(F) = |{ω | ω = ( f ; xe) ∈ F }|.

Such problems are for example MAX-CUT, fragile MAX-rCSP, MAX-3-SAT, and
Not-All-Equal-3-SAT, where only certain constraint types are allowed for instances, or
MAX-BISECTION, where additionally only specific value assignments are permitted
in the above maximization. In general, formulas can also be viewed as directed r-
graphs, whose edges are colored with constraint types (perhaps with multiple types),
and we will exploit this representation in our analysis.

Typically, we will not store and recourse to an rCSP formula F as it is given by its
definition above, but we will only consider the r-array tuple (Fz)z∈Kr , where

Fz(e) =
∑︁
φ∈Sr

∑︁
( f ;xφ(e))∈F

f (zφ(1), . . . , zφ(r)) (2.2)

for each e ∈ [n]r. The data set (Fz)z∈Kr is called the evaluation representation of F, or short
eval(F), we regard eval(F) as a parallel colored (with colors from [q]r) multi-r-graph,
see below. We impose a boundedness criteria on CSPs that will apply throughout the
chapter, that means we fix d ≥ 1 for good, and require that ‖Fz

‖∞ ≤ d for every z ∈ Kr

and CSP formula F with eval(F) = (Fz)z∈Kr in consideration. We note that for each z ∈ Kr,
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2 Limits of hypergraphs and CSPs via exchangeability

e ∈ [n]r and φ ∈ Sr we have the symmetry Fz(e) = Fzφ(1),...,zφ(r)(eφ(1), . . . , eφ(r)), also, on the
diagonal Fz is 0.

The main motivation for what follows in the current chapter originates from the
aim to understand the long-range behavior of a randomly evolving rCSP formula
together with the value of the corresponding MAX-rCSP by making sense of a limiting
distribution. This task is equivalent to presenting a structural description of rCSP
limits analogous to the graph limits of [91].

The convergence notion should agree with parameter estimation via sampling. In
this setting we pick a set of variables of fixed size at random from the constrained set
V(F) of an rCSP formula F defined on a large number of variables, and ask for all the
constraints in which the sampled variables are involved and no other, this is referred
to as the induced subformula on the sample. Then we attempt to produce some
quantitative statement about the parameter value of the original formula by relying
only on the estimation of the corresponding value of the parameter on a subformula,
see Definition 3.2.1 in Chapter 3 below, where we deal in-depth with testability.

Having formally introduced the notion of rCSP formulas and MAX-rCSP, we proceed
to the outline of the necessary notation and to the analysis of the limit behavior
regarding the colored hypergraph models that are used to encode these formulas.

Graphs and hypergraphs Simple r-uniform hypergraphs, r-graphs in short, on n
vertices forming the family Πr

n are subsets G of
(︀V(G)

r

)︀
with |V(G)| = n, where V(G)

is the vertex set of G and the size of such a G is n, and the elements of
(︀[n]

r

)︀
are r-

edges, or simply edges. We will regard hypergraphs also as symmetric subsets of
Kr([n]) = [n]r

∖ diag([n]r), or explicitly write AG for the adjacency array of G. The rank
of an r-uniform hypergraph is r.

For some arbitrary set𝒦 , denote by Π(𝒦 ) = Πr(𝒦 ) the set of all unlabeled𝒦 -colored
undirected r-uniform hypergraphs, in short (𝒦 , r)-graphs, where we will suppress r
in the notation, when it is clear which r is meant (alternatively, Π(𝒦 ) denotes the
isomorphism classes of the node labeled respective objects). Also, let Πr

n(𝒦 ) denote
the subset of Πr(𝒦 ) whose elements have vertex cardinality n. Let k be a positive
integer, then Πr

n([k]) (also denoted by Πr,k
n for simplicity) is the set of k-colored r-graphs

of size n, their elements are partitions G = (Gα)α∈[k] of
(︀[n]

r

)︀
into k classes, we say that

color α assigned to e ∈
(︀[n]

r

)︀
(short G(e) = α) whenever e ∈ Gα. In this sense simple

r-graphs are regarded as 2-colored. Additionally we have to introduce the special
color ι for loop edges that are multisets of [n] with cardinality r having at least one
element that has a multiplicity at least 2. Let Π̃(𝒦 ), Π̃r(𝒦 ), Π̃r

n(𝒦 ), and Π̃r
n([k]) denote

the directed counterparts of the above families.
Let G(k,G) denote the random induced subgraph of G, that is an element of any of

the above a families, on the set T ⊂ V(G) that is chosen uniformly among the subsets
of V(G) of cardinality k. Note that G(k,G) belongs to the same family as G.

For a finite set S, let h0(S) and h(S) denote the power set and the set of nonempty
subsets of S, respectively, and h(S,m) the set of nonempty subsets of S of cardinality
at most m, also h0(S,m) = h(S,m) ∪ {∅}. A 2r

− 1-dimensional real vector xh(S) denotes
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2.2 Limits of𝒦 -colored r-uniform directed hypergraphs

(xT1 , . . . , xT2r−1), where T1, . . . ,T2r−1 is a fixed ordering of the nonempty subsets of S
with T2r−1 = S, for a permutation π of the elements of S the vector xπ(h(S)) means
(xπ*(T1), . . . , xπ*(T2r−1)), where π* is the action of π permuting the subsets of S. Similar
conventions apply when x is indexed by other set families.

We say that an edge-𝒦 -colored sequence (Gn)∞n=1 converges if for every k the se-
quence of random graphs (G(k,Gn))∞n=1 converges in distribution, see more precisely
Definition 2.2.3 below. Consider a graph parameter, and suppose we know a sample
size q that is sufficient for an additive ε/2 estimation for its value through sampling.
Then, without any further knowledge about the smoothness of the parameter we can
assert, that the values for two graphs are ε-close if their sampled graphs of size q co-
incide with a probability larger than ε. This happens when they have approximately
the same number of isomorphic copies of any graph of size q as subgraphs, with the
appropriate normalization determined by the size of the two original graphs. This
remark justifies the focus on counting substructures.

The main content of the current chapter starts with the general setting of edge-𝒦 -
colored r-uniform hypergraphs in Section 2.2 where we obtain a characterization of the
limit space for compact𝒦 in Theorem 2.2.10. The rCSP setting will be considered as a
special case in this topic whose limit characterization will be derived as Corollary 2.3.2
in Section 2.3. Some of the basic cases are already settled regarding the representation of
the limits prior to our work. Without claiming to provide a complete list of previously
established results we refer to Lovász and Szegedy [91], [93], [89] for the r = 2, general
𝒦 , undirected case, to Elek and Szegedy [49] for the general r, 𝒦 = {0, 1}, undirected
case; and Diaconis and Janson [43] for r = 2, 𝒦 = {0, 1}, directed and undirected case.
These three approaches are fundamentally different in their proof methodology (they
rely on weak regularity, ultralimits, and exchangeability principles, respectively) and
were respectively further generalized or applied by Zhao [119] to general r, by Aroskar
[21] to the weighted case, and by Austin [23] to general r.

2.2 Limits of 𝒦 -colored r-uniform directed
hypergraphs

Let 𝒦 be a compact Polish space and r ≥ 1 an integer. Recall that a space 𝒦 is called
Polish if it is a separable completely metrizable topological space. In what follows we
will consider the limit space of 𝒦 -colored r-uniform directed hypergraphs, or with
different words r-arrays with non-diagonal entries from 𝒦 , and the diagonal entries
are occupied by a special element which also can be in𝒦 , but in general this does not
have to be the case.

2.2.1 Definition of convergence

Let 𝒞 denote space C(𝒦 ) of continuous functionals on𝒦 , and let ℱ ⊂ 𝒞 be a countable
generating set with ‖ f ‖∞ ≤ 1 for each f ∈ ℱ , that is, the linear subspace generated by
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2 Limits of hypergraphs and CSPs via exchangeability

ℱ is dense in 𝒞 in the L∞-norm. We define the homomorphism densities next.

Definition 2.2.1. Let 𝒦 be an arbitrary set or space, and C(𝒦 ) be the set of continuous
functionals on𝒦 . If for some r ≥ 1 F ∈ Πr(C(𝒦 )) is a uniform directed graph with V(F) = [k]
and G ∈ Πr(𝒦 ), then the homomorphism density of F in G is defined as

t(F,G) =
1

|V(G)|k
∑︁

φ : [k]→V(G)

k∏︁
i1,...,ir=1

F(i1, . . . , ir)(G(φ(i1), . . . , φ(ir))). (2.3)

The injective homomorphism density tinj(F,G) is defined similarly, with the difference that the
average of the products is taken over all injective φmaps (normalization changes accordingly).

In the special case when𝒦 is finite we can associate to the elements of Π(𝒦 ) functions
in Π(C(𝒦 )) through replacing the edge colors in 𝒦 by the corresponding indicator
functions. This way we have in accordance with the above definition that the density
of F ∈ Πr

k(𝒦 ) in G ∈ Πr(𝒦 ) is

t(F,G) =
1

|V(G)|k
∑︁

φ : [k]→V(G)

∏︁
e∈[k]r

1GF(e)(φ(e)),

where the product is 1 when G[φ([k])] = F as vertex labeled graphs, otherwise it is 0.
With other words, t(F,G) gives the number of labeled induced isomorphic copies of F
in G normalized by the number of all labeled induced subgraphs on k vertices.

The variant for uncolored r-graphs that was used in Lovász [89] and related works
is the t* density that counts the copies of F in G appearing as subgraphs, but not
necessarily as induced ones. More precisely, for uncolored (or 2-colored) F and G it is
defined as

t*(F,G) =
1

|V(G)|k
∑︁

φ : [k]→V(G)

∏︁
e∈F

1G(φ(e)), (2.4)

or alternatively as the probability that F ⊂ G[φ([k])] for an uniformly chosen map
φ : [k]→ V(G). Its advantage over the induced density is that in the simple graph case
the corresponding density in the limit has a more compact form.

Note that if F,G ∈ Πr,q, then tinj(F,G) = P(G(k,G) = F).
Let the map τ be defined as τ(G) = (t(F,G))F∈Π(ℱ ) ∈ [0, 1]Π(ℱ ) for each G ∈ Π(𝒦 ).

We set Π(𝒦 )* = τ(Π(𝒦 )) ⊂ [0, 1]Π(ℱ ), and Π(𝒦 )* to the closure of Π(𝒦 )*. Also, let
Π(𝒦 )+ = { (τ(G), 1/|V(G)|) | G ∈ Π(𝒦 ) } ⊂ [0, 1]Π(ℱ )

× [0, 1], and let Π(𝒦 )+ be the closure
of Π(𝒦 )+. The function τ+(G) = (τ(G), 1/|V(G)|) will be useful for our purposes,
because, opposed to τ, it is injective, which can be verified easily. For any F ∈ Π(ℱ )
the function t(F, .) on Π(𝒦 ) can be uniquely continuously extended to a function
t(F, .) on Π(𝒦 )+, this is due to the compactness of [0, 1]Π(ℱ )

× [0, 1]. For an element
Γ ∈ Π(𝒦 )+ ∖Π(𝒦 )+, let t(F,Γ) for F ∈ Π(ℱ ) denote the real number in [0, 1] that is the
coordinate of Γ corresponding to F.
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2.2 Limits of𝒦 -colored r-uniform directed hypergraphs

The functions τinj(G) and τ+
inj(G), and the sets Πinj(𝒦 ) = τinj(Π(𝒦 )) and Πinj(𝒦 )+ are

defined analogously. It was shown in [91] that

|tinj(F,G) − t(F,G)| ≤
|V(F)|2‖F‖∞

2|V(G)|
(2.5)

for any pair F ∈ Π(𝒞) and G ∈ Π(𝒦 ).
The precise definition of convergence will be given right after the next theorem

which is analogous to a result of [93].

Theorem 2.2.2. Let (Gn)∞n=1 be a random sequence in Π(𝒦 ) with |V(Gn)| tending to infinity
in probability. Then the following are equivalent.

(1) The sequence (τ+(Gn))∞n=1 converges in distribution in Π(𝒦 )+.

(2) For every F ∈ Π(ℱ ), the sequence (t(F,Gn))∞n=1 converges in distribution.

(3) For every F ∈ Π(𝒞), the sequence (t(F,Gn))∞n=1 converges in distribution.

(4) For every k ≥ 1, the sequence (G(k,Gn))∞n=1 of random elements of Π(𝒦 ) converges in
distribution.

If any of the above apply, then the respective limits in (2) and (3) are t(F,Γ) with Γ being a
random element of Π(𝒦 )+ given by (1), and also Γ ∈ Π(𝒦 )+ ∖Π(𝒦 )+, almost surely.

If t(F,Gn) in (2) and (3) is replaced by tinj(F,Gn), then the equivalence of the four statements
still persists and the limits in (2) and (3) are t(F,Γ).

If every Gn is concentrated on some single element of Π(𝒦 ) (non-random case), then the equi-
valence holds with the sequences in (1), (2), and (3) being numerical instead of distributional,
while (4) remains unchanged.

Proof. The equivalence of (1) and (2) is immediate. The implication from (3) to (2) is
also clear by definition.

For showing that (2) implies (3), we consider first an arbitrary F ∈ Π(⟨ℱ ⟩), where
⟨ℱ ⟩ is the linear space generated by ℱ . Then there exist F1, . . . ,Fl

∈ Π(ℱ ) on the
same vertex set as F, say [k], and λ1, . . . , λl ∈ R such that for any non-random
G ∈ Π(𝒦 ) and φ : [k] → V(G) it holds that

∏︀k
i1,...,ir=1 F(i1, . . . , ir)(G(φ(i1), . . . , φ(ir))) =∑︀l

j=1 λ j
∏︀k

i1,...,ir=1 F j(i1, . . . , ir)(G(φ(i1), . . . , φ(ir))). So therefore we can express t(F,G) =∑︀l
j=1 λ jt(F j,G). We return to the case when Gn is random. The weak convergence

of t(F,Gn) is equivalent to the convergence of each of its moments, its tth moment
can be written by the linearity of the expectation as a linear combination of a finite
number of mixed moments of the densities corresponding to F1, . . . ,Fl

∈ Π(ℱ ). For
an arbitrary vector of non-negative integers α = (α1, . . . , αl), let Fα be the element of
Π(ℱ ) that is the disjoint union α1 copies of F1, α2 copies of F2, and so on. It holds that
t(F1,Gn)α1 . . . t(Fl,Gn)αl = t(Fα,Gn), and in particular the two random variables on the
two sides are equal in expectation. Condition (2) implies that E[t(Fα,Gn)] converges
for each α, therefore the mixed moments of the t(Fi,Gn) densities and the moments
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2 Limits of hypergraphs and CSPs via exchangeability

of t(F,Gn) also do. This implies that t(F,Gn) also converges in distribution for any
F ∈ Π(⟨F⟩). Now let F′ ∈ Π(𝒞) and ε > 0 be arbitrary, and F ∈ Π(⟨F⟩) on the same
vertex set [k] as F′ be such that its entries are at most ε-far in L∞ from the corresponding
entries of F′. Then

|t(F′,G) − t(F,G)|

=

⃒⃒⃒⃒⃒
⃒ 1
|V(G)|k

∑︁
φ : [k]→V(G)

k∏︁
i1,...,ir=1

F(i1, . . . , ir)(G(φ(i1), . . . , φ(ir)))

−

k∏︁
i1,...,ir=1

F′(i1, . . . , ir)(G(φ(i1), . . . , φ(ir)))

⃒⃒⃒⃒⃒
⃒

=
1

|V(G)|k
∑︁

φ : [k]→V(G)

k∑︁
i1,...,ir=1

⃒⃒⃒⃒⃒
⃒⃒ ∏︁
( j1,..., jr)<(i1,...,ir)

F( j1, . . . , jr)(G(φ( j1), . . . , φ( jr)))

⃒⃒⃒⃒⃒
⃒⃒⃒⃒⃒⃒⃒

⃒⃒ ∏︁
( j1,..., jr)>(i1,...,ir)

F′( j1, . . . , jr)(G(φ( j1), . . . , φ( jr)))

⃒⃒⃒⃒⃒
⃒⃒⃒⃒⃒

F(i1, . . . , ir)(G(φ(i1), . . . , φ(ir))) − F′(i1, . . . , ir)(G(φ(i1), . . . , φ(ir)))
⃒⃒⃒

≤ krεmax{(‖F′‖∞ + ε)kr
−1, 1}

for any G ∈ Π(𝒦 ) (random or non-random), which implies (3), as ε > 0 was chosen
arbitrarily.

We turn to show the equivalence of (3) and (4). Let Πk(𝒦 ) ⊂ Π(𝒦 ) the set of elements
of Π(𝒦 ) with vertex cardinality k. The sequence (G(k,Gn))∞n=1 converges in distribution
exactly when for each continuous function f ∈ C(Πk(𝒦 )) on Πk(𝒦 ) the expectation
E[ f (G(k,Gn))] converges as n→∞. For each F ∈ Π(𝒞) and α ≥ 1, the function tαinj(F,G)
is continuous on Π|V(F)|(𝒦 ) and tinj(F,G) = tinj(F,G(|V(F)|,G)), so (3) follows from (4).

For showing the other direction, that (3) implies (4), let us fix k ≥ 1. We claim that
the linear function space M = ⟨t(F, .)|F ∈ Π(𝒞)⟩ ⊂ C(Πk(𝒦 )) is an algebra containing
the constant function, and that it separates any two elements of Πk(𝒦 ). It follows
that ⟨t(F, .)|F ∈ Π(𝒞)⟩ is L∞-dense in C(Πk(𝒦 )) by the Stone-Weierstrass theorem, which
implies by our assumptions that E[ f (G(k,Gn))] converges for any f ∈ C(Πk(𝒦 )), since
we know that E[tinj(F,G(k,Gn))] = E[tinj(F,Gn)] whenever |V(F)| ≤ k. We will see in
a moment that tinj(F, .) ∈ M, convergence of E[tinj(F,Gn)] follows from (2.5) and the
requirement that |V(Gn)| tends to infinity in probability.

Now we turn to show that our claim is indeed true. For two graphs F1,F2 ∈ Π(𝒞)
we have t(F1,G)t(F2,G) = t(F1F2,G) for any G ∈ Πk(𝒦 ), where the product F1F2 denotes
the disjoint union of the two 𝒞-colored graphs. Also, t(F,G) = 1 for the graph F on
one node with a loop colored with the constant 1 function. Furthermore we have that
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2.2 Limits of𝒦 -colored r-uniform directed hypergraphs

hom(F,G) = k|V(F)|t(F,G) ∈M for |V(G)| = k, so therefore

inj(F,G) =
∑︁

𝒫 partition of V(F)

(−1)|V(F)|−|𝒫|
∏︁
S∈𝒫

(|S| − 1)! hom(F/𝒫,G) ∈M,

where inj(F,G) = tinj(F,G)k(k − 1) . . . (k − |V(F)| + 1) and F/𝒫 ∈ Π|𝒫|(𝒞) whose edges are
colored by the product of the colors of F on the edges between the respective classes
of 𝒫. This equality is the consequence of the Mobius inversion formula, and that
inj(F,G) =

∑︀
𝒫 partition of V(F) hom(F/𝒫,G). For G and F defined on the node set [k] recall

that

inj(F,G) =
∑︁
φ∈Sk

k∏︁
i1,...,ir=1

F(i1, . . . , ir)(G(φ(i1), . . . , φ(ir))). (2.6)

Now fix G1,G2 ∈ Πk(𝒦 ) and let F ∈ Πk(𝒞) such that {F(i1, . . . , ir)(G j(l1, . . . , lr))} are
algebraically independent elements of R (such an F exists, we require a finite number
of algebraically independent reals, and can construct each entry of F by polynomial
interpolation). If G1 and G2 are not isomorphic, than for any possible node-relabeling
for G2 there is at least one term in the difference inj(F,G1) − inj(F,G2) written out in the
form of (2.6) that does not get canceled out, so therefore inj(F,G1) , inj(F,G2).

We examine the remaining statements of the theorem. Clearly, Γ < Π(𝒦 )+, because
|V(Gn)| → ∞ in probability. The results for the case where the map in (1) and the
densities in (2) and (3) are replaced by the injective version are yielded by (2.5), the
proof of the non-random case carries through in a completely identical fashion.

�

We are now ready to formulate the definition of convergence in Π(𝒦 ).

Definition 2.2.3. If (Gn)∞n=1 is a sequence in Π(𝒦 ) with |V(Gn)| → ∞ and any of the conditions
above of Theorem 2.2.2 hold, then we say that (Gn)∞n=1 converges.

We would like to add that, in the light of Theorem 2.2.2, the convergence notion is
independent from the choice of the family ℱ .

The next lemma gives information about the limit behavior of the sequences where
the vertex set cardinality is constant.

Lemma 2.2.4. Let (Gn)∞n=1 be a random sequence in Πk(𝒦 ), and additionally be such that
for every F ∈ Π(ℱ ) the sequences (tinj(F,Gn))∞n=1 converge in distribution. Then there exists a
random H ∈ Πk(𝒦 ), such that for every F ∈ Π(ℱ ) we have t(F,Gn)→ t(F,H) and tinj(F,Gn)→
tinj(F,H) in distribution.

Proof. We only sketch the proof. The distributional convergence of (Gn)∞n=1 follows
the same way as in the proof of Theorem 2.2.2, the part about condition (2) implying
(3) together with the part stating that (3) implies (4). The existence of a random H
satisfying the statement of the lemma is obtained by invoking the Riesz representation
theorem for positive functionals. �
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2 Limits of hypergraphs and CSPs via exchangeability

2.2.2 Exchangeable arrays
The correspondence analogous to the approach of Diaconis and Janson in [43] will be
established next between the elements of the limit space Π(𝒦 )+ that is compact, and
the extreme points of the space of random exchangeable infinite r-arrays with entries
in 𝒦 . These are arrays, whose distribution is invariant under finite permutations of
the underlying index set.

Definition 2.2.5 (Exchangeable r-array). Let (H(e1, . . . , er))1≤e1,...,er<∞ be an infinite r-array
of random entries from a Polish space𝒦 . We call the random array separately exchangeable if

(H(e1, . . . , er))1≤e1,...,er<∞

has the same probability distribution as

(H(ρ1(e1), . . . , ρr(er)))1≤e1,...,er<∞

for any ρ1, . . . , ρr ∈ SN collection of finite permutations, and jointly exchangeable (or simply
exchangeable), if the former holds only for all ρ1 = · · · = ρr ∈ SN.

It is clear that if we consider a measurable function f : [0, 1]h0([r])
→ 𝒦 , and inde-

pendent random variables uniformly distributed on [0, 1] that are associated with each
of the subsets ofN of cardinality at most r, then by plugging in these random variables
into f for every e ∈Nr in the right way suggested by a fixed natural bijection le : e→ [r],
the result will be an exchangeable random r-array. The shorthand Samp( f ) denotes
this law of the infinite directed r-hypergraph model generated by f .

The next theorem, states that all exchangeable arrays with values in 𝒦 arise from
some f in the former way.

Theorem 2.2.6. [78] Let𝒦 be a Polish space. Every𝒦 -valued exchangeable r-array (H(e))e∈Nr

has law equal to Samp( f ) for some measurable f : [0, 1]h0([r])
→ 𝒦 , that is, there exists a

function f , so that if (Us)s∈h0(N,r) are independent uniform [0, 1] random variables, then

H(e) = f (U∅,U{e1},U{e2}, . . . ,Ue∖{er},Ue) (2.7)

for every e = (e1, . . . , er) ∈Nr, where H(e) are the entries of the infinite r-array.

If H in the above theorem is invariant under permuting its coordinates, then the
corresponding function f is invariant under the coordinate permutations that are
induced by the set permuting Sr-actions.

Theorem 2.2.6 was first proved by de Finetti [41] (in the case 𝒦 = {0, 1}) and by
Hewitt and Savage [72] (in the case of general 𝒦 ) for r = 1, independently by Aldous
[2] and Hoover [74] for r = 2, and by Kallenberg [78] for arbitrary r ≥ 3. For equivalent
formulations, proofs and further connections to related areas see the recent survey of
Austin [23].

In general, there are no symmetry assumptions on f , in the directed case H(e) might
differ from H(e′), even if e and e′ share a common base set. In this case these two
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2.2 Limits of𝒦 -colored r-uniform directed hypergraphs

entries do not have the property of conditional independence over a σ-algebra given
by some lower dimensional structures, that means for instance the independence over
{Uα | α ( e } for an exchangeable r-array with law Samp( f ) given by a function f as
above.

With the aid of Theorem 2.2.6 we will provide a form of representation of the limit
space Π(𝒦 )+ through the points of the space of random infinite exchangeable r-arrays.
The correspondence will be established through a sequence of theorems analogous to
the ones stated and proved in [43, Section 2 to 5], combined with the compactification
argument regarding the limit space from [93], see also [89, Chapter 17.1] for a more
accurate picture. The proofs in our case are mostly ported in a straightforward way, if
not noted otherwise we direct the reader for the details to [43].

Let ℒ∞ = ℒ∞(𝒦 ) denote the set of all node labeled countably infinite 𝒦 -colored
r-uniform directed hypergraphs. Set the common vertex set of the elements of ℒ∞
to N, and define the set of [n]-labeled 𝒦 -colored r-uniform directed hypergraphs as
ℒn = ℒn(𝒦 ). Every G ∈ ℒn can be viewed as an element of ℒ∞ simply by adding
isolated vertices to G carrying the labelsN∖ [n] in the uncolored case, and the arbitrary
but fixed color c ∈ 𝒦 to edges incident to these vertices in the colored case, therefore
we think about ℒn as a subset of ℒ∞ (and also of ℒm for every m ≥ n). Conversely, if
G is a (random) element of ℒ∞, then by restricting G to the vertices labeled by [n], we
get G|[n] ∈ ℒn. If G is a labeled or unlabeled𝒦 -colored r-uniform directed hypergraph
(random or not) with vertex set of cardinality n, then let Ĝ stand for the random
element of ℒn (and also ℒ∞) which we obtain by first throwing away the labels of
G (if there where any), and then apply a random labeling chosen uniformly from all
possible ones with the label set [n].

A random element of ℒ∞ is exchangeable analogously to Definition 2.2.5 if its distri-
bution is invariant under any permutation of the vertex setN that only moves finitely
many vertices, for example infinite hypergraphs whose edge-colors are independently
identically distributed are exchangeable. An element of ℒ∞ can also be regarded as
an infinite r-array whose diagonal elements are colored with a special element ι that
is not contained in𝒦 , therefore the corresponding r-arrays will be𝒦 ∪ {ι}-colored.

The next theorem relates the elements of Π(𝒦 )+ to exchangeable random elements
of ℒ∞.

Theorem 2.2.7. Let (Gn)∞n=1 be a random sequence in Π(𝒦 ) with |V(Gn)| tending to infinity
in probability. Then the following are equivalent.

(1) τ+(Gn)→ Γ in distribution for a random Γ ∈ Π(𝒦 )+ ∖Π(𝒦 )+.

(2) Ĝn → H in distribution in ℒ∞(𝒦 ), where H is a random element of ℒ∞(𝒦 ).

If any of these hold true, then Et(F,Γ) = Etinj(F,H|[k]) for every F ∈ Πk(𝒞), and also, H is
exchangeable.

Proof. If G ∈ Π(𝒦 ) is deterministic and F ∈ Πk(ℱ ) with |V(G)| ≥ k then Etinj(F, Ĝ|[k]) =

tinj(F,G), where the expectation E is taken with respect to the random (re-)labeling Ĝ
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2 Limits of hypergraphs and CSPs via exchangeability

of G. For completeness we mention that for a labeled, finite G the quantity t(F,G)
is understood as t(F,G′) with G′ being the unlabeled version of G, also, F in t(F,G)
is always regarded a priori as labeled, however the densities of isomorphic labeled
graphs in any graph coincide. If we consider G to be random, then by the fact that
0 ≤ t(F,G) ≤ 1 (as ‖F‖∞ ≤ 1) we have that |EEtinj(F, Ĝ|[k])−Etinj(F,G)| ≤ P(|V(G)| < k) for
F ∈ Πk(ℱ ).

Assume (1), then the above implies, together with P(|V(Gn)| < k) → 0 and (1),
that EEtinj(F, Ĝn|[k]) → Et(F,Γ) (see Theorem 2.2.2). This implies that Ĝn|[k] → Hk in
distribution for some random Hk ∈ ℒk with Etinj(F,Hk) = Et(F,Γ), see Lemma 2.2.4,
furthermore, with appealing to the consistency of the Hk graphs in k, there exists a
random H ∈ ℒ∞ such that H|[k] = Hk for each k ≥ 1, so (1) yields (2).

Another consequence is that H is exchangeable: the exchangeability property is
equivalent to the vertex permutation invariance of the distributions of H|[k] for each
k. This is ensured by the fact that H|[k] = Hk, and Hk is the weak limit of a vertex
permutation invariant random sequence, for each k.

For the converse direction we perform the above steps in the reversed order using

|EEt(F, Ĝn|[k]) − Et(F,Gn) ≤ P(|V(Gn)| < k)

again in order to establish the convergence of (Et(F,Gn))∞n=1. Theorem 2.2.2 certifies
now the existence of the suitable random Γ ∈ Π(𝒦 )+∖Π(𝒦 )+, this shows that (2) implies
(1).

�

We built up the framework in the preceding statements Theorem 2.2.2 and The-
orem 2.2.7 in order to formulate the following theorem, which is the crucial ingredient
to the desired representation of limits.

Theorem 2.2.8. There is a one-to-one correspondence between random elements of Π(𝒦 )+ ∖

Π(𝒦 )+ and random exchangeable elements of ℒ∞. Furthermore, there is a one-to-one corres-
pondence between elements of Π(𝒦 )+ ∖ Π(𝒦 )+ and extreme points of the set of random ex-
changeable elements ofℒ∞. The relation is established via the equalitiesEt(F,Γ) = Etinj(F,H|[k])
for every F ∈ Πk(𝒞) for every k ≥ 1.

Proof. Let Γ a random element of Π(𝒦 )+ ∖ Π(𝒦 )+. Then by definition of Π(𝒦 )+ there
is a sequence (Gn)∞n=1 in Π(𝒦 ) with |V(Gn)| → ∞ in probability such that τ+(Gn) → Γ
in distribution in Π(𝒦 )+. By virtue of Theorem 2.2.7 there exists a random H ∈ ℒ∞ so
that Ĝn → H in distribution in ℒ∞, and H is exchangeable. The distribution of H|[k]

is determined by the numbers Etinj(F,H|[k]), see Theorem 2.2.2, Lemma 2.2.4, and the
arguments therein, and these numbers are provided by the correspondence.

For the converse direction, let H be random exchangeable element of ℒ∞. Then
let Gn = H|[n], we have Gn → H in distribution, and also Ĝn → H in distribution
by the vertex permutation invariance of Gn as a node labeled object. Again, we
appeal to Theorem 2.2.7, so τ+(Gn) → Γ for a Γ random element of Π(𝒦 )+ ∖ Π(𝒦 )+,
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2.2 Limits of𝒦 -colored r-uniform directed hypergraphs

which is determined completely by the numbers Et(F,Γ) that are provided by the
correspondence, see Theorem 2.2.7.

The second version of the relation between non-random Γ’s and extreme points
of exchangeable elements is proven similarly, the connection is given via t(F,Γ) =
Etinj(F,H|[k]) between the equivalent objects.

�

The characterization of the aforementioned extreme points in Theorem 2.2.8 was
given [43] in the uncolored graph case, we state it next for our general setting, but
refrain from giving the proof here, as it is completely identical to [43, Theorem 5.5.].

Theorem 2.2.9. [43] The distribution of H that is an exchangeable random element of ℒ∞ is
exactly in that case an extreme point of the set of exchangeable measures if the random objects
H|[k] and H|{k+1,... } are probabilistically independent for any k ≥ 1. In this case the representing
function f from Theorem 2.2.6 does not depend on the variable corresponding to the empty set.

2.2.3 Graphons as limit objects
In this subsection we encounter the first time the notion of a graphon (the term in-
troduced in [30]) in the thesis, that is a centerpiece of the whole work. We start by
describing the basic case of the definition corresponding to simple r-graphs, and then
proceed to the more general setting.

Kernels, graphons and sampling Let the r-kernel space Ξ̂r
0 denote the space of the

bounded measurable functions of the form W : [0, 1]h([r],r−1)
→ R, and the subspace

Ξr
0 of Ξ̂r

0 the symmetric r-kernels that are invariant under coordinate permutations π*

induced by some π ∈ Sr, that is W(xh([r],r−1)) = W(xπ*(h([r],r−1))) for each π ∈ Sr. We will
refer to this invariance in the thesis both for r-kernels and for measurable subsets of
[0, 1]h([r]) as r-symmetry. The kernels W ∈ Ξr

I take their values in some interval I, for
I = [0, 1] we call these special symmetric r-kernels r-graphons, and their set Ξr. In what
follows, λ as a measure always denotes the usual Lebesgue measure in Rd, where the
dimension d is everywhere clear from the context.

Analogously to the graph case we define for a positive integer q the space of q-
colored r-graphons by Ξr,q whose elements are referred to as W = (Wα)α∈[q] with each of
the Wα components being r-graphons. The special color ι that stands for the absence
of colors has to be also employed in this setting as rectangles on the diagonal might
correspond to loop edges, see below for the case when we represent a q-colored r-
graph as a graphon. The corresponding r-graphon Wι is {0, 1}-valued. Furthermore,
W has to satisfy

∑︀
α∈[q] Wα(x) = 1 − Wι(x) everywhere on [0, 1]h([r],r−1), so if Wι

≡ 0,
then

∑︀
α∈[q] Wα(x) = 1. For x ∈ [0, 1]h([r]) the expression W(x) denotes the color at x,

we have W(x) = α whenever
∑︀α−1

i=1 Wi(xh([r],r−1)) ≤ x[r] ≤
∑︀α

i=1 Wi(xh([r],r−1)). The space
of q-colored r-digraphons denoted by Ξ̃r,q is defined analogously with elements W =
(W(αT1 ,...,αTl ))αT1 ,...,αTl∈[q], where T1, . . . ,Tl are the orderings of the elements of [r]. The
symmetry assumption here is W(αT1 ,...,αTl )(xπ(h([r],r−1))) = W(απ(T1),...,απ(Tl)(xh([r],r−1)) for π ∈ Sr.
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2 Limits of hypergraphs and CSPs via exchangeability

For k ≥ 1 and W ∈ Ξr,q the random q-colored r-graph G(k,W) is generated as
follows. The vertex set ofG(k,W) is [k], first we have to pick uniformly a random point
(XS)S∈h([k],r−1) ∈ [0, 1]h([k],r−1), then conditioned on this choice we conduct independent
trials to determine the color of each edge e ∈

(︀[k]
r

)︀
with the distribution given by

Pe(G(k,W)(e) = α) = Wα(Xh(e,r−1)) corresponding to e. Recall that ι is a special color
which we want to avoid in most cases during the sampling process, therefore we will
highlight the conditions that have to be imposed on the above random variables so
that G(k,W) ∈ Πr,q. We also call G(k,W) a W-random graph, in the special case when
W is constant this is the Erdős-Rényi random graph.

For F ∈ Π
r,q
k , the F-density of W is defined as t(F,W) = P(F = G(k,W)), which can be

written following the above definition of the sampled random graph as

t(F,W) =

∫︁
[0,1]h([k],r−1)

∏︁
e∈([k]

r )
WF(e)(xh(e,r−1))dλ(xh([k],r−1)). (2.8)

If W ∈ Ξr, and F ∈ Πr is simple, then the above formula reduces to

t(F,W) =

∫︁
[0,1]h([k],r−1)

∏︁
e∈E(F)

W(xh(e,r−1))
∏︁

e<E(F)

(1 −W(xh(e,r−1)))dλ(xh([k],r−1)), (2.9)

also the non-induced version related to (2.4) is defined as t*(F,W) = P(F ⊂ G(k,W)), or
alternatively as

t*(F,W) =

∫︁
[0,1]h([k],r−1)

∏︁
e∈E(F)

W(xh(e,r−1))dλ(xh([k],r−1)). (2.10)

We turn to definition of the most general type of limit object we will use in this thesis.
Let 𝒦 be a compact Polish space, and W : [0, 1]h([r])

→ 𝒦 be a measurable function,
we will refer to such an object as a (𝒦 , r)-digraphon, their set is denoted by Ξ̃r(𝒦 ).
Note that there are no symmetry assumptions in this general case, if additionally W is
r-symmetric, then we speak about (𝒦 , r)-graphons, their space is Ξr(𝒦 ). For 𝒦 = {0, 1}
the set𝒫(𝒦 ) can be identified with the [0, 1] interval encoding the success probabilities
of Bernoulli trials to get the common r-graphon form as a function W : [0, 1]2r

−2
→ [0, 1]

employed in [49].
The density of a𝒦 -colored graph F ∈ Π̃k(C(𝒦 )) in the (𝒦 , r)-digraphon W is defined

analogously to (2.3) and (2.8) as

t(F,W) =

∫︁
[0,1]h([k],r)

∏︁
e∈[k]r

F(e)(W(xh(e,r)))dλ(xh([k],r)). (2.11)

For k ≥ 1 and an undirected W ∈ Ξr(𝒦 ) the random (𝒦 , r)-graph G(k,W) is defined
on the vertex set [k] by selecting a uniform random point (XS)S∈h([k],r) ∈ [0, 1]h([k],r) that
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2.2 Limits of𝒦 -colored r-uniform directed hypergraphs

enables the assignment of the color W(Xh(e)) to each edge e ∈
(︀[k]

r

)︀
. For a directed W

the sample point is as above, the color of the directed edge e ∈ [k]r is W(Xh(e)), but in
this case the ordering of the power set of the base set e of e matters in contrast to the
undirected situation and is given by e, as W is not necessarily r-symmetric.

Additionally we define the averaged sampled r-graph for 𝒦 ⊂ R denoted by
H(k,W), it has vertex set [k], and the weight of the edge e ∈

(︀[k]
r

)︀
is the conditional

expectation E[W(Xh(e)) | Xh(e,1)], and therefore the random r-graph is measurable with
respect to Xh([k],1). We will use the compact notation Xi for X{i} for the elements of the
sample indexed by singleton sets.

We define the random exchangeable r-array HW in ℒ∞ as the element that has law
Samp(W) for the (𝒦 , r)-digraphon W, as in Theorem 2.2.6. Furthermore, we define
ΓW ∈ Π(𝒦 )+ ∖Π(𝒦 )+ to be the element associated to HW through Theorem 2.2.7.

Now we are able to formulate the representation theorem for 𝒦 -colored r-uniform
directed hypergraph limits using the representation of exchangeable arrays, see (The-
orem 2.2.6). It is an immediate consequence of Theorem 2.2.7 and Theorem 2.2.8
above.

Theorem 2.2.10. Let (Gn)∞n=1 be a sequence in Π(𝒦 ) with |V(Gn)| → ∞ such that for every
F ∈ Π(ℱ ) the sequence t(F,Gn) converges. Then there exists a function W : [0, 1]h([r])

→ 𝒦

(that is W ∈ Ξr(𝒦 )) such that t(F,Gn) → t(F,ΓW) for every F ∈ Π(ℱ ). In the directed case
when the sequence is in Π̃(𝒦 ), then the corresponding limit object W is in Ξ̃r(𝒦 ).

We mention that t(F,ΓW) = t(F,W) for every F ∈ Π(C(𝒦 )) and W ∈ Ξr(𝒦 ). Al-
ternatively we can also use the form W : [0, 1]h([r],r−1)

→ 𝒫(𝒦 ) for (𝒦 , r)-graphons and
digraphons in Ξr(𝒦 ) whose values are probability measures, this representation was
applied in [93].

Directed graphs and graphons In previous works, for example in [43], the limit
object of a sequence of simple directed graphs without loops was represented by a
4-tuple of 2-graphons (W(0,0),W(1,0),W(0,1),W(1,1)) that satisfies

∑︀
i, j W(i, j)(x, y) = 1 and

W(1,0)(x, y) = W(0,1)(y, x) for each (x, y) ∈ [0, 1]2. A generalization of this representation
can be given in our case of the Π(𝒦 ) limits the following way. We only present here the
case when𝒦 is a continuous space, the easier finite case can be dealt with analogously.

We have to fix a Borel probability measure µ on 𝒦 , we set this to be the uniform
distribution if𝒦 ⊂ Rd is a domain or𝒦 is finite. The limit space consists of collections of
(R, r)-kernels W = (Wu)u∈𝒰, where𝒰 is the set of all functions u : Sr → 𝒦 . Additionally,
W has to satisfy

∫︀
𝒰

Wu(x)dµ⊗Sr(u) = 1 and 0 ≤ Wπ*(u)(x) = Wu(xπ*(h([r],r−1))) for each
π ∈ Sr and x ∈ [0, 1]h([r],r−1). As before, the action π* of π on [0, 1]h([r],r−1) is the induced
coordinate permutation by π, with the unit cubes coordinates indexed by non-trivial
subsets of [r]. Without going into further details we state the connection between the
limit form spelled out above and that in Theorem 2.2.10. It holds∫︁

U
Wu((xh([r],r−1))dµ⊗Sr(u) = P[(W(xπ*(h([r],r−1)),Y)π∈Sr) ∈ U]
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2 Limits of hypergraphs and CSPs via exchangeability

for every measurable U ⊂ 𝒰 and x ∈ [0, 1]h([r],r−1), where Y is uniform on [0, 1], and
the W on the right-hand side is a (𝒦 , r)-digraphon, whereas on the left we have the
corresponding representation as a (possibly infinite) collection of (R, r)-kernels.

Naive graphons, graphs as graphons In several applications, among them some
that are presented in the current thesis, it is more convenient to use a naive form for
the limit representation, from which the limit element in question is not decisively
retrievable. The naive limit space consists of naive (𝒦 , r)-graphons W : [0, 1]r

→ 𝒫(𝒦 ),
where now the arguments of W are indexed with elements of [r]. From a proper
r-graphon W : [0, 1]h([r])

→ 𝒦 we get its naive counterpart by averaging, that is the 𝒦 -
valued random variable E[W(xh([r],1),Uh([r],r−1)∖h([r],1),Y)|Y] has distribution W(x1, . . . , xr),
where (US)S∈h([r],r−1)∖h([r],1) and Y are i.i.d. uniform on [0, 1].

On a further note we introduce averaged naive (𝒦 , r)-graphons for the case, when
𝒦 ⊂ R, these are of the form W̃ : [0, 1]r

→ R and are given by complete averaging,
that is E[W(x1, . . . , xr,Uh([r])∖h([r],1),Y)] = W̃(x1, . . . , xr), where (US)S∈h([r])∖h([r],1) are i.i.d.
uniform on [0, 1]. A naive r-kernel is a real-valued, bounded function on [0, 1]r, or
equivalently on [0, 1]h([r],1).

We can associate to each G ∈ Πr
n(𝒦 ) an element WG ∈ Ξr(𝒦 ∪ {ι}) by subdividing

the unit r-cube [0, 1]h([r],1) into nr small cubes the natural way and defining the function
W′ : [0, 1]h([r],1)

→ 𝒦 that takes the value G(i1, . . . , ir) on [ i1−1
n , i1

n ]×· · ·×[ ir−1
n ,

ir
n ] for distinct

i1, . . . , ir, and the value ι on the remaining diagonal cubes, note that these functions are
naive (𝒦 , r)-graphons. Then we set WG(xh([r],r−1)) = W′(ph([r],1)(xh([r],r−1))), where ph([r],1) is
the projection to the suitable coordinates. The special color ιhere stands for the absence
of colors has to be employed in this setting as rectangles on the diagonal correspond
to loop edges. The corresponding r-graphon Wι is {0, 1}-valued. The sampled random
r-graphs G(k,WG) andH(k,WG) from the naive r-graphons are defined analogously to
the general case. If 𝒦 ⊂ R, then note that H(k,WG) = G(k,WG) for every G, because
the colors of G are all point measures.

Note that t(F,G) = t(F,WG), and

|tinj(F,G) − t(F,WG)| ≤

(︀k
2

)︀
n −

(︀k
2

)︀ (2.12)

for each F ∈ Π
r,q
k , hence the representation as naive graphons is compatible in the sense

that limn→∞ tinj(F,Gn) = limn→∞ t(F,WGn) for any sequence (Gn)∞n=1 with |V(Gn)| tending
to infinity. This implies that dtv(G(k,Gn),G(k,WGn))→ 0 as n tends to infinity.

We remark that naive and averaged naive versions in the directed case are defined
analogously.
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2.3 Representation of rCSP formulas as hypergraphs,
and their convergence

In this section we elaborate on how homomorphism and sampling is meant in the CSP
context. Recall Definition 2.1.1 for the way how we perceive rCSP formulas.

Let F be an rCSP formula on the variable set {x1, . . . , xn} over an arbitrary domain K,
and let F[xi1 , . . . , xik] be the induced subformula of F on the variable set {xi1 , . . . , xik}. Let
G(k,F) denote the random induced subformula on k uniformly chosen variables from
the elements of V(F).

It is clear using the terminology of Definition 2.2.5 that the relation ω = ( f ; xe) ∈
F[xi1 , . . . , xik] is equivalent to the relation

φ(ω) = ( fφ, xφ(e)) ∈ F[xi1 , . . . , xik] (2.13)

for permutations φ ∈ Sr, where fφ(l1, . . . , lr) = f (lφ(1), . . . , lφ(r)) and φ(e) = (eφ(1), . . . , eφ(r)).
This emergence of symmetry will inherently be reflected in the limit space, we will
demonstrate this shortly.

Special limits Let K = [q]. As we mentioned above, in general it is likely not to
be fruitful to consider formula sequences as sequences of C(K, r)-colored r-graphs
obeying certain symmetries due to constraint splitting. However, in the special case
when each r-set of variables carries exactly one constraint we can derive a meaningful
representation, MAX-CUT is an example. A direct consequence of Theorem 2.2.10 is
the following.

Corollary 2.3.1. Let r ≥ 1, and K be a finite set, further, let 𝒦 ⊂ C(K, r), so that 𝒦 is
permutation invariant. Let (Fn)∞n=1 be a sequence of rCSP formulas with |V(Fn)| tending
to infinity, and each r-set of variables in each of the formulas carries exactly one constraint
of type 𝒦 . If for every formula H obeying the same conditions the sequences (t(H,Fn))∞n=1
converge as (𝒦 , r)-graphs, then there exists a (𝒦 , r)-digraphon W : [0, 1]h([r])

→ 𝒦 such that
t(H,Fn)→ t(H,W) as n tends to infinity for every H as above.

Additionally, W satisfies for each x ∈ [0, 1]h([r]) and π ∈ Sr that W(xπ(h([r]))) = π̂(W(xh([r]))),
where π̂ is the action of π on constraint types in C(K, r) that permutes the rows and columns
of the evaluation table according to π, that is (π̂( f ))(l1, . . . , lr) = f (lπ(1), . . . , lπ(r)).

General limits via evaluation In the general case of rCSP formulas we regard them
as their evaluation representation eval.

For |K| = q we identify the set of rCSP formulas with the set of arrays whose entries
are the sums of the evaluation tables of the constraints on r-tuples, that is F with
V(F) = [n] corresponds to a map eval(F) : [n] × · · · × [n] → {0, 1, . . . , d}([q]r) that obeys
the symmetry condition given after (2.2). This will be the way throughout the thesis
we look at these objects from here on. It seems that storing the whole structure of
an rCSP formula does not provide any further insight, in fact splitting up constraints
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2 Limits of hypergraphs and CSPs via exchangeability

would produce non-identical formulas in a complete structure representation, which
does not seem sensible.

We denote the set {0, 1, . . . , d}([q]r) by L for simplicity, which one could also interpret as
the set of multisets whose base set is [q]r and whose elements have multiplicity at most
d. This perspective allows us to treat rCSPs as directed r-uniform hypergraphs whose
edges are colored by the aforementioned elements of L, and leads to a representation of
rCSP limits that is derived from the general representation of the limit set of Π(L). We
will show in a moment that the definition of convergence in the previous subsection
given by densities of functional-colored graphs is basically identical to the convergence
via densities of sub-multi-hypergraphs in the current case.

The definition of convergence for a general sequence of rCSP formulas, or equival-
ently of elements of Π(L), was given in Definition 2.2.3. We describe here the special
case for parallel multicolored graphs, see also [93].

Consider the evaluation representation of the rCSP formulas now as r-graphs whose
oriented edges are parallel multicolored by [q]r. The map ψ : eval(H) → eval(F) is a
homomorphism between two rCSP formulas H and F if it maps edges to edges of the
same color from the color set [q]r and is consistent when restricted to be a mapping
between vertex sets, ψ′ : V(H)→ V(F), for simple graphs instead of CSP formulas this
is the multigraph homomorphism notion.

Let H be an rCSP formula, and let H̃ be the corresponding element in C(L) on the
same vertex set such that if the color on the fixed edge e of H is the q-sized r-array
(Hz(e))z∈[q]r with the entries being non-negative integers, then the color of H̃ at e is∏︀
z∈[q]r

xHz(e)
z . More precisely, for an element A ∈ L the value is given by

[H̃(e)](A) =
∏︁
z∈[q]r

A(z)Hz(e).

The linear space generated by the set

L̃ =

⎧⎪⎪⎨⎪⎪⎩ ∏︁
z∈[q]r

xdz
z | 0 ≤ dz1,...,zr ≤ d

⎫⎪⎪⎬⎪⎪⎭
forms an L∞-dense subset in C(L), therefore Theorem 2.2.2 applies, and for a sequence
(Gn)∞n=1 requiring the convergence of t(F, eval(Gn)) for all F = H̃ with H ∈ Π(L) provides
one of the equivalent formulations of the convergence of rCSP formulas in the subfor-
mula density sense with respect to the evaluations.

The limit object will be given by Theorem 2.2.10 as the space of measurable functions
W : [0, 1]h([r])

→ L, where, as in the general case, the coordinates of the domain of W are
indexed by the non-empty subsets of [r]. In our case, not every possible W having this
form will serve as a limit of some sequence, the above mentioned symmetry in (2.13)
of the finite objects is inherited in the limit.

We state now the general evaluation rCSP version of Theorem 2.2.10.
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Corollary 2.3.2. Let (Fn)∞n=1 be a sequence of rCSP formulas that evaluate to at most d on
all r-tuples with |V(Fn)| → ∞ such that for every finite rCSP formula H obeying the same
upper bound condition the sequence (t(H̃, eval(Fn)))∞n=1 converges. Then there exists an (L, r)-
graphon W : [0, 1]h([r])

→ L such that t(H̃, eval(Fn))→ t(H̃,W) for every H. Additionally, W
satisfies for each x ∈ [0, 1]h([r]) and π ∈ Sr that W(xπ(h([r]))) = π̂(W(xh([r]))), where π̂ is as in
Corollary 2.3.1 when elements of L are considered as maps from [q]r to non-negative integers.

We should keep the notion of the naive and the averaged naive form of the repres-
entation of the limit object in mind, as discussed above towards the end of Section 2.2.
They will be utilized in further chapters.

Exchangeable partition-indexed processes We conclude the section with a re-
mark that is motivated by the array representation of rCSPs. The next form presented
seems to be the least redundant in some aspect, since no additional symmetry condi-
tions have to be fulfilled by the limit objects.

The most natural exchangeable infinite random object fitting the one-to-one corres-
pondence of Theorem 2.2.7 with rCSP limits is the following process, that preserves
every piece of information contained in the evaluation representation.

Definition 2.3.3. Let Nr
q = { 𝒫 = (P1, . . . ,Pq) | the sets Pi ⊂ N are pairwise disjoint and∑︀q

i=1 |Pi| = r } be the set of directed q-partitions of r-subsets ofN. We call the random process
(X𝒫)𝒫∈Nr

q
that takes values in some compact Polish space 𝒦 a partition indexed process. The

process (X𝒫)𝒫∈Nr
q

has the exchangeability property if its distribution is invariant under the

action induced by finite permutations ofN, i.e., (X𝒫)𝒫∈Nr
q

d
= (Xρ*(𝒫))𝒫∈Nr

q
for any ρ ∈ Sym0(N).

Unfortunately, the existence of a representation theorem for partition-indexed ex-
changeable processes analogous to Theorem 2.2.6 that offers additional insight over
the directed colored r-array version is not established, and there is little hope in this
direction. The reason for this is again the fact that there is no standard way of separat-
ing the generating process of the elements X𝒫 and X𝒫′ non-trivially in the case when𝒫
and𝒫′ have the same underlying base set of cardinality r but are different as partitions
into two non-trivial random stages with the first being identical for the two variables
and the second stage being conditionally independent over the outcome of the first
stage.
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CHAPTER 3

Graph parameter testability, norms,
distances

3.1 Introduction

This chapter contains the formal definition of testability via random uniform sampling
for dense combinatorial structures for both parameters and properties that is one of
the main subjects of the thesis. We gave a taste of known results in the introductory
Chapter 1, in the current chapter we aim to demonstrate how graph limit theory,
that we already encountered in Chapter 2, can be employed to reprove some of those
results, and to give new characterizations in analytical terms.

In order to do this we require an understanding of distances that are relevant for
this undertaking, which connects us to regular partitions of graphs.

We will further review the concept of this regularity notion together with the norms
and distances that arise in this context, some technical results obtained here will be
utilized in the subsequent Chapter 6. Our new versions of the regularity lemma,
both for graphs and uniform hypergraphs of higher rank might be relevant on their
own right. Here we highlight how they fit into the hierarchy of previous versions of
regularity lemmas in terms of the conditions imposed on suitable partitions on the
local and the global scale.

With the required tools at hand, we turn to the aforementioned part that shows the
relevance of limit theory techniques in testing and estimation. This part is followed by
a discussion on efficient testability that connects us directly to the topic of Chapter 4,
where we study extensively the efficiently testable graph and graphon parameters
given by the ground state energies.

We conclude the chapter with the discussion of the aspect of the limit concept with
regard to statistical physics, especially spin models. This connection had been estab-
lished in [32], here we recall their results, briefly investigate the situation regarding
uniform hypergraphs of higher order, and describe a set of relevant models.
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3 Graph parameter testability, norms, distances

3.2 Random sampling and testing

Recall the term G(k,G) for a uniformly sampled subgraph defined in Chapter 2. Ori-
ginally, in [30], the testability of (𝒦 , r)-graph parameters (which are real functions
invariant under r-graph-isomorphisms) was defined as follows.

Definition 3.2.1. A (𝒦 , r)-graph parameter f is testable, if for every ε > 0 there exists a
k(ε) ∈N such that for every k ≥ k(ε) and simple (𝒦 , r)-graph G on at least k vertices

P(| f (G) − f (G(k,G))| > ε) < ε.

The minimal function k that satisfies this condition is the sample complexity of f and is denoted
by q f .

A (𝒦 , r)-graphon parameter f is a measurable functional on the space of r-graphons
that is invariant under graphon equivalence (meaning that the moments t(F,Wi) for W1

and W2 all F coincide), for r = 2 this is the action induced by a measure preserving map
φ from [0, 1] to [0, 1], that is, f (W) = f (Wφ), where Wφ(x, y) = W(φ(x), φ(y)). For general
r, see the uniqueness statements in Chapter 5 that formulate the r-graphon equivalence
in terms of the existence of certain structure preserving maps on the graphon domain.

A graphon parameter 1 may give rise to a graph parameter f through f (G) =
1(WG), the reverse is not possible in general as graph parameters are not required
to be invariant under equitable blow-ups of their vertices. The testability in the
graphon case is defined analogously to Definition 3.2.1, with the difference that we
have to additionally require the existence of a graph parameter f̂ in order to be able
approximate f (W) by the quantity f̂ (G(k,W)).

A closely related notion to parameter testing is property testing. A simple graph
property 𝒫 is characterized by the subset of the set of simple graphs containing the
graphs which have the property, in what follows 𝒫will be identified with this subset.
Informally, 𝒫 can be described as testable if we can distinguish between the cases
that an instance has 𝒫, and that it requires many edge modifications to reach a graph
that has the property through the means of uniform vertex sampling with a certain
confidence.

We have seen the most general form of the definition of testability for graph proper-
ties in Section 1.2.1. Here, we restrict ourselves to the canonical version, and employ
it throughout the thesis. In this setting we reduce the scope of a possible tester by
requiring it to completely inspect a sampled induced graph, and to reach its decision
deterministically. This framework couples sample complexity (vertex cardinality of
the sample) and query complexity (number of accesses to the adjacency matrix), thus
it eliminates the need of algorithmic design on the sampled graph if we only aim for
the sample complexity up to a polynomial factor.

The number of queries satisfying the formulation below can always be chosen to be
at most quadratic in the more general non-canonical one, but as shown in [64] there
exist properties, where this quadratic increase is truly a consequence of the restrictive
definition, a tester feasible for the general definition can give a correct output with
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the same quality by only inspecting partially the representation of the sampled graph.
Such a tester makes its edge queries in general sequentially and utilizes the information
it has gained for the further choice of queries, and is called adaptive.

Definition 3.2.2. 𝒫 is testable, if there exists another graph property 𝒫′, such that

(a) P(G(k,G) ∈ 𝒫′) ≥ 2
3 for every k ≥ 1 and G ∈ 𝒫, and

(b) for every ε > 0 there is a k(ε) such that for every k ≥ k(ε) and G with d1(G,𝒫) ≥ ε we
have that P(G(k,G) ∈ 𝒫′) ≤ 1

3 ,

where d1 is the normalized edit distance between graphs. The minimal function k(.) that satisfies
this condition is the sample complexity of 𝒫 and is denoted by q𝒫. The definition of testable
(𝒦 , r)-graph properties is analogous.

As for parameters, also here the testability notion can be extended to graphon
properties in a straightforward way.

Note that 1
3 and 2

3 in the definition can be replaced by arbitrary constants 0 < a <
b < 1, this change may alter the corresponding certificate 𝒫′ and the function k, but
not the characteristic of testability. It was mentioned in [89] that once the testability of
𝒫 is established, the test property can be always chosen to be

𝒫
′ =

⎧⎪⎪⎨⎪⎪⎩ G | |V(G)| = 1, or δ�(G,𝒫) ≤
20√︀

log |V(G)|

⎫⎪⎪⎬⎪⎪⎭ , (3.1)

where δ� is the cut distance between graphs, see Definition 3.3.6 below.
One link, first established by Fischer and Newman [56], subsequently reproved

with the graph limit machinery by Lovász and Szegedy [94], between the notions of
qualitative (property) and quantitative (parameter) testing is presented below. These
concepts may be extended to the infinitary space of graphons, where a similar notion
of sampling is available.

Lemma 3.2.3. [56][94] 𝒫 is a testable graph property if and only if d1(.,𝒫) is a testable graph
parameter.

Some properties can be described by imposing a condition on one or several para-
meters of the graph. We remark that in these cases in general we cannot point out in
advance that one type of testability is harder than the other in the sense of the required
sample size.

Remark 3.2.4. Consider the property of having a large clique of size at least αn in an
n-vertex graph for a fixed α > 0. This property falls into the category of partition
problems: we are looking for a bipartition (V1,V2) of the vertex set with sizes δ1n
and δ2n, and density matrix (µi j)1≤i, j≤2, and the conditions of our property are δ1 ≥ α
together with µ11 = 1. Therefore by [66] this property is testable, even with polynomial
sample size. On the other hand, the parameter of the maximal clique number density
is not testable. Suppose we are given a complete graph on 2n vertices minus a perfect
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matching, the clique number in this case is n, so the density is 1/2. Whenever we
sample a small subgraph of size independent of n, we will see with high probability a
complete graph, as no pairs will be selected, hence we have a maximal clique density
of 1.

For other instances, property testing can be the harder task. For example, it is known
that triangle-freeness is testable, albeit with a sample size that is at least exponential.
In contrast, we will see below that the triangle density only requires a sample of size
O(log(1/ε)(1/ε)2) for an ε-test.

We conclude our remarks on this issue that testing both the property that the density
of the densest |V(G)|/2-sized subgraph is at least α, and testing the corresponding
parameter are equally hard to test.

We presented an overview of the current state of the art in the area of testing in
the dense model in Chapter 1, here we will focus on their study via limit theory. One
important ingredient of that approach is the δ�-distance between graphs and graphons
introduced in [30] that is related to regular partitions of graphs.

3.3 Regularity lemmas and related notions

We are going to present next the famous Regularity Lemma (RL in short) by Szemerédi
[115], that has become the single most important tool in several branches of combin-
atorics where one studies large, dense structures. Informally the lemma states, that
any simple graph can be vertex partitioned into a bounded number of parts such that
most pairs of classes form random-like bipartite graphs, meaning that they resemble
random graphs generated by independent trails for the adjacency choices with some
common success probability.

Definition 3.3.1. Let G be a simple graph with subsets A and B of its vertex set, we call the
pair (A,B) ε-regular, if they are disjoint and for any A′ ⊂ A and B′ ⊂ B with |A′| ≥ ε|A| and
|B′| ≥ ε|B| it holds that ⃒⃒⃒⃒⃒

eG(A,B)
|A||B|

−
eG(A′,B′)
|A′||B′|

⃒⃒⃒⃒⃒
≤ ε, (3.2)

where eG(A,B) denotes the number of edges running between A and B in G.

Lemma 3.3.2 (Szemerédi’s Regularity Lemma). [115] For any ε > 0 there exists a positive
integer M(ε) ≥ 1

ε such that the following holds. For any graph G with |V(G)| ≥ M(ε) there
exists a partition of V(G) into m ≤M(ε) parts (V1, . . . ,Vm) such that

(i) for any i, j ∈ [m] we have ||Vi| − |V j|| ≤ 1, and

(ii) at least (1 − ε)m2 of the pairs (i, j) ∈ [m]2 satisfy that (Vi,V j) is ε-regular.

Such a partition is called a ε-regular partition.
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The main significance of the is lemma that it provides a uniform approximation of
any graph by weighted template graphs obtained by putting the original edge densities
onto the edges of the complete graph whose vertices are associated to the partition
classes (also called reduced graphs), therefore their order is upper bounded by M(ε)
that only depends on the quality ε of the approximation. Unfortunately, the original
proof ensures only that M(ε) is at most an exponential tower of twos of height O(ε−5),
the bound is essentially tight by Gowers [67], who showed that there exist graphs that
do not admit ε-regular partitions with the number of parts being at most a tower of
height Ω(ε−1/16). This feature of the lemma prevents it from practical applications,
however it serves as a central tool in extremal graph theory and other related areas,
and further, several versions of varying strength required for specific problems were
developed, see Komlós, Shokoufandeh, Simonovits, and Szemerédi [85]. Another
important aspect is that although the statement of the lemma is true for sub-dense
graphs (that have a sub-quadratic number of edges in the size of the vertex set), an
appropriate partition can always be chosen to be the trivial one. However, there exist
also sparse versions of the lemma, see Gerke and Steger [60] for a survey.

Lemma 3.3.2 was first used to obtain a proof for Roth’s Theorem, that is now known
as the first non-trivial case (k = 3) of Szemerédi’s Theorem, stating that for any k ≥ 1,
every subset A of the positive integers of positive upper density contains infinitely
many k-term arithmetic progressions. In the course of that work, the Triangle Removal
Lemma was established, which informally states that if a graph G contains o(|V(G)|3)
triangles, then it can be made triangle-free by removing o(|V(G)|2) of its edges. This is
a not very complicated consequence of the Regularity Lemma: If after cleaning up the
graph by removing edges with both endpoints inside the same class, between irregular
pairs of classes, and between pairs that have low edge density we still see a triangle,
then there must be many by the regularity of the non-empty pairs of the partition
classes. The result is one of the starting points of the area of Graph Property Testing,
also it has several generalizations that all fall under the name Removal Lemma, some
of them corresponding to other versions of the Regularity Lemma, see Conlon and Fox
[39] for a recent survey.

It is worth mentioning that the notion of an ε-regular pair in the definition of a
ε-regular partition can be replaced by the term δ-locally regular pair with δ = poly(ε).
A disjoint pair A,B ⊂ V(G) is δ-locally regular if |e4

G(A,B) − cG(A,B)| ≤ δ|A|4|B|4, where
cG(A,B) is the number of labeled 4-cycles in the bipartite graph spanned by the edges
of G running between A and B. This condition can be checked more easily than the
original, and is relevant for algorithmic versions of the lemma, see Fischer, Matsliah,
and Shapira [57].

Further direct consequences of almost every version of the RL are the accompanying
Counting Lemmas. These state that some statistic (for example, a specific subgraph
density) of the original graph can be well-estimated by only looking at the reduced
graph. We will use this term also more general as a continuity assertion, when there is
a distance measure between weighted graphs that encodes the regularity characteristic
in some sense, see Lemma 3.3.7 as an example below.

We continue with a well-known computationally more efficient version of the RL by
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3 Graph parameter testability, norms, distances

Frieze and Kannan [59], also called the Weak Regularity Lemma (WRL). Conceptually
it is very similar to the original one, it ensures the existence of a weakly regular
partition with significantly less classes, the trade-off being that the weaker regularity
here captures local modifications of the graph insufficiently for some applications such
as Removal Lemmas.

