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1

Introduction

This thesis contains five chapters that contribute to macroeconomics and macroeco-

nometrics. The first line of research in this dissertation, chapters 2-4, studies the role

of producer heterogeneity for macroeconomics. This dissertation shows how hetero-

geneity matters for both business cycles and cross-country income differences. The

second line of research, chapters 5-6, studies time series models, in particular vector

autoregressions. These models are widely used in business cycle research including

the work in my first line of research.

Chapter 2 contributes to the business cycle literature. Following the Great Reces-

sion, a wide range of business cycle research has emphasized the role of investment.

This includes much of the uncertainty literature and the literature on financial fricti-

ons. A defining characteristic of investment is time to build, which is the time an

investing firm needs to wait for delivery of ordered capital goods. In Chapter 2, I

examine the role of time to build for business cycles. While existing business cycle

models assume constant time to build, I document that time to build is volatile and

largest during recessions. Motivated by this finding, I develop a heterogeneous firms

general equilibrium model in which time to build fluctuates exogenously. In the mo-

del, investment is partially irreversible. The longer time to build, the less frequently

firms invest, and the less firm investment reflects firm productivity. As a result, an

increase in time to build worsens the allocation of capital across firms and decreases

aggregate productivity. In the calibrated model, a shock increasing time to build by

one month lowers investment by 2% and output by 0.5%. Structural vector autore-

gressions corroborate the quantitative importance of time to build shocks.



2 | 1 Introduction

The next chapter studies business cycles as well. Chapter 3, which is joint work

with Ariel Mecikovsky, contributes to the uncertainty literature. Various measures of

uncertainty are countercyclical and there is ample evidence that uncertainty shocks

are contractionary. In addition, a large number of structural macroeconomic models

have been proposed to study various transmission channels of uncertainty shocks. In

Chapter 3, we ask which of the proposed channels are empirically important for the

transmission of uncertainty shocks. Exploiting highly disaggregated industry-level

data from the US, we examine the empirical relevance of several transmission me-

chanisms. To this end, we study models with factor adjustment frictions, nominal

ridigities, and financial frictions. We provide testable implications of these models

based on the interaction between the severity of a friction and the job flows response

to uncertainty shocks. Empirically, uncertainty shocks lower job creation and raise

job destruction in the aggregate and in more than 80% of industries. We show that

these responses are significantly magnified by the severity of financial frictions in

a given industry, in line with the model-based findings. We do not find supportive

evidence for the other transmission channels.

Chapter 4 contributes to the literature on macroeconomic development. Develop-

ment accounting shows that a large share of the cross-country income differences

remains unexplained by differences in physical and human capital intensity, which

suggests an important role for aggregate total factor productivity. One explanation

for these differences in total factor productivity builds on to the observation that firm

productivity tends to be more dispersed in less developed economies. The idea is that

resources are misallocated across producers and reallocating them would boost ag-

gregate productivity. In Chapter 4, Ariel Mecikovsky, Christian Bayer, and I ask whet-

her differences in micro-level factor productivities should be understood as a result of

frictions in technology choice. Using plant and firm-level data from Chile, Colombia,

Germany, and Indonesia, we document that the bulk of all productivity differences is

persistent even within industries and related to highly persistent differences in the

capital-labor ratio. This suggests a cost of adjusting this ratio. In fact, a model with

such friction in technology choice can explain our findings. At the same time, the

loss in productive efficiency from this friction is modest in the sense that eliminating

it would increase aggregate productivity by 3-5%.
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Chapter 5 and 6 primarily contribute to time series econometrics. Time series

econometrics is at the core of applied macroeconomic research and structural vec-

tor autoregressions are among the most widely used models. A reduced-form vector

autoregressive (VAR) model is a multivariate time series model that is based on the

notion that every model variable depends on its own lags as well as the lags of every

other model variable. A structural VAR model combines the reduced-form VARmodel

with additional theoretical restrictions to identify uncorrelated structural shocks. If

these restrictions are sufficiently strong, they point-identify a unique structural VAR

model. Imposing weaker restrictions only yields set-identification. Based on a joint

project with Bulat Gafarov and Josè Luis Montiel Olea, Chapter 5 and 6 examine

set-identified structural VAR models. Chapter 5 studies models that impose equality

and/or inequality restrictions on a single shock, e.g. a monetary policy shock. The

paper proposes a computationally convenient algorithm to evaluate the smallest and

largest feasible value of the structural impulse response, e.g. the response of GDP one

year after a monetary policy shock. We further show under which conditions these

values are directionally differentiable and propose delta-method inference for the

set-identified structural impulse response. We apply our method to set-identify the

effect of unconventional monetary policy shocks.

In Chapter 6 we study models that impose equality and/or inequality restricti-

ons on multiple shocks. The projection region is the collection of structural impulse

responses compatible with the vectors of reduced-form parameters contained in a

Wald ellipsoid. We show that the projection region has both frequentist coverage and

robust Bayesian credibility. To address the possibility that projection inference is con-

servative, we propose a feasible calibration algorithm, which achieves exact robust

Bayesian credibility of the desired credibility level, and, additionally, exact frequen-

tist coverage under differentiability assumptions.
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Time to Build and the Business Cycle

2.1 Introduction

Capital goods are complex and manufactured to the specific needs of an investing

firm. For example, an assembly line consists of many elements that need to fit toget-

her; think of conveyor belts, robotic arms working along these belts, and the concrete

foundation that supports the machines. Further, an assembly line needs to fit the spe-

cific good it produces. The complexity and specificity of capital cause a time gap

between the order of capital goods and their delivery. This time gap is commonly re-

ferred to as time to build and is assumed constant in modern business cycle theory.¹

My paper first documents substantial variation in time to build, with peak values

in recessions. Second, I ask whether exogenous fluctuations in time to build are of

first-order importance for business cycles.

To address this question, I develop a dynamic stochastic general equilibrium mo-

del. Firms in my model face persistent shocks to their own productivity. Their invest-

ment is partially irreversible. The market for capital goods is characterized by search

frictions, which imply time to build. Variations in time to build immediately result

from changes in this friction. Calibrating the model to US manufacturing data, I find

that time to build fluctuations are quantitatively important. A one month increase in

time to build lowers investment by 2% and output by 0.5%.

¹While Kydland and Prescott (1982) assume four quarters time to build, the standard assumption
in real business cycle models quickly shifted to one quarter, see Prescott (1986) for example.
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A lengthening in time to build is contractionary. This is due to two channels.

First, later delivery of outstanding investment orders, as follows from longer time to

build, mechanically reduces contemporaneous investment and thus production. Se-

cond, and this channel is both novel and quantitatively central, longer time to build

worsens the allocation of capital across firms. While the efficient allocation dictates

that more productive firms use more capital, longer time to build weakens the align-

ment between capital and productivity. At the core of the mechanism, later delivery

of an investment order affects the ex-ante productivity forecasts for the periods the

investment good is used as well as the associated forecast uncertainties. In turn, firms

invest less frequently and, if they invest, their investment reacts less to their contem-

poraneous productivity. A lengthening of time to build therefore means capital is less

well aligned with firms’ productivity, meaning aggregate productivity is lower and so

are output, investment, and consumption.

To measure time to build, I use the US Census M3 survey of manufacturing firms.

The Census provides publicly available time series for order backlog and shipment

in the non-defense equipment goods sector since 1968. These time series allow me

to estimate time to build as the time span new capital good orders remain unfilled

in capital producers’ order books. I document that time to build exhibits substantial

variation. It fluctuates between three and nine months. Time to build tends to be

largest at the end of recession periods.²

The model I develop is a real business cycle model. Households consume and sup-

ply labor. The model distinguishes between firms that supply capital and firms that

demand capital. On the capital demand side, there are firms that produce consump-

tion goods combining labor with specific capital. To invest in specific capital, they

need to hire an engineering firm that devises a blueprint for the investment project.

Using the blueprint, the engineering firm searches for a capital supplier to produce

the required capital good. Production takes place when engineering firm and capital

supplier are matched and goods are delivered at the end of the period. Shocks to the

matching technology cause fluctuations in time to build. These shocks may be seen

as shortcut for changes in the capital supply network, which make it more difficult

² This paper is not the first to document the countercyclicality of the backlog ratio, see, e.g. Nale-
waik and Pinto (2015). To the best of my knowledge, however, my paper is the first to relate fluctua-
tions in the backlog ratio to time to build in the context of modern business cycle models.
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to supply the required components. The model further features lumpy firm-level in-

vestment in line with the micro-level evidence on capital adjustment. The lumpiness

arises because investment is partially irreversible.

To evaluate the quantitative importance of shocks to the matching technology, I

calibrate the model to US data. The strategy is to jointly target moments of the inves-

tment rate distribution and aggregate fluctuations in time to build. In the calibrated

model, shocks to thematching technology that raise time to build by onemonth cause

a sharp 2% drop in investment and a more gradual drop in output that peaks after six

quarters at 0.5%. I show that the direct effects of later delivery explain the short-term

responses while increased capital misallocation explain nearly all of the persistent re-

sponses. Misallocation endogenously lowers measured aggregate productivity. Using

the calibrated model, I back out a time series of shocks to the matching technology

that explain the measured time to build fluctuations. The model predicts that these

shocks account for a third of the decline in output and investment during the early

1990s recession and the Great Recession.

To solve the model, I build on the algorithms in Campbell (1998), Reiter (2009)

andWinberry (2016a). The conceptual idea is to combine global projection with local

perturbation solution methods. Compared to Winberry (2016a), the model in this

paper is computationally more involved because the idiosyncratic state additionally

consists of outstanding capital good orders. Hence, I show that the algorithms can

be applied to solve more involved firm heterogeneity models.

To reassess the results of my business cycle model, I use time series techniques to

investigate the importance of time to build shocks. In particular, I fit an eight-variable

vector autoregression (VAR) including macroeconomic aggregates, prices, and time

to build. To be conservative, I restrict the identified shocks to matching technology

to contemporaneously only affect time to build. The restriction also implies that all

other shocks may affect time to build contemporaneously.³

The results of the structural VAR corroborate the quantitative findings of my busi-

ness cycle model. I find that adverse shocks to matching technology significantly and

persistently lower GDP, investment, and consumption. The identified shock explains

more than 20% of the forecast error variance of GDP and consumption. The impulse

³ The results are robust to the alternative restriction that only shocks to matching technology affect
all variables in the VAR contemporaneously.
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response functions (IRFs) of output and investment are of similar magnitude as the

IRFs in the business cycle model. Moreover, the forecast error variance of time to

build explained by the identified shock is almost 50% and the identified shocks are

uncorrelated with conventional direct measures of business cycle shocks (e.g., pro-

ductivity, monetary policy, and tax shocks). This lends support to my business cycle

model’s assumption of exogenous shocks directly affecting time to build. I further

show that my results are robust to relaxing the equality restrictions of the structural

VAR by flexible elasticity bounds, using the methods suggested in Gafarov, Meier,

and Montiel Olea (2016).

Related literature

This paper contributes to several literatures. First, this paper contributes to the litera-

ture studying the macroeconomic implications of lumpy investment. There is ample

evidence for investment lumpiness, see Doms and Dunne (1998), and structural ex-

planations are investment irreversibilities or fixed costs of capital adjustment, see

Cooper and Haltiwanger (2006). Recent work has investigated the macroeconomic

implications of capital adjustment costs for the response to aggregate productivity

shocks, see Khan and Thomas (2008) and Bachmann and Bayer (2013), and, for the

response to uncertainty shocks, see Bloom (2009), Bachmann and Bayer (2013), and

Bloom et al. (2014). In my model, the interaction between time to build and invest-

ment irreversibilities is key for the transmission of shocks to the matching technology.

The transmission mechanism shares the real options effect prominent in the uncer-

tainty literature, albeit without inducing the volatility effect that higher uncertainty

eventually realizes and leads to reversals and overshooting, see Bloom (2009). To

the extent that longer time to build increases the effective forecast uncertainty, this

paper also contributes to the endogenous uncertainty literature, see Bachmann and

Moscarini (2011) and Fajgelbaum et al. (2014).

Second, my paper relates to recent work studying the interaction between time to

build fluctuations and investment irreversibility. Studying time to build for residential

housing, Oh and Yoon (2016) document a time series pattern fairly similar to the

one for equipment capital goods documented in this paper. In their model, higher

uncertainty increases time to build because residential construction occurs in stages
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and each stage involves irreversible investment. Kalouptsidi (2014) studies the bulk

shipping industry and shows that procyclical fluctuations in time to build dampen

the volatility of investment into ships.

Third, in modeling a frictional market for capital goods, I build on the search

literature. Since Mortensen and Pissarides (1994) search frictions are popular in la-

bor market models. For capital markets, Kurmann and Petrosky-Nadeau (2007) and

Ottonello (2015) show that search frictions amplify business cycle shocks. Tightness

on the capital goods market governs the intensive margin of investments, while in

my setup search frictions also affect the extensive margin of investment. Shocks to

the matching technology in my model build on the labor market search and mat-

ching literature, see Krause et al. (2008), Sedláček (2014), and Sedláček (2016) for

example.

The remainder of this paper is organized as follows: Section 2.2 documents time

to build. Section 2.3 presents the central model mechanism and Section 2.4 develops

the quantitative business cycle model. I discuss the calibration in Section 2.5 and

results in Section 2.6. Section 2.7 provides the SVAR evidence. Finally, Section 2.8

concludes.

2.2 Does time to build vary over the cycle?

My goal is to estimate time to build using survey data on the order books of capital

good producers. I show that time to build exhibits substantial variation between three

and nine months with peak values during recessions.

I use US Census data collected in the Manufacturers’ Shipments, Inventories, and

Orders Survey (M3). The M3 covers two third of manufacturers with annual sales

above 500 million USD and some smaller companies to improve industry coverage.

M3 participants are selected from the Economic Census and the Annual Survey of

Manufacturers and the M3 is benchmarked against these datasets. US quarterly in-

vestments are computed by the Bureau of Economic Analysis using the M3.⁴

⁴ See Concepts and Methods of the U.S. National Income and Product Accounts (2014, ch. 3).
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The Census provides publicly available data for shipments and order backlog at

the sectoral level. Under the premise of excluding defense goods, I use the sector

category non-defense equipment goods, which is available at monthly frequency from

1968 through 2015.⁵ M3 data satisfies a stock-flow equation for equipment good

orders, where O denotes new orders net of cancellations, S shipments, and B the

beginning-of-period stock of order backlog⁶

Bt+1 = Bt + Ot − St . (2.1)

My baseline measure of time to build, also called backlog ratio, is

T T Bt ≡
Bt

St
. (2.2)

It measures the intensity of flows (shipments) out of the stock of backlogged orders,

expressed in months. Figure 2.1 shows the evolution of time to build, which exhibits

substantial variation. Time to build tends to start increasing before recessions and

peaks at the end of recession periods. In Appendix 2.A.1, I plot the component series

of (2.1) over time. The correlation of annualized real GDP growth with log time to

build is -0.3. Detrending the slow-moving trend from time to build using the HP filter

with a smoothing parameter of 810,000, the correlation increases to -0.4. The finding

of a countercyclical backlog ratio coincides with previous studies, see Nalewaik and

Pinto (2015) for example.

Under two conditions this time to build measure equals the expected waiting time

of a new equipment good order: First, the shipment protocol is first-in first-out, i.e.

new orders are shipped only after backlogged orders are shipped. Second, shipments

are expected to be unchanged in the future. While the first condition is plausibly sa-

tisfied, the second one is roughly satisfied given that shipments are highly persistent.

In Appendix 2.A.1, I show that an alternative measure of time to build, based on

⁵ Notice that for finer disaggregation of the equipment goods sector into two-digit sectors, the
distinction of defense and non-defense is not always available.

⁶ A new order is defined as a legally binding intention to buy for immediate or future delivery,
and the survey does not ask separately for order cancellations. Shipments measure the value of goods
delivered in a given period, while order backlog measures the value of orders that have not yet fully
passed through the sales account.
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Figure 2.1. Time to build
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Notes: Time to build is measured as the ratio of order backlog to monthly shipments, for non-defense
equipment goods. Shaded, gray areas indicate NBER recession dates.

ex-post shipment realizations, closely resembles my baseline measure. Additionally,

I provide the evolution of the individual component series defining the order stock-

flow equation.

A caveat of estimating time to build using the M3 is that it excludes structure

capital and imported equipment capital, which together account for no more than

35% of total non-residential private fixed investments in the US.⁷

Given the aggregate nature of the data I use, my measure is necessarily one of

macroeconomic time to build. If there are cross-sectional differences in time to build,

this will be different from the average micro-level time to build. Notice that within

the model I develop in Section 2.4, I will recompute the measure of time to build in

the exact same way and use that as calibration target.

⁷ Out of total private non-residential fixed investment, structure capital constitutes on average 25%
over the last 40 years, declining over time with 10% in 2015. Imported equipment capital is on average
10% of total investments, increasing over time with 20% in 2015.
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2.3 Firm-level investment and time to build

This section discusses a novel, and quantitatively central, mechanism of my paper.

In short, fluctuations in time to build affect how frequently firms invest, and, if they

invest, by how much. These changes in the investment policy hamper an efficient

reallocation of capital across firms and thereby depress real economic activity.

In general, two key determinants of a firm’s investment decision are expected fu-

ture productivity and uncertainty about future productivity. Higher expected future

productivity makes larger investments appear profitable. Higher uncertainty about

future productivity may induce the firm to postpone investments if investment is

partially irreversible.⁸ To understand the specific effects of time to build on a firm’s

investment decision, it is of central importance that longer time to build shifts the

expected usage period of the investment good into the future. Hence, longer time

to build affects the expected productivity, and the associated uncertainty, during the

usage period.

To illustrate the point, suppose firm productivity follows an AR(1) process

x t = ρx t−1 + σεt , εt ∼ N (0, 1).

Conditional on the firm’s period zero productivity x0, the forecast of productivity in

period τ > 0 and the associated forecast uncertainty are

x̂τ = ρτx0 and ŝ2
τ
= σ2

τ
∑

t=1

ρ2(t−1),

respectively. Consider τ the expected period of investment delivery and 0< ρ < 1.

Longer time to build, that is larger τ, moves the forecast for productivity after deli-

very closer to the (zero) long-run mean of productivity and the associated forecast

uncertainty increases. Figure 2.2 illustrates the first and second moment effect of an

increase in time to build from one to three quarters.⁹

⁸ Abel and Eberly (1996) show analytically that the inaction range, in which not adjusting capital
is optimal, expands in uncertainty when capital is partially irreversible.

⁹ Longer time to build increases the relevant forecast uncertainty by shifting the relevant forecast
horizon, which is not captured by empirical estimates of forecast uncertainty as Jurado et al. (2015).
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Figure 2.2. Productivity forecasts and time to build
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Notes: Starting from an initial productivity level one unconditional standard deviation above zero,
the figure plots the productivity forecast, x̂τ, and its 90% confidence interval (CI), [x0 − 1.96ŝτ, x0 +
1.96ŝτ], per forecast horizon, τ. The arrow illustrates a shift in time to build from one to three quar-
ters, roughly resembling the increase in time to build observed from 2006 to 2009. The figure is based
on the parameters for the firm-level productivity process calibrated in Section 2.5.

What are the implications of longer time to build for the firm’s investment policy?

First, longer time to build reduces the sensitivity of investment to contemporaneous

deviations of productivity from its long-run mean. This follows directly from mean-

reversion, and I refer to this intensive-margin change in the investment policy as

regression-to-the-mean effect. Second, higher time to build increases the uncertainty

about productivity after delivery. Assuming partial investment irreversibility, the real

option value of waiting increases. That is, the firm finds it optimal to tolerate larger

deviations of the current capital stock from its optimal size. In turn, the adjustment

frequency falls. I refer to this extensive-margin change in the investment policy as

wait-and-see effect.¹⁰,¹¹

¹⁰ The wait-and-see effect is also prominent to explain contractionary aggregate effects of exoge-
nous uncertainty shocks, see, e.g., Bloom (2009) and Bachmann and Bayer (2013). In my setup, ho-
wever, uncertainty is driven by changes in the expected delivery period. The volatility effect, leading
to fast reversals as discussed in Bloom (2009), is not present in my setup.

¹¹ If productivity shocks are permanent,ρ = 1, the regression-to-the-mean effect is turned off, while
the wait-and-see effect will be strengthened through larger effects on forecast uncertainty.
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Increases in time to build have aggregate consequences because the altered in-

vestment policy hampers the efficient allocation of capital across firms with different

levels of productivity. Intuitively, more of the high productivity firms with low capi-

tal stocks do not invest or invest less. Increased capital misallocation endogenously

lowers measured aggregate productivity, output, investment, and consumption.

2.4 Modeling cyclical fluctuations in time to build

This section develops a model which extends the basic real business cycle model in

two ways. First, producers of consumption goods vary in their productivity and use

producer-specific capital. Second, investment in specific capital is partially irrever-

sible and supplied through a frictional capital market giving rise to time to build.

Shocks to the matching technology cause fluctuations in time to build.

2.4.1 Households

Households value consumption and leisure. I assume the existence of a representative

household with separable preferences

U(Ct , Lt) =
C1−σ

t

1 − σ
− ψLt , (2.3)

where Ct is consumption and Lt labor supply in period t. σ denotes the intertempo-

ral substitution elasticity, andψ parametrizes the disutility of working. I suppose the

period utility function is the result of indivisible labor, see Hansen (1985) and Roger-

son (1988).¹² The household owns all firms and receives aggregate profits denoted

Πt . The problem of the household is

max
Ct ,Lt

U(Ct , Lt) s.t. Ct ≤ wt Lt + Πt , (2.4)

¹² These preferences are common in related general equilibrium models with non-convex capital
adjustment frictions, see Khan and Thomas (2008) and Bloom et al. (2014) for example.
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where wt is the wage. Due to household ownership, firms discount future profits by

Q t,t+1 = β
pt+1

pt
, (2.5)

with pt = C−σt the marginal utility of consumption. The household’s optimal labor

supply requires wt =ψ/ pt .

2.4.2 Engineering firms and capital suppliers

To invest in specific capital, producers of consumption goods need to hire an engineer-

ing firm that acts as an intermediary on the capital market. Engineering firms search

for a capital good producer to supply the required goods. When search succeeds, the

capital supplier produces all goods within one period.

Let me motivate the setup by the assembly line example in the introduction. Since

assembly lines are complex, the investing firm needs to hire an assembly line producer

(engineering firm). This producer, in turn requires a network of suppliers that provide

the various inputs that compose an assembly line. On top, assembly lines are specific,

and thus require different supplier networks across orders. While many individual

business relationships are firmly established, the producer may need to search for

some new suppliers given a new assembly line order. Inmymodel, the capital supplier

is a shortcut for a supply network.

In detail, I assume a continuum of capital submarkets indexed by cost parameter

ξ, distributed by G. Consumption good producers randomly access a submarket ξ.

The remainder of this subsection focuses on an arbitrary submarket ξ. There is a

large mass of engineering firms (short: engineers) and capital suppliers. The mass

of active engineers be Et , and the mass of active capital suppliers St . Formally, the

matching technology between engineers and capital suppliers is

Mt = mt E
η
t S1−η

t , (2.6)

where mt is stochastic matching efficiency that follows an AR(1) process in logs

log(mt) = (1 − ρm) log(µm) + ρm log(mt−1) + σ
mεm

t , εm
t

iid∼ N (0, 1). (2.7)
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I define market tightness as θt = Et /St . The order filling probability for an engineer

is qt = mtθ
η−1
t , and the matching probability for a supplier is θtqt . Once matched,

the probability of match separation is χ.

Suppliers and engineers need to hire ξ workers to participate in the market and

workers are mobile across sectors so the wage is equal across sectors. When matched

for any given investment order it , the capital supplier produces within the period

and delivers the order to the engineer for unit price pS
t . Capital suppliers have unit

marginal costs to transform consumption goods into capital. Given the stochastic

discount factor in (2.5), the value of an unmatched and matched capital supplier is

V S
t = −ξwt + θtqt J

S
t + (1 − θtqt)Et[Q t,t+1V S

t+1], (2.8)

JS
t = pS

t it − it + (1 − χ)Et[Q t,t+1JS
t+1], (2.9)

respectively. Engineers are hired on a spot market for investment orders, they can

perfectly commit and are perfectly competitive. A consumption good producer can

only hire one engineering firm. Thus, the number of engineers equals the number

of orders. Conditional on delivery, engineers receive unit price pE
t . To deliver, the

engineer needs to find a matching capital supplier. The value of an unmatched and

matched engineer is, respectively,

V E
t = −ξwt + qt J

E
t + (1 − qt)Et[Q t,t+1V E

t+1], (2.10)

J E
t = pE

t it − pS
t it + (1 − χ)Et[Q t,t+1J E

t+1]. (2.11)

In equilibrium, engineers make zero profits on the spot market for investment orders,

and I assume that capital suppliers satisfy a free entry condition.

V E
t = V S

t = 0. (2.12)

When matched, engineer and capital supplier split the match surplus by Nash bargai-

ning over the unit price pS
t , where φ is the engineer’s bargaining weight

max
pS

t

(J E
t − V E

t )
φ(JS

t − V S
t )

1−φ. (2.13)
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The two equations in (2.12) together with the solution to (2.13) jointly define the

equilibrium values of θt , pS
t , pE

t .

Assumption: Matches are formed for a single period, χ = 1.

The assumption considerably simplifies the problem and appears less strong when

reconsidering the capital supplier as shortcut for a supplier network. Under χ = 1,

the solution to (2.13) is pS
t = φ + (1−φ)pE

t and the unit price engineers receive

becomes pE
t = 1+ ξwt

φqt

1
it
. Thus, investment expenditure pE

t it = it + ft consists of a size-

dependent component with unit price of one, and a fixed cost component

ft =
ξwt

φqt
. (2.14)

It further follows that equilibrium tightness is constant

θt =
φ

1 − φ
. (2.15)

Hence, lower matching efficiency mt unambiguously lowers delivery probability qt .

2.4.3 Consumption good producers

The economy consists of a fixed unit mass of perfectly competitive consumption good

firms, indexed by j, that produce a homogeneous consumption good

y j t = zt x j t k
α
j t`
ν
j t , (2.16)

using firm-specific capital, k j t , labor, ` j t , and subject to aggregate productivity, zt ,

and idiosyncratic productivity, x j t . The production function has decreasing returns

to scale in the control variables, 0< α+ ν < 1. Aggregate productivity has a deter-

ministic trend but throughout the paper, the model is formulated along the balanced
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growth path. Both idiosyncratic and aggregate productivity follow an AR(1) process

log(zt) = ρz log(zt−1) + σ
zεz

t , εz
t

iid∼ N (0,1), (2.17)

log(x j t) = ρx log(x j t−1) + σ
xεx

j t , εx
j t

iid∼ N (0, 1), (2.18)

respectively. Labor adjustment is frictionless and I define gross cash flow as

c f j t ≡ max
` j t∈R+

¦

zt x j t k
α
j t`
ν
j t − wt l j t

©

. (2.19)

Capital adjustment is not frictionless. Firm-specific capital evolves over time accor-

ding to γk j t+1 = (1−δ)k j t + i j t , where δ denotes the depreciation rate, i j t is invest-

ment, and γ denotes constant, aggregate growth of labor productivity.

Let me detail the capital adjustment frictions. First, to invest, consumption good

producers need to hire an engineering firm that searches for capital suppliers to sup-

ply the required capital goods. As a result of frictional capital markets, investment or-

ders are not delivered instantaneously, but with probability qt implying average time

to build of 1/qt . Second, investment entails a fixed cost, ft , see (2.14). The fixed

cost depends on the capital submarket ξ. The submarket in which the consumption

good producer can order capital is random and iid across firms and investment or-

ders. Third, re-adjusting an outstanding order before delivery is prohibitively costly.

Fourth, I assume resale losses of capital.¹³

In the dynamic firm problem, I distinguish between consumer good producers

with and without outstanding orders. For firms without outstanding orders, the idio-

syncratic state is described by (k j t , x j t ,ξ j t) with probability distribution µV defined

for space SV = R+ ×R+ ×R+. For firms with outstanding order, the idiosyncratic

state consists of (k j t , io
j t , x j t ,ξ j t), where io

j t denotes the outstanding investment or-

der. The probability distribution is µW defined for space is SW = R+ ×R×R+ ×R+.
The cross-sectional distribution of all consumption good firms over their idiosyncra-

tic states is µt = (µV
t ,µW

t ) defined for S = SV × SW . The economy’s aggregate state

is denoted by st = (µt , zt , mt). In the following, I drop time and firm indices and use
′ notation to indicate subsequent periods. The value of a firm without outstanding

¹³ I assume reselling is also subject to time to build: Disinvesting producers need to hire an engineer
that searches for a capital supplier that transforms the capital into consumption goods.
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order is given by

V (k, x ,ξ, s) = max
¦

V A(k, x ,ξ, s), V NA(k, x , s)
©

. (2.20)

Conditional on not ordering investment (not adjusting), the firm value is

V NA(k, x , s) = c f (k, x , s) + E[Q(s, s′)V ((1 − δ)k /γ, x ′,ξ′, s′)|x , k, s]. (2.21)

Conditional on ordering investment (adjusting), the firm value is

V A(k, x ,ξ, s) =max
io∈R

¦

W (k, io, x ,ξ, s)
©

, (2.22)

The resale loss of divestment is expressed by the investment price function pi(io),

which equals 0≤ p̄i ≤ 1 if investment io < 0, and which equals one if investment is

positive. Total investment expenditure is

ac(io,ξ, s) = (1 − pi(io))io + f (ξ, s) (2.23)

The value of the consumption good firm with outstanding orders is

W (k, io, x ,ξ, s) = c f (k, x , s) (2.24)

+ q(s)
�

− ac(io,ξ, s) + E[Q(s, s′)V
�

((1 − δ)k + io) /γ, x ′,ξ′, s′
�

|x , s]
�

+ (1 − q(s))
�

E[Q(s, s′)W
�

(1 − δ)k /γ, io /γ, x ′,ξ, s′
�

|k, io, x , s]
�

.

The extensive margin of the capital adjustment decision is described by the threshold

value ξ̂(k, x , s) that satisfies

V A(k, x , ξ̂(k, x , s), s) = V NA(k, x , s). (2.25)

Adjustment is optimal whenever fixed adjustment costs ξ < ξ̂(k, x , s). Note that this

formulation of the firm problem nests the conventional firm problem with one period

time to build whenever q(s)= 1 ∀s.
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2.4.4 Recursive competitive equilibrium (RCE)

Before I define the equilibrium conditions, I define important macroeconomic aggre-

gates. The aggregate production of the consumption good is

Y (s) =

∫

S

zxkα`(k, x , s)νµ(d[k × io × x × ξ]), (2.26)

where `(k, x , s) is the solution to (2.19). Aggregate investment expenditure is

I(s) =

∫

SV

1{ξ<ξ̂(k,x ,s)}q(s)ac(io(k, x , s),ξ, s)µV (d[k × x × ξ]) (2.27)

+

∫

SW

q(s)ac(io,ξ, s)µW (d[k × io × x × ξ]).

1{·} is an indicator function, that equals one if the argument is true and zero otherwise.

I define aggregate order backlog as the total volume of investment orders at the

beginning of the period, after new orders have been made

B(s) =

∫

SV

1{ξ<ξ̂(k,x ,s)}ac(io(k, x , s),ξ, s)µV (d[k × x × ξ]) (2.28)

+

∫

SW

ac(io,ξ, s)µW (d[k × io × x × ξ]),

A RCE is a list of functions (w, f , q,`, io, ξ̂, C , L,Π,Q, V, W,µ′) that satisfies:

1. Consumption good producers: Labor demand `, intensive and extensive margin

investment demand (io, ξ̂), and value function (V, W ) solve (2.19)–(2.25).

2. Engineering firms and capital good producers: Capital prices f and delivery pro-

bability q satisfy (2.14) and (2.15).

3. Household: Consumption demand C and labor supply L solve (2.4).

4. Consistency:

(a) Π is consistent with profit maximization of consumption good firms.

(b) Q is given by (2.5).
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(c) µ′, the law of motion of µ, is consistent with functions (q, io, ξ̂) describing

capital adjustment.

5. Labor market clearing: Labor supply L equals labor demand for consumption

good production ` and labor demand for fixed costs of engineers and suppliers,

described by ξ̂ and G, the distribution of ξ.

6. Goods market clearing: C = Y − I , with Y and I given by (2.26) and (2.27).

2.4.5 Solution

The recursive competitive equilibrium is not computable, because the solution de-

pends on the infinite-dimensional distribution µ. Instead, I solve for an approximate

equilibrium building on the algorithms in Campbell (1998) and Reiter (2009). The

general idea is to use global approximation methods with respect to the individual

states, but local approximation methods with respect to the aggregate states. I solve

the steady state of my model using projection methods and perturb the model locally

around the steady state to solve for the model dynamics in response to aggregate

shocks.

Compared to the Krusell-Smith algorithm, see Krusell et al. (1998), the pertur-

bation approach does not require simulating the model with respect to aggregate

shocks (in order to update the parameters of the forecasting rules). Further it can

easily handle a large number of aggregate shocks. Terry (2015) compares the Krusell-

Smith algorithm with the Campbell-Reiter algorithm for a Khan and Thomas (2008)

economy. He finds that the Campbell-Reiter algorithm is more than 100 times faster.

Ahn et al. (2016) combine the Campbell-Reiter algorithm to compute aggregate dyna-

mics for a general class of heterogeneous agent economies in continuous time. More

closely related to this paper, Winberry (2016b) uses (and extends) the Campbell-

Reiter algorithm to solve a variation of the Khan and Thomas (2008) economy.

My adaptation of the Reiter method uses cubic B-splines with collocation to ap-

proximate the value functions. For the baseline calibration of the model, it takes one

minute to solve the steady state, aggregate dynamics, and compute the impulse re-

sponse functions. Appendix 2.A.2 contains the details of my solution method.
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2.5 Calibration

This section discusses the model calibration, which broadly follows the literature

on non-convex capital adjustment frictions in general equilibrium models, see Khan

and Thomas (2008) for example. I calibrate the model at quarterly frequency. I set

the discount factor β = 0.99 to match an annual risk-free rate of 4%. I assume log-

utility in consumption, σ = 1. The parameter governing the household’s disutility

from work, ψ, is calibrated to match one third of time spent working.

Table 2.1. Quarterly model calibration

Description Parameter Value

Households
Discount factor β 0.990
Intertemporal elasticity σ 1.000
Preference for leisure ψ 2.400

Engineers and capital suppliers
Bargaining power φ 0.500
Mean matching efficiency µm 0.542
Persistence of matching efficiency ρm 0.959
Dispersion of matching efficiency σm 0.041

Consumption good producers
Capital share α 0.250
Labor share ν 0.580
Depreciation rate δ 0.025
Aggregate growth γ 1.004
Idiosyncratic persistence ρx 0.970
Idiosyncratic dispersion σx 0.065
Aggregate persistence ρz 0.950
Aggregate dispersion σz 0.007
Fixed adjustment cost (upper bound) ξ̄ 0.010
Resale loss p̄i 0.830

The parameters that describe the technology of consumption good producers are

set to α= 0.25 and ν= 0.58. These values are well within the range of estimates

in Cooper and Haltiwanger (2006) and Kehrig (2015), and similar to the values

assumed in Khan and Thomas (2008) and Bachmann and Bayer (2013).¹⁴ I assume

¹⁴ Interpreting the production function as revenue production function derived in a model of mono-
polistic competition, the value for output elasticities would imply a markup of roughly 20%.
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δ = 0.025 consistent with an annual depreciation rate of 10%. Following Khan and

Thomas (2008), I calibrate γ to an annualized aggregate labor productivity growth

of 1.6%.

On capital markets, I assume symmetric Nash bargaining between engineers and

suppliers, φ = 0.5. This implies delivery probability qt = mt , which is independent

of η. To calibrate mean, persistence, and variance of matching efficiency, I target the

corresponding first and second moments of the empirical baseline measure of time to

build, the backlog ratio. To this end, I use (2.28) to compute aggregate order backlog.

Since the delivery probability is state-independent and since shipments equal inves-

tment in the model, the backlog ratio in the model is Bt /St = qt . I set the mean

matching efficiency to satisfy an average time to build of 5.5 months corresponding

to the mean of the backlog ratio. Given that the backlog ratio has a weak, non-linear

time trend, I detrend the quarterly time series using a low-frequency HP filter with

λ= 100,000 and fit persistence and standard deviations to the residual. This yields

ρm and σm for the quarterly matching efficiency process.

I assume that G, the distribution of ξ, is uniform with lower bound zero and up-

per bound ξ̄. To calibrate ξ̄ and resale loss p̄i, I target the share of spike investment

rates in micro data. Since the idiosyncratic productivity process, described by ρx and

σx , also determines the investment rate distribution, it is key to calibrate these four

parameters jointly using the same dataset. I use manufacturing establishment-level

data from the Longitudinal Research Database. In particular, I use the estimates in

Cooper and Haltiwanger (2006) based on revenue function x̃ kθ , which I take as the

production technology after maximizing out labor with θ = α/(1− ν). Given ν, I
translate their estimates of the profitability process at annual frequency into the pa-

rameters describing the quarterly process of x , where x = x̃1−ν. This yieldsρx = 0.97

and σx = 0.065. To calibrate adjustment cost parameters ξ̄ and p̄s I target the share

of positive and negative spike adjusters, documented in Cooper and Haltiwanger

(2006). The two model parameters can exactly match the 18.6% share of positive

spikes and the 1.5% share of negative spikes. The fixed cost is important to generate

fat tails, while the resale loss is particularly important in generating the large diffe-

rence between positive and negative spikes. Appendix 2.A.3 provides more details

and robustness on the calibration.
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2.6 Macroeconomic effects of matching technology

shocks

This section discusses the quantitative effects of shocks to the matching technology.

In short, a shock to the matching technology that raises time to build by one month

lowers investment by 2 percent and output by 0.5 percent. These shocks explain up

to one third of the decline in output and investment during the early 1990s recession

and the 2007-09 Great Recession.

In more detail, Figure 2.3 shows the responses to an adverse shock to the mat-

ching technology. The shock increases time to build by exactly one month, which is

roughly an increase by one standard deviation of the filtered time to build series. The

shock causes substantial fluctuations in output, investment, and consumption. Inves-

tment (first row, right) has the strongest impact response to the match efficiency

shocks. It falls by 2 percent initially and remains strongly depressed during the first

two years after the shock. Output (second row, right) falls by 0.3 percent on impact

and reaches its trough of 0.55 percent five quarters later. Measured aggregate total

factor productivity (last row, right) declines gradually and reaches its trough at 0.3

percent 5 quarters after the shock.

The aggregate effects of adverse shock to the matching technology are explained

by a direct and an indirect channel. The direct channel captures that longer time to

build delays delivery of outstanding investment orders and thus reduces investment

and output. The indirect channel captures that longer time to build affects firm-level

investment policies: firms invest less frequently and, if they invest, their investment

reflect less their contemporaneous productivity. In turn, the alignment between firm-

level capital and productivity weakens. Thus, longer time to build lowers measured

aggregate total factor productivity. For a more detailed discussion of the indirect

channel revisit Section 2.3.

To understand the relative quantitative importance of the two transmission chan-

nels, I suggest a simple exercise. While the indirect channel affects measured aggre-

gate total factor productivity, the direct channel has no impact on measured producti-

vity. To isolate the direct channel, I compute a series of exogenous shocks to aggre-

gate productivity that exactly offset the effects the matching technology shock has
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Figure 2.3. Responses to an adverse shock to the matching technology

0 4 8 12 16 20 24
5

5.5

6

6.5

7
Time to build (in months)

0 4 8 12 16 20 24
-3

-2

-1

0

1

2
Investment (in %)

Total response
Direct channel

0 4 8 12 16 20 24
-0.6

-0.4

-0.2

0

0.2

0.4
Output (in %)

0 4 8 12 16 20 24
-0.6

-0.4

-0.2

0

0.2

0.4
Consumption (in %)

0 4 8 12 16 20 24
Quarters

-0.6

-0.4

-0.2

0

0.2

0.4
Employment (in %)

0 4 8 12 16 20 24
Quarters

-0.6

-0.4

-0.2

0

0.2

0.4
Aggregate TFP (in %)

Notes: The impulse response functions are for a shock to the matching technology that decreases
time to build by one (unconditional) standard deviations starting from steady state and using the
baseline calibration. ‘Direct channel’ denotes the impulse responses when aggregate TFP changes
are eliminated through opposing aggregate productivity (z) shocks. Aggregate TFP is computed as
T F P = log(Yt)−α log(Kt)− ν log(Lt).

onmeasured aggregate productivity. Thus, measured aggregate productivity remains

at its steady state level. The effects of the direct channel are the macroeconomic re-
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sponses to the joint occurrence of the initial match efficiency shock and the series of

productivity shocks.

The resulting ‘direct channel’ responses are shown as dotted lines in Figure 2.3.

The direct channel is only central to understand the immediate responses, while

the medium-term effect is by and large explained by the indirect channel operating

through capital misallocation. The prominent role of aggregate productivity in my

model corresponds to the finding in Chari et al. (2007) on the efficiency wedge. The

direct channel is most important on impact of the shock because in subsequent peri-

ods firms adjust their investment policies. Firms prepone investment orders as deli-

very takes longer, see Figure 2.7 in Appendix 2.A.4. Abstracting from the on-impact

effect, capital adjustment frequency falls, consistent with wait-and-see behavior.

Note that I evaluate the quantitative impact of shocks to the matching techno-

logy in general equilibrium. Accounting for general equilibrium effects is important

because household consumption smoothing motives may substantially dampen the

investment and output responses that would arise in partial equilibrium, see Khan

and Thomas (2008). The initial increase in consumption (second row, right) reflects

a general equilibrium mechanism. Since prices are flexible in my model, the intra-

temporal household optimality condition dictates that consumption has to increase

initially in response to the initial decrease in investment. The reason is that the capital

input in production is predetermined and labor demand falls.

As robustness check of the results, I consider a model driven by an exogenous

process for the delivery probability qt . This will turn off the equilibrium effects that

matching technology shocks have on fixed capital adjustment costs ft . Figure 2.9 in

the Appendix shows that the responses are somewhat weaker, but the effects of time

to build fluctuations remain quantitatively important.

The responses in Figure 2.3 show quantitatively important and persistent effects

of match efficiency shocks. Next, I assess the importance of time to build for under-

standing past business cycles. To this end, I compute a matching technology shock

series that fits the empirical time to build series. This confines my analysis to the

period from 1968 through 2015. Using the model, I can compute the time series

for output, investment, consumption, and employment. To be clear, in this exercise

fluctuations in these series are only driven by shocks to the matching technology. To
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make the quarterly series comparable to the data, I HP filter both the simulated series

and their empirical counterparts using the same low-frequency filter (λ= 100,000)

I used in the calibration. More details on the empirical time series are provided in

Section 2.7.

Figure 2.4 plots the model-implied time series against their empirical counter-

parts. Two observations stand out. First, the official recession periods (grey-shaded

areas) are relatively well matched by periods where shocks to the matching techno-

logy induce below-trend output. The figure also reveals some phase shifts for the

timing of expansions and contractions in aggregate production. This may not be sur-

prising given that this paper does not claim that shocks to the matching technology

are the sole driver of business cycles and other business cycle shocks may follow dis-

tinct time patterns. Second, shocks to the matching technology explain an important

share of the observed business cycle variations. These shocks alone explain a drop

in investments of more than 5% during the Great Recession and the early 1990s re-

cession, compared to a drop of 16% in the data. For output, the model also explains

more than a third of the empirically observed drop during these two recessions and

for consumption it is almost a quarter. The exercise, thus, suggests that time to build

fluctuations are important drivers of business cycles.

Finally, Table 2.5 in Appendix 2.A.4 reports business cycle moments for both the

empirical data and based on simulations of the model. The model generates autocor-

relation in the detrended series for output, consumption, investment, and employ-

ment close to the empirical estimates. Further, the volatility of investment relative

to output in the model is very similar to the data. The magnitudes of fluctuations

generated by the model are between five and ten times lower than in the data. This

reflects the observation that time to build exhibits large fluctuations only in two of

the seven recessions for which data is available. Conversely, while shocks to the mat-

ching technology account for an important share of the early 1990 recession and the

Great Recession, these shocks are less important for other recessions.

2.7 Time series evidence

In this section, I assess the importance of structural time to build shocks using vector

autoregressions. The identification requires few assumptions and I compare the iden-
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Figure 2.4. Role of time to build in understanding past business cycles
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tified shocks to the shocks to matching technology in my general equilibrium model.

The main finding is that the qualitative effects of time to build shocks are similar

to the effects of matching technology shocks in the model above, while the quantita-

tive effects are even larger. In addition, the identified shocks are largely uncorrelated

with various external measures of business cycle variation, which supports the notion

that time to build is driven by an independent source of variation.

2.7.1 Baseline model

I estimate a medium-scale, eight-variable vector autoregression (VAR) that allows

for rich dynamic interactions between the baseline time to build measure, see
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Section 2.2, and several macroeconomic series, prominent in both structural and

empirical business cycle models. The vector of endogenous variables is:

Y =




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I use data at quarterly frequency that covers 1968Q1 through 2014Q4. All ma-

croeconomic series except time to build are sourced from FRED.¹⁵ All variables but

the federal funds rate are transformed by the natural logarithm. Notice that I use

non-durable consumption goods, because durable consumption goods include equip-

ment goods that time to build shocks may directly affect. Similarly, my preferred

investment time series is nonresidential investments because only firms invest in my

model. The results are robust against using total consumption and total investment

instead.

The baseline structural VAR model is in levels with linear time trend (D)

Yt = A0 + Dt +
4
∑

j=1

A jYt− j + But , Cov(ut) = I8, Σ = Cov(But) = BB′,

(2.29)

where But denotes reduced-form shocks and ut structural shocks. The covariance

matrix of ut is the identity matrix of dimension eight, I8. I assume thematch efficiency

¹⁵ The FRED series names are GDPC96 (Real GDP), DNDGRA3Q086SBEA (Real Personal Consump-
tion Expenditures: Nondurable goods), B008RA3Q086SBEA (Real Private Fixed Investment: Nonresiden-
tial), CPI, AHETPI/CPI (Average Hourly Earnings of Production and Nonsupervisory Employees: Total
Private; deflated by CPI), FEDFUNDS (Effective Federal Funds Rate), PAYEMS (All Employees: Total Non-
farm Payrolls). Labor productivity is real GDP over employment.
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shock is the last element in vector ut . The structural impulse responses of Yt to the

match efficiency shock are identified by the last vector in B, denoted B8.

2.7.2 A conservative identification scheme

The baseline identification assumption is that time to build increases in response to

a structural time to build shock while all other macroeconomic time series do not

respond contemporaneously, i.e. B8 = [0, . . . , 0, b88]
′. Combining this identification

restriction with BB′ =Σ, it follows that b88 =
Æ

e′8Σ−1e8, where ei is the i-th column

of I8. B8 is point-identified by the identification restriction.

This identification scheme is conservative in the following sense. Except for the

time to build shock, all structural shocks may affect time to build contemporaneously,

while the time to build shockmay affect all variables except time to build only through

a one-quarter lag.¹⁶ The identification is also conservative relative to the general

equilibrium model where all variables are contemporaneously affected by shocks to

the matching technology. Later, I reassess the importance of time to build shocks

using a model-consistent identification scheme.

