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“Always pass on what you have learned.”

Yoda1

1from “Star Wars: Episode III – Revenge of the Sith”





Abstract

Inspired by the work of F. Hang and X. Wang and partial results by S. Raulot,
we prove a scalar curvature rigitidy result for locally conformally flat manifolds
with boundary in the spirit of the well-known Min-Oo conjecture. Our results
imply that Min-Oo’s conjecture is true provided the considered manifold is locally
conformally flat. In exchange, we require less knowledge on the geometry of the
boundary than in the original statement of Min-Oo’s conjecture. Furthermore,
our result can be extended to yield a similar rigidity result for geodesic balls in a
hemisphere.

Applications of our techniques include rigidity results for more general domains
in a hemisphere and geodesic balls in Euclidean space as well as an extension of our
result to locally conformally symmetric manifolds. To that end, we additionally
establish that our results are valid for manifolds with parallel Ricci tensor, under
slightly stronger assumptions on the geometry of the boundary.
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Chapter 1

Introduction and overview of the results

The famous Min-Oo conjecture has fascinated mathematicians for over a
decade: The story began in 1995, when Maung Min-Oo claimed to have proven
the following ([MO98, Theorem 4]):

Conjecture 1.1. Let M be a compact connected spin manifold with simply-
connected boundary and g be a Riemannian metric on M with the following
properties:

i) ∂M is totally geodesic in M ,
ii) the metric induced on ∂M has constant sectional curvature 1,
iii) the scalar curvature of g satisfies Scal(g) ≥ n(n− 1) on M .

Then (M, g) is isometric to the round hemisphere Sn+ = {x ∈ Sn | xn+1 ≥ 0}
equipped with the standard metric.

Min-Oo intended to give a proof in an upcoming paper, but it turned out that
his argument was flawed – Conjecture 1.1 became known as the Min-Oo conjecture.

Due to its analogies with the positive mass theorem (see our exposition in
Section 2.4), Min-Oo’s conjecture is very natural and was widely believed to be true
in the mathematical community but proven wrong in 2011 when Brendle, Marques
and Neves [BMN11] were able to construct a counterexample valid in dimensions
n ≥ 3. Min-Oo’s conjecture is true in dimension two by an old result due to
Topogonov [Top59], compare also Corollary 4.1.1, i). However, several partial
results have been obtained and modified versions of Min-Oo’s conjecture hold in
many special cases. For more information on the topic, the reader is referred to
Section 2.5 where we give a more detailed overview and discuss several positive
results obtained until today as well as the construction of a counterexample given
by Brendle, Marques and Neves.

The main result of this thesis, Theorem I below, is a scalar curvature rigidity
theorem for locally conformally flat manifolds in the spirit of the Min-Oo conjecture.
It implies that the conjecture is true provided the manifold in consideration is
locally conformally flat, see below for an explanation. Moreover, under these
circumstances, the condition on the boundary to be totally geodesic can be
weakened and our statement can be extended to geodesic balls in a hemisphere.
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2 1. INTRODUCTION AND OVERVIEW OF THE RESULTS

To motivate our results let us consider a special case where Min-Oo’s conjecture
has been proven to hold: Metrics conformally equivalent to the standard metric
on the hemisphere. In [HW06], Hang and Wang have proven the following:

Theorem 1.2. Let g = e2fgSn+ be a C2-metric on Sn+. Assume that

i) Scal(g) ≥ n(n− 1) everywhere,
ii) The boundary is isometric to Sn−1.

Then g is isometric to the standard metric gSn+ .

In [HW09], they were able to prove a similar result for domains in Sn+, see
Proposition 2.5.2. The proofs rely on the analysis of the equations for conformal
scalar and mean curvature: If n ≥ 3 and g as well as g̃ = u

4
n−2 g are conformally

equivalent metrics, then
n− 2

4(n− 1)
Scal(g̃) u

n+2
n−2 =

n− 2

4(n− 1)
Scal(g)u−∆u, (1.1)

n− 2

2
H(g̃)u

n
n−2 =

n− 2

2
H(g)u+

∂u

∂η
, (1.2)

where H denotes the mean curvature computed with respect to the inner unit
normal ν = −η.

A disadvantage of Theorem 1.2 is that one needs to fix the differentiable
structure of the manifold in consideration in order to be able to assume that g is
conformally equivalent to the standard metric on Sn+. This makes it impossible to
see any influence of the curvature assumptions and geometry of the boundary on
the topology or differentiable structure of M .

Motivated by this, Raulot [Rau12] was able to extend Theorem 1.2 to a class
of locally conformally flat manifolds, that is, manifolds which are not globally
conformally equivalent to the upper hemisphere but locally look like a conformal
deformation of the sphere (for a precise definition see Definition 2.2.1). Using the
Chern-Gauß-Bonnet formula, he proved:

Proposition 1.3 ([Rau12, Corollaire 1]). Let (Mn, g) be a compact connected
Riemannian manifold with boundary of dimension n = 4 or n = 6 with χ(M) = 1.
Suppose that the boundary ∂M is umbilic with nonnegative mean curvature and
isometric to the round sphere Sn−1. If (M, g) is locally conformally flat with scalar
curvature Scal ≥ n(n− 1), then (M, g) is isometric to the standard hemisphere.

Here, one already sees some influence of our assumptions on the differentiable
structure of the manifold, but, in order to employ the Chern-Gauß-Bonnet formula,
Raulot needs the additional topological assumption χ(M) = 1 and his proof is
restricted to dimensions 4 and 6.
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The main result of this thesis is that Raulot’s result is in fact valid in all dimen-
sions without any additional assumptions on the Euler characteristic. Moreover,
we are able to extend it to spherical caps of radius 0 < ρ ≤ π

2 .

Figure 1. Dρ and Σρ

To state it, let us fix the following definitions
and conventions which we will use throughout this
thesis: Let p ∈ Sn be arbitrary, 0 < ρ ≤ π

2

and Dρ := Dρ(p) := {x ∈ Sn | dSn(x, p) < ρ}
be the geodesic ball of radius ρ around p in Sn. Let
Hρ := cot(ρ) be the mean curvature of the boundary
Σρ := Σρ(p) := ∂Dρ(p). Note that Σρ is isometric to a
sphere of radius sin(ρ).

Then we have:

Theorem I. Let (Mn, g), n ≥ 3, be a compact connected locally conformally
flat Riemannian manifold with boundary. Assume that

i) Scal(g) ≥ n(n− 1) everywhere,
ii) The boundary ∂M is umbilic with mean curvature H(g) ≥ Hρ and every

connected component is isometric to Σρ.

Then (M, g) is isometric to Dρ with the standard metric.

Remark 1.4. i) We stated Theorem I in this way as we wanted the statement
to be short and clear. Nevertheless, it also holds in slightly more general
settings, see Corollary 4.1.1.

ii) The bound ρ ≤ π
2 above is optimal. In fact, if the convexity of the boundary

Σρ fails (i.e. when π
2 < ρ < π), Hang and Wang constructed metrics of the

form g = e2fgSn on Dρ with Scal(g) ≥ n(n − 1), f 6= 0 and supp(f) ⊆ Dρ,
see [HW06, Theorem 2.1].

Rather than the Chern-Gauß-Bonnet formula, our proof relies on results
by Schoen and Yau [SY88], [SY94] concerning the injectivity of the so-called
developing map, a conformal immersion from the universal covering of M to Sn

obtained from the locally conformally flat structure. A key observation in the
proof is that – under the assumptions of Theorem I – this conformal immersion
is injective (Proposition 3.2.1) which allows us to model the universal covering
of M on the image of the developing map in Sn. We will then employ analytical
techniques similar to those used by Hang and Wang to prove Theorem 1.2 and
Proposition 2.5.2 to show thatM is isometric to a geodesic ball. We will summarise
our strategy in greater detail at the beginning of Chapter 3 on page 27.

Apart from geodesic balls we consider arbitrary domains in the hemisphere. A
consequence of our main Theorem I is the following:
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Theorem (Theorem II on page 44). Let Ω ⊆ Sn+, n ≥ 3, be an n-dimensional
manifold with boundary such that Sn \ Ω is a smooth domain. Let (Mn, g) be a
compact, connected locally conformally flat Riemannian manifold with boundary.
Assume that

i) Scal(g) ≥ n(n− 1) or Scal(g) attains its minimum at the boundary,
ii) There exists an isometry φ : ∂M → ∂Ω with the property that φ∗II∂Ω = II∂M

and φ∗
(
RS

n
(·, η∂Ω, η∂Ω, ·)

)
= RM (·, η∂M , η∂M , ·).

Then (M, g) is isometric to Ω with the standard metric.

The stronger conditions on the geometry of the boundary are needed in order
to ensure that Theorem I can be applied to the manifold M ∪φ (Sn+ \ Ω) obtained
by gluing M to Sn+ \ Ω along φ. We think that this should not be necessary but a
complete proof is subject to further research.

Another application of the techniques employed to prove our main result are
geodesic balls in Euclidean space. Let Br denote an open ball of radius r in Rn

with boundary sphere Sr := ∂Br. Analogous to Theorem I, we prove:

Theorem (Theorem III on page 47). Let (Mn, g), n ≥ 3, be a compact
connected locally conformally flat Riemannian manifold with boundary. Assume
that

i) Scal(g) ≥ 0 everywhere,
ii) The boundary ∂M is umbilic and every connected component is isometric to

Sr, with mean curvature H(g) ≥ Hr := r−1.

Then (M, g) is isometric to Br with the standard metric.

The argumentation here is substantially easier as the conformal scalar curvature
equation (1.1) greatly simplifies if the background metric has vanishing scalar
curvature: For example, if g̃ = u

4
n−2 gRn is a metric on a subset of Rn with

nonnegative scalar curvature, this simply means that u is superharmonic, i.e.
−∆u ≥ 0. Then the maximum principle and the Hopf lemma imply the following
rigidity result: A metric g̃ = u

4
n−2 gRn on a bounded domain Ω with smooth

boundary with nonnegative scalar curvature and u = 1 on ∂Ω must satisfy u ≥ 1

and H(g̃) ≤ H(gRn); with equality at a point if and only if u = 1. In contrast, the
proof of the corresponding statement for the upper hemisphere (Proposition 2.5.2)
is highly nontrivial while the statement is not even true for domains not contained
in a hemisphere when the boundary is not convex (cf. Remark 1.4, ii)). This fact
also gives an explanation why we do not need any restrictions on r in Theorem III
whereas we always assume 0 < ρ ≤ π

2 in Theorems I and IV.
Comparable results under different conditions have been obtained by, for

example, Miao [Mia02] (for metrics on the unit ball), Shi and Tam [ST02] and
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Raulot [Rau08] (for spin manifolds). We refer to the introduction in Section 4.3
for a short survey.

As another possible extension to Theorem I, one can try to weaken the condition
on local conformal flatness. As Min-Oo’s conjecture is incorrect, we will need
other conditions on the manifold in order to ensure that the statement still holds.
However, in the proof of Theorem I, the assumption that M is locally conformally
flat is crucial as it allows us to model the universal covering on a domain of the
sphere using the developing map.

Our starting point is the Weyl-Schouten theorem (Theorem 2.2.3) which
characterises local conformal flatness by vanishing conditions of certain conformally
invariant tensors: In dimension n ≥ 4, a manifold is locally conformally flat if
and only if its Weyl tensor W vanishes. This inspired us to investigate manifolds
where the Weyl tensor not necessarily vanishes but is merely parallel (∇W = 0).
We call such manifolds locally conformally symmetric. It turns out that such
manifolds are either locally conformally flat or locally symmetric, see the paper
[DR77, Theorem 2] by Derdziński and Roter.

As locally conformally flat manifolds are already covered by Theorem I, we
turned our attention to manifolds with parallel Ricci tensor, which form a larger
class than locally symmetric manifolds. Our result is:

Theorem (Theorem IV on page 50). Let (Mn, g), n ≥ 3, be a compact
connected Riemannian manifold with boundary, 0 < ρ ≤ π

2 . Assume that the Ricci
tensor is parallel and

i) Scal(g) ≥ n(n− 1) everywhere,
ii) The boundary ∂M is umbilic with mean curvature H(g) = Hρ and every

connected component is isometric to Σρ.

Then (M, g) is isometric to Dρ with the standard metric.

The main step in the proof is to show that Ric ≥ n − 1 at the boundary,
then ∇Ric = 0 implies Ric ≥ n − 1 everywhere. It follows that the boundary
is connected and the statement is a consequence of Theorem 2.5.3 by Hang and
Wang.

From Theorem IV it follows that Theorem I is valid for locally conformally
symmetric manifolds (Corollary 4.4.4).

This thesis is structured as follows: For the reader’s convenience we recall all
background material necessary to understand the proof of Theorem I in Chapter 2,
Sections 2.1–2.3. We then discuss basics on scalar curvature rigidity and give a
detailed overview on the Min-Oo conjecture including many positive results as
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well as a sketch of the construction of a counterexample by Brendle, Marques and
Neves. We conclude the chapter with a short discussion of the Yamabe problem
on manifolds with boundary.

In Chapter 3, we give a complete proof of Theorem I.
We then turn our attention to possible applications and extensions and prove

Theorems II–IV in Chapter 4.
For these results and a delicate issue concerning the positive mass theorem, it

is necessary to review the proofs of the Weyl-Schouten theorem and the injectivity
of the developing map proven by Schoen and Yau. For a clearer arrangement, we
decided to collect them in a separate chapter, Chapter 5, where we also discuss
regularity properties of the canonical Riemannian metric on a manifold obtained
by gluing Riemannian manifolds along their boundaries.

Parts of this thesis have already been published in the author’s preprint [Spi15].
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Chapter 2

Background material

In this chapter we present all background material necessary to understand
the proof of Theorem I including a short discussion on the Yamabe problem on
manifolds with boundary. In addition, we provide some foundational knowledge
on scalar curvature geometry and rigidity as well as an overview on the Min-
Oo conjecture. We begin by recalling the basic concepts of conformal geometry
(Section 2.1), locally conformally flat manifolds (Section 2.2) and Möbius trans-
formations (Section 2.3).

Note our convention that geodesic balls in spheres are denoted by Dρ(p) with
boundary sphere Σρ(p) = ∂Dρ(p), while geodesic balls in Euclidean space are
denoted by Br(p) with boundary sphere Sr(p) = ∂Br(p). Provided that the center
of a ball or sphere is irrelevant, it will be omitted in our notation and we simply
write Σρ, Dρ, Br or Sr. We denote the mean curvature of Σρ by Hρ = cot(ρ) and
the mean curvature of Sr by Hr = r−1. For a list of all frequently used symbols
and expressions see page 67.

2.1. Basic conformal geometry and umbilic hypersurfaces

Let (M, g) be an n-dimensional Riemannian manifold. Another Riemannian
metric ḡ is called conformally equivalent to g if, at each point, ḡ is a multiple of g,
that is, ḡ = e2fg for some function f . The conformal class [g] of g is the set of all
metrics conformal to g.

An immersion Φ: (M, g)→ (N,h) is called conformal if it is angle-preserving
or, equivalently, if Φ∗h is conformal to g. Two Riemannian manifolds (M, g) and
(N,h) are called conformally equivalent if there is a conformal diffeomorphism
Φ: (M, g)→ (N,h).

Let Σ ⊂ M be a hypersurface with trivial normal bundle; in our later dis-
cussions, Σ will be the boundary ∂M of M . Let ν be the inner unit normal
with associated scalar second fundamental form II(X,Y ) = 〈∇XY, ν〉 and mean
curvature H = 1

n−1 trace II. The outer unit normal is denoted by η = −ν. We say
that a point x ∈ Σ is umbilic if, at x, the second fundamental form is diagonal

9



10 2. BACKGROUND MATERIAL

with respect to the first fundamental form, i.e.

IIx = Hxgx|TxΣ×TxΣ.

We say that Σ is umbilic if all points x ∈ Σ are umbilic points. Σ is called minimal
if H = 0. It follows that Σ is totally geodesic (i.e. II = 0) if and only if it is both
umbilic and minimal. Note that – in general – umbilic hypersurfaces do not have
constant mean curvature.

From the conformal transformation law for the second fundamental form (cf.
e.g. [Esc92b, Equation (1.3)]),

II(e2fg) = ef II(g) +
∂f

∂η
efg,

it follows that being umbilic is a conformal invariant: Σ ⊂ (M, g) is umbilic if and
only if it is umbilic with respect to all ḡ ∈ [g].

One can check that connected umbilic hypersurfaces in Rn are either contained
in a hyperplane (hence H = 0) or a sphere (H 6= 0), see e.g. [Spi75, Lemma 7.1].
As, for p ∈ Sn, (Sn \ {p}, gSn) and (Rn, gRn) are conformally equivalent via a
stereographic projection πp from p (see Definition 2.3.1 below), it follows that
connected umbilic hypersurfaces in Sn are contained in geodesic spheres Σρ(q).

2.2. Locally conformally flat manifolds

We now present some basics and examples of locally conformally flat manifolds
as well as the Weyl-Schouten theorem which characterises locally conformally flat
manifolds using conformally invariant tensors. We define:

Definition 2.2.1. A Ck-Riemannian manifold (M, g) is called locally con-
formally flat if for every point p ∈M , there exists a neighbourhood U of p and
f ∈ Ck(U) such that the metric e2fg is flat on U .

Here we say that a Ck-metric h is flat if it is locally isometric to the Euclidean
metric, i.e. for all p ∈ M , there exists a neighbourhood U of p and an isometry
f : U → f(U) ⊂ Rn (necessarily of class Ck+1).

Note that locally conformally flat manifolds are sometimes just called con-
formally flat in the literature. We reserve the term conformally flat for manifolds
(M, g) which are globally conformally flat in the sense that there is f ∈ Ck(M)

such that e2fg is flat.

For the rest of this section we assume that M is a smooth manifold with
C3-Riemannian metric, so that the Cotton tensor defined below is well-defined
and continuous.

