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Abstract

This thesis focuses on the investigation of methods to control surface plasmon polaritons (SPPs),
i.e., coupled oscillations of electromagnetic waves with the conduction band electrons at the
surface of metals.

In the first part, the evolution of so-called Airy SPP beams propagating under influence of a
non-vanishing gradient of the effective refractive index is investigated. These beams represent
the plasmonic analog to a class of non-diffracting wave packets, named Airy beams. We
experimentally demonstrate that by fabricating dielectric wedges on top of a gold layer with
negative-tone gray-scale electron beam lithography, Airy SPP beams can be bent in a controlled
manner. The evolution of bent Airy SPP beams is observed by making use of leakage radiation
microscopy. The results exhibit an excellent agreement to our numerical calculations.

In the second part of this thesis we use dielectric loaded SPP waveguide arrays as quantum
simulators. In this context, a Su-Schrieffer-Heeger topological insulator is implemented in the
plasmonic system. Such material can provide both, a band structure with a band gap in its bulk
material as well as in-gap states, localized at the surface/edge of the system. The waveguide
arrays are fabricated on top of a gold layer by negative-tone gray-scale electron beam lithography.
The intensity distribution of propagating SPPs in these arrays is then investigated in both, real
and Fourier space by making use of leakage radiation microscopy. As a result, a topologically
protected edge state is observed as localized state in the real space and as an in-gap state in the
Fourier space. All results are in excellent agreement to numerical calculations.

The last part of the thesis is dedicated to the switching of plasmonic systems. For this purpose we
make use of photochromic materials, i.e., materials that provide isomers with different complex
refractive indices which can be converted into each other by light induced chemical reactions.
In this context, we investigate Fano resonances in photochromic metallic photonic crystal slabs
on their behavior by switching the state of a photochromic layer. The Fano resonances are
induced by the interaction of localized plasmonic modes in gold wires with extended waveguide
modes in the dielectric layer. The corresponding structures are fabricated with positive tone
electron beam lithography. By careful adjustment of all parameters we observe a strong blurring
of the Fano resonance upon switching the photochromic material. All results are in good
agreement to numerical calculations.

Finally, we investigate the influence of a changing real part of the effective refractive index on
SPPs propagating along a photochromic-material-gold interface, as induced by photochromic
switching. By making use of Fourier space imaging we demonstrate a change of the effective
refractive index of the SPPs of approximately 5%. Additionally, first experiments on the
manipulation of propagating SPPs by a locally switched photochromic layer are discussed.
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CHAPTER 1

Introduction

Humans are fascinated by light. Already in the 3rd century before Christ, Archimedes dedicated
parts of his work to optics. In the following centuries, the endeavor of many scientists built the
basis of a strong evolution of this research area. As a result, devices with functions based on
optics play an important role in our daily life, e.g., lenses, telescopes, and microscopes are used
to improve the visual capacity and allow for a deep insight both, in microcosm and space. In
addition to these directly related applications, the evolution of optics led also to the development
of new sub-disciplines, which became distinct fields of research with own applications.

One of these fields is named plasmonics. It originates from the work of Ritchie [[I]] in the
mid of the last century and focuses on the investigation of surface plasmon polaritons (SPPs),
i.e., coupled oscillations of electromagnetic waves with the conduction band electrons at the
interfaces of metals. In the subsequent years it has evolved fast. Based on experiments,
performed by Otto , as well as Kretschmann and Reaether on the excitation of SPPs, the
field now incorporates many branches of research, spreading from biosensing [4]] to photovoltaic
devices [3].

One of the intensively developing research topics in the field is the study of propagating SPPs,
excited at a metal dielectric interface [[f]]. Their propagating nature in combination with a strong
confinement to the metal’s surface and a reduced wavelength promises further applications, e.g.,
in the plasmonic circuitry [[7, [§]]. Since the ability to precisely control the propagation of SPPs
is the first step towards such applications, this topic is currently in the focus of many research
groups. It turned out that a number of concepts developed in the frames of conventional optics
can be utilized for the manipulation of SPPs. So it is feasible to create simple optical elements,
e.g., lenses [[9 and waveguides [ITHI3]], as well as the more complicated gradient index
(GRIN) elements for propagating SPPs.

Based on such optical elements, the transfer of further concepts from conventional optics to
plasmonics can give a deeper insight into new and interesting physics, even exceeding the frames
of conventional optics. I would like to emphasize this with the following examples.

One concept that can be transferred to plasmonics is the generation of non-diffracting beams.
This designates a class of beams, which preserve their shape during the propagation and thus
become less affected by diffraction effects. A prominent member are the so-called Airy beams,
which were suggested in the pioneering work of Berry et al. [16]. Besides their non-diffracting
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nature they also exhibit a number of other remarkable features, such as a self-accelerating
behavior and self-healing after passing through obstacles [[17]].

Their plasmonic analog are the so-called Airy SPP beams that offer the same intriguing
properties as their free space counterpart 20]. Their high confinement to the interface
and efficient energy transfer, however, make them additionally attractive for the application in
plasmonic circuitry [I9H21]] and hot-spot creation [22]]. Even more and more flexible applications
could be achieved if a manipulation by preserving their unique properties is possible. As it
tuned out, this can be achieved by making use of GRIN elements [23]].

In this thesis we will therefore implement GRIN elements in a plasmonic system in order to
manipulate Airy SPP beams by preserving their unique properties.

A second example is the coupled mode theory. In the context of conventional optics, it is used to
approximate the field evolution in arrays of evanescently coupled single mode waveguides [24]
25]]. This description exhibits a remarkable mathematical similarity to the temporal evolution
of an electron in a crystal lattice, according to the condensed matter tight binding model [26]].
An electromagnetic wave in a waveguide array can therefore be used to simulate the temporal
evolution of electrons in a crystal lattice. Since a temporal effect is mapped onto a spatial
evolution, this approach allows for the simpler tailoring of the system’s properties. As a result, a
number of interesting effects has already been demonstrated in this context [27H30].
Transferring this idea to plasmonic systems provides additional advantages. Beside the possibility
to image the field evolution inside the waveguides [31H33]], the imaging of its Fourier transform
becomes possible [34]]. This is of high interest, since it allows also for the investigation of
the band structure of the waveguide array. In this context, a plasmonic realization of the
Su-Schrieffer-Heeger model is of particular interest. It originally describes the behavior of
solitons in polyacetylene [35] [36]] and furthermore the behavior of a 1D topological insulator.
A system described by this model provides a complex band structure. On the one hand, its
bulk material offers an empty band gap, while on the other hand, there can be states located
in the gap. These so-called topologically protected edge states can exist at the surface or edge
of the system 38]. In this context, recent investigations on plasmonic waveguide arrays
concentrated only on the field distribution at the end facets of the waveguides [39]. Thus, it is of
high interest to extend the present investigations to the field distributions inside the waveguides
and the corresponding band structure.

One part of this thesis is therefore dedicated to the investigation of propagating SPPs in waveguide
arrays, mimicking a Su-Schrieffer-Heeger topological insulator, by making use of both, real and
Fourier space imaging.

A third concept well known in conventional optics is the switching of optical properties, as
it is used for example in liquid crystal retarders or beam shutters. Also this concept can be
transferred to plasmonic systems, leading to interesting new features exceeding the possibilities
of conventional optics. In order to implement this, a growing field of research concentrates
on plasmonic systems that can be switched between different states [40H42]]. One particularly
interesting approach in this context makes use of photochromic molecules, i.e., molecules that
can, under illumination with light, be reversibly converted between two different isomers with
different complex refractive indices. Such molecules can offer a large change in the optical
properties, thus are promising candidates for switching applications.



In the context of propagating SPPs, present investigations mainly concentrated on the pho-
tochromic manipulation by increasing the absorption in the system [43]]. Based on the working
principle of conventional lenses it would, however, be interesting to manipulate propagating
SPPs via a changing real part of the refractive index in such material. Being able to alter it, even
locally, would facilitate the generation of refracting boundaries of tailored shape with switchable
properties.

In order to fill this gap, a part of this thesis will focus the manipulation of propagating SPPs
with photochromic materials that exhibit a large change in the real part of the refractive index.

In addition to the systems discussed above, which were based on the concepts transferred from
conventional optics to plasmonics, there are also plasmonic systems that can be directly used
for free space applications, e.g., as filter. Basis are the so-called localized SPPs, which can
directly interact with the light field [[6]. Also in this field of research the attractive properties of
photochromic materials have been used already , however, with a rather low influence
on the systems.

An improvement can be achieved by investigating hybrid systems, simultaneously obtaining
two effects. For example, if a broad plasmonic resonance overlaps with a sharp resonance
of another type. This can lead to a hybridization of both resonances, as described by a Fano
resonance [48]]. In terms of plasmonics, such Fano resonances have already been observed in
many different nano-structures, as for example in oligomers [49H5T]]. These resonances obtain
highly dispersive properties, making them attractive for switching applications [52]]. A particular
promising system in this context are metallic photonic crystal slabs, in which the Fano resonance
stems from the interaction of localized plasmonic and extended waveguide modes [[53] [54]. This
special combination makes the Fano resonance highly dependent on the waveguide’s damping
and hence let us anticipate an effective switching procedure.

For this reason, one part of this thesis will investigate the influence of a changing absorption on
the properties of photochromic metallic photonic crystal slabs.
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Outline

Chapter 2 gives a brief introduction into all basic concepts utilized in this thesis. For this
purpose, starting from the Maxwell equations and the Drude Lorentz model, propagating and
localized surface plasmon polaritons (SPPs) are introduced.

Based on a short discussion of freely propagating Airy SPP beams (a class of non-diffracting
SPP beams), Chapter 3 introduces dielectric ramps on top of the gold layer as manipulation
method for Airy SPP beams. The utilized samples are fabricated by making use of gray-scale
electron beam lithography (gEBL) and are experimentally investigated with leakage radiation
microscopy (LRM). This leads to the experimental demonstration of bent Airy SPP beams.

Chapter 4 starts with the introduction of the coupled mode theory (CMT) for plasmonic
waveguide arrays. Additionally, a more rigorous calculation method is developed. With both
methods as a basis, plasmonic waveguide arrays are introduced as simulator of the Su-Schrieffer-
Heeger (SSH) model. Subsequently, appropriate samples are fabricated by making use of gEBL
and investigated with the help of LRM. As a result, the plasmonic SSH model is experimentally
demonstrated.

Chapter 5 is dedicated to the photochromic switching of plasmonic systems. In a first part,
the photochromic switching of Fano resonances in photochromic metallic photonic crystals is
theoretically discussed on basis of a simple oscillator model and more rigorous scattering matrix
based calculations. The samples are fabricated by making use of positive tone electron beam
lithography (pEBL) with a subsequent spin-coating of the photochromic layer. With this as a
basis, the switching of Fano resonances is experimentally demonstrated.

The second part of this chapter focuses on the photochromic switching of propagating SPPs.
Based on theoretical calculations, both, the influence of a local as well as a global switching
of the photochromic material on propagating SPPs is discussed. The samples are fabricated
by making use of pEBL and subsequently investigated in an optical setup utilizing LRM. This
results in the experimental demonstration of manipulated propagating SPPs.



CHAPTER 2

Theoretical basics

This thesis presents a number of possibilities to control surface plasmon polaritons (SPPs),
i.e., coupled oscillations of electromagnetic waves with the metal’s conduction band electrons
at metal dielectric interfaces. The aim of this chapter is to introduce the theoretical basics,
needed to understand the plasmonic systems discussed in this thesis. For this purpose, it starts
with the description of the basic principles of electromagnetic waves in matter and the optical
properties of gold, the metal utilized in the presented experiments. With this as basis, interfaces
of infinite extensions between gold and dielectric half-spaces are discussed. They are one of
the simplest types of systems where propagating SPPs can exist. Finally, the last part of this
chapter concentrates on one type of interface with finite dimensions: a single gold wire. In this
particular case, the strong influence of the structure’s boundaries facilitates the excitation of
another type of SPPs, the so-called localized SPPs.

2.1 Electromagnetic waves

The natural starting point for the investigation of electromagnetic waves interacting with matter
are the macroscopic Maxwell equations. They can be written as [55]:

V-D=p, V-B =0, 2.1
0B oD
VXE =—-——, VxH=j+—, 2.2
ot T o 22)
with the magnetic field H, the electric field E, the charge density p, and the current density j.
In case of homogeneous and linear media having a permeability of w = 1, as they are used in
this thesis, the dielectric displacement D and the magnetic induction B depend linearly on H
and E. In a material with the permittivity &, this dependency is given by [55]|:

D = gye,E, B =y H. (2.3)

For the systems discussed in this thesis, the system of equations can be simplified. Here, it is
sufficient to consider an electromagnetic wave with the free space wavelength A, frequency w,
and a harmonic time dependence (E(r,t) = E(r)e™'“"), propagating in absence of external
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charges and current. In this special case a combination of the two curl equations[(2.2)] by making
use of the vector identity:

Vx(VXE)=V(V-E)-V’E, (2.4)

leads to the so-called Helmholtz equation [[56]:

2, 272
(V2 +n’k) - E =0. (2.5)
This equation describes the evolution of an electromagnetic wave, with the wave number in
vacuum given by kg = %, in a medium characterized by the refractive index n = /e;. A

corresponding wave equation for the magnetic field, the magnetic Helmholtz equation can be
calculated analogously [56].

A simple solution of the electrical Helmholtz equation and the basis of the discussions in the
subsequent sections, is a plane wave propagating in an isotropic medium. Without loss of
generality it is traveling along the z-direction with a wave vector k parallel to the z-axis and a
propagation constant described by |k| = k,. Such plane wave is described by:

E(r) = Ey(x,y)e*" = Eg(x,y)e'**. (2.6)

Its, typically complex, amplitude E((x, y) defines the polarization of the wave. With this, the
Helmholtz equation for the present system further reduces to:

-+ o + nzkg) Ey(x,y) = kK2Ey(x, ). (2.7)
y

2.2 Drude Lorentz model

All metal structures utilized in this thesis consist out of gold. This material has the advantage,
that it is not only chemically stable but at the same time provides low ohmic losses in the infrared
and a large part of the visible spectral range [|57]].

In order to understand the behavior of the structures utilized in the remaining parts of this
thesis, the optical properties of gold have to be discussed. As it turns out they can be described
piecewise by models based on publications of Paul Drude [58]] and Hendrik A. Lorentz [59].
A good approximation for the properties of gold in the infrared regime is the Drude model,
which models the interaction of electromagnetic waves with the metal by an externally driven
oscillation of the free electron gas, relatively to the positive background of the nuclei [56]. The
dielectric behavior of gold in the vicinity of the intra-band transitions taking place in the visible
part of the spectrum can however be described by the Lorentz model [56]]. It describes the
interaction of the electromagnetic wave with gold as an externally driven and damped oscillation
of the single electrons relatively to their atomic nuclei, possessing a resonance frequency.

In order to cover a large spectral range, in this thesis, a fit of a combined model to the experimental
data given by Johnson et al. is used. With this we obtain the following equation for the
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permittivity of gold [60]:

2 2
Wy Asw;

(2.8)

e(w) = €0 — - - - .
ww+iyp)  w? -l +iyw

The first two addends result from the Drude model, while the third accounts for a single
Lorentzian oscillator. The included parameters are the plasma frequency wp = 8.794 ¢V,
the eigenfrequency of the Lorentz oscillator wy, = 2.646¢V, the corresponding dampings
vp = 0.066¢eV and y1, = 0.382¢eV as well as the remaining two parameters €., = 6.21 and
Ae = 1.

2.3 Propagating surface plasmon polaritons

Based on the general discussion of electromagnetic waves interacting with matter and the optical
properties of gold, we can now discuss the simplest environment in which SPPs can exist. It is
formed by a metal dielectric interface with infinite dimensions [[6]], e.g., between a dielectric and

a gold half-space, as it is sketched in [Fig. 2.1}

- Figure 2.1: Two layer system with an interface
| Z Dielectric  along the zy-plane between a dielectric and a
Gold  £old half-space.

In order to find the allowed solutions of the Maxwell equations for the given system, it is
sufficient to consider only the so-called transverse electrical (TE) and transverse magnetic
(TM) polarizations. This stems from the fact that they form a complete system of polarization
states [56]], with H and E given by:

TE ™

H{H—

By regarding the continuity conditions at an interface between the dielectric and the gold half-
space, shown in[Fig. 2.1} it turns out that in this two layer system the Maxwell equations provide
only TM polarized solutions, which correspond to propagating waves along the interface [56]].
These waves are the so-called propagating SPPs (without loss of generality propagating in
positive z-direction) [[6]]. Based on the Maxwell equations, in a metal with permittivity &, and a
dielectric with permittivity &4, their non-zero field components ( Hy Ex, E;) are given by the
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following set of equations [[56]|:

x>0 x<0
Hy(x,2) = AgePre™ o, Hy(x,2) = AgePreler, (2.9)
Ex(x,z) = —Adieiﬁze_kClX , Ex(x,2) = —Agiei'gzekgX , (2.10)
WENEY WENEg
E,(x2) = iAq kae'Prekex, E,(x,2) = —iA, kgePreke | (2.11)
WENEJ WENEg
with the condition
ki = B>~ kgei, iefd gl (2.12)
and, resulting from the continuity at the interface:
k e
e (2.13)
ka &4

From these equations we can deduce the main characteristics of SPPs, propagating along the
dielectric gold interface:

Penetration depth

The field of the propagating SPPs is, perpendicular to the propagation direction, exponentially
decaying in both media away from the interface. A measure of this is the penetration depth that
for each side of the interface is given by [56]):

1
sj=—, jeld gl (2.14)
[k

It describes the length after which the amplitude of the field dropped to 1/e of its initial value.
In the case of a vacuum gold interface, a free space wavelength of 19 = 980 nm, and a vacuum
permittivity of €4 = 1 the penetration depths for both sides of the interface are:

sq4 ~ 984 nm, sg = 24 nm. (2.15)
Due to this strong decay perpendicular to the interface, propagating SPPs can be seen as bound
to the interface and hence as effective two-dimensional waves.

Dispersion relation

The field evolution in propagation (z-) direction included in[(Z.9)HZ.1T)|is mainly described by
the propagation constant 8. By using[2.12)H(2.13)] it can be derived to [56]:

5=k . .16
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The resulting dispersion relation for SPPs, propagating at a vacuum gold interface, is plotted
in together with the light cone in vacuum and glass, given by ky,c(w) = w/co and
kglass (W) = nglass w/co = 1.5 w/co, respectively.

S " " Figure 2.2: Dispersion relation of propagating
SPPs at a vacuum gold interface (blue), based
4l on g4 = 1 and the material properties of gold
= given by [2.8)] Additionally plotted are the light
an cone in vacuum (green), described by ky,c(w),
S 3 as well as the light cone in glass (red), described
% 785 nm by kglass(w). The wavelengths, mostly used in

5l / / 980 nm | this thesis, are marked as examples.

5 10 15 20
B [1/pm]

Since the SPP dispersion relation lies to the right side of the vacuum light line, the SPPs cannot
couple to propagating modes in vacuum. This ensures the binding of the propagating SPPs to
the interface and simultaneously makes it challenging to excite them with free space radiation in
vacuum.

For the further discussions it is useful to introduce an effective refractive index as a measure for
the change in the propagation constant, being defined by:
B vac-au

Neff = o m 1.0125 + 0.0008i. (2.17)

Here, neg is calculated for propagating SPPs at a vacuum gold interface with a free space
wavelength of 19 = 980 nm.

Wavelength

Similar to free space optics, from the real part of the effective refractive index, the shortened
wavelength of propagating SPPs can be calculated as [[56]:
Ao vac—au

Aspp Re(neg) 980nm 968 nm (2.18)

Propagation length

From [(2.9)H2.1T)]results that the imaginary part of the effective refractive index describes the
absorption in the system. It induces an exponential decay of the SPP’s intensity in propagation
direction, described by the so-called propagation length [56]:

1 vac—au
Lspp = ~ 95 um. 2.19
S koS M (rer)  980mm Hm (2.19)
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Note, that the propagation length strongly depends on the used free space wavelength. The
larger ohmic losses in gold, for example at 785 nm wavelength, lead to a drastically reduced
propagation length of approximately 40 um.

2.3.1 Surface plasmon polariton excitation

Since the SPP propagation constant is bigger than the wave vector in vacuum, due to conservation
of momentum, the excitation of propagating SPPs at a perfectly flat interface is not possible.
However, there are several possibilities to overcome this momentum mismatch in experimental
environments as for example by making use of end-fire coupling [[61]], prism coupling in the
so-called Kretschmann configuration [3]] and the Otto configuration [2]], or just the roughness
of the surface [[6]]. In this thesis we utilize a more flexible approach: a grating coupler made
of dielectric ridges. The working principle is sketched in for an ideal grating coupler,
consisting of dielectric ridges of infinite length on top of the gold layer.

Figure 2.3: An electromagnetic wave with the > v
wave vector kg polarized along the z-direction, «— 3 acuum
illuminates a dielectric grating with period p and X Yk, B Diclectri
. . . | zZ s ielectric
excites propagating SPPs with the wave vector £. —
propagating B k—p— Gold

In order to excite propagating SPPs () with such a dielectric grating of period p by a horizontally
polarized electromagnetic wave with the wave vector kg, impinging from positive x-direction,
Bragg’s condition has to be fulfilled. With the unit vector in z-direction (Z), this condition can
be written as [56]:

2
B = (koz+m- =i meN. (2.20)
p

In the simple case of k( being perpendicular to the interface, the necessary period has therefore
to be an integral multiple of the SPP wavelength.

The intensity distribution of the propagating SPPs in y-direction, resulting from the excitation at
such grating coupler, is determined by the intensity distribution of the laser spot on the grating.
As the laser beam is Gaussian shaped in most cases, the intensity of propagating SPPs is also of
Gaussian shape.

2.3.2 Surface plasmon polariton detection

As it was introduced in the last sections, propagating SPPs are bound to the interface. This feature
makes it challenging to image their intensity distribution on top of the gold film. Nevertheless,
there have been many ideas to overcome this issue. On the one hand scanning near-field optical
microscopes (SNOM) are used to make the evanescent field in vacuum visible taking an
image, rather time consuming, by raster scanning a near-field probe over the interface. On the
other hand fluorescent layers were added on top of the gold film [[64]] or inside the investigated
structures [[15]], and the fluorescence, excited by the propagating SPPs, is collected and imaged.

10



2.4 Localized surface plasmon polaritons

Dielectric  Figure 2.4: Detection principle of propagating

Gold SPPs with a wave vector B at a metal dielectric
interface. In case of a thin gold layer, the SPPs
can leak through the layer and couple to prop-
agating modes in glass, obtaining the emission
angle ® and the wave vector k gjass.

Glass

In this thesis we make use of another approach that allows not only to image the intensity
distribution of propagating SPPs on top of a gold layer [[65]], but also to detect the absolute value
of the propagation constant [[66]]. For this purpose, the thickness of the gold layer is chosen to be
60 nm and is placed on top of a glass substrate, as sketched in In this case the SPP
field can leak through the gold layer [67]]. Then, this leaked fraction of the field can couple
to radiating modes in the glass substrate, since the light cone in glass lies on the right side of
the SPP’s dispersion relation, as plotted in Due to the conservation of momentum,
the resulting radiation, the so-called leakage radiation 68]l, leaves the gold layer under an
angle O (see [Fig. 2.4). With the absolute value of the SPP wave vector B = |B], this angle is

calculated to be [56]:
0= arcsin( A ) = arcsin( et ) (2.21)
nglasskO Nglass

In the case of a vacuum gold interface and a free space wavelength of 19 = 980 nm, the angle is
given by:

®vac—gold =~ 42.50 . (2.22)

This rather big angle obtained by freely propagating SPPs makes it necessary to use an objective
with a high numerical aperture (NA) to collect this radiation in an experimental environment.
Based on the definition of the NA [69]], the maximal detectable effective refractive index then
equals the value of the NA.

It should be pointed out that this detection method induces an additional loss channel to
the system and hence decreases the propagation length below the value calculated in [(2.19)]
Therefore, the chosen thickness of the gold layer has to be a good trade off between a strongly
reduced propagation length and the loss of too much intensity in the experimental setup [67].

2.4 Localized surface plasmon polaritons

If the dimensions of the gold interface are drastically reduced, even below the size of one
wavelength of the used light source, the previously described propagating SPPs are not an
allowed solution of the Maxwell equations any more. In this regime the strong influence of the
structure’s boundaries leads to the occurrence of the so-called localized SPPs [[6,[56]. While this
type of SPPs was experimentally investigated in various types of gold structures [71]l, we
restrict ourselves to the type of structure, used in this thesis: gold wires. Here, we will start with
the discussion of a single gold wire, which forms a good starting point for the introduction of
localized SPPs. Gold wire arrays will be addressed in a later part of this thesis.

If such a gold wire of infinite length in y-direction, a width of w, and a height given by A,
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Chapter 2 Theoretical basics

as sketched in the inset of is illuminated by a plane wave propagating in negative
x-direction two possible polarization directions have to be treated independently:

Polarization along the y-direction

Similar to an extended gold film, the gold wire supports SPP modes that propagate along the wire.
Analog to[(2.1T)] these modes exhibit a strong electric field component along the y-direction.
As their counterpart on a flat interface, the wire SPP modes cannot be directly excited from the
far-field due to the conservation of momentum. For that reason, these modes play no relevant
role within this thesis.

Figure 2.5: The inset shows a single gold wire
of width w and height /& with an infinite length 5
along the y-direction, placed on top of a glass —c’% 0.8
substrate. The graph describes the modeled ab- =
sorption spectrum of a typical gold wire, result- =
ing from an illumination with z-polarized light. %
The displayed spectrum exhibits a resonance at é 0.4
a wavelength of A5 = 610 nm. g

s

Z

0 i i i i
400 600 800
Wavelength [nm]

Polarization along the z-direction

If the polarization is rotated to the z-direction, the behavior changes. Due to the small extensions
of the wires in this direction, the translational invariance of the system is broken. This facilitates
a direct interaction of the incoming electromagnetic wave with the gold’s free electrons, leading
to the excitation of localized oscillations, the mentioned localized SPPs [[6, [56]]. Their interaction
with the exciting light field can be modeled with a simple oscillator model [[72]].

In this model, the impinging electromagnetic wave E(t) drives an oscillation of the electron cloud,
exhibiting a charge of g, and mass of mp,. This induces a displacement & (7) of the electron
cloud in the gold wire relatively to the positive background of the nuclei. A counteracting
restoring force is then built up by the Coulomb attraction of the positive background. It is
proportional to the displacement and furthermore determines the resonance frequency €
of the system. Simultaneously, ohmic and radiation losses induce a damping ;. Based on this,
the equation of motion of the system corresponds to a single Lorentzian oscillator [[72]]:

. . dpl
Eol + 2ypiépl + Qép = m—"lEm. (2.23)
P

For a monochromatic excitation (E(¢) = Ege™'“"), the following ansatz can be taken:

&i(1) = Epi(w)e™. (2.24)
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2.4 Localized surface plasmon polaritons

The resulting frequency dependent displacement can be derived with this ansatz in combination

with[(2.23)] This leads to:

6]plEO
mpl(le - w? - 2iypw)

En(w) = (2.25)

This equation describes an oscillating charge, which naturally induces a dipole moment, given
by:
p(t) = guép(w)e™". (2.26)

Based on this, the absorption related to the excitation of such an oscillating dipole is proportional
to the frequency and the imaginary part of the displacement [[72]]:

a(w) o« w IM(Ep(w)). (2.27)

For some geometries, e.g., cylinders of finite size [[73]], the resonance frequency and damping
can be approximated analytically. In most cases, as in the present one, however, more rigorous
simulation methods have to be used to predict the exact resonance frequency and damping of
the single structure. Nevertheless, we can deduce a set of parameters from the experimental
results discussed in a subsequent chapter of this thesis. A typical absorption spectrum can be
described by a resonance at 2mc/Q, = 610 nm wavelength, a frequency dependent damping
of yp1 = 0.06 - Q,}, gp1 = 0.5, and my, = 1. The resulting modeled absorption spectrum, is
plotted in While the peak position is clearly determined by the spectral position of the
resonance, the large width of the peak is induced by the damping of the oscillation.
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CHAPTER 3

Gradient index plasmonics: manipulation
of Airy SPP beams

Airy SPP beams are the plasmonic analog to Airy beams in free space, as initially proposed by
Berry et al. [[16]]. Similar to their free space counterpart, Airy SPP beams form a class of wave
packets that provide interesting features, such as a diffraction-free propagation, self-healing
after passing through obstacles, and self-acceleration 20]. This chapter concentrates on
the investigation of the destructive-free manipulation of such beams by preserving their unique
properties.