Definition 3.3.3. Let ε > 0, G be a simple graph and 𝒫 = (P1, . . . ,Pt) be a partition of its
vertex set. We call the partition weakly ε-regular if for any S,T ⊂ V(G) we have⃒⃒⃒⃒⃒

⃒⃒ 1
|V(G)|2

⎡⎢⎢⎢⎢⎢⎢⎣eG(S,T) −
t∑︁

i, j=1

eG(Pi,P j)
|Pi||P j|

|S ∩ Pi||T ∩ P j|

⎤⎥⎥⎥⎥⎥⎥⎦
⃒⃒⃒⃒⃒
⃒⃒ < ε. (3.3)

Lemma 3.3.4 (Weak Regularity Lemma). [59] For any ε > 0 there exists a positive integer
1
ε ≤ M(ε) ≤ 2

4
ε2 such that the following holds. For any graph G there exists an weakly-ε

regular partition of V(G) into at most M(ε) parts.

The extension of the lemma requiring the partition to have classes of almost equal
size or to refine a given partition is not overly involved, and it only increases the granted
upper bound M(ε) by a constant factor in the exponent. Similar to the situation for the
original lemma it has been established by Conlon and Fox [38] that the upper bound
on M(ε) in the statement is essentially the best possible.

A different formulation of the Regularity Lemma that contains a wide range of other
versions as special cases including the two discussed above is the general regularity
lemma in Hilbert spaces, see Lovász and Szegedy [92]. The aforementioned version
unifies the previous approaches in some sense.

Lemma 3.3.5. [92] Let 𝒦1,𝒦2, . . . be arbitrary subsets of a Hilbert spaceℋ . Then for every
ε > 0 and f ∈ ℋ there is an m ≤ 1

ε2 and there are fl ∈ 𝒦l and γl ∈ R (1 ≤ l ≤ m) such that for
every 1 ∈ 𝒦m+1 we have

|⟨1, f −
m∑︁

l=1

γl fl⟩| ≤ ε‖ f ‖‖1‖. (3.4)

As remarked in [92], one interpretation of the above lemma is related to orthogonal
decomposition in a Hilbert space: if the 𝒦i are orthogonal subspaces, then for each
n one can find for each f ∈ ℋ a f̂ ∈ ⊕i≤n𝒦i such that f − f̂ is orthogonal to each of
𝒦m+1,𝒦m+2, . . . . The above Lemma 3.3.5 says that if we relax the condition on the 𝒦i’s
to be subspaces there still is an m such that the error of f − f̂ is almost orthogonal to
𝒦m+1, for a linear combination f̂ in the form as above.

3.3.1 Regularity for graphs
We proceed by enumerating the norms and distances that are relevant for the current
work and are related to the graph limit theory and property testing. Later we also

46
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present the various analogous notions for r-uniform hypergraphs for arbitrary r. We
call the partition of [0, 1] into n consecutive intervals of equal measure the canon-
ical n-partition. If the canonical n-partition refines a partition, then we speak of an
ℐn-partition, and anℐn-set is the union of some classes of the canonical n-partition. Fur-
ther, a measure-preserving map from [0, 1] to [0, 1] is referred to as an ℐn-permutation
if it corresponds to a permutation of the classes of the canonical n-partition. Functions
on [0, 1] and [0, 1]2 are called ℐn-functions if they are constant on the classes of the
canonical n-partition and products of those, respectively.

Definition 3.3.6. The cut norm of a real n × n matrix A is

‖A‖� =
1
n2 max

S,T⊂[n]
|A(S,T)| ,

where A(S,T) =
∑︀

s∈S,t∈T A(s, t).
The cut distance of two labeled simple graphs F and G on the same vertex set [n] is

d�(F,G) = ‖AF − AG‖�,

where AF and AG stand for the respective adjacency matrices. The cut norm of a 2-kernel W is

‖W‖� = max
S,T⊂[0,1]

⃒⃒⃒⃒⃒∫︁
S×T

W(x, y)dxdy
⃒⃒⃒⃒⃒
, (3.5)

where maximum is taken over all pairs of measurable sets S and T. We speak of the n-cut norm
of 2-kernels when the maximum in (3.5) is only taken over pairs of ℐn-sets, it is denoted by
‖W‖⟨n⟩� . The cut norm of a k × k-tuple of 2-dikernels W = (W(α,β))k

α,β=1 is

‖W‖� =

k∑︁
α,β=1

‖W(α,β)
‖�.

The cut distance of two 2-graphons W and U is

δ�(W,U) = inf
φ,ψ
‖Wφ

−Uψ
‖�,

where the infimum runs over all pairs of measure-preserving map from [0, 1] to [0, 1], and the
graphon Wφ is defined as Wφ(x, y) = W(φ(x), φ(y)). Similarly, for (k, 2)-digraphons W and
U we have

δ�(W,U) = inf
φ,ψ
‖Wφ

−Uψ
‖�,

with the difference being component-wise. The cut distance for arbitrary unlabeled graphs F
and G is

δ�(F,G) = δ�(WF,WG),
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3 Graph parameter testability, norms, distances

the definitions for the colored directed version is identical. Another variant is for the case when
V(F) = [m] and V(G) = [n] such that m is a divisor of n. Then

δ̂⟨n⟩� (F,G) = min
φ

d�(F[n/m],Gφ),

where F[t] is the t-fold blow up of F and the minimum goes over all node relabellings φ of G.
In the case n = m we omit the upper index and use δ̂�.

In fact, δ̂� and δ� define only pseudometrics, graphs have distance zero whenever
they have equitable blow-ups that are isomorphic. For graphons we introduce the
term graphon equivalence for the case whenever the δ� distance is 0, but will refer to
the above with a slight abuse of notation as proper distances, see Section 5.4 for details
regarding the equivalence.

Observe that for two graphs F and G on the common node set [n] the distance
d�(F,G) = ‖WF −WG‖� = ‖WF −WG‖

⟨n⟩
� . Also note that in general for F and G with

identical vertex cardinalities δ�(F,G) is not necessarily equal to δ⟨n⟩� (F,G), however in
[30] it was demonstrated that δ�(F,G) ≤ δ̂�(F,G) ≤ 32(δ�(F,G))1/67.

An important property of the distances introduced above is that subgraph densities
are uniformly continuous in the topology defined by them, this is a certain type of
counting lemma, these were mentioned above related to regularity lemmas.

Lemma 3.3.7. [30] Let U and W be two graphons. Then for every simple graph F on q vertices
we have

|t(F,W) − t(F,U)| ≤
(︃
q
2

)︃
δ�(U,W).

The connection to graph limits is given in the next theorem from [30].

Theorem 3.3.8. [30] A graph sequence (Gn)n≥1 (a (k, 2)-digraph sequence (Gn)n≥1, respect-
ively) is convergent if and only if it is Cauchy in the δ� metric.

A remarkable feature of the δ� distance is that the deviation of a sampled graph
from the original graph or graphon can be upper bounded by a function that decreases
logarithmically in the inverse of the sample size. Originally, this result was established
to verify Theorem 3.3.8.

Lemma 3.3.9. [30] Let ε > 0 and let U be a graphon with 0 ≤ U ≤ 1. Then for q ≥ 2100/ε2 we
have

P
(︀
δ�(U,G(q,U)) ≥ ε

)︀
≤ exp

(︃
−4100/ε2 ε2

50

)︃
. (3.6)

One can easily deduce the RL version of Frieze and Kannan [59] from Lemma 3.3.5,
we turn our attention to the continuous formulation in the graphon space. For a
partition 𝒫 of [0, 1] and a 2-kernel W we obtain W𝒫 from W by averaging on every
rectangle given by product sets from 𝒫.
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Lemma 3.3.10 (Weak Regularity Lemma for 2-kernels). [59], [92] For every ε > 0 and
W ∈ Ξ̂2

0 there exists a partition 𝒫 = (P1, . . . ,Pm) of [0, 1] into m ≤ 2
8
ε2 parts, such that

‖W −W𝒫‖� ≤ ε‖W‖2. (3.7)

In the same way we get the version for k-colored graphons.

Lemma 3.3.11 (Weak Regularity Lemma for (k, 2)-digraphons). For every ε > 0 and
k-colored digraphon W there exists a partition𝒫 = (P1, . . . ,Pm) of [0, 1] into m ≤ 2k4 8

ε2 = t′k(ε)
parts, such that

d�(W,W𝒫) =

k∑︁
α,β=1

‖W(α,β)
− (W(α,β))𝒫‖� ≤ ε. (3.8)

When W = WG for a k-colored digraph G with vertex cardinality n, then one can require in
the above statement that 𝒫 is an ℐn-partition.

We would like to elaborate on the last result: Appealing to Lemma 3.3.5 we setℋ to
be the space of k2-tuples of L2([0, 1]2) functions with the inner product being the sum of
the component-wise L2-products. Further, each𝒦i consists of all k2-tuples of indicator
functions of the form 1S×T(x, y). Then for an arbitrary k-colored digraphon W we have
‖W‖2 ≤ 1 and for any element U of𝒦i we have ‖U‖2 ≤ k. It follows that there exists a V
that is a weighted sum of at most 4k2

ε2 elements of𝒦i and by this a proper step function

with at most 2
8k4

ε2 steps forming 𝒫 such that d�(W,V) ≤ ε/2. Since ‖.‖� is contractive
with respect to averaging we have d�(W,W𝒫) ≤ ε.

The following 2-kernel norm shares some useful properties with the cut-norm. Most
prominently it admits a regularity lemma that outputs a partition whose number of
classes is considerably below the tower-type magnitude in the desired accuracy. On
the other hand, it does not admit a straight-forward definition of a related distance
by calculating the norm of the difference of two optimally overlayed objects as in
Definition 3.3.6. This is the result of the general assumption that the partition 𝒫
involved in the definition always belongs to one of the graphons whose deviation we
wish to estimate. Therefore a relabeling of this graphon should also act on 𝒫, hence
symmetry fails. Its advantages in comparison to the cut norm will become clearer in
Chapter 6.

Definition 3.3.12. Let W be a 2-kernel and 𝒫 = (P1, . . . ,Pt) a partition of [0, 1]. Then the
cut-𝒫-norm of W is

‖W‖�𝒫 = max
Si,Ti⊂Pi

t∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒
∫︁

Si×T j

W(x, y)dxdy

⃒⃒⃒⃒⃒
⃒ . (3.9)

For two kernels U and W let dW,𝒫(U) denote the cut-𝒫-deviation of U with respect to W that
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3 Graph parameter testability, norms, distances

is defined by

dW,𝒫(U) = inf
φ
‖Uφ
−W‖�𝒫, (3.10)

where the infimum runs over all measure preserving maps from [0, 1] to [0, 1].
For n ≥ 1, a partition 𝒫 of [n] and a directed weighted graph H the cut-𝒫-norm of H on [n]

is defined as

‖H‖�𝒫 = ‖WH‖�𝒫′ , (3.11)

where 𝒫′ is the partition of [0, 1] induced by 𝒫 and the map j ↦→ [ j−1
n ,

j
n ).

The definition for the k-colored version is analogous.

Definition 3.3.13. Let W = (W(1,1), . . . ,W(k,k)) be a (k, 2)-dikernel and 𝒫 = (P1, . . . ,Pt) a
partition of [0, 1]. Then the cut-𝒫-norm of W is

‖W‖�𝒫 =

k∑︁
α,β=1

‖W(α,β)
‖�𝒫. (3.12)

For two (k, 2)-dikernels U and W let dW,𝒫(U) denote the cut-𝒫-deviation of U with respect to
W that is defined by

dW,𝒫(U) = inf
φ
‖Uφ
−W‖�𝒫 = inf

φ

k∑︁
α,β=1

‖(U(α,β))φ −W(α,β)
‖�𝒫, (3.13)

where the infimum runs over all measure preserving maps from [0, 1] to [0, 1].

It is not hard to check that the cut-𝒫-norm is in fact a norm on the space where we
identify two kernels when they differ only on a set of measure 0. From the definition
it follows directly that for arbitrary kernels U and W, and any partition 𝒫 we have
‖W‖� ≤ ‖W‖�𝒫 ≤ ‖W‖1 and δ�(U,W) ≤ dW,𝒫(U) ≤ δ1(U,W), the same is true for the
k-colored directed version.
Remark 3.3.14. We present a different description of the cut-𝒫-norm of W and W
respectively that will allow us to rely on results concerning the cut-norm of Defini-
tion 3.3.6 more directly. For a partition 𝒫 with t classes and A = (A j,l)t

j,l=1 ∈ {−1,+1}t×t,
let WA(x, y) = A j,lW(x, y) (WA is given by (W(α,β))A(x, y) = A j,lW(α,β)(x, y) respectively)
for x ∈ P j and y ∈ Pl. Then ‖W‖�𝒫 = max

A
‖WA
‖� and ‖W‖�𝒫 = max

A
‖WA
‖�.

This newly introduced norm admits a uniform approximation in the following sense
that is essential to conduct the proof of Theorem 6.1.5 in Chapter 6. We call a 2-kernel
a step function if there are partitions 𝒮 = (S1, . . . ,St) and 𝒯 = (T1, . . .Tt) of [0, 1] into
the same number of classes such that the kernel is constant on Si × T j for each i, j ∈ [t].
The kernel is a proper step function if the two partitions above can be chosen to be the
same. For a partition 𝒫 the integer t𝒫 denotes the number of its classes.
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Lemma 3.3.15. For every ε > 0, m0 : [0, 1]→N, k ≥ 1 and k-colored directed graphon W =

(W(α,β))α,β∈[k] there exists a partition𝒫 = (P1, . . . ,Pt) of [0, 1] into t ≤ (16m0(ε))2
k4

ε2

4 = tk(ε,m0(ε))
parts, such that for any partition 𝒬 of [0, 1] into at most max{t,m0(ε)} classes we have

‖W −W𝒫‖�𝒬 ≤ ε. (3.14)

If W = WG for some k-colored G with |V(G)| = n, then one can require that 𝒫 is an ℐn-
partition. If we want the parts to have equal measure (almost equal in the graph case), then the

upper bound on the number of classes is modified to ((2k)12m0(ε)/ε4)22k4/ε2

(2k)6/ε2 .

Proof. Fix an arbitrary ε > 0 and a W ∈ Ξ̃2,k, and set m0 = m0(ε). We construct a
sequence of partitions ℛ0,ℛ1, . . . ,ℛm such that ℛ0 = [0, 1] and each ℛi+1 refines the
preceding ℛi. The integer m is a priori undefined.

The construction is sequential in the sense that we assume that we have already
constructed ℛ0,ℛ1, . . . ,ℛi−1 before considering the ith step of the construction.

If for i ≥ 1 there exists a partition𝒬 = (Q1, . . . ,Qt𝒬) of [0, 1] into at most max{tℛi−1 ,m0}

classes such that

‖W −Wℛi−1‖�𝒬 > ε, (3.15)

then we proceed to the construction of ℛi. In the case of i = 1 we choose 𝒬 to have
exactly m0 parts of positive measure, this can be achieved since for any refinement 𝒬′

of 𝒬 we have ‖W −Wℛi−1‖�𝒬′ ≥ ‖W −Wℛi−1‖�𝒬. The inequality (3.15) implies that there
are α0, β0 ∈ [k] and measurable sets S and T such that

t𝒬∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒
∫︁

(S∩Qi)×(T∩Q j)
W(α0,β0)(x, y) −W(α0,β0)

ℛi−1
(x, y)dxdy

⃒⃒⃒⃒⃒
⃒ > ε/k2. (3.16)

In this case we define ℛi to be the coarsest common refinement of ℛi−1, 𝒬, and {S,T}
for some arbitrary choice of the latter partition and sets satisfying (3.16).

Set S j = S ∩Q j and T j = T ∩Q j for j ∈ [t𝒬] and U = W(α0,β0)
−W(α0,β0)

ℛi−1
, further define

the step function V =
∑︀

j,l∈[t𝒬] sgn(
∫︀

S j×Tl
U)1S j×Tl

In this case

‖Wℛi‖
2
2 − ‖Wℛi−1‖

2
2 =

k∑︁
α,β=1

⟨W(α,β)
ℛi

,W(α,β)
ℛi
⟩ − ⟨W(α,β)

ℛi−1
,W(α,β)

ℛi−1
⟩

=

k∑︁
α,β=1

⟨W(α,β)
ℛi
−W(α,β)

ℛi−1
,W(α,β)

ℛi
−W(α,β)

ℛi−1
⟩ (3.17)

=

k∑︁
α,β=1

‖W(α,β)
ℛi
−W(α,β)

ℛi−1
‖

2
2
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≥ ‖W(α0,β0)
ℛi

−W(α0,β0)
ℛi−1

‖
2
2

≥
1
‖V‖22

|⟨W(α0,β0)
ℛi

−W(α0,β0)
ℛi−1

,V⟩|2 (3.18)

=
1
‖V‖22

|⟨W(α0,β0)
−W(α0,β0)

ℛi−1
,V⟩|2 (3.19)

≥ |⟨W(α0,β0)
−W(α0,β0)

ℛi−1
,V⟩|2 (3.20)

> ε2/k4. (3.21)

Here we used first in (3.17) that ⟨W(α,β)
ℛi−1

,W(α,β)
ℛi
⟩ = ⟨W(α,β)

ℛi−1
,W(α,β)

ℛi−1
⟩, since W(α,β)

ℛi−1
is constant

onℛi−1 rectangles, and the integral of the two functions is equal on these rectangles. In
(3.18) we used the Cauchy-Schwarz inequality, then in (3.19) the fact that ⟨W(α0,β0)

ℛi
,V⟩ =

⟨W(α0,β0),V⟩, that is true by V being constant on ℛi rectangles and W(α0,β0)
ℛi

and W(α0,β0)

having the same integral value on taken onℛi rectangles. We concluded the calculation
in (3.20) by ‖V‖2 ≤ 1 and in (3.21) using the condition (3.16).

If for some i0 ≥ 0 we have

‖W −Wℛi0
‖�𝒬 ≤ ε (3.22)

for every partition 𝒬 of [0, 1] into at most max{tℛi0
,m0(ε)} classes, then we stop the

process and set 𝒫 = ℛi0 and m = i0.

We have ‖Wℛ j‖
2
2 ≤ ‖W‖

2
2 ≤ ‖W‖

2
1 ≤ 1 for each j ≥ 0, and at each non-terminating step

we showed ‖Wℛi‖
2
2 − ‖Wℛi−1‖

2
2 > ε

2/k4. Therefore by

‖Wℛ j‖
2
2 ≥

j∑︁
i=1

‖Wℛi‖
2
2 − ‖Wℛi−1‖

2
2,

for each j ≥ 1 we conclude that the process terminates definitely after a finite number
of steps and m ≤ k4/ε2. The partition 𝒫 satisfies

‖W −W𝒫‖�𝒬 ≤ ε

for each 𝒬 with t𝒬 ≤ max{t,m0(ε)} by the choice of m and the construction of the
partition sequence, we are left to verify the upper bound on t𝒫 in the statement of the
lemma.

We know that tℛ0 = 1, and if the partition does not terminate before the first step,
then we assume m0 ≤ tℛ1 . This lower bound does not affect generality, the partition 𝒬0

that certifies that ℛ0 is not sufficient for the choice of the partition 𝒫 in the statement
of the lemma is selected to have t𝒬0 = m0. For this particular choice of 𝒬0 and ℛ1 we
can reformulate the condition that the terminating partition ℛm has to fulfill as

‖W −Wℛm‖�𝒬 ≤ ε
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for every 𝒬 partition of [0, 1] into at most tℛm classes, since tℛi ≥ m0 for every i ≥ 1.
We set s(0) = 1, s(1) = 4m0, and further define s(i + 1) = 4s(i)2 for each i ≥ 1. We claim

that for each i ≥ 0 we have tℛi ≤ s(i), this can be easily verified by induction, since at
each step ℛi+1 is the coarsest common refinement of two partitions with tℛi classes and
two additional sets.

Further, for each i ≥ 1 we have now log 4s(i + 1) = 2 log 4s(i), therefore s(i) = (16m0)2i−1

4 ,

and consequently s(m) ≤ (16m0)2
k4

ε2 −1

4 .

The case regarding W = WG for G ∈ Π̃2,k
n follows completely identically, at each step

of the construction of the partitions ℛi, the partition 𝒬 and the sets S and T can be
chosen to be an ℐn-partition and sets, respectively. Hence, 𝒫 is an ℐn-partition, the
upper bound on t𝒫 is identical to the one in the general case.

In a similar way we can achieve that 𝒫 is an equiv-partition, or a ℐn-partition with
classes of almost equal size in the graph case respectively. Fix ε > 0 and a W ∈ Ξr,k. For
this setup we define the partition sequence somewhat differently, in particular each
element is an equiv-partition. Set ℛ0 = [0, 1] and each ℛi+1 refines the preceding ℛi.

If for i ≥ 1 there exists a partition𝒬 = (Q1, . . . ,Qt𝒬) of [0, 1] into at most max{tℛi−1 ,m0}

classes such that

‖W −Wℛi−1‖�𝒬 > ε, (3.23)

then we proceed to the construction ofℛi, otherwise we stop, as above, and set𝒫 = ℛi−1,
and m = i−1. Assume that we are facing the first case. Letℛ′i−1 be the coarsest common
refinement of ℛi−1, 𝒬, and {S,T}, where the sets S and T certify (3.23) as above. Then
‖Wℛ′i−1

‖
2
2−‖Wℛi−1‖

2
2 > ε

2/k4. Let ℛ′′i−1 = (R2
1, . . . ,R

2
l ) be the partition that is obtained from

the classes of ℛ′i−1 = (R1
1, . . . ,R

1
l ), such that the measure of each of the classes of ℛ′′i−1 is

an integer multiple of ε2/(14k6tℛ′i−1
) with λ(R1

i△R2
i ) ≤ ε2/(14k6tℛ′i−1

) for each i ∈ [l]. (We
disregard the technical difficulty of 1/ε2 not being an integer to facilitate readability.)

Claim 1. For any 2-kernel W : [0, 1]2
→ R and partitions 𝒫 = (P1, . . . ,Pl) and 𝒮 =

(S1, . . . ,Sl) we have

‖W𝒫 −W𝒮‖1 ≤ 7
l∑︁

i=1

λ(Pi△Si). (3.24)

To see this, let Ti = Pi ∩ Si, Ni = Pi ∖ Si, and Mi = Si ∖ Pi for each i ∈ [l], and let
𝒯1 = (T1, . . . ,Tl,N1, . . . ,Nl) and 𝒯2 = (T1, . . . ,Tl,M1, . . . ,Ml) be two partitions of [0, 1].
Then

‖W𝒫 −W𝒯1‖1 ≤

l∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒⃒⃒⃒ ∫︁
Ti×T j

∫︀
Pi×P j

W

λ(Pi)λ(P j)
−

∫︀
Ti×T j

W

λ(Ti)λ(T j)

⃒⃒⃒⃒⃒
⃒⃒⃒⃒ + 2

l∑︁
i=1

λ(Ni)
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≤

l∑︁
i, j=1

1
λ(Pi)λ(P j)λ(Ti)λ(T j)

⃒⃒⃒⃒⃒
⃒
∫︁

Ti×T j

λ(Ti)λ(T j)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫︁

Ni×T j

W +

∫︁
Ti×N j

W +

∫︁
Ni×N j

W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

[︁
λ(Ni)λ(T j) + λ(Ti)λ(N j) + λ(Ni)λ(N j)

]︁ ∫︁
Ti×T j

W

⃒⃒⃒⃒⃒
⃒ + 2

l∑︁
i=1

λ(Ni)

≤

l∑︁
i, j=1

2‖W‖∞
λ2(Ti)λ2(T j)

[︁
λ(Ni)λ(T j) + λ(Ti)λ(N j) + λ(Ni)λ(N j)

]︁
λ(Pi)λ(P j)λ(Ti)λ(T j)

+ 2
l∑︁

i=1

λ(Ni)

≤ 2
l∑︁

i, j=1

λ(Ni)λ(P j) + λ(N j)λ(Pi) + 2
l∑︁

i=1

λ(Ni)

= 6
l∑︁

i=1

λ(Ni).

Similarly,

‖W𝒮 −W𝒯2‖1 ≤ 6
l∑︁

i=1

λ(Mi),

and also

‖W𝒯2 −W𝒯1‖1 ≤ 2
l∑︁

i=1

λ(Mi),

which implies the claim.
By Claim 1 it follows that

⃒⃒⃒
‖Wℛ′i−1

‖
2
2 − ‖Wℛ′′i−1

‖
2
2

⃒⃒⃒
=

⃒⃒⃒⃒⃒
⃒⃒ k∑︁
α,β=1

∫︁
[0,1]2

(W(α,β)
ℛ′i−1

)2(x, y) − (W(α,β)
ℛ′′i−1

)2(x, y)dxdy

⃒⃒⃒⃒⃒
⃒⃒

≤

k∑︁
α,β=1

⃒⃒⃒⃒⃒
⃒
∫︁

[0,1]2
(W(α,β)
ℛ′i−1

(x, y) −W(α,β)
ℛ′′i−1

(x, y))(W(α,β)
ℛ′i−1

(x, y) + W(α,β)
ℛ′′i−1

(x, y))dxdy

⃒⃒⃒⃒⃒
⃒

≤

k∑︁
α,β=1

‖W(α,β)
ℛ′i−1
−W(α,β)

ℛ′′i−1
‖1

≤ 7k2
l∑︁

i=1

λ(R1
i△R2

i )
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≤ ε2/(2k4).

We finish with the construction of ℛi by refining ℛ′′i−1 into ε2/(14k6tℛ′i−1
) sets in total of

equal measure so that the resulting partition refines ℛ′′i−1. It follows that

‖Wℛi‖
2
2 − ‖Wℛ′′i−1

‖
2
2 ≥ 0, (3.25)

hence

‖Wℛi‖
2
2 − ‖Wℛi−1‖

2
2 ≥ ε

2/(2k4). (3.26)

The construction of the partitions terminates after at most 2k4/ε2 steps. The partition
𝒫 satisfies the norm conditions of the lemma, we are left to check whether it has the
right number of classes. Similarly as above, let s(0) = 1 and s(1) = 56m0k6/ε2, and
further for i ≥ 1 let s(i + 1) = 56k6s2(i)/ε2. It is clear from the construction that

tℛi ≤ s(i). Let a = 56k6/ε2, then it is not difficult to see that s(i) = (a2m0)2i−1

a . It follows that

t𝒫 ≤
((2k)12m0/ε4)22k4/ε2

(2k)6/ε2 .
The graph case also follows analogously to the general partition case we dealt with

above.
�

As seen in the proof, the upper bound on the number of classes in the statement of
the lemma is not the sharpest we can prove, we stay with the simpler bound for the
sake of readability. In the simple graph and graphon case the above reads as follows.

Corollary 3.3.16. For every ε > 0 and W ∈ Ξ2 there exists a partition 𝒫 = (P1, . . . ,Pm) of
[0, 1] into m ≤ 1621/ε2

/4 parts, such that

‖W −W𝒫‖�𝒬 ≤ ε. (3.27)

for each partition 𝒬 of [0, 1] into at most t𝒫 classes.
With the additional condition that the partition classes should have the same measure the

above is true with m ≤ (212/ε4)2(24/ε2)

26/ε2 .

We illustrate the form of the original Regularity Lemma in the graphon context in
order to provide a better understanding of the strength of the above statements.

Corollary 3.3.17. For every ε > 0 and W ∈ Ξ2 there exists a partition 𝒫 = (P1, . . . ,Pm) of
[0, 1] into m parts that is at most a tower of twos of height poly(1/ε), such that

sup
Si, j⊂Pi,Ti, j⊂P j

m∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒
∫︁

Si, j×Ti, j

W(x, y) −W𝒫(x, y)dxdy

⃒⃒⃒⃒⃒
⃒ < ε, (3.28)

where the supremum runs over all suitable measurable pairs Si, j and Ti, j for i, j ∈ [m].

55



3 Graph parameter testability, norms, distances

If we impose on the the condition in the supremum that Si, j be the same for each
j ∈ [m] and disjoint if varying i, similarly but switching the indices for Ti, j, then the
right hand side of (3.28) changes to the cut-𝒫-norm of W −W𝒫. Another equivalent
formulation of (3.28) is

sup
Si,Ti⊂[0,1]

m∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒
∫︁

(S j∩Pi)×(Ti∩S j)
W(x, y) −W𝒫(x, y)dxdy

⃒⃒⃒⃒⃒
⃒ < ε. (3.29)

3.3.2 Regular partitions of uniform hypergraphs
Again we start by presenting norms and distances, these generalize the graph in two
directions. This is followed by the corresponding regularity lemmas that are verified
by the virtue of Lemma 3.3.5 above. We start with the plain cut norm and distance
that is a straight-forward generalization of the notions for graphs and was employed
in [14]. We are going to utilize the norm as a substantial ingredient in Chapter 4.

Due to some shortcomings they can not be applied to certain problems in contrast
to the genuine r-cut norms which are to be presented subsequently.

Definition 3.3.18. The plain cut norm of an n × · · · × n real r-array A is

‖A‖� =
1
nr max

S1,...,Sr⊂[n]
|A(S1, . . . ,Sr)| ,

and the 1-norm of A is

‖A‖1 =
1
nr

n∑︁
i1,...,ir=1

|A(i1, . . . , ir)|.

The cut distance of two labeled r-graphs F and G on the same vertex set [n] is

d�(F,G) = ‖AF − AG‖�,

where F(S1, . . . ,Sr) =
∑︀

i j∈S j
F(i1, . . . , ir). The edit distance of the same pair is

d1(F,G) = ‖AF − AG‖1.

The continuous counterparts are described as follows.

Definition 3.3.19. The cut norm of a naive r-kernel W is

‖W‖� = max
S1,...,Sr⊂[0,1]

⃒⃒⃒⃒⃒
⃒
∫︁

S1×···×Sr

W(x)dλ(x)

⃒⃒⃒⃒⃒
⃒ ,

the cut distance of two naive r-kernels W and U is

δ�(W,U) = inf
φ,ψ
‖Wφ

−Uψ
‖�,
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where the infimum runs over all measure-preserving permutations of [0, 1], and the graphon Wφ

is defined as Wφ(x1, . . . , xr) = W(φ(x1), . . . , φ(xr)). The cut distance for arbitrary unlabeled
r-graphs or r-arrays F and G is

δ�(F,G) = δ�(WF,WG).

We remark that the above definition of the cut norm and distance is not satisfactory
from one important aspect for r ≥ 3: not all sub-r-graph densities are continuous
functions in the topology induced by this distance even in the most simple case, when
𝒦 = {0, 1}. Suppose that r = 3 and we have two random graph models, Gn and Hn on
the vertex set [n]. We generate the first one by generating an auxiliary Erdős-Rényi
2-graph with density 1/2 (i.e., 2-edges are included independently with probability
1/2), and include as edges the triangles that appear, for the second we pick edges
uniformly and independently at random with probability 1/8. For any triple of sets
S1,S2,S3 ⊂ [n] both eGn(S1,S2,S3) and eHn(S1,S2,S3) is highly concentrated around the
value |S1||S2||S3|

8 , therefore d�(Gn,Hn) tends to 0 almost surely (a precise calculation could
be executed using large deviation principles). However, the t*-density of the graph F
with E(F) = {{1, 2, 3}, {1, 2, 4}} and V(F) = [4] tend to different limits almost surely, in
particular t*(F,Gn)→ 1/32, while t*(F,Hn)→ 1/64.

Examples of subgraphs whose t*-densities behave well with respect to the above
norms are linear hypergraphs, that have the property that any two distinct edges
intersect at most in one vertex.

Nevertheless, for a number of problems this concept is sufficient, and above all,
computationally efficient, as we will see in Chapter 4 in the study of the testability
of ground state energies. In particular, we will show a closely related result to the
regularity lemma corresponding to this norm (not stated here explicitly), Lemma 4.2.4,
where the approximation is achieved by a linear combination of indicator functions of
rectangles.

The definitions of the genuine r-cut norms are given next that are stronger than the
plain cut norms above for each r. To give a hint on their relation, we mention that the
test sets here are sets of pairs, triplets, and so on, of the vertices according to the rank
r, whereas for the plain cut norm they are simply subsets of the vertex set.

The norms below show a good behavior with regard to subgraph densities for any
fixed r-graph, in contrast to the above case, we exploit this for our results in Chapter 6
dealing with uniform hypergraphs of higher rank. The r-cut norm independently
from the current work also appeared in the investigation of hypergraph limits by Zhao
[119], prior to this counting lemmas in the graph case indicated that such a norm might
be useful in the treatment of uniform hypergraphs.

Moreover, we introduce the cut-𝒫-norm for r-graphs analogous to the graph case
in Definition 3.3.12 and Definition 3.3.13, they are highly relevant for conducting the
technical proofs in Chapter 6.

Definition 3.3.20. Let r ≥ 1 and A be a real r-array of size n. Then the genuine r-cut norm
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of A is

‖A‖�,r =
1
nr max

Si⊂[n]r−1
∖diag([n]r−1)
i∈[r]

|A(r; S1, . . . ,Sr)|,

where A(r; S1, . . . ,Sr) =
∑︀n

i1,...,ir=1 A(i1, . . . , ir)
∏︀r

j=1 1S j(i1, . . . , i j−1, i j+1, . . . , ir), and the max-
imum goes over sets Si that are invariant under coordinate permutations as subsets of [n]r−1.

If 𝒫 = (Pi)t
i=1 is a partition of [n]r−1

∖ diag([n]r−1) with symmetric classes, then the cut-
(r,𝒫)-norm of A is

‖A‖�,r,𝒫 =
1
nr max

Si⊂[n]r−1
∖diag([n]r−1)
i∈[r]

t∑︁
j1,..., jr=1

|A(r; S1 ∩ P j1 , . . . ,Sr ∩ P jr)|,

where the maximum runs over symmetric sets.
The genuine r-cut norm of an r-kernel W is

‖W‖�,r = sup
Si⊂[0,1]h([r−1])

i∈[r]

⃒⃒⃒⃒⃒
⃒⃒∫︁
∩i∈[r]p−1

h([r]∖{i})(Si)
W(xh([r],r−1))dλ(xh([r],r−1))

⃒⃒⃒⃒⃒
⃒⃒ ,

where the supremum is taken over sets Si that are (r − 1)-symmetric, and ph(e) is the natural
projection from [0, 1]h([r],r−1) onto [0, 1]h(e). Furthermore, for a symmetric partition 𝒫 = (Pi)t

i=1
of [0, 1]h([r−1]) the cut-(r,𝒫)-norm of an r-kernel is defined by

‖W‖�,r,𝒫 = sup
Si⊂[0,1]h([r−1])

i∈[r]

t∑︁
j1,..., jr=1

⃒⃒⃒⃒⃒
⃒⃒∫︁
∩i∈[r]p−1

h([r]∖{i})(Si∩P ji )
W(xh([r],r−1))dλ(xh([r],r−1))

⃒⃒⃒⃒⃒
⃒⃒ ,

where the supremum is taken over sets Si that are (r − 1)-symmetric in [0, 1]h([r−1]).

In what follows we sometimes omit the term genuine and the parameter r, so when
we talk about cut norms of r-graphs, as default we mean genuine r-cut norms.

We remark that it is also true that

‖W‖�,r = sup
f1,..., fr : [0,1]h([r−1])→[0,1]

⃒⃒⃒⃒⃒
⃒⃒⃒⃒ ∫︁
[0,1]h([r],r−1)

r∏︁
i=1

fi(xh([r]∖{i}))W(xh([r],r−1))dλ(xh([r],r−1))

⃒⃒⃒⃒⃒
⃒⃒⃒⃒ , (3.30)

where the supremum goes over functions fi that are (r − 1)-symmetric, and similarly
for any symmetric partition𝒫 = (Pi)t

i=1 of [0, 1]h([r−1]) we have with the same conditions
for the fi’s as above that

‖W‖�,r,𝒫 = sup
f1,..., fr : [0,1]h([r−1])→[0,1]
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t∑︁
j1,..., jr=1

⃒⃒⃒⃒⃒
⃒⃒⃒⃒ ∫︁
[0,1]h([r],r−1)

r∏︁
i=1

fi(xh([r]∖{i}))1P ji
(xh([r]∖{i}))W(xh([r],r−1))dλ(xh([r],r−1))

⃒⃒⃒⃒⃒
⃒⃒⃒⃒ .

It is immediate through the comparison with Definition 3.3.20 that ‖A‖� ≤ ‖A‖�,r ≤
‖A‖�,r,𝒫 ≤ ‖A‖1 for any r-array A, ‖W‖� ≤ ‖W‖�,r ≤ ‖W‖�,r,𝒫 ≤ ‖W‖1 for any r-kernel
W. The above norms give rise to a distance between r-graphons, and analogously for
r-graphs. We present next the k-colored version.

Definition 3.3.21. For two k-colored r-graphons U = (Uα)α∈[k] and W = (Wα)α∈[k] their r-cut
distance is defined as

d�,r(U,W) =

k∑︁
α=1

‖Uα
−Wα

‖�,r,

and their cut-𝒫-distance as

d�,r,𝒫(U,W) =

k∑︁
α=1

‖Uα
−Wα

‖�,r,𝒫.

For two k-colored r-graphs G = (Gα)α∈[k] and H = (Hα)α∈[k] their corresponding distances are
defined as

d�,r(G,H) = d�,r(WG,WH),

and

d�,r,𝒫(G,H) = d�,r,𝒫(WG,WH).

Distances between an r-graph and an r-graphon, as well as for r-kernels, is analogously defined.

Note that the norms introduced above are in general smaller or equal than the 1-
norm of integrable functions, also d�,r(U,W) ≤ d�,r,𝒫(U,W) hods for every pair. Their
relevance will be clearer in the context of the next counting lemma, we include the
standard proof only for completeness’ sake.

Unfortunately, we cannot expect d�,r to give rise to a metric analogous to δ� for graphs
in terms of providing an equivalent characterization of r-graph convergence. One
crucial property of the δ�-distance is that a sampled graph is δ�-close to the original,
and the δ�-deviation vanishes almost surely when the sample size tends to infinity.
This happens to fail for the extensions of d�,r. We demonstrate this obstacle with two
examples of randomly generated sequences, whose subgraph densities coincide in the
limit, but are with positive probability far away in d�,r, and also no relabeling would
improve the situation substantially.

Example 3.3.22. For any n ≥ 1, let Hn and H′n be independent random tripartite 3-graphs
on [3n] both generated by the same random process: we generate a bipartite Erdős-
Rényi 2-graph Gn, G′n respectively, between [n] and {n + 1, . . . , 2n} with density 1/2,
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and include the triplets {i, j, k} ⊂ [3n] in Hn, H′n respectively if i ∈ [n], j ∈ {n + 1, . . . , 2n},
k ∈ {2n + 1, . . . , 3n}, and i j ∈ E(Gn), respectively i j ∈ E(G′n). Let S1 denote the subgraph
of the complete bipartite graph between [n] and {n + 1, . . . , 2n}where Gn and G′n differ,
further let S2 and S3 be the complete bipartite subgraphs between [n] and {2n+1, . . . , 3n}
and, {n + 1, . . . , 2n} and {2n + 1, . . . , 3n} respectively. Then

d�,r(Hn,H′n) ≥
1

27n3 |AHn(r; S1,S2,S3) − AH′n(r; S1,S2,S3)| =
1

27n2 |E(Gn)△E(G′n)|.

We know that |E(Gn)△E(G′n)| is tightly concentrated around its expectation n2/2, which
means that d�,r(Hn,H′n) is bounded away from 0 in the limit almost surely. However, it
is not hard to show that the subgraph densities for each simple 3-graph F of Hn and H′n
converge to the same (deterministic) limit, see Lemma 3.3.24 below, so the interlaced
sequence H1,H′1,H2,H′2, . . . does converge in the sense of Definition 2.2.3, but is not
Cauchy in d�,r.

The second example concerns non-partite graphs.

Example 3.3.23. For any n ≥ 1, let Hn and H′n be 3-graphs that are generated inde-
pendently on [n] again by independent Erdős-Rényi 2-graphs Gn, G′n with density 1/2,
and include the triangles that appear as edges of the respective 3-graphs. Note that
this measure is invariant under re-labeling the vertex set, therefore if we have a lower
bound on d�,r(Hn,H′n), then we also have one on d�,r(Hn,H′′n ) for any H′′n obtained by
relabeling H′n. Let S1 denote the subgraph of the complete graph on [n] where Gn and
G′n differ, and S2 and S3 the subgraph of edges present in both models. Then

d�,r(Hn,H′n) ≥
1
n3 |AHn(r; S1,S2,S3) − AH′n(r; S1,S2,S3)|

=
1
n3

∑︁
i jk∈[n]3

1E(Gn)△E(G′n)(i j)1E(Gn)∩E(G′n)( jk)1E(Gn)∩E(G′n)(ki).

For any pairs i j, the sum
∑︀

k∈[n] 1E(Gn)∩E(G′n)( jk)1E(Gn)∩E(G′n)(ki) is concentrated around n/16,
so with high probability for at most o(n) of them the sum fails to be below n/32.

Again, |E(Gn)△E(G′n)| is tightly concentrated around its expectation that is asymptot-
ically equal to n2/4, so almost surely we have that d�,r(Hn,H′n) is asymptotically larger
or equal than 2−7.

The main advantage of the genuine r-cut norm ‖.‖�,r and distance d�,r over the plain
versions ‖.‖� and d� is the counting lemma they entail.

Lemma 3.3.24. Let U and W be two (k, r)-graphons. Then for every F ∈ Πr,k
q it holds that

|t(F,W) − t(F,U)| ≤
(︃
q
r

)︃
d�,r(U,W).
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Proof. Fix q and F ∈ Πr,k
q . Then

|t(F,W) − t(F,U)| =

⃒⃒⃒⃒⃒
⃒⃒⃒⃒ ∫︁
[0,1]h([q],r−1)

∏︁
e∈([q]

r )
WF(e)(xh(e,r−1)) −

∏︁
e∈([q]

r )
UF(e)(xh(e,r−1))dλ(x)

⃒⃒⃒⃒⃒
⃒⃒⃒⃒

≤

∑︁
e∈([q]

r )

⃒⃒⃒⃒⃒
⃒

∫︁
[0,1]h([q],r−1)

[WF(e)(xh(e,r−1)) −UF(e)(xh(e,r−1))]

∏︁
f∈([q]

r ), f≺e

WF( f )(xh( f ,r−1))
∏︁

1∈([q]
r ),e≺1

UF(1)(xh(1,r−1))dλ(x)

⃒⃒⃒⃒⃒
⃒

≤

∑︁
e∈([q]

r )
‖WF(e)

−UF(e)
‖�,r ≤

(︃
q
r

)︃
d�,r(U,W),

where ≺ is an arbitrary total ordering of the elements of
(︀q

r

)︀
, and the second inequality

is the consequence of the formulation (3.30) of the r-cut norm. �

Let dtv denote the total variation distance between probability measures on Πr,[k]*
n ,

where [k]* = [k]∪{ι} for k ≥ 1 (without highlighting the specific parameters in the notion
dtv), that is dtv(µ, ν) = max

ℱ⊂Πr,[k]*
n
|µ(ℱ )−ν(ℱ )|, and let the measure µ(q,G), respectively

µ(q,W), denote the probability distribution of the random r-graphG(q,G), respectively
G(q,W), taking values in Πr,[k]*

q . It is a standard observation then that

dtv(µ(q,W), µ(q,U)) =
1
2

∑︁
F∈Πr,[k]*

q

|t(F,W) − t(F,U)|, (3.31)

and that G(q,W) and G(q,U) can be coupled in form of the random r-graphs G1 and
G2, such that

dtv(µ(q,W), µ(q,U)) =
1
2
P(G1 , G2), (3.32)

and further, for any coupling G′1 and G′2 it hods that dtv(µ(q,W), µ(q,U)) ≤ 1
2P(G′1 , G′2).

For G ∈ Πr,k
n note that

dtv(µ(q,G), µ(q,WG)) ≤ q2/n, (3.33)

where the right hand side is a simple upper bound on the probability that if we
uniformly choose q elements of an n-element set, then we get at least two identical
objects. The inequality (3.33) follows from the fact that conditioned on the event that
the independent and uniform Xis for i ∈ [q] fall in different intervals [ j−1

n ,
j
n ] for j ∈ [n]

the distribution of G(q,WG) is the same as the distribution of G(q,G).
The next corollary is a direct consequence of Lemma 3.3.24.
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Corollary 3.3.25. If U and W are two k-colored r-graphons, then

dtv(µ(q,W), µ(q,U)) ≤
kqrqr

r!
d�,r(U,W),

and there exists a coupling in form of G1 and G2 of the random r-graphs G(q,W) and G(q,U),
such that

P(G1 , G2) ≤
2kqrqr

r!
d�,r(U,W).

A generalization of the notion of a step function in the case of graphs to the situation
where we deal with r-graphs is given next.

Definition 3.3.26. We call a k-colored r-graphon W with r ≥ l an (r, l)-step function if there
exist positive integers tl, tl+1, . . . , tr = k, l-symmetric partitions 𝒫S = (PS

1 , . . . ,P
S
tl
) of [0, 1]h([l])

for each S ∈
(︀[r]

l

)︀
, and real arrays A j

s : [ts−1]h([s],s−1)
→ [0, 1] with j ∈ [ts] for l ≤ s ≤ r such that∑︀

j∈[ts] A j
s(ih([s],s−1)) = 1 for any choice of ih([s],s−1) and for s ≤ r so that Wα for α ∈ [k] is of the

following form for each α ∈ [k].

Wα(xh([r])) =

t|S|∑︁
iS=1

S⊂[r],l≤|S|

Aα
r (ih([r],r−1))

∏︁
S∈([r]

l )
1PS

iS
(xh(S))

∏︁
S⊂[r]

l+1≤|S|<r

1(
iS−1∑︁
j=1

A j
|S|(ih(S,|S|−1)) ≤ xS ≤

iS∑︁
j=1

A j
|S|(ih(S,|S|−1))).

We refer to the partitions 𝒫S as the steps of W. The step function is proper, if the partitions 𝒫S

can be chosen to be identical.

The most simple example is the proper (r, r − 1)-step function that can be written as

Wα(xh([r])) =

tr−1∑︁
i1,...,ir=1

Aα
r (i1, . . . , ir)

r∏︁
j=1

1Pi j
(xh([r]∖{ j})).

For any r-kernel W and any partition 𝒫 = (P1, . . . ,Pt) of [0, 1]h([r],r−1), the r-kernel W𝒫 is
the (r, r − 1)-step function that with steps in 𝒫 that takes the average value

1/λ(∩r
j=1p−1

h([r]∖{ j})(Pi j))
∫︁

[0,1]h([r],r−1)
W(xh([r]))

r∏︁
j=1

1Pi j
(xh([r]∖{ j}))dλ(xh([r]))

on the sets ∩r
j=1p−1

h([r]∖{ j})(Pi j) for each i1, . . . , ir ∈ [t]. The definition of averaging operation
for (k, r)-graphons is analogous.
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We describe in the following an intermediate version of the regularity lemma for
edge k-colored r-graphons analogous to Lemma 3.3.15, the partition obtained here
satisfies stronger conditions than those imposed by the Weak Regularity Lemma [59],
and weaker than by Szemerédi’s original. Note that in contrast to Lemma 3.3.15 the
bound parameter t appears in the condition as a multiplying factor in the upper bound
on the number classes of the test partitions 𝒬, this strengthening is necessary for the
technical proofs in Chapter 6.

Lemma 3.3.27. For every r ≥ 1, ε > 0, t ≥ 1, k ≥ 1 and k-colored r-graphon W there exists an
(r − 1)-symmetric partition 𝒫 = (P1, . . . ,Pm) of [0, 1]h([r−1]) into m ≤ (2rt)2k2/ε2

= treg(r, k, ε, t)
parts such that for any (r − 1)-symmetric partition 𝒬 of [0, 1]h([r−1]) into at most mt classes we
have

d�,r,𝒬(W,V) ≤ ε.

Proof. The proof proceeds analogously to the proof of Lemma 3.3.15. Fix an arbitrary
ε > 0 and a W = (Wα)α∈[k] ∈ Ξr,k. We construct a sequence of partitions ℛ0,ℛ1, . . . ,ℛm

of [0, 1]h([r−1]) such that ℛ0 = [0, 1]h([r−1]) and each ℛi+1 refines the preceding ℛi. We stop
the construction after the i0th step when for every (r − 1)-symmetric partition 𝒬 of
[0, 1]h([r−1]) into at most tℛi0

t classes we have

d�,r,𝒬(W,Wℛi0
) ≤ ε,

then we set m = i0 and 𝒫 = ℛi0 .
As long as this event not occurs, we construct ℛi+1 as follows. There exists an

(r − 1)-symmetric 𝒬 partition of [0, 1]h([r−1]) into at most tℛit classes and an α ∈ [k] such
that

d�,r,𝒬(Wα,Wα
ℛi

) > ε/k,

and in particular, there are (r − 1)-symmetric sets S1, . . . ,Sr ⊂ [0, 1]h([r−1]) such that

t𝒬∑︁
j1,..., jr=1

⃒⃒⃒⃒⃒
⃒⃒∫︁
∩i∈[r]p−1

h([r]∖{i})(Si∩Q ji )
W(xh([r],r−1))dλ(xh([r],r−1))

⃒⃒⃒⃒⃒
⃒⃒ > ε/k.

We define ℛi+1 as the coarsest common refinement of ℛi, 𝒬, and {S1, . . . ,Sr}. We argue
as in the proof of Lemma 3.3.15 that ‖WRi+1‖

2
2 − ‖WRi‖

2
2 > ε2/k2, therefore the process

terminates after at most k2/ε2 steps, that is m ≤ k2/ε2. Let s(0) = 1, and for i ≥ 1 let
s(i) = 2rts2(i − 1). Then it is not difficult to see that on one hand tℛi ≤ s(i) for every
i ≥ 0, and on the other that s(i) = (2rt)2i

−1. We conclude that the partition 𝒫 obtained
as the output of the partition generating process satisfies the conditions of the lemma,
in particular t𝒫 ≤ (2rt)2k2/ε2

. �

We conclude the section with the cut-𝒫 version of the plain cut norm for r-graphs
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generalizing Definition 3.3.12 in weaker form than the cut-(r,𝒫)-norm above in Defin-
ition 3.3.20. The corresponding counting lemma below makes it applicable in special
cases of the setting of Chapter 6 leading to improved bounds there. Recall the notion
of naive r-kernels introduced in Section 2.2.3.

Definition 3.3.28. For any r ≥ 1, real r-array A of size n, and partition 𝒫 = (Pi)t
i=1 of [n] the

plain cut-𝒫-norm of A is

‖A‖�𝒫 =
1
nr max

Si⊂[n]
i∈[r]

t∑︁
j1,..., jr=1

|A(S1 ∩ P j1 , . . . ,Sr ∩ P jr)|.

For any r ≥ 1, and partition 𝒫 = (Pi)t
i=1 of [0, 1] the plain cut-𝒫-norm of a naive r-kernel W

is defined by

‖W‖�𝒫 = sup
Si⊂[0,1],i∈[r]

t∑︁
j1,..., jr=1

⃒⃒⃒⃒⃒
⃒
∫︁

(S1∩P j1 )×···×(Sr∩P jr )
W(x1, . . . , xr)dλ(x1, . . . , xr)

⃒⃒⃒⃒⃒
⃒ ,

where the supremum is taken over measurable subsets S1, . . . ,Sr of [0, 1]. The plain cut-
𝒫-distance d�𝒫 of graphs and naive graphons is defined analogously to Definition 3.3.12
exchanging the cut-(r,𝒫)-norm for the plain cut-𝒫-norm.

The definition for the k-colored version is analogous. We will employ in Chapter 6
the following auxiliary lemmas that are analogous to Lemma 3.3.27, Corollary 3.3.25,
respectively (with analogous proofs).

Lemma 3.3.29. For every r ≥ 1, ε > 0, m0 : [0, 1]→N, k ≥ 1 and k-colored naive r-graphon
W there exists a partition 𝒫 = (P1, . . . ,Pt) of [0, 1] into t ≤ (22rm0(ε))2k2/ε2

/2r = treg(r, k, ε, t)
parts such that for any partition 𝒬 of [0, 1] into at most max{m0(ε), t} classes we have

d�𝒬(W,W𝒫) ≤ ε.

We introduce the colored version of the t* subgraph densities of r-graphs and r-
graphons. Let F be a k-colored r-graph and F̂ be a simple r-graph, both defined on [q].
Then for G ∈ Πr,k the F̂-density of F in G is

t*
F̂
(F,G) =

1
|V(G)|(|V(G)| − 1) . . . (|V(G)| − q + 1)

∑︁
φ : [q]→V(G)

∏︁
e∈F̂

1GF(e)(φ(e)), (3.34)

where the sum runs over injective φ maps, and for a W ∈ Ξr,k it is

t*
F̂
(F,W) =

∫︁
[0,1]h([q],r−1)

∏︁
e∈F̂

WF(e)(xh(e,r−1))dλ(xh([q],r−1)). (3.35)
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3.4 Limit theory in testing

The respective counting lemma is formulated next, we omit the proof since it is
analogous to previous counting lemma proofs.

Lemma 3.3.30. Let U and W be k-colored naive r-graphons. Then for every k-colored r-graph
F and linear r-graph F̂ we have

|t*
F̂
(F,W) − t*

F̂
(F,U)| ≤

(︃
q
r

)︃
d�(U,W).

3.4 Limit theory in testing

Testing parameters A characterization of the testability of a graph parameter in
terms of graph limits was developed in [30] for 𝒦 = {0, 1} in the undirected case, we
will focus in the next paragraphs on this most simple setting and give an overview on
previous work. Recall Definition 3.2.1.

Theorem 3.4.1. [30] Let f be a simple graph parameter, then the following statements are
equivalent.

(i) The parameter f is testable.

(ii) For every ε > 0 there exists a k(ε) ∈ N such that for every k ≥ k(ε) and simple graph G
on at least k vertices

| f (G) − E f (G(k,G))| < ε.

(iii) For every convergent sequence (Gn)∞n=1 of simple graphs with |V(Gn)| → ∞ the numerical
sequence ( f (Gn))∞n=1 also converges.

(iv) For every ε > 0 there exist a ε′ > 0 and a n0 ∈ N such that for every pair G1 and G2 of
simple graphs |V(G1)|, |V(G2)| ≥ n0 and δ�(G1,G2) < ε′ together imply | f (G1)− f (G2)| <
ε.

(v) There exists a δ�-continuous functional f ′ on the space of graphons, so that f (Gn) →
f ′(W) whenever Gn →W.

The above theorem also partially holds true for uniform hypergraph parameters of
higher rank, and more generally, for (𝒦 , r)-graphs. We will focus here on the basic
case𝒦 = {0, 1}.

Theorem 3.4.2. A parameter f of simple r-uniform hypergraphs is testable if and only if
for every convergent sequence (Gn)∞n=1 of simple r-graphs with |V(Gn)| → ∞ the numerical
sequence ( f (Gn))∞n=1 also converges.

Proof. For arbitrary r ≥ 1, testability of an r-graph parameter f implies that for any
convergent sequence (Hn)∞n=1 of hypergraphs ( f (Hn)∞n=1) also converges. This is due
to the fact that convergence means distributional convergence of the random induced
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subgraphs. For every k the distribution ofG(k,Hn) andG(k,Hm) are close for m,n ≥ n0(k)
for some n0(k), therefore they can be coupled in a way so that with high probability
they coincide, and so the corresponding values f (G(k,Hn)) and f (G(k,Hm)) are equal
with high probability. On the other hand, testability implies that we have closeness of
f (G) and f (G(k,G)) for every G and k ≥ k(ε) with high probability.

For the converse direction we require a metric for (isomorphism classes of) r-graphs
whose topology is identical to the subgraph convergence topology. Elek and Szegedy
[49] proposed the rather abstract

δ(G,H) = inf
ε>0
{ ε | |t(F,G) − t(F,H)| < ε for every simple F with |V(F)| ≤ 1/ε }. (3.36)

A convergent sequence of r-graphs is trivially Cauchy in this metric, and vice versa.
Further, we claim that random subgraphs are typically close to the source graph.

Claim 2. There exists an absolute constant c > 0 such that if k ≥ cε−5−r and G is an
r-graph on at least k vertices, then we have δ(G,G(k,G)) ≤ ε with probability at least
1 − ε. In particular, δ(G,G(k,G)) tends to zero in probability when k→∞.

We only need to use Lemma 3.5.4: There are at most (1/ε)2((1/ε)
r ) simple r-graphs on at

most 1/εvertices, the probability that one fixed F fails to satisfy |t(F,G)−t(F,G(k,G))| < ε
is upper bounded by exp(− ε

4k
18 ), see Lemma 3.5.4 below, so we can upper bound by the

quantity ε the probability there will be one r-graph of size at most 1/ε that harms the
bound through the right choice of c > 0, which proves the claim.

Now suppose that for every convergent (Gn)∞n=1 with |V(Gn)| → ∞, ( f (Gn))∞n=1 also
converges. Then for every ε > 0 there are n0 and γ = γ(ε) > 0 with γ ≤ ε such that if
δ(G,H) < γ and |V(G)|, |V(H)| ≥ n0, then | f (G)− f (H)| < ε. To see the previous statement,
suppose that the implication is not true, and consider two convergent sequences that
demonstrate this with their pairwise δ-distance tends to 0, while the corresponding
deviations of the f values are bounded from below by a positive constant. Then
the interlaced sequence converges in the δ metric, this together with our assumption
brings the contradiction.

Now suppose that f is not testable, and there is a ε0 > 0 and a sequence of bad
graphs (Gn)∞n=1 such that P(| f (Gn) − f (G(kn,Gn))| > ε0) > ε0 with kn → ∞. But from
Claim 2 it follows that eventually there is an m ≥ no with km ≥ c(ε0/2)−5−r such that
P(δ(Gm,G(km,Gm)) > γ(ε0/2)) < γ(ε0/2) ≤ ε0/2, so | f (Gm) − f (G(km,Gm))| > ε0/2 with at
most probability ε0/2, which is a contradiction.

�

We turn to revisit some further results of [30] for the graphs case. From the practical
viewpoint for the verification of the testability of a given parameter perhaps the next
characterization is the most suitable. With the aid of it the task can be decomposed
into three subproblems whose solution in general requires less effort.

Theorem 3.4.3. [30] Let f be a simple graph parameter, then the following conditions together
are equivalent to the testability of f .
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(i) For every ε > 0 there exists a ε′ > 0 such that for every pair G1 and G2 of simple graphs
on the same vertex set d�(G1,G2) < ε′ implies | f (G1) − f (G2)| < ε.

(ii) For every simple graph G the numerical sequence ( f (G[m]))∞m=1 converges for m→∞.

(iii) For every sequence (Gn)∞n=1 of simple graphs with |V(Gn)| → ∞ the sequence ( f (Gn) −
f (Gn ∪ K1))∞n=1 converges.

It is an open problem whether there exists such an accessible characterization for
r-graphs with r ≥ 3. On a further note we mention that in the case r = 2, the testability
of a graphon parameter is equivalent to continuity in the δ� distance.

Remark 3.4.4. The intuitive reason for the absence of an analogous, easily applicable
characterization of testability for higher rank uniform hypergraphs as in Theorem 3.4.3
is that no natural notion of a suitable distance is available at the moment. The con-
struction of such a metric would require to establish a standard method to compare a
large hypergraph Hn to its random induced subgraph on a uniform sample similar to
the behavior that the abstract δ-distance exhibits in the proof of Theorem 3.4.2.

The δ� metric for graphs is convenient because of its concise formulation and it
induces a compact limit space, the main characteristic that is exploited that the total
variation distance of probability measures of induced subgraphs of fixed size is con-
tinuous in this distance, any other δvar with this property would fit into the above
framework. We present the intuition for candidate distances for hypergraphons that
share the above feature.

Let U and W be two arbitrary k-colored r-graphons given by Uα,Wα : [0, 1]h([r],r−1)
→

[0, 1] for each α ∈ [k]. Suppose that for any l ≤ r−1 and k′ ≥ 1 we have already defined
a distance dl,k′ between k′-colored l-graphons. Then we define

dr,k(U,W) = inf
φ,ψ

inf
t≥1,V1,V2

[︁
d�,r(Uφ,V1) + d�,r(Wψ,V2) + dr−1,t(W(𝒫1),W(𝒫2))

]︁
, (3.37)

where the first infimum runs over structure preserving maps from [0, 1]h([r],r−1) to
[0, 1]h([r],r−1), see Definition 5.2.10 below, whereas the second infimum goes over t ≥ 1
and a pair of (r, r−1)-step functions V1 = (Vα

1 )α∈[k] and V2 = (Vα
2 )α∈[k] both with t number

of steps 𝒫1 and 𝒫2, whose steps can be paired such that P1
i corresponds to P2

i , and on
the tr cells defined by the steps the corresponding values of Vα

1 and Vα
2 coincide for

each α ∈ [k]. Further, W(𝒫1) and W(𝒫2) are the t-colored (r − 1)-graphons obtained
from the partitions 𝒫1 and 𝒫2 by

(W(𝒫i))β(xh([r−1],r−2)) =

∫︁
[0,1]

1Pi
β
(xh([r−1]))dλ(x[r−1])

for each β ∈ [t]. We do not know for sure whether such a construction satisfies the
triangle inequality, but it is not hard to show that the variational distance of the sample
distributions is continuous under the above distance, we further conjecture that the
metric space is compact (provided it is a genuine distance). Unfortunately, the above
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dr,k distance does not seem to offer any immediate structural insight in general in
contrast to the δ� distance in the graph case.

Testing properties The authors of [94] provided an insightful application of the
graph limit machinery in order to construct a characterization for the testability of
properties, their result follows through analytic steps exploiting the properties of the
limit space. Most prior works on this topic relied explicitly on Szemerédi’s Regularity
Lemma, in [94] it can be noticed only in its disguised form as the compactness of
the limit space. We briefly review the approach to highlight the methodological
significance of going to the continuous limit space.

We start by describing some notion. By a graphon property we mean a measurable
subset of the space Ξ2, that is a family of symmetric two-variable [0, 1]-valued functions
that is invariant under graphon isomorphism. A graphon property is closed, if it is
closed under the δ�-metric, the closure 𝒫 of a graph property 𝒫 constitutes of the
graphons W such that Gn →W for some sequence (Gn)∞n=1 ⊂ 𝒫. A graph property 𝒫 is
termed robust, if for every ε > 0 there exist l ≥ 1 and δ > 0 such that if G is a graph
with at least l vertices such that d1(WG,𝒫) ≤ δ, then d1(G,𝒫) ≤ ε.

The next result of [94] connects the testability of a graph property with that of its
closure.

Theorem 3.4.5. [94] The graph property 𝒫 is testable if and only if it is robust and its closure
𝒫 is a testable graphon property.

The second characterization in [94] is described in terms of δ�-close induced sub-
graphs.

Theorem 3.4.6. [94] For a graph property 𝒫, its testability is equivalent to the following
condition. For every ε > 0 there exists a δ > 0 and a positive integer l such that for every
G ∈ 𝒫 and F that is an induced subgraph of G with at least l vertices and δ�(G,F) < δ, then
d1(F,𝒫) < ε.

The next result was first proved by Alon and Shapira [10] in a stronger setting,
namely where good tests are required to avoid false negatives, these test are called
one-sided. The class of graph properties of concern here are hereditary in the sense,
that they are closed under taking node-induced subgraphs, notable examples being
perfect graphs, interval graphs, or triangle-free graphs. The first two classes cannot
be characterized by a finite collection of forbidden induced subgraphs, whereas the
testability of triangle-freeness is equivalent to the Triangle Removal Lemma. Prior to
the result below it was known that properties closed under edge and node removal
called monotone are testable, see [11].

Corollary 3.4.7. [10][94][89] Every hereditary graph property is testable.

Alon and Shapira [10] gave also a necessary condition for one-sided testability in
form of semi-hereditary properties. The property 𝒫 is semi-hereditary, if there exists
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a hereditary property 𝒫′ ⊃ 𝒫, such that for any ε > 0 there exists an n0 such that any
graph of size at least n0 that is ε-far from 𝒫 has an induced subgraph not satisfying
𝒫
′. Partition based properties, such as having a large cut, are obviously not semi-

hereditary, although they are testable, we have always have to settle with some small
error probability, both false positives as well as negatives may occur. These are covered
by Theorem 3.4.6, whose setting is more general.

3.5 Examples of testable properties and parameters

We introduce now a notion of efficient parameter testability. Definition 3.2.1 of test-
ability does not ask for a specific upper bound on k(ε) in terms of ε, but in applications
the order of magnitude of this function may be an important issue once its existence
has been verified. Therefore we introduce a more restrictive class of graph parameters,
we refer to them as being efficiently testable.