Before coming to more theoretical investigations let us discuss some examples:
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Example 2.2.2. Locally conformally flat manifolds include:

i) Two-dimensional Riemannian manifolds,
ii) All spaces of constant sectional curvature,
iii) Open submanifolds and umbilic hypersurfaces1 of locally conformally flat

spaces are again locally conformally flat.
iv) The products S1×Sn−1 and Sm×Hm, although products of locally conformally

flat manidolds are not necessarily locally conformally flat when equipped with
the product metric. To see this consider the product metric on Sm × Sm,
m ≥ 2, for instance: For 2m-dimensional locally conformally flat manifolds
we have a Bochner-Weitzenböck formula on m-forms

∆ = ∇∗∇+
m

4(m− 1)
Scal,

cf. [Lis14, Lemma 3], key observation due to Bourguignon [Bou81]. This
implies that closed locally conformally flat manifolds with positive scalar
curvature must have Hm

dR(M) = 0. For more topological obstructions
on locally conformally flat manifolds with positive scalar curvature see e.g.
[SY94, Chapter VI].

v) [Bes87, Example 1.167], [Laf88, Proposition D.2]: More generally, one can
check that a Riemannian product is locally conformally flat if and only if one
factor is one-dimensional and the other one is of constant sectional curvature
or if both factors are of constant sectional curvature with sectional curvatures
κ and −κ, respectively.

vi) [Laf88, Proposition D.1 ii)]: If (M, g) is of constant sectional curvature, then
warped products of the form (M × I, e2f(t)g + dt2), f ∈ C∞(I) are locally
conformally flat.

In dimensions n ≥ 4, the condition on a metric to be locally conformally flat is
reflected in a vanishing condition on a certain conformally invariant tensor, called
Weyl tensor. As a (4, 0)-tensor, it is given by (cf. e.g. [Bes87, Section 1G]):

W := R− Scal

2n(n− 1)
g 7 g − 1

n− 2

◦
Ric 7 g. (2.2.1)

Here,
◦

Ric =
(
Ric−Scal

n g
)
denotes the traceless Ricci tensor and7 is the Kulkarni-

Nomizu product of two symmetric (2, 0)-tensors h, k defined by

(h7 k)(v1, v2, v3, v4) := h(v1, v3)k(v2, v4) + h(v2, v4)k(v1, v3)

− h(v1, v4)k(v2, v3)− h(v2, v3)k(v1, v4).

1In fact, if Σ ⊆ (M, g) is umbilic, then it is also umbilic with respect to a locally defined flat
metric e2fg. Recall from Section 2.1 that umbilic hypersurfaces in Euclidean space are contained
in either a hyperplane or a hypersphere, both of which are locally conformally flat.
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Using the Schouten tensor (we adapt the sign convention of [BJ10], see Equation
(1.2.13) therein)

S :=
1

n− 2

(
Ric− Scal

2(n− 1)

)
, (2.2.2)

one can write (2.2.1) as

W = R− S 7 g. (2.2.3)

In dimension three, the Weyl tensor automatically vanishes and the condition
to be locally conformally flat is equivalent to the vanishing of the Cotton tensor
given by

C(X,Y, Z) := (∇XS)(Y,Z)− (∇Y S)(X,Z), (2.2.4)

see e.g. [BJ10, Section 2.2.3]. This can be summarized to the Weyl-Schouten
theorem (first proven by Cotton [Cot97] in dimension three and by Weyl [Wey18]
and Schouten [Sch21] in dimensions n ≥ 4, see also [Laf88]):

Theorem 2.2.3 (Weyl-Schouten). Let (M, g) be an n-dimensional Riemannian
manifold. Then

i) If n = 2, then (M, g) is locally conformally flat.
ii) If n = 3, then (M, g) is locally conformally flat if and only if the Cotton tensor

vanishes.
iii) If n ≥ 4, then (M, g) is locally conformally flat if and only if the Weyl tensor

vanishes.

As we need to refer to it later on – in a situation where the metric in consider-
ation is not C3 – we included a proof in Section 5.2.

We conclude the investigation of locally conformally flat manifolds for now
and will return to them in Section 3.1

2.3. Conformal transformation groups and the Poincaré extension

When dealing with locally conformally flat manifolds, conformal transforma-
tions will arise naturally. For a better understanding it is thus worthwhile having
a look at the conformal transformation groups of Sn and Rn, which we will discuss
below. For a more elaborate discussion see e.g. [Rat06].

To relate the conformal transformation groups of Sn and Rn, respectively, we
make use of the well-known stereographic projection:

Definition 2.3.1. A stereographic projection π : Sn \ {en+1} → Rn from en+1

is given by π(x) := (1−xn+1)−1(x1, . . . , xn). For p ∈ Sn, a stereographic projection
from p is a map of the form πp = π ◦ Φ: Sn \ {p} → Rn, where Φ is an isometry
of Sn mapping p to en+1.
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Stereographic projections are conformal diffeomorphisms Sn \ {p} → Rn as
(π−1)∗gSn = 4

(
1 + |x|2

)−2
gRn .

Writing Rn = Rn ∪ {∞} for the one-point compactification of Rn, we can
extend any stereographic projection πp to a homeomorphism πp : Sn → Rn by
setting πp(p) := ∞. Equip Rn with the metric, differentiable and conformal
structure of Sn induced by such an extension.

We now define the Möbius transformation groups M(Rn) and M(Sn) to be
the subgroups of the respective diffeomorphism group generated by reflections
in hyperspheres, where a hyperplane in Rn is seen as a hypersphere in Rn con-
taining infinity. As Sn and Rn are conformally equivalent via a stereographic
projection, their Möbius transformation groups M(Rn) and M(Sn) are isomorphic
via conjugation with a stereographic projection.

When considering locally defined conformal maps of Rn, it turns out that these
are exactly given by Möbius transformations as stated by Liouville’s theorem on
conformal transformations:

Theorem 2.3.2 (Liouville, 1850). Let Ω ⊆ Rn, n ≥ 3, be a domain and
φ : Ω→ Rn be a conformal map of class C2. Then φ is a composition of translations,
rotations, reflections, scalings and inversions. In particular, φ is the restriction of
a globally defined Möbius transformation Φ: Rn → Rn.

Note that a “standard” proof (as presented in, e.g. [SY94]) requires φ to be
C3. However, there are proofs with less regularity assumptions, see e.g. [Har47]
and [Har58].

Liouville’s theorem implies that the conformal transformation groups of Rn

and Sn are M(Rn) and M(Sn), respectively.
We set M(Bn) to be the subgroup of M(Rn) containing all Möbius trans-

formations preserving the unit ball Bn. One can show that the homomorphism
M(Bn+1)→M(Sn) induced by restriction is an isomorphism, that is:

Proposition 2.3.3. Let ϕ ∈ M(Sn). Then there is a unique Φ ∈ M(Bn+1)

with Φ|Sn = ϕ, called Poincaré extension of ϕ.

Proof. As M(Sn) is generated by reflections in hyperspheres, it is enough
to extend these. Let a reflection σ in a hypersphere Σ ⊆ Sn be given. Let Σ̃ be
the generalized hypersphere (Σ̃ may be a hyperplane) orthogonal to Sn which
intersects Sn in Σ. Then the reflection of Rn+1 in Σ̃ extends σ and leaves Bn

invariant. For more details, see [Rat06, Section 4.4] �

Remark 2.3.4. The construction above is not restricted to the unit ball:
More generally, if Sr(p) or Σρ(p) is a sphere in Rn+1 or Sn+1, respectively, and
if ϕ ∈ M(Sr) or ϕ ∈ M(Σρ) is a Möbius transformation of that sphere, then
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we can extend it to a Möbius transformation of the whole space (Rn+1 or Sn+1,
respectively) preserving Br(p) or Dρ(p). This can be seen by adjusting the proof of
Proposition 2.3.3 to this case or by conjugation with a conformal diffeomorphism
mapping Br(p) or Dρ(p) to B1 and making use of Proposition 2.3.3 directly.

One finds that the conformal transformation group M(Sn) of the sphere is
rather large. In fact, among compact manifolds, the conformal class of the standard
metric on Sn is the only one with a noncompact automorphism group (first proven
by Obata [Oba71] and Lelong-Ferrand [LF71]). Noncompactness of M(Sn) is also
reflected in the following result due to Obata [Oba71, Proposition 6.1]:

Theorem 2.3.5 (Obata). Let ḡ ∈ [gSn ] be a metric on Sn conformally equi-
valent to the standard one. Then ḡ has constant scalar curvature if and only if it
has constant sectional curvature.

An important consequence is that any metric ḡ ∈ [gSn ] with constant scalar
curvature n(n− 1) is of the form ḡ = Φ∗gSn for some Φ ∈M(Sn).

Also, it is worth noting thatM(Sn) acts transitively on the set of hyperspheres
in Sn, i.e.

Lemma 2.3.6. Let Σi ⊆ Sn, i = 1, 2, be hyperspheres. Then there exists
Φ ∈M(Sn) with Φ(Σ1) = Σ2.

Proof. Let p ∈ Sn \ (Σ1 ∪ Σ2) and let πp : Sn → Rn be a stereographic
projection from p. Then πp(Σi) are spheres in Rn, say Sri(qi). Let Mr(x) := rx

and Tq(x) := x+ q denote dilation by r and translation by q, respectively. Then

Φ := π−1
p ◦ Tq2 ◦Mr2r

−1
1
◦ T−q1 ◦ πp

maps Σ1 to Σ2. �

Combining this with the Poincaré extension, we obtain a very useful result for
our investigations in Chapter 3:

Proposition 2.3.7. Let D ⊆ Sn be a geodesic ball in Sn with boundary sphere
Σ = ∂D and let h ∈ [gSn |Σ] be a metric on Σ conformal to the restriction of
the standard metric. Assume that (Σ, h) is isometric to some hypersphere Σρ of
radius 0 < ρ < π equipped with the standard metric. Then, for p ∈ Sn, there exists
Φ ∈M(Sn) with Φ(Dρ(p)) = D, Φ(Σρ(p)) = Σ and Φ∗h = gSn |Σρ(p).

Proof. As shown in Lemma 2.3.6 we can find φ ∈M(Sn) with φ(Σρ(p)) = Σ.
By composing with a reflection in Σ if necessary, we can furthermore ensure that
φ(Dρ(p)) = D; call this composition φ again. As φ is conformal, φ∗h is conformal
to gSn |Σρ(p) because h is conformal to gSn |Σ.
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By assumption, there exists an isometry ψ : (Σρ(p), gSn |Σρ(p))→ (Σρ(p), φ
∗h).

Since φ∗h is conformal to gSn |Σρ(p), the map ψ is a conformal transformation of
Σρ(p), hence ψ is the restriction of its Poincaré extension Ψ ∈M(Sn) preserving
Dρ(p) (see Proposition 2.3.3 and Remark 2.3.4 thereafter). Set Φ := φ ◦Ψ, then

Φ(Dρ(p)) = φ(Ψ(Dρ(p))) = φ(Dρ(p)) = D,

therefore Φ(Σρ(p)) = Σ and additionally

Φ∗h = Ψ∗(φ∗h) = ψ∗(φ∗h) = gSn |Σρ(p). �

2.4. Scalar curvature rigidity

Let (M, g) be some Riemannian manifold. In many mathematical contexts it
is interesting to know whether the combination of certain known properties or
invariants of M bears additional information on the geometry, topology or differ-
entiable structure of the manifold. In this fashion, a rigidity theorem completely
recovers the geometry (topology, differentiable structure) of a manifold from some
of its invariants which correspondingly determine the manifold up to isometry
(homeomorphism, diffeomorphism). For example, the probably best-known rigidity
theorem in geometry is:

Theorem 2.4.1. A closed, simply-connected complete Riemannian manifold of
constant sectional curvature is isometric to Euclidean space, a sphere or hyperbolic
space (of adequate radius).

Compared to sectional curvature as utilised in the theorem above, scalar
curvature is a much weaker invariant and consequently bears less information; the
case n = 2, where both are equivalent, being exceptional. For instance, a metric of
constant scalar curvature can be found on any manifold and even in every conformal
class, see the discussion on the Yamabe problem in Section 2.6. However, the sign
of the scalar curvature may tell us something about the underlying manifold as
was observed by Kazdan and Warner [KW75] and Bérard-Bergery [BB81], see
also [Bes87, Theorem 4.35]:

Theorem 2.4.2. Compact manifolds M of dimension n ≥ 3 can be divided in
three classes, each determined by one of the following properties:

i) Any function on M is the scalar curvature of some Riemannian metric;
ii) A function on M is the scalar curvature of some Riemannian metric if and

only if it is either identically zero or strictly negative somewhere; furthermore,
any metric with vanishing scalar curvature is Ricci-flat;

iii) A function on M is the scalar curvature of some Riemannian metric if and
only if it is strictly negative somewhere.
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However, since all these classes are quite large, the result is unsatisfying from
the standpoint of rigidity. Nevertheless it indicates that – to obtain a scalar
curvature rigidity theorem in the spirit of Theorem 2.4.1 – the conditions on the
geometry and topology have to be chosen very carefully.

An example for such a condition is the notion of asymptotic flatness, which
is substantial for one of the best-known scalar curvature rigidity theorems: The
positive mass theorem.

Definition 2.4.3. A Riemannian three-manifold (M, g) is called asymptotically
flat if Scal ∈ L1(M) and there exists a compact set K ⊆M such that M \K is
diffeomorphic to R3 \B1 such that – with respect to the coordinates provided by
this – the metric satisfies

gij = δij +O(|x|−1), ∂kgij = O(|x|−2), ∂k∂lgij = O(|x|−3).

The positive mass theorem, first proved by Schoen and Yau [SY79], [SY81]
states:

Theorem 2.4.4 (Positive mass theorem). The ADM2-mass [SY81, page 232]

mADM := lim
r→∞

1

16π

3∑
i,j=1

∫
|x|=r

(
∂jgij(x)− ∂igjj(x)

)xi
r
dS(x)

of an asymptotically flat three-manifold with nonnegative scalar curvature is non-
negative. Moreover, mADM = 0 if and only if (M, g) is isometric to R3 with the
standard metric.

Until today, various generalizations and extensions of the original positive
mass theorem have been established. For example, Schoen and Yau’s proof can be
extended up to dimension 7 while Witten was able to prove a generalization valid
for spin manifolds of all dimensions [Wit81].

From the positive mass theorem, we conclude the following rigidity result: A
Riemannian metric on Rn with nonnegative scalar curvature agreeing with the
standard metric outside a compact set must be flat. Hence the Euclidean metric
is rigid in the sense that it is not possible to deform it locally and increase scalar
curvature without decreasing it somewhere.

In contrast, it is always possible to decrease scalar curvature by locally de-
forming a metric as shown by Lohkamp:

Theorem 2.4.5 ([Loh99, Theorem 1]). Let (M, g) be a Riemannian manifold
and U ⊆ M open. Then, for all f ∈ C∞(M) with f < Scal(g) on U and
f = Scal(g) on M \ U and ε > 0, there exists a smooth metric gε on M with
f − ε ≤ Scal(gε) ≤ f on Uε := {x ∈M | d(x, U) < ε} and g = gε on M \ Uε.
2named after Richard Arnowitt, Stanley Deser and Charles W. Misner.
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Summing up, we have seen that decreasing scalar curvature by locally changing
the metric is always possible while increasing it may be problematic. Nevertheless,
it can be achieved for nonstatic manifolds due to a result by Corvino, [Cor00]:

Definition 2.4.6. We say that a Riemannian manifold (M, g) is static if the
linearization Lg of the scalar curvature map g 7→ Scal(g) has a formal L2-adjoint
L∗g : H2

loc(M)→ L2
loc(M) with nontrivial kernel.

By computing L∗g explicitely, one sees that a closed Riemannian manifold is
static if and only if there is f ∈ C∞(M) \ {0} with

Hess f = f Ric(g) + ∆f · g. (2.4.1)

Corvino’s result [Cor00, Theorem 4] now states that, given a compactly
contained nonstatic domain Ω ⊆ M with smooth boundary and f ∈ C∞(M)

with supp(f − Scal(g)) ⊆ Ω and f − Scal(g) sufficiently small, there exists a local
deformation of g with scalar curvature f .

Note that the standard metric on both the sphere Sn and the hemisphere Sn+
are static: In fact, the restriction of the coordinate function xn+1 to Sn or Sn+,
respectively, lies in the kernel of L∗g. Hence the above results do not give us insight
whether or not these metrics can be deformed locally to increase scalar curvature.
This is the starting point for the Min-Oo conjecture which will be discussed in the
next section.

2.5. The Min-Oo conjecture

In 1995, Maung Min-Oo claimed to have proven the following scalar curvature
rigidity theorem [MO98, Theorem 4]:

Conjecture 2.5.1. Let M be a compact connected spin manifold with simply-
connected boundary and g be a Riemannian metric on M with the following
properties:

i) ∂M is totally geodesic in M ,
ii) the metric induced on ∂M has constant sectional curvature 1,
iii) the scalar curvature of g satisfies Scal(g) ≥ n(n− 1) on M .

Then (M, g) is isometric to the round hemisphere with the standard metric.

Min-Oo announced a proof in an upcoming paper, but he realized that his
argument was incorrect. Conjecture 2.5.1 became known as the Min-Oo conjecture.

Min-Oo’s conjecture can be seen as an analogue of the (rigidity part of the)
positive mass theorem in positive curvature, where the asymptotic conditions on
the manifold are replaced by boundary conditions. Due to these analogies and
validity of similar results for zero and negative sectional curvature (see e.g. the
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rigidity result on the unit ball obtained by Miao [Mia02, Corollary 1.1]), Min-Oo’s
conjecture was long believed to be true in the mathematical community until
Brendle, Marques and Neves [BMN11] were able to construct a counterexample in
2011 valid in all dimensions n ≥ 3. Min-Oo’s conjecture is true in dimension two
due to a result by Topogonov [Top59]. However, several partial results have been
obtained and modified versions of Min-Oo’s conjecture hold in many special cases.
In this section, we survey some of those results and discuss the construction of a
counterexample by Brendle, Marques and Neves. For an excellent survey on the
topic see the survey article [Bre12].

Positive results. One of the first positive results on the Min-Oo conjecture,
and a very important one when considering the focus of this thesis, was obtained
by Hang and Wang in 2006. In [HW06], they showed that Min-Oo’s conjecture is
true provided the metric in consideration is conformally equivalent to the standard
one, see Theorem 1.2. It is quite remarkable that no condition on the second
fundamental form of the boundary is needed in order to obtain the result. In the
same paper, they were able to verify Min-Oo’s conjecture for Einstein metrics
([HW06, Theorem 4.1]).

In their later work [HW09], Hang and Wang were able to extend both results
to more general settings. With help of the already-established Theorem 1.2, they
used the conformal scalar and mean curvature equation (1.1), (1.2) to prove:

Proposition 2.5.2 ([HW09, Proposition 1]). Let Ω ⊆ Sn+ be a smooth domain
and g̃ = u

4
n−2 gSn be a metric on Ω in the conformal class of the standard metric.

Assume that

i) Scal(g̃) ≥ n(n− 1),
ii) the metric induced on ∂Ω agrees with the standard metric.

