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1 Introduction

1.1 Motivation

Cluster algebras are a recent and active field of research. They were introduced by Fomin

and Zelevinsky [FZ02] in 2002 as a new approach to study the duals of Lusztig’s canonical

bases for quantum groups from a combinatorial point of view.

Cluster theory was soon revealed to have intimate connections to numerous mathematical

disciplines: among others, Kac-Moody algebras, root systems, representations of quivers

(with potential), Teichmüller theory, preprojective algebras, and Calabi-Yau categories.

A groundbreaking discovery was that acyclic skew-symmetric cluster algebras admit a

categorification by cluster categories [BMR+06]. Another more general categorical model

was developed in [DWZ08; DWZ10] and uses representations of quivers with potential.

One important feature shared by Kac-Moody Lie algebras and cluster algebras is that

both can be defined in terms of generalized Cartan matrices. In this relationship, cluster

algebras with skew-symmetric exchange matrices have symmetric Cartan counterparts.

The symmetric case has been closely investigated in the recent past and is comparatively

well-understood. In contrast, there are many open problems in the symmetrizable situation.

Answering these problems and lifting constructions from the symmetric to the symmetrizable

setting is an area of current research (see e.g. [GLS16a; GLS16b; GLS16c]).

In the representation theory of finite-dimensional algebras symmetric generalized Cartan

matrices are linked to quiver representations, while the symmetrizable case is covered by

representations of modulations for weighted quivers.

Gabriel initiated the investigation of modulations (or species) in [Gab73]. In a sequence

of articles [DR74; DR75; DR76] Dlab and Ringel developed the theory further. Their

most striking result is the finite-type classification of modulations, which parallels the

classification of semi-simple Lie algebras.

Finite-Dimensional Algebras

Fix a field K. We briefly revise how finite-dimensional algebras over K lead to modulations.

The module category mod(Λ) of a finite-dimensional algebra Λ over K is equivalent to

the module category mod(Λbasic) of the basic algebra Λbasic = EndΛ(P )op where P is any

multiplicity-free projective generator of mod(Λ). This is why it is common practice to

focus in representation theory on finite-dimensional basic algebras.

11



1 Introduction

For every finite-dimensional basic algebra Λ over K its reduction Λred = Λ/rad(Λ) is

semi-simple and by the Artin-Wedderburn theorem even a product of division algebras.

Let A = Ext1
Λ(Λred,Λred) considered as a bimodule over R = EndΛ(Λred)op. Naturally

associated with Λ we therefore have the tensor algebra R〈A〉 of A.

If K is a perfect field, Benson [Ben98] motivated by [Gab73; Gab80] proves Λ ∼= R〈A〉/J
for an admissible ideal J of R〈A〉. The algebra Λ is hereditary if and only if J = 0.

Writing 1 = e1 + · · ·+en for a complete set of primitive orthogonal idempotents e1, . . . , en

in Λ, the modules Si = Λei/rad(Λei) with 1 ≤ i ≤ n form an up to isomorphism complete

set of simple Λ-modules. There is an induced factorization R = R1×· · ·×Rn of rings and a

decomposition A =
⊕

i,j jAi of bimodules where Ri = EndΛ(Si)
op and jAi = Ext1

Λ(Si, Sj).

If K is an algebraically closed field, then Ri ∼= K for all i and the tensor algebra R〈A〉
is the path algebra KQ of a quiver Q with dimK

(
jAi
)

arrows j ←− i.

Modulations

Let Q be a weighted quiver, i.e. a finite quiver Q equipped with a function Q0 → N+, i 7→ di.

A modulation forQ is a family (Ri, Aa)i,a of connectedK-algebrasRi with dimK(Ri) = di

and non-zero Rj ⊗KR
op
i -modules Aa indexed by the vertices i ∈ Q0 and arrows j

a←− i ∈ Q1

such that both Rj
(Aa) and (Aa)Ri are free of finite rank. Let jAi =

⊕
j

a←−iAa.

The modulation is minimal if dimK(Aa) = lcm(dj , di) for all arrows j
a←− i.

The situation where all Ri are division algebras corresponds to what Gabriel called a

species in [Gab73] and what we shall call a division modulation.

The previous paragraph pointed out that every finite-dimensional K-algebra gives rise

to a division modulation.

Path Algebras of Modulations

Every modulation H = (Ri, Aa)i,a for a weighted quiver Q defines a path algebra: the

tensor algebra R〈A〉 of the bimodule A =
⊕

aAa over the ground ring R =
∏
iRi.

Work of Roganov [Rog75] and Iwanaga [Iwa80] shows that the projectivity of RA and AR

implies that the path algebra R〈A〉 is (n+1)-Gorenstein if the ground ring R is n-Gorenstein.

In this case, a module over R〈A〉 has finite homological dimension if and only if it has

finite homological dimension when considered as a module over R.

Geiß, Leclerc, and Schröer exploited this fact recently in [GLS16a] for self-injective ground

rings R where n = 0. Another manifestation of this result is the famous slogan “Path

algebras of quivers are hereditary.”

Representations of Modulations

A representation of the modulation H is a module M over the path algebra R〈A〉. It can be

identified with a pair (RM,AM) consisting of an R-module RM = M and AM ∈ Rep(A,M)

12



1.1 Motivation

for the space of A-representations

Rep(A,M) = HomR(A⊗RM,M) =
⊕
i,j

HomRj
(jAi⊗Ri eiM, ejM) .

Following [GLS16a] an R-module M is locally free if each eiM is a free module over Ri.

Finite-dimensional locally freeR-modulesM have a rank vector rank(M) = (rankRi(eiM))i.

Preprojective Algebras

Assume that R carries the structure R
ϕ−→ K of a symmetric algebra. Let A∗ = HomK(A,K).

Denote by AM 7→ AM
∨ the isomorphism Rep(A,M)→ HomR(M,A∗⊗RM) induced by ϕ.

A compatible A-double representation (M,AM,A∗M) consists of an R-module M and

representations AM ∈ Rep(A,M) and A∗M ∈ Rep(A∗,M) with A∗M ◦AM∨ = AM ◦A∗M∨.

Compatible A-double representations are the same as modules over the preprojective

algebra Π = R〈A⊕A∗〉/〈ρ〉 where ρ ∈ (A⊗A∗)⊕ (A∗ ⊗A) is the preprojective relation.

More generally, the deformed preprojective algebra Πλ = R〈A⊕A∗〉/〈ρ− λ〉 is defined

for every λ in the center of R. All this builds on [GP79; Rie80; DR80; CH98; GLS16a].

If Q is acyclic, the path algebra H = R〈A〉 is finite-dimensional and Baer, Geigle,

Lenzing’s [BGL87] alternative definition of the preprojective algebra Π as the tensor algebra

of the H-bimodule Ext1
H(H∗, H) ∼= HomH(H, τ−(H)) gives a conceptual explanation for

the significance of Π in the representation theory of finite-dimensional algebras.

Gabriel’s Theorem

Gabriel’s Theorem [Gab72] classifies all representation-finite acyclic quivers. Namely, he

shows that an acyclic quiver is representation-finite if and only if it is a finite union of

Dynkin quivers. Right after proving this, Gabriel [Gab73] introduced division modulations

for weighted quivers (or valued graphs) to provide the framework for a generalization of his

celebrated classification to the non-simply laced situation.

Dlab and Ringel [DR75] were first in giving a proof of Gabriel’s Theorem in this more gen-

eral setting: A division modulation H for a weighted acyclic quiver Q is representation-finite

if and only if H is minimal and Q a union of Dynkin quivers. In this case, M 7→ rank(M)

establishes a bijection between the isomorphism classes of indecomposable representations

in rep(H) and the set of positive roots of the quadratic form qQ defined by Q.

Coxeter Functors

To give a satisfactory explanation for the appearance of finite simply-laced root systems in

Gabriel’s Theorem, Bernstein, Gelfand, and Ponomarev [BGP73] described for acyclic Q

an adjoint pair (C−, C+) of endofunctors of rep(Q). The Coxeter functor C+ (resp. C−)

acts on rank vectors of indecomposable non-projective (resp. non-injective) representations

as the Coxeter transformation (resp. its inverse) of the root lattice defined by Q.

13



1 Introduction

Again, it were Dlab and Ringel [DR74; DR76] who constructed similar endofunctors

of rep(H) for division modulations H of weighted acyclic quivers.

Inspired by an idea of Riedtmann, Gabriel [Gab80] makes the remarkable observation that

there are isomorphisms C+T ∼= τ+ and C−T ∼= τ− where τ+ = (−)∗◦Tr and τ− = Tr◦(−)∗

are the Auslander-Reiten translations of rep(Q) and T is a “twist” functor.

GLS Modulations

Let Q be a weighted acyclic quiver and let fij = dj/gcd(di, dj) for i, j ∈ Q0.

Geiß, Leclerc, and Schröer [GLS16a] thoroughly examined the modulationH = (Ri, Aa)i,a

for Q where for j
a←− i

Ri = K[εi]
/(

ε
di
i

)
, Aa = K[εj , εi]

/(
ε
fij
j − ε

fji
i , ε

dj
j , ε

di
i

)
.

For constant weights di = c the path algebra of H is the path algebra of the quiver Q

over the truncated polynomial ring K[ε]/(εc). In particular, rep(H) = rep(Q) in case c = 1.

The arguments in [GLS16a] implicitly but consistently use that the ground ring R carries

the structure R
ϕ−→ K of a symmetric algebra in the sense of [Nak39] where ϕ is the linear

form dual to
∑

i ε
di−1
i with respect to the basis formed by the εri .

Geiß, Leclerc, and Schröer’s notable insight is that, for a suitable generalization of the

Coxeter functors C±, the Brenner-Butler-Gabriel isomorphisms C±T ∼= τ± are valid on

the full subcategory of rep(H) consisting of the locally free representations.

Moreover, the functors τ± leave the subcategory of locally free representations M that

are rigid (i.e. Ext1
H(M,M) = 0) invariant.

Using this, they were able to prove a much more general version of Gabriel’s Theorem:

The number of isomorphism classes of indecomposable locally free rigid representations

in rep(H) is finite if and only if Q is a union of Dynkin quivers. In this case, M 7→ rank(M)

yields a bijection between these isomorphism classes and the positive roots of qQ.

Cluster Algebras

Cluster algebras AQ are subalgebras of the field Q(x1, . . . , xn) of rational functions. Their

generators, the cluster variables, are grouped into overlapping clusters. All clusters are

obtained from the initial cluster (x1, . . . , xn) by an iterative process called mutation. Cluster

mutation is governed by a weighted quiver Q associated with the initial cluster.

It was proved in [FZ03] that a cluster algebra AQ has only a finite number of cluster

variables if and only if Q is mutation-equivalent to a union of Dynkin quivers.

Potentials and Caldero-Chapoton Formula

String theorists [Sei95; DM96] associated with certain supersymmetric gauge theories

quivers with superpotential, which often describe the endomorphism algebra End(
⊕

iEi) of

an exceptional collection E1, . . . , En in a triangulated category [BP01; AF06; Bri05; BP06].

14



1.1 Motivation

Loosely based on these ideas, Derksen, Weyman, and Zelevinsky [DWZ08] developed a

mutation theory for quivers Q with potential (QPs) and their representations.

In doing so, they provided a categorical model for cluster mutation [DWZ10]. Namely,

the k-th variable in a non-initial cluster of AQ obtained via mutation at a sequence i can

be computed as

xi,k =
n∏
j=1

x
−〈Sj ,Mi,k〉
j

∑
α∈Nn

χ(Grα(Mi,k)) xBα .

In the formula, Mi,k is a representation of a non-degenerate QP (Q,W ) over the complex

numbers C that is obtained from the negative simple representation S−k by mutation at i.

Furthermore, 〈−,−〉 is the 1-truncated Euler form, B the skew-symmetric matrix, and Grα

the quiver Grassmannian of α-dimensional subrepresentations associated with (Q,W ).

Originally, Caldero and Chapoton [CC06] discovered this formula for Dynkin quivers.

Representations of (Q,W ) are by definition modules over the Jacobian algebra J (W ),

the quotient of the completed path algebra of Q by the cyclic derivatives ∂ξ(W ).

Cluster-Tilting Subcategories

Let Π be the preprojective algebra and WQ the Weyl group of a finite acyclic quiver Q.

For every w ∈ WQ Buan, Iyama, Reiten, and Scott [BIRS09] described a subcategory Cw
of the category of finite-dimensional nilpotent Π-modules. This category Cw is Frobenius

and its stable category is 2-Calabi-Yau. Moreover, Cw can be regarded as a categorification

of a cluster algebra constructed by Geiß, Leclerc, and Schröer in [GLS11].

Each reduced expression s = (s1, . . . , s`) for w determines a maximal rigid Π-module T (s),

which induces a cluster-tilting subcategory of Cw. The 2-CY tilted algebra EndΠ(T (s)) is a

strongly quasi-hereditary Jacobian algebra according to [BIRS11; GLS11].

Surface-Type Cluster Algebras

A cluster algebra AQ has finite mutation type if the number of (isomorphism classes of)

weighted quivers that are mutation-equivalent to Q is finite. It has surface type if Q is

the weighted adjacency quiver of a triangulation of a weighted orbifold. Fomin, Shapiro,

and Thurston [FST08] began with the investigation of surface-type cluster algebras in the

skew-symmetric case and Felikson, Shapiro, and Tumarkin [FST12a] extended their results

to the skew-symmetrizable setting.

The importance of surface-type cluster algebras is revealed by Felikson, Shapiro, and

Tumarkin’s [FST12a; FST12b] mutation-type classification: If Q is a connected weighted

quiver with at least three vertices and is not mutation-equivalent to one of 18 exceptions,

the cluster algebra AQ is of finite mutation type if and only if it is of surface type.

In theoretical particle physics, Cecotti and Vafa [CV13; Cec13] applied this result to

classify all “complete” 4d N = 2 supersymmetric gauge theories.
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1 Introduction

Let Q(τ) be the adjacency quiver of a triangulation τ of a surface without orbifold points.

Assem et al. [ABCP10] (for unpunctured surfaces) and Labardini-Fragoso [Lab09a] (in the

general situation) described a potential W (τ) on Q(τ). For almost all surfaces it is shown

in [Lab09a; CL12; Lab16] that the QPs (Q(τ),W (τ)) and (Q(ς),W (ς)) correspond to each

other under mutation if the triangulations τ and ς are related by flipping an arc.

1.2 Results

We sketch the main results chapter by chapter. More detailed introductions and summaries

can be found at the beginning of each chapter and its major sections.

As before, let K be a field. Fix a K-modulation H = (Ri, Aa)i,a for a weighted quiver Q.

Let R =
∏
iRi and A =

⊕
aAa.

Chapter 2: Background

For all elements W in the completed path algebra R〈〈A〉〉 we define Jacobian algebras J (W ).

Generalizing a result of [DWZ08] we have:

Proposition. Assume that the enveloping algebra Re = R⊗KRop is basic semi-simple.

Every KI-algebra automorphism f of R〈〈A〉〉 induces an isomorphism J (W ) −→ J (f(W )).

An SP over R is a pair (A,W ) consisting of a finite-dimensional R-bimodule A over K

and a potential W , i.e. an element in the trace space of R〈〈A〉〉. In the joint work [GL16a]

the mutation theory for quivers with potential (QPs) was lifted to a special class of SPs:

Generalization. Assume that the field K contains a di-th primitive root of unity and

the algebras Ri are intermediate fields of a cyclic Galois extension L/K. Then for every

vertex j there is an involution µj of the set of reduced-equivalence classes of SPs over R

that are 2-acyclic at j, which specializes to QP mutation if all weights di are equal to one.

Parts of the mutation theory of QPs have previously been extended to several special

classes of modulations in [Dem10; Ngu12; LZ16; BL16].

Chapter 3: Symmetric Modulations

Let us assume that the ground ring R carries the structure R
ϕ−→ K of a symmetric algebra.

In this situation, an idea of [CH98] allows to identify the space of A∗-representations on a

finite-dimensional locally free R-module M with the dual of the space of A-representations.

More precisely, there is a trace pairing that induces an isomorphism of K-vector spaces

Rep(A∗,M)
∼= // Rep(A,M)∗ .

Along this line, it is possible to prove the central result of [GLS16a] for arbitrary

symmetric local modulations, i.e. whenever all Ri are symmetric local algebras:
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1.2 Results

Theorem. Let H be the path algebra of an acyclic symmetric local modulation. Moreover,

let C± be the Coxeter functors of mod(H) constructed as in [BGP73; BK12; GLS16a].

There is an H-bimodule Π1 such that C+T ∼= HomH(Π1,−) and C−T ∼= Π1⊗H− as

endofunctors of mod(H). Restricted to the category of locally free H-modules, there are

isomorphisms C+T ∼= τ+ and C−T ∼= τ− where τ± are the Auslander-Reiten translations.

As a consequence, Gabriel’s Theorem as stated in [GLS16a] for locally free rigid modules

also holds in the setting of acyclic symmetric local modulations.

Finally, the following extensions of results of [CH98; BK12; GLS16a] could be of interest:

Proposition. Let H be the path algebra and Πλ with λ ∈ Z(R) a deformed preprojective

algebra of a symmetric local modulation (Ri, Aa)i,a for a weighted acyclic quiver Q.

• For each vertex j in Q one can construct two reflection functors Σ±j on Mod(Πλ).

If λj ∈ R×j , there is rj(λ) ∈ Z(R) and Σ+
j
∼= Σ−j induces an equivalence

Mod
(
Πλ
) ' //Mod

(
Πrj(λ)

)
.

If λj = 0, then (Σ−j ,Σ
+
j ) is a pair of adjoint endofunctors of Mod(Πλ).

• The preprojective algebra Π = Π0 is self-injective if Q is a Dynkin quiver.

• The module HΠ is the direct sum of the “preprojective” modules τ−p(HH) with p ∈ N.

• The “symmetry” Ext1
Π(M,N) ∼= Ext1

Π(N,M)∗ holds for locally free M,N ∈ mod(Π).

Comparable extensions of [GLS16a] were independently proposed in [LY15; Kül16].

Chapter 4: Potentials for Cluster-Tilting Subcategories

Let w be an element in the Weyl group WQ of a finite acyclic quiver Q. We will show:

Theorem. For every reduced expression s for w the quiver of EndΠ(T (s)) admits an up

to right-equivalence unique non-degenerate potential W (s).

Chapter 5: Potentials for Tagged Triangulations

This chapter presents results of [GL16a].

We introduce and study potentials for (tagged) triangulations of weighted orbifolds in

the sense of [FST12a]. Roughly speaking, a weighted orbifold Σ is a connected compact

oriented Riemann surface of genus g with b boundary components, m marked points, and

o weighted orbifold points. In this chapter we treat the case where all orbifold points have

weight two. Depending on coefficient functions u and z, we associate with each (tagged)

triangulation τ of Σ an SP Su,z(τ) = (A(τ),Wu,z(τ)).

Generalizing [Lab16] to the weighted situation, the main result is that flipping arcs in

tagged triangulations is compatible with the mutation of SPs:
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1 Introduction

Theorem. Assume g > 0 or b+m+o ≥ 7. Let ς be obtained from a tagged triangulation τ

of Σ by flipping an arc i. Then the SP mutation of Su,z(τ) at i is equivalent to Su,z(ς).

The important consequence is the non-degeneracy of the SPs Su,z(τ) for all tagged

triangulations τ of weighted orbifolds Σ that satisfy the condition in the theorem.

For non-closed orbifolds the choice of coefficients will be shown to be not essential:

Proposition. Assume b > 0. Let τ be a (tagged) triangulation of Σ. The SPs Su,z(τ)

and Su′,z′(τ) are equivalent for all valid coefficient functions u, u′ and z, z′.

Chapter 6: Potentials for Colored Triangulations

The contents of this chapter are drawn from [GL16b].

We continue the investigation of weighted orbifolds Σ. Now we impose no restriction on

the weights of the orbifold points, but assume that all marked points lie on the boundary.

Following a construction of [AG16], we define chain complexes C•(τ) for triangulations τ .

A colored triangulation is a pair (τ, ξ) where τ is a triangulation of Σ and ξ is a 1-cocycle in

the cochain complex C•(τ) that is F2-dual to C•(τ).

After describing an SP S(τ, ξ) = (A(τ, ξ),W (τ, ξ)) for each colored triangulation (τ, ξ),

we prove the compatibility of flip and mutation:

Theorem. Assume that (ς, ξ′) is obtained from another colored triangulation (τ, ξ) of Σ

by flipping an arc i. Then the SP mutation of S(τ, ξ) at i is equivalent to S(ς, ξ′).

A corollary of this result is the non-degeneracy of the potential W (τ, ξ). On the other

hand, we will argue that the property to be non-degenerate essentially determines W (τ, ξ):

Theorem. Assume Σ is not a monogon in which all orbifold points have the same weight.

Then every non-degenerate potential for A(τ, ξ) is equivalent to W (τ, ξ).

It is often useful to know that Jacobian algebras are finite-dimensional. Thus we prove:

Proposition. The Jacobian algebra J (τ, ξ) defined by S(τ, ξ) is finite-dimensional.

It is also interesting to observe that the isomorphism classes of Jacobian algebras J (τ, ξ)

corresponding to a fixed triangulation τ are parametrized by a cohomology group:

Theorem. Let τ be a triangulation of Σ. There exists an isomorphism J (τ, ξ) ∼= J (τ, ξ′)

of K-algebras fixing the vertices pointwise if and only if [ξ] = [ξ′] in cohomology.

Finally, we define a flip graph whose vertices are pairs (τ, [ξ]) of triangulations τ of Σ

and cohomology classes [ξ] ∈ H1(C•(τ)). This graph is disconnected unless Σ is a disk:

Theorem. The flip graph of Σ has at least 22g+b−1 connected components.
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1.3 Terminology

1.3 Terminology

Unless it is otherwise specified, all rings are unital, all algebras associative and unital, all

ideals two-sided, and all modules left modules.

1.4 Notations

K an arbitrary field, fixed for this thesis

(−)∗ the functor HomK(−,K)

N the set of natural numbers 0, 1, 2, . . .

N+ the set of positive integers 1, 2, 3, . . .

Z the ring of integers

Q, R, C the field of rational, real, and complex numbers, respectively

Fq the finite field with q elements

Mod(R) the category of modules over the ring R

mod(R) the category of finite-dimensional modules over the K-algebra R

dim(V ) the dimension of the vector space V

rank (M) the (well-defined) rank of a module M

rad(M) the radical of a module M

RM used to stress the fact that M should be considered as a (left) R-module

MR used to stress the fact that M should be considered as a right R-module

〈x1, . . . , xn〉 the ideal generated by x1, . . . , xn in a ring that is clear from the context

Z(R) the center of the ring R

char(R) the characteristic of the ring R

Gal(L/E) the Galois group of the Galois extension L/E

[L : E] the degree of the field extension L/E

TrL/E the trace in E relative to L of the E-algebra L as in [Bou70, III. §9 no. 3]

TrR(f) the trace of the R-linear endomorphism f in the commutative ring R

δP the Kronecker delta; equal to 1, if P is true, and equal to 0, if P is false
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2 Background

In this chapter we lay the foundation for the later parts of this thesis. § 2.1 briefly revises

weighted quivers and their relationship to Cartan matrices. Operations like reflection and

mutation are presented for modular quivers. § 2.2 introduces tensor algebras and § 2.3 tries

to justify the concept of K-modulations. In § 2.4 modulations are treated in detail. We

discuss natural constructions like pullback, dual, and double modulations. § 2.5 focuses on

cyclic Galois modulations. The concluding § 2.6 is concerned with Jacobian algebras and

species with potential (SPs). We describe SP mutation for a special class of modulations.

2.1 Weighted and Modular Quivers

2.1.1 Quivers

Most of the terminology introduced in this subsection is standard.

Definition 2.1.1. Let K be the Kronecker category, i.e. the category with two objects, 0

and 1, and two non-identity morphisms, s and t, both of the form 1→ 0. The category of

quivers Q is the category of functors from K to the category of finite sets.

The objects Q of Q are called quivers. We write Qx for the image of x ∈ {0, 1} under Q.

The images under Q of the morphisms s and t are again denoted by s and t. In plain

words, a quiver Q consists of two finite sets, Q0 and Q1, and two functions s, t : Q1 → Q0.

The elements in Q0 are called the vertices and the elements in Q1 the arrows of Q. An

arrow a ∈ Q1 with i = s(a) and j = t(a) starts in i and ends in j. This is visualized as

j
a←− i ∈ Q1 .

To state the fact that Q is a quiver whose vertex set is I, we say that Q is an I-quiver.

A morphism of I-quivers is a morphism of quivers Q
f−→ Q′ with f0 = idI .

A quiver Q′ is a subquiver of another quiver Q if there is a monomorphism Q′
f
↪−→ Q

where fx are the inclusions of subsets Q′x ⊆ Qx for x ∈ {0, 1}. We then write Q′ ⊆ Q.

A path an · · · a1 in Q is a tuple
(
in

an←−− in−1, · · · , i2
a2←−− i1, i1

a1←−− i0
)
∈ Qn1 with n ∈ N

and the convention Q0
1 = {i ei←−− i | i ∈ Q0}. We say that the path p = an · · · a1 starts

in s(p) := i0 and ends in t(p) := in. Paths p ∈ Qn1 have length `(p) := n.

Set PnQ(i, j) := PQ(i, j) ∩ PnQ where PQ(i, j) is the set of paths in Q starting in i and

ending in j and PnQ is the set of length-n paths in Q.
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2 Background

Cyclic paths are paths in P	Q :=
⋃
i∈Q0
PQ(i, i). If P	Q ∩ PnQ = ∅, the quiver Q is said to

be n-acyclic. It is loop-free if it is 1-acyclic, and acyclic if it is n-acyclic for all n ∈ N+.

The quiver Q is n-acyclic at i ∈ Q0 and i is an n-acyclic vertex in Q if PQ(i, i)∩PnQ = ∅.

The path category PQ of Q is the category with object set Q0 and set of morphisms i→ j

given by PQ(i, j). The trivial paths ei are the identities. Composition is defined in the

obvious way as concatenation of paths. The assignment Q 7→ PQ canonically extends to a

functor from Q to the category of strict small categories,

The quiver Q is connected if PQ is a connected category. A subquiver Q′ ⊆ Q is full if

the functor Pf is full for the canonical inclusion Q′
f
↪−→ Q.

Notation 2.1.2. For X ⊆ Q1 write Q−X for the Q0-subquiver of Q with arrow set Q1\X.

For X ⊆ Q0 write Q|X for the full subquiver of Q with vertex set X.

For subquivers Q′, Q′′ ⊆ Q write Q = Q′ ⊕Q′′ if Q0 = Q′0 ∪Q′′0 and Q1 = Q′1
.
∪Q′′1.

2.1.2 Weighted Quivers

We introduce weighted quivers and describe two operations, reflection and premutation,

modifying a weighted quiver locally and producing another one. The first operation plays

a significant role in Chapter 3, whilst the second one is prominently used in Chapters 5

and 6.

Definition 2.1.3. A weighted quiver Q is a pair
(
Q, dQ

)
consisting of a quiver Q and a

function Q0
dQ−−→ N+, i 7→ dQi . The integer dQi is called the weight of the vertex i.

A morphism of weighted quivers is a morphism Q
f−→ Q′ of quivers satisfying dQ

′◦f0 = dQ.

We simply write d instead of dQ where it does not cause confusion.

Notation 2.1.4. Whenever a weighted quiver Q with weights d = dQ has been fixed, we

use the following notations for i, j ∈ Q0:

dij := gcd(di, dj) , dij := lcm(di, dj) , fij :=
dj
dij

=
dij

di
,

cij := 2δi=j − fijmij , mij := |{j ←− i ∈ Q1}|+ |{j −→ i ∈ Q1}|

Occasionally, we also use the abbreviation dkji := gcd(dk, dj , di) for i, j, k ∈ Q0.

Remark 2.1.5. Fix a finite set I. A Cartan matrix C with symmetrizer D is a pair (C,D)

of integer (I × I)-matrices with the following properties:

(a) The diagonal entries of C are 2 and the remaining entries non-positive.

(b) D is a diagonal matrix with positive entries.

(c) DC is symmetric.
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2.1 Weighted and Modular Quivers

For every loop-free weighted I-quiver Q the matrix CQ := (cij)i,j∈I is a Cartan matrix

with symmetrizer DQ := diag(di | i ∈ I).

Vice versa, every Cartan matrix C with symmetrizer D arises from a weighted quiver.

More specifically, there is a 2-acyclic weighted I-quiver Q such that CQ = C and DQ = D.

The underlying graph GQ of Q is determined by (C,D) up to isomorphism. The number

of edges joining two vertices i 6= j in GQ is equal to

mij =

gcd(|cij |, |cji|) if cijcji 6= 0,

0 otherwise.

Remark 2.1.6. Let I be a finite set. According to [FZ02, Definition 4.4] a pair (B,D) of

integer (I × I)-matrices is called a skew-symmetrizable matrix B with symmetrizer D if D

is a diagonal matrix with positive entries and DB is skew-symmetric. For the relation

between skew-symmetrizable matrices and Cartan matrices see [FZ02, Remark 4.6].

Let MI be the set of skew-symmetrizable integer (I × I)-matrices with symmetrizer

and let QI be the set of isomorphism classes of 2-acyclic weighted I-quivers. We have a

bijection

MI QI

(B, diag(di)) (QB, i 7→ di)

where QB has gcd(|bij |, |bji|) arrows j ←− i if bji > 0 and no arrows j ←− i otherwise.

Definition 2.1.7. The dual of a weighted quiver Q is the weighted Q0-quiver Q∗ with

Q∗1 =
{
j

a∗−−→ i | j a←− i ∈ Q1

}
and dQ

∗

i = dQi for all i ∈ Q0. For b = a∗ ∈ Q∗1 set b∗ := a ∈ Q1.

The double of Q is the weighted Q0-quiver Q such that Q = Q⊕Q∗ as weighted quivers.

The reflection of a weighted quiver Q at j ∈ Q0 is the subquiver Q∗j of Q with arrow set

Q∗j1 =
{
k ←− i ∈ Q1 | j 6∈ {i, k}

}
∪
{
k −→ i ∈ Q∗1 | j ∈ {i, k}

}
.

The following definition is inspired by [LZ16, Definition 2.5].

Definition 2.1.8. The premutation of a weighted quiver Q at a 2-acyclic vertex j ∈ Q0 is

the weighted Q0-quiver Q∼j such that Q∼j = Q∗j ⊕Q−j− where

Q−j−1 =
{
k

[ba]qr←−−− i | k b←− j, j a←− i ∈ Q1, r ∈ Z/rkjiZ, q ∈ Z/qkjiZ
}

.

Here, rkji and qkji are the positive integers rkji = dki/dkji and qkji = dkji dj/(dkjdji).

Remark 2.1.9. For each k
b←− j a←− i in Q the premutation Q∼j has qkjirkji = dki dj/(dkjdji)

composite arrows [ba]qr. The reason for this number and the labeling of the arrows will

become clear in § 2.5.4. Note that qkji = rkji = 1 if dk = dj = di.
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2 Background

Example 2.1.10. Let Q be the weighted quiver k
b←− j a←− i with dk = 12, dj = 40, di = 30.

Then dkj = 4, dji = 10, dki = 6, dkji = 2, rkji = 3, qkji = 2. The premutation Q∼j has six

composite arrows k ←− i and looks as follows:

j

ik

a∗

��

b∗

??

[ba]10, [ba]11, [ba]12oo

[ba]00, [ba]01, [ba]02

oo

2.1.3 Modular Quivers

Modular quivers will capture combinatorial aspects of cyclic Galois modulations.

Definition 2.1.11. A weighted quiver Q equipped with a function Q1
σQ−−→

⋃
i,j∈Q0

Z/djiZ
such that a 7→ σQa ∈ Z/djiZ for all j

a←− i ∈ Q1 is called a modular quiver.

A morphism of modular quivers is a morphism Q
f−→ Q′ of weighted quivers that satisfies

in addition σQ
′ ◦ f1 = σQ.

We write σ instead of σQ where it does not lead to confusion.

Definition 2.1.12. Let Q be a modular quiver.

The double Q of the weighted quiver Q is a modular quiver with σQa = σQa and σQa∗ = −σQa .

The dual Q∗ and the reflections Q∗j are modular subquivers of Q.

The premutation Q∼j = Q∗j ⊕Q−j− is a modular quiver where for k
b←− j a←− i in Q

σ[ba]qr
= (σb + σa)∗ + dkjir ∈ Z/dkiZ .

Here, x 7→ x∗ denotes the map Z/dkjiZ ↪→ Z/dkiZ, n+ dkjiZ 7→ n+ dkiZ, for 0 ≤ n < dkji.

Let [ba]q!r be the arrow [ba]qr′ in Q∼j with r′ ∈ Z/rkjiZ and σ[ba]q
r′

= −(−σa−σb)∗−dkjir.

Example 2.1.13. Let Q be the weighted quiver from Example 2.1.10 considered as a

modular quiver with σb = 1 ∈ Z/4Z and σa = 4 ∈ Z/10Z. Then σb + σa = 1 ∈ Z/2Z such

that σ[ba]qr
= 1 + 2r ∈ Z/6Z and σb∗ = −σb = 3 ∈ Z/4Z and σa∗ = −σa = 6 ∈ Z/10Z.

Definition 2.1.14. A canceling 2-cycle in a modular quiver Q is a subquiver of Q spanned

by two arrows j
a←− i and j

b−→ i with σb + σa = 0 ∈ Z/djiZ.

A subquiver T ⊆ Q is trivial if T = T 1⊕ · · · ⊕ Tn for canceling 2-cycles T 1, . . . , Tn in Q.

A modular quiver Q is reduced at j ∈ Q0 if it has no canceling 2-cycles that contain j.

It is reduced if it is reduced at all vertices.

A reduction of Q is a modular subquiver Q′ of Q that is reduced and satisfies Q = Q′⊕T
for some trivial T . Similarly, Q′ ⊆ Q is a reduction at j if Q = Q′ ⊕ T and Q(j)− T1 is a

reduction of the subquiver Q(j) of Q spanned by all arrows incident with j and T ⊆ Q(j).

We say that a modular quiver is 2-acyclic (at j) after reduction if it has a reduction that

is 2-acyclic (at j). Two modular I-quivers are reduced-equivalent if they have reductions

that are isomorphic as modular I-quivers.
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2.1 Weighted and Modular Quivers

Remark 2.1.15. All reductions of Q are isomorphic as modular Q0-quivers.

Example 2.1.16. The modular quiver i
a0 // j
b0
oo

a1 // k
b1
oo with di = dj = dk = 2, σa0

= σb0 = 1,

σa1
= 0, σb1 = 1 is 2-acyclic at i after reduction, but is not 2-acyclic at j after reduction.

Lemma 2.1.17. Let I be a finite set. For j ∈ I let Q(j) be the set of reduced-equivalence

classes of modular I-quivers that are 2-acyclic at j after reduction. There is an involution

Q(j) Q(j) ,
µj

called mutation, given by Q 7→ Q∼j for modular quivers Q that are 2-acyclic at j.

Proof. For each k
b←− j a←− i in Q the arrows [ba]qr and [a∗b∗]−q!r span a canceling 2-cycle T r,qb,a

in (Q∼j)∼j = Q⊕
⊕

b,a,r,q T
r,q
b,a .

Example 2.1.18. Let Q be the modular quiver ik

j
a

__
b
��

c
// with dk = di = 2, dj = 1. Note

that σb = σa = 0 and σc = r ∈ Z/2Z. The two arrows c and [ba]0r span a canceling 2-cycle

in the premutation Q∼j . The (in this example only) reduction of Q∼j is the following

modular quiver with σ[ba]0r+1
= r + 1 6= r = σc:

ik

j
a∗

��

b∗
??

[ba]0r+1

oo

Definition 2.1.19. A modular I-quiver Q is said to be X-admissible for X ⊆ I if it is

2-acyclic after reduction and if, recursively, the elements of µj(Q) are X-admissible for

all j ∈ X. It is called admissible if it is I-admissible.

Example 2.1.20. The modular quiver in Example 2.1.18 is easily checked to be admissible.

Example 2.1.21. Let Q be the quiver from Example 2.1.18 regarded as a modular quiver

with dk = di = 4, dj = 2 and σb = σa = 0 ∈ Z/2Z, σc = 1 ∈ Z/4Z. The premutation Q∼j

is not 2-acyclic after reduction, because its arrows k ←− i are c0 := [ba]00 and c1 := [ba]01
and σc + σcr = 1 + 2r 6= 0 ∈ Z/4Z for all r ∈ {0, 1}. In particular, Q is not admissible.

Example 2.1.22. The adjacency quivers investigated in Chapters 5 and 6 form a large and

interesting class of admissible modular quivers.

2.1.4 Weyl Groups and Root Systems

Convention 2.1.23. Fix a weighted quiver Q.

Notation 2.1.24. Let ZQ0 be the free abelian group of integer-valued functions on Q0.

The standard basis of ZQ0 is {ei | i ∈ Q0} where ei is the function Q0 → Z with ei(j) = δi=j .

25



2 Background

Definition 2.1.25. For i ∈ Q0 the simple reflection si is the automorphism of ZQ0 given

on the standard basis as si(ej) = ej − cijei.

The Weyl group is the subgroup W of Aut
(
ZQ0

)
generated by all si with i ∈ Q0.

Denote by 〈−,−〉 and (−,−) the integer-valued bilinear forms on ZQ0 given on the

standard basis as 〈ei, ej〉 = cji and (ei, ej) = djcji = dicij .

The set ∆+
re of positive real roots isW

(
{ei | i ∈ Q0}

)
∩{α ∈ ZQ0 |α(i) ≥ 0 for all i ∈ Q0}.

We might write (−,−)Q for (−,−) and ∆+
re(Q) for ∆+

re to stress the dependence on Q.

Remark 2.1.26. The form (−,−) is always symmetric, while 〈−,−〉 is symmetric if and

only if CQ is symmetric. It is 〈−,−〉 = (−,−) if and only if di = 1 for all i.

Remark 2.1.27. We can express the simple reflections as si = id− 〈−, ei〉 ei.

2.2 Bimodules

We give an overview of bimodules and tensor algebras. The different notions of dual for

bimodules are recalled. Bimodule representations are seen to manifest themselves in up to

three different forms. Moreover, we observe that the category of bimodule representations

and the category of tensor-algebra modules are equivalent. Finally, the different notions of

dual bimodule are shown to coincide when R carries the structure of a symmetric algebra.

Convention 2.2.1. Fix a ring R.

For M ∈ Mod(R) and x ∈ Z(R) let xM be the element in EndR(M) given by m 7→ xm.

2.2.1 R-Algebras

Definition 2.2.2. An R-algebra is a ring H carrying an R-bimodule structure subject to

the conditions ((rxs)y)t = r(x(syt)) and rz = zr for all r, s, t ∈ R, x, y ∈ H, z ∈ Z(H).

A morphism of R-algebras is a map H −→ H ′ that is a morphism of rings and R-bimodules.

Remark 2.2.3. Let H be an R-algebra and r, s, t ∈ R, x, y ∈ H, and 1H = 1 ∈ H. We can

unambiguously write rxsyt for ((rxs)y)t = r(x(syt)) ∈ H and r ∈ H for r1H = 1Hr ∈ H.

Remark 2.2.4. An R-algebra is the same as a monoid in the category of R-bimodules.

2.2.2 Tensor Algebras

Notation 2.2.5. We denote the tensor algebra of an R-bimodule A by R〈A〉, which has

as an R-bimodule the form

R〈A〉 =
⊕
n∈N

A⊗n
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2.2 Bimodules

where A⊗0 = R and A⊗n = A⊗RA⊗(n−1) is the n-fold tensor product of A with itself.

Let ιA be the canonical inclusion A ↪→ R〈A〉.

The assignment A 7→ R〈A〉 extends in the obvious way to a functor from the category

of R-bimodules to the category of R-algebras. The tensor algebra is the free R-algebra

on A in the sense that R〈−〉 is left adjoint to the forgetful functor:

Lemma 2.2.6. Let H be an R-algebra and A
f−→ H a morphism of R-bimodules. Then

there exists a unique morphism f̂ of R-algebras making the following diagram commute:

A R〈A〉

H

ιA

f
f̂

Proof. This is straightforward.

Remark 2.2.7. Let S be a subring of Z(R). Call an R-bimodule A an R-bimodule over S

if S acts centrally on A, i.e. sx = xs for all s ∈ S and x ∈ A. An R-algebra over S is

an R-algebra H that is an R-bimodule over S. The functor R〈−〉 restricts to a functor

from the full subcategory spanned by R-bimodules over S to the full subcategory spanned

by R-algebras over S. This restriction is still left adjoint to the forgetful functor, i.e. the

obvious generalization “over S” of Lemma 2.2.6 is true.

Remark 2.2.8. An R-bimodule is the same as an R-bimodule over Z.

Remark 2.2.9. The category of R-bimodules over S can be identified with Mod(R⊗SRop)

and the category of R-algebras over S with the category of monoids in Mod(R⊗SRop).

2.2.3 Dual Bimodules

Let A be an R-bimodule over K. In other words, A is a (left) module over the enveloping

algebra Re = R⊗KRop. The left R-dual RA, the right R-dual AR, the K-dual A∗, and the

bimodule dual A†, carry natural Re-module structures. Namely, for r, s ∈ R, and x ∈ A,

(sfr)(x) =



f(xs)r for f ∈ RA := HomR(RA,RR) ,

sf(rx) for f ∈ AR := HomR(AR, RR) ,

f(rxs) for f ∈ A∗ := HomK(A,K) ,

rf(x)s for f ∈ A† := HomRe(A,Re) .

Remark 2.2.10. There is an isomorphism (−)∗ ∼= HomRe(−, (Re)∗) induced by the adjoint

pair (Re⊗Re−,HomK(Re,−)). Hence, (−)∗ ∼= (−)† if and only if Re(Re)∗ ∼= ReRe.
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2 Background

2.2.4 Bimodule Representations

Definition 2.2.11. Let A be an R-bimodule. An A-representation is a pair (M, rM )

consisting of an R-module M and an R-module morphism A⊗RM
rM−−→M .

A morphism of A-representations (M, rM )
f−→ (N, rN ) is a morphism M

f−→ N of R-

modules making the following square commute:

A⊗RM M

A⊗RN N

rM

id⊗f f

rN

Denote by Rep(A) the category of A-representations.

For M ∈ Mod(R) the space of A-representations is Rep(A,M) := HomR(A⊗RM,M).

Remark 2.2.12. If A is an R-bimodule over S, the space Rep(A,M) of A-representations

on M carries a natural S-module structure.

Remark 2.2.13. Under the adjunction (A⊗R−,HomR(A,−)) an A-representation (M, rM )

corresponds to a pair (M, r̃M ) where r̃M is an R-module morphism M → HomR(A,M).

An R-module morphism M
f−→ N defines a morphism (M, r̃M )

f−→ (N, r̃N ) whenever

the following square is commutative:

M HomR(A,M)

N HomR(A,N)

r̃M

f HomR(A,f)

r̃N

To state a variation of the last remark, we recall the following classical result:

Lemma 2.2.14. Let A be an R-bimodule such that RA is finitely generated projective. For

every M ∈ Mod(R) there is an isomorphism, natural in M , of left R-modules:

RA⊗RM HomR(A,M)

f ⊗m (x 7→ f(x)m)

ηM

Proof. See [Bou70, II. §4 no. 2].

Definition 2.2.15. Let A be an R-bimodule such that RA is finitely generated projective.

For M,N ∈ Mod(R) the isomorphism HomR(A⊗RM,N) → HomR(M,HomR(A,N))

of the tensor-hom adjunction given by f 7→ (m 7→ x 7→ f(x ⊗ m)) composed with

postcomposition with η−1
N yields an isomorphism

HomR(A⊗RM,N) HomR(M,RA⊗RN) ,ad
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2.2 Bimodules

which we call the adjunction correspondence.

We write f∨ for ad(f) and ∨g for ad−1(g).

Remark 2.2.16. Let A be an R-bimodule such that RA is finitely generated projective.

Then RA⊗R− ∼= HomR(A,−) canonically by Lemma 2.2.14.

With the adjunction correspondence an A-representation (M, rM ) corresponds to a

pair (M, r∨M ) where r∨M is an R-module morphism M → RA⊗RM .

An R-module morphism M
f−→ N defines a morphism (M, r∨M )

f−→ (N, r∨N ) whenever

the following square is commutative:

M RA⊗RM

N RA⊗RN

r∨M

f id⊗f

r∨N

Let H be an R-algebra and M ∈ Mod(R). Recall that an H-module structure on M is an

R-module morphism H ⊗RM →M , x⊗m 7→ x ·m, satisfying for all x, y ∈ H and m ∈M
the relations 1 ·m = m and (xy) ·m = x · (y ·m).

Lemma 2.2.17. Let A be an R-bimodule and let H = R〈A〉 be its tensor algebra. For

every A-representation (M, rM ) there is a unique H-module structure r̂M on M such that

A⊗RM H ⊗RM

M

ιA⊗id

rM r̂M

commutes. Furthermore, every morphism (M, rM )
f−→ (N, rN ) of A-representations is a

morphism M
f−→ N of H-modules when the module structures are given by r̂M and r̂N .

Proof. This is straightforward.

Notation 2.2.18. For H = R〈A〉 and M ∈ Mod(H) denote by A⊗RM
AM−−−→M the map

obtained by postcomposing ιA ⊗ id with the map H ⊗RM →M given by multiplication.

The rule M 7→ (RM,AM) canonically extends to a functor Mod(H)→ Rep(A).

Corollary 2.2.19. Let A be an R-bimodule and let H = R〈A〉 be its tensor algebra. Then

the functor M 7→ (RM,AM) defines an equivalence Mod(H)→ Rep(A).

Proof. This is a direct consequence of Lemma 2.2.17.

2.2.5 Symmetric Ground Rings

The following is one of the several common definitions of symmetric algebras:
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Definition 2.2.20. A K-algebra Λ is said to carry a Frobenius structure if it is equipped

with a K-linear form Λ
ϕ−→ K satisfying the property:

(a) The zero ideal is the only left ideal of Λ contained in the kernel of ϕ.

The form ϕ is called a symmetric structure on Λ if it has additionally to (a) the property:

(b) ϕ(sr) = ϕ(rs) for all s, r ∈ Λ.

A symmetric algebra is a finite-dimensional K-algebra that admits a symmetric structure.

Remark 2.2.21. It is well-known (see [Lam99, §3B]) that (a) in Definition 2.2.20 is left-right

symmetric. It can be substituted with the following equivalent condition:

(a’) The zero ideal is the only right ideal of Λ contained in the kernel of ϕ.

Remark 2.2.22. Assume R =
∏
iRi. Then the ground ring R is a symmetric algebra if and

only if Ri is a symmetric algebra for each i. More precisely, every symmetric structure ϕ

on R corresponds to symmetric structures ϕi on Ri such that ϕ =
∑

i ϕi.

Remark 2.2.23. The enveloping algebra Re = R⊗KRop is symmetric if R is symmetric.

More precisely, symmetric structures ϕ on R yield symmetric structures ϕe = ϕ⊗ ϕ on Re.

Remark 2.2.24. Let ϕ be a Frobenius structure on R. It is clear (see again [Lam99, §3B])

that ϕe induces an isomorphism ReRe
∼=−→ Re(Re)∗ that is defined by (r 7→ (s 7→ ϕe(sr)).

With Remark 2.2.10 we obtain a canonical isomorphism A†
ϕ†−−→ A∗ given by f 7→ ϕe ◦ f .

