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Abstract

The field of systems biology makes an attempt to realise various biological functions and
processes as the emergent properties of the underlying biochemical network model. The area of
computational systems biology deals with the computational methods to compute such prop-
erties. In this context, the thesis primarily discusses novel computational methods to compute
the emergent properties as well as to recognize the essence in complex network models. The
computational methods described in the thesis are based on the computer algebra techniques,
namely tropical geometry and extreme currents. Tropical geometry is based on ideas of dom-
inance of monomials appearing in a system of differential equations, which are often used to
describe the dynamics of the network model. In such differential equation based models, trop-
ical geometry deals with identification of the metastable regimes, defined as low dimensional
regions of the phase space close to which the dynamics is much slower compared to the rest of
the phase space. The application of such properties in model reduction and symbolic dynamics
are demonstrated in the network models obtained from a public database namely Biomodels.
Extreme currents are limiting edges of the convex polyhedrons describing the admissible fluxes
in biochemical networks, which are helpful to decompose a biochemical network into a set of
irreducible pathways. The pathways are shown to be associated with given clinical outcomes
thereby providing some mechanistic insights associated with the clinical phenotypes. Similar
to the tropical geometry, the method based on extreme currents is evaluated on the network
models derived from a public database namely KEGG. Therefore, this thesis makes an attempt
to explain the emergent properties of the network model by determining extreme currents or
metastable regimes. Additionally, their applicability in the real world network models are dis-
cussed.
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Chapter 1

Introduction

The main purpose of this thesis is to develop computational methods to enable the analysis
of biological functions and processes from a systems perspective. Here, systems perspective
generally refers to the analysis of biochemical reaction networks where the parts (e.g. chemical
species, genes, proteins, etc) along with their interactions (e.g. reactions) are taken into account
to describe the biological functions or processes. Hence, such an approach makes an attempt
to take a holistic view.

In the context of healthcare, the idea of system level thinking can be dated back to traditional
healthcare practices. For example, the medications based on the theory of Ayurveda, developed
in India around 1000 B.C.E. define the healthy state of an individual as the balance (saamya
in Sanskrit) of three bodily humours namely Vata, Pita, Kapha and disease state as the loss of
this balance. The diagnosis involves the determination of that bodily humour(s) which causes
loss of this balance, and medications are aimed to restore it back (Sharma and Dash, 1981).

In modern science, Claude Bernard may be considered as the “first system biologist” because
of his concept of the constancy of the internal environment (le milieu intérieur) proposed in
1865 (Noble, 2008). In addition, Claude Bernard in his work explained “a complex organism
should be looked upon as an assemblage of simple organisms”, pointing towards a system level
description of complex organism. Unfortunately, his work remained largely unrecognized to the
scientific community of that time (Gross, 1998).

In general the idea of systems theory was first developed by Alexander Bogdanov in Russia
which is called as Tektology. The work was first published in 1912. In his theory of organization
he classified three systems namely organized complex, disorganized complex and neutral com-
plex. In organized complex, the whole is greater than sum of its parts, in disorganized complex,
whole is smaller than sum of its parts and in neutral complex both organizing and disorganizing
complex cancel each other out. The organization as per Bogdanov was the resultant of forma-
tion and regulation (Capra, 1997). It can be seen that his idea of organized complex appears
to be relevant for the understanding of systems biology, where the whole is generally more than
the sum of its parts because it involves additionally the interactions between the parts (Kitano,
2002a).

Thereafter, the first theoretical framework for systems theory was put forward by Ludwig
von Bertalanffy. He considered the systems to be open and operate far from equilibrium, which
is common to the living organisms. A general introduction and a brief history of systems
thinking can be found in his book (Bertalanffy, 1968).

Ilya Prigogine gave the idea of self organization through dissipative structures. After that
the field of cybernetics grew and the two prominent figures in this area were Norbert Wiener
proposing the idea of self-regulation by feedback loops and John von Neumann who proposed
the use of mathematical logic to understand brain functions. A good introductory review on
the history of system theory can be found in (Capra, 1997).

On one hand, there were developments in the general systems theory and on the other
hand, molecular biology was taking a reductionist approach, which was much popularized by
the discovery of DNA as a genetic material in 1944. This ultimately led to the Human Genome

1



Chapter 1. Introduction

project and hence it gave rise to “high throughput data rich biology” (Westerhoff and Palsson,
2004).

After the Human Genome project, the time was ripe to integrate the “data poor insilico
biology” (Westerhoff and Palsson, 2004) resulting from the general systems approach with the
data generated from next generation sequencing technologies which got a boost from the human
genome project and the subsequent developments. The reductionist approach inferred the
parts of the system and the general systems theory developed the relevant mathematics and
concepts to be used to model systems. The next steps included the elucidation of various
interactions of the parts and creation of the network models (Barabasi and Oltvai, 2004) from
the high throughput data. Therefore, currently, systems biology is in a position to integrate
mathematical modelling approaches with high throughput data in order to understand the
living systems at a molecular level which was not possible at the times of Claude Bernard.
Also, Claude Bernard and Louis Pasteur contributed to the field of enzymology, though at
those time this field was in its infancy. The next crucial thing is to create a sync between the
theoretical research and the experimental research in order to translate the findings from the
computational systems biology models to the various experimental or clinical settings and back.

The core idea of computational systems biology is to view biological systems as complex
non-linear dynamical networks of molecular parts (Kitano, 2002a; Kitano, 2002b). These net-
works have emergent collective behaviour that is explainable only if the constituting parts of the
system and their mutual interactions are considered (Bhalla and Iyengar, 1999). These inter-
actions are biochemical in nature and the network models are made of pathways of biochemical
reactions. In general, such emergent properties can be understood as collective behaviour of dy-
namical systems. The core idea of collective behaviour means that the behaviour of individual
molecular parts are influenced (or dominated) by their neighbours resulting in the emergence of
a common pattern. Such collective behaviour is analysed in statistical physics models (Vicsek,
2001a; Vicsek, 2001b). In dynamical systems, such ideas are also investigated. For example,
René Thomas (Thomas and d’Ari, 1990) associated collective behaviours (e.g. multistationar-
ity and oscialltions) arising from biochemical networks with biological function. Often, small
changes in certain critical parameters cause a change in the collective behaviour which results
in a qualitative change (or regime change) of the system. In biological, physical and chemical
systems, such aspects are studied in the context of phase transitions, birfurcation theory and
center manifold theory e.g. (Brehme et al., 2016; Jirsa et al., 2014; Chen et al., 2016) in which
the critical regions are determined where such change in the regime occurs. In this thesis,
the computation of mathematical entities from dynamical systems representing such emergent
collective behavior will be focused.

As described above, the biological systems considered here are mainly mechanistic models of
biochemical reaction networks, essentially modelling the biological processes. Biological systems
can be modelled using different mathematical formalisms, an overview for the same can be found
in (Machado et al., 2011). Such models facilitate quantitative predictions of emergent behaviour
of networks as well as in the control and manipulation of the associated biological processes
(Craver, 2006). In addition, mechanistic models have cause-effect relationships which help to
address the effects of different interventions (Woodward, 2005) e.g. drugs. Having quantitative
predictions of emergent behaviour of network models is important for biology and medicine.

In spite of recent developments in the mathematical theory of biochemical networks (Fein-
berg, 1987) predicting the dynamical properties of dynamical networks remains a formidable
task, especially for large models. Furthermore, predictive models of the biological function
need to be multiscale, involving several intracellular biochemical pathways as well as interac-
tions between a large number of cells in a tissue. In order to make them tractable, a new
mathematical tool needs to be developed allowing to recognize where the essence resides and
tame an overwhelmingly complex picture of interactions (Radulescu et al., 2008).

2



Chapter 1. Introduction

For large networks with ODE based dynamics, the concept of attractors (Milnor, 1985)
is of relevance as it represents a stable balanced state of the system towards which nearby
trajectories are drawn. These can be fixed points, limit cycles (oscillations) or even chaotic
(MacArthur, Ma’ayan, and Lemischka, 2009). A general introduction to ODE based dynamical
systems can be found in (Hirsch, Smale, and Devaney, 2012; Strogatz, 2014). For ODE based
systems with multiple timescales it is reasonable to consider that a typical trajectory consists
of a succession of qualitatively different slow segments separated by faster transitions. The
slow segments, are called Metastable Regimes (MRs) (Samal et al., 2016). Metastability is also
relevant for the behaviour of stochastic systems and is studied in the mathematics of Markov
processes (Bovier and Hollander, 2015). The notion of metastability generalizes the notion of
attractor (Milnor, 1985). A system remains in the proximity of an attractor after entering its
basin of attraction, but can leave a MR after a more or less long time. Such a phenomenon is
illustrated in Fig. 1.1. An example of such behavior is the set of bifurcations of MRs guiding
the orderly progression of the cell cycle (Noel et al., 2012). In cell cycle models, biological
distinct stages such as interphase and mitosis correspond to relatively slow segments of the
dynamics and are separated by fast transitions. Other examples are provided by the evolution
of stem cells to differentiated cells (MacArthur, Ma’ayan, and Lemischka, 2009), or by successive
transformations occurring during cancerogenesis (Huang, Ernberg, and Kauffman, 2009) where
each cell type can be associate to some dynamical attractor and the development to transitions
from one attractor to another. Historically, such an idea can be dated back to Waddington’s
epigenetic landscape (Waddington, 1940; Waddington, 1957) to explain development of cell
types. Thus, the MRs are representative of the emergent collective behaviour of the biological
system. The switch among MRs is often associated with qualitative change in various biological
function. Furthermore, one can study the dynamics close to MRs by computing a simpler
description of the original system (usually involving less variables than the original model),
popularly referred to as model reduction (Radulescu et al., 2008). The simpler description is
possible due to the timescale separation of variables into fast and slow variables and thereafter
representing only the slow dynamics by making use of Differential Algebraic Equations (DAEs).
Therefore, one of the main objective of this thesis is to provide a computational approach to
determine such MRs in an efficient and scalable manner.

In many practical applications, the kinetic rate constants appearing in the mechanistic
models of biochemical reaction networks are unknown or highly uncertain thereby making the
computation of MRs difficult or only the underlying biochemical reaction network structure is
represented as a stoichiometric matrix. Under the conditions of steady state of the reaction net-
work and the non-negativity of reaction fluxes, such a network can be algebraically decomposed
into a set of irreducible steady state pathways often referred to as extreme currents (ECs) or
Elementary Flux Modes (EFMs). Such pathways (essentially, a set of reactions) individually or
in combination are often found to be associated with biological functions (Papin et al., 2003)
and also associated with emergent collective behaviour of the network such as for instance in
the oscialltion due to the occurence of Hopf bifurcation (Gatermann, Eiswirth, and Sensse,
2005a). Furthermore, these pathways have applications in drug target identification and net-
work robustness analysis (Papin et al., 2003). To this aim, an established method of computing
ECs is described and a statistical framework is used to associate them with different clinical
phenotypes.

The work presented in the thesis makes an attempt to describe the emergent properties
of biochemical reaction networks in terms of two mathematical entities, namely ECs and TEs.
Mathematically, these entities are related to the steady states of the system. The core difference
between them is that, while ECs solve the system in reaction or flux space, TEs solve the system
in the species concentration space. Due this difference, the algorithmic techniques to compute
them are not the same. Furthermore, the biological motivation and objectives considered in
the thesis to compute ECs and TEs are different as shown in the corresponding application
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Chapter 1. Introduction

scenarios. It will be a topic of future research to explore the mathematical connection between
them. Nevertheless, from a biological perspective they are both associated with the emergent
behaviour of the system.

To reiterate, the main objective of the thesis is to provide a computational approach to
compute the mathematical objects namely MRs or ECs for a given biochemical reaction network,
which are associated with the emergent collective behaviour of the system. The benefit of this
approach is threefold, namely

1. Model reduction i.e. determining the key variables and parameters of the system corre-
sponding to MRs.

2. Coarse graining of smooth ODE models for qualitative understanding of the network
dynamics.

3. Linking the clinical or biological phenotypes with MRs and ECs, thereby providing mech-
anistic insights into disease states.

The work described in the thesis is partly published in peer reviewed journals and confer-
ences. Here, we make the references to such publications. The ideas of model reduction based
on tropical geometry are explored in (Samal et al., 2015a). The work related to metastability
and the analysis of TGF� signalling model are explored in (Radulescu et al., 2015; Samal et al.,
2016). The algorithmic ideas to compute the tropical equilibrations are described in (Samal
et al., 2015c). The manuscript describing the work of associating ECs with clinical phenotypes
is in the process of submission to a peer reviewed journal.

The thesis is organised in three main parts. Firstly, the mathematical formalisms to repre-
sent biological systems are described in Chapters 2 and the background on tropical geometry
and ECs is provided in Chapters 3. Tropical geometry is the main mathematical tool to com-
pute the MRs. Secondly, the algorithms to compute tropical solutions and ECs are discussed
in Chapters 4, 5. In addition, to test the algorithms, a benchmark is performed with models
obtained from various public databases. Lastly, the application of tropical geometry concepts is
shown in two contexts. First, in model reduction where the dynamics of a smooth ODE based
model is described on a lower dimensional manifold which is determined by timescale separation
of variables resulting in slow-fast variables. This is described in Chapter 6 and exemplified with
different biochemcial reaction networks. Second, an approach is described to coarse grain the
dynamics of a smooth biochemical reaction network to discrete symbolic dynamics, which is
described in Chapter 7. The symbolic dynamics is described through a finite state automaton
whose states correspond to MRs. Furthermore, the association of biological phenotypes namely
epithelium-like (non-aggressive) and mesenchymal-like (aggressive) cell lines with MRs is shown
exempliying its potential application in disease research. Likewise, in the context of pathway
analysis, the association of ECs with categorical clinical phenotypes namely beningn and tu-
mour prostate cancer samples and continuous clinical phenotypes namely, survival times of the
Glioblastoma Multiforme (GBM) samples are shown. This is described in Chapter 8.
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Chapter 1. Introduction

Figure 1.1: A representation of MRs as itinerant trajectory in a patchy phase space landscape. Dom-
inant vector fields (red arrows) confine the trajectory to low dimensional patches on which act weak
uncompensated vector fields (blue arrows). A typical trajectory contains succession of slow segments

separated by fast transition. Figure reproduced from (Samal et al., 2015a).
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Chapter 2

Formal Representation of Biochemical

Reaction Networks

The main purpose of this chapter is to introduce the notations used to describe the biochemical
reaction network in a mathematical manner. In this thesis, the rate of change of chemical species
with respect to time will be described as a system of differential equations. The reaction fluxes
will occur as terms or monomials in the equations. These reaction fluxes can be polynomials
or rational functions of chemical species where reaction rate constants occur as parameters.
The reaction rate constants will sometimes be called kinetic constants. For many networks, the
reaction flux function is unknown or the corresponding kinetic constants are uncertain. In such
scenarios, the dynamics is represented in terms of reaction fluxes which will be the variables of
the equation system. Below, these two types of representations are described.

2.1 ODE based representation

The biochemical networks can be described by the following differential equations based on
mass action laws

dx
i

dt
=

X

j2[1,r]

k
j

S
ij

x

↵j , i 2 [1, n]. (2.1)

where k
j

> 0, j 2 [1, r] are the kinetic constants, r is the number of reactions, S
ij

are the
elements of the so-called stoichiometric matrix, ↵

j

= (↵j

1

, . . . ,↵j

n

) 2 Zn

+

are the multi-indices,

x

↵j
= x

↵

j
1

1

. . . x↵
j
n

n

and x
i

, i 2 [1, n] are the species concentrations, n being the number of species.
The purpose is to study the steady state behavior of such a system which means equating the
above equation to zero, resulting in a system of non-linear polynomial equations with unknowns
as x

i

.
The polynomial equations (2.1) can result from the mass action law. For instance, a reaction

A + B ! C of kinetic constant k and satisfying the mass action law, has S
11

= �1, S
21

=

�1, S
31

= 1, ↵
1

= (1, 1, 0), which correspond to the kinetic equations

dx
1

dt
= �kx

1

x
2

,

dx
2

dt
= �kx

1

x
2

,

dx
3

dt
= kx

1

x
2

, (2.2)

where x
1

, x
2

, x
3

are the concentrations of A, B, C, respectively.
It is to be noticed that the mass action law implies tight relations between ↵

j

and S
ij

,
namely ↵j

i

= �S
ij

if S
ij

< 0, otherwise ↵j

i

= 0. These relations are not needed in our approach.
Furthermore, our method can be extended to a more general case when the reaction rates are
rational functions of the concentrations. Typically, we can use the least common denominator
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Chapter 2. Formal Representation of Biochemical Reaction Networks

of reaction rates to express the right hand sides of the kinetic equations as ratios of polynomials
and apply the method to the numerators. This extension is briefly discussed in (Noel et al.,
2012). At this point, it is to be mentioned that there exist approaches to describe such a
polynomial system in a graph theoretic way, i.e., by a weighted directed graph and a weighted
bipartite graph and to study the number of positive solutions depending on the graph structure
(Gatermann and Huber, 2002). This approach uses decompositions of Newton polytopes to find
that parts of the directed graph are related to the existence of positive steady state solutions.
In the current thesis such graph theoretic considerations are not used.

A system of differential equations can have linear conservation laws that are linear combi-
nations of the form c(x) = c

1

x
1

+ c
2

x
2

+ . . .+ c
n

x
n

that is identically constant on trajectories
of the system, c

1

x
1

+ c
2

x
2

+ . . .+ c
n

x
n

= K. They provide constraints that have to be imposed
if one wants to compute steady states, for instance. In Chapter 4 the conservation laws are
either preserved or the system is transformed to one without conservation laws, by eliminating
some variables (for an overview to eliminate variables using conservation laws, we refer to (Gu-
nawardena, 2003)). Specifically, linear conservation law of a system of differential equations
is a linear form C(x) =< c,x >= c

1

x
1

+ c
2

x
2

+ . . . + c
n

x
n

that is identically constant on
trajectories of the system. It can be easily checked that vectors in the left kernel Kerl(S) of the
stoichiometric matrix S provide linear conservation laws of the system (2.1). Indeed, system
(2.1) reads dx

dt

= SR(x), where the components of the vector R are R
j

(x) = k
j

x↵j . If cS = 0,
then d<c,x>

dt

= cSR(x) = 0, where c = (c
1

, c
2

, . . . , c
n

).
In addition, there exists several other ways to model the rate laws (including rational func-

tions of the species). A comprehensive list can be found in (Dräger et al., 2015).

2.2 Reaction flux based representation

The biochemical networks can also be represented by

dx
i

dt
=

X

j2[1,r]

S
ij

V
j

, i 2 [1, n]. (2.3)

where V
j

� 0, j 2 [1, r] are reaction fluxes, r is the number of reactions, S
ij

are the elements
of the stoichiometric matrix. It is to be noted here that such a description of the biochemical
reaction system is useful when the kinetic constants in (2.1) are unknown. The goal is to
analyse the system where reaction fluxes are variables as opposed to the chemical species being
as variables in (2.1). To study the steady state behavior of such a system with non-negativity
constraints on V

j

, the framework of extreme currents is often used (cf. Section 3.2). In this
particular formalism, the reversible reactions are split into separate forward and backward
reactions respectively.
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Chapter 3

Background

This chapter is divided into two sections. In the first section, a brief introduction to tropical ge-
ometry is provided along with important mathematical results mostly adopted from (Maclagan
and Sturmfels, 2015; Sturmfels, 2002; Richter-Gebert, Sturmfels, and Theobald, 2005). The
framework of tropical geometry is applied in the context of model reduction and determining
the symbolic dynamics of smooth ODE based models derived from the biochemical reaction
networks. In the second section, an introduction to the extreme currents is provided which uses
methods from polyhedral geometry for the enumeration of the vertices of the polyhedron. This
has many interesting applications in biological pathway analysis and stoichiometric network
analysis.

3.1 A Brief Introduction to Tropical Geometry

Tropical geometry as a mathematical technique has a growing number of applications in non-
linear equation solving (Rojas, 2002), algebraic statistics (Pachter and Sturmfels, 2004), bio-
chemical reaction networks (Noel et al., 2012; Noel et al., 2014) and in general optimization
problems e.g. job scheduling, transportation networks, decision making, traffic optimization
(Aubin, 2010; Krivulin, 2014). Furthermore, tropical geometry is closely related to max-plus
algebra (Heidergott, Olsder, and Woude, 2006) which is shown in the context of mean pay-
off games (Grigoriev and Podolskii, 2013). In this section, the important concepts of tropical
geometry are reviewed.

3.1.1 Tropical Arithmetic

In tropical arithmetic, tropical addition (denoted by �) and tropical multiplication (denoted
by �) of two numbers is their minimum and sum in classical arithmetic as shown below

x� y = min(x, y),

x� y = x+ y.

(3.1)

For example, 1� 2 = 1, 1� 2 = 3.
The basic structure in tropical arithmetic is the tropical semiring which is a set defined

by (R [ {1},�,�) where 1 denotes infinity and R is the set of real numbers. It is called
semiring due to the absence of tropical subtraction i.e. absence of additive inverse. For example,
consider the tropical subtraction of two numbers 2 and 1 and the result be x, this is equivalent
to 1 � x = 2, which has no solution for x. The symbol 1 plays the role of additive identity
and 0 as multiplicative identity in such a semiring. For example, x �1 = x and x � 0 = x.
It should be pointed out that, min(x, y) can be replaced with its dual form max(x, y) resulting
in a semiring defined by (R [ {�1},�,�). However, in this thesis the choice of min(x, y) is
adopted.
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Chapter 3. Background

Tropical geometry can also be understood as the limit of classical geometry in the following
manner:

Let x and y be the powers of an auxiliary variable " represented as "x and "y, where " is
a positive real number. Tropical addition can be described as x � y = log

"

("x + "y) which
evaluates to min(x, y) if " ! 0 and if " ! 1 it evaluates to max(x, y). Similarly, tropical
multiplication can be described as x� y = log

"

("x"y) which evaluates to x+ y.

3.1.2 Tropical Polynomial

Let x
1

, . . . , x
n

represent variables in the tropical semiring. A tropical monomial is the tropical
multiplication of these variables where repetitions are allowed. Hence, tropical monomial is
a linear function from Rn to R with integer coefficients. For example, the tropical monomial
x2
1

� x3
2

represents the linear function 2x
1

+ 3x
2

in classical arithmetic. In the similar spirit,
a tropical polynomial is a finite linear combination of such tropical monomials. To this aim,
tropical polynomial can be defined in the following manner:

Definition. A Tropical polynomial is a piecewise linear concave function which is given as the
minimum of a finite set of linear functions with integer coefficients.

Let us exemplify, the idea of tropical polynomial in with a polynomial in two variables x, y
whose coefficients are rational functions of a small parameter " as represented below

f(x, y, ") =
X

(i,j)2A

a
ij

(")xiyj (3.2)

The coefficients a
ij

(") = a
ij

"�ij where a
ij

lie over the complex field C. The variables x, y also
lie over C. The field C is algebraically closed. The set A denotes a finite subset in Z2 (where
Z denotes the set of integers).

The tropicalization of f(x, y, "), denoted by T (f(x, y, ")) is an arithmetic operation that
replaces the classical addition and multiplication with the tropical addition and multiplication,
resulting in a tropical polynomial as shown below

min

(i,j)2A
(�

ij

+ ix+ jy) (3.3)

Remark. The tropicalization operation translates a non-linear polynomial into a piecewise linear
function denoted by a tropical polynomial. This has a direct implication in the algorithmic
development as it is much easier to handle linear functions based on the methods from polyhedral
geometry.

3.1.3 Tropical Variety

The tropical zeros are determined by computing the points at which the minimum of the tropical
polynomial is attained at least twice. For example, in the bivariate polynomial defined in (3.2),
consider any two points (i0, j0) and (i00, j00) in A, the computation of tropical zeros translates to
solving the following systems of linear inequalities

�
i

0
j

0
+ i0x+ j0y = �

i

00
j

00
+ i00x+ j00y  �

ij

+ ix+ jy for (i, j) 2 A (3.4)

where (i0, j0) and (i00, j00) range over the distinct points in A, leading to a disjunction of
linear inequality systems. Such linear inequality systems are called as solution polytopes as
because a linear inequality system is actually a convex polytope in H -representation. Here
H -representation of a polytope means a bounded solution set of a finite systems of linear
inequalities which can be represented by P (A, b) = {x 2 Rd | aT

i

x  b
i

for 1  i  m}, where
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3.1. A Brief Introduction to Tropical Geometry

Figure 3.1: Newton polytope for the polynomial �x6
1 + x3

1x2 � x3
1 + x1x

2
2. Note that the point (3, 1)

is not in the convex hull. The dotted edge corresponds to the monomials of same sign.

A 2 Rm⇥d is a real matrix with rows aT
i

and b 2 Rm is a real vector with entries b
i

. Boundedness
means that there is a constant N such that kxk  N holds for all x 2 P (defnition adopted
from (Henk, Richter-Gebert, and Ziegler, 2004)).

In the case of bivariate polynomial, the union of such solution polytopes is called as a
tropical curve and in multivariate case it generalizes to tropical hypersurface, as defined below

Definition. The set of tropical zeros (i.e. union of solution polytopes) of a tropical polynomial
is called a tropical hypersurface.

The algorithmic way to compute the tropical zeros is through the technique of Newton
polytopes. The Newton polytope associated with (3.2) is the convex hull of point (i, j, �

ij

) for
each point (i, j) in A. The edges of the Newton polytope are orthogonal to the vectors satisfying
the inequalities in (3.4).

Example. Let us consider a polynomial in two variables namely, f(x
1

, x
2

) = �x6
1

+ x3
1

x
2

�
x3
1

+ x
1

x2
2

. The corresponding Newton polytope is shown in Fig. 3.1 whose edges correspond
to the disjunction of three linear inequality systems (cf. (3.4)) leading to three cases, as shown
below

case 1: 6x
1

= 3x
1

, 3x
1

 x
1

+ 2x
2

,
case 2: x

1

+ 2x
2

= 3x
1

, 3x
1

 6x
1

,
case 3: x

1

+ 2x
2

= 6x
1

, 6x
1

 3x
1

.
It is to be noted that the Newton polytope construction simplifies the task of enumerating

the cases by automatically eliminating some of them. For example, in the above example the
case corresponding to the point (3, 1) is not required as it is absent in the convex hull and hence,
will never satisfy the condition in (3.4). The three edges of Newton polytope are the normal
vectors satisfying the above cases and constitute the tropical curve. Below are the solutions for
x
1

, x
2

corresponding to above cases
x
1

= 0, x
2

� 0,
x
1

� 0, x
2

= x
1

,
x
1

 0, x
2

=

5

2

x
1

.
For applications considered in this thesis, the edges corresponding to opposite signs mono-

mials are treated differently from the ones with same the sign ones (the justification for it will
be given in Chapter 4). To illustrate it, in Fig. 3.1, the edge corresponding to the same sign
monomials is represented as a dotted line. Further definitions of the properties of polytopes
can be found in (Henk, Richter-Gebert, and Ziegler, 2004).

The computation of tropical zeros i.e. determining the points at which the minimum of a
tropical polynomial is attained at least twice, is associated with important concepts namely,
tropical variety and tropical prevariety. The distinction between them becomes clearer in case
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Chapter 3. Background

of a system of multivariate polynomials. In context of a system of multivariate polynomials
denoted by f

1

, f
2

, . . . , f
k

where f
i

2 C[x
1

, x
2

, . . . , x
n

], tropical prevariety and tropical variety
are defined below

Definition. A tropical prevariety is defined as the intersection of a finite number of tropical
hypersurfaces, denoted by

V (T (f
1

, f
2

, . . . , f
k

)) = \
i2[1,k]T (fi) (3.5)

where T (f
1

, f
2

, . . . , f
k

) and V (T (f
1

, f
2

, . . . , f
k

)) represent the set of tropicalization of the mul-
tivariate polynomials and the common tropical zeros respectively.