Then u ≥ 1 and H(g̃) ≤ H(gSn). Moreover, if equality holds somewhere, then
u = 1.

Moreover, they extended their result on Einstein manifolds to obtain a “Ricci-
version” of Min-Oo’s conjecture. Their most general result in this direction is:

Theorem 2.5.3 ([HW09, Theorem 3]). Let (M, g) be a compact Riemannian
manifold with boundary ∂M = Σ and Ω ⊆ Sn+ be a compact domain with smooth
boundary in the open hemisphere. Suppose that

i) Ric(g) ≥ (n− 1),
ii) there is an isometric embedding ι : (Σ, g|Σ)→ ∂Ω with the property that the

second fundamental form IIΣ of Σ in M and the second fundamental form
II∂Ω of ∂Ω in Sn satisfy IIΣ ≥ II∂Ω ◦ ι.

Then (M, g) is isometric with (Ω, gSn |Ω).
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The same conclusion is valid for the whole hemisphere, i.e. Ω = Sn+, see
[HW09, Theorem 2].

Hang and Wang’s proof uses a Lipschitz version of the following result due
to Reilly: If a Riemannian manifold (M, g) satisfies Ric(g) ≥ n− 1 then the first
Dirichlet eigenvalue λ1 of −∆ satisfies λ1 ≥ n, with equality if and only if (M, g)

is isometric to Sn+. The statement of Theorem 2.5.3 now follows by proving that
the manifold M ∪ι (Sn+ \ Ω) has λ1 = n.

Another remarkable result has been obtained by Eichmair in [Eic09]. He was
able to prove that a three-dimensional Riemannian manifold with totally geodesic
boundary such that Scal(g) ≥ 6 and Area(∂M) ≥ 4π is isometric to a hemisphere
provided that Ric(g) > 0 and that the boundary is an isoparametric surface for
the double manifold.

A different approach was taken by Huang and Wu. In their papers [HW10] and
[HW11], they investigated under which conditions a version of Min-Oo’s conjecture
is valid for hypersurfaces in spaces of constant sectional curvature equipped with
the induced metric. For surfaces in Euclidean or hyperbolic space, they obtain:

Theorem 2.5.4 ([HW10, Theorems 1 and 3]). Let M ⊆ Rn+1 or M ⊆ Hn+1

be a compact connected hypersurface with boundary satisfying the (hyperbolic)
incorporation condition. Suppose that the scalar curvature of M is at least n(n−1).
Then M is isometric to the hemisphere Sn+.

Here, the (hyperbolic) incorporation condition demands that, among other
technical conditions, the boundary is diffeomorphic to a sphere and contained in a
hyperplane Rn × {1} such that Bn

1 × {1} is contained in the region enclosed by
∂M .

The main advantage when working with hypersurfaces is that the scalar
curvature condition can be reformulated to a mean curvature condition using the
Gauß equation. Huang and Wu’s proof then relies on adequate maximum and
comparison principles applied to the mean curvature operator, which is elliptic in
nonpositive constant sectional curvature.

For spheres, the situation is more complicated as the latter ellipticity fails.
Nevertheless, they were able to prove:

Theorem 2.5.5 ([HW11, Theorem 1]). Let M ⊆ Sn+1 be a compact connected
hypersurface with boundary satisfying

i) Scal ≥ n(n− 1),
ii) M is tangent to a great n-sphere at ∂M and ∂M is a great (n− 1)-sphere.

Then M is a hemisphere Sn+.
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Inspired by the Min-Oo conjecture, several authors obtained “local” rigidity
results for geodesic balls in the hemisphere. For example, Brendle and Marques
proved the following:

Theorem 2.5.6 ([BM11, Theorem 3]). Let Ω = Dρ be a geodesic ball in Sn

with radius ρ such that cos(ρ) ≥ 2√
n+3

. Let g be a Riemannian metric on Ω with

i) Scal(g) ≥ n(n− 1),
ii) H(g) ≥ H(gSn),
iii) the metrics g and gSn induce the same metric on ∂Ω.

If ||g − gSn ||C2(Ω) is sufficiently small, then g = ϕ∗(gSn) for some diffeomorphism
ϕ of Ω with ϕ|∂Ω = id.

In [CMT13], Cox, Miao and Tam were able to decrease the lower bound 2√
n+3

in Theorem 2.5.6 by carefully investigating and improving the technique of the
proof in two different ways. The result is that Theorem 2.5.6 holds for larger balls,
namely provided cos(ρ) > min{ζ1, ζ2}, where

ζ1 =

(
4(n+ 4)− 4

√
2n− 1

n2 + 6n+ 17

) 1
2

and ζ2 =

(
7n− 1

2n2 + 5n− 1

) 1
2

.

Still, the result is not valid for the whole hemisphere. However, in [MT12],
Miao and Tam proved that one can extend Theorem 2.5.6 provided the metric in
consideration satisfies an additional volume constraint. They obtain:

Theorem 2.5.7 ([MT12, Theorem 1.2]). Let g be a Riemannian metric on
the hemisphere Sn+ with

i) Scal(g) ≥ n(n− 1),
ii) H(g) ≥ 0,
iii) the metrics g and gSn+ induce the same metric on ∂Sn+,
iv) Vol(g) ≥ Vol(gSn+).

If ||g− gSn+ ||C2(Sn+) is sufficiently small, then g = ϕ∗(gSn+) for some diffeomorphism
ϕ of Sn+ with ϕ|∂Sn+ = id.

Theorems 2.5.6 and 2.5.7 are remarkable taking into account that the counter-
example to Min-Oo’s conjecture constructed by Brendle, Marques and Neves can
be chosen arbitrarily close to gSn+ in the C∞-topology.

Construction of a counterexample. In their paper [BMN11], Brendle,
Marques and Neves proved Min-Oo’s conjecture to be false in all dimensions n ≥ 3.
They construct a metric on Sn+ which agrees with the standard metric on the
boundary such that the boundary is totally geodesic, but with scalar curvature
strictly larger than n(n− 1) [BMN11, Corollary 6]. Additionally, they show that
there exists a metric ĝ on Sn+ which not only satisfies Scal(ĝ) ≥ n(n − 1) and
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Scal(ĝ) > n(n− 1) somewhere, but which even agrees with the standard metric in
a neighbourhood of the boundary [BMN11, Theorem 7]. In particular, Min-Oo’s
conjecture is actually false under stronger (local) boundary conditions.

We give a short overview of the arguments used to obtain these results. The
main steps are the following theorems:

Theorem 2.5.8 ([BMN11, Theorem 4]). For any n ≥ 3, there exists a smooth
metric g on the hemisphere Sn+ with the following properties:

i) Scal(g) > n(n− 1),
ii) g = gSn+ along ∂Sn+,
iii) H(g) > 0.

Theorem 2.5.9 ([BMN11, Theorem 5]). Let M be a compact manifold with
boundary and g1, g2 smooth Riemannian metrics on M with g1 = g2 along ∂M
and mean curvatures H(g1) > H(g2). Given any ε > 0 and a neighbourhood U of
∂M , there exists a smooth metric ĝ on M with the following properties:

i) Scal(ĝ) ≥ min{Scal(gi), i = 1, 2} − ε pointwise on M ,
ii) g = g1 outside U ,
iii) g = g2 in a neighbourhood of ∂M .

We can then construct the counterexample given in [BMN11, Corollary 6]
as follows: Let g1 be a metric as in Theorem 2.5.8 and g2 be any metric on Sn+
with totally geodesic boundary, g2 = gSn+ along ∂Sn+ and Scal(g2) > n(n− 1) in a
neighbourhood U of ∂Sn+. Then apply Theorem 2.5.9.

To prove [BMN11, Theorem 7], one picks δ > 0 and a smooth metric gδ2 on
Sn+ with

gδ2 =

gSn+ if xn+1 ≤ δ,(
1− exp

(
− 1
xn+1−δ

)) 4
n−2

gSn+ if δ < xn+1 < 3δ.

For δ sufficiently small, one has Scal(gδ2) > n(n− 1) on {δ < xn+1 < 3δ}.
Let g be a metric as in Theorem 2.5.8. By pulling back g with an appropriate

conformal transformation and after scaling, one obtains a metric gδ1 on the set
{xn+1 ≥ 2δ} with Scal(gδ1) > n(n− 1) and which agrees with gδ2 on {xn+1 = 2δ}.
For δ sufficiently small, one can apply Theorem 2.5.9 to gδ1 and gδ2 to obtain a
metric ĝ. Then ĝ can be extended by the standard metric to a metric on Sn+ which
satisfies the desired properties.

We now present the ideas to prove Theorems 2.5.8 and 2.5.9.

Proof (Theorem 2.5.8). The proof relies on perturbation analysis and is
inspired by the construction of counterexamples to Schoen’s compactness conjecture
to the Yamabe problem. The condition n ≥ 3 is crucially used as it implies that



22 2. BACKGROUND MATERIAL

there exist deformations of the equator ∂Sn+ which increase area and have positive
mean curvature. It follows that there exists a function η : ∂Sn+ → R with

∆∂Sn+
η + (n− 1)η < 0.

Let X be a vector field on Sn+ with X = ην and LXgSn+ = 0 along ∂Sn+. One
considers the families of metrics

g0(t) := gSn+ + tLXgSn+ and g1(t) := (φXt )∗gSn+ ,

where φXt is the flow of X. From the choice of X, it follows that the metrics g0(t)

agree with the standard metric on the boundary while the metrics g1(t) do not. As
g0 and g1 agree up to terms of second order, the mean curvature of the boundary
with respect to g0 is

H(g0(t)) = H(g1(t)) +O(t2) = −t
(
∆∂Sn+

η + (n− 1)η
)

+O(t2),

which is positive for t sufficiently small. In order to satisfy the assertion on the
scalar curvature, one adds a second order correction term to g0 and defines

g(t) := gSn+ + tLXgSn+ +
1

2(n− 1)
t2ugSn+ ,

where u is a solution to a certain elliptic equation on Sn+ with Dirichlet boundary
condition which ensures that Scal(g(t)) > n(n− 1) for t sufficiently small. Then,
for t > 0 small, g(t) satisfies all properties claimed. �

We now give a sketch of the proof of Theorem 2.5.9:

Proof (Theorem 2.5.9). The idea of the proof is to perturb the metrics g1

and g2 using appropriately chosen cut-off functions.
First, let ρ ∈ C∞(M) be a defining function for the boundary, that is ρ ≥ 0,

∂M = ρ−1(0) and |∇ρ| = 1 on ∂M . Using that g1 = g2 along ∂M , we find a
symmetric two-tensor T with g2 = g1 + ρT in a neighbourhood of ∂M and T = 0

outside U .
Let χ : [0,∞) → [0, 1] be a smooth cut-off function with χ(s) = s − s2

2 for
0 ≤ s ≤ 1

2 , χ(s) constant for s ≥ 1 and χ′′(s) < 0 for 0 ≤ s < 1. Furthermore, let
ξ : (−∞, 0] → [0, 1] be a smooth cut-off function with ξ(s) = 1

2 for −1 ≤ s ≤ 0

and ξ(s) = 0 for s ≤ −2. Then, for λ sufficiently large, we may define a smooth
metric by

gλ :=

g1 + λ−1χ(λρ)T for ρ ≥ e−λ2 ,

g2 − λρ2ξ(λ−2 log(ρ))T for ρ < e−λ
2
.

Using this and the condition on the mean curvatures (which translates into
traceT |∂M > 0) one can then check that, for λ sufficiently large, the metric gλ

satisfies all desired properties. �
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2.6. The Yamabe problem on manifolds with boundary

This section is devoted to the Yamabe problem, with focus on manifolds with
boundary. We will only give a rough sketch of the problem; for a more detailed
overview as well as a complete and self-contained solution to the Yamabe problem
on closed manifolds see the expository article [LP87] as well as [SY94, Chapter V].

Given a closed Riemannian manifold (M, g) of dimension3 n ≥ 3, the Yamabe
problem asks for a conformal metric ḡ ∈ [g] with constant scalar curvature.
The problem is named after Hidehiko Yamabe who claimed to have solved it in
[Yam60]. However, Trudinger [Tru68] found a serious flaw in Yamabe’s proof and
the problem remained open until 1984.

In view of the conformal scalar curvature equation (1.1), the Yamabe problem
is equivalent to finding a positive u ∈ C∞(M) satisfying

n− 2

4(n− 1)
Cu

n+2
n−2 =

n− 2

4(n− 1)
Scal(g)u−∆u,

where C is some constant which can – after normalization – be chosen to be −1,
0 or +1, respectively. One finds that this is the Euler-Lagrange equation of the
functional

Q(u) :=

∫
M

(
|∇u|2 +

n− 2

4(n− 1)
Scal(g)u2

)
dVg(∫

M
|u|

2n
n−2 dVg

)n−2
n

=

n− 2

4(n− 1)

∫
M

Scal(ḡ) dVḡ(∫
M

dVḡ
)n−2

n

,

where ḡ = u
4

n−2 g ∈ [g]. Based on the works by Trudinger [Tru68] and Yamabe
[Yam60], Aubin [Aub76] was able to show that the Yamabe problem possesses a
solution provided Y (M, [g]) < Y (Sn, [gSn ]), where Y is the Yamabe invariant

Y (M, [g]) := inf
u∈C∞(M), u>0

Q(u). (2.6.1)

Furthermore, it holds that Y (M, [g]) ≤ Y (Sn, [gSn ]) and the works of Aubin
[Aub76] and Schoen [Sch84] show that equality holds if and only if (M, g) is
conformally equivalent to the sphere. This implies that the Yamabe problem on a
closed manifold is always solvable.

The sign of the scalar curvature of a constant scalar curvature metric is given
by the sign of the first eigenvalue of the conformal Laplacian L = −4(n−1)

n−2 ∆+Scal,
which is the same as the sign of the Yamabe invariant.

3Considerations are slightly different in dimension two. Since we only work in higher dimensions,
we chose to simplify the presentation and only discuss the case n ≥ 3.
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Considering compact Riemannian manifolds with boundary, one can similarly
ask the following questions:

1. Is there a conformally equivalent metric with constant scalar curvature and
vanishing mean curvature?

2. Is there a conformally equivalent metric with vanishing scalar curvature and
constant mean curvature?

We will only discuss the first question which is of greater interest for our
considerations as an umbilic hypersurface will become totally geodesic when the
manifold is equipped with a conformally equivalent metric with minimal boundary.
We will refer to this as the relative Yamabe problem.

The problem was first studied by Escobar in [Esc92b]: As in the case of a
closed manifold one can reformulate the problem into finding u > 0 satisfying

n− 2

4(n− 1)
Cu

n+2
n−2 =

n− 2

4(n− 1)
Scal(g)u−∆u,

0 =
n− 2

2
H(g)u+

∂u

∂η
,

for a constant C ∈ R.
Analogously, one defines the functional

Q(u) :=

∫
M

(
|∇u|2 +

n− 2

4(n− 1)
Scal(g)u2

)
dVg +

n− 2

2

∫
∂M

H(g)u2 dSg(∫
M
|u|

2n
n−2 dVg

)n−2
n

=

n− 2

4(n− 1)

∫
M

Scal(ḡ) dVḡ +
n− 2

2

∫
∂M

H(ḡ) dSḡ(∫
M

dVḡ
)n−2

n

,

where again ḡ = u
4

n−2 g ∈ [g], and the relative Yamabe invariant

Y (M,∂M, [g]) := inf
u∈C∞(M), u>0

Q(u). (2.6.2)

The solution to the relative Yamabe problem is obtained similar to the
closed case: One can show that Y (M,∂M, [g]) ≤ Y (Sn+, ∂S

n
+, [gSn+ ]), the relative

Yamabe problem admits a solution provided Y (M,∂M, [g]) < Y (Sn+, ∂S
n
+, [gSn+ ])

and Y (M,∂M, [g]) = Y (Sn+, ∂S
n
+, [gSn+ ]) if and only if (M, g) is conformally equi-

valent to Sn+. The crucial fact that Y (M,∂M, [g]) < Y (Sn+, ∂S
n
+, [gSn+ ]) if M is not

conformally equivalent to Sn+ is the only point where the relative Yamabe problem
substantially differs from the Yamabe problem on compact manifolds. It was first
shown by Escobar in the following cases: If 3 ≤ n ≤ 5; n ≥ 6 and there exists
a nonumbilic point at ∂M ; n ≥ 6, ∂M is umbilic and M is locally conformally
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flat or n ≥ 6, ∂M is umbilic and the Weyl tensor does not vanish identically on
∂M (see [Esc92b]). However, when trying to treat the remaining cases similarly
to the closed case, one needs a version of the positive mass theorem which has
not been proven yet. Using a different approach, Mayer and Ndiaye [MN15] were
recently able to solve the remaining cases based on earlier work by Brendle and
Chen [BC14].

Similar to the closed case, the sign of the scalar curvature of a constant scalar
curvature metric is given by the sign of the smallest eigenvalue of the conformal
Laplacian L, but with boundary condition Bu := ∂u

∂η + n−2
2 Hu = 0. This is the

same as the sign of the relative Yamabe invariant of M .





Chapter 3

Proof of Theorem I

This chapter is devoted to the proof of Theorem I. Before getting started with
the complete proof, we shortly give an overview over the central arguments:

In Section 3.1, we introduce the developing map: Given a simply-connected
locally conformally flat manifold M , one can patch together the locally defined
isometries φU : (U, e2fg) → (φ(U), gRn) ⊆ Rn to obtain a conformal immersion
Φ: M → Rn ∼= Sn, called the developing map, which is unique up to conformal
transformations of Sn. As a consequence, we obtain Theorem I under the additional
assumption that M is simply-connected and ∂M is connected.

If M is not simply-connected, one can apply the arguments to the universal
covering M̃ . In Section 3.2 we will show that, if M is a locally conformally flat
manifold with boundary and positive relative Yamabe invariant, the developing
map is injective. This is basically an adaption of a deep result by Schoen and Yau
on closed manifolds (see [SY88] and [SY94]), which will be discussed in greater
detail in Section 5.3.

We will identify the image with a subset of the sphere of the form

C = C(εi, pi,Λ) := Sn \

 ⋃
i∈π0(∂M̃)

Dεi(pi) ∪ Λ

 ,

where the Dεi(pi) are geodesic balls in Sn with disjoint closures and Λ is the
so-called limit set, a closed subset of Hausdorff dimension at most n−2

2 , which we
will comment on in Remark 3.2.3.

