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Grazing behavior of two Holstein dairy cow strains under organic farming conditions 

in Switzerland 

Summary 

The aim of the thesis was to test if concentrate supplementation is required in an organic, 

pasture-based feeding system and if concentrate supplementation influences grazing 

behavior. The study consisted of two trials, both with a crossover design performed on an 

organic farm in Switzerland with 12 Swiss Holstein cows and 12 Holstein cows of New 

Zealand origin. In the first trial the focus was on the impact of concentrate supplementation 

on milk yield and composition, grazing and rumination behavior, physical activity, and blood 

metabolites and the differences between the two cow strains. In the second trial the focus 

laid on the estimation of plant species selection by dairy cows with plant wax markers and 

whether differences exist between concentrates supplemented and non-supplemented cows 

in selection behavior.  

Concentrate supplementation had an impact on milk yield and composition, the time animals 

spent grazing, herbage dry matter intake and physical activity, but no on rumination behavior. 

Supplemented cows had a more stable energy status, but no indices for strong negative 

energy balance were recorded for non-supplemented cows, for both cow strains. In the 

second trial the main focus was on the estimation of herbage composition of grazing dairy 

cows with plant wax markers, namely alkanes, long-chain fatty acids and long-chain alcohols 

(LCOH). Concentrate samples, feces samples from each cow and samples from each 

paddock were taken and plant species were manually separated. All plant species, 

concentrate and feces samples were analyzed for their marker contents. Corrections of fecal 

recovery were calculated in relation to dosed ytterbium. The estimations of diet composition 

were performed with the software “EatWhat” based on non-negative least squares. Results 

were compared to the botanical composition with the Aitchison distance. The most accurate 

diet composition estimation was achieved with alkanes, LCOH and a correction of fecal 

recovery. No differences in selected plant composition between cow strains were recorded, 

but supplemented cows selected more Trifolium repens compared to non-supplemented 

cows. However, further studies are required to confirm the feasibility of the approach and 

validate the calculation of fecal recovery. Understanding the grazing behavior and the 

consequences of concentrate supplementation may lead to management measures that 

increase production efficiency and ensure animal welfare. Minor differences between cow 

strains indicated that both are suitable for pasture-based feeding systems. However, short-

term trials cannot give a conclusion for the whole lactation, and fertility and health traits 

should be included.  
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II 
 

Untersuchungen zum Fressverhalten von zwei Holstein-Kuhtypen unter Bedingungen 

des Organischen Landbaus in der Schweiz  

Zusammenfassung 

In der vorliegenden Arbeit wurde geprüft, ob eine Kraftfutterergänzung in einem 
biologischen, weidebasierten Fütterungssystem notwendig ist und ob Kraftfutter einen 
Einfluss auf das Fressverhalten von zwei Holstein Kuhtypen hat. Die Arbeit besteht aus zwei 
Versuchen, die beide ein Crossover Design waren und auf einen Biobetrieb in der Schweiz 
durchgeführt wurden.  Es wurden jeweils 12 Schweizer Holsteinkühe und 12 Holsteinkühe 
mit neuseeländischer Herkunft eingesetzt. Im ersten Versuch lag der Schwerpunkt auf den 
Unterschieden zwischen den Kuhtypen und dem Einfluss von Kraftfutterfütterung von 6 
kg/Tag auf Milchleistung und -zusammensetzung, Fress- und Wiederkauverhalten, 
physische Aktivität und Blutmetaboliten. Im zweiten Versuch wurde untersucht, ob mit Hilfe 
von Markern bestimmt werden kann, welche Pflanzen und zu welchem Anteil von 
Milchkühen aufgenommen wurden, und ob es Unterschiede im Selektionsverhalten zwischen 
Kühen mit und ohne Kraftfutterergänzung gibt.  

Die Kraftfutterergänzung hatte einen Einfluss auf Milchleistung und Milchinhaltsstoffe, sowie 
auf die Fresszeit auf der Weide, die Grünfutteraufnahme und die physische Aktivität, jedoch 
nicht auf das Wiederkauverhalten. Die mit Kraftfutter ergänzten Tiere hatten einen stabileren 
Energiestatus, jedoch gab es keine Anzeichen einer ausgeprägten negativen Energiebilanz 
bei beiden Kuhtypen ohne Kraftfutterergänzung. Zwischen den Kuhtypen gab es 
Unterschiede in den Milchinhaltstoffen und im Wiederkauverhalten. Die Neuseeländischen 
Holsteinkühe hatten höhere Fett- und Proteingehalte in der Milch und kauten längere Zeit 
wieder im Vergleich zu den Schweizer Holsteinkühen. Im zweiten Versuch wurde mittels 
Alkanen, langkettige Fettsäuren und langkettige Alkohole (LCOH) geschätzt, welche 
Pflanzen und zu welchem Anteil von grasenden Milchkühen aufgenommen wurden. Dazu 
wurden Kraftfutterproben, Kotproben von jeder Kuh und Grünfutterproben von der Weide 
genommen und nach Pflanzengruppen manuell aussortiert. In allen Pflanzengruppen, 
Kraftfutter- und Kotproben wurden die Marker-Konzentrationen analysiert. Außerdem wurden 
Korrekturen für die Wiederfindung im Kot in Bezug auf verabreichtes Ytterbium berechnet. 
Die Schätzungen der Pflanzenzusammensetzung erfolgten mit dem Programm „EatWhat“, 
welches auf „non-negative least sqares“ basiert. Die Ergebnisse der geschätzten 
Pflanzenzusammensetzung wurden mit der botanischen Zusammensetzung mittels 
‚Aitchison Distanzmaß‘ verglichen. Die genaueste Schätzung der 
Pflanzenzusammensetzung wurde mit Alkanen, LCOH und einer Korrektur der 
Wiederfindung erreicht. Es gab keine Unterschiede in der Pflanzenauswahl zwischen den 
Kuhtypen, aber die mit Kraftfutter ergänzten Tiere fraßen mehr Trifolium repens im Vergleich 
zu Kühen ohne Kraftfutterergänzung. Weitere Studien sind notwendig, um die Methode zur 
Bestimmung der Futterauswahl zu optimieren und die Berechnung der Wiederfindungsrate 
zu validieren. Das Verständnis des Fressverhaltens und die Auswirkungen von 
Kraftfutterergänzung können Managementmaßnahmen beeinflussen, um die 
Produktionseffizienz zu steigern und den Tierschutz zu gewährleisten. Kleine Unterschiede 
zwischen den Kuhtypen zeigen, dass beide an ein weidebasiertes Produktionssystem 
angepasst sind. Jedoch können Versuche über einen kurzen Zeitraum keine Rückschlüsse 
auf eine ganze Laktation geben und Fruchtbarkeits- und Gesundheitsmerkmale sollten mit 
einbezogen werden. 
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Chapter 1: General introduction 

1.1. Organic dairy farming in Switzerland 

The international interest in organic milk products is increasing and the number of farmers 

that have changed from conventional to organic milk production systems is increasing 

(Rosati and Aumaitre, 2004). In Switzerland 10% of dairy farms produce under organic 

conditions (BLW, 2015) and the number of organic farms has already doubled between 1996 

and 2007 (BFS, 2009). Compared to other countries in Europe, Switzerland has one of the 

highest proportions of organic farmland (11%; BFS, 2009). With 70% pasture of all 

agricultural areas (BFS, 2009), Switzerland has reasonable conditions for pasture-based 

feeding systems. In alpine regions the portion of organic farms is higher than in regions in the 

valley (BFS, 2009). Intensive farming and crop production is not efficient in alpine regions 

because of soil quality and surface structure, and using these areas as pasture for dairy 

cows offers an opportunity for organic milk production, especially as organic milk obtains 

higher milk prices. Furthermore, pasture utilization in general conserves this kind of 

ecosystem and supports higher biodiversity, otherwise forest will establish there (Knaus, 

2016). 

For organic milk production several regulations have to be considered by farmers. The 

International Federation of Organic Agriculture Movements formulated four principles for 

organic farming (IFOAM, 2015). Among other factors, they claim that animals should be 

provided with conditions to display natural behavior. For ruminants, this means ensuring 

access to pasture to exhibit their natural grazing, social and explorative behavior and feeding 

them according to their physiological needs. Furthermore, guidelines for organic farming 

prohibit the use of mineral fertilizer which results in lower nutrient input (N, K, P) in soil in 

organic systems compared to conventional systems (Maeder et al., 2002). As a result 

herbage yield and content of protein in plants is declining (Spann et al., 2007), but plant 

species diversity is increasing (Gabriel et al., 2006). A different botanical composition on 

pasture and lower herbage yield in organic dairy farms might be a greater challenge for cows 

to match their requirements. Generally, cows with high genetic merit for milk yield may not 

match their energy requirements in early lactation with a pasture-only diet and 

supplementation of concentrate is required. Organic farming should be adapted to local 

conditions to ensure a balance between input and output. Inputs should be reduced by 

reuse, recycling and efficient management of materials to ensure a close cycle of production 

(IFOAM, 2015). Therefore importing supplements, which are not produced on the same farm 

and disturb a production cycle, are questionable. Guidelines exist to limit the use of 
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concentrate supplementation, but they differ between countries and organizations. The US 

regulations for organic milk production prescribe a daily dry matter intake (DMI) from grazing 

of no less than 30% throughout the grazing season and thus 70% daily DMI remains, which 

could be covered by concentrates or other feedstuff produced according to organic 

guidelines (GPO, 2015). A maximum of 40% of concentrate per day is allowed in the EU and 

even 50% in early lactation (Council Regulation No 889/2008). In Switzerland, it is more 

restricted as the organic guidelines allow 10% concentrate based on the annual ration 

(BioSuisse, 2014). As ruminants are able to digest fiber efficiently and assuming that 

competition for feed versus food use would intensify in the future, cereals and other field 

crops should primarily be destined to cover the needs of humans and successively of 

monogastric animals (Bocquier and Gonzalez-Garcia, 2010). According to Cassidy et al. 

(2013), 89% of crop-produced calories are lost when fed to animals and are not available for 

humans in the form of animal products. However, animal products are needed in human 

nutrition primarily to provide proteins and amino acids. Milk production is the most efficient 

livestock production system that converts potentially human-edible feed into animal product 

(Wilkinson, 2011). A dairy cow with a daily milk production of 10 kg produces 323 g edible 

protein per day, which is high compared to other animal species (Flachowsky and 

Kamphues, 2012). This protein can come from pasture or other by-products which are 

useless for human consumption.  Pasture is the cheapest source of nutrients for dairy cows 

and provides the basis of sustainable farming systems. It preserves the rural landscape and 

promotes a clean, animal-welfare-friendly image of dairy production (Dillon, 2006). 

1.2. Pasture-based feeding systems 

Comparisons made at the world level indicate that an increase of herbage in the annual 

ration of cows decreases the total costs of milk production (Dillon et al., 2008). However, 

conserved-forage based systems, especially forage maize, are the most common feeding 

systems in most European countries (Dillon, 2006) and the numbers of farms that manage a 

pasture-based feeding system for dairy cows is decreasing in North-West Europe, expecting 

that in 2025 <5% of cows have access to pasture in the North-West of Germany (Reijs et al., 

2013). As the number of cows per farm is growing, sufficient pasture available nearby the 

farm for grazing is hardly given. Pasture-based feeding systems are neglected in regions 

where it is more cost-effective to increase production through concentrate supplementation 

(Knaus, 2016). The trend to raise the amount of concentrate in dairy cow rations started in 

the 1960s, as the cost per unit of net energy for corn grain was less than forage (van Soest, 

1994). With a favorable price of milk in relation to grain supplements it is most economical to 

add supplements to the diet rather than feeding only pasture to maximize feed intake and 

milk performance (Knaus, 2016). Keeping dairy cows on a pasture-only diet is challenging, 
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as quality and quantity of available feed is changing during the season, as well as the 

nutritive and energy requirements of the cows and may lead to a nutrient deficit or a waste of 

pasture feed. Energy is mostly the first limiting nutrient, especially for high producing dairy 

cows (Kolver and Muller, 1998; Hills et al., 2015). Therefore, cows may suffer from a lack of 

energy with a pasture-only diet and cows with a high genetic merit for milk production might 

reach a strong negative energy balance (NEB) at the beginning of lactation. However, 

concentrate supplementation influences grazing behavior on pasture (McCarthy et al., 2007; 

Bargo et al., 2003) and lowers cows´ motivation for grazing, the so called feeding drive, 

which means how effective the cow harvests the pasture (Baudracco et al., 2010). High 

feeding drive is important in pasture-based feeding systems as it ensures high pasture DMI 

throughout the grazing season with varying pasture quality. Understanding the behavior of 

dairy cows on pasture helps to optimize efficiency and support productivity, animal health 

and welfare.  

In countries such as New Zealand, where over 95% of agriculturally used area is grassland 

(New Zealand Official Yearbook, 2012), the majority of the dairy cattle is kept on pasture. 

The principle of this system is based on seasonal calving with utilizing the rapid herbage 

growth in spring time to meet requirements of the cows and drying them off at the end of 

grazing season, so that reduced feed demand is in accordance with reduced pasture growth 

in winter. Therefore, high pasture utilization is a key factor, and the amount of milk produced 

per ha instead of milk yield per cow is important. Stocking rate (cows per ha) is an important 

management tool, because with higher stocking rate, milk yield per cow is lower, but milk 

production per ha is greater (Baudracco et al., 2010; McCarthy et al., 2011). Furthermore, 

lower grazing residuals on pasture improve pasture quality (Macdonald et al., 2008), as close 

defoliation of herbage plants is necessary to avoid high portions of dead plant material.  The 

key for an efficient pasture-based feeding system is to ensure pasture in sufficient quantity 

and quality throughout the season by converting as much as possible of the green leaf mass 

for production.  

1.3. Different Holstein cow strains 

In New Zealand, pasture-based feeding systems are common as favorable climatic 

conditions allow a year-round pasture growth and utilization. This system assumes a 

seasonal calving interval close to 12 months (Harris and Kolver, 2001). Hence, New Zealand 

Holstein cows are bred for efficient pasture use with very little concentrate supplementation, 

high fertility and longevity (Harris and Kolver, 2001). They differ in body weight, body 

condition score (BCS) and milk yield compared to other Holstein cow strains (Piccand et al., 

2013) and have a lower milk production response to concentrate supplementation compared 
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to high genetic merit Holstein cow strains (Horan et al., 2006). Studies suggest that high 

producing Holstein cows are less adapted for grazing systems, particularly under higher 

stocking rates and seasonal calving systems (Kolver and Muller, 1998; Baudracco et al., 

2010). Without concentrate supplementation they may not meet their requirements and 

exhaust their potential for milk production with a pasture-only diet (Peyraud and Delagarde, 

2013). Cows that reached a strong NEB at the beginning of the lactation have a greater post-

calving BCS loss, which influence fertility, health, and welfare (Roche et al., 2006). New 

Zealand Holstein cows may be able to use herbage from pasture more efficiently for milk 

production (Macdonald et al., 2008) and therefore may be better suited for organic milk 

production systems.  Nevertheless, it is still unclear which characteristics indicate a well-

suited dairy cow and which characteristics a cow should have for the efficient use of pasture. 

Cows should also be able to deal with fluctuating conditions on pasture (Dillon, 2006) and as 

they are able to adapt to certain environmental and management factors (such as increasing 

the proportion of time spent grazing if access to pasture is restricted (Kennedy et al., 2009)), 

examining grazing behavior may provide some evidence about well-suited dairy cows. 
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Chapter 2: Scope of the thesis 

Organic dairy farming becomes more important nowadays and further research is necessary 

to optimize farming under organic conditions. Regulations for organic dairy farming claim that 

cows should have access to pasture and therefore, pasture during the grazing season is the 

main component in dairy cows rations, at least in Switzerland. The aim of present thesis was 

to examine if concentrate supplementation is required in a pasture-based feeding system 

and how concentrate supplementation influences grazing behavior. During two cross-over 

trials performed on an organic Swiss farm, the differences between Swiss and New Zealand 

Holstein cows and the impact of concentrate supplementation on grazing behavior was 

examined. During the first trial the focus was on milk yield, milk ingredients, grazing and 

rumination behavior, physical activity, and energy metabolism. It was examined how 

concentrate supplementation changes behavior and internal state of the animals and if there 

are differences between cow strains that indicate a better suitability to pasture-based feeding 

systems. The main focus on the second trial was the estimation of plant species selection on 

grazing dairy cows. It was tested if estimating diet composition on pasture is possible with 

plant wax markers, such as alkanes, long-chain fatty acids, and long-chain alcohols. 

Differences between cow strains in selection behavior were investigated and if concentrate 

supplementation has an impact on plant species selection on pasture. Studies with plant wax 

marker and free-ranging dairy cows are rare and results might give advises how to adapt 

pasture management to selection behavior.  

The third and fourth chapters, as the main parts of this cumulative thesis, are manuscripts 

which are formatted according to the instructions of the journal chosen for submission. 
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Abstract 

As ruminants are able to digest fibre efficiently and assuming that competition for feed v. 

food use would intensify in the future, cereals and other field crops should primarily be 

destined to cover the dietary needs of humans and monogastric animals such as poultry and 

pigs. Farming systems with a reduced or absent concentrate supplementation, as postulated 

by organic agriculture associations, require adapted dairy cows. The aim of this experiment 

was to examine the impact of concentrate supplementation on milk production, grazing and 

rumination behaviour, feed intake, physical activity and blood traits with two Holstein-Friesian 

cow strains and to conclude the consequences for sustainable and organic farming. The 

experiment was a cross-over study and took place on an organic farm in Switzerland. In all, 

12 Swiss Holstein-Friesian (HCH) cows and 12 New Zealand Holstein-Friesian (HNZ) cows, 

which were paired according to lactation number, days in milk and age for primiparous cows, 

were used. All cows grazed full time and were supplemented either with 6 kg/day of a 

commercial, organic cereal-grain mix or received no supplement. After an adaptation period 

of 21 days, a measurement period of 7 days followed, where milk yield and composition, 

pasture dry matter intake estimated with the n-alkane double-indicator technique, physical 

activity based on pedometer measurements, grazing behaviour recorded by automatic jaw 

movement recorder and blood samples were investigated. Non-supplemented cows had a 

lower milk yield and supplemented HCH cows produced more milk than supplemented HNZ 

cows. Grazing time and physical activity were greater for non-supplemented cows. 