Definition. A tropical variety is the intersection of all tropical hypersurfaces that belong to
the ideal I generated by the polynomials

f
1

, f
2

, . . . , f
k

, V (T (I)) = \
f2IT (f) (3.6)

where T (I) represents the set of tropicalization of the elements of I and V (T (I)) denotes their
common tropical zeros.

Remark. The tropical variety is within the tropical prevariety, but the reciprocal property is not
always true. The tropical prevariety and tropical variety coincide in case of a single univariate
or multivariate polynomial (cf. Section 3.1.5). Furthermore, the tropical variety and tropical
prevariety are polyhedral complexes (Richter-Gebert, Sturmfels, and Theobald, 2005) meaning
that the intersection between any two solution polytopes is either empty or is a face of each
other.

The tropicalization of the ideal T (I) can be represented as

T (I) = \
i2[1,r]T (gi) (3.7)

where polynomials g
1

, g
2

, . . . , g
r

denote a finite generating set of the ideal I ( which is generated
by the original set of polynomials namely, f

1

, f
2

, . . . , f
k

) and are called the tropical basis of I.
The relation between the tropical variety and algebraic variety can be represented in the

following manner
{T (V (I))} = V (T (I)) (3.8)

where V (I) is algebraic variety corresponding to the ideal I. {T (V (I))} denotes the closure
of tropicalization of V (I). In literature, tropical variety is also analysed in the context of
Maslov dequantization and idempotent analysis (Maslov and Kolokoltsov, 1994; Litvinov, 2007;
Litvinov, Maslov, and Shpiz, 2001) as the logarithmic limit of algebraic variety.

Computing the Tropical Variety

An algorithm to compute the tropical basis is described in (Bogart et al., 2007). However, the
complexity of this algorithm can be double-exponential in the size of the system, both in time
and in space. It should be pointed out that any universal Gröbner basis of I is not a tropical
basis as pointed out in (Bogart et al., 2007). Furthermore, tropical basis could not be unique.

In this context, a fast heuristic to check whether an element in tropical prevariety belongs to
the tropical variety is proposed here. The core idea is to define an augmented system consisting
of finite number of polynomials from the ideals I which are randomly enumerated along with
the polynomials f

1

, f
2

, . . . , f
k

. The tropical prevariety of this augmented system with a high
probability represents the tropical variety V (I). Although the ideal contains an infinite number
of elements, a reasonable choice is to take the sums of products of f

1

, f
2

, . . . , f
k

by arbitrary
polynomials. The number of arbitrary polynomials is fixed at 2k. An overview about choosing
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3.1. A Brief Introduction to Tropical Geometry

the arbitrary polynomials can be found in (Hept and Theobald, 2009). The procedure can be
formalised in the following steps

1. Compute the tropical prevariety for the polynomials f
1

, f
2

, . . . , f
k

.

2. Sample 2k elements from the I denoted by g
1

, g
2

, . . . , g
2k

where g
i

= h
1

f
1

+ . . . + h
k

f
k

,
h
k

are arbitrary polynomials, h
i

2 C[x
1

, x
2

, . . . , x
n

].

3. Compute the tropical prevariety for the polynomials g
1

, g
2

, . . . , g
2k

by augmenting one
element at a time from the tropical prevariety obtained in Step 1. If the obtained tropical
prevariety is empty it is called infeasible. Repeat this for all the elements in the tropical
prevariety.

4. Elements of tropical prevariety from Step 1 resulting in infeasible tropical prevariety
in Step 3, do not belong to the tropical variety. However, if an element in the tropical
prevariety survives then it belongs to the tropical variety with a high probability but there
is no guarantee. In practice, this would be sensitive to the selection of g

1

, g
2

, . . . , g
2k

.

An example demonstrating the above steps will be presented in Section 3.1.5 and the imple-
mentation details in Chapter 4.

3.1.4 Upper Bound on the Number of Tropical Zeros

The computation of the tropical prevariety or tropical variety involves the intersection of tropical
hypersufaces. In case of tropical curves, the bound on the number of intersection points is given
by the theorems of Bézout and Bernstein.

Theorem. Tropical Bézout theorem: Two general tropical curves C and D of degrees c and d
intersect in c · d points, counting multiplicities.

The intersections are stable if the curves intersect transversely. Otherwise, the curves in-
tersect in infinitely many points. Nevertheless, in such a situation the curves can be perturbed
such that they intersect in finitely many points. This is explained with an illustration in (Macla-
gan and Sturmfels, 2015). In the terminology of Newton polytopes, the number of intersection
points is given by Bernstein theorem as defined below

Theorem. Bernstein Theorem: The number of intersection points of two tropical curves C and
D with prescribed Newton polygons P

C

and P
D

equals to the mixed area of these polygons.

The mixed area is denoted by MA(P
C

, P
D

) = Area(P
C

+ P
D

) � Area(P
C

) � Area(P
D

)

where Area(.) is the Euclidean area in R2 and P
C

+P
D

is the Minkowsky sum. The Minkowsky
sum of two polytopes P

C

and P
D

is defined as P
C

+P
D

= {c+d | c 2 P
C

, d 2 P
D

} This means
that the union of tropical curves is dual to the mixed subdivision of Minkowsky sum of their
Newton polygons. The transversal intersection of tropical curves is represented by the mixed
cells of the mixed subdivision of Newton polygons. In addition, approaches based on discrete
mixed volume (Bihan, 2014) also determine such bounds.

In case of multivariate system of polynomials denoted as

f
1

, f
2

, . . . , f
k

(3.9)

where f
i

2 C[x
1

, x
2

, . . . , x
n

], Bézout theorem is generally valid when k = n. A general version
of this result in the case of of over determined systems i.e. k � n is analysed in (Davydow and
Grigoriev, 2015).
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3.1.5 Newton-Puiseux Series and Tropical Geometry

In this section, the relationship between the tropical solutions and Newton-Puiseux series so-
lutions is discussed. The Newton-Puiseux series is used to represent the zeroes of polynomial
whose coefficients are series with fractional exponents of a small parameter ". In other words,
the main objective is to solve polynomials over the field of the Newton-Puiseux series defined
by C {{"}}, where " plays the role of indeterminate in the formal power series. The elements in
C {{"}} are formal power series in " with rational exponents and common denominator which
are bounded below. These can be represented as x(") = ⌧

1

"a1 + ⌧
2

"a2 + · · · , where ⌧
i

2 C, and
a
1

< a
2

< · · · are rational numbers with common denominator. The series is convergent in
some neighborhood of the origin, the origin is excluded if the exponent in less than 0. Let us
demonstrate the main idea with an univariate polynomial as shown below

f(x, ") = A
d

(")xd +A
d�1

(")xd�1

+ . . .+A
2

(")x2 +A
1

(")x+A
0

(") (3.10)

The number of roots in such a situation is given by the Newton-Puiseux theorem which is
defined below

Theorem. Puiseux theorem: The field of Puiseux series denoted by C {{"}} is algebraically
closed and the polynomial f(x, ") has d roots counting multiplicities, in the field of C {{"}}.

As the coefficients of (3.10) are power series with fractional exponents in ". The ith coefficient
can be written as the Newton-Puiseux series expansion in the following manner:

A
i

(") = ¯A
i

"�i + higher order terms in " (3.11)

The roots of f(x, ") will be expressed in the similar manner

x(") = x̄"a1 + higher order terms in " (3.12)

In order to compute the lowest order terms of Newton-Puiseux series for the roots, the
values of a

1

, x̄ in Q⇥ C for which f(x, ") = 0 need to be determined. First, let us compute the
possible values of a

1

by rewriting (3.10) with the lowest order terms as shown below

¯A
d

x̄d
1

"�d+da1
+

¯A
d�1

x̄d�1"�d+(d�1)a1
+ . . .+ ¯A

2

x̄2"�2+2a1
+

¯A
1

x̄1"�1+a1
+

¯A
0

"�0 = 0 (3.13)

The possible values of a
1

satisfying (3.13) can be computed by solving the following system
of inequalities

min(�
d

+ da
1

, �
d�1

+ (d� 1)a
1

, . . . , �
2

+ 2a
1

, �
1

+ a
1

, �
0

) (3.14)

where the min is attained at least twice. This is required, else (3.13) will be nonzero due
to the presence of a leading term. Furthermore, if one looks for positive and real solutions i.e.
x 2 R+ , then it follows that at least two terms corresponding to the minimum should have
the opposite signs. This condition is a necessary, but not a sufficient condition for positive real
solutions (Radulescu, Vakulenko, and Grigoriev, 2015). Furthermore, (3.14) can be also seen as
a tropical polynomial obtained by tropicalization of (3.10). Therefore, in this case, computing
the possible values of a

1

means computing for the tropical zeros of this tropical polynomial (cf.
Section 3.1.3). Representing the zeros of (3.10) as formal power series is equivalent to lifting of
the tropical zeros to a Newton-Puiseux series. In the univariate case, this is always possible by
the Puiseux theorem and in the multivariate case, this is ensured by the theorem of Kapranov
(Einsiedler, Kapranov, and Lind, 2006).
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3.1. A Brief Introduction to Tropical Geometry

After determining the possible values of a
1

, the possible values of x̄ can be determined by
solving the following equation for non-zero solutions

P

i,�

i
+ia=m

A
i

x̄i = 0

m = min

i

(�i
1

+ ia
1

)

(3.15)

Although this step involves solving of a polynomial equation, but in general this involves
solving a system of binomial equations i.e. polynomial with exactly two terms, for which
polynomial time algorithm exists (Grigoriev and Weber, 2012; Millán et al., 2012).

To this end, the core idea depicting the relation between the classical and tropical algebra
can be shown in the following manner

Classical Algebra Tropicalization !
Lifting

Tropical Algebra (3.16)

Some examples explaining the computation of Newton-Puiseux series using the framework
of tropical geometry are discussed below.

Example. Consider the univariate polynomial f(x, ")

x2 + x� "3 = 0 (3.17)

Step 1: Rewrite the system with lowest order terms (cf. (3.13)) as shown below

x̄2"2a1 � x̄"a1 � "3 = 0 (3.18)

Step 2: Solve the above equation for tropical zeros based on the technique of Newton polytope
(cf. Section 3.1.3). The inequalities corresponding to the edges of Newton polytope are 2a

1

=

a
1

 3 or 2a
1

= 3  a
1

or 3 = a
1

 2a
1

resulting in two points namely a
1

= 0 or a
1

= 3. This
denotes the tropical variety (recall for a single univariate polynomial the tropical prevariety and
tropical variety coincide).
Step 3: The coefficients of Newton-Puiseux series i.e. x̄ corresponding to the possible values of
a
1

can be computed using (3.15) as exemplified below
For a

1

= 0, the following equation needs to be solved

x̄2 + x̄ = 0 (3.19)

This results in a single non-zero value, x̄ = �1
Similarly, for a

1

= 3, the following equation needs to be solved

x̄� 1 = 0 (3.20)

This results in x̄ = 1

Therefore, two different Newton-Puiseux series solutions are obtained with �1 and "3 as the
lowest order terms. For the application scenario considered in this thesis, the focus will be to
compute the possible values of a

1

only.

In case of a system of multivariate polynomial equations denoted by f
1

, f
2

, . . . , f
k

where
f
i

2 C[x
1

, x
2

, . . . , x
n

], there is no analogue of Kapranov theorem. In this case, the tropical
zeros are the necessary condition for the existence of Newton-Puiseux solutions. Recall from
Section 3.1.3 that the set of solutions obtained from solving the disjunction of min cases result
into tropical prevariety. In case of a single polynomial, the elements of such a prevariety can
be lifted to the series solution whereas for systems of equations this is always not the case. The
computation of tropical variety involves the computation of the tropical basis whose algorithmic
complexity can be double-exponential in the size of the system, both in time and in space.
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Chapter 3. Background

Nevertheless, a heuristic method to check whether an element of the tropical prevariety belongs
to the variety is presented in Section 3.1.3. Below is an example demonstrating this heuristic
along with the steps to solve for the lowest order of the Newton-Puiseux series for a system of
equations.

Example. Consider two polynomials in two variables

x� y � "x4 = 0

y � x+ "y2 = 0

(3.21)

Step 1: Rewrite the system as in (3.10) as shown below:

x̄"a1 � ȳ"a2 � x̄4"4a1+1

= 0

ȳ"a2 � x̄"a1 + ȳ2"2a2+1

= 0

(3.22)

Step 2: The inequalities corresponding to the edges of Newton polytope (considering edges with
the opposite sign terms) for the 1st equation are a

1

= a
2

 4a
1

+ 1 or a
1

= 4a
1

+ 1  a
2

.
Similarly, for the 2nd equations , the inequalities are a

2

= a
1

 2a
2

+ 1 or a
1

= 2a
2

+ 1  a
2

.
A subset of tropical prevariety (as only terms of opposite signs are considered) is given by
the intersection of tropical hypersurfaces resulting in a disjunction of min cases are mentioned
below (in a combinatorial manner):

a
1

= a
2

 4a
1

+ 1 and a
2

= a
1

 2a
2

+ 1 or,
a
1

= 4a
1

+ 1  a
2

and a
2

= a
1

 2a
2

+ 1 or,
a
1

= a
2

 4a
1

+ 1 and a
1

= 2a
2

+ 1  a
2

or,
a
1

= 4a
1

+ 1  a
2

and a
1

= 2a
2

+ 1  a
2

.

(3.23)

The possible values of a
1

and a
2

are a
1

= a
2

� �1

3

or a
1

= �1

2

, a
2

= �1. The first solution
is an infinite branch whereas the second solution is an isolated point. This constitutes the
tropical prevariety.

In order to test which solution in the tropical prevariety belongs to tropical variety and
hence lifts to Newton-Puiseux series, the procedure explained in Section 3.1.3 will be adopted.
Let us generate an element from ideal by adding both the equations in (3.22) resulting in
ȳ2"2a2+1 � x̄4"4a1+1. The corresponding inequality for this equation is 2a

2

+ 1 = 4a
1

+ 1

(cf. Step 2 above) when added to the tropical prevariety results in two isolated points namely
(�1

2

,�1) and (0, 0).
It can be verified that these two points namely, (�1

2

,�1) and (0, 0) are liftable to the series
solution in the following manner

Adding both the equations in (3.21), we get

y = ±x2 (3.24)

Substituting it back in the 1st equation of (3.21), we get

±x� 1� "x3 = 0 or x = 0 (3.25)

Solving ±x�1�"x3 using Newton potytope approach, it can be shown that the possible values
of a

1

are 0 or �1

2

. By Puiseux theorem, these points are liftable to the Newton-Puiseux series.
Similarly, one can show that the values of a

2

are 0 and �1. Therefore, there are two liftable
solutions namely (a

1

, a
2

) = (0, 0) and (�1

2

,�1).
It is to be noted here that, for this specific example a single element from ideal I was enough

to determine the liftable points. In general, it is advisable to use 2k elements from the ideal as
explained in Section 3.1.3.
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3.2. Extreme Currents

3.2 Extreme Currents

Metabolic networks are usually represented as a collection of enzyme catalysed biochemical
reactions. There are numerous databases with such information (Kanehisa and Goto, 2000;
Croft et al., 2011; Le Novére et al., 2006). One way to study such a network is by decomposing
the network into sub-networks or pathways in an unbiased manner. Such pathways represent
different metabolic routes for the production of given metabolites along with the essential en-
zymes. Extreme Currents (ECs) (Clarke, 1988), Elementary Flux Modes (EFMs) (Schuster,
Fell, and Dandekar, 2000) and Extreme Pathways(EPs) (Schilling, Letscher, and Palsson, 2000)
are three widely used techniques in this context. The common assumption is that the underly-
ing biochemical reaction system is in a steady state, and with additional constraints on reaction
fluxes, the solution space can be represented as a polyhedron. The vertices of such a polyhedron
have the biochemical interpretation of being pathways in the network. A comparison between
different metabolic pathway techniques can be found in (Llaneras and Picó, 2010). One major
drawback of pathway enumeration is that the number of pathways can explode in a combina-
torial fashion with the size of the network (Klamt and Stelling, 2002). Hence, optimization
techniques are frequently used for larger networks . For an overview (Rezola et al., 2015) is
recommended.

In short, the decomposed pathways are basically steady state reaction-flux distributions
which capture a wide range of behaviour that the network is capable to exhibit. Essentially,
these pathways are invariants of the network and hence do not require the kinetic rate param-
eters to be known or estimated, which is often very difficult in practice.

Consider the dynamics of biochemical reaction networks modeled using reaction fluxes (cf.
Section 2.3) where reaction fluxes are represented as a vector V and the stoichiometric matrix
as S. It is important to note here that while determining S, the reversible reactions in the
network are split into separate forward and backward reactions.

Solving such a system of equations for steady state (i.e. at dxi
dt

= 0) along with non-
negativity constraint on the fluxes ( i.e. on the variables V ) results in a convex polyhedron
(also known as flux cone) and is defined as follows:

P = {V 2 Rn

: SV = 0, V
i

� 0} (3.26)

The vertices of polyhedron P are called extreme currents (ECs) (Clarke, 1988) or convex bases
which can be understood as pathways in the reaction network. The non-negativity constraint
can be weakened by asking its satisfaction for a subset of reactions that are irreversible and do
not have negative fluxes. Reversible reactions can have negative fluxes. Sometimes, a reversible
reaction is decomposed artificially into irreversible reactions of opposite stoichiometry. Thus,
resulting in all fluxes being positive. In steady state, the fluxes are linear combinations of ECs
and can be written as

V = jE, (3.27)

where E is a k ⇥ r extreme current matrix and j is a k dimensional row vector of non-zero
real numbers called convex parameters. In literature, such pathways are also referred to as
elementary flux modes (EFMs) or extreme pathways (EPs), depending on the way in which
reversible reactions are split (affecting the non-negativity constraint on the fluxes). As we split
the reversible reactions into separate forward and backward reactions, therefore, ECs, EFMs
and EPs are equivalent (Llaneras and Picó, 2010).
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Chapter 4

Algorithms for the Computation of

Tropical Equilibrations

In this chapter algorithms for computing the set of TEs are discussed. TEs are a subset of
tropical prevariety. In addition, a heuristic is provided to check for the tropical equilibrations
which could be lifted to the tropical variety and hence, to the Newton-Puiseux series solution.
To evaluate the performance of the proposed algorithms, a benchmark is shown on a set of
models obtained Biomodels databases for the described algorithms.

4.1 Computation of Tropical Equilibrations

In this section, algorithms computing the tropical equilibrations will be discussed. The idea of
tropical equilibration is based on the notion of tropical prevariety (cf. Chapter 3). We now
present the heuristics to study the notion of tropical equilibrations.

For biochemical reaction networks represented as ODEs (cf. (2.1)) with multiple timescales,
it is reasonable to consider that the kinetic parameters have different orders of magnitudes.

Therefore, it is assumed that the parameters of the kinetic models (2.1) can be written as

k
j

=

¯k
j

"�j . (4.1)

The exponents �
j

are considered to be integer. For instance, the following approximation
produces integer exponents:

�
j

= round(log(k
j

)/ log(")), (4.2)

where round stands for the closest integer (with half-integers rounded to even numbers). With-
out rounding to the closest integer, changing the parameter " should not introduce variations
in the output of the method.

In contrast, species orders vary in time and have to be computed. To this aim, the species
concentrations are first represented by orders of magnitude defined as

a
j

= lim
"!1

log(x
j

)

log(")
. (4.3)

More precisely, one has x
j

= x̄
j

"aj , where x̄
j

has zero order (unity). Because log(") < 0,
Equation (4.3) means that species orders and concentrations are anti-correlated (large orders
mean small concentrations and vice versa).

We assume that the kinetic parameters are fixed. In contrast, the orders of the species vary
in the concentration space and have to be calculated as solutions to the tropical equilibration
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Chapter 4. Algorithms for the Computation of Tropical Equilibrations

problem. To this aim, the network dynamics is first described by a rescaled ODE system

dx̄
i

dt
=

X

j

"µj�ai
¯k
j

S
ij

¯

x

↵j , (4.4)

where
µ
j

(a) = �
j

+ ha,↵
j

i, (4.5)

and h, i stands for the dot product.
The r.h.s. of each equation in (4.4) is a sum of multivariate monomials in the concentrations.

The orders µ
j

indicate how large are these monomials, in absolute value. A monomial of order
µ
j

dominates another monomial of order µ
j

0 if µ
j

< µ
j

0 .
The tropical equilibration problem consists in finding a vector a, which will be called tropical

equilibration solution such that

min

j,Sij>0

(�
j

+ ha,↵
j

i) = min

j,Sij<0

(�
j

+ ha,↵
j

i) (4.6)

If �
j

are integers, the solutions a are rational. For the purpose considered here, the classical
notion of tropical prevariety (cf. Chapter 3) is slightly modified. A tropical equilibration is
defined as a vector a 2 Rn such that h↵,ai attains its minimum at least twice for monomials
of different signs, for each polynomial in the (4.4). Thus, tropical equilibrations are subsets of
the tropical prevariety. The rationale behind selecting monomials with different sign conditions
is explained in Sub-section 3.1.5.

The system in (4.6) can be represented as a set of linear inequalities resulting into a convex
polytope. The solutions of this system have a geometrical interpretation. Let us define the
extended order vectors a

e

= (1,a) 2 Rn+1 and extended exponent vectors ↵

e

j

= (�
j

,↵
j

) 2
Zn+1. Let us consider the equality µ

j

= µ
j

0 . This represents the equation of a n dimensional
hyperplane of Rn+1, orthogonal to the vector ↵

j

e �↵

j

0e:

hae,↵
j

ei = hae,↵
j

0ei, (4.7)

where h, i is the dot product in Rn+1. The minimality condition on the exponents µ
j

implies
that the normal vectors ↵

j

e�↵

j

0e are edges of the so-called Newton polytope (Henk, Richter-
Gebert, and Ziegler, 2004; Sturmfels, 2002).

For each equation i, let us define

M
i

(a) = argmin

j

(µ
j

(a), S
ij

> 0) = argmin

j

(µ
j

(a), S
ij

< 0), (4.8)

in other words M
i

denote the set of monomials having the same minimal exponent µ
i

.
Tropically truncated system can be defined as the system obtained by keeping only the

dominating monomials in (4.4), as follows:

dx̄
i

dt
= "µi�ai

(

X

j2Mi(a)

¯k
j

S
ij

¯

x

↵j
). (4.9)

The tropical truncated system is uniquely determined by the index sets M
i

(a), therefore, by
the tropical equilibration a. Reciprocally, two tropical equilibrations can have the same index
sets M

i

(a) and truncated systems. Two tropical equilibrations a
1

, a
2

are said to be equivalent iff
M

i

(a

1

) = M
i

(a

2

), for all i. Equivalence classes of tropical equilibrations are called as branches.
For each branch there exists a unique convex polytope, cf. (4.6). The union of branches are
subsets of tropical prevariety. It is a subset because we are interested in tropical equilibration
of at least two monomials of different signs for the reasons discussed above. This is computed
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4.2. Justification of the Tropical Equilibrations

using the method equal_polyhedra implemented in the software package polymake (Gawrilow
and Joswig, 2000).

In case of rational expressions e.g. Michaelis-Menten enzymatic mechanism, the least com-
mon denominator of reaction rates can be used to express the right hand sides of the kinetic
equations as ratios of polynomials and apply the method to the numerators. This extension
was briefly discussed in (Noel et al., 2012).

Minimal Branches A branch B with an index set M
i

is minimal if M 0
i

⇢M
i

for all i where
M 0

i

is the index set of a branch B0 implies B0
= B or B0

= ;. In the terminology of convex
polytopes, this means a branch B with a convex polytope P

i

is minimal if P
i

⇢ P 0
i

for all i
where P 0

i

is the convex polytope for branch B0 implies B0
= B or B0 is empty. For each index i,

relation (4.7) defines a hyperplane, the tropical equilibration branches are on the intersections of
k such hyperplanes where k is number of polynomial equations representing the right hand side
of (2.1). Minimal branches are maximal (w.r.t. inclusion) polytopes in the tropical prevariety.
This computation is done using included_polyhedra method implemented in polymake. Such
inclusions are represented using directed graphs.

Connected Components of Minimal Branches Two minimal branches represented by
index sets M

i

and M
j

are connected if there exists a branch with index set M
k

such that
M

i

⇢M
k

and M
j

⇢M
k

. In the terminology of convex polytopes, this amounts to checking the
intersection between two convex polytopes P

i

and P
j

(corresponding to minimal branches M
i

and M
j

) if whether P
i

\ P
j

is non void for all i 6= j. The connected component is the zeroth
homology group of the polyhedral complex corresponding to the minimal branches. It indicates
the possible transitions between the minimal branches. Geometrically, the minimal branches
can intersect at a common face or the intersection be empty (recall, minimal branches are
subsets of tropical prevariety and hence is a polyhedral complex). Therefore, for a given pair of
convex polytopes corresponding to minimal branches, their intersection can be void or not. This
check was performed in polymake environment and connected component(s) were computed.
Specifically, this means that an undirected graph is constructed whose vertices are minimal
branches and there exists an edge if the intersection between the two vertices is non-void.

4.2 Justification of the Tropical Equilibrations

The justification for the heuristics of tropicalization is described in Section 3.3 of (Noël, 2012).
Here, we reproduce the main results. Consider the system in (4.4). We suppose that the cone
R

>

= {x̄ : x̄
i

� 0} is invariant under the dynamics exhibited by (4.4) and the initial data is
positive meaning, x̄

i

(0) > � > 0. The sign of terms in (4.1) determines if they are production
(i.e. positive sign) or degradation (i.e. negative sign). Given that biochemical networks very
often have multiple well separated timescales, so choice of (4.1) is justified. In this context,
we are interested for determining the stable functioning of biochemical model and in order to
study that we use the permanency condition as defined below

Definition. The system defined in (4.4) is permanent, if there are two constants C� > 0 and
C
+

> 0, and a function T
0

, such that

C� < x̄
i

(t) < C
+

, for all t > T
0

(x̄(0)) and for every i (4.10)

We assume that C± and T
0

are uniform and do not depend on " as "! 0.

