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Zusammenfassung

Tracking ist ein Teilgebiet der Sensoratenfusion und beschäftigt sich mit der Ver-

folgung dynamischer Objekte auf Basis unvollständiger und mit Fehler behafteter

Messungen. Auf Grund der enormen Nachfrage nach leistungsfähigen Algorithmen

wurden in den vergangenen Jahrzehnten eine Vielzahl von Methoden und Verfahren

in diesem Teilgebiet der angewandten Informatik entwickelt. Die Vielfalt und Ver-

flechtung der existierenden Konzepte befähigt einerseits zur Lösung von Szenarien

mit unterschiedlichsten Randbedingungen, kann andererseits aber nur von den we-

nigsten Wissenschaftlern vollständig durchschaut werden. Eine Vereinheitlichung der

bestehenden Trackingverfahren ist daher für ein tiefgehendes Verständnis dieses For-

schungsfeldes von großer Bedeutung.

Die Theorie der Punktprozesse ist ein hochentwickeltes Werkzeug der Wahrschein-

lichkeitstheorie und Statistik, das genau wie die Theorie der stochastischen Prozesse

eine Vielzahl von Anwendungen in der Finanz- und Wirtschaftsmathematik, Biologie

und Physik erfährt. Punktprozesse eignen sich in besonderer Weise zur Modellie-

rung von dynamischen Objekten und Sensormessungen aus Trackinganwendungen,

da sowohl die Anzahl als auch die räumliche Verteilung der entsprechenden Elemente

nachgebildet werden kann. Das den Punktprozess eindeutig und vollständig charak-

terisierende wahrscheinlichkeitserzeugende Funktional bietet sich auf Grund seiner

kompakten Form als Repräsentant eines Trackingfilters und somit als Grundlage für

die einheitliche Darstellung von Trackingverfahren an, da alle notwendigen statis-

tischen Informationen über das Filter auf eine intuitiv verständliche Art und Weise

verschlüsselt und zusammengefasst in ihm vorliegen.

In dieser Dissertation wird die Entwicklung, Charakterisierung und Vereinheitlichung

von Trackingverfahren mit Hilfe von finiten Punktprozessen untersucht und auf die

passive, nicht kooperative Lokalisierung und Verfolgung von elektromagnetischen Emit-

tern im städtischen Gebiet mit Hilfe eines mobilen Antennenarrays angewendet.

Der erste Teil dieser Dissertation erarbeitet ein theoretisches Fundament für den Ein-

satz von finiten Punktprozessen zur Vereinheitlichung und Herleitung von Tracking-

filtern. Es wird gezeigt, dass sich viele bekannte Trackingfilter mit Hilfe von wahr-
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scheinlichkeitserzeugenden Funktionalen charakterisieren lassen und die verschiedenen

Bausteine eines Trackingfilters werden an Hand seines wahrscheinlichkeiterzeugenden

Funktionals erklärt. In besonderer Weise eignet sich die vorgestellte Darstellung dazu,

die Gemeinsamkeiten und Unterschiede zwischen einzelnen Filtern hervorzuheben und

ein grundlegendes Verständnis für die bestehenden Trackingkonzepte zu entwickeln.

Weiterhin wird gezeigt, dass sich individuelle und maßgeschneiderte Trackingfilter

leicht mit Hilfe der vorgestellten Theorie modellieren lassen. Damit bietet die ent-

wickelte Zusammenfassung die Chance für jeden praktisch arbeitenden Ingenieur der

Sensordatenfusion auf eine intuitive Art und Weise innovative Lösungen für aktuelle

Fragestellungen des Trackings zu finden. Den Abschluss des ersten Teils bildet die

umfassende mathematische Fundierung der Herleitung von Trackingfiltern aus der

vorgestellten Vereinheitlichung.

Der zweite Teil dieser Arbeit behandelt die passive, nicht kooperative Lokalisierung

und Verfolgung von elektromagnetischen Emittern im urbanen Umfeld mit Hilfe ei-

nes einzelnen mobilen Antennenarrays. Dazu werden die im ersten Teil diskutierten

Trackingfilter durch sequentielle Monte–Carlo Verfahren implementiert und auf Basis

der Problemstellung weiterentwicklet. Auf Grund des urbanen Umfelds teilt sich das

radial emittierte Signal durch Reflektion, Beugung und Streuung in mehrere elektro-

magnetische Wellen auf, den sogenannten Mehrwegen, die entlang verschiedener Pfade

zum Empfänger gelangen. Die Algorithmen der Sensordatenfusion werden durch diese

Nebenbedingung vor die Herausforderung gestellt, dass ein Ziel mehrere Messungen

erzeugt, die im Messraum räumlich nicht zusammengefasst werden können. Vor die-

sem Hintergrund werden sogenannte PHD und Intensitätsfilter erstmals auf das vor-

gestellte Szenario angewendet und umfassend untersucht. Die unterschiedlichen Mess-

modelle, die dabei zum Einsatz kommen erfordern die Entwicklung verschiedenster

komplexer Verfahren bevor eine Anwendung der Filter erfolgen kann. Das Standard-

Messmodell trifft die Annahme, dass ein Ziel höchstens eine Messung erzeugt. Aus

diesem Grund ist die Entwicklung von leistungsfähigen Extraktionsverfahren für den

Zielzustands und neuartigen Likelihood Funktionen zur Bewertung einzelner emp-

fangener Mehrwege erforderlich. Aufwendige numerische Approximationen und Ver-

werfungsstrategien von Mess-Partitionen sind notwendig, wenn das verallgemeinerte

Messmodell angewendet wird. Aus diesem Grund werden verschiedene Kriterien zur

Reduktion der numerischen Komplexität unter Verwendung der im ersten Teil vor-

gestellten Theorie hergeleitet und analysiert. Die Anwendbarkeit der entwickelten

Verfahren wird dabei sowohl in Simulations- als auch in Realdatenszenarien demons-

triert. Den Abschluss bildet die Entwicklung eines neuartigen Multi-Hypothesen ba-

sierten Parameter–Trackingverfahrens für relative Laufzeiten, das Falschmessungen

zurückweist, die vor dem ersten Ziel-basierten Mehrweg empfangen werden und auch

bei einem hohen Anteil von Falschmessungen, Messausfällen und Sensorrauschen eine

zuverlässige Lokalisierung und Verfolgung ermöglicht.
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Technical University of Ilmenau for providing a simulation of the antenna array used

v



within the numerical evaluations of the simulated data and the blind channel estima-

tion algorithms applied to the real world scenario in Chapter 6.

Many thanks go to Saab Medav Technologies GmbH for carrying out the real world

experiment presented in Section 6.4. In particular, I thank Alexis Paolo Garcia Ariza

and Uwe Trautwein for their support.

The second part of this thesis was supported by the Federal Ministry of Education

and Research of Germany (BMBF), within the Project EiLT: “Emitter Lokalisierung

unter Mehrwegeausbreitungsbedingungen”, http://eilt.medav.de/.

vi



Contents

1 Introduction 1

1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Finite Point Processes in Target Tracking 7

2 Finite Point Processes and Probability Generating Functionals 9

2.1 Point Process Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Probability Generating Functionals . . . . . . . . . . . . . . . . . . . . 13

2.3 The Functional Derivative of a PGFL . . . . . . . . . . . . . . . . . . 15

2.4 Event Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Factorial Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Poisson Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Probability Generating Function of the Canonical Number . . . . . . . 20

2.8 Multivariate Probability Generating Functionals . . . . . . . . . . . . 21

2.9 PGFL of the Bayes Posterior Point Process . . . . . . . . . . . . . . . 23

2.10 Summary Statistics of the Bayes Posterior Point Process . . . . . . . . 24

2.11 Branching Process Form of the Bivariate PGFL . . . . . . . . . . . . . 25

2.12 Point Processes With a Measure Comprising Dirac Measures . . . . . 27

2.13 Point Processes versus Random Finite Sets . . . . . . . . . . . . . . . 28

2.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 The Family of Pointillist Filters 33

3.1 Superposition and Marginalization of Finite Point Processes . . . . . . 35

3.2 Notation and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Target Motion and Measurement Models . . . . . . . . . . . . 37

3.2.2 Target Detection Modeling . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Clutter Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Pointillist Filters without Superposition . . . . . . . . . . . . . . . . . 40

3.3.1 Bayes–Markov Filter . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 PDA Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.3 JPDA Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.4 PMHT Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 IPDA Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



Contents

3.3.6 JIPDA Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.7 MHT Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Pointillist Filters with Superposition . . . . . . . . . . . . . . . . . . . 49

3.4.1 Superposition in JPDA and Other Multitarget Filters . . . . . 49

3.4.2 PHD Intensity Filter . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 CPHD Intensity Filter . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.4 Generalized PHD Intensity Filters . . . . . . . . . . . . . . . . 53

3.4.5 Multi–Bernoulli Intensity Filters . . . . . . . . . . . . . . . . . 53

3.5 Hybrid Pointillist Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Joint PHD Intensity Filter . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Joint Generalized PHD Intensity Filter . . . . . . . . . . . . . 56

3.6 Closing the Bayesian Recursion . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Target State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 How to Design a Tracking Filter: An Engineer’s Perspective . . . . . . 58

3.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 64

4 Factorial Moment Derivation of the Bayes Posterior Point Process 69

4.1 The Functional Derivative with Respect to the Dirac Delta . . . . . . 70

4.1.1 Definition and Approximation of Dirac Delta . . . . . . . . . . 70

4.1.2 Definition of the Gâteaux Derivative with respect to the Dirac

Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 Extending the Functional Derivative with respect to the Dirac

Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.4 On the Connection of the Set Derivative from [Mah07b] and the

Functional Derivative with respect to the Dirac Delta . . . . . 81

4.2 Secular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Secular Functions on P1 . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 P1 is Not Exhaustive . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Extension of Secular Functions to P2 . . . . . . . . . . . . . . . 84

4.2.4 Secular Functions for Joint PGFLs . . . . . . . . . . . . . . . . 87

4.2.5 Example: PHD Filter Update Equation Derivation Using Sec-

ular Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Methods for Computing Derivatives of Secular Functions . . . . . . . . 89

4.3.1 Application of Cauchy’s Residue Theorem – Saddle Point Methods 89

4.3.2 Classical Finite Differences . . . . . . . . . . . . . . . . . . . . 90

4.3.3 Maclaurin Series Expansion . . . . . . . . . . . . . . . . . . . . 90

4.3.4 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . 91

4.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 91

viii



Contents

II An Application to Emitter Tracking under Multipath Propagation 93

5 The Challenge of Blind Mobile Localization 95

5.1 Fundamentals of Blind Mobile Localization . . . . . . . . . . . . . . . 96

5.1.1 Boundary Conditions of Blind Mobile Localization . . . . . . . 96

5.1.2 Path Propagation and Ray Tracing . . . . . . . . . . . . . . . . 98

5.1.3 Blind Mobile Localization Framework . . . . . . . . . . . . . . 100

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Non–Cooperative Methods for Tracking and Localization Under

Multipath Propagation . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Cooperative Methods for Tracking and Localizing Targets Un-

der Multipath Propagation . . . . . . . . . . . . . . . . . . . . 104

5.3 Limitations and Open Questions of Existing Work . . . . . . . . . . . 104

6 Blind Mobile Localization Using PHD Intensity Filters 107

6.1 Standard SMC–PHD Intensity Filter Using a Generalized Extraction

Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . 109

6.1.2 Target State Estimation Using Generalized Particle Grouping . 114

6.1.3 Methods for State Extraction . . . . . . . . . . . . . . . . . . . 117

6.1.4 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 119

6.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 SMC–Intensity Filter Using a Decomposition of a Likelihood Function 123

6.2.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . 124

6.2.2 Likelihood decomposition for multipath measurements . . . . . 126

6.2.3 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Generalized PHD Intensity Filters Applied to BML . . . . . . . . . . . 135

6.3.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . 136

6.3.2 Approximation of the Update Equation . . . . . . . . . . . . . 139

6.3.3 Generalization of the Probability of Detection . . . . . . . . . . 145

6.3.4 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4 Evaluation with Real World Data . . . . . . . . . . . . . . . . . . . . . 164

6.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 171

7 Parameter Tracking for BML 173

7.1 Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2 MHT–Parameter Tracking Using Clutter Hypothesis . . . . . . . . . . 175

ix



Contents

7.2.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . 175

7.2.2 MHT–Parameter Tracking in AoA and RToA . . . . . . . . . . 176

7.2.3 Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8 Conclusions and Future Work 189

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

List of Abbreviations 195

List of Figures 195

List of Tables 201

Own Publications 203

Bibliography 205

x



CHAPTER I

Introduction

Sensor data fusion, a branch of applied informatics, is the application and automation

of well–established methodologies from nature that were present millions of years be-

fore the first computer was built. All living creatures perform an intelligent fusion of

data, which is produced by their sense organs, by weighting the received information

according to lessons learned and the communication with other creatures. It is sensor

data fusion that enables living creatures to have situation awareness and reach their

goals based on strategic mission planning [Koc14].

One challenge of sensor data and information fusion is the simultaneous tracking of

targets and the derivation of related algorithms, called multitarget tracking filters.

The aim of every multitarget tracking filter is the optimal estimation of statistical

information like the spatial distribution and the number of targets present, given a

set of incomplete, noisy and even false measurements. The vast growth of challenging

questions arising from the applied science of sensor data fusion implied the derivation

of an enormous amount of multitarget tracking filters over the past decades. The di-

versity of multitarget tracking filters available nowadays is not only capable to solve

a variety of multitarget tracking scenarios, it can also be considered as a richly filled

toolbox of concepts whose combination, extension and generalization can be used to

solve new problems in multitarget tracking. However, diversity also means a burden

for the tracking engineer that sees himself confronted with a new tracking scenario.

“Does a solution to my problem already exist?”, “Are there closely related concepts

that could be used as a starting point for deriving the solution of my problem?” and

“How do I have to modify an existing approach so that it is applicable to my problem?”

are questions any scientist will be confronted with in his/her working–life.

In mathematics various working fields with a countless number of specialization

branches exist. This diversity of concepts and solutions implies the aim of unifi-

cation. The unification in mathematics can be studied with respect to several topics,

e.g. abstraction (in terms of definitions like function, group, topology, etc.), the com-
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1 Introduction

bination or relation of exiting theories or working areas, etc. [Ott13]. A unification

in terms of abstraction enables the classification and comparison of existing results,

which yields a deeper understanding of the unified concepts.

Analogously to mathematics the working area of sensor data fusion would benefit if a

unification of multitarget tracking filters via an appropriate abstraction would exist.

It would not only help to understand similarities and differences in existing concepts,

but a classification via abstraction would also help to concentrate the daily work of

tracking engineers on deriving new and customized concepts by exploiting the existing

knowledge, instead of wasting resources on the complex re–identification of existing

work using textual descriptions.

This work studies the unification of multitarget filters by applying a comprehensive

and theoretically founded framework. Furthermore, the passive, non–cooperative lo-

calization and tracking of electromagnetic emitters in an urban environment using a

single antenna array is solved by the application of concepts that are contained in the

unifying framework.

1.1 Methodology

The theory of finite point processes is a well–known and highly developed concept

from statistics and probability theory, which finds its application in various fields

of financial–mathematics, physics and biology. In particular, finite point processes

are perfectly suited for modeling multitarget tracking problems. In [Moy62] it is

proven that probability generating functionals, which are a generalization of prob-

ability generating functions, fully and uniquely characterize a finite point process

if the underlying probability distribution is symmetric. Furthermore, it is shown

in [Moy62], that probability generating functionals inherently encode the full and

complete statistical information about the corresponding point processes and re-

veal their summary statistics if functional differentiation is applied. The definition

of random finite sets, a theory closely related to finite point processes, is due to

Mahler [Mah03], [Mah07a], [Mah07b]. Using random finite sets and finite set statis-

tics, he first derived a multitarget tracking filter by the application of probability

generating functionals.

The first part of this thesis studies the unification of many well–known multitarget

tracking filters, which can be modeled by finite point processes, in terms of the cor-

responding probability generating functionals. According to the fact that the studied

filters can be formulated via finite point process theory, the unification is called the

family of pointillist filters. This framework was first proposed by Streit in [Str14b].

In this thesis many well–known tracking filters are proven to be members of this

unification and a classification of the filters in terms of the superposition of target

states is proposed. Several similarities and differences between tracking filters are

easily identified by investigating the respective probability generating functional. A

2



1.2 Structure

demonstration on how to use the unification–framework is presented to show tracking

engineers the benefits of the framework in terms of the customized design of tracking

filters. Additionally, the derivation of the summary statistics from the probability

generating functional is discussed in a mathematically rigorous manner. Summary

statistics are needed to implement and apply the filter to tracking scenarios. It is

proven that the summary statistics of all members of the family of pointillist filters

proposed in this thesis can be derived by applying an appropriate definition of the

functional derivative with respect to the Dirac delta. Furthermore, it is shown that

these summary statistics can be derived for all pointillist filters using ordinary dif-

ferentiation by the extension of the theory of secular functions [Str14e] to a general

class of probability generating functionals. All statements concerning the derivation

of summary statistics are proven in this thesis using standard theorems from func-

tional analysis.

An application of a subclass of multitarget tracking filters from the unification–

framework is presented in terms of the passive and non–cooperative localization

and tracking of an electromagnetic emitter in an urban environment using a sin-

gle mobile antenna array. The first fundamental investigation of the problem is done

in [Alg10]. Due to physical propagation effects like scattering, diffraction and re-

flection of the emitted signal, multiple electromagnetic waves that have travelled

along different paths and are therefore referred to as multipaths can be received by

the antenna array. Thus, a single target generates multiple measurements per sen-

sor scan, which are, in contrast to the well–studied field of extended target track-

ing [KS05], spatially not related in the measurement space. Probability hypothesis

density [Mah03], [Mah07a], [Mah07b], [CM12] and intensity filters [SKSC12], [Deg14]

using standard and general target–oriented measurement models are applied. Due

to a mismatch in the target–oriented measurement model enhanced target state ex-

traction schemes and likelihood function definitions for single multipaths are needed

when standard probability hypothesis density and intensity filters are applied. In

contrast, the application of a general target–oriented measurement model within gen-

eralized probability hypothesis density and intensity filters is computationally com-

plex. Therefore, approximation schemes for rejecting measurement partitions have

to be derived for these filters. The proposed tracking filters are numerically evalu-

ated using simulated and real world data. Furthermore, a multi–hypothesis based

parameter tracking algorithm is proposed, which takes false multipaths into account

that arrive before the first target–related measurement. The corresponding update

equations are derived by a marginalization procedure taking into account so–called

clutter hypotheses.
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1 Introduction

1.2 Structure

This thesis is divided into two parts. The first theoretical part is on the application

of finite point processes in target tracking, the second part presents the application

of blind mobile localization and tracking, which is solved using the methods derived

in the first part.

Finite Point Processes in Target Tracking

In Chapter 2 the fundamentals of point process theory is established and the connec-

tion to multitarget tracking filters is shown using standard literature on point process

theory.

Chapter 3 presents a framework for unifying multitarget tracking filters that are

modeled using finite point process theory and therefore called the family of pointillist

filters. Many well–known multitarget tracking filters are presented in terms of the

corresponding probability generating functional and according to their application of

target superposition. The differences and similarities between pointillist filters are

discussed. An example demonstrates the benefits of the proposed unification in a

practical way. The process of characterizing multitarget tracking filters using finite

point process theory presented in this chapter is called the Discovery Step.

The derivation of the summary statistics of pointillist filters is discussed in Chapter

4. Using the classic Lebesgue dominated convergence theorem the definition of the

functional derivative with respect to the Dirac delta is shown to be mathematically

correct for all pointillist filters formulated in Chapter 3. Additionally, an extension

of the theory of secular functions [Str14e] to all proposed pointillist filters is carried

out. The process of deriving the summary statistics of a pointillist filter presented in

this chapter is called the Analytical Step of pointillist filters.

An Application to Emitter Tracking under Multipath Propagation

In Chapter 5 the passive and non–cooperative localization and tracking of an elec-

tromagnetic emitter in an urban environment using a single mobile antenna array is

introduced. Afterwards, open questions left in the related work are identified and

used to formulate the contributions of Chapters 6 and 7.

Chapter 6 extends the work on bind mobile localization and tracking presented

in [Alg10] to standard and generalized probability hypothesis density and intensity

filters, a subclass of pointillist filters that superpose targets in a single state space.

Enhanced target state extraction schemes and likelihood functions that are defined on

single multipaths are derived for the probability hypothesis density and intensity filter,

which use the standard target–oriented measurement model. Furthermore, approxi-

mation criteria for generalized probability hypothesis and intensity filters are derived,
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1.2 Structure

which do not apply any information about the spatial distribution of measurements

in the parameter space. Finally, the proposed filters are numerically compared using

simulated and real world data.

A novel filter for tracking parameters of blind mobile localization and tracking scenar-

ios in relative time of arrival, based on a track–oriented multi–hypothesis approach,

is presented in Chapter 7, which is capable of handling falsely detected multipaths

that arrive before the first target–related measurement.

The conclusions are drawn and future work is presented in Chapter 8.
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Part I

Finite Point Processes in Target Tracking
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CHAPTER II

Finite Point Processes and Probability Generating

Functionals

The multitarget tracking problems studied in this thesis employ finite point process

models of multiple target states and measurement sets. Probability generating func-

tionals (PGFLs) are a generalization of probability generating functions (PGFs) for

multivariate discrete random variables (RVs). Moyal [Moy62] used PGFLs to char-

acterize and study finite point processes. Of particular relevance here, Moyal showed

that PGFLs characterize point processes in terms of their functional derivatives. The

statistics which are encoded in the PGFL can be decoded via functional differentia-

tion and yield the factorial moments of a PGFL. The factorial moments of a finite

point process are an analogous concept to the moments of an RV. The difference is

that factorial moments of a point process are given by the functional derivatives of

a PGFL, while moments of an RV are represented by ordinary derivatives of a PGF.

Thus, factorial moments of a point process are given by functions, while the moments

of a RV are given by scalars. Another interpretation of PGFs is presented in [Wil94],

where a generating function is described as “... a clothesline on which we hang up a

sequence of numbers for display”. Following this description, the factorial moments of

a finite point process can be interpreted as an infinite dimensional vector of scalars.

This goes along with the fact that PGFLs can be derived as the small cell limit of

PGFs of histogram counts and, vice versa, histogram PGFs can be derived out of a

PGFL by substituting a weighted sum of Dirac deltas [SSCB14, Section 5.4.4].

Finite point processes are well–suited to model multitarget tracking applications.

The PGFL of the joint target–measurement point process can be derived for many

standard tracking problems directly from the assumptions of the tracking problem,

making PGFLs an appropriate tool to design tracking filters based on point process

models [SDK15]. Furthermore, PGFLs can be used to find similarities and differences

in multitarget tracking filters, which use point process models for the target state and

9



2 Finite Point Processes and Probability Generating Functionals

the measurement set (for details see Chapter 3 or [SDK15]). The fundamentals of

point processes, PGFLs and their connection to target tracking are presented in this

chapter.

This chapter is structured as follows. In Section 2.1 the fundamentals of point pro-

cesses are presented and the PGFL of a point process is defined. The Gâteaux

derivative of a PGFL is defined in Section 2.3 before the event likelihood function

is determined by functional differentiation of the PGFL in Section 2.4. In Section

2.5 factorial moments are defined and interpreted. Poisson point processes (PPPs),

which represent an important class of point processes for applications, are given in

Section 2.6. The PGF of the canonical, or cardinal, number of points is presented

in Section 2.7. Multivariate PGFLs are defined in Section 2.8, before the connection

of point processes to target tracking is shown via the PGFL of the Bayes posterior

process in Section 2.9. Summary statistics of the Bayes posterior process PGFL are

defined Section 2.10 and the branching form of the PGFL is derived in Section 2.11.

Finally, point processes are compared to RFS in Section 2.13 .

The content of this chapter is a review of well–known results and can be found (in dif-

ferent notations) in [Str13a], [HDC13], [Mah07b], [SKM95], [Moy62], [DVJ03], [Kar91]

and the references cited therein.

2.1 Point Process Fundamentals

Let X be a complete separable metric space. A typical choice for X , sufficient for

most applications appearing in multitarget tracking problems and used throughout

this thesis, is Rd, d > 0. Then, the space of sets of points or event space in X is

defined by the disjoint union

EX ≡ ∅ ∪
⋃
n≥1

X (n), (2.1)

where ∅ denotes the empty–set and X (n) is the space of sets of size n ∈ N, that is

X (n) ≡
{
{x1, ..., xn}|xi ∈ X , i = 1, ..., n

}
. (2.2)

In general it is not assumed that the elements of X (n) need to be distinct, that is

repetitions of elements are allowed. Thus, the elements of X (n) are called multisets (a

multiset is a set, for which the repetition of elements is allowed [Knu98]). Furthermore,

the order of the corresponding indices is not unique. In physics (thermodynamics),

EX is called the grand canonical ensemble, X (n) is called the nth canonical ensemble

and n is called the canonical number.

A stochastic point process in the sense of [SKM95, p. 109], [HDC13] is defined to be

a measurable mapping

Φ : (Ω,F ,P)→
(
EX ,B (EX )

)
, (2.3)

10



2.1 Point Process Fundamentals

where (Ω,F ,P) is an arbitrary probability space and B (EX ) denotes the Borel σ–

algebra of EX . Since the point process Φ is a measurable mapping, the stochastic

model of the point process is defined on the probability space (Ω,F ,P). The associated

counting function for an arbitrary B ∈ B(X ) is defined by

N·(B) :
(
EX ,B(EX )

)
→
(
N,B (N)

)
ϕ 7→ Nϕ(B) ≡ |ϕ ∩B|, (2.4)

which counts the number of elements of ϕ in B and is measurable. Then, the com-

position

NΦ(·)(B) ≡ N·(B) ◦ Φ : (Ω,F ,P)→ (N,N ) (2.5)

is measurable, since the composition of measurable functions is measurable again.

Here, N denotes the smallest σ-algebra, such that NΦ(·)(B) is measurable. Thus,

NΦ(·)(B) is an integer–valued RV for all B ∈ B(X ).

A class of measures on locally compact Haussdorf spaces, which is of particular interest

for the definition of the point process are Radon measures. This family comprises

among others the Dirac measure, the counting measure and the Lebesgue measure.

Readers, who are not familiar with measure theory might skip the following paragraph

and proceed with the definition of point processes studied in this thesis.

Excursion to Radon Measures Let M denote the set of Radon measures [Els09].

The corresponding σ−algebra of M is generated by the coordinate mapping µ 7→
µ(f) =

∫
fdµ, where f ranges over the set of continuous functions on X with compact

support (for details see [Kar91]). A Radon measure µ on B(X ) satisfies the following

two conditions.

1. For all x ∈ X there exists U ⊂ X open such that µ(U) <∞. (locally finite)

2. µ(A) = sup{µ(K)|K ⊂ A, K compact} for all A ∈ B(X ). (inner regular)

Then, according to [HDC13, Chapter 4] NΦ(·)(·) can be interpreted in the following

way.

1. NΦ(ω)(B) ∈ N denotes the number of points of the realization of the point

process Φ(ω) in B ∈ B(X ).

2. NΦ(·)(B) : (Ω,F ,P)→
(
N,N )

)
is a RV that maps an element of the underlying

probability space to the number of points from the realization Φ(ω) inB ∈ B(X ).

3. NΦ(ω)(·) : B(X )→ N is a counting measure.

4. NΦ(·)(·) : (Ω,F ,P) → Mp ≡ {µ ∈ M : µ(A) ∈ N for all A ∈ B} maps an

element of the probability space to the point measure NΦ(ω)(·).

11



2 Finite Point Processes and Probability Generating Functionals

In [Kar91] a point process is defined to be a measurable mapping from (Ω,F ,P) to

Mp, that is NΦ(·)(·) in our notation. Hence, point processes in the sense of [Kar91] are

a special kind of random measures. Different classes of point processes are presented

in [Kar91], defined in terms of their codomain, that is

1. Ms ≡ {µ ∈Mp : µ({x}) ≤ 1 for all x ∈ X}

2. Ma ≡ {µ ∈M : µ is purely atomic}

3. Md ≡ {µ ∈M : µ is diffuse}.

The σ−algebras of Mp, Ms,Ma and Md in M are given by the corresponding trace

σ− algebras. In [Kar91] a point process Φ is called simple if P(NΦ(·)(·) ∈ Ms) = 1.

Then, the points in X (n) are P–almost surely (a.s.) distinct. The random measure

NΦ(·)(·) is called atomic if P(NΦ(·)(·) ∈ Ma) = 1 and diffuse if P(NΦ(·)(·) ∈ Md) = 1.

A measure µ ∈M is diffuse if µ({x}) = 0 for all x ∈ X . Every Radon measure µ can

be decomposed into

µ = µd +

K∑
i=1

aiδxi , (2.6)

where δx denotes the Dirac measure at x ∈ X [Kar91, Theorem A.4], ai > 0, xi ∈ X
distinct, for all i = 1, ...,K, K ∈ N+ and µd is a diffuse measure. A Radon measure

µ is then called purely atomic if its diffuse component µd is zero, that is it can be

represented by a sum of Dirac measures. An atomic measure is a point measure if

and only if for all i = 1, ...,K, ai ∈ N. If this condition is satisfied, we speak about an

atomic point processes instead of an atomic random measure. Note that for a simple

point process ai = 1, for all i = 1, ...,K. In the following, when speaking about an

atomic point process we implicitly assume ai ∈ N, for all i = 1, ...,K.

Combining the definitions of [SKM95, Chapter 4] and [Kar91, Chaper 1] a point

process Φ is called in this thesis

1. locally finite, if each bounded subset of X must only contain a finite number of

points of ϕ, for all ϕ ∈ EX \ ∅ P–a.s

2. simple, if for all xi, xj ∈ ϕ, xi = xj ⇒ i = j holds P–a.s., for all ϕ ∈ EX \ ∅.

In this thesis a simple finite point process is meant, unless otherwise stated, if we

speak about a point process. In terms of multitarget tracking the two conditions

on the elements of the event space EX represent the assumptions on the multitarget

tracking problem that only finitely many targets can be present in a scenario, where

the field of view is bounded (locally finite) and that no two targets share the same

target state (simple).

The intensity measure (first moment measure, mean) of the point process Φ is defined

12



2.2 Probability Generating Functionals

for an arbitrary B ∈ B(X ) by the expectation value

µΦ(B) ≡ E[NΦ(·)(B)] =

∫
Ω

NΦ(ω)(B)P(dω) =

∫
EX

Nϕ(B)PΦ(dϕ), (2.7)

where PΦ denotes the push–forward (image) measure of P, which uses the point

process Φ as a measurable mapping. Therefore, the moment measure µΦ(B) yields

the expected number of points in B. The expectation (2.7) can be extended further

by the nth moment measure

µ
(n)
Φ (B1, ..., Bn) ≡ E

[
NΦ(·)(B1) · · ·NΦ(·)(Bn)

]
, (2.8)

where B1, ..., Bn ∈ B(X ). Note that µ
(n)
Φ (Bn) denotes the nth moment of the RV

NΦ(·)(B
n).

For practical applications like multitarget tracking problems it is of particular interest

(e.g. for implementation issues), whether the first moment µΦ (2.7) has a density.

Not every point process has a moment measure density. For example, if points are

arranged on a lattice (see for example [Str14c]) no density corresponding to the first

moment exists. However, if the nth moment measure is absolutely continuous with

respect to the Lebesgue measure and corresponds to a locally finite, simple point

process, the corresponding density exists and is called the nth moment density. For

simple, locally finite point processes the first moment density in case of existence is also

often referred to as intensity function or (in the tracking community) as probabilistic

hypothesis density (PHD) [Mah07b], [Mah03], [Mah07a].

2.2 Probability Generating Functionals

This section follows the considerations of [HDC13], [Str13a] and [Moy62]. For any

complex-valued Lebesgue–integrable function

h : (X ,B(X ))→ (R,B(R)) (2.9)

satisfying |h(x)| ≤ 1 for all x ∈ X and

x ∈ Φ ≡
{
x ∈ X : ∃ ω ∈ Ω such that x ∈ Φ(w)

}
(2.10)
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2 Finite Point Processes and Probability Generating Functionals

the PGFL of the locally finite point process Φ is defined by the expectation of∏
x∈Φ h(x) with respect to the image measure PΦ of the point process Φ by

ΨΦ(h) ≡E

∏
x∈Φ

h(x)

 =
∑
n≥0

∫
X (n)

n∏
i=1

h(xi)PΦ(d{x1, ..., xn}) (2.11)

=
∑
n≥0

pΦ
N (n)

∫
Xn

n∏
i=1

h(xi)p
Φ
X|N (x1, ..., xn|n)dx1...dxn (2.12)

=
∑
n≥0

1

n!

∫
Xn

n∏
i=1

h(xi)p
Φ
n (x1, ..., xn)dx1...dxn, (2.13)

where pΦ
n : Xn → R is the multi–object density of the corresponding Janossy measure

and defined such that∫
B

n!PΦ(d{x1, ..., xn}) =

∫
B̃

pΦ
n (x1, ..., xn)dx1....dxn (2.14)

holds for all B ∈ B(EX ) and B̃ ∈ B(Xn), where the tuples of points contained in B

and B̃ are identical. For n = 0 in (2.11)–(2.13) it holds that
n∏
i=1

h(xi) ≡ 1, pΦ
n (·) ≡ 1,

pΦ
X|N (·|n) ≡ 1 and PΦ(·) ≡ 1. Equations (2.12) and (2.13) hold if absolute continuity

of PΦ with respect to the Lebesgue measure is assumed due to the application of the

Radon–Nikodym theorem.

Note that PΦ(d{x1, ..., xn}) considers the ordered event and pΦ
n (x1, ..., xn) defines the

probability density function (PDF) evaluated at the unordered event. The factoriza-

tion ∫
X (n)

PΦ(d{x1, ..., xn}) = pΦ
N (n)

∫
Xn

pΦ
X|N (x1, ..., xn|n)dx1...dxn (2.15)

is due to the definition of the conditional probability and the assumption that PΦ is

absolutely continuous. The PGFL is well–defined for any measurable function h, with

|h(x)| ≤ 1 for all x ∈ X due to the assumption that the point process Φ is locally

finite [DVJ08, p. 59].

In [Moy62] it is shown that finite point processes are characterized by their PGFL via

functional derivatives, which are studied in the following section.

On the absolute continuity of the image measure of a point process We assume

from now on that first order moment measure defined in 2.7 of the point process is
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absolutely continuous with respect to the Lebesgue measure. Therefore, the corre-

sponding density, that is the Radon–Nikodym derivative exists due to the Radon–

Nikodym theorem. However, point processes exists, which do not have an absolute

continuous (with respect to the Lebesgue measure) first moment measure and thus

no first (and higher) order factorial moment densities exist. In Section 2.12 we study

two families of point processes which do not possess an absolute continuous (with

respect to the Lebesgue measure) image measure, that are Palm processes and point

processes, where the state space has at least one discrete element. For such point

processes the results from Section 2.3 to Section 2.11 need to be reformulated using

the Radon measure PΦ instead of the first moment density pΦ
n .

2.3 The Functional Derivative of a PGFL

This section follows from [Str13a, Section 3.2]. Let ΨΦ be the PGFL of a locally finite

point process Φ defined as in (2.13). Then, the Gâteaux derivative of ΨΦ with respect

to the variation

ω : (X ,B(X ))→ (R,B(R)) (2.16)

is defined by

∂

∂ω
ΨΦ(h) ≡ lim

ε↘0

d

dε
ΨΦ(h+ εω) = lim

ε↘0

ΨΦ(h+ εω)−ΨΦ(h)

ε
, (2.17)

where ω is a complex–valued, bounded and Lebesgue–integrable function on X . Note

that we are considering only the limit from above, that is, lim
ε↘0

, since then the PGFLs

in (2.17) are well–defined due to [DVJ08]. In [Moy62, Section 4] it is shown that

ΨΦ(h+ εω) =
∑
n≥0

1

n!

∫
Xn

n∏
i=1

(
h(xi) + εω(xi)

)
pΦ
n (x1, ..., xn)dx1...dxn (2.18)

is an analytic function in the variable ε ∈ C in some open region of the complex plane

containing 0 ∈ C. Thus, the analyticity of ΨΦ justifies an interchange of limit and the

(infinite) sum when taking the Gâteaux derivative of (2.18). Therefore, the Gâteaux

derivative of (2.18) can be determined and is given by

∂ΨΦ

∂ω
(h) =

∞∑
n=1

1

n!

n∑
k=1

∫
Xn

ω(xk)

n∏
i=1,i 6=k

h(xi)p
Φ
n (x1, ..., xn)dx1...dxn. (2.19)

Since the summand for n = 0 is zero, the outermost sum starts at n = 1. The product

rule for ordinary differentiation and the assumption that pn is symmetric yields the

inner sum.

15



2 Finite Point Processes and Probability Generating Functionals

The differentiation with respect to multiple real–valued, bounded and integrable vari-

ations ω1, ..., ωn : (X ,B(X ))→ (R,B(R)) is defined iteratively, that is, by

∂nΨΦ

∂ω1 · · · ∂ωn
(h) =

∂nΨΦ

∂ε1 · · · ∂εn

(
h+

n∑
j=1

εjωj

)∣∣∣∣∣
ε1=···=εn=0

, (2.20)

which is called simultaneous perturbation and which is due to [Moy62].

In [Dir27] Dirac defined a function, which satisfies

δ(x) = 0, when x 6= 0 (2.21)

and ∫
δ(x)dx = 1. (2.22)

This function δ later became referred to as Dirac delta.

δc(x) ≡ δ(x− c) (2.23)

for c ∈ X . The Gâteaux derivative with respect to the Dirac delta at the point c

(or as in [Str13a]: functional derivative with respect to an impulse at c) is informally

defined by inserting ω(·) = δc(·)

∂ΨΦ

∂c
(h) =

∂ΨΦ

∂δc
(h) =

∂ΨΦ

∂ω
(h)

∣∣∣∣∣
ω(·)=δc(·)

(2.24)

=

∞∑
n=1

1

n!

n∑
k=1

∫
Xn

δc(xk)
n∏

i=1,i 6=k

h(xi)p
Φ
n (x1, ..., xn)dx1...dxn (2.25)

=

∞∑
n=1

1

(n− 1)!

∫
Xn−1

n∏
i=2

h(xi)p
Φ
n (c, ..., xn)dx1...dxn. (2.26)

Here, (2.26) is due to the application of the sampling property of Dirac delta, the

symmetry of pΦ
n and a relabeling of the arguments. Note that ∂ΨΦ

∂c
(h) is again a

functional that explicitly depends on the point c ∈ X . Analogously, The Gâteaux

derivative with respect to several Dirac deltas at c1, ..., cn ∈ X is given by

∂nΨΦ

∂x1 · · · ∂xn
(h) ≡ ∂nΨΦ

∂ω1 · · · ∂ωn
(h)

∣∣∣∣∣
ω1=δx1 ,··· ,ωn=δxn

(2.27)

=

∞∑
k=n

1

(k − n)!

∫
Xk−n

k∏
i=n+1

h(xi)p
Φ
k (x1, ..., xn, xn+1, ..., xk)dxn+1 · · · dxk,

(2.28)
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where the product is equal to one for k = n. For all non-negative, bounded by one and

Lebesgue–integrable test–functions h, the functional derivative of ΨΦ(h) with respect

to Dirac delta for n = 0 is defined to be ΨΦ(h).

Obviously, Dirac delta cannot be a proper function (and therefore no valid variation

for which the Gâteaux derivative in its original form is well–defined) due to the fact,

that the value of the Lebesgue integral does not change if the integrand is changed

on sets of measure zero. For this chapter we omit the details on the mathematically

correct definition of Dirac delta via the limit (in a distributional sense) of an ap-

proximate identity, that is, a sequence of test–functions. Furthermore, we omit the

study for which PGFLs (2.24) is well–defined. Instead we use (2.24) and (2.25) for

the rest of this chapter, keeping in mind, that a mathematically careful treatment is

readily provided by using a sequence of test–functions. In Section 4.1 the functional

differentiation with respect to the Dirac delta is derived in a mathematically correct

way for a large class of PGFLs that is sufficient for almost all multitarget tracking

problems.

2.4 Event Likelihood

As mentioned in the introduction of this chapter functional differentiation encrypts the

statistical information of the point process, which is encoded in the PGFL analogously

to the moments of a RV. In particular, the probability density function (PDF) is

contained as a statistical information in the PGFL [Str13a]. A locally finite point

process is completely characterized by its PGFL [Moy62], which means that finite

point processes can be derived via their PGFLs. It holds, if absolute continuity of PΦ

with respect to the Lebesgue measure is assumed, that

∂ΨΦ

∂c1
(0) = pΦ

1 (c1) = 1!pΦ
N (1)pΦ

X|N (c1) (2.29)

and

∂2ΨΦ

∂c1∂c2
(0) =

∂2ΨΦ

∂c2∂c1
(0) = pΦ

2 (c1, c2) = 2!pΦ
N (2)pΦ

X|N (c1, c2), (2.30)

c1, c2 ∈ X . Hence, the Gâteaux derivative with respect to Dirac delta at c evaluated

at h = 0 is the PDF of the event {c} and the Gâteaux derivative with respect to Dirac

delta at c1 and c2 yields the PDF of the unordered event {c1, c2} or equivalently 2!

times the PDF of the ordered event [Str13a, Section 3.3]. Analogously one derives for

n ≥ 1

∂nΨΦ

∂c1 · · · ∂cn
(0) = pΦ

n (c1, ..., cn) = n!pΦ
N (n)pΦ

X|N (c1, ..., cn). (2.31)
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2.5 Factorial Moments

The nth–order factorial moment measure α(n) of the point process Φ is defined for a

non–negative measurable function h : (X ,B(X ))→ (R,B(R)) in [SKM95] by∫
Xn

h(x1, ..., xn)α(n)(d(x1, ..., xn)) ≡
∫
X (n)

6=∑
x1,...,xn∈ϕ

h(x1, ..., xn)P (dϕ), (2.32)

where the notation
∑6=
x1,...,xn∈ϕ means that the summation is over all n–tuples of dis-

tinct points in ϕ including all permutations of given points. Therefore, if B1, ..., Bn ∈
B(X ) are pairwise disjoint sets, the nth order factorial moment measure is equal to

the nth moment measure, that is

µ(n)(B1 × · · · ×Bn) = α(n)(B1 × · · · ×Bn). (2.33)

Note that the nth–order factorial moment measure α(n)(Bn) is the nth–order fac-

torial moment of the RV NΦ(·)(B
n). If the nth–order factorial moment measure is

locally finite and absolute continuous with respect to the Lebesgue measure, due to

the Radon–Nikodym theorem, the corresponding density, called nth–order factorial

moment density (also called nth–order product density) exists [SKM95].

The first–order moment density, or intensity, of the point process Φ can be derived

by the Gâteaux derivative of ΨΦ with respect to the Dirac delta at c ∈ X by

mΦ
[1](c) =

∂ΨΦ

∂c
(1) =

∞∑
n=1

1

(n− 1)!

∫
Xn−1

pΦ
n (c, x2, ..., xn)dx2...dxn. (2.34)

It is equal to the intensity function [SKM95]. The nth–order factorial moment density

can be derived by the Gâteaux derivative of ΨΦ with respect to the Dirac deltas at

c1, ..., cn ∈ X by

mΦ
[n](c1, ..., cn) =

∂nΨΦ

∂c1 · · · ∂cn
(1)

=
∞∑
k=n

1

(k − n)!

∫
Xk−n

pΦ
k (c1, ..., cn, xn+1, ..., xk)dxn+1 · · · dxk. (2.35)

The first moment measure (2.7) can be obtained via functional differentiation of the

corresponding PGFL ΨΦ, that is for all B ∈ B(X )

µ
(1)
Φ (B) =

∂ΨΦ

∂1B
(h)

∣∣∣∣∣
h=1

, 1B(x) =

0, if x /∈ B
1, if x ∈ B

(2.36)

For details see [SKM95] and [HDC13].

Assume that the nth–order factorial moment measure α(n) is absolutely continuous

18



2.5 Factorial Moments

with respect to the Lebesgue measure and corresponds to a locally finite and simple

point process. Then, due to [DVJ03, Lemma 5.4.III] the nth–order factorial moment

density is the Radon–Nikodym derivative of the nth–order factorial moment measure

defined in (2.7) with respect to the Lebesgue measure and according to [DVJ03,

Equation (5.4.12)] the nth–order factorial moment density can be intuitively written

as

mΦ
[n](x1, ..., xn)dx1 · · · dxn = Pr

 one point of the process is

located in each infitesimal subset

[xi, xi + dxi), i = 1, ..., n

 , (2.37)

which shows that the factorial moment densities can be interpreted as multi–point

intensity functions if the points are distinct with probability one. In particular, the

intensity function can be intuitively interpreted as

mΦ
[1](x)dx = Pr

(
one point of the process

is located in [x, x+ dx)

)
. (2.38)

The pair–correlation function is given by mΦ
[2](x1, x2). In tracking applications it

characterizes the spooky action [FSU09] between two targets in the Bayes posterior

process due to assignment interference. Multipoint–correlation functions can also

be computed. An application of factorial moment densities to multitarget tracking

applications is given in [BES13].

The first moment, or intensity, for multivariate PGFLs is an extension of the definition

(2.34). Let the test functions hj : (Xj ,B(Xj)) → (R,B(R)), j = 1, . . . , n be non–

negative, bounded by one and Lebesgue–integrable, and let x = (x1, . . . , xn)T ∈
X1 × · · · × Xn. The first moment of a multivariate PGFL Ψ(h1, . . . , hn) is defined as

the mixed first–order partial derivative

m[1,...,1](x) ≡ ∂Ψ(h1, . . . , hn)

∂x1 · · · ∂xn

∣∣∣∣∣
h1 = ···=hn=1

. (2.39)

The intensity is seen to be a multivariate function defined on X1 × · · · × Xn. The

higher order (mixed) factorial moments m[k1,...,kn](x) can be defined analogously, as

the mixed partial derivative of order k1, . . . , kn with respect to the test functions

h1, . . . , hn, respectively.