Using this, we will be able to extend the metric to a locally Lipschitz metric on
Sn \Λ in Section 3.3. In fact, we will only extend the metric to Sn \ (Dεi(pi) ∪ Λ)

for one particular i and then use analytical methods similar to those used by Hang
and Wang to prove Theorem 1.2 to conclude that Sn \ (Dεi(pi) ∪ Λ) equipped with
the pull-back metric is isometric to a closed geodesic ball in Sn, see Section 3.4.

Recall our convention that geodesic balls in the sphere are denoted by Dρ(p),
while geodesic balls in Rn are denoted by Br(p); with respective boundaries
Σρ(p) = ∂Dρ(p) and Sr(p) = ∂Br(p).

Unless stated otherwise, M is a manifold of dimension n ≥ 3.

27
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3.1. The developing map

In this section we show how to use Liouville’s theorem on conformal mappings
to obtain the developing map of a locally conformally flat manifold. We have:

Proposition 3.1.1. Let (M, g) be a simply-connected locally conformally flat
manifold. Then there exists a conformal immersion Φ: M → Sn which is unique
up to conformal transformations of Sn.

Proof. If M is locally conformally flat, then for every p ∈ M there is a
neighbourhood U of p and f ∈ C∞(U) such that e2fg|U is flat. Hence (U, e2fg|U )

is locally isometric to Euclidean space, that is, (U, g|U ) is locally conformally
equivalent to Euclidean space. It follows that we can cover M with charts
(Uα, φα)α∈A, where φα : (Uα, g|Uα)→ (φα(Uα), gRn) are conformal. By shrinking
the Uα’s if necessary, we may assume that all of them are convex and thus arbitrary
intersections will be connected.

For two indices α, β ∈ A such that Uα ∩ Uβ 6= ∅, we define

ψαβ := φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ).

Then ψαβ is a locally defined conformal transformation of Rn. By Liouville’s
theorem (Theorem 2.3.2), there is Ψαβ ∈M(Rn) with Ψαβ|φβ(Uα∩Uβ) = ψαβ. On
φβ(Uα ∩ Uβ), we have Ψαβ ◦Ψβα = φα ◦ φ−1

β ◦ φβ ◦ φ
−1
α = id, therefore

Ψαβ ◦Ψβα = idRn . (3.1.1)

Similarly, one sees that

Ψαβ ◦Ψβγ = Ψαγ (3.1.2)

whenever Uα ∩ Uβ ∩ Uγ 6= ∅.
We now construct Φ as follows: Pick any p ∈M and α1 ∈ A with p ∈ Uα1 and

define
Φ := φα1 on Uα1

For q /∈ Uα1 , we pick a chain α2, . . . , αk with q ∈ Uαk and Uαi ∩ Uαi+1 6= ∅ for
i = 1, . . . , k − 1. Then set

Φ := Ψα1α2 ◦Ψα2α3 ◦ . . . ◦Ψαk−1αk ◦ φk on Uαk .

Using (3.1.1), the cocycle condition (3.1.2) and the simply-connectedness of M ,
one checks that this is independent of the choices, cf. e.g. [SY94, Theorem VI.1.6].
Hence Φ is well-defined.

Uniqueness up to conformal transformations again follows from Liouville’s
theorem. �

We now present an easy topological lemma which will be used several times:
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Lemma 3.1.2. Let Φ: M → N be a local homeo-(diffeo-)morphism with M
being compact and N being simply-connected. Then Φ is bijective, i.e. a homeo-
(diffeo-)morphism.

Proof. As Φ is a local homeomorphism, Φ is open, so Φ(M) is open. Since
M is compact, Φ(M) is compact, hence closed. Thus, Φ is surjective and therefore
a covering. As N is simply-connected, Φ is bijective. �

As a corollary, we obtain a well-known result due to Kuiper (see [Kui49]):

Corollary 3.1.3. Any n-dimensional closed simply-connected locally con-
formally flat manifold is conformally equivalent to Sn.

Proof. Apply Lemma 3.1.2 to the developing map. �

Together with Theorem 2.3.5, this implies:

Corollary 3.1.4. Let (M, g) be a closed simply-connected locally conformally
flat manifold with constant scalar curvature r−2n(n− 1). Then (M, g) is isometric
with Snr .

The simply-connected case. We are now in the position to prove Theorem I
under the condition that M is simply-connected and ∂M is connected. Although
the proof is similar to the non-simply-connected case, we present it separately to
illustrate the technique and to argue that the assumption on the mean curvature
can be dropped in this case provided ρ = π

2 , compare Corollary 4.1.1.
We proceed in three steps: We will first show that the developing map of

M is injective, then compose with a stereographic projection and a Möbius
transformation to obtain Dρ as image. In the end, we use the results of Hang
and Wang discussed in Section 2.5. Note that we will show the injectivity of the
developing map without the simply-connectedness of M using a deep result by
Schoen and Yau in Section 3.2.

Proof (Theorem I; M simply-connected, ∂M connected).
Step 1: The developing map is injective. As M is simply-connected, there

exists a developing map Φ: M → Sn. Since ∂M is umbilic and being umbilic
is a conformal invariant, the image of ∂M must be umbilic in Sn, that is, it is
contained in a hypersphere Σ ⊆ Sn. Applying Lemma 3.1.2 to Φ|∂M , we see that
Φ|∂M : ∂M → Σ is a diffeomorphism. Composing with a Möbius transformation of
Sn, if necessary, we may assume that Σ is the equator ∂Sn+ = {x ∈ Sn | xn+1 = 0},
see Lemma 2.3.6.
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Consider the double manifold M̂ = M ∪
∂M

(−M), see Section 5.1. We extend

Φ to a map Φ̂ : M̂ → Sn in the following way: Write Φ = (Φ1, . . . ,Φn+1) and set

Φ̂(x) :=

Φ(x) if x ∈M,

(Φ1(x), . . . ,Φn(x),−Φn+1(x)) if x ∈ −M.

Then Φ̂ is well-defined and continuous because Φn+1(x) = 0 for x ∈ ∂M . Moreover,
it is a local homeomorphism. Lemma 3.1.2 implies that Φ̂ is a homeomorphism
and hence Φ is injective. Furthermore, the image is either Sn+ or Sn−.

Step 2: The image has a nice form. As we want to show that (M, g) is isometric
to Dρ, we would prefer to have that the image of Φ is Dρ(N) for some point N .
We can achieve this by composing with a Möbius transformation of Sn; we may
take the inverse of the one constructed in Proposition 2.3.7. For simplicity, we
call this composition Φ again. Therefore we may assume that the image of Φ is
Dρ(N) and that the pulled-back metric (Φ−1)∗g agrees with the standard metric
on the boundary Σρ(N).

Step 3: Conclusion. By construction, we have obtained a metric (Φ−1)∗g

on Dρ(N) which is conformal to the standard metric and agrees with it on the
boundary. We can now apply the results by Hang and Wang:

If ρ = π
2 , Theorem 1.2 implies that (Φ−1)∗g is the standard metric, hence

M is isometric to Sn+ (without any assumptions on the mean curvature). In all
other cases, H(g) ≥ Hρ and Proposition 2.5.2 imply that (Φ−1)∗g is the standard
metric. �

3.2. Injectivity of the developing map

If M is not simply-connected, we do not know whether there is a conformal
map from M to Sn. However, we can pass to the universal covering M̃ to
obtain a developing map Φ: M̃ → Sn. In this section we establish that, under
the assumptions of Theorem I, this developing map is injective (see also [LN14,
Theorem 1.4]):

Proposition 3.2.1. Let (M, g) be a compact locally conformally flat manifold
with boundary and positive relative Yamabe invariant. Assume that ∂M is umbilic
and every connected component of ∂M is simply-connected. Let M̃ →M be the
universal covering. There exists an injective conformal map Φ: M̃ → Sn which is
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a conformal diffeomorphism onto its image. The image is of the form

C = C(εi, pi,Λ) := Sn \

 ⋃
i∈π0(∂M̃)

Dεi(pi) ∪ Λ

 ,

where the Dεi(pi) are geodesic balls in Sn with disjoint closures and every index i
corresponds to a connected component of ∂M̃ . Λ is the so-called limit set, a closed
subset of Hausdorff dimension at most n−2

2 .

We will present the proof at the end of this section. Prior to that, we explain
how to see that our conditions on the scalar and mean curvature in Theorem I
imply that the relative Yamabe invariant is positive, so Proposition 3.2.1 can be
applied in this situation. Then we comment on the limit set Λ occurring in the
statement as well as on results by Schoen and Yau utilised in the proof.

Lemma 3.2.2. Let (M, g) be a compact connected Riemannian manifold with
boundary with Scal ≥ 0 and H ≥ 0. If either Scal or H is strictly positive at some
point, then the relative Yamabe invariant of M is positive.

Proof. As explained in Section 2.6, the sign of the relative Yamabe invariant
is the same as the sign of the smallest eigenvalue of the conformal Laplacian
L = −4(n−1)

n−2 ∆ + Scal with boundary condition Bu = ∂u
∂η + n−2

2 Hu = 0.
Let f1 be a first eigenfunction of L with boundary condition B to the eigenvalue

λ1 with ||f1||L2(M) = 1. We can choose f1 such that f1 > 0 on M : In fact, from
the variational characterisation it follows that |f1| is an eigenfunction as well, so
we may assume f1 ≥ 0. Then the maximum principle and the Hopf lemma imply
f1 > 0, see [Esc92a, Proposition 1.3].

Hence we estimate

λ1 = 〈Lf1, f1〉L2(M)

=

∫
M

(
|∇f1|2 +

n− 2

4(n− 1)
Scal(g)f2

1

)
dVg +

n− 2

2

∫
∂M

H(g)f2
1 dSg

≥ n− 2

4(n− 1)

∫
M

Scal(g)f2
1 dVg +

n− 2

2

∫
∂M

H(g)f2
1 dSg

> 0

as f1 > 0 and Scal ≥ 0, H ≥ 0 with either Scal > 0 or H > 0 at some point. This
implies sign (Y (M,∂M, [g])) = sign(λ1) = 1. �

Remark 3.2.3. Let us shortly comment on the limit set Λ occurring in
Proposition 3.2.1: Let Γ ⊆ M(Sn) ∼= M(Bn+1) be a discrete subgroup of the
conformal transformation group of Sn. Then the limit set of Γ is defined as
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[Rat06, § 12.1]:

Λ(Γ) :=
{
x ∈ Sn | there exist x′ ∈ Bn+1 and γi ∈ Γ such that γix′ → x

}
.

One can show that |Λ(Γ)| ∈ {0, 1, 2,∞} and if Λ(Γ) is infinite, then it is a minimal
closed nonempty Γ-invariant subset of Sn (cf. [Rat06, Theorems 12.2.1 and 12.1.3]).

Now if (M, g) is a closed locally conformally flat manifold there is a developing
map Φ: M̃ → Sn, hence π1(M) (viewed as the group of deck transformations)
acts on Sn by Möbius transformations. The homomorphism ρ : π1(M)→M(Sn)

obtained is called holonomy representation of π1(M) in M(Sn). If the scalar
curvature of M is positive, one can show that the developing map is injective, the
holonomy representation is one-to-one and Λ (ρ(π1(M))) = ∂(Φ(M̃)) = Sn \Φ(M̃).
For more background see e.g. [SY94, Chapter VI] or [Rat06, Chapter 12].

The main idea of the proof of Proposition 3.2.1 is to apply the following result
on the injectivity of developing maps by Schoen and Yau (see [SY88] and [SY94])
to the double manifold M̂ = M ∪

∂M
(−M):

Theorem 3.2.4. Let (M, g) be a closed locally conformally flat Riemannian
manifold of positive scalar curvature. Then the developing map Φ: M̃ → Sn is
injective.

Remark 3.2.5. Theorem 3.2.4 would immediately follow from [SY88, The-
orem 4.5] or [SY94, Theorem 3.5], which state that the developing map of a closed
locally conformally flat manifold is injective provided that the scalar curvature is
nonnegative. However, to prove [SY88, Theorem 4.5] and [SY94, Theorem 3.5],
Schoen and Yau use a version of the positive mass theorem which, to the author’s
knowledge, is widely believed to be true but has not been proven yet. Still, validity
of Theorem 3.2.4 which only covers metrics of positive scalar curvature, follows
from the results of Schoen and Yau. We will address this issue in greater detail in
Section 5.3, where we also prove a C2,1-version of Theorem 3.2.4 which will be
needed at a later point.

Proof of Proposition 3.2.1. We proceed in three steps: First we show
how to obtain a smooth metric on the double manifold conformal to the canonical
one, then apply Schoen and Yau’s results to its universal cover. In the last step,
we show that the image has the claimed form.

Step 1: Finding a smooth metric on the double manifold. If the Yamabe
invariant satisfies Y (M,∂M, [g]) = Y (Sn+, ∂S

n
+, [gSn+ ]), then M is conformally

equivalent to the hemisphere and the assertion is clear. Else, by Escobar’s solution
to the Yamabe problem on manifolds with boundary for locally conformally flat
manifolds (see [Esc92b] and Section 2.6), there exists a metric g′ in the conformal
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class of g with (constant) positive scalar curvature and totally geodesic boundary,
see our discussion in Section 2.6.

Consider the double manifold M̂ = M ∪
∂M

(−M). Since ∂M is totally geodesic

with respect to g′, the canonical metric ĝ′ extending g′ is C2,1 as can be seen
in Fermi coordinates, see Section 5.1 for a proof. One can now check that
Theorem 3.2.4 remains valid for C2,1-metrics, which we will do in Section 5.3.
However, in this special case we can easily find a smooth metric with positive
scalar curvature conformal to ĝ:

In fact, for every connected component Z of ∂M , we pick ε > 0 small enough
and a neighbourhood U of Z in M diffeomorphic to Z × [0, ε). As the latter is
simply-connected, we obtain a conformal map ΦU : U → Sn. Since Z is umbilic,
Φ(Z) is also umbilic and thus contained in a hypersphere. By Lemma 3.1.2, ΦU |Z
is a diffeomorphism onto that hypersphere. Hence, as ΦU is an immersion, we
may shrink U to obtain an injective conformal map. This proves that there exists
a neighbourhood of Z in M̂ which is isometric to a tubular neighbourhood of
the equator in Sn equipped with a metric of the form µ2gSn , where µ is C2 and
smooth away from the equator. We may approximate µ with a suitable smooth
function µ̃ > 0 such that µ̃2gSn has positive scalar curvature. Proceeding like this
for every connected component of the boundary, we obtain a smooth metric g∗ on
M̂ conformal to ĝ′ with positive scalar curvature.

Step 2: Obtaining an injective developing map. Let π : N → M̂ be the universal
covering of M̂ . Equipped with the Riemannian metric induced by g∗, N is a
simply-connected complete locally conformally flat manifold with positive scalar
curvature. From Theorem 3.2.4, it follows that the developing map φ : N → Sn is
injective and Λ′ := Sn\φ(N) is the limit set of π1(M̂) as explained in Remark 3.2.3.
As g∗ has positive scalar curvature, the results of Schoen and Yau imply that the
Hausdorff dimension of Λ′ is at most n−2

2 .
Let M̃ ⊆ N be a connected component of π−1(M). Then π : M̃ → M

is a covering and since φ : N → Sn was injective, Φ := φ|M̃ is also injective.
Furthermore, the metrics g̃ and g̃∗ on M̃ induced by g and g∗, respectively, are
conformally equivalent (since g and g∗ are) and so Φ is also conformal with respect
to g̃. We conclude that Φ: int(M̃)→ Φ(int(M̃)) is a conformal diffeomorphism.
To show that it is actually a diffeomorphism of M̃ , we need to verify that Φ is
also a local diffeomorphism near the boundary, i.e. Φ(∂M̃) ⊆ ∂Φ(M̃).

To see this, first note that ∂M̃ is diffeomorphic to disjoint copies of Sn−1:
Since the covering M̃ → M induces a covering ∂M̃ → ∂M and the latter has
simply-connected connected components, we know that all connected components
of ∂M̃ are simply-connected. As any connected component Σ of ∂M̃ is umbilic, it



34 3. PROOF OF THEOREM I

is locally conformally flat itself and hence conformally equivalent to a sphere, see
Corollary 3.1.3. Arguing as above, we see that for any such Σ, Φ|Σ : Σ→ Φ(Σ) is a
diffeomorphism, where Φ(Σ) is some geodesic hypersphere in Sn. Thus Sn \ Φ(Σ)

has two connected components. As M̃ \ ∂M̃ is connected and Φ is injective,
it follows that Φ(M̃ \ ∂M̃) lies in exactly one of these connected components,
therefore Φ(∂M̃) ⊆ ∂Φ(M̃).

Step 3: Identification of the image. We have seen that Φ: M̃ → Φ(M̃) is a
conformal diffeomorphism and that the boundary ∂Φ(M̃) of the image can be
written as

∂Φ(M̃) = Φ(∂M̃) ∪
(

Φ(M̃) ∩ Λ′
)

We will denote the closed subset Φ(M̃) ∩ Λ′ by Λ. Note that Λ is empty if M̃ is
compact, i.e. |π1(M)| <∞.

As shown above, the image of the boundary of M̃ consists of disjoint geodesic
hyperspheres. The image Φ(M̃) is hence of the form

C = C(εi, pi,Λ) := Sn \

 ⋃
i∈π0(∂M̃)

Dεi(pi) ∪ Λ

 ,

where, by injectivity, the Dεi(pi) are geodesic balls in Sn with disjoint closures.
Then Φ: M̃ → C ⊆ Sn is a conformal diffeomorphism as claimed. �

3.3. Extension of the metric

As we have seen, any M satisfying the hypotheses of Theorem I can be
conformally covered by a subset C ⊆ Sn as above. We want to argue similarly
to the simply-connected case, but certain problems arise: First of all, if M is not
simply-connected, then the image of M̃ under the developing map has more than
one “hole” Dεi(pi) and if π1(M) is infinite, then the limit set Λ is nonempty.