For such permanent systems, Proposition 3.3.2 in (Noël, 2012) states that if the dynamics of
(4.4) is structurally stable in the domain ⌦

C�,C+ = x̄ : C� < |x̄| < C
+

, then the corresponding
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tropical truncated system defined in (4.9) is also permanent and there is an orbital topological
equivalence x̃

i

= h
"

(x̄) between the trajectories x̄(t) and x̃
t

of the corresponding Cauchy prob-
lems with same initial conditions. The solution of the tropically truncated system in (4.9) is
denoted by x̃. The homemorphism h

"

is close to identity as "! 0.
For permanency condition, the necessary condition is that if a tropically truncated system

is permanent, then for each i 2 {1, . . . , n}, the i-th equation of this system contains at least
two terms. The terms should have different signs for the coefficients k

ij

i.e. one term should
be production and the other being the degradation term. This provides the justification to
consider monomials of opposite signs for computing the tropical equilibration. Now, we state
the sufficient condition for permanency in the following way

In a generic case, one can expect that all µ
i

from (4.9) are mutually different, namely

µ
1

< µ
2

< · · · < µ
n�1

 µ
n

. (4.11)

In such a situation, let us consider the first equation of (4.9) with i = 1 and let try to denote
y = x̃

1

, z = (x̃
2

, . . . , x̃
n

). In this new notation, the first equation becomes

dy

dt
= f(y) = b

1

(z)y�1 � b
2

(z)y�2 , b
1

, b
2

> 0, �
i

2 R (4.12)

It has been shown in Lemma 3.3.4 in (Noël, 2012) that (4.12) has permanency if and only if
�
1

< �
2

. For fixed z, in these cases we have y(t, z)! y
0

, as t!1.
If the timescales are not all well separated, for instance if the orders of last two slowest

timescales are allowed to be equal, the permanency condition is given by following theorem

Theorem. Assume µ
1

< µ
2

< · · · < µ
n�1

 µ
n

holds. If the procedure, described above, leads
to the permanency property at each step, where i = 1, 2, . . . , n � 2, and the last two equations
have a globally attracting hyperbolic rest point or globally attracting hyperbolic limit cycle, then
the tropically truncated system is permanent and has an attractor of the same type. Moreover,
for sufficiently small " the initial system also is permanent for initial data from some appropriate
domain W

",a,A

and has an analogous attracting hyperbolic rest point (limit cycle) close to the
attractor of the truncated system. If the rest point (cycle) is not globally attracting, then we can
say nothing on permanency but, for sufficiently small ", the initial system still has an analogous
attracting hyperbolic rest point (limit cycle) close to the attractor of truncated system and the
same topological structure.

Tropical equilibrations satisfying the permanency condition imply invariant manifold. Given
such invariant manifolds, model reduction techniques can be applied to reduce the number of
variables and obtain the dynamics close to the original dynamics (Gorban and Karlin, 2005).
This has been showed in the Lemma 3.3.6 in (Noël, 2012). The application of tropical equili-
bration for model reduction is covered in Chapter 6.

4.3 Implementation and Results

In this section, an algorithm is described to compute the tropical equilibrations, test the equi-
librations for the equivalence classes (i.e., branches) and compute the minimal branches as
described in the previous section. The algorithm to compute the tropical equilibrations is im-
plemented in two different ways namely linear programming and convex polytope approach (cf.
Section 4.3.4 and 4.3.5). For testing the implementations a data set comprising of models from
a public database is created (cf. Section 4.3.1).
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4.3. Implementation and Results

4.3.1 Data Source

For benchmarking, 36 models are selected from the r25 version of the Biomodels database (Le
Novere et al., 2006). All models that have polynomial vector field (mass action kinetics) and
satisfy some technical constraints imposed by the SBML parser (no function definitions, for
instance) are selected. Models with zero valued parameters or which do not have at least one
positive and one negative monomial per ODE are also filtered out (there are two of those).
The model SBML files are parsed and the polynomial vector fields are extracted. Thereafter,
the conservation laws (that are the sum of the variables whose total concentration is invariant)
are computed. The vector field along with the conservation laws are the input to the tropical
geometry based algorithm to compute the minimal branches. It should be noted here that due
to the conservation laws the number of equations may exceed the number of chemical species.
Additionally, as described in Chapter 3, conservation laws can be used to eliminate variables of
the ODE system. The computation of minimal branches are also done for such reduced systems
and the results are compared. The algebraic expressions in the equation system are processed
using computer algebra system Maple.

4.3.2 Newton Polytope and Edge Filtering

Given the input polynomial in the form of (4.4), for each equation and species i, a Newton
polytope N

i

is defined, that is the convex hull of the set of points ↵e

j

such that S
ij

6= 0 and also
including together with all the points the half-line emanating from these points in the positive
✏ direction. This is the Newton polytope of the polynomial in right hand side of (4.4), with the
scaling parameter " considered as a new variable.

As explained above, the tropical equilibrations correspond to vectors a

e

= (1,a) 2 Rn+1

satisfying the optimality condition as per (4.6). This condition is satisfied automatically on
hyperplanes orthogonal to edges of Newton polytope connecting vertices ↵

e

j

0 , ↵

e

j

00 satisfying
the opposite sign condition. Therefore, a subset of edges from the Newton polytope is selected
based on the filtering criteria which tells that the vertices belonging to an edge should be from
opposite sign monomials as explained in (4.13).

E(P ) = {{v
1

, v
2

} ✓
�
V

2

�
| conv(v

1

, v
2

) 2 F
1

(P )

^ sign(v
1

)⇥ sign(v
2

) = �1}, (4.13)

where v
i

is the vertex and V is the vertex set of the Newton polytope, conv(v
1

, v
2

) is the convex
hull of vertices v

1

, v
2

and F
1

(P ) is the set of 1-dimensional face (edges) of the Newton polytope,
sign(v

i

) represents the sign of the monomial which corresponds to vertex v
i

. Figure 3.1 shows
an example of Newton polytope construction for a single equation. Further definitions about
properties of a polytope and Newton polytope can be found in (Henk, Richter-Gebert, and
Ziegler, 2004; Sturmfels, 2002).

4.3.3 Computing Tropical Equilibrations

Using the Newton polytope formulation, one can then solve the tropical equilibration problem
in (4.6) using the edges of Newton polytope (as in (4.8)). A feasible solution is a vector
(a

1

, . . . , a
n

) satisfying all the equations of system (4.6) and lies in the intersection of hyperplanes
(or convex subsets of these hyperplanes) orthogonal to edges of Newton polytopes obeying the
sign conditions. Of course, not all sequences of edges lead to non-void intersections and, thus,
feasible solutions. This can be tested by the following linear programming problem resulting
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from (4.6):

�
j

(i) + ha,↵
j

(i)i = �0
j

(i) + ha,↵0
j

(i)i  �00
j

+ ha,↵00
j

i),
for all j00 6= j, j0, ⌫

j

00
i

6= 0, i = 1, . . . , n
(4.14)

where j(i), j0(i) define the chosen edge of the ith Newton polytope. The set of indices j00 can
be restricted to vertices of the Newton polytope, because the inequalities are automatically
fulfilled for monomials that are internal to the Newton polytope. From (4.14), the sequence of
edges leading to a feasible solution is actually a set of linear inequalities and hence constitutes a
feasible solution system (convex polytope), which is computed using Algorithm 1. Such feasible
solution systems are actually convex polytopes (cf. solution polytopes in Chapter 3) as defined
in (4.6). For instance, in the example of the preceding section, the choice of the edge connecting
vertices (1, 2) and (6, 0) leads to the following linear programming problem:

a
1

+ 2a
2

= 3a
1

 6a
1

,

whose solution is a half-line orthogonal to the edge of the Newton polygon. The pseudo-code is
presented in Algorithm 1. It is clear from the above that the possible choices are exponential.
In order to improve the running time of the algorithm, the pruning strategy evaluates (4.14)
in several steps (cf. Algorithm 1 and Fig. 4.1). It starts with an arbitrary pair of edges
and proceeds to add the next edge only when the inequalities (4.14) restricted to these two
pair of edges are satisfied. The pruning method is a heuristic to filter out the infeasible set
of edge combinations. A variant of algorithm computing only the minimal branches is also
implemented (cf. Algorithm 2). A similar approach was undertaken in (Emiris and Canny,
1995; Sommars and Verschelde, 2016). As the tropical solutions are either isolated points or
bounded or unbounded polyhedra, changing the parameter " is just a way to approximate
the position of these points and polyhedra by lattices or in other words by integer coefficients
vectors. Finding the value of " that provides the best approximation is a complicated problem
in Diophantine approximation. For that reason, an experimental approach is preferred which
consisted of choosing several values of " and checking the robustness of the results.

4.3.4 Linear Programming Approach

In this approach, if the LinearSolve function in Algorithm 1 is true, a single feasible solution
is computed and added to the solution set using the standard linear programming appraoch
using Gurobi (Gurobi Optimization, 2012) software in Java programming environment. In other
words, this means picking a single sample point from the feasible solution system. As discussed
above such feasible solution systems are convex polytopes and can have dimension greater than
zero, resulting in infinite tropical equilibrations. However, one solution per branch is enough for
the identification of variable timescales and reduced models, which are the main applications of
the tropical geometry approach considered in this thesis. Moreover, as this approach does not
take into account the polytope structure hence in case of non-empty intersection among solution
polytopes, the program might select sample points at the intersection of solution polytopes (i.e.
within their common faces). Nevertheless, this provides a first insight into the working of the
algorithm and the running times. Table 4.1 presents the benchmark results on the biomodels.

4.3.5 Convex Polytope Approach

In this approach, if the LinearSolve function in the Algorithm 2 is true, the convex polytope
corresponding to the feasible system of inequalities is augmented to every element in the solution
set at every iteration step (i.e. for each successive edge of k-th edge set). Upon completion
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4.3. Implementation and Results

Algorithm 1: SolveOrders: Steps of tropical equilibration algorithm implementing the
linear programming approach.

Input: List of edge sets ne
1

, ne
2

, . . . , ne
n

(cf. Fig. 4.1), and the corresponding vertices
of Newton polytope

Output: Set of tropical equilibrations corresponding to orders of the variables
a

1

,a
2

, . . . ,a
n

1 begin
2 solutionset ={}; integer k=1; equation = {}; inequalities = {}

3 SolveOrders(equation, inequalities, k, ne
1

, .., ne
n

, vertices)

4 if k > n then
5 return
6 for l = 1 to number of entries in ne

k

do
7 equation(k)* = vertices in lth row

8 inequalities(k)* = all vertices other than lth row

9 if LinearSolve(equation,inequalities)** is feasible then
10 if k = n then
11 add the solution to solutionset
12 SolveOrders(equation, inequalities, k + 1, ne

1

, .., ne
n

, vertices)***

13 *The equations and inequalities are initialised as per (4.14).

14 **Solves the system of equations and inequalities using the linear programming software.

15 ***Recursive call to the function.
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e11

e22

e32e31

e21

e32e31

LinearSolve=true

LinearSolve=false

LinearSolve=true

Second Polytope

First Polytope

Third Polytope

Figure 4.1: Pruning strategy. The possible combinations of edges are represented in a tree represen-
tation where eji represents ith edge from jth Newton polytope. An edge set nei is the set of edges for
ith Newton polytope. The algorithm starts by testing for feasible solution for first pair of edge sets. If
a feasible solution is found, the algorithm proceeds further to other edge sets or it backtracks. In the
figure, e11 and e21 are selected from edge sets ne1, ne2 and are checked for a feasible solution satisfying
(4.14). If such a solution exists, it moves to e31from the next edge set and again checks for feasible
solution, if not then it backtracks to e21 and then to e32 which results in a feasible solution. Therefore,
the sub-tree with root node e31 is discarded from future searches and this improves the running time.
Likewise the branches e11 and e22 are explored. This approach is similar to the branch and bound

algorithm technique. The dashed arrows show the flow of the program

Table 4.1: Summary of analysis on Biomodels database based on the implementation of Algorithm
1. The benchmarked models have a number of dimensions (i.e. number of variables along with number
of conservation laws) ranging from 2 to 41. Model BIOMD0000000289 has tropical branches at " value
1/5, 1/7, 1/9, 1/11 but none at 1/17, 1/19, 1/23. Model BIOMD0000000080 has no solution only at "
value 1/19.

"
value

Total
models
con-
sidered

Models
without
tropical
equili-
brations

Models
with
tropical
equili-
brations

Timed-
out
models

Average
running
time (in
secs)

Average
num-
ber of
tropical
equili-
brations

Min
num-
ber of
tropical
equili-
brations

Max
num-
ber of
tropical
equili-
brations

1/5 36 0 33 3 128.15 5.15 1 35
1/7 36 0 33 3 267.09 6.63 1 35
1/9 36 0 33 3 232.85 6.45 1 33
1/11 36 0 33 3 258.30 5.36 1 33
1/17 36 1 30 5 211.79 6.41 0 61
1/19 36 2 30 4 246.22 7.06 0 61
1/23 36 1 30 5 90.79 5.90 0 61

of the iterations, the equivalence classes of the convex polytope in the solution set gives the
number of branches. Furthermore, from the branches, the minimal branches and the connected
components can be subsequently computed.

Nevertheless, for the applications considered here, the most interesting ones are minimal
branches, so instead of storing the equivalence classes of convex polytope at every iteration
step, equivalence classes of only the maximal polytopes (with respect to inclusion) are stored.
In the end, i.e. after all edge sets are evaluated, the solution set consists of only the minimal
branches. In addition, the dimensions of the polytopes corresponding to the minimal branches
are also computed and shown in Fig. 4.13. The dimension here refers to the dimension of the
affine hull of the polytope. The affine hull of a finite set of points X = {x

1

, . . . , x
n

} in Rd can
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Figure 4.2: Plot of CPU running time against number of equations in the model for the Algorithm
implementing linear programming approach (cf. Section 4.3.4).
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be shown in the following manner

aff(S) = {
i=nX

i=1

| x
1

, . . . , x
n

2 S,

i=nX

i=1

�
i

= 1} (4.15)

This represents the smallest affine subspace of Rd containing S.
It is observed that the number of equivalence classes of maximal polytopes at each iteration

step is sensitive to the ordering of input edge sets (cf. the Input in Algorithm 1) and thereby
affects the CPU running times. To evaluate this further, three strategies for ordering of the list
of edge sets are investigated. They are (i) Increasing, (ii) Decreasing, and (iii) Greedy orderings
respectively.

In increasing and decreasing ordering the input list of edge sets consists of edge sets sorted
in the increasing or decreasing order of their cardinalities. In greedy ordering, an edge set is
dynamically selected at each iteration step, meaning that for a given solution set, that k-th edge
set is selected which gives the minimal number of equivalence classes of maximal polytopes. It
is seen that by following this approach, the intermediate growth in the number of equivalence
classes is low compared to increasing and decreasing ordering criteria. This is shown in Fig.
4.7. This approach resembles greedy strategy in algorithmic design where the algorithm makes
locally optimal choice but gives no guarantee that this leads to the global optimal choice.
Therefore, at best this is a heuristic. Of course, the ordering of the edge sets do not affect
the final solution i.e. the minimal branches. Table 4.2, 4.3, 4.4 presents the benchmark results
on the biomodels for increasing, decreasing and greedy ordering strategies. The running times
versus number of equations for same set of ordering is depicted in Fig. 4.3, 4.4, 4.5.

Although for applications in the thesis, computing of the minimal branches and the corre-
sponding connected components are sufficient. Nevertheless, some additional investigations are
done to get insights into the tropical equilibration solution structure as described below

Inclusion relations As described before, equivalence classes of tropical equilibrations are the
branches and there can be inclusion relations among them (i.e. a polytope may be contained
within another). This is investigated via an inclusion graph (directed graph) as shown in Fig.
4.8.

Connected components The connected components corresponds to the polyhedral complex
of minimal branches. It is depicted as an undirected graph whose vertices are the minimal
branches and there exists an edge if the intersection between the two vertices is non-void as
shown in Fig. 4.9.

Dependency on the choice of " In order to investigate the effect of different " values on the
number of minimal solutions, the value of " is varied and the minimal branches are recomputed.
A boxplot is presented in Fig. 4.10 describes this computation. A large number of models
appear to be robust to the change in the " values demonstrating the robustness of tropical
approach in the context of biochemical models.

Visualizing tropical equilibrations One of the main applications of tropical equilibrations
is in model reduction (cf. Chapter 6). The model reduction proceeds by timescale separation
i.e. identifying certain species which are slow based on the rescaled orders which are computed
from tropical equilibrations (cf. (6.9)). Here, heatmaps for two models are presented in Fig.
4.12 to show such rescaled orders.
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4.3. Implementation and Results

Comparison with linear programming approach The linear programming approach
finds at least one solution per minimal branch. However, the solutions may also belong to
the intersections of the solution polytopes as explained above. Furthermore, the solutions may
also belong to the non-minimal branches (i.e. solution polytopes which are included within
the minimal branches). Therefore, the number of solutions obtained by linear programming
approach may not be equal to the number of minimal branches. In order to test this aspect,
the number of minimal branches is compared with the number of solutions obtained from the
linear programming approach. Such a comparison is shown in Fig. 4.11.

Variable elimination using conservation laws As explained in Section 2.1, the variables
in the ODE system can be eliminated using conservation laws. Theoretically, the minimal
branches are a subset of tropical prevariety, which depends on the dominant terms of equation
system and hence it is expected that these might be different after the elimination procedure
whereas the tropical variety is not affected by such algebraic manipulations as the ideal of the
equation system remains unchanged.

The number of variables that can be eliminated equals to the number of conservation laws of
the ODE system. In practice, the conservation laws are computed by computing the left kernel
of the stoichiometric matrix S with an additional constraint, enforcing non-negativity on each
variable. Thus, giving rise to a systems of equalities and inequalities which can be represented
as a polyhedron and whose vertices denote the conservation laws. Let us suppose that there
are l conservation laws, for the elimination process, l distinct variables from the conservation
laws are chosen randomly and the system of linear conservation laws is solved with respect
to the chosen set of l variables. However, not every selection of l variables may give rise to
a non-empty solution, therefore the process of randomly selecting l variables and solving the
conservation laws with respect to them is repeated till a non-empty solution is found.

However, for the applications only the elements from tropical prevariety i.e. minimal
branches or tropical equilibrations are used, therefore, it is important to compare the mini-
mal branches before and after the elimination procedure in order to find a better strategy. The
summary on the number of minimal branches and plot of the CPU running times are shown
in Table 4.5 and Fig. 4.6 respectively. In practice, the variable elimination results in increased
number of terms in the equation system which in turn leads to increased CPU running times
and also the number of minimal branches sensitive to the selection of " as compared to the
same models without the elimination procedure.

4.3.6 Sample Point for Minimal Branches

For the applications considered here, sample points need to be computed from the minimal
branches. In order to do so, the facets and affine hull of the polytopes corresponding to the
minimal branches are computed resulting in a set of inequalities and equalities. From such a
set of inequalities, a sample point (a

1

, . . . , a
n

) is computed using Satisfiability Modulo Theories
(SMT) solver called Microsoft Z3 software (De Moura and Bjørner, 2008) in python program-
ming environment. With Microsoft Z3, one can generate the sample point belonging exclusively
to a minimal branch and not at the intersections of minimal branches (recall minimal branches
may intersect at a common face, cf. Chapter 3). Therefore, the sample point should satisfy
the inequalities and equalities corresponding to the facets and affine hull where the non-strict
inequalities are replaced by their strict counterparts. For the purpose here, the benefit of using
Z3 over any existing linear programming software is that it distinguishes strict and non-strict
inequality conditions, which allows us to generate the sample point belonging exclusively to a
minimal branch.
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Figure 4.3: Plot of CPU running time against number of equations in the model for the Algorithm
implementing convex polytope approach where the edge sets follow increasing ordering strategy (cf.

Section 4.3.5).
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Figure 4.4: Plot of CPU running time against number of equations in the model for the Algorithm
implementing convex polytope approach where the edge sets follow decreasing ordering strategy (cf.

Section 4.3.5).
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Figure 4.5: Plot of CPU running time against number of equations in the model for the Algorithm
implementing convex polytope approach where the edge sets follow greedy ordering strategy (cf. Section

4.3.5).
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Figure 4.6: Plot of CPU running time against number of equations in the model for the Algorithm
implementing convex polytope approach where the edge sets follow greedy ordering strategy (cf. Section
4.3.5). The models in the approach correspond to the ones whose variables are eliminated using the

approach described in Section 4.3.5.
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Figure 4.7: Plot showing the average of the number of maximal polytopes at each iteration for the
Algorithm 2 implemented in three variants (cf. Section 4.3.5). Red denotes the decreasing, blue denotes
increasing and green denotes greedy edge set ordering strategies respectively. The computations are

done at " = 1/23
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4.4. Estimating Liftable Tropical Equilibrations

Algorithm 2: SolveOrdersMB: Steps of tropical equilibration algorithm using the convex
polytope approach.

Input: List of edge sets ne
1

, ne
2

, . . . , ne
n

(cf. Fig. 4.1), and the corresponding vertices
of Newton polytope

Output: Set of minimal branches
1 begin
2 solutionset ={};

3 for k = 1 to n do

4 for l = 1 to number of entries in ne
k

do
5 equation* = vertices in lth row

6 inequalities* = all vertices other than lth row

7 if LinearSolve(equation,inequalities)** is feasible then
8 Augment the convex polytope to the solutionset***

9 *The equations and inequalities are initialised as per (4.14) and are solved using the
linear programming software.

10 **Solves the system of equations and inequalities using the linear programming software.

11 ***This means that the H-polytope is augmented to the existing ones (also H-Polytopes)
in the solutionset at each iteration step. By augmenting it is meant that the system of
inequalities and equations corresponding to the H-polytope are added to the existing
ones.

Table 4.2: Summary of analysis on Biomodels database based on the implementation of Algorithm 2
with increasing ordering strategy. The benchmarked models have a number of dimensions (i.e. number
of variables along with number of conservation laws) ranging from 2 to 41. Model BIOMD0000000289
has tropical branches at " value 1/5, 1/7, 1/9, 1/11 but none at 1/17, 1/19, 1/23. Similarly, Model
BIOMD0000000080 has no solution only at " value 1/19.

"
value

Total
mod-
els
con-
sidered

Models
without
tropical
equi-
libra-
tions

Models
with
tropical
equi-
libra-
tions

Timed-
out
models

Average
running
time (in
secs)

Average
num-
ber of
tropical
equi-
libra-
tions

Min
num-
ber of
tropical
equili-
brations

Max
num-
ber of
tropical
equili-
brations

1/5 36 0 36 0 200.76 15.08 1 423
1/7 36 0 36 0 177.01 14.41 1 406
1/9 36 0 36 0 195.01 13.02 1 340
1/11 36 0 36 0 169.59 12.36 1 322
1/17 36 1 35 0 175.56 11.02 0 287
1/19 36 2 34 0 187.42 11.08 0 287
1/23 36 1 35 0 184.80 11.08 0 287

4.4 Estimating Liftable Tropical Equilibrations

The steps to check whether an element from tropical prevariety can be lifted to the tropical
variety is explained in Section 3.1.3 in Chapter 3. These steps are implemented in the Algorithm
3 to test whether tropical minimal branches can be lifted to tropical variety. The algorithm is a
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Figure 4.8: A directed graph in layered form showing the inclusion relations among the different so-
lution branches (for " = 1/11) for two models from Biomodels namely BIOMD00000000-35,72. Vertices
in the graph comprise of polytopes corresponding to solution branches and an directed edge between i
and j means j is included in i. The topmost layer contain the minimal solution branches, thereafter the
bottom layers are "included" solution branches. The layers of the included solution branches are based
on the dimension of the corresponding polytopes (arranged in descending order). Therefore, included

solutions in one layer are of same dimensional polytope
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Figure 4.9: Graph of connected components (at " = 1/11) for four models namely BIOMD00000000-
35,72. All of them have one connected component. The vertices are minimal solution branch and there

exists an edge if the intersection between the two vertices is non-void

variant of Algorithm 2 computing the minimal branches with greedy ordering strategy. Similar
to it, the solution set stores the equivalence classes of only the maximal polytopes at each k-th
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4.4. Estimating Liftable Tropical Equilibrations

Table 4.3: Summary of analysis on Biomodels database based on the implementation of Algorithm 2
with decreasing ordering strategy. The benchmarked models have a number of dimensions (i.e. number
of variables along with number of conservation laws) ranging from 2 to 41. Model BIOMD0000000289
has tropical branches at " value 1/5, 1/7, 1/9, 1/11 but none at 1/17, 1/19, 1/23. Similarly, Model
BIOMD0000000080 has no solution only at " value 1/19.

"
value

Total
models
con-
sidered

Models
without
tropical
equili-
brations

Models
with
tropical
equili-
brations

Timed-
out
models

Average
running
time (in
secs)

Average
num-
ber of
tropical
equili-
brations

Min
num-
ber of
tropical
equili-
brations

Max
num-
ber of
tropical
equili-
brations

1/5 36 0 30 6 355.83 2.76 1 19
1/7 36 0 30 6 377.53 2.8 1 19
1/9 36 0 30 6 383.49 3.03 1 14
1/11 36 0 30 6 399.04 2.8 1 14
1/17 36 1 29 6 354.11 2.66 0 15
1/19 36 2 28 6 361.87 2.6 0 15
1/23 36 1 29 6 349.23 2.7 0 15

Table 4.4: Summary of analysis on Biomodels database based on the implementation of Algorithm
2 with greedy ordering strategy. The benchmarked models have a number of dimensions (i.e. number
of variables along with number of conservation laws) ranging from 2 to 41. Model BIOMD0000000289
has tropical branches at " value 1/5, 1/7, 1/9, 1/11 but none at 1/17, 1/19, 1/23. Similarly, Model
BIOMD0000000080 has no solution only at " value 1/19.

"
value

Total
mod-
els
con-
sidered

Models
without
tropical
equi-
libra-
tions

Models
with
tropical
equi-
libra-
tions

Timed-
out
models

Average
running
time (in
secs)

Average
num-
ber of
tropical
equi-
libra-
tions

Min
num-
ber of
tropical
equili-
brations

Max
num-
ber of
tropical
equili-
brations

1/5 36 0 35 1 411.36 3.42 1 19
1/7 36 0 35 1 308.01 3.22 1 19
1/9 36 0 35 1 360.67 3.65 1 17
1/11 36 0 35 1 326.92 3.51 1 17
1/17 36 1 34 1 307.14 3.14 0 18
1/19 36 2 33 1 318.98 3.2 0 18
1/23 36 1 34 1 411.36 3.2 0 15

iteration step. The input is a list of edge sets ne
1

, ne
2

, . . . , ne
2n

corresponding to the edges of
Newton polytopes of the random polynomials from the ideal. For keeping the CPU running
times practical, the number of terms in the random polynomials is fixed at 1. Although, this
is an oversimplification but gives some insights of this heuristic and motivation of future work
in this direction. The output is a list of sets where each set contains the maximal polytopes
resulting from the addition of random elements from the ideal to a given tropical minimal
branch of the model. The set is either empty meaning that after adding elements from ideal the
corresponding minimal branch becomes infeasible suggesting that the minimal branch does not
lift to the tropical variety. However, if the set is not empty, there is a certain probability that
it may be liftable to the tropical variety but there is no guarantee. The test is implemented as
explained in Algorithm 3 which returns a list of sets for a given model where each set contains
the maximal polytopes resulting from the addition of random elements from the ideal to a given
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Table 4.5: Summary of analysis on Biomodels database based on the implementation of Algorithm
2 with greedy ordering strategy on Biomodels after variable elimination using conservation laws (cf.
Section 4.3.5). For " values 1/11,1/17,1/19, model BIOMD0000000077 has no opposite sign monomials
for at least one equation. This may happen due to Newton polytope construction at different values of
".

"
value

Total
mod-
els
con-
sidered

Models
without
tropical
equi-
libra-
tions

Models
with
tropical
equi-
libra-
tions

Timed-
out
models

Average
running
time (in
secs)

Average
num-
ber of
tropical
equi-
libra-
tions

Min
num-
ber of
tropical
equili-
brations

Max
num-
ber of
tropical
equili-
brations

1/5 23 1 20 2 225.95 15.28 0 117
1/7 23 1 20 2 209.02 17.80 0 117
1/9 23 1 20 2 216.17 15.33 0 117
1/11 23 2 19 2 204.28 16.14 0 117
1/17 23 2 19 2 109.24 9.04 0 40
1/19 23 2 19 2 111.05 8.9 0 40
1/23 23 0 21 2 117.68 9.71 1 50

tropical minimal branch of the model. A boxplot is presented in Fig. 4.14, which shows the
cardinalities of the sets belonging to such a list for a given model. It is to be pointed out that
the implementation of this test on the minimal branches obtained from the Biomodels did not
resulted in empty sets for any given model. The CPU running times of the implementation is
shown in Fig. 4.15. The results remain inconclusive for Biomodels and more in depth analysis
of parameters of the program ( e.g. number of random polynomial, terms in each random
polynomial, etc) is a topic of future work. Some preliminary work in selecting elements from
ideal was done in (Radulescu, Vakulenko, and Grigoriev, 2015) by computing the fast cycles
(which are not random but have a biochemical interpretation).