Lemma 2.2.25. For every symmetric structure R
ϕ−→ K on R we have the following

isomorphisms of R-bimodules over K:

RA A∗ A∗ AR

f ϕ ◦ f ϕ ◦ f f

∗ϕ ϕ∗

Proof. Property (a) in Definition 2.2.20 implies that ∗ϕ is bijective, while (b) shows that ∗ϕ

is a morphism of R-bimodules. The existence of ϕ∗ follows similarly from (a’) and (b).

Notation 2.2.26. We write ∗ϕ and ϕ∗ for the inverses of RA ∗ϕ−−→ A∗ and AR
ϕ∗−−→ A∗.

2.3 From Bimodules to Quivers

Starting from an R-bimodule A over K with the only assumption that both R and A are

finite-dimensional over K, we discuss how decompositions R =
∏
iRi and A =

⊕
aAa give

rise to a weighted quiver Q with vertices i and arrows a. We then observe how bimodule

representations of A can be regarded as quiver representations of Q.
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2.3 From Bimodules to Quivers

2.3.1 Decomposing Bimodules

Convention 2.3.1. Let R be a finite-dimensional algebra and let A be a finite-dimensional

R-bimodule over K. Factorize R as a product of connected algebras Ri, indexed by the

elements i of some set I. Formally,

R =
∏
i∈I

Ri .

Denote by ei ∈ R the identity element of Ri. The bimodule A decomposes into the direct

sum of the Rj ⊗KR
op
i -modules jAi := ejAei. We refine this decomposition as

jAi =
⊕
a∈Iji

Aa .

where Iji are pairwise disjoint sets. In this way, we obtain an I-quiver Q with arrow set

Q1 =
{
j

a←− i | i, j ∈ I, a ∈ Iji
}

.

The quiver Q can be regarded as a weighted quiver with weights di = dimK(Ri).

Remark 2.3.2. The summands occurring in the decomposition jAi =
⊕

a∈Iji Aa are by the

Krull-Remak-Schmidt Theorem up to permutation and isomorphism uniquely determined

if we demand that each Aa is an indecomposable Rj ⊗KR
op
i -module.

The K-dual, the left dual, and the right dual of the bimodule A decompose as

A∗ =
⊕
a∈Q1

A∗a , RA =
⊕
a∈Q1

A
∗a

, AR =
⊕
a∈Q1

Aa∗ .

For j
a←− i the summands in these decompositions are the K-duals, Rj-duals, and Ri-duals

of Aa, which are defined as

A∗a := HomK(Aa,K) , A
∗a

:= HomRj
(Aa, Rj) , Aa∗ := HomRi

(Aa, Ri) .

All these duals carry natural Ri⊗KR
op
j -module structures.

2.3.2 Quiver Representations

Notation 2.3.3. Every M ∈ Mod(R) is the direct sum of the Ri-modules Mi := eiM :

M =
⊕
i∈Q0

Mi

With this decomposition we have for all M,N ∈ Mod(R) canonically

HomR(M,N) =
⊕
i∈Q0

HomRi
(Mi, Ni) .

By fi denote the component of f ∈ HomR(M,N) belonging to HomRi
(Mi, Ni).
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Similarly, there is a decomposition HomR(A⊗RM,N) =
⊕

a HomRj
(Aa⊗RiMi, Nj)

where j
a←− i runs through all arrows of Q. Again, we will write fa for the component of

a map f ∈ HomR(A⊗RM,N) that belongs to HomRj
(Aa⊗RiMi, Nj). In particular, the

space of A-representations of M ∈ Mod(R) decomposes as

Rep(A,M) =
⊕
j←−a i

HomRj
(Aa⊗RiMi,Mj) .

We simply write Ma for (AM)a if M ∈ Mod(R〈A〉) (compare Notation 2.2.18).

We summarize the discussion by stating the analog of [GLS16a, Proposition 5.1].

Lemma 2.3.4. Let H = R〈A〉 be the tensor algebra of A. The category Mod(H) can be

canonically identified with the category whose objects are families (Mi,Ma)i,a with

Mi ∈ Mod(Ri) indexed by i ∈ Q0,

Ma ∈ HomRj
(Aa⊗RiMi,Mj) indexed by j

a←− i ∈ Q1,

and whose morphisms (Mi,Ma)i,a → (Ni, Na)i,a are tuples (fi)i with

fi ∈ HomRi
(Mi, Ni) indexed by i ∈ Q0,

making the following diagram commute for all arrows j
a←− i in Q:

Aa⊗RiMi Mj

Aa⊗RiNi Nj

Ma

id⊗fi fj

Na

Proof. This follows from Corollary 2.2.19 and the decompositions presented above.

Remark 2.3.5. Clearly, M is finitely generated if and only if all Mi are finitely generated.

We also have a decomposition HomR(M,RA⊗RN) =
⊕

j
a←−i HomRi

(Mi, A∗a⊗Rj Nj)

such that f =
∑

a fa with fa ∈ HomRi
(Mi, A∗a⊗Rj Nj) for every f ∈ HomR(M,RA⊗RN).

Remark 2.3.6. If RA is projective, choosing an H-module M amounts with Remark 2.2.16

also to the same as to specifying a family (Mi,M
∨
a )i,a with

Mi ∈ Mod(Ri) indexed by i ∈ Q0,

M∨a ∈ HomRi
(Mi, A∗a⊗RjMj) indexed by j

a←− i ∈ Q1.

2.3.3 Locally Free Modules

We extend the terminology of locally freeness introduced in [GLS16a] to arbitrary R-algebras

and observe that the “adjunction formulas” from ibid. § 5.1 remain valid for locally free RA.
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Definition 2.3.7. Let H be an R-algebra. A module M ∈ Mod(H) is called locally free

if Mi is a free Ri-module for all i ∈ Q0.

Analogously, one defines locally freeness for right H-modules.

Remark 2.3.8. Let H be an R-algebra and assume that Ri is local for all i ∈ Q0. Then an

H-module M is locally free if and only if RM is projective.

If RA is locally free, the inverse of the isomorphism η = ηM from Lemma 2.2.14 can be

explicitly described in terms of bases of the finitely generated free modules Rj
(Aa).

Lemma 2.3.9. Assume Rj
(Aa) is free for some j

a←− i ∈ Q1 and let Ba be a basis of Rj (Aa)

and {b∗ | b ∈ Ba} its Rj-dual basis. For each M ∈ Mod(R) the inverse of ηa acts as follows:

HomRj
(Aa,Mj) A

∗a
⊗RjMj

g
∑
b∈Ba

b∗ ⊗ g(b)

η−1
a

Proof. This is straightforward.

Corollary 2.3.10. Let f ∈ HomR(A⊗RM,N) and g ∈ HomR(M,RA⊗RN) for two mod-

ules M,N ∈ Mod(R). If Rj (Aa) has a basis Ba, the formulas

f∨a (m) =
∑
b∈Ba

b∗ ⊗ f(b⊗m) , ∨ga(x⊗m) =
∑
b∈Ba

xb gm,b

hold for all elements m ∈Mi and x =
∑

b xbb ∈ Aa where g(m) =
∑

b b
∗⊗gm,b ∈ A∗a⊗Rj Nj

with xb ∈ Rj and gm,b ∈ Nj.

Proof. This follows by direct calculations using Lemma 2.3.9.

We can restate Lemma 2.2.25 in the current context as follows:

Corollary 2.3.11. For every symmetric structure R
ϕ−→ K on R and every arrow j

a←− i
in Q we have the following isomorphisms of Ri⊗KR

op
j -modules:

A
∗a

A∗a A∗a Aa∗

f ϕj ◦ f ϕi ◦ f f

∗ϕ ϕ∗

Proof. Use Lemma 2.2.25 and the decomposition A =
⊕

aAa.

2.4 Path Algebras for Weighted Quivers

Convention 2.4.1. Fix a weighted quiver Q and recall Notation 2.1.4.
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2.4.1 Modulations

Definition 2.4.2. A K-modulation for the weighted quiver Q is a family

H =
(
Ri, Aa

)
i∈Q0,a∈Q1

of connected K-algebras Ri, indexed by the vertices i ∈ Q0, and non-zero Rj ⊗KR
op
i -

modules Aa, indexed by the arrows j
a←− i ∈ Q1, satisfying the following properties:

(a) dimK(Ri) = di for each i ∈ Q0.

(b) Rj
(Aa) and (Aa)Ri are free of finite rank for each j

a←− i ∈ Q1.

Clearly, properties (a) and (b) imply the existence of positive integers da such that

dimK(Aa) = dad
ji , rankRj (Aa) = dafji , rank (Aa)Ri = dafij .

The modulation H is minimal if da = 1 for all a ∈ Q1.

We call H local (resp. symmetric) if Ri is a local (resp. symmetric) algebra for all i ∈ Q0.

We say that H is decomposed if for all j
a←− i there is no decomposition Aa = M1 ⊕M2

with non-zero Rj ⊗KR
op
i -modules Ms such that Rj

(Ms) and (Ms)Ri are free.

Let H = (Ri, Aa)i,a and H′ = (R′i, A
′
a)i,a be K-modulations for Q. A morphism H f−→ H′

is a family (fi, fa)i,a of K-algebra homomorphisms Ri
fi−→ R′i and linear maps Aa

fa−→ A′a

such that fa(sxr) = fj(s)fa(x)fi(r) for all j
a←− i ∈ Q1, s ∈ Rj , x ∈ Aa, r ∈ Ri.

An (Ri)i-modulation for a weighted I-quiver Q is a K-modulation (Ri, Aa)i,a for Q.

Remark 2.4.3. If H is local, it is decomposed if and only if all Aa are indecomposable.

Remark 2.4.4. Every minimal K-modulation is decomposed.

Remark 2.4.5. Let H = (Ri, Aa)i,a be a K-modulation where all Ri are division algebras.

Then (Ri, jAi)i,j∈Q0
with jAi :=

⊕
j
a←−i∈Q1

Aa is a modulation in the sense of [DR76].

Conversely, for families (Ri)i∈Q0
of connected K-algebras and (jAi)i,j∈Q0

of Rj ⊗KR
op
i -

modules jAi with dimK(Ri) = di and Rj
(jAi), (jAi)Ri free of finite rank, we can make the

following two observations:

(i) Suppose there is exactly one arrow j
a←− i in Q whenever dimK(jAi) 6= 0 and no

arrow j ←− i otherwise. Set Aa := jAi. Then (Ri, Aa)i,a is a K-modulation for Q.

(ii) The Krull-Remak-Schmidt Theorem yields a decomposition jAi =
⊕m

s=1Ms whose

summands are indecomposable and determined up to reordering and isomorphism.

Let us assume that all Ri are local rings. Then Rj
(Ms) and (Ms)Ri are free modules.

Supposing that Q has precisely m arrows a1, . . . , am from i to j, we set Aas := Ms.

Then (Ri, Aa)i,a is a decomposed (local) K-modulation for Q.

Remark 2.4.6. Dlab and Ringel require in [DR76] that HomRi
(Aa, Ri) ∼= HomRj

(Aa, Rj)
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2.4 Path Algebras for Weighted Quivers

as Ri⊗KR
op
j -modules. For every K-modulation H = (Ri, Aa)i,a where all Ri are division

algebras such isomorphisms always exist. See Corollary 2.3.11 and Example 3.2.5.

Example 2.4.7. Let Q be the weighted quiver 1
a←− 2 of type A2 with d1 = d2 = 2.

For ρ ∈ AutR(C) we have an R-modulation Hρ = (Ri, A
ρ
a)i,a for Q with R1 = R2 = C

and Aρa = Cρ. Here Cρ is the C⊗RC-module with Cρ = C as R-vector space and bimodule

structure given by wzv := w · z · ρ(v) for w, v ∈ C and z ∈ Cρ.

Let AutR(C) = {id, ρ} where ρ is complex conjugation. Then the maps f1 = id, f2 = ρ−1

and fa = idC define an isomorphism Hid f−→ Hρ of K-modulations for Q.

Example 2.4.8. Taking R1 = R2 = C, Aa = C⊗RC ∼= C⊕ Cρ defines an R-modulation H
for the weighted quiver from Example 2.4.7. This modulation is local but not decomposed.

The K-modulation H′ for Q given by R1 = R2 = C, Aa = C⊕ C is not isomorphic to H.

Example 2.4.9. Let Q be the weighted quiver 1
a←− 2 with d1 = 2, d2 = 3. Then R1 = C,

R2 =
( R R

0 R
)
, Aa = R1⊗RR2

∼=
( C C

0 C
)

defines a minimal non-local R-modulation H for Q.

In particular, H is decomposed. However, Aa ∼=
(
C C
0 0

)
⊕
(

0 0
0 C
)

is not indecomposable.

Example 2.4.10. Let Q be as in Example 2.4.9 and let ζ be a primitive cube root of unity.

Then R1 = Q(ζ), R2 = Q( 3
√

2), Aa = R1⊗Q R2 yields a minimal local Q-modulation for Q.

Example 2.4.11. § 5 in [GLS16a] describes the minimal local K-modulation H = (Ri, Aa)i,a

with Ri = K[εi]/
(
ε
di
i

)
for i ∈ Q0 and Aa = K[εj , εi]/

(
ε
fij
j − ε

fji
i , ε

dj
j , ε

di
i

)
for j

a←− i ∈ Q1.

Example 2.4.12. With Ri = K[εi]/
(
ε2
i

)
and Aa = R1⊗KR2

∼= K[ε1, ε2]/
(
ε2

1, ε
2
2

)
we get

a K-modulation for the weighted quiver 1
a←− 2 with d1 = d2 = 2 from Example 2.4.7.

This modulation is local and decomposed but not minimal.

2.4.2 Pullback Modulations

Definition 2.4.13. Let H be a K-modulation of Q. For a morphism Q′
f−→ Q of weighted

quivers the pullback of H along f is the K-modulation

f∗H =
(
Rf(i′), Af(a′)

)
i′∈Q′0,a′∈Q′1

.

If f is the inclusion of a subquiver, we call f∗H the submodulation of H induced by f .

Remark 2.4.14. More generally, the pullback f∗H of H along f can be defined in a similar

way for every functor PQ′
f−→ PQ where Af(a′) := Aan ⊗R · · · ⊗RAa1

if f(a′) = an · · · a1.

Here, the quiver Q′ has to be considered as a weighted quiver with weights dQ
′

i′ = dQf(i′).

2.4.3 Dual and Double Modulations

Convention 2.4.15. Fix a symmetric K-modulation H = (Ri, Aa)i,a for Q.
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Definition 2.4.16. The double of H is the K-modulation H = (Ri, Aa)i∈Q0,a∈Q1
for Q

with Aa∗ = A∗a. The dual of H is the submodulation H∗ of H induced by Q∗ ⊆ Q.

Remark 2.4.17. Corollary 2.3.11 ensures that H satisfies (b) in Definition 2.4.2.

Lemma 2.4.18. If H is a minimal/decomposed/local/symmetric modulation, H and H∗

are minimal/decomposed/local/symmetric modulations.

Proof. This is straightforward.

Example 2.4.19. Let H be the GLS modulation from Example 2.4.11. Then H is symmetric.

More precisely, the map ϕi = tmax
i in [GLS16a, § 8.1] defines a symmetric structure on Ri.

Fix j
a←− i ∈ Q1. In [GLS16a, § 5.1] two maps λ and ρ are described, which yield an

isomorphism λ◦ρ−1 between A
∗a

and Aa∗ . Inspection shows that λ◦ρ−1 is the map ϕ∗i ◦∗ϕj .

If one prefers to identify the K-dual A∗a with iΛj = K[εi, εj ]/
(
ε
fji
i − ε

fij
j , ε

di
i , ε

dj
j

)
, as

Geiß, Leclerc, and Schröer do, it is possible to use the isomorphism iΛj −→ A∗a that is given,

for 0 ≤ q < dij , 0 ≤ r < fji, 0 ≤ s < fij , εij := εji := ε
fji
i = ε

fij
j , by

εri ε
q
ijε

s
j 7→

(
ε

(fij−1)−s
j ε

(dij−1)−q
ji ε

(fji−1)−r
i

)∗
.

This shows how (Ri, Aa)i∈Q0,a∈Q1
with Aa∗ = iΛj can be regarded as the double of H.

2.4.4 Path Algebras

Convention 2.4.20. Fix a K-modulation H = (Ri, Aa)i,a for Q.

Definition 2.4.21. We will call the K-algebra RH =
∏
i∈Q0

Ri the ground ring and

the R-bimodule AH =
⊕

a∈Q1
Aa over K the species of the modulation H.

The tensor algebra HH = R〈A〉 is the path algebra of Q defined by H.

We write R, A, H instead of RH, AH, HH when confusion seems unlikely.

Notation 2.4.22. We use the notation introduced in § 2.3. In particular, ei stands for

the identity of Ri considered as an element of R. So
∑

i∈Q0
ei = 1 ∈ R ⊆ H.

Remark 2.4.23. If di = 1 for all i, then dij = dij = fij = 1 for all i, j. In this case, up

to isomorphism, H = (Ri, Aa)i,a with Ri = K for all i and Aa = K for all a is the only

minimal K-modulation for Q and HH ∼= KQ.

Remark 2.4.24. As an R-bimodule H decomposes as
⊕

j,i∈Q0
ejHei. In this way, we can

think of elements in H as (Q0 ×Q0)-matrices. Multiplication in H is then nothing else

but multiplication of these matrices. See Examples 2.4.25 and 2.4.26 for an illustration.

Example 2.4.25. Let Q be the weighted quiver 1
a←− 2 with d1 = 1, d2 = 2 of type B2 and

let H be the R-modulation for Q given by R1 = R, R2 = C and Aa = C. Then the path

algebra H of Q defined by H is the matrix algebra
( R C

0 C
)
.
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2.5 Path Algebras for Modular Quivers

Example 2.4.26. Let Hρ be one of the K-modulations for the weighted quiver Q of type A2

described in Example 2.4.7. The path algebra Hρ of Q defined by Hρ is
( C Cρ

0 C
)
.

Example 2.4.27. Let H be the GLS modulation for Q from Example 2.4.11. As discussed in

detail in [GLS16a], the path algebra H of Q defined by H can be identified with KQ	/I(d),

where Q	 is the quiver obtained from Q by adding a loop εi at each vertex i, and I(d) is

the ideal generated by the relations ε
di
i = 0 for i ∈ Q0 and aε

fji
i = ε

fij
j a for j

a←− i ∈ Q1.

Example 2.4.28. As pointed out in [GLS16a], in case di = 2 for all vertices i ∈ Q0, the

path algebra in Example 2.4.27 is the path algebra of Q over the dual numbers K[ε]/(ε2),

which was investigated in [RZ13].

We end this section with a few elementary but useful observations.

Notation 2.4.29. Let R
f−→ R′ be a ring homomorphism and let A′ be an R′-bimodule.

Write f∗A
′ for A′ regarded as an R-bimodule with sxr := f(s)xf(r) for s, r ∈ R, x ∈ f∗A′.

Lemma 2.4.30. Every morphism H f−→ H′ of K-modulations for Q induces a K-algebra

morphism RH
f−→ RH′ between ground rings and an R-bimodule morphism AH

f−→ f∗AH′.

Proof. This is straightforward.

Corollary 2.4.31. Every morphism H f−→ H′ of K-modulations for Q induces a morphism

of R-algebras HH
f−→ f∗HH′.

Proof. Use Lemmas 2.2.6 and 2.4.30.

Lemma 2.4.32. Let Q′
f−→ Q be a morphism of weighted quivers with Q′0

f0
↪−→ Q0 injective.

Then f induces a non-unital K-algebra morphism Hf∗H
f∗−→ HH. In particular, if f is a

morphism of I-quivers, the induced morphism f∗ is a morphism of (unital) K-algebras.

Proof. Since Q′0
f0
↪−→ Q0 is injective, Rf∗H =

∏
i′(RH)f(i′) can be canonically regarded as a

non-unital subalgebra of RH =
∏
i(RH)i. Therefore the identities (Af∗H)a′ → (AH)f(a′)

induce an Rf∗H-bimodule morphism Af∗H → AH. Now use Lemma 2.2.6.

2.5 Path Algebras for Modular Quivers

This section is concerned with cyclic Galois modulations, a class of modulations suitable for

explicit computations. Introduced by Labardini and Zelevinsky in [LZ16] in the strongly

primitive setting, [GL16a] considers cyclic Galois modulations (Ri, Aa)i,a in the general

situation. The idea is to take for the Ri intermediate fields of a cyclic Galois extension L/K.

The valid choices for each bimodule Aa are then parametrized by a Galois group.

Convention 2.5.1. Fix a weighted quiver Q.
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2.5.1 Cyclic Galois Modulations

Definition 2.5.2. A cyclic Galois extension L/K is Q-admissible if di | [L : K] for all i.

In this case, denote by Li the intermediate field of L/K with [Li : K] = di.

Example 2.5.3. An extension Fqm/Fq of finite fields is Q-admissible if and only if m is

divisible by all of the weights di.

Definition 2.5.4. Let L/K be a Q-admissible cyclic Galois extension. A cyclic Galois

modulation over L/K for Q is a minimal K-modulation (Ri, Aa)i,a for Q with Ri ∼= Li.

Remark 2.5.5. Cyclic Galois modulations are local, symmetric, and decomposed.

Example 2.5.6. Examples 2.4.7 and 2.4.25 presented cyclic Galois modulations over C/R.

2.5.2 Modulation of a Modular Quiver

The data σQ stored in a modular quiver Q is devised to determine a K-modulation over any

Q-admissible cyclic Galois extension L/K with fixed isomorphism Z/mZ
∼=−→ Gal(L/K).

Convention 2.5.7. For §§ 2.5.2 to 2.5.4 fix a Q-admissible cyclic Galois extension L/K.

Notation 2.5.8. We abbreviate Lji = Lj ∩ Li and Lji = LjLi.

For any intermediate field F of Lji/K and ρ ∈ Gal(F/K) denote by jL
ρ
i the Lj ⊗K Li-

module Lj ⊗ρLi where the tensor product is taken with respect to Lj
ρ←− F id−−→ Li.

Remark 2.5.9. It is [Lji : K] = dji and [Lji : K] = dji. If F = Lji, then dimK(jL
ρ
i ) = dji.

Remark 2.5.10. Let ρ ∈ Gal(F/K) for some intermediate field F of the extension Lji/K.

Then 1⊗x = ρ(x)⊗ 1 ∈ jL
ρ
i for all x ∈ F . In particular, jLi

idLji ∼= Lji as Lj ⊗K Li-module.

Convention 2.5.11. Let Z/mZ α−→ Gal(L/K) be an isomorphism and set mF = [F : K]

for every intermediate field F of L/K. We have an isomorphism Z/mFZ
αF−−→ Gal(F/K)

making the following square commute, where the horizontal arrows are the canonical maps:

Z/mZ Z/mFZ

Gal(L/K) Gal(F/K)

α∼= αF∼=

We use the notation αi for αLi and αji for αLji with i, j ∈ Q0.

Definition 2.5.12. Let Q be a modular quiver. The modulation of Q over (L/K,α) is

the K-modulation H = (Ri, Aa)i,a with Ri = Li for all i and Aa = jL
αji(σa)

i for all j
a←− i.

We write a for 1⊗ 1 ∈ Aa when considered as an element in AH ⊆ HH.

Example 2.5.13. Let Q be the weighted quiver of type A2 and Hρ the modulation for Q

from Example 2.4.7, where ρ ∈ Gal(C/R) is complex conjugation. If we turn Q into a
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2.5 Path Algebras for Modular Quivers

modular quiver with σa = 1, the modulation of Q over (C/R, α) is Hρ.

The following classical result or, more precisely, its corollary below justifies the slogan

“Every cyclic Galois modulation is the modulation of a modular quiver.”

Lemma 2.5.14. Let i, j ∈ Q0. For every intermediate field F of the extension Lji/K, the

algebra Lj ⊗F Li is a basic semi-simple algebra. The rule ρ 7→ jL
ρ
i establishes a bijection

between Gal(Lji/F ) and the set of isomorphism classes of simple Lj ⊗F Li-modules.

Proof. The separability of L/K guarantees that the field extension Lj/F is generated by

a primitive element whose minimal polynomial f over F is separable. It is a classical

fact that Λ = Lj ⊗F Li is semi-simple (see [Kna07, Proposition 2.29]). More precisely, the

number n of irreducible factors of f when considered as a polynomial over Li is the

number of simple summands of ΛΛ. It only remains to observe that n = [Lji : F ] and

that jL
ρ1
i
∼= jL

ρ2
i if and only if ρ1 = ρ2.

Remark 2.5.15. The semi-simplicity of Λ = Lj ⊗F Li is also a consequence of the following

two facts: On the one hand, Λ is finite-dimensional, so its reduction Λ/rad(Λ) is semi-simple.

On the other hand, Λ is reduced because of the separability of Lj/F .

Example 2.5.16. For the cyclic Galois extension C/R Lemma 2.5.14 yields the decomposi-

tion C⊗RC ∼= C⊕ Cρ (compare Example 2.4.7).

Corollary 2.5.17. Let H = (Li, Aa)i,a be a cyclic Galois modulation. For all j
a←− i ∈ Q1

there exists ρa ∈ Gal(Lji/K) such that Aa ∼= jL
ρa
i as Lj ⊗K Li-modules.

Proof. Apply Lemma 2.5.14 with F = K.

2.5.3 Isotypical Components

Let R =
∏
i∈Q0

Li. From Lemma 2.5.14 we know that the category of R-bimodules over K

is semi-simple with simple objects jL
ρ
i parametrized by i, j ∈ Q0 and ρ ∈ Gal(Lji/K).

This subsection introduces notation for isotypical components and investigates how the

tensor product of R-bimodules over K decomposes into simples.

Notation 2.5.18. For Lj ⊗K Li-modules M denote by Mρ their jL
ρ
i -isotypical component

and by πρ : M −→M the idempotent corresponding to the canonical projection onto Mρ.

We have a decomposition

M =
⊕

ρ∈Gal(Lji/K)

Mρ .

We refer to Mρ as the ρ-isotypical component of M . If the module M has finite length,

let [M : jL
ρ
i ] denote the Jordan-Hölder multiplicity of jL

ρ
i in M .
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More generally, for intermediate fields F of Lji/K and γ ∈ Gal(F/K) let Gγji be the

coset of Gal(Lji/K) consisting of all ρ such that ρ|F = γ. The submodule

Mγ =
⊕
ρ∈Gγji

Mρ

is called the γ-isotypical component of M . Set πγ :=
∑

ρ∈Gγji
πρ.

Remark 2.5.19. The notation
[
Lji : Lji

]
is unambiguous. It represents the integer one, no

matter if it is interpreted as Jordan-Hölder multiplicity or as degree of a field extension.

Remark 2.5.20. The γ-isotypical component Mγ can be characterized as

Mγ = {x ∈M |xu = γ(u)x for all u ∈ F} . (?)

We can now formulate the following corollary of Lemma 2.5.14. See [GL16a, Lemma 2.14].

Corollary 2.5.21. Let i, j ∈ Q0. For every intermediate field F of the extension Lji/K

and every γ ∈ Gal(F/K) it is
[
jL

γ
i : jL

ρ
i

]
= δρ∈Gγji.

Proof. Equation (?) shows that there is a non-zero Lj ⊗K Li-module morphism jL
γ
i → jL

ρ
i

defined by 1⊗ 1 7→ 1⊗ 1 for all ρ ∈ Gγji, so
[
jL

γ
i : jL

ρ
i

]
> 0. The corollary now follows from

the fact that
⊕

ρ∈Gγji j
Lρi and jL

γ
i have the same dimension.

For elements ν ∈ Gal(Lkj/K) and µ ∈ Gal(Lji/K) the composition νµ is well-defined

on the intersection Lkj ∩ Lji and will be considered as an element in Gal(Lkj ∩ Lji/K).

The following result is standard. It can be found as Proposition 2.12 in [GL16a].

Lemma 2.5.22. Let i, j, k ∈ Q0. For every ν ∈ Gal(Lkj/K) and µ ∈ Gal(Lji/K), it is[
kL

ν
j ⊗Lj jL

µ
i : kL

ρ
i

]
=


[
Lj : LkjLji

]
if ρ ∈ Gνµki ,

0 otherwise.

Proof. Let M = kL
νµ
i = Lk ⊗νµ Li and N = Lk ⊗ν Lj ⊗µ Li. Then N ∼= kL

ν
j ⊗Lj jL

µ
i .

Choose a basis B of Lj over LkjLji. Let f = (fb)b∈B be the morphism
⊕

b∈BM −→ N of

Lk⊗K Li-modules where fb is defined by 1 ⊗ 1 7→ 1 ⊗ b ⊗ 1. Then f is an isomorphism,

since it is surjective by the choice of B and |B| · dimKM =
dkjidj
dkjdji

· dkdidkji
= dkjdji

dj
= dimKN .

Now use |B| = [Lj : LkjLji] and [M : kL
ρ
i ] = δρ∈Gνµki

by Corollary 2.5.21.

Remark 2.5.23. The integers qkji = dkjidj/(dkjdji) and rkji = dki/dkji from Definition 2.1.8

are the degree [Lj : LkjLji] and the cardinality |Gνµki | = [Lki : Lkj ∩ Lji].

Remark 2.5.24. The length of kL
ν
j ⊗Lj jL

µ
i is |Gνµki | · [Lj : LkjLji] = dkidj/(dkjdji).
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2.5.4 Dual, Double, and Premutation

Lemma 2.5.25. Let H be the modulation of a modular quiver Q over (L/K,α). Then H
and H∗ are isomorphic to the modulations of Q and Q∗, respectively, over (L/K,α).

Proof. Given Definitions 2.1.12, 2.4.16 and 2.5.12, all we have to show is
(
jL

ρ
i

)∗ ∼= jL
ρ−1

i .

This readily follows from (?).

Notation 2.5.26. Given an R-bimodule A =
⊕

i,k∈Q0 k
Ai, the premutation of A at j ∈ Q0

is defined in [DWZ08, (5.3)] as the R-bimodule A∼j =
⊕

i,k∈Q0 k

(
A∼j

)
i with

k

(
A∼j

)
i =


(
kAi
)∗

if j ∈ {i, k},

kAi ⊕
(
kAj ⊗Rj jAi

)
otherwise.

Lemma 2.5.27. Let j be a 2-acyclic vertex in a modular quiver Q. Denote by H and H∼j

the modulations of Q and Q∼j over (L/K,α), respectively. Then AH∼j
∼= A∼jH .

Proof. Inspecting how Q∼j and H∼j are defined (see Definitions 2.1.12 and 2.5.12), this is

an immediate consequence of
(
kL

ρ
i

)∗ ∼= kL
ρ−1

i and Lemma 2.5.22.

2.5.5 Comfy Modulations

The modulations considered in Chapters 5 and 6 are slightly less general than cyclic Galois

modulations. Below we define the kind of modulations that will be used in those chapters.

We also give explicit formulas for the projections πρ for such modulations.

Convention 2.5.28. Fix a cyclic Galois extension L/K.

Remark 2.5.29. Assume that K contains a primitive m-th root ζ of unity for m = [L : K].

As a classical consequence of Hilbert’s Satz 90 (see [Bou81, V. §11 no. 6]) the extension L/K

is generated by a primitive element v with minimal polynomial εm − w ∈ K[ε] over K.

Then we have an isomorphism Z/mZ
αζ,v−−−→ Gal(L/K) defined by 1 7→ (v 7→ ζv).

Definition 2.5.30. A com(putation)f(riendl)y extension is a triple (L/K, ζ, v) consisting

of a cyclic Galois extension L/K, a primitive [L : K]-th root of unity ζ ∈ K, and a primitive

element v ∈ L for the extension L/K such that v[L:K] ∈ K.

Remark 2.5.31. Every cyclic Galois extension L/K where K contains a primitive [L : K]-th

root of unity is part of a comfy extension due to Remark 2.5.29.

Remark 2.5.32. The existence of a primitive m-th root of unity in K implies char(K) |-m.

Example 2.5.33. The triples (C/R,−1, v) where v ∈ C is any non-zero imaginary number

are comfy extensions.
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Example 2.5.34. Let q = ps be a prime power and m ∈ N+ divisible by all of the weights di.

Then Fqm/Fq is a Q-admissible cyclic Galois extension (see Example 2.5.3 ). By Dirichlet’s

theorem on arithmetic progressions there are, for each fixed m, infinitely many choices

for p such that m | p− 1. For such a choice, the field Fp contains a primitive m-th root of

unity and Remark 2.5.29 allows us to find a comfy extension (Fqm/Fq, ζ, v).

Example 2.5.35. Let m be as in Example 2.5.34 and let ζ be a primitive m-th root of unity

in the algebraic closure of K. Denote by F (tm) the function field in tm over F = K(ζ).

Then (F (t)/F (tm), ζ, t) is a comfy extension.

Convention 2.5.36. Fix a comfy extension (L/K, ζ, v) such that L/K is Q-admissible.

Definition 2.5.37. Let Q be a modular quiver. The modulation of Q over (L/K, ζ, v) is

the modulation of Q over (L/K,αζ,v).

Notation 2.5.38. For intermediate fields F of L/K let mF := [F : K] and mF := [L : F ].

Set ζF := ζmF and ζF := ζm
F

and vF := vm
F

.

We abbreviate ζLi as ζi and vLi as vi for i ∈ Q0 and ζLji as ζa for j
a←− i ∈ Q1.

Remark 2.5.39. The triples (F/K, ζF , vF ) and (L/F, ζF , v) are again comfy extensions.

The statement of the next lemma partially appears in [GL16a, Proposition 2.15].

Lemma 2.5.40. Let M be an Lj ⊗K Li-module for some i, j ∈ Q0. For every intermediate

field F of Lji/K and every ρ ∈ Gal(F/K) we can write ρ = αζF ,vF (r) for some r ∈ Z.

Then we have ρ(vsF ) = ζrsF v
s
F for all s ∈ Z and the projection πρ acts on x ∈M as

πρ(x) =
1

mF

mF−1∑
s=0

ρ(vsF )xv−sF .

Proof. Clearly, ρ = αζF ,vF (r) for some r ∈ Z and ρ(vsF ) = ζrsF v
s
F for all s ∈ Z, since αζF ,vF

is the isomorphism Z/mFZ
∼=−→ Gal(F/K) given by 1 7→ (vF 7→ ζF vF ). Now let π′ρ(x)

be the right-hand side of the equation in the lemma. It is a straightforward exercise to

verify π′ρ(x)vF = ρ(vF )π′ρ(x). Equation (?) then implies π′ρ(M) ⊆ Mρ because vF is a

primitive element for F/K. The identities
∑mF−1

r=0 ζrsF = δs=0mF for 0 ≤ s < mF easily

yield
∑

ρ∈Gal(F/K) π
′
ρ(x) = x. All in all, we can conclude π′ρ(x) = πρ(x).

Example 2.5.41. Write Gal(C/R) = {id, ρ}. Then we have πid(x) = 1
2(x + vxv−1) and

πρ(x) = 1
2(x− vxv−1) for every comfy extension (C/R,−1, v).

Example 2.5.42. Set w := vmL such that εmL − w ∈ K[ε] is the minimal polynomial of v

over K. Let H = (Ri, Aa)i,a be the modulation of a modular quiver Q over (L/K, ζ, v).

Then Ri ∼= K[εi]/
(
ε
di
i −w

)
and Aa ∼= K[εj , εi]/

(
ζ
σa
a ε

fij
j −ε

fji
i , ε

dj
j −w, ε

di
i −w

)
for j

a←− i.

Similarly as for the GLS modulation in Example 2.4.27, the path algebra HH can

be identified with the path algebra KQ	 modulo an ideal I(d, σ), which is in this case
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generated by the relations ε
di
i = w for i ∈ Q0 and aε

fji
i = ζ

σa
a ε

fij
j a for j

a←− i ∈ Q1.

2.5.6 Comfy vs. GLS Modulations

Examples 2.4.27 and 2.5.42 revealed the striking similarities between comfy modulations

and the modulations considered in [GLS16a]. In this subsection we sketch how this

resemblance could be formalized and give a small example.

Convention 2.5.43. Fix a field K and a quiver Q and denote by K̃ the quotient of the

polynomial ring K[w, λa : a ∈ Q1] by the ideal
(
λ
dji
a − 1 : j

a←− i ∈ Q1

)
.

Definition 2.5.44. Let Q be a weighted quiver. Then the family H̃ =
(
R̃i, Ãa

)
i,a

is called

the universal comfy modulation of Q where R̃i = K̃[εi]/
(
ε
di
i − w

)
are indexed by i ∈ Q0

and Ãa = K̃[εj , εi]/
(
λaε

fij
j − ε

fji
i , ε

dj
j − w, ε

di
i − w

)
are indexed by j

a←− i ∈ Q1.

Remark 2.5.45. The universal comfy modulation H̃ is a “K̃-modulation for Q” in the sense

that (a) R̃i is free of rank di over K̃ for all i ∈ Q0, and (b)
R̃j

(Ãa) and (Ãa)R̃i
are free of

rank fji and fij , respectively, for all j
a←− i ∈ Q1. Compare Definition 2.4.2.

Notation 2.5.46. The path algebra H̃ of H̃ is the tensor algebra R̃
〈
Ã
〉

of Ã =
⊕

a∈Q1
Ãa

over R̃ =
∏
i∈Q0

R̃i. We write a for 1 ∈ Ãa when considered as an element in Ã ⊆ H̃.

Remark 2.5.47. The path algebra H̃ = R̃
〈
Ã
〉

can be identified with the path-algebra

quotient K̃Q	/Ĩ(d) where Q	 is the quiver defined in Example 2.4.27 and Ĩ(d) is the ideal

generated by the relations ε
di
i = w for i ∈ Q0 and aε

fji
i = λaε

fij
j a for j

a←− i ∈ Q1.

Remark 2.5.48. For the GLS modulation H for Q described in Examples 2.4.11 and 2.4.27

we have as K-algebras HH ∼= K̃0,1⊗K̃ H̃ with K̃0,1 = K̃/(w, λa − 1 : a ∈ Q1) ∼= K.

Here H arises from H̃ by specializing w → 0 and λa → 1.

Remark 2.5.49. For the modulation H of a modular quiver Q over (L/K, ζ, v) we have as

K-algebras HH ∼= K̃v[L:K],σ ⊗K̃ H̃ with K̃v[L:K],σ = K̃/(w − v[L:K], λa − ζ
σa
a : a ∈ Q1) ∼= K.

Now H arises from H̃ by specializing w → v[L:K] and λa → ζ
σa
a .

For the next example we formalize the definition of the (unweighted) quiver Q	:

Definition 2.5.50. The loop extension of a weighted quiver Q is the Q0-quiver Q	 with

Q	1 = Q1

.
∪
{
i

εi←−− i | i ∈ Q0

}
.

Example 2.5.51. Let Q be the modular quiver 1
a←− 2 of type A2 with d1 = d2 = 2

and σa = 1 ∈ Z/2Z, which already appeared in Example 2.5.13. Then Q	 is the quiver

1 2

ε2

��

ε1

�� aoo .
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Let I be the ideal of RQ	 generated by the relations ε2
1 = w, ε2

2 = w, aε2 = λaε1a for

some fixed w, λa ∈ K. For the choice w = −1 and λa = (−1)σa = −1 the quotient RQ	/I
is the path algebra of the cyclic Galois modulation Hρ from Example 2.5.13, whereas the

choice w = 0 and λa = 1 gives rise to the path algebra of the GLS modulation.

2.5.7 Path-Algebra Bases

Below we describe a K̃-basis for the path algebra of the universal comfy modulation and

related K-bases for the path algebras of GLS and comfy modulations. These bases are

useful for explicit computations with path-algebra elements.

Definition 2.5.52. A path ε
q`
i`
a` · · · ε

q1
i1
a1·ε

q0
i0

in Q	 with a1, . . . , a` ∈ Q1 and q0, . . . , q` ∈ N
is said to be d-reduced if qs < dis for all 0 ≤ s ≤ `. By convention ε0

i = ei for all i ∈ Q0.

Let ∼ be the equivalence relation on the set of paths in Q	 generated by

ε
q`
i`
a` · · · ε

q1
i1
a1 · ε

q0
i0
∼ ε

q′`
i`
a` · · · ε

q′1
i1
a1 · ε

q′0
i0

whenever i`
a`←− · · · a1←− i0 is a path in Q and there exist 0 < t ≤ ` and q0, q

′
0, . . . , q`, q

′
` ∈ N

with qs = q′s for all s ∈ {0, . . . , `} \ {t− 1, t} and qt − q′t = fit−1it
and q′t−1 − qt−1 = fitit−1

.

A Q-tensor class is an equivalence class of ∼ that contains only d-reduced paths.

The representative ε
q`
i`
a` · · · ε

q1
i1
a1 · ε

q0
i0

of a Q-tensor class that minimizes (q`, . . . , q0) with

respect to the lexicographical order on N`+1 is called a Q-tensor path of type a` · · · a1. For

each vertex i ∈ Q0 we have Q-tensor paths ei = ε0
i , ε

1
i , . . . , ε

di−1
i of type ei.

Denote by TQ(p) the set of Q-tensor paths of type p. Set TQ =
.⋃
p path in Q TQ(p).

Example 2.5.53. For the weighted quiver Q from Example 2.5.51 we have TQ(a) = {a, aε2}.
The element ε1a represents the same Q-tensor class as aε2 but is itself not a Q-tensor path.

The path ε2aε1 ∼ aε2
1 in Q	 does not define a Q-tensor class.

Lemma 2.5.54.
∣∣TQ(i` a`←− · · · a1←− i0

)∣∣ = di0 ·
∏̀
s=1

fis−1is
=
∏̀
s=0

dis

/∏̀
s=1

dis−1is
.

Proof. Clearly, |TQ(ei)| = di. Assume |TQ(a`−1 · · · a1)| = fi`−2i`−1
· · · fi0i1 · di0 by induction

and note TQ(a`−1 · · · a1)×
{

0, . . . , fi`−1i`
− 1
} ∼=−→ TQ(a` · · · a1) via (p, q) 7→ εqi`a`p.

Lemma 2.5.55. The path algebra H̃ of the universal comfy modulation of Q is free over K̃.

A K̃-basis is given by the image of the map TQ → H̃ defined as

ε
q`
i`
a` · · · ε

q1
i1
a1 · ε

q0
i0
7→ ε

q`
i`
a` · · · ε

q1
i1
a1 · ε

q0
i0

.

Proof. This is a consequence of the definitions of H̃ = R̃
〈
Ã
〉

and TQ.

Remark 2.5.56. The K̃-basis of H̃ described in Lemma 2.5.55 “specializes” under each

of the isomorphisms in Remarks 2.5.48 and 2.5.49 to a K-basis of HH. The elements of

these K-bases have the form ε
q`
i`
a` · · · ε

q1
i1
a1 · ε

q0
i0

and v
q`
i`
a` · · · v

q1
i1
a1 · v

q0
i0

, respectively.
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2.6 Jacobian Algebras and Potentials

2.6 Jacobian Algebras and Potentials

We recollect some basics about topological rings equipped with the m-adic topology and

discuss completed tensor algebras. After that, Jacobian algebras J (W ) are introduced for

arbitrary completed tensor algebras by a minor modification of [DWZ08, Definition 3.1].

For potentials we define R-equivalence and the weaker notion of I-equivalence, which both

specialize to Derksen, Weyman, and Zelevinsky’s right-equivalence.

The last two subsections contain the results from [GL16a, §§ 3 and 10.1–2]. Namely,

we prove that the so-called Splitting Theorem remains true for cyclic Galois modulations.

Finally, premutation of potentials will be described for comfy modulations.

2.6.1 Topological Rings

Definition 2.6.1. An adic ring is a topological ring H together with an ideal mH of H

where H carries the mH -adic topology, i.e. each point z ∈ H has {z + mn
H |n ∈ N} as a

fundamental system of open neighborhoods.

The order of an element z in an adic ring H is ordH(z) := min
{
n ∈ N | z 6∈ mn+1

H

}
with

the convention min∅ =∞. If confusion seems unlikely, we write ord instead of ordH .

A morphism H
f−→ H ′ of adic rings is a continuous ring homomorphism H

f−→ H ′.

The completion of an adic ring H is the adic ring Ĥ = lim←−H/m
n
H with m

Ĥ
= ĤmHĤ.

A complete ring is an adic ring H for which the canonical map H
ι−→ Ĥ is an isomorphism.

We collect some elementary facts about adic and complete rings in the next lemma.

Lemma 2.6.2. Let H be an adic ring.

(a) For every X ⊆ H its closure is
⋂
n∈N(X +mn

H). In particular, mn
H is closed for all n.

(b) The map H × H distH−−−−−→ R, (z, z′) 7→ exp(−ordH(z − z′)), where exp(−∞) := 0,

defines a pseudometric on H. The topology induced by distH is the topology of H.

(c) A sequence (xm)m∈N in H is a Cauchy sequence with respect to distH if and only for

all n ∈ N there is k ∈ N such that xm+1 − xm ∈ mn
H for all m ≥ k.

(d) H is Hausdorff if and only if distH is a metric if and only if
⋂
n∈Nmn

H = 0.

(e) H is a complete ring if and only if distH is a complete metric.

(f) A ring homomorphism H
f−→ H ′ between two adic rings is (sequentially) continuous

if and only if there exists n ∈ N such that f(mn
H) ⊆ mH′.

(g) If H is a complete ring, then mH ⊆ rad(H) or, equivalently, 1 + mH ⊆ H×.

Proof. Statements (a)–(f) are well-known and straightforwardly verified. For a proof of (g)

see [Lam91, (21.30)].
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Example 2.6.3. Let H = K[x] be the polynomial ring viewed as adic ring with mH = (x).

The order of p =
∑

n pnx
n ∈ H with pn ∈ K is ordH(p) = min{n ∈ N | pn 6= 0}.

Example 2.6.4. The adic ring H in Example 2.6.3 is not complete. The sequence (xn)n∈N

is a Cauchy sequence with respect to distH that does not converge in H. However, in the

completion Ĥ one has limn→∞ x
n = 0. There is a canonical isomorphism K[[x]]

∼=−→ Ĥ.

Lemma 2.6.5. Let H be an adic ring. If H is Hausdorff, the canonical map H
ι−→ Ĥ is a

topological embedding with dense image.

Proof. See [War93, Corollary 5.22].

2.6.2 Completed Path Algebras

Definition 2.6.6. Let A be an R-bimodule over K. The completed tensor algebra of A is

the R-algebra R〈〈A〉〉 over K whose underlying R-bimodule is

R〈〈A〉〉 =
∏
n∈N

A⊗n .

The product xy =
∑

n(xy)n ∈ R〈〈A〉〉 of x =
∑

n xn, y =
∑

n yn ∈ R〈〈A〉〉 is defined by

(xy)n =

n∑
k=0

xk ⊗ yn−k .

If R = RH, A = AH for a K-modulation H of a weighted quiver Q, we call ĤH = R〈〈A〉〉
the completed path algebra of Q defined by H.

Notation 2.6.7. For maps M
f−→ R〈〈A〉〉 set f(n) := prn◦f and f≥n := pr≥n◦f where prn

and pr≥n are the projections R〈〈A〉〉� A⊗n and R〈〈A〉〉�
∏
k≥nA

⊗k of R-bimodules.

Convention 2.6.8. Fix a finite-dimensional R-bimodule A over K.

Abbreviate H = R〈A〉 and Ĥ = R〈〈A〉〉. The tensor algebra H and the completed tensor

algebra Ĥ are regarded as adic rings, where mH and m
Ĥ

are the ideals generated by A.

Remark 2.6.9. Explicitly, mH =
⊕

n∈N+
A⊗n and m

Ĥ
=
∏
n∈N+

A⊗n. For each n ∈ N there

is a commuting square of canonical maps:

H Ĥ

H/mn
H Ĥ/mn

Ĥ

ι

∼=

We get an induced map H
ι
↪−→ Ĥ

∼=−→ lim←−H/m
n
H and realize that Ĥ is the completion of H.