Supplementation had no effect on rumination behaviour, but HNZ cows spent longer 

ruminating compared with HCH cows. Pasture dry matter intake decreased with the 

concentrate supplementation. Results of blood analysis did not indicate a strong negative 

energy balance for either non-supplemented or supplemented cows. Minor differences 

between cow strains in this short-term study indicated that both cow strains are equally 

suited for an organic pasture-based production system with no concentrate supplementation. 

Many factors such as milk yield potential, animal welfare and health, efficiency, grazing 

behaviour and social aspects influence the decision to supplement grazing dairy cows with 

concentrates. 

Keywords: concentrate supplementation, organic farming, dairy cow, Holstein, pasture  
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Implications 

In the future, competition between feed and food will increase. Ruminants like dairy cows are 

able to digest forage fibre efficiently. As concentrate supplementation is limited in organic 

dairy farming, restrictions may cause health problems as energy requirements for high-

yielding dairy cows may not be met from forage-only rations. The aim of this study was to 

verify how supplementation changes the behaviour and production of grazing dairy cows 

under organic conditions. The two Holstein cow strains investigated in this short-term study 

are equally suited for an organic, pasture-based farming system with no concentrate 

supplementation. 

 

Introduction 

In Switzerland, the milk yield per cow has increased steadily over the last years (Bundesamt 

für Landwirtschaft, 2015), as has the cows’ demand for nutrients and energy. This leads to 

the question of whether high-yielding dairy cows are still able to meet their energy 

requirements for efficient milk production on pasture-only diets. Farming systems with a 

reduced or absent concentrate supplementation, as postulated by organic agriculture 

associations, require adapted dairy cows. Studies suggest that high producing Holstein-

Friesian (HF) cows are less suited for grazing systems, particularly under high stocking rates 

and seasonal calving systems and without concentrate supplementation (Kolver and Muller, 

1998). In New Zealand, HF cows are bred for efficient pasture use with very little concentrate 

supplementation and seasonal calving (Washburn and Mullen, 2014). They differ in BW, 

average body condition score (BCS) and milk yield from other HF cow strains (Piccand et al., 

2013) and have a lower milk production response to concentrate supplementation compared 

with HF cow strains with a high genetic merit for milk production (Horan et al., 2005). In 

addition, they may be able to use pasture more efficiently for milk production (Macdonald et 

al., 2008) and therefore may be better suited for organic milk production systems. According 

to Penning and Rutter (2004), behaviour exhibited by animals is an indication of the 

relationship between their internal state (e.g. nutritional requirements, health) and their 

environment (e.g. sward state, supplementation and climate). Therefore, grazing behaviour 

such as grazing duration, herbage intake and intake rate may provide some evidence about 

well-suited dairy cows and should be examined in detail, as the efficient use of pasture is a 

priority. According to the knowledge of the authors, this is the first study that investigated the 

effect of concentrate supplementation on the eating and rumination behaviour, metabolic 

states and milk production of grazing dairy cows under organic farming conditions. 
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The aim of this study was to examine the milk yield and milk composition, grazing and 

rumination behaviour, physical activity and metabolic profile of grazing cows with and without 

concentrate supplementation under organic conditions. Furthermore, this study aimed to 

identify differences between two HF cow strains, especially on grazing and rumination 

behaviour, which could indicate a better suitability for pasture-based milk production systems 

with restricted concentrate supplementation for organic farming. 

 

Material and methods 

Animals and experimental design  

The experiment was a 2 × 2 cross-over study with two concentrate levels and two cow 

strains. All experimental procedures were in accordance with the Swiss guidelines for animal 

welfare and were approved (no. 2012_10_FR) by the Animal Care Committee of the Canton 

of Fribourg, Switzerland. Before selecting the cows for the experiment, a medical 

examination was performed. The experiment consisted of two measurement periods, each 

consisting of a 21-day adaption period and a 7-day measurement period. For the flow of work 

and equipment reasons, the cows were equally divided into two consecutive data collection 

periods of 7 days/measurement period. The experiment took place on the organic farm 

‘Ferme École de Sorens’, located 824m above sea level in Sorens, Switzerland. A total of 24 

HF cows, including 12 Swiss Holstein-Friesian (HCH) cows and 12 HF cows of New Zealand 

origin (HNZ), were used for the experiment. In all, 14 of them were multiparous and 10 were 

primiparous. Matched pairs of HCH and HNZ cows were formed according to the number of 

lactation, days in milk (DIM) and age for primiparous cows. The average economic breeding 

value (ISEL; Swiss Holstein Breeding Association, Posieux, Switzerland) was 985 (SD 74) 

for HCH cows. The average economic breeding value for HNZ cows was 806 (SD 70), but 

this excluded four animals as no breeding value was available. At the start of the first data 

collection period, HCH cows had an average number of lactations of 2.3 (SD 1.6), had been 

109 (SD 17.9) DIM, had an average BW of 609 (SD 90.1) kg, a BCS of 2.4 (SD 0.28) and 

were producing 27.6 (SD 3.77) kg milk/day. The HNZ cows had an average number of 

lactations of 2.7 (SD 2.0), had been 114 (SD 16.7) DIM, had an average BW of 560 (SD 

72.3) kg, a BCS of 2.9 (SD 0.24) and were producing 24.1 (SD 5.27) kg milk/day. 
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Grazing management, concentrate supplementation and weather conditions 

The experiment was carried out in a rotational grazing system from 7 May to 8 July 2012. All 

24 experimental cows were managed as a single group separated from the rest of the 

lactating herd and grazed on pasture from 0800 to 1400 h and from 1800 to 0430 h the 

following morning. Meanwhile, cows were milked and housed in a free-stall barn. Paddocks 

were rotationally grazed for 2 to 5 days based on decision rules considering sward height 

with a reference of 130-mm pre-grazing equivalent to an herbage mass of ~1000 kg dry 

matter (DM)/ha above 50mm until a post-grazing sward surface height of 50mm from ground 

level. The sward surface height was measured with a pasture meter (C-Dax pasture meter; 

C-Dax Ltd, Turitea, New Zealand) before cows entered a new paddock and after leaving the 

paddock. The average pre-grazing sward height was 129 (SD 16.4; n = 5) mm, 

corresponding to 1024 (SD 209.3) kg DM/ha above 50mm in the first measurement period 

and 122 (SD 11.2; n = 6) mm, corresponding to 941 (SD 143.8) kg DM/ha for the second 

measurement period. The average post-grazing sward surface height was 57 (SD 6.6; n = 5) 

mm in the first measurement period and 71 (SD 19.2; n = 6) mm in the second measurement 

period. Herbage mass above 50mm (kg DM/ha) was calculated according to: −624.5+12.8 × 

sward height (mm). This regression was calibrated for the pastures of the organic farm 

‘Ferme École de Sorens’ (R2 = 0.84; n = 89). The pastures were long established and 

composed predominantly of grasses (mainly Lolium perenne, Dactylis glomerata and Phleum 

pratense), but also of clover (mainly Trifolium repens) and herbs (mainly Taraxacum 

officinale). The pastures were fertilized once per year with 25m3/ha of farm-produced manure 

(corresponding approximately to 80 kg N/ha, 22 kg P/ha and 108 kg K/ha). The chemical 

composition of the pasture during the measurement periods is presented in Table 1.  

During an adaptation period of 21 days before both measurement periods, a step-wise 

provision towards the targeted amount of concentrate (UFA 275 Bio; UFA AG, 

Herzogenbuchsee, Switzerland), 0 or 6 kg (as-fed basis), took place. The pelleted 

concentrate was offered to six HCH–HNZ cow pairs in two equal meals (3 kg at 0600 h and 3 

kg at 1700 h) after milking in the free-stall barn using separate buckets for each cow. During 

the measurement period, all 6 kg of concentrate was ingested by all cows with no refusals. 

The other six HCH–HNZ cow pairs received no concentrate in addition to pasture. Fresh 

water was always available and a mineral block was available in the barn. The ambient 

outdoor temperature was recorded daily by the meteorological station in Grangeneuve 

(MeteoSchweiz, Station Grangeneuve, Switzerland), located about 15 km north of the 

experimental pastures. During the first measurement period, the average temperature was 

16°C (minimum 13, maximum 19) and 19°C (minimum 15, maximum 24) in the second 

measurement period.  
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Table 1: Average chemical composition of concentrate (n = 2) and pasture (n = 14) samples (mean ± SD). 

Items Concentrate Pasture 
Period 1 SD Period 2 SD Period 1 SD Period 2 SD 

DM (g/kg of wet weight) 884 1.8 882 1.0 174 30.3 166 20.1 
Analysed nutrients and mineral composition (g/kg of DM) 
  OM 944 0.3 944 0.2 894 8.6 892 6.2 
  CP 115 1.3 117 0.3 174 23.0 172 24.5 
  Ether extract 59 0.1 61 1.2 47 5.3 49 5.0 
  Starch 502 0.7 504 0.2     
  ADF 79 2.2 76 0.7 249 20.8 270 23.4 
  NDF 221 5.7 228 3.8 397 41.8 427 48.2 
  Crude fibre 55 1.6 52 0.5 199 25.4 217 23.6 
  Ca 8.4 0.11 8.7 0.06 8.1 1.40 8.6 2.2 
  P 6.2 0.03 6.3 0.07 5.1 0.46 5.2 0.54 
  Mg 3.2 0.01 3.2 0.03 2.1 0.23 2.2 0.24 
  Na 1.8 0.03 1.8 0.00 0.2 0.05 0.1 0.05 
  K 7.9 0.05 7.9 0.00 38 3.4 35 1.8 
Calculated energy and protein supply1 per kg of DM 
  NEL (MJ) 8.1 0.02 8.2 0.01 6.3 0.24 6.1 0.32 
  APDE (g) 79 2.2 76 0.7 104 5.1 102 6.3 
Analysed n-alkane contents (mg/kg of DM) 
  HC32 0.5 0.50 0.7 0.03 5.0 0.66 5.6 1.60 
  HC33 2.6 0.24 2.5 0.02 59 10.0 65 15.5 
DM = dry matter; OM = organic matter; NEL = net energy for lactation; APDE = absorbable protein in the small intestine when rumen 
fermentable energy is limiting microbial protein synthesis in the rumen; HC32 = dotriacontane, C32H66; HC33 = tritriacontane, C33H68. 
1According to Agroscope (2013). 
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Data recording and sample collection  

Milk yield (Flo-Master Pro; DeLaval AG, Sursee, Switzerland) was recorded daily and milk 

composition was analysed from a pooled sample of the morning and evening milk on days 1, 

4 and 7 of each data collection period. Milk samples were preserved in tubes containing 

Broad Spectrum Microtabs II (Gerber Instruments AG, Effretikon, Switzerland) at 8°C. The 

BW was recorded twice daily after milking and BCS was assessed before each adaptation 

period and before and after each data collection period according to the five-point system of 

Edmonson et al. (1989).  

To estimate individual feed intake on pasture, the n-alkane double-indicator technique was 

used (Mayes et al., 1986). Gelatin capsules (HGK 17–60 sl; Capsula GmbH, Ratingen, 

Germany), containing 0.5 g (weighing accuracy 0.001) alkane marker HC32 (dotriacontane, 

C32H66; Argenta Ltd, Auckland, New Zealand) on a carrier of dried fruit pomace, were 

administered manually with an applicator twice per day starting 6 days before the data 

collection periods. During the data collection period, a daily spot sample of faeces was taken 

from each cow with or without stimulus between 0700 and 0800 h. Samples were pooled by 

cow and collection period and stored at −20°C. Collection of pasture samples started and 

ended 1 day before the faeces sampling. Pasture sample collection was carried out as 

described by Graf et al. (2005). Daily samples were chopped and stored at −20°C until 

further analysis. Samples of concentrate were taken daily and pooled per data collection 

period.  

Grazing and rumination behaviour was recorded automatically using a jaw movement 

recorder with a pressure sensor (Datenlogger MSR145; MSR Electronics GmbH, Hengart, 

Switzerland; Nydegger et al., 2011). The jaw movement frequency and amplitude were 

measured for 72 h. Data were evaluated with the software programs MSRReader (MSR 

5.20.01) and MSR-Viewer (Viewer V2), as described in the MSR145 User Manual (MSR 

Electronics GmbH). The number of grazing and rumination bouts were counted manually 

from the evaluated output of the software MSR-Viewer. A bout was defined as a sequence of 

a behaviour not interrupted by any other element of behaviour with a duration >4 min (Metz, 

1975) and an inter-bout interval >7.5 min (Dado and Allen, 1994). Grazing bouts contain only 

those bouts during grazing on pasture not considering bouts when concentrate was eaten in 

the barn.  

Physical activity, including time spent standing, lying and walking was determined using the 

IceTagTM pedometer (IceRobotics Ltd, Edinburgh, Scotland, UK). The pedometer was 

attached to the right hind leg of the cow at the metatarsus level and recorded acceleration in 
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three dimensions at 0.1 s intervals for 72 h. Using the software program IceTag-Analyser (V 

4.005; IceRobotics Ltd), the data were downloaded and compiled over 60 s intervals. 

Walking was defined as >3 steps/min, as suggested by Thanner et al. (2014). 

On days 4 and 5 of each data collection period, blood was collected at 0700 and 1400 h by 

puncture of the jugular vein, using the Vacuette® System (Greiner Bio-One GmbH, 

Kremsmünster, Austria). Plasma for the analysis of hormones was retrieved using Vacuette® 

EDTA tubes (Greiner Bio-One GmbH). After sampling, these tubes were cooled in ice water 

until they were centrifuged at room temperature (20°C) for 5 min at 3000×g. For analyses of 

blood metabolites and enzymes, Vacuette® serum tubes (Greiner Bio-One GmbH) were 

stored upside down for 1 h at room temperature (20°C) before centrifugation at 3000×g for 

15min and then at 4000×g for an additional 5min (Thanner et al., 2014). The retrieved serum 

and plasma samples were stored at −20°C until they were analysed for hormones, 

metabolites and enzymes. 

Laboratory analysis  

Milk samples were analysed by IR spectrometry (CombiFoss FT+; Foss, Hillerød, Denmark) 

for contents of fat, protein and lactose (International Dairy Federation, 2000; method number 

141C). Urea was determined with a differential pH analyser (Eurochem, Ardea, Italy) before 

and after hydrolysis with urease (International Dairy Federation, 2004; method number 195). 

For milk acetone determination, acetone and an internal standard (2-butanone) were 

transferred via static headspace directly from the milk into the gas phase. The composition of 

the gas phase was determined with a flame ionization detector on a gas chromatograph (HP 

5890 Series II; Agilent Technologies, Santa Clara, CA, USA).  

Pasture and faeces samples were lyophilized (Christ, Delta 1-24LSC; Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). Concentrate, pasture and 

faeces samples were milled through a 1.0-mm screen (Brabender mill with titanium blades; 

Brabender, Duisburg, Germany). Subsamples were dried for 3 h at 105°C to determine DM 

and subsequently incinerated at 550°C until they reached a stable mass to assess the ash 

contents. Mineral residues in the ash were dissolved with nitric acid and analysed for Ca, Na, 

P, Mg and K with inductively coupled plasma optical emission spectrometry (ICP-OES 

Optima 2000 DV; PerkinElmer, Shelton, CT, USA with system ICP-OES Optima 7300) based 

on European Standard: EN 155510:2008. The contents of n-alkanes HC32 and HC33 

(tritriacontane, C33H68) were determined as described by Peiretti et al. (2006). The N content 

was determined using the Dumas method (Association of Official Analytical Chemists 

(AOAC), 1995) on a C/N analyser (type FP-2000; Leco Instruments, St. Joseph, MI, USA) 
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and then multiplied by 6.25 to determine the CP content. The ether extract was determined 

using the Soxtec Avanti 2050 apparatus (Foss, Hillerød, Denmark) for extraction following 

the guidelines of Verband Deutscher Landwirtschaftlicher Untersuchungs- und 

Forschungsanstalten 5.1.1. (1993). Acid-detergent fibre (procedure 973.18; AOAC, 1995) 

was determined with correction for residual ash obtained after incineration at 500°C for 1 h. 

Crude fibre was analysed in pasture and concentrate (procedure 978.10; AOAC, 1995) and 

NDF (Mertens, 2002) was assessed with the addition of heat-stable amylase and sodium 

sulphite. Starch content was determined based on the polarimetric method (method 6493; 

International Organization for Standardization, 2000).  

Metabolite concentrations and enzyme activities were determined using the following 

commercial test kits: albumin (no. 11970909; Roche Diagnostics, Rotkreuz, Switzerland), 

alkaline phosphatase (AP, no. 12173107; Roche Diagnostics), alanine aminotransferase 

(ALAT, no. 63212; bio- Mérieux, Marcy-l’Etoile, France), aspartate aminotransferase (ASAT, 

no. 63212; bioMérieux), β-hydroxybutyrate (BHBA; no. RB1007; Randox Laboratories, 

Crumlin, UK), cholesterol (no. 61218; bioMérieux), creatinine (no. 11489291216; Roche 

Diagnostics), creatine kinase (CK, no. 61141; bioMérieux), γ glutamyltransferase (GGT, no. 

2016788; Roche Diagnostics), glutamate dehydrogenase (GLDH, no. 1929992; Roche 

Diagnostics), total protein (no. 1553836; Roche Diagnostics), urea (no. 61974, UV 250; 

bioMérieux), triglyceride (no. 61236; bioMérieux), nonesterified fatty acids (NEFA, no. FA 

115; Randox Laboratories) and glucose (no. 1447513; Roche Diagnostics). Plasma insulin 

and IGF-1 concentrations were quantified using radioimmunoassay as described by Vicari et 

al. (2008). 3,5,3'-triiodthyronine (T3) and thyroxin (T4) were measured by radioimmunoassay 

using the Coat-A-Count® Total T3 kit and Coat-A-Count® Total T4 kit, respectively (Siemens 

Schweiz AG, Zurich, Switzerland). 

Calculations and statistical analyses 

Net energy for lactation (NEL) and the absorbable protein in the small intestine when rumen 

fermentable energy is limiting microbial protein synthesis in the rumen were calculated 

according to Agroscope (2013). The energy-corrected milk yield (ECM) was calculated based 

on a 4% fat, 3.2% protein and 4.8% lactose according to Agroscope (2013). Feed intake was 

calculated using the ratio of the n-alkanes HC32 and HC33 on the basis of the equation 

proposed by Mayes et al. (1986).  