It has been conjectured in (Radulescu, Vakulenko, and Grigoriev, 2015) that the minimal
branches which are liftable to tropical variety are better candidates for performing model or-
der reduction. More precisely, prevarieties can provide reductions for transient, metastable,
but relatively faster modes (see Chapter 7), whereas tropical variety is more likely to provide
reductions for the last, slowest modes.

4.5 Discussions

In this chapter, the algorithmic approaches are discussed to compute the tropical equilibrations
and organise them into branches and minimal branches. Two different implementations are
explained for computing the equilibrations namely the linear programming and the convex
polytope approach. The linear programming approach, is comparatively fast to compute the
first tropical solution but takes considerable amount of CPU time to compute all solutions as
seen in the timing out of 3 models (i.e. models taking more than 10, 000 secs of computation
time). Also as described, this approach does not takes into account the polytope structure of
the solutions explicitly and hence may have sample points belonging to the common face of
the minimal branches representing their intersection. On the other hand, the convex polytope
approach explicitly computes the H -representation of the solution polytopes for determining
the equivalence classes and minimal branches. Although, this seems to be computationally more
expensive but in practice it is seen that for a majority of the models the computations were
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4.5. Discussions

Algorithm 3: EstimateTV: Algorithm for estimating tropical variety based on the heuris-
tic approach outlined in Sub-section 3.1.3.

Input: Tropical minimal branches m
1

,m
2

, . . . ,m
p

, List of edge sets ne
1

, ne
2

, . . . , ne
2n

,
and the corresponding vertices of Newton polytope corresponding to random
polynomials from the ideal

Output: List of sets of length p
1 begin
2 varietylist =

(4.16)

3 for r = 1 to p do

4 solutionset ={};

5 for k = 1 to 2n do

6 for l = 1 to number of entries in ne
k

do
7 equation* = vertices in lth row

8 inequalities* = all vertices other than lth row augmented along with
H-polytope corresponding minimal branch m

r

9 if LinearSolve(equation,inequalities)** is feasible then
10 Augment the convex polytope to the solutionset***

11 varietylist(r) = solutionset

12 *The equations and inequalities are initialised as per (4.14)

13 **Solves the system of equations and inequalities using the linear programming software.

14 ***This means that the H-polytope is augmented to the existing ones (also H-Polytopes)
in the solutionset at each iteration step. By augmenting it is meant that the system of
inequalities and equations corresponding to the H-polytope are added to the existing
ones.
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Chapter 4. Algorithms for the Computation of Tropical Equilibrations

quite efficient. We believe that this is probably due to low number of minimal branches which
in turn results into efficient prunning of the search space. For example, the number of minimal
branches at " = 1/5 ranged from 1 to 423 whereas the number of tropical equilibrations by
Algorithm 1 ranged from 1 to 35 (the model with 423 minimal branches is timed-out here).
The high number of minimal branches i.e. 423 is displayed only by a single model for others
it is less 18. Importantly, the ordering of equations of the input ODE affected the running
times. It is seen that the increasing order strategy computed all the models within the 10, 000
secs of computation time whereas the greedy strategy gave the least number of intermediate
maximal polytopes. We believe that for larger models the greedy ordering will be a better
strategy if it is parallelized over multiple cores, thereby speeding up the computation times.
This requires re-implementation of certain parts of algorithm and will be explored as a topic
of future research. It is also important to note that the biochemical reaction networks exhinit
special network structure e.g. scale-free property (Albert, 2005), low tree width (Nabli et al.,
2016) and developing heuristics to improve the running times using such special properties
remains a topic of future research.

In order to investigate the dependency of minimal branches on the choice of ", the compu-
tations are done with several values of ". For several models the number of minimal branches is
robust whereas for some this number varies. As the computation times for convex polytope are
not very sensitive to the selection of " compared to the linear programming approach, therefore
going for lesser values is not a serious bottleneck of the approach.

We also described the structure of tropical equilibrations by computing the connected com-
ponents of the connectivity graph derived from the minimal branches. We believe that such
connectivity among minimal branches influences the dynamics of the system i.e. providing an
estimate for the possible dynamical transitions between them. We investigate it in the context
of symbolic dynamics as described in Chapter 6. Furthermore, the directed graphs are presented
showing the inclusion relations between different branches of tropical equilibration solutions.
These computations reveal the rich structure of the polytopes associated with tropical equili-
brations. The tropical equilibrations determine the concentration orders of the chemical species
of the ODE model. It is shown in Chapter 6 that this information will be used to identify
timescales of the system leading to model reduction. The distribution of such timescales are
depicted through heatmaps. The heatmaps show that different minimal branches may result
into different timescale ordering of the chemical species. Therefore, our method provides several
possible reductions corresponding to the different minimal branches. Thus, the overall solution
structure provides insights into the dynamics of the system.

As the dominant terms in the polynomial system are the same for all the tropical solution
on branches, it could be that the branches correspond to the invariant manifolds. This idea will
be pursued in future work.

A heuristic was also implemented to check if a minimal branch be lifted to the tropical
variety (in other words, liftable to Newton-Puiseux series solution of system). The results from
this are not very convincing as for all models none of the minimal branch are discarded after the
addition of random elements of the ideal. Fixing the random polynomials to be of a single term
may be one of the reasons. Nevertheless, it was seen that the number of maximal polytopes in
the tropical variety increases considerably by this procedure. A detail evaluation and efficient
sampling of random polynomials or taking direct combinations of the polynomials will be an
interesting future direction. There exists software e.g. Gfan (Jensen, 2006) to compute the full
tropical variety. It will be our future endeavour to compare our heuristic approach with such
software for smaller dimensional examples. However, for larger dimensional models, computing
the tropical variety will be a challenge due to the high computational complexity involved.

Lastly, there exists results of the direct application of tropical geometry to differential equa-
tion systems (Grigor’ev and Singer, 1991; Bruno, 2000) which are not explored in this thesis.
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Figure 4.10: Tropical minimal branches are computed at different " values (recall, the tropical
minimal branches are maximal polytopes). The boxplot represents the distribution of number of minimal

branches for a given biomodel at different values of " values, namely 1/5,1/7,1/9,1/23.
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Figure 4.11: The tropical equilibrations obtained from linear programming approach (colored in red)
is compared with the number of of minimal branch obtained using convex polytope approach (colored

in blue). " values: 1/5
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Figure 4.12: A sample point (representing the concentration orders cf. (4.3)) is picked from
the each tropical minimal branch corresponding to two models from Biomodels database namely
BIOMD00000000-35,72. The heatmaps represent the rescaled orders computed from the the sample
points at " = 1/11 (cf. (6.9)). The rescaled order captures the timescale of the variable. The horizontal
axis represents the variables and the vertical axis represents the tropical minimal branches. Additionally,

hierarchical clustering is performed on the variables and also the tropical minimal branches.
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Figure 4.13: A plot showing the average dimension of tropical minimal branches for the 36 models
for " = 1/5 analysed in Table 4.2. 9 models have average dimension exactly zero suggesting that these
polytopes are points. The dimension here refers to the dimension of the affine hull of the polytopes (cf.

Section 4.3.5).
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Figure 4.15: Plot of CPU running time against number of equations in the model for the Algorithm
implementing tropical variety approach (cf. Algorithm 3) where the edge sets follow increasing ordering

strategy (cf. Section 4.3.5).

46



Chapter 5

Computation of Extreme Currents

The chapter discusses an algorithm to compute the ECs. In addition, a benchmark is provided
on the metabolic models obtained from KEGG database.

5.1 Algorithm

A brief background on extreme currents (ECs) is described in Section 3.2. Here, the compu-
tational method to compute the ECs is described. Recall, from Section 2.2 that biochemical
networks can be also represented through the reaction fluxes (cf. (2.3)) with the constraint that
the reaction fluxes are non-negative. Such a system of equations and inequalities results in a
convex polytope in H-representation, also called as H -polytope (cf. Sub-section 3.1.3). Alterna-
tively, a polytope can also be represented in V-representation or called as V -polytope, meaning
that the convex hull of a finite set X = {x

1

, ..., x
n

} of points in Rd (Henk, Richter-Gebert, and
Ziegler, 2004) can be represented as

P = conv(X) = {
i=nX

i=1

�
i

x
i

| �
i

� 0,
i=nX

i=1

�
i

= 1} (5.1)

Now, let us state the main theorem of polytope theory from (Henk, Richter-Gebert, and
Ziegler, 2004)

Theorem. The definitions of V-polytopes and of H-polytopes are equivalent. That is, every
V-polytope has a description by a finite system of inequalities, and every H-polytope can be
obtained as the convex hull of a finite set of points (its vertices).

Here, we are interested in convex hull computation which determines the vertices of the
V -polytope from the given H -polytope. One of the ways to perform such a computation is
the double description algorithm (Fukuda and Prodon, 1996; Terzer, 2009). In our case the
vertices are computed from the H-polytope represented in (2.3) and are referred to as ECs.
Unfortunately, the worst case time complexity of the algorithms computing the ECs can be
exponential in the worst case (Terzer, 2009). The ECs are computed using the PoCaB software
(Samal, Errami, and Weber, 2012).

5.2 Benchmarking

We chose 69 metabolic models from KEGG and compute the ECs to determine the CPU run-
ning times. A plot is provided in Fig. 5.1 describing the CPU running times versus the number
of reactions of the models in the context of EC computation. Additionally, the distribution of
number of ECs is shown in Fig. 5.2 as a histogram. The ECs are computed by considering
only the main reaction pairs (a pre-processing step described in Section 8.4). For every split
of a reversible reaction there appears an EC, denoting only the forward and backward reaction
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components of the reversible reaction (Wagner and Urbanczik, 2005). Such cycles are often re-
ferred to as spurious cycles (Wagner and Urbanczik, 2005) and are filtered out in our approach.
However, the spurious cycles may represent futile cycles which are involved in regulatory pro-
cesses of the pathways (Qian and Beard, 2006) and to determine the role of such futile cycles
in the context of our method remains a topic of future research.
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Figure 5.1: Plot of CPU running time against the number of reactions in the model for the algorithm
implementing the extreme current (cf. Chapter 5). 69 metabolic models from KEGG are chosen for

computing the CPU running times.
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Figure 5.2: Plot of histogram showing the distribution of the number of ECs across 69 metabolic
models chosen from KEGG.

50



Chapter 6

Model Reduction based on Tropical

Equilibrations

The main motivation of computing tropical equilibrations or tropical minimal branches is to
provide an efficient and scalable algorithmic technique to perform timescale decomposition of
biochemical species. Its application in model reduction is discussed in this chapter. In model
reduction the aim is to derive a simpler representation of a given biochemical reaction network.

6.1 Background

Model reduction is an important problem in computational biology. The main aim of model
reduction is to represent the essential dynamics of the model with fewer species and reactions
(Okino, and Mavrovouniotis, 1998). This is helpful in the following ways

1. Addressing the numerical issues associated with the simulation of stiff systems resulting
from multiple timescales.

2. Reducing the number of parameters, which are often difficult to measure in a typical
laboratory experimental setting.

3. Getting insights into the behaviour of the model by studying the key species and reactions
of the model.

There are several methods for reducing networks of biochemical reactions. Broadly the
model reduction techniques can be categorised into three categories, as explained below

1. The formal model reduction techniques can be based on conservation laws, exact lumping
(Feret et al., 2009), and more generally, symmetry (Clarke, Grumberg, and Peled, 1999;
Rowley and Marsden, 2000).

2. The sensitivity analysis techniques (Turányi, Bérces, and Vajda, 1989) which compute
the effect of a species on the concentrations of other important species and based on this
it is either included or neglected in the model.

3. The time scale analysis techniques which mainly compute slow invariant manifolds (Gor-
ban and Karlin, 2003). Such methods exploit the separation of timescales of various
processes and variables and compute a low dimensional invariant manifold. These include
Intrinsic low dimensional manifold (ILDM, (Maas and Pope, 1992)), Singular perturba-
tion techniques (Lin and Segel, 1988), Computational singular perturbation (CSP, (Lam
and Goussis, 1994)), Geometric singular perturbation theory (Fenichel, 1979), Quasi-
stationary and quasi-equilibrium analysis in chemical kinetics (Schnell and Maini, 2002).
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Chapter 6. Model Reduction based on Tropical Equilibrations

In this chapter a method is proposed to identify the slow and fast variables in a biochemical
kinetic model with polynomial rate functions, without the simulation of the trajectories. This
method can be categorised as a time scale analysis technique, which identifies the slow-fast
chemical species and reactions based on computation of tropical equilibrations (cf. Section
4.1). In this context, the application of tropical equilibrations (TEs) was shown recently in
the analysis of systems of polynomial or rational differential equations with applications to cell
cycle modelling (Noel et al., 2012). As a matter of fact, the most common kinetic laws in
computational biology are monomial or rational functions of the concentrations of the species.
Tropical methods can be extended to S-systems (Savageau and Voit, 1987), in which case the
reaction rates are generalized, real degree multivariate monomial functions. Therefore, these
methods can, at least in principle be applied to practically all the biochemical network models.
Tropical equilibration was previously used in an interesting study by Savageau (Savageau et al.,
2009) as a design tool for the network steady states. The focus of the current application is
different because it is concerned with dynamics and model reduction. Tropical equilibrations
are interesting because they provide the lowest order approximations to the invariant manifolds.
Computing tropical equilibrations from the orders of magnitude of the model parameters is a
NP-hard problem, cf. (Theobald, 2006). However, for problems of limited size it is possible
to obtain full sets of solutions by branch-and-bound strategies combined with efficient prun-
ing of the branching tree to reduce the search time. Worse complexity cases will of course
remain, this being unavoidable by the NP-hardness of the problem. The algorithm using the
Newton polytope is provided for the same in Section 4.1 to solve the tropical equilibration
problem efficiently for large biochemical networks. An alternative algorithm for finding tropical
equilibrations, based on constraint logic programming was proposed in (Soliman, Fages, and
Radulescu, 2014). However, when there are infinite branches of equilibrations, logic program-
ming has no other alternative but the exhaustive enumeration of solutions between arbitrary
bounds, whereas the Newton polytope method detects one solution per branch which is enough
for identifying variable timescales and reduced models.

In addition to introducing and testing a new slow-fast decomposition algorithm, a fun-
damental principle of living systems, namely the compression of complexity when going from
interactome to physiome can be considered within this framework. Variants of this idea were
proposed by several authors in theoretical and computational biology. One way to quantify
network functional complexity is to count the number of different attractors generated by a
network. This question is biologically important because each different attractor of a gene net-
work can, at least theoretically, be associated to a cell type. Kaufmann proposed the idea that
a (random) gene network of size N can have O(

p
N) attractors. This is nicely compatible with

the observation that there are 30000 genes and 265 different cell types in human (Kauffman,
2004). Looking at functional complexity differently, many authors counted the number of criti-
cal parameters of large regulatory networks. These studies lead to ideas such as the von Dassow
robustness (Dassow et al., 2000), sloppy sensitivity (Gutenkunst et al., 2007), summation laws
in metabolic control (Reder, 1988) or in mechanisms of clock compensation (Rand, 2008), mean-
ing that among the numerous regulators of biological networks only very few (or even none
when taken individually) are sensitive and can be used to control the system. The high para-
metric robustness of biological networks was also related to the low dimension of the invariant
manifold attracting trajectories generated from many initial conditions as computed by locally
linear embedding and Laplacian eigenmaps (Barbano et al., 2007), elastic principal manifolds
(Radulescu, Zinovyev, and Lilienbaum, 2007) model reduction (Gorban and Radulescu, 2007;
Radulescu et al., 2008). Generating robustness by a high compression ratio between the num-
ber of regulators and interactions (interactome) and the number of dynamic variables, sensitive
parameters and types of behaviour could be understood as a form a redundancy allowing to
compensate for uncertainty in the elements (Von Neumann, 1956). This general phenomenon
finds a natural mathematical interpretation in the Gromov-Talagrand concentration of measure
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in metric species: objects from high dimension look thin in projection on small dimension; sim-
ilarly, measurable and physiologically important properties of large biochemical networks such
as the number and phase space positions of attractors, relaxation times and oscillation periods,
have small variability in spite of variability of network parameters (Gorban and Radulescu,
2007). Similar ideas, relating entropy and robustness were introduced in the context of network
evolution (Demetrius and Manke, 2005). The results in this section allow to automatically de-
termine the compression ratio from the number of regulators to the dimension of the invariant
manifold carrying the slow dynamics of the system and to check if this dimension is generically
low for biochemical networks.

6.2 Dynamical equations and slow-fast decomposition

Consider the biochemical model represented in (2.1). The n-dimensional space with all possible
solutions of system (x

1

(t), . . . , x
n

(t)) denotes the phase space of the system. The evolution
of the system with defined initial values corresponds to a trajectory in the phase space. The
evolution here refers to a family of smooth evolution functions which map any point at time t in
the phase space back into the same phase space. In other words, the trajectory is one solution
denoted by (x

1

(t), . . . , x
n

(t)) for a given set of initial conditions (x
1

(0), . . . , x
n

(0)). Thus, the
set of all possible trajectories denotes the phase space. A low dimensional differentiable manifold
in the phase space means a manifold which can be continuously and smoothly parameterizable
and its dimension is d, where d < n. This means that at every point of this d-dimensional
manifold which is embedded in n-dimensional phase space, the following equation holds

x = h(y) (6.1)

where x is a set of d�n variables, y is a set of d variables, h is a differentiable function. As
the manifold is continuously and smoothly parameterizable, so, such a h is possible (at least
locally).

Definition. An invariant set is any set of points in a dynamical system which are mapped into
other points in the same set by the evolution function.

Remark. Therefore, a trajectory (as described above) is an invariant set.

Definition. An invariant manifold is an invariant set that is also a differentiable manifold.

The above basic introduction to invariant manifold is adopted from (Roussel, 2005). The
invariant manifold is called slow if a typical trajectory of the system in the phase space tend to
approach the invariant manifold governed by fast timescales and along this manifold the motion
is governed by relatively slow timescale. Such a manifold is also attractive as it attracts the
fast motion towards it. (Barillot et al., 2012; Maas and Pope, 1992). In (6.1) if variables y are
slow and x are fast variables then the low dimensional manifold will be a slow manifold. The
determination of slow-fast variables in the context of tropical equilibrations.

Eigenvector analysis is one of ways to identify the existence of such a manifold. For example,
the existence of a lower dimensional center manifold is demonstrated in a simplified model of
AIDS disease as shown in (Roussel, 1997). The method involves computing of the centre
eigenspace i.e. the space spanned by the eigenvectors whose eigenvalues have a zero real part.
However, in case of non-linear systems, the Jacobian matrix decomposition might change along
the trajectory which makes the computations of such manifolds local in nature. Generally, the
center manifolds are constructed by series expansions, close to the attractor of the system as
many interesting dynamical behaviours take place in such a region.

CSP and ILDM methods provide numerical approximations of the invariant manifold close
to an attractor. These methods have been successfully applied to reduce networks of reactions
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in chemical engineering. Other reduction methods utilize the quasi-steady state (QSS) or quasi-
equilibrium (QE) approximations (Gorban, Radulescu, and Zinovyev, 2010; Radulescu et al.,
2008; Radulescu et al., 2012). QE and QSS methods require the knowledge of which species
and reactions are fast. This knowledge can result from the slow/fast decompositions performed
numerically by CSP or ILDM methods, or from the calculation of a slowness index (Radulescu et
al., 2008), in all cases relying on the trajectory simulation. The application of these methods to
computational biology is possible when the model parameters are known. When the parameters
are unknown, or if they are known only by their orders of magnitudes, formal model reduction
is needed. In addition, it is convenient to find the reductions without having to simulate the
trajectories.

The biochemical networks stemming from cell biology integrate processes evolving on very
different time scales. For instance, the changes of messenger RNA concentrations are usually
faster compared to the changes of protein concentrations and the post-transcriptional modi-
fications of proteins (for instance phosphorylation) are faster than the protein synthesis. For
this reason, here slow-fast systems that have variables evolving on very different timescales are
considered. Formally, variables x are much faster than variables y if the logarithmic derivatives
d log(x)

dt

are much larger in absolute values than d log(y)

dt

. After time rescaling, the differential
equations describing the dynamics of a system with fast variables x and slow variables y read
as:

dx

dt
=

1

⌘

f(x,y) (6.2)

dy

dt
= g(x,y), (6.3)

where ⌘ is a small positive parameter and f , g are functions not depending of ⌘. We consider
the asymptotic behaviour of the system in the limit ⌘ ! 0.

In dissipative systems, fast variables relax rapidly to a low dimensional attractive manifold
called invariant manifold (Gorban and Karlin, 2005) that carries the slow mode dynamics. A
projection of dynamical equations onto this manifold provides the reduced dynamics (Maas
and Pope, 1992; Gorban and Karlin, 2005). This simple picture can be complexified to cope up
with the hierarchies of invariant manifolds and with phenomena such as transverse instability,
excitability and itineracy. Firstly, the relaxation towards an attractor can have several stages,
each with its own invariant manifold. During relaxation towards the attractor, invariant mani-
folds are usually embedded one into another (there is a decrease of dimensionality) (Chiavazzo
and Karlin, 2011). Secondly, invariant manifolds can lose local stability, which allow the trajec-
tories to perform large phase space excursions before returning in a different place on the same
invariant manifold or on a different one (Haller and Sapsis, 2010). The set of slow variables can
change from one place to another. For all these reasons, even for fixed parameters, nonlinear
models can have several reductions.

In biochemical networks, the variables x and y are (positive) species concentrations. There-
fore, the functions f , g are defined on the positive orthant. Furthermore, for most of the kinetic
laws, the functions f , g are polynomial or rational in the species concentrations. Although the
method proposed in this thesis for model reduction apply for both polynomial and rational
functions, for the sake of simplicity we will consider that f and g are polynomial functions.
The system (6.2),(6.3) is endowed with positive initial conditions for all variables:

x(0) = x

0

, y(0) = y

0

. (6.4)

Let us suppose that the fast dynamics (6.2) has a unique stable state x

⇤
(y) for all fixed y

values. Let J(y) be the linear operator (Jacobian) that gives the linearization of f(x,y) at
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fixed y, namely
f(x,y) = J(y)(x� x

⇤
(y)) +O(|x� x

⇤
(y)|2).

The stable state x

⇤
(y) is said to be uniformly hyperbolic if all the eigenvalues in the spectrum

Spec
J(y)

of J(y) have strictly negative real parts and are at a distance from the imaginary axis
larger than a value d > 0, namely

there is d > 0 such that Re(�) < �d for all � 2 Spec
J(y)

for all y. (6.5)

Tikhonov’s theorem (Tikhonov, 1952) says that if the above conditions are satisfied, then after
a quick transition the system evolves approximately according to the following differential-
algebraic equation:

dy

dt
= g(x,y), (6.6)

f(x,y) = 0. (6.7)

More precisely, the difference between solutions of (6.2),(6.3) and solutions of (6.6),(6.7) starting
from the same initial data satisfying (6.7) (i.e. y(0) = y

0

, x(0) = x

⇤
0

, where x

⇤
0

is the unique
solution of f(x,y

0

) = 0) vanishes asymptotically like a positive power of ⌘ when ⌘ ! 0. In
the case when (6.2) has several stable steady states, then which one of these states should be
chosen as solution of (6.7) will depend on the initial conditions (6.4) of the full model.

Equation (6.7) means that the fast variables are slaved by the slow ones. In this case, and
given the condition (6.5) on the Jacobian of f one can implicitly solve (6.7) and transform
(6.6) into an autonomous reduced model for the slow variables. This approach is known as the
quasi-steady state approximation.

The first and most important step in the implementation of this reduction method is to
find the slow-fast decomposition (6.2),(6.3), which means to identify x, y and ⌘. For small
models this can be done by rescaling variables and kinetic constants and by identifying the
small parameter ⌘ as a ratio of kinetic constants or initial values of the variables. A well known
example is the quasi-steady state approximation of the Michaelis-Menten enzymatic mechanism,
when x is the concentration of the enzyme-substrate complex, y is the substrate concentration
and ⌘ represents the ratio of the enzyme to the substrate concentrations (Noel et al., 2014).
More generally, ⌘ can be interpreted as the ratio of fast to slow timescales. Numerical methods
such as ILDM (Maas and Pope, 1992) use the Jacobian of the full system to obtain the slow-fast
decomposition. In such methods ⌘ can be interpreted as the gap separating in logarithmic scale,
the timescales of slow and fast variables obtained from the spectrum of the Jacobian. In this
thesis, tropical equilibrations will be used to perform the same decomposition resulting into a
slow invariant manifold. In addition, the proposed method will be compared with an existing
numerical method namely ILDM (Intrinsic Low Dimensional Manifolds).

6.3 Approach

The approach for the model reduction can be divided into following steps as described in
(Radulescu, Vakulenko, and Grigoriev, 2015; Samal et al., 2015a)

1. Computation of the tropical equilibrations, slow-fast decomposition of variables and defin-
ing of the truncated system (i.e. the equation system only with the dominant terms).

2. Computation of the conservation laws of truncated system denoted as fast cycles and
defining the augmented system i.e. new variables corresponding to the fast cycles along
with truncated system. For a consistent reduction these new variables should be at a
slower timescale.
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3. Elimination of the fast variables and expressing the model with only the slow variables
along with the conservation laws of truncated system resulting in a reduced model.

In the rest of this section, the above steps will be discussed in detail.

6.3.1 Step 1: Determination of slow-fast variables from tropical equilibra-
tions

The tropically truncated system from Section 4.1 is briefly reviewed here. We call tropically
truncated system the system obtained by pruning the system (4.4), i.e. by keeping only the
dominating monomials as shown below

dx̄
i

dt
= "⌫i(

X

j2D(i)

¯k
j

S
ij

¯

x

↵j
), (6.8)

where D(i) = argmin

j

(µ
j

, S
ij

6= 0) selects the dominating rates of reactions acting on species i

and
⌫
i

= min{µ
j

|S
ij

6= 0}� a
i

. (6.9)

The tropically truncated equations contain generically two monomial terms of opposite signs
(in special cases they can contain more than two terms among which two have opposite signs).
Polynomial systems with two monomial terms are called binomial or toric. In systems biology,
toric systems are known as S-systems and were used by Savageau (Savageau and Voit, 1987)
for modeling metabolic networks.

The truncated system (6.8) indicates how fast is each variable, relatively to the others. The
inverse timescale of a variable x

i

is given by 1

xi

dxi
dt

=

1

x̄i

dx̄i
dt

that scales like "⌫i . Thus, if ⌫
i

0 < ⌫
i

then x
i

0 is faster than x
i

.
Let us assume that ⌫

1

 ⌫
2

 . . .  ⌫
n

(this may require species re-indexing but is always
possible) and the following gap condition is fulfilled:

there is m < n such that ⌫
m+1

� ⌫
m

> 0, (6.10)

meaning that two groups of variables have separated timescales. The variables X
r

= (x
1

, x
2

, . . . , x
m

)

are fast (change significantly on timescales of order of magnitude "�⌫m or shorter). The remain-
ing variables X

s

= (x
m+1

, x
m+2

, . . . , x
n

) are slow (have little variation on timescales of order
of magnitude "�⌫m). Then, the parameter ⌘ = "⌫m+1�⌫m represents the fast/slow timescale
ratio in the Tikhonov’s theorem from the preceding section. The gap condition means that ⌘
should be small. With these conditions, it was shown in (Noel et al., 2014; Radulescu, Vaku-
lenko, and Grigoriev, 2015) that the quasi-steady state approximation can be applied. A further
complication arises when the system has fast cycles and this will be described in the next step.

