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Zusammenfassung 

Die Prognose der klimatischen Veränderungen in Nordwesteuropa, welche im Vergleich zur 

derzeitigen Situation erhöhte Temperaturen und geringere Niederschläge in den Sommer-

monaten vorhersagt, wird die zukünftige Nahrungsmittelproduktion vor neue Heraus-

forderungen stellen. Vor diesem Hintergrund stellt sich die Frage, welchen Einfluss die 

Stickstoffdüngung auf die Evapotranspiration (ETa) und die agronomische Effizienz der 

Wassernutzung (WUEY) hat. Da aus der Literatur wenig über Trockenstressreaktionen von 

Winterweizen (Triticum aestivum, L.) in temperat humiden Klimaten in Nord-West Europa 

bekannt ist, wurden in den Jahren 2013-2015 Feldversuche mit unterschiedlichem Stickstoff- 

und Wasserangebot am Institut für Pflanzenernährung und Umweltforschung in Dülmen 

durchgeführt. Zur Einstellung der unterschiedlichen Wasserversorgung (voll gewässerte 

Kontrolle, früher Trockenstress, früher und später Trockenstress) wurden Regenabdeckungen 

und Tropfbewässerungssysteme eingesetzt. Eine unterschiedliche N-Versorgung (ungedüngte 

Kontrolle, 120 und 230 kg N ha
-1

) wurde mittels Düngung mit Kalkammonsalpeter (27% N) 

eingestellt. Eine möglichst realistische Berechnung der ETa ist für die Quantifizierung des 

Einflusses der Stickstoffversorgung auf die WUEy von zentraler Bedeutung. Zunächst wurden 

deshalb zwei Berechnungsmethoden für die Abschätzung der ETa nach Methode FAO 56 

verglichen. Die ETa wurde anhand von handspektrometrisch gemessenen Pflanzen-

koeffizienten (Kc-Werten) (NDVI-Ansatz) und auf Grundlage publizierter Kc-Werte und Kc-

Phasenlängen (tabellierter-Ansatz) für nicht Wasser- und Stickstoff-limitierte Weizenbestände 

berechnet. Insgesamt zeigte sich, dass die ETa-Berechnungsmethode nach FAO 56 die 

Wasserverbräuche der Pflanzenbestände sehr realistisch abbildete. Die Daten zeigen 

weiterhin, dass der NDVI-Ansatz im Vergleich mit dem tabellierten-Ansatz eine realistische 

Berechnung der ETa ermöglicht. Tabellierte Werte können lediglich retrospektiv für eine 

Berechnung der ETa herangezogen werden, währenddessen der NDVI-Ansatz auch während 

der Vegetationsperiode zur Abschätzung der ETa genutzt werden kann und wachstums-

beeinflussende Faktoren (Wetter, Nährstoffmangel, Krankheiten) berücksichtigt. Deshalb 

erfolgte die Berechnung der ETa für Stickstoff- und Wasser-limitierte Prüfglieder mit dem 

NDVI-Ansatz. Bei ausreichendem Wasserangebot erhöhte die Stickstoffdüngung den Korn-

ertrag vergleichsweise stärker als die ETa . Der positive Effekt der Stickstoffdüngung auf die 

WUEy  beruhte hauptsächlich auf einer relativen Verminderung der Bodenevaporation. Dieser 

Effekt war unter Bedingungen ausreichender Wasserversorgung ausgeprägter als unter 

Wasser-limitierten Bedingungen. Die Ergebnisse zeigen, dass mittels des NDVI-Ansatzes 

nicht nur die ETa, sondern auch das Ausmaß der Trockenstress bedingten Ertragsreduktion 

(Ky-Wert) quantifiziert werden konnten. Weiterhin stellte sich heraus, dass auch ein 

Trockenstress während des Schossens den Ertrag negativ beeinflusste. Die Ergebnisse dieser 

Arbeit zeigten, dass eine hohe N-Versorgung im Vergleich zu einer moderaten N-Düngung 

unter frühem und andauernden Trockenstress zu höheren Kornerträgen führte und gleichzeitig 

eine höhere ETa verursachte, was in einer höheren WUEy resultierte. Wir schreiben den 

positiven N-Effekt den nahezu wassergesättigten Böden zu Vegetationsbeginn nach Winter 

zu.  
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Summary 

The predicted climate change for North West Europe, which will be characterized by higher 

temperatures and lower rainfall during the summer months, will challenge future food 

production. Against this background, the question is how nitrogen supply influences the 

evapotranspiration (ETa) and the agronomic water-use-efficiency (WUEy). Literature 

regarding drought stress reactions of winter wheat (Triticum aestivum, L.) grown in the 

temperate humid climate of North West Europe is scarce. Because of this a field trial with 

variable nitrogen and water supply was conducted during 2013-2015 at the Research Center 

for Crop Nutrition Hanninghof in Dülmen. To induce different water regimes (fully watered 

control, early drought, early and late drought) rain-out-shelter and drip irrigation systems 

were installed. Different N-supply treatments (unfertilized control, 120 and 230 kg N ha
-1

) 

were induced using calcium ammonium nitrate (27% N). A realistic calculation of ETa is the 

key for the quantification of the impact of nitrogen on WUEy. Therefore two different 

calculation approaches for estimating ETa according to the FAO 56 method were compared. 

ETa was calculated based on handspectrometer measurements converted to crop coefficients 

(Kc-values) (NDVI-approach) and on the other hand based on published Kc-values and Kc 

duration periods (tabulated-approach) for plots that were not water and nitrogen limited. In 

general, it could be concluded that the method for estimating ETa according to FAO 56 

showed realistic results. Furthermore, the data showed that the NDVI-approach, in contrast to 

the tabulated-approach, allowed a realistic calculation of ETa. Tabulated values could only be 

used retrospectively for estimating ETa, whereas the NDVI-approach can take growth 

influencing parameters (weather, pests, lack of nutrients) into account and can therefore be 

used to quantify ETa during the vegetation season. For this reason we used the NDVI-

approach to calculate the ETa for plots that were limited in their water and nitrogen supply. If 

water was not limited a higher nitrogen rate increased grain yields of wheat more than ETa. 

The positive effect of nitrogen fertilization on WUEy was mainly caused by a reduction of soil 

evaporation. This effect was more pronounced under wet than under drought conditions. The 

results of this study also showed that the NDVI-approach can be used not only to quantify ETa 

but also to measure yield reductions caused by drought stress (Ky-value) during the vegetation 

period. Drought stress during booting also caused grain yield reductions. This study showed 

that a high N-supply compared to moderate N-supply under early drought and continuous 

drought conditions increased both grain yields and ETa in a more water use efficient way. We 

refer this positive N-effect to the fully water saturated soils at the start of the vegetation 

period in spring. 
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General Introduction 

Irrigated agriculture is the dominant user of global freshwater resources and improvements in 

water management are considered key to simultaneously enhance food production and to 

secure regional water resources (Molden, 2007; Siebert et al., 2010). Irrigation management 

requires reliable estimates of crop water demand, which have been extensively developed 

during the last five decades (e.g. Doorenbos and Pruitt, 1971; Allen et al., 2006). About 70% 

of global freshwater use is allocated to irrigation (Siebert et al., 2010) and increasing food 

demand puts further pressure on land and water resources (FAO, 2011; UNEP, 2014). An 

analysis of present and future crop water use in consideration of environmental water demand 

illustrated the importance of improved water management to enhance food production and 

secure both food security and regional water resources (Molden et al., 2007). Freshwater 

resources are threatened by nutrient and pesticide loads from agriculture as well as increasing 

domestic and industrial freshwater demand in some world regions. Freshwater availability per 

capita and year has decreased in e.g. South-East Asia and North Africa (Reuveny, 2007; Mc 

Donald et al., 2011). In future, water will become increasingly scarce particularly in semi-arid 

regions. Improvements in agricultural water management are necessary to enhance 

agricultural productivity in order to meet food demands of the growing world population. The 

International Water Management Institute (IWMI, 2007) stated that there will be enough land, 

water and human capacity to produce enough food for a growing population, if water use in 

agriculture is improved. The water use efficiency (WUE) has therefore become one of the 

most important indices for benchmarking optimal water management practices.  

To quantify the water use efficiency by plants, it is important to have a realistic estimation of 

the amount of water used by the plant. Estimates of evapotranspiration (ET) presented in the 

FAO 56 guidelines (Allen et al., 2006) rely on input data for the calculation of crop water use. 

Input data are meteorological information, crop-specific coefficients (Kc values), which are 

multipliers of crop water use relative to the reference ET, lengths of crop growth stages, and 

plant-available soil water (PASW) (Pereira et al., 2015). Kc values and crop-specific 

information about duration of growth stages are available in several sources (e.g., Allen et al., 

2006; Stetson and Mecham, 2011), but these data are strongly focused on climate zones with 

regularly applied irrigation. The duration of crop growth stages for winter wheat in a 

temperate humid climate is reported by Fischer et al. (2000). However, estimates of stage 

length are relative to the final harvest date, allowing stage length prediction only in the 
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retrospective mode and, therefore, not straightforward applicable for irrigation purposes. 

Furthermore, these data are not variety specific and adjustments are necessary particularly for 

temperate climates, where crop development is highly variable due to interannual variability 

of temperatures during the pre- and post-winter growth period.  

Local adjustments for stage duration and basal crop coefficients are expected to be more 

suitable for estimating ET and crop water demand than the use of published data for stage 

duration and Kc values (Bausch, 1995; Allen et al., 2011; Peireira et al., 2015). Such local 

adjustments are usually based on site-specific measurements or observations of crop growth 

and, consequently, vegetation index (VI) based approaches are increasingly recommended for 

irrigation management. The Normalized Difference Vegetation Index (NDVI) is one of the 

most commonly used VI (Pinter et al., 2003) and several studies showed good correlations 

between the NDVI and plant growth parameters in wheat, e.g. biomass (Pinter et al., 2003), 

fraction of soil covered by plants (Er-Raki et al., 2007) and leaf area (Duchemin et al., 2006; 

Chattaraj et al., 2013). The documented advantages of using VI-based crop coefficients are 

the ability to account for variations in plant growth due to local weather conditions, site-

specific differences in sowing dates and seed densities, cultivars, pests and nutrient supply 

(Tasumi and Allen, 2007; Pôças et al., 2015; Hunsaker et al., 2007). Estimates of crop 

coefficients derived from NDVI are possible due to the generally close relationship between 

vegetation cover and crop canopy size. Nutrient deficiency has a pronounced effect on crop 

canopy development and growth rate. In this case, optically derived information about canopy 

cover is a suitable option to calculate crop water use as tabulated data of stage length and crop 

coefficients implicitly assume that crops grow without nutrient limitations (Allen et al., 2011). 

Hunsaker et al. (2005) demonstrated that remotely-sensed NDVI values enable the 

determination of real-time Kcb and crop evapotranspiration of wheat. Furthermore these 

authors illustrated that length of growth stages as well as the crop coefficient during the mid-

stage were affected by different N management of wheat and that NDVI-derived crop 

coefficients were more suitable than tabulated values for estimating ET (Hunsaker et al., 

2007).  

Climate change scenarios indicate increasing occurrence and intensity of droughts (Sheffield 

and Wood, 2008). Lehner et al. (2006) analyzed drought scenarios for South Eastern Europe 

from the last century and projected in a model study that in the year 2070 severe drought 

events, occurring actually once per century, will happen every forty years. Water scarcity is a 
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regional to local event which is highly affected by soil type, soil profile depth and cropping 

pattern (Ehlers and Goss, 2003; Rickmann and Sourell, 2014). This underlines the necessity to 

predict water demand and water deficit at a site- and crop specific level. Water stress is 

expected to decrease yield and farm management of field sites regularly responds by adjusting 

fertilizer amount accordingly to the expected yield decrease. A phenomenon known as 

‘Haying-off’ has been illustrated in semiarid environments showing that grain yield is 

negatively influenced by excessive N supply. High N rates in that case caused an increase in 

shoot biomass during the vegetative growth phase and resulted in a depletion of soil water 

reserves during the grain filling period and related yield decreases (van Herwaarden et al., 

1998). As WUE is related to total crop water use, which is sum of evaporation and 

transpiration, several management options, such as the reduction of non-productive loss 

through soil evaporation, avoidance of runoff and drainage exist (Gregory, 2000). Application 

of fertilizer, provided that it allows a more rapid growth of the canopy that shades the soil 

surface, thereby reduces the proportion of the total water that is evaporated (Cooper et al., 

1983). Options to increase yield and WUE by integrated water and nitrogen management are 

indicated by several studies (Eck, 1988; Musick et al., 1994; Hussain and Jaloud, 1995; 

Schjoerring et al., 1995; Oweis et al., 1998; Lenka et al., 2009).  

Chapter 1 aims to assess the suitability of using NDVI-based estimates of ET compared to 

tabulated values of Kc and stage length. To compare both approaches, post-winter growth of 

well-watered and fertilized winter wheat (Triticum aestivum, L.) was closely monitored and 

predicted ET was used to calculate a daily field water balance (FWB). The calculated FWB of 

both approaches was compared with the measured FWB during 2014 and 2015. In order to 

quantify the effect of variation in stage length and Kc values on ET estimates, a sensitivity 

analysis was finally performed. 

To quantify the effects of N fertilizer supply on evapotranspiration (ET) of winter wheat, 

three nitrogen rates (N0, N120 and N230) were applied during a 2 year field experiment. Plots 

were watered when required to avoid water limitations. The Normalized Difference 

Vegetation Index (NDVI) was used to derive crop coefficients which were used to calculate 

ET with the dual-coefficient approach. The extent to which N supply modified bare soil 

evaporation (E), transpiration (Tr), ET, grain yield, aboveground biomass and harvest index 

(HI) was tested and summarized in chapter 2.  



 

20 

The aim of of chapter 3 was i) to quantify the extent of different N-rates on grain yield under 

conditions of drought in a temperate humid climate in NW Europe ii) to quantify differences 

in water-use-efficiency under varying nitrogen supply of winter wheat grown under climates 

with fully saturated soils at vegetation start after winter, compared to plants grown under arid 

environment. Therefore we induced drought spells with rain-out-shelters on different 

fertilized plots (N120, N230) and compared them with treatments (N120, N230) that were not 

limited in water supply.  
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Abstract 

According to a higher food demand under a projected climate change in the future, a more 

efficient use of freshwater in agriculture is required. This could be reached by maximizing the 

water use efficiency. Theirfore a precise estimate of crop water (ETa) use is necessary, not at 

least to ensure a sufficient water requirement. Information about ETa are needed during the 

growth period to support agronomic water use efficiency (WUEy) relevant crop management 

options (e.g. fertilization, irrigation). During the 2013/14 and 2014/15 growing seasons at 

Duelmen, Germany, field trials with winter wheat (Triticum aestivum) were established under 

locally recommended nitrogen supply (230 kg N ha
-1

), while a sufficient water supply was 

ensured by drip irrigation. Crop growth dynamics were measured by handspectrometer and 

canopy analyzer, derived phonological stages were documented. ETa was calculated in two 

different ways: Firstly based on published Crop Coefficients (Kc) and stage durations (FA-

approach) and secondly based on remote sensed Kc-values (NDVI-approach). A comparison 

of measured (FDR-techniques) and estimated field water balance (FWB), based on the two 

calculated ETa’s, showed a good correlation (RMSE 0.7, 0.6 (FA-approach), 0.6, 0.8 (NDVI-

approach). Based on calculated ETa’s (403 mm, 430 mm (FA) and 377 mm, 463 mm (NDVI) 

in 2014 and 2015, respectively) and derived grain yields (10.4 and 10.5 t ha
-1

 in 2014 and 

2015, respectively) the corresponding WUEy ranged between 1.93–2.76 g/l. The results 

indicate that an approach to estimate ETa (NDVI) which can be used during the growing 

season, compared to estimates of ETa based on published values (FA) which can only be used 

retrospectively, predicts ETa in a sufficient way. A remote sensing approach also provides the 
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potential to calculate ETa of plants grown under suboptimal conditions (e.g. lack of nutrients), 

while a calculation with published values is not recommended.  

1. Introduction 

Irrigated agriculture is the dominant user of global freshwater resources and improvements in 

water management are considered key to simultaneously enhance food production and to 

secure regional water resources (Molden, 2007; Siebert et al. 2010). Irrigation management 

requires reliable estimates of crop water demand, which have been extensively developed 

during the last five decades (e.g., Doorenbos and Pruitt, 1977; Allen et al., 2006). Estimates of 

evapotranspiration (ET) presented in the FAO 56 guidelines (Allen et al., 2006) rely on input 

data for the calculation of crop water use. Input data are meteorological information, crop-

specific coefficients (Kc values), which are multipliers of crop water use relative to the 

reference ET, lengths of crop growth stages, and plant-available soil water (PASW) (Pereira 

et al., 2015). Kc values and crop-specific information about duration of growth stages are 

available in several sources (e.g., Allen et al., 2006; Stetson and Mecham, 2011), but these 

data are strongly focused on climate zones with regularly applied irrigation. The duration of 

crop growth stages for winter wheat in a temperate humid climate is reported by Fischer et al. 

(2000). However, estimates of stage length are relative to the final harvest date, allowing 

stage length prediction only in the retrospective mode and, therefore, not straightforward 

applicable for irrigation purposes. Furthermore, these data are not variety specific and 

adjustments are necessary particularly for temperate climates, where crop development is 

highly variable due to interannual variability of temperatures during the pre- and post-winter 

growth period.  

Local adjustments for stage duration and basal crop coefficients are expected to be more 

suitable for estimating ET and crop water demand than the use of published data for stage 

duration and Kc values (Bausch, 1995; Allen et al., 2011; Peireira et al., 2015). Such local 

adjustments are usually based on site-specific measurements or observations of crop growth 

and, consequently, vegetation index (VI) based approaches are increasingly recommended for 

irrigation management. The documented advantages of using VI-based crop coefficients are 

the ability to account for variations in plant growth due to local weather conditions, site-

specific differences in sowing dates and seed densities, cultivars, pests and nutrient supply 

(Tasumi and Allen, 2007; Pôças et al., 2015; Hunsaker et al., 2007). The Normalized 
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Difference Vegetation Index (NDVI) is one of the most commonly used VI (Pinter et al., 

2003) and several studies showed good correlations between the NDVI and plant growth 

parameters in wheat, e.g. biomass (Pinter et al., 2003), fraction of soil covered by plants (Er-

Raki et al., 2007) and leaf area (Duchemin et al., 2006; Chattaraj et al., 2013).  

This study aims to assess the suitability of using NDVI-based estimates of ET compared to 

tabulated values of Kc and stage length. To compare both approaches, post-winter growth of 

well-watered and fertilized winter wheat (Triticum aestivum, L.) was closely monitored and 

predicted ET was used to calculate a daily field water balance (FWB). The calculated FWB of 

both approaches was compared with the measured FWB in a 2-years field study. It was 

speculated that the NDVI-based estimate of ETa was more realistic than estimates based on 

tabulated data. In order to quantify the effect of variation in stage length and Kc values on ET 

estimates, a sensitivity analysis was finally performed. 