Figure 2.5 shows the impulse responses to a positive time to build shock that rai-

ses time to build by one month at peak. I have chosen the size of the shock to mimic

the exercise in the general equilibrium model. The shock has a persistent, significant

effect on time to build. More interestingly, GDP and its two main components, inves-

tment and consumption, significantly fall in response to the match efficiency shock.

Not only are the responses statistically significant, but their magnitudes are also eco-

nomically relevant: GDP and consumption fall by up to 2%, and investment by up to

6% within the first three years.

To get a sense of the role of time to build shocks to explain variation in macroe-

conomic variables, Table 2.2 shows the shares of forecast error variance explained

by time to build shocks. Albeit conservatively identified, the time to build shock ex-

plains an important fraction of macroeconomic fluctuations: more than 20% of GDP

and consumption, and 7% of investment. This provides further evidence in support

of this paper’s suggestion that time to build fluctuations are important for a better

understanding of business cycle fluctuations. Importantly, at business cycle frequency

¹⁶ The identification strategy resembles Christiano et al. (2005) for monetary policy shocks.
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Figure 2.5. Impulse responses to a one month time to build shock
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Notes: Solid, blue lines show (selected) responses to a match efficiency shock, under the baseline
identification scheme. Shaded, gray areas illustrate the associated 90% confidence intervals.

Table 2.2. Forecast error variance decomposition

1 year 2 years 3 years 4 years 5 years ∞
GDP 0.2 7.6 18.1 22.6 23.4 18.2
Investment 0.3 0.9 2.8 4.9 6.6 6.7
Consumption 0.8 9.8 22.2 26.9 28.2 24.6
Time to build 73.4 57.0 48.8 44.8 42.2 31.1

Note: The shares of forecast error variance explained by time to build
shocks are expressed as percentages for different forecast horizons ran-
ging from 1 year to infinity.

the time to build shock explains almost 50% of the forecast error variance of time

to build itself. That is, other structural shocks explain only 50%. This supports the

modeling choice of the general equilibrium model, in which time to build is directly

driven by a shock to the matching technology, and not by a conventional business

cycle shock, such as a shock in aggregate productivity.
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The importance of time to build shocks could potentially reflect other structu-

ral shocks that are not well identified in my model. To address this concern, I cor-

relate my identified time to build shock series with various business cycles shocks,

constructed in a number of papers outside my empirical framework. These business

cycles shocks include direct estimates of productivity shocks and numerous policy

shocks. Table 2.3 provides the correlation of the time to build shock series with le-

ads and lags of the external business cycle shock series. By and large, I find time to

build shocks uncorrelated with external shocks. This finding further supports to the

importance of exogenous shocks to time to build.

Table 2.3. Correlogram of time to build shocks with external business cycle shocks

quarterly lags/leads
-4 -3 -2 -1 0 +1 +2 +3 +4

TFP -0.07 -0.05 0.00 0.00 -0.03 -0.04 -0.07 -0.08 0.00
UA-TFP -0.09 -0.13∗ 0.04 0.07 -0.05 -0.06 -0.04 0.00 0.07
UA-TFP-I -0.03 -0.15∗∗ 0.02 0.11 0.03 -0.03 0.03 0.00 0.05
UA-TFP-C -0.10 -0.08 0.04 0.03 -0.09 -0.07 -0.07 0.00 0.05
MP 0.02 0.08 0.04 0.02 -0.01 0.06 0.04 0.09 0.11
Oil -0.01 0.00 -0.02 -0.02 0.01 0.00 0.01 0.09 -0.04
Defense -0.12 -0.15∗∗ -0.02 -0.03 -0.16∗∗ -0.04 -0.08 -0.01 -0.10
Tax 0.02 -0.06 0.02 0.04 0.01 -0.13 0.09 0.04 -0.02

Note: The table shows the correlation of time to build shocks with various shock se-
ries at lags/forwards between -4 and +4 quarters. */**/*** denote 10%/5%/1% sig-
nificance levels, respectively. Productivity shock series are from Fernald (2014): TFP,
Utilization-Adjusted (UA) TFP, UA-TFP in equipment and durables, and UA-TFP in non-
durables. Monetary policy shocks (MP) are based on Romer and Romer (2004) and Coi-
bion (2012). Oil price shocks are based on Ramey and Vine (2010). Surprise defense
expenditures as fiscal shocks are from Ramey and Shapiro (1998), and tax shocks from
Mertens and Ravn (2011).

The identified time to build shock series appears not to reflect investment-specific

productivity shocks along the lines of Justiniano et al. (2010) and Justiniano et al.

(2010). Beyond the evidence in Table 2.3, this conclusion is supported by the finding

that extending my VAR model by the relative price of investment goods only mar-

ginally affects the results presented here. By the same argument, identified time to

build shocks appear not to reflect uncertainty shocks. The identified shocks further

do not appear to reflect changes in aggregate financial conditions. This conclusion is
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based on the following result. The VAR exercise in Gilchrist et al. (2014) finds that

uncertainty shocks are crucially transmitted through credit spreads. When replacing

uncertainty by time to build, I do not find evidence for the transmission of time to

build shocks through credit spreads.

2.7.3 Robustness

Appendix 2.A.5 provides robustness for the empirical results. First, I evaluate the im-

portance of the linear time trend assumption by estimating the VAR under the same

identification restrictions but expressing all variables in first differences. The results

are broadly robust. Within the first three years, GDP, investment, and consumption

respond significantly to a time to build shock, and the magnitudes are similar to the

baseline model in levels. Second, I compare the role of my identification scheme by

suggesting an alternative identification scheme, in which time to build shocks can

affect all variables contemporaneously, but no other structural shock can affect time

to build contemporaneously. Importantly, this restriction is consistent with the re-

strictions imposed in the general equilibrium model. The responses to a time to build

shock tend to be stronger under the alternative restriction, albeit the differences are

small. Third, I suggest a new robustness for frequentist, point-identified structural

VARs. Based on the findings in Gafarov, Meier, and Montiel Olea (2016), I replace

zero restrictions by elasticity bounds. To provide robustness for time to build shocks,

I replace the contemporaneous zero restrictions of the baseline restriction by con-

straining the elasticity of the contemporaneous response of variables other than time

to build to be bounded by ±1%. I do find my baseline results to be robust against

such relaxation of identification restrictions.

Beyond the robustness in Appendix 2.A.5, the results are also robust against esti-

mating a monthly VAR, in which I replace GDP by IP and investment by new orders

for non-defense capital goods. Further, the results are not solely driven by the Great

Recession period. The VAR results are robust against cutting the sample from 2008.
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2.8 Conclusion

This paper contributes to our understanding of business cycles by addressing a novel

question: What are the business cycle implications of fluctuations in time to build?

To address this question, I develop a dynamic stochastic general equilibrium model,

in which capital good markets are characterized by search frictions. Fluctuations in

time to build are driven by shocks to the matching technology. Calibrating the model

to US data, I show that the empirically observed fluctuations in time to build are

quantitatively of first-order importance for business cycles. Of particular quantitative

importance is the interaction of time to build and firm investment policies leading to

capital misallocation. To corroborate the model-implied results, I provide time series

evidence on the importance of structural time to build shocks. I find that the effects

of time to build shocks are even stronger than in the structural model.

An important follow-up question is to better understand the micro-foundations

behind fluctuations in time to build. In particular, it may be useful to study capital

good supply networks. Small changes at critical points in such networks, for example

the exit of an important supplier, could have non-trivial aggregate implications for

time to build. A complementary explanation may revolve around trade credit. While

the empirical evidence rejects an important role for aggregate financial conditions,

trade credit in capital good production networks might be important to understand

the observed time to build fluctuations. For example, suppose capital suppliers pro-

duce subject to cash-in-advance constraints. During recessions short-run liquidity in

the form of trade credit may become scarce. As a result, suppliers may need to slow

down production despite long order books.

The long-run time series pattern of time to build shows that it has become more

volatile since the mid-1980s. In fact, this coincides with the Great Moderation period

from themid-1980s until 2007. The GreatModeration is characterized by less volatile

business cycles. One popular explanation for the decline in volatility is ‘just-in-time’

inventory practices, whichmitigates inventory volatility. Possibly, the flip side of lower

inventory volatility is larger volatility in order backlog, and thus time to build.
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Appendix 2.A Appendix

2.A.1 Time to build fluctuations

My ex-postmeasure of time to build captures the time which new orders remain in the

capital good producers’ order books using ex-post realizations of shipments (instead

of current shipments). To be precise, I compute the lowest number of future periods

required to deplete the given order backlog

àT T B t ≡ min
τ

� bτc
∑

j=1

St+ j + (τ − bτc)(St+bτc+1 − St+bτc) − Bt

�2

,

where b·c denotes the floor function. The second term in above formula captures a

linear interpolation of shipments between two periods, by which the ex-post time to

build measure becomes continuous.

Figure 2.6 compares my baseline measure with the ex-post measure of time to

build. Differences between the two series are barely visible, which mainly reflects

the high auto-correlation of monthly shipments.

Figure 2.6. Alternative measurement of time to build
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Notes: Time to build is measured as the ratio of order backlog to monthly shipments, for non-defense
equipment goods. Shaded, gray areas indicate NBER recession dates.
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The two panels of Figure 2.7 show the individual series defining the order stock-

flow equation. The series are plotted in nominal values because the stock-flow equa-

tion is defined over nominal values.

Figure 2.7. Responses of investment orders to an adverse match efficiency shock
0

20
0

40
0

60
0

80
0

1970 1980 1990 2000 2010

Order Backlog

Bln. USD

0
20

40
60

80

1970 1980 1990 2000 2010

Shipments
New Orders

Bln. USD

Notes: The time series for order backlog, shipments, and new orders refer to the non-defense equip-
ment goods sector and are expressed in nominal values. Shaded, gray areas indicate NBER recession
dates.
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2.A.2 Solution algorithm

2.A.2.1 Simplified consumption good firm problem

To solve the model most efficiently, I rewrite the firm problem. First, I transform

the firm problem. Instead of io, the investment order, I let firms choose ko, the

new capital stock upon delivery. Computationally, this transformation has the ad-

vantage that I can use the same grid for ko as for k, and this grid can be tighter

than the one for io. To leave the firm problem unchanged, ko needs to evolve over

time to guarantee the implicitly defined investment order satisfies io′ = io

γ . Using

the identity, io = γko + (1−δ)k, the evolution of ko over time (conditional on no

delivery) according to ko′ = ko

γ −
δ(1−δ)k
γ2 . Second, in slight abuse of notation, I drop

the aggregate state s and instead use time subscripts for functions that depend on

the aggregate state. I express the firm value functions in utils, see Khan and Tho-

mas (2008), and redefine the value function such that the expectation with respect

to idiosyncratic productivity does not have to be computed within the maximiza-

tion problem. This raises computational efficiency and it tends to smooth the va-

lue functions. More precisely, I define Ṽt(k, x ,ξ)= ptExEξV (k, x ′,ξ′), Ṽ A
t (k, x ,ξ)=

pt V
A
t (k, x ,ξ), Ṽ NA

t (k, x)= pt V
NA(k, x), W̃t(k, x ,ξ)= ExW̄t(k, x ′,ξ), W̄t(k, x ,ξ)=

ptWt(k, x ,ξ), where Ex (Eξ) denotes the expectation with respect to x ′ (ξ′) con-

ditional on x (ξ) and pt = C−σt as before. Then equations (2.21), (2.20), (2.22), and

(2.24) can be rewritten as:

Ṽt(k, x ,ξ) = ExEξmax
¦

Ṽ A
t (k, x ′,ξ′), Ṽ NA

t (k, x ′)
©

Ṽ NA
t (k, x) = pt c ft(k, x) + βEt[Ṽt+1((1 − δ)k /γ, x ,ξ)]

Ṽ A
t (k, x ,ξ) = max

ko
t ∈R+

¦

W̄t(k, ko
t , x ,ξ)

©

W̄t(k, ko, x ,ξ) = pt c ft(k, x)

+ qt

�

− pt[(1 − pi(k, ko))(γko − (1 − δ)k) + f E
t (ξ)] + βEt[Ṽt+1 (k

o, x ,ξ) ]
�

+ (1 − qt)
�

βEt[W̃t+1

�

(1 − δ)k /γ, ko /γ − δ(1 − δ)k /γ2, x ,ξ
�

]
�

W̃t(k, ko, x ,ξ) = ExW̄t(k, x ′,ξ)
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where Et denotes the expectation with respect to aggregate state st+1 conditional on

st . The net present value of the fixed adjustment cost can be expressed by f actξ,

where f act is defined recursively

f act = qt pt
wt

φqt
+ (1 − qt)βEt f act+1.

In turn, this allows me to simplify the firm problem as

Ṽt(k, x) = ExEξmax
¦

Ṽ A
t (k, x ′) − f actξ

′, Ṽ NA
t (k, x ′)

©

f act = qt pt
wt

φqt
+ (1 − qt)βEt f act+1

Ṽ NA
t (k, x) = pt c ft(k, x) + βEt[Ṽt+1((1 − δ)k /γ, x)]

Ṽ A
t (k, x) = max

ko
t ∈R+

¦

W̄t(k, ko
t , x)

©

W̄t(k, ko, x) = pt c ft(k, x)

+ qt

�

− pt(1 − pi(k, ko))(γko − (1 − δ)k) + βEt[Ṽt+1 (k
o, x) ]

�

+ (1 − qt)
�

βEt[W̃t+1

�

(1 − δ)k /γ, ko /γ − δ(1 − δ)k /γ2, x
�

]
�

W̃t(k, ko, x) = ExW̄t(k, x ′)

Importantly, this allows me to compute the extensive margin adjustment policy in

closed form,

ξ̂t =
Ṽ A

t (k, x ′) − Ṽ NA
t (k, x ′)

f act
.

Next, I approximate firm values using collocation where Φ denotes basis functions in

matrix representation and c denotes vectors of coefficients

Ṽt(k, x) 'ΦV (k, x)cV
t

W̃t(k, ko, x) 'ΦW (k, ko, x)cW
t

The approximations are exact at the nk collocation nodes k1, ..., knk
and ko

1, ..., ko
nk
. In

practice, I choose the same collocation nodes for k and ko.
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As baseline we use cubic B-splines to approximate the firm value functions. This

does not only have the advantage of being computationally fast, but also conditional

on the coefficients we know the Jacobian in closed form. In particular, I can write

down the optimality condition for intensive margin capital adjustment (ko
t ) as

qt pt p
s(k, ko

t )γ =qtβEtΦ
V
k (k

o
t , x)cV

t+1 + (1 − qt)βEtΦ
W
ko((1 − δ)kt /γ, ko

t , x)cW
t+1,

where ΦV
k = (∂ ΦV ) /(∂ k) and ΦW

ko = (∂ ΦW ) /(∂ ko).

I approximate the AR(1) process of idiosyncratic productivity using Tauchen’s

algorithm. I denote the discrete grid points of x by x1, ..., xnx
consisting of nx grid

points and the transition probability from state x j to state x j′ one period later by

πx(x j′ |x j).

To render the infinite-dimensional distribution µt tractable, I approximate it with

a discrete histogram. That is, µt measures the share of firms for each discrete combi-

nation of capital stock ki1 , outstanding order ko
i2
(both correspond to the collocation

nodes), and productivity x j. A further distinction is useful: Let µV
t denote the cross-

sectional distribution of firms without outstanding orders over idiosyncratic states

(ki, x j) and µ
W
t the distribution of firms with outstanding orders over (ki1 , ko

i2
, x j). It

holds that µt = (µV
t ,µW

t ).
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2.A.2.2 Campbell-Reiter algorithm

Using the preceding approximation and simplification steps, the model equilibrium
is described by the following non-linear equations:

ΦV (k, x)cV
t = ExEξmax

¦

Ṽ A
t (k, x ′) − f actξ

′, Ṽ NA
t (k, x ′)

©

(2.30)

ξ̂t(k, x) = (Ṽ A
t (k, x) − Ṽ NA

t (k, x)) / f act

Ṽ NA
t (k, x) = pt c ft(k, x) + βEtΦ

V ((1 − δ)k /γ, x)cV
t+1

Ṽ A
t (k, x) = W̄t(k, ko

t , x)

W̄t(k, ko, x) = pt c ft(k, x)

+ qt

�

− pt(1 − pi(k, ko))(γko − (1 − δ)k) + βEtΦ
V (ko, x)cV

t+1

�

+ (1 − qt)
�

βEtΦ
W ((1 − δ)k /γ, ko /γ − δ(1 − δ)k /γ2, x)cW

t+1

�

c ft(kt , x t) = (1 − ν) (ν/wt)
ν/(1−ν) (zt x t)

1/(1−ν)kα/(1−ν)t

wt = ψ/ pt

qt = mt(φ /(1 − φ))η−1

ΦW (k, ko, x)cW
t = ExW̄t(k, x ′) (2.31)

f act = qt pt
wt

φqt
+ (1 − qt)βEt f act+1 (2.32)

qt pt p
s(k, ko

t )γ = qtβEtΦ
V
k (k

o
t , x)cV

t+1 + (1 − qt)βEtΦ
W
ko((1 − δ)kt /γ, ko

t , x)cW
t+1 (2.33)

1
pt
= Yt − It (2.34)

Yt =
∑

i1,i2, j

µt(ki1 , ki2 , x j) (ν/wt)
ν/(1−ν) (zt x j)

1/(1−ν)kα/(1−ν)i1

It =
∑

i, j

µV
t (ki , x j)G(ξ̂t(ki , x j))qt p

s(ki , ko
t (x j))

�

γko
t (x j) − (1 − δ)ki

�

+
∑

i1,i2, j

µW
t (ki1 , ko

i2
, x j)qt p

s(ki1 , ko
i2
)
�

γko
i2
− (1 − δ)ki1

�

µV
t+1(ki′ , x j′) =

∑

i, j

πx(x j′ |x j)µ
V
t (ki , x j)[ω

V,V,A
t (i, i′, j) + ωV,V,NA

t (i, i′, j)] (2.35)

+
∑

i1,i2, j

πx(x j′ |x j)qtµ
W
t (ki1 , ko

i2
, x j)ω

W,V
t (i1, i2, i′, j)

µW
t+1(ki′1

, ki′2
, x j′) =

∑

i, j

πx(x j′ |x j)µ
V
t (ki , x j)ω

V,W
t (i, i′1, i′2, j) (2.36)

+
∑

i1,i2, j

πx(x j′ |x j)µ
W
t (ki1 , ki2 , x j)ω

W,W
t (i1, i2, i′1, i′2, j)

log(mt+1) = (1 − ρm) log(µm) + ρm log(mt) (2.37)

log(zt+1) = ρz log(zt) (2.38)
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With the following auxiliary equations for the law of motion of the distribution:

ωV,V,A
t (i, i′, j) =















G(ξ̂t(ki , x j))qt
ki′−ko

t (x j)
ki′−ki′−1

if ko
t (x j) ∈ [ki′−1, ki′]

G(ξ̂t(ki , x j))qt
ko

t (x j)−ki′

ki′+1−ki′
if ko

t (x j) ∈ [ki′ , ki′+1]

0 else

ωV,V,NA
t (i, i′, j) =















[1 − G(ξ̂t(ki , x j))]
ki′−(1−δ)ki /γ

ki′−ki′−1
if (1 − δ)ki /γ ∈ [ki′−1, ki′]

[1 − G(ξ̂t(ki , x j))]
(1−δ)ki /γ−ki′

ki′+1−ki′
if (1 − δ)ki /γ ∈ [ki′ , ki′+1]

0 else

ωV,W
t (i, i′1, i′2, j) =























































































G(ξ̂t(ki , x j))(1 − qt)
ki′1
−(1−δ)ki /γ

ki′1
−ki′1−1

ki′2
−ko

t (x j)

ki′2
−ki′2−1

if ko
t (x j) ∈ [ki′2−1, ki′2

] and (1 − δ)ki /γ ∈ [ki′−1, ki′]

G(ξ̂t(ki , x j))(1 − qt)
(1−δ)ki /γ−ki′1

ki′1+1−ki′1

ki′2
−ko

t (x j)

ki′2
−ki′2−1

if ko
t (x j) ∈ [ki′2−1, ki′2

] and (1 − δ)ki /γ ∈ [ki′ , ki′+1]

G(ξ̂t(ki , x j))(1 − qt)
ki′1
−(1−δ)ki /γ

ki′1
−ki′1−1

ko
t (x j)−ki′2
ki′2+1−ki′2

if ko
t (x j) ∈ [ki′2

, ki′2+1] and (1 − δ)ki /γ ∈ [ki′−1, ki′]

G(ξ̂t(ki , x j))(1 − qt)
(1−δ)ki /γ−ki′1

ki′1+1−ki′1

ko
t (x j)−ki′2
ki′2+1−ki′2

if ko
t (x j) ∈ [ki′2

, ki′2+1] and (1 − δ)ki /γ ∈ [ki′ , ki′+1]

0 else

ωW,V
t (i1, i2, i′, j) =















qt
ki′−ki2

ki′−ki′−1
if ki2 ∈ [ki′−1, ki′]

qt
ki2
−ki′

ki′+1−ki′
if ki2 ∈ [ki′ , ki′+1]

0 else

ωW,W
t (i1, i2, i′1, i′2, j) =



















(1 − qt)
ki′1
−(1−δ)ki1

/γ

ki′−ki′1−1
if (1 − δ)ki1 /γ ∈ [ki′1−1, ki′1

] and i2′ = i2

(1 − qt)
(1−δ)ki1

/γ−ki′1
ki′1+1−ki′1

if (1 − δ)ki1 /γ ∈ [ki′1
, ki′1+1] and i2′ = i2

0 else

Labeled equations (2.30)–(2.38) are the main equations, and all other unlabeled

equations are auxiliary in defining the model equilibrium. Given nk collocation nodes

and nx discrete grid points of x , equations (2.30)–(2.38) are n f = 2n2
knx + 3nknx + 4.

I organize these equations in

Et[ f (xt ,xt+1,yt ,yt+1)] = 0, (2.39)
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where εt = (εm
t ,εz

t) ∈ R
2 denotes the vector of aggregate shocks. xt denotes prede-

termined state variables and yt denotes non-predetermined state variables

xt = [µt; log(mt); log(zt)] ∈ Rnx≡n2
knx+nknx+2, (2.40)

yt = [cV
t ; cW

t ; log(act); log(ko
t ); log(pt)] ∈ Rny≡n2

knx+2nknx+2. (2.41)

The non-stochastic steady state is defined as f (x̄, x̄, ȳ, ȳ)= 0. In the general case, the

model solution is given by

yt = g(xt ,ζ), (2.42)

xt+1 = h(xt ,ζ) + ζσ̃εt+1, (2.43)

where ζ is the perturbation parameter and g : Rnx ×R+→ Rny and f : Rnx ×R+→
Rnx . The exogenous shocks are collected in εt+1 ∈ Rnε , and σ̃ ∈ Rnx×nε attributes

shocks to the right equations while also scaling them (by σm, σz). To solve the two

policy functions, I use a first-order approximation. I follow the perturbation algo-

rithm in Schmitt-Grohe and Uribe (2004). This requires to compute the Jacobians of

function f (locally) at steady state. Importantly, the algorithm in Schmitt-Grohe and

Uribe (2004) checks for existence and uniqueness of a model solution.

2.A.2.3 Krusell-Smith algorithm

This subsection suggests how the model can be solved using the Krusell-Smith al-

gorithm. Following Krusell et al. (1998), and the adaption for heterogeneous firms

by Khan and Thomas (2008), I assume agents in my model only observe a finite

set of moments, informative about the entire distribution, instead of observing µ di-

rectly. The agents approximate equilibrium prices and the evolution of the observed

moments by a log-linear rule.

I approximate the distribution µ by the aggregate capital stock,

Kt =

∫

S

kdµ, (2.44)
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and the stock of investments outstanding from the preceding period

I o
t =

∫

SW

(γko − (1 − δ)k)dµW . (2.45)

If time-to-build dropped to zero q = 1, I o
t would constitute the investments activated

in addition to new orders. I suggest the following log-linear forecast rules

log Kt+1 = β0
k (zt , mt) + β

1
k (zt , mt) log Kt + β

2
k (zt , mt) log I o

t , (2.46)

log I o
t+1 = β0

i (zt , mt) + β
1
i (zt , mt) log Kt + β

2
i (zt , mt) log I o

t , (2.47)

and the log-linear pricing rule

log pt = β0
p (zt , mt) + β

1
p (zt , mt) log Kt + β

2
p (zt , mt) log I o

t . (2.48)

The forecasting and pricing rules are described by coefficients that depend on the exo-

genous aggregate shock. For discretized processes of z and m, the equilibrium under

bounded rationality with the above rules becomes computable. I use these rules to

solve for the optimal policy functions and then simulate the economy and compute

equilibrium prices pt in every period t. The simulated economy allows price series

are then used to update the coefficients of the log-linear rules. I stop the procedure

when the coefficients have converged.

2.A.3 Additional information on the model calibration

Cooper and Haltiwanger (2006) targets the spike investment shares, but also persis-

tence of investment rates and the correlation of investment rates with idiosyncratic

productivity, when estimating a richer specification of capital adjustment costs inclu-

ding convex adjustment costs. I exclude the latter two moments because they may

depend sensitively on the specific time to build setup. Nonetheless, the model mat-

ches these moments reasonably well with a persistence of 1.6% (empirically 5.8%),

and a productivity correlation of 24% (empirically 14%).

An alternative strategy to calibrate adjustment costs is to target cross-sectional

skewness and kurtosis of investment rates, see Bachmann and Bayer (2013). In fact,

our calibrated model closely matches these moments in the data: skewness/kurtosis
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in the model are 5.1/48.3, while in a balanced panel of Census data these are

6.5/67.4 for total investment and 5.5/47.9 for equipment investment, see Kehrig

and Vincent (2016). Since skewness and kurtosis monotonically increase in the ad-

justment cost parameters, this indicates the calibrated adjustment costs may be too

low.

Table 2.4. Calibration targets

Model Data

Targeted (LRD)

Positive spikes 18.6% 18.6%
Negative spikes 1.5% 1.5%

Non-targeted (LRD)

Persistence 0.016 0.058
Productivity correlation 0.14 0.24

Non-targeted (Census)

Skewness 5.1 6.5
Kurtosis 48.3 67.4

Notes: All moments relate to annual invest-
ment rates computed as I /K . Positive and
negative spikes denote the share of inves-
tment rates larger than 20% and smaller
than -20%, resp. LRD moments are from
Cooper, Haltiwanger (2006), Census mo-
ments are from Kehrig, Vincent (2016).

Alternative data sources used to calibrate and estimate similar models are the IRS

tax data, see, e.g., Winberry (2016a), and Compustat data, see, e.g., Bloom (2009).

Both datasets are at the firm-level. The IRS does includes only positive investments,

and Compustat is biased to large private firms. The main disadvantage of the LRD

dataset is that it covers manufacturing only.
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2.A.4 Additional results from the model simulation

Figure 2.8. Responses of investment orders to an adverse match efficiency shock
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Notes: The impulse response functions are based on a decrease in match efficiency by one (unconditi-
onal) standard deviations starting from steady state and using the baseline calibration. Inaction me-
asures the share of firms without outstanding orders that do not make a new order in a given period.
The order backlog is the total of investments outstanding for delivery.

Table 2.5. Business cycle statistics

Data Model

Volatility of output (%) 2.37 0.31
Volatility of consumption (%) 2.08 0.16
Volatility of investment (%) 7.27 1.23
Volatility of employment (%) 2.11 0.24

Autocorrelation of output 0.94 0.96
Autocorrelation of consumption 0.94 0.87
Autocorrelation of investment 0.96 0.89
Autocorrelation of employment 0.97 0.89

Correlation of consumption with output 0.86 0.61
Correlation of investment with output 0.72 0.92
Correlation of employment with output 0.71 0.89

Note: All series, from data and model simulations, are ex-
pressed in logs and HP-filtered with a quarterly smoothing
parameter of 100,000.
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Figure 2.9. Responses under alternative fixed adjustment costs:
f (ξ, s)= ξw(s

φq̄ with q(s)= q̄ in steady state
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Notes: The impulse response functions are based on a decrease in match efficiency by one (unconditi-
onal) standard deviations starting from steady state and using the baseline calibration. ‘Direct effect’
are the impulse responses when aggregate TFP changes are eliminated through opposing aggregate
productivity (z) shocks. Aggregate TFP is computed as T F P = log(Yt)−α log(Kt)− ν log(Lt).
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2.A.5 Robustness of the structural VAR results

2.A.5.1 Alternative identification scheme and first differences

First, I investigate the results under an alternative identification assumption. While

the baseline identification scheme tends to be conservative, its restrictions are stron-

ger than the restrictions of the general equilibrium model. As alternative identifi-

cation, I suggest to have the time to build shock ‘ordered first’. This term refers to

the ordering of variables in the VAR. It means that time to build shocks can con-

temporanously affect all other variables in the VAR, but no shock other than time

to build shocks can affect time to build contemporaneously. Figure 2.10 shows that

the baseline identification implies smaller macroeconomic respones to time to build

shocks compared to the alternative identification, albeit the differences are not large.

Impulse responses under the alternative identification remain significant.

Figure 2.10. Impulse responses to a one standard deviation time to build shock
(model in levels with linear time trend, alternative identification schemes)
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Notes: Solid lines show (selected) impulse responses to a time to build shock under the baseline identi-
fication scheme. Dashed lines show the impulse responses under the alternative identification scheme,
in which time to build is ‘ordered first’. Shaded, gray areas illustrate the 90% confidence intervals as-
sociated with the alternative identification scheme.
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Figure 2.11 shows the cumulative impulse responses when estimating a VAR, in

which all variables enter in first differences and the linear time trend is dropped. At

the same time, the figure compares the two identification schemes. The differences

of the impulse responses across identification schemes appears negligible. The im-

portant finding is that the impulse responses are similar to the ones in Figure 2.10.

While I assumed a linear time trend for the latter, the findings on time to build shocks

appear robust to non-linear time trends.

Figure 2.11. Cumulative impulse responses to a one standard deviation time to build shock
(model in first differences, two alternative identification schemes)
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Notes: Solid lines show (selected) cumulative impulse responses to a time to build shock under the
baseline identification scheme. Dashed lines show the impulse responses under the alternative iden-
tification scheme, in which time to build is ‘ordered first’. Shaded, gray areas illustrate the 90% confi-
dence intervals associated with the alternative identification scheme.

2.A.5.2 Elasticity bounds

In this subsection, I propose a new approach to provide robustness for point-

identified structural VAR models in a frequentist setup. Structural VAR models, such

as Gali (1999), Christiano et al. (2005), and Bloom (2009), impose various zero re-

strictions on contemporaneous and long-run responses to obtain point identification.
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As robustness, I propose to replace some or all of the zero restrictions by bounds on

the elasticity with respect to the shock of interest.¹⁷ For example, instead of assu-

ming an uncertainty shock does not contemporaneously affect GDP, as robustness I

would restrict the elasticity of GDP with respect to a change in uncertainty due to

an uncertainty shock to be bounded between ±c%. This nests the point-identified

model in the limit case when all bounds are zero (c = 0). The structural VAR model

is no longer point-identified when replacing a zero restriction with strictly positive

bounds on the elasticities (c > 0).

I implement this robustness exercise using the results in Gafarov, Meier, and Mon-

tiel Olea (2016), which provide inference for set-identified structural VAR models.

Formally, to apply their results, I need to assume that for a given IRF either the lower

and upper elasticity bound may not hold jointly. Notice that confidence sets are esti-

mated based on Deltamethod inference. In fact, bootstrap inference is not necessarily

valid here because the endpoints of the identified sets are not fully differentiable.

The suggested robustness is similar to Conley et al. (2012) which proposes as

robustness to relax the exclusion restriction when using IV methods. I suggest the

following robustness for the conservative baseline identification. Instead of zero re-

strictions on contemporaneous responses, I constrain the elasticity of all variables

(except for the backlog ratio) with respect to the match efficiency shock to be bet-

ween -1% and +1%, see Table 2.6. For an increase in the backlog ratio of 2.5%, the

contemporaneous responses are bound to be between -0.025% and +0.025%.

Figure 2.12 shows the resulting impulse responses under the robustness identifica-

tion scheme. Instead of a single impulse response, there is an interval with admissible

impulse responses (dotted lines). The confidence set is adjusted accordingly based

on Gafarov, Meier, and Montiel Olea (2016). Notice that the main findings of the

baseline model in Figure 2.12 are ‘robust’ in the sense that the declines in GDP, in-

vestment, and consumption remain significant.

¹⁷ Elasiticity bounds have recently gained popularity in the Bayesian structural VAR literature, see,
e.g., Kilian and Murphy (2012a) and Baumeister and Hamilton (2015b).
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Table 2.6. Identification schemes: constraints on contemporaneous elasticities

TTB GDP Inv Con CPI Wag FFR LaP

Baseline + 0 0 0 0 0 0 0
Robustness + ±1% ±1% ±1% ±1% ±1% ±1% ±1%

Notes: +/0/±1% indicate that the elasticity is constrained to be posi-
tive/exactly zero/between -1% and +1%, respectively. The contempora-
neous elasticity of variable i and time to build in response to time to build
shocks is given by (e′iB1) /(e

′
1B1), where ei is the i-th column of the iden-

tity matrix I8. TTB: Time to build, GDP: Real GDP, Con: Real Consump-
tion, Inv: Real Investment, CPI: Consumer Prices, Wag: Real Wage, FFR:
Federal Funds Rate, LaP: Labor Productivity.

Figure 2.12. Impulse responses to a one standard deviation time to build shock
(model in levels with linear time trend, two alternative identification schemes)
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Notes: Solid lines show (selected) responses to a time to build shock under the baseline identification
scheme. Dashed lines show the bounds of the identified set under elasticity constraints, see Table 2.6.
Shaded, gray areas illustrate the 90% confidence intervals for the identified sets.
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Do Plants Freeze Upon Uncertainty
Shocks?

Joint with Ariel Mecikovsky

3.1 Introduction

One of the most active areas of business cycle research since the Great Recession is

the literature studying fluctuations in uncertainty. The following briefly revises this

literature: First, there is ample evidence that uncertainty shocks are contractionary.¹

Second, a number of transmission channels have been put forward that rationalize

the broad empirical finding.² Third, we know relatively little about the empirical

relevance of these various transmission channels.

However, understanding the transmission of uncertainty shocks is of central im-

portance when designing counter-cyclical policy interventions. For example, in mo-

dels with (non-convex) factor adjustment frictions, in which the transmission is cha-

racterized by plants adopting wait-and-see behavior (freezing) in response to higher

¹ Empirical evidence includes Bloom (2009), Bachmann et al. (2013), Caggiano et al. (2014),
Jurado et al. (2015), Baker et al. (2016), and many, many more.

² Transmission channels suggested in the literature build on capital adjustment frictions, e.g. Bloom
(2009), Bachmann and Bayer (2013), Bloom et al. (2014); labor adjustment (search) frictions, e.g.
Schaal (2012), Leduc and Liu (2014), Riegler (2014); price rigidities, e.g. Bundick and Basu (2014),
Born and Pfeifer (2016), Fernandez-Villaverde et al. (2015), Vavra (2014); and financial frictions,
e.g. Alfaro et al. (2016),Christiano et al. (2010), Arellano et al. (2012), Gilchrist et al. (2014), Dyrda
(2015)
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uncertainty, an effective policy may be an investment or hiring subsidy that targets

those plants close to their adjustment threshold, e.g. small plants as in Winberry

(2016a). Instead, if financial frictions are key, an effective policy intervention may

target the financing conditions of firms close to defaulting. Finally, if price rigidities

are key, adequate monetary policy rules are important, see Basu and Bundick (2015).

This paper contributes to the uncertainty literature by providing evidence on the

channels through which uncertainty shocks affect employment. For this purpose, we

first analyze models with various frictions – labor adjustment frictions, capital adjus-

tment frictions, price rigidities, and financial frictions, respectively – and show how

the response of job flows to uncertainty shocks depends on the strength of these fricti-

ons.³ This provides testable implications for our empirical analysis, which uses highly

disaggregated industry-level data on job creation and job destruction. We identify the

response of these job industry-level flows to uncertainty shocks and document sub-

stantial variation. We then relate the estimated responses to measures that capture

the strength of various frictions. Using our model-based findings, we argue that the

data strongly suggests that financial frictions are important for the transmission of

uncertainty shocks, while we find no evidence in support of factor adjustment fricti-

ons or price rigidities.

In models with non-convex labor adjustment frictions, plants postpone employ-

ment changes under higher uncertainty. Such freezing lowers both job flows. We

show that this decline is magnified by larger adjustment costs. If instead capital ad-

justment is frictional, plants postpone investment in response to higher uncertainty.

This unambiguously lowers job creation because non-investing plants shrink due to

capital depreciation. Quantitatively, this decline is magnified by larger adjustment

costs. In models with nominal rigidities, adjusting plants increase prices and thus

markups when uncertainty increases. That is because profits can turn negative if pri-

ces are too low, but remain non-negative for too high prices. Assuming that prices

are set one period in advance, we find that the job flow responses are mitigated if

prices are more rigid. Finally, with financial frictions, higher uncertainty raises the

³We study the responses of (gross) job creation and (gross) job destruction. Following Davis and
Haltiwanger (1992), we define job creation as the total employment change of plants with net em-
ployment gains and job destruction as the total employment change of plants with net employment
losses.
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probability of (costly) default and thus raises borrowing costs. In return, job creation

falls and job destruction increases. Quantitatively, the effects are stronger the more

severe financial frictions.

Guided by our model-based insights, we empirically examine the interaction of

job flow responses to uncertainty shocks and the severity of various frictions. In this

paper, we create a new panel dataset of four-digit manufacuring industry job creation

and job destruction series from 1972 to 2013. We estimate job flow responses to

uncertainty shocks using a sectoral vector autoregressive (VAR) model. The model

includes aggregate variables - stock market level, uncertainty, aggregate job flows

- and industry-level job flows. The VAR model is restricted such that the identified

uncertainty shock series is common across industries while industry-level responses

may differ.

At the aggregate level, job creation decreases while job destruction increases in

response to uncertainty shocks. While we find substantial variation in the industry-

level responses, 80% of industries exhibit a joint decrease in job destruction and an

increase in job creation. This finding by itself is hard to reconcile with (non-convex)

labor adjustment frictions playing a key role for the shock transmission since that

would imply all employment adjustment, both downward and upward, shrinks in

response to uncertainty shocks.

To study the interaction of job flow responses with frictions, we construct industry-

level indices that capture the severity of frictions. For example, we consider the

within-industry kurtosis of gross investment rates and employment growth as indica-

tors of capital and labor adjustment costs, respectively. The justification is that larger

costs lead to more lumpy adjustment, which in turn raises the kurtosis, see, for exam-

ple, Caballero et al. (1997) and Bachmann and Bayer (2013). Similarly, we construct

various industry-level variables that capture the degree of nominal rigidities and fi-

nancial frictions.

When relating our friction indices to the estimated job flow responses, we find

strong evidence in support of financial frictions as transmission channel of uncer-

tainty shocks. In particular, we find that the job flow responses are significantly larger

in industries with stronger financial frictions. The relations between the other friction

indices and job flow responses are either statistically insignificant, or significant but
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of the opposite sign when compared to our model-based predictions. For example, in

industries with stronger measured labor adjustment frictions, job destruction increa-

ses by more.

This paper relates to recent empirical work examining the effects of uncertainty

shocks on labor markets. The evidence concentrates on the effects at unemployment

rate (Leduc and Liu, 2014), job finding rate (Guglielminetti, 2013), and separation

rate in connection with job finding rate (Riegler, 2014). Our empirical findings com-

plement their results.

The structure of the paper is as follows. Section 3.2 examines the model-based

relation of frictions and job flow responses to uncertainty shocks. Section 3.4 des-

cribes the data used and created. Our estimation strategy is outlined in Section 3.3.

Section 3.5 provides the main empirical results, and Section 3.6 concludes. An Ap-

pendix follows.

3.2 Theoretical background: frictions and uncertainty

This section examines the role of various plant-level frictions for the transmission

of uncertainty shocks on labor markets. We separately consider plants facing labor

adjustment frictions, capital adjustment frictions, price rigidities, and financial fricti-

ons. For each friction, we study the response of job flows to a shock that increases

uncertainty.

3.2.1 Model primitives

We consider an economy with a unit mass of plants. Each plant i produces output yi t

using a neoclassical production function that combines capital ki t and labor li t ,

yi t = lαi t k
1−α
i t .

Plants are monopolistically competitive and face an isoelastic demand curve,

pi t = zi t

�

yi t

Yt

�−1/ξ

Pt ,
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where zi t is a stochastic demand shifter for the product of plant i, Yt is the aggregate

demand, Pt is the aggregate price, and ξ is the elasticity of demand. We assume that

idiosyncratic demand zi t follows a log-normal AR(1) process

log(zi t+1) = ρ log(zi t) + εi t+1, εi t+1
iid∼ N (−σ2

t /2,σ2
t ).

The volatility of demand shocks, σt , also follows a first-order Markov process. We

adopt the timing convention that changes in uncertainty are observed one period be-

fore these affect the distribution of new demand shock realizations, cf. Bloom (2009).

3.2.2 Labor adjustment frictions

There is ample evidence suggesting that non-convex labor adjustment frictions at the

plant level are important. For example, Caballero et al. (1997) shows that the distri-

bution of net employment growth at the establishment-level exhibits excess kurtosis,

which suggests lumpiness in employment adjustment. Further, indirect inference as

in Cooper and Willis (2009) or Bloom (2009) estimate significant non-convex labor

adjustment costs.

Such non-convex labor adjustment frictions bear important implications for the

impact of uncertainty shocks on labor markets. When uncertainty, broadly about

plant profitability, is high, the option value of postponing labor adjustment increa-

ses. The intuition is that higher volatility makes reversals in profitability more likely,

which might necessitate reversals in employment size. However, such employment

reversals need to be evaluated against partially sunk employment adjustment costs,

leading plants to avoid such reversals and consequently adjust labor less frequently.

In other words, some plants freeze their employment adjustment plans.

To understand the relation between uncertainty shocks and the degree of labor

adjustment frictions, we consider a dynamic problem of the plant. We assume capital

is adjusted every period and abstract from nominal rigidities and financial frictions.

We abstract from general equilibrium effects setting Yt = Pt = 1. Let us drop firm and

time indices and define revenues net of capital expenditures as

C F l(z, l) = max
k

�

zlαµk(1−α)µ − (r + δ)k
	

, µ = (ξ − 1) /ξ.
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We assume that adjustment costs apply for net employment changes as in Cooper

and Willis (2009). In the hypothetical presence of exogenous quits, labor adjustment

costs were zero if plants adjust employment to offset quits.⁴ Employment adjustment

costs are given by

AC l(l, l ′) = ac l
f 1{l ′ 6= l} + ac l

p|l
′ − l|,

where 1{·} is an indicator function, ac l
p denotes partial irreversibility costs, and ac l

f

fixed costs. The wage is w and the problem of the plant is given by

V (z, l,σ) = max
l ′

�

C F l(z, l ′) − wl ′ − AC l(l, l ′) + βE[V (z′, l ′,σ′)]
	

.

A shock that increases uncertainty unambiguously lowers both job creation and job

destruction on impact. That is due to the timing convention for demand shocks, which

exclusively give rise to a real option effect on impact, cf. Bloom (2009). What is less

clear is how the job flow response to uncertainty shocks changes in the level of labor

adjustment friction. We will come back to this question in Section 3.2.6.

3.2.3 Capital adjustment frictions

Similar to the employment change distribution, the gross investment rates exhibit ex-

cess kurtosis and negative skewness, see, for example, Bachmann and Bayer (2013)

and Kehrig and Vincent (2016). This suggests lumpy investment as explained by non-

convex capital adjustment costs or investment irreversibilities. Given irreversibilities,

a shock raising uncertainty raises the option value of waiting and leads plants to

freeze investment plans. The capital stock of inactive plants decreases because of

physical depreciation. This indirectly depresses labor demand, which lowers job cre-

ation. The effect on job destruction is ambiguous. The freezing of plants that had

disinvested absent an increase in uncertainty contributes to less job destruction. Ho-

wever, the freezing of plants that had invested absent an increase in uncertainty

contributes to more job destruction.

⁴ The literature alternatively considers costs in adjusting gross flows in the presence of exogenous
quits. However, the combination of exogenous labor attrition and sufficiently high adjustment costs
for gross employment changes implies a negative median net employment growth in the cross-section
of plants. Empirically, however, this median is non-negative, see Davis and Haltiwanger (1992).
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We aim to understand the relation between uncertainty shocks and the degree of

capital adjustment frictions. We assume labor is adjusted every period and abstract

from nominal rigidities and financial frictions. Analogous to the model above, we

define revenues net of labor expenditures as

C F k(z, k) = max
l

�

zlαµk(1−α)µ − wl
	

, µ = (ξ − 1) /ξ.

Capital adjustment costs are given by

AC k(k, k′) = k′ − (1 − δ)k + ack
f 1{k′ 6= (1 − δ)k} + ack

p1{k′ < (1 − δ)k},

where ack
p are resale losses, and ack

f fixed costs. The problem of the plant is given by

V (z, k,σ) = max
k′

�

C F k(z, k) − AC k(k, k′) + βE[V (z′, k′,σ′)]
	

.

In Section 3.2.6 we show how the job flow response to uncertainty shocks changes

in the level of capital adjustment frictions.

3.2.4 Price rigidities

In an economy with monopolistic competition and staggered prices, plants respond

to an uncertainty shock by setting a higher price. Important for the upward-pricing

result is the asymmetry of the profit function in the price: it is costlier setting a too

low relative price than setting a too high relative price. Consequently, less jobs are

created and more jobs destroyed. Upward-pricing emerges under price setting à la

Rotemberg or Calvo and when prices are set before shocks realize, see Fernandez-

Villaverde et al. (2015) and Born and Pfeifer (2016).⁵

To understand the relation between uncertainty shocks and the degree of nomi-

nal price rigidity, we study a plant problem subject to Calvo (1983) rigidities. Uncer-

tainty of idiosyncratic demand does not affect plants’ price policy. As a shortcut to

generate precautionary price setting, we let the aggregate price level be stochastic

⁵ On the contrary, in a model with menu costs and time-varying uncertainty as in Vavra (2014),
an uncertainty shock increases the frequency and volatility of price changes, resulting in more jobs
created and destroyed.
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with stochastic volatility. In particular, we assume it follows

log(Pt+1) = ρ log(Pt) + ε
P
t+1, εP

t+1
iid∼ N (−σ2

t /2,σ2
t ).

We abstract from factor adjustment frictions and financial frictions and set Yt = 1.

Prices are set before observing realizations of the stochastic states. The dynamic pro-

blem of the plant is given by

V (z, p, P,σ) = E
�

θ max
p′

Ṽ (z′, p′, P ′,σ′) + (1 − θ)Ṽ (z′, p, P ′,σ′)
�

where θ denotes the price adjustment probability, and

Ṽ (z, p, P,σ) =

�

p
P
−
�w
α

�α
�

r + δ
1 − α

�1−α�� p
zP

�−ξ
+ βV (z, p, P,σ).

In Section 3.2.6 we study the role of the degree of price stickiness for the job flow

response to uncertainty shocks.