The functional Ψ(·) is linear if, for all test functions h, g and constants a, b ∈ C,

Ψ(ah+ bg) = aΨ(h) + bΨ(g). (2.40)

It is straightforward to see that for linear functionals, the only events with a nonzero

probability are realizations of the point process that have exactly one point, and the

PDF of this point (in continuous spaces X ) is identical to the intensity defined in
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2 Finite Point Processes and Probability Generating Functionals

(2.34). Therefore, the intensity integrates to one if the functional is linear. Multivari-

ate functionals are multilinear if they are linear in each test function separately. As

in the univariate case, it is easily verified that, with probability one, realizations are

singleton points (in a Cartesian product space), and the multivariate PDF is identical

to the intensity function.

2.6 Poisson Point Processes

According to [Str13a] a locally finite point process Φ on X is a PPP, if for all B ∈ B(X )

the RV NΦ(·)(B) is Poisson distributed with mean µ =
∫
B

fΦ(x)dx, where fΦ(x) ≥

0 for all x ∈ X is the intensity function and the points of Φ are identically and

independently distributed with PDF fΦ/µ in X . The PGFL of a PPP is given by

ΨΦ(h) = exp

−∫
X

fΦ(x)dx+

∫
X

h(x)fΦ(x)dx

 . (2.41)

It can be shown that the intensity is the Radon–Nikodym derivative of the first

moment measure µΦ defined in (2.7), that is, for all B ∈ B(X ) it holds that

µΦ(B) =

∫
B

fΦ(x)dx =

∫
B

mΦ
[1](x)dx. (2.42)

Furthermore, it holds that

mΦ
[n](x1, ..., xn) = fΦ(x1) · ... · fΦ(xn), (2.43)

where x1, ..., xn ∈ X [SKM95].

In [Str10] and [SKM95] many details and references on PPPs can be found. PPPs

play an important role in applications (just like the Poisson distribution). Some of

them are presented in [Str10].

2.7 Probability Generating Function of the Canonical Number

This section follows [Str13a, Section 3.5]. The PGF of the RV describing the number

of points NΦ(·)(X ) of the locally finite point process Φ in X is denoted by FΦ. It can

be obtained by evaluating the PGFL ΨΦ for the constant function h(x) = x ∈ R, for

all x ∈ X that is

FΦ(x) ≡ ΨΦ(h)

∣∣∣∣∣
h=x

= ΨΦ(x) =

∞∑
n=0

pΦ
N (n)xn. (2.44)

The PGF FΦ(z−1) is also known as the z–transform of the sequence of probabilities

{pΦ
N (n)}n∈N in the signal processing literature. The discrete probability distribution
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2.8 Multivariate Probability Generating Functionals

of the number of points pΦ
N , which is defined in (2.12), can be obtained via ordinary

differentiation of the PGF of the number of points, that is for all n ∈ N

pΦ
N (n) =

1

n!

dnFΦ

dxn
(0). (2.45)

The expected number of points in one realization of the locally finite point process Φ

is given by the first ordinary derivative of FΦ evaluated at one, that is

dFΦ

dx
(1) =

∞∑
n=0

pΦ
N (n)xn−1

∣∣∣∣∣
x=1

= E[NΦ(·)(X )]. (2.46)

2.8 Multivariate Probability Generating Functionals

In the previous sections univariate PGFLs are studied. A univariate PGFL corre-

sponds to a single locally finite point process. For multitarget tracking applications

a minimal extension has to be made. There, at least two point processes are needed

to model the multitarget tracking problem: (at least) one point process for the target

and (at least) one point process for the measurement process, which leads to multi-

variate PGFLs.

A multivariate PGFL is defined on multiple function spaces and corresponds to mul-

tiple locally finite point processes. For the definition of the multivariate PGFL let

X1, ...,Xr be the spaces of the finite point processes Φ1, ...,Φr. For almost all practical

target tracking applications Xi ≡ Rdi , di > 0, i = 1, ..., r is sufficient. Note that the

dimensions di can mutually differ. Let

EXi ≡ ∅ ∪
⋃
n≥1

X (n)
i (2.47)

denote the event space in Xi, i = 1, ..., r analogously to (2.1). The event space

EXi models all possible realizations of the locally finite point process Φi on Xi. Let

h1, ..., hr be bounded and Lebesgue–integrable functions with

hi : (Xi,B(Xi))→ (R,B(R)) (2.48)

and 1 ≥ hi(xi) ≥ 0 for all xi ∈ Xi and i = 1, ..., r. Consider the joint point process

(Φ1, ...,Φr) with events in the Cartesian product space EX1 × · · · × EXr . Then, the

multivariate PGFL of the joint process (Φ1, ...,Φr) is defined by the expectation of

the product ∏
x1∈Φ1

h1(x1) · ... ·
∏

xr∈Φr

hr(xr), (2.49)
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2 Finite Point Processes and Probability Generating Functionals

that is

ΨΦ1···Φr (h1, ..., hr)

≡ E

 ∏
x1∈Φ1

h1(x1) · ... ·
∏

xr∈Φr

hr(xr)

 (2.50)

=

∞∑
n1=0

· · ·
∞∑

nr=0

∫
Xn1

1

· · ·
∫
Xnrr

n1∏
i1=1

h1(xi1,1) · ... ·
nr∏
ir=1

hr(xir,r)

PΦ1···Φr (d{x1:n1,1, ..., x1:nr,r}) (2.51)

=

∞∑
n1=0

· · ·
∞∑

nr=0

pΦ1···Φr
N1···Nr (n1, ..., nr)

∫
Xn1

1

· · ·
∫
Xnrr

n1∏
i1=1

h1(xi1,1) · ... ·
nr∏
ir=1

hr(xir,r)

pΦ1···Φr
X1···Xr|N1···Nr (x1:n1,1, ..., x1:nr,r|n1, ..., nr)dx1:n1,1 · · · dx1:nr,r (2.52)

=

∞∑
n1=0

· · ·
∞∑

nr=0

1

n1! · · ·nr!

∫
Xn1

1

· · ·
∫
Xnrr

n1∏
i1=1

h1(xi1,1) · ... ·
nr∏
ir=1

hr(xir,r)

pΦ1···Φr
n1+···+nr (x1:n1,1, ..., x1:nr,r)dx1:n1,1 · · · dx1:nr,r, (2.53)

where dx1:nk,k = dx1,k · · · dxnk,k, k = 1, ..., r and dx1:nk,k = 1 for nk = 0. The

short–hand notation x1:n1,1, ..., x1:nr,r denotes all points of a realization of the point

processes Φ1, ...,Φr with number of elements n1, ..., nr, respectively. The probabil-

ity that the processes Φ1, ...,Φr have simultaneously n1, ..., nr points is denoted by

pΦ1···Φr
N1···Nr (n1, ..., nr), while the conditional probability that the processes Φ1, ...,Φr

have points x1:n1,1, ..., x1:nr,r, given that there are n1, ..., nr points is defined by

pΦ1···Φr
X1···Xr|N1···Nr (x1:n1,1, ..., x1:nr,r|n1, ..., nr). If nj = 0, j = 1, ..., r the correspond-

ing product
∏nj
ij=1 hj(xij ) is defined to be one. Equations (2.52) and (2.53) hold

if absolute continuity of PΦ1···Φr with respect to the Lebesgue measure is assumed.

Analogously to Section 2.2 pX1···Xr
n1+···+nr (x1:n1,1, ..., x1:nr,r) denotes PDF evaluated at

the unordered event and PΦ1···Φr (d{x1:n1,1, ..., x1:nr,r}) denotes the probability mea-

sure that considers ordered events.

The PGFL of the process Φj , j = 1, ..., r can be obtained by marginalizing over all

other processes, that is

ΨΦ1···Φr (1, ..., 1, hj , 1, ..., 1) = ΨΦj (hj). (2.54)

The marginalization (2.54) is obtained by substituting for all test–functions hi, i =

1, ..., r, i 6= j, j ∈ {1, ..., r} the identity function and integrating the corresponding

integrals from (2.50) [SDK15].

In multitarget tracking, the processes Φi, i = 1, ..., r can either be used to model
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2.9 PGFL of the Bayes Posterior Point Process

multiple target state spaces and (at least one) measurement space, multiple mea-

surement spaces and (at least one) target state space or multiple measurement and

multiple target state spaces. Multiple target state spaces can be used to have target

identification or separation of distinct target types. Multiple measurement spaces can

be used to model multiple sensors or multiple scans. Details on the differences and

similarities of tracking filters that employ multiple or single state spaces for the target

processes and a single measurement space are presented in Chapter 3 of this thesis or

in [SDK15].

For the following sections of this chapter we restrict ourselves to bivariate point pro-

cesses, that is, to a joint point process that consists out of two finite point processes,

one modeling the measurement, the other modeling the target process. In Chapter 3 it

will be explained how the following considerations can be generalized to multivariate

PGFLs.

2.9 PGFL of the Bayes Posterior Point Process

This section follows [Str13a, Section 4.2]. The PGFL of the Bayes posterior process

and its intensity function are derived in the following. Let X and Y be the target state

and measurement space, respectively. Typically, X ⊂ Rd1 and Y ⊂ Rd2 , d1, d2 > 0.

Let Υ be a finite point process with events in EY modeling the measurement process

and let Ξ be a finite point process with elements in EX modeling the target process.

Then, under the assumption that PΞΥ is absolutely continuous with respect to the

Lebesgue measure, the bivariate PGFL is defined analogously to (2.50) on the product

space EX × EY as the expectation of the product∏
x∈Ξ

h(x)
∏
y∈Υ

g(y), (2.55)

that is

ΨΞΥ(h, g) ≡
∞∑
n=0

∞∑
m=0

1

m!n!

∫
Xn

∫
Ym

n∏
j=1

h(xj)
m∏
i=1

g(yi)

pΞΥ
n+m(x1, ..., xn, y1, ..., ym)dx1 · · · dxndy1 · · · dym, (2.56)

where

h : (X,B(X))→ (R,B(R)), (2.57)

and

g : (Y,B(Y ))→ (R,B(R)) (2.58)
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2 Finite Point Processes and Probability Generating Functionals

are bounded by one, non–negative Lebesgue–integrable test–functions. Analogously

to (2.54), marginalization yields the PGFL of the remaining process, that is

ΨΞΥ(h, 1) = ΨΞ(h) and ΨΞΥ(1, g) = ΨΥ(g). (2.59)

Further details on marginalization in terms of the PGFL are presented in Chapter 3.

First, assume we have given the observations y1, ..., ym ∈ Y of the finite point process

defined on Y . Then, differentiation of ΨΞΥ with respect to m Dirac deltas at the

measurements y1, ..., ym ∈ Y , evaluated at the test–function g = 0 yields

∂mΨΞΥ

∂y1 · · · ∂ym
(h, 0) =

∞∑
n=0

1

n!

∫
Xn

n∏
j=1

h(xi)p
ΞΥ
n+m(x1, ..., xn, y1, ..., ym)dx1 · · · dxn. (2.60)

An additional marginalization with respect to the target process, that is evaluating

(2.60) at h = 1 (the identity function) gives

∂mΨΞΥ

∂y1 · · · ∂ym
(1, 0) = pΥ

m(y1, ..., ym), (2.61)

which is a constant. Therefore, the PGFL ΨΞ|Υ of the Bayes posterior process Ξ|Υ is

ΨΞ|Υ(h|y1, ..., ym) =

∞∑
n=0

1

n!

∫
Xn

n∏
j=1

h(xj)p
Ξ|Υ
n (x1, ..., xn|y1, ...., ym)dx1 · · · dxn (2.62)

=

∞∑
n=0

1

n!

∫
Xn

n∏
j=1

h(xj)
pΞΥ
n+m(x1, ..., xn, y1, ..., ym)

pΥ
m(y1, ..., ym)

dx1 · · · dxn

(2.63)

=

∂mΨΞΥ
∂y1···∂ym

(h, 0)
∂mΨΞΥ
∂y1···∂ym

(1, 0)
. (2.64)

Here, (2.62) is due to the definition of the PGFL, (2.63) is justified by the application

of Bayes Theorem and (2.64) is obtained by inserting (2.60) and (2.61). Note that

for determining the PGFL of the Bayes posterior process only the PGFL of the joint

process is needed. In Chapter 3 the joint PGFLs of several well–known filters are

presented.

Equation (2.64) is presented in [Mah07b, p. 757] as the PGFL form of the multitarget

corrector.

2.10 Summary Statistics of the Bayes Posterior Point Process

This section studies the summary statistics of the Bayes posterior point process anal-

ogously to [Str13a, Section 4.3]. The intensity function (or first moment density)
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2.11 Branching Process Form of the Bivariate PGFL

defined in (2.7) and (2.34) of the Bayes posterior process Ξ|Υ is defined at a target

state x ∈ X by the Gâteaux derivative of the PGFL of the Bayes posterior point pro-

cess with respect to x, due to Section 2.5. Since the Bayes posterior process is given

by (2.64) the intensity function is determined by the ratio of functional derivatives

fΞ|Υ(x) =

∂mΨΞΥ
∂x∂y1···∂ym

(1, 0)
∂mΨΞΥ
∂y1···∂ym

(1, 0)
. (2.65)

The PGF of the RV of the number of targets in X NΞ|Υ(·)(X) is (due to Section 2.7)

FΞ|Υ(x) =

∂mΨΞΥ
∂y1···∂ym

(h, 0)
∣∣∣
h(·)=x

∂mΨΞΥ
∂y1···∂ym

(1, 0)
. (2.66)

The posterior PDF of the canonical number is due to (2.45) given for all n ∈ N by

p
Ξ|Υ
N (n) =

1

n!

dn

dxn
FΞ|Υ(0) =

1
n!

dn

dxn

(
∂mΨΞΥ
∂y1···∂ym

(1, 0)
) ∣∣∣

x=0
∂mΨΞΥ
∂y1···∂ym

(1, 0)
, (2.67)

and the expected number of targets is given by E[NΞ|Υ] = d
dx
FΞ|Υ(1). The definitions

(2.65)–(2.67) hold for general locally finite point processes. However, in general a

point process does not need to have an absolutely continuous (with respect to the

Lebesgue measure) moment measure, so that the intensity function is not necessarily

the density of the first moment measure µΞ|Υ defined in (2.7).

Note that if Ξ|Υ is assumed to be a PPP

E[NΞ|Υ(X)] =
d

dx
FΞ|Υ(1) =

∫
X

fΞ|Υ(x)dx. (2.68)

holds as seen in Section 2.6.

2.11 Branching Process Form of the Bivariate PGFL

Let A : (Ω,A, P ) → (Rd,B(Rd)) be an RV that models the target process and

B : (Ω,A, P ) → (Rd,B(Rd)) be an RV that models the measurement process. For

simplicity of notation A and B are assumed to have the same domain and co–domain.

Furthermore, let B|A and A|B denote the RV that model the conditional processes.

Then, the definition of conditional probability yields (denoting the conditional prob-

abilities of the RVs A and B also by P )

P (A,B) = P (A|B)P (B) = P (B|A)P (A) (2.69)

and thus

P (A|B) =
P (A,B)

P (B)
. (2.70)
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Bayes Theorem for the conditional target process is obtained by replacing P (A,B)

by the right hand side of (2.69), that is

P (A|B) =
P (B|A)P (A)

P (B)
. (2.71)

In Section 2.9 the PGFL of the Bayes Posterior process is derived using the bivariate

PGFL of the joint target–measurement process. The derivation is done analogously to

(2.70), replacing the random variables A and B by the finite point processes Ξ and Υ,

respectively (see (2.62)–(2.64)). In this derivation the conditional measurement point

process has not been used. The conditional measurement process Υ|Ξ is important

to make inferences about the target processes by using the measurement information.

In the following, according to [Str13a, Section 4.5], the bivariate PGFL is expressed

as the composition of two functionals, that is, it is written in branching form. This

is done analogously to the right hand side of (2.69). It holds, if PΥ|Ξ is absolutely

continuous with respect to the Lebesgue measure, that

ΨΞΥ(h, g) =

∞∑
n=0

∞∑
m=0

1

m!n!

∫
Xn

∫
Ym

n∏
j=1

h(xj)

m∏
i=1

g(yi)

pΞΥ
n+m(x1, ..., xn, y1, ..., ym)dx1 · · · dxndy1 · · · dym (2.72)

=

∞∑
n=0

1

n!

∫
Xn

 ∞∑
m=0

1

m!

∫
Ym

m∏
i=1

g(yi)p
Υ|Ξ
m (y1, ..., ym|x1, ..., xn)dy1 · · · dym


n∏
j=1

h(xj)p
Ξ
n(x1, ..., xn)dx1 · · · dxn (2.73)

=

∞∑
n=0

1

n!

∫
Xn

ΨΥ|Ξ(g|x1, ..., xn)

n∏
j=1

h(xj)p
Ξ
n(x1, ..., xn)dx1 · · · dxn, (2.74)

where the interchange of the sum and the integral in (2.73) is justified by absolute

convergence [Str13a]. The definition of conditional probability for point processes

yields analogously to (2.69)

pΞΥ
n+m(x1, ..., xn, y1, ..., ym) = pΥ|Ξ

m (y1, ..., ym|x1, ..., xn)pΞ
n(x1, ..., xn), (2.75)

y1, ..., ym ∈ Y and x1, ..., xn ∈ X which is also used in (2.73).

According to Section 2.4 the PDF of the conditional measurement process Υ|Ξ, in

multitarget tracking better known as the likelihood function, is given by

pΥ|Ξ
m (y1, ..., ym|x1, ..., xn) =

∂mΨΥ|Ξ

∂y1 · · · ∂ym
(0|x1, ..., xn). (2.76)
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If the PGFL of the conditional measurement process is given by the superposition of

independent measurement processes, then the PGFL factors, that is

ΨΥ|Ξ(g|x1, ..., xn) =

n∏
i=1

ΨΥ|Ξ(g|xi), (2.77)

where ΨΥ|Ξ(g|xi), xi ∈ X is the measurement process conditioned on the ith target.

Then, inserting (2.77) into (2.74) yields the branching process form of the bivariate

PGFL as

ΨΞΥ(h, g) = ΨΞ

(
hΨΥ|Ξ(g|·)

)
, (2.78)

where ΨΞ denotes the PGFL of the target point process Ξ.

2.12 Point Processes With a Measure Comprising Dirac Measures

The Dirac measure [Alt12] is defined by

δx(A) ≡

0, if x /∈ A
1, if x ∈ A

(2.79)

for all A ∈ B(X ). A measure ν is called absolutely continuous with respect to the

Lebesgue measure λ if for all A ∈ B(X )

λ(A) = 0⇒ ν(A) = 0 (2.80)

[Alt12]. The Dirac measure is obviously not absolutely continuous with respect to

the Lebesgue measure, since

λ({x}) = 0, but δx({x}) = 1, for all x ∈ X . (2.81)

Furthermore, it holds that the Lebesgue and the Dirac measure are singular, since

X \ {x} ∪ {x} = X with

λ(X \ {x}) = 1 and λ({x}) = 0 (2.82)

and

δx({x}) = 1 and δx(X \ {x}) = 0. (2.83)

Hence, there cannot exist a density of the Dirac measure with respect to the Lebesgue

measure. Indeed, assume it exists. Then, the density of the Dirac measure would be

given by a function f : X → R which satisfies

1 = δx({x}) =

∫
{x}

f(x)λ(dx), (2.84)
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and

0 = δx(A) =

∫
A

f(x)λ(dx), (2.85)

for all A ∈ B(X ), x /∈ A, that is f is equal to the Dirac delta, which cannot be a

proper function due to the definition of the Lebesgue integral [Wal74]. Its behavior as

an operator can only be approximated by a sequence of test functions (see [Wal74] or

Chapter 4). As mentioned in Section 2.3 the Dirac delta function plays an important

role in the derivation of the PGFL of the Bayes posterior process and its factorial

moment measures (in case of existence). It will be investigated more closely in the

context of functional differentiation in Chapter 4.

One class of point processes with first moment measures that comprise Dirac measures

is given by Palm Processes [BES13]. Palm processes formalize conditioning on several

points of the corresponding process. The distribution of an unreduced Palm process

can be heuristically described as the law of a simple point process conditioned on

the presence of points at given locations x1, ..., xn ∈ X . The distribution of the

reduced Palm process can informally be described as the law of the respective simple

point process conditioning on the presence of points at given locations x1, ..., xn ∈ X ,

excluding the considered points. In [Kar91, Section 1.7] unreduced Palm processes are

developed using Dirac measures. As mentioned above, the density of the first moment

measure of a Palm process can (due to the fact that its distribution comprises sums

of Dirac measures) only be defined as a limit. In [BES13], [BSE15] reduced Palm

distributions and the corresponding Papangelou intensity function are proposed for

track extraction in multitarget tracking problems and the Bayes posterior process of

the Palm process of the PHD filter is derived. The reduced Palm process removes the

atoms in the Radon measure and therefore the measure is absolutely continuous and

possesses a density.

Another class of point processes that have first moment measures, which comprises

Dirac delta measures are point processes that are defined on discrete or partial discrete

state spaces [Str14c]. Therefore, the first moment measure of these point processes

comprise Dirac measures and thus the corresponding distribution is not absolutely

continuous with respect to the Lebesgue measure. Hence, the corresponding density

(intensity, PHD, etc.) can only be considered as a limit of test functions.

2.13 Point Processes versus Random Finite Sets

In [Str13a], [Str14e], [SDK15] finite point processes are used to derive multitarget

tracking filters. The original derivation and first application of the closely related

concept of random finite sets (RFS) to multitarget tracking is due to Mahler [Mah03],

[Mah07a], [Mah07b]. In the following the difference between a point process and a

random finite set is discussed.
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In [Mah07b, p.349] an RFS Ψ is defined as a random variable that draws its instanti-

ations Ψ = Y from the hyperspace V of all finite subsets Y (the null set ∅ included) of

some underlying space V0. Most of the time, in [Mah07b] it is assumed that V0 = Rd,
d > 0. In [Mah07b, Appendix E] RFSs are compared with multisets and it is said

that all elements in an RFS must be distinct and in [Mah07b, p.364] it is said that an

RFS contains unordered events. Thus, we conclude that V is given by the equivalence

class

V =
{
{y1, ..., yn} : yi ∈ V0, y1, ..., yn distinct, n ≥ 0

}
/ ∼, (2.86)

where the set with n = 0 is defined to be the empty set and ∼ denotes the equivalence

relation given by

{y1, ..., yn} ∼ {x1, ....xn} ⇔ it exists a permutation σ such that:

{yσ(1), ..., yσ(n)} = {x1, ..., xn} (2.87)

and an RFS is given by the RV

Ψ : (Ω,A,P)→ (V,B(V)), (2.88)

where (Ω,A,P) is an arbitrary probability space. A locally finite point process defined

in Section 2.1 on (Ω,A,P) with state space V0 is defined by the RV (see Section 2.1)

Φ : (Ω,A,P)→ (EV0 ,B(EV0)), (2.89)

where

EV ≡ ∅ ∪
⋃
n≥1

V
(n)
0 =

{
{x1, ..., xn} : xi ∈ V0, n ≥ 0

}
. (2.90)

is defined analogously to Equation (2.1) Here, the elements of V(n) need not be

distinct. Hence they are multisets in the sense of [Knu98]. Assume that all elements

ϕ of EV0 are simple and further assume that all elements ϕ are not only locally

finite but globally finite, that is that not only each bounded but the complete set V0

contains only finitely many points of ϕ. Such a process is called simple finite point

process. It can be seen that RFSs and simple finite point processes are closely related.

However, the two concepts are mathematically not the same.

The event space of a general finite point process contains multisets. A simple finite

point process is characterized by

xi, xj ∈ ϕ, xi = xj ⇒ i = j holds P–a.s., for all ϕ ∈ EV0 \ ∅. (2.91)

An RFS is an (unordered) set where the elements are necessarily distinct. Thus, con-

structing an RFS and a simple finite point process is not the same. To construct a

simple finite point process Φ, first, the RV modeling the number of points is drawn

29
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according to pΦ
N (·). Denote the realization by N . Afterwards, a RV according to

pΦ|N (·|N) is drawn. This denotes the realization of the simple finite point process.

No extra check on the distinction of the points is needed, since the condition on sim-

plicity of a simple finite point process has to hold only P–a.s (see Section 2.1). In

contrast, when constructing a RFS, after drawing the realization an additional check

on the distinction of the points in the realization is needed, since RFS are not allowed

to contain repeated element, that is, the definition of simple in Section 2.1 holds with

logical certainty. Obviously, this check is only relevant in theory, not in practice.

If V0 is a discrete state space as mentioned in Section 2.12 it can be shown that the

point process can no longer be simple [SKM95], that is, the event space contains mul-

tisets in the sense of [Knu98]. Thus, it cannot be modeled mathematically correctly

via RFS–theory. In [Str14c] discrete intensity–filters are derived for the purpose of

multitarget tracking.

Thus, we conclude that the classical concept of general finite point processes is a

versatile tool for the purpose of multitarget tracking.

2.14 Conclusion

In this chapter well known fundamentals of point processes and PGFLs are presented

that are needed to follow the discussions of the following chapters. First, the no-

tion of a point process and the corresponding PGFL are defined. Afterwards, the

functional derivative of a PGFL is defined and the likelihood function and various

definitions of moments of PGFLs are derived using the functional derivative. As an

illustrative example, which is often applied in practice, PPPs are studied. It is shown

that multivariate PGFLs can be used to formulate the PGFLs of point processes for

multitarget tracking applications and the derivation of summary statistics, needed

to derive multitarget tracking filters for practical applications is shown. A special

class of point processes defined on discrete spaces, which are of particular interest for

practice, is discussed and finally point processes are compared to the closely related

definition of an RFS.

Point processes are a versatile tool for modeling target and measurement processes.

Their application to target tracking can be divided into two steps (see Figures 3.1

and 3.2). The first is called the Discovery Step and models the respective tracking

filter by finding and exhibiting the corresponding PGFL. In Chapter 3 and [SDK15]

it will be seen that many classic tracking filters can be modeled using point processes

and that a formulation of tracking filters within a common framework helps not only

to understand the connections and differences of existing filters, but also enables the

search to find new tracking filters for demanding problems in target tracking. The

second step, called the Analytical Step, derives the tracking filter of a PGFL analyti-

cally and closes the Bayesian recursion by filter–specific approximations. In Chapter

4 and [DSK15] summary statistics of a PGFL, which are needed for the formulation
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of a tracking filter, are derived and justified.
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CHAPTER III

The Family of Pointillist Filters

The complete content of this chapter has been published in [SDK15]. In the fol-

lowing a large number of well–known recursive, discrete–time, multitarget tracking

filters is analyzed and characterized using point process theory. This classical the-

ory can be applied if the sensor output is modeled by points. There, naturally the

assignment problem arises, that is, which measurement belong to which target, which

measurements are false measurements (clutter)? In [Rei79] all possible measurement

to target assignments are represented by a complete set of assignment hypotheses for

the standard assumption that a target generates at most one measurement per sensor

scan. As discussed in the previous chapter an alternative is to model tracking filters

by a joint target–measurement point process and characterize them via PGFLs in the

Discovery Step. Then, the PGFL can be used to extract summary statistics of the

tracking filter in the Analytical Step. Classic methods from analytic combinatorics

can be applied [FS09] to derive the update equations of the respective tracking filter.

It is shown that tracking filters which employ a joint target–measurement point pro-

cess can be unified in a common framework, which is called the family of pointillist

filters. PGFLs completely characterize finite point processes [Moy62] and different

tracking filters can be identified by analyzing their PGFL. The corresponding PGFL

can often be derived directly from the assumptions of the given tracking problem. In

this chapter the Discovery Step for designing pointillist filters is proposed. It will be

shown that a large number of well–known (and now classic) tracking filters are mem-

bers of the family of pointillist filters. Additionally the PGFL description of tracking

filters helps to investigate differences and similarities in their definition. Furthermore,

the ease of formulating new or adapted filters using the proposed framework is demon-

strated.

Three classes of pointillist filters are proposed, distinguishing filters by their appli-

cation of target superposition. One class does not use target superposition, which

implies that individual target states are maintained by the filter and each target
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3 The Family of Pointillist Filters

has its own state space (and thus a specific label). This class contains many well–

known multitarget tracking filters, including Bayes–Markov [Jaz70], multi–hypothesis

tracking (MHT) [Rei79], probabilistic data association (PDA) [BSF88], joint PDA

(JPDA) [BSL95], probabilistic multi–hypothesis tracking (PMHT) [SL93], integrated

PDA (IPDA) [MES94], and the joint IPDA (JIPDA) [ME04] filters.

The second class does use target superposition, that is only one target state space

is present, which is shared by all targets. In particular, targets do not possess in-

dividual labels, which implies that enhanced target state extraction methods need

to be applied. Note that target superposition might not be possible if the target

state spaces are different. Pointillist filters that use superposition include the PHD

intensity [Mah03], cardinalized PHD (CPHD) intensity [Mah07a], generalized PHD

intensity [CM12], and the multi–Bernoulli intensity [Mah07b] [VVC09] [VVHM13] fil-

ters. Furthermore, originally non–superposing filters like the JPDA, the JIPDA, and

the PMHT filters can be made members of this class by superposing the targets in a

single target state space by a standard method. A close relation between the multi–

Bernoulli filter and the JIPDA filter with superposition is recognized by comparing

the respective joint target–measurement process PGFLs of the filters. This fact has

already studied (independently) in [Wil14].

A third class of pointillist filters is a hybrid class in between the first two classes of

filters. There, specified groups of targets are superposed in the same state space.

Modifications of the PHD Intensity and generalized PHD Intensity filters represent

members of this class of pointillist filters.

The unification of well–known tracking filters in a common framework illuminates

similarities and differences in between them. Furthermore, it enables a data fusion

engineer to design customized application–specific tracking filters using different com-

ponents of an available tool–box of target and measurement models to obtain possi-

bly new and unique filters, that are perfectly suited to solve the given problem. The

demonstration on the practical application of the presented mathematical framework

to design tracking filters is an important part of this chapter.

It is the completely undisputed and lasting contribution of Mahler to have first de-

rived – among other contributions – a popular multiple target tracker by using PGFLs

within the theory of RFSs. For several years, however, there has been an ongoing dis-

cussion in the tracking community of how to formulate the underlying mathematical

structures and to link them to the classical mathematical theory of locally finite point

processes that has been developed over decades.

It is the express intent of this chapter to bring different schools of the tracking commu-

nity together by demonstrating that PGFLs are very precise and succinct models of

the combinatorial probability structures involved in multitarget tracking, whether or

not these models arise from a classical or an RFS approach. The family of pointillist

filters and the connections to analytic combinatorics were first proposed and discussed
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in [Str14b]. The first example of a tracking filter explicitly derived from a PGFL was

the PHD intensity filter [Mah03]. The first application of PGFLs and the analytic

combinatoric method to filters that do not employ target superposition was given for

the PDA filter [Str14a].

The chapter is organized as follows. Section 3.1 discusses superposition and marginal-

ization of target processes in terms of PGFLs. General notation and models are pre-

sented in Section 3.2. Section 3.2.2 presents models for target detection, and Section

3.2.3 discusses the clutter modeling. Section 3.3 (Section 3.4) presents the class of

pointillist filters that do not (do) employ target superposition. Hybrid pointillist

filters are discussed in Section 3.5. Closing the Bayesian recursion and target state

estimation are briefly discussed in Sections 3.6 and 3.7, respectively. Section 3.8 shows

the applicability of the proposed characterization approach for practical working en-

gineers. In particular a concrete non–standard example involving unresolved targets

is presented to show how to model a tracking filter using PGFLs. Section 3.9 gives

conclusions and provides a table that overviews many of the filters discussed.

This chapter presents an overview of pointillist filters in terms of superposition of the

target space. All presented filters have in common that they use a single measurement

space, that is all measurements are superposed in one state space. Multi–scan and

multi–sensor versions of pointillist filters can be realized by introducing additional

measurement spaces, that is, especially additional test–functions have to be intro-

duced. The approach is analogous to modeling pointillist filters with non–superposed

targets (see Section 3.3). Furthermore, hybrid versions with partially superposed

measurements can also be realized analogously to Section 3.5. Multi–scan and multi–

sensor pointillist filters have already been developed, but are outside the scope of this

thesis.

Own publications on this subject: The work presented in this chapter is published

in [SDK15]. The generalized intensity filter presented in Section 3.4.4 is first derived

in [Deg14] c© 2014 IEEE.

3.1 Superposition and Marginalization of Finite Point Processes

In the following, target superposition and marginalization are explained in terms of

the PGFL, since these concepts are used to separate pointillist filters into different

classes. First, the special case of n independent target processes is used to intuitively

explain the concept of target superposition and its representation in terms of a given

PGFL.

Suppose that the PGFLs of n ≥ 1 target processes are specified on the target state

spaces Xi, i = 1, . . . , n. Note that these spaces do not have to be identical, since

each target has its own test–function. Denote the PGFL of the ith process by Ψi(hi),
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3 The Family of Pointillist Filters

where hi is a complex-valued test function defined on Xi, that is, hi : Xi → C. Then,

the joint PGFL of the n processes is defined by

Ψ(h1, . . . , hn) ≡
n∏
i=1

Ψi(hi). (3.1)

The product form of the joint PGFL Ψ(h1, . . . , hn) holds if and only if the point

processes corresponding to the test functions h1, ..., hn are mutually independent (for

a more general case that allows allows target correlation, the PGFL must be specified

appropriately). In any event, realizations of the joint process are Cartesian products

of finite point sets in the spaces Xi.

The marginalization with respect to one point process (which is in the studied example

from above used to model a single target) is done by setting the corresponding test–

functions equal to the identity function. Thus, the PGFL of the ith marginal process

is given by

Ψi(hi) = Ψ(. . . , 1, hi, 1, . . . ). (3.2)

Realizations of the ith marginal process are finite point sets in the space Xi. For

mutually independent processes, the PGFLs of the marginal processes are identical

to the factors in the product (3.1).

The n processes can be superposed if the spaces Xi are identical, which is denoted

by X and referred to as the ground space. The fact that there is only one target

state space implies that there is only one test–function. The PGFL of the superposed

process is given by the diagonal of the joint PGFL, that is,

ΨX(h) ≡ Ψ(h, . . . , h), (3.3)

where the test function of the superposed process h(·) is defined on X. Realizations

of the superposed process are finite point sets in X.

The filters of Section 3.3 do not use superposition, and therefore have as many (possi-

bly different) target state spaces and test functions as there are targets. The pointillist

filters of Section 3.4 do use superposition, and thus all targets share the same state

space and there is only one test function. Finally, the hybrid pointillist filters dis-

cussed in 3.5 superpose some targets and not others. There, only the superposed

targets share the same state space.

3.2 Notation and Models

In this section a consistent notation for the target and measurement models used for

the rest of this chapter is presented, while specific probability distributions are not

assumed.
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The initial reference time is denoted by t0. The measurement sample times are de-

noted by tk, k ∈ N. It is assumed that tk−1 < tk for all k. The recursive time index

is suppressed throughout for ease of presentation.

Targets are assumed to be represented by states in the space denoted by X, where

X ⊂ Rdim(X). Measurements are points in a measurement space Y ⊂ Rdim(Y ).

The general models used for pointillist filters that do not superpose targets are dis-

cussed in this section. Point target and extended target detection models are discussed

in Section 3.2.2. Clutter modelling is described in Section 3.2.3.

3.2.1 Target Motion and Measurement Models

For each target a prior PDF is specified at the recursion start time t0 ≡ tk−1. Six

PDFs are needed:

• µ0(x0), the (prior) target PDF at time tk−1,

• p0(x|x0), the Markovian target motion (transition) model from x0 ∈ X at time

tk−1 to x ∈ X at tk,

• µ(x), the predicted target PDF at time tk,

• p(y|x), the likelihood function of a measurement y ∈ Y at time tk conditioned

on target state x ∈ X at tk,

• p(y), the PDF of a measurement at time tk conditioned on the sequence of all

measurements up to and including time tk−1,

• p(x|y), the Bayes posterior PDF at time tk conditioned on measurements up to

time and including time tk.

Three of these PDFs are determined by the others:

µ(x) =

∫
X

µ0(x0)p0(x|x0) dx0 (3.4)

p(y) =

∫
X

µ(x)p(y|x) dx (3.5)

p(x|y) =
µ(x)p(y|x)

p(y)
. (3.6)

The last expression is Bayes Theorem.

3.2.2 Target Detection Modeling

Different target detection models are proposed in this section. First, the standard

assumption that a target generates at most one measurement is formulated and af-

terwards the more general extended target model, which enables a target to generate
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multiple measurements that are distributed according to a joint distribution in the

measurement space is proposed. Finally, the general target–oriented measurement

model is presented in terms of a PGFL.

3.2.2.1 Targets With At Most One Point Measurement

Missed target detections are modeled by assuming that a target that is known to

be present at state x ∈ X at time tk is detected with probability PDk (x), where

0 ≤ PDk (x) ≤ 1. The probability of missing the target detection is then 1 − PDk (x).

Suppressing the recursion time index, for all x ∈ X let

a(x) ≡ 1− PDk (x) and b(x) ≡ PDk (x). (3.7)

The corresponding PGF is defined by

GBMD
M|x (z) ≡ a(x) + b(x)z, (3.8)

where z ∈ C. Target detection probabilities may or may be not be the same for all

targets, depending on the application.

3.2.2.2 Extended Target Model

An extended target is assumed to have a well defined state x ∈ X, e.g., an appropri-

ately defined centroid. It is assumed that extended targets generate a random number

M ≥ 0 of independent and identically distributed (point) measurements in the space

Y . The distribution of a target–originated measurement is taken to be the likelihood

function p(y|x). The number of measurements can also depend on the target state.

The conditional PGF of the RV M is defined by

GM|x(z) ≡
∞∑
m=0

Pr {M = m
∣∣x} zm, (3.9)

where Pr {M = m|x} denotes the probability that m measurements are generated by

the extended target with state x ∈ X. The target is said to be detected if M ≥ 1.

For M ≥ 1, let

dm(x) ≡ Pr{M = m
∣∣ target at state x is detected}, (3.10)

so that
∑∞
m=1 dm(x) = 1. Using the probabilities (3.7) gives

GM|x(z) =a(x) + b(x)

∞∑
m=1

dm(x)zm (3.11)

≡a(x) + b(x)GD|x(z), (3.12)
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where GD|x(z) is the PGF of the number of measurements generated by a detected

target at x. It reduces to the “at most one measurement per target” model for M ≡ 1,

that is, to GBMD
M|x (z) in (3.8) when d1(x) = 1 and GD|x(z) = z.

3.2.2.3 Generalized Target–Oriented Measurement Model

A more general target–oriented measurement model is used to formulated the gener-

alized PHD intensity filters from Sections 3.4.4 and 3.5.2. The generalized PHD filter

is originally derived in [CM12], the generalized intensity filter is presented first in

(iFilter) [Deg14]. The general target–oriented measurement model used there cannot

be formulated using a single PGF due to the fact that in this case measurements

that correspond to one target can be correlated (measurements of different targets

are assumed to be uncorrelated). Instead the target detection is incorporated into the

PGFL of the target–oriented measurement process. The respective PGFL is defined

by

Ψgen
BMD(h, g) ≡

∫
X

h(x)µ(x)

(
p0(∅|x)

+
∑
n≥1

1

n!

∫
Y n

n∏
i=1

g(yi)pn(y1, ..., yn|x) dy1...dyn

)
dx, (3.13)

where pn(y1, ..., yn|x) denotes the generalized symmetric likelihood function, which

is defined on Y n. As mentioned in [CM12] the probability of detection is defined

more generally than the standard detection model from Section 3.2.2.1. Therefore,

p0(∅|x) denotes the probability of a missed detection and pn(y1, ..., yn|x) includes the

probability of detecting (y1, ..., yn)T ∈ Y n, given a specific target state x ∈ X.

3.2.3 Clutter Modeling

The clutter process (also called the false alarm process) in the measurement space

Y is assumed to be either a non–homogeneous time–dependent Poisson point process

(PPP), a generalization called a cluster process or an arbitrary general point process.

For all cluster processes, including PPPs, given the number of points, the points are

independently and identically distributed (i.i.d). In contrast, clutter models given by

general point processes can be used to model correlated clutter measurements. The

PGF of the probability distribution of the number of points plays a key role. PPPs

are flexible, well understood, and widely used in diverse applications [Str10].

PPP clutter is considered first. Denote the intensity function of the clutter process

at time tk by λk(y). The PPP is homogeneous if λk(y) ≡ constant on Y ; otherwise,
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it is non-homogeneous. Time dependence is suppressed in the notation, so that λk(y)

is written λ(y). The mean number of clutter points in Y is

Λ ≡
∫
Y

λ(y) dy. (3.14)

To assure that Λ is finite (and simplify the discussion), it is assumed that Y is

bounded. Define the clutter PDF pΛ(y) to be the normalized intensity function,

pΛ(y) ≡ λ(y)/Λ. (3.15)

In this notation, the PGFL of the PPP clutter process is [Kar91]

ΨPPP
C (g) ≡ exp

(
− Λ + Λ

∫
Y

g(y)pΛ(y) dy

)
, (3.16)

where the test–function g : Y → C is bounded by one, non–negative and Lebesgue–

integrable.

The PGFL of clutter when modeled as a cluster process is defined by

ΨCluster
C (g) ≡ GC

(∫
Y

g(y)q(y)dy

)
, (3.17)

where q(y) is the PDF of a clutter point y ∈ Y and GC(z) is the PGF of the number

of clutter points, namely,

GC(z) ≡
∞∑
c=0

Pr{C = c}zc, (3.18)

where Pr{C = c} denotes the probability that c clutter measurements are generated.

Note that (3.16) is a special case of (3.17) for GC(z) = exp(−Λ + Λz).

The PGFL of an arbitrary general clutter process is denoted by Ψgen
C (g) in the fol-

lowing.

3.3 Pointillist Filters without Superposition

The joint PGFLs of several well–known recursive discrete–time tracking filters that do

not superpose targets are exhibited in this section. The general notation of Section

3.2 is used, and the recursive time index is suppressed. Throughout this chapter,

PGFLs and PGFs will be denoted, respectively, by Ψ(·) and G(·).
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3.3.1 Bayes–Markov Filter

3.3.1.1 Classical Problem

The classical Bayes–Markov filter [Jaz70], [SSCB14] is presented in the following. It

assumes exactly one target to be always present. It is always detected, and it generates

exactly one measurement. There is no clutter. Denote the target and measurement

test functions by h : X → C and g : Y → C, respectively. Both are bounded by one,

non–negative and Lebesgue–integrable. The PGFL is

ΨBM(h, g) ≡
∫
X

∫
Y

h(x)g(y)µ(x)p(y|x) dy dx. (3.19)

As a check, note that ΨBM(1, 1) ≡ ΨBM(h, g)|h(·)=1,g(·)=1 = 1, due to the fact that

µ(x) and p(y|x) are PDFs.

3.3.1.2 With Missed Detections

Missed target detections are modeled using (3.7) [Jaz70], [SSCB14]. The joint target–

originated measurement process is

ΨBMD(h, g) ≡
∫
X

h(x)µ(x)GBMD
M|x

(∫
Y

g(y)p(y|x) dy

)
dx

=

∫
X

h(x)µ(x)

(
a(x) + b(x)

∫
Y

g(y)p(y|x) dy

)
dx. (3.20)

As a check, note that ΨBMD(1, 1) = 1. This expression shows up often in the sequel.

It reduces to (3.19) when the target detection probability is one.

3.3.1.3 With Missed Detections and Extended Target

The PGF (3.9) of the number of measurements generated by the extended target

with state x ∈ X is assumed to be known. The PGFL for the extended target

is [Jaz70], [SSCB14], [GGMS05a]

ΨBME(h, g) ≡
∫
X

h(x)µ(x)GM|x

(∫
Y

g(y)p(y|x) dy

)
dx. (3.21)

If the target can generate at most one measurement, then M ∈ {0, 1} and GM|x(z) =

a(x) + b(x) z, z ∈ C. Thus, (3.20) is a special case of (3.21).
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3.3.2 PDA Filter

3.3.2.1 Without Gating

In the PDA problem [BSF88], [BSL95], as in the classical Bayes–Markov problem,

exactly one target is assumed to be present. However, the target may or may not be

detected, and clutter may be also present. Realizations of the clutter process and the

target measurement process are superposed in the sensor measurement space Y . The

target measurement and clutter processes are assumed to be independent. The PGFL

of superposed independent processes is the product of the PGFLs of the constituent

processes [SR01]. The target–originated measurement PGFL is given by (3.20) and

the clutter PGFL is (3.16), so the product

ΨnoGate
PDA (h, g) =ΨPPP

C (g) ΨBMD(h, g)

= exp

(
− Λ + Λ

∫
Y

g(y)pΛ(y) dy

)
×
∫
X

h(x)µ(x)

(
a(x) + b(x)

∫
Y

g(y)p(y|x) dy

)
dx. (3.22)

is the PGFL of the superposed processes.