It is clear that Ĥ is a complete ring. Since H is Hausdorff, Lemma 2.6.5 (a) applies.

Universal property of tensor algebra (see Lemma 2.2.6) and completion (inverse limit)

combine to the following universal property of the completed tensor algebra.
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Lemma 2.6.10. Let Λ be a complete R-algebra and A
f−→ Λ a map of R-bimodules such

that the induced map R〈A〉 f̂−→ Λ is continuous, i.e. f̂(A⊗n) ⊆ mΛ for some n. Then there

exists a unique morphism f̃ of adic R-algebras making the following diagram commute:

A R〈〈A〉〉

Λ

κA

f
f̃

Here κA denotes the canonical inclusion A ↪→ R〈〈A〉〉.

Proof. The property f̂(A⊗n) ⊆ mΛ ensures that f induces a map R〈〈A〉〉 → lim←−Λ/mn
Λ = Λ̂.

Since Λ is complete, we get a map as claimed in the lemma.

Definition 2.6.11. Assume a factorization R =
∏
i∈I Ri is fixed.

Let Λ = R〈A〉/J and Λ′ = R〈A′〉/J ′ with J ⊆ mΛ and J ′ ⊆ mΛ′ . A morphism Λ
f−→ Λ′

of K-algebras is a KI-algebra morphism if f induces automorphisms Ri
∼=−→ Ri for all i ∈ I.

Similarly, one defines KI -algebra morphisms for quotients of completed tensor algebras.

For loop-free weighted I-quivers every KI -algebra morphism between their (completed)

path algebras is automatically a morphism of topological algebras:

Lemma 2.6.12. Every KI-algebra morphism Λ
f−→ Λ′ between (completed) path algebras

defined by (Ri)i-modulations for loop-free weighted I-quivers Q and Q′ maps mΛ into mΛ′ .

Proof. Say Λ = HH and Λ′ = HH′ for K-modulations H = (Ri, Aa)i,a and H′ = (Ri, A
′
a)i,a.

If f(mΛ) 6⊆ mΛ′ , then there are i, j ∈ I and x ∈ jAi 6= 0 such that f(x) = ejf(x)ei = y0 +y+

for some y0 ∈ jRi and y+ ∈ j(mΛ′)i with y0 6= 0. Hence jRi 6= 0, so i = j. But then iAi 6= 0

and Q is not loop-free. The proof for completed path algebras is the same.

In the completed setting, Lemma 2.6.12 has a generalization for quivers with loops:

Lemma 2.6.13. Let Ĥ and Ĥ ′ be the completed path algebras defined by (Ri)i-modulations

for weighted I-quivers Q and Q′ such that for all i ∈ I either Q is loop-free at the vertex i

or the algebra Ri is local with nilpotent maximal ideal pi.

Then every KI-algebra morphism Ĥ
f−→ Ĥ ′ is continuous and f

(
mn
Ĥ

)
⊆ m

Ĥ′ where

n = max
(
{1} ∪ {ni | i ∈ I not loop-free in Q}

)
and ni is the nilpotency degree of pi, i.e. the smallest positive integer k with pki = 0.

Proof. Say Ĥ = ĤH for a K-modulation H = (Ri, Aa)i,a. With the same argument given

in the proof of Lemma 2.6.12 one shows that f(x) ∈ m
Ĥ′ for all x ∈ jAi with j 6= i. For non-

zero x ∈ iAi the quiver Q has a loop at i and so Ri is local with nilpotent maximal ideal pi.

We can write f(x) = eif(x)ei = y0 + y+ with 0 6= y0 ∈ Ri and y+ ∈ i

(
m
Ĥ′

)
i. To prove the
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lemma, it suffices to show y0 ∈ pi. If this were not the case, then y0 ∈ Ri\pi = R×i . Let z be

the inverse of f−1(y0) in Ri. Lemma 2.6.2 (g) implies that the element y+ = −y0f(1− zx)

is a unit in iĤ
′
i. But this contradicts the fact that pr0(y+) = 0 is not invertible in Ri.

Under the assumption that the ground ring is a product of division algebras, Lemma 2.6.12

is hence also true for quivers with loops, at least in the completed world:

Corollary 2.6.14. Every KI-algebra morphism Ĥ
f−→ Ĥ ′ between completed path algebras

defined by (Ri)i-modulations with division algebras Ri satisfies f
(
m
Ĥ

)
⊆ m

Ĥ′.

Proof. This is a direct consequence of Lemma 2.6.13.

Example 2.6.15. The GLS modulations (see Example 2.4.11) satisfy the assumption in

Lemma 2.6.13. The nilpotency degree of the maximal ideal of Ri = K[εi]/
(
ε
di
i

)
is ni = di.

Example 2.6.16. Let Q be the weighted quiver 1a 5= with d1 = 2. The completed path

algebra Ĥ of Q defined by the GLS modulation (see Example 2.4.27) is the ring Ĥ = R[[a]]

of formal power series over the dual numbers R = K[ε]/(ε2) with m
Ĥ

= (a). The rule a 7→ ε

induces an R-algebra morphism Ĥ
f−→ Ĥ. As claimed in Lemma 2.6.13, f is continuous,

since f
(
m2
Ĥ

)
= 0 ⊆ m

Ĥ
. However, f

(
m
Ĥ

)
6⊆ m

Ĥ
.

Example 2.6.17. The path algebra H of 1a 5= over K is the polynomial ring K[a] with

distinguished ideal mH = (a). The K-algebra endomorphism of H given by the rule a 7→ 1

is not continuous. This shows that the statements of Lemma 2.6.13 and Corollary 2.6.14

are no longer true when replacing “completed path algebras” by “path algebras”.

Notation 2.6.18. For adic R-algebras H and H ′ we use the notation Homn
R(H,H ′) for

the set of R-algebra morphisms H
f−→ H ′ satisfying f(mH) ⊆ mn

H′ .

Remark 2.6.19. Let H and H′ be (Ri)i-modulations for weighted I-quivers Q and Q′. If Q

is loop-free, we have seen that Hom1
R(HH, HH′) = HomR(HH, HH′). Furthermore, if Q is

loop-free or all Ri are division rings, Hom1
R(ĤH, ĤH′) = HomR(ĤH, ĤH′).

The next lemma is the analog of [DWZ08, Proposition 2.4].

Lemma 2.6.20. Let A and A′ be R-bimodules. For every n ∈ N+ there is a bijection:

Homn
R

(
R〈〈A〉〉, R〈〈A′〉〉

)
HomRe

(
A,mn

R〈〈A′〉〉

)
f f |A

∼=

Moreover, f is an isomorphism if and only if the component f(1)|A is an isomorphism.

Proof. The map in the proposition is well-defined, since f(A) ⊆ mn
R〈〈A′〉〉. It is a bijection

because of Lemma 2.6.10. It remains to verify the last claim. For n > 1 it is trivially true,

since in this case neither f nor f(1)|A can be an isomorphism. So let us assume n = 1.
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For every element x =
∑

m xm ∈ R〈〈A〉〉 we have f(1)(xm) = 0 for allm > 1 because of the

continuity of f and f(1)(x0) = 0 since f is a map of R-algebras. Thus f(1) = f(1)|A ◦ pr(1)

such that for all g ∈ Hom1
R(R〈〈A′〉〉, R〈〈A〉〉) one has (fg)(1)|A′ = f(1)|A ◦ g(1)|A′ and,

similarly, (gf)(1)|A = g(1)|A′ ◦ f(1)|A. In particular, if f is an isomorphism, so is f(1)|A.

On the other hand, assume that f(1)|A has an inverse A′
g−→ A. Let R〈〈A′〉〉 g̃−→ R〈〈A〉〉

be the induced map such that g̃|A′ = g̃ ◦ κA′ = κA ◦ g. The universal property for R〈〈A〉〉
(Lemma 2.6.10) then implies g̃◦f = id, since g̃◦f ◦κA = g̃◦κA′ ◦f(1)|A = κA◦g◦f(1)|A = κA.

Similarly, one can prove f ◦ g̃ = id to conclude that f is an isomorphism.

We adopt the terminology introduced in [DWZ08, Definition 2.5].

Definition 2.6.21. Let f ∈ AutR(R〈〈A〉〉) and m = mR〈〈A〉〉.

Call f a change of arrows, if f(A) = A. We say f is unitriangular, if (f − id)(A) ⊆ mn+1

for some n ∈ N+. For unitriangular f one defines the depth of f as

depth(f) := sup
{
n ∈ N+ | (f − id)(A) ⊆ mn+1

}
.

Remark 2.6.22. An automorphism f ∈ AutR(R〈〈A〉〉) is unitriangular of depth ≥ n if and

only if for all a ∈ A there is νa ∈ mn+1 such that f(a) = a+ νa.

We repeatedly use the following statement implicitly. Compare [DWZ08, § 4].

Lemma 2.6.23. Let (fn)n∈N be a sequence of unitriangular R-algebra automorphisms

of R〈〈A〉〉 with limn→∞ depth(fn) =∞. Then the pointwise-defined limit limn→∞ fn · · · f0

exists and is an R-algebra automorphism of R〈〈A〉〉.

Proof. For all z the sequence (fn · · · f0(z))n∈N is Cauchy because limn→∞ depth(fn) =∞.

The completeness of R〈〈A〉〉 implies that the limit f = limn→∞ fn · · · f0 exists. Clearly, f

is an R-algebra morphism. It is an automorphism because f(1)|A is an automorphism.

Recall that H = R〈A〉 and Ĥ = R〈〈A〉〉. Via restriction of scalars every Ĥ-module can

also be viewed as an H-module. In the finite-dimensional world, Ĥ-modules are precisely

the nilpotent H-modules. This observation generalizes the discussion in [DWZ08, § 10].

Lemma 2.6.24. Restriction of scalars induces an equivalence mod(Ĥ)
'−−→ modnil(H)

where modnil(H) is the full subcategory of mod(H) consisting of modules, called nilpotent,

that are annihilated by A⊗n for some large enough n.

Proof. Nilpotent H-modules can be naturally regarded as Ĥ-modules and a map between

nilpotent H-modules is an Ĥ-module homomorphism if and only if it is an H-module

homomorphism. Therefore it suffices to check that every finite-dimensional Ĥ-module M is

nilpotent. By Lemma 2.6.2 (g) it is m = m
Ĥ
⊆ rad(Ĥ). Now mn+1M = mnM for some n,

if M is finite-dimensional. So mnM = 0 by Nakayama’s lemma (see [Lam91, (4.22)]).
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We close this subsection with the following easy observation.

Lemma 2.6.25. Let (Xn)n∈N be a family of additive subgroups Xn ⊆ A⊗n ⊆ Ĥ. Then

the topological closure of
⊕

n∈NXn in Ĥ is
∏
n∈NXn.

Proof. Let X =
⊕

n∈NXn and Y =
∏
n∈NXn. On the one hand, X ⊆ Y ⊆ X because

every y ∈ Y is the limit of the sequence
(∑

n≤m yn
)
m∈N in X. On the other hand, Y = Y ,

since a sequence in Y is a Cauchy sequence if and only if for all n ∈ N its image in Xn is

an eventually constant sequence, i.e. its limit lies in Y .

2.6.3 Jacobian Algebras

Convention 2.6.26. As before, we denote by Re the enveloping algebra R⊗KRop of R.

We regard R-bimodules M over K as left Re-modules via (s⊗ r) ·m = smr and as right

Re-modules via m · (s⊗ r) = rms for s⊗ r ∈ Re and m ∈M .

Recall the notations A† = HomRe(A,Re) and H = R〈A〉 and Ĥ = R〈〈A〉〉.

Definition 2.6.27. For ξ ∈ A† denote by A⊗n = A⊗s−1⊗RA⊗RA⊗n−s
∂n,sξ−−−→ A⊗n−1 the

K-linear map induced, for x ∈ A⊗s−1, a ∈ A, y ∈ A⊗n−s, by the rule

∂n,sξ (xay) = yx · ξ(a) .

The cyclic derivative with respect to ξ is the K-linear map Ĥ
∂ξ−−→ Ĥ defined as

∂ξ :=

∞∑
n=1

n∑
s=1

∂n,sξ .

The Jacobian ideal ∂W of an element W ∈ Ĥ is the closed ideal of Ĥ generated by all

cyclic derivatives ∂ξ(W ) with ξ ∈ A†. The Jacobian algebra J (W ) of W is J (W ) := Ĥ/∂W .

Remark 2.6.28. Let m = mH . The map ∂ξ is well-defined as a map H → H and sends mn

into mn−1. The universal property of Ĥ = lim←−H/m
n applied to Ĥ � H/mn

∂ξ−→ H/mn−1

yields the extension of ∂ξ to a map Ĥ → Ĥ.

Remark 2.6.29. Almost resembling [DWZ08, (3.1)], we can express ∂ξ as

∂ξ(a1 · · · an) =

n∑
s=1

as+1 · · · ana1 · · · as−1 · ξ(as)

for a1, . . . , an ∈ A. In general, it is however not possible to “move” ξ(as) to the left.

Example 2.6.30. Let Q be the weighted quiver ik

j
a

__
b
�� c1 //

c0
// with dk = di = 1 and dj = 2.

We consider the GLS modulation H = (Ri, Aa)i,a for Q (see Example 2.4.11). Set ε := εj .

The bimodules A†cr = 〈c†r : cr 7−→ ei ⊗ ek〉, A
†
b = 〈b† : b 7−→ ek ⊗ ej〉, A

†
a = 〈a† : a 7−→ ej ⊗ ei〉
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are cyclically generated. For W = (c0bε+ c1b)a one computes ∂
c†0

(W ) = bεa, ∂
c†1

(W ) = ba,

∂b†(W ) = εac0 + ac1, and ∂a†(W ) = c0bε+ c1b. So the Jacobian algebra of W is

J (W ) = ĤH/ 〈bεa, ba, εac0 + ac1, c0bε+ c1b〉 ∼= HH/〈bεa, ba, εac0 + ac1, c0bε+ c1b〉 .

2.6.4 Semi-Simple Structures

Definition 2.6.31. A basic semi-simple structure on aK-modulationH = (Ri, Aa)i,a forQ

consists of a decomposition Rj ⊗K Rop
i

(Rj ⊗KR
op
i ) =

⊕
ρ jL

ρ
i into pairwise non-isomorphic

simple modules jL
ρ
i for all i, j and a cyclic generator a of Aa for all a.

Given such a basic semi-simple structure on H, we can write
∑

i,j,ρ 1ρji = 1 ∈ Re for

uniquely determined 1ρji ∈ jL
ρ
i and have Aa ∼= jL

ρa
i for a unique index element ρa.

In this case, we use the notation A†a := HomRe(Aa, jL
ρa
i ) and denote by a† the generator

of A†a defined by a 7→ 1a := 1
ρa
ji .

Remark 2.6.32. A minimal K-modulation H admits a basic semi-simple structure if and

only if the enveloping algebra Re of its ground ring is basic semi-simple.

Example 2.6.33. Every modulation H = (Ri, Aa)i,a of a modular quiver Q over (L/K,α)

carries a canonical semi-simple structure. Namely, 1ρji = πρ(1 ⊗ 1) ∈ Lj ⊗K Li indexed

by ρ ∈ Gal(Lji/K) and a = 1⊗ 1 ∈ Aa. In this situation it is ρa = αji(σa) for j
a←− i.

Lemma 2.6.34. Assume H is a K-modulation for Q with basic semi-simple structure.

For W ∈ ĤH the Jacobian ideal ∂W is generated as a closed ideal by all ∂a†(W ) with a ∈ Q1.

Proof. This is obvious because A† =
⊕

aA
†
a and a† generates A†a.

Lemma 2.6.35. Assume H = (Ri, Aa)i,a is a K-modulation for Q with basic semi-simple

structure. For every R-bimodule A′ and m′ = mR〈〈A′〉〉 there is a bijection:

Homn
R

(
R〈〈A〉〉, R〈〈A′〉〉

) {
Q1

ν−→ m′n | ν(a) ∈ (jm
′
i)
ρa for j

a←− i ∈ Q1

}
f f |Q1

∼=

Proof. Every map Q1
ν−→ m′n with ν(a) ∈ (jm

′
i)
ρa for all j

a←− i ∈ Q1 uniquely extends to

an R-bimodule morphism A→ m′n. Now use Lemma 2.6.20.

Notation 2.6.36. For X = {a1, . . . , a`} ⊆ Q1 we say that f ∈ HomR(R〈〈A〉〉, R〈〈A′〉〉) is

given by the substitution rules a1 7→ f(a1), . . . , a` 7→ f(a`) if f(a) = a for all a ∈ Q1 \X.

Notation 2.6.37. For a subquiver Q′ of Q we use the notation AutQ′(R〈〈A〉〉) for the

subset of AutR(R〈〈A〉〉) consisting of all f with f(a) = a for all a ∈ Q′1.

Example 2.6.38. Let Q be the modular quiver ia 6> b
v~

with di = 2 and σa = 0, σb = 1

and let Ĥ be the completed path algebra defined by the modulation of Q over (C/R, α).
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The substitution rule a 7→ a+ b2 determines an element f ∈ AutR(Ĥ) with f(b) = b. There

is no element in EndR(Ĥ) determined by the rule a 7→ b because of σa 6= σb. Similarly, the

rule a 7→ a+ ba does not define an R-algebra endomorphism of Ĥ because πρa(ba) 6= ba.

2.6.5 Cyclic Chain Rule

This subsection contains straightforward generalizations of the cyclic Leibniz and cyclic

chain rule found in [DWZ08]. As pointed out there, cyclic derivatives and a version of the

cyclic chain rule were considered for arbitrary non-commutative K-algebras in [RSS80].

Notation 2.6.39. Following [DWZ08, § 3] we set H ⊗̂H :=
∏
q,r∈N (A⊗q ⊗K A⊗r) and

regard it as a topological R-bimodule with the sets
∏
q+r≥n (A⊗q ⊗K A⊗r) indexed by n ∈ N

as a fundamental system of open neighborhoods of zero. Actually, H ⊗̂H is the completion

of the adic ring Λ = Γ⊗K Γ with mΛ = mΓ⊗K Γ + Γ⊗KmΓ where Γ is either of H or Ĥ.

We use the symbol ? for the right action of Re on H⊗̂H given by (u⊗w)?(x⊗y) = ux⊗yw
for x⊗ y ∈ Re and u⊗ w ∈ A⊗q ⊗K A⊗r.

For every ξ ∈ A† let ∆ξ be the continuous R-bimodule morphism Ĥ → H ⊗̂H defined by

∆ξ(xay) = (x⊗ y) ? ξ(a) for x ∈ A⊗s−1, a ∈ A, y ∈ A⊗n−s. Furthermore, we write t �z for

the image of t⊗ z under the continuous K-linear map (H ⊗̂H)⊗K Ĥ → Ĥ that is defined

by (u ⊗ w) �z = wzu for u ⊗ w ∈ A⊗q ⊗K A⊗r and z ∈ Ĥ. This map is a morphism of

right Re-modules for the action (t⊗ z) ? r = (t ? r)⊗ z of r ∈ Re on t⊗ z ∈ (H ⊗̂H)⊗K Ĥ.

Remark 2.6.40. For a1, . . . , an ∈ A we can explicitly express ∆ξ as

∆ξ(a1 · · · an) =
n∑
s=1

(a1 · · · as−1 ⊗ as+1 · · · an) ? ξ(as) .

The following lemma is completely analogous to [DWZ08, Lemma 3.8].

Lemma 2.6.41 (Cyclic Leibniz rule). Assume R =
∏
i∈I Ri. Let ξ ∈ A† and (i1, . . . , i`) a

finite sequence in I. For all zs ∈ is
Ĥis+1

with s ∈ Z/`Z we have the identity

∂ξ(z1 · · · z`) =
∑̀
s=1

∆ξ(zs) �(zs+1 · · · z`z1 · · · zs−1) .

Proof. Because of the K-linearity and continuity of the maps ∂ξ, ∆ξ, and � it suffices to

prove the identity for all zs of the form as1 · · · asns with asr ∈ A. In this case it is clear

that ∆ξ(z1 · · · z`) =
∑

s z1 · · · zs−1 ·∆ξ(zs) · zs+1 · · · z`. Thus

∂ξ(z1 · · · z`) = ∆ξ(z1 · · · z`) �1 =
∑

s(z1 · · · zs−1 ·∆ξ(zs) · zs+1 · · · z`) �1

=
∑

s ∆ξ(zs) �(zs+1 · · · z`z1 · · · zs−1) .

Convention 2.6.42. For the rest of this subsection fix (Ri)i-modulations H and H′ with

basic semi-simple structure for two weighted I-quivers Q and Q′.
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The cyclic chain rule below is a consequence of Lemma 2.6.41. Its proof in the current

more general setting uses almost the same calculations as [DWZ08, Lemma 3.9].

Lemma 2.6.43 (Cyclic chain rule). For every KI-algebra homomorphism ĤH′
f−→ ĤH,

every W ∈ ĤH′, and every ξ ∈ A† we have

∂ξ(f(W )) =
∑
a∈Q′1

∆ξ(f(a)) �f(∂a†(W )) .

Proof. By K-linearity and continuity of ∂ξ, ∆ξ, �, ∂a† , and f , we can assume W = z1 · · · z`
with zs ∈ A′as and as ∈ Q′1 for all 1 ≤ s ≤ `. Then a†s(zs) · as = zs and one computes

∆ξ(f(zs)) = ∆ξ

(
f
(
a†s(zs)

)
· f
(
as
))

= f
(
a†s(zs)

)
·∆ξ

(
f(as)

)
.

With Wŝ = zs+1 · · · z`z1 · · · zs−1 it is ∂a†(W ) =
∑

sWŝ · a†(zs). Now, using Lemma 2.6.41

and a†(zs) = 0 for a 6= as, one obtains

∂ξ(f(W )) =
∑

s ∆ξ(f(zs)) �f
(
Wŝ

)
=
∑

a ∆ξ(f(a)) �f
(∑

sWŝ · a†(zs)
)

=
∑

a ∆ξ(f(a)) �f(∂a†(W )) .

The outcome of the cyclic chain rule is that KI -algebra isomorphisms between completed

path algebras induce isomorphisms between Jacobian algebras.

Proposition 2.6.44. For every KI-algebra morphism ĤH′
f−→ ĤH and every W ∈ ĤH′

one has ∂f(W ) ⊆ f
(
∂W

)
. In particular, if f is an isomorphism, ∂f(W ) = f

(
∂W

)
such

that f induces an isomorphism of Jacobian algebras J (W )
∼=−→ J (f(W )).

Proof. With Lemma 2.6.43 the proof of [DWZ08, Proposition 3.7] can be used as is.

2.6.6 Potentials

Convention 2.6.45. Fix a factorization R =
∏
iRi and a finite-dimensional R-bimodule A

over K. We continue to use the notation Ĥ = R〈〈A〉〉.

Definition 2.6.46. Recall that [DWZ08, Definition 3.4] defines the trace space Tr(H) of

a topological R-algebra H over K as the K-vector space H/{H,H}, where {H,H} stands

for the closed K-vector subspace generated by the commutators xy − yx with x, y ∈ H.

Remark 2.6.47. For Ĥ =
∏
nA
⊗n the closed K-vector subspace

{
Ĥ, Ĥ

}
is generated by

homogeneous elements. With Lemma 2.6.25 we see that
{
Ĥ, Ĥ

}
=
∏
n

{
Ĥ, Ĥ

}
n where{

Ĥ, Ĥ
}
n = spanK

{
xy − yx

∣∣ x ∈ A⊗k, y ∈ A⊗n−k, 0 ≤ k ≤ n
}

.

Therefore we have a decomposition Tr
(
Ĥ
)

=
∏
n Tr

(
Ĥ
)
n with Tr

(
Ĥ
)
n = A⊗n

/{
Ĥ, Ĥ

}
n.
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Remark 2.6.48. The image of jĤi in Tr
(
Ĥ
)

vanishes unless i = j. More precisely, it is

a1a2 · · · an−1an = a2a3 · · · ana1 = · · · = ana1 · · · an−2an−1 in Tr
(
Ĥ
)

for all a1, . . . , an ∈ A.

Example 2.6.49. Assume Ĥ is the completed path algebra of a weighted quiver Q defined

by a K-modulation with basic semi-simple structure. Then
{
Ĥ, Ĥ

}
is generated as a closed

K-vector space by all elements of the form (ω`a` · · ·ω2a2)ω1a1ω0 − a1ω0(ω`a` · · ·ω2a2)ω1

where i`
a`←− · · · a1←− i0 is a cyclic path in Q and ωr ∈ Rir . This characterization of

{
Ĥ, Ĥ

}
is used in [GL16a, Definition 3.11] to define (cyclic equivalence of) potentials.

Example 2.6.50. Assume that Ĥ is the completed path algebra of the double-loop quiver

from Example 2.6.38. Then b2a = bab = ab2 in Tr
(
Ĥ
)
.

Definition 2.6.51. The order of z =
∑

n zn ∈ Tr
(
Ĥ
)

with zn ∈ Tr
(
Ĥ
)
n is defined as

ord(z) := min
{
n ∈ N | zn 6= 0 ∈ Tr

(
Ĥ
)}

.

Remark 2.6.52. For the image of an element z ∈ Ĥ in the trace space Tr
(
Ĥ
)

we usually

write again z. We then have ord(z) ≥ ord
Ĥ

(z).

Definition 2.6.53. A potential for A is any element z in Tr
(
Ĥ
)

with ord(z) > 0.

A species with potential (SP) over R is a pair (A,W ) consisting of a finite-dimensional

R-bimodule A over K and a potential W for A.

Remark 2.6.54. As already explained in the introduction of [DWZ08], it is natural to think

of potentials as elements in the trace space. However, ibid. the term potential is used

to refer to elements in Ĥcyc =
⊕

i i

(
m
Ĥ

)
i. Elements in Ĥcyc are then said to be cyclical

equivalent if they have the same image in the trace space. In a nutshell, what we call a

potential here is the cyclic-equivalence class of a potential in the terminology of [DWZ08].

The next two facts are discussed in [GL16a, § 10.2] for comfy modulations.

Lemma 2.6.55. Assume A is the species of a cyclic Galois modulation for Q over L/K.

For all i, j ∈ Q0 and m ∈ jĤi, n ∈ iĤj and id = idLj the id-isotypical component of mn is

πid(mn) =
∑

ρ∈Gal(Lji/K)

πid(πρ−1(m)πρ(n)) .

Proof. Use πid(mn) =
∑

ρ,ρ′ πid(πρ′(m)πρ(n)) and (?) in § 2.5.3.

Corollary 2.6.56. Assume A is the species of a cyclic Galois modulation for Q over L/K.

For all i, j ∈ Q0 and m ∈ jĤi, n ∈ iĤj we have in Tr
(
Ĥ
)

the identity

mn =
∑

ρ∈Gal(Lji/K)

πρ−1(m)πρ(n) .

Proof. Because of Lemma 2.6.55 it suffices to show that πγ(z) = 0 in Tr
(
Ĥ
)

for all z ∈ jĤj

and non-identity γ ∈ Gal(Lj/K). Now x = γ(u)− u 6= 0 for some u, if γ 6= id. By (?) it is

γ(u)πγ(z) = πγ(z)u = uπγ(z) in Tr
(
Ĥ
)
. So πγ(z) = x−1(γ(u)−u)πγ(z) = 0 in Tr

(
Ĥ
)
.

54



2.6 Jacobian Algebras and Potentials

Corollary 2.6.57. Assume A is the species of a cyclic Galois modulation for Q over L/K.

For every potential W for A there are elements νa ∈ i

(
m
Ĥ

)
j for all j

a←− i ∈ Q1 such that

W =
∑
a∈Q1

νaa =
∑
a∈Q1

πρ−1
a

(νa)a .

Proof. The existence of elements νa such that the first equality holds is clear. For the last

equality use Corollary 2.6.56.

Example 2.6.58. Let Ĥ be the completed path algebra of ia 6> b
v~

as in Example 2.6.38.

Recall that σa = 0, σb = 1 ∈ Z/2Z. Then ba = 0 but b2a 6= 0 in Tr
(
Ĥ
)
.

It is clear that the cyclic derivatives ∂ξ annihilate
{
Ĥ, Ĥ

}
(compare Definition 2.6.27

and Remark 2.6.48). Therefore the following definition makes sense.

Definition 2.6.59. The K-linear map Tr
(
Ĥ
)
−→ Ĥ induced by ∂ξ is once again called the

cyclic derivative with respect to ξ ∈ A† and is also denoted by ∂ξ.

2.6.7 Equivalence of Potentials

The main purpose of potentials W is to encode defining relations of Jacobian ideals ∂W .

It is thus natural to introduce an equivalence relation on the space of potentials in such a

way that equivalent potentials define isomorphic Jacobian algebras. Having this in mind,

Proposition 2.6.44 motivates the next definition.

Convention 2.6.60. As before, assume R =
∏
i∈I Ri.

Let A, A′ be R-bimodules over K and Ĥ = R〈〈A〉〉, Ĥ ′ = R〈〈A′〉〉.

Definition 2.6.61. Two SPs (A,W ) and (A′,W ′) are R-equivalent if there is an R-algebra

isomorphism Ĥ
f−→ Ĥ ′ with f(W ) = W ′. In this case, we write (A,W ) ∼R (A′,W ′).

The SPs (A,W ) and (A′,W ′) are I-equivalent if there exists an isomorphism Ĥ
f−→ Ĥ ′

of KI -algebras such that f(W ) = W ′. Then we write (A,W ) ∼I (A′,W ′).

In case A = A′ and X ∈ {R, I}, we say that the potentials W and W ′ are X-equivalent,

formally W ∼X W ′, whenever the SPs (A,W ) and (A,W ′) are X-equivalent.

Remark 2.6.62. In the unweighted situation, i.e. if R =
∏
iK, both R-equivalence and

I-equivalence coincide with what is called right-equivalence in [DWZ08]. We leave it to the

judgment of the reader to decide which equivalence is the “right” one in general.

Example 2.6.63. Let Q be the modular quiver ik

j
a

__
b
�� c1 //

c0
// e
v~

with dk = di = 2, dj = 1

and σc0 = 0, σc1 = 1. Let A be the species of the modulation of Q over (C/R,−1, v).

Then the potentials W = v(c0 + c1)ba+ e(e+ 1) and W ′ = −v(c0 + c1)ba+ e(e+ 1) for A

are I-equivalent. Indeed, it is W ′ = f(W ) for the element f ∈ AutKI (Ĥ) that acts on the
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ground ring R = Cek × Rej × Cei as idC × idR × ρ, where ρ is complex conjugation, and

on the arrows as f(c0) = c1, f(c1) = c0, f(b) = b, f(a) = a, f(e) = e.

2.6.8 Subpotentials and Restricted Potentials

The suggestive notations for restricted species A|S , restricted potential W |S , subpoten-

tial WS , induced subquiver QW , and induced subspecies AW are made precise below.

Definition 2.6.64. Let S ⊆ Q1 and T = Q1 \ S. We define A|T :=
⊕

a∈T Aa.

Let H = (Ri, Aa)i,a be a K-modulation for the weighted quiver Q and let H′ be the

submodulation of H induced by the inclusion of the Q0-subquiver of Q spanned by S.

Moreover, let J be the ideal of ĤH generated by A|T .

Note that ĤH = ĤH′ ⊕ J and denote by ĤH
πS−→→ ĤH′

ιS
↪−−→ ĤH and ĤH

πJ−→→ J
ιJ
↪−−→ ĤH

the canonical projections and inclusions. Finally, let W be a potential for AH and p−1
H (W )

a preimage of W under the canonical projection ĤH
pH−−→→ Tr

(
ĤH
)
.

The restriction of W to S is the potential W |S := pH′
(
πS
(
p−1
H (W )

))
for AH′ . We will

often regard W |S as the potential pH
(
ιSπS

(
p−1
H (W )

))
for AH.

The subpotential of W spanned by T is the potential W T := pH
(
ιJπJ

(
p−1
H (W )

))
.

Remark 2.6.65. The potentials W |S and W T do not depend on the choice of p−1
H (W ).

Remark 2.6.66. We have W = W |S +WQ1\S .

Definition 2.6.67. We sometimes say that a ∈ Q1 occurs in the potential W if W {a} 6= 0.

We use the notation QW for the Q0-subquiver of Q spanned by all arrows that occur in W .

We call QW the subquiver and AW := A|QW1 the subspecies induced by W .

Remark 2.6.68. It is WQW1 = W |QW1 = W .

Example 2.6.69. For the potential W = (c0bε+ c1b)a in Example 2.6.30 it is W {c0} = c0bεa.

Example 2.6.70. Consider Example 2.6.63. Let Q′ be the subquiver ik
c1 // e

v~
of Q.

The restriction of W = v(c0 + c1)ba+ e(e+ 1) to Q′1 is W |Q′1 = e(e+ 1).

2.6.9 The Splitting Theorem

For modular quivers Q we have already seen that premutation requires “local” 2-acyclicity.

However, even if a modular quiver was not 2-acyclic itself, it could have a 2-acyclic

reduction Qred. The mutation of Q was then defined as the reduced-equivalence class of the

premutation of Qred (see Lemma 2.1.17). In order to make a similar story work for quivers

with potential, Derksen, Weyman, and Zelevinsky came up with the Splitting Theorem.

We generalize it to species with potential defined by cyclic Galois modulations.

Convention 2.6.71. All species A, A′ etc. are assumed to be defined by (Li)i-modulations
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H = (Li, Aa)i,a, H′ = (Li, A
′
a)i,a of modular loop-free I-quivers Q, Q′ etc. over (L/K,α).

As usual, we use the notation R =
∏
i∈I Li and Ĥ = ĤH.

Definition 2.6.72. An SP (A,W ) or the potential W is said to be reduced if ord(W ) > 2.

It is called trivial if W = pr2(W ) and ∂W = m
Ĥ

.

For two SPs (A,W ) and (A′,W ′) their sum is (A,W )⊕ (A′,W ′) := (A⊕A′,W +W ′).

Remark 2.6.73. The sum of two trivial (resp. reduced) SPs is trivial (resp. reduced).

Remark 2.6.74. In view of Lemma 2.6.12 being reduced is invariant under I-equivalence

and R-equivalence. Proposition 2.6.44 shows that for every change of arrows f ∈ AutR(Ĥ)

a potential W for A is trivial if and only if the potential f(W ) is trivial.

Remark 2.6.75. Proposition 4.5 in [DWZ08] explains the terminology “trivial SP”: For all

SPs (A,W ) and all trivial SPs (A′,W ′) the canonical map R〈〈A〉〉 −→ R〈〈A⊕A′〉〉 induces

an isomorphism J (W )→ J (W +W ′). In particular, J (W ′) ∼= R.

Given an SP (A,W ) one is usually interested in the module category of its Jacobian

algebra J (W ). In view of the last remark it seems reasonable to “split off” the trivial part.

Proposition 2.6.44 gives a clue how this can be done: Find a dimension-maximal trivial

SP (A′,W ′) with (A,W ) ∼R (Ared,Wred)⊕ (A′,W ′), then replace (A,W ) by (Ared,Wred).

It turns out that (Ared,Wred) is reduced and up to R-equivalence uniquely determined.

The proof of this fact is almost identical to [DWZ08, § 4] as soon as we have the following

result on “normal forms” of potentials, which generalizes (4.6) ibid.

Recall that a canceling 2-cycle in Q is a subquiver i
a // j
b

oo with σb + σa = 0 ∈ Z/djiZ.

Lemma 2.6.76. Every potential W for A is R-equivalent to a potential of the form

r∑
s=1

bsas +
∑
a∈T1

νaa+W ′ (z)

for canceling 2-cycles T s =
as //

bs
oo in Q such that T :=

r⊕
s=1

T s and (W ′)T1 = 0, ord(W ′) > 2,

and νa ∈ jĤ
ρ−1
a
i , ord(νaa) > 2 for all j

a←− i ∈ T1.

More precisely, there is a change of arrows ϕ ∈ AutR(Ĥ) with ϕ(W ) of the form (z).

Proof. Choose a total order ≤ on Q0. Set Sρji := {j a←− i ∈ Q1 | ρa = ρ} for i, j ∈ Q0

and ρ ∈ Gal(Lji/K). Using Corollary 2.6.57 it is not hard to see that

W =
∑
i<j
γρ=id

∑
a∈Sρji

∑
b∈Sγij

b · (µba · a) +W>2

with ord(W>2) > 2 and µba ∈ Lj ⊗K Li. Pick a basis Uji of Lj over Lji for all i, j ∈ Q0.

For a ∈ Sρji with i < j we will regard Aa as an Lji-vector space via Aa = Lj ⊗ρLi
∼=−→ Lji

induced by xv ⊗ u 7→ xvu for x ∈ Lji, v ∈ Uji, u ∈ Uij . Similarly, for b ∈ Sρ
−1

ij with i < j
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we will view Ab as an Lji-vector space via the isomorphism Ab = Li⊗ρ−1 Lj
∼=−→ Lji induced

by u⊗ vx 7→ uvx for u ∈ Uij , v ∈ Uji, x ∈ Lji. Note that jA
ρ
i = A|Sρji .

With this preparation the rest of the argument is similar to [Geu13, Remark 3.2.5 (c)].

Note that a 7→ ∂a†(pr2(W )) induces an Lji-linear map jA
ρ
i

g−→ iA
ρ−1

j . Pick f ∈ AutLji
(
jA

ρ
i

)
and h ∈ AutLji

(
iA

ρ−1

j

)
such that the matrix of h ◦ g ◦ f has block form

(
1r 0
0 0

)
with respect

to the (arbitrary) ordered bases Sρji = {a1, . . . , ap} and Sρ
−1

ij = {b1, . . . , bq}, where 1r is

the (r × r)-identity matrix. Let fT be the transpose of f . A straightforward calculation

shows that the element ϕ ∈ AutR(Ĥ) defined for all i < j by the substitutions a 7→ fT(a)

for a ∈ Sρji and b 7→ h(b) for b ∈ Sρ
−1

ij satisfies pr2(ϕ(W )) =
∑r

s=1 bsas.

Using Corollary 2.6.57 it is now easy to see that ϕ(W ) is a potential of the form (z).

Corollary 2.6.77. For every trivial SP (A,W ) it is A ∼= B ⊕B∗ for some R-bimodule B.

Proof. With Remark 2.6.74 and Lemma 2.6.76 we can assume that W =
∑r

s=1 bsas for

cyclic paths bsas with ρbs = ρ−1
as

and |{as, bs | 1 ≤ s ≤ r}| = 2r. Since ∂W = m
Ĥ

, we must

have {as, bs | 1 ≤ s ≤ r} = Q1. Take B = A|{as | 1≤s≤r}.

For convenience we reproduce a simplified version of the proof of the existence statement

in the Splitting Theorem, since we use similar arguments in Chapters 5 and 6.

Theorem 2.6.78. For every SP (A,W ) there exists a reduced SP (Ared,Wred) and a trivial

SP (Atriv,Wtriv) such that (A,W ) ∼R (Ared,Wred)⊕ (Atriv,Wtriv).

Moreover, (Ared,Wred) and (Atriv,Wtriv) are uniquely determined up to R-equivalence.

Definition 2.6.79. Every SP that is R-equivalent to (Ared,Wred) is called a reduced part

and every trivial SP R-equivalent to (Atriv,Wtriv) a trivial part of (A,W ).

Proof of Theorem 2.6.78. Replacing W with an R-equivalent potential, we can assume by

Lemma 2.6.76 that there are r ∈ N and cyclic paths a∗sas in Q with σa∗s +σas = 0 such that

S = {as, a∗s | 1 ≤ s ≤ r} ⊆ Q1 has 2r elements and, for Wtriv =
∑r

s=1 a
∗
sas and W ′−1 = 0, it

is W0 := W = Wtriv+
∑

a∈S ν0,aa+W ′0 where (W ′0)S = 0 and ord(W ′0−W ′−1), ord(ν0,aa) > 2.

Now assume that for some n ∈ N we have

Wn = Wtriv +
∑
a∈S

νn,aa+W ′n

where (W ′n)S = 0 and ord(W ′n −W ′n−1), ord(νn,aa) > n+ 2. The element ϕn+1 ∈ AutR(Ĥ)

given by the substitution rules a 7→ a − πρa(ejνn,a∗ei) for j
a←− i ∈ S (with a∗∗ := a) is

unitriangular of depth ≥ n. A straightforward computation shows

Wn+1 := ϕn+1(Wn) = Wtriv +
∑
a∈S

νn+1,aa+W ′n+1

where (W ′n+1)S = 0 and ord(W ′n+1 −W ′n), ord(νn+1,aa) > (n+ 1) + 2.
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We get a sequence (ϕn)n∈N+
of unitriangular automorphisms with limn depth(ϕn) =∞

such that the potentials Wn = ϕ̃n(W ) with ϕ̃n = ϕn · · ·ϕ1 define a convergent sequence

with limit limnWn = Wtriv +Wred for Wred = limnW
′
n. Note that (Wred)S = 0.

The R-algebra automorphism ϕ̃ = limn ϕ̃n maps the potential W to Wred +Wtriv such

that (A,W ) ∼R (Ared,Wred)⊕ (Atriv,Wtriv) where (Atriv,Wtriv) is trivial and (Ared,Wred)

reduced, for Atriv = A|S and Ared = A|Q1\S .

The arguments given in [DWZ08, § 4] to show that the SPs (Ared,Wred) and (Atriv,Wtriv)

are up to R-equivalence uniquely determined work without modification in our setting.

Example 2.6.80. Let Q be the modular quiver ij

k

h

f

��

e ??

b0oo

a0

//
a1

//

b1oo
with dk = 1 and

dh = di = dj = 2 and σa0
= σa1

= σb1 = 0 and σb0 = 1. Consider the species A defined by

the modulation of Q over (C/R,−1, v). The potential W = b1a1 + feb0(1 + b1a1) for A

is R-equivalent to W ′ = b1a1 + feb0 (indeed, W = ϕ(W ′) for ϕ ∈ AutR(Ĥ) defined by the

substitution b1 7→ b1 +πid(feb0b1)). Hence, we have (A,W ) ∼R (Ared,Wred)⊕ (Atriv,Wtriv)

with (Ared,Wred) =
(
A|{a0,b0,e,f}, feb0

)
and (Atriv,Wtriv) =

(
A{a1,b1}, b1a1

)
.

We conclude this subsection with a few convenient definitions.

Definition 2.6.81. Let X ∈ {R, I} and j ∈ Q0.

We write (A,W ) ≈X (A′,W ′) if SPs (A,W ) and (A′,W ′) are reduced-X-equivalent, i.e.

there are trivial SPs (B,S) and (B′, S′) such that (A,W )⊕ (B,S) ∼X (A′,W ′)⊕ (B′, S′).

An SP (A,W ) is 2-acyclic (at j) if the corresponding quiver Q is 2-acyclic (at j). It is

2-acyclic (at j) after reduction if it has a reduced part (Ared,Wred) that is 2-acyclic (at j).

Remark 2.6.82. An SP (A,W ) can fail to be 2-acyclic after reduction even if the modular

quiver Q is 2-acyclic after reduction. However, if Q is 2-acyclic after reduction, there

always exists a potential W for A such that (A,W ) is 2-acyclic after reduction.

Example 2.6.83. Let Q be the modular quiver i
a // j
b

oo with di = dj = 2 and σa = σb = 1.

Consider the species A defined by the modulation of Q over (C/R,−1, v). The SP (A, ba)

is 2-acyclic after reduction, whereas the SP (A, 0) is not.

Definition 2.6.84. Let S ⊆ Q1. An SP (A,W ) or the potential W is in S-split form if

the potential WS has the form (z) with νa = 0 for all k
a←− i ∈ T1. In this case, we define

redWS (Q) := Q− T1 , trivWS (Q) := T ,

redS(W ) := W |Q1\T1
, trivS(W ) := W |T1

,

redS(A,W ) :=
(
A|Q1\T1

,W |Q1\T1

)
, trivS(A,W ) :=

(
A|T1

,W |T1

)
.

Let Sj = {k ←− i ∈ Q1 | j ∈ {i, k}}. The SP (A,W ) or the potential W is in j-split form

if it is in Sj-split form. In this case, we simply write redWj for redWSj and redj for redSj .
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Remark 2.6.85. If (A,W ) is in S-split form, then W = redS(W )+trivS(W ) and trivS(A,W )

is trivial. In particular, redS(A,W ) ≈R (A,W ).

2.6.10 Mutation of Potentials

This final subsection defines (pre)mutation for SPs. These operations play a key role in

Chapters 4 to 6. The concept was introduced in [DWZ08, § 5], generalized in [LZ16, § 8]

to the strongly primitive setting, and appears in the form presented below in [GL16a, § 3].

Convention 2.6.86. Fix a comfy extension (L/K, ζ, v) and a 2-acyclic vertex j in Q.

We still assume all quivers to be loop-free.

Recall Q∼j = Q∗j ⊕Q−j− and vj = v[L:Lj ] and rkji = dki/dkji and qkji = dkjidj/(dkjdji).

Denote by Ĥ = R〈〈A〉〉, Ĥ = R〈〈A〉〉, Ĥ∼j = R〈〈A∼j〉〉 the completed path algebras

defined by the modulations of the modular quivers Q, Q, Q∼j over (L/K, ζ, v).

We begin with the construction of a K-linear map

Tr
(
Ĥ
) [−]
↪−−−−→ Tr

(
Ĥ∼j

)
making it possible to regard potentials W for A as potentials [W ] for A∼j .

There are embeddings of R-algebras Ĥ
ι

↪−−→ Ĥ
ι∼j←−−−↩ Ĥ∼j where ι is given by ι(a) = a

for all a ∈ Q1 and ι∼j by

ι∼j(c) =

πρc
(
bvqja

)
for c = [ba]qr ∈ Q−j−1 with k

b←− j a←− i in Q and 0 ≤ q < qkji,

c for c ∈ Q∗j1 .

Remark 2.6.87. We have A∼j
∼=−−→ A|

Q∗j1
⊕
⊕

k
b←−j a←−i in Q

Ab⊗Lj Aa ⊆ Ĥ induced by the

map ι∼j according to Lemma 2.5.27.

Lemma 2.6.88. There is a K-linear map Tr
(
Ĥ
) [−]
↪−−→ Tr

(
Ĥ∼j

)
induced by ι and ι∼j.

Proof. Since Q is loop-free at j, for every i`
a`←− · · · a1←− i0 in Q with ` > 0 there is 0 ≤ s ≤ `

with is 6= j. Hence, ι(Aa` · · ·Aa1
) = ι((Aas · · ·Aa1

)(Aa` · · ·Aas+1
)eis) ⊆ im(ι∼j) in Tr

(
Ĥ
)
.

This shows that im(ι) ⊆ im(ι∼j) in Tr
(
Ĥ
)
. The observation that ι and ι∼j induce injective

maps Tr
(
Ĥ
)
↪−→ Tr

(
Ĥ
)
←−↩ Tr

(
Ĥ∼j

)
yields a map Tr

(
Ĥ
)
↪−→ Tr

(
Ĥ∼j

)
, W 7→ [W ], with the

property that ι(W ) = ι∼j([W ]) in Tr
(
Ĥ
)
.

For the sake of readability, we introduce the following two abbreviations:

Notation 2.6.89. Set [ba]q :=
∑

0≤r<rkji [ba]qr for k
b←− j a←− i in Q.

Notation 2.6.90. Set ∆j :=
∑

k
b←−j a←−i in Q

∆ba where ∆ba := 1
qkji

∑
0≤q<qkji v

−q
j b∗[ba]qa∗.
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Remark 2.6.91. We have ι∼j([ba]q) = bvqja for k
b←− j a←− i in Q and 0 ≤ q < qkji.