3.2.5 Financial frictions

Fluctuations in uncertainty may affect the economy through financial frictions. Un-

certainty may raise default probabilities and thereby increase plant borrowing costs,

which in turn depresses economic activity. In addition, liquidity may become more

valuable in periods of high uncertainty and plants may optimally downscale to pre-

serve liquidity. In the following, we consider a plant model which highlights the role

of financial frictions and liquidity, in the spirit of the model by Arellano et al. (2012).

The key financial friction in our model is that plants cannot borrow against ex-

pected future profits. Whenever period profits, dividends, are negative, the plant

defaults, irrespective of their continuation value. For simplicity, we abstract from

capital and assume technology y = l. Plants need to choose employment before ob-

serving their demand shock, which implies that profits can turn negative. Plants thus

default for a sufficiently low demand shock. The plant may finance its expenditures

by issuing a defaultable one-period bond. The debt contract pays b′ units when not

defaulting, and provides qb′ in return. In addition, plants face fixed operating costs
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f such that plant dividends are

d = zlµ − wl − b + q(l ′, b′, zt ,σt)b′ − f ≥ 0, µ = (ξ − 1) /ξ.

The dynamic problem a continuing plant is given by

V (z, l, b,σ) = max
b′,l ′,d

d + νβE[V (z′, l ′, b′,σ′)],

where plants exogenously exits the market with probability 1− ν every period.⁶

Plants sign one-period loan contracts with a perfectly competitive financial in-

termediary. The plant saves (b < 0) at the risk free rate, with the price of the bond

q(l ′, b′|z,σ)= β . If the plant accumulates debt, default may occur, denoted by in-

dicator ψ(z, l, b,σ)= 0, while one is no default. In the case of default, the lender

recovers part of the outstanding debt by taking possession of the plant with debt re-

set at zero and at cost η.⁷ The parameter η can be thought of as a cost for processing

bankruptcy, but also determines how much from plants’ value can be collateralized.

The price of the bond when borrowing is thus given by

q(l ′, b′|z,σ)b′

= βE
�

ψ(z′, l ′, b′,σ′)b′ +
�

1 − ψ(z′, l ′, b′,σ′)
�

min
�

b′, V̄ (z′, l ′, 0,σ′)
	�

,

where V̄ (z′, l ′, 0,σ′)=max
�

V (z′, l ′, 0,σ′)−η, 0
	

is the recovery value. In the next

section we study the job flows response to an uncertainty shock for different levels

of default costs, η.

3.2.6 Quantitative results

We calibrate the various models at quarterly frequency, in line with the frequency

of our empirical analysis. We use standard assumptions for parameters α, ξ, δ, and

⁶ The assumption of exogenous exit further motivates the use of debt by plants, see, for example,
Bernanke et al. (1999) and Gertler and Kiyotaki (2010). We assume defaulting or exiting plant are
replaced by an identical plant with zero debt next period.

⁷We express η proportional to steady state revenues. As in Gilchrist et al. (2013), the exit rate
does not affect the loan price. We implicitly assume plants make payment decisions before the exit
shock realizes.
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r. Based on Bloom et al. (2014), we calibrate the stochastic demand process and

assume stochastic uncertainty, σt , follows a two-state Markov chain. We denote low

and high uncertainty byσL andσH , respectively. The transition probability, e.g. from

low to high uncertainty, is denotedπσL,H . As in Cooper andWillis (2009), we calibrate

the wage rate to match the average plant employment of 600 workers observed in

the Longitudinal Research Database. Finally, following Gilchrist et al. (2013), we

calibrate the exogenous exit rate based on establishment entry and exit tabulations

from the Business Employment Dynamics, and the fixed operation costs based on the

ratio of general expenses to sales from Compustat data.⁸

Table 3.1. Model parameters

Parameter Value Explanation

α 0.65 Labor share in the economy
ξ 4 Markup of 33%
β 0.99 Discount factor at quarterly frequency
δ 2.6% Annual capital depreciation of 10%
r 1.01% Annual risk free interest rate of 4%
ρ 0.95 Serial correlation process
σL 0.051 Baseline uncertainty level
σH 4 x σ High uncertainty is four times the baseline level
πσL,H 0.03 Probability from low to high uncertainty
πσH,H 0.92 Probability of remaining at high uncertainty

state

All models except financial frictions

w 0.113 Average plant employs 600 workers

Model with financial frictions

w 0.07 Average plant employs 600 workers
ν 0.95 Survival probability
f 8 Fixed costs (11% of revenues)

⁸ Based on firm-level data from Compustat, the median ratio of sales, general, and administra-
tive expenses to sales is 22%. As Gilchrist et al. (2013), we assume that 50% of those expenditures
represent fixed costs of operations.
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After solving the dynamic problems, we independently simulate 5,000 economies

with 1,000 plants, for 80 quarters, respectively. Each economy is hit with an uncer-

tainty shock in the same quarter. In order to calculate the average response of aggre-

gate job flows to an uncertainty shock, we average across simulated economies.

Figure 3.1 shows the immediate response of job flows to an uncertainty shock

under different degrees of frictions. Stronger labor adjustment frictions increase the

magnitude of the job creation and job destruction response to an uncertainty shock.

While it is well known that adjustment frequency falls in adjustment costs, and thus

job creation and destruction fall, we find that adjustment costs positively interact

with uncertainty shocks and magnify the responses. Critically important for this re-

sult is the change in the employment adjustment triggers in response to higher uncer-

tainty. If the relative increase of these triggers is at least as large under high capital

adjustment costs as under low capital adjustment costs, then on impact job creation

and job destruction must fall by more under high costs. That is because under high

costs, plants’ employment policies are such that adjustment frequency is lower even

in normal times. Thus the probability mass of plants close to adjustment triggers is

lower. If the triggers move by at least as much under high costs as under low costs,

then the share of plants that adjust drops by more under high costs.⁹

As explained in Section 3.2.3, with capital adjustment frictions the immediate

response of job creation to higher uncertainty is an unambiguous drop, while the re-

sponse of job destruction is less clear. We find that job creation falls by more the large

capital adjustment costs are. The explanation is analogous to our discussion on labor

adjustment frictions. As for job destruction, however, we indeed find an ambiguous

effect of capital adjustment costs on the immediate response to uncertainty.

Under nominal rigidity, upward-price setting leads to lower job creation and hig-

her job destruction in response to higher uncertainty. We find that these response are

stronger the less rigid prices are. Notice that in our setup even when prices can be

adjusted every period (θ = 0), prices are set before observing the period profitability.

Thus, upward-price setting exists even for θ = 0. The longer-lived prices are, i.e. the

⁹ The analytical results in Abel and Eberly (1996) lend support to these quantitative results. Ap-
plying their results to our model with labor adjustment frictions by setting δ = 0, we can show that
the shift of adjustment triggers in response to higher uncertainty is magnified through the level of
adjustment costs.
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larger θ , the less are prices set only for a period of high uncertainty, but also for

subsequent periods during which plants expect lower uncertainty. This weakens the

incentive for upward-price setting. In addition, if less plants adjust prices, less plants

can raise them. This explains the mitigated responses of job flows to uncertainty

shocks when prices rigidity increases.

In an economy with financial frictions, higher uncertainty increases the proba-

bility of default. Therefore, the bond price declines, which leads to more jobs de-

stroyed and less jobs created. Importantly, the costlier default is, the more the bond

price declines in response to a shock that raises uncertainty. As a result, the adverse

responses of job flows to an uncertainty shock are magnified by the costs of default.

Alternatively, we could consider an economy where borrowing is subject to collateral

constraints. Higher uncertainty makes default more likely, which induces lenders to

charge a higher risk premium and raise collateral requirements. Consequently, plants

scale down production.
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Figure 3.1. First-quarter response of job flows to an uncertainty shock for varying degrees of frictions
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Notes: The figures show the percentage change of aggregate jobs flows in the first quarter after an uncertainty shock hits when varying the degree of labor adjust-
ment frictions, capital adjustment frictions, price rigidity, and financial frictions. Labor/Capital costs (% Revenues) denote the average costs of adjusting plants re-
lative to revenues. Bankruptcy costs are proportional to optimal revenues in the steady state. The model with labor frictions is solved for ac l

f ∈ {0, 0.0005, ..., 0.05}

and ac l
p ∈ {0, 0.1, .., 1}, with capital frictions for ack

f ∈ {0,0.0005, ..., 0.05} and ack
p ∈ {0,0.1, .., 1}, with price rigidity for θ ∈ {0, 0.1, .., 1}, and with financial

frictions for η ∈ {1,0.5, ..., 5}.
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3.3 Empirical estimation strategy

This paper aims to provide empirical evidence on the transmission of uncertainty

shocks with a focus on labor markets. Our empirical approach builds on the struc-

tural relation between various frictions and the transmission of uncertainty shocks

established in the previous section. In particular, our estimation strategy is to exploit

variation in the job flow responses to uncertainty shocks of narrowly defined indus-

tries and link variation in the estimated responses to industry-level observables that

are informative about the severity of the frictions we consider.

To identify industry-level responses of job flows to uncertainty shocks, we consi-

der a structural vector autoregressive (VAR) model

Yt = A0 + Dt +
p
∑

j=1

A jYt− j + But (3.1)

where Yt denotes a vector of endogenous variables, A0 is a vector of constants, D is

a vector capturing time trends, A1, . . . , Ap are lag matrices of slope coefficients up to

maximum lag length p, ut are structural shocks with the identity matrix as covariance

matrix, and B is the matrix of structural coefficients such that But are reduced-form

residuals.

The model is six-variate including aggregate and industry-specific variables, spe-

cifically the log of the S&P 500 stock market index, uncertainty, the log of aggregate

manufacturing job creation and destruction and the log of industry-specific job cre-

ation and destruction. We include the aggregate variables to make sure we identify

responses in job flows that are industry-specific. To avoid identifying different shocks

from the same uncertainty series, we do not allow industry-specific job flows to feed

back into aggregate time series. To be precise, we restrict the slope coefficients that

capture such feedbacks to be zero. Denoting by Ak,l
j the slope coefficent that captures

the effect of variable k on variable l at lag j, then the restrictions we impose are

Ai jc,ag g
j = Ai jd,ag g

j = 0, ∀ j = 1, . . . , p, and ∀ag g = s, u, jc, jd,
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where i jc and i jd denote industry-specific job creation and destruction, respectively,

whereas aggregates s, u, jc, jd denote the stock market, uncertainty and aggregate

job creation and destruction, respectively. This approach mimics Davis and Haltiwan-

ger (2001), who identify the effect of oil price shocks on industry-level job flows.

To identify uncertainty shocks, we impose restrictions on B. We assume that stock

market level is not contemporaneously affected by an uncertainty shock, while shocks

that contemporaneously affect the stock market may also contemporaneously affect

uncertainty. All other variables in the VARmodel may be contemporaneously affected

by uncertainty shocks. Following convention of the VAR literature, we let the uncer-

tainty shock be the second structural shock. The impulse response to the uncertainty

shock are then identified by the second column of B, here denoted B2. The recursive

identification scheme exactly identifies B2.

Using this identification scheme, we directly estimate the impulse responses to

uncertainty shocks using local projections, see Jorda (2005). Compared to the alter-

native of estimating the VAR model and inverting it to obtain impulse responses, the

local projections is more robust to model misspecification and importantly more flex-

ible to handle nonlinearities or the extra zero restrictions we impose on the reduced-

form model. We can use local projection to estimate reduced-form impulse responses

and transform these into structural impulse responses. To obtain reduced-form im-

pulse responses we project the vector of endogenous variables at different forecast

horizons h= 0,1, . . . , H on its own lags

Yt+h = µh + δh t +
p
∑

j=1

Mh+1
j Yt− j + vt+h, (3.2)

where vt+h is the forecast error. For consistency with the VAR model, we re-

strict Mh+1,i jc,ag g
j = Mh+1,i jd,ag g

j = 0, ∀ j = 1, . . . , p, ∀ h= 0, 1, . . . , H, and ∀ ag g =

s, u, jc, jd. Matrices Mh
1 contain the reduced-form impulse responses, while the struc-

tural impulse response to the uncertainty shocks at horizon h are given by vector

Mh
1 B2. (3.3)
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After collecting the impulse responses of job creation and job destruction for all in-

dustries, we construct indices that capture the strength of the frictions we consider.

We then investigate whether cross-industry variation in these indices predicts the

estimated cross-industry variation in job flow responses to uncertainty shocks. We

propose to test for the importance of various transmission channels by whether the

responses of both job creation and job destruction significantly varies in the strength

of frictions with the sign as suggested by theory in the preceding section.

3.4 Data

This section describes the data used in the empirical application. In addition to ag-

gregate data used in the VAR model, we use industry-level data on job flows, and

data to capture cross-industry variation in the strength of labor adjustment frictions,

capital adjustment frictions, price rigidities, and financial frictions.

3.4.1 Uncertainty

Uncertainty is not directly observable. Instead we consider the series of conditional

foracast uncertainty over macroeconomic and financial variables as estimated in Ju-

rado et al. (2015) and Ludvigson et al. (2015). Importantly, these uncertainty mea-

sures condition on predicted variability. Macroeconomic uncertainty is based on real

economic activity, prices, bond and stock market indexes, among others. Financial

uncertainty is based on financial variables, such as credit spreads, valuation ratios,

risk factors. Our baseline analysis uses the quarterly averaged macroeconomic un-

certainty.¹⁰ Appendix 3.A.3 shows the robustness of our results when using financial

uncertainty.

3.4.2 Job flows

A secondary contribution of this paper is to construct a panel of quarterly industry-

level job flows from 1972 until 2013. We do so by combining data from two sources,

the Longitudinal Research Database (LRD) and the Quarterly Workforce Indicator

¹⁰We use the 3-month ahead conditional forecast uncertainty, but our findings are robust against
alternative forecast horizons.
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(QWI). LRD-based industry-level data on job flows are made publicly available by

Davis et al. (1998). The panel covers the years 1972-1998, and provides industry

disaggregation at the 4-digit SIC level, totaling 456 manufacturing industries.¹¹ We

complement this panel with the QWI, publicly available through the United States

Bureau of the Census (2015). The QWImeasures worker and job flows disaggregated

at the 4-digit NAICS level.¹² The underlying data is provided by states. State partici-

pation in the QWI has not been complete initially, and has increased over time. We

consider only those states who started providing information before 2000Q2. The

selected sample constitutes 90% manufacturing employment in United States. We

use X-13 ARIMA to remove the seasonal component from the series. To create a com-

mon industry classification, we use a correspondence table, provided by the National

Bureau of Economic Research, which maps NAICS into SIC codes. Notice that our

final panel has a gap from 1999 to 2001.

Figure 3.2 shows the aggregate time series of manufacturing employment based

on our new panel compared to the corresponding series published by the Bureau

of Labor Statistics (BLS). As expected, employment is about 90% lower in the QWI-

based series because of some missing states. Yet, the two series display strong como-

vement with the correlation being 98%. We refer the reader to Appendix 3.A.2 for

additional details about this data.

3.4.3 Indices of industry-level frictions

To provide empirical evidence on the transmissionmechanisms of uncertainty shocks,

we propose cross-sectional indices intended to capture the strength of factor adjust-

ment frictions, price rigidities, and financial frictions at the industry-level. These indi-

ces will be constructed such that higher index values imply higher degree of frictions

in a given industry.

¹¹ The LRD collects employment data from all US manufacturing plants with at least five employees
and accounts for more than 99% of total manufacturing employment.

¹² The QWI is based on the Longitudinal Employer-Household Dynamics (LEHD). The LEHD con-
sists of linked employer-employee data covering over 95% of US private sector jobs. It considers
employer’s state-specific UI account number as the business identifier.



68 | 3 Do Plants Freeze Upon Uncertainty Shocks?

Figure 3.2. Aggregate employment in US manufacturing
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Notes: Manufacturing employment based on the connected industry sample from LRD and QWI. Aggregate manufactu-
ring employment based on tabulations from the Bureau of Labor Statistics.

3.4.3.1 Labor adjustment frictions

Labor market regulation tends to be common to all industries within the same coun-

try. Yet, the cost of raising hours worked, hiring or firing workers may differ across

industries. Following Botero et al. (2004), we use the industry-level share of workers

in full-time positions as measure of the flexibility of employment contracts and the

cost of firing workers. Further, we include the share of workers affiliated to labor uni-

ons to capture union power at the industry.¹³ Finally, we consider the industry-level

kurtosis of the cross-sectional net employment growth distribution based on Compu-

stat data. As argued in Section 3.2.2, under the presence of non-convex employment

adjustment costs, labor adjustments are infrequent and lumpy, which implies excess

kurtosis.¹⁴

¹³ The share of full-time workers and union density are based on the March Supplements from the
Current Population Survey, see Table 3.2. In order to map the industry classification from CPS into
1987 SIC we use a concordance table provided by David Dorn at http://www.dorn.net/data.htm.

¹⁴We compute the kurtosis of net employment growth at the industry if we have at least ten observa-
tions at the industry. Given that we lack of sufficient information at the 4-digit SIC level, we compute
it at the 3-digit SIC level. Furthermore, for 10% of the industries, the information at the 3-digit SIC
level is not available, so we impute it by the mean value at the 2-digit SIC level.

http://www.dorn.net/data.htm
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3.4.3.2 Capital adjustment frictions

Capital adjustment costs can be estimated through indirect inference using the dis-

tribution of cross-sectional gross investment rates, see, for example, Cooper and

Haltiwanger (2006) and Bachmann and Bayer (2014). A striking feature of the

cross-sectional distribution is substantial positive skewness and excess kurtosis. Non-

convex capital adjustment costs can account well for these empirical observations,

because they lead to lumpy investment, generating excess kurtosis, while in between

adjustments the capital stock depreciates leading to positive skewness. Importantly,

the large skewness and excess kurtosis, the larger adjustment costs must be to ma-

tch these moments. Using Compustat data, we consider the within-industry skew-

ness and kurtosis of the gross investment rate distribution to capture the degree of

capital adjustment frictions.¹⁵ In addition, we consider the ratio of structures over

equipment at the industry. Since structures are more costly to adjust than equipment

capital, see, for example, Caballero and Engel (1999), a large structure share implies

larger capital adjustment costs for a given total stock of capital.

3.4.3.3 Price rigidity

We measure industry-level price rigidity using the estimates in Petrella and Santoro

(2012). The authors consider sector-specific New Keynesian Philips Curve (NKPC) to

back-out the degree of price rigidity. They evaluate alternative measures of marginal

costs and different specifications of the sectoral NKPC. We consider the average sec-

toral price adjustment probabilities based on the intermediate input share as a proxy

for marginal costs, which fits best their model predictions.

3.4.3.4 Financial frictions

Industries differ in their liquidity and borrowing needs, which affect their vulnera-

bility to financial frictions. Following Raddatz (2006), we construct measures of li-

quidity needs as the industry-level median ratio of inventories to sales, and labor

¹⁵We compute these moments if we have at least ten observations for a industry. Given that we lack
of sufficient information at the 4-digit SIC level, we compute the indicators at the 3-digit SIC level.
Furthermore, for 10% of the industries, the information at the 3-digit SIC level is not available, so we
impute it by the mean value at the 2-digit SIC level.
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costs to sales.¹⁶ These variables capture the share of inventory investments or labor

costs which can be commonly financed by revenues. The larger these ratio, the hig-

her the need for external finance. In principle, the constructed ratios may not be

entirely technological. For example, businesses may opt to accumulate liquid assets

to avoid financial dependence. To circumvent this problem, we follow the literature

and construct the measures using information from publicly traded U.S. companies.

The underlying assumption is that observed industry differences at these large publi-

cly traded companies are not driven by the supply of credit, which is assumed to be

perfectly elastic.

We complement this information with the employment share of young firms (be-

low 5 years old) per industry. There is ample evidence which associates larger bor-

rowing costs to young businesses, as they have higher degree of idiosyncratic risk,

lower amount of collateral, and shorter credit records.¹⁷

3.4.3.5 Industry-level indices

Table 3.2 summarizes the variables we use to capture cross-industry variation in

the severity of various frictions. We aggregate the information available by crea-

ting industry-level indices for the severity of each friction. Our baseline approach

is to average the variables after standardizing them. For example, the baseline la-

bor friction index for a given industry is the mean over the standardized values of

the share of full-time workers, the unionization rate, and the employment growth

kurtosis.¹⁸ Our final panel includes 443 manufacturing industries. Table 3.3 presents

the correlations between the indexes. On the one hand, industries with larger capi-

tal adjustment costs tend to have larger labor adjustment costs. On the other hand,

¹⁶We consider only those industries with at least 5 firms at the industry. Given that we lack of
sufficiently information at the 4-digit SIC level, we compute the indicators at the 3-digit SIC level.
Furthermore, for 10% of the industries, the information at the 3-digit SIC level is not available, so we
impute it by the mean value at the 2-digit SIC level.

¹⁷ The literature used size of the business as alternative indicator for access to credit and tightness
of the borrowing constraint. However, there is recent evidence which suggests that financial frictions
do not lead to different business dynamics across firm size, once controlling by the age of the firm.
See for example Hurst and Pugsley (2011), Dyrda (2015), and Fort et al. (2013).

¹⁸ As alternative to such index, we estimate the first principal component over the set of included
variables. Our main findings are robust to this specification, see Appendix 3.A.3.2.
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industries more vulnerable to financial conditions tend to exhibit lower factor adjus-

tment frictions.

Table 3.2. Variables used to measure the strength of frictions at the industry-level

Variable Source

Labor adjustment frictions

Share of (35 hours or more) full-time workers March CPS: 1970-2011

Unionization rate of workers March CPS: 1990-2011

(Within-industry) net employment growth kurtosis Compustat: 1968-2006

Capital adjustment frictions

(Within-industry) gross investment rate skewness Compustat: 1968-2006

(Within-industry) gross investment rate kurtosis Compustat: 1968-2006

Share of structure per equipment capital NBER-CES: 1958-2011

Price rigidities

Price adjustment probability (model-based estimates) Petrella and Santoro (2012)

Financial frictions

Share of inventory value over sales Compustat: 1968-2006

Share of labor cost over sales Compustat: 1968-2006

Employment share at young firms (below 5 years) QWI: 2000-2013

Table 3.3. Correlation between indexes

Labor index Capital index Price index Financial index
Labor index 1
Capital index .268∗∗∗ 1
Price index -.022 −.03 1
Financial index −.311∗∗∗ −.083∗ 0.087∗ 1

Notes: This table presents pairwise correlations between our indexes. See Table 3.2 for for a
detail description of the industry indexes. Significance: 1% (***), 5% (**), 10% (*).
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3.5 Empirical evidence on the transmission of

uncertainty shocks

3.5.1 Job flow responses to uncertainty shocks

We fit our VAR model in (3.1) using quarterly data from 1972Q2 to 2013Q4 and assuming

four lags. To account for the missing states in the QWI data used, we add a step dummy to

(3.1), which takes the value of one from 2000Q2 onwards, and zero otherwise. Further, we

allow for different time trends in the first part of the panel (1972-1998) and the second part

(2000-2013).

Figure 3.3 shows the effects of an uncertainty shock on aggregate job creation and job

destruction. Note that job creation significantly falls while job destruction significantly increa-

ses. This finding is of interest by itself. In particular, in a simple model where net employment

change is subject to non-convex costs, we should expect job destructions to fall in response to

higher uncertainty, because plants freeze, see Section 3.2.2. Therefore, the response of the

aggregate series suggests that such employment frictions are likely not key for the transmis-

sion of uncertainty shocks, which further motivates the subsequent industry-level analysis.

Figure 3.3. Response of aggregate job flows to uncertainty shock
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Notes: The blue lines show the responses of aggregate manufacturing job flows to a positive, three-standard deviation
uncertainty shock. The shaded area is the 90% confidence interval using block bootstraps as in Kilian and Kim (2009).

To compress the information contained in the industry-level impulse response functions,

we focus on the average response within the first year after the uncertainty shock hits. We

restrict attention to the short-term responses because in models with factor adjustment fricti-

ons the real options effect, i.e. plant freezing, has a predominantly short-term effect on the
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response of job flows to uncertainty shocks. Figure 3.4 shows the cross-sectoral variation in

job flow responses to uncertainty shock. Reconfirming the result in Figure 3.3, we find for

80% of the industries a joint decline in job creation and an increase in job destruction.

Figure 3.4. Cross-industry variation in job flow responses to uncertainty shock
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Notes: Response of job flows averaged over the first year horizon to a three-standard deviation uncertainty shock. Mar-
ker size is proportional to employment of an industry.

3.5.2 Transmission channels

Given the estimated aggregate and industry-level responses, the central question we ask is

through which channel uncertainty shocks affect labor markets. To tackle this question, we

relate the first-year average industry-level impulse responses to the labor frictions index, capi-

tal frictions index, price rigidity index, financial friction index as constructed in Section 3.4.3.

In Table 3.4, we rank industries according to the indices and provide mean and standard

error of the job flow response of those industries in the first (bottom) quintile and those in-

dustries in the fifth (top) quintile. Only for financial frictions, the responses across quintile

groups are both significantly different and the differences correspond to theoretical predicti-

ons: The stronger financial frictions, the larger the drop in job creation and the larger the

rise in job destruction. For labor frictions, the quintile-group difference for job destruction is

significant but of the wrong sign: Empirically, industries in which our index suggest stronger

labor adjustment frictions destroy more jobs. If labor adjustment frictions are the key frictions

for the transmission of uncertainty shocks on labor markets, we would expect the opposite
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sign. We find a significant negative effect of capital frictions for the job destruction response.

Yet, our theoretical prediction were ambiguous. To summarize, while we do find evidence in

support of financial frictions being key for the transmission of uncertainty shocks, we do not

find such supportive evidence for any of the other three frictions.

Table 3.4. Job flow responses and quintiles of friction indices

Job creation Job destruction

Bottom Top Bottom Top
Quintile Quintile Quintile Quintile

Labor frictions index -0.64 -0.75 0.49 0.85
(0.04) (0.04) (0.05) (0.04)

Capital frictions index -0.55 -0.60 0.68 0.54
(0.04) (0.05) (0.04) (0.05)

Price rigidity index -0.70 -0.70 0.66 0.62
(0.05) (0.04) (0.05) (0.04)

Financial frictions index -0.45 -0.61 0.26 0.64
(0.06) (0.04) (0.06) (0.04)

Notes: Bottom (Top) quintile: First-year average job flow response of industries in
the first (fifth) quintile of the cross-industry distribution of a given index. Standard
errors are in parenthesis.

Complementing the quintile-based friction-by-friction analysis in Table 3.4, we estimate

a regression of the job flow response on cubic polynomials of all four friction indices jointly.¹⁹

Figure 3.5 shows the fitted relationships between the job flow responses and each individual

friction index, while evaluating the remaining indices at their median. The results broadly

reconfirm and strengthen the findings in Table 3.4. We do not find supporting evidence of

capital frictions and price rigidities as channels through which uncertainty affects job flows.

While the share of jobs destroyed declines with the size of capital frictions at the industry,

there is no significant relation between the decline in job creation and the size of capital

adjustment frictions. Similarly, the relation between price rigidity and industry-level job flow

responses is almost flat. On the contrary, financial frictions seems to play an important role for

explaining the effects of uncertainty shocks. The more severe financial frictions in an industry,

the stronger the response of job flows from an uncertainty shock. The role of financial frictions

is quantitatively important: In response to a three-standard deviation uncertainty shock, job

creation barely falls for industries with weak frictions, while it falls by up to 0.7% for strong

¹⁹ Davis and Haltiwanger (2001) inspired us to conduct this exercise.
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frictions. Similarly, Job destruction does not increase for weak-friction industries, while it

increases by up to 0.7% for strong-friction industries.

3.5.3 Robustness of empirical findings

Our main empirical findings, in particular the empirical support of financial frictions as trans-

mission mechanism for uncertainty shocks, is robust along various dimensions. In Appen-

dix 3.A.3, we show that the results are robust against substituting macroeconomic uncer-

tainty based on Jurado et al. (2015) by a financial uncertainty series based on Ludvigson et

al. (2015). Moreover, instead of constructing indices to capture the strength of various fricti-

ons across industries, we extract the first component form the set of variables considered

for the various frictions. In the appendix, we show that this leaves our conclusions broadly

unaffected. To address concerns about the construction of our job flow panel, we separately

consider the LRD-based panel from 1972 to 1998 and the QWI-based panel from 2000 to

2013. The former panel reconfirms our baseline findings. This also addresses concerns whet-

her our results are driven by the extraordinary uncertainty spike during the Great Recession.

For the second sample, we receive the same qualitative results, with the only exception that

the job creation response varies insignificantly across quintiles of different degrees of finan-

cial frictions. Obviously, using a 14-year panel to study business cycles is challenging in terms

of statistical power.

In addition, we assess whether our findings are robust in a richer VAR system which

explicitly controls for monetary and fiscal shocks. We augment our baseline specification

with monetary and fiscal shocks identified through narrative approaches. For the former, we

include the shocks series by Coibion et al. (2012), for the latter the series inMertens and Ravn

(2014). Data availability limits this analysis until 2006Q4. We place the tax and monetary

shocks first in the recursive ordering. We find that in more than 60% of the industries, an

uncertainty shock leads to a joint increase in job destruction and a decrease in job creation.

Figure 3.6 shows that the relation between job flow responses and financial vulnerability

remains significant and of similar quantitative magnitude when compared to our baseline

results.
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Figure 3.5. Nonlinear relation between job flow responses and friction indices
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Notes: The figures are based on regressions of industry-level job flow responses on cubic polynomials of all friction indi-
ces. Blue lines show the estimated relation between job flow responses and one friction index when keeping the other
friction indices at their medians, respectively. Shaded areas denote 90% confidence interval. We weight industry-level
responses by the estimated absolute effect relative to its standard error.



3.5 Empirical evidence on the transmission of uncertainty shocks | 77

Figure 3.6. Nonlinear relation between job flow responses and friction indices
when explicitly controlling for monetary and fiscal shocks
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Notes: The figures are based on regressions of industry-level job flow responses on cubic polynomials of all friction indi-
ces. Blue lines show the estimated relation between job flow responses and one friction index when keeping the other
friction indices at their medians, respectively. Shaded areas denote 90% confidence interval. We weight industry-level
responses by the estimated absolute effect relative to its standard error.
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3.6 Conclusion

This paper revises a number of transmission channels for uncertainty shocks studied in the

literature, in particular labor adjustment frictions, capital adjustment frictions, price rigidi-

ties, and financial frictions. Focusing on labor markets, we provide empirical evidence on the

aggregate and industry-level response of job flows to uncertainty shocks. The key contribu-

tion of this paper is to exploit the cross-industry variation in job flow responses to provide

evidence for the transmission mechansims of uncertainty shocks.

We create industry-level data on job flows for 1972-2013 in the US and find that a po-

sitive uncertainty shock jointly raises job destruction and lowers job creation in 80% of the

industries. The (absolute) magnitude of these responses strongly and significantly responds

to how vulnerable industries are to financial conditions, which supports financial frictions as

transmission channel of uncertainty shocks. On the contrary, we do not find evidence in sup-

port of factor adjustment frictions or price rigidities as transmission channels of uncertainty

shocks.
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Appendix 3.A Appendix

3.A.1 Computation

We solve the models by discretizing the state space. For the exogenous demand process z,

we apply a Tauchen discretization with 19 grid points while taking into account time-varying

volatility, see Bloom et al. (2014). For the model with labor adjustment frictions, we use

1,000 log-linear grids points for labor. For the model with capital adjustment frictions, we

use 1,000 grid points for capital. In the model with price rigidities, we further discretize the

exogenous aggregate price process P with 19 grid points, applying again a Tauchen algorithm,

and consider 1,000 grid points for the price of the plant. Finally, for the financial frictions

model, which is relatively more complex than the other dynamic problems, we discretize the

demand process with 16 grid points, and consider 40 log-spaced grid points for labor, and

48 equi-distant grid points for debt. We solve the models using value function iteration.

To numerically solve the model with financial frictions in Section 3.2.5 we consider the

following steps: First, guess the price for the bond the value of the plant. Second, given

the bond price, calculate the value function using value function iteration. Third, using the

updated value function, construct the default function and update the bond price. Fourth,

based on the updated bond price, return to point 1 until the price of the bond convergences.

3.A.2 Data description

We use a concordance table provided by the National Bureau of Economic Research (NBER)

to connect the LRD-based information at the 4-digit 1987 SIC level with the data series from

QWI, disaggregated at the 4-digit 2007 NAICS level, see http://www.nber.org/nberprod/.

We create consistent a consistent industry classification using this concordance table toget-

her with weights that reflect the share of employment at the SIC level which corresponds to

an industry in NAICS. Before proceeding with this concordance, we need to conduct some

adjustments. First, the available concordance between SIC and NAICS is based on the 1997

NAICS. Therefore, we translate 6-digit 2007 NAICS into 6-digit 1997 NAICS using the ta-

ble given by US Census Bureau at http://www.census.gov/eos/www/naics/concordances/

concordances.html. Second, we adjust the concordance table from the 6-digit NAICS level to

the 4-digit NAICS level, and re-compute the weights from SIC into NAICS based on the share

of employment of the 6-digit NAICS industry at the 4-digit NAICS level. At the end, we are

http://www.nber.org/nberprod/
http://www.census.gov/eos/www/naics/concordances/concordances.html
http://www.census.gov/eos/www/naics/concordances/concordances.html


80 | 3 Do Plants Freeze Upon Uncertainty Shocks?

able to map all industry-level job flows from NAICS with the LRD-based data from Davis et al.

(1998).

3.A.3 Robustness

3.A.3.1 Job flow responses from a financial uncertainty shock

Figures 3.7 and Table 3.5 show the effect of uncertainty shocks on job flows when using

financial uncertainty as a proxy for uncertainty. Ludvigson et al. (2015) distinguish between

macroeconomic and financial uncertainty where the latter seems to have larger negative

impact on real economic activity. Yet, the quantitative effect on job flows and its relation

with the industry indexes are remarkably similar to our baseline results, when using as a

proxy macroeconomic uncertainty.

Figure 3.7. Response of aggregate job flows to financial (instead of macroeconomic)
uncertainty shock
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Notes: The blue lines show the responses of aggregate manufacturing job flows to a positive, three-standard deviation
uncertainty shock. The shaded area is the 90% confidence interval using block bootstraps as in Kilian and Kim (2009).

3.A.3.2 Results based on the first principal component

As alternative to the baseline indices, mean of standardized variables, to capture the strength

of various frictions, we consider the first principal component of of the variables used to

capture frictions. Our results are remarkably robust against these alternative indices.
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Table 3.5. Job flow responses and quintiles of friction indices
when using financial (instead of macroeconomic) uncertainty

Job creation Job destruction

Bottom Top Bottom Top
Quintile Quintile Quintile Quintile

Labor frictions index -0.63 -0.65 0.50 0.73
(0.04) (0.05) (0.05) (0.04)

Capital frictions index -0.59 -0.58 0.64 0.52
(0.04) (0.05) (0.04) (0.05)

Price rigidity index -0.61 -0.63 0.60 0.57
(0.05) (0.04) (0.06) (0.04)

Financial frictions index -0.52 -0.64 0.22 0.57
(0.05) (0.04) (0.06) (0.04)

Notes: Bottom (Top) quintile: First-year average job flow response of industries in
the first (fifth) quintile of the cross-industry distribution of a given index. Standard
errors are in parenthesis.

Table 3.6. Job flow responses and quintiles of friction indices
when using first principal components to construct friction indices

Job creation Job destruction

Bottom Top Bottom Top
Quintile Quintile Quintile Quintile

Labor frictions index -0.70 -0.77 0.52 0.86
(0.04) (0.04) (0.05) (0.04)

Capital frictions index -0.52 -0.60 0.65 0.58
(0.04) (0.05) (0.04) (0.05)

Price rigidity index -0.71 -0.72 0.66 0.62
(0.05) (0.04) (0.05) (0.04)

Financial frictions index -0.48 -0.62 0.25 0.66
(0.06) (0.04) (0.06) (0.04)

Notes: Bottom (Top) quintile: First-year average job flow response of industries in
the first (fifth) quintile of the cross-industry distribution of a given index. Standard
errors are in parenthesis.

3.A.3.3 Effects from uncertainty shocks in the first and second sample of analysis

We explore whether our findings hold if we focus on the first sample of analysis (1972-1998),

see Figures 3.8 and Table 3.7, and second sample of analysis (2000-2013), see Figures 3.9

and 3.7. While the samples differ in regards to the quantitative effect of uncertainty shocks,
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as higher the vulnerability to financial frictions, stronger is the effect of uncertainty shocks

on job flows at both series.

Figure 3.8. Response of aggregate job flows to uncertainty shock
when using the sample 1972-1998
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Notes: The blue lines show the responses of aggregate manufacturing job flows to a positive, three-standard deviation
uncertainty shock. The shaded area is the 90% confidence interval using block bootstraps as in Kilian and Kim (2009).

Table 3.7. Job flow responses and quintiles of friction indices
when using the sample 1972-1998

Job creation Job destruction

Bottom Top Bottom Top
Quintile Quintile Quintile Quintile

Labor frictions index -0.58 -0.70 0.33 0.86
(0.06) (0.07) (0.07) (0.06)

Capital frictions index -0.55 -0.67 0.68 0.51
(0.07) (0.07) (0.06) (0.07)

Price rigidity index -0.71 -0.70 0.57 0.51
(0.08) (0.06) (0.07) (0.06)

Financial frictions index -0.31 -0.56 0.12 0.57
(0.09) (0.07) (0.08) (0.06)

Notes: Bottom (Top) quintile: First-year average job flow response of industries in
the first (fifth) quintile of the cross-industry distribution of a given index. Standard
errors are in parenthesis.
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Figure 3.9. Response of aggregate job flows to uncertainty shock
when using the sample 2000-2013
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Notes: The blue lines show the responses of aggregate manufacturing job flows to a positive, three-standard deviation
uncertainty shock. The shaded area is the 90% confidence interval using block bootstraps as in Kilian and Kim (2009).

Table 3.8. Job flow responses and quintiles of friction indices
when using the sample 2000-2013

Job creation Job destruction

Bottom Top Bottom Top
Quintile Quintile Quintile Quintile

Labor frictions index -0.31 -0.42 0.40 0.50
(0.02) (0.03) (0.02) (0.02)

Capital frictions index -0.42 -0.33 0.47 0.37
(0.03) (0.03) (0.02) (0.02)

Price rigidity index -0.36 -0.29 0.42 0.40
(0.03) (0.02) (0.02) (0.02)

Financial frictions index -0.28 -0.31 0.20 0.41
(0.03) (0.03) (0.04) (0.02)

Notes: Bottom (Top) quintile: First-year average job flow response of industries in
the first (fifth) quintile of the cross-industry distribution of a given index. Standard
errors are in parenthesis.
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3.A.3.4 Alternative time horizons for average job flow responses

Figure 3.10. Nonlinear relation between job flow responses and friction indices
when using different horizons of job flow responses
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Notes: The figures are based on regressions of industry-level job flow responses on cubic polynomials of all friction indi-
ces. Dashed/solid/dash-dotted lines show the estimated relation between first-two-quarters/first-year/first-six-quarters
average job flow responses and one friction index when keeping the other friction indices at their medians, respectively.
Shaded areas denote 90% confidence interval. We weight industry-level responses by the estimated absolute effect rela-
tive to its standard error.
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Productivity Dispersions: Could it Simply
be Technology Choice?

Joint with Christian Bayer and Ariel Mecikovsky

4.1 Introduction

The allocation of factors to their most productive use is often seen as one of the key deter-

minants of economic prosperity (Foster et al., 2008). While first-best efficiency requires that

factors produce the same marginal revenue across all production units, many studies show

this condition to be violated in micro-data: factor productivities differ substantially within

industries.¹

We ask whether these micro-level differences can be understood as a result of frictions

in technology choice. We suggest a setup, where firms may in principle choose from a broad

set of technologies, but it is costly to search for them, to install them, and to acquire the

know-how necessary to use them. This leads firms to operate one single technology which

they adjust only occasionally. In between adjustments, the capital-labor ratio, the capital

intensity, remains fixed: firms operate a Leontief production technology. As the economic

environment changes and firms asynchronously adapt their technology in response, cross-

sectional differences in factor productivities and capital intensity emerge.

This cross-sectional dispersion, however, is not the only empirical implication of frictional

technology choice. Across all firms, differences in factor productivities and capital intensity

¹ See Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Peters (2013), Asker et al. (2014),
Gopinath et al. (2015), and Restuccia and Santaeulalia-Llopis (2015) to name a few.
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should be predominantly long-lived. Moreover, there must be a trade-off involved. Firms with

persistently high productivity in one factor should have a persistently low productivity in

another factor. Further, as long as the capital intensity is fixed, i.e. in the short run, labor and

capital productivity can only move in the same direction. Finally, the extent of competition

limits the scope of technologies used in the economy. The more competitive the environment,

the larger is the pressure to abandon cost-inefficient technologies.

To explore whether these implications are borne out empirically, we compute micro-level

labor and capital productivity controlling for industry and time effects, and decompose them

into their persistent and transitory components. To have a broad empirical base, we exploit

micro data from Germany (firm-level), Chile, Colombia, and Indonesia (plant-level). We find

that between 61% and 94% of the cross-sectional variance in labor and capital productivity

is explained by their persistent components. The result is even stronger for capital intensity

where the persistent component explains more than 77% for all countries. Furthermore, the

persistent components of labor and capital productivity are negatively correlated, while their

transitory components are positively correlated. In addition, persistent differences in capital

intensity are less dispersed in more competitive environments, i.e. where markups are persis-

tently lower. Firms/plants in the most competitive quintile exhibit a 30-50% lower variance

of capital intensity than those in the least competitive quintile. In summary, the data qualita-

tively supports the idea of a friction in technology choice driving productivity dispersions.

We use this framework to quantify the effects of a frictional technology choice in ag-

gregate productivity. Despite the large cross-sectional productivity dispersion, our estimated

efficiency losses from misallocation are on average 5%, which is small relative to the estima-

tes from the literature. Important for this is our focus on productive efficiency, i.e. deviations

from optimal capital intensity. In contrast, studies like Hsieh and Klenow (2009) have taken

a broader focus including allocative efficiency, i.e. deviations from optimal scale. We disre-

gard those deviations, showing up as dispersions in markups, for our efficiency calculations

for two reasons. First, these dispersions might reflect efficient differentiation within industry.

For example, they might stem from alternative strategies on product quality or range (e.g.

Bar-Isaac et al., 2012), think of generics vs. patented pharmaceuticals. Second, there is al-

ready a broad set of theories predicting markup dispersions to which we have little to add.

Think of models with price setting frictions á la Calvo (1983), with building a customer base

(Gourio and Rudanko, 2014), or with entry dynamics and innovation as in Peters (2013). All

of these provide explanations of productivity dispersions through heterogeneous markups as

endogenous objects. At the same time, our data suggests that markup dispersions themselves

explain only a minority of all productivity dispersion.
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Our results are linked to the traditional putty-clay assumption (Johansen, 1959), which

has been advocated to address a broad array of other empirical phenomena (Gilchrist and

Williams, 2000, 2005; Gourio, 2011). Particularly closely related is Kaboski’s (2005) model

of putty-clay technology choice under factor price uncertainty. An important insight from

this paper that carries over to our setup is that firms underreact to current prices in setting

their technology, such that the regression techniques usually used to identify the long-run

elasticity of substitution (see e.g. Raval (2014) or Oberfield and Raval (2014) for recent

contributions or Chirinko (2008) for an overview) are subject to a downwards bias. In fact, we

provide evidence that this downwards bias is likely substantial. This high elasticity not only

has important implications for income-shares (see e.g. Solow, 1956; Piketty, 2011; Piketty,

2014; Karabarbounis and Neiman, 2013) but is also key to compute the efficiency losses from

a friction in technology choice.

The remainder of this paper is organized as follows: Section 4.2 describes our technology

choice model. This guides our empirical analysis in Section 4.3. In Section 4.4 we discuss the

potential gains from eliminating this friction. Section 4.5 concludes and an Appendix follows.

4.2 Technology choice model

This section suggests a simple model of technology choice. We then study the implications of

technology choice for productivity dispersions and for aggregate productive efficiency.

4.2.1 Model setup

We consider a two-period model. We assume a mass of firms of measure one. Each firm, i,

is endowed with one plant that has an exogenously given capital intensity ki =
Ki
Ni
, where Ki

is the physical amount of capital and Ni is labor. Furthermore, wages, W , and user costs of

capital, R, are exogenously given but stochastic.

Each firm has a constant returns to scale production technology and faces monopolistic

competition for its product, where the elasticity, ξi , of demand for the product, yi , of firm i

is firm-specific and constant, such that prices are given by

pi =
1

1 − ξi
zξi

i y−ξi
i ,

where zi is the stochastic market size for firm i’s product. Unit costs of production depend

on the plant’s capital intensity and factor prices, ci = c(ki , W, R). The firm maximizes profits,



88 | 4 Productivity Dispersions: Could it Simply be Technology Choice?

and we assume that the firm needs to decide about output before knowing actual factor

prices and demand. The optimal policy will choose output in order to stabilize the expected

markup at its optimal level. The expected gross markup is constant, 1
1−ξi

> 1. Denoting the

expectations operator as E, it is straightforward to show that the profit maximizing output,

y∗i , and expected profits under the optimal policy, π∗, are given by

y∗i =





Ezξi
i

Ec(ki , R, W )





1/ξi

; π∗i =
ξi

1 − ξi
y∗i Ec(ki , R, W ). (4.1)

4.2.2 Revenue productivities

Profit maximization implies that firms facing higher demand elasticities, ξi , have larger mar-

kups on average. In addition, deviations from expected costs, Eci / ci , and deviations from

expected demand, zξi
i /Ezξi

i , lead to fluctuations in realized markups, given by:

pi y∗i
W Ni + RkiNi

=
1

1 − ξi

zξi
i

Ezξi
i

Eci

ci
. (4.2)

Splitting up realized markups in two components, the same terms affect revenue factor pro-

ductivities, the capital and labor expenses per value added:

pi y∗i
W Ni

=
1

1 − ξi

zξi
i

Ezξi
i

E(W + Rki)
W

(4.3)

pi y∗i
RkiNi

=
1

1 − ξi

zξi
i

Ezξi
i

E(W + Rki)
Rki

(4.4)

(4.3) and (4.4) show that firms with higher (target) markups, 1
1−ξi

exhibit both higher la-

bor and capital productivities. Similarly, positive and unforeseen demand shocks, zξi
i /Ezξi

i ,

increase both factor productivities. Notice that in a more general multi-period setup, these

deviations from expectations can only be transitory. Importantly, firms with higher capital

intensity have a lower capital revenue productivity and higher labor revenue productivity,

even when these capital intensity differences are expected.
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To summarize, productivities differ across firms either because of differences in size re-

lative to demand (the first two terms) or due to differences in capital intensity and factor

prices (the last term) in (4.3) and (4.4).²

4.2.3 Choice of technology

We assume that in the period preceding production, the firm can opt to replace its existing

plant, setting up a new one with different capital intensity k. In doing so, the firm compares

expected profits with and without technology adjustment to decide the period preceding

production whether to produce with its initially given capital intensity or to invest in changing

the technology. We assume adjustment is costly as it disrupts production. This disruption

summarizes all costs of searching for a technology, installing it and learning to operate it.