3.3.2.2 With Gating

The PGFL is modified to accommodate gating. The gate, denoted by Γ, is a specified

subset of Y . The probability that a target–originated measurement falls within the

gate is

PΓ ≡ Pr{y ∈ Γ} =

∫
Γ

p(y) dy. (3.23)

The gate can be chosen arbitrarily at time tk so long as Pr{y ∈ Γ} 6= 0; however, it

is typically chosen so Pr{y ∈ Γ} is near one. Gating the PPP clutter process to Γ

yields a PPP [Str10] whose PGFL is given by

ΨPPPgated
C (g) = exp

(
− |Γ|+ |Γ|

∫
Γ

g(y)pΓ(y) dy

)
, (3.24)

where the expected number of clutter points in the gate is

|Γ| ≡
∫

Γ

λ(y) dy (3.25)

and the clutter PDF is the intensity normalized by gate volume:

pΓ(y) =

{
λ(y)/|Γ|, if y ∈ Γ

0, if y /∈ Γ.
(3.26)
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3.3 Pointillist Filters without Superposition

Censoring target measurements lying outside Γ gives (cf. (3.20))

Ψgated
BMD(h, g) =

∫
X

h(x)µ(x)

(
aΓ(x) + bΓ(x)

∫
Γ

g(y)pΓ(y|x) dy

)
dx,

where the probability that a target at x ∈ X is detected within the gate is

bΓ(x) ≡ b(x)PΓ, (3.27)

so that aΓ(x) ≡ 1− b(x)PΓ is the probability that it is not detected in the gate, and

the conditional PDF of a gated target–originated measurement is

pΓ(y|x) =

{
(PΓ)−1 p(y|x), if y ∈ Γ

0, if y /∈ Γ.
(3.28)

Using these expressions gives

ΨPDA(h, g) ≡ΨPPPgated
C (g) Ψgated

BMD(h, g)

= exp

(
− |Γ|+ |Λ|

∫
Γ

g(y)pΛ(y) dy

)
×
∫
X

h(x)µ(x)

(
1− b(x)PΓ + b(x)

∫
Γ

g(y)p(y|x) dy

)
dx. (3.29)

This expression holds only for y ∈ Γ. The gated PGFL reduces to the PGFL for

ungated measurements when the gate is the entire measurement space, i.e., Γ = Y .

3.3.2.3 Extended Target

Given the PGF (3.9) of the number of measurements generated by the extended

target, the PGFL for the ungated extended target is the product

ΨPDAE(h, g) =ΨPPP
C (g) ΨBME(h, g)

= exp

(
− Λ + Λ

∫
Y

g(y)pΛ(y) dy

)
×
∫
X

h(x)µ(x)GM|x

(∫
Y

g(y)p(y|x) dy

)
dx. (3.30)

Gating the extended target measurements requires counting the number of ways that

m target–originated measurements can fall within the gate. It is not considered

further here.
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3.3.3 JPDA Filter

Exactly n ≥ 1 targets are assumed to be present. Clutter is assumed to be present.

Target measurement and clutter processes are assumed to be mutually independent.

Gating can be accommodated in the manner outlined below for the JIPDA filter in

Section 3.3.6.2, so it is not done here.

The targets may or may not be detected. If detected, a target generates at most

one measurement. All measurements generated are superposed in the same measure-

ment space Y . Which measurements are target–originated and which are clutter is

unknown. The PGFL of the ith target measurement process is given by

ΨBMD(i)(hi, g) =

∫
Xi

hi(x)µi(x)GBMD
Mi|x

(∫
Y

g(y)p(y|x) dy

)
dx (3.31)

=

∫
Xi

hi(x)µi(x)

(
ai(x) + bi(x)

∫
Y

g(y)pi(y|x) dy

)
dx,

where the quantities in this expression are the same as in (3.20) but with an index i

added to make them specific to the ith target. The state spaces Xi can be different

or they can be copies of the same space.

Target processes are not superposed in a common state space. Consequently, a dif-

ferent test function hi(x) : Xi → R is necessary for each target. In contrast, the

same measurement test function g is used because all measurements, whether target–

originated or clutter, are superposed in the measurement space Y .

Because clutter and target measurement processes are mutually independent, the joint

PGFL is the product of PGFLs:

ΨJPDA(h1, . . . , hn, g) = ΨPPP
C (g)

n∏
i=1

ΨBMD(i)(hi, g), (3.32)

where ΨPPP
C (g) is given by (3.16).

The PGFL of the marginal process for the jth target, j = 1, . . . , n, is found by setting

hi(x) = 1 for i 6= j. Explicitly,

ΨJPDA(j)(hj , g) = ΨPPP
C (g)ΨBMD(j)(hj , g)

n∏
i=1, i 6=j

ΨBMD(i)(1, g). (3.33)

The marginal PGFLs are used for approximation purposes. They do not characterize

the full JPDA distribution. For the now–standard derivation of the JPDA filter

see [BSF88], [BSL95].

3.3.4 PMHT Filter

The PMHT filter and enhanced versions were published in [SL93], [SL95], [SL94]. It

is assumed that there are exactly n ≥ 1 targets present. Target–originated measure-

ments are modeled as PPPs that are conditioned on target state x ∈ X. The mean
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3.3 Pointillist Filters without Superposition

number of measurements generated by the ith target is denoted by Λi(x), and the

conditional likelihood is pi(y|x). The PGF of the ith target–originated measurement

process conditioned on a target at x ∈ X is (cf. (3.9))

GPPP
Mi|x(z) ≡ exp

(
− Λi(x) + Λi(x)z

)
. (3.34)

Although not formulated in terms of PGFLs, Poisson models for the number of

measurements were first incorporated into the PMHT and histogram PMHT filters

in [Dav15], [VDFL15].

The PGFL of the ith target is

ΨPPP
BMD(i)(hi, g) =

∫
X

hi(x)µi(x)GPPP
Mi|x

(∫
Y

g(y)pi(y|x) dy

)
dx

=

∫
X

hi(x)µi(x) exp

(
− Λi(x) + Λi(x)

∫
Y

g(y)pi(y|x) dy

)
. (3.35)

This expression differs from the JPDA model (3.31) only in the choice of the con-

ditional PGFL of the measurements. The ith target model reduces to the extended

target measurement model (3.21) when the number of measurements is Poisson dis-

tributed with mean Λi(x), that is, when GM|x(z) ≡ exp
(
−Λi(x) + Λi(x)z

)
.

Targets are mutually independent by assumption, so the joint PGFL of the PMHT

filter is the product of the target–specific PGFLs,

ΨPMHT(h1, . . . , hn, g) =

n∏
i=1

ΨPPP
BMD(i)(hi, g). (3.36)

As with JPDA, different targets have different test functions. PMHT, unlike JPDA,

models clutter using a “diffuse” target, that is, as a target with a high measurement

variance.

The PGFL (3.36) is, by inspection, a linear functional (see the discussion following

(2.40)) in the test functions h1, . . . , hn. From the discussion in Section 2.5, it follows

that realizations of the joint target point process have, with probability one, exactly

one target in each state space, and that the Bayes posterior PDF and the intensity

functions are identical.

Denote a realization by xi ∈ Xi, i = 1, . . . , n. It can be shown that the joint posterior

PDF is proportional to the product (over the measurements) of a probabilistic mixture

of measurement likelihoods. The n mixing proportions are

πi(xi) = Λi(xi)

/ n∑
j=1

Λj(xj), for i = 1, . . . , n. (3.37)

This result is reasonable given the well–known relationship between Poisson mixtures

and the multinomial distribution [Kin92], [JKB97], [Gri84]. Details are straightfor-

ward and are omitted. The original PMHT filter assumes that the spatial rates are
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3 The Family of Pointillist Filters

constant, Λi(x) ≡ Λi, and applies the EM method to find point estimates for the n

targets and other parameters.

3.3.5 IPDA Filter

The IPDA presented in [MES94], [MS08], [ME94] [CMME11], [MSS14] shares all the

assumptions of the PDA except for one – it assumes that at most one target exists.

Let χ0, 0 ≤ χ0 ≤ 1, denote the initial probability that the target exists, i.e., that

there is N = 1 target. Let χ denote the updated probability of target existence at

current time (see [MES94] for details). The PGF of the number of targets at the

current time is therefore

GN (z) = 1− χ+ χ z. (3.38)

The PGFL for the target–generated measurement process is

ΨBMχ(h, g) = GN (ΨBMD(h, g)) = 1− χ+ χΨBMD(h, g), (3.39)

where ΨBMD(h, g) is given by (3.20). Superposing an independent clutter process

gives the PGFL for IPDA as

ΨIPDA(h, g) =
(
1− χ+ χΨBMD(h, g)

)
ΨPPP
C (g), (3.40)

where the clutter PGFL ΨPPP
C (g) is given by (3.16).

In [CVW02] the IPDA filter is derived using RFSs. In [MLS08] and [ME02] further

versions of the IPDA filter are presented. These investigations may represent another

class of pointillist filters, but they are outside the scope of this thesis.

3.3.6 JIPDA Filter

3.3.6.1 Without Gating

The JIPDA filter was presented first in [ME04] (see also [CMME11], [MSS14]). The

JIPDA process assumes that at most n ≥ 1 targets exist. Let χi denote the existence

probability for target i, i.e., the probability that target i is present. The target–

originated measurement process for target i is, using the same notation as in (3.31),

ΨIPDA(i)(hi, g) = 1− χi + χi ΨBMD(i)(hi, g). (3.41)

Different test functions hi are needed because the each target has its own state space.

Assuming the target–originated measurement processes are mutually independent of
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3.3 Pointillist Filters without Superposition

each other and of the clutter process gives the PGFL for JIPDA as

ΨJIPDA(h1, . . . , hn, g) =ΨPPP
C (g)

n∏
i=1

ΨIPDA(i)(hi, g)

= ΨPPP
C (g)

n∏
i=1

(
1− χi + χi ΨBMD(i)(hi, g)

)
. (3.42)

As checks, note that ΨJIPDA(1, . . . , 1) = 1 and that ΨJIPDA(·) reduces to ΨJPDA(·)
for χi = 1.

Analogously to the JPDA, the PGFL of the marginal process for the jth target,

j = 1, ..., n, can be determined by setting hi(x) = 1 for i 6= j. It is given by

ΨJIPDA(j)(hj , g) =ΨPPP
C (g)

(
1− χj + χj ΨBMD(j)(hj , g)

)
×

n∏
i=1,i 6=j

(
1− χi + χi ΨBMD(i)(1, g)

)
. (3.43)

The marginal defined in (3.43) can be used in various ways to approximate the joint

distribution and thereby close the Bayesian recursion.

In [MC03], a closely related version of the JIPDA is presented using RFSs. The

versions differ only in the method used to start new tracks.

3.3.6.2 With Gating

Gating is incorporated in a manner analogous to that of Section 3.3.2.2 for the PDA.

Denote the measurement gate of the ith target by Γi ⊂ Y , i = 1, ..., n. Let Γ ≡ ∪ni=1Γi.

Assuming PPP clutter, the expected number of clutter points, |Γ|, in Γ is given by

(3.25). The corresponding clutter PDF pΓ(y) is given by (3.26). The gated clutter

process is a PPP, and its PGFL is

ΨPPPgated
C (g) = exp

(
− |Γ|+ |Γ|

∫
Γ

g(y)pΓ(y)dy
)
. (3.44)

Let PΓi denote the probability that a target–originated measurement falls within the

gate of the ith target, that is

PΓi ≡ Pr{y ∈ Γi} =

∫
Γi

p(y) dy. (3.45)

Then, the PGFL of the joint target–measurement process for the ith target is given

by

Ψgated
BMD(i)(hi, g) =

∫
X

h(x)µ(x)

(
aΓi(x) + bΓi(x)

∫
Γi

g(y)pΓi(y|x) dy

)
, (3.46)
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where the probability that the ith target at x ∈ Xi is detected within the gate is

bΓi(x) = b(x)PΓi , (3.47)

so that aΓi(x) = 1− b(x)PΓi is the probability that it is not detected in the gate, and

the conditional PDF of a gated target–originated measurement is

pΓi(y|x) =

(PΓi)
−1 p(y|x), if y ∈ Γi

0, if y /∈ Γi,
(3.48)

which means that each target has its own gate and its likelihood function is normal-

ized, so that it is a PDF within this gate. Therefore, the PGFL of the Bayes posterior

process of the gated JIPDA filter is given by

Ψgated
JIPDA(h1, . . . , hn, g) = ΨPPPgated

C (g)

n∏
i=1

(
1− χi + χi Ψgated

BMD(i)(hi, g)

)
. (3.49)

The PGFL of the marginal process for the JIPDA including gating is determined

analogously to Section 3.3.6.1.

3.3.7 MHT Filter

In the standard MHT algorithm, presented in [Rei79], the filter generates a set of data

association hypotheses to account for all possible origins of every measurement. In a

specific iteration the hypothesis are generated, that a certain target is a false alarm,

belongs to an existing target, or occurs due to a new target. Based on the target

states various techniques for reducing the numerical complexity like gating, merging

and pruning were proposed by the community. However, there is only one un–pruned

and complete set of MHT hypothesis.

Assume that the JIPDA filter derived from (3.42) is extended by a process that allows

data induced targets. Then, assuming m measurements were received it is given by

ΨMHT(h1, . . . , hn+m, g) =ΨPPP
C (g)

n∏
i=1

(
1− χi + χi ΨBMD(i)(hi, g)

)

×
m∏
j=1

(
1− γj + γj ΨData

BMD(j)(hn+j , g)

)
, (3.50)

where 0 ≤ γj ≤ 1 denotes the probability that measurement j was generated by a

target that is not modeled yet, and

ΨData
BMD(j)(hj , g) ≡

∫
X

hj(x)ξj(x)GBMD
M|x

(∫
Y

g(y)pj(y|x) dy

)
dx (3.51)
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is a data–driven PGFL that assumes that this new target has (specified) a priori PDF

ξj(x) and generated a measurement with conditional PDF pj(y|x). The test functions

hn+1, ..., hn+m correspond to the m data-induced PGFLs.

The PGFL given by the data–driven JIPDA in (3.50) captures the complete un–

pruned set of all hypothesis of a single scan MHT algorithm. The correct Bayesian

way to derive the target state estimates is to apply marginalization over all except

one target state, exactly as it is done in the JIPDA filter.

To keep the numerical complexity feasible, many approximation methods (gating,

merging) and decision techniques (pruning) can be applied to close the Bayesian re-

cursion. These considerations are outside the scope of this thesis.

The close relationship between the IPDA and the MHT filters was first noted in

[ME05]. However, the connection was not discussed there in terms of PGFLs. The

connection between MHT, JIPDA, and multi–Bernoulli filters has been studied using

the framework of RFSs in [Wil14].

The study of a multiple scan MHT filter, i.e., an MHT filter that keeps measurement

origin hypotheses for several successive scans, has already been studied. It is outside

the scope of this thesis and will be presented in a further publication.

3.4 Pointillist Filters with Superposition
In this section the PGFLs of filters with target superposition are presented, that is

all targets share the same target state space.

The general notation of Section 3.2 is used throughout, and the recursive time index

is suppressed.

3.4.1 Superposition in JPDA and Other Multitarget Filters

The multitarget processes in Section 3.3 are such that each target has its own state

space. When the state spaces are copies of the same space, then it is possible to

superpose the target processes into one process on the common space. It is seen in

this section that it is straightforward to superpose targets once the joint multitarget

PGFL is known. In the following it is shown how three originally non–superposed

filters can be superposed.

One problem with superposition is the loss of target–specific labels. As noted in

Section 3.7, estimating target–specific PDFs from the superposed process requires

separate procedures that are replete with their own special difficulties.

Another problem, noted below in Section 3.6, is that it mis–models multiple targets.

The PDF µ(·) plays a more significant role for superposed targets than it does for

one target. This is because the target states are (typically) i.i.d. samples from an

RV whose PDF is µ(·). The mis–modeling would disappear only if the samples could

somehow be drawn without replacement from different targets.
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3.4.1.1 JPDA

The joint probability distribution in JPDA is marginalized over all but one of the

n targets to obtain a target–specific PDF. When the target state spaces are all the

same, i.e., Xi ≡ X for all i, target point processes can be superposed instead of

marginalized. The PGFL of the JPDA with superposition (JPDAS) filter is found by

substituting

hi(·) ≡ h(·) (3.52)

into the PGFL (3.32) for the JPDA. The resulting PGFL is

ΨJPDAS(h, g) = ΨJPDA(h, . . . , h, g) = ΨPPP
C (g)

n∏
i=1

ΨBMD(i)(h, g). (3.53)

In JPDAS, as in JPDA, targets can have different motion models, measurement mod-

els, and detection probabilities. Note too that the superposition procedure can be

limited so that it includes some targets and not others.

A label–free version of the JPDA filter, called set JPDA (SJPDA) filter has already

been proposed in [SSGW11a].

3.4.1.2 JIPDA, PMHT, and Other Filters

Targets can be superposed in other joint multitarget point processes with known

PGFLs when identical target state spaces are assumed. The PGFL of the superposed

process is found by substituting (3.52). For example, from (3.42) and (3.36),

ΨJIPDAS(h, g) =ΨJIPDA(h, . . . , h, g) (3.54)

ΨPMHTS(h, g) =ΨPMHT(h, . . . , h, g) (3.55)

are, respectively, the PGFLs for JIPDA and PMHT with superposition.

3.4.2 PHD Intensity Filter

The probability hypothesis density (PHD) filter is proposed in [Mah07b] and the

papers [Mah03] and [Mah07a]. The intensity filter (iFilter) is proposed in [Str10].

The difference between these filters lies in their state space. While the PHD filter

uses the state space X (typically X = Rd, d > 0), the iFilter uses an augmented

state space X+ = X ∪ φ, where X is equal to the state space of the PHD filter and

φ is the hypothesis space, used to model clutter by scatterers. By a careful choice of

certain parameters the Bayes posterior of the iFilter on X+ is the same as the Bayes

posterior of the PHD filter. For details see [SSCB14]. A detailed comparison of both

filters using the PGFL derivation can be found in [Str13a].

Targets are assumed to have the same state space X and are superposed. It is assumed
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that the targets constitute a locally finite point process at the recursion start time.

This is the prior process at the initial (start up) time, but thereafter it is the Bayes

posterior point process. The PGFL of the process, denoted by Ψ0(h, g), is typically

not a PPP, so it is approximated by a PPP to close the Bayes recursion. To this end,

the joint conditional PDF is approximated by the product of the marginal PDFs.

Details can be found in [Mah07b] and [Str10].

It is important that the predicted target process be a PPP. This is guaranteed to be

the case assuming independent probabilistic thinning (target death), and assuming

independent Markovian targets having the same motion model p0(x|x0) of Section

3.2.1. It also holds if a new–target (birth) process is superposed, provided the birth

process is a PPP independent of the target process.

The details of the predicted target PPP are of little concern here – it suffices to assume

that it is a (recursively) specified PPP with intensity N µ(x), where the predicted

number of targets is N ≡ E[N ], N being the RV modeling the number of targets,

and µ(x) is the predicted target PDF. The mean N and PDF µ(x) are determined by

details of the prediction process. (In particular, note that µ(x) is not given by (3.4)

except in special cases.)

Since N is Poisson distributed with mean N , its PGF is (when there is at most one

target, see (3.38))

GPPP
N (z) = e−N+Nz. (3.56)

The predicted target states are i.i.d. by PPP assumption and are drawn from the

PDF µ(x). The target measurement functions and detection probabilities are assumed

to be the same for all targets. Hence, the PGFL of the predicted target–originated

measurement process is

Ψtargets
PHD (h, g) =GPPP

N

(
ΨBMD(h, g)

)
, (3.57)

where ΨBMD(h, g) is given by (3.20). The target–originated measurement process is

superposed with the independent clutter process, so the PGFL of the PHD filter is

the product

ΨPHD(h, g) = ΨPPP
C (g)GPPP

N

(
ΨBMD(h, g)

)
. (3.58)

Substituting (3.16), (3.56), and (3.20) gives the explicit form

ΨPHD(h, g) = exp

(
−Λ−N + Λ

∫
Y

g(y)pΛ(y) dy

+N

∫
X

h(x)µ(x)

(
a(x) + b(x)

∫
Y

g(y)p(y|x) dy

)
dx

)
. (3.59)

It has been noted (see, e.g. [SSCB14] and [Str14c]) that the mathematical form of the

PGFL of the Bayes posterior process – before approximation to close the Bayesian
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recursion – is the product of a PPP and m Bernoulli target processes, where m

denotes the number of measurements. In other words, the Bayes posterior process is

the superposition of m Bernoulli processes and a PPP. This form is closely related to

that of the multi–Bernoulli filters discussed below in Section 3.4.5.

In [CC09] the connection between a Gaussian Mixture implementation of the PHD

intensity filter and the JIPDA filter is investigated. It is shown that under certain

conditions (each target has a linear Gaussian dynamical model, target survival and

detection probabilities are state independent, no explicit target birth and spawning

event) the composite density (of the JIPDA) conforms to the definition of probability

hypothesis density (see [CC09, Section 4]).

3.4.3 CPHD Intensity Filter
The CPHD intensity filter is proposed in [Mah07a], [Mah07b]. It propagates besides

the intensity additionally the cardinality distribution and its PGFL. The assumptions

made are essentially the same as in the PHD intensity filter. The differences are that

the CPHD intensity filter propagates the cardinality distribution (2.67), that the

clutter process is given by an i.i.d. cluster process as defined in (3.17) and that the

PGF of the number of present targets is also given by an i.i.d. cluster process, that is

GCluster
N (z) =

∞∑
n=0

pCluster
N (n)zn, (3.60)

where pCluster
N (·) is the distribution of the number of targets in X. The joint PGFL

of the CPHD intensity filter is

ΨCPHD(g, h) = ΨCluster
C (g)GCluster

N (ΨBMD(g, h)). (3.61)

The PGFL of the CPHD intensity filter reduces to the PGFL of the PHD intensity

filter if the target and measurement processes are both given by PPPs.

In [MKV12] a CPHD filter is proposed that uses a fixed number of targets. Note that

if this CPHD filter employs a clutter process that is given by a PPP it is equivalent

to the JPDAS filter proposed in (3.53).

The PGF FΞ|Υ(z) and the intensity fΞ|Υ(s) of the Bayes posterior process Ξ|Υ are

defined as in (2.66) and (2.65) with respect to the joint PGFL ΨCPHD(g, h). To close

the Bayesian recursion, the posterior process is approximated by a point process Ξ̂|Υ.

The PGF of the number of targets in the approximating process is taken equal to

that of the original process:

F Ξ̂|Υ(z) ≡ FΞ|Υ(z).

The probability distribution of Ξ̂|Υ conditioned on n targets is defined by the product

approximation

pΞ̂|Υ
n (s1, ..., sn) =

n∏
i=1

pΞ̂|Υ(si), (3.62)
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where the PDF for a single target is defined by

pΞ̂|Υ(s) = fΞ|Υ(s)

/
dFΞ|Υ

dx
(1). (3.63)

In words, the approximate process Ξ̂|Υ is a cluster process whose PGF of target

number is chosen to be equal to that of the posterior process, and whose points are

i.i.d. distributed with PDF proportional to the normalized intensity of the posterior

process.

3.4.4 Generalized PHD Intensity Filters

The generalized PHD intensity filter was first proposed in [CM12] and shares most of

the assumptions of the standard PHD intensity filter presented in Section 3.4.2. The

predicted target process is a PPP and the updated target process is approximated by

a PPP due to the same arguments as in Section 3.4.2. The differences are the target–

originated measurement process and the clutter model. In Section 3.4.2 it is assumed

that one target generates at most one measurement per sensor scan. Furthermore,

it is assumed that the clutter model is given by (3.16), that is clutter is Poisson–

distributed. The generalized PHD intensity filter relaxes these assumptions. First,

the clutter model can be chosen arbitrary. Therefore, let Ψgen
C (g) be the PGFL of a

specified, but arbitrary, clutter process. Furthermore, let Ψgen
BMD(h, g) be the PGFL

of the target–oriented measurement process defined in Section 3.2.2.3. The PGFL of

the generalized PHD intensity filter is therefore given by

ΨGenPHD(h, g) = Ψgen
C (g)GN

(
Ψgen

BMD(h, g)
)
, (3.64)

which was proposed in [CM12].

In [Deg14] the generalization of the target–oriented measurement process is used to

formulate the generalized iFilter. Analogously to the standard iFilter its generalized

version uses an augmented state space X+ = X ∪Xφ, where X is equal to the state

space of the generalized PHD filter and Xφ is the hypothesis space, used to model

clutter by scatterers. A close numerical inspection on these two closely related filters

is presented in Section 6.3.

3.4.5 Multi–Bernoulli Intensity Filters

A Bernoulli RV (trial) has two outcomes, or events, that are usually labeled “success”

and “failure”. Its PGF is GBer(z) ≡ 1 − q + qz, z ∈ C, where q ∈ [0, 1] is the

probability of success. A multi–Bernoulli RV is defined to be the number of successes

in n mutually independent Bernoulli trials. If qi ∈ [0, 1] is the probability of success
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3 The Family of Pointillist Filters

in the ith trial, then the PGF of the number of successes is the product

GmultiBer(z) ≡
n∏
i=1

(1− qi + qiz) . (3.65)

Bernoulli models were used in Section 3.2 for target detection modeling. They are

used here to model target existence.

The multi–Bernoulli intensity filter proposed in [Mah07b] makes the same assumptions

as the PHD intensity filter, except that the prior target process is assumed to be given

by a multi–Bernoulli process. Enhanced versions, implementations and numerical

examples of the multi–Bernoulli intensity filter can be found in [VVC09], [VVHM13].

The predicted target process is again a multi–Bernoulli process. This is guaranteed

by assuming the birth process to be a multi–Bernoulli process, which is independent

of the target process. Target death is modeled by independent probabilistic thinning.

Targets are assumed to be independent Markovian processes having the same motion

model p0(x|x0) described in Section 3.2.1.

The Bayes posterior process is not a multi–Bernoulli process. Thus, it is approximated

by a multi–Bernoulli process consisting of a superposition of two independent multi–

Bernoulli processes, one modeling data–induced targets, the other modeling existing

targets. This assures the Bayesian recursion to be closed.

The predicted target process is a multi–Bernoulli process with expected number of

targets N ≡ E(N). Let n ≡ bNc be the largest integer less than or equal to N . The

PGFL of the multi–Bernoulli target process is given by

ΨNMB(h, g) =

n∏
i=1

(
1− χi + χi ΨBMD(i)(h, g)

)
. (3.66)

Here, χi ∈ [0, 1] denotes probability that the ith predicted (hypothesized) target is

indeed a target, i.e., that it exists. Analogously to (3.50), the PGFL for data–induced

targets is given by

ΨMMB(h, g) =

m∏
j=1

(
1− γj + γj ΨData

BMD(j)(h, g)
)
. (3.67)

In general a cluster process as defined in (3.17) is proposed here to model clutter.

Then, due to the superposition of the target–originated measurement process with

the independent clutter process, the PGFL of the multi–Bernoulli filter is

ΨCluster
MB (h, g) = ΨCluster

C (g) ΨNMB(h, g) ΨMMB(h, g). (3.68)

Substituting a PPP clutter model for the more general cluster process model in (3.68)

gives

ΨMB(h, g) = ΨPPP
C (g) ΨNMB(h, g) ΨMMB(h, g). (3.69)
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This is the PGFL of the multi–Bernoulli intensity filter given in [Mah07b].

Comparing the joint PGFL of the data–driven JIDPA filter from (3.50) with the PGFL

of the multi–Bernoulli filter in (3.69), it is evident that the PGFLs of both filters

differ only in the application of superposition. The data–driven JIPDA has as many

target state spaces as there are targets and measurements. In contrast, the targets

within the multi–Bernoulli filter all share the same target state space. Therefore, the

multi–Bernoulli filter can be described as a data–driven JIDPA filter which employs

superposition. The multi–Bernoulli filter is also described as a superposed single–scan

MHT algorithm in Section 3.3.7.

The connections between the multi–Bernoulli, the JIPDA, and the MHT filters are

studied in terms of RFSs in [Wil14]. The multi–Bernoulli filter derived in [Wil15] is

closely related to the set JPDA (SJPDA) [SSGW11b] filter.

Various extensions of the multi–Bernoulli filter are proposed [RVVD14] including

labeled versions to keep account of the target identity. The labeled multi–Bernoulli

process is described in [RVVD14] as an RFS on the Cartesian product of the state and

label spaces, but this is inaccurate, for then the labels would be random, which they

are not. As can be seen from Table 3.1 and the discussions above, the labeled version

of the multi–Bernoulli filter corresponds to the JIPDA filter since the incorporation

of target labels is equivalent to not superposing the targets onto one state space.

Closely related to the multi–Bernoulli filter is the processing of the joint multitarget

probability density (JMPD) proposed in [KMKH05]. There, a particle filter is used

to implement the JPDA.

3.5 Hybrid Pointillist Filters
The filters presented in this section assume at most n ≥ 1 target groups to be present.

Therefore, each target group has its own state space and, within these groups, targets

are superposed.

It is also sometimes possible to superpose some targets and not others. Selective

superposition has its uses. For example, targets that are well–separated could be

superposed in one target state space, thereby possibly reducing computational com-

plexity without incurring significant information loss, while the remaining targets

are not superposed. Other examples involve highly mixed scenarios in which some

groups of targets may have the same “within–group” dynamical model (e.g., constant

velocity), but with different groups having different dynamical models. Selective su-

perposition procedures are an additional decision step, which is outside the scope of

this thesis.

3.5.1 Joint PHD Intensity Filter

The joint PHD intensity filter [Str14d] assumes that exactly n ≥ 1 target groups

are present. The groups are mutually independent. Each group has its own state
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space Xi, i = 1, ..., n, and the targets in a group generate at most one measurement.

Analogously to the PHD intensity filter (see Section 3.4.2) the target groups constitute

a locally finite point process at the recursion start time. The PGFL of the updated

process is not necessarily a PPP and thus it is approximated by a PPP for closing

the Bayesian recursion. The predicted target process is a PPP, since independent

probabilistic thinning (target death) is assumed per target group and independent

Markovian targets of one target group are assumed to have the same motion model.

The clutter process is assumed to be a PPP. Furthermore, the processes of the target

groups and clutter are assumed to be mutually independent and hence the PGFL of

the joint PHD intensity filter is given by

ΨJointPHD(h1, ..., hn, g) = ΨPPP
C (g)

n∏
i=1

GPPP
Ni

(
ΨBMD(i)(hi, g)

)
, (3.70)

where GPPP
Ni

(z) = e−Ni+Niz is the PGF of the target number of the ith target group

and N i is the expected number of targets of the predicted target process.

3.5.2 Joint Generalized PHD Intensity Filter

Analogously to the joint PHD intensity filter, the joint generalized PHD filter assumes

exactly n ≥ 1 target groups to be present and these groups are mutually independent.

As in the joint PHD intensity filter each group has its own state space Xi, i = 1, ..., n.

Targets in a group are allowed to possess an arbitrary target–oriented measurement

process, that is targets in a group can generate more than one measurement per

sensor scan. To the knowledge of the author this filter has not been published yet.

The target groups constitute a PPP at the recursion start time. Since the Bayes

posterior process is not necessarily a PPP it is approximated by a PPP to close the

Bayesian recursion. Due to the same arguments as in Section 3.5.1 the predicted

target process is a PPP.

As in Section 3.4.4 the clutter model can be chosen arbitrarily. Thus, the joint PGFL

of the joint generalized PHD intensity filter is given by

ΨJointGenPHD(h1, ..., hn, g) = Ψgen
C (g)

n∏
i=1

GPPP
Ni

(
Ψgen

BMD(i)(hi, g)
)
, (3.71)

where Ψgen
C (g) is the PGFL of the arbitrarily specified clutter model used in (3.64) of

Section 3.4.4.

3.6 Closing the Bayesian Recursion

As already discussed in Chapter 2, the PGFL of the Bayes posterior point pro-

cess can be expressed by a ratio of functional derivatives of the joint PGFL (see
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also [Mah07b], [Str13a], [CM12]). By definition this is valid for all pointillist filters.

The analogous derivative ratio for the PGF of the Bayes conditional distribution has

long been known for discrete multivariate distributions, [JKB97, Equ. (34.48), p. 11].

A Bayesian recursion is said to be closed, or exact, if the probability distributions

of the prior and posterior processes have the same mathematical forms. (There is a

class of filters, outside the scope of this thesis, that is closed in this sense [Dau87],

[Dau05].) The pointillist filters studied in this thesis, however, possess prior and pos-

terior distributions with different forms. Therefore, the posterior point process has to

be approximated by a process with the same form as the prior to close the Bayesian

recursion.

Methods for closing the Bayes recursion for pointillist filters that superpose targets

have been discussed above. The resist on using the summary statistics of the Bayes

posterior point process.In Section 3.4.1, the approximation of the Bayes posterior

process by a simpler point process, e.g., a PPP for closing the Bayesian recursion is

discussed and it is pointed out that this approximation implies a problem. The prob-

lem is that even if the number of local maxima of the PDF is equal to the number of

targets, the target samples can with nonzero probability all be drawn from the same

local maxima, that is, they are drawn with replacement. Instead, the samples should

be drawn without replacement so that each target is only sampled once. Therefore,

an approximation of the Bayes posterior process via PPPs means a mis–modeling.

In theory it is easier for non–superposed filters to close the Bayesian recursion since

each target possesses its own state space. When all targets are assumed to exist,

it can be shown from the PGFL that the intensity function (or PDF, if the PGFL

is multilinear) is defined over the Cartesian product of target state spaces. Since

the high dimensionality makes it impractical to carry an estimate of the joint in-

tensity, a statistical approach to reduce the dimensionality of multivariate problems

is to approximate the joint distributions by a product of the n univariate marginal

distributions [Gri84], [JKB97]. The product form is reasonable given that targets are

mutually independent. It is used for deriving the JPDA filter [BSF88], [BSL95]. The

Bayes recursion is closed because the prior is assumed to have the same product form.

Non–superposed pointillist filters imply other issues when, as for example in JIPDA,

there is at most one target in each target state space, that is, if targets have a prob-

ability of existence smaller than one. Then a marginalization over all targets except

for the target of interest and conditioning afterwards on the existence of the tar-

get enables to find a conditional target state PDF together with the probability of

target existence [ME04]. Iterating over all targets for each iteration yields a discrete–

continuous marginal distribution for each target. Using the product approximation

for the joint distribution closes the Bayes recursion analogously to the JPDA–case.
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3.7 Target State Estimation

The minimum Bayes risk estimate is defined for locally finite point processes as the

realization of the process that minimizes the expected value of a specified cost function

[Str13a]. The minimum Bayes risk estimate yields an estimate of the number of targets

and is for many problems equivalent to a maximum a posteriori (MAP) estimate for

an appropriately defined cost function.

Since the Bayes estimate is impractical, pseudo–Map estimates are found using the

summary statistics of the Bayes posterior process. The estimated number of targets,

n̂pseudoMAP, is the maximum of the (discrete) posterior distribution of the number of

targets, as determined from the PGFL (see (2.67)–(2.66)) and can be obtained from

the intensity function of the Bayes posterior process for each iteration. Pseudo–MAP

estimates are reasonable estimates if they correspond to stable local peaks of the

intensity function. However, the local peaks are often unstable [Mah07b], [EWBS05]

and if more than one target falls into one intensity peak, it is not clear how to extract

their target states. The problem is, that the intensity does not carry the complete

statistical information. Enhanced target state extraction methods are derived to

overcome these limitations [RCV10], [LqDfC10].

For tracking filters which do not superpose targets the state extraction is theoretically

easy. There, the issue of a large number of targets can be handled by approximating

the joint posterior distribution via a product of the marginal distributions.

3.8 How to Design a Tracking Filter: An Engineer’s Perspective

The solution of a practical tracking problem using locally finite point processes can be

separated into two methodologically different steps. First, the PGFL is constructed

using different application–specific ingredients, such as the target, measurement and

clutter model, complete, partial or no superposition of target states, the target–

oriented measurement model, the sensor resolution model, etc. This process is called

the Discovery Step and its component steps are depicted in Figure 3.1. Up to this

point, this chapter has studied many different filters using this basic procedure. It

can be seen from Figure 3.1 that several combinations with various models for the

ingredients of a tracking filter are possible, and this leads to an enormous number of

different possible tracking filters. The enthusiastic tracking engineer can use Figure

3.1 as an inspiration to design new customized tracking filters that fit the problem of

current interest.

If the tracking problem is modeled by constructing the PGFL, the second step is to

derive the formulas needed for the implementation of the particular tracking filter,

i.e., to compute the summary statistics (first or higher order moments, distribution of

the number of targets, etc.) needed to close the Bayesian recursion. These statistics

are given by ratios of functional derivatives with respect to the Dirac delta, evaluated

at different points of the state and measurement spaces [Mah07b], [CM12], [Str13a]
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Figure 3.1: Discovery Step. A tracking filter is completely characterized by its joint target–
measurement PGFL. This figure depicts the palette of available point process models for
targets and measurement used in the PGFLs of the filters studied in sections up to and
including Section 3.8. It highlights the construction of the PGFL for the JIPDA filter.
Ellipses marks indicate that the list is not exhaustive.
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(see also Chapter 2). Figure 3.2 visualizes this Analytical Step using the PHD fil-

ter [Mah07b], [Mah03], [Mah07a], the first filter to be derived from a PGFL.

Alternatives to functional differentiation are discussed in Section 4.3. Several of the

methods presented there make it possible to assess particle filter performance on sim-

ulated data sets quickly and reliably, that is, they provide a very cost effective way

to explore the design space without the need for expensive hand–crafted code.

The framework of PGFLs and point processes used in the previous sections is of more

than purely theoretical interest. First, it shows similarities and differences between

existing well–known tracking filters. For example, the consideration of how the su-

perposition of targets is modeled within the framework of point processes brings to

light the close connection of the multi–Bernoulli, the un–pruned/merged MHT and

the JIPDA filter. Furthermore, it enables the reader to understand better the kinds

of challenges that arise if new assumptions are made (e.g., on target superposition,

Section 3.7) or if old assumptions are altered–seemingly small changes can have dis-

proportionate impact. The proposed design procedure therefore helps the experienced

tracking engineer to understand existing filters and their connections.

Second, the framework gives birth to an entirely new class (to the knowledge of the

author) of tracking filters, called hybrid pointillist filters, by a straightforward ap-

plication of the assumption that target states are superposed only within a specific

number of target groups. It is evident to ask for detailed numerical evaluations of

this new class of filters; however, a close investigation of practical applications is not

part of this work and will be presented in future publications.

In addition to the important discoveries mentioned above, a tracking engineer might

still ask: What’s in it for me? The answer is: Unifying tracking filters in a common

framework offers the possibility of customized designs for application–specific tracking

problems that engineers are confronted with in practical work. Once understood it

offers an easy way of finding out which existing methods can be re–used and which

parts of the problem have to be modeled in a different way. Thereby, the ingredients

such as clutter model, target–oriented measurement model, etc. of the existing track-

ing filters can be mixed in a large variety of combinations, as depicted in Figure 3.1.

In the following, a guide to how to design a customized tracking filter is presented for

a specific tracking scenario by making use of the essential cornerstone–parameters of

the problem.
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Figure 3.2: Analytical Step. Derive summary statistics of the respective tracking filter by
differentiating the PGFL of the Bayes posterior point process. The intensity function f in
the general case is given by (2.65). This figure depicts the variety of choices available for
any PGFL, while indicating those made for the PHD intensity filter. Symbolic functional
derivatives of the PGFL must be done by hand, but lead to explicit formulas. The secular form
of the PGFL (see (4.80)) can be differentiated symbolically using widely available software.
Exact numerical values for particle weights can be found by AD. Derivatives of all orders of
the secular PGFL can be written using the Cauchy integral method, which lends itself to
saddle point approximation. For the details of secular functions and exact and approximate
analytical methods see Chapter 4.

Example Assume exactly two unresolved targets x1 ∈ X1, x2 ∈ X2 with probability

of detection pD,1(x1, x2) and pD,2(x1, x2), respectively, to be present in a cluttered

environment. The target’s identity is of particular interest and one target generates

at most one measurement. This problem has already been formulated in [SUD10])

(see also [BB06], [CBS84]) and should demonstrate how a tracking filter is formulated

in terms of its joint PGFL. The following basic questions for designing a tracking

filter are answered for each of the columns of Figure 3.1 for the unresolved target

problem. By following these questions, the columns of Figure 3.1 provides a guide for

formulating custom filters for other problems.

1. What is the model of target missed detections?

Choose a standard missed detection model. For ease of discussion it is assumed

that pD,j(x1, x2) ≡ pD,j(xj), j = 1, 2, that is, the probability of detecting

target j depends only on target j. Adopting the notation (3.7) gives aj(xj) =
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1− pD,j(xj) and bj(xj) = pD,j(xj), j = 1, 2.

2. How is sensor resolution modeled?

The resolution of the targets depends on how close they appear in the sensor.

For example, the sensor resolution function can be Gaussian, i.e.,

f res(x1,x2) = e−
(
H1(x1)−H2(x2)

)T
Σ−1
(
H1(x1)−H2(x2)

)
/2, (3.72)

where the matrix Σ is determined by the nature of the sensor and the system

functions H1 : X1 → Y , H2 : X2 → Y map the target states to points in the

measurement space. For this choice, targets at x1 ∈ X2, x2 ∈ X2 are poorly

resolved by the sensor if f res(x1, x2) ≈ 1 and well resolved if f res(x1, x2) ≈ 0.

Whether or not unresolved target states are close depends on the system func-

tions H1 and H2. The Gaussian function f res can be replace by any reasonable

function f res : X1 ×X2 → [0, 1] provided that f res(x1, x2) = 0 for all x1 ∈ X1,

x2 ∈ X2 with H1(x1) = H2(x2). The resolution function, however defined, is

used in the PGF of the number of measurements.

3. How to model the number of measurements?

Let the PGF of the number of measurements be given by

Gres
M|x1,x2

(z) ≡ c0 + c1z + c2z
2, (3.73)

where

c0 ≡ a1(x1)a2(x2), (3.74)

c1 ≡ a1(x1)b2(x2) + b1(x1)a2(x2) + f res(x1, x2)b1(x1)b2(x2), (3.75)

c2 ≡ b1(x1)b2(x2)
(
1− f res(x1, x2)

)
(3.76)

and f res(·, ·) is defined, for example, by (3.72). The number of target measure-

ments depends on the distance between the two targets in the sensor space. If

x1 ≈ x2, then f res(x1, x2) ≈ 1 and the PGF of the number of targets is

Gres
M|x1,x2

(z) ≈ c0 + c1z, z ∈ C, (3.77)

which means that two poorly resolved targets yield at most one measurement

with high probability. On the other hand, the PGF for well resolved targets is

quadratic and, moreover, factors into two linear terms:

Gres
M|x1,x2

(z) = c0 + c1z + c2z
2 ≈

(
a1(x1) + b1(x1)z

)(
a2(x2) + b2(x2)z

)
=GBMD

M|x1
(z)GBMD

M|x2
(z). (3.78)

Thus, well resolved detected targets yield two conditionally independent mea-

surements, as expected.
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4. How is target existence model defined?

Two targets are assumed present, exactly as in JPDA, so no modeling of the

target existence is needed.

5. Is target identification needed?

Yes. Therefore the joint PGFL will have two test functions, one for each target.

6. How is the target number modeled?

A fixed number of targets is assumed.

7. What is the target–oriented measurement model?

It is assumed that a target generates at most one measurement per sensor scan.

(This assumption can be relaxed; see (3.20) and the extended version (3.13).)

Measurements, however, depend jointly on the states of both targets. The

target–oriented measurement model can be shown to be given by a modification

of (3.20). It is defined by

Ψres
BMD(h1, h2, g) ≡

∫
X1

∫
X2

h1(x1)µ1(x1)h2(x2)µ2(x2)

×Gres
M|x1,x2

(∫
Y

g(y)p(y|x1, x2) dy

)
dx1dx2, (3.79)

where p(y|x1, x2) is an arbitrarily specified likelihood function that is condi-

tioned on both targets. It is worth pointing out that the PGFL (3.79) reduces

to the PGFL of the standard JPDA filter for two targets under two assumptions:

(i) the factorization (3.78) holds, that is, the targets are always well–separated;

and (ii) the likelihood function p(y|x1, x2) depends on only one target state not

two. In this case p(y|xi) is used within GBMD
M|xi(·), i = 1, 2.

8. Which clutter model is used?

In this case the clutter model is an arbitrary locally finite point process. We

choose the Poisson clutter model ΨPPP
C (g) and assume further that the clutter

process is mutually independent of both target–oriented measurement processes.

The target–oriented measurement and clutter processes are mutually independent, so

the joint PGFL is given by the product of their PGFLs:

Ψres
JPDA(h1, h2, g) = ΨPPP

C (g) Ψres
BMD(h1, h2, g). (3.80)

This PGFL fully characterizes the two target example problem for unresolved mea-

surements. This completes the tracking filter Discovery Step.

Sensor resolution issues increase the complexity of the tracking problem. In the lan-

guage of PGFLs, this can be traced to the fact that the double integral involved in

the target–oriented measurement model Ψres
BMD does not factor into a product of two
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integrals as in the perfectly resolved case, since the PGF of the number of measure-

ments is not the product of first degree polynomials (cf. (3.79). This has a significant

impact in practice because computing double integrals is computationally much more

demanding than computing the product of two lower dimensional integrals.

Secular functions can be defined and derived for PGFLs with general target–oriented

measurement models. This can be seen directly for the unresolved target example

using a method that is similar to that used in [Str14e]. The proof of the result in the

general case is more involved and is presented in Chapter 4.

Another example of multiple integrals that do not factor is given by ΨGenPHD(h, g)

of the generalized PHD intensity filter (3.64). The reason in this case is that the gen-

eralized PHD filter enables a target to create more than one measurement per sensor

scan and thus the integrals with respect to the measurement space do not factor.

It is seen from the unresolved target example discussed above that in practice en-

gineers can use the pointillist filter point of view to quickly design and characterize

tracking filters for modeling specific problems of interest.

3.9 Conclusion and Future Work

In this chapter the Discovery Step for pointillist filters is proposed. Filters that are

modeled using locally finite point processes can be characterized in terms of a single

functional. This PGFL description has several advantages. First, as seen in Table

3.1, it makes it easy to compare different tracking filters in terms of their boundary

conditions. Therefore, existing relations and differences can be identified. Second, it

enables data fusion engineers to design filters for their tracking problems at hand.

The pointillist filters are separated into three classes by their use of target superpo-

sition. Many well-known filters are in the class of pointillist filters that do not use

target superposition, including the classical Bayes-Markov filter as well as the PDA,

JPDA, IPDA, JIPDA, PMHT, and MHT filters.