2. Materials and methods 

The study was carried out on the experimental farm Hanninghof, Research Center for Crop 

Nutrition Hanninghof (IPU), Duelmen, North-Rhine Westphalia, Germany (51° 50` 22`` N 

latitude, 7° 15`18.5`` E longitude). Local average annual rainfall and temperature (1969-2012) 

are 888 mm and 9.9 °C, respectively. The post-winter growth period of winter wheat usually 

starts in March and wheat is harvested at the end of July to mid-August. During this period, 

rainfall is quite evenly distributed with April being the driest and July being the wettest 

months (Table 1). Temperatures and ETo regularly increase from March to July. 

The two experimental sites were 300 m apart from each other and had a similar soil texture 

(0-100 cm soil depth, n=4) with 86% (±2%) sand, 7% (±3%) silt and 7% (±1%) clay. Table 2 

different site coefficients. The soil type is a Stagnosol brown earth with a usable field capacity 

(0-80 cm soil depth) of 128 l m
-3

 (Mueller, 2015). 

The bread wheat variety Inspiration (Breun KG, Herzogenaurach, Germany) was drilled at 

4 cm depth on Oct. 7 in 2013 and Oct 22 in 2014 with a row spacing of 11.5 cm and 330 

seeds m
-2

. All plots received the same doses of Patentkali (25% K, 6% Mg, 17% S), Triple-

super-phosphate (20% P) and YaraVita Gramitel (150 g l
-1

 Mg, 50 g l
-1

 Cu, 150 g l
-1

 Mn and 

80 g l
-1

 Zn) to ensure a sufficient supply of plants with P (51.5 kg ha
-1

), K (112.5 kg ha
-1

), Mg 



 

26 

(21.8 kg ha
-1

), S (71 kg ha
-1

), B (0.38 kg ha
-1

), Fe (0.9 kg ha
-1

), Mn and Zn (0.05 kg ha
-1

). 

Nitrogen fertilizer (CAN, 27% N) was supplied at rates which established plant-available N 

amounts of 230 kg N ha
-1 

in three split applications (100/90/40) at post-winter vegetation start 

(March 7 in 2014 and March 5 on 2015), at BBCH 31 (April 14 in 2014 and April 27 in 2015) 

and at BBCH 39 (May 8 in 2014 and May 26 in 2015). Directly plant-available mineral soil 

nitrogen (NO3-N and NH4-N extracted with 0.0125 M CaCl2) at the post-winter vegetation 

start (33 and 30 kg N ha
-1

 in 2014 and 2015, respectively, in 0-90 cm soil depth) was 

considered at the first N dressing. Weed and pest control were done according to best practice. 

Table 1  

Growing season rainfall and supplementary irrigation, average temperature and average daily reference 

evapotranspiration (ETO) in 2014 and 2015, and long-term average (LTA). 

 Rainfall (Irrigation)  

(mm) 

Average temperature 

(°C) 

Average daily ETO 

(mm) 

 2014 2015 LTA
1
 2014 2015 LTA

1
 2014 2015 LTA

2
 

Mar. 20 (-) 78 (-) 68 ± 50 8.8 5.9 5.5 ± 2.0 2.6 2.2 2.1 ± 0.9 

Apr. 33 (78) 40 (30) 57 ± 51 12.2 8.8 9.2 ± 1.8 3.1 2.9 3.6 ± 1.1 

May 109 (72) 50 (72) 70 ± 48 12.6 12.2 13.8 ± 2.0 3.5 3.5 4.6 ± 1.9 

Jun. 91 (90) 46 (96) 80 ± 46 16.3 15.5 16.6 ± 1.6 5.1 5.0 5.3± 1.8 

Jul. 134 (-) 95 (12) 86 ± 50 20.2 19.1 18.5 ± 2.2 5.3 5.1 5.3 ± 1.9 

Aug. 106 (-) 173 (-) 80 ± 52 16.5 19.4 18.2 ± 1.8 3.8 3.8 4.5 ± 1.4 

Total 493 (240)  482 (210) 441 ± 50 14.4 13.4  13.6 ± 1.9 3.9 3.8 4.2 ± 1.5 

1
 Weather station data (1969 – 2012) at Duelmen, IPU 

2
 Weather station data (2008 – 2015) at Duelmen, IPU 

The plots were located in a two-factorial split-plot design with four replicates with water as 

the main treatment factor and nitrogen as sub-factor. In this paper we present results of 

irrigated plots supplied with sufficient N. Only these plots (but not the water-or N-limited 

treatments) were suitable for a comparison of the dual-coefficient approach of ET estimation 

with either tabulated or measured basal crop coefficients (Kcb values). The size of the plots 

was 3 x 3 m with additionally 0.5 m border lines. Drip irrigation tubes (Netafim Ltd., 

Hatzerim, Israel) were installed in every second sowing row. Drippers were placed at a 

distance of 40 cm apart and supplied with 6 l m
-2 

water per hour with a minimum operational 

water pressure of 0.08 MPa. The water deficit was calculated from the estimated daily crop 

water use according to FAO 56 (Allen et al., 2006). The water deficit was compensated by 
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irrigation (see Table 1 for amount of irrigation water applied). Notably, these high irrigation 

volumes are not representative for farm conditions, but were selected in order to avoid any 

water stress throughout the post-winter growth period. 

The field water balance (FWB) was calculated according to FAO 56 (Allen et al., 2006) with 

the parameters listed in Table 2. Reference ET (ETo) was calculated from climate data 

collected at an on-field weather station (Pessl Instruments GmbH, Weiz, Austria):  

ETo = 
0.408 ∗ ∆ ∗ (Rn – G)+ γ∗ 

900

(T +273)
 ∗ u2∗vpd

∆ ∗ γ ∗ (1+0.34∗ u2)
 (1), 

where Rn is the net radiation at the crop surface (MJ m
-2 

d
-1

), G is soil heat flux (MJm
-2 

d
-1

); T 

and u2 are air temperature (°C) and wind speed (m s
-1

) at 2 m height; vpd is the vapour 

pressure deficit (kPa);  is the psychometric constant; the latent vapor heat; and ∆ the slope 

of vapour pressure deficit. 

Table 2  

Parameters used to calculate ETa of winter wheat in 2014 and 2015 according to the FAO 56 approach (Allen 

et al., 2006). Data were either measured or taken from literature.  

Parameter Unit Value Source 

Base temperature  °C 0 Ewert 1996 

Kcb max dim.less 1.15 Allen et al., 2006 

Plant height to vegetation start  m 0.05 measured 

Plant height during initial stage  m 0.1 measured 

Final plant height m 0.9 measured 

Rooting depth at vegetation start after winter  m 0.3 measured 

Maximum root depth in 2014, 2015 m 0.75, 0.9 measured 

Field capacity in 2014 and 2015 Vol. % 23 Mueller et al., 2015  

Water at wilting point in 2014, 2015 Vol. % 13,10 Mueller et al., 2015 

Soil evaporations depth m 0.15 Allen et al., 2006 

Uncovered soil fraction at vegetation start % / 100 0.95 Allen et al., 2006 

Uncovered soil fraction at end of stem elongation  % / 100 0.05 Allen et al., 2006 

Evaporations reduction factor  dim.less 0.55 Allen et al., 2006 

Crop evapotranspiration (ETa) was calculated from ETo multiplied by a basal crop coefficient 

(Kcb) and a soil evaporation coefficient (Ke): 
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ETa = ETo * (Kcb + Ke) (2) 

We compared two different approaches of estimating basal crop coefficients (Kcb) and the 

lengths of crop developmental stages. On the one hand, we used a combined Fischer-Allen 

approach (FA approach) with stage duration of winter wheat in humid temperate climates 

taken from Fischer et al. (2000) who recommended calculating post-winter stage lengths 

retrospectively as percentages of the whole post-winter growth period. The initial, 

developmental, mid- and late-growth stages were, according to Fischer et al. (2000), assumed 

to take 10%, 30%, 35% and 25% of the entire post-winter growth period, respectively. Kcb 

values for the initial, mid- and end-phase of winter wheat were taken from Allen et al. (2006) 

and increase and decrease for Kcb values during the developmental and late stage were 

linearly approximated. On the other hand, Kcb values were derived from NDVI measurements 

according to a modified approach of Er-Raki et al. (2007):  

Kcb = 1.15 [1 − (
NDVImax−NDVI

NDVImax−NDVImin
) ] (3). 

In contradiction to Er-Raki et al. (2007) who used 1.07 as Kcb,max for durum wheat in a 

semiarid climate of Morocco we used a Kcb,max of 1.15 for winter wheat (Allen et al., 2006). 

Er-Raki et al. (2007) used an exponent, which was derived from experimental analyses of the 

relationships between NDVI and LAI and ETa/ETo and LAI (see Duchemin et al., 2006 for 

further details). This exponent was not used in this study to quantify the relationship between 

LAI and ETa/ETo as lysimeter studies are rarely available (Kang et al., 2003). NDVImax and 

the NDVImin were the maximal and minimal measured NDVI-values during the growing 

period. We took an initial Kcb-value of 0.15 (Allen et al., 2006) at the vegetation start (DOY 

70 in 2014 and DOY 65 in 2015) and integrated it linearly until the first Kcb-values were 

derived from the NDVI-measurements (DOY 83 in 2014 and DOY 69 in 2015). The NDVI 

was measured at least weekly with a MMS1-handheld spectrometer (tec5 AG, Oberursel, 

Germany) in four replicates per plot with a perpendicular view angle. Measurements were 

conducted at a distance of approximately 1.8 m from canopy height with a minimum solar 

altitude of 35°. To consider possible shading effects measurements were conducted from each 

of the four cardinal directions of the plot corners and the four data were pooled. The 

spectrometer measured wavelengths (R) from 400 nm to 1000 nm in 10 nm increments. The 

NDVI was calculated according to Rouse et al. (1974):  



 

29 

NDVI = (R 800-R 670) / (R 800 + R 670) (4) 

The leaf area was non-destructively measured almost weekly during the post-winter growth 

period with a Sun Scan SS1 (Delta-T Devices Ltd., Cambridge, Great Britain). In order to 

check the validity of Sun Scan SS1 based LAI estimates, 31 wheat samples from 0.5 m
2
 

ground surface were harvested during the growth period from BBCH 23 to BBCH 39 (DOY 

65-140 in 2015, DOY 78-112 in 2014) and aboveground samples were separated into leaves 

and stems. The leaf area meter LI3000 A (LI-COR®, Lincoln, Nebraska USA) was used to 

measure the leaf area of the plant samples.  

Kcb values of both approaches (FA or NDVI), were daily adjusted to wind speed at 2 m height 

(u2), RH and plant height according to Eq. (5).  

Kcbadj. = Kcb + [ 0.04 (u2-2)-0.004 (RHmin-45) ] (h/3)
0.3

 (5) 

RHmin is the daily minimum relative humidity (%) and h is the plant height (m).  

Ke in the FA-approach was calculated according to FAO 56 (Allen et al., 2006): 

Ke = Kr (Kcmax-Kcb) ≤ few Kc max (6), 

Kcmax is the maximum value of Kc following rainfall or irrigation. Kr is an evaporation 

reduction coefficient depending on the cumulative depth of water evaporated from the topsoil. 

Kr was calculated according to Eq. 74 of the FAO 56 guidelines (Allen et al., 2006) for stage 

1, as plots were frequently wetted by rainfall or irrigation (≈ 2.5 days) in order to avoid any 

water limitations. few is the fraction of soil that is exposed to evaporation. 

Ke in the NDVI-approach was calculated according to Er-Raki et al. (2007): 

Ke = 0.9 * (1-fc) (7 ) 

The value 0.9 was determined according to Fig. 29 of FAO 56 (Allen et al., 2006) based on 

the observed frequency of irrigation and rainfall. From the post-winter vegetation start until 

the NDVImax (DOY 70-113 in 2014 and DOY 66-128 in 2015) 20 and 27 irrigation/rainfall 

events of >0.2*ETO occurred (for relevant rainfall events, see Allen et al. 2006, p. 153). This 

was equivalent to rainfall events every 2.5 days. With an average ETO of 3.3 mm/day during 
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the growing season this corresponds to a coefficient of 0.9. Fraction of soil covered by plants 

is determined as fc. 

Vegetation cover (fc) was calculated according to Er-Raki et al. (2007): 

fc = 1.18 * (NDVI-NDVImin) (8) 

Volumetric soil moisture content was measured with FDR soil moisture probes (Sentek®, 

Stepney, Australia). In the center of two of the four experimental plots, tubes were installed 

and the soil water content hourly logged at five soil depths (10, 30, 50 70, 90 cm) from DOY 

69 in 2014 and 2015 (BBCH 21) to harvest. The measured FWB was compared with 

estimates of the FWB derived from the FA and NDVI approach. Relevant parameters of these 

FAO 56 calculations are summarized in Table 2. The initial values of the calculated FWB at 

DOY 69 in 2014 and DOY 69 in 2015 were matched with the measured value of the FWB on 

those days (183 l m
-3 

and 186 l m
-3

). 

A core area of 4 m
2 

was harvested
 
from each plot on July 2 and August 2 in 2014 and 2015, 

respectively and grain yield determined after drying samples at 60°C to constant weight. The 

grain yield was reported with 14% residual water content. The agronomic water-use 

efficiency was calculated from the grain yield (with 0% residual water content) and 

cumulative ET from post-winter vegetation start to maturity. Biomass water-use-efficiency 

was calculated from harvested biomass (0% residual water content) and cumulative ET from 

post-winter vegetation start to maturity. 

The relationship between non-destructive and destructive LAI measurements was analyzed 

with linear regression and the relationship between the LAI and the NDVI with a quadratic-

linear plateau function. Regression analyses were carried out with R (R, Core Team, 2015). 

The suitability of predicted compared to measured dynamics of FWB was tested with root 

mean square error (RMSE) and efficiency (Eff.) (Chai and Draxler, 2014; Nash and Sutcliffe, 

2010). RSME quantifies the variance of error, while Eff. is a normalized statistic determining 

the relative magnitude of the residual variance compared to the measured data variance. The 

target value for Eff. is 1.0, while zero or negative values indicate that even the arithmetic 

mean of all observations is as good predictor as the model. 
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3. Results 

According to the modified concept of Er-Raki et al. (2007), the start of the mid-stage with an 

Kcb value of 1.15 is reached at canopy closure (see Eq. 3). NDVI values at canopy closure 

were 0.95 in 2014 and 2015. Pooled over both years, the corresponding LAI, derived from a 

quadratic-linear plateau regression (Fig. 1a), was 2.61. The LAI derived from Sun Scan SS1 

and leaf area meter estimates from destructive sampling were highly positively correlated 

(Fig. 1b) but exhibited an off-set with lower LAI estimates of the non-destructive method 

(SunScan SS1) compared to the destructive method. 

 

Fig. 1. (a) Relationship between measured leaf area index (LAI) and NDVI in 2014 (black circles) and 2015 

(grey circles) derived from plots with no water limitation and supplied with 230 kg N ha
-1

. (b) Regression 

between LAI derived from destructive sampling (Leaf Area Meter) and non-destructive field measurements (Sun 

Scan SS1). 1:1 line broken. 
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Fig. 2. Measured Normalized Difference Vegetation Index (NDVI) in 2014 and 2015 (a) based on Day of Year 

(DOY) and (b) based on Growing Degree Days (GDD; °C). Post-winter seasonal dynamics of Kcb values 

according to the FA approach (Kcb FA) and with Kcb values derived from measured NDVI (Kcb NDVI) in (c) 

2014 and (d) 2015.  

Seasonal dynamics of NDVI, expressed on a DOY basis, indicated an earlier crop 

development and beginning of senescence in 2014 compare to 2015 (Fig. 2a), while the 

dynamics were more synchronal when expressed on a GDD basis (Fig. 2b). For example 

canopy closure was reached at DOY 102 in 2014 and 10 days later (DOY 112) in 2015, while 

a GDD of 1185°C at canopy closure in 2015 was very similar to that in 2014 (1244 GDD). 

Compared with the FA approach, which uses fixed values of stage lengths and tabulated Kcb 

values with linear extrapolations during developmental and senescence stage, Kcb values 

derived from NDVI measurements reached the mid-stage substantially earlier and exhibited a 

steeper declining slope towards maturity (Fig. 2c,d). These differences in Kcb estimate 

between the FA and NDVI approach, however, did not result in substantial differences in ETa 

(Fig. 3). Comparing cumulative ETa during relevant phenological growth stages of winter 

wheat, NDVI-based estimates of ETa were slightly higher than FA-based estimates during the 

early post-winter growth stage (vegetation start until begin booting) in 2014 and 2015. FA-

based estimates during the late growth stages (ripening) were higher in both years compared 
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to NDVI-based estimates, while for other growth stages no (2014) or small differences (2015) 

occurred. 

Estimated cumulative transpiration of the FA-approach was in both years only 12 mm and 

31 mm lower compared to the NDVI-approach (Table 3) and estimated ETa of the FA 

approach was 26 mm higher in 2014 and 33 mm lower in 2015 than with the NDVI approach. 

 

Fig. 3. Growth-stage specific estimates of ETa and Kcb values derived from measured NDVI and according to the 

FA approach in 2014 (a) and 2015 (b). The x-axis indicates phenological stages: veg start: post winter vegetation 

start, begin of booting (31), end of booting (39), begin flowering (61), milk stage (75) and maturity (99).  

Estimated evaporation of the NDVI approach was higher in 2015 compared to 2014. Both 

approaches estimated substantially higher drainage in 2014 compared to 2015. Almost half of 

the drainage could be explained by heavy rainfall events (RF) in 2014: 59 mm RF (DOY 128-

135), 30 mm RF (DOY 143) and 35 mm RF (DOY 146-148) resulted in drainage estimates of 

38 mm, 12 mm and 20 mm, respectively. Agronomic (WUEY) and biomass water use 

efficiencies (WUEB) were similar between both years for the FA and NDVI approaches. 
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Grain yields were nearly almost the same in both years, while in 2015 the straw yield was 

0.6 t ha
-1

 higher than in 2014. 

The FWB of irrigated plots exhibited a similar dynamic with increases in water availability 

from post-winter vegetation start until a GDD of 1.500°C and minor fluctuations (between 

190 and 230 mm) of the FWB during the rest of the season (Fig. 4) in both years. Suitability 

of predicting FWB with the FA and NDVI approaches depended on the growth stages 

considered (Table 4). Both approaches were able to predict the dynamics of FWB during the 

early post-winter growth period, while, as indicated by goodness-of-fit parameter Eff, the 

dynamics of FWB were not well predicted during booting (growth stage 31-39). The water 

demand of wheat from end of booting to flowering (growth stage 39-61) was well predicted 

by both approaches in 2014, but not in 2015. Taking Eff as an indicator, the NDVI approach 

tended to be a better predictor of ET than the FA approach in seven of the ten growth periods 

of 2014 and 2015 (Table 4). 

Table 3  

NDVI and FA-approach based estimates of cumulative transpiration (T), evaporation (E), evapotranspiration 

(ETa), and drainage (D) during the growth periods 2014 (DOY 70-205) and 2015 (DOY 65-214) and grain yield 

(Yield; 14% residual water content), shoot biomass (Biomass; 0% residual water content) and agronomic 

(WUEY) and biomass water-use efficiencies (WUEB). WUE was calculated with yield and total aboveground 

biomass with 0% residual water content. WUEY,w and WUEB,w are weighted by average VPD during the post-

winter growth period.  