Definition 3.5.1. An r-graph parameter f is called β-testable for a family of measurable
functions β = { βi | βi : R+

→ R+, i ∈ I }, if there exists an i ∈ I such that for every ε > 0 and
r-graph G we have

P(| f (G) − f (G(βi(ε),G))| > ε) < ε.

With slight abuse of notation we will also use the notion of β-testability for a family
containing only a single function β. The term efficient testability will serve as shorthand
for β-testability for some (family) of functions β(ε) that are polynomial in 1

ε . One could
rephrase this in the light of Definition 3.5.1 by saying that a testable parameter f is
efficiently testable if its sample complexity is polynomial in 1/ε.

During the course of the thesis we will often deal with statistics that are required
to be highly concentrated around their mean, this might be important for us even if
their mean is not known to us in advance. A quite universal tool for this purpose is a
Chernoff-type large deviation result, the Azuma-Hoeffding-inequality for martingales
with bounded jumps. Mostly, we require the formulation given below, see e.g. [12] for
a standard proof and a wide range of applications. We will also apply a more elaborate
version of this concentration inequality in Chapter 4.

Lemma 3.5.2 (Azuma-Hoeffding-inequality). Let (Mk)n
k=0 be a super-martingale with the

natural filtration such that with probability 1 for every k ∈ [n] we have |Mk−Mk−1| ≤ ck. Then
for every ε > 0 we have

P(|Mn −M0| ≥ ε) ≤ 2 exp
(︃
−

ε2

2
∑︀n

k=1 c2
k

)︃
.

We will list some examples of graph parameters, for which there is information
available about their sample complexity implicitly or explicitly in the literature.
Example 3.5.3. One of the most basic testable simple graph parameters are subgraph
densities fF(G) = t(F,G), where F is a simple graph. The next result was formulated as
Theorem 2.5 in [91], see also for hypergraphs Theorem 11 in [49].
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Lemma 3.5.4. [91, 49] Let ε > 0 q, r ≥ 1 be arbitrary. For any q-colored r-graphs F and G,
and integer k ≥ |V(F)| we have

P(|tinj(F,G) − tinj(F,G(k,G))| > ε) < 2 exp
(︃
−

ε2k
2|V(F)|2

)︃
,

and

P(|t(F,G) − t(F,G(k,G))| > ε) < 2 exp
(︃
−

ε2k
18|V(F)|2

)︃
. (3.38)

For any q-colored r-graphon W we have

P(|t(F,W) − tinj(F,G(k,W))| > ε) < 2 exp
(︃
−

ε2k
2|V(F)|2

)︃
,

and

P(|t(F,W) − t(F,G(k,W))| > ε) < 2 exp
(︃
−

ε2k
8|V(F)|2

)︃
.

This implies that for any F that the parameter fF is 𝒪(log(1
ε )ε−2)-testable. In the case

of (𝒦 , r)-graphs for arbitrary r the same as Lemma 3.5.4 holds, this can be shown by
a straightforward application of the Azuma-Hoeffding inequality, Lemma 3.5.2, as in
the original proofs.

Example 3.5.5. For r = 2, q,n ∈N, J ∈ Rq×q, h ∈ Rq, and G ∈ Π2
n we consider the energy

ℰφ(G, J, h) =
1
n2

∑︁
1≤i, j≤q

Ji jeG(φ−1(i), φ−1( j)) +
1
n

∑︁
1≤i≤q

hi|φ
−1(i)|, (3.39)

of a partition φ : V(G)→ [q], and

ℰ̂(G, J, h) = max
φ : V(G)→[q]

ℰφ(G, J, h), (3.40)

that is the ground state energy of the graph G (cf. [32]) with respect to J and h, where
eG(S,T) denotes the number of edges going form S to T in G. These graph functions
originate from statistical physics, for the rigorous mathematical treatment of the topic
see e.g. Sinai’s book [113]. The energy expression whose maximum is sought is also
referred to as a Hamiltonian. In the literature this notion is also often to be found with
negative sign or different normalization, more on this below.

This graph parameter can be expressed in the terminology applied for MAX-2CSP.
Let the corresponding 2CSP formula to the pair (G,J) be F with domain K = [q]. The
formula F is comprised of the constraints (10; x(i, j)) for every edge (i, j) of G, where 10

is the constraint type whose evaluation table is J, and additionally it contains n copies
of (11; xi) for every vertex i of G, where 11 is the constraint type in one variable with
evaluation vector h. Then the optimal value of the objective function of the MAX-
2CSP problem of the instance F is equal to ℰ̂(G, J, h). Note that this correspondence is
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consistent with the sampling procedure, that is, to the pair (G(k,G),J) corresponds the
2CSP formula G(k,F). Therefore ℰ̂(., J, h) has sample complexity 𝒪( 1

ε4 )(see [14],[98]).
These energies are directly connected to the number hom(G,H) of admissible vertex

colorings of G by the colors V(H) for a certain small weighted graph H. This was
pointed out in [32], (2.16), namely

1
|V(G)|2

ln hom(G,H) = ℰ̂(G, J) + O
(︃

1
|V(G)|

)︃
, (3.41)

where the edge weights of H are βi j(H) = exp(Ji j). The former line of thought of
transforming ground state energies into MAX-2CSPs is also valid in the case of r-
graphs and rCSPs for arbitrary r.

The results on the sample complexity of MAX-rCSP for q = 2 can be extended beyond
the case of simple hypergraphs, higher dimensional Hamiltonians are also expressible
as rCSP formulas. The generalization for arbitrary q and to r-graphons will follow
in the next chapter. Additionally we note, that an analogous statement to (3.41) on
testability of coloring numbers does not follow immediately for r ≥ 3.

On the other hand, with the notion of the ground state energy available, we may
rewrite the MAX-2CSP in a compact form as an energy problem. We will execute
this task right away for limit objects. First, we introduce the ground state energy of
a 2-kernel with respect to an interaction matrix J. The collection φ = (φ1, . . . , φq) is
a fractional q-partition of [0, 1] with the components being measurable non-negative
functions on [0, 1], if for every x ∈ [0, 1] it holds that

∑︀q
i=1 φi(x) = 1.

Definition 3.5.6. Let q ≥ 1, J ∈ Rq×q. Then the ground state energy of the 2-kernel W with
respect to J is

ℰ(W, J) = max
φ

∑︁
z∈[q]2

Jz

∫︁
[0,1]2

φz1(x)φz2(y)W(x, y)dxdy,

where φ runs over all fractional q-partitions of [0, 1].

Let K = [q], L = {0, 1, . . . , d}[q]2 and (Fn)∞n=1 be a convergent sequence of 2CSP formulas.
Consider the corresponding sequence of graphs eval(Fn) = (F̃z

n)z∈[q]2 for each n, and let
W = (Wz)z∈[q]2 be the respective limit. Let f be the (L, 2)-graph parameter so that
f (eval(F)) is equal to the density of the MAX-2CSP value for the instance F. Then it is
not hard to see that f can be extended to the limit space the following way

f (W) = max
φ

q∑︁
i, j=1

∫︁
[0,1]2

φi(x)φ j(y)W(i, j)(x, y)dxdy,

whereφ runs over all fractional q-partitions of [0, 1]. The formula is a special case of the
layered ground state energy with the interaction matrices defined by Ji, j(k, l) = 1i(k)1 j(l)
that is defined below in Chapter 4.

Example 3.5.7. The efficiency of testing a graph parameter can be investigated in terms
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of some additional continuity condition in the δ� metric. Direct consequence of results
from [30] will be presented in the next lemma.

Lemma 3.5.8. Let f be a simple graph parameter that is α-Hölder-continuous in the δ� metric
in the following sense: There exists a C > 0 such that for every ε > 0 there exists n0(ε) so that
if for the simple graphs G1, G2 it holds that |V(G1)|, |V(G2)| ≥ n0(ε) and δ�(G1,G2) ≤ ε, then
| f (G1) − f (G2)| ≤ Cδα�(G1,G2). Then f is max{2O

(︁
1

ε2/α

)︁
,n0(ε)}-testable.

Proof. To see this, let us fix ε > 0. Then for an arbitrary simple graph G with |V(G)| ≥
n0(ε) and k ≥ n0(ε) we have

| f (G) − f (G(k,G))| ≤ C [δ�(G,G(k,G))]α < C

⎛⎜⎜⎜⎜⎝ 10√︀
log2 k

⎞⎟⎟⎟⎟⎠α , (3.42)

with probability at least 1 − exp(− k2

2 log2 k ). The last probability bound in (3.42) is the
statement of Lemma 3.3.9, first proved in [30]. We may rewrite (3.42) by setting

ε = C
(︃

10√
log2 k

)︃α
, the substitution implies that f is 2O(ε−2/α)-testable, whenever n0(ε) ≤

2𝒪(ε−2/α). �

This latter approach is hard to generalize in a meaningful way to r-graphs for r ≥ 3
because of the absence of a suitable metric, see the discussion above. The converse
direction, namely formulating a qualitative statement about the continuity of f with
respect to δ� obtained from the information about the sample complexity is also a
worthwhile problem.

3.6 Further aspects of statistical physics

In this section we further motivate the term energies above for parameters determined
by coloring configurations on graphs using the terminology of mean field theory in
statistical physics.

We consider first simple graphs, this translates to pairwise interaction between sites
in terms of physics. Let our model be given by q ≥ 1, a symmetric real matrix J, and a
q-dimensional real vector h, let further G be a simple graph. We define a probability
distribution over the set of q-partitions φ of the node set V(G) corresponding to the
thermodynamical equilibrium called the Gibbs measure, each configuration φ occurs
with probability proportional to exp(|V(G)|ℰφ(G, J, h)) (see (3.39). The normalizing
factor Z(G, J, h), i.e., the sum of the exponentials over the possible φ configurations, is
of central importance, its limit behavior when V(G) tends to infinity discloses several
features of the Gibbs measure, and detects phase transitions. The measure is clearly a
function of the entries of J and h, and roughly said a phase transition is a point where
the correlation between the marginal distributions of φ at the nodes quickly changes,
the configuration obtained following the Gibbs measure shifts from typically ordered
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3.6 Further aspects of statistical physics

to typically disordered. The parameters J and h of the measure are often driven by one
variable T that stands for the temperature, this is the case in the Ising model.

In the common definition used by physicists this weight reads as

exp

⎛⎜⎜⎜⎜⎜⎝− ∑︁
uv∈E(G)

Jφ(u)φ(v) +
∑︁

u∈V(G)

hφ(u)

⎞⎟⎟⎟⎟⎟⎠ ,
which is suitable for cases where the average degree of the graphs is bounded from
above by a constant, an example is the d-dimensional cubic lattice. A more universal
weighting would be exp( |V(G)|3

|E(G)| ℰφ(G, J, h)), that is just the previous formula with an
average degree normalization in the exponent in order to ensure that it is O(|V(G)|).
We will use the first formulation without a negative sign and with zero magnetization
h for its simplicity in the dense case.

For example, in the well-known Ising model, see below, each node can take one
of two possible states (spins), where adjacent node pairs in the same state excel a
repulsive interaction contributing −1 to the Hamiltonian, and in different states an
attractive one that is reflected by a +1 contribution to the value of the Hamiltonian.

The overwhelming majority of the statistical physics literature deals with models
on (possible infinite) lattice structures, whereas our study mainly concerns dense
structures. The connection is given by a simplified version of the original physics
model in which all pairs of nodes interact with each other in the same way with the
further hypothesis that the fluctuation of the spin values is always negligible.

This method is called mean field approximation, it has no direct practical meaning
for the description of an actual lattice system, however the behavior of the model often
serves as a source of intuition regarding more realistic scenarios. A huge advantage
of the model is that tracing the impact of the change of the interaction strength is less
involved, also, it fits well into our framework as the case of complete graphs.

Free energies of r-graphs and kernels We will study the testability of the logarithm
of the partition function per node, also called free energy of the system for r-uniform
hypergraphs, this means a generalization of the pairwise interaction between adjacent
nodes in certain states to multi-site interaction. For a fixed description of the charac-
teristics of the states the free energy is a graph a parameter, and it is closely related to
the ground state energies in a natural way. Such an aspect was first studied in [32].

Definition 3.6.1. Let q ≥ 1, J be a symmetric real r-array of size q. For an (R, r)-graph G the
partition function with respect to J is defined by

Z(G, J) =
∑︁

φ : V(G)→[q]

exp(|V(G)|ℰφ(G, J)), (3.43)
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where the sum goes over all q-partitions of |V(G)|, and

ℰφ(G, J) =
1

|V(G)|r

q∑︁
i1,...,ir=1

Ji1,...,irAG(φ−1(i1), . . . , φ−1(ir)).

The ground state energy of G with respect to J is

ℰ̂(G, J) = max
φ
ℰφ(G, J),

where the maximum runs over all q-partitions of |V(G)|.
The free energy of G with respect to J is

ℱ̂ (G, J) = −
1

|V(G)|
ln Z(G, J). (3.44)

We remark that if in the above definition the multiplicative factors |V(G)|r−1 in the
exponents in (3.43) would be replaced by |V(G)|r (thus, following the original termin-
ology when studying lattices in statistical physics) and the normalization in the free
energy expression in (3.44) would be changed to 1

|V(G)|r at the same time, then we would
obtain the situation described in (3.41). Therefore the modified definition would im-
ply that the free energy is asymptotically equal to the ground state energy of the same
system, meaning that their difference is O(1/|V(G)|).

We also mention that allowing different levels of interactions on the set of sites up to
the arity bound r would lead out of the space of uniform hypergraphs, however such
hypergraphs can be encoded by uniform edge-colored ones.

The original mean field approximation for the Ising model, also called Curie-Weiss
model, is a special instance of the above definition in the sense that G is assumed to
be a complete graph Kn, the behavior of the free energy is studied when n is tending
to infinity. This type of question regarding the limit behavior can be extended to any
convergent sequence of dense r-graph sequences using the next counting lemma.

Lemma 3.6.2. Let q ≥ 1, J be a symmetric real r-array of size q. For two r-graphs G and H
with the common vertex set [n] we have that

|ℰ̂(G, J) − ℰ̂(H, J)| ≤ qrd�(G,H)‖J‖∞,

and

|ℱ̂ (G, J) − ℱ̂ (H, J)| ≤ qrd�(G,H)‖J‖∞.

Proof. Let φ be an arbitrary q-partition of [n]. Then

|ℰφ(G, J) − ℰφ(H, J)| ≤
q∑︁

i1,...,ir=1

|Ji1,...,ir | |AG(φ−1(i1), . . . , φ−1(ir)) − AH(φ−1(i1), . . . , φ−1(ir))|
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≤ qrd�(G,H)‖J‖∞.

Let φ0 be such that ℰφ0(G, J) = ℰ̂(G, J). Then

ℰ̂(G, J) − ℰ̂(H, J) = ℰφ0(G, J) − ℰ̂(H, J)
≤ ℰφ0(G, J) − ℰφ0(G, J) ≤ qrd�(G,H) ‖J‖∞.

Bounding the negative of the above difference the same way gives the desired result.
Further,

Z(G, J)
Z(H, J)

=

∑︀
φ exp(nℰφ(G, J))∑︀
φ exp(nℰφ(H, J))

≤ max
φ

exp(n(ℰφ(G, J) − ℰφ(H, J))) ≤ exp(nqrd�(G,H)‖J‖∞).

By symmetry we have Z(H,J)
Z(G,J) ≤ exp(nqrd�(G,H)‖J‖∞), thus

|ℱ̂ (G, J) − ℱ̂ (H, J)| ≤ 1/n| ln Z(G, J) − ln Z(H, J)| ≤ qrd�(G,H)‖J‖∞.

�

The version of the free energy for naive r-kernels and graphons seems at first less
natural, than in the case of ground state energies.

Definition 3.6.3. [32] Let q ≥ 1, J be a symmetric real r-array of size q. Then the energy of a
naive r-kernel W with respect to J and the fractional q-partition φ is

ℰφ(W, J) =

q∑︁
i1,...,ir=1

Ji1,...,ir

∫︁
[0,1]r

W(x1, . . . , xr)
r∏︁

j=1

φi j(x j)dx1 . . .dxr,

the ground state energy of W with respect to J is

ℰ(W, J) = sup
φ

ℰφ(W, J).

The free energy of W with respect to J is

ℱ (W, J) = − sup
φ

[︁
ℰφ(W, J) + ent(φ)

]︁
,

where the supremum is taken over all fractional q-partitions of [0, 1], and

ent(φ) = −

∫︁ 1

0

q∑︁
i=1

φi(x) log(φi(x))dx.

As a usual convention we set the function x log x to be 0 at 0.
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The corresponding counting lemma for the graphon case is analogous to the graph
case including its proof.

Lemma 3.6.4. Let q ≥ 1, J be a symmetric real r-array of size q. For two naive r-kernels U
and W of common size n we have that

|ℰ(U, J) − ℰ(W, J)| ≤ qrδ�(U,W)‖J‖∞‖U‖∞‖W‖∞,

and

|ℱ (U, J) − ℱ (W, J)| ≤ qrδ�(U,W)‖J‖∞‖U‖∞‖W‖∞.

The connection between the two versions of free energies ℱ̂ (G, J) and ℱ (WG, J) for
a fixed r-graph is not as straight-forward as in the case of GSEs, as to be shown in
Chapter 4 below. We state a bound on their deviation without giving the detailed
proof here, as it is only a slight generalization of Theorem 5.8. in [32] for the case r = 2,
the alterations with respect to that proof are trivial.

Theorem 3.6.5. [32] Let q ≥ 1, J be a symmetric real r-array of size q. For an r-graph G we
have

|ℱ̂ (G, J) − ℱ (WG, J)| ≤ O

⎛⎜⎜⎜⎜⎝ qr√︀
ln |V(G)|

⎞⎟⎟⎟⎟⎠ .
The proof method of [32] goes as follows. There is no direct way to relate the two

quantities above, but it is possible to approximate ℱ (WG, J) by free energies of the
equitable blow-ups of G, i.e., ℱ̂ (G[k], J). To exploit this property one has to create a
template graph for G with less number of nodes using the Weak Regularity Lemma to
obtain a compressed representation H. Since by Lemma 3.6.2 above the free energies of
blow-ups of H are close to the free energies of G, it only requires some technical surgery
to estimate the impact of adding some small number of isolated vertices to finish the
proof. In fact, sill an application of the continuous version of the counting lemma,
Lemma 3.6.4, is needed as one approximates ℱ (WH, J) by ℱ̂ (H[k], J) to conclude the
proof with the aid of the first remark regarding the closeness of these two quantities.

As an immediate consequence of Theorem 3.6.5 we obtain the testability of the
r-graph parameter f (G) = ℱ̂ (G, J).

Corollary 3.6.6. Let q ≥ 1, J be a symmetric real r-array of size q, and let ε > 0 be an arbitrary
real. There exists a c > 0, such that for any r-graph G and k ≥ exp(c/ε2) we have

|ℱ̂ (G, J) − ℱ̂ (G(k,G), J)| ≤ ε

with probability at least 1 − ε.

Proof. Fix ε > 0, and let G and k be as in the statement, further let F denote G(k,G). We
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have

|ℱ̂ (G, J)−ℱ̂ (G(k,G), J)| ≤ |ℱ̂ (G, J) − ℱ (WG, J)|

+ |ℱ (WG, J) − ℱ (WF, J)| + |ℱ (WF, J) − ℱ̂ (F, J)|.

We set c to be large enough so that the first and the third term are each bounded above
by ε/3 due to Theorem 3.6.5. To estimate the middle term we apply Lemma 3.6.4
together with Lemma 3.3.9, perhaps by increasing c, we have

|ℱ (WG, J) − ℱ (WF, J)| ≤ qr
‖J‖∞δ�(G,F) ≤ ε/3

with probability at least 1 − ε.
�

Spin models in physics The problems we dealt with are defined on so-called spin
models, see de la Harpe and Jones [42], and Wu [116, 117] for connections between the
combinatorial and the physics aspects. Next we will list some well-known examples
of these models from the physics literature, and describe how they fit into the above
framework. Another important family of graph parameters appearing in statistical
physics are vertex models, where a configuration in the graph case is given by an edge
coloring, and the weight of a node in the energy formula is evaluated according to
the states of the incident edges and a given weight function. These models also have
a large literature, see [42], however their treatment would exceed the content of this
thesis.

The spin models listed below have all a finite state space (except for the n-vector
model, but this can be taken care of in some cases) with bounded interaction.

Ising model The most basic model for simple graphs is the Ising model, here q = 2
and Ji, j = (−1)i+ j, further ℰφ(G, J) = 1

|V(G)|2
∑︀

uv∈E(G) K(−1)φ(u)+φ(v). Depending on the
sign of K, sites in different states attract (K < 0) or repulse (K > 0) each other. For
K > 0 it is also called the ferromagnetic Ising model, as for large K the system
aligns into one state according to the Gibbs measure with high probability. The
case G = Kn is known as the Curie-Weiss model.

Potts model Let q ≥ 1 be arbitrary, then the standard Potts model is given by Ji, j =
K1i( j), where 1x is the indicator of its index, so the weight function is ℰφ(G, J) =

1
|V(G)|2

∑︀
u,v∈V(G) K1φ(u)(φ(v)). An alternative variant is known as the planar Potts

model (its mean field specialization is also known as the Curie-Weiss clock model)
defined by Ji, j = K cos(2π(i− j)

q ), for q = 2, 3 these two models are equivalent.

We mention that discarding the quadratic normalization in our formulation of
the Potts model with considering q and K as variables, it is equivalent to the
Tutte polynomial of graphs, that is also known as the dichromatic polynomial
and contains information about a large variety of graph invariants such as the
number of proper k-colorings, or spanning trees.
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Biggs model Let q be arbitrary, and T : Zq → R such that T(i) = T(−i). The Biggs
model generalizes the Potts model, it is given by Ji, j = T((i − j) mod q), in other
words, ℰφ(G, J) = 1

|V(G)|2
∑︀

uv∈E(G) T((φ(u) − φ(v)) mod q).

n-vector model The most basic continuous state spin model family is called the n-
vector model, where the spins come from the n-dimensional unit sphere, the
interaction strength between two states is the inner product of the representing
vectors, so Juv = ⟨u, v⟩. The partition function in this setup is defined as an integral
over all possible configurations with the usual spherical measure. If we specify
the dimension n of the sphere of possible spin values we get other well-studied
models. The case n = 1 corresponds to the Ising model above, the case n = 2 is
also referred to as the XY-model, and n = 3 is known as the classical Heisenberg
model. However, in terms of testability of the free energies the models with fixed
dimension can be well approximated by finite state space models by discretizing
the unit sphere.

We remark that in our framework it might be interesting to further generalize
the above model and allow spins from the n-dimensional unit sphere for graphs
with n vertices, this model seems to have close ties to semidefinite relaxations of
combinatorial optimization problems on graphs. Unfortunately, the discretiza-
tion method above would not lead to testability in this case, since the size of the
ε-net for the auxiliary states grows with the vertex cardinality of the inspected
graphs, and so does the bound in Corollary 3.6.6. So a corresponding testability
result in this case still would require some new ideas.

Multisite Potts model This model is a generalization of the standard Potts model in
the sense that influences of site groupings of higher rank also receive weights
in the Hamiltonian, in combinatorics these groupings can be captured by hyper-
graphs defined on the set of sites. For r = 3 and arbitrary q, the 3-site Potts model
corresponds to the interaction array Ji, j,k = K1i( j)1 j(k)1k(i) for i, j, k ∈ [q], and the
energy weight function takes the form

ℰφ(G, J) =
1

|V(G)|3
∑︁

uvw∈E(G)

K1φ(u)(φ(v))1φ(v)(φ(w))1φ(w)(φ(u)).

Zero-site interactions can be interpreted as the influence of some external mag-
netic field on the energy weight of the configurations. For example, a general
instance of the Potts model with interaction graph G = (G1,G2) on the site set
V(G) with G1 being a 3-graph and G2 being a 2-graph the energy weight of the
spin configuration φ looks like

ℰφ((G1,G2), J) =
1

|V(G)|3
∑︁

uvw∈E(G1)

K11φ(u)(φ(v))1φ(v)(φ(w))1φ(w)(φ(u))
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+
1

|V(G)|2
∑︁

uv∈E(G2)

K21φ(u)(φ(v)) +
1

|V(G1)|

∑︁
u∈V(G)

K311(φ(u)).

Remark 3.6.7. We would like to mention the consequences of Corollary 3.6.6 in terms
of computational complexity for the value of the free energy. In general, it requires
exponential time to determine the free energy, since the partition function is the sum
of qn energy terms, however Corollary 3.6.6 directly implies a PTAS for the value of
the free energies that runs in constant time for fixed ε > 0, meaning that in this time
we can compute an additive ε-approximation with high probability. Since the spin
models listed above all have a finite state space (except for the n-vector model, but this
can be handled if the dimension of the state space is bounded) and uniformly bounded
interaction strength, Corollary 3.6.6 applies, with other words we can say that for these
models the free energies considered as r-graph parameters are testable. As mentioned
above, the situation in the n-vector model with increasing state dimension has not
been resolved yet.

It is still an interesting question if it is possible to improve on upper bounds for the
sample complexity of the parameter given by f (G) = ℱ (WG, J) using the framework of
the forthcoming Chapter 4 concerning ground state energies.
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CHAPTER 4

Testability of the ground state energy

4.1 Introduction

In this chapter we introduce a generalization of the notion of the ground state energy
of graphs from [32], see Definition 3.5.6, to the space of r-graphons and r-kernels
and reformulate the results of [14] regarding sample complexity of MAX-rCSP in that
framework. The parameter derived from the maximal constraint satisfaction problem
will also serve as an example for an efficiently testable parameter of the corresponding
colored hypergraph. We will further generalize the main result of [14] in several
directions.

Assume that𝒦 is a compact Polish space, and r is a positive integer. First we provide
the basic definition of the energy of a (𝒦 , r)-graphon W : [0, 1]h([r])

→ 𝒦 with respect to
some q ≥ 1, an r-array J ∈ C(𝒦 )q×···×q, and a fractional partition φ = (φ1, . . . , φq). With
slight abuse of notation, the graphons in the upcoming parts of the section assume
both the 𝒦 -valued and the probability measure valued form, it will be clear from the
context which one of them is meant.

Recall Definition 3.6.3 of the energies of naive r-kernels, the version for true (𝒦 , r)-
graphons is

ℰφ(W, J) =

q∑︁
z1,...,zr=1

∫︁
[0,1]h([r])

Jz1,...,zr(W(xh([r])))
r∏︁

j=1

φz j(x{ j})dλ(xh([r])). (4.1)

The value of the above integral can be determined by first integrating over the
coordinates corresponding to subsets of [r] with at least two elements, and then over
the remaining ones. The interior partial integral is then not dependent on φ, so it can
be calculated in advance in the case when we want to optimize over all choices of
fractional partitions. Therefore focusing attention on the naive kernel version does not
lead to any loss of generality in terms of testing, see below.

When dealing with a so-called integer partition φ = (1T1 , . . . ,1Tq), one is able to
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rewrite the former expression (4.1) as

ℰφ(W, J) =

q∑︁
z1,...,zr=1

∫︁
p−1
h([r],1)(Tz1×···×Tzr )

Jz1,...,zr(W(xh([r])))dλ(xh([r]),

where pD stands for the projection of [0, 1]h([r]) to the coordinates contained in the set
D.

The energy of a (𝒦 , r)-graph G on k vertices with respect to the J ∈ C(𝒦 )q×···×q for
the fractional q-partition xn = (xn,1, . . . , xn,q) for n = 1, . . . , k (i. e., xn,m ∈ [0, 1] and∑︀

m xn,m = 1) is defined as

ℰx(G, J) =
1
kr

q∑︁
z1,...,zr=1

k∑︁
n1,...,nr=1

Jz1,...,zr(G(n1, . . . ,nr))
r∏︁

j=1

xn j,z j . (4.2)

In the case when 𝒦 = {0, 1} and Jz1,...,zr(x) = az1,...,zr11(x) is a constant multiple of
the indicator function of 1 we retrieve the original GSE notion in Example 3.5.5 and
Definition 3.5.6.

Remark 4.1.1. Ground state energies and subgraph densities are Lipschitz continuous
graph parameters in the sense of Lemma 3.5.8 ([30],[32]), but that result implies much
weaker upper bounds on the sample complexity, than the best ones known to date.
This is due to the fact, that δ�(G,G(k,G)) decreases with magnitude 1/

√︀
log k in k,

which is the result of the difficulty of finding a near optimal overlay between two
graphons through a measure preserving permutation of [0, 1] in order to calculate
their δ� distance. On the other hand, if the sample size k(ε) is exponentially large in
1/ε, then the distance δ�(G,G(k,G)) is small with high probability, therefore all Hölder-
continuous graph parameters at G can be estimated simultaneously with high success
probability by looking at the values at G(k,G)).

Next we introduce the layered version of the ground state energy. This is a general-
ized optimization problem where we wish to obtain the optimal value corresponding
to fractional partitions of the sums of energies over a finite layer set.

Definition 4.1.2. Let E be a finite layer set, 𝒦 be a compact set, and W = (We)e∈E be a tuple
of (𝒦 , r)-graphons. Let q be a fixed positive integer and let J = (Je)e∈E with Je ∈ C(𝒦 )q×···×q for
every e ∈ E. For a φ = (φ1, . . . , φq) fractional q-partition of [0, 1] let

ℰφ(W, J) =
∑︁
e∈E

ℰφ(We, Je)

and let

ℰ(W, J) = max
φ
ℰφ(W, J),

denote the layered ground state energy, where the maximum runs over all fractional q-partitions
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of [0, 1].
We define for G = (Ge)e∈E the energy ℰx(G, J) analogously as the energy sum over E, see

(4.2) above, and ℰ̂(G, J) = maxx ℰx(G, J) where the maximum runs over integer q-partitions
(xn,m ∈ {0, 1} ), respectively ℰ(G, J) = maxx ℰx(G, J), where the maximum is taken over all
fractional q-partitions x.

Now we will rewrite the unweighted boolean limit MAX-rCSP (recall Definition 2.1.2)
as a layered ground state energy problem. Let E = {0, 1}r, 𝒦 = {0, 1, . . . , 2r

}, W =
(Wz)z∈{0,1}r with Wz being (𝒦 , r)-graphons, and let

α(W) = max
φ

∑︁
z∈{0,1}r

∫︁
[0,1]h([r])

r∏︁
j=1

φ(x{ j})z j(1 − φ(x{ j}))1−z jWz(x)dλ(x),

where the maximum is taken over all measurable functions φ : [0, 1] → [0, 1]. If
eval(F) = (Fz)z∈{0,1}r is a (𝒦E, r)-graph corresponding to a boolean rCSP formula F with
k variables, then the finite integer version of α is given by

α̂(eval(F)) = max
x

1
kr

∑︁
z∈{0,1}r

k∑︁
n1,...,nr=1

Fz(n1, . . . ,nr)
r∏︁

j=1

xn j,z j ,

where the maximum runs over integer 2-partitions of [k]. It is clear that α̂(eval(F)) is
equal to the density of the optimum of the MAX-rCSP problem of F.

We return to the general setting and summarize the involved parameters in the
layered ground state energy problem. These are the dimension r, the layer set E, the
number of states q, the color set 𝒦 , the finite or limit case. Our main theorem on the
chapter will be a generalization of the following theorem on sample complexity of
rCSPs with respect to these factors.

The main result of [14] was the following.

Theorem 4.1.3. [14] Let F be an unweighted boolean rCSP formula. Then for any ε > 0 and
δ > 0 we have that for k ∈ 𝒪(ε−4 log(1

ε )) it holds that

P (|α̂(eval(F)) − α̂(G(k, eval(F)))| > ε) < δ.

The upper bound on k in the above result was subsequently improved by Mathieu
and Schudy [98] to k ∈ O(ε−4). We will see in what follows that also the infinitary
version of the above statement is true. It will be stated in terms of layered ground state
energies of edge colored hypergraphs, and will settle the issue regarding the efficiency
of testability of the mentioned parameters in the greatest generality with respect to
the previously highlighted aspects. However, what the exact order of the magnitude
of the sample complexity of the MAX-rCSP and the GSE problem is remains an open
question.

In order to simplify the analysis we introduce the canonical form of the problem, that
denote layered ground state energies of [q]r-tuples of ([−d, d], r)-graphons with the
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4 Testability of the ground state energy

special interaction r-arrays Ĵz for each z ∈ [q]r, that have the identity function f (x) = x
as the (z1, . . . , zr) entry and the constant 0 function for the other entries. In most of what
follows we will drop the dependence on J in the energy function when it is clear that
we mean the aforementioned canonical Ĵ, and will employ the notation ℰx(G), ℰ(G),
ℰ̂(G), ℰφ(W), and ℰ(W) (dependence on q is hidden in the notation), where G and W
are [q]r-tuples of ([−d, d], r)-graphs and graphons, respectively. We are ready to state
the main result of the chapter.

Theorem 4.1.4. Let r ≥ 1, q ≥ 1, and ε > 0. Then for any [q]r-tuple of ([−‖W‖∞, ‖W‖∞], r)-
graphons W = (Wz)z∈[q]r and k ≥ Θ4 log(Θ)qr with Θ =

2r+7qrr
ε we have

P(|ℰ(W) − ℰ̂(G(k,W))| > ε‖W‖∞) < ε. (4.3)

We outline the organization of the chapter. We proceed with the proof of The-
orem 4.1.4 in the next section, we employ the Cut Decomposition method that is a
low-rank type approximation for arrays resembling the singular value decomposition
for matrices closely related to the Weak Regularity Lemma, and linear programming
duality.

This is followed by applications of the proof methodology to some variant energy
problems. In particular, we analyze the testability of the generalization of ground
state energies with an external magnetic field that is embodied in an additional bias
towards certain states, and the microcanonical version of ground state energies, where
we optimize over configurations such that their number of vertices that take certain
states are fixed. We provide for these problems the first explicit upper bounds on
testability in Theorem 4.3.2 and Theorem 4.3.6, respectively. For the finitary version of
the microcanonical energy problem a similar question was investigated by Fernandez
de la Vega, Kannan, and Karpinski [53] by imposing a finite number of additional
global constraints with unbounded arity for common rCSPs.

Furthermore, the continuous version of the quadratic assignment problem is treated
below in a sample complexity context, see Corollary 4.3.9, this subject is related to re-
cent development in the topic of approximate graph isomorphism and homomorphism
problems, see [88] and [22].

In the subsequent section we relax the condition on the colors to be from a com-
pact space and treat graphs and graphons with real unbounded weights. We prove
testability for graphons under an Lp condition, see Theorem 4.4.3.

We conclude the chapter with a topic of somewhat different flavor. In [32] it was
shown that graph convergence is equivalent to convergent ground state energies, but is
strictly stronger that convergence of unrestricted ground state energies. We introduce
lower threshold ground state energies, where we optimize over configurations for that
each state is represented by a minimal number vertices corresponding to the threshold.
We prove a convergence hierarchy for these parameter families, see Theorem 4.5.11.

84



4.2 The main problem

4.2 The main problem

This section contains the proof of Theorem 4.1.4 we will proceed loosely along the
lines of the proof of Theorem 4.1.3 from [14] with most of the required lemmas being
refinements of the respective ones in the proof of that theorem. We will formulate
and verify these auxiliary lemmas one after another, afterwards we will compile them
to prove the main statement. The arguments made in [14] carry through adapted to
our continuous setting with some modifications, and we will also draw on tools from
[30] and [32]. A direct consequence of Theorem 4.1.4 is the corresponding result for
layered ground state energies.

Corollary 4.2.1. Let E be a finite layer set, 𝒦 a compact Polish color set, q ≥ 1, r-arrays
J = (Je)e∈E with Je ∈ C(𝒦 )q×···×q, and ε > 0. Then we have that for any E-tuple of (𝒦 , r)-
graphon W = (We)e∈E and k ≥ Θ4 log(Θ)qr with Θ =

2r+7qrr
ε that

P(|ℰ(W, J) − ℰ̂(G(k,W), J)| > ε|E| ‖J‖∞ ‖W‖∞) < ε.

Proof. We make no specific restrictions on the color set 𝒦 and on the set E of layers
except for finiteness of the second, therefore it will be convenient to rewrite the layered
energies ℰφ(W, J) into a more universal form as a sum of proper Hamiltonians in order
to suppress the role of𝒦 and E. Let

ℰφ(W, J) =
∑︁
e∈E

∑︁
z1,...,zr∈[q]

∫︁
[0,1]h([r])

∏︁
j∈[q]

φz j(x{ j})Jez1,...,zr
(We(x))dλ(xh([r]))

=
∑︁

z1,...,zr∈[q]

∫︁
[0,1]h([r])

∏︁
j∈[r]

φz j(x{ j})

⎡⎢⎢⎢⎢⎢⎣∑︁
e∈E

Jez1,...,zr
(We(x))

⎤⎥⎥⎥⎥⎥⎦ dλ(xh([r])).

Motivated by this reformulation we introduce for every (W, J) pair a special auxiliary
instance of the ground state problem that is defined for a [q]r-tuple of ([−d, d], r)-
graphons, where d = |E| ‖J‖∞ ‖W‖∞. For any z ∈ [q]r, let Ŵz(x) =

∑︀
e∈E Jez1,...,zr

(We(x))
for each x ∈ [0, 1]h([r]), and let the interaction matrices Ĵz be of the canonical form. We
obtain for any fractional partition φ of [0, 1] into q parts that ℰφ(W, J) = ℰφ(Ŵ, Ĵ), and
alsoℰx(G(k,W), J) = ℰx(G(k, Ŵ), Ĵ) for any fractional partition x, where the two random
r-graphs are obtained via the same sample. Therefore, without loss of generality, we
are able to reduce the statement of the corollary to the statement of Theorem 4.1.4
dealing with ground state energies of canonical form. �

We start with the proof of Theorem 4.1.4 by providing the necessary background.
The first lemma tells us that in the real-valued case the energy of the sample and that
of the averaged sample do not differ by a large amount.

Lemma 4.2.2. Let W be a ([−d, d], r)-graphon, q ≥ 1, J ∈ Rq×···×q. Then for every k ≥ 1 there
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is a coupling of G(k,W) andH(k,W) such that

P
(︁
|ℰ̂(G(k,W), J) − ℰ̂(H(k,W), J)| > ε‖J‖∞‖W‖∞

)︁
≤ 2 exp

(︃
−k

(︃
ε2k
2
− log q

)︃)︃
Proof. Let us fix a integer q-partition x of [k], and furthermore let the two random
r-graphs be generated by the same sample (US)S∈h([k],r). Then

ℰ̂x(G(k,W), J) =
1
kr

q∑︁
z1,...,zr=1

k∑︁
n1,...,nr=1

Jz1,...,zrW((US)S∈h({n1,...,nr},r))
r∏︁

j=1

xn j,z j ,

and

ℰ̂x(H(k,W), J)

=
1
kr

q∑︁
z1,...,zr=1

k∑︁
n1,...,nr=1

Jz1,...,zrE[W((US)S∈h({n1,...,nr},r)) | (US)S∈h({n1,...,nr},1)]
r∏︁

j=1

xn j,z j .

Let us enumerate the elements of
(︀k

2

)︀
as e1, e2, . . . , e(k

2), and define the martingale

Y0 = E[ℰ̂x(G(k,W), J) | {U j | j ∈ [k] }],

and

Yt = E
[︁
ℰ̂x(H(k,W), J) | {U j | j ∈ [k] } ∪

(︁
∪

t
j=1{US | e j ⊂ S }

)︁]︁
for each 1 ≤ t ≤

(︀k
2

)︀
, so that Y0 = ℰ̂x(H(k,W), J) and Y(k

2) = ℰ̂x(G(k,W), J). For each t ∈
(︀k

2

)︀
we can upper bound the difference, |Yt−1−Yt| ≤

1
k2 ‖J‖∞‖W‖∞. By the Azuma-Hoeffding

inequality, Lemma 3.5.2, it follows that

P(|Yt − Y0| ≥ ρ) ≤ 2 exp

⎛⎜⎜⎜⎜⎝− ρ2k4

2
(︀k

2

)︀
‖J‖2∞‖W‖2∞

⎞⎟⎟⎟⎟⎠ ≤ 2 exp
(︃
−

ρ2k2

2‖J‖2∞‖W‖2∞

)︃
, (4.4)

for any ρ > 0.
There are qk distinct integer q-partitions of [k], hence

P
(︁
|ℰ̂(G(k,W), J) − ℰ̂(H(k,W), J)| > ε‖J‖∞‖W‖∞

)︁
≤ 2 exp

(︃
−k

(︃
ε2k
2
− log q

)︃)︃
. (4.5)

�

In the following lemmas every r-graph or graphon is meant to be as bounded real-
valued and directed.

We would like to point out in the beginning that in the finite case we are able to shift
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from the integer optimization problem to the relaxed one with having a reasonably
good upper bound on the difference of the optimal values of the two.

Lemma 4.2.3. Let G be a real-valued r-graph on [k] and J ∈ Rq×···×q. Then

|ℰ(G, J) − ℰ̂(G, J)| ≤ r2 1
2k
‖G‖∞‖J‖∞.

Proof. Trivially we have ℰ(G, J) ≥ ℰ̂(G, J). We define G′ by setting all entries of G to
0 which have at least two coordinates which are the same (for r = 2 these are the
diagonal entries). Thus, we get that

|ℰ(G, J) − ℰ(G′, J)| ≤
(︃
r
2

)︃
1
k
‖G‖∞‖J‖∞.

Now assume that we are given a fractional partition x so that ℰx(G′, J) attains the
maximum ℰ(G′, J). We fix all the entries xn,1, . . . xn,q of x with n = 2, . . . , k and regard
ℰx(G′, J) as a function of x1,1, . . . , x1,q. This function will be linear in the variables
x1,1, . . . , x1,q, and with the additional condition

∑︀r
j=1 x1, j = 1 we obtain a linear program.

By standard arguments this program possesses an integer valued optimal solution,
so we are allowed to replace x1,1, . . . , x1,q by integers without letting ℰx(G′, J) decrease.
We repeat this procedure for each n ∈ [k], obtaining an integer optimum for ℰx(G′, J),
which implies that ℰ(G′, J) = ℰ̂(G′, J). Hence, the claim follows. �

Next lemma is the continuous generalization of Theorem 4 from [14], and is closely
related to the Weak Regularity Lemma, Lemma 3.3.4, of [59], and its continuous version
Lemma 3.3.10. The result is a centerpiece of the cut decomposition method.

Lemma 4.2.4. Let ε > 0 arbitrary. For any bounded measurable function W : [0, 1]r
→ R

there exist an s ≤ 1
ε2 , measurable sets S j

i ⊂ [0, 1] with i = 1, . . . , s, j = 1, . . . , r, and real
numbers d1, . . . , ds so that with B =

∑︀s
i=1 di1S1

i ×···×Sr
i

it holds that

(i) ‖W‖2 ≥ ‖W − B‖2,

(ii) ‖W − B‖� < ε‖W‖2, and

(iii)
∑︀s

i=1 |di| ≤
1
ε‖W‖2.

Proof. We construct stepwise the required rectangles and the respective coefficients
implicitly. Let W0 = W, and suppose that after the tth step of the construction we have
already obtained every set S j

i ⊂ [0, 1] with i = 1, . . . , t, j = 1, . . . , r, and the real numbers
d1, . . . , dt. Set Wt = W −

∑︀t
i=1 di1S1

i ×···×Sr
i
. We proceed to the (t + 1)st step, where two

possible situations can occur. The first case is when

‖Wt
‖� ≥ ε‖W‖2.
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This implies by definition that there exist measurable subsets S1
t+1, . . . ,S

r
t+1 of [0, 1]

such that |
∫︀

S1
t+1×···×Sr

t+1
Wt(x)dλ(x)| ≥ ε‖W‖2. We define dt+1 to be the average of Wt on

the product set S1
t+1 × · · · × Sr

t+1, and proceed to the (t + 2)nd step. In the case of

‖Wt
‖� < ε‖W‖2

we are ready with the construction and set s = t.
We analyze the first case to obtain an upper bound on the total number of steps

required by the construction. So suppose that the first case above occurs. Then

‖Wt
‖

2
2 − ‖W

t+1
‖

2
2 =

∫︁
S1

t+1×···×Sr
t+1

(Wt)2(x)dλ(x) −
∫︁

S1
t+1×···×Sr

t+1

(Wt(x) − dt+1)2dλ(x)

= d2
t+1λ(S1

t+1) . . . λ(Sr
t+1) ≥ ε2

‖W‖22. (4.6)

This means that the square of the 2-norm of Wt decreases in t in every step when the
first case occurs in the construction by at least ε2

‖W‖22, therefore it can happen only at
most 1

ε2 times, with other words s ≤ 1
ε2 . It is also clear that the 2-norm decreases in

each step, so we are left to verify the upper bound on the sum of the absolute values
of the coefficients di. From (4.6) we get, that

‖W‖22 =

s∑︁
t=1

‖Wt−1
‖

2
2 − ‖W

t
‖

2
2 ≥

s∑︁
t=1

d2
tλ(S1

t ) . . . λ(Sr
t).

We also know for every t ≤ s that |dt|λ(S1
t ) . . . λ(Sr

t) ≥ ε‖W‖2. Hence,

s∑︁
t=1

|dt|ε‖W‖2 ≤
s∑︁

t=1

d2
tλ(S1

t ) . . . λ(Sr
t) ≤ ‖W‖

2
2,

and therefore
∑︀s

t=1 |dt| ≤
1
ε‖W‖2. �

Next we state that the cut approximation provided by Lemma 4.2.4 is invariant
under sampling. This is a crucial point of the whole argument, and is the r-dimensional
generalization of Lemma 4.6 from [30].

Lemma 4.2.5. For any ε > 0 and bounded measurable function W : [0, 1]r
→ R we have that

P (|‖H(k,W)‖� − ‖W‖�| > ε‖W‖∞) < 2 exp
(︃
−
ε2k
32r2

)︃
for every k ≥

(︁
16r2

ε

)︁4
.

Proof. Fix an arbitrary 0 < ε < 1, r ≥ 2, and further let W be a real-valued naive

r-kernel. Set the sample size to k ≥
(︁

16r2

ε

)︁4
. Let us consider the array representation of
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H(k,W) and denote the r-array AH(k,W) by G that has zeros on the diagonal. We will
need the following lemma from [14].

Lemma 4.2.6. G is a real r-array on some finite product set V1 × · · · ×Vr, where Vi are copies
of V of cardinality k. Let S1 ⊂ V1, . . . ,Sr ⊂ Vr be fixed subsets and Q1 a uniform random
subset of V2 × · · · × Vr of cardinality p. Then

G(S1, . . . ,Sr) ≤ EQ1G(P(Q1 ∩ S2 × · · · × Sr),S2, . . . ,Sr) +
kr

√
p
‖G‖2,

where P(Q1) = PG(Q1) = { x1 ∈ V1 |
∑︀

(y2,...yr)∈Q1
G(x1, y2, . . . , yr) > 0 } and the 2-norm denotes

‖G‖2 =
(︂∑︀

xi∈Vi
G2(x1,...,xr)

|V1|...|Vr|

)︂1/2

.

If we apply Lemma 4.2.6 repeatedly r times to the r-arrays G and −G, then we arrive
at an upper bound on G(S1, . . . ,Sr) ((−G)(S1, . . . ,Sr) respectively) for any collection of
the S1, . . . ,Sr which does not depend on the particular choice of these sets any more,
so we get that

kr
‖G‖� ≤ EQ1,...,Qr max

Q′i⊂Qi

max{G(PG(Q′1), . . . ,PG(Q′r)); (−G)(P−G(Q′1), . . . ,P−G(Q′r))}

+
rkr

√
p
‖G‖∞, (4.7)

since ‖G‖2 ≤ ‖G‖∞.
Let us recall that G stands for the random H(k,W). We are interested in the ex-

pectation E of the left hand side of (4.7) over the sample that defines G. Now we
proceed via the method of conditional expectation. We establish an upper bound on
the expectation of right hand side of (4.7) over the sample U1, . . . ,Uk for each choice
of the tuple of sets Q1, . . . ,Qr. This bound does not depend on the actual choice of the
Qi’s, so if we take the average (over the Qi’s), that upper bound still remains valid.

In order to do this, let us fix Q1, . . . ,Qr, set Q to be the set of elements of V(G) which are
contained in at least one of the Qi’s, and fix also the sample points of UQ = {Ui | i ∈ Q }.
Take the expectation EUQc only over the remaining Ui sample points.

To this end, by Fubini we have the estimate

krEU[k]‖G‖� ≤ EQ1,...QrEUQ[EUQc max
Q′i⊂Qi

max{G(PG(Q′1) ∩Qc, . . . ,PG(Q′r) ∩Qc);

(−G)(P−G(Q′1) ∩Qc, . . . ,P−G(Q′r) ∩Qc)}] +
rkr

√
p
‖G‖∞ + pr3kr−1

‖G‖∞, (4.8)

where US = {Ui | i ∈ S }.
Our goal is to uniformly upper bound the expression in the brackets in (4.8) so

that in the dependence on the particular Q1, . . .Qr and the sample points from UQ

vanishes. To achieve this, we consider additionally a tuple of subsets Q′i ⊂ Qi, and
introduce the random variable Y(Q′1, . . . ,Q

′

r) = G(PG(Q′1) ∩Qc, . . . ,PG(Q′r) ∩Qc), where
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the randomness comes from UQc exclusively. Let

Ti = { xi ∈ [0, 1] |
∑︁

(y1,...,yi−1,yi+1,...yr)∈Q′i

W(Uy1 , . . . ,Uyi−1 , xi,Uyi+1 , . . .Uyr) > 0 }

for i ∈ [r]. Note that ti ∈ PG(Q′i) is equivalent to Uti ∈ Ti. Then

EUQc Y(Q′1, . . . ,Q
′

r) ≤
∑︁

t1,...,tr∈Qc

ti,t j

EUQc G(t1, . . . , tr)1PG(Q′1)(t1) . . .1PG(Q′r)(tr) + r2kr−1
‖W‖∞

≤ kr
∫︁

T1×···×Tr

W(x)dλ(x) + r2kr−1
‖W‖∞ ≤ kr

‖W‖� + r2kr−1
‖W‖∞.

By the Azuma-Hoeffding inequality we also have high concentration of the random
variable Y(Q′1, . . . ,Q

′

r) around its mean, that is

P(Y(Q′1, . . . ,Q
′

r) ≥ EUQc Y(Q′1, . . . ,Q
′

r) + ρkr
‖W‖∞) < exp

(︃
−
ρ2k
8r2

)︃
, (4.9)

since modification of one sampled element changes the value of Y(Q′1, . . . ,Q
′

r) by at
most 2rkr−1

‖W‖∞.Analogous upper bounds on the expectation and the tail probability
hold for each of the expressions (−G)(P−G(Q′1), . . . ,PG(Q′r)).

With regard to the maximum expression in (4.8) over the Q′i sets we have to this
end either that the concentration event from (4.9) holds for each possible choice of the
Q′i subsets for both expressions in the brackets in (4.8), this has probability at least

1− 2pr+1 exp(−ρ
2k

8r2 ), or it fails for some choice. In the first case we can employ the upper
bound kr

‖W‖� + (r2kr−1 + ρkr)‖W‖∞, and in the event of failure we still have the trivial
upper bound of kr

‖W‖∞. Eventually we presented an upper bound on the expectation
that does not depend on the choice of Q1, . . . ,Qr, and the sample points from UQ.
Hence by taking expectation and assembling the terms, we have

EU[k]‖G‖� ≤ ‖W‖� + ‖W‖∞

(︃
r
√

p
+

pr3

k
+ ρ +

r2

k
+ 2pr+1 exp

(︃
−
ρ2k
8r2

)︃)︃
.

Let p =
√

k and ρ = 4r2

4√
k
. Then

EU[k]‖G‖� ≤ ‖W‖� + ‖W‖∞

(︃
r
4√
k

+
r3

√
k

+
4r2

4√
k

+
r2

k
+ exp

(︁
2
√

kr − 2r2
√

k
)︁)︃

≤ ‖W‖� + ‖W‖∞

(︃
ε

16r
+
ε2

28r
+
ε
4

+
ε4

216r6 +
ε2

28r6

)︃
≤ ‖W‖� + ε/2‖W‖∞.

The direction concerning the lower bound, E‖G‖� ≥ ‖W‖� − ε/2 follows from a
standard sampling argument, the idea is that we can project each set S ⊂ [0, 1] to a
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4.2 The main problem

set Ŝ ⊂ [k] through the sample, which will fulfill the desired conditions, we leave the
details to the reader. Concentration follows by the Azuma-Hoeffding inequality. We
conclude that

P (|‖G‖� − ‖W‖�| > ε‖W‖∞) ≤ P
(︂⃒⃒⃒⃒⃒
E‖G‖� −

1
kr ‖G‖�

⃒⃒⃒⃒⃒
> ε/2‖W‖∞

)︂
≤ 2 exp

(︃
−
ε2k
32r2

)︃
.

�

The two previous results Lemma 4.2.4 and Lemma 4.2.5 together imply a generaliza-
tion of Lemma 3.3.9 for r-graphs and r-graphons for arbitrary r formulating that typical
induced subgraphs are close in the δ� to the source object. We formulate the precise
statement below, however we are not going to use it in the proof of Theorem 4.1.4. Its
proof is analogous to the case of Lemma 3.3.9 in [30]: for a given instance, the applica-
tion of Lemma 4.2.4 ensures the existence of δ�-close graphon of bounded complexity
(a step function) in the quality of the approximation. Lemma 4.2.5 tells us that the
projected approximation on the sample is also of sufficient quality with respect to the
sampled problem with high probability, the proof concludes with the description of
an overlay of the steps of the two approximating graphons to infer that they can be
rearranged to be identical on a large subset of the unit cube. We refer for details to
[30].

Lemma 4.2.7. Let ε > 0 and let U be an r-graphon with 0 ≤ U ≤ 1. Then for q ≥ 2100r/ε2 we
have

P
(︀
δ�(U,G(q,U)) ≥ ε

)︀
≤ exp

(︃
−4100/ε2 ε2

50

)︃
. (4.10)

Next we state a result on the relationship of a continuous linear program (LP) and
its randomly sampled finite subprogram. We will rely on the next concentration result
that is a generalization of the Azuma-Hoeffding inequality, Lemma 3.5.2, and suits
well the situation when the martingale jump sizes have inhomogeneous distribution.
It can be found together with a proof in the survey [112] as Corollary 3.

Lemma 4.2.8 (Generalized Azuma-Hoeffding inequality). Let k ≥ 1 and (Xn)k
n=0 be a

martingale sequence with respect to the natural filtration (ℱn)k
n=1. If |Xn − Xn+1| ≤ d almost

surely and E[(Xn − Xn+1)2
| ℱn] ≤ σ2 for each n ∈ [k], then for every n ≤ k and δ > 0 it holds

that

P(Xn − X0 > δn) ≤ exp
(︃
−n
σ2

d2

(︃
(1 +

δd
σ2 ) ln(1 +

δd
σ2 ) −

δd
σ2

)︃)︃
. (4.11)

Measurability for all of the following functions is assumed.
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4 Testability of the ground state energy

Lemma 4.2.9. Let cm : [0, 1] → R, Ui,m : [0, 1] → R for i = 1, . . . , s, m = 1, . . . , q, u ∈ Rs×q,
α ∈ R. Let d and σ be positive reals such that ‖c‖∞ ≤ d and ‖c‖2 ≤ σ and set γ = σ2

d2 . If the
optimum of the linear program

maximize
∫︁ 1

0

q∑︁
m=1

fm(t)cm(t)dt

subject to
∫︁ 1

0
fm(t)Ui,m(t)dt ≤ ui,m for i ∈ [s] and m ∈ [q]

0 ≤ fm(t) ≤ 1 for t ∈ [0, 1] and m ∈ [q]
q∑︁

m=1

fm(t) = 1 for t ∈ [0, 1]

is less than α, then for any ε, δ > 0 and k ∈ N and a uniform random sample {X1, . . . ,Xk} of
[0, 1]k the optimum of the sampled linear program

maximize
∑︁

1≤n≤k

q∑︁
m=1

1
k

xn,mcm(Xn)

subject to
∑︁

1≤n≤k

1
k

xn,mUi,m(Xn) ≤ ui,m − δ‖U‖∞ for i ∈ [s] and m ∈ [q]

0 ≤ xn,m ≤ 1 for n ∈ [k] and m ∈ [q]
q∑︁

m=1

xn,m = 1 for n ∈ [k]

is less than α + ε with probability at least

1 −
[︃
exp

(︃
−
δ2k
2

)︃
+ exp

(︃
−kγ

(︃
(1 +

ε
γd

) ln(1 +
ε
γd

) −
ε
γd

)︃)︃]︃
.

Proof. We require a continuous version of Farkas’ Lemma.

Claim 3. Let (A f )i,m =
∫︀ 1

0
Ai,m(t) fm(t)dt for the bounded measurable functions Ai,m on

[0, 1] for i ∈ [s] and m ∈ [q] , and let v ∈ Rsq. There is no fractional q-partition solution
f = ( f1, . . . , fq) to A f ≤ v if and only if, there exists a non-zero 0 ≤ y ∈ Rsq with ‖y‖1 = 1
such that there is no fractional q-partition solution f to yT(A f ) ≤ yTv.

For clarity we remark that in the current claim and the following one A f and v
are indexed by a pair of parameters, but are regarded as 1-dimensional vectors in the
multiplication operation.

Proof. One direction is trivial: if there is a solution f to A f ≤ v, then it is also a solution
to yT(A f ) ≤ yTv for any y ≥ 0.
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4.2 The main problem

We turn to show the opposite direction. Let

C = {A f | f is a fractional q-partition of [0, 1] }.

The set C is a nonempty convex closed subset of Rsq containing 0. Let B = { x | xi,m ≤

vi,m } ⊂ Rsq, this set is also a nonempty convex closed set. The absence of a solution
to A f ≤ v is equivalent to saying that C ∩ B is empty. It follows from the Separation
Theorem for convex closed sets that there is a 0 , y′ ∈ Rsq such that y′Tc < y′Tb for
every c ∈ C and b ∈ B. Additionally every coordinate y′i,m has to be non-positive. To see
this suppose that y′i0,m0

> 0, we pick a c ∈ C and b ∈ B, and send bi0,m0 to minus infinity
leaving every other coordinate of the two points fixed (b will still be an element of B),
for bi0 small enough the inequality y′Tc < y′Tb will be harmed eventually. We conclude
that for any f we have y′T(A f ) < y′Tv, hence for y =

−y′

‖y′‖1
the inequality yT(A f ) ≤ yTv

has no solution. �

From this lemma the finitary version follows without any difficulties.

Claim 4. Let B be a real sq × k matrix, and let v ∈ Rsq . There is no fractional q-partition
x ∈ Rkq so that Bx ≤ v if and only if, there is a non-zero 0 ≤ y ∈ Rsq with ‖y‖1 = 1 such
that there is no fractional q-partition x ∈ Rkq so that yTBx ≤ yTv.

Proof. Let Ai,m(t) =
∑︀k

n=1
B(i,m),n

k 1[ n−1
k , nk )(t) for i = 1, . . . , s. The nonexistence of a fractional

q-partition x ∈ Rkq so that Bx ≤ v is equivalent to nonexistence of a fractional q-partition
f so that A f ≤ v. For any nonzero 0 ≤ y, the nonexistence of a fractional q-partition
x ∈ Rkq so that yTBx ≤ yTv is equivalent to the nonexistence of a fractional q-partition
f so that yT(A f ) ≤ yTv. Applying Claim 3 verifies the current claim. �

The assumption of the lemma is by Claim 3 equivalent to the statement that there
exists a nonzero 0 ≤ y ∈ Rsq and 0 ≤ β with

∑︀s
i=1

∑︀q
m=1 yi,m + β = 1 such that∫︁ 1

0

s∑︁
i=1

q∑︁
m=1

yi,mUi,m(t) fm(t)dt −
∫︁ 1

0
β

q∑︁
m=1

cm(t) fm(t) ≤
s∑︁

i=1

q∑︁
m=1

yi,mui,m − βα

has no solution f among fractional q-partitions. This is equivalent to the condition∫︁ 1

0
h(t)dt > A,

where h(t) = min
m

[︀∑︀s
i=1 yi,mUi,m(t) − βcm(t)

]︀
, and A =

∑︀s
i=1

∑︀q
m=1 yi,mui,m − βα. Let Tm =

{ t | h(t) =
∑︀s

i=1 yi,mUi,m(t) − βcm(t) } for m ∈ [q] and define the functions h1(t) =∑︀q
m=1 1Tm(t)

[︀∑︀s
i=1 yi,mUi,m(t)

]︀
and h2(t) =

∑︀q
m=1 1Tm(t)βcm(t). Clearly, h(t) = h1(t) − h2(t).

Set also A1 =
∑︀s

i=1
∑︀q

m=1 yi,mui,m and A2 = βα. Fix an arbitrary δ > 0 and k ≥ 1. By the
Azuma-Hoeffding inequality it follows that with probability at least 1 − exp(− kδ2

2 ) we
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4 Testability of the ground state energy

have that

1
k

k∑︁
n=1

h1(Xn) > A1 − δ‖h1‖∞.

Note that ‖h1‖∞ = ‖
∑︀s

i=1
∑︀q

m=1 1TmUi,myi,m‖∞ ≤ ‖U‖∞
∑︀s

i=1
∑︀q

m=1 |yi,m| ≤ ‖U‖∞. Moreover,
by Lemma 4.2.8 the event

1
k

k∑︁
n=1

h2(Xn) < A2 + ε (4.12)

has probability at least 1 − exp
(︁
−kγ

(︁
(1 + ε

γd ) ln(1 + ε
γd ) − ε

γd

)︁)︁
. Thus,

1
k

k∑︁
n=1

h(Xn) >
s∑︁

i=1

q∑︁
m=1

yi,m(ui,m − δ‖U‖∞) − β(α + ε)

with probability at least

1 −
[︃
exp

(︃
−
δ2k
2

)︃
+ exp

(︃
−kγ

(︃
(1 +

ε
γd

) ln(1 +
ε
γd

) −
ε
γd

)︃)︃]︃
.

We conclude the proof by noting that the last event is equivalent to the event in the
statement of our lemma by Claim 4. �

We start the principal part of the proof of the main theorem in this chapter.

Proof of Theorem 4.1.4. It is enough to prove Theorem 4.1.4 for tuples of naive ([−d, d], r)-
digraphons. We first employ Lemma 4.2.2 to replace the energy ℰ̂(G(k,W)) by the
energy of the averaged sample ℰ̂(H(k,W)) without altering the ground state energy of
the sample substantially with high probability. Subsequently, we apply Lemma 4.2.3 to
change from the integer version of the energy ℰ̂(H(k,W)) to the relaxed oneℰ(H(k,W)).
That is

|ℰ̂(G(k,W)) − ℰ(H(k,W))| ≤ ε2
‖W‖∞

with probability at least 1 − ε2.
We begin with the main argument by showing that the ground state energy of the

sample can not be substantially smaller than that of the original, formally

ℰ(H(k,W)) ≥ ℰ(W) −
r2

k1/4 ‖W‖∞ (4.13)

with high probability. In what follows E denotes the expectation with respect to the
uniform independent random sample (US)S∈h([k],r) from [0, 1]. To see the correctness
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4.2 The main problem

of the inequality, we consider a fixed fractional partition φ of [0, 1], and define the
random fractional partition of [k] as yn,m = φm(Un) for every n ∈ [k] and m ∈ [q]. Then
we have that

Eℰ(H(k,W)) ≥ Eℰy(H(k,W))

= E
1
kr

∑︁
z∈[q]r

k∑︁
n1,...,nr=1

Wz(Uh({n1,...,nr},r))
r∏︁

j=1

yn j,z j

≥
k!

kr(k − r)!

∑︁
z∈[q]r

∫︁
[0,1]h([r])

Wz(th([r]))
r∏︁

j=1

φz j(t j)dλ(t) −
r2

k
‖W‖∞

≥ ℰφ(W) −
r2

k
‖W‖∞.