The second class of pointillist filters are those that have a single target state space,

that is, filters that superpose targets. Examples are the PHD intensity, the CPHD

intensity, the generalized PHD intensity, and the multi-Bernoulli filters. Some filters

(multi-Bernoulli, CPHD with fixed number of targets) can be formulated and derived

from superposed versions of the joint PGFLs of the non-superposed JPDA, JIPDA,

and MHT tracking filters (if all target state spaces are identical).

Hybrid pointillist filters, superpose some of the targets and others not. This is a

class in between the first two classes. Examples are the joint PHD intensity and the

generalized joint PHD intensity filters.

The next step is the Analytical Step, which is needed to obtain the explicit formulas

for the implementation of the designed tracking filters. In Chapter 4 it is shown how

summary statistics such as the first-order moment (intensity function) and higher-
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order factorial moments (for pair–correlation) of the Bayes posterior process can be

derived from the joint target–measurement PGFL found in the Discovery Step.

The study of multi-scan and multi-sensor versions of pointillist filters as well as the

extension of family of pointillist filters will be presented in future publications and is

not part of this thesis.
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Filter Name PGFL Notation Joint Target-Measurement PGFL

Bayes-Markov ΨBM(h, g)
∫
X
∫
Y h(x)g(y)µ(x)p(y|x) dy dx

Missed Detections ΨBMD(h, g)
∫
X h(x)µ(x)GBMD

M|x
( ∫
Y g(y)p(y|x) dy

)
dx

Missed Detections ΨBME(h, g)
∫
X h(x)µ(x)GM|x

( ∫
Y g(y)p(y|x) dy

)
dx

and Extended Target

PMHT

Without Superposition ΨPMHT(h1, . . . , hn, g)
∏n
i=1 ΨPPP

BMD(i)
(hi, g)

With Superposition ΨPMHTS(h, g)
∏n
i=1 ΨPPP

BMD(i)
(h, g)

PDA

Without Gating ΨnoGate
PDA (h, g) ΨPPP

C (g) ΨBMD(h, g)

With Gating ΨPDA(h, g) Ψ
PPPgated
C

(g) Ψ
gated
BMD

(h, g)

Extended Target ΨPDAE(h, g) ΨPPP
C (g) ΨBME(h, g)

JPDA

Without Superposition ΨJPDA(h1, . . . , hn, g) ΨPPP
C (g)

∏n
i=1 ΨBMD(i)(hi, g)

With Superposition ΨJPDAS(h, g) ΨJPDA(h, . . . , h, g)

IPDA ΨIPDA(h,g) ΨPPP
C (g)

(
1 − χ + χΨBMD(h, g)

)
JIPDA

Without Gating ΨJIPDA(h1, . . . , hn, g) ΨPPP
C (g)

∏n
i=1

(
1 − χi + χi ΨBMD(i)(hi, g)

)
With Gating Ψ

gated
JIPDA

(h1, . . . , hn, g) Ψ
PPPgated
C

(g)
∏n
i=1

(
1 − χi + χi Ψ

gated
BMD(i)

(hi, g)
)

With Superposition ΨJIPDAS(h, g) ΨJIPDA(h, . . . , h, g)

MHT2 ΨMHT(h1, . . . , hn+m, g) ΨPPP
C (g)

∏n
i=1

(
1 − χi + χi ΨBMD(i)(hi, g)

)
×
∏m
j=1

(
1 − γj + γj ΨData

BMD(j)
(hn+j , g)

)
Multi-Bernoulli ΨMB(h, g) ΨPPP

C (g)
∏n
i=1

(
1 − χi + χi ΨBMD(i)(h, g)

)
×
∏m
j=1

(
1 − γj + γj ΨData

BMD(j)
(h, g)

)
PHD ΨPHD(h, g) ΨPPP

C (g)GPPP
N

(
ΨBMD(h, g)

)
CPHD ΨCPHD(h, g) ΨCluster

C (g)GCluster
N

(
ΨBMD(h, g)

)
Generalized PHD ΨGenPHD(h, g) Ψ

gen
C

(g)GN
(
Ψ

gen
BMD

(h, g)
)

Joint PHD ΨJointPHD(h1, . . . , hn, g) ΨPPP
C (g)

∏n
i=1 G

PPP
Ni

(
ΨBMD(hi, g)

)
Joint Gen. PHD ΨJointGenPHD(h1, . . . , hn, g) Ψ

gen
C

(g)
∏n
i=1 G

PPP
Ni

(
Ψ

gen
BMD

(hi, g)
)
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3.9 Conclusion and Future Work

Ref. Target Clutter Missed Super-

Eqn. Model Det. pos.

(3.19) = 1 pt. tgt. No No No

(3.20) = 1 pt. tgt. No Std. No

(3.21) = 1 ext. tgt. No Gen.5 No

(3.36) = n ext. tgts. No1 No8 No

(3.55) = n ext. tgts. No1 No8 Yes

(3.22) = 1 pt. tgt. PPP Std. No

(3.29) = 1 pt. tgt. PPP Std. No

(3.30) = 1 ext. tgt. PPP Gen.5 No

(3.32) = n pt. tgts. PPP Std. No

(3.53) = n pt. tgts. PPP Std. Yes

(3.40) ≤ 1 pt. tgt. PPP Std. No

(3.42) ≤ n pt. tgts. PPP Std. No

(3.49) ≤ n pt.. tgts. PPP Std. No

(3.54) ≤ n pt. tgts. PPP Std. Yes

(3.50) ≤ n +m PPP Std. No

pt. tgts.

(3.69) ≤ n +m PPP Std. Yes

pt. tgts.

(3.58) PPP PPP Std. Yes

(3.61) Cluster Cluster Std. Yes

(3.64) Gen.7 Gen.6 Gen.4 Yes

(3.70) = n gps. PPP Std.3 Yes3

(3.71) = n gps. Gen.6 Gen.3,4 Yes3

Table 3.1: Overview of the pointillist family of multitarget tracking filters
1 Clutter is modeled as target with high variance 2 MHT of un-pruned and complete set of hypothesis 3

Within target groups 4 Arbitrary target-oriented measurement process 5 Extended target measurement

model 6 General locally finite point process clutter model 7 General locally finite point process target model

8 Modeled via missing data assignment weight
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CHAPTER IV

Factorial Moment Derivation of the Bayes Posterior

Point Process

The solution of a tracking problem, modeled by a locally finite point process, can be

divided into two steps (see Figures 3.1 and 3.2). First, the Discovery Step, which is

studied intensively in Chapter 3 and [SDK15], models a tracking filter by constructing

the PGFL of the joint target–measurement process using basic target tracking ingre-

dients like the clutter model, the target–generated measurement model, the sensor

resolution, etc. In Chapter 3 it is shown that many well–known tracking filters can be

situated in this class of PGFL–derivable filters, called the family of pointillist filters.

Second, the Analytical Step, derives the tracking filter of a PGFL via functional dif-

ferentiation and closes the Bayesian recursion by filter specific approximations. This

chapter studies the theoretical foundations of the Analytical Step. Most of the con-

tributions of this chapter are published in [DSK15].

The Bayes posterior target point process is conditioned on the measurement process,

and its PGFL is a ratio of functional derivatives of joint PGFLs [Mah07b], [Str13a],

[CM12]. The required functional derivatives are Gâteaux derivatives [ED11, p. 406]

evaluated with respect to Dirac deltas [Dir27] centered at the locations of the mea-

surements and targets.

In [Str14e] a technique for the derivation of multitarget intensity filters using ordinary

derivatives is proposed for the class of PGFLs that can be written as a function of

linear functionals. The objections raised in [CM12] are incorrect due to the use of

Dirac as a function and not, as accepted in practice, a distribution, which is approx-

imated by a sequence of test–functions. Thus, these objections are readily addressed

by taking the limit of a test–function sequence for the Dirac delta with respect to

the L1(µ;Rd)–norm, where d > 0 and µ is the d–dimensional Lebesgue measure.

The results in [Str14e] are applicable to many target tracking problems, but they do

not extend to problems with correlated measurements because, in this case, the joint
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4 Factorial Moment Derivation of the Bayes Posterior Point Process

target–measurement PGFL cannot be written as a function of linear functionals. The

main purpose of this chapter is to extend the results from [Str14e] to a larger class

of functionals which encompasses the family of pointillist filters from Chapter 3. In

particular, the general case of correlated measurements is covered. Further extensions

might be possible, but the presented extension is very broad and would to cover al-

most all practical tracking problems. Another purpose is to compare the functional

derivative defined in this chapter to the set derivative defined in [Mah07b, p.380-

381], [GMN97].

The intention of the work presented is to show that the alternative approach for de-

riving tracking filters using PGFLs and point process theory proposed in [Str14e] is

mathematically exact and can be extended in a mathematically correct way to a larger

class of PGFLs that is sufficient for almost all practical tracking applications. This

alternative method does not conflict with the methods proposed in [Mah07b], [CM12]

therein.

The chapter is organized as follows. In Section 4.1 the definition of the Gâteaux

derivative with respect to the Dirac delta from [Str14e] is discussed and extended to a

larger class of functionals that encompasses the pointillist family of multitarget track-

ing filters presented in Chapter 3. This definition is compared to the set derivative

defined in [Mah07b, p. 380–381]. In Section 4.2 the technique for deriving multitarget

intensity filters using secular functions [Str14e] is described, and it is shown that due

to the results in Section 4.1 the technique can be generalized from the class of analytic

functions of linear functionals to a larger class of PGFLs. In Section 4.3 a review of

methods for computing the ordinary derivatives of secular functions are presented.

The conclusions are drawn in Section 4.4.

The theory of secular functions presented in Section 4.2.1 and 4.2.4 on the class of

PGFLs that can be written as a function of linear functionals has been derived by

Streit in [Str14e]. Furthermore, the application of the well–known techniques for

computing the ordinary derivatives of secular functions presented in Section 4.3 are

proposed by Streit in [Str15], [Str14a] and [Str14e].

Own publications on this subject: The studies on the mathematical correct definition

of the functional derivative with respect to the Dirac delta presented in Section 4.1

and the extension of it to the general family of PGFL P2 made in Section 4.2 have

been published in [DSK15] c© 2015 IEEE.

4.1 The Functional Derivative with Respect to the Dirac Delta

4.1.1 Definition and Approximation of Dirac Delta

In [Wal74] Dirac delta is defined as a distribution (see [Str13b] and [FJ99] as alterna-

tive references), i.e., δ is a linear and continuous mapping δ : ϑ→ R, where the space
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4.1 The Functional Derivative with Respect to the Dirac Delta

of test–functions is given by ϑ ≡ C∞0 (Rn) (infinitely often continuously–differentiable

with compact support). The space of all such distributions is defined by

ϑ′ ≡ {f : C∞0 → R}. (4.1)

However, other test–function spaces are possible and in the following, we denote by

δc the functional which satisfies (δc, φ) ≡ φ(c), where c ∈ Rn and φ : Rn → R.

In [Wal74, pp. 38–39] it is shown that δc can be approximated on ϑ by any absolutely

integrable function f : Rn → R with f(x) = 0 for all x /∈ {x : ‖x − c‖ ≤ 1} and∫
Rn f(x)dx = 1 by fλ(·) ≡ λ−nf

( ·−c
λ

)
in the sense that lim

λ↘0
fλ = δc in ϑ, where

lim
λ↘0

(fλ, φ) ≡ lim
λ↘0

(∫
fλ(x)φ(x)

)
=

∫
δc(x)φ(x)dx = (δc, φ) = φ(c), (4.2)

for all φ ∈ ϑ. For the proof, the continuity of the test–functions is sufficient. Note that

the limit is not taken into the integral, that is, we are investigating a limit of integrals

also known as convergence with respect to the L1(µ;Rn)–norm. In the following, we

denote by {γcλ}λ>0 an arbitrary family of test–functions converging in the sense of

(4.2) for λ↘ 0 to δc.

Two families of test-functions are used exemplary in this work for δc on Rd. For

x = (x1, ..., xd), c = (c1, ..., cd) ∈ Rd the (multivariate) Gaussian test–sequence is

defined by

γc,1λ (x) ≡
d∏
i=1

1√
2πλ2

exp

(
− (xi − ci)2

2λ2

)
(4.3)

and the step function sequence is given by

γc,2λ (x) ≡ 1

µ(Ecλ)
1Ec

λ
, (4.4)

where Ecλ ⊂ Rd is a neighbourhood of c ∈ Rd with µ(Ecλ) = λ, µ being the Lebesgue

measure on Rd. Note that γc,iλ : Rd → R, i = 1, 2 are indeed approximate identities in

the sense of [Alt12, p.114] for δc. Figure 4.1 and Figure 4.2 visualize γc,1λ and γc,2λ (x)

for different values of the parameter λ.

Even though there exists no local integrable function satisfying∫
δc(x)φ(x)dx = (δc, φ) ≡ φ(c) (4.5)

for φ ∈ C∞0 (Rn) [Wal74, p.21], we will use the integral notation from (4.5) in the

following, keeping in mind that it is a notational device. However, the reader should

note that the right hand side of (4.5), that is the definition of Dirac delta as an

operator (or distribution in the sense of [Wal74]), is mathematically well–defined.
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Figure 4.1: Plot of approximate identities γ0,1
λ for Dirac delta at 0, defined in (4.3) for

different values of λ in one–dimension c© 2015 IEEE.
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Figure 4.2: Plot of approximate identities γ0,2
λ for Dirac delta at 0, defined in (4.4) for

different values of λ in one–dimension c© 2015 IEEE.
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4.1 The Functional Derivative with Respect to the Dirac Delta

4.1.2 Definition of the Gâteaux Derivative with respect to the Dirac Delta

In [Str14e] the functional derivative with respect to an impulse is defined. It can be

called Gâteaux derivative with respect to the Dirac delta (and has been done so far

in this thesis) to emphasize the fact that it is a directional derivative of a functional

with respect to the Dirac delta.

First, the class of PGFLs, for which the Gâteaux derivative with respect to the Dirac

delta is defined in [Str14e], is investigated. Let F : Ck → R be a multivariate PGF,

that is

F (s1, ..., sk) ≡
∑

i1,...,ik≥0

pi1,...,ik s
i1
1 · ... · s

ik
k , (4.6)

where (s1, .., sk) ∈ Ck and pi1,...,ik ∈ [0, 1]. Let Y ⊂ Rd be closed and bounded, and

let qi : Y → R, i = 1, ..., k, be continuously differentiable PDFs except possibly for

jump continuities. Furthermore, let

g ∈ G ≡
{
g ∈ L1(µ;Y ) : g is non–negative, |g(y)| ≤ 1, for all y ∈ Y }. (4.7)

Then, we define the class of analytic functions of linear functionals by

P1 ≡
{

Ψ : G → R : Ψ(g) ≡ F
(∫

Y

g(y)q1(y)dy, ...,

∫
Y

g(y)qk(y)dy

)}
. (4.8)

In [Str14e], for the class of PGFLs P1 and an arbitrary family of test–functions

{γcλ}λ>0 of δc, the Gâteaux derivative with respect to the Dirac delta is defined

by

∂Ψ

∂c
(g) ≡ lim

λ↘0

∂Ψ

∂γcλ
(g), (4.9)

where

∂Ψ

∂g
(g′) ≡ lim

ε↘0

Ψ(g + εg′)−Ψ(g)

ε
(4.10)

and g, g′ ∈ G. Since the multivariate PGF is analytic at the origin 0 = (0, ...,0) ∈ Ck,

the limit (4.9) is well–defined for PGFLs from P1. Note that the Gâteaux derivative
∂Ψ
∂γc
λ

(g) is well–defined for all λ > 0.

The Fréchet derivative [Alt12] of a functional requires uniform convergence for all

directions (test–functions). Every Fréchet differentiable functional is also Gâteaux

differentiable. In general, the converse does not hold. However, for analytic functions

Gâteaux differentiability is equivalent to Fréchet differentiability. In the following the

Fréchet/Gâteaux derivative is called a functional derivative for simplicity (following

the language of [Str14e]). The uniform convergence for all test–functions of the Fréchet

derivative is needed for the definition of secular functions in Section 4.2. It is also

needed if saddle point methods are employed to find point–wise approximations of

the factorial moments of the Bayesian posterior point process [Str15].
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4.1.3 Extending the Functional Derivative with respect to the Dirac Delta

This section extends the definition of the functional derivative with respect to the

Dirac delta (4.9) to a larger class of PGFLs. Furthermore, it can be seen that the

set derivative from [Mah07b] is a special case of the proposed functional derivative.

First, we define the class of PGFLs we are interested in by

P2 ≡
{

Ψ : H → R : Ψ(h) =
∑
n≥0

an
n!

∫
Xn

n∏
i=1

h(xi)fn(x1, ..., xn)dx1...dxn

}
, (4.11)

where

H ≡ {h : X → R : h is bounded by one, non–negative and Lebesgue–integrable},
(4.12)

X = Rd, d ≥ 1, an ∈ [0, 1],
∑
n≥0 an = 1, n ∈ N and fn : Xn → R be a symmetric

bounded density, which may depend on n ≥ 1.

Note that for the univariate case the class of analytic functions of linear functionals

P1 is a subset of P2. Indeed, consider

Ψ(h) ≡ F
(∫

X

h(x)q(x)dx

)
(4.13)

with F (s) =
∑
n≥0 ans

n, h ∈ H. Then, Ψ ∈ P1 and setting

fn(x1, ..., xn) ≡ n! · q(x1) · . . . ·q(xn), (4.14)

xi ∈ X , i = 1, ..., n shows that Ψ ∈ P2. Thus, P1 ⊂ P2 for the univariate case. The

class of analytic functions of linear functionals P1 is also a proper subset of P2, since

PGFLs with

fn(x1, ..., xn) ≡ (x1 + ...+ xn)

(√
x2

1 + ...+ x2
n

)−1

, (4.15)

xi ∈ X , i = 1, ..., n are in P2 but not in P1 for the univariate case. The univariate

class of PGFLs P2 can be extended to the multivariate case by

Pmulti
2 ≡

{
Ψ : H → R : Ψ(h) ≡

k∑
j=1

∑
n≥0

an,j
n!

∫
Xn

n∏
i=1

h(xi)fn,j(x1, ..., xn)dx1...dxn

}
,

(4.16)

where an,j ∈ [0, 1],
∑k
j=1

∑
n≥0 an,j = 1 and

∑k
j=1 fn,jX

n → R is assumed to be a

symmetric density, which depends on n ∈ N. However, this class of PGFLs is not

investigated further in this work.

Following the idea from definition (4.9) we define the functional derivative of a PGFL
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from class P2 with respect to the Dirac delta δc and the two families of test–functions

{γc,iλ }λ>0 for i = 1, 2 to be

∂Ψ

∂c
(g) ≡ lim

λ↘0

∂Ψ

∂γc,iλ
(g). (4.17)

Note that the definitions (4.9) and (4.17) are closely related to the considerations on

the constructive definition of the Radon–Nikodym derivative from [GMN97, p.145].

There {γc,2λ }λ>0 is used as an approximate identity and the convergence is proven by

the Lebesgue density theorem.

The assumptions on f needed to justify the definition (4.17) are now given. To this

end, we first consider for i = 1, 2 and λ > 0

∂Ψ

∂γc,iλ
(h) =lim

ε↘0

Ψ(h+ εγc,iλ )−Ψ(h)

ε
(4.18)

=
∑
n≥1

an
n!

n∑
k=1

∫
Xn

γc,iλ (x1)

n∏
i=1,i 6=k

h(xi)fn(x1, ..., xn)dx1...dxn, (4.19)

i = 1, 2. Note that (4.19) holds due to the symmetry of f , and that the sum and

the derivative can be interchanged, due to the analyticity of Ψ(h+ εh′) in ε in some

open region containing the origin of the complex plane [Str13a], a fact that is proven

in [Moy62, section 4]. The outermost sum starts at n = 1, since the derivative of the

n = 0 term is zero. Now, it has to be investigated under which assumptions

∂Ψ

∂c
(g) ≡ lim

λ↘0

∂Ψ

∂γc,iλ
(g) = lim

λ↘0
lim
ε↘0

Ψ(h+ εγc,iλ )−Ψ(h)

ε

=
∑
n≥1

an
n!

n∑
k=1

∫
Xn

δc(xk)

n∏
i=1,i6=k

h(xi)fn(x1, ..., xn)dx1...dxn (4.20)

=
∑
n≥1

an
n− 1!

∫
Xn−1

n∏
i=2

h(xi)fn(c, x2, ..., xn)dx2...dxn (4.21)

holds, i = 1, 2. Equation (4.21) is due to applying Dirac delta in terms of a distribu-

tion, the symmetry of f and the assumption that c is in the domain of f(·, x2, ..., xn) :

R→ R, x2, ..., xn ∈ Rd. The interchange of the limit and the outermost sum in (4.20)

is not straightforward and has to be investigated carefully. To find out under which

conditions on fn definition (4.20) holds, we apply Lebesgue‘s dominated convergence

theorem (LDC) [Alt12, p. 62] to the space of sequences

l1(R) ≡ {x ∈ RN :
∑
i∈N

|xi| <∞} (4.22)
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[Alt12, pp. 28–29] in the following. LDC can be applied to l1(R), since it is equal to

L1(m;R), where m is the counting measure, defined by

m(A) ≡

|A|, if |A| <∞
∞, if |A| =∞,

(4.23)

A ∈ B(N), where B(N) denotes the Borel–σ algebra of the natural numbers [Els09, p.

29] and

Lp(µ,Rn) ≡
{
f : (Rn,B(Rn), µ)→ (R,B(R)) :

f is µ–measurable and

(∫
Rn
|f(x)|p

) 1
p

<∞
}
, (4.24)

µ being an arbitrary measure defined on B(Rn). Define fc,iλ : N→ R by

fc,iλ (n) ≡ an
n!

n∑
k=1

∫
Xn

γc,iλ (xk)

n∏
i=1,i 6=k

h(xi)fn(x1, ..., xn)dx1...dxn, (4.25)

for all n ∈ N, λ > 0, h ∈ H, c ∈ X and i = 1, 2.

To show that the limit (4.17) is well defined using LDC it suffices to show that first

fc,iλ converges for all c ∈ X m–almost everywhere (a.e). to

fc(n) ≡an
n!

n∑
k=1

∫
Xn

δc(xk)

n∏
i=1,i 6=k

h(xi)fn(x1, ..., xn)dx1...dxn (4.26)

for i = 1, 2 and second

|fc,iλ | ≤ g, for some g ∈ l1(R) m–a.e., (4.27)

since then due to LDC fc,iλ converges to fc in l1(R), that is (4.20) holds. Note that

due to the definition of the counting measure m, a statement holds m–a.e. if it holds

for all n ∈ N.

The next Lemma proves Condition (4.26). From now on µ denotes the n–dimensional

Lebesgue measure, defined on Xn, n ≥ 1.

Lemma 1. Let fn ∈ L1(µ;Xn) be continuous and bounded for all n ∈ N. Denote by

{γ0
λ}λ>0 an arbitrary approximate identity in the sense of [Alt12, p.114]. Then, the

convolution (γ0
λ ∗ fn)(x) ≡

∫
X γ

0
λ(x− y)fn(y)dy converges everywhere for λ↘ 0 (for

all x ∈ X ) to fn(x).
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Proof. Since {γ0
λ}λ>0 is an approximate identity and therefore integrates to one.

Analogously to [Alt12, p.116] it holds that

|(γ0
λ ∗ fn)(x)− fn(x)| =

∣∣∣∣∣∣∣
∫
X

γ0
λ(x− y)

(
fn(y)− fn(x)

)
dy

∣∣∣∣∣∣∣ (4.28)

=

∣∣∣∣∣∣∣
∫
X

γ0
λ(ỹ)

(
fn(x− ỹ)− fn(x)

)
dỹ

∣∣∣∣∣∣∣ ≤
∫
X

∣∣∣γ0
λ(ỹ)

(
fn(x− ỹ)− fn(x)

)∣∣∣ dỹ (4.29)

=

∫
Br(0)

∣∣∣γ0
λ(ỹ)

(
fn(x− ỹ)− fn(x)

)∣∣∣ dỹ +

∫
X\Br(0)

∣∣∣γ0
λ(ỹ)

(
fn(x− ỹ)− fn(x)

)∣∣∣ dỹ
(4.30)

≤ sup
y∈Br(0)

∣∣(fn(x− y)− fn(x))
∣∣ · ∫
Br(0)

γ0
λ(ỹ)dỹ (4.31)

+ sup
y∈X\Br(0)

∣∣(fn(x− y)− fn(x))
∣∣ · ∫
X\Br(0)

γ0
λ(ỹ)dỹ, (4.32)

where Br(0) is a ball with radius r > 0 around 0 ∈ X . The first summand (4.31)

converges due to the continuity of f and the boundedness of
∫

Br(0)

γ0
λ(ỹ)dỹ for r ↘ 0

to zero. The second summand (4.32) converges for all r > 0 and λ ↘ 0 to zero due

to the definition of an approximate identity and the boundedness of fn.

Remark 1. Note that convergence is needed for all x ∈ X , since Condition (4.26)

has to hold for arbitrary c ∈ X .

Remark 2. Lemma 1 holds for arbitrary approximate identity. For the particular

case of the Dirac sequence {γc,2λ } it seems that the continuity of fn ∈ L1(µ;Xn) is not

needed. This due to the fact that Lebesgue’s density theorem [SG97, p.220–222] can

be applied. However, Lemma 1 states convergence not only µ–a.e., but convergence

for all x ∈ X . Hence, continuity of fn ∈ L1(µ;Xn) is needed.

Remark 3. Due to [Alt12, Theorem 2.15] and [Alt12, A 1.11] it seems that Lemma 1

could have been formulated without the assumption that fn ∈ L1(µ;Xn) is continuous,

if the approximate identity is replaced by an appropriate subsequence. This is due to

the fact that convergence with respect to the L1(µ;R)–norm implies µ–a.e. convergence

for a subsequence [Alt12, A 1.11]. However, analogously to the previous Remark,

Lemma 1 states converges not only µ–a.e., but convergence for all x ∈ X .

This proves Condition (4.26) for all Dirac sequences, that is especially for the two

studied approximate identities {γ0,i
λ }, i = 1, 2 .
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4 Factorial Moment Derivation of the Bayes Posterior Point Process

Since for h ∈ H it holds that h ≥ 0 and bounded by some constant B ∈ R we obtain

|fc,iλ | ≤
Bn−1

n!

n∑
k=1

∫
Xn

γc,iλ (xk)fn(x1, ..., xn)dx1...dxn (4.33)

=
n ·Bn−1

n!

∫
Xn

γc,iλ (x1)fn(x1, ..., xn)dx1...dxn (4.34)

=
Bn−1

n− 1!

∫
Xn

γc,iλ (x1)fn(x1, ..., xn)dx1...dxn, (4.35)

where (4.35) holds due to the symmetry of fn(x1, ..., xn), i = 1, 2. If, it can be shown

that ∫
Xn

γc,iλ (x1)fn(x1, ..., xn)dx1...dxn ≤ Cn−1 ·A, (4.36)

where A, C ∈ R, then g : N→ R defined by

g(n) ≡ (B · C)n−1

n− 1!
·A, (4.37)

n ∈ N is in l1(R), since

∞∑
n=1

|g(n)| =
∞∑
n=1

∣∣∣∣∣ (B · C)n−1

n− 1!
·A

∣∣∣∣∣ = |A| ·
∞∑
n=0

((
|B| · |C|

)n
n!

)
=|A| · exp(|B| · |C|) <∞ (4.38)

and |fc,iλ | ≤ g m–a.e, that is |fc,iλ (n)| ≤ g(n) for all n ∈ N, i = 1, 2. If such a function

g can be found, Condition (4.27) is fulfilled. Before the function g is constructed the

following Lemma needs to be shown.

Lemma 2. For fn : Xn → R symmetric, fn ≥ 0 and
∫
Xn

fn(x1, ..., xn) = K, K ∈ R

it holds that there exists a constant C ∈ R such that
∫
X
fn(x1, ..., xn)dxi = C <∞, for

all i ∈ {1, ..., n}.

Proof. First, due to the symmetry of fn, it holds for all i, j ∈ {1, ..., n}, i 6= j that∫
X

fn(x1, ..., xn)dxi =

∫
X

fn(x1, ..., xn)dxj . (4.39)

Indeed, assume that there exist i, j ∈ {1, ..., n} such that∫
X

fn(x1, ..., xn)dxi 6=
∫
X

fn(x1, ..., xn)dxj . (4.40)
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Consider the permutation σ : {1, ..., n} → {1, ...n} with σ(i) = j, σ(j) = i and

σ(k) = k, for all k ∈ {1, ..., n}, k 6= i, j. Then it holds∫
X

fn(x1, ..., xn)dxi =

∫
X

fn(xσ(1), ..., xσ(n))dxi =

∫
X

fn(x1, ..., xn)dxj , (4.41)

which is a contradiction to the assumption.

Next, we show that
∫
X
fn(x1, ..., xn)dxi <∞. Assume that there exists a j ∈ {1, ..., n}

such that
∫
X
fn(x1, ..., xn)dxi =∞. Then,

K =

∫
Xn

fn(x1, ...xn)dx1...dxn =

∫
X

...

∫
X

fn(x1, ...xn)dxidx1....dxi−1dxi+1...dxn =∞,

(4.42)

where (4.42) holds due to Fubini’s theorem [Alt12]. This is a contradiction to the

assumption and proves the statement.

Theorem 3. Let fn ∈ L1(µ;Xn) be continuous, bounded and symmetric. Then for

all λ > 0 |fc,iλ | ≤ g, m–a.e. i = 1, 2, where g : N→ R is defined by

g(n) ≡ (B · C)n−1

n− 1!
· sup
x∈Xn

(fn(x1, x2, ..., xn)), (4.43)

n ∈ N, x = (x1, ..., xn) ∈ Xn, B ∈ R being the bound of the test-function h and

C =
∫
X
|fn(x1, ..., xn)|dxi. Furthermore, it holds that g ∈ l1(R).

Proof. Since fn is bounded the Hölder–inequality [Alt12, p. 54] gives for p = ∞,

q = 1 and x2, ..., xn ∈ X∣∣∣∣∣∣∣
∫
X

γc,iλ (x1)fn(x1, ..., xn)dx1

∣∣∣∣∣∣∣ ≤
∥∥∥γc,iλ fn(·, x2, ..., xn)

∥∥∥
L1(µ;X )

(4.44)

≤ sup
x∈Xn

(fn(x1, x2, ..., xn))

∫
X

γc,iλ (x1)dx1 = sup
x∈Xn

∣∣fn(x1, x2, ..., xn)
∣∣ , (4.45)

i = 1, 2, which proves together with Lemma 2 and Fubini’s theorem the first part of

the statement. Furthermore,

∞∑
n=1

|g(n)| = exp(|B| · |C|) · sup
x∈X

(fn(x1, x2, ..., xn)) <∞ (4.46)

and thus g ∈ l1(R).
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4 Factorial Moment Derivation of the Bayes Posterior Point Process

This proves together with Lemma 1 and Lemma 2, that if fn ∈ L1(µ;Rn) is con-

tinuous, bounded and symmetric LDC can be applied to fc,iλ and thus (4.20) holds,

which proves that (4.17) is well–defined. It seems that for γc,iλ , i = 1, 2 boundedness

of fn(·, x2..., xn), x2, ..., xn ∈ X in a neighbourhood of c would have been sufficient.

However, if the functional derivative has to be computed at arbitrary peaks, bound-

edness of fn(x1, ..., xn) on Xn is needed.

The following proposition shows under which Condition (4.17) can be defined using

an arbitrary approximate identity.

Proposition 4. Let

fn ∈ C0
0 (Xn) ≡ {fn : Xn → R : fn is continous and the support of fn is compact}

and h be a continuous test–function. Then, for an absolutely integrable function η :

X → R, that is
∫
X
|η(x)|dx < ∞ with

∫
X
η(x)dx = 1 and η(x) = 0 for all x /∈ {x :

|x− c| ≤ 1} ∣∣∣∣∣∣∣
an
n!

n∑
k=1

∫
Xn

λ−1η

(
xk
λ

) n∏
i=1,i 6=k

h(xi)fn(x1, ..., xn)dx1...dxn

∣∣∣∣∣∣∣
≤ (B · C)n−1

n− 1!
max
x∈Xn

fn(x1, x2, ..., xn) (4.47)

Proof. Due to [Wal74, p.38, p.39] λ−1η
( ·
λ

)
converges as a distribution on the set of

all test–functions from C0
0 (X ) to δc, which holds if h is continuous. Thus, m–a.e.

convergence is proven. Furthermore, f ∈ C0
0 (X ) and thus it attends its maximum

on its (compact) support. Therefore, applying Lemma 2 and estimating, by using

the maximum instead of the supremum in the previous theorem, yields the desired

result.

Let us summarize the results, that is which properties the density f needs to fulfill

so that Conditions (4.26) and (4.27) can be verified. First, consider the approximate

identities {γc,iλ }λ>0, i = 1, 2. Due to Lemma 1 (Condition (4.26)) and Theorem 3

(Condition (4.27)) the assumptions of LDC are fulfilled if the multi–object density

fn ∈ L1(µ;Xn) is continuous, bounded and symmetric. Second, if fn ∈ C0
0 (Xn) is

symmetric, Proposition 4 proves that Conditions (4.26) and (4.27) are valid for con-

tinuous test–functions h ∈ H if an approximate identity is constructed via [Alt12,

2.14 (2), p.114] using an absolutely integrable function. Note that the continuity of

the test–function h is a non–restrictive constraint for the Analytical Step of deriving

pointillist filters, since h = 0 or h = 1 are the only needed choices for deriving multitar-

get tracking filters. Since C0
0 (Xn) ⊂ {f ∈ L1(µ,Xn) : f continuous and bounded},

in the following the multi–object densities are assumed to be in L1(µ,Xn), continu-

ous, bounded and symmetric.
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All pointillist tracking filters presented in Chapter 3 have in common that their joint

PGFL is contained in P2, that is for all pointillist filters from Chapter 3 the consid-

erations of Section 4.1 are valid. This can easily be justified by considering Table 3.1

from Chapter 3.

4.1.4 On the Connection of the Set Derivative from [Mah07b] and the

Functional Derivative with respect to the Dirac Delta

Note that (4.17) comprises out of two independent limit processes, one for the func-

tional derivative and the other for the approximation of Dirac delta. The set deriva-

tive proposed in [Mah07b, pp. 380, 381] can be defined using the family of step

test–functions
{
γc,2λ

}
λ>0

. Let h ≡ 1X , X ⊂ Rd, d > 0. Then by replacing the vari-

able of the family of test–functions λ > 0 by the variable ε > 0 used to define the

derivative, that is using the family of test–functions
{
γc,2ε

}
ε>0

to approximate Dirac

delta, one obtains

∂Ψ

∂γc,2ε
(h) =

Ψ(h+ εγc,2ε )−Ψ(h)

ε
=

Ψ(1X + 1Ecε (x))−Ψ(1X)

µ(Ecε )
, (4.48)

where µ denotes the Lebesgue measure on Rd, c ∈ Rd, d > 0 and Ecε be a neighborhood

of c with µ(Ecε ) = ε. Thus, the double limit from (4.17) reduces to a single limit due to

the fact that the variable ε of the derivative and the Lebesgue measure of the support

of γcε are chosen to be the same. Under the assumption that X and Ecε are disjoint

lim
ε↘0

Ψ(1X + 1Ecε (x))−Ψ(1X)

µ(Ecε )
(4.49)

denotes the set derivative defined in [Mah07b, pp. 380, 381]. Thus, it can be seen

that the set derivative can be defined using approximate identities.

4.2 Secular Functions

In this section the technique for deriving multitarget intensity filters using secular

functions from [Str14e] is presented. First, the definition of a secular function for the

univariate and the multivariate case from [Str14e] is presented. An example for unre-

solved targets is used to demonstrate that the family of pointillist filter encompasses

tracking filters that cannot be represented by a PGFL from P1. Then, the concept of

secular functions is extended to the class of PGFLs P2 defined in (4.11). Afterwards,

secular functions of joint PGFLs are considered and the nth–order factorial moment

of the PGFL of the Bayes posterior point process is derived.
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4 Factorial Moment Derivation of the Bayes Posterior Point Process

4.2.1 Secular Functions on P1

This section follows [Str14e] to present the theory of secular functions for univariate

and multivariate PGFLs.

To begin with, let Ψ is a univariate PGFL given by

Ψ(g) ≡ F
(∫

Y

g(y)q(y)dy

)
, (4.50)

F (z) ≡
∑∞
n=0 anz

n, an ∈ [0, 1], z ∈ C, as defined in [Str14e, Sec. 4], where g ∈ G
and q : Y → R be a PDF on Y which is continuously differentiable at interior

points of Y , except possibly for jump continuities. Here, Y ⊂ Rd, d > 1 be a closed

and bounded subset and c ∈ Y . Furthermore, let γ : Y → R be bounded, non–

negative and Lebesgue–integrable function, that is in particular some B > 0 exists

with |γ(y)| ≤ B <∞, for all y ∈ Y . Then Ψ(g + zγ) : C→ C, considered a function

of z ∈ C, is analytic in an open neighbourhood of the origin. Let {γcλ}λ>0 be a family

of test–functions.

The secular function corresponding to Ψ(g), g ∈ G is defined by

J(α; c) ≡ lim
λ↘0

Ψ(g + αγcλ) = F

(∫
Y

g(y)q(y)dy + αq(c)

)
, (4.51)

where the analyticity of F justifies taking the limit into the integral. Then, it can be

easily observed, that

∂Ψ

∂c
(g) =

dJ

dα
(0; c) ≡ d

dα
J(α; c)

∣∣∣
α=0

(4.52)

holds, which means that the functional derivative of Ψ is identical to the ordinary

derivative of the corresponding secular function J .

Secular functions can also be defined for multiple derivatives. Therefore, according to

[Str14e, Sec. 4.1] let Ψ ∈ P1 and define the secular function of Ψ ∈ P1 by substituting

a test–sequence for a weighted train of Dirac deltas by

J(α; y) ≡ lim
λ↘0

Ψ

g(y) +
m∑
i=1

αiγ
yi
λ (y)

 = Ψ

h(x) +
m∑
i=1

αiδ
ci(x)

 , (4.53)

where y = {y1, ..., ym} , m > 0, α ∈ Cm and F being not a univariate PGF (as in

(4.50)) but a multivariate PGF. Note that the right hand side of (4.53) uses the Dirac

delta as an evaluation operator, not as a function. Then, due to [Str14e, Sec. 4]

Ψy(g) ≡ ∂m

∂y1...∂ym
Ψ(g) =

dm

dα1 · · · dαm
J(α; y)

∣∣∣
α1=...=αm=0

≡ Jα(0; y). (4.54)

Thus, (4.54) shows that the functional derivative with respect to multiple Dirac deltas

is identical to the first order mixed derivative of the corresponding secular function.
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4.2 Secular Functions

This important fact is needed for example in the derivation of a multivariate intensity

function and other summary statistics that are derived by evaluating a simultaneous

differentiation with respect to several directions. For example in the derivation of

the PHD filter [Mah13], [Str13a] the Bayesian posterior point process is differentiated

with respect to impulses at the measurement positions. The notion of the Fréchet

derivative is thus important because it justifies that the derivative from (4.54) is

commutative, that is the order of the derivatives does not play a role.

Secular functions can also be defined in a multivariate fashion. Let therefore

Fmulti(z1, ..., zk) (4.55)

be a multivariate probability generating function (PGF). Then, the multivariate

PGFL is given by

Ψ(g1, ..., gk) = Fmulti

∫
Y

g1(y)q1(y)dy, ...,

∫
Y

gk(y)qk(y)dy

 (4.56)

and the corresponding secular functions is defined by

J(α1, ..., αk; y) ≡ lim
λ↘0

Ψ
(
g1 + α1γ

ci
λ , ..., gk + αkγ

ck
λ

)
. (4.57)

4.2.2 P1 is Not Exhaustive

In Chapter 3 a family of tracking filters is presented that can be derived using point

process theory and PGFLs. It is seen that many well–known filters, called the family

of pointillist filters, can be modeled using point process theory. The following consid-

eration demonstrates that the family of pointillist filter contains tracking filters which

cannot be modeled using the class of PGFLs P1 and why therefore an extension of

the definition of secular functions from P1 to P2 is needed.

The definition of a secular function presented in [Str14e] uses PGFLs that can be rep-

resented by a function of single integrals (see (4.50)). This definition can be extended

to model tracking applications that involve unresolved targets, that is, two or more

targets that the sensor interprets as a single measurement. The general problem of

processing r ≥ 1 unresolved targets is modeled by using the PGFL of a multi–cluster

process, that is

Ψmulti
r (g1, ..., gk) ≡ F

∫
Y

· · ·
∫
Y

g1(y1) · · · gk(yr)q(y1, ..., yr)dy1...dyr

 , (4.58)

where F (z) ≡
∑∞
n=0 anz

n. Let the PGFL Ψr(g) be defined as the superposition of

the multivariate version, that is Ψr(g) ≡ Ψmulti
r (g, ..., g). When writing out (4.58)
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4 Factorial Moment Derivation of the Bayes Posterior Point Process

particularly for r = 2 one obtains

Ψr=2(g) =a1

∫
Y 2

2∏
i=1

g(yi)q(y1, y2)dy1dy2

+a2

∫
Y 4

4∏
i=1

g(yi)q(y1, y2)q(y3, y4)dy1...dy4

+a3

∫
Y 6

6∏
i=1

g(yi)q(y1, y2)q(y3, y4)q(y5, y6)dy1...dy6

+..., (4.59)

which shows that the measurement of each target is always due to exactly r = 2,

measurements that the sensor could not resolve.

When computing the ordinary derivative of the secular function (4.53) of Ψr=2 one

might wonder why these derivatives are well–defined, since products of Dirac deltas

arise. However, this is not a problem, since each factor of a product of Dirac deltas

possesses a unique argument (within the product), which implies that each integral is

evaluated only once by Dirac delta. Note that a product of Dirac deltas can also be

interpreted as a Dirac delta operator that is defined on a Cartesian product space.

In practice it is not known a priori how many targets are unresolved by a sensor, since

the spatial distribution of targets naturally changes dynamically in enhanced target

tracking applications. Therefore, a tracking filter needs to be able to change the

number of unresolved targets also dynamically. However, from the definition (4.59)

it can be seen that such a tracking filter cannot be constructed using Ψr(g), since r

needs to be fixed a priori. A more realistic assumption would be that an arbitrary

upper bound 1 ≤ K < ∞ of unresolved targets is known, but the exact number of

unresolved targets (of a sensor) is unknown. This can be modeled by a PGFL from

P2 by

Ψres(g) =

K∑
n=1

an

∫
Y n

n∏
i=1

g(yi)q(y1, ..., yn)dy1...dyn, (4.60)

where it should be noted that Ψres /∈ P1.

When K =∞ is chosen, the PGFL (4.60) is identical to the PGFL of the generalized

PHD intensity filter [CM12] (see also ΨGenPHD(h, g) in Chapter 3). It is a special case

of a general result given by [Moy62, eqn. (5.3)]. (The special case comes about when

the probability measure Q(n)(·|xk) from [Moy62, eqn. (5.3)] is equivalent to a PDF.)

4.2.3 Extension of Secular Functions to P2

In the following, according to the considerations of Section 4.2.1, we assume the

density fn of the considered PGFLs to be symmetric, continuous, bounded and in
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L1(µ;Xn).

We define for all Ψ ∈ P2 and h ∈ H

J(α;x) ≡ lim
λ↘0

Ψ

h(x) +

m∑
i=1

αiγ
ci
λ (x)

 , (4.61)

where x ∈ X ⊆ Rd, α = (α1, ..., αm)T ∈ Cm, c = (c1, ..., cm)T ∈ Rm, λ > 0 to be the

secular function of the PGFL Ψ. Here, {γciλ }λ>0 is some family of test–functions for

the Dirac delta. First, we are to show that this definition is well–defined, that is we

need to show that the limit for λ ↘ 0 exists. Due to Section 4.1.3 we already know

that the functional derivative with respect to the Dirac delta exists if the symmetric

density f is bounded, continuous and in L1(µ;Xn). Since

Ψ

h(x) +

m∑
i=1

αiγ
ci
λ (x)

 =

∞∑
n=0

f̃c,iλ (n), (4.62)

where

f̃c,iλ (n) ≡an
n!

∫
Xn

n∏
j=1

h(xj) +

m∑
i=1

αiγ
ci
λ (xj)

 fn(x1, ..., xn)dx1...dxn, (4.63)

LDC can be applied analogously to the previous section to f̃c,iλ . For the application

of LDC, it needs to be checked first that f̃c,iλ converges for any c ∈ X m–a.e. to

f̃c(n) ≡
∑
n≥1

an
n!

∫
Xn

n∏
j=1

h(xj) +

m∑
i=1

αiδ
ci(xj)

 fn(x1, ..., xn)dx1...dxn, (4.64)

and second that

|f̃cλ| ≤ g, for some g ∈ l1(C) m–a.e., (4.65)

where l1(C) denotes the complexification of l1(R). Note, that LDC can be applied

to complex–valued functions [Rud87]. Due to the fact that (4.63) can be written as

the finite sum of integrals Condition (4.64) is proven analogously to Lemma 1 and

Proposition 4. The following Lemma proves that Condition (4.65) is valid.

Lemma 5. For a factor Aλ > 0, which only depends on λ, a family of test–functions

for Dirac delta {γciλ }λ>0 and the bounded symmetric density fn, the function g : N→
N defined by

g(n) ≡
n∑
k=0

1

k!(n− k)!
mkRkAkBn−kCn−k, (4.66)
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is in l1(C) and it holds that |f̃cλ| ≤ g m–a.e., where

f̃cλ(n) ≡an
n!

∫
Xn

n∏
j=1

h(xj) +
m∑
i=1

αiγ
ci
λ (xj)

 fn(x1, ..., xn)dx1...dxn (4.67)

and |h| ≤ B, B > 0, C ≡
∫
X |f(x1, ..., xn)|dxi, i = 1, ..., n, |αj | ≤ R, αj ∈ C

j = 1, ...,m and A ≡ sup
x∈Xn

(fn(x1, x2, ..., xn))

Proof. First, we show that |f̃cλ(n))| ≤ g(n) for all n ∈ N. Due to the binomial theorem,

the boundedness of h and an ∈ [0, 1] we obtain∣∣∣f̃cλ(n)
∣∣∣ (4.68)

=

∣∣∣∣∣ann!