For this purpose, the chapter starts with an introduction of freely propagating Airy SPP beams
and presents a method to excite them on extended gold films. Subsequently, gradients of the
effective refractive index generated by dielectric ramps on the gold film are used to manipulate
propagating Airy SPP beams, based on an approach proposed by Liu et al. [23]].

After the theoretical discussion of the excitation and manipulation concepts, gray-scale electron
beam lithography (gEBL) is introduced as the fabrication method for all dielectric structures.
In the final part of this chapter the used experimental setup is introduced. This is followed by
the experimental demonstration of bent Airy SPP beams. Herein, this chapter mainly follows

Ref. [[74]).

3.1 Freely propagating Airy SPP beams

To transfer the concept of Airy beams to a plasmonic system, was firstly suggested in the
theoretical work of Salandrino et al. [[I§]]. Their argumentation originated from the possibility to
describe the evolution of propagating SPPs at a metal dielectric interface by their main field
component Ex. Based on[2.9)H(2.1T)] all other field components of the propagating SPPs can
be derived from this component. Thus, in the dielectric half-space, Ex can be written as [[I§]]:

Ey = A(y, z)e'P? ek, (3.1

with the transverse beam profile assembled to A(y,z) and the propagation constant S, as
well as kq taken from [(2.12)] With the Helmholtz equation [(2.5)] the condition [(2.12)] and
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

the assumption of a slowly varying transverse beam profile (327’;‘ = 0), an analog to the free

1D-Schrédinger equation can be derived for the transverse beam profile [[18]]:

— +2ifo— =0. 2
6y2+ iBom-=0 (3.2)

As it turns out, one possible solution of [(3.2)] is given by a paraxial Airy SPP beam, being
described by [[I§]:

2

. VAR
A(y,z) = Ai [Y—T+1a2 B

- exp [a (Y - %Zz)] - exp [i (%(a2 +Y)Z - iZ3)] , (3.3)

with the Airy function Ai , the newly defined coordinates Z = z/(Bo yg) and Y = y/yo, the
parameter yq (determined by the main lobe width w = 2yy), as well as the apodization factor a.
While Z and Y simply renormalize the coordinate system, a ensures the paraxiality of the beam
by inducing a limited Gaussian shaped field distribution in the k-space [[18]].

Intensity evolution in a typical system

With [(3.3)] the intensity distribution of a paraxial Airy SPP beam propagating along an extended
vacuum gold interface can be calculated for a typical set of parameters. In case of a free
space wavelength of 1o = 785 nm, the propagation constant for this system can be derived to
Bo = nemo ko = (1.02 +1i0.0015) ko. Together with an apodization factor of @ = 0.08 and a main
lobe width of w = 3 um, a paraxial Airy SPP beam exhibits the intensity distribution, depicted

in[FIZ 30 o).
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Figure 3.1: (a) Calculated intensity distribution of a paraxial Airy SPP beam. (b) Classical analog to
a paraxial Airy SPP beam, built up by particles (green) that are simultaneously launched at different
positions in y-direction. Together, they form a limiting caustic trajectory of parabolic shape (red).

This distribution is mainly determined by the Airy function Ai in[(3.3)] Therefore, it provides
alternating dips and peaks of decreasing amplitude in the lower half space, as it is characteristic
for an Airy function. In the present case, the overall decreasing intensity of the peaks in
y-direction is further increased due to the used apodization factor. Additionally, the argument of
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3.2 Excitation of Airy SPP beams

Aidepends on Z2. Therefore, the main lobe of the paraxial Airy SPP beam follows an upwards
bent parabolic trajectory.

By inspecting (a), two further phenomena attract attention. On the one hand the main
lobe exhibits only small broadening as expected for a beam, which is barely influenced by
diffraction. On the other hand, the intensity is decaying in propagation direction. This originates
from the absorption in the gold layer, described by the imaginary part of the effective refractive
index (more details on this can be found in the discussion of the propagation length [2.19)).
Since the Airy SPP beam represents a solution of the Schrodinger equation [(3.2)] a classical
analog can be obtained. It deals with families of particles, as they are sketched in[Fig. 3.1](b) [74]].
The particles (depicted as green dots) are launched simultaneously with a constant horizontal
velocity [V,(y,z = 0) = const] and a vertical velocity depending on the initial position
[Vy(y,z = 0) = B+y/-y;, B is a positive constant and y; the initial coordinate at z = 0]. The
limiting caustic trajectory of the particles’ trajectories then corresponds to an upwards bent
parabola (red line) with a form, determined by the Z-dependence of the Airy function’s arguments
in

Analogously, using the integral equation of the Airy function [[75]], Airy SPP beams can be
represented by a family of plane waves. Based on this, all their unique properties can be
explained by constructive interference of these plane waves. This has already been demonstrated
for the analog case of free space Airy beams [17]].

3.2 Excitation of Airy SPP beams

Since Airy SPP beams have a unique field distribution, their excitation cannot be achieved with
a simple straight grating. In this thesis we concentrate therefore on a method proposed in [[19]
22]] that uses a special type of grating coupler for the excitation. The design, as provided by
Alexander Minovich[Tis sketched on the left side of (a) for a free space wavelength of
785 nm.

(a) z HSPP] q’(Y) |A(y’0)| 1
00 0Om™ 0 05 —_
=}
] £
— S
Sl B £
> — g
— )
— Z

— 10 pm

220 — I

0

Figure 3.2: (a) Design of the grating used for the excitation of Airy SPP beams, based on [[19]]. One unit
cell of the grating is marked with a red rectangle. Additionally depicted are the phase angle ¢(y) and the
absolute value of A(y, z = 0) as based on Eq.[(3.3)] (b) Calculated normalized intensity distribution of an
excited Airy SPP beam 10 nm above the gold film. The data is taken from Ref. .

! Australian National University (ANU)
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

The working principle of this grating bases on the properties of A(y, z = 0), as described by [(3.3)]
However, in contrast to the previous section here an apodization factor of @ = 0.04 and a main
lobe width of w = 1 um is applied. This combination deviates from the paraxial approximation,
induces a stronger bending of the beam, and hence makes it possible to image the bending
on an even shorter distance [[76]. Nevertheless, the desired properties are maintained by this
procedure [[19].

The substructure of the grating’s unit cell, marked by the red box in (a), corresponds to a
binary map of the absolute value and the phase angle ¢(y) of A(y, 0), as extracted from[(3.3)]and
plotted in[Fig. 3.2](a). It can be recognized that |A(y, 0)| exhibits the well-known distribution of
an Airy function, consisting of alternating zeros and peaks in the lower half space. It determines
the subdivision of the grating in y-direction. The phase angle ¢(y) is a step function with two
different values. It is included in the grating design by shifting each other grating element by
Aspp/2 in z-direction, corresponding to a relative phase shift of .

Finally, the unit cell of the grating is periodically repeated 10 times in z-direction with a period
of Agpp, facilitating a coupling of free space radiation to the gold vacuum interface.

FDTD simulations

Since such grating emulates both, amplitude and phase distribution of an Airy SPP beam, it
should facilitate its excitation via constructive interference by illumination with a plane wave [19].
In order to test the functionality of dielectric gratings (nq = 1.6) of the proposed design and
various thicknesses (£), full field simulations based on the Finite Difference Time Domain
(FDTD) method were provided by our collaborators from the ANU. In these simulations, the
grating is illuminated with a plane wave of 785 nm wavelength, impinging from the positive
x-direction. These simulations showed that the thickness of the grating elements has a strong
influence on the intensity distribution of the excited Airy SPP beams. While a grating, consisting
of elements with a thickness of 200 nm, leads to a highly disturbed Airy SPP beam, a smaller
thickness of 4 = 100 nm represents a more optimal choice. The resulting intensity distribution
on a plane 10 nm above the gold surface is shown in [Fig. 3.2](b).

Although such grating leads to the excitation of two Airy SPP beams, one propagating to each
side of the grating, only the right side is shown. In comparison to these propagating
SPPs clearly exhibit the intensity distribution of an Airy SPP beam. The main lobe of this
distribution has a parabolic trajectory, pointing upwards with the expected small broadening due
to small diffraction losses.

Deviations to the previous calculations

Although, the FDTD simulations resemble the intensity distribution of a paraxial Airy SPP
beam, several deviations are apparent. The expected stronger bending of the not strictly paraxial
Airy SPP beam, shown in[Fig. 3.2} in comparison to the paraxial Airy SPP beam, depicted in
can be clearly seen. Furthermore, the FDTD simulation obtains components propagating
downwards. However, since the used grating reflects only a binary map of the absolute value of
the Airy function, the deviation can be explained by the chosen grating design. In fact, these
unwanted components diffract faster than the Airy solution itself and hence do not disturb the
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3.3 Manipulation of Airy SPP beams

overall behavior [[19].

Additionally, it has to be considered that the Airy SPP beam excited by the dielectric grating is
truncated due to the finite length of the grating in y-direction. As it is explained more detailed
in this truncation differs slightly from a profile given by the exponential apodization, used
in[(3.3)] It therefore leads to a finite so-called diffraction-free zone in propagation direction [[76]].

3.3 Manipulation of Airy SPP beams

The influence of a linear potential on the properties of propagating Airy wave packets was firstly
addressed by Berry and Balazs in their paper on nonspreading wave packets [16]]. Recently,
Liu et al. transferred this idea to the plasmonic equivalent, the paraxial Airy SPP beams [23].
They proposed to mimic the linear potential by a linear gradient in the effective refractive index,
described by neg(y) = neo +y - Aneg. This approach is fostered by the possibility to describe
the evolution of the transverse beam profile A(y, z) of propagating SPPs in such system by a 1D
Schrodinger equation [23]]:
1 ,8%A

0A
. 2
Eyoa—yz + 1,80}705 + PA =0, 3.4

including a potential defined as P = fy/yo with f = AnegBoko yg, Bo = negoko, and ko,
depending on the main lobe width. Note, that for a vanishing gradient (Aneg = 0), this problem
reduces again to the 1D-Schrodinger equation, described by [(3.2)]

In fact, a modified version of the already mentioned paraxial Airy SPP beam is a possible
solution of the 1D Schrodinger equation including a non-vanishing linear potential. With the
apodization factor a, the main lobe diameter w = 2y, as well as the new coordinates Y = y/yg

and Z = z/(,Boyg), it is given by :

1
A(y,2) =Ai [Y—Z (1+2f) 2% +iaZ

- exp [a (Y— 522(f+ 1)) (3.5)
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e
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In comparison to the free propagating paraxial Airy SPP beam, a non-vanishing gradient in
the effective refractive index influences the evolution of the field. However, since still
represents an Airy function, the unique properties of a paraxial Airy SPP beam are maintained
by this procedure. Consequently, the exact behavior is again described by the argument of the
Airy function in The parameters depend on Z? so that a parabolic trajectory of the main
lobe can still be anticipated. Furthermore, an f # 0 influences the slope of the Z2-dependency,
but not its general form. This results in the possibility to control the bending of the Airy SPP
beam’s trajectory by a gradient in the effective refractive index.

73+

a® 1
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

Intensity evolution in a typical system

Based on|[(3.5)] the intensity distribution of a propagating paraxial Airy SPP beam in a typical
system can be calculated. For this purpose, we make use of the parameters listed in[Sec. 3.1]
and a typical gradient of the effective refractive index, which can be experimentally realized
(see next section), as it is given by Aneg = —0.0319 —i0.0007 “Lm The resulting distribution is

imaged in (a).
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Figure 3.3: (a) Calculated intensity distribution of a propagating paraxial Airy SPP beam in a linear
gradient of the effective refractive index. (b) Trajectories (blue) of classical particles (green dots),
launched simultaneously at z = 0 and move in presence of an external force F. Their limiting trajectory
is depicted in red.

In contrast to the undisturbed paraxial Airy SPP beam, imaged in the main trajectory in
the present case is bent downwards in the direction of the gradient, by still exhibiting a main
lobe following a parabolic trajectory. The apparent stronger decrease of the overall intensity
in propagation direction stems from the imaginary part of the An.g. It induces an increasing
damping in y-direction and hence, has to be considered in the subsequent experiments.

To understand the behavior of the paraxial Airy SPP beam, the simple classical analog, presented
in can be used again. In (b) a family of particles (green dots) is started at
z = (0 with the same starting conditions as in the previous chapter [V,(y,z = 0) = const and
Vy(y,z = 0) = B+y/-y;, as indicated by the green arrows]. Now, the particles move in presence of
a constant external force, as for example gravity. Due to this force, the particles trajectories (blue
lines) do not remain straight, but become parabolas that are pointing downwards. As a result,
the limiting trajectory of all particles (red line) is still of parabolic shape, but bent downwards in
this case.

This indicates that in an appropriate external potential the propagation direction of propagating
paraxial Airy SPP beams can be manipulated by preserving their unique features.

3.3.1 Effective refractive index profiles

In order to introduce gradients in the effective refractive index of propagating SPPs, the optical
properties have to be changed smoothly along the surface. For this purpose, we use in this thesis
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3.3 Manipulation of Airy SPP beams

a dielectric layer of variable thickness that is deposited on top of the gold film [[I5] [77]. In
comparison to the also used approach of using sub-wavelength dielectric structures, which act as
an effective medium and hence allow for the manipulation of SPPs [[14]], our approach provides
a smaller proneness to scattering. Additionally, it is less demanding from a fabricational point
of view.

In the following we consider a three layer system, as it is sketched in [Fig. 3.4] In comparison to
Fig. 2.1} an additional dielectric layer of thickness d with a refractive index higher than the one
of vacuum is inserted between the gold and vacuum half-spaces.

Vacuum  Figure 3.4: Three layer system consisting of a
Ix J dI Dielectric  dielectric layer with thickness d, sandwiched

between the gold and vacuum half-spaces.
Gold

The allowed propagating modes in z-direction in this system can be found analogously to
the two layer system, discussed in By taking into account the permeabilities of the
dielectric (g4), vacuum (&y), and gold (&) it follows from the Maxwell equations and the
continuity of the fields at the boundaries that the following condition has to be fulfilled [[77]):

tanh (kgeqd) = —————, 3.6
(kagad) 31 koky (3.6)
with
B - .
kj = T, jelv,d, g} (3.7)
J

The exact dispersion relation of the system cannot be derived analytically from this formula, but
it can be approximated by using Newton’s algorithm for each set of wavelength and thickness.
The resulting values for a system with a dielectric of thickness d and refractive index ng = 1.6 at
a vacuum wavelength of 1yp = 785 nm are shown in

(a) (b)

1.6 1
— S

2 13 =0.5
= =
hof)

1 0

0 200 400 0 200 400
d [nm] d [nm]

Figure 3.5: Real (a) and imaginary part (b) of the effective refractive index of propagating SPPs in a
dielectric layer with thickness d, sandwiched between gold and vacuum for a free space wavelength of
Ao = 785 nm.

For thicknesses between 20 nm and 150 nm, the real part of the effective refractive index increases
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

almost linearly with Re(neg)/d = 2.6 me The maximum value is reached for a thickness over
400 nm, where it approaches the effective refractive index of propagating SPPs in a two layer
system, consisting of solely the dielectric and gold. Due to an increased fraction of the field
contained in the lossy gold layer, the imaginary part has a maximum around 180 nm before it
approaches also the value of the two layer system.

This behavior indicates that an additional dielectric layer can be used to manipulate propagating
SPPs, by changing its thickness. It even facilitates the introduction of a gradient in the effective
refractive index by gradually changing the thickness of the additional layer. For example, a
linear ascending ramp with thicknesses between 20 nm and 150 nm induces an almost linear
gradient in the effective refractive index.

3.3.2 Numerical calculations of Airy SPP beams in dielectric ramps

Based on the last sections of this chapter, it can be anticipated that also non strictly paraxial
Airy SPP beams can be manipulated by fabricating dielectric ramps on top of the gold film. The
trajectory of such a propagating Airy SPP beam should then be controllable by changing the
slope of the dielectric ramps.

In order to test this method, full system FDTD simulations were provided by our collaborators
from the ANU. The simulated geometry contains an excitation grating, identically to the one
presented in the last section. Additionally, right next to the grating, a ramp made out of a
dielectric with refractive index ng = 1.6 and a slope of 8 E—E, pointing in negative y-direction, is
placed. The ramp begins slightly above the grating at yg,« = 2 um. This leads to a thickness of
approximately 20 nm at the start of the grating, being in the linear range of the index-to-thickness
dependency (see (a)).

Similar to the above presented simulations, a perpendicular incident plane wave of 785 nm
wavelength excites an Airy SPP beam at the grating. This leads to a propagating beam in the
ramp, as it is shown in (a). Beginning at the left border of the ramp at z = 0, the
main lobe is pointing downwards in direction of the gradient. At the same time it follows a
parabolic-like trajectory, similar to the paraxial Airy SPP beam imaged in Additionally,
again a strong increase of the damping due to the presence of the ramp is obvious. The remaining
deviations can be assigned to the not strictly paraxial type of the Airy SPP beam excited with
the chosen type of grating coupler.

Influence of the refractive index gradient

The influence of the gradient of the dielectric ramp on the bending of the Airy SPP beam is
tested in an additional simulation of a ramp with a height gradient of 9 "% and the same starting
point (Ysart = 2 um). In order to compare all discussed cases of propagating Airy SPP beams,
the trajectories of the main lobes are extracted. The results are shown in[Fig. 3.6](b). Herein, the
main lobe of the free propagating Airy SPP beam, extracted from is depicted in red.
Furthermore, the one of the 8 ™2-ramp is colored blue and the one of the 9 *=-ramp is shown in
green. The comparison of all three trajectories reflects the anticipated behavior. While the free
propagating Airy SPP beam has an upwards bent trajectory, the other two are bent in direction

of the gradient. At the same time the bending is strongly influenced by the gradient of the ramps.
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Figure 3.6: (a) Simulated intensity distribution of a propagating Airy SPP beam in a 8 %‘—ramp, 10 nm
above the gold film. Directly attached is a sketch of the corresponding ramp. (b) Extracted trajectories of
the main lobes of a free propagating Airy SPP beam (red) and beams in a ramp with a height gradient of
8 Ean: (blue) and 9 1% (green). Data taken from Ref. .

This demonstrates that dielectric ramps of different gradients can be used to bent the trajectory
Airy SPP beams in a tailored manner by changing the slope of the ramp.

3.4 Gray-scale electron beam lithography

In order to facilitate the experimental demonstration of freely propagating Airy SPP beams
and their manipulation with the proposed method, we have to fabricate dielectric gratings as
well as dielectric ramps on top of a gold layer, thin enough to allow the leakage radiation to be
emitted. For this purpose we employ gray-scale electron beam lithography (gEBL) with PMMA
(Polymethylmethacrylat) as negative tone resist. By this approach, as it is sketched in [Fig. 3.7
the fabrication of all dielectric structures on top of the gold film is possible in one step [[I0]. The
fabrication process is discussed in the following.

(a) Substrate preparation

The observation of the SPP propagation requires an oil-immersion microscope lens with large
numerical aperture. For this purpose, we choose as substrates standard 170 um cover slides,
made out of crown glass (BK-7) that are compatible with our microscope lens. In a first step,
these cover slides are roughly cleaned by manually polishing with lens tissues soaked in acetone.
Subsequently, they are soaked in acetone in an ultrasonic bath for 60 min for thorough cleaning.
After flushing the substrates with ethanol, the solvent residues are removed with pressured
nitrogen gas.

On top of the cleaned substrates, a thin layer of approximately 1 nm chromium is evaporated,
acting as an adhesion layer for the subsequently evaporated gold. The gold layer itself has a
thickness of 60 nm. Both metal layers are deposited by thermal evaporation at a typical pressure
of 1.5 x 107® mbar and evaporation rates of 1 % and 2 %, respectively.

In the last step of the preparation, PMMA with a molecular weight of 950 k and dissolved at
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

Figure 3.7: Basic principle of gray-scale electron
beam lithography. (a) PMMA-Au-Cr coated
glass substrate (b) Gray-scale electron beam
lithography (c) Cross-linked structure in the
PMMA layer (d) Resulting structure after re-
moving the exposed areas.

(d) Y (c)

4 % in annisole?]is spin-coated onto the sample in two steps: (i) For 3 s at 500 rpm, in order to
distribute the solution over the sample (ii) For 90 s at 4000 rpm, to achieve a layer thickness of
up to 200 nm. Subsequently the film is annealed for 45 min at 175 °C.

(b) Electron beam lithography

The slides are placed in a scanning electron microscope’] (SEM) with an attached beam control
system including a fast beam blanker¥in order to perform the actual gEBL. Herein, the electron
beam is moved over the sample in a controlled manner, tracing simple geometrical structures.
The total write field containing such structures has a size of 100 pm times 100 um. Hence, many
of these fields can be placed on one sample.

The local electron beam exposure leads to chemical reactions in the used resist (in this case
PMMA), depending on the locally applied dose and the used acceleration voltage. Here, we
make use of the effect that for high doses, after a first polymer-chain cutting procedure, a
subsequent cross-linking of the polymer-chains takes place in the PMMA layer [79]. Due
to the large contribution of the backscattered electrons in this procedure, the cross-linked area
grows from the gold layer, resulting in a dose dependent thickness [[10]. Since the cross-linked
material has a higher resistivity against solvents such as acetone, PMMA effectively acts as a
negative tone resist [79].

In order to achieve the cross-linking in this fabrication step, the used nominal dose applied
to the sample is 1400 uC/cm? (all subsequent mentioned doses are measured relatively to this
value). To save time in the lithographic process, a rather large aperture of 30 um, a low electron
acceleration voltage of 10kV, and a typical step-size of 0.0096 um are chosen.

2 Supplied by the micro resist technology GmbH, Germany
3 Sigma, Carl Zeiss Microscopy GmbH, Germany
4 ELPHY Plus, Raith GmbH, Germany
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3.4 Gray-scale electron beam lithography

(c) Cross-linked structures

The actual form of the cross-linked structures in the resist depends not only on the written dose
profile of single structures but also on the distances between them. If two structures are placed
in near proximity, an overlap of the exposed areas can lead to an effectively increased locally
applied dose, accompanied with an increased thickness and width. This effect is called proximity
effect [80].

In the present case not only neighboring structures lead to this effect, but also the single lines
that build up the structure influence each other. This leads to an increasing thickness for broader
structures due to more neighboring lines. Additionally, the width of the structures is strongly
affected, due to the absence of neighbors beyond the border of the structure.

Both effects can lead to strong deviations between design and fabricated structure, making it
essential to consider the proximity effect in the design.

(d) Resulting structures

Finally, the cross-linked structures are revealed by soaking the sample in acetone for 60 s and
subsequently blowing off the remaining residues with pressured nitrogen. As a result only the
exposed and cross-linked areas remain on the surface of the sample.

3.4.1 Fabricated samples

In order to realize the manipulation of propagating Airy SPP beams experimentally, single
standing PMMA gratings of the proposed design as well as similar gratings beside PMMA
ramps of various height gradients are fabricated. All gratings are designed as discussed in
and based on sets of rectangles with a dose of 500 % of the nominal dose. An SEM

image of such a grating, left to a typical ramp, is shown in[Fig. 3.§|(a).
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Figure 3.8: (a) SEM image of an Airy SPP beam grating coupler next to a dielectric ramp. (b) AFM
measured height (blue) of the ramp imaged in (a) at the position marked by the red arrows, including a
linear fit to the first part of the ramp (red). The data taken is from Ref. .

The ramps are designed as consisting of rectangles with a length of 32 um in z-direction and a
width of 50 nm in y-direction. The minimal dose is 70 % of the nominal dose, while the maximal
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

dose is 170 %. The number of elements in y-direction is variable in order to increase or decrease
the slope of the ramp. The ramp depicted in (a) has a width of 20 um in y-direction and
consists of 400 rectangles in total, resulting in dose steps of 0.25 percentage points. In addition,
ramps with a length of 10 um and 15 um are fabricated, leading to larger dose steps of 0.33 and
0.5 percentage points, respectively. The position of the ramps in y-direction in combination with
the chosen minimal dose are herein the most critical parameters since they define the real start
of the ramp due to the proximity effect.

Sample characterization

In order to characterize the resulting samples after fabrication, an atomic force microscope (AFM)
was used to measure the thickness of grating and ramp. The measurements were performed by
Jakob Frohnhaus[}] The measured thickness of the grating elements is approximately 140 nm.
The profile of the ramp, depicted in (a), is measured along a line as indicated by the
red arrows. The results are plotted in (b) (blue curve). After a linear slope within the
first 10 um, the gradient of the ramp drops. This is due to the fact that the relation between the
applied dose and the resulting thickness is not exactly linear. However, the fit of a linear function
to the first part of the ramp results in a gradient of approximately E—Q, which is identical to the
one of the simulated dielectric ramp in the last section.

Similar measurements are performed on the second ramp, with a length of 15 um. The resulting
gradient is measured to be approximately ELIE, while due to the dose profile, the third ramp is
expected to be even steeper.

The dimensions of the fabricated gratings and ramps are consistent with the theoretically
demanded parameters. In contrast, the refractive index of the used material deviates. While
unexposed PMMA has a refractive index of npypva = 1.49, the one of cross-linked PMMA is
not known exactly. However, in order to cover all fabricational uncertainties, such as a changing
density of the cross-linking, we use the refractive index of the cross-linked PMMA as a free
parameter to fit the numerical simulations to the experimental data. A good agreement can be
found if we choose a value of 1.6 for the cross-linked PMMA in the simulations (see below).

3.5 Optical setup

As introduced in propagating SPPs emit leakage radiation that can be used to
image the intensity distribution of propagating SPPs on top of the gold layer. The resulting
imaging method is called leakage radiation microscopy (LRM) [[67}[68]] and can be realized with

a setup as it is sketched in

Starting point of the optical setup is the diode laser[f| operating at a wavelength of 785 nm. In
order to obtain a beam with a high quality Gaussian beam profile, the laser is coupled into a
single mode fiber. This is necessary since in all experiments on propagating SPPs, the beam
shape of the laser beam used for the excitation has a strong influence on the intensity distribution

of the propagating SPPs (see [Subsec. 2.3.1).

> Group of PD Dr. Elisabeth Soergel, Physikalisches Institut, Universitit Bonn
6 LaserBoxx, Oxxius, France
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3.5 Optical setup
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Figure 3.9: Optical setup used for the imaging of the leakage radiation, emitted by propagating Airy SPP
beams. Additionally, the light of an optional white light source can be coupled into the beam path via a
polarizing beam splitter (PBS), facilitating the imaging of the sample’s surface.

The light emitted by the fiber is collimated with a lens. The resulting laser beam subsequently
crosses a polarizing beam splitter, which serves two purposes. It ensures the linear polarization,
needed for the excitation of propagating SPPs, and it can direct light of any additional collimated
light source into the beam path. This allows for example the illumination of the sample with
white light.