Remark 2.6.92. It is ι∼j(∆ba) = 1
qkji

∑
q v
−q
j b∗bvqjaa

∗. Hence, ι∼j(∆ba) = πid(b∗b)πid(aa∗)

in Tr
(
Ĥ
)

for id = idLj by Lemmas 2.5.22 and 2.5.40 and Corollary 2.6.56.

Now we are ready for the central definition of this subsection.

Definition 2.6.93. Let Tr
(
Ĥ
)
↪−→ Tr

(
Ĥ∼j

)
be the map W 7→W∼j := [W ] + ∆j .

For every potential W for A the premutation of W at j is the potential W∼j for A∼j .

The premutation of the SP (A,W ) at j is defined as the SP µ̃j(A,W ) := (A∼j ,W∼j).

More generally, for every k ∈ Q0 and SP (A,W ) in k-split form with redWk (Q) 2-acyclic

at k, the premutation at k is µ̃k(A,W ) := µ̃k(redk(A,W )) and µ̃k(W ) := (redk(W ))∼k.

Lemma 2.6.94. Let
{
k ←− i ∈ Q1 | j ∈ {i, k}

}
⊆ S ⊆ Q1. For every potential W for A

µ̃j(A,W ) =
(
A|Q1\S ⊕

(
A|S

)∼j , W |Q1\S +
(
WS

)∼j) .

Proof. This is obvious.

Example 2.6.95. Let Q be the modular quiver ik

j
a

__
b
��

c
// with dk = di = 2, dj = 1

and σc = r ∈ Z/2Z, which was examined in Example 2.1.18. Consider the species A defined

by the modulation of Q over (C/R,−1, v). The premutation of the potential W = cba

for A is W∼j = [W ] + ∆j where

[W ] = c[ba]0 = c
(
[ba]00 + [ba]01

)
= c[ba]0r , ∆j = ∆ba = b∗[ba]0a∗ = b∗

(
[ba]00 + [ba]01

)
a∗ .

One easily checks that W ∼R Wred +Wtriv where Wred = b∗[ba]0r+1a
∗ is a reduced potential

and
(
A|{c,[ba]0r},Wtriv = c[ba]0r

)
a trivial SP.

Example 2.6.96. Let Q be the modular quiver ik

j
a

__
b
��

c
// with dk = di = 1, dj = 2.

Consider the species A defined by the modulation of Q over (C/R,−1, v). We have vj = v.

The premutation of the potential W = cb(x+ yv)a for A with x, y ∈ R is W∼j = [W ] + ∆j

where

[W ] = xc[ba]0 + yc[ba]1 , ∆j = ∆ba =
1

2

(
b∗[ba]0a∗ + v−1b∗[ba]1a∗

)
.

If x+ yv 6= 0, it is W ∼R Wred +Wtriv for the reduced potential Wred = b∗[ba]0a∗ and the

trivial SP
(
A|{c,[ba]1},Wtriv = c[ba]1

)
.

The next lemma is the key to the verification that premutation preserves R-equivalence.

It is Lemma 10.4 in [GL16a] and builds on [LZ16, Lemma 8.4] and [DWZ08, Lemma 5.3].

Notation 2.6.97. Set ∆j,out :=
∑

k
b←−j ∈Q1

πid(b∗b) and ∆j,in :=
∑

j
a←−i∈Q1

πid(aa∗).
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Remark 2.6.98. We have ι∼j(∆j) = ∆j,out∆j,in in Tr
(
Ĥ
)
.

Lemma 2.6.99. For every ϕ ∈ AutR
(
Ĥ
)

there exists ϕ ∈ AutR
(
Ĥ
)

satisfying ϕ◦ ι = ι◦ϕ
and im

(
ϕ ◦ ι∼j

)
= im

(
ι∼j
)

and ϕ
(
∆j,out

)
= ∆j,out and ϕ

(
∆j,in

)
= ∆j,in.

Proof. Abbreviate m = m
Ĥ

. Set ϕ(c) := ϕ(c) for all c ∈ Q1. This will ensure ϕ ◦ ι = ι ◦ ϕ.

It remains to define ϕ(a∗) in im
ρa∗
j for j

a←− i ∈ Q1 and ϕ(b∗) in jm
ρb∗
k for k

b←− j ∈ Q1

such that the induced ϕ is invertible, maps ι∼j
(
Ĥ∼j

)
to itself, and fixes ∆j,out and ∆j,in.

Let ϕ̂(a∗) in imj for j
a←− i ∈ Q1 and ϕ̂(b∗) in jmk for k

b←− j ∈ Q1 be defined just as

in the proof of [LZ16, Lemma 8.4]. Using that djπid(z) =
∑dj−1

q=0 vjzv
−1
j =

∑dj−1
q=0 v−1

j zvj
for id = idLj by Lemma 2.5.40, the identities (8.20) and (8.15) in [LZ16] assume the form∑

k←−b j∈Q1

πid

(
ϕ̂(b∗)b

)
= ∆j,out ,

∑
j←−a i∈Q1

πid

(
aϕ̂(a∗)

)
= ∆j,in .

The invertibility of the matrices C0 and D0 in [LZ16, proof of Lemma 8.4] shows that ϕ̂

induces an R-bimodule automorphism of ejA
∗j ⊕A∗jej ⊆ A.

Setting ϕ(c∗) := πρc∗ (ϕ̂(c∗)) for all k
c←− i ∈ Q1 with j ∈ {i, k}, we get by Lemma 2.6.35

an induced endomorphism ϕ ∈ EndR
(
Ĥ
)
. The map ϕ is an automorphism according to

Lemma 2.6.20 because ϕ1|A = ϕ̂1|A is an automorphism. Clearly, im
(
ϕ ◦ ι∼j

)
= im

(
ι∼j
)
.

Finally, ϕ(∆j,in) =
∑

j
a←−i∈Q1

πid

(
aϕ(a∗)

)
=
∑

j
a←−i∈Q1

πid

(
aϕ̂(a∗)

)
= ∆j,in, where the

identity in the middle uses Lemma 2.6.55. Similarly, one can prove ϕ(∆j,out) = ∆j,out.

The last lemma leads to the following important result.

Theorem 2.6.100. If (A,W ) ∼R (A′,W ′), then µ̃j(A,W ) ∼R µ̃j(A′,W ′).

Proof. The proof of [DWZ08, Theorem 5.2] works as is.

The next theorem is the SP analog of Lemma 2.1.17. It records the crucial fact that,

up to reduced-R-equivalence, premutation at j is an involutive operation for SPs that are

2-acyclic at j after reduction. The consequence is that the rule J (W ) 7→ J (W∼j) defines

an involution for isomorphism classes of Jacobian algebras by Proposition 2.6.44.

Theorem 2.6.101. Let (di)i∈I be a tuple of positive integers and let R =
∏
i∈I Li where Li

is the intermediate field of L/K of degree di over K for a comfy extension (L/K, ζ, v).

Denote by A(j) the set of reduced-R-equivalence classes of SPs over R that are 2-acyclic

at j ∈ I after reduction. We have an involution

A(j) A(j) ,
µj

called mutation, given by (A,W ) 7→ µ̃j(A,W ) for SPs (A,W ) that are 2-acyclic at j.
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Proof. For the well-definedness of µj use Theorems 2.6.78 and 2.6.100. The proof that µj is

involutive is almost the same as the one of [DWZ08, Theorem 5.7] and [LZ16, Theorem 8.10].

We sketch it briefly. A straightforward calculation shows

W0 = (W∼j)∼j = [W ] +
∑

k←−b j←−a i
q−1
kji

∑
q

v
−δq 6=0qkji
j [a∗b∗]−q

(
[ba]q + bvqja

)
.

The R-algebra automorphism of (Ĥ∼j)∼j = R〈〈(A∼j)∼j〉〉 determined by the substitution

rules b 7→ −b for k
b←− j ∈ Q1 and [a∗b∗]q 7→ qkjiv

δq 6=0qkji
j [a∗b∗]q maps W0 to

W1 = [W ] +
∑

k←−b j←−a i

∑
q

[a∗b∗]−q
(
[ba]q − bvqja

)
.

The element in AutR
(
(Ĥ∼j)∼j

)
given by the rules [ba]q 7→ [ba]q + bvqja maps W1 to

W2 = W +
∑

k←−b j←−a i

∑
q

[ba]−q
(
[a∗b∗]q + νb,a,q

)
where ord(νb,a,q) > 1 and none of the arrows [a∗b∗]qr occurs in any of the elements νb′,a′,q′ .

Finally, the rules [a∗b∗]q 7→ [a∗b∗]q − νb,a,q send W2 to the potential W +Wtriv where

Wtriv =
∑

k←−b j←−a i

∑
q

[ba]−q[a∗b∗]q .

It merely remains to observe that the subquiver induced by Wtriv is the trivial modular

quiver T =
⊕

b,a,r,q T
r,q
b,a described in the proof of Lemma 2.1.17. Thus (Q∼j)∼j = Q⊕ T .

All in all, this proves ((A∼j)∼j , (W∼j)∼j) ∼R ((A∼j)∼j ,W +Wtriv) ≈R (A,W ).

Finally, we recall the important notion of non-degeneracy from [DWZ08, Definition 7.2].

Definition 2.6.102. An SP (A,W ) or the potential W is non-degenerate if for all ` ∈ N
and every finite sequence (i1, . . . , i`) of vertices in Q each of the reduced-R-equivalence

classes (A,W ), µi1(A,W ), . . . , µi` · · ·µi1(A,W ) contains a 2-acyclic SP.

Remark 2.6.103. If the modular quiver Q is not admissible in the sense of Definition 2.1.19,

every potential W for A is degenerate.
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This chapter is concerned with a generalization of many of the results from [GLS16a] to a

larger class of finite-dimensional algebras. In our terminology, the algebras considered ibid.

are path algebras R〈A〉 of weighted acyclic quivers Q = (Q, d) defined by the K-modulation(
Ri, Aa

)
i∈Q0, j

a←−i∈Q1
where Ri = K[εi]

/(
ε
di
i

)
are truncated polynomial rings and

Aa = K[εj , εi]
/(

ε
fij
j − ε

fji
i , ε

dj
j , ε

di
i

)
are Rj-Ri-bimodules, free on the left of rank fji = di/gcd(dj , di) and free on the right of

rank fij = dj/gcd(di, dj). The majority of the arguments given in [GLS16a] are independent

of this explicit modulation. They work equally well for all K-modulations (Ri, Aa)i,a of

weighted acyclic quivers Q where the Ri are symmetric local K-algebras.

This note was written while working on a version of Crawley-Boevey and Holland’s

[CH98] deformed preprojective algebras for symmetric modulations. Since then a very

similar approach was proposed in [LY15] using the language of matrix algebras.

Convention 3.0.1. Fix a weighted quiver Q and a K-modulation H = (Ri, Aa)i,a for Q.

We will assume that H is minimal, i.e. dimK(Aa) = dji = lcm(dj , di) for all j
a←− i ∈ Q1.

Denote by H = R〈A〉 the path algebra defined by H.

Remark 3.0.2. It is possible to drop the assumption that H is minimal by defining Cartan

matrix, Weyl group, and bilinear forms in terms of H instead of Q.

3.1 Gorenstein Tensor Algebras

The algebras investigated in [GLS16a] belong to a special class of tensor algebras H = R〈A〉,
which are 1-Gorenstein due to the self-injectivity of R and the projectivity of RA and AR.

Let us be more precise. For a ring Λ denote by Projn(Λ) the full subcategory of Mod(Λ)

consisting of all modules of projective dimension less than n+ 1 where n ∈ N ∪ {∞} and

the convention ∞+ 1 =∞. Dually, Injn(Λ) is defined with projective replaced by injective.

Let R be an n-Gorenstein ring. Then, by [Iwa80] it is

F(R) := Proj∞(R) = Inj∞(R) = Projn(R) = Injn(R) .

Form the tensor algebra H = R〈A〉 of an R-bimodule A that is projective on the left and

projective on the right. An application of [Iwa80; Rog75] yields that H is (n+1)-Gorenstein
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with

F(H) = Mod(H) ∩ F(R) =: FR(H) .

This section revises and generalizes [GLS16a, §§ 3 and 4].

Remark 3.1.1. Given that dimKR <∞, R is 0-Gorenstein if and only if R is self-injective.

3.1.1 Projectivity and Injectivity over the Ground Ring

Notation 3.1.2. We use the abbreviations

ProjnR(H) := Mod(H) ∩ Projn(R) , InjnR(H) := Mod(H) ∩ Injn(R) .

Denote by projn(H), injn(H), projnR(H), injnR(H) the full subcategories of Mod(H) obtained

by intersecting Projn(H), Injn(H), ProjnR(H), InjnR(H), respectively, with mod(H).

If R is n-Gorenstein, define f(R) := F(R) ∩mod(R) and fR(H) := FR(H) ∩mod(H).

Remark 3.1.3. M ∈ Mod(H) lies in ProjnR(H) if and only if Mi ∈ Projn(Ri) for all i ∈ Q0.

Dually, M ∈ Mod(H) belongs to InjnR(H) if and only if Mi ∈ Injn(Ri) for all i ∈ Q0.

Notation 3.1.4. Denote by Modl.f.(H) the full subcategory of Mod(H) consisting of the

locally free modules (see Definition 2.3.7). Set modl.f.(H) := Modl.f.(H) ∩mod(H).

Definition 3.1.5. A locally free module is called locally-free simple if it has no non-zero

proper locally free submodules. For M ∈ modl.f.(H) define its rank vector as

rank(M) :=
∑
i∈Q0

rank (Mi) · ei ∈ ZQ0 .

Remark 3.1.6. modl.f.(H) ⊆ mod(H) ∩ proj(R) = proj0R(H). If H is local, equality holds.

Notation 3.1.7. For i ∈ Q0 denote by Ei the locally-free simple H-module that is given

by (Ei)i = eiEi = Ri
Ri and (Ei)j = ejEi = 0 for j 6= i. Note that rank(Ei) = ei.

Remark 3.1.8. If Q is acyclic and Ri is local, the projective H-module Pi = Hei and the

injective H-module Ii = (eiH)∗ are indecomposable.

We begin with an elementary observation corresponding to [GLS16a, Proposition 3.1].

Recall that the acyclicity of Q is equivalent to dimKH <∞.

Lemma 3.1.9. Every projective H-module is a projective R-module. More generally,

Projn(H) ⊆ ProjnR(H) .

If Q is acyclic, the projective H-modules Pi are locally free with

rank(Pi) = ei +
∑

j←−a i∈Q1

fji · rank(Pj) .
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Proof. By definition H = R〈A〉 and RA is projective such that [Rog75, Corollary 3] implies

the first statement. The second one is a straightforward consequence.

The last statement can be proved with a discussion similar to the one in [GLS16a, § 3.1].

We present a slightly less explicit version: The cokernel of the injective multiplication

map H ⊗RA→ H is as an H-module isomorphic to
⊕

i∈Q0
Ei. With this observation we

get an exact sequence of H-modules

0 −→ H ⊗RA =
⊕
a∈Q1

H ⊗RAa −→ H =
⊕
i∈Q0

Pi −→
⊕
i∈Q0

Ei −→ 0 ,

which is the sum over i ∈ Q0 of the short exact sequences of H-modules

0 −→
⊕

j←−a i∈Q1

Pj ⊗Rj Aa −→ Pi −→ Ei −→ 0 .

If Pj is locally free for all j, then rank(Pj ⊗Rj Aa) = rankRj (Aa) · rank(Pj) = fji · rank(Pj).

So to prove the formula in the lemma it only remains to show that all Pj are locally free.

Now Pj ∼=
⊕

`

⊕
a1,...,a`

Aa` ⊗R · · · ⊗RAa1
⊗REj where the sum is taken over all ` ∈ N

and all arrows a1, . . . , a` ∈ Q1 satisfying s(a1) = j and ip := s(ap+1) = t(ap) for 0 < p < `.

Set i` := t(a`). The Ri`-module Aa` ⊗R · · · ⊗RAa1
⊗REj ∼= Aa` ⊗Ri`−1

· · · ⊗Ri1 Aa1
⊗Rj Ej

is free, since for 0 < p ≤ `, each Aap is a free Rip-module. Thus Pj is locally free.

We have the following dual version of Lemma 3.1.9.

Lemma 3.1.10. Every injective H-module is an injective R-module. More generally,

Injn(H) ⊆ InjnR(H) .

If Q is acyclic and R self-injective, the injective H-modules Ii are locally free with

rank(Ii) = ei +
∑

i←−a j∈Q1

fji · rank(Ij) .

Proof. Since H = R〈A〉 and AR is projective, [Rog75, Corollary 2] proves the first statement.

The second one is a straightforward consequence.

There is an obvious dual version of Lemma 3.1.9 for right modules (since AR is projective

and (Aa)Ri is free for all j
a←− i ∈ Q1). Hence, using Ri

(Ri)
∗ ∼= Ri

Ri for all i, the last claim

follows by applying the duality (−)∗ to the projective right H-modules eiH.

Corollary 3.1.11. If R is Gorenstein, Proj∞(H) ∪ Inj∞(H) ⊆ FR(H).

Proof. Use Lemmas 3.1.9 and 3.1.10 and FR(H) = Proj∞R (H) = Inj∞R (H).
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3.1.2 Rank Vectors of Projectives and Injectives

We state [GLS16a, Lemmas 3.2, 3.3 and Proposition 3.4] in our context.

Corollary 3.1.12. Assume Q is acyclic. Choose a total order i1 < · · · < in on Q0 such

that there are no arrows ik ←− i` in Q with ik > i`. Then

rank(Pik) = si1 · · · sik−1
(eik) ∈ ∆+

re(Q) ,

and, if R is self-injective, also

rank(Iik) = sin · · · sik+1
(eik) ∈ ∆+

re(Q) .

Proof. Let xk = si1 · · · sik−1
(eik). It is well-known and easily verified by induction that

xk = eik −
∑
j<ik

cjikxj = eik +
∑
j←−ik

fjikxj .

In combination with Lemma 3.1.9 we get the first identity, since the ej form a basis of ZQ0 .

The second identity can be proved analogously using Lemma 3.1.10.

3.1.3 Canonical Short Exact Sequences

The next result is standard. It can be found as a lemma in [Rog75].

Lemma 3.1.13. There is a short exact sequence of H-bimodules

0 −→ H ⊗RA⊗RH
∂−−−→ H ⊗RH

ν−−−→ H −→ 0

with ∂(1⊗ x⊗ 1) = x⊗ 1− 1⊗ x and ν(1⊗ 1) = 1.

Corollary 3.1.14. For all M ∈ Mod(H) there is a short exact sequence

0 −→ H ⊗RA⊗RM
∂−−−→ H ⊗RM

ν−−−→M −→ 0

of H-modules with ∂(1⊗ x⊗m) = x⊗m− 1⊗ xm and ν(1⊗m) = m.

This is a projective resolution for M ∈ Proj0R(H). More generally, for M ∈ ProjnR(H),

H ⊗RM, H ⊗RA⊗RM ∈ Projn(H) .

Proof. Apply −⊗HM to the sequence in Lemma 3.1.13 to obtain a short exact sequence

isomorphic to the one in the statement. Since RA is projective, R(A⊗RP ) is projective

for every projective R-module P . The functor A⊗R− is exact, because AR is projective.

Applying it to a projective resolution for RM of minimal length shows A⊗RM ∈ Projn(R).

Now H ⊗RM,H ⊗R (A⊗RM) ∈ Projn(H) by [Rog75, Corollary 4].

Corollary 3.1.14 has a dual version, which is also treated in [Rog75].
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Corollary 3.1.15. For all M ∈ Mod(H) there is a short exact sequence

0 −→M −−→ HomR(H,M) −−→ HomR(H,HomR(A,M)) −→ 0

of H-modules.

This is an injective resolution for M ∈ Inj0R(H). More generally, for M ∈ InjnR(H),

HomR(H,M), HomR(H,HomR(A,M)) ∈ Injn(H) .

Proof. Apply HomH(−,M) to the sequence in Lemma 3.1.13 to obtain the short exact

sequence in the statement. Because AR is projective, R(HomR(RA, I)) is injective for every

injective R-module I. The functor HomR(RA,−) is exact, since RA is projective. Applying

it to an injective resolution for RM of minimal length shows that HomR(A,M) ∈ Injn(R).

Now HomR(H,M),HomR(H,HomR(A,M)) ∈ Injn(H) by [Rog75, Corollary 4].

Remark 3.1.16. Let M ∈ modl.f.(H). A discussion similar to the one at the end of the

proof of Lemma 3.1.9 shows that as H-modules

H ⊗RM ∼=
⊕
i∈Q0

P
rank (Mi)
i , H ⊗RA⊗RM ∼=

⊕
j←−a i∈Q1

P
fji·rank (Mi)

j .

Moreover, if Q is acyclic and R self-injective, similarly

HomR(H,M) ∼=
⊕
i∈Q0

I
rank (Mi)
i , HomR(H,HomR(A,M)) ∼=

⊕
i←−a j∈Q1

I
fji·rank (Mi)

j .

3.1.4 Gorenstein Ground Rings

We generalize [GLS16a, § 3.5] combining results from [Rog75; Iwa80; AS81; AR91].

Proposition 3.1.17. There are inclusions:

Projn(H) ⊆ ProjnR(H) ⊆ Projn+1(H)

Injn(H) ⊆ InjnR(H) ⊆ Injn+1(H)

Proof. This follows from Lemmas 3.1.9 and 3.1.10 and Corollaries 3.1.14 and 3.1.15.

Proposition 3.1.18. If R is n-Gorenstein, H is (n+ 1)-Gorenstein with F(H) = FR(H).

Proof. On the one hand, Proposition 3.1.17 implies that FR(H) ⊆ Projn+1(H)∩ Injn+1(H).

On the other hand, Proj∞(H) ∪ Inj∞(H) ⊆ FR(H) by Corollary 3.1.11. Hence,

FR(H) = Proj∞(H) = Inj∞(H) = Projn+1(H) = Injn+1(H) .

In particular, we have idimHH ≤ n+ 1. With right-module versions of Proposition 3.1.17

and Corollary 3.1.11 one can similarly deduce idimHH ≤ n+ 1.
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The main theorem of [Rog75] for path algebras reads:

Corollary 3.1.19. gldim(R) ≤ lgldim(H) ≤ gldim(R) + 1.

Proof. Use Proposition 3.1.17 and the fact that by Corollary 2.2.19 every module in Mod(R)

can be extended to a module in Mod(H).

We get the generalization of [GLS16a, Proposition 3.5, Corollary 3.7, and Theorem 3.9]:

Corollary 3.1.20. If H is local and R self-injective, the path algebra H is 1-Gorenstein

with modl.f.(H) = f(H).

Proof. This follows from Remarks 3.1.1 and 3.1.6 and Proposition 3.1.18.

Corollary 3.1.21. Assume that Q is acyclic and R self-injective. Then f(H) = fR(H) is

functorially finite in mod(H). In particular, f(H) has Auslander-Reiten sequences.

Proof. By Proposition 3.1.18, we have f(H) = proj1(H) = inj1(H). As pointed out in the

proof of [GLS16a, Theorem 3.9] the category f(H) is functorially finite in mod(H) by [AR91,

Proposition 4.2] and thus has Auslander-Reiten sequences by [AS81, Theorem 2.4].

3.1.5 Filtered Modules

Definition 3.1.22. Let modfiltered(H) be the full subcategory of mod(H) consisting of all

modules M admitting a filtration of H-modules

0 = M0 ⊆M1 ⊆ · · · ⊆M` = M (#)

such that for each 1 ≤ p ≤ ` the factor Mp/Mp−1 is isomorphic to Eip for some ip ∈ Q0.

It is clear that the integer ` is independent of the choice of the filtration. We will denote

it by `(M) and call it the filtration length of M .

Lemma 3.1.23. modfiltered(H) ⊆ proj0R(H).

Proof. This is clear because of {Ei | i ∈ Q0} ⊆ proj0R(H).

Lemma 3.1.24. Assume Q is acyclic. Then modl.f.(H) ⊆ modfiltered(H). More precisely,

for every M ∈ modl.f.(H) there is a filtration like in (#) where all Mp are locally free.

Proof. Let M 6= 0 be in modl.f.(H) and let σ(M) = {i ∈ Q0 |Mi 6= 0}. We use induction

on the cardinality of σ(M). Choose a sink i in the full subquiver of Q with vertex set σ(M).

Then Mi is a submodule of M isomorphic to Eri for some r > 0 and there is a short exact

sequence 0→ Eri →M → N → 0. Clearly, N belongs to modl.f.(H) and |σ(N)| < |σ(M)|.
By induction N ∈ modfiltered(H). Hence, M ∈ modfiltered(H).

Corollary 3.1.25. If H is local and Q acyclic, modfiltered(H) = modl.f.(H).
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Proof. This follows from Lemmas 3.1.23 and 3.1.24 and Remark 3.1.6.

3.1.6 Euler Form

The Euler form 〈−,−〉H is defined for H-modules M and N as

〈M,N〉H =

∞∑
n=0

dimK ExtnH(M,N)

given that, either M ∈ proj∞(H) and N ∈ mod(H), or M ∈ mod(H) and N ∈ inj∞(H).

In particular, it is well-defined on modl.f.(H)×modl.f.(H).

The symmetrized Euler form (−, · )H := 〈−, · 〉H + 〈 · ,−〉H agrees with the symmetric

form defined by Q with similar reasoning as in [GLS16a, § 4]:

Lemma 3.1.26. If Q is acyclic, (M,N)H = (rank(M), rank(N))Q for M,N ∈ modl.f.(H).

Proof. For Y ∈ {M,N} there exist short exact sequences 0 → XY → Y → ZY → 0

in modl.f.(H) by Lemma 3.1.24. Both ω = (−,−)H and ω = (rank(−), rank(−))Q satisfy

ω(M,N) =
∑

U,V ∈{X,Z}

ω(UM , VN ) .

Therefore, by induction on the filtration length, we can assume M = Ei and N = Ek.

From the proof of Lemma 3.1.9 we have a short exact sequence of H-modules

0 −→
⊕
j←−a i

P
fji
j −→ Pi −→ Ei −→ 0 .

Applying HomH(−, Ek) and abbreviating dimK HomH(−,−) as [−,−] we get

〈Ei, Ek〉H = [Pi, Ek]−
∑
j←−a i

fji · [Pj , Ek] = dk ·

(
δi=k −

∑
k←−a i

fki

)
,

where the last equality used that [Pm, Ek] = δm=k · dk because of HomH(Pm, Ek) ∼= (Ek)m.

We conclude (Ei, Ek)H = 〈Ei, Ek〉H + 〈Ek, Ei〉H = (ei, ek)Q.

3.1.7 Auslander-Reiten Translation

Convention 3.1.27. Assume now that Q is acyclic and R self-injective.

In particular, the path algebra H is finite-dimensional and 1-Gorenstein.

Notation 3.1.28. Denote by τ+ and τ− the Auslander-Reiten translations in mod(H).

Lemma 3.1.29. Let M ∈ f(H). For every projective resolution 0→ P 1 → P 0 →M → 0

and injective resolution 0→M → I0 → I1 → 0 there are exact sequences in mod(H)

0 // τ+(M) // ν+(P 1) // ν+(P 0) // ν+(M) // 0

0 // ν−(M) // ν−(I0) // ν−(I1) // τ−(M) // 0
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that are induced by the Nakayama functors ν+ := HomH(−, H)∗ and ν− := HomH(H∗,−).

Moreover, for all L ∈ ind(H) and N ∈ mod(H):

(a) τ+(M) ∼= Ext1
H(M,H)∗

(b) τ−(M) ∼= Ext1
H(H∗,M)

(c) Ext1
H(M,N) ∼= HomH(N, τ+(M))∗

(d) Ext1
H(N,M) ∼= HomH(τ−(M), N)∗

(e) τ+(L) ∈ f(H) non-zero ⇔ ν+(L) = 0

(f) τ−(L) ∈ f(H) non-zero ⇔ ν−(L) = 0

(g) N ∈ f(H) ⇔ ν−τ+(N) = 0 ⇔ ν+τ−(N) = 0

(h) Ext1
H(M,M) = 0 ⇔ HomH(M, τ+(M)) = 0 ⇔ HomH(τ−(M),M) = 0

Proof. These are well-known consequences of the identities f(H) = proj1(H) = inj1(H),

which hold by Proposition 3.1.18. See also [GLS16a, §§ 3.5 and 11.1].

Corollary 3.1.30. Let M ∈ modl.f.(H). Then:

(a) τ+(M) ∈ modl.f.(H) non-zero ⇔ ν+(M) = 0

(b) τ−(M) ∈ modl.f.(H) non-zero ⇔ ν−(M) = 0

Proof. The implications ⇒ in (a) and (b) follow from Lemma 3.1.29 (e) and (f).

For ⇐ in (a) apply Lemma 3.1.29 to the projective resolution from Corollary 3.1.14,

recall Remark 3.1.16, and note that ν+(Pi) = Ii are locally free by Lemma 3.1.10.

Corollary 3.1.15 and Lemma 3.1.9 can be used in a similar way to verify (b).

3.1.8 Coxeter Transformation

This subsection generalizes results from [GLS16a, §§ 3.4 and 11.1].

Definition 3.1.31. The Coxeter transformation Φ = ΦH ∈ Aut(ZQ0) of H is defined by

Φ(rank(Pi)) = −rank(Ii) .

Remark 3.1.32. By Lemmas 3.1.9 and 3.1.10 the vectors rank(Pi) and the vectors rank(Ii)

form two bases of ZQ0 . This ensures that Φ is well-defined.

Remark 3.1.33. The Coxeter transformation Φ can be computed as the product

−Cinj ◦ C
−1
proj

where Cproj and Cinj act on ei = rank(Ei) as Cproj(ei) = rank(Pi) and Cinj(ei) = rank(Ii).
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Lemma 3.1.34. Let M ∈ modl.f.(H) be indecomposable and p ∈ Z such that τ q(M) is

locally free and non-zero for all 1 ≤ q ≤ p or for all p ≤ q ≤ −1. Then

rank(τp(M)) = Φp(rank(M)) .

Proof. This is standard. By induction it suffices to consider the case p = +1 and p = −1.

For p = +1, just as in the proof of Corollary 3.1.30, apply Lemma 3.1.29 to the projective

resolution from Corollary 3.1.14. Then use ν+(Pi) = Ii and the fact that rank is additive

on short exact sequences of locally free modules. The case p = −1 is similar.

It is also possible to adapt the proof of [GLS16a, Proposition 10.6] to our situation.

3.2 Symmetric Modulations

By the abstract nature of their proofs many of the results in [GLS16a] appear to be true

in a broader context. Even though, some essential insights depend on explicit features

of the modulations considered there. First and foremost, this concerns the possibility to

identify the left dual RA, the right dual AR, and the K-dual bimodule A∗ with one another

in a canonical way (compare Lemma 2.2.25). This section provides the necessary tools to

prove that Geiß, Leclerc, and Schröer’s results are valid for symmetric (local) modulations.

3.2.1 Symmetric Structures

Recall that a modulation (Ri, Aa)i,a is called symmetric if all Ri are symmetric algebras.

Definition 3.2.1. A strongly separable modulation is a symmetric modulation (Ri, Aa)i,a

with fixed symmetric structures on all Ri given by TrRi/K .

Remark 3.2.2. A K-modulation (Ri, Aa)i,a is strongly separable if and only if all Ri are

strongly separable algebras, i.e. the trace pairings (x, y) 7→ TrRi/K(xy) are non-degenerate.

Remark 3.2.3. If (Ri, Aa)i,a is a strongly separable modulation, the ground ring R =
∏
iRi

is a strongly separable algebra.

Example 3.2.4. Let L/K be a separable field extension and assume that H = (Li, Aa)i,a is

a modulation where all Li are intermediate fields of L/K. Then H is strongly separable.

In particular, this is the case for cyclic Galois modulations H.

Example 3.2.5. Every finite-dimensional semi-simple K-algebra is a symmetric algebra.

This includes all finite-dimensional division algebras over K.

Example 3.2.6. The GLS modulations are symmetric (see Example 2.4.19) but, in general,

not strongly separable.

Convention 3.2.7. Assume now that all Ri carry a symmetric structure ϕi.
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Denote by ϕ the induced symmetric structure
∑

i∈Q0
ϕi on R. Lemma 2.4.18 guarantees

the well-definedness of the dual modulation H∗.

By Lemma 2.2.25 and Corollary 2.3.11 the left and right dual bimodules A
∗a

and Aa∗
can be identified with Aa∗ = A∗a and, similarly, RA =

⊕
aA∗a and AR =

⊕
aAa∗ with A∗.

More precisely, we have a diagram

RA A∗ AR

A
∗a

A∗a Aa∗

∼= ∼=

∼= ∼=

where the horizontal maps are the isomorphisms given by postcomposition with ϕ and the

vertical maps are the canonical inclusions and projections.

As usual, we will also identify the double K-dual bimodules A∗∗a = HomK(A∗a,K) with Aa

and, similarly, A∗∗ = HomK(A∗,K) with A via evaluation. Thus we have a diagram

A A∗∗

Aa A∗∗a

∼=

∼=

where the horizontal maps are the evaluation maps ev that send x to the function evx

given by evaluation at x, i.e. evx(f) = f(x).

With these identifications the adjunction correspondence (see Definition 2.2.15) yields

canonical isomorphisms of K-vector spaces for all M,N ∈ Mod(R):

HomR(A⊗RM,N)
ad

// HomR(M,A∗⊗RN)

HomR(A∗⊗RN,M)
ad∗ // HomR(N,A⊗RM)

Notation 3.2.8. Extending the notation introduced in Definition 2.2.15, we will write f∨

both for ad(f) and for ad∗(f) and, similarly, ∨g for ad−1(g) and for ad−1
∗ (g).

3.2.2 Non-Degenerate Trace Maps

The construction and statements about the trace maps presented below are variations of

classical results. We use similar notation as [Bou70, III. §9 no. 1–4].

The symmetric structure ϕ on R can be used to define a K-valued trace map

EndR(M)
tr−−→ K

for every finitely generated projective R-module M .

The procedure to do this is standard: Because R
ϕ−→ K is symmetric, precomposing ϕ

with the bilinear map HomR(M,R)×M −→ R, (f,m) 7→ f(m), induces a K-linear form

HomR(M,R)⊗RM
ν−−→ K .
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Using that M is finitely generated projective, we get tr by precomposing ν with the inverse

of the isomorphism HomR(M,R)⊗RM −→ EndR(M) given by f ⊗m 7→ (n 7→ f(n)m).

Analogously, using the symmetric structure ϕi on Ri, one gets a trace map

EndRi(Mi)
tri−−−→ K

for every finitely generated projective Ri-module Mi. By construction we have tr =
∑

i tri

as maps EndR(M)→ K for every finitely generated projective R-module M =
⊕

iMi.

Lemma 3.2.9. If Ri is commutative, tri = ϕi ◦ TrRi. If ϕi = TrRi/K , then tri = TrK .

Proof. The first statement is clear by the construction of tri. For commutative Ri the

second statement follows from the first one and TrRi/K ◦TrRi = TrK . It is a straightforward,

classical exercise to verify it also in the general situation.

Lemma 3.2.10. For M,N ∈ proj(R) and f ∈ HomR(M,N), g ∈ HomR(N,M) it is

tr(fg) = tr(gf) .

For M ∈ modl.f.(R) and x ∈ Z(R) it is tr
(
xM
)

= ϕ(x) · rank(M) =
∑

i ϕi(xi) rank (Mi).

Proof. The verification of the identity tr(fg) = tr(gf) is a straightforward, classical exercise.

For example, this can be done by computation with basis elements after reducing to the

case that M and N are free. Here, the symmetry of ϕ plays a role. The rest is clear.

Lemma 3.2.11. For M ∈ Modl.f.(R) and N ∈ modl.f.(R) the trace pairing (f, g) 7→ tr(fg)

on HomR(M,N)×HomR(N,M) induces an isomorphism:

HomR(M,N)
ϑM,N // HomR(N,M)∗

f � // (g 7→ tr(fg))

Proof. We can reduce to the case M = N = R and then have to prove the non-degeneracy of

the bilinear form (f, g)
ω7−→ tr(fg) = ϕ(f(1)g(1)). The non-degeneracy of ω follows from the

fact that the bilinear form R×R→ K, (x, y) 7→ ϕ(xy), is non-degenerate, a reformulation of

condition (a) in Definition 2.2.20 (see [Lam99, Theorem 3.15 and the ensuing Remark]).

Let M ∈ Mod(R). Recall that H-module structures on M are parametrized by

Rep(A,M) = HomR(A⊗RM,M) .

Corollary 3.2.12. For each M ∈ modl.f.(R) there is an isomorphism of K-vector spaces:

Rep(A∗,M)
θM // Rep(A,M)∗

A∗M
� //

(
AM 7→ tr

(
A∗M ◦ AM∨

))
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Proof. Use Definition 2.2.15 and Lemma 3.2.11.

Inspired by [GLS16a, Proposition 8.3] one discovers the following relation.

Lemma 3.2.13. Let M ∈ Proj(R) and N ∈ proj(R). Then we have tr
(
f∨g

)
= tr

(
fg∨

)
for all f ∈ HomR(A⊗RM,N) and g ∈ HomR(A∗⊗RN,M).

Proof. We can again reduce to the situation M = N = R. With a slight abuse of notation,

identifying A⊗RR and A∗⊗RR in the canonical way with A and A∗, we have

f ∈ HomR(A,R) , g ∈ HomR(A∗, R) , f∨ ∈ HomR(R,A∗) , g∨ ∈ HomR(R,A) .

Using tr(f∨g) = tr(gf∨) it is enough to show tr(gf∨) = tr(fg∨). This is easy to verify:

tr(gf∨) = ϕ(gf∨(1)) = (ϕg)(ϕf) = (ϕf)(ev−1(ϕg)) = ϕ(fg∨(1)) = tr(fg∨)

3.2.3 Characteristic Elements

Certain constructions for symmetric modulations mirror intrinsic properties of the fixed

symmetric structure ϕ. Some information is encoded in the characteristic elements.

The isomorphisms A∗
∗ϕ−−→ RA and A∗

ϕ∗−−→ AR of R-bimodules give rise to non-degenerate

R-bilinear maps ϕ〈−,−〉 and 〈−,−〉ϕ defined, for x ∈ A and f ∈ A∗, as

ϕ〈x, f〉 = ∗ϕ(f)(x) , 〈f, x〉ϕ = ϕ∗(f)(x) .

The R-bimodule map A∗⊗RA→ R given by f⊗x 7→ 〈f, x〉ϕ postcomposed with the inverse

of A∗⊗RA→ EndR(RA) given by f⊗x 7→
(
y 7→ ϕ〈x, f〉y

)
yields a map ~Φ : EndR(RA) −→ R.

Precomposing ~Φ with the map Z(R)→ EndR(RA), which sends elements r ∈ Z(R) to

left multiplication with r, gives a map Z(R)→ R. It is not hard to see that its image is

contained in Z(R). In this way, we obtain a K-linear map ~Φ : Z(R)→ Z(R).

The dual construction for A⊗RA∗ → R given by x⊗ f 7→ ϕ〈x, f〉 and the isomorphism

A⊗RA∗ → EndR(AR) given by x⊗ f 7→
(
y 7→ y〈f, x〉ϕ

)
yields ~Φ : Z(R)→ Z(R).

For j
a←− i ∈ Q1 the restriction of ~Φ to Z(Rj) and of ~Φ to Z(Ri) induce K-linear maps

Z(Rj)
~Φa−−−−−−→ Z(Ri) , Z(Ri)

~Φa−−−−−−→ Z(Rj) .

Definition 3.2.14. We call ~ϕa = ~Φa(1) and ~ϕa = ~Φa(1) the characteristic elements.

For i, j ∈ Q0 define ~ϕji = ~Φji(1) and ~ϕji = ~Φji(1) where, for y ∈ Z(Rj) and x ∈ Z(Ri),

~Φji(y) =
∑
a

~Φa(y) , ~Φji(x) =
∑
a

~Φa(x)

and the sums are taken over all arrows j
a←− i ∈ Q1.

Remark 3.2.15. Let C be a basis of Rj (Aa) and B a basis of (Aa)Ri . For elements y ∈ Z(Rj)

and x ∈ Z(Ri) we have the formulas

~Φa(y) =
∑
c∈C

ϕ∗i (ϕjc
∗)(yc) , ~Φa(x) =

∑
b∈B

∗ϕj(ϕib
∗)(bx) .
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3.2.4 Calculation Rules for Adjoints

In Corollary 2.3.10 we gave formulas for f∨ and ∨f . We add the following calculation rules:

Lemma 3.2.16. Let M ∈ Mod(R), f ∈ HomR(A⊗RM,M), g ∈ HomR(A∗⊗RM,M),

and x ∈ Z(R). We have the following identities:

(a) ∨
(
idA⊗RM

)
◦
(
xA⊗RM

)∨ = (~Φ(x))M

(b) f∨ ◦ g = (f ◦ (idA ⊗ g))∨

(c) f ◦ g∨ = ∨(f∨ ◦ g) ◦
(
idA∗⊗RM

)∨ = ∨(idA∗⊗RM) ◦ (f∨ ◦ g)∨

Proof. Using R =
∏
iRi and A =

⊕
aAa, we can reduce to the case A = Aa, M = Mj⊕Mi,

x = xj ∈ Z(Rj) for some j
a←− i ∈ Q1. After choosing bases for Rj

(Aa) and (Aa)Ri , the

identities can now be checked by straightforward, explicit calculations with the help of the

formulas given in Corollary 2.3.10 and Remark 3.2.15.

3.2.5 Rank-Aware Structures

Lemma 3.2.17. ϕi(~ϕa) = fji · ϕj(1) and ϕj( ~ϕa) = fij · ϕi(1) for all j
a←− i.

Proof. Use Remark 3.2.15 and rankRj (Aa) = fji and rank (Aa)Ri = fij .

Definition 3.2.18. The symmetric structure ϕ for H is rank-aware if for all j
a←− i

~ϕa = rank (Aa)Ri = fij , ~ϕa = rankRj (Aa) = fji .

Remark 3.2.19. Assume Q is connected and char(K) |- di for all i. Let ϕ be a rank-aware

structure for H. By Lemma 3.2.17 we have djϕi(1) = diϕj(1) for all i, j ∈ Q0. If ϕi(1) 6= 0,

rescaling ϕ by di/ϕi(1) = dj/ϕj(1) yields a rank-aware structure ϕ̃ =
∑

i ϕ̃i with ϕ̃i(1) = di.

Example 3.2.20. Taking in Example 2.4.25 ϕ1 = TrR/R = idR and ϕ2 = TrC/R = 2 Re to

define the symmetric structure ϕ, one computes ~ϕa = 1 = f21 and ~ϕa = 2 = f12. Therefore,

this choice of ϕ yields a rank-aware structure.

To illustrate that symmetric structures ϕ are not necessarily rank-aware, we consider

Example 2.4.25 in the general situation, where R ϕ1−−→ R and C ϕ2−−→ R are arbitrary non-

zero R-linear maps. Then, x = ϕ1(1) ∈ R× and w = ϕ2(1)− i ϕ2(i) ∈ C×. It is not hard

to check that ∗ϕ1(f)(z) = x−1f(z) and ϕ∗2(f)(z) = w−1(f(z)− if(iz)). Calculating, we see

~ϕa = 2 (xw)−1 and ~ϕa = x−1ϕ2(1). In particular, always ~ϕa 6= 0, while ~ϕa = 0 is possible.

Example 3.2.21. Assume that H is the strongly separable modulation of a modular quiver Q

over a comfy extension (L/K, ζ, v). We show that ϕ = TrR/K =
∑

i TrLi/K is rank-aware:

For j
a←− i ∈ Q1 it is Aa = jL

ρa
i = Lj ⊗ρa Li for some ρa ∈ Gal(Lji/K). Let m = [L : K],

vj = vm/dj , vi = vm/di , vji = vm/dji . The set {bs = vsj ⊗ 1 | 0 ≤ s < fij} is a basis of (Aa)Ri .
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There are elements hrs ∈ K such that

γs = ∗ϕj(ϕib
∗
s)(bs) =

dj−1∑
r=0

hrsv
−r
j .

We have djhrs = TrLj/K(vrjγs) = ϕib
∗
s(v

r+s
j ⊗ 1) because ∗ϕj(ϕib

∗
s) is Lj-linear. Let us

write r + s = p+ qfij for some q and 0 ≤ p < fij . Define ζa = ρa(vji)/vji. Then

djhrs = TrLi/K

(
b∗s(cp) · ζ−qa v

qfji
i

)
= δp=s δq≡0 mod dji

· di · ζ−qa λq/dji = δr=0 · di .

This shows γs = di/dj . Hence, ~ϕa = fij · di/dj = fji by Remark 3.2.15. Similarly, ~ϕa = fij .

3.3 Deformed Preprojective Algebras

Extending [CH98] we define deformed preprojective algebras Πλ for symmetric modulations.

The choice λ = 0 recovers the ordinary preprojective algebra.

Convention 3.3.1. We still assume that a symmetric structure ϕ for H is fixed.

As before, we use ϕ to identify the duals A
∗a

and Aa∗ with A∗a as well as the duals RA

and AR with A∗. In the canonical way, A∗∗a is identified with Aa and A∗∗ with A.

3.3.1 Compatible Double Representations

Instead of working with modules over deformed preprojective algebras Πλ we use the

equivalent notion of λ-compatible A-double representations.

Recall that the doubleH ofH is the K-modulationH = (Ri, Aa)i∈Q0,a∈Q1
with Aa∗ = A∗a.

As usual, we do not distinguish H-modules from A-representations.

Because of A = A⊕A∗ an A-representation can be regarded as a triple (M,AM,A∗M)

where (M,AM) is an A-representation and (M,A∗M) an A∗-representation.

Definition 3.3.2. Let λ ∈ Z(R). A λ-compatible A-double representation (M,AM,A∗M)

consists of an A-representation (M,AM) and an A∗-representation (M,A∗M) making the

following square commute “up to adding λ”:

M
AM

∨
//

A∗M
∨

��

A∗⊗RM

A∗M

��

A⊗RM
AM

//M

More precisely, we require A∗M ◦ AM∨ − AM ◦ A∗M∨ = λM .

Remark 3.3.3. By Lemma 2.2.14 and its right-module version we have canonical isomor-

phisms

EndR(RA)
∆−−−→ A∗⊗RA , EndR(AR)

∆∗−−−−→ A⊗RA∗ .
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Definition 3.3.4. Viewing A∗⊗RA and A⊗RA∗ as summands of the degree-2 component

of the path algebra H, the preprojective relation ρ ∈ H is defined as

ρ = ∆(id)−∆∗(id) .

Definition 3.3.5. The sign of an arrow a ∈ Q1 is

εa :=

 1 if a ∈ Q1,

−1 if a ∈ Q∗1.

Remark 3.3.6. Choose for each j
a←− i ∈ Q1 a basis Ba of Rj

(Aa) and let {b∗ | b ∈ Ba}
be the Rj-dual basis of Ba. With respect to these bases and with Convention 3.3.1 the

preprojective relation assumes the form ρ =
∑

a∈Q1, b∈Ba εa · b
∗ · b.

Remark 3.3.7. Clearly, ρ =
∑

i∈Q0
ρi where ρi = eiρei.

Remark 3.3.8. The preprojective relation ρ commutes with every element in the ground

ring R, i.e. ρ r = rρ for all r ∈ R. As a consequence, for every module M ∈ Mod(H) left

multiplication with ρ defines an endomorphism ρM ∈ EndR(M).