To double check the intake estimation, the pasture intake without (equation (1), DMIconc0) 

and with concentrate supplementation (equation (2), DMIconc6) was additionally calculated 
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according to Baker (2004) based on the recommendations of Agroscope (2013). Changes in 

BW were not considered, as a period of 1 week is too short to estimate these accurately.  

1) DMIconc0 = (0.293  BW 0.75 + 3.14  ECM) / NEL pasture, or 

2) DMIconc6 = (0.293  BW 0.75 + 3.14  ECM – NEL Conc  5.3 kg DM) / NEL pasture 

where BW0.75 = metabolic body size (kg BW to the power 0.75), ECM (kg/d) the energy-

corrected milk yield, NEL Conc = NEL content of the concentrate (MJ/kg DM), and NEL 

pasture the NEL content of the pasture (MJ/kg DM).  

The statistical analyses were carried out with SYSTAT 13 (Systat Software Inc., Chicago, 

USA). Data for milk yield and composition, rumination and grazing behaviour, physical 

activity, feed intake and blood traits were collected over several days and averaged per cow 

and measurement period. They were analysed using following linear mixed model: 

Yijklm = µ + τi + φj + Pk + (τp)ik + (τφ)ij + Pl + Km (Pl) + εijklm 

where, Yijklm is the response, μ is the least squares mean, τi is the fixed effect of cow strain i (i 

= HCH, HNZ), φj is the fixed effect of the treatment j (j = Conc0, Conc6), Pk is the fixed effect 

of the period (k = period 1, period 2), (τp)ik is the effect of the interaction between cow strain i 

and period k, (τφ)ij is the effect of the interaction between cow strain i and treatment j, Pl is 

the random effect of cow pair l (1,…,12), Km is the random effect of the cow m (1,…, 24) and 

εijklm is the random error. Models of this type were recommended by Tempelman (2004) with 

variance components as variance-covariance structure for the repeated measurements. As 

there were only two periods no alternative variance-covariance structure was envisaged in 

this study. 

Not normally distributed data were either logarithmically transformed to fit with normal 

distribution (NEFA and creatinine kinase) or analysed using R (R Core Team, 2012) with 

permutation tests for linear models (lactose; Good, 2005). Data presented in the tables were 

back transformed.  

Due to the high proportion of insulin ‘non-detects’ (i.e. values below 3 μU/ml), descriptive 

statistics was performed as described by Helsel (2012) using R (R Core Team, 2012). 

Inferential statistics were based on rank methods (Brunner et al., 2002). The model was of 

F1-LD-F2 type (one between subject factor, two within-subject factors) and ANOVA-type test 

statistics (Brunner et al., 2002) were applied.  
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The effects were considered significant at P ≤ 0.05. A value of 0.05 < P < 0.10 was 

considered a trend. 

 

Results 

Milk yield and milk composition and feed intake 

Non-supplemented cows produced less (P <0.001) milk and less (P <0.001) ECM compared 

with supplemented cows and HNZ cows had a lower (P = 0.04) milk yield compared with 

HCH cows, but no difference between cow strains was observed for ECM (Table 2). An 

interaction (P = 0.02) between cow strain and supplementation was reported for milk yield. 

The HNZ cows produced less (P = 0.04) milk per kg concentrate than HCH cows.  

Milk fat content was greater (P <0.001) for non-supplemented cows, but milk protein content 

was not influenced by supplementation. The HNZ cows had a greater (P <0.01) protein 

content and in tendency a greater milk fat content than HCH cows. No differences were 

recorded for the lactose content relative to concentrate supplementation or cow strain. The 

milk contents of acetone and urea of non-supplemented cows were greater (P <0.001) 

compared with supplemented cows, but no differences were observed between cow strains.  

For non-supplemented cows, pasture dry matter intake (DMI) estimated with n-alkanes was 

greater (P <0.001) than pasture DMI for supplemented cows, but total DMI estimated with 

alkanes was lower (P <0.001) for non-supplemented cows than for supplemented cows. New 

Zealand Holstein cows tended to have lower pasture DMI and total DMI compared with HCH 

cows. Calculated pasture DMI based on the requirements was greater (P <0.001) for non-

supplemented cows, but supplementation had no effect on calculated total DMI and no 

differences between cow strains were observed for calculated pasture and total DMI.  

Grazing and rumination behaviour and physical activity 

Grazing time, mastication (n) and mastication rate (n/min) were greater (P <0.001) for non-

supplemented cows compared with supplemented cows and no differences occurred 

between cow strains (Table 3). The number of grazing bouts was not affected by 

supplementation, but HNZ cows tended to have greater numbers compared with HCH cows. 

Non-supplemented cows had a greater (P <0.001) duration of eating bouts compared with 

supplemented cows, but no difference between cow strains was reported.  



Chapter 3 

 

 

20 
 

Concentrate supplementation had no effect on traits describing rumination behaviour, but 

HNZ cows spent more (P <0.005) time ruminating, had a greater (P <0.005) number of 

mastication and a greater (P <0.005) number of boli compared with HCH cows. No difference 

between cow strains was observed for mastication rate, mastication per boli and rumination 

bouts. New Zealand Holstein cows tended to have longer duration of rumination bouts 

compared with HCH cows.  

Non-supplemented cows spent less (P <0.001) time lying down, but stood, moved and 

walked more (P <0.001). There was a trend recorded for HNZ to stand and move less and lie 

down more, but no difference was observed for walking. No significant interaction of 

concentrate supplementation and cow strain was observed. 
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Table 2: Effect of concentrate supplementation and cow strain and their interactions on milk production performance and feed intake 

Items Conc0 Conc6    P -Value 

HCH HNZ HCH HNZ SD Treatment Cow strain Interaction 

Milk production performance         

  Milk yield (kg/d) 24.9A 23.0B 30.0C 26.0D 4.8 <0.001 0.04 0.02 

  Milk yield concentrate1 (kg/kg)   0.84a 0.50b 0.30  0.04  

  ECM2 (kg/d) 22.8A 22.6A 25.3B 23.9B 3.8 <0.001 0.41 0.16 

  Fat (%) 3.7A 4.0A 3.0B 3.4B 0.6 <0.001 0.08 0.50 

  Protein (%) 3.2A 3.4B 3.2A 3.5B 0.3 0.13 <0.01 0.96 

  Lactose3 (%) 4.4 4.4 4.5 4.5 0.3 0.39 0.50 0.74 

  Acetone (mg/L) 2.87A 2.53A 1.52B 1.36B 0.79 <0.001 0.27 0.68 

  Urea (mg/L) 239A 226A 178B 176B 30.0 <0.001 0.49 0.34 

Feed intake         

  Pasture DMI (kg DM/d) 12.5A 11.7A 9.7B 9.0B 1.7 <0.001 0.09 0.83 

  Total DMI (kg DM/d) 12.5A 11.7A 15.0B 14.3B 1.7 <0.001 0.09 0.83 

  Calculated pasture DMI4 (kg DM/d) 17.3A 16.9A 12.0B 11.0B 2.4 <0.001 0.23 0.17 

  Calculated total DMI5 (kg DM/d) 17.3 16.9 17.3 16.3 2.4 0.23 0.23 0.17 

Conc0 = cows without concentrate supplementation; Conc6 = cows with concentrate supplementation; HCH = Swiss Holstein-Friesian; HNZ = 
New Zealand Holstein-Friesian; DMI = dry matter intake; DM = dry matter. 
ABCD Means with different subscript letters within the same row differ (P < 0.01). 
ab Means with different subscript letters within the same row differ (P < 0.05). 
1Milk yield per ingested concentrate (kg/kg). 
2ECM = energy corrected milk yield (Agroscope, 2013).  
3Log10 transformed for statistical analyses. 
4According to Agroscope (2013) and Baker (2004) without BW chances and activity. 
5According to Agroscope (2013) and Baker (2004) without BW chances and activity plus 5.3 kg DM of concentrate.
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Table 3: Effect of concentrate supplementation and cow strain and their interaction on grazing and rumination behaviour and physical activity 

over 24 h 

Items Conc0 Conc6     P-Value 
HCH HNZ HCH HNZ SD Treatment Cow strain Interaction 

Grazing behaviour over 24 h 
  Time (min) 547.1A 568.7A 442.9B 453.0B 43.9 <0.001 0.20 0.63 
  Mastications (n) 41 232A 42 102A 32 070B 32 865B 3 859 <0.001 0.51 0.97 
  Mastication rate (n/min) 75.3A 74.0A 72.5B 72.7B 4.0 <0.001 0.73 0.06 
  Grazing bouts (n) 5.2 5.7 5.5 6.0 0.94 0.24 0.10 0.81 

Duration grazing bouts (min) 110A 104A 81B 78B 18.8 <0.001 0.42 0.77
Rumination behaviour over 24 h 
  Time (min) 381a 405b 398a 423b 40.8 0.15 <0.05 0.99 
  Mastications (n) 27 661a 29 796b 28 888a 31 204b 3 932 0.20 0.04 0.93 
  Mastication rate (n/min) 72.4 73.4 72.7 73.7 5.3 0.47 0.48 0.92 
  Rumination boli (n) 522a 578b 551a 597b 69.2 0.22 0.04 0.79 
  Mastications boli (n/boli) 51.5 53.8 54.9 53.4 5.0 0.26 0.83 0.17 
  Rumination bouts (n) 13.1 12.2 13.1 12.7 1.58 0.56 0.14 0.48 
  Duration rumination bouts (min) 29 35 31 34 7.0 0.95 0.08 0.40 
Activity over 24 h         
  Lying (min) 492A 541A 564B 590B 62 <0.001 0.05 0.41 
  Standing + moving (min) 949A 900A 877B 851B 62 <0.001 0.05 0.41 
  Walking (min) 421A 419A 373B 362B 59 <0.001 0.75 0.73 
Conc0 = cows without concentrate supplementation; Conc6 = cows with concentrate supplementation; HCH = Swiss Holstein-Friesian; HNZ = 
New Zealand Holstein-Friesian. 
AB Means with different subscript letters within the same row differ (P < 0.01). 
ab Means with different subscript letters within the same row differ (P < 0.05). 
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Blood traits  

Non-supplemented cows had lower (P <0.01) serum glucose concentration but greater (P 

<0.001) concentration of serum BHBA, NEFA and urea compared with supplemented cows 

(Table 4). Concentration of total protein in serum indicated a tendency to be affected by 

supplementation, with a greater concentration for non-supplemented cows. Concentrate 

supplementation had no effect on concentration of serum albumin, triglycerides, cholesterol 

and creatinine. The activity of creatinine kinase, GLDH and GGT was not affected by 

concentrate supplementation, but activity of ASAT and ALAT were greater (P = 0.04) and 

activity of AP was lower (P <0.001) for non-supplemented cows.  

Concentrate supplementation had an impact on the plasma concentration of the hormones 

T3 and T4 with lower (P <0.001 and P = 0.04, respectively) concentrations for non-

supplemented cows. Non-supplemented cows had a lower (P = 0.03) plasma insulin and 

lower (P <0.001) IGF-1 concentration compared with supplemented cows.  

Differences between cow strains were recorded for serum glucose concentration with lower 

(P <0.01) concentration for HCH cows. Furthermore, HCH cows had a lower (P <0.01) 

activity of ALAT and a lower (P <0.05) concentration of IGF-1. For other blood traits no 

differences between cow strains were recorded. No interactions of concentrate 

supplementation and cow strain for blood traits were observed. 
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Table 4: Effect of concentrate supplementation and cow strain and their interaction on blood metabolites, enzymes and hormones 

Items Conc0 Conc6  P-Value 
HCH HNZ HCH HNZ SD Treatment Cow strain Interaction 

Glucose (mmol/L) 3.15A 3.31B 3.25C 3.46D 0.18 <0.01 <0.01 0.54 
BHBA (mmol/L) 0.91A 0.82A 0.68B 0.69B 0.17 <0.001 0.45 0.30 
NEFA1 (mmol/L) 0.12A 0.14A 0.08B 0.09B 0.05 <0.001 0.48 0.62 
Urea (mmol/L) 4.86A 4.77A 3.68B 3.73B 0.90 <0.001 0.95 0.72 
Total protein (g/L) 73.6 72.9 72.0 72.2 4.20 0.10 0.88 0.48 
Albumin (g/L) 38.8 39.2 38.0 38.9 2.40 0.27 0.32 0.56 
Triglycerides (mmol/L) 0.30 0.33 0.30 0.31 0.08 0.44 0.28 0.74 
Cholesterol (mmol/L) 6.28 6.26 6.08 6.43 1.10 0.94 0.70 0.24 
Creatinine (µmol//L) 73.8 70.7 76.2 69.5 8.2 0.66 0.07 0.19 
Creatine kinase1 (U/L) 153 191 146 176 55.2 0.26 0.13 0.79 
GLDH (U/L) 14.4 16.1 13.1 16.7 4.11 0.71 0.08 0.34 
GGT (U/L) 22.8 24.7 22.8 24.8 4.60 0.90 0.20 0.97 
ASAT (U/L) 71.2a 74.8a 67.6b 72.8b 7.38 0.04 0.15 0.52 
AP (U/L) 39.1A 50.6A 48.9B 61.2B 21.20 <0.001 0.17 0.86 
ALAT (U/L) 29.2A 31.7B 26.6C 29.5D 2.60 <0.001 <0.01 0.65 
IGF-1 (ng/mL) 91a 109b 113c 141d 31.5 <0.001 <0.05 0.25 
T3 (nmol/L) 2.28A 2.36A 2.45B 2.60B 0.31 <0.001 0.18 0.34 
T4 (nmol/L) 49.0a 48.7a 51.6b 53.5b 12.01 0.04 0.84 0.51 
Insulin (µU/mL) 4.31a 3.81a 5.82b 5.92b 3.54 0.03 0.94 0.58 
Conc0 = cows without concentrate supplementation; Conc6 = cows with concentrate supplementation HCH = Swiss Holstein-Friesian; HNZ = 
New Zealand Holstein-Friesian; NEFA = non-esterified fatty acids; GLDH = glutamate dehydrogenase; GGT = gamma-glutamyltransferase; 
ASAT = aspartate aminotransferase; AP = alkaline phosphatase; ALAT = alanine aminotransferase; T3 = 3,5,3’-trijodthyronine; T4 = thyroxin. 
ABCD Means with different subscript letters within the same row differ (P < 0.01). 
abcd Means with different subscript letters within the same row differ (P < 0.05). 
11Log10 transformed for statistical analyses.  
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Discussion 

Many studies investigated the effects of concentrate supplementation on intake, milk 

production, body condition, grazing behaviour and digestion under non-organic farming 

conditions, reviewed by Bargo et al. (2003) for grazing dairy cows. Studies under organic 

farming conditions focussed more on the effects on health and fertility on farm level without 

considering the basic effects of concentrate supplementation (Sehested et al., 2003; Ertl et 

al., 2014; Ivemeyer et al., 2014). According to the knowledge of the authors no other study 

investigated the effect of concentrate supplementation on the eating and rumination 

behaviour, intake, metabolic states and milk production of grazing dairy cows under organic 

farming conditions. Changes in organic herbage quality, as found by Spann et al. (2007), 

might be partly due to the principles of organic agriculture (International Federation of 

Organic Agriculture Movements, 2015), for instance, prohibition of synthesized fertilizers and 

pesticides, as well as with the general promotion of natural, multispecies pastures. As the 

nutritive value and the fibre content could influence the outcome of concentrate 

supplementation on grazing dairy cows, studies like ours are needed to close the gap. 

Finally, only few studies investigated the grazing and rumination behaviour, especially bites 

per rumination bolus, when investigating the effects of concentrate supplementation of 

grazing dairy cows. 

Effect of concentrate and consequences for pasture based organic farming 

In accordance with Bargo et al. (2003), milk yield and ECM increased for supplemented 

cows, but to a smaller extent. The observed interaction between concentrate 

supplementation and cow strain for milk production indicate the different genetic potential for 

milk production between the two cow strains (Bargo et al., 2002; Horan et al., 2005). 

Supplemented HCH cows responded to the extra energy supply with greater milk yield 

compared with HNZ cows, but ECM was similar.  

The reduced milk fat content of supplemented cows is in agreement with other studies, when 

cows received >4 kg/day of concentrate (Bargo et al., 2002; Horan et al., 2005). 

Furthermore, the increased activity of plasma AP in supplemented cows may indicate 

acidotic stress. To ensure rumen health, rumination is a key factor as it influences salivation 

and therefore rumen buffering. In the current study, concentrate supplementation had no 

effect on rumination behaviour. It would have been expected that with increasing pasture 

DMI, time ruminating, rumination mastication and number of boli increased (Beauchemin and 

Rode, 1997; McCarthy et al., 2007b). The absence of differences in rumination mastication 
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per bolus and number of boli may indicate a similar ease of bolus formation and swallowing 

for both supplemented and non-supplemented cows, although higher grain diets reflect a 

greater ease of bolus formation (Beauchemin and Rode, 1997). Rumination mastication per 

bolus was in the normal range. This poses the question of whether characteristics of 

rumination behaviour are a suitable indicator of sufficient fibre supply and therefore rumen 

health, at least in grazing dairy cows.  

In agreement with other studies, supplementation caused a substantial reduction in grazing 

time (Bargo et al., 2002; McCarthy et al., 2007b) and therefore reduced grazing mastication 

and grazing mastication rate. This implies the lower motivation of supplemented cows to 

graze and is supported by the reduced duration of grazing bouts for supplemented cows, as 

grazing time or grazing time coupled with intake rate (bite rate and size) at the same BW 

might be indicators for the feeding drive (McCarthy et al., 2007b; Prendiville et al., 2010).  

In accordance with other studies, pasture DMI decreased with concentrate supplementation, 

which is expressed as substitution rate (Bargo et al., 2002; McCarthy et al., 2007b). Both 

calculated and estimated (using n-alkanes) pasture DMI were lowered by concentrate 

supplementation. In contrast, total DMI of supplemented cows was greater or at least the 

same as the total DMI of non-supplemented cows. However, with reduced pasture DMI for 

supplemented cows, cheap pasture is substituted by expensive concentrate which is an 

economic aspect for the farmer. Furthermore, importing ingredients of a commercial organic 

concentrate mix disturbs the holistic approach of organic guidelines. In the current study, the 

energy:protein ratio may be balanced as concentrations of urea in blood and milk were in the 

normal range, with elevated values for non-supplemented cows. In organic farming, the risk 

of excessive protein intake from pasture might be reduced as the CP content of organic 

pasture is lower compared with conventional pasture (Spann et al., 2007).  