 2014 2015 

 NDVI ± FA NDVI ± FA 

T [mm] 339 ± 6.8 327 381 ± 5.4 350 

E [mm] 38 ± 0.8 76 82 ± 2.4 80 

ETa [mm] 377 ± 6.1 403 463 ± 3.1 430 

D [mm] 197 ± 6.3 175 62 ± 2.9 60 

WUEy [g l
-1

] 2.76 ± 0.1 2.22 1.93 ± 0.2 2.08 

WUEB [g l
-1

] 4.83 ± 0.2 4.52 3.94 ± 0.3 4.33 

WUEy,w [g kPa l
-1

] 1.42 ± 0.1 1.46 1.03 ± 0.1 1.11 

WUEB,w [g kPa l
-1

] 2.90 ± 0.1 2.98 2.09 ± 0.1 2.30 

Yield [t ha
-1

] 10.4 ± 0.4 10.5 ± 0.5 

Biomass [t ha
-1

] 18.2 ± 0.7 18.8 ± 1.4 
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Fig. 4. Measured and simulated (FA and NDVI approach) field water balance (FWB) during the post-winter 

growth periods of 2014 (a) and 2015 (b). Seasonal dynamics are expressed on the growing-degree days (GDD, 

°C) basis. 

Table 4  

Root mean square error (RMSE; mm day
-1

) and efficiency (Eff.; dim.less) of simulated (NDVI-Approach and 

FA-Approach) soil water content in 2014 and 2015 during several growth stages (BBCH code) of winter wheat. 

For BBCH codes, see Fig. 3. 

Growth 

period 

Statistical 

parameter 

2014 2015 

NDVI FA NDVI FA 

V.S.
1
 – 31 

RMSE 0.7 0.7 1.1 1.1 

Eff. 0.96 0.95 0.87 0.79 

31 – 39 
RMSE 1.3 1.3 1.8 1.5 

Eff 0.29 0.28 -0.21 -2.10 

39 – 61 
RMSE 1.6 1.8 2.4 2.3 

Eff. 0.68 0.60 -2.63 -1.15 

61 – 75 
RMSE 2.2 2.5 1.7 1.4 

Eff. 0.40 0.19 -0.60 0.49 

75 – 99 
RMSE 1.4 1.8 1.8 1.2 

Eff. 0.58 0.33 -0.57 0.22 

V.S.
1
 – 99 

RMSE 0.6 0.7 0.8 0.6 

Eff. 0.76 0.67 0.36 0.56 

1
 V.S.: Post-winter vegetation start 

A sensitivity analysis with relative changes of ± 30% for the developmental stage length and 

basal Kc values indicated that cumulative ET estimates were affected to a different extent 

(Fig. 5). 



 

36 

 

Fig. 5. Effect of relative changes (Rel. change) of stage lengths (d1 to d4, days) and basal crop coefficients (Kc1 

to Kc3, dim. less) on estimates of cumulative crop evapotranspiration (ETa, mm) and cumulative transpiration 

illustrated for the FA approach and the climate of 2014. 

Changes of stage length d4 (senescence phase) and Kc3 (mid-stage) affected ETa, while ETa 

was almost unaffected by changes of duration of other stage lengths and basal crop 

coefficients Kc1 and Kc4. Transpiration reacted more sensitively to changes in stage duration 

than ETa. The FA approach inherently assumes a fixed length of total post-winter growth 

period, e.g., a shorter duration of d2 (booting stage) implies a longer duration of d3 (full 

canopy cover). Therefore, shorter duration of phases d1 and d2 increased transpiration 

estimates. Similarly, longer duration of d3 increased transpiration as d4 was proportionally 

shorter. The effects of variation of basal crop coefficients on transpiration were similar to 

those for ETa with relative changes of Kc3 having a relevant impact on transpiration 

estimates. 

4. Discussion 

The FAO56 dual coefficient approach is widely used for irrigation management and estimates 

of crop water use (Allen et al., 2011; Peireira et al., 2015) and local adjustments of stage 
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duration and basal crop coefficients are recommended (Ko et al., 2009; Allen et al., 2011). 

Consequently, site-specific measurements or observations of crop growth are expected to be 

more suitable for estimating ET and crop water demand than the application of published data 

of stage duration and Kc values. In the present study the suitability of estimating ETa using the 

NDVI compared to the use of tabulated Kc values and stage length information (FA approach) 

was tested in well-watered and fertilized winter wheat. 

The basal crop coefficients of the FA and NDVI approach exhibited differences during the 

post-winter growth period (Fig. 2). The NDVI approach resulted in higher Kcb estimates 

during the early growth stage and an extended mid-stage (Fig. 3). These differences in NDVI, 

however, translated into only moderately higher estimates of transpiration compared with the 

FA approach (Table 3). This conclusion of higher transpiration inherently assumes i) that 

NDVI, or potentially other VIs, are reliably monitoring in-situ crop growth and ii) that crop 

growth and transpiration are closely and linearly correlated.  

Information about in-situ crop growth is required for estimating temporal dynamics of ground 

cover (see Eq. 6) and optical methods are increasingly used for this purpose (Lopéz-Urrea 

et al., 2009; Nielsen et al., 2012). A ground cover of 80% is assumed to indicate the transition 

point between the developmental and mid-stage in the FAO56 approach (Allen et al., 2006). 

The most suitable proxy of ground cover for agricultural crops is LAI, which was measured 

destructively and non-destructively (Fig. 1b) and could be predicted by the NDVI as indicated 

by the quadratic-plateau relationship between both parameters (Fig. 1a). We found a plateau 

value of the NDVI 0.93 with a corresponding LAI of 2.61 at the beginning of the plateau-

stage. Non-destructively measured LAI (Fig. 1b) was underestimated compared to the 

destructively measured leaf area by approximately 0.5 as the upward view of the sensor-bar 

did not allow the LAI measurement of wheat plants until a plant height of 0.1 m was reached. 

Due to this, the NDVI-plateau was likely reached at a LAI of around 3.1. This estimate is 

similar to the findings of Duchemin et al. (2006) and Chattaraj et al. (2013), who found the 

NDVI in wheat to saturate when LAI was >3.5. 

In the FAO56 approach, temporal dynamics of ground cover are predicted by linear 

extrapolation between vegetation start (>10% ground cover) to the mid stage (see Table 2), 

while NDVI allows for site-specific consideration of crop growth. This is relevant as the 

growth of winter wheat in temperate-humid climate exhibits a large year-to-year variability 
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due to potential frost damage during winter and variable onset of growth after winter. 

Tabulated data of stage lengths are, therefore, difficult to apply under these conditions as time 

of cardinal events (canopy closure, onset of senescence, maturity) was variable (Fig. 2a) and 

the approach of Fischer et al. (2000) in which fixed portions of the total post-winter growth 

period are allocated to developmental stages cannot be used for irrigation as it relies on 

information about final harvest date. In summary, the NDVI appears as a promising 

monitoring parameter for crop development during the growth period. Furthermore, it gives 

the opportunity to calculate online and not retrospectively like the FA-approach crop water 

use and water demand under non-optimal growth conditions such as water or nutrient stress. 

The assumption of linearity between NDVI and transpiration is based on evidence of linear 

correlations between NDVI and cumulative ET estimates in cross-site analyses as summarized 

in e.g. Glenn et al. (2007). The largest differences between Kcb values of the NDVI and FA 

approach were observed during the post-winter vegetation start and during ripening (Fig. 3). 

However, our sensitivity analysis indicated that changes in Kc1 and Kc4 had only a small 

impact on estimated transpiration (Fig. 5). Changes in crop coefficients, e.g. through pests or 

diseases of leaves or generally reduced growth by a lack of nutrients, is not taken into account 

by the FA-approach in contrast to the NDVI-approach. Er-Raki et al. (2010) showed the 

importance of an accurate estimate of the Kc3 value when analyzing effects of sowing data 

and the development of the vegetation on ET. Satti et al. (2004) showed a 15% change in 

irrigation requirements when changing Kc-values by 10%. Both, ET and T responded 

sensitively to changes in Kcb values during the mid-stage. We found that the Kc3-value had a 

relevant impact on ET and T estimates (Fig. 5). For example, a decrease of 10% in the 

NDVImax (from 0.95 to 0.85) resulted in a decrease of transpiration by 35 mm. From the 

sensitivity analysis it can be concluded that i) reliable information about stage duration 

(ideally derived directly from the NDVI), and ii) estimation of Kc3 (mid stage) are crucial for 

accurate estimation of actual crop water use. 

ET and T reacted sensitively to changes in stage duration (Fig. 5). The lengths of stage 

durations of winter wheat are defined by photoperiod and temperature and can be successfully 

predicted for NW European climates (e.g., Ewert 1996). The use of tabulated data of stage 

lengths (FA approach) is recommended if no site-specific information is available or required 

(such as in national water footprint accounting, e.g. Chapagain et al., 2004), while the NDVI-

based estimates of Kcb do not require stage lengths and are, therefore, closer to year- and site-
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specific crop growth. The post-winter growth of winter wheat is difficult to predict in terms of 

the onset of growth and canopy cover both of which are crucial information for ET estimated 

during the initial growth stage (Kc1). These particular environmental conditions, with mild to 

very cold winter seasons and potential frost damage during spring, renders the application of 

tabulated stage lengths and Kc values and clearly indicated that optical information such as 

NDVI should be preferred.  

Winter wheat is not regularly irrigated in NW-European climate, although transient droughts 

occur and irrigation would be profitable on light-textured soils (El Chami et al., 2015). NDVI-

based estimates of seasonal crop water use indicate rather small differences with 26 mm less 

in 2014 and an additional water demand of 33 mm in 2015 compared with the FA approach 

(Table 3). This can be expected as, according to Eq. 6, increases in Kcb inevitably result in 

lower values of the soil coefficient Ke, if, under irrigated conditions, Kr=1. Similarly, 

Caviglia and Sadras (2001) reported that expansion of LAI increased transpiration and 

reduced evaporation while ET remained almost constant. The small differences in ET 

estimates between the NDVI and FA approach in this study can therefore be explained by the 

fact that soil evaporation was high in this humid climate and well-watered plots. Differences 

between both approaches are expected to be more pronounced in semiarid and arid 

environments. 

Both approaches of seasonal ET dynamics agreed with the measured FWB data (Fig. 4, 

Table 4) and our results are in line with Sanchez et al. (2012), who compared NDVI-derived 

Kcb-values with measured soil moisture. Pooled over the post-winter growth period, RMSE 

and Eff. varied from 0.6-0.8 and 0.36-0.76, respectively. However, the observed FWB 

compared to modelled FWB deviated substantially during the growth periods BBCH 39-61 

and BBCH 61-75 in 2015. Discrepancies between measured and modelled data can be 

partially explained by systematic offsets between calculated (FA- and NDVI-approach) and 

measured FWB. For short time periods (after bigger rainfall events, e.g. in 2014), the 

measured soil water content was higher than the total available water (TAW) and soils 

drained back to ‘realistic’ TAWs. Differences in 2015, however could not be explained by 

high rainfall, but indicate systematic off-sets with an overestimation of ET during early 

growth stage (900-1000 GDD) and an underestimation of ET at the later growth stages (1400-

1500 GDD and 1800-2000 GDD). This either indicates that the NDVI or tabulated data are 

not reliable when considering specific growth stages or that site-specific hydrology of the 
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experimental site (e.g. capillary rise) could not be properly considered in the simple FWB 

calculation approach of FAO56. 

Estimated ET of the two years varied between 377 and 463 mm and, related to grain yield, 

gave agronomic water-use efficiencies (WUEy) between 1.93 and 2.76 g litre
-1

 (Table 3). 

These estimates are high, but not unrealistic compared with estimates of WUEy of winter 

wheat from a global survey (Zwart and Bastiaanssen, 2004). These results indicate that winter 

wheat, not limited by water and nutrients (and well protected from diseases) was very 

efficient in water use. We speculated that year differences in WUEY could be explained by 

climate differences as the same variety and sowing density was used in both years. However, 

normalization by post-winter growing season average VPD did not result in similar values of 

WUEy in both years. Furthermore, consideration of vegetative biomass (leaves and stems), 

which was higher in 2015, did not explain year differences (as indicated by differences in 

WUEB,w). From this data, it can be concluded that season-averaged VPD is not a suitable 

normalization factor.  

5. Conclusions 

To compare the suitability of tabulated Kc-values and Kc-values which derived from remote 

sensing measurements in terms of accuracy estimating crop water use a two year field study 

was established. These two approaches worked in almost the same quality regarding the 

estimated ETa. Tabulated values can only be used retrospectively. An additional benefit of 

remote sensed Kc-values and stage duration is that these measurements take all crop growth 

influenced parameters (weather, pests, lack of nutrients) into account. With the remote sensed 

approach there are more application possibilities to quantify crop water use than with 

tabulated Kc-values and stage duration. 
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Abstract  

Biomass production is positively correlated with transpiration and yield increase by fertilizer 

application or other yield-increasing measures necessarily impose higher crop water use. 

However, yields of wheat, rice and maize, in a global survey, were shown to be positively 

correlated with agronomic water-use efficiency (WUEY) (Zwart and Bastiaansen, 2004). To 

quantify these effects of N fertilizer supply on evapotranspiration (ET) of winter wheat, a 

field experiment with three nitrogen rates (N0, N120 and N230) was performed during 2014 

and 2015. Plots were watered when required to avoid water limitations. Normalized 

Difference Vegetation Index (NDVI) was used to derive crop coefficients which were used to 

calculate ET with the dual-coefficient approach. The extent to which N supply modified bare 

soil evaporation (E), transpiration (Tr), ET, grain yield, aboveground biomass and harvest 

index (HI) was tested. Bare soil evaporation during the early post-winter growth period was 

measured with micro-lysimeters and compared with two model estimates of E. It was 

speculated that E increases under conditions of low N supply, as canopy cover is less 

complete and that WUEY increases partially due to increases in HI. N supply resulted in lower 

cumulative E and model predictions of E agreed reasonably with measured rates and 

cumulative E. N application increased grain yield more than ET resulting in a higher WUEY. 

HI of N120 was higher than that of N230 indicating that HI was not the main reason of higher 

WUEY. It is concluded that estimates of ET under variable N supply requires consideration of 

N-induced effects on canopy development which were successfully monitored by NDVI 



 

44 

measurements. It is concluded that N supply related increases of both transpiration and WUEY 

potentially impose a trade-off between water conservation and efficiency of water use for crop 

production. 

Introduction 

About 70% of global freshwater use is allocated to irrigation (Siebert et al. 2010) and 

increasing food demand puts further pressure on land and water resources (FAO 2011, UNEP 

2014). An analysis of present and future crop water use in consideration of environmental 

water demand illustrated the importance of improved water management to enhance food 

production and secure both food security and regional water resources (Molden et al. 2007). 

Such water-wise management of crops requires reliable estimates of crop water demand 

which have been developed during the last four decades (Doorenbos and Pruitt 1971, Allen 

et al. 2006).  

Optically derived estimates of crop growth parameters, such as NDVI, are increasingly used 

for estimating crop water use and water stress related yield depression (Jongschaap and 

Schouten 2005) and site-specific irrigation (Glenn et al. 2007, Er-Raki et al. 2007, Jayanthi 

et al. 2007, Lopéz-Urrea et al. 2009, Kamble et al. 2013). A previous study indicated that, 

under sufficient water and nutrient supply, NDVI-based estimates of evapotranspiration (ET) 

were comparable to estimates using tabulated crop coefficients and stage lengths for winter 

wheat in NW Europe (Chapter 1). Estimates of crop coefficients derived from NDVI are 

possible due to the generally close relationship between vegetation cover and crop canopy 

size. Nutrient deficiency has a pronounced effect on crop canopy development and growth 

rate. In this case, optically derived information about canopy cover is a suitable option to 

calculate crop water use as tabulated data of stage length and crop coefficients implicitly 

assume that crops grow without nutrient limitations (Allen et al. 2011). Hunsaker et al. (2005) 

demonstrated that remotely-sensed NDVI values enable the determination of real-time Kcb 

and crop evapotranspiration of wheat. Furthermore these authors illustrated that length of 

growth stages as well as the crop coefficient during the mid-stage were affected by different N 

management of wheat and that NDVI-derived crop coefficients were more suitable than 

tabulated values for estimating ET (Hunsaker et al. 2007). 
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Biomass production is positively correlated with transpiration (Steduto et al. 2007) and yield 

increases by fertilizer application or other yield-increasing measures necessarily impose 

higher crop water use (Hunsaker et al. 2007, Liu et al. 2015). However, in a global survey it 

was demonstrated that yield of wheat, rice and maize are positively correlated with agronomic 

water-use efficiency (Zwart and Bastiaansen, 2004), indicating that low-productive sites are 

less water-use efficient when expressed as grain yield per unit of evapotranspiration (WUEy). 

Several studies showed that N supply increased WUEy (Garabet et al. 1988, Anderson 1992, 

Zhang et al. 1998, Caviglia and Sadras 2001, Wang et al. 2013). N supply induced increases 

of both transpiration and WUEY indicating that N fertilizer application imposes a potential 

trade-off between water conservation and efficiency of water use for crop production.  

Positive N effects on WUEY of wheat can be explained by four hypotheses: i) reduced bare 

soil evaporation due to more rapid canopy closure (Ritchie 1972), ii) increase in harvest index 

(Barraclough et al. 2010), iii) increases in carbon gain per unit transpiration (transpirational 

WUE) (Brueck 2008), and iv) a smaller fraction of carbon allocation to the root system 

(Poorter and Nagel 2000). We focused on hypothesis i) and ii) as hypothesis iii) and iv) are 

difficult to quantify over extended time periods under field conditions.  

Assessments of N application effects on WUEY of field-grown wheat rely on estimates of ET 

which have been performed in arid and semiarid environments (see references above) but 

rarely in humid temperate climate (Klapp 1962). In the present study, we investigated N 

supply effects on WUEY and aimed at separating ET into transpiration and evaporation. We 

used NDVI as a proxy to quantify temporal dynamics of canopy development and basal crop 

coefficients and used the FAO 56 dual coefficient approach to estimate daily rates and 

cumulative water consumption, separated into transpiration and evaporation. Cumulative ET 

was used to calculate WUEY and biomass WUE (WUEB) as ET was expected to be more 

closely correlated with aboveground biomass than with grain yield. Finally, temporal 

dynamics of biomass increase until end of booting stage were derived from measurements of 

the water index (Penuelas et al. 1997). These readings, in conjunction with leaf area index 

measurements, allowed us to compare the FAO 56 approach with a method which derives at 

transpiration and evaporation rate estimates independently from the crop coefficient approach 

of FAO 56. 
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Table 1: Growing season rainfall and supplementary irrigation, average temperature and average daily reference 

evapotranspiration (ETO) in 2014 and 2015, and long-term average (LTA). 