The laser light and the optional white light are focused onto the sample by making use of Obj. 1[7]
It is mounted on a XYZ translation stage to control the exact focal position on the sample. The
gold chromium coated cover glass with a surface manipulated by PMMA structures is mounted
in a self manufactured sample holder, attached to a second XYZ translation stage.

In order to collect the radiation leaving the backside of the sample with a high angular range, an
immersion oil objective]is used (Obj. 2). It is infinity corrected and provides a back focal plane
(BFP) laying in a 12 mm distance from the objective’s shoulder. With a numerical aperture
of 1.49, it collects the sample’s emission up to an angle of approximately 80° relatively to the
optical axis. Based on the definition of the numerical aperture and [(2.2T)] this objective hence
facilitates the imaging of propagating SPPs with an effective refractive index of up to 1.49. This
limit can only be exceeded if the sample provides a high surface roughness, which alters the
emission angle of the leakage radiation [[81]].

Since the employed microscope objective is an infinity corrected objective (image distance is set
to infinity), a real image plane of the sample is in the focal point of the lens behind the objective.
The size of this image depends on the focal length of the tube lens. Hence, if a camerd is
placed in the focal point, it captures a real image of the sample’s surface. Additionally, due to
the emitted leakage radiation, in this case also the intensity distribution of propagating SPPs is

imaged [65]].

7 Plan N 10x, Olympus Deutschland GmbH, Germany
8 Apo TIRF 100x, Nikon GmbH, Germany
9 DCC1545M, Thorlabs GmbH, Germany
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

3.6 Experimental results

This section concentrates on the experimental investigation of the fabricated samples. It starts
with the experimental demonstration of freely propagating Airy SPP beams. Subsequently, the
influence of PMMA ramps is discussed in comparison to the presented FDTD simulations.

3.6.1 Excitation of Airy SPP beams

In order to investigate freely propagating Airy SPP beams, a sample containing an isolated
standing grating of the proposed design is placed in the optical setup. The 785 nm laser is
focused onto the sample, resulting in a spot with a waist radius of approximately 5 um. In order
to excite Airy SPP beams, this grating is placed in the laser spot. The coordinate-system is
calibrated with the known dimensions of the grating. This procedure induces an uncertainty of
approximately 2% on both axes. The resulting normalized intensity distribution of the excited
Airy SPP beam is depicted in[Fig. 3.10on a logarithmic color scale.
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Figure 3.10: Normalized intensity distribution of Airy SPP beams excited by focusing the laser beam on a
grating of the proposed design.

The grating itself is visible due to the usage of an additional white light source. It can be
recognized that the spot of the laser beam covers the top half of the grating, leading to the
excitation of Airy SPP beams. In accordance to the presented FDTD simulations, these beams
are propagating in both directions away from the grating. The characteristic upwards bending
of the main lobes is clearly visible on a total length of about 40 um on each side. This short
length is a consequence of the short propagation length at a free space wavelength of 785 nm (for
more details see the discussion of [(2.19)). In addition and accordingly to the presented FDTD
simulations, some parts of the SPPs are propagating in negative y-direction without disturbing
the Airy distribution of the Airy SPP beams.

A more detailed comparison of the theoretically expected and experimentally demonstrated
bending of the main lobes of freely propagating Airy SPP beams takes place at the end of this
chapter.
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3.6 Experimental results

Influence of a longer wavelength

The same experiment is repeated again with a slightly changed optical setup. This new setup
contains a laser of 980 nm wavelength, a new camera[l% and facilitates angular filtering, as it
can be used to suppress the exciting laser beam. It will be discussed in more detail in the next
chapter.

In order to allow for the excitation of propagating Airy SPP beams at this wavelength, the
proposed grating design was adjusted by increasing the inter-unit-cell separations. However, for
their excitation, the laser is focused onto the sample similarly to the previous case. The resulting
normalized intensity distribution is shown in on a logarithmic color scale.

1
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Figure 3.11: Normalized intensity distribution of an Airy SPP beam excited by focusing the 980 nm laser
on an adjusted grating.

Since both, laser beam and left propagating Airy SPP beam are blocked by the angular filter,
the grating can only be recognized due to the excited SPPs. Similarly to the previous case, the
grating leads to the excitation of an Airy SPP beam, propagating in positive z-direction. Here,
the upwards bended main lobe of the Airy SPP beam can be seen clearly over more than 100 pum.
In comparison to this increased propagation length is striking. However, it has to be
considered that the reason for this behavior is the longer free space wavelength. It leads to a
longer propagation length due to the decreased losses of gold in this spectral range (see [(2.19)).
As aresult, this makes it possible not only to image the main lobe over a larger distance, but also
to detect the broadening of the main lobe starting around z = 60 um. This can be explained by
the small illuminated part of the grating, leading to an additional truncation of the Airy function
and hence a diffraction-free zone with finite length [I9].

3.6.2 Bending of Airy SPP beams

As a next step the influence of PMMA ramps on propagating Airy SPP beams is investigated.
For this purpose the sample is placed in the optical setup in a way that the laser is focused on the

10 7yla sSCMOS, Andor Technology Ltd., United Kingdom
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

grating beside the ramp with the smallest height gradient (8 E—E). In order to be in agreement
with the FDTD simulations, the 785 nm laser is used again. The resulting logarithmic scaled
and normalized intensity distribution, captured with the camera, is depicted in The
white light source is again used to ensure the imaging of the ramp and the grating.
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Figure 3.12: Normalized intensity distribution of an Airy SPP beam excited by focusing the 785 nm laser
on the grating right next to the 8 E%‘—ramp.

The laser beam has once more a waist radius of approximately 5 um and is focused on the top
half of the grating. The Airy SPP beam that propagates freely in negative z-direction is cropped
for the sake of clearness. On the right side, the beam directly enters the ramp. Obviously,
the main lobe is bent downwards in the direction of the ramp, as expected from the FDTD
simulations (for a detailed comparison, see below). In comparison to[Fig. 3.10|the influence of a
higher damping in thicker PMMA structures can be seen as a fast drop of the intensity in the
propagation direction. Additionally, a beating pattern is apparent in the intensity distribution
in the inner of the ramp. It stems from interference of the directly transmitted laser beam and
the leakage radiation on the camera. Both obtain a different phase on the camera due to the
additional phase accumulated by the surface plasmons while propagating in the ramp before the
leakage radiation is emitted. These fringes are therefore not visible in the FDTD simulations.

Gradient dependency

In order to investigate the dependency of the Airy SPP beam evolution on the refractive index
gradient, the two remaining ramps are investigated. The Airy SPP beam excitation scheme is
identical to one in the previous case. We start with the discussion of the structure with the
im-ramp. Its ramp part is shown in@ (a).
Obviously, the bending of the Airy eam’s main lobe is stronger in comparison to the
E—E-ramp (for a detailed comparison see below). Here, an influence of the lower edge of the
9 ﬁ—ﬁ—ramp is still negligible, since the main part of the intensity distribution is located in the top
part of the ramp. In comparison to[Fig. 3.12] a stronger damping can be recognized, being in
accordance to the higher gradient of the ramp.
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Figure 3.13: Normalized intensity distribution of an Airy SPP beam in the 9 &= -ramp (a) and in a 10 um

pm
long and steeper ramp.

The bending should be more pronounced for the third ramp, fabricated with the steepest dose
gradient. The resulting normalized intensity distribution for this ramp is depicted in[Fig. 3.13] (b).
Also in (b), the excited Airy SPP beam directly enters the ramp after excitation. In
contrast to the previous cases, however, the lower edge of the ramp has a strong influence on the
beam. This leads to a strong disturbance of the distribution in the ramp due to an additional
truncation of the Airy SPP beam. This explains the apparent weaker bending of the main lobe in
this case. Hence, this ramp is not used for further investigations.

3.6.3 Comparison of the experimental results and numerical calculations

While the last sections showed that PMMA ramps on top of gold films have a large influence on
propagating Airy SPP beams, a direct comparison especially to the theoretical predictions is
still missing. To fill this gap, the main lobes of the Airy SPP beams in both FDTD simulations
and experimental images are extracted by a manual read out. The read out error of each value,
induced by this procedure is +0.1 um. The assembled values are plotted in[Fig. 3.14]

Figure 3.14: Main lobes of Airy SPP beams
extracted from the experimental images (circles)
and the FDTD simulations (lines). Herein, the
freely propagating Airy SPP beam is depicted
in red, the results of the len—ramp in blue and
of the 9 T-ramp in green. Data taken from

Ref. [74).

z [um]

The experimental data is marked as circles, while the numerical calculations are depicted as
solid lines. The trajectory of the main lobe of a freely propagating Airy SPP beam is shown
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Chapter 3 Gradient index plasmonics: manipulation of Airy SPP beams

in red. The main lobes of the Airy SPP beams propagating under influence of the ramps are
depicted in blue (8 E—?nl—ramp) and green (9 L%—ramp), respectively.

The behavior expected from the last sections, can be observed clearly. While the freely
propagating Airy SPP beam is bent upwards, the Airy SPP beams in the ramps are bent
downwards. On this occasion, the gradient of the ramp plays an important role since the steepest
ramp leads to the strongest bending, as the deflection after 15 pum has doubled in comparison to
the 8 ETTI—ramp. It corresponds to even more than an inverted bending behavior in comparison to
the freely propagating Airy SPP beam. The experimental data is in excellent agreement with the
date extracted from the FDTD simulations.
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CHAPTER 4

Plasmonic waveguide arrays as quantum
simulators

In this chapter, we will study arrays of evanescently coupled dielectric loaded SPP waveguides
(DLSPPWs) as model systems to simulate condensed matter phenomena. After the discussion
of the properties of a single DLSPPW, we will present the coupled mode theory that allows us to
approximate the evolution of the SPP amplitude in the array.

The second part of this chapter underlines the mathematical analogy between the coupled mode
theory (CMT) and the tight binding model that can be used to mimic the temporal evolution of
electrons in a crystal lattice. As a concrete example, it is discussed how a simple 1D topological
insulator, as described by the Su-Schrieffer-Heeger (SSH) model, can be implemented in a
DLSPPW array. Subsequently, the method employed to fabricate such arrays on a gold film is
introduced. The evolution of propagating SPPs in these DLSPPW arrays is then investigated
with the help of leakage radiation microscopy (LRM) both, in real and Fourier space. Finally,
the results are compared to the predictions of the numerical calculations.

4.1 Dielectric loaded surface plasmon polariton waveguides

In order to guide electromagnetic waves in a specific direction, it is necessary to confine them in
a structure that prevents the lateral spreading of the waves. For propagating SPPs at a metal
dielectric interface this can be achieved for example by fabricating grooves in the metal film
[82H84]l, by reducing the size of the metal film to a wire [8§5H87]], or by introducing an appropriate
change to the dielectric medium on top of it [TTHI3]]. In this thesis, we make use of the latter
approach and form DLSPPWs consisting of dielectric ridges on top of a gold surface. This
approach is less demanding from a fabricational point of view and allows for the tailoring of the
DLSPPWS’ properties by changing the profile of the ridge [[13]].

4.1.1 Single DLSPPW

The chosen design of such a DLSPPW is sketched in[Fig. 4.1] It consists of a dielectric ridge of
width w, height A, and infinite length in the z-direction, surrounded by vacuum, and deposited
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

on top of gold. In this context, the refractive index of the dielectric (nq) is assumed to be larger
than the one of vacuum (ny,c = 1), while the optical properties of gold are taken from [(2.8)]

Figure 4.1: Cross cut of a dielectric ridge on top Vacuum
of a gold surface with thickness &, width w, and X h Dielectric
an infinite length, acting as a waveguide for SPPs M

propagating in z-direction. « Gold

By limiting the dimensions of such ridge below the size of one wavelength of the intended
propagating wave (1o = 980nm), solutions of the Maxwell equations exist with the field
propagating along the dielectric ridge and being confined in the transverse direction [[13]]. These
solutions correspond to the eigenmodes of a waveguide, the DLSPPW. As usual for waveguides,
their properties highly depend on the used materials and especially on the size of the waveguide’s
core [[69]. Since in the present case the dielectric ridge acts as the core of the waveguide a high
influence of the ridge’s dimensions on the DLSPPW’s properties can be expected.

To get a better insight into these complex dependencies, we use the modal analyzer provided by
the finite element method (FEM) solver of the Comsol Multiphysics software package[l] We
assume translational invariance along the z-direction and search for solutions of the Maxwell
equations in a 2D geometry as it is imaged in[Fig. 4.1] In order to reduce the computational
effort, the simulated area is reduced to a rectangular area of 7 um width and 4 pm height with
the dielectric ridge in its center. Corresponding to the anticipated SPP field distribution of the
exponentially decaying fields outside the ridge, as boundary conditions at the sides of the area, a
zero tangential electrical field is assumed.

The modal solver is now used to find the solutions of the Maxwell equations corresponding to
plasmonic modes propagating in the z-direction. With the transversal electric field distribution
Eo(x,y), they can be described by:

E(x,y,z) = Ey(x, y)ei(ﬁz_“”). 4.1)

As aresult, in case of a dielectric ridge (ng = 1.49) with height 2~ = 140 nm, width w = 250 nm,
and the given free space wavelength, only one mode is allowed, making the DLSPPW a single
mode DLSPPW. The modal solver provides both, the complex magnetic and electric field
distributions, as well as the effective refractive index n.¢ = 1.058 +i0.0027 of the mode, as it is
determined by [(2.17)] The corresponding magnetic field distribution is plotted in (a).
While a large fraction of the magnetic field is concentrated at the gold dielectric interface inside
of the ridge, the field outside is of evanescent character. This confining behavior of the dielectric
ridge is also reflected by the effective refractive index of the mode, which is larger than that
of a free propagating SPP. Together, this underlines the expected behavior of a guided SPP
mode [[13]].

! Supplied by the Comsol Multiphysics GmbH, Germany.
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Figure 4.2: (a) Normalized field plot of Re(Hy) of a DLSPPW with width w = 250 nm and height
h = 140nm. The corresponding calculated real (b) and imaginary parts (c) of the complex effective
refractive index of DLSPPWs as a function of the width w with heights / given by: 90 nm (blue), 120 nm
(green), 150 nm (red), 180 nm (cyan).

Size dependence

We performed additional modal analyses in order to investigate the influence of the ridge’s
dimensions on the wave-guiding properties of the DLSPPW. In that process we considered
different widths between 200 nm and 350 nm, as well as heights between 90 nm and 180 nm, in
order to cover a wide range of parameters. In each case, the DLSPPW supports only one single
mode. The resulting real and imaginary parts of the effective refractive indices, are shown in
(b) and (c).

In the given range both parts of the effective refractive index increase almost linearly with
increasing height and width. In particular, the increase of the real part can be explained by the
increasing influence of the dielectric at larger sizes. The increasing imaginary part stems from a
stronger confinement of the field in the dielectric ridge, leading to more interaction with the
gold layer and therefore higher losses. Together this let us anticipate that the properties of the
DLSPPW can be tuned easily by changing the ridge’s dimensions.

Shape dependence

Since a perfect dielectric rectangular ridge cannot be achieved in real experiments, the influence
of deviations from this shape on the properties of the DLSPPW has to be discussed. For this
purpose we performed additional modal analyses on different dielectric structures with rounded
edges. These analyses revealed that a decrease of the cross-sectional area leads to an overall
reduction of the effective refractive index. The reason for this behavior is the decreased influence
of the dielectric due to its smaller profile.

4.1.2 Coupled mode theory

Now, a second DLSPPW is added to the system, resulting in the structure illustrated in [Fig. 4.3]
If the center to center distance p between both DLSPPWs is not too large, the field of the first
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

can penetrate the second one, leading to evanescent coupling [[12][88]]. Hence, the field evolution
in both DLSPPWs in the propagation direction is not independent any more and an exchange of
intensity between both DLSPPWs can be expected.

In a weakly coupled system, the so-called coupled mode theory (CMT) can be used
to model the field evolution in the DLSPPWs. For example, in the case of two DLSPPWs the
CMT approximates the solution of the system by using the independent eigenmodes of the two
single DLSPPWs as a basis.

Figure 4.3: Two dielectric DLSPPWs with per- X e te e
mittivities &y + €, and distance p, surrounded | Y v
by a material with permitivity &y. S

y &, te,

In order to follow this approach, we assume our system to consist out of two DLSPPWs (named
a and b) with the permittivities &, + &,1. Both are placed on top of a gold substrate and are
surrounded by a dielectric with permittivity £,. The permittivities are included in the proceeding
derivations by the function Ag, (X, y), being equal to &, only in the respective dielectric ridge.

At first, we treat the two DLSPPWs independently. Since all field components can be deduced
from it, in this discussion we concentrate on one electric field component only (see[Z.9HZ.IT)).
Based on the results of the last section, the eigenmodes then provide the lateral field distribution
E,p(x,y) and the propagation constants 5, = konef:apb. Hence, the electric fields of both modes
can be written as [[89]]:

Eap(X,Y,2,1) = Egp(X, y)elPapz=h) 4.2)

As propagating electromagnetic waves, both eigenmodes have to fulfill the Helmholtz equa-
tion [(2.7)| for the respective single DLSPPW geometry, given by:

92 0 W )
(@ * ay? + ey T Asap(x YT Eap(x.y) = BapEab (%) (4.3)
Due to their independence, they constitute a complete orthonormal set of modes, defined by the
relation [[89]:
[+ 00 i 2(1)].10 o
ElEjdXdy = 511 7, l,] € {a, b}, (44)

with the total power, being normalized to 1 W.

With the knowledge of the properties of both modes, we can now make use of the framework
of the CMT. Here, the full field of the electromagnetic wave, propagating in the two DLSPPW
structure is approximated by a linear combination of both eigenmodal fields of the single
DLSPPWs, weighted with the z-dependent amplitudes A(z) and B(z) :

EtOt(X? y’ Z, t) = A(Z) : Ea(X’ y’ Z, t) + B(Z) : Eb(X, y’ Z, t) (45)

In order to combine the total z-dependence of both summands, we introduce the new amplitudes
A(z) = A(z)e'f* and B(z) = B(z)e'P*. Then, by making use of |(4.2)] the total field can be
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4.1 Dielectric loaded surface plasmon polariton waveguides

rewritten as: . .
EtOt(Xa Y5 Z, t) = A(Z)Ea(xa y)e_lwt + B(Z)Eb(x’ y)e_lwl' (46)

The field of the two DLSPPW structure has to fulfill the following Helmholtz equation of the
complete geometry:

92 9? (92 w?
e a2 ay2 toa et Agy(X,y) + Asp(X, y)]) Eior(%,y,2) = 0. 4.7

In the weakly coupled case, considered here, the influence of one DLSPPW on the other
corresponds to a small perturbation so that we can restrict ourselves to amplitudes that vary
slowly in the z-direction. This assumption implies:

d?A _ d’B
dz2  dz2

By inserting[(4.6)|into [(4.7)] and by using[(4.3)]as well as [(4.8)] the following condition can be
derived:

(4.8)

da
2if, 1 E Zlﬁbd—Eb = —2BE,A - —AsbAE —2B2EyB - —AsdBEb (4.9)

A multiplication with E} and an integration over the xy-plane, by using leads to:

dA 2
a

This can be rewritten as:

dA
e = i(B} + kaa)A + iCyp B, 4.11)
with the overlap integrals
Ky = 20 f f E!AspEydxdy, (4.12)
Cypy = 220 f f E}Ae, Eydxdy. (4.13)

Analogously, by a multiplication of with EY', and a subsequent integration over the xy-plane,
a similar equation results for the field in the second DLSPPW:

dB

T = 1B} + ko) B+ iCrudt, 4.14)
Z
with
Kpp = 220 f f E? As, Eydxdy, (4.15)
Coa = 20 f f E? AeyE,dxdy. 4.16)
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

The newly defined overlap integrals k,, and «p, can be understood as a measure for the
perturbation of a single DLSPPW’s mode, induced by its neighbor. Hence, they correspond
to a correction of the propagation constants and can be included in a new definition of the
propagation constants, given by B, = B, + kaa and By = B[ + kpp. With this, the coupled
equations can be simplified to [24]:

A
A A +iCuB, (4.17)
dz
dB
5 iByB + iCpaA. (4.18)

This formula reveals that the overlap integrals (Cy, and Cy,) of both modes describe the interaction
of the fields in both DLSPPWs and thus act as coupling constants.

In order to simplify the solution of this system of two coupled differential equations, the problem
can be written as a matrix equation:

d
o a(z) = Acmr a(2), 4.19)
z

with the system matrix Acyt and the local amplitudes a(z) in the DLSPPWs, given by:

A(z) [ Ba Cap
a(z) = , A =i . 4.20
(2) (B(z)) CMT (Cba ,Bb) (4.20)
With this as a basis, the resulting local amplitudes of in each DLSPPW, as described by the
components a,,(z) of a(z), can be calculated by an eigenmode expansion on the basis of the
eigenvalues and eigenvectors of Acmr-

Eigenmode expansion

In the following, we consider a M-dimensional matrix with eigenvalues y; and eigenvectors V;
(j €{1 ... M}). With the initial condition a,,(0), the evolution of the electromagnetic field a,,(z)
along the z-direction in the m-th DLSPPW can be derived by an eigenmode expansion [90]:

M
an(z) = n;eX" Vi j, 4.21)

j=1

with
nj =D Viman(0), (4.22)
m

and the components of the eigenvectors, being described by V,,, ;. This expansion describes the
field in the m-th DLSPPW as a superposition of plane waves (the eigenmodes), given by e*/*V,,, ;,
and weighted with the initial condition r7;. Herein, the eigenvectors V; act as the amplitude
distributions of the eigenmodes of the two DLSPPW system, possessing propagation constants
k; = x;/i. The input of the system (a,,(0)) finally determines which eigenmodes are excited.
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4.1 Dielectric loaded surface plasmon polariton waveguides

4.1.3 System of two identical DLSPPWs

A simple system of two identical DLSPPWs (8, = B, =: ) can be used to understand the
behavior of coupled DLSPPWs. In this case both coupling coeflicients are also identical

(Cab = Cpa =: C) so that the eigenvalues and corresponding eigenvectors of this system can be
calculated from[(4.20)] This results in:

x1=i(B-0C), V= (_11) (4.23)
X2 =i(B+C), V = (i) . (4.24)

These eigenvectors and eigenvalues represent the two eigenmodes of the system. The first one,
described by [(4.23)] has an asymmetric amplitude distribution given by V;, while the second one,
given by [(4.24)] exhibits a symmetric amplitude distribution. At the same time, the propagation
constants (k; = x;/i, for j € {1,2}) of both modes split up symmetrically with respect to the
propagation constant of a single DLSPPW system, given by £.

With a typical input field distribution of a,,(0) = (1,0) and [(4.2T1)H(4.22)] the field evolution in
the z-direction can be derived for each DLSPPW:

1. 1.

al(Z) — Eelklz + §e1kzz’ (4'25)
1. 1.

ar(z) = —Eel"lz + 5el’QZ. (4.26)

These equations describe a superposition of two modes, which are excited simultaneously.
Because of their phase difference (A¢(z) = (ky — k1)z), this superposition results in a beating
pattern. Thus, after a given distance Lcoypl, @ full exchange of intensity between both DLSPPWSs
takes place. This so-called coupling length, corresponds to the distance after which the phase
difference equals 7. Together with [(4.23)H(4.24)] this leads to:

T 7

L =— = —. 4.27
Coupl ky — ki 2C ( )

Modal Analysis

To be able to utilize the CMT, the knowledge of the effective refractive indices of the single
DLSPPWs as well as the coupling constants is essential. While the effective refractive indices
of the single DLSPPWs were already discussed in[Subsec. 4.1.T] the coupling constants are still
unknown. This gap can be filled by using the modal solver of Comsol Multiphysics, again.

The complete simulated area, again, corresponds to a rectangle of 7 um width and 4 um height,
now with the two DLSPPW structure in its center. Identical to the simulations performed for the
one DLSPPW system, as boundary conditions zero tangential electrical fields at the sides of the
rectangular area are chosen. The modal solver is then used to find the two allowed modes of
the system, consisting of the two DLSPPWs with a width of 250 nm, a height of 140 nm, and a
center to center distance of 600 nm. The resulting real parts of the Hy-fields of both modes are
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

imaged in[Fig. 4.4](a) and (b).

2 1
(a) (b) —_

=
o Vacuum Vacuum E
0 = @ae  Dielectric ey Dielectric| T
Gold Gold gl

-2 0 2 -2 0 2 )

y [nm] y [um]

Figure 4.4: Resulting simulated Hy-field of two DLSPPWs with a center to center distance of 600 nm,
providing an asymmetric (a) and a symmetric mode (b).

Both modes can be clearly identified as an asymmetric (a)) and a symmetric mode
(b)), in accordance to the results expected from the CMT. While the symmetric mode is
tightly confined to the DLSPPWs, the asymmetric mode is broadly spread.

The effective refractive indices of both modes, provided by the simulation, are ki/ky =
1.015 +i0.0018 and k»/ko = 1.084 + i0.003, respectively. With this and by using[(4.27)] the
coupling constant of this system can be calculated to C = 0.22 + i0.0035 im While the real
part of C describes the actual coupling between the DLSPPWs, from [(4.17)] and [(4.18)]it can be
deduced that the imaginary part characterizes an additional damping of the system induced by
the coupling.

Field evolution

With the calculated values for the coupling constant and effective refractive indices of the two
DLSPPW system, the field evolution in the propagation direction can be calculated by using
[(4.25)H(4.26)] The resulting intensity evolution in the z-direction is then simply given by the
squared absolute value of the field.

In order to obtain a representation of the data which resembles the experimental leakage radiation
images, a 2D-plot of the intensity evolution in the z-direction is produced. For this purpose, the
intensity distribution in each DLSPPW (as calculated from [(4.25)| and [(4.26)) is plotted as a
horizontal, colored pixel line. These lines are copied several times to achieve an aspect ratio
corresponding to the chosen distances. Finally, the space in between the waveguides is padded
with lines of zero intensity. The resulting distribution is shown in[Fig. 4.5] (a).

Corresponding to the assumed input field distribution (a,,(0) = (1,0)), the electromagnetic
wave in the two DLSPPW system is excited at z = 0 in the top DLSPPW. Due to the evanescent
coupling, the intensity is periodically exchanged between both DLSPPWs, with a characteristic
length given by Lcoypl = 7 um. At the same time, due to the damping, the overall intensity is
decreasing along the propagation direction.
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Figure 4.5: (a) Field evolution of an electromagnetic wave in two coupled DLSPPWs with a center to
center distance of 600 nm. (b) A 2D FFT of the field distribution corresponding to (a).

Fourier analysis

In an experiment, the exact values of the effective refractive indices and the coupling constants
are usually not known. Using Fourier space imaging (see below in the experimental part of this
chapter), it is possible to image also the k-space intensity distribution of propagating SPPs in
DLSPPWs. From this distribution all necessary parameters can be deduced.

This idea can be theoretically reproduced, by applying a 1D Fourier transform on the field
distribution of the two coupled DLSPPWs, represented by [(4.25)]and [(4.26)] This leads to:

Flai()}(k) =2n(=06(k — k1) + 6(k — k2)), (4.28)
Flax(2)}(k) =2m( 6(k —ky) + 6(k — k2)). (4.29)

Obviously, these Fourier transforms are nonzero only for the values of the propagation constants
of the excited eigenmodes. Hence, it is a promising method to measure the effective refractive
indices in an experimental environment.

To imitate now the experimental case, a 2D fast Fourier transform (FFT) is performed on the
complex field distribution, corresponding to the intensity distribution shown in [Fig. 4.5](a). The
resulting Fourier intensity distribution is depicted in (b).

The plot shows the excited eigenmodes of the system in the k-space. Hence, two different
levels in the z-direction can be recognized, corresponding to the two eigenmodes of the system,
obtaining the two propagation constants k| and k. The higher value in k,-direction corresponds
to the symmetric eigenmode of the system, while the lower corresponds to the asymmetric
eigenmode.