Current results indicate a strong relationship between physical activity and grazing 

behaviour. As supplemented cows spent less time grazing, they spent less time standing and 

walking. In a pasture-based feeding system, where energy might be the first limiting nutrient, 

physical activity on pasture is an important factor to be considered. Grazing cows have a 

greater energy expenditure compared with cows fed indoors, as grazing cows take more 

steps, spend less time lying down and spend more time eating (Kaufmann et al., 2011). 

According to the Commonwealth Scientific and Industrial Research Organisation (2007), 

energy requirements for maintenance may increase in the range of 10% to 50% depending 

on grazing conditions, digestibility of pasture, distance walked, weather, topography and 

interactions between these factors. Thus, supplemented cows on pasture did not only ingest 
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more energy, but also presented improved energy balance due to energy savings in relation 

to shorter grazing and physical activities.  

A lack of energy in early lactation can cause metabolic problems such as ketosis. In the 

current study, the increased acetone concentration in milk for non-supplemented cows 

indicates a small risk of ketosis. This is confirmed by an increased concentration of BHBA 

and NEFA and decreased glucose and insulin concentration for non-supplemented cows. 

The increased blood glucose, insulin and IGF-1 concentrations for supplemented cows 

indicate an increased energy status, whereas increased concentration of blood NEFA and 

BHBA for non-supplemented cows suggest a lower energy status (Reist et al., 2002). As the 

concentration of T3 and T4 decreases with stronger negative energy balance (NEB) 

(Huszenicza et al., 2002), non-supplemented cows in current study had lower concentration 

of T3 and T4 and therefore had a lower energy status compared with supplemented cows. 

Furthermore, the increased activity of ALAT of non-supplemented cows indicates an 

increased use of amino acids as an energy source or for gluconeogenesis (Garber et al., 

1976). The greater activity of ASAT of non-supplemented cows alone should be interpreted 

with caution. As the activities of GLDH, GGT and CK were not increased for non-

supplemented cows, the occurrence of fatty liver syndrome in cows of this study is unlikely.  

Results of blood traits indicate that non-supplemented cows were not in strong NEB. 

Supplementation may not be necessary to balance an organic pasture-based diet, at least for 

cows in mid-lactation and therefore more severe, but more flexible restrictions over the whole 

lactation for supplementation are favourable. Finally, it can be stated that the effects of 

concentrate supplementation on milk yield, milk composition, grazing behaviour and intake 

are similar in the present organic study compared with the cited conventional studies.  

Effect of cow strain and consequences for pasture based organic farming  

Another aspect of organic farming is the choice of the breed or strain. This implies the 

selection of cows adapted to lowinput pasture or forage-based feeding system for organic 

dairy production. In the present study, the milk yield responses obtained for HNZ and HCH 

cows were similar to the results of Horan et al. (2005). Swiss Holstein cows reached almost 

the overall milk yield response of 1 kg milk/ 1 kg concentrate as published by Bargo et al. 

(2003), but not in ECM terms. The lower genetic potential for milk production of HNZ cows 

might be the reason for their lower response of 0.5 kg milk/kg of ingested concentrate, as 

pasture allowance and mass was the same for both strains. Cows with high genetic potential 

for milk yield have a greater milk yield response to concentrate supplementation (McCarthy 

et al., 2007b). This phenomenon might be attributed to greater nutrient partition to milk 
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production in high genetic merit cows compared with lower genetic merit cows (Dillon et al., 

2006). This is supported by the results of IGF-1, with greater plasma concentration in HNZ 

cows. Greater IGF-1 plasma concentration indicates the coupling of the somatotropic axis, as 

the liver responds to increased growth hormone concentration and therefore nutrient 

partitioning favours the build-up of body tissue instead of milk production (Lucy et al., 2009).  

In contrast to results for milk yield, no difference for ECM between cow strains was observed 

which can be explained by the greater milk protein and in trend greater milk fat content of the 

HNZ cows. Similarity of ECM yields of the two cow strains indicate a similar efficiency in milk 

production for HCH and HNZ cows in the present study.  

New Zealand Holstein cows ruminated longer than HCH cows, which was also observed in 

previous studies (Schori and Münger, 2014; Thanner et al., 2014). In line with this result HNZ 

cows tended to spend more time lying down compared with HCH cows as rumination of cows 

on pasture is associated with lying down (Kilgour, 2012). Furthermore, HNZ cows had a 

greater number of boli and greater rumination mastication per day compared with HCH cows. 

Anatomical differences of the muzzle and incisor breadth might explain this (Rook, 2000). 

Prendiville et al. (2010) observed smaller bolus size for the smaller Jersey cows compared 

with HF cows, indicating that anatomical differences influence the pattern of bolus movement 

during rumination. Although greater chewing activity during grazing and rumination is 

associated with a greater salivary secretion and therefore a better fibre digestibility 

(Domingue et al., 1991), HNZ cows could not benefit from longer rumination time in terms of 

milk production.  

The trend for lower pasture DMI by HNZ cows and the lack of clear differences in grazing 

behaviour do not confirm a greater feeding drive for HNZ cows (McCarthy et al., 2007b). It 

could have been expected that HCH cows had a greater pasture DMI, as DMI and BW are 

positively correlated (Kertz et al., 1991), as BW is usually positively linked to rumen size and 

therefore intake capacity. Similar pasture DMI indicates a greater DMI per kg BW for HNZ 

cows compared with HCH cows. Furthermore, HNZ cows spent longer time ruminating. 

Digestion rate and discharging of the rumen might be increased as rumination determines 

digestion rate and therefore controls voluntary intake (Bae et al., 1983; Gregorini et al., 

2012).  

The substitution rate of pasture DMI is linked to milk response with a lower substitution rate 

for cows with high genetic potential for milk yield (Bargo et al., 2003). However, in the current 

study, substitution rate, estimated using n-alkane, was the same for both cow strains (0.5 

kg/kg). The results are in accordance with missing differences for ECM.  
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Because no differences were observed between cow strains in blood concentration of insulin, 

NEFA and BHBA, which are indicators of the energy balance of dairy cows (Reist et al., 

2002), no difference between cow strains are obvious in energy status. However, a trend for 

an increased concentration of creatinine in blood plasma for HCH cows may indicate a 

higher skeletal muscle breakdown and the mobilization of more protein as an energy source 

or for gluconeogenesis. In accordance with results from McCarthy et al. (2007a), HNZ cows 

had greater serum glucose concentration compared with HCH cows. The greater glucose 

concentration for HNZ cows during breeding season (60 to 150 DIM) represents an important 

source for energy for the ovary, as Forshell et al. (1991) reported an effect of glucose 

concentration on conception rates. Therefore, greater glucose concentration might indicate 

greater conception rates which is in line with the differences in conception rates reported 

between HCH cows and HNZ cows (Piccand et al., 2013).  

The increase in ALAT activity is in accordance with the results of Thanner et al. (2014), 

which might suggest the elevated use of amino acids of the HNZ cows for purposes other 

than protein synthesis.  

Minor differences between cow strains in the current study indicate that both cow strains are 

equally suited for an organic, pasture-based feeding system. However, the current study was 

a short-term experiment performed with a small number of animals after the peak of lactation 

without considering BCS losses, fertility and health traits during a whole lactation, which are 

important aspects for continuous and successful organic farming. Just choosing a different 

cow breed or cow strain may not ensure a well-working, low-input organic system. Careful 

selection of cows that have a high grazing drive ensures the efficient use of pasture for milk 

production, whereas cows that can deal with lower energy intake at the beginning of lactation 

and show properties of good health and fertility may be well-suited organic cows. 
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ABSTRACT 

The objective of this study was to test whether diet selection of dairy cows under grazing 

conditions could be estimated using plant wax markers. Furthermore, differences between 2 

cow strains and the effect of concentrate supplementation on plant species selection were 

investigated. The experiment was a study with a crossover design performed on an organic 

farm with 12 Swiss Holstein cows and 12 New Zealand Holstein cows. Both experimental 

periods consisted of a 21-d adaptation and a 7-d measurement period. All cows grazed full 

time in a rotational stocking system and received either no concentrate or 6 kg/d of a 

commercial cereal-grain mix. Representative herbage samples of each grazed paddock were 

taken and botanical composition of subsamples was manually determined. The average 

proportions of the plant species were 27.8% Lolium perenne, 6.1% Dactylis glomerata, 

10.4% Trifolium repens, and 9.0% Taraxacum officinale. Other grass species were merged 

as “other grass” (38.2%) and other forb species as “other forbs” (8.5%). n-Alkanes, long-

chain fatty acids, and long-chain alcohols (LCOH) were analyzed in the samples of plant 

species, concentrate, and feces from each cow. A linear discriminant analysis indicated that 

diet components were differentiated best with LCOH (96%) and worst with the combination of 

all marker groups together (12%). For each marker, the fecal marker recovery (FR) relative to 

dosed ytterbium was determined in 2 ways. Estimation of diet composition was performed 

with the software “EatWhat,” and results were compared with botanical composition with the 

Aitchison distance. The results indicate that the diet composition of grazing dairy cows can 

be estimated using plant wax markers. Additionally, the calculation of FR led to mostly 

reliable results, yet this approach needs further validation. The most accurate estimation was 

achieved with the marker combination of n-alkanes and LCOH with a correction for FR. Less 

accurate estimations were achieved with long-chain fatty acids alone or in combination with 

n-alkanes. No difference relating to diet selection between the 2 cow strains was recorded, 

but supplemented cows apparently ingested higher proportions of T. repens than 

nonsupplemented cows. Awareness that supplementation influences selection behavior of 

grazing dairy cows may lead to adaptations in botanical composition of the pasture according 

to the demand of the animals.  

Keywords: alkane, long-chain fatty acid, long-chain alcohol, concentrate supplementation 
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INTRODUCTION 

The benefits of grassland communities with a higher diversity of species and functional 

groups, such as higher productivity, increased resources utilization, higher uptake of 

nitrogen, and increased occupation of available space, are well known (Spehn et al., 2005). 

Recently, the considerable features of multi-species, legume-based grassland-livestock 

systems at different stages in the soil-plant-animal-atmosphere system were summarized by 

Lüscher et al. (2014). They stated that legume-based grassland-livestock systems would 

constitute one of the pillars for more sustainable and competitive ruminant production 

systems and will become more important in the future. Concentrate supplementation of dairy 

cows in a pasture-based feeding system causes substitution of herbage and grazing time is 

reduced [McCarthy et al., 2007; C. Heublein, F. Dohme-Meier, K.-H. Südekum, R. M. 

Bruckmaier (Vetsuisse Faculty, Bern, Switzerland), S. Thanner (Agroscope, Posieux, 

Switzerland), and F. Schori, unpublished data], but no certainties exist about whether it 

influences plant species selection in multispecies pastures. According to Villalba et al. 

(2015), the knowledge of the effects of feed context on preference of grazing animals should 

pioneer innovative management strategies to enhance forage intake, productivity, and animal 

welfare. Previous studies examined the suitability of different cow strains or breeds for a 

pasture-based feeding system [McCarthy et al., 2007; Piccand et al., 2013; C. Heublein, F. 

Dohme-Meier, K.-H. Südekum, R. M. Bruckmaier (Vetsuisse Faculty, Bern, Switzerland), S. 

Thanner (Agroscope, Posieux, Switzerland), and F. Schori, unpublished data], but to the 

authors’ knowledge, no studies considered differences in diet selection on pasture. In New 

Zealand, Holstein cows are bred for an efficient use of pasture and have a higher feeding 

drive (McCarthy et al., 2007). Therefore, differences might exist in plant species selection 

between New Zealand and other Holstein cow strains. Such investigations are needed in 

natural grazing situation with a greater number of plant species, as requested by Villalba et 

al. (2015).  

Plant wax markers, such as n-alkanes (hereafter called alkanes), long-chain fatty acids 

(LCFA), and long-chain alcohols (LCOH), are used for diet composition estimation of grazing 

ruminants (Ali et al., 2005; Lin et al., 2012). With the combination of alkanes and LCFA 

(Ferreira et al., 2009, 2011) or with alkanes and LCOH (Boland et al., 2012; Ferreira et al., 

2015), diet composition estimations provided reasonable results for diets with between 2 and 

6 components. The combination of all 3 marker groups might be applicable to situations with 

more complex diets (Ferreira et al., 2015). Supplementary feeds, such as concentrates, can 

be labeled and considered as an additional component in the diet (Dove and Charmley, 

2008; Elwert et al., 2008). However, several studies included shrubs (Ali et al., 2005) or 

heather-gorse plant species (Ferreira et al., 2015) in the diets, which are not typical plant 
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species occurring on pastures for dairy cows. Various grasses, legumes, and forbs are the 

main plants growing on pastures grazed by dairy cows, and studies to estimate plant species 

selection on multispecies pastures with dairy cows are rare. In one of the few studies on this 

kind of multispecies pasture, using alkanes alone led to erroneous diet composition 

estimations of dairy cows (Schori et al., 2012). Therefore, we tested whether the approach of 

estimating diet composition of grazing dairy cows using plant wax markers is applicable 

under farming conditions and if reasonable results are obtained with different breeds and 

concentrate supplementation.  

The basic precondition for estimating diet selection of ruminants on a multispecies pasture is 

the sufficient differentiation of marker profiles between plant species. Identification of 

markers that contribute most to the differentiation between plant species may reduce 

workload and contribute to a more accurate differentiation as low concentration of markers 

and large within-species variation may limit their use for diet estimation (Mayes and Dove, 

2000). As the recovery of the markers in the feces is incomplete, an important element for 

gaining accuracy of diet composition estimation is the fecal recovery (FR) correction (Ferreira 

et al., 2015). Corrections are needed for incomplete FR of alkanes (Dove and Mayes, 1991), 

LCFA (Ferreira et al., 2009), and LCOH (Ferreira et al., 2015), but in the aforementioned 

studies, FR was determined in indoor feeding experiments with similar diet composition to 

outdoors, with known amount of DMI, diet composition, and collection of total fecal output. 

This approach is labor intensive and expensive, so 2 alternative ways for calculating FR were 

used in the current study. The aim of the study was to test whether the approach using 

calculated FR to estimate diet selection of dairy cows is applicable under grazing conditions 

and to investigate which marker group or marker group combination, with or without FR 

correction, delivers the most accurate estimation. Furthermore, differences between 2 cow 

strains and the effect of concentrate supplementation on plant species selection were 

investigated. 

 

MATERIALS AND METHODS 

Experimental Design and Animals 

All experimental procedures were in accordance with the Swiss guidelines for animal welfare 

and were approved (no. 2012_51_FR) by the Animal Care Committee of the Canton of 

Fribourg, Switzerland. Before selecting the cows for the experiment, a medical checkup 

including vital parameters as well as udder and claw health was performed. The experiment 

was a 2 × 2 factorial design, which was conducted as a crossover design with 2 concentrate 
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levels and 2 cow strains. It was divided into 2 measurement periods, each consisting of a 21-

d adaption period and a 7-d data collection period (Figure 1). For the flow of work and 

equipment reasons, the cows were equally divided into 2 consecutive data collection periods 

of 7 d per measurement period, resulting in 4 data collection periods. The experiment took 

place on the organic farm “Ferme École de Sorens” located 824 m above sea level in 

Sorens, Switzerland.  

A total of 24 Holstein cows, including 12 Swiss Holstein cows (HCH) and 12 Holstein cows of 

New Zealand origin (HNZ), were used for the experiment. Sixteen of them were multiparous 

and 8 were primiparous. Matched pairs of HCH and HNZ cows were formed according to the 

number of lactation and DIM for multiparous cows. For primiparous cows, age was 

considered beside DIM. At the start of the first data collection period, HCH cows had an 

average number of lactations of 2.1 (SD 1.0), had been 101 (SD 23.7) DIM, had an average 

BW of 580 (SD 56.3) kg, a BCS of 2.6 (SD 0.31), and were producing 34.9 (SD 6.08) kg of 

milk/d. The HNZ cows had an average number of lactations of 2.1 (SD 1.0), had been 102 

(SD 22.0) DIM, had an average BW of 513 (SD 75.5) kg, a BCS of 2.8 (SD 0.25), and were 

producing 29.1 (SD 4.44) kg of milk/d.  

During the first measurement period, one of the supplemented HCH cows was excluded from 

the experiment because of health problems. 

Grazing Management, Pasture, and Weather Conditions 

The experiment was carried out in a rotational grazing system from May 6 to July 14 in 2013. 

All 24 experimental dairy cows were managed as a single herd and grazed on pasture from 

0800 to 1400 h and from 1800 to 0430 h the following morning. In the meantime, cows were 

housed in a freestall barn. For certain work steps, cows were briefly tethered in the cubicles. 

Indoors, cows had no access to roughages, but concentrate was distributed to supplemented 

cows. Cows were milked twice a day at 0500 h in the morning and 1600 h in the afternoon. 

Paddocks used were rotationally grazed for 1 to 5 d based on decision rules considering 

sward height with a reference of 130 mm pre-grazing equivalent to an herbage mass of 

approximately 1,000 kg of DM/ha above 50 mm until a postgrazing sward height of 50 mm 

from ground level. The sward surface height was measured with a pasture meter (C-Dax 

pasture meter, C-Dax Ltd., Turitea, New Zealand) before cows entered a new paddock and 

after leaving the paddock. The average pre-grazing sward height was 72 (SD 6.6; n = 10) 

mm, corresponding to 295 (SD 84.5) kg of DM/ha above 50 mm in the first measurement 

period, and 124 (SD 20.3; n = 5) mm, corresponding to 958 (SD 260.3) kg of DM/ha for the 

second measurement period. The average postgrazing sward surface height was 56 (SD 3.1; 

n = 10) mm in the first measurement period and 64 (SD 10.1; n = 5) mm in the second 
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measurement period. Herbage mass above 50 mm (kg of DM/ha) was calculated according 

to −625 + 12.8 × sward height (mm). This regression was calibrated on the same paddocks 

during the vegetation period 1 yr before the current study (R2 = 0.84, n = 89). The pastures 

were long established and composed predominantly of grasses (mainly Lolium perenne, 

Dactylis glomerata, and Phleum pratense) but also of clover (mainly Trifolium repens) and 

forbs (mainly Taraxacum officinale). The pastures were fertilized once per year with 25 

m3/ha of farm-produced manure (corresponding to approximately 80 kg of N, 22 kg of P, and 

108 kg of K per ha). The ambient outdoor temperature and rainfall were recorded daily by the 

meteorological station in Grangeneuve (Meteo-Schweiz, Station Grangeneuve, Switzerland), 

located about 15 km north of the experimental pastures. During the first measurement 

period, the average temperature was 12°C (minimum 6°C, maximum 17°C) and in the 

second measurement period 19°C (minimum 16°C, maximum 20°C). On 7 out of the 14 d, 

scattered rain showers occurred with an average daily precipitation of 7 (SD 10.1) mm in the 

first measurement period, whereas on 2 out of the 14 d in the second measurement period 

the average daily precipitation was 1 mm. 