Definition 3.3.9. Let λ ∈ Z(R). The deformed preprojective algebra Πλ = Πλ
H is

Πλ = H/〈ρ− λ〉 .

The preprojective algebra Π = ΠH is the deformed preprojective algebra Π0.

Lemma 3.3.10. ρM =
∑

a∈Q1
εa ·Ma∗M

∨
a = A∗M ◦AM∨−AM ◦A∗M∨ for M ∈ Mod(H).

Proof. Note that ∆ =
∑

a∈Q1
∆a and ∆∗ =

∑
a∈Q∗1

∆a, where, for j
a←− i ∈ Q1, the maps

EndRj (Rj (Aa))
∆a−−−−→ A

∗a
⊗Rj Aa , EndRi((Aa)Ri)

∆a∗−−−−−→ Aa⊗RiAa∗

are the canonical isomorphisms. For j
a←− i ∈ Q1 the formula for M∨a in Corollary 2.3.10,

and the description of ∆a given in Lemma 2.2.14 show that Ma∗M
∨
a ∈ EndRi(Mi) is

multiplication with ∆a(id). Now use the definition of ρ.

Corollary 3.3.11. M 7→ (RM,AM,A∗M) defines an equivalence Mod(H)→ Rep(A) and

an equivalence between Mod(Πλ) and the category of λ-compatible A-double representations.

Proof. Combine Corollary 2.2.19, Definition 3.3.2, and Lemma 3.3.10.

Notation 3.3.12. Denote by j←Q1 the set of all arrows in Q ending in the vertex j ∈ Q0.

For M ∈ Mod(H) abbreviate AMa = Aa⊗RiMi for j
a←− i ∈ Q1 and

j←M = ejA⊗RM =
⊕

a∈j←Q1

AMa .
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Let AMa
µa−−→ j←M

πa−−→ AMa be the canonical inclusion and projection and

πj =
∑

a∈j←Q1

Maπa , µj =
∑

a∈j←Q1

εa∗ · µaM∨a∗ .

Finally, define π =
∑

j∈Q0
πj and µ =

∑
j∈Q0

µj .

If it seems necessary to stress the dependence of π, µ etc. on M , we write πM , µM etc.

Remark 3.3.13. Let j
a←− i ∈ Q1. If Mi is free, then AMa is free. Furthermore, if Mi is free

of finite rank mi, we have rankRj (A
M
a ) = rankRj (Aa) ·mi = fjimi.

The composition πMµM can be viewed as an element in EndR(M). The following

corollary corresponds to the discussion in [CH98, § 4] and [GLS16a, Proposition 5.2].

Corollary 3.3.14. ρM = πMµM for M ∈ Mod(H), so M ∈ Mod(Πλ)⇔ πMµM = λM .

Proof. Use Lemma 3.3.10.

3.3.2 Lifting Representations

The next lemma generalizes [CH98, Lemma 4.2]. Our proof is conceptually the same.

Proposition 3.3.15. For every M ∈ modl.f.(H) there is a short exact sequence

0 −→ Ext1
H(M,M)∗ −→ Rep(A∗,M)

d−−→ EndR(M)
t−−→ EndH(M)∗ −→ 0

where d and t act on A∗M ∈ Rep(A∗,M) and f ∈ EndR(M) as

d
(
A∗M

)
= A∗M ◦ AM∨ − AM ◦ A∗M∨ , t(f) =

(
g 7→ tr(fg)

)
.

Proof. Applying HomH(−,M) to the short exact sequence from Corollary 3.1.14 yields an

exact sequence

0→ EndH(M)
ν] // HomH(H ⊗RM,M)

∂] // HomH(H ⊗RA⊗RM,M) // Ext1
H(M,M)→ 0 .

Using the tensor-hom adjunction we get a commutative square

HomH(H ⊗RM,M)
∂] //

α

��

HomH(H ⊗RA⊗RM,M)

��

EndR(M)
∂[ // Rep(A,M)

where the vertical maps are the canonical isomorphisms and ∂[ is given, for all f ∈ EndR(M)

and x⊗m ∈ A⊗RM , by ∂[(f)(x⊗m) = xf(m)− f(xm).

The map ν[ = α ◦ ν] is the canonical inclusion. We get an exact sequence

0→ EndH(M)
ν[ // EndR(M)

∂[ // Rep(A,M) // Ext1
H(M,M)→ 0 .
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3.3 Deformed Preprojective Algebras

Apply (−)∗ = HomK(−,K) to obtain an exact sequence

0→ Ext1
H(M,M)∗ // Rep(A,M)∗

(∂[)∗
// EndR(M)∗

(ν[)∗
// EndH(M)∗ → 0 .

The isomorphisms θ = θM and ϑ = ϑM,M from Lemma 3.2.11 and Corollary 3.2.12 make

the following square commute:

Rep(A,M)∗
(∂[)∗

// EndR(M)∗

Rep(A∗,M)
d //

θ

OO

EndR(M)

ϑ

OO

It remains to verify that d and t = (ν[)∗ ◦ ϑ act as claimed. For t this is evident and for d

it suffices to check

((∂[)∗ ◦ θ)
(
A∗M

)
= ϑ

(
A∗M ◦ AM∨ − AM ◦ A∗M∨

)
.

Evaluating at f and applying Lemmas 3.2.10 and 3.2.13, this means

tr
(
A∗M ◦ (∂[(f))∨

)
= tr

(
A∗M ◦

(
AM

∨ ◦ f − (f ◦ AM)∨
))

.

So we have to show (∂[(f))∨ = AM
∨ ◦ f − (f ◦ AM)∨. According to Lemma 3.2.16 (b) this

is equivalent to ∂[(f) = AM ◦ (idA ⊗ f)− f ◦ AM , so we are done.

We have the following two corollaries. Compare [Cra01, Lemma 3.2].

Corollary 3.3.16. Let M ∈ modl.f.(Π
λ). Then tr(λM ◦ g) = 0 for all g ∈ EndH(M).

Proof. It is λM = ρM = A∗M ◦ AM∨ − AM ◦ A∗M∨ = d(A∗M) ∈ ker(t) by Lemma 3.3.10,

Corollary 3.3.14, and Proposition 3.3.15.

Corollary 3.3.17. Let M ∈ modl.f.(H) be indecomposable.

(a) If M lifts to a Πλ-module, then necessarily ϕ(λ) · rank(M) = 0.

(b) If M satisfies Ext1
H(M,M) = 0, there is at most one way to lift M to a Πλ-module.

Proof. For (a) combine Lemma 3.2.10 and Corollary 3.3.16 applied to g = idM . For (b)

use Proposition 3.3.15.

3.3.3 Reflection Functors

In this subsection we introduce reflection functors for deformed preprojective algebras of

symmetric modulations. The construction we present is a painless adaptation of Crawley-

Boevey and Holland’s [CH98]. Furthermore, Baumann and Kamnitzer’s [BK12] variant of

these functors for non-deformed preprojective algebras are covered as a special case.
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While Crawley-Boevey and Holland defined the reflection functors only for vertices with

invertible deformation parameter – and obtained equivalences –, Baumann and Kamnitzer

considered the non-deformed situation – and obtained a pair of adjoint functors.

Let M ∈ Mod(Πλ) and fix j ∈ Q0. For notational simplicity we write π, µ, and λ instead

of πM , µM , and λM . Recall that πjµj = λj by Corollary 3.3.14. We define

M+
j = ker(πj) , M−j = j←M/im(µj) .

Inspired by the diagram depicted in [BK12, Remark 2.4 (ii)] we have schematically

M−j

µ−j

$$��

j←M

π−j

99 99

πj
//

π+
j

%%

Mj

µj
//

��

j←M

M+
j

, �
µ+
j

::

where µ+
j and π−j are the canonical inclusion and projection and the maps π+

j and µ−j are

both induced by the endomorphism χj = µjπj − λj .

Remark 3.3.18. The endomorphisms χj and γj = µjπj form a pair of generalized orthogonal

projections in the sense that χ2
j = λjχj , γ

2
j = λjγj , and χjγj = γjχj = 0.

Obviously, π+
j µ

+
j = −λj and π−j µ

−
j = −λj . If λj ∈ R×j , then by Remark 3.3.18

j←M = ker(πj)⊕ im(µj) , ker(πj) = M+
j
∼= M−j , im(µj) ∼= Mj .

On the other hand, if λj = 0, it is possible to fill in unique morphisms in the above diagram,

indicated by dotted arrows, such that every subdiagram is commutative.

This construction yields modules M+,M− ∈ Mod(H), where for ± ∈ {+,−}, a ∈ j←Q1,

M±a = π±j µa , M±a∗ = ∨(εa∗πaµ±j ) ,

and M±i = Mi for i 6= j and M±a = Ma for a 6∈ j←Q1.

The assignment M 7→M± extends in a canonical way to a functor Mod(Πλ)→ Mod(H).

Definition 3.3.19. Let rj ∈ AutK(Z(R)) be the map defined, for λ ∈ Z(R), i ∈ Q0, by

(rj(λ))i =

−λj if i = j,

λi + ~Φij(λj) otherwise.

Remark 3.3.20. It is r2
j = idZ(R), and (rj(λ))j is invertible (resp. zero) if and only if λj is

invertible (resp. zero). Moreover, rj = idZ(R) if λj = 0.
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Remark 3.3.21. Assume that ϕ is a rank-aware structure for H. This implies ~ϕij = −cij .
Thus (rj(λ))i = λi− cijλj for i 6= j and λj ∈ K. So rj restricts to a map KQ0 → KQ0 that

is (induced by) the transpose of the simple reflection sj ∈ Aut(ZQ0). Compare [CH98, § 5].

The next lemma shows that M 7→M± induces a functor Mod(Πλ)
Σ±j
//Mod(Πrj(λ)) .

Lemma 3.3.22. The element ρ− rj(λ) annihilates M±.

Proof. We use Corollary 3.3.14. We already know π±j µ
±
j = −λj = (rj(λ))j . For i 6= j and

arrows j
a←− i ∈ Q1 by definition

(M±a∗)
∨M±a = εa∗πaµ

±
j π
±
j µa = εa∗πa(µjπj − λj)µa = M∨a∗Ma − εa∗λ

Aa⊗RiMi

j .

Applying first (−)∨ and then
∨(

idAa⊗RiMi

)
◦ −, Lemma 3.2.16 (c) and (a) show

M±a∗(M
±
a )∨ = Ma∗M

∨
a − εa∗

∨(
idAa⊗RiMi

)
◦
(
λ
Aa⊗RiMi

j

)∨
= Ma∗M

∨
a − εa∗~Φa(λj) .

With the help of Lemma 3.3.10 and Corollary 3.3.14 we can conclude as desired

π±i µ
±
i =

∑
j←−a i∈Q1

εaM
±
a∗(M

±
a )∨ = πiµi +

∑
j←−a i∈Q1

~Φa(λj) = λi + ~Φij(λj) = (rj(λ))i .

If λj ∈ Rj is invertible, the functors Σ+
j and Σ−j are isomorphic and we set Σj := Σ+

j .

The next proposition is proved in complete analogy to [CH98, Theorem 5.1].

Proposition 3.3.23. Let j ∈ Q0 such that λj ∈ R×j . We have quasi-inverse equivalences:

Mod(Πλ)
Σj
//Mod(Πrj(λ))

Σj

oo

For M ∈ modl.f.(Π
λ) the module Σj(M) is locally free with rank(Σj(M)) = sj(rank(M)).

Proof. It is an easy consequence of the construction and the invertibility of λj that the

endofunctor ΣjΣj of Mod(Πλ) is isomorphic to the identity. Analogously, this is the case

for the endofunctor ΣjΣj of Mod(Πrj(λ)). The decomposition j←M = ker(πj) ⊕ im(µj),

where (Σj(M))j ∼= ker(πj) and Mj
∼= im(µj), shows that Σj(M) is locally free because j←M

and Mj are free. It also proves the formula for the rank vectors.

Every module M ∈ Mod(Πλ) has a submodule subj(M) and a factor module facj(M)

given as subj(M) = ker(µj) and facj(M) = M/(im(πj) +
∑

i 6=jMi). We have the following

version of [BK12, Proposition 2.5] and [GLS16a, Proposition 9.1].

Proposition 3.3.24. Let j ∈ Q0 such that λj = 0. Then (Σ−j ,Σ
+
j ) is a pair of adjoint

endofunctors of Mod(Πλ) and there are short exact sequences

0 // subj // id // Σ+
j Σ−j

// 0 , 0 // Σ−j Σ+
j

// id // facj // 0 .
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Proof. The adjunction follows from Lemma 2.3.4, λj = 0, and the universal properties of

kernels, cokernels, and direct sums. See [BK12, Proof of Proposition 2.5] and [GLS16a,

Proof of Proposition 9.1], where the argument is given in detail. For the existence of the

exact sequences note M−+
j = im(µj) and M+−

j = j←M/ ker(πj) ∼= im(πj).

3.4 Auslander-Reiten Translation via Coxeter Functors

This section builds on [GLS16a, §§ 9–12]. We point out the necessary adaptations to make

Geiß, Leclerc, and Schröer’s arguments work for symmetric (local) modulations.

Gabriel proves in [Gab80] for path algebras H = KQ of unweighted acyclic quivers that

Bernstein, Gelfand, and Ponomarev’s [BGP73] Coxeter functor C+ coincides with the

Auslander-Reiten translation τ+ essentially up to a sign change. More precisely, the subbi-

module Π1 of the preprojective algebra Π generated by the dual arrows a∗ represents both,

the twisted Coxeter functor C+T and the Auslander-Reiten translation τ+, i.e.

C+T ∼= HomH(Π1,−) ∼= τ+ .

Geiß, Leclerc, and Schröer showed that these isomorphisms are valid in a broader setting,

not on the whole module category, but after restriction to locally free modules.

Convention 3.4.1. Assume that Q is acyclic and H local and symmetric.

Fix a symmetric structure ϕ on R.

3.4.1 BGP-Reflection and Coxeter Functors

Notation 3.4.2. For j ∈ Q0 let H∗j be the submodulation of H induced by Q∗j ⊆ Q.

Let H∗j = HH∗j and denote by ιj the R-algebra map H∗j ↪−→ H given by Lemma 2.4.32.

There is a functor Mod(H)
L0−−→ Mod(Π) that extends each H-module M to a Π-module

with Ma∗ = 0 for all a ∈ Q1 (and maps morphisms to themselves).

Definition 3.4.3. For j ∈ Q0 let Mod(Π)
Rj−−→ Mod(H∗j) be the restriction functor

induced by the composition of ιj with the canonical projection H � Π. Define

F+
j = Rj ◦ Σ+

j ◦ L0 , F−j = Rj ◦ Σ−j ◦ L0 .

In the case that j is a sink or a source in Q we define Mod(H)
Fj−−→ Mod(H∗j) as

Fj =

F+
j if j is a sink,

F−j if j is a source.

Remark 3.4.4. Let j be a sink or a source in Q. The functor Fj is a generalization of the

“image functor” in [BGP73, §1]. For example, if j is a sink in Q, let M ∈ Mod(H) and

j←M = ejA⊗RM
πj−−−→Mj
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given by multiplication (compare Notation 3.3.12). Then (F+
j (M))j = M+

j = ker(πj).

Recall that a module M ∈ Mod(H) is called rigid if Ext1
H(M,M) = 0.

Proposition 3.4.5. Let j be a sink or a source in the quiver Q. For every locally free

and rigid module M ∈ mod(H) the module Fj(M) is locally free and rigid, too.

Proof. With Proposition 3.3.24 at hand, we can use [GLS16a, Proof of Proposition 9.6].

Definition 3.4.6. Let ± ∈ {+,−} and let (i1, . . . , in) be any ±-admissible sequence for Q.

The Coxeter functor C± for H is the endofunctor F±in · · ·F
±
i1

of Mod(H).

Remark 3.4.7. As indicated in [GLS16a, § 9.4], the argument given in the proof of [BGP73,

Lemma 1.2] shows that C± does not depend on the choice of the ±-admissible sequence.

Remark 3.4.8. With Proposition 3.3.24 it is easy to see that (C−, C+) is an adjoint pair.

Definition 3.4.9. The twist T ∈ AutR(H) of H = R〈A〉 is induced by A
−id−−−→ A ⊆ H.

The automorphism of Mod(H) induced by T ∈ AutR(H) is again denoted by T .

The twisted Coxeter bimodule Π1 is the sub H-bimodule of Π = ΠH generated by A∗.

Remark 3.4.10. It is T 2 = id and C±T = TC± for ± ∈ {+,−}.

The following is the key result [GLS16a, Theorem 10.1] in our setting:

Theorem 3.4.11. We have C+T ∼= HomH(Π1,−) and C−T ∼= Π1⊗H− as endofunctors

of Mod(H). Moreover, C+T ∼= τ+ and C−T ∼= τ− as functors modl.f.(H)→ mod(H).

3.4.2 Gabriel-Riedtmann Construction

Before giving a proof of Theorem 3.4.11, we discuss what form the Gabriel-Riedtmann

construction takes in our context. Compare [Gab73, § 5] and [GLS16a, § 10.2].

Definition 3.4.12. The Riedtmann quiver defined by Q is the weighted quiver Q̃ with

vertex set Q̃0 =
{
i± | i ∈ Q0 ,± ∈ {+,−}

}
, weights di± = di, and arrow set

Q̃1 =
{
j±

a±←−− i± | j
a←− i ∈ Q1, ± ∈ {+,−}

} .
∪
{
j+

a∗−−→ i− | j
a←− i ∈ Q1

}
.

The Riedtmann modulation defined by H is the K-modulation H̃ = (Rı̃, Aã)̃ı,ã for Q̃

defined by Ri± = Ri, Aa± = Aa, Aa∗ = A∗a. Let R̃ = RH̃ and Ã = AH̃ and H̃ = HH̃.

Warning. In [GLS16a] the letter H̃ is not used for HH̃ but for its quotient Γ̃ defined below.

Example 3.4.13. We reproduce [GLS16a, Example 10.2.2] to account for our slightly

different notation. Let Q be the weighted quiver j
a−→ i

b←− k with dj = 1, di = dk = 2 of
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type B3. Then the Riedtmann quiver Q̃ looks as follows:

i−

j−

k−

i+

j+

k+

a−
xx

b−

ff

a+

xx

b+

ff

a∗
ff

b∗xx

Notation 3.4.14. For ± ∈ {+,−} there are injective non-unital K-algebra morphisms

H
η±

↪−−−→ H̃

induced by the identities Ri
id−−→ Ri± and Aa

id−−→ Aa± .

Furthermore, there is an injective K-algebra morphism

H∗
η•

↪−−−→ H̃

induced by Ri
(id id)T−−−−−→ Ri− ⊕Ri+ and Aa∗

id−−→ Aa∗ .

Inspired by [Gab73] (slightly deviating from [GLS16a]), we use the following notation

for the restriction functors induced by η± and η•:

Mod(H̃)
R±

//Mod(H) Mod(H̃)
R• //Mod(H∗)

M � // R±(M) M � // R•(M)

Remark 3.4.15. The ground ring of H̃ factorizes as R̃ = R− ×R+ with R± = η±(R) and

the species decomposes as Ã = A− ⊕A• ⊕A+ with A± = η±(A) and A• = η•(A
∗).

Remark 3.4.16. For M ∈ Mod(H̃) as R-modules R•(M) ∼= R−(M)⊕R+(M) canonically.

Moreover, note that xm+ ∈ R−(M) and xm− = 0 for all x ∈ A∗ ⊆ H∗ and m± ∈ R+(M).

Multiplication in the H∗-module R•(M) induces an R-module homomorphism

A∗⊗RR+(M) •M−−−−−→ R−(M) .

Definition 3.4.17. A Riedtmann A-representation is a triple (M−,M+, κM ) consisting

of two H-modules M± and an R-module morphism A∗⊗RM+
κM−−−→M−.

A morphism of Riedtmann A-representations (M−,M+, κM )
(f−,f+)
−−−−−→ (N−, N+, κN ) is a

pair of morphisms M±
f±−−→ N± of H-modules making the following square commute:

A∗⊗RM+
κM //

id⊗f+

��

M−

f−
��

A∗⊗RN+
κN // N−

Lemma 3.4.18. The functor M 7→ (R−(M),R+(M), •M) defines an equivalence between

the category Mod(H̃) and the category of Riedtmann A-representations.
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More precisely, for Riedtmann A-representations (M−,M+, κM ) let M be the R̃-module

with underlying set M− ×M+ and multiplication given as

rm = (r−m−, r+m+) ,

for all r = (η−(r−), η+(r+)) ∈ R− × R+ = R̃ with r−, r+ ∈ R and m = (m−,m+) ∈ M .

There is a unique H̃-module structure ÃM on M making the following diagrams commute:

A⊗RM±
η±⊗id

//

AM± $$

A±⊗R̃M±

ÃMyy

M±

A∗⊗RM+
η•⊗id

//

κM
%%

A•⊗R̃M+

ÃMyy

M−

Proof. This is similar to the proof of Corollaries 2.2.19 and 3.3.11.

As mentioned during the definition of the preprojective algebra (at the beginning of

§ 3.3), there are isomorphisms

∆+ : EndR(RA)
∆ // A∗⊗RA

η•⊗η+
// A•⊗R̃A+ ⊆ H̃ ,

∆− : EndR(AR)
∆∗ // A⊗RA∗

η−⊗η•
// A−⊗R̃A• ⊆ H̃ .

Definition 3.4.19. The Riedtmann algebra for H is Γ̃ = H̃/〈ρ̃〉 where

ρ̃ = ∆+(id) + ∆−(id) ∈ H̃ .

Notation 3.4.20. Let M ∈ Mod(H̃). For arrows j
a←− i ∈ Q̃1 we abbreviate, similarly as

before, AMa = Aa⊗RiMi and AMa∗ = Aa∗ ⊗RjMj . Moreover, define for each j ∈ Q0

j−←M =
⊕

j−←−a i
AMa , j+→M =

⊕
j+−→a i

AMa∗ .

where the sums are taken over arrows in Q̃.

Let j−←M
π̃a−−→ AMa and AMa∗

µ̃a−−→ j+→M be the canonical projection and inclusion. Set

π̃j− =
∑

j−←−a i
Maπ̃a , µ̃j+ =

∑
j+−→a i

µ̃aM
∨
a .

Finally, define π̃ =
∑

j∈Q0
π̃j− and µ̃ =

∑
j∈Q0

µ̃j+ .

When we want to stress the dependence of π̃, µ̃ etc. on M we write π̃M , µ̃M etc.

Using the correspondence given by j−
a−←−− i− 7→j+

a∗−−→ i− and j−
a∗←−− k+ 7→j+

a+−−→ k+,

we identify j+→M with j−←M so that π̃M µ̃M is a well-defined element in

EndR+→R−(M) :=
⊕
j∈Q0

HomRj
(Mj+

,Mj−
) .

We denote by ρ̃M the element in EndR+→R−(M) given by left multiplication with ρ̃.
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Lemma 3.4.21. Let M ∈ Mod(H̃). Then ρ̃M =
∑

a∈Q1

(
Ma∗M

∨
a+

+Ma−
M∨a∗

)
= π̃M µ̃M

In particular, M ∈ Mod(Γ̃) if and only if π̃M µ̃M = 0.

Proof. This can be proved analogously to Lemma 3.3.10 and Corollary 3.3.14.

Convention 3.4.22. Just as [Gab73, § 5.5] and [GLS16a, § 10] we will assume for

notational simplicity that Q0 = {1, . . . , n} and (1, . . . , n) is a +-admissible sequence for Q.

Remark 3.4.23. Let 0 ≤ ` ≤ n. The full subquiver of Q̃ on the vertices i+ with 1 ≤ i ≤ `
and i− with ` < i ≤ n can be identified with the quiver

Q` := (· · · (Q∗1)∗2 · · · )∗`

via Q`
ι`−→ Q̃ given by i 7→ i+ for 1 ≤ i ≤ ` and i 7→ i− for ` < i ≤ n sending j

a←− i ∈ Q`1 to

ι`(a) =


a− if i > ` and j > `,

a+ if i ≤ ` and j ≤ `,

a otherwise.

Definition 3.4.24. For I ⊆ Q̃0 we denote by Γ̃(I) the algebra eI Γ̃eI with eI =
∑

i∈I ei.

For 0 ≤ ` ≤ n set

Γ` := Γ̃
(
{ i+ | 1 ≤ i ≤ ` } ∪ { i− | ` < i ≤ n }

)
,

Γ̃` := Γ̃
(
{ i+ | 1 ≤ i ≤ ` } ∪ { i− | 1 ≤ i ≤ n }

)
.

Let H` be the path algebra of (· · · (H∗1)∗2 · · · )∗` and H` η̃`−−→ Γ̃` the non-unital K-algebra

homomorphism induced by the identities Ri → Rι`(i) and Aa → Aι`(a), whose image is Γ`.

For the restriction functors corresponding to η̃` and the inclusion Γ̃`−1 ⊆ Γ̃` we write

Mod(Γ̃`)
R̃`−−−−→ Mod(H`) , Mod(Γ̃`)

Res`−−−−−→ Mod(Γ̃`−1) .

Remark 3.4.25. As was pointed out in [Gab73, § 5.5], the right adjoint Res` of Res` can be

explicitly described as follows: It sends each Γ̃`−1-module M to the Γ̃`-module M+ with

M+
`+

= ker
(
π̃M`−
)

, M+
i = Mi for i 6= `+ ,

such that for all j
a←− i the map (M+

a )∨ is induced by the canonical projection, if i = `+,

and is equal to Ma otherwise. We summarize this remark in the next lemma.

Lemma 3.4.26. R̃i Resi ∼= F+
i R̃i−1.

Proof. This follows from Remark 3.4.25 and the definition of F+
i . For a more detailed

argument see [GLS16a, proof of Lemma 10.2].
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Notation 3.4.27. Let ± ∈ {+,−}. Denote by η̃± the composition of H
η±

↪−−−→ H̃ with the

projection H̃ � Γ̃ and by R̃± the corresponding restriction functor Mod(Γ̃)→ Mod(H).

As usual, H
η̃±−−−→ Γ̃ defines a coinduction functor:

Mod(H)
R̃± //Mod(Γ̃)

M � // HomH(R̃±(Γ̃),M)

Remark 3.4.28. It is a standard fact that
(
R̃±, R̃±

)
is an adjoint pair.

Remark 3.4.29. It is η̃+ = η̃n and η̃− = ι ◦ η̃0 for the canonical inclusion Γ0 = Γ̃0 ι
↪−→ Γ̃.

Therefore R̃+ = R̃n and R̃− = R̃0 Res1 · · ·Resn, so R̃− ∼= Resn · · ·Res1 R̃0 for every

quasi-inverse of the equivalence R̃0 of R̃0.

Corollary 3.4.30. C+ ∼= R̃+ R̃−.

Proof. By Lemma 3.4.26 and Remark 3.4.29

C+ ∼= (F+
n · · · F+

1 ) R̃0 R̃0 ∼= R̃n (Resn · · ·Res1) R̃0 ∼= R̃+ R̃− .

Lemma 3.4.31. R̃+ R̃− ∼= HomH(Π1, T (−)).

Proof. Let I± = {i± | i ∈ Q0} and −Γ̃+ be the H-bimodule with underlying set eI−Γ̃eI+
and multiplication given, for x, y ∈ H and z ∈ −Γ̃+, by

xzy = η−(T (x)) · z · η+(y) .

Then R̃+ R̃− = R̃+HomH(R̃−(Γ̃),−) ∼= HomH(−Γ̃+, T (−)).

It only remains to observe that −Γ̃+
∼= Π1 as H-bimodule.

The next two definitions generalize [Gab73, § 5.4] and correspond to [GLS16a, § 10.4].

The aim is to provide an explicit description of R̃−.

Definition 3.4.32. Let Mod(H)
R−−−→ Mod(H̃) be the functor that sends H-modules M

to H̃-modules M̃ with

R−(M̃) = M , R+(M̃) = HomR(A∗⊗RH,M) ,

•M̃(x⊗ f) = f(x⊗ 1) for x⊗ f ∈ A∗⊗RR+(M̃).

Take for the action of R− on morphisms the obvious one.

Definition 3.4.33. For f ∈ R+(M̃) we denote by f ] = f ]M the map A⊗RA∗⊗RH →M

obtained by postcomposing idA ⊗ f with the multiplication map AM . Define

ρ̃+ = ∆+(id) , ρ̃− = ∆−(id) .
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For every z ∈ H the element ρ̃+z will be regarded as an element in A∗⊗RH and ρ̃−z as

an element in A⊗RA∗⊗RH.

By the next lemma, M 7→ M̂ induces a subfunctor Mod(H)
R̂−−−−−→ Mod(Γ̃) of R− where

R−(M̂) = M , R+(M̂) =
{
f ∈ R+(M̃) | f(ρ̃+z) + f ](ρ̃−z) = 0 for all z ∈ H

}
.

Remark 3.4.34. Obviously, ρ̃+ + ρ̃− = ρ̃. In HomR(H,M) we have for each f ∈ R+(M̃)

f(ρ̃+ · −) = f ◦ AH∨ , f ](ρ̃− · −) = AM ◦ f∨ .

Lemma 3.4.35. M̂ is an H̃-submodule of M̃ and is annihilated by ρ̃.

Proof. To prove that M̂ is an H̃-submodule we have to verify g = Ma+
(x⊗ f) ∈ M̂ j+

for

every j
a←− i ∈ Q1 and x⊗ f ∈ Aa⊗Ri M̂ i+

. This is clear, since for all z ∈ Hej

g(ρ̃+z) = f(ρ̃+zx) , g](ρ̃−z) = f ](ρ̃−zx) .

A straightforward calculation yields for each f ∈ M̃ i+
the identities( ∑

a∈Q1

M̃a∗M̃
∨
a+

)
(f) = f(ρ̃+) ,

( ∑
a∈Q1

M̃a−
M̃∨a∗

)
(f) = f ](ρ̃−) .

Lemma 3.4.21 now implies that ρ̃ = ρ̃+ + ρ̃− annihilates M̂ .

Lemma 3.4.36. R̂− ∼= R̃−.

Proof. It suffices to check that R̂− is another right adjoint of R̃−. The proof of this fact is

similar to [Gab73, § 5.4] and [GLS16a, proof of Lemma 10.3].

Let N ∈ Mod(Γ̃) and M ∈ Mod(H). Then we have as R-module R̃−(N) ∼=
⊕

i∈Q0
Ni−

canonically. It is clear that the rule

g = (gi)i∈Q̃0
7→ (gi−)i∈Q0

induces a map HomΓ̃

(
N, M̂

) r−→ HomH

(
R̃−(N),M

)
, which is natural in N and M .

Using the definition of M̃ , the fact that g is a morphism of H̃-modules can be reformulated

as follows: The family (gi−)i∈Q0
is a morphism R̃−(N)→M of H-modules and (?) holds:

(?) For all i ∈ Q0 and n ∈ Ni+
and `

b←− k ∈ Q1 and y ∈ A∗b ⊆ A∗ and z ∈ Hei,

gi+(n)(y ⊗ z) =


gj+
(
Na+

(x⊗ n)(y ⊗ z′)
)

if z = z′x with j
a←− i ∈ Q1 and x ∈ Aa,

gk−
(
Nb∗(y ⊗ n)

)
if z = ei and ` = i,

0 if z = ei and ` 6= i.

Note that Na+
(x⊗n) = η+(x)n and Nb∗(y⊗n) = η•(y)n. Since Q is acyclic, condition (?)

is easily seen to be equivalent to the following:
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(?̂) For all i ∈ Q0 and n ∈ Ni+
and `

b←− k ∈ Q1 and y ∈ A∗b ⊆ A∗ and z ∈ Hei,

gi+(n)(y ⊗ z) = gk−(η•(y)η+(z)n) .

Clearly, (?̂) implies the injectivity of r.

Vice versa, given a morphism g = (gi−)i∈Q0
from R̃−(N) to M , we can use (?̂) to extend

it to a morphism N
g−→ M̃ . Indeed, property (?̂) describes the well-defined R-linear map

gi+(n) = g ◦mn ,

where A∗⊗RHei
mn−−→ N is given by y ⊗ z 7→ η•(y)η+(z)n. Evidently, gi+ is Ri-linear.

To conclude that r is surjective, it merely remains to check that g maps N into M̂ .

This means we have to show f(ρ̃+z) + f ](ρ̃−z) = 0 for n ∈ Ni+
, f = gi+(n), and z ∈ Hei.

Straightforward calculations yield f(ρ̃+z) = g(ρ̃+η+(z)n) and f ](ρ̃−z) = g(ρ̃−η+(z)n).

This completes the proof, because the Γ̃-module N is annihilated by ρ̃+ + ρ̃− = ρ̃.

Lemma 3.4.37. For all M ∈ modl.f.(H) there is an isomorphism τ+(M) ∼= R̃+R̂−T (M)

that is natural in M .

Proof. We have a commutative diagram

R+R
−
T (M) = HomR(A∗⊗RH,M)

∂̃ //

θ

��

HomR(H,M)

ϑ

��

HomR(A⊗RM,H)∗
(∂[)∗

//

��

HomR(M,H)∗

��

HomH(H ⊗RA⊗RM,H)∗
(∂])∗

// HomH(H ⊗RM,H)∗

where the vertical arrows are isomorphisms. Namely, ϑ = ϑH,M is the isomorphism induced

by the trace pairing (see Lemma 3.2.11). The map θ is the isomorphism given by trace

and adjunction (see Definition 2.2.15 and Lemma 3.2.11), i.e. θ(f)(g) = tr(fg∨). The two

unnamed arrows are the canonical isomorphisms. Finally, ∂] = HomH(∂,H) for the map ∂

from Corollary 3.1.14, ∂̃(f)(z) = f(ρ̃+z)− f
]
M (ρ̃−z), and ∂[(g)(x⊗m) = xg(m)− g(xm).

Compare ∂[ to the map with the same name appearing in the proof of Proposition 3.3.15.

Similarly as there, but using additionally Remark 3.4.34, the commutativity of the lower

square boils down to the formula

tr
(
f ◦ (∂[(g))∨

)
= tr

(
(f ◦ AH∨ − AM ◦ f∨) ◦ g

)
.

for all f ∈ HomR(A∗⊗RH,M) and g ∈ HomR(M,H). Lemmas 3.2.10, 3.2.13 and 3.2.16

together with the fact ∂[(g) = AH ◦ (id⊗ g)− g ◦ AM show that this is true.

Note that R̃+R̂−T (M) = ker(∂̃) because of f ]T (M) = −f ]M .

Hence R̃+R̂−T (M) = ker(∂̃) ∼= ker((∂])∗) ∼= Ext1
H(M,H)∗ ∼= τ+(M) by Corollary 3.1.14

and Lemma 3.1.29 (a) and the commutativity of the diagram, which is natural in M .
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Proof of Theorem 3.4.11. By Corollary 3.4.30 and Lemma 3.4.31 C+T ∼= HomH(Π1,−).

We conclude C−T ∼= Π1⊗H− with Remark 3.4.8.

Let M ∈ modl.f.(H). Then τ+(M) ∼= R̃+R̃−T (M) due to Lemmas 3.4.36 and 3.4.37.

Together with Corollary 3.4.30 this shows τ+(M) ∼= C+T (M), natural in M .

To prove τ−(M) ∼= C−T (M), recall that H∗ is locally free by Lemma 3.1.10. Therefore

τ−(M) ∼= Ext1
H(H∗,M) ∼= HomH(M, τ+(H∗))∗

by Lemma 3.1.29 (b) and (c). Furthermore, τ+(H∗) ∼= C+T (H∗). So with Remark 3.4.8

τ−(M) ∼= HomH(M,C+T (H∗))∗ ∼= HomH(C−T (M), H∗)∗ ∼= C−T (M) .

It remains to observe that this isomorphism is also natural in M .

3.4.3 τ -Locally Free Modules

This subsection generalizes the finite-type classification for modτ−l.f.(H) in [GLS16a, § 11].

Definition 3.4.38. Let modτ−l.f.(H) be the full subcategory of modl.f.(H) consisting of

all modules M such that τp(M) ∈ modl.f.(H) for all p ∈ Z.

We state the analogs of [GLS16a, Proposition 11.4, Theorems 11.10 and 11.11].

Proposition 3.4.39. Let M ∈ modl.f.(H) be rigid. Then M ∈ modτ−l.f.(H).

In particular, Pi, Ii, Ei ∈ modτ−l.f.(H) for all i ∈ Q0.

Proof. The proof is identical to [GLS16a, proof of Proposition 11.4]. More precisely, combine

Proposition 3.4.5, Theorem 3.4.11, Definition 3.4.6, and Lemmas 3.1.9 and 3.1.10.

Theorem 3.4.40. Let H = HH be the path algebra of a symmetric local K-modulation H
for a weighted acyclic quiver Q. Then:

(a) rank
({
τ−p(Pi), τ

+p(Ii) | p ∈ N, i ∈ Q0

}
\ {0}

)
⊆ ∆+

re(Q).

(b) There are only finitely many isomorphism classes of indecomposables in modτ−l.f.(H)

if and only if Q is a finite union of Dynkin quivers.

(c) If Q is a Dynkin quiver, M 7→ rank(M) yields a bijection between the set of isomor-

phism classes of indecomposables in modτ−l.f.(H) and the set of positive roots ∆+
re(Q).

(d) If Q is a Dynkin quiver, for every indecomposable M ∈ modl.f.(H):

M ∈ modτ−l.f.(H) ⇔ M is rigid

⇔ M ∼= τ−p(Pi) for some p ∈ N, i ∈ Q0

⇔ M ∼= τ+p(Ii) for some p ∈ N, i ∈ Q0

Proof. The proofs of [GLS16a, Theorem 11.10 and 11.11] can be used verbatim.
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3.4.4 Preprojective Algebras Revisited

This subsection generalizes results from [GLS16a, §§ 10.6, 11.3, and 12].

Recall that H〈Π1〉 stands for the tensor algebra of the H-bimodule Π1.

Lemma 3.4.41. Π ∼= H〈Π1〉 as H-algebras.

Proof. We use the same trick as the proof of [GLS16a, Proposition 6.5]. Consider A = A⊕A∗

as a graded bimodule where elements in A have degree 0 and elements in A∗ degree 1.

The tensor algebra H = R〈A〉 inherits an N-grading from A. Namely, the homogeneous

component Hs of degree s is generated by all A⊗r1 ⊗R (A∗)⊗s1 ⊗R · · · ⊗RA⊗rn ⊗R (A∗)⊗sn

as an R-bimodule where n ∈ N and r1, s1, . . . , rn, sn ∈ N such that s1 + · · ·+ sn = s.

We have Π = H/J where J = 〈ρ〉 is the ideal generated by the homogeneous element ρ

of degree 1. Therefore the grading of H induces decompositions J =
⊕

s Js and Π =
⊕

s Πs

where Πs = Hs/Js. Note that J0 = 0 and Π0 = H0 =
⊕

nA
⊗n = H.

There is a morphism A ↪→ H〈Π1〉 of R-bimodules induced by the inclusions A ↪→ H

and A∗ ↪→ Π1. We have the following commutative diagram of canonical maps:

A

Π1 H〈Π1〉 H

Π

g

f

f̄

The dotted morphisms are given by the universal property of the tensor algebras H = R〈A〉
and H〈Π1〉 (see Lemma 2.2.6). The dashed map f̄ is induced by the universal property

of Π = H/J . Indeed, f(J) = 0 because J is generated in degree 1 and, clearly, f(J1) = 0.

It is easy to see that f̄ and g are inverse H-algebra isomorphisms.

Proposition 3.4.42. HΠ ∼=
⊕

p∈N τ
−p(HH). In particular, ΠΠ ∈ Modl.f.(Π).

Proof. This is identical to [GLS16a, proof of Theorem 11.12]. Namely, Π1
∼= Ext1

H(H∗, H)

as H-bimodule with the same argument as in [GLS16a, proof of Theorem 10.5]. Moreover,

by induction and Lemma 3.1.29 (b) Ext1
H(H∗, H)⊗p ∼= τ−p(H). Now use Lemma 3.4.41 to

obtain the first statement. For the last statement apply Proposition 3.4.39.

The next two facts are our version of [GLS16a, Proposition 12.1 and Corollary 12.2].

Lemma 3.4.43. There is an exact sequence of Πλ-bimodules

Πλ⊗RΠλ ∂1−−−→ Πλ⊗RA⊗RΠλ ∂0−−−→ Πλ⊗RΠλ ν−−→ Πλ −→ 0

defined by ∂1(1⊗ 1) = ρ⊗ 1 + 1⊗ ρ, ∂0(1⊗ x⊗ 1) = x⊗ 1− 1⊗ x, and ν(1⊗ 1) = 1.
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3 Symmetric Modulations

Proof. The proof is standard. Let Λ = Πλ and J the ideal of H generated by r = ρ− λ.

By definition Λ = H/J and the Λ-bimodule morphism Λ⊗RΛ
π−→ J/J2 with 1⊗1 7→ r is

surjective. Recall that TorH1 (Λ,Λ) ∼= J/J2 (see [CE56, VI. Exercise 19]) and apply Λ⊗H−
to the sequence from Corollary 3.1.14 for M = Λ to get an exact sequence of Λ-bimodules

J/J2 ∂̂1−−−−→ Λ⊗RA⊗RΛ
∂0−−−−→ Λ⊗RΛ

ν−−−→ Λ −→ 0 .

Let H
δ−−→ H ⊗RA⊗RH be the R-derivation defined by δ(x) = 1 ⊗ x ⊗ 1 for x ∈ A.

According to [Sch85, Theorems 10.1 and 10.3] the map ∂̂1 can be taken to be induced by δ.

Then ∂̂1 ◦ π = ∂1, which proves the lemma.

Corollary 3.4.44. For all M ∈ Mod(Π) there is an exact sequence

Π⊗RM
∂1−−−−→ Π⊗RA⊗RM

∂0−−−−→ Π⊗RM
ν−−−→M −→ 0

of Π-modules with ∂1(1⊗m) = ρ⊗m+ 1⊗
∑

b (ρ′b ⊗ ρ′′b m) if ρ =
∑

b ρ
′
bρ
′′
b with ρ′b, ρ

′′
b ∈ A,

and ∂0(1⊗ x⊗m) = x⊗m− 1⊗ xm, and ν(1⊗m) = m.

This is the end of a projective resolution for all M ∈ Proj0R(Π).

Proof. Apply −⊗Π M to the sequence in Lemma 3.4.43 to obtain a sequence isomorphic

to the one in the statement. For the exactness note that the sequence in Lemma 3.4.43

for λ = 0 splits as a sequence of right R-modules, since ΠR is projective by the right-

module version of Proposition 3.4.42. For the last claim we can argue as in the proof of

Corollary 3.1.14, using that RΠ is projective according to Proposition 3.4.42.

Proposition 3.4.45. Ext1
Π(M,N) ∼= Ext1

Π(N,M)∗ for M ∈ Modl.f.(Π), N ∈ modl.f.(Π).

This isomorphism is natural in M and N .

Proof. Applying HomΠ(−, N) to the exact sequence from Corollary 3.4.44 we get a com-

mutative diagram where the vertical maps are the canonical isomorphisms:

HomΠ(Π⊗RM,N)
∂]0 //

��

HomΠ(Π⊗RA⊗RM,N)
∂]1 //

��

HomΠ(Π⊗RM,N)

��

HomR(M,N)
∂M,N0 // HomR(A⊗RM,N)

∂M,N1 // HomR(M,N)

Moreover, ∂M,N
0 acts on f ∈ HomR(M,N) and ∂M,N

1 on g ∈ HomR(A⊗RM,N) as

∂M,N
0 (f) =

∑
a∈Q1

(
Na ◦ (id⊗ f)− fMa

)
, ∂M,N

1 (g) =
∑
a∈Q1

εa ·
(
Na∗g

∨
a − gaM∨a∗

)
.

By Corollary 3.4.44 and the commutative diagram above we know that

Hom1
Π(M,N) ∼= ker

(
∂M,N

0

)
, Ext1

Π(M,N) ∼= ker
(
∂M,N

1

)
/im

(
∂M,N

0

)
.
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3.4 Auslander-Reiten Translation via Coxeter Functors

Hence, it suffices to show that there is a commutative diagram, natural in M and N , where

the vertical maps are isomorphisms:

HomR(M,N)
∂M,N0 //

ϑ

��

HomR(A⊗RM,N)
∂M,N1 //

θ
��

HomR(M,N)

−ϑ
��

HomR(N,M)∗

(
∂N,M1

)∗
// HomR(A⊗RN,M)∗

(
∂N,M0

)∗
// HomR(N,M)∗

It is easy to check (similarly as for the last diagram in the proof of Proposition 3.3.15)

that the isomorphisms ϑ and θ given by ϑ(f)(g) = tr(fg) and θ(f)(g) =
∑

a∈Q1
εa tr(fag

∨
a∗)

make the diagram commute.

Corollary 3.4.46. For M,N ∈ modl.f.(Π) one has

(M,N)H = dimK Hom1
Π(M,N) + dimK Hom1

Π(N,M)− dimK Ext1
Π(M,N) .

Proof. Use (part of) the proof of [GLS16a, Theorem 12.6].

The concluding corollary is the analog of [GLS16a, Corollary 12.7].

Corollary 3.4.47. If Q is a Dynkin quiver, Π is self-injective.

Proof. The algebra Π is finite-dimensional because of Theorem 3.4.40 and Proposition 3.4.42.

Right-module versions of Corollary 3.4.44 and Proposition 3.4.42 yield an exact sequence

0→ Z → P → Π∗ → 0 of finite-dimensional locally free right Π-modules with PΠ projective.

Applying (−)∗ leads to an exact sequence 0→ Π→ P ∗ → Z∗ → 0 of locally free Π-modules.

This sequence splits thanks to Ext1
Π(Z∗,Π) ∼= Ext1

Π(Π, Z∗)∗ = 0. Hence, ΠΠ is injective as

a summand of the injective module ΠP
∗.
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4 Potentials for Cluster-Tilting Subcategories

Let ∆ = (V,E) be an undirected multigraph without loops and with V = {1, . . . , n}.

Buan, Iyama, Reiten, and Scott associated in [BIRS09, § II.4] a quiver Q(s) = Q(∆, s)

with every finite sequence s = (s1, . . . , s`) in V . We show in this chapter that any full

subquiver of Q(s) admits an up to right-equivalence unique non-degenerate potential.

If s corresponds to a reduced expression for an element of the Weyl group W∆ of ∆,

the quiver Q′(s) of the cluster-tilting subcategory associated with s in [BIRS09] is a full

subquiver of Q(s). Furthermore, Q′(s) is the quiver Γ(s)op = Γ(−s) from [BFZ05, § 2.2]

when s and −s are considered as reduced expressions for elements of W∆ ×W∆.

4.1 Quiver of a Cluster-Tilting Subcategory

Let us recall and rephrase for our convenience the definition of Q = Q(∆, s).

The vertices of Q are Q0 = {1, . . . , `}. To define the arrows we need some notation:

(a) For v ∈ V denote by Iv =
{
iv1 < · · · < ivtv

}
the subset of Q0 such that (si)i∈Iv is the

subsequence of s consisting of the members equal to v. We set τ(ivj ) := ivj−1.

(b) For v 6= w in V let Iv,w1 ∪̇ · · · ∪̇ Iv,wtv,w be the partition of Iv ∪ Iw such that

• Iv,wj > Iv,wj−1 for each j > 1, i.e. i > i′ for all i ∈ Iv,wj , i′ ∈ Iv,wj−1, and

• (si)i∈Iv,wj is constant for each j, say with value cv,wj , where cv,wj 6= cv,wj−1 for j > 1.