This argument proves the claim in expectation, concentration will be provided
by standard martingale arguments. For convenience, we define a martingale by
Y0 = Eℰ(H(k,W)) and Y j = E

[︀
ℰ(H(k,W)) | {US | S ∈ h([ j], r − 1) }

]︀
for 1 ≤ j ≤ k. The

difference |Y j −Y j+1| ≤
2r
k ‖W‖∞ is bounded from above for any j, thus by the inequality

of Azuma and Hoeffding, Lemma 3.5.2, it follows that

P

(︃
ℰ(H(k,W)) < ℰ(W) −

2r2

k1/4 ‖W‖∞

)︃
≤ P

(︃
ℰ(H(k,W)) < Eℰ(H(k,W)) −

r2

k1/4 ‖W‖∞

)︃
= P

(︃
Yk < Y0 −

r2

k1/4 ‖W‖∞

)︃
≤ exp

⎛⎜⎜⎜⎜⎝−r2
√

k
8

⎞⎟⎟⎟⎟⎠ . (4.14)

So the lower bound (4.13) on ℰ(H(k,W)) is established. Note that by the condition
regarding k we can establish (rather crudely) the upper bound exp(− r2

√
k

8 ) ≤ ε2−7.
Now we turn to prove that ℰ(H(k,W)) < ℰ(W) + ε holds also with high probability

for k ≥
(︂

2r+7qrr
ε

)︂4

log(2r+7qrr
ε )qr. Our two main tools will be Lemma 4.2.4, that is a variant

the Cut Decomposition Lemma from [14] (closely related to the Weak Regularity
Lemma by Frieze and Kannan [59]), and linear programming duality, in the form of
Lemma 4.2.9. Recall the definition of the cut norm, for W : [0, 1]r

→ R, it is given as

‖W‖� = max
S1,...,Sr⊂[0,1]

⃒⃒⃒⃒⃒∫︁
S1×···×Sr

W(x)dλ(x)
⃒⃒⃒⃒⃒
,

and for an r-array G by the expression

‖G‖� =
1
kr max

S1,...,Sr⊂V(G)

⃒⃒⃒
G(S1, . . . ,Sr)

⃒⃒⃒
.
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4 Testability of the ground state energy

Before starting the second part of the technical proof, we present an informal outline.
Our task is to certify that there is no assignment of the variables on the sampled energy
problem, which produces an overly large value relative to the ground state energy of
the continuous problem. For this reason we build up a cover of subsets over the set of
fractional partitions of the variables of the finite problem, also build a cover of subsets
over the fractional partitions of the original continuous energy problem, and establish
an association scheme between the elements of the two in such a way, that with high
probability we can state that the optimum on one particular set of the cover of the
sampled energy problem does not exceed the optimal value of the original problem on
the associated set of the other cover. To be able to do this, first we have to define these
two covers, this is done with the aid of the cut decomposition, see Lemma 4.2.4. We
will replace the original continuous problem by an auxiliary one, where the number
of variables will be bounded uniformly in terms of our error margin ε. Lemma 4.2.5
makes it possible for us to replace the sampled energy problem by an auxiliary problem
with the same complexity as for the continuous problem. This second replacement will
have a straightforward relationship to the approximation of the original problem. We
will produce the cover sets of the two problems by localizing the auxiliary problems,
association happens through the aforementioned straightforward connection. Finally,
we will linearize the local problems, and use the linear programming duality principle
from Lemma 4.2.9 to verify that the local optimal value on the sample does not exceed
the local optimal value on the original problem by an infeasible amount, with high
probability.

Recall that for a φ = (φ1, . . . , φq) a fractional q-partition of [0, 1] the energy is given
by the formula

ℰφ(W) =
∑︁
z∈[q]r

∫︁
[0,1]r

∏︁
j∈[r]

φz j(t j)Wz(t)dλ(t), (4.15)

and for an x = (x1,1, x1,2, . . . , x1,q, x2,1, . . . , xk,q) a fractional q-partition of [k] by

ℰx(H(k,W)) =
∑︁
z∈[q]r

1
kr

k∑︁
n1,...,nr=1

∏︁
j∈[r]

xt j,z jW
z(Un1 , . . . ,Unr). (4.16)

We are going to establish a term-wise connection with respect to the parameter z in
the previous formulas. Therefore we consider the function

ℰ
z
φ(Wz) =

∫︁
[0,1]r

∏︁
j∈[r]

φz j(t j)Wz(t)dλ(t), (4.17)
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it follows that ℰφ(W) =
∑︀

z∈[q]r ℰ
z
φ(Wz). Analogously we consider

ℰ
z
x(H(k,Wz)) =

1
kr

k∑︁
n1,...,nr=1

∏︁
j∈[r]

xt j,z jW
z(Un1 , . . . ,Unr),

so ℰx(H(k,W)) =
∑︀

z∈[q]r ℰ
z
x(H(k,Wz)) with the sampled graphs on the right generated

by the same sample points. Note that the formulas (4.15)-(4.17) make prefect sense
even when the parameters φ and x are only vectors of bounded functions and reals
respectively without forming partition.

Lemma 4.2.4 delivers for any z ∈ [q]r an integer sz ≤
26q2r

ε2 , measurable sets Sz,i, j ⊂ [0, 1]
with i = 1, . . . , sz, j = 1, . . . , r, and the real numbers dz,1, . . . , dz,sz such that the conditions
of the lemma are satisfied, namely

‖Wz
−

sz∑︁
i=1

dz,i1Sz,i,1×···×Sz,i,r‖� ≤
ε

8qr ‖W
z
‖2,

and
∑︀sz

i=1 |dz,i| ≤
8qr

ε ‖W
z
‖2. The cut function allows a sufficiently good approximation

for ℰφ(Wz), for any φ. Let Dz =
∑︀sz

i=1 dz,i1Sz,i,1×···×Sz,i,r . Then

|ℰ
z
φ(Wz) − ℰz

φ(Dz)| =

⃒⃒⃒⃒⃒
⃒⃒∫︁

[0,1]r

∏︁
j∈[r]

φz j(t j) [Wz(t) −Dz(t)] dλ(t)

⃒⃒⃒⃒⃒
⃒⃒

≤ ‖Wz
−Dz

‖� ≤
ε

8qr ‖W
z
‖∞.

We apply the cut approximation to Wz for every z ∈ [q]r to obtain the [q]r-tuple of
naive r-kernels D = (Dz)z∈[q]r . We define the push-forward of this approximation for the
sampleH(k,W). To do this we need to define the subsets [k] ⊃ Ŝz,i, j = {m | Um ∈ Sz,i, j }.
Let D̂z =

∑︀sz
i=1 dz,i1Ŝz,i,1×···×Ŝz,i,r

. First we condition on the event from Lemma 4.2.5, call
this event E1, that is

E1 =
⋂︁

z∈[q]r

{︃⃒⃒⃒
‖H(k,Wz) − D̂z

‖� − ‖Wz
−Dz

‖�

⃒⃒⃒
<

ε
8qr ‖W‖∞

}︃
.

On E1 it follows that for any x that is a fractional q-partition

|ℰ
z
x(H(k,Wz)) − ℰz

x(D̂z)| ≤ ‖H(k,Wz) − D̂z
‖�

≤ ‖Wz
−Dz

‖� +
ε

8qr ‖W‖∞.
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4 Testability of the ground state energy

This implies that

|ℰφ(W) − ℰφ(D)| ≤
ε
8
‖W‖∞ and |ℰx(H(k,W)) − ℰx(H(k,D))| ≤

ε
4
‖W‖∞.

The probability that E1 fails is at most 2qr exp
(︁
−

ε2k
211r2q2r

)︁
whenever k ≥

(︂
27qrr2

ε

)︂4

due to

Lemma 4.2.5, in the current theorem we have the condition k ≥
(︂

2r+7qrr
ε

)︂4

log(2r+7qrr
ε )qr,

which implies the aforementioned one. The failure probability of E1 is then strictly
less than ε

27 .

Let 𝒮 = {Sz,i, j | z ∈ [q]r, 1 ≤ i ≤ sz, 1 ≤ j ≤ r } denote their set, and let 𝒮′ stand for the
corresponding set on the sample. Note that s′ = |𝒮| ≤ 26rq3r 1

ε2 in general, but in some
cases the Wz functions are constant multiples of each other, so the cut approximation
can be chosen in a way that Sz,i, j does not depend on z ∈ [q]r, and in this case we have
the slightly refined upper bound 26rq2r 1

ε2 for s′, consequences of this in the special case
are discussed in the remark after the proof. Let η > 0 be arbitrary, and define the sets

I(b, η) =

⎧⎪⎪⎨⎪⎪⎩φ | ∀z ∈ [q]r, 1 ≤ i ≤ sz, 1 ≤ j ≤ r :

⃒⃒⃒⃒⃒
⃒
∫︁

Sz,i, j

φz j(t)dt − bz,i, j

⃒⃒⃒⃒⃒
⃒ ≤ 2η

⎫⎪⎪⎬⎪⎪⎭ ,
and

I′(b, η) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ x | ∀z ∈ [q]r, 1 ≤ i ≤ sz, 1 ≤ j ≤ r :

⃒⃒⃒⃒⃒
⃒⃒⃒1k ∑︁

Un∈Sz,i, j

xn,z j − bz,i, j

⃒⃒⃒⃒⃒
⃒⃒⃒ ≤ η

⎫⎪⎪⎪⎬⎪⎪⎪⎭
For a collection of non-negative reals {bz,i, j}. At this point in the definitions of the
above sets we do not require φ and x to be fractional q-partitions, but to be vectors of
bounded functions and vectors respectively. We will use the grid points𝒜 = { (bz,i, j)z,i, j |

∀z, i, j : bz,i, j ∈ [0, 1] ∩ ηZ }.

On every nonempty set I(b, η) we can produce a linear approximation of ℰφ(D)
(linearity is meant in the functionsφm) which carries through to a linear approximation
ofℰx(H(k,D)) via sampling. The precise description of this is given in the next auxiliary
result.

Lemma 4.2.10 (Local linearization). If η ≤ ε
16qr2r , then for every b ∈ 𝒜 there exist l0 ∈ R

and functions l1, l2, . . . , lq : [0, 1]→ R such that for every φ ∈ I(b, η) it holds that⃒⃒⃒⃒⃒
⃒⃒ℰφ(D) − l0 −

∫︁ 1

0

q∑︁
m=1

lm(t)φm(t)dt

⃒⃒⃒⃒⃒
⃒⃒ < ε

2r+3 ‖W‖∞,
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and for every x ∈ I′(b, η) we have⃒⃒⃒⃒⃒
⃒⃒ℰx(H(k,D)) − l0 −

k∑︁
n=1

q∑︁
m=1

1
k

xn,mlm(Ui)

⃒⃒⃒⃒⃒
⃒⃒ < ε

2r+5 ‖W‖∞.

Additionally we have that l1, l2, . . . , lq are bounded from above by 8q2r

ε ‖W‖∞ and
∫︀ 1

0

∑︀q
m=1 l2

m(t)dt ≤
22r+9r2q3r

‖W‖2
∞
.

Proof. Recall the decomposition of the energies as sums over z ∈ [q]r into terms

ℰ
z
φ(Dz) =

sz∑︁
i=1

dz,i

∫︁
[0,1]r

r∏︁
j=1

φz j(t j)1Sz,i,1×···×Sz,i,r(t)dt

=

sz∑︁
i=1

dz,i

∫︁
[0,1]r

q∏︁
m=1

r∏︁
j=1

z j=m

φm(t j)1Sz,i,1×···×Sz,i,r(t)dt,

and

ℰ
z
x(D̂z) =

sz∑︁
i=1

dz,i
1
kr

q∏︁
m=1

r∏︁
j=1

z j=m

∑︁
n : Un∈Sz,i, j

xn,m.

We linearize and compare the functions ℰz
φ(Dz) and ℰz

x(D̂z) term-wise. In the end we
will sum up the errors and deviations occurred at each term. Let b ∈ 𝒜 and η > 0
as in the statement of the lemma with I(b, η) being nonempty. Let us fix an arbitrary
φ ∈ I(b, η), z ∈ [q]r, and 1 ≤ i ≤ sz. Then

r∏︁
j=1

[︃∫︁ 1

0
φz j(t j)1Sz,i, j(t j)dt j

]︃
= Bi(z) +

r∑︁
j=1

[︃∫︁ 1

0
φz j(t j)1Sz,i, j(t j)dt j − bz,i, j

]︃
Bi, j(z) + ∆

= (1 − r)Bi(z) +

q∑︁
m=1

∫︁ 1

0
φm(t)

⎡⎢⎢⎢⎢⎢⎢⎣ r∑︁
j=1,z j=m

1Sz,i, j(t)B
i, j(z)

⎤⎥⎥⎥⎥⎥⎥⎦ dt + ∆,

where Bi(z) stands for
∏︀r

j=1 bz,i, j, Bi, j(z) =
∏︀

l, j bz,i,l, and |∆| ≤ 4η22r. Analogously for an
arbitrary fixed element x ∈ I′(b, η) and a term of ℰz

x(D̂z) we have

r∏︁
j=1

⎡⎢⎢⎢⎢⎢⎢⎣1
k

∑︁
n : Un∈Sz,i, j

xn,z j − bz,i, j + bz,i, j

⎤⎥⎥⎥⎥⎥⎥⎦
= (1 − r)Bi(z) +

q∑︁
m=1

k∑︁
n=1

1
k

xn,m

⎡⎢⎢⎢⎢⎢⎢⎣ r∑︁
j=1,z j=m

1Sz,i, j(Un)Bi, j(z)

⎤⎥⎥⎥⎥⎥⎥⎦ + ∆′,
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4 Testability of the ground state energy

where |∆′| ≤ η22r.
If we multiply these former expressions by the respective coefficient dz,i and sum up

over i and z, then we obtain the final linear approximation consisting of the constant l0

and the functions l1, . . . , lq.We would like to add that these objects do not depend on η
if I(b, η) is nonempty, only the accuracy of the approximation does. As overall error in
approximating the energies we get in the first case of ℰφ(D) at most 32η22r q2r

ε ‖W‖∞ ≤
ε

2r+3 ‖W‖∞, and in the second case of ℰx(H(k,D)) at most ε
2r+5 ‖W‖∞.

Now we turn to prove the upper bound on |lm(t)|. Looking at the above formulas
we could write out lm(t) explicitly, for our upper bound it is enough to note that[︁∑︀r

j=1,z j=m 1Sz,i, j(t)B
i, j(z)

]︁
is at most r. So it follows that for any t ∈ [0, 1] it holds that

|lm(t)| ≤
8q2r

ε
r‖W‖∞.

It remains to verify the assertion regarding
∫︀ 1

0

∑︀q
m=1 l2

m(t)dt.Note that I(b, η) ⊂ I(b, 2η),
so we can apply the same linear approximation to elements ψ of I(b, 2η) as above with
a deviation of at most ε

2r+1 ‖W‖∞ from ℰψ(D). Let φ be an arbitrary element of I(b, η),
and let T ⊂ [0, 1] denote the set of measure η corresponding to the largest

∑︀q
m=1 |lm(t)|

values. Define

φ̂m(t) =

⎧⎪⎪⎨⎪⎪⎩φm(t) + sgn(lm(t)) if t ∈ T
φm(t) otherwise.

Then φ̂ ∈ I(b, 2η), since ‖φm − φ̂m‖1 ≤ η for each m ∈ [q], but φ̂ is not necessarily a
fractional partition. Therefore we have∫︁

T

q∑︁
m=1

|lm(t)|dt =

∫︁ 1

0

q∑︁
m=1

(φ̂m(t) − φm(t))lm(t)dt

≤

⃒⃒⃒⃒⃒
⃒⃒∫︁ 1

0

q∑︁
m=1

φ̂m(t)lm(t)dt − ℰφ̂(D)

⃒⃒⃒⃒⃒
⃒⃒ + |ℰφ̂(D) − ℰφ(D)|

+

⃒⃒⃒⃒⃒
⃒⃒∫︁ 1

0

q∑︁
m=1

φm(t)lm(t)dt − ℰφ(D)

⃒⃒⃒⃒⃒
⃒⃒

≤
5

2r+3ε‖W‖∞ + |ℰφ̂(D) − ℰφ(D)|.

We have to estimate the last term of the above expression.

|ℰφ̂(D) − ℰφ(D)| ≤
∑︁
z∈[q]r

⃒⃒⃒⃒⃒
⃒⃒∫︁

[0,1]r

⎛⎜⎜⎜⎜⎜⎜⎝ r∏︁
j=1

φz j(t j) −
r∏︁

j=1

φ̂z j(t j)

⎞⎟⎟⎟⎟⎟⎟⎠ Dz(t)dt

⃒⃒⃒⃒⃒
⃒⃒

≤ 2‖W‖∞
∑︁
z∈[q]r

∫︁
[0,1]r

r∑︁
j=1

⃒⃒⃒⃒⃒
⃒⃒ r∏︁

i< j

φzi(ti)
r∏︁

i> j

φ̂zi(ti)(φ̂z j(t j) − φz j(t j))

⃒⃒⃒⃒⃒
⃒⃒ dt

100



4.2 The main problem

≤ 2‖W‖∞2rqr−1r
q∑︁

m=1

‖φm − φ̂m‖1 ≤ 2‖W‖∞2rqrrη.

We conclude that ∫︁
T

q∑︁
m=1

|lm(t)|dt ≤
(︂ 5
2r+3 +

r
23

)︂
ε‖W‖∞.

This further implies that for each t < T we have
∑︀q

m=1 |lm(t)| ≤
(︁

5
2r+3 + r

23

)︁
ε
η‖W‖∞ ≤(︁

10 + 2r+1r
)︁

qr
‖W‖∞. These former bounds indicate∫︁ 1

0

q∑︁
m=1

l2
m(t)dt =

∫︁
[0,1]∖T

q∑︁
m=1

l2
m(t)dt +

∫︁
T

q∑︁
m=1

l2
m(t)dt

≤ 22r+8r2q2r
‖W‖2

∞
+ ‖l‖∞

∫︁
T

q∑︁
m=1

|lm(t)|dt

≤ 22r+8r2q2r
‖W‖2

∞
+ (2r+4rqr)(8q2rr)‖W‖2

∞

≤ 22r+9r2q3r
‖W‖2

∞
.

�

We return to the proof of the main theorem, and set η = ε
16qr2r . For each b ∈ 𝒜 we

apply Lemma 4.2.10, so that we have for any φ ∈ I(b, η) and x ∈ I′(b, η) that⃒⃒⃒⃒⃒
⃒⃒ℰφ(W) − l0 −

q∑︁
m=1

∫︁ 1

0
φm(t)lm(t)dt

⃒⃒⃒⃒⃒
⃒⃒ =

ε
2r+3 ‖W‖∞,⃒⃒⃒⃒⃒

⃒⃒ℰx(H(k,W)) − l0 −

k∑︁
n=1

1
k

xn,mlm(Un)

⃒⃒⃒⃒⃒
⃒⃒ =

ε
2r+5 ‖W‖∞,

since η is small enough. Note that l0, l1, . . . , and lq inherently depend on b. We introduce
the event E2(b), which stands for the occurrence of the following implication:

If the linear program

maximize l0 +

k∑︁
n=1

q∑︁
m=1

1
k

xn,mlm(Un)

subject to x ∈ I′(b, η)
0 ≤ xn,m ≤ 1 for n = 1, . . . , k and m = 1, . . . , q

q∑︁
m=1

xn,m = 1 for m = 1, . . . , q
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4 Testability of the ground state energy

has optimal value α, then the continuous linear program

maximize l0 +

∫︁ 1

0

q∑︁
m=1

lm(t)φm(t)dt

subject to φ ∈ I(b, η)
0 ≤ φm(t) ≤ 1 for t ∈ [0, 1] and m = 1, . . . , q

q∑︁
m=1

φm(t) = 1 for t ∈ [0, 1]

has optimal value at least α − (ε/2)‖W‖∞.

We apply Lemma 4.2.9 with δ = η, σ2 = 22r+9r2q3r
‖W‖2

∞
, d =

8q2r

ε r‖W‖∞, and γ = σ2

d2 ,
and attain that the probability that E2(b) fails is at most

exp
(︃
−

kη2

2

)︃
+ exp

(︃
−kγ

(︃
(1 +

ε‖W‖∞
γd

) ln(1 +
ε‖W‖∞
γd

) −
ε‖W‖∞
γd

)︃)︃
≤ exp

(︃
−

kε2

28q2r22r

)︃
+ exp

(︃
−kε222r+3q−r

(︃
1

24r+15qrr2

)︃)︃
= exp

(︃
−

kε2

22r+8q2r

)︃
+ exp

(︃
−

kε2

22r+12q2rr2

)︃
≤ 2 exp

(︃
−

kε2

22r+12q2rr2

)︃
,

where we used that (1 + x) ln(1 + x) − x ≥ (1 + x)(x − x2/2) − x = x2/2 − x3/2 ≥ x2/4 for
0 ≤ x ≤ 1

4 . Denote by E2 the event that for each b ∈ 𝒜 the event E2(b) occurs. Then we
have

P(E2) ≥ 1 − 2
(︃

2r+3qr

ε

)︃26rq3r 1
ε2

exp
(︃
−

kε2

22r+12q2rr2

)︃
≥ 1 − 2 exp

(︃
log

(︃
2r+3qr

ε

)︃
26rq3rε−2

− log(
2r+7qrr
ε

)22r+16r2q3rε−2

)︃
≥ 1 − 2 exp

(︃
− log(

2r+7qrr
ε

)22r+15r2q3rε−2

)︃
≥ 1 − ε/4.

Therefore for k ≥
(︂

2r+7qrr
ε

)︂4

log(2r+7qrr
ε )qr we have that P(E1 ∩ E2) ≥ 1 − ε/2. We only need

to check that conditioned on E1 and E2 our requirements are fulfilled. For this, consider
an arbitrary fractional q-partition of [k] denoted by x. For some b ∈ 𝒜 we have that
x ∈ I′(b, η). If we sum up the error gaps that were allowed for the Cut Decomposition
and at the local linearization stage, then the argument we presented above yields that
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4.2 The main problem

there exists a φ ∈ I(b, η) such that conditioned on the event E1 ∩ E2 it holds

ℰφ(W) ≥ ℰx(H(k,W)) − ε‖W‖∞.

This is what we wanted to show.
�

We can improve on the tail probability bound in Theorem 4.1.4 significantly by a
constant factor strengthening of the lower threshold condition imposed on the sample
size.

Corollary 4.2.11. Let r ≥ 1, q ≥ 1, and ε > 0. Then for any [q]r-tuple of ([−d, d], r)-graphons
W = (Wz)z∈[q]r and k ≥ Θ4 log(Θ)qr with Θ =

2r+10qrr
ε we have that

P(|ℰ(W) − ℰ̂(G(k,W))| > ε‖W‖∞) < 2 exp
(︃
−
ε2k
8r2

)︃
. (4.18)

Proof. For k ≥ Θ4 log(Θ)qr we appeal to Theorem 4.1.4, hence

|ℰ(W) − Eℰ̂(G(k,W))| ≤ P(|ℰ(W) − ℰ̂(G(k,W))| > ε/8‖W‖∞)2‖W‖∞ + ε/8‖W‖∞
< ε/2‖W‖∞.

Using a similar martingale construction to the one in the first part of the proof of
Theorem 4.1.4 the Azuma-Hoeffding inequality can be applied, thus

P(|ℰ(W) − ℰ̂(G(k,W))| > ε‖W‖∞) ≤ P(|Eℰ̂(G(k,W)) − ℰ̂(G(k,W))| > ε/2‖W‖∞)

≤ 2 exp
(︃
−
ε2k
8r2

)︃
.

�

Remark 4.2.12. A simple investigation of the above proof also exposes that in the case
when the Wz’s are constant multiples of each other then we can employ the same
cut decomposition to all of them with the right scaling, which implies that the upper
bound on |𝒮| can be strengthened to 26rq2r 1

ε2 , gaining a factor of qr. Therefore in this case
the statement of Corollary 4.2.11 is valid with the improved lower bound condition(︂

2r+10qrr
ε

)︂4

log(2r+10qrr
ε ) on k.

Remark 4.2.13. Suppose that f is the following simple graph parameter. Let q ≥ 1,
m0 ≥ 1, and 1 be a polynomial of l variables and degree d with values between 0 and
1 on the unit cube, where l is the number of unlabeled node-q-colored graphs on m0

vertices, whose set we denote byℳq,m0 . Note that l ≤ 2m2
0/2qm0 . Let then

f (G) = max
𝒯

1((t(F, (G,𝒯 )))F∈ℳq,m0
), (4.19)
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4 Testability of the ground state energy

where the maximum goes over all node-q-colorings of G, and (G,𝒯 ) denotes the node-q-
colored graph by imposing 𝒯 on the node set of G. Using the identity t(F1,G)t(F2,G) =
t(F1 ∪ F2,G), where F1 ∪ F2 is the disjoint union of the (perhaps colored) graphs F1

and F2, we can replace in (4.19) 1 by 1′ that is linear, and its variables are indexed
by ℳq,dm0 . Then it becomes clear that f can be regarded as a ground state energy
of dm0-dimensional arrays by associating to every G an tuple (Az)z∈[q]r with r = dm0,
where the entries Az(i1, . . . , ir) are the coefficients of 1′ corresponding to the element
ofℳq,dm0 given by the pair z and G|(i1,...,ir). We conclude that f is efficiently testable by
Theorem 4.1.4.

4.3 Testability of variants of the ground state energy

In the current section we derive further testability results using the techniques em-
ployed in the proofs of the previous section, and apply Theorem 4.1.4 to some specific
quadratic programming problems.

4.3.1 External magnetic field

Using the physics language formulation, one might consider the generalization of
the ground state energy optimization problem of Definition 4.1.2 with some external
magnetic field that introduces a bias towards certain states. The field is represented by
a real vector h ∈ Rq, the components of h correspond to the states in [q], the energies
and the GSE problem in this slightly extended setup are given next.

Definition 4.3.1. Let E be a finite layer set, 𝒦 be a compact set, and W = (We)e∈E be a tuple
of (𝒦 , r)-graphons. Let q be a fixed positive integer and J = (Je)e∈E with Je ∈ C(𝒦 )q×···×q for
every e ∈ E, and h = (h1, . . . , hq) ∈ Rq. For a φ = (φ1, . . . , φq) fractional q-partition of [0, 1]
let

ℰ(W, J, h) = max
φ
ℰφ(W, J) +

q∑︁
i=1

hi

∫︁ 1

0
φi(t)dt

denote the layered ground state energy of W with respect to J and h, where the maximum runs
over all fractional q-partitions of [0, 1].

We define for G = (Ge)e∈E the discrete versions as

ℰ̂(G, J, h) = max
x
ℰx(G, J) +

1
|V(G)|

q∑︁
i=1

∑︁
u∈V(G)

hixu,i,
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where the maximum runs over integer q-partitions (xn,m ∈ {0, 1} ), and

ℰ(G, J, h) = max
x
ℰx(G, J) +

1
|V(G)|

q∑︁
i=1

∑︁
u∈V(G)

hixu,i,

where the maximum is taken over all fractional q-partitions x.

The canonical from introduced above can also be employed here, thus J can always
be assumed to a have a special form, let the corresponding ground state energies be
denoted by ℰ(W, h) and ℰ(G, h). The generalization of Theorem 4.1.4 with the magnetic
field bias is the following result. The proof will only be sketched and relies strongly
on the proof of Theorem 4.1.4.

Theorem 4.3.2. Let r ≥ 1, q ≥ 1, h ∈ Rq, and ε > 0. Then for any [q]r-tuple of ([−d, d], r)-
graphons W = (Wz)z∈[q]r and k ≥ Θ4 log(Θ)qr with Θ =

2r+7qrr
ε we have that

P(|ℰ(W, h) − ℰ̂(G(k,W), h)| > ε(‖W‖∞ + ‖h‖∞)) < ε. (4.20)

Proof. The proof is virtually identical to the case without an external field. The only
difference is in the coefficients in the local linearization stage, Lemma 4.2.10. At that
point, if we denote the output functions of the original lemma by l0

m, we have to define
lm(t) = l0

m(t) + hm for the adapted lemma (which we don not state here explicitly),
where ℰφ(D) is replaced by ℰφ(D) +

∑︀q
i=1 hi

∫︀ 1

0
φi(t)dt, and so is the discrete energy

ℰx(D̂) in an analogous way by ℰx(D̂) + 1
|V(G)|

∑︀q
i=1

∑︀
u∈V(G) hixu,i. Therefore for the current

problem the upper bound for l1, l2, . . . , lq is modified to 8q2r

ε ‖W‖∞ + ‖h‖∞, and further∫︀ 1

0

∑︀q
m=1 l2

m(t)dt ≤ 22r+9r2q3r
‖W‖2

∞
+ ‖h‖2

∞
. The final steps of the proof are again identical

to the proof of Theorem 4.1.4, the new bound in Theorem 4.3.2 is the consequence of
the reasoning above.

�

4.3.2 Microcanonical version
Next we will state and prove the microcanonical version of Theorem 4.1.4, that is the
continuous generalization of the main result of [53] for an arbitrary number q of the
states. To be able to do this, we require the microcanonical analog of Lemma 4.2.3, that
will be a generalization of Theorem 5.5 from [32] for arbitrary r-graphs (except for the
fact that we are not dealing with node weights), and its proof will also follow the lines
of the aforementioned theorem. Before stating the lemma, we outline some notation
and state yet another auxiliary lemma.

Definition 4.3.3. Let for a = (a1, . . . , aq) ∈ Pdq (that is, ai ≥ 0 for each i ∈ [q] and
∑︀

i ai = 1)
denote

Ωa =

{︃
φ fractional q-partition of [0, 1] |

∫︁ 1

0
φi(t)dt = ai for i ∈ [q]

}︃
,
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4 Testability of the ground state energy

ωa =

⎧⎪⎪⎨⎪⎪⎩ x fractional q-partition of V(G) |
1

|V(G)|

∑︁
u∈V(G)

xu,i = ai for i ∈ [q]

⎫⎪⎪⎬⎪⎪⎭ ,
and

ω̂a =

{︃
x integer q-partition of V(G) |

⃒⃒⃒⃒⃒
⃒
∑︀

u∈V(G) xu,i

|V(G)|
− ai

⃒⃒⃒⃒⃒
⃒ ≤ 1
|V(G)|

for i ∈ [q]
}︃
.

The elements of the above sets are referred to as integer a-partitions and fractional a-partitions,
respectively.

We call the following expressions microcanonical ground state energies with respect to a for
(𝒦 , r)-graphs and graphons and C(𝒦 )-valued r-arrays J, in the finite case we add the term
fractional and integer respectively to the name. Denote

ℰa(W, J) = max
φ∈Ωa
ℰφ(W, J), ℰa(G, J) = max

x∈ωa
ℰx(G, J), ℰ̂a(G, J) = max

x∈ω̂a
ℰx(G, J).

The layered versions for a finite layer set E, and the canonical versions ℰa(W), ℰa(G), and
ℰ̂a(G) are defined analogously.

The requirements for an x to be an integer fractional a-partition (that is φ ∈ Ωa) are
rather strict and we are not able to guarantee with high probability that if we sample
from an fractional a-partition of [0, 1], that we will receive an fractional a-partition on
the sample, in fact this will not happen with probability 1. To tackle this problem we
need to establish an upper bound on the difference of two microcanonical ground state
energies with the same parameters. This was done in the two dimensional case in [32],
we slightly generalize that approach.

Lemma 4.3.4. Let r ≥ 1, and q ≥ 1. Then for any [q]r-tuple of naive r-kernels W = (Wz)z∈[q]r ,
and probability distributions a,b ∈ Pdq we have

|ℰa(W) − ℰb(W)| ≤ r‖W‖∞‖a − b‖1.

The analogous statement is true for a [q]r-tuple of ([−d, d], r)-digraphs G = (Gz)z∈[q]r ,

|ℰa(G) − ℰb(G)| ≤ r‖G‖∞‖a − b‖1.

Proof. We will find for each fractional a-partition φ a fractional b-partition φ′ and vice
versa, so that the corresponding energies are as close to each other as in the statement.
So let φ = (φ1, . . . , φq) be an arbitrary fractional a-partition, we define φ′i so that the
following holds: if ai ≥ bi then φ′i(t) ≤ φi(t) for every t ∈ [0, 1], otherwise φ′i(t) ≥ φi(t)
for every t ∈ [0, 1]. It is easy to see that such a φ′ = (φ′1, . . . , φ

′

q) exists. Next we estimate
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the energy deviation.

|ℰφ(W) − ℰφ′(W)| ≤
∑︁
z∈[q]r

⃒⃒⃒⃒⃒
⃒
∫︁

[0,1]r
φz1(x1) . . . φzr(xr) − φ′z1

(x1) . . . φ′zr
(xr)dλ(x)

⃒⃒⃒⃒⃒
⃒ ‖W‖∞

≤

∑︁
z∈[q]r

r∑︁
m=1

⃒⃒⃒⃒⃒
⃒⃒∫︁

[0,1]r
(φzm(xm) − φ′zm

(xm))
∏︁
j<m

φz j(x j)
∏︁
j>m

φ′z j
(x j)dλ(x)

⃒⃒⃒⃒⃒
⃒⃒ ‖W‖∞

=
∑︁
z∈[q]r

r∑︁
m=1

∫︁
[0,1]

⃒⃒⃒
φzm(xm) − φ′zm

(xm)
⃒⃒⃒
dxm

∏︁
j<m

az j

∏︁
j>m

bz j‖W‖∞

=

r∑︁
m=1

q∑︁
j=1

∫︁
[0,1]

⃒⃒⃒⃒
φ j(t) − φ′j(t)

⃒⃒⃒⃒
dt

⎛⎜⎜⎜⎜⎜⎜⎝ q∑︁
j=1

a j

⎞⎟⎟⎟⎟⎟⎟⎠
m−1 ⎛⎜⎜⎜⎜⎜⎜⎝ q∑︁

j=1

b j

⎞⎟⎟⎟⎟⎟⎟⎠
r−m−1

‖W‖∞

= r‖a − b‖1‖W‖∞.

The same way we can find for any fractional b-partition φ an fractional a-partition φ′

so that their respective energies differ at most by r‖a − b‖1‖W‖∞. This implies the first
statement of the lemma. The finite case is proven in a completely analogous fashion.

�

We are ready to show that the difference of the fractional and the integer ground state
energies is o(|V(G)|) whenever all parameters are fixed, this result is a generalization
with respect to the dimension in the non-weighted case of Theorem 5.5 of [32], the
proof proceeds similar to the one concerning the graph case that was dealt with in [32].

Lemma 4.3.5. Let q, r, k ≥ 1,a ∈ Pdq, and G = (Gz)z∈[q]r be a tuple of ([−d, d], r)-graphs on
[k]. Then

|ℰa(G) − ℰ̂a(G)| ≤
1
k
‖G‖∞5rqr+1.

Proof. The inequality ℰa(G) ≤ ℰ̂a(G) + 1
k‖G‖∞5rqr+1 follows from Lemma 4.3.4. Indeed,

for this bound a somewhat stronger statement it possible,

ℰ̂a(G) ≤ max
b : |bi−ai|≤1/k

ℰb(G) ≤ ℰa(G) + r
q
k
‖G‖∞.

Now we will show that ℰ̂a(G) ≥ ℰa(G)− 1
k‖G‖∞5rqr+1. We consider an arbitrary fractional

a-partition x. A node i from [n] is called bad in a fractional partition x, if at least two
elements of {xi,1, . . . , xi,q} are positive. We will reduce the number of fractional entries
of the bad nodes of x step by step until we have at most q of them, and keep track of
the cost of each conversion, at the end we round the corresponding fractional entries
of the remaining bad nodes in some certain way.

We will describe a step of the reduction of fractional entries. For now assume that
we have at least q + 1 bad nodes and select an arbitrary set S of cardinality q + 1 of
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them. To each element of S corresponds a q-tuple of entries and each of these q-tuples
has at least two non-{0, 1} elements.

We reduce the number of fractional entries corresponding to S while not disrupting
any entries corresponding to nodes that lie outside of S. To do this we fix for each
i ∈ [q] the sums

∑︀
v∈S xv,i and for each v ∈ S the sums

∑︀q
i=1 xv,i (these latter are naturally

fixed to be 1), in total 2q + 1 linear equalities. We have at least 2q + 2 fractional entries
corresponding to S, therefore there exists a subspace of solutions of dimension at least
1 for the 2q + 1 linear equalities. That is, there is a family of fractional partitions
parametrized by −t1 ≤ t ≤ t2 for some t1, t2 > 0 that obey our 2q + 1 fixed equalities and
have the following form. Let xt

i, j = xi, j + tβi, j, where βi, j = 0 if i < S or xi, j ∈ {0, 1}, and
βi, j , 0 else, together these entries define xt. The boundaries−t1 and t2 are non-zero and
finite, because eventually an entry corresponding to S would exceed 1 or would be less
than 0 with t going to plus, respectively minus infinity. Therefore at these boundary
points we still have an fractional a-partition that satisfies our selected equalities, but
the number of fractional entries decreases by at least one. We will formalize how the
energy behaves when applying this procedure.

ℰxt(G) = ℰx(G) + c1t + · · · + crtr,

where for l ∈ [r] we have

cl =
1
kr

∑︁
z∈[q]r

∑︁
u1,...,ul∈S

ul+1,...,ur∈V∖S
π

βu1,zπ(1) . . . βul,zπ(l)xul+1,zπ(l+1) . . . xur,zπ(r)G
z(uπ(1), . . . ,uπ(r)),

where the second sum runs over permutations π of [k] that preserves the ordering
of the elements of {1, . . . , l} and {l + 1, . . . , r} at the same time. We deform the entries
corresponding to S through t in the direction so that c1t ≥ 0 until we have eliminated
at least one fractional entry, that is we set t = −t1, if c < 0, and t = t2 otherwise. Note,
that as xt is a fractional partition, therefore 0 ≤ xi, j + tβi, j ≤ 1, which implies that for
tβi, j ≤ 0 we have |tβi, j| ≤ xi, j. On the other hand,

∑︀
j tβi, j = 0 for any t and i. Therefore∑︀

j |tβi, j| = 2
∑︀

j |tβi, j|1{tβi, j≤0} ≤ 2
∑︀

j xi, j = 2 for any i ∈ [k]. This simple fact enables us to
upper bound the absolute value of the terms cltl.

|cltl
| ≤

(k − q − 1)r−l

kr ‖G‖∞
∑︁
z∈[q]r

∑︁
u1,...,ul∈S

π

|tβu1,zπ(1) | . . . |tβul,zπ(l) |

=
(k − q − 1)r−l

kr ‖G‖∞

(︃
r
l

)︃
qr−l

∑︁
z∈[q]l

∑︁
u1,...,ul∈S

|tβu1,z1 | . . . |tβul,zl |

≤
1
kl
‖G‖∞

(︃
r
l

)︃
qr−l

⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
u∈S, j∈[q]

|tβu, j|

⎞⎟⎟⎟⎟⎟⎟⎠
l

≤
1
kl
‖G‖∞

(︃
r
l

)︃
qr−l(2q + 2)l.
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It follows that in each step of elimination of a fractional entry of x we have to admit a
decrease of the energy value of at most

r∑︁
l=2

|cltl
| ≤

1
k2 ‖G‖∞(3q + 2)r.

There are in total kq entries in x, therefore, since in each step the number of fractional
entries is reduced by at least 1, we can upper bound the number of required steps for
reducing the cardinality of bad nodes to at most q by k(q − 1), and conclude that we
admit an overall energy decrease of at most 1

k‖G‖∞(q− 1)(3q + 2)r to construct from x a
fractional partition x′ with at most q nodes with fractional entries In the second stage
we proceed as follows. Let B = {u1, . . . ,um} be the set of the remaining bad nodes of
x′, with m ≤ q. For ui ∈ B we set x′′ui, j

= 1i( j), for the rest of the nodes we set x′′ = x′,
obtaining an integer a-partition of [k]. Finally, we estimate the cost of this operation.
We get that

ℰx′′(G) ≥ ℰx′(G) −
1
kr ‖G‖∞|B|k

r−1qr.

The original fractional a-partition was arbitrary, therefore it follows that

ℰa(G) − ℰ̂a(G) ≤
1
k
‖G‖∞5rqr+1.

�

We are ready state the adaptation of Theorem 4.1.4 adapted to the microcanonical
setting.

Theorem 4.3.6. Let r ≥ 1, q ≥ 1, a ∈ Pdq, and ε > 0. Then for any [q]r-tuple of ([−d, d, r])-
graphons W = (Wz)z∈[q]r and k ≥ Θ4 log(Θ)qr with Θ =

2r+7qrr
ε we have

P
(︁
|ℰa(W) − ℰ̂a(G(k,W))| > ε‖W‖∞

)︁
< ε.

Proof. Let W be as in the statement and k ≥ Θ4 log(Θ)qr with Θ =
2r+7qrr
ε . We start with

pointing out that we are allowed to replace the quantity ℰ̂a(G(k,W)) by ℰa(G(k,W))
in the statement of the theorem by Lemma 4.3.5 and only introduce an initial error at
most 1

k‖G‖∞5rqr+1
≤

ε
2‖W‖∞.

The lower bound on ℰa(G(k,W)) is the result of standard sampling argument com-
bined with Lemma 4.3.4. Let us consider a fixed a-partition φ of [0, 1], and define the
random fractional partition of [k] as yn,m = φm(Un) for every n ∈ [k] and m ∈ [q]. The
partition y is not necessarily an fractional a-partition, but it can not be very far from
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being one. For m ∈ [q] it holds that

P

⎛⎜⎜⎜⎜⎝⃒⃒⃒⃒⃒⃒
∑︀k

n=1 yn,m

k
− am

⃒⃒⃒⃒⃒
⃒ ≥ ε

⎞⎟⎟⎟⎟⎠ ≤ 2 exp(−ε2k/2),

therefore for our choice of k the sizes of the partition classes obey |1k
∑︀k

n=1 yn,m−am| < ε
2(q+1)

for every m ∈ [q] with probability at least 1 − ε/2.

We appeal to Lemma 4.3.4 to conclude

Eℰa(G(k,W)) ≥ Eℰy(G(k,W)) − (ε/2)‖W‖∞

= E
1
kr

∑︁
z∈[q]r

k∑︁
n1,...,nr=1

W(Un1 , . . . ,Unr)
r∏︁

j=1

yn j,z j − (ε/2)‖W‖∞

≥
k!

kr(k − r)!

∑︁
z∈[q]r

∫︁
[0,1]r

W(t1, . . . , tr)
r∏︁

j=1

φz j(t j)dt −
(︃

r2

k
+ ε/2

)︃
‖W‖∞

≥ ℰφ(W) −
(︃

r2

k
+ ε/2

)︃
‖W‖∞.

The concentration of the random variable ℰa(G(k,W)) can be obtained through mar-
tingale arguments identical to the technique used in the proof of the lower bound in
Theorem 4.1.4.

For the upper bound on ℰa(G(k,W)) we are going to use the cut decomposition and
local linearization, the approach to approximate the energy of ℰφ(W) and ℰx(G(k,W))
for certain partitions φ, respectively x is completely identical to the proof of The-
orem 4.1.4, therefore we borrow all the notation from there, and we do not refer to
again in what follows.

Now we consider a b ∈ 𝒜 and define the event E3(b) that is occurrence the following
implication.

If the linear program

maximize l0 +

k∑︁
n=1

q∑︁
m=1

1
k

xn,mlm(Un)

subject to x ∈ I′(b, η) ∩ ωa

0 ≤ xn,m ≤ 1 for n = 1, . . . , k and m = 1, . . . , q
q∑︁

m=1

xn,m = 1 for n = 1, . . . , k
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has optimal value α, then the continuous linear program

maximize l0 +

∫︁ 1

0

q∑︁
m=1

lm(t)φm(t)dt

subject to φ ∈ I(b, η) ∩

⎛⎜⎜⎜⎜⎜⎜⎝ ⋃︁
c : |ai−ci|≤η

Ωc

⎞⎟⎟⎟⎟⎟⎟⎠
0 ≤ φm(t) ≤ 1 for t ∈ [0, 1] and m = 1, . . . , q

q∑︁
m=1

φm(t) = 1 for t ∈ [0, 1]

has optimal value at least α − ε
2‖W‖∞.

Recall that η = ε
16qr2r . It follows by applying Lemma 4.2.9 that E3(b) has probability

at least 1 − 2 exp
(︁
−

kε2

22r+12q2rr2

)︁
. When conditioning on E1, the event from the proof of

Theorem 4.1.4, and E3 = ∩b∈𝒜E3(b) we conclude that

ℰa(G(k,W)) ≤ max
c : |ai−ci|≤η

ℰc(W) + ε/2)‖W‖∞ ≤ ℰa(W) + (rqη + ε/2)‖W‖∞ ≤ ℰa(W) + ε‖W‖∞.

Also, like in Theorem 4.1.4, the probability of the required events to happen simultan-
eously is at least 1 − ε/2. This concludes the proof. �

4.3.3 Quadratic assignment and maximum acyclic subgraph
problem

The two optimization problems that are the subject of this subsection, the quadratic
assignment problem (QAP) and maximum acyclic subgraph problem (AC), are known
to be NP-hard, similarly to MAX-rCSP that was investigated above. The first polyno-
mial time approximation schemes were designed for the QAP by Arora, Frieze and
Kaplan [20]. Dealing with a QAP means informally that one aims to minimize the
transportation cost of his enterprise that has n production locations and n types of
production facilities. This is to be achieved by an optimal assignment of the facilities
to the locations with respect to the distances (dependent on the location) and traffic
(dependent on the type of the production). In formal, terms this means that we are
given two real quadratic matrices of the same size, G and J ∈ Rn×n, and the objective is
to calculate

Q(G, J) =
1
n2 max

ρ

n∑︁
i, j=1

Ji, jGρ(i),ρ( j),

where ρ runs over all permutations of [n]. We speak of metric QAP, if the entries of J
are all non-negative with zeros on the diagonal, and obey the triangle inequality, and
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d-dimensional geometric QAP if the rows and columns of J can be embedded into a
d-dimensional Lp metric space so that distances of the images are equal to the entries
of J.

The continuous analog of the problem is the following. Given the measurable
functions W, J : [0, 1]2

→ R, we are interested in obtaining

Q̂ρ(W, J) =

∫︁
[0,1]2

J(x, y)W(ρ(x), ρ(y))dxdy, Q̂(W, J) = max
ρ

Q̂ρ(W, J),

where ρ in the previous formula runs over all measure preserving permutations of
[0, 1]. In even greater generality we introduce the QAP with respect to fractional
permutations of [0, 1]. A fractional permutation µ is a probability kernel, that is
µ : [0, 1] × ℒ([0, 1])→ [0, 1] so that

(i) for any A ∈ ℒ([0, 1]) the function µ(.,A) is measurable,

(ii) for any x ∈ [0, 1] the function µ(x, .) is a probability measure on ℒ([0, 1]), and

(iii) for any A ∈ ℒ([0, 1])
∫︀ 1

0
dµ(x,A) = λ(A).

Here ℒ([0, 1]) is the σ-algebra of the Borel sets of [0, 1].
Then we define

Qµ(W, J) =

∫︁
[0,1]2

∫︁
[0,1]2

J(α, β)W(x, y)dµ(α, x)dµ(β, y)dαdβ,

and

Q(W, J) = max
µ

Qµ(W, J),

where the maximum runs over all fractional permutations. For each measure pre-
serving permutation ρ one can consider the fractional permutation µ with the prob-
ability measure µ(α, .) is defined as the atomic measure δρ(α) concentrated on ρ(α), for
this choice of µ we have Qρ(W, J) = Qµ(W, J).

An r-dimensional generalization of the problem for J and W : [0, 1]r
→ R is

Q(W, J) = max
µ

∫︁
[0,1]r

∫︁
[0,1]r

J(α1, . . . , αr)W(x1, . . . , xr)dµ(α1, x1) . . .dµ(αr, xr)dα1 . . .dαr,

where the maximum runs over all fractional permutations µ of [0, 1]. The definition of
the finitary case in r dimensions is analogous.

A special QAP is the maximum acyclic subgraph problem (AC). Here we are given a
weighted directed graph G with vertex set of cardinality n, and our aim is to determine
the maximum of the total value of edge weights of a subgraph of G that contains no
directed cycle. We can formalize this as follows. Let G ∈ Rn×n be the input data, then
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the maximum acyclic subgraph density is

AC(G) =
1
n2 max

ρ

n∑︁
i, j=1

Gi, j1(ρ(i) < ρ( j)),

where ρ runs over all permutations of [n].
This can be thought of as a QAP with the restriction that J is the upper triangular n×n

matrix with zeros on the diagonal and all nonzero entries being equal to 1. However
in general AC cannot be reformulated as metric QAP. The continuous version of the
problem

ÂC(W) = sup
φ

∫︁
[0,12]

1(φ(x) > φ(y))W(x, y)dxdy

for a function W : [0, 1]2
→ R is defined analogous to the QAP, where the supremum

runs over measure preserving permutations φ : [0, 1]→ [0, 1], as well as the relaxation
AC(W), where the supremum runs over probability kernels.

Both the QAP and the AC problems resemble the ground state energy problems
that were investigated in previous parts of this chapter. In fact, if the number of
clusters of the distance matrix J in the QAP is bounded from above by an integer that
is independent from n, then this special QAP is a ground state energy with the number
of states q equal to the number of clusters of J. By the number of clusters we mean here
the smallest number m such that there exists an m ×m matrix J′ so that J is a blow-up
of J′, that is not necessarily equitable. To establish an approximation to the solution
of the QAP we will only need the cluster condition approximately, and this will be
shown in what follows.

Definition 4.3.7. We call a measurable function J : [0, 1]r
→ R ν-clustered for a non-

increasing function ν : R+
→ R+, if for any ε > 0 there exists another measurable function

J′ : [0, 1]r
→ R that is a step function with ν(ε) steps and ‖J − J′‖1 < ε‖J‖∞.

Note, that by the Weak Regularity Lemma ([59]), Lemma 3.3.4, any J can be well
approximated by a step function with ν(ε) = 2

1
ε2 steps in the cut norm. To see why it

is likely that this approximation will not be sufficient for our purposes, consider an
arbitrary J : [0, 1]r

→ R. Suppose that we have an approximation in the cut norm of J
at hand denoted by J′. Define the probability kernel µ0(α, .) = δα and the naive r-kernel
W0 = J − J′. In this case |Qµ0(W, J) − Qµ0(W, J′)| = ‖J − J′‖22. This 2-norm is not granted
to be small compared to ε by any means.

In some special cases, for example if J is a d-dimensional geometric array or the
array corresponding to the AC, we are able to require bounds on the number of steps
required for the 1-norm approximation of J that are sub-exponential in 1

ε . By the aid
of this fact we can achieve good approximation of the optimal value of the QAP via
sampling. Next we state an application of Theorem 4.1.4 to the clustered QAP.
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Lemma 4.3.8. Let ν : R+
→ R+ be nondecreasing, and let J : [0, 1]r

→ R be a ν-clustered
measurable function. Then there exists an absolute constant c > 0 so that for every ε > 0,
every naive r-kernel W, and k ≥ c log( ν(ε)r

ε )( ν(ε)r

ε )4 we have

P(|Q(W, J) −Q(G(k,W),G′(k, J))| ≥ ε‖W‖∞‖J‖∞) ≤ ε,

where G(k,W) and G′(k, J) are generated by distinct independent samples.

Proof. Without loss of generality we may assume that ‖J‖∞ ≤ 1. First we show that
under the cluster condition we can introduce a microcanonical ground state energy
problem whose optimum is close to Q(W, J), and the same holds for the sampled
problem. Let ε > 0 be arbitrary and J′ be an approximating step function with q = ν(ε)
steps. We may assume that ‖J′‖∞ ≤ 1. We set a = (a1, . . . , aq) to be the vector of the
sizes of the steps of J′, and construct from J′ a real r-array of size q in the natural way
by associating to each class of the steps of J′ an element of [q] (indexes should respect
a), and set the entries of the r-array corresponding to the value of the respective step
of J′. We will call the resulting r-array J′′. From the definitions it follows that

Q(W, J′) = ℰa(W, J′′)

for every r-kernel W. On the other hand we have

|Q(W, J)−Q(W, J′)|

≤ max
µ

⃒⃒⃒
Qµ(W, J) −Qµ(W, J′)

⃒⃒⃒
= max

µ

⃒⃒⃒⃒⃒
⃒
∫︁

[0,1]r
(J − J′)(α1, . . . , αr)

∫︁
[0,1]r

W(x)dµ(α1, x1) . . .dµ(αr, xr)dα1 . . .dαr

⃒⃒⃒⃒⃒
⃒

≤ max
µ

∫︁
[0,1]r
|(J − J′)(α1, . . . , αr)|‖W‖∞dα1 . . .dαr

= ‖J − J′‖1‖W‖∞ ≤ ε‖W‖∞.

Now we proceed to the sampled version of the optimization problem. First we
gain control over the difference between the QAPs corresponding to J and J′. G(k,W)
is induced by the sample U1, . . . ,Uk, G′(k, J) and G′(k, J′) by the distinct independent
sample Y1, . . . ,Yk.

|Q(G(k,W),G(k, J)) −Q(G(k,W),G(k, J′))|
≤ max

ρ
|Qρ(G(k,W),G(k, J)) −Qρ(G(k,W),G(k, J′))|

= max
ρ

1
kr

⃒⃒⃒⃒⃒
⃒⃒ k∑︁
i1,...,ir=1

(J − J′)(Yi1 , . . . ,Yir)

⃒⃒⃒⃒⃒
⃒⃒ ‖W‖∞. (4.21)

We analyze the random sum on the right hand side of (4.21) by first upper bounding
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its expectation.

1
krEY

⃒⃒⃒⃒⃒
⃒⃒ k∑︁
i1,...,ir=1

(J − J′)(Yi1 , . . . ,Yir)

⃒⃒⃒⃒⃒
⃒⃒

≤
r2

k
[‖J‖∞ + ‖J′‖∞] + EY|(J − J′)(Y1, . . . ,Yr)|

=
2r2

k
+ ε ≤ 2ε.

By the Azuma-Hoeffding inequality the sum is also sufficiently small in probability.

P

⎛⎜⎜⎜⎜⎜⎝ 1
kr

⃒⃒⃒⃒⃒
⃒⃒ k∑︁
i1,...,ir=1

(J − J′)(Yi1 , . . . ,Yir)

⃒⃒⃒⃒⃒
⃒⃒ ≥ 4ε

⎞⎟⎟⎟⎟⎟⎠ ≤ 2 exp(−ε2k/8) ≤ ε.

We obtain that

|Q(G(k,W),G′(k, J)) −Q(G(k,W),G′(k, J′))| ≤ 4ε‖W‖∞

with probability at least 1 − ε, if k is such as in the statement of the lemma. Set
b = (b1, . . . , bq) to be the probability distribution for that bi = 1

k

∑︀k
j=1 1Si(Y j), where Si is

the ith step of J′ with λ(Si) = ai. Then we have

Q(G(k,W),G(k, J′)) = ℰ̂b(G(k,W), J′′).

It follows again from the Azuma-Hoeffding inequality that we have P(|ai − bi| > ε/q) ≤
2 exp(− ε

2k
2q2 ) for each i ∈ [q], thus we have ‖a−b‖1 < εwith probability at least 1− ε. We

can conclude that with probability at least 1 − 2ε we have

|Q(W, J) −Q(G(k,W),G(k, J))| ≤ |Q(W, J) −Q(W, J′)|

+ |ℰa(W, J′′) − ℰ̂b(G(k,W), J′′)| + |Q(G(k,W),G(k, J)) −Q(G(k,W),G(k, J′))|

≤ (5 + 2r)ε‖W‖∞ + |ℰa(W, J′′) − ℰ̂a(G(k,W), J′′)|.

By the application of Theorem 4.3.6 the claim of the lemma is verified.
�

Next we present the application of Lemma 4.3.8 for two special cases of QAP.

Corollary 4.3.9. The optimal values of the d-dimensional geometric QAP and the maximum
acyclic subgraph problem are efficiently testable. That is, let d ≥ 1, for every ε > 0 there
exists an integer k0 = k0(ε) such that k0 is a polynomial in 1/ε, and for every k ≥ k0 and any
d-dimensional geometric QAP given by the pair (G, J) we have

P(|Q(G, J) −Q(G(k,G),G′(k, J))| ≥ ε‖G‖∞‖J‖∞) ≤ ε, (4.22)
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4 Testability of the ground state energy

where G(k,W) and G′(k, J) are generated by distinct independent samples. The formulation
regarding the testability of the maximum acyclic subgraph problem is analogous.

Note that testability here is meant in the sense of the statement of Lemma 4.3.8, since
the size of J is not fixed and depends on G.

Proof. In the light of Lemma 4.3.8 it suffices to show that for both cases any feasible J
is ν-clustered, where ν(ε) is polynomial in 1/ε. For both settings we have r = 2.

We start with the continuous version of the d-dimensional geometric QAP given by
the measurable function J : [0, 1]2

→ R+, and an instance is given by the pair (W, J),
where W is a 2-kernel. Note, that d refers to the dimension corresponding to the
embedding of the indices of J into an Lp metric space, not the actual dimension of J.
We are free to assume that 0 ≤ J ≤ 1, simply by rescaling. By definition, there exists a
measurable embedding ρ : [0, 1]→ [0, 1]d, so that J(i, j) = ‖ρ(i) − ρ( j)‖p for every (i, j) ∈
[0, 1]2. Fix ε > 0 and consider the partition 𝒫′ = (T1, . . . ,Tβ) = ([0, 1

β ), [ 1
β ,

2
β ), . . . , [β−1

β , 1])

of the unit interval into β = ⌈2
p√

d
ε ⌉ classes. Define the partition 𝒫 = (P1, . . . ,Pq) of [0, 1]

consisting of the classes ρ−1(Ti1 × · · · × Tid) for each (i1, . . . , id) ∈ [β]r, where |𝒫| = q =

βd = 2ddd/p

εd . We construct the approximating step function J′ of J by averaging J on the
steps determined by the partition classes of 𝒫. It remains to show that this indeed is a
sufficient approximation in the L1-norm.

‖J − J′‖1 =

∫︁
[0,1]2
|J(x) − J′(x)|dx =

q∑︁
i, j=1

∫︁
Pi×P j

|J(x) − J′(x)|dx ≤
q∑︁
i, j

1
q2ε = ε.

By Lemma 4.3.8 and Theorem 4.3.6 it follows that the continuous d-dimensional metric
QAP is 𝒪(log(1

ε ) 1
ε4rd+4 )-testable, and so is the discrete version of it.

Next we show that the AC is also efficiently testable given by the upper triangular
matrix J whose entries above the diagonal are 1. Note that here we have r = 2. Fix
ε > 0 and consider the partition 𝒫 = (P1, . . . ,Pq) with q = 1

ε , and set J′ to 0 on every
step Pi ×P j whenever i ≥ j, and to 1 otherwise. This function is indeed approximating
J in the L1-norm.

‖J − J′‖1 =

∫︁
[0,1]2
|J(x) − J′(x)|dx =

q∑︁
i=1

∫︁
Pi×Pi

|J(x) − J′(x)|dx ≤ ε.

Again, by Lemma 4.3.8 and Theorem 4.3.6 it follows that the AC is𝒪(log(1
ε ) 1
ε12 )-testable.

�

4.4 Energies of unbounded graphs and graphons

In the present section we will investigate upper bounds on the sample size that is
required approximate to ground state energies from Definition 4.1.2 of unbounded

116



4.4 Energies of unbounded graphs and graphons

families of kernels and weighted graphs. A subfamily of this class in question was
recently also considered by Lovász [89]. Namely, in [89, Section 17.2] it was shown
that any sequence of convergent unbounded symmetric 2-kernels whose elements are
all members of ∩p≥1Lp has a continuous limit object that has the same strict finiteness
property for each of its moments. For this particular kind of result the membership in
∩p≥1Lp is essential, since otherwise for a kernel not included in Lp for a particular p the
density of a path of length 2p is infinite, and for the original convergence notion the
finiteness of all subgraph densities is required.

For our approach we are allowed to deal with a broader family of graphons, for
reasonable results only the much weaker property of uniform integrability is necessary,
or equivalently membership in a single Lp space. The statement will be formulated in
terms of the p-norm of the graphon and the graph. Motivation for our setup originates
from approximation theory of optimization problems, it was shown by Fernandez de la
Vega and Karpinski [50] that MAX-CUT has PTAS (polynomial time approximation
scheme) for families of graphs whose the edge weights are unbounded, but still obey
some condition analogous to uniform integrability.

On a further note we mention that such families were considered by Borgs, Chayes,
Cohn, and Zhao [33, 34] in terms of their convergence in energies we deal with here
and in a normalized version of the cut distance δ�.

Definition 4.4.1. Let κ : R+
→ R+ be a non-increasing measurable function. We call a

real-valued measurable function f on Rd uniformly κ-integrable if for each ε > 0 we have

‖ f1{ f≥κ(ε) }‖1 < ε.

Let r ≥ 1, and κi : R+
→ R+ be non-increasing measurable functions for each i ∈ [r]. We

call an r-kernel W κ-integrable for κ = (κ1, . . . , κr), if for every e ⊂ [r] with |e| = l the
marginal functions We of W given by We(xe1 , . . . , xel) =

∫︀
[0,1][r]∖e W(x1, . . . , xr)dλ(xh([r]∖e,1)) are

κl-integrable functions for each 1 ≤ l ≤ r. We call a symmetric r-kernel an Lp-graphon if it is
in Lp as a function.

For random variables instead of graphons and functions the definitions are analog-
ous.
Remark 4.4.2. The previous definition attempts to distinguish heterogeneous graphs
with heterogeneous and homogeneous degree distribution. We will see below why
this distinction is advantageous, and indeed the degrees of a graph can be bounded
by a linear function of the vertex cardinality even if the edge weights of the graph are
super-cubic. Imagine an infinite sequence (Gi)∞i=1 of Erdős-Rényi graphs with density
2−2i for Gi on the common node set [n], and add them up weighted by 2i to obtain
a weighted graph H with unbounded edge weights. Then with high probability the
degrees of H are bounded above by 2.

If we restrict our attention to families of Lp-graphons instead of a uniformly bounded
family of graphons, the statement about efficient testability of energies (definitions are
identical to the bounded case) still remains valid outlined in the first section of the
chapter, and we obtain a generalization of Theorem 4.1.4.
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4 Testability of the ground state energy

Theorem 4.4.3. Let q ≥ 1, J ∈ Rq×···×q an r-array, and let p > 1. For every ε > 0, every naive

r-graphon W with E|W|p < ∞ and k ≥ Θ4 log(Θ) with Θ = 2r+7
(︁

4qrr
ε

)︁1+1/(p−1)
we have

P(|ℰ(W, J) − ℰ̂(G(k,W), J)| ≥ ε‖J‖∞‖W‖p) ≤ ε.

We can translate the requirement of the existence of certain moments easily to a type
of uniform integrability, we will need this connection in the proof of Theorem 4.4.3,
that is presented at the end of the section.

Note that there is a strong connection between the property of κ-integrability and
the existence of the moments of a random variable. The asymptotic magnitude of κ
as a function of 1/ε is in our analysis of major importance as ε approaches 0, therefore
we will state the relationship in a quantitative form, and will also provide the proof of
this folklore result.

Lemma 4.4.4. Let X be an integrable random variable. Then for any p > 1 we have the
following two statements.

(i) If E|X|p < ∞, then X is κ-integrable with κ(ε) = (
‖X‖pp
ε )

1
p−1 , where ‖X‖p = (E|X|p)1/p.

(ii) If X is κ-integrable with κ(ε) = Kε−
1

p−1 , then E|X|q < ∞ for any 1 < q < p.

Proof. We fix p > 1, and start with (i). Suppose that E|X|p < ∞ and set κ(ε) = (
‖X‖pp
ε )

1
p−1 .

Then we have

E|X|1{ |X|≥κ(ε) } ≤
1

κ(ε)p−1E|X|
p < ε.

For (ii) let 1 < q < p and κ(ε) = Kε−
1

p−1 for ε < 1. Note that E|X| < C for some C > 0.
Then

E|X|q = E[|X|
∫︁
∞

0
(q − 1)1{ |X|≥t }tq−2dt]

= (q − 1)
∫︁
∞

0
tq−2E[|X|1{|X|≥t}]dt

≤ C(q − 1) + Kp−1(q − 1)
∫︁
∞

1
t−1−(p−q)dt < ∞,

where the finiteness of the integral is implied by 1 < q < p.
�

We will need the quantitative version of the Weak Law of Large Numbers for naive
r-kernels, originally proved for r = 1 by Khinchin (see [78] for the usual statement and
proof). We include the proof here for the sake of completeness.
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4.4 Energies of unbounded graphs and graphons

Lemma 4.4.5. Let r ≥ 1 and W : [0, 1]r
→ R be an r-symmetric r-kernel such that W ∈

Lp([0, 1]r) for some p > 1 real. Then for any ε > 0 and n ≥ ε−3−4/(p−1)2
(r+5)p+1

p−1 r
1

p−1 , and the
uniform independent random sample X1, . . . ,Xn from [0, 1] we have

P

(︃⃒⃒⃒⃒⃒
⃒
∑︀n

i1,...,ir=1 W(Xi1 , . . . ,Xir)
nr − EW(X1, . . . ,Xr)

⃒⃒⃒⃒⃒
⃒ > ε‖W‖p

)︃
< ε.