∫
Xn

n∏
j=1

h(xj) +

m∑
i=1

αiγ
ci
λ (xj)

 fn(x1, ..., xn)dx1...dxn

∣∣∣∣∣ (4.69)

=

∣∣∣∣∣
n∑
k=0

an
k!(n− k)!

∫
Xn

n−k∏
j=1

h(xj)

 k∏
j=1

m∑
i=1

αiγ
ci
λ (xj)

 fn(x1, ..., xn)dx1...dxn

∣∣∣∣∣
(4.70)

≤
n∑
k=0

1

k!(n− k)!
Bn−k

∫
Xn

∣∣∣∣∣
 k∏
j=1

m∑
i=1

αiγ
ci
λ (xj)

 fn(x1, ..., xn)

∣∣∣∣∣dx1...dxn (4.71)

For the evaluation of (4.71) we could use the multinomial theorem. However, we are

only interested in finding an upper bound of the integral. Note that

∫
Xk

k∏
j=1

m∑
i=1

αiγ
ci
λ (xj)fn(x1, ..., xn)dx1...dxk ≤ mkRkAk

∫
Xk

γciλ (xj)dx1...dxk (4.72)

where |αi| < R, for some R > 0 and i ∈ {1, ..., k}. The question how many terms∏k
j=1

∑m
i=1 αiγ

ci
λ (xj) possesses can be answered by a simple combinatorial considera-

tion. Since for fixed j ∈ {1, ...k} each summand of
∑m
i=1 αiγ

ci
λ (xj) yields mk−1 terms,∏k

j=1

∑m
i=1 αiγ

ci
λ (xj) possesses mk terms.

The left (n− k)–integrations yield Cn−k. Thus, we obtain

|f̃cλ(n)| ≤ g(n) (4.73)

for all n ∈ N, which proves that |f̃cλ| ≤ g m-a.e.
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Second, it holds that

g(n) ≡
n∑
k=0

1

k!(n− k)!
mkRkAkBn−kCn−k (4.74)

=
1

n!

n∑
k=0

(
n

k

)
(m ·R ·A)k(B · C)n−k (4.75)

=
1

n!
(m ·R ·A+B · C)n (4.76)

due to the binomial theorem and thus

∞∑
n=0

|g(n)| = exp(m ·R ·A+B · C) <∞, (4.77)

which proves that g ∈ l1(R).

Hence, the extension of secular functions from P1 to P2 is proven. and thus the theory

of secular functions can be applied to all members of the family of pointillist filters

presented in Chapter 3.

4.2.4 Secular Functions for Joint PGFLs

This section follows [Str14e, Sec. 4.2] and studies secular functions for joint PGFLs.

Joint PGFLs are defined in Sections 2.8 and 2.9. Let Ψ(g, h) be a joint PGFL from

the extension of P1 to two arguments, where h : X → C and g : Y → C are the cor-

responding non-negative, bounded (by one) and Lebesgue–integrable test–functions.

To obtain the secular function of the joint PGFL, the simultaneous perturbation

defined in [Moy62, Eqn. (4.11)] is applied by defining

g(y) ≡
m∑
i=1

αiδ
yi(y), y ∈ Y (4.78)

h(x) ≡ 1 +

n∑
j=1

βjδ
xj (x), x ∈ X, (4.79)

where α = (α1, ..., αm) ∈ Cm and β = (β1, ..., βn) ∈ Cn. For m = 0 and n = 0 the

sums are defined to be zero. The secular function corresponding to the joint PGFL

is defined by

J(α, β; y, x) ≡ Ψ

 m∑
i=1

αiδ
yi(y), 1 +

n∑
j=1

βjδ
xj (x)

 (4.80)

for the PGFLs studied in [Str14e]. By the application of the same arguments used in

Section 4.2.3, secular functions of joint PGFLs can be extended to joint PGFLs with a
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density f that satisfies the respective conditions (f ∈ L1(µ;Xn) bounded, continuous

and symmetric).

According to Section 4.2.3 the ordinary derivatives of J are identical to the functional

derivatives of the PGFL Ψ, that is,

Jαβ(α, β; y, x)|α=0,β=0 = Ψyx(g, h)|g(·)=0, h(·)=1. (4.81)

4.2.5 Example: PHD Filter Update Equation Derivation Using Secular Func-

tions

In the following, the applicability of secular functions is demonstrated exemplary at

hand of the PHD filter, a member of the family of pointillist filters presented in Section

3.4.2. To this end, this section follows [Str14e, Section 5.1] and shows how the PHD

filter can be derived via ordinary differentiation. According to Section 3.4.2 the joint

target–measurement point process has the PGFL

ΨPHD(h, g) = exp

(
−Λ−N + Λ

∫
Y

g(y)pΛ(y) dy

+N

∫
X

h(x)µ(x)

(
a(x) + b(x)

∫
Y

g(y)p(y|x) dy

)
dx

)
. (4.82)

Using definition (4.80) together with the test–functions defined in (4.78) and (4.79)

the corresponding secular function is given by

J(α, β; y, x) =K exp

 m∑
i=1

αi

(
ΛpΛ(yi) +N

∫
X

p(yi|x)b(x)µ(x)dx

)

+ N

 n∑
j=1

βja(xj)µ(x) +
m∑
i=1

n∑
j=1

αiβjp(yi|xj)b(xj)µ(xj)


 , (4.83)

where

K ≡ exp
(
−Λ−N

)
(4.84)

is a constant. First, the ordinary derivative of (4.83) for n = 1 with respect to α

yields

Jα(0, β1; y, x1) ≡ dm

dα1 · · · dαm
J(α, β1; y, x1)

∣∣∣
α1=···=αm=0

=J(0, β1; y, x1)

×
m∏
i=1

(
ΛpΛ(yi) +N

∫
X

h(x)p(yi|x)µ(x)dx+ β1p(yi|x1)b(x1)Nµ(x1)

)
,

(4.85)
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where 0 = (0, ..., 0) ∈ Cm. Second, the derivative with respect to β1 evaluated at

β1 = 0 gives

m[1](x1|y) =
1

Jα(0, 0; y, x1)

d

dβ1
Jα(0, 0; y, x1)

=a(x1)Nµ(x1) +

m∑
i=1

p(yi|x1)b(x1)Nµ(x1)

ΛpΛ(yi) +N
∫
X
p(yi|x)a(x)µ(x)dx

, (4.86)

which is the update equation of the PHD intensity filter. The derivation of (4.86)

using functional derivatives can be found in [Mah07b] and also in [Str13a].

The (ordinary) differentiation of the secular function defined in (4.83) can be easily

done analytically for the PHD filter. However, for PGFL with a complex structure

or for a reduction of the numerical complexity other methods for computing the

derivatives of secular functions are of interest. The following section gives a short

overview of some options to carry out the differentiation.

4.3 Methods for Computing Derivatives of Secular Functions

Due to the previous sections the application of the theory of secular functions from

[Str14e] to the family of pointillist filters is mathematically justified. Therefore, the

computation of the summary statistics needed for the implementation and applica-

tion of pointillist filters can be done by ordinary instead of functional differentiation.

This section follows [Str14e], [Str14a] and [Str15] and gives an overview of existing,

well–known methods that can be used for this Analytical Step.

In principal, however, every (exact or approximating) approach for ordinary differen-

tiation can be used for deriving the summary statistics of a PGFL.

4.3.1 Application of Cauchy’s Residue Theorem – Saddle Point Methods

In [Str15] saddle point methods for the JPDA and related filters are proposed. This

method relies on Cauchy’s residue theorem [FS09, p.236] and offers an approach to

derive particle implementations of pointillist filters. In the following we study the

approach analogously to the considerations made in [Str15].

Consider the complex–valued function

α 7→ J(α;x) ≡ Ψ

h(x) +
m∑
i=1

αiδ
ci(x)

 , (4.87)

where x ∈ Rn, n ≥ 0, α = (α1, ..., αm)T ∈ Cm, Ψ ∈ P2 and h ∈ H. Then, J(·;x) is

analytic in some open region of the complex plane Ω ⊂ Cm containing (0, ..., 0)T ∈ Cm

[Moy62, Sec. 4]. Denote by Ω1, . . . ,Ωm ⊂ C the projections of the open region Ω
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4 Factorial Moment Derivation of the Bayes Posterior Point Process

from Cm to C. Thus, Cauchy’s coefficient formula [FS09, p.236] can be applied to

α 7→ J(α;x), x ∈ Rn. Hence, the ordinary derivative of J(·;x) is given by

dm

dα1 · · · dαm
J(α;x)

∣∣∣
α1=···αm=0

=
1

(2πi)m

∫
C1

. . .

∫
Cm

J(ζ;x)

(α1 − ζ1)2 . . . (αm − ζm)2
dζ1 . . . dζm, (4.88)

where C1, . . . , Cm ⊂ C are simple loops of Ω1, . . . ,Ωm encircling 0 ∈ C, respectively.

Note, that due to the concept of secular functions and Cauchy‘s coefficient theorem

(which is an implication of Cauchy’s residue theorem) the first–order factorial mo-

ment can be determined by contour–integration. Furthermore, the numerical approx-

imation of contour-integral with saddle point methods has been extensively studied

(see [Ble12], [FS09]) and can be used to evaluate (4.88) numerically. A derivation

of the JPDA filter using saddle point methods and more details on the approach is

presented in [Str15].

4.3.2 Classical Finite Differences

Let M be the total number of derivatives let U : Rn → R be a real–valued function.

Then the finite difference approximation of the cross–derivative of U at (0, ..., 0) ∈ RM

is given by [Str14e, Section 6.1]

dMU

dx1 · · · dxM
(0, ..., 0)

≈ 1

ε1 · · · εM2M

1∑
σ1,...,σM=0

(−1)σ1+...+σMU((−1)σ1ε1, ..., (−1)σM εM ), (4.89)

where the increments εi > 0, i = 1, ...,M should small enough to guarantee a good

approximation.

This approach might be impractical for large values ofM and the problem of underflow

can arise due to the alternating signs [Str14e].

4.3.3 Maclaurin Series Expansion

For the examples studied in [Str14e, Sec. 5.] the PPPs are used, which implies that

corresponding secular function takes the form

J(α, β1; y, x1) = c0 exp(cTα+ π(α+ β1π(α;x1))), (4.90)

where π : RM × X → R and X ⊂ Rn, n ≥ 0 is the target space. Furthermore,

π(a) ≡
∫
X
π(a;x)dx, x ∈ X, a ∈ RM . Then, expanding the function π in a Maclaurin

(Taylor) series at 0 ∈ RM yields

π(a;x) ≈ π(0;x) + [∇π(0;x)]Tα+
1

2
αT [∇2π(0;x)]α, (4.91)
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where ∇π(0) ≡ (∇πl(0;x) : l = 1, ...,M) ∈ RM and ∇2π(0;x) ∈ RM × RM are

the gradient and the Hessian matrix of π(α;x) evaluated at 0 ∈ RM , respectively.

Substituting the first order Maclaurin expansion into the secular function implies

that the intensity is given by

m[1] = π(0;x1) +

M∑
l=1

∇πl(0;x1)

cl +
∫
X
∇πl(0; s)ds

. (4.92)

The details can be found in [Str13a, Sct. 6.2].

4.3.4 Automatic Differentiation

In [GLLZ14] automatic differentiation (AD) methods are presented, which evaluate

the derivatives of a function without finding the symbolic derivative. AD methods

are exact and can be used to compute the first–order factorial moment point–wisely,

e.g., for the determination of particle–weights [Str14a].

4.4 Conclusion and Future Work

It is shown under general assumptions that a mathematically correct definition of

the functional derivative with respect to the Dirac delta exists. The definition is

based on a sequence of regular distributions, called approximate identities. It is

closely related to the considerations on the constructive definition of the Radon-

Nikodym derivative from [GMN97, p.145], but proven in a different way. The close

relation to Mahler’s definition of the set derivative [Mah07b] is presented. Proofs

verify its definition for a large class of PGFLs, which is suitable for almost all practical

applications in multitarget tracking. Furthermore, it is shown that the concept of

secular functions from [Str14e] can be extended to this larger class of PGFLs. Thus,

in particular it is shown in a mathematically correct way, that the theory of secular

functions can be applied to the family of pointillist filters presented in Chapter 3. This

implies that numerical approximation schemes for ordinary differentiable functions

like saddle point methods, Maclaurin series expansion, finite differences, etc. and

exact methods like automatic differentiation can be applied to almost all practically

relevant multitarget tracking filters.

Future work will focus on the evaluation of numerical approximation methods for the

derivation of pointillist filters.
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Part II

An Application to Emitter Tracking under

Multipath Propagation
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CHAPTER V

The Challenge of Blind Mobile Localization

The localization and tracking of mobile electromagnetic emitters, e.g., mobile phones,

in an urban environment is an important and ambitious challenge. For a large class

of safety, emergency and security applications the accurate localization of the emitter

position, also referred to as mobile station (MS), is inevitable. Furthermore, the posi-

tioning and tracking of mobile electromagnetic emitters in cellular networks is implied

by commercial interests [Alg10]: Fleet operations with delivery, taxi, bus, car shar-

ing [Zha00], location sensitive billing [ZGL02], the design and architecture of wireless

systems [HJL04], [ALLH02], [WHBL00], [WSL+04], [Lan99], location based network

access, radio resource management, road traffic management [BD00], route guidance

and navigation are only a few examples which make the localization of mobile emit-

ters in cellular networks a highly developed research field of current interest [Alg10].

The mentioned approaches for positioning in cellular networks have in common that

they make explicitly use of the available cooperation between the electromagnetic

emitter, the network (provider) and the observer station (OS). However, if the local-

ization has to be done passively, that is, without emitting a signal by the OS and

without any cooperation in between the MS, the OS and the network (provider) the

problem is called the blind mobile localization and tracking of mobile electromagnetic

emitters (BML) [Alg10]. This implies that the OS has to determine the location of

the MS by only inspecting the transmitted electromagnetic waves. Possible fields of

application are civilian security, safety and emergency scenarios, where the object of

interest is the location of a non–subscribed phone user. Besides the term “blind”

BML is hindered by an additional aspect, which complicates the problem. Typically,

a BML scenario is located within a densely built–up area. Thus, due to physical

propagation effects like reflection, diffraction and scattering the OS receives multiple

signals that have traveled along different paths and which are called multipaths (see

Figure 5.1). This implies that the standard multitarget tracking assumption, that

is, one target generates at most one measurement is not valid in BML and therefore
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complicates the derivation of an appropriate tracking algorithm.

In this chapter the fundamentals of BML are introduced and open questions in exist-

ing work are identified to motivate the contribution of Chapters 6 and 7.

This chapter is structured as follows. In Section 5.1 the fundamentals of BML are

formulated. First, the boundary conditions of BML are explained in Section 5.1.1.

Then, properties of the path propagation and methods for simulating the propaga-

tion of the radio channel, that is, ray tracing simulations and their limitations for the

application within BML data fusion algorithms are explained in Section 5.1.2. The

frameworks of BML for simulated and real world data, consisting out of a mobile

antenna array, algorithms for blind channel estimation, a sophisticated ray tracing

simulation and the sensor data fusion algorithms, which are studied in this thesis,

are presented in Section 5.1.3. In Section 5.2 the related work on BML is discussed.

Finally, limitations and open questions of existing work are identified and used to

formulate and motivate the main contribution of the second part of this thesis in

Section 5.3.

5.1 Fundamentals of Blind Mobile Localization

BML is a challenge that needs to be solved using passive and non–cooperative tech-

niques for localization. In [Alg10, Section 2.1] a detailed taxonomy of localization

methods is presented and BML is situated within this description. The boundary

conditions of BML are presented next in Section 5.1.1, following the precise study

presented in [Alg10, Section 2.2]. The application of ray tracers for the incorporation

of context information is discussed in Section 5.1.2. Finally, a complete overview of

the BML frameworks studied in this thesis to solve the task of BML is presented in

Section 5.1.3.

5.1.1 Boundary Conditions of Blind Mobile Localization

BML is a short, but not exact acronym for the description of the studied challenge.

According to [Alg10, Section 2.2] its correct definition is formulated by the statement

”Blind localization/tracking of a mobile station in urban scenarios using a

single moving observer station equipped with an antenna array.”

The scenario of BML is visualized in Figure 5.1. Four key ingredients are contained

in this problem statement, which are used in [Alg10, Section 2.2] to characterize the

boundary conditions of BML in the following way.

1. ”Blind localization/tracking...” The OS locates and tracks the MS position in

a passive (without emitting a signal) and non–cooperative way (without any coopera-

tion between the MS and the network provider or the OS). This yields to the fact that

96



5.1 Fundamentals of Blind Mobile Localization

Figure 5.1: Visualization of the BML Scenario. A single OS equipped with an antenna array
tries to localize and track an MS using only the received electromagnetic waves (multipaths).
Due to an explicit exploitation of the multipaths via context information coming from a ray
tracer, a BML tracking algorithm is able to track and localize an MS under LoS as well as
NLoS conditions.

only the physically received electromagnetic signal is processed. Hence, blind channel

estimation techniques [HKT15] have to be applied for the multipath characterization.

Since the signal is not known, the absolute lengths and runtimes of the signal’s paths

cannot be estimated. Instead, a multipath is characterized (among other quantities

like the azimut angle of arrival (AoA) and elevation angle of arrival (EoA)) by its

relative time of arrival (RToA).

2. ”...of a mobile station...” The target, which is an electromagnetic emitter

and referred to as MS, moves, which implies that not only localization but also track-

ing algorithms have to be derived. The electromagnetic waves are emitted radially

by the MS. According to [Alg10] BML multitarget scenarios reduce without loss of

generality to single target scenarios, due to the fact that the multipaths emitted by

each target are separable with respect to their signal form. However, in case of non–

separability all target tracking algorithms presented in Chapter 6 can easily be applied

to multitarget scenarios.

3. ”...in urban scenarios...” The challenge of BML is situated in an urban environ-

ment, that is, in a densely built–up area. Since the radially emitted electromagnetic

signal of the MS is transformed by reflection, diffraction and scattering during its
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propagation, the antenna array of the OS receives multiple signals, which are called

multipaths. In conventional localization techniques multipaths deteriorate the esti-

mation process and thus target state estimates are only valid under line of sight (LoS)

conditions, which implies that such approaches have a limited applicability in urban

environments. In contrast to that, BML explicitly exploits the received multipaths by

the incorporation of context information of the urban environment in terms of a ray

tracer prediction. Due to the application of assignment techniques BML data fusion

algorithms are capable to localize and track the MS either under LoS or non–line of

sight (NLoS) conditions [Alg10].

4. ”...using a single moving observer station equipped with an antenna ar-

ray.” A single moving OS implies that the ray tracing prediction needs to be done

continuously, that a mission planning (an online estimation of the optimal OS route

in terms of target state estimation accuracy) can be performed and that the carried

antenna array has to be rather small. An array of antennas has to be used to resolve

the multipaths and to characterized them in terms of their AoA, the EoA and the

RToA. However, the number of resolvable multipaths is restricted by the number of

elements of the antenna array. For example, the antenna array used for recording the

real world data presented in Section 6.4 has five elements. Details on antenna arrays

can be found in [Bro12] and [Alg10].

In Chapter 6 and Chapter 7 the purpose is to answer open questions with respect to

the aspects of target tracking in a BML scenario. Therefore, the processing of the

signal, that is in particular, the blind channel estimation of the received electromag-

netic signal to characterize the multipaths in terms of their AoA, RToA and the EoA

is outside the scope of this thesis. For details on the blind channel estimation the

interested reader is referred to the literature. An overview over blind channel estima-

tion techniques is given in [ZT95] and [TP98]. The parameter estimation used within

this thesis is presented in [HKT15], which is based on [GS96], [YS94] and [TXK94].

5.1.2 Path Propagation and Ray Tracing

According to the boundary conditions given above, the localization and tracking of

an electromagnetic emitter in an urban environment implies that the emitted signal is

transformed into multiple signals (each characterized by AoA, EoA and RToA). The

multipath propagation is caused by essentially three physical effects, that is, reflection,

diffraction and scattering. These effects are described in [Alg10, Section 2.5.2] and

standard literature on the propagation of electromagnetic waves. The mathematical

model of the split–up signal is usually given by the impulse response, which consists

out of a sum of Dirac pulses (see [Alg10, Equation (2.1)]). A detailed discussion on

the impulse response can be found in [Alg10] and the references cited therein.
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Figure 5.2: Visualization of the field strength prediction of a ray tracing simulation: For a
given observer (black cross) – mobile station (antenna) constellation the color at the emitter
location indicates the received field strength at the observer. Three multipaths are visualized
(black solid, block dotted, gray) and the interaction points are plotted as black dots c© 2013
IEEE.

Ray tracers are well established in the field of network planning and the system

design of mobile communication systems. Based on a city map, a ray tracer pre-

dicts the set of multipaths that are emitted by the MS and received by the OS.

The ray tracer used for the evaluation of the methods proposed in Chapters 6 and

7 is computationally efficient and accurate in its prediction [HWLW03]. It is based

on [HWLW99], [WHL99], [HWLW03] and the fundamentals given in [Gla89]. Figure

5.2 shows the ray tracing prediction in terms of the received field strength in an urban

environment including a subset of multipaths for a fixed MS–OS constellation. Figure

6.8 visualizes a ray tracing prediction in terms of the received field strength for the

city of Erlangen.

The ray tracer prediction is based on a city and building map of the investigated sce-

nario. Problems for any BML localization and tracking algorithm arise if these maps

do not represent the reality, which might happen due to inaccurate or non–realistic

models of the buildings or the city map. But even if the map information of the ur-

ban environment is perfect, static and moving obstacles like cars, trucks, pedestrians,

trees, etc. cannot be modeled by the ray tracer and deteriorate the localization and

tracking result. Additionally, several challenges for a correct ray tracer prediction

are given by the receiver side. First, the fact that in a BML scenario a mobile OS

is used implies that the antenna array cannot be arbitrary large. Thus, the number

of elements and therefore also the number of resolvable multipaths is restricted. Fur-
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Figure 5.3: BML framework used for simulated (single–target) scenarios. Based on the true
trajectory of the MS (ground truth), a fixed OS position and the city and building map of
the urban environment the ray tracer predicts for each time instance a set of electromagnetic
waves. Then, the set of multipaths is used as input for the emulation of an antenna array,
which creates the set of measurements for the data fusion algorithm. Within the data fusion
algorithm the ray tracer prediction is used for the evaluation of the assignment–based like-
lihood function. Ray tracing visualization: c© 2015 AWE Communications. OS model: c©
2015 Saab Medav Technologies GmbH. Data fusion: c© 2013 IEEE.

thermore, due to fading certain predicted multipaths might not be received. All these

effects have to be modeled by a ray tracer to guarantee an accurate prediction of the

path propagation.

5.1.3 Blind Mobile Localization Framework

The BML frameworks studied in this thesis are closely related to the frameworks

proposed in [Alg10, Figure 2.18] and consist out of four components. First, an antenna

array with five–elements, which is carried by the mobile OS together with a receiver

and a direction finding software is used. Obviously, this component is only needed if

real world experiments are carried out. Within the simulation framework the antenna

array output is emulated. Second, a blind channel estimation algorithm, presented

in [HKT15], is applied to extract a set of multipaths out of the received signal. Due to

the fact that no cooperation between the MS and the OS is available, the estimation

characterizes a multipath by its AoA, RToA and the EoA. This component is used

within the real world data framework to extract the multipaths. The third component

is the ray tracer, which predicts for each OS–MS constellation the set of multipaths

based upon the city and building map of the investigated environment. It finds its

application within real world scenarios as a database used by the data fusion algorithm

100



5.1 Fundamentals of Blind Mobile Localization

Figure 5.4: Processing chain of a real world BML scenario. After the electromagnetic
signal is received by the antenna array, that is carried by the mobile OS, the received signal
is processed by the blind channel parameter estimation proposed in [HKT15], which then
outputs the set of received multipaths to the data fusion algorithm. The localization and
tracking is done analogously to the BML framework used for simulated scenarios. Ray tracing
visualization: c© 2015 AWE Communications. OS model, parameter estimation visualization:
c© 2015 Saab Medav Technologies GmbH. Data fusion: c© 2013 IEEE.

to model the likelihood function, that is, the assessment of hypothetical MS locations.

For the simulation BML framework the ray tracer is additionally used to generate

multipaths. For each time instance the ray tracer predicts the set of multipaths for

the true position of the MS and the OS location. This set of true multipaths is then

used as an input for the antenna emulation. Finally, the fourth component of the BML

framework is the tracking algorithm studied in Chapter 6. It fuses the information

gathered by the other three components and yields an estimate of the target position

(plus some additional information like the number of false multipaths, the probability

of the target’s existence and an estimation of the covariance matrix, see Chapter 6).

The data fusion is essentially based upon the idea that the hypothetical MS position

which produces the set of predicted multipaths that fits best to the set of received

multipaths is the most likely MS location [Alg10]. This incorporation of context

information in terms of the ray tracer prediction distinguishes this approach from

classical direction finding methods that suffer from multipath propagation and do

not work under NLoS conditions. The approach from [Alg10] followed in this thesis

exploits the multipath propagation and works either under LoS or NLoS conditions.

In the following, the part of data fusion is studied. A detailed investigation of the

remaining components of the BML framework is outside the scope of this thesis. First,

related work is discussed and used to formulate the open questions that are answered
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in the Chapters 6 and 7.

5.2 Related Work

Since conventional direction finding approaches use a single AoA, multipaths dete-

riorate the localization result or make it even impossible to estimate the position of

the MS. In contrast to such classical localization approaches, several branches of the

multitarget tracking community study how multipaths can explicitly be incorporated

into appropriate data fusion algorithms. In the following, existing work of emitter

localization and tracking under the influence of multipath propagation is presented.

It is separated into non–cooperative and cooperative approaches.

5.2.1 Non–Cooperative Methods for Tracking and Localization Under Mul-

tipath Propagation

In [Alg10] and the related papers [ADKT08b], [ART04], [ADKT08a], [ADKT06a],

[ADKT06b] the challenge of BML is studied fundamentally. The problem of BML is

approached by incorporating higher–level information about the urban environment.

For a given MS–OS constellation the fusion algorithm possesses on the one hand the

measured multipaths and on the other the predicted multipaths of the ray tracing

simulation. After computing the cost (or distance) matrix of normalized distances

between the path–parameters for the two sets of predicted and measured multipaths,

a standard assignment algorithm like the Munkres algorithm [BL71] determines the

best match between the two sets of multipaths using the cost matrix. Based on this

assignment, likelihood functions for essentially three localization and tracking algo-

rithms are presented in [Alg10]: First, a simple point estimation algorithm maximizes

a specific likelihood function for a set of multipaths. Second, the sampling impor-

tance resampling (SIR) filter is applied to the problem: Each particle is considered

as a hypothetical MS location and the emitted multipaths are determined by the ray

tracer for each particle and a fixed OS. Then, a likelihood function which takes a

probability of detection and a clutter density for multipaths into account, is used for

updating the particle weights. Finally, an MHT–based estimation approach is pro-

posed. By considering all possible subsets of the measurement set the subsets with

the largest probability are selected and the hypotheses which pass a threshold test

are evaluated. The hypothesis with the largest likelihood value is then used as an es-

timate of the target location in the current iteration. To keep the computational load

moderate several pruning and merging strategies are discussed. The derived tracking

approaches are verified using synthetic and real world data of single target scenarios.

The idea of the assessing hypothetical emitter positions proposed in [Alg10] and the

corresponding papers is closely related to the idea of fingerprinting, which is first

carried out for BML in [KST06]. There, AoA fingerprints, which are pre–calculated
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by a ray tracer for a single OS, are used to perform the state estimation of the target.

Furthermore, in [Alg10] a standard MHT filter is proposed for performing a parameter

tracking, which is closely related to the ideas of track before detect (TBD), that is,

the proposed algorithm increases the probability of detection and decreases the false

alarm probability.

In [VGL+14], [VGLL12], [VGLL13] the authors present localization algorithms for

BML–scenarios. In [VGL+14] and [VGLL12] a localization using a multipath compo-

nent distance (MCD) based fingerprinting technique is described. The authors therein

assume that the position of the MS could have already been roughly estimated by the

cellular network. The fingerprinting techniques used in these works concentrate on a

small field of view and a high accuracy of the localization. Analogously to [Alg10] a

ray tracer is used to predict the path propagation between the MS and multiple base

stations (BS). Given the estimated paths, which are obtained by a high resolution

algorithm (HRA) and the database of the predicted paths, the MCD [CCS+06] is

used to determine the most likely cell, that is, the most likely MS position. Then,

a pairing procedure, where the MCD is computed for all predicted and estimated

pairs and synchronization are performed. The time synchronization is needed since a

comparison of the RToAs is not recommended by the authors. This is due to the fact

that some of the predicted paths may be not received. In [VGLL13] the polarization

diversity is incorporated as additional factor into the MCD [CCS+06] to improve the

localization. However, no tracking is performed and an estimation of the position of

the MS needs to be available for initialization purposes.

In [OSD15] a time difference of arrival (TDoA) approach is proposed to solve the prob-

lem. There, the last scatterers before the emitter are modeled as virtual receivers.

The measurements of these virtual receivers are then processed by a TDoA approach.

However, this innovative work has some drawbacks. First, at least five interactions,

that is, five multipaths are needed to perform a localization in three dimensions. This

might not always be the case (small antenna arrays might not produce such a large

number of measurements). Furthermore, only reflections can be used to model the

virtual receivers, that is, the effect of scattering or diffraction cannot be considered.

In [SD13b], [SD13a], [SNDE14], [SSAA12] the exploitation of multipaths arising when

using an active radar to localize a target is studied. Therefore, the environment is

assumed to be known exactly. Several performance bounds for different scenarios are

derived therein.

Multipath measurements also occur in over Over–The–Horizon radar (OTHR) scenar-

ios. There, ionosphere layers act as reflectors and enable the radar to localize and track

targets that are behind the horizon. In [RBSW15a] and [RBSW15b] two ionosphere

layers are assumed and the maximum likelihood probabilistic multi hypothesis tracker

(ML–PMHT) is proposed to solve the problem. In these works a simple ionosphere

model is used to model the path propagation. However, also ray tracers can be used
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to model and predict the multipaths for an OTHR scenario with an enhanced iono-

sphere model. Other methods for solving OTHR scenarios are cited in [RBSW15a].

They are given by the multipath PDA (MPDA) algorithm [PE98], the multiple de-

tection multi hypothesis tracker (MD–MHT) [SCAS13], the PMHT [CDC03] and the

multiple model unified PDA (MM–UPDAF) [CD03].

In multistatic active sonar scenarios multiple transmitter (Tx) and receiver (Rx) are

used to localize and track the target underwater. The multistatic setup enables to use

different aspect angles for the detection of the target and to improve the estimation

quality by a fusion of the single measurements [Bro12]. Thereby, reflections of ob-

jects underwater imply multipath propagation. The incorporation of these multipaths

in multistatic sonar applications is considered in several publications. In [Mic15] a

single or multiple known Rx locations are assumed and the Tx locations and the

points of reflection are estimated. The estimation of the Tx locations, given known

Rx locations and reflection points is studied in [MBE14]. The estimation of a sin-

gle Rx location given known points of reflection and a known single Tx position is

investigated in [DBE11a] and [DBE11b].

5.2.2 Cooperative Methods for Tracking and Localizing Targets Under Mul-

tipath Propagation
The study of methods in cooperative scenarios under multipath propagation is highly

developed and their study is outside the scope of this work. However, the following

work on cooperative localization and tracking is remarkable and of particular interest.

In [Li14] several multipaths are processed that are characterized by the time of ar-

rival (ToA) and the AoA (scenario using a monostatic multiple–input multiple–output

(MIMO) radar) or the AoA and the exact path length (multistatic range–based sce-

nario). This information is available, since the waveform emitted by the MS is known

exactly. The authors propose a combined algorithm that performs simultaneously tar-

get tracking, data association and multipath modeling in a Bayesian estimation frame-

work and is called simultaneous target and multipath positioning (STAMP) [LK14].

Within the STAMP algorithm the multipath parameters are modeled using a single–

cluster PHD by describing a multipath parameter as an RFS. The target process is

then defined as a parent process, that is updated via a particle or Kalman filter.

The multipath channel parameter is formulated as daughter process and applied by

a Gaussian Mixture implementation of the PHD filter. The innovation of this work

on cooperative methods is to perform the target tracking and the signal processing

simultaneously.

5.3 Limitations and Open Questions of Existing Work
As mentioned in Section 5.2.1 the localization and tracking under the influence of mul-

tipath propagation is of interest in various fields of research. By identifying limitations
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and open questions in the existing work this section motivates the main contributions

of Chapters 6 and 7.

In [Alg10] standard multitarget tracking approaches like the sampling importance

resampling SIR and the MHT filter are combined with an appropriate probabilistic

likelihood function to track electromagnetic emitters under the influence of multi-

path propagation. However, the application of other enhanced pointillist filters from

Chapter 3 to BML has not been done so far. Especially filters that do not use target

labels, that is, pointillist filters performing target superposition (see Section 3.4) are

of particular interest. Furthermore, the derivation and definition of additional likeli-

hood functions promises an improvement in solving the task of BML. Therefore, in

Chapter 6 pointillist filters applying target superposition (see Section 3.4) and novel

likelihood functions are proposed to solve the challenge of BML. The methodologies

are compared using synthetic and real world data.

In [Alg10, Section 9.2] the author mentions that future research should investigate

the verification of data fusion algorithms for BML using real world scenarios with

a smaller bandwidth than 120 MHz. An evaluation of the proposed tracking filters

from this work is carried out using real world data, where the transmitted signal has

a bandwidth that is smaller than 5 MHz, in Section 6.4.

In [Alg10, Section 7.3] a standard track–oriented MHT approach to perform a parame-

ter tracking in the measurement space is given using a standard handling of hypothesis

in all parameters. The author mentions that the application of multipath tracking is

optional and ... not recommended in situations with high clutter and dense multipath

components. Since then the multipath tracks can not be resolved or too much false

tracks arise, which might produce even deterioration of the final localization result.

New parameter tracking algorithms need to be enhanced considering these factors.

Furthermore, the authors from [VGL+14], [VGLL12], [VGLL13] mention that a pro-

cessing of the RToA characterization of multipaths is not recommended. Instead, they

perform a time synchronization. Thus, in Chapter 7 the issue of clutter multipaths,

that are received before the first target related multipath is identified and enhanced

MHT filtering equations are derived via a marginalization over clutter hypothesis.

The proposed methods are compared to a standard track–oriented MHT algorithm

similar to the one applied in [Alg10, Section 7.3] using synthetic data.
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CHAPTER VI

Blind Mobile Localization Using PHD Intensity

Filters

In the following, standard (see Section 3.4.2) and generalized (see Section 3.4.4) PHD

intensity filters are applied to the challenge of BML. As mentioned in the previous

chapter the members of this subclass of pointillist filters, which superpose targets,

have not yet been applied (to the knowledge of the author) to track electromagnetic

emitters passively and without any cooperation under multipath propagation. The

fact that the standard target–oriented measurement model, that is, one target gener-

ates at most one measurement per sensor scan is not valid for the challenge of BML

implies that either an adaption of multitarget tracking filters, which use a standard

target–oriented measurement model to the given boundary conditions is needed or fil-

ters have to be apply which employ a generalized target–oriented measurement model,

that is enabling a target to generate more than one measurement per sensor scan.

As mentioned in the previous chapter the challenge of BML bears several chal-

lenging tasks. This chapter focuses on achieving sequential Monte Carlo (SMC)–

implementations of different versions of PHD intensity filters. This comprises the def-

inition of the observation space, the adaptation of existing target extraction schemes,

different definitions of appropriate likelihood functions, approximations of numerically

complex update equations, solutions to specific implementation issues and numerical

comparisons of the different approaches using simulated and real world data.

This chapter is structured as follows. In Section 6.1 SMC–implementations of PHD

intensity filters which use a standard target–measurement model (see Section 3.4.2)

are applied to the task of BML by introducing a global assignment–based likelihood

function and a generalized target state extraction scheme based on the particle group-

ing approach presented in [RCV10], which takes into account the mismatch in the

target–oriented measurement model. An adaption of the decomposition of a likeli-

hood function presented in [SW09] which is linear in target space to BML is presented
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in Section 6.2. Furthermore, both likelihood functions are compared within an SMC-

implementation of the adapted standard ifilter. Afterwards, Section 6.3 presents the

generalized intensity filter and a numerical comparison to the generalized PHD fil-

ter [CM12] is shown. Then, approximations of the update equation of generalized

PHD intensity filters are derived which reduce the numerical complexity of the filter

update without assuming a joint distribution of the measurements in the parameter

space. Then, the generalized PHD filter is compared in a numerical example to the

adaption of the standard iFilter in Section 6.3.4.3. The same numerical comparison

is done using real world data in Section 6.4. Finally, the conclusions are drawn and

future work is discussed in Section 6.5.

Own publications on this subject: The adaption of the PHD intensity filter to

BML using a generalized target state extraction scheme from Section 6.1 is pub-

lished in [DGK13a] c© 2013 IEEE. In [DGK14a] c© 2014 IEEE the application of a

decomposition of a likelihood function that is linear in target space to BML from

Section 6.1 is published. The generalized intensity filter presented in Section 6.3 and

Section 3.4.4 is derived for the first time in [Deg14] c© 2014 IEEE. In [DGK14b] c©
2014 IEEE and [DGK15] the derivation of the numerical approximation for gener-

alized PHD intensity filters is given. The application of the generalized PHD filter

to BML and a numerical comparison to the adaption of the standard intensity filter

from Section 6.1 is published in [DGK15].

6.1 Standard SMC–PHD Intensity Filter Using a Generalized Extrac-

tion Scheme

In this section SMC–implementations of filters that propagate the intensity (or PHD,

first order moment, etc.) like the iFilter [SKSC12] or the PHD–filter [RCV10] are

applied to BML. Such filters are referred to as PHD intensity filters according to

Section 3.4.2 and the fact that under certain parameterizations both filters yield the

same update of the first order moment. Different definitions of the observation space

of a PHD intensity filter within the BML framework are presented. Afterwards,

a target state extraction scheme, called grouping of particles, which is originally

presented in [RCV10], is generalized for processing multipath measurements in an

SMC–implementation of the PHD intensity filter. Finally, the generalized grouping

of particles approach is compared in a numerical evaluation to a standard target state

extraction scheme, using a single target scenario and a ray tracing simulation.

This Section is organized as follows. Section 6.1.1 describes the problem formulation.

A definition of the probabilistic likelihood function from [Alg10] is given in Section

6.1.1.2. In Section 6.1.1.3 different observation space definitions are presented. Issues

concerning the distinct definitions, the problem of target state estimation and the
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connection between observation and target space are discussed in Section 6.1.1.4. In

Section 6.1.2 a generalization of the grouping of particles approach from [RCV10] is

developed. Section 6.1.3 studies different methods for the target state extraction.

It divides into a simple mean computation for a single–target scenario (see Section

6.1.3.1) and two newly developed generalized grouping of particles approaches (see

Sections 6.1.3.2 and 6.1.3.3). A numerical evaluation using an SMC–implementation

of the iFilter can be found in Section 6.1.4.1 before the conclusions are drawn in

Section 6.1.5.

6.1.1 Formulation of the Problem

6.1.1.1 Measurement Space of BML

In the following the measurement or parameter space of BML used within Chapter 6

and Chapter 7 is defined. Due to the urban environment physical propagation effects

like reflection, diffraction and scattering affect the emitted electromagnetic signal.

This leads to the fact that the OS receives multiple signals which have traveled along

different multipaths. Each received multipath is characterized by its AoA and its

RToA. The sequence of measurement sets up to and including time k ∈ N is defined

by

Zk ≡ {Zk, Zk−1}, (6.1)

where

Zk ≡ {zjk}
mk
j=1 = {ηjk + νjk}

mk
j=1 (6.2)

denotes the measurement set of the current iteration k. Here, ηjk is the true jth

measured multipath and νjk ≡ [wjk,ϕw
j
k,τ ]T is the jth measurement noise, wjk,ϕ ∼

N (0, σ2
j,k,ϕ), wjk,τ ∼ N (0, σ2

j,k,τ ). σ2
j,k,ϕ and σ2

j,k,τ be the noise variances and Cjk ≡
diag[σ2

j,k,ϕσ
2
j,k,τ ] defines the covariance matrix.

An element of Zk is given by

zjk ≡

(
ϕjk
τ jk

)
, (6.3)

where ϕjk ∈ [−π, π], denotes the AoA in radians and τ jk ∈ R+ is the RToA of multipath

j in iteration k, j = 1, ...,mk. In some numerical evaluations of this chapter the EoA

is used additionally. Then, an element of Zk is given by

zjk ≡

ϕ
j
k

ϑjk
τ jk

 , (6.4)
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where ϑjk ∈ [−π
2
, π

2
] denotes the EoA of multipath j (in radians) in iteration k. The

covariance matrix is then given by Cjk ≡ diag[σ2
j,k,ϕσ

2
j,k,ϑσ

2
j,k,τ ].

Without loss of generality it is assumed that the elements of Zk are stored in ascending

order with respect to the RToA, that is, 0 ≡ τ1
k < τ2

k < ... < τ
mk
k .

Furthermore, the set of measurements without the first (t− 1)-incoming multipaths,

which is needed in Chapter 7 to formulate the clutter hypothesis, t ∈ {2, ...,mk}, is

defined by

Zk,t ≡ {zjk,t}
mk
j=t, (6.5)

where

zjk,t ≡

(
ϕjk

τ jk − τ
t
k

)
, (6.6)

j = t, ...,mk.

For the rest of this chapter the time index is suppressed for the ease of presentation.

6.1.1.2 Likelihood Function

The probabilistic and assignment based likelihood function defined in [ADKT08b]

and [Alg10, chapter 4.4] is presented in this section.

Let ξ ∈ X ⊆ R2 be the hypothetical emitter position and let hiξ, i ∈ {1, ..., p} be a

predicted multipath for a fixed OS location given by the ray tracer, where p is the

total number of predicted multipaths. Then, the set of predicted multipaths with

respect to an hypothetical emitter position ξ and a fixed OS location is defined by

hξ ≡ {hiξ}pi=1. (6.7)

Possessing a set of measured and predicted multipaths, the possible data interpreta-

tions are denoted by Ema1,...,ap , where

ai ≡


0, no association, measured multipath

is not detected

j ∈ {1, ...,m}, ith predicted multipath is associated

with measured multipath j

(6.8)

is an index for each predicted multipath, which defines its assignment. Let the prob-

ability of detection of a specific multipath be denoted by pD ∈ [0, 1] and the clutter

density by λΦ. Let n ∈ {0, ...,min(m, p)} be the number of assigned multipaths of

a specific data interpretaion Ema1,...,ap . Then, the probabilistic likelihood function

evaluated for a set of measurements Z is defined by

p(Z|ξ) ≡
∑

Ema1,...,ap

pnD · (1− pD)m−n · λp−nΦ ·
∏
j∈I

N (hjξ; z
ai , Cai), (6.9)
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where I ≡ {i ∈ {1, ..., p}|ai 6= 0}, that is, the index set of the assigned predicted

multipaths and ξ being some hypothetical emitter position in X. Depending on the

number of measured and predicted multipaths the computational effort to sum over

all data interpretations can be enormous and grows exponentially. Therefore, the

likelihood function has to be approximated according to [Alg10, chapter 4.5.2]. First,

an optimal assignment for min(m, p) multipath–assignments is computed. The opti-

mal solution for this assignment problem is given by the Munkres algorithm [BL71].

Then the assigned pairs are sorted with respect to their normalized distances. The

corresponding values of the Gaussian distribution are stored in descending order in

ν ∈ Rmin(m,p)×1. Then the approximated likelihood function is given by

p(Z|ξ) ≈
min(m,p)∑
n=1

pnD · (1− pD)p−n · λm−nΦ ·
n∏
j=1

νj . (6.10)

Note that the likelihood function defined in (6.9) an its approximation (6.10) are

defined on sets of measurements. An adaption of the probabilistic likelihood function

defined in (6.9) and (6.10) is applied within the generalized PHD Intensity filter in

Section 6.3.4.3. However, if the standard PHD intensity filters defined in Section

3.4.2 is applied to BML scenarios, appropriate likelihood functions have to be defined

on single multipaths. This is implied by the standard target–oriented measurement

model used in standard PHD intensity filters. To this end appropriate observation

spaces are studied in the following.

6.1.1.3 Definition of the Observation Space

In the following, two definitions of observation spaces for standard PHD intensity

filters are proposed.

Observation Space 1 The first observation space is defined as the subset Z ⊂ RT×2

(in case of processing additionally EoA measurements it is given by Z ⊂ RT×3), where

T ∈ N represents the number of targets present. Thus, the first observation space is

defined by

Z ≡
{{

z1,1, ..., z1,m1}, ..., {zT,1, ..., zT,mT
}}

(6.11)

where the subset {zt,1, ..., zmt}, t ∈ {1, ..., T} is the set of multipaths which represents

a specific target. The number of received multipaths which belong to target t is

specified by mt > 0 (including clutter measurements) .
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Figure 6.1: Visualization of the first observation space: Since measured multipaths (dots)
are assigned to target classes, the ordinary grouping of particles approach yields one target
state estimate (crosses) for each target c© 2013 IEEE.

Figure 6.2: Visualization of the second observation space: Each measured multipath is
defined as an element of the observation space. The ordinary grouping of particles approach
yields for each measurement one estimate if the threshold–test is passed. Therefore, several
(suboptimal) target state estimates can be obtained for a single target c© 2013 IEEE.
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Observation Space 2 The second observation space is defined as the set of received

multipaths, that is, Z ⊂ Rm×2 (Rm×2 in case of an additional processing of EoA

measurements), where m is the total number of measured multipaths. Therefore, Z

is given by

Z ≡
{
z1, ..., zm

}
, (6.12)

where zj , j ∈ {1, ...,m} denotes a measured multipath.