Denote by iv,wj the greatest element of Iv,wj and call it the last vertex in the j-th v/w-group.

If v
e
w is an edge in ∆ we write te, i

e
j , I

e
j etc. for tv,w, iv,wj , Iv,wj etc.

Now we can describe the arrows of Q. For each v ∈ V and 1 < j ≤ tv there is an arrow

ivj−1

bvj←−−−−− ivj .

in Q. We set b(ivj ) := bvj . Furthermore, for each v
e
w ∈ E and 1 ≤ j < te the quiver Q

has an arrow

iv,wj
aej−−−−−→ iv,wj+1 .

Hence, Q has as many parallel arrows from the last vertex in the j-th v/w-group to the

last vertex in the (j + 1)-st v/w-group as ∆ has edges between v and w.

This concludes the definition of Q.

We continue with the construction of a rigid potential on Q.
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4 Potentials for Cluster-Tilting Subcategories

4.2 Rigid Potentials

Convention 4.2.1. Let K̂Q be the completed path algebra of Q over K.

Two potentials W and W ′ on Q are right-equivalent if there is f ∈ AutKQ0

(
K̂Q

)
such

that f(W ) = W ′. Compare Definition 2.6.61 and Remark 2.6.62.

For non-zero elements x ∈ K̂Q (or for potentials x on Q) denote by xmin := prord(x)(x)

(see Notation 2.6.7) the non-zero homogeneous component of x of lowest degree with respect

to the length grading. Set 0min := 0.

We write x
min

≈ y for elements x, y ∈ K̂Q (or for potentials x, y on Q) if xmin = ymin.

Potentials W and W ′ are minimal-degree equivalent if Wmin and W ′min are right-equivalent.

The set of paths in the quiver Q is denoted by PQ. A cycle in Q is a subquiver of Q

spanned by a cyclic path. Every cyclic path can be naturally regarded as a potential on Q.

Notation 4.2.2. For v 6= w in V and 1 < j < tv,w there exists a (unique) ov,wj ∈ N+ with

τ o
v,w
j
(
iv,wj+1

)
= iv,wj−1 .

Set bv,wj (t) := b
(
τ t−1

(
iv,wj+1

))
. Then for v

e
w ∈ E we have the following cycle cej in Q:

iej−1

iej

iej+1

aej−1

55

aej

))

bv,wj
(
1
)oo

bv,wj
(
ov,wj

)oo

With the abbreviation bej := bv,wj := bv,wj
(
ov,wj

)
· · · bv,wj

(
1
)

we can write cej = beja
e
ja
e
j−1.

Definition 4.2.3. Taking the sum of the cycles cej over all e ∈ E and 1 < j < te yields a

potential on Q(∆, s):

W (∆, s) :=
∑
v,w

bv,wj
∑
e

aeja
e
j−1 =

∑
e,j

cej

As was already observed in [BIRS11, Theorem 6.5], the potential W (∆, s) is rigid.

We prove that it is up to right-equivalence the only non-degenerate potential on Q(∆, s).

These facts rely on the following observation.

Lemma 4.2.4. Every cycle in Q(∆, s) is of the form pbeja
e
j for some e ∈ E, 1 < j < te,

and some path p in Q(∆, s).

Proof. Let c be a cycle in Q = Q(∆, s). Choose i ∈ {1, . . . , `} = Q0 minimal with the

property that i belongs to c. Then by the definition of Q there exist v ∈ V , 1 < j′ ≤ tv,

and 0 ≤ r ≤ tv − j′ such that i = ivj′−1 and b = bvj′ · · · bvj′+r occurs in c. Let us assume

that r is maximal with this property. Then there is e ∈ E and 1 < j < te such that baej
occurs in c. By the choice of i we must have b = b′bej for some path b′ in Q.
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4.2 Rigid Potentials

Before we continue with the central statements we introduce some additional notation.

Notation 4.2.5. For each path p in Q = Q(∆, s) we denote by `(p) its length and by ~̀(p)

the degree of p with respect to the →-grading, i.e. the grading of KQ that assigns to each

arrow aej degree 1 and to each arrow bvj degree 0.

In plain words, ~̀(p) counts the occurrences of arrows of type aej in the path p.

Let x be an element in K̂Q (or a potential on Q). We write `(x) or ~̀(x) for the degree

and →-degree of x, if x is length-homogeneous or →-homogeneous, respectively.

Denoting by −→pr`(x) the projection of x onto its `-th →-homogeneous component, define

−→
ord(x) := min

{
` ∈ N | −→pr`(x) 6= 0

}
.

A unitriangular automorphism f ∈ AutKQ0

(
K̂Q

)
is said to be of →-depth n ∈ N if

−→
ord(f(x)− x) ≥

−→
ord(x) + n = ~̀(x) + n

for all →-homogeneous x ∈ K̂Q.

Proposition 4.2.6. The potential W = W (∆, s) is rigid. More precisely, for every cycle c

in Q = Q(∆, s) there are →-homogeneous pej in KQ with ~̀(pej) = ~̀(c)− 1 such that

c =
∑
e,j

pej∂aej (W ) .

Proof. By Lemma 4.2.4 there exist e′ ∈ E, 1 < j′ < te′ , and p ∈ PQ such that c = pbe
′
j′a

e′
j′ .

Clearly, ~̀(p) = ~̀(c)− 1.

If j′ = 2, we have

c = p∂
ae
′
j′−1

(ce
′
j′) = p∂

ae
′
j′−1

(W ) .

If j′ > 2, the identity ∂
ae
′
j′−1

(W ) = ∂
ae
′
j′−1

(ce
′
j′−1) + ∂

ae
′
j′−1

(ce
′
j′) = ae

′
j′−2b

e′
j′−1 + be

′
j′a

e′
j′ shows

c = p∂
ae
′
j′−1

(W ) − pae
′
j′−2b

e′
j′−1 .

By induction we can write c̃ := pae
′
j′−2b

e′
j′−1 =

∑
e,j p̃

e
j∂aej (W ) with ~̀(p̃ej) = ~̀(c̃)−1 = ~̀(c)−1.

Thus c =
∑

e,j p
e
j∂aej (W ) where pej = −p̃ej for all (e, j) 6= (e′, j′− 1) and pe

′
j′−1 = p− p̃e′j′−1.

Moreover, it is ~̀(pej) = ~̀(c)− 1 as desired.

Notation 4.2.7. Let Q′ be a full subquiver of Q and let W be a potential on Q.

Following Definition 2.6.64 we write W |Q′ := W |Q′1 for the potential obtained by

restricting W to Q′.

For elements x =
∑

p∈PQ xp p in K̂Q with xp ∈ K we set x|Q′ :=
∑

p∈PQ′
xp p.
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4 Potentials for Cluster-Tilting Subcategories

Corollary 4.2.8. Let Q′ be a full subquiver of Q = Q(∆, s) and let W = W (∆, s). Then

for every cycle c in Q′ there are →-homogeneous pej ∈ K̂Q′ with ~̀(pej) = ~̀(c)− 1 such that

c =
∑
e,j

pej∂aej (W |Q′) .

Proof. This follows immediately from Proposition 4.2.6 and the fact that for a ∈ Q1 we

have ∂a(W )|Q′ = ∂a(W |Q′) if a ∈ Q′1 and ∂a(W )|Q′ = 0 otherwise.

4.3 Uniqueness of Non-Degenerate Potentials

Theorem 4.3.1. Let Q′ be a full subquiver of Q = Q(∆, s) and let W = W (∆, s). Then

every non-degenerate potential on Q′ is right-equivalent to W |Q′.

Proof. As a first step, we will show that for every cycle cej completely contained in Q′ every

non-degenerate potential on Q′ restricts to a potential on the full subquiver spanned by cej
that is minimal-degree equivalent to the restriction of W .

For adjacent vertices v, w in ∆ and each j the subquiver Qv,wj of Q′ spanned by all

cycles cej contained in Q′ with v
e
w ∈ E is empty or the following full subquiver of Q′:

iej−1

iej

iej+1

aej−1

55
55

aej

))
))

bv,wj

oo

Let Ev,w be the subset of E consisting of the edges between v and w. If Qv,wj is non-empty,

every potential W v,w
j on Qv,wj has the form

bv,wj
∑

e,f ∈Ev,w

αe,f a
f
j a

e
j−1 + W̃

with αe,f ∈ K and ord
(
W̃
)
> `
(
bv,wj
)

+ 2.

It is not hard to see that W v,w
j is non-degenerate if and only if the matrix C = (αe,f )e,f is

invertible. Assume this is the case. Write C−1 = (βf,e)f,e and let ϕv,wj be the automorphism

of K̂Q′ given by the substitutions afj 7→
∑

e βf,ea
e
j . Then W v,w

j is mapped by ϕv,wj to∑
e∈Ev,w

cej + ϕv,wj
(
W̃
) min

≈
∑

e∈Ev,w

cej = W |Qv,wj .

Now let W ′ be any non-degenerate potential on Q′. To prove the theorem, we must

show that W ′ is right-equivalent to W |Q′ .

Assume there is some j ≥ 1 such that W ′|Qv,w
j′

min

≈ W |Qv,w
j′

for all Qv,wj′ ⊆ Q
′ with j′ < j.
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4.3 Uniqueness of Non-Degenerate Potentials

Set ϕj =
∏
v,w ϕ

v,w
j where the product is taken over all Qv,wj ⊆ Q′ and ϕv,wj is defined

as in the previous paragraph with W v,w
j = W ′|Qv,wj . Note that W ′|Qv,wj is indeed non-

degenerate as the restriction of a non-degenerate potential to a full subquiver and ϕj does

not depend on the order in which the ϕv,wj are composed.

Without loss of generality, we can replace W ′ by the right-equivalent potential ϕj(W
′).

Then we have W ′|Qv,w
j′

min

≈ W |Qv,w
j′

for all Qv,wj′ ⊆ Q
′ with j′ < j + 1. Using induction we can

assume that the non-degenerate potential W ′ satisfies W ′|Qv,wj
min

≈ W |Qv,wj for all Qv,wj ⊆ Q′.

By this assumption W ′ = W |Q′ + W̃ ′ for some potential W̃ ′ on Q′ with
−→
ord(W̃ ′) ≥ 3.

Using Corollary 4.2.8 there exist elements pe,j0 ∈ K̂Q′ with
−→
ord
(
pe,j0

)
≥ 2 such that

W ′ = W |Q′ +
∑
e,j

pe,j0 ∂aej (W |Q′) .

Set ϕ0 := id. Assume that for some n ∈ N a unitriangular automorphism ϕn of K̂Q′ and

a potential W̃ ′n =
∑

e,j p
e,j
n ∂aej (W |Q′) with

−→
ord
(
pe,jn
)
≥ 2n + 1 are given such that

W ′n := ϕn(W ′) = W |Q′ + W̃ ′n . (∗)

The automorphism ϕ̃n+1 of K̂Q′ defined by the rules aej 7→ aej − p
e,j
n is unitriangular and

has →-depth 2n. A straightforward calculation yields

ϕ̃n+1(W |Q′) = W |Q′ − W̃ ′n +
∑
e,j

bejp
e,j
n pe,j−1

n .

By Corollary 4.2.8 there are pe,jn+1 ∈ K̂Q with
−→
ord
(
pe,jn+1

)
≥ 2 · (2n + 1)− 1 = 2n+1 + 1 and∑

e,j

bejp
e,j
n pe,j−1

n +
(
ϕ̃n+1(W̃ ′n)− W̃ ′n

)
=
∑
e,j

pe,jn+1∂aej (W |Q′) =: W̃ ′n+1 .

Setting ϕn+1 := ϕ̃n+1 ◦ ϕn, Equation (∗) holds with n replaced by n+ 1.

Since limn→∞
−→
ord(xn) = ∞ is equivalent to limn→∞ ord(xn) = ∞, the sequence of

potentials (W ′n)n∈N converges to W |Q′ and the sequence (ϕn)n∈N determines a unitriangular

automorphism ϕ := limn→∞ ϕn with ϕ(W ′) = W |Q′ (compare Lemma 2.6.23).

Corollary 4.3.2. Let s be a reduced expression for an element in the Weyl group W∆ of ∆.

Then Γ(s) and Γ(−s) admit an up to right-equivalence unique non-degenerate potential.
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5 Potentials for Tagged Triangulations

Motivation

The objects motivating this chapter are most practically introduced with an example.

Roughly speaking, an orbifold is a compact oriented surface Σ with two distinguished

finite sets M, O ⊆ Σ of points. These points are used as the vertices of triangulations.

For instance, we can see below the triangle with set of marked points M = {x1, x2, x3, x4}
and orbifold points O = {y1, y2}. It has been triangulated by arcs i1, i2, i3, i4, i5, i6, i7.

The sides s1, s2, s3 are boundary segments.

s1s3

s2 x1x2

x3

y1 y2

x4 i1i2

i4i3 i5

i6 i7

i5

i6 i7

i3 i4

i2 i1

s3 s1

s2

c5

__

a50 //

a51

//

b5��

c4
��

b4
??

a4

oo

b1

��

c1��

a1

OO

b2��c2

__

a2 //

b3

__

c3
??

a3

��

Every triangulation τ gives rise to a quiver Q(τ). The vertices are the sides of the

triangles in the triangulation and the arrows keep track of adjacencies. The quiver Q(τ) is

weighted. Sides containing an orbifold point have weight 2, all other sides have weight 1.

For our example the quiver Q(τ) can be seen on the right; its weights are di6 = di7 = 2

and ds1 = ds2 = ds3 = di1 = di2 = di3 = di4 = di5 = 1.

There is a path algebra R〈A〉 for Q(τ) over R where R = R(τ) =
∏
i∈Q0(τ)Ri with

Ri =

R if di = 1,

C if di = 2.

The R-bimodule A = A(τ) =
⊕

a∈Q1(τ)Aa is chosen in such a way that

Rj ⊗RRi =


Aa for all j i

aoo with di 6= 2 or dj 6= 2,

Aa0
⊕Aa1

for all j i
a1

oo

a0oo with di = 2 and dj = 2.

In our example, Aa50
⊕Aa51

= C⊗RC 3 1⊗ 1 =: a5 and we have a potential

W (τ) = W∆(τ) +W •(τ)

where W∆(τ) = c1b1a1 + c2b2a2 + c3b3a3 + c4b4a4 + c5b5a5 and W •(τ) = a1a2a3a4.
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5 Potentials for Tagged Triangulations

Such a potential can be constructed for every triangulated orbifold and will depend on

the choice of two coefficient functions u : M \ ∂Σ→ R× and z : O→ C \ R. Just as in the

example, the potential of a triangulation τ has the form

Wu,z(τ) =
∑

Wu,z +
∑
•
W •u (τ)

where the first sum is taken over all puzzle pieces, the building blocks of the triangulation τ ,

and the second sum over all (non-enclosed) punctures, the interior marked points.

What makes triangulations interesting, is that (some of) their arcs can be flipped, yielding

other triangulations of the same orbifold.

Flipping the arc i5 in our example, leads to another triangulation µi5(τ) with the same

arcs as τ except that the “diagonal” i5 of the “quadrilateral” with vertices y1, y2, x3, x4 is

replaced by the other “diagonal” j5:

s1s3

s2 x1x2

x3

y1 y2

x4 i1i2

i4i3 j5

i6 i7

j5

i6 i7

i3 i4

i2 i1

s3 s1

s2

c∗5
��

[c5b4]

OO

[c4b5]

��

b∗5
??

c∗4

__

b∗4��

b1

��

c1��

a1

OO

b2��c2

__

a2 //

b3

__

c3
??

a3

��

On the level of weighted quivers, this change of triangulation is reflected by mutation.

The potential W (µi5(τ)) = W∆(µi5(τ)) +W •(µi5(τ)) of the flipped triangulation in the

running example, defined by W∆(µi5(τ)) = c1b1a1 +c2b2a2 +c3b3a3 +c∗5[c5b4]b∗4 +c∗4[c4b5]b∗5
and W •(µi5(τ)) = a1a2a3b

∗
4c
∗
4, is easily seen to be obtained from W (τ) via mutation at i5.

Results

The first main result of this chapter is the construction of an SP Su,z(τ) = (A(τ),Wu,z(τ))

for every triangulation τ such that, whenever µi(τ) is obtained from τ by flipping an arc,

the SP Su,z(µi(τ)) coincides with the SPs in µi(Su,z(τ)) up to reduced-Q0(τ)-equivalence.

Ordinary triangulations can possess non-flippable arcs. For applications to cluster-algebra

theory it is however desirable that every arc can be flipped. As a remedy, one can replace

ordinary triangulations by an “enriched” version of so-called tagged triangulations.

We extend the result already mentioned to the tagged situation. That is, we will define an

SP Su,z(τ ) = (A(τ ),Wu,z(τ )) for every tagged triangulation τ . Assuming that the orbifold

under consideration is not a sphere whose total number of boundary components, marked

points, and orbifold points is less than seven, we will again prove that the SP Su,z(µi(τ ))

is reduced-Q0(τ )-equivalent to the SPs in the mutation µi(Su,z(τ )) for all tagged arcs i.

The important consequence is the non-degeneracy of Su,z(τ ).

For orbifolds with non-empty boundary the Q0(τ )-equivalence class of the SP Su,z(τ )

will be shown to be independent of the particular choice of the coefficient functions u and z.
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5.1 Triangulated Orbifolds

5.1 Triangulated Orbifolds

Fomin, Shapiro, and Thurston [FST08] introduced tagged triangulations of bordered surfaces

with marked points to model the mutation combinatorics of an interesting class of skew-

symmetric cluster algebras: Cluster mutation corresponds to flipping arcs in triangulations.

Felikson, Shapiro, and Tumarkin [FST12a] defined tagged triangulations in a more

general setting for orbifolds. In this way, they cover all non-exceptional skew-symmetrizable

cluster algebras of finite mutation type.

This section is a short introduction to triangulated orbifolds.

5.1.1 Orbifolds

The following notion of orbifolds is due to [FST12a].

Definition 5.1.1. An orbifold is a triple Σ = (Σ,M,O) satisfying the following properties:

(a) Σ is a connected compact oriented smooth surface with boundary ∂Σ.

(b) M is a non-empty finite subset of Σ.

(c) O is a finite subset of Σ \ (M ∪ ∂Σ).

(d) M intersects each connected component of ∂Σ at least once.

(e) Σ is neither a sphere with |M ∪O| < 4 nor a monogon with |M ∪O| < 3.

(f) Σ is neither a digon nor a triangle with (M \ ∂Σ) ∪O = ∅.

As in [FST08], Σ is called a c-gon if Σ is a disk and |M ∩ ∂Σ| = c. A monogon, digon,

triangle, quadrilateral etc. is a 1-gon, 2-gon, 3-gon, 4-gon etc.

The points in M are called marked points, those in P = M\∂Σ punctures, those in M∩∂Σ

boundary marked points, and those in O orbifold points. We say that Σ is unpunctured,

once-punctured, twice-punctured etc. if the cardinality of P is 0, 1, 2 etc.

A connected component of ∂Σ \M is called a boundary segment of Σ.

Convention 5.1.2. For the rest of the whole chapter we fix an orbifold Σ = (Σ,M,O).

The set of punctures M \ ∂Σ will be denoted by P, the genus of Σ by g, and the number

of connected components of the boundary ∂Σ by b. We define m = |M|, p = |P|, o = |O|.

Moreover, we write s for the set of boundary segments of Σ.

Finally, let λ = (λ1, . . . , λb) be the integer partition of m− p defined by λs = |M ∩ Cs|
where ∂Σ = C1

.
∪ · · ·

.
∪ Cb is a partition of the boundary of Σ into connected components

such that the cardinality of M ∩ Cs decreases in s.

In illustrations we draw marked points as , orbifold points as , and boundary segments

as . The orientation of drawn surfaces is always assumed to be clockwise.

105



5 Potentials for Tagged Triangulations

Remark 5.1.3. By the classification of compact orientable smooth surfaces with boundary,

the invariant (g, λ, p, o) determines Σ up to diffeomorphism. The surface Σ can be obtained

from the g-fold torus by cutting out b pairwise disjoint open disks. Compare Example 5.1.6.

Remark 5.1.4. Note that, contrary to the terminology, punctures belong to the surface and

orbifold points have neighborhoods diffeomorphic to an open set in Euclidean space.

In [GL16a] orbifolds are called “surfaces with marked points and orbifold points.”

Remark 5.1.5. An orbifold is a triple (Σ,M,O) where (Σ,M∪O) is a bordered surface with

marked points in the sense of [FST08, Definition 2.1] where M 6= ∅ and O ⊆ Σ \ (M ∪ ∂Σ).

Example 5.1.6. The surface with invariant g = 3, λ = (3, 1), p = 1, o = 2 is a 3-fold torus

with two boundary components. It is the quotient of the 4g-sided figure drawn below in

which sides carrying the same label are identified as indicated.

1

1

2

2

3

3 4

4

5

5

6

6

Example 5.1.7. The quadrilateral with two orbifold points, the once-punctured triangle,

and the once-punctured torus with one orbifold point:

Example 5.1.8. We regard the point at infinity as a point of the drawing plane. Both of

the following two pictures represent a twice-punctured sphere with two orbifold points.

5.1.2 Triangulations

The definitions of arcs and triangulations given in this section are based on [FST12a]. In

case of doubt, it could be helpful to consult [FST08, Definition 2.2]. However, a rigorous
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5.1 Triangulated Orbifolds

understanding of these definitions is not essential for this chapter and they should rather

be considered a motivation. Namely, we will always work with puzzle-piece decompositions,

which allow us to use purely combinatorial arguments. No topology or geometry is needed.

Definition 5.1.9. A curve γ in Σ is the image of a simple curve [0, 1]
ι−→ Σ such that:

(a) ι({0, 1}) ⊆M ∪O and ι({0, 1}) ∩M 6= ∅ and ι((0, 1)) ∩ (M ∪O ∪ ∂Σ) = ∅.

(b) γ does not cut out an unpunctured monogon with less than two orbifold points.

(c) γ does not cut out an unpunctured digon without orbifold points.

The points in ι({0, 1}) are the endpoints of γ; those in ι((0, 1)) are the inner points of γ.

The curve γ is called ordinary, if its endpoints belong to M, and pending, if one of its

endpoints lies in O and the other in M. Every curve in Σ is either ordinary or pending.

Two curves γ and γ′ in Σ are ambient-isotopic if there exists a homotopy Σ× [0, 1]→ Σ

relative M ∪O ∪ ∂Σ given by (s, t) 7→ Ht(s) such that H0 = idΣ, H1 ◦ γ = γ′, and Ht is a

homeomorphism for all t ∈ [0, 1].

An arc i in Σ is an ambient-isotopy class of a curve in Σ. The endpoints of an arc are

the endpoints of a curve representing the arc. An arc is said to be ordinary resp. pending

if it can be represented by an ordinary resp. pending curve.

Two arcs i and i′ in Σ are compatible if they can be represented by curves γ and γ′ that

do not intersect each other except possibly in their endpoints belonging to M.

A set of arcs in Σ is compatible if its elements are pairwise compatible.

Remark 5.1.10. It is known that every compatible set {i1, . . . , i`} of arcs in Σ can be

represented by curves γ1, . . . , γ` in Σ that do not intersect each other in Σ \M.

Furthermore, as a consequence of Whitney’s Approximation Theorem, γ1, . . . , γ` can be

assumed to be images of smooth simple curves in Σ.

Remark 5.1.11. Let γ0 and γ1 be curves in Σ given as the images of simple curves ι0 and ι1

in Σ. It is known that γ0 and γ1 are ambient-isotopic if ι0 and ι1 are isotopic, i.e. there is a

family of curves γt in Σ given as the images of simple curves ιt in Σ such that (s, t) 7→ ιt(s)

defines a homotopy [0, 1]× [0, 1]→ Σ from ι0 to ι1.

Example 5.1.12. Let Σ be the quadrilateral with two orbifold points. The left picture

below displays images of simple curves [0, 1]→ Σ that are not curves in Σ. On the right

one can see three curves in Σ that all represent the same arc.
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5 Potentials for Tagged Triangulations

Example 5.1.13. The leftmost picture below illustrates three (representing curves of)

compatible arcs, whereas each of the other two pictures shows a pair of incompatible arcs.

Definition 5.1.14. A triangulation τ of Σ is an inclusion-wise maximal set of pairwise

compatible arcs in Σ. We call the pair (Σ, τ) a triangulated orbifold.

Remark 5.1.15. Triangulations are called ideal triangulations in [FST08] and [FST12a].

Proposition 5.1.16. Every compatible set of arcs in Σ is contained in a triangulation.

All triangulations of Σ have the same number n of arcs. Explicitly,

n = 6(g − 1) + 3b+m+ 2(p+ o) .

Every compatible set of n− 1 arcs in Σ is contained in at most two triangulations.

Proof. See [FST08, Proposition 2.10, Definition 3.1] and [FST12a].

Example 5.1.17. The number of arcs in triangulations of the quadrilateral with two orbifold

points is n = −6 + 3 + 4 + 4 = 5. Two such triangulations are shown below.

Example 5.1.18. Triangulations of the once-punctured triangle have n = −6 + 3 + 4 + 2 = 3

arcs. Here are two examples:

The next two propositions reveal the combinatorial nature of triangulations.
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5.1 Triangulated Orbifolds

Figure 5.1.1: non-degenerate triangles: ordinary, once-, twice-, and triply-orbifolded.

Figure 5.1.2: self-folded triangle.

Proposition 5.1.19. Let τ be a triangulation of Σ represented by curves γ1, . . . , γn that

do not intersect in Σ\M. Then every closure of a connected component of Σ\ (γ1∪· · ·∪γn)

(considered up to ambient isotopy) is one of the triangles shown in Figures 5.1.1 and 5.1.2.

Proof. See [FST08, § 2] and [FST12a, § 4] for references.

Remark 5.1.20. The triply-orbifolded triangle (rightmost in Figure 5.1.1) can only occur in

triangulations of the once-punctured sphere with three orbifold points. It is the one and

only triangle of each such triangulation.

Definition 5.1.21. The side of a self-folded triangle (Figure 5.1.2) connecting two different

marked points is called folded ; the other side is the enclosing loop.

The marked point shared by the folded side and the enclosing loop is referred to as the

basepoint and the other endpoint of the folded side is called the enclosed puncture.

Corollary 5.1.22. All triangulations of Σ have the same number t of triangles, where

t = 4(g − 1) + 2b+m+ p+ o .

Proof. See [FG07, § 2].

5.1.3 Puzzle-Piece Decomposition

For a detailed version of the next statement see [FST08, Remark 4.2] and [FST12a, § 4].

Proposition 5.1.23. Every triangulated orbifold (Σ, τ) can be obtained as follows:

(1) Take several copies of the (clockwise oriented) puzzle pieces shown in Figure 5.A.1.

(2) Partially pair up the outer sides of the pieces chosen in the first step, but never pair

two sides of the same piece.

(3) Glue each paired outer side with its partner, making orientations match. The outer

sides without a partner become boundary segments.

109



5 Potentials for Tagged Triangulations

Figure 5.1.3: triangulated once-punctured torus.

Corollary 5.1.24. Let τ be a triangulation of Σ. Every puzzle piece (see Figure 5.A.1)

of τ contains a unique non-degenerate triangle ∆( ) of τ (see Figure 5.1.1). Vice versa,

every non-degenerate triangle ∆ of τ is contained in a unique puzzle piece τ (∆) of τ .

Remark 5.1.25. By dint of the puzzle-piece decomposition described in Proposition 5.1.23

the arcs of any triangulation τ of Σ can be classified as follows: Every arc in τ is either

(a) an inner side of a puzzle piece, called an unshared arc in τ ; or

(b) an outer side of exactly two puzzle pieces, called a shared arc in τ .

An unshared arc in τ is either pending or belongs to a self-folded triangle of τ . In total

there are 18 arctypes for non-folded unshared arcs. They are listed in Table 5.A.10.

For a shared arc i in τ let its kind be the total number of arcs shared by the two puzzle

pieces containing i. The kind of an unshared arc i in τ is defined as zero.

The kind of an arc in τ is at most two unless (Σ, τ) is the triangulated once-punctured

torus depicted in Figure 5.1.3 (where the kind of all arcs is three).

All possibilities how two puzzle pieces can share a fixed arc whose kind is one, two, or

three, respectively, are listed in Tables 5.A.7 to 5.A.9. Summing up, there are
(

9
2

)
= 45

arctypes of kind one,
(

6
2

)
= 21 arctypes of kind two, and just one arctype of kind three. All

together, we have 85 = 18 + 45 + 21 + 1 different arctypes for non-folded arcs.

Example 5.1.26. Indicated below are the puzzle-piece decompositions for some of the

triangulations from Examples 5.1.17 and 5.1.18:

5.1.4 Flipping Arcs

Removing an arc i from a triangulation τ , one is left with a compatible set of n− 1 arcs.

By Proposition 5.1.16 there can be at least one other triangulation µi(τ) containing this

compatible set. Deciding whether such µi(τ) exists is simple:
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5.1 Triangulated Orbifolds

Proposition 5.1.27. Let τ be a triangulation of Σ and i ∈ τ . Then τ \ {i} is contained

in a triangulation µi(τ) of Σ different from τ if and only if i is a non-folded arc in τ .

Proof. See [FST08, § 3].

Definition 5.1.28. Let i be a non-folded arc in a triangulation τ . The triangulation µi(τ)

is said to be obtained by flipping i in τ .

Example 5.1.29. The right triangulation in Example 5.1.18 is obtained from the left one

by flipping the enclosing loop. The folded side cannot be flipped.

Remark 5.1.30. Let τ and ς be two triangulations related by flipping an arc, say ς = µi(τ)

and τ = µj(ς). Then i is pending if and only if j is pending. Denote by κτ (i) the kind of i

in τ and by κς(j) the kind of j in ς. Then κτ (i) = κς(j) or {κτ (i), κς(j)} = {0, 2}.

Remark 5.1.31. A set {X,Y } of arctypes (see Remark 5.1.25) is called a flippant pair if

there are triangulations τ and ς of some orbifold Σ that are related by flipping, say ς = µi(τ)

and τ = µj(ς), such that the arctype of i in τ is X and the arctype of j in ς is Y . Inspection

shows that there are 46 flippant pairs. All of them are listed in Table 5.A.11.

Each pair of triangulations of an orbifold can be connected by a finite sequence of flips

in the following sense:

Proposition 5.1.32. For every two triangulations τ and ς of Σ there are arcs i1, . . . , i`

in Σ such that ς = µi` · · ·µi1(τ) and τ ∩ ς ⊆ µis · · ·µi1(τ) for all 0 < s < `.

Proof. See [FST08, Proposition 3.8] and [FST12a, Theorem 4.2].

5.1.5 Tagged Triangulations

The fact that folded arcs cannot be flipped is the reason for introducing a more sophisticated

type of triangulation. These tagged triangulations arise from triangulations by replacing

enclosing loops and by “tagging” arcs at their ends (i.e. by marking some ends with a

“notch” ./). In a tagged triangulation every arc can be flipped.

Notation 5.1.33. Recall from [FST08, Definition 7.1] that every arc i in Σ has two “ends”

and each end e of i contains precisely one point x(e) from M ∪O.

We denote by e(i) the set of ends of i. If i is a loop enclosing x ∈ P, i.e. i cuts out a

once-punctured monogon with puncture x, let i] be the unique arc in Σ such that i and i]

form a self-folded triangle. For arcs i that are not enclosing loops set i] := i.

Definition 5.1.34. A tagged arc i in Σ is a pair (i, tag) where i is an arc in Σ that is not

an enclosing loop and e(i)
tag−−→ {◦, ./} is a function with tag(e) = ◦ whenever x(e) 6∈ P.

If Σ is a once-punctured closed orbifold (i.e. b = 0, p = 1) we require tag(e) = ◦ for all e.
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5 Potentials for Tagged Triangulations

For tagged arcs i = (i, tag) set i[ := i and for boundary segments i ∈ s set i[ := i.

Let ε ∈ {±1}P and i an arc in Σ. For x ∈M ∪O let

ε̃(i, x) =


+1 if x 6∈ P or b = 0, p = 1,

−ε(x) if i is a loop enclosing x ∈ P,

ε(x) otherwise.

Denote by iε the tagged arc
(
i], tagε

)
given by

tagε(e) =

 ◦ if ε̃(i, x(e)) = +1,

./ if ε̃(i, x(e)) = −1.

A tagged triangulation τ of Σ is a set of tagged arcs such that τ = τ ε :=
{
iε | i ∈ τ

}
for

some triangulation τ of Σ and some ε ∈ {±1}P.

For a tagged triangulation τ the (uniquely determined) triangulation τ with τ = τ ε for

some suitable ε ∈ {±1}P is called the underlying triangulation of τ . We set τ [ := τ .

A tagged arc i is called pending if i[ is pending. Define τ× := {i ∈ τ | i pending}.

Two tagged arcs are compatible if there is a tagged triangulation of Σ containing both

of them. A set of tagged arcs is compatible if its elements are pairwise compatible.

The ends e of arcs with tag(e) = ./ are tagged notched and will be visualized as .

The ends with tag(e) = ◦ will not be accentuated in any special way.

Remark 5.1.35. Let ε ∈ {±1}P. Then (iε)[ = i] for every arc i in Σ.

In particular,
{
i[ | i ∈ τ

}
⊆ τ [ for every tagged triangulation τ . This inclusion is proper

if and only if τ [ contains a self-folded triangle.

Remark 5.1.36. To facilitate the formulation of Proposition 5.1.45, Definition 5.1.34 slightly

deviates from [FST08; FST12a] for once-punctured closed orbifolds.

Remark 5.1.37. See the original reference [FST08, § 7] and [FST12a] for various helpful

examples and a more illustrative version of Definition 5.1.34.

Example 5.1.38. The triangulation τ of the twice-punctured quadrilateral drawn below on

the left gives rise to the tagged triangulation τ ε on the right where ε(x) = −1 and ε(y) = 1.

i

j

x

y iε

jε

y

x
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Example 5.1.39. The picture on the left and in the middle each shows a set of compatible

tagged arcs, whereas on the right picture one sees a pair of incompatible tagged arcs:

Definition 5.1.40. Let τ be a tagged triangulation and let Pτ ⊆ P be the set of punctures

that are enclosed by arcs of τ = τ [. Restriction ε 7→ ε|Pτ establishes a bijection

Eτ =
{
ε ∈ {±1}P | τ ε = τ

}
−−−−→ {±1}Pτ .

The preimage ετ of the function with constant value +1 under this bijection is called

the weak signature of τ (see [Lab16, Definition 2.10]).

The elements of Eτ are called sign functions for τ .

5.1.6 Flipping Tagged Arcs

Here are the analogs of Propositions 5.1.16 and 5.1.27 for tagged triangulations:

Proposition 5.1.41. Every compatible set of tagged arcs in Σ is contained in a tagged

triangulation of Σ. Every compatible set of n− 1 tagged arcs is contained in exactly two

tagged triangulations.

Proof. See [FST08, Theorem 7.9] and [FST12a].

Corollary 5.1.42. Let τ be a tagged triangulation of Σ and i ∈ τ . Then τ \ {i} is

contained in exactly one tagged triangulation µi(τ ) of Σ different from τ .

Definition 5.1.43. The tagged triangulation µi(τ ) is said to be obtained by flipping i.

Corollary 5.1.44. Let τ be a triangulation of Σ and ε ∈ {±1}P. Then (µi(τ))ε = µiε(τ
ε)

for every non-folded arc i in τ .

Proof. This follows from Proposition 5.1.27, Corollary 5.1.42, and Definition 5.1.34.

The following result is often used to see that properties that are invariant under flipping

arcs hold for all tagged triangulations of an orbifold if they hold for any.

Proposition 5.1.45. For every two tagged triangulations τ and ς of Σ there are tagged

arcs i1, . . . , i` in Σ with ς = µi` · · ·µi1(τ ) and τ ∩ ς ⊆ µis · · ·µi1(τ ) for all 0 < s < `.

Proof. See [FST08, Proposition 7.10] and [FST12a, Theorem 4.2, proof of Lemma 4.3].
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Remark 5.1.46. The tagged flip graph E./(Σ) of Σ is the simple graph whose vertices are

the tagged triangulations of Σ and in which two vertices are joined by an edge if and only

if they can be obtained from one another by flipping an arc (see [FST08, § 7]).

By Corollary 5.1.42 and Proposition 5.1.45 the graph E./(Σ) is n-regular and connected.

Example 5.1.47. Below on the left one sees the tagged triangulation induced by the first

triangulation of Example 5.1.18. Flipping the tagged arcs i and j, respectively, yields the

tagged triangulations shown in the middle and on the right.

i

j

j i

5.2 Modulation of a Tagged Triangulation

We will define a modular quiver Q(τ) for each (tagged) triangulation τ of an orbifold Σ.

5.2.1 Adjacency Quiver of a Triangulation

The quiver Q′(τ) of a triangulation τ defined in [GL16a] carries the same information

as the signed adjacency matrix used in [FST08; FST12a]. Apart from keeping track of

orientation and weights in a slightly different way, they are the diagrams of [FZ03].

The adjacency quiver Q(τ) introduced here is closely related to Q′(τ) but has additional

“frozen” vertices corresponding to the boundary segments.

The purpose of this subsection is to settle notation and to revise how the puzzle-piece

decomposition of a triangulation gives rise to a decomposition of the adjacency quiver, the

so-called block decomposition from [FST08; FST12b].

Notation 5.2.1. We denote by Q2(τ) the set of non-degenerate triangles (see Figure 5.1.1)

of a triangulation τ of Σ. For a triangle ∆ ∈ Q2(τ) and i, j ∈ τ ∪ s we will write

(i, j) ∈ ∆

if both i and j are sides of ∆ and j follows i in ∆ with respect to the orientation of Σ.

Copying [FST08, Definition 4.1] let τ ∪ s
πτ−−→ τ ∪ s be the idempotent function with

πτ (i) =

j if i is the folded side of a self-folded triangle in τ with enclosing loop j,

i otherwise.
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Definition 5.2.2. Let τ be a triangulation of Σ. The (adjacency) quiver Q(τ) of τ is the

modular quiver (Q(τ), d, σ) whose vertices are the arcs in τ and boundary segments of Σ.

Formally, Q0(τ) = τ ∪ s. Vertices i ∈ Q0(τ) have weight di = 2 if i is a pending arc and

weight di = 1 otherwise. The arrow set is

Q1(τ) =
{
i

(∆,(i,j),r)−−−−−−−→ j |∆ ∈ Q2(τ), i, j ∈ Q0(τ) with (πτ (i), πτ (j)) ∈ ∆, r ∈ Z/djiZ
}

.

The tuple (σa)a∈Q1(τ) is defined by σa = r for each a = (∆, (i, j), r) ∈ Q1(τ).

Notation 5.2.3. Set ∆(a) := ∆ and (a) := τ (∆) for arrows a = (∆, (i, j), r) ∈ Q1(τ).

We say that a is induced by the (non-degenerate) triangle ∆ or the puzzle piece (a).

For each puzzle piece of τ we will denote by Q the subquiver of Q(τ) spanned by all

arrows that are induced by . More generally, we call every subquiver Q 1 ⊕ · · · ⊕Q `

of Q(τ) the subquiver induced by the puzzle pieces 1, . . . , `.

Remark 5.2.4. Obviously, a = (∆(a), (s(a), t(a)), σa) for every a ∈ Q1(τ).

Remark 5.2.5. According to [FST12a, Lemma 4.10] there is a decomposition

Q(τ) =
⊕

Q

where the sum runs over all puzzle pieces of τ . The modular quivers Q for the different

types of puzzle pieces are listed in Figures 5.A.2 to 5.A.6. See also Example 5.2.12.

Remark 5.2.6. The quiver Q(τ) of every triangulation τ is connected, since Σ is connected.

Remark 5.2.7. Proposition 5.1.23 and Remark 5.2.5 lead to the following observations

concerning the number qji of arrows j ←− i in Q(τ):

• qji ≤ 2.

• If qij ≥ 1, then qji ≤ 1.

• If dji = 2 and dij = 1, then qji ≤ 1.

• If dji 6= 2, there is at most one arrow j ←− i induced by the same triangle.

• If dji = 2 and qji ≥ 1, then qij = 0 and qji = 2 and {σa | j
a←− i ∈ Q1(τ)} = Z/2Z.

The second item shows that Q(τ) has a unique maximal 2-acyclic subquiver.

Note that dji = 2 means that both i and j are pending, while dji = 2 and dij = 1 means

that exactly one of i and j is pending.

Remark 5.2.8. The full subquiver Q◦(τ) of Q(τ) spanned by τ (i.e. by all vertices that are

not boundary segments) is called the “unreduced weighted quiver of τ” in [GL16a].

Remark 5.2.9. Let τ be a triangulation and Q′(τ) the maximal 2-acyclic subquiver of Q◦(τ).

The skew-symmetrizable matrix B(τ) corresponding to the weighted quiver Q′(τ) under

the bijection of Remark 2.1.6 is one of the matrices described in [FST12a, § 4.3].
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Convention 5.2.10. We illustrate vertices i in Q(τ) with di = 2 as i and arrows a

with σa = 2 as
a // . The part of Q(τ) not belonging to Q◦(τ) will be drawn in blue.

Example 5.2.11. The triangulation τ of the once-punctured triangle with one orbifold

point shown below on the left gives rise to the modular quiver Q(τ) on the right. The

arrows a0, a1, b0, b1, c are all induced by the triangle whose sides are h, i, k.

s1s3

s2

j

h

k
i

i]

kh

i

i]s3

j

s1

s2 c
oo

b0

��

b1

??

a0

??

a1

��

a2

��

b2

__

c2 //

a3

��

b3

__

c3 //

Example 5.2.12. The second triangulation of Example 5.1.17 has the modular quiver Q(τ)

depicted on the right. The dashed gray boxes indicate the decomposition Q(τ) =
⊕

Q .
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Example 5.2.13. Every triangulation τ of the once-punctured torus with one orbifold point

looks like the one below. Its quiver Q(τ) can be seen on the right.
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With respect to the ordering i < k < h < j < ` on Q0(τ) the matrix B(τ) has the form


0 −2 1 −1 1

1 0 −1 0 0

−1 2 0 −1 1

1 0 1 0 −2

−1 0 −1 2 0

 .
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5.2 Modulation of a Tagged Triangulation

5.2.2 Mutating Adjacency Quivers

Given a triangulation µi(τ) obtained from another triangulation by flipping an arc i, we

will identify the modular quiver Q(µi(τ)) with a subquiver of the premutation µ̃i(Q(τ)).

Convention 5.2.14. The unique maximal 2-acyclic subquiver Q′(τ) of Q(τ) is a reduction

in the sense of Definition 2.1.14. We define µ̃i(Q(τ)) := µ̃i(Q
′(τ)) for all i ∈ τ .

Notation 5.2.15. For an arc i of a triangulation τ write Q(τ, i) for the subquiver of Q(τ)

induced by all (at most two) puzzle pieces of τ that contain i.

Let Q(τ,¬i) be the subquiver of Q(τ) induced by all puzzle pieces of τ not containing i.

Remark 5.2.16. It is Q(τ) = Q(τ,¬i)⊕Q(τ, i) and µ̃i(Q(τ)) = Q(τ,¬i)⊕ µ̃i(Q(τ, i)).

Lemma 5.2.17. Let τ and ς be two triangulations related by flipping an arc, say ς = µi(τ)

and τ = µj(ς). Then Q¬ := Q(τ,¬i) = Q(ς,¬j) and there is a monomorphism

Q(ς)
Φ

↪−−−−−→ µ̃i(Q(τ))

of modular quivers with Φ|Q¬ = idQ¬ and Φ(k) = k for all k ∈ Q0(ς) \ {j} and Φ(j) = i.

The image of Φ contains a maximal 2-acyclic subquiver of µ̃i(Q(τ)).

Proof. This follows from [FST12a, Lemma 4.12] and Definitions 2.1.12 and 5.2.2. It can

be verified directly by inspecting Tables 5.A.12 to 5.A.57.

Remark 5.2.18. Additionally, one can demand in Lemma 5.2.17 that the monomorphism Φ

has the property that for every path
b←− i a←− in Q(τ) . . .

(i) . . . with ∆(b) 6= ∆(a), there is a path b∨c∨a∨ in Q(ς) with ∆(b∨) = ∆(c∨) = ∆(a∨)

such that Φ(b∨) = b∗, Φ(c∨) = [ba]00, Φ(a∨) = a∗.

(ii) . . . with di = 2, σb = σa = 0, the arrow [ba]00 lies in the image of Φ.

Such Φ exists. It is unique if Σ is neither the once-punctured torus (Figure 5.1.3) nor

the once-punctured sphere with three orbifold points (i.e. puzzle piece D̃3).

Example 5.2.19. The first weighted quiver appearing in each of the Tables 5.A.12 to 5.A.57

is Q(τ, i), where i corresponds to the boxed vertex, while the second one is Φ(Q(ς, j)) for

a monomorphism Φ satisfying the property in Remark 5.2.18.

5.2.3 Adjacency Quiver of a Tagged Triangulation

The quiver of a tagged triangulation is defined analogously as in the untagged situation.

Notation 5.2.20. For tagged triangulations τ set πτ (i) := πτ [(i
[) for all i ∈ τ ∪ s.

Definition 5.2.21. Let τ be a tagged triangulation of Σ. The (adjacency) quiver Q(τ )

of τ is the modular quiver with vertex set Q0(τ ) = τ ∪ s. Vertices i in this quiver have
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5 Potentials for Tagged Triangulations

weight di = 2 if i[ is a pending arc and weight di = 1 otherwise. The arrow set is

Q1(τ ) =
{
i

(∆,(i,j),r)−−−−−−→ j |∆ ∈ Q2(τ [), i, j ∈ Q0(τ ) with (πτ (i), πτ (j)) ∈ ∆, r ∈ Z/djiZ
}

.

The tuple (σa)a∈Q1(τ ) is defined by σa = r for each a = (∆, (i, j), r) ∈ Q1(τ ).

The arrow a = (∆, (i, j), r) is induced by = τ [(∆). Set ∆(a) := ∆ and (a) := .

The subquiver of Q(τ ) induced by puzzle pieces 1, . . . , ` is the subquiver of Q(τ )

spanned by all arrows that are induced by one of the pieces 1, . . . , `.

Remark 5.2.22. Let τ be a tagged triangulation of Σ and ε a sign function for τ . Moreover,

let τ = τ [ be the underlying triangulation of τ .

There is a unique isomorphism of modular quivers

Q(τ)
ιτ ,ε−−−−−−→ Q(τ )

that extends the bijection Q0(τ) → Q0(τ ) given by i 7→ iε (where iε := i for i ∈ s) and

satisfies ∆(ιτ ,ε(a)) = ∆(a) for all a ∈ Q1(τ).

5.2.4 Adjacency Modulation

For every (tagged) triangulation τ we have now defined an associated modular quiver Q(τ).

All vertex weights in this quiver are either 1 or 2. To obtain a comfy modulation for Q(τ),

we must therefore choose a degree-2 Galois extension.

Convention 5.2.23. For the rest of the chapter fix a comfy extension (L/K,−1, v)

Abbreviate w := v2 ∈ K.

Write z∗ for the conjugate of z ∈ L, i.e. z∗ = ρ(z) for the non-trivial ρ ∈ Gal(L/K).

Remark 5.2.24. Fixing a comfy extension (L/K,−1, v) is the same as choosing a degree-2

field extension L/K with char(K) 6= 2 and picking an element v ∈ L with v2 ∈ K.

Remark 5.2.25. Let z = x+ yv ∈ L with x, y ∈ K. From field theory we know z∗ = x− yv,

NL/K(z) = zz∗ = x2 − wy2, TrL/K(z) = z + z∗ = 2x, and z − z∗ = 2yv.