Upon adjustment the firm forgoes a fraction φi of next period’s profits, where φi stochastic

and drawn from a distribution Φ. The firm drawsφi before it decides about adjustment. If the

firm adjusts, it chooses k̂, the capital intensity that minimizes expected unit costs. Adjustment

is optimal whenever (1−φi)Eπ(k̂)> Eπ(ki). Using (4.1), this simplifies to

(1 − φi) >

�

Ec(ki , R, W )

Ec(k̂, R, W )

�

ξi−1
ξi

. (4.5)

Since Ec(ki , R, W )≥ Ec(k̂, R, W ), firms with higher elasticity of demand, ξi , are less li-

kely to adjust for a given ex ante capital intensity ki . The reason is that firms with highmarket

power can offload their higher unit costs to consumers and hence have less incentive to in-

vest in efficient capital intensities. This is reminiscent of Leibenstein’s (1966) X-inefficiency

of monopolies or Bester and Petrakis’s (1993) results for oligopolies.³

As a result, ex-post capital-intensity will be less dispersed within the group of firms with

low markups than among high-markup firms if the ex-ante distribution of capital intensities

is centered around the cost minimizing level k̂.

² As evident from equation 4.2, in this environment, adding an additional shock to unit costs (a
TFP shock) has the same implications as a demand shock.

³ There is, however, one interesting side result of our setup. One can easily show that under the
specific assumption of an isoelastic demand curve and monopolistic competition, producer profits and
consumer rents are equal and therefore, total social surplus of adjustment as well as the social costs
of adjustment need to be scaled by factor two such that the individual optimal adjustment choice is
socially optimal.
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4.2.4 Productive efficiency

The friction in technology choice is costly. We study the aggregate costs of this friction focu-

sing on the losses in productive efficiency, i.e. deviations from optimal capital intensity. We

compute these losses by characterizing the difference of unit costs under the friction compa-

red against a frictionless benchmark.

To specify more concretely the relation between capital intensity and unit costs, we as-

sume that the long-run technology is given by a constant elasticity of substitution (CES)

production function with σ the substitution elasticity between labor and capital. The output

of a plant with capital intensity ki is given by

yi =
h

αk
σ−1
σ

i + (1 − α)A
σ−1
σ

i

σ
σ−1

Ni , (4.6)

where A captures (Harrod neutral) labor-augmenting technological change, and α is the dis-

tribution parameter. This implies that realized unit costs, ci =
Rki Ni+W Ni

yi
are minimal at capital

intensity k∗, given by

k∗ =
�

α

1 − α
W
R

�σ

A1−σ. (4.7)

Now, to obtain an expression that allows us to relate the cross-sectional average unit costs

to the first two moments of the capital intensity distribution, we use a log second-order

approximation around that minimum:

Ex
�

log
c(ki , R, W )
c(k∗, R, W )

�

≈
1

2σ
s∗(1 − s∗)

�

�

Ex
�

log
ki

k∗

��2

+ Vx(log ki)

�

, (4.8)

where s∗ is the capital expenditure share in the cost-minimizing optimum

s∗ = Rk∗ /(W + Rk∗),

and Ex denotes the cross-sectional average and Vx the cross-sectional variance.⁴ In words,

the efficiency loss is composed of the average relative difference of capital intensity from its

optimum, Ex log(ki / k∗), and the cross-sectional dispersion of capital intensity across plants,

Vx(log ki). Importantly, the higher the elasticity of substitution between labor and capital,

σ, the lower the efficiency loss from not re-setting capital intensities to their optimum.

⁴ See Appendix 4.A.2 for details.
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4.3 Empirical analysis

4.3.1 Data description

We document factor revenue productivity and capital intensity dispersion in firm-level data

from Germany, and plant-level data from Chile, Colombia and Indonesia. For Germany, we

use the balance sheet data base of the Bundesbank, USTAN, which is a private sector, annual

firm-level data available for 26 years (1973-1998).⁵ For Chile, Colombia and Indonesia, we

have plant level data from the ENIA survey for 1995-2007, the EAM census for 1977-1991

and the IBS dataset for 1988-2010, respectively. These datasets are focused on the manu-

facturing sector, with the exception of Germany, which provides information for the entire

private non-financial business sector.⁶

When preparing the data for our analysis, we make sure to treat the various data sets in

the most comparable way. From each survey, we use a firm’s/plant’s four-digit industry code,

wage bill, value-added and book or current value of capital stock. To obtain economically

consistent capital series for each firm/plant, we re-calculate capital stocks using the perpetual

inventory method whenever the data reports capital stocks in book values. In particular, we

exploit information of capital disaggregated into structures and equipment, which allows us

to control for heterogeneity in capital composition across firms/plants.

Our capital productivity measure requires information on depreciation and the real in-

terest rate. We do not rely on depreciation as reported by firms/plants, as it is potentially

biased for tax purposes. Instead we use economic depreciation rates by type of capital good

obtained from National Statistics. We then take the different capital good mixes across firms/

plants into account.⁷ We set the real rate to 5% for all economies. This implies user costs of

capital Ri t = 5%+δi t . In generating cross-sectional statistics, time variations in user costs

are controlled for by taking out four-digit industry-year fixed effects. The data treatment and

sample selection is described in detail in Appendix 4.A.1.2.

⁵ See Bachmann and Bayer (2014) for a detailed description.
⁶ In particular, private non-financial business sector includes Agriculture, Energy and Mining, Ma-

nufacturing, Construction, and Trade.
⁷ The economic depreciation rates of equipment and structures for Germany is obtained from Volks-

wirtschaftliche Gesamtrechnung (VGR) while for Chile we obtain time series from Henriquez (2008).
As for Colombia and Indonesia, we consider the average depreciation in Chile for the available period
given the absence of national data sources. The depreciation rate values are 15.1% (equipment) and
3.3% (structures) in Germany, and on average 10.5% (equipment) and 4.4% (structures) for the other
three countries.
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4.3.2 Productivities and their transitory and persistent component

We compute average factor productivities for capital and labor per firm and year using the

reported value added per firm/plant at current prices, pi t yi t , labor expenses, Wt Ni t as repor-

ted in the profit and loss statements, and imputed capital expenses, Ri t Ki t . Taking logs, we

define revenue productivities of labor and capital:

αN
it := log(pi t yi t) − log(Wt Ni t); αK

it := log(pi t yi t) − log(Ri t Ki t). (4.9)

Using expenditures and value added implicitly controls for quality differences in both inputs

and outputs (c.f. Hsieh and Klenow, 2009). In addition, we construct markups as value added

relative to total expenditures on labor and capital

mci t := log(pi t yi t) − log(Ri t Ki t + Wt Ni t). (4.10)

Finally, we calculate the factor price-weighted capital intensity,

κi t := log(Ri t Ki t) − log(Wt Ni t). (4.11)

For any of these variables, say x i t , we calculate 5-year moving averages, denoted x̄ i t :=
1
5

∑2
s=−2 x i t+s, to identify the persistent component. Deviations thereof, x̂ i t := x i t − x̄ i t , iden-

tify the transitory component.

We then take out four-digit industry-year fixed effects and calculate dispersions and cor-

relations between the factor productivities for the transitory and persistent component.

4.3.3 Empirical findings

Table 4.1 reports standard deviations and correlation for labor and capital productivity and

for all four countries. Three observations stand out: First, capital and labor productivity are

positively correlated in the transitory component (ρ ≈ 40%) while they are negatively corre-

lated in the persistent component (ρ ≈ −20%). Using the expressions for factor productivities

in Section 4.2, see (4.3) and (4.4), deviations from optimal size are more important in the

short run, while deviations from optimal capital intensity are more important in explaining

long-run productivity differences. Second, the persistent components in productivity explain

the vast majority of cross-sectional productivity differences (between 60% and 92% for la-

bor and between 79% and 94% for capital). Third, the developing economies show larger

productivity dispersions.



4.3 Empirical analysis | 93

Figure 4.1. Correlations of factor productivities by four-digit industry
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Notes: Transitory (Persistent) Correlation: Correlation between the transitory (persistent) com-
ponent of labor and capital productivity at the firm/plant level, controlling for time-fixed ef-
fects. Each circle represents a four digit industry, where the size of a circle reflects aggregate
employment in that industry. For this figure, we restrict industries to include at least 20 firms/
plants. The number of industries inside the upper-left quadrant is 99 (out of 125) in Germany,
45 (out of 61) in Chile, 62 (out of 73) in Colombia, and 85 (out of 90) in Indonesia.
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Table 4.1. Transitory and persistent components of factor productivities

std(α̂L
i t) std(α̂K

it) ρ(α̂L
i t , α̂

K
it) std(ᾱL

i t) std(ᾱK
it) ρ(ᾱL

i t , ᾱ
K
it)

Transitory Component Persistent Component

DE 0.066 0.119 0.352 0.229 0.456 -0.207
(0.000) (0.001) (0.002) (0.002) (0.004) (0.004)

CL 0.184 0.281 0.449 0.232 0.577 -0.190
(0.006) (0.008) (0.017) (0.009) (0.028) (0.021)

CO 0.144 0.172 0.517 0.257 0.568 -0.234
(0.003) (0.004) (0.012) (0.008) (0.023) (0.018)

ID 0.211 0.369 0.343 0.255 0.669 -0.269
(0.003) (0.005) (0.007) (0.004) (0.013) (0.009)

Notes: Cross-sectional standard-deviations (std) and correlation (ρ) of transitory and persis-
tent components of labor- and capital productivity, αL

i t and α
K
it as in (4.9). DE: Germany, CL:

Chile, CO: Colombia, ID: Indonesia. Transitory and persistent components are obtained by ap-
plying a five year moving average filter. Factor productivities are demeaned by 4-digit industry
and year, and expressed in logs. In parentheses: Clustered standard errors at the firm/plant
level.

As the positive/negative correlation pattern between labor and capital productivity is a

particularly important prediction of technology choice, we investigate whether this pattern

holds for individual four-digit industries. Figure 4.1 shows that this is the case for the vast

majority of industries.

In light of our results in Section 4.2, it is useful to look at markup and capital intensity

differences, see Table 4.2. In particular, (4.8) allows us to relate capital intensity differen-

ces across firms/plants directly to increases in unit costs, and thus to losses in productive

efficiency. For all countries, differences in capital intensity are very persistent. The transitory

component makes up only between 4% (Germany) and 17% (Indonesia) of the total variance.

At the same time, persistent differences in capital intensity are substantially more dispersed

in Chile, Colombia, and Indonesia than they are in Germany with variances being twice as

high in Indonesia than in Germany.

On the contrary, the dispersion of persistent cross-sectional markup differences is stri-

kingly similar across countries, and transitory differences in markups are an important com-
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Table 4.2. Transitory and persistent components of markup and capital intensity

std(m̂c i t) std(κ̂i t) ρ(m̂c i t , κ̂i t) std(m̄c i t) std(κ̄i t) ρ(m̄cL
i t , κ̄i t)

Transitory Component Persistent Component

DE 0.064 0.114 -0.155 0.172 0.551 0.062
(0.000) (0.001) (0.002) (0.001) (0.004) (0.004)

CL 0.177 0.258 -0.090 0.184 0.661 -0.085
(0.005) (0.009) (0.017) (0.005) (0.029) (0.022)

CO 0.134 0.157 -0.016 0.206 0.676 -0.232
(0.003) (0.004) (0.012) (0.005) (0.025) (0.018)

ID 0.203 0.357 -0.120 0.195 0.778 -0.021
(0.002) (0.005) (0.007) (0.003) (0.014) (0.010)

Notes: Capital intensities, κi t , and markups, mci t , as defined in (4.10) and (4.11). See notes of Ta-
ble 4.1 for further explanation.

ponent of the total cross-sectional variance of markups – at least in the developing economies

(30% in Colombia, 50% in Chile and Indonesia) but less so in Germany (12%).⁸

Through the lense of the technlogy choice model, in particular (4.3) and (4.4), these

results suggest that a major component in the persistent differences in productivity is the

choice of capital intensities. Deviations in optimal scale are important but minor.

To understand to what extent firms actively take these unit cost increases into account,

we split the sample according to firm/plant characteristics – age, size, and importantly a

firm’s average markup – and compute again the dispersions of the persistent component of

capital intensity, see Table 4.3. While there are some differences in these dispersions accor-

ding to age and size, these are neither large nor systematic. What stands out is splitting the

sample according to the average markup. The highest markup quintile exhibits between 30%

and 60% higher capital intensity dispersions (in terms of variances) than the lowest markup

quintile. This is in line with the qualitative predictions of our model.

⁸ This might relate to the fact that demand is less stable in the developing economies. In fact,
the cross-sectional standard deviation of value-added growth is two to four times larger in these
economies than in Germany.
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Table 4.3. Persistent component of capital intensity by firm/plant characteristics

std(κ̄i t)

Markups Size Age

Bottom Top Bottom Top
Quintile Quintile Quintile Quintile Young Old

DE 0.545 0.622 0.610 0.509 n.a. n.a.
(0.010) (0.010) (0.009) (0.011)

CL 0.568 0.713 0.749 0.622 n.a. n.a.
(0.042) (0.075) (0.068) (0.058)

CO 0.547 0.694 0.763 0.669 0.697 0.699
(0.035) (0.061) (0.051) (0.061) (0.100) (0.048)

ID 0.716 0.834 0.830 0.816 0.770 0.801
(0.028) (0.035) (0.034) (0.035) (0.058) (0.038)

Notes: Bottom (top) markup quintile: firm/plant average markup below the 20th percentile
(above the 80th percentile). Old (young): Plant age below 4 years (above 15 years). Bottom (top)
size quintile: firm/plant average employment below the 20th percentile (above 80th percentile).
The micro data from Germany and Chile does not include age. See notes of Table 4.1 and 4.2 for
further explanation.

4.3.4 Robustness

We conduct some robustness checks. First, we show that our empirical findings are robust

to alternative way of decomposing factor productivities into transitory and persistent compo-

nents (Table 4.4), and to weighting of the moments (Table 4.5). We also show that persistent

capital intensity differences are more dispersed for high-markup firms/plants even when con-

trolling for size and age (Table 4.6). In particular, we first remove cross-sectional differences

in log capital intensity that can be explained by markups, size and age in logs. Second, the

square unexplained component from the first stage is regressed on standarized markups,

size and age in logs. For all countries, except Colombia, markups are as important as size for

explaining persistent differences in capital intensity.
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Table 4.4. Robustness: Transitory and persistent components (HP-filtered) of factor
productivities, markups, and capital intensity

std(α̂L
i t) std(α̂K

it) ρ(α̂L
i t , α̂

K
it) std(ᾱL

i t) std(ᾱK
it) ρ(ᾱL

i t , ᾱ
K
it)

Transitory Component (HP) Persistent Component (HP)

DE 0.062 0.113 0.352 0.236 0.471 -0.223

CL 0.169 0.260 0.447 0.231 0.578 -0.191

CO 0.134 0.159 0.516 0.257 0.569 -0.234

ID 0.196 0.343 0.344 0.256 0.670 -0.270

std(m̂ci t) std(κ̂i t) ρ(m̂ci t , κ̂i t) std(m̄ci t) std(κ̄i t) ρ(m̄ci t , κ̄i t)

Transitory Component (HP) Persistent Component (HP)

DE 0.073 0.134 -0.184 0.157 0.490 0.089

CL 0.183 0.295 -0.123 0.152 0.552 -0.097

CO 0.145 0.186 -0.066 0.178 0.594 -0.230

ID 0.207 0.412 -0.130 0.160 0.672 -0.027

Notes: Labor productivity, aL
i t , and capital productivity, aK

it , as defined in (4.9).
Markups, mci t , and capital intensity, κi t , as defined in (4.10) and (4.11). HP: re-
sults based on the decomposing between transitory and persistent using a HP-filter
(λ= 6.25). Factor productivities are demeaned by 4-digit industry and year and
expressed in logs. Standard errors are clustered standard errors at the firm/plant
level. ρ denotes correlation. DE: Germany, CL: Chile, CO: Colombia, ID: Indonesia.

4.4 Efficiency losses from a friction in technology choice

In this section, we quantify the efficiency losses from frictional technology choice. Based

on the results in Section 4.2, we can compute these losses by combining the dispersion in

capital intensity with the capital cost share and the elasticity of substitution between labor

and capital.

We estimate the capital cost share as the ratio of capital expenditures to total expendi-

tures directly from the micro-data. We obtain a capital share of 21% (Germany), 40% (Co-

lombia), 32% (Chile), and 23% (Indonesia). The elasticity of substitution between labor and

capital can be recovered from time-series information of the aggregate capital intensity and

the relative factor price. In a frictionless economic environment, the elasticity is determined
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Table 4.5. Robustness: Weighted second moments of factor productivities, markups, and
capital intensity at different frequencies

std(α̂L
i t) std(α̂K

it) ρ(α̂L
i t , α̂

K
it) std(ᾱL

i t) std(ᾱK
it) ρ(ᾱL

i t , ᾱ
K
it)

Transitory Component (5Y MA) Persistent Component (5Y MA)

DE 0.050 0.101 0.316 0.196 0.457 -0.176

CL 0.187 0.281 0.457 0.239 0.551 -0.205

CO 0.143 0.170 0.520 0.260 0.562 -0.239

ID 0.216 0.370 0.349 0.263 0.672 -0.275

std(m̂c i t) std(κ̂i t) ρ(m̂c i t , κ̂i t) std(m̄c i t) std(κ̄i t) ρ(m̄c i t , κ̄i t)

Transitory Component (5Y MA) Persistent Component (5Y MA)

DE 0.052 0.090 -0.161 0.172 0.503 0.067

CL 0.179 0.259 -0.090 0.183 0.645 -0.087

CO 0.133 0.155 -0.016 0.209 0.670 -0.237

ID 0.207 0.356 -0.123 0.198 0.787 -0.021

Notes: abor productivity, aL
i t , and capital productivity, aK

it , as defined in (4.9).
Markups, mci t , and capital intensity, κi t , as defined in (4.10) and (4.11). Cross-
sectional standard-deviations (std) and correlation (ρ) of transitory and persistent
components. Transitory and persistent components are obtained by applying a five
year moving average filter (5Y MA). Moments are weighted based on the value-
added of the plant/firm. Variables under interest are demeaned by 4-digit industry
and year and expressed in logs. Standard errors in parentheses are clustered stan-
dard errors at the firm/plant level. DE: Germany, CL: Chile, CO: Colombia, ID: In-
donesia.

by the contemporaneous correlation between these variables. However, the identification is

problematic in the presence of frictions which prevents immediate adjustment of production

factors: The contemporaneous response of capital intensity to price movements (short-run

elasticity) then differs from the long-run elasticity.

To uncover the long-run elasticity of substitution, we instrument observed relative fac-

tor prices with the top marginal income tax rate on domestic corporations at the country

level.⁹ As our instrumental variable is highly persistent, we capture movements in factor pri-

⁹ Given that we do not have information on real interest rate from all countries, we approximate
the risk-free interest rate using the Federal Funds rate (yearly average). We consider country panel
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Table 4.6. Robustness: Dispersion of capital intensity and markups

DE CL CO ID

ε2
κ̄i t

Log-Markup 0.024 0.069 0.036 0.057
(0.003) (0.017) (0.019) (0.011)

Log-Size -0.026 -0.068 -0.057 0.017
(0.003) (0.017) (0.024) (0.015)

Log-Age - 0.044 0.009
- (0.018) (0.011)

Notes: The results are obtained based on a two step pro-
cedure. First, we remove cross sectional differences in log
capital intensity (κi t) that can be explained by the log of
markups, size and age. Second, the squared estimated re-
sidual based on the first stage (ε2

κ̄i t
), is regressed on the

standarized log of markups, size and age. Standard er-
rors in parentheses are clustered standard errors at the
firm/plant level. DE: Germany, CL: Chile, CO: Colombia,
ID: Indonesia.

ces that are long-lived, and thus, we obtain a better approximation of the long-run elasticity

of substitution.¹⁰

Table 4.7 provides the results of this exercise. Once we instrument the relative factor

price with corporate taxes, we obtain an estimated elasticity of 1.28. In contrast, the simple

contemporaneous regression implies a 50% lower estimated elasticity.

Based on these elasticity estimates, we compute the efficiency losses from a friction in

technology choice. On average, unit costs increase by 5% compared to their minimum obtai-

ned by always setting capital intensity to the optimal level, the values range goes from 2.5%

in Germany to 6.3% in Indonesia.

data on labor, capital, and hourly wage from Feenstra et al. (2015). We impute hours worked at
those countries with missing information by the average hours worked at each year based on those
countries with available data. Finally, we construct tax series using the World tax Database available
at http://www.bus.umich.edu/otpr/otpr/default.asp.

¹⁰ Alternatively, the literature aims to estimate the long-run elasticity of substitution using cointegra-
tion properties, cross country variation in the trends of factor prices, or low-pass filters. See Chirinko
(2008) for more details.

http://www.bus.umich.edu/otpr/otpr/default.asp
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Table 4.7. Estimation of long-run elasticity of substitution

Dependent variable: log
�

K
N

�

log
�

W
R

�

0.68 0.43 1.28
(0.01) (0.01) (0.35)

Constant 39.41 19.40 135.97
(1.82) (1.40) (48.24)

Trend Yes Yes Yes

Country fixed effects No Yes Yes

Instrument No No Yes
R2 0.76 0.75 0.71
Countries 99 99 99
Obs 2609 2609 2609

Notes: Regressions based on country panel data for
the period 1956-2002. Period length differs by coun-
try due to data availability. We instrument relative fac-
tor price using the top marginal income tax rate on
domestic corporations at the country level. Standard
errors in parenthesis.

Notice that these efficience loss estimates do not consider the time-series component
�

E x
t log ki t − log k∗

�2
. To do so, we require a dynamic version of the model described in

Section 4.2. Therefore, our estimates constitute a lower bound of the potential efficiency

losses from a friction in technology choice.

4.5 Conclusion

This paper asks whether productivity dispersions should be understood as a result of frictions

in technology choice. We have derived qualitative implications of such friction and show that

these are borne out empirically.

In line with the existing literature, we find large productivity differences across firms/

plants even within narrowly defined industries. We show that most of the differences are

long-lived and related to highly persistent differences in capital intensity. Despite the strong

relative differences across countries, our estimated efficiency losses from frictional technology

choice are modest, on average 5%.
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For future work it would be important to explore whether a dynamic model of technology

choice is able to explain our empirical results not only qualitatively, but also quantitatively.

Appendix 4.A Appendix

4.A.1 Empirics

4.A.1.1 Description of the data

German Firm Data: USTAN (Unternehmensbilanzstatistiken)

USTAN is itself a byproduct of the Bundesbank’s rediscounting and lending activity. The

Bundesbank had to assess the creditworthiness of all parties backing promissory notes or bills

of exchange put up for rediscounting (i.e. as collateral for overnight lending). It implemented

this regulation by requiring balance sheet data of all parties involved, which were then archi-

ved and collected, see Bachmann and Bayer (2013) for details. Our initial sample consists of

1,846,473 firm-year observations. We remove observations from East German firms to avoid

a break of the series in 1990. Finally, we drop the following sectors: hospitality (hotels and

restaurants), financial and insurance institutions, public health and education sectors. The

resulting sample covers roughly 70% of the West-German real gross value added in the pri-

vate non-financial business sector. In particular, it includes Agriculture, Energy and Mining,

Manufacturing, Construction, and Trade.

Chilean Plant Data: ENIA (Encuesta Nacional Industrial Anual)

ENIA is collected by the National Institute of Statistics (Instituto Nacional de EstadÃŋsticas,

INE) and provides plant-level data from 1995 to 2007. ENIA contains information for all

manufacturing plants with total employment of at least ten. For the period under analysis,

we have a sample of 70,217 plant-year observations. According to INE, this sample covers

about 50% of total manufacturing employment.

Colombian Plant Data: EAM (Encuesta Anual Manufacturera)

EAM is a plant-level survey collected by National Institute of Statistics (Departamento

Administrativo Nacional de Estaditicas, DANE) for the period 1977 to 1991. The survey covers

information for all manufacturing plants during 1977-1982, while it only contains data on

plants above 10 employees for 1983-1984, and from 1985, small plants are included in small

proportion. This results in 103,011 plant-year observations.
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Indonesian Plant Data: IBS (Survei Tahunan Perusahaan Industri Pengolahan)

IBS is the Indonesian Manufacturing Survey of Large and Medium Establishments, provi-

ded by the National Institute of Statistics (Badan Pusat Statistik, BPS). The survey covers all

plants with 20 or more employees in the manufacturing sector. Given that the capital stock is

reported since 1988 onwards, we exclude earlier years and focus on the period 1988-2010,

with 485,052 plant-year observations.

4.A.1.2 Sample selection

Starting from the raw data set, we concentrate on describing the general cleaning steps com-

mon to all countries, and we provide more information about country-specific cleaning steps

at Table 4.8.

To begin with, we remove observations where firms or plants report extraordinarily large

depreciation rates (e.g. due to fire or accident). The reason is that our dynamic model does

not capture such cases, and the perpetual inventory method (PIM) will inaccurately measure

the actual capital stock after such incidents occur.¹¹ Next, for those countries where current

values of capital stock is not provided (Germany and Colombia), we recompute capital stocks

using the PIM. In conducting the PIM, we drop a small amount of outliers, as explained in

Section 4.A.1.4. Further, we do not consider observations where value-added, capital stock,

or employment is non-positive or missing.

Moreover, we do not consider observations where firms/plants have missing values in

the changes of employment (N), real capital (K) and real value-added (VA).¹² To construct

capital productivity, we use the lagged value of capital stock, so we effectively discard the

first year of each micro unit. We remove outliers in the levels and in the relative changes of

employment, capital, value-added, and factor shares based on 3 standard deviations from the

industry-year mean. In addition, we drop firm/plant-year observations whenever the total

factor expenditures share is either below 1/3 or above 3/2, and whenever the firm/plant

¹¹ At some cases in the ENIA, EAM, and IBS surveys, plants do not report depreciation conditio-
nal on positive capital stock. In order to not loose this observations, we impute the depreciation by
capital type and two-digit industry, estimating a random effect model, using as explanatory variable
the log-capital stock. To discard rare depreciation events, we drop observations whenever the repor-
ted depreciation rate in structures (equipment) is above 40% (60%) yearly. Additionally, we do not
consider those cases where the reported depreciation is below 0.1% (1%) in structures (equipment),
yearly.

¹² To construct measures of real capital stock we consider an index price by each capital type (when
available) using the information of gross fixed capital formation at current and constant prices from
National Accounts, while for for value added we use the GDP price deflator.



4.A Appendix | 103

average total factor expenditure share is above 1. These two cleaning steps should exclude

units from our analysis which report continuously unreasonably large markups or losses.

Finally, as our empirical results rely on a 5-year moving average filter, we do not consider

firm/plant-year observations that have less than 5 consecutive years.

Table 4.8. Sample selection

Criterion/Country Germany Chile Colombia Indonesia
Initial sample 1,846,473 70,217 103,006 485,052
East Germany -115,201 – – –
Additional cleaning steps – – – -32,618
Imputation capital stock – – – +37,341
Rare depreciation events -54,280 -8,197 -6,176 -8,775
Outliers in PIM -73,784 – -4,280 –
Missing values -422,739 -19,589 -29,804 -235,280
Outliers in factor variables -176,232 -12,375 -24,651 -86,070
Less than 5 consecutive years -312,452 -15,479 -14,264 -84,885
Final sample 689,665 14,307 23,831 74,765

Notes: Missing values denote the sum of missing values at log value added, log
capital, factor shares and log changes in employment, capital and value added.
Outliers in factor variables is the sum of all identified outliers at log changes
in employment, real capital and real value added, and factor shares. For more
information with respect to Additional cleaning steps and Imputation of capital
stock in Indonesia, see Section 4.A.1.3.

4.A.1.3 Specific cleaning and imputation steps for IBS

Before proceeding with the general cleaning steps applied to all datasets, we need to imple-

ment some specific corrections at the Indonesian micro-data. In doing so, we closely follow

Blalock and Gertler (2009). First, we correct for mistakes due to data keypunching. If the

sum of the capital categories is a multiple of 10n (with n being an integer) of the total repor-

ted capital, we replace the latter with the sum of the categories. Second, we drop duplicate

observations within the year (i.e. observations which have the same values for all variables

in the survey but differ in their plant identification number). Third, we re-compute value

added whenever their values are not consistent with the formula provided by BPS. Finally,

the survey changed their industry classification from ISIC Rev. 2 in 1998 to ISIC Rev. 3 in

1999 and to ISIC Rev. 4 in 2010. We use United Nations concordance tables to construct a

consistent time series of four digit industry classification.
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Further, the surveys from 1996 and 2006 provides only information on the aggregate ca-

pital stock, yet, not disaggregated by capital type (structure and equipment). To construct an

economically reasonable estimate of these variables for these years, we use the average repor-

ted investment share and capital share of capital type in the preceding and subsequent year,

and impute it, multiplying the aggregate capital stock and investment with the respective

share.

Finally, we impute capital stock for plants, whenever the survey presents missing values

for this variable in plants which reported information in previous and/or subsequent years.

Following Vial (2006), we impute capital by type (machinery, vehicles, land and buildings),

using the following regression by two-digit sectoral level:

log Ki t = β0 + β1 log Ki t−1 + θ ln X i t−1 + µi + εi t

where Ki t is the capital stock of type i, µi plant fixed effects and X i t−1 a set of explanatory

variables (total output, input, employees, wages, fuel costs and expenditures on materials,

leasing, industrial services and taxes).¹³

4.A.1.4 Perpetual inventory method

Whenever the dataset does not directly provide information on a firm’s/plant’s capital stock at

current values (USTAN and EAM), we re-calculate capital stocks using the perpetual inventory

method (PIM), in order to obtain economically meaningful capital series. In doing so, we

follow Bachmann and Bayer (2014). To begin with, we compute nominal investment series

using the accumulation identity for capital stocks:

pI
t Ii,k,t = K r

i,k,t+1 − K r
i,k,t + Dr

i,k,t ,

where K r
i,k,t and Dr

i,k,t are firm/plant i’s reported capital stock and depreciation for capital

type k at time t, respectively. Given that capital is reported at historical prices and does not

reflect the productive (real) level of capital stock, we apply the PIM to construct economic

real capital stock at each type of capital:

Ki,k,1 =
pI

1

pI
base

Ka
i,k,1; Ki,k,t+1 = Ki,k,t(1 − δi,k,t) +

pI
t

pI
base

Ii,k,t , ∀t ∈ [0, T]

¹³We evaluate the robustness of the imputation procedure, using linear interpolation as an alterna-
tive approach. Our empirical findings are robust to this alternative specification.
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where Ka
i,k,1 is the accounting value of the capital stock of type k for the first period we

observe the unit, pt
pbase

Ii,k,t is the real investments in capital k of firm/plant i at time t and

δi,k,t is the reported depreciation rate of capital k by firm/plant i at time t.¹⁴

Even though the aforementioned proceduremakes sure that values follows a economically

meaningful real capital stock series from second period onwards, it is not clear whether the

starting (accounting) input of capital at the unit, Ka
i,k,t , reflects the productive real value. To

account and adjust the first period value of capital we use an iterative approach. In specific,

we construct a time average factor φk for each type of capital. It the first iteration step, the

adjustment factor takes value of 1 while capital is equal to its balanced sheet value. That is,

Kn
i,k,t =

pI
t

pI
base

Ka
i,k,1 for n= 1. For the subsequent iterations, capital is computed using PIM:

Kn
i,k,t+1 = Kn

i,k,t(1 − δi,k,t) +
pt

pbase
Ii,k,t ,

while the ajdustment factor is constructed using the ratio between the capital of consecutive

iterations

φn
k =

1
N T

∑

i,t

Kn
i,k,t

Kn−1
i,k,t

.

Finally, the capital stock at the first period we observe the unit is adjusted by the factor φn
k .

We apply the procedure iteratively until φk converges¹⁵

Kn
i,k,1 = φn−1

k Kn−1
i,k,1.

¹⁴ The reported depreciation rate is adjusted such that, on average, it coincides with the economic
depreciation rate given by National Accounts. To deflate investment series, we compute an investment
good price deflator from each country using the information of gross fixed capital formation at current
and constant prices from National Accounts.

¹⁵We stop whenenever the value of φk is below 1.1. At each iteration step we drop 0.1% from the
bottom and the top of the capital distribution. This cleaning stepmakes sure to not consider episodes of
extraordinary depreciation at the plant, which implies that using reported depreciation rate (adjusted
to have the same average value from National Accounts) do not reflect the capital stock given by the
PIM.
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4.A.2 Second order approximation of unit costs

For convenience, let us define the relative factor price by R̃t := Rt
Wt

and (physical) output per

worker by

f (ki t) :=
Yi t

Ni t
=
h

αk
σ−1
σ

i t + (1 − α)A
σ−1
σ

t

i

σ
σ−1

.

Subsequently, marginal costs may be expressed as

ci t = Wt
1 + R̃t ki t

f (ki t)

and the first derivative of (log) marginal costs with respect to (log) capital intensity,

∂ log(ci t)
∂ log(ki t)

=
R̃t ki t

1 + R̃t ki t
−

ki t f ′(ki t)
f (ki t)

=
(1 − α)R̃t ki t − αk

σ−1
σ

i t

(1 + R̃t ki t)(αk
σ−1
σ

i t + (1 − α)A
σ−1
σ

t )

Let us denote above denominator by D ≡ (1+ R̃t ki t)(αk
σ−1
σ

i t + (1−α)A
σ−1
σ

t ), and obtain the

second derivative as

∂ 2 log(ci t)
∂ log(ki t)2

=

h

(1 − α)A
σ−1
σ

t R̃t −
σ−1
σ αk

− 1
σ

i t

i

ki t D −
h

(1 − α)A
σ−1
σ

t R̃t ki t − αk
σ−1
σ

i t

i

D′ki t

D2
.

The cost-minimizing capital intensity k∗ implies ∂ log(ci t)
∂ log(ki t) ki t=k∗ = 0, and the second derivative

evaluated at ki t = k∗, where (1−α)A
σ−1
σ

t R̃t k
∗
i t = αk

∗σ−1
σ

i t , is

∂ 2 log(ci t)
∂ log(ki t)2 ki t=k∗

=
(1 − α)A

σ−1
σ

t R̃t k
∗
i t −

σ−1
σ αk

∗σ−1
σ

i t

D

=
(1 − α)A

σ−1
σ

t
1
σ R̃t k

∗
i t

(1 + R̃t k∗)((1 − α)A
σ−1
σ

t R̃t k∗ + (1 − α)A
σ−1
σ

t )
=

1
σ

R̃t k
∗

(1 + R̃t k∗)2
,
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where the second equation results again from (1−α)A
σ−1
σ

t R̃t k
∗ = αk∗

σ−1
σ . The 2nd order Tay-

lor expansion directly follows as

log(ci t) − log(c∗) ≈ σ−1 R̃t k
∗

(1 + R̃t k∗)2

1
2
(log(ki t) − log(k∗))2.
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5

Delta-Method Inference for a Class of
Set-Identified SVARs

Joint with Bulat Gafarov and José Luis Montiel Olea

5.1 Introduction

An increasingly popular practice in empirical macroeconomics is to set-identify the parame-

ters of a Structural Vector Autoregression [SVAR]. This approach was pioneered by Faust

(1998), Canova and Nicoló (2002) and Uhlig (2005). Most of the follow-up studies have re-

lied on Bayesian methods to construct posterior credible sets for the structural coefficients of

the impulse-response function.

There has been recent interest in studying non-Bayesian approaches to summarize uncer-

tainty in set-identified SVARs. Moon et al. (2013) [MSG13] propose Projection/Bonferroni

frequentist inference based on a moment-inequality-minimum-distance framework. Giaco-

mini and Kitagawa (2015) [GK14] propose robust-Bayesian inference using multiple priors

for rotation matrices. Gafarov et al. (2016) [GMM16] propose frequentist inference based

on the projection of a Wald ellipsoid for the SVAR reduced-form parameters. None of these

approaches requires the specification of prior beliefs by the researcher.

This paper contributes to the non-Bayesian analysis of set-identified SVARs by proposing

a novel delta-method confidence interval for the coefficients of the impulse-response function

[IRF]. Broadly speaking, our approach is based on a closed-form characterization of the end-

points of the identified set (given a vector of reduced-form parameters and a collection of

binding inequality constraints). Our delta-method confidence interval takes the form of a
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plug-in estimator for the identified set plus/minus standard errors. In terms of theoretical

results, we establish the pointwise consistency in level of our confidence interval. In terms

of practical considerations, we argue that the computational cost of our procedure compa-

res very favorably with other non-Bayesian procedures and also with the standard Bayesian

algorithm described in Uhlig (2005).

The main limitation of our approach is that the delta-method confidence interval is only

defined for SVAR models that impose equality and inequality restrictions on a single structu-

ral shock (e.g., a monetary shock). Admittedly, this is problematic, as some popular applica-

tions of set-identified SVARs feature restrictions on multiple structural innovations.¹ In spite

of this observation, single-shock set-identified models have been applied in several empirical

studies: the effects of monetary policy on output [Uhlig (2005)], the impact of monetary

policy on the housing market [Vargas-Silva (2008)], the effects of labor market shocks on

worker flows [Fujita (2011)], the effects of exchange rates on aggregate prices [An and

Wang (2012)], and the effect of optimism shocks on business cycles fluctuations [Beaudry

et al. (2014)]. Thus, we think there is room for our results to have an impact on empirical

work.

Empirical Application—Unconventional Monetary Policy Shocks: To illustrate the

usefulness of ourmain results, we estimate amonetary Structural Vector Autoregression using

monthly U.S. data from July 1979 to December 2007 (a sample that deliberately ends one

semester before the financial crisis begins). The goal of our exercise is to use pre-crisis data

to learn about the responses of macroeconomic variables to shocks that have effects similar

to the ‘unconventional’ monetary policy interventions implemented after the crisis.

In ‘conventional’ descriptions of monetary policy, the short-term nominal interest rate is

assumed to be the central bank’s policy instrument. Following any adjustment by the mone-

tary authority, the market participants—households and firms, both domestic and foreign—

use available information to form expectations about the future level of longer-term real

interest rates relevant for their consumption and investment decisions.

The recent Great Recession has forced the Federal Reserve to consider alternative me-

chanisms to affect market beliefs about the future of real interest rates. Two examples of

such unconventional policies are the Federal Open Market Committee’s forward guidance an-

¹ SVAR applications for the oil market set-identify both demand and supply shocks using sign
restrictions and elasticity bounds [Kilian and Murphy (2012b)]. The same is true for recent labor
market applications [Baumeister and Hamilton (2015a)]. Mountford and Uhlig (2009)—one of the
most cited applications of set-identified SVARs—use sign restrictions to identify a government revenue
shock as well as a government spending shock, while controlling for a generic business cycle shock
and a monetary policy shock.
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nouncements and the Federal Reserve’s large-scale asset purchases program. Broadly speaking,

through forward guidance “the Federal Open Market Committee provides an indication to

households, businesses, and investors about the stance of monetary policy expected to prevail

in the future”.² In a similar fashion, the asset purchase program of the Federal Reserve in-

tends to “put downward pressure on yields of a wide range of longer-term securities, support

mortgage markets, and promote a stronger economic recovery”.³

With this motivation in mind, we set-identify an unconventional monetary policy [UMP]

shock as an innovation that decreases the two-year government bond rate upon impact, but

has no effect over the nominal federal funds rate.⁴ We consider two additional sign restricti-

ons on the contemporaneous responses of inflation and output. Namely, we assume that—

upon impact—neither inflation nor output can respond negatively to a UMP shock. Since

the model is only set-identified, our analysis effectively captures the effects of any historical

economic shock that affected the economy in the same way as an UMP shock.

We apply our delta-method approach to construct a confidence interval for the dynamic

responses of Industrial Production, inflation, the two-year government bond rate, and the

nominal federal funds rate. We use our confidence bands to assess the effects of the announ-

cement of the second part of the so-called Quantitative Easing program (QE2) in August

2010. Pre-crisis data turns out to be extremely useful to learn about the post-crisis response

of macroeconomic aggregates to unconventional monetary policy.

The remainder of the paper is organized as follows. Section 5.2 presents an overview

of the main methodological results in this paper. Section 5.3 introduces our empirical appli-

cation, which is used as a running example throughout the paper. Section 5.4 presents our

algorithm to evaluate the endpoints of the identified set. Section 5.5 establishes the diffe-

rentiability properties of the endpoints. Section 5.6 presents our delta-method approach and

establishes its asymptotic validity. Section 5.7 presents the confidence intervals for the dyna-

mic responses to the QE2 program. Section 5.8 concludes. All the proofs are collected in the

Appendix.

Generic Notation: If A is a matrix, Ai j denotes the i j-th element of A, vec(A) denotes the

vectorization of A, and vech(A) denotes half-vectorization (applicable only if A is symmetric).

The Kronecker product between matrices A and B is denoted by A⊗ B. The vector em
i ∈ R

m

² Link: http://www.federalreserve.gov/faqs/money_19277.htm
³ Link:http://www.federalreserve.gov/faqs/what-are-the-federal-reserves-large-scale-asset-

purchases.htm
⁴ The paper focuses on the two-year rate as this variable changed considerably after the announ-

cement of the second round of the Quantitative Easing program. See Krishnamurthy and Vissing-
Jorgensen (2011)

Link: 
Link: 
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denotes the i-th column of the identity matrix of dimension m. If B is a matrix of dimension

n× n, Bi ≡ Ben
i denotes its i-th column. If the dimension of en

i is obvious, we ignore the

superscript n.

5.2 Model and overview of the main theoretical results

This section introduces notation, the class of SVAR models we consider, and presents a brief

overview of the main methodological results in the paper. It is our hope that this brief sum-

mary (which contains references to the main propositions and lemmas in the paper) con-

tributes to the understanding of the theoretical basis behind our delta-method confidence

interval.

Notation: This paper studies the n-dimensional Structural Vector Autoregression (SVAR)

with p lags; i.i.d. structural innovations distributed according to F ; and unknown n× n struc-

tural matrix B:

Yt = A1Yt−1 + . . . + ApYt−p + Bεt , EF[εt] = 0n×1, EF[εtε
′
t] ≡ In, (5.1)

see Lütkepohl (2007), p. 362.

The object of interest is the k-th period ahead structural impulse response function of

variable i to a particular shock j (e.g., a monetary shock). In the SVAR model this parameter

is given by the (k, i, j)-coefficient of the structural impulse-response function:

λk,i, j(A, B) ≡ e′iCk(A)B j , (5.2)

where B j ≡ Be j and ei and e j denote the i-th and j-th column of the identity matrix In.⁵
An auxiliary object in the estimation of the structural parameters is the vector of reduced-

form parameters in the SVAR model:

µ ≡ (vec(A)′,vec(Σ)′)′ ∈ M ⊆ Rd , A ≡ (A1, A2, . . . , Ap), Σ ≡ BB′. (5.3)

⁵ The transformation Ck(A) that appears in equation (5.2) is defined recursively by the formula
C0 ≡ In:

Ck(A)≡
k
∑

m=1

Ck−m(A) Am, k ∈ N,

Am = 0 if m> p; see Lütkepohl (1990), p. 116.
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The parameter A denotes the autoregressive coefficients in the VAR model, while Σ de-

notes the covariance matrix of residuals. These parameters can be estimated directly from

the data by Ordinary Least-Squares. The (reduced-form) parameter space isM .

Set-Identifying Restrictions: Let R(µ) ⊆ Rn be a set of inequality and equality re-

strictions imposed on B j .⁶ A common practice in empirical macroeconomics is to use the

restrictions in R(µ) to set-identify the structural parameter in (5.2) as a function of the

reduced-form parameters in (5.3). In our paper, the set R(µ) takes the form:

R(µ) ≡
¦

B j ∈ Rn
�

�

� Z(µ)′B j = 0mz×1 and S(µ)′B j ≥ 0ms×1

©

, (5.4)

where Z(µ) is a matrix of dimension n×mz matrix and S(µ) is a matrix of dimension n×ms.

The matrix Z(µ) collects the equality restrictions specified by the researcher (we assume

there are mz of them). The matrix S(µ) collects the inequality restrictions (we assume there

are ms of them). We assume that both Z(µ) and S(µ) are differentiable functions of µ.

Scope: The simple formulation in (5.4) allows the researcher to incorporate any

restriction of the form R(µ)′B j ≥ 0, where R(µ) is differentiable. Thus, our analysis allows

for the following identifying restrictions:

1. Restrictions on the responses of variable i at horizon k to an impulse on the j-th shock:

e′iCk(A)B j ≥ or = 0,

as in Uhlig (2005).

2. Long-run restrictions on the response of variable i to an impulse on the j-th shock:

e′i(In − A1 − . . .− Ap)
−1B j ≥ or = 0,

as in Blanchard and Quah (1989).

3. Restrictions on the j-th column of (H ′)−1:

e′i(H
′)−1e j = e′iΣ

−1B j ≥ or = 0,

as in Rubio-Ramirez et al. (2015).

⁶ For example, a contractionary monetary policy shock increases interest rates and does not affect
prices upon impact.
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4. Elasticity bounds as in Kilian and Murphy (2012b); for example, for some b ∈ R :

e′iB j / e′i′B j ≥ b ⇐⇒ (ei − bei′)
′B j ≥ 0,

provided e′i′B j > 0.

Endpoints of the identified Set: The main results in this paper concern the end-

points of the identified set for the structural parameters, given µ. The endpoints of the

identified set (which we sometimes refer to as the maximum and minimum response) are

defined as follows:

Definition (Endpoints of the identified set): Given a vector of reduced-form para-

meters µ we define the endpoints of the identified set for λk,i, j as the functions:

vk,i, j(µ) ≡ sup
B∈Rn×n

e′iCk(A)Be j , s.t. BB′ = Σ and Be j ∈ R(µ), (5.5)

and

vk,i, j(µ) ≡ inf
B∈Rn×n

e′iCk(A)Be j , s.t. BB′ = Σ and Be j ∈ R(µ). (5.6)

The function vk,i, j(µ) corresponds to the largest value of the structural parameter, λk,i, j

subject to the restriction that B j ∈ R(µ) and also that B j is the j-th column of a square root

of Σ. The lower bound is defined analogously.

Overview of the main results: Our delta-method confidence interval is supported

by the three theoretical results described in the abstract. Our results can be summarized as

follows:

• Summary of Lemma 1 (Characterization of the maximum and minimum response given a

fixed set of active constraints): We show that vk,i, j(µ) and vk,i, j(µ) are the value functions of

a mathematical program whose Karush-Kuhn-Tucker points can be described analytically—

up to a set of ‘active’ inequality constraints.⁷ More concretely, we show that the maximum

⁷ The term ‘active constraints’ or ‘active set of is constraints’ is the common terminology used in
numerical optimization; see p. 308 in Nocedal and Wright (2006).
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response for λk,i, j is equal to either plus or minus the function:

vk,i, j(µ; r)≡
�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2
,

where

MΣ1/2r ≡ In −Σ1/2r(r ′Σr)−1r ′Σ1/2,

and r ′ is a matrix collecting the gradient vectors of the constraints inR(µ) that are active at

a maximum. The minimum response is obtained analogously.

• Summary of Proposition 1 (Algorithm to evaluate the maximum and minimum response):

We use the closed-form expressions of Lemma 1 to present an algorithm that allows a resear-

cher to evaluate the endpoints of the identified set given a vector of reduced-form parameters.