Concentrate Supplementation 

Figure 1 shows the description of the experiment setup. A step-wise adaptation to the 

targeted amount of concentrate, 0 or 6 kg (as-fed basis), took place during the first 14 d of 

the adaptation periods of 21 d before data collection periods. Six days before the data 

collection periods and during the whole data collection periods, the organic, commercial 

concentrate mix (UFA 275 Bio, UFA AG, Herzogenbuchsee, Switzerland; composition in 

descending order according to the delivery note: corn, wheat bran, wheat, barley, sorghum 

mill feed, barley mill feed, rye, sugar-beet molasses, oats, vegetable oil, minerals, and 

sunflower seed press cake), was mixed with 10% of labeled barley (50 g/kg of octacosane 

HC28, C28H58, Acros Organics BVBA, Geel, Belgium). The concentrate was fed after milking 

in 2 equal meals (3 kg at 0600 h and 3 kg at 1700 h) at the feed fence in the freestall barn 

using separate buckets for each cow. During the data collection periods, all 6 kg/d of 

concentrate was ingested by all cows with no refusals. The nonsupplemented cows received 

no concentrate in addition to pasture. Fresh water was always available and a mineral block 

was available in the barn. 
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7 days14 21 28 35 42 49 56 63  

= Adaptation period, step-wise adaptation of the concentrate (0 or 6 kg/d). 

= Adaptation period, labeled barley was included in the concentrate ration (10% of the  

   6 kg/d).  
= Data collection period.  

Figure 1: Description of the experiment set-up. 

 

Data Recording and Sample Collection 

Individual feed intake was estimated with the n-alkane double indicator technique (Mayes et 

al., 1986). Gelatin capsules (HGK 17–60 sl; Capsula GmbH, Ratingen, Germany), containing 

0.5 g (weighing accuracy 0.01) dotriacontane (HC32, C32H66, Argenta Ltd., Auckland, New 

Zealand) on a carrier of dried fruit pomace and 1.0 g of ytterbium(III) oxide (purity: 99.99%, 

REacton, Alfa Aesar GmbH & Co KG, Karlsruhe, Germany), were administered twice per day 

starting 6 d before the data collecting periods. The ytterbium(III) oxide was added to 

calculate relative FR of alkanes, LCFA, and LCOH. During the data collection periods, a daily 

spot sample of feces was taken from each cow with or without stimulus between 0700 and 

0800 h. Samples were pooled by cow and data collection period and stored at −20°C. For 

estimating feed intake, herbage samples were collected starting 1 d before the feces 

sampling. Herbage sample collection was carried out every morning and evening as 

described by Graf et al. (2005). Samples were chopped and stored at −20°C until further 

analysis. Samples of commercial concentrate mix and labeled barley were taken daily, 

pooled per data collection period and analyzed separately.  

Milk yield (Flo Master Pro, DeLaval AG, Sursee, Switzerland) was recorded daily and milk 

composition was analyzed from a pooled sample of aliquot proportion of morning and 

evening milk on d 1, 4, and 7 of each data collection period. Milk samples were preserved in 

tubes containing Broad-Spectrum Microtabs II (Gerber Instruments AG, Effretikon, 

Switzerland) at 8°C. Grazing and rumination behavior was recorded automatically using jaw 

movement recorders (Datenlogger MSR 145, MSR Electronics GmbH, Hengart, 
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Switzerland), and for recording physical activity IceTag pedometers (IceRobotics Ltd., 

Edinburgh, UK) were used. Further details are described by Thanner et al. (2014).  

During the data collection periods, 2 per measurement period, 2 strips of herbage per 

paddock were cut before the cows entered the new paddock for estimation of the botanical 

composition and to collect plant species or groups for the marker analysis. In the first data 

collection period, cows grazed on 10 different paddocks and in the second period cows 

grazed on 5 different paddocks. The strips, 7 to 9 m long and 1 m wide, were cut with a 

motor mower Rapid BM 117 (Rapid Technic AG, Killwangen, Switzerland). The harvested 

biomass was collected in plastic bags and subsamples were manually separated for 

botanical analysis. Dominant plant species were Lolium perenne, D. glomerata, T. repens, 

and Taraxacum officinale. Other grass species were merged as “other grass” representing 

Phleum pratense, Poa pratensis, Poa annua, Festuca pratensis, Agrostis spp., and Holcus 

lanatus. Further forbs were merged as “other forbs” representing Plantago lanceolata, 

Ranunculus acris, and Rumex acetosa. Plant species or group samples of every data 

collection period, 4 in total, were collected, weighed, and chemically analyzed. The average 

proportion of the plant species or groups over all subsamples of all data collection periods 

was 27.8% L. perenne, 6.1% D. glomerata, 38.2% other grass, 10.4% T. repens, 9.0% T. 

officinale, and 8.5% other forbs. 

Extraction and Analysis of n-Alkanes, Long-chain Fatty Acids, and Long-chain 
Alcohols  

Samples of plant species, concentrate, and feces were analyzed for the concentrations of 

alkanes, LCFA and LCOH according to the methods of Dove and Mayes (2006) without the 

steps for further purification of LCFA and LCOH fractions. Samples of alkanes, LCOH, and 

LCFA were dissolved in dodecane before analysis by gas chromatography, using a Trace 

1300 GC fitted with an AS 1300 series autosampler and a flame ionization detector (Thermo 

Scientific, Hemel Hempstead, UK) equipped with a nonpolar-fused silica capillary column 

(CPSil-5CB, 50 m × 0.32 mm × 0.12 mm, Agilent Technologies, Santa Clara, CA). The 

temperature program used for alkanes and LCFA was initial oven temperature 170°C, hold 

for 4 min; first gradual increase 30°C/min to 215°C, 1 min hold; second gradual increase 

6°C/min to 300°C, 10 min hold. The temperature program used for LCOH was initial oven 

temperature 40°C, first gradual increase 20°C/min to 130°C; second gradual increase 

4°C/min to 250°C; third gradual increase 1.5°C/min to 300°C, hold for 10 min. Mixed 

standard solutions were run regularly to enable corrections for variation in detector response. 

To allow peak identification several samples of the diet components and feces were also 

analyzed using GC described above, equipped with an identical column, coupled to an ISQ 
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mass spectrometer (Thermo Scientific). The ion source was maintained at 300°C and the 

transfer line at 300°C. The emission current was set to 50 mA and the electron energy to 70 

eV. The analyzer was set to scan at 50 to 650 m/z with a scan cycle time of 0.6 s.  

The alkanes with a carbon chain length (CCL) of 24 to 33 were analyzed. The LCFA with the 

even number CCL of 22 to 34 and the LCOH with the even number CCL of 20 to 30 were 

analyzed, as they occur in higher concentrations compared with odd chain substances. 

Further Laboratory Analysis 

Milk samples were analyzed by infrared spectrometry (Combifoss FT+, Foss, Hillerød, 

Denmark) for contents of fat, protein, and lactose (International Dairy Federation, 2000; 

method number 141C). Urea in milk was determined with a differential pH-analyzer 

(Eurochem, Ardea, Italy) before and after hydrolysis with urease (International Dairy 

Federation, 2004; method number 195). For milk acetone determination, acetone and an 

internal standard (2-butanone) were transferred via static headspace directly from the milk 

into the gas phase. The composition of the gas phase was determined with a flame ionization 

detector on a GC (HP 5890 Series II, Agilent Technologies, Santa Clara, CA).  

Herbage, plant species, and feces samples were lyophilized (model Delta, 1–24 LSC, Christ, 

Osterode, Germany). Thereafter, concentrate, herbage, plant species, and feces samples 

were milled through a 1.0-mm screen (Brabender mill with titanium blades, Brabender, 

Duisburg, Germany). Subsamples of the lyophilized samples were dried for 3 h at 105°C to 

determine DM and subsequently incinerated at 550°C until they reached a stable mass to 

assess the ash contents. The contents of alkanes HC32 and tritriacontane (HC33, C33H68) 

were determined as described by Peiretti et al. (2006). The N content was determined using 

the Dumas method (AOAC International, 1995) on a C/N analyzer (type FP-2000, Leco 

Instruments, St. Joseph, MI) and then multiplied by 6.25 to determine the CP content. The 

ether extract was determined using the Soxtec Avanti 2050 apparatus for extraction following 

the guidelines of VDLUFA (2012, method 5.1.1.). Acid detergent fiber (procedure 973.18; 

AOAC International, 1995) was determined with correction for residual ash obtained after 

incineration at 500°C for 1 h. For analyzing Yb, subsamples were dissolved in HNO3 before 

analyzed with an inductively coupled plasma optical emission spectrometry (ICP-OES 

Optima 2000 DV, Perkin Elmer, Shelton, CT, with system ICP-OES Optima 7300). Crude 

fiber was analysed only in herbage, plant species, and concentrate samples according to the 

procedure 978.10 (AOAC International, 1995) and NDF (Mertens, 2002) was assessed with 

the addition of heat-stable amylase and sodium sulfite. Starch content was determined based 

on the polarimetric method (ISO, 2000; method 6493) in concentrate samples. Water-soluble 

carbohydrates (WSC) and ethanol-soluble carbohydrates (ESC) were analyzed according to 
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Hall et al. (1999) and determined with the Thermo Scientific Genesys 10S Vis 

Spectrophotometer (Thermo Scientific, Waltham, MA). Lignin was analyzed according to the 

procedure 973.18 (AOAC International, 1995). 

Calculation of Fecal Recovery and Estimation of Diet Composition 

The correction for incomplete FR was performed in 2 different ways. To estimate average 

marker concentration in the herbage (HM) for the subsequent calculation of individual FR of 

each marker substance (FRM), the average botanical composition of the pasture was 

assessed in 2 different ways.  

Method 1: With the alkane concentrations of the representative herbage samples and from 

the plant species, the average botanical composition for each data collection week was 

calculated using a nonnegative leastsquares procedure in R (R Core Team, 2012). Mean FR 

rates were subsequently calculated with the formula described below for alkanes, LCOH, and 

LCFA across all data collection weeks (FR1).  

Method 2: The manually assessed botanical composition was used to calculate HM (FR2).  

The relative FR of alkanes (CCL: 24–33), LCFA (CCL: 22, 24, 26, 28, 30, 32, and 34), and 

LCOH (CCL: 20, 22, 24, 26, 28, and 30) to Yb were calculated with the following equation: 

FRM = (DYb + DMIH * HYb) * FRYb *FM / ((DHC32 + DMIH * HM + DMIConc * ConcM) * FYb), 

where D is the dosed amount of Yb (DYb) and HC32 (DHC32; just used for FR calculation of 

HC32), H is the concentration of Yb (HYb) in herbage, FRYb is the FR of Yb fixed to 0.95, F is 

the concentration of Yb (FYb) and marker (FM) in feces, and ConcM is the concentration of 

markers in the concentrate (only included for supplemented cows). Total DMI was separated 

into herbage DMI (DMIH) and concentrate DMI (DMIConc). 

With the average FRM of all cows over both measurement periods, concentrations of alkanes, 

LCOH and LCFA in feces were corrected for the diet composition estimation. 

Diet composition of each animal was estimated using a non-negative least-squares 

procedure included in the software “EatWhat” (Dove and Moore, 1995). Estimations were 

performed with alkanes, LCFA, and LCOH alone, and their combination. Furthermore, all diet 

composition estimations were performed with data not corrected for FR (FR0), with FR1, and 

FR2 resulting of 21 combinations (7 marker and marker combinations and 3 FR). For 

supplemented cows, concentrate was included as a diet component. The alkanes 

administered with the capsules were considered in diet estimations with alkanes or in marker 

combination with alkanes.  
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Other Calculations and Statistical Analyses 

The NEL and the absorbable protein in the small intestine when rumen fermentable energy is 

limiting microbial protein synthesis in the rumen were calculated according to Agroscope 

(2013). The ECM was calculated based on a 4% fat, 3.2% protein and 4.8% lactose basis 

(Agroscope, 2013). Feed intake was estimated with the equation proposed by Mayes et al. 

(1986) using the alkanes HC32 and HC33. The statistical analyses for milk yield and 

composition, rumination and grazing behavior, physical activity, and feed intake were carried 

out with SYSTAT 13 (Systat Software Inc., Chicago, IL). The data were collected over 

several d and averaged per cow, d and measurement period. The averages were analyzed 

using the following linear mixed model: 

Yijklm = µ + τi + φj + Pk + (τp)ik + (τφ)ij + Pl + Km (Pl) + εijklm 

where, Yijklm is the response (respectively its logarithm), μ is the least squares mean, τi is the 

fixed effect of cow strain i (i = HCH, HNZ), φj is the fixed effect of the treatment j (j = non-

supplemented, supplemented cows), Pk is the fixed effect of the period (k = period 1, period 

2), (τp)ik is the effect of the interaction between cow strain i and period k, (τφ)ij is the effect of 

the interaction between cow strain i and treatment j, Pl is the random effect of cow pair l 

(1,…,12), Km is the random effect of the cow m (1,…, 24) and εijklm is the random error. The 

effects were considered significant at P ≤ 0.05. A value of 0.05 < P < 0.10 was considered a 

trend. 

Linear discriminant analyses were performed with SYSTAT 13 for evaluating the 

differentiation of marker profiles of the plant species and the concentrate. Results are 

summarized in a jackknifed classification matrix where the percentage of correct allocations 

of marker profiles to the plant species is presented. The concentrate percentage of the diet of 

supplemented cows was subtracted from the results of entire diet estimated with “EatWhat” 

and compared to the manually assessed botanical composition. Based on the Aitchison 

distance measure (Aitchison et al., 2000) the similarity between botanical compositions and 

diet estimations was tested with the R package “compositions” to figure out the marker group 

and FR with the most accurate diet estimation. Using the R package PCS (Wilson, 2013) the 

marker group combinations with the most accurate diet estimation were determined. A 

parametric linear mixed model was applied to the Aitchison distances of the 2 best marker 

and FR combinations to test whether they differ significantly from each other (SYSTAT 13). 

The most accurate marker group combination for diet estimation was selected and the 

effects of concentrate supplementation and of cow strain were tested with the R package 

“composition” as described in van den Boogaart et al. (2013). Zeroes in the estimated 

compositions were first replaced by the nonparametric imputation procedure proposed by 
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Martin-Fernandez et al. (2003). For each plant variety a robust linear mixed model (Koller, 

2015) was applied to the logarithms of the estimated compositional results of the most 

accurate diet estimation to test the effects of concentrate supplementation and of cow strain.  

 

RESULTS 

Chemical Composition of Herbage and Concentrate 

In Table 5, the average chemical composition of the herbage samples from the paddocks for 

each measurement period is presented. All analyzed components are similar in both 

measurement periods. The average chemical composition of plant species and concentrate 

is displayed in Table 6. Small differences were recorded between plant species; for example, 

T. repens had the highest concentration of CP, but the lowest concentration of WSC. Grass 

species, including L. perenne, D. glomerata, and the group of other grass, had a higher 

concentration of crude fiber, ADF, and NDF than the other plant species. As the concentrate 

was a commercial mix based on grain, the chemical composition was similar to the labeled 

barley with high NEL concentration (8.0 MJ/kg of DM for both) and medium CP concentration 

(127 and 138 g/kg of DM, respectively). 
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Table 5. Average chemical composition of herbage samples (n = 28; mean ± SD) 
Item Measurement 

period 1 
SD Measurement 

period 2 
SD 

DM (g/kg of wet weight) 201 35.4 192 35.5 
Analyzed nutrients composition (g/kg of DM) 
  OM 889 21.3 906  6.3 
  CP 159 17.9 162 18.2 
  Ether extract  36  4.7  42  5.6 
  ADF 222 15.1 246 22.0 
  NDF 376 22.6 375 41.5 
  Crude fiber 184 11.8 195 21.7 
  Lignin  26  4.4  33  8.9 
  WSC1 241 24.4 200 28.5 
  ESC2 124 23.7 112 23.4 
Calculated energy and protein supply 3 (per kg of DM) 
  NEL (MJ)    6.0   0.3    6.1  0.2 
  APDE4 (g) 100  5.1 101  4.5 
Analyzed n-alkane contents5 (mg/kg of DM) 
  HC285    3  0.4    3  0.5 
  HC326    5  0.8    5  1.0 
  HC337  51  6.9  50 10.5 
1WSC = water soluble carbohydrates. 
2ESC = ethanol soluble carbohydrates. 
3According to Agroscope (2013). 
4APDE = absorbable protein in the small intestine when rumen fermentable energy is limiting 
microbial protein synthesis in the rumen. 
5HC28 = octacosane, C28H58; HC32 = dotriacontane, C32H66; HC33 = tritriacontane, C33H68. 
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Table 6. Average chemical composition of plant species and groups (n = 4), concentrate (n = 4) and labeled concentrate (n = 4). 
Item LP1  DG2  OG3  TR4  TO5  OF6  Conc7  lConc8  
 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD  
DM 215 17.4 211 10.9 232 25.3 165 26.9 137 20.2 159 21.2 880   1.4 870   0.7  
Analyzed nutrient composition (g/kg of DM) 
  OM 905 10.9 904 15.5 897   16.7 870 29.4 855 29.5 854 48.3 945   0.6 978   0.2  
  CP 142 18.6 152 15.4 151   16.5 204 13.1 145 19.6 142 20.2 127   2.6 138   2.9  
  Ether extract   29   2.9   38   5.2   35     1.1   44   4.7   42   7.0 34   3.8   63   3.7   33   1.4  
  Crude fiber 222 22.2 247   3.5 241   15.3 148 21.5 142 17.2 156 18.6   49   0.9   53   1.8  
  ADF 248 30.2 270   6.4 266   19.9 207 25.9 209 21.8 229 34.9   73   8.1   78   8.9  
  NDF 436 46.1 484   5.3 469   30.5 246 19.8 223 19.6 284 38.5 274 31.7 287 47.3  

Lignin 24 5.7 28 4.0 31 5.8 53 1.0 53 4.4 65 9.6 24 5.2 16 2.6
  WSC9 213 61.1 180 22.6 175   40.1   95   5.5 182 31.9 161 26.0     

ESC10 99 19.1 84 7.6 77 11.1 93 6.0 123 12.6 124 30.7
  Starch             488 15.3 552  4.4 
Calculated energy and protein supply11 per kg of DM 
  NEL    6.3  0.3    6.2   0.2    5.9    0.1    5.9   0.3     5.9   0.3 5.6   0.4    8.2   0.1    8.0   0.0  
  APDE12 101  4.2 101   4.1   98    3.6 105   4.9   94  5.9 94   3.6     
1 LP = Lolium perenne; 2 DG = Dactylis glomerata; 3 OG = other grass species; 4 TR = Trifolium repens; 5 TO = Taraxacum officinale; 6 OF = 
other forb species; Conc7 = concentrate; lConc8 = labelled concentrate. 
9WSC = water soluble carbohydrates; 10ESC = ethanol soluble carbohydrates. 
11According to Agroscope (2013). 
12APDE = absorbable protein in the small intestine when rumen fermentable energy is limiting microbial protein synthesis in the rumen. 
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Milk Yield, Milk Composition, and Dry Matter Intake 

Nonsupplemented cows had lower (P < 0.001) milk production compared with supplemented 

cows (Table 7). Swiss Holstein cows had higher milk yield, but no difference between cow 

strains was recorded for additional milk yield per kilogram of concentrate. Concentrate 

supplementation had no effect on ECM yield and no difference between cow strains 

occurred. Nonsupplemented cows had a higher (P < 0.001) milk fat content and a lower (P < 

0.01) milk protein content. Swiss Holstein cows had a lower (P < 0.05) milk fat and a lower (P 

< 0.001) milk protein content compared with HNZ cows. Concentration of acetone and urea 

in milk were influenced by concentrate supplementation with greater (P < 0.001) 

concentrations for nonsupplemented cows. Nonsupplemented cows had a higher (P < 0.001) 

herbage DMI compared with supplemented cows, but total DMI was lower (P < 0.001) for 

nonsupplemented cows. No further difference between cow strains and no interactions for 

aforementioned traits were observed. 