For systems with hierarchical relaxation, the separation between fast and slow variables
is mobile within the cascade of relaxing modes. In the extreme case this means that all the
species timescales are distinct and separated by large enough gaps. Let us consider that we are
interested in changes on timescales ✓ or slower. The timescale ✓ defines a threshold order value
by the equation

µ
threshold

= � log(✓/⌧)/ log("), (6.11)

where ⌧ are the time units from the model. Then, from (6.8) it follows that all variables x
i

with ⌫
i

� µ
threshold

are slow. Perturbations in the concentrations of these species relax to an
attractor slower or as slow as ✓. The remaining species are fast and the perturbations in their
concentrations relax to equilibrated values much faster than ✓.

Partial tropical equilibrations. It is useful to extend the tropical equilibration problem to
partial equilibrations, that means solving (4.6) only for a subset of species. This is justified
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by the fact that slow species do not need to be equilibrated. In order to have a self-consistent
calculation the species timescales are computed by (6.9). A partial equilibration is consistent
if ⌫

i

< ⌫ for all non-equilibrated species i. ⌫ > 0 is an arbitrarily chosen threshold indicating
the timescale of interest. Computation and interpretation of partial tropical equilibrations is a
topic of future work.

6.3.2 Step 2: Reduction with fast cycles

Tropical truncation is useful for identifying the slow and fast variables of a system of polynomial
differential equations. However, the truncation alone is not always enough for accurate reduc-
tion. As discussed in (Noel et al., 2014; Radulescu, Vakulenko, and Grigoriev, 2015), there are
situations when the truncated system is not a good approximation. Typically, truncation could
eliminate all the reactions exiting a fast cyclic subnetwork. Thus new conserved quantities
appear, that were not conserved by the full model. Truncation is in this case accurate at short
times, but introduces errors at large times. In order to cope with fast cycles pruning, the recipe
discussed in (Gorban, Radulescu, and Zinovyev, 2010) is adopted for the quasi-equilibrium ap-
proximation. This recipe allows one to recover the terms that were neglected by truncation,
but which are important for large time dynamics.

First, let us remind some definitions. The linear conservation law of a system of differential
equations is represented as a linear form C(x) =< c,x >= c

1

x
1

+ c
2

x
2

+ . . . + c
n

x
n

that
is identically constant on trajectories of the system. It can be easily checked that vectors in
the left kernel Kerl(S) of the stoichiometric matrix S provide linear conservation laws of the
system (2.1). Indeed, system (2.1) reads dx

dt

= SR(x), where the components of the vector R

are R
j

(x) = k
j

x↵j . If cS = 0, then d<c,x>

dt

= cSR(x) = 0, where c = (c
1

, c
2

, . . . , c
n

).
Let us assume that the truncated system (6.8), restricted to the fast variables has a number

of independent, linear conservation laws, defined by the left kernel vectors c

1

, c
2

, . . . , c
d

, where
c

k

= (c
k1

, c
k2

, . . . , c
kf

). These conservation laws can be calculated by recasting the truncated
system as the product of a new stoichiometric matrix and a vector of monomial rate functions
and further computing left kernel vectors of the new stoichiometric matrix. It is assumed that
the fast conservation laws are not conserved by the full system (2.1).

The new slow variables Y = (y
1

, . . . , y
d

) are defined, where y
k

=

P
f

i=1

c
ki

x
i

. and eliminate
the fast variables x

1

, x
2

, . . . , x
f

by using the system :
X

j2D(i)

k
j

S
ij

x

↵j
= 0, i 2 [1, f ], (6.12)

fX

i=1

c
ki

x
i

= y
k

, k 2 [1, d]. (6.13)

Reactions of the initial model that were pruned by truncation have to be restored if they act
on the new slow variables Y , i.e. if

P
f

i=1

c
li

S
ik

6= 0, for some l 2 [1, d], where k is the index
of the reaction to be tested. Finally, the kinetic laws of these reactions have to be redefined in
terms of the slow variables X

s,Y .
The rigorous justification of the reduction procedure for models with fast cycles can be

found in (Radulescu, Vakulenko, and Grigoriev, 2015).

6.3.3 Step 3: Elimination of the fast species

The reduced model should contain only the slow variables obtained in Step 2 namely X

s

, Y .
The fast variables X

r

need to be algebraically eliminated. In other words, the fast variables
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are expressed via slow variables in the following manner

X

r

= f(X
s

,Y ) (6.14)

where f are rational functions. Intuitively, this relation suggests that the motion of the slow
variables in the reduced model are constrained by fast variable. By elimination it means that
using the above relation, the fast variables are substituted in the equation system as a function
of slow variables.

6.4 Examples

As an illustration of the method simple models are chosen that (i) have polynomial dynamics
and (ii) contain fast cycles that ask for the reduction steps described in Section 6.3.2. The
Michaelis-Menten model of enzymatic reactions as well as a cell cycle model proposed by Tyson
(Tyson, 1991) satisfy both these conditions.

6.4.1 The Michaelis-Menten model

The irreversible Michaelis-Menten kinetics consist of three reactions:

S + E
k1⌦
k�1

ES
k2! P + E, (6.15)

where S,ES,E, P represent the substrate, the enzyme-substrate complex, the enzyme and the
product, respectively.

The corresponding system of polynomial differential equations reads:

ẋ
1

= �k
1

x
1

x
3

+ k�1

x
2

,

ẋ
2

= k
1

x
1

x
3

� (k�1

+ k
2

)x
2

,

ẋ
3

= �k
1

x
1

x
3

+ (k�1

+ k
2

)x
2

,

ẋ
4

= k
2

x
2

,

(6.16)

where x
1

= [S], x
2

= [ES], x
3

= [E], x
4

= [P ].
The system (6.16) has two conservation laws x

2

+x
3

= e
0

and x
1

+x
2

+x
4

= s
0

. The values e
0

and s
0

of the conservation laws result from the the initial conditions, namely e
0

= x
2

(0)+x
3

(0)

and s
0

= x
1

(0) + x
2

(0) + x
4

(0).
The conservation laws can be used to eliminate the variables x

3

and x
4

and obtain the
reduced system as follows

ẋ
1

= �k
1

x
1

(e
0

� x
2

) + k�1

x
2

,

ẋ
2

= k
1

x
1

(e
0

� x
2

)� (k�1

+ k
2

)x
2

.
(6.17)

There are two types of approximations and reductions for the Michaelis-Menten model, the
quasi-steady state and the quasi-equilibrium approximation (Meiske, 1978; Segel, 1988; Segel
and Slemrod, 1989; Gorban, Radulescu, and Zinovyev, 2010; Gorban and Shahzad, 2011). It
is discussed here how these approximations can be related to tropical equilibrations (see also
(Noel et al., 2014; Soliman, Fages, and Radulescu, 2014) where the same model is analysed
using tropical curves).

Let us introduce orders of variables and parameters as follows x
i

= x̄
i

✏ai , 1  i  2,
k
1

=

¯k
1

✏�1 , k�1

=

¯k�1

✏��1 , e
0

= ē
0

✏�e .
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Then, we get the tropical equilibration equations by equating minimal orders of positive
monomials with minimal orders of negative monomials in (6.17):

�
1

+ �
e

+ a
1

= min(�
1

+ a
1

, ��1

) + a
2

, (6.18)
�
1

+ �
e

+ a
1

= min(�
1

+ a
1

,min(��1

, �
2

)) + a
2

. (6.19)

The quasi-equilibrium approximation corresponds to the case when the reaction constant k�1

is much faster than the reaction constant k
2

. In terms of orders, this condition reads ��1

< �
2

.
In this case, the two tropical equilibration equations (6.18), (6.19) are identical, because the
min(��1

, �
2

) = ��1

. Let �
m

= ��1

��
1

denote the order of the parameter K
m

= k�1

/k
1

. There
are two branches of solutions of (6.18), namely a

2

= �
e

, a
1

 �
m

and a
2

= a
1

+ �
e

� �
m

, a
1

�
�
m

corresponding to the min(�
1

+ a
1

, ��1

) = �
1

+ a
1

and to the min(�
1

+ a
1

, ��1

) = ��1

,
respectively. Using the relation between orders and concentrations the first branch of solutions
is identified with the saturation regime x

2

⇡ e
0

(the free enzyme is negligible) and x
1

>> K
m

(the substrate has large concentration) and the second branch with the linear regime x
2

<< e
0

(the concentration of the attached enzyme is negligible) and x
1

<< K
m

(the substrate has low
concentration).

In the linear regime of quasi-equilibrium the fast truncated system (obtained after removing
all dominated monomials from (6.17)) reads

ẋ
1

= �k
1

x
1

e
0

+ k�1

x
2

,

ẋ
2

= k
1

x
1

e
0

� k�1

x
2

.
(6.20)

The variable y = x
1

+ x
2

is conserved by the fast truncated system (6.20), but not by the full
system (6.17). Therefore, y has to be considered as a new slow variable. By summing the two
equations of (6.17) term by term the following is obtained

ẏ = �k
2

x
2

. (6.21)

Using the quasi-equilibrium equation �k
1

x
1

e
0

+ k�1

x
2

= 0 x
1

, x
2

are eliminated by ex-
pressing them as x

1

= y/(1 + k
1

e
0

/k�1

), x
2

= y/(1 + k�1

/(k
1

e
0

)). Finally, the reduced model
is obtained for the slow variable y,

ẏ = �k
2

y/(1 + k�1

/(k
1

e
0

)) = �V
max

y/(e
0

+K
m

), (6.22)

where V
max

= k
2

e
0

.
If ẏ is expressed as a function of the substrate concentration x

1

, then ẏ = �(V
max

/K
m

)x
1

,
which is the well known Michaelis-Menten reaction rate in the linear regime.

In the saturated quasi-equilibrium regime, the fast truncated system reads

ẋ
1

= �k
1

x
1

(e
0

� x
2

),

ẋ
2

= k
1

x
1

(e
0

� x
2

).
(6.23)

From (6.23) the quasi-equilibrium the equation x
2

= e
0

and further, using (6.21), the
reduced model is obtained as shown below

ẏ = �V
max

. (6.24)

The tropical method also allows us to test that variables x
1

, x
2

are faster than y, which
means that the reductions are consistent (fast variables are eliminated and the reduced model
is written in the slow variables only). In terms of ⌫ orders defined by (6.9), one has to check
that ⌫

1

< ⌫
y

and ⌫
2

< ⌫
y

. Using (6.9) together with the quasi-equilibrium condition, it is found
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that ⌫
2

= ��1

in the linear regime and ⌫
2

= �
1

+ a
1

in the saturated regime. Furthermore,
⌫
1

 ��1

+ a
2

� a
1

, ⌫
y

= �
2

+ a
2

� min(a
1

, a
2

) for both regimes. The condition ⌫
1

< ⌫
y

is
satisfied because �

2

> ��1

. ⌫
2

< ⌫
y

is satisfied in the linear regime because �
2

> ��1

. The same
condition is satisfied also in the saturated regime because a

1

 �
m

= ��1

� �
1

in this regime.
To summarize, the unique condition for quasi-equilibrium is �

2

> ��1

. In particular, this
approximation does not depend on the initial data because �

e

does not occur in the above
condition.

The quasi-steady state approximation corresponds to the situation when x
2

is equilibrated
and faster than x

1

. In this case one has to combine (6.19) with the condition ⌫
2

< ⌫
1

. Let
us denote by �

m

= min(��1

, �
2

) � �
1

the order of the parameter K
m

= (k�1

+ k
2

)/k
1

. (6.19)
alone has two branches of solutions. The first branch is defined by a

1

 �
m

, a
2

= �
e

and
corresponds to the saturated regime of the quasi-steady state. The second branch is defined by
a
1

� �
m

, a
2

= a
1

+ �
e

� �
m

and corresponds to the linear regime. From (6.17) it is found that
⌫
1

= min(�
1

+ a
1

+ �
e

, �
1

+ a
1

+ a
2

, ��1

+ a
2

)� a
1

and ⌫
2

= �
1

+ a
1

+ �
e

� a
2

. By elementary
inequality algebra it follows that the condition ⌫

2

< ⌫
1

is equivalent to a
1

< �
e

at saturation
and to �

m

< �
e

in the linear regime.
Summarizing, the conditions for quasi-steady state are a

1

< min(�
m

, �
e

) (saturation) or
�
m

< min(a
1

, �
e

) (linear regime). In contrast to quasi-equilibrium, quasi-steady state depends
on the initial conditions.

The quasi-steady state equations at saturation are k
1

x
1

(e
0

�x
2

) = 0, leading to x
2

= e
0

. In
the linear regime one has k

1

x
1

e
0

�(k�1

+k
2

)x
2

= 0, leading to x
2

= e
0

x
1

/K
m

. Using (6.21) the
well known expressions ẏ = �k

2

e
0

= �V
max

and ẏ = �V
max

x
1

/K
m

are obtained representing
the reaction rate in the saturated and linear regimes, respectively.

The timescales of variables and the validity of quasi-steady state for the Michaelis-Menten
irreversible kinetics were previously derived by Segel (Segel, 1988; Segel and Slemrod, 1989).
The time scales and conditions using the tropical method are compatible with the ones of Segel
on pieces, i.e. in the linear and in the saturated regime of quasi-steady state. For instance,
like in (Segel, 1988), the conditions here imply that quasi-steady state can be valid for small �

e

(large enzyme) provided that �
m

is smaller (very large K
m

).

6.4.2 The cell cycle model

This model describes the interaction between cyclin and cyclin-dependent kinase cdc2 during the
progression of the eukaryotic cell cycle (see Fig. 6.1). Cyclin (variable x

5

) is synthesized during
interphase stage of the cycle (reaction of constant k

6

). Newly synthesized cyclin forms a complex
with the phosphorylated kinase cdc2 (cdc2 is the variable x

2

and the complex formation reaction
has constant k

4

). The resulting complex (variable x
4

) is called inactive or pre-maturation
promoter factor (pre-MPF). pre-MPF needs to be activated to enter into mitosis in order to
phosphorylate many substrates controlling processes essential for nuclear and cellular division.
The active form of MPF (variable x

3

) is produced from pre-MPF either by a non-regulated
transformation (reaction of constant k

10

) or by an autocatalytic process (reaction of constant
k
9

). At the end of mitosis the active complex dissociates (reaction of constant k
1

), resulting
in the phosphorylated cyclin (variable x

6

) that is degraded (reaction of constant k
8

) and the
de-phosphorylated kinase cdc2 (variable x

1

). The kinase is equilibrated with its phosphorylated
form (variable x

2

) by phosphorylation and dephosphorylation reactions (of constants k
2

and k
3

respectively).
The full model has a stable periodic attractor, a limit cycle. The stable limit cycle os-

cillations correspond to the periodic succession of interphase and mitosis phases of the cell
cycle.
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The corresponding system of differential equations along with conservation laws for the
above model can be described as
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,
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,
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x
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, x
1

+ x
2

+ x
3

+ x
4

= 1. (6.25)

The value of the conservation law x
1

+ x
2

+ x
3

+ x
4

= 1 follows from the initial conditions
x(0) = (0, 0.75, 0, 0.25, 0, 0) that were taken from (Tyson, 1991). Other initial conditions with
the same value of the conservation law would lead to the same tropical equilibration solutions.

Computing the tropical equilibration defined in Section 4.1 and (4.6) to this model, the
following set of inequalities are obtained :
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) = 0. (6.26)

Using the numerical values of the parameters from the original paper we find, for " = 1/9,
�
1

= 0, �
2

= �6, �
3

= �3, �
4

= �2, �
6

= 2, �
8

= 0, �
9

= �2, �
10

= 2 (cf. Section 4.1).
Remark: One may notice that the orders � depend on which units were used for the pa-

rameters. However, if the parameter units are changed, the set of tropical equilibrations is
transformed into an equivalent one. Indeed, the model equations should be invariant with
respect to units conversion. In particular, if units of second order reaction constants (i.e. coef-
ficients of second order monomial rates) are multiplied by k, one should subtract log(k)/ log(")
from the parameter orders and add the same quantity to the concentration orders. This will
generate an equivalent set of solutions, up to rounding errors.

Using the algorithm (cf. Algorithm 1 in Sections 4.3.4) three tropical equilibrations for this
system are obtained, namely a

1

= (8, 5, 2, 0,�1, 2), a
2

= (5, 2, 2, 0, 2, 2), a
3

= (3, 0, 2, 0, 4, 2).
The rescaled truncated system for the solution a

3

reads
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. (6.27)

It appears clearly that the variables x
1

, x
2

, x
5

are fast. More precisely, their characteristic
times are ⌫�1

1

= "6, ⌫�1

2

= "3, ⌫�1

5

= "2, respectively. The largest of these timescales is
here approximately 0.01 (in minutes which are the time units of the model). The remaining
slow variables have characteristic times from "0 to "�2, i.e. approximately from 1 to 100 min.
Therefore, the timescales of slow and fast species are separated by a gap, and the singular
perturbation small parameter (cf. Section 6.2) is ⌘ = t

fast

/t
slow

⇠ "2 (the power 2 arises as
the difference between ⌫

6

= ⌫
3

= 0, coming from the fastest slow species and ⌫
5

= �2, coming
from the slowest fast species).
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The fast truncated system reads
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. (6.28)

and has a single conservation law C
1

= x
1

+ x
2

that provides a new slow variable. This
conservation law, not conserved by the full system (6.25), indicates the presence of a fast cycle
in the model. It is the rapid phosphorylation/dephosphorylation cycle transforming the cyclin
x
1

into its phosphorylated form x
2

and back. The fast variables are eliminated from the system
obtained by adding to (6.28) the definition of the fast conservation law cf. Section 6.3.2:

k
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� k
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x
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= 0, k
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� k
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x
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= 0, y = x
1

+ x
2

. (6.29)

The differential equation for y is obtained by adding the first two equations of the full system
(6.25), and thus restoring the terms k

1

x
3

and k
4

x
2

x
5

, that have order "2 and were pruned in
the first step.

Finally, the following reduced model is obtained
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and the slaved fast variables are given by x
1

= yk
2

/(k
2

+k
3

) ⇡ yk
2

/k
3

, x
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= yk
3

/(k
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) ⇡ y,
x
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(k
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y)⇡ k
6

/(k
4

y), where we have used (6.29) and the fact that k
2

⌧ k
3

.
Let us note that the variable y has the same order as x

2

(a
y

= a
3

= 2), it is tropically
equilibrated (�

1

+ a
3

= �
6

= 2 in (6.32)), and has ⌫
y

= �
6

� a
y

= 0 meaning that it is slow.
Let us call this four variables model reduced model 1. Note that in this model the dynamics

of the variables x
3

, x
4

is decoupled from the two others. It can therefore be concluded that by
the tropical based approach a two dimensional minimal cell cycle model is obtained.

Repeating the procedure for the equilibrations a
1

, a
2

two other rescaled truncated systems
were obtained.

The rescaled truncated system for the solution a

1

reads
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and for the solution a

2

the following rescaled truncated system is obtained
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In both cases, the variable x
5

is slow, which was not the case for the equilibration a

1

.
This is possible, because for a nonlinear model, the timescale of a variable depends on the
concentration range in which the model functions. The equilibrations a

1

and a

2

correspond
to very low and low concentrations of phosphorylated kinase x

2

(proportional to "5 and "2,
respectively), meaning slow consumption of the cyclin x

5

. The concentration of x
2

is large for
the equilibration a

3

(proportional to "0) leading to rapid consumption of x
5

(see (6.25)).
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The two tropical equilibrations a

1

and a

2

lead to the same reduced model, which is called
reduced model 2:
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to be considered together with x
1

= yk
2

/k
3

, x
2

= y.
The tropical setting confirms ideas from the theory of nonlinear dynamical systems. The

two reduced models are nested. Reduced model 2 has a larger number of slow (relaxing)
variables than reduced model 1. This means that the corresponding invariant manifolds are
embedded one into another with the lowest dimensional one defined by the reduced model 1
carrying the dynamics on the limit cycle attractor. Starting with initial low concentrations of
the phosphorylated kinase corresponding to the equilibration a

1

or a
2

, the system will increase
these concentrations to levels corresponding to the equilibration a

3

that allow the stable limit
cycle oscillations.

One can notice that the reduced model 1 does not contain the parameters k
2

, k
3

, k
4

of the
full model. This means that as long as the phosphorylation and the dephosphorylation of the
free kinase, as well as the formation of cyclin kinase complex are fast enough, the actual values
of the kinetic constants of these processes are not important.

In his paper, Tyson (Tyson, 1991) also proposes a two variables reduced model:

u̇ = k
9

(v � u)(↵+ u2)� k
1

u,

v̇ = k
6

� k
1

u, (6.36)

where u = x
3

, v = x
3

+ x
4

+ x
5

, ↵ = k
10

/k
9

.
It can be easily checked that (6.36) are equivalent with (6.30),(6.31), provided that x

5

⌧ x
4

and x
5

⌧ x
3

. These last conditions, justified by intuitive arguments, were used in the derivation
of the reduced model in (Tyson, 1991). In the current approach, the same conditions follow
immediately from the orders of the species concentrations. Indeed, for the equilibration a

3

,
x
5

⇠ "4, x
3

⇠ "2, x
4

⇠ "0, therefore x
5

⌧ x
4

and x
5

⌧ x
3

. To summarize, the advantage of
the current approach is that it is automatic and can be applied to larger models that are more
difficult or impossible to grasp by simple intuition.

6.5 Benchmarking on Biomodels database

Biological models are selected based on Section 4.3 and the average number of slow variables
across Biomodels with different time thresholds are computed to get an estimate of the di-
mension of the invariant manifold. The number of slow variables are computed based on the
rescaled orders i.e. µ

i

� a
i

> µ
threshold

and a certain time threshold as explained in (6.11).
In addition to slow species, the quasi buffered species are computed which are slow variables
with very high time threshold. To compute the timescale threshold is fixed to 100, 000 seconds
and the slow species at this threshold are labeled as quasi buffered species. In the model, such
species are practically constant and are subtracted from the slow variables. Boxplot showing
the compression ratio (i.e. ratio of average number of slow variables /total number of variables)
over all the tropical equilibrations for each model with respect to different time thresholds is
shown in Fig. 6.4, 6.7 for tropical equilibrations computed Algorithm 1 and Algorithm 2 (com-
puting tropical minimal branches). Additionally for these two algorithms, the average number
of slow variables across all models are presented as boxplot in Fig. 6.3, 6.6 respectively.
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Figure 6.1: Graphic representation of the full cell cycle model (Tyson, 1991) (referenced as
BIOMD00000005 by Biomodels) and of the reduced model 1. The full model describes the cyclin
production and complex formation between the cyclin and the kinase cdc2, the autocatalytic activa-
tion (by dephosphorylation), and the dissociation of this complex followed by the destruction of the
cyclin. The reduced model represents accurately the same processes, on the invariant manifold contain-
ing the periodic attractor. The different variables mean: x1 : cdc2, x2 : cdc2-P, x3 : cdc2 : cyclin-P
i.e. active MPF complex, x4 : P-cdc2 : cyclin-P i.e. pre-MPF complex, x5 : cyclin, x6 : cyclin-P,
y = x1 + x2 : total free cdc2. Both full and reduced model are biochemical networks with polynomial

rate functions.

The slowest timescale is also computed for each model which is defined as the smallest time
threshold at which all species become fast (the quasi-buffered species were removed from the
model before performing this step). A histogram showing the distribution slowest timescale
is presented in Fig. 6.2, 6.5 for Algorithm 1 and Algorithm 2 (computing tropical minimal
branches), respectively. To estimate the slowest timescale, the time threshold is varied and the
number of slow species are counted, the threshold at which all species become fast is considered
to be the slowest timescale of that model. This histogram indicates that the benchmarked
models are representative of a wide variety of cellular processes whose timescales range from
fractions of seconds to one day.

6.6 Testing the method

In order to test the method the cell cycle model (Tyson, 1991) (referenced as BIOMD00000005
by Biomodels) is considered in more detail. This is the cell cycle model example analysed in
Section 6.4.2. Here the detection of slow and fast species and the accuracy of model reduction
is tested.

6.6.1 Slowness index

The detection of slow fast species is tested by comparison with a numerical method introduced
in (Radulescu et al., 2008). This method consists of simulating the trajectories x

i

(t) for each
species i of the model and comparing them to the imposed trajectories x⇤

i

calculated as solutions
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Figure 6.2: (A) Histogram showing the distribution of slowest timescales for 35 models corresponding
to " = 1/23. The tropical equilibrations are computed based on Algorithm 1.

of quasi-steady state equations cf. (6.7). Precisely, x⇤
i

is the solution of
P

j

k
j

S
ij

x

↵j
= 0 in

which all species of indices l 6= i are replaced by their simulated values x
l

(t). Like in (Radulescu
et al., 2008) the slowness index I

i

(t) = | log
10

(x
i

(t)/x⇤
i

(t))| is used (the base of the logarithm
is purely conventional). Fast species obey quasi-steady state conditions (see (6.7) and Section
6.2). Therefore, for fast species, I

i

is close to zero. For slow species, the trajectories x
i

(t)
are different from x⇤

i

(t) and the index I
i

is high. Fig. 6.8 shows the values of this index for
all the species in the cell cycle model BIOMD00000005. In the tropical method a species is
fast or slow depending how the orders ⌫

i

= µ
i

� a
i

compared to a timescale threshold. For
" = 1/9, three tropical solutions were found which are already discussed in Section 6.4.2. For
the solution a

3

the species 1, 2, and 5 are fast and the species 3, 4, and 6 are slow (timescales
1 min or slower). This solution leads to the reduced model 1 described in Section 6.4.2. In
contrast, species 5 is slow for the two other equilibrations corresponding to the reduced model
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Figure 6.3: Boxplots showing the average number of slow variables in the Biomodels database for
different values of time threshold ✓. Each point represents the compression ratio over all the tropical
equilibrations for each model with respect to different time thresholds. The time thresholds �2 to 5 in
the plot are the log 1010 transformed values of time thresholds 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000 in
secs. The boxplot corresponds to " = 1/23. The boxplots of other " values look similar. The tropical

equilibrations are computed based on Algorithm 1.

2. The numerical method based on the slowness index classifies species 1,2, and 5 as fast and
is thus compatible with the new method for the tropical solution a

3

(Fig. 6.8a)). The reduced
model 1 corresponding to the tropical solution a

3

reproduces with good accuracy the limit cycle
oscillations of the cell cycle model as shown in Fig. 6.8c).

6.6.2 Accuracy of the reduction

A quantitative estimate of reduction accuracy can be based on the L2 norm of the difference
between trajectories x(t), x

red

(t) simulated with the full and reduced model, respectively.
However, because periods are slightly changed by the reduction, the error could be defined as
err = inf

a

kx(t) � x
red

(at)k/kx(t)k, where a is a time scaling parameter close to 1. For the
trajectories shown in Fig. 6.8c), err is less than 0.01 and the optimal scaling parameter is
a = 1.0002 (the relative change of the period is 0.0002).