The algorithm evaluates different collections of active constraints (different matrices r) and

selects the constraints that generate the largest (or smallest) value function—after checking

that the inequality constraints not included in r are satisfied.

• Summary of Lemma 2: (Differentiability of the maximum and minimum response for a fixed

set of active constraints)We establish the differentiability of the function vk,i, j , which depends

on a fixed set of active constraints. We allow the constraints in the n× l matrix r (with

l ≤ n− 1) to depend on the reduced-form parameters. We show that the derivative of vk,i, j

w.r.t. µ is given by:

v̇k,i, j(µ)≡







∂ vk,i, j(µ;r)
∂ vec(A)

∂ vk,i, j(µ;r)
∂ vec(Σ)






=







∂ vec(Ck(A))
∂ vec(A) (x∗ ⊗ en

i )−
∑l

k=1 w∗k
∂ rk

vec(A) x∗

λ∗(Σ−1 x∗ ⊗Σ−1 x∗)−
∑l

k=1 w∗k
∂ rk

vec(Σ) x∗






,

where rk is the k-th column of r, w∗k is the k-th component of w∗, and

x∗ ≡Σ1/2
�

MΣ1/2r

�

Σ1/2Ck(A)
′ei

À

vk,i, j(µ; r),

λ∗ ≡
1
2

vk,i, j(µ; r), w∗ ≡ [r ′Σr]−1r ′ΣCk(A)
′ei .

We argue that λ∗ and w∗ can be interpreted as the Lagrange multipliers associated to the

constraints BB′ =Σ and to the active constraints in r.

• Summary of Proposition 2 (Directional Differentiability of the endpoints): We use the

formula in Lemma 2 to show that the functions vk,i, j(·) and vk,i, j(·) are directionally diffe-

rentiable, in a sense we make precise. We relate the expression of the directional derivative

with the generalized versions of the envelope theorems in the work of Fiacco and Ishizuka
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(1990) and Bonnans and Shapiro (2000). We argue that directional differentiability of the

value functions (as opposed to full differentiability) arises due to the possibility that diffe-

rent structural models lead to the maximum (or minimum) response. In particular, let R∗(µ)

denote the sets of active restrictions that yield the same maximum response and assume, for

simplicity, that vk,i, j(µ)> 0. We show that:

p
n
�

vk,i, j(µ+ hn /
p

n)− vk,i, j(µ)
�

→ max
r∈R∗(µ)

�

v̇k,i, j(µ; r)′h
�

.

• Summary of Proposition 3 (Delta-Method Confidence Interval): We establish the pointwise

consistency in level of a delta-method confidence interval, which takes the form:

CST (1−α;λk,i, j)≡
�

vk,i, j(bµT )− z1−α/2 bσ(k,i, j),T /
p

T , vk,i, j(bµT )+ z1−α/2 bσ(k,i, j),T /
p

T
�

,

where bµT is the typical OLS estimator for the VAR reduced-form parameters, z1−α/2 is the

(1−α/2) quantile of a standard normal, and bσ(k,i, j),T is our formula for the standard errors

based on the directional derivatives.

Outline: In the remaining part of the paper, we formalize these propositions and apply

them to conduct inference about the responses to an unconventional monetary shock.

5.3 Running example: unconventional monetary policy

shocks

This section introduces our empirical application, which will be used as a running example

to illustrate our assumptions and results.

Monetary Svar: We consider a simple 4-variable model that includes the Consumer Price

Index (C PIt), the Industrial Production Index (I Pt), the 2-year Treasury Bond rate (2yT Bt),

and the Federal Funds rate (F Ft).⁸ We take a logarithmic transformation of C PIt , I Pt and

then work with first differences for all variables. Thus, our vector of macro variables is:

Yt ≡
�

ln C PIt − ln C PIt−1, ln I Pt − ln I Pt−1, 2yT Bt − 2yT Bt−1, F Ft − F Ft−1

�′
.

⁸ All these variables are sourced from the data set of Gertler and Karadi (2015). We thank Peter
Karadi for making their data set available to us.
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We set the number of lags equal to 11 using the Bayesian Information Criterion (p = 11).

The time span of the monthly series is July 1979 to August 2008 (T = 342). To keep our ex-

position as simple as possible, we ignore potential co-integration issues between short-term

and long-term interest rates. Without loss of generality, we assume that column of B corre-

sponding to an UMP shock is the first column; B1 ≡ Be1. Our equality/inequality restrictions

are summarized in the following Table:

Table 5.1. Set-identification of an unconventional monetary policy shock: restrictions

Series Acronym UMP Notation

Consumer Price Index CPI + e′1B1 ≥ 0
Industrial Production IP + e′2B1 ≥ 0
2-year Treasury Bond rate 2yTB − e′3B1 ≤ 0
Fed Funds Rate FF 0 e′4B1 = 0

Description: Restrictions on contemporaneous respon-
ses to a UMP shock. ‘0’ stands for a zero restriction, ‘−’
stands for a negative sign restriction and ‘+’ for positive
sign restriction. These sign restrictions can be justified by
the DSGE model calibrated in the work of Bhattarai et al.
(2014).

The suggested set-identification strategy in this paper is not new. Baumeister and Benati

(2013) study an analogous ‘spread’ monetary shock that leaves the short-term nominal rate

unchanged, but affects the spread between the ten-year Treasury-bond yield and the policy

rate. They consider a Bayesian SVAR with time varying parameters and stochastic volatility

combined with demand and supply structural shocks that satisfy zero/sign restrictions as in

Rubio-Ramirez et al. (2010). Their main result is that the long-term yield spread exerts a

powerful effect on both output growth and inflation. All their inference is Bayesian, while

ours is frequentist. In addition, our SVAR model does not consider time-varying parameters,

stochastic volatility, and restrictions on other nonmonetary shocks.

5.4 The endpoints of the identified set

In this section we formalize Lemma 1 and Proposition 1. We consider the problem of finding

the maximum response to an impulse in the j-th structural shock subject to mz equality

(‘zero’) restrictions and ms inequality (‘sign’) restrictions. The focus on the maximum and

the minimum is an intermediate step to conduct frequentist inference about the coefficients

of the impulse-response function.
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This section makes two assumptions on the sign and zero restrictions allowed in the mo-

del. First, we require the number of zero restrictions to be less than n− 1. Second, we assume

that every collection of n− 1−mz inequality restrictions and the mz equality restrictions are

linearly independent everywhere in the parameter space.

Just as before, the set R(µ) is given by

R(µ)≡
¦

B j ∈ Rn
�

�

� Z(µ)′B j = 0mz×1 and S(µ)′B j ≥ 0ms×1

©

,

where Z(µ) is a matrix of dimension n×mz matrix and S(µ) is a matrix of dimension n×ms.

Running Example—R(µ): In the UMP example, the set of restrictions R(µ) corrre-

sponds to (see Table I):

¦

B1 ∈ R4
�

�

� e′4B1 = 0, (e1, e2,−e3)
′B1 ≥ 03×1

©

.

Consequently:

Z(µ)=











0

0

0

1











and S(µ)=











1 0 0

0 1 0

0 0 −1

0 0 0











.

We note that the equality and inequality restrictions in our example do not depend on

the reduced-form parameters (neither Z nor S depend on µ).

Main Assumptions: The first assumption in this section requires the number of zero

restrictions to be strictly smaller than n− 1. The rationale behind Assumption 1 is as follows:

if mz > n− 1, then R(µ)= {0n×1} for every µ for which there are n linearly independent

equality restrictions. This is problematic, as the latter implies there is no B j ∈ Rn such that

B j ∈ Rn and B j = Be j for some BB′ =Σ (provided B is invertible).⁹

Assumption 1. mz ≤ n− 1.

Our second assumption imposes a ‘linear independence’ condition on the equality and

inequality restrictions on the model (given a particular value of the reduced-form parameter

µ). Let ems
1 , ems

2 , . . . ems
ms

denote the ms different columns of the identity matrix Ims
. Let e(k)

⁹ If B is invertible, then Σ is invertible and B′Σ−1B = In, which implies B′jΣ
−1B j = 1. Therefore, if

B j = Be j for some square root of Σ then B j must be different from 0n×1.
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denote an ms × k matrix formed by collecting any of the k ≤ n− 1−mz columns of Ims
. Note

that for any matrix S, the matrix Se(k) selects k columns of S.

Definition. We say that Z(µ) and S(µ) are linearly independent at µ if for any k ∈ N, k ≤
n− 1−mz and any e(k) the matrix

R(µ; e(k))≡ [Z(µ), S(µ)e(k)] ∈ Rn×(mz+k),

is assumed to have full column rank (rank mz + k).

We use this definition to state our following assumption:

Assumption 2. The parameter spaceM is such that Z(µ) and S(µ) are linearly independent

at every µ ∈M .

This ‘linear independence’ property plays an important role in the characterization of

the maximum and minimum response in terms of Karush-Kuhn-Tucker conditions.

Running Example—Assumption 1 and 2: In our application mz = 1, so we only need

to verify Assumption 2. As we mentioned before, the matrix e(k) is a selector matrix. For

example, let e(2) be given by the first and third column of I3; that is

e(2)=







1 0

0 0

0 1






.

This implies that

S(µ)e(2)=











1 0 0

0 1 0

0 0 −1

0 0 0

















1 0

0 0

0 1






=











1 0

0 0

0 −1

0 0











,

and moreover:

R(µ; e(2))≡ [Z(µ), S(µ)e(2)]=











0 1 0

0 0 0

0 0 −1

1 0 0











∈ R4×(2+1).

Thus, the matrix R(µ; e(2)) is formed by collecting the gradient of the unique equality

restriction and the first and third inequality restrictions in S. Note that regardless of the
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number of k columns selected from S—and regardless of whatM is—the resulting matrix

R(µ, e(k)) will always have full column rank.

Verifying Assumption 2 with more general restrictions requires additional work. For ex-

ample, suppose that the researcher is interested in including the restriction:

e′2C1(A)B1 ≥ 0.

This restriction says that the UMP shock cannot decrease the growth rate in Industrial Pro-

duction even one-period after the shock. Since C1(A)= A1, the vector e′2C1(A) is equal to the

second row of A1, which we can denote as (A1,(2,1), A1,(2,2), A1,(2,3), A1,(2,4)). The matrix S(µ)

is now given by:

S(µ)=











1 0 0 A1,(2,1)

0 1 0 A1,(2,2)

0 0 −1 A1,(2,3)

0 0 0 A1,(2,4)











.

Hence, we conclude that Assumption 2 will be satisfied as long asM is such that A1,(2, j) 6= 0

for all j = 1, . . . 4, which means that each of the entries in the first lag of Yt−1 has predictive

power on Yt after controlling for the rest of the lags.

The third assumption is the following:

Assumption 3. The matrices Z(µ) and S(µ) are differentiable functions of the reduced-form

parameter µ.

We are not aware of equality/inequality restrictions in the SVAR literature that does

not satisfy this property. In particular, all the examples given in p. 5 of this paper satisfy

Assumption 3.

5.4.1 Lemma 1: Closed-form solution for the maximum response

given an active set of constraints

In this section we show that that given a collection r ∈ Rm×n of ‘active’ constraints (m≤ n− 1)

the maximum response is determined in closed-form (and up to sign) by the Karush-Kuhn-

Tucker conditions of the program (5.5) and (5.6).
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Lemma 1. Let r be a matrix of dimension n×m, m≤ (n− 1) collecting the gradients of the

‘active’ (binding) constraints at a solution of the mathematical program (5.5). Suppose that

Assumption 1 holds and suppose that Z(µ) and S(µ) are linearly independent at µ. Then, if

vk,i, j(µ) 6= 0:

a) vk,i, j(µ) is given by either plus or minus the norm of the residual of the projection of

Σ1/2Ck(A)
′ei into the space spanned by the columns of Σ1/2r; that is:

vk,i, j(µ) =
�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2
, (5.7)

or

vk,i, j(µ) = −
�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2
, (5.8)

where

MΣ1/2r ≡ In −Σ1/2r(r ′Σr)−1r ′Σ1/2.

b) In addition, there is a unique maximizer x∗(µ; r) such that r ′x∗(µ; r)= 0m×1 and is given

by:

x∗(µ; r)=Σ1/2
�

MΣ1/2r

�

Σ1/2Ck(A)
′ei

À

vk,i, j(A,Σ).

Consequently, the sign of vk,i, j(µ) depends on which of the two solutions x∗(µ; r) (the one with

(5.7) in the denominator or the one with (5.8)) satisfies the sign restrictions that are not in r.

Proof: See Appendix 5.A.1 for the proof, which uses the necessary Karush-Kuhn-Tucker

conditions of the optimization problem to characterize the maximizers given a set r of active

constraints.¹⁰ Figure 5.1 presents a graphical representation of the mathematical program of

interest. Figure 5.2 presents an intuitive description of the solution.

One way to think about the solution to the problem of interest is explained in Figure

5.2. Suppose there are only equality constraints. Note that Z ′B j = 0m×1 implies that re-

parameterized choice variable ex ≡Σ−1/2B j must lie on the orthogonal space ofΣ1/2Z . That

is, the selected value of ex should be of the form:

ex = MΣ1/2Z y, MΣ1/2Z ≡
�

In −Σ1/2Z(Z ′ΣZ)−1Z ′Σ1/2
�

, y ∈ Rn.

¹⁰ To guarantee the existence of Karush-Kuhn-Tucker multipliers we use the fact that Z(µ) and S(µ)
are linear independence at µ. Our assumption implies that the mathematical program defining the
endpoints of the identified set satisfies a linear independence constraint qualification (see Fiacco and
Ishizuka (1990), p. 224).
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Figure 5.1. The mathematical program defining vk,i, j(A,Σ) (n= 3) with one zero restriction.

Figure 5.1 provides a graphical representation of the mathematical program (5.5), where BB′ =Σ has
been replaced by the ‘ellipsoid’ constraint x ′Σ−1 x = 1, x ≡ B j ∈ R3 (this equivalence will not hold, in
general, if there are restrictions on multiple shocks). The objective function corresponds to the hyper-
plane with normal vector Ck(A)

′ei ∈ R3. In this example, there is only one equality restriction with
normal vector given by the (blue, solid) line. This restriction requires the contemporaneous impact
of the j-th shock on the third variable to be zero. Note that without the equality restriction the maxi-
mizer and minimizer will be given by the point at which the hyperplane is tangent to the ellipsoid.

The quadratic equality constraint also restricts the choice variable ex to satisfy ex ′ex = 1. Con-

sequently, the problem can be re-written as

max
y∈Rn

e′iCkΣ
1/2MΣ1/2Z y s.t. y ′MΣ1/2Z y = 1.

An application of the Cauchy-Schwartz inequality shows that the positive value in (5.7) gives

the maximum response in (5.5).¹¹

¹¹ Using the fact that MΣ1/2 Z is idempotent and using the assumption that

�

e′iCkΣ
1/2MΣ1/2 ZΣ

1/2C ′kei

�1/2
6= 0,
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Figure 5.2. Solving for vk,i, j(A,Σ) (n= 3, Σ = I3) with one equality restriction.

Figure 5.2 provides a graphical representation of the solution to the mathematical program (5.5)
when Σ = I3 and there is only one zero restriction. The solution to the program must lie in the ortho-
gonal complement of Z (blue, thin, solid). In this picture the orthogonal complement corresponds
to the space spanned by the blue, thick, solid lines. This implies that the rotated solution, deno-
ted ex ≡Σ−1/2 x , must be of the form MΣ1/2 Z y for some y ∈ R3. Hence, the only relevant part of
x ′Σ−1 x = 1 becomes the projected version of it: y ′MΣ1/2 y = 1, represented by the black, solid el-
lipsoid. One can find the value of this problem by projecting the gradient of the objective function on
the orthogonal complement of Σ1/2z (arrow) and selecting a direction in the ellipsoid proportional
to it. The value function vk,i j(A,Σ) will be given by the norm of the arrow.

the problem of interest becomes:

max
y∈Rn

�

e′iCkΣ
1/2MΣ1/2 ZΣ

1/2C ′kei

�1/2
� e′iCkΣ

1/2MΣ1/2 Z
�

e′iCkΣ1/2MΣ1/2 ZΣ1/2C ′kei

�1/2

�

MΣ1/2 Z y,

s.t. y ′MΣ1/2 Z y = 1. By the Cauchy-Schwartz inequality this program is bounded above by
(e′iCkΣ

1/2MΣ1/2 ZΣ
1/2C ′kei)

1/2. This value can be achieved by x∗(A,Σ; Z) in Lemma 1.
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5.4.2 Proposition 1: Algorithm to evaluate the maximum and

minimum response

We have provided a closed-form expression (up to a sign) for the maximum response vk,i, j(µ),

given a collection r of active restrictions. We now answer the following question: how does

one compute the maximum response vk,i, j(µ) for a given value of µ?

We use the result in Lemma 1 to state the solution of the mathematical program (5.5)

that includes both equality and inequality restrictions. The main result in this section is that

such problem can be solved by ‘activating’ different combinations of inequality constraints.

In other words, the problem in (5.5) can be solved by finding the largest value among the

Karush-Kuhn-Tucker points that satisfy a feasibility constraint.

Additional Notation Illustrated with our Example—1) Collection of Active Con-

straints: Fix (A,Σ) and, in a slight abuse of notation let Z and S denote Z(µ) and S(µ).

Define first:

R0 ≡ Z ,

as the Rn matrix that collects all of the mz zero restrictions. Hence, in our empirical applica-

tion:

R0 =











0

0

0

1











.

Define also:

R0 ≡
¦

R ∈ Rn×(mz+1)
�

�

� R= [R0, Sems
i ], i ∈ {1, . . . ms}

©

,

as the collection of all matrices that activate one of the ms inequality restrictions; analgously,

R1 corresponds to the collection of matrices that impose one of the inequality restrictions as
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an equality restriction. In our example:

S =











1 0 0

0 1 0

0 0 −1

0 0 0











.

Therefore,

R1 =





























0 1

0 0

0 0

1 0











,











0 0

0 1

0 0

1 0











,











0 0

0 1

0 −1

1 0





























.

More generally, for l ≤ n−mz − 1, consider the collection:

Rl ≡
¦

R ∈ Rn×(mz+l)
�

�

� R= [R0, Sems
m1

, . . . Sems
ml
], {mi}

l
i=1is a subsequence of {1, . . . ms}

©

.

The matrix rl ∈ Rl activates l of the ms sign-restrictions in the SVAR model. Note that the

collection Rl has ms!/(l!(ms − l)!) elements and Rms
has a unique element in which all the

sign restrictions of the model are active (provided ms ≤ n−mz − 1). In our example, n−
mz − 1= 2. There are 3 different subsequences of two elements from the sequence {1, 2,3}:

{1,2},{1,3}, and {2,3}. Therefore,

R2 =





























0 1 0

0 0 1

0 0 0

1 0 0











,











0 1 0

0 0 0

0 0 −1

1 0 0











,











0 0 0

0 1 0

0 0 −1

1 0 0





























.

Thus, R1 and R2 denote the different collection of active constraints formed by choosing

one and two of the elements of S, respectively.

Additional Notation Illustrated with our Example—2) Feasibility: We define the

feasibility of a vector x ∈ Rn (with respect to the sign restrictions) as the indicator function

1ms
(x) = 1

¦

S′x ≥ 0ms×1

©

∈ R, (5.9)
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where, following convention, ≥ is taken component-wise whenever the binary relation is

applied to vectors. Hence, x ∈ Rn is a feasible point for the mathematical program (5.5) if

and only if 1ms
(x)= 1 and x satisfies the equality restrictions in Z .¹² In the context of our

example:

x =











4

3

−2

0











=⇒ 1ms
(x)= 1, but y =











4

3

2

0











=⇒ 1ms
(y)= 0.

The point x is a feasible point for the mathematical program in (5.5) as it satisfies both the

equality and inequality restrictions.

Proposition 1 (Algorithm to evaluate the maximum and minimum response). For µ≡
(vec(A)′, vec(Σ)′)′ consider the mathematical programs

vk,i, j(µ)≡max
B j

e′iCk(A)B j , vk,i, j(µ)≡min
B j

e′iCk(A)B j ,

with each program subject to

BB′ =Σ,

with equality and inequality restrictions:

Z ′B j = 0mz×1, S′B j ≥ 0ms×1.

Let

R≡
min{n−1−mz ,ms}

⋃

l=0

Rl ,

denote all possible combinations of up to n− 1 active constraints and for r ∈ R define vk,i, j(µ; r)

as the function:

vk,i, j(µ; r)=
�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2
,

and let c be a positive and large constant (penalty term) such that −c < vk,i, j(A,Σ)≤
vk,i, j(A,Σ)< c and such that −c < −vk,i, j(A,Σ, r)< vk,i, j(A,Σ, r)< c for all r ∈ R.

¹²We use the term primal feasibility in contrast with dual feasibility, which obtains whenever the
Lagrange multipliers for the sign restrictions that are not active are all positive (or negative).
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Consider the candidate value functions:

v+k,i, j(µ; r)= vk,i, j(A,Σ; r), v−k,i, j(µ; r)= −vk,i, j(A,Σ; r).

If vk,i, j(µ; r) 6= 0, set:

f +max(µ; r) ≡ v+k,i, j(µ; r) − 2(1 − 1ms
(x∗+(µ; r)))c,

f −max(µ; r) ≡ v−k,i, j(µ; r) − 2(1 − 1ms
(x∗−(µ; r)))c,

f +min(µ; r) ≡ v+k,i, j(µ; r) + 2(1 − 1ms
(x∗+(µ; r)))c,

f −min(µ; r) ≡ v−k,i, j(µ; r) + 2(1 − 1ms
(x∗−(µ; r)))c,

where

x∗+(µ; r)=Σ1/2
�

MΣ1/2r

�

Σ1/2Ck(A)
′ei

À

vk,i, j(µ),

x∗−(µ; r)= −Σ1/2
�

MΣ1/2r

�

Σ1/2Ck(A)
′ei

À

vk,i, j(µ).

If vk,i, j(µ; r)= 0 and there is a point x∗ 6= 0 satisfying the equality restrictions in r and also

the inequality restrictions that are not included in r, set:

f +max(µ; r)= f −max(µ; r)= f +min(µ; r)= f −min(µ; r)= 0.

If vk,i, j(µ; r)= 0 and there is no point x∗ 6= 0 satisfying the equality restrictions in r and

the inequality restrictions that are not in r, set:

f +max(µ; r)= f −max(µ; r)= −c and f +min(µ; r)= f −min(µ; r)= c.

Then:

vk,i, j(µ)=max
r∈R

�

max{ f +max(µ; r), f −max(µ; r)}
�

,

and

vk,i, j(µ)=min
r∈R

�

min{ f +min(µ; r), f −min(µ; r)}
�

.

That is, the value function vk,i, j(µ) is obtained by computing the Karush-Kuhn-Tucker points in

Lemma 1 for each r, penalizing the value vk,i, j(µ; r) if unfeasible, and maximizing over all the

possible values of r. The minimum value is obtained analogously.
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Proof: The intuition behind the proof is as follows. Note that any combination of active

sign restrictions r for which x∗+(A,Σ; r) (or x∗−(A,Σ; r)) is well-defined and feasible

must be, by definition, no larger than vk,i, j(A,Σ). Thus, we only have to show that

maxr∈R

�

max{ f +max(A,Σ; r), f −max(A,Σ; r)}
�

≥ vk,i, j(A,Σ). Since Lemma 1 showed that the

value of the program (5.5) should be of the form f +max(A,Σ, r) or f −max(A,Σ, r) for some

r ∈ R, the result must follow. The proof is formalized in Appendix 5.A.2.

Algorithm to evaluate the endpoints of the identified-set: The proposition above

shows that in order to solve the mathematical problem in (5.5) it is sufficient to apply the

following algorithm:

1. Activate different combinations of the ms sign restrictions. Collect the original mz equa-

lity restrictions and the inequality restrictions that were activated in the matrix r. The

matrix should have nomore than n− 1 columns. Note that the total number of matrices

r will be given by:
min{ms ,n−1−mz}

∑

k=0

�

ms

k

�

.

2. Compute the candidate value functions ±vk,i, j(A,Σ; r) for each of the elements r ∈ R.

3. If vk,i, j(A,Σ; r) 6= 0, verify if x∗+(A,Σ; r) satisfies the sign restrictions that were not

included in r. That is, verify the feasibility of the solution x∗+(A,Σ; r). If the primal

feasibility condition is satisfied set

f +max(A,Σ; r)= f +min(A,Σ; r)= vk,i, j(A,Σ; r).

If the primal feasibility condition is violated penalize vk,i, j(A,Σ; r) to guarantee that

it is never a solution by setting:

f +max(A,Σ; r)≡ vk,i, j(A,Σ; r)− 2c,

and

f +min(A,Σ; r)≡ vk,i, j(A,Σ; r)+ 2c.

Check the feasibility of x∗−(A,Σ, r) and proceed in the same way. If vk,i, j(A,Σ; r)= 0

do the adjustment described in Proposition 1.
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4. Select the maximum value of max{ f +max(A,Σ; r), f −max(A,Σ; r)} over r ∈ R; that is,

consider the different combinations of active restrictions and select the maximum

value ±vk,i, j(A,Σ, r) over them. This gives vk,i, j(A,Σ). Taking the minimizer over

f +min(A,Σ; r), f −min(A,Σ; r) gives the smallest value.

Using the algorithm in the UMP example: We use the algorithm to evaluate the

identified set in the running example. We fix µ at its estimated OLS values, denoted bµT ,

and we report vk,i, j(bµT ) and vk,i, j(bµT ) for the cumulative IRFs.¹³ The scale in Figure 5.3

corresponds to a one standard deviation structural UMP shock.

We consider first the equality/inequality restrictions in Table I. We note that evaluating

the endpoints of the identified for the 4 variables in the VAR, over 40 horizons, takes around

.1 seconds. We then include an additional inequality restriction on the response of output to

an expansionary UMP shock. Namely, we assume that even one period after the shock, the

cumulative effect on IP cannot be negative (e′2(C0 + C1(A))B1 ≥ 0). A comparison between

the two collections of restrictions suggests that, in this example, the noncontemporaneous

constraint has almost no additional identification power.

Of course, one could use the Bayesian algorithm in Uhlig (2005) to approximate the va-

lue of the endpoints. Given D draws of the reduced-form parameters (A,Σ) and a unit vector

q ∈ Rn, one could report the maximum and minimum value for {λd
k,i, j(A,Σ, q)}D

d=1 over the

different draws. This algorithm is a random grid search approach to solve the programs (5.5)

and (5.6). Figure 5.6 in the appendix presents a comparison between the different approa-

ches. The grid search takes around 300 seconds to run and underestimates the identified

set.

¹³ The formula for the maximum (minimum) k-th period ahead cumulative IRF replaces Ck(bAT ) by
C0(bAT )+ C1(bAT )+, . . . ,+Ck(bAT ).
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Figure 5.3. Identified set for the cumulative impulse response functions to a one standard deviation UMP shock (given bµT )

(Solid, Blue Line) Endpoints of the identified set for the cumulative responses given bµT and the equality/inequality restrictions in Table I.

(Blue, Crosses) Endpoints of the identified set with the additional restriction e′2(C0 + C1(A))B1 ≥ 0.
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5.5 Directional differentiability of the endpoints

Once again, let

R(µ)≡
min{n−1−mz ,ms}

⋃

l=0

Rl(µ),

denote the set of all possible combinations up to n− 1 active constraints.¹⁴ Let us denote the

typical element in R(µ) as r(µ), which we take to be an n× l matrix with l ≤ n− 1. We will

continue working with the auxiliary function:

vk,i, j(µ; r(µ))=
�

e′iCk(A)Σ
1/2MΣ1/2r(µ)Σ

1/2Ck(A)
′ei

�1/2
,

where we now explicitly acknowledge the possible dependence of r on µ. In Lemma 1 we

have shown that if r(µ) is the active set of constraints at a solution of the program (5.5),

then:

vk,i, j(µ)= vk,i, j(µ; r(µ)) or vk,i, j(µ)= −vk,i, j(µ; r(µ));

as long as vk,i, j(µ) 6= 0. In order to establish the differentiability of vk,i, j(µ) we prove the

following intermediate result.

Lemma 2 (Differentiability results for a given active set of constraints). If r(µ) is dif-

ferentiable with respect to µ and vk,i, j(µ; r(µ)) 6= 0, then vk,i, j(µ; r(µ)) is differentiable with

respect to µ with derivative v̇k,i, j(µ; r(µ)) given by:







∂ vk,i, j(µ;r(µ))
∂ vec(A)

∂ vk,i, j(µ;r(µ))
∂ vec(Σ)






=







∂ vec(Ck(A))
∂ vec(A) (x∗(µ; r(µ))⊗ ei)−

∑l
k=1 w∗k

∂ vec(rk(µ))
vec(A) x∗(µ, r(µ))

λ∗(Σ−1 x∗(µ, r(µ))⊗Σ−1 x∗(µ, r(µ)))−
∑l

k=1 w∗k
∂ vec(rk(µ))

vec(Σ) x∗(µ, r(µ))






,

where rk(µ) denotes the k-th column of r(µ),

x∗(A,Σ; r(µ))=Σ1/2
�

MΣ1/2r(µ)

�

Σ1/2Ck(A)
′ei

À

vk,i, j(A,Σ; r(µ)),

λ∗ ≡
1
2

vk,i, j(A,Σ; r(µ)), w∗ ≡ [r(µ)′Σr(µ)]−1r(µ)′ΣCk(A)ei ,

¹⁴ The dependence of the set R on the parameter µwas omitted in the previous section for notational
simplicity.
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and w∗k is the k-th component of the vector w∗.

Proof: See Appendix 5.A.3.

The envelope theorem sheds light on the derivative formula in Lemma 2. Note first that

vk,i, j(µ, r(µ))=max
x∈Rn

e′iCk(A)x s.t. x ′Σ−1 x = 1 and r ′(µ)x = 0l×1.

The auxiliary Lagrangian function of this problem is given by:

L (x;µ, r(µ))= (x ′ ⊗ e′i)vec(Ck(A))−λ
�

(x ′ ⊗ x ′)vec(Σ−1)− 1
�

−w′(r(µ)′x),

where λ is the Lagrange multiplier corresponding to the quadratic equality restriction and

w ∈ Rl is the vector of Lagrange multipliers corresponding to the l equality restrictions. The

envelope theorem suggests that v̇k,i, j(µ; r(µ)) is given by the formula in Lemma 2. We con-

firm this intutition in the prove of Lemma 2; provided vk,i, j(µ; r(µ)) 6= 0.

We now establish the differentiability of vk,i, j(µ). Without loss of generality, assume that

vk,i, j(µ)> 0 (and also that vk,i, j(µ)< 0). For a fixed vector of reduced-form parameters de-

fine the sets:

R∗(µ)≡
¦

r(µ) ∈ R(µ) | vk,i, j(µ)= vk,i, j(µ, r(µ))
©

,

and

R∗(µ)≡
¦

r(µ) ∈ R(µ) | vk,i, j(µ)= −vk,i, j(µ, r(µ))
©

.

The set R∗(µ) collects the different active constraints that could lead to the maximum

value. The set R∗(µ) is a singleton if and only if the program (5.5) has a unique solution. The

set R∗(µ) is defined analogously.

Proposition 2 (Directional differentiability of the endpoints of the identified set). Sup-

pose, w.l.o.g., that vk,i, j(µ)> 0 and vk,i, j(µ)< 0. Then, for any sequence hn ∈ Rd such that

hn→ h and any sequence tn→∞:

tn

�

vk,i, j(µ+ hn / tn)− vk,i, j(µ)
�

→ max
r(µ)∈R∗(µ)

�

v̇k,i, j(µ; r(µ))′h
�

,

and

tn

�

vk,i, j(µ+ hn / tn)− vk,i, j(µ)
�

→ min
r(µ)∈R∗(µ)

�

− v̇k,i, j(µ; r(µ))′h
�

.
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Thus, vk,i, j and vk,i, j are directionally differentiable functions of the reduced-form parameters

with directional derivative:

max
r(µ)∈R∗(µ)

�

v̇k,i, j(µ; r(µ))′h
�

,

and

min
r(µ)∈R∗(µ)

�

− v̇k,i, j(µ; r(µ))′h
�

,

respectively.

Whenever R∗(µ) is a singleton—i.e., R∗(µ)= {r(µ)}—the value function vk,i, j(µ) is fully

differentiable with derivative v̇k,i, j(µ, r(µ)). Likewise if R∗(µ) is a singleton, the value function

vk,i, j(µ) is differentiable with derivative −v̇k,i, j(µ, r(µ)).

Proof: See Appendix 5.A.4.

Theorem 4.2, p. 223 in Fiacco and Ishizuka (1990) and Theorem 4.24, p. 280 in the book

of Bonnans and Shapiro (2000) present a generalized version of the envelope theorem. They

show that—under suitable constraint qualifications—the directional derivative (in direction

h and evaluated at parameter µ) of the largest and smallest value in a mathematical program

with equality and inequality constraints is given by:

sup
r∈R∗(µ)

�

∇µL (x∗(µ; r);µ)h
�

,

and

inf
r∈R∗(µ)

�

∇µL (x∗(µ; r);µ)h
�

,

provided there is a unique set of Lagrange Multipliers supporting the optimal solutions

x∗(µ; r). Proposition 2 uses the results in Lemma 1 and Lemma 2 to verify this formula.

Delta-Method vs. Bootstrap: We also note that directionally differentiable functions

have been a topic of recent research. Fang and Santos (2015) show that the standard boot-

strap is not consistent when applied to parameters of the form v(µ), where v is a directionally

differentiable function. Kitagawa et al. (2016) show that Bayesian credible sets based on the

quantiles of the posterior distribution of v(µ) will be asymptotically equivalent to the fre-

quentist bootstrap (which is not consistent in this case).

These results imply that typical frequentist and Bayesian inference for directionally dif-

ferentiable functions is problematic. The next section shows that the special form of the di-
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rectional derivative in the class of SVARs models studied in this paper allows the researcher

to conduct delta-method inference, with a slight adjustment on the standard errors.

5.6 Delta-method inference

This section proposes a delta-method confidence interval of the form

CST (1−α)≡
�

vk,i, j(bµT )− z1−α/2 bσ(k,i, j),T /
p

T , vk,i, j(bµT )+ z1−α/2 bσ(k,i, j),T /
p

T
�

,

where

bµT ≡ (vec(bAT )
′,vec(ÒΣT )

′),

is the OLS estimator for µ defined as:

bAT ≡
� 1

T

T
∑

t=1

Yt X
′
t

�� 1
T

T
∑

t=1

X t X
′
t

�−1
, ÒΣT ≡

1
T

T
∑

t=1

bηt bη
′
t ,

with

X t ≡ (Y ′t−1, . . . , Y ′t−p)
′, bηt ≡ Yt − bAT X t .

We work under the assumption that
p

T(bµT −µ) is asymptotically normal with some covari-

ance matrix Ω. A common formula to estimate the asymptotic variance of bµT is:

ÒΩT ≡
� 1

T

T
∑

t=1

vec
�

[bηt X
′
t , bηt bη

′
t − ÒΣT ]

�

vec
�

[bηt X
′
t , bηt bη

′
t − ÒΣT ]

�′
.

We use the results in Proposition 2 and the asymptotically normality of bµT to suggest the

following formula for bσ(k,i, j),T :

bσ(k,i, j),T ≡ max
r∈R(bµT )

�

v̇k,i, j(bµT ; r)′ÒΩT v̇k,i, j(bµT ; r)
�

, (5.10)

where R(bµT ) is the set of all possible active constraints evaluated at bµT .
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Main Result in this section: Let P denote the data generating process and let

IRk,i, j(µ(P)) denote the identified set for the structural parameter λk,i, j given the equa-

lity/inequality restrictions inR(µ). This section shows that under our proposed specification

of bσ(k,i, j),T :

lim inf
T→∞

inf
λ∈I R(µ(P))

P
�

λ ∈ CST (1−α)
�

≥ 1−α.

Consequently, the delta-method confidence interval presented in this paper is pointwise

consistent in level. We now describe the main large-sample assumptions concerning P.

Data Generating Process: The SVAR parameters (A1, . . . , Ap, B, F) define a probability

measure, denoted P, over the data observed by the econometrician. Our main assumption

concerning P is as follows:

Assumption 4 (Asymptotic Normality of bµT ). The data generating process P is such that

for µ(P) ∈ Rd :
p

T(bµT −µ(P))
d
→ ζ(P)∼Nd

�

0 , Ω(P)
�

,

and
ÒΩT

p
→ Ω(P).

Thus, our only restriction on (A1, A2, . . . , Ap, B, F) is that, whatever these parameters are,

the OLS estimator bµT is asymptotically normal with a covariance matrix that can be estimated

consistently.

Delta-method for Directionally Differentiable functions: Dümbgen (1993),

Shapiro (1991), and Fang and Santos (2015) have shown if v is a directionally differenti-

able function with directional derivative v̇µ(h) (in direction h evaluated at µ) then:

p
T(v(bµ)− v(µ))

d
→ v̇µ(ζ),
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whenever Assumption 4 holds.¹⁵ Proposition 2 in the previous section established that the

directional derivative of vk,i, j—in direction h evaluated at µ—is given by:

max
r∈R∗(µ)

�

v̇k,i, j(µ; r))′h
�

.

where R∗(µ) collects the active constraints that generate vk,i, j(µ). Thus, Proposition 2 and

Assumption 4 imply that:

p
T(vk,i, j(bµ)− vk,i, j(µ))

d
→ max

r∈R∗(µ)

�

v̇k,i, j(µ, r)′ζ
�

,

where

v̇k,i, j(µ, r(µ))′ζ∼N1

�

0, v̇k,i, j(µ, r(µ))′Ω v̇k,i, j(µ, r(µ))
�

.

Inference for Directionally Differentiable Functions: How can we use the delta-

method result above to construct a confidence set for λk,i, j? Our suggestion—which exploits

the specific form of the directional derivative in the SVAR context—is to consider:

bσ(k,i, j),T ≡ max
r∈R(bµT )

�

v̇k,i, j(bµT ; r)′ÒΩT v̇k,i, j(bµT ; r)
�

,

where R(bµT ) is the set of all the different collections of active constraints evaluated at bµT . The

resulting standard error will then be used to enlarge the plug-in estimator of the endpoints

of the identified set. The suggested confidence interval is shown to be pointwise consistent

in level.¹⁶ This is formalized in the following proposition.

Proposition 3 (Pointwise Consistency in Level of the Delta-Method Confidence Interval).

Let bσ(k,i, j),T be defined as in (5.10). Suppose there are at most n− 1 equality restrictions and

¹⁵ The map v : Rr → R is said to be Hadamard directionally differentiable at µ ∈ µ ⊆ Rr , tangenti-
ally to Rr , if there is a continuous (not necessarily linear) map v̇(·,µ) : Rr → R such that:

lim
T→∞

�

�

�

v(µ+ tT hT )− v(µ)
tT

− v̇(h;µ)
�

�

�= 0,

for all sequences {hT} ⊆ Rr and {tT} ⊆ R+ such that tT → 0+, hT → h ∈ Rr and µ+ tT hT ∈ µ for all
T . The function v(·) is Fully Differentiable at µ if and only if the mapping v̇(·;µ) is linear. See Fang
and Santos (2015) for a recent elegant exposition on directionally differentiable functions. See also
Shapiro (1990).

¹⁶ The question of how to build a uniformly consistent in level, delta-method confidence set for a set-
identified parameter is beyond the scope of this paper. For the readers interested in uniform inference
for set-identified parameters in SVARs our suggestion is to apply the projection approach developed
in Gafarov et al. (2016). Compared to GMM16, the delta-method approach described in this paper is
faster to implement.
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that data generating process P is such that Z(µ(P)) and S(µ(P)) are linearly independent at

µ(P) as defined in Section 4, and also differentiable. Suppose in addition that:

min
r∈R(µ)

�

v̇k,i, j(µ(P), r)′Ω(P)v̇k,i, j(µ(P), r)
�

> 0.

Then, under Assumption 4:

lim inf
T→∞

inf
λ∈IRk,i, j(µ(P))

P
�

λ ∈
�

vk,i, j(bµT ) − z1−α/2 bσ(k,i, j),T /
p

T ,

vk,i, j(bµT ) + z1−α/2 bσ(k,i, j),T /
p

T
��

≥ 1 − α

Proof: See Appendix 5.A.5.

The intuition behind our proof is as follows. Note first that if λ belongs to the identi-

fied set, (i.e., λ ∈ IRk,i, j(µ(P)), then such parameter must lie between the maximum and the

minimum response; that is λ ∈ [vk,i, j(µ(P)), vk,i, j(µ(P))]. Consequently, one can show that:

P
�

λ ∈
�

vk,i, j(bµT ) − z1−α/2 bσ(k,i, j),T /
p

T , vk,i, j(bµT ) + z1−α/2 bσ(k,i, j),T /
p

T
��

,

is larger than or equal to

P
�

vk,i, j(µ(P)), vk,i, j(µ(P)) ∈
�

vk,i, j(bµT ) − z1−α/2 bσ(k,i, j),T /
p

T ,

vk,i, j(bµT ) + z1−α/2 bσ(k,i, j),T /
p

T
��

.

Thus, a sufficient condition for the validity of the delta-method confidence interval is

that it covers the identified set with probability at least 1−α. Note that the probability of

covering the identified set can be written as one minus the sum of the following two terms:

P
�p

T(vk,i, j(bµT )− vk,i, j(µ(P)))> z1−α/2bσ(k,i, j),T

�

,

and

P
�p

T(vk,i, j(bµT )− vk,i, j(µ(P))< −z1−α/2 bσ(k,i, j),T >)
�

.

Using our large sample assumptions and the delta-method for directional differentiable functi-

ons, these probabilities are approximately equal to:

P
�

min
r∈R∗(µ(P))

[−v̇k,i, j(µ(P), r)′Zd]> z1−α/2σ(k,i, j)

�

,
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and

P
�

max
r∈R∗(µ(P))

[v̇k,i, j(µ(P), r)′Zd]< −z1−α/2σ(k,i, j)

�

,

where:

σk,i, j ≡ max
r∈R(µ)

�

v̇k,i, j(µ(P), r)′Ω(P)v̇k,i, j(µ(P), r)
�

, Zd ∼N (0,Ω).

Take any r∗ ∈ R∗(µ(P)) for which σ(k,i, j)(r∗)≡ v̇k,i, j(µ(P), r∗)
′Ω v̇k,i, j(µ(P), r∗)> 0. (we

have assumed that such r∗ exists). It follows that:

P
�

min
r∈R∗(µ(P))

[−v̇k,i, j(µ(P), r)′Z]> z1− α2σ(k,i, j)

�

≤ P
�

σk,i, j(r∗)N(0,1)> z1− α2σ(k,i, j)

�

,

and the last term is bounded above by α/2. Analogously, we can select an r∗ ∈ R∗(µ(P)) for

which σ(k,i, j)(r
∗)≡ v̇k,i, j(µ(P), r∗)′Ω v̇k,i, j(µ(P), r∗)> 0 and we can show that:

P
�

max
r∈R∗(µ(P))

[v̇k,i, j(µ(P), r)′Z]< −z1− α2σ(k,i, j)

�

≤ P
�

σk,i, j(r
∗)N(0, 1)< −z1− α2σ(k,i, j)

�

,

which is also bounded above by α/2. These inequalities suffice to establish the pointwise

validity of our delta-method approach.

Monte-Carlo Evidence: We conduct a simple Monte-Carlo exercise to study the co-

verage probability of our delta-method confidence set. We set (1−α)= .68, which im-

plies that z1−α/2 = .9945. We generate 10, 000 draws from the multivariate normal model

Nd(bµT ,ÒΩT / T) and for each draw (denoted µ∗) we compute the confidence interval:

�

vk,i, j(µ
∗)− .9945σ∗(k,i, j),T /

p
T , vk,i, j(µ

∗)+ .9945σ∗(k,i, j),T /
p

T
�

.

We check whether [vk,i, j(bµT ), vk,i, j(bµT )] is contained in the confidence interval or not. The

estimated probability provides a lower bound on the coverage of the identified parameter.

The results are reported in Figure 5.4.
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Figure 5.4. Monte-Carlo coverage probability based on the model µ∗ ∼N (bµT ,ÒΩT / T), T = 342.

(Blue, Circles) Monte-Carlo estimate of the probability P
�

[vk,i, j(bµT ), vk,i, j(bµT )] ∈ [vk,i, j(µ
∗)− .9945σ∗(k,i, j),T /

p
T , vk,i, j(µ

∗)+

.9945σ∗(k,i, j),T /
p

T]
�

for the model µ∗ ∼N (bµT ,ÒΩT ), with T = 342. The values bµT and ÒΩT correspond, respectively, to the estimators of the

reduced-form parameter and its asymptotic covariance matrix in the UMP application. (Blue, Solid Line) Nominal confidence level for the

delta-method confidence interval (68%).
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5.7 Unconventional monetary policy shocks

As we mentioned before, the identification strategy in this paper was motivated by two me-

chanisms used by the Federal Reserve to affect market beliefs during the Great Recession:

forward guidance announcements and the large-scale asset purchase program. We will focus

on one particular episode of the Great Recession illustrating the role of forward guidance.

In August 2010 the Federal Open Market Committee announced: “The Committee will keep

constant the Federal Reserve’s holdings of securities at their current level by reinvesting princi-

pal payments from agency debt and agency mortgage-backed securities in longer-term Treasury

securities.” This announcement was an important prelude for the second part of the Quan-

titative Easing program (QE2) (see p. 244 in Krishnamurthy and Vissing-Jorgensen (2011)

for a detailed discussion). In addition, this announcement generated a drop in the intraday

yield for two- and ten- year treasury bond. In fact, from the end of July 2010 to the end of

August 2010 the 2 year Treasury bond rate fell by 10 basis points.

Figure 5.5 uses our delta-method approach to construct confidence bands for the evo-

lution of the levels of the four variables in the monetary SVAR. We fix all the variables at

their level on July 2010 and we trace their evolution (over a 12-month window) according

to the confidence set for their cumulative responses. The motivation for this exercise is as fol-

lows. Suppose that—back in August 2010—an econometrician is asked to provide confidence

bands for the evolution of IP, CPI, 2YTB, and FF after the August 2010 announcement of the

Federal OpenMarket Committee (FOMC). The econometrician observes the realization of the

macroeconomic variables from July 1979 until August 2010, but decides to deliberately ig-

nore the two years of data after the crisis (to avoid introducing structural changes, stochastic

volatility, or any other feature that will complicate the estimation of the VAR).

The econometrician uses the data until December 2007—one semester before the finan-

cial crisis—to conduct delta-method inference on the cumulative responses to a one standard

deviation unconventional monetary policy shock. The econometrician then uses these cumu-

lative responses to get a rough idea of the evolution of the variables (in levels) following the

announcement of the Federal Reserve in August 2010. The econometrician assumes there is a

linear trend for CPI/IP, and ignores sampling uncertainty coming from the trend estimation

in reporting the bands.
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An ex-post evaluation of this exercise (over a window of 12 months) is reported in Figure

5.5.¹⁷ We note that the observed dynamics for CPI, IP, GS2, and FFR from August 2010 to

July 2011 fall within the bounds motivated by our delta-method confidence interval. We also

note that our delta-method confidence interval misses the observed value at most three out

of 12 months, which means that our 68% confidence-set covers each of these variables at

least 75% of the time. We also report the 68% Bayesian credible sets.