Proof. Let ε > 0, p > 1, and let n ∈ N be fixed and as large as in the statement of the
lemma. Let W be an arbitrary naive r-kernel that is contained in Lp([0, 1]r), and set
δ = 2−r−5ε3

‖W‖p. An easy consequence of Jensen’s inequality is that for any nonempty
subset S of [r] it is true thatE|WS|

p = E|E[W(X1, . . . ,Xr) | {Xi | i ∈ S }]|p ≤ E|W|p, since the

pth power of the absolute value is a convex function. Further, with ∆(γ) =
(︁

1
γ

)︁1/(p−1)
‖W‖p

we have by Lemma 4.4.4 for each γ > 0 that

E|W|1{|WS|≥∆(γ)} ≤
1

∆(γ)p−1E|WS|
p
≤

1
∆(γ)p−1E|W|

p = γ‖W‖p. (4.23)

We will truncate W level-wise, first we eliminate vertices with high degree, then
edges containing pairs whose co-degree is large, an proceed this way to finally exclude
all edges with large weights over our chosen threshold. More precisely, we define the
graphons

W′(x1, . . . , xr) = W(x1, . . . , xr)
∏︁
∅,S⊂[r]

1{|WS(x1,...,x|S|)|≤δn|S|}

that has bounded edge weights, and the remainder

W′′(x1, . . . , xr) = W(x1, . . . , xr) −W′(x1, . . . , xr)

for each x1, . . . , xr ∈ [0, 1]. Note that

|EW − EW′
| ≤

∑︁
∅,S⊂[r]

E|W|1{|WS|>δn|S|} ≤ ε/4‖W‖p, (4.24)

since δn ≥ ∆(2−r ε
4 ) by the condition on n in the statement of the lemma. Then

P

(︃⃒⃒⃒⃒⃒
⃒
∑︀n

i1,...,ir=1 W(Xi1 , . . . ,Xir)
nr − EW

⃒⃒⃒⃒⃒
⃒ > ε‖W‖p

)︃
≤ P

(︃⃒⃒⃒⃒⃒
⃒
∑︀n

i1,...,ir=1 W′(Xi1 , . . . ,Xir)
nr − EW′

⃒⃒⃒⃒⃒
⃒ > ε/4‖W‖p

)︃
+ P

(︃⃒⃒⃒⃒⃒
⃒
∑︀n

i1,...,ir=1 W′′(Xi1 , . . . ,Xir)
nr

⃒⃒⃒⃒⃒
⃒ > ε/2‖W‖p

)︃
. (4.25)
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4 Testability of the ground state energy

We estimate the first term of (4.25) by Chebysev’s inequality.

P

(︃⃒⃒⃒⃒⃒
⃒
∑︀n

i1,...,ir=1 W′(Xi1 , . . . ,Xir)
nr − EW′

⃒⃒⃒⃒⃒
⃒ > ε/4‖W‖p

)︃
≤

16E
(︃

n∑︀
i1,...,ir=1

[W′(Xi1 , . . . ,Xir) − EW′]
)︃2

n2rε2‖W‖2p
.

(4.26)

We expand the square in the expectation on the left of (4.26), and group the terms with
respect to the set of common variables in the parameters of the two random variables
of the product. Note that if there are no common variables in the factors, then the
factors are independent, so the corresponding product vanishes in expectation.

E(
n∑︁

i1,...,ir=1

[W′(Xi1 , . . . ,Xir) − EW′])2

=
∑︁
∅,S⊂[r]

n∑︁
i1,...,ir=1
j1,..., jr=1

ik= jk⇔k∈S

[EW′(Xi1 , . . . ,Xir)W
′(X j1 , . . . ,X jr) − (EW′)2]

≤

∑︁
∅,S⊂[r]

n∑︁
i1,...,ir=1
j1,..., jr=1

ik= jk⇔k∈S

E
[︁
E[W′(Xi1 , . . . ,Xir) | {Xik | k ∈ S}]E[W′(X j1 , . . . ,X jr) | {X jk | k ∈ S}]

]︁

≤

∑︁
∅,S⊂[r]

n∑︁
i1,...,ir=1
j1,..., jr=1

ik= jk⇔k∈S

E|W|δn|S| =
r∑︁

s=1

(︃
r
s

)︃
n2r−sE|W|δns

≤ ‖W‖pδn2r2r. (4.27)

Plugging in the previous estimate into (4.26) we arrive at

P

(︃⃒⃒⃒⃒⃒
⃒
∑︀n

i1,...,ir=1 W′(Xi1 , . . . ,Xir)
nr − EW′

⃒⃒⃒⃒⃒
⃒ > ε/4‖W‖p

)︃
≤
‖W‖pδ2r+4

ε2‖W‖2p
. (4.28)

Recall that δ = 2−r−5ε3
‖W‖p, thus we have that the right hand side of (4.28) is at most ε

2 .

We turn to bound the second term in (4.25).

P

(︃⃒⃒⃒⃒⃒
⃒
∑︀n

i1,...,ir=1 W′′(Xi1 , . . . ,Xir)
nr

⃒⃒⃒⃒⃒
⃒ > ε/2‖W‖p

)︃
≤

n∑︁
i1=1

P

⎛⎜⎜⎜⎜⎜⎝
⃒⃒⃒⃒⃒
⃒⃒ n∑︁
i2,...,ir=1

W′′(Xi1 , . . . ,Xir)

⃒⃒⃒⃒⃒
⃒⃒ > 0

⎞⎟⎟⎟⎟⎟⎠
≤ n[P(|W1(X1)| > δn) + P({|W1(X1)| ≤ δn} ∩ (∪n

i2=1{|

n∑︁
i3,...,ir=1

W′′(Xi1 , . . . ,Xir)| > 0})]
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≤

r∑︁
j=1

n jP(|W{1,..., j}(X1, . . . ,X j)| > δn j)

≤

r∑︁
j=1

n j 1
δn jE|W[ j]|1{|W[ j]|>δn j}

≤

r∑︁
j=1

1
δ
E|W|p

δp−1(np−1) j

≤
rE|W|p

δpnp−1 . (4.29)

Because of the choice of the lower bound on n we have that (4.29) is at most ε
2 , which

implies the statement of the lemma. �

We turn to the proof of the main result of this section.

Proof of Theorem 4.4.3.
Fix ε > 0, let W : [0, 1]r

→ R and k be as in the statement, in particular W ∈ Lp([0, 1]r).
We define U as the truncated version of W, that is U = W1{|W|≤‖W‖p(4qr/ε)1/(p−1)}. For any
fractional q-partition φ = (φ1, . . . , φq) we have

|ℰφ(W, J) − ℰφ(U, J)| =

⃒⃒⃒⃒⃒
⃒⃒∑︁
z∈[q]r

J(z)
∫︁

[0,1]r

r∏︁
j=1

φz j(x j)(W −U)(x)dλ(x)

⃒⃒⃒⃒⃒
⃒⃒

≤ ‖J‖∞
∑︁
z∈[q]r

∫︁
[0,1]r
|W(x) −U(x)|dλ(x)

= ‖J‖∞qr
‖W −U‖1

= ‖J‖∞qrE|W|1{|W|>‖W‖p(4qr/ε)1/(p−1)}

≤ ‖J‖∞qrε‖W‖p
4qr =

ε
4
‖J‖∞‖W‖p.

It follows that |ℰ(W, J) − ℰ(U, J)| ≤ ε
4‖J‖∞‖W‖p.

Since W ∈ Lp([0, 1]r) and U is bounded it follows that with setting V = W − U we
have V ∈ Lp([0, 1]r), further, ‖V‖p ≤ ‖W‖p. Now we apply Lemma 4.4.5 to V with k to
obtain that for uniform independent random sample X1, . . . ,Xk from [0, 1] we have

P

⎛⎜⎜⎜⎜⎜⎝
⃒⃒⃒⃒⃒
⃒⃒
∑︀k

i1,...,ir=1 V(Xi1 , . . . ,Xir)
kr − EV(X1, . . . ,Xr)

⃒⃒⃒⃒⃒
⃒⃒ > ε

4qr ‖V‖p

⎞⎟⎟⎟⎟⎟⎠ < ε
4qr ,

since k ≥ ε−3−4/(p−1)q3+4/(p−1)2
(r+11)p+3

p−1 r
1

p−1 . Let us condition on the event

E1 =

⎧⎪⎪⎨⎪⎪⎩
⃒⃒⃒⃒⃒
⃒⃒
∑︀k

i1,...,ir=1 V(Xi1 , . . . ,Xir)
kr − EV(X1, . . . ,Xr)

⃒⃒⃒⃒⃒
⃒⃒ ≤ ε

4qr ‖V‖p

⎫⎪⎪⎬⎪⎪⎭ ,
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4 Testability of the ground state energy

this implies trivially the event⎧⎪⎪⎨⎪⎪⎩
⃒⃒⃒⃒⃒
⃒⃒
∑︀k

i1,...,ir=1 V(Xi1 , . . . ,Xir)
kr − EV(X1, . . . ,Xr)

⃒⃒⃒⃒⃒
⃒⃒ ≤ ε

4qr ‖W‖p

⎫⎪⎪⎬⎪⎪⎭ . (4.30)

Let x be an arbitrary integer q-partition of [k], and let the random graphs below be
generated by the same sample, then

|ℰx(G(k,W), J)−ℰx(G(k,U), J)|

=
1
kr

⃒⃒⃒⃒⃒
⃒⃒∑︁
z∈[q]r

J(z)
k∑︁

i1,...,ir=1

(W(Xi1 , . . . ,Xir) −U(Xi1 , . . . ,Xir))
r∏︁

j=1

xi j,z j

⃒⃒⃒⃒⃒
⃒⃒

≤ ‖J‖∞qr

∑︀k
i1,...,ir=1 V(Xi1 , . . . ,Xir)

kr

≤ qr
‖J‖∞

[︃
ε

4qr ‖W‖p + ‖W −U‖1

]︃
≤
ε
2
‖J‖∞‖W‖p,

where the second inequality holds in the event of (4.30). Consequently,

|ℰ̂(G(k,W), J) − ℰ̂(G(k,U), J)| ≤
ε
2
‖J‖∞‖W‖p.

We know that ‖U‖∞ ≤ ‖W‖p(4qr/ε)1/(p−1), therefore by Corollary 4.2.1 and Remark 4.2.12
we have

P
(︁
|ℰ(U, J) − ℰ̂(G(k,U), J)| > ε1+1/(p−1)q−r/(p−1)2−2/(p−1)−2

‖U‖∞‖J‖∞
)︁

(4.31)

≤ ε1+1/(p−1)q−r/(p−1)2−2/(p−1)−2,

since k ≥ Θ4 log(Θ) with Θ =
2r+9+2/(p−1)qr(1+1/(p−1))r

ε1+1/(p−1) . We condition on the event

E2 =
{︂
|ℰ(U, J) − ℰ̂(G(k,U), J)| ≤

ε
4
‖J‖∞‖W‖p

}︂
,

which is the same as the complement of the event in the argument in (4.31).
The failure probability of both E1 and E2 is at most ε/2, so they hold simultaneously

with probability at least 1 − ε. In this case

|ℰ(W, J) − ℰ̂(G(k,W), J)| ≤ |ℰ(W, J) − ℰ(U, J)| + |ℰ(U, J) − ℰ̂(G(k,U), J)|

+ |ℰ̂(G(k,W), J) − ℰ̂(G(k,U), J)|
≤ ε‖J‖∞‖W‖p,

which concludes the proof.
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4.5 Lower threshold ground state energies

Recall the notion of the microcanonical ground state energies in Definition 4.3.3. The
main goal of this section is to introduce and to reveal the properties of an intermediate
object between the microcanonical ground state energy (MGSE) and ground state
energy (GSE) of weighted graphs defined in [32]. The main contribution here is that
we give a convergence hierarchy with respect to the aforementioned intermediate
objects that are Hamiltonians subject to certain conditions. This can be regarded
as a refined version of Theorem 2.9. (ii) from [32] combined with the equivalence
assertion of Theorem 2.8. (v) from the same paper. In short, these state that MGSE
convergence implies GSE convergence. Counterexamples are provided indicating that
the implication is strict. We also reprove with the aid of the established hierarchy one
of the main results of [28]. Our motivation comes from cluster analysis, where the
minimal cut problem is a central subject of research. The graph limit theory sheds new
light on this, especially their statistical physics correspondence suits for application in
the cluster analysis setting.

Next we introduce the central object of investigation in the current section. The set
Symq denotes the set of real symmetric q × q matrices.

Definition 4.5.1. Let G be a weighted graph, q ≥ 1, J ∈ Symq, and 0 ≤ c ≤ 1/q. We define
the set Ac = { a ∈ Pdq | ai ≥ c, i = 1, . . . , q }, and with its help the lower threshold ground state
energy (LTGSE):

ℰ̂
c(G, J) = inf

a∈Ac
ℰ̂a(G, J). (4.32)

In a similar manner we introduce the LTGSEs for a graphon W for q ≥ 1, J ∈ Symq, and
0 ≤ c ≤ 1/q lower threshold:

ℰ
c(W, J) = inf

a∈Ac
ℰa(W, J). (4.33)

This section is organized as follows. In Section 4.5.1 we prove yet another equivalent
condition to the convergence of a simple graph sequence relying on a subclass of
MGSE, the reasoning will be instrumental for the proof of our main result in the
subsequent subsection. In Section 4.5.2 we study the convergence of LTGSEs, see
(4.33) for their definition. We will consider c : N→ [0, 1] threshold functions with the
property that c(q)q is constant as a function of q. For this case we will prove that if
0 ≤ c1(q) < c2(q) ≤ 1/q (for all q), then the convergence of (ℰc2(q)(Wn, J))n≥1 for all q ≥ 1,
J ∈ Symq implies the convergence of (ℰc1(q)(Wn, J))n≥1 for all q ≥ 1, J ∈ Symq.

In Section 4.5.3 we provide some examples of graphs and graphons which support
the fact, that the implication of convergence in Section 4.5.2 is strict in the sense that
convergence of LTGSE sequences with smaller threshold do not imply convergence of
LTGSE sequences with larger threshold in general. We also present a one-parameter
family of block-diagonal graphons whose elements can be distinguished by LTGSEs
for any threshold c > 0.
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4 Testability of the ground state energy

4.5.1 Microcanonical convergence

We start by showing that for each discrete probability distribution with rational prob-
abilities there exists a uniform probability distribution, such that the microcanonical
ground state energies (MGSE) of it can be expressed as MGSEs corresponding to the
uniform distribution.

Lemma 4.5.2. Let q ≥ 1, and a ∈ Pdq be such that a = ( k1
q′ ,

k2−k1
q′ , . . . ,

kq−kq−1

q′ ), where q′ is a
positive integer, k1 ≤ k2 ≤ · · · ≤ kq = q′ are non-negative integers. Then for all J ∈ Symq there
exists a J′ ∈ Symq′ , such that for b = (1/q′, . . . , 1/q′) ∈ Pdq′ and every graphon W it holds
that

ℰa(W, J) = ℰb(W, J′).

Proof. Set k0 = 0. If the ith component of a is 0, then erase this component from a, and
also erase the ith row and column of J. This transformation clearly will have no effect
on the value of the GSE. Let us define the q′ × q′ matrix J′ by blowing up rows and
columns of J in the following way. For each u, v ∈ [q′] let J′uv = Ji j, where ki−1 < u ≤ ki

and k j−1 < v ≤ k j. The matrix J′ defined this way is clearly symmetric.
Now we will show that for every fractional q-partition with distribution a there

exists a fractional q′-partition ρ′with distribution b, and vice versa, such thatℰρ(W, J) =
ℰρ′(W, J′). On one hand, for 1 ≤ u ≤ q′ let ρ′u =

ρi
ki−ki−1

, where ki−1 < u ≤ ki. Then

ℰρ′(W, J′) = −

q′∑︁
u,v=1

J′u,v

∫︁
[0,1]2

ρ′u(x)ρ′v(y)W(x, y)dxdy

= −

q∑︁
i, j=1

Ji, j

ki∑︁
l=ki−1+1

k j∑︁
h=k j−1+1

∫︁
[0,1]2

ρ′l(x)ρ′h(y)W(x, y)dxdy

= ℰρ(W, J).

On the other hand, for 1 ≤ i ≤ q let ρi =
∑︀ki

l=ki−1+1 ρ
′

l . Then

ℰρ(W, J) = −

q∑︁
i, j=1

Ji, j

∫︁
[0,1]2

ρi(x)ρ j(y)W(x, y)dxdy

= −

q∑︁
i, j=1

Ji, j

ki∑︁
l=ki−1+1

k j∑︁
h=k j−1+1

∫︁
[0,1]2

ρ′l(x)ρ′h(y)W(x, y)dxdy

= −

q′∑︁
u,v=1

J′u,v

∫︁
[0,1]2

ρ′u(x)ρ′v(y)W(x, y)dxdy = ℰρ′(W, J′).
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4.5 Lower threshold ground state energies

So we conclude that

ℰa(W, J) = inf
ρ∈ωa
ℰρ(W, J) = inf

ρ′∈ωb
ℰρ′(W, J′) = ℰb(W, J′).

�

Recall Lemma 4.3.4 that states that the MGSE with fixed parameters W, J are close,
whenever their corresponding probability distribution parameters are close to each
other. We need here only the following special case.

Lemma 4.5.3. Let q ≥ 1, J ∈ Symq, and W be an arbitrary graphon. Then for a,b ∈ Pdq we
have that

|ℰa(W, J) − ℰb(W, J)| < 2‖a − b‖1‖W‖∞‖J‖∞.

With the aid of the two previous lemmas we are able to prove the main assertion of
the section. In the statement of the following theorem the LTGSE expression ℰ1/q(W, J)
(which is equal to ℰb(W, J), with b = (1/q, . . . , 1/q)) appears, the notion will further be
generalized in what follows later on.

Theorem 4.5.4. Let I be a bounded interval, and (Wn)n≥1 a sequence of graphons from Ξ2
I . If

for all q ≥ 1 and J ∈ Symq the sequences (ℰ1/q(Wn, J))n≥1 converge, then for all q ≥ 1, a ∈ Pdq

and J ∈ Symq the sequences (ℰa(Wn, J))n≥1 converge.

Proof. Let q ≥ 1, a ∈ Pdq and J ∈ Symq be arbitrary and fixed. We will prove that
whenever the conditions of the theorem are satisfied, then (ℰa(Wn, J))n≥1 is Cauchy
convergent. Fix an arbitrary ε > 0. Let q′ be such that 4 q

q′ ‖I‖∞‖J‖∞ <
ε
3 , and let b ∈ Pdq

be such that bi = [ai/q′] (i = 1, . . . , q − 1), bq = 1 −
∑︀q−1

i=1 bi (where [x] is the lower integer
part x). Then

‖a − b‖1 =

q∑︁
i=1

|ai − bi| ≤ 2
q − 1

q′
< 2

q
q′
.

b is a q′-rational distribution, so by Lemma 4.5.2 there exists J′ ∈ Symq′ , such that for
all n ≥ 1

ℰb(Wn, J) = ℰ1/q′(Wn, J′).

It follows from the conditions of the theorem that there exists n0 ∈ N such that for all
m,n ≥ n0 it is true that

⃒⃒⃒
ℰ

1/q′(Wn, J′) − ℰ1/q′(Wm, J′)
⃒⃒⃒
< ε

3 . Applying Lemma 4.5.3 to all
m,n ≥ n0 we get that

|ℰa(Wn, J) − ℰa(Wm, J)| ≤ |ℰa(Wn, J) − ℰb(Wn, J)|
+ |ℰb(Wn, J) − ℰb(Wm, J)| + |ℰb(Wm, J) − ℰa(Wm, J)|

≤ 2‖a − b‖1‖I‖∞‖J‖∞ +
⃒⃒⃒
ℰ

1/q′(Wn, J′) − ℰ1/q′(Wm, J′)
⃒⃒⃒

+ 2‖a − b‖1‖I‖∞‖J‖∞

≤
ε
3

+
ε
3

+
ε
3

= ε.
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4 Testability of the ground state energy

�

We remark that Theorem 4.5.4 also appears in [32] as Corollary 7.4, but its proof
follows a different line of thought in the present work.

4.5.2 Convergence hierarchies

In various cases of testing, for certain cuts of graphs neither the notion of ground state
energies, nor the notion of microcanonical ground state energies are satisfactory. For
example when investigating clusteredness of a graph in a certain sense these notions
become useless, because the partition for which energies attain the minimal value are
trivial partitions. On the other hand, in several applications one only asks for a lower
bound on the size of these classes to keep a grade of freedom of the ground state case
and at the same time achieve a certain balance with respect to the sizes of classes.
This setting can be regarded as an intermediate energy notion that manages to get
rid of values corresponding to trivial partitions. Recall Definition 4.5.1 of the lower
threshold ground state energies.

The next theorem will deliver an upper bound on the difference of the MGSEs of
G and WG for fixed a an J, WG is the graphon constructed form the adjacency matrix
of G in the natural way. A straightforward consequence of this will be the analogous
statement for the LTGSEs.

Theorem 4.5.5. [32] Let G be a weighted graph, q ≥ 1, a ∈ Pdq and J ∈ Symq. Then

⃒⃒⃒
ℰ̂a(G, J) − ℰa(WG, J)

⃒⃒⃒
≤ 6q3αmax(G)

αG
βmax(G)‖J‖∞.

Since the upper bound in the theorem for a given q is not dependent on a, it is easily
possible to apply it to the LTGSEs.

Corollary 4.5.6. Let G be a weighted graph, q ≥ 1, 0 ≤ c ≤ 1/q and J ∈ Symq. Then

⃒⃒⃒
ℰ̂

c(G, J) − ℰc(WG, J)
⃒⃒⃒
≤ 6q3αmax(G)

αG
βmax(G)‖J‖∞.

Based on the preceding facts we are able to perform analysis on the LTGSEs the
same way as the authors of [32] did in the case of MGSE.

Corollary 4.5.7. Let Gn be a sequence of weighted graphs with uniformly bounded edge
weights. Then if αmax(Gn)

αGn
→ 0 (n → ∞), then for all q ≥ 1, 0 ≤ c ≤ 1/q and J ∈ Symq the

sequences (ℰ̂c(Gn, J))n≥1 converge if, and only if (ℰc(WGn , J))n≥1 converge, and then

lim
n→∞
ℰ̂

c(Gn, J) = lim
n→∞
ℰ

c(WGn , J).
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4.5 Lower threshold ground state energies

Recall the definition of testability, Definition 3.2.1. It was shown in [30], among
presenting other characterizations, that the testability of a graph parameter f is equi-
valent to the existence of a δ�-continuous extension f̂ of f to the space Ξ2

I , where exten-
sion here means that f (Gn) − f̂ (WGn) → 0 whenever |V(Gn)| → ∞ (see Theorem 3.4.1,
originally from [30]). Using this we are able to present yet another consequence of
Theorem 4.5.5, that was verified earlier using a different approach in [28] (see also [27],
Chapter 4).

Corollary 4.5.8. For all q ≥ 1, 0 ≤ c ≤ 1/q and J ∈ Symq the simple graph parameter
f (G) = ℰ̂c(G, J) is testable. Choosing J appropriately, f (G) can be regarded as a type of
balanced multiway minimal cut in [28].

Proof. Let q ≥ 1, 0 ≤ c ≤ 1/q and J ∈ Symq be fixed, and we define f̂ (W) = ℰc(W, J).
It follows from Corollary 4.5.6 that f (Gn) − f̂ (WGn) → 0 whenever |V(Gn)| → ∞. It
remains to show that f̂ is δ�-continuous. To elaborate on this issue, let U,W ∈ Ξ2

I and
φ be a measure-preserving permutation of [0, 1] such that δ�(U,W) = ‖U −Wφ

‖�, and
let ρ = (ρ1, . . . , ρq) be an arbitrary fractional partition. Then

⃒⃒⃒
ℰρ(U, J) − ℰρ(Wφ, J)

⃒⃒⃒
≤

q∑︁
i, j=1

⃒⃒⃒
Ji j

⃒⃒⃒ ⃒⃒⃒⃒⃒⃒
∫︁

[0,1]2
(U −Wφ)(x, y)ρi(x)ρ j(y)dxdy

⃒⃒⃒⃒⃒
⃒

≤ q2
‖J‖∞‖U −Wφ

‖� = q2
‖J‖∞δ�(U,W). (4.34)

This implies our claim, asℰa(W, J) = ℰa(Wφ, J) for any a ∈ Pdq andφmeasure preserving
permutation, and the fact that the right-hand side of (4.34) does not depend on a, and
that by definition ℰc(W, J) = infa∈Ac ℰa(W, J).

�

In order to analyze the convergence relationship of LTGSEs with different thresholds
for a given graph sequence it is sensible to consider c as a function of q. We restrict
our attention to lower threshold functions c with c(q)q being constant, which means
that in the case of graphons the total size of the thresholds stays the same relative
to the size of the interval [0, 1] (in the case of graphs relative to the cardinality of
the vertex set). The main statement of the current section informally asserts that the
convergence of LTGSEs with larger lower threshold imply convergence of all LTGSEs
with smaller ones. By the results of the previous section we know that in the case of
c(q) = 1/q the convergence of these LTGSEs is equivalent convergence of the MGSEs
for all probability distributions, and by this, according to [32], to left convergence of
graphs. Moreover, in the case of c(q) = 0 it is equivalent to the convergence of the
unrestricted GSEs, that property is known to be strictly weaker than left convergence.
For technical purposes we introduce general LTGSEs and will refer to the previously
presented notion in all that follows as homogeneous LTGSEs.

Definition 4.5.9. Let q ≥ 1, x = (x1, . . . , xq), x1, . . . xq ≥ 0 and
∑︀q

i=1 xi ≤ 1, and let Ax = { a ∈
Pdq | ai ≥ xi, i = 1, . . . , q }. For a graphon W and J ∈ Symq we call the following expression
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4 Testability of the ground state energy

the lower threshold ground state energy corresponding to x:

ℰ
x(W, J) = inf

a∈Ax
ℰa(W, J).

The definition of ℰ̂x(G, J) for graphs is analogous.

Similarly to Lemma 4.5.2, the convergence of homogeneous LTGSEs is equivalent to
the convergence of certain general LTGSEs.

Lemma 4.5.10. Let I be a bounded interval, (Wn)n≥1 a sequence of graphons in Ξ2
I . Let c be a

lower threshold function, so that c(q)q = h for all q ≥ 1 and for some 0 ≤ h ≤ 1. If for all q ≥ 1
and J ∈ Symq the sequences (ℰc(q)(Wn, J))n≥1 converge, then for all q ≥ 1, all

x = (x1, . . . , xq) x1, . . . , xq ≥ 0
q∑︁

i=1

xi = h, (4.35)

and J ∈ Symq, the sequences (ℰx(Wn, J))n≥1 also converge.

Proof. Fix an arbitrary graphon W from Ξ2
I , q ≥ 1 and J ∈ Symq, and an arbitrary vector

x that satisfies condition (4.35). Select for each of these vectors x a positive vector x′

that obeys the condition (4.35), and that has components which are integer multiples
of c(q′) (q′ will be chosen later), so that

‖x − x′‖1 ≤ 2qc(q′) = 2h
q
q′
.

The sets Ax and Ax′ have Hausdorff distance in the L1-norm at most ‖x − x′‖1, in
particular for every a ∈ Ax there exists a b ∈ Ax′ , such that ‖a − b‖1 ≤ ‖x − x′‖1, and
vice versa. Let ε > 0 be arbitrary, and a ∈ Ax be such that ℰx(W, J) + ε > ℰa(W, J) holds.
Then by applying Lemma 4.5.3 we have that

ℰ
x′(W, J) − ℰx(W, J) < ℰx′(W, J) − ℰa(W, J) + ε

≤ ℰb(W, J) − ℰa(W, J) + ε

≤ 2‖a − b‖1‖W‖∞‖J‖∞ + ε

≤ 2‖x − x′‖1‖W‖∞‖J‖∞ + ε.

The lower bound of the difference can be handled similarly, and therefore by the
arbitrary choice of ε it holds that⃒⃒⃒

ℰ
x′(W, J) − ℰx(W, J)

⃒⃒⃒
≤ 2‖x − x′‖1‖W‖∞‖J‖∞ ≤ 4h

q
q′
‖I‖∞‖J‖∞.

With completely analogous line of thought to the proof of Lemma 4.5.2, one can show
that there exists a J′ ∈ Symq′ such that ℰx′(W, J) = ℰc(q′)(W, J′). Finally, choose q′ small
enough in order to satisfy 4h q

q′ ‖I‖∞‖J‖∞ <
ε
3 , and n0 > 0 large enough, so that for all
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4.5 Lower threshold ground state energies

m,n ≥ n0 the relation ⃒⃒⃒
ℰ

c(q′)(Wn, J′) − ℰc(q′)(Wm, J′)
⃒⃒⃒
<
ε
3

holds.
Then for all m,n ≥ n0:

|ℰ
x(Wn, J) − ℰx(Wm, J)| <

⃒⃒⃒
ℰ

x(Wn, J) − ℰx′(Wn, J)
⃒⃒⃒

+
⃒⃒⃒
ℰ

c(q′)(Wn, J′) − ℰc(q′)(Wm, J′)
⃒⃒⃒
+

⃒⃒⃒
ℰ

x′(Wm, J) − ℰx(Wm, J)
⃒⃒⃒

<
ε
3

+
ε
3

+
ε
3

= ε.

We did not only prove the statement of the lemma, but we also showed that the
convergence is uniform in the sense that n0 does not depend on x for fixed q and J. �

With the aid of the former lemma we can now prove that if all homogeneous LTGSEs
with large thresholds converge, then all homogeneous LTGSEs with smaller ones also
converge.

Theorem 4.5.11. Let I be a bounded interval, (Wn)n≥1 a sequence of graphons in Ξ2
I . Let c1, c2

be two lower threshold functions, so that c1(q)q = h1 < h2 = c2(q)q for all q ≥ 1 for some
0 ≤ h1, h2 ≤ 1. If for every q ≥ 1 and J ∈ Symq the sequences (ℰc2(q)(Wn, J))n≥1 converge, then
for every q ≥ 1 and J ∈ Symq the sequences (ℰc1(q)(Wn, J))n≥1 also converge.

Proof. From Lemma 4.5.10 it follows that if the conditions of the theorem are satisfied
then for every q ≥ 1, every

x = (x1, . . . , xq) x1, . . . xq ≥ 0
q∑︁

i=1

xi = h2, (4.36)

and J ∈ Symq the sequences (ℰx(Wn, J)) converge, for fixed q and J uniformly in x.
Fix q. Our aim is to find for all a ∈ Ac1(q) an x, so that the condition (4.36) is

satisfied, a ∈ Ax and Ax ⊆ Ac1(q), where c1(q) ≤ xi ≤ ai for i = 1, . . . , q. As h1 < h2 ≤ 1,
there exists such an x for all a ∈ Ac1(q), let us denote it by xa, for convenience set
(xa)i = h1

q + ai−h1
1−h1

(h2−h1). According to this correspondence we have Ac1(q) =
⋃︀

a∈Ac1(q)
Axa .

So for an arbitrary graphon W and J ∈ Symq we have

ℰ
c1(q)(W, J) = inf

a∈Ac1(q)

ℰ
xa(W, J).

We fix ε > 0, J ∈ Symq, and apply Lemma 4.5.10 for the case that the conditions of the
theorem are satisfied. Then there exists a n0 ∈ N, so that for all n,m > n0, for all x
which satisfies (4.36), and implies

|ℰ
x(Wn, J) − ℰx(Wm, J)| < ε.
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4 Testability of the ground state energy

Let ε′ > 0 be arbitrary and b ∈ Ac1(q) such that ℰc1(q)(Wm, J) + ε′ > ℰxb(Wm, J). Then

ℰ
c1(q)(Wn, J) − ℰc1(q)(Wm, J) < ℰc1(q)(Wn, J) − ℰxb(Wm, J) + ε′

≤ ℰ
xb(Wn, J) − ℰxb(Wm, J) + ε′ < ε + ε′.

The lower bound of ℰc1(q)(Wn, J) − ℰc1(q)(Wm, J) can be established completely similarly
and as ε′ was arbitrary, it follows that⃒⃒⃒

ℰ
c1(q)(Wn, J) − ℰc1(q)(Wm, J)

⃒⃒⃒
< ε,

which verifies the statement of the theorem. �

A direct consequence is the version of Theorem 4.5.11 for weighted graphs.

Corollary 4.5.12. Let Gn be a sequence of weighted graphs with uniformly bounded edge
weights, and αmax(Gn)

αGn
→ 0 (n → ∞). Let c1 and c2 be two lower threshold functions, so that

c1(q)q = h1 < h2 = c2(q)q for all q ≥ 1 for some 0 ≤ h1, h2 ≤ 1. If for every q ≥ 1 and J ∈ Symq

the sequences (ℰ̂c2(q)(Gn, J))n≥1 converge, then for every q ≥ 1 and J ∈ Symq the sequences
(ℰ̂c1(q)(Gn, J))n≥1 also converge.

The proof of Corollary 4.5.12 can be easily given through the combination of the
results of Theorem 4.5.5 and Theorem 4.5.11.

Concluding this subsection we would like to mention a natural variant of the LT-
GSEs, the upper threshold ground state energies (UTGSE). Here we will only give
an informal description of the definition and the results and leave the details to the
reader, everything carries through analogously to the above. The homogeneous UT-
GSE, denoted by ℰ̂c↑(G, J), is determined by a formula similar to (4.32) with the set
Ac replaced by Ac, that is the set of probability distributions whose components are
at most c, the general variant of the UTGSE is defined in the same manner. The
equivalence corresponding to the one stated in Lemma 4.5.10 between the general
and the homogeneous version’s convergence follows by the same blow-up trick as
there, here for c(q)q = h ≥ 1. The counterpart of Theorem 4.5.11 also holds true in
the following form for 1 ≤ c2(q)q ≤ c1(q)q ≤ q: If for every q ≥ 1 and J ∈ Symq the
sequences (ℰc2(q)↑(Wn, J))n≥1 converge, then for every q ≥ 1 and J ∈ Symq the sequences
(ℰc1(q)↑(Wn, J))n≥1 also converge. This conclusion comes not unexpected, it says, as in
the LTGSE case, that less restriction on the set Ac weakens the convergence property
of a graph sequence.

4.5.3 Counterexamples
In this subsection we provide an example of a graphon family whose elements can be
distinguished for a larger c2(q) lower threshold function for some pair of q0 ≥ 1 and
J0 ∈ Symq by looking at ℰc2(q0)(W, J0), but whose LTGSEs are identical for some smaller
c1(q) lower threshold function for all q ≥ 1 and J ∈ Symq. Based on this it is possible

130



4.5 Lower threshold ground state energies

to construct a sequence of graphs, whose c1(q)-LTGESs converge for every q ≥ 1 and
J ∈ Symq, but not the c2(q)-LTGSEs through the same randomized method presented in
[32] to show a non-convergent graph sequence with convergent ground state energies.

In the second part of the subsection we demonstrate that there exist a family of
graphons, where elements can be distinguished from each other by looking only at
their LTGSEs for an arbitrary small, but positive c(q) lower threshold function, but
whose corresponding GSEs without any threshold are identical.
Example 4.5.13. An example which can be treated relatively easily are block-diagonal
graphons which are defined for the parameters 0 ≤ α ≤ 1, 0 ≤ β1, β2 as

W(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β1 , if 0 ≤ x, y ≤ α
β2 , if α < x, y ≤ 1
0 , else.

In the case of c(q)q = h , 1 − α ≥ h, β2 = 0, for arbitrary q ≥ 1 and J ∈ Symq we have
ℰ(W, J) = ℰc(q)(W, J). Choosing β1 = 1

α2 , we get a one parameter family of graphons
which have identical c(q)-LTGSEs parametrized by α with 0 < α ≤ 1 − h. This means
that ℰc(q)(W(α), J) = ℰ(I, J), where I stands for the constant 1 graphon.

For every α0 > 1 − h there are q ≥ 1 and J ∈ Symq, so that the former equality does
not hold anymore. Let Jq ∈ Symq be the q × q matrix, whose diagonal entries are 0, all
other entries being −1 (this is the q-partition minimal cut problem). Then ℰ(I, Jq) = 0
for all q ≥ 1, but for q0 large enough ℰc(q0)(W(α0), Jq0) > 0, we leave the details to the
reader.

With the aid of the previous example it is possible to construct a sequence of graphs
which verify that in Theorem 4.5.11 the implication of the convergence property of the
sequence is strictly one-way. This example is degenerate in the sense that the graphs
consist of a quasi-random part and a sub-dense part with the bipartite graph spanned
between the two parts also being sub-dense.
Example 4.5.14. Let us consider block-diagonal graphons with 0 < α < 1, β1, β2 > 0.
It was shown in [32] that if we restrict our attention to a subfamily of block-diagonal
graphons, where α2β1 + (1−α)2β2 is constant, then in these subfamilies the correspond-
ing GSEs are identical. Let c(q) be an arbitrarily small positive threshold function.
Next we will show that the c(q)-LTGSEs determine the parameters of the block-diagonal
graphon at least for a one-parameter family (up to graphon equivalence, since (α, β1, β2)
belongs to the same equivalence class as (1−α, β2, β1)). The constant δi j is 1, when i = j,
and 0 otherwise.

The value of the expression α2β1 +(1−α)2β2 is determined by the MAX-CUT problem
by ℰ(W, J) with q = 2 and Ji j = 1 − δi j.

In the second step let q0 be as large so that c(q0) < min(α, 1 − α) holds, and let J be
the q0 × q0 matrix with entries Ji j = −δi1δ j1. In this case ℰ(W, J) = 0, but simple calculus
gives −ℰc(q0)(W, J) = −

β1β2

β1+β2
c(q0)2. Hence 1

β1
+ 1

β2
is determined by the LTGSEs.

The extraction of a third dependency of the parameters from c(q)-LTGSEs requires
little more effort, we will only sketch details here. First consider α’s with min(α, 1−α) ≥
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4 Testability of the ground state energy

c(2). Let for q = 2 and k ≥ 1 be

Jk =

(︃
1 −k
−k 2

)︃
.

For every α with min(α, 1 − α) ≥ c(2) we have

lim
k→∞
−ℰ

c(2)(W, Jk) = α2β1 + (1 − α)2β2 + max(α2β1, (1 − α)2β2).

Now apply the notion of the general lower threshold: for q = 2 let c1(n) = 2c(2)/n
and c2(n) = 2c(2)(n − 1)/n two threshold functions , let us first consider the threshold
xn = (c1(n), c2(n)). If α ≥ c1(n) or 1 − α ≥ c1(n), then analogously to the case of the
homogeneous lower thresholds

lim
k→∞
−ℰ

xn(W, Jk) = 2α2β1 + (1 − α)2β2 or α2β1 + 2(1 − α)2β2.

If for example α < c1(n), then it is easy to see that the LTGSE is going to infinity,
because for some k0, for all k > k0:

−ℰ
xn(W, Jk) < −k(c1(n) − α)c2(n) min{β1, β2} + 2(α2β1 + (1 − α)2β2).

So for fixed n then
lim
k→∞
−ℰ

xn(W, Jk) = −∞.

To actually be able to extract the expression α2β1 + (1 − α)2β2 + max(α2β1, (1 − α)2β2),
we only have to consider the lower threshold obtained by swapping the bounds,
x′n = (c2(n), c1(n)).

Then, if α ≥ c1(n) or 1 − α ≥ c1(n), we have

max{lim
k→∞
−ℰ

xn(W, Jk), lim
k→∞
−ℰ

x′n(W, Jk)}

= α2β1 + (1 − α)2β2 + max{α2β1, (1 − α)2β2},

otherwise
max{lim

k→∞
−ℰ

xn(W, Jk), lim
k→∞
−ℰ

x′n(W, Jk)} = −∞.

For every α there is a minimal n0 so that one of the conditions α ≥ c1(n) and 1−α ≥ c1(n)
is satisfied, and for n < n0 the LTGSEs corresponding to xn and x′n tend to infinity when
k goes to infinity. Therefore the expression α2β1 + (1 − α)2β2 + max(α2β1, (1 − α)2β2) is
determined by c(q)-LTGSEs.

Consider the one-parameter block-diagonal graphon family analyzed in [32], that
is W(α) = W(α, 1

α ,
1

1−α ), where 0 < α < 1. In this case the values of our first two
expressions are constant, for every 0 < α < 1 we have

1
β1

+
1
β2

= 1,
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4.5 Lower threshold ground state energies

α2β1 + (1 − α)2β2 = 1.

But by applying the third expression for c(q)-LTGSEs, we extract max{α2β1, (1−α)2β2} =
max{α, 1−α}, which determines the graphon uniquely in this family up to equivalence.

133





CHAPTER 5

Limits of weighted hypergraph
sequences via the ultralimit method
and applications

5.1 Introduction

We have seen in the previous chapter an effective proof for the testability characteristic
of ground state energies which are special graph parameters. Consider the problem of
finding the density of the maximal cut in a simple graph as a particular GSE problem.
This has several natural counterparts for 3-uniform hypergraphs, for example one can
ask to find a 3-coloring of the vertex set of a 3-graph so that the number of trichromatic
3-edges is maximal, this optimization problem is again a GSE, and therefore testable
as a 3-graph parameter by the results of Chapter 4.

Another natural generalization is for 3-graphs a setting, when we focusing on color-
ings of vertex pairs instead of singletons. A concrete example for such a problem is to
consider each pair of vertices of a 3-graph and color them with two colors. Here we are
counting the number of the "good" 3-edges of the original simple 3-graph that consist of
a triples whose underlying 2-colored 2-graph (obtained from the above coloring) is not
monochromatic. Again, we can formulate the corresponding optimization problem
where the objective is to find the coloring that maximizes the number of "good" edges.
The 3-graph parameter obtained this way is not a GSE in the sense of Definition 4.1.2.

We will show that these hypergraph parameters which will be precisely defined
in Definition 5.3.1 are testable by means of the ultralimit method and the machinery
developed by Elek and Szegedy [49]. To our knowledge these parameters were not
previously studied in a testability context. Our original motivation was the special
case to establish that the cut norm ‖.‖�,r in Definition 3.3.20 is approximately preserved
under going to a randomly sampled subgraph. Such a result would be contributing
to the progress towards presenting an analogous metric for r-graphs to δ� in Defini-
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tion 3.3.6 for graphs that generates the same topology as the r-graph convergence of
Definition 2.2.3.

From the notational perspective and the theoretical background this section slightly
stands out from the rest of the thesis. First we give a brief summary of the notions that
were used in [49] in order to produce a representation for the limit space of simple
r-graphs. This representation entails a structural connection between ultraproduct
spaces and Borel spaces, and has led to a new analytical proof method for several
results for simple r-graphs such as the Regularity Lemma, the Removal Lemma, or
the testability assertion about hereditary r-graph properties. Subsequently, technical
results proved in [49] that are relevant here are mentioned, for more details and
complete proofs we refer to the paper [49].

Recall that a sequence of simple r-graphs (Gn)n≥1 is convergent if for every simple F
the numerical sequences t(F,Gn) converge when n tends to infinity, see Definition 2.2.3.

We proceed in the framework of non-standard analysis. As default, we will treat any
sequence of graphs, not only convergent ones, the main advantage of non-standard
techniques is that we are not required to pass to subsequences in order to speak of
limits. This paradigm is best observable in the case of sequences of reals in the unit
interval, where each infinite sequence {xi}

∞

i=1 has a well-defined limit object in [0, 1]
denoted by limω xi contrary to the standard setting.

The content of the chapter connects to other parts of the thesis in multiple ways.
The motivating example of generalized GSE is another step forward from Chapter 4
in understanding testable hypergraph parameters. The result regarding this ques-
tion, Theorem 5.3.4, will receive later in the thesis a substantially different effective
proof in Chapter 6, as Corollary 6.8.1. We also reprove the main contributions of
Chapter 2, where a representation of limits of (𝒦 , r)-graph sequences was provided
by probabilistic arguments. The existence, Theorem 5.4.11, and the uniqueness, The-
orem 5.4.12, assertions of the limit objects in the current chapter are consequences of a
deep structural correspondence between the spaces of graph sequences, ultraproducts,
and Borel-measurable functions on the unit square. This also allows for extending the
Regularity Lemma, which was dealt with in Chapter 3, to the setting where no algebraic
structure on the set of edge colors is required, see Theorem 5.5.2 and Corollary 5.5.5.

The outline for the main part of the current chapter is as follows. Section 5.2
introduces the basic concepts of ultralimit analysis, and at the same time develops
the analogous theory to [49] for r-graphs whose edges are colored from a finite color
set. These concepts are already sufficient to prove the testability of the generalized
GSE in Section 5.3. We proceed to the even more general case of compact colored
r-graphs in Section 5.4, here the color set is a compact Polish space, and we require
more advanced techniques, than in the previous sections, however still substantially
rely on the framework of [49] in combination of results in [93]. We conclude the chapter
in Section 5.5 with an application of the correspondence established in Section 5.4 to
prove a version of the Regularity Lemma for compact colored hypergraphs.
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5.2 The ultralimit method and limits of finitely colored graphs

5.2 The ultralimit method and limits of finitely colored
graphs

We start by introducing the basic notations for ultraproduct measure spaces.

Definition 5.2.1. The set ω ⊂ 2N is a non-principal ultrafilter if

(i) ∅ < ω,

(ii) if A ∈ ω and A ⊂ B, then B ∈ ω,

(iii) if A,B ∈ ω, then A ∩ B ∈ ω,

(iv) for any A ⊂N either A ∈ ω orN ∖ A ∈ ω, and

(v) there is no a ∈N, such that ω = {X | a ∈ X }.

One can show using the axiom of choice that a non-principal ultrafilter exists, al-
though it is not possible to explicitly construct it. For all what follows let us fix a
non-principal ultrafilter ω, it is not important which one we choose, since the measure
algebras obtained below are homeomorphic for different ultrafilters.

Let us fix a non-principal ultrafilter ω on N, and let X1,X2, . . . be a sequence of
finite sets of increasing size. We define the infinite product set X̂ =

∏︀
∞

i=1 Xi and the
equivalence relation∼between elements of X̂, so that p ∼ q if and only if { i | pi = qi } ∈ ω.
Set X = X̂/ ∼, this set is called the ultraproduct of the Xi sets, and it serves as the
base set of the ultraproduct measure space. Further, let 𝒫 denote the algebra of
subsets of X of the form A = [{Ai}

∞

i=1], where Ai ⊂ Xi for each i, and [.] denotes the
equivalence class under ∼ (for convenience, p = [{pi}

∞

i=1] ∈ [{Ai}
∞

i=1] exactly in the case
when { i | pi ∈ Ai } ∈ ω).

We define a measure on the sets belonging to𝒫 through the ultralimit of the counting
measure on the sets Xi, that is, µ(A) = limω

|Ai|

|Xi|
, where the ultralimit of a bounded real

numerical sequence {xi}
∞

i=1 is denoted by x = limω xi, and is defined by the property that
for every ε > 0 we have { i | |x − xi| < ε } ∈ ω. One can see that the limit exists for every
bounded sequence and is unique, therefore well-defined, this is a consequence of basic
properties of a non-principal ultrafilter. The set 𝒩 ⊂ 2X of µ-null sets is the family
of sets N for which there exists an infinite sequence of supersets {Ai

}
∞

i=1 ⊂ 𝒫 such that
µ(Ai) ≤ 1/i. Finally, we define the σ-algebraℬ = ℬX on X by the σ-algebra generated by
𝒫 and𝒩 , and set the measure µ(B) = µ(A) for each B ∈ ℬ, where A△B ∈ 𝒩 and A ∈ 𝒫.
Again, everything is well-defined, see [49], so we obtain the ultraproduct measure
space (X,ℬ, µ).

Definition 5.2.2. Let (X,𝒜, µ) be a measure space, and let A ∼ B for A,B ∈ 𝒜 whenever
µ(A△B) = 0. We define the distance dµ on the measure algebra ℬ = 𝒜/ ∼ by dµ([A], [B]) =
µ(A△B) and say that the measure space (X,𝒜, µ) is separable if the metric space (ℬ, dµ) is
separable.
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Note that the measure space (X,ℬ, µ) is in general non-separable, this can be seen by
means of contradiction. Suppose that there exists a countable dµ-dense set in 𝒫 ⊂ ℬ,
then the ultraproduct G of random subsets Gi of Xi generated by independent uniform
coin tosses for any element of Xi with success probability 1/2 has with probability 1
that µ(G△H) = 1/2 for any member H of the above dense set of the σ-algebra, so by our
assumption on countability this holds jointly with probability 1. Since we can always
choose a dµ-dense set in ℬ to be in 𝒫we have a contradiction.

Let X1,X2, . . . and Y1,Y2, . . . be two increasing sequences of finite sets with ul-
traproducts X and Y respectively, then it is true that the ultraproduct of the product
sequence X1 × Y1,X2 × Y2, . . . is the product X × Y (in the sense that the two infinite
products

∏︀
∞

i=1 Xi × Yi and
∏︀
∞

i=1 Xi ×
∏︀
∞

i=1 Yi coincide, and one can check easily that the
two ways of defining the equivalence ∼ lead to the same space), but the σ-algebraℬX×Y

of the measure space can be strictly larger than the σ-algebra generated by ℬX × ℬY,
and this is a crucial point when the aim is to construct a separable representation of
the ultraproduct measure space of product sets.

Let r be some positive integer, and again X1,X2, . . . a sequence of finite sets as above.
For any e ⊂ [r] we define the ultraproduct measure spaces (Xe,ℬXe , µXe), also let Pe

denote the natural projection from X[r] to Xe. Furthermore let σ(e) denote the sub-σ-
algebra of ℬX[r] given by P−1

e (ℬXe), and σ(e)* be the sub-σ-algebra ⟨σ( f ) | f ⊂ e, | f | < |e|⟩.
Note that in general σ(e) is strictly larger than σ(e)*. This can be seen by presenting
elements of σ(e) independent of σ(e)* of measure strictly between 0 and 1, a generic
example for this is the ultraproduct of random subsets Ge

i of Xe
i where each element is

included with probability 1/2 independent from each other. The ultraproduct Ge has
with probability 1 measure 1/2 and is independent from any element of σ(e)*.

This property will be exploited during the characterization of the limit object as
functions on a separable space, where this strict inclusion will become apparent. We
denote the measure µXe simply by µe and the σ-algebra ℬXe by ℬe.

Definition 5.2.3. Let r be a positive integer. We call a measure preserving map φ : X[r]
→

[0, 1]h([r]) a separable realization if

(i) for any permutation π ∈ S[r] of the coordinates we have for all x ∈ X[r] that π*(φ(x)) =
φ(π(x)), where π* is the permutation of the power set of [r] induced by π, and

(ii) for any e ∈ h([r]) and any measurable A ⊂ [0, 1] we have that φ−1
e (A) ∈ σ(e) and φ−1

e (A)
is independent of σ(e)*.

Let Kr(X) denote the set of r-tuples of X that have no repetition in the components. We
are interested in the limiting behavior of sequences of symmetric k-partitions (or edge-
k-colored r-graphs on the vertex sets X1,X2, . . . ) of the sequence Kr(X1),Kr(X2), . . . ,
this leads us to the first, relatively easy, generalization of the main result of [49].
The convergence definition, Definition 2.2.3, in this case can be reformulated in the
following general way.

Let Gi = (G1
i , . . . ,G

k
i ) be a symmetric partition of Kr(Xi) for each i ∈ N, then (Gi)∞i=1

converges if for every k-colored r-graph F the numerical sequences t(F,Gi) converge,
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5.2 The ultralimit method and limits of finitely colored graphs

as in Chapter 2. The ultralimit method enables us to handle the cases where the
convergence does not hold without passing to subsequences, we describe the approach
next. Let us denote the size of F by m and let F(e) be the color of e ∈

(︀[m]
r

)︀
, then t(F,Gi)

can be written as the measure of a subset of Xm
i . We show this by explicitly presenting

the set denoted by T(F,Gi), so let

T(F,Gi) =
⋂︁

e∈([m]
r )

P−1
e (Pse(G

F(e)
i )), (5.1)

where Pe is the natural projection from X[m]
i to Xe

i , and Pse is a bijection going from X[r]
i

to Xe
i induced by an arbitrary but fixed bijection se between e and [r]. We define the

induced subgraph density of the ultraproduct of k-colored r-graphs formally following
(5.1), if G = (G1, . . . ,Gk) is a ℬ[r]-measurable k-partition of X[r] and F is as above then
let

T(F,G) =
⋂︁

e∈([m]
r )

P−1
e (Pse(G

F(e))), (5.2)

that is a measurable subset of X[m]. Further, let t(F,G) = µ[m](T(F,G)).
It is not difficult to see that |T(F,Gi)|

|V(Gi)|m
= t(F,Gi). Forming the ultraproduct of a series

of sets commutes with finite intersection, therefore [{T(F,Gi)}∞i=1] = T(F, [{Gi}
∞

i=1]) and
limω t(F,Gi) = t(F, [{Gi}

∞

i=1]). Observe that all of the above notions make perfect sense
and the identities hold true for directed colored r-graphs, that is, when the adjacency
arrays of the Gα’s are not necessarily symmetric.

We call a measurable subset of [0, 1]h([r]) an r-set graphon if it is r-symmetric, we
can turn it into a proper ({0, 1}, r)-graphon in the sense of Chapter 2 by generating
the marginal with respect to the coordinate corresponding to [r]. Analogously a k-
colored r-set graphon is a measurable partition of [0, 1]h([r]) into k classes invariant
under coordinate permutations induced by permuting [r]. These objects can serve
as representations of the ultraproducts of r-graph sequences in the sense that the
numerical sequences of subgraph densities converge to densities defined for r-set
graphons in accordance with the notation in Chapter 2, we will provide the definition
next.

Definition 5.2.4. Let F be a k-colored r-graph on m vertices, and W = (W1, . . . ,Wk) be a
k-colored r-set graphon. Then T(F,W) ⊂ [0, 1]h([m],r) denotes the set of the symmetric maps
1 : h([m], r)→ [0, 1] that satisfy that for each e ∈

(︀[m]
r

)︀
it holds that (1( f )) f∈h(e) ∈WF(e). For the

Lebesgue measure of T(F,W) we write t(F,W), this expression is referred to as the density of F
in W.

The reader may easily verify that the above definition of density agrees with the
notions in Chapter 2, especially the formula (2.8).

We will rely on a basic, but not trivial statement from measure theory due to Ma-
haram, and that gives a sufficient condition for the existence of the independent
complement of a sub-σ-algebra that is nested in some larger σ-algebra.
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Lemma 5.2.5. Let ℬ ⊂ 𝒜 two separable σ-algebras on X with probability measure µ. If for
any k ≥ 1 there exists an equiv-partition 𝒮k ⊂ 𝒜 of X into k parts so that 𝒮k is independent of
ℬ, then there is a σ-algebra 𝒞 ⊂ 𝒜 that is independent of ℬ and ⟨ℬ,𝒞⟩ is dense in𝒜 (i.e., 𝒞
is an independent complement of ℬ in𝒜).

For the proof we refer to [49]. One of the main technical results of [49] is the
following.

Theorem 5.2.6. [49] Let r be an arbitrary positive integer and let 𝒜 be a separable sub-σ-
algebra ofℬ[r]. Then there exists a separable realization φ : X[r]

→ [0, 1]h([r]) such that for every
A ∈ 𝒜 there exists a measurable B ⊂ [0, 1]h([r]) such that µ[r](A△φ−1(B)) = 0.

This last result means that any sequence of subsets Gi of Xr
i is representable by a

subset W of [0, 1]h([r]). This representation also has the property that with the usual
homomorphism density definitions of hypergraphs the ultralimit limω t(F,Gi) is equal
to t(F,W) for any r-uniform hypergraph F, this is yet another consequence of φ being
measure preserving. The only thing that is needed to show this, is that the densities
are measures of certain sets of X[m], respectively [0, 1]h([m],r), and the so-called lifting of
φ establishes a measure preserving relationship (see [49] for details).

A lifting of a separable realization φ : X[r]
→ [0, 1]h([r]) of degree m for m ≥ r is

a measure preserving map ψ : X[m]
→ [0, 1]h([m],r) that satisfies ph([r]) ∘ ψ = φ ∘ P[r],

and it is equivariant under coordinate permutations in Sm, where ph([r]) and P[r] are
the natural projections from [0, 1]h([m],r) to [0, 1]h([r]), and from X[m] to X[r] respectively.
The next lemma is central to relate the sub-r-graph densities of ultraproducts to the
corresponding densities in r-set graphons.

Lemma 5.2.7. [49] For every separable realization φ and integer m ≥ r there exists a degree
m lifting ψ.

The next statement is the colored version of the homomorphism correspondence in
[49] (Lemma 3.3. in that paper).

Lemma 5.2.8. Let φ be a separable realization and W = (W1, . . . ,Wk) be a k-colored r-set
graphon, and let H = (H1, . . . ,Hk) be a k-colored ultraproduct with µ[r](Hα

△φ−1(Wα)) = 0
for each α ∈ [k]. Let ψ be a degree m lifting of φ and F be a k-colored r-graph on m vertices.
Then µ[m](ψ−1(T(F,W))△T(F,H)) = 0, and consequently t(F,W) = t(F,H) for each F.

Proof. By definition we have that

T(F,H) =
⋂︁

e∈([m]
r )

P−1
e (Pse(H

F(e)))

and

T(F,W) =
⋂︁

e∈([m]
r )

p−1
h([r])(pse(W

F(e))).
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Due to the fact that ψ commutes with coordinate permutations from Sn and the con-
ditions we imposed on the symmetric difference of Hα and φ−1(Wα) the statement
follows. �

This previous result directly implies a representation of the limit objects of conver-
gent sequences of k-colored r-graph sequences, that is a special case of Theorem 2.2.10.

Corollary 5.2.9. Let {Gi}
∞

i=1 be a convergent sequence of k-colored r-graphs. Then there exists
a k-colored r-set graphon U such that for any k-colored r-graph F it holds that limi→∞ t(F,Gi) =
t(F,U).

We turn to describe the relationship of two r-set graphons whose F-densities coincide
for each F. For this purpose we have to introduce two types of transformations and
clarify their connection. Let us define the σ-algebras 𝒜S, 𝒜*S, and ℬS ⊂ ℒ[0,1]h([r]) for
each S ⊂ [r], the σ-algebra ℬS = p−1

S (ℒ[0,1]),𝒜S is the generated σ-algebra ⟨ℬT | T ⊂ S⟩,
and 𝒜*S is ⟨ℬT | T ⊂ S,T , S⟩, where ℒ[0,1]t denotes the Lebesgue measurable subsets
of the unit cube with the dimension given by the index.

Definition 5.2.10. [49] We say that the measurable mapφ : [0, 1]h([r])
→ [0, 1]h([r]) is structure

preserving if it is measure preserving, for any S ⊂ [r] we have φ−1(𝒜S) ⊂ 𝒜S, for any
measurable I ⊂ [0, 1] we have φ−1(p−1

S (I)) is independent of 𝒜*S, and for any π ∈ Sr we have
π* ∘ φ = φ ∘ π*, where π* is the coordinate permuting action induced by π.

Let ℒh([r]) denote the measure algebra of ([0, 1]h([r]),ℒ[0,1]h([r]) , λ).

Definition 5.2.11. [49] We call an injective homomorphism Φ : ℒh([r])
→ ℒ

h([r]) a structure
preserving embedding if it is measure preserving, for any S ⊂ [r] we have Φ(ℬS) ⊂ 𝒜S, Φ(ℬS)
is independent from𝒜*S, and for any π ∈ Sr we have π* ∘Φ = Φ ∘ π*.

Another result from [49] sheds light on the build-up of structure preserving embed-
dings.

Lemma 5.2.12. [49] Suppose that Φ : ℒh([r])
→ ℒ

h([r]) is a structure preserving embedding of
a measure algebra into itself. Then there exists a structure preserving map φ : [0, 1]h([r])

→

[0, 1]h([r]) that represents Φ in the sense that for each [U] ∈ ℒh([r]) it holds that Φ([U]) =
[φ−1(U)], where U is a representative of [U].

A random coordinate system τ is the ultraproduct function on X[r] of the random
symmetric functions τn : [n]r

→ [0, 1]h([r]) that are for each n given by a uniform random
point Zn in [0, 1]h([n],r) so that (τn(i1, . . . , ir))e = (Zn)pe(i1,...,ir). An important property of the
random mapping τn is that for any r-set graphon and positive integer n it holds that
(τn)−1(U) = G(n,U), when the random sample Zn that governs the two objects is the
same.

Lemma 5.2.13. [49] Let U be an r-set graphon, and let H = [{G(n,U)}∞n=1]. Then the random
coordinate system τ = [{τn}

∞

n=1] is a separable realization such that with probability one we
have µ[r](H△τ−1(U)) = 0.
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A direct consequence is the statement for k-colored r-set graphons.

Corollary 5.2.14. Let U = (U1, . . . ,Uk) be a k-colored r-set graphon, and let H = (H1, . . . ,Hk)
be a k-colored ultraproduct in X[r], where Hα = [{G(n,Uα)}∞n=1] for each α ∈ [k]. Then the
random coordinate system τ is with probability one a separable realization such that we have
µ[r](Hα

△τ−1(Uα)) = 0 for each α ∈ [k].

The following result is a generalization of the uniqueness assertion of [49], and
states that subgraph densities determine an r-set graphon up to structure preserving
transformations, the proof is also similar to the one given in [49] in the uncolored case.
We say if the conditions of the theorem below apply for two graphons that they are
equivalent.

Theorem 5.2.15. Let U = (U1, . . . ,Uk) and V = (V1, . . . ,Vk) be two k-colored r-set graphons
such that for each k-colored r-graph F it holds that t(F,U) = t(F,V). Then there exist two struc-
ture preserving maps ν1 and ν2 from [0, 1]h([r]) to [0, 1]h([r]) such that µ[r](ν−1

1 (Uα)△ν−1
2 (Vα)) = 0

for each α ∈ [k].

Proof. The equality t(F,U) = t(F,V) for each F implies that G(n,U) and G(n,V) have
the same distribution Yn for each n. Let H = [{Yn}

∞

n=1], then Corollary 5.2.14 implies
that there exist separable realizations φ1 and φ2 such that µ[r](Hα

△φ−1
1 (Uα)) = 0 and

µ[r](Hα
△φ−1

2 (Vα)) = 0 for each α ∈ [k], therefore also µ[r](φ−1
1 (Uα)△φ−1

2 (Vα)) = 0. Set𝒜 =
σ(φ−1

1 (ℒ[0,1]h([r])), φ−1
2 (ℒ[0,1]h([r]))) that is a separable σ-algebra on X[r] so by Theorem 5.2.6

there exists a separable realization φ3 such that for each measurable A ⊂ [0, 1]h([r]) the
element φ−1

i (A) of 𝒜 can be represented by a subset of [0, 1]h([r]) denoted by ψi(A). It
is easy to check that the maps ψ1 and ψ2 defined this way are structure preserving
embeddings from ℒh([r])

→ ℒ
h([r]) satisfying λ(ψ1(Uα)△ψ2(Vα)) = 0 for each α ∈ [k].

We conclude that by Lemma 5.2.12 there are structure preserving ν1 and ν2 such that
λ(ν−1

1 (Uα)△ν−1
2 (Vα)) = 0 for each α ∈ [k]. �

5.3 Testability of energies by non-effective methods

We define a parameter of r-uniform hypergraphs that is a generalization of the ground
state energies of [32] in the case of graphs. This notion encompasses several important
quantities, therefore its testability is central to many applications.

Definition 5.3.1. For a set H ⊂
(︀[n]

r

)︀
, a real r-array J of size q, and a symmetric partition

𝒫 = (P1, . . . ,Pq) of
(︀ [n]

r−1

)︀
we define the r-energy

ℰ𝒫,r(H, J) =
1
nr

q∑︁
i1,...,ir=1

J(i1, . . . , ir)eH(r; Pi1 , . . . ,Pir),

where eH(r; S1, . . . ,Sr) = |{ (u1, . . . ,ur) ∈ [n]r
| AS j(u1, . . . ,u j−1,u j+1, . . . ,ur) = 1 for all j =

1, . . . , r and AH(u1, . . . ,ur) = 1 }|.
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5.3 Testability of energies by non-effective methods

Let H = (Hα)α∈[k] be a k-colored r-uniform hypergraph on the vertex set [n] and Jα a be real
q× · · · × q r-array with ‖J‖∞ ≤ 1 for each α ∈ [k]. Then the energy for a partition 𝒫 as above is

ℰ𝒫,r(H, J) =
∑︁
α∈[k]

ℰ𝒫,r−1(Hα, Jα).

The maximum of the energy over all partitions 𝒫 of
(︀ [n]

r−1

)︀
is called the r-ground state energy

(rGSE) of H with respect to J, and is denoted by

ℰr(H, J) = max
𝒫

ℰ𝒫,r(H, J).

The rGSE can also be defined for ({0, 1}, r)-graphons, and more generally, for kernels.

Definition 5.3.2. For an r-kernel W, a real r-array J of size q, and a symmetric partition
𝒫 = (P1, . . . ,Pq) of [0, 1]h([r−1]) we define the energy

ℰ𝒫,r(W, J) =
∑︁

i1,...,ir∈[q]

J(i1, . . . , ir)
∫︁
∩ j∈[r]p−1

[r]∖{ j}(P
i j )

W(xh([r],r−1))dλ(xh([r],r−1)).