Grazing and Rumination Behavior and Physical Activity 

Grazing time, grazing mastication, and grazing mastication rate were higher (P < 0.001) for 

nonsupplemented cows, but no differences between cow strains were recorded (Table 8). 

Concentrate supplementation had no influence on rumination behavior, but 

nonsupplemented cows tended to have a lower number of mastications per bolus than 

supplemented cows (P = 0.08). Swiss Holstein cows spent slightly (P = 0.09) less time 

ruminating and made less rumination mastications. A trend (P = 0.06) for lower number of 

boli per day was recorded for HCH cows compared with HNZ cows. Physical activity was not 

influenced by concentrate supplementation. No difference between cow strains was recorded 

for time spent lying or standing. The HCH cows had a tendency to walk less (P = 0.07) and 

made fewer (P = 0.03) steps compared with HNZ cows. No interactions were recorded. 
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Table 7. Effect of concentrate supplementation1 and cow strain2 on milk production performance and feed intake 
Item Conc0 Conc6  P -Value 

HCH HNZ HCH HNZ SD Cow strain Treatment Interaction 
Milk production performance         
  Milk yield (kg/d)  23.4  21.3  26.4  23.6   4.14   0.05 <0.001 0.58 
  Milk yield (kg/ kg 
concentrate) 

     0.49  0.40   0.44   0.55   

  ECM (kg/d)  21.7  20.9  22.6  21.6   4.05   0.44   0.18 0.86 
  Fat (%)    3.7    4.0    3.0    3.3   0.45   0.03 <0.001 0.92 
  Protein (%)    3.1    3.4    3.2    3.5   0.16 <0.001 <0.01 0.35 
  Lactose (%)    4.6    4.5    4.6    4.6   0.24   0.38   0.65 0.91 
  Acetone (mg/L)    2.7    2.3    1.6    1.5   0.64   0.26 <0.001 0.35 
  Urea (mg/L) 248 245 222 210 30.7   0.48 <0.001 0.55 
Feed intake         
  Herbage DMI (kg/d) 15.4  14.7  12.2  10.9   2.30   0.10 <0.001 0.28 
  Total DMI (kg/d) 15.4  14.7  17.4  16.1   2.30   0.10 <0.001 0.28 
1Conc0 = non-supplemented cows; Conc6 = cows supplemented with 6 kg/d concentrate. 
2HCH = Swiss Holstein cows; HNZ = New Zealand Holstein cows. 
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Table 8. Effect of concentrate supplementation1 and cow strain2 on grazing and rumination behavior as well as on physical activity over 24 h. 
Item Conc0 Conc6     P-Value 

HCH HNZ HCH HNZ SD Cow strain Treatment Interaction 
Grazing behavior over 24 h 
  Time (min)      541      558      463      470    47.1 0.32 <0.001 0.71 
  Mastications (n) 40’066 42’130 33’279 34’166 4’418 0.17 <0.001 0.58 
  Mastication rate (n/min)       73.8       75.4       71.6       72.7      3.58 0.30 <0.01 0.83 
Rumination behavior over 24 h 
  Time (min)      406      433      413       450      53.1 0.09   0.33 0.67 
  Mastications (n) 29’590 32’046 29’725 33’607 5’011 0.09   0.47 0.54 
  Mastication rate (n/min)       72.8       73.9       71.7       74.3       4.67 0.31   0.67 0.34 
  Rumination boli (n)     533      610     532      584     80.4 0.06   0.20 0.23 
  Mastications boli (n/boli)      56.3       52.8       57.3       58.4       9.79 0.76   0.08 0.20 
Activity over 24 h         
  Lying (min)    473      465      521      478      75.3 0.22   0.16 0.40 
  Standing and moving (min)    968      976      920      963      75.3 0.22   0.16 0.40 
  Walking (min)    355      422      353      390      93.0 0.07   0.55 0.59 
  Steps (n) 4’326   5’098   4’096   4’763 1’130 0.03   0.38 0.87 
1Conc0 = non-supplemented cows; Conc6 = supplemented cows. 
2HCH = Swiss Holstein cows; HNZ = New Zealand Holstein cows. 
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Composition of Diet Components, Fecal Recovery, and Diet Selection 

Concentration of alkanes, LCFA, and LCOH of plant species and concentrate are given in 

Table 9. The LCOH had the highest average concentration with 446 mg/kg of DM compared 

with alkanes (21 mg/ kg of DM) and LCFA (277 mg/kg of DM). The oddchain alkanes were in 

higher concentration compared with even-chain numbered alkanes. For L. perenne, D. 

glomerata, other grass, and other forbs the C31 n-alkane had the highest concentration, but 

for T. repens and T. officinale the C29 n-alkane was most abundant. Alkane concentration in 

concentrate was generally low (<3 mg/kg of DM) except for the C28 n-alkane from labeled 

barley added to the concentrate. The C24 n-alkane had the lowest concentration of those 

measured with <1 mg/kg of DM in all diet components. In general, the highest overall 

average alkane concentration in plant species was analyzed for L. perenne with 36 mg/kg of 

DM and the lowest for T. officinale with 10 mg/kg of DM. The highest concentrations of LCFA 

occurred for those with CCL of 22, 24, 26, and 28, and the lowest concentration was 

recorded for the C34 LCFA in all diet components. The highest average LCFA concentration 

in plant species occurred for T. repens with 426 mg/kg of DM and the lowest for L. perenne 

with 163 mg/kg of DM. The C26 LCOH had the highest concentration and the C20 LCOH had 

the lowest concentration in all diet components, except for T. repens, where the C30 LCOH 

had the highest and the C20 and C22 LCOH had the lowest concentration. Dactylis glomerata 

had the highest average LCOH concentrations in plant species with 1,150 mg/kg of DM and 

T. repens had the lowest with 257 mg/kg of DM.  
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Table 9. Concentrations (mg/kg DM) of n-alkanes, long-chain fatty acids (LCFA), and long-chain alcohols (LCOH) in samples of concentrate (n 
= 4) and plant species (n = 4) for all data collection week
Marker LP1  DG2  OG3  TR4  TO5  OF6  Conc7  
 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
n-alkanes 
  C24       1    0.3       1     0.5     1     0.3     0    0.1       0      0.4     1     0.2     0   0.1 
  C25     16  14.0     11     5.8   15     5.9     5    1.0       3      2.1     6     1.9     1   0.3 
  C26       1    0.8       1     0.4     1     0.2     1    0.3       1      0.5     1     0.2     0   0.1 

C27 29 17.6 9 2.5 23 6.5 18 2.3 14 10.8 24 4.7 1 0.6
  C28       2    0.6       1     0.3     2     0.6     2    0.4       2      1.6     3     0.5   40   1.5 

C29 95 27.5 19 1.9 81 20.9 84 26.5 40 33.7 95 23.1 2 1
  C30      6    1.3       1     0.5     4     1.1     4    2.0       2      1.9     8     2.5     0   0.1 
  C31   151  60.0     36     4.1  125   32.7   59  39.7     29    21.4 158   40.9     2   1 
  C32       3    0.4       2     1.0      3     0.7     2    0.8       2      1.5     7     2.2     0   0.1 
  C33     57  13.2     27     6.0    40    4.6     5    2.1       5      3.1   45   10.9     0   0.2 
LCFA               
  C22   424  86.1   426   119   612 188 671 255 1259 1431 416 116 308 65.4 
  C24   295  45.5   330   105   415 123 946 278 1367 1015 518 112 188 10.3 
  C26   354 126   787   286   658 270 574 133   436   136 257   45.9   87   3.4 
  C28   201  65.8   395   369   339 193 609 182   336    91.0 183   39.3 187   3.1 
  C30     93  46.8     73    42.8   160 104 162   64.0   126    19.9 114   47.6     5   1.2 
  C32     47  19.9     55    25.0     70   38.5   19   10     71    17.0   45   23.3     3   1.5 
  C34     16    7.9     48    21.0     27   16.3     2     1.2     16      3.9     8     2.3     0   0 
LCOH               
  C20       8    2.1       3      2.0       5     1.5   19     8.4       6      4.9     7     4.3     1   0.1 
  C22     16    2.4     38    14.6     19     5.9   19     4.9     35    16.0   26     8.4     1   0.3 
  C24   108  24.4     74    20.4     83   11.7   57     7.7   285    76.9   94   14.3     4   0.5 
  C26 2362 871 6519 2223 3599 915 370   30.2 1010    91.9 363   49.8     7   1.1 
  C28   383 148   234   139   604 431 270 191   560  280 135   33.6     3   0.5 
  C30     23  17.0     30    22.2     56   40.0 808   63.6   454  132   51   53.7     0   0.3 
1 LP = Lolium perenne; 2 DG = Dactylis glomerata; 3 OG = other grass species; 4 TR = Trifolium repens; 5 TO = Taraxacum officinale; 6 OF = 
other forb species; 7 Conc = concentrate; mean value proportional with normal (90%) and labeled concentrate (10%) overall data collection wk. 
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Most accurate discrimination of diet composition was achieved with the LCOH, where 96% of 

the plant species or groups were correctly allocated (Table 10). A score of 81% correct 

allocations was obtained with alkanes or LCFA. The marker combination with the most 

accurate allocation (81%) was LCFA and LCOH. Finally, the weakest discrimination with 

12% correct allocation resulted from the combination of all 3 marker groups. The most 

accurate diet component allocation was achieved for concentrate, where a 100% allocation 

was accomplished unless all 3 marker groups were used. The plant-specific correct 

allocation varied from 50 to 77% with the best allocation for T. repens (77%) followed by D. 

glomerata (71%). The least accurate average allocation was achieved for L. perenne as it 

was frequently mixed up with the group of other grass (data not shown). In Figure 2, the 

results of calculated FR are presented for alkanes, LCFA, and LCOH. All FR increased with 

increasing CCL, except for the FR2 of the LCOH, where FR increased until LCOH with a 

CCL of 26 and decreased for the ones with a CCL of 28 and 30. Both FR methods for 

alkanes and LCOH indicated an incomplete recovery (FR < 1.0) of the lower CCL alkanes 

(C24 to C32) and LCOH (C20 to C28), but were >1.0 for the C33 alkane and the C30 LCOH. The 

average FR of LCFA was higher than the FR of alkanes and LCOH. For the LCFA with a 

CCL of 26 to 32 FR was >1.0 with the highest rate for the LCFA with a CCL of 26 (FR1 = 2.6, 

and FR2 = 2.4).  

Table 10. Correct allocation (%) of marker profiles of plant species and concentrate with 
linear discriminant analysis1 

Marker group combination LP DG OG TR TO OF Conc total 
  n-alkanes 75   75   75 100 100   50 100 81 
  LCFA 50 100   50 100 100   75 100 81 
  LCOH 75 100 100 100 100 100 100 96 
  n-alkanes + LCFA 25   50   75   67     0   75 100 56 
  n-alkanes + LCOH 50 100   75   75   67   50 100 74 
  LCFA + LCOH 50   75   50 100 100 100 100 81 
  n-alkanes + LCFA +   
LCOH 

25    0     0     0     0   25   33 12 

1 LP = Lolium perenne; DG = Dactylis glomerata; OG = Other grass species; TR = Trifolium 
repens; TO = Taraxacum officinale; OF = other forb species; Conc = Concentrate; LCFA = 
long-chain fatty acids; and LCOH = long-chain alcohols. 
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Figure 2. Calculated fecal recoveries of markers based on alkane concentration (1) and on 
botanical composition (2). Error bars indicate SD. 
LCFA = long-chain fatty acids; LCOH = long-chain alcohols. 
  

0

1

2

3

4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Fe
ca

l r
e

co
ve

ry
 o

f 
n

-a
lk

an
e

s

Carbon-chain length

Fecal recovery 1 n-alkane

Fecal recovery 2 n-alkane

0

1

2

3

4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Fe
ca

l r
e

co
ve

ry
 o

f 
LC

FA

Carbon-chain length

Fecal recovery 1 LCFA

Fecal recovery 2 LCFA

0

1

2

3

4

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Fe
ca

l r
e

co
ve

ry
 o

f 
LC

O
H

Carbon-chain length

Fecal recovery 1 LCOH

Fecal recovery 2 LCOH



Chapter 4 

 

 

56 
 

The accuracy of the diet composition estimation depending on the marker combinations was 

ranked based on the Aitchison distance (Table 11). With the combination alkanes, LCOH and 

FR1, the most accurate estimation was achieved (smallest Aitchison distance), as shown in 

Figure 3, with and without concentrate included, compared with the assessed botanical 

composition. The least accurate diet composition estimations were achieved with the 

combination alkanes and LCFA, and LCFA alone: with or without FR correction. Using the 

most accurate marker group combination, alkanes, LCOH, and FR1, differences between 

cow strains or concentrate supplementation on diet composition has been tested (Table 12). 

Results indicate no difference between cow strains (P = 0.49), but an effect of concentrate 

supplementation (P = 0.02) on diet selection. Nonsupplemented cows had a lower (P < 0.05) 

proportion of T. repens in their diet compared with supplemented cows. 

Table 11. Results of diet estimation validation with Aitchison distance 
Sequence Marker combination1 Fecal 

recovery2 
Aitchison 
distance 

1 n-alkanes + LCOH FR1 0.3683 

2 n-alkanes + LCOH FR2 0.437 
3 LCOH FR2 0.447 
4 n-alkanes + LCOH FR0 0.458 
5 LCOH FR0 0.463 
6 LCOH FR2 0.474 
7 n-alkanes + LCFA + LCOH FR2 0.583 
8 LCFA + LCOH FR2 0.630 
9 n-alkanes + LCFA + LCOH FR1 0.637 
10 n-alkanes + LCFA + LCOH FR0 0.644 
11 LCFA + LCOH FR0 0.647 
12 LCFA + LCOH FR1 0.669 
13 n-alkanes FR0 0.680 
14 n-alkanes FR1 0.734 
15 n-alkanes FR2 0.809 
16 n-alkanes + LCFA FR0 1.060 
17 LCFA FR0 1.060 
18 n-alkanes + LCFA FR1 1.060 
19 LCFA FR1 1.060 
20 n-alkanes + LCFA FR2 1.060 
21 LCFA FR2 1.060 
1LCFA = long-chain fatty acids; LCOH = long-chain alcohols. 
2FR0 = no correction for fecal recovery; FR1 = mean fecal recovery calculated according to 
alkanes in herbage samples; FR2 = mean fecal recovery according to botanical composition 
analysis. 
3Value for Aitchison distance of the marker combination alkanes + LCOH and FR1 differs 
significantly (P < 0.001) from the value for Aitchison distance of marker combination alkanes 
and LCOH with FR2.
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Table 12. Results of diet estimation with most accurate marker combination (alkanes and 
long-chain alcohols with fecal recovery 1) and their impact on concentrate supplementation 
and cow strain. 
Item1 
(%) 

Conc02 Conc63  P-Values 

 HCH4 HNZ5 HCH4 HNZ5 SD Cow 
strain 

Treatment Interaction 

LP 35.3 30.6 28.2 31.0 22.1 0.97   0.73 0.81 
DG   8.4   9.9   7.3 10.3 10.0 0.32   0.67 0.41 
OG 32.3 33.1 22.7 24.7 19.5 0.59   0.14 0.70 
TR 11.4 13.4 14.9 15.4   8.7 0.23 <0.05 0.33 
TO   2.2   1.9   5.7   1.6   7.3 0.87   0.88 0.48 
OF 10.6 10.5 21.2 17.1 11.7 0.59   0.40 0.88 
1LP = Lolium perenne; DG = Dactylis glomerata; OG = other grass species; TR = Trifolium 
repens; TO = Taraxacum officinale; OF = other forb species. 
2Conc0 = nonsupplemented cows; 3Conc6 = cows supplemented with 6 kg/d of concentrate. 
4HCH = Swiss Holstein cows; 5HNZ = New Zealand Holstein cows. 
 