 Rainfall (Irrigation)  

(mm) 

Temperature 

(°C) 

Daily ETO 

(mm) 

 2014 2015 LTA
1
 2014 2015 LTA

1
 2014 2015 LTA

2
 

Mar. 20 (-) 78 (-) 68 ± 50 8.8 5.9 5.5 ± 2.0 2.6 2.2 2.1 ± 0.9 

Apr. 33 (78) 40 (30) 57 ± 51 12.2 8.8 9.2 ± 1.8 3.1 2.9 3.6 ± 1.1 

May 109 (72) 50 (72) 70 ± 48 12.6 12.2 13.8 ± 2.0 3.5 3.5 4.6 ± 1.9 

Jun. 91 (90) 46 (96) 80 ± 46 16.3 15.5 16.6 ± 1.6 5.1 5.0 5.3± 1.8 

Jul. 134 (-) 95 (12) 86 ± 50 20.2 19.1 18.5 ± 2.2 5.3 5.1 5.3 ± 1.9 

Aug. 106 (-) 173 (-) 80 ± 52 16.5 19.4 18.2 ± 1.8 3.8 3.8 4.5 ± 1.4 

Total 493 (240)  482 (210) 441 ± 50 14.4 13.4  13.6 ± 1.9 3.9 3.8 4.2 ± 1.5 

1
 Weather station data (1969 – 2012) at Duelmen, IPU 

2
 Weather station data (2008 – 2015) at Duelmen, IPU 

Table 2: Parameters used to calculate ETa of winter wheat in 2014 and 2015 according to the FAO 56 approach 

(Allen et al. 2006). Data were either measured (meas.) or from literature.  

Parameter Unit Value Source 

Base temperature  °C 0 Ewert 1996 

Kcb max dim.less 1.15 Allen et al., 2006 

Plant height to vegetation start  m 0.05 measured 

Plant height during initial stage  m 0.1 measured 

Final plant height m 0.9 measured 

Rooting depth at vegetation start after winter  m 0.3 measured 

Maximum root depth in 2014, 2015 m 0.75, 0.9 measured 

Field capacity in 2014 and 2015 Vol. % 23 Mueller et al., 2015  

Water at wilting point in 2014, 2015 Vol. % 13,10 Mueller et al., 2015 

Soil evaporations depth m 0.15 Allen et al., 2006 

Uncovered soil fraction at vegetation start % / 100 0.95 Allen et al., 2006 

Uncovered soil fraction at end of stem elongation  % / 100 0.05 Allen et al., 2006 

Evaporations reduction factor  dim.less 0.55 Allen et al., 2006 
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Materials and methods 

The study was carried out on the experimental farm Hanninghof, Research Center for Crop 

Nutrition Hanninghof (IPU), Duelmen, North-Rhine Westphalia, Germany (51° 50` 22`` N 

latitude, 7° 15`18.5`` E longitude). Average local annual rainfall and temperature (1969-2012) 

are 888 mm and 9.9 °C, respectively. The post-winter growth period of winter wheat usually 

starts in March and wheat is harvested at the end of July to mid-August. During this period, 

rainfall is quite evenly distributed with April being the driest and July being the wettest 

months (Table 1). Temperatures and ETo increase from March to July. 

Average soil texture of the Stagnosol brown earth (0-100 cm soil depth, 4 samples per site) of 

the two experimental sites is 86% (±2%) sand, 7% (±3%) silt and 7 (±1%) clay, with a usable 

field capacity (0-80 cm soil depth) of 128 l m
-3

 (Mueller 2015). 

The bread wheat variety Inspiration (Breun KG, Herzogenaurach, Germany) was drilled at 

4cm depth on Oct. 7 in 2013 and Oct. 22 in 2014 with a row spacing of 11.5 cm and 330 

seeds m
-2

. All plots received the same doses of Patentkali (25% K, 6% Mg, 17% S), Triple-

super-phosphate (20% P) and YaraVita Gramitel (150 g l
-1

 Mg, 50 g l
-1

 Cu, 150 g l
-1

 Mn und 

80 g l
-1

 Zn) to ensure a sufficient supply of plants with P (51.5 kg ha
-1

), K (112.5 kg ha
-1

), 

Mg (21.8 kg ha
-1

), S (71 kg ha
-1

), B (0.38 kg ha
-1

), Fe (0.9 kg ha
-1

), Mn and Zn (0.05 kg ha
-1

).  

Three different N-levels were imposed by applying different doses of CAN (27% N): 

unfertilized control (N0), N120 with 120 kg N ha
-1

 applied in three splits (50/30/40) and N230 

with 230 kg N ha
-1

 (100/90/40). The three splits took place at post-winter vegetation start 

(March 7 in 2014 and March 5 in 2015), at phenological stage BBCH 31 (beginning of 

booting stage) (April 14 in 2014 and April 27 in 2015) and at BBCH 39 (flag leaf appearance) 

(May 8 in 2014 and May 26 in 2015). Directly plant-available mineral soil nitrogen (Nmin = 

NO3- and NH4-N extracted with 0.0125 M CaCl2) at post-winter vegetation start (33 and 

30 kg N ha
-1

 in 2014 and 2015, respectively, in 0-90 cm soil depth) were considered at the 

first N dressing. Weed and pest control were conducted according to best practice. 

Plots (four replicates) with a size of 3 by 3 m with 0.5 m border lines were located in a two-

factorial split-plot design with the main treatment factor water and the sub-factor nitrogen. In 

this paper we present results of irrigated plots supplied with three different N levels. Irrigation 

tubes (Netafim Ltd., Hatzerim, Israel) were installed in every second sowing row to keep plots 
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well watered. Drippers had a distance of 40 cm and supplied 6 l m
-2

 h
-1

 with a minimum 

operational water pressure of 0.08 MPa. Water deficit was calculated from estimated daily 

crop water use according to FAO 56 (Allen et al. 2006). Water deficit was compensated by 

irrigation (see Table 1 for amount of irrigation water applied). Notably, these high irrigation 

volumes are not representative for farm conditions but were selected in order to avoid any 

water stress throughout the post-winter growth period. 

The field water balance (FWB) was calculated with parameters summarized in Table 2. 

Reference ET (ETo) was calculated from climate data collected by an on-field weather station 

(Pessl Instruments GmbH, Weiz, Austria):  

ETo =  
0.408 ∗ ∆ ∗ (Rn – G)+ γ∗ 

900

(T +273)
 ∗ u2∗vpd

  ∆ ∗ γ ∗ (1+0.34∗ u2)
 (1), 

where Rn is the net radiation at the crop surface (MJ m
-2

 d
-1

), G is soil heat flux (MJ m
-2

 d
-1

); 

T and u2 are air temperature (°C) and wind speed (m s
-1

) at 2 m height; vpd is the vapour 

pressure deficit (kPa);  is the psychometric constant; the latent vapor heat; and ∆ the slope 

of vapour pressure deficit. To compare FAO 56-based estimates of the FWB with measured 

FWB, the initial value of the calculated FWB at DOY 70 in 2014 and DOY 66 in 2015 were 

set equal to the measured values of the FWB at these days. Measured FWB was derived from 

Frequent Domain Reflectrometry (FDR) soil moisture tube readings (Sentek, Stepney, 

Australia). Tubes were installed in all three N treatments (n=2) and soil water content was 

hourly monitored at 5 soil depths (10, 30, 50 70, 90 cm). 

Crop evapotranspiration (ETa) was calculated from ETo multiplied by a basal crop coefficient 

(Kcb) and a soil evaporation coefficient (Ke): 

ETa = ETo * (Kcb + Ke) (2) 

Kcb values were derived from NDVI measurements according to a modified approach of Er-

Raki et al. (2007):  

Kcb = 1.15 [1 − (
NDVImax−NDVI

NDVImax−NDVImin
) ] (3). 

In contradiction to Er-Raki et al. (2007) who used 1.07 as Kcb,max for durum wheat in a 

semiarid climate of Morocco we used a Kcb,max of 1.15 for winter wheat (Allen et al. 2006). 
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Er-Raki et al. (2007) used an exponent, which was derived from experimental analyses of the 

relationships between NDVI and LAI and ETa/ETo and LAI (see Duchemin et al. 2006 for 

further details). This exponent was not used as lysimeter studies are rarely available to 

quantify the in-situ relationship between LAI and ETa/ETo. NDVImax and NDVImin were the 

maximal and minimal measured NDVI-values during the growing period. We took an initial 

Kcb-value of 0.15 (Allen et al. 2006) at vegetation start (DOY 70 in 2014 and DOY 65 in 

2015) and integrated linearly until the first Kcb-values were derived from NDVI-

measurements (DOY 83 in 2014 and DOY 69 in 2015).  

Kcb values were daily adjusted to u2, RH and plant height according to Eq. (4).  

Kcb adj. = Kcb + [ 0.04 (u2-2)-0.004 (RHmin-45) ] (h/3)
0.3

 (4) 

where RHmin is daily minimum relative humidity (%) and h is the daily plant height (m).  

Ke was calculated according to Er Raki et al. (2007): 

Ke = 0.9 * (1-fc) (5) 

The value 0.9 was determined according to Fig. 29 of FAO 56 (Allen et al. 2006) based on 

observed frequency of irrigation and rainfall: from post-winter vegetation start until NDVImax 

(DOY 70-113 in 2014 and DOY 66-128 in 2015) 20 and 27 irrigation / rainfall events of 

>0.2*ETo occurred (for relevant rainfall events, see Allen et al. 2006, p. 153). This was 

equivalent to rainfall events every 2.5 days. With an average ETo of 3.3mm / day during the 

growing season this corresponds to a coefficient of 0.9. 

Vegetation cover (fc) was calculated according to Er-Raki et al. (2007): 

fc = 1.18 * (NDVI-NDVImin) (6) 

The NDVI was measured at least weekly with a MMS1-handheld spectrometer (tec5 AG, 

Oberursel, Germany) in four replicates per plot with a perpendicular view angle. 

Measurements were conducted at a distance of approximately 1.8 m to the plant surface with 

a minimum solar altitude of 35°. To consider possible shading effects measurements were 

conducted from each of the four cardinal directions of the plot corners and the four data were 

pooled. MMS1 measures wavelengths (R) from 400 nm to 1000 nm in 10 nm increments. The 

NDVI was calculated according to Rouse et al. (1974):  
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NDVI = (R 800-R 670) / (R 800 + R 670) (7) 

The relationship between biomass and spectrometer readings was investigated by sampling 96 

destructive wheat samples from 1 m
2
 plots (with four replicates) during several growth stages 

of winter wheat in 2014 and 2015 (DOY 73-136 in 2014 and DOY 64-148 in 2015, 

respectively) on the same fields where trials were conducted. After taking spectrometer 

measurements, aboveground plant samples were harvested and dried until a constant weight. 

For calculation of biomass based on spectrometer measurements, the water index according to 

Penuelas et al. (1997) was used: 

Water Index = (R900/970) (8) 

The relationship between measured biomass and water index was fitted with a Gompertz 

function in R (R Core Team 2015) (Fig. 1): 

f(x) = y0 + a e – e – ((x − xo)/b) (9), 

where yo = 0.003078; a = 18.786706; b = 12.737944; xo = 16.988818; x = water index. 

The correlation between water index and biomass was only applicable until growth stage 

BBCH 49 (end of booting). Further biomass increases could not be detected by the water 

index (data not shown). Spectrometer-based estimates of biomass development from post-

winter vegetation start to BBCH 49 were used for daily estimates of biomass increase by 

linear interpolating between measurement dates.  

Daily estimates of biomass increase (B; g m
-2

) were used to calculate transpiration (T) 

(Eq. 10). To derive at T, we used the approach of Steduto et al. (2009), who used estimates of 

T to derive at B, reversely. We took a ETo normalized water productivity (WP) of 17 g 

biomass per m
2
 transpired water (Raes et al. 2011). 

T =
ΔB ·ETo

WP
  (10) 
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Figure 1: Non-linear regression between water index and measured biomass. The water index was derived from 

spectrometer measurements and dry mass sampled during the post-winter growth periods of 2014 and 2015 until 

the end of booting stage. For function parameters, see Eq. 9, n=96.  

Estimates of bare soil evaporation (E) following the dual-coefficient approach of FAO 56 

(Allen et al. 2006) were compared with an approach of Raes et al. (2009) in which 

information of leaf area index (LAI) measurements were used for estimating E: 

E = (1-CC) * Kc e,Stage1 * ETo (11), 

where Kc e,Stage1 is the evaporation coefficient according to Allen et al. (2006) with a value of 

1.1. CC is the fraction of soil covered by plants according to Hsaio et al. (2009): 

CC = 94 [1 − exp(−0.43 LAI)]0.52 (12) 

Leaf area measurements were taken almost weekly during the post-winter growth period with 

a Sun Scan SS1 (Delta-T Devices, Cambridge, Great Britain). Sun Scan SS1 based LAI 

estimates were compared with 31 destructive samples taken from 0.5 m
2
 ground surface area, 

harvested during the growth period from BBCH 23 – BBCH 39 (DOY 78-112 in 2014, DOY 

65-140 in 2015). Aboveground plant samples were separated into leaves and stems and LAI 

was measured with an Leaf Area Meter LI3000 A (Li-Cor, Lincoln, Nebraska USA). LAI 

derived from Sun Scan SS1 and in-situ leaf area index were linearly highly correlated 

(R
2
: 0.89) (Chapter 1). 

Calculated daily bare soil evaporation rates of 2015 were compared with measured 

evaporation rates. Bare soil evaporation was measured with the micro-lysimeter method 

(Daamen et al. 1993) on experimental plots, additionally included in the experimental layout. 
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Casing tubes (radius 5 cm, height 15 cm) were installed in the soil of different fertilized plots 

(N0, N80 and N230) in four replicates. Smaller PVC-tubes (radius 4.55 cm, height 14.7) were 

placed into these casing tubes, and weight losses recorded once a day by weighing. These 

tubes were filled with dried, sieved (2 mm) soil from the experimental field site (1250 g, bulk 

density 1.35 Mg m
-3

). Micro-lysimeters were regularly watered to 75% water holding capacity 

to mimic frequent rainfall and irrigation events. 

A core-area of 4 m
2 

was harvested
 
from each plot at July 24 and August 2 in 2014 and 2015, 

respectively and grain yield determined after drying samples to constant weight with 14% 

residual water content. Agronomic water-use efficiency was calculated from grain yield (with 

0% residual water content) and cumulative ET from post-winter vegetation start to maturity. 

Biomass water-use-efficiency was calculated from harvested biomass (0% residual water 

content) and cumulative ET from post-winter vegetation start to maturity. 

Regression analysis (relationship between water index and biomass) and analysis of variance 

(ANOVA) (test of significance of N supply and year effects on parameters) were analyzed 

with R (R, Core Team 2015). Model performance of FWB calculations was evaluated with 

the root mean square error (RMSE) and the efficiency index (E) (Chai and Draxler 2014, 

Nash and Sutcliffe 1970). RSME quantifies variance of error while E is a normalized statistic 

determining the relative magnitude of the residual variance compared to the measured data 

variance. The target value for E is 1.0, while null or negative values indicate that even the 

arithmetic mean across observations is an as good predictor as the model. 

Results 

Higher temperatures in March and April 2014 (Table 1) led to earlier plant development than 

in 2015 (Fig. 2). In 2014 the high fertilized plots reached the maximal NDVI of 0.95 

approximately 13 days earlier than in 2015. Maximum NDVI of treatments N0 and N120 was 

reached 10 and 28 days earlier than in 2015. Onset of senescence and maturity in 2014 were 

reached earlier (DOY 192) in all treatments than in 2015 (DOY 203). In both years, fertilized 

plots (N120, N230) reached substantially higher NDVI values than N0 plots. Differences in 

NDVI between treatments N120 and N230 were small in 2014 and, in 2015, only evident 

from DOY 100 to DOY 130. Treatment N120 reached its maximum NDVI 11 and 13 days 
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later than N230 in 2014 and 2015, respectively. Senescence of treatment N120 started 6 and 5 

days earlier in 2014 and 2015, respectively, than in treatment N230.  

N effects on LAI of N230 compared to N120 were more obvious than on NDVI (Fig. 2). Due 

to the measurement protocol of LAI determination in which the sensor bar was positioned on 

the soil surface with a 90° upward view, early plant growth could not be reliably detected.  

For example, while NDVI increased from DOY69 to 98 in 2015, LAI measurements indicated 

hardly any leaf growth. Year effects on LAI were similar to those on NDVI with higher LAI 

of all N treatments in 2014 than in 2015. Final shoot biomass increased linearly with LAID 

until LAID exceeded values of >450 (Fig. 3a). N effects on NDVI in terms of temporal 

dynamics and values resulted in clearly differentiating values of cumulative NDVI which 

were linearly correlated with final biomass (Fig. 3b). Differences between years were small 

but final shoot biomass tended to be higher in 2015 than in 2014 for the same cumulative 

NDVI. Treatment averages of N supply in 2013/14 and 2014/15 are summarized in Table 3 

and statistical effects in Table 4.  

 

Figure 2: (a, b) Measured Normalized Differenced Vegetation Index (NDVI), (c, d) measured leaf area index 

(LAI) for 2014 (a, c) and 2015 (b, d). Different N-supply: unfertilized control (open diamond), 120 kg N/ha
-1

 

(closed square) and 230 kg N/ha
-1

 (open circle), all treatments were not limited by water supply.  
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Figure 3: Relationship between biomass (0% residual water content) plotted against Leaf Area Duration 

(LAID) (a) and cumulative measured Normalized Differenced Vegetation Index (NDVI) (b) in 2014 (black) 

and 2015 (dotted grey). NDVI measurements were cumulated for DOY 83-192 in both years. LAID was 

cumulated from DOY 78-196 in 2014 and DOY 65-202 in 2015, respectively. Regression was based on plots 

with 0,120 and 230 kg N ha
-1

 supply in 2014 and 0,120 and 230 kg N ha
-1

 supply in 2015. 

Grain yields and shoot biomass were significantly different between N treatments but not 

between years. N treatment effects between the unfertilized treatment and N120 and N230 

were pronounced while differences in grain yield between N120 and N230 were small though 

significant (Table 4). Shoot biomass was similar in both years and increased significantly with 

increasing N supply. HI was not significantly different between N0 and N230 and 

significantly higher in N120 compared to other N treatments in 2014. ET was significantly 

higher in 2015 than in 2014 and, in both years, ET increased with N supply. Both, agronomic 

and biomass water use efficiency increased with increasing N supply. N0 had a significantly 

lower WUE than treatments N120 and N230. WUEY of treatment N120 tended to be lower 

than that of treatment N230. WUEB of treatment N120 was significantly lower than that of 

treatment N230. WUE was significantly higher in 2014 than in 2015. These differences in 

WUE between years were also evident if WUE was corrected by average VPD during the 

post-winter growth period (data not shown). 