Let W = (Wα)α∈[k] be a k-colored r-graphon and Jα a be real q× · · · × q r-array with ‖J‖∞ ≤ 1
for each α ∈ [k]. Then the energy for a partition 𝒫 as above is

ℰ𝒫,r(W, J) =
∑︁
α∈[k]

ℰ𝒫,r−1(Wα, Jα).

and the rGSE of W with respect to J, and is denoted by

ℰr(W, J) = sup
𝒫

ℰ𝒫,r−1(W, J),

where the supremum runs over all symmetric partitions 𝒫 = (P1, . . . ,Pq) of [0, 1]h([r−1]).

The generalization of free energies (recall Definition 3.6.1) corresponding to this
formulation of the rGSE is straight-forward, their analysis is expected to require novel
methods. One of the obstacles for applying the previously presented framework in
Chapter 3 and Chapter 4 is that state configurations applied to the blow-up of a graph
cannot be traced back to configurations on the original easily. For 3-graphs in the q state
model of an rGSE one particular pair of nodes can be in q states, whereas in the k-fold
blow up the induced complete bipartite graph between the nodes corresponding to the
two originals has Ω(exp(kq)) isomorphism classes of configurations, determining the
corresponding weight as a function of weights of the original graph is an incomparably
harder task than in the case discussed in Chapter 3.

Definitions of the above energies are analogous in the directed, and the weighted
case, and also for r-kernels. The next lemma tells us about the distribution of the rGSE
when taking a random sample G(n,H) of an H ∈ Πr,k.
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Lemma 5.3.3. The expression ℰr(G(n,H), J) is highly concentrated around its mean, that is
for every ε > 0 it holds that

P(|ℰr(G(n,H), J) − Eℰr(G(n,H), J)| ≥ ε‖J‖∞) ≤ 2 exp
(︃
−
ε2n
8r2

)︃
.

Proof. We can assume that ‖J‖∞ ≤ 1. The random r-graph G(n,H) is generated by
picking random nodes from V(H) without repetition, let Xi denote the ith random
element of V(H) that has been selected. Define the martingale Yi = E[ℰr(G(n,H), J) |
X1, . . . ,Xi] for 0 ≤ i ≤ n. It has the property that Y0 = E[ℰr(G(n,H), J)] and Yn =
ℰr(G(n,H), J), whereas the jumps |Yi − Yi−1| are bounded above by 2r

n for each i ∈ [n].
The last observation is the consequence of the fact that for any partition 𝒫 of

(︀ [n]
r−1

)︀
only

at most rnr−1 terms in the sum constituting ℰ𝒫,r−1(H, J) are affected by changing the
placing of Xi in the classes of 𝒫. Applying the Azuma-Hoeffding inequality to the
martingale verifies the statement of the lemma. �

The same concentration result as above applies also to ℰr(G(n,W), J). The next result
is the main contribution in the current section.

Theorem 5.3.4. For any J = (J1, . . . , Jk) with Jα being a real r-array of size q for each α ∈ [k]
the parameter of k-colored r-graphs ℰr(., J) is testable.

Proof. We may assume that ‖Jα‖∞ ≤ 1 for every α without losing generality. We
proceed by contradiction. Suppose there exist an ε > 0 and a sequence of k-colored
r-uniform hypergraphs {Hn}

∞

n=1 with V(Hn) = [mn], where (mn)∞n=1 is tending to infinity,
whose elements are such that for each n with probability at least ε we have that
ℰr(Hn, J) + ε ≤ ℰr(G(n,Hn), J). Let Gn = (G1

n, . . . ,Gk
n) denote the random k-colored

hypergraph G(n,Hn), that is for each n with Gα
n = G(n,Hα

n). The previous event can be
reformulated as stating that for each n with probability at least ε there is a partition
𝒫n = (P1

n, . . . ,P
q
n) of

(︀ [n]
r−1

)︀
such that the expression

1
nr

k∑︁
α=1

q∑︁
i1,...,ir=1

Jα(i1, . . . , ir)eGα
n
(r; Pi1

n , . . . ,P
ir
n)

is larger than

1
mr

n

k∑︁
α=1

q∑︁
i1,...,ir=1

Jα(i1, . . . , ir)eHα
n
(r; Ri1

n , . . . ,R
ir
n) + ε

for any partition ℛn = (R1
n, . . . ,R

q
n) of

(︀[mn]
r−1

)︀
.

Let H = (H1, . . . ,Hk) denote the ultraproduct of the hypergraph sequence {Hn}
∞

n=1

that is a k-partition in the measure space (X[r]
1 ,ℬ1, µ1), and let σ1(S) and σ1(S)* denote

the sub-σ-algebras of ℬ1 corresponding to subsets S of [r]. Due to Theorem 5.2.6 there
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5.3 Testability of energies by non-effective methods

exists a separable realization φ1 : X[r]
1 → [0, 1]h([r]) such that there is a k-colored r-set

graphon W = (W1, . . . ,Wk) satisfying µ1(φ−1
1 (Wα)△Hα) = 0 for each α ∈ [k].

Let G(s) stand for the point-wise ultraproduct realization of the {Gn(s)}∞n=1 ⊂ X[r]
2 for

all s ∈ S, where (S,𝒮, ν) denotes the underlying joint probability space for the random
hypergraphs, and (X[r]

2 ,ℬ2, µ2) is the ultraproduct measure space in the case of the
sample sequence of the sets [1], [2], . . . , σ2(S) and σ2(S)* are the corresponding sub-σ-
algebras. Note that the ultraproducts G(s) are not k-partitions of the same ultraproduct
space as H, moreover, it is possible that the σ-algebra generated by {G(s) | s ∈ S }
together with µ2 form a non-separable measure algebra that prevents us from using
Theorem 5.2.6 directly.

Suppose that for some n we have that Eℰr(Gn, J) < ℰr(Hn, J) + 3/4ε. This as-
sumption implies by Lemma 5.3.3 that P(ℰr(Gn, J) ≥ ℰr(Hn, J) + ε) ≤ P(ℰr(Gn, J) ≥
Eℰr(Gn, J) + ε/4) ≤ 2 exp(− ε2n

64r2 ). The last bound is strictly smaller than ε when n
is chosen sufficiently large, therefore it contradicts the main assumption for large n.
Therefore we can argue that Eℰr(Gn, J) ≥ ℰr(Hn, J) + 3/4ε for large n, throwing away a
starting piece of the sequence {Hn}

∞

n=1 we may assume that the inequality holds for all
n. Note that this omission does not affect the ultraproduct spaces.

A second application of Lemma 5.3.3 leads to a lower bound on the probability that
ℰr(Gn, J) is close toℰr(Hn, J), namelyP(ℰr(Gn, J) ≤ ℰr(Hn, J)+ε/2) ≤ 2 exp(− ε2n

64r2 ). Hence,
by invoking the Borel-Cantelli Lemma, we infer that with probability one the event
ℰr(Gn, J) ≤ ℰr(Hn, J) + ε/2 can occur only for finitely many n, let the M1 denote the
(random) threshold for which is true that ℰr(Gn, J) > ℰr(Hn, J) + ε/2 for every n ≥ M1.
It follows that limω ℰr(Gn, J) > limω ℰr(Hn, J) + ε/2 with probability 1.

Next we will show that with probability one G is equivalent to H in the sense that for
each k-colored r-graph F it holds that t(F,G) = t(F,H). Then, since there are countably
many test graphs F, we can conclude that the equality holds simultaneously for all F
with probability 1.

We have seen above in the paragraph after (5.2) that for every fixed k-colored r-
uniform hypergraph t(F,H) = limω t(F,Hn). On the other hand the subgraph densities
in random induced subgraphs are highly concentrated around their mean, and the
mean is equal to the corresponding density in the source graph, that is

P(|t(F,Gn) − t(F,Hn)| ≥ δ) ≤ 2 exp
(︃
−

δ2n
2|V(F)|2

)︃
for any δ > 0, this follows with basic martingale techniques, see Lemma 3.5.4 originally
proved in [49] for the almost identical statement together.

The Borel-Cantelli Lemma implies then for every fixed F that with probability one
for each δ > 0 there exists a (random) n0(δ) such that for each n ≥ n0(δ) it is true
that |t(F,Gn) − t(F,Hn)| < δ/2. Let us fix δ > 0 and F ∈ Πr,k. Since the set {n |
|t(F,Hn) − t(F,H)| < δ/2 } belongs to ω by the definition of the ultraproduct function, it
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holds that {n | |t(F,Gn) − t(F,H)| < δ } ∈ ω as a consequence of

{n ||t(F,Gn) − t(F,H)| < δ }
⊃ ({n | |t(F,Gn) − t(F,Hn)| < δ/2 } ∩ { n | |t(F,Hn) − t(F,H)| < δ/2 }) ∈ ω.

Consequently, limω t(F,Gn) = t(F,H) with probability one for each F, and the limit
equation holds simultaneously for each F also with probability one, since their number
is countable.

Let us pick a realization {Gn(s)}∞n=1 of {Gn}
∞

n=1 such that it satisfies limω ℰr(Gn(s), J) −
limω ℰr(Hn, J) ≥ ε/2 and limω t(F,Gn(s)) = t(F,H) for each F, the preceding discussion
implies that such a realization exists, in fact almost all of them are like this. Further-
more, let us consider the sequence of partitions 𝒫n = (P1

n, . . . ,P
q
n) of

(︀ [n]
r−1

)︀
that realize

ℰr(Gn(s), J), and define Ti, j
n ⊂ [n]r

∖ diag([n]r) through the inverse images of the projec-
tions ATi, j

n
= (pn

j )
−1(APi

n
) for i ∈ [q], j ∈ [r], and n ∈ N, where pn

j is the projection that
maps an r-array of size n onto an (r − 1)-array by erasing the jth coordinate. Note
that the Ti, j

n sets are not completely r-symmetric, but are invariant under coordinate
permutations from S[r]∖{ j} for the corresponding j ∈ [r]. A further property is that and
Ti, j1

n can be obtained from Ti, j2
n swapping the coordinates corresponding to j1 and j2.

We additionally define the ultraproducts of these sets by Pi = [{Pi
n}
∞

n=1] ⊂ X[r−1]
2 and

Ti, j = [{Ti, j
n }
∞

n=1] ⊂ X[r]
2 , it is clear that Ti, j

∈ σ2([r] ∖ { j}) for each pair of i and j, so
∩(i, j)∈ITi, j

∈ σ2([r])* for any I ⊂ [q] × [r], and that X[r−1]
2 = ∪iPi. The same symmetry

assumptions apply for the Ti, j sets as for the Ti, j
n sets described above.

We also require the fact that these ultraproduct sets defined above establish a cor-
respondence between the rGSE of G(s) and the ultralimit of the sequence of energies
{ℰr(Gn(s), J)}∞n=1.

This can be seen as follows: Recall that

ℰr(Gn(s), J) =
1
nr

k∑︁
α=1

q∑︁
i1,...,ir=1

Jα(i1, . . . , ir)|Gα
n ∩ (∩r

j=1Ti j, j
n )|

This formula together with the identities [{Gα
n(s)∩(∩r

j=1Ti j, j
n )}∞n=1] = Gα(s)∩(∩r

j=1Ti j, j), and
that the ultralimit of subgraph densities equals the corresponding subgraph densities
of the ultraproduct imply that

lim
ω
ℰr(Gn(s), J) =

k∑︁
α=1

q∑︁
i1,...,ir=1

Jα(i1, . . . , ir)µ2(Gα(s) ∩ (∩r
j=1Ti j, j)).

Now consider the separable sub-σ-algebra 𝒜 of ℬ2 generated by the collection of
the sets G1(s), . . . ,Gk(s),T1,1, . . . ,Tq,r. Then by Theorem 5.2.6 there exists a separable
realization φ2 : X[r]

2 → [0, 1]h([r]) and measurable sets U1, . . . ,Uk,V1,1, . . . ,Vq,r such that
µ2(φ−1

2 (Uα)△Gα(s)) = 0 for each α ∈ [k] and µ2(φ−1
2 (Vi, j)△Ti, j) = 0 for every i ∈ [q], j ∈ [r].
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Additionally, since φ is a separable realization, we can assume that each of the Vi, j sets
only depends on the coordinates corresponding to the sets in h([r] ∖ { j}), is invariant
under coordinate permutations induced by elements of Sr that fix j, and Vi, j1 can
be obtained from Vi, j2 by relabeling the coordinates according to the Sr permutation
swapping j1 and j2. Also, we can assume that (U1, . . . ,Uk) form a k-colored r-set
graphon U. Most importantly, the separable realization φ2 is measure preserving, so
we have that

lim
ω
ℰr(Gn(s), J) =

k∑︁
α=1

q∑︁
i1,...,ir=1

Jα(i1, . . . , ir)λ(Uα
∩ (∩r

j=1Vi j, j)). (5.3)

On the other hand we established that t(F,G(s)) = t(F,H) for each F,which implies
t(F,U) = t(F,W), therefore the uniqueness statement of Theorem 5.2.15 ensures the
existence of two structure preserving measurable maps ν1, ν2 : [0, 1]h([r])

→ [0, 1]h([r])

such that λ(ν−1
1 (Wα)△ν−1

2 (Uα)) = 0 for each α ∈ [k].
Now let us define the sets Si, j = φ−1

1 (ν2(ν−1
1 (Vi, j))), these satisfy exactly the same sym-

metry and measurability properties as the Ti, j sets above, by the measure preserving
nature of the maps involved we have

lim
ω
ℰr(Gn(s), J) =

k∑︁
α=1

q∑︁
i1,...,ir=1

Jα(i1, . . . , ir)µ1(Hα
∩ (∩r

j=1Si j, j)). (5.4)

The properties of structure preserving maps imply that Si, j
∈ σ1([r] ∖ { j}) for each i, j,

so ∩(i, j)∈ISi, j
∈ σ1([r])* for any I ⊂ [q] × [r]. Also, the ultraproduct construction makes

it possible to assert the existence of a sequence of partitions ℛn = (R1
n, . . . ,R

q
n) of

(︀[mn]
r−1

)︀
for ω-almost every n such that µ[r]∖{ j}(Si, j

△[{(pmn
j )−1(Ri

n)}∞n=1]) = 0 for each i, j. But again
by the correspondence principle between ultralimits of sequences and ultraproducts
in Lemma 5.2.8 applied to (5.3) and (5.4) we have

lim
ω
ℰℛn,r(Hn, J) = lim

ω
ℰr(Gn(s), J),

which contradicts limω ℰr(Gn(s), J) − limω ℰr(Hn, J) ≥ ε/2.
�

5.4 Ultralimits of compact colored graphs

The separable correspondence enables us to switch to more tangible r-set graphons
in the analysis of simple hypergraph limits instead of the abstract subsets of the
ultraproduct space. This also allows for the utilization of the toolbox of classical real
analysis.

Our goal next is to produce an analogous correspondence to Corollary 5.2.9 for limits
of colored hypergraph limits, where the edge colors are coming from some compact
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Polish space possibly without algebraic structure. For this case we had already given
a proof in Chapter 2 with significantly different methods drawing on previous results
in the area of exchangeable arrays. The main purpose of the new approach in the
current section lies in the additional structural connection that is obtained, this serves
as the main tool for establishing a regularity lemma for compact colored r-graphs in
the subsequent section.

We fix r ≥ 1, the sets X1,X2, . . . be as above. Let 𝒦 be a compact Polish space
(recall that this means that the space is separable and completely metrizable), and
consider a sequence of colored r-graphs (or functions) Gi : Xr

i → 𝒦 that are invariant
under coordinate permutations and take the special value ι on the diagonal, which is
introduced for the sake of completeness. It will be more convenient for our purposes
to consider these as functions that take values from the space of probability measures
on 𝒦 , denoted by 𝒫(𝒦 ), endowed with the weak topology. That is, let Ĝi(xi) = δGi(xi)

for xi ∈ Xr
i . We will sometimes omit the hat sign and identify the two functions G

and Ĝ. Now we are going to define the ultraproduct of 𝒫(𝒦 )-valued functions, and
thereby also of𝒦 -valued functions.

We denote by ⟨µ, f ⟩ the expectation of a measurable functional f on𝒦 with respect
to the probability measure µ ∈ 𝒫(𝒦 ), that is,

∫︀
𝒦

f (t)dµ(t).
The ultraproduct of {Gi}

∞

i=1 (𝒦 -valued or𝒫(𝒦 )-valued) is the function G : Xr
→ 𝒫(𝒦 )

such that for p = [{pi}
∞

i=1] with pi ∈ Xr
i and any continuous non-negative functional f

on 𝒦 we have that ⟨G(p), f ⟩ = limω⟨Gi(pi), f ⟩ for general 𝒫(𝒦 )-valued Gi functions,
and ⟨G(p), f ⟩ = limω f (Gi(pi)) for a special𝒦 -valued sequence.

Proposition 5.4.1. The ultraproduct function G is well-defined and measurable with respect
to the relevant σ-algebras.

Proof. Let for a fixed p ∈ Xr be limω⟨Gi(pi), f ⟩ = fp, then f ↦→ fp is a positive bounded
linear functional on C(𝒦 ), so by the Riesz Representation Theorem on a compact space
there exists a unique probability measure G(p) that satisfies ⟨G(p), f ⟩ = limω⟨Gi(pi), f ⟩.
Also, [{pi}

∞

i=1] = [{qi}
∞

i=1] then { i | pi = qi } ∈ ω, therefore for any f we have { i | ⟨Gi(pi), f ⟩ =
⟨Gi(qi), f ⟩ } ∈ ω, hence limω⟨Gi(pi), f ⟩ = limω⟨Gi(qi), f ⟩.

We are left to check whether G is measurable with respect to the σ-algebras σ([r])
and the Borel sets of the weak topology on 𝒫(𝒦 ). The measurable sets on 𝒫(𝒦 ) are
generated by the sets {µ | ⟨µ, 1⟩ ≥ 0 } for some 1 ∈ C(𝒦 ) therefore it suffices to show
that A1 = {p | ⟨G(p), 1⟩ ≥ 0 } ∈ σ([r]) for arbitrary 1 ∈ C(𝒦 ). Let Ai,ε

1 = { pi | ⟨Gi(pi), 1⟩ ≥
−ε } ⊂ Xr

i for ε > 0 and i ∈ N, and also let Aε
1 = [{Ai,ε

1 }
∞

i=1] ∈ σ([r]). We will show that
∩n≥1A1/n

1 = A1, and that implies A1 ∈ σ([r]). It is clear that ∩n≥1A1/n
1 ⊃ A1. We fix a

p = [{pi}
∞

i=1] ∈ ∩n≥1A1/n
1 . Then we have limω⟨Gi(pi), 1⟩ ≥ − 1

n for any n, that is, for any
ε > 0 the ultrafilter ω contains { i | ⟨Gi(pi), 1⟩ > − 1

n − ε }, which implies that p ∈ A1. �

Let ℱ ⊂ C(𝒦 ) be a countable family such that the linear subspace generated by ℱ is
‖.‖∞-dense in C(𝒦 ). Recall Definition 2.2.1 that says that for F ∈ Π(ℱ ) with V(F) = [m]
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and Gi : Xr
i → 𝒦 , the frequency of F in G is

t(F,Gi) =
1
|Xi|

m

∑︁
φ : [m]→Xi

∏︁
e∈([m]

r )
F(e)(Gi(φ(e))). (5.5)

If G is 𝒫(𝒦 )-valued, then we define

t(F,Gi) =
1
|Xi|

m

∑︁
φ : [m]→Xi

∏︁
e∈([m]

r )
⟨Gi(φ(e)),F(e)⟩, (5.6)

which agrees with (5.5) if the deployed colors are point measures.
Further, recall Definition 2.2.3, that tells us that one of the several equivalent formu-

lations of the convergence of a sequence (Gi)∞i=1 is the simultaneous convergence of the
numerical sequences t(F,Gi) for each F ∈ ℱ . We define now the subgraph densities of
the ultraproduct functions.

Definition 5.4.2. For an F ∈ Πm(C(𝒦 )) and an ultraproduct function G : Xr
→ 𝒫(𝒦 ) the

density of F in G is defined as

t(F,G) =

∫︁
Xm

∏︁
e∈([m]

r )
⟨G(Pe(x)),F(e)⟩dµ[m](x).

Let fi : Xi → [−d, d] be uniformly bounded real functions, then their ultraproduct
f = [{ fi}

∞

i=1] is defined by f(x) = limω fi(pi), where x = [{xi}
∞

i=1]. We formulate an
integration formula for ultraproduct functions that was proven in [49].

Lemma 5.4.3. [49] For an ultraproduct function f = [{ fi}
∞

i=1] on X is measurable and we have∫︁
X

fdµ = lim
ω

∑︀
xi∈Xi

fi(xi)
|Xi|

.

The integration formula above directly implies that ultraproduct functions can be
considered as the limit objects of 𝒫(𝒦 )-valued functions.

Lemma 5.4.4. Let {Gi}
∞

i=1 be a sequence of 𝒫(𝒦 )-colored r-graphs such that V(Gi) = Xi.
Then for every F ∈ Π(C(𝒦 )) we have limω t(F,Gi) = t(F,G), where G : Xr

→ 𝒫(𝒦 ) is the
ultraproduct of the Gi functions.

Proof. Let m ≥ 1 and F ∈ Πm(C(𝒦 )) be arbitrary, let the functions Gi and G be as in the
statement. Let us rewrite (5.6) as

t(F,Gi) =
1
|Xi|

m

∑︁
xi=(x1

i ,...,x
m
i )∈Xm

i

∏︁
e∈([m]

r )
⟨Gi(xe1

i , . . . , x
er
i ),F(e)⟩ =

1
|Xi|

m

∑︁
xi∈Xm

i

∏︁
e∈([m]

r )
⟨Gi(Pe(xi)),F(e)⟩.

(5.7)
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We claim that [{
∏︀

e∈([m]
r )⟨Gi(Pe(.)),F(e)⟩}∞i=1] =

∏︀
e∈([m]

r )⟨G(Pe(.)),F(e)⟩. This is a con-
sequence of the definition of the ultraproduct function G, of the interchangeability
of the projection Pe operation with taking ultraproducts, i.e, Pe([{xi}

∞

i=1]) = [{Pe(xi)}∞i=1],
and of the product of ultralimits limω xi limω yi being equal to the ultralimit of the
products limω xiyi. Now Lemma 5.4.3 finishes the proof.

�

We are now ready with the first step of establishing useful limit objects for sequences
of r-uniform weighted hypergraphs. Next we turn to the representation of the abstract,
non-separable space Xr by the well-understood Lebesgue-space of [0, 1]h([r]). This will
be followed by connecting the probability measure valued functions between the
spaces so that r-graphons can truly serve as limit objects of r-graph sequences. We
start with the introduction of some additional notation related to subgraph densities.

Again, as in the case of k-colored r-graphs, we want to express the homomorphism
densities t(F,Gi) as measures of certain subsets of Xm

i . For this purpose we rewrite the
more general (5.6) as

t(F,Gi) =
1
|Xi|

m

∑︁
φ : [m]→Xi

∏︁
e∈([m]

r )

∫︁ 1

0
1{⟨Gi(.),F(e)⟩≥ae}(φ(e))dae (5.8)

=

∫︁
[0,1](

[m]
r )

1
|Xi|

m

∑︁
φ : [m]→Xi

∏︁
e∈([m]

r )
1{⟨Gi(.),F(e)⟩≥ae}(φ(e))dλ(a), (5.9)

where a = (ae)e∈([m]
r ). Let G f ,a

i = { pi ∈ Xr
i | ⟨Gi(pi), f ⟩ ≥ a } for every a ∈ [0, 1] and f ∈ ℱ .

We define

T(F, a,Gi) =
⋂︁

e∈([m]
r )

P−1
e (Pse(G

F(e),ae
i )),

that is the set of mapsφ : [m]→ Xi given by elements of Xm
i that satisfy for each e ∈

(︀[m]
r

)︀
that ⟨Gi(φ(e)),F(e)⟩ ≥ ae. Now we have

t(F,Gi) =

∫︁
[0,1](

[m]
r )

T(F, a,Gi)
|Xi|

m dλ(a). (5.10)

Let for an ultraproduct function G : Xr
→ 𝒫(𝒦 ) the measurable set G f ,a = {p ∈ Xr

|

⟨G(p), f ⟩ ≥ a } for any a ∈ [0, 1] and f ∈ ℱ , and further, let

T(F, a,G) =
⋂︁

e∈([m]
r )

P−1
e (Pse(G

F(e),ae))

for F ∈ Πm(ℱ ) and a ∈ [0, 1](
[m]

r ).
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We reformulate t(F,G) from Definition 5.4.2 as

t(F,G) =

∫︁
[0,1](

[m]
r )
µ[m](T(F, a,G))dλ(a). (5.11)

One of our main results is the following, we will use Theorem 5.2.6, that was proved
in [49].

Theorem 5.4.5. Let𝒦 be a compact Polish space, and G : Xr
→ 𝒫(𝒦 ) be a σ([r])-measurable

function. Then there exists a separable realization φ : Xr
→ [0, 1]h([r]) so that there is a Borel

measurable map W : [0, 1]h([r])
→ 𝒫(𝒦 ) so that µ[r]-almost everywhere G = W ∘ φ.

Proof. Let ℱ be a countable subset of C(𝒦 ) so that the linear subspace generated
by ℱ is L∞-dense in C(𝒦 ), and each of its elements take values between 0 and 1.
Then let for a ∈ R and f ∈ ℱ the ℬ[r]-measurable set G f ,a

⊂ Xr be defined as G f ,a =
{p | ⟨G(p), f ⟩ ≥ a }. Consider the σ-algebra 𝒜 generated by the countable collection
{G f ,a

| f ∈ ℱ , a ∈ Q } of measurable subsets of Xr. Note that 𝒜 is separable, so
that we can apply Theorem 5.2.6. We obtain that there exists a separable realization
φ : Xr

→ [0, 1]h([r]) such that for each f ∈ ℱ , and a ∈ Q there exists a measurable subset
W f ,a of [0, 1]h([r]) such that µ[r](G f ,a

△φ−1(W f ,a)) = 0. Further, we can always choose these
sets in a way so that for each f the family {W f ,a

}a∈Q is monotone increasing in a. To see
this, consider for any f ∈ ℱ and a ∈ Q the set U f ,a = ∪b≥a,b∈QW f ,b, then

µ[r](G f ,a
△φ−1(U f ,a)) = µ[r]((∪b≥a,b∈QG f ,b)△φ−1(∪b≥a,b∈QW f ,b))

≤

∑︁
b≥a,b∈Q

µ[r](G f ,b
△φ−1(W f ,b)) = 0.

We define for each f ∈ ℱ the measurable function W f : [0, 1]h([r])
→ R by W f =

infa∈Q∩[0,1] a1W f ,a . We have that λ(W f ,a
△(W f )−1([a,∞))) = 0 for each f ∈ ℱ , and a ∈ Q.

It also holds true that µ[r]-almost everywhere W f
∘ φ = ⟨G, f ⟩ for every f ∈ ℱ , where

(⟨G, f ⟩)(p) = ⟨G(p), f ⟩. Since the cardinality of ℱ is countable it follows that the
exceptional set N ⊂ Xr where the above equality does not hold for some f has also
measure 0. Suppose that for p1,p2 ∈ Xr

∖ N it holds that φ(p1) = φ(p2), then for
every f we have ⟨G(p1), f ⟩ = ⟨G(p2), f ⟩, and further the probability measures G(p1)
and G(p2) on 𝒦 coincide. We can now define W on the image of Xr

∖ N to be the
probability measure defined by the measure taken by G on theφ-ancestors, the equality
⟨W, f ⟩ = W f is true by the uniqueness assertion of the Riesz Representation Theorem,
measurability follows from the measurability of φ and G. This concludes the proof of
the theorem.

�

We have shown that for any G there is a φ : Xr
→ [0, 1]h([r]) separable realization and

a function W such that G is almost everywhere the pull-back of W by φ. It remains
to show if G is the ultraproduct of a convergent sequence {Gi}

∞

i=1, then the densities of
elements of Π(ℱ ) in the corresponding W also converge.
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Let us recall the definition of these densities in (𝒦 , r)-graphons in Equation (2.8). A
slight variant of these are graphons that take P(𝒦 ) values instead of 𝒦 . If F ∈ Πm(ℱ ),
and W : [0, 1]h([r])

→ 𝒫(𝒦 ), then

t(F,W) =

∫︁
[0,1]h([m],r)

∏︁
e∈([m]

r )
⟨W(xh(e)),F(e)⟩dλ(xh([m],r)). (5.12)

We may rewrite the above expression using the level sets as in the case of the discrete
case above. For f ∈ ℱ and a ∈ [0, 1], let W f ,a = { x ∈ [0, 1]h([r])

| ⟨W(x), f ⟩ ≥ a }. Define
further the set

T(F, a,W) =
⋂︁

e∈([m]
r )

p−1
h(e)(Lse(W

F(e),ae)) ⊂ [0, 1]h([m],r)

for F ∈ Πm(ℱ ) and a ∈ [0, 1](
[m]

r ), where ph(e) : [0, 1]h([m],r)
→ [0, 1]h(e) is the natural projec-

tion, and Lse : [0, 1]h([r])
→ [0, 1]h(e) is the isomorphism aligning coordinates correspond-

ing to a previously fixed bijection se : [r]→ e.
Then we can rewrite t(F,W) as

t(F,W) =

∫︁
[0,1](

[m]
r )
λ(T(F, a,W))dλ(a). (5.13)

Lemma 5.4.6. If φ : Xr
→ [0, 1]h([r]) is a separable realization, and G : Xr

→ 𝒫(𝒦 ) and
W : [0, 1]h([r])

→ 𝒫(𝒦 ) are such that G = W ∘ φ almost everywhere, then for every F ∈ Π(ℱ )
we have t(F,G) = t(F,W).

Proof. Let F ∈ Πm(ℱ ) be arbitrary. We want to show that for every a ∈ [0, 1](
[m]

r ) it
holds that µ[m](T(F, a,G)) = λ(T(F, a,W)), by (5.11) and (5.13) this implies the state-
ment of the lemma. Lemma 5.2.7 implies that there exists a degree m lifting ψ of the
separable realization φ. Also, since G and W ∘ φ are equal almost everywhere we
have that µ[r](G f ,a

△φ−1(W f ,a)) = 0 for every f ∈ ℱ and a ∈ [0, 1]. As ψ is a lifting of
φ it follows that for every e ∈

(︀[m]
r

)︀
the analog of the previous also holds for cylin-

ders, that is µ[m](P−1
e (Pse(G f ,a))△ψ−1(p−1

h(e)(Lse(W f ,a))) = 0. This immediately implies that
µ[m](T(F, a,G)△ψ−1(T(F, a,W))) = 0, and since ψ is measure preserving this concludes
the proof.

�

An immediate consequence is one of the main results in this section that concerns
the existence of a limit object.

Theorem 5.4.7. Let {G}∞i=1 be a sequence of𝒦 -colored (or𝒫(𝒦 ) colored) r-uniform hypergraphs
so that for every n the sequence of probability measures on 𝒦 -colored random hypergraphs on
[n], {G(n,Gi)}∞i=1, converges weakly (or equivalently in the Prokhorov metric) when i tends to
infinity. Then there exists a 𝒫(𝒦 )-valued r-graphon W on [0, 1]h([r]) such that the measures
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{G(n,Gi)}∞i=1 converge to G(n,W) weakly, or equivalently the sequences {t(F,Gi)}∞i=1 converge
to t(F,W) for every F ∈ Π(ℱ ).

For our purposes it will be useful to consider not the ultraproduct function G, but
its conditional expectation Ĝ(p) = E[G(p) | σ([r])*] with respect to the σ-algebra of
cylinder sets. Such a measure valued function can be defined in a sensible way, and
it always exists, that is the consequence of a generalization of the Radon-Nikodym
Theorem given next, a proof can be found for example in [48].

Theorem 5.4.8 (Radon-Nikodym-Dunford-Pettis). Let (X, µ,𝒜) be a probability measure
space and f be an𝒜-measurable L*-valued function, where L is a Banach space, and letℬ ⊂ 𝒜
be a sub-σ-algebra. Then there is an essentially unique weak -*-ℬ-measurable functionE[ f | ℬ]
such that for any v ∈ L and B ∈ ℬ we have∫︁

B
⟨ f , v⟩dµ =

∫︁
B
⟨E[ f | ℬ], v⟩dµ.

For convenience, in our case L = C(𝒦 ), L* = 𝒫(𝒦 ), and the weak-*-measurability
means here simply measurability with respect to the weak topology.

The advantage of this operation will become clear when we want to construct a
random𝒦 -valued hypergraph through the separable realization of G, mainly it helps
to avoid redundancy when we talk about equivalent r-graphons.

We remark, that if the target space𝒦 has a metric structure, then one can define the
ultraproduct function G more directly as a 𝒦 -valued function instead of the general
case where it is𝒫(𝒦 )-valued, because we have the notion of the metric ultraproduct at
hand on the space𝒦 (analogous to the numerical ultraproduct). In the end we would
arrive at the same point as in the general case: we represent G as a point-measure
valued function, then project it to the space of σ([r])*-measurable probability measure
valued functions via the Radon-Nikodym-Dunford-Pettis Theorem.

Using these concept combined with the above correspondence we show now that
𝒫(𝒦 )-valued r-graphons defined as functions on [0, 1]h([r],r−1) already serve as a suitable
limit space in contrast to ones defined on [0, 1]h([r]). Such objects are equivalent to the
(𝒦 , r)-graphons (recall their space, Ξr(𝒦 )) introduced in Section 2.2.3, and reduce the
dimension of the domain of the function W obtained in Theorem 5.4.7 from h([r]) to
h([r], r − 1).

Lemma 5.4.9. For every measurable G : Xr
→ 𝒫(𝒦 ) and F ∈ Π(ℱ ) we have t(F,G) =

t(F,E[G | σ([r])*]). Also, for every W : [0, 1]h([r],r−1)
→ 𝒫(𝒦 ) we have t(F,W) = t(F,E[W |

𝒜
*

[r]]).

Proof. Let F ∈ Πm(ℱ ). For the first statement we recall t(F,G) that was formally defined
by the expression

t(F,G) =

∫︁
Xm

∏︁
e∈([m]

r )
⟨G(P−1

e (x)),F(e)⟩dµ[m](x). (5.14)
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Each of the product terms ⟨G(P−1
e (.)),F(e)⟩ inside the above integral considered as real-

valued functions on Xm are measurable with respect to σ(e) ⊂ σ([m]) for the respective
e ∈

(︀[m]
r

)︀
. We can employ the integration rule in [49, Proposition 5.3] that tells us that

if 1 j : Xm
→ [−d, d] are bounded σ(Ai)-measurable functions with Ai ⊂ [m] for i ∈ [n],

and ℬ = ⟨σ(A1 ∩ A j) | j ≥ 2⟩, then∫︁
Xm

n∏︁
j=1

1 j(x)dµ[m](x) =

∫︁
Xm
E[11 | ℬ](x)

n∏︁
j=2

1 j(x)dµ[m](x).

Hence in our case,∫︁
Xm

∏︁
e∈([m]

r )
⟨G(P−1

e (x)),F(e)⟩dµ[m](x) =

∫︁
Xm

∏︁
e∈([m]

r )
E[⟨G(P−1

e (.)),F(e)⟩ | σ(e)*](x)dµ[m](x).

(5.15)

Since E[⟨G(P−1
e (.)), f ⟩ | σ(e)*] = E[⟨G(.), f ⟩ | σ([r])*] for every e ∈

(︀[m]
r

)︀
and f ∈ ℱ , and by

definition E[⟨G(.), f ⟩ | σ([r])*] = ⟨E[G | σ([r])*], f ⟩ we conclude that t(F,G) = t(F,E[G |
σ([r])*]).

Regarding the second statement we write

t(F,W) =

∫︁
[0,1]h([m],r)

∏︁
e∈([m]

r )
⟨W(xh(e)),F(e)⟩dλ(xh([m],r)), (5.16)

and for each e we pull in the integral over xe into the respective product term, in-
tegrating first inside the factors is then no different from taking the conditional
expectation with respect to the respective σ-algebra 𝒜*e. Therefore it follows that
t(F,W) = t(F,E[W | 𝒜*[r]]). �

Next we formulate a version of Lemma 5.4.6.

Lemma 5.4.10. For every measurable G : Xr
→ 𝒫(𝒦 ) there exists a separable realization

φ : Xr
→ [0, 1]h([r]) and a (𝒦 , r)-graphon U : [0, 1]h([r],r−1)

→ 𝒫(𝒦 ) such that E[G | σ([r])*] =
U ∘ ph([r],r−1) ∘ φ almost everywhere, then for every F ∈ Π(ℱ ) we have t(F,G) = t(F,U).

Proof. Let Ĝ = E[G | σ([r])*], and let G f ,a = {p | ⟨G(p), f ⟩ ≥ a } and Ĝ f ,a = {p |
⟨Ĝ(p), f ⟩ ≥ a } for each f ∈ ℱ and a ∈ [0, 1]. Let 𝒟 denote the separable generated
by the collection of the sets G f ,a and Ĝ f ,a, and 𝒟′ ⊂ σ([r])* be the one generated only
by the Ĝ f ,a sets. We know from Theorem 5.2.6 and Theorem 5.4.5 that there exists a
separable realization φ such that for each A ∈ 𝒟 there is a measurable VA ⊂ [0, 1]h([r])

such that µ[r](A△φ−1(VA)) = 0, and there is a measurable W : [0, 1]h([r])
→ 𝒫(𝒦 ) such

that G = W ∘ φ almost everywhere.
We claim that U defined by U(ph([r],r−1)(x)) = E[W | 𝒜*[r]](x) satisfies the requirements

of the statement, in particular that E[W | 𝒜
*

[r]] ∘ φ = Ĝ almost everywhere. In order
to verify E[W | 𝒜

*

[r]] ∘ φ = E[G | σ([r])*] almost everywhere we need to check the
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two conditions that defines a conditional expectation. First, we note the fact that
U ∘ ph([r],r−1) ∘ φ is σ([r])*-measurable, this is trivial since φ is a separable realization.
For the second requirement, it suffices to show ⟨E[W | 𝒜

*

[r]] ∘ φ, f ⟩ = ⟨Ĝ, f ⟩ almost
everywhere for arbitrary f ∈ ℱ , since ℱ is countable. To do this, let us fix f ∈ ℱ . Since
⟨Ĝ, f ⟩ is𝒟′-measurable it is enough to show that∫︁

B
⟨E[W | 𝒜*[r]] ∘ φ(x), f ⟩dµ[r](x) =

∫︁
B
⟨Ĝ(x), f ⟩dµ[r](x) (5.17)

for arbitrary B ∈ 𝒟′, instead for all elements of σ([r])*. The left-hand side of (5.17) can
be written as ∫︁

B

∫︁ 1

0
1G f ,a(x)dadµ[r](x) =

∫︁ 1

0
µ[r](G f ,a

∩ B)da. (5.18)

Since B ∈ 𝒟, there exists a VB ⊂ [0, 1]h([r]) such that µ[r](B△φ−1(VB)) = 0. As B ∈ σ([r])*

and φ is a separable realization, VB ∈ 𝒜
*

[r]. Let W f ,a = { x ∈ [0, 1]h([r])
| ⟨W(x), f ⟩ ≥ a } for

f ∈ ℱ and a ∈ [0, 1]. Then the right-hand side of (5.17) is equal to∫︁
B
⟨E[W | 𝒜*[r]] ∘ φ(x), f ⟩dµ[r](x) =

∫︁
φ−1(VB)

⟨E[W | 𝒜*[r]] ∘ φ(x), f ⟩dµ[r](x)

=

∫︁
VB

⟨E[W | 𝒜*[r]](x), f ⟩dλ(xh([r]))

=

∫︁
VB

⟨W(x), f ⟩dλ(xh([r]))

=

∫︁
VB

∫︁ 1

0
1W f ,a(x)dadλ(xh([r]))

=

∫︁ 1

0
λ(W f ,a

∩ VB)da, (5.19)

the second equality is the consequence of φ being measure-preserving, whereas the
third is true by the definition of the conditional expectation and VB ∈ 𝒜

*

[r].
For any f ∈ ℱ and a ∈ [0, 1] we have µ[r](G f ,a

△φ−1(W f ,a)) = 0 since G = W ∘φ almost
everywhere, consequently µ[r](G f ,a

∩ B) = λ(W f ,a
∩ VB), as φ is measure-preserving.

Comparing (5.18) and (5.19) verifies the equality (5.17).
It remains to show that for every F ∈ Π(ℱ ) we have t(F,G) = t(F,U), this follows

from Lemma 5.4.6 and Lemma 5.4.9.
�

From the preceding Lemma 5.4.10 directly follows an improved version of The-
orem 5.4.7, already shown to hold true in Chapter 2 through different methods.

Theorem 5.4.11. Let {G}∞i=1 be a sequence of 𝒦 -colored (or 𝒫(𝒦 ) colored) r-uniform hy-
pergraphs so that for every n the sequence of probability measures on 𝒦 -colored random
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hypergraphs on [n], {G(n,Gi)}∞i=1, converges weakly when i tends to infinity. Then there exists
a (𝒦 , r)-graphon W : [0, 1]h([r],r−1) such that the measures of {G(n,Gi)}∞i=1 converge to G(n,W)
weakly.

We are going to characterize the equivalence classes of𝒫(𝒦 )-valued hypergraphons
determined by the equality of the distributions of sampled (𝒦 , r)-graphs, that is U ∼W
exactly in the case, when t(F,U) = t(F,W) for any F ∈ ℱ . The main statement is going
to be a straight-forward analog of the result in the simple hypergraph case, [49], where
𝒦 = {0, 1}, and the k-colored r-graph case above. The proof is also a slight variant of
the proof given for the latter case. We note that for any U it is true that U can be chosen
as the limit of {G(n,U)}∞n=1 in the sense of Theorem 5.4.11.

Theorem 5.4.12. Let𝒦 be a compact Polish space, and let U and W be two (𝒦 , r)-graphons on
[0, 1]h([r],r−1) such that t(F,U) = t(F,W) for any F ∈ ℱ . Then there exist structure-preserving
maps ν1 and ν2 from [0, 1]h([r],r−1) to [0, 1]h([r],r−1) such that U ∘ ν1 = W ∘ ν2 almost everywhere.

Proof. Let U and W be as in the statement of the theorem. We define U′ to be a 𝒦 -
valued map on [0, 1]h([r]) such that for every x ∈ [0, 1]h([r],r−1) the distribution of U′(x,Y)
is equal to U(x) for a uniformly chosen random Y from [0, 1], and analogously define
W′.

Let τ be the ultraproduct of the random coordinate systems τn that is with probability
one a separable realization from Xr to [0, 1]h([r]), where Xr is the ultraproduct of {[n]r

}
∞

n=1,
see [49, Lemma 4.9]. Now we have that if τn and G(n,U) are driven by the same
random Zn ∈ [0, 1]h([n],r), then τ−1

n (U′) = G(n,U). Further, for every f ∈ ℱ and a ∈ [0, 1]
let U f ,a = { x ∈ [0, 1]h([r])

| f (U′(x)) ≥ a }, then also τ−1
n (U f ,a) = G(n,U f ,a). By Lemma 5.2.13

we have that with probability 1 for every f ∈ ℱ and a ∈ [0, 1] ∩Q it is true that

µ[r]([{G(n,U f ,a)}∞n=1]△τ−1(U f ,a)) = 0. (5.20)

The same assertion holds for W, where W f ,a is defined analogously.
The equality t(F,U) = t(F,W) for each F ∈ ℱ implies by Theorem 2.2.2 thatG(n,U) and
G(n,W) have the same distribution, so they can be coupled as the common random
objects Yn for each n. For any f ∈ ℱ and a ∈ [0, 1] the random graph G(n,U f ,a) is
trivially G(n,U)-measurable (similarly for W), so the coupling also satisfies that there
are random objects Y f ,a

n that are equal to the common realization of G(n,U f ,a) and
G(n,U f ,a).

Let H f ,a = [{Y f ,a
n }
∞

n=1], then the above discussion implies that there exist separable
realizations φ1 and φ2 that are realizations of ultraproducts of two random coordinate
sytems such thatµ[r](H f ,a

△φ−1
1 (U f ,a)) = 0 andµ[r](H f ,a

△φ−1
2 (W f ,a)) = 0 for each f ∈ ℱ and

a ∈ [0, 1]∩Q, therefore also µ[r](φ−1
1 (U f ,a)△φ−1

2 (W f ,a)) = 0. Set𝒟 = σ(φ−1
1 (𝒜[r]), φ−1

2 (𝒜[r]))
that is a separable σ-algebra on X[r], so by Theorem 5.2.6 there exists a separable
realization φ3 such that for each measurable D ⊂ [0, 1]h([r]) the element φ−1

i (D) of 𝒟
can be represented by a subset of [0, 1]h([r]) denoted by ψi(D). As in the proof of
Theorem 5.2.15, ψ1 and ψ2 defined this way are structure preserving embeddings from
ℒ
h([r])
→ ℒ

h([r]) satisfying λ(ψ1(U f ,a)△ψ2(W f ,a)) = 0 for each f ∈ ℱ and a ∈ [0, 1] ∩ Q.
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If follows that by Lemma 5.2.12 there are structure preserving ν̂1 and ν̂2 such that
λ(ν̂−1

1 (U f ,a)△ν̂−1
2 (W f ,a)) = 0 for each f ∈ ℱ and a ∈ [0, 1] ∩ Q. This implies that U′ ∘

ν̂1 = W′
∘ ν̂2 almost everywhere on [0, 1]h([r]). We conclude that ν1 and ν2 defined by

νi(xh([r],r−1)) = Ph([r],r−1)(ν̂i(xh([r],r−1), 0)) for i = 1, 2 are structure-preserving satisfying the
conditions of the theorem since ν̂1 and ν̂2 were structure-preserving, that is U ∘ ν1 =
W ∘ ν2 almost everywhere. �

5.5 Regularity Lemma for (𝒦 , r)-graphs

One of the most important tools in graph theory and in the broader field of combin-
atorics in recent years is the Regularity Lemma. It states that for every graph there
exists a quasi-random approximating graph of bounded size, where this bound is only
a function of the error margin of the approximation, but not of the graph in consider-
ation. We dealt with this topic already in-depth in Section 3.3, in particular we stated
and proved several versions of varying strength. In this section we prove a general
version of applicable to colored uniform hypergraphs, the result here directly implies
Lemma 3.3.27 except for the concrete upper bound on the number of partition classes
required for the regular approximation. This shortcoming is a consequence of the
non-standard methods employed in the current chapter. In particular we will rely on
Lemma 5.4.10 that ensures the existence of a certain separable realization.

The proof given here follows the framework of the proof for the simple r-graph case
given by Elek and Szegedy [49]. That version was dealt with in [49] was first proved
for r = 3 in a slightly different setting by Frankl and Rödl [58] and Gowers [68], and
by Rödl and Skokan [106] for general r. For the related development, see Nagle, Rödl,
and Schacht [99], Rödl and Schacht [105], and Gowers [69].

First we provide the definitions of the necessary notions. We fix r ≥ 1. For a finite
set X, δ ≥ 0, and l ≥ 1 we call

ℋ = {H j
k}k=1,...,r

j=1,...,l

a δ-equitable l-hyperpartition of Kr(X), if for every 1 ≤ k ≤ r the sets {H j
k} j=1,...,l form a

partition of Kk(X) with symmetric classes such that
⃒⃒⃒
|Hi

k| − |H
j
k|
⃒⃒⃒
≤ δ|Kk(X)| for i, j ∈ [l].

For an l-hyperpartitionℋ we can defineℋ-cells that are classes of a certain partition of
Kr(X). For each κ : h([r])→ [l] we define the set Cκ = ∩e∈h([r])P−1

e (Hκ(e)
|e| ) as the intersection

of cylinder sets induced by certain classes of the hyperpartitionℋ . We call the union
over the Sr-orbits Bκ = ∪π∈SrCκ∘π* ℋ-cells.

Further, for ε ≥ 0 we call a k-uniform hypergraph G represented by a symmet-
ric subset of Kk(X) ε-regular, if for any k-collection of (k − 1)-uniform hypergraphs
F1, . . . ,Fk considered as subsets of Kk−1(X) with the k-uniform cylinder intersection
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L = ∩i∈[k]P−1
[k]∖{i}(Fi) we have ⃒⃒⃒⃒⃒

|G|
|Kk(X)|

−
|G ∩ L|
|L|

⃒⃒⃒⃒⃒
≤ ε, (5.21)

whenever |L| ≥ ε|Kk(X)|.
In this section we consider the target space𝒦 to be a compact metric space with the

distance d, and diameter at most 1 instead of the more general compact Polish spaces
we studied in Section 5.4. We next give the definition of the metric we will employ on
𝒫(𝒦 ) in order to measure the error of a regular approximation.

Definition 5.5.1. Let (𝒦 , d) be a compact metric space of diameter at most 1. Then the map
dW : 𝒫(𝒦 ) × 𝒫(𝒦 )→ R+

∪ {0} with

dW(µ, ν) = sup
f : 𝒦→[0,1]∈Lip1(𝒦 )

|⟨µ, f ⟩ − ⟨ν, f ⟩|

is a metric on 𝒫(𝒦 ) and is called the 1-Wasserstein metric, where Lip1(𝒦 ) denotes the set of
Lipschitz-continuous functionals on𝒦 in the metric d with Lipschitz constant at most 1.

We call a set Tε ⊂ Lip1(𝒦 ) of [0, 1]-valued 1-Lipschitz functions on 𝒦 an ε-net if for
every [0, 1]-valued 1-Lipschitz function 1 there is an f ∈ Tε so that ‖ f − 1‖∞ ≤ ε. For
any ε-net Tε we have for every pair µ, ν ∈ 𝒫(𝒦 ) that⃒⃒⃒⃒⃒

⃒⃒dW(µ, ν) − sup
f∈Tε
|⟨µ, f ⟩ − ⟨ν, f ⟩|

⃒⃒⃒⃒⃒
⃒⃒ ≤ ε. (5.22)

Moreover, the Arzelà–Ascoli theorem for compact Polish spaces implies that there
exists for every ε > 0 a finite ε-net Tε.

We have introduced the necessary terminology to be able to state our version of the
Regularity Lemma next.

Theorem 5.5.2 (Colored hypergraph regularity lemma). Let r ≥ 1 and (𝒦 , d) be a compact
metric space. Then for any ε > 0 and F : N→ (0, 1) there exist c = c(ε,F) and N0 = N0(ε,F)
so that for every (𝒦 , r)-graph G : Kr(X) → 𝒦 that is symmetric with |X| ≥ N0 there is an
F(l)-equitable l-hyperpartition ℋ = {H j

k}k=1,...,r
j=1,...,l

of Kr(X) for some l ≤ c such that each H j
k is

F(l)-regular, and there exists a symmetric map Q : Kr(X)→ 𝒫(𝒦 ) that is constant onℋ-cells
such that ⃒⃒⃒⃒{︁

x ∈ Kr(X) | dW(δG(x),Q(x)) ≥ ε
}︁⃒⃒⃒⃒
≤ ε|Kr(X)|. (5.23)

We outline the corresponding notions for ultraproduct measure spaces. Let now
r ≥ 1 and (Xr,ℬ[r], µ[r]) be an arbitrary ultraproduct space, let Kr(X) denote the set of
elements of Xr without repetitions. Trivially Kr(X) ∈ ℬ[r] and µ[r](Kr(X)) = 1. Then a
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δ-equitable l-hyperpartition of Kr(X) is similar to the finite case a collection of partitions

ℋ̂ = {H j
k}k=1,...,r

j=1,...,l

with symmetric classes such that |µ[k](Hi
k) − µ[k](H

j
k)| ≤ δ for i, j ∈ [l], and k ∈ [r]. The

definition of ℋ̂-cells is identical to the finite case.
Note that any hyperpartition of Kk(X) can be extended to one of Xk by adding a zero

measure set to the collection of partition classes.
Next we state and prove the version of the hypergraph regularity lemma for 𝒫(𝒦 )-

valued ultraproduct functions, this will be followed by the reduction of the finitary
lemma to this one. Both proofs will follow the approach in [49] and in [93], but require
some new ideas.

Theorem 5.5.3 (Infinitary weighted regularity lemma). Let r ≥ 1, (Xr,ℬ[r], µ[r]) be an
ultraproduct measure space, and (𝒦 , d) a compact metric space. For any ε > 0 and any σ([r])-
measurable G : Xr

→ 𝒫(𝒦 ) there exist a positive integer l, a 0-equitable l-hyperpartition ℋ̂ of
Kr(X) such that the classes H j

k, are independent from σ([k])* for any 1 ≤ k ≤ r and 1 ≤ j ≤ l,
and a measurable function T : Xr

→ 𝒫(𝒦 ) that is constant on ℋ̂-cells satisfying

µ[r]({ x ∈ Kr(X) | dW(G(x),T(x)) ≥ ε }) ≤ ε. (5.24)

Proof. Fix an arbitrary ε > 0 and G. By Lemma 5.4.10 there exists a separable realization
φ : Xr

→ [0, 1]h([r]) and measurable function W : [0, 1]h([r])
→ 𝒫(𝒦 ) such that G = W ∘ φ

almost everywhere. Let Tε/2 = { f1, . . . , ft} an ε/2-net in the set of [0, 1]-valued functions
in Lip1(𝒦 ) in the ‖.‖∞-norm. Since Lip1(𝒦 ) ⊂ C(𝒦 ) we have for each i ∈ [t] that
⟨G, fi⟩ = ⟨W ∘ φ, fi⟩ almost everywhere. Let

C = { y ∈ Rt
| there exist a µ ∈ 𝒫(𝒦 ) such that yi = ⟨µ, fi⟩ for all i ∈ [t] }. (5.25)

It is trivial that C is a compact convex subset of [0, 1]t, therefore there is a partition of
C into a finite number of non-empty parts S1, . . . ,Sm such that the diameter in dW of
each S j is at most ε/2. Let s j ∈ S j be an arbitrary element for each j ∈ [m] and let µ j be
a corresponding probability measure, that is (s j)i = ⟨µ j, fi⟩ for each i ∈ [t].

Let Ŵ : [0, 1]h([r])
→ C such that (Ŵ(x))i = ⟨W, fi⟩ for each i ∈ [t]. Let L j = Ŵ−1(S j) for

each j ∈ [m], then (L1, . . . ,Lm) is a partition of [0, 1]h([r]) into r-symmetric measurable
parts. It follows by measurability that there exists an integer l such that there are sym-
metric measurable sets (M1, . . . ,Mm) that constitute a partition of [0, 1]h([r]) satisfying
the following conditions. Each M j is the union of l-boxes of the form

�
e∈h([r])

[︁
je−1

l ,
je
l

)︁
for some je ∈ [l] for all e ∈ h([r]) and

∑︀m
j=1 λ(L j△M j) ≤ ε.

We define U : [0, 1]h([r])
→ 𝒫(𝒦 ) to be equal to µ j on M j. Except for the set N =

∪
m
j=1(L j△M j) we have for each x ∈ [0, 1]h([r]) and i ∈ [t] that |⟨W(x), fi⟩ − ⟨U(x), fi⟩| ≤ ε/2,

so by (5.22) we have that dW(W(x),U(x)) ≤ ε for each x not in N.
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Now we define the hyperpartition ℋ̂ on Kr(X). Let

H j
k = φ−1

[k]

(︃[︁ j − 1
l
,

j
l

)︁)︃
∖ Kk(X)

for k ∈ [r] and j ∈ [l]. Note that the H j
k sets are independent from σ([k])*, as φ is a

separable realization. We are ready to construct the approximating function T that is
constant on the ℋ̂-cells: simply set T = U ∘ φ.

It remains to show that T is a suitable approximation of G. If x ∈ Kr(X)∖φ−1(N), then
by the definition of T and the properties of W and U we have dW(G(x),T(x)) ≤ ε. On
the other hand, as φ is measure-preserving we have µ[r](φ−1(N)) ≤ ε, which concludes
the proof.

�

Now turn to the proof of the main theorem of the section.

Proof of Theorem 5.5.2. Suppose that the statement of the theorem is false. Then there
exists an ε > 0 and an F : N→ (0, 1) so that there is a sequence of r-uniform hypergraphs
Gi on Xi with {|Xi|}

∞

i=1 strictly monotone increasing such that Gi has no F(s)-equitable s-
hyperpartition for any s ≤ i satisfying the desired conditions. Let Xr be the ultraproduct
space of the sets {Xi}

∞

i=1, and G : Xr
→ 𝒫(𝒦 ) denote the ultraproduct of the Gi functions

and let us apply the infinitary regularity lemma, Theorem 5.5.3. Then there exists
a 0-equitable l-hyperpartition ℋ̂ of Kr(X) such that the classes H j

k are independent
from σ([k])* for any 1 ≤ k ≤ r and 1 ≤ j ≤ l and there exists a measurable function
T : Xr

→ 𝒫(𝒦 ) that is constant on ℋ̂-cells, and for

N = { x ∈ Kr(X) | dW(G(x),T(x)) ≥ ε/2 } (5.26)

we have

µ[r](N) ≤ ε/2. (5.27)

For each k ∈ [r], it follows from the definition of the measure space (Xk,ℬ[k], µ[k]),
that there exist sets H j

k,i ⊂ Kk(Xi) such that {H j
k,i} j=1,...,l form for ω-almost all i an F(l)-

equitable l-partition of Kk(Xi), andµ[k](H
j
k△[{H j

k,i}
∞

i=1]) = 0, for these indices letℋi denote

the hyperpartition {H j
k,i}k=1,...,r

j=1,...,l
.

We will only deal with the indices above where we defined hyperpartitions in detail,
for all the remaining ones let Qi : Kr(Xi) → 𝒫(𝒦 ) be arbitrary measurable symmetric
functions. Now for the important indices, whose set is in ω, let for i the function value
Qi(xi) be defined as the value of T on the ℋ̂-cell

Bκ = ∪π∈Sr ∩e∈h([r]) P−1
e (Hκ(π*(e))

|e| ) (5.28)
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for some κ : h([r])→ [l], whenever

xi ∈ ∪π∈Sr ∩e∈h([r]) P−1
e (Hκ(π*(e))

|e|,i ). (5.29)

Note that T = limω Qi µ[r]-almost everywhere.

It is trivial now that for almost all i we have that Qi is a measurable function constant
on ℋi-cells. Further, let Tε/4 = { f1, . . . , ft} be an ε/4-net in the set of [0, 1]-valued
functions in Lip1(𝒦 ) in the ‖.‖∞-norm. Define

Ni = { xi ∈ Kr(Xi) | dW(δGi(xi),Qi(xi)) ≥ ε },

N′i = { xi ∈ Kr(Xi) | max
j∈[t]
| f j(Gi(xi)) − ⟨Qi(xi), f j⟩| ≥

ε
2
},

and

N′ = { x ∈ Kr(X) | max
j∈[t]
|⟨G(x), f j⟩ − ⟨T(x), f j⟩| ≥

ε
2
}.

Since G−T = limω δGi −Qi almost everywhere in the sense that for every f ∈ C(𝒦 ) we
have

⟨G(x), f ⟩ − ⟨T(x), f ⟩ = lim
ω
⟨δGi(xi), f ⟩ − ⟨Qi(xi), f ⟩,

and ω is closed under finite intersection, it holds by (5.22) that

N ⊃ N′ ⊃ [{N′i }
∞

n=1] ⊃ [{Ni}
∞

n=1].

Therefore limω
|Ni|

|Xi|r
≤ µ[r](N) ≤ ε/2, and consequently |Ni| ≤ ε|Kr(Xi)| for ω-almost all i.

It follows from our assumption that for ω-almost all i there are k ∈ [r] and j ∈ [l]
such that H j

k,i is not ε-regular, hence there are k0 ∈ [r] and j0 ∈ [l] such that H j0
k0,i

is
not ε-regular for ω-almost all i. This means that for almost all i there are k0-uniform
cylinder intersections Li ⊂ Kk0(Xi) such that⃒⃒⃒⃒⃒

⃒⃒ |H j0
k0,i
|

|Kk0(Xi)|
−

|H j0
k0,i
∩ Li|

|Li|

⃒⃒⃒⃒⃒
⃒⃒ ≥ ε, (5.30)

and |Li| ≥ ε|Kk0(Xi)|.

Let L = [{Li}
∞

i=1]. We know on one hand that L is σ([k0])*-measurable and µ[k0](L) =

limω
|Li|

|Kk0 (Xi)|
≥ ε, and on the other that H j0

k0
= [{H j0

k0,i
}
∞

i=1] and H j0
k0

is independent of σ([k0])*,
so

µ[k0](H
j0
k0

)µ[k0](L) = µ[k0](H
j0
k0
∩ L). (5.31)
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However, (5.30) implies that |µ[k0](H
j0
k0

)µ[k0](L) − µ[k0](H
j0
k0
∩ L)| ≥ ε, which together with

µ[k0](L) > 0 leads to a contradiction, which concludes the proof.
�

We illustrate the relation of Theorem 5.5.2 to versions of the Regularity Lemma in
the uncolored case by giving a corollary that is analogous to Lemma 3.3.2 and handles
the case r = 2.

Definition 5.5.4. Let G be an undirected (𝒦 , 2)-graph, and A and B subsets of its vertex set,
and let ε ≥ 0. We call the pair (A,B) (𝒦 , ε)-regular, if they are disjoint and for any A′ ⊂ A
and B′ ⊂ B with |A′| ≥ ε|A| and |B′| ≥ ε|B| it holds that

dW

⎛⎜⎜⎜⎜⎜⎝
∑︀

a∈A
b∈B
δG(a,b)

|A||B|
,

∑︀
a∈A′
b∈B′

δG(a,b)

|A′||B′|

⎞⎟⎟⎟⎟⎟⎠ ≤ ε. (5.32)

With other words, a pair (A,B) is regular, if the empirical distribution of elements
of 𝒦 given by their presence on the edges between large subsets A′ ⊂ A, B′ ⊂ B is
as expected, namely close to the empirical distribution taken on all edges running
between A and B. Now a special case of Theorem 5.5.2 reads almost identically as
Lemma 3.3.2.

Corollary 5.5.5. For any ε > 0 there exists a positive integer 1
ε ≤M(ε) such that the following

holds. For any undirected (𝒦 , 2)-graph G there exists a partition of V(G) into at most m ≤M(ε)
parts (V1, . . . ,Vm) such that

(i) for any i, j ∈ [m] we have
⃒⃒⃒
|Vi| − |V j|

⃒⃒⃒
≤ 1, and

(ii) at least (1 − ε)m2 of the pairs (i, j) ∈ [m]2 satisfy that (Vi,V j) is (𝒦 , ε)-regular.
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CHAPTER 6

Complexity of Nondeterministic
Testing

6.1 Introduction and results

Graph and hypergraph parameters are real-valued functions defined on the space
of uniform hypergraphs of some given rank invariant under relabeling the vertex
set. Testing a parameter value associated to an instance in the dense model means
to produce an estimation by only having access to a small portion of the data that
describes it. The test data is provided as a uniform random subset of the vertex set
with the induced substructure of the hypergraph on this subset exposed. A certain
parameter is said to be testable if for every given tolerated error the estimation is
within the error range of the parameter value with high probability, and the size of the
selected random subset does only depend on the size of this permitted error and not
on the size of the instance, for precise definitions see Definition 3.2.1 below. Similar
notions apply to testing graph properties, in that situation one also uses uniform
sampling in order to separate the cases where an instance has the property or is far
from having it, where the distance is measured by the number of edge modifications
required, see Definition 3.2.2. The development in this direction resulted in a number
of randomized sub-linear time algorithms for the corresponding decision problems,
see [13], [14], [66], for the background in approximation theory of NP-hard problems
for dense structures, see [18].

Several attempts were made to characterize the parameters in terms of the sample
size that is needed for carrying out the above task of testing. The notion nondetermin-
istic testability was introduced by Lovász and Vesztergombi [97] in the framework of
graph property testing, and encompasses an a priori weaker characteristic than the
original testability. The authors of [97] defined a certain property to be nondetermin-
istically testable if there exists another property of colored (edge or node) graphs that
is testable in the traditional sense and serves as a certificate for the original.
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Definition 6.1.1. [97] The simple graph property 𝒫 is non-deterministically testable if there
exist integers k ≥ m and a testable property 𝒬 of k-colored directed graphs called witness
such that a simple graph G has exactly in that case 𝒫, when there exists a G ∈ 𝒬 that is a
(k,m)-coloring of G. The edge-k-colored directed graph G is a (k,m)-coloring of G, if after
erasing all edges of G colored with an element of [m + 1, . . . , k] and discarding the orientation,
coloring, and multiplicity of the remaining edges we end up with G. We say in this case that
G is the shadow of G.

Definition 6.1.2. The graph parameter f is non-deterministically testable if there exist integers
k ≥ m and a testable k-colored directed graph parameter 1 called witness such that for any simple
graph G the value f (G) = maxG 1(G) where the maximum goes over the set of (k,m)-colorings
of G.