 
 

 
 
Figure 3. Diet composition assessed during manual plant species separation or estimated 
with “EatWhat” considering the combination of n-alkanes, long-chain alcohols, and fecal 
recovery, determined with alkane concentration in pasture and feces samples (FR1), with or 
without concentrate. 
Reference Conc0 = diet composition of non-supplemented cows determined during manual 
plant species separation; 
Estimated Conc0 = estimated diet composition of non-supplemented cows determined with 
“EatWhat”; 
Reference Conc6 = diet composition including concentrate of supplemented cows 
determined during manual plant species separation; 
Estimated Conc6 = estimated diet composition including concentrate of supplemented cows 
determined with “EatWhat”. 
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DISCUSSION 

Plant Wax Concentration and Profiles of Plant Species 

A sufficient differentiation between plant species is essential for successful diet estimation. 

Differentiation between plant species with alkanes, LCFA, and LCOH is feasible, but most 

previous studies included only a few pasture plant species (Boland et al., 2012) or studied 

diets containing herbaceous and heathland woody species (Ferreira et al., 2009). Similar 

marker profiles between different species result in incorrect allocations, which create a 

challenge for accurate diet composition estimation. Therefore, plant species from the same 

genus or plants with similar marker profile can be summarized and denoted as one diet 

component (Ferreira et al., 2011). However, differences in palatability and consequently 

intake have to be considered. For example, D. glomerata is less preferred than L. perenne 

when taking the whole grazing season into account (Ivins, 1952), because the decline in 

quality of D. glomerata is more rapid than that of L. perenne. Concentrations of all 3 marker 

groups varied within plant species samples, which was attributed to environmental conditions 

(Dove et al., 1996) and simultaneous sampling of plant species and animal feces is required. 

Date of sampling influences the alkanes concentration depending on the plant growth stage, 

as concentration differs between plant parts. The highest is in the florescence, at least for L. 

perenne (Dove et al., 1996; Ferreira et al., 2009), T. officinale, and T. repens (Gedir and 

Hudson, 2000). Ferreira et al. (2009, 2015) observed similar LCFA and LCOH marker 

profiles of L. perenne for leaf and stem fractions, and for the spike fraction, and there may be 

only minor differences between plant parts in other plant species, which should be tested in 

future studies. The concentration of the C31 alkane was high in samples of L. perenne and in 

the group of other grass, which is typical for grass species (Bush and McInerney, 2013). 

Furthermore, alkane and LCFA profiles of L. perenne and other grass were similar, probably 

because cognate grasses such as Lolium multiflorum are included in the group of other 

grass, resulting in frequent mixing up in the outcome of the linear discriminant analysis. The 

C29 alkane was dominant in T. repens, which is typical for legumes (Dove et al., 1996; 

Charmley and Dove, 2007), and a 100% correct assignment of T. repens profiles was 

achieved with alkanes. In accordance with Schori et al. (2012), T. officinale had low alkane 

concentrations, but achieved a 100% correct assignment with alkanes alone. Long-chain 

fatty acids achieved a good differentiation of plant species, but no individual LCFA was 

identified that contributed most for differentiation. The concentration of LCFA in samples of L. 

perenne was similar to that of Ferreira et al. (2010), except C30 and C32 LCFA, which in the 

current study showed lower concentration. In contrast, concentrations of the LCFA with a 

CCL of 22, 24, 26, and 28 in T. repens samples were higher in the current study compared 

with Ferreira et al. (2010) and those with a CCL of 30, 32, and 34 were in the same range. 
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Environmental conditions, variety, and plant growth stage can influence the concentration of 

plant wax markers. A comparison of samples from different locations and time is therefore 

problematic. The predominant LCOH for grass species are those with a CCL of 26 and 28 

(Dove and Charmley, 2008; Ferreira et al., 2015), whereas the C30 LCOH was dominant in T. 

repens, which is typical for clover (Dove and Charmley, 2008). However, the C24 and C26 

LCOH contributed most to the accurate allocation in the current study. Labeling the 

concentrate with the C28 alkane seems to be sufficient for discrimination, and allocation also 

worked well with LCFA and LCOH without labeling. However, estimations of proportion of 

concentrate in the diet may be underestimated (Figure 3). Hameleers and Mayes (1998) did 

not consider the supplemented barley in diet composition calculations because of the low 

alkane concentration. Without labeling, grain-based concentrate, which has low alkane 

concentrations, may lead to difficulties in accurate estimation of the concentrate proportion in 

the diet (Charmley and Dove, 2007). The advantage of using labeled concentrate is the 

parallel assessment of DMI of the animals, as discussed in Dove and Charmley (2008). 

Fecal Recovery 

Estimation of FR of grazing animals is difficult as total fecal output, composition of plant 

species on pasture and precise pasture DMI estimation are required. An independent feeding 

experiment with housed animals and total feces collection is labor intense and expensive, 

and feed selection of cut herbage fed indoors might be different compared with selection 

behavior on pasture. Rectal grab samples collected once or twice daily provide a 

representative marker profile in the feces and are valid for estimating diet composition under 

field conditions (Dove and Charmley, 2008). Calculated FR based on the fixed FR of Yb led 

to appropriate results, at least for alkanes and LCOH. Further studies are necessary to 

investigate whether the methods for calculating FR are adequate and correlate to measured 

FR.  

In previous studies, FR increased with increasing CCL for alkanes, LCFA, and LCOH (Dove 

and Charmley, 2008; Elwert et al., 2008; Ferreira et al., 2011). In the current study, all 

calculated FR tended to increase with CCL except the FR2 for LCOH. Similar to the study of 

Ferreira et al. (2009), no clear relationship was detected between alkane CCL and FR. A 

separate analysis of odd- and even-numbered alkanes indicated a linear increase for FR of 

odd-numbered alkanes and a curvilinear decrease for FR of even-numbered alkanes. 

Concentration of even-numbered alkanes is low compared with odd-numbered alkanes and 

low concentrations include more analytical uncertainties. The values of both calculated FR 

and their SD for LCFA were unrealistically high (up to 2.6) with the highest value for the 

LCFA with CCL of 26. The increase of both calculated FR occurred in a curvilinear way, as in 
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the study of Ferreira et al. (2011). Equally, a high concentration of the LCFA with a CCL of 

26 was observed in the study of Ferreira et al. (2011), although the value did not exceed 1.0. 

The current method of calculating FR did not work for LCFA as evidenced by unrealistically 

high values but, in contrast, calculated FR for alkanes and LCOH seemed to be appropriate. 

Measured LCFA in feces could partly originate from endogenous sources and peaks might 

not be completely pure (Ali et al., 2005). However, a subset of samples was tested using GC-

MS and peaks of LCFA were identified without contamination of other FA components. 

Nevertheless, the LCFA concentration in feces may be overestimated leading to 

unrealistically high FR and resulting in inaccurate diet estimations. Both methods of 

calculating FR achieved similar results (taking into account the relation between the 

difference of the means to the SD) for alkanes, LCFA and LCOH, except C28 and C30 LCOH. 

The FR1 increased with increasing CCL in a linear way as recorded by Dove and Charmley 

(2008), but FR2 increased up to the C26 LCOH and decreased with increasing CCL 

afterward. Furthermore, SD was high for the LCOH with a CCL of 30, especially for FR1. 

This may be related to different consumption of T. repens, which has high concentrations of 

C30 LCOH.  

Ruminant species may also have an effect on FR (Ferreira et al., 2011) as well as diet 

composition (Elwert et al., 2008; Ferreira et al., 2010), although others reported no effect of 

diet composition on FR (Ali et al., 2004; Dove and Charmley, 2008). Increasing digestibility of 

diet components decreased the FR of alkanes, which partly explained the differences in FR 

between diets in the study of Elwert et al. (2008). In accordance with Ferreira et al. (2015), 

diet estimation was more accurate with FR than without FR, indicating that a correction of 

marker concentration in feces is recommended. The significant difference between the 

combinations of alkanes and LCOH with either FR1 or FR2 for diet estimation indicates that 

a correction of recoveries calculated with the alkanes (FR1) results in more precise diet 

estimation, at least for the combination of alkanes and LCOH. Probably, diet estimations with 

FR1 achieved better results as alkanes were also used to estimate botanical composition for 

calculating FR. The botanical composition assessed during manual separation of plant 

species for FR2 might be a more independent factor. Therefore, it is important that pasture is 

grazed evenly without systematic leftovers. This is difficult to ensure as cows avoid grazing 

around dung patches. Further studies with total fecal output collection would be necessary to 

confirm and improve the used methods for FR determination. 

Diet Composition Estimations 

Results of diet estimation with the program “EatWhat” (Dove and Moore, 1995) were 

compared using the Aitchison distance with the average botanical composition of pastures. 
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Cows stayed on paddocks until an average postgrazing height of 56 mm in the first and 64 

mm in the second period and thus, we can assume a consumption of all plants on pasture. 

This assumption was supported by visual evaluations. Regarding marker groups separately, 

LCOH achieved best results for diet estimation followed by results with alkanes and the 

poorest results were reached with LCFA, as in Ali et al. (2005). The best combination for diet 

estimation was alkanes and LCOH with a correction of FR, followed by LCOH alone. This is 

in agreement with Ferreira et al. (2015), where a combination of alkanes and LCOH 

improved accuracy of diet estimation compared with LCOH or alkanes alone. In our study, 

using LCOH alone achieved a more accurate diet estimation compared with any combination 

with LCFA or with a combination of all 3 marker groups.  

The marker group combination of alkanes and LCFA resulted in a less accurate diet 

estimation compared with LCOH alone, which is contrary to results of Ferreira et al. (2011). 

Despite reasonable differentiation between plant species, diet estimation reached poor 

results with LCFA, as in Ali et al. (2005), indicating difficulties in the analysis of LCFA in 

feces. Thus, differentiation of marker profiles between plant species is essential, but does not 

guarantee reasonable results for diet estimation. Other factors, such as correction of FR or 

relation of patterns in plant species to patterns in feces influence the method of diet 

estimation. Mayes and Dove (2000) mentioned that markers with the highest concentration 

affected diet estimation more than lower marker concentration, particularly when least 

squares are used. Transforming to relative terms, weighting individual marker concentration 

or omitting certain markers according to individual analytical uncertainties, concentration 

levels, utility for discrimination, or variability within plant species might be useful for a better 

diet composition estimation (Mayes and Dove, 2000).  

With the best marker combination (alkanes and LCOH with FR1), concentrate was identified 

as a part of diet composition but, the proportion was underestimated (Figure 3), which is in 

line with the results of Dove and Charmley (2008) who calculated FR as a grand mean of all 

treatments. On the other hand, herbage DMI might be underestimated resulting in higher 

percentage of concentrate in the diet. Average herbage DMI of 15 kg/d for nonsupplemented 

cows seemed to be reasonable and is comparable to values presented in the review of 

Bargo et al. (2003). Higher herbage DMI (McCarthy et al., 2007) are possible as herbage 

DMI depends on intake capacity, milk production, and herbage offer (quality and quantity). 

Estimating DMI of grazing animals may contain difficulties (Thanner et al., 2014), but the 

double-alkane method was tested indoors (Berry et al., 2000) and outdoors (Bezabih et al., 

2012), and considered to be accurate. Estimated percentage of T. officinale in the diet was 

lower compared with botanical composition, although dairy cows may prefer T. officinale over 

grass species (Lantinga et al., 2004). The underestimation might have resulted from low 
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alkane concentrations of T. officinale, even though LCOH concentration was high. Low 

marker concentrations lead to difficulties in accurate diet composition estimation (Charmley 

and Dove, 2007). A reason for the overestimated portion of the group other forbs may be the 

heterogeneous composition of the group. Forb species differ in their morphological 

appearance, and a separate analysis of forb species, which are included in the group other 

forbs, may be necessary to test the variance of marker profiles between them and decide if a 

different grouping of the forbs is preferable. Differences between botanical composition on 

pasture and estimated diet composition might occur because of individual variation of cows’ 

selection behavior. Compared with other studies where all cows received the same diet with 

the same composition, diet selection and preference may play a bigger role in grazing dairy 

cows.  

Differences between Cow Strains and Impact of Concentrate Supplementation  

With the most accurate diet estimation (alkanes, LCOH, and FR1), differences between the 2 

cow strains and the effect of concentrate supplementation on diet selection have been 

investigated. Fedele et al. (1993) recorded differences of feed preference between 2 breeds 

of goats grazing on pasture. In the current experiment, similar diet selection between cow 

strains is in accordance with their similar grazing and rumination behavior. The concentrate 

supplementation had a similar effect on the milk production, milk composition, grazing time, 

herbage, and total DMI of grazing cows as in other studies [Bargo et al., 2003; McCarthy et 

al., 2007; C. Heublein, F. Dohme-Meier, K.-H. Südekum, R. M. Bruckmaier (Vetsuisse 

Faculty, Bern, Switzerland), S. Thanner (Agroscope, Posieux, Switzerland), and F. Schori, 

unpublished data]. Interestingly, current results indicate that supplemented grazing dairy 

cows apparently select different plant species for ingestion compared with nonsupplemented 

cows. The reasons for plant species selection and preference in ruminants are still unclear 

and several assumptions exist, such as balancing nutrient intake, maintaining rumen 

function, and avoiding toxins (Rutter, 2006). The assumption that dairy cows balance their 

nutrient intake, as shown for pigs (Lin and Patience, 2016) and poultry (Denbow and Cline, 

2015), may fit with results of the current study, because cows supplemented with energy-rich 

concentrate had a higher amount of T. repens in their diet compared with nonsupplemented 

cows. As T. repens had higher content of CP and lower concentrations of WSC and ESC, 

supplemented cows may have tried to balance their diet. Results of Bach et al. (2012) 

indicate that lambs can balance their CP intake according to their requirements. Grain-based 

concentrate has high concentrations of highly fermentable carbohydrates (high concentration 

of starch), which causes a decline in rumen pH and increases the risk of cows becoming 

acidotic (Bramley et al., 2008). The decrease in milk fat concentration of supplemented cows 

indicated changes in rumen VFA profiles. Animals may select plant species to reduce the 
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variation in ingesta composition as far as possible (Fedele et al., 1993) and might have 

reacted to supplementation of concentrate by avoiding plant species high in WSC 

concentration. Grazing cows and sheep exhibit a preference for clover over grass, but they 

prefer mixed diets, even when a diet of clover alone could match their nutrient requirements 

(Rutter, 2006; Chapman et al., 2007). In contrast to the aforementioned studies, the current 

study took place on an organic, multispecies sward with a T. repens proportion of only 10%, 

and thus, cows had to search more for preferred plant species. This assumption was 

supported by the results of similar physical activity between nonsupplemented and 

supplemented cows, although grazing time was significantly lower for supplemented cows. 

On the other hand, weather conditions in the first measurement period may have precluded 

supplemented cows lying down for long periods. Supplemented cows were probably more 

quickly satiated with a lower motivation to graze, which is supported by results of lower 

grazing time and lower mastication rate, but higher motivation to search for palatable plant 

species. Fasting sheep spend less time eating clover than L. perenne (Newman et al., 1994), 

indicating that fasting probably provokes a higher feeding drive, which results in longer 

grazing time and less selection. More research is needed to explore whether ruminants are 

able to select plant species to match their nutrient demand and which signals lead them to 

select. If other studies confirm that supplemented cows change their diet selection to balance 

carbohydrates and protein in the diet and to reduce the load of rapidly fermented 

carbohydrates, sward composition could be better adapted to the needs of the ruminants, for 

example, by increasing the percentage of T. repens of pasture DM. This may therefore 

increase efficiency. 

 

CONCLUSION 

The results of our study indicate that the diet selection of dairy cows under grazing condition 

can be estimated with plant wax markers. For the differentiation of plant species, LCOH 

performed best and the combination of all 3 marker groups achieved the worst differentiation. 

Diet estimation with LCFA alone or in combination gave poor results. Analytical difficulties 

concerning LCFA in feces might create uncertainties in the estimation of diet selection. The 

calculated FR relative to Yb gave mostly realistic results, but further validation is required. 

Using calculated FR instead of experimental measured ones would be time-saving, less 

expensive, and applicable for field work. The marker group combination alkanes and LCOH 

with FR1 achieved the most accurate results for diet composition estimation and provided 

evidence that HCH and HNZ cows had a similar diet selection behavior, and that concentrate 

supplementation influenced diet selection of grazing dairy cows. The knowledge of diet 
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selection and foraging behavior may allow optimization of the offer (herbage) to the demands 

of the cows, which is expected to improve animal health, welfare, and efficiency. 
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Chapter 5: General discussion 

5.1. Milk response to concentrate 

Energy is the most limiting nutrient in pasture-based feeding systems and high-yielding 

Holstein cows may not match their demand and exhaust their genetic potential for milk 

production (Kolver and Muller, 1998). Results from the trial of this thesis indicated that 

energy limited milk production as supplemented cows reached higher milk yields than non-

supplemented cows. However, response differed between cow strains, at least in the first 

trial. Swiss Holstein cows (HCH) cows had higher extra milk yield per kg concentrate than 

New Zealand Holstein (HNZ) cows, as presented in several studies (Roche et al., 2006; 

McCarthy et al., 2007; Kennedy et al., 2009). In the second trial, no difference between cow 

strains was recorded and the response to supplemented concentrate was lower for HCH 

cows (0.8 vs 0.5 kg/kg in the first and second trial, respectively). Reasons for lower response 

can be environmental aspects (Roche et al., 2006). The lower response might be attributed 

to the difference in net energy for lactation (NEL, MJ/kg dry matter (DM)) concentration of 

pasture in the first measurement period (6.3 vs 6.0 MJ/kg DM in the first and the second trial, 

respectively) and might have suppressed a higher milk response to concentrate 

supplementation of the HCH cows. However, milk yield per kg concentrate was the same for 

HNZ cows in both trials indicating that they could better compensate the lower quality of 

pasture in the second trial.  