The two other equilibrations lead to the reduced model 2 that is at least as accurate as
the reduced model 1 (in short, in the reduced model 2, species 5 is considered slow and is
not eliminated). This reduction accurately reproduces the dynamics not only on the limit
cycle attractor, but also when initial data is far from this attractor. This is illustrated in
Fig. 6.8d). The full model and the two reduced models are simulated starting from several
initial data x

0i

, i = 1, . . . , 3. The initial data of the reduced models is obtained by projection
on the corresponding invariant manifolds. For example, the reduced model 1 evolves on an
invariant manifold whose equations (up to small correcting terms) are given by (6.29) and
read x

5

= k
6

/(k
4

x
2

), x
1

= k
3

x
2

/k
1

. By computing the eigenvalues of the Jacobian of system
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Figure 6.4: Boxplots showing compression ratio in the Biomodels database for different values of
time threshold ✓. The compression ratio is defined as the average number of slow variables / num-
ber of variables in the model. Each a point represents the average slow variables. The number of
slow variables were computed based on rescaled orders (see (6.11)) and certain time threshold in sec-
onds. The time thresholds �2 to 5 in the plot are the log 1010 transformed values of time thresholds
0.01, 0.1, 1, 10, 100, 1000, 10000, 100000 in secs. The boxplot corresponds to " = 1/23. The boxplots of

other " values look similar. The tropical equilibrations are computed based on Algorithm 1.

(6.25) it was found that this invariant manifold has an attractive, stable region (all eigenvalues,
except the zero ones corresponding to exact conservation laws, have negative real parts) and
an unstable region (where there are eigenvalues with positive real parts). The initial data
vectors x

01

and x

02

are close to the unstable region of the invariant manifold. Therefore, the
trajectories starting from these initial data first get away from the manifold and after large
excursions approach the attractive part of the manifold. Reduced model 2 is able to reproduce
these transients but not the reduced model 1 (Fig. 6.8d) because the latter is valid only on the
slowest attractive invariant manifold.

6.7 Comparison with COPASI time separation method

The proposed method was tested against the existing tool COPASI (Hoops et al., 2006; Surovtsova
et al., 2009). COPASI is a software for simulation and analysis of biochemical networks. This
software accepts and generates several model exchange formats including the widely spread
SBML format and is very popular in the computational biology community. COPASI is one of
major biochemical networks tools that implements time separation of variables. To accomplish
this aim COPASI proposes a modified ILDM (intrinsic low dimensional manifold) method. This
method computes slow and fast modes which are transformations of species concentrations as
described in (Deuflhard and Heroth, 1996; Zobeley et al., 2005; Surovtsova et al., 2009). More
precisely, COPASI performs a Schur block decomposition of the Jacobian matrix J , consisting
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Figure 6.5: (A) Histogram showing the distribution of slowest timescales for 35 models corresponding
to " = 1/23. The tropical equilibrations are computed based on Algorithm 2.

in finding a non-singular matrix T such that T�1JT =

✓
S
slow

0

0 S
fast

◆
, where S

slow

, S
fast

have

real Schur form, i.e. they are upper triangular matrices with possibly non-vanishing elements
on the first subdiagonal.

The time threshold (needed to separate the slow and fast blocks of the Jacobian matrix) is
automatically captured in this method by finding a gap in the spectrum of the Jacobian (cf.
Section 6.2).

In order to compare the modified ILDM method against the tropical and slowness index
methods, the fast space of the model was computed using COPASI for 100 time steps between
1 and 100 min and the contribution of each species to this fast space was checked. COPASI
defines the contribution of a species i to a mode j as the matrix element T�1

ji

. These contri-
butions of various species to fast modes are provided by COPASI as fractions p

i

, where i is
the species index, 0  p

i

 1,
P

i

p
i

= 1. COPASI declare species with largest contribution
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Figure 6.6: Boxplots showing the average number of slow variables in the Biomodels database for
different values of time threshold ✓. Each point represents the compression ratio over all the tropical
equilibrations for each model with respect to different time thresholds. The time thresholds �2 to 5 in
the plot are the log 1010 transformed values of time thresholds 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000 in
secs. The boxplot corresponds to " = 1/23. The boxplots of other " values look similar. The tropical

equilibrations are computed based on Algorithm 2.

to the fast space (largest p
i

) as fast species. For exactly the same trajectory, the values of the
slowness indices I

i

= | log
10

(x
i

(t)/x⇤
i

(t))| were computed. For fast species, I
i

should be close to
zero. Fig. 6.8a) and b) summarizes the comparison between the slowness index and the tropical
method. The tropical solution a

3

leads to the reduced model 1 (cf. Section 6.4.2) and copes
with the limit cycle trajectory used in this test. The timescale orders ⌫

i

of the variables for
this tropical solutions identify species x

1

, x
2

, x
5

as fast and species x
3

, x
4

, x
6

as slow (see also
Section 6.4.2). As can been seen in Fig. 6.8a) the slowness index of species x

1

, x
2

, x
5

is close to
zero for all times. The slowness index of species x

3

, x
4

, x
6

can reach large values. Therefore the
tropical method and the slowness index method provide exactly the same timescale decomposi-
tion. COPASI time separation can not be compared directly to the tropical method, because it
generates a timescale decomposition that changes with time and which is valid for a trajectory.
However, it can be compared with the slowness index decomposition. Fig. 6.9 summarizes the
comparison between COPASI and the slowness index. It should be noted that the species x

3

is automatically eliminated by COPASI using the single conservation law present in the model.
The slowness index and COPASI contribution to fast space should be anticorrelated: when the
first one is small the latter should be big and vice versa. Species x

1

and x
5

have high contri-
bution towards the fast space and very low slowness index (see Fig. 6.9b). For these species
it can be said that there is consistence between COPASI and slowness index. Species x

2

also
has large contribution to fast space except for some intervals where COPASI may classify it as
slow. The method unambiguously classifies this species as fast (cf. Fig. 6.9b) its slowness index
is very low for all times). Most importantly,

COPASI fails to identify correctly time intervals where species 6 is slow as indicated by
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Figure 6.7: Boxplots showing compression ratio in the Biomodels database for different values of
time threshold ✓. The compression ratio is defined as the average number of slow variables / num-
ber of variables in the model. Each a point represents the average slow variables. The number of
slow variables were computed based on rescaled orders (see (6.11)) and certain time threshold in sec-
onds. The time thresholds �2 to 5 in the plot are the log 1010 transformed values of time thresholds
0.01, 0.1, 1, 10, 100, 1000, 10000, 100000 in secs. The boxplot corresponds to " = 1/23. The boxplots of

other " values look similar. The tropical equilibrations are computed based on Algorithm 2.

the large value of the slowness index co-existing with large values of contribution p
i

(as large
as for species 1 and 2, see Fig. 6.9b). According to COPASI this species is similar to the fast
species x

2

, whereas the proposed method indicate it similar to the slow species x
4

and x
3

. As
a matter of fact, COPASI determines slow variables by comparing the values of contributions
p
i

to the fast and slow modes. Despite the existence of a spectral gap, the differences of the
indices p

i

between species that are considered slow and fast can be relatively small and therefore
this classification is not robust. In contrast, the tropical and slowness indices methods classify
species in a robust way. Indeed, timescales to species are directly associated, via the orders ⌫

i

and these timescales are well separated for slow and fast species. Using these orders, it was
found that the fastest slow species x

3

and x
6

are 100 times slower than the slower fast species
x
5

. Furthermore, as shown in Fig.6.8a, the slowness index is very sensitive to differences in
timescales. Fast species x

1

, x
2

, x
5

keep this index low for all times, whereas the corresponding
COPASI indices are not always high. Generally, it should not be recommended to use species
contributions to modes as indicative of their timescales, as COPASI does. For instance, the sum
of two or more species can be a slow mode, even if all these species are fast (cf. Section 6.3.2,
this situation is typical for fast cycles). The fast species have in this case higher contributions
to a slow mode which may qualify them as slow according to the species contribution criterion.
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Figure 6.8: Testing tropical slow/fast decomposition and accuracy of reduction of BIOMD00000005
(cell cycle model). a) The slowness index is represented as a function of time on trajectories: slow vari-
ables have large slowness index (the fold ratio stands for the exponentiated index exp(log(xi(t)/x

⇤
i (t))|));

b) Left : The orders ⌫i = µi � ai are represented for different species and for three tropical solutions.
Cf. (6.8) a species i evolves on the timescale "�⌫i and hence lower ⌫i mean faster species. The thresh-
old ✓ separating slow and fast species set to 1min to satisfy the gap condition (6.10) corresponds to
µ

threshold

= 0 as defined by (6.11). The threshold order is represented as a dotted line. Fast species have
orders below this value, namely species x1, x2, x5 are fast for the tropical solution a3, whereas only
species x1, x2 are fast for the tropical solutions a1 and a2. Right : Orders ai for different species and
tropical solutions indicate species concentrations. Cf. (4.3) higher ai mean lower concentration. For all
order calculations we have used ✏ = 1/9. c) Comparison of the limit cycle trajectories computed with
the full (black circles) and reduced model (red crosses). d) Model trajectories for the full model (black),
reduced model 1 (red) and reduced model 2 (yellow), starting from three initial data, corresponding to
three different tropical equilibrations. The limit cycle attractor is contained in an invariant manifold.
The reduced model 1 provides a good approximation of the dynamics on the invariant manifold (such as
starting from initial data 3), but not outside. The reduced model 2 is accurate also outside the invariant

manifold (see trajectories starting from equilibrations 1 and 2).

6.8 Discussions

The problem of timescale decomposition and model reduction of biochemical networks is ad-
dressed in this application. The approach described here relies on the notion of tropical equi-
libration. Tropical equilibrations represent a generalization of steady states and correspond to
compensation of dominant fluxes acting on species concentrations. The remaining, uncompen-
sated weaker fluxes are responsible for the slow dynamics of the system on attractive invariant
manifolds. The correspondence between the tropical equilibrations and attractive invariant
manifolds has been exploited here to associate, to each tropical equilibration, a reduced model.
It is shown elsewhere (Samal et al., 2015b) that when there is an infinity of tropical equilibra-
tion solutions, these can be organised into branches and minimal branches, points on the same
branch correspond to the same tropically truncated system.
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Figure 6.9: Summary of the analysis of model BIOMD00000005 using ILDM method and comparison
with the method based on the slowness index. The model was simulated in COPASI from 0 to
100 min with default initial concentrations. The species 3 is eliminated using the single conservation
law. For all the remaining species we represent the time dependence of their contributions pi, where
0  pi  1,

P
i pi = 1 to the fast space. The fractions pi are generated by COPASI and the values pi

are color coded in the left panel a). Chemical species with largest contribution to the fast space (largest
pi) are supposed to be fast species (as explained in (Surovtsova et al., 2009)). Therefore pi (in green
in right panel b)) and the slowness index Ii = | log10(xi/x

⇤
i )| (in red) should be anti-correlated. This is

well verified for species 1, 4, 5 (pi are relatively high when Ii are close to zero, and close to zero when
Ii are relatively high, but it is not well verified for species 6 (p-cyclin) whose slowness index has large

peaks in places where the COPASI contribution to fast modes stays constantly high.

An algorithm is proposed to compute tropical equilibrations in Section 4.1, which is used
to determine the fast/slow partition of chemical species in a network of biochemical reactions.
This is the first and often a critical step in the model reduction algorithms. In particular,
the number of slow species provides the size of minimal dynamic models to which complex
biochemical networks can be reduced. The validity of the reductions presented above depends
on concentration and parameter orders, as well as on initial data. For the simple example of
Michaelis-Menten kinetics validity conditions are obtained for various reductions as inequalities
among orders of magnitude of concentrations and parameters. These validity conditions define
large domains in the concentrations and parameters spaces. Previous work on larger models
suggests a larger applicability of this result which implies that the resulting reductions are
robust (Radulescu et al., 2008).

The benchmarking of the algorithm on the Biomodels database shows that a significant
dimension compression can be performed on cell dynamics models at timescales of 1000s and
larger. Starting with complex models having more than 30 variables, the minimal models
have median numbers of 2 slow variables. This suggests that, at least piece-wise in parameter
and phase space, the tasks fulfilled by molecular networks are relatively simple. The need for
having complex machineries with many regulators to perform simple tasks (such as relaxation
to steady states or limit cycle oscillations) could be justified by the system robustness. A
system having a very large number of variables and parameters, multiple timescales and only a
few slow degrees of freedom is generically robust with respect to perturbations of variables and
parameters (Gorban and Radulescu, 2007).
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6.8. Discussions

The described method can be also used to study sensitivity issues and identifiability of
parameters from trajectories. A parameter is sensitive if changing its value induces large changes
of model trajectories. In the analysis of Tyson’s model it is seen that some parameters of the
full model are not present in the reduced model. Although the orders of magnitude of these
parameters are important (changing them may change the reduction), small changes of their
values do not lead to changes of the model trajectories. Parameters of the full model that are
not present in the reduced model are therefore insensitive. It may also happen that parameters
of the reduced model are combinations (for instance multivariate monomials) of the parameters
of the full model. If these combinations are sensitive, then so are the parameters they contain.
However, parameters that are parts of such combinations can not be determined independently
from the observed trajectories, which leads to parameter non-identifiability issues (Radulescu et
al., 2012). Thus, insensitive parameters and parameter lumping resulting from model reduction
can be used to asses local identifiability of the system parameters (Radulescu et al., 2012). The
idea of relating parameter lumping and parameter identifiability can also be found in other
computational algebraic geometry approaches (Meshkat, Eisenberg, and DiStefano, 2009).

Solving the tropical equilibration problem and finding a slow-fast decomposition is the first
step for model reduction. The remaining steps consist of elimination of the fast variables by
solving systems of algebraic equations. This has been shown for simple examples. In the
case of more complex models, the elimination can be performed numerically, or symbolically.
Tropical methods can simplify this task by replacing the full systems by tropically truncated
systems. In particular, the binomial or toric case when the truncation has only two monomials
is particularly interesting because for this case there are rapid algorithms for computing the
steady states (Grigoriev and Weber, 2012; Millán et al., 2012). Higher approximation can be
provided by Newton-Puiseux expansions (Radulescu, Vakulenko, and Grigoriev, 2015), that
encompass tropical solutions in their lowest order. Although the calculations needed for formal
reduction could be long, once the model is reduced, it can be used in various applications, such
as a part of larger networks, or in models of tissues and organisms where the same biochemical
network has to be replicated in several interacting cells. Furthermore, the reductions have a
strong geometrical basis. In future work, this property will be exploited to show how to endow
the reduced model with a reaction network structure and how to identify inclusion relations
among different reduced models.

The slowest part of the dynamics often ends with a stable steady state. Tropical equilibra-
tions that correspond to steady states should be on the tropical variety. The Puiseux series
exist in this case and provide higher order approximations to the position of the steady state.
However, tropical counterparts of stable invariant manifolds can be parts of prevariety without
being in the variety. Only the last invariant manifold, the slowest in the hierarchy and the
absorbing state in the automaton of metastable regimes (cf. Chapter 7) may be associated to
parts of the variety (Radulescu, Vakulenko, and Grigoriev, 2015).

Several other open questions will be addressed in future work. For instance, the current
algorithm finds the tropical equilibrations for fixed values of the parameters. It would be very
interesting to formally classify all the possible reductions and phase portraits of a reaction
network with a given topology and reaction rates, for all possible values of the parameters.
The problem of Michaelis-Menten kinetics is solved by hand. In the future the algorithms
will be extended in order to compute the tropical equilibration solutions depending on the
parameters. For this purpose, the techniques used for linear quantifier elimination shall be
extended (Weispfenning, 1988; Dolzmann and Sturm, 1997; Weber, Sturm, and Abdel-Rahman,
2011) and incorporated them into the current framework.
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Chapter 7

Metastability, Symbolic Dynamics and

Application to TGF� Signalling

In this chapter the application of tropical minimal branches in determining the MRs is discussed.
The MRs of smooth biochemical reaction networks representing the low dimensional regions of
the phase space close to which the dynamics is much slower compared to the rest of the phase
space. The transitions between the MRs are modelled using finite state automaton. The discrete
states in such an automaton correspond to the tropical minimal branches and are referred to as
metastable regimes. In addition, it will be shown that for TGF� pathway distinct metastable
regimes are found to be associated with the clinical phenotypes namely epithelium-like (non-
aggressive) and mesenchymal-like (aggressive) cell lines.

7.1 Background

In order to cope with the qualitative data, boolean (Kauffman, 1969; Thomas, 1973) or multi-
valued networks (Thomas, 1991; Naldi, Thieffry, and Chaouiya, 2007) are often used instead
of continuous models. For this reason, many efforts were focused on coarse graining dynamical
networks described by ordinary differential equations (ODE) to boolean networks (Davidich
and Bornholdt, 2008). However, in spite of their advantages, dynamical properties of large
Boolean or multi-valued networks are still difficult to study. The difficulty originates from the
number of possible states, which for multi-valued networks with m levels (Boolean networks
correspond to m = 2) is mn. Although there are efficient methods for computing attractors of
Boolean networks (algorithms based on binary decision diagrams or on satisfiability solvers can
handle synchronous networks with hundreds of variables (Dubrova and Teslenko, 2011)), more
intricate dynamical properties like the metastable regimes discussed here, ask for comprehensive
analysis of the state transition graph which is hard to perform and moreover for analysis of the
hierarchy of time scales which is even harder for the Boolean and multi-valued networks. The
coarse graining method proposed here leads to a drastic reduction of the number of states. This
offers unprecedented possibilities for qualitative analysis of the dynamics. This is illustrated
in Fig. 7.1, where we plot the number of minimal branches versus the number of equations
in the model. As can be noticed, this number is much lower than the number of states of
a Boolean network with the same number of variables, which illustrates the advantage of our
coarse graining with respect to other methods that discretize the values of the variables in order
to obtain Boolean or multi-value networks (Davidich and Bornholdt, 2008).

Here a new method is proposed for model analysis that uses coarse grained descriptions
of continuous dynamics as discrete automata defined on finite states. These states will not
be obtained by discretization of network variables, but by identification of a finite number of
collective modes describing possible coordinated activity of several variables.

For large networks with ODE based dynamics and multiple timescales it is reasonable to
consider the following property: a typical trajectory consists of a succession of qualitatively
different slow segments separated by faster transitions. The slow segments, generally called
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Figure 7.1: Semi-log plot of the minimal branches versus the number of equations in the models from
Biomodels repository for " = 1/5. Comparison with a binary network number of states 2

n suggests
sub-exponential scaling.

metastable states or regimes, can be of several types such as the attractive invariant manifolds
(Gorban and Karlin, 2005), Milnor attractors (Rabinovich et al., 2006) or saddle connections
(Rabinovich et al., 2012). The notion of metastability generalizes the notion of attractor.
Like in the case of attractors, distant parts of the system can have coordinated activity for
metastability. The dynamical states of large networks can be represented as points in a high
dimensional space, called phase space. In this representation each coordinate represents the
concentration of a molecular species. Coordinated activity means that many of the species
concentrations are correlated, which can be geometrically represented by the proximity to a
lower dimension hypersurface in the phase space. The application on model reduction discussed
in the previous section exemplified the computation of such lower dimensional hypersurface. A
system remains in the proximity of an attractor after entering its basin of attraction, but can
leave a metastable regime after a relatively long time (much longer than the time needed for
transitions between two different regimes). Fig. 1.1 summarizes this geometrical picture. The
term crazy-quilt was coined to describe such a patchy landscape of multiscale networks dynamics
(Gorban and Radulescu, 2008).

This phenomenon, called itinerancy, received particular attention in neuroscience (Tsuda,
1991). Itinerant behaviour is shown by mathematical models with stable heteroclinic sequences
(defined as open chains of saddle fixed points connected by one-dimensional separatrices) and
was also observed in transient activity of antennal lobe neurons involved in insect olfaction or in
the activity of high vocal centers controlling songbird patterns (Rabinovich et al., 2006). It can
be believed that similar phenomena occur in molecular biology for chemical reaction networks.
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7.2. Approach

A well studied example sustaining this picture is the biochemical and gene expression dy-
namics guiding the orderly progression of the cell cycle. The main feature of this dynamics
is the sequential activation of cyclin dependent kinase/cyclin complexes. More than 30 years
since cyclins were discovered the main cell cycle control events are now well understood and
it is agreed that each of them involve the collective action of several regulator molecules. In
addition, studies of periodic gene expression in synchronized cell division of yeast show the
existence of waves of coordinate expression corresponding to different cell cycle phases or tran-
sitions (Rustici et al., 2004). Furthermore, mathematical models of the cell cycle machinery
(currently more than 150 published models (Weis et al., 2014)) illustrate the stage dependent
coordination of biochemical variables. As an example, the structure of steady state branches
of the Wee1-Cdc25 module in yeast lead (Tyson, Csikasz-Nagy, and Novak, 2002) to consider
that the exit from mitosis is a collective phenomenon that can be described as a saddle-node
bifurcation. The analysis of such models also showed that branches and bifurcations of states
occur naturally in the context of cell cycle modelling (Noel et al., 2012). In a more general
context, geometric analysis of single-cell expression data from human and mouse tissues showed
that gene expression is structured not only in clusters but also in continua of states within poly-
hedra whose vertices can be understood as specialized key tasks (Korem et al., 2015). These
findings were interpreted in terms of multi-objective optimization solutions (Korem et al., 2015),
but could also suggest transient behaviour between specialized states. The idea of associating
cell lineage commitment to collective behaviour of gene networks variables was used in many
other contexts including cancer genomics where it was proposed that cancer cells are trapped
in some abnormal attractors (Huang, Ernberg, and Kauffman, 2009).

In an ODE system, when there is only one dominant term or when the dominant terms have
all the same sign, the dynamics is fast and the system tends rapidly towards a region in phase
space where at least two dominant terms of opposite signs are equilibrated. Here, such regions
will be referred to as metastable regimes and the machinery of tropical geometry methods will be
utilised to compute them. Specifically, the tropical minimal branches will be treated as proxies
for the metastable regimes and will be used to describe the qualitative network dynamics as a
sequence of transitions from one minimal branch to another. The complexity of the qualitative
dynamics depends on the number of branches. In order to test it, the minimal branches are
computed for a selection of models from Biomodels database (cf. Table 4.2). Although there
are theoretical results suggesting that the number of branches should be small, these results
are valid in the average in the probabilistic space of all the models. Furthermore, the biological
significance of metastable states in the context of TGF� signalling in cancer cell lines is also
investigated.

7.2 Approach

For a given biochemical reaction network, one can try to reconstruct the transitions happening
between the metastable regimes as illustrated in Fig. 1.1 by computing the tropical minimal
branches (cf. computed using the algorithm explained in Section 4.1). The minimal branches
are treated as proxies for the metastable regimes. By abstraction, it can be considered that the
metastable regimes (patches in the “crazy-quilt” picture in Fig.1.1) are represented as nodes of
a graph. Two nodes in the graph are connected if and only if there is at least one transition
from one regime to the other. This can be viewed as an abstraction of a finite state machine,
because the number of regimes is finite. However, given one regime, there may be several
different possibilities to leave this regime, each leading to a different metastable regime. The
choosing of a particular transition depends on the initial data. Thus, although the initial model
is deterministic the finite state machine abstraction is generally stochastic. From one node,
several transitions can leave each one having a different probability per unit time. Because the
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initial system spends a long time on the metastable regime and little time on the transitions,
it is natural to expect that the memory of previous transitions is lost and that the stochastic
process is Markovian. In the following a method is proposed to learn this stochastic, Markov
process, from many simulations of the full model, each one starting from a different, randomly
chosen, initial state. The method is similar to the Markov state models (Bowman et al., 2009)
used to coarse grain phase space for protein folding molecular dynamics. Contrary to energy
landscape in protein folding, the proposed “crazy-quilt” here is not that rugged as it consists of
a small number of patches. Therefore, standard Monte Carlo procedures function well in this
case.

In order to construct the finite state machine, the phase space of the continuous model needs
to be mapped to a finite set of branches. First, minimal branches of tropical equilibrations were
computed as subsets of the euclidian space Rn where n is the number of variables. Tropical
equilibrations minimal branches are stored as matrices A

1

, A
2

, . . . , A
b

, whose lines are tropical
solutions within the same branch. Here b is the number of minimal branches.

As the method computes numerical approximations of the tropical prevariety, given a value
of ", this approximation is better when the denominator bound d is high. At fixed d, the depen-
dence of the precision on " follows more intricate rules dictated by Diophantine approximations.
For this reason, the number b is systematically tested and the truncated systems corresponding
to minimal branches are robust when changing the value of ".

Trajectories x(t) = (x
1

(t), . . . , x
n

(t)) of the smooth dynamical system are generated with
different initial conditions, chosen uniformly. For each time t, the Euclidian distance d

i

(t) =

min

y2Ai ky � log

"

(x(t))k , is computed where k⇤k denotes the Euclidean norm and log

"

(x) =

(log x
1

/ log("), . . . , log x
n

/ log(")). This distance classifies all points of the trajectory as be-
longing to a tropical minimal branch. The result is a symbolic trajectory s

1

, s
2

, . . . where the
symbols s

i

belong to the set of minimal branches. In order to include the possibility of transition
regions an unique symbol t is included to represent the situations when the minimal distance is
larger than a fixed threshold. The choice of this threshold is robust (see discussion in Section
7.3 and Fig. 7.3). The residence times ⌧

1

, ⌧
2

, . . . that represent the time spent in each of the
state are also stored.

Special care should be taken when the model has a number of conservations laws. A con-
servation law is a linear combination of species concentrations that is kept constant during the
dynamics, in other words an equation of the type ci

1

x
1

+ ci
2

x
2

+ . . . + ci
n

x
n

= K
i

. It is sup-
posed that the conservation laws are semi-positive (all c

i

are positive or nought). Then, several
such equations together with the positivity conditions x

i

� 0 define a polyhedron. The initial
conditions for the trajectories x(t) uniformly in such a polyhedron needs to be picked.

To start, each component j can take its initial concentration in the range as shown below

[0,min(K
i

/ci
j

, such that ci
j

> 0)] (7.1)

but as initial concentration of one component is set, the range available for components which are
involved in the same constraint is reduced. The last component picked for each constraint must
take the maximal value. Thus the sampling depends on the order in which initial concentrations
are selected. To avoid introducing a bias related to this order, a random ordering of components
is selected for each random initial state. Furthermore, if a component is picked as last in
a constraint, its value is enforced (it must take all what remains). Conflicts may arise if this
component is part of other constraints as well. To avoid this, it is ensured that the last assigned
item is specific to the constraint (not involved in any other constraint). This step may create
problems with highly interdependent sets of constraints or constraints with less than two specific
components. For the models considered here, this sampling works well as constraints have more
specific components than overlapping ones.
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By this method, N symbolic trajectories of length M defining the vectors of successive states
are generated (sj

1

, sj
2

, . . . , sj
M

) and residence times (⌧ j
1

, ⌧ j
2

, . . . , ⌧ j
M

), where j 2 [1, N ].
The stochastic automaton is learned as a homogenous, finite states, continuous time Markov

process, defined by the lifetime (mean sojourn time) of each state T
i

, 1  i  b and by the
transition probabilities p

i,j

from a state i to another state j. Following estimators for the
lifetimes and for the transition probabilities are used:

T
i

= (

NX

n=1

MX

m=1

⌧
n

1
s

n
m=i

)/(
NX

n=1

MX

m=1

1
s

n
m=i

) (7.2)

p
i,j

= (

NX

n=1

MX

m=1

1
s

n
m=i,s

n
m+1=j

)/(
NX

n=1

MX

m=1

1
s

n
m=i

), i 6= j, (7.3)

where 1
C

stands for the indicator function equal to one if condition C is fulfilled or else equal
to nought.