4.1.4 Accuracy of the coupled mode theory

The CMT allows to calculate the evolution of the SPP distribution in the waveguides with little
computational effort, once the effective refractive indices and coupling constants are known.
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

However, it is not obvious whether the underlying assumption of weak coupling is fulfilled in
our structures. In order to fill this gap, the CMT and Comsol Multiphysics simulations are
compared in the following, regarding the mode profile and the coupling constants.

Mode profile

While the mode profile simulated with Comsol Multiphysics is already displayed in
the field distribution approximated by the CMT, can be derived as a superposition of the modal
field distributions of the single DLSPPWs, weighted with the components of the eigenvectors
(see . With the components V;; (i, j € {1,2}) as well as the magnetic field distributions of
the single DLSPPWs Hy, and Hyy, this results the two modal field distributions:

Hyj = VijHy, + VojHy je{l,2}. (4.30)

Discussing again a system with two DLSPPWs of 250 nm width, 140 nm height, and a center to
center distance of 600 nm, the field distributions of each DLSPPW can be extracted from
With the eigenvalues, taken from [(4.23)|and [(4.24)] the resulting normalized Hy-field can be
calculated. The resulting real part of Hy; and Hy, is plotted in (a) and (b), respectively.

2 — . . . . . 1
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Figure 4.6: Real part of Hy (a) and Hy, (b), describing the asymmetric and symmetric mode of a two
DLSPPW system obtaining a center to center distance of 600 nm, as calculated by using the CMT.

As expected, the symmetric and asymmetric modes can be clearly distinguished. In comparison
to large differences are obvious primarily in the evanescent part of the field beside the
DLSPPWs. In order to simplify the comparison, in line plots of the electric field 10 nm
above the gold surface are plotted for the asymmetric (a) and symmetric (b) mode. The CMT
calculations are depicted in green, while the Comsol Multiphysics simulations are shown in
blue. For both modes, deviations between the CMT calculations and the Comsol Multiphysics
simulations are evident. The deviation of the spatially wider asymmetric mode is, however,
more pronounced.

In order to check the dependence of these deviations on the distance between the DLSPPWs, the
same simulations and calculations are performed again for a center to center distance of 800 nm.
In order to simplify the comparison also here, the field along a line located 10 nm above the
gold surface is extracted and imaged in (c) and (d). Again, deviations of the CMT
calculations from the Comsol Multiphysics simulations can be observed. However, in contrast
to the smaller DLSPPW distance, the differences decreased.
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Figure 4.7: Line plots of the asymmetric (a) and symmetric (b) mode of a two DLSPPW system with a
center to center distance of 600 nm. The data lines are extracted from the field plots obtained from the
modal analyses (blue) and the CMT calculations (green), 10 nm above the gold surface. (c) and (d) show
the corresponding plots for an increased center to center distance of 800 nm.

As the Comsol Multiphysics simulations are based on a rigorous solution of the Maxwell
equations, deviations between the two sets of calculations can be attributed to the approximations
made in the CMT. These deviations are smaller for larger distances and hence weaker coupling.
In the light of this discussion, one has to take care when comparing experimental data with
results of the CMT calculations.

Coupling constants

Since the coupling constants correspond to the overlap integrals of the fields in each waveguide,
it can be expected that they are also affected by the deviated field distributions. In order to test
the dependency of the coupling constants on the DLSPPWs’ separations, Comsol Multiphysics
simulations were performed for systems with center to center distances between 540 nm and
3300 nm, without changing the profile of the DLSPPWs. The resulting effective refractive
indices of the symmetric (5ym) and asymmetric modes (1,5ym) are plotted in [Fig. 4.8](a).
With an increasing distance, the difference of the effective refractive indices reduces, due to
the decreasing influence of the DLSPPWs on each other. As a result, for large separations both
values approach the value of a single DLSPPW system. In contrast to the CMT, the modes
exhibit an asymmetric splitting with respect to this effective refractive index. In fact, the values
of the asymmetric mode deviate stronger in comparison to the values of the symmetric mode.
This behavior is, however, in accordance to the deviations observed in the comparison of the
modal field distributions calculated from the Comsol Multiphysics simulations and the CMT
calculations, respectively.

Nevertheless, by using [(4.27)] the Comsol Multiphysics based coupling constants can be
calculated from the values depicted [Fig. 4.8](a). The real and imaginary parts of the coupling
constants as a function of the distance are plotted in[Fig. 4.8|(b) and (c). For larger distances, the
real part of the coupling constants decreases as the perturbation of the second DLSPPW gets
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Figure 4.8: (a) Effective refractive indices of the symmetric (green) and asymmetric (blue) modes in
two DLSPPW systems with different DLSPPW separations. (b) Real part and (c) imaginary part of the
corresponding coupling constants.

smaller and smaller. Furthermore, due to the asymmetric splitting of the effective refractive
indices, the imaginary part has a minimum and becomes negative at distances in the range
of 1200 um, before it approaches zero. However, this reduction of the losses, induced by
the negative coupling constants, is small in comparison to the losses in each DLSPPW (see

(c)). Hence, it does not play an important role here.

4.1.5 The coupled mode theory in DLSPPW arrays

We can easily extend our discussion of the evolution of an electromagnetic wave in a system
of two coupled DLSPPWs to systems with more than two DLSPPWs. In this thesis, we will
restrict ourselves to a system of M DLSPPWs, considering only next neighbor coupling, as it is

sketched in

X ﬁ] ﬁz ﬁm-2 ﬁm-l ﬁm ﬁm+1 ﬁerZ ﬁM-l ﬁM Vacuum

| y e o o e o o Dielectric
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Figure 4.9: A DLSPPW array on top of a gold surface with coupling constants C,, and propagation
constants S,.

Completely analogue to[(4.17)|and [(4.18)] the spatial development of the field amplitude in the
m-th DLSPPW can be written as [31]]:

d
35 (@) = 1Cny am1(2) +1Bm am(z) +1Cp ams1(2) (4.31)
z

with the amplitudes a,,(z) in each DLSPPW, the coupling constants C,, corresponding to the
coupling between the DLSPPWs m and m + 1, and the propagation constants S, in each
DLSPPW.
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This system of coupled differential equations can, similarly to the two DLSPPW system (see
[(4.19)), be rewritten as a matrix equation with the system matrix Acymr [90]:

B Ci
G B G 0
Acmr =i Cu-1 Bm  Cn - (4.32)
O Cv-2 Bm-1 Cu-

Cu-1 Bum

With this notation, the complicated problem for M DLSPPWs also reduces to an eigenvalue
problem. Similar to the two DLSPPW system, the field evolution in the z-direction can be
calculated by applying an eigenmode expansion, based on [(4.21)|and [(4.22)]

4.1.6 Comsol Multiphysics based eigenmode expansion

With knowledge of the limits of the CMT, the necessary next step is to find an alternative
approach to efficiently calculate the intensity evolution in a DLSPPW array. Due to the large size
of the simulated area, full field simulations are rather time and memory consuming. Therefore,
we make use of the fact that the eigenvectors and eigenvalues, used in the CMT, can also
be derived from the Comsol Multiphysics modal analyses. This stems from the fact that the
eigenvectors correspond to the normalized amplitude distribution of the eigenmodes, while the
eigenvalues describe the propagation constant of these eigenmodes. Performing an eigenmode
expansion with these eigenvalues and eigenvectors has the advantage that it is both, numerically
very efficient and not restricted to the conjectured values of the effective refractive index and the
coupling constants.

The resulting numerical procedure employed in this thesis will be introduced with the two
DLSPPW system, serving as example.

Two DLSPPW system

A CMT-like eigenvector of the asymmetric mode of the present two DLSPPW system can
be derived from the lines in (a) and (c), by taking one field value out of the center
of each DLSPPW. These values are composed to a two element vector and subsequently
normalized. Analogously, the eigenvector of the symmetric mode can be approximated from
(b) and (d). The resulting vectors form together the matrix of CMT-like eigenvectors V.
Simultaneously, the eigenvalues can be derived from the effective refractive indices, provided by
Comsol Multiphysics for the two DLSPPW system. They are placed on the diagonal of a new
matrix A.
The system matrix Acom can then be calculated by a simple transformation from the eigenvector
space to the real space:

Acom = VAV (4.33)
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The resulting matrix is of the same form as the system matrix resulting from the pure CMT,
shown in[(4.20)] Hence, the propagation constants can be calculated from its diagonal and the
coupling constants from the neighboring entries. Additionally, with this matrix the spatial field
evolution can be calculated, analogously to the CMT.

4.2 DLSPPW arrays as condensed matter simulators

The spatial evolution of the SPP field distribution in a DLSPPW array, approximated by the CMT
(see[(4.31)), has a remarkable similarity with the temporal evolution of an electron’s probability
amplitude in a lattice, according to the condensed matter tight binding model. This is fostered
by the possibility to describe the temporal evolution of the probability ¢, of an electron to be at
the lattice site m by [26]):

d
d—tl//m(t) = AT Y1 (1) = iEp Y (1) = 1T Y41 (1) (4.34)

with the nearest neighbor intersite overlap integrals 7" and the on-site energies E,,.

The direct comparison to [(4.3T)] reveals that the temporal evolution of the electron can be
simulated by the spatial evolution of propagating SPPs in a coupled DLSPPW array. In this
case the propagation constants correspond to the on-site energies E,, while the coupling
constants are the plasmonic equivalent to the nearest neighbor inter-site overlap integrals. This
makes condensed matter effects simpler to investigate as it was already shown, e.g., for Bloch
oscillations [[31]] and Anderson localization [32]].

4.2.1 The Su-Schrieffer-Heeger model

In this thesis, we concentrate on the simulation of the Su-Schrieffer-Heeger (SSH) model with
a plasmonic system. This is a model based on the work of W. P. Su, J. R. Schrieffer and
A. J. Heeger on the soliton formation in polyacetylene and describes the evolution of electrons
in an 1D chain of identical atoms [35] [36]].

For the discussion of the model, it is convenient to define a unit cell and a labeling of the system.
Based on the fact that the exact choice is arbitrary, we chose the unit cell as marked in[Fig. 4.10]
containing two identical atoms, labeled with A and B. Since the choice affects the pursuing
calculations, as it will be shown at the end of this section, it is kept fixed for the following
derivations.

d J J
of identical atoms named A and B with two | ."‘—‘"‘ :‘m. ® - -
n-1

different hopping amplitudes J and J’. N 1
n- W\ n y n

Unit cell

Figure 4.10: Atomic chain of an infinite number

Based on the chosen unit cell, the distance between two so-called dimers can be described by d.
With this as a basis, the electron hopping amplitudes describing the probability of an electron
to change the lattice site can be divided into two groups, the inter-dimer hopping amplitude J’
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and the intra-dimer hopping amplitude J. By neglecting the non nearest neighbor hopping, the
Hamiltonian describing the system can be written as [91]]:

Hssi = — ) [Jcf jean + ¢} py10p0 + Hell, (4.35)

with the annihilation operators for each lattice site, given by c, , and ¢y .

As the next sections will demonstrate, a system described by such Hamiltonian is a simple 1D
example of a topological insulator, a material exhibiting a band gap in the bulk material and
furthermore, under certain circumstances, states in the gap localized at the surface/edge of the

system 38

Bulk states

In the bulk material, periodic boundary conditions can be applied. By using Bloch’s theorem
and performing a change of basis to a two particle system the corresponding momentum space
Hamiltonian for each momentum k can be then derived to [91]]:

_ (0 p&
Hssup = (02 O)’ (4.36)

with
ik

pr =J+ J ek = | p| e, (4.37)

and the newly defined internal phase factor 6y.
If a unitary operator I' (with I'> = ) can be found, such that the following condition holds true:

I'" Hgspp I' = —Hssusp » (4.38)

the Hamiltonian exhibits chiral symmetry. Since this condition in the present model is fulfilled
by the Pauli matrix o, [91]), it serves as the chiral-symmetry operator of Hssyg. This symmetry
herein implicates that each eigenvalue of this Hamiltonian for each value of k has a counterpart
of same absolute value but changed sign. As a result, the eigenvalue distribution is symmetric
with respect to zero energy [92].

The eigenvalue problem itself, as it is given by Hssy ¢« = ExY, reduces for the momentum
space Hamiltonian to one 2D eigenvalue problem for each value of the momentum k, described

by:
(0 o) [ _ g
bt ) G- ) )

The eigenvalues (E) and eigenvectors (u ;) of this problem, are then given by [91]:

E, = i\/JZ +J2+2JJ cos (kd), (4.40)
and | ”
e 'k

Uk = 6 ( +1 ) . (4.41)
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These eigenvectors describe the eigenmodes of the complete system on an dimer basis, with each
entry corresponding to an atom of type A and B, respectively. Obviously, the eigenmodes provide
a clear dependence on the distribution of the hopping amplitudes. It is therefore convenient to
discuss the most important cases J' = J, J > J, and J’ < J. The corresponding band schemes
for the three cases are extracted from[(4.40)] while the internal phases of the eigenvectors are
calculated for the top band by using [(4.4T)]and an inter-dimer distance of d = 1.
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Figure 4.11: Energy eigenvalues and the corresponding internal phase distributions for the top band,
as provided by the SSH model in case of a system with J' = J =1(a), J ' =2 > 1= J (b), and
J =1<2=1J(c).

(a) J' = J: The eigenvalues for the case J = J’ = 1 are plotted in[Fig. 4.11](a). Clearly, the
two bands of the system do not form a band gap. Hence, this system does not act as an
insulator. The corresponding phase distribution is plotted in[Fig. 4.11](d). It shows a linear
dependence on the momentum k. By moving along one band from —zt/d to m/d, a total
phase of Af; = m is accumulated.

(b) J’ > J: The energy eigenvalues for a dimerized system with J = 1 and J’ = 2 are plotted
in[Fig. 4.T1](b). Now, the system is described by two cosine-shaped bands separated by
a band gap. Herein, the gap size at k = +m/d equals AJ = 2(J’ — J), while maximal
distance of both bands at k = 0 equals 2(J’ + J). In addition, the phase distribution,
plotted in (e), has changed. The accumulated phase across the Brillouin zone in
this case equals Af; = 2.

(c) J’ < J: If the value of the hopping amplitudes is exchanged, one might expect an identical
behavior of the system with the changed dimerization. In fact, this is fostered by the
equality of the energy eigenvalues of both bands, plotted in[Fig. 4.1T](c) and (b). However,
the phase distribution, depicted in[Fig. 4.T1](f), differs drastically from [Fig. 4.TT] (e). Now,

the accumulated phase by moving along one band in this case is given by Ag; = 0.

Due to their insulating behavior and their difference in the accumulated phase, the latter two
cases are the most interesting. Since the difference between both is induced solely by a change
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of topology, both cases represent two so-called topological phases of the SSH topological
insulator [91]], manifested by the different accumulated phases. A general measure of this is the
so-called Zak phase, based on the work of Zak [93]] and Berry [04]]. For the present system, it is

given by [91]]:
1 do,  Afy
Zyk == | dk— = —. 442
ak ) f dk D) ( )
Hence, for the described system, the Zak phases be calculated to Zy .y = 0 and Zyp.y = m,
respectively.

Note, that the absolute value of the Zak phase of each dimerization highly depends on the chosen
unit cell [@] The difference of the phase between two dimerizations is, however, an invariant,
which can be used to describe the system [96].

Edge states

A particular interesting case appears, when two domains of a different topological phase are
brought into proximity, e.g., if the system contains a finite number of atoms and both types of
dimerization (the hopping amplitudes labeled such that always J > J’), as sketched in|Fig. 4.12,

Dimerization 1 Dimerization 2
J J J J J J J
¥ Y K YK 4K %K Y K (K %
0 - - - 00 0 00 ---00 O
1 2 23 24 25 26 27 48 49 50

Figure 4.12: Dimerized chain of 50 atoms with two different hopping amplitudes J and J’, providing in
total two domains of different dimerizations and hence topological phases.

Now, there are two atoms (number 25 and number 50) being only weakly coupled to the nearest
neighbors, as described by J’. Due to the chiral symmetry of the system, both atoms act as their
own symmetry partners, leading to the occurrence of two localized states with zero energy [91]
[92]]. Such states are the so-called topological protected edge states, because of their position
at an edge of the respective topological phase and the protection by topological arguments.
Namely, they cannot disappear by continuous deformation of the system’s parameters J and J’,
unless the gap is closed (J = J') 38].

This behavior can be verified, by considering a system of the proposed design with exemplary
hopping amplitudes, given by J’ = 1 and J = 2. Due to the finiteness of the system, Bloch’s
theorem cannot be applied any more, however, by using a single particle basis the Hamiltonian
can be written as a matrix:

0 J
J 0 7 0
Hssy = J 0 . (4.43)
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Analog to the CMT, the eigenvalues and eigenvectors of this Hamiltonian can be calculated
numerically for each arrangement of hopping amplitudes. Then, after sorting them in energetically
ascending order the eigenvalues correspond to the energy E, and the eigenvectors A, to the
amplitude distribution of the eigenmodes, with the mode number given by n € {1...50}. The

resulting eigenvalues are plotted in (a).
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Figure 4.13: (a) Energy eigenvalues of the proposed system. (b) Eigenvector of the eigenstate number 25,
indicated by an arrow in (a). (c) Eigenvector of the eigenstate number 26, indicated by an arrow in (a).

Similar to the discussed case of a dimerized chain of atoms of infinite length, the energy
eigenvalues provide two bands and a band gap. Again, the maximal splitting of both bands is
determined by the doubled sum over the hopping amplitudes, while the width of the band gap
is defined by the difference 2(J’ — J). From the amplitude distributions of the modes can be
deduced that the bands are formed by the eigenvalues, corresponding to symmetric (top band)
and asymmetric eigenmodes (lower band) of the system. However, in contrast to the discussed
system of infinite length, two states are located in the gap at zero energy. In order to gain more
information on these two states, their corresponding eigenvectors are plotted in (b)
and (c).

The eigenvectors describe the character of the corresponding states. Both exhibit a unique
amplitude distribution. While the largest amplitude can be found in the central and rightmost
DLSPPW, respectively, it is decaying away from them. Hence, as expected, both states are
localized: one at the outer border of the system and the other one in the center of the system.
Furthermore, the depicted amplitude distributions are zero on each other lattice site. This follows
from the chiral symmetry of the system, since for a edge state with zero energy I';A = A, with
I'; being the chiral-symmetry operator of [4.43)] has to apply [97].

These two states are hence examples of the expected topologically protected edge states.
As experimentally demonstrated in similar systems, they are characterized by the presented
localization [98]] and offer a high robustness against perturbations [[99 [[00].
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Temporal evolution

The temporal evolution of the finite system can be calculated, by making use of [(4.43)] and the
Schrodinger equation. This leads to:

d
ih- ¥ (1) = Hssu ¥ (1). (4.44)

In fact, the overall behavior of this system does not change if the on-site energy eigenvalues
are simply shifted. Hence, the CMT can be used to mimic the SSH model by using [(4.32)] and
an appropriate arrangement of coupling constants. Therefore, the temporal evolution will be
discussed in the next section in the context of coupled DLSPPW arrays.

4.2.2 Implementation of the plasmonic SSH model

The design of the DLSPPWs, used for the realization of plasmonic SSH model, can be chosen
based on the results of There it was shown that DLSPPW:s consisting of a dielectric
structure (ng = 1.49) with a width of 250 nm and a height of 140 nm can be used to guide
propagating SPPs. Furthermore, the coupling of such DLSPPWs can be tailored over a wide
range by changing their center to center distances. For this reason, we restrict ourselves to this
design for the following investigations.

The desired alternating coupling constants are achieved by using alternating center to center
distances (dsman and diarge), as sketched in [Fig. 4.14} In order to facilitate also the investigation
of topologically protected edge states this design further includes two domains of different
dimerization with a tunable transition area in between, determined by dg,p.
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Figure 4.14: Design of a DLSPPW array utilized for the realization of the plasmonic SSH model. Two
domains of different dimerization with alternating DLSPPW separations dsyay and djaree are divided by a
transition area, including one single waveguide with a center to center distance of dg,, to its neighbors.

To reduce the overall set of parameters this section concentrates only on center to center distances
dsman = 600 nm and djare = 1000nm. Based on the results of the previous discussions this
leads to an effective refractive index of n.g = 1.058 +i0.0027, as well as coupling constants of
Coman = 0.22 +10.004 ﬁ and Ciarge = 0.089 —10.0005 ﬁ These parameters offer at the same
time a large AC = (Csmall — Clarge) and W = 2(Cymant + Clarge)- Based on [(4.40)} this leads to a
large band gap and a large band structure and hence to distinct features.
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

Bulk states in arrays with identical waveguide separations

We start with the investigation of the intensity evolution of propagating SPPs in a simple system of
48 DLSPPWs with identical center to center distances, given by dsmal = diarge = dgap = 600 nm.
This system represents the plasmonic equivalent to a crystal lattice consisting of equally spaced,
identical atoms.

Corresponding to an electron located in the middle of the atomic chain at a time ¢ = 0, propagating
SPPs are excited in the middle of the array at z = 0 with a Gaussian shaped intensity distribution,
obtaining a FWHMP] of wrwrm = 350nm. By using [(4.21)] and [(4.22)] we approximate the

evolution of SPPs, propagating in this array in positive z-direction. The resulting intensity

distribution is depicted in (a).
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Figure 4.15: Intensity evolution of propagating SPPs in DLSPPW arrays with center to center distances
of 600 nm (a) as well as 1000 nm (b).

While directly at the input (z = 0), the intensity is confined mostly to the central DLSPPW, the
distribution gets broader with increasing distance, due to coupling to the adjacent DLSPPWs. It
exhibits two main lobes of higher intensity at the sides and an enclosed interference pattern,
being characteristic for the well-known discrete diffraction [[28] 31}, [TOT]], the plasmonic analog
to a quantum random walk [31]].

In order to investigate the influence of increasing center to center distances in the DLSPPW array
on this distribution, the same procedure is repeated for the larger dsman = diarge = dgap = 1000 nm.
The resulting intensity distribution of SPPs, excited at z = 0 in the central DLSPPW and
propagating in positive z-direction, is depicted in (b).

This image exhibits the same characteristic intensity distribution of discrete diffraction, including
two main lobes of higher intensity. However, the influence of the larger separations, which
results in a decreased coupling, is obvious. The opening angle of the cone, formed by the two
main lobes is drastically reduced resulting in narrower intensity distribution.

The broadening of both intensity distributions in propagation direction, can be explained by the
excited eigenmodes of the systems. The systems exhibit extended eigenmodes, distributed over
the whole array in y-direction. Due to the chosen excitation, many of these modes obtaining
different propagation constants are excited simultaneously. The resulting dephasing then leads
to the depicted interference phenomena.

2 Full width at half maximum
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4.2 DLSPPW arrays as condensed matter simulators

The band structures, resulting from the excited eigenmodes in both cases, as imaged in[Fig. 4.13]
can be obtained by performing two-dimensional FFTs on the corresponding complex field
distributions, as motivated by The resulting Fourier space intensity distributions of
both cases of discrete diffraction are depicted in
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Figure 4.16: 2D FFT of the field evolution in equally spaced DLSPPW arrays with the center to center
distances given by 600 nm (a) and 1000 nm (b), respectively. The corresponding real space intensity

distributions are depicted in[Fig. 4.T5]

Both distributions exhibit one cosine-shaped band, which is the plasmonic analogue to the band
structure depicted in[Fig. 4.T1](a). A direct comparison of both plasmonic band structures reveals
two features of considerable interest. The increase of the DLSPPW separations, accompanied by
a decrease of the coupling constants, leads to deceased band widths and smaller periods of the
cosine-shaped bands. Both is consistent with the behavior expected from the pure SSH model.

Bulk states in arrays with dimerized separations

Based on the theoretical considerations on the SSH model dimerized systems are of even more
interest compared to the previously discussed non-dimerized systems. Therefore, as a next step,

domains with a constant dimerization (dgman = 600 nm, djaree = 1000 nm) are investigated (see
o 4 i .

In order to avoid the excitation of edge states, we chose a sub-set of the array consisting of 48
DLSPPW located far away from each topological change (Dimerization 1). We use the CMT to
approximate the intensity evolution of propagating SPPs, excited in the center of this sub-set
with a Gaussian intensity distribution (wpwpgm = 350 nm). The resulting intensity distribution
is depicted in[Fig. 4.17] (a), on a logarithmic color scale.

Again, at z = 0 most intensity is confined in the central DLSPPW. In propagation (z-) direction,
the distribution is broadening similar to the previously discussed cases. However, in the
dimerized system the bright side lobes disappeared and the remaining intensity distribution is
more diffuse and obtains an even narrower distribution, as imaged in This is also
confirmed by the line plot of the intensity distribution along the y-direction at z = 40 um, which
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Chapter 4 Plasmonic waveguide arrays as quantum simulators
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Figure 4.17: (a) Normalized intensity distribution of propagating SPPs in a DLSPPW array with alternating
distances of dgmay and djarge, Originating from a Gaussian input in the central DLSPPW. (b) Line plot of
the normalized intensity distribution in y-direction at z = 40 um.

is depicted in (b). The reason for this deviation is the dimerization of the coupling
constants, which is accompanied by a small coupling between every second set of DLSPPWs.

Based on the considerations on the pure SSH model in the last section, this dimerization of the
coupling constants should lead to the generation of two distinct bands in the band structure.
This can be confirmed by performing a 2D FFT on the field distribution, corresponding to the

intensity distribution imaged in (a). The result is shown in
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Figure 4.18: 2D FFT of the field distribution corresponding to the intensity distribution shown in
(a). Additionally marked are the band width W and the size of the band gap 2AC.

Indeed, this plot shows a two cosine-shaped bands, separated by a band gap, resembling the band
structure, depicted in[Fig. 4.T1](b). In accordance to this, the two bands in the plasmonic system
provide a band gap and total widths as determined by 2AC and W, respectively. In addition, the
position of the complete structure relatively to k, = 0, as related to a non-zero on-site energy, is
determined by the effective refractive index of the DLSPPWs:

1
kmean = Re(neg) - ko = 6.8 —. (4.45)
um
Hence, this DLSPPW array represents the plasmonic realization of the bulk material, as described

by the SSH model.
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4.2 DLSPPW arrays as condensed matter simulators

Edge states between two domains of different dimerization

The SSH model predicted that in the case of two adjacent domains with different topological
properties, topologically protected edge states can occur (see [Fig. 4.13)). Since, the plasmonic
realization of this case is depicted in the center of for the proceeding investigations,
we choose a subset of 49 DLSPPWs, arranged in a way that the isolated DLSPPW is in the
center. This corresponds to the investigation of the temporal evolution of electrons in a system
as it is described in

The resulting intensity distribution of propagating SPPs, excited with a Gaussian intensity
distribution (Wwpwpm = 350 nm) in the central DLSPPW of an array with dgpn, = 600 nm and

dgap = dlarge = 1000 nm, is shown in(a).
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Figure 4.19: (a) Intensity distribution of propagating SPPs, excited in the central DLSPPW of an array
containing two areas of dimerization. (b) Line plot of the normalized intensity distribution in y-direction
atz = 40 um.

The difference to the bulk case is evident. A large fraction of the intensity is confined in the
central DLSPPW, leading to a sharp peak in the line plot of the intensity distribution in y-direction
at z = 40 um, shown in[Fig. 4.19|(b). Based on the mode distribution of a topologically protected
edge state, as depicted in[Fig. 4.13](b) and (c), this localized field evolution can be assigned to the
excitation of a topologically protected edge state. Simultaneously, also bulk modes are excited,
leading to a broadening of the intensity distribution in propagation direction, analogously to the
previously discussed case.