¹⁷ The reason to focus in a 12-month window is to cover the period between the QE2 announ-
cement and the announcement of the so-called “Operation Twist” in September 2011. See http:
//www.federalreserve.gov/newsevents/press/monetary/20110921a.htm.

http://www.federalreserve.gov/newsevents/press/monetary/20110921a.htm
http://www.federalreserve.gov/newsevents/press/monetary/20110921a.htm
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Figure 5.5. Delta-method confidence interval for CPI, IP, 2yTB, FF after the August 2010 announcement

Consumer Price Index Industrial Production Index

2-year Treasury Bond Rate Federal Funds Rate

(Shaded, Blue Area) Evolution of the Levels CPI, IP, 2yTB, and FF based on our 68% delta method confidence bands for the coefficients of

Cumulative Impulse-Response Functions. (Gray, Solid Line) Observed Levels of CPI, IP, 2yTB, and FF from December 2009 to July 2011. Both

the CPI index and the IP index were normalized to have a starting value of 100. (Gray, Dashed Line) Evolution of the Levels CPI, IP, 2yTB,

and FF based on the 68% credible set constructed using the priors in Uhlig (2005).
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Computational Cost: We close this section with some comments regarding the com-

putational cost of our delta-method procedure. Most of the work to compute the endpoints

of the identified set and its derivatives is analytical. Consequently, practitioners can expect

the computational burden of our procedure to be low. We note that the implementation of

our delta-method confidence interval in the running example takes only around .15 seconds

(using a standard Laptop @2.4GHz IntelCore i7). With the same equipment, the standard

Bayesian implementation required around 327 seconds for 10,000 draws (which means that

we could have constructed 2,000 delta-method confidence intervals while we generated the

Bayesian credible set).

Comparison with the Projection Approach: Figure 5.7 presents a comparison bet-

ween the delta-method approach and the projection confidence interval recently proposed

by Gafarov et al. (2016) [GMM16]. The projection confidence interval has three theoretical

properties that we were not able to verify for the delta-method approach. First, the projection

confidence interval is uniformly consistent in level. Second, the projection confidence interval

yields valid inference for the whole impulse-response function and not only its scalar coeffi-

cients. Third, the projection confidence interval has—in large samples—Bayesian credibility

of at least the nominal level (for a large class of priors).

In order to exploit our formulas for the endpoints of the identified set, we followed a

different algorithm to the one suggested in GMM16. We used a random grid over the Wald

ellipsoid for the reduced-form parameters and reported the range of IRFs over this grid. The

implementation of the projection confidence set (based on a random grid of 10,000 points)

took around 1300 seconds (4 times slower than the Bayesian credible set and 8,000 times

slower than the delta-method). We note that the projection confidence interval (which is

wider than the delta-method bands) contains the realized value of IP, CPI, 2YTB, and FF for

every horizon under consideration.

Comparison with Calibrated Projection: The projection confidence interval covers

the structural parameters more often than necessary. GMM16 show that when the endpoints

of the identified set are differentiable, one can project a Wald ellipsoid with a radius given by

z2
1−α to eliminate projection bias. The calibrated confidence set will be approximately given

by:
�

vk,i, j(bµT )− z1−α bσ(k,i, j),T /
p

T , vk,i, j(bµT )+ z1−α
bσ(k,i, j),T /

p
T
�

,

where bσ(k,i, j),T , bσ(k,i, j),T are estimators of the asymptotic variance of the plug-in estimators

for the endpoints of the identified set. Figure 5.8 reports the calibrated projection.
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Under the differentiability assumption, both bσ(k,i, j),T , bσ(k,i, j),T are smaller (for every data

realization) than bσ(k,i, j),T . This suggests that—whenever the endpoints of the identified set

are fully differentiable—the calibrated projection should deliver smaller confidence intervals

than our delta-method approach, as our formula for the standard error takes into account the

possibility that the endpoints are only directionally differentiable. In terms of computation

time, the calibrated projection takes approximately 109,365 seconds (solving the nonlinear

program described in GMM16).

Comparison with the Robust Approach: Finally, Figure 5.6 in the Appendix reports

the robust-Bayesian credible set in Giacomini and Kitagawa (2015). The implementation of

the robust-Bayes credible set (based on 10,000 posterior draws and using our algorithm to

evaluate the endpoints) took around 9,106 seconds.¹⁸

5.8 Conclusion

This paper focused on set-identified SVARs that impose equality and inequality restrictions to

set-identify only one structural shock. For this class of models, the endpoints of the identified

set have special properties that allow an intuitive and computationally simple approach to

conduct frequentist inference. Specifically, the paper made three contributions:

(i) We presented an algorithm to compute—for each horizon, each variable, a fixed

vector of reduced-form parameters, and a given collection of equality and/or inequality

restrictions—the largest and smallest value of the coefficients of the structural IRF (see Pro-

position 1). Our algorithm does not require random sampling from the space of rotation

matrices or unit vectors. Instead, we treated the bounds of the identified set as the maxi-

mum and minimum value of a mathematical program whose solutions we can characterize

analytically.

(ii) We provided sufficient conditions under which the largest and smallest value of the

structural parameters are directionally differentiable functions of the reduced-form parame-

ters (see Proposition 2). This result seems to be of interest in its own right, and for example,

could be used to explore the frequentist properties of the robust-Bayesian procedure in Gia-

comini and Kitagawa (2015).

(iii) We proposed a computationally convenient delta-method confidence interval for the

set-identified coefficients of the structural IRF. We presented sufficient conditions to guaran-

¹⁸ Out of which 1,266 seconds were used just to compute the identified set for each posterior draw,
and the remaining time to translate the posterior bounds into the GK robust bounds
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tee the pointwise consistency in level of the suggested inference approach. The delta-method

in this paper exploited the structure of the directional derivative.
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Appendix 5.A Appendix

5.A.1 Lemma 1

Let S(µ) denote the n×ms matrix of ms ‘sign’ restrictions and let Z(µ) denote the mz × n

matrix of ‘zero’ restrictions. For notational simplicity, we deliberately ignore the dependence

of the equality/inequality restrictions on µ. The problem in equation (5.5) is equivalent to:

vk,i, j(A,Σ) ≡ max
x∈Rn

e′iCk(A)x

s.t. x ′Σ−1 x = 1, S′x = 0ms×1, Z ′x = 0mz×1. (5.11)

The auxiliary Lagrangian function is given by:

L (x , w1, w2, w3; A,Σ) = e′iCk x − w1(x ′Σ−1 x − 1) − w′2(S
′x) − w′3(Z

′x).

Since Z(µ) and S(µ) are linearly independent at µ we can characterize the maximum re-

sponse using the Karush-Kuhn-Tucker conditions for the mathematical program in (5.5). The

Karush-Kuhn-Tucker necessary conditions for this problem are as follows:

Stationarity : C ′k(A)ei − 2w1Σ
−1 x − Sw2 − Zw3 = 0n×1,

Primal Feasibility : x ′Σ−1 x = 1,

S′x ≥ 0ms×1,

Z ′x = 0mz×1,

Complementary Slackness : ω2i(e
′
iSx) = 0 ∀ i = 1 . . . ms,

plus the additional dual feasibility constraint requiring the Lagrange multipliers, ω2i , to be

smaller than or equal to zero.

Let x∗(A,Σ, r) be one (out of possibly many) maximizer of the program of interest and sup-

pose that the m× n matrix (m≤ n− 1) r collects all the restrictions that are active (binding).

Because of Assumption 1 and the fact that Z and S are linearly independent at µ, the matrix

r is of full rank m and m must be smaller than or equal n− 1. Using stationarity, primal
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feasibility, and complementary slackness at x∗ we get:

0 = x∗′[Ck(A)
′ei − 2w∗1Σ

−1 x∗ − Sw2 − Zw3]

= x∗′Ck(A)
′ei − 2w∗1 x∗′Σ−1 x∗ − x∗′Sw2 − x∗′Zw3

= x∗′Ck(A)
′ei − 2w∗1 − x∗′Sw2 − x∗′Zw3

(where we have used x∗′Σ−1 x∗ = 1)

= x∗′Ck(A)
′ei − 2w∗1

(where we have used x∗′Z = 0mz×1 and complementary slackness)

= vk,i, j(A,Σ) − 2w∗1.

where vk,i, j(A,Σ) denotes the value of the maximum response when the constraints in r are

active. Thus, the Lagrange multiplier w∗1 is unique and given by:

w∗1 =
1
2

vk,i, j(A,Σ).

Note also that w∗1 6= 0 if and only if vk,i j(A,Σ) 6= 0. We now show that if vk,i, j(A,Σ) 6= 0

there are unique w∗2 and w∗3 that satisfy the Karush-Kuhn Tucker conditions. Note that left

multiplying the stationarity condition by Σ we have:

2w∗1 x∗′ =
�

Ck(A)
′ei − rw

�′
Σ.

where w collects the nonzero components of ω2 and all the components of ω3.

�

Ck(A)
′ei − rw

�′
Σ
�

Ck(A)
′ei − rw

�

= 4w2
1 x ′Σ−1 x (5.12)

= 4w2
1

(where we have used x∗′Σ−1 x∗ = 1)

= 4
�1

2
vk,i, j(A,Σ)

�2

= vk,i, j(A,Σ)2.

Consequently the value function given active constraints z is given by either:

vk,i, j(A,Σ)=
��

Ck(A)
′ei − rw

�′
Σ
�

Ck(A)
′ei − rw

��1/2
,

or

vk,i, j(A,Σ)= −
��

Ck(A)
′ei − rw

�′
Σ
�

Ck(A)
′ei − rw

��1/2
.
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We will use the first order conditions to find the vector of Lagrange multipliers w and show

that they are unique given vk,i, j(A,Σ) 6= 0. Note that

0 = 2w∗1r ′x∗ = vk,i, j(A,Σ)
�

r ′Σ(Ck(A)
′ei − rw)

�

= vk,i, j(A,Σ)
�

r ′ΣCk(A)
′ei − r ′Σrw

�

.

Under the assumptions of the Lemma, r is of rank m. If vk,i, j(A,Σ) 6= 0, the equation above

holds if and only if

w∗ = (r ′Σr)−1r ′ΣCk(A)
′ei .

Consequently, the Lagrange multipliers for the active restrictions are unique. To conclude the

proof, we get an explicit expression of the value function in terms of (A,Σ). To do so, note

that:

Σ1/2
�

Ck(A)
′ei − rw

�

= Σ1/2Ck(A)
′ei − Σ1/2rw

= Σ1/2Ck(A)
′ei − Σ1/2r(r ′Σr)−1r ′ΣCk(A)

′ei

=
�

In − Σ1/2r(r ′Σr)−1r ′Σ1/2
�

Σ1/2Ck(A)
′ei

=
�

In − PΣ1/2r

�

Σ1/2Ck(A)
′ei

= MΣ1/2rΣ
1/2Ck(A)

′ei .

Therefore, the equation above and (5.12) imply that if vk,i, j(A,Σ) 6= 0 then either:

vk,i, j(A,Σ)=
�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2

or

vk,i, j(A,Σ)= −
�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2
.

Furthermore, since any solution for which z is the set of binding constraints satisfies 2w∗1 x∗′ =

(Ck(A)
′ei − rw)′Σ, then the solution vectors for which the constraints in r are binding are:

x∗ =Σ1/2
�

MΣ1/2r

�

Σ1/2Ck(A)
′ei

À�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2
,

or

x∗ = −Σ1/2
�

MΣ1/2r

�

Σ1/2Ck(A)
′ei

À�

e′iCk(A)Σ
1/2MΣ1/2rΣ

1/2Ck(A)
′ei

�1/2
.
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In any case the lagrange multipliers for the active constraints are given (as shown above) by,

w∗ = (r ′Σr)−1r ′ΣCk(A)
′ei .

Remark to the proof of Lemma 1: If vk,i, j(A,Σ)= 0, then neither the maximizer x∗ nor

the Lagrange multipliers w∗ are unique. Note that any x ∈ Rn orthogonal to Ck(A)
′ei sa-

tisfying the ellipsoid constraint x ′Σ−1 x = 1 and the sign/zero restrictions is a solution. In

addition, any vector of Lagrange multipliers satisfying the equation C ′kei − rw= 0n×1, satis-

fies the F.O.C.

5.A.2 Proof of Proposition 1

Let x∗ ∈ Rn be a solution to the program (5.5) and let r∗ be the set of constraints that are

active at x∗.

Step 1: We show first that

vk,i, j(A,Σ)≥max
r∈R

�

max{ f +max(A,Σ; r), f −max(A,Σ; r)}
�

.

We do so by considering two different cases. Case 1.1: Take any r ∈ R, and assume first that

vk,i, j(A,Σ, r) 6= 0. If 1ms
(x∗+(A,Σ, r))= 0, then

f +max(A,Σ, r)= vk,i, j(A,Σ, r)− 2c ≤ c − 2c = −c < vk,i, j(A,Σ).

If, however, r ∈ R is such that 1ms
(x∗+(A,Σ, r))= 1, then x∗+(A,Σ, r) satisfies all the equality

and inequality restrictions in (5.5) and, by construction, also satisfies the ellipsoid constraint

x∗+(A,Σ, r)′Σ−1 x∗+(A,Σ, r)= 1.

Consequently, vk,i, j(A,Σ)≥ f +max(A,Σ, r) for all r ∈ R. An analogou argument shows that

vk,i, j(A,Σ)≥ f −max(A,Σ, r). This implies that:

vk,i, j(A,Σ)≥max{ f +max(A,Σ, r), f −max(A,Σ, r)},

for all r ∈ R such that vk,i, j(A,Σ, r) 6= 0.

Case 1.2: Consider now any r such that vk,i, j(A,Σ, r)= 0. If there is no feasible point x∗

that gives such value, then f +max(A,Σ, r)= f −max(A,Σ, r)= −c ≤ vk,i, j(A,Σ). If there is such

a feasible point x∗ 6= 0 then f +max(A,Σ, r)= f −max(A,Σ, r)= 0 Since x∗ is in the choice set
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of the program 5.5, then f +max(A,Σ, r)= f −max(A,Σ, r)= 0≤ vk,i, j(A,Σ). Therefore, Case 1.1

and 1.2 imply that:

vk,i, j(A,Σ)≥max{ f +max(A,Σ, r), f −max(A,Σ, r)} for all r ∈ R.

Step 2: We now show that

vk,i, j(A,Σ)≤max
r∈R

max{ f +max(A,Σ, r), f −max(A,Σ, r)}.

Again, we consider two cases.

Case 2.1: Assume first that vk,i, j(A,Σ) 6= 0. Without loss of generality, let vk,i, j(A,Σ)> 0. Let

r∗ ∈ R denote the set of active sign restrictions at the solution x∗. By Lemma 1, we know that

vk,i, j(A,Σ)=
�

e′iCk(A)Σ
1/2MΣ1/2r∗Σ

1/2Ck(A)
′ei

�1/2
,

and

x∗(A,Σ; r∗)=Σ1/2
�

MΣ1/2r∗
�

Σ1/2Ck(A)
′ei

À�

e′iCk(A)Σ
1/2MΣ1/2r∗Σ

1/2Ck(A)
′ei

�1/2
.

Since this point satisfies the sign restrictions not in r∗, then

�

e′iCk(A)Σ
1/2MΣ1/2r∗Σ

1/2Ck(A)
′ei

�1/2
= f +max(A,Σ, r∗).

Consequently,

vk,i, j(A,Σ)≤max
r∈R

max{ f +max(A,Σ, r), f −max(A,Σ, r)}.

Case 2.2: If vk,i, j(A,Σ)= 0, there is an x∗ 6= 0 in the choice set. Hence, the

Karush-Kuhn-Tucker conditions implies that Ck(A)
′ei is a linear combination of the

active constraints that generate the value of zero (which means there is an r∗

such that f +max(A,Σ; r∗)= f −max(A,Σ; r∗)= 0). Therefore, vk,i, j(A,Σ)= f (A,Σ, r∗)≤
maxr∈R max{ f +max(A,Σ, r), f −max(A,Σ, r)}. Step 1 and Step 2 shows that the value function

vk,i, j(A,Σ) is obtained by computing the Karush-Kuhn-Tucker points in Lemma 1 for each r,

penalizing the value vk,i, j(A,Σ; r) if unfeasible, and maximizing over all the possible values

of r. The proof for the lower bound is analogous.
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5.A.3 Lemma 2

Note that if rl(µ) is differentiable and vk,i, j(µ, rl(µ)) 6= 0, then the function:

vk,i, j(µ; rl(µ))=
�

e′iCk(A)Σ
1/2MΣ1/2rl(µ)Σ

1/2Ck(A)
′ei

�1/2
,

is differentiable as well. Moreover, the function

x∗(µ; rl(µ))≡Σ1/2
�

MΣ1/2rl(µ)

�

Σ1/2Ck(A)
′ei

À

vk,i, j(µ; rl(µ))

is also differentiable. Therefore,

∂ vk,i, j(µ, rl(µ))

∂ µ
=

∂ [e′iCk(A)x∗(µ, rl(µ))]

∂ µ

(since vk,i, j(µ, rl(µ)) = e′iCk(A)x∗(µ, rl(µ)))

=
∂ x∗(µ, rl(µ))

∂ µ
C ′k(A)ei +

∂ (x∗(µ; rl(µ))
′ ⊗ e′i)vec(Ck(A))

∂ µ
,

(where we have re-written e′iCk(A)x∗ as (x∗′ ⊗ e′i)vec(Ck(A)))

=
∂ x∗(µ, rl(µ))

∂ µ
C ′k(A)ei +

∂ vec(Ck(A))
∂ µ

(x∗(µ; rl(µ)) ⊗ ei)

(where we have applied the chain rule for matrix derivatives).

We now use the envelope theorem to compute this derivative. Note that we have shown the

existence of unique multipliers λ∗ ∈ R and w∗ ∈ Rl such that:

Ck(A)
′ei = λ

∗2Σ−1 x∗(µ; rl(µ))+ rl(µ)w
∗.

Therefore:

∂ vk,i, j(µ, rl(µ))

∂ vec(A)
=

∂ x∗(µ, rl(µ))
∂ vec(A)

�

λ∗2Σ−1 x∗(µ; rl(µ)) + rl(µ)w
∗
�

+
∂ vec(Ck(A))
∂ vec(A)

(x∗(µ; rl(µ)) ⊗ ei).

and

∂ vk,i, j(µ, rl(µ))

∂ vec(Σ)
=

∂ x∗(µ, rl(µ))
∂ vec(Σ)

�

λ∗2Σ−1 x∗(µ; rl(µ)) + rl(µ)w
∗
�

+
∂ vec(Ck(A))
∂ vec(Σ)

(x∗(µ; rl(µ)) ⊗ ei).
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Note also that:

0 =
∂ x∗(µ, rl(µ))

′Σ−1 x∗(µ, rl(µ))
∂ vec(A)

= 2
∂ x∗(µ, rl(µ))
∂ vec(A)

Σ−1 x∗(µ, rl(µ))

and

0 =
∂ rl(µ)

′x∗(µ, rl(µ))
∂ vec(A)

=
∂ x∗(µ, rl(µ))
∂ vec(A)

rl(µ)

+
�

∂ r1,l(µ)
vec(A) x∗(µ, rl(µ)), · · · ,

∂ rl,l(µ)
vec(A) x∗(µ, rl(µ))

�

,

where rk,l(µ) denotes the k-th column of rl(µ). Consequently:

∂ vk,i, j(µ, rl(µ))

∂ vec(A)
=

∂ vec(Ck(A))
∂ vec(A)

(x∗(µ; rl(µ)) ⊗ ei)

−
l
∑

k=1

w∗k
∂ vec(rk,l(µ))

vec(A)
x∗(µ, rl(µ)),

where w∗k is the k-th entry of the vector of lagrange multipliers w∗. This gives the partial

derivative of vk,i, j(µ, rl(µ)) with respect to vec(A). We note that this derivative can also be

written as:

∂ vk,i, j(µ, rl(µ))

∂ vec(A)
=

∂ vec(Ck(A))
∂ vec(A)

(x∗(µ; rl(µ)) ⊗ ei)

−
∂ vec(rl(µ)

′)
vec(A)

(x∗(µ, rl(µ)) ⊗ Il)w∗,

which is the expression given in the overview. Finally, to get the derivative with respect to

vec(Σ) we note that:

0 =
∂ x∗(µ, rl(µ))

′Σ−1 x∗(µ, rl(µ))
∂ vec(Σ)

= 2
∂ x∗(µ, rl(µ))
∂ vec(Σ)

Σ−1 x∗(µ, rl(µ))

− (Σ−1 x∗(µ, rl(µ)) ⊗ Σ−1 x∗(µ, rl(µ))),
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and

0 =
∂ rl(µ)

′x∗(µ, rl(µ))
∂ vec(Σ)

=
∂ x∗(µ, rl(µ))
∂ vec(Σ)

rl(µ) +
�

∂ r1,l(µ)
vec(Σ) x∗(µ, rl(µ)), · · · ,

∂ rl,l(µ)
vec(Σ) x∗(µ, rl(µ))

�

.

Consequently,

∂ vk,i, j(µ, rl(µ))

∂ vec(Σ)
= λ∗(Σ−1 x∗(µ, rl(µ)) ⊗ Σ−1 x∗(µ, rl(µ)))

−
l
∑

k=1

w∗k
∂ vec(rk,l(µ))

vec(Σ)
x∗(µ, rl(µ)).

5.A.4 Proof of Proposition 2

Let r1(µ), r2(µ), . . . rM(µ) denote the elements of R(µ). Each of these elements activate a

different collection of sign restrictions. Without loss of generality, assume that R∗(µ) contains

the first L elements r1(µ), . . . , rL(µ) of R(µ). Consider any sequence (AT ,ΣT ) such that

(vecAT
′,vechΣ′T )

′ = (vecA′,vechΣ′)′ + hT / rT ,

where hT → h, rT →∞ and such that for large enough T , (vecAT ,vechΣT ) belongs to the

parameter space µ. Suppose that vk,i, j(µ)> 0. Note that by Proposition 1:

vk,i, j(AT ,ΣT ) =


































f (AT ,ΣT , r1(µT )) if f (AT ,ΣT , r1(µT )) = maxr∈R(µT ) f (AT ,ΣT , r),
...

...
...

f (AT ,ΣT , rL(µT )) if f (AT ,ΣT , rL(µT )) = maxr∈R(µT ) f (AT ,ΣT , r),
...

...
...

f (AT ,ΣT , rM(µT )) if f (AT ,ΣT , rM(µT )) = maxr∈R(µT ) f (AT ,ΣT , r).
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Since each rl(µ) is assumed to be continuous and only the first L elements of R(µ) belong to

R∗(µ) then (for T large enough):

vk,i, j(AT ,ΣT ) =






























































vk,i, j(AT ,ΣT , r1(µT )) if v(AT ,ΣT , r1(µT )) = maxr∈R(µT ) f (AT ,ΣT , r),
...

...
...

vk,i, j(AT ,ΣT , rL(µT )) if v(AT ,ΣT , rL(µ)) = maxr∈R(µT ) f (AT ,ΣT , r),

vk,i, j(AT ,ΣT , rL+1(µT )) if v(AT ,ΣT , rL+1(µ)) = maxr∈R(µT ) f (AT ,ΣT , r),

−2(1 − 1ms
(x∗+(µ, rL+1(µ)))
...

...
...

vk,i, j(AT ,ΣT , rM(µT )) if f (AT ,ΣT , rM(µ)) = maxr∈R(µT ) f (AT ,ΣT , r).

−2(1 − 1ms
(x∗+(µ, rM(µ))))

Note that vk,i, j(µ)= vk,i, j(µ; rl(µ)) for all rl(µ) ∈ R∗(µ) and vk,i, j(µ)> vk,i, j(µ; rl(µ)) for

all rl(µ) /∈ R∗(µ). Therefore, the equation above implies that rT (vk,i, j(AT ,ΣT )− vk,i, j(A,Σ))

equals



















































rT (vk,i, j(AT ,ΣT , r1(µT ))− vk,i, j(µ, r1(µT ))) if v(AT ,ΣT , r1(µT ))=maxr∈R(µT ) f (AT ,ΣT , r),
...

...
...

rT (vk,i, j(AT ,ΣT , rL(µT ))− vk,i, j(µ, rL(µ))) if v(AT ,ΣT , rL(µ))=maxr∈R(µT ) f (AT ,ΣT , r),
...

...
...

rT (vk,i, j(AT ,ΣT , rM(µT ))− vk,i, j(µ, rM(µ))) if f (AT ,ΣT , rM(µ))=maxr∈R(µT ) f (AT ,ΣT , r).

+rT (vk,i, j(µ, rM(µ))− vk,i, j(µ))

−rT 2(1− 1ms
(x∗(µ, rM(µ))))

For T large enough, this implies that rT (vk,i, j(AT ,ΣT )− vk,i, j(A,Σ)) equals











rT (vk,i, j(AT ,ΣT , r1(µT ))− vk,i, j(µ, r1(µ))) if v(AT ,ΣT , r1(µT ))=maxr∈R∗(µT ) vk,i, j(AT ,ΣT , r),
...

...
...

rT (vk,i, j(AT ,ΣT , rL(µT ))− vk,i, j(µ, rL(µ))) if v(AT ,ΣT , rL(µ))=maxr∈R∗(µT ) vk,i, j(AT ,ΣT , r).

Since each of rT (vk,i, j(AT ,ΣT , r1(µT ))− vk,i, j(µ, rl(µ))) in the previous expression is, by

Lemma 2, approximately equal to

v̇k,i, j(µ; rl(µ))
′h.
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Then

rT

�

vk,i, j(AT ,ΣT )− vk,i, j(A,Σ)
�

→ max
r∈R∗(µ)

�

v̇k,i, j(µ; r)′h
�

.

5.A.5 Proof of Proposition 3

Let P denote the data generating process. For notational simplicity we write µ instead of

µ(P) and Ω instead of Ω(P) whenever convenient. Note first that

P
�

λ ∈
�

vk,i, j(bµT ) − z1−α/2 bσT /
p

T , vk,i, j(bµT ) + z1−α/2 bσT /
p

T
��

(5.13)

equals

P
�p

T(vk,i, j(bµT )− vk,i, j(µ))≤ z1−α/2 bσT +
p

T(λ− vk,i, j(µ)) and

p
T(λ− vk,i, j(µ))− z1−α/2bσT ≤

p
T(vk,i, j(bµT )− vk,i, j(µ))

�

.

Since
p

T(λ− vk,i, j(µ))≥ 0 and
p

T(λ− vk,i, j(µ))≤ 0,

(5.13) is bounded from below by

P
�p

T(vk,i, j(bµT )− vk,i, j(µ))≤ z1− α2 bσT and − z1− α2 bσT ≤
p

T(vk,i, j(bµT )− vk,i, j(µ))
�

,

which is itself bounded from below by:

P
�p

T(vk,i, j(bµT ) − vk,i, j(µ)) ≤ z1− α2 bσT ,

and − z1− α2 bσT ≤
p

T(vk,i, j(bµT ) − vk,i, j(µ)),

and ||
p

T(bµT − µ)|| ≤ Mε

�

,

where Mε is such that

P
�

||ζ(P)||> Mε

�

≤ ε.

Since, by Proposition 2, both vk,i, j(·) and vk,i, j(µ) are directionally differentiable with directi-

onal derivatives:

min
r∈R∗(µ)

�

v̇k,i, j(µ, r)′h
�

,

and

max
r∈R∗(µ)

�

v̇k,i, j(µ, r)′h
�

.
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The directional differentiability implies that for any compact set K there is T large enough

such that for any h ∈ K:

−ε≤
p

T(vk,i, j(µ+ h/
p

T)− vk,i, j(µ))− min
r∈R∗(µ)

�

v̇k,i, j(µ, r)′h
�

≤ ε,

and

−ε≤
p

T(vk,i, j(µ+ h/
p

T)− vk,i, j(µ))− max
r∈R∗(µ)

�

v̇k,i, j(µ, r)′h
�

≤ ε.

Therefore, for T large enough:

inf
λ∈IRk,i, j(µ(P))

P
�

λ ∈
�

vk,i, j(bµT ) − z1−α/2 bσT /
p

T , vk,i, j(bµT ) + z1−α/2 bσT /
p

T
��

is bounded from below by:

P
�

min
r∈R∗(µ)

�

v̇k,i, j(µ, r)′
p

T(bµT −µ)
�

≤ z1−α/2 bσT and

−z1−α/2bσT ≤ max
r∈R∗(µ)

�

v̇k,i, j(µ, r)′
p

T(bµ−µ)
�

, and ||
p

T(bµT −µ)|| ≤ Mε

�

,

which, by Assumption 4, converges in distribution to:

P
�

min
r∈R∗(µ)

�

v̇k,i, j(µ, r)′ζ(P)
�

≤ z1−α/2 σ and

−z1−α/2σ ≤ max
r∈R∗(µ)

�

v̇k,i, j(µ, r)′ζ(P)
�

, and ||ζ(P)|| ≤ Mε

�

,

where σ is the probability limit of bσT :

σ ≡ max
r∈R(µ)

�

v̇k,i, j(µ, r)′Ω v̇k,i, j(µ, r)
�

,

and where we have used the fact that σ > 0.¹⁹ Consequently,

lim inf
T→∞

inf
λ∈IRk,i, j(µ(P))

P
�

λ ∈
�

vk,i, j(bµT ) − z1− α2 bσT /
p

T ,

vk,i, j(bµT ) + z1− α2 bσT /
p

T
��

¹⁹ This follows from the fact that:

σ ≡ max
r∈R(µ)

�

v̇k,i, j(µ, r)′Ω v̇k,i, j(µ, r)
�

≥ min
r∈R(µ)

�

v̇k,i, j(µ(P), r)′Ω(P)v̇k,i, j(µ(P), r)
�

> 0,

which we have assumed to be strictly bigger than zero.
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is larger than or equal:

1− P
�

min
r∈R∗(µ)

�

v̇k,i, j(µ, r)′ζ(P)
�

> z1− α2 σ
�

− P
�

max
r∈R∗(µ)

�

v̇k,i, j(µ, r)′ζ(P)
�

< −z1− α2 σ
�

−P
�

||ζ(P)||> Mε

�

.

Take some r ∈ R∗(µ) for which σ(r)≡ v̇k,i, j(µ, r)′Ω v̇k,i, j(µ, r)> 0 (one such r must exist for

we have assumed that minr∈R(µ)[v̇k,i, j(µ, r)′Ω v̇k,i, j(µ, r)]> 0). Therefore:

P
�

min
r∈R∗(µ)

�

v̇k,i, j(µ, r)′ζ(P)
�

> z1−α/2 σ
�

≤ P
�

v̇k,i, j(µ, r)′ζ(P) > z1−α/2σ
�

≤ P
�

N(0,1) > z1−α/2
σ

σ(r)

�

,

which is at most α/2 since σ ≥ σ(r).
Now, take some r ∈ R∗(µ) for which σ(r)≡ v̇k,i, j(µ, r)′Ω v̇k,i, j(µ, r)> 0. Note that

P
�

max
r∈R∗(µ)

�

v̇k,i, j(µ, r)′ζ(P)
�

< −z1−α/2 σ
�

≤ P
�

v̇k,i, j(µ, r)′ζ(P) < −z1−α/2σ
�

≤ P
�

N(0, 1) < −z1−α/2
σ

σ(r)

�

,

which is less than or equal to ≤ α/2 as σ > σ(r). We conclude that

lim inf
T→∞

inf
λ∈IRk,i, j(µ(P))

P
�

λ ∈
�

vk,i, j(bµT ) − z1−α/2 bσT /
p

T ,

vk,i, j(bµT ) + z1−α/2 bσT /
p

T
��

≥ 1 − α − ε.

Since ε > 0 is arbitrary, the desired result follows.
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Figure 5.6. Identified set for the cumulative impulse response functions to an UMP shock (given bµT )

(Solid, Blue Line) Endpoints of the identified set for the cumulative responses given bµT and the equality/inequality restrictions in Table I. (Blue, Dashed) Grid search approach

to evaluate the identified set (10,000 uniform draws from a unit vector q ∈ R4).
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Figure 5.7. Projection confidence interval for CPI, IP, 2yTB, FF after the August 2010 announcement

Consumer Price Index Industrial Production Index

2-year Treasury Bond Rate Federal Funds Rate

(Shaded, Blue Area) Evolution of the Levels CPI, IP, 2yTB, and FF based on our 68% delta method confidence bands for the coefficients of Cumulative Impulse-Response Functi-

ons. (Gray, Solid Line) Observed Levels of CPI, IP, 2yTB, and FF from December 2009 to July 2011. Both the CPI index and the IP index were normalized to have a starting value

of 100. (Gray, Dashed Line) 68% credible set constructed using the priors in Uhlig (2005). (Gray, Dotted Line) Gafarov et al. (2016)’s 68% confidence interval based on the

projection approach.
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Figure 5.8. Calibrated projection confidence interval for CPI, IP, 2yTB, FF after the August 2010 announcement

Consumer Price Index Industrial Production Index

2-year Treasury Bond Rate Federal Funds Rate

(Shaded, Blue Area) Evolution of the Levels CPI, IP, 2yTB, and FF based on our 68% delta method confidence bands for the coefficients of Cumulative Impulse-Response Functi-

ons. (Gray, Solid Line) Observed Levels of CPI, IP, 2yTB, and FF from December 2009 to July 2011. Both the CPI index and the IP index were normalized to have a starting value

of 100. (Gray, Dashed Line) 68% credible set constructed using the priors in Uhlig (2005). (Gray, Dotted Line) Gafarov et al. (2016)’s 68% differentiable projection.
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Figure 5.9. Robust credible set for CPI, IP, 2yTB, FF after the August 2010 announcement

Consumer Price Index Industrial Production Index

2-year Treasury Bond Rate Federal Funds Rate

(Shaded, Blue Area) Evolution of the Levels CPI, IP, 2yTB, and FF based on our 68% delta method confidence bands for the coefficients of Cumulative Impulse-Response Functi-

ons. (Gray, Solid Line) Observed Levels of CPI, IP, 2yTB, and FF from December 2009 to July 2011. Both the CPI index and the IP index were normalized to have a starting value

of 100. (Gray, Dashed Line) 68% credible set constructed using the priors in Uhlig (2005). (Gray, Dotted Line) Giacomini and Kitagawa (2015)’s 68% robust-Bayes credible

set constructed using the priors for the reduced-form parameters in Uhlig (2005).
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6

Projection Inference for Set-Identified
SVARs

Joint with Bulat Gafarov and José Luis Montiel Olea

6.1 Introduction

A Structural Vector Autoregression (SVAR) (Sims (1980, 1986)) is a time series model that

brings theoretical restrictions into a linear, multivariate autoregression. The theoretical re-

strictions are used to transform reduced-form parameters (regression coefficients and the

covariance matrix of residuals) into structural parameters that are more amenable to po-

licy interpretation. Depending on the restrictions imposed, the map between reduced-form

and structural parameters can be one-to-one (a point-identified SVAR) or one-to-many (a

set-identified SVAR).

It is now customary for empirical macroeconomic studies to impose sign and/or exclusion

restrictions on structural dynamic responses in SVARs in order to set-identify the model, as

in the pioneering work of Faust (1998) and Uhlig (2005). The vast majority of these studies

use numerical Bayesian methods to construct posterior credible sets for the coefficients of

the structural impulse-response function.

Despite the popularity of the Bayesian approach, a practical concern is the fact that poste-

rior inference for the structural parameters continues to be influenced by prior beliefs even if

the sample size is infinite. This point has been documented—in detail and generality—in the

work of Poirier (1998), Gustafson (2009), and Moon and Schorfheide (2012). More recently,
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Baumeister and Hamilton (2015a) provided an explicit characterization of the influence of

prior beliefs on posterior distributions for structural parameters in set-identified SVARs.

This paper studies the properties of the projection method—which does not rely on the

specification of prior beliefs for set-identified parameters—to conduct simultaneous inference

about the coefficients of the structural impulse-response function (and their identified set).

The proposal is to ‘project’ a typical Wald ellipsoid for the reduced-form parameters of a VAR.

The suggested nominal 1−α projection region consists of all the structural parameters of

interest compatible with the reduced-form parameters in a nominal 1−αWald ellipsoid.

The attractive features of the projection approach—explained in more detail in the next

section—are its general applicability, its computational feasibility, and the fact that a nominal

1−α projection region has—asymptotically and under mild assumptions—both frequentist

coverage and robust Bayesian credibility of at least 1−α.¹ Moreover, building on Kaido et al.

(2016), we show that our baseline projection can be ‘calibrated’ to eliminate excessive robust

Bayesian credibility.

The remainder of the paper is organized as follows. Section 6.2 presents an overview of

the projection approach. Section 6.3 presents the SVAR model and establishes the frequentist

coverage of projection. Section 6.4 establishes the asymptotic robust Bayesian credibility of

the projection region. Section 6.5 presents the ‘calibration’ algorithm designed to eliminate

the excess of robust Bayesian credibility and shows that, under regularity conditions, our

calibration also removes the excess of frequentist coverage. Section 6.6 discusses the imple-

mentation of projection in the context of the demand/supply SVAR for the U.S. labor market.

Section 6.7 concludes.

6.2 Overview and related literature

6.2.1 Overview

Let µ denote the parameters of a reduced-form vector autoregression; i.e., the slope coef-

ficients in the regression model and the covariance matrix of residuals. Let λ denote the

structural parameter of interest; i.e., the response of some variable i to a structural shock j

at horizon k (or a vector of responses). In set-identified SVARs there is a known map bet-

ween µ and the lower and upper bound for λ; see Uhlig (2005). Consequently, the smallest

¹ The robustness is relative to the choice of prior for the so-called ‘rotation’ matrix as in the recent
work of Giacomini and Kitagawa (2015).
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and largest value of a particular structural coefficient of interest can be written, simply and

succinctly, as v(µ) and v(µ).

Our projection region for λ (and for its identified set) is based on a straightforward ap-

plication of the classical idea of projection inference; see Scheffé (1953), Dufour (1990), and

Dufour and Taamouti (2005, 2007). Let bµT denote the sample least squares estimator for

µ and let CST (1−α;µ) denote its nominal 1−α Wald confidence ellipsoid. If, asymptoti-

cally, CST (1−α;µ) covers the parameter µ with probability 1−α, then, asymptotically, the

interval

CST (1 − α;λ) ≡
�

inf
µ∈CST (1−α,µ)

v(µ) , sup
µ∈CST (1−α,µ)

v(µ)
�

(6.1)

covers the set-identified parameter λ (and its identified set) with probability at least 1−α
(uniformly over a large class of data generating processes).²,³

In many applications there is interest in conducting simultaneous inference on h structural

parameters; for example, if one wants to analyze the response of variable i to a structural

shock j for all horizons ranging from period 1 to h as in Jordà (2009), Inoue and Kilian (2013,

2016), and Lütkepohl et al. (2015). In this case, the projection region given by:

CST (1 − α; (λ1, . . . ,λh)) ≡ CST (1 − α;λ1) × . . . × CST (1 − α;λh), (6.2)

covers the structural coefficients (λ1, . . .λh) and their identified set with probability at least

1−α as the sample size grows large. The only assumption required to guarantee the frequen-

tist coverage of our projection region is the asymptotic validity of the confidence set for the

reduced-form parameters, µ.

General Applicability: The validity of our projection method requires no regularity

assumptions (like continuity or differentiability) on the bounds of the identified set v(·) and
v(·). This means we can handle the typical application of set-identified SVARs in the em-

pirical macroeconomics literature (exclusion restrictions on contemporaneous coefficients,

long-run restrictions, elasticity bounds, and of course sign/zero restrictions on the responses

of different variables at different horizons for different shocks).

² Formally, we show that the confidence interval described in (6.1) is uniformly consistent of level 1−
α for the structural parameter λ (and its identified set) over some class of data generating processes.

³ The application of projection inference to SVARs was first suggested by Moon and Schorfheide
(2012) (p. 11, NBER working paper 14882). The projection approach is also briefly mentioned in
the work Kline and Tamer (2015) (Remark 8) in the context of set-identified models. None of these
papers established the properties for projection inference discussed in our work.



166 | 6 Projection Inference for Set-Identified SVARs

Computational Feasibility: The implementation of our projection approach requires

neither numerical inversion of hypothesis tests nor sampling from the space of rotation ma-

trices. Instead, we use state-of-the-art optimization algorithms to solve for the maximum and

minimum value of a mathematical program to compute the two end points of the confidence

interval in (6.1).

Robust Bayesian Credibility: In the spirit of making our results appealing to Bayesian

decision makers, we show that our suggested nominal 1−α projection region will have—as

the sample size grows large—robust Bayesian credibility of at least 1−α. This means that the

asymptotic posterior probability that the vector of structural parameters of interest belongs to

the projection region will be at least 1−α; for a fixed prior on the reduced-form parameters,

µ, and for any prior on the set-identified parameters. A sufficient condition to establish the

robust Bayesian credibility of projection is that the prior for µ used to compute credibility

satisfies the Bernstein-von Mises theorem.

‘Calibrated’ Projection: Despite the features highlighted above, projection inference

is conservative both for a frequentist and a robust Bayesian. That is, both the asymptotic

confidence level and the asymptotic robust credibility of projection can be strictly above 1−α.
Kaido et al. (2016) [henceforth, KMS] refer to the excess of frequentist coverage as projection

conservatism and develop an innovative calibration approach to eliminate it.⁴

The calibration exercise in KMS requires, in the SVAR context, the computation of Monte-

Carlo coverage probabilities for the projection region over an exhaustive grid of values for the

reduced-form parameters, µ. In several SVAR applications, the dimension of µ compromises

the construction of an exhaustive grid.

Instead of insisting on removing excessive frequentist coverage, we suggest practitioners

to calibrate projection to attain a robust Bayesian credibility of exactly 1−α. The calibra-

tion of robust credibility is computationally feasible even if µ is of large dimension, as no

exhaustive grid for µ is needed. We provide a detailed description of our calibration proce-

dure in Section 6.5. Broadly speaking, the calibration consists of drawing µ from its posterior

distribution (or a suitable large-sample Gaussian approximation); evaluating the functions

v(µ), v(µ) for each draw of µ; and decreasing the radius defining the projection region until

it contains exactly (1−α)% of the values of v(µ), v(µ) (for different horizons and different

⁴ Another recent paper proposing a procedure to eliminate the frequentist excess coverage in
moment-inequality models is Bugni et al. (2014). Adapting their profiling idea to our set-up could
be of theoretical interest and of practical relevance. We leave this question open for future research.
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shocks if desired).⁵ We show that if v(µ), v(µ) are differentiable, our suggested calibration

also removes the excessive frequentist coverage of the identified set.

Illustrative Example: The illustrative example in this paper is a simple demand and

supply model of the U.S. labor market. We estimate standard Bayesian credible sets for the

dynamic responses of wages and employment using the Normal-Wishart-Haar prior specifi-

cation in Uhlig (2005) and also the alternative prior specification recently proposed by Bau-

meister and Hamilton (2015a). The main set-identifying assumptions are sign restrictions

on contemporaneous responses: an expansionary structural demand shock increases wages

and employment upon impact; an expansionary structural supply shock decreases wages but

increases employment, also upon impact.⁶

The Bayesian credible sets for this application illustrate the attractiveness of set-identified

SVARs. The data, combined with prior beliefs, and with the (set)-identifying assumptions

imply that the initial responses to demand and supply shocks persist in the medium-run,

which was not restricted ex-ante.

The Bayesian credible sets for this application also illustrate how the quantitative results

in set-identified SVARs could be affected by the prior specification. For example, under the

prior in Baumeister and Hamilton (2015a) the 5-year ahead response of employment to a

demand shock could be as large as 4%; whereas under the priors in Uhlig (2005) the same

effect is at most 2%.

Our baseline projection approach (which takes around 15 minutes) allows us to get a

prior-free assessment about the magnitude (and direction) of the structural responses of

interest. For example, the largest value in our projection region for the 5-year response of

employment to a structural demand shock is around 2.5%. This effect is larger than the

one implied by the prior in Uhlig (2005), but smaller than the one implied by the priors in

Baumeister and Hamilton (2015a).

Our baseline projection approach—though informative about the effects of demand

shocks—is not conclusive about the medium-run effects of structural supply shocks on wages

and employment (the projection region allows for both positive and negative responses). This

could be a consequence of either the robustness of projection or its conservativeness. To di-

sentangle these effects, we calibrate projection to guarantee that it has exact robust Bayesian

credibility. The calibrated projection shows that an expansionary supply shock will decrease

⁵ In Section 6.6 we provide more detials on the computation time of our calibrated projection
(which is around 5 hours in our illustrative example).

⁶ Following Baumeister and Hamilton (2015a) we also consider elasticity bounds on the wage
elasticity of both labor demand and labor supply, and also bounds on the long-run impact of a demand
shock over employment.
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wages in each quarter over a 5 year horizon. However, the qualitative effects of supply shocks

on employment remain undetermined. The simple SVAR for the labor market illustrates the

usefulness of both the baseline and the calibrated projection to analyze the robustness of

quantitative and qualitative results in SVARs to prior beliefs.

6.2.2 Related literature

There has been recent interest in departing from the standard Bayesian analysis of set-

identified SVARs in an attempt to provide robustness to the choice of priors. Belowwe provide

a short description of the similarities and differences between our projection approach and

three alternative methods available in the literature. It is worth mentioning that our baseline

projection approach is the only procedure (among the three alternative methods discussed)

that has both a frequentist and a robust Bayes interpretation. In addition, none of the other

approaches allow for simultaneous inference on a vector of impulse-response coefficients (a

feature that has been deemed desirable in point-identified SVARs). Our baseline projection

achieves all these properties while retaining computational tractability (we solve two mathe-

matical programs per coefficient of interest).

a) In a pioneering paper, Moon et al. (2013) [MSG] proposed both projection and Bonfer-

roni frequentist inference using a moment-inequality, minimum distance framework based

on Andrews and Soares (2010). In terms of applicability, their procedures are designed for

set-identified SVARs that impose restrictions on the dynamic responses of only one structural

shock. It is possible to extend their approach to the same class of modes that we consider;

there is, however, a serious issue regarding computational feasibility. Specifically, both the

projection and Bonferroni approaches require the researcher to compute—by simulation—a

critical value for each single orthogonal matrix of dimension n× n, where n is the dimension

of the SVAR. Our baseline implementation of the projection method does not require any

type of grid over the space of orthogonal matrices and does not require the simulation of any

critical value.

b) Giacomini and Kitagawa (2015) [GK] develop a novel and generally applicable robust

Bayesian approach to conduct inference about a specific coefficient of the impulse-response

function in a set-identified SVAR. In terms of our notation, their procedure can be described as

follows. One takes posterior draws from µ and evalutes, at each posterior draw, the functions

v(µ), v(µ) by solving a nonlinear program. Their credible set is a numerical (grid-search)

approximation to the smallest interval that covers 100(1−α)% of the posterior realizations

of the identified set.
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GK and Baseline projection: In terms of properties, our baseline projection is shown to

admit both a frequentist and a robust Bayes interpretation (the GK approach has only been

shown to admit the latter). In terms of implementation, GK solve as many nonlinear programs

as posterior draws for µ. This means that our baseline procedure will be typically faster to

implement than the GK robust procedure (since our baseline projection only needs to solve

two nonlinear programs). The price to pay for the reduced computational cost is the excess

of robust Bayesian credibility.