Example 5.2.26. For L/K we could take C/R or Fq2/Fq for any odd prime power q. In the

former case, we could also assume that v2 = w = −1.

Definition 5.2.27. The modulation H(τ) of a (tagged) triangulation τ is the modulation

of Q(τ) over (L/K,−1, v).

The ground ring, species, path algebra, and completed path algebra of H(τ) will be

denoted by R(τ), A(τ), H(τ), Ĥ(τ), respectively.

Remark 5.2.28. Let τ and ε be as in Remark 5.2.22. Using the isomorphism ιτ ,ε to identify

the modular quivers Q(τ) and Q(τ ), there is an induced isomorphism of K-modulations

H(τ)
ιτ ,ε−−−−−−→ H(τ ) .
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5.3 Potential of a Tagged Triangulation

All components Ri(τ)
ιτ ,ε−−−→ Rιτ ,ε(i)(τ ) and Aa(τ)

ιτ ,ε−−−→ Aιτ ,ε(a)(τ ) are the identity maps.

Hence, ιτ ,ε induces isomorphisms H(τ)
ιτ ,ε−−−→ H(τ ) and Ĥ(τ)

ιτ ,ε−−−→ Ĥ(τ ) of K-algebras.

5.3 Potential of a Tagged Triangulation

Inspired by the series of articles [Lab09a; Lab09b; CL12; Lab16] we constructed in [GL16a]

for each (tagged) triangulation τ a potential for the species A(τ).

5.3.1 Choosing Coefficients

The potentials we define in this section depend on the following choice of coefficients.

Convention 5.3.1. Fix two functions:

P K× O L \K

• u• z

u z

Define for arcs i in Σ

ui :=

u• if i is a loop enclosing • ∈ P,

1 otherwise,

zi :=

z if i is pending and contains ∈ O,

1 otherwise.

Furthermore, for triangulations τ of Σ and i ∈ τ set uτi :=
(
−uπτ (i)

)−δπτ (i)6=i .

Example 5.3.2. One valid choice is u• = 1 for all • ∈ P and z = v for all ∈ O.

Remark 5.3.3. In [GL16a] we considered the choice z = 1− v for all ∈ O.

5.3.2 Potential Components Induced by Puzzle Pieces

Definition 5.3.4. Let τ be a triangulation of Σ and a puzzle piece of τ .

A cyclic path induced by is a cyclic path cba in Q(τ) with (a) = (b) = (c) = .

For every cyclic path i
c←− k b←− j a←− i in Q(τ) induced by the potential

uτku
τ
ju

τ
i czkbzjazi

for A(τ) is called a potential component induced by .

The potential Wu,z induced by is the sum of all potential components induced by .

Example 5.3.5. Figures 5.A.2 to 5.A.6 list Wu,z for all types of puzzle pieces .
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5 Potentials for Tagged Triangulations

5.3.3 Potential Components Induced by Punctures

Definition 5.3.6. Let τ be a triangulation of Σ and • ∈ P not enclosed by any arc of τ .

Not drawing enclosing loops, an infinitesimal neighborhood of • in (Σ, τ) looks as follows:

i`−1

`−1

i`

i1

i2

i3

`

1

2

A path i1
a`←−− i`

a`−1←−−− · · · a2←−− i2
a1←−− i1 in Q(τ) is induced by • if (as) = s for all s.

For every cyclic path a` · · · a1 in Q(τ) induced by • the potential

u• a` · · · a1

for A(τ) is called a potential component induced by •.

The potential W •u (τ) induced by • is the sum of all potential components induced by •.

5.3.4 Potential of a (Tagged) Triangulation

Definition 5.3.7. The potential of a triangulation τ of Σ is defined as

Wu,z(τ) =
∑

Wu,z +
∑
•
W •u (τ)

where runs through all puzzle pieces of τ and • through all punctures in Σ that are not

enclosed by any arc of τ .

The species with potential of τ is Su,z(τ) = (A(τ),Wu,z(τ)).

Lemma 5.3.8. Su,z(τ) is 2-acyclic after reduction for every triangulation τ .

Proof. If Q(τ) contains a cyclic path ba whose two vertices are i and j, then i and j are arcs

in τ with arctypes {X↑, Y ↓} and {X↓, Y ↑} for some X,Y ∈ {A,B, B̃} (see Table 5.A.9).

Then di = dj = 1, the subquiver Q′ of Q(τ) spanned by a, b is full and Wu,z(τ)|Q′1 = u•ba for

some • ∈ P. Since u• ∈ K×, we can conclude that Su,z(τ) is 2-acyclic after reduction.

Example 5.3.9. For the triangulations from the examples in the previous subsection it is

Wu,z(τ) = czk(b0a0 − 1
ui
b1a1) + c2b2a2 + c3b3a3 (Example 5.2.11) ,

Wu,z(τ) = czk(b0 + b1)zia+ c2b2a2 + c3b3a3 + c4b4a4 (Example 5.2.12) ,

Wu,z(τ) = c0zkb0a0 + c1b1a1 + c2b2a2 + u• c1b2a1c0b0c2b1a2a0 (Example 5.2.13) .
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5.3 Potential of a Tagged Triangulation

Example 5.3.10. Every triangulation τ of the sphere with one puncture • and three orbifold

points consists of exactly one puzzle piece of type D̃3 (see Figure 5.A.1). The modular

quiver Q(τ) = Q and the potential Wu,z are shown in Figure 5.A.6. We have

W •u (τ) = u• (c0 + c1)(b0 + b1)(a0 + a1) .

Example 5.3.11. The triangulation τ of the twice-punctured monogon with one orbifold

point seen below on the left has the quiver Q(τ) drawn on the right. For the non-enclosed

puncture • we have W •u (τ) = u• c2b2c1b1a3.
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Definition 5.3.12. Let τ be a tagged triangulation and ε a sign function for τ . Denote

by ε · u the function P→ K× given by pointwise multiplication of ε and u.

The ε-potential of τ is W ε
u,z(τ ) = ιτ ,ε

(
Wε·u,z(τ)

)
.

The potential of τ is Wu,z(τ ) = W
ετ
u,z(τ ) where ετ is the weak signature of τ .

Define Sεu,z(τ ) = (A(τ ),W ε
u,z(τ )) and Su,z(τ ) = (A(τ ),Wu,z(τ )).

Convention 5.3.13. Let τ and ς be (tagged) triangulations with µi(τ) = ς and µj(ς) = τ .

The bijection Q0(τ)→ Q0(ς) that maps i to j and every k ∈ (τ ∩ ς) ∪ s to itself induces

an isomorphism R(τ)→ R(ς) of K-algebras. This isomorphism will be used to consider the

path algebra H(ς) and the completed path algebra Ĥ(ς) as R(τ)-algebras.

For X ∈ {τ ∪ s, R(τ)} and SPs S = (A(τ),W ), S ′ = (A(ς),W ′) we write S ′ ≈X µi(S)

to indicate that every (equivalently, any) SP in µi(S) is reduced-X-equivalent to S ′.

We write ∼τ for ∼τ∪s and ∼R for ∼R(τ) and, similarly, ≈τ for ≈τ∪s and ≈R for ≈R(τ).

5.3.5 Conjugating the Coefficients

Definition 5.3.14. For (tagged) arcs i in Σ let O z∗i−−−→ L \K be the function 7→ z∗i

given as

z∗i =

z∗ if i contains ,

z otherwise.

Remark 5.3.15. Obviously, (z∗i)∗i = z for all i and z∗i = z for non-pending i.
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5 Potentials for Tagged Triangulations

Lemma 5.3.16. For every (tagged) triangulation τ and i ∈ τ it is Su,z∗i(τ) ∼τ Su,z(τ).

Proof. Abbreviate Q = Q(τ), R = R(τ), A = A(τ). If di = 1, there is nothing to show.

We will therefore assume di = 2.

The non-identity element fi in Gal(Ri/K) and the identities fj = idRj for j 6= i induce

an automorphism R
f−→ R.

In view of Remark 5.2.7 there is a bijection Q1
g−→ Q1 such that for k

a←− j ∈ Q1

g(a) =


a′ if i ∈ {j, k} and dkj = 2,

where a′ is the unique arrow k ←− j with σa′ 6= σa,

a otherwise.

In either case, we have ρg(a)fj = fkρa on Rk ∩Rj ⊆ L. Hence, the identities Aa → Ag(a)

of K-vector spaces induce an R-bimodule isomorphism A
g−→ f∗A.

The induced isomorphism H(τ)
g−→ f∗H(τ) of R-algebras can be regarded as an auto-

morphism of the KQ0-algebra H(τ). It is easy to see that g(Wu,z(τ)) = Wu,z∗i(τ).

5.4 Compatibility of Flip and Mutation

We will prove that Su,z(τ) and Su,z(ς) correspond to each other under mutation, if the

triangulations τ and ς are related by flipping an arc.

5.4.1 Compatibility for Triangulations

Theorem 5.4.1. Let τ be a triangulation of Σ and let i be a non-folded arc of τ . Then

we have Su,z∗i(µi(τ)) ≈R µi(Su,z(τ)). In particular, Su,z(µi(τ)) ≈τ µi(Su,z(τ)).

Proof. Let ς = µi(τ), τ = µj(ς). The last claim follows from the first one by Lemma 5.3.16.

We prove the theorem case by case. In each case, we assume that the arctype of i in τ is

a previously fixed one (see Remark 5.1.25). In total, we thus have 85 cases.

Since Su,z∗i(ς) ≈R µi(Su,z(τ)) ⇔ Su,z(τ) ≈R µj(Su,z∗i(ς)) by Theorem 2.6.101, we can

swap τ , i, z for ς, j, z∗i whenever we like to. This reduces the number of cases to consider

to 46 (see Remark 5.1.31). Moreover, we can always assume that i is not an enclosing loop.

Abbreviate Q = Q(τ, i) and Q′ = Q(ς, j) and Q̃ = µ̃i(Q). Recall that Q(τ) = Q¬ ⊕Q
and Q(ς) = Q¬ ⊕Q′ and µ̃i(Q(τ)) = Q¬ ⊕ Q̃ for some Q¬.

Let Q(ς)
Φ
↪−→ µ̃i(Q(τ)) be a monomorphism of modular quivers like in Lemma 5.2.17

satisfying the property of Remark 5.2.18. Then Φ restricts to a map Q′ ↪−→ Q̃ and induces

an injective R(τ)-algebra homomorphism

H ′ = H(ς)
Φ

↪−−−−−→ µ̃i(H(τ)) = H̃ .
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5.4 Compatibility of Flip and Mutation

Let W = (Wu,z(τ))Q1 and W ′ = (Wu,z∗i(ς))
Q′1 .

We will proceed as follows:

(1) Construct ϑ ∈ AutQ(τ)−Q1
(H(τ)) such that ϑ(W ) is in i-split form.

(2) Compute the premutation W̃ = µ̃i(ϑ(W )).

(3) Construct ϑ̃ ∈ Aut
µ̃i(Q(τ))−Q̃1

(H̃) such that ϑ̃(W̃ ) is in Q̃1-split form.

(4) Compute W̃ ′ = red
Q̃1

(
ϑ̃(W̃ )

)
and T̃ = triv

Q̃1

(
ϑ̃(W̃ )

)
⊆ Q̃.

We will choose ϑ and ϑ̃ in such a way that Φ(W ′) = W̃ ′ and Q̃ = Q̃′⊕ T̃ for Q̃′ = Φ(Q′).

All in all, this will prove the theorem, since then

Φ
(
Wu,z∗i(ς)

)
= red

Q̃1

(
ϑ̃
(
µ̃i(ϑ(Wu,z(τ)))

))
.

It remains to construct the maps ϑ and ϑ̃ such that indeed Φ(W ′) = W̃ ′ and Q̃ = Q̃′⊕ T̃ .

Tables 5.A.12 to 5.A.57 give instructions how to do this. Each table has the following form:

X W Q

ϕ ϕ1 ; · · · ; ϕ`(ϕ)

ψ ψ1 ; · · · ; ψ`(ψ)

T1 . . .

ϕ̃ ϕ̃1 ; · · · ; ϕ̃`(ϕ̃)

ψ̃ ψ̃1 ; · · · ; ψ̃`(ψ̃)

T̃1 . . .

Y W̃ ′ Q̃′

To begin with, locate the table where X is the arctype of i in τ and Y the arctype of j

in ς. If you don’t find any such table, or, if {X,Y } = {{A,A}, {A,A}} and W is not of

the form shown in the first row of Table 5.A.28, swap τ , i, z for ς, j, z∗i and try again.

The quivers Q and Q̃′ as well as the potential W are shown in the table at the indicated

places. The boxed vertex in the depiction of Q and Q̃′ is i.

It is not hard to see that W has the form appearing in the table. The subscripted

letters ω represent elements in H(τ)∩ H̃ ∩H ′. They are used as placeholders in summands

of W and W̃ ′ induced by punctures.

Define ϑ = ψ ◦ϕ and ϑ̃ = ψ̃ ◦ ϕ̃ where f = f`(f) ◦ · · · ◦ f1 for f ∈ {ϕ,ψ, ϕ̃, ψ̃}. If the table

does not contain a row labeled f , take for f the identity. The maps fr are represented in

the tables by their defining substitution rules a 7→ fr(a). The notation a νa is used as
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5 Potentials for Tagged Triangulations

an abbreviation for the rule a 7→ a+ νa. Sometimes the letters xh and yh are used for the

scalars in K that appear in the decomposition zh = xh + yhv (see Remark 5.2.25).

To check that W̃ ′ has the form written down in the table requires straightforward but in

many cases lengthy computation. The identity Φ(W ′) = W̃ ′ is then obvious in all cases.

This concludes the proof.

Remark 5.4.2. Similar computations as those compiled in Tables 5.A.12 to 5.A.57 were

carried out in [Lab09a; Lab09b; CL12; Lab16; GL16a]. Some tables treat triangulations of

spheres Σ with m+ o = 4 not considered in the articles just mentioned.

5.4.2 Compatibility for Tagged Triangulations

Notation 5.4.3. For tagged triangulations τ and sign functions ε for τ denote by iτ ,ε

the preimage of i ∈ τ under the bijection ιτ ,ε from Remark 5.2.22.

Corollary 5.4.4. Let τ be a tagged triangulation of Σ and ε a sign function for τ . Then

for all i ∈ τ such that iτ ,ε is non-folded in τ [ we have Sε
u,z∗i

(µi(τ )) ≈R µi(Sεu,z(τ )).

Proof. Let i = iτ ,ε, τ = τ [, ς = µi(τ). Then Sε·u,z∗i(ς) ≈R µi(Sε·u,z(τ)) by Theorem 5.4.1.

Now use ς := µi(τ ) = (µi(τ))ε, W ε
u,z(τ ) = ιτ ,ε(Wε·u,z(τ)), W ε

u,z∗i
(ς) = ις,ε(Wε·u,z∗i(ς)).

The next proposition will be used to derive the compatibility of flip and mutation for

tagged triangulations from Corollary 5.4.4. Its proof is taken with suitable adaptations

from [Lab16, Proposition 6.4] and [GL16a, Proposition 6.4].

Proposition 5.4.5. Assume g > 0 or b + m + o ≥ 7. For every tagged triangulation τ

of Σ and all sign functions ε and ε′ for τ we have Sεu,z(τ ) ∼R Sε
′
u,z(τ ).

Proof. We can reduce to the case in which ε and ε′ take the same value at all but one y ∈ P.

Without loss of generality ε(y) = +1 and ε′(y) = −1. The bijection in Definition 5.1.40

shows that there is an arc k in τ = τ [ enclosing y. In particular, m ≥ 2.

We can replace τ by any tagged triangulation ς = ςε = ςε
′

where ς is a triangulation

of Σ containing k and k]:

Indeed, τ = µi` · · ·µi1(ς) for arcs i1, . . . , i` all different from k and k] by Proposition 5.1.32.

Since is := iεs = iε
′
s for all s, it is τ = µi` · · ·µi1(ς) by Corollary 5.1.44. With Corollary 5.4.4

and Theorem 2.6.101 we see
(
∀z : Sεu,z(τ ) ∼R Sε

′
u,z(τ )

)
⇔
(
∀z : Sεu,z(ς) ∼R Sε

′
u,z(ς)

)
.

Abbreviate Q = Q(ς) and H = H(ς) and Ĥ = Ĥ(ς).

Let x be the basepoint of the self-folded triangle with sides k and k]. Set k := kε = (k])ε
′

and k′ := kε
′

= (k])ε.

If x ∈ ∂Σ, take for ς a triangulation with a puzzle piece of type B containing k and k].

The puzzle piece and the subquiver Q of Q look as follows:
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k]

k

y

h

i

x

h i

k

k′

c

__

c

��

b

��

b

__

a //

The subpotentials of W ε
u,z(ς) and W ε′

u,z(ς) spanned by {c, c} are, respectively,

W =
(
cb− 1

uk
cb
)
a ,

W ′ =
(

1
uk
cb+ cb

)
a .

Hence, W ε′
u,z(ς) = ϕ(W ε

u,z(ς)) for ϕ ∈ AutQ−{c,c}(H) given by the rules c 7→ 1
uk
c, c 7→ −ukc.

This concludes the proof for the case x ∈ ∂Σ.

We now consider the case x ∈ P. Then Σ admits a triangulation ς containing three

puzzle pieces 1, 2, 3 sharing arcs as depicted below:

(a) For g = 1, b = 0, m = 2, o = 0 (twice-punctured closed torus without orbifold points)

such a triangulation ς is shown on the right.

(b) For g ≥ 1, g + b + m + o > 3 (g-fold torus) such a triangulation ς can be easily

constructed in the model described in Remark 5.1.3 and Example 5.1.6.

(c) For g = 0 (a sphere with boundary) we have by assumption b+m+ o ≥ 7 and the

existence of such a triangulation ς is easy to verify.

The subquiver Q′ of Q induced by 1, 2, 3 is visualized below (in case (a) with

the identification h = h).

g = 0 g ≥ 1 g = 1

b+m+ o ≥ 7 g + b+m+ o > 3 b = 0, m = 2, o = 0

k]

k

i

h h

j

jx x

xx

y

j

1

2

3

k]

k

j

i

h h

j

jx x

xx

y

1

2

3

k]

k

i

h h

j

jx x

xx

y

j

1

2

3

h i

k′

k j

h

j

c

��

c

__

b

__

b

��

a //

g

__

g

??

q

__

q

??

p

��

p

��
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5 Potentials for Tagged Triangulations

The subpotentials of W ε
u,z(ς) and W ε′

u,z(ς) spanned by Q′1 have the respective form

W =
(
cb− 1

uk
cb
)
a+ gpq + gpq + ω(gpq) + cb(gpq)aα ,

W ′ =
(

1
uk
cb+ cb

)
a+ gpq + gpq + ω(gpq) + cb(gpq)aα ,

with α = ω + ν(gpq)ν for some ω, ω, ν, ν ∈ H|Q−Q′1 where H|Q−Q′1 is the path algebra of

the submodulation of H(ς) induced by Q−Q′1 ⊆ Q.

The rules a 7→ a+ uk(gpq)aα, c 7→ 1
uk
c, c 7→ −ukc define an element ϕ0 ∈ AutQ−Q′1(H)

that maps W to

W0 = W ′ − g(λgp)q

for λ = pqa(ukα)2cb. The unitriangular automorphism ϕ1 ∈ AutQ−Q′1(H) defined by the

substitution rule p 7→ p+ λgp maps W0 to a potential of the form

W1 = W ′ + γ1(gpq) + δ1(gpq)

for some γ1, δ1 ∈ H with ord(γ1) > 0 (and δ1 = 0).

The subpotential (W ′){q,g} has the form gpq+ gpq+ ω̃(gpq) + ν̃(gpq) + ω̂(gpq)ν̂(gpq) for

some ω̃, ω̂, ν̃, ν̂ ∈ H|Q−{q,g} with ord(ν̃) > 0. Given, for some r ∈ N+,

Wr = W ′ + γr(gpq) + δr(gpq)

with γr, δr ∈ H, it is thus straightforward to verify that the element ϕr+1 ∈ AutQ−Q′1(H)

defined by the substitutions g 7→ g − γrg, q 7→ q − qδr maps Wr to a potential of the form

Wr+1 = W ′ + γr+1(gpq) + δr+1(gpq)

where γr+1 = (ϕr(γr) − γr) + δrλr and δr+1 = (ϕr(δr) − δr) + γrηr for some λr, ηr ∈ H
with ord(λr) > 0. In particular, the two inequalities ord(γr+1) > min(ord(γr), ord(δr))

and ord(δr+1) ≥ min(ord(γr), ord(δr)) hold.

By induction we get a sequence (ϕr)r∈N+
of unitriangular elements in AutQ−Q′1(H)

such that limr→∞ depth(ϕr) = ∞ and the sequence (Wr)r∈N of potentials Wr = ϕ̃r(W )

with ϕ̃r = ϕr · · ·ϕ1ϕ0 converges to W ′. Therefore we have W ε′
u,z(ς) = ϕ̃(W ε

u,z(ς)) for the

automorphism ϕ̃ = limr→∞ ϕ̃r ∈ AutQ−Q′1(Ĥ). This proves the proposition.

Finally, we can state the main result of this chapter:

Theorem 5.4.6. Assume g > 0 or b+m+ o ≥ 7. Let τ be a tagged triangulation of Σ.

For all i ∈ τ it is Su,z∗i(µi(τ )) ≈R µi(Su,z(τ )). In particular, Su,z(µi(τ )) ≈τ µi(Su,z(τ )).

Proof. The last claim follows from the first one by Lemma 5.3.16.

Let ς = µi(τ ), τ = µj(τ ) and τ = τ [, ς = ς[ and i = iτ ,ετ , j = jς,ες .

After possibly swapping i, τ , z for j, ς, z∗i, we can assume that j is non-folded in ς,

since Su,z∗i(ς) ≈R µi(Su,z(τ ))⇔ Su,z(τ ) ≈R µj(Su,z∗i(ς)) by Theorem 2.6.101.
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5.5 Uniqueness of Potentials

If i is a non-folded arc in τ , ετ = ες and Corollary 5.4.4 yields Su,z∗i(ς) ≈R µi(Su,z(τ )).

If i is folded in τ , iτ ,ες is non-folded in τ and Su,z∗i(ς) ≈R µi(S
ες
u,z(τ )) by Corollary 5.4.4.

With Proposition 5.4.5 and Theorem 2.6.100 we have µi(S
ες
u,z(τ )) ≈R µi(Su,z(τ )).

Corollary 5.4.7. Assume g > 0 or b + m + o ≥ 7. Then Su,z(τ ) is non-degenerate for

every tagged triangulation τ of Σ.

Proof. This is a direct consequence of Theorem 5.4.6 and Lemma 5.3.8.

5.5 Uniqueness of Potentials

We conclude with the observation that the equivalence class of Su,z(τ ) does not depend on

the particular choice of u and z, if b > 0 or p = 0.

5.5.1 Non-Closed Orbifolds

The next statement is a variant of [Lab16, Proposition 10.2] and [GL16a, Proposition 8.6].

Corollary 5.5.1. Assume b > 0. Then Su,z(τ) ∼τ Su′,z′(τ) for all (tagged) triangulations τ

of Σ and all functions u, u′ : P→ K× and z, z′ : O→ L \K.

Proof. We assume that τ is a triangulation. The proof for tagged triangulations is similar.

We clearly can reduce to the case in which |{y ∈ P |uy 6= u′y}|+ |{ ∈ O | z 6= z′}| = 1.

It suffices to prove Su,z(ς) ∼ς Su′,z′(ς) for any triangulation ς of Σ by Proposition 5.1.32

and Theorems 2.6.101 and 5.4.1.

Let us first assume that u and u′ take the same value at all but one puncture y ∈ P.

Then m ≥ 2. Let ς be a triangulation containing a puzzle piece of type B such that

the basepoint x of the self-folded triangle in lies on the boundary. The subquiver Q

of Q = Q(ς) is the left quiver shown in Figure 5.A.3. By definition

(Wu,z(ς))
{c1} = − 1

uy
c1b1a , (Wu′,z(ς))

{c1} = − 1
u′y
c1b1a .

Hence, Wu′,z(ς) = ϕ(Wu,z(ς)) for ϕ ∈ AutQ−{c1}(H(τ)) defined by c1 7→
uy
u′y
c1.

Let us now assume that z and z′ take the same value at all but one orbifold point ∈ O.

Let ς be a triangulation containing a puzzle piece of type B̃ such that the marked

point on its pending arc belongs to the boundary. The subquiver Q is the right quiver

shown in Figure 5.A.3. By definition

(Wu,z(ς))
{c} = cz ba , (Wu,z′(ς))

{c} = cz′ ba .

Hence, Wu,z′(ς) = ϕ(Wu,z(ς)) for ϕ ∈ AutQ−{c}(H(τ)) defined by c 7→ cz′ z−1.
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5 Potentials for Tagged Triangulations

5.5.2 Unpunctured Orbifolds

Unpunctured orbifolds will be treated in greater detail in the next chapter. We anticipate

the next theorem for its relevance in the current context.

Notation 5.5.2. If p = 0, the function u is empty and we define Sz(τ) = Su,z(τ).

Theorem 5.5.3. Assume p = 0 and Σ is not a monogon. Every non-degenerate potential

for A(τ) is R(τ)-equivalent to Wz(τ). In particular, Sz(τ) ∼R(τ) Sz′(τ) for all z, z′.

Proof. This is similar to the proof of Theorem 6.6.8 and uses Convention 5.2.23.
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5 Potentials for Tagged Triangulations

h

i k

c

��

b //

a

__

cba

Figure 5.A.2: Q and Wu,z for pieces of type A.

h

i

kk]

c0

��

c1

��

b0

��

b1

��

a

OO

h

i k

c

��

b //

a

__

c0b0a− 1
uk
c1b1a czkba

Figure 5.A.3: Q and Wu,z for pieces of type B (left) and B̃ (right).
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h

i

ki]

k]

c0

__

c1

��
b00

��

b01

//

b10oo

b11

OO

a0

??

a1

��

c0b00a0 − 1
ui
c0b01a1 − 1

uk
c1b10a0 + 1

ukui
c1b11a1

k

h

ii] c

OO

b0
��

b1
��

a0

��

a1

��

h

i

kk]

c0

��

c1

��

b0

��

b1

��

a

OO

czkb0a0 − 1
ui
czkb1a1 c0b0zia− 1

uk
c1b1zia

h

i k

c

��

b0 //

b1
//

a

__

czk(b0 + b1)zia

Figure 5.A.4: Q and Wu,z for pieces of type C (top), C̃+ (left), C̃− (right), C̃ (bottom).
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h

i

k

i]

k]

h]

c00

��

c01

LL

c10

ii

c11

XX

b00

uu

b01

FF

b10

��

b11

��

a00

==
a01 //

a10
oo

a11

!!

c00b00a00

− 1
ui
c00b01a10 − 1

uk
c01b10a00 − 1

uh
c10b00a01

+ 1
ukuh

c11b10a01 + 1
uiuh

c10b01a11 + 1
ukui

c01b11a10

− 1
ukuiuh

c11b11a11

Figure 5.A.5: Q and Wu,z for pieces of type D.
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h

i

ki]

k]

c0

__

c1

��

b00

��

b01

//

b10oo

b11

OO

a0

??

a1

��

c0b00a0zh − 1
ui
c0b01a1zh − 1

uk
c1b10a0zh + 1

ukui
c1b11a1zh

k

h

ii] c0

��

c1

��

b0

__

b1

??

a0

??

a1

__

zh(c0 + c1)zkb0a0 − 1
ui
zh(c0 + c1)zkb1a1

k

h

i

c0

��

c1

��

b0 //

b1
//

a0

__

a1

__

(c0 + c1)zk(b0 + b1)zi(a0 + a1)zh

Figure 5.A.6: Q and Wu,z for pieces of type D̃1 (top), D̃2 (middle), D̃3 (bottom).
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A B+ B− B̃+ B̃− C C̃+ C̃− C̃

A

B+

B−

B̃+

B̃−

C

C̃+

C̃−

C̃

Table 5.A.7: two puzzle pieces sharing exactly one arc (bold).

A	

A	

Table 5.A.8: two puzzle pieces sharing exactly three arcs;

one shared arc (bold) fixed.
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A↑ A↓ B↑ B↓ B̃↑ B̃↓

A↑

A↓

B↑

B↓

B̃↑

B̃↓

Table 5.A.9: two puzzle pieces sharing exactly two arcs;

one shared arc (bold) fixed.

B B̃

C+ C− D

C̃+
+ C̃−+ D̃1 D̃+

1 D̃−1

C̃+
− C̃−− D̃2 D̃+

2 D̃−2

C̃+ C̃− D̃3

Table 5.A.10: puzzle piece with one non-folded inner side (bold) fixed.
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5 Potentials for Tagged Triangulations

X Y Table{
A	, A	

} {
A	, A	

}
5.A.12

X Y Table{
A↓, A↓

} {
A↑, A↑

}
5.A.13{

A↓, B↓
} {

A↑, B↑
}

5.A.14{
A↓, B̃↓

} {
A↑, B̃↑

}
5.A.15{

B↓, B↓
} {

B↑, B↑
}

5.A.16{
B↓, B̃↓

} {
B↑, B̃↑

}
5.A.17{

B̃↓, B̃↓
} {

B̃↑, B̃↑
}

5.A.18

X Y Table{
A↓, A↑

}
B 5.A.19{

A↓, B↑
}

C+ 5.A.20{
A↑, B↓

}
C− 5.A.21{

A↓, B̃↑
}

C̃+
− 5.A.22{

A↑, B̃↓
}

C̃−+ 5.A.23{
B↓, B↑

}
D 5.A.24{

B↓, B̃↑
}

D̃−1 5.A.25{
B↑, B̃↓

}
D̃+

1 5.A.26{
B̃↓, B̃↑

}
D̃2 5.A.27

X Y Table{
A,A

} {
A,A

}
5.A.28{

A,B+
} {

A,B−
}

5.A.29{
A, B̃+

} {
A, B̃−

}
5.A.30{

A,C
} {

B+, B−
}

5.A.31{
A, C̃+

} {
B−, B̃+

}
5.A.32{

A, C̃−
} {

B+, B̃−
}

5.A.33{
A, C̃

} {
B̃+, B̃−

}
5.A.34{

B+, B+
} {

B−, B−
}

5.A.35{
B+, B̃+

} {
B−, B̃−

}
5.A.36{

B+, C
} {

B−, C
}

5.A.37{
B+, C̃+

} {
B−, C̃−

}
5.A.38{

B+, C̃−
} {

B̃−, C
}

5.A.39

X Y Table{
B+, C̃

} {
B̃−, C̃−

}
5.A.40{

B−, C̃+

} {
B̃+, C

}
5.A.41{

B−, C̃
} {

B̃+, C̃+

}
5.A.42{

B̃+, B̃+
} {

B̃−, B̃−
}

5.A.43{
B̃+, C̃−

} {
B̃−, C̃+

}
5.A.44{

B̃+, C̃
} {

B̃−, C̃
}

5.A.45{
C,C

} {
C,C

}
5.A.46{

C, C̃+

} {
C, C̃−

}
5.A.47{

C, C̃
} {

C̃+, C̃−
}

5.A.48{
C̃+, C̃+

} {
C̃−, C̃−

}
5.A.49{

C̃+, C̃
} {

C̃−, C̃
}

5.A.50{
C̃, C̃

} {
C̃, C̃

}
5.A.51

X Y Table

B̃ B̃ 5.A.52

C̃+
+ C̃−− 5.A.53

C̃− C̃+ 5.A.54

D̃1 D̃1 5.A.55

D̃−2 D̃+
2 5.A.56

D̃3 D̃3 5.A.57

Table 5.A.11: all flippant pairs {X,Y }.
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{
A	, A	

}
cba

+ cba

+ u0cbacba
h/h

i/i k/k

c

��

b
//

a

__

c

��

b
//

a

__

ψ̃

b  −c∗a∗

b  −c∗a∗

[ac]  −u0[ac]b[ac]

;
[ac]  u0[ac]c∗a∗[ac]

[ac]  u0[ac]c∗a∗[ac]

T̃1 b [ac] b [ac]

{
A	, A	

}
a∗[ac]c∗

+ a∗[ac]c∗

+ u0a
∗[ac]c∗a∗[ac]c∗

h/h

i/ik/k

c∗

__

a∗

��

c∗

__

a∗

��

[ac]
//

[ac]
//

Table 5.A.12: flippant pair
{{
A	, A	

}
,
{
A	, A	

}}
.

137



5 Potentials for Tagged Triangulations

{
A↓, A↓

} cba

+ cba

+ ωkkbac+ ωkkbac

+ ωkkbac ωkkbac

h/h

i/i

k k

c

??

b

__
a

��

c

__

b

??
a

��

ϕ̃
c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b  c∗a∗

[ac]  −[ac]ωkk

b  c∗a∗

[ac]  −[ac]ωkk
−[ac]ωkkb[ac]ωkk

;
[ac]  −[ac]ωkkc

∗a∗[ac]ωkk

[ac]  −[ac]ωkkc
∗a∗[ac]ωkk

T̃1 b [ac] b [ac]

{
A↑, A↑

}
[ac]c∗a∗

+ [ac]c∗a∗

+ ωkkc
∗a∗[ac] + ωkkc

∗a∗[ac]

+ ωkkc
∗a∗[ac]ωkkc

∗a∗[ac]

h/h

i/i

k k

c∗

��
a∗

OO

c∗

��
a∗

OO

[ac]

��

[ac]

��

Table 5.A.13: flippant pair
{{
A↓, A↓

}
,
{
A↑, A↑

}}
.
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{
A↓, B↓

} cba

+ c0b0a− 1
uk
c1b1a

+ u0ac1b1

+ ωkkbac

h/h

i/i

k kk]

c

::

b

dd
a

��

c0

dd

c1

UU

b0

::

b1

II
a

��

ϕ̃ [ac1] 7→ u0uk[ac1]− uk[ac1] ; [ac1] 7→ − 1
uk

[ac1] ;
c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b  c∗a∗

[ac]  −[ac]ωkk

b0  c∗0a
∗

b1  −ukc∗1a∗

T̃1 b [ac] b0 [ac0] b1 [ac1]

{
A↑, B↑

}
[ac]c∗a∗

+ [ac0]c∗0a
∗ − 1

uk
[ac1]c∗1a

∗

+ u0a
∗[ac1]c∗1

+ ωkkc
∗a∗[ac]

h/h

i/i

k kk]

c∗

zz
a∗

OO

c∗0

$$

c∗1

��

a∗

OO

[ac]

$$

[ac0]

zz

[ac1]

		

Table 5.A.14: flippant pair
{{
A↓, B↓

}
,
{
A↑, B↑

}}
.
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{
A↓, B̃↓

} cba

+ czkba

+ u0acb

+ ωkkbac

h/h

i/i

k k

c

??

b

__
a

��

c

__

b

??

a

��

ϕ̃ [ac] 7→ −u0[ac]z−1
k + [ac]z−1

k ; [ac] 7→ [ac]zk ;
c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b  c∗a∗

[ac]  −[ac]ωkk

b  z−1
k c∗a∗

T̃1 b [ac] b [ac]

{
A↑, B̃↑

}
[ac]c∗a∗

+ [ac]zkc
∗a∗

+ u0a
∗[ac]c∗

+ ωkkc
∗a∗[ac]

h/h

i/i

k k

c∗

��
a∗

OO

c∗

��

a∗

OO

[ac]

��

[ac]

��

Table 5.A.15: flippant pair
{{
A↓, B̃↓

}
,
{
A↑, B̃↑

}}
.
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{
B↓, B↓

}
c0b0a− 1

uk
c1b1a

+ c0b0a− 1
uk
c1b1a

+ u1c1b1a+ u0ac1b1

h/h

i/i

k k] kk]

c0

::

c1

II

b0

dd

b1

UU
a

��

c0

dd

c1

UU

b0

::

b1

II
a

��

ϕ̃
[ac1] 7→ u1uk[ac1]− uk[ac1]

[ac1] 7→ u0uk[ac1]− uk[ac1]
;

[ac1] 7→ − 1
uk

[ac1]

[ac1] 7→ − 1
uk

[ac1]
;

c∗0 7→ −c∗0
c∗1 7→ −c∗1
a∗ 7→ −a∗

ψ̃

b0  c∗0a
∗

b1  −ukc∗1a∗

b0  c∗0a
∗

b1  −ukc∗1a∗

T̃1 b0 [ac0] b1 [ac1] b0 [ac0] b1 [ac1]

{
B↑, B↑

} [ac0]c∗0a
∗ − 1

uk
[ac1]c∗1a

∗

+ [ac0]c∗0a
∗ − 1

uk
[ac1]c∗1a

∗

+ u1[ac1]c∗1a
∗ + u0a

∗[ac1]c∗1

h/h

i/i

k k] kk]

c∗0

zz

c∗1

		

a∗

OO

c∗0

$$

c∗1

��

a∗

OO

[ac0]

$$

[ac1]

��

[ac0]

zz

[ac1]

		

Table 5.A.16: flippant pair
{{
B↓, B↓

}
,
{
B↑, B↑

}}
.
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{
B↓, B̃↓

}
c0b0a− 1

uk
c1b1a

+ czkba

+ u1c1b1a+ u0acb

h/h

i/i

k k] k

c0

::

c1

II

b0

dd

b1

UU
a

��

c

dd

b

::
a

��

ϕ̃
[ac1] 7→ u1uk[ac1]− uk[ac1]

[ac] 7→ −u0[ac]z−1
k + [ac]z−1

k

;
[ac1] 7→ − 1

uk
[ac1]

[ac] 7→ [ac]zk
;

c∗0 7→ −c∗0
c∗1 7→ −c∗1
a∗ 7→ −a∗

ψ̃

b0  c∗0a
∗

b1  −ukc∗1a∗

b  z−1
k c∗a∗

T̃1 b0 [ac0] b1 [ac1] b [ac]

{
B↑, B̃↑

} [ac0]c∗0a
∗ − 1

uk
[ac1]c∗1a

∗

+ [ac]zkc
∗a∗

+ u1[ac1]c∗1a
∗ + u0a

∗[ac]c∗

h/h

i/i

k k] k

c∗0

zz

c∗1

		

a∗

OO

c∗

$$

a∗

OO

[ac0]

$$

[ac1]

��

[ac]

zz

Table 5.A.17: flippant pair
{{
B↓, B̃↓

}
,
{
B↑, B̃↑

}}
.

142



5.A Appendix

{
B̃↓, B̃↓

}
czkba

+ czkba

+ u1cba+ u0acb

h/h

i/i

k k

c

??

b

__

a

��

c

__

b

??

a

��

ϕ̃
[ac] 7→ −u1[ac]z−1

k + [ac]z−1
k

[ac] 7→ −u0[ac]z−1
k + [ac]z−1

k

;
[ac] 7→ [ac]zk

[ac] 7→ [ac]zk
;

c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃
b  z−1

k c∗a∗

b  z−1
k c∗a∗

T̃1 b [ac] b [ac]

{
B̃↑, B̃↑

} [ac]zkc
∗a∗

+ [ac]zkc
∗a∗

+ u1[ac]c∗a∗ + u0a
∗[ac]c∗

h/h

i/i

k k

c∗

��

a∗

OO

c∗

��

a∗

OO

[ac]

��

[ac]

��

Table 5.A.18: flippant pair
{{
B̃↓, B̃↓

}
,
{
B̃↑, B̃↑

}}
.
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5 Potentials for Tagged Triangulations

{
A↓, A↑

} cba

+ cba

+ u0aa

+ ωkkbc+ ωkkbc

+ ωkkbc ωkkbc

h/i

i/h

k k

c

??

b

__
a

��

c

��

b

��
a

OO

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
cb

a  −cb

T1 a a

B
c∗b∗[bc]− 1

u0
bc[bc]

+ ωkk[bc]

+ ωkkbc

+ ωkk[bc]ωkkbc

h/ii/h

k

k

c∗

��

b

��

c

��

b∗

��

[bc]

OO

Table 5.A.19: flippant pair
{{
A↓, A↑

}
, B
}

.
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5.A Appendix

{
A↓, B↑

} cba

+ c0b0a− 1
uk
c1b1a

+ u0aa

+ ωkkbc1b1c

h/i

i/h

k kk]

c

::

b

dd
a

��

c0

zz

c1

		

b0

$$

b1

��

a

OO

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
c0b0 + 1

u0uk
c1b1

a  −cb

T1 a a

ϕ̃ b∗1 7→ − 1
uk
b∗1

C+

c∗b∗0[b0c]− 1
uk
c∗b∗1[b1c]− 1

u0
bc0[b0c] + 1

u0uk
bc1[b1c]

+ ωkkbc1[b1c]

h/i

i/h

k

k

k]

c∗

��

b

��

c0oo

c1

&&

b∗0

88

b∗1 //

[b0c]

KK

[b1c]

[[

Table 5.A.20: flippant pair
{{
A↓, B↑

}
, C+

}
.
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5 Potentials for Tagged Triangulations

{
A↑, B↓

}
cba

+ c0b0a− 1
uk
c1b1a

+ u0aa

+ ωkkbc1b1c

h/i

i/h

k kk]

c

$$

b

zz
a

OO

c0

dd

c1

UU

b0

::

b1

II
a

��

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
c0b0 + 1

uku0
c1b1

a  −cb

T1 a a

ϕ̃ c∗1 7→ − 1
uk
c∗1

C−

[bc0]c∗0b
∗ − 1

u0
[bc0]b0c− 1

uk
[bc1]c∗1b

∗ + 1
uku0

[bc1]b1c

+ ωkk[bc1]b1c

h/i

i/h

k

k

k]

c

[[

b∗

KK

c∗0

88

c∗1oo

b0 //

b1

&&

[bc0]

��

[bc1]

��

Table 5.A.21: flippant pair
{{
A↑, B↓

}
, C−

}
.
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5.A Appendix

{
A↓, B̃↑

} cba

+ czkba

+ u0aa

+ ωkkbcbc

h/i

i/h

k k

c

??

b

__
a

��

c

��

b

��

a

OO

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
czkb

a  −cb

T1 a a

ϕ̃ b∗ 7→ b∗zk

C̃+
−

c∗b∗zk[bc]− 1
u0
bczk[bc]

+ ωkkbc[bc]
h/ii/h

k

k

c∗

��

b

��

c

��

b∗

��

[bc]

OO

Table 5.A.22: flippant pair
{{
A↓, B̃↑

}
, C̃+
−
}

.
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5 Potentials for Tagged Triangulations

{
A↑, B̃↓

}
cba

+ czkba

+ u0aa

+ ωkkbcbc

h/i

i/h

k k

c

��

b

��
a

OO

c

__

b

??

a

��

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
czkb

a  −cb

T1 a a

ϕ̃ c∗ 7→ zkc
∗

C̃−+
[bc]zkc

∗b∗ − 1
u0

[bc]zkbc

+ ωkk[bc]bc
h/i i/h

k

k

c

��

b∗

��

c∗

��

b

��

[bc]

OO

Table 5.A.23: flippant pair
{{
A↑, B̃↓

}
, C̃−+

}
.
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5.A Appendix

{
B↓, B↑

}
c0b0a− 1

uk
c1b1a

+ c0b0a− 1
uk
c1b1a

+ u0aa+ u1c1b1c1b1

h/i

i/h

k k] kk]

c0

::

c1

II

b0

dd

b1

UU
a

��

c0

zz

c1

		

b0

$$

b1

��

a

OO

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
c0b0 + 1

u0uk
c1b1

a  −c0b0 + 1
uk
c1b1

T1 a a

ϕ̃
c∗1 7→ − 1

uk
c∗1

b∗1 7→ − 1
uk
b∗1

D b∗0[b0c0]c∗0 − 1
uk
b∗0[b0c1]c∗1 − 1

uk
b∗1[b1c0]c∗0 + 1

ukuk
b∗1[b1c1]c∗1

− 1
u0
c0[b0c0]b0 + 1

u0uk
c0[b0c1]b1 + 1

u0uk
c1[b1c0]b0 − 1

u0ukuk
c1[b1c1]b1

+ u1c1[b1c1]b1

h/i

i/h k

k]

k

k]

c∗0

==

c∗1
oo

b0 //

b1

!!

c0

ii

c1

XX

b∗0
��

b∗1

LL

[b0c0]

uu

[b1c0]

��

[b0c1]
FF

[b1c1]

��

Table 5.A.24: flippant pair
{{
B↓, B↑

}
, D
}

.
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5 Potentials for Tagged Triangulations

{
B↓, B̃↑

} c0b0a

− 1
uk
c1b1a

+ czkba

+ u0aa

+ u1c1b1cb

h/i

i/h

k k] k

c0

::

c1

II

b0

dd

b1

UU
a

��

c

zz

b

$$

a

OO

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
czkb

a  −c0b0 + 1
uk
c1b1

T1 a a

ϕ̃
c∗1 7→ − 1

uk
c∗1

b∗ 7→ b∗zk

D̃−1

[bc0]c∗0b
∗zk

− 1
u0

[bc0]b0czk

− 1
uk

[bc1]c∗1b
∗zk

+ 1
u0uk

[bc1]b1czk

+ u1[bc1]b1c

h/i

i/h k

k]

k c∗0

��

c∗1oo

b0
//

b1

OO

c

��

b∗

??

[bc0]

__

[bc1]

��

Table 5.A.25: flippant pair
{{
B↓, B̃↑

}
, D̃−1

}
.

150



5.A Appendix

{
B↑, B̃↓

}
c0b0a

− 1
uk
c1b1a

+ czkba

+ u0aa

+ u1c1b1cb
h/i

i/h

k k] k

c0

$$

c1

��

b0

zz

b1

		

a

OO

c

dd

b

::
a

��

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
czkb

a  −c0b0 + 1
uk
c1b1

T1 a a

ϕ̃
b∗1 7→ − 1

uk
b∗1

c∗ 7→ zkc
∗

D̃+
1

c∗b∗0[b0c]zk

− 1
uk
c∗b∗1[b1c]zk

− 1
u0
bc0[b0c]zk

+ 1
u0uk

bc1[b1c]zk

+ u1bc1[b1c]

h/i

i/h

k

k]

k

c0oo

c1

OO

b∗0

��

b∗1
//

c∗

__

b

��

[b0c]

??

[b1c]

��

Table 5.A.26: flippant pair
{{
B↑, B̃↓

}
, D̃+

1

}
.

151



5 Potentials for Tagged Triangulations

{
B̃↓, B̃↑

} czkba

+ czkba

+ u0aa

+ u1cbcb

h/i

i/h

k k

c

??

b

__

a

��

c

��

b

��

a

OO

ϕ a 7→ 1
u0
a

ψ
a  − 1

u0
czkb

a  −czkb

T1 a a

ϕ̃
c∗ 7→ zkc

∗

b∗ 7→ b∗zk

D̃2 zk ([bc]0 + [bc]1) zkc
∗b∗

− 1
u0
zk ([bc]0 + [bc]1) zkbc

+ u1 ([bc]0 + [bc]1) bc

h/ii/h

k

k

c∗

__

b

??

c

__

b∗

??