More information can be deduced from this calculations after performing a 2D FFT of the field
distribution. The resulting intensity distribution is shown in on a logarithmic scale.
In this field plot, two cosine shaped bands, as corresponding to the excited bulk modes, can be
recognized again. In contrast to the previous case, however, an additional horizontal line in
the middle of the band gap is apparent. This line corresponds to a mode confined to a single
DLSPPW [[I02]. Together with the position in the middle of the gap (see [Fig. 4.13](a)), in fact,
it can be assigned to the excited topologically protected edge state in the DLSPPW array, as
already shown in

Due to the confinement, the Fourier space position of this mode can be addressed by a
manipulation of the optical properties of the central DLSPPW. A change of its effective refractive
index for example leads to an upward or downward shift of this mode in the Fourier space.
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Figure 4.20: 2D FFT of the field distribution corresponding to the intensity distribution shown in

Fiz 31,

Because of a breaking of the chiral symmetry, the edge mode even can disappear, if the effective
refractive index is changed in a way, that the mode is not lying in the band gap any more.

Note that, corresponding to the amplitude distribution of the edge mode, shown in[Fig. 4.13(c),
the edge mode has a vanishing amplitude in every second waveguide. As a result, it can not be
excited if the input is in the nearest neighbors of the central DLSPPW.

Edge states in a larger transition area

A particular interesting situation was not discussed so far: larger transition areas between two
domains of a different topological phase. In a plasmonic system, this can be easily achieved
for example by choosing dgyp = dsman = 600 nm and djaee = 1000nm. In this case, in the
center of an array of 49 DLSPPWs, as shown in a closely spaced group of five
DLSPPWs appears. The resulting intensity distribution of propagating SPPs in such DLSPPW
array, stemming from a Gaussian input (wpwpm = 350 nm) in the central waveguide, is shown

inFig-2.21) a).
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Figure 4.21: (a) Intensity distribution of propagating SPPs excited in the center of a larger transition area
between two domains of different dimerization. (b) Line plot of the normalized intensity distribution in
y-direction at z = 40 pm.

As in the two previously discussed cases, the intensity distribution exhibits a divergent behavior
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4.2 DLSPPW arrays as condensed matter simulators

in the propagation (z-) direction. However, in contrast to the case discussed last, a beating
pattern around the central DLSPPW occurred. Consequently, in the data extracted from a line
in y-direction at z = 40 um and being shown in (b), the intensity in the middle is
confined to more than one DLSPPW. This behavior leads to the assumption that additional
modes in the central region occurred. In order to confirm this we perform again a 2D FFT on
the corresponding complex field distribution. The resulting intensity distribution is shown in

on a logarithmic color scale.
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Figure 4.22: 2D FFT of the field distribution corresponding to the intensity distribution shown in

Fie 32,

Here, in addition to the two cosine-shaped bands and the edge state in the middle two new states
occurred localized above and below the bands. This behavior can be explained by treating the
central five DLSPPWs in the middle as a third domain, obtaining a vanishing dimerization
(J' = J). This domain supports bulk-type modes located within the area. In addition it exists one
single topological protected edge state, due to the neighboring two areas of different topological
properties. Consequently, a potential modification of the transition area in z-direction could lead
to a dissolution of the bulk states, while the topologically protected edge state survives until the
gap is closed (J” = J in the outer areas). Also, the number of bulk-type modes increases with an
increased size of this transition area, while always only one topologically protected edge state
exists. If the extension of the new equally spaced area becomes larger then the field distribution,
the resulting field evolution corresponds to pure discrete diffraction, again. In this case, the
topologically protected edge state, however, still exists, but is not excited any more due to the
missing field overlap.

4.2.3 Comsol Multiphysics based eigenmode expansion

In the last sections the evolution of the SPP intensity in the DLSPPW arrays was modeled
by the CMT. Herein, we have chosen the CMT to model the SPP intensity in the DLSPPW
arrays because of its mathematical equivalence with the discrete Schrodinger equation that
governs the evolution of states in the SSH model. Since deviations between the CMT and the
Comsol Multiphysics calculations already appeared in the two DLSPPW system, the same can
be expected for larger DLSPPW arrays.

In order to investigate the deviations in case of such arrays we apply the Comsol Multiphysics
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

based eigenmode expansion, described in[Subsec. 4.1.6] For this purpose, modal analyses of
DLSPPW arrays with the same designs as presented in the last sections are performed. For all 48
DLSPPWs (49 in the systems with a additional single DLSPPW in the center), one eigenmode
is provided by the software with both, field distribution and effective refractive index.

As described more detailed in the CMT-like eigenvectors of each system are
derived from the field distributions of each mode, by taking one field value per waveguide,
while the eigenvalues are directly provided by Comsol Multiphysics. From these values, an
eigenvectors and the corresponding eigenvalue matrix is assembled. Then, by using [(4.33)]
the system matrix Acowm is calculated. Since, this matrix is of the same form as [(4.32)] the
coupling constants and refractive indices are extracted. Additionally the field evolution in the
corresponding DLSPPW array is calculated.

System matrix comparison

We start with a comparison of the system matrices assumed for the CMT (Acmr) and the one
originating from the Comsol Multiphysics based eigenmode expansion (Acom), for the system
discussed in the context of edge states between two domains of a different dimerization. As a
first step, the distribution of the coupling constants are extracted from the non-diagonal entries
of both matrices. The results are depicted in[Fig. 4.23]on a logarithmic color scale.

abs(C) [1/pm]
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—

Figure 4.23: (a) Distribution of coupling constants deduced from the CMT (Acwmr) calculations. (b) Dis-
tribution of coupling constants as described by the system matrix Acom.

The plots describe the coupling between the m-th and n-th DLSPPW of the array, the diagonal
is masked. Consequently, in (a), corresponding to the next neighbor CMT, only
the secondary diagonals contain non-zero values. In fact, the alternating coupling due to the
dimerization can be observed, including the edge in the center.

In contrast to that the distribution of the coupling constants, calculated from the Comsol
Multiphysics based eigenmode expansion, depicted in (b), deviates. Clearly, it exhibits
more than only next neighbor coupling and is even influenced by the transition area in the middle
of the array. The direct comparison of the values of both cases reveals that the nearest neighbor
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4.2 DLSPPW arrays as condensed matter simulators

coupling extracted from [Fig. 4.23](b), is 30 % larger than the one expected from the pure CMT.

As a second step, the effective refractive index distribution in the DLSPPW array is extracted
from the masked main diagonal of both system matrices. While in the matrix assumed for
the CMT all effective refractive indices are equal, the indices calculated from the Comsol
Multiphysics simulations are smaller and strongly influenced by each edge of the system.

Similar to the discussed two DLSPPW system, all these deviations depend strongly on the
DLSPPW spacings. However, as additional simulations confirmed, the deviation of coupling
constants and effective refractive index distributions have to be considered in all arrangements of
separations used in this thesis. Furthermore, such a non-vanishing non next neighbor coupling
breaks the chiral symmetry of the system [[I03]]. Therefore, the existence of a topologically
protected edge state is not guaranteed. In order to gain more information on this, the next section
will discuss the influence of the field evolution within the simulated DLSPPW array.

Field evolution

As discussed in from the system matrix Acopym the field evolution of propagating
SPPs in a DLSPPW array can be calculated. However, with the coupling constant distribution

and effective refractive index values, extracted from the Comsol Multiphysics simulations. As
an example, it is performed for the design and the excitation scheme, discussed in the context
of edge states between two domains of different topological phase. The resulting intensity
distribution is shown in [Fig. 4.24] (a) on a logarithmic color scale.
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Figure 4.24: (a) Intensity evolution of SPPs in a DLSPPW array, as calculated with the Comsol
Multiphysics based eigenmode expansion. (b) Line plot of the normalized intensity distribution in
y-direction at z = 40 um.

In contrast to the calculated intensity distribution exhibits two additional side lobes
with a large opening angle. As additional calculations obtained, they are mainly generated by
the non next neighbor coupling constants, neglected in the CMT calculations, and depend highly
on the excitation scheme. Nevertheless, still a large fraction of the intensity is confined in the
central DLSPPW. This behavior is also confirmed by the plot of the intensity at z = 40 pum,
shown in[Fig. 4.24] (b). It exhibits a similar distribution as the topologically protected edge state,
depicted in

However, before the excitation of a topologically protected edge state can be declared, a 2D
FFT has to be performed. It will give even more insight into the band structure of the excited
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

eigenmodes of the system and the properties of the potential edge state. The resulting intensity

distribution is plotted in
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Figure 4.25: 2D FFT of the field distribution, corresponding to the intensity distribution imaged in
Fe32 .

The Fourier intensity distribution still exhibits two bands and a horizontal line of high intensity
in between. However, several deviations to the already discussed results as obtained from the
CMT, can be recognized. The top band has a smaller band width than the lower band and the
gap state is not exactly located in the middle of the gap. Both contrasts to[Fig. 4.20] Additionally
a regular pattern can be recognized in the lower band. It stems from the fact that the newly
occurred side lobes, shown in (a), are reflected from the edges of the array.

The reason for both mentioned deviations from the pure SSH model and the CMT, is the
present non nearest neighbor coupling. It acts as a small symmetry breaking perturbation [[I03]].
This perturbation is, however, not sufficient to shift the state out of the band gap. Therefore,
by neglecting the non next neighbor coupling this state is to first order approximation still a
topologically protected edge state.

Distance dependence

In order to investigate the different widths of the two bands as a function of the chosen DLSPPW
distances, several simulations for dgn,; = 600 nm as well as dgya = 800 nm, combined with
a djarge from 1000 nm up to 1600 nm are performed. The assumed design herein corresponds
to systems with the same topological phase (i.e. choice of the dimerization), as previously
discussed in in the context of bulk states in arrays with dimerized separations. From the resulting
eigenvalues, the band gap g as well as the widths of both bands are extracted (Apoom and Agop).
The asymmetry of the bands is calculated by Apotom/Awp- The results are plotted in (a)
and (b), together with the gap sizes, extracted from the corresponding CMT calculations.

The asymmetry of both bands, as indicated by the circles in (a), increases with
decreasing dsman and increasing djarge. In detail, the reduction of the asymmetry for larger dgman
stems from the transition to a weaker coupled system. The increase of the asymmetry for lager
dyarge, however, indicates on a stronger influence of the non next neighbor coupling in systems
with a significant dimerization of the DLSPPWs.

At the same time, the gap sizes obtained by the CMT calculations (solid lines in [Fig. 4.26] (b))
increase as expected with an increasing difference of the coupling constants. The results from
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Figure 4.26: (a) Asymmetry of the bands in dependence on djyge for dsman = 600nm (blue) and
dsmai = 800 nm (green), respectively. (b) Band gaps as a function of djrge for fixed dsman = 600 nm
(blue) and dyma = 800 nm (green), respectively. The solid lines represent the results expected from the
CMT, while the circles represent the results from the Comsol Multiphysics based eigenmode expansion.

the Comsol Multiphysics based calculations, however, offer a dgy,1-dependent deviation. As
discussed in context of the system matrix comparison this can, however, be explained by the
previously neglected non next neighbor coupling.

4.3 Fabricated samples

All DLSPPW arrays, discussed in this section, are fabricated on top of a gold chromium coated
cover slide, by making use of the fabrication method presented in In account for
the new type of experiment, two parameters are changed. On the one hand the thickness of
the PMMA coating is increased by reducing the rotation velocity in the second part of the
spin-coating procedure to 1500 rpm. This facilitates the fabrication of structures with a thickness
exceeding 200 nm. In addition, the thickness of the chromium layer is increased to 10 nm in
oder to suppress unwanted SPP excitations at the gold glass interface by the large absorption of
chromium.

The plasmonic implementation of the SSH model is realized by fabricating DLSPPW arrays
with alternating DLSPPW separations. While the exact values of the two separations differ from
array to array, the DLSPPWs themselves are designed as rectangles with 350 nm width, 180 um
length and a dose of 140% (relative to the nominal dose, given in[Sec. 3.4). As additional
parameter, the dose of the central DLSPPW is varied between 133% and 161%, facilitating the
manipulation of its behavior and a compensation of the proximity effect (see (c) for
more details).
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

In order to cover a broad range of coupling constants, two sets of structures are fabricated on
one sample. Following the results from the previous sections, based on the design imaged
in one set is with a dypna = 600nm and the other one with dgpay = 800nm. In
both sets, djage = dgap is varied between 1000nm and 1600 nm. In addition arrays with
dlarge = dgap = dsman are fabricated, covering the same range. Furthermore, in order to
investigate a smoother transition area, arrays with a smaller dy,, = 600 nm are fabricated.

An SEM micrograph of a typical DLSPPW array with a center to center distance of dgma =

drarge = dgap = 600 nm, is shown in

0 50 100 150 200
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Figure 4.27: SEM image of a DLSPPW array with djyrge = dsman = dgap = 600 nm. The arrows indicate
the position of three grating couplers, fabricated on top of DLSPPWs.

The right-angled structures on the top left and top right are markers, indicating the edges of
the write field with a size of 200 um x 200 um. With their known edge length of 10 um, they
can be used for the distance calibration of the optical setup. The actual DLSPPW array can be
recognized as dark, horizontal lines in the central area of the image. The red arrows indicate
on the position of three grating couplers that are fabricated on top of different waveguides in
order to facilitate different excitation schemes. They consist of small rectangles with a period of
p = 890 nm, written with a dose of 40% on top of the DLSPPWs.

Each of the arrays contains two domains with different topological phases and a transition area in
between, as it can be seen in the zoomed SEM image of a DLSPPW array with dgya; = 600 nm
and diarge = dgap = 1000 nm, depicted in

The DLSPPWs with separations given by dgap, diarge, and dgman, can be clearly distinguished.
The positions of the three grating couplers (the arrows point on their relative position) are chosen
in such a way that one is on top of the central DLSPPW (1), a second one on top of the right end
of the neighboring DLSPPW (2), and the last one in the bulk material of the upper domain (3).
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Figure 4.28: SEM image of a DLSPPW ar-
ray with dyynay = 600nm and diyge = dgap =
1000 nm, and a grating with period p = 890 nm

M on top of the central DLSPPW (1). The red
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Width of the DLSPPW

The width of isolated DLSPPWs from two arrays with different DLSPPW separations is
measured with the SEM. The first array provides separations, given by dsman = djarge = 600 nm.
A magnified SEM micrograph is depicted in[Fig. 4.29)(a). This fabricated DLSPPW does not
have a perfectly rectangular shape, however, a thin core structure of approximately 190 nm width,
surrounded by a region of decreasing thickness (shadowed region) with a width of approximately
320 nm.

The second investigated DLSPPW is contained in an array with larger separations, as given by
dsmair = 600 nm and djarge = 1600 nm. In this case both widths (core structure and shadowed
region) decreased to approximately 290 nm and 160 nm, respectively.

While the obtained width indications are rather coarse due to the profile of the fabricated
DLSPPWs, the broadening influence of the proximity effect is still obvious and has hence to be
considered in the discussion of the experimental results.
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Figure 4.29: (a) Magnified SEM image of a DLSPPW contained in an array with dsman = djarge = 600 nm.
In addition, the AFM measured heights of the same array as well as a second one with djsee = 600 nm
and djaree = 1600 nm are depicted in (b) and (c), respectively.
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Height of the DLSPPW

In order to investigate the profile of the fabricated structures, the height distribution of the
DLSPPW arrays are measured with an AFM, operated by Tim Flatter[] The resulting profiles
of two DLSPPW arrays of the same dose profile, both with dgn, = 600 nm, however, with a
differing diarge = 600 nm and djaree = 1600 nm, are imaged in (b) and (c).

Obviously, the height of the structures depends on the distance to the nearest neighbor. While
for dsman = djarge = 600 nm, the height of the DLSPPWs is approximately 150 nm, it drops to
an average height of approximately 125 nm for djaee = 1600 nm. Additionally, the height of the
DLSPPWs within one unit cell can differ. Both effects demonstrate again the influence of the
proximity effect and the type of path, traced by the electron beam.

Note that we can not use the AFM data to accurately determine the width of the DLSPPWs. The
reason for that is the finite size of the AFM tip which leads to the measurement of a convolution
of the tip and the structured surface [[104]].

4.4 Optical setup

The experimental setup, used for the investigation of propagating SPPs in the DLSPPW arrays,
is based on the one discussed in the context of the manipulation of propagating Airy SPP beams
(see[Fig. 3.9). However, in order to image not only the intensity distribution on top of the gold
film, but also the corresponding angular distribution of the emitted leakage radiation of the new
samples, this setup is extended by making use of Fourier space imaging.

4.4.1 Fourier space imaging

The working principle of the Fourier space imaging in the context of leakage radiation microscopy
is sketched in [Fig. 4.30|for different bundles of rays, leaving the sample.

While the red bundle of rays corresponds to the directly transmitted laser beam, the gray bundles
of rays correspond to leakage radiation, leaving the sample at a given position with an angle,
depending on ng. To simulate the path of the bundles of rays in the inner of the objective, it is
modeled as one simple lens.

In the back focal plane of the objective (BFP) all bundles of rays, leaving the sample under the
same angle, are imaged onto the same position. It is relatively to the optical axis denoted by
d and depends on the emission angle ® of the radiation. In case of a high-NA objective, this
dependency can be modeled as [105]:

d = fobjnoi sin O, (4.46)

with fop; being the focal distance of the objective and n; the refractive index of the utilized
immersion oil.

Subsequently, all bundles of rays leave the objective, obtaining an angle to the optical axis,
depending on the originating position on the sample. Note that for large distances between

3 Group of PD Dr. Elisabeth Soergel, Physikalisches Institut, Universiit Bonn
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Figure 4.30: Principle of Fourier space imaging of propagating SPPs with an objective and one additional
tube lens. As examples the paths of several bundles of rays are depicted, as they pass a system modeled
with two simple lenses. As image planes, the back focal plane (BFP) of the objective, as well as the real
image plane (RIP) and back focal plane (BFP’) behind the lens (L.1) are marked.

objective and tube lens (a large so-called infinity space), only a fraction of the emitted radiation
is collected by a lens of finite diameter, resulting in potential imaging artifacts.

The tube lens generates two images. On the one hand, a real image of the sample’s surface is
generated in the focal plane of the tube lens, in labeled as real image plane (RIP). On
the other hand an image of the BFP is generated (labeled as BFP”). The distance to the tube lens
herein can be calculated via the imaging equation.
The resulting form of the angular spectrum in BFP’ depends on both, the used tube lens and the
objective. In combination with[(4.46)] the influence of all these components can be assembled
in the proportionality factor D. The corresponding dependence of d’ (see and O, can
be written as:

d' = Dsin®. (4.47)

In comparison with[(2.2T)]it follows that:

B :D.neff

kglass Nglass

d=D- (4.48)
Hence, in BFP’ the distance from the optical axis is directly proportional to the effective
refractive index of the propagating SPPs. By considering the rotational symmetry of the used
optical components, this derivation can now be easily extended to two dimensions. Then, the
resulting intensity distribution corresponds to the Fourier transform of the complex SPP field
distribution on the sample’s surface [[106]. For this reason this type of imaging is called Fourier
space imaging.

For the calibration of BFP’, the numerical aperture (NA) of the objective can be used. From its
definition follows that the highest accepted angle of the objective corresponds to the highest

65



Chapter 4 Plasmonic waveguide arrays as quantum simulators

occurring distance from the optical axis in BFP’ [[69]]. This dependency can be written as:

NA
d 4

max

=D-

(4.49)

Nglass

Note, that RIP and BFP’ can also be used as intermediate image planes in a more elaborate
setup. Then, by using a simple knife edge, the different spatial or angular components can be
selectively blocked. For example, this allows for the blocking of the directly transmitted laser
beam in BFP’ [[107]).

4.4.2 Imaging system

The first part of the used optical setup is similar to the one used for the Airy SPP beam
experiments (compare [Fig. 3.9). However, the laser source is exchanged by a diode laser of
980 nm wavelength, as this results in an increased propagation length of the SPPs, due to the
decreased damping in the gold layer [57]]. Furthermore, to facilitate the Fourier space imaging,
the imaging part of the setup is extended. The exchanged components are sketched in[Fig. 4.31]

T1 T2

Y T

» Obj. 1 Obj. 2
t Ut

Sample RIP BFp:: Real space imaging

Camera

Figure 4.31: Basic optical system utilized to perform leakage radiation microscopy on propagating SPPs
in DLSPPW arrays. Beside two telescopes (T1 and T2) also the intermediate real image plane (RIP) and
back focal plane (BFP’) are marked.

The TM polarized laser beam is focused onto the sample with Objective 1[fobtaining a larger
magnification as the previously used one. It hence leads to a smaller spot and higher intensity
on the sample’s surface, compared to the previous experiments.

All light emitted by the sample is collected by objective 2[5 and subsequently passes the first
telescope (T1). This telescope provides a magnification of M = 1 and has a distance to
Objective 2, being smaller than the focal length of its first lens. As a result, it generates a
RIP in its center, as well as an image of the back focal plane (BFP’) behind the telescope, that
corresponds to a Fourier space image plane. In the present setup, both image planes act as
intermediate image planes, which can be used for angular and spatial filtering with knife edges,
as it was explained in the previous section.

The remaining optical components are mounted on removable posts, in oder to facilitate the
imaging of both image planes onto the camera, without moving it. The dotted rectangle in
depicts the combination of lenses, used for the real space imaging. It contains a second
telescope (T2) of magnification M = 1, which is used to reduce the size of the infinity space.

4 M Plan Apo NIR 20x, Mitutoyo Europe GmbH, Germany
> Apo TIRF 100x, Nikon GmbH, Germany
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The actual imaging is then performed by focusing the light with a single lens onto the camera[f]
Alternatively, the optical components in the dotted rectangle can be exchanged by one single
lens, used for the Fourier space imaging. The position of the camera is kept fixed during this
procedure.

4.5 Experimental results

In the next step, the fabricated samples are investigated by utilizing the described optical setup
to perform real and Fourier space imaging of propagating SPPs on the gold surface.

4.5.1 Discrete diffraction in equally spaced DLSPPWs

We start with the simplest case, the investigation of the field evolution of propagating SPPs in
two DLSPPW arrays with equally spaced, identical DLSPPWs. In both cases, the sample is
placed in the optical setup in such a way that the laser is focused onto one of the grating couplers
on the array. By using the knife edge placed in BFP’, the left propagating SPPs as well as the
directly transmitted laser beam, are filtered out.

Real space images

As a first step, the resulting real space intensity distribution in a DLSPPW array with dgpay =
diarge = dgap = 600 nm, is imaged on the camera. The known length of the markers is used to
calibrate the length scale, leading to an uncertainty of the axes’s values of approximately 2%.
Based on this, the coordinate system is defined in a way that the origin coincides with the
position of the grating coupler and the SPPs propagate in positive z-direction. The resulting
normalized intensity distribution in the array is shown in (a), on a logarithmic color
scale.

Consistent with the theoretical considerations, directly at the input (z = 0), most of the intensity
is confined in the central DLSPPW. Due to coupling to the neighboring DLSPPWs, the intensity
distribution broadens in y-direction with increasing propagation distance. It exhibits two outer
lobes of high intensity and a regular intensity pattern in between. Based on the theoretical
considerations, this corresponds to the well-known discrete diffraction [1O1]].

In order to compare the experimental image to the theoretical calculation based on the CMT in
detail, the theoretically determined course of the main lobes is extracted from (a) and
included in [Fig. 4.32](a) as dotted black lines. Several deviations of the experimental intensity
distribution can be observed. Firstly, the opening angle of the outer lobes in the experimental
image is larger. This is mainly related to an increased coupling as it was predicted by the
Comsol Multiphysics based eigenmode expansions. Secondly, the abrupt ending of the intensity
distribution in the top part of the experimental image (indicated by the red arrow), as it simply
originates from the end of the fabricated DLSPPW array, leading to a reflection of propagating
SPPs. Finally, the discrete type of the patterning is blurred out in the experimental image. This
stems from the fact, that here the intensity distribution of the total field on the surface is imaged,

6 Zyla sCMOS, Andor Technology Ltd., United Kingdom
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Figure 4.32: Discrete diffraction of propagating SPPs in DLSPPW arrays with center to center distances
of 600 nm (a), as well as 1000 nm (b). The dotted black lines indicate the form of the calculated intensity
distributions, as extracted from[Fig. 4.T5 The red arrow in (a) marks the edge of the DLSPPW array.

in contrast to the discrete amplitude distribution of the single DLSPPWs, which is displayed
in iz 415 (o).

Based on the theoretical considerations it is further expected that increasing the center to center
distances, leads to a reduced coupling and hence a narrowing of the main lobes’ opening angle.
In order to test this dependency, the same measurement is repeated on a DLSPPW array with
the increased separations given by dgsman = dlarge = dgap = 1000 nm. The resulting intensity
distribution is shown in[Fig. 4.32](b), together with the course of the theoretically expected main
lobes, extracted from (b).

In comparison to the smaller DLSPPW separations, in the present case the opening angle between
both main lobes, generated by the propagating SPPs, decreased. Furthermore, originating from
the larger separations, the intensity distribution is less blurred and resembles again the one
expected for discrete diffraction [T0T]]. The fact that the opening angle of the main lobes
in the experimental image deviates less from the theoretically expected courses, demonstrates
the higher accuracy of the CMT at larger DLSPPW separations, due to the smaller coupling
constants.

Fourier space images

The following procedure is performed for both systems to investigate the band structure of the
excited eigenmodes in the DLSPPW arrays. Without moving the sample, the real space imaging
arm of the optical setup is replaced by the single lens, used for the Fourier space imaging.
Subsequently, the Fourier space is calibrated, by manually fitting a circle to the circular border
of the objective’s back focal plane. The radius of this structure corresponds to the numerical
aperture of the objective [[34]]. Therefore, it can be used together with the center of the circle to
define the coordinate system of the Fourier space, by considering [(4.48)]and [(4.49)] The error,
induced by this procedure, leads to an uncertainty of the coordinate system axes of approximately
2 %. shows the resulting normalized Fourier space intensity distributions of both cases
on a logarithmic color scale.
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Figure 4.33: Fourier space intensity distribution corresponding of the plasmonic discrete diffraction,
shown in (a) and (b), respectively. The red dotted circles correspond to the border of the
objective’s BFP, while the black dotted lines correspond to the result of the Comsol Multiphysics based
eigenmode expansions.

Both Fourier space images of the discrete diffraction in a plasmonic system, as depicted in
ig. 4.32] exhibit one band of excited modes, symmetrically arranged around ky = 0. In
comparison to the CMT calculations both results resemble the expected behavior as period
and band width of the structures decrease with increasing DLSPPW separations. However, in
comparison to a clear deviation of the absolute amplitude values is obvious, related to
the previously neglected non next neighbor coupling effects.
In contrast, the experimental data is in quantitative agreement with the band structure, calculated
with the help of Comsol Multiphysics (see black dotted lines in[Fig. 4.33). The remaining small
distortion and shift can be explained with deviations of the fabricated sample from the shape
assumed in the calculations. Based on the AFM measurements, presented in the last section,
the denser packed array has a slightly higher DLSPPW thickness compared to the simulated
environment, leading to a higher effective refractive index. In case of the second array, the
contrary explanation takes place.

4.5.2 Plasmonic implementation of the SSH model: Bulk properties

Next, we consider DLSPPW arrays with a constant dimerization, corresponding to a single
topological domain of the SSH model. Similar as it was the case in the theoretical discussions, in
these domains we investigate the evolution of an SPP wavepacket launched in the bulk material.
Therefore, the following procedure is repeated for each fabricated array: the laser is focused on
the grating coupler, fabricated on top of a DLSPPW in the middle of such a single topological
domain. Similar to the last section, the laser spot as well as the left propagating SPPs are filtered
out before the images of real and Fourier space are captured. On both types of images the same
post-processing is applied, as described in the last section.
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Real space image

We start with the captured real space images of the DLSPPW arrays. The intensity distribution
of propagating SPPs in an array with dgman = 600 nm and djaree = 1000 nm is shown in
on a logarithmic color scale.
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Figure 4.34: Real space intensity distribution of propagating SPPs in the bulk material of a single
topological domain, consisting of a DLSPPW array with dgpa = 600 nm and djage = 1000 nm. The
excitation of the propagating SPPs takes place at z = 0.