GK and Calibrated projection: Our calibrated projection requires a similar amount of work

as the GK robust method (both procedures evaluate the bounds of the identified set for each

posterior draw). There are two differences remaining between the two approaches. First, our

calibrated projection allows for simultaneous credibility statements over different horizons,

different variables, and different shocks. Second, our calibrated projection is guaranteed to

have correct frequentist coverage whenever the bounds of the identified set are differentiable

in µ.

c) Gafarov et al. (2015) [GMM1] establish the differentiability of the bounds of v(µ), v(µ)

for a class of SVAR models that impose restrictions only on the responses to one structural

shock. Based on the differentiability results, they propose a ‘delta-method’ confidence inter-

val given by the plug-in estimators of the bounds plus/minus r times standard errors. In

Appendix 6.A.3 we show that, in large samples, the ‘delta-method’ procedure in GMM1 is

equivalent to a projection region based on a Wald ellipsoid for µ with radius r2.

6.3 Basic model, main assumptions, and frequentist

results

6.3.1 Model

This paper studies the n-dimensional Structural Vector Autoregression with p lags; i.i.d. struc-

tural innovations—denoted εt—distributed according to F ; and unknown n× n structural

matrix B:

Yt = A1Yt−1 + . . . + ApYt−p + Bεt , EF[εt] = 0n×1, EF[εtε
′
t] ≡ In. (6.3)

see Lütkepohl (2007), p. 362.
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The reduced-form parameters of the SVAR model are defined as the vectorized autoregres-

sive coefficients and the half vectorized covariance matrix of reduced-form residuals:

µ≡ (vec(A)′,vech(Σ)′)′ ∈ Rd , where A≡ (A1, A2, . . . , Ap), Σ ≡ BB′.

In applied work, these reduced-form parameters are estimated directly from the data

using least squares. That is:

bµT ≡ (vec(bAT )
′,vech(ÒΣT )

′)′,

where

bAT ≡
� 1

T

T
∑

t=1

Yt X
′
t

�� 1
T

T
∑

t=1

X t X
′
t

�−1
, ÒΣT ≡

1
T

T
∑

t=1

bηt bη
′
t ,

and

X t ≡ (Y ′t−1, . . . , Y ′t−p)
′, bηt ≡ Yt − bAT X t .

A common formula for the asymptotic variance of bµT in stationary models is:

ÒΩT ≡ VT

� 1
T

T
∑

t=1

vec
�

[bηt X
′
t , bηt bη

′
t − ÒΣT ]

�

vec
�

[bηt X
′
t , bηt bη

′
t − ÒΣT ]

�′
V ′T

where

VT ≡

 

In ⊗
�

1
T

∑T
t=1 X t X

′
t

�−1
0

0 Ln

!

,

and Ln is the matrix of dimension n(n+ 1) /2× n2 such that vech(Σ)= Lnvec(Σ), see Lüt-

kepohl (2007), p. 662 equation A.12.1.

6.3.2 Assumptions for frequentist inference

The SVAR parameters (A1, . . . , Ap, B, F) define a probability measure, denoted P, over the

data observed by the econometrician. The measure P is assumed to belong to some class P
which we describe in this section.
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We state a simple high-level assumption concerning the asymptotic behavior of the 1−α
Wald confidence ellipsoid for µ, which is defined as:

CST (1 − α;µ) ≡
¦

µ ∈ Rd | T(bµT − µ)′ÒΩ−1
T (bµT − µ) ≤ χ2

d,1−α

©

.⁷ (6.4)

The first assumption requires the uniform consistency in level (over the class P ) of the Wald

confidence set for the reduced-form parameters. This is:

Assumption 1. lim infT→∞ infP∈P P
�

µ(P) ∈ CST (1−α;µ)
�

≥ 1−α.

Assumption 1 holds if the class P under consideration contains only uniformly stable

VARs where the error distributions, F , have uniformly bounded fourth moments.⁸ Assump-

tion 1 turns out to be sufficient to conduct frequentist inference on the structural parameters

of a set-identified SVAR, defined as follows.

Coefficients of the Structural Impulse-Response Function: Given the autore-

gressive coefficients A≡ (A1, A2, . . . , Ap) define, recursively, the nonlinear transformation

Ck(A)≡
k
∑

m=1

Ck−m(A) Am, k ∈ N,

where C0 = In and Am = 0 if m> p; see Lütkepohl (1990), p. 116.

Definition (Coefficients of the Structural IRF). The (k, i, j)-coefficient of the structural

impulse-response function is defined as the scalar parameter:

λk,i, j(A, B)≡ e′iCk(A)Be j ,

where ei and e j denote the i-th and j-th column of the identity matrix In.

⁷The radius χ2
d,1−α in equation (6.4) denotes the 1−α quantile of a central χ2 distribution with d

degrees of freedom.
⁸ A classP that satisfies Assumption 1 could be written by using a uniform version of the conditions

in Lütkepohl (2007), p. 73. This is, there are positive constants c1, c2, c3, c4 such that:

P = {(A1, A2, . . . , Ap, B, F) | det(In − A1z − . . . Apzp) /∈ (−c1, c1) for z ∈ C, |z| ≤ 1;

B is such that 0 < c2 < eigmin(BB′) < eigmax(BB′) < c3,

and EF[|εn1,tεn2,tεn3,tεn4,t |] < c4 for all t, and n1, n2, n3, n4 ∈ {1, . . . n},

and EF[εt] = 0n×1, EF[εtε
′
t] = In }.

Other possible definitions of P can be given by generalizing Theorem 3.5 in Chen and Fang (2015)
to either multivariate linear processes with i.i.d. innovations or to martingale difference sequences.
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6.3.3 Main result concerning frequentist inference

In this section we show that, under Assumption 1, it is possible to ‘project’ the 1−α Wald

confidence set for µ to conduct frequentist inference about the coefficients of the structural

impulse-response function and the function itself in set-identified models.

Set-Identified SVARs: As mentioned in the introduction, the SVAR allows researchers

to transform the reduced-form parameters, µ≡ (vec(A)′,vech(Σ)′)′, into the structural pa-

rameters of interest, λk,i, j(A, B). The parameter µ determines a unique value of A; however,

several values of B are compatible with Σ (any B such that BB′ =Σ). This indeterminacy of

B implies there are multiple values of λk,i, j(A, B) that are compatible with one value of µ.

The Identified Set and its Bounds: It is common in applied macroeconomic work to

impose restrictions on the matrix B ∈ Rn×n in order to limit the range of a structural coeffi-

cient of interest, λk,i, j (taking µ as given). Mathematically, a set of restrictions on B—that

we denote as R(µ)—can be interpreted as a subset of Rn×n. This leads to the following

definition:

Definition (Identified Set and its bounds). Fix a vector of reduced-form parameters, µ,

and a set of restrictions R(µ) on B.

1. The identified set for the structural parameter λk,i, j(A, B) is defined as:

IRk,i, j(µ) ≡
¦

v ∈ R
�

�

� v = λk,i, j(A, B), BB′ = Σ, and B ∈ R(µ)
©

.

2. The upper bound of the identified set vk,i, j(µ) is defined as the value function of the

program:

vk,i, j(µ) ≡ sup
B∈Rn×n

e′iCk(A)Be j , s.t. BB′ = Σ, and B ∈ R(µ). (6.5)

The lower bound, vk,i, j(µ), is defined analogously.

3. Consider any collection λH ≡ {λkh,ih, jh}
H
h=1 of structural coefficients and let its identi-

fied set be given by:

IRH (µ)≡
¦

(v1, . . . , vH) ∈ RH
�

�

� vh = λkh,ih, jh(A, B), BB′ =Σ, and B ∈ R(µ)
©

.
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The main elements in the previous definition can be illustrated as follows:

SVAR

BB′ =Σ and B ∈ R(µ)
(Theoretical Restrictions on B)

λH(A, B)µ

Identified Set-Identified

IRH (µ) ⊆ RH : The identified-Set for λH(A, B).

Table 6.1 presents a list of the most common restrictions, R(µ), used in SVAR analysis

(all of which can be handled by our frequentist approach described below).

Projection Approach: A key feature of set-identified SVARs is that the bounds of the

identified set depend on a finite-dimensional parameter. ‘Projecting’ down the 1−α Wald

ellipsoid for µ seems a natural approach to conduct inference on the structural impulse re-

sponse function. The first result in this paper establishes the frequentist uniform validity of

projection inference.

Result 1 (Frequentist Coverage of Projection Inference for λH). Consider the projection

region for the collection of structural coefficients λH ≡ {λkh,ih, jh}
H
h=1 given by:

CST (1 − α,λH) ≡ CST (1 − α,λk1,i1, j1) × . . . × CST (1 − α,λkH ,iH , jH ) ⊆ R
H , (6.6)

where

CST (1 − α;λk,i, j) ≡
�

inf
µ∈CST (1−α,µ)

vk,i, j(µ) , sup
µ∈CST (1−α,µ)

vk,i, j(µ)
�

, (6.7)

and CST (1−α;µ) is the 1−α Wald confidence ellipsoid for µ. If the class of data generating

processes P satisfies Assumption 1, then:

lim inf
T→∞

inf
P∈P

inf
λH∈I R

H (µ(P))
P
�

λH ∈ CST (1−α;λH)
�

≥ 1−α.



174 | 6 Projection Inference for Set-Identified SVARs

That is, the projected confidence interval in (6.6) covers the vector of structural coefficients λH

with probability at least 1−α, uniformly over the class P .

Proof. The proof of Result 1 uses a standard and conceptually straightforward projection

argument. Take an element P ∈ P and let λH ∈ RH be any given element of the identified

set IRH (µ(P)). Note that:

P
�

λH ∈ CST (1−α;λH)
�

= P
�

(λk1,i1, j1 , . . . ,λkH ,iH , jH )

∈ CST (1 − α;λk1,i1, j1) × . . . × CST (1 − α;λkH ,iH , jH )
�

�

by definition of our confidence interval for λH
�

≥ P
�

[vkh,ih, jh
(µ(P)) , vkh,ih, jh(µ(P))]

⊆
�

inf
µ∈CST (1−α,µ)

vkh,ih, jh
(µ) , sup

µ∈CST (1−α,µ)
vkh,ih, jh(µ)

�

∀h = 1, . . . , H
�

,

�

since λkh,ih, jh ∈ [vkh,ih, jh
(µ(P), vkh,ih, jh(µ(P))]

�

≥ P
�

µ(P) ∈ CST (1 − α;µ)
�

.

The desired result follows directly from Assumption 1. This shows that the projection region

for λH is uniformly consistent in level.
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Table 6.1. Common restrictions used in set-identified SVARs

Restrictions Description Notation Examples

Short-run Exclusion restrictions imposed e′iBe j = 0 or e′iB
′−1e j = 0 Sims (1980)

on B or B′−1 (Note that B′−1 =Σ−1B) Christiano et al. (1996)

Rubio-Ramirez et al. (2015)

Long-run A zero constraint on the long-run e′i(In − A1 − A2 − . . . Ap)
−1Be j = 0 Blanchard and Quah (1989)

impact matrix

Sign Sign restrictions on IRFs e′iCk(A)Be j ≥,≤ 0 Uhlig (2005)

Mountford and Uhlig (2009)

Elasticity Bounds Bounds on the elasticity of a variable
e′i Ck(A)Be j

e′
ĩ
Ck(A)Be j

≥,≤ c, ĩ 6= i Kilian and Murphy (2012b)

Shape Constraints Shape constraints on IRFs e.g., e′iCk(A)Be j ≤ e′iCk+1(A)Be j Scholl and Uhlig (2008)

(e.g., monotonicity)

Other Sign Restrictions on Long-Run Impacts e′i(In − A1 − A2 − . . . Ap)
−1Be j ≥,≤ 0

Noncontemporaneous Zero Restrictions e′iCk(A)Be j = 0

General equalities/inequalities on B g(B,µ)≥,≤,= 0

The projection approach can handle SVAR models with any of the restrictions described on this table

(imposed on one or multiple shocks).

(i denotes the variable, j denotes the shock, and k the horizon)
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Remark 1: The idea of ‘projecting’ a confidence set for a parameter µ to conduct inference

about a lower dimensional parameter λ has been used extensively in econometrics; see

Scheffé (1953), Dufour (1990), and Dufour and Taamouti (2005, 2007) for some examples.

In addition to its conceptual simplicity, one advantage of the projection approach is that

its validity does not require special conditions on the identifying restrictions that can be

imposed by practitioners.⁹

Remark 2: The problem of conducting inference on the whole impulse-response function

(and not only on one specific coefficient) has been a topic of recent interest, both from the

Bayesian and frequentist perspective.

For Bayesian set-identified SVARs with only sign restrictions, Inoue and Kilian (2013)

report the vector of structural impulse-response coefficients with highest posterior density

(based on a prior on reduced-form parameters and a uniform prior on rotation matrices).

They propose a Bayesian credible set (represented by shotgun plots) that characterizes the

joint uncertainty about a given collection of structural impulse-response coefficients.

For frequentist point-identified SVARs, Inoue and Kilian (2016) propose a bootstrap pro-

cedure that allows the construction of asymptotically valid confidence regions for any subset

of structural impulse responses. To the best of our knowledge, our projection approach is the

first frequentist procedure for set-identified SVARs that provide confidence regions for any

collection of structural coefficients (response of different variables, to different shocks, over

different horizons).

It is important to note that Uhlig (2005)’s approach to conduct inference on set-identified

SVARs does not provide credible sets for vectors of the structural parameters. The same is

true for the Bayesian approaches described in the recent work of Arias et al. (2014) and

Baumeister and Hamilton (2015a), as well as the approaches of Moon et al. (2013) and

Giacomini and Kitagawa (2015).

Remark 3: A common concern in set-identified models is whether the suggested inference

approach is valid only for the identified parameter, λH , or also for its identified set IRH (µ).

Note that the second to last inequality in the proof of Result 2 imply that our projection

region covers the identified set of any vector of coefficients λH .

⁹ For instance, we do not need to assume that vk,i, j(·) and vk,i, j(·) are continuous or differentiable
functions of the reduced-form parameters.
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6.4 Robust Bayesian credibility

This section analyzes the robust credibility of projection as the sample size grows large.

Bayesian Set-up: In a Bayesian SVAR the distribution of the structural innovations is

fixed and treated as a known object. A common choice—which we follow in this section—is

to assume that F ∼Nn(0, In).We discuss how to relax this restriction after stating Assumption

5.

Let P∗ denote some prior for the structural parameters (A1, . . . , Ap, B) and let λH(A, B) ∈
RH denote the vector of structural coefficients of interest. For a given square root of Σ ≡ BB′

define the ‘rotation’ matrix Q ≡Σ−1/2B. It is well known that a prior P∗ can be written as

(P∗µ, P∗Q|µ), where P∗µ is a prior on the reduced-form parameters, and P∗Q|µ is a prior on the

rotation matrix, conditional on µ.¹⁰ Following this notation, let P (P∗µ) denote the class of

prior distributions such that µ∼ P∗µ.

We are interested in characterizing the smallest posterior probability that the set CST (1−
α;λH) could receive, allowing the researcher to vary the prior for Q:

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1 − α;λH)
�

�

� Y1, . . . , YT

�

. (6.8)

The event of interest is whether the structural coefficients λH(A, B) (treated as random vari-

ables in the Bayesian Set-up) belong to the projection region, after conditioning on the data.

This event would typically be referred to as the credibility of CST (1−α;λH) (see Berger

(1985), p. 140). We would like to find the smallest credibility of projection when different

priors over Q are considered as in the pioneering work of Kitagawa (2012). We follow the

recent work of Giacomini and Kitagawa (2015) and refer to (6.8) as the robust Bayesian

credibility of the set CST (1−α,λH).

Let f (Y1, ..., YT |µ) denote the Gaussian statistical model for the data (which depends

solely on the reduced-form parameters) and let op(1; Y1, . . . YT |µ) denote a random variable

such that limT→∞ PY1,...,YT |µ(|op(1; Y1, . . . YT |µ)| > ε)= 0 for all ε > 0 when the distribution

of the data is conditioned on µ.

Main Assumption for Bayesians: Robust credibility can be viewed as a random variable

(as it depends on Y1, . . . , YT ). We use the following high-level assumption to characterize its

asymptotic behavior:

¹⁰ Arias et al. (2014) refer to this parameterization of the SVAR model as the orthogonal reduced-
form.
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Assumption 5. Whenever Y1, . . . , YT ∼ f (Y1, . . . , YT |µ0), the prior P∗ is such that:

P∗
�

µ(A, B) ∈ CST (1−α;µ)
�

�

� Y1, . . . , YT

�

= 1−α+ op(1; Y1, . . . , YT |µ0).

Assumption 5 requires the prior over the reduced-form parameters (and the statistical

model) to be regular enough to guarantee that the asymptotic Bayesian credibility of the

1−α Wald ellipsoid converges in probability to 1−α. Thus, our high-level assumption is

implied by the Bernstein von-Mises Theorem (DasGupta (2008), p. 291) for the reduced-

form parameter µ.

Since the Gaussian statistical model f (Y1, . . . YT |µ0) can be shown to be Locally Asympto-

tically Normal (LAN) whenever A0 is stable and Σ0 has full rank, Theorem 1 and 2 in Ghosal

et al. (1995) (GGS) imply that Assumption 5 will be satisfied whenever P∗µ has a continu-

ous density at µ0 with polynomial majorants.¹¹ In fact, the same theorems could be used to

establish Assumption 5 for non-Gaussian SVARs that are LAN and satisfy the regularity con-

ditions of Ibragimov and Has’ minskii (2013) (IH), as long as CST (1−α;µ) is centered at the

Maximum Likelihood estimator of µ and ÒΩT is replaced by the model’s inverse information

matrix. An alternative approach to establish Assumption 5 using a different set of primitive

conditions can be found in the recent work of Connault (2016).

We now establish the robust Bayesian credibility of projection as T →∞.

Result 2. [Asymptotic Robust Bayesian Credibility of Projection] Suppose that the prior P∗

for (A, B) satisfies Assumption 5 at µ0. Then:

inf
P∗∈P ∗(µ)

P∗
�

λH(A, B) ∈ CST (1−α;λH)
�

�

� Y1, . . . , YT

�

≥ 1−α+ op(1; Y1, . . . YT |µ0).

Proof. Note that:

P∗
�

λH(A, B) ∈ CST (1−α;λH)
�

�

� Y1, . . . YT

�

= P∗
�

λkh,ih, jh(A, B) ∈ CST (1 − α;λkh,ih, jh) ∀ h = 1 . . . , H
�

�

� Y1, . . . , YT

�

�

by definition of the projection region for λH
�

¹¹ In Appendix 6.A.1.1 we verify an ‘almost sure’ version of Assumption 5 for a Gaussian SVAR for
the Normal-Wishart priors suggested in Uhlig (1994) and Uhlig (2005) and a confidence set for µ
based on the formula for the asymptotic variance ÒΩT that obtains in the Gaussian model [Lütkepohl
(2007) p. 93].
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≥ P∗
�

[vkh,ih, jh
(µ(A, B)) , vkh,ih, jh(µ(A, B))] ∈ CST (1 − α;λkh,ih, jh)

∀ h = 1 . . . , H
�

�

� Y1, . . . , YT

�

,
�

since λkh,ih, jh(A, B) ∈ [vkh,ih, jh
(µ(A, B)), vkh,ih, jh(µ(A, B))] for any A, B

�

≥ P∗
�

µ(A, B) ∈ CST (1 − α;µ)
�

�

� Y1, . . . , YT

�

.

This implies that in any finite sample:

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α;λH)
�

�

� Y1, . . . , YT

�

is at least as large as

P∗
�

µ(A, B) ∈ CST (1−α;µ)
�

�

� Y1, . . . , YT

�

.

Assumption 5 gives the desired result.

This means that—given any prior that satisfies Assumption 5—our projection region can

be interpreted, in large samples, as a robust 1−α credible region for the impulse-response

function and its coefficients.

6.5 Calibrated projection for a Robust Bayesian

The projection approach generates conservative regions for both a frequentist and a robust

Bayesian. For a frequentist, the large-sample coverage may be strictly above the desired con-

fidence level. For a robust Bayesian, the asymptotic robust credibility of the nominal 1−α
projection region may be strictly above 1−α.

This section applies the approach in Kaido et al. (2016) to eliminate the excess of robust

Bayesian credibility in a computationally tractable way. We focus on calibrating the robust

credibility of our projection region to be exactly equal to 1−α (either in a finite sample for

a given prior on µ, or in large samples for a large class of priors on µ).¹²

Given a vector ΛH = {λkh,ih, jh}
H
h=1 of structural coefficients of interest and its correspon-

ding nominal 1−α projection region, the calibration exercise is based on the following result:

¹²We also discuss the calibration of projection in SVARs from the frequentist perspective (see Ap-
pendix 6.A.2). We argue that the computational feasibility of the frequentist calibration might be
compromised when µ is of large dimension.
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Result 3. (Calibration of Robust Credibility) Let P∗µ denote a prior for the reduced-form para-

meters. Suppose there is a nominal level 1−α∗(Y1, . . . , YT ) such that for every data realization:

P∗µ
�

×H
h=1[vkh,ih, jh

(µ), vkh,ih, jh(µ)] ⊆ CST (1−α∗(Y1, . . . , YT ),λ
H)|Y1, . . . , YT

�

equals 1−α. Then, for every data realization:

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α∗(Y1, . . . , YT );λ
H)
�

�

� Y1, . . . , YT

�

= 1−α.

Proof. See Appendix 6.A.1.2.

This means that in order to calibrate the robust credibility of projection, it is sufficient

to choose 1−α∗(Y1, . . . , YT ) to guarantee that exactly α% of the bounds of the identified set

for the different structural coefficients in λH fall outside the projection region.

Calibration Algorithm: The calibration algorithm we propose consists in finding a

nominal level 1−α∗(Y1, . . . , YT ) such that the posterior probability of the event:

[vk1,i1, j1
(µ), vk1,i1, j1(µ)]× . . .× [vkh,ih, jh

(µ), vkh,ih, jh(µ)] ⊆ CST (1−α∗,λH)

equals 1−α under the posterior distribution associated to the prior P∗µ or under a suitable

large-sample approximation for the posterior such as µ|Y1, . . . YT ∼Nd(bµT ,ÒΩT / T).¹³

The calibration algorithm is the following:

1. Generate M draws (for example, M = 1,000) from the posterior of the reduced-form

parameters. If desired, one could use the large-sample approximation of the posterior

given by:

µ∗m ∼Nd(bµT ,ÒΩT / T).

2. Let λH = {λkh,ih, jh}
H
h=1 denote the structural coefficients of interest. For each h=

1, . . . H and for each m= 1, . . . M evaluate:

[vkh,ih, jh
(µ∗m), vkh,ih, jh(µ

∗
m)],

as defined in equation (6.5). We provide Matlab code to evaluate these bounds.

¹³ The Gaussian approximation for the posterior will eliminate projection bias asymptotically provi-
ded a Berstein von-Mises Theorem for µ holds. We establish this result in Appendix 6.A.1.4.
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3. Fix an element αs on the interval (α, 1). Set a tolerance level η > 0.

4. For each m= 1, . . . M generate the indicator function zm that takes the value of 0 whe-

never there exists an index h ∈ {1, . . . H} such that:

[vkh,ih, jh
(µ∗m), vkh,ih, jh(µ

∗
m)] /∈ CST (1−αs,λkh,ih, jh).

The projection region CST (1−αs,λkh,ih, jh) is defined in equation (6.7) in Result 3

and implemented using the SQP/IP algorithm that will described in the next section

(Section 6.6).

5. Compute the robust credibility of the nominal 1−αs projection as:

RCT (αs)=
1
M

M
∑

m=1

zm.

If such quantity is in the interval [1−α−η, 1−α+η] stop the algorithm. If RCT (αs)

is strictly above 1−α+η, go back to Step 3 and choose a larger value of αs. If

RCT (αs) is strictly below 1−α−η go back to Step 3 and choose a smaller value of αs.

We now show that whenever the bounds of the identified set for eachλh are differentiable,

our calibration algorithm also removes the excess of frequentist coverage.

Result 4 (Robust Bayes Calibration and the Frequentist Coverage of the Identified Set).

Suppose that for each h= 1, . . . H the bounds of the identified set vh(µ) and vh(µ) are differen-

tiable at µ0. Suppose in addition that at µ0:

1.
p

T(bµ−µ0)
d
→N (0,Ω),

2. ÒΩT
p
→ Ω, where Ω is positive definite,

3. The prior for the reduced-form parameters used in the calibration satisfies the Bernstein

von-Mises Theorem in Ghosal et al. (1995):

sup
B∈B(Rd)

�

�P∗
�p

T(µ∗ − bµT ) ∈ B | Y1, . . . , YT

�

− P (Z ∈ B)
�

�

p
→ 0,

where Z ∼Nd(0,Ω), andB(Rd) is the set of all Borel measurable sets in Rd .
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Then:

Pµ0

�

[vh(µ0), vh(µ0)] ⊆ CST (1−α∗(Y1, . . . , YT );λh), ∀h= 1, . . . H
�

→ 1−α.

Proof. See Appendix 6.A.1.3. The heuristic argument behind this result is the following. We

show that the differentiability of vh and vh at µ0 implies that:

Pµ0

�

[vh(µ0), vh(µ0)] ⊆ CST (1−α∗(Y1, . . . , YT );λh), ∀h= 1, . . . H
�

is approximately the same as:

Pµ0

�

[vh(µ0), vh(µ0)] ⊆
�

vh(bµT )−
r∗Tσh(µ0)p

T
, vh(bµT )+

r∗Tσh(µ0)p
T

�

, ∀h≤ H

�

.

where r∗T be the radius that calibrates robust Bayesian credibility. The Bernstein-von Mises

Theorem implies that such probability is approximately the same as:

P∗
�

[vh(µ
∗), vh(µ

∗)] ⊆
�

vh(bµT )−
r∗Tσh(µ0)p

T
, vh(bµT )+

r∗Tσh(µ0)p
T

�

, ∀h≤ H

�

,

which, by the calibration of robust Bayesian credibility is approximately 1−α.

6.6 Implementation of baseline and calibrated projection

6.6.1 Projection as a mathematical optimization problem

This subsection discusses the implementation of the baseline projection region:

CST (1−α;λk,i, j)≡
�

inf
µ∈CST (1−α,µ)

vk,i, j(µ) , sup
µ∈CST (1−α,µ)

vk,i, j(µ)
�

.

We note that both the upper bound and lower bound of this confidence interval can be

thought of as solutions to a pair of ‘nested’ optimization problems.

The first optimization problem—that we refer to as the inner optimization—solves for

vk,i, j(µ) and vk,i, j(µ). These functions correspond to the largest and smallest value of the

structural impulse response λk,i, j given a set of restrictions and a vector of reduced-form

parameters µ.
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The second optimization problem—that we refer to as outer optimization—solves for

the maximum value of vk,i, j(·) and the minimum value of vk,i, j(·) over the (1−α) Wald

Confidence ellipsoid, CST (1−α,µ).

Implementation: Our proposal is to combine the inner and outer problem into a single

mathematical program that gives the bounds of the projection confidence interval directly.

The upper bound can be found by solving:

sup
A,Σ,B

e′iCk(A)Be j subject to BB′ = Σ, B ∈ R(µ), and (6.9)

T(bµT − µ(A,Σ))′ÒΩ−1
T (bµT − µ(A,Σ)) ≤ χ2

d,1−α.

The lower bound of the projection confidence interval can be found analogously. Importantly,

the simple reformulation in (6.9) allows us to base the implementation of our projection

region upon state-of-the-art solution algorithms for optimization problems. Our suggestion

is to use a simple SQP/IP algorithm.

6.6.2 Solution algorithms for baseline projection

The nature of the optimization problem: The nonlinear mathematical program in (6.9)

has two challenging features. On the one hand, the optimization problem is non-convex;

this complicates the task of finding a global minimum with algorithms designed to detect

local optima. On the other hand, the number of optimization arguments and constraints

increases quadratically in the dimension of the SVAR; this compromises the feasibility of

some optimization routines designed to detect global optima (for example, brute-force grid

search on CST (1−α,µ) to optimize vk,i, j(µ) and vk,i, j(µ)).

Our Approach: Taking these two features into consideration, we first implemented pro-

jection by running a local optimization algorithm followed by a global algorithm that used

the local solution as an input. The algorithms and the functions used to implement the pro-

jection confidence interval are described below. In the application analyzed in this paper, the

global stage of the algorithm did not have any impact on the local solution. We thus suggest

researchers to implement our approach using only the SQP/IP routine described below.

Local Algorithms: Although no standard classification exists for local optimization al-

gorithms, themost common procedures are often grouped as follows: penalty and Augmented

Lagrangian Methods; Sequential Quadratic Programming (SQP); and Interior Point Methods

(IP); see p. 422 of Nocedal and Wright (2006) for more details.



184 | 6 Projection Inference for Set-Identified SVARs

Within this class of algorithms, we focus on the IP and SQP algorithms, both of which are

considered as the “most powerful algorithms for large-scale nonlinear programming”, Nocedal

and Wright (2006), p. 563.¹⁴ Conveniently, IP and SQP are included in Matlab®’s fmincon

function, which comes with the Optimization toolbox. We run the SQP algorithm—which is

usually faster than IP—and in case it does not find a solution, we switch to IP, an algorithm

which we denote by SQP/IP.

Global Algorithms: IP and SQP are well adjusted to handle various degeneracy pro-

blems in order to find a local minimum for large-scale non-convex problems. There is now a

large body of literature on global optimization strategies; see Horst and Pardalos (1995) and

Romeijn and Pardalos (2013). Popular global optimization algorithms include adaptive sto-

chastic search; branch and bound methods; homotopy methods; Genetic algorithms (GA);

simulated annealing and two-phase algorithms such as MultiStart and GlobalSearch.¹⁵We

focus on the two-phase algorithms MultiStart, GlobalSearch and on the genetic algorithm

available in Matlab.¹⁶

6.6.3 Implementing baseline projection in an example

As an example, we consider the demand-supply SVAR model studied in Section 5 of Baumeis-

ter and Hamilton (2015a) [henceforth, BH]. We fit a 6-lag VAR to U.S. data on growth rates

of real labor compensation, ∆wt , and total employment, ∆nt , from 1970:Q1 to 2014:Q2.¹⁷

Using our notation, the demand-supply SVAR can be written as:

�

∆wt

∆ηt

�

= A1

�

∆wt−1

∆ηt−1

�

+ . . .+ A6

�

∆wt−6

∆ηt−6

�

+ B

�

εd
t

εs
t

�

,

¹⁴ Furthermore, these algorithms exploit the existence of second-order derivatives which are well-
defined in our problem.

¹⁵ For a more detailed list and classification of global methods see p. 519 of Chapter 15 in Romeijn
and Pardalos (2013). For a description of two-phase algorithms see Chapter 12 in Romeijn and Par-
dalos (2013).

¹⁶ Genetic algorithms are a well developed field of computing and they have been used in many
applications; see the introduction to Chapter 9 in Romeijn and Pardalos (2013). A very interesting
application in economics that motivated our focus on GA is given in Qu and Tkachenko (2015).

¹⁷ Our selection is based on the fact that 6 is the smallest number of lags such that CS(68%;µ)
does not contain unstable VAR coefficients and non-invertible reduced-form covariance matrices. 68%
confidence sets correspond to a single standard deviation and are frequently used in applied macroe-
conomic research. The Bayes Information Criteria and the Information Criteria both select less than
six lags.



6.6 Implementation of baseline and calibrated projection | 185

BH set-identify an expansionary demand and supply shock by means of the following sign

restrictions:

B ≡

�

b1 b3

b2 b4

�

satisfies

�

+ −
+ +

�

.

The sign restrictions state that a demand shock increases both real labor compensation and

total employment, while a supply shock lowers wages but raises employment.

In this model, the short-run wage elasticity of labor supply (identified from a demand

shock) is defined as:

α≡ b2 / b1

Likewise, the short-run wage elasticity of labor demand (identified from a supply shock) is

defined as:

β ≡ b4 / b3

Finally, the long-run impact of a demand shock over employment is given by:

γ≡ e′2(In −
6
∑

p=1

Ap)
−1Be1.

BH impose three additional restrictions. The first two of them are elasticity bounds moti-

vated by the findings of different empirical studies. Hamermesh (1996), Akerlof and Dickens

(2007), Lichter et al. (2014) provide bounds on the wage elasticity of labor demand. Chetty

et al. (2011), Reichling and Whalen (2012) provide bounds on the wage elasticity of labor

supply. The third and final restriction arises from imposing lower and upper bounds on the

long-run impact of a demand shock on employment.

BH incorporate the restrictions in the form of priors on the structural parameters, but we

treat the constraints as additional sign restrictions. Let tv denote the standard t distribution

with v degrees of freedom. The following table summarizes the way in which BH incorporate

prior information:

Thus, summarizing, our version of the BH model has 10 sign restrictions:



186 | 6 Projection Inference for Set-Identified SVARs

Table 6.2. Additional identifying restrictions

Restrictions Motivation BH This paper

Bounds on α Empirical studies α∼max{.6+ .6t3, 0} .27≤ α≤ 2
report α ∈ [.27,2]

Bounds on β Empirical studies β ∼min{−.6+ .6t3, 0} −2.5≤ β ≤ −.15
β ∈ [−2.5,−.15]

Bounds on γ γ= 0 is too strong γ∼N (0, V ) −2V ≤ γ≤ 2V

Demand and Supply Shocks: : b1 ≥ 0, b2 ≥ 0,−b3 ≥ 0, b4 ≥ 0,

Elasticity Bounds : 2b1 − b2 ≥ 0, b2 − .27b1 ≥ 0,

b4 + .15b3 ≥ 0,−2.5b3 − b4 ≥ 0,

Long-Run : e′2(In −
6
∑

p=1

Ap)
−1Be1 + 2V ≥ 0,

− e′2(In −
6
∑

p=1

Ap)
−1Be1 + 2V ≥ 0,

where the parameter V is allowed to take the values {.01, .1, 1} as in p. 1992 of BH.

6.6.4 Results of the implementation of baseline projection

Using our SQP/IP local solution algorithm, we compute the 68% projection confidence inter-

vals for the cumulative response of wages and employment to the structural shocks in the

model (20 consecutive quarters and setting V = 1). In addition to the projection region, we

compute the 68% Bayesian credible set following the implementation in both Uhlig (2005)

and BH.

Figure 6.1 shows the projection region as solid blue line and the standard Bayesian cre-

dible set (based on BH priors) as a grey-shaded area.
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Figure 6.1. 68% projection region and 68% credible set.
(Baumeister and Hamilton (2015a) priors)
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(a) Expansionary Demand Shock (b) Expansionary Supply Shock

(Solid, Blue Line) 68% Projection Region; (Shaded, Gray Area) 68% Bayesian Credible Set based
on the priors in Baumeister and Hamilton (2015a).

Figure 6.2 shows the boundaries of the projection region as solid blue line and the Baye-

sian credible set based on Uhlig (2005)’s priors as a grey-shaded area.

Comment about Credible Sets: The 68% credible sets differ substantially depending

on the specification of prior beliefs. Such sensitivity is the main motivation for our projection

approach. In this example, the length of the credible sets for the cumulative response of

employment seems to differ by a factor of at least two. The projection region seems quite

large compared to the credible sets. This could be a consequence of either the robustness

of projection or its conservativeness. To disentangle these effects, we calibrate projection to

guarantee that it has exact robust Bayesian credibility in the next subsection.
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Figure 6.2. 68% projection region and 68% credible set.
(Uhlig (2005) priors)
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(a) Expansionary Demand Shock (b) Expansionary Supply Shock

(Solid, Blue Line) 68% Projection region; (Shaded, Gray Area) 68% Bayesian Credible Set based
on the Nornal-Wishart-Haar priors suggested in Uhlig (2005) and the inequality constraints summa-
rized below Table 6.2. The credible set is implemented following Arias et al. (2014).

Concrete comments regarding computational feasibility: Table 6.3 compares

computing time for the projection (which has both a frequentist and a Robust Bayes inter-

pretation) and the standard Bayesian methods.¹⁸ Since the global methods are initialized at

the local solution, these procedures take as least as much time as SQP/IP. Among the three

global methods considered, the Genetic Algorithm takes the longest. Brute-force grid search

(which refers to grid search on CST (1−α,µ) to optimize vk,i, j(µ) and vk,i, j(µ)) with only

¹⁸ To get a fair sense of the computational cost, none of the global algorithms were parallelized.
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1,000 draws from µ ∈ R27 takes about 6 times longer than the baseline SQP/IP and generates

substantially smaller bounds (see Appendix 6.A.4.2).¹⁹

Table 6.3. Computational time in seconds

Algorithm Details Time

SQP/IP 734

SQP/IP + MultiStart 100 initial points 33,314
SQP/IP + GlobalSearch 100 trial points (20 in Stage 1) 1,359
Genetic Algorithm population of 100, 500 generations 76,863

Grid Search on CST (1−α,µ) 1,000 draws from µ 4,548

Bayesian, BH 1,000,000 Metropolis-Hastings draws 3,992
Bayesian, Uhlig 100,000 accepted posterior draws 2,338

Notes: Laptop @2.4GHz IntelCore i7.

Comments Regarding Local and Global algorithms: Figure 6.6 in Appendix 6.A.4.1

compares the bounds of the projection confidence interval for the first four algorithms listed

in Table 6.3. For this application, it seems that none of the global algorithms improve on the

local solution obtained from SQP/IP.²⁰

6.6.5 Implementing calibrated projection in our example

The key restriction used to set-identify an expansionary demand shock in the illustrative ex-

ample is that it must increase wages and employment, upon impact. According to the credible

sets in Figures 6.1 and 6.2, the expansionary shock has—in fact—noncontemporaneous ef-

fects over these two variables (every quarter over a 5 year horizon). Our calibrated projection

confirms that there are medium-run effects of demand shocks over employment, but sugge-

sts that the non-zero effects over wages beyond the first two quarters could be an artifact of

prior beliefs.

¹⁹ Instead of pseudo-random draws from the multi-variate normal distribution, we use quasi-
random Sobol sequences, which have the property of being a low-discrepancy sequence in the hy-
percube. We translate the sequence into multivariate-normal draws using Cholesky decomposition. In
our experience, this improves the performance of grid search substantially for a given number of grid
points.

²⁰ In our Matlab code to implement projection we take SQP/IP as the default algorithm to construct
the projection region.
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Figure 6.3. 68% projection region and 68% calibrated projection.
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(a) Expansionary Demand Shock (b) Expansionary Supply Shock

(Solid Line) 68% Projection region; (Dotted Line) 68% Projection region calibrated to guarantee
68% robust Bayesian credibility of the IRF functions jointly (100,000 draws from the Gaussian ap-
proximation to the posterior of µ); (Box) 68% Projection region calibrated horizon by horizon and
shock by shock; (Black Dashed Line) Support of the bounds of the identified set given the 100,000
posterior draws.

A similar observation is true for supply shocks. Our calibrated projection suggests that the

decrease in wages five years after an expansionary supply shock is robust to the choice of prior

on the set-identified parameters. The medium-run effects of supply shocks over employment

lack this robustness.

Implementation of our Calibrated Projection: We close this subsection providing

further details about the computational demands of our calibration exercise.

Instead of working with a specific posterior for µ, we calibrated projection relying on the

large-sample approximation µ|Y1, . . . , YT ∼Nd(bµT ,ÒΩT / T). Taking draws from this model
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is straightforward and does not require any special sampling technique (as a Monte-Carlo

Markov Chain). Figure 6.3 used M=100,000 draws.

As described in our calibration algorithm, for each of the draws of µ (denoted µ∗m),

and for each horizon k ∈ {0,1, 2, . . . 20}, variable i ∈ {wage,employment} and shock j ∈
{demand shock, supply shock} we solved two mathematical programs to generate:

[vk,i, j(µ
∗
m), vk,i, j(µ

∗
m)].

Computing the bounds of the identified set for all the combinations (k, i, j) given µ∗m took

approximately 9 seconds. Generating the boxes and the black dashed lines in Figure 6.3

took approximately 5 hours using 50 parallel Matlab ‘workers’ on a computer cluster at the

University of Bonn.²¹ Notice that we choose M=100,000 for illustrative purposes and the

calibration results are barely different for M=1,000, which takes 3 minutes using the same

computer cluster (or 2.5 hours not using parallelization at all).

After generating the bounds of the identified set, the calibration exercise adjusts the

nominal level of projection to simulatenously contain 68% of the draws from the bounds of

the identified set for each combination (k, i, j).²² The calibrated confidence level for theWald

ellipsoid is 1.85 · 10−4% instead of the original 68%. This means that instead of projecting a

Wald ellipsoid with radius χ2
68%,27 we are using a χ2

68%,4.5.

6.7 Conclusion

A practical concern regarding standard Bayesian inference for set-identified Structural Vec-

tor Autoregressions is the fact that prior beliefs continue to influence posterior inference

even when the sample size is infinite. Motivated by this observation, this paper studied the

properties of projection inference for set-identified SVARs.

A nominal 1−α projection region collects all the structural parameters of interest that

are compatible with the VAR reduced-form parameters in a nominal 1−α Wald ellipsoid.

²¹ Calibrating projection to guarantee frequentist coverage at one point in the parameter space took
us 76 hours using the 50 parallel Matlab workers in the same computer cluster.

²² To do this, we ran the baseline projection SQP/IP algorithm for different nominal confidence
levels. An efficient calibration algorithm that requires only few iterations over the nominal level is the
combination of bisection with secant and interpolation as provided by Matlab’s fzero function. For
reasonably low tolerance of η= 0.001, we need 15 iteration steps. With each step taking about 734
seconds, see Table 6.3, steps 3 through 5 take about 1 hour.
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By construction, projection inference does not rely on the specification of prior beliefs for

set-identified parameters.

We argued that the projection approach is general, computationally feasible, and—under

mild assumptions concerning the asymptotic behavior of estimators and posterior distri-

butions for the reduced-form parameters—produces regions with frequentist coverage and

asymptotic robust Bayesian credibility of at least 1−α.
The main drawback of our projection region is that it is conservative. For a frequentist,

the large-sample coverage is strictly above the desired confidence level. For a robust Bayesian,

the asymptotic robust credibility of the nominal 1−α projection region is strictly above 1−α.
We used the calibration idea described in Kaido et al. (2016) to eliminate the excess of

robust Bayesian credibility. The calibration procedure consists of drawing the reduced-form

parameters, µ, from its posterior distribution (or a suitable large-sample Gaussian approx-

imation); evaluating the functions v(µ), v(µ) for each draw of µ; and, finally, decreasing

the nominal level of the projection region until it contains exactly (1−α)% of the values of

v(µ), v(µ). The calibration exercise required more work than the baseline projection, but it

is computationally feasible (and easily parallelizable). Moreover, if the bounds of the identi-

fied set are differentiable, our calibrated projection covers the identified set with probability

1−α.
We implemented our projection confidence set in the demand/supply SVAR for the U.S.

labor market. The main set-identifying assumptions were sign restrictions on contemporane-

ous responses. Standard Bayesian credible sets suggested that the medium-run response of

wages and employment to structural shocks behave in the same way as the contemporaneous

responses. Our projection region (baseline and calibrated) showed that only the qualitative

effects of demand shocks over employment and the qualitative effects of supply shocks over

wages are robust to the choice of prior. Our projection approach is a natural complement for

the Bayesian credible sets that are commonly reported in applied macroeconomic work.



6.A Appendix | 193

Appendix 6.A Appendix

6.A.1 Proof of main results

6.A.1.1 Verification of Assumption 5 for the Gaussian SVAR with a Normal-Wishart
prior.

Consider the SVAR in (6.3) and assume that F ∼N (0, In). Let P∗ denote a prior on the SVAR

parameters (A, B).

Note first that Assumption 5 depends only on the distribution that P∗ induces over

the reduced-form parameters, µ. Thus, we abuse notation and refer to P∗ as the prior

distribution on (A,Σ).

The analysis in this section focuses on the Normal-Wishart prior P∗ used in Gaussian

SVAR analysis. We establish an almost sure version of Assumption 5.

Prior for µ: Consider the hyper-parameters:

Ā0 ∈ Rn×np, S0 ∈ Rn×n, N0 ∈ Rnp×np, v0 ∈ R.

Definition. The Normal-Wishart Prior P∗ over the parameters (vec(A),vech(Σ))—defined

by hyper parameters (Ā0, S0, N0, v0)—is given by:

vec(A)|Σ ∼N
�

vec(Ā0) , N−1
0 ⊗Σ

�

,

and

Σ−1 ∼Wishartn
�

S−1
0 / v0 , v0

�

.

Posterior in the Gaussian SVAR: Let

QT ≡
1
T

T
∑

t=1

X t X
′
t ,

and define the updated hyperparameters:



194 | 6 Projection Inference for Set-Identified SVARs

ĀT = bATQT

�N0

T
+ QT

�−1
+ Ā0

N0

T

�N0

T
+ QT

�−1

ST =
v0

T + v0
S0 +

T
T + v0

ÒΣT +
1

T + v0

�

ĀT − Ā0

�

N0

�N0

T
+ QT

�−1
QT

�

ĀT − Ā0

�′

where bAT and ÒΣT are ordinary least squares estimators for A and Σ defined in Section 6.3.1.

From p. 410 in Uhlig (1994) and p. 410 in Uhlig (2005) the posterior distribution for the

vector (vec(A)′,vech(Σ)′)′ can be written as:

vec(A)|Y1, . . . , YT = vec(ĀT )+
��N0

T
+QT

�−1
⊗
Σ

T

�1/2
W, W ∼Nn2p(0, In2p),

Σ|Y1, . . . , YT = S1/2
T

� 1
T

T
∑

t=1

Zt Z
′
t

�−1
S1/2

T , Zt ∼Nn(0 , In), i.i.d,

where both random vectors are independent of the data and {Zt}
T
t=1 independent of W . Note

that for a given data realization, the posterior distribution of (A,Σ) is a measurable function

of W ≡ (W, Z1, . . . ZT ). We use the term oW (1) to denote any sequence that converges to

zero as T →∞ for almost every realization of W .

Asymptotic Behavior of the posterior for µ: We now show that all of the Normal-

Wishart priors in the Gaussian model satisfy our Assumption 5. Note first that for almost

every data realization (Y1, . . . , YT ) and almost every realization of the random vector Zt we

have that

Σ − ÒΣT → 0,
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by applying the strong law of large numbers to (1/ T)
∑T

t=1 Zt Z
′
t . Consequently:

p
T(vec(A) − vec(bAT ))

= bAT
p

T
�

QT

�N0

T
+ QT

�−1
− In2p

�

+ Ā0
N0p

T

�N0

T
+ QT

�−1

+
��N0

T
+ QT

�−1
⊗ ÒΣT

�1/2
W + oP∗|Y1,...YT

(1),

= bAT
p

T
�

QT

�

Q−1
T + Q−1

T
N0

T
Q−1

T + O(1/ T2)
�

− In2p

�

(by a first-order Taylor expansion)

+Ā0
N0p

T

�N0

T
+ QT

�−1

+
��N0

T
+ QT

�−1
⊗ ÒΣT

�1/2
W + oW (1),

=
�

Q−1
T ⊗ ÒΣT

�1/2
W + oW (1).