This makes it impossible to apply Proposition 2.5.2 to (Φ−1)∗g̃ directly as we
did in the simply-connected case: First of all, Proposition 2.5.2 does not apply
when Λ 6= ∅ and secondly, the metric (Φ−1)∗g̃ does not agree with the standard
metric on the boundary ∂C as required. Utilising Proposition 2.3.7 as in the
simply-connected case, we could ensure this for one boundary component ∂Dεi(pi),
but then (Φ−1)∗g̃ = gSn on the other boundary components would immediately
contradict the condition that they are isometric with Σρ. We thus have to argue
differently; let us shortly sketch the arguments:

By Proposition 3.2.1, the universal covering of M is isometric to a manifold of
the form (C, h), where h := (Φ−1)∗g̃ and C is as in the statement of the proposition.
Up to a conformal transformation we will be able to assume Dεi(pi) = Dπ−ρ(N) for
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one particular i and h = gSn on its boundary Σπ−ρ(N) = Σρ(S), where S = −N .
As h is conformally equivalent to gSn , we may write h = u

4
n−2 gSn , where u satisfies

u = 1 on Σρ(S),
∂u
∂η ≥ 0 on Σρ(S),

−∆u ≥ n(n−2)
4

(
u
n+2
n−2 − u

)
in int(C),

by the conformal scalar and mean curvature equations (1.1) and (1.2).
Our aim is to show u = 1 on C which will imply Theorem I. This will follow

from the Hopf lemma once we know that u ≥ 1 because the latter implies that u
is superharmonic by the last equation above. To show that u ≥ 1, we first extend
the metric h to the discs Dεi(pi), then use a subsolution-supersolution method
and Proposition 2.5.2 by Hang and Wang to work out a maximum principle-type
result for positive supersolutions of

−∆u =
n(n− 2)

4

(
u
n+2
n−2 − u

)
which will be used to deduce u ≥ 1.

Interestingly, no problems arise from the occurrence of the limit set Λ: In fact,
completeness of the metric h implies that u(x)→∞ for x→ Λ (see below), hence
u ≥ 1 near Λ is always guaranteed.

In this section we discuss how to extend the metric h = (Φ−1)∗g̃ to
Sn \ (Dεi(pi) ∪ Λ) for some fixed i. The basic idea is to glue in spherical caps
Dπ−ρ along the boundaries; we make this construction more explicit below. The
important part is that the resulting metric is continuous (in fact locally Lipschitz)
and satisfies Scal ≥ n(n− 1) in a weak sense, see Proposition 3.3.1 below.

In Section 3.4, we will then show that the extended metric is isometric with
the standard one contradicting the existence of those caps.

Pick any i. For every j 6= i, we extend the metric h to Dεj (pj) in the following
way:

Let {S,N} be a pair of antipodal points. By assumption, (Σεj (pj), h|Σεj (pj)) is
isometric to Σρ(S) with the standard metric, therefore Proposition 2.3.7 guarantees
the existence of a Möbius transformation φj with φj(Dπ−ρ(N)) = Dεj (pj) such
that φ∗jh agrees with the standard metric on Σπ−ρ(N) = Σρ(S).

Then hj := φ∗jh is a metric on the set Cj := φ−1
j (C) which is of a similar form

as C (with different parameters) and where one of the balls – corresponding to
the ball Dεj (pj) for our fixed j – is Dπ−ρ(N). As hj is conformal to the standard
metric, we may write

hj = u
4

n−2

j gSn ,
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for some function uj . By construction and assumption, we have that hj coincides
with the standard metric on Σρ(S), Scal(hj) ≥ n(n− 1) and the mean curvature
of Σρ(S) is at least Hρ. In terms of uj , this becomes:

uj = 1 on Σρ(S),
∂uj
∂η ≥ 0 on Σρ(S),

−∆uj ≥ n(n−2)
4

(
u
n+2
n−2

j − uj
)

in int(Cj),

Hence the function ūj defined by

ūj(x) :=

{
1 if x ∈ Dπ−ρ(N),

uj(x) if x ∈ Cj

extends uj to Cj ∪Dπ−ρ(N) and is locally Lipschitz. Now extend hj by setting

h̄j := ū
4

n−2

j gSn .

Pulling back h̄j with φ−1
j , we obtain a metric h̃j on C ∪Dεj (pj) extending h.

Repeating the construction for all j 6= i, we combine all the extensions by setting

h̃(x) := h̃j(x) if x ∈ C ∪Dεj (pj).

Using this extension, we show:

Proposition 3.3.1. The metric h := (Φ−1)∗g̃ can be extended to a metric h̃
on Sn \ (Dεi(pi) ∪ Λ) which is locally Lipschitz and satisfies Scal(h̃) ≥ n(n − 1)

weakly in the sense that h̃ = ũ
4

n−2 gSn with

−∆ũ ≥ n(n− 2)

4

(
ũ
n+2
n−2 − ũ

)
weakly. With respect to h̃, the boundary ∂Dεi(pi) has mean curvature at least Hρ

and is isometric to Σρ.

Proof. Writing h̃ constructed above as

h̃ = ũ
4

n−2 gSn ,

it remains to show that the extension ũ satisfies

−∆ũ ≥ n(n− 2)

4

(
ũ
n+2
n−2 − ũ

)
(3.3.1)

weakly. Note that, by construction, ũ satisfies (3.3.1) in int(C) and on every
Dεj (pj), so we only need to take care of the boundary values.

Let Hj = cot(εj) > 0 be the mean curvature of ∂Dεj (pj) with respect to the
spherical metric and computed with respect to the outer unit normal η = −ν
(pointing into Dεj (pj)).

Since, by construction, (Dεj (pj), h̃) is isometric to Dπ−ρ with the standard
metric, the mean curvature of the boundary with respect to h̃ viewed from the
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inside is −Hρ. Writing

∂ũ

∂η±
(x) := lim

ε→0+

ũ(cos(±ε)x+ sin(±ε)η)− ũ(x)

±ε
= − ∂ũ

∂ν∓
(x)

for the one-sided derivatives, this implies

n− 2

2
(−Hρ)ũ

n
n−2 =

n− 2

2
Hj ũ+

∂ũ

∂ν−

on ∂Dεj (pj). By hypothesis on h̃, we also have

n− 2

2
Hρũ

n
n−2 ≤ n− 2

2
H(h̃)ũ

n
n−2 = −n− 2

2
Hj ũ+

∂ũ

∂η−
.

Adding these inequalities, we obtain

∂ũ

∂ν−
+

∂ũ

∂η−
≥ 0, i.e.

∂ũ

∂ν−
≥ − ∂ũ

∂η−
=

∂ũ

∂ν+
.

Let ϕ ∈ D+(Sn \ (Dεi(pi) ∪ Λ)) = {φ ∈ C∞c (Sn \ (Dεi(pi) ∪ Λ)) | φ ≥ 0} be a
smooth test function. Using Green’s formula, we have:

∫
Sn\(Dεi (pi)∪Λ)

ũ(−∆ϕ)

=

∫
C
ũ(−∆ϕ) +

∑
j 6=i

∫
Dεj (pj)

ũ(−∆ϕ)

=

∫
C
ϕ(−∆ũ) +

∑
j 6=i

∫
Dεj (pj)

ϕ(−∆ũ)

−
∫
∂C

(
ũ
∂ϕ

∂η
− ϕ ∂ũ

∂η−

)
−
∑
j 6=i

∫
∂Dεj (pj)

(
ũ
∂ϕ

∂ν
− ϕ ∂ũ

∂ν−

)

=

∫
C
ϕ(−∆ũ) +

∑
j 6=i

∫
Dεj (pj)

ϕ(−∆ũ)

+

∫
∂C
ϕ

(
∂ũ

∂ν−
− ∂ũ

∂ν+

)

≥ n(n− 2)

4

∫
C
ϕ
(
ũ
n+2
n−2 − ũ

)
+
∑
j 6=i

∫
Dεj (pj)

ϕ
(
ũ
n+2
n−2 − ũ

)
=
n(n− 2)

4

∫
Sn\(Dεi (pi)∪Λ)

(
ũ
n+2
n−2 − ũ

)
ϕ

as claimed. �
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3.4. Conclusion

Using the extension of the metric constructed above, we will now conclude the
proof of Theorem I. This will be done at the end of this section, where we also
briefly recall all previous steps for the reader’s convenience. Prior to that, we work
out some consequences and extensions to Proposition 2.5.2 which will be used in
the proof.

Note that we can interchangeably work on either the sphere or Euclidean space,
as both are conformally equivalent via a stereographic projection π. Working in
Rn has the advantage that the conformal scalar curvature equation is simpler
when the background metric has vanishing scalar curvature, but we find that the
argumentation is clearer when presented on the sphere.

However, to demonstrate how both settings may be interchanged, we begin by
presenting an analogue of Proposition 2.5.2 for spherical metrics on the unit ball.
Observe that (π−1)∗gSn = w

4
n−2 gRn , where

w(x) :=

(
2

1 + |x|2

)n−2
2

.

Our first result is:

Corollary 3.4.1. Let Ω ⊆ B1 be open with smooth boundary and g̃ = u
4

n−2 gRn

be a metric on Ω in the conformal class of the standard metric. Suppose that

i) Scal(g̃) ≥ n(n− 1),
ii) along the boundary ∂Ω, we have u = w.

Then u ≥ w and H(g̃) ≤ H(w
4

n−2 gRn).

Note that we did not assume Ω to be connected. In fact, connectedness in
Proposition 2.5.2 is only needed to ensure u = 1 on the whole of Ω (and not just a
connected component) provided H(ḡ) = H(gSn) at a point.

Proof. We have

g̃ = u
4

n−2 gRn =
(
uw−1

) 4
n−2 w

4
n−2 gRn =:

(
uw−1

) 4
n−2 ḡ.

Thus
π∗g̃ =

((
uw−1

) 4
n−2 ◦ π

)
π∗ḡ =

((
uw−1

)
◦ π
) 4
n−2 gSn

and π∗g̃ satisfies the hypotheses of Proposition 2.5.2 by our assumptions on g̃.
Applying it to all connected components of π−1(Ω), we obtain

(
uw−1

)
◦π ≥ 1 and

H(π∗g̃) ≤ H(gSn), thus u ≥ w and H(g̃) ≤ H(w
4

n−2 gRn). �

We furthermore obtain that condition (ii) can be weakened to u ≥ w on ∂Ω.
For our purposes, it is important to note that this result is valid even for continuous
conformal deformations of the standard metric:
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Proposition 3.4.2. Let Ω ⊆ B1 be open with smooth boundary and u ∈ C0(Ω)

be a positive, continuous function on Ω. Suppose

i) u is a weak solution to

−∆u ≥ n(n− 2)

4
u
n+2
n−2 ,

ii) u ≥ w along the boundary ∂Ω.

Then u ≥ w on Ω.

Note that condition (i) corresponds to Scal(u
4

n−2 gRn) ≥ n(n− 1).

Proof. We define u := inf{u(x) | x ∈ Ω} > 0 and furthermore denote by
m := min{u, 1} ≤ min{w(x) | x ∈ Ω}. Consider the boundary value problem{

−∆f = n(n−2)
4 f

n+2
n−2 in Ω,

f(x) = w(x) on ∂Ω.
(3.4.1)

Then u is a supersolution while the constant function m is a subsolution with
u ≥ m. Hence there exists a solution v of (3.4.1) with

u ≥ v ≥ m > 0,

see e.g. the paper [CS87] by Clément and Sweers. Their proof is based on the
Schauder fixed point theorem (rather than the method of monotone iterations)
which makes it possible to obtain the result even for continuous u.

The solution v obtained by the above method is continuous and bounded.
Using that v > 0 solves (3.4.1), it thus follows that v is smooth by standard
regularity theory. Consider the metric g̃ := v

4
n−2 gRn : As v is a solution to (3.4.1),

we have Scal(g̃) = n(n− 1) and v = w on ∂Ω, hence Corollary 3.4.1 is applicable
and implies

u ≥ v ≥ w

on Ω as claimed. �

Using a stereographic projection as in the proof of Corollary 3.4.1, we obtain
an analogous result for domains in the hemisphere which generalises a part of
Proposition 2.5.2:

Corollary 3.4.3. Let Ω ⊆ Sn+ be open with smooth boundary, u ∈ C0(Ω) be
positive. Assume

i) u is a weak solution to

−∆u ≥ n(n− 2)

4

(
u
n+2
n−2 − u

)
,

ii) u ≥ 1 along the boundary ∂Ω.

Then u ≥ 1 on Ω.
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As announced in the introduction to Section 3.3, we will now argue why a
possible limit set Λ does not give rise to problems in our further discussion: The
following proposition implies that Corollary 3.4.3 still holds if there is a nonsmooth
part of the boundary on which u is not necessarily defined or continuous, provided
that we a priori know u > 1 near that part anyway.

In the statement of the proposition below, Σ and Λ are not assumed to be
sphere and limit set, respectively, but the result will be applied to that case in our
later discussion, hence our choice of symbols. We will make use of the case λ =∞
in which u can be seen as a continuous function with values in R+ ∪ {∞}.

Proposition 3.4.4. Let Ω ⊆ Sn+ be open with boundary ∂Ω = Σ ∪ Λ, where
Σ and Λ are closed and disjoint and Σ is smooth. Let u ∈ C0(Ω ∪ Σ) be positive.
Assume

i) u is a weak solution to

−∆u ≥ n(n− 2)

4

(
u
n+2
n−2 − u

)
,

ii) u ≥ 1 along Σ and λ := lim infx→Λ u(x)− 1 > 0.

Then u ≥ 1 on Ω.

Proof. To apply Corollary 3.4.3, we construct an open set Ωε with smooth
boundary containing u−1((0, 1 + λ

2 )).
Let dΛ(x) := inf{dSn(x, y) | y ∈ Λ} denote the distance function to Λ and set

Dε(Λ) = {x ∈ Ω | dΛ(x) < ε}. As Λ and Σ are closed, thus compact, and disjoint,
they have positive distance. Hence there is ε > 0 so that D5ε(Λ) ∩Σ = ∅. Since
λ > 0, we may further decrease ε to ensure u > 1 + λ

2 on D5ε(Λ).
Let δ ∈ C0(D5ε(Λ)) be a continuous function which is smooth onD4ε(Λ)\Dε(Λ)

and approximates dΛ in the sense that

|δ(x)− dΛ(x)| < ε for x ∈ D5ε(Λ).

In particular, δ is smooth at all x with δ(x) ∈ (2ε, 3ε), therefore Sard’s theorem
implies that we may pick a regular value ξ of δ in that interval. Set

Λε := δ−1((−ε, ξ)) and Ωε := Ω \ Λε.

Then ∂Ωε = Σ ∪ ∂Λε which is smooth because ξ is a regular value and Σ does not
intersect ∂Λε. Furthermore, we have Λε ⊆ D5ε(Λ) and thus u > 1 + λ

2 on Λε, so
u ≥ 1 on ∂Ωε.

Corollary 3.4.3 implies that u ≥ 1 on Ωε, so u ≥ 1 on Ω. �

We can now finish the proof of Theorem I.
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Proof (Theorem I). Let us quickly recall the previous steps:
Let (M, g) be a manifold as in the statement of Theorem I. In Proposition 3.2.1

we have seen that the developing map Φ: M̃ → Sn from the universal covering is
injective, hence (M̃, g̃) is isometric to a set C ⊆ Sn of the form

C = Sn \

 ⋃
i∈π0(∂M̃)

Dεi(pi) ∪ Λ

 ,

equipped with the pulled-back metric h :=
(
Φ−1

)∗
g̃. In Proposition 3.3.1, we

have shown how to extend this metric to the geodesic balls Dεi(pi) for all but one
(arbitrary) i to obtain a continuous metric h̃ on Sn \ (Dεi(pi) ∪ Λ).

Let {S,N} be a pair of antipodal points. By pulling back h̃ with a Möbius
transformation as in Proposition 2.3.7, we may assume that Dεi(pi) = Dπ−ρ(N)

and h̃ restricted to the boundary ∂Dπ−ρ(N) = Σρ(S) coincides with the restriction
of the standard metric gSn .

Then h̃ is a metric on the set Sn \ (Dπ−ρ(N) ∪ Λ) = Dρ(S) \ Λ. We will
henceforth omit the center S in our notation and simply write Dρ and Σρ.

As h̃ is conformally equivalent to gSn , there is a function u such that h̃ can
be written as h̃ = u

4
n−2 gSn . From Proposition 3.3.1 and the conformal scalar and

mean curvature equation (Equations 1.1 and 1.2), our assumptions on h̃ imply:
u = 1 on Σρ,
∂u
∂η ≥ 0 on Σρ,

−∆u ≥ n(n−2)
4

(
u
n+2
n−2 − u

)
in Dρ \ Λ.

Remark 3.4.5. The latter equation actually holds on the whole of Dρ, see
[SY88, Theorem 5.1].

As the metric h̃ is complete, it follows that u(x)→∞ uniformly for x→ Λ,
compare [SY88, Proposition 2.6]. Thus Proposition 3.4.4 is applicable and shows
u ≥ 1. It follows that

−∆u ≥ n(n− 2)

4

(
u
n+2
n−2 − u

)
≥ 0,

so u is superharmonic. On the one hand, as u ≥ 1 and u = 1 on Σρ, we have
∂u
∂η ≤ 0 there. On the other hand, we have ∂u

∂η ≥ 0 by assumption and thus
∂u
∂η = 0 along Σρ. The Hopf lemma implies that u is constant on C (recall that
C = Dρ \

(⋃
j 6=iDεj (pj) ∪ Λ

)
) and hence h̃ is the standard metric there.

As u(x) → ∞ for x → Λ, it follows that Λ is empty. Moreover, if ∂M̃ were
not connected (that is, ∂M were not connected or M were not simply-connected),
then there is an index j 6= i and a corresponding ball Dεj (pj). However, we have
just seen that h̃ agrees with the standard metric on the boundary sphere Σεj (pj).
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As Σεj (pj) ⊆ Dρ, we have εj < ρ. This would contradict the fact that – with
respect to h̃ – Σεj (pj) is isometric to Σρ.

It follows that ∂M̃ is connected, therefore ∂M is connected and M is simply-
connected. Moreover, C = Dρ and h = h̃ is the standard metric. Hence M is
isometric with Dρ. �



Chapter 4

Applications and related results

In this chapter, we discuss applications and extensions of Theorem I as well
as related results for domains in Euclidean space (Section 4.3). Our applications
include more general spherical domains in Section 4.2 and manifolds which are
not necessarily locally conformally flat, but locally conformally symmetric, see
Definition 4.4.1 below. In addition, we prove a result similar to Theorem I for
manifolds with parallel Ricci tensor: Theorem IV in Section 4.4.

4.1. Immediate extensions

In the following corollary, we collect some small extensions to Theorem I which
we did not include in the statement for the sake of clarity and simplicity.

Corollary 4.1.1. Theorem I remains valid in the following situations:

i) If dim(M) = 2. Note that the condition to be locally conformally flat is void
in this case.

ii) The assumption on the connected components of the boundary being isometric
to Σρ can be relaxed to being simply-connected and of constant scalar curvature
csc(ρ)2(n− 1)(n− 2).

iii) The assumption on the mean curvature can be dropped provided ∂M is con-
nected, M is simply-connected and ρ = π

2 . This is impossible if ρ 6= π
2 as we

cannot distinguish Dρ from Dπ−ρ or from geodesic balls in smaller spheres.