In order to test the suitability of NDVI-based estimation of ET under variable N supply, the 

approach was compared with an alternative approach in which T was estimated from crop 

growth until BBCH 49 (see Fig. 1 and Eq. 10) and E from LAI (see Eq. 11). N effects on crop 

growth were less pronounced in 2014 compared to 2015 (Fig. 4). Taking calculated biomass 

of N230 at BBCH 49 as 100%, treatments N120 and N0 realized 96% and 44% in 2014 and 

71% and 33%, respectively, in 2015.  
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Evaporation estimates of the NDVI- and Raes approach were similar for N0, but estimates 

were lower with the NDVI approach for treatments N120 and N230 (Table 5). On the 

contrary, transpiration estimates of both approaches were similar for N230, but higher with 

the NDVI approach for treatment N0. ET estimates tended to be higher with the Raes and 

Steduto approach for treatments N120 and N230 but were lower than with the NDVI 

approach for treatment N0. Estimates of ET compared to measured ET fit better for the NDVI 

approach (treatments N0 and N230) compared to estimates of ET based on the Raes and 

Steduto approach, while ET of N120 was better estimated by the Raes and Steduto approach 

compared to the NDVI approach (Table 6). The evaporative portion of ET increased in both 

approaches with lower N supply and was higher with the Raes and Steduto approach. 

 

Figure 4: Biomass estimates from spectral readings for three nitrogen levels: 0 kg N ha
-1

, 120 kg N ha
-1

 and 

230 kg N ha
-1

 in the years 2014 (a) and 2015 (b). Different N-supply: unfertilized control (open diamond), 

120 kg N ha
-1

 (closed square) and 230 kg N ha
-1

 (open circle), all treatments were not limited by water supply  

 

Figure 5: Measured and calculated cumulative evaporation during DOY 98-144 in 2015. N-rates were an 

unfertilized control N0 (0 kg N ha
-1

), 80 kg N ha
-1

 for measured and 120 kg N ha
-1 

for calculated E, and 230 kg 

N ha
-1

. 
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Figure 6: Daily evaporation rates (E, mm day
-1

) of the three N treatments (N0, N120, N230) during DOY 95-144 

in 2015. E was estimated from NDVI measurements (NDVI), LAI measurements (Raes), or was measured 

(Meas.).  

Calculated E was compared with experimentally measured E for DOY 98-144 in 2015. 

Similar to measured cumulative E, both approaches predicted decreases of E with increasing 

N supply but both approaches underestimated cumulative E compared to measured 

cumulative E (Fig. 5). The LAI-based approach (ERaes) predicted higher cumulative E than the 

NDVI approach. A comparison of measured and modelled daily E rates indicates that ERaes 

agreed well with measured E of treatment N0 while the NDVI approach during the early 

growth phase (DOY 95-115) was less suitable. Except of underestimations of E during the 

early growth phase, both approaches were able to predict the observed rapid decrease of E in 

treatment N230. Both approaches were not able to predict some high E rates in treatment 

N120, however, NDVI readings and LAI measurements were from plots with a N supply of 

120 kg N ha
-1

 while evaporation was measured in plots supplied with 80 kg N ha
-1 

(see 

Material and methods). 
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Table 3: Grain yield (t ha
-1

; 14% residual water content), shoot biomass (t ha
-1

; 0% residual water content), 

harvest index (HI), evapotranspiration (ETTotal; mm) during the post-winter growth period (2014: DOY 70-205; 

2015: DOY 65-214), agronomic (WUEY; g grain per l ET) and biomass water-use efficiencies (WUEB; g shoot 

biomass per l ET) of the 3 N treatments in 2014 and 2015. WUE and HI were calculated with yield and total 

aboveground biomass of 0% residual water content.  

N treatment N0 N120 N230 

Year 2014 2015 2014 2015 2014 2015 

Grain yield 4.9 4.8 9.8 8.9 10.4 10.5 

Shoot biomass 8.4 8.3 15.3 14.6 18.2 18.8 

HI 0.51  0.50  0.55  0.52  0.50  0.48  

ETTotal 315 410 370 444 377 462 

WUEy 1.56 1.17 2.65 2.00 2.76 2.27 

WUEB  2.67 2.02 4.13 3.29 4.83 4.07 

Table 4: Differences between N treatment means (µ) and confidence interval (lower limit, lwr and upper limit, 

upr; :0.05). Treatment means are pooled over both years.  

  95% Confidence interval 

Parameter N-comparison µ lwr upr 

Grain yield 120-0 

230-0 

230-120 

4.46 

5.58 

1.11 

3.40 

4.50 

0.05 

5.53 

6.64 

2.18 

Biomass 0-120 

0-230 

120-230 

6.59 

10.10 

3.51 

4.90 

8.41 

1.82 

8.28 

11.79 

5.20 

HI 120-0 

230-0 

230-120 

0.04 

-0.01 

-0.05 

0.02 

-0.03 

-0.06 

0.05 

0.003 

-0.31 

ETTotal 120-0 

230-0 

230-120 

45 

64 

20 

-11 

8 

-36 

100 

120 

75 

WUEy 120-0 

230-0 

230-120 

0.55 

0.63 

0.08 

0.24 

0.31 

-0.24 

0.86 

0.94 

0.39 

WUEB 120-0 

230-0 

230-120 

0.78 

1.15 

0.37 

0.31 

0.67 

-0.11 

1.26 

1.63 

0.84 
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Parameter 
Pr (< F) 

year N year * N 

Grain yield 0.353 <0.0001 0.462 

Biomass 0.966 <0.0001
 

0.694 

HI <0.0017 <0.0001 0.151 

ETTotal <0.0001
 

<0.0001
 

0.099 

WUEy <0.0001 <0.0001 0.190 

WUEB <0.0001
 

<0.0001
 

0.480 

Table 5: Effect of N rate (kg N ha
-1

) on soil evaporation estimates (mm) based on NDVI (NDVI) or LAI (Raes) 

and transpiration estimates (mm) based on NDVI (NDVI) or aboveground biomass (Steduto) and the portion 

which E contributed to ET (E%). Calculations for DOY 70-139 and 70-144 in 2014 and 2015, respectively. 

 N-rate  N0 N120 N230 

 Year 2014 2015 2014 2015 2014 2015 

Evaporation 
NDVI 

Raes 

74 

75 

111 

122 

33 

67 

65 

83 

21 

63 

53 

63 

Transpiration 
NDVI 

Steduto 

84 

48 

90 

40 

130 

128 

155 

124 

156 

147 

171 

172 

Evapotranspiration 
NDVI 

Raes and Steduto 

158 

123 

201 

162 

163 

195 

220 

207 

177 

199 

224 

235 

E% 
NDVI 

Raes and Steduto 

47 

61 

55 

75 

20 

34 

30 

40 

12 

32 

24 

27 

Table 6: Statistical analysis of model performance of predicting soil water content with the NDVI Kcb approach 

(NDVI) or based on Raes and Steduto (RS) of winter wheat grown under three N levels (N0, N120, N230) 

during DOY 70-144 in 2015. RMSE: root mean square error (mm day
-1

) and Eff.: efficiency (dimensionless). 

Approach Statistical parameter N0 N120 N230 

NDVI 
RMSE 

Eff. 

1.0 

0.57 

1.5 

0.30 

1.0 

0.58 

RS 
RMSE 

Eff. 

1.7 

-0.14 

1.0 

0.67 

1.5 

0.06 

Discussion 

Compared with irrigation based on tabulated values of both Kc and growth stage lengths, site-

specific modifications are recommended (Allen 2006) and optically-derived estimates of 

crops, such as NDVI are increasingly used for estimation of crop water use and related (site-
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specific) irrigation (Glenn et al. 2007, Er-Raki et al. 2007, Allen et al. 2011). Estimates of 

crop coefficients derived from NDVI are possible due to the generally close correlation 

between canopy size and transpiration. Advantages of using vegetation index-based crop 

coefficients are the ability to account for variation in plant growth due to weather conditions, 

differences in sowing dates (Tasumi and Allen 2007, Er-Raki et al. 2010) or post-winter 

vegetation start, plant density, cultivars, pests and nutrient supply (Hunsaker et al. 2007, 

Pocas et al. 2015). NDVI is one of the most frequently used vegetation index and several 

studies showed good correlations of NDVI with plant growth parameters, e.g. in wheat (Pinter 

et al. 2003), measured fraction of soil cover with plants (Er-Raki et al. 2007) and leaf area 

(Duchemin et al. 2006, Chattaraj et al. 2013).  

In this study the NDVI approach is the only option for estimating Kcb values and to calculate 

crop water use under non-optimal growth conditions (here limited N supply) under field 

conditions. Confirming results of Hunsaker et al. (2007) that wheat growth stage length and 

the maximum Kcb value were affected by different N management in wheat our results 

similarly showed that Kcb values derived from NDVI measurements were affected by N 

supply in both years (Fig. 2). Low N supply decreased maximal Kcb values, delayed canopy 

closure and induced earlier onset of senescence. These differences in NDVI were consistently 

reflected in final shoot biomass (Fig. 3), indicating that cumulative NDVI was a suitable 

index of carbon gain over the post-winter growth period. High winter wheat yields (>10 tons 

of grain/ha in this region) required cumulative NDVI values of >95. 
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Figure 7: Evapotranspiration (ET, mm) and field water balance (FWB, mm) estimated as the sum of ERaes and 

TSteduto (RS) or ET derived from FAO 56 based on NDVI-measurements (NDVI) for 3 different N-level with 

an unfertilized control (N0), 120 kg N ha
-1

 (N120) and 230 kg N ha
-1

 (N230) for winter wheat in the year 2015 

from DOY 70-144. 

In 2014, plants of treatments N0 and N120 tended to realize higher final shoot biomass than 

in 2015 with the same cumulative NDVI. This possibly indicates that the conversion 

efficiency of light absorption was higher in 2014 than in 2015, and was likely related to 

seasonal differences in temperatures which are not considered by this simple cumulative 

NDVI approach. LAID also appeared to be a suitable indicator of final biomass, the critical 

LAID for high yields was roughly >450. However, continuous or at least frequent 

measurements of LAI would require the permanent installation of rather expensive equipment 

in the field, whereas NDVI can be derived rather simply from remote sensing devices. 

Efficient water management in agriculture is a key for sustainable water use and nutrient 

management of cropping systems is closely related to water resources for two reasons, crop 
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water use and potential pollution of freshwater by overdosing of nutrients. Intensive 

agriculture, including fertilizer application, has been identified as a threat to regional long-

term water availability of cropping systems (Liu et al. 2015). However, yield of wheat, rice 

and maize, in a global survey, were shown to positively correlate with agronomic water-use 

efficiency (Zwart and Bastiaanssen, 2004), indicating that low-input agriculture is less water-

use efficient when expressed as product per unit of ET, indicating a trade-off between water 

conservation and efficient water use for food production. 

Yield (and biomass) increases with fertilizer application necessarily imply higher ET due to 

the conservative nature of biomass WUE (Steduto et al. 2007). Field studies indicated a rather 

variable picture with N-related increases of ET varying from >20% (Garabet et al. 1998, 

Caviglia and Sadras 2001, Huang et al. 2003) to <15% (Zhang et al. 1998, Hunsaker et al. 

2007, Karam et al. 2009). Our results indicate that cumulative post-winter season ET of N230 

was 24% and 12% higher than that of treatment N0 (Table 3) in 2014 and 2015, respectively. 

Variability in reported N effects on increases of ET can be explained by differences in yield 

response to variable N supply (the smaller the yield response, the smaller the differences in 

ET) and site- and crop-specific effects on the partitioning of ET between E and T. N-induced 

increases in T can be small if E dominates ET such as in irrigated row crops with poor ground 

cover before canopy closure. Results of our study indicate that increases in ET due to N 

applications were small for winter wheat in temperate humid climate, as the decrease of T 

under low N was strongly off-set by corresponding increases of evaporation. This finding 

cannot be extrapolated to drier climates with less rainfall events as high evaporation in the 

present study was realized by frequent wetting, keeping the soil more or less continuously in 

the high evaporation stage 1 (Ritchie 1972).  

Bare soil evaporation is controlled by available energy, RH, wind speed, topsoil water content 

and canopy cover. It can be expected that estimates of E are improved by measurements of the 

fraction of soil wetted and exposed to direct radiation (Peirera et al. 2015), thereby adding 

more accuracy to the estimation of E and total ET. Johnson and Troust (2012) found a good 

linear correlation between NDVI and canopy cover of vegetable crops by comparing NDVI 

measurements and estimates of canopy cover derived from images taken by a digital ground 

camera. We carried out a more detailed estimate of N effects on ET for the post-winter growth 

period until BBCH 49. Our results show that the NDVI and Raes and Steduto approaches 

consistently indicated increases of E under low N supply, particularly when comparing a 
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sparse crop canopy (N0) with plots receiving fertilizer (N120 and N230) (Table 5). However, 

estimates of E differed substantially between both approaches (NDVI versus Raes). As 

calculated E in both cases relied on the same climate data, differences between both 

approaches were related to differences in canopy cover estimates. In the NDVI approach the 

soil evaporation coefficient was derived from NDVI measurements (see Eq. 5 and 6) while 

ERaes was estimated from LAI measurements (see Eq. 11 and 12). Cumulative estimates of E 

were similar for treatment N0 (Table 5) although a comparison with measured E suggests that 

daily rates were better predicted by the Raes approach (Fig. 6). For treatments N120 and 

N230 the Raes approach estimated higher rates of E than the NDVI approach and, again, 

agreed better with measured E (Fig. 6). Both approaches were not able to predict the high 

rates of E observed during some days. However, the microclimate of the micro-lysimeter set-

up was not identical to those plots on which NDVI and LAI were measured, as installation of 

the unplanted micro-lysimeters disturbed growth of the surrounding plants and likely resulted 

in overestimation of E compared to undisturbed N120 and N230 plots. Furthermore, in one of 

the N treatments, E was measured in plots which received only 80 kg N ha
-1

. This resulted in 

less vigorous growth compared to treatment N120. These two factors likely explain the higher 

measured E compared to predicted E consistently observed in the two fertilized N treatments 

(Fig. 5). Summarizing, NDVI or LAI are suitable to estimate the fraction of canopy cover 

particularly under conditions of nutrient limitation and should be preferred over tabulated data 

of crop coefficients. Compared with winter wheat, the relevance of monitoring in-situ canopy 

development will be even higher in row crops with extended periods of incomplete ground 

cover. 

Both approaches (NDVI and Raes and Steduto) derived at different transpiration estimates. 

Transpiration derived from NDVI was higher than that of TSteduto particularly for treatments 

N120 and N0 (Table 5). Both approaches followed different methods to estimate 

transpiration: the NDVI approach derived at transpiration by subtracting E from ET (with ET 

derived from ETo and soil and crop coefficients, see Eq. 2), whereas transpiration in the 

Steduto approach was derived from estimates of daily biomass increments (see Eq. 10). 

Differences in E and transpiration estimates of both approaches led to contrasting estimates of 

N induced differences in ET. When ET was estimated from NDVI, ET of N0 was, in both 

years, only ~10% lower than that of N230, whereas the Raes and Steduto approach indicated 

that ET of unfertilized plots was substantially lower (38% and 31% in 2014 and 2015, 



 

63 

respectively) than that of treatment N230. As ET estimates based on Raes and Steduto could 

not be extended beyond BBCH 49, it remained unclear, to what extent N differences of total 

post-winter ET based on the NDVI approach (Table 3) were underestimated as compared with 

the Raes and Steduto approach, but we assume that NDVI-based estimates represent the lower 

range of N effects on ET. However, both approaches should be considered as estimates of ET 

as they could not be validated in this field study. Comparison with measured evaporation rates 

and the field water balance (Fig. 6, 7) indicate that both methods were equally suitable to 

predict ET but the comparison with field water balance data is not straightforward as the 

extent of drainage and capillary rise remains unknown under the experimental conditions 

(high rainfall and supplemental irrigation, see Table 1).  

The Raes and Steduto approach indicated that the proportion of evaporation relative to ET 

decreased with N supply from >60% to <30% until BBCH 49 in this study (Table 5) while the 

same transpirational WUE was assumed for the three N treatments. If N fertilizer application 

reduced E while T increased in proportion to dry mass gain, N application effects on WUE 

would be large in ‘high E’ environments such as humid climates with frequent soil surface 

wetting and small (or even absent) in ‘low E’ environments such as in arid climates with 

subsurface irrigation. Rainfall and irrigation in our experiment generated a humid 

environment so that increases in ET from N0 to N230 were small compared to N-induced 

yield increases, resulting in a substantially lower WUEY of N0 compared to N120 and N230 

(Table 3). Differences in ET and WUEY between moderate (N120) to high (N230) N supply 

were small in both years. Consequently, positive N effects on WUEY could be explained by a 

shift from evaporation to transpiration and are in line with other field studies which were 

conducted in arid and semiarid environments (e.g. Eck 1988, Zhang et al. 1998, Asseng et al. 

2001). 

Results of the FAO 56 approach and the Raes and Steduto approach consistently indicate that 

increases in yields were higher than increases in ET supporting hypothesis i) (see 

introduction) that fertilizer application contributes to more efficient water use by reducing 

evaporation, particularly in humid climates.  

Contrary to our expectation, hypothesis ii) which assumed an increase of WUEY via increases 

in HI could not be confirmed. Wheat in treatment N230 produced more biomass than in 

treatment N120 but failed to increase correspondingly yield components, such as number of 
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ears, spikelets per ear or thousand grain weight (data not shown). WUEY of N230 was not 

significantly higher than that of N120, while differences in WUEB between both treatments 

were more obvious (Table 3). This finding suggests that high N supplied plants tended to 

produce ‘luxury’ leaf and stem reserves and that high N rates do not automatically guarantee 

the highest WUEY. 

Conclusions 

Estimates of ET under variable N supply require consideration of N-induced effects on 

canopy development which were successfully monitored with NDVI measurements. N 

application increased grain yield more than ET resulting in a higher agronomic WUE. This 

was mostly due to a proportional shift between E and T, indicating that N effects on WUE are 

more pronounced under wet than dry environmental conditions. As canopy development and 

crop growth in temperate-humid climates is highly variable during the post-winter growth 

period and strongly affected by N supply, NDVI should be monitored in a high-time 

resolution until canopy closure and during the senescence phase. Use of tabulated data of 

stage lengths and crop coefficients cannot be used reliably to quantify ET of winter wheat 

under N limitations. 
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Appendix Chapter 1 

Measured FWB was derived from Frequent Domain Reflectrometry (FDR) soil moisture tube 

readings (Sentek, Stepney, Australia). Tubes were installed in all three N treatments (n=2) and 

soil water content was hourly monitored at 5 soil depths (10, 30, 50 70, 90 cm). The measured 

FWB presented in Fig. 7 was the average of 2 tubes per treatments which were installed in 

two experimental plots. As depicted in Fig. A1, both tubes in treatments N0 and N120 
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exhibited a very similar temporal dynamic during DOY 70 and 190. The measured FWB 

presented in Fig. 7 does not include standard deviations. Due to technical failure, in treatment 

N230, only one tube was available until DOY 160. Notably, in other experimental plots and in 

2014, differences in FWB estimates between replicates were larger due to spatial differences 

in soil texture. However, seasonal changes were similar. 

 

Figure A1: Field water balance (FWB, mm) of treatment N0 (a) and N120 (b) measured in two experimental 

plots per treatment (Tube 1 and 2) during DOY 70-205 in 2015. 
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Abstract 

 

Broad acre crops grown in NW Europe, like winter wheat, are the main constituent of diets 

for humans and to feed livestock. Winter wheat is more and more confronted with drought 

periods during the post-winter vegetation growth period. Findings from the literature, mostly 

based on experiments in arid climates, indicate that high nitrogen fertilization is not the most 

water efficient way to generate grain yields in combination with maximal water use 

efficiency. 