This implies that the posterior distribution of
p

T(vec(A)− vec(bAT )) converges in distribution,

for almost every data realization (Y1, . . . , YT ), to the random vector:

[Q−1/2
T ⊗ ÒΣ1/2

T ]W, where W ∼ Nn2p(0, In2p). (6.10)

Note now that

p
T(vech(Σ) − vech(ÒΣT ))

=
p

Tvech
�

S1/2
T

� 1
T

T
∑

t=1

Zt Z
′
t

�−1
S1/2

T − ÒΣT

�

,

=
p

Tvech
�

ÒΣ1/2
T

� 1
T

T
∑

t=1

Zt Z
′
t

�−1
ÒΣ1/2

T + O(1/ T) − ÒΣT

�

,

=
p

Tvech
�

ÒΣ1/2
T

�� 1
T

T
∑

t=1

Zt Z
′
t

�−1
− In

�

ÒΣ1/2
T

�

+ o(1).

This implies that the posterior distribution of
p

T(vech(Σ)− vech(ÒΣT )) converges in distri-

bution, for almost every data realization (Y1, . . . , YT ), to the random vector:

�

2D+(ÒΣT ⊗ ÒΣT )D
+
�1/2

Z , where Z ∼ Nn(n+1) /2(0, In(n+1) /2), Z⊥W, (6.11)

and D+ ≡ (D′D)−1D′ is the Moore-Penrose inverse of the duplication matrix D such that

vec(Σ)= Dvech(Σ).
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Now, assume that the confidence set for the reduced-form parameters is constructed using

the Gaussian Maximum Likelihood asymptotic variance of bµT as in p.93 of Lütkepohl (2007);

that is:

ÒΩT ≡

�

Q−1
T ⊗ ÒΣT 0n2p×(n(n+1) /2)

0(n(n+1) /2)×n2p 2D+(ÒΣT ⊗ ÒΣT )D
+′

�

. (6.12)

Let G denote the joint distribution of (W, Z), which is a standard multivariate normal inde-

pendently of the data. Then, combining (6.10), (6.11), (6.12)

P∗
�

µ ∈ CST (1 − α,µ)|(Y1, . . . , YT )
�

= P∗
�p

T(µ − bµT )
′
ÒΩ−1

T

p
T(µ − bµT ) ≤ χ2

d,1−α|(Y1, . . . YT )
�

→ G
�

�

W

Z

�′�
W

Z

�

≤ χ2
d,1−α | Y1, . . . , YT

�

for a.e. data realization

= G
�

�

W

Z

�′�
W

Z

�

≤ χ2
d,1−α

�

= (1 − α).

6.A.1.2 Proof of Result 3 (Finite-sample calibration for a Robust Bayesian)

Proof. The proof of Result 2 has already established that for any data realization:

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α∗(Y1, . . . , YT );λ
H)
�

�

� Y1, . . . , YT

�

.

is at least as large as:

P∗µ
�

×H
h=1[vkh,ih, jh

(µ), vkh,ih, jh(µ)] ⊆ CST (1−α∗(Y1, . . . , YT ),λ
H)|Y1, . . . , YT

�

.

Hence, it is sufficient to show that for any data realization:

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α∗(Y1, . . . , YT );λ
H)
�

�

� Y1, . . . , YT

�

≤ 1−α.

In order to establish this upper bound for each data realization, we will find a prior on Q

(conditional on µ) that gives credibility of exactly 1−α to the calibrated projection region.

Fix the data, and denote the set CST (1−α(Y1, . . . , YT );λ
H) simply by C (Y T ). Before the

realization of the data, the set C (Y T ) is just some subset of RH , so the prior can depend
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on this set. Let vh(µ) abbreviate vkh,ih, jh(µ) and define vh(µ) analogously. Let Qmax(µ; h)

denote the rotation matrix for which the structural parameter achieves its upper bound; i.e.,

λ(µ,Qmax(µ; h))= vh(µ) (the matrix Qmin is defined analogously).

For each µ such that ×H
h=1[vh(µ), vh(µ)] /∈ C (Y T ), let h(µ) denote the smallest horizon

for which vh(µ)(µ) is not contained in the h(µ)-th coordinate of the region C (Y T ). If no up-

perbound falls outside C (Y T ) set h(µ)= 0. Define h(µ) analogously. Consider the following

prior for Q|µ that depends on the set CT (Y
T ):

Q|µ=











Qmax(µ; 1) if ×H
h=1[vh(µ), vh(µ)] ⊆ CT (Y

T ),

Qmax(µ, h(µ)) if ×H
h=1[vh(µ), vh(µ)] 6⊆ C (Y T ) and h(µ)≥ h(µ),

Qmin(µ, h(µ)) if ×H
h=1[vh(µ), vh(µ)] 6⊆ C (Y T ) and h(µ)< h(µ),

Finally, let P∗∗ denote the prior induced by P∗µ and Q|µ as defined above. Note that for each

data realization (Y1, . . . , YT ) :

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α(Y1, . . . YT );λ
H)
�

�

� Y1, . . . , YT

�

is—by definition of infimum—smaller than or equal

P∗∗
�

λH(µ,Q) ∈ CST (1−α(Y1, . . . , YT );λ
H)
�

�

� Y1, . . . , YT

�

.

By construction, the prior for Q|µ is such that λH(µ,Q) ∈ CST (1−α(Y1, . . . , YT );λ
H) if and

only if ×H
h=1[vh(µ), vh(µ)] ⊆ CT (Y

T ). To see this, note that whenever the bounds of the

identified set ×H
h=1[vh(µ), vh(µ)] 6⊆ CT (Y

T ), either h(µ) 6= 0 or h(µ) 6= 0 implying that the

structural parameter λh(µ,Q) takes the value of vh(µ)(µ) or vh(µ)(µ) (whichever horizon is

largest). Since these bounds are not contained in CT (Y
T ):

P∗∗
�

λH(µ,Q) ∈ CST (1−α(Y1, . . . , YT );λ
H)
�

�

� Y1, . . . , YT

�

.

equals

P∗µ
�

×H
h=1[vkh,ih, jh

(µ), vkh,ih, jh(µ)] ∈ CST (1−α∗(Y1, . . . , YT ),λ
H)|Y1, . . . , YT

�

= 1−α.

This means that:

1−α≤ inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α∗(Y1, . . . , YT );λ
H)
�

�

� Y1, . . . , YT

�

≤ 1−α.
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6.A.1.3 Proof of Result 4 (Robust Bayesian calibration and frequentist coverage)

Let r∗T be the radius that calibrates robust Bayesian credibility; i.e., the radius corresponding

to the calibrated nominal level 1−α∗(Y1, . . . , YT ). In a slight abuse of notation we replace

CST (1−α∗(Y1, . . . , YT );λh) by CST (r
∗
T ;λh). The proof of this result is based on Lemma 1,2,

and 3 in Appendix 6.A.3.

Proof. We show that for every ε > 0 there is T(ε) such that T > T(ε) implies that:

1−α− ε≤ Pµ0

�

[vh(µ0), vh(µ0)] ⊆ CST (r
∗
T ;λh), ∀h= 1, . . . H

�

≤ 1−α+ ε.

Let M1(ε) and M2(ε) be two real-valued (nonnegative) functions. Define the events:

A1(ε) = {(Y1, . . . , YT )| ||
p

T(bµT − µ0)|| ≤ M1(ε)},

A2(ε) = {(Y1, . . . YT )| the largest eigenvalue of ÒΩT is smaller than M2(ε)},

A3(η) = {(Y1, . . . YT )| |bσh(µ0) − σh(µ0)| < η/(2χ2
d,1−α)

and |bσh(µ0) − σh(µ0)| < η/(2χ2
d,1−α)},

A4(ε) = {(Y1, . . . YT )| sup
B∈B(Rd)

|P∗(
p

T(µ∗ − bµT ) ∈ B | Y1, . . . , YT )

−P (Z ∈ B) | ≤ ε/8, where Z ∼ Nd(0,Ω),}.

A5(ε) = {(Y1, . . . YT )| r∗T < χ2
d,1−α + ε}.

where the standard errors bσh(µ0), σh(µ0), bσh(µ0),σh(µ0) are defined in Lemma 1 of Ap-

pendix 6.A.3.1. We first show that the probability of these events can be made arbitrarily

close to 1 for a large enough sample size.

To see this, note that Assumption 1 of Result 4 (convergence in distribution of
p

T(bµT −
µ0)) implies there exists a function M1(ε) and a large enough sample size T1(ε) such that

for T ≥ T1(ε), Pµ0
(A1(ε))> 1− ε/25. Assumption 2 of Result 4 (convergence in probability

of ÒΩT ) implies there exists a function M2(ε) and a large enough sample size T2(ε,η) such

that for T ≥ T2(ε,η), Pµ0
(A2(ε))> 1− ε/25 and Pµ0

(A3(η))> 1− ε/25. Assumption 3 of

Result 4 (Bernstein von-Mises Theorem in total variation) implies that there is T4(ε) such

that T ≥ T4(ε,η), Pµ0
(A4(ε))> 1− ε/25. Finally, since Assumption 3 of Result 4 implies the

assumption of Result 2 (the baseline projection has robust credibility of at least 1−α with

high probability) implies there is T5(ε) such that T ≥ T5(ε), Pµ0
(A5(ε))> 1− ε/25
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This means that for T ≥max{T1(ε), T2(ε,η), T4(ε), T5(ε)},

Pµ0

�

[vh(µ0), vh(µ0)] ⊆ CST (r
∗
T ;λh), ∀h= 1, . . . H

�

≤

Pµ0

�

[vh(µ0), vh(µ0)] ⊆ CST (r
∗
T ;λh), ∀h = 1, . . . H ∩ A(ε,η)

�

+ ε/5, (6.13)

where

A(ε,η)≡ A1(ε)∪ A2(ε)∪ A3(η)∪ A4(ε)∪ A5(ε).

Define now, given Z ∼N (0,Ω), the quantile r1−α+ε by the equation:

P(−σh(µ0)r1−α+ε ≤ v̇h(µ0)
′Z ,

and v̇h(µ0)
′Z ≤ σh(µ0)r1−α+ε, ∀h = 1, . . . H) = 1 − α + ε.

Lemma 3 in Appendix 6.A.3.3 has shown that there exists T6(ε) such that :

(Y1, . . . , YT ) ∈ A(ε,η(ε/10,χ2
d,1−α)) =⇒ r∗T ≤ r1−α+ε/5 ≡ r,

where the function η(ε/10,χ2
d,1−α)) is defined as in Lemma 2 in Appendix 6.A.3.2. This im-

plies that whenever T ≥max{T1(ε), T2(ε,η(ε/10,χ2
d,1−α)), T4(ε), T5(ε), T6(ε)}, Equation

(6.13) is bounded above by:

Pµ0
([vh(µ0), vh(µ0)] ⊆ CST (r;λh),

∀h = 1, . . . H ∩ A(ε,η(ε/10,χ2
d,1−α))) + ε/5. (6.14)

Lemma 1 in Appendix 6.A.3.1 has shown that (Y1, . . . , YT ) ∈ A(ε,η(ε/10,χ2
d,1−α)) implies

that the projection region of radius r1−α+ε/5 is contained in the delta-method interval

DMh
T (r,η) (with radius r = r1−α+ε/5 and expansion η= η(ε/10,χ2

d,1−α)):

�

vh(bµT )−
(r +η(ε/10,χ2

d,1−α))σh(µ0)
p

T
, vh(bµT )+

(r +η(ε/10,χ2
d,1−α))σh(µ0)

p
T

�

,

for every h= 1, . . . H. This means that Equation (6.14) is bounded above by:

Pµ0

�

[vh(µ0), vh(µ0)] ⊆ DMh
T (r,η(η/10,χ2

d,1−α)), ∀h = 1, . . . H
�

+ ε/5. (6.15)
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An application of the delta-method implies there is T7(ε) larger than

T ≥max{T1(ε), T2(ε,η(ε/10,χ2
d,1−α)), T4(ε), T5(ε), T6(ε)}

such that Equation 6.15 is bounded above by 2ε/5 plus:

P( − σh(µ0)(r + η(ε/10,χ2
d,1−α))

≤ v̇h(µ0)
′Z , and v̇h(µ0)

′Z

≤ σh(µ0)(r + η(ε/10,χ2
d,1−α), ∀h = 1, . . . H), (6.16)

which, by definition of η(ε,χ2
d,1−α), imploes that the latter equation is bounded above by

P
�

−σh(µ0)r ≤ v̇h(µ0)
′Z , and v̇h(µ0)

′Z ≤ σh(µ0)r, ∀h= 1, . . . H
�

+ 4ε/5.

Using the definition of r, we conclude that there is T(ε) such that for T ≥ T(ε):

Pµ0

�

[vh(µ0), vh(µ0)] ⊆ CST (r
∗
T ;λh), ∀h= 1, . . . H

�

≤ 1−α+ ε.

The lower bound is derived analogously.

6.A.1.4 Asymptotic calibration for a Robust Bayesian
(µ|Y1, . . . YT ∼Nd(bµT ,ÒΩT / T))

We now show that whenever α∗T ≡ α(Y1, . . . , YT ) is calibrated to guarantee that

PT

�

×H
h=1 [vk1,i1, j1

(µ), vk1,i1, j1(µ)] × . . . × [vkh,ih, jh
(µ), vkh,ih, jh(µ)]

⊆ CST (1 − α∗T ,λH) | Y1, . . . YT

�

equals 1−α whenever µ|Y1, . . . YT ∼Nd(bµT ,ÒΩT / T), then one can guarantee asymptotic ro-

bust credibility of 1−α for a large class of priors on µ. This is formalized below.

Let f (Y1, . . . YT |µ0) denote the Gaussian density for the VAR data and let Ω ∈ Rd×d

denote the probability limit of ÒΩT . Let GΩ denote a Gaussian measure centered at 0d with

covariance matrix Ω. LetB(d) denote Borel sets in Rd .
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Result 5. Let Y1, . . . YT ∼ f (Y1, . . . YT |µ0) and suppose that the prior P∗µ is such that:

sup
A∈B(d)

�

�

�P∗µ(
p

T(µ− bµT ) ∈ A | Y1, . . . YT )− GΩ(A)
�

�

�= op(Y1, . . . YT ;µ0).

Then,

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α∗T ,λH) | Y1, . . . YT

�

= 1−α+ op(Y1, . . . YT ;µ0).

Proof. Result 3 has shown that for any α(Y1, . . . , YY )

inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α∗T ,λH) | Y1, . . . YT

�

= P∗µ
�

µ ∈ A∗T | Y1, . . . YT

�

,

where A∗T ⊆ R
d is defined as:

{µ ∈ Rd | ×H
h=1 [vkh,ih, jh

(µ), vkh,ih, jh(µ)] ⊆ CST (1−α∗T ,λH)}.

Note that

P∗µ
�

µ ∈ A∗T | Y1, . . . YT

�

= P∗µ
�p

T(µ − bµT ) ∈
p

T(A∗T − bµT ) : | Y1, . . . YT

�

− GΩ(
p

T(A∗T − bµT )) + GΩ(
p

T(A∗T − bµT ))

− G
ÒΩT
(
p

T(A∗T − bµT )) + G
ÒΩT
(
p

T(A∗T − bµT ))

We make three observations:

1. Note first that:

P∗µ
�p

T(µ− bµT ) ∈
p

T(A∗T − bµT ) : | Y1, . . . YT

�

− GΩ(
p

T(A∗T − bµT ))

is smaller than or equal

sup
A∈B(d)

�

�

�P∗µ(
p

T(µ− bµT ) ∈ A | Y1, . . . YT )− GΩ(A)
�

�

� ,

which is, by assumption, op(Y1, . . . YT ;µ0).
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2. Note then that

|G
ÒΩT
(
p

T(A∗T − bµT ))− GΩ(
p

T(A∗T − bµT ))|= op(Y1, . . . , YT ;µ0)

since ÒΩT
p
→ Ω and G is the Gaussian measure centered at zero.

3. Finally, note that G
ÒΩT
(
p

T(A∗T − bµT )) is the same as is the same as

P(N(bµT ,ÒΩT / T) ∈ A∗T |Y1, . . . , YT ),

which, by definition of A∗T , is the same as:

PT

�

×H
h=1 [vk1,i1, j1

(µ), vk1,i1, j1(µ)] × . . . × [vkh,ih, jh
(µ), vkh,ih, jh(µ)]

⊆ CST (1 − α∗T ,λH) | Y1, . . . YT

�

where µ|Y1, . . . YT ∼Nd(bµT ,ÒΩT / T).

We conclude that:

| inf
P∗∈P (P∗µ)

P∗
�

λH(A, B) ∈ CST (1−α∗T ,λH) | Y1, . . . YT

�

− (1−α)| ≤ op(Y1, . . . YT ;µ0),

which implies the desired result.

6.A.2 Frequentist calibration of projection

We have shown that projection can be calibrated to achieve exact robust Bayesian credibi-

lity for a given prior on the reduced-form parameters. We now discuss the extent to which

projection can be calibrated to achieve large-sample frequentist coverage of 1−α.
Frequentist calibration requires either an exact or an approximate statistical model for

the data. We assume that: bµT ∼ Pµ ≡Nd(µ,ÒΩT / T), where µ belongs to some setM ⊆ Rd

and ÒΩT is treated as a non-stochastic matrix.

Let λ be some structural coefficient of interest. The frequentist calibration exercise con-

sists in finding a radius, rT (α), for the Wald ellipsoid such that:

inf
µ∈M

inf
λ∈IR (µ)

Pµ
�

λ ∈ CST (rT (α);λ)
�

= 1−α.

An algorithm to Calibrate Projection over a grid G: Let d denote the dimension

of µ and let 1−α be the desired confidence level.
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1. Generate a grid of S scalars {r1, r2, . . . , rS} on the interval [0,
Ç

χ2
d,1−α]. Each of these

values will serve as the potential ‘radius’ of the Wald ellipsoid for µ. Fix one element

rs.

2. Generate a grid of I values G ≡ {µ1,µ2, . . . ,µI} ∈M ⊆ Rd . Fix an element µi ∈ G.

3. Generate M i.i.d. draws from the model

bµi
T,m ∼Nd(µi ,ÒΩT / T).

Let CSm
T (rs,λ) denote the confidence interval for λ associated to bµi

T,m with radius rs.

Note that in order to compute the confidence interval for λ, ÒΩT is fixed across all

draws.

4. Generate a grid of size K {λi
1,λi

2, . . . ,λi
K} from the identified-set for λ given µi , deno-

ted IR(µi).

5. For each µi compute:

C PT (µi; rs,ÒΩT )≡min
k∈K

1
M

M
∑

m=1

1
¦

λk ∈ CSm
T (rs;λ)

©

.

6. Report the approximate confidence level of the projection confidence interval with

radius rs as:

ApproxCLT (rs)≡min
i∈I

C PT (µi; rs,ÒΩT )

7. Find the value in the grid

{ApproxCLT (r1), . . .ApproxCLT (rS)}.

that is the closest to the desired confidence level 1−α. Denote this value by r∗T (α, G).

8. The radius r∗T (α, G) obtained in Step 6 approximates the value rT (α) that calibrates

frequentist projection.

In our application µ ∈ R27, which means that constructing an exhaustive grid for µ is

computationally infeasible. To illustrate the computational demands of frequentist calibration

in the SVAR exercise, consider a grid G that contains only bµT . We follow Step 1 to 5 to adjust



204 | 6 Projection Inference for Set-Identified SVARs

the confidence set for the responses of wages and employment to a structural demand shock

(the first column of Figure 6.1).

Figure 6.4 below reports our calibrated radii, horizon by horizon, for the responses of

wages and employment to an expansionary demand shock. Note that the default radius used

by our projection method is χ2
27,68% = 29.87.

Figure 6.4. Calibrated radii for the 68% projection region; G = {bµT}
(responses to an expansionary demand shock)
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(a) Radii for Wages (b) Radii for Employment

(Blue Pluses) For each horizon k and each variable i the blue markers in Panel a) and b) correspond
to the calibrated radius rT (α, G) for λk,i, j (as computed in Step 1 to 5). Each radius is computed using
a grid of 16 points ranging from .5 to 5 (S = 16 in Step 1); a grid G containing only bµT (I = 1 in Step
2); 1,000 draws for the reduced-form parameters (J = 1, 000 in Step 3); and a grid of 1,000 points
for λk,i, j (K = 1,000 in Step 4). Generating this figure took approximately 76 hours using 50 parallel
Matlab ‘workers’ on a computer cluster at Bonn University.

Calibrating coverage for a coefficient or a vector of coefficients: One could

modify Step 4 in the algorithm to cover a vector of impulse-response functions, as opposed

to one particular coefficient. In our application, this alternative calibrated radius (over the

grid that contains only bµT ) is 4.21. This radius is designed to cover the vector of responses

for wages and employment to a structural demand shock over the 20 quarters under consi-

deration. Calculating this radius took approximately 57 hours using 50 Matlab workers on a

private computer cluster at Bonn University.²³

The following figure compares the calibrated projection using the horizon by horizon ca-

librated radii against the calibrated projection using a radius of 4.21. The calibration over G

²³ The cluster consists of 16 worker-nodes, where each node comprises 8 virtual CPUs and 32 GB vir-
tual RAM, that is a maximum of 8 workers. Each virtual CPU is the core of a Xeon E7-8837@2.67GHz-
processor.
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implies that the true calibrated radius rT (α) designed to cover the impulse-response functi-

onshould be larger than 4.21.

Figure 6.5. 68% calibrated projection for a frequentist; G = {bµT}
(responses to an expansionary demand shock)
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(a) Cumulative Response of Wages (b) Cumulative Response of Employment

(Solid, Blue Line) 68% Projection region using the default radius χ2
27,68% = 29.87; (Dash-Dotted,

Blue Line) 68% Calibrated Projection Region using the radius 4.21; (Dashed, Blue Line) 68% Ca-
librated Projection Confidence Region based on the radii in Figure 6.4; (Shaded, Gray Area) 68%
Bayesian Credible Set based on the priors in Baumeister and Hamilton (2015a).

6.A.3 Projection region under differentiability

Let h denote some triplet (k, i, j). This section studies the solution to the mathematical pro-

gram defining the projection region whenever the bounds vh, vh are differentiable at a point

µ in the parameter space (and the derivative at this point is bounded away from zero). We

show that a projection region for the (k, i, j) coefficient of the impulse-response function—

indexed by h—is approximately equal to the delta-method confidence interval suggested in

Gafarov et al. (2015):
�

vh(bµT )−
r bσhp

T
, vh(bµT )+

r bσhp
T

�

.

This result has two important consequences:

1. Under differentiability, the frequentist calibration of projection is straightforward: it is

sufficient to use the square of the (1−α) quantile of a standard normal as the radius

of the Wald ellipsoid for the reduced-form parameters. For example, if the desired

confidence level is 95%, the radius of the Wald ellipsoid can be set to (1.64)2.
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2. Under differentiability, the radius that removes excess robust Bayesian credibility also

eliminates excess frequentist coverage. Thus, the robust Bayes calibration is also a fre-

quentist calibration.

6.A.3.1 Lemma 1: Projection region and delta-method confidence interval

Notation for this Lemma: For µ ∈ Rp define the ‘delta-method’ type standard errors as:

bσh(µ)≡
�

v̇h(µ)
′
ÒΩT v̇h(µ)

�1/2
, bσh(µ)≡

�

v̇h(µ)
′
ÒΩT v̇h(µ)

�1/2
.

Define also their population counterparts as:

σh(µ)≡
�

v̇h(µ)
′Ω v̇h(µ)

�1/2
, σh(µ)≡

�

v̇h(µ)
′Ω v̇h(µ)

�1/2
,

where v̇h(µ) denotes the derivative of vh at µ. The function v̇h is defined analogously.

For a positive (or negative) δ ∈ R , consider the expansion (or contraction) of the delta-

method type confidence interval:

DMh
T (r,δ) ≡

�

vh(bµT ) −
(r + δ)σh(µ0)p

T
, vh(bµT ) +

(r + δ)σh(µ0)p
T

�

, (6.17)

where the standard errors evaluated at µ0 ∈ Rd (the ‘true’ reduced-form parameter). Note

that—up to the term δ—the interval in (6.17) can be interpreted as a ‘delta-method’ plug-

in version of the Imbens and Manski (2004) confidence interval for a set-identified scalar

parameter. The following result—which is taken from the recent working paper of Montiel-

Olea and Plagborg-Møller (2016) (henceforth, MOPM16)—establishes the relation between

the projection region and the confidence interval in (6.17):

Lemma 1. (Projection and delta-method confidence interval) Suppose that vh and vh are

differentiable at µ0 with nonzero derivative. Fix constants δ > 0, M1 > 0, M2 > 0 and M3 > 0.

Suppose that the data (Y1, . . . YT ) is such that:

1. ||bµT −µ0|| ≤ M1 /
p

T ,

2. The largest eigenvalue of ÒΩT , denoted λmax(ÒΩT ), is smaller than M2.

3. |bσh(µ0)−σh(µ0)|< δ /(2M3) and |bσh(µ0)−σh(µ0)|< δ /(2M3).
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Then, there exists T(δ, M1, M2, M3) such that for any T ≥ T1(δ, M1, M2, M3) and 0< r ≤
M3:

DMh
T (r,−δ) ⊆ CST (r;λh) ⊆ DMh

T (r,δ),

where CST (r,λh) is the projection region for the parameter λh based on the Wald ellipsoid of

radius r2. This means that our projection region with radius r2 is approximately equal—in large

samples and under differentiability at µ0—to the delta-method confidence interval in equation

(6.17).

Proof of Lemma 1: The proof of this Lemma is based on the theoretical comparison of

Bonferroni and (rectangular) Wald projection confidence regions established in MOPM16.

We reproduce their argument for the sake of exposition. Note first that one can write vh(µ)

as:

vh(µ) = vh(µ) − vh(bµT ) + vh(bµT )

= vh(µ) − vh(µ0) − (vh(bµT ) − vh(µ0)) + vh(bµT ).

For any µ ∈ Rd define the function∆(µ;µ0)≡ vh(µ)− vh(µ0)− v̇h(µ0)
′(µ−µ0). Therefore:

vh(µ) = ∆(µ;µ0) − ∆(bµT ;µ0) + v̇h(µ0)(µ − bµT ) + vh(bµT )

=
∆(µ;µ0)
||µ − µ0||

||µ − µ0|| −
∆(bµT ;µ0)
||bµT − µ0||

||bµT − µ0||

+v̇h(µ0)
′(µ − bµT ) + vh(bµT ).
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Note now that for any µ in the Wald ellipsoid of radius r ≤ M3 (i.e., (bµT −µ)′ÒΩ−1
T (bµT −µ)≤

r2 / T) we have that:

||µ − µ0|| ≤ ||µ − bµT || + ||bµT − µ0||

≤ ||µ − bµT || + M1 /
p

T

(by Assumption a) of the Lemma)

≤ max
{µ | ||ÒΩ−1/2(µ−bµT )||≤r /

p
T}
||µ − bµT || + M1 /

p
T

= λmax(ÒΩT )r /
p

T + M1 /
p

T

≤ (M2r + M1) /
p

T

(by Assumption b) of the Lemma)

≤ (M2M3 + M1) /
p

T

(since r ≤ M3).

By the differentiability of vh at µ0, there exists T1(δ, M1, M2, M3) such that T ≥
T1(δ, M1, M2, M3) implies that:

�

�

�

∆(µ;µ0)
||µ−µ0||

�

�

�≤
δσh(µ0)

4(M2M3 +M1)
and

�

�

�

∆(bµT ;µ0)
||bµT −µ0||

�

�

�≤
δσh(µ0)

4M1
.

This implies that for such large T we have that for any µ in the Wald ellipsoid of radius

r ≤ M3, denoted CST (r;µ):

vh(bµT ) + v̇h(µ0)
′(µ − bµT ) − δσh(µ0) /2

p
T

≤ vh(µ)

≤ vh(bµT ) + v̇h(µ0)
′(µ − bµT ) + δσh(µ0) /2

p
T .
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Consequently:

vh(bµT ) + bσh(µ0)r /
p

T − δσh(µ0) /2
p

T

= vh(bµT ) + max
µ∈CST (r;µ)

�

v̇h(µ0)
′(µ − bµT )

�

− δσh(µ0) /2
p

T

(since max
µ∈CST (r;µ)

�

v̇h(µ0)
′(µ − bµT )

�

= bσh(µ0)r /
p

T)

≤ max
µ∈CST (r;µ)

vh(µ)

(since we have bounded vh(µ) from below)

≤ vh(bµT ) + max
µ∈CST (r;µ)

�

v̇h(µ0)
′(µ − bµT )

�

+ δσh(µ0) /2
p

T

(since we have bounded vh(µ) from above)

= vh(bµT ) + bσh(µ0)r /
p

T + δσh(µ0) /2
p

T ,

and, likewise,

vh(bµT ) − bσh(µ0)r /
p

T − δσh(µ0) /2
p

T

= vh(bµT ) + min
µ∈CST (r;µ)

�

v̇h(µ0)
′(µ − bµT )

�

− δσh(µ0) /2
p

T

≤ min
µ∈CST (r;µ)

vh(µ)

≤ vh(bµT ) + min
µ∈CST (r;µ)

�

v̇h(µ0)
′(µ − bµT )

�

+ δσh(µ0) /2
p

T

= vh(bµT ) − bσh(µ0)r /
p

T + δσh(µ0) /2
p

T .

Finally, note that Assumption c) of the Lemma implies that:

vh(bµT )+σh(µ0)(r −δ) /
p

T ≤ max
µ∈CST (r;µ)

vh(µ)≤ vh(bµT )+σh(µ0)(r +δ) /
p

T ,

and

vh(bµT )−σh(µ0)(r +δ) /
p

T ≤ min
µ∈CST (r;µ)

vh(µ)≤ vh(bµT )−σh(µ0)(r −δ) /
p

T .

An analogous argument applied to vh(µ) gives the desired result.
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6.A.3.2 Lemma 2: Delta-method interval and a Bernstein-von Mises result

Lemma 1 in the previous subsection will be used to show that calibrating robust Bayesian

credibility also calibrates frequentist coverage. We need an additional Lemma before esta-

blishing the main result.

We want to show that the posterior probability:

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆
�

vh(bµ)−
σh(µ0)rp

T
, vh(bµ)+

σh(µ0)rp
T

�

, ∀h= 1, . . . H
�

�

�Y1, . . . , YT

�

,

can be approximated by the probability that 2H correlated normals with unit variance fall

below the threshold r. We now show that this approximation result can be applied as a

consequence of the Berstein-von Mises Theorem for the reduced-form parameter µ.

Notation for this Lemma: Let P∗ denote the prior distribution over µ. Let µ∗ denote a

random variable with such distribution. For each index h= 1, . . . H define:

Z
∗
h =
p

T(vh(µ
∗)− vh(bµT )), Z∗h =

p
T(vh(µ

∗)− vh(bµT )).

Let the remainder of the first-order Taylor approximation of vh and vh be defined as:

∆h(µ,µ0)≡ vh(µ)− vh(µ0)− v̇0(µ0)
′(µ−µ0),

and

∆h(µ,µ0)≡ vh(µ)− vh(µ0)− v̇0(µ0)
′(µ−µ0).

Let Z ∼Nd(0,Ω). Given a radius r > 0 and a constant η > 0 define the function:

ΓH(r,η)

≡ P
�

−v̇h(µ0)
′Z /σh(µ0) ≤ r + η, and v̇h(µ0)

′Z /σh(µ0) ≤ r + η, ∀h
�

− P
�

−v̇h(µ0)
′Z /σh(µ0) ≤ r − η, and v̇h(µ0)

′Z /σh(µ0) ≤ r − η, ∀h
�

.

For a given ε > 0 and M > 0 define η(ε, M) as the real-valued function such that:

max
0≤r≤M

�

�

�ΓH(r,η(ε, M))
�

�

�< ε.
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Lemma 2. LetB(Rd) denote the collection of all Borel sets in Rd . Fix ε > 0, M > 0. Let M1 ≡
M1(ε) be such that:

P(||Z || ≤ M1(ε))= ε/4, Z ∼Nd(0,Ω).

Suppose that for every h= 1, . . . H, the bounds vh and vh are differentiable at µ0 with nonzero

derivative. Suppose that the data (Y1, Y2, . . . , YT ) is such that:

1.

sup
B∈B(Rd)

�

�P∗
�p

T(µ∗ − bµT ) ∈ B | Y1, . . . , YT

�

− P (Z ∈ B)
�

�≤ ε/8,

where Z ∼Nd(0,Ω). Then for any 0≤ r ≤ M , there is T2(ε, M) such that for any T ≥ T2(ε, M)

the absolute value of the difference between:

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆
�

vh(bµ) −
σh(µ0)rp

T
, vh(bµ) +

σh(µ0)rp
T

�

, ∀h = 1, . . . H
�

�

�Y1, . . . , YT

�

and for Z ∼Nd(0,Ω)

P
�

−σh(µ0)r ≤ v̇h(µ0)
′Z , and v̇h(µ0)

′Z ≤ σh(µ0)r, ∀h = 1, . . . H
�

, (6.18)

is smaller than ε. This means that the credibility of the delta-method region can be approximated

by Equation (6.18).

Proof. We prove the lemma in two parts. The first part establishes an upper bound and the

second one establishes a lower bound.

Part 1: We are interested in the posterior probability:

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆
�

vh(bµ) −
σh(µ0)rp

T
, vh(bµ) +

σh(µ0)rp
T

�

,

∀h ≤ H and ||µ∗ − bµT || ≤ M1 /
p

T
�

�

� Y1, . . . , YT

�

,

which is the same as:

P∗
�

−rσh(µ0)≤ Z∗h, Z
∗
h ≤ rσh(µ0), ∀h≤ H, ||µ∗ − bµT || ≤ M1 /

p
T
�

�

� Y1, . . . , YT

�

,
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Write:

vh(µ
∗) − vh(µ0)

= ∆(µ∗,µ0) − ∆(bµT ,µ0) + v̇h(µ0)
′(µ∗ − bµT )

=
∆(µ∗,µ0)
||µ∗ − µ0||

||µ∗ − µ0|| −
∆(bµT ,µ0)
||bµT − µ0||

||bµT − µ0|| + v̇h(µ0)
′(µ∗ − bµT )

Note that if ||µ∗ − bµT || ≤ M1 /
p

T , then ||µ∗ −µ0|| ≤ 2M1 /
p

T . The differentiability assump-

tion implies that there is T2(ε, M) large enough such that for T ≥ T2(ε, M):

||µ−µ0|| ≤ 2M1 /
p

T =⇒
�

�

�∆h(µ,µ0) / ||µ−µ0||
�

�

�< η(ε/2, M)σh(µ0) /(4M1)

for all h= 1, . . . H, and

||µ−µ0|| ≤ 2M1 /
p

T =⇒
�

�

�∆h(µ,µ0) / ||µ−µ0||
�

�

�< η(ε/2, M)σh(µ0) /(4M1)

for all h= 1, . . . H. Therefore:

−η(ε/2, M)σh(µ0)+ v̇h(µ0)
′pT(µ∗ − bµT )≤ Z

∗
n.

An analogous argument for vh(µ
∗) implies that

Z∗n ≤ η(ε/2, M)σh(µ0)+ v̇h(µ0)
′pT(µ∗ − bµT ).

Consequently the posterior probability we are interested in, which can be written as:

P∗
�

−rσh(µ0)≤ Z∗h and Z
∗
h ≤ rσh(µ0), ∀h≤ H, ||µ∗ − bµT || ≤ M1 /

p
T
�

�

� Y1, . . . , YT

�

,

is smaller than or equal:

P∗
�

(−r − η(ε/2, M))σh(µ0) ≤ v̇h(µ0)
′(µ∗ − bµT )

and v̇h(µ0)
′(µ∗ − bµT ) ≤ (r + η(ε/2, M))σh(µ0), ∀h ≤ H

�

�

� Y1, . . . , YT

�

.

By Assumption 1 of the Lemma 2, the latter probability is at most:

P
�

−v̇h(µ0)
′Z /σh(µ0)≤ r +η

�ε

2
, M
�

and v̇h(µ0)
′Z /σh(µ0)≤ r +η

�ε

2
, M
��

+
ε

8
.
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Assumption 4 of the Lemma (and a further application of Assumption 3 to P∗(||
p

Tµ∗ −
bµT || ≤ M1 | Y1, . . . , YT )) implies that:

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆
�

vh(bµ)−
σh(µ0)rp

T
, vh(bµ)+

σh(µ0)rp
T

�

,∀h≤ H
�

�

� Y1, . . . , YT

�

,

≤

P
�

− v̇h(µ0)
′Z /σh(µ0) ≤ r + η(ε/2, M),

and v̇h(µ0)
′Z /σh(µ0) ≤ r + η(ε/2, M)

�

+ ε/2. (6.19)

This gives an upper bound to the ‘credibility’of the delta-method region.

Part 2: We now derive a lower bound. Start with the probability

P
�

− v̇h(µ0)
′Z /σh(µ0) ≤ r − η(ε/2, M),

and v̇h(µ0)
′Z /σh(µ0) ≤ r − η(ε/2, M),∀h ≤ H

�

− ε/2.

Note that the latter probability is smaller than or equal −3ε/8 plus:

P∗
�

−
v̇h(µ0)

σh(µ0)

′p
T(µ∗ − bµT ) ≤ (r − η(ε/2, M)),

and
v̇h(µ0)
σh(µ0)

′p
T(µ∗ − bµT ) ≤ (r − η(ε/2, M)),∀h ≤ H

�

�

� Y1, . . . , YT

�

,

by an application of Assumption 3 of the Lemma. Moreover, the latter probability is bounded

above by:

P∗
�

−
v̇h(µ0)

σh(µ0)

′p
T(µ∗ − bµT ) ≤ (r − η(ε/2, M)),

and
v̇h(µ0)
σh(µ0)

′p
T(µ∗ − bµT ) ≤ (r − η(ε/2, M)),∀h ≤ H, and

||µ∗ − bµT || ≤
M1p

T

�

�

� Y1, . . . , YT

�

,

by an application of Assumptions 3 and 4 of the Lemma and the monotonicity of probability

measures. Finally, Assumption 1 and the differentiability of vh at µ0 implies that

Z
∗
n ≤ v̇h(µ0)

′pT(µ∗ − bµT )+η(ε/2, M)σh(µ0).
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Assumption 2 and analogous argument for vh(µ
∗) implies that

−η(ε/2, M)σh(µ0)+ v̇h(µ0)
′pT(µ∗ − bµT )≤ Z∗n.

Consequently,

P∗
�

−
v̇h(µ0)

σh(µ0)

′p
T(µ∗ − bµT ) ≤ (r − η(ε/2, M)),

and
v̇h(µ0)
σh(µ0)

′p
T(µ∗ − bµT ) ≤ (r − η(ε/2, M)),

∀h ≤ H, ||µ∗ − bµT || ≤
M1p

T

�

�

� Y1, . . . , YT

�

,

is bounded above by:

P∗
�

−rσh(µ0)≤ Z∗h and Z
∗
h ≤ rσh(µ0), ∀h≤ H

�

�

� Y1, . . . , YT

�

.

We conclude that:

P
�

−v̇h(µ0)
′Z /σh(µ0) ≤ r − η(ε/2, M),

and v̇h(µ0)
′Z /σh(µ0) ≤ r − η(ε/2, M)

�

− ε/2 (6.20)

≤

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆
�

vh(bµ)−
σh(µ0)rp

T
, vh(bµ)+

σh(µ0)rp
T

�

,∀h≤ H
�

�

� Y1, . . . , YT

�

.

Conclusion: Equations (6.19) and (6.20) imply that

P
�

−v̇h(µ0)
′Z /σh(µ0) ≤ r − η(ε/2, M),

and v̇h(µ0)
′Z /σh(µ0) ≤ r − η(ε/2, M)

�

− ε/2

≤

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆
�

vh(bµ)−
σh(µ0)rp

T
, vh(bµ)+

σh(µ0)rp
T

�

,∀h≤ H
�

�

� Y1, . . . , YT

�

≤

P
�

−v̇h(µ0)
′Z /σh(µ0) ≤ r + η(ε/2, M),

and v̇h(µ0)
′Z /σh(µ0) ≤ r + η(ε/2, M)

�

+ ε/2.
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These bounds, the monotonicity of the probability measure, and the definition of η(ε/2, M)

imply the desired result.

6.A.3.3 Lemma 3: Asymptotic behavior of the radius that calibrates r∗T Bayesian
credibility

The previous lemma showed that for any 0≤ r ≤ M the probability

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆
�

vh(bµ) −
σh(µ0)rp

T
, vh(bµ) +

σh(µ0)rp
T

�

,

∀h = 1, . . . , H
�

�

�Y1, . . . , YT

�

is approximately the same as

P
�

−σh(µ0)r ≤ v̇h(µ0)
′Z , and v̇h(µ0)

′Z ≤ σh(µ0)r, ∀h= 1, . . . H
�

, Z ∼Nd(0,Ω).

Let r1−α−ε denote the ‘critical value’ such that:

P
�

−σh(µ0)r1−α−ε ≤ v̇h(µ0)
′Z , and v̇h(µ0)

′Z ≤ σh(µ0)r1−α−ε, ∀h = 1, . . . H
�

= 1 − α − ε,

and let r1−α+ε be defined analogously. We now show that if the sample size is large enough

and data satisfies the Assumptions of Lemma 1 and Lemma 2 then:

r1−α−ε ≤ r∗T ≤ r1−α+ε.

Lemma 3. Fix ε > 0, M1, M2, M3 > 0. Suppose that the data (Y1, . . . , YT ) is such that the As-

sumptions of Lemma 1 and Lemma 2 are satisfied:

1. ||bµT −µ0|| ≤ M1 /
p

T ,

2. The largest eigenvalue of ÒΩT , denoted λmax(ÒΩT ), is smaller than M2.

3. |bσh(µ0)−σh(µ0)|< η(ε/2, M3) /(2M3) and |bσh(µ0)−σh(µ0)|<
η(ε/2, M3) /(2M3), for all h= 1, . . . H; where η is defined as in Lemma 2.

4. For Z ∼Nd(0,Ω),

sup
B∈B(Rd)

�

�P∗
�p

T(µ∗ − bµT ) ∈ B | Y1, . . . , YT

�

− P (Z ∈ B)
�

�≤ ε/8, ,
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Then, there is T3(ε, M1, M2, M3) such that for T ≥ T3(ε, M1, M2, M3):

r1−α−ε ≤ r∗T ≤ r1−α+ε,

provided r1−α+ε < M3.

Proof. Without loss of generality, we can assume that r1−α+ε +η(ε/2, M3)< M3. Note that

Lemma 1 implies that for T ≥ T1(η(ε/2, M3), M1, M2, M3):

P∗
�

×H
h=1

�

vh(µ
∗), vh(µ

∗)
�

⊆ CST (r1−α−ε,λ
H)
�

�

� Y1, . . . , YT

�

minus

P
�

−σh(µ0)r1−α−ε ≤ v̇h(µ0)
′Z , and v̇h(µ0)

′Z ≤ σh(µ0)r1−α−ε, ∀h= 1, . . . H
�

is bounded above by the sum of two terms. The first term is the difference between

P∗
�

�

vh(µ
∗), vh(µ

∗)
�

⊆ DMh
T (r1−α−ε , η(ε/2 , M3)), ∀h≤ H

�

�

�Y1, . . . , YT

�

and

P
�

−σh(µ0)(r1−α−ε + η(ε/2, M3)) ≤ v̇h(µ0)
′Z ,

and v̇h(µ0)
′Z ≤ σh(µ0)(r1−α−ε + η(ε/2, M3)), ∀h = 1, . . . H

�

The second term is the difference between the latter probability and

P
�

−σh(µ0)(r1−α−ε)≤ v̇h(µ0)
′Z , and v̇h(µ0)

′Z ≤ σh(µ0)(r1−α−ε), ∀h= 1, . . . H
�

.

Lemma 2 implies that the magnitude of the first term is bounded above by ε/2 if T ≥
T2(ε/2, M3). The definition of η(·) implies that the second term is bounded above by ε/2.

Therefore, we conclude that:

P∗
�

×H
h=1

�

vh(µ
∗), vh(µ

∗)
�

⊆ CST (r1−α−ε,λ
H)
�

�

� Y1, . . . , YT

�

− (1−α− ε)≤ ε,

which implies that for T ≥max{T1(η(ε/2, M3), M1, M2, M3), T2(ε/2, M3)}:

r1−α−ε ≤ r∗T ,
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as the credibility of the projection region is monotone in its radius. An analogous argument

implies that for T ≥ T1(η(ε/2, M3), M1, M2, M3):

r1−α−ε ≤ r∗T ≤ r1−α+ε.
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6.A.4 Addenda for implementation

6.A.4.1 SQP/IP vs. global methods

Figure 6.6. Accuracy of SQP/IP for a demand shock
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(a) Wage Response (b) Employment Response

(Square, Blue) Optimal Value reported by SQP/IP minus Optimal Value reported by SQP/IP + Mul-
tistart; (Cross, Blue) Optimal Value reported by SQP/IP minus Optimal Value reported by SQP/IP
+ Global Search; (Circle, Blue) Optimal Value reported by SQP/IP minus Optimal Value repor-
ted by ga.
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6.A.4.2 SQP/IP vs. grid search on CST(1−α,µ)

Figure 6.7. Simulation error in projection region.

0 4 8 12 16 20
Quarters after shock

-4

-3

-2

-1

0

1

2

cu
m

ul
at

iv
e 

%
 c

ha
ng

e 
in

 w
ag

e

0 4 8 12 16 20
Quarters after shock

-4

-3

-2

-1

0

1

2

cu
m

ul
at

iv
e 

%
 c

ha
ng

e 
in

 w
ag

e

0 4 8 12 16 20
Quarters after shock

-2

0

2

4

6

cu
m

ul
at

iv
e 

%
 c

ha
ng

e 
in

 e
m

pl
oy

m
en

t

0 4 8 12 16 20
Quarters after shock

-2

0

2

4

6

cu
m

ul
at

iv
e 

%
 c

ha
ng

e 
in

 e
m

pl
oy

m
en

t

(a) Expansionary Demand Shock (b) Expansionary Supply Shock

(Solid Line) 68% Projection region using the SQP/IP algorithm described in Section 4; (Connected,
Solid Line) 68% Projection region using a two-step algorithm: 1) Sample M=100,000 reduced form
parameters that satisfy the 68% Wald ellipsoid constraint. 2) For each draw, solve for the identified
set. The smallest and largest value of the identified set is the simulation-based approximation of the
Projection region.
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6.A.4.3 Comparison with the credible set in Giacomini and Kitagawa (2015)

Figure 6.8. 68% Differentiable projection and 68% GK robust credible Set.
(Uhlig (2005) priors)
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esian Credible Set based on the priors in Uhlig (2005); (Dotted, Blue Line) 68% Calibrated Pro-
jection Confidence Interval. The calibration is implemented assuming differentiability of the bounds
of the identified set and strict set-identification of the structural parameter; (Crosses, Gray) 68%
Robust Credible Set based on Giacomini and Kitagawa (2015) using the priors for the reduced-form
parameters described in Uhlig (2005).
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