7.3 Biological significance of metastable branches for TGF-� sig-
nalling

As a case study, a nonlinear model of dynamic regulation of Transforming Growth Factor beta
TGF-� signalling pathway that is recently described by (Andrieux et al., 2012) is considered.
TGF-� signalling occurs through association of the ligand with TGF-beta type I (TGFBR1)
and type II (TGFBR2) serine/threonine kinase receptors. TGF-� binding to TGFBR2 induces
recruitment and phosphorylation of TGFBR1, which in turn transmits the signal through phos-
phorylation of SMAD2 transcription factor. Once phosphorylated, the SMAD2 hetero-dimerizes
with SMAD4 and the complexes then migrate to the nucleus, where they regulate the tran-
scription of TGF-�-target genes. In that context, the Transcriptional Intermediary Factor 1,
TIF1-� have been shown to function either as a transcriptional repressor or as an alternative
transcription factor that promote TGF-� signalling. The apparent controversial effect of TIF1-
� on regulation of the SMAD-dependent TGF-� signalling was solved by a model integrating
a ternary complex associating TIF1-� with SMAD2 and SMAD4 complexes. This model has
a dynamics defined by n = 18 polynomial differential equations and 25 biochemical reactions
(the full set of ordinary differential equations can be found in the Section A.1 in Appendix A,
the reaction scheme can be found in (Andrieux et al., 2012)). The computation of the tropical
equilibrations for this model shows that there are 9 minimal branches. The connectivity graph
of these branches (defined in Section 4.1) and the learned finite-state automaton (obtained with
the method of Section 7.2) are shown in Fig. 7.2. The Table 7.1 illustrates the convergence of the
estimated transition probabilities when N , the number of Monte-Carlo samples, is increased.
In order to illustrate the robustness of the classification of the states in the trajectories for each
branch B

i

, i 2 [1, 9] we computed the distribution of probability of Euclidian distances between
randomly chosen states of the model, compatible with the conservation laws, and the branches.
In Fig. 7.3 these distributions are compared with the distribution of minimal distances used to
classify various states on the model’s trajectories. The latter distances are smaller and clearly
separated from the random states distances.

The transition probabilities of the automaton are coarse grained properties of the statistical
ensemble of trajectories for different initial conditions (cf. Section 7.2). Given a state and a
minimal branch close to it, it will depend on the actual trajectory to which other branch the
system will be close to next. However, when initial data and the full trajectory are not known,
the automaton will provide estimates of where we go next and with which probability. For
the example studied and for nominal parameter values, the branch B1 is a globally attractive
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Figure 7.2: Summary of tropical geometry analysis of the TGF� model. a) Connectivity graph of
tropical minimal branches; b) finite state automaton; c) a single trajectory of the system (starting
from initial data chosen randomly close to the branch B3) is represented by plotting the concentration
of different species vs. time (upper sub-figure); the distances to different branches of solutions vs.
time (lower sub-figure) shows that the sequence of branches for this trajectory is B3, B2, B1 (all
points of the trajectory are close to one of these three branches and significantly more distant to
the other branches). d) The different branches of solutions are defined by allowed concentrations of
different variables, represented here by orders of magnitudes ai; the opposite concentration orders �ai
are proportional to the logarithms of concentrations �ai ⇠ log(xi). All the order calculations were
performed using " = 1/11. The most used branches B1, B2, B3 are shown in projection onto sets of
three variables. The variables RI, RII, LR are plasma membrane receptors and ligand-receptor complex
(signalling input layers), whereas pS2n, S4n, pS24n are nuclear transcription factors and complexes
(effectors). The structure of tropical branches shows that composition of input layers is more flexible
(varies on planar domains that are disjoint for different branches) than the concentrations of effectors

(vary on linear intervals that overlap for different branches).

sink: starting from anywhere, the automaton will reach B1 with probability one. This branch
contains the unique stable steady state of the initial model. This calculation illustrates the basic
properties of minimal branches of equilibrations. Trajectories of the dynamical system can be
decomposed into segments that remain close to minimal branches. Furthermore, all the observed
transitions between the branches are contained in the connectivity graph resulting from the
polyhedral complex of the tropical equilibration branches. This result proves the solidity of the
tropical approach, because the geometric connectivity was not enforced to constrain the possible
transitions; the fact that it is really the case that emerges from the analysis of the trajectories.
A change of parameter values can have several consequences: change the connectivity graph,
change of the probabilities of transitions and change of the attractor position.

80



7.3. Biological significance of metastable branches for TGF-� signalling

Table 7.1: Estimation of the transition probabilities between branches of the TGF� model, for different
values of N , the number of Monte-Carlo samples.

N 1!1 1!4 2!1 2!3 2!5 3!2 3!6 4!1 5!1 5!2 5!3
100 1.0000 0.0000 0.9836 0.0164 0.0000 1.0000 0.0000 1.0000 0.0227 0.2727 0.0227
200 1.0000 0.0000 0.9675 0.0325 0.0000 1.0000 0.0000 1.0000 0.0217 0.2391 0.0109
500 1.0000 0.0000 0.9614 0.0386 0.0000 1.0000 0.0000 1.0000 0.0216 0.2381 0.0173
1000 1.0000 0.0000 0.9703 0.0264 0.0033 1.0000 0.0000 1.0000 0.0280 0.2258 0.0086
2000 1.0000 0.0000 0.9585 0.0365 0.0050 1.0000 0.0000 1.0000 0.0246 0.2173 0.0086
3000 1.0000 0.0000 0.9561 0.0389 0.0050 1.0000 0.0000 1.0000 0.0295 0.2342 0.0084
5000 0.9996 0.0004 0.9542 0.0399 0.0059 0.9996 0.0004 1.0000 0.0340 0.2460 0.0093
10000 0.9994 0.0006 0.9556 0.0363 0.0081 0.9973 0.0027 1.0000 0.0344 0.2370 0.0110

N 5!4 5!6 6!3 7!4 8!4 8!5 8!6 8!7 8!9 9!6
100 0.4091 0.2727 1.0000 1.0000 0.1373 0.4902 0.0784 0.0784 0.2157 1.0000
200 0.4130 0.3152 1.0000 1.0000 0.1300 0.5200 0.0600 0.0600 0.2300 1.0000
500 0.4156 0.3074 1.0000 1.0000 0.1098 0.5294 0.0784 0.0980 0.1843 1.0000
1000 0.4280 0.3097 1.0000 1.0000 0.1051 0.5333 0.0949 0.0909 0.1758 1.0000
2000 0.4497 0.2998 1.0000 1.0000 0.1121 0.5354 0.1020 0.0859 0.1646 1.0000
3000 0.4439 0.2840 1.0000 1.0000 0.1122 0.5315 0.0984 0.0951 0.1627 1.0000
5000 0.4227 0.2880 1.0000 1.0000 0.1160 0.5272 0.0969 0.0965 0.1633 1.0000
10000 0.4304 0.2872 1.0000 1.0000 0.1132 0.5344 0.0997 0.0932 0.1595 1.0000
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Figure 7.3: Distribution of distances to tropical branches of the TGF� model. For each branch Bi,
i 2 [1, 9] we represent the probability density function of Euclidian distances between randomly chosen
states of the model, compatible with the conservation laws, and the branches (dist = mini2[1,9] di).
The minimal distances computed for states on model’s trajectories (mindist) are smaller and clearly
separated from the random states distances. In order to compute the transitions represented in Fig.7.2b)
we have used the threshold dist = 3 (states with dist > 3 were declared transient, whereas states with

dist < 3 were classified as belonging to some branch.)

In order to understand the significance of the minimal branches and their relation with
dynamic and physiologic properties of the network an analytic study of the tropical equilibration
solutions is performed. It is shown (see also the Section A.2 in Appendix A) that the most
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important cause of the multiplicity of branches is the dynamics of the TGFBR1 and TGFBR2
receptors whose internalization and trafficking regulates TGF-� signalling (Le Roy and Wrana,
2005). These two receptors belong to a ligand-receptor module of 6 variables and 12 reactions
that is decoupled from the rest of the network. More precisely, the ligand-receptor module
activates the SMAD transcription factors but receives no feed-back (see Fig. 7.4) and can be
studied independently from the rest of the variables. This module has been used with little
variation in many models of TGF-� signalling (Vilar, Jansen, and Sander, 2006; Zi and Klipp,
2007; Chung et al., 2009).
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Figure 7.4: Graphic representation of the ligand-receptor module of the TGF-� full model. The
different variables mean: x12 : RI (TGBR1), x13 : RII (TGFBR2), x14 : LR (ligand-receptor complex),
x15 : RIe (TGFBR1 in endosome), x16 : RIIe (TGFBR2 in endosome), x11 : LRe (LR in endosome).

It is shown in the Section A.2 in Appendix A that the tropical equilibration of the ligand-
receptor module form a two dimensional polyhedron conveniently parametrized by the concen-
tration orders a

12

and a
13

of the receptors TGFBR1 and TGFBR2 respectively. The branches
can be calculated analytically ((A.9) and (A.13) in Section A.2 in Appendix A). For the nom-
inal values of the model parameters one of these branches is empty and the three remaining
branches correspond to B

1

, B
2

and B
3

. The two other triplets of branches (B
4

, B
5

, B
6

) and
(B

7

, B
8

, B
9

) correspond to the same mutual relations of variables in the ligand-receptor mod-
ule. They are distinguished by the values of the remaining variables (the transcription factors
module). As the computation of the automaton showed that the branches B

i

, i 2 [4, 9] are
practically inaccessible from states in branches B

i

, i 2 [1, 3], therefore we will not discuss them
here.

Symbolic computation is used to determine the steady states of the ligand-receptor module.
This module has an unique steady state corresponding to concentrations orders that can be
placed inside the polyhedron of tropical solutions using the (4.3). The minimal branch con-
taining the steady state is a sink of the coarse grained dynamics. The polyhedron of tropical
solutions, its decomposition into minimal branches, and the position of the steady states inside
it, depend on the model parameters. Among model parameters two are important: k

18

and k
19

representing the production rate of the protein receptors TGFBR1 and TGFBR2, respectively.
Consequently, these two parameters are correlated to gene expression and account for possible
variability in mRNA levels of the two types of receptors. Fig. 7.5 shows the tropical equili-
bration branches of the ligand-receptor modules for various parameters k

19

corresponding to
various TGFBR2 expression levels. For the nominal parameters used in the model, the branch
B1 is a sink i.e. an attractor (the coarse-grained dynamics shows that the probability to leave
this state is negligible), and the branches B2 and B3 are transient i.e. metastable. This means
that starting in the branch B2 or B3 the receptor module will reach the branch B1 after a
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certain time and will remain there. However, over-expression of TGFBR2 modelled by chang-
ing the parameter k

19

and illustrated in the Fig. 7.5a-c can tilt the balance in favor of large
concentrations of receptor of type 2 corresponding to branches B2, B3 of tropical solutions in
the model. Interestingly, this change occurs by a displacement of the position of the steady
state from B1 to B2 and B3 and not by a change of the concentration values allowed for these
branches.

a) b)

c) d)

Figure 7.5: Tropical equilibrations of the ligand-receptor modules for various values of TGFBR2 (R2)
gene expression are represented in projection in the plane (aR1, aR2) (a point in this plane provides the
orders of concentrations of the protein receptors) (a,b, and c) and comparison with proteomics data
from (Gholami et al., 2013) (d). Branches of tropical equilibrations are calculated for a) nominal value
k19 (TGFBR2 expression) (this is the same as Fig. 7.2d in projection onto the plane (aR1, aR2)), b) ⇥2
TGFBR2 overexpression , and c) ⇥10 TGFBR2 overexpression. The circle represents the position of
the stable steady state and the branch containing is an attractor of the finite-state automaton. Like in
Fig. 7.2 large opposite concentration orders �ai indicate large concentrations. All order calculations
were performed using " = 1/11. d) Proteomic data from NCI-60 cancer cell lines. Aggressive lines
cover ratios of receptor concentrations intervals (indicated as bars at the right side of the sub-figure)
corresponding to branches B3 (red) and B2 (yellow), whereas non-aggressive lines correspond to low
expression of TGFBR2 in branch B1 (green). The receptors concentration ratios are well separated in

the two classes (Mann-Whitney test, p-value 0.0006).

While Vilar et al. (Vilar, Jansen, and Sander, 2006) have speculated that the ligand-receptor
module is responsible for the versatility of the response of the TGF-� pathway, no experimental
evidence support this hypothesis. Here, it is demonstrate that there are correlations between
dynamical specificity characterized by membership to a particular branch of equilibration and
cell phenotype. Such a comparison for the NCI-60 panel of cancer cell lines is illustrated here, a
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well established tool for tumor comparison and drug screening provided by the National Cancer
Institute. Based on microarray analysis, these cell lines were found to cluster into two classes:
epithelium-like (non-aggressive) and mesenchymal-like (aggressive) cell lines (Ross et al., 2000).

Using the global proteome analysis of this NCI-60 panel (Gholami et al., 2013), the protein
expression levels of TGFBR1 and TGFBR2 are extracted which showed that the mesenchymal-
like (aggressive) cell lines can be distinguished from the epithelial-like (non-aggressive) cell lines
by the increased level of TGFBR2 (Fig 7.5d.

The proteome data was compared to membership to tropical branches. According to (4.3)
there is a linear relation between opposite concentration orders �a

i

and logarithms of concen-
trations, �a

i

⇡ b log(x
i

), i = 1, . . . , n (b = �1/ log(") > 0). Opposite concentration orders
�a

i

were used instead of a
i

because they change in the same direction as the concentrations
(small opposite orders mean small concentrations and large opposite orders mean large con-
centrations). Therefore, in Fig 7.5a-c the relation TGFBR1 = TGFBR2 is verified on the
bissector of the first quadrant, whereas TGFBR2 > TGFBR1 and TGFBR2 < TGFBR1 are
valid above and below the bissector, respectively.

When compared the proteome results with the membership to a particular branch of equili-
bration, it is found that the distribution of concentration orders in branches place non-aggressive
cancer cell lines in a range covered by branch 1, whereas the aggressive cancer cell lines are
placed in a range covered by branches 2 and 3 (Fig 7.5d). Indeed, the ratio TGFBR2/TGFBR1

is small for the branch B
1

and in non-aggressive cancer cell lines, and is much larger for B
2

, B
3

and in aggressive cell lines.
Furthermore, the association of up-regulation of TGFBR2 with mesenchymal-like appear-

ance in an independent dataset of 51 breast cancer cell lines (Neve et al., 2006) is validated.
In a recent work (Ruff et al., 2015), comparative analyses between Basal B cell lines with
mesenchymal-like phenotype and Basal A and Luminal cell lines with epithelial morphology
permitted to identify more than 600 differentially expressed genes that include TGFBR2. Gene
expression data were now extracted for TGFBR1 and TGFBR2 and we showed that TGFBR2
gene expression is significantly induced in mesenchymal-like cell lines while TGFBR1 did not
vary (Supplementary Fig.1). In accordance with to observation discussed here, Parker et al.
(Parker et al., 2007) have previously reported the association of low TGFBR2 expression with
a lower aggressive tumor phenotype.

In summary, the tropical geometry analysis of the TGF� signalling model first shows that
the multiplicity of branches is due to the dynamics of TGF� receptors. The more important
parameters in this ligand-receptor module are the concentration of TGFBR1 and TGFBR2 and
three main tropical branches are distinguished by the value of TGFBR2/TGFBR1 ratio (small
in B1, intermediate in B2, large in B3). Importantly, we showed that the TGFBR2/TGFBR1
ratio is associated with tumor cell lines phenotype (high and low TGFBR2/TGFBR1 ratio
for aggressive and non aggressive cell lines, respectively). Together these data demonstrated
that tropical geometry analysis permits to discriminate between cellular states based on the
evaluation of TGF� receptors concentration. The importance of such up-regulation of TGFBR2
in aggressive cancer cell lines might be related to its implication in SMAD-independent signalling
that includes PI3K-Akt, JNK, p38MAPK and Rho-like GTPases and which highly contribute
to epithelial-mesenchymal transition (Zhang, 2009; Moustakas and Heldin, 2012).

Together these observations suggest that metastable regimes defined by branches of minimal
tropical equilibrations are associated with cell phenotypes. The idea of associating tropical
minimal branches with clinical phenotype is similar to the idea of cancer attractors (Huang,
Ernberg, and Kauffman, 2009) where the idea is that cancer cells are trapped in some abnormal
attractors.
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7.4 Discussions

A method is presented to coarse grain the dynamics of a smooth biochemical reaction network to
a discrete symbolic dynamics of a finite state automaton. The coarse graining was obtained using
a tropical geometry approach to compute the states. These states correspond to metastable
dynamic regimes and to relatively slow segments of the system trajectories. The coarse grained
model can be used for studying statistical properties of biochemical networks such as occurrence
and stability of temporal patterns, recurrence, periodicity and attainability problems.

Further improvement and evolution is possible for this approach. First, the coarse graining
can be performed in a hierarchical way. For the nonlinear example studied in the paper only
the full tropical equilibrations are computed. These stand for the lowest order in the hierarchy
(coarsest model). As discussed in Section 6.3.1 partial equilibrations can be considered when
slow variables are not equilibrated and thus refining the automaton. Generally, there are more
partial equilibrations than total equilibrations and learning an automaton on the augmented
state set will produce refinements. Second, and most importantly, the dynamics within a
branch could also be described. As shown in Chapter 6, reductions of the systems of ordinary
differential equations are valid locally close to tropical equilibrations. Furthermore, the same
reduction is valid for all the equilibrations in a branch. This suggests that a hybrid approach,
combining reduced ODE dynamics within branch with discrete transitions between branches is
feasible. The transitions can be autonomously and deterministically commanded by crossing
the boundaries between branches that are perfectly determined by the current approach.

The most important result of this application is the extension of the notion of attractor
to metastable regimes of chemical reaction networks and the proposition of a practical recipe
to compute metastability. Metastable regimes correspond to low-dimensional hypersurfaces of
the phase space, along which the dynamics is relatively slower. Most likely, metastable regimes
have biological importance because the network spends most of its time in these states. The
itinerancy of the network, described as the possibility of transitions from one metastable regime
to another is paramount to the way neural networks compute, retrieve and use information
(Tsuda, 1991) and can have similar role in biochemical networks. The approach based on
tropical geometry provides an algorithmic method to test these ideas further. The extension of
this approach i.e. making use of statistical methods to compute the association of the tropical
minimal branches with clinical phenotypes based on “-omics” data remains a topic of future
research.
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Chapter 8

Pathway based modelling of

Biochemical Reactions Networks

In this chapter, the ECs are associated with different clinical phenotypes or outcomes. A
method based on statistical modelling is discussed which integrates the gene expression profile
of a biological system with the ECs. ECs represent the pathways of a biochemical network
model.

8.1 Background

Metabolic networks are usually represented as a collection of enzyme catalysed biochemical
reactions. There are numerous databases with such information (Kanehisa and Goto, 2000;
Croft et al., 2011; Le Novére et al., 2006). One way to study such a network is by decomposing
the network into sub-networks or pathways in an unbiased manner. Such pathways represent
different metabolic routes for the production of given metabolites along with the essential en-
zymes. Extreme Currents (ECs) (Clarke, 1988), Elementary Flux Modes (EFMs) (Schuster,
Fell, and Dandekar, 2000) and Extreme Pathways(EPs) (Schilling, Letscher, and Palsson, 2000)
are three widely used techniques in this context. The common assumption is that the un-
derlying biochemical reaction system is in a steady state, and with additional constraints on
reaction fluxes, the solution space can be represented as a polyhedron. The vertices of such a
polyhedron have the biochemical interpretation of being pathways in the network. A compari-
son between different metabolic pathway techniques can be found in (Llaneras and Picó, 2010).
One major drawback of pathway enumeration is that the number of pathways can explode in a
combinatorial fashion with the size of the network (Klamt and Stelling, 2002). Hence, for larger
networks optimization techniques are frequently used. For an overview (Rezola et al., 2015) is
recommended.

In short, the decomposed pathways are basically steady state reaction-flux distributions
capturing wide range of behaviour that the network is capable to display. Essentially, these
pathways are invariants of the network and hence do not require kinetic rate parameters to
be known or estimated, which is often very difficult. In biological systems the functioning of
metabolic networks is regulated by gene and protein expression levels which affect the enzyme
concentrations. Therefore, out of many decomposed pathways some are more associated with
a given phenotype than others.

Given, such a network the ECs are computed, represented as a gene set and the ones that are
associated with given clinical or biological phenotypes based on gene expression data are iden-
tified. This translated to the question of performing an enrichment of gene sets with respect to
gene expression data. For this purpose, there exists several methods in the bioinformatics com-
munity. Such methods can be broadly divided into “self-contained” or “competitive” methods.
A detailed overview can be found in (Maciejewski, 2014; Nam and Kim, 2008).

The self-contained method considers only the genes mappable to a pathway of interest while
computing the association with the phenotype and disregarding the genes not in that gene set.
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The null hypothesis in self-contained methods is that no gene in the gene set is associated with
the phenotype. A prominent example is the global test (GT) (Goeman et al., 2004). The GT
tries to reject the null hypothesis that all coefficients in a generalized linear model linking gene
expression and phenotype are exactly zero.

In competitive methods each gene set of interest is viewed together with the whole universe
of existing genes. The most prominent example is the GSEA method (Subramanian et al.,
2005). The null hypothesis in competitive methods is that genes in the given gene set are
“at most as often differentially expressed” between conditions of interest as the genes in the
complement of the given gene set.

Existing approaches estimate the association of EFMs with a phenotype based on high-
throughout “-omics” data using a hypergeometric test which is a competitive method. In
(Schwartz et al., 2007) the enrichment of EFMs computed from KEGG pathways are asso-
ciated with gene expression data in various stress conditions of Saccharomyces cerevisiae. The
approach in (Rezola et al., 2013) uses a multivariate hypergeometric test to link EFMs in a
genome scale human metabolic network to tissue specific gene expression differences in human.
This technique was also applied to study metabolic differences between lung cancer subtypes
(Rezola et al., 2014). The methods based on hypergeometric test require a threshold to discre-
tise the genes into two or more classes based on their expression level differences in different
biological or clinical outcomes. Therefore, they are sensitive to such a threshold. Moreover,
the application of hypergeometric test is limited to discrete phenotypes (e.g. cancer or healthy)
and not applicable to continuous clinical outcomes e.g. survival times. Finally, the universe of
all genes has to be defined appropriately (Maciejewski, 2014) which could be tricky. A different
approach was undertaken by YANA (Schwarz et al., 2005) which uses optimization to minimise
the sum of squared error between reaction fluxes in EFMs and the fluxes based on gene or
protein expression. A review on existing approaches can be found in (Rezola et al., 2015).

The method proposed here is based on a generalized linear model with l
1

regularized norm
called sparse group lasso (SGL) (Simon et al., 2013) to identify phenotype associated ECs
based on gene expression data. SGL selects a sparse set of feature groups and also introduces
sparsity within each group. Features in the model are clusters of ECs, and feature groups are
defined based on correlations among these features. This also suits the application scenario if
the number of features exceeds the number of samples. The current approach has similarities
to a self-contained gene set test. However, in contrast to other techniques we estimate the
probability of a network feature (i.e. EC cluster) to be a predictor of the biological or clinical
phenotype. This is done via a bootstrap approach. Using simulations, we show that the current
method performs better than the GT, which is a self-contained gene set test.

Furthermore, other than SGL there exists techniques based on regularized linear models to
address such a problem e.g. Clustered lasso (She, 2010), Elastic net (Zou and Hastie, 2005) ,
OSCAR (Bondell and Reich, 2008). These techniques tend to equalise the coefficients of fea-
tures which are correlated but do not take explicitly the correlation into account. Therefore,
to demonstrate the applicability and efficacy of the current approach, in addition to GT, the
method is compared with Elastic net approach in the simulation setting. Elastic net performs
variable selection e.g. selects a sparse set of features as well as selects group of correlated vari-
ables. This grouping of correlated variables is demonstrated in Theorem 1 in (Zou and Hastie,
2005) which essentially means that the coefficient paths between highly correlated variables
is almost 0. This is achieved by the elastic net penalty which is a convex combination of l

1

regularized norm as in lasso (Tibshirani, 1996b) and l
2

regularized norm as in ridge regression
(Hoerl and Kennard, 1970). Therefore, the grouping of correlated variables is implicitly done
by objective function of Elastic net.

The advantage of using ECs instead of EFMs or EPs in this approach is to provide the link to
well established techniques from stoichiometric network analysis. For example, ECs have been
employed to compute Hopf bifurcations (yielding oscillations) (Errami et al., 2015; Gatermann,
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Eiswirth, and Sensse, 2005b) and bistability (Aguda and Clarke, 1987) of biochemical reaction
networks. However, the method described in this paper can be readily applied to EFMs and
EPs as well.

The major benefits of the method are four fold: Firstly, it is a method to address the
typical high overlap of individual ECs because of the network structure as well as correlations
at the level of -“omics” data. This issue is addressed by focusing on “clusters of ECs” to define
the network features and defining groups (i.e. clusters of network features) in the statistical
model based on correlations among these features. Secondly, the approach is flexible enough
to analyse different types of phenotypes e.g. categorical (cancer vs healthy), continuous or
censored survival times. Thirdly, the approach does not require a discretization of genes into
categories (as required by hypergeometric test). Finally, the method estimates a probability
of each network feature to be associated with the phenotype, hence appropriately taking into
account the noise in observed data.

The method is applied to metabolic models from KEGG database (when these models are
available as biochemical reaction networks). ECs then correspond to pathways within a given
KEGG model. Although KEGG models are frequently used to analyze and understand human
diseases based on gene expression or other -omics data, the reaction network structure of these
models is usually ignored. In contrast, the current approach relates changes in specific sub-
reaction systems defined as ECs and groups of ECs to observed changes of the phenotype.
Importantly, a given KEGG model pathway can have numerous ECs, implying that KEGG
models as a whole might not always offer the right granularity to describe and understand
a biological mechanism. Additionally, the ECs in a given reaction network can identify the
feedback loops (Sensse, Hauser, and Eiswirth, 2006) which are important for dynamics.

8.2 Approach

The ECs are steady state flux distributions. In order to investigate the ECs with respect to the
gene expression data, enzymes in the flux carrying reactions need to be mapped to genes. For
every EC i.e. row vector of matrix E (cf. Section 3.2 describing the mathematical background
on E) denoted by E

j

((3.27)), a row vector g
j

, corresponding to the j-th EC, is constructed by
mapping the flux carrying reactions denoted by {1  i  n | E

ji

6= 0} to those genes, which
participate in the reactions as enzymes. More specifically, this is done by constructing an `
dimensional indicator vector (where `  n because the mapping from fluxes to genes can be
many to one) with as many entries as there are mappable genes in the overall pathway. Then,
entry k0 in g

j

is set to 1, if gene k0 can be mapped to EC E
j

. Such a mapping can result in
duplicates. Therefore, only the distinct vectors g

1

, . . . , g
m

are considered where m denotes the
number of gene sets obtained from k ECs and m  k is due to the duplicates resulting from
the mapping. Finally, the gene set vectors g

1

, . . . , g
m

can be joined into a m⇥ ` matrix G.

8.2.1 Computation of Network Features

Let us define gene set corresponding to g
j

as the support of g
j

: supp(g
j

) = {i : G
ji

= 1} (i.e. the
non-zero entries in row vector G

j

). For matrix G, let S be set of extreme currents represented
as gene sets. The ECs having empty gene sets are excluded from S. In practice, the gene
sets are often highly overlapping or even identical. The issue of identical gene sets is already
addressed in the previous section. Therefore, individual extreme currents and associated gene
sets, respectively, will be hard to discriminate based on gene expression data. To address this
issue the gene sets in S are grouped into clusters.