6.1.1.4 Discussion of Observation Space Definition and the Problem of Target

State Estimation

The main difference between the two observation space definitions is given by the

assignment of multipaths to target–classes. For Definition (6.11) an additional pre–

processing scheme is required to assign multipaths to targets. Assume such a pre–

processing algorithm is available. Then, the derived measurement set contains a one–

to–one correspondence between the observation and the target space (see Figure 6.1)

as it is assumed in the SMC–implementations from [RCV10] and [SKSC12]. There-

fore, a target state estimation using the conventional grouping of particles approach

is convenient and yields a target state estimate for a set of multipaths which belongs

to a target. In this case, the approximation of the probabilistic likelihood function

(6.10) can be used for the update. Hence, the only adaption to be made for applying

standard PHD intensity filters using the first observation space to BML is to derive an

appropriate pre–processing algorithm for the multipath to target association. How-

ever, multipaths which are generated by the same target are not spatially related in

the measurement space (as for example in extended target tracking), making such an

assignment impossible. Due to this fact the first observation space seems to be inap-

propriate for using it within a standard PHD intensity filter. In Section 3.4.4 a closely

related observation space definition will be discussed and it will be seen that such a

generalization of the standard observation space is numerically expensive. However,

in a single–target scenario with perfect detection and no false alarms, observation

space one yields a possibility to easily apply a standard PHD intensity filter to BML

and can thus be considered as a benchmark for the proposed estimation approaches

from Section 6.1.3.

The second observation space does not presume an additional assignment and defines

each measured multipath as a single measurement. This definition can be seen as

an iterative approach of information processing. Since an MS location is represented

by a set of multipaths, a single multipath contributes only a part of the complete

measurement information to the filter by adjusting the weights via an appropriate

likelihood function (see Figure 6.2). Due to the need of updating each multipath

separately when choosing the second observation space the following definition of the

likelihood function is used for a single multipath.
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p(zj |ξ) ≡


N (hiξ; z

ai , Cai), if ∃i ∈ {1, ..., p}
such that ai = j

0, otherwise

(6.13)

for each zj ∈ Z, j ∈ {1, ...,m}. The (global) assignment is done via Munkres al-

gorithm [BL71] between the set of measured multipaths Z and the set of predicted

multipaths hξ of ξ ∈ R2. Therefore, the index ai denotes the assigned measured mul-

tipath of the ith predicted multipath from hξ analogously to Definition (6.8). Thus,

iteratively updating using (6.13) with all elements from Z yields the unlabeled parti-

cle set. Due to processing the unsorted multipaths there is no information available

for a PHD intensity filter about the relation between the measurements and therefore

the ordinary grouping of particles approach yields a target state estimate for each

measured multipath. Hence, for a single target several target state estimates might

exist. Furthermore, these estimates are suboptimal, since an MS location is repre-

sented by a set of multipaths and thus one element of this set does not provide the

complete available information about a specific target. To estimate the target state

optimally a generalization of the grouping of particles approach is developed in the

following section.

Note that the definition of the observation space also influences quantities of a PHD

intensity filter. The mean number of targets, which is given by the integral of the

intensity over the target state space, corresponds for the first observation space to the

mean number of existing targets, where for the second observation space it is given

by the mean number of multipaths that correspond to existing targets.

6.1.2 Target State Estimation Using Generalized Particle Grouping

Since the second observation space is used from now on to adapt the standard PHD

intensity filter to the challenge of BML, a post–processing of the particle set for the

target state extraction is inevitable to determine a single target state estimate based

on a subset of multipaths. Therefore, the generalization of the grouping of particles

methodology is presented. First, the grouping of particles weights are considered

exemplary in terms of the SMC–iFilter presented in [SKSC12]. The corresponding

weights using the SMC–PHD filter can be found in [RCV10].

Let Z ≡ {zj}mj=1 be a set of multipath measurements and {xi, wi}Ni=1 be the particle

set of the current iteration. Then,

wj,i ≡
p(zj |xi)pD(xi)

λ(zj)
· wi (6.14)
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Figure 6.3: Visualization of the generalized grouping of particles approach: By investigating
subsets of multipath measurements (connected points) and evaluating the respective grouping
weights a probability of target existence can be computed according to [RCV10]. If this
exceeds a specific threshold a target estimate (gray cross) is computed for the subset c© 2013
IEEE.

is called the particle grouping weight of ith particle and the jth measurement. Here,

p(zj |xi) is given by the single multipath likelihood function defined in (6.13). λ(zj)

denotes the predicted measurement intensity of zj and weights the respective mea-

surement. pD(xi) denotes the detection probability of target xi. Afterwards,

Wj ≡
N∑
i=1

wj,i (6.15)

is defined. Due to the definition of the predicted measurement intensity, Wj is

bounded by one. For measurement j this can be interpreted as a probability of exis-

tence. After a threshold–test is passed an estimate for measurement j is determined

by

1∑N
i=1 wj,i

N∑
i

wj,ixi. (6.16)

Within an SMC–version of an arbitrary PHD intensity filter that uses the second

observation space, this estimation procedure is done for each multipath and therefore

might yield several sub–optimal target state estimates for one target (depending on

the number of passed threshold–tests). Therefore a generalization of this scheme to

sets of measurements for an arbitrary SMC–PHD intensity filter is derived in the

following.

Since in BML a target is represented by a set of measurements the aim is not only

to determine the probability that particle xi occurred due to measurement zj as it
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is done in the original grouping of particles presented in [RCV10], but to compute

the probability that particle xi is created due to a specific subset of measurements

{z1, ..., zL} ⊂ Z, 0 < L ≤ m. This idea is similar to the approach proposed in [Alg10,

chapter 7.2.2], where within an MHT algorithm subsets of measurements are assessed

and used to estimate the target state. This is visualized in Figure 6.3, where a subset

of multipaths yields one estimate for a target. After knowing how to compute this

probability it is easy to assess the different subsets and develop procedures for the

BML task that offer one state estimate for one target. First consider p(xi|z1, ..., zL):

If Bayes Theorem is applied twice and it is assumed that the elements of {zj}Lj=1,

0 < L ≤ m, are statistically independent the following holds

p(xi|z1, ..., zL) =
p(z1|xi) · p(xi|z2, ..., zL)

p(z1, z2, ..., zL)
= · · · =

∏L
j=1 p(z

j |xi) · p(xi)
p(z1, z2, ..., zL)

. (6.17)

Having (6.17), the generalized grouping of particles weights can be computed for each

subset of the measurement set. But before considering two approaches that utilize

(6.17), the generalized grouping of particles weight for a particle xi and a set of

measurements is defined exemplary in terms of the iFilter. First, let Z be the current

measurement set and consider analogously to [Alg10, chapter 7.2.2] the set of subsets

of the set of measured multipaths, that is,

J ≡ {J ⊂ Z}. (6.18)

Due to the binomial series the number of subsets is given by

|Z|∑
i=0

(
|Z|
i

)
= 2|Z|, (6.19)

where | · | : J → N determines the cardinality of an element from J . Hence the

number of subsets of Z grows exponentially with the number of elements of Z.

For an arbitrary subset J ∈ J and particle xi, i ∈ {1, ..., N}, where N is the number

of persistent particles (present in the previous iteration, that is, not newborn in

the current iteration, see [SKSC12]), the generalized grouping of particles weight is

defined, following (6.17), by

wJ,i ≡
∏|J|
j=1 p(z

j |xi) · pD(xi) · wi
λ(zJ)

, (6.20)

where λ(zJ) is the predicted measurement intensity of the subset J ∈ J , that is,

λ(zJ) =

N∑
i=1

|J|∏
j=1

p(zj |xi) · pD(xi) · wi + p(zJ |φ) · pD(φ) · f(φ). (6.21)
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Here, pD(xi) is the detection probability and wi the weight of particle xi, p
D(φ) is the

detection probability and f(φ) is the intensity in Xφ, which is the hypothesis space

of the iFilter (Xφ is assumed to contain only a constant analogously to [SKSC12]).

Note, that the proposed scheme can also be used within an SMC–PHD implementation

(compare to [RCV10, Equation (25)]) for all j ∈ {1, ..., |J |}.
Obviously, the term weight for wJ,i, defined in (6.20), makes sense since

0 ≤
N∑
i=1

wJ,i ≤ 1. (6.22)

The first inequality of (6.22) is due to the definition of wJ,i. The second inequality of

(6.22) is justified by the fact that p(zJ |φ) · pD(φ) · f(φ) ≥ 0 and thus

N∑
i=1

wJ,i ≡
N∑
i=1

∏|J|
j=1 p(z

j |xi) · pD(xi) · wi
λ(zJ)

≤
∑N
i=1

∏|J|
j=1 p(z

j |xi) · pD(xi) · wi∑N
i=1

∏|J|
j=1 p(z

j |xi) · pD(xi) · wi
= 1.

(6.23)

In the following, two approaches for the target state estimation in a single target

scenario are presented that utilize the generalized grouping of particles equations in

a similar way as it is done in [SKSC12] and [RCV10].

6.1.3 Methods for State Extraction

In this section, approaches for the target state estimation in a single–target scenario

are presented. Additionally to a standard weighted mean computation two enhanced

algorithms, that utilize the generalized grouping of particles equations from the pre-

vious section are presented. These state extraction algorithms work in a similar way

as the algorithms from [SKSC12] and [RCV10] which use the ordinary grouping of

particle approach.

6.1.3.1 Mean Computation

Consider a single–target scenario. The easiest method to do a state extraction is to

omit the grouping of particles step from [SKSC12] and to perform a simple mean

value computation of the particle set instead. To compute the desired estimate, the

normalized weights after the update of the intensity function are used to determine

1

W

N∑
i=1

wi · xi, (6.24)

where N is the number of particles from the previous iteration (without the newborn

particles from the current iteration), W ≡
∑N
i=1 wi and wi are the weights of the

particles xi, i ∈ 1, ..., N .
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6.1.3.2 Generalized Mean Computation

When considering a single–target scenario it is implicitly assumed that the obtained

set of measured multipaths does not bear any confusion in target assignment, which

means that only one subset of multipaths represents the present target. An approach,

which has a low computational complexity is to consider only one subset of the mea-

surement set, that is, the set itself. Therefore wZ,i is investigated for each particle

xi. After computing each grouping of particles weight using (6.20)

WZ ≡
N∑
i=1

wZ,i (6.25)

is determined, which can be interpreted as a probability of existence for the target

based on the set of received multipaths (see also [SKSC12]). If WZ > τ holds, where

τ ∈ [0, 1] is a threshold for target existence, the target state estimate is given by

1∑N
i=1 wZ,i

N∑
i

wZ,i · xi. (6.26)

6.1.3.3 Generalized Ranking Estimation

The second generalized grouping of particles approach presented restricts itself not

only to the whole measurement set but evaluates the grouping of particles weights

from (6.20) for several subsets. Note that due to the exponential growth of the

number of subsets with the number of measurements, a consideration of all subsets

is computational feasible only for a restricted number of multipaths. To filter out

measurements that occur due to clutter the original grouping of particles scheme from

[RCV10] is evaluated first. For each measured multipath a probability of existence is

determined according to (6.14) and (6.15). Then,

Z̃ ≡ {zj ∈ Z|Wj > τ}, (6.27)

is defined, where τ ∈ [0, 1]. Note, that a determination of a target state estimate

could now be done for each measured multipath without any extra computational

burden. Afterwards, the measurements are sorted with respect to to their probability

of existence and saved in descending order in Z̃sorted. The r–best, 0 < r ≤ m, are

taken out and all possible subsets except for the empty set and the subsets which only

contain one element (the corresponding estimates would be the estimates generated

by the ordinary grouping of particles method) are created , that is, for all

J ∈ J ≡
{
J ⊂

{
z̃1, ..., z̃r

} ∣∣∣|J | 6= 0, 1

}
(6.28)
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wJ,i is computed. Then,

Jfused ≡

J ⊂ {z̃1, ..., z̃r
} ∣∣∣WJ =

N∑
i=1

wJ,i > τfused

 (6.29)

is defined, where τfused ∈ [0, 1]. Finally, the element of Jfused with the highest proba-

bility of existence represents the target state estimate for the single–target scenario.

Note that the proposed approach is an approximation of the best representing subset,

since only the r–best (in terms of the probability of existence for the single multipaths)

measurements are used for the estimation. An alternative approximation would be

to restrict the cardinality of the considered subsets (see [Alg10, chapter 7.2.3]). For

both approximations better results are expected in a single–target scenario without

clutter and measurement failure when applying the generalized mean computation

from Section 6.1.3.2 compared to the generalized ranking. This is due to the correct

measurement being not known a priori (no clutter, no mis detection). However, the

generalized ranking approach bears several advantages compared to the generalized

mean methodology. First, it is obvious that in a real world scenario clutter and mea-

surement failure are inevitable. Thus, the generalized mean approach incorporates

false measurements into its estimation. The generalized ranking on the contrary does

not assume to “know” the correct measurement subset, but it determines the best

measurement representation for the target by computing the probabilities of existence

for a specific number of subsets (the considered number depends on the computational

capacity and determines how accurate the approximation of the correct subset is).

Hence, it is expected that the generalized ranking approach is more stable and more

accurate under the influence of clutter than the generalized mean approach. Further-

more, the generalized ranking approach offers the possibility to extend the proposed

PHD intensity filter adaption to a multitarget scenario (see Section 6.1.5).

6.1.4 Numerical Evaluation

6.1.4.1 Comparison of State Extraction Methods

To verify the applicability of the proposed methods a single–target scenario is consid-

ered in an urban environment. An SMC–implementation of the iFilter from [SKSC12]

is used as a representative of the class of PHD intensity filters. First, a database for a

fixed OS position and a grid of mobile station locations is generated, using a ray trac-

ing simulation for a specific city–map (see Figure 5.2). Afterwards, a linear ground

truth for a target with constant velocity is created. For each time step the lower–

left grid point of the box, in which the target is located in, is determined and the

corresponding multipaths from the database are stored as the measurements of the re-

spective iteration. For this evaluation neither clutter nor measurement noise is added

to the measurement set and perfect detection of the single multipaths is assumed.
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6 Blind Mobile Localization Using PHD Intensity Filters

Figure 6.4: Visualization of the simulation scenario: The fixed observer (black circled cross)
receives multipath measurements of a single target (ground truth visualized as black solid line)
under perfect measurement conditions (no clutter, no measurement noise, perfect detection).
The particles are visualized as red dots, the current exact position of the target as green
circle and the estimate of the filter as black cross c© 2013 IEEE.

In the following the target is moving linearly with constant velocity v = 2.4m
s

(see

the ground truth in Figure 6.4). The measurement noise in AoA is set to σϕ = 10◦

and in RToA to στ = 10m
clight

, where clight denotes electromagnetic propagation. For

each iteration and each multipath the same covariance matrix C ≡ diag
[
σ2
ϕ σ2

τ

]
is

used, which justifies that the index of the standard deviations from Section 6.1.1.1 is

omitted. For the SMC–implementation of the iFilter the following detection probabil-

ities are defined. The detection probability in the target state space X ⊆ R2 is set to

pD(xi) = 0.75 for each particle xi ∈ X, and the detection probability in Xφ is defined

by pD(φ) ≡ 0.3. The transition probability from Xφ to X is set to Ψ(x|φ) = 0.2, the

transition probability in Xφ is defined as Ψ(φ|φ) = 0.2 and the transition probability

from X to Xφ is given by Ψ(φ|x) = 0.1. The thresholds for target existence of the

ordinary and the generalized grouping of particles are set to 0. This is done to make

the generalized grouping of particles approaches comparable to the simple mean com-

putation which is implemented without any threshold criterion for target existence.

Furthermore, the maximal number of particles is restricted to 1500 and new particles

are created uniformly over the considered city–map, where the number of newborn

particles is determined according to [SKSC12].

To assess the different approaches with respect to accuracy 100 Monte–Carlo (MC)

runs of the presented scenario are performed. The results are shown in Figures 6.5
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and 6.6 in terms of the position and velocity root mean squared error (RMSE). For the

investigated scenario, the ordinary mean computation can be seen as a benchmark for

the proposed generalized grouping of particles methodologies, since the measurement

conditions are perfect, that is, no measurement noise, no clutter and no mis detection

imply that the received set of measurements perfectly represents the target. There-

fore, the functionality of the proposed algorithms for state extraction can be verified

by comparing the RMSE values. For most of the times the best result in terms of

accuracy is given by the generalized mean computation approach, which computes the

generalized grouping of particles weights for the whole measurement set. Analogously

to the ordinary mean computation the generalized mean computation profits from the

a priori knowledge that the received set of multipaths is correct. Any approximation

of this set by leaving out specific multipaths deteriorates the result. Due to the ap-

proach of only taking the r–best measurements into account (in this simulation r = 5,

the maximal number of received multipaths is 20) the set of measurements for the

target state estimation is permanently weakened in terms of missing true multipaths.

Therefore, it is remarkable that even though the set of measurements is reduced, the

approach of generalized ranking is capable to yield almost the same (and for some

iterations an even better) accuracy as the ordinary mean computation, that does not

suffer from crossing out true measurements. This capability is mainly due to the

individual weighting of measurements and sets of multipaths by the predicted mea-

surement intensity in the procedure. This is also the reason why the generalized mean

computation yields the best result of the compared methodologies. However, it is ex-

pectable that the influence of clutter and mis detection yields a completely different

result. Due to the assessment of measurements in the ordinary grouping of particles

step, clutter measurements should be provided with lower probabilities of existence

than the true measurements. Therefore, the generalized ranking approach favors mea-

surements which belong to true targets towards clutter measurements. This improves

the performance of the generalized ranking methodology compared to the generalized

mean computation and the ordinary mean computation in a cluttered single–target

scenario with measurement failure and measurement noise.

6.1.5 Conclusion

In this section the application of PHD intensity filters to the problem of BML us-

ing an SMC–implementation is presented. First, two observation space definitions

are discussed. Due to the absence of an appropriate pre–processing procedure to

assign each multipath to the correct target, the second observation space is used,

which defines a measurement to be a multipath. The definition of a measurement

as a single multipath violates the at most one measurement per target–assumption of

standard PHD intensity filters. Therefore, an application of the ordinary grouping of

particles scheme presented in [SKSC12] and [RCV10] does not yield a single estimate
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Figure 6.5: Comparison of the Position–RMSE c© 2013 IEEE.
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for the target, but one estimate for each multipath. Thus, a generalization of the

grouping of particles scheme for sets of measurements is presented, resulting in the

generalized grouping of particles weights. Possessing the definition of these weights

two approaches for a single–target scenario are formulated and compared in a clutter–

and noise–free scenario with perfect detection to a standard mean computation ap-

proach. The results of the numerical evaluation show that the proposed approaches

yields comparable (for the generalized ranking) and most of the time even more accu-

rate results (for the generalized mean computation) which motivates the application

of standard PHD intensity filters to more complex BML–scenarios.

6.2 SMC–Intensity Filter Using a Decomposition of a Likelihood Func-

tion

In [SW09] a general likelihood decomposition is presented. By applying a multivariate

version of the chain rule, Maclaurin (Taylor)–series approximation and marginaliza-

tion, the conventional non–linear likelihood function is approximated by an integral

over a manifold of Gaussian kernels, which are linear in target space. Furthermore,

several applications are shown. For this work the application of the general likelihood

decomposition to the range–bearing scenario, presented in [SW09, chapter 3], is of

interest. Since BML considers RToAs only, the range is not observable and thus a

marginalization over the range as in [SW09, Equation (20)] represents an appropriate

approach to define a decomposed likelihood function for BML and an alternative to

the assignment–based likelihood function given in (6.13).

In this section the technique of likelihood decomposition is applied to BML by mod-

ifying the likelihood function presented in [SW09, Equation (20)]. To this end, mul-

tipaths are divided into straights in between the points of deflection of the signal,

which are called interaction points. Afterwards, the decomposed likelihood function

for BML is defined by marginalization over the set of multipaths which belong to a

specific measurement and summing over all linear connections of one multipath. Fur-

thermore, implementation issues like the drawing of particles along the multipaths,

the approximation of the decomposed likelihood function and the determination of

the correct multipaths which belong to a specific AoA measurement are discussed.

Finally, a numerical evaluation is carried out, using a simulation of the estimation

process of a real antenna array and a ray tracer to generate measurements. Therefore,

the proposed approach is compared to the likelihood function, which is based on the

assignment approach presented in the previous section and defined in (6.13), within

an SMC–implementation of the iFilter.

This section is structured as follows. Section 6.2.1 describes the problem formula-

tion. The decomposition of a likelihood function from [SW09] is described in Section

6.2.1.1. Section 6.2.1.2 defines the approximation of the likelihood function for the
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range–bearing scenario, given only the bearing measurement, analogously to [SW09,

chapter 3] and Section 6.2.1.3 formulates the problem of defining the measurement

function for a BML scenario. In Section 6.2.2 the concept of likelihood decomposi-

tion is applied to BML. First, Section 6.2.2.1 yields the adapted decomposition for a

BML scenario. Implementation issues are discussed in Section 6.2.2.2. A numerical

evaluation comparing the assignment–based likelihood function defined in (6.13) and

the proposed decomposed likelihood function is presented in Section 6.2.3 before the

conclusions are drawn in Section 6.2.4.

6.2.1 Formulation of the Problem

6.2.1.1 Likelihood Function Decomposition

In this section a likelihood function decomposition is derived following the consid-

erations of [SW09]. Therefore, let g : Rn → Rn, n > 0 denote a continuously dif-

ferentiable bijective function which maps the target to the measurement space and

let f : Rn → Rn be its inverse. Measurement errors are assumed to be Gaussian

distributed. If the measurement received z ∈ Rn has n dimensions, that is, if the

sensor provides information of all measurement coordinates, the likelihood function

for the target state x ∈ Rn is given by

p(z|x) = N (z; g(x),Σ), (6.30)

where N (z; g(x),Σ) denotes the multivariate Gaussian PDF on Rn evaluated at z

with mean g(x) and covariance matrix Σ.

In the following the approximation of the likelihood function is derived analogously

to [SW09]. To this end, let h : Rn → Rn be a continuously differentiable function.

The Jacobian of h evaluated at x ∈ Rn is denoted by

J [h](x) ≡


∂h1(x)
∂x1

∂h1(x)
∂x2

. . . ∂h1(x)
∂xn

...
...

. . .
...

∂hn(x)
∂x1

∂hn(x)
∂x2

. . . ∂hn(x)
∂xn

 . (6.31)

Then, the Taylor series expansion of h up to the first term around a ∈ Rn is given by

h(x) = h(a) + J [h](a)(x− a) +O((x− a)2). (6.32)

Let x ∈ Rn be an element of the target and z ∈ Rn be an element of the measurement

space. Then, using that f is the inverse of g (and vice versa) and inserting the Taylor

series expansion of g yields

z − g(x) =g(f(z))− g(x) ≈ {J [g](f(z))}(f(z)− x) (6.33)

={J [f ](z)}−1(f(z)− x). (6.34)
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Here, the approximation of the right hand side of (6.33) is due to the truncation of

the Taylor series after the linear term and the generalized chain rule implies (6.34).

Therefore, the desired approximation of the likelihood function (which is linear in the

target space) is given by

p(z|x) =N(z|g(x),Σ) (6.35)

=(2π)−
n
2 |Σ|−

1
2 exp(−1

2
(z − g(x))TΣ−1(z − g(x))) (6.36)

≈(2π)−
n
2 |Σ|−

1
2 exp

(
− 1

2
(f(z)− x)T

({J [f ](z)}−1)T Σ−1{J [f ](z)}−1(f(z)− x)
)

(6.37)

=|J [f ](z)| N (f(z);x, Σ̃(z)), (6.38)

where Σ̃ ≡ J [f ](z)ΣJ [f ](z)T , since for A,B ∈ Rm×m, m ∈ N it holds (A−1)T =

(AT )−1 and (AB)−1 = B−1A−1. The approximation from (6.34) implies (6.37) and

(6.38) holds due to |Σ̃(z)| = |Σ||J [f ](z)|2.

6.2.1.2 Likelihood Function Decomposition for Bearing–Only Measurements

Possessing the likelihood approximation (6.38) an application to bearing only mea-

surements can be done (see [SW09]). Let the target and measurement space be given

by R2. Furthermore, define g, f : R2 → R2 by

f(r, ϕ) ≡
(
r cos(ϕ), r sin(ϕ)

)
(6.39)

g(x, y) ≡
(√

(x2 + y2), arctan(y/x)
)
. (6.40)

If the sensor provides only a bearing measurement and the range is not observable

(bearing–only scenario) a marginalization with respect to the range–coordinate has to

be applied. Then, the decomposed likelihood function for bearing–only measurements

is given by

N (ϕ; arctan(y/x), σ2
ϕ) ≈

∫ ∞
0

rN

(r cos(ϕ)

r sin(ϕ)

)
;

(
x

y

)
, J [f ](r, ϕ)Σ̃JT [f ](r, ϕ)

 dr,

(6.41)

where

J [f ](r, ϕ) ≡ Rf (r, ϕ)D(r, ϕ), (6.42)

Rf (r, ϕ) ≡

(
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

)
(6.43)

and Df (r, ϕ) ≡ Diag[1, r].
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6.2.1.3 Problem of Emitter Localization assessing Multipath Measurement with a

generalized Likelihood Function Decomposition

The measurement space of BML defined in Section 6.1.1.1 contains AoA and RToA

measurements (in case of an additional EoA measurement the following considerations

can be easily generalized). The fact that the absolute path length of a multipath is not

observable in BML scenarios motivates the application of the likelihood function de-

composition from Section 6.2.1.2. A key difference between the standard bearing–only

scenario and BML is that the formulation of the propagation of the electromagnetic

wave between OS and MS, that is, the definition of the measurement function f from

Equation (6.39). In the assignment–based approach for BML [DGK13a], [Alg10] a

ray tracer is used to evaluate f pointwisely with respect to the urban environment.

This is due to the fact that the ray tracing prediction is highly complex (physical

propagation effects like scattering, diffraction and fading are modeled additionally to

the reflection) and thus it might be hard or even impossible to invert f . Further-

more, when using a black box for ray tracing f is unknown. Therefore, we assume

in this thesis that the inverse of f is in general not given. In the following section, a

likelihood function for BML is defined using the considerations from Section 6.2.1.2,

Section 6.2.1.1 and an additional approximation.

6.2.2 Likelihood decomposition for multipath measurements

6.2.2.1 Derivation of the Decomposed Likelihood Function for BML

In the following, the output of the ray tracer for a fixed OS location, based on the

database of the urban environment and specific radio channel parameters is consid-

ered. The ray tracing prediction is modeled according to [HWLW03], which is based

on [HWLW99], [WHL99], [HWLW03] and the fundamentals given in [Gla89] For a

given AoA ϕ ∈ [−π, π] the set of multipaths predicted by the ray tracer is defined by

Mϕ ≡ {fj : [0,∞)→ R2|j ∈ {1, ..., p}}, (6.44)

where p denotes the number of predicted multipaths for the particular AoA ϕ and fj
defines a specific multipath, given as a function of the range. Several multipaths which

correspond to one AoA can occur due to resolution conflicts and the possibility that

an interaction point is modeled as a radially emitting point source. In the following,

an arbitrary j ∈ {1, ..., p} is chosen and one multipath fj is considered. It is assumed

that fj is continuously differentiable and bijective on its image. Let therefore denote

gj the inverse of fj , that is , gj ≡ f−1
j . Thus, if fj and gj are given, Equation (6.38)

can be used to define the respective likelihood function.

Unfortunately as mentioned before, an explicit definition of fj cannot be assumed in

general. Therefore, neither its Jacobian nor its inverse are known and hence (6.38)

cannot be evaluated as in (6.41) for the bearings–only case. To obtain a general
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Figure 6.7: Each multipath between the OS and the MS is assumed to propagate linearly
in between its interaction points. Boxes around grid points, which are proportional to the
covariance matrix of the decomposed likelihood function limit the allowed region of particles
(black dots) for each multipath c© 2014 IEEE.

decomposed likelihood function, which is linear in target space according to [SW09],

an additional approximation has to be made. Therefore, instead of considering the

explicit form of fj the output of the ray tracer is considered. Additionally to the

AoA and RToA for a given MS–OS combination, the ray tracer provides the points

of interaction for each multipath.

Therefore, let

Ij,0, ..., Ij,N ∈ R2 (6.45)

be the interaction points of the multipath fj , where Ij,0 denotes the position of the

OS and Ij,N denotes the position of the MS. Then, there exist

rj,0, ..., rj,N > 0 (6.46)

such that

fj(rj,i) = Ij,i (6.47)

for all i ∈ {0, ..., N} (see Figure 6.7). Note, that rj,0 = 0 by definition. Furthermore,

let

αj,0 ≡ ϕ (6.48)

αj,i ≡ arctan

(
Ij,i+1,y − Ij,i,y
Ij,i+1,x − Ij,i,x

)
, (6.49)
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i = 0, ..., N−1 be the angles defined by the multipath at the interaction points. Then

for i ∈ {0, ...N − 1} the function fj,i : [0, rj,i+1 − rj,i]→ R2 is defined by

fj,i(r) ≡ Ij,i +

(
r cos(αj,i)

r sin(αj,i)

)
(6.50)

and

J [fj,i](r) ≡

(
cos(αj,i) −r sin(αj,i)

sin(αj,i) r cos(αj,i)

)
, (6.51)

denotes the corresponding Jacobian. Note that the set {fj,1, ..., fj,N−1} approximates

the ray tracing prediction function by assuming a linear propagation of the radio chan-

nel in between the interaction points. Hence, the likelihood function corresponding

to fj ∈Mϕ and a target state (x, y)T ∈ R2 can be approximated by

p(ϕ|j, (x, y)T ) ≈
N−1∑
i=0

∫ ri+1−ri

0

rN

Ij,i +

(
r cos(αj,i)

r sin(αj,i)

)∣∣∣∣
(
x

y

)
, J [fj,i](r)ΣJ

T [fj,i](r)

 dr, (6.52)

where the event j denotes that the multipath defined by fj was chosen. Due to

marginalization with respect to the different multipaths belonging to a specific AoA

ϕ ∈ [−π, π] the likelihood function of the bearing measurement ϕ given the hypothet-

ical position of the MS (x, y)T ∈ R2 is given by

p(ϕ|(x, y)T ) ≡
p∑
j=1

p(ϕ|j, (x, y)T ) ≈

p∑
j=1

N−1∑
i=0

∫ rj,i+1−rj,i

0

rN

Ij,i +

(
r cos(αj,i)

r sin(αj,i)

)∣∣∣∣
(
x

y

)
, J [fj,i](r)ΣJ

T [fj,i](r)

 dr.

(6.53)

6.2.2.2 Implementation Issues

Specific issues concerning the implementation of the proposed likelihood decomposi-

tion are explained in the following.

Determination of Multipaths To evaluate the likelihood function defined in (6.53),

multipaths have to be determined for a particular AoA measurement ϕ ∈ [−π, π].

Therefore, the ray tracer prediction is used. First, by computing the received multi-

paths for all possible MS positions (on a grid–cell) and a fixed OS, the database of

all possible multipaths in the field of view is generated and sorted with respect to the
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AoA. Each entry of the database represents a multipath. Additionally to the AoA and

the RToA (with respect to its MS position) also the interaction points characterize a

specific multipath.

Given the database of all predicted multipaths the paths corresponding to a specific

AoA measurement ϕ need to be determined for the evaluation of the likelihood func-

tion defined in (6.53). Since each interaction point emits radially an electromagnetic

wave, it is possible that several multipaths belong to the same AoA measurement ϕ.

Depending, on the geometry this fact implies that it might become impossible to ob-

tain a reasonable tracking result, due to a large number of falsely chosen multipaths.

Furthermore, the computational effort increases dramatically if a large number of

predicted multipaths belongs to the same AoA measurement, since for each path the

integral from Equation (6.53) has to be evaluated. Thus, the RToA is utilized to re-

duce the number of predicted multipaths for a specific AoA measurement. Therefore,

the likelihood function from (6.53) is approximated by

p((ϕ, τ)T |(x, y)T ) ≈
p̃∑
j=1

N−1∑
i=0

∫ rj,i+1−rj,i

0

rN

Ij,i +

(
r cos(αj,i)

r sin(αj,i)

)∣∣∣∣
(
x

y

)
, J [fj,i](r)ΣJ

T [fj,i](r)

 dr,

(6.54)

where p̃ denotes the predicted multipaths that are chosen according to the measured

AoA ϕ and RToA τ . Several rules for choosing multipaths out of the database for

a given measurement (ϕ, τ)T ∈ [−π, π] × R+ are possible. Note that the assignment

problem, which is inherently present when studying BML scenarios, shows up here. In

this work, first the paths with the best match for the AoA ϕ are chosen. Afterwards,

out of these the multipath with the closest RToA to the measurement τ is selected.

However, a problem for the multipaths with RToA = 0 arises. Due to the fact that

the ray tracer computes the wave propagation pointwisely per hypothetical emitter

position, the RToA cannot be used to distinguish multipaths when it is equal to 0.

Due to this reason, measurements that possess an RToA of 0 are not used for the

localization.

Drawing of Particles New particles have to be created in the initialization step and

for the detection of newborn targets in each iteration. The easiest way of distributing

particles is to use a uniform distribution over the FOV. In [RCV10] the authors pro-

pose to create newborn particles around the measurements from the previous iteration

to avoid a high number of additional particles in scenarios with a high probability

of detection. In terms of BML this means that particles are distributed along the

received multipaths from the previous iteration. Furthermore, context information

from the ray tracer database can be used to draw particles only in regions, where
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targets are observable.

The database of the ray tracer includes context information about the urban environ-

ment in terms of a city and building map. It consists out of a finite set of grid points,

since the ray tracer prediction is done pointwisely per OS–MS combination. If there

are no multipaths received by the OS for a specific MS position, the respective grid–

point of the ray tracer databases possesses the empty set. This information can be

used to find out, where possible targets can be observed by the localization algorithm.

Thus, the allowed particle positions with respect to the context information are the

grid points of the ray tracer database which possess at least a set of one multipath.

In the following, these positions are referred to as valid street points. The implemen-

tations of the standard and generalized PHD intensity filters studied in the following

sections always use only valid street points for the prediction and initialization of new

particles.

By applying for each received measurement (except the one with RToA = 0) the

approach defined in Section 6.2.2.2, a predicted multipath is chosen out of the ray

tracer database. Afterwards, the OS, the interaction points and the MS are linearly

connected. The connection is discretized, where the distance between two grid points

is given by d > 0. Possessing a set of grid points for each multipath, boxes with side

length d into the tangential direction and a side length proportional to the covariance

of the likelihood function defined in (6.54) into the normal direction are generated.

The center of these boxes are the respective grid points (see Figure 6.7). The union

of all boxes for one measurement then limits the region of allowed particle positions

per measured multipath. Hence, the set of allowed particle positions for a specific

measurement is given by the street points which fall into the union of boxes of the

chosen multipaths.

Approximation of the Likelihood Function Since the absolute path length is not

observable in BML scenarios, a marginalization with respect to the range is needed

for the evaluation of the likelihood function defined in (6.54). Therefore, an integral

of Gaussian kernels (which are linear in target space) over the distance between two

interaction points has to be computed for all interaction points of the chosen multi-

paths. Since the integral defined (6.53) cannot be evaluated analytically [SW09] it

has to be approximated. In this work the integral is approximated by step functions

centered at the grid points of the discretized multipath, with support length d.

6.2.3 Numerical Evaluation

To verify that the proposed approach can be used to solve the task of BML a

single–target scenario is considered in an urban environment. First, a ray tracer

predicts for each possible MS position the set of multipaths that are received by
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Figure 6.8: Visualization of the scenario used for the evaluation (city of Erlangen/Germany).
Map Data: c©GeoBasis–DE/BKG 2015. Ray–Tracer Visualization: c© 2015 AWE Commu-
nications.

Figure 6.9: Zoom of the investigated scenario. Map Data: c©GeoBasis–DE/BKG 2015.
Ray–Tracer Visualization: c© 2015 AWE Communications.
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Figure 6.10: Result of the numerical evaluation. The likelihood function which is defined
via an assignment approach (6.13) (red) is compared to the approximation of the decomposed
likelihood function defined in (6.54) (blue) c© 2014 IEEE.

the (fixed) OS. Figures 6.8 and 6.9 depict the trajectory of the target and the po-

sition of the OS. The prediction of the ray tracer is also visualized in Figures 6.8

and 6.9, where the colors imply the field strength that is received by the OS for the

respective MS position. Due to numerical reasons, a restriction of the database to

[644550, 646550]×[5495250, 5497250] in UTM–zone 32U is used, where the grid–size is

10m in both directions. Afterwards, a linear ground truth for a target that is moving

with a constant velocity of 2.4 m
s

is created. Then for each time step the lower–left grid

point of the box, in which the target is located, is determined and the corresponding

multipaths from the database are processed by a simulation of the estimation process

of an antenna array with 5 elements. Based on the center frequency of the emitter,

the bandwidth of MS and OS, the power of the signal, the number of samples and

several other parameters the set of resolved multipaths is determined and to each

multipath parameter noise is added. For this evaluation the bandwidth is set to 6

MHz, the center frequency is 470 MHz, the number of samples is 4096 and the power

of the emitted signal is set to 1 W. Neither clutter nor measurement failure (in terms

of non–detections in the target space) is considered. However, due to the applied

emulation of the antenna array a difference between the predicted and the measured

multipaths for a particular MS location exists in the number of resolved, false and

deteriorated multipaths.

The proposed decomposed likelihood function is compared to the likelihood func-

tion based on a (global) assignment approach. For the numerical evaluation of this

section both likelihood functions are integrated into an SMC–implementation of the
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iFilter, using the generalized mean state extraction scheme from Section 6.1.3.2, that

is, assuming implicitly a single–target scenario. Note that according to the previous

section also an SMC–implementation of the PHD filter could be used. However, due

to the close relation of both filters mentioned in Section 3.4.2 the iFilter is chosen as

a representative of this class of pointillist filters. The first filter utilizes the proposed

decomposed likelihood function according to (6.54), while the second filter applies the

assignment–based likelihood function given in (6.13).

For the implementation of the decomposed likelihood function the measurement noise

in AoA is set to σϕ = 10−6◦ and in range to σr = 100m. Due to numerical reasons the

decomposed likelihood function is bounded below by 10−10. The assignment–based

likelihood function uses a measurement noise in AoA of σϕ = 0.01◦ and in RToA

of στ = 5m
clight

, where clight denotes the speed of light. For each iteration and each

multipath the same covariance matrix diag
[
σ2
ϕ σ2

r

]
in the first filter employing the

likelihood–decomposition, respectively diag
[
σ2
ϕ σ2

τ

]
in the second filter applying the

assignment–based likelihood function is used.

The compared approaches share the same parameterization of the SMC–iFilter. The

following detection probabilities are defined. The detection probability in the target

space X ⊂ R2 is set to pD(xi) = 0.75 for each particle xi ∈ X and the detection

probability in the space of φ hypothesis Xφ is defined as pD(φ) ≡ 0.4. The transition

probability from Xφ to X is set to Ψ(x|φ) = 0.2, the transition probability in Xφ
is defined by Ψ(φ|φ) = 0.01 and the transition probability from X to Xφ is given

by Ψ(φ|x) = 0.1. The thresholds for target existence of the generalized grouping of

particles are set to 0. This is done to obtain an estimate of the SMC–iFilter in each

iteration and to compare the two approaches in terms of the RMSE. Furthermore, for

both versions the maximal and minimal number of particles is restricted to 1500 and

500, respectively. New particles are created in the second version uniformly over the

set of possible MS positions, where the number of newborn particles is determined

according to [SKSC12]. For the first version particles are generated along the mul-

tipaths according to Section 6.2.2.2 and the particle positions are restricted to the

MS positions which posses a distance r ∈ [1000m, 1500m] to the OS position. Both

versions draw their particles only on valid street points, that is, possible MS positions

that possess at least one multipath.

For the numerical comparison of the two approaches 100 MC runs of the presented

scenario are performed for a dataset. The results are shown in Figure 6.10 in terms

of the position RMSE. Obviously, the assignment approach provides a more accurate

and stable result for the first 100 time steps. The decomposed likelihood shows for

the iteration in this period a localization result that is clearly below 100m and which

is comparable to the result of the assignment approach until iteration 30. However,

it is not as stable and accurate for the time period [50s, 100s] as the assignment ap-

proach. This is essentially due to the influence to the fusion algorithm of the paths
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with RToA= 0 for these iterations. Due to the reasons mentioned in Section 6.2.2.2

these paths are not considered in the filter using the decomposed likelihood function,

since they are not distinguishable. This is a true benefit of the assignment approach,

which can take into account these paths. Around iteration 100 the filter which uses

the decomposed likelihood function is not able to generate a correct estimate. The

wrong result is due to setting the threshold to zero and forcing the filter to estimate

in each iteration. However, for most of the iterations after iteration 110 the decom-

posed likelihood provides a comparable and sometimes even better result than the

assignment approach.

One reason for the better result of the assignment approach is that the paths with

RToA= 0 are not used by the decomposed likelihood approach. Therefore, important

information is not used by the proposed approach due to the fact that the respective

paths are indistinguishable. Additionally, the simple approach of selecting the correct

multipaths for the evaluation of Equation (6.54) is very sensitive to noise in the mul-

tipath parameters and it might happen, that non–correct multipaths are chosen. An

enhanced method for determining the predicted multipaths from the ray tracer ac-

cording to the set of measured multipaths should improve this property. Furthermore,

so–called ghosts, that are targets which do not exist and arise due to intersections

of selected multipaths are a challenge for the proposed method. Due to the inter-

section of the selected multipaths from the ray tracer prediction, the weight of the

intensity is concentrated not only around the true target position but also around

these intersection points. Hence, it appears that the generalized mean target state

extraction scheme generates an estimate for an intersection point. This is also the

reason why the allowed region of particles is restricted for the SMC–iFilter using the

decomposed likelihood function. Since the extraction scheme is not well–suited for

this circumstance, an improved extraction approach could provide a better result and

make a restriction of the allowed region of particles for the first version superfluous.

6.2.4 Conclusion

In this section a general likelihood decomposition of the bearings–only likelihood func-

tion presented in [SW09] is generalized to the problem of BML. First, a decomposition

of the likelihood function is presented. To this end, a ray tracer is used to replace

the (in general not known) measurement function and its inverse. It determines the

multipaths for a given MS–OS combination in terms of the AoA, RToA and the set

of interaction points. Assuming a linear propagation of the electromagnetic wave

in between interaction points, the decomposed likelihood can be formulated for the

BML–scenario.

This approach provides a completely different point of view for the definition of a like-

lihood function of BML. Up to now the respective likelihood functions were defined

via an assignment approach (see Section 6.1, [Alg10]), where the ray tracer prediction
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for a hypothetical emitter position is compared to the set of measured multipaths. By

applying the decomposition approach, presented in [SW09] the solution is received by

weighting particles according to their distance to the different received multipaths.

This alternative approach bears several challenges. It turns out that finding the cor-

rect multipath to a specific measurement and the appearance of ghosts are challenges

of the proposed approach that need to be worked on. However, it is also shown that

the proposed approach can be used for localization and tracking purposes in BML.

Due to the fact that the likelihood function defined via the assignment approach

clearly outperforms the decomposed likelihood function, the numerical comparisons

of the generalized and standard PHD intensity filters in the following section will be

done using likelihood functions that are defined using an assignment approach.

6.3 Generalized PHD Intensity Filters Applied to BML

Due to the assumption that targets generate conditionally independent observations

with at most one observation per target, the standard PHD intensity filters defined

in Section 3.4.2 are not suited a priori for applications where a target might generate

multiple measurements in one sensor scan. The application of a PHD intensity filter

using a standard target–oriented measurement model implies that enhanced post–

processing algorithms for the target state extraction are needed. This approach is

proposed in Section 6.1 and promises great applicability to the challenge of BML.

However, choosing the mathematically correct target–oriented measurement model of

a standard PHD intensity filter has to be considered when studying the applicability

of PHD intensity filters to the challenge of BML.

In Section 3.2.2 the extended target–oriented measurement model is proposed. It

assumes that a target generates a random number of identically distributed (point)

measurements. According to the strategy of designing a pointillist filter from Sec-

tion 3.8 this target–oriented measurement model can be integrated into a large class

of multitarget tracking filters. For the problem of extended object tracking sev-

eral modifications of the standard PHD filter are available (an excellent overview

about existing methods is given in [MCF+14]). In [Mah07b] the target extent is

modeled by a set of point scatterers, where each scatterer generates an individual

measurement. In [Mah09] an approximation is presented, based on the approxi-

mate Poisson model of Gilholm, Godsill, Maskell and Salmon [GGMS05b], where

the target extent is modeled by a spatial probability distribution. Furthermore, the

set of measurements is preprocessed into associated groups which represent the in-

dividual targets. In [KS05] the target extent is modeled by random matrices and

in [Gra12], [GLO12], [GO12a], [GO13], [GO12b] the approach is combined using PHD

and cardinalized PHD filters. In [RBGD15] the approach is combined using multi–

Bernoulli filters. Furthermore, techniques for reducing the number of measurement

set partitions, which are essentially based on clustering measurements, are presented
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in these references. All methods mentioned have in common that they make explicit

use of the target extent. However, in a BML–scenario measurements corresponding

to one target are not identically distributed (in fact the measurement distribution in

the parameter space is hard to model and depends on multiple factors like the urban

environment, the frequency, weather conditions, external factors like pedestrians and

cars, etc.) and thus measurements corresponding to the same target are note spa-

tially related in the measurement space. This makes the application of cluster–based

extended target models and approximations to a BML–scenario impossible.