Proof. i) follows from the results of Hang and Wang, see [HW09, The-
orem 4].

ii) This is not actually an extension as the assumptions imply that every connected
component of the boundary is isometric to Σρ: In fact, as umbilic hypersurfaces
in locally conformally flat manifolds are again locally conformally flat (see
Example 2.2.2, iii)), this is a consequence of Corollary 3.1.4.

iii) was proved in Section 3.1 �

43
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4.2. Other spherical domains

The generalization of Theorem I to arbitrary domains in a hemisphere turns
out to be quite hard. If a connected component of the boundary is not simply-
connected, then the image of the developing map will have a more complicated
boundary. This makes it difficult to extend the metric as shown in Section 3.3
and to use the assumptions on the geometry of the boundary which led to the
convenient boundary condition u = 1 on Σρ in Section 3.4.

However, making use of Theorem I directly, one obtains the following:

Theorem II. Let Ω ⊆ Sn+, n ≥ 3, be an n-dimensional manifold with boundary
such that Sn \ Ω is a smooth domain. Let (Mn, g) be a compact, connected locally
conformally flat Riemannian manifold with boundary. Assume that

i) Scal(g) ≥ n(n− 1) or Scal(g) attains its minimum at the boundary,
ii) There exists an isometry φ : ∂M → ∂Ω with the property that φ∗II∂Ω = II∂M

and φ∗
(
RS

n
(·, η∂Ω, η∂Ω, ·)

)
= RM (·, η∂M , η∂M , ·).

Then (M, g) is isometric to Ω with the standard metric.

The main idea of the proof is to apply Theorem I to N+ := M ∪φ (Sn+ \ Ω).
This technique makes it necessary to strengthen the assumption on the geometry
of the boundary of M (compared to Theorem I) to obtain a metric on N+ which
is regular enough. We think that this should not be necessary, but lack a proof at
the moment. However, we suspect:

Conjecture 4.2.1. Theorem II holds provided

i) Scal(g) ≥ n(n− 1),
ii’) There exists an isometry φ : ∂M → ∂Ω with II∂M ≥ φ∗II∂Ω.

The rest of this section is devoted to the proof of Theorem II.

Proof (Theorem II). Consider the manifold N := M ∪φ (Sn \ Ω). By
Lemma 5.1.1, the canonical metric h is C2,1 on N and smooth up to the image
of the boundary ∂M . Furthermore, N is connected. As the metric is C2, the
scalar curvature is continuous, so Scal(g) = n(n − 1) at the boundary. Hence
Scal(g) ≥ n(n− 1) if Scal(g) attains its minimum at the boundary.

To apply Thorem I to N+, we have to check the following: First of all, we need
to ensure that N is locally conformally flat; then we need to show that Thorem I
holds for manifolds with C2,1-metrics.

Lemma 4.2.2. N is locally conformally flat.

As the proof basically repeats the arguments from the proof of the Wey-
Schouten theorem (Theorem 5.2.1 and Proposition 5.2.2), we recommend the
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reader to consult Section 5.2 at this point. The key observation is the fact that
g ∈ C2 suffices to construct f ∈ C2 as in the proof of Proposition 5.2.2 and g ∈ C3

is used only at the point where we check that e2fg is flat. Here, this can be
circumvented by using the fact that the metrics on M and Sn \Ω are (C∞) locally
conformally flat.

Proof. We let Σ be the image of the boundaries of M and Ω, respectively.
Since both M and Sn are locally conformally flat, every point not contained in Σ

has a neighbourhood conformally equivalent to an open set of Rn. It remains to
show this for points p ∈ Σ.

Again, since both M and Sn are locally conformally flat, there exist f1 locally
defined in a neighbourhood of p in M and f2 locally defined in a neighbourhood
of p in Sn \ Ω such that the metrics e2f1g and e2f2gSn are flat. We fix c ∈ R and
ω0 ∈ T ∗pM . In view of Corollary 5.2.3, f1 and f2 are unique (in a neighbourhood
of p in M and Sn \ Ω, respectively) if we assume that f1(p) = f2(p) = c and
df1(p) = df2(p) = ω0.

We check that such fi agree along Σ and that they can be glued together to
a C2-function. To do so, we construct a locally defined function f ∈ C2 which
agrees with fi on the respective domains of definition.

Recall the proof of Theorem 5.2.1: To find a function f such that e2fg is flat,
we need to solve

∇ω = S + ω ⊗ ω − 1

2
|ω|2g. (4.2.1)

for a one-form ω, which will then be df . Using the vanishing of the Weyl- and
Cotton tensor, this is done using a version of the Frobenius theorem (Proposi-
tion 5.2.2). We will repeat this procedure in Fermi coordinates: Pick a chart (U, x)

of N around p with x(p) = 0, M ∩ U = {xn ≤ 0}, (Sn \ Ω) ∩ U = {xn ≥ 0} so
that Σ ∩ U = {xn = 0}. In local coordinates, (4.2.1) is equivalent to

∂ωj
∂xi

= Sij + ωiωj −
1

2
|ω|gij +

n∑
k=1

Γ k
ij ωk =: (Xi)j . (4.2.2)

The solution is obtained inductively for k = 1, . . . , n where in each step, we define
ω(t1, . . . , tk−1, tk, 0, . . . , 0) to be the unique solution βk(tk) ofβk(0) = ω(t1, . . . , tk−1, 0, 0, . . . , 0),

β′k(τ) = Xk(t
1, . . . , tk−1, τ, 0, . . . , 0, βk(τ)),

(4.2.3)

with ω(0) = ω0. A unique solution exists because Xk is Lipschitz and hence ω is
differentiable. As X is smooth outside Σ, the same holds for ω. Let f be a local
primitive of ω defined on a neighbourhood V of p with f(p) = c. Then f ∈ C2(V )
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and f ∈ C∞(V \ (V ∩Σ)) which by construction and uniqueness implies that e2fh

is flat and f = fi i = 1, 2 wherever both sides are defined. �

Remark 4.2.3. From the proof, we see that a manifold with C1-metric obtained
by gluing locally conformally flat manifolds is not necessarily locally conformally
flat again: In fact, unique solvability of (4.2.3) was crucial in order to be able to
glue the functions fi together. If the metric is only C1, then X as in equation
(4.2.2) is not well-defined on Σ as it depends on the metric to second order. It
follows that the unique solutions ω1, ω2 to (4.2.1) computed on both sides of Σ

will in general not agree on Σ.

As N is locally conformally flat, so is N+ := M ∪φ (Sn+ \ Ω). If we can apply
Theorem I to N+, it will imply that N+ is isometric with Sn+. However, the metric
on N+ is merely C2,1, so we need:

Lemma 4.2.4. Theorem I is valid for N+.

Proof. The crucial point is the injectivity of the developing map; all other
arguments are certainly valid for C2,1-metrics. To show that the developing map
of N+ is injective, we apply Theorem 3.2.4 to N . We will take this for granted for
now and provide a proof in Section 5.3 in order to point out that it still applies in
a C2,1-setting. �

Thus N+ is isometric with Sn+. Hence N is isometric with Sn. The result now
follows from:

Lemma 4.2.5. Let U ⊆ Sn be a smooth domain and M a manifold with
boundary. Let φ : ∂M → ∂U be an isometry and suppose that M ∪φ U is isometric
to Sn. Then M is isometric to Sn \ U .

Proof. Let Ψ: M ∪φ U → Sn be an isometry. By restricting, we obtain
a locally defined isometry ψ := Ψ|U : U → Ψ(U) of Sn. As all locally defined
isometries of Sn with connected domain of definition come from global isometries,
we can extend ψ to an isometry ψ̃ of Sn. Then ψ̃−1 ◦Ψ|M is an isometry between
M and Sn \ U . �

This completes the proof of Theorem II. �

4.3. Domains in Euclidean space

Another possible application of the technique employed to prove Theorem I
are locally conformally flat manifolds with nonnegative scalar curvature. Here,
our aim is to show that – under the correct assumptions on the boundary – these
manifolds are isometric to domains in Euclidean space. As we did for spherical
domains, we first focus on geodesic balls.



4.3. DOMAINS IN EUCLIDEAN SPACE 47

Results of this type have been obtained by, for example, Miao [Mia02], Shi and
Tam [ST02] and Raulot [Rau08]: Using a version of the positive mass theorem for
metrics which fail to be differentiable along a hypersurface, Miao was able to prove
that a metric on the unit ball with nonnegative scalar curvature agreeing with the
standard metric on the boundary with mean curvature at least 1 must be isometric
to the standard metric ([Mia02, Corollary 1.1]). Using a similar technique, Shi
and Tam were able to extend this result to more general domains and proved:

Theorem 4.3.1 ([ST02, Theorems 4.1 and 4.2]). Let (M, g) be a Riemannian
spin manifold with nonnegative scalar curvature and with boundary components
Σi, 1 ≤ i ≤ k, each with positive mean curvature H. Assume there are isometric
embeddings ιi : Σi → Rn such that the image of Σi is a strictly convex hypersurface
with mean curvature H(i) (with respect to the Euclidean metric). Then, for all
1 ≤ i ≤ k, ∫

Σi

H dS ≤
∫
ιi(Σi)

H(i) dS.

If equality holds for some i then ∂M is connected and M is isometric to a domain
in Rn.

In 2008, Raulot [Rau08, Corollary 5] gave an alternative proof of Miao’s result
for spin manifolds without using the positive mass theorem.

We are going to give an independent proof of this result for locally conformally
flat manifolds with umbilic boundary, while we do not assume the manifold to be
spin. Recall that we write Br for a ball of radius r in Rn and Sr = ∂Br. Precisely,
we show:

Theorem III. Let (Mn, g), n ≥ 3, be a compact connected locally conformally
flat Riemannian manifold with boundary. Assume that

i) Scal(g) ≥ 0 everywhere,
ii) The boundary ∂M is umbilic and every connected component is isometric to

Sr, with mean curvature H(g) ≥ Hr = r−1.

Then (M, g) is isometric to Br with the standard metric.

Proof. We follow the lines of the proof of Theorem I, but the argument turns
out to be easier in the end. This is mainly due to the fact that – in contrast
to the spherical metric – the Euclidean metric has vanishing scalar curvature
which simplifies the conformal scalar curvature equation (1.1) and consequently
the application of the Hopf lemma.

By Lemma 3.2.2, the Yamabe invariant of (M, g) is positive so Proposition 3.2.1
shows that the developing map Φ: M̃ → Sn is injective.
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Composing with a stereographic projection π and a conformal transformation,
we may assume that the image is

A = A(εi, pi,Λ) := Br \

 ⋃
i∈π0(∂M̃)

Bεi(pi) ∪ Λ

 .

Write Ψ := π ◦Φ and h := (Ψ−1)∗g̃. Reasoning as in the proof of Proposition 2.3.7
we can pull back h with a Möbius transformation so that we may assume that h
agrees with the Euclidean metric on ∂Br. Writing

h = v
4

n−2 gRn ,

we obtain v ∈ C∞(A) satisfying
v = 1 on ∂Br,
∂v
∂η ≥ 0 on ∂Br
−∆v ≥ 0 on A.

(4.3.1)

We claim that v attains its minimum at the boundary ∂Br: In fact, since
(A, h) is complete (as a metric space), we have v(x) → ∞ for x → Λ (see
[SY88, Proposition 2.6]). Hence v attains its minimum; this can only occur at a
point x ∈ ∂Br or x ∈ ∂Bεi(pi) for some i because v is superharmonic.

For the sake of contradiction assume that v attains its minimum at a point
x ∈ ∂Bεi(pi). Let η be the interior unit normal of Bεi(pi) with respect to the
euclidean metric (pointing inwards Bεi(pi)). By assumption, the mean curvature
H(h) of Sεi(pi) with respect to h and η is ≤ −r−1. Moreover, its mean curvature
with respect to the Euclidean metric is Hεi = ε−1

i . From the conformal mean
curvature equation (Equation (1.2)), we obtain

∂v

∂η
= −∂v

∂ν
=
n− 2

2

(
Hεiv −H(h)v

n
n−2

)
> 0

as v > 0. This is a contradiction to the fact that x is a minimum and we have
proven that v ≥ 1.

As v = 1 on the boundary ∂Br, it follows that v attains its minimum there,
therefore ∂v

∂η ≤ 0. On the other hand, we have ∂v
∂η ≥ 0 by Equation (4.3.1). The

Hopf lemma now implies that v = 1 on A and thus h is the standard metric
gRn there. This contradicts the fact that, with respect to h, the Sεi(pi) are
isometric to Sr. Hence there are no Bεi(pi), ∂M is connected, Λ is empty and M
is simply-connected and isometric to Br. �

By employing the same techniques as in the proof of Theorem II, we can
extend Theorem III to more general subsets of Euclidean space. The result is:



4.4. LOCALLY CONFORMALLY SYMMETRIC MANIFOLDS 49

Corollary 4.3.2. Let Ω ⊆ Rn, n ≥ 3, be an n-dimensional manifold with
nonempty boundary such that Rn\Ω is a smooth domain. Let (Mn, g) be a compact,
connected locally conformally flat Riemannian manifold with boundary. Assume
that

i) Scal(g) ≥ 0 or Scal(g) attains its minimum at the boundary,
ii) There exists an isometry φ : ∂M → ∂Ω with the property that φ∗II∂Ω = II∂M ,
iii) RM (·, η, η, ·) = 0.

Then (M, g) is isometric to Ω with the standard metric.

4.4. Locally conformally symmetric manifolds and manifolds with
parallel Ricci tensor

Another attempt to generalize Theorem I is to weaken the assumption that
the manifold in consideration is locally conformally flat. As Min-Oo’s conjecture
is incorrect (see Section 2.5), we need other requirements to make a statement like
Theorem I hold. Also, local conformal flatness was used in a crucial way to prove
it using the developing map. This makes it difficult to replace the condition of
local conformal flatness with something sensible and still preserve correctness of
the statement of Theorem I.

In this section, we discuss two approaches using locally conformally symmetric
manifolds, see Definition 4.4.1 below, and manifolds with parallel Ricci tensor.

Assume that n ≥ 4. Recall from Theorem 2.2.3 that a Riemannian manifold
is locally conformally flat if and only if its Weyl tensor W vanishes. Hence a
natural class of manifolds to consider is the class of locally conformally symmetric
manifolds:

Definition 4.4.1. We say that a Riemannian manifold (M, g), dim(M) ≥ 4,
is locally conformally symmetric1 if its Weyl tensor is parallel.

That is, instead of W = 0, we only assume ∇W = 0. Of course, locally
conformally flat spaces are locally conformally symmetric. From the decomposition
W = R − S 7 g, cf. Equation 2.2.3, we see that locally symmetric spaces (i.e.
∇R = 0) are also locally conformally symmetric. One can show that the converse
also holds: By a result of Derdziński and Roter, any locally conformally symmetric
manifold is locally conformally flat or locally symmetric, see [DR77, Theorem 2].
The case that M is locally conformally flat is handled in Theorem I.

If M is locally symmetric and n ≥ 4, it admits a non-totally geodesic umbilical
hypersurface if and only if M is locally conformally flat by a result of Chen

1In accordance with Definition 2.2.1, we prefer the term locally conformally symmetric over
conformally symmetric.
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[Che80, Theorem 4.1]. Thus, locally symmetric spaces are not of special interest
for us. Instead, we study manifolds with parallel Ricci tensor, that is, instead of
∇R = 0, we merely assume ∇Ric = 0.

We will prove:

Theorem IV. Let (Mn, g), n ≥ 3, be a compact connected Riemannian
manifold with boundary, 0 < ρ ≤ π

2 . Assume that the Ricci tensor is parallel and

i) Scal(g) ≥ n(n− 1) everywhere,
ii) The boundary ∂M is umbilic with mean curvature H(g) = Hρ and every

connected component is isometric to Σρ.

Then (M, g) is isometric to Dρ with the standard metric.

Proof. We proceed in three steps: We first show that Ric ≥ n − 1 at all
points x ∈ ∂M , then use ∇Ric = 0 to conclude Ric ≥ n− 1 everywhere. In the
last step, we show that the boundary is connected, therefore Theorem 2.5.3 by
Hang and Wang (or [HW09, Theorem 2] in the case of a whole hemisphere) implies
that (M, g) is isometric to Dρ.

Step 1: Ric ≥ n− 1 on the boundary. Let x ∈ ∂M , X ∈ Tx∂M with |X| = 1,
η a unit normal at x. Recall that every connected component of the boundary is
a sphere of radius sin(ρ), i.e. with constant sectional curvature csc2(ρ), and mean
curvature H = cot(ρ). Using that the boundary is umbilic, the Gauß equation
[Bes87, Theorem 1.72 c)] implies

RicM (X,X) = Ric∂M (X,X) +RM (X, η, η,X)− (n− 2)H2, (4.4.1a)

ScalM = Scal∂M +2 RicM (η, η)− (n− 1)(n− 2)H2. (4.4.1b)

Therefore

2 RicM (η, η) = ScalM −Scal∂M +(n− 1)(n− 2)H2

≥ n(n− 1) + (n− 1)(n− 2)
(
cot2(ρ)− csc2(ρ)

)
= 2(n− 1).

Since ∂M is umbilic with constant mean curvature, the Codazzi-Mainardi
equation [Bes87, Theorem 1.72 d)] reads〈

RM (X,Y )Z, η
〉

= 〈(∇XII)(Y,Z), η〉 − 〈(∇Y II)(X,Z), η〉 = 0

for all vector fields X,Y, Z ∈ Γ(T∂M). Hence also Ric(X, η) = 0 along ∂M .
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Next, we prove that Ric(X,X) = c|X|2 for some c ∈ R and all X ∈ Tx∂M :
Let X,Y ∈ Tx∂M with |X| = |Y | = 1. As every connected component of ∂M
is isometric to a sphere, we know that the holonomy group (with respect to the
induced connection) of the connected component containing x is isomorphic to
SO(n− 1). Hence there exists a curve γ : [0, 1]→ ∂M with γ(0) = γ(1) = x and
P (γ)1

0X = Y , where P (γ) denotes parallel transport in ∂M along γ. We write
V (t) := P (γ)t0X for short.