The corresponding definition for r-uniform hypergraphs (in short, r-graphs) is ana-
logous. The choice of maximizing over the 1-values in Definition 6.1.2 is somewhat
arbitrary, in a more general sense we could have f (G) = 1(argmaxGL(1(G))) for an
α-Hölder continuous function L from R to R. Also, stronger formulations of being a
witness can be employed, such as permitting only undirected instances or imposing
k = 2m.

The problem regarding the relationship of the class of parameters that are testable
and those who are non-deterministically testable was first studied in the framework of
dense graph limits and property testing by Lovász and Vesztergombi [97] in the spirit
of the general “P vs. NP” question, that is a central problem in theoretical computer
science. Using the particular notion of nondeterminism above they were able to prove
that any non-deterministically testable graph property is also testable, which implies
the analogous statement for parameters.

Theorem 6.1.3. [97] Every non-deterministically testable graph property 𝒫 is testable. The
same equivalence holds for parameter testing.

However, no explicit relationship was provided between on one hand, the sample
size required for estimating the f value, and on the other, the two factors, the number
of colors k and m, and the sample complexity of the witness 1. The reason for the non-
efficient characteristic of the result is that the authors exploited various consequences
of the next remarkable fact.

Recall that graphons are bounded symmetric measurable functions on the unit
square, their cut norm ‖.‖� given in Definition 3.3.6. At this point we wish to stress
that it is weaker than the L1-norm, and the δ�-distance induced by it has a compact
unit ball, this is not the case for the δ1-distance generated by the ‖.‖1-norm.

Fact. If (Wn)n≥1 is a sequence of graphons and ‖Wn‖� → 0 when n tends to infinity,
then for any measurable function Z : [0, 1]2

→ [−1, 1] it is true that ‖WnZ‖� → 0, where
the product is taken point-wise.

Although the above statement is true for all Z, the convergence is not uniform and
its rate depends heavily on the structure of Z.

The relationship of the magnitude of the sample complexity of a testable property
𝒫 and its non-deterministic certificate 𝒬 was analyzed by Gishboliner and Shapira
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[61] relying on Szemerédi’s Regularity Lemma and its connections to graph property
testing unveiled by Alon, Fischer, Newman, and Shapira [16]. In the upper bound
given in [61] the height of the exponential tower was not bounded and growing as a
function of the inverse of the accuracy 1/ε.

Theorem 6.1.4. [61] Every non-deterministically testable graph property 𝒫 is testable. If the
sample complexity of the witness property𝒬 for each ε > 0 is q𝒬(ε), then the sample complexity
of 𝒫 for each ε > 0 is at most tf(cq𝒬(ε/2)) for some universal constant c > 0, where tf(t) is the
exponential tower of twos of height t.

In the current chapter we improve on the result of [61] in terms of parameters first
and subsequently in terms of properties by using a weaker type of regularity approach
which eliminates the tower-type dependence on the sample complexity of the witness
parameter. The function exp(t) stands for the t-fold iteration of the exponential function
(exp(0)(x) = x).

Theorem 6.1.5. Let f be a nondeterministically testable simple graph parameter with witness
parameter 1 of k-colored digraphs, and let the corresponding sample complexity be q1. Then f
is testable with sample complexity q f , and there exists a constant c > 0 only depending on k
but not on f or 1 such that for any ε > 0 the inequality q f (ε) ≤ exp(3)(cq2

1(ε/2)) holds.

Section 6.2 is devoted to the proof of Theorem 6.1.5.
The previous works mentioned above dealt with graphs, it was asked in [97] if the

concept can be employed for hypergraphs. The notion of an r-uniform hypergraph
(in short, r-graph) parameter and its testability can be defined completely analogously
to the graph case, the same applies for nondeterministic testability. Naturally, first
the question arises whether the deterministic and the nondeterministic testability are
equivalent for higher rank hypergraphs, and secondly, if the answer to the first ques-
tion is positive, then what can be said about the relationship of the sample complexity
of the parameter and that of its witness parameter. The statements that are analogous
to the main results of [61], and [97], as well as to Theorem 6.1.5 do not follow imme-
diately for uniform hypergraphs of higher rank from the proof for graphs, like-wise
to the generalizations of the hypergraph version of the Regularity Lemma new tools
and notions are required to handle these cases. In the current chapter we prove the
equivalence of the two testability notions for uniform hypergraphs of higher rank and
make progress for both questions posed above.

Theorem 6.1.6. Every non-deterministically testable r-graph parameter f is testable. If 1
is the parameter of k-edge-colored r-graphs that certifies the testability of f , then q f (ε) ≤
exp(4(r−1)+1)(cr,kq1(ε)/ε) for some constant cr,k > 0 depending only on r and k, but not on f or
1. Here exp(t) denotes the t-fold iteration of the exponential function for t ≥ 1, and exp(0) is
the identity function.

We describe the proof of Theorem 6.1.6 in Section 6.5. We will need a result concern-
ing the testability of the r-cut norm that is related to the Gowers norm of functions,
see Definition 3.3.20, we deal with this in Section 6.4.
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6 Complexity of Nondeterministic Testing

We also show that testing nondeterministically testable properties is as hard as
parameter testing with our method in the sense that the same complexity bounds
apply.

Theorem 6.1.7. Every nondeterministically testable r-graph property is testable, the sample
complexity dependence is the same as in the parameter testing case.

Section 6.6 deals with the proof of Theorem 6.1.7.
A 2k-coloring of a graph is a (2k,m)-coloring with m = k. This technical restriction

facilitates our proofs for r-graphs. Also, for higher rank hypergraphs we only deal with
witnesses that are undirected for simplicity, but we believe that the case of employing
general directed witnesses as in the graph case can be dealt with analogously.

Further, we can derive significantly better bounds, if we use more restrictive notions
of nondeterministic testing, such as weakly non-deterministic testing, see Section 6.3,
and the case of witnesses that only depend on densities of linear subgraphs, see
Section 6.7.

We conclude the chapter by presenting some applications of the main theorems
above in Section 6.8, among other results we derive an effective proof for Theorem 5.3.4
from Chapter 5.

6.2 Graph parameter testing

We will exploit the continuity of a testable graph parameter with respect to the cut
norm and distance, and the connection of this characteristic to the sample complexity
of the parameter. We require two results, the first one quantifies the above continuity.
We generally assume that the sample complexity satisfies q1(ε) ≥ 1/ε, also ε ≤ 1 and
k ≥ 2.

Lemma 6.2.1. Let 1 be a testable k-colored digraph parameter with sample complexity at most

q1. Then for any ε > 0 and two graphs, G and H, with |V(G)|, |V(H)| ≥
(︂

2q2
1(ε/4)
ε

)︂1/(q1(ε/4)−1)

satisfying δ�(G,H) ≤ k−2q2
1(ε/4) we have

|1(G) − 1(H)| ≤ ε.

Proof. Let ε > 0, G and H be as in the statement, and set q = q1(ε/4). Then we have

|1(G) − 1(H)| ≤ |1(G) − 1(G(q,G))| + |1(G(q,WG)) − 1(G(q,G))|
+ |1(G(q,WG)) − 1(G(q,WH))| + |1(G(q,H)) − 1(G(q,WH))|
+ |1(H) − 1(G(q,H))|. (6.1)

The first and the last term on the right of (6.1) can be each upper bounded by ε/4
with cumulative failure probability ε/2 due to the assumptions of the lemma. To deal
with the second term we require the fact that G(q,G) and G(q,WG) have the same
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6.2 Graph parameter testing

distribution conditioned on the event that the Xi variables that define G(q,WG) lie
in different classes of the canonical equiv-partition of [0, 1] into |V(G)| classes. The
failure probability of the latter event can be upper bounded by q2/2|V(G)|q−1, which is
at most ε/4, analogously for the fourth term. Until this point we have not dealt with
the relationship of the two random objectsG(q,WG) andG(q,WH), therefore the above
discussion is valid for every coupling of them.

In order to handle the third term we upper bound the probability that the two
random graphs are different by means of an appropriate coupling, since clearly in the
event of identity the third term of (6.1) vanishes. More precisely, we will show that
G(q,WG) and G(q,WH) can be coupled in such a way that P(G(q,WG) , G(q,WH)) <
1− ε. We utilize that for a fixed k-colored digraph F on q vertices we can upper bound
the deviation of the subgraph densities of F in G and H through the cut distance of
these graphs, see Lemma 3.3.7. In particular,

|P(G(q,WG) = F) − P(G(q,WH) = F)| ≤
(︃
q
2

)︃
δ�(WG,WH).

Therefore in our case∑︁
F

|P(G(q,WG) = F) − P(G(q,WH) = F)| ≤ k2(q
2)
(︃
q
2

)︃
k−2q2

≤ ε,

where the sum goes over all labeled k-colored digraphs F on q vertices.
Since there are only finitely many possible target graphs for the random objects, we

can coupleG(q,WG) andG(q,WH) so that in the end we haveP(G(q,WG) , G(q,WH)) ≤
ε, see Corollary 3.3.25 for details. This implies that with positive probability (in fact,
with at least 1 − 2ε) the sum of the five terms on the right hand side of (6.1) does not
exceed ε, so the statement of the lemma follows.

�

We will also require the following statement which can be regarded as the quant-
itative counterpart of Lemma 3.2 from [97]. It clarifies why the cut-𝒫-norm, (Defin-
ition 3.3.12, Definition 3.3.13) and the need for the accompanying regularity lemma,
Lemma 3.3.15, are essential for our intent.

Lemma 6.2.2. Let k ≥ 2, ε > 0, U be a step function with steps 𝒫 = (P1, . . . ,Pt) and V
be a graphon with ‖U − V‖�𝒫 ≤ ε. For any k-colored digraphon U = (U(1,1), . . . ,U(k,k)) that
is a step function with steps from 𝒫 and a (k,m)-coloring of U there exists a (k,m)-coloring
V = (V(1,1), . . . ,V(k,k)) of V so that ‖U −V‖� =

∑︀k
α,β=1 ‖U(α,β)

− V(α,β)
‖� ≤ k2ε.

If V = WG for a simple graph G on n ≥ 16/ε2 nodes and 𝒫 is an ℐn-partition of [0, 1] then
there is a (k,m)-coloring G of G that satisfies the above conditions and ‖U −WG‖� ≤ 2k2ε.

Proof. Fix ε > 0, and let U, V, and U be as in the statement of the lemma. Then∑︀k
α,β=1 U(α,β) = 1, let M be the subset of [k]2 such that its elements have at least one
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6 Complexity of Nondeterministic Testing

component that is at most m so we have
∑︀

(α,β)∈M U(α,β) = U by definition. For (α, β) ∈M
set V(α,β) = VU(α,β)

U on the set where U > 0 and V(α,β) = V
k2−(k−m)2 where U = 0, furthermore

for (α, β) < M set V(α,β) = (1−V)U(α,β)

1−U on the set where U < 1 and V(α,β) = 1−V
(k−m)2 where

U = 1. We will show that the k-colored digraphon V defined this way satisfies the
conditions, in particular for each (α, β) ∈ [k]2 we have ‖U(α,β)

− V(α,β)
‖� ≤ ε. We will

explicitly perform the calculation only for (α, β) ∈ M, the other case is analogous. Fix
S,T ⊂ [0, 1], then⃒⃒⃒⃒⃒∫︁

S×T
U(α,β)

− V(α,β)
⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒⃒
⃒
∫︁

S×T,U>0
U(α,β)

− V(α,β) +

∫︁
S×T,U=0

U(α,β)
− V(α,β)

⃒⃒⃒⃒⃒
⃒

≤

t∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒
∫︁

(S∩Pi)×(T∩P j),U>0

U(α,β)

U
(U − V) +

∫︁
(S∩Pi)×(T∩P j),U=0

1
k2 − (k −m)2 (U − V)

⃒⃒⃒⃒⃒
⃒

=

t∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒
∫︁

(S∩Pi)×(T∩P j)
(U − V)

[︃
1U>0

U(α,β)

U
+ 1U=0

1
k2 − (k −m)2

]︃⃒⃒⃒⃒⃒
⃒

≤

t∑︁
i, j=1

⃒⃒⃒⃒⃒
⃒
∫︁

(S∩Pi)×(T∩P j)
(U − V)

⃒⃒⃒⃒⃒
⃒

= ‖U − V‖�𝒫 ≤ ε.

The second inequality is a consequence of
[︁
1U>0

U(α,β)

U + 1U=0
1

k2−(k−m)2

]︁
being a constant

between 0 and 1 on each of the rectangles Pi × P j.
We prove now the second statement of the lemma concerning graphs with V = WG

and a partition 𝒫 that is an ℐn-partition. The general discussion above delivers the
existence of V that is a (k,m)-coloring of WG, which can be regarded as a fractional
coloring of G, as V is constant on the sets associated with nodes of G. For |V(G)| =
n we get for each i j ∈

(︀[n]
2

)︀
a probability distribution on [k]2 with P

(︁
Zi j = (α, β)

)︁
=

n2
∫︀

[ i−1
n ,

i
n ]×[ j−1

n ,
j
n ]

V(α,β)(x, y)dxdy. For each pair i j we make an independent random choice
according to this measure, and color (i, j) by the first, and ( j, i) by the second component
of Zi j to get a proper (k,m)-coloring G of G. It remains to conduct the analysis of the
deviation in the statement of the lemma, we will show that this is small with high
probability with respect to the randomization, which in turn implies the existence. We
have

‖U −WG‖� ≤ ‖U −V‖� + ‖V −WG‖�

≤ k2ε +

k∑︁
α,β=1

‖V(α,β)
−W(α,β)

G ‖�

For each (α, β) ∈ [k]2 we have that P
(︁
‖V(α,β)

−W(α,β)
G ‖� ≥ 4/

√
n
)︁
≤ 2−n, this result is
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6.2 Graph parameter testing

exactly Lemma 4.3 in [30], see also Lemma 4.2.2 for a related result. This implies for
n ≥ 16/ε2 the existence of a suitable coloring, which in turn finishes the proof of the
lemma.

�

Remark 6.2.3. Actually we can perform the same proof to verify the existence of a
k-coloring V such that d�𝒫(U,V) ≤ k2ε. On the other hand, we can not weaken the
condition on the closeness of U and V, a small cut-norm of U − V does not imply the
existence of a suitable coloring V, for example in the case when the number of steps
of U is exponential in 1/‖U − V‖�.

We proceed towards the proof of the main statement of the subsection. Before we
can outline that we require yet another specific lemma.

Letℳ∆,n denote the set of ℐn-step functions U that have steps𝒫U with |𝒫U| ≤ tk(∆, 1)
classes, and values between 0 and 1, where tk is the function from Lemma 3.3.15. In
order to verify Theorem 6.1.5 we will condition on the event that is formulated in the
following lemma. Recall Definition 3.3.12 for the deviation dW,𝒫(V).

Lemma 6.2.4. Let G be a simple graph on n vertices and ∆ > 0. Then for q ≥ 22(2k4/∆2)+4 we
have

|dU,𝒫U(G) − dU,𝒫U(G(q,G))| ≤ ∆, (6.2)

for each U ∈ ℳ = ℳ∆,n simultaneously with probability at least 1 − exp(−∆2q
27 ), whenever

n ≥ 4q/∆.

Proof. Let G and ∆ > 0 be arbitrary, and q be such that it satisfies the conditions of the
lemma. For technical convenience we assume that n is an integer multiple of q, let us

introduce the quantity t1 = tk(∆, 1) = 22
k4

∆2 +2
−2, and denote G(q,G) by F. For the case

when q is not a divisor of n then we just add at most q isolated vertices to G to achieve
the above condition, by this operation dU,𝒫(G) is changed by at most q/n. Also, we can
couple in a way such that dU,𝒫(G(q,G)) remains unchanged with probability at least
1 − q/n.

We will show that there exists anℐn-permutation φ of [0, 1] such that ‖WG−Wφ
F ‖�𝒬 <

∆ for any ℐn-partition𝒬 of [0, 1] into at most t1 classes with high probability. Applying
Lemma 3.3.15 with the error parameter ∆/4 and m0(∆) = tk(∆, 1) for approximating
WG by a step function we can assert that there exists an ℐn-partition 𝒫 of [0, 1] into t𝒫
classes with t𝒫 ≤ t2 with t2 = tk(∆/4, tk(∆, 1)) = 22(2k4/∆2)+2+2(k4/∆2)+1

≤ 22(2k4/∆2)+3 such that for
every ℐn-partition 𝒬 into t𝒬 classes t𝒬 ≤ max{t𝒫, t1} it holds that

‖WG − (WG)𝒫‖�𝒬 ≤ ∆/4.

We only need here

sup
𝒬:t𝒬≤t1

‖WG − (WG)𝒫‖�𝒬 ≤ ∆/4. (6.3)
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6 Complexity of Nondeterministic Testing

This property is by Remark 3.3.14 equivalent to stating that

max
𝒬

max
A∈A

max
S,T⊂[0,1]

t1∑︁
i, j=1

Ai, j

∫︁
S×T

(WG − (WG)𝒫)(x, y)1Qi(x)1Q j(y)dxdy ≤ ∆/4, (6.4)

whereA is the set of all t1 × t1 matrices with −1 or +1 entries.

We can reformulate the above expression (6.4) by putting

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 1 0
1 0 1 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and defining the tensor product BA = A⊗J, so that Bα,βi, j = Ai jJα,β for each A ∈ A. The first
matrix J corresponds to theℐn-partition (S∩T,S∖T,T∖S, [0, 1]∖ (S∪T)) = (T1,T2,T3,T4)
generated by a pair (S,T) of ℐn-sets of [0, 1] so that for any function U : [0, 1]2

→ R it
holds that

4∑︁
i, j=1

Ji j

∫︁
[0,1]2

U(x, y)1Ti(x)1T jdxdy =

∫︁
S×T

U(x, y)dxdy.

It follows that the inequality (6.4) is equivalent to saying

max
A∈A

max
𝒬̂

t1∑︁
i, j=1

4∑︁
α,β=1

(BA)α,βi, j

∫︁
[0,1]2

(WG − (WG)𝒫)(x, y)1Qα
i
(x)1Qβ

j
(y)dxdy ≤ ∆/4, (6.5)

where the second maximum goes over all ℐn-partitions 𝒬̂ = (Qα
i )i∈[t1]
α∈[4]

into 4t1 classes.

Let us substitute an arbitrary graphon U for WG − (WG)𝒫 in (6.5) and define

ĥA,𝒬̂(U) =
∑︁

1≤i, j≤t1
1≤α,β≤4

(BA)α,βi, j

∫︁
[0,1]2

U(x, y)1Qα
i
(x)1Qβ

j
(y)dxdy

and

ĥA(U) = max
𝒬̂

hA,𝒬̂(U)

as the expression whose optima is sought for a fixed A ∈ A.

For notational convenience only lower indices will be used when referring to the
entries of BA. We introduce a relaxed version hA of the above function ĥA by replacing
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6.2 Graph parameter testing

the requirement on 𝒬̂ being an ℐn-partition, instead we define

hA, f (U) =
∑︁

1≤i, j≤4t1

(BA)i, j

∫︁
[0,1]2

U(x, y) fi(x) f j(y)dxdy

with f = ( fi)i∈[4t1] being a fractionalℐn-partition into 4t1 classes, that is, each component
of f is a non-negative ℐn-function, and their sum is the constant 1 function. Further,
we define hA(U) = max f hA, f (U), where f runs over all fractional ℐn-partitions into 4t1

parts. It is easy to see that

|ĥA(U) − hA(U)| ≤ 1/n,

since the two functions coincide when U is 0 on the diagonal blocks. Denote U′ =
WH(q,U), where the graphon is given by the increasing order of the sample points
{Xi | i ∈ [q] }. We wish to upper bound the probability that the deviation |hA(U)−hA(U′)|
exceeds ∆/4, for some A ∈ A. Similarly as above, |ĥA(U′) − hA(U′)| ≤ 1/q.

We remark, that a simple approach would be using a slight variant of the counting
lemma Lemma 3.3.7 that |hA(U) − hA(U′)| ≤ 16t2

1δ�(U,U′) together with a version of
Lemma 3.3.9 for kernels with perhaps negative values, this way we would have to
impose a lower bound on q that is exponential in t1 in order to satisfy the statement of
the lemma. We can do slightly better using more involved methods also employed in
Chapter 4.

We require the notion of ground state energies from [32], see Chapter 4.

ℰ̂(G, J) = max
𝒬

s∑︁
i, j=1

Ji, j

∫︁
[0,1]2

1Qi(x)1Q j(y)WG(x, y)dxdy,

where the maximum runs over all ℐn-partitions 𝒬 into s parts when |V(G)| = n.
Further,

ℰ(U, J) = sup
f

s∑︁
i, j=1

Ji, j

∫︁
[0,1]2

fi(x) f j(y)U(x, y)dxdy,

where the supremum runs over all fractional partitions f into s parts.
Recall Corollary 4.2.11 from Chapter 4. It states in the current setting that there is

an absolute constant c > 0 such that for any s ≥ 1, ρ > 0, 2-kernel U, real matrix J, and
q ≥ cΘ4 log(Θ) with Θ = s2

ρ we have

P(|ℰ(U, J) − ℰ̂(G(q,U), J)| > ρ‖U‖∞) < 2 exp
(︃
−
ρ2q
32

)︃
. (6.6)

We have seen above that ĥA(U) = ℰ̂(U,BA) and hA(U) = ℰ(U,BA). Since q ≥ t2
2 ≥

285t10
1 /∆

5 we can apply Corollary 4.2.11 for each A ∈ Awith s = 4t1, and ρ = ∆/4.
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This shows eventually that with probability at least 1 − 216t2
1+1 exp

(︂
−

∆2q
29

)︂
≤ 1 −

exp
(︂
−

∆2q
28

)︂
we have that

max
A∈A

max
𝒬̂

t1∑︁
i, j=1

4∑︁
α,β=1

(BA)α,βi, j

∫︁
[0,1]2

(WG(q,U))(x, y)1Qα
i
(x)1Qβ

j
(y)dxdy ≤ ∆/2, (6.7)

where the second maximum runs over allℐq-partitions 𝒬̂ of [0, 1] into 4t1 parts. Denote
this event by E1.

This however is equivalent to saying that for every 𝒬 partition into t𝒬 classes t𝒬 ≤ t1

it is true that
‖WG(q,U)‖�𝒬 ≤ ∆/2. (6.8)

The second estimate we require concerns the closeness of the step function (WG)𝒫
and its sample WH(q,(WG)𝒫). Our aim is to overlay these two functions via measure
preserving permutations of [0, 1], such that the measure of the subset of [0, 1]2 where
they differ is as small as possible.

Let V = WH(q,(WG)𝒫), this ℐn-function is well-defined this way and is a step function
with steps forming the ℐn-partition 𝒫′. This latter ℐn-partition of [0, 1] is the image
of 𝒫 induced by the sample {X1, . . . ,Xq} and the map i ↦→ [ i−1

q ,
i
q ). Let ψ be a measure

preserving ℐn-permutation of [0, 1] that satisfies that for each i ∈ [t𝒫] the volumes
λ(Pi△ψ(P′i)) = |λ(Pi) − λ(P′i)|. Let 𝒫′′ denote the partition with classes P′′i = ψ(P′i) and
V′ = (V)ψ (note that V′ and V are equivalent as graphons), furthermore let N be the
(random) subset of [0, 1]2 where the two functions (WG)𝒫 and V′ differ. Then

E[λ(N)] ≤ 2E[
t𝒫∑︁
i=1

|λ(Pi) − λ(P′i)|]. (6.9)

The random variables λ(P′i) for each i can be interpreted as the proportion of positive
outcomes out of q independent Bernoulli trials with success probability λ(Pi). By
Cauchy-Schwarz it follows that

E[
t𝒫∑︁
i=1

|λ(Pi) − λ(P′i)|] ≤

⎯⎷
t𝒫E[

t𝒫∑︁
i=1

(λ(Pi) − λ(P′i))
2] ≤

√︂
t2

q
. (6.10)

This calculation yields that E[λ(N)] ≤
√︁

4t2
q ≤ ∆/8 by the choice of q, since q ≥ t2

2.
Standard concentration result gives us that λ(N) is also small in probability if q is
chosen large enough. For convenience, define the martingale Ml = E[λ(N)|X1, . . . ,Xl]
for 1 ≤ l ≤ q, and notice that the martingale differences are uniformly bounded,
|Ml −Ml−1| ≤

4
q . The Azuma-Hoeffding inequality then yields

P(λ(N) ≥ ∆/4) ≤ P(λ(N) ≥ E[λ(N)] + ∆/8) ≤ exp(−∆2q/211). (6.11)
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Define the event E2 that holds whenever λ(N) ≤ ∆/4, and condition on E1 and E2,
the failure probability of each one is at most exp(−∆2q

211 ).
It follows that ‖Vψ

− (WG)𝒫‖1 ≤ λ(N) ≤ ∆/4. Now employing the triangle inequality
and the bound (6.8) we get for all ℐn-partitions 𝒬 into t parts that

‖WG − (WF)ψ‖�𝒬 ≤ ‖WG − (WG)𝒫‖�𝒬 + ‖(WG)𝒫 − Vψ
‖1 + ‖Vψ

− (WF)ψ‖�ψ(𝒬) ≤ ∆.

Now let U ∈ ℳ∆,n be arbitrary, and let 𝒫U denote the partition consisting of the
steps of U. Let φ be the ℐn-permutation of [0, 1] that is optimal in the sense that
dU,𝒫U(G) = ‖U − (WG)φ‖�𝒫U . Then

dU,𝒫U(G) − dU,𝒫U(F) ≤ ‖U − (WG)φ‖�𝒫U − ‖U − (WF)(ψ∘φ)
‖�𝒫U

≤ ‖WG − (WF)ψ‖�φ−1(𝒫U) ≤ ∆.

The lower bound on the above difference can be handled in a similar way, therefore
we have that |dU,𝒫U(G) − dU,𝒫U(F)| ≤ ∆ for every U ∈ ℳ∆,n.

We conclude the proof with mentioning that the failure probability of the two events
E1 and E2 taking place simultaneously is at most exp(−∆2q

27 ).
�

We are now ready to conduct the proof of the main result of the chapter concerning
graph parameters.

Proof of Theorem 6.1.5.
Let us fix ε > 0 and the simple graph G with n vertices. We introduce the error

parameter ∆ = k−2q2
1(ε/2)

4k2+1 and set q ≥ 22(2k4/∆2)+4 . To establish the lower bound on f (G(q,G))
not much effort is required: we pick a (k,m)-coloring G of G that certifies the value
f (G), that is, 1(G) = f (G). Then the (k,m)-coloring of F = G(q,G) of G(q,G) induced by
G satisfies 1(F) ≥ 1(G)−ε/2 with probability at least 1−ε/2 since q ≥ q1(ε/2), due to the
testability property of 1, which in turn implies f (G(q,G)) ≥ f (G)− ε/2 with probability
at least 1 − ε/2.

The problem concerning the upper bound in terms of q on f (G(q,G)) is the difficult
part of the proof, the rest of it deals with this case. Recall that ℳ∆,n denotes the set
of the [0, 1]-valued proper ℐn-step functions that have at most tk(∆, 1) steps. Let us
condition on the event in the statement of Lemma 6.2.4, that is for all U ∈ ℳ∆,n it holds
that |dU,𝒫U(G) − dU,𝒫U(G(q,G))| ≤ ∆. Let 𝒩 be the set of all k-colored digraphs W that
are ℐn-step functions with at most tk(∆, 1) steps 𝒫, and that satisfy dU,𝒫(G) ≤ 2∆ for
U =

∑︀
(α,β)∈M W(α,β).

Our main step in the proof is that, conditioned on the aforementioned event, we
construct for each (k,m)-coloring of F a corresponding coloring of G so that the 1 values
of the two colored instances are sufficiently close. We elaborate on this argument in
the following.

Let us fix an arbitrary (k,m)-coloring of F denoted by F. According to Lemma 3.3.15
there exists a W that is a proper ℐn-step function with at most tk(∆, 1) steps 𝒫W such
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that there exists an ℐn-permutation φ of [0, 1] such that d�𝒫((WF)φ,W) ≤ ∆. Therefore,
setting U =

∑︀
(α,β)∈M W(α,β) we have dU,𝒫(F) ≤ ∆ and U ∈ ℳ∆,n. This in turn implies that

dU,𝒫(G) ≤ 2∆, and consequently W ∈ 𝒩 . It follows from Lemma 6.2.2 that there exists
a (k,m)-coloring of G denoted by G such that d�(W, (WG)ψ) ≤ 4k2∆ for some ψ that is
an ℐn-permutation of [0, 1].

Therefore we get that δ�(G,F) ≤ (4k2 + 1)∆. By virtue of Lemma 6.2.1 we can assert
that |1(G) − 1(F)| ≤ ε/2. This finishes our argument, as F was arbitrary, and the failure
probability of the conditioned event in the analysis of the upper bound is at most ε/2.

�

6.3 Weak nondeterminism

We introduce an even more restrictive notion of nondeterminism corresponding to
node colorings (Definition 6.1.2 used throughout the chapter is a special case of the
nondeterminism notion used commonly in complexity theory). Relying on this new
concept we are able to improve on the upper bound of the sample complexity using
a simplified version of our approach applied in the proof of Theorem 6.1.5 without
significant alterations.

We formulate the definition of a stronger property than the previously defined
nondeterministic testability. The notion itself may seem at first more involved, but in
fact it only corresponds to the case, where the witness parameter 1 of f for a graph G
is evaluated only on the set of node-colorings of G instead of edge-colorings in order
to define the maximum expression. This modification will enable us to rely only on
the cut-norm and the corresponding regularity lemmas instead of the cut-𝒫-norm that
was employed in the general case, thus leads us to improved upper bounds on the
sample complexity of f with respect to that of 1. This time we only treat the case of
undirected graph colorings in detail, the directed case is analogous.

We will introduce the set of colorings of G called node-(k,m)-colorings. Let 𝒯 =
(T1, . . . ,Tk) be a partition of V(G) and𝒟 = ((D1, . . . ,Dm), (D′1, . . . ,D

′

m)) be two partitions
of [k]2, together they induce two partitions, 𝒞 = ((C1, . . . ,Cm), (C′1, . . . ,C

′

m)), of V(G)2

such that each class is of the form Cα = ∪(i, j)∈DαTi×T j and C′α = ∪(i, j)∈D′αTi×T j respectively.
A node-(k,m)-coloring of G is defined by some 𝒞 of the previous form and is the 2m-
tuple of simple graphs G = (G1, . . . ,Gm, G̃1, . . . , G̃m) with Gα = G[Cα] and G̃α = Gc[C′α].
Here Gc stands for the complement of G (the union of G and its complement is the
directed complete graph with all loops present), and G[Cα] is the union of induced
labeled subgraphs of G between Ti and T j for each (i, j) ∈ Dα for i , j, in the case of
i = j the term in the union is the induced labeled subgraph of G on the node set Ti.

These special edge-2m-colored graphs that can serve as node-(k,m)-colorings are
given by a triple (G,𝒯 ,𝒟), where G is a simple graph, 𝒯 is a partition of V(G) into
k parts, and 𝒟 is a pair of partitions of [k]2 into m parts. In the case of r-uniform
hypergraphs for arbitrary r ≥ 2 a node-(k,m)-colorings is also a triple (G,𝒯 ,𝒟), the
only difference in comparison to the graph case is that 𝒟 is a pair of partitions of [k]r

into m parts, the rest of the description is analogous.
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Definition 6.3.1. The r-uniform hypergraph parameter f is weakly non-deterministically
testable if there exist integers m and k with m ≤ kr and a testable edge-2m-colored directed
r-graph parameter 1 such that for any simple r-graph G we have f (G) = maxG 1(G), where
the maximum goes over the set of node-(k,m)-colorings of G.

We present two approaches to handle this variant of the nondeterministic testability.
The first method follows the proof framework introduced in the previous section in the
general case for graphs, its adaptation to the current setting results an improvement
on the upper bound on the sample complexity to a 2-fold exponential of the sample
complexity of the witness a parameter and is also applicable to the corresponding
property testing setting. The second idea entails the graph case as well as the r-uniform
hypergraph setting for arbitrary rank r of the weak setting. We manage to reduce the
upper bound on the sample complexity further to only exponential dependence. This
approach does seems to be more problem specific, than the previous one, and it does
not directly yield an analogous statement in property testing.

First approach

The following lemma is the analogous result to Lemma 6.2.2 that can be employed in the
proof of the variant of Theorem 6.1.5 for the special case of weakly nondeterministically
testable graph parameters.

Lemma 6.3.2. Let ε > 0, let U and V be arbitrary graphons with ‖U − V‖� ≤ ε, and also
let k ≥ 2. For any U = (U(1), . . . ,U(m), Ũ(1), . . . , Ũ(m)) node-(k,m)-coloring of U there exists
a node-(k,m)-coloring of V denoted by V = (V(1), . . . ,V(k), Ṽ(1), . . . , Ṽ(m)) so that d�(U,V) =∑︀m

i=1 ‖U(i)
−V(i)

‖�+
∑︀m

i=1 ‖Ũ(i)
− Ṽ(i)

‖� ≤ 2k2ε. If V = WG for some simple graph G on n nodes
and each U(i) is anℐn-step function then there is a coloring G of G such that d�(U,WG) ≤ 2k2ε.

Proof. Our approach is quite elementary: consider the partition 𝒯 of [0, 1] and 𝒞 that
is a pair of partitions of [0, 1]2 corresponding to a pair of partitions𝒟 of [k]2 as above
that together with U describe U as above, and define V(i) = V1Ci and Ṽ(i) = (1 − V)1C′i
for each i ∈ [m]. Then

‖U(i)
− V(i)

‖� ≤

∑︁
(α,β)∈Di

‖(U − V)1Tα×Tβ‖� ≤ ε|Di| (6.12)

for each i ∈ [m], and the same upper bound applies to ‖Ũ(i)
− Ṽ(i)

‖�. Summing up over
i gives the result stated in the lemma.

The argument showing the part regarding simple graphs is identical.
�

Note that in Lemma 6.2.2 we required U and V to be close in the cut-𝒫-norm for
some partition 𝒫, and U to be a 𝒫 step function to guarantee for each U the existence
of V that is close to it in the cut distance of k-colored digraphons. Using the fact that
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in the weakly non-deterministic framework cut-closeness of instances implies the cut-
closeness of the sets of their node-(k,m)-colorings we can formulate the next corollary
of Theorem 6.1.5 that is one of the main results of this subsection.

Corollary 6.3.3. Let f be a weakly non-deterministically testable graph parameter with witness
parameter 1 of node-(k,m)-colored graphs with the corresponding sample complexity q1. Then
f is testable with sample complexity q f , and we have that q f (ε) ≤ exp(2)(cq2

1(ε/2)) for some
c > 0 large enough that does depend only on k and not on f for any ε > 0.

Proof. We will give only a sketch of the proof, as it is almost identical to that of
Theorem 6.1.5, and we automatically refer to that, including the notation used in
the current proof. Let G be a simple graph on n nodes, and let ε > 0 be fixed,
q ≥ exp(2)(cq2

1(ε/2)) for some constant c > 0 that will be specified later. The part
concerning the lower bound of f (G(q,G)) is completely identical to the general case.

For the upper bound set ∆ = exp(−cq2
q(ε)). We condition on the event δ�(G,G(q,G)) ≤

∆, whose failure probability is sufficiently small due to Lemma 3.3.9, i.e. for q ≥ 2100/∆2 it
is at most exp

(︁
−4100/∆2 ∆2

50

)︁
. We define c to be large enough so that the above lower bound

on q holds true. Now we select an arbitrary node-(k,m)-coloring F ofG(q,G) and apply
the Weak Regularity Lemma, Lemma 3.3.4, for 2m-colored graphons, Lemma 3.3.11,
in the ℐn-step function case with error parameter ∆/(2k2 + 1) (keeping in mind that
m ≤ k2) to get a tuple of ℐn-step functions forming U with at most t′

2k2(∆/(2k2 + 1))
steps. We define the ℐn-step function graphon U =

∑︀m
i=1 Ui and note that our condition

implies that δ�(G,U) ≤ 2∆, since δ�(G,U) ≤ δ�(G,G(q,G)) + δ�(G(q,G),U). To finish
the proof we apply Lemma 6.3.2, it implies the existence of a coloring G of G so that
δ�(G,F) ≤ (2k2 +1)∆. Applying Lemma 6.2.1 delivers the desired result by establishing
that |1(F) − 1(G)| ≤ ε.

�

Second approach

Recall the notion of layered ground state energies of r-arrays of Chapter 4 for arbitrary
r ≥ 1.

Let r, k ≥ 1, and G = (Gz)z∈[k]r be [k]r-tuple of real r-arrays of size n, and𝒯 = (T1, . . . ,Tk)
a partition of [n] into k parts. Then

ℰ𝒯 (G) =
∑︁
z∈[k]r

1
nr

n∑︁
i1,...,ir=1

Gz(i1, . . . , ir)
r∏︁

j=1

1Tzj
(i j), (6.13)

and

ℰ̂(G) = max
𝒯

ℰ𝒯 (G), (6.14)

where the maximum runs over all integer partitions 𝒯 of [n] into k parts.
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6.3 Weak nondeterminism

We will make use of Theorem 4.1.4 that deals with the testability of layered GSE,
in particular the dependence of the upper bound on the sample complexity on the
dimension r.

We are ready to state and prove the main theorem of the section that includes a
further improvement fo the upper bound on the sample complexity compared to our
first approach in the weak nondeterministic testing setting.

Theorem 6.3.4. Let r ≥ 1 and f be a weakly non-deterministically testable r-graph parameter
with witness parameter 1 of node-(k,m)-colored graphs, and let the corresponding sample
complexity functions be q f and q1. Then f is testable and there exist a cr,k > 0 that does depend
only on r and k, but not on f such that for any ε > 0 we have q f (ε) ≤ exp(cr,kq1(ε/8)).

Proof. Let r ≥ 1 be arbitrary, and f be a weakly nondeterministically testable r-graph
parameter with a certificate specified by the constants k and m ≤ kr, and the testable
2m-colored r-graph parameter 1. Then

f (G) = max
𝒯 ,𝒟
1(G(G,𝒯 ,𝒟)),

where the maximum goes over every pair (𝒯 ,𝒟), where 𝒯 is a partition of V(G)
into k parts, and 𝒟 is a pair of partitions of [k]r into m parts, and G(G,𝒯 ,𝒟) is the
edge 2m-colored graph defined by its parameters as seen above. Define the for each
fixed 𝒟 the node-k-colored r-graph (i.e., a simple r-graph together with a k-coloring
of its nodes) parameter 1𝒟(G,𝒯 ) = 1(G(G,𝒯 ,𝒟)) and the simple r-graph parameter
f𝒟(G) = max𝒯 1𝒟(G,𝒯 ).

Let ε > 0 be arbitrary, define

1ε(G(G,𝒫,𝒟)) =
∑︁
F,𝒯

t(G(F,𝒯 ,𝒟),G(G,𝒫,𝒟))1(G(F,𝒯 ,𝒟)),

where the sum goes over all simple r-graphs F on q0 = q1(ε/8) vertices and partitions
𝒯 of [q0] into k parts. By the testability of 1we have

|1ε(G(G,𝒫,𝒟)) − 1(G(G,𝒫,𝒟))| ≤ ε/4, (6.15)

for each permitted tuple (G,𝒫,𝒟). Analogously we define

1ε,𝒟(G,𝒫) =
∑︁
F,𝒯

t(G(F,𝒯 ,𝒟),G(G,𝒫,𝒟))1(G(F,𝒯 ,𝒟)),

and

f ε,𝒟(G) = max
𝒯

1ε,𝒟(G,𝒯 ).

It follows from (6.15) that for any G simple r-graph

| f ε,𝒟(G) − f𝒟(G)| ≤ ε/4,

177



6 Complexity of Nondeterministic Testing

and for any ε > 0 and q ≥ 1 we have

| f (G) − f (G(q,G))| ≤ max
𝒟

| f ε,𝒟(G) − f ε,𝒟(G(q,G))| + ε/2. (6.16)

For any ε > 0 and 𝒟 that is a pair of partitions of [k]r into m parts the parameter f ε,𝒟

can be re-written as an energy of q0-arrays: For G of size [n] let H = (Hz)z∈[k]q0 so that
for each z ∈ [k]q0 the real q0-array Hz is defined by

Hz(i1, . . . , iq0) = 1𝒟(G[(i1, . . . , iq0)],𝒫z(i1, . . . , iq0))

for each (i1, . . . , iq0) ∈ [n]q0 , where 𝒫z(i1, . . . , iq0) = (P1, . . . ,Pk) is a partition of (i1, . . . , iq0)
given by Pl = { i j | z j = l } for l ∈ [k]. Then for each 𝒯 that is a partition of [n] into k
parts we can assert that

1ε,𝒟(G,𝒯 ) =
∑︁

z∈[k]q0

1
nq0

n∑︁
i1,...,ir=1

1𝒟(G[(i1, . . . , iq0)],𝒫z(i1, . . . , iq0))
r∏︁

j=1

1Tzj
(i j)

=
∑︁

z∈[k]q0

1
nq0

n∑︁
i1,...,ir=1

Hz(i1, . . . , iq0)
r∏︁

j=1

1Tzj
(i j)

= ℰ𝒯 (H),

and further

f ε,𝒟(G) = max
𝒯

1ε,𝒟(G,𝒯 ) = max
𝒯

ℰ𝒯 (H) = ℰ̂(H).

Analogously it holds for any q ≥ q0 that f ε,𝒟(G(q,G)) = ℰ̂(G(q,H)).

This implies by Corollary 4.2.11 that for q ≥ Θ4 log(Θ) with Θ =
2q0+11kq0 q0

ε and each
fixed𝒟 that

P(| f ε,𝒟(G) − f ε,𝒟(G(q,G))| > ε/2) < 2 exp
(︃
−
ε2q

32q2
0

)︃
.

The probability that the event in the previous formula occurs for some 𝒟 is at most

k2rkr2 exp
(︂
−

ε2q
32q2

0

)︂
, therefore by recalling (6.16) we can conclude that there exists a con-

stant cr,k > 0 not depending on other specifics of f such that for each simple graph G
and q ≥ exp(cr,kq1(ε/8)) it holds that

P(| f (G) − f (G(q,G))| > ε) < ε.

�
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6.4 Effective upper bound for the r-cut norm of a
sampled r-graph

We are going to establish upper and lower bounds for the genuine r-cut norm (see
Definition 3.3.20) of an r-kernel using certain subgraph densities mentioned in (2.4)
and (2.10). Let W be an r-kernel, the r-cut norm of W reads as

‖W‖�,r = sup
Si⊂[0,1]h([r−1])

i∈[r]

⃒⃒⃒⃒⃒
⃒⃒∫︁
∩i∈[r]p−1

h([r]∖{i})(Si)
W(xh([r],r−1))dλ(xh([r],r−1))

⃒⃒⃒⃒⃒
⃒⃒ ,

where the supremum is taken over sets Si that are (r − 1)-symmetric.

Let further H ⊂
(︀[q]

r

)︀
be a simple r-graph on q vertices, recall

t*(H,W) =

∫︁
[0,1]h([q],r−1)

∏︁
e∈H

W(xh(e,r−1))dλ(x),

this expression is a variant of the subgraph densities discussed in Chapter 2 that in the
case of W = WG counts the graph homomorphisms from H to W that preserve adjacency
but not necessarily non-adjacency. Using the previously introduced terminology we
can write

t*(H,W) =
∑︁

H⊂F⊂(q
r)

t(F,W).

Let K2
r denote the simple r-graph that is the 2-fold blow-up of the r-graph consist-

ing of r vertices and one edge. That is, V(K2
r ) = {v0

1, . . . , v
0
r , v1

1, . . . , v
1
r } and E(K2

r ) =

{ {vi1
1 , . . . , v

ir
r } | i1, . . . , ir ∈ {0, 1} }, alternatively we may regard K2

r as a subset of
(︀[2r]

r

)︀
.

It was shown by Borgs, Chayes, Lovász, Sós, and Vesztergombi [30] for r = 2 with
tools from functional analysis that for any symmetric 2-kernel W with ‖W‖∞ ≤ 1 we
have

1
4

t*(K2
2,W) ≤ ‖W‖�,2 ≤ [t*(K2

2,W)]1/4, (6.17)

where [t*(K2
2, .)]

1/4 is also called the trace norm or the Schatten norm of the integral
operator TW corresponding to W. We remark that in the above case K2

2 stands for the
4-cycle. We establish here a similar relation between t*(K2

r ,W) and ‖W‖�,r for general r.

It is not hard to show that for any r ≥ 1 and r-kernel W it holds that t*(K2
r ,W) ≥ 0.

t*(K2
r ,W) =

∫︁
[0,1]h(V(K2

r ),r−1)

∏︁
i1,...,ir∈{0,1}

W(x
h({vi1

1 ,...,v
ir
r },r−1)

)dλ(x)

179



6 Complexity of Nondeterministic Testing

=

∫︁
[0,1]T1

∫︁
[0,1]T2

∏︁
i1,...,ir∈{0,1}

W(x
h({vi1

1 ,...,v
ir
r },r−1)

)dλ(xT2)dλ(xT1)

=

∫︁
[0,1]T1∪T2

2

⎡⎢⎢⎢⎢⎢⎣∫︁
[0,1]T0

2

∏︁
i1,...,ir−1∈{0,1}

W(x
h({vi1

1 ,...,v
ir−1
r−1 ,v

0
r },r−1)

)dλ(xT0
2
)

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣∫︁
[0,1]T1

2

∏︁
i1,...,ir−1∈{0,1}

W(x
h({vi1

1 ,...,v
ir−1
r−1 ,v

1
r },r−1)

)dλ(xT1
2
)

⎤⎥⎥⎥⎥⎥⎦ dλ(xT1∪T2
2
)

=

∫︁
[0,1]T1

⎡⎢⎢⎢⎢⎢⎣∫︁
[0,1]T3∖T1

∏︁
i1,...,ir−1∈{0,1}

W(x
h({vi1

1 ,...,v
ir−1
r−1 ,u},r−1)

)dλ(xT3∖T1)

⎤⎥⎥⎥⎥⎥⎦
2

dλ(xT1),

where T1 = h(V(K2
r ) ∖ {v0

r , v1
r }, r − 1), T2 = h(V(K2

r ), r − 1) ∖ T1, and Ti
2 is the subset of T2

whose elements contain vi
r, but not vi+1

r , for i = 0, 1. Further, T2
2 = T2 ∖ (T0

2 ∪ T1
2) and

T3 = h(V(K2
r ) ∖ {v0

r , v1
r }∪ {u}, r− 1), note that the T2

2 coordinates do not actually appear in
the integrand. We used Fubini’s theorem, that enabled to integrate first over variables
with coordinates from T2 while the variables with T1 coordinates were fixed, which
we could then use to identify v0

r and v1
r .

In the proof of (6.17) the authors drew on tools from functional analysis and the
fact that a 2-kernel describes an integral operator, those concepts do not have a nat-
ural counterpart for r-kernels. However, we can provide an analogous result by the
repeated application of Fubini’s theorem and the Cauchy-Schwarz inequality in the
L2-space.

Lemma 6.4.1. For any r ≥ 1 and r-kernel W with ‖W‖∞ ≤ 1 we have

2−rt*(K2
r ,W) ≤ ‖W‖�,r ≤ [t*(K2

r ,W)]1/2r
. (6.18)

Proof. The lower bound on ‖W‖�,r is straightforward, and K2
r could even be replaced

by any other simple r-graph with 2r edges, we only need to use a simplified version of
Lemma 3.3.24 for kernels, with setting one of the kernels to 0.

For the other direction, let us fix a collection of arbitrary symmetric measurable
functions f1, . . . , fr : [0, 1]h([r−1])

→ [0, 1]. Set V = {v1, . . . , vr} and for any l ≥ 1 and
i1, . . . , il ∈ {0, 1} let

Vi1,...,il = {vi1
1 , . . . , v

il
l , vl+1, . . . , vr}.

Further, let V j = V∖{v j} and for l+1 ≤ j ≤ r let Vi1,...,il
j = Vi1,...,il ∖{v j}. Let us introduce the

index sets T1 = h(V1), S1 = h(V, r− 1) ∖T1, S0
1 = h(V0, r− 1) ∖T1, and S1

1 = h(V1, r− 1) ∖T1.
For 1 ≤ l ≤ r − 1 we define the sets

Tl+1 = ∪i1,...,il∈{0,1}h(V
i1,...,il
l+1 ),

180



6.4 Effective upper bound for the r-cut norm of a sampled r-graph

Sl+1 = (Tl ∪ S0
l ∪ S1

l ) ∖ Tl+1,

and

S0
l+1 = { (e ∖ {vl+1}) ∪ {v0

l+1} | e ∈ Sl+1 }, S1
l+1 = { (e ∖ {vl+1}) ∪ {v0

l+1} | e ∈ Sl+1 }.

Then we have⃒⃒⃒⃒⃒
⃒⃒∫︁

[0,1]h(V,r−1)

r∏︁
j=1

f j(xh(V j))W(xh(V,r−1))dλ(xh(V,r−1))

⃒⃒⃒⃒⃒
⃒⃒

=

⃒⃒⃒⃒⃒
⃒⃒∫︁

[0,1]T1

f1(xh(V1))
∫︁

[0,1]S1

r∏︁
j=2

f j(xh(V j))W(xh(V,r−1))dλ(xS1)dλ(xT1)

⃒⃒⃒⃒⃒
⃒⃒

≤

[︃∫︁
[0,1]T1

f 2
1 (xh(V1))λ(xT1)

]︃1/2
⎡⎢⎢⎢⎢⎢⎢⎢⎣
∫︁

[0,1]T1

⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]S1

r∏︁
j=2

f j(xh(V j))W(xh(V,r−1))dλ(xS1)

⎞⎟⎟⎟⎟⎟⎟⎠
2

dλ(xT1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
1/2

≤

[︃ ∫︁
[0,1]T1

⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]S0
1

r∏︁
j=2

f j(xh(V0
j ))W(xh(V0,r−1))dλ(xS0

1
)

⎞⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]S1
1

r∏︁
j=2

f j(xh(V1
j ))W(xh(V1,r−1))dλ(xS1

1
)

⎞⎟⎟⎟⎟⎟⎟⎠ dλ(xT1)
]︃1/2

,

where we used ‖ f1‖∞ ≤ 1 and the identity
∫︀

(
∫︀

f (x, y)dy)2dx =
∫︀

f (x, y) f (x, z)dydzdx in
the previous inequality. We proceed by upper bounding the last expression through
repeated application of this reformulation combined with Cauchy-Schwarz.[︃ ∫︁

[0,1]Tl

⎛⎜⎜⎜⎜⎜⎝ ∏︁
i1,...,il−1∈{0,1}

fl(xh(Vi1 ,...,il−1
l )

)

⎞⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]Sl

∏︁
i1,...,il−1∈{0,1}

r∏︁
j=l+1

f j(xh(Vi1 ,...,il−1
j )

)W(xh(Vi1 ,...,il−1 ))dλ(xSl)

⎞⎟⎟⎟⎟⎟⎟⎠ dλ(xTl)
]︃ 1

2l−1

≤

⎡⎢⎢⎢⎢⎢⎢⎣
∫︁

[0,1]Tl

⎛⎜⎜⎜⎜⎜⎝ ∏︁
i1,...,il−1∈{0,1}

fl(xh(Vi1 ,...,il−1
l )

)

⎞⎟⎟⎟⎟⎟⎠
2

dλ(xTl)

⎤⎥⎥⎥⎥⎥⎥⎦
1
2l

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∫︁

[0,1]Tl

⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]Sl

∏︁
i1,...,il−1∈{0,1}

r∏︁
j=l+1

f j(xh(Vi1 ,...,il−1
j )

)W(xh(Vi1 ,...,il−1 ))dλ(xSl)

⎞⎟⎟⎟⎟⎟⎟⎠
2

dλ(xTl)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
1
2l
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≤

[︃∫︁
[0,1]Tl

⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]S0
l

∏︁
i1,...,il−1∈{0,1}

r∏︁
j=l+1

f j(xh(Vi1 ,...,il−1 ,0
j )

)W(xh(Vi1 ,...,il−1 ,0))dλ(xS0
l
)

⎞⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]S1
l

∏︁
i1,...,il−1∈{0,1}

r∏︁
j=l+1

f j(xh(Vi1 ,...,il−1 ,1
j )

)W(xh(Vi1 ,...,il−1 ,1))dλ(xS1
l
)

⎞⎟⎟⎟⎟⎟⎟⎠ dλ(xTl)
]︃ 1

2l

=

⎡⎢⎢⎢⎢⎢⎢⎣
∫︁

[0,1]Tl∪S0
l ∪S1

l

∏︁
i1,...,il∈{0,1}

r∏︁
j=l+1

f j(xh(Vi1 ,...,il
j )

)W(xh(Vi1 ,...,il ))dλ(xS0
l
)dλ(xS1

l
)dλ(xTl)

⎤⎥⎥⎥⎥⎥⎥⎦
1
2l

=

[︃ ∫︁
[0,1]Tl+1

⎛⎜⎜⎜⎜⎜⎝ ∏︁
i1,...,il∈{0,1}

fl+1(x
h(V

i1 ,...,il
l+1 )

)

⎞⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎝
∫︁

[0,1]Sl+1

∏︁
i1,...,il∈{0,1}

r∏︁
j=l+2

f j(xh(Vi1 ,...,il
j )

)W(xh(Vi1 ,...,il ))dλ(xSl+1)

⎞⎟⎟⎟⎟⎟⎟⎠ dλ(xTl+1)
]︃ 1

2l

...

≤

⎡⎢⎢⎢⎢⎢⎣∫︁
[0,1]Tr∪S0

r∪S1
r

∏︁
i1,...,ir∈{0,1}

W(xh(Vi1 ,...,ir ))dλ(xTr∪S0
r∪S1

r
)

⎤⎥⎥⎥⎥⎥⎦
1
2r

= t*(K2
r ,W)1/2r

,

where in subsequent inequalities we first used the Cauchy-Schwarz inequality, and
afterwards that ‖ f j‖∞ ≤ 1 for any j ∈ [r]. As the test functions f1, . . . , fr were arbitrary
the statement of the lemma follows. �

Utilizing the previous result we can obtain a quantitative upper bound on the r-cut
norm of a graph sampled from a kernel for arbitrary r.

Lemma 6.4.2. Let r, k ≥ 1. For any ε > 0 and t ≥ 1 there exists an integer qcut(r, k, ε, t) ≤
cr2(trk2(1/ε))2r+1 for some universal constant c > 0 such that for any k-tuple of r-kernels
U1, . . . ,Uk that take values in [−1, 1], and any integer q ≥ qcut(r, k, ε, t) it holds with probability
at least 1 − ε that if

k∑︁
l=1

‖Ul‖�,r ≤

(︂
ε

ktr

)︂2r

2−r−1,

then

sup
𝒬,t𝒬≤t

k∑︁
l=1

‖WH(q,Ul)‖�,r,𝒬 ≤ ε.

where the supremum goes over (r − 1)-symmetric partitions 𝒬 of [0, 1]h([r−1]) into at most t
classes.
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6.4 Effective upper bound for the r-cut norm of a sampled r-graph

Proof. Let r, k, t ≥ 1 and ε > 0 be fixed, and let U1, . . . ,Uk and q be arbitrary. We have by
a straight-forward variant of Lemma 3.5.4 for any r-kernel U, positive integer q, and
F ∈ Πr we have that

P(|t*(F,U) − t*(F,H(q,U))| ≥ δ) ≤ 2 exp(−
δ2q

8|V(F)|2
)

for any δ > 0, in particular for F = K2
r we have

P(|t*(K2
r ,U) − t*(K2

r ,H(q,U))| ≥ δ) ≤ 2 exp(−
δ2q
32r2 ). (6.19)

Then we can estimate sup
𝒬,t𝒬≤t

∑︀k
l=1 ‖WH(q,Ul)‖�,r,𝒬 using Lemma 6.4.1. Set δ = 1

2

(︁
ε

ktr

)︁2r

,

and let q be large enough so that 2k exp
(︂
−
δ2q
32r2

)︂
< ε. LetA denote the set of all r-arrays

of size t with {−1, 1} entries. Then we have

sup
𝒬,t𝒬≤t

k∑︁
l=1

‖WH(q,Ul)‖�,r,𝒬

= sup
𝒬,t𝒬≤t

max
A∈A

sup
Tl

j⊂[0,1]h([r−1])

j∈[r],l∈[k]

k∑︁
l=1

t∑︁
i1,...,ir=1

A(i1, . . . , ir)
∫︁

[0,1]h([r],r−1)

WH(q,Ul)(xh([r],r−1))
r∏︁

j=1

1Tl
j∩Qi j

(xh([r]∖{ j}))dλ(xh([r],r−1))

≤ tr
k∑︁

l=1

‖WH(q,Ul)‖�,r

≤ tr
k∑︁

l=1

t*(K2
r ,WH(q,Ul))

1/2r

= tr
k∑︁

l=1

t*(K2
r ,H(q,Ul))1/2r

≤ tr
k∑︁

l=1

(t*(K2
r ,Ul) + δ)1/2r

≤ tr
k∑︁

l=1

(2r
‖Ul‖�,r + δ)1/2r

≤ ε,

and the assumptions of the calculation, in particular the fourth inequality, hold true
with probability at least 1−ε. For convenience, the first inequality is true by definition,
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the third holds under the event in (6.19), whereas the second and the fourth are the
consequence of Lemma 6.4.1.

�

6.5 Hypergraph parameter testing

In this section we prove Theorem 6.1.6 that generalizes Theorem 6.1.5 from the case
of graphs to r-graphs with arbitrary r ≥ 2. The proof relies crucially on Lemma 6.4.2
from the previous section. We start with presenting the required notation.

In the current section coloring is always meant as edge coloring. A k-coloring of a t-
colored r-graph G = (Gα)α∈[t] is a tk-colored r-graph Ĝ = (Gα,β)α∈[t],β∈[k] with colors from
the set [t] × [k], where each of the original color classes indexed by α ∈ [t] is retrieved
by taking the union of the new classes corresponding to (α, β) over all β ∈ [k], that is
Gα = ∪β∈[k]Gα,β. This last operation is called k-discoloring of a [t]× [k]-colored graph, we
denote it by [Ĝ, k] = G. We will sometimes write tk-colored for [t]× [k]-colored graphs
when it is clear from the context what we mean.

Similar to the finitary case, a k-coloring of a t-colored W = (Wα)α∈[t] ∈ Ξr,t is a tk-colored
r-graphon Ŵ = (Wα,β)α∈[t],β∈[k] with colors from the set [t] × [k] so that

∑︀
β∈[k] W(α,β)(x) =

Wα(x) for each x ∈ [0, 1]h([r],r−1) and α ∈ [t]. The k-discoloring [Ŵ, k] of Ŵ is defined
analogously to the discrete case, and simple r-graphons are treated as 2-colored.

The next lemma is analogous to Lemma 6.2.2. It describes under what metric
conditions a k-coloring of a t-colored graphon can be transfered to another object so that
the two tk-colored graphons are close in a certain sense. For the sake if completeness
we sketch the proof.

Lemma 6.5.1. Let ε > 0, t ≥ 2, U be a t-colored r-graphon that is an (r, r − 1)-step function
with steps 𝒫 = (P1, . . . ,Pm) and V be a t-colored r-graphon with d�,r,𝒫(U,V) ≤ ε. For any
k ≥ 1 and [t] × [k]-colored r-graphon Û that is an (r, r − 1)-step function with steps from 𝒫
such that [Û, k] = U there exists a k-coloring of V denoted by V̂ so that

d�,r,𝒫(Û, V̂) ≤ kε.

Proof. Fix ε > 0, t ≥ 2, and let U = (Uα)α∈[t], V = (Vα)α∈[t] and Û = (Uα,β)α∈[t],β∈[k] as in
the statement of the lemma. Then

∑︀t
α=1 Uα = 1 and

∑︀k
β=1 Uα,β = Uα for each α ∈ [t]. Let

us define V̂ = (Vα,β)α∈[t],β∈[k] that is a k-coloring of V. Set Vα,β = Vα[1Uα=0
1
k + 1Uα>0

Uα,β

Uα ],
it is easy to see that the factor in the brackets is an (r, r − 1)-step function with steps
𝒫 = (P1, . . . ,Pm). We estimate the deviation of each pair Uα,β and Vα,β from above in
the r-cut norm, for this we fix the (r − 1)-symmetric S1, . . . ,Sr ⊂ [0, 1]h([r−1]). Then we
have ⃒⃒⃒⃒⃒

⃒
∫︁
∩l∈[r]p−1

l (Sl)
Uα,β
− Vα,β

⃒⃒⃒⃒⃒
⃒ ≤ t∑︁

j1,..., jr=1

⃒⃒⃒⃒⃒
⃒⃒∫︁
∩l∈[r]p−1

l (Sl∩P jl )
Uα,β
− Vα,β

⃒⃒⃒⃒⃒
⃒⃒
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=

t∑︁
j1,..., jr=1

⃒⃒⃒⃒⃒
⃒⃒∫︁
∩l∈[r]p−1

l (Sl∩P jl )
(Uα
− Vα)[1Uα=0

1
k

+ 1Uα>0
Uα,β

Uα
]

⃒⃒⃒⃒⃒
⃒⃒

≤ ‖Uα
− Vα

‖�,r,𝒫.

Taking the maximum over all (r − 1)-symmetric measurable r-tuples S1, . . . ,Sr and
summing up over all choices of α and β delivers the upper bound we were after. �

The central tool in the main proof is the following lemma which can also be of
independent interest. Informally it states that every coloring of a sampled r-graph
can be projected onto the graphon from which the graph was sampled from, such that
another sampling procedure with a much smaller sample size cannot distinguish the
two colored objects.

Lemma 6.5.2. For every r ≥ 1, proximity parameter δ > 0, palette sizes t, k ≥ 1, sampling
depth q0 ≥ 1 there exists an integer qtv = qtv(r, δ, q0, t, k) ≥ 1 such that for every q ≥ qtv the
following holds. Let U = (Uα)α∈[t] be a t-colored r-graphon and let Vα denote WG(q,Uα) for each
α ∈ [t], also let V = (Vα)α∈[t], so WG(q,U) = V. Then with probability at least 1 − δ there exists
for every k-coloring V̂ = (Vα,β)α∈[t],β∈[k] of V a k-coloring Û = (Uα,β)α∈[t],β∈[k] of U = (Uα)α∈[t]

such that we have

dtv(µ(q0, Ŵ), µ(q0, Û)) ≤ δ.

Proof. We proceed by induction with respect to r. The statement is not difficult to
verify for r = 1. In this case the 1-graphons Uα and Vα can be regarded as indicator
functions of measurable subsets Bα and Aα of [0, 1] (so for each α ∈ [k] we have
Uα = 1Bα and Vα = 1Aα) that form two partitions associated to U and V respectively.
Note that (Aα)α∈[k] is obtained from (Bα)α∈[k] by the sampling process. A k-coloring
corresponds to a refinement of these partitions with each original class being divided
into k measurable parts, that is Aα = ∪*β∈[k]A

α,β and Vα,β = 1Aα,β . Moreover, |t(F, Û) −

t(F, V̂)| = |
∏︀q0

l=1 λ(BF(l)) −
∏︀q0

l=1 λ(AF(l))| for any of k-coloring Û of U and for any [t] × [k]-
colored F on q0 vertices. We may define a suitable coloring of U by partitioning each
of the sets Bα into parts (Bα,β)β∈[k] so that the classes satisfy λ(Bα,β) = λ(Bα)λ(Aα,β)

λ(Aα) when
λ(Aα) > 0, and λ(Bα,β) = λ(Bα) 1

k otherwise for each β ∈ [k]. Then by setting Uα,β = 1Bα,β

and Û = (Uα,β)α∈[t],β∈[k] we have

dtv(µ(q0, Ŵ), µ(q0, Û)) =
1
2

∑︁
F:|V(F)|=q0

|t(F, Û) − t(F, V̂)| ≤
q0tq0

2
max
α∈[t]
|λ(Aα) − λ(Bα)|,

where the sum runs over all [t] × [k]-colored 1-graphs F on q0 vertices.
The probability that for a fixed α ∈ [t] the deviation |λ(Aα) − λ(Bα)| exceeds 2δ

q0tq0 is

at most 2 exp(− 2δ2q
q2

0t2q0
), the union bound gives the upper bound 2t exp(− 2δ2q

q2
0t2q0

) for the
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probability that

dtv(µ(q0, Ŵ), µ(q0, Û)) ≤ δ

fails for our particular choice for the coloring Û of U. We note that the failure probability
can be made arbitrary small with the right choice of q, so in particular smaller than δ,

therefore qtv(1, δ, q0, t, k) = ln(2t/δ)
q2

0t2q0

2δ2 that satisfies the conditions of the lemma.
Now assume that we have already verified the statement of the lemma for r − 1

and any other choice of the other parameters of qtv. Let us proceed to the proof of
the case for r-graphons, therefore let δ > 0, t, k, q0 ≥ 1 be arbitrary and fixed, q to be
determined below, and U, V, and V̂ as in the condition of the lemma. We start by
explicitly constructing a k-coloring Û for U, in the second part of the proof we verify
that the construction is suitable.