The SPPs are excited at z = 0 and propagate in the positive z-direction. While at the origin,
all the intensity is confined in the central DLSPPW, the distribution broadens with increasing
distance, similar to the already discussed case of discrete diffraction. However, due to the smaller
coupling in every second DLSPPW, the width of the distribution in y-direction is narrower.
In contrast to the numerical results resulting from the CMT calculations, shown in
two additional side lobes can be recognized. In accordance to the results based on the Comsol
Multiphysics eigenmode expansion, this can, however, be explained by a non vanishing non next
neighbor coupling. It thus successfully mimics the behavior of the bulk material as described by
the SSH model.

Note, that similar to the previous case, images the intensity distribution on top of the
gold film and not the discrete amplitude distribution of the DLSPPWs. Hence, the broader lines
in the experimental image stem from merging intensities of neighboring DLSPPWs and hence
correspond to more than one DLSPPW.

The theoretical calculations predicted that a change of the coupling has a strong influence on the
propagation of SPPs in a DLSPPW array. This dependency is investigated by exciting propagating
SPPs in a DLSPPW array with an increased djage. The resulting intensity distribution in an
array with the same dsman but djaree = 1600 nm, is shown in

Clearly, a narrowing of the intensity distribution in the z-direction can be observed. In contrast to
the final intensity distribution at the right end of the image is, in y-direction, distributed
over approximately 10 um, only. In accordance to the theoretical calculations, however, this
arises from the drastically reduced coupling due to the larger DLSPPW separations between
every second DLSPPW.

Similar measurements were performed on arrays with dyma = 800 nm, but the same values of
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Figure 4.35: Real space intensity distribution of propagating SPPs, excited at z = 0 in a DLSPPW array
with dgman = 600 nm and djaree = 1600 nm. This array mimics single topological domain with a larger

diarge than the one imaged in

dyarge- They provided the same behavior. Simply the opening angle was further reduced due to
the larger dyman- Also these results were in good agreement with the corresponding eigenmode
expansions based on Comsol Multiphysics and demonstrated the plasmonic realization of the
SSH model.

Fourier space image

The Fourier space image of propagating SPPs in an array with dgy, = 600 nm and dare =
1000 nm, corresponding to the real space distribution, shown in[Fig. 4.34] is depicted in[Fig. 4.36]
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Figure 4.36: Fourier space image of propagating SPPs in an array with dgp, = 600nm and djage =
1000 nm, corresponding to the bulk material of an SSH topological insulator (see the real space image in
[Fig. 4.34). The dashed black lines correspond to the two bands provided by the Comsol Multiphysics
based calculations, while the red lines indicate the border of the objective’s BFP.

As expected from the theoretical results, this image exhibits two distinct bands of high intensity,
separated by a band gap. Here, in comparison to the lower band the top band is strongly squeezed
in k,-direction. This significant asymmetry deviates from the expectations based on the CMT
calculations. It was, however, already anticipated by the results of the Comsol Multiphysics
based eigenmode expansion. Consequently, the positions of the experimentally determined
bands resemble the bands calculated with the help of Comsol Multiphysics that are depicted as
dashed black lines. The remaining deviations can be explained once more by the previously
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neglected non next neighbor coupling and the proximity effect. Therefore, this image mimics a
band structure representing the excited bulk modes of a topological insulator, described by the
SSH model.

In order to further investigate the influence of an increasing separation daee On the angular
spectrum, the Fourier space image of a DLSPPW array with dgma = 600 nm and djaree = 1600 nm

is captured and shown in[Fig. 4.37]

—_—

Norm. int
S [arb.u]

k, [1/um]

Figure 4.37: Fourier space image of propagating SPPs in an array with dgma; = 600 nm and an increased
diarge = 1600 nm (see the real space image in [Fig. 4.35). This array mimics the bulk material of a single
topological domain with a smaller coupling compared to the one shown in[Fig. 4.36] The dashed black
lines correspond to the two bands provided by the Comsol Multiphysics based calculations, while the red
lines indicate the border of the objective’s BFP.

Again, two distinct bands separated by a band gap can be recognized. In comparison to the
previously discussed case, the asymmetry of the widths of both bands in the Fourier space
increased, while the size of the band gap remains almost unchanged. This trend was already
expected from the theoretical considerations based on Comsol Multiphysics. In this case the
calculations (depicted as dotted black lines), however, the experimental results offer larger
deviations than in This deviation stems from the changed DLSPPW heights and
widths, due to the proximity effect, as confirmed by the AFM measurements. The decreased
size of the DLSPPW profile in this particular case leads to a smaller effective refractive index,
which is accompanied by a shifted position of the bands in the Fourier space image.

Gap size and band asymmetry

In order to characterize the deviations between the experimental results and the ideal SSH model,
the gap sizes and band asymmetries are investigated for all fabricated bulk material structures.
Therefore, the following procedure is performed on the corresponding Fourier space images.
The course of both bands is extracted from the images by performing Gaussian fits along the
k,-direction. Subsequently, each band is fitted by a cosine-shaped function. From the fitted
functions the widths (Ap and Apottom), as well as the maxima of the lower bands (Kyax) and
the minima of the top bands (Ky,) are extracted. The band gap sizes are then calculated by
Kinax — Kmin, while the asymmetry of both bands is determined as Apottom/Arwp- The resulting
data is plotted in[Fig. 4.38] together with values stemming from the Comsol Multiphysics based
calculations.

Considering initially the measured asymmetries of the two band widths, as plotted in[Fig. 4.38|(a),
the experimental results obtain an increasing asymmetry for larger separations djage. This trend
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Figure 4.38: (a) Asymmetry (Apotom/Arwop) Of the bands for dsymar = 600 nm (blue) and dgman = 800 nm
(green) as a function djage, as extracted from the Comsol Multiphysics based calculations (solid lines)
and experimental results (circles), respectively. (b) The corresponding gap sizes.

is in good agreement with the Comsol Multiphysics based calculations (lines in ().
However, as a result of the decreasing size of the fabricated structures related to the proximity
effect, the deviations from the calculations increase for larger values of djarge. A similar behavior
is obtained by the by the experimentally determined band gap sizes (depicted as points in
(b)). They also exhibit the expected increase with increasing djaree. In this case, the
slope deviates from the Comsol Multiphysics based calculations (lines in (b)) with
increasing djaree. Analog to the previous case, also this can be explained by the proximity effect.

Note, that the measurement errors, depicted in take into account only the errors
stemming from the manual fitting procedure, being a part of the calibration of the Fourier space
images. The fabricational errors, induced by the proximity effect, are not included. In fact, they
are the main contribution to the observed deviations.

4.5.3 Plasmonic implementation of the SSH model: Edge states

As anext step, edges between two different topological domains are investigated. Such geometries
are of particular interest, since the SSH model as well as the theoretical calculations predicted
the possibility of an excitation of topologically protected edge states in this case.

In order to experimentally demonstrate this behavior, the following procedure is repeated for all
fabricated arrays. The sample is positioned in the setup in such a way, that the laser is focused
on the isolated DLSPPW in the middle of the transition area, being equivalent to the excitation
in the central DLSPPW discussed in the theoretical calculations. In order to reduce the influence
of the proximity effect, in the fabrication of the structure, the dose of the central DLSPPW was
slightly increased relatively to the design dose (to 147% of the nominal dose).

Similar to the previous cases, again, the left propagating SPPs and the directly transmitted laser
beam are filtered out by placing a knife edge in BFP’. Subsequently, on both types of resulting
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images, the same post-processing is applied as discussed in the previous sections.

Real space images

The normalized real space image of propagating SPPs, excited in the center of a DLSPPW array
with dgman = 600 nm and diarge = dgap = 1000 nm, is shown in [Fig. 4.39
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Figure 4.39: Real space image of an excited topologically protected edge state in a DLSPPW a array with
dsman = 600 nm and diarge = dgap = 1000 nm. The excitation takes place at z = 0.

Clearly, beginning at the point of excitation (z = 0), a high fraction of the intensity is confined to
the central DLSPPW for the complete imaged distance of 120 um. It is therefore, according
to the theoretical considerations, in fact, the experimental demonstration of the excitation of a
topologically protected edge state in a plasmonic system. Analogue to the previously discussed
case, the remaining broadening in y-direction, which can be observed mainly in the left half
of the image, can be explained by the excitation of bulk modes of the DLSPPW array. A
comparison to the results calculated with the Comsol Multiphysics based eigenmode expansion
that are depicted in [Fig. 4.24] reveals an excellent agreement.

In order to further investigate the dependency of the excitation of such an edge state on the
DLSPPW separations, the same measurement is performed for a DLSPPW array with the same
dsman = 600 nm but a larger djage = 1600nm. The resulting intensity distribution of SPPs
propagating in this array, is depicted in[Fig. 4.40]on a logarithmic color scale.

Similar to the previous case, a large fraction of the intensity is confined to the central DLSPPW
in the complete depicted area. Here, due to the decreased coupling to every second DLSPPW,
the intensity in the neighboring DLSPPWs even decreased. Therefore, this image represents
a second experimental demonstration of the excitation of a topologically protected edge state
in a DLSPPW array. Again, the broadening of the intensity distribution in the left half of the
image can be assigned to the excitation of bulk modes. Its reduced spreading in propagation
direction is also induced by the decreased coupling as it is accompanied by the larger DLSPPW
separations. This behavior is consistent with the theoretical predictions and the already presented
experimental results. Furthermore, the overall form also of this intensity distribution is again in
good correspondence with the theoretical results obtained from Comsol Multiphysics.
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Figure 4.40: Real space image of an excited topologically protected edge state in a DLSPPW array with
dsmait = 600 nm and a larger djaee = dgap = 1600 nm. The excitation takes place at z = 0.

Fourier space images

Since the real space images already demonstrated the excitation of a topologically protected edge
state in a plasmonic system, the investigation of the corresponding band structure is expected to
contain more information on this states. The Fourier space image corresponding to is

shown in
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Figure 4.41: Fourier space image of an excited topological protected edge state, corresponding to the real
space image depicted in[Fig. 4.39 The red lines correspond to the border of the objective’s BFP.

The horizontal line of high intensity in the band gap of the already known two cosine-shaped
bands represents a mode, confined in a single DLSPPW. Based on the theoretical considerations,
this line corresponds to the excited topologically protected edge state in the central DLSPPW
(see [Fig. 4.39). Hence, this image represents the first experimental observation of a band
structure including an excited topologically protected edge state in a plasmonic system. It herein
exhibits an excellent agreement to the theoretical results, depicted in Consistent with
the theoretical results, also in the experimental image, the edge state is not located in the middle
of the band gap, since the symmetry of the SSH model is not perfectly fulfilled in realistic
DLSPPW arrays.

In order to investigate the dependence of the edge state’s properties on the effective refractive
index of the central DLSPPW, the dose of the central DLSPPW and with it its height is varied.
Initially, it is decreased to 133% and in a second step increased to 161%, relatively to the nominal
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dose. The Fourier space images of excited propagating SPPs in the resulting DLSPPW arrays
are shown in
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Figure 4.42: Fourier space images of excited topologically protected edge states in DLSPPW arrays with
dsman = 600nm and djarge = dgap = 1000 nm an a slightly smaller (a) and larger (b) design dose of the
central DLSPPW. The red lines correspond to the border of the objective’s BFP.

Both cases exhibit a state in the band gap in between the two cosine-shaped bands similar to
the previously discussed case. However, the changed design dose of the central DLSPPW has
a strong influence. While a smaller design dose of the central DLSPPW (a)) leads
to a shifting down of the edge mode, an increased dose (b)) leads to a lifting of the
edge mode. In the latter case the edge mode even touches the top band and is hence strongly
disturbed. This corresponds to the theoretically expected behavior of a system with a changing
effective refractive index of the central DLSPPW.

Now, the influence of a larger separation djage On the gap state is investigated for a DLSPPW
array with djaree = dgap = 1600 nm, and an identical dgya1 = 600 nm. The design dose of the
central DLSPPW is chosen to be again 147%. The resulting Fourier space image (corresponding

to the real space image shown in[Fig. 4.40) is depicted in [Fig. 4.43]
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Figure 4.43: Fourier space image of an excited topological protected edge state, corresponding to the real
space image depicted in[Fig. 4.40} The red lines mark the border of the objective’s BFP.

The horizontal line of high intensity represents once more a mode confined to a single DLSPPW.
Due to its position in the band gap, in combination with the real space image depicted in[Fig. 4.40]
it can be assigned once more to the excitation of a topologically protected edge state in the central
DLSPPW. Therefore, it is a further experimental observation of a band structure including an
excited topologically protected edge state. Furthermore and in accordance to the theoretical
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considerations, the absolute width of the band structure and the band widths decreased due to
the smaller coupling, as induced by the larger separations (see [Fig. 4.38).

Investigation of the edge state’s mode profile

As discussed in section [Subsec. 4.2.T(SSH model), the edge state has a vanishing amplitude on
every other site. Hence, it should not be excited if we launch a SPP in one of the direct neighbors
of the central DLSPPW. To test this prediction we have fabricated a grating coupler on the right
end of the DLSPPW which is located directly above the central waveguide (see[Fig. 4.28). Due
to the changed excitation scheme, the knife edge in BFP’ is now placed in such a way, that
the right propagating SPPs and the laser beam is filtered out. The remaining post-processing
performed on the real space image is the same as in the previous sections.

The resulting normalized intensity distribution of SPPs, propagating now in negative z-direction

in an array with dypan = 600 nm and djarge = dgap = 1000 nm is depicted in [Fig. 4.44
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In contrast to the already discussed cases, this image exhibits a clear asymmetric intensity
distribution, due to the transition between the two topological domains, centered at y = 0.
However, no intensity is confined to the central DLSPPW and hence the distribution does not
contain an excited topologically protected edge state. In excellent accordance to the theoretical
considerations, this experimentally demonstrates the mode profile of the topologically protected
edge state. The remaining broadening can again be explained by the excitation of bulk modes,
similar to the previous cases. However, in contrast to[Fig. 4.34] a larger fraction of the intensity is
contained in the outer lobes of the distribution. As expected from the theoretical considerations,
this can be traced back to a slightly changed excitation scheme of the propagating SPPs.

4.5.4 Plasmonic implementation of the SSH model: Larger transition area

The last section concentrated on the investigation of propagating SPPs, excited at the boundary
of two domains with different topological properties. This section focuses on a larger transition
area. For that purpose dg,p, is reduced to 600 nm, as it leads to a closely spaced realization of five
DLSPPW in the central region of the array, corresponding to the case discussed in the theoretical
part of this chapter. The remaining design is kept fixed. Again, SPPs are excited by the grating
on top of the central DLSPPW and propagate in positive z-direction. The knife edge in the BFP’
is once more placed such that it blocks the laser beam and the SPPs, propagating to the left.
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Chapter 4 Plasmonic waveguide arrays as quantum simulators

The corresponding real space image of a DLSPPW array with dgna = dgap = 600 nm and
diarge = 1000 nm is calibrated analogously to the previous images. The resulting intensity

distribution, is shown in[Fig. 4.45]
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Figure 4.45: Real space image of a DLSPPW array with dgy, = dgman = 600 nm and djarge = 1600 nm,
implementing a larger transition area in a plasmonic system.

In contrast to the previously discussed results, this distribution exhibits a clear beating pattern
in the central area of the DSLPPW array, starting directly after the SPP excitation at z = 0.
Based on the theoretical predictions (see this indicates on the presence of more
states, localized in the center of the array. Analogously to the previous discussions, the slight
broadening of the intensity distribution can be assigned once more to the additional excitation of
bulk modes.

In order to verify the assumption of the excitation of additional localized states and to investigate
the topologically protected edge state, the corresponding Fourier space image has to be examined.
The resulting intensity distribution is depicted in [Fig. 4.46] on a logarithmic color scale.
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Figure 4.46: Fourier space image, corresponding to|Fig. 4.45| The numbers highlight the newly occurred
modes. The red lines correspond to the border of the objective’s BFP.

In comparison to the case of two different and directly attached topological domains (compare
to [Fig. 4.41), the k-space image contains new excited modes. One additional state can be seen
below the lower band (1) and a bright one above the former top band (2). In accordance to the
theoretical discussion, both correspond to modes, localized in the central area of the array, as
expected from the discussion of the corresponding real space image. Nevertheless, still an edge
state is visible in the band gap. However, due to the changed type of geometry it is slightly
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covered. In comparison to the theoretical results shown in one deviation is apparent.
The horizontal line indicated by (2) is shifted to higher values of k,, than expected. This again
stems from the influence of the proximity effect, since the distances of the central DLSPPW are
strongly reduced, leading to a larger size, accompanied by a larger effective refractive index.
This demonstrates the presence of a topologically protected edge state in a system including also
a large transition area and more localized states in the central part of the array.
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CHAPTER 5

Photochromic switching of surface
plasmon polaritons

This chapter concentrates on the investigation of the photochromic switching of plasmonic
systems. After a short introduction on the functionality of the used photochromic materials, two
different plasmonic systems are discussed in detail.

In the first plasmonic system, photochromic materials are used to manipulate Fano resonances
in photochromic metallic photonic crystal slabs. The working principle of this approach is
explained with the help of a coupled oscillator model, supported by more rigorous scattering
matrix based calculations. After introducing positive tone electron beam lithography (pEBL) as
the applied fabrication method and the optical setup, utilized for the experimental investigations,
the experimental results are presented.

The second part of this chapter focuses on the manipulation of SPPs, propagating at the
interface of a gold film, covered with a photochromic material. On this occasion, two possible
manipulation methods are discussed theoretically: the globally and the locally switching of
the photochromic material’s state. Based on leakage radiation microscopy, both approaches
are investigated experimentally. As a result, the manipulation of propagating SPPs by globally
switching the photochromic layer is presented. In addition, also first results on the manipulation
of SPPs by switching the layer even locally, are discussed.

5.1 Photochromic materials

Photochromic molecules belong to a chemical species that provides two different isomers with
differing properties, e.g., a different complex refractive index. Upon illumination with light,
these molecules undergo chemical reactions, leading to a reversible conversion from one isomer
to the other. Out of the great variety of molecules offered by this chemical species, in this thesis,
we make use of the two cross-linkable photochromic molecules XDTE and XTPA, provided and
synthesized by the group of Prof. Dr. Klaus Meerholz[T]

! Institut fiir Physikalische Chemie, Universitit zu Koln
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Chapter 5 Photochromic switching of surface plasmon polaritons

XDTE

The first molecule presented in this thesis is the dithienylethene derivative XDTE [[108]]. It
exhibits two thermally stable and non-volatile [[T09] isomers (the molecular strucutre is sketched
in (a)), which can be reversibly transferred into each other by light induced chemical
reactions [[110]]. The complex refractive indices of both isomers (nxpte-a and nxpre-1) are

plotted in (b).
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Figure 5.1: (a) Molecular structure of XDTE-A and XDTE-T || (b) Real and imaginary part of the
complex refractive indices of XDTE-A (blue) and XDTE-T (green), with the data taken from Ref. [ITT]].
(c) Complex refractive indices of XTPA-A (blue) and XTPA-T (green), respectively.

The complex refractive index of XDTE-A (depicted as blue lines in (b)) exhibits a
large imaginary part, in the visible spectral range with a maximum at approximately 610 nm
wavelength. Simultaneously and in accordance with the Kramers-Kronig relation, its real part is
strongly dispersive in this spectral range.

The illumination of these molecules with red light induces a ring opening reaction, transferring
XDTE-A to the other isomer XDTE-T. The optical properties of this isomer (depicted as green
lines in [Fig. 5.1] (b)) differ from XDTE-A. It has a negligible absorption in the visible part of
the spectrum, as indicated by the vanishing and almost constant imaginary part of the complex
refractive index. Corresponding to this, its real part in this spectral range is almost constant.
In comparison to XDTE-A, the point of highest switching efficiency (nxpre-a — nxpDTE-T) iS
located at approximately 672 nm wavelength for the real part of the refractive index and at
approximately 594 nm wavelength for its imaginary part.

By illumination with UV light, XDTE-T undergoes a ring closing reaction, transferring it back to
XDTE-A. The overall efficiency of this procedure in terms of the fraction of switched molecules
can be as large as approximately 95% [[I08]]. However, in addition to the back conversion, the
illumination with UV light can also lead to unwanted side reactions, resulting in an overall optical
fatigue. The probability of this side reactions herein depends on the intensity and the wavelength
of the used light source as well as on the layer thickness and the grade of conversion [ITT]].
Previous experiments, carried out in the group of our collaborators, revealed a reduction of the
overall photo-response of approximately 20% after 150 switching cycles [ITT].
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5.2 Photochromic switching of Fano resonances

XTPA

The second cross-linkable molecule utilized in this thesis is XTPA [112]]. Similar to XDTE
it is a dithienylethene derivative, which offers deviating optical properties. This manifests in
a different complex refractive index distribution of both isomers, as measured by Thorsten
Umbaclﬂ for XTPA films on a glass substrate. Both distributions (nxtpa—a and nxtpa-T) are
plotted in (©).

The highly absorptive isomer, labeled as XTPA-A, offers a maximum of absorption in the visible
spectral range at approximately 644 nm wavelength, combined with a highly dispersive real
part of the complex refractive index in the same spectral range. Analogously to XDTE, an
illumination with red light, converts this isomer (XTPA-A) to the second isomer (XTPA-T).
XTPA-T now offers a negligible absorption in the visible spectral range, accompanied by an
almost constant real part of the complex refractive index. A back conversion can be achieved by
illumination of UV light, inducing a ring closing reaction in the molecule, converting XTPA-T
to XTPA-A. The maximal conversion achieved within the switching procedure is approximately
91% [[112]].

In comparison to XDTE, the highest switching efficiencies (nxtpa—-a — nxTPA-T) Of the real and
imaginary parts of XTPA can be found at longer wavelengths. While the maximal difference in
absorption takes place at approximately 644 nm, the highest switching efficiency of the real part
of the complex refractive index is located at approximately 731 nm.

Switching times

While the switching of the used photochromic molecules from one state to another happens in
the ps time range [114]}, the time needed to switch a complete layer of material with red/UV
light mainly depends on the intensity of the light source itself. In the case of flood illumination
of an XDTE or XTPA layer, being accompanied by relatively low intensities, the switching times
are in the range of minutes. Previous experiments approved that they can be even reduced to the
range of seconds, if a tightly focused light source is utilized. However, too high intensities lead
to a permanent change of the material, destroying its switching functionality.

5.2 Photochromic switching of Fano resonances

The discussion of the spectral properties of both used photochromic materials in the last section
revealed that the points of highest switching efficiency of the real and imaginary parts of the
complex refractive indices are at different spectral positions. This fact can be used to investigate
the influence of both changes on SPPs in distinct experiments. As a starting point, this section
will concentrate on the interaction of SPPs with a photochromic material in a spectral range,
in which the change of absorption is predominant. By comparing the two presented materials,
shown in XDTE reveals the highest change of absorption and hence is utilized in the
first part of this section.

2 Group of Prof. Dr. Klaus Meerholz, Institut fiir Physikalische Chemie, Universitit zu Koln
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Chapter 5 Photochromic switching of surface plasmon polaritons

In this context metallic photonic crystal slabs are particular interesting systems to investigate.
Due to an interaction of localized SPPs with delocalized dielectric waveguide modes, such
systems provide Fano resonances [53] [72} [TI5]]. Since these resonances exhibit highly dispersive
properties they are good candidates for switching applications [52]]. In fact, the transmittance
of such a system has been previously investigated by Nau et al. on its dependency on
photo induced changes in one of the wave guiding layers. The resulting small shifts of the
spectral features in their experiments were, however, caused mainly by a changing real part
of the refractive index in the used photo addressable polymer. In contrast to this, making use
of the more pronounced change of the absorption of XDTE, let us anticipate an even larger

influence on such system. By discussing the realization of this concept, this section mainly
follows Ref. [[TTT].

5.2.1 Fano resonances in metallic photonic crystal slabs

We start the discussion with a bare metallic photonic crystal slab, not incorporating a pho-
tochromic layer. The assumed design of this non-switchable metallic photonic crystal is sketched
in[Fig. 5.2] It consists of an array of identical gold wires (with height 4 and width w), arranged
with a period p, on top of a dielectric layer with thickness d and refractive index nq = 1.9.

X Vacuum
T_E h Gold
w D I d I Dielectric

Glass

Figure 5.2: Metallic photonic crystal slab, consisting of gold wires with width w and height 4, arranged
with period p on top of a dielectric layer with thickness d, and fabricated on a glass substrate.

Dielectric slab waveguides

By neglecting firstly the gold wires included in the design, as it is sketched in the
system consist only of a dielectric layer sandwiched between a vacuum and a glass half-space.
Such layer of a material with a high refractive index, surrounded by two lower index materials
(yac = 1 and ngjass = 1.5), can act as a dielectric waveguide. The existence of waveguide modes
for a given wavelength, however, depends strongly on the thickness d of the dielectric layer [69].
By taking the boundary conditions at both interfaces of the resulting waveguide into account,
the following two characteristic equations for both, TM and TE modes of lowest order can be
derived. With kq = kong, kyac = konyac, and Kgjass = Konglass it follows for the TE modes with a

propagation constant 8 [[I15]:

kZ _ k2 kg - k2
d+lk3 — 82 = arctan kdz—g;c — 1|+ arctan kz—gﬁla;s -11, (5.1
d— d—
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5.2 Photochromic switching of Fano resonances

and for TM-modes:

2 [2_ .2 2 | k% - k>
ki —k d
dJk3 — B2 = arctan nzd d__7vac _ 11+ arctan ;ld J goss ], (5.2)

2 2 2 2
Nyac kd - :8 n glass kd - ’8

Since these equations cannot be solved analytically, we use again the modal analyzer contained
in the Comsol Multiphysics software package to get an insight into the complex dependencies.
For this purpose, we search for the allowed modes of lowest order in a geometry, consisting of a
dielectric with thickness d, sandwiched between a glass and a vacuum half space (similar to
by neglecting the gold wires). The simulations are performed for 400 nm — 900 nm
wavelength in steps of 10 nm as well as thicknesses d of 100 nm, 120 nm, 140 nm, 160 nm, and
180 nm. The corresponding dispersion relations, deduced from the mode indices determined by
the software, are plotted in[Fig. 5.3](a) and (b) together with the light lines for vacuum, glass,
and the dielectric.
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Figure 5.3: Calculated dispersion relations of (a) TM and (b) TE modes in a dielectric slab waveguide
with core thicknesses (from the left to the right): d = 100 nm, 120 nm, 140 nm, 160 nm, 180 nm (colored
in blue). The cutoff frequencies are indicated as black dots. Furthermore, the light lines of the dielectric
layer as well as of glass and vacuum are depicted in red.

As expected, the dielectric’s thickness has a direct influence on all modal dispersion relations
(blue lines in . While the thickness d is increased, also the dispersion relations of the
corresponding modes are shifted to larger values of 8. This stems from the increasing influence
of the material in larger waveguides. Nevertheless, as it can be recognized in [Fig. 5.3](b), for TE
polarization all presented modes are existent over the whole spectral range and for all considered
thicknesses. This is, however, different in case of TM polarization (see (a)). Here, the
cutoff frequencies of the different modes are marked with black dots. They indicate that the
waveguide mode in a 140 nm thick dielectric layer is the first one that is supported over a broader
part of the considered spectral range. This leads to the assumption that for the proceeding
investigations it is the minimal reasonable thickness.
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Chapter 5 Photochromic switching of surface plasmon polaritons

Metallic photonic crystal slabs

In the complete system, consisting of gold wires on top of the dielectric slab waveguide, the gold
wire array can now serve as a grating coupler for the discussed dielectric slab waveguide [[69].
Hence, if the incoming wave is polarized along the z-direction (TM polarization), as discussed
in[Sec. 2.4} the present design facilitates the simultaneous excitation of both, localized SPPs in
the gold wires and delocalized waveguide modes in the dielectric slab waveguide [53][54]. For
this reason, we concentrate only on this polarization in the following discussions.