Energy corrected milk (ECM) yield was similar for supplemented and non-supplemented 

cows in the second trial, which reflect that concentrate supplementation could not increase 

milk yield as much as in the first trial. However, in both trials no difference between cow 

strains was recorded. The higher milk yield of the HCH cows was probably compensated 

with higher milk fat and milk protein content from the HNZ cows. High milk solids are 

included in the New Zealand breeding index and payment to the farmer is related to milk fat 

and milk protein content (Harris and Kolver, 2001). Regarding efficiency, conversion of 

pasture, which is useless for human consumption, into animal protein, which is important for 

human nutrition, milk solids have an important nutritional value. Just adding concentrate to 

the diet of dairy cows does not guarantee high milk yields, especially when cows are not able 

to use it for extra milk production because of their genetic endowments or deficit in nutrient 

supply. Therefore the question arises if it is profitable to add concentrate to the diet, 

considering that milk fat content would decrease and milk protein content probably slightly 

increases (Bargo et al., 2003). Adding concentrate based on by-products to the diet might be 
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a reasonable option to balance the energy-protein ratio and increase the edible feed 

conversion ratio (Ertl et al., 2015).  

5.2. Grazing behavior on pasture 

Grazing and rumination behavior was similar in both trials, as management measures, such 

as time on pasture, were equal. Compared to the study of McCarthy et al. (2007) grazing 

time for non-supplemented cows was similar for the HCH cows compared to high durability 

Holstein cows, but the New Zealand Holstein cows in the experiment of McCarthy et al. 

(2007) spent longer time grazing than HNZ cows in our trials. Concentrate supplementation 

reduced grazing time, but a stronger decrease was recorded in our trials compared to the 

one in McCarthy et al. (2007). This stronger decrease might be related to lower available 

herbage mass and pre-grazing sward heights in our trials compared to the swards used in 

the experiment of McCarthy et al. (2007). In organic farming the use of mineral N fertilizer is 

prohibited, the output of N in form of manure is restricted and management measures are 

needed to support an optimal growth of pasture and ensure a dense sward. Organic pastures 

have higher plant species diversity (Gabriel et al., 2006) and the crude protein content is 

lower compared to conventional pastures (Spann et al., 2007). Pasture characteristics 

influence grazing behavior as bite mass and intake rate decrease with decreasing sward 

surface height (Gibb, 2006). Cows have to make more effort (more bites and mastications) to 

reach the same pasture dry matter intake (DMI) compared to cows on pastures with higher 

sward surface heights. Motivation for grazing is lower for cows that receive additional food in 

the barn, especially in pastures with lower sward surface height. Grazing time coupled with 

intake rate (bite rate and size) at the same body weight (BW) are indicators for the feeding 

drive, which means how effective the cow harvests the grass (Prendiville et al., 2010; 

McCarthy et al., 2007). The recorded reduction in grazing time and lower grazing 

mastications for supplemented cows suggested a lower feeding drive for supplemented 

cows. The reduced pasture DMI for supplemented cows is well documented and called 

substitution, as supplement is replacing pasture of the total DMI due to reduction in energy 

deficit of the cow (Baudracco et al., 2010). Dairy cows have three to five grazing bouts 

(Gregorini, 2012) as recorded in current study. Although number of grazing bouts was the 

same for non-supplemented and supplemented cows, duration of grazing bouts differed with 

longer duration for non-supplemented cows, which is in accordance to longer grazing time of 

non-supplemented cows. The major grazing events occur in the morning and in the evening, 

and shorter bouts can occur flexible due to external environment and farming management 

measures (Kennedy et al., 2009; Gregorini, 2012). As cows returned to barn because of the 

work flow at 14:00 h and stayed until 18:00 h after milking, cows compensated missing time 
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on pasture and grazing bouts during night were recorded, although cows prefer to ruminate 

during night (Gregorini et al., 2012).  

5.3. Estimation of diet composition on pasture 

5.3.1. Approach and method 

Understanding grazing behavior is important in pasture-based feeding systems, but nearly no 

observations exist about the selection behavior of dairy cows on pasture. Understanding 

what cows are eating on pasture helps to adapt sward composition to the needs of the 

animals and might help to improve efficiency and animal health.  

Several studies exhibited that plant wax markers, such as alkanes, long-chain fatty acids 

(LCFA) and long-chain alcohols (LCOH) are suitable for estimation diet composition in 

ruminants (Ali et al., 2005; Lin et al., 2011), but only few studies exist with cows or other 

cattle under grazing conditions (Fraser et al., 2009; Boland et al., 2012). There are several 

challenges that influence estimations of diet composition of cows on pasture. One of the 

challenges is the correct estimation of the botanical composition of the pasture, especially on 

multispecies pastures with a rotational grazing system. To assess the correct percentage of 

each plant species is difficult, as they are not evenly distributed over all paddocks. Further, 

organic pastures have a higher plant species diversity compared to conventional pastures 

(Gabriel et al., 2006), and some plant species occur in small quantities, which makes it 

difficult to collect sufficient material for sample analysis. Grouping several plant species from 

the same genus seems reliable (Ferreira et al., 2011), although it might have contributed in 

this trial to high variance of marker concentration (within the plant species group). Another 

approach is the grouping according to similar marker profiles. Further studies are required to 

figure out which approach of grouping reaches the most accurate results.   

Concentration of plant wax markers differs between plant species (Ali et al., 2005; Lin et al., 

2011) and therefore, every plant species has a specific marker profile. The pre-condition for 

successful diet composition estimation is the sufficient differentiation of plant species with 

their marker profiles. Results of the linear discriminant analysis indicate a sufficient 

differentiation, except when alkanes, LCFA and LCOH were used together. Probably using 

too many markers (all together 23) lead to controversial results and create difficulties in 

differentiation and diet composition estimation. Not all markers are perhaps suited, because 

of inaccuracy in determining concentration (especially in concentrations <1 mg/kg DM) or 

because no variation between plant species occurred, which leads to mistakes in 

differentiation. Using only the markers that contribute most to differentiation might increase 

accuracy of diet composition estimation.  
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Another challenge is the determination of fecal recovery (FR). Studies performed in the barn 

can assess FR with known amount of DMI, composition of the diet and total fecal collection. 

This is not possible for ruminants on pasture, and either a parallel experiment in the barn is 

required or other approaches need further investigation. Boland et al. (2012) used FR from 

literature, but it is still unclear if diet composition (Ferreira et al., 2009) or ruminant species 

(Ferreira et al., 2011) influence FR and can therefore be generalized. In the trial of this thesis 

FR was calculated in two different ways, which led to realistic results for alkanes and LCOH, 

but high recoveries for LCFA. Although a feasible differentiation of plant species was 

achieved with LCFA, only poor results of calculated FR and diet composition estimation were 

gained. In contrast, Ferreira et al (2009) reached plausible results in diet composition 

estimation with LCFA. Probably, feces samples in current trial were contaminated with 

endogenous sources (Ali et al., 2005) and influenced correct determination of LCFA 

concentration which led to unrealistic high FR.  

Using FR related to the individual animal led to more accurate diet composition estimations 

(Dove and Charmley, 2008; Ferreira et al., 2015), but in the current trial mean FR over all 

measurement weeks and all cows were used. As mentioned above, determining correct 

botanical composition is difficult and plant species diversity differs to varying extent from 

paddock to paddock. Further, variation of marker concentration in plants was high due to 

environmental conditions and impact of growing status of plants, and using mean FR might 

balance high variance and uncertainties.  

Although estimation of diet composition with the marker combination of alkanes and LCOH 

was more correct with FR than without correction, further validation of this approach is 

strongly recommended.  

5.3.2. Main findings and conclusions 

 The most accurate diet composition estimation was achieved with the marker combination 

alkanes, LCOH and FR1. Interestingly, a difference in diet composition estimation between 

non-supplemented and supplemented cows was recorded, where supplemented cows 

ingested more T. repens compared to non-supplemented cows. Evidence exists that 

ruminants are able to distinguish between different diet components and that their diet choice 

is not random (Tolkamp et al., 1998). Probably, cows that consumed energy-rich concentrate 

might have tried to balance their diet and ingested higher amounts of T. repens which had 

higher concentration of crude protein than the other plant species or plant groups, but lower 

concentration of water-soluble carbohydrates to reduce the variation in ingesta composition 

(Fedele et al., 1993). Experience in effects of different diet components in young life give a 

distinction and ruminants learn to connect certain flavors to nutritive value of the food (Bach 
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et al., 2015). They seem to be able to recognize internal protein deficiencies and then 

decrease the preference of components with a flavor connected to negative effects of 

deficiencies, for example malaise and calories (Bach et al., 2015). Further, experience with 

secondary plant compounds, such as tannins or terpenes, in young life under different 

circumstances may influence future food preference (Baraza et al., 2005). Experiments with 

cows on pasture indicated that heifers on alpine pastures preferred to ingest forbs and 

legumes over other grass species (Dumont et al., 2007) and Chapman et al. (2007) recorded 

a preference of T. repens over Lolium perenne, but always a mixture of both plant species 

was eaten. Several theories exist why ruminants prefer to eat mixed diets, such as balancing 

nutrient intake, maintain rumen function and avoiding toxins (Rutter, 2006). On multi-species 

pastures, cows are forced to eat mixed diets and components in lower quality, as the 

availability of high quality alternatives may be limited (Villalba et al., 2015). In this trial, 

supplemented cows were probably more saturated with lower motivation to graze, but higher 

motivation to search for T. repens. Further, fasting might indicate a higher feeding drive, as 

fasting sheep spend more time eating L. perenne than clover (Newman et al., 1994). This 

would be in accordance with lower grazing time and lower number of mastications for 

supplemented cows in the trial. 

Further research with cows on pasture is necessary to investigate the aforementioned results 

of this trial and give more information about it. A better understanding of dairy cows´ 

selection behavior helps to adapt botanical composition to the demand of cows and 

consequently ensures efficiency and animal welfare. 

5.4. Rumination behavior 

Rumination plays an important role as it is the key component of rumen digestion. It is the 

process of the postprandial regurgitation of ingesta followed by mastication, reforming the 

bolus and re-swallowing. Rumination is influenced by the structure and amount of fiber 

ingested (Mertens, 1997), and cows spend more time ruminating with increased fiber content 

of the diet (McCarthy et al., 2007). New Zealand Holstein cows ruminated longer and had a 

higher number of boli, which is in accordance with other studies performed on this farm 

(Schori and Münger, 2014; Thanner et al., 2014). This might indicate that HNZ cows have 

ingested more plant species with higher fiber content. Kunz et al. (2010) recorded that HNZ 

cows grazed longer around dung patches, where more over-matured herbage is growing, 

than other cow types. However, results from current trial could not confirm this as no 

differences between cow strains in the estimation of plant species selection were observed. 

Prendiville et al. (2010) recorded that smaller Jersey cows had smaller bolus size compared 

to Holstein cows. Anatomical differences of the muzzle and incisor breadth, which influences 
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the pattern of bolus movement, might explain why HNZ cows spent longer time ruminating to 

handle ingested feed (Rook, 2000). On the other hand, it could have been expected that 

HCH cows had a higher pasture DMI, as DMI and BW are positively correlated (Kertz et al., 

1991), and BW is usually positively linked to rumen size and therefore intake capacity. 

Digestion rate and ruminal digesta outflow of HNZ cows might be increased as rumination 

determines digestion rate and therefore controls voluntary intake (Bae et al., 1983; Gregorini 

et al., 2012). This is in accordance with no differences in grazing time and only minor 

differences in DMI in both current trials. 

It would have been expected that concentrate supplementation influences rumination 

behavior. Adding rapidly degradable concentrate to the diet of dairy cows result in changes 

of ruminal pH, which alters ruminal fermentation, and might cause problems such as 

subclinical acidosis (Bargo et al., 2002). High grain diets reflect lower fiber intake and a 

greater ease of bolus formation (Beachemin and Rode, 1997) and therefore less 

mastications per bolus would be needed. In contrast, supplemented cows had slightly more 

mastications per bolus in the second trial. High DMI might provoke longer duration of 

rumination (Gregorini et al., 2012), but no differences in time spent ruminating and 

rumination mastications were recorded in both trials. Results of diet composition estimation 

on pasture in the second trial indicated that supplemented cows selected different plant 

species than non-supplemented cows and different diet composition might have influenced 

rumination behavior. Probably, supplemented cows have regurgitated slightly bigger boli, 

which needed more mastications per boli. However, rumination is subject of voluntary control 

by the animal as they can regulate time and duration (Gregorini et al., 2012). This poses the 

question of whether characteristics of rumination behavior are a suitable indicator of 

sufficient fiber supply and therefore rumen health, at least in grazing dairy cows. 

5.5. Physical activity 

In pasture-based feeding systems, especially in alpine region, physical activity of dairy cows 

plays an important role. Cows have to cover long distances from barn to pasture or on the 

pasture itself to search for their food and energy requirements for maintenance may increase 

in the range of 10 to 50% (CSIRO, 2007). Grazing cows have higher energy expenditure as 

they make more steps, spend less rime lying down and graze longer time compared to cows 

kept indoors (Kaufmann et al., 2011). Results of the first trial supported the assumption that 

physical behavior is closely related to grazing behavior. Supplemented cows spent more time 

lying down, but less time standing and walking, which is in accordance with reduced grazing 

time. The extra energy intake via the supplement and reduced energy expenditure for 

physical activity could have been used for milk production. The results of blood analysis 
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(such as concentration of glucose, beta-hydroxybutyric acid and non-esterified fatty acids in 

blood) in the first trial indicated that supplemented cows had a more stable energy status 

than non-supplemented cows. 

In contrast, supplementation had no influence on physical activity in the second trial. This 

might be related to cold and wet weather conditions in the first measurement period of the 

second trial and cows might have preferred to stand instead of lying down on wet ground. On 

the other hand, results of diet composition estimation ensured a higher intake of T. repens for 

supplemented cows, which is preferred over other grass species (Chapman et al., 2007), but 

only presented 10% DM of all plant species. Probably cows spent more time searching on 

pasture for T. repens resulting in the same physical activity as non-supplemented cows, but 

with less time spent grazing.  

5.6. Comparison of both cow strains 

New Zealand Holstein cows are selected for feed efficiency and survivability on a pasture-

based diet with little or no concentrate supplementation (Harris and Kolver, 2001). Therefore, 

they should have a higher feeding drive, even under high stocking rates, compared to other 

Holstein cows (McCarthy et al., 2007). No differences in grazing behavior between HCH and 

HNZ cows were recorded and only a tendency for different DMI in the trials could not support 

this. The differences in rumination behavior might be explained by anatomical differences of 

the muzzle (Rook, 2000), but HNZ cows could not benefit from a possible better fiber 

digestibility with increased milk yield. In accordance with other studies (Horan et al., 2005; 

McCarthy et al., 2007) HNZ cows had lower milk yield than HCH cows, but higher milk fat 

and milk protein content. In the first trial an interaction of cow strain and treatment was 

recorded for milk yield as in Horan et al. (2005), but none was recorded in the second trial, 

where also the milk yield per kilogram concentrate was lower for HCH cows. An explanation 

for this may be the lower NEL concentration of pasture in the first measurement period of the 

second trial, as discussed above. The same amount of kilogram milk to kilogram concentrate 

of the HNZ cows indicated that they were not affected by difference pasture quality and could 

probably better compensate. Unfortunately, no blood samples were taken in the second trial 

to give an indicator for the energy status. In the first trial blood analysis indicated that HCH 

cows were not in a strong NEB and had a stable energy status with no concentrate 

supplementation. Probably, greater differences would have been recorded in the second trial 

and HNZ cows could have profited more from their genetic potential when pasture in low 

quality and quantity was available.  

In accordance with similar grazing behavior of HCH and HNZ cows, no difference in plant 

species selection between cow strains was observed. Villalba et al. (2015) asserted that 
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experience in utero and young life engraves the attitude to unpalatable foods with lower 

nutritive value and animals may become more efficient at extracting nutrients from foods than 

inexperienced animals. Probably, grazing behavior is influenced from learning and 

experience in young life, and as all cows used for the trials have been grown up on the same 

farm in a pasture-based feeding system, all cows are more or less adapted to pasture-based 

system with varying nutrient content of the pasture. 

However, trials considered only mid-lactation. Long-term experiments including health and 

fertility traits would give further information about differences in efficiency between cow 

strains on a pasture-based feeding system. 
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Chapter 6: General conclusion and outlook 

Grazing behavior is influenced by many factors and understanding the interactions between 

environmental aspects and reactions of cows is essential. Cows are partly able to adapt their 

behavior to environmental issues and, therefore, management measures should direct this 

adaptation to optimize production and ensure animal health and welfare but, at the same 

time allow for sustainable and efficient farming. Just using a different cow strain or breed 

does not guarantee successful farming, as results indicate that in general divergently bred 

cow strains can cope with pasture-only diets, and only small differences were recorded 

between individual animals. Therefore, it poses a challenge for the farmer to balance the 

needs of the animals and a profitable farming. A better knowledge of diet selection and 

grazing behavior may allow optimization of the pasture to the demands of the cows. 

Therefore, using and establishing seed mixtures that are adjusted to the preference and 

demand of dairy cows, may lead to higher feeding drive and increase the efficient use of 

pasture by dairy cows for milk production. The approach estimating diet selection of grazing 

dairy cows with plant wax markers appeared promising and results are coherent with results 

from previous studies. The advantage with the calculated fecal recovery would allow the 

removal of an indoor experiment with known diet composition to determine fecal recovery. If 

validations confirm a successful operation of this approach, the realization of experiments 

would be easier for further research. In addition, just using alkanes and LCOH, but skip 

LCFA for estimation of plant composition saves work and costs. 

The decision whether or not adding supplements to the diet at pasture are related to several 

factors: milk yield potential of the cows, animal welfare and health, efficiency, environmental 

issues, grazing behavior and production costs, as well as social aspects, such as competition 

for cereal grains or arable land. Organic farming should be a pioneer for a sensitive use of 

valuable foods and questioning the application of high amounts of grain to ruminants. Both 

cow strains seemed to be suitable to pasture-based feeding systems with none or only little 

concentrate supplementation. Long-term studies with different dairy cow strains or breeds in 

early lactation, with and without concentrate supplementation are required to substantiate 

and potentially revise the organic farming guidelines. A change to a model, as in Switzerland, 

with a stronger restriction of concentrate supplementation in organic milk production, based 

on the annual ration (10%) may still be flexible enough for the farmer to feed dairy cows 

according to their requirements but will call attention to a meaningful and reliable use of 

grain-based concentrate. 
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