To quantify the effects of N fertilizer supply on grain yield and evapotranspiration (ET) of 

winter wheat, a field experiment with two nitrogen rates (N120 and N230) and three (WS+, 

WS31 and WS31 1/3) respective four (WS+, WS31, WS31 2/3 and WS31 1/3) different water 

supply levels was performed during 2014 and 2015. Well-watered plots (WS+) were irrigated 

when required to avoid water limitations, while drought was induced on plots (WS31, WS31 

2/3 and WS31 1/3) by the installation of rain-out-shelters. All plots were equipped with drip 

irrigation to supply water when intended. The Normalized Difference Vegetation Index 

(NDVI) was measured to derive crop coefficients which were used to calculate ET with the 

FAO 56 dual-coefficient approach. The extent to which N supply modified bare soil 

evaporation (E), transpiration (Tr), ET, grain yield, water use efficiency (WUE) and above-

ground biomass was tested.  
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We found that treatment N230 compared with treatment N120 in a temperate humid climate 

in NW Europe led to higher crop water use, but in the most water efficient way, irrespective 

of water stress treatments. N-supply increased the share of Tr on ET overall water treatments. 

Furthermore, N application increased grain yield more than ET resulting in a higher WUE. 

These findings from plants grown under climates with full saturated soils at vegetation start 

after winter are contrary compared to findings from wheat grown under arid environments.  

1. Introduction 

Freshwater resources are threatened by nutrient and pesticide loads from agriculture as well as 

increasing domestic and industrial freshwater demand in some world regions. Freshwater 

availability per capita and year has decreased in e.g. South-East Asia and North Africa 

(Reuveny, 2007; Mc Donald et al., 2011). Water demand has increased over the last decades, 

primary due to agricultural use of fresh water for irrigation (Siebert et al., 2010). In future, 

water will become increasingly scarce particularly in semi-arid regions. Improvements in 

agricultural water management are necessary to enhance agricultural productivity in order to 

meet food demands of the growing world population. The International Water Management 

Institute (IWMI, 2007) stated that there will be enough land, water and human capacity to 

produce enough food for a growing population, if water use in agriculture is improved. The 

water use efficiency (WUE) has therefore become one of the most important indices for 

benchmarking optimal water management practices. 

Climate change scenarios indicate increasing occurrence and intensity of droughts (Sheffield 

and Wood, 2008). Lehner et al. (2006) analyzed drought scenarios for South Eastern Europe 

from the last century and projected in a model study that in the year 2070 severe drought 

events, occurring actually once per century, will happen every forty years. Water scarcity is a 

regional to local event which is highly affected by soil type, soil profile depth and cropping 

pattern (Ehlers and Goss, 2003; Rickmann and Sourell, 2014). This underlines the necessity to 

predict water demand and water deficit at a site- and crop specific level. 

As WUE is related to total crop water use, which is the sum of evaporation and transpiration, 

several management options, such as the reduction of non-productive loss through soil 

evaporation, avoidance of runoff and drainage exist (Gregory, 2000). Application of fertilizer, 

provided that it allows a more rapid growth of the canopy that shades the soil surface, thereby 
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reduces the proportion of the total water that is evaporated (Cooper et al., 1983). Options to 

increase yield and WUE by integrated water and nitrogen management are indicated by 

several studies (Eck, 1988; Musick et al., 1994; Hussain and Jaloud, 1995; Schjoerring et al., 

1995; Oweis et al., 1998; Lenka et al., 2009).  

Water stress is expected to decrease yield and farm management of field sites regularly 

responds by adjusting fertilizer amount accordingly to the expected yield decrease. A 

phenomenon known as ‘Haying-off’ has been illustrated in semiarid environments showing 

that grain yield is negatively influenced by excessive N supply. High N rates in that case 

caused an increase in shoot biomass during the vegetative growth phase and resulted in a 

depletion of soil water reserves during the grain filling period and related yield decreases (van 

Herwaarden et al., 1998). 

Steduto et al. (2007) assessed transpirational water loss of different crops in several 

environments which contrasted each other in rainfall and vapor pressure deficit and showed  

constant agronomic water-use efficiency (WUEy) of 20 kg kPa grain ha
-1

 mm
-1

. This implies 

that plants react biologically in the same way when their biomass is increased (e.g. due to 

higher nitrogen supply) by using more water. We therefore expected that effects of nitrogen 

supply and drought on transpirational WUE are small. As evaporation is a relevant pathway of 

latent heat flux in humid climates, we further speculate that N supply improves agronomic 

WUE mainly by reducing evaporation. Finally, as evaporation of dry soil surfaces is low, we 

speculate that N effects on agronomic WUE are small in treatments which are subject to 

drought.  

The aim of this study was i) to quantify the extent of different N-rates on grain yield under 

conditions of drought in a temperate humid climate in NW Europe. ii) to quantify the extent 

of water use efficiency with varying nitrogen supply of winter wheat grown under climates 

with full saturated soils at vegetation start after winter, compared to plants grown under arid 

environments. 
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2. Materials and methods 

2.1. Study area, climate and soils 

The study was carried out at the Experimental Farm Hanninghof, Institute of Plant Nutrition 

and Environmental Research, Duelmen North-Rhine Westphalia, Germany (51° 50` 22`` N 

latitude, 7° 15`18.5`` E longitude). The climate is humid-temperate and classified according 

to Köppen and Geiger (1936) as Cfb (July being the hottest and January the coldest month) 

with mean annual rainfall of 888mm (April is the driest moth with mean annual rainfall of at 

least 57 mm, July is the wettest month with a mean annual rainfall of 86mm). The average 

soil texture (0-100 cm soil depth, 4 soil samples per site) of the two experimental sites used in 

2014 and 2015 was 86% (±2%) sand, 7% (±3%) slit and 7% (±1%) clay. The soil type was a 

Stagnosol brown earth with a usable field capacity (0-80 cm soil depth) of 128 l m
-3

 (Mueller, 

2015). 

2.2. Field experiment and layout 

The bread wheat variety Inspiration (Breun KG, Herzogenaurach, Germany) was drilled at 4 

cm depth on Oct. 7 in 2013 and Oct. 22 in 2014 with a row spacing of 11.5 cm and 330 seeds 

m
-2

. Two N-levels were imposed by applying different doses of CAN (27% N): N120 with 

120 kg N ha
-1 

applied in three splits (50/30/40) and N230 with 230 kg N ha
-1

 (100/90/40). The 

three splits took place at post-winter vegetation start (March 7 in 2014 and March 5 on 2015), 

at BBCH 31 (April 14 in 2014 and April 27 in 2015) and at BBCH 39 (May 8 in 2014 and 

May 26 in 2015). Directly plant-available mineral soil nitrogen (Nmin) at post-winter 

vegetation start (33 and 30 kg N ha
-1

 in 0-90 cm soil depth in 2014 and 2015, respectively) 

were considered at the first N dressing. All plots received the same doses of Patenkali (25% 

K, 6% Mg, 17% S), Triple-super-phosphate (20% P) and YaraVita Gramitel (150 g l
-1

 Mg, 50 

g l
-1

 Cu, 150 g l
-1

 Mn and 80 g l
-1

 Zn) to ensure a sufficient supply of plants with K (112.5 kg 

ha
-1

), Mg (21.8 kg ha
-1

), S (71 kg ha
-1

), P (51.5 kg ha
-1

), B (0.38 kg ha
-1

), Fe (0.9 kg ha
-1

), Mn 

and Zn (0.05 kg ha
-1

). Weed and pest control was according to best pratice. Four different 

water regimes were induced to the plots: i) no limitation in water supply (WS+), ii) early 

drought (WS31) from DOY 76-128 in 2014 and DOY 77-146 in 2015 and sufficient water 

supply thereafter, iii) early drought with approximate irrigation amounts of 1/3 of crop water 

use after the drought period (WS31 1/3), iiii) early drought with approximate irrigation 

amount of 2/3 of crop water use after the drought period (WS31 2/3).Weed and pest control 
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was conducted according to best practice. Plots were arranged in a two-factorial split-plot 

design with main treatment factor water and sub-factor nitrogen with four replicates (Table 1). 

Monitoring of growth stages (BBCH) were done according to Hack et al. (1992). Several 

growth stages were documented according to the development of the plants if minimum 50% 

of the plants in the plots reached a BBCH-stage. 

2.3. Rain-out-shelter 

To ensure that the crop grew under the intended water availability, rain-out-shelters were used 

to exclude rainfall. These shelters were based on a steel frame with the size of 3 by 3 meters. 

Plots were covered with a UV-permeable 200 µm thick foil (Polydress® SPR5, RKW SE, 

Michelstadt, Germany). Own measurements showed 84% permeability (manufacturer 

specification 86%) of light (wavelength 400-700 nm). The steel frame with foil was attached 

to 2 vertical steel bars of 2 m aboveground height which were installed in the soil down to 

depth of 0.8 m. The steel frame covers were movable so that they could be positioned at a 

variable height above the crop canopy. To prevent wind-driven rain to enter the plots, steel 

frame covers were positioned 0.5 m above the crop canopy and steel frame cover height was 

regularly adjusted during the growing season. The incoming rainfall intercepted by the rain-

out-shelter roof was guided with tubes from the roofs into soak aways (1m depth) at a 

distance of 2-3 m of the sheltered plots. For measurements, plant protection and fertilizer 

application shelters were moved up with a hand winch and afterwards repositioned again.  

In 2014 (DOY 76-128) 75 mm and in 2015 (DOY 77-146) 139 mm of rainfall were excluded 

from drought plots during the growth stage booting. Drought plots received no additional 

irrigation during that growth stage, while the well-watered plots received 90 mm irrigation in 

2014 and 84 mm in 2015. Only 6 mm irrigation were supplied to drought plots at DOY 104 in 

2014 and DOY 120 in 2015 after the second fertilizer application in order to ensure solution 

of surface-applied fertilizer. After the termination of early drought (DOY 128 in 2014 and 

DOY 146 in 2015) drought plots received irrigation according to the listed volumes for well-

watered plants (Table 1). 
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Table 1: Water regimes in 2014 (DOY 70-205) and 2015 (DOY 66-214) for 2 different N levels (N120 and 

N230). 4 different water regimes were induced to the plots: i) no limitation in water supply (WS+), ii) early 

drought (WS31) from DOY 76-128 in 2014 and DOY 77-146 in 2015, iii) early drought with an approximate 

irrigation amount of 1/3 of crop water demand after drought period (WS31 1/3), iiii) early drought with an 

approximate irrigation amount of 2/3 of crop water demand after drought period (WS31 2/3). Water regimes 

during the vegetative growing period (Veg. per.) and generative growing period (Gen. per.) were: no limitation 

in water (opt.), 6 mm watered (scares), approximately 1/3 of calculated crop water use watered (little) and 

approximately 2/3 of calculated crop water use watered (moderate).  

Year 
N-supply 

(kg N/ha
-1

) 

Water 

regime 

Water supply during Total 

available 

water (mm) 

Rainfall 

(mm) 

Irrigation 

(mm) Veg. per Gen. per. 

2014
*1 

 

120,230 

120,230 

120,230 

WS+ 

WS31 

WS31 1/3 

opt. 

scares 

scares 

opt. 

opt. 

little 

599 

482 

62 

359 

290 

- 

240 

192 

62 

2015
*2

 

120,230 

120,230 

120,230 

120,230 

WS+ 

WS31 

WS31 1/3 

WS31 2/3 

opt. 

scares 

scares 

scares 

opt. 

opt. 

little 

moderate 

517 

339 

48 

98 

307 

156 

- 

- 

210 

183 

48 

98 

*1
 from DOY 70-205 

*2
 from DOY 66-214 

Table 2: Parameters used to calculate ETa of winter wheat in 2014 and 2015 according to the FAO 56 approach 

(Allen et al., 2006). Data were either measured (meas.) or from literature.  

Parameter Unit Value Source 

Base temperature  °C 0 Ewert 1996 

Kcb max dim.less 1.15 Allen et al., 2006 

Plant height to vegetation start  m 0.05 measured 

Plant height during initial stage  m 0.1 measured 

Final plant height m 0.9 measured 

Rooting depth at vegetation start after winter  m 0.3 measured 

Maximum root depth in 2014, 2015 m 0.75, 0.9 measured 

Field capacity in 2014 and 2015 Vol. % 23 Mueller et al., 2015  

Water at wilting point in 2014, 2015 Vol. % 13,10 Mueller et al., 2015 

Soil evaporations depth m 0.15 Allen et al., 2006 

Uncovered soil fraction at vegetation start % / 100 0.95 Allen et al., 2006 

Uncovered soil fraction at end of stem elongation  % / 100 0.05 Allen et al., 2006 

Evaporations reduction factor  dim.less 0.55 Allen et al., 2006 
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We measured air temperature and relative air humidity with TinyTags (BMC, Pochheim, 

Germany), which were placed approximately 10 cm below canopy height. The Data logger 

were carried out in the sheltered and unsheltered plots by binding them at a plastic stick which 

was arranged approximately 10 cm below canopy height. Air temperature of sheltered plots 

was maximal increased by 1°C, air humidity was approximately 10% increased when 

comparing sheltered and unsheltered plots. Own results of phenology, biomass and grain yield 

showed a negligible effect on micro climate of the covered plots compared to uncovered plots 

(see appendix).  

Plots were 3x3 m in size with 0.5 m border lines. To keep plots well-watered irrigation tubes 

(Netafim, Hatzerim, Irsrael) were installed in every second sowing row. Drippers had a 

distance of 40 cm and supplied 6 l m
2
 per hour with a minimum operational water pressure of 

0.8 bar water deficit between estimated crop water use according to FAO 56 (Allen et al., 

2006) and rainfall were compensated by irrigation (see Table 1). Additional irrigation of 240 

and 210 mm in 2014 and 2015 respectively, was applied to experimental plots. Notably these 

high irrigation volumes are not applicable to farm conditions, but were designed to avoid 

water stress throughout the post-winter growth period. 

2.4. Field water balance and soil moisture measurements 

The field water balance (FWB) of treatments was calculated with the dual-coefficient 

approach according to FAO 56 (Allen et al., 2006) with parameters summarized in Table 2. 

To compare FAO 56 estimates of the FWB with measured FWB, the initial value of the 

calculated FWB at DOY 70 in 2014 and DOY 66 in 2015 were matched with the measured 

value of the FWB at that day. Measured FWB was derived from Frequent Domain 

Reflectrometry (FDR) soil moisture tube readings (Sentek, Stepney, Australia). Tubes were 

installed in both N in WS+ and WS31 treatments (n = 2) and soil water content was hourly 

monitored at 5 soil depths (10, 30, 50 70, 90 cm). 

2.5. Spectrometer measurements 

Spectrometer measurements were done at least weekly with a MMS1-Handspectrometer (tec5 

AG, Oberursel, Germany) in four replicates per plot with a perpendicular view angle during 

the whole growing season. Measurements were done in a distance of approximately 1.8 m to 

the plant surface with a minimum solar altitude of 35°. Measurements were taken from each 
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of the four directions (N, E, S ,W) of the plot corners to consider possible shading effects 

from sunlight.  

MMS1 measures wavelengths (R) from 400 nm to 1000 nm in 10 nm increments. The 

Normalized Difference Vegetation Index (NDVI) was calculated according to Rouse et al. 

(1974):  

NDVI = (R 800-R 670)/(R 800 + R 670) (1) 

and was used for calculation of Kcb-values (Eq. 2) modified to Er-Raki et al. (2007). NDVI 

values were linearly interpolated between measurement days and summed over the measuring 

period to calculate the cumulative NDVI (NDVIcum) 

Kcb = 1.15 [1 − (
NDVImax−NDVI

NDVImax−NDVImin
) ] (2) 

For our calculations we set Kcb-value at vegetation start (DOY 70 in 2014 and DOY 65 in 

2015) according to the Kcb initial value given from Allen et al., 2006 at 0.3 and integrated 

linearly until first Kcb-values derived from NDVI-measurements (DOY in 2014 83 and DOY 

69 in 2015). 

2.6. Leaf area index and canopy coverage  

Leaf area measurements were taken nearly weekly during the post-winter growth period with 

a Sun Scan SS1 (Delta-T Devices, Cambridge, Great Britain). Sun Scan SS1 based LAI 

estimates were compared with 31 destructive samples taken from 0.5 m
2
 ground surface area 

which were harvested during the growth period from BBCH 23-BBCH 39 (DOY 65-140 in 

2015, DOY 78-112 in 2014). Aboveground plant samples were separated into leaves and 

stems and LAI was measured with a Leaf Area Meter LI3000 A (Li-Cor, Lincoln, Nebraska 

USA). LAI derived from Sun Scan SS1 and in-situ leaf area index were linearly highly 

correlated (R
2
: 0.89) (Chapter 1). 

2.7. Grain yield and final biomass  

A core center area of 4 m
2
 of each plot was hand-harvested in July 24 and August 2 in 2014 

and 2015, respectively. The whole samples were dried in a forced oven at 70°C to constant 
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weight and weighed. After drying samples were threshed with a combine harvester Zürn 150 

(Waldenburg, Germany).  

2.8. Yield reduction factor 

The yield reduction factor Ky describes the relationship between grain yield and crop water 

use which is a proxy for water use efficiency (Smith and Steduto, 2012). Intensity of drought 

is expressed as the ratio of actual ETa and ETx of a reference plot with no limitation in water 

supply. Under optimal growth conditions actual grain yield (Ya) is equal to maximal 

attainable yield (Yx). If the water requirements of the plants are not fulfilled, plants cannot 

achieve the maximal grain yield (Ya<Yx) (Doorenbos and Kassam, 1981). In order to quantify 

the extent of water stress the linear regression between relative yield reduction and relative 

ET-decrease is plotted and Ky is the slope of this relationship. Ky < 1 means a proportional 

lower decrease of yield due to water stress. Ky > 1 means a proportional higher decrease of 

grain yield. The yield reduction factor Ky is calculated according to Doorenbos and Kassam 

(1981):  

(1-
Ya

Yx
) = Ky (1-

ETa

ETx
) (3) 

ET and yields of N230 plots with no limitation in water (WS+) were set as reference Yx and 

ETx. 

2.9. Statistical analysis 

Regression analysis (relationship between water index and biomass) and analysis of variance 

(ANOVA) (test of significance of N supply and year effects on parameters) were analyzed 

with R (R Core Team, 2015). Due to limited number of rain-out-shelters, there was no 

unfertilized control (N0) in all water requirements. Statistical analysis was only completed for 

plots that received N120 and N230 in 3 water requirements (WS+, WS31, WS31 1/3) in 2014 

and 4 water requirements (WS+, WS31, WS31 1/3, WS31 2/3) in 2015.  

The model was specified as: fit → lme (grain ~ n * water, tmp, random = ~ 1/year/water/n) 

Model performance of FWB calculations was evaluated with the root mean square error 

(RMSE) and the efficiency index (Eff.) (Chai and Draxler, 2014; Nash and Sutcliffe, 2010).  
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3. Results 

Induced early drought (GDD 968°C-1544°C in 2014 (Fig. 1a) and 866°C-1522°C in 2015) 

resulted in a decrease of soil water content. The lowest measured FWB was 150 l m
-3

 
 
(GDD 

1550°C) of plots where drought was induced compared to well-watered plots (Fig. 1b) where 

measured FWB at that point was approximately 200 l m
-3

. 