Based on the dispersion relations of the waveguide modes, depicted in[Fig. 5.3](a), the wavelength
at which a waveguide mode is excited (waveguide resonance), can be controlled by linearly tuning
the period of the grating. In contrast, the excitation wavelength of the localized SPPs (plasmonic
resonance) depends to first approximation only on the profile of the gold wires [[I15]]. Hence,
the appearance of both effects can be controlled independently. In order to reduce the number of
parameters, we restrict ourselves to a fixed plasmonic resonance at 610 nm wavelength, while
the waveguide resonance is shifted by linearly changing the grating period.

The interaction of a plasmonic oscillation, exhibiting a resonance at {2, and a damping of ),
with a waveguide mode, having a resonance at Q, and a damping of yy,, can be modeled
by using a coupled oscillator model [LT7]. Therefore, the equation of motion described

by [(2.23)] is extended to [[72]):
CIpl

Epl + 2vpiépl +Q§1§pl — Q% = m—lE(l), (5.3)
p

gwg + 27Wgéwg + Q%vgfwg - ch;fpl =0, 5.4)

with the charge g and mass myp, of the electron cloud, as well as the coupling constant €
and the corresponding displacements &; (i € {pl, wg}). Here, analogously to the case described
by [2.23)] the plasmonic oscillation is externally driven by the electromagnetic wave E(f). The
waveguide mode, however, does only couple to the plasmonic mode, mediated by .. Hence,
the plasmonic oscillation acts as an optical bright mode and the waveguide mode as optical dark
mode.

Similar to the case discussed in[Sec. 2.4] the plasmonic displacement induced by a monochromatic
excitation can now be derived to [[72]]:

QplEO(Q%vg - w? - 2i')’Wg(i))
mp[(Q) = w? = 2iypw) (g — w? = 2iywew) — QY

En(w) = (5.5)

By making use of [(2.27)]and the parameters of the plasmonic oscillation, listed in[Sec. 2.4] an
absorption spectrum for a waveguide resonance at y,, corresponding to the later presented
experimental data, can be modeled by a coupling constant and a waveguide damping of
Qc = Qp1/4 and ywe = ¥p1/4000, respectively. The resulting absorption spectra for five different
waveguide resonance wavelengths are plotted in

We start the discussion with the case of a large detuning (AQ = Qg — €,)) of the waveguide
and the plasmonic resonance, as it is the case in[Fig. 5.4](a). At this point, both resonances can
be treated independently and are represented by two distinct peaks in the absorption spectrum.

86



5.2 Photochromic switching of Fano resonances
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The sharp peak corresponds to the waveguide resonance, while the broad peak, centered at
610 nm wavelength, is generated by the plasmonic resonance. If the detuning is decreased by
shifting the waveguide resonance to higher wavelengths, both effects start to interact with each
other [T18]]. Hence, the peaks cannot be assigned to a single resonance any more, but to a
hybrid-type of effect. This manifests in the fact that the waveguide-like and the plasmon-like
peaks perform an avoided crossing, as it can be recognized in (b)—(e). The strongest
interaction herein occurs for a zero detuning, when both resonances overlap. In this case, the
destructive interference of both modes leads to a vanishing absorption of the system.

Such avoided crossing was previously assigned to the formation of a waveguide plasmon
polariton [53] 54} [115]]. Furthermore, this asymmetric type of line shape, originating from
the interaction of a spectrally broad plasmonic resonance with a spectrally sharp waveguide
resonance, is similar to a Fano resonance [48]]. Hence, strongly dispersive features, as they are
typical for such resonances [52]], can be also expected for the present case.

Scattering matrix based calculations

The presented coupled oscillator model is useful to examine the interaction of two oscillators of
known resonance wavelength and damping, as well as a known coupling constant. However, in
real experimental situations these parameters are not known exactly. Therefore more rigorous
calculations are necessary.

In this thesis an already existing script is used that bases on a scattering matrix method,
extensively discussed in [[T19] [I20]]. In the course of that, in each layer of the system (vacuum,
gold wires in vacuum, dielectric, glass) the electric field is decomposed into plane waves,
corresponding to the Bragg harmonics of each layer. Together with the Maxwell equations,
this results in a system of linear equations of a dimension that is determined by the number of
the considered Bragg harmonics. After solving the resulting eigenvalue problem via transfer
matrix formalism, the scattering matrix of the complete system is calculated. The accuracy of
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Chapter 5 Photochromic switching of surface plasmon polaritons

the transmission, calculated by this formalism, depends on the number of considered Bragg
harmonics. A good trade off between accuracy and calculation speed is found for a number of
50 Bragg harmonics.

Such calculations are performed for a TM polarized plane wave with wavelengths between
400 nm and 900 nm, impinging on an array of gold wires with a height of 40 nm and width of
90 nm, being arranged regularly with periods between 340 nm and 500 nm, on top of a dielectric
waveguide with 140 nm thickness. The resulting extinction spectra (negative decadic logarithm
of the transmission) are plotted in (a) column-wise and with the extinction spectrum of
a bare dielectric coated glass substrate as reference.
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Figure 5.5: (a) Calculated extinction spectra of gold gratings with wires of 90 nm width, 40 nm height
as well as periods between 340 nm and 500 nm, on a glass substrate with a dielectric coating of 140 nm
thickness. (b) Extinction spectrum for a grating of 380 nm period, extracted from the data displayed in (a).

The extinction spectrum of the metallic photonic crystal slab with the smallest grating period,
is located at the left border of (a). I exhibits two spectral features at approximately
500 nm and 650 nm wavelength. Herein, the sharp peak can be assigned to the waveguide
resonance, while the broader peak stems from the plasmonic resonance. In between both peaks,
the minimum of the extinction, expected from the coupled oscillator model, can be recognized.
As the period of the gold wire grating increases, accompanied by a shift of the waveguide
resonance to higher wavelengths (compare [Fig. 5.3] (a)), the interaction of both effects leads to
an avoided crossing of the waveguide-like and plasmon-like peaks. Analogue to the coupled
oscillator model, this behavior is the clear signature of the formation of a waveguide plasmon
polariton 54]I.

More insight into this hybridized effect is given by the extinction spectrum of a structure with
380 nm period, as it corresponds to a zero detuning of both resonances. It is plotted in[Fig. 5.5](b).
In comparison to the extinction spectrum of a single wire, shown in[Fig. 2.3} the asymmetric
Fano-type shape of the spectrum becomes apparent, indicating on a Fano resonance. Similarly
to the oscillator model, it exhibits a vanishing extinction around 580 nm wavelength, as it can
be explained by the destructive interference of both modes in the inner of the waveguide and a
therefore increased transmission.
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5.2 Photochromic switching of Fano resonances

5.2.2 Fano resonances in photochromic metallic photonic crystal slabs

Based on the theoretical considerations on Fano resonances in bare metallic photonic crystal
slabs, presented in the last section, the system is now extended by an additional XDTE layer in
order to implement the switching capability in the system. The resulting system is sketched
in| 6

Vacuum

Dielectric

Glass

Figure 5.6: Photochromic metallic photonic crystal slab with gold wires of height 4, width w and a period
of p, on top of a dielectric and coated with an XDTE layer, with thicknesses of d» and d, respectively.

Photochromic dielectric slab waveguides

We start the discussion of this complex system again with the pure slab waveguide, not containing
a gold wire array. Since in the last sections the large influence of the waveguide’s core on its
properties was demonstrated, we make once more use of the modal solver, contained in the
Comsol Multiphysics software package, to investigate the complex dependencies in the present
system. Herein, the simulated system is similar to the previously discussed one. On top of the
glass substrate coated with a dielectric layer of thickness d» and a refractive index of nq = 1.9,
now the additional XDTE layer is placed. It has a thickness of d| and a complex refractive index,
as depicted in (b).

Since the TE modes do not contribute to the investigated Fano resonances, the modal solver
is used to find only the allowed lowest-order TM modes of the photochromic dielectric slab
waveguides. We therefore assume a system with a dielectric layer of 140 nm thickness as well as
an XDTE layer of 120 nm thickness for wavelengths from 400 nm to 900 nm in steps of 10 nm.
The resulting dispersion relations for both isomers of XDTE are plotted in together
with the light lines of the involved media.

In a system with an XDTE layer, being in its transparent state (XDTE-T), similarly to the
previously discussed pure dielectric slab waveguide, the dispersion relation is almost straight
(see[Fig. 5.7)(a)). However, the added XDTE layer induces an overall shift to higher values of
B. This is different for the dispersion relation, corresponding to the lowest order mode in a
waveguide composed of the second isomer (XDTE-A), as it is plotted in [Fig. 5.7)(b). It deviates
from a straight line and thus demonstrates the strong influence of the changed material properties
on the waveguide modes. Furthermore, the change of the imaginary part is even larger and has a
maximum of Im(AS) = 0.5 around 610 nm wavelength.

Summarizing these results, the positions of the dispersion relations proof that in the chosen range
of parameters wave-guiding is possible. In addition, the strong change of the modal dispersion
relations upon a conversion of the XDTE layer from one state to the other, predicts a strong
influence on the Fano resonances in the complete system.
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Figure 5.7: The blue lines depict the dispersion relations of TM modes in a waveguide, consisting of
a dielectric layer of 120 nm and an XDTE layer with a thickness of 120 nm, being in the transparent
state (a) and the absorptive state (b), respectively. In addition, the red lines correspond to the light lines in
the involved media.

Photochromic metallic photonic crystal slabs

In the case of a plane wave, being polarized along the z-direction, impinging from the positive
x-direction on the system shown in [Fig. 5.6] again, the simultaneous excitation of waveguide
modes and localized SPPs is possible. In order to model the influence of a changing absorption
in the waveguide on the behavior of the system, we can use again the system of two coupled
oscillators.

For this purpose, the system containing an XDTE layer, being completely in the transparent
state (XDTE-T), can be modeled with the same parameters, as used for the non-switchable case.
However, in account for the added XDTE layer, the waveguide’s damping has to be slightly
larger, and hence is described by ywe = yp1/40. The absorption of the resulting system can then
be calculated analogously to the previous case. The results for the five different waveguide
resonance wavelengths are plotted in depicted in blue.

Again, the sharp peak, depicted in (a), can be assigned to the waveguide resonance,
while the broad peak centered at 610 nm wavelength stems from the plasmonic resonance. Now,
due to the slightly higher damping in the waveguide, the corresponding peak is broader and
lower in comparison to[Fig. 5.4} However, by decreasing the detuning of both resonances, the
hybridization leads still to an avoided crossing of the waveguide-like and plasmon-like peaks (see
(a)—(e)). It furthermore indicates on the formation of waveguide plasmon polaritons [53]
[54]] and, due to asymmetric line shape, also on a Fano resonance. The strongest interaction
occurs again for a zero detuning of both resonances (see [Fig. 5.8(c)).

A system containing a layer of XDTE, converted to XDTE-A, is expected to obtain different
absorption spectra. The increase of absorption in comparison to the previous case leads to a
higher damping in the waveguide and can, according to the later presented experimental data, be
modeled with a damping, given by yws = p1/4. The resulting absorption spectra are depicted in
colored in red.

While in this simple model the peak positions are not affected by the changed environment,
the larger damping leads to an even increased broadening and lowering of the waveguide-like
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peaks in the case of a large detuning (see[Fig. 5.8](a)). When the detuning of both resonances is
lowered and changes its sign, similarly to the weakly damped system, an avoided crossing of
both peaks can be recognized in[Fig. 5.8](b)—(e). Again, the strongest influence on the absorption
is achieved for zero detuning, when both resonances overlap, as it is depicted in [Fig. 5.8 (c).
However, in contrast to the weakly damped system, the drop of absorption in considerably
smaller and the Fano resonance is blurred out. This increase of absorption of about 50% shows
that the quality of a Fano resonance can be strongly affected by changing the absorption in the
wave-guiding layer.

Scattering matrix based calculations

In order to examine the influence of a changing absorption in the waveguide on the behavior
of the system with more rigorous simulations, the already introduced scattering matrix based
algorithm is used again. The considered geometry herein corresponds to the one depicted
in In correspondence to the calculations, discussed in the context of a bare metallic
photonic crystal slab, the dielectric layer has a thickness of 140 nm and a refractive index of
ng = 1.9. Furthermore, the last section showed that a waveguide with an XDTE layer of 120 nm
thickness allows for the excitation of TM modes in the investigated spectral region. Since, in this
case the mode is strongly influenced by a conversation of XDTE from one isomer to the other,
we concentrate here on this thickness only, by taking the optical properties of both isomers again
from (b).

The resulting extinction spectra (negative decadic logarithm of the transmission) for gold wires
with a height of 40 nm and width of 90 nm, being regularly arranged with periods between
340 nm and 500 nm, are shown in for both possible states of the XDTE layer.
Regarding firstly the case of a transparent XDTE layer, which is depicted in[Fig. 5.9|(a). Similarly
to the calculated extinction spectra of the bare metallic photonic crystal, shown in
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Figure 5.9: Calculated extinction spectra of the proposed geometry for grating periods between 340 nm
and 500 nm, embedded in an XDTE layer converted to XDTE-T (a) and XDTE-A (b), respectively.

these spectra exhibit an avoided crossing of the plasmon-type and the waveguide-type peaks,
by increasing the period of the gold wire grating. Due to the additional wave-guiding (XDTE)
layer, however, all spectral features are shifted to larger wavelengths. This was expected already
from the dispersion relations of the bare slab waveguide, shown in[Fig. 5.7

The extinction spectra of the photochromic metallic photonic crystal slab with an XDTE layer, in
the absorptive state (XDTE-A), are plotted in[Fig. 5.9](b). In comparison to the extinction spectra,
depicted in[Fig. 5.9 (a), all spectral features are again slightly shifted to higher wavelengths, as it
can be explained by the change of the real part of the complex refractive index. However, even
more interesting and more pronounced is the change of extinction around 610 nm wavelength.
Here, the strong absorption band of the XDTE-A layer can be recognized. It induces a blurring
of all spectral features, being maximal in the extinction spectrum of a structure with a grating
period of 380 nm, where the position of the Fano dip corresponds to the maximal absorption of
XDTE. The according extinction spectra are plotted in for both states of the XDTE
layer.

Figure 5.10: Calculated extinction spectra of a 1.5
photochromic metallic photonic crystal slab con-
taining a grating of 380 nm period and an XDTE

layer, being in the absorptive state (blue) and g 1
the transparent state (green). In addition, the B
extinction spectrum of a bare XDTE-A layer on =
top of the dielectric coated glass substrate is LE 0.5

depicted in red.

400 600 800
Wavelength [nm]
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5.2 Photochromic switching of Fano resonances

The extinction spectrum of the photochromic metallic photonic crystal slab with the XDTE
layer in the absorptive state (XDTE-A), is depicted in blue, while the corresponding spectrum
of the layer, being in the transparent state (XDTE-T), is colored in green. Both spectra exhibit
a clear Fano-type line shape. Furthermore, directly in the Fano dip and consistent with the
coupled oscillator model, an increase of the absorption in XDTE layer leads to a dramatical
increase of the extinction. In comparison to the case of a transparent XDTE layer it results in
a difference in extinction as large as AE = 0.4. However, in comparison to the extinction of
bare XDTE-dielectric-glass system (depicted as red line in[Fig. 5.10), this change cannot be
explained by the absorption of the XDTE layer alone, acting as additional filter.

As can be recognized from the peak positions in [Fig. 5.10] the difference of the real parts of the
refractive indices of both isomers of XDTE has a rather low influence of the system. It induces
an only small spectral shift of the peaks upon a conversion of XDTE from one isomer to the
other. Hence, this system promises an effective photochromic switching of Fano resonances,
induced by a predominant change in the absorption.

5.2.3 Fabrication of photochromic metallic photonic crystal slabs

This section introduces the methods utilized for the fabrication of photochromic metallic photonic
crystal slabs. By using positive tone electron beam lithography (pEBL) the gold wire arrays
are fabricated on top of an ITO (indium tin oxide) layer, serving as dielectric waveguide. The
XDTE is spin-coated in a subsequent step.

Positive tone EBL

As substrate, we use a 1 mm thick 4" glass-wafer, consisting of crown glass (BK-7). Onto
that substrate, an ITO film of 140 nm thickness is evaporated by electron beam physical vapor
deposition. Subsequently, the substrate is annealed for 4 h at a temperature of 400 °C, in order
to ensure the oxidation of the ITO. The resulting ITO layer serves two different purposes. On
the one hand it is the conducting layer, needed for the following electron beam exposure. On
the other hand, it acts as the desired dielectric waveguide needed for the investigations of Fano
resonances.

In order to reduce the size of the samples, the wafers are cut into 2 cm X 2 cm-pieces and cleaned
with acetone in an ultrasonic bath for 1 h. Then, in order to prepare the sample for the electron
beam exposure, approximately 90 ul of PMMA with a molecular weight of 950 k and dissolved
at 4 % in annisole[]is spin-coated onto the sample in two steps: (i) For 3 s at 500 rpm, in order
to distribute the solution over the sample (ii) For 90 s at 4000 rpm, to achieve a layer thickness
of up to 200nm. Subsequently, the samples are annealed at 175 °C for 45 min, resulting in
PMMA-ITO covered glass substrates, as sketched in[Fig. 5.11] (a).

In the next step, the sample is placed in an SEM [ Similarly to the application in gEBL, presented
in this machine facilitates the controlled electron beam exposure of the PMMA layer,

by tracing simple geometrical structures (see[Fig. 5.11](b)).

3 Supplied by the micro resist technology GmbH, Germany
4 Zeiss Sigma with an attached ELPHY Plus system (see for more details)
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Figure 5.11: (a) PMMA-ITO coated glass substrate (b) Electron beam exposure (c) Exposed PMMA
areas (d) Hole mask (e) Gold covered hole mask (f) Gold gratings on top of the ITO layer.

In contrast to gEBL, in this process PMMA is used as a positive tone resist. Therefore, the
locally applied doses are chosen such that cross-linking of the layer is avoided, but the polymeric
chains are disassembled and thus become less resistant against solvents [[78]]. For this purpose,
the structures are exposed by applying an electron acceleration voltage of 20 kV, an aperture of
20 um, a nominal dose of 400 uC/cm?, and a step-size of 0.0032 um.

The form of the resulting structures after e-beam exposure (¢)) is influenced again by
the proximity effect (for a detailed description see [Sec. 3.4). However, in all designs discussed
in the present section, the distances between all structures are rather large so that the effect does
not play an important role here.

After the electron beam exposure, the samples are soaked in a developerf] for 45 s. This results
in a hole mask, being a negative image of the desired structures (d)). The fabrication
of the gold structures of appropriate thickness is achieved by evaporating a 40 nm thick layer of

gold, at a rate of 2 % and a typical pressure of approximately 1.5 x 107 mbar, onto that mask

(compare (e)).

In the last step the remaining unexposed gold coated PMMA is lifted off by placing the sample
in NMP{] for 2h at 60 °C, flushing with ethanol and methanol, and subsequently blowing off the
remaining solvent residues with pressured nitrogen. After this step the samples consist of gold

wires on top of an ITO layer (see (D).

XDTE Layer

The XDTE layers were provided by R. C. Shallcross In detail, a solution of 9 % XDTE
containing the photo acid 4-octyloxydiphenyliodonium hexafluoroantimonate (OPPIF) is spin-

> A 1:3 solution of MIBK (methyl isobutyl ketone) and isopropyl alcohol, including 1.5 vol-% butanone
6 N-Methyl-2-pyrrolidon

7 Group of Prof. Dr. Klaus Meerholz, Institut fiir Physikalische Chemie, Universitit zu Koln

8 Supplied by the ORGANICA Feinchemie GmbH Wolfen, Germany
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coated onto the structured sample at 700 rpm. The resulting layer is illuminated with UV light
of 312 nm wavelength for 60 s and subsequently cured for 2.5 min at 110 °C on a hot plate to
finalize the cross-linking. Since one layer yields approximately 60 nm of thickness, the whole
procedure was repeated twice in order to gain a total thickness of approximately 120 nm.

5.2.4 Fabricated samples

On top of the ITO layer of approximately 140 nm thickness, the gold wires are designed as
rectangles of 90 nm width, 80 um length, and a dose of 120% of the nominal dose. While their
thickness is solely determined by the evaporation procedure (40 nm), in the grating design,
the wires are arranged with periods from 350 nm up to 490 nm, in 10 nm-steps. One typical
overview SEM image of a fabricated structure including an uncoated grating with a design

period of 380 nm is shown in[Fig. 5.12](a).
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Figure 5.12: SEM overview image of an uncoated gold grating with 380 nm design period, on top of an
ITO layer (a) and a magnified image of the central part ot the same grating (b).

All structures visible in this image correspond to gold structures on top of the ITO layer.
Surrounded by four markers and the labeling of the structure, the actual grating is contained
in the square-shaped region in the central part of the image. The markers herein span the
write field with a size of 100 um X 100 um. The grating elements itself can be recognized in a
magnified image of this grating, as it is shown in[Fig. 5.12](b). The gold wires obtain a width
of approximately 95 nm and a period of approximately 369 nm. This deviation is taken into
account in the following discussions, by utilizing only the measured periods of all fabricated
gratings.

All of the already presented and some of the subsequently discussed measurements are performed
before the XDTE layer of approximately 120 nm is added to the system. This facilitates the
characterization of the uncoated sample and avoids the manipulation of the XDTE layer, as for
example by an electron beam exposure.

These fabricated photochromic metallic photonic crystal slabs hence provide the desired
dimensions of all components, such as gold wires and material layers. However, since the
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refractive index of ITO, in contrast to the considered constant value in the theoretical discussions,
is dispersive in the relevant spectral range [115]], deviations of the experimental results can be
expected.

5.2.5 Optical setup
The optical setup used to characterize the samples is sketched in [Fig. 5.13]
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Figure 5.13: Optical setup used for the spectral characterization of the fabricated photochromic metallic
photonic crystal slabs.

For the present experiments we use a thermal light source of 22 W, providing high intensity
and a broad spectrum in the investigated spectral region around 600 nm. The emitted light
is collimated and subsequently coupled into an optical multi-mode fiber, in order to create a
point-like white light source.

The light emitted by the fiber, is collimated with a lens and subsequently passes an optical
telescope with a magnification of one third, serving two purposes. On the one hand, it reduces
the diameter of the light beam and increases the intensity of the beam. On the other hand, in its
focal point a knife edge is placed, which can be used to crop the beam.

With a reduced diameter, the beam passes a polarizer, attached to a rotational mount. Afterwards,
the polarized light beam is focused onto the sample by making use of Objective 1[7] This
results in a real image of the knife-edge on the sample. The sample itself is mounted on an
XYZ translation stage, a double goniometer and a rotation stage in order to control its spatial
orientation on each rotation and translation axis.

Transmitted by the sample, the beam is collimated by Objective 2, being identical in construction
to the first one. The beam passes a glass slide, is partially reflected and then imaged on a
camera[[| This facilitates the imaging of the illuminated areas on the sample and, in combination
with the knife edge, the controlled measurement of the sample’s transmission.

% Plan N 10x, Olympus Deutschland GmbH, Germany
19 DCC1545M, Thorlabs GmbH, Germany

96



5.2 Photochromic switching of Fano resonances

The transmitted proportion of the beam passes a 100 um pinhole before it is focused onto a
second optical multi-mode fiber. The pinhole herein causes a reduction of the detected angular
range. As previous experiments revealed, this is necessary to avoid the imaging of higher order
grating effects, which can occur due to the illumination with an angular broadly distributed light
source [[121]).

Finally, the optical fiber is connected to a spectrometer['T| which facilitates the measurement of
transmission properties of the sample on short timescales. By this approach a manipulation of
the used photochromic layer due to the used light source can be minimized.

Switching of the photochromic layer

In addition to the presented details, the setup allows for the switching of the used photochromic
layers by flood illumination without having to remove the sample. To induce the conversion
from the transparent to the absorptive state, a hand-held UV fluorescent tube with a wavelength
of 302 nm can be mounted over the sample. Analogue, to perform the reverse conversion, a red
LED with 623 nm wavelength can be fixed to the same position. Due to the low intensities on the
sample’s surface in both cases, the times needed to switch the layers are in the range of minutes.

5.2.6 Results: Bare metallic photonic crystal

Before the XDTE film is prepared, the bare metallic photonic crystal slabs are investigated. For
this purpose, the sample is placed in the optical setup described above, and illuminated with TM
polarized white light. The extinction spectrum (negative decadic logarithm of the transmission)
of the bare ITO coated glass is measured and used as reference for the subsequent measurements.
Based on this, the extinction spectrum of each fabricated gold wire grating on top of the ITO
coated glass substrate is captured and column-wise plotted in (a).

The depicted extinction spectra exhibit two peaks with different spectral positions, depending on
the grating period. In accordance with the theoretical considerations, they can be assigned to
the plasmon-like and waveguide-like peak. With an increasing period of the gold wire grating,
both peaks perform the anticipated avoided crossing, due to the interaction of plasmonic and
waveguide mode. Hence, these extinction spectra are the experimental demonstration of the
formation of waveguide plasmon polaritons [54]]. The apparent deviation of the extinction
spectrum corresponding to the 360 nm-grating stems from a slight corruption of the grating in
the fabrication. It will therefore be recognizable also in all subsequent measurements on this
sample.

The extinction spectrum of a bare metallic photonic crystal slab with a grating of a 380 nm period
is plotted in (b). As expected from the coupled oscillator model and the scattering
matrix based calculations, this spectrum clearly provides an asymmetric Fano type line shape,
indicating on a Fano resonance. The vanishing extinction in between both peaks, according to
the theoretical considerations, stems from the destructive interference of the waveguide and the
plasmonic mode in the structure.

1 USB4000, Ocean Optics, USA
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Figure 5.14: (a) Measured extinction spectra of the bare metallic photonic crystals, consisting of gold
wire gratings with measured periods between 340 nm and 480 nm, on top of an ITO layer with 140 nm
thickness. (b) Extinction spectrum, corresponding to a grating with period of 380 nm, as extracted
from (a).

However, several deviations of the experimental data to the theoretical calculations, depicted in
can be noticed. In the experimental images, the peaks are broader and spectrally shifted.
This is mainly induced by the highly dispersive behavior of ITO, which was neglected in the
simulations. Additionally, the imperfectness of structures and layers leads to a larger damping
in the system. That induces an overall broadening of the peaks and an additional shift of the
spectral positions.

5.2.7 Results: XDTE coated metallic photonic crystals

Next, the sample is coated with two layers of XDTE, resulting in a thickness of approximately
120 nm. Subsequently, one part of the sample is cleaned in order to facilitate a measurement of
the extinction of the bare ITO coated glass substrate. It is used as the reference in all following
measurements.