To this end, the target–oriented measurement model cannot be designed using a PGF

as described in Section 3.2.2.2, but an appropriate PGFL as defined in (3.13) has to

be used, which enables a target to generated multiple correlated measurements per

sensor scan. Generalized PHD intensity filters presented in Section 3.4.4 are the result

of generalizing the target–oriented measurement and the clutter model of a standard

PHD intensity filter from Section 3.4.2. The purpose of this section is to study the

applicability of generalized PHD intensity filters for tracking targets that generate

multiple measurements per sensor scan, which are not drawn in the measurement

space according to a joint distribution. In particular, the derivation of non-cluster

based approximation schemes for reducing the computational complexity is in the

focus of this section. Furthermore, the comparison of the performance of generalized

PHD intensity filters to the adapted standard PHD intensity filter proposed in Section

6.1 is also part of the analysis carried out.

This section is structured as follows. In Section 6.3.1 the problem is formulated. In

Section 6.3.2 approximations of the update equation are proposed. These approxima-

tions are based on restricting the cardinality of the processed partitions (see Section

6.3.2.1) and removing partitions based on the value of the likelihood function value

(see Section 6.3.2.2). Furthermore, the generalization of the probability of detection

is studied in Section 6.3.3. Three numerical evaluations are carried out to assess the

proposed methods. First, in Section 6.3.4.1 the generalized PHD filter is compared to

the generalized iFilter. Second, the approximation methods are investigated closely

in Section 6.3.4.2 and finally the concepts of generalized and standard PHD intensity

filters are compared at hand of a BML scenario in Section 6.3.4.3. Finally, conclusions

are drawn in Section 6.3.5.

6.3.1 Formulation of the Problem

In this section the update equations of the generalized PHD intensity filters presented

in Section 3.4.4 are given and issues concerning the probability of detection and

the computational complexity are identified. The derivation of both filters is not

presented here. As mentioned in Chapters 3 and 4 the update equation can be derived

straightforwardly in various ways. The generalized PHD is first derived in [CM12]

using the general chain rule (GCR) for functional differentiation. The generalized
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iFilter is first derived in [Deg14]. The details on the derivation of the filters an be

found there.

6.3.1.1 The Generalized PHD Filter

In [CM12] the authors present the GCR, which is a generalization of the fourth

chain rule for functional derivatives from [Mah07b]. This method can be used to

differentiate complex PGFLs, such as the PGFL of the generalized PHD Intensity

filters defined in (3.64). Furthermore, the generalized PHD filter is developed using

the GCR. Since targets can generate multiple measurements per sensor scan the

likelihood function is defined on sets of measurements. If the clutter is assumed to be

Poisson with intensity λc(·) and µs(·) denotes the intensity of the PPP modeling the

target intensity (λ and µ denote the mean number of clutter and targets, respectively,

while c(·) and s(·) denote the distribution of one clutter measurement and one target

state in their spaces, respectively), the update equation of the generalized PHD filter

for an arbitrary number of measurements per target (and sensor scan) is given for

x ∈ X ⊂ Rd1 and z1, ..., zm ∈ Y ⊂ Rd2 , d1, d2 > 0 by

µX|Y (x|z1, ..., zm) = µs(x)

p0(∅|x) +

∑
π∈Π(1:m)

|π|∑
j=1

p|πj |(i(πj)|x)
|π|∏

k=1,k 6=j
ηπ,k

∑
π∈Π(1:m)

|π|∏
j=1

ηπ,j

 ,

(6.55)

where

ηπ,j ≡ 1{a:|a|=1}(i(πj))λc(i(πj,1)) + µ

∫
X

s(x)p|πj |(i(πj)|x)dx (6.56)

and Π(1:m) denotes the set of all partitions of

{δz
1

, ..., δz
m

}, (6.57)

e.g.,

Π(1:2) =

{{
{δz

1

}, {δz
2

}
}
,
{
{δz

1

, δz
2

}
}}

. (6.58)

The probability of detection is incorporated in the likelihood function p|·|(i(·)|x),

which itself is defined on sets of measurements. In (6.57) δc, c ∈ Y denotes the Dirac

delta defined in Section 4.1.1 generalized to d2 dimensions. The function

i : Π(1:m) → P(Y ) (6.59)
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is defined by

i({δz
1

, ..., δz
m

}) ≡ (z1, ..., zm), (6.60)

for all j ∈ {1, ...,m} and

1{a:|a|=1}(π) =

1, if |π| = 1

0, otherwise
(6.61)

defines the indicator function. In (6.59) P(Y ) denotes the power set of the set of

received measurements.

According to Chapter 4 an alternative approach to the GCR for deriving the update

equation of the generalized PHD filter via ordinary differentiation is given by the

theory of secular functions [Str14e].

Note that (6.55) can handle correlated measurements originating from a specific tar-

get, since only the assumption that the measurement process is the superposition

of M > 0 mutually independent (conditioned on {x1, ..., xM}) target–oriented mea-

surement processes is needed for the derivation of the update equation (for details

see the derivation of the generalized iFilter presented in [Deg14]). In particular, the

measurements are not assumed to be independent, conditioned on a specific target

state. Measurements originating from different targets cannot be correlated since in

the derivation of the generalized PHD filter in [CM12] the corresponding measurement

processes need to be mutually independent.

6.3.1.2 The Generalized Intensity Filter

The update equation of the generalized iFilter is given for z1, ..., zm ∈ Y ⊂ Rd2 ,

d2 > 0 by

µX|Y (x|z1, ..., zm) = µs(x)

p0(∅|x) +

∑
π∈Π(1:m)

|π|∑
j=1

p|πj |(i(πj)|x)
|π|∏

k=1,k 6=j
ηπ,k

∑
π∈Π(1:m)

|π|∏
j=1

ηπ,j

 ,

(6.62)

where x ∈ X+ ≡ X ∪Xφ, X ⊂ Rd1 and

ηπ,j ≡
∫
X+

µs(x)p|πj |(i(πj)|x)dx = µs(φ)p|πj |(i(πj)|φ) + µ

∫
X

s(x)p|πj |(i(πj)|x)dx.

(6.63)

Equation (6.63) is due to the definition of the integral in X+ ≡ X ∪Xφ, see [Str13a,

Definition (56)]. Analogously to the standard iFilter [SKSC12] the state space of the
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generalized iFilter consists of the union of the target space X, which is equal to the

target space of the generalized PHD filter, and the hypothesis space Xφ, which is used

to model clutter by scatterers.

Note that the generalization of the target–oriented measurement model implies that a

scatterer with a state in Xφ can also generate multiple clutter measurements per scan.

This is equivalent to the arbitrary clutter model in the generalized PHD filter. The

definition of the false–measurement model for elements from Xφ, that is, the clutter

model, of the generalized iFilter can be incorporated into the generalized iFilter by

the definition of the likelihood function p|·|(·|x) on Xφ for x ∈ X.

6.3.1.3 Computational Complexity and Probability Of Detection

The update equations (6.55) and (6.62) of both generalized PHD Intensity filters

are numerically highly complex due to the sum over all partitions of the set of re-

ceived measurements. The number of partitions is growing exponentially with the

number m of received measurements and is given by the Bell number Bm. The

exponential growth of the Bell number is visualized in Figure 6.11 and it is ob-

vious that for an application of (6.55) and (6.62) approximations are inevitable.

In [RBGD15], [Gra12], [GLO12], [GO12a], [GO13], [GO12b] and [SC10] clustering

approaches, which are essentially based on the spatial relation of measurements, are

used to reduce the number of partitions. These approximations are possible, if mea-

surements that are generated by the same target are spatially related in the measure-

ment space. However, in BML a target generates multiple measurements per sensor

scan which are not spatially related in the measurement space. Therefore, the par-

titions in equation (6.55) need to be reduced without using any information about

the spatial distribution of measurements. Instead, other criteria have to be identified

to successfully approximate the update equations (6.55) and (6.62) with a feasible

number (in terms of the numerical complexity) of partitions.

Furthermore, a modeling of the probability of detection via a simple Bernoulli trial (as

it is done for the standard target–oriented measurement model from Section 3.2.2.1)

is inappropriate if a target generates multiple measurements per sensor scan, since

multiple measurement partitions might be processed which are subsets of each other.

Therefore, the definition of the probability of detection in (6.55) and (6.62) (as part

of the likelihood function) has to be modeled in a generalized fashion (as already

mentioned in [CM12]).

6.3.2 Approximation of the Update Equation

As discussed in the previous section an evaluation of all measurement set partitions

within generalized PHD intensity filters is numerically not feasible due to the expo-

nential growth of the number of partitions with increasing set size. Furthermore, a
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Figure 6.11: Comparison of the Bell number and the number of partitions due to approxi-
mation (6.85) c© 2014 IEEE.

reduction of the number of partitions by the application of clustering methods is not

applicable if measurements that belong to a specific target are not spatially related

in the measurement space. To this end, two novel approaches are presented in the

following section, which approximate the update equation of generalized PHD inten-

sity filters by reducing the number of investigated partitions without assuming an

underlying spatial distribution of the measurements which belong to a specific target.

Finally, a generalized definition of the probability of detection is presented.

6.3.2.1 Incorporation of a Priori Information

The first proposed approximation of Equation (6.55) considers available a priori in-

formation about the number of generated measurements per target and sensor scan.

The idea is to restrict the possible number of generated measurements, that is to as-

sume that a target generates at least Nmin ∈ N and at most Nmax ∈ N measurements

per sensor scan. This idea is straightforward and closely related to the approach

for reducing partition hypothesis presented in [Alg10, Section 7.2.3]. Even though it

might seem obvious how a restriction of the number of measurements per target will

influence the update equation of the generalized PHD filter and iFilter, a detailed

derivation is carried out in the following for the generalized PHD filter to demon-

strate how a priori information and specific assumptions can be incorporated via a

mathematically correct approach into an existing pointillist filter from Chapter 3.

To derive the respective PHD update equation the general higher order chain rule,

presented in [CM12] is used to carry out the functional differentiation. Note that this
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Analytical Step can also by done by the application of secular functions. Let

g : (Y,B(Y ))→ (R,B(R)) (6.64)

and

h : (X,B(X))→ (R,B(R)) (6.65)

be bounded (by one), non–negative and Lebesgue–integrable test–functions, where

B(·) denotes the Borel–σ algebra of the respective space. First, the PGFL of the joint

state is given analogously to Equation (3.64) by

ΨGenPHD(h, g) = Ψgen
C (g)GN

(
Ψgen

BMD(h, g)
)

= (exp ◦f)(h, g), (6.66)

where

f(h, g) ≡ λ

∫
Y

c(z)g(z)dz − 1

+ µ

∫
X

s(x)h(x)Ψobs(g|x)dx− 1


and the approximated PGFL of the likelihood function Ψobs(g|·) : X → R, which

incorporates the a priori knowledge on the number of measurements per target, is

defined by

Ψobs(g|x) ≡ p0(∅|x) +

Nmax∑
n=Nmin

1

n!

∫
Y n

n∏
j=1

g(zj)pn(z1, ..., zn|x)dz1...dzn. (6.67)

It holds by definition that

Ψgen
BMD(h, g) =

∫
X

h(x)µ(x)Ψobs(g|x)dx (6.68)

Note that the for changing the target–oriented measurement model, only Ψobs(g|·)
has to be adapted. Applying the general higher order chain rule to determine the

functional derivative of (6.66) with respect to impulses yields

∂mΨGenPHD

∂δz1 · · · ∂δzm
(h, g) =

∂m(exp ◦f)

∂δz1 · · · ∂δzm
(h, g) =

∑
π∈Π(1:m)

∂|π| exp(f(h, g))

∂ξπ1 · · · ∂ξπ|π|

=
∑

π∈Π(1:m)

exp(f(h, g))

|π|∏
j=1

ξπj [g, h], (6.69)

where

ξω(h, g) ≡ ∂|ω|f(h, g)

∂ω1 · · · ∂ω|ω|
= µ

∫
X

s(x)h(x)
∂|ω|Ψobs(g|x)

∂ω1 · · · ∂ω|ω|
dx (6.70)
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6 Blind Mobile Localization Using PHD Intensity Filters

and the functional derivatives are taken with respect to the function g. For the

evaluation of (6.70) the functional derivative of definition (6.67) has to be considered.

Therefore, let ω be an arbitrary element of a partition from Π(1:m). Then, the Gâteaux

derivative of the functional is given by

∂|ω|Ψobs(g)

∂ω1 · · · ∂ω|ω|
=

Nmax∑
n=Nmin

1

n!
· n · (n− 1) · ... · (n− |ω|+ 1)

×
∫

Y n−|ω|

n−|ω|∏
j=1

g(zj
′
)pn(i(ω), z1′ , ..., z(n−|ω|)′ |x)dz1′ ...dz(n−|ω|)′ (6.71)

if |ω| < Nmin. If |ω| ∈ {Nmin, ..., Nmax − 1} it is given by

∂|ω|Ψobs(g)

∂ω1 · · · ∂ω|ω|
=p|ω|(i(ω)|x) +

Nmax∑
n=Nmin

1

n!
· n · (n− 1) · ... · (n− |ω|+ 1)

×
∫

Y n−|ω|

n−|ω|∏
j=1

g(zj
′
)pn(i(ω), z1′ , ..., z(n−|ω|)′ |x)dz1′ ...dz(n−|ω|)′ (6.72)

and if |ω| = Nmax it is equal to

∂|ω|Ψobs(g)

∂ω1 · · · ∂ω|ω|
= p|ω|(i(ω)|x). (6.73)

If |ω| > Nmax the derivative is

∂|ω|Ψobs(g)

∂ω1 · · · ∂ω|ω|
= 0. (6.74)

Thus,

∂|ω|Ψobs(g)

∂ω1 · · · ∂ω|ω|
=1A(ω)p|ω|(i(ω)|x) =


p|ω|(i(ω)|x), if |ω| ∈ {Nmin, ..., Nmax}

0, otherwise,

(6.75)

(6.76)

where

A ≡
{
a : |a| ∈ {Nmin, ..., Nmax}

}
. (6.77)

In the following, the short–hand notation from (6.75) is used. Given the functional

derivative of the PGFL of the joint state with respect to impulses the update equation
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of the corresponding PHD filter can be determined. It is given by

µX|Y (x|z1, ..., zm) =

(
∂mΨGenPHD(0, 1)

∂δz1 · · · ∂δzm
)−1

(
∂m+1ΨGenPHD(0, 1)

∂δz1 · · · ∂δzm∂δx

)
(6.78)

=

 ∑
π∈Π(1:m)

|π|∏
j=1

ξπj (0, 1)


−1 ∑

π∈Π(1:m)

∂Bπ(0, 1)

∂δx

 , (6.79)

where

Bπ(h, g) ≡ f(h, g) ·
|π|∏
j=1

ξπj (h, g) (6.80)

and

∂Bπ(h, g)

∂δx
=µs(x)Ψobs[g|x]

|π|∏
j=1

ξπj (h, g)

+

|π|∑
j=1

µs(x)
∂|πj |Ψobs(g|x)

∂πj,1 · · · ∂πj,|πj |

π∏
k=1,k 6=j

ξπk (h, g) (6.81)

The evaluation of (6.79) yields the update equation of the approximated generalized

PHD filter with Poisson clutter. It is given by

µX|Y (x|z1, ..., zm) =

µs(x)

p0(∅|x) +

∑
π∈Π(1:m)

|π|∑
j=1

1A(πj)p|πj |(i(πj)|x)
|π|∏

k=1,k 6=j
ηPHD
π,k

∑
π∈Π(1:m)

|π|∏
j=1

ηPHD
π,j

 , (6.82)

where

ηPHD
π,j ≡ ξπj (0, 1) = 1{a:|a|=1}(πj)λc(i(πj,1)) + µ

∫
X

s(x)1A(πj)p|πj |(i(πj)|x)dx.

(6.83)

The update equation of the generalized iFilter is derived analogously. It is given by

(6.82), but with ηPHD
π,j replaced by

ηiFilter
π,j ≡ 1{a:|a|=1}(πj)µs(φ)p|πj |(i(πj)|φ) + µ

∫
X

s(x)p|πj |(i(πj)|x)dx. (6.84)
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Due to the fact that some summands of Equation (6.82) are zero, computational effort

can easily be saved. A summand of the sum over all partitions in (6.82) is zero if for

the respective partition π ∈ Π(1:m) holds

∃j ∈ {1, . . . , |π|} : |πj | 6∈ {1, Nmin, ..., Nmax}, (6.85)

since then either 1{a:|a|=1}(πj) = 0 or 1A(πj) = 0. Therefore, the computational

effort can be reduced by rejecting the partitions which fulfill condition (6.85). After

rejecting the partitions, Equation (6.55) can be evaluated, since except for the ap-

pearance of 1A(·) = 0 it is identical to Equation (6.82).

Note that partitions are not rejected, if they have a subset which is of cardinality

one. This is independent of the choice of Nmin and Nmax and holds if a Poisson clut-

ter model is chosen (for the generalized PHD) or if clutter scatterers are allowed to

generate only single measurements (generalized iFilter)). For the generalized iFilter

this has to be modeled via the likelihood function on Xφ. However, more enhanced

clutter models could be included. For example, in a BML–scenario the context in-

formation, which is available due to a ray tracer, does not consider cars and other

road users. Therefore, typical clutter sources in a BML–scenario can be road users,

which reflect the signal emitted by the mobile station and act as new point sources

of the reflected electromagnetic wave(s). Thus, multipaths which are received due to

the same clutter source are not independent and hence clutter models which enable

multiple measurements per clutter source could enhance the proposed data fusion

algorithms. Obviously, condition (6.85) then needs to be adapted.

6.3.2.2 Evaluation of Significant Summands

In practical applications, the likelihood function is close to zero or might even be

represented by zero for unlikely events due to the numerical resolution of the computer.

Therefore, another practical approach for reducing the number of partitions which

have to be considered in equation (6.82) is to evaluate only the terms for which the

likelihood function value is above a specific significance–threshold. To this end, a

criterion based on the cardinality of the partition elements is developed to determine

these partitions. Let π ∈ Π(1:m) be an arbitrary partition which does not fulfill

criterion (6.85) and x ∈ X be an arbitrary target state. Then, if

∃j ∈ {1, . . . , |π|} : |πj | > 1 and p|πj |(i(πj)|x) ≤ τ (6.86)

is fulfilled

|π|∑
j=1

1A(πj)p|πj |(i(πj)|x)

|π|∏
k=1,k 6=j

η
PHD/iFilter
π,k ≈ 0 (6.87)

approximately holds, where τ > 0 is a chosen suitable small threshold for the signif-

icance of a partition. Note that |πj | > 1 in (6.86) has to be fulfilled due to the first
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summand in η
PHD/iFilter
π,k , respectively, since otherwise it might happen that only the

jth summand of (6.87) is approximately zero, while the other summands are signifi-

cantly larger than zero. Hence, condition (6.86) can be used to reduce the number of

the considered partitions. If τ = 0 in (6.86), “≈” can be replaced by “=” in (6.87).

Note that for the application of this condition the likelihood function has to be eval-

uated for all possible subsets and all target states. The number of all possible subsets

is given by the binomial series, e.g., for a set of m measurements,

NSubsets =

m∑
k=0

(
m

k

)
= 2m (6.88)

subsets have to be evaluated. However, depending on Nmin and Nmax the application

of condition (6.85) already reduces the number of subsets which have to be consid-

ered significantly, that is for m > 0 and 1 < Nmin ≤ Nmax ≤ m an application of

condition (6.85) reduces the number of subsets of the measurement set, which have

to be considered to

NSubsets = 2(Nmax+1)−Nmin+1. (6.89)

6.3.3 Generalization of the Probability of Detection

In [CM12] the authors emphasize that the probability of detection in [CM12, Equation

(27)] is defined more generally than in the standard PHD filter, where the detection

is modeled by a single Bernoulli process. If targets generate multiple measurements

per scan, the detection process can be modeled by a discrete probability distribution

over the number of measurements. This generalization of the probability of detection

has also been proposed in [Alg10] by using the binomial distribution for the detection

process within the definition of the probabilistic likelihood function for BML. For

(6.55), (6.62) and (6.82) the single–target likelihood function can be formulated by

p|πj |(i(πj)|x) = p(|πj |, x) · p̂|πj |(i(πj)|x), (6.90)

where the sensor likelihood function p̂|πj |(i(πj)|x) is given by

p̂|πj |(i(πj)|x) = p̃|πj |(i(πj)|x) (6.91)

and

p̂0(∅|x) = 1. (6.92)

Here and in the following, x ∈ X for the generalized PHD filter (and x ∈ X+ for the

generalized iFilter) and πj ∈ π, where π ∈ Π(1:m) ∪ ∅ denotes the set of partitions for

a set of measurements of cardinality m, defined analogously to Section 6.3.1.1.

For the definition of the generalized probability of detection p(·, x) : N → [0, 1] the
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detection process of the measurements, which are generated by the same target, needs

to be investigated. If the detections (each considered as a random variable) of the

single measurements are conditionally (conditioned on a specific target state) inde-

pendent and have the same distribution (same detection probability), the detection

process can be modeled by a series of Bernoulli–trials. If this assumption is fulfilled,

a possible choice for p(·, x) is the Poisson distribution, that is

p(n, x) ≡ λn

n!
e−λ, (6.93)

for all n ∈ N, where the parameter λ ∈ R>0 is the expected number of measurements

per target. If the number of measurements which are generated by a single target

can be restricted to Nmax ∈ N the Binomial distribution can be used to model the

detection process (see also [Alg10, Section 4.4]). It is given by

p(n, x) ≡

(
Nmax

n

)
qn(1− q)Nmax−n, (6.94)

for all n ∈ N, where q ∈ [0, 1] denotes the detection probability of an individual

measurement.

Note that the Binomial distribution can be considered as a special case of the Poisson

distribution. To this end, let

q ≡ λ

Nmax
. (6.95)

Then

lim
Nmax→∞,
q→0,

Nmaxq→λ

(
Nmax

n

)
qn(1− q)Nmax−n =

λn

n!
e−λ, (6.96)

for all n ∈ N [MS06, p.79].

Thus the Poisson distribution can be used to model the detection process for small

detection probabilities of the individual measurements and a large number of trials,

that is in scenarios where the target may generate a large number of measurements.

The Binomial distribution can be used if the maximal number of measurements per

target Nmax is known. Note that the two proposed definitions for p(·, x) are only

valid if the detections of the single measurements belonging to the same target are

conditionally independent and identically distributed. If this assumption is not valid,

other distributions need to be considered.
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Figure 6.12: Visualization of the two–target scenario used for the comparison of the gener-
alized PHD and the generalized iFilter. Two targets (green circle) are linearly moving with
a constant velocity on their trajectory (blue line). In one iteration a target generates two
correlated measurements (blue crosses), each with probability of detection pD = 0.8. The
measurements are drawn around the targets true position according to a Gauss distribution
with covariance matrix Σ. Furthermore, two clutter measurements (red crosses) are generated
uniformly over the FOV in each iteration.
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Figure 6.13: Estimation of the number of present targets.
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6.3.4 Numerical Evaluation

6.3.4.1 Comparison of the Generalized PHD and Intensity Filter in a Multitarget

Scenario with Correlated Measurements

To compare the generalized PHD and iFilter a numerical evaluation is carried out.

To this end, a two–target scenario is considered (see Figure 6.12), where the targets

are moving linearly with a constant speed of 5 m
s

(target 1) and 3 m
s

(target 2). The

trajectory of the first target starts at (10, 5)T and is directed to (650, 400)T . The

second target starts at (10, 500)T and is directed to (700, 10)T . In each iteration

(the scan time is 1s) two correlated measurements are drawn per target according

to a Gaussian distribution with the following parameters. The mean is given by the

position of the target and the covariance matrix is given by

Σ =

(
R C

CT R

)
, (6.97)

where R = diag[10 10] and C = diag[5 5]. Since the probability of detection per

measurement is pD(x) = 0.8, for all x ∈ R2 the covariance matrix Σ is restricted

according to the size of available measurements per target. Furthermore, two clutter

measurements are drawn uniformly per iteration in the FOV, which is defined by

FOV ≡ [0, 700] × [0, 700]. For the comparison of the generalized PHD and iFilter

SMC–implementations are used. The prediction of both filters is the same as for the

standard PHD filter, where the probability of survival is set to ps = 1.0 for all parti-

cles and the single–object transition density is defined by the continuous white–noise
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acceleration model from [BSLK01] with q̃ = 1.5. To reduce the computational com-

plexity, in each iteration 50 newborn particles are generated around the measurements

of the previous iteration. For the initialization 100 particles are uniformly drawn in

the FOV. A standard resampling algorithm (see [SKSC12]) is carried out and the

maximal number of particles is restricted to 150. For the generalized iFilter the pre-

diction of the intensity on Xφ is done analogously to [SKSC12]. For the update of the

filters the conditions for reducing the number of partitions given in (6.85) and (6.86)

are applied to both filters, setting Nmin = Nmax = 2. The likelihood function is given

by p|·|(i(·)|·) : EY \ ∅×R4 → R. Let in iteration k ∈ {1, ..., 100} be m ∈ {2, ..., 6} the

number of all received measurements. Let Y ⊆ R2 be the measurement space. Then,

EY ≡ ∅ ∪
⋃
n≥1

Y (n) (6.98)

is defined analogously to Section 2.1 by the space of sets of points in Y . For a subset

z = {z1, ..., zn} ∈ EY \ ∅, n ∈ {1, ...,m} and x ∈ X ≡ R4 arbitrary the likelihood

function is defined by

p|z|(i(z)|x) = p(|z|, x) · N



z1

...

zn

 ,


Hx

...

Hx

 ,


R C . . . C

CT R . . . C
...

...
. . .

...

CT CT . . . R



 , (6.99)

where

H ≡

(
1 0 0 0

0 1 0 0

)
(6.100)

and p(·, x) : N→ [0, 1] defines the probability of detecting a set of measurements with

the respective number of elements for a target state x ∈ X. For the evaluation it is

defined by the Binomial distribution

p(n) ≡


1− PD, if n = 0

PD ·

2

n

 qn(1− q)2−n, otherwise,
(6.101)

where q ≡ pD = 0.8 and x ∈ X. Furthermore, the detection probability in Xφ in

iteration k for the generalized iFilter is defined by

pk(n, x) ≡

 (fk−1|k−1(φ))m

m!
exp(−fk−1|k−1(φ)), if n = 1

0, otherwise,
(6.102)
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where

fk−1|k−1 : X+ → R (6.103)

denotes the updated intensity of the iFilter from iteration k − 1.

The generalized PHD filter uses a Poisson clutter model, which allows clutter to ap-

pear as single elements in the measurement space. The mean number of clutter of the

generalized PHD filter λ > 0 is set to two (the correct number of clutter measurements

per sensor scan) and c > 0 is uniform in the FOV. To extract a target state estimate

in each iteration, the k–means algorithm is applied, where the number of clusters k

is given by the rounded number of estimated target states from the filters. The tran-

sition probabilities of the generalized iFilter are set to ψ(φ|x) = 0.1, ψ(φ|φ) = 0.01

and ψ(x|φ) = 0.2.

To numerically assess both filters 100 MC runs are performed. Figure 6.13 visualizes

the number of estimated targets and Figure 6.14 shows the tracking result in terms

of the mean of the optimal subpattern assignment (OSPA)–values (order p= 2 and

cut-off c= 100) over all MC runs. Figure 6.15 visualizes the value of the intensity of

the generalized iFilter on Xφ, which represents due to (6.102) the number of present

clutter measurements. From Figures 6.13 and 6.14 it can be seen that the generalized

iFilter and the generalized PHD filter have a similar performance in terms of the

estimation of the number of targets and the OSPA–metric. This result was expected,

since both filters only differ in terms of their clutter modulation. However, it is re-

markable that the generalized iFilter has no information about the number of clutter

and estimates this information by the hypothesis intensity and its general scatterer

measurement model. In contrast, the generalized PHD filter possesses in each iter-

ation the correct information that two single clutter measurements are present. It

has to be noted, that the clutter models of both filters are defined for single clutter

measurements. The PHD filter uses a Poisson clutter model with fixed intensity, the

iFilter defines the clutter model via the likelihood function over Xφ, which is unequal

to zero for single measurements only (see (6.102)). In scenarios where clutter scatter-

ers occur that generate multiple clutter measurements per scan (like in BML), these

models could be changed. In such cases not the number of clutter, but the number

of clutter scatterers is estimated by the generalized iFilter. Analogously, that clutter

model for the generalized PHD filter could be generalized for such scenarios.

In the following, the generalized PHD filter as a representative of the class of gener-

alized PHD intensity filters is used for a close inspection of the performance of the

approximation criteria defined in (6.85) and (6.86). Afterwards, a possible application

of the concept to a BML–scenario in comparison to the adapted standard iFilter is

studied using simulated data.
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Figure 6.17: Legend for Figures 6.18 – 6.22.
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Figure 6.18: RMSE with respect to the first target. Due to the fact that the generalized
PHD filter over–estimates the number of present targets if the significance threshold τ is set
to 1.0 (see Figure 6.21) and the fact that the target state extraction is based on the rounded
number of estimated targets, the parametrization using τ = 1.0 performs better in terms of
the RMSE than the parameterizations using τ = 0.0.
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Figure 6.19: RMSE with respect to the second target.
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Figure 6.20: Mean of the OSPA–values with order p = 2 and cut–off value c = 100. In
terms of the OSPA–metric the parametrizations using τ = 0.0 perform better compared to
those that use τ = 1.0, since the over–estimation of the number of targets (see Figure 6.21)
is penalized by the OSPA–metric. The change of the number of investigated partitions does
not yield a significant alteration of the results.
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Figure 6.21: Estimated number of targets, where the dashed black line shows the true
number of present targets.
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Figure 6.22: Comparison of the mean time for updating the generalized PHD filter of
different parameterizations. It can be seen that the more partitions the filter processes and
the smaller the significance threshold τ is chosen the longer the update takes.
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Figure 6.23: Mean number of partitions resulting from condition (6.85) and mean number
of partitions due to condition (6.86) for two parameterizations (Nmin = 2/Nmax = 2 (black),
Nmin = 1/Nmax = 3 (red)). The number of all partitions is given by the Bell number (blue).
For the computation of the mean number of significant partitions in each MC run the mean
number of significant partitions is computed for each time step over all particles. Afterwards,
the mean of the number of significant partitions is computed over all MC runs. The number
of significant partitions is almost the same for the two parameterizations.

6.3.4.2 Close Inspection on the Approximation Criteria in a Multitarget Scenario

with Correlated Measurements

For a close inspection on the approximation criteria defined in (6.85) and (6.86), the

generalized PHD filter is used as a representative of the family of generalized PHD

intensity filters. In the following 100 MC runs of the scenario presented in Section

6.3.4.1 are performed for different parameterizations of the approximation conditions

(6.86) and (6.85). Figure 6.21 visualizes the results of the different parameterizations

in terms of the estimated number of targets. It can be seen that the estimated number

of targets does not depend on the chosen partition sizes, that is, it does not depend on

approximation criterion (6.86). This is due to the fact that the number of significant

partitions with significance threshold τ = 0.0 (and τ = 1.0) is more or less equal for

all three investigated parameterizations Nmin = 2/Nmax = 2, Nmin = 1/Nmax = 3

and Nmin = 1/Nmax = 6. Figure 6.23 visualizes exemplary for one parametrization

the mean number of partitions, where in each MC run the mean number of significant

partitions is computed for each time step over all particles. Furthermore, it can be

seen from Figure 6.21 that the parameterizations with significance threshold τ = 1.0

have a larger deviation in terms of the estimated number of targets than the parame-

terizations using the significance threshold τ = 0.0 and over–estimate the true number

of present targets. This yields to a better performance of the parameterizations using
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the significance threshold τ = 1.0 in terms of the RMSE with respect to the two true

target states, which can be seen in Figures 6.18 and 6.19. This is due to the fact that

the target state extraction is done using a k–means clustering algorithm, where k is

given by the rounded estimated number of targets. Therefore, the over–estimation of

the number of targets by the parameterizations with significance threshold τ = 1.0

implies a clustering that always estimates at least two clusters. In contrast to that,

the parameterizations with significance threshold τ = 0.0 under–estimate the true

target number for some iterations and thus the k–means clustering algorithm esti-

mates only one cluster for these iterations. In iterations, where no estimate for a

specific target is produced by the generalized PHD filter, the squared error is set to

1002 m. However, the over–estimation yields to a worse performance of the parame-

terizations using a significance threshold τ = 1.0 compared to the parameterizations,

which use a significance threshold τ = 0.0, since each over–estimation is penalized by

the OSPA–metric. The result in terms of the mean time consumption per iteration is

shown in Figure 6.22. It can be seen that the parameterizations using the significance

threshold τ = 1.0 are faster compared to the parameterizations using a threshold of

τ = 0.0. Furthermore, the parameterizations with Nmin = 2/Nmax = 2 perform better

in terms of time consumption than Nmin = 1/Nmax = 3 and Nmin = 1/Nmax = 6. In

summary: the less partitions and the larger the significance–threshold is, the faster

and worser the algorithm performs.

Also a parameterization without using the two approximation conditions has been

investigated in terms of the processed time per iteration. Since for this non– approx-

imated SMC generalized PHD filter one iteration took up to 5.30 · 103 s, only one

MC run has been performed. Thereby, the mean computation time was 2.28 · 103 s,

which shows, that even if Nmin = 1 and Nmax = 6 (no approximation in terms of

(6.85) has been made) and τ = 0.0 is chosen, the respective generalized PHD filter

parameterization (Nmin = 1/Nmax = 3, τ = 0.0) performs about 45 times faster than

the standard version, which does not use any approximation condition at all.

In summary, it is numerically shown that the proposed methods of approximation for

generalized PHD intensity filters can be applied to scenarios where targets generate

multiple measurements. It should be noted that the definition of the likelihood func-

tion does depend on the considered scenario. Furthermore, the following should be

kept in mind. The integral of the clutter intensity λc(·) yields the number of false

measurements (not false targets). Thus λ denotes the mean number of false measure-

ments per iteration. Hence, clutter is defined in terms of elements of the measurement

space, not as clutter targets in the target space when applying a Poisson clutter model.
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6.3.4.3 Comparison of the Generalized PHD Filter and the Standard Intensity

Filter in a BML Scenario

To demonstrate the connection of generalized PHD intensity filters to the challenge

of BML a single–target scenario in a simulated urban environment is presented. For

generating multipath measurements, a database for a fixed OS and a grid of MS

locations is generated analogously to Section 6.2.3 by using the ray tracing simulation,

which is based on [HWLW03]. The distance between two grid points is set to 10

m. The number of received multipaths is restricted to six and each multipath is

characterized by its AoA, its EoA and its RToA with respect to the first received

multipath. Therefore,

Y ≡ [0, 2π]× [−π, π]× R>0 (6.104)

and

EY ≡ ∅ ∪
⋃
n≥1

Y(n) (6.105)

are defined analogously to Section 2.1.

Afterwards, a linear ground truth for the MS, which is moving with a constant velocity

of 2.4 m/s, is simulated (see Figures 6.9 and 6.10). Then, in each time step the

lower left grid point of the box, in which the target is located in, is determined.

The multipaths which correspond to the chosen grid point are taken to generate the

multipath measurements, referred to as the true multipaths in the following. First,

in each iteration Gaussian distributed noise is added (this is different to Section 6.2,

where a simulation for the antenna array and the receiver setup is used) to the true

multipaths, where the standard deviations are set to σϕ = σϑ = 0.001 rad for the

azimuth and elevation of arrival and στ = 1.0
c

s. Here, c ≡ 299792458 m/s defines

the speed of light. Furthermore, a binomial detection process with probability of

detection of pD = 0.95 is used to model measurement failure. No clutter is added to

the set of measurements.

The generalized PHD filter is implemented including the approximations proposed in

(6.85) and (6.86), where Nmin ≡ 3, Nmax ≡ 6 and the threshold for significance of a

partition τ ≡ 1.0 · 1010. The FOV of the considered scenario is given by

FOV ≡ [645259.0, 645999.0]× [5495257.0, 5496747]. (6.106)

Furthermore, the probability of detection is independent of the target’s state space,

that is, p(n, x) = p(n) for all x ∈ X = FOV × R2, n ∈ {1, ..., 6}. It is modeled by

(6.94), where q ≡ pD ≡ 0.95. Then, it is incorporated into the likelihood function,
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which is defined for a hypothetical emitter position ξ ∈ X and a set of multipath

measurements {zj}mj=1, where zj ∈ Y (according to the ideas presented in [Alg10]) by

p
(
{zj}mj=1

∣∣ξ) ≡ p(n) · λm−nΦ ·
∏
i∈I

N
(
hiξ; z

ai , Cai
)
, (6.107)

where

hξ ≡ {hiξ}pi=1 (6.108)

denotes the set of predicted multipaths with respect to ξ and the fixed OS coming

from the ray tracer. Note the connection of (6.107) to the probabilistic likelihood

function (6.9). The occurrence of clutter in a set of multipaths is modeled by

λΦ ≡
0.1

FOV
, (6.109)

which is equal to the clutter density of the generalized PHD filter. The possible data

interpretation is denoted by Ema1,...,ap , where ai is defined as in (6.8) and denotes the

association of predicted to measured multipaths. However, due to the computational

effort, we only use the best data association analogously to (6.10), which is determined

by applying the Munkres algorithm [BL71] to the set of measured and predicted

multipaths, using the Mahalanobis distance with the covariance matrix

Cai = C = diag[σ2
ϕ σ

2
ϑ σ

2
τ ] (6.110)

for the construction of the cost matrix. Thus, the index ai in (6.107) denotes the

best (global) association for the specific predicted path. The generalized PHD filter

is realized by an SMC–implementation, since the likelihood function can be computed

only pointwisely. The maximal number of particles of the generalized PHD filter is

restricted to 700 and particles are only drawn and predicted to grid points, where at

least one multipath can be received due to the available database. In each iteration

200 newborn targets are uniformly drawn over the FOV. The single–object transition

density is defined by the continuous white–noise acceleration model from [BSLK01],

with q̃ = 1.5 and the probability of survival pS = 1.0. To extract the target states

the weighted mean of all particles is computed.

For a numerically comparing the result of the proposed generalized PHD filter, the

adaption of the standard PHD intensity filter to BML given in Section 6.1 is used. In

the following, the generalized mean computation from Section 6.1.3.2 together with

an SMC–implementation of the iFilter [SKSC12] is applied. The likelihood function

p(zj |ξ) of a hypothetical emitter position xi ∈ X and one multipath zj ∈ Y, j ∈
{1, ...,m} is defined by (6.13). The assignment is done by an global association via

Munkres algorithm between the set of measured multipaths Y and the set of predicted

multipaths hξ of ξ ∈ X. Therefore, the index ai denotes the assigned measured

multipath zj of the ith predicted multipath from hξ. The probability of detection
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is set to pD(x) = 0.9 for all x ∈ X and the detection probability in the space of

hypothesis Xφ is defined by pD(φ) = 0.4. The transition probability from Xφ to X

is set to Ψ(x|φ) = 0.2, the transition probability in Xφ is defined as Ψ(φ|φ) = 0.01

and the transition probability from X to Xφ is given by Ψ(φ|x) = 0.1. The number

of particles is restricted to 1500. The thresholds for target existence of the standard

iFilter and the generalized PHD filter are set to 0 to make the filters comparable in

terms of their RMSE–performance.

To assess both filters with respect to accuracy 100 MC runs of the presented scenario

are performed. The result in terms of the RMSE is shown in Figure 6.24. It can be

seen that both filters perform more or less equivalent after iteration 30 (the generalized

PHD filter is slightly better in terms of its RMSE–performance). However, it also can

be seen that until iteration 20 the generalized PHD filter performs worse than the

standard iFilter. First, it is obvious that the initialization of the generalized PHD

filter is not as good as the initialization of the standard iFilter. This is essentially due

to the fact that the likelihood function of the generalized PHD filter is much more

restrictive than the likelihood function of the standard iFilter. This is visualized in

Figures 6.26 and 6.28, which shows the sum of the likelihood functions given in (6.107)

and (6.13), that is, ∑
π∈ΠY

m

(1,3:6)

p
(
π|ξ
)
, (6.111)

where ΠYm

(1,3:6) denotes the set of all partitions of Y m which have a cardinality c ∈
{1, 3, ..., 6}, that is,

ΠYm

(1,3:6) ≡
{
{πz1 , ...πzm} : πzi ⊆ Y

m, |πzi | ∈ {1, 3, ..., 6}
}

(6.112)

and

m∑
j=1

p(zj |ξ) (6.113)

for the standard iFilter and ξ ∈ X respectively. The number of investigated parti-

tions is restricted due to the approximation condition (6.85), where Nmin = 3 and

Nmax = 6. For a clearer visualization only values of the likelihood function, which

are larger than 1010 are plotted. It is obvious that the shape of (6.111) is sharper

and therefore more restrictive than (6.113). This is due to the fact that the likeli-

hood function in (6.107) is given by a product of Gaussians. Therefore, partitions

with at least one unlikely subset of multipaths (with respect to a hypothetical emit-

ter position) possess a small likelihood function value. This contrasts the likelihood

function of the standard iFilter, which only assesses single multipaths (see (6.13)).

Due to the fact that the number of particles used by the generalized PHD filter is

not sufficient to cover the FOV and due to the small width of the likelihood function
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Figure 6.24: RMSE of the standard iFilter, which uses an enhanced post–processing scheme
for target state extraction and the generalized PHD filter applying the proposed approxima-
tion conditions with Nmin = 3, Nmax = 6 and τ = 1.0 · 1010.

(6.107), the mean time of convergence (until iteration 10–11) of the generalized PHD

filter is larger than the time of convergence of the standard iFilter. Furthermore, it

can be seen from Figure 6.24 that the localization of both filters around iteration 15

gets worse, while the generalized PHD filter performs worse than the standard iFilter.

This is due to the fact, that the likelihood functions produce ambiguities in terms of

the most likely hypothetical emitter position, which is shown in Figures 6.27 and 6.29

for iteration 15. Since in some MC runs a correct initialization of the generalized PHD

filter is not performed until the occurrence of these ambiguities, the generalized PHD

filter performs worse than the standard iFilter. However, the generalized PHD filter

performs better in iteration 20–25, since the restriction cancels out the ambiguities

earlier than the likelihood function of the standard iFilter.

The comparison of both filters in terms of estimated number of targets, that is, the

integral of the intensity function over the FOV is visualized in Figure 6.25. Due to

the assumption that one target generates at most one measurement per iteration the

standard iFilter estimates the number of multipaths which belong to a target. In

contrast to this the generalized PHD filter estimates after a few iterations the correct

number of present targets.

The standard iFilter clearly outperforms in terms of the time consumption the gen-

eralized PHD filter: For one MC run the standard iFilter needs 82614 ms, while the

generalized PHD filter takes 20250085 ms, which shows that it is of factor 245 slower

than the standard iFilter.
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Figure 6.25: Estimated number of targets, that is the sum of all particle weights before
resampling of the standard iFilter and the generalized PHD filter. Due to the assumption
that one target generates at most one measurement per iteration, which is violated in the
considered scenario, the standard iFilter estimates the number of multipaths, which belong to
target. The generalized PHD filter is able to estimate the correct number of present targets.

Figure 6.26: Visualization of the likelihood function defined in (6.111) at iteration 1.
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Figure 6.27: Visualization of the likelihood function defined in (6.111) at iteration 15.

Figure 6.28: Visualization of the likelihood function defined in (6.113) at iteration 1.
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Figure 6.29: Visualization of the likelihood function defined in (6.113) at iteration 15.

6.3.5 Conclusion

In this section generalized PHD intensity filters are studied in terms of their applica-

bility. First, the update equation of the generalized PHD and the generalized iFilter

are presented. Thereby, it becomes obvious that the issue of numerical complexity

needs to be solved before generalized PHD intensity filters can be applied to concrete

scenarios. Furthermore, the issue of the need of a generalization of the probability

of detection for such filters is identified. Then, two different ways of approximating

the update equation of the generalized PHD and iFilter are proposed. In contrast

to approximations for extended object and group tracking, the spatial relation of the

measurements in the measurement space is not used. The approximations are based

on incorporating the a priori knowledge on the number of measurements per target

and the significance of a partition in terms of the likelihood function value. Therefore,

the proposed approximations can be applied to the task of BML and other scenarios,

where a spatial distribution of the measurements is not available. Furthermore, the

detection process is modeled as a function of the target state and number of measure-

ments. Then, the usage of the Binomial and the Poisson distribution for conditionally

independent and identical distributed detection processes of the single measurements

is motivated. Three numerical examples using simulated data for assessing the pro-

posed methods are presented. First, a two–target scenario with multiple correlated

measurements is carried out to compare the generalized PHD to the generalized iFil-

ter. It is obvious that both filters show a comparable performance, which could have

been expected, since both versions only vary in the way of modeling clutter. The
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only remarkable difference between both filter versions is, that the generalized iFil-

ter is capable to estimate the number of clutter measurements correctly, while the

generalized PHD filter possesses the correct number of clutter measurements in every

iteration. Second, the same scenario is used to show the applicability of the proposed

approximation methods and to discuss the number of partitions that can be success-

fully reduced without decreasing the tracking performance. Several parameterizations

are investigated and compared to each other. Third, a single–target BML scenario is

investigated and the generalized PHD filter, using the proposed approximations and

the generalization of the probability of detection, is compared to an adaption of the

standard intensity filter in terms of runtime, the estimated number of targets and the

RMSE performance.

It is demonstrated that generalized PHD intensity filters can be applied to BML only

by applying certain approximations of reducing the number of partitions that have

to be processed by the update equation. Furthermore, it is seen that the tracking

performance of the generalized PHD filter is more robust than the adapted standard

iFilter due to the fact that the information of multiple measurements is processed

simultaneously in the generalized version. On the contrary, the computational com-

plexity of generalized PHD intensity filters is much higher than the computational

complexity of standard PHD intensity filters. In the concrete studied examples this

results in a longer initialization phase, due to the fact that the number of particles

that can be processed by the generalized PHD filter in an acceptable time are not

sufficient to cover the FOV of the investigated scenario. However, when studying

multitarget scenarios, partitions arise also for the adapted standard PHD intensity

filters due to the enhanced target state extraction schemes needed, which increase the

computational burden dramatically.