 

Figure 1: Calculated (grey line) and measured (black line) field water balance (FWB) (l m
-2

) for plots with 

induced early drought (a), where drought was induced during GDD 968°C-1544°C, and well-watered plots (b) 

both with high nutrient supply (230 kg N ha
-1

) in 2014. Root mean square (RMSE) and Efficiency (EF) from 

measured FWB compared to calculated FWB was: (a) 1.0 and 0.90, (b) 0.7 and 0.88 (see Table 3) 

The calculated FWB with Kcb-values derived from NDVI-measurements showed almost the 

same temporal trend of soil water content in early-drought and well-watered plots indicating 

the suitability of predicting the FWB with NDVI measurements in combination with the FAO 

56 approach (Table 1). For both, water and N treatments, RMSE varied from 0.8 (N120 in 

2015) to 1.5 (N230 in 2015) and the efficiency was > 0.5 except of treatment N120 WS+ in 

2015. 

Table 3: Statistics analysis of calculated soil water content and measured soil water content by FDR-techniques 

of winter wheat growing under 2 different nitrogen levels (N120, N230) in 2 years field experiment (2014 and 

2015) grown under well-watered (WS+) and early drought (WS31) conditions. RMSE: root mean square error 

(mm day
-1

) and efficiency (Eff.) (no units).  

Year 

Water 

requirement 
WS+ WS31 

Statistical 

parameter 
N120 N230 N120 N230 

2014 
RMSE 

Eff. 

1.5 

0.85 

0.7 

0.88 

1.4 

0.91 

1.0 

0.90 

2015 
RMSE 

Eff. 

1.5 

0.30 

1.0 

0.58 

0.8 

0.91 

1.5 

0.52 
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The drought stress index (KS-value) of early drought plots, calculated according to FAO 56, 

dropped from 1 (no stress) to 0 (extreme stress) (Fig. 2) during the developmental stages 

BBCH 29 to BBCH 39. First onset of drought (decrease of KS-values) was calculated for 

1304°C in 2014 and 1286°C in 2015, respectively. Until re-watering of drought plots at 

BBCH 39 (1556°C in 2014 and 1628°C in 2015) drought was more pronounced in 2015 than 

in 2014. While the shelters were built up and removed in both years at the same phenological 

stage (post winter vegetation start until BBCH 39), the drought period in 2014 lasted for 

252°C, while the drought period in 2015 was longer (342°C). KS-value of well-watered plots 

in 2014 and 2015 were almost always 1.0 during the post-winter vegetation growth period. 

Regular visual inspection of plots during both years indicated that leaf rolling was observed at 

KS-values of roughly 0.6.  

 

Figure 2: Measured field water balance (FWB) in 2014 (a) and 2015 (b) for well-watered plots (black dotted line 

(no drought)) and plots with induced early water stress (grey dotted line (drought)). Related drought stress index 

(KS-value) ranging from 0-1 for well-watered plots (black line (no drought)) and water stressed plots (grey line 

(drought)). All plots received 230 kg N ha
-1

.  

Stress-induced reduction of biomass, either caused by the lack of nitrogen or water, was 

reflected by NDVI and LAI measurements during the post winter growth period (Fig. 3). 

Cumulative NDVI and LAI were positively correlated with final shoot biomass (R
2
: 0.94 and 

0.89). A single regression function between shoot biomass and cumulative NDVI ( NDVI) 

did apply across all N supply levels and to plants grown under drought conditions or when 

well-watered (Fig. 3). Leaf Area Duration ( LAID) of well-watered plots responded in the 

same way to changes of shoot biomass like plots grown under conditions of early drought. 

Due to reduced growth under drought stress, maximum values for  NDVI (> 85) and  

LAID (> 330) could only be reached by plots with ample water supply. 
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Figure 3: Regression for cumulative NDVI ( NDVI) and final shoot biomass (t ha
-1

) of well-watered (closed 

symbols) and drought stressed (open symbols) plots in 2014 (circles) and 2015 (square). NDVI and LAI were 

measured during DOY 83-192 for three different N-levels (N0, N120 and N230). Regression between 

cumulative Leaf Area Duration ( LAID) and shoot biomass (t ha
-1

) for the same duration and treatments. 

Table 4: Calculated cumulative soil evaporation (E) and transpiration (T) according to FAO 56 and based on 

NDVI measurements. Calculated cumulative evapotranspiration (ET) is the sum of E and T. E% is the calculated 

share of E relative to ET. Calculations for days of year (DOY) 66-205 and 70-205 in the years 2014 and 2015, 

respectively. WS31 2/3 was tested in 2015, in 2014 it was not applicable (n.a.). 

 Water supply 
N120 N230 

2014 2015 2014 2015 

Evaporation 

WS+ 51 116 42 82 

WS31 29 42 27 42 

WS31 2/3 n.a. 24 n.a. 24 

WS31 1/3 2 24 2 25 

Transpiration 

WS+ 319 310 350 381 

WS31 245 278 263 307 

WS31 2/3 n.a. 196 225 253 

WS31 1/3 172 192 n.a. 237 

Evapotranspiration 

WS+ 370 445 392 462 

WS31 274 320 290 350 

WS31 2/3 n.a. 220 n.a. 277 

WS31 1/3 174 216 227 261 

E% 

WS+ 14 26 11 18 

WS31 11 13 9 12 

WS31 2/3 n.a. 11 n.a. 9 

WS31 1/3 1 11 1 10 

 

Evapotranspiration of all treatments was higher in 2015 than in 2014 (15%, 17% and 13% for 

N230 and 17%, 14% and 13% for N120). Highest transpiration and evapotranspiration was 

calculated for plots with high nitrogen supply (N230) and no limitation in water supply 
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(WS+) in both years. High fertilized plots used less water via evaporation compared to low N 

fertilized plots (Table 4). Differences between N230 and N120 in E were higher (9 mm and 

34 mm in 2014 and 2015, respectively) for treatment WS+, while estimated E under drought 

conditions (WS31 1/3) were mostly similar for treatments N230 and N120 (≤ 1 mm). The 

share of E on ET was highest under unlimited water supply without fertilizer use and 

decreased with the (higher) use of fertilizer and less water supply (WS31 1/3). 

In both years, the highest grain yields and shoot biomass, regardless of water supply levels, 

were reached by plots with highest N supply. WUEy and WUEB were highest with high N 

supply (Table 5). 

Table 5: Grain yield (14% residual water content), shoot biomass (0% residual water content), derived from field 

trials in 2014 (day of year 66-205) and 2015 (day of year 70-205), agronomic water use efficiency (WUEy) and 

biomass water use efficiency (WUEB) for 3 nitrogen rates N0 (0 kg N ha
-1

) N120 (120 kg N ha
-1

) and N230 (230 

kg N ha
-1

) under conditions of early drought (WS31) with no rainfall and irrigation during DOY 76-128 in 2014 

and DOY 77-146 in 2015, respectively, early drought with approximately 1/3 (WS31 1/3) or 2/3 (WS31 2/3) of 

calculated crop water use after early drought and well-watered (WS+) plots. 

Year Water supply 
N-supply 

(kg N ha
-1

) 

Grain yield
*1 

(t ha
-1

) 

Shoot 

biomass
*2 

(t ha
-1

) 

WUEy WUEB 

2014 

WS+ 

 

WS31 

 

WS31 1/3 

 

120 

230 

120 

230 

120 

230 

9.8 ± 0.8 

10.4 ± 0.5 

7.2 ± 0.8 

8.8 ± 1.2 

5.7 ±1.1 

7.1 ±0.7 

15.3 ± 1.4 

18.2 ± 0.7 

11.8 ± 1.3 

13.4 ± 0.3 

11.0 ± 1.6 

12.2 ± 1.0 

2.6 

2.7 

2.6 

3.0 

3.3 

3.1 

4.1 

4.6 

4.3 

4.6 

6.3 

4.7 

2015 

WS+ 

 

WS31 

 

WS31 1/3 

 

WS31 2/3 

 

120 

230 

120 

230 

120 

230 

120 

230 

8.9 ± 0.5 

10.5 ± 0.8 

6.3 ± 0.8 

8.6 ± 1.6 

5.5 ±1.2 

7.4 ±0.9 

5.3 ±0.9 

8.2 ±0.9 

14.6 ± 0.9 

18.8 ± 1.3 

11.3 ± 1.2 

14.4 ± 1.9 

8.8 ± 1.6 

11.4 ± 1.3 

9.3 ± 2.1 

12.3 ± 1.2 

2.0 

2.3 

2.0 

2.5 

2.5 

2.8 

2.4 

3.0 

3.3 

4.1 

3.5 

4.1 

4.1 

4.4 

4.2 

4.4 

*1
 14% residual water content 

*2
 0% residual water content 
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Table 6: Differences between N treatment means (µ) and confidence-interval (lower limit, lwr and upper limit, 

upr; :0.05). Treatment means are pooled over both years.  

 N230-N120 95% Confidence interval 

Parameter Water requirements µ lwr upr 

Grain yield 

230-120 

WS31-WS+ 

WS31 1/3-WS+ 

WS31 2/3-WS+ 

WS31 1/3-WS31 

WS31 2/3-WS31 

WS31 2/3-WS31 1/3 

1.69 

-2.27 

-3.49 

-3.12 

-1.22 

-0.85 

0.38 

1.03 

-3.14 

-4.36 

-4.18 

-2.09 

-1.92 

-0.69 

2.34 

-1.40 

-2.62 

-2.05 

-0.36 

0.22 

1.44 

ET 

230-120 

WS31-WS+ 

WS31 1/3-WS+ 

WS31 2/3-WS+ 

WS31 1/3-WS31 

WS31 2/3-WS31 

WS31 2/3-WS31 1/3 

33.78 

-107.13 

-196.93 

-194.22 

-89.80 

-87.09 

2.71 

13.40 

-139.58 

-229.38 

-236.04 

-122.25 

-128.91 

-39.11 

54.16 

-74.68 

-164.48 

-152.40 

-57.35 

-45.26 

44.54 

Biomass 

230-120 

WS31-WS+ 

WS31 1/3-WS+ 

WS31 2/3-WS+ 

WS31 1/3-WS31 

WS31 2/3-WS31 

WS31 2/3-WS31 1/3 

2.63 

-3.99 

-5.79 

-5.83 

-1.80 

-1.84 

-0.04 

1.64 

-5.57 

-7.37 

-7.77 

-3.38 

-3.77 

-1.97 

3.62 

-2.41 

-4.21 

-3.90 

-0.22 

0.10 

1.90 

WUEy 230-120 0.23 0.05 0.41 

 

Parameter 
Pr (< F) 

N water N * water 

Grain yield 0.006 0.021 0.325 

ET 0.022 0.010 0.390 

Biomass 0.006 0.026 0.489 

WUEy 0.045 0.050 0.295 

WUEB 0.340 0.273 0.423 

 

Water and N deficiency decreased yield and evapotranspiration. Yield reduction caused by 

water stress was more pronounced (higher Ky-value) under reduced N-supply compared to 

high N-supply for all drought treatments (Table 7). Due to the strength of drought, differences 

in Ky were calculated (Fig. 4). A short early drought stress (WS31) showed a stronger 

drought-induced yield reduction compared to an early drought with suboptimal water supply 
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after the early drought period (WS 31 1/3) (Table 7). This effect was more pronounced for 

treatment N120 compared to N230. Focusing on the same duration of drought stress (WS31 

1/3 and WS 31 2/3 in 2015) from vegetation start after winter until harvest, yield reduction of 

higher stressed plots (WS31 1/3) reduced ET nearly in the same amount (relative changes) 

like the relative change of yield, so that Ky was similar. 

 

Figure 4: Influence of nitrogen and water supply on the relative evapotranspiration deficit and the relative yield 

decrease of winter wheat in 2014 (black circles) and 2015 (grey circles). Data are pooled over three N-rates (N0, 

N120, and N230).  

Table 7: Influence of water supply and nitrogen supply on evapotranspiration (ETa) compared to 

evapotranspiration of well-watered plots (ETx) and on grain yield (Ya) compared to yield of well-watered plots 

(Yx) in 2014 and 2015. Derived yield reduction factors (Ky) calculated as 1-(Ya/Yx)/1-(ETa/ETx). 

Year Water supply N-supply 1-(ETa/ETx) 1-(Ya/Yx) Ky 

2014 

WS31 
120 0.25 ± 0.06 0.26 ± 0.12 1.0 ± 0.26 

230 0.26 ± 0.03 0.19 ± 0.04 0.75 ± 0.12 

WS31 1/3 
120 0.53 ± 0.13 0.42 ± 0.13 0.78 ± 0.12 

230 0.42 ± 0.08 0.32 ± 0.09 0.76 ± 0.18 

2015 

WS31 
120 0.28 ± 0.08 0.28 ± 0.09 1.02 ± 0.14 

230 0.24 ± 0.03 0.19 ± 0.11 0.76 ± 0.37 

WS31 2/3 
120 0.51 ± 0.10 0.38 ± 0.11 0.74 ± 0.07 

230 0.43 ± 0.06 0.29 ± 0.05 0.68 ± 0.06 

WS31 1/3 
120 0.50 ± 0.13 0.40 ± 0.09 0.80 ± 0.07 

230 0.40 ± 0.07 0.22 ± 0.03 0.55 ± 0.05 
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Figure 5: Influence of nitrogen supply (N0, N120 and N230) on grain yield and cumulative transpiration in 2014 

and 2015 under well-watered conditions (a) and early drought (b). 

Estimates of transpired water were linearly correlated to grain yield of plots which received 

three different N rates (Fig. 5). Under well-watered conditions (Fig. 5a) unfertilized control 

plots (cumulative transpiration ranged from 134 mm-240 mm) had a less efficient use of the 

transpired water converted into grain yield compared to N120 and N230 between which 

almost no differences were found. Surprisingly, the unfertilized control (Fig. 5b) tended to be 

more efficient under drought compared to medium (N120) and high (N230) fertilized plots. 

By comparing N120 to N230 a relative increase in grain yield caused by nitrogen, is followed 

by a similar relative increase of transpiration, so that the slope of the regression between grain 

yield and cumulative transpiration was almost equal. 

4. Discussion  

4.1 Impact of rain-out-shelter on radiation, relative air humidity and temperature 

To investigate drought-related yield reduction in a humid temperate climate in North West 

Europe is challenging due to the frequency of rainfall. To make sure in our experiments that 

the intended water supply levels could be implemented in the field plots, we installed rain-

out-shelters to prevent plots from rainfall during defined growth periods.  

The main-driver for yield reduction of sheltered plots was shortage of water. However, it must 

be kept in mind that yield reduction may also have been caused by microclimatic effects of 

the rain-out-shelter. Reduced photosynthetically active radiation (PAR) (22%) caused by the 

usage of a rain-out-shelter reduced grain yield of winter wheat between 6.4 and 9.9% (Mu 

et al., 2010). A systematic comparison of rain-out-shelter treatments in 2013 indicated no 

yield differences between rain-out-shelter plots and adjacent plots which received ambient 
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radiation throughout the growing season (see appendix) and differences in relative air 

humidity and temperature were considered marginal. Based on the preliminary study in 2013, 

(see appendix) the shelters are considered as a suitable option to induce growth stage specific 

drought spells in a humid temperate climate with almost saturated soil moisture conditions 

after winter in North West Europe and to investigate drought-related reactions in plant 

growth, water use and yield.  

4.2 Use of NDVI under varying nitrogen supply and water shortage 

The prediction of ETa based on crop coefficients (Kc) and drought stress coefficients (Ks) as a 

function of growth period is very important for determining crop water use and the scheduling 

of irrigation at a local scale (Allen et al., 2006). However, information about Kc, Ks and ETa 

of winter wheat grown under drought conditions in a humid climate in North West Europe are 

scare (Schittenhelm et al., 2014). Estimates of crop coefficients derived from NDVI are 

possible due to the generally close correlation between canopy size and transpiration. 

Advantages of using vegetation index-based crop coefficients are the ability to account for 

variation in plant growth due to weather conditions, differences in sowing dates (Tasumi and 

Allen, 2007; Er-Raki et al., 2010) or post-winter vegetation start, plant density, cultivars, 

pests and nutrient supply (Hunsaker et al., 2007; Pocas et al., 2015). NDVI is one of the most 

frequently used vegetation index and several studies showed good correlations of NDVI with 

plant growth parameters, e.g. in wheat (Pinter et al., 2003), measured fraction of soil cover 

with plants (Er-Raki et al., 2007), and leaf area (Duchemin et al., 2006; Chattaraj et al., 2013). 

We used NDVI for estimating Kcb values as it was the only option to calculate crop water use 

under different growth conditions (here varying N and water supply) under field conditions. 

Confirming our results that NDVI values derived from spectral measurements were affected 

by N and water supply in both years (Fig. 3) Hunsaker et al. (2007) and Chapter 1 have shown 

a successful use of NDVI based Kcb values for calculating crop water use of different with N 

supplied plots. ). Chattaraj et al. (2013) illustrated that both, wheat growth stage length and 

the maximum Kcb value, were affected by different water management and Low N supply 

and drought decreased green canopy cover and induced earlier onset of senescence. These 

differences in NDVI and LAID were consistently reflected in final shoot biomass (Table 5). 

NDVI-based estimates of FWB showed good correlations with the measured FWB (Table 3). 

With this approach crop water use could be estimated for crop stands influenced by drought or 

the lack of nitrogen. We conclude that such estimates of ET could be potentially used for an 
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integrated irrigation recommendation or to calculate water use efficiency of field sites which 

differ in N availability. It would be interesting to further investigate crop water use of plants 

that are limited in other nutrients (such as P, K, Mg, or S) and if a remote sensed based 

estimate of crop water use could lead to comparably promising results as indicated for N 

supply in this study. In summary, higher N supply resulted in increasing transpirational crop 

water use, but in a more efficient way, which resulted in higher grain yields under drought 

conditions compered to low fertilized plots. 

Drought induces a cascade of physiological and morphological reactions of plants. Short-term 

reactions are the reductions of cell division, cell expansion, and stomatal conductance. Long-

term reactions are shifts in phenology (e.g. drought escape via shortening of growth phases) 

and alterations of carbon allocation between leaves, stems and roots (e.g. preference of root 

growth). Under extended drought periods, plants skip their ambitions for maximizing growth 

and shift to a growth strategy aiming at grain formation and survival (Doorenbos and Kassam, 

1981; Larcher, 2001). The extent of drought-induced yield reduction of winter wheat in 

temperate climate is influenced by soil type (water holding capacity) and soil water content at 

post-winter vegetation start. High initial soil moisture is considered essential for high grain 

yields of winter wheat which faces transient drought stress (Bruns and Croy, 1983; Eck, 

1988). Schittenhelm et al. (2014) investigated the impact of extended drought (from tillering 

to maturity) on grain yield in a comparable climate zone and experimental set-up (North 

Germany, light-textured soil, rain-out-shelter) and found a 63% decrease of grain yield 

compared to a well-watered control treatment. We found a 32% (2014) and 30% (2015) 

drought-related decrease of grain yield compared to the well-watered control. Our results are 

in line with the findings of Schittenhelm et al. (2014) but yield depressions were not as great 

as treatment WS31 1/3 which received some ‘life-saving’ irrigation after flowering stage. 