In a nutshell, we proceed as follows. We approximate V̂ by the step function Ẑ, and
set Z = [Ẑ, k], and also approximate U by W1. Let W2 be the sampled version of W1

generated by the same process as V. This way W2 and Z are close, hence we can color
W2 using the coloring Ẑ of Z to obtain Ŵ2. The coloring Ŵ2 is then transferred onto
W1 using the induction hypothesis applied to the marginals of the step sets of W1 and
W2 to obtain Ŵ1 with [Ŵ1, k] = W1. Finally, we color U exploiting the proximity of U
and W1 using the coloring Ŵ1 of W1.

Our construction may fail to meet the criteria of the lemma, this can be caused at two
points in the above outline. For one, it may happen, that W2 does not approximate V
well enough, and the second time, when we transfer Ŵ2 onto W1 using the induction
hypothesis with r − 1, as the current lemma leaves space for probabilistic error. These
two events are independent from the particular choice of V̂ and their probability can
be made sufficiently small, we aim for to show this. We proceed now to the technical
details.

Let ∆ = Ψ(r, δ, q0, t, k) = δ

4k(kt)qr
0 qr

0

. Set t2 = treg(r, tk,∆, 1) and t1 = treg(r, t, (∆/tr
2t)2r2−r−1, t2),

where treg is the function from Lemma 3.3.27, and define

qtv(r, δ, q0, t, k) = max{qtv(r − 1, δ/4, q0, t1, t2), qcut(r, t,∆, t2)},

where qcut is the function from Lemma 6.4.2.
Note that t2 ≤ exp(2)(c(1/∆)3) and t1 ≤ exp(4)(c(1/∆)3) for a large enough constant

c > 0. If we assume that qtv(r − 1, δ, q0, t, k) ≤ exp(d)(cr−1

(︁
1
∆′

)︁3
) for some positive integer

d and real cr−1 > 0, where ∆′ = Ψ(r − 1, δ, q0, t, k) = δ

4k(kt)qr−1
0 qr−1

0

, then it follows

qtv(r − 1, δ/4, q0, t1, t2) ≤ exp(d+4)(cr(1/∆)3) (6.20)

for some cr > 0. Since we can adjust the constant factor cr−1 in a way that qtv(r −
1, δ/4, q0, t1, t2) ≥ qcut(r, t,∆, t2) holds for any possible choice of the parameters we
conclude that qtv(r, δ, q0, t, k) is upper bounded by exp(4(r−1))(cr(1/∆)3).

Let q ≥ qtv(r, δ, q0, t, k) be arbitrary. We describe now the steps of constructing Û that
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satisfies the conditions of the lemma.

We approximate V̂ by some function Ẑ that is only given implicitly by means of
Lemma 3.3.27 and is of the form Ẑ = V̂ℛ. We have

sup
𝒬,t𝒬≤tℛ

d�,r,𝒬(V̂, Ẑ) ≤ ∆,

and tℛ ≤ t2 holds. Also, by Corollary 3.3.25 we have

dtv(µ(q0, V̂), µ(q0, Ẑ)) ≤ δ/(8k). (6.21)

We set Z = [Ẑ, k], consequently

sup
𝒬,t𝒬≤tℛ

d�,r,𝒬(V,Z) ≤ ∆, (6.22)

and Z = Vℛ. Note that Z and Ẑ depend on V̂.

Define the r-arrays B1, . . . ,Bt such that for each α ∈ [t] it holds that

Zα(xh([r],r−1)) =

tℛ∑︁
i1,...,ir=1

Bα(i1, . . . , ir)
r∏︁

l=1

1Ril
(xh([r]∖{l})),

further define also the r-arrays (Bβα)α∈[t],β∈[k] such that

Zα,β(xh([r],r−1)) =

tℛ∑︁
i1,...,ir=1

Bβα(i1, . . . , ir)
r∏︁

l=1

1Ril
(xh([r]∖{l}))

for each α ∈ [t], β ∈ [k]. Clearly, Bα(i1, . . . , ir) =
∑︀k
β=1 Bβα(i1, . . . , ir) for each i1, . . . , ir ∈ [tℛ].

We apply again Lemma 3.3.27 with the proximity parameter (∆/tr
2t)2r2−r−1 and the

multiplier parameter t2 in the condition regarding the partitions 𝒬 to the r-graphon U
to approximate it by U𝒫 = W1 = (W1

1 , . . . ,W
t
1) with steps in 𝒫 that satisfies

sup
𝒬,t𝒬≤t𝒫t2

d�,r,𝒬(W1,U) ≤ (∆/tr
2t)2r

2−r−1, (6.23)

where the supremum runs over all (r− 1)-symmetric partitions 𝒬 of [0, 1]h([r−1]) with at
most t𝒫t2 classes, and t𝒫 ≤ t1.

Applying structure preserving transformations to [0, 1]h([r−1]) the classes of 𝒫 can
be considered as piled up, meaning that for each y ∈ [0, 1]h([r−1],r−2) the fibers {y} ×
[0, 1] are partitioned by the intersections with the classes of 𝒫 into the intervals
[0, a1), [a1, a2), . . . , [at1−1, at1] with {y} × [a j−1, a j) = ({y} × [0, 1]) ∩ P j. We introduce the
r-dimensional real arrays A1, . . . ,At in order to describe the explicit form of the Wα

1
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graphons. So,

Wα
1 (xh([r],r−1)) =

t𝒫∑︁
i1,...,ir=1

Aα(i1, . . . , ir)
r∏︁

l=1

1Pil
(xh([r]∖{l})).

Define W2 = (Wα
2 )α∈[t] to be the r-graphon representing G(q,W1), so Wα

2 represents
G(q,Wα

1 ) for each α ∈ [t]. The steps of W2 are denoted by 𝒫′. Then it follows from
Lemma 6.4.2 that

sup
𝒬,t𝒬≤t2

d�,r,𝒬(W2,V) ≤ ∆,

with probability at least 1 − ∆, so consequently

d�,r,ℛ(W2,V) ≤ ∆,

with the same upper bound on the failure probability as above. Furthermore, with
(6.22) we have

d�,r,ℛ(W2,Z) ≤ 2∆. (6.24)

Also,

Wα
2 (xh([r],r−1)) =

t𝒫∑︁
i1,...,ir=1

Aα(i1, . . . , ir)
r∏︁

l=1

1P′il
(xh([r]∖{l})),

for each α ∈ [t] and

P′j = ∪(p1,...,pr−1)∈I j[
p1 − 1

q
,

p1

q
] × · · · × [

pr − 1
q

,
pr

q
] × [0, 1] × · · · × [0, 1]

with I j = { (p1, . . . , pr−1) | Xr[{p1,...,pr−1}] ∈ P j } for every j ∈ [t𝒫]. Note that 𝒫′ = (P′j) j∈[t𝒫] is a
symmetric partition.

We define a k-coloring Ŵ2 of W2 that satisfies

d�,r,ℛ(Ẑ, Ŵ2) ≤ 2k∆.

Such a k-coloring exists by Lemma 6.5.1 and (6.24). It follows by Corollary 3.3.25 that

dtv(µ(q0, Ẑ), µ(q0,W2)) ≤ δ/4. (6.25)

The graphon Ŵ2 is a symmetric step function with steps that form the coarsest
partition that refines both 𝒫′ and ℛ, we denote this (r − 1)-symmetric partition of
[0, 1]h([r−1]) by 𝒮, the number of its classes satisfies t𝒮 = t𝒫′tℛ ≤ t1t2.

Let us define the t𝒫-colored (r − 1)-graphon w = (w1, . . . ,wt𝒫) that is obtained from
the classes of the partition 𝒫 by integrating over the coordinate corresponding to the
set [r − 1], that is wi(xh([r−1],r−2)) =

∫︀ 1

0
1Pi(xh([r−1]))dx[r−1]. In the same way we define

the t𝒫-colored (r − 1)-graphon u = (u1, . . . ,ut𝒫) corresponding to the partition 𝒫′, as
well as the [t𝒫] × [tℛ]-colored û = (ui, j)i∈[t𝒫], j∈[tℛ], where it holds that u = [û, tℛ] and û
is the tℛ-coloring of u corresponding to the partition 𝒮. Note that w, u, and û are
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6.5 Hypergraph parameter testing

(r−1)-symmetric, since their origin partitions were symmetric. As the partition𝒫′ was
constructed via the same sampling procedure as V and W2, it holds that u = G(q,w)
and ui = G(q,wi) for each i ∈ [t𝒫].

We can assert that due to the induction hypothesis there exists a tℛ-coloring ŵ =
(wi, j)i∈[t𝒫], j∈[tℛ] of w that satisfies

dtv(µ(q0, ŵ), µ(q0, û)) ≤ δ/4

with probability at least 1 − δ/4 for q ≥ qtv(r − 1, δ/4, q0, t1, t2).

We construct a k-coloring for W1 next. Recall the proof of Lemma 6.5.1, therefore we
have that

Wα,β
2 (xh([r],r−1))

=

t𝒫∑︁
i1,...,ir=1

tℛ∑︁
j1,..., jr=1

Aα(i1, . . . , ir)

⎡⎢⎢⎢⎢⎣Bβα( j1, . . . , jr)
Bα( j1, . . . , jr)

1Bα>0 +
1
k
1Bα=0

⎤⎥⎥⎥⎥⎦ r∏︁
m=1

1P′im∩R jm
(xh([r]∖{m})),

(6.26)

and set Aβ
α((i1, j1), . . . , (ir, jr)) = Aα(i1, . . . , ir)

[︂
Bβα( j1,..., jr)
Bα( j1,..., jr)

1Bα>0 + 1
k1Bα=0

]︂
for all α ∈ [t], β ∈ [k]

and ((i1, j1), . . . , (ir, jr)) ∈ ([t𝒫] × [tℛ])r.

We utilize the tℛ-coloring ŵ of the (r − 1)-graphon w to construct a refined partition
of 𝒫 that resembles 𝒮 in order to enable the construction of a k-coloring of W1 along
the same lines as in (6.26). Let

Pi, j = { x ∈ [0, 1]h([r−1])
|

i−1∑︁
l=1

wl(xh([r−1],r−2)) +

j−1∑︁
l=1

wi,l(xh([r−1],r−2)) ≤ x[r−1] <
i−1∑︁
l=1

wl(xh([r−1],r−2)) +

j∑︁
l=1

wi,l(xh([r−1],r−2)) }

for each i ∈ [t𝒫] and j ∈ [tℛ]. Let 𝒫′′ = (Pi, j)i∈[t𝒫], j∈[tℛ].

Clearly, (Pi, j) j∈[tℛ] is an (r−1)-symmetric tℛ-partition of the set Pi, and wi, j(xh([r−1],r−2)) =∫︀ 1

0
1Pi, j(xh([r−1]))dx[r−1]. We are able now to describe the k-coloring of the W1, define

Wα,β
1 (xh([r],r−1)) =

t𝒫∑︁
i1,...,ir=1

tℛ∑︁
j1,..., jr=1

Aβ
α((i1, j1), . . . , (ir, jr))

r∏︁
m=1

1Pim , jm
(xh([r]∖{m})). (6.27)

Note that Ŵ1 = (Wα,β
1 )α∈[t],β∈[k] is a step function whose steps form the partition 𝒫′′ that

refines 𝒫, but the regularity property (6.23) of W1 allows for

d�,r,𝒫′′(U,W1) ≤ (∆/tr
2t)2r

2−r−1
≤ ∆/2. (6.28)
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We will next elaborate on the correctness of the inductive step of the construction. Let
us consider the tk-colored random r-graphG(q0, Ŵ1), it is generated by the independent
uniformly distributed [0, 1]-valued random variables {YS | S ∈ h([q0], r) }. The color of
each edge e = {e1, . . . , e2} ∈

(︀[q0]
r

)︀
is decided by determining first the unique tuple (up to

coordinate permutations) ((i1, j1), . . . , (ir, jr)) ∈ ([t𝒫] × [tℛ])r such that (YS)S∈h(e∖{el}) ∈ Pil, jl ,
and then check for which pair α ∈ [t], β ∈ [k] it holds that

α−1∑︁
l=1

Al((i1, j1), . . . , (ir, jr)) +

β−1∑︁
l=1

Al
α((i1, j1), . . . , (ir, jr)) < Ye

≤

α−1∑︁
l=1

Al((i1, j1), . . . , (ir, jr)) +

β∑︁
l=1

Al
α((i1, j1), . . . , (ir, jr)),

then add the color (α, β) to e with the corresponding index. It is convenient to view
this process as first randomly t𝒫′′-coloring an (r− 1)-uniform template hypergraph G1,
whose edges are the simplices of the original edges, here we add a color (i, j) to an
(r− 1)-edge e′ whenever (YS)S∈h(e′) ∈ Pi, j, and conditioned on G1 we subsequently make
independent choices for each edge to determine their color based on the arrays Aβ

α by
means of the random variables {YS | S ∈

(︀[q0]
r

)︀
} at the top level.

Let us turn to the tk-colored G(q0, Ŵ2), the above description of the random process
generating this object remains conceptually valid also for this random graph, the r-
arrays Aβ

α are identical to the case above, only the partition 𝒫′′ has to be altered to 𝒮.
Similarly as above, we introduce the random (r − 1)-uniform t𝒫′′-colored hypergraph
G2 that is generated as above adapted to G(q0, Ŵ2). That means that the (r − 1)-edges
are colored by indices of the classes that form the partition 𝒮 through the process
that generates G(q0, Ŵ2), see above. The key observation here is that conditioned
on G1 = G2, one can couple G(q0, Ŵ1) and G(q0, Ŵ2) so that the two random graphs
coincide with conditional probability 1. Recall that a coupling is only another name
for a joint probability space for the two random objects with the marginal distributions
following µ(q0,W1) and µ(q0,W2), respectively. As the conditional distributions for the
choices of colors for the r-edges are identical, provided that G1 = G2, the coupling
is trivial. In order to construct a good unconditional coupling we require another
coupling, now of G1 and G2, so that P(G1 , G2) is negligibly small for our purposes,
and whose existence is exactly what the induction hypothesis in the case of (r − 1)-
uniform hypergraphs ensures, when q is large enough.

As q ≥ qtv(r − 1, δ/4, q0, t1, t2), the induction hypothesis enables us to use that there
exists for any û a ŵ so that dtv(µ(q0, û), µ(q0, ŵ)) ≤ δ/4 holds with probability at least
1 − δ/4 for each û simultaneously, which in turn implies that there is a coupling of the
t1t2-colored random (r − 1)-graphs G1 and G2 so that P(G1 , G2) ≤ δ/2.

It follows that there exists a coupling ofG(q0, Ŵ1) andG(q0, Ŵ2) such thatP(G(q0, Ŵ1) ,
G(q0, Ŵ2)) ≤ δ/2 due to the discussion above, which in turn implies

dtv(µ(q0, Ŵ1), µ(q0, Ŵ2)) ≤ δ/4. (6.29)
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6.5 Hypergraph parameter testing

Since Ŵ1 has at most t𝒫t2 steps, Lemma 6.5.1 together with (6.28) provides the
existence of Û with [Û, k] = U and the bound d�,r(Û, Ŵ1) ≤ k∆

2 . The application of
Corollary 3.3.25 implies

dtv(µ(q0, Ŵ1), µ(q0, Û)) ≤ δ/16. (6.30)

Evoking the triangle inequality and summing up the upper bounds on the respective
deviations (6.21), (6.25), (6.29), and (6.30) we conclude that

dtv(µ(q0,V̂), µ(q0, Û)) ≤ dtv(µ(q0, V̂), µ(q0, Ẑ)) + dtv(µ(q0, Ẑ), µ(q0, Ŵ2))

+ dtv(µ(q0, Ŵ2), µ(q0, Ŵ1)) + dtv(µ(q0, Ŵ1), µ(q0, Û)) ≤
(︂ 1
8k

+
1
4

+
1
4

+
1

16

)︂
δ < δ,

the overall error probability is at most δ/2 + ∆/2, which is at most δ.
�

With Lemma 6.5.2 at hand we can overcome the difficulties we discussed in Chapter 3
caused by the properties of the r-cut norm for r ≥ 3 in contrast to the case r = 2, we
turn to prove the main result of the paper.

Proof of Theorem 6.1.6. We regard simple hypergraphs as 2-colored r-graphs, in the
following the term simple should be understood this way at each appearance. Let the
2k-colored witness parameter of the nondeterministically testable r-graph parameter
f be denoted by 1, whose sample complexity is at most q1(ε) for each proximity

parameter ε > 0. Set d(r, ε, q0, k, t) =
[q1(ε)r ln(tk)−ln(ε)][2(tk)qr

0 q2
0]

ε2 . Let ε > 0 be fixed and define
q f (ε) = max{qtv(r, ε/4, q1(ε/4), k, 3); 4

εq2
1(ε/2); d(r, ε/4, q1(ε/4), k, 2)}. We will show that

for every q ≥ q f (ε) the condition

P(| f (G) − f (G(q f (ε),G)| > ε) < ε.

is satisfied for each G. Let q ≥ q f (ε) arbitrary but fixed and G be a fixed simple r-graph
on n vertices.

First we show that f (G(q,G)) ≥ f (G) − ε/4 with probability at least 1 − ε/4. For this
let us select a k-coloring G of G such that f (G) = 1(G), then the random k-colored graph
F = G(q,G) is a k-coloring of G(q,G), therefore f (G(q,G)) ≥ 1(F), but since q ≥ qq(ε/4)
we know from the testability of 1 that 1(F) ≥ 1(G)−ε/4 with probability at least 1−ε/4,
which verifies our claim.

The more difficult part is to show that f (G(q,G)) ≤ f (G) + ε with failure probability
at most ε/2. Let us denote the random r-graph G(q,G) by F. We claim that with
probability at least 1 − ε/2 there exists for any k-coloring F of F a k-coloring G of G
such that |1(F) − 1(G)| ≤ ε, this suffices to verify the statement of the theorem.

Our proof exploits that the difference of the 1 values between two colored r-graphs
F and G can be upper bounded by

|1(F) − 1(G)| ≤ |1(F) − 1(G(q1(ε/4),F))| + |1(G) − 1(G(q1(ε/4),G))| ≤ ε/2,
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6 Complexity of Nondeterministic Testing

whenever there exists a coupling of the two random 2k-colored r-graphs G(q1(ε/4),G)
and G(q1(ε/4),F) appearing in the above formula such that they are equal with prob-
ability larger than ε/2. Set q0 = q1(ε/4). We will show that with high probability for
every F there exists a G that satisfies the previous conditions.

Recall that coupling is a probability space together with the random r-graphs G1 and
G2 defined on it such that G1 has the same marginal distribution as G(q0,G) and G2

has the same as G(q0,F), their joint distribution is constructed in a way that serves our
current purposes by maximizing the probability that they coincide. When the target
spaces are finite as in our case then a coupling that satisfies the above condition can be
easily constructed whenever dtv(µ(q0,G), µ(q0,F)) ≤ 1 − ε/2, see (3.32).

By Lemma 6.5.2 for 3-colored r-graphs (there are 3 types of entries in the graphon
representation of simple r-graphs, edges, non-edges, and diagonal elements) it fol-
lows that with probability at least 1 − ε/4 for each F there exists a 3k-colored U with
[U, k] = WG such that dtv(µ(q0,U), µ(q0,WF)) ≤ ε/4. Let us condition on this event
and let F be fixed. From (3.33) we know that dtv(µ(q0,G), µ(q0,WG)) ≤ q2

0/n ≤ ε/4 and
dtv(µ(q0,F), µ(q0,WF)) ≤ q2

0/q ≤ ε/4. It remains to produce a 3k-coloring of WG from
any fixed 3k-colored U (k out of the 3k colors of U correspond exclusively to diagonal
cubes, so can be neglected). We do this by randomization, let (X{i})i∈[n] be independent
uniform random variables distributed on [ i−1

n ,
i
n ], and let (XS)S∈h([n],r)∖h([n],1) be independ-

ent uniform random variables on [0, 1]. We can define WG to take the color U(Xh(e)) on
the set [ e1−1

n , e1
n ]× · · · × [ er−1

n , er
n ]× [0, 1]× · · · × [0, 1] for e = {e1, . . . , er} ∈

(︀[n]
r

)︀
. For any fixed

H ∈ Πr,2k
q0

basic martingale methods deliver

P(|t(H,WG) − t(H,U)| ≥ δ) ≤ 2 exp(−
δ2n
2q2

0

)

for any δ > 0, therefore when setting δ = ε

4(2k)qr
0

we get that

dtv(µ(q0,U), µ(q0,WG)) =
1
2

∑︁
H∈Πr,2k

q0

|t(H,WG) − t(H,U)| ≤ ε/4

with probability at least 1 − ε/4, since n ≥ q ≥ d(r, ε/4, q0, k, 2) =
[qr

0 ln(2k)−ln(ε/4)][32(2k)qr
0 q2

0]
ε2 .

Summing up terms gives

dtv(µ(q0,F), µ(q0,G)) ≤ dtv(µ(q0,F), µ(q0,WF)) + dtv(µ(q0,WF), µ(q0,U))
+ dtv(µ(q0,U), µ(q0,WG)) + dtv(µ(q0,WG), µ(q0,G)) ≤ ε,

with failure probability at most ε/2, this concludes our proof.

�
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6.6 Nondeterministically testable properties

6.6 Nondeterministically testable properties

The concept of nondeterministic testing was originally introduced for testing proper-
ties by Lovász and Vesztergombi [97], and remarkable progress has been made in that
context, see [61] and [97], the estimation of parameters, which was our main issue in
the preceding sections, is in close relationship to that notion. For related developments
in combinatorial property testing using regularity methods we refer to the respective
part in Chapter 1.

We present a slight variant of the definition of testability of properties in the non-
deterministic sense and construct a tester from the tester of the witness property with
the aid of Lemma 6.5.2 that achieves the same sample complexity as in the parameter
testing case. This result connects our contribution to previous efforts more directly
compared to the content of the preceding sections, and answers the question posed in
[97] asking whether the equivalence of the two testability notions persists for uniform
hypergraphs of higher rank similar to the case of graphs.

We recall Definition 3.2.2. An r-graph property 𝒫 is testable, if there exists another
r-graph property 𝒫̂ called the sample property, such that

(a) P(G(q,G) ∈ 𝒫̂) ≥ 2
3 for every G ∈ 𝒫 and q ≥ 1, and

(b) for every ε > 0 there is an integer q𝒫(ε) ≥ 1 such that for every q ≥ q𝒫(ε) and every
G that is ε-far from 𝒫 on at least q vertices we have that P(G(q,G) ∈ 𝒫̂) ≤ 1

3 .

Testability for colored r-graphs is defined analogously.
We remark that ε-far here means that one has to modify at least ε|V(G)|2 edges in

order to obtain an element of 𝒫. Note that 1
3 and 2

3 in the definition can be replaced by
arbitrary constants 0 < a < b < 1, this change may alter the corresponding certificate 𝒫̂
and the function q𝒫, but not the characteristic of 𝒫 being testable or not. Let 𝒫n denote
the elements of 𝒫 of size n.

Next we formulate the definition of nondeterministic testability in terms of k-
colorings.

Definition 6.6.1. An r-graph property 𝒫 is nondeterministically testable, if there exists an
integer k ≥ 1 and a 2k-colored r-graph property 𝒬 called the witness property that is testable
in the sense of Definition 3.2.2 satisfying [𝒬, k] = { [G, k] | G ∈ 𝒬 } = 𝒫.

We conduct the proof of the main theorem in this section next.

Proof of Theorem 6.1.7. Let 𝒫 be a nondeterministically testable property with witness
property𝒬 of 2k-colored r-graphs. We employ the combinatorial language with count-
ing subgraph densities when referring to 𝒬 and its testability, and the probabilistic
language of picking random subgraphs in a uniform way when handling 𝒫 in order
to facilitate readability.

Let 𝒬̂ be the corresponding sample property that certifies the testability of 𝒬 and q𝒬
be the sample complexity corresponding to the thresholds 1/5 and 4/5, that is
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6 Complexity of Nondeterministic Testing

(i) if G ∈ 𝒬, then for every and q ≥ 1 we have tinj(𝒬̂q,G) ≥ 4/5, and

(ii) for every ε > 0, if G is ε-far from 𝒬, then for every q ≥ q𝒬(ε) we have that
tinj(𝒬̂q,G) ≤ 1/5.

Our task is to construct a property 𝒫̂ together with a function q𝒫 such that they fulfill
the conditions of Definition 3.2.2. We are free to specify the error thresholds by the
remark after Definition 3.2.2, we set them to 2/5 and 3/5.

Let n be a positive integer, and let εn > 0 be the infimum of all positive reals δ that
satisfy n ≥ max{qtv(r, 1/10, qQ(δ), 3, k); 100q2

𝒬
(δ); d(r, 1/10, q𝒬(δ), k, 2)}, where qtv and d are

as in Lemma 6.5.2. Define for each n the set

𝒫̂n = {H ∈ Πr
n | there exists a k-coloring H of H such that tinj(Q̂qQ(εn),H) ≥ 3/5 },

and let 𝒫̂ = ∪∞n=1𝒫̂n.
We set q𝒫(ε) = max{qtv(r, 1/10, qQ(ε), 3, k); 100q2

𝒬
(ε); d(r, 1/10, q𝒬(δ), k, 2)}. We are left

to check if the two conditions for testability of 𝒫 hold with 𝒫̂ and q𝒫 described as
above. Assume for the rest of the proof that n ≥ q𝒫(εn) for each n for simplicity, the
general case follows along the same lines with some technical difficulties.

First let G ∈ 𝒫, we have to show that for every q ≥ 1 integer we have thatG(q,G) ∈ 𝒫̂q

with probability at least 3/5.
The condition G ∈ 𝒫 implies that there exists a a k-coloring G of G such that G ∈ 𝒬.

From the testability of 𝒬 it follows that tinj(𝒬̂l,G(l,G)) ≥ 4/5 for any l ≥ 1. Let q ≥ 1
be arbitrary, and let F denote G(q,G), furthermore let F = G(q,G) generated by the
same random process as F, so F is a k-coloring of F. We know by a standard sampling
argument that

P(|tinj(𝒬̂q𝒬(εq),G) − tinj(𝒬̂q𝒬(εq),F)| ≥ 1/5) ≤ 2 exp

⎛⎜⎜⎜⎜⎝− q
50q2

𝒬
(εq)

⎞⎟⎟⎟⎟⎠ , (6.31)

and the right hand side of (6.31) is less than 2/5 by the choice of εq, since by definition
q ≥ 100q2

𝒬
(εq). It follows that tinj(𝒬̂q𝒬(εq),F) ≥ 3/5 with probability at least 3/5, so by the

definition of 𝒫̂ we have that F ∈ 𝒫̂q with probability at least 3/5, which is what we
wanted to show.

To verify the second condition we proceed by contradiction. Suppose that G is ε-far
from 𝒫, but at the same time there exists an l ≥ q𝒫(ε) such that F ∈ 𝒫̂l with probability
larger than 2/5, where F = G(l,G).

In this case, the latter condition implies that with probability larger than 2/5 there
exists a k-coloring F of F such that tinj(𝒬̂q𝒬(εl),F) ≥ 3/5. By Lemma 6.5.2 and the proof of
Theorem 6.1.6 there exists a k-coloring G of G such that dtv(µ(q𝒬(εl),F), µ(q𝒬(εl),G)) ≤
22/100 with probability at least 4/5, in particular

|tinj(𝒬̂q𝒬(εl),F) − tinj(𝒬̂q𝒬(εl),G)| ≤
22
100

,
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which implies that with probability at least 1/5 there exist a G such that tinj(𝒬̂q𝒬(εl),G) >
3
10 . We can drop the probabilistic assertion and can say that there exists a k-coloring G of
G such that tinj(𝒬̂qQ(εl),G) > 3

10 , because G and the density expression are deterministic.
On the other hand, the fact that G is ε-far from𝒫 implies that any k-coloring G of G is

ε-far from𝒬, which means that tinj(𝒬̂q,G) ≤ 1/5 for any k-coloring G of G and q ≥ qQ(ε).
But we know that qQ(εl) ≥ qQ(ε), since εl ≤ ε which delivers the contradiction. The
last inequality is the consequence of our definitions, εl is the infimum of the δ > 0 that
satisfy l ≥ q𝒫(δ), and on the other hand, l ≥ q𝒫(ε).

�

6.7 Parameters depending on densities of linear
hypergraphs

We present a special case of the above general notion of ND-testability for higher
rank uniform hypergraphs that preserves several useful properties of the graph case,
r = 2. Restricting our attention to this sub-class we are able to essentially remove the
dependence on r in the bound given by Theorem 6.1.6 on the sample complexity.

A simple linear r-graph is an r-graph that satisfies that any distinct pair of its edges
intersect at most in one vertex.

Definition 6.7.1. We call an r-graph parameter f linearly non-deterministically testable if it is
non-deterministically testable and its witness parameter 1 does only depend on the F̂-densities
t*
F̂
(F, .) of F for simple linear hypergraphs F̂ and arbitrary colored r-graphs F with the same

vertex set as F̂.

This density notion was formally introduced in (3.34) and (3.35) for G ∈ Πr,k, F̂ ∈ Πr
q,

and F ∈ Πr,k
q as

t*
F̂
(F,G) =

1
|V(G)|(|V(G)| − 1) . . . (|V(G)| − q + 1)

∑︁
φ : [q]→V(G)

∏︁
e∈F̂

1GF(e)(φ(e)), (6.32)

where the sum runs over injective φ maps, and for a naive k-colored r-graphon W as

t*
F̂
(F,W) =

∫︁
[0,1][h([q],1)]

∏︁
e∈F̂

WF(e)(xh(e,1))dλ(xh([q],1)). (6.33)

It generalizes the non-induced t*-densities of simple r-graphs to the space of colored
r-graphs.

In this section we depart from the general r-graphon notion and use instead objects
called naive r-graphons and naive r-kernels, see Section 2.2.3. These differ from true
graphons and kernels in their domain that is the r-dimensional unit cube and whose
coordinates correspond to nodes of r-edges instead of proper subsets of the node set
of an r-edge. They can be transformed into genuine graphons by adding dimension to
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the domain in a way that the values taken do not depend on the entries corresponding
to the new dimensions. This way we can think of naive graphons as a special subclass
of graphons, sampling is defined analogously to the general case. Note that for r = 2
the naive notion does not introduce any restriction as all proper subsets of a 2-element
set are singletons. We require the notion of ground state energies of r-graphs, naive
r-graphons, and kernels form Chapter 4, see also [32] and [14].

Let s ≥ 1, J be an r-array of size s, and G be an arbitrary r-graph. Recall Definition 3.5.6
of the ground state energy (GSE) of the r-graph G with respect to the r-array J that
reads as

ℰ̂(G, J) = max
φ

1
|V(G)|r

q∑︁
i1,...,ir=1

Ji1,...,irAG(φ−1(i1), . . . , φ−1(ir)), (6.34)

where the maximum runs over all q-partitions of |V(G)|. Analogously, the GSE of a
naive r-kernel U with respect to J is

ℰ(U, J) = max
f

s∑︁
i1,...,ir=1

J(i1, . . . , ir)
∫︁

[0,1]r

r∏︁
j=1

fi j(x j)U(x1, . . . , xr)dλ(x),

where the maximum runs over all fractional partitions f of [0, 1] into s parts.
Recall the definition of the plain cut norm for r-graphs and kernels, Definition 3.3.18

and Definition 3.3.19, for instance, the plain cut norm of a naive r-kernel W is

‖W‖� = sup
Si⊂[0,1],i∈[r]

⃒⃒⃒⃒⃒
⃒
∫︁

S1×···×Sr

W(x)dλ(x)

⃒⃒⃒⃒⃒
⃒ ,

where the supremum is taken over measurable sets Si ⊂ [0, 1] for each i ∈ [r]. Recall
further Definition 3.3.28 of the plain cut-𝒫-norm for a partition 𝒫 of [0, 1], the corres-
ponding regularity lemma, Lemma 3.3.29, and the counting lemma, Lemma 3.3.30.
We further require a version of the coloring lemma Lemma 6.2.2, we formulate this
tool next, but refrain from giving the detailed proof as it is identical to the proof of
Lemma 6.2.2.

Lemma 6.7.2. Let k ≥ 1, ε > 0, U be a (naive) step function with steps 𝒫 = (P1, . . . ,Pt)
and V be a (naive) r-graphon with d�𝒫(U,V) ≤ ε. For any (naive) k-colored r-graphon U =
(U1, . . . ,Uk) that is a (naive) step function with steps from𝒫 and a k-coloring of U there exists
a k-coloring V = (V1, . . . ,Vk) of V so that d�(U,V) =

∑︀k
α=1 ‖U(α)

− V(α)
‖� ≤ kε.

Next we state and prove the main contribution of this section.

Theorem 6.7.3. Let r ≥ 2, and let f be a linearly non-deterministically testable r-graph
parameter with witness parameter 1 of k-colored r-graphs, and let the corresponding sample
complexity be q1. Then f is testable with sample complexity q f , and there exists a constant
c > 0 only depending on k and r but not on f or 1 such that for any ε > 0 we have

q f (ε) ≤ exp(3)(cq2
1(ε/2)).
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Proof. The proof is almost identical to the case of 2-graphs in Section 6.2, we will sketch
it in the framework of Lemma 6.5.2, from there the statement follows in a similar way
as the proof of Theorem 6.1.6. The main distinction between the general hypergraph
setting and the current linear setting is that we do not require for each coloring F
of F = G(q,G) to have a corresponding coloring G of G such that their q0-sampled
distributions µ(q0,F) and µ(q0,G) are close in the total variation distance, here it is
enough to impose that they are close in d� distance. This relaxed condition implies
that the densities t*

Ĥ
(H,F) and t*

Ĥ
(H,G) for linear hypergraphs Ĥ are close, and as a

consequence the deviation of 1(F) and 1(G) is sufficiently small. The different norm
employed in the measurements of the proximity allows us to remove the inductive
part that is contained in the general proof in Lemma 6.5.2.

Let f and 1 be as in the statement of the theorem, and let G be an arbitrary r-graph
and WG a 3-colored naive r-graphon that represents it (the colors correspond to edges,
non-edges, and diagonal entries respectively). Let q ≥ exp(3)(cq2

1(ε/2)) for some c > 0
that is chosen to be large enough, and let F denote the random r-graph G(q,G), and
let WF be its 3-colored representative naive graphon. It is easy to see as in the general
case that f (F) ≥ f (G)−ε/4 with probability at least 1−ε/4, in fact this is even true with
much smaller q, see the proof of Theorem 6.1.5.

We establish an upper bound on f (F) next. We will show first that with probability
at least 1 − ε/4 there exist for every k-coloring V = (Vα,β)α∈[3],β∈[k] of WF a k-coloring
U = (Uα,β)α∈[3],β∈[k] of WG such that d�𝒬(U,V) ≤ ∆, where ∆ = exp(−c′q2

1(ε/2)) for a
suitably chosen c′ > 0. Let W1 = (WG)𝒫 be a naive r-graphon that satisfies

sup
t𝒬≤t𝒫t2

d�𝒬(WG,W1) ≤ ∆/8k, (6.35)

by Lemma 3.3.29 there exists such a naive (r, 1)-step function with at most t1 =
treg(r, 2,∆/8k, t2) steps, where t2 = treg(r, 3k,∆/8k, 1). Further, let W′

2 be the naive
(r, 1)-step function associated with G(q,W1) with its steps forming the partition 𝒫′′.
There exists a measure-preserving permutation φ of [0, 1] such that W2 given by
W2(x1, . . . , xr) = W′

2(φ(x1), . . . , φ(xr)) is another valid representation of G(q,W1) with
steps 𝒫′, and having the additional property that the measure of the set where W1 and
W2 differ is at most r

∑︀
i |λ(Pi) − λ(P′′i )|. In particular by the choice of q it is true that

‖W1 −W2‖1 ≤ r
√︀

t1/q ≤ ∆/8k with probability at least 1 − ε/8 for a large enough c′ > 0.

Further, the bound in (6.35) can be rewritten as a GSE problem in the sense of
Definition 4.1.2, applying Corollary 4.2.11 leads to the assertion that

sup
t𝒬≤t𝒫t2

d�𝒬(WF,W2) ≤ ∆/4k, (6.36)

with probability at least 1 − ∆/8k, which is larger than 1 − ε/8.

We condition on the aforementioned two events, they occur jointly with probability
at least 1− ε/4. Now let V be an arbitrary k-coloring of WF, it follows by Lemma 3.3.29
that there exists a 3k-colored naive (r, 1)-step function Z = Vℛ = (Zα,β)α∈[3],β∈[k] with
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steps forming ℛ such that

sup
t𝒬≤tℛ

d�𝒬(V,Z) ≤ ∆/8k, (6.37)

and tℛ ≤ t2. Let the naive r-graphon Z denote the k-discoloring of Z. Then we have
Z = (WF)ℛ and

sup
t𝒬≤tℛ

d�𝒬(WF,Z) ≤ ∆/8k. (6.38)

Together with (6.36) it follows that

sup
t𝒬≤tℛ

d�𝒬(W2,Z) ≤ ∆/4k. (6.39)

An application of Lemma 6.7.2 together with the bound in (6.39) ensures the existence
of a k-coloring W2 of W2 that is a naive (r, 1)-step function with the steps comprising 𝒮
that is the coarsest common refinement of 𝒫′ and ℛ, and that satisfies

d�(W2,Z) ≤ ∆. (6.40)

Now we construct a k-coloring of W1 by simply copying W2 on the set on [∪i(Pi ∩P′i)]
r,

and defining it in arbitrary way on the rest of [0, 1]r, paying attention to keep it a
k-coloring of W1 and not increase the number of steps above tℛ. For the W1 obtained
this way we have

d1(W1,W2) =
∑︁
α,β

‖Wα,β
1 −Wα,β

2 ‖1 ≤ 2k‖W1 −W2‖1 ≤ ∆/4. (6.41)

Employing again Lemma 6.7.2 with (6.35) we obtain a k-coloring U of WG that satisfies

d�(U,W1) ≤ ∆,

hence

d�(U,V) ≤ 4∆.

With a further randomization we can form a proper k-coloring G of G that satisfies

d�(WG,V) ≤ 5∆.

Finally, we use

|1(F) − 1(G)| ≤ |1(F) − 1(G(q1(ε/4),F))| + |1(G) − 1(G(q1(ε/4),G))| ≤ ε/2,

whenever there exists a coupling of the random 2k-colored r-graphs G(q1(ε/4),G) and
G(q1(ε/4),F) appearing in the above formula such that their densities t*

Ĥ
(H,G) and
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t*
Ĥ

(H,F) are pairwise equal for each H ∈ Πr,2k
q0

and each linear Ĥ ∈ Πr
q0

with probability
larger than ε/2, where q0 = q1(ε/4). Such a coupling exists by Lemma 3.3.30 and
standard probabilistic assumptions, thus we have f (G) ≥ f (F) − ε/2 with probability
at least 1 − ε/4, that concludes the proof.

�

6.8 Applications

The characterization of testable properties of r-uniform hypergraphs for r ≥ 3 is a well-
studied area, for instance it was established by Rödl and Schacht [104] that hereditary
properties (properties that are preserved under the removal of vertices) are testable
generalizing the situation formerly known in the graph case. Nevertheless, several
analogous question to the graph case have remained open. We present some of
these in this section together with the proofs for positive results as an application of
Theorem 6.1.6 and Theorem 6.1.7.

6.8.1 Energies and partition problems
Recall the family of r-ground state energies (rGSE) of r-uniform hypergraphs intro-
duced in Chapter 5 in Definition 5.3.1. The notion is a generalization of the ground
state energies (GSE) of Borgs, Chayes, Lovász, Sós, and Vesztergombi [32] introduced
in the case of graphs (see also Chapter 4 for a different generalization), for connections
to statistical physics, in particular to the Ising and the Curie-Weiss model, see [32] and
Chapter 3 in the current work. The original GSE notion encompasses several import-
ant graph optimization problems, such as the maximal cut density and multiway cut
densities for graphs, therefore its testability is central to several applications.

For a simple r-graph H ⊂
(︀[n]

r

)︀
, a real r-array J of size q, the r-ground state energy of

H with respect to J is

ℰr(H, J) = max
𝒫

1
nr

q∑︁
i1,...,ir=1

J(i1, . . . , ir)eH(r; Pi1 , . . . ,Pir),

where eH(r; S1, . . . ,Sr) = |{ (u1, . . . ,ur) ∈ [n]r
| AS j(u1, . . . ,u j−1,u j+1, . . . ,ur) = 1 for all j =

1, . . . , r and AH(u1, . . . ,ur) = 1 }|, and the maximum is taken over all partitions𝒫 of
(︀ [n]

r−1

)︀
.

We have already proved the rGSE to be testable, see Theorem 5.3.4. As an application
of Theorem 6.1.6, we derive a substantially different new proof.

Corollary 6.8.1. For any r, q ≥ 1 and real r-array J of size t the generalized ground state
energy ℰr(., J) is a testable r-graph parameter.

The proof in Chapter 5 for the above result used ultralimits and was therefore
non-effective. Here, a rather straightforward application of Theorem 6.1.6 gives us
Corollary 6.8.1 that does not rely on non-effective tools, we could provide an explicit
upper bound on the sample complexity, and in this sense the result is new.
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The above problem of testing of the rGSE is a special case of the question regarding
testability of general partition problems. These properties were first dealt with system-
atically in the graph property testing setting in [66], where the authors showed their
testability. They form also the most prominent family of non-trivial properties from
the testing perspective in the dense model that are testable with polynomial sample
complexity known to date, for further background we direct the reader to Chapter 1,
in particular to the part on property testing.

A test for example for the maximal cut density can be obtained from a collection of
partition problems with two classes only constraining the edge density between the
two distinct parts for each integer multiple of ε in [0, 1].

Researched focused on partition problems for hypergraphs was initiated by Fischer,
Matsliah, and Shapira [57] defining a framework that slightly extended the notions
of [66]. In the setup of [57] the problem is formulated as in [66] as a question of
existence of a vertex partition of a hypergraph with prescribed class sizes given by a
real vector that satisfies that the r-partite sub-hypergraphs spanned by each r-tuple of
classes contain a certain number of edges given by a real array. The additional feature
of the approach is that it can also handle tuples of uniform hypergraphs (perhaps
of different rank) sharing a common vertex set that is the subject of the partitioning,
the partition problem defined again by density tensors comprises constraints on edge
densities between classes for each of the component hypergraphs. In [57] it was shown
that such properties are testable with polynomial sample complexity.

A further generalization has been investigated by Rozenberg [107] dealing the first
time with constraints imposed on partitions of pairs, triplets, and so on of the vertices
on one hand, and the edge densities filtered by these partitions on the other. However,
the cells that the edge density constraints are applied to in [107] are not partitioning
the edge set as in the previous approaches, rather layers of partitions corresponding
to partitions of [r] for r-graphs are considered. Let us illustrate the framework for 3-
graphs with the partitioning understood as coloring. In [57], only vertices are colored,
and the number of edges whose vertices have certain colors are constrained, in [107]
also pairs, triplets and further tuples of vertices receive colors, and based on this the
number of edges can be constrained that fulfill the condition that a pair of vertices
(as a tuple) has a certain color and the third vertex (as a singleton) has also some
other given color. However, in [107] only colorings disjoint subsets of the r-edges are
allowed to yield a constraint, for instance it is not possible to have a condition on the
number of pair-monochromatic edges, that is, 3-edges whose three underlaying pairs
have the same color. The positive result obtained in [107] is also somewhat weaker
than testability, the term pseudo-testability is introduced in order to formalize the
conclusion.

Our approach allows for more general constraints on edge densities, the definition
of the general partition problem follows next.

Definition 6.8.2. Let r ≥ 1, and Φ denote the set of all maps φ : h([r], r − 1) → [k] that are
assigning to each element of the set of proper subsets of [r], h([r], r − 1), a color [k]. We define
a density tensor by ψ = ⟨⟨ρs

i ⟩s∈[r−1],i∈[k], ⟨µφ⟩φ∈Φ⟩, where each component is in [0, 1].
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Let H be an r-graph with vertex set V = V(H) of cardinality n and for each 1 ≤ s ≤ r − 1
let 𝒫(s) be a partition of

(︀V
s

)︀
into k parts, and let 𝒫 = (𝒫(s))r−1

s=1. Then the density tensor
corresponding to the pair (H,𝒫) is given by

ρs
i (H,𝒫) =

|Pi(s)|
ns for all s ∈ [r − 1] and i ∈ [k],

and

µφ(H,𝒫) =
|{ e ∈ [n]r

| e ∈ H and pA(e) ∈ Pφ(A)(|A|) for all A ∈ h([r], r − 1) }|

|{ e ∈ [n]r | pA(e) ∈ Pφ(A)(|A|) for all A ∈ h([r], r − 1) }|

for all φ ∈ Φ, where v is the set that consists of the components of the vector v.
We say that H satisfies the partition problem given by a density tensor ψ if there exists a

collection of partitions 𝒫 of its vertex tuples as above so that the tensor yielded by the pair
(H,𝒫) is equal to ψ.

We remark that the above partition problem property is non-hereditary. An applic-
ation of Theorem 6.1.7 yields the following corollary.

Corollary 6.8.3. For any r, k ≥ 1 and any density tensor ψ = ⟨⟨ρs
i ⟩s∈[r−1],i∈[k], ⟨µφ⟩φ∈Φ⟩, the

partition property given by the tensor is testable.

6.8.2 Logical formulas
The characterization of testability in terms of logical formulas was initiated by Alon,
Fischer, Krivelevich, and Szegedy [13] who showed that properties expressible by
certain first order formulas are testable, while there exist some first order formulas
that generate non-testable properties. The result can be formulated as follows.

Theorem 6.8.4. [13] Let l, k ≥ 1 and φ be a quantifier-free first order formula of arity l + k
containing only adjacency and equality. The graph property given by the truth assignments
of the formula ∃u1, . . . ,ul∀v1, . . . , vkφ(u1, . . . ,ul, v1, . . . , vk) with the variables being vertices
is testable.

Without going into further details at the moment we mention that any ∃∀ property
of graphs is indistinguishable by a tester from the existence of a node-coloring that is
proper in the sense that the colored graph does not contain subgraphs of a certain set
of forbidden node-colored graphs, see [13].

Our focus is directed at the positive results of [13], those were generalized into
two directions. First, by Jordan and Zeugmann [77] to the framework of relational
structures in the sense that φ is allowed to contain several r-ary relations with even
r ≥ 3 whereas the ∃∀ prefix remains the same concerning vertices. Secondly, by Lovász
and Vesztergombi [97] staying in the graph property testing setting to a restricted class
of second order formulas, where existential quantifiers for 2-ary relationships are
added ahead of the above formula in Theorem 6.8.4 so that they can be included in
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φ, see Corollary 4.1 in [97]. This subclass of second order logic is also referred to as
monadic second order logic (MSOL), see [89]. Our framework allows for extending
these results even further.

Corollary 6.8.5. Let r1, . . . , rm, l, k ≥ 1 be arbitrary, and let r = max ri. Any r-graph property
that is expressible by the truth assignments of the second order formula

∃L1, . . . ,Lm∃u1, . . . ,ul∀v1, . . . , vkφ(L1, . . . ,Lm,u1, . . . ,ul, v1, . . . , vk) (6.42)

is testable, where Li are symmetric ri-ary predicate symbols and u1, . . . ,ul, v1, . . . , vk are nodes,
and φ is a quantifier-free first order expression containing adjacency, equality, and the sym-
metric ri-ary predicates Li for each i ∈ [m].

Proof (Sketch). We first note that any collection of the relations L1, . . . ,Lm can be en-
coded into one edge-colored r-uniform hypergraph with at most 2rm colors with an
additional compatibility requirement. An edge color for e ∈

(︀[n]
r

)︀
consists of a 2r

− 1-
tuple corresponding to non-empty subsets of [r], where the entry corresponding to
S ⊂ [r] in the tuple is determined by the evaluation of pS(e) in the relations Li that have
arity |S|. We can reconstruct the predicates from a coloring whenever the color of any
pair of edges e and e′ is such that their entries in the tuple corresponding to the power
set of e∩ e′ coincide, for r = 2 this means some combinations of colors (determined by
a partition of the colors) for incident edges are forbidden. This compatibility criteria
for 2rm-colored r-graphs is known to be a testable property, from here on this will be
seen as a default condition.

For a fixed tuple L1, . . . ,Lm of relations of arity at most r the property corresponding to
the first order expression ∀v1, . . . , vkφ(L1, . . . ,Lm, v1, . . . , vk) is equivalent to the property
of 2rm-colored r-graphs that is defined by forbidding certain subgraphs of size at most
k. This is testable by the following theorem of Austin and Tao [24] that generalizes the
result of Rödl and Schacht [104].

Theorem 6.8.6. [24] For any r, k ≥ 1, every hereditary property of k-colored r-graphs is
testable.

We sketch now the proof that the properties corresponding to the more general
formula (6.42) in the statement of the corollary are indistinguishable from the existence
of a further node-coloring on top of the edge-colored graphs such that no subgraph
appears from a certain set of forbidden subgraphs. We follow the argument of [13]
(see also [77], and [97]).

Two properties are said to be indistinguishable in this sense whenever for every ε > 0
there exists an n0 = n0(ε) such that any graph on n ≥ n0 vertices that has one property
can be modified by at most εnr edge additions or removals to obtain a graph that has
the other property, and vice versa. The testability behavior of the two properties is
identical.

Consider L1, . . . ,Lm as fixed, then the property of 2rm-colored r-graphs corresponding
to ∃u1, . . . ,ul∀v1, . . . , vkφ(L1, . . . ,Lm,u1, . . . ,ul, v1, . . . , vk) is indistinguishable to from the
existence of the following proper coloring. Every node gets either color (0, 0) or
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(a, b), where a represents a 2rm-colored r-graph on l nodes, and b represents an l-tuple
of 2rm-colored edges. A coloring is proper if there are at most l nodes colored by
(0, 0), further for any other color appearing, the first component a is identical. Now
a colored subgraph of size k is forbidden if considering the edge-colored graph on
V = {v1, . . . , vk} (without node colors) supplemented by a graph on {u1, . . . ,ul} together
with their connection to V given by the node colors on V the evaluation of the formula
φ(L1, . . . ,Lm,u1, . . . ,ul, v1, . . . , vk) is false.

It is not hard to see that for this coloring property Theorem 6.8.6 applies since it is
hereditary, therefore it is testable. Now if we let L1, . . . ,Lm to be arbitrary and apply
Theorem 6.1.6, then we obtain the testability of the property given by (6.42) in the
statement of the corollary. �

6.8.3 Estimation of the distance to properties and tolerant testers
We can also express the property of being close to a given property in the nondetermin-
istic framework, and can show the testability here. This problem was introduced first
for graphs by Fischer and Newman [56], in this paper the authors show the equival-
ence of testability and estimability of the distance of a property, in [97] one direction of
this was reproved for graphs. To our knowledge the generalization for r-graphs with
r ≥ 3 has not been considered yet. Recall that d1 is the normalized edit distance.

Corollary 6.8.7. For any r ≥ 2, testable r-graph property 𝒫, and real c ≥ 0, the property
determined by d1(.,𝒫) < c is testable.

Proof. The proof is identical to the one given in [97]: for any r ≥ 2, testable r-graph
property 𝒫 and real c > 0 there exists a testable property of 4-colored r-graphs that
witnesses the property of d1(.,𝒫) < c in the nondeterministic testing sense. Let G be
an arbitrary r-graph, then we consider the 2-colorings of G where (1, 1) and (1, 2) color
the edges of G, and (2, 1) and (2, 2) the non-edges. The 4-colored witness property 𝒬 is
then that the edges with the colors (1, 1) and (2, 1) together form a member of 𝒫, and
additionally there are at most cnr edges colored by (1, 2) or (2, 1). The property 𝒬 is
trivially testable, therefore Theorem 6.1.7 implies the statement. �

The above corollary is a generalization of the concept of tolerant testers. In this case,
we expect a good test with parameters 0 ≤ δ < ε to distinguish between the cases that
a graph is δ-close (another way of saying not δ-far) to the property or that it is ε-far.
Here the sample size should only depend on the two thresholds. We see that taking
δ = 0 is the same as the usual testing. On the other hand for a fixed δ0, the testing of the
property d1(.,𝒫) ≤ δ0 with an ε−δ0 margin of error is exactly the task described above.
We can conclude that every testable hypergraph property is also tolerantly testable.

On a further note we mention that with the same method we can also show that the
r-graph parameter f (G) = d1(G,𝒫) is also testable for any testable 𝒫.
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CHAPTER 7

Conclusion and further research

In this thesis we proved the equivalence of nondeterministic testing to usual testing
for r-uniform hypergraphs for arbitrary rank r for both properties and parameters,
we further gave upper bounds on the sample complexity that improved previously
known bounds related to this approach of characterizing testability, see [97], [61].

A major open question is whether it is possible to prove that the testing of the
witness and the testing of the original property are computationally equivalent, in the
sense that their sample complexities are in a polynomial relationship. In this sense,
improvement for upper bounds in magnitude would be also a reasonable contribution.
Also, lower bounds in this regard would be welcome, currently we are only aware of
the trivial one. More specifically, one might try to improve upper bounds for weakly
nondeterministically testable parameters and properties, an implicit appearance of
this setting were partition problems in [66] and multiway cuts testing in [14]. In both
cases the witness is the easiest non-trivial property that imposes conditions on the
number of the edge counts of different colors, and the desired polynomial dependence
was established via problem-specific arguments. As a further particular question, on
may ask whether it is possible to gain something from considering only witnesses that
are testable with a sample size that is polynomial in the multiplicative inverse of the
error parameter.

The general upper bound given in Theorem 6.1.6 is dependent on the rank r, it would
be interesting to see if it is possible to remove this dependence in a similar way as it
was shown in the special case of linearly nondeterministically testable parameters.
The gap between the two bounds here is still wide open. Currently no non-trivial
lower bound on the sample complexity for general r in our framework is known, in
the original dense property testing setting there are some properties that admit no
tester that only makes a polynomial number of queries, such as triangle-freeness and
other properties defined by forbidden families of subgraphs or induced subgraphs.

The partition problems introduced in [66] have lead to further applications, this
development was presented in [57]. As mentioned, the framework of [57] also dealt
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with tuples of hypergraphs extending the result of [66], this enabled the analysis of
the number of 4-cycles appearing in the bipartite graphs induced by the pairs of the
partition classes instead of only observing the edge density by means of adding an
auxiliary 4-graph to the simple graph. An alternative characterization of the notion of
a regular bipartite graph says that a pair of classes is regular if and only if the number of
4-cycles spanned by them is minimal, with other words their density is approximately
the fourth power of the edge density. Using this together with the result regarding the
testability of partition problems the authors of [57] were able to show that satisfying
a certain regularity instance is also testable. This achievement in turn implies an
algorithmic version of the Regularity Lemma. In this manner, Corollary 6.8.3 might
be of further use for testing regular partitions of r-uniform hypergraphs by utilizing
concepts that emerged during the course of research towards an algorithmic version
of the Hypergraph Regularity Lemma (see for example Haxell, Nagle, and Rödl [71])
in a similar way to the approach in [57].

On a further thought, one may depart from the setting of general dense r-graphs
in favor of other classes of combinatorial objects in order to define and study their
ND-testability. Such classes are for example semi-algebraic hypergraphs that admit a
regularity lemma that produces a polynomial number of classes as a function of the
multiplicative inverse of the proximity parameter, thus they are good candidates for an
improvement in the upper bounds of the sample complexity. Other choices could be
graph families with bounded Minkowski-dimension with regard to a similarity metric
defined between the vertices of the graph in question, see [89].

Additionally we mention a possible direction for further study towards the charac-
terization of locally repairable properties, see [24], that appears to be promising. This
characteristic is stronger than testability in that respect that in this setup there should
exist a local edge modifying algorithm applied to graphs G that are close to a given
property that observes only some piece A ⊂ V(G) of bounded size of the graph and
its connection to individual vertex pairs uv and decides upon the adjacency of u and
v depending only on this information, i.e., the induced subgraph on A ∪ {u, v} (we
only gave here an impression of the weak version, for details see [24]). The output
of this algorithm should be a graph that is close to the input and actually satisfies
the property. We may define nondeterministically locally repairable properties in a
straight-forward way analogous to ND-testing by requiring a certain locally repairable
property of edge-colored graphs that reduces to the original property after the discol-
oring procedure. It has been established in [24] that hereditary graph properties are
locally repairable, but there are examples of hereditary properties of directed graphs
and 3-graphs that are testable, but not locally repairable. It would be compelling
to investigate analogous problems concerning nondeterministically locally repairable
properties.

As a final remark on nondeterministic property testing we mention a generalization
proposed by Fischer [54]. Similar to our setup, he dealt with colorings, but from one
aspect in a less general sense by allowing only witness properties defined by a finite
collection of forbidden colored subgraphs. These problems are called ℱ -colorability
andℱ -pair-colorability for node and edge colorings, respectively, in both cases positive
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testability results were obtained. The author of [54] introduced ℱ -colorability with
restrictions, the so-called (α,ℱ )-colorability, here we are looking for a coloring that
avoids certain subgraphs, but additionally the sizes of the color classes have to obey
upper and lower bounds given by α. Also for this setup, testability was shown,
the situation in the pair coloring version is an open problem. It is straight-forward
to generalize the notion of nondeterministic testing to nondeterministic testing with
restrictions on the sizes of the color classes. This is truly a generalization, as it is not
ensured that the intersection of a witness property and a set of restrictions results in
a testable property, and certainly not in a hereditary one, that could take the place of
the witness of the new property. It would be interesting to see whether our methods
can handle questions in this setting.

As a further main result of the thesis, we proved a characterization of the limit
space of sequences of r-uniform hypergraphs, whose edges are colored with elements
taken from compact space, especially from the interval [0, 1]. It turned out that the
limit objects are measurable functions on [0, 1]2r

−2 (with symmetries dependent on
the properties of the discrete objects) taking values from the probability distributions
on the compact color set. This outcome is in accordance with the case of the simple
({0, 1}-colored) graphs [91, 43], and r-uniform hypergraphs [49], where the range is a
subset of [0, 1], and the values correspond to Bernoulli-measures. Previous results in
this direction include a similar characterization for 2-graphs with compact edge colors
[93].

One major open problem is in this area whether there exists a a metric carrying
a similar structural statement for r-uniform hypergraphs as the δ�-metric for simple
graphs, and at the same time explaining the compactness of the limit space. On a
different note, it would be interesting to see if the characterization of testability via
limits outlined in [94] can be generalized for the hypergraph setting.

We showed the testability of layered ground state energies in the limit space with
a sample complexity upper bound Θ4 log(Θ)qr, where Θ =

2r+7qrr
ε . This notion of

GSE encompasses multiway cuts of graphs as well as any family of MAX-rCSPs, as
a corollary we get the discrete version rather easily. The result itself was implicitly
known for r = 2 as a combination of developments in [32] and [98].

This kind of proof method is novel in the sense that it directly relates the optimum of
the continuous optimization problem which is a graphon parameter to the optimum
of the corresponding problem on the sample without inserting an intermediate step
and then using the discrete analog of our result, this concept was proposed by Borgs,
Chayes, Lovász, Sós, and Vesztergombi [32]. We roughly follow the approach of [14],
our reasoning is self-contained, and perhaps more transparent (several error terms
vanish in the limit) than [14], we get a better bound on the failure probability that
decreases with the desired additive error instead of being constant, and extend the
method to q-state GSE that corresponds to non-Boolean MAX-rCSP. Our hope is that a
refinement of our approach will be suitable to determine the exact sample complexity
of MAX-rCSP, the gap between the currently best lower, Ω(ε−2) and upper bound
O(ε−4) is still of considerable size.
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Our method could only handle the case of GSE, where the number of states was
finite. It is an intriguing question what happens for a continuous state space. It
seems that if the state space has finite Minkowski-dimension (as in the case of the d-
dimensional unit sphere for fixed d), then our proof follows without a large amount of
adjustment from the finite state case. It is not clear what happens in the case if we deal
with a GSE that corresponds to the semidefinite relaxation of the MAX-CUT density
of some simple graph. Are such parameters even testable, and if yes, then how can we
relate their sample complexity to that of the unrelaxed versions? The question is even
more compelling as we know that semidefinite programs can be solved in polynomial
time, in contrast, MAX-CUT is NP-hard.

Analogously to the generalized ground state energies, which were derived from
partitions of vertex tuples, one may similarly study free energies, since a Gibbs-like
measure can be also defined in this setup. We are not aware of any prior work on
these structures in statistical physics, the closest connection is perhaps to monomer-
dimer problems. Testability of these r-graph parameters is an open problem, even at
the first step towards understanding the problem difficulties not present in the basic
case emerge: The free energy of a blow-up is much harder to analyze, as the bipartite
graphs between the classes corresponding to vertices come into play, therefore the
enumeration problem is not nearly as trivial as in the basic node coloring case.

From a more general perspective, the meta-problem is to characterize more precisely
the class of problems which are efficiently parameter testable as opposed to the hard
ones. Improving the bounds in the multiplicative inverse of the permitted error for
the efficiently testable problems is also a worthwhile question.
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erdős-rényi random graph. Eur. J. Comb., 32(7):1000–1017, 2011.

211



7 Bibliography

[38] David Conlon and Jacob Fox. Bounds for graph regularity and removal lemmas.
Geom. Funct. Anal., 22(5):1191–1256, 2012.

[39] David Conlon and Jacob Fox. Graph removal lemmas. In Surveys in combinatorics
2013, volume 409 of London Math. Soc. Lecture Note Ser., pages 1–49. Cambridge
Univ. Press, Cambridge, 2013.

[40] Artur Czumaj and Christian Sohler. Testing hypergraph colorability. Theoret.
Comput. Sci., 331(1):37–52, 2005.

[41] Bruno de Finetti. Funzione Caratteristica Di un Fenomeno Aleatorio, pages 251–299.
6. Memorie. Academia Nazionale del Linceo, 1931.

[42] Pierre de la Harpe and Vaughan F.R. Jones. Graph invariants related to statistical
mechanical models: examples and problems. J. Combin. Theory Ser. B, 57(2):207–
227, 1993.

[43] Persi Diaconis and Svante Janson. Graph limits and exchangeable random
graphs. Rend. Mat. Appl. (7), 28(1):33–61, 2008.

[44] Persi Diaconis, Susan Holmes, and Svante Janson. Threshold graph limits and
random threshold graphs. Internet Math., 5(3):267–320 (2009), 2008.

[45] Persi Diaconis, Susan Holmes, and Svante Janson. Interval graph limits. Ann.
Comb., 17(1):27–52, 2013.

[46] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Sampling subproblems
of heterogeneous Max-Cut problems and approximation algorithms. Random
Structures Algorithms, 32(3):307–333, 2008.

[47] Gábor Elek. On limits of finite graphs. Combinatorica, 27(4):503–507, 2007.

[48] Gábor Elek. Samplings and observables. invariants of metric measure spaces,
2012. preprint,arXiv:1205.6936.

[49] Gábor Elek and Balázs Szegedy. A measure-theoretic approach to the theory of
dense hypergraphs. Adv. Math., 231(3-4):1731–1772, 2012.

[50] Wenceslas Fernandez de la Vega and Marek Karpinski. Polynomial time approx-
imation of dense weighted instances of MAX-CUT. Random Structures Algorithms,
16(4):314–332, 2000.

[51] Wenceslas Fernandez de la Vega and Marek Karpinski. A polynomial time
approximation scheme for subdense MAX-CUT. Electronic Colloquium on Com-
putational Complexity (ECCC), (044), 2002.

212



7 Bibliography

[52] Wenceslas Fernandez de la Vega, Ravi Kannan, Marek Karpinski, and Santosh
Vempala. Tensor decomposition and approximation schemes for constraint sat-
isfaction problems. In STOC’05: Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, pages 747–754. ACM, New York, 2005.

[53] Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Ap-
proximation of global max-csp problems. Electronic Colloquium on Computational
Complexity (ECCC), 2006. Technical Report TR06-124.

[54] Eldar Fischer. Testing graphs for colorability properties. Random Structures
Algorithms, 26(3):289–309, 2005.

[55] Eldar Fischer and Arie Matsliah. Testing graph isomorphism. SIAM J. Comput.,
38(1):207–225, 2008.

[56] Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties.
SIAM J. Comput., 37(2):482–501 (electronic), 2007.

[57] Eldar Fischer, Arie Matsliah, and Asaf Shapira. Approximate hypergraph parti-
tioning and applications. SIAM J. Comput., 39(7):3155–3185, 2010.
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