It is demonstrated that generalized PHD intensity filters are a versatile tool for solv-

ing BML scenarios, which need a numerically efficient implementation (e.g. parallel

computing) to be applicable for tasks that need to be processed online.

6.4 Evaluation with Real World Data

In the previous sections adapted standard and generalized PHD Intensity filters are

compared using the BML framework for simulated data. The corresponding BML

framework is presented in Section 5.1.3 and visualized in Figure 5.3. There, the mea-

surement data is created in the following way. First, a ray tracer produces a set of

predicted multipaths based on the OS and the ground truth position of the MS for

all time instances. Afterwards, these multipaths are deteriorated by an antenna em-

ulation and then used as measurement data by the tracking algorithms.

In this section, the second proposed BML framework from Figure 5.4 for the process-

ing of real world data is used to compare the generalized PHD filter (see Section 6.3)

to the adaption of the standard iFilter (see Section 6.1). The data was collected in the
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Figure 6.30: Visualization of the MS trajectory for the real world experiment (city of
Erlangen/Germany). The colors indicate the received field strength that is received by the
observer for the hypothetical emitter positions. Map Data: c©GeoBasis–DE/BKG 2015.
Ray–Tracer Visualization: c© 2015 AWE Communications.

Figure 6.31: Zoom of the studied scenario. Map Data: c©GeoBasis–DE/BKG 2015. Ray–
Tracer Visualization: c© 2015 AWE Communications.
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Figure 6.32: Comparison of the generalized PHD and the adapted standard iFilter in terms
of the RMSE.
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Figure 6.33: Comparison of the received multipaths to the predicted multipaths coming
from the ray tracer for the ground truth position in terms of the AoA.
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Figure 6.34: Comparison of the received multipaths to the predicted multipaths coming
from the ray tracer for the ground truth position in terms of the relative path length.
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Figure 6.35: Comparison of the generalized PHD and the adapted standard iFilter in terms
of the mean computation time per iteration.
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Figure 6.36: Picture of the OS c© 2013 Saab Medav Technologies GmbH. The antenna array
is carried by a lifting platform with a height of 10m.

Figure 6.37: Picture of the antenna array (SYST-A0006 from Alaris Antennas) and the
receiver setup c© 2013 Saab Medav Technologies GmbH.
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city of Erlangen. The trajectory of the MS and the location of the OS are depicted

in the Figures 6.30 and 6.31.

The MS is given by a car, which is equipped with a signal generator, a power ampli-

fier and an ommidirectional antenna to generate the emitted electromagnetic signal.

Furthermore, the target is equipped with an GPS-recorder for evaluating the target

state estimations of the data fusion algorithms with respect to accuracy. The emitted

signal has a frequency of 475.560 MHz and a bandwidth of 5 MHz. Note that the

bandwidth is small compared to the real world data evaluation carried out in [Alg10].

The power of the emitted signal is 10 Watt.

The five–element antenna array carried by the OS is a prototype from Alaris An-

tennas (SYST-A0006, see http://www.alarisantennas.com/ and Figures 6.36, 6.37),

which is mounted on a lifting platform in a height of 10 m (see Figure 6.36). Due to

this setup the OS is fixed for the considered scenario. However, in general a moving

OS and therefore an online processing of the ray tracing prediction is possible for

the proposed data fusion algorithms. Furthermore, the OS carries signal processing

equipment including a direction finding system (see Figure 6.37). The received signal

is then processed by the blind channel estimation algorithm proposed in [HKT15],

which outputs a set of multipaths characterized by the AoA and the RToA.

In Figures 6.33 and 6.34 the received multipaths are compared in terms of their AoA

and their relative path length (RPL) (which is equal to the RToA multiplied by the

speed of light), respectively, to the predicted multipaths generated by the MS. Using

this real world data the two SMC-implementations of the generalized PHD and the

adapted standard iFilter from Section 6.3.4.3 are numerically compared. The only

difference is given by the parameterization of the filters and the fact that the EoA is

not processed in this evaluation. Therefore, only the differences to Section 6.3.4.3 are

explained in the following. The standard deviations are set to σϕ = 1.0 rad for the

AoA and στ = 100.0
c

s for the RToA, where c denotes the speed of light.

The generalized PHD filter is implemented including the approximations proposed in

(6.85) and (6.86), where Nmin ≡ min(m, 3), Nmax ≡ 6 and the threshold for signifi-

cance of a partition τ ≡ 1.0·1010. Here, m denotes the number of received multipaths.

The FOV, that is, the area of possible MS locations which is predicted by the ray

tracer is given by

FOV ≡ [644489.0, 646999.0]× [5494207.0, 5497557.0]. (6.114)

The probability of detection of the adaption of the iFilter is given by pD(x) ≡ 0.75

for all x ∈ X, where X ≡ FOV× R2. For the generalized PHD filter the probability

of detection is modeled by (6.94), where q ≡ pD. The occurrence of clutter in a set

of multipaths is modeled by λΦ ≡ 0.01, which is equal to the clutter density of the

generalized PHD filter. The adaption of the standard iFilter estimates this quantity.

The probability of detection in the hypothesis space Xφ is set to pD(φ) = 0.3. The
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adaption of the standard iFilter uses the following transition probabilities. The tran-

sition probability from Xφ to the target state space X is set to Ψ(x|φ) = 0.3, the

transition probability in Xφ is defined as Ψ(φ|φ) = 0.1 and the transition probability

from X to Xφ is given by Ψ(φ|x) = 0.3. For the adaption of the standard iFilter

the maximal number of particles is set to 1500 and for the generalized PHD filter the

maximal number of particles is restricted by 700.

It can be seen from the RMSE–values after 50 MC runs (using the same data set)

(see Figure 6.32) that both filters show a comparable performance until iteration 30.

This is caused by the information quality of the received measurements (see Figure

6.33 and Figure 6.34), which is sufficient, such that the small number of particles

used by the generalized PHD filter and the approximation criteria (6.85) and (6.86)

do not decrease the performance of the generalized PHD filter compared to the stan-

dard iFilter adaption. In some iterations the criteria (6.85) and (6.86) imply that

no partition is significant, which is caused by the small number of particles and the

small width of the likelihood function defined in (6.107) and thus the computation

time of the generalized PHD filter is smaller for these iterations than the computation

time of the adaption of the standard iFilter. Furthermore, it can be seen from the

RMSE visualization in Figure 6.32 that the RMSE of the generalized PHD filter is

larger than the RMSE of the adapted iFilter for the iterations 30–80. For some MC

runs of the evaluation the generalized PHD filter yields for this time period a smaller

(around 200m) RMSE–value than the mean–RMSE of the adapted standard iFilter.

However, due to product form of its likelihood function the generalized PHD filter is

more restrictive than the adapted standard iFilter, which implies in combination with

the small number of particles an instable behavior for these iterations. Additionally,

in this time period the number of clutter in the received multipaths is rather high and

due to non–adaptive clutter rate of the generalized PHD filter the adaption of the

standard iFilter yields a more accurate estimate and is more stable, since it is able to

estimate the clutter online. The situation changes drastically after iteration 85, when

the generalized PHD filter is able to estimate the target state more accurately than

the adapted standard iFilter. This is implied by the fact that the estimated multi-

paths better match to the predicted multipaths of the ground truth position coming

from the ray tracer (see Figures 6.33, 6.34). The restrictive likelihood function of

the generalized PHD filter then filters out rigorously hypothetical emitter positions

with non–matching multipath predictions. This is the reason why the generalized

PHD filter outperforms the standard iFilter adaption for the last ten iterations, even

though the number of particles used by the generalized PHD filter is smaller than half

the number of particles used by the adapted standard iFilter.

In summary it is shown that the proposed generalized and standard PHD intensity

filter can be successfully applied to real world BML data, which is collected under

demanding boundary conditions (small number of antenna arrays and small band-
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width). The generalized PHD filter would clearly benefit from enlarging the number

of particles and decreasing the approximation significance–threshold defined in (6.86).

However, due to the high numerical complexity these approximating conditions are

needed and imply an instable behavior of the generalized PHD filter under real world

conditions. Future work therefore should concentrate on reducing the numerical com-

plexity without approximating the update equation. One approach is parallel com-

putation of the update equation of the generalized PHD filter for different particles

and/or partitions.

6.5 Conclusion and Future Work

This chapter is an extension and generalization of the work on passively tracking

an electromagnetic emitter under multipath propagation presented in [Alg10] to the

class of pointillist filters which superpose targets (see Section 3.4). As representatives

of this class of pointillist filters standard and generalized PHD intensity filters are

applied to BML. Due to the fact that BML implies a non–standard target–oriented

measurement model, that is, a target generates more than one measurement per sensor

scan standard PHD intensity filters and likelihood functions have to be generalized ap-

propriately. Furthermore, generalized PHD intensity filters (see Section 3.4.4), which

apply a generalized target–oriented measurement model, are in their original form

numerically highly complex. An application of these filters to BML is only possible if

the filter update is approximated by a sophisticated reduction of the partitions. The

main challenge thereby is to reject partitions without using a distribution information

of the measurements, since multipaths which are created by the same MS are typically

not spatially related in the measurement space.

By processing each multipath as an individual measurement, formulating a likelihood

function based on an assignment approach for a single multipath and deriving an

enhanced target state extraction scheme, an SMC–implementation of standard PHD

intensity filters is successfully applied to the task of BML. Furthermore, an alternative

likelihood function for BML, which is defined on single multipaths, is formulated using

an adaption of the decomposition of a bearing–only likelihood function. Approxima-

tion schemes which do not make use of the spatial distribution of measurements and

a generalization of the probability of detection enable the numerically highly complex

PHD intensity filters to solve the task of BML. Thus, it is shown that either standard

or generalized versions of PHD intensity filters can be applied to BML and yield sat-

isfactory results using either simulated or real world data. In particular it is shown,

that the derived data fusion algorithms can be applied to real world data which is

received with a small bandwidth, an open question formulated in [Alg10].

In future the application of other pointillist filter might imply an improvement of the

tracking results. Especially the ease of designing and deriving new pointillist filters

for the non–standard challenge of tracking mobile electromagnetic emitters under
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multipath propagation using the framework from Chapters 3 and 4 is a promising

approach. Also the application of hybrid pointillist filters (see Section 3.5) should be

considered due to the partial resolvability of targets in cluttered urban environments.

Even though it is assumed in [Alg10] that signals of different MS can be separated

due to their signal form, scenarios might exist, where this assumption is not valid.

Thus, future work will also investigate the application of the proposed methods in

a multitarget BML scenario. In such scenarios an additional level of the assignment

problem arises.

Furthermore, the development of more general clutter models for pointillist filters

that apply a generalized target–oriented measurement model should be studied in

future. In this chapter clutter is assumed to be generated as single elements in the

measurement space. In BML however, typical origins of clutter are objects, which are

not stored in the database of the urban environment of the ray tracer. Such objects

can be pedestrians, cars, trees, new buildings, etc. Since such objects create corre-

lated clutter measurements, clutter should also occur due to clutter scatterers. For

the studied filters such enhanced clutter models can be realized by either adapting

the likelihood function on the hypothesis space (generalized iFilter) or by introducing

a generalized clutter model (generalized PHD filter).

The derivation of further approximations of the update equations of generalized

pointillist filters for BML will also be part of future work.

In this work, the blind channel parameter estimation [HKT15] is done independently

of the tracking algorithm. However, BML data fusion algorithms would also benefit

from a simultaneous target tracking with combined parameter estimation using the

received raw signal analogously to the publications on the STAMP algorithm pro-

posed in [Li14] and [LK14].

Mission planning for scenarios with movable OS is a further topic for future work.

This challenging task ends up with an optimization problem and should imply a

significant improvement of the tracking results in scenarios with a moving OS.
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CHAPTER VII

Parameter Tracking for BML

The performance of data fusion algorithms for BML is deteriorated by missing and

false multipaths. The BML measurement set consists out of several multipaths which

are usually parametrized by their AoA (, sometimes the EoA) and the RToA. Mea-

surement failure in BML occurs for instance if the number of elements of the antenna

array is smaller than the number of emitted multipaths, due to fading or resolution

conflicts of the antenna array. False multipaths can occur due to moving obstacles

like pedestrians, cars, trucks, etc. or due to static objects which are not contained in

the building map like buildings, trees, etc. In general one can say that every object

which is not contained in the context information of the urban environment used by

the ray tracer is a potential origin of false multipaths.

The likelihood functions defined in (6.13) and (6.107) might yield in presence of a

high number of clutter or false multipaths ambiguous or completely false information

on the position(s) of specific MS(s). In order to improve the information about the

received multipaths, this chapter studies the application of algorithms for a tracking

of the multipaths in the parameter space, that is, a tracking in the domain of AoA

and RToA (all presented algorithms can easily be extended additionally to EoA as

well). Since parameter tracking enlarges the probability of detection and decreases

the false alarm probability, the quality of the multipaths processed by the data fusion

algorithm is increased [Alg10].

This chapter is structured as follows. In Section 7.1 related work for parameter track-

ing in the context of BML is presented and potential issues in existing approaches are

discussed. An MHT algorithm for parameter tracking, which is based on marginaliz-

ing over a set of clutter hypothesis, is proposed in Section 7.2. Finally, the conclusions

are drawn in Section 7.3
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Own work on this subject The proposed parameter tracking from Section 7.2 using

an MHT with additional clutter hypothesis is first published in [DGK13b] c© 2013

IEEE.

7.1 Existing Work

In [SRE+06] and [Sal09] the extended Kalman filter (EKF) is used for the parameter

tracking and in [CTW+07] the tracking of clustered multipath parameters is proposed.

In order to improve the results of BML–suited data fusion algorithms a parameter

tracking in the measurement space, that is, in the AoA and RToA domain using an

MHT is proposed in [ADKT08a], where a bank of standard Kalman filter are applied

to solve the parameter tracking. Furthermore, in [ART04] an alternative approach

using a maximum likelihood batch estimator is derived. An extension and improve-

ment of both works is given in [Alg10]. There, a standard approach from multitarget

tracking, that is, an MHT algorithm [Koc10] is applied to the multipath data. The

approach is verified using synthetic multipath measurements and the results seem to

be satisfactory unless the scenario does not have a too high number of clutter multi-

paths or too dense multipath components [Alg10].

The measurement function applied in the proposed standard track–oriented MHT

from [Alg10] is given by the identity function. Furthermore, the way of creating

and processing hypothesis is standard compared to multitarget tracking MHT algo-

rithms. In particular the RToA information is used without any additional processing.

However, a problem with the application of this standard approach occurs if clutter

multipaths are received that possess a negative RToA, that is, the respective clutter

measurement is received before all target–related measurements by the OS. A clut-

ter multipath with negative RToA implies that all target–related RToAs are increased

(with the difference between the RToA of the first target–related and the first received

multipath, see Figure 7.1). Thus, all likelihood functions defined in this thesis and

from [Alg10] are deteriorated due to an error in the assignment between the received

and the predicted multipaths.

Since the parameter tracking is applied before the target detection it is closely related

to TBD approaches [Alg10]. An overview of existing TBD approaches can be found

in [Gov12] and [DRC08]. TBD approaches can essentially be separated into dynamic

programming algorithms (DPA) [ASP93], particle filter approaches [RRG05], Hough

space transformation [Ric96] and subspace data fusion fusion [DOR08].

In the following, an extension of an MHT algorithm for parameter tracking that uses

an additional marginalization over clutter hypothesis is proposed to solve the problem

of false associations in between the predicted and measured multipaths.

174



7.2 MHT–Parameter Tracking Using Clutter Hypothesis

7.2 MHT–Parameter Tracking Using Clutter Hypothesis

If a clutter multipath is received before the first measurement of a target, that is,

if it possesses a negative RToA compared to the target–related measurements, the

computation of an assignment–based likelihood function is deteriorated and thus the

accuracy of any BML data fusion algorithm decreases.

In this section, a pre–processing of the measurement set by an application of an

MHT in the parameter space is proposed. Therefore, two extensions of the MHT,

processing additional global clutter hypothesis are derived. Finally, a ray tracing

simulation is used to numerically assess the proposed methods for different clutter

levels in terms of the OSPA metric. In this section parameter tracking via MHT in

AoA and RToA is considered in a completely blind scenario, that is, the possibility

exists that a clutter multipath might possess a smaller RToA than all target–related

multipaths. To handle this deterioration of the RToA of the target measurements

the incorporation of global clutter hypothesis into a track–oriented MHT is derived

by applying marginalization to the posterior. Based on the derived filtering equation

two approaches are proposed for determining the clutter hypothesis weights. Finally,

the proposed MHT–extensions are numerically compared against the ordinary MHT

algorithm, using a ray tracing simulation and the OSPA–metric.

This section is organized as follows. Section 7.2.1 describes the problem formulation.

The problem of clutter multipaths which are received before the first target–related

measurement is described in Section 7.2.1.1. In Section 7.2.2 the incorporation of

global clutter hypothesis into the MHT algorithm is presented. The derivation of

the respective MHT filtering equations is given in Section 7.2.2.1. The following two

subsections study the definition of the clutter hypothesis weights. In Section 7.2.2.2

the weights are defined via a combinatorial approach, in Section 7.2.2.3 the weighting

is done by an assignment procedure, using the OPSA–metric. A numerical evaluation

of the different MHT versions can be found in Section 7.2.3.

7.2.1 Formulation of the Problem

7.2.1.1 Problem of Clutter Multipaths

The underlying principle of existing data fusion algorithms presented in Chapter 6

and [Alg10] is to assess hypothetical positions of electromagnetic emitters with respect

to the current set of measurements by the computation of the likelihood function. The

value of the likelihood function is computed by assigning the predicted multipaths of

the ray tracer for a hypothetical emitter to the received measurements. A correct

assignment between the predicted and measured multipaths is deteriorated or be-

comes even impossible if clutter measurements (with arbitrary AoA and EoA) have

a smaller RToA than every target–related measurement (see Figure 7.1), which are

called measurements with negative RToA. This is due to the fact that clutter cannot
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Figure 7.1: Left: Without clutter measurements (red) that possess a negative RToA a
correct association between the ray tracing prediction (blue) and measurements (black) is
possible (even under the influence of clutter with a positive RToA). Right: Clutter with
negative RToA yields to a shift between the measurements and the ray tracing prediction
and prevents a correct association c© 2013 IEEE.

be modeled by the ray tracer, which implies that the RToAs of the measurements

are shifted in RToA compared to the predicted multipaths (see Figure 7.1). Note

that clutter which possesses a positive RToA compared to the first target–related

measurement might also cause non–correct assignments between the measured and

predicted multipaths (a clutter measurement might be closer to a predicted multipath

then the correct target–related measurement). However, an application of a standard

assignment algorithm [BL71] is still possible in the presence of clutter with positive

RToAs (see Figure 7.1, left). Thus, the focus of this work is on clutter measurements

with negative RToA.

The main idea to guarantee a correct assignment under the influence of clutter with

negative RToA is to consider additionally the hypothesis that the first n received

measurements, n ∈ {1, ...,mk} are false measurements. In the following section an

extension of the track–oriented MHT algorithm for tracking multipaths in the AoA–

RToA domain is proposed using global clutter hypothesis.

7.2.2 MHT–Parameter Tracking in AoA and RToA

In this section the problem of clutter with negative RToA is solved by introducing

clutter–hypothesis and incorporating them into the filtering equation by marginaliza-

tion. In Section 7.2.2.1 the clutter–hypothesis are introduced and it is explained why
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their definition is exhaustive. Furthermore, the filtering equation is derived, where ad-

ditional clutter–hypothesis weights can be found in each summand. In Section 7.2.2.2

and Section 7.2.2.3 the clutter–hypothesis weights are defined using a combinatorial

approach and the OSPA–metric, respectively.

7.2.2.1 Derivation of the MHT–Filtering Equations

In the following the MHT filtering equations are proposed to perform tracking of

multipaths with parameters in AoA and RToA. Without loss of generality the elements

of Zk are assumed to be sorted with respect to their RToA. To handle clutter in the

AoA–RToA domain, iC denotes the event that the first i elements of the current

measurement set Zk are clutter in a global sense, i ∈ {1, ...,mk}. Global means

that the event iC implies that the first i elements of Zk are clutter without stating

any relation to a specific estimated target state xk ∈ X ⊂ Rd, d > 0 from time

step k. In addition, ¬iC denotes the corresponding negated event, that is, the event

that at least one of the first i measurements is not clutter. This implies that the

joint event {(i − 1)C ,¬iC} indicates that the first (i − 1) elements of Zk are false

alarms and the ith incoming element of Zk is a target–related measurement. In

particular, this does not imply that the ith element of the set of measurements is

originated due to xk. Note that only clutter measurements with negative RToA are

problematic for the assignment–based data fusion algorithms presented in Chapter 6

and [Alg10]. Therefore, it is only important to know whether clutter measurements

are received before the first target–related measurement. The clutter hypothesis iC ,

i ∈ {1, ...,mk} cover these events.

In the following the posterior density is investigated in detail for a specific target state

xk. It is given by

p(xk|Zk) =p(xk,¬1C |Zk) + p(xk, 1C |Zk) (7.1)

=p(xk,¬1C |Zk) + p(xk,¬2C , 1C |Zk) + p(xk, 2C |Zk) (7.2)

=p(xk,¬1C |Zk) +

mk∑
i=2

p(xk,¬iC , (i− 1)C |Zk) + p(xk,mkC |Zk), (7.3)

where (7.1) and (7.2) are the results of applying marginalization to the events xk and

{xk, 1C}, respectively and (7.3) is given due to iterative marginalization on the events

{xk, iC} for i ∈ {2, ...,mk}. Note, that (7.2) holds, since the event 2C can only occur

if the first and the second multipath are clutter. Next, Bayes theorem can be applied
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to (7.3), which implies

p(xk|Zk) =p(xk,¬1C |Zk) +

mk∑
i=2

p(xk,¬iC , (i− 1)C |Zk) + p(xk,mkC |Zk) (7.4)

∝p(Zk|xk,¬1C) · p(xk,¬1C |Zk−1)

+

mk∑
i=2

p(Zk|xk,¬iC , (i− 1)C) · p(xk,¬iC , (i− 1)C |Zk−1)

+p(Zk|xk,mkC) · p(xk,mkC |Zk−1) (7.5)

=p(Zk|xk,¬1C) · p(xk|¬1C , Z
k−1) · p(¬1C |Zk−1)

+

mk∑
i=2

p(Zk|xk,¬iC , (i− 1)C) · p(xk|¬iC , (i− 1)C , Z
k−1)

×p(¬iC , (i− 1)C |Zk−1)

+p(Zk|xk,mkC) · p(xk|mkC , Z
k−1) · p(mkC |Zk−1) (7.6)

≈p(Zk|xk) · p(xk|¬1C , Z
k−1) · p(¬1C |Zk−1)

+

mk∑
i=2

p(Zk,i|xk) · p(xk|¬iC , (i− 1)C , Z
k−1)

×p(¬iC , (i− 1)C |Zk−1)

+p(∅|xk) · p(xk|mkC , Z
k−1) · p(mkC |Zk−1) (7.7)

=p(Zk|xk) · p(xk|Zk−1) · p(¬1C |Zk−1)

+

mk∑
i=2

p(Zk,i|xk) · p(xk|Zk−1) · p(¬iC , (i− 1)C |Zk−1)

+p(∅|xk) · p(xk|Zk−1) · p(mkC |Zk−1), (7.8)

where (7.6) holds due to the definition of conditional probability. The approximation

of the likelihood function in (7.7) is justified by the following idea. Given the event

that the first (i − 1) elements of Zk are clutter and the i-th element is a target–

related measurement it approximately suffices to consider Zk,i, where the first (i−1)-

measurements are removed (see Definition (6.5)). Equation (7.8) is valid since the

target state xk of the current iteration is independent of the event that a specific

measurement is clutter. This is valid since the event iC is a global assumption on

the measurement set Zk and does not provide any information about the relation of

state xk to the measurement set. Note that the pairwise statistical independence of

the events {¬iC} and {mkC} with {xk} given Zk−1 is due to the global definition of

the clutter events iC , i ∈ {1, ...,mk}.
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Since we assume that P (∅|xk) ≡ 0, (7.8) reduces to

p(xk|Zk) ≈p(Zk|xk) · p(xk|Zk−1) · p(¬1C |Zk−1)

+

mk∑
i=2

p(Zk,i|xk) · p(xk|Zk−1) · p(¬iC , (i− 1)C |Zk−1) (7.9)

To evaluate (7.9) it remains to compute

p(¬1C |Zk−1) = p(¬1C) (7.10)

and

p(¬iC , (i− 1)C |Zk−1) = p(¬iC , (i− 1)C). (7.11)

If it is assumed that clutter in the current iteration is independent of measurements

from the previous iterations (7.10) and (7.11) hold.

7.2.2.2 Combinatoric Clutter–Hypothesis Weighting

Motivated by the fact that clutter occurs randomly in the measurement set one ap-

proach to define the desired quantities from Equation (7.10) and (7.11) is to apply

combinatorics. Let n ∈ {0, ...,mk} denote the number of clutter measurements in

iteration k. Then marginalization with respect to n yields

p(xk|Zk) =

mk∑
n=0

p(xk|Zk, n) · p(n). (7.12)

From now on let n ∈ {0, ...,mk − 1} be fixed. For n = mk the measurement set

contains only clutter and thus P (iC) = 0 for all i ∈ {1, ...,mk}.
The occurrence of clutter can be modeled by drawing n times out of a set of mk dis-

tinguishable elements without repetition. The mk distinguishable elements represent

the measurements of iteration k sorted and numbered with respect to their RToAs. A

clutter measurement is then represented by a drawn element. This can be motivated

by the following consideration.

In equation (7.12) marginalization is applied with respect to the number of clutter.

Therefore, equations (7.10) and (7.11) only have to be computed given the number

of clutter. Hence, each measurement has the same probability to be clutter. Thus,

(7.10) and (7.11) can be defined by counting the combinations which represent the

events {1C} and {¬iC , (i− 1)C}.
First of all the total number of combinations is given by(

mk

n

)
. (7.13)
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Hence the probability of one combination is(
mk

n.

)−1

. (7.14)

Therefore, the probability of a specific event can be determined by counting all com-

binations that represent the desired event. The event that the first received measure-

ment is clutter is thus given by

P (1C |n) =

(
mk

n

)
−

(
mk − 1

n

)
(
mk

n

) (7.15)

and hence

P (¬1C |n) = 1−

(
mk

n

)
−

(
mk − 1

n

)
(
mk

n

) . (7.16)

Equation (7.15) holds since (
mk − 1

n

)
(7.17)

denotes the number of combinations without the first element and thus(
mk

n

)
−

(
mk − 1

n

)
(7.18)

counts the number of combinations containing the first element. In the following

mk ≥ 2 is assumed. It holds that

P (2C |n) = P (1C |n) ·

(
mk − 1

n− 1

)
−

(
mk − 2

n− 1

)
(
mk − 1

n− 1

) , (7.19)

since {2C} = {2C , 1C} by definition.

The fact that the event of having clutter in the second measurement is independent

of having clutter in the first element justifies the multiplication. Only the number

of drawn elements and the total number of measurements have to be subtracted by
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one. Analogously to the previous considerations the probability of having clutter in

the first but not in the second measurement is given by

P (¬2C , 1C |n) = P (1C |n) ·

1−

(
mk − 1

n− 1

)
−

(
mk − 2

n− 1

)
(
mk − 1

n− 1

)
 . (7.20)

Thus, the probability of the event {iC}, i ∈ {2, .., n} can be expressed by

P (iC |n) =P ((i− 1)C |n) ·

(
mk − (i− 1)

n− (i− 1)

)
−

(
mk − i

n− (i− 1)

)
(
mk − (i− 1)

n− (i− 1)

)

=

(i−1)∏
l=1

P (lC |n)

 ·
(
mk − (i− 1)

n− (i− 1)

)
−

(
mk − i

n− (i− 1)

)
(
mk − (i− 1)

n− (i− 1)

) (7.21)

and hence

P ((i− 1)C ,¬iC |n) =

(i−1)∏
l=1

P (lC |n)

 ·
1−

(
mk − (i− 1)

n− (i− 1)

)
−

(
mk − i

n− (i− 1)

)
(
mk − (i− 1)

n− (i− 1)

)
 .

(7.22)
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Therefore, p(xk|Zk, n) from (7.12) is given by

p(xk|Zk, n) =p(Zk|xk, n) · p(xk|Zk−1) ·

1−

(
mk

n

)
−

(
mk − 1

n

)
(
mk

n

)


+

mk∑
i=2

p(Zk,i|xk, n) · p(xk|Zk−1) ·

(i−1)∏
l=1

P (lC)



×

1−

(
mk − (i− 1)

n− (i− 1)

)
−

(
mk − i

n− (i− 1)

)
(
mk − (i− 1)

n− (i− 1)

)
 , (7.23)

since p(xk|Zk−1) = p(xk|Zk−1, n).

7.2.2.3 OSPA Clutter–Hypothesis Weighting

An alternative approach to determine p(¬1C) and p(¬iC , (i− 1)C) is to apply an as-

signment algorithm. To assess the events {(i−1)C ,¬iC}, i ∈ {2, .., n}, the probability

that the first (i− 1) elements of Zk are clutter but the ith measurement belongs to a

target is expressed by using the spatial relation between the established target state

estimates {x1, ..., xN} of the MHT from the previous iteration and Zk. Therefore, an

appropriate metric for point sets is needed.

The OSPA–metric [SVV08] is originally developed for assessing multitarget tracking

filters. It essentially consists out of two summands. One determines the localization

and the other describes the cardinality error. For its definition let X ≡ {x1, ..., xm}
and Y ≡ {y1, ..., yn} be two finite subsets and m,n ∈ N0. Denote by Π(1:k) the set

of permutations on {1, 2, ..., k} and let 1 ≤ p < ∞ and c > 0. Finally, d(c)(x, y) ≡
min(c, d(x, y)) defines the distance between x, y ∈ R2 cut–off at c. Then, the OSPA–

metric is defined by

d
(c)
p (X,Y ) ≡

 1

n

 min
π∈Π(1:n)

m∑
i=1

d(c)(x, yπ(i))
p + cp(n−m)




1
p

(7.24)

if m ≤ n and d
(c)
p (X,Y ) ≡ d(c)

p (Y,X) if m > n.

Now, (7.10) and (7.11) are defined using the OSPA–metric. Since the MHT filter

rejects clutter, established tracks can be used to find out which clutter hypothesis is

correct. The idea is thus to compare the established tracks with Zk,i, i ∈ {2, ...,mk}
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and Zk using the OSPA–metric. Since a small OSPA–value indicates a good match

between two point sets, the probabilities p(¬1C) and p(¬iC , (i− 1)C) are defined by

p(¬1C) ≡
d

(c)
p

−1

(Zk, {x1, ...xN})∑mk
j=1 d

(c)
p

−1

(Zk,j , {x1, ..., xN})
, (7.25)

p((i− 1)C ,¬iC) ≡
d

(c)
p

−1

(Zk,i, {x1, ...xN})∑mk
j=1 d

(c)
p

−1

(Zk,j , {x1, ..., xN})
, (7.26)

(7.27)

i ∈ {0, ...,mk}. If no established target states are available the probabilities of the

clutter hypothesis are equally weighted and normed.

7.2.3 Numerical Evaluation

To assess the proposed approach for parameter tracking with respect to accuracy a

numerical evaluation is carried out. An implementation of a track–oriented MHT

[Koc10] based on the Kalman filter including merging and pruning for tracks and hy-

pothesis is used to realize the extensions from the previous section by incorporating

clutter hypothesis and the two proposed approaches for computing their weights. To

create the test data a ray tracing simulation is used: A database is generated for a

given OS, a fixed grid of MS locations, a city vector–database and a radio channel

parametrization using a ray-tracer model analogously to [HWLW03]. Thus, each MS

possesses a specific number of multipaths, consisting out of AoA and RToA, which

are received by the OS. Afterwards, a linear ground truth for a target with con-

stant velocity is created. For each time–step the lower–left grid point of the box, in

which the target is located, is determined and the corresponding multipaths from the

database are stored as measurements of the respective iteration into the ground truth

of the parameter space. Finally, measurement failure, clutter and measurement noise

is added to the ground truth in the parameter space and the result represents the

measurement set. Without clutter and measurement failure the maximal number of

received multipaths is 20, the minimal number is 11 and the average number of paths

is 17.63. The measurement noise is set to σϕ = 0.0087 rad and στ = 5.0m
clight

, where

clight denotes the speed of light and the probability of detection is set to pD(x) = 1,

for all x ∈ X ⊆ R2, where X denotes the target state space. The number of clutter is

Poisson distributed with mean λ > 0 in [−π, π] × [−0.5 · 10−6s, 0.5 · 10−6s] ⊂ R2. A

negative RToA for a specific clutter measurement implies that it is received by the OS

before all target–related measurements. After adding clutter to the measurement set

the target–related multipath parameters have to be adapted by adding the smallest

clutter–RToA to the RToA of each target–related path. To investigate the influence

of false measurements, different clutter levels are considered, that is, λ ∈ {0, 1, 3, 5, 7}.
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Each MHT approach is parametrized in the same way: The detection probability is

set to pD(x) = 0.99, for all x ∈ X, the measurement noise is set to σϕ = 0.0087 rad

and στ = 5m
clight

, the false measurement density is set to ρF = 10−6, the values for

the likelihood ratio (LR) tests are set to A = 0.5, B = 1020. The covariance matrix

is constant for all iterations and set to C ≡ diag[σ2
ϕ σ

2
τ ]. Furthermore, merging and

pruning of hypothesis and tracks is done for each approach using the same parame-

ters.

For the numerical evaluation 250 MC runs of the presented scenario are performed.

To compare the results with respect to accuracy the OSPA–metric [SVV08] is com-

puted for the ground truth and the established tracks from the filter, that is, tracks

with an LR larger than B. The cut–off value of the OSPA–metric is set to c = 50

and the order is set to p = 2. The results are shown in Figures 7.2 – 7.6. Obviously,

the approach using the combinatoric clutter hypothesis weighting yields for all clutter

levels a better result than the ordinary MHT approach. Furthermore, the assignment

clutter hypothesis weighting approach yields for λ = 1 performance comparable to

the ordinary MHT algorithm. For higher clutter levels it performs better than the

ordinary MHT approach and comparable to the combinatoric clutter hypothesis ap-

proach. Note that even if no clutter is present (Figure 7.2) the performance of the

combinatoric approach is comparable to the performance of the ordinary MHT. For

a clutter level of λ = 7 the OSPA clutter–hypothesis weighting yields a better result

than the combinatoric clutter–hypothesis weighting. This is due to the fact that the

OSPA–approach takes knowledge about the past (established tracks) into account

and does not ignore the estimated information about the established tracks like the

combinatoric approach.

7.3 Conclusion

As mentioned in Chapters 5 and 6 an inherent problem of BML is that no synchro-

nization between the MS and OS can be assumed. Therefore, only RToAs can be

measured which yields to the fact that clutter which arrives the OS before the first

target–related measurement deteriorates the RToA of each measurement. Related

work on the topic of parameter tracking in BML does not cover this fact (see Sec-

tion 7.1). Thus, in this chapter a clutter hypothesis extension of a track–oriented

MHT for parameter tracking in AoA and RToA is presented. First, the extended

filtering equation is derived via marginalization over global clutter hypothesis. This

extension yields a posterior which takes the possibility into account that clutter mea-

surements are received by the OS before any target–related measurement. To weight

each clutter hypothesis the probability that specific elements of the measurement set

are clutter has to be determined. Two approaches for defining these probabilities are

proposed. First, a combinatorial approach is presented, which models the occurrence

of clutter in the measurement set by drawing the expected number of clutter out
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Figure 7.2: Even in the situation where no clutter is present (λ = 0) the combinatoric
hypothesis–weighting approach performances comparable to the ordinary MHT approach c©
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Figure 7.3: OSPA–value for λ = 1 c© 2013 IEEE.
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Figure 7.4: OSPA–value for λ = 3 c© 2013 IEEE.
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Figure 7.6: OSPA–value for λ = 7 c© 2013 IEEE.

of a set of mk distinguishable elements, where mk is the number of measurements.

This approach presumes that clutter occurs randomly. Second, an assignment–based

procedure for computing the desired probabilities is described. The computation of

the OSPA–metric between the established tracks of the ordinary MHT filter and the

measurement set is the basis for the clutter hypothesis weighting. This approach

takes the knowledge about the previous states into account. Finally, a numerical

evaluation for different clutter levels shows that the combinatorial clutter hypothesis

weighting yields always a better result than the ordinary MHT if clutter is present.

Furthermore, the assignment–based approach yields comparable results (if λ ≥ 5)

to the combinatorial method for higher clutter levels and is therefore also a better

choice than the ordinary MHT for cluttered scenarios. If no clutter is present the

combinatoric approach shows a comparable result to the ordinary MHT.
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CHAPTER VIII

Conclusions and Future Work

This thesis is divided into two parts. The first part studies mathematical aspects of the

unifying formulation and derivation of multitarget tracking filters by employing finite

point process theory. The highly complex challenge of passive and non-cooperative

localization and tracking of an electromagnetic emitter in an urban environment us-

ing a single antenna array is discussed in the second part. Both parts separate the

thesis into theory and practice. However, the multitarget tracking filters applied

are a straightforward consequence of the theoretical considerations, since they are

themselves members of the proposed unification. This brings to mind James Clerk

Maxwell’s famous words: “There is nothing more practical than a good theory.”

8.1 Conclusions

Finite Point Processes in Target Tracking

Chapter 2 studies well–known fundamentals of point process theory and establishes

the connection to multitarget tracking filters in a comprehensive and intuitive way.

Furthermore, the benefits of point process theory towards the closely related approach

of RFS are discussed and it is noted that the theory of finite point processes is able

to model filters for almost all practical relevant target tracking scenarios.

Chapter 3 presents the unification of several well–known multitarget tracking filters

by a joint formulation using a single functional, called PGFL. The characterization

is based on the finite point process theory proposed in Chapter 2. The multitarget

tracking filters are presented according to their use of superposing targets. It is shown

that well–known filters that do not superpose targets like the Bayes–Markov, MHT,

PDA, JPDA, IPDA, JIPDA, PMHT and filters that do superpose targets in one state

space like the PHD/iFilter, CPHD, multi–Bernoulli and generalized PHD/iFilter are

contained in this unification, called the family of pointillist filters. Furthermore, a
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family of filters in between the known superposition–classes, that partially superpose

targets, are presented and called hybrid pointillist filters. Members are the joint

PHD/iFilter and the joint generalized PHD/iFilter. The benefit of this simple and

unique representation of multitarget tracking filters via a single PGFL is demonstrated

by identifying existing relations between filters. The key benefit of using the PGFL–

characterization of a pointillist filter is that instead of describing methodologies by a

lot of (maybe inaccurate) words, the unique and exact description brings to light the

key ingredients of a filter at a glance. An explicit demonstration for tracking engineers

on how non–standard and demanding scenarios can be solved by designing customized

pointillist filters via PGFLs is also presented using a non–standard example.

Chapter 4 illuminates the derivation of summary statistics of pointillist filters that

are needed for the implementation and application of the particular filters to real

world tracking scenarios. The mathematically correct definition of the functional

derivative with respect to Dirac delta is the focus of this chapter. By the application

of the classic LDC theorem the definition of the investigated functional derivative is

shown to be valid for all pointillist filters formulated in Chapter 3. In particular, the

theory of secular functions, which essentially transforms the functional derivative of a

PGFL into an ordinary derivative of a secular function, is extended such that all of the

pointillist filters from Chapter 3 can be derived in a mathematically correct way. This

result implies that highly developed numerical and exact methods for differentiation

can be applied to the derivation of the information update equations of pointillist

filters. This enables the theoretical results presented in the first part to be applied in

practice.

An Application to Emitter Tracking under Multipath Propagation

Chapter 5 introduces the challenge of blindly and passively localizing and tracking

an electromagnetic emitter in an urban environment using a single antenna array.

Furthermore, existing work is presented and open questions are identified to motivate

the contributions of Chapters 6 and 7.

Chapter 6 extends the work on BML presented in [Alg10] to standard and gen-

eralized PHD intensity filters, that is, to filters from the class of pointillist filters

that superpose targets. For standard PHD intensity filters the target–oriented mea-

surement model does not model that targets in a BML scenario generate multiple

measurements per sensor scan. Therefore, standard PHD intensity filters are suc-

cessfully adapted to BML by formulating enhanced target state extraction schemes

(see Section 6.1) and deriving and evaluating likelihood functions that are defined

on single multipaths (see Definitions 6.13 and 6.53). Furthermore, the application

of generalized PHD intensity filters to BML is studied intensively. In contrast to

extended target tracking the spatial relation between measurements cannot be used

for reducing measurement partitions. Therefore, approximation criteria, which do
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not apply any information about the distribution of measurements in the parameter

space, are derived for generalized PHD intensity filters and numerically evaluated.

Finally, the proposed standard and generalized PHD intensity filters are numerically

compared using simulated and demanding real world data and it is shown that the

derived methods promise great applicability to solve the task of BML in further sce-

narios.

Chapter 7 presents an approach for tracking parameters in AoA and RToA based

on a track–oriented MHT. In the existing work on parameter tracking for BML the

problem of clutter multipaths which are received before the first target–related mul-

tipath is not considered. However, the performance of assignment–based data fusion

algorithm decreases if clutter multipaths are received before the first target–related

multipath. In this thesis MHT filtering equations that incorporate this effect are de-

rived via a marginalization with respect to clutter hypotheses. A numerical evaluation

demonstrates that the derived methodology outperforms the existing state–of–the–art

approach from [Alg10].

Summary

The following conclusions summarize the main contributions of this thesis:

1. A unification of multitarget–tracking filters modeled by finite point processes,

called the family of pointillist filters, is proposed and the applicability of the

concept is demonstrated.

2. The derivation of summary statistics of pointillist filters via functional deriva-

tives with respect to Dirac delta is mathematically justified and the theory of

secular functions is extended to the family of pointillist filters.

3. Standard and generalized PHD intensity filters are adapted to the challenge of

BML and evaluated using simulated and real world data.

4. A novel parameter tracking algorithm in the AoA–RToA domain using clutter

hypotheses is derived.

8.2 Future Work

According to the physicist and mathematician Carl Friedrich Gauss “Nothing is done

as long as there is something left to do” 1 The challenges studied and methodologies

formulated in this thesis imply new questions, which have to be answered in future

work.

1 The original words are: “Nichts ist getan, wenn noch etwas zu tun übrig ist.”
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Finite Point Processes in Target Tracking

The separation of pointillist filters is done with respect to target superposition and

for a single measurement space. Multi–scan and multi–sensor versions of existing

pointillist filters can be designed analogously by introducing additional test–functions

defined on the measurement space. Future publications will study this extension.

Table 3.1 shows the family of pointillist filters, comprising many well–known tracking

filters. However, the list is not exhaustive. The extension of the family of pointillist

filters is an ongoing process left for the future.

The theory of secular functions and its extension to the family of pointillist filters

discussed in Chapter 4 implies that the summary statistics of every pointillist filter

can be derived using ordinary differentiation. Therefore, existing exact and numerical

methods for computing these statistics can be applied to save numerical complexity.

The evaluation of different methodologies for distinct pointillist filters is an open

question left for further scientific work.

An Application to Emitter Tracking under Multipath Propagation

The application of further members of the family of pointillist filters to the task of

BML, the design of possibly complete new well–suited pointillist filters for solving the

challenge of BML and their evaluation in simulated and real world scenarios is left

for future work. In particular the restricted resolvability of targets in BML scenarios

motivates the application of hybrid pointillist filters, which partially superpose tar-

gets. Additionally, finite point process theory could be applied to derive data fusion

algorithms which jointly perform blind channel estimation and target tracking in an

analogous fashion as it is proposed in [Li14], [LK14].

Enhanced clutter models should be considered, since typically origins of clutter multi-

paths are objects that create several multipaths by themselves. Therefore, the Poisson

model, which models clutter as single multipaths, could be replaced by more general

models which enable the consideration of clutter scatterers. In combination with an

estimation of the clutter intensity, e.g. by the intensity filter, schemes for the iden-

tification of clutter origins could be derived. Such clutter estimates could be used

to derive a clutter–map and reject false multipaths or incorporate origins of clutter

online into the context information of the ray–tracer.

Mission planning [Alg10] is a topic for improving BML scenarios with a moving OS.

Solving the mission planning problem is equivalent to solving an optimization prob-

lem. To the knowledge of the author mission planning in terms of a BML scenario

has not been done so far. The performance of data fusion algorithms would definitely

benefit from an incorporation of mission planning methodologies.

An efficient implementation of pointillist filters using a generalized target–oriented

measurement model like the generalized PHD intensity filters proposed in Section 6.3
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is necessary to apply such filters in real time to real world scenarios. Since SMC–

implementations of the filters are used, a parallel computation of the filter update for

each particle and/or each partition could be an approach to save computation time.

Furthermore, the numerical schemes for computing the summary statistics presented

in Chapter 4 could be integrated to save computational effort. Additionally, further

schemes for the reduction of the number of measurement partitions are needed.
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Linköping University, Sweden, 2012.

[Gri84] J. Grim. On structural approximating multivariate discrete probability
distributions. Kybernetika, 20(1):1–17, 1984.

[GS96] J. Gunther and A.L. Swindlehurst. Algorithms for blind equalization
with multiple antennas based on frequency domain subspaces. In Con-
ference Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP-96., volume 5, pages 2419–2422
vol. 5, 1996.

[HDC13] J. Houssineau, E. Delande, and D. Clark. Notes of the summer school
on finite set statistics. arXiv preprint arXiv:1308.2586, Aug. 2013.

[HJL04] S. Horsmanheimo, H. Jormakka, and J. Lähteenmäki. Location-aided
planning in mobile network - trial results. Wireless Personal Communi-
cations, 30(2-4):207–216, Sept. 2004.
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