That scenario of extended drought from tillering to maturity represented a worst-case 

scenario.  

Treatment WS31 allowed us to quantify drought effects on grain yield during the distinct 

phenological stage of booting. Compared to well-watered plots grain yields were reduced by 

1.6 (N230) t ha
-1

 and 2.6 (N120) t ha
-1

 in 2014 and 1.9 (N230) t ha
-1 

and 2.6 (N120) t ha
-1 

in 

2015. Although several field studies illustrated drought-related yield reductions in winter 

wheat (Aparicio et al., 2000; Dencic et al., 2000), the effect of a distinct drought stress during 

booting stage in combination with N supply has not been reported for winter wheat in NW 
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Europe. Geesing et al. (2014) highlighted the relevance of interactions between rainfall, water 

holding capacity and N supply and indicated that a higher N-supply under drought conditions 

can potentially support grain yield formation due to better root growth and exploitation of 

water at greater soil depths. We could show that yield reduction was less with high compared 

to low N supply (N230 versus N120) irrespective of water stress treatments (Table 7). These 

results are in line with Brown (1971) and Nielsen and Halvorson (1991), however the reasons 

of positive N effects likely are not solely related to better access to water at deeper soil layers 

but due as well to compensatory stress responses of wheat when water was supplied after the 

transient drought stress. The comparison between treatment WS31 with optimal water supply 

after transient drought and treatment WS31 1/3 with low water supply afterwards allowed us 

to illustrate such compensatory effects of wheat yield formation. Plants that were stressed 

after early drought (WS31 1/3) lost compared to WS31 additional 1.7 (N230) t ha
-1 

and 1.5 

(N120) t ha
-1 

grain yield in 2014 and 1.2 (N230) t ha
-1 

and 0.8 (N120) t ha
-1

. 

Firstly, in our study, plants benefited from a fully water-statured soil at post-winter vegetation 

start. This water, in combination with nitrogen, was used to build-up biomass until water 

became scarce and growth was reduced. According to Blum (1998) grain yield could partially 

be built up by stem reserve mobilization. Secondly, plants that were exposed to an early 

drought and got re-watered afterwards reacted with a reduced extent of tiller reduction after 

flowering resulting in an increased number of grain-bearing stems at harvest and showed a 

visible longer stay-green of the plants, so that these plants were able to increase the number 

and the weight of kernels and partially compensated that the number of ears per square meter 

were decreased compared to well-watered plants. This is in line with Gholamreza et al. 

(2013). Highest nitrogen supply could not avoid drought induced yield reduction, but high 

fertilized plots realized the highest yield under drought (compared to low and unfertilized 

plots).  

Estimates of crop water use of wheat vary between 200 and 500 mm of ET depending on the 

climatic growth conditions and grain yield potential (Asseng, 2012). Doorenbos and Kassam 

(1981) showed that drought-induced yield reduction intensity depends on the growth stage 

when drought occurs. The most sensitive growth stage of wheat, in terms of drought stress, is 

around flowering with a yield reduction factor (Ky) of 0.6. Less sensitive are the yield 

formation period (Ky 0.5) and the period of vegetative growth (Ky 0.2). A longer drought 

period resulted in a more severe yield reduction when the evapotranspiration deficit was 
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increased. If drought intensity was increased, while drought duration was equal, Ky did not 

change. Current studies dealing with sensitivity of growth stages to drought have been 

contrary to the findings of Doorenbos and Kassam (1981) (Asseng, 2012). Turner (1997) 

found, that the growth period of booting and flowering until grain filling is the most sensitive 

one to drought. During these periods grain number is defined and with that final grain yield. 

Fujun et al. (1996) found lower Ky values compared to this study, with Ky values of 0.8-1.0 

(heading until flowering) and a Ky for 0.6-0.7 from vegetative growth until heading. Our 

results showed that an early drought (WS31) increased Ky compared to an extended drought 

scenario (WS31 1/3). However, the concept of a linear response between relative yield 

decrease and relative evapotranspiration deficit according to Doorenbos and Kassam (1981) 

was supported by the findings of this study (Fig. 4). In the literature Ky-values are only 

available for plants without limited nutrient supply. So only results of treatment N230 could 

be compared with that of Doorenbos and Kassam (1981). Comparing results of N230 and 

N120 showed that Ky-values of N120 plots were higher compared to those of N230 implying 

that lower N supply lead to higher yield reduction under drought. The beneficial effects of N 

supply on grain yield under transient drought, as indicated by these results, underline the 

requirements to identify the optimal N rate under drought conditions. In this context it appears 

that the linear regression between Ks and Ky is potentially useful for a drought-induced yield 

reduction estimate during the booting growth stage and related adaptation of the third N 

fertilizer application. 

5. Conclusion 

Results of this study indicate that a higher N supply, compared to low N supply, increased 

grain yields even under early and extended drought conditions in a humid temperate climate 

in NW Europe. These findings are in contrast to findings in arid environments where a higher 

N supply negatively affected grain yield compared to low N supply. We attribute this positive 

N effects to conditions of almost fully saturated soils at post-winter vegetation start and the 

ability of wheat to compensate yield reduction during booting stage by increased number of 

ear-bearing stems, higher grain kernel weight and delayed senescence, if wheat received water 

during flowering and grain filling. 
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General Discussion (Synopsis)  

Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI 

measurements in a temperate humid climate of NW Europe 

Winter wheat is not regularly irrigated in the NW-European climate, although transient 

droughts occur and irrigation would be profitable on light-textured soils (El Chami et al., 

2015). The FAO56 dual coefficient approach is widely used for irrigation management and 

estimates of crop water use (Allen et al., 2011; Peireira et al., 2015) and local adjustments of 

stage duration and basal crop coefficients are recommended (Ko et al., 2009; Allen et al., 

2011). Information about in-situ crop growth is required for estimating temporal dynamics of 

ground cover and optical methods are increasingly used for this purpose (Lopéz-Urrea et al., 

2009; Nielsen et al., 2012). A ground cover of 80% is assumed to indicate the transition point 

between the developmental and mid-stage in the FAO56 approach (Allen et al., 2006). The 

most suitable proxy of ground cover for agricultural crops is LAI, which was measured 

destructively and non-destructively and could be predicted by the NDVI as indicated by the 

quadratic-plateau relationship between both parameters. In the FAO56 approach, temporal 

dynamics of ground cover are predicted by linear extrapolation between vegetation start 

(>10% ground cover) to the mid stage while NDVI allows for site-specific consideration of 

crop growth. This is relevant as the growth of winter wheat in temperate-humid climate 

exhibits a large year-to-year variability due to potential frost damage during winter and 

variable onset of growth after winter. Tabulated data of stage lengths are therefore difficult to 

apply under these conditions as time of cardinal events (canopy closure, onset of senescence, 

maturity) was variable and the approach of Fischer et al. (2000) in which fixed portions of the 

total post-winter growth period are allocated to developmental stages cannot be used for 

irrigation as it relies on information about final harvest date. NDVI-based estimates of 

seasonal crop water use of well-watered winter wheat with 230 kg of plant available N per 

hectare were compared with the FA approach. Differences in evapotranspiration (ET) 

estimates between both approaches were rather small with 26 mm less water in 2014 and an 

additional water demand of 33 mm in 2015 compared with the FA approach. Both approaches 

of seasonal ET dynamics agreed with the measured FWB data and our results are in line with 

Sanchez et al. (2012), who compared NDVI-derived Kcb-values with measured soil moisture. 

Discrepancies between measured and modelled data can be partially explained by systematic 
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offsets between calculated (FA- and NDVI-approach) and measured FWB. For short time 

periods (after bigger rainfall events, e.g. in 2014), the measured soil water content was higher 

than the total available water (TAW) and soils drained back to ‘realistic’ TAWs. In summary, 

the NDVI appears as a promising monitoring parameter for crop development during the 

growth period. Furthermore, it gives the opportunity to calculate online and not 

retrospectively like the FA-approach crop water use and water demand under non-optimal 

growth conditions such as water or nutrient stress. 

ET and transpiration reacted sensitively to changes in stage duration. The lengths of stage 

durations of winter wheat are defined by photoperiod and temperature and can be successfully 

predicted for NW European climates (Ewert, 1996). The use of tabulated data of stage lengths 

(FA approach) is recommended if no site-specific information is available or required (such as 

in national water footprint accounting, e.g. Chapagain et al., 2004), while the NDVI-based 

estimates of Kcb do not require stage lengths and are, therefore, closer to year- and site-

specific crop growth. The post-winter growth of winter wheat is difficult to predict in terms of 

the onset of growth and canopy cover both of which are crucial information for ET estimated 

during the initial growth stage. These particular environmental conditions, with mild to very 

cold winter seasons and potential frost damage during spring, renders the application of 

tabulated stage lengths and Kc values and clearly indicated that optical information such as 

NDVI should be preferred. Estimated ET of the two years varied between 377 and 463 mm 

and, related to grain yield, gave agronomic water-use efficiencies (WUEy) between 1.93 and 

2.76 g l
-1

. These estimates are high, but not unrealistic compared with estimates of WUEy of 

winter wheat from a global survey (Zwart and Bastiaanssen, 2004). These results indicate that 

winter wheat, not limited by water and nutrients (and well protected from diseases) was very 

water use efficient. We speculated that year differences in WUEY could be explained by 

climate differences as the same variety and sowing density was used in both years. 

Calculated field water balance (FWB) based on the NDVI-approach showed a good 

correlation with the measured FWB, but it must be kept in mind that other parameters like soil 

texture (and with that water holding capacity of the soil) are influencing the calculated FWB. 

For further improvements of irrigation decision tools, information about soil texture 

distribution over depth and effective rooting depth would be helpful to increase the accuracy 

of FWB estimates. Further research is also needed for a better prediction of post-winter 
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vegetation start as reactions of the NDVI signal were regularly seen when plants already had 

started to grow. Alternative indices might be better suited to predict early growth stages.  

NDVI-based estimates of evapotranspiration of winter wheat indicate positive effects of 

N fertilizer application on agronomic water-use efficiency 

The NDVI approach is the only option for estimating basal crop coefficients (Kcb values) and 

to calculate crop water use under non-optimal growth conditions (here limited N supply) 

under field conditions. Confirming results of Hunsaker et al. (2007) that wheat growth stage 

length and the maximum Kcb value were affected by different N management in wheat our 

results similarly showed that Kcb values derived from NDVI measurements were affected by 

N supply in both years. Low N supply decreased maximal Kcb values, delayed canopy closure 

and induced earlier onset of senescence. These differences in NDVI were consistently 

reflected in final shoot biomass (Fig. 3), indicating that cumulative NDVI was a suitable 

index of carbon gain over the post-winter growth period. Efficient water management in 

agriculture is key for sustainable water use and nutrient management of cropping systems is 

closely related to water resources for two reasons, crop water use and potential pollution of 

freshwater by overdosing of nutrients. Intensive agriculture, including fertilizer application, 

has been identified as a threat to regional long-term water availability of cropping systems 

(Liu et al., 2015). However, yield of wheat, rice and maize in a global survey, were shown to 

positively correlate with agronomic water-use efficiency (Zwart and Bastiaanssen, 2004), 

indicating that low-input agriculture is less water-use efficient when expressed as product per 

unit of ET, indicating a trade-off between water conservation and efficient water use for food 

production. Results of our study indicate that increases in ET due to N applications were 

small for winter wheat in temperate humid climate, as the decrease of T under low N was 

strongly off-set by corresponding increases of evaporation. This finding cannot be 

extrapolated to drier climates with less rainfall events as high evaporation in the present study 

was realized by frequent wetting, keeping the soil more or less continuously in the high 

evaporation stage 1 (Ritchie, 1972). Bare soil evaporation is controlled by available energy, 

RH and wind speed, topsoil water content and canopy cover. It can be expected that estimates 

of E are improved by measurements of the fraction of soil wetted and exposed to direct 

radiation (Peirera et al., 2015), thereby adding more accuracy to the estimation of E and total 

ET. Johnson and Troust (2012) found a good linear correlation between NDVI and canopy 
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cover of vegetable crops by comparing NDVI measurements and estimates of canopy cover 

derived from images taken by a digital ground camera. NDVI or LAI are suitable to estimate 

the fraction of canopy cover particularly under conditions of nutrient limitation and should be 

preferred over tabulated data of crop coefficients. Compared with winter wheat, the relevance 

of monitoring in-situ canopy development will be even higher in row crops with extended 

periods of incomplete ground cover. Comparison with measured evaporation rates and the 

field water balance indicate that both methods were equally suitable to predict ET but the 

comparison with field water balance data is not straightforward as the extent of drainage and 

capillary rise remains unknown under the experimental conditions (high rainfall and 

supplemental irrigation). Our results indicate that the proportion of evaporation relative to ET 

decreased with N supply from >60% to <30% until BBCH 49 while the same transpirational 

WUE was assumed for the three N treatments. If N fertilizer application reduces E while T 

increases in proportion to dry mass gain, N application effects on WUE would be large in 

‘high E’ environments such as humid climates with frequent soil surface wetting and small (or 

even absent) in ‘low E’ environments such as in arid climates with subsurface irrigation. 

Rainfall and irrigation in our experiment generated a humid environment so that increases in 

ET from N0 to N230 were small compared to N-induced yield increases, resulting in a 

substantially lower WUEY of N0 compared to N120 and N230. Differences in ET and WUEY 

between moderate (N120) to high (N230) N supply were small in both years. Consequently, 

positive N effects on WUEY could be explained by a shift from evaporation to transpiration 

and are in line with other field studies which were conducted in arid and semiarid 

environments (e.g. Eck, 1988; Zhang et al., 1998; Asseng et al., 2001). An increase of WUEY 

via increases in HI could not be confirmed. Wheat in treatment N230 produced more biomass 

than in treatment N120 but failed to increase correspondingly yield components, such as 

number of ears, spikelets per ear or thousand grain weight (data not shown). WUEY of N230 

was not significantly higher than that of N120, while differences in WUEB between both 

treatments were more obvious. This finding suggests that high N supplied plants tended to 

produce ‘luxury’ leaf and stem reserves and that high N rates do not automatically guarantee 

the highest WUEY. 

As nutrient limitation can strongly affect plant growth, it would be interesting to investigate 

crop water use of plants that are limited by other nutrients (such as P, K, Mg, or S) and if a 



 

97 

remote sensing based estimate of crop water use could lead to comparably promising results 

as indicated for N supply in this study. 

NDVI-based estimates of evapotranspiration of winter wheat indicate positive effects of 

N fertilizer application on agronomic water-use efficiency under drought conditions 

With the NDVI-approach crop water use could be estimated for crop stands influenced by 

drought or the lack of nitrogen. We conclude that such estimates of ET could be potentially 

used for an integrated irrigation recommendation or to calculate water use efficiency of field 

sites which differ in N availability. Our results showed, that higher N supply resulted in 

increasing transpirational crop water use, but in a more efficient way, which resulted in higher 

grain yields under drought conditions compered to low fertilized plots. We could show that 

yield reduction was less with high compared to low N supply (N230 versus N120) 

irrespective of water stress treatments (Table 3). These results are in line with Brown (1971) 

and Nielsen and Halvorson (1991), however the reasons of positive N effects likely are not 

solely related to better access to water at deeper soil layers but due as well to compensatory 

stress responses of wheat when water was supplied after the transient drought stress. But why 

could high fertilized plots cope better with drought compared to low fertilized plots? Firstly, 

in our study, plants benefited from a fully water-statured soil at post-winter vegetation start. 

This water, in combination with nitrogen, was used to build-up biomass until water became 

scarce and growth was reduced. According to Blum (1998) grain yield could partially be build 

up by stem reserve mobilization. Secondly, plants that were exposed to an early drought and 

got re-watered afterwards reacted with a lower extent of tiller reduction after flowering 

resulting in an increased number of grain-bearing stems at harvest and showed a visible 

longer stay-green of the plants, so that these plants were able to increase the number and the 

weight of kernels and partially compensated that the number of ears per square meter were 

decreased compared to well-watered plants. Highest nitrogen supply could not avoid drought 

induced yield reduction, but high fertilized plots realized the highest yield under drought 

(compared to low and unfertilized plots).  

Furthermore the concept of a linear response between relative yield decrease and relative 

evapotranspiration deficit according to Doorenbos and Kassam (1981) was supported by the 

findings of this study. In the literature Ky-values are only available for plants without limited 

nutrient supply. So only results of treatment N230 could be compared with that of Doorenbos 
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and Kassam (1981). A comparison of treatments N230 and N120 showed that Ky-values of 

N120 plots were higher compared to those of N230 implying that lower N supply lead to 

higher yield reduction under drought. The beneficial effects of N supply on grain yield under 

transient drought, as indicated by these results, underline the requirements to identify the 

optimal N rate under drought conditions. In this context it appears that the linear regression 

between Ks and Ky is potentially useful for a drought-induced yield reduction estimate during 

the booting growth stage and related adaptation of the third N fertilizer application. 
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Appendix Chapter 3 

Table A1: Grain yield (t ha
-1

) and dry matter (with 14% water in the plants) of plots with rain-out-shelter (WS+) 

and without rain-out-shelter (WSO+) at different N-rates (kg N ha
-1

) in 2013. 

 

N-rate 
Grain yield Dry matter 

WS+ WSO+ WS+ WSO+ 

120 8.9 ± 0.4  8.9 ± 0.3 12.9 ± 0.1 13.2 ± 0.6 

150 9.9 ± 0.5  10.4 ± 0.2 13.8 ± 0.5 14.5 ± 0.5 

170 10.6 ± 0.7 10.4 ± 0.2 16.1 ± 0.6 16.5 ± 0.6 

180 10.7 ± 0.2 10.8 ± 0.1 15.2 ± 0.4 15.5 ± 0.4 

200 10.7 ± 0.4 11.1 ± 0.1 16.6 ± 1.1 17.0 ± 0.9 

230 10.8 ± 0.1 11.1 ± 0.5 17.7 ± 0.9 18.0 ± 0.5 
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Figure A1: Measured temperature difference (°C) of plots with rain-out-shelter (sheltered) and plots without 

rain-out-shelter (none sheltered) are shown on the left y-axis for hourly data starting at 11:00 a.m. on June 6 in 

2013 until 8:00 a.m. at June 15 in 2013. Plots received two different nitrogen rates 120 kg N ha
-1

 (N120, open 

circle) and 230 kg N ha
-1

 (N230, closed circle), all treatments were not limited in water supply. Ambient 

temperature (°C) (black line) is shown at the right y-axis. 
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Figure A2: Measured air humidity difference (delta RH) of plots with rain-out-shelter (sheltered) and plots 

without rain-out-shelter (none sheltered) are shown on the left y-axis for hourly data starting at 11:00 a.m. on 

June 6 in 2013 until 8:00 a.m. at June 15 in 2013. Plots received two different nitrogen rates 120 kg N ha
-1

 

(N120, open circle) and 230 kg N ha
-1

 (N230, closed circle), all treatments were not limited in water supply. 

Ambient air humidity (%) (black line) is shown at the right y-axis. 
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