Let us denote S0 as the partition of S such that S0 breaks S into subsets denoted as S0
=

{S0
1

, . . . , S0
m

0} where S0
l

, 1  l  m0 denotes a cluster and m0  m (as ECs with empty gene
sets are excluded). It satisfies the condition S0

1

[ S0
2

[, . . . [ S0
m

0 = S0 and S0
i

\ S0
j

= ; for i and
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j from 1 . . .m0, i 6= j. A review on clustering algorithms can be found in (Jain and Dubes,
1988). Here agglomerative hierarchical clustering (Maechler et al., 2015) was used which is a
widely accepted technique for cluster analysis. Agglomorative hierarchical clustering works by
successively joining data points (which are gene sets i.e. elements in S) based on a defined
similarity measure, resulting in a tree like structure (dendrogram), which represents similarities
of groups of data points (in this case gene sets) in a hierarchical manner. In the current case, the
Jaccard index was employed as similarity measure between gene sets and the complete linkage
strategy was used to join clusters. A grouping is then found by prescribing a certain number of
clusters and cutting the dendrogram at the corresponding height. Here the number of clusters
m0 is selected by computing the silhouette index (Rousseeuw, 1987), which is an established
approach to estimate the quality of a clustering. For this purpose, the number of clusters is
varied from 2 to m0� 1 and selected the optimal number of clusters according to the maximum
silhouette index. The network feature corresponding to S0

l

, 1  l  m0 is then computed by
taking the union of the gene sets in S0

l

. These network features are used in the subsequent steps
to fit the linear model.

8.2.2 Combining Network Features with Gene Expression Data and Pheno-
types

The idea behind the current approach is to combine gene expression data, phenotypes and
metabolic network features. Gene expression data of interest is generally represented in form
of a l⇥ q matrix D, where rows represent the genes present in the microarray chip and columns
represent biological or patient samples. The biological or clinical phenotype is given by a q-
dimensional vector y. Entries in y could be categorical (e.g. cancer or healthy) or continuous
real numbers (e.g. a patient’s quantitative response to a certain treatment).

First, a q⇥m0 feature matrix X is constructed (recall m0 is the number of clusters as defined
in the previous section) as:

X
ji

= [pc
1

]

S

0
i
[D

S

0
i

j

]

S

0
i
, (8.1)

where [pc
1

]

S

0
i
is a row vector corresponding to the first principal component of DS

0
i (explaining

the maximum proportion of variation in the data), where DS

0
i is a matrix derived from D with

rows representing only those genes that map to the genes in S0
i

. [D
j

ˆS0
i

]

S

0
i
is the column vector

consisting of genes S0
i

in the j-th sample (column) in DS

0
i . The equation thus projects expression

profiles of the S0
i

genes to the direction explaining maximum variance in the data. Hence, an
effective summarization of expression profiles of multiple genes in set S0

i

into one activity score
is performed. Notably, this is similar to the method suggested by (Bild et al., 2006).

8.2.3 Modelling Categorical and Continuous Phenotypes

It is assumed that the phenotype y is linked to feature matrix X via a generalized linear model

f(y) = X� + ✏, (8.2)

where ✏ the measurement noise and f a link function, e.g. logit in case of categorical phenotypes
and the identity function in case of continuous phenotypes (McCullagh and Nelder, 2000).

Importantly, it is supposed that the � to be a sparse vector, i.e. most coefficients are
zero. That means the phenotype is determined by a sparse combination of network features,
which is to be identified from expression data and observed phenotypes. This addresses the
non-identifiability issue arising in high dimensional setting where number of features is greater
than number of samples. Another complicating factor in the current context is that the gene
expression data typically exhibits a non-trivial correlation structure that may not coincide with
network features. For example, certain groups of genes might be activated or deactivated by
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common regulatory elements, resulting in a block-like correlation matrix. In order to address
this type of correlation, the network features are assigned to groups. Groups should be assigned
in such a manner that the distance between the features inside the group (intra-group) should
be small whereas the distance to features of other group (inter-group) features should be high.
This is done by hierarchical average clustering of network features based on gene expression
data where the distance between two features S0

i

and S0
j

is defined as 1� | cor(S0
i

, S0
j

) | where
cor refers to the Pearson correlation of the corresponding gene expression profiles. Such an
approach based on clustering to handle correlated variables and cope with multicollinearity in
the context of linear models is described in (Bühlmann et al., 2013) and explained below. The
optimal number of obtained clusters (estimated via the silhouette index) is denoted as g. The
grouping of features addresses the issue of near linear dependency between group of features due
to high correlation. Such group membership information can enter the above linear model as
explained in the next section. It should be pointed out that, clustering is performed two times,
first to generate the network features from ECs and second to cluster the network features
based on the correlation in the gene expression data. An overview of the current approach is
represented in Fig. 8.1.

8.2.4 Fitting the Model via Sparse Group Lasso

Following suggestions in (Bühlmann et al., 2013) the generalized linear model (8.2) under the
above described restrictions, namely sparsity and organisation of network features into corre-
lated groups, can be fitted via a sparse group lasso (SGL) (Simon et al., 2013). The SGL solves
the following optimization problem:

min
�

1

2q
ky �

gP
l=1

f�1

(X(l)�(l)

)k2
2

+(1� ↵)�
gP

l=1

p
p
l

k�(l)k
2

+ ↵�k�k
1

,
(8.3)

where q is the dimension of the response vector y, X(l) is the submatrix of X with columns
corresponding to the predictors in group l, �(l) is the coefficient vector of that group and p

l

is the length of �(l) and � a the tuning parameter controlling the sparsity of coefficient vector
�: Larger � implies more sparsity, but less precise fit to the data. Moreover, ↵ 2 [0, 1] is a
parameter that balances between sparse selection of whole feature groups and sparse selection
within each feature group. For the extreme case ↵ = 0 we recover the group lasso (Yuan and
Lin, 2006), which only performs selection of feature groups of a whole. For ↵ = 1 we arrive at
the original lasso model (Tibshirani, 1996a), which selects features independent of any group
structure.

In practice � and ↵ are tuning parameters. These are usually estimated via 5-fold cross-
validation: Data is split into 5 distinct sets (= folds), and the SGL model is trained on 4 folds
while leaving out the rest for testing. The prediction error made by the model on the test set
is then recorded. The whole procedure is successively repeated until each fold has been left out
once for testing. The average prediction error made during the cross-validation procedure can
be used as a quality measure for the SGL model, which can be recorded over a grid of � and ↵
parameters. Accordingly, a good combination of these parameters can be selected.

As stated in (Bühlmann et al., 2013) an advantage of the proposed approach compared to an
elastic net (Zou and Hastie, 2005) is the explicit handling of the feature correlation structure.

8.2.5 Patient Survival Outcomes

The current approach can also be employed for associating network features with patient sur-
vival: In case of patient survival data y = {(t

i

, �
i

)|i = 1, . . . , q} where t
i

is the observed survival
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Figure 8.1: An overview of the approach

time of patient i and �
i

2 {0, 1} indicates the censoring status. Instead of a generalized linear
a, Cox proportional hazard model is assumed, i.e.:

f(t | X) = f
0

(t) exp(X�), (8.4)

where f(t | X) is the hazard at time t and f
0

(t) the baseline hazard. See (McCullagh and
Nelder, 2000) for an overview about survival models. Notably, the sparse group lasso can also
be employed to fit this type of model.

8.2.6 Bootstrapping

In order to quantify the uncertainty associated with selection of a particular feature a bootstrap
test is employed. The uncertainty with respect to the relevance of a particular feature is
measured by the probability that a particular feature is associated to the phenotype. The test
is performed by randomly sampling the rows in X and the corresponding entries in y (with
replacement) and re-estimating coefficients of the SGL model. This is repeated a number of
times (100 times during the simulations and 500 times with for real data), and the fraction of
times in which a coefficient is non-zero, gives the probability for the association of a specific
feature with the phenotype. This probability value is denoted as bootstrap frequency.

8.3 Results

8.4 Metabolic Network Reconstruction

Metabolic networks were obtained from KEGG database in KGML format (Kanehisa and Goto,
2000). The KGML files were converted to SBML using KEGGtranslator (Wrzodek, Dräger,
and Zell, 2011). For testing the method models corresponding to Glycolysis / Gluconeogenesis
(hsa00010) model is used.

KEGG reactions are extensively annotated with main and side reactant-product pairs called
RPAIR (Kotera et al., 2004). For the current purpose, only the main reaction pairs are consid-
ered. A single reaction can have multiple main pairs and in that case each main pair is treated
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as an independent reaction. It is observed that the number of ECs increase substantially by
considering only the main pairs. This happens due to the presence of compounds in side pairs
(e.g. water, cofactors, etc) which may not always be in steady state. The benefits of such
a decomposition is analysed in (Faust, Croes, and Helden, 2009) for searching of the optimal
paths in KEGG networks. Moreover, only main pairs are displayed in the visualization of the
pathways on the KEGG website.

Compounds lying at the boundary of the system (i.e. acting as source or sinks) are assumed
not to be in steady state condition. Thus, the reaction network for EC computation involves only
those species participating in the main reaction pairs and occurring as non-boundary species.
In the computation of EFMs these are referred as external metabolites. Those chemical species
which are either produced or consumed are considered to be boundary species.

8.5 Computation of ECs and Feature Matrix

KEGG metabolic models are taken and the network features are computed using the steps
described above. A benchmark on the CPU running times and a histogram on the distribution
of ECs is described in Chapter 5. The mapping ECs to gene sets and clustering them to generate
network features results in considerable reduction in the number of features. For example, the
models analysed in applications namely, hsa00240 and hsa00260 have 17 and 9 features derived
from 5510 and 58 ECs respectively. Essentially, this tells us that a large number of extreme
currents in flux space often map to few features defined by gene sets.

8.6 Simulations

A certain proportion of features were to be declared to be relevant, denoted by set F and the
remaining set of features were denoted by set F 0. The response variables (i.e. censored survival
times or categorical phenotypes) were generated from F . A similar approach for simulations
was followed in (Simon et al., 2013). A SGL penalized Cox regression model for censored
survival times and SGL penalized logistic regression for categorical phenotypes were fitted to
the data to in order to identify the relevant features. The performance of SGL was compared
with GT based on the Area Under the Curve (AUC) values measuring the performance of a
binary classifier computed using the pROC package in R (Robin et al., 2011). The details of
the simulations are described below

8.6.1 Survival Outcomes

The simulation was designed as follows:

1. A certain set of features, F was declared to be relevant. Non-relevant features are denoted
as F 0.

2. Feature matrix X was drawn from a q dimensional multivariate normal distribution
N

q

(0,⌃). The covariance ⌃

ij

between features i and j was defined according to the
Jaccard index between gene sets, i.e.:

⌃

ij

=

|G0
i

\G0
j

|
|G0

i

[G0
j

| (8.5)

This represents the correlation arising from the overlap i.e. outcome of network structure.

3. To simulate the effect of correlation from the expression data, a higher covariance was set
i.e. 0.8 between the features comprising of 50% randomly selected elements from F and

93



Chapter 8. Pathway based modelling of Biochemical Reactions Networks

50% randomly selected elements from F 0 denoted by F
cor

i.e.

⌃

ij

=

(
0.8, if i 6= j and i, j 2 F

cor

1, i = j.
(8.6)

4. The response (i.e. survival and censoring time) was generated from relevant features as
y
j

= exp(
P

�f
j

) (where � = 3). The indicator for censoring (i.e. 0) or failure (i.e. 1) was
generated independently by sampling the indicators (with replacement) with a probability
that 30% of the samples are censored.

5. A sparse group lasso (SGL) penalized Cox regression model was fitted the data, and
the fitting procedure was bootstrapped 100 times. This resulted into a probability per
network feature.

6. As an alternative to the current method a global test (GT) was performed for each network
feature, resulting into one p-value per feature.

7. The performance of both the methods was compared based on their AUC values.

8.6.2 Categorical Phenotypes

The simulation was set up similar to before, the only difference being that the response y
j

was
generated from relevant features as a Bernoulli distributed random variable with parameter
exp(

P
�f

j

)/(1 + exp(
P

�f
j

)) (where � = 3). Accordingly, a SGL penalized logistic regression
model was fitted to the data. The fitting procedure was bootstrapped as described above.

Simulation results for censored survival times as response variables are shown in Tables 8.1
and S5 - S8 and for categorical phenotypes as response variables are shown in Tables 8.2 and S9
- S12. In both the scenarios, a clear overall benefit of the current approach based on SGL could
be observed. Thus, indicating a statistically significant improvement of the current method
compared to the GT, in the vast majority of simulation settings, which increased with the
number of samples in the dataset. The statistical significance is estimated based on a Wilcoxon
signed rank test. Notably, different reconstructed pathways were tested in the simulation, which
differed in their number of extractable network features. It was observable that in simulation
cases, where the number of network features far exceeded the number of samples in the dataset
the performances of both compared methods were comparably low and equal, whereas in all
other cases the SGL based method could benefit significantly more than GT.

Interestingly with increasing number of relevant features a decrease in the performance of
both GT and SGL was observed. This is most likely due to the increasing number of correlated
relevant features, resulting in non-identifiability of the individual network features.

8.7 Application in Prostate Cancer

A comprehensive analysis of pathways in prostate cancer was reported in (Sreekumar et al.,
2009) where metabolomic profiles were found to be differentially expressed in benign prostate,
clinically localized prostate cancer and metastatic disease. More specifically, Sarcosine was
found to be highly elevated in the tumor samples.

8.7.1 Data source

Sarcosine can be found in the glycine, serine and threonine pathway (KEGG ID: hsa00260) in
the KEGG database. Normalised gene expression data was mapped from (Brase et al., 2011),

94



8.7. Application in Prostate Cancer

Table 8.1: Summary of simulation on Glycolysis / Gluconeogenesis (hsa00010) KEGG pathway for
survival time analysis. Avg refers to median value of Area Under the Curve (AUC) values obtained in
50 simulation runs. GT, EN and SGL refer to glocal test, elastic net and sparse group lasso respectively.
P-values refer to the null hypothesis of no difference between GT and SGL denoted as P-Value GT-SGL.
The P-value between SGL and EN is denoted as P-value EN-SGL.

Samples Relevant
Features

Features Iterations Avg(AUC):GT Avg(AUC):EN Avg(AUC):SGL P-value GT-
SGL

P-value EN-
SGL

10 05% 11 50 1.00±0.02 0.70±0.14 1.00±0.02 0.02 6.41e-10
10 15% 11 50 0.73±0.16 0.61±0.14 0.94±0.12 1.60e-09 7.45e-10
10 25% 11 50 0.78±0.12 0.71±0.12 0.93±0.12 2.27e-09 6.77e-10
20 05% 11 50 1.00±0.04 0.80±0.12 1.00±0.00 0.00024 5.60e-10
20 15% 11 50 0.83±0.15 0.77±0.11 1.00±0.06 5.22e-09 1.10e-09
20 25% 11 50 0.75±0.15 0.83±0.08 1.00±0.08 2.41e-09 2.28e-09
40 05% 11 50 1.00±0.05 0.70±0.13 1.00±0.00 3.98e-05 6.82e-10
40 15% 11 50 0.86±0.08 0.80±0.08 1.00±0.01 8.05e-10 6.98e-10
40 25% 11 50 0.87±0.13 0.60±0.05 1.00±0.00 1.64e-08 6.44e-10
60 05% 11 50 1.00±0.03 0.70±0.12 1.00±0.00 7.49e-05 6.77e-10
60 15% 11 50 0.77±0.06 0.58±0.10 1.XX±0.00 4.23-10 7.32e-10
60 25% 11 50 0.87±0.10 0.62±0.08 1.00±0.00 7.72e-09 7.39e-10

Table 8.2: Summary of simulation on Glycolysis / Gluconeogenesis (hsa00010) pathway from KEGG
for classification analysis. Avg refers to median value of Area Under the Curve (AUC) values obtained in
50 simulation runs. GT, EN and SGL refer to glocal test, elastic net and sparse group lasso respectively.
P-values refer to the null hypothesis of no difference between GT and SGL denoted as P-Value GT-SGL.
The P-value between SGL and EN is denoted as P-value EN-SGL. NA* means that the EN method
failed the linear model for the given simulation parameters. NA** means that the p-value computation
is not application as the list of AUC values corresponding to both the methods are exactly the same.

Samples Relevant
Features

Features Iterations Avg(AUC):GT Avg(AUC):EN Avg(AUC):SGL P-value GT-
SGL

P-value EN-
SGL

8 05% 11 50 0.95±0.15 NA* 1.00±0.15 0.003 NA*
8 15% 11 50 0.73±0.16 NA* 0.73±0.14 1.49e-07 NA*
8 25% 11 50 0.68±0.13 NA* 0.70±0.14 0.31 NA*
20 05% 11 50 1.00±0.04 1.00±0.02 1.00±0.01 0.0003 0.34
20 15% 11 50 0.75±0.12 0.83±0.17 0.88±0.14 9.55e-10 3.42e-07
20 25% 11 50 0.64±0.11 0.75±0.14 0.79±0.15 6.08e-09 5.76e-05
40 05% 11 50 1.00±0.02 1.00±0.00 1.00±0.00 8.90e-05 NA**
40 15% 11 50 0.86±0.14 1.00±0.09 1.00±0.06 3.37e-08 0.0004
40 25% 11 50 0.81±0.13 1.00±0.08 1.00±0.06 4.98e-09 2.71e-05
60 05% 11 50 1.00±0.03 1.00±0.00 1.00±0.00 0.03 NA**
60 15% 11 50 0.77±0.11 0.94±0.16 1.00±0.08 6.48e-10 1.13e-06
60 25% 11 50 0.81±0.10 1.00±0.09 1.00±0.06 6.91e-10 0.0025

comprising 47 prostate tumor tissue samples along with 48 normal prostate tissue samples
(GSE29079, Affymetrix Human Exon 1.0 ST).

8.7.2 Computation of ECs and Integration of expression data

The SGL based Cox regression model was fitted with 9 network features. The number of
permutations in the bootstrap test was fixed at 500.

8.7.3 Results

The histogram of bootstrap frequencies shown in Fig. 8.2. A confidence cut-off value of 0.8
is chosen because of gap in the histrogram before this value. It resulted in 6 features out of
9 as significant. Upon investigation, out of these 6 features, 2 features included glycine-N-
methyltransferase (GNMT) (Fig. 8.3). GNMT has been associated with elevated Sarcosine
levels in (Sreekumar et al., 2009) and prostate cancer progression in general (Song et al., 2011).
The right most EC in Fig. 8.3 shows the reversible reaction of Sarcosine to Glycine catalysed by
different set of enzymes for forward and backward reaction components. The left most EC links
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Figure 8.2: Histogram of bootstrap frequencies of 9 network features in Glycine, serine and threonine
metabolism for prostate cancer data

Choline with 5-Aminolevulinate as well as Methanal. As visualized in Fig. 8.3 (left) Sarcosine
can be converted into Methanal (formaldehyde) via PIPOX. It has been reported that prostate
cancer patients show increased formaldehyde concentrations in their urine (Španěl et al., 1999).

8.8 Application in Glioblastoma multiforme (GBM)

In (Wolf, Agnihotri, and Guha, 2010) the authors discussed the role of nucleotide metabolism in
Glioblastoma Multiforme. Based on that it was decided to investigate pyrimidine metabolism
in more depth, which is a sub-category of nucleotide metabolism.

8.8.1 Data source

Normalised expression profiles from 342 patients were downloaded and combined from The
Cancer Genome Atlas (TCGA) database (al, 2008) (HG-U133A Affymetrix Array platform).
To correct for possible batch effects the ComBat method (Johnson, Li, and Rabinovic, 2007)
was applied. Expression data were mapped to the pyrimidine metabolism KEGG pathway (ID:
hsa00240). In addition to gene expression clinical data were retrieved from TCGA. The median,
minimum and maximum survival times were 357, 26 and 3880 days respectively. 27.19% of the
patients had censored outcomes.

8.8.2 Computation of ECs and Integration of expression data

The SGL based Cox regression model was fitted with 17 network features. The number of
permutations in the bootstrap test was fixed at 500.

8.8.3 Results

The histogram of bootstrap frequencies is shown in Fig. 8.4. A confidence cut-off value of 0.8 is
chosen because of gap in the histrogram before this value. It resulted in 3 features out of 17 as
significant. It was found that 1 out of these 3 relevant features contained enzymes previously
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Figure 8.3: Two network features from the Glycine, Serine and Threonine metabolism identified to
discriminate prostate cancer and normal patients with high probability. The stoichiometric values are
added as prefix to the names of chemical species. Each EC is presented as a separate directed graph
within each network feature (indicated via boxes). Vertices are chemical species (as they appear in the
corresponding KEGG file) and directed edges refer to chemical reactions with reactant at the tail and

product at the head of the edge. Edge labels indicate enzymes.

reported as reported as dysregulated in GBM (Wolf, Agnihotri, and Guha, 2010; Bardot et al.,
1994), namely thymidylate synthase (TYMS) and thymidine phosphorylase (TYMP). As seen
from Fig. 8.5 TYMS catalyses the reaction from dUMP to dTMP. The other enzymes catalyze
several reactions. The current method unravels these multiple reaction pathways.

8.9 Discussions

A method to associate features (namely reaction pathways based on ECs) of a metabolic net-
work to clinical or biological phenotypes with the help of gene expression data was described.
Extraction of relevant reaction pathways from a metabolic network has previously found appli-
cation in drug target identification and network robustness analysis (see (Papin et al., 2003) for
an overview). ECs are invariants of the reaction network structure and enumerate possible net-
work behaviours. However, under real biological conditions not all of these possible behaviours
are realized. Gene expression data reflect constraints on concentrations of the enzymes, which
regulate the functioning of the metabolic network. Gene expression data can thus be employed
to identify, which of the possible network behaviours and reaction pathways, respectively, in
reality contribute to a particular biological or clinical phenotype. Notably, this is not only
possible in categorical sense for e.g. discriminating normal from cancer cells, but with respect
to more complex clinical outcome measurements, such as censored survival times. However, a
major difficulty arising in that context is that gene expression data shows a non-trivial cor-
relation structure, which is not necessarily in agreement with defined network features. The
current method uses a sparse group lasso based approach to address this issue. Simulation
studies demonstrated the superiority of the current method compared to a conventional GT as
well as Elastic net. In essence the current method combines algebraic analysis of the metabolic
network structure with an unbiased view on the transcriptional level.
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Figure 8.4: Histogram of bootstrap frequencies of 17 network features in Pyrimidine metabolism for
GBM

Figure 8.5: The single network features from the Pyrimidine metabolism is identified which discrimi-
nate prostate cancer and normal patients with high probability. The stoichiometric values are added as
prefix to the names of chemical species. Each EC is presented as a separate directed graph within each
network feature (indicated via boxes). Vertices are chemical species (as they appear in the correspond-
ing KEGG file) and directed edges refer to chemical reactions with reactant at the tail and product at

the head of the edge. Edge labels indicate enzymes.
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The application of SGL method was demonstrated by investigating the role of the metabo-
lite Sarcosine in prostate cancer and pyrimidine metabolism in GBM. In both cases statis-
tically stable identified network features could be linked to findings from the medical lit-
erature, supporting the relevance of the current method. Furthermore, the distribution of
bootstrapping frequencies as shown in the histograms showed a gap before 0.8, which lead
to the choice of selecting this value as the cut-off for declaring significant features. The
source code along with simulation results on additional KEGG models are available at http:
//www.abi.bit.uni-bonn.de/index.php?id=17.

The current approach was made to be computationally practical via parallel computing.
The computation time for the GBM example was less than 2 hours and for the prostate cancer
application it took less than 30 minutes on a server with 64 cores and 512 MB RAM. This
was achievable, due to the focus on individual pathway models. However, the ultimate goal
would be a genome-scale analysis of metabolic networks, which currently is impossible with
the current method due to the computational complexity of EC computation. Nevertheless,
the method would be in principle also extendable to such a situation in the future, by using
network decomposition into tractable submodels like in (Hunt et al., 2014), or genetic algorithm
combined with linear programming solutions from (Kaleta et al., 2009).
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Appendix A

Appendix: TGF� Signalling

A.1 Description of the TGFb model used in the thesis.

The model is described by the following system of differential equations
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(A.1)

These variables are as follows:
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• Receptors on plasma membrane: x
12

= RI (receptor 1), x
13

= RII (receptor 2), x
14

= LR
(ligand-receptor complex).

• Receptors in the endosome: x
11

= LRe, x
15

= RIe, x
16

= RIIe.

• Transcription factors and complexes in cytosol: x
1

= S2c, x
3

= S4c, x
5

= pS2c, x
7

=

pS24c, x
9

= pS22c, x
18

= S4ubc.

• Transcription factors and complexes in the nucleus: x
2

= S2n, x
4

= S4n, x
6

= pS2n, x
8

=

pS24n, x
10

= pS22n, x
17

= S4ubn.

A.2 Calculation of tropical equilibration branches for the ligand-
receptor module.

Tropical equilibration solutions for the variables x
11

,x
12

, x
13

, x
14

, x
15

, x
16

(the submodel in
Fig. 7.4) can be computed independently from the rest of the variables of the TGF� model. The
ordinary differential equations for these variables form a subsystem that is decoupled (receives
no feed-back) from the rest of the equations.

We can reduce the system of 6 tropical equations to a simplified system of 3 tropical equa-
tions using the following two general properties.

Property 1 (binomial species). Y is a binomial species if the ordinary differential equation
defining its rate of variation contains only one positive monomial term and only one negative
monomial term

dY

dt
= M

1

(X)Y n1 �M
2

(X)Y n2 ,

where X denotes the other variables. We further assume that n
1

< n
2

. Then, the species Y
can be eliminated and the resulting simplified tropical system has the same tropical equilibration
solutions as the full system. The simplification is performed by eliminating the equation for Y
and replacing everywhere Y by (M

1

/M
2

)

1/(n2�n1).

Proof. The proof follows from the fact that the tropical equation for the order a of Y has the
unique solution a =

1

(n2�n1)
(µ

1

� µ
2

).

Property 2 (dominated first order reactions). If a species Y is consumed by several first order
reactions of kinetic constants k

1

, k
2

, . . . , k
r
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,
then the reactions k
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, . . . , k
r

can be eliminated and the resulting simplified tropical system has
the same tropical equilibration solutions as the full system.

Proof. The proof follows from the following obvious property of the min operation as shown
below
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.

Using �
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, �
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< �
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(a condition satisfied by the nominal model parameters and
meaning that internalization is more rapid than degradation for both receptors 1 and 2) and
the Properties 1,2 we can justify the reduction illustrated in Fig. A.1. Because the reduced
model has the same tropical solutions as the full, larger model, it is enough to solve the tropical
equilibration problem for the reduced model. This reads
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Suppose now that the following condition is true
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This condition is satisfied by the nominal parameters and, like the previous condition, means
that receptors have relatively large life-times. Then from (A.5) we got a
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The solutions of (A.7), (A.8) can be easily found and form the following polyhedron
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The orders of the remaining variables can be found as indicated in Prop. 1:
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The polyhedron of tropical solutions defined by Eq.(A.9) can be partitioned into minimal
branches (also polyhedra). This can be done by checking which term is dominant in the ordi-
nary differential equations for the variables x

12

, x
13

and x
14

(see Eqs. (A.1)). The result is that
there are at most four minimal branches defined by one of the conditions
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Figure A.1: In order to compute the branches of tropical equilibration of the ligand-receptor module
we use a reduced model. The reduced model is not necessarily a good approximation of the full dynamics,
but has exactly the same tropical solutions as the full model. The different variables mean: x12 : RI
(TGBR1), x13 : RII (TGFBR2), x14 : LR (ligand-receptor complex), x15 : RIe (TGFBR1 in endosome),

x16 : RIIe (TGFBR2 in endosome), x11 : LRe (LR in endosome).
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