Since V is parallel with respect to the induced connection of ∂M , we have
∇γ̇V = II(γ̇, V )ν. Using moreover that ∇Ric = 0 and II = Hg, we compute:

Ric(Y, Y ) =

∫ 1

0

d
dt

Ric(V (t), V (t)) dt+ Ric(X,X)

= 2

∫ 1

0
Ric (∇γ̇V (t), V (t)) dt+ Ric(X,X)

= 2

∫ 1

0
Ric (II(γ̇(t), V (t)) · ν(γ(t)), V (t)) dt+ Ric(X,X)

= 2H

∫ 1

0
〈γ̇(t), V (t)〉Ric (ν(γ(t)), V (t)) dt+ Ric(X,X)

= Ric(X,X)

because Ric(ν, V ) = 0. This implies Ric(X,X) = c|X|2 for some constant c for all
X ∈ Tx∂M . We will now show that c ≥ n− 1:

Let {E1, . . . , En−1} be an orthonormal basis of Tx∂M . Using equation (4.4.1b),
we compute:

ScalM =
n−1∑
i=1

Ric(Ei, Ei) + Ric(η, η)

= c(n− 1) +
1

2

(
ScalM −Scal∂M +H2(n− 1)(n− 2)

)
= c(n− 1) +

1

2

(
ScalM +(n− 1)(n− 2)

(
cot2(ρ)− csc2(ρ)

))
= c(n− 1) +

1

2

(
ScalM −(n− 1)(n− 2)

)
.

Thus,

c =
ScalM

2(n− 1)
+
n− 2

2
≥ n− 1.

This implies Ric(X,X) ≥ (n − 1)|X|2 for all X ∈ Tx∂M . For a general
Y ∈ TxM , decompose Y = Y ⊥ + Y > into its normal and tangential component.
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Then

Ric(Y, Y ) = Ric(Y ⊥, Y ⊥) + 2 Ric(Y ⊥, Y >) + Ric(Y >, Y >)

= Ric(η, η)|Y ⊥|2 + Ric(Y >, Y >)

≥ (n− 1)|Y ⊥|2 + (n− 1)|Y >|2

= (n− 1)|Y |2.

Step 2: Ric ≥ n−1 everywhere. We have shown that Ric ≥ (n−1) at x ∈ ∂M .
Now, for y ∈ M and v ∈ TyM with |v| = 1, let γ : [0, 1] → M be a curve with
γ(0) = x, γ(1) = y. Let V be the parallel vector field along γ with V (1) = v.
Then

Ric(v, v) =

∫ 1

0

d
dt

Ric(V (t), V (t)) dt+ Ric(V (0), V (0))

≥
∫ 1

0
(∇γ̇ Ric)(V (t), V (t)) dt+ (n− 1)|V (0)|2

= n− 1.

Thus, Ric ≥ n− 1 at y.

Step 3: The boundary is connected. To show that ∂M is connected we assume
the contrary. Let C1 be a connected component of ∂M and set C2 := ∂M \C1. As
M is compact, there exists l > 0 and a shortest unit speed geodesic γ : [0, l]→M

joining C1 and C2. As γ is shortest, the image of γ lies in the interior of M except
at its endpoints, i.e. γ([0, l]) ∩ ∂M = {γ(0), γ(l)}.

Let {E1, . . . , En−1} be an orthonormal basis of Tγ(0)∂M . Again because
γ is shortest, we know that γ̇(0) is perpendicular to Tγ(0)∂M and therefore
{γ̇(0), E1, . . . , En−1} is an orthonormal basis of Tγ(0)M . Extend the Ei by letting
Vi be the parallel vector field along γ with Vi(0) = Ei. This way, we obtain an
orthonormal frame {γ̇(t), V1(t), . . . , Vn−1(t)} along γ.

Let γi(s) be a variation of γ with variational vector field Vi such that the
endpoints of γi(s) lie on ∂M for all s. From the second variation formula of energy,
we obtain (cf. Remark 2.10 in Chapter 9 of [dC92]; note that do Carmo’s sign
convention for the Riemann curvature tensor R differs from ours):

0 ≤ 1

2

d2

ds2
E (γi(s))

∣∣∣∣
s=0

=

∫ l

0

(∣∣∣∇∂
∂t
Vi

∣∣∣2 −R(Vi, γ̇, γ̇, Vi)

)
dt+

〈
∇ViVi, γ̇

〉∣∣∣l
0

Taking into account that the Vi are parallel and that γ̇(0) and γ̇(l) are inner
and outer unit normals, we obtain

0 ≤ −
∫ l

0
R(Vi, γ̇, γ̇, Vi) dt− IIγ(l)(Vi, Vi)− IIγ(0)(Vi, Vi).
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Summing over all 1 ≤ i ≤ n− 1, we arrive at

0 ≤ −
∫ l

0
Ric(γ̇, γ̇) dt− 2(n− 1)H

≤ −(n− 1)(2H + l),

which contradicts our assumptions H = Hρ = cot(ρ) ≥ 0 and l > 0. Hence ∂M is
connected.

From Theorem 2.5.3 (for ρ < π
2 ) and [HW09, Theorem 2] (ρ = π

2 ) it follows
that (M, g) is isometric to Dρ. �

Remark 4.4.2. Step 3 of the proof can of course be applied to a more general
setting: An analogous calculation implies that the distance of two connected
components of a disconnected boundary ∂M in a compact Riemannian manifold
can be estimated in terms of lower bounds on the Ricci and mean curvature. To
be precise, assume that H ≥ h ∈ R and Ric ≥ κ(n − 1), where κ ∈ R, then the
distance l of two connected components satisfies

lκ ≤ −2h. (4.4.2)

In particular, if κ and h can be chosen in a way so that (4.4.2) cannot be satisfied
with l > 0, then ∂M is connected.

A similar computation as in the first step of the proof gives the following:

Corollary 4.4.3. The second condition in Theorem IV can be replaced by

ii’) The boundary ∂M is umbilic with mean curvature H(g) ≥ Hρ and every
connected component is isometric to Σρ. There exists a point x ∈ ∂M

where H(g) = Hρ and sec(X, η) ≥ 1 for all X ∈ Tx∂M .

Proof. Again, the main argument is to show Ric ≥ n− 1 at x ∈ ∂M ; then
the statement will follow as above.

Let X ∈ Tx∂M with |X| = 1. From Equation (4.4.1a), we obtain

RicM (X,X) = (n− 2)(csc(ρ)2 − cot(ρ)2) + sec(X, η) ≥ n− 1.

As in the proof of Theorem IV, it follows that Ric(η, η) ≥ n− 1. Also, since the
boundary is umbilic and its mean curvature attains a minimum at x, we have
Ric(X, η) = 0 for all X ∈ Tx∂M by the Codazzi-Mainardi equation. As above, it
follows that Ric ≥ n− 1 at x. �

Summarizing our discussion of locally conformally symmetric manifolds, we
state:
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Corollary 4.4.4. Let (Mn, g), n ≥ 4, be a compact connected locally con-
formally symmetric Riemannian manifold with boundary. Assume that

i) Scal(g) ≥ n(n− 1) everywhere,
ii) The boundary ∂M is umbilic with mean curvature H(g) ≥ Hρ and every

connected component is isometric to Σρ.

Then (M, g) is isometric to Dρ with the standard metric.

Proof. If M is locally conformally flat, this is Theorem I. As we said above,
by the results of Derdziński and Roter [DR77, Theorem 2] and Chen [Che80,
Theorem 4.1], the only other possibility is that M is locally symmetric and ∂M is
totally geodesic, i.e. ρ = π

2 and H(g) = 0, which is covered by Theorem IV. �



Chapter 5

Proofs of selected results

In this chapter we present the proofs of some results which we referred to
in the preceding chapters but did not find substantial enough to be presented
in the main part of this thesis. We begin by discussing regularity properties of
the canonical Riemannian metric on manifolds obtained by gluing Riemannian
manifolds, then present a proof of the Weyl-Schouten theorem using a version
of the Frobenius theorem from [Spi70]. In Section 5.3, we discuss the results by
Schoen and Yau ([SY88] and [SY94]) on the injectivity of the developing map for
compact manifolds with positive scalar curvature.

5.1. Gluing Riemannian manifolds along their boundaries

In this section, we investigate the regularity of Riemannian metrics on mani-
folds obtained by gluing two Riemannian manifolds along their boundaries via a
diffeomorphism. The result is as follows:

Lemma 5.1.1. Let M , N be compact manifolds with boundaries ∂M , ∂N and
Riemannian metrics g, h, respectively. Let f : ∂M → ∂N be a diffeomorphism.
Then

i) The topological space M ∪f N = M tN/x ∼ f(x) admits the structure of a
smooth manifold such that the inclusion maps N,M →M∪fN are embeddings.
The image of the boundary has a neighbourhood diffeomorphic to ∂M× (−1, 1),
where ∂M is identified with ∂M × {0}.

ii) If f∗(h|∂N ) = g|∂M then the canonical metric g ∪f h on M ∪f N defined by
g∪f h = g on M and g∪f h = h on N is well-defined and Lipschitz continuous.

iii) If additionally f∗II∂N = −II∂M then g ∪f h is of class C1,1.
iv) If additionally f∗

(
RN (·, η∂N , η∂N , ·)

)
= RM (·, η∂M , η∂M , ·) then g ∪f h is

C2,1.

Proof. To define a smooth structure on M ∪f N , we pick an atlas as follows:
Take all charts of the interiors int(M) and int(N), these cover M ∪f N except for
the points in the boundaries. For those, apply the tubular neighbourhood theorem
to obtain neighbourhoods U, V of ∂M and ∂N , respectively and diffeomorphisms
φ : ∂M × (−ε, 0]→ U , ψ : ∂N × [0, ε)→ V with φ(·, 0) = id∂M and ψ(·, 0) = id∂N .

55
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Then define a chart by

∂M × (−ε, ε)→ U ∪f V

(x, t) 7→

φ(x, t) if t ≤ 0,

ψ(f(x), t) if t ≥ 0.

Taking the union of this chart with the charts of the interiors gives an atlas
of M ∪f N . This implies i). ii) follows since g and h are smooth on the compact
manifolds M and N , respectively, and hence Lipschitz, so g ∪f h is also Lipschitz.

For iii), we pick Fermi coordinates (x1, . . . , xn−1, t) adapted to the boundary
on M : Given coordinates x = (x1, . . . , xn−1) on ∂M and t sufficiently small, they
are defined by

(x, t) 7→ expx(tν).

The metric takes the form

g = dt2 +
n−1∑
i,j=1

gij(x, t) dxi ⊗ dxj .

On N , we pick Fermi coordinates (x1 ◦ f, . . . , xn−1 ◦ f, t).
In view of ii), we only have to check that the derivatives ∂gij

∂t and −∂hij
∂t agree

on corresponding points of the boundaries. Note that ν = ∂
∂t along ∂M . Writing

∂t := ∂
∂t and ∂i := ∂

∂xi
for short, we have

∂gij
∂t

∣∣∣∣
t=0

= g(∇∂t∂i, ∂j)|t=0 + g(∂i,∇∂t∂j)|t=0

= g(∇∂i∂t, ∂j)|t=0 + g(∂i,∇∂j∂t)|t=0

= −g(ν,∇∂i∂j)− g(∇∂j∂i, ν)

= −2IIij ,

the same calculation for h shows that g ∪f h is differentiable. The assertion on
Lipschitz derivatives follows from smoothness of g and h as above, so iii) follows.

For iv), we are left so show that the derivatives ∂2gij
∂t2

and ∂2hij
∂t2

agree along the
boundary. Note that ∇∂

∂t

∂
∂t = 0 because t 7→ expx(tν) is a geodesic. It follows that

∂2gij
∂t2

∣∣∣∣
t=0

= g(∇∂t∇∂t∂i, ∂j)|t=0 + 2g(∇η∂i,∇η∂j) + g(∂i,∇∂t∇∂t∂j)|t=0

= g(∇∂t∇∂i∂t, ∂j)|t=0 + g(∂i,∇∂t∇∂j∂t)
∣∣
t=0

+ 2g(∇η∂i,∇η∂j)

= g(RM (η, ∂i)η, ∂j) + g(∂i, R
M (η, ∂j)η) + 2g(∇η∂i,∇η∂j)

= 2
(
g(RM (η, ∂i)η, ∂j) + g(∇η∂i,∇η∂j)

)
.

The first terms agree by assumption while the second terms are of first order and
agree by iii). This proves iv). �
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A special (and very important) case to consider is the double manifold which
is obtained from a compact manifold M with boundary by gluing it with itself,
that is M̂ = M ∪id∂M M . This is often written as M ∪

∂M
(−M), where we write

−M for the second copy of M in M̂ .

Figure 2. The double manifold M̂

From Lemma 5.1.1, we obtain:

Corollary 5.1.2. Let (M, g) be a compact Riemannian manifold with bound-
ary and M̂ = M ∪

∂M
(−M) be the double manifold. Then M̂ admits the structure of

a smooth manifold and the canonical Riemannian metric ĝ is Lipschitz continuous.
Furthermore, if ∂M is totally geodesic, ĝ is C2,1.

5.2. The Weyl-Schouten theorem

In this section, we show how one can prove the Weyl-Schouten theorem stating
equivalent characterisations of locally conformally flat manifolds as presented in
Section 2.2, but omit most of the tedious calculations. For the reader’s convenience
we recall:

Theorem 5.2.1 (Weyl-Schouten). Let (M, g) be an n-dimensional Riemannian
manifold. Then

i) If n = 2, then (M, g) is locally conformally flat.
ii) If n = 3, then (M, g) is locally conformally flat if and only if the Cotton tensor

vanishes.
iii) If n ≥ 4, then (M, g) is locally conformally flat if and only if the Weyl tensor

vanishes.

Proof (following [Laf88]). In dimension two, every Riemannian manifold
is locally conformally flat due to the existence of isothermal coordinates.

For one direction in (ii) and (iii), note that the Weyl tensor (in any dimension)
and the Cotton tensor (in dimension three) are conformally invariant in the sense
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that

W (e2fg) = e2fW (g), C(e2fg) = C(g).

It follows that, if (M, g) is conformally flat, then W (g) = 0 and C(g) = 0 in
dimension three, as W (g) = C(g) = 0 for flat metrics.

For the other direction first note that in dimension three, the Weyl tensor
automatically vanishes due to its symmetries. In dimension n ≥ 3, Weyl- and
Cotton-tensor are related by the formula

∑
a∇aWaijk = n−3

n−2Cijk. Hence in
dimension n ≥ 4, the Cotton tensor vanishes if the Weyl tensor does and we may
assume W (g) = C(g) = 0. Locally, we solve for f satisfying R(e2f ) = 0:

Defining

A(f) := Hess f − df ⊗ df +
1

2
|∇f |2g

and using W = R − S 7 g with W (g) = 0, we can write the transformation law
for the curvature tensor as a (4, 0)-tensor as

R(e2fg) = e2f (R(g)−A(f) 7 g) = e2f (S(g)−A(f)) 7 g.

Hence we search for f with A(f) = S.

Claim: To solve A(f) = S locally it is necessary and sufficient to find a
one-form ω with

∇ω = S + ω ⊗ ω − 1

2
|ω|2g. (5.2.1)

Indeed, if f solves A(f) = S, then ω = df solves (5.2.1). On the other hand, if ω
solves (5.2.1), then ∇ω is symmetric. This implies that ω is closed, thus locally
exact.

Rewriting (5.2.1) in local coordinates, we obtain

∂ωj
∂xi

= Sij + ωiωj −
1

2
|ω|gij +

n∑
k=1

Γ k
ij ωk. (5.2.2)

The statement now follows from a version of Frobenius’ theorem (see Pro-
position 5.2.2 below). The integrability condition for existence of a solution of
equation (5.2.1) arises from

∇2
X,Y ω −∇2

Y,Xω = RT
∗M (X,Y )ω for all X,Y

and is equivalent to

(∇XS)(Y,Z) = (∇Y S)(X,Z) for all X,Y, Z,

that is, to C = 0. �
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We will now comment on the version of the Frobenius theorem used in the last
step of the proof. The following is found in, for instance, [Spi70, Theorem 6.1]
and can be applied to Equation (5.2.2) directly:

Proposition 5.2.2. Let U × V ⊆ Rm × Rn be open with 0 ∈ U and
Xi : U ×V → Rn, i = 1, . . . ,m, be differentiable functions. Then, for x ∈ V , there
exists a unique1 function α : W → V defined in a neighbourhood W of 0 in Rm

satisfying α(0) = x,

∂α
∂tj

(t) = Xj(t, α(t)) for t ∈W
(5.2.3)

if and only if there is a neighbourhood of (0, x) in U × V on which

∂Xi

∂tj
+

n∑
k=1

∂Xi

∂xk
Xk
j =

∂Xj

∂ti
+

n∑
k=1

∂Xj

∂xk
Xk
i (5.2.4)

for all i, j.

We again give a sketch of the proof:

Proof. Necessity of (5.2.4) follows from ∂2α
∂tj∂ti

(t) = ∂2α
∂ti∂tj

(t), Equation (5.2.3)
and the chain rule.

Assuming (5.2.4), we construct α satisfying (5.2.3) inductively as follows: We
first define α(t1, 0, . . . , 0) := β1(t1), where β1 is the solution to the ODEβ1(0) = x,

β′1(τ) = X1(τ, 0, . . . , 0, β1(τ)),

which has a unique solution for |τ | < ε1. Then

∂α

∂t1
(t1, 0, . . . , 0) = X1(t1, 0, . . . , 0, α(t1, 0, . . . , 0)).

Assuming that we have constructed α(t1, . . . , tk−1, 0, . . . , 0) satisfying (5.2.3) for
1 ≤ j ≤ k − 1 < m, we set α(t1, . . . , tk−1, tk, 0, . . . , 0) := βk(t

k), where βk solvesβk(0) = α(t1, . . . , tk−1, 0, 0, . . . , 0),

β′k(τ) = Xk(t
1, . . . , tk−1, τ, 0, . . . , 0, βk(τ)),

which again has a solution for |τ | < εk (one may have to choose ε1, . . . , εk−1

sufficiently small). Then

∂α

∂tk
(t1, . . . tk, 0 . . . , 0) = Xk(t

1, . . . , tk, 0, . . . , 0, α(t1, . . . , tk, 0, . . . , 0)) (5.2.5)

and we need to check that (5.2.3) is still satisfied for 1 ≤ j ≤ k − 1.

1More precisely: Two such functions α1 and α2 defined on W1 and W2 agree on the connected
component of W1 ∩W2 containing 0.
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To do so pick any j and define

h(τ) :=
∂α

∂tj
(t1, . . . , tk−1, τ, 0, . . . , 0)

−Xj(t
1, . . . , tk−1, τ, 0, . . . , 0, α(t1, . . . , tk−1, τ, 0, . . . , 0)).