Bare XDTE-ITO coated glass substrate

Before the photochromic metallic crystal slabs are investigated, the extinction spectra of the
XDTE layer in both possible states are measured in order to characterize the conversion efficiency.
For this purpose, initially, the XDTE layer is switched to XDTE-A, by flood illumination with
UV light for 40 min. The first extinction spectrum (E4) is captured in this case. Subsequently,
the sample is flood illuminated with red light for 60 min, converting the XDTE layer to the
transparent state. Under these conditions, the second extinction spectrum (ET) is measured.
Both resulting spectra (Ea and Et) are plotted in[Fig. 5.15

A strong difference between the extinction spectra of layers in both states is obvious as it is
needed for the implementation of the photochromic switching in the current system. The areas
of negative extinction, existent in both cases, can be explained by the formation of an anti-reflex
coating, induced by the layered design of the sample.
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5.2 Photochromic switching of Fano resonances

Figure 5.15: Extinction spectrum of the pure
XDTE layer on top of the ITO coated substrate,
being in the absorptive state (Ea, depicted in
blue) and the transparent state(Et, colored in
green), respectively.
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In comparison to the experimentally measured peak extinction of XDTE-A is slightly
smaller than expected. This can however be explained by the neglected dispersion of ITO in the
calculations and a smaller conversion efficiency of the XDTE layer than predicted. Nevertheless,
the switching of the layer’s properties has succeeded and can hence be used for the manipulation
of Fano resonances.

XDTE coated metallic photonic crystal slabs

With the results of the last section as a basis, the photochromic switching of Fano resonances
in metallic photonic crystal slabs can now be investigated experimentally. For this purpose,
initially, the sample is illuminated for 60 min with red light, in order to convert the complete
photochromic layer to XDTE-T. Subsequently, with the extinction spectrum of the bare ITO
coated glass substrate as reference, the extinction spectra of all fabricated gratings are captured.

The results are plotted column-wise in (a).
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Figure 5.16: Extinction spectra of photochromic metallic photonic crystals containing gratings of varying
periods and an XDTE layer, being converted to XDTE-T (a) and XDTE-A (b), respectively.

The spectra of all investigated photochromic metallic photonic crystals with XDTE being in

the transparent state (XDTE-T) exhibit two peaks, which can be assigned to the plasmon-like
and waveguide-like peaks, according to the theoretical considerations and to the results, shown
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in (a). Analogously, the avoided crossing of both peaks is again apparent and an
experimental demonstration of the formation of waveguide plasmon polaritons [53][54]. However,
due to the addition of the XDTE layer and the increased size of the waveguide, the spectral
features are slightly shifted to higher wavelengths.

Next, the sample is flood illuminated for 40 min with UV light, leading to a conversion of the
XDTE layer to the absorptive state (XDTE-A). As before, the extinction spectra of all fabricated
gratings are captured and plotted column-wise in (b).

Again, the two peaks (waveguide-like and plasmon-like peaks) show an avoided crossing,
similarly to the previous cases. In addition, around 600 nm wavelength, a clear absorption
band, corresponding to the extinction of XDTE-A, occurred. Consistent with the theoretical
calculations, this leads to a blurring of all spectral features, including both peaks.

The highest influence of the switching is expected for the case in which the Fano dip and the
maximal absorption of the XDTE layer overlap. This is the case for a photochromic metallic
photonic crystal slab with a grating with 380 nm period. The spectra of this structure are depicted
in[Fig. 5.17|with an the XDTE layer in both states together with the extinction of a bare XDTE-A
film.

Figure 5.17: Extinction spectra of photochromic 0.8
metallic photonic crystal slab obtaining a grating
with 380 nm period and an XDTE layer, being
converted to XDTE-A (blue) or XDTE-T (green).
Additionally, the extinction of a bare XDTE-A
layer is depicted in red.
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The extinction spectra of the photochromic metallic photonic crystal slab incorporating XDTE-A
and XDTE-T are depicted in green and blue, respectively. Both spectra exhibit two peaks and a
dip in between, representing once more a clear asymmetric Fano-type line shape and hence a
Fano resonance. While the positions of both peaks differ only slightly, as induced by the change
of the real part of the refractive index of the XDTE layer, the Fano dip in the middle of the
spectrum is strongly blurred in the case of high damping. This leads to a maximal difference
of extinction of AE = 0.3, as it corresponds to a difference in transmission of AT = 0.49.
Furthermore, a comparison to the extinction of a bare XDTE-A layer (red line in
reveals, that this effect cannot be explained by a simple filter-like absorption of the photochromic
layer alone. In fact, the massive manipulation of the interaction of waveguide and plasmonic
mode is the reason for the switching of the Fano resonance. Neglecting the smaller switching
efficiency due to the non optimal conversion of the layer, the results are in excellent agreement
with the theoretical calculations, shown in
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5.3 Manipulation of propagating surface plasmon polaritons

The second topic investigated in this chapter is the influence of a photochromic state change
on SPPs propagating at a photochromic-gold interface. In this context, previously, only the
influence of a predominant change of the absorption of a photochromic layer was investigated by
Pala et al. [43]]. However, a manipulation of the SPP propagation, caused by a changing real
part of the refractive index of a photochromic material has not been demonstrated so far. Such
an approach, presuming the ability to locally change the state of the layer, would facilitate the
generation of nearly arbitrary refracting boundaries and hence optical devices for propagating
SPPs with switchable properties.

5.3.1 Manipulation concept

In order to investigate the influence of a changing real part of the photochromic materials’
refractive index on propagating SPPs, in principle, both presented materials could be utilized.
However, since the propagation length of propagating SPPs increases with the wavelength,
a material with a high switching efficiency in the long wavelength regime is suitable. By
comparing both materials in[Fig. 5.1} it turns out that XTPA has to be favored. Moreover, a good
trade off between low absorption and high switching efficiency of the real part of the refractive
index can be found at 830 nm wavelength.

Global switching of the XTPA layer

The first case to discuss is the influence of a state change of a whole XTPA layer on the properties
of propagating SPPs. For this purpose, we consider an XTPA layer of thickness d, sandwiched
between a gold and a vacuum half-space, similar to the case sketched in [Fig. 3.4

By using the same approach as in the complex effective refractive index of
propagating SPPs in the three layer system can be calculated for each thickness d and state of
the layer. The resulting real and imaginary parts for a free space wavelength of 830 nm and the

optical properties taken from are plotted in
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Figure 5.18: Real (a) and imaginary parts (b) of the effective refractive index of SPPs (free space
wavelength 830 nm), propagating at an XTPA metal interface with an XTPA layer of thickness d being
completely converted to XTPA-A (blue) and XTPA-T (green), respectively.

101



Chapter 5 Photochromic switching of surface plasmon polaritons

Analogously to the case of a simple dielectric, in both states an increasing thickness of the
layer leads to an increasing influence of the material, accompanied by an increasing effective
refractive index. For thicknesses larger than 400 nm, the real and imaginary parts of the effective
refractive indices approximate the values of the two layer system, consisting of only XTPA and
gold. In accordance to the values presented in in the depicted range of parameters,
XTPA-A induces slightly larger values than XTPA-T.

Note that, as discussed already in[Subsec. 2.3.2] the leakage radiation of propagating SPPs cannot
be detected anymore, if the effective refractive index exceeds the value of the numerical aperture
(in the subsequently discussed experimental setup it is given by 1.49). Therefore, the maximal
applicable thickness of an XTPA layer at 830 nm free space wavelength is 110 nm. In this case
the effective refractive index of propagating SPPs in a layer being completely converted to
XTPA-A, is given by nega = 1.47 +0.019i, while in the case of the layer being in the transparent
state, the effective refractive index is given by negr = 1.38 + 0.016i. Together this results in a
Aneg = 0.09 + 0.003i.

Transmission properties of the XTPA layer

The grade of conversion of such an XTPA layer can be easily tested by measuring its transmission
in both states. Since the properties highly depend on the layer thickness, a typical system
containing XTPA is investigated by making use of Comsol Multiphysics. The simulated 2D
geometry consists of an XTPA layer of various thicknesses (90 nm, 110 nm, 130 nm), as well as a
gold layer of 60 nm thickness on top of a glass substrate. In order to investigate the transmission
of this system, a modeled plane wave with 830 nm wavelength is excited on the vacuum side and
collected in the glass substrate. The wave vector is chosen perpendicular to the surface.

From the resulting transmission spectra Tt and Tp of a system with an XTPA layer being
converted to XTPA-T and XTPA-A, respectively, the ratio of the transmitted intensities can
be determined as given by Tt/Ta. The results are plotted in (a) for all investigated
thicknesses.
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Figure 5.19: (a) Simulated transmission ratios of an XTPA layer in both states, for thicknesses of 90 nm
(green), 110 nm (blue), 130 nm (red). (b) Transmission ratios of an XTPA layer of 110 nm thickness for
an increasing amount of non-switched molecules, resting permanently in the absorptive state (XDTE-A).

In all considered cases, the maximal ratio Tt/Ta can be found around 670 nm wavelength. The
position and form of this graph is herein not only influenced by the absorption of the material
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itself. Due to the layered type of structure the exact profile depends additionally on the thickness
of the XTPA layer.

While the previous simulations concentrated solely on completely converted layers, in a second
step, the influence of a non optimal conversion is investigated theoretically. Analogously to the
Arago-Biot equation for the mixing of binary liquids [122]], we approximate the optical properties
of the photochromic layer by averaging over the optical properties of the contained isomers
of XTPA in dependence on their volume fractions. This is implemented in the simulation by
describing the optical properties of the layer by the following equation:

ny, = (1 = p) - nxTpa-T *+ P * NXTPA-A, (5.6)

with the parameter p ranging from O to 1. Based on this, analogously to the previously discussed
case, Comsol Multiphysics simulations are performed for various values of p. The resulting
simulated ratios of the transmission through XTPA in the mixed state (T,) to the transmission
through XTPA in the absorptive state (T ) are plotted in (b).

Obviously and as expected, the transmitted intensity is highly dependent on the effectiveness of
the switching process. Hence, the transmittance spectra of a bare film can be utilized to examine
the conversion efficiency of the material.

Local switching of the XTPA layer

A particular interesting case to investigate is the local switching of the photochromic material
on top of the gold substrate, as it leads to a local increase or decrease of the effective refractive
index of propagating SPPs. By controlling the form of the boundary of such a switched area, one
could hope to manipulate the propagation of SPPs. For example, a circular structure could act as
a collimating or diffusing lens, depending on the refractive index of the surrounding material.
However, by switching the whole layer all devices could be erased again.

An exemplary 2D system is investigated by using Comsol Multiphysics. A circle of 5pum
diameter is placed in 5 um distance from a source, emitting a TM polarized plane wave of
830 nm wavelength. Assuming an XTPA layer of 110 nm thickness, the disc and the surrounding
area exhibit two different effective refractive indices, as given by n.gr and nega. The resulting
normalized intensity distributions for both possible cases are depicted in[Fig. 5.20](a) and (b),
respectively.

In[Fig. 5.20](a) the effective refractive index in the disc is smaller than the one of the surrounding.
It therefore acts as a diffusing lens for the plane wave, which is excited at z = 0 and propagates
in the positive z-direction. The reversed case is shown in[Fig. 5.20](b). Here, the higher effective
refractive index in the disc leads to a focusing of the plane wave, resulting in a focal point behind
the lens.

Both examples indicate that local switching of propagating SPPs can be achieved by using
XTPA combined with an appropriate switching light source. By assuming a Gaussian shaped
laser spot, the presented example is the simplest realization. However, by moving the laser spot
over the sample or by moving the sample, optical lithography can be performed, leading to the
realization of nearly any structure. Even more complicated structures, such as gradient index
elements would be possible by only partially switching the layer.
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Figure 5.20: (a) TM polarized electromagnetic wave propagating in XTPA-A, impinges on an XTPA-T
disc. (b) TM polarized electromagnetic wave propagating in XTPA-T, impinges on an XTPA-A disc.

5.3.2 Fabricated samples

The samples needed for the experimental realization of the described effects should provide a
gold surface, coated with XTPA, and an embedded grating coupler, facilitating the excitation of
propagating SPPs. For this purpose, similar substrates as in the experiments on DLSPPWs are
used: glass cover-slides covered with 10 nm of chromium and 60 nm gold.

On top of these substrates, the necessary gold gratings are fabricated making use of pEBL again
(see for more details). They are designed as gold wires of 200 nm width, 80 pm
length, 40 nm height and a dosis of 140% of the nominal dose. The grating periods, required
to excite propagating SPPs in the three layer system, depend on the thickness and state of the
layer. In order to cover a wide range of possible scenarios, gratings with various periods are
fabricated, starting from 460 nm up to 700 nm. An SEM image of a resulting structure with a

typical grating of 700 nm period is depicted in[Fig. 5.2}

Figure 5.21: Exemplary SEM image of one write
field, containing a grating of 700 nm period,
surrounded by the labeling of the structure and 30
cross-shaped markers.

El
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The grating is surrounded by the labeling as well as four markers of a different type, compared
to the previous experiments. This new design allows for a precise coordinate-system correction
in further lithographic procedures, such as optical lithography. The grating itself facilitates the
excitation of propagating SPPs in both directions.
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XTPA coating

In the last step, the sample is spin-coated with a solution, containing 18 % of XTPA and OPPI,
at a rotation velocity of 700 rpm. Subsequently, the layer is annealed with UV light at 312 nm
for 120 s and cured for 5.5 min at 110 °C. Finally, the sample is flushed with toluene in order to
remove the not cross-linked residues.

The thickness of the resulting film was measured on unstructured gold coated samples to be
approximately 40 nm per layer. In order to fabricate a thicker layer of XTPA, the procedure is
repeated twice, resulting in a thickness of approximately 80 nm. It can, however, be anticipated
that the XDTE is thicker in the vicinity of the gold structures (gratings, markers, labels).

5.3.3 Optical setup

Since this section concentrates again on the investigation of propagating SPPs, the optical setup
used here bases on the one presented in the previous chapter (sketched in [Fig. 4.31). The
imaging part remains unchanged and still facilitates both, real space and Fourier space imaging.
The central part of the used setup is sketched in [Fig. 5.22] It includes the extensions added in
account for the different types of experiments carried out in this section:

UV light
R
UV laser H{eﬁe
IR laser » Objective 1 Objective 2 » Imaging
White light
Sample

Figure 5.22: Experimental setup, used for the investigation of the local and global photochromic switching
of propagating SPPs.

In the present setup, a laser diode of 830 nm wavelength is used for the excitation of propagating
SPPs. Furthermore, this setup now supports both types of switching. The global switching
of the layers can be achieved by flood illumination of the sample with a thermal light source
(600 nm peak-wavelength), coupled into the beam path via a polarizing beam splitter, as well
as a UV fluorescent tube (302 nm peak-wavelength), mounted over the sample. Additionally,
an UV laser (405 nm) and a HeNe laser (633 nm), being focused onto the sample, facilitate the
local switching of the photochromic layer.

The sample itself is placed on a multi-axis piezo system for the highly resolved positioning[/|
Together with a homemade Labview script, simple geometrical objects such as lines and circles
can be traced by moving the sample accordingly, facilitating optical lithography.

5.3.4 Results: Transmission measurements

As a first step, the transmission through the fabricated XTPA layer on top of the gold surface is
measured for both possible states. The measurements are carried out right next to a fabricated

12 NanoCube P-611.3S, Physik Instrumente (PI) GmbH, Germany
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grating, by utilizing an optical setup, similarly to the one presented in Due to the
simple type of structure (plain layers), the small pinhole could be waived. In addition, the
light intensity is decreased as far as possible, in order to avoid an unwanted conversion of the
photochromic layer.

Two transmission spectra are captured, the first one (Tp) after 60 min of flood illumination
with UV light, resulting in a layer converted to XTPA-A. The second one (Tt) after 60 min of
illumination with white light, when the layer is in the transparent state. The ratio (Tt/T4) of

both spectra is plotted in[Fig. 5.23]

Figure 5.23: Ratio of the transmission through

an XTPA film illuminated with white light (Tt)

and an XTPA film illuminated with UV light 1.4
(Ta), as determined by (Tt/Ta).
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This experimentally determined transmission ratio deviates from the theoretical calculations for
a film with the expected parameters, as it is presented in [Fig. 5.19] In contrast it is, however,
similar to the ratio of the calculated transmission spectra of an XTPA layer of 110 nm thickness,
consisting of an isomer mixture of 60% XTPA-A and 40% XTPA-T, in comparison to a layer
being completely in the absorptive state. Therefore, a similar thickness and conversion efficiency
can be presumed also for the fabricated layer.

The increased layer thickness can be explained by the presence of the fabricated gold structures.
However, the reduced grade of conversion leads to the assumption that the XTPA layer is
corrupted. This could be explained either by optical fatigue similar to XDTE or by a degradation
of the layer due to oxidization [I23]]. Based on this, for all subsequent experiments, a smaller
change of the real part of the refractive index can be anticipated.

5.3.5 Results: Global switching

In order to investigate the influence of a globally switched layer on propagating SPPs, the XTPA
layer is illuminated with white light for 90 min and hence is converted to XTPA-T. Subsequently,
the 830 nm laser is focused on a grating in order to excite propagating SPPs. The resulting
normalized intensity distribution is depicted in (a), on a logarithmic color scale.

Due to the position of the laser spot on the grating, the excitation of propagating SPPs takes
place mostly in the positive z-direction. Besides the clear Gaussian shape of the SPP beam,
small scattering at surface and grating inhomogeneities can be recognized.

In order to gain more information on the complex refractive index distribution, also the Fourier
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Figure 5.24: (a) Real space image of propagating SPPs in an XTPA layer in the transparent state. (b) The
Fourier space image corresponding to (a). (c) Fourier space image of propagating SPPs excited with the
same grating, but with an XTPA layer being in the absorptive state. The red arrows mark the position of
the subsequently fitted data. The red lines correspond to the border of the objective’s BFP.

space image is captured. On this data the same post-processing is applied as in the context of
DLSPPW arrays. The resulting normalized intensity distribution in the Fourier space is shown
in[Fig. 5.24](b), on a logarithmic color scale.

While, induced by the propagation of the SPPs in z-direction, the largest fraction of the intensity
is assembled around ky = 0, the mentioned scattering of the propagating SPPs leads to the
occurrence of a circular intensity distribution in the Fourier space image. The constant radius
indicates on an equally distributed effective refractive index of the SPPs. In order to measure
this radius, a Lorentz curve is fitted to a data line, indicated by the red arrow. The resulting peak
position corresponds to an effective refractive index of negr = 1.439 + 0.005. In comparison to
the theoretically expected value, described in this effective refractive index is larger.

In oder to investigate the index on its influence of a switched layer, without moving the sample,
by illumination with UV light for 40 min, the layer is converted back to the absorptive state
(XTPA-A). Subsequently, propagating SPPs are excited at the same position on the grating again.
Since the resulting real space image is similar to the presented one, we concentrate here on the
resulting Fourier space image, only, which is shown in [Fig. 5.24] (c).

By comparing both Fourier space images, two features attract attention. On the one hand, the
higher damping of the system leads to a reduction of the overall intensity. On the other hand, the
radius of the circular intensity distribution increased drastically. This indicates on an even larger
effective refractive index as in the previous case. In order to measure it, again, a Lorentz curve
is fitted to a data line, indicated by the red arrow. In this case, the effective refractive index is
calculated to be nega = 1.51 £ 0.06. The larger error herein can be explained by the position of
the expected peak, laying outside of the angular range collected by the objective. By taking
the measurement error into account, this value corresponds to the one expected for XTPA-A
thickness of 110 nm.

A comparison of the difference of both values to the theoretically expected value, also described
in[Sec. 5.3.1] reveals a strong deviation. The experimentally determined difference is smaller.
This is, however, in good accordance to the reduced conversion efficiency and the higher
thickness of the XTPA layer, as assumed in the last section.
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5.3.6 Results: Local switching

Next, the influence of a locally switched layer on propagating SPPs is investigated. Preliminary,
the whole XTPA layer is switched to the XTPA-A state, by flood illumination with UV light for
approximately 50 min. Subsequently, the HeNe laser is focused on a position with a distance of
approximately 10 um to the grating for approximately 5 min. Due to its spot-size (a few um),
this results in a small area, being converted to the transparent state.

In these conditions, propagating SPPs are excited by focusing the 830 nm-laser onto the gold
grating. The resulting intensity distribution is depicted in with the position of the
switched area being indicated by the arrow.

p—

Figure 5.25: Propagating SPPs, excited at a grat-

ing and propagating in positive z-direction. The =3
position of a manipulated area is indicated by —g:
the black arrow. —
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The SPPs propagate in positive z-direction, similarly to the previously discussed case, shown in
(a). However, they are passing the switched region without a detectable influence.

This measurement exemplifies the results obtained from all experiments, performed on the local
switching of propagating SPPs on the presented sample. This includes also the contrary type
of switching (XTPA-T is converted locally to XTPA-A, by making use of the UV laser). The
reason for this behavior in the present case is the non-optimal conversion efficiency of the layer,
mentioned in the last sections. Since it is accompanied by a reduced change of the real part of
the effective refractive index, the remaining influence is covered by the inhomogeneities of the
layer itself.
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CHAPTER 6

Summary

In this thesis we explored how surface plasmon polaritions (SPPs) can be manipulated with
dielectric nanostructures. For this purpose, we considered both, stationary and switchable
environments. Herein, the main results of this thesis are: (i) The manipulation of Airy SPP
beams (non-diffracting plasmonic wave packages) by making use of gradient refractive index
(GRIN) elements. (ii) The observation of excited topologically protected edge states and bulk
states in dielectric loaded SPP waveguide (DLSPPW) arrays, simulating a Su-Schrieffer-Heeger
(SSH) topological insulator. (iii) The switching of Fano resonances in photochromic metallic
photonic crystal slabs. (iv) The manipulation of propagating SPPs by switching a photochromic
material.

In detail, the first part of this thesis concentrated on the excitation and manipulation of propagating
Airy SPP beams at a gold vacuum interface. While the excitation was realized by specially
designed grating couplers, the manipulation was achieved by adding dielectric ramps on top of
the gold surface, inducing a gradient in the effective refractive index. Both, ramps and gratings
were fabricated out of PMMA by making use of gray-scale electron beam lithography (gEBL).
As a result, various PMMA grating couplers as well as ramps of different height gradients were
deposited on top of the gold surface. These fabricated samples were experimentally investigated
with an optical setup, based on leakage radiation microscopy (LRM).

By this approach it was possible to observe freely propagating Airy SPP beams and, for the first
time, Airy SPP beams propagating in PMMA ramps. We showed that such ramps can be utilized
to alter the propagation properties of Airy SPP beams. In fact, an inversion of their bending
direction in comparison to an undisturbed Airy SPP beam was realized. All results were in
excellent agreement with numerical simulations.

The results demonstrated that gEBL is a versatile tool that can be utilized to fabricate dielectric
structures for the excitation and manipulation of propagating SPPs. Additionally, LRM offers
the possibility to image the intensity distribution of propagating SPPs also in complex PMMA
structures.

In the second part of this thesis we implemented the Su-Schrieffer-Heeger (SSH) model, i.e., the
prototypical system of a 1D topological insulator, in arrays of evanescently coupled DLSPPWs.
The basis for this is the mathematical equivalence between the evolution of electrons in a crystal,
as described by the condensed matter tight binding model, and the spatial evolution of SPPs
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in the waveguide arrays, as described by the coupled mode theory (CMT). By making use of
gEBL, various DLSPPW arrays were fabricated on top of the gold layer, corresponding to
different realizations of the SSH model. Propagating SPPs in these arrays were experimentally
investigated in an optical setup, facilitating the imaging of the real and Fourier space intensity
distributions.

We observed excited topologically protected edge states and bulk states in the fabricated arrays
both, in real and Fourier space. In the real space, an excitation of bulk modes led to a strongly
broadening SPP intensity distribution in propagation direction, while the excited topologically
protected edge states exhibited a clear localized evolution. Simultaneously, in the Fourier space
intensity distributions the topologically protected edge states could be identified as states within
a band gap of two cosine-shaped bands, formed by the bulk modes. These images marked the
first experimental observation of a band structure including excited topologically protected edge
states in a plasmonic system. In this context, the influence of different fabrication parameters
was investigated extensively. The remaining deviations to the numerical calculations obtained
from CMT could be explained by the neglected non next neighbor coupling effects. This was
confirmed by a numerical analysis of the eigenmodes of the system. These results exhibited an
excellent accordance to the experimental results.

As indicated by these experiments and the theoretical considerations, DLSPPW arrays are a
versatile tool in terms of mimicking condensed matter effects. They allow for the tuning of all
essential parameters as the coupling between the DLSPPWs as well as the properties of the
single DLSPPWs.

The last part of this thesis was dedicated to two different approaches to implement the
photochromic switching in plasmonic systems. Both systems incorporated gold gratings,
fabricated with positive tone electron beam lithography and coated with photochromic molecules,
provided by the group of Prof. Dr. Meerholz from the Universitit zu Koln.

It was shown that photochromic metallic photonic crystal slabs consisting of an XDTE-ITO
waveguide incorporating gold gratings of various periods can exhibit Fano resonances at various
wavelengths. In this system the Fano resonance describes the interaction of localized plasmonic
modes and delocalized waveguide modes. Hence, the position of the corresponding Fano dip
depends directly on the spectral detuning of both effects. By carefully adjusting all fabrication
parameters it was shown that a state change of the photochromic layer induces a strong alteration
of the extinction in the Fano dip. By this approach we achieved a maximum difference in
extinction of 0.3, corresponding to a change in transmission of AT = 0.5.

Secondly, the propagation of SPPs in globally and locally changing refractive index profiles
was investigated. By switching a complete layer of the photochromic material XTPA, deposited
top of the gold film, a change of the effective refractive index of propagating SPPs in this
environment could be measured to be approximately 5%. In comparison to the theoretical
expectations, this rather small value can be probably be traced back to a suboptimal film quality.
This also prevented the manipulation of propagating SPPs by a locally switched layer.
Although both types of experiments suffered from the non-optimal conversion of the photochromic
layers, a strong influence on the behavior of the plasmonic systems could be demonstrated.
Hence, this approach builds a basis for promising further applications.
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CHAPTER 7

Outlook

The results presented in this thesis represent the current state of the research in this area. Based
on the discussed results several pursuing investigations are of high interest. I would like to
mention some of them.

As introduced within this thesis, DLSPPW arrays can be utilized as simulators for condensed
matter systems, which allow for the control over all essential parameters, as coupling constants
and effective refractive indices. As mentioned previously, the remaining deviations to the
theoretical predictions were accounted to the proximity effect only, whose influence could be
minimized in future experiments [80]]. Hence, this system forms a good basis for more in-depth
investigations of more elaborate systems.

Since the topologically protected edge states are especially robust against perturbations [[99]
[100]], it would be interesting to investigate the influence of various types of perturbations. Since
temporally changing properties of a condensed matter system correspond to spatially changing
properties in the plasmonic system, the influence of temporal effects on such states can be easily
investigated in a plasmonic system. This includes a (in the real systems not trivially realizable)
phase change between two different topological phases, as it can be achieved by changing the
coupling and effective refractive index profiles simultaneously [[124]]. But also the influence of a
temporally changing or spatially randomized distributed damping can be investigated, based on
an incorporation of chromium into the waveguides [33]]. Finally, even more topological phases
can be realized and investigated by using discrete-time quantum walks [125]].

The presented concept of photochromic switching can be applied on many different plasmonic
systems:

In terms of Fano resonances, the already explained system of photochromic metallic photonic
crystals can be improved by introducing a photochromic material obtaining a higher conversion
efficiency. This would then lead to a filter of narrow band width and an improved switching
efficiency.

Furthermore, one could make use of the localized switching of photochromic films. This concept
could be applied for example on plasmonic Yagi Uda antennas [[126]. If, initially, the directors
and reflectors of such antenna are covered by a photochromic material being in an absorptive
state, while the material around the emitter is in a transparent state, the antenna would act as
simple dipole antenna. In contrast, if the complete layer is in the transparent state, it will act
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as a complete Yagi Uda antenna. Hence, this approach allows to switch the directivity of such
antenna. This can, however, not only achieved by local switching but also by locally destroying
the photochromic layer with an electron beam, since this permanently converts the layer to a
transparent state, as first experiments have approved.

On the basis of the results, presented in this thesis, these pursuing investigations, hence promise
an deeper insight into even more elaborate physical systems.
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