Then h(0) = 0 by the induction hypothesis.
Using condition (5.2.4), we will derive a differential equation for h. To simplify

notation, we introduce the convention that all expressions of α are to be evaluated
at (t1, . . . , tk−1, τ, 0, . . . , 0) while all expressions of Xj are to be evaluated at
(t1, . . . , tk−1, τ, 0, . . . , 0, α(t1, . . . , tk−1, τ, 0, . . . , 0)).

We have

d
dτ
h(τ) =

∂2α

∂tk∂tj
− ∂Xj

∂tk
−

n∑
l=1

∂Xj

∂xl
∂αl

∂tk

=
∂

∂tj
(Xk)−

∂Xj

∂tk
−

n∑
l=1

∂Xj

∂xl
X l
k by (5.2.5)

=
∂Xk

∂tj
+

n∑
l=1

∂Xk

∂xl
∂αl

∂tj
− ∂Xj

∂tk
−

n∑
l=1

∂Xj

∂xl
X l
k chain rule

=
∂Xk

∂tj
+

n∑
l=1

∂Xk

∂xl

(
hl(τ) +X l

j

)
− ∂Xj

∂tk
−

n∑
l=1

∂Xj

∂xl
X l
k definition of h

=

n∑
l=1

∂Xk

∂xl
hl(τ) by (5.2.4)

By uniqueness of solutions to ordinary differential equations, it follows that
the only solution with initial condition h(0) = 0 is h(τ) = 0. Hence (5.2.3) is true
for all 1 ≤ j ≤ k. The proof is complete. �

From the proof of Theorem 5.2.1, we obtain:

Corollary 5.2.3. Let (M, g) be a locally conformally flat manifold and p ∈M .
Let c ∈ R and ω ∈ T ∗pM . Then there exists a function f defined on a neighbourhood
U of p such that e2fg is flat and f(p) = c, df(p) = ω. Moreover f is unique in
the sense that if f0 is another function defined on a neighbourhood V with e2f0g

flat and f0(p) = c, df0(p) = ω, then f = f0 on the connected component of V ∩ U
containing p.



5.3. INJECTIVITY OF THE DEVELOPING MAP 61

5.3. Injectivity of the developing map

In this section, we prove Theorem 3.2.4 and also argue why it still applies to
C2,1-metrics, that is:

Proposition 5.3.1. Let (M, g) be a closed locally conformally flat Riemannian
manifold with g ∈ C2,1(M) of positive scalar curvature. Then the developing map
Φ: M̃ → Sn is injective.

As noted in Section 3.2, we cannot use [SY88, Theorem 4.5] or [SY94, The-
orem 3.5], which state that the developing map of a complete locally conformally
flat manifold without boundary is injective provided Scal ≥ 0, due to ambiguity
with the version of the positive mass theorem used to prove these results: Schoen
and Yau remark that “for this application it is necessary to extend the positive
energy theorems to the case of complete manifolds; that is, assuming that the
manifold has an asymptotically flat end and other ends which are merely complete.
This extension will be carried out in a future work” [SY88, p. 65]. To the author’s
knowledge, such a generalization of the positive mass theorem is widely believed
to be true but no such extension has yet been published.

Since we do not want to rely on this extension to be true, we build our argu-
mentation on [SY88, Proposition 3.3] in dimension n ≥ 4 and Witten’s version of
the positive mass theorem in dimension three. See also Appendix A of [CH06],
where the same problem occured, as well as the works of Lohkamp [Loh06], [Loh15]
who claims to have proven the positive mass theorem in every dimension and
without additional topological assumptions, but has not published a complete
proof yet. However, his results seem quite promising.

To prove Proposition 5.3.1 for n ≥ 4 we argue along the lines of the proof of
Theorem VI.3.1 of [SY94] (or Theorem 3.1 of [SY88], resp.). Their statement is as
follows:

Theorem 5.3.2. Let (M, g) be a complete n-dimensional Riemannian manifold
and Φ: M → Sn be a conformal map. Assume that for n ≥ 5, Scal(g) ≥ −C and
for n = 3, 4, |Scal(g)| ≤ C. If

d(M) <
(n− 2)2

n
,

then Φ is a conformal diffeomorphism of M onto Φ(M).

Here, d(M) is a constant which – for compact M – only depends on the
conformal structure [SY94, Proposition VI.2.6], see Definition 5.3.7 below.

Remark 5.3.3. The condition d(M) < (n−2)2

n is fulfilled provided n ≥ 4 and
Scal > 0, see [SY88, Proposition 3.3 (i)]. If n ≥ 7 then Scal ≥ 0 is enough to
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ensure d(M) < (n−2)2

n [SY88, Proposition 3.3 (iii)]; in this case Proposition 5.3.1
holds for manifolds with nonnegative scalar curvature and Proposition 3.2.1 is
valid for manifolds with nonnegative relative Yamabe invariant.

Proof (Proposition 5.3.1). We first consider the case n = 3: In this case
every orientable manifold is spin, hence we may replace M by its orientation
covering, if necessary, and assume that M is spin. Therefore Witten’s proof of the
positive mass theorem [Wit81] applies to M and implies that [SY88, Theorem 4.5]
holds. In fact, Witten’s version of the positive mass theorem extends to the
framework needed in the proof of [SY88, Theorem 4.5] and is valid for C2-metrics,
see the appendix of [CH06], the references therein and, for example, [GT14] for a
version of the positive mass theorem with low regularity assumptions.

As remarked above, if n ≥ 4, we have d(M) < (n−2)2

n by [SY88, Proposi-
tion 3.3 (i)] because Scal > 0. Hence Proposition 5.3.1 follows from Theorem 5.3.2
provided the latter is applicable to C2,1-metrics which we will discuss now. �

Proof (Theorem 5.3.2, following [SY94]). We have to show that Φ is
injective. Let P ∈M . Up to scaling, we may assume |Φ′|(P ) = 1, where |Φ′|2 is
the conformal factor of Φ, i.e. Φ∗gSn = |Φ′|2g.

Let G be the minimal positive Green’s function for the conformal Laplacian

L := −∆ +
n− 2

4(n− 1)
Scal

of (M, g) with pole P . Existence of such follows from the existence of the conformal
map Φ (see [SY94, Proposition VI.2.4]).

Note that – as g is only C2,1 – G is not smooth on M \ {P}. However, from
LG = 0 on M \ {P} and elliptic regularity, it follows that G ∈ C2,α

loc (M \ {P}).

Remark 5.3.4. In the presence of a smooth conformally equivalent background
metric g′, one can also see this from the transformation formula

G(u
4

n−2 g′) =
1

u(P ) · u
G(g′),

see e.g. [Hab00, Lemma 2.2.7].

Let G0 be the Green’s function for the conformal Laplacian L0 of Sn with
pole y = Φ(P ) and define

G := |Φ′|
n−2
2 G0 ◦ Φ.

From the transformation law of the conformal Laplacian L, it follows

LG =
∑

Q∈Φ−1({y})

|Φ′(Q)|
n+2
n δQ,

thus it is enough to show G = G.
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Our strategy is to consider v := G/G. In order to show that v = 1, we use
various estimates on v and its derivatives. As we wish to use Bochner’s formula,
we first check that v is at least C3.

Lemma 5.3.5 (Lemma VI.3.2 of [SY94]). The function v is a positive harmonic
function with respect to the flat metric g := G

p−2
g, where p = 2n/(n− 2). Writing

v(x) = 1 + h(x), then h ∈ C3 and we have in normal coordinates centred at P :

h(x) = O(|x|n−2) and |∇h|g = O(|x|n−3).

Proof. Flatness of g follows as we can write

g = Φ∗ (π∗gRn) ,

where π is a stereographic projection from y. From the conformal invariance of
the conformal Laplacian, we have

−∆gv = Lgv = LgG = 0

on M \ {P}. As G was minimal, by construction (see [SY94, Proposition VI.2.4]),
G ≤ Ḡ, so 0 < v ≤ 1. Therefore v is harmonic with respect to g on the whole of
M . As g is a C2,α-metric, we observe v ∈ C3(M) by elliptic regularity.

By changing the metric locally to a conformally equivalent one, we may assume
Scal(g) ≥ 0 (this will not be necessary in our applications as we always have
Scal ≥ 0 by assumption). Then the maximum principle is applicable to L and
implies G(x) ≤ (1 + ε)G(x) for any ε > 0 and x sufficiently close to P . Hence

v(P ) = lim
x→0

G(x)

G(x)
= 1.

We may thus write v(x) = 1 + h(x), where h = O(|x|) is C3.
In a small punctured neighbourhood of P , we have

L(hG) = L(G−G) = LG− LG = 0.

Since G = O(|x|2−n), we have hG = O(|x|3−n), so P is a removable singularity
of hG. We conclude h = O(1/|x|2−n) = O(|x|n−2) and |∇h|g = O(|x|n−3). �

Remark 5.3.6. We have seen that v is at least C3. By going over to harmonic
coordinates with respect to ḡ, we could even assume that v is smooth.

The rest of the proof of Theorem 5.3.2 follows as presented in [SY94]. For
convenience of the reader, we give a sketch of the main steps, but do not provide the
computations. Let us first define the invariant d(M) occurring in Theorem 5.3.2:

Definition 5.3.7. LetM be a locally conformally flat manifold, M̃ its universal
covering and Φ: M̃ → Sn be its developing map. As Φ is unique up to a conformal
transformation of Sn, we obtain the holonomy representation ρ : π1(M)→M(Sn)
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and the holonomy covering M̌ := M̃/ ker(ρ). Let G be a minimal positive
Green’s function on M̌ with arbitrary pole P (existence of such again follows from
[SY94, Proposition VI.2.4]). Then we define

d(M) :=
n− 2

2
inf
{
q > 0

∣∣∣ ∀U 3 P :

∫
M̌\U

Gq dVg <∞
}
. (5.3.1)

The proof of Theorem 5.3.2 can now be completed as follows. We write C to
denote a finite constant whose exact value may change from line to line.

Using the Bochner formula for v, one sees that for q = 2(n−2)
n ,

∆|∇v|qg ≥ C|∇v|
q−2
g

∣∣∇|∇v|g∣∣2g ,
where∇ and ∆ denote the gradient and Laplacian with respect to ḡ. By integration
by parts and the Schwarz inequality, this implies∫

M
φ2|∇v|q−2

g

∣∣∇|∇v|g∣∣2g dVḡ ≤ C
∫
M
|∇φ|2gḠq|∇v|qg dVg (5.3.2)

for any φ ∈ C∞c (M \ {P}). By multiplying with a cut-off function and using the
expansion |∇v|g = O(|x|n−3) from Lemma 5.3.5, one can then obtain (5.3.2) for
all φ ∈ C∞c (M).

For ρ sufficiently large, we apply this to a function φ ∈ C∞c (M) with φ = 1 on
Bρ(p) and φ = 0 on M \B2ρ(p), 0 ≤ φ ≤ 1 and |∇φ|g ≤ 2ρ−1 (all balls are with
respect to the metric g). A computation involving [SY88, Lemma VI.3.4] shows
that (5.3.2) applied to such φ implies∫

Bρ(P )
|∇v|q−2

g

∣∣∇|∇v|g∣∣2g dVḡ ≤ Cρ−2

∫
B4ρ(P )\Bρ/2(P )

Gq
(
1 + |∇ logG|2g

)
dVg,

and the right hand side can be bounded by

Cρ−2

∫
M\Bρ/4

Gq1 dVg, (5.3.3)

where q1 = q for n 6= 4 and q1 ∈ (1/3, 1) for n = 4.

Now, by assumption, 2
n−2d(M) < 2(n−2)

n = q, hence there exists a sequence
qi ↘ 2

n−2d(M) with qi < q. By definition of d(M) in (5.3.1), we have∫
M\B1(P )

Gqi dVg <∞.

Using [SY88, Lemma VI.3.3], we arrive at∫
M\B1(P )

Gq dVg ≤ C
∫
M\B1(P )

Gqi dVg <∞.
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Combining this with the estimate (5.3.3) and letting ρ→∞, we see that∫
M
|∇v|q−2

g

∣∣∇|∇v|g∣∣2g dVḡ = 0,

thus |∇v|g is constant. As |∇v|g(P ) = 0, v is constant and thus v = v(P ) = 1.
This proves the statement. �





List of frequently used symbols

Balls and spheres

Symbol Definition Description
Dρ(p) {x ∈ Sn | dSn(x, p) < ρ} geodesic ball of radius ρ around p in Sn

Dρ Dρ(p) geodesic ball in Sn when center is irrelev-
ant or understood

Σρ(p) ∂Dρ(p) geodesic sphere of radius ρ around p in Sn

Σρ Σρ(p) geodesic sphere in Sn when center is irrel-
evant or understood

Sn+ Σπ
2

hemisphere
Br(p) {x ∈ Rn | |x− p| < r} ball of radius r around p in Rn

Br Br(p) ball of radius r in Rn when center is irrel-
evant or understood

Bn B1 unit ball in Rn

Sr(p) ∂Br(p) sphere of radius r around p in Rn

Sr Sr(p) sphere of radius r in Rn when center is
irrelevant or understood

Sn−1 S1 standard unit sphere

Curvature tensors
Symbol Definition Description

R R(X,Y ) = ∇2
X,Y −∇2

Y,X Riemann curvature tensor
Ric trace(ξ 7→ R(ξ, ·)·) Ricci tensor
Scal trace Ric scalar curvature
sec − sectional curvature
W see Equation (2.2.1) Weyl curvature tensor
S see Equation (2.2.2) Schouten tensor
C see Equation (2.2.4) Cotton tensor
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Geometry of the boundary

Symbol Definition Description
ν and η − inner and outer unit normal

II II(X,Y ) = 〈∇XY, ν〉 scalar second fundamental form
H 1

n−1 trace II mean curvature
Hρ cot(ρ) mean curvature of Σρ

Hr r−1 mean curvature of Sr

Conformal geometry

Symbol Definition Description
πp see Definition 2.3.1 stereographic projection from p

M(Ξ) − Möbius transformations of
Ξ ∈ {Sn,Rn, Bn}

C = C(εi, pi,Λ) Φ(M̃) image of the developing map
Λ ∂Φ(M̃) \ Φ(∂M̃) limit set

Y (M, [g]) see Equation (2.6.1) Yamabe invariant
Y (M,∂M, [g]) see Equation (2.6.2) relative Yamabe invariant

L −4(n−1)
n−2 ∆ + Scal conformal Laplacian

Miscellaneous
Symbol Definition Description

gRn , gSn , gSn+ − standard metric on Rn, Sn or Sn+
G − minimal positive Green’s function
dVg

√
det(g)|dx{1,...,n}| Riemannian volume element or density

int(M) M \ ∂M interior of M
M̂ M ∪

∂M
(−M) double of of M

M̃ − universal covering of M
L − Lie derivative

π0(M) − set of path components
π1(M) − fundamental group
Hm

dR(M) − m-th de Rham cohomology group
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Summary

Given a compact, connected Riemannian spin manifold M with boundary, the
Min-Oo conjecture states that M is isometric to a hemisphere provided that the
scalar curvature is bounded below by n(n− 1) and that the boundary is totally
geodesic and isometric to a round sphere Sn−1. It can be seen as a spherical
analogue of the rigidity statement of the positive mass theorem in which conditions
on the asymptotic geometry of the manifold are replaced by boundary conditions.

Min-Oo claimed to have proven the result in 1995, but he realised that his
argument was incorrect. The conjecture was unresolved until 2011 when Brendle,
Marques and Neves were able to give a counterexample in all dimensions n ≥ 3;
while the conjecture is true in dimension two. They constructed a metric on the
hemisphere which not only satisfies all conditions of Min-Oo’s conjecture, but
also agrees with the standard metric near the boundary, hence the conjecture is
false even under stronger (local) boundary conditions and it requires additional
assumptions on the geometry on the interior to make a statement like Min-Oo’s
conjecture true.

Our starting point is a rigidity result obtained by F. Hang and X. Wang, who
showed that the Min-Oo conjecture is true for metrics on the hemisphere which
are conformally equivalent to the standard metric. The drawback here is that
we already have to assume that the manifold in consideration is diffeomorphic to
a hemisphere in order to make sense of this prerequisite. Hence we cannot see
any influence of the geometry on the topology or differentiable structure of M .
Motivated by partial results in lower dimensions obtained by S. Raulot, we turned
our attention to locally conformally flat manifolds, that is, manifolds which are not
globally conformally equivalent to a hemisphere but locally look like a conformal
deformation of the latter.

Our main result is a rigidity result for geodesic balls in a hemisphere which
generalises the results by Hang and Wang and Raulot. It implies that Min-Oo’s
conjecture is true provided the manifold is locally conformally flat. Furthermore,
we find that weaker conditions on the geometry of the boundary than in the
original statement of the conjecture are sufficient for our result:
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Theorem. Let (Mn, g), n ≥ 3, be a compact connected locally conformally
flat Riemannian manifold with boundary, 0 < ρ ≤ π

2 . Assume that

(i) Scal(g) ≥ n(n− 1) everywhere,
(ii) ∂M is umbilic with mean curvature H(g) ≥ cot(ρ) and every connected

component is isometric to a round sphere of radius sin(ρ).

Then (M, g) is isometric to a closed geodesic ball of radius ρ in Sn equipped with
the standard metric.

Our result is proved using results by Schoen and Yau concerning the injectivity
of the so-called developing map, a conformal immersion from the universal covering
of M to Sn obtained from the locally conformally flat structure. This allows us to
model the universal covering of M on the sphere. Then, analytical considerations
of the conformal scalar and mean curvature equation together with results by Hang
and Wang, which we extend to hold in a setting suitable for our investigations,
imply the result.

From our main result above, we conclude a rigidity result for more general
domains in a hemisphere by applying it to a manifold obtained by gluing a part of
the sphere to the manifold in consideration. Also, the technique of the proof can
be used with slight modifications to obtain an analogous rigidity result for balls in
Euclidean space.

Last but not least, we try to weaken the assumption on the local conformal
flatness ofM . As Min-Oo’s conjecture is incorrect, this is rather delicate. Neverthe-
less, we are able to extend the result above to manifolds of dimension n ≥ 4 which
are not necessarily locally conformally flat, but locally conformally symmetric. To
that end, we establish a result similar to the theorem above for manifolds with
parallel Ricci tensor, but with slightly stronger boundary conditions.
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