[bc]0

��

[bc]1

��

Table 5.A.27: flippant pair
{{
B̃↓, B̃↑

}
, D̃2

}
.
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5.A Appendix

{
A,A

}

cba

+ cba

+ ωikb+ ωikb

+ ωkiac+ ωkiac

+ ωikb ωikb

+ ωkkb ωiiac+ ωkkb ωiiac

+ ωkiac ωkiac

+ ωkkb ωikb ωiiac

+ ωkiac ωkkb ωiiac

+ ωkiac ωkkb ωikb ωiiac+ ωkkb ωiiac ωkkb ωiiac

+ ωkkb ωiiac ωkkb ωiiac+ ωiiac ωkiac ωkkb ωikb

h/h

i k

ik

c

��

b
//

a

__

c

??

b
oo

a

��

ϕ̃
c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b  c∗a∗

[ac]  −ωik
−ωii[ac]ωkk
−ωii[ac]ωki[ac]ωkk

b  c∗a∗

[ac]  −ωik
−ωii[ac]ωkk
−ωikb ωik
−ωii[ac]ωkkb ωik
−ωii[ac]ωki[ac]ωkkb ωik
−ωii[ac]ωkkb ωii[ac]ωkk
−ωii[ac]ωkkb ωii[ac]ωkk
−ωikb ωii[ac]ωki[ac]ωkk

;

[ac]  −ωikc∗a∗ ωik
−ωikc∗a∗ ωii[ac]ωkk
−ωikc∗a∗ ωii[ac]ωki[ac]ωkk
−ωii[ac]ωkkc∗a∗ ωii[ac]ωkk
−ωii[ac]ωkkc∗a∗ ωii[ac]ωkk
−ωii[ac]ωki[ac]ωkkc∗a∗ ωik

[ac]  −ωikc∗a∗ ωik
−ωii[ac]ωkkc∗a∗ ωik
−ωii[ac]ωki[ac]ωkkc∗a∗ ωik
−ωii[ac]ωkkc∗a∗ ωii[ac]ωkk
−ωii[ac]ωkkc∗a∗ ωii[ac]ωkk
−ωikc∗a∗ ωii[ac]ωki[ac]ωkk

T̃1 b [ac] b [ac]

{
A,A

}

a∗[ac]c∗

+ a∗[ac]c∗

+ ωki[ac] + ωki[ac]

+ ωikc
∗a∗ + ωikc

∗a∗

+ ωki[ac]ωki[ac]

+ ωkkc
∗a∗ ωii[ac] + ωkkc

∗a∗ ωii[ac]

+ ωikc
∗a∗ ωikc

∗a∗

+ ωki[ac]ωkkc
∗a∗ ωii[ac]

+ ωkkc
∗a∗ ωikc

∗a∗ ωii[ac]

+ ωki[ac]ωkkc
∗a∗ ωikc

∗a∗ ωii[ac] + ωkkc
∗a∗ ωii[ac]ωkkc

∗a∗ ωii[ac]

+ ωkkc
∗a∗ ωii[ac]ωkkc

∗a∗ ωii[ac] + ωii[ac]ωki[ac]ωkkc
∗a∗ ωikc

∗a∗

h/h

i

ki

k

c∗

��

a∗

��

c∗

__

a∗

??

[ac]
oo

[ac]
//

Table 5.A.28: flippant pair
{{
A,A

}
,
{
A,A

}}
.
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5 Potentials for Tagged Triangulations

{
A,B+

}
cba

+ c0b0a− 1
uk
c1b1a

+ ωikb

+ ωhiaa

+ ωkhc1b1c

+ ωhkb ωiiaa

+ ωkkb ωihc1b1c

+ ωkiaaωhhc1b1c

+ ωkiaaωhkb ωihc1b1c+ ωkkb ωiiaaωhhc1b1c

h/i

i k

h

kk]

c

��

b
//

a

__

c0

��

c1

��

b0

��

b1

��

a

OO

ϕ̃ c1 7→ −ukc1 ; [b1c] 7→ − 1
uk

[b1c] ;

c∗ 7→ −c∗

b∗0 7→ −b∗0

b∗1 7→ −b∗1

ψ̃

b  c∗a∗

[ac]  −ωik
−ωii[aa]ωhk
−ωihc1[b1c]ωkk
−ωihc1[b1c]ωki[aa]ωhk
−ωii[aa]ωhhc1[b1c]ωkk

c0  a∗b∗0

c1  a∗b∗1

[b1a]  −[b1c]ωkh
−[b1c]ωki[aa]ωhh

;

[ac]  −ωiha∗b∗1[b1c]ωkk
−ωiha∗b∗1[b1c]ωki[aa]ωhk
−ωii[aa]ωhha

∗b∗1[b1c]ωkk

[b1a]  −[b1c]ωkkc
∗a∗ ωih

−[b1c]ωki[aa]ωhkc
∗a∗ ωih

−[b1c]ωkkc
∗a∗ ωii[aa]ωhh

T̃1 b [ac] c0 [b0a] c1 [b1a]

{
A,B−

}
a∗[aa]a∗

+ b∗0[b0c]c
∗ − 1

uk
b∗1[b1c]c

∗

+ ωhi[aa]

+ ωikc
∗a∗

+ ωkha
∗b∗1[b1c]

+ ωhkc
∗a∗ ωii[aa]

+ ωki[aa]ωhha
∗b∗1[b1c]

+ ωkkc
∗a∗ ωiha

∗b∗1[b1c]

+ ωki[aa]ωhkc
∗a∗ ωiha

∗b∗1[b1c] + ωkkc
∗a∗ ωii[aa]ωhha

∗b∗1[b1c]

h/i

i

k

h

k k]c∗

��

a∗

��

b∗0

??

b∗1

__

a∗

__

[b0c]

__

[b1c]

??

[aa]
//

Table 5.A.29: flippant pair
{{
A,B+

}
,
{
A,B−

}}
.
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5.A Appendix

{
A, B̃+

}
cba

+ czkba

+ ωikb

+ ωhiaa

+ ωkhcbc

+ ωhkb ωiiaa

+ ωkkb ωihcbc

+ ωkiaaωhhcbc

+ ωkiaaωhkb ωihcbc+ ωkkb ωiiaaωhhcbc

h/i

i k

h

k

c

��

b
//

a

__

c

��

b

��

a

OO

ϕ̃ c 7→ cz−1
k ; [bc] 7→ zk[bc] ;

c∗ 7→ −c∗

b∗ 7→ −b∗

ψ̃

b  c∗a∗

[ac]  −ωik
−ωii[aa]ωhk
−ωihc[bc]ωkk
−ωihc[bc]ωki[aa]ωhk
−ωii[aa]ωhhc[bc]ωkk

c  a∗b∗

[ba]  −[bc]ωkh
−[bc]ωki[aa]ωhh

;

[ac]  −ωiha∗b∗[bc]ωkk
−ωiha∗b∗[bc]ωki[aa]ωhk
−ωii[aa]ωhha

∗b∗[bc]ωkk

[ba]  −[bc]ωkkc
∗a∗ ωih

−[bc]ωki[aa]ωhkc
∗a∗ ωih

−[bc]ωkkc
∗a∗ ωii[aa]ωhh

T̃1 b [ac] c [ba]

{
A, B̃−

}
a∗[aa]a∗

+ b∗zk[bc]c
∗

+ ωhi[aa]

+ ωikc
∗a∗

+ ωkha
∗b∗[bc]

+ ωhkc
∗a∗ ωii[aa]

+ ωki[aa]ωhha
∗b∗[bc]

+ ωkkc
∗a∗ ωiha

∗b∗[bc]

+ ωki[aa]ωhkc
∗a∗ ωiha

∗b∗[bc] + ωkkc
∗a∗ ωii[aa]ωhha

∗b∗[bc]

h/i

i

k

h

k c∗

��

a∗

��

b∗

??

a∗

__

[bc]

__

[aa]
//

Table 5.A.30: flippant pair
{{
A, B̃+

}
,
{
A, B̃−

}}
.

155



5 Potentials for Tagged Triangulations

{
A,C

} cba

+ c0b00a0 − 1
ui
c0b01a1 − 1

uk
c1b10a0 + 1

uiuk
c1b11a1

+ ωikb

+ ωkiac1b11a1c

+ ωkkb ωiiac1b11a1c

h/h

i k

i

k i]

k]

c

��

b
//

a

__

c0

CC

c1

SS

b00

xx

b01

oo

b10

//

b11

ff

a0

��

a1

��

ϕ̃

b01 7→ −uib01

[a0c1] 7→ −uk[a0c1]

[a1c1] 7→ uiuk[a1c1]

;
[a1c] 7→ − 1

ui
[a1c]

[ac1] 7→ − 1
uk

[ac1]
;

c∗ 7→ −c∗

a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

b  c∗a∗

[ac]  −ωik
b00  c∗0a

∗
0

b01  c∗0a
∗
1

b10  −ukc∗1a∗0
b11  uiukc

∗
1a
∗
1

[a1c1]  − 1
uiuk

[a1c]ωki[ac1]

− 1
uiuk

[a1c]ωkkb ωii[ac1]

;
[ac]  −ωii[ac1]c∗1a

∗
1[a1c]ωkk

[a1c1]  − 1
uiuk

[a1c]ωkkc
∗a∗ ωii[ac1]

T̃1 b [ac] b00 [a0c0] b01 [a1c0] b10 [a0c1] b11 [a1c1]

{
B+, B−

} [ac0]c∗0a
∗ − 1

uk
[ac1]c∗1a

∗

+ a∗0[a0c]c
∗ − 1

ui
a∗1[a1c]c

∗

+ ωikc
∗a∗

+ ωki[ac1]c∗1a
∗
1[a1c]

+ ωkkc
∗a∗ ωii[ac1]c∗1a

∗
1[a1c]

h/h

i

k

i

k

i]

k]

c∗

��

a∗

��

c∗0

__

c∗1

??

a∗0

??

a∗1

__

[a0c]

__

[a1c]

??

[ac0]

??

[ac1]

__

Table 5.A.31: flippant pair
{{
A,C

}
,
{
B+, B−

}}
.
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5.A Appendix

{
A, C̃+

} cba

+ czkb0a0 − 1
ui
czkb1a1

+ ωikb

+ ωkiacb1a1c

+ ωkkb ωiiacb1a1c

h/h

i k

k

ii]

c

��

b
//

a

__

c

OO

b0
��

b1
��

a0

��

a1

��

ϕ̃
b0 7→ z−1

k b0

b1 7→ −uiz−1
k b1

;
[a1c] 7→ − 1

ui
[a1c]

[ac] 7→ [ac]zk
;

c∗ 7→ −c∗

a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

b  c∗a∗

[ac]  −ωik
−ωii[ac]b1[a1c]ωkk

b0  c∗a∗0

b1  c∗a∗1

[a1c]  −[a1c]ωki[ac]

;
[ac]  −ωii[ac]c∗a∗1[a1c]ωkk

[a1c]  −[a1c]ωkkc
∗a∗ ωii[ac]

T̃1 b [ac] b0 [a0c] b1 [a1c]

{
B−, B̃+

} a∗0[a0c]c
∗ − 1

ui
a∗1[a1c]c

∗

+ [ac]zkc
∗a∗

+ ωikc
∗a∗

+ ωki[ac]c
∗a∗1[a1c]

+ ωkkc
∗a∗ ωii[ac]c

∗a∗1[a1c]

h/h

i

k

k

ii] c∗

OO

a∗

OO

c∗

��

a∗0
��

a∗1
��

[a0c]

��

[a1c]

��

[ac]

��

Table 5.A.32: flippant pair
{{
A, C̃+

}
,
{
B−, B̃+

}}
.
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5 Potentials for Tagged Triangulations

{
A, C̃−

} cba

+ c0b0zia− 1
uk
c1b1zia

+ ωikb

+ ωkiac1b1ac

+ ωkkb ωiiac1b1ac

h/h

i k

i

k k]

c

��

b
//

a

__

c0

??

c1

__

b0

__

b1

??
a

��

ϕ̃
[ac0] 7→ z−1

i [ac0]

[ac1] 7→ −ukz−1
i [ac1]

;
[ac] 7→ zi[ac]

[ac1] 7→ − 1
uk

[ac1]
;

c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b  c∗a∗

[ac]  −ωik
b0  c∗0a

∗z−1
i

b1  −ukc∗1a∗z
−1
i

[ac1]  1
uk
zi[ac]ωki[ac1]

+ 1
uk
zi[ac]ωkkb ωii[ac1]

;
[ac]  −ωii[ac1]c∗1a

∗[ac]ωkk

[ac1]  1
uk
zi[ac]ωkkc

∗a∗ ωii[ac1]

T̃1 b [ac] b0 [ac0] b1 [ac1]

{
B+, B̃−

} [ac0]c∗0a
∗ − 1

uk
[ac1]c∗1a

∗

+ a∗zi[ac]c
∗

+ ωikc
∗a∗

+ ωki[ac1]c∗1a
∗[ac]

+ ωkkc
∗a∗ ωii[ac1]c∗1a

∗[ac]

h/h

i

k

i

k k]

c∗

��

a∗

��

c∗0

__

c∗1

??

a∗

??

[ac]

__

[ac0]

??

[ac1]

__

Table 5.A.33: flippant pair
{{
A, C̃−

}
,
{
B+, B̃−

}}
.
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5.A Appendix

{
A, C̃

} cba

+ czk (b0 + b1) zia

+ ωikb

+ ωkiac (b0 + b1) ac

+ ωkkb ωiiac (b0 + b1) ac

h/h

i k

ik

c

��

b
//

a

__

c

??

b0
oo

b1oo

a

��

ϕ̃
[ac]0 7→ z−1

i [ac]0z
−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

;
[ac] 7→ zi[ac]

[ac] 7→ [ac]zk
;

c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b  c∗a∗

[ac]  −ωik

b0  π0

(
z−1
i z−1

k c∗a∗
)

[ac]0  −π0

(
zizk[ac]ωki[ac]

)
−π0

(
zizk[ac]ωkkb ωii[ac]

)
b1  π1

(
z−∗i z−1

k c∗a∗
)

[ac]1  −π1

(
ziz
∗
k[ac]ωki[ac]

)
−π1

(
ziz
∗
k[ac]ωkkb ωii[ac]

)

;

[ac]  −ωii[ac]c∗a∗[ac]ωkk

[ac]0  −π0

(
zizk[ac]ωkkc

∗a∗ ωii[ac]
)

[ac]1  −π1

(
ziz
∗
k[ac]ωkkc

∗a∗ ωii[ac]
)

T̃1 b [ac] b0 [ac]0 b1 [ac]1

{
B̃+, B̃−

} [ac]zkc
∗a∗

+ a∗zi[ac]c
∗

+ ωikc
∗a∗

+ ωki[ac]c
∗a∗[ac]

+ ωkkc
∗a∗ ωii[ac]c

∗a∗[ac]

h/h

i

k

i

k

c∗

��

a∗

��

c∗

__

a∗

??

[ac]

__

[ac]

??

Table 5.A.34: flippant pair
{{
A, C̃

}
,
{
B̃+, B̃−

}}
.
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5 Potentials for Tagged Triangulations

{
B+, B+

}
c0b0a− 1

uk
c1b1a

+ c0b0a− 1
uk
c1b1a

+ ωhhc1b1a+ ωhhc1b1a

+ ωhhc1b1aωhhc1b1a

h

i/i

k k]

h

kk]

c0

??

c1

__

b0

__

b1

??
a

��

c0

��

c1

��

b0

��

b1

��

a

OO

ϕ̃
c1 7→ −ukc1

c1 7→ −ukc1

;
[b1a] 7→ − 1

uk
[b1a]

[b1a] 7→ − 1
uk

[b1a]
;

a∗ 7→ −a∗

b∗0 7→ −b∗0

b∗1 7→ −b∗1

ψ̃

c0  a∗b∗0

c1  a∗b∗1

[b1a]  −[b1a]ωhh

c0  a∗b∗0

c1  a∗b∗1

[b1a]  −[b1a]ωhh
−[b1a]ωhhc1[b1a]ωhh

;
[b1a]  −[b1a]ωhha

∗b∗1[b1a]ωhh

[b1a]  −[b1a]ωhha
∗b∗1[b1a]ωhh

T̃1 c0 [b0a] c1 [b1a] c0 [b0a] c1 [b1a]

{
B−, B−

}
b∗0[b0a]a∗ − 1

uk
b∗1[b1a]a∗

+ b∗0[b0a]a∗ − 1
uk
b∗1[b1a]a∗

+ ωhha
∗b∗1[b1a] + ωhha

∗b∗1[b1a]

+ ωhha
∗b∗1[b1a]ωhha

∗b∗1[b1a]

h

i/i

k k]

h

kk]

b∗0

??

b∗1

__

a∗

OO

b∗0
��

b∗1
��

a∗

��

[b0a]

��

[b1a]

��

[b0a]

__

[b1a]

??

Table 5.A.35: flippant pair
{{
B+, B+

}
,
{
B−, B−

}}
.
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5.A Appendix

{
B+, B̃+

}
c0b0a− 1

uk
c1b1a

+ czkba

+ ωhhcba+ ωhhc1b1a

+ ωhhc1b1aωhhcba

h

i/i

k k]

h

k

c0

??

c1

__

b0

__

b1

??
a

��

c

��

b

��

a

OO

ϕ̃
c1 7→ −ukc1

c 7→ cz−1
k

;
[ba] 7→ zk[ba]

[b1a] 7→ − 1
uk

[b1a]
;

a∗ 7→ −a∗

b∗ 7→ −b∗

ψ̃

c0  a∗b∗0

c1  a∗b∗1

[b1a]  −[b1a]ωhh

c  a∗b∗

[ba]  −[ba]ωhh
−[ba]ωhhc1[b1a]ωhh

;
[b1a]  −[b1a]ωhha

∗b∗[ba]ωhh

[ba]  −[ba]ωhha
∗b∗1[b1a]ωhh

T̃1 c0 [b0a] c1 [b1a] c [ba]

{
B−, B̃−

}
b∗0[b0a]a∗ − 1

uk
b∗1[b1a]a∗

+ b∗zk[ba]a∗

+ ωhha
∗b∗[ba] + ωhha

∗b∗1[b1a]

+ ωhha
∗b∗1[b1a]ωhha

∗b∗[ba]

h

i/i

kk]

h

k

b∗0
��

b∗1
��

a∗

��

b∗

??

a∗

OO

[ba]

__

[b0a]

��

[b1a]

��

Table 5.A.36: flippant pair
{{
B+, B̃+

}
,
{
B−, B̃−

}}
.
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5 Potentials for Tagged Triangulations

{
B+, C

}
c0b0a− 1

uk
c1b1a

+ c0b00a0 − 1
ui
c0b01a1 − 1

uk
c1b10a0 + 1

ukui
c1b11a1

+ ωhhc1b1c1b11a1a

h

i/h

k k]

i

k i]

k]

c0

??

c1

__

b0

__

b1

??
a

��

c0

CC

c1

SS

b00

xx

b01

oo

b10

//

b11

ff

a0

��

a1

��

ϕ̃

c1 7→ −ukc1

b01 7→ −uib01

[a0c1] 7→ −uk[a0c1]

[a1c1] 7→ ukui[a1c1]

;

[a1a] 7→ − 1
ui

[a1a]

[b1c0] 7→ − 1
uk

[b1c0]

[b0c1] 7→ − 1
uk

[b0c1]

[b1c1] 7→ 1
ukuk

[b1c1]

;

a∗ 7→ −a∗

a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

c0  a∗b∗0

c1  a∗b∗1

b00  c∗0a
∗
0

b01  c∗0a
∗
1

b10  −ukc∗1a∗0
b11  ukuic

∗
1a
∗
1

[a1c1]  − 1
ukui

[a1a]ωhhc1[b1c1]

;
[b1a]  −[b1c1]c∗1a

∗
1[a1a]ωhh

[a1c1]  − 1
ukui

[a1a]ωhha
∗b∗1[b1c1]

T̃1 c0 [b0a] c1 [b1a] b00 [a0c0] b01 [a1c0] b10 [a0c1] b11 [a1c1]

{
B−, C

}
a∗0[a0a]a∗ − 1

ui
a∗1[a1a]a∗

+ b∗0[b0c0]c∗0 − 1
uk
b∗0[b0c1]c∗1 − 1

uk
b∗1[b1c0]c∗0 + 1

ukuk
b∗1[b1c1]c∗1

+ ωhha
∗b∗1[b1c1]c∗1a

∗
1[a1a]

h

i/h

k

k]

i

k

i]

k]

b∗0

CC

b∗1

SS

a∗

OO

c∗0

��

c∗1

��

a∗0
��

a∗1
��

[a0a]

��

[a1a]

��

[b0c0]

xx

[b1c0]
//

[b0c1]
oo

[b1c1]

ff

Table 5.A.37: flippant pair
{{
B+, C

}
,
{
B−, C

}}
.

162



5.A Appendix

{
B+, C̃+

}
c0b0a− 1

uk
c1b1a

+ czkb0a0 − 1
ui
czkb1a1

+ ωhhc1b1cb1a1a

h

i/h

k k]

k

ii]

c0

??

c1

__

b0

__

b1

??
a

��

c

OO

b0
��

b1
��

a0

��

a1

��

ϕ̃

c1 7→ −ukc1

b0 7→ z−1
k b0

b1 7→ −uiz−1
k b1

;

[a1a] 7→ − 1
ui

[a1a]

[b0c] 7→ [b0c]zk

[b1c] 7→ − 1
uk

[b1c]zk

;

a∗ 7→ −a∗

a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

c0  a∗b∗0

c1  a∗b∗1

b0  c∗a∗0

b1  c∗a∗1

[a1c]  −[a1a]ωhhc1[b1c]

;
[b1a]  −[b1c]c

∗a∗1[a1a]ωhh

[a1c]  −[a1a]ωhha
∗b∗1[b1c]

T̃1 c0 [b0a] c1 [b1a] b0 [a0c] b1 [a1c]

{
B−, C̃−

}
a∗0[a0a]a∗ − 1

ui
a∗1[a1a]a∗

+ b∗0[b0c]zkc
∗ − 1

uk
b∗1[b1c]zkc

∗

+ ωhha
∗b∗1[b1c]c

∗a∗1[a1a]

h

i/h

k k]

k

ii]

b∗0

??

b∗1

__

a∗

OO

c∗

��

a∗0
��

a∗1
��

[a0a]

��

[a1a]

��

[b0c]

__

[b1c]

??

Table 5.A.38: flippant pair
{{
B+, C̃+

}
,
{
B−, C̃−

}}
.
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5 Potentials for Tagged Triangulations

{
B+, C̃−

}
c0b0a− 1

uk
c1b1a

+ c0b0zia− 1
uk
c1b1zia

+ ωhhc1b1c1b1aa

h

i/h

k k]

i

k k]

c0

??

c1

__

b0

__

b1

??
a

��

c0

??

c1

__

b0

__

b1

??
a

��

ϕ̃

c1 7→ −ukc1

[ac0] 7→ z−1
i [ac0]

[ac1] 7→ −ukz−1
i [ac1]

;

[aa] 7→ zi[aa]

[b1c0] 7→ − 1
uk

[b1c0]

[b0c1] 7→ − 1
uk

[b0c1]

[b1c1] 7→ 1
ukuk

[b1c1]

;
a∗ 7→ −a∗

a∗ 7→ −a∗

ψ̃

c0  a∗b∗0

c1  a∗b∗1

b0  c∗0a
∗z−1
i

b1  −ukc∗1a∗z
−1
i

[ac1]  1
uk
zi[aa]ωhhc1[b1c1]

;
[b1a]  −[b1c1]c∗1a

∗[aa]ωhh

[ac1]  1
uk
zi[aa]ωhha

∗b∗1[b1c1]

T̃1 c0 [b0a] c1 [b1a] b0 [ac0] b1 [ac1]

{
B̃−, C

}
a∗zi[aa]a∗

+ b∗0[b0c0]c∗0 − 1
uk
b∗0[b0c1]c∗1 − 1

uk
b∗1[b1c0]c∗0 + 1

ukuk
b∗1[b1c1]c∗1

+ ωhha
∗b∗1[b1c1]c∗1a

∗[aa]

h

i/h

k

k]

i

k

k]

b∗0

CC

b∗1

SS

a∗

OO

c∗0

��

c∗1

��

a∗

��

[aa]

��

[b0c0]

xx

[b1c0]
//

[b0c1]
oo

[b1c1]

ff

Table 5.A.39: flippant pair
{{
B+, C̃−

}
,
{
B̃−, C

}}
.
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5.A Appendix

{
B+, C̃

}
c0b0a− 1

uk
c1b1a

+ czk (b0 + b1) zia

+ ωhhc1b1c (b0 + b1) aa

h

i/h

k k]

ik

c0

??

c1

__

b0

__

b1

??
a

��

c

??

b0
oo

b1oo

a

��

ϕ̃

c1 7→ −ukc1

[ac]0 7→ z−1
i [ac]0z

−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

;

[aa] 7→ zi[aa]

[b0c] 7→ [b0c]zk

[b1c] 7→ − 1
uk

[b1c]zk

;
a∗ 7→ −a∗

a∗ 7→ −a∗

ψ̃

c0  a∗b∗0

c1  a∗b∗1

b0  π0

(
z−1
i z−1

k c∗a∗
)

[ac]0  −π0

(
zizk[aa]ωhhc1[b1c]

)
b1  π1

(
z−∗i z−1

k c∗a∗
)

[ac]1  −π1

(
ziz
∗
k[aa]ωhhc1[b1c]

)
;

[b1a]  −[b1c]c
∗a∗[aa]ωhh

[ac]0  −π0

(
zizk[aa]ωhha

∗b∗1[b1c]
)

[ac]1  −π1

(
ziz
∗
k[aa]ωhha

∗b∗1[b1c]
)

T̃1 c0 [b0a] c1 [b1a] b0 [ac]0 b1 [ac]1

{
B̃−, C̃−

}
a∗zi[aa]a∗

+ b∗0[b0c]zkc
∗ − 1

uk
b∗1[b1c]zkc

∗

+ ωhha
∗b∗1[b1c]c

∗a∗[aa]

h

i/h

k k]

i

k

b∗0

??

b∗1

__

a∗

OO

c∗

��

a∗

��

[aa]

��

[b0c]

__

[b1c]

??

Table 5.A.40: flippant pair
{{
B+, C̃

}
,
{
B̃−, C̃−

}}
.
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5 Potentials for Tagged Triangulations

{
B−, C̃+

}
c0b0a− 1

uk
c1b1a

+ czkb0a0 − 1
ui
czkb1a1

+ ωiiacb1a1c1b1

h/h

i

kk]

k

ii]

c0

��

c1

��

b0

��

b1

��

a

OO

c

OO

b0
��

b1
��

a0

��

a1

��

ϕ̃

[ac1] 7→ −uk[ac1]

b0 7→ z−1
k b0

b1 7→ −uiz−1
k b1

;

[a1c0] 7→ − 1
ui

[a1c0]

[a0c1] 7→ − 1
uk

[a0c1]

[a1c1] 7→ 1
uiuk

[a1c1]

[ac] 7→ [ac]zk

;

c∗0 7→ −c∗0
c∗1 7→ −c∗1
a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

b0  c∗0a
∗

b1  −ukc∗1a∗

[ac1]  1
uk
ωii[ac]b1[a1c1]

b0  c∗a∗0

b1  c∗a∗1

;
[ac1]  1

uk
ωii[ac]c

∗a∗1[a1c1]

[a1c]  −[a1c1]c∗1a
∗ ωii[ac]

T̃1 b0 [ac0] b1 [ac1] b0 [a0c] b1 [a1c]

{
B̃+, C

}
[ac]zkc

∗a∗

+ a∗0[a0c0]c∗0 − 1
uk
a∗0[a0c1]c∗1 − 1

ui
a∗1[a1c0]c∗0 + 1

uiuk
a∗1[a1c1]c∗1

+ ωii[ac]c
∗a∗1[a1c1]c∗1a

∗
h/h

i

k

k]

k

i

i]

c∗0

��

c∗1

��

a∗

��

c∗

__

a∗0

CC

a∗1

SS

[a0c0]

xx

[a1c0]
//

[a0c1]
oo

[a1c1]

ff

[ac]

??

Table 5.A.41: flippant pair
{{
B−, C̃+

}
,
{
B̃+, C

}}
.
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5.A Appendix

{
B−, C̃

}
c0b0a− 1

uk
c1b1a

+ czk (b0 + b1) zia

+ ωiiac (b0 + b1) ac1b1
h/h

i

kk]

ik

c0

��

c1

��

b0

��

b1

��

a

OO

c

??

b0
oo

b1oo

a

��

ϕ̃

[ac1] 7→ −uk[ac1]

[ac]0 7→ z−1
i [ac]0z

−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

;

[ac0] 7→ zi[ac0]

[ac1] 7→ − 1
uk
zi[ac1]

[ac] 7→ [ac]zk

;

c∗0 7→ −c∗0
c∗1 7→ −c∗1
a∗ 7→ −a∗

ψ̃

b0  c∗0a
∗

b1  −ukc∗1a∗

b0  π0

(
z−1
i z−1

k c∗a∗
)

[ac]0  π0

(
1
uk
zizk[ac1]b1 ωii[ac]

)
b1  π1

(
z−∗i z−1

k c∗a∗
)

[ac]1  π1

(
1
uk
ziz
∗
k[ac1]b1 ωii[ac]

)
;

[ac1]  1
uk
ωii[ac]c

∗a∗[ac1]

[ac]0  −π0

(
zizk[ac1]c∗1a

∗ ωii[ac]
)

[ac]1  −π1

(
ziz
∗
k[ac1]c∗1a

∗ ωii[ac]
)

T̃1 b0 [ac0] b1 [ac1] b0 [ac]0 b1 [ac]1

{
B̃+, C̃+

}
[ac]zkc

∗a∗

+ a∗zi[ac0]c∗0 − 1
uk
a∗zi[ac1]c∗1

+ ωii[ac]c
∗a∗[ac1]c∗1a

∗
h/h

i

kk]

i

k

c∗0

��

c∗1

��

a∗

��

c∗

__

a∗

OO

[ac0]

��

[ac1]

��

[ac]

??

Table 5.A.42: flippant pair
{{
B−, C̃

}
,
{
B̃+, C̃+

}}
.
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5 Potentials for Tagged Triangulations

{
B̃+, B̃+

}
czkba

+ czkba

+ ωhhcba+ ωhhcba

+ ωhhcba ωhhcba

h

i/i

k

h

k

c

??

b

__

a

��

c

��

b

��

a

OO

ϕ̃
c 7→ cz−1

k

c 7→ cz−1
k

;
[ba] 7→ zk[ba]

[ba] 7→ zk[ba]
;

a∗ 7→ −a∗

b∗ 7→ −b∗

ψ̃

c  a∗b∗

[ba]  −[ba]ωhh

c  a∗b∗

[ba]  −[ba]ωhh
−[ba]ωhhc[ba]ωhh

;
[ba]  −[ba]ωhha

∗b∗[ba]ωhh

[ba]  −[ba]ωhha
∗b∗[ba]ωhh

T̃1 c [ba] c [ba]

{
B̃−, B̃−

}
b∗zk[ba]a∗

+ b∗zk[ba]a∗

+ ωhha
∗b∗[ba] + ωhha

∗b∗[ba]

+ ωhha
∗b∗[ba]ωhha

∗b∗[ba]

h

i/i

k

h

k

b∗

??

a∗

OO

b∗

��

a∗

��

[ba]

��

[ba]

__

Table 5.A.43: flippant pair
{{
B̃+, B̃+

}
,
{
B̃−, B̃−

}}
.
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5.A Appendix

{
B̃+, C̃−

}
czkba

+ c0b0zia− 1
uk
c1b1zia

+ ωhhcbc1b1aa

h

i/h

k

i

k k]

c

??

b

__

a

��

c0

??

c1

__

b0

__

b1

??
a

��

ϕ̃

c 7→ cz−1
k

[ac0] 7→ z−1
i [ac0]

[ac1] 7→ −ukz−1
i [ac1]

;

[aa] 7→ zi[aa]

[bc0] 7→ zk[bc0]

[bc1] 7→ − 1
uk
zk[bc1]

;
a∗ 7→ −a∗

a∗ 7→ −a∗

ψ̃

c  a∗b∗

b0  c∗0a
∗z−1
i

b1  −ukc∗1a∗z
−1
i

[ac1]  1
uk
zi[aa]ωhhc[bc1]

;
[ba]  −[bc1]c∗1a

∗[aa]ωhh

[ac1]  1
uk
zi[aa]ωhha

∗b∗[bc1]

T̃1 c [ba] b0 [ac0] b1 [ac1]

{
B̃−, C̃+

}
a∗zi[aa]a∗

+ b∗zk[bc0]c∗0 − 1
uk
b∗zk[bc1]c∗1

+ ωhha
∗b∗[bc1]c∗1a

∗[aa]

h

i/h

k

i

kk] b∗

OO

a∗

OO

c∗0

��

c∗1

��

a∗

��

[aa]

��

[bc0]

��

[bc1]

��

Table 5.A.44: flippant pair
{{
B̃+, C̃−

}
,
{
B̃−, C̃+

}}
.
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5 Potentials for Tagged Triangulations

{
B̃+, C̃

}
czkba

+ czk (b0 + b1) zia

+ ωhhcbc (b0 + b1) aa

h

i/h

k

ik

c

??

b

__

a

��

c

??

b0
oo

b1oo

a

��

ϕ̃

c 7→ cz−1
k

[ac]0 7→ z−1
i [ac]0z

−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

;

[aa] 7→ zi[aa]

[bc]0 7→ zk[bc]0zk

[bc]1 7→ zk[bc]1zk

;
a∗ 7→ −a∗

a∗ 7→ −a∗

ψ̃

c  a∗b∗

b0  π0

(
z−1
i z−1

k c∗a∗
)

[ac]0  −π0

(
zizk[aa]ωhhc ([bc]0 + [bc]1)

)
b1  π1

(
z−∗i z−1

k c∗a∗
)

[ac]1  −π1

(
ziz
∗
k[aa]ωhhc ([bc]0 + [bc]1)

)
;

[ba]  −([bc]0 + [bc]1) c∗a∗[aa]ωhh

[ac]0  −π0

(
zizk[aa]ωhha

∗b∗ ([bc]0 + [bc]1)
)

[ac]1  −π1

(
ziz
∗
k[aa]ωhha

∗b∗ ([bc]0 + [bc]1)
)

T̃1 c [ba] b0 [ac]0 b1 [ac]1

{
B̃−, C̃

}
a∗zi[aa]a∗

+ b∗zk ([bc]0 + [bc]1) zkc
∗

+ ωhha
∗b∗ ([bc]0 + [bc]1) c∗a∗[aa]

h

i/h

k

i

k

b∗

??

a∗

OO

c∗

��

a∗

��

[aa]

��

[bc]0
oo

[bc]1oo

Table 5.A.45: flippant pair
{{
B̃+, C̃

}
,
{
B̃−, C̃

}}
.
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5.A Appendix

{
C,C

}
c0b00a0 − 1

ui
c0b01a1 − 1

uk
c1b10a0 + 1

uiuk
c1b11a1

+ c0b00a0 − 1
ui
c0b01a1 − 1

uk
c1b10a0 + 1

ukui
c1b11a1

+ u0c1b11a1c1b11a1

h/h

i

ki]

k]

i

k i]

k]

c0

��

c1

��

b00

88
b01 //

b10oo

b11

&&

a0

KK

a1

[[

c0

CC

c1

SS

b00

xx

b01

oo

b10

//

b11

ff

a0

��

a1

��

ϕ̃

b01 7→ −uib01

[a0c1] 7→ −uk[a0c1]

[a1c1] 7→ uiuk[a1c1]

b01 7→ −uib01

[a0c1] 7→ −uk[a0c1]

[a1c1] 7→ ukui[a1c1]

;

[a1c0] 7→ − 1
ui

[a1c0]

[a0c1] 7→ − 1
uk

[a0c1]

[a1c1] 7→ 1
ukui

[a1c1]

[a1c0] 7→ − 1
ui

[a1c0]

[a0c1] 7→ − 1
uk

[a0c1]

[a1c1] 7→ 1
ukui

[a1c1]

;

c∗0 7→ −c∗0
c∗1 7→ −c∗1
a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

b00  c∗0a
∗
0

b01  c∗0a
∗
1

b10  −ukc∗1a∗0
b11  uiukc

∗
1a
∗
1

b00  c∗0a
∗
0

b01  c∗0a
∗
1

b10  −ukc∗1a∗0
b11  ukuic

∗
1a
∗
1

[a1c1]  − u0
ukuiukui

[a1c1]b11[a1c1]

;
[a1c1]  − u0

uiuk
[a1c1]c∗1a

∗
1[a1c1]

[a1c1]  − u0
ukui

[a1c1]c∗1a
∗
1[a1c1]

T̃1 b00 [a0c0] b01 [a1c0] b10 [a0c1] b11 [a1c1] b00 [a0c0] b01 [a1c0] b10 [a0c1] b11 [a1c1]

{
C,C

}
a∗0[a0c0]c∗0 − 1

uk
a∗0[a0c1]c∗1 − 1

ui
a∗1[a1c0]c∗0 + 1

ukui
a∗1[a1c1]c∗1

+ a∗0[a0c0]c∗0 − 1
uk
a∗0[a0c1]c∗1 − 1

ui
a∗1[a1c0]c∗0 + 1

ukui
a∗1[a1c1]c∗1

+ u0a
∗
1[a1c1]c∗1a

∗
1[a1c1]c∗1

h/h

i

k

i]

k]i

k

i]

k]

c∗0

��

c∗1

��

a∗0

��

a∗1

��

c∗0

KK

c∗1

[[

a∗0

CC

a∗1

SS

[a0c0]

xx

[a1c0]
//

[a0c1]
oo

[a1c1]

ff

[a0c0]

88

[a1c0]
oo

[a0c1]
//

[a1c1]

&&

Table 5.A.46: flippant pair
{{
C,C

}
,
{
C,C

}}
.
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5 Potentials for Tagged Triangulations

{
C, C̃+

}
c0b00a0 − 1

ui
c0b01a1 − 1

uk
c1b10a0 + 1

uiuk
c1b11a1

+ czkb0a0 − 1
ui
czkb1a1

+ u0c1b11a1cb1a1

h/h

i

ki]

k]

k

ii]

c0

��

c1

��

b00

88
b01 //

b10oo

b11

&&

a0

KK

a1

[[

c

OO

b0
��

b1
��

a0

��

a1

��

ϕ̃

b01 7→ −uib01

[a0c1] 7→ −uk[a0c1]

[a1c1] 7→ uiuk[a1c1]

b0 7→ z−1
k b0

b1 7→ −uiz−1
k b1

;

[a1c0] 7→ − 1
ui

[a1c0]

[a0c1] 7→ − 1
uk

[a0c1]

[a1c1] 7→ 1
ukui

[a1c1]

[a0c] 7→ [a0c]zk

[a1c] 7→ − 1
ui

[a1c]zk

;

c∗0 7→ −c∗0
c∗1 7→ −c∗1
a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

b00  c∗0a
∗
0

b01  c∗0a
∗
1

b10  −ukc∗1a∗0
b11  uiukc

∗
1a
∗
1

[a1c1]  − u0
uiuk

[a1c]b1[a1c1]

b0  c∗a∗0

b1  c∗a∗1

;
[a1c1]  − u0

uiuk
[a1c]c

∗a∗1[a1c1]

[a1c]  −u0[a1c1]c∗1a
∗
1[a1c]

T̃1 b00 [a0c0] b01 [a1c0] b10 [a0c1] b11 [a1c1] b0 [a0c] b1 [a1c]

{
C, C̃−

}
a∗0[a0c0]c∗0 − 1

uk
a∗0[a0c1]c∗1 − 1

ui
a∗1[a1c0]c∗0 + 1

ukui
a∗1[a1c1]c∗1

+ a∗0[a0c]zkc
∗ − 1

ui
a∗1[a1c]zkc

∗

+ u0a
∗
1[a1c1]c∗1a

∗
1[a1c]c

∗
h/h

i

k

i]

k]

k

i

i]

c∗0

KK

c∗1

[[

a∗0

??

a∗1

__

c∗

��

a∗0

��

a∗1

��

[a0c0]

88

[a1c0]
oo

[a0c1]
//

[a1c1]

&&

[a0c]

__

[a1c]

??

Table 5.A.47: flippant pair
{{
C, C̃+

}
,
{
C, C̃−

}}
.
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5.A Appendix

{
C, C̃

}
c0b00a0 − 1

ui
c0b01a1 − 1

uk
c1b10a0 + 1

ukui
c1b11a1

+ czk (b0 + b1) zia

+ u0c1b11a1c (b0 + b1) a
h/h

i

ki]

k]

ik

c0

��

c1

��

b00

88
b01 //

b10oo

b11

&&

a0

KK

a1

[[

c

??

b0
oo

b1oo

a

��

ϕ̃

b01 7→ −uib01

[a0c1] 7→ −uk[a0c1]

[a1c1] 7→ ukui[a1c1]

[ac]0 7→ z−1
i [ac]0z

−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

;

[ac0] 7→ zi[ac0]

[ac1] 7→ − 1
uk
zi[ac1]

[a0c] 7→ [a0c]zk

[a1c] 7→ − 1
ui

[a1c]zk

;

c∗0 7→ −c∗0
c∗1 7→ −c∗1
a∗ 7→ −a∗

ψ̃

b00  c∗0a
∗
0

b01  c∗0a
∗
1

b10  −ukc∗1a∗0
b11  ukuic

∗
1a
∗
1

b0  π0

(
z−1
i z−1

k c∗a∗
)

[ac]0  −π0

(
u0
ukui

zizk[ac1]b11[a1c]
)

b1  π1

(
z−∗i z−1

k c∗a∗
)

[ac]1  −π1

(
u0
ukui

ziz
∗
k[ac1]b11[a1c]

)

;

[a1c1]  − u0
ukui

[a1c]c
∗a∗[ac1]

[ac]0  −π0

(
u0zizk[ac1]c∗1a

∗
1[a1c]

)
[ac]1  −π1

(
u0ziz

∗
k[ac1]c∗1a

∗
1[a1c]

)

T̃1 b00 [a0c0] b01 [a1c0] b10 [a0c1] b11 [a1c1] b0 [ac]0 b1 [ac]1

{
C̃+, C̃−

}
a∗zi[ac0]c∗0 − 1

uk
a∗zi[ac1]c∗1

+ a∗0[a0c]zkc
∗ − 1

ui
a∗1[a1c]zkc

∗

+ u0a
∗[ac1]c∗1a

∗
1[a1c]c

∗
h/h

i

k

i]

k]

i

k

c∗0

__

c∗1

??

a∗0

??

a∗1

__

c∗

��

a∗

��

[ac0]

??

[ac1]

__

[a0c]

__

[a1c]

??

Table 5.A.48: flippant pair
{{
C, C̃

}
,
{
C̃+, C̃−

}}
.
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5 Potentials for Tagged Triangulations

{
C̃+, C̃+

}
czkb0a0 − 1

ui
czkb1a1

+ czkb0a0 − 1
ui
czkb1a1

+ u0cb1a1cb1a1

k

h/h

i i]

k

ii]

c

��

b0

??

b1

__

a0

__

a1

??

c

OO

b0
��

b1
��

a0

��

a1

��

ϕ̃

b0 7→ z−1
k b0

b1 7→ −uiz−1
k b1

b0 7→ z−1
k b0

b1 7→ −uiz−1
k b1

;

[a0c] 7→ [a0c]zk

[a1c] 7→ − 1
ui

[a1c]zk

[a0c] 7→ [a0c]zk

[a1c] 7→ − 1
ui

[a1c]zk

;

c∗ 7→ −c∗

a∗0 7→ −a∗0
a∗1 7→ −a∗1

ψ̃

b0  c∗a∗0

b1  c∗a∗1

b0  c∗a∗0

b1  c∗a∗1

[a1c]  −u0[a1c]b1[a1c]

;
[a1c]  −u0[a1c]c

∗a∗1[a1c]

[a1c]  −u0[a1c]c
∗a∗1[a1c]

T̃1 b0 [a0c] b1 [a1c] b0 [a0c] b1 [a1c]

{
C̃−, C̃−

}
a∗0[a0c]zkc

∗ − 1
ui
a∗1[a1c]zkc

∗

+ a∗0[a0c]zkc
∗ − 1

ui
a∗1[a1c]zkc

∗

+ u0a
∗
1[a1c]c

∗a∗1[a1c]c
∗

k

h/h

i i]

k

ii] c∗

OO

a∗0

??

a∗1

__

c∗

��

a∗0
��

a∗1
��

[a0c]

��

[a1c]

��

[a0c]

__

[a1c]

??

Table 5.A.49: flippant pair
{{
C̃+, C̃+

}
,
{
C̃−, C̃−

}}
.
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5.A Appendix

{
C̃+, C̃

}
czkb0a0 − 1

ui
czkb1a1

+ czk (b0 + b1) zia

+ u0cb1a1c (b0 + b1) a

k

h/h

i i]

ik

c

��

b0

??

b1

__

a0

__

a1

??

c

??

b0
oo

b1oo

a

��

ϕ̃

b0 7→ z−1
k b0

b1 7→ −uiz−1
k b1

[ac]0 7→ z−1
i [ac]0z

−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

;

[ac]0 7→ zi[ac]0zk

[ac]1 7→ zi[ac]1zk

[a0c] 7→ [a0c]zk

[a1c] 7→ − 1
ui

[a1c]zk

;
c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b0  c∗a∗0

b1  c∗a∗1

b0  π0

(
z−1
i z−1

k c∗a∗
)

[ac]0  −π0

(
u0zizk ([ac]0 + [ac]1) b1[a1c]

)
b1  π1

(
z−∗i z−1

k c∗a∗
)

[ac]1  −π1

(
u0ziz

∗
k ([ac]0 + [ac]1) b1[a1c]

)
;

[a1c]  −u0[a1c]c
∗a∗ ([ac]0 + [ac]1)

[ac]0  −π0

(
u0zizk ([ac]0 + [ac]1) c∗a∗1[a1c]

)
[ac]1  −π1

(
u0ziz

∗
k ([ac]0 + [ac]1) c∗a∗1[a1c]

)

T̃1 b0 [a0c] b1 [a1c] b0 [ac]0 b1 [ac]1

{
C̃−, C̃

}
a∗0[a0c]zkc

∗ − 1
ui
a∗1[a1c]zkc

∗

+ a∗zi ([ac]0 + [ac]1) zkc
∗

+ u0a
∗
1[a1c]c

∗a∗ ([ac]0 + [ac]1) c∗

k

h/h

ii]

i

k

c∗

��

a∗0
��

a∗1
��

c∗

OO

a∗

??

[ac]0
oo

[ac]1oo

[a0c]

��

[a1c]

��

Table 5.A.50: flippant pair
{{
C̃+, C̃

}
,
{
C̃−, C̃

}}
.
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5 Potentials for Tagged Triangulations

{
C̃, C̃

}
czk (b0 + b1) zia

+ czk (b0 + b1) zia

+ u0c (b0 + b1) ac (b0 + b1) a

h/h

i k

ik

c

��

b0 //

b1
//

a

__

c

??

b0
oo

b1oo

a

��

ϕ̃

[ac]0 7→ z−1
i [ac]0z

−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

[ac]0 7→ z−1
i [ac]0z

−1
k

[ac]1 7→ z−1
i [ac]1z

−1
k

;

[ac]0 7→ zi[ac]0zk

[ac]1 7→ zi[ac]1zk

[ac]0 7→ zi[ac]0zk

[ac]1 7→ zi[ac]1zk

;
c∗ 7→ −c∗

a∗ 7→ −a∗

ψ̃

b0  π0

(
z−1
i z−1

k c∗a∗
)

b1  π1

(
z−∗i z−1

k c∗a∗
)

b0  π0

(
z−1
i z−1

k c∗a∗
)

[ac]0  −π0

(
u0[ac]zkbzi[ac]zizk

)
b1  π1

(
z−∗i z−1

k c∗a∗
)

[ac]1  −π1

(
u0[ac]zkbzi[ac]z

∗
i zk

)

;

[ac]0  −π0

(
u0[ac]c∗a∗[ac]zizk

)
[ac]1  −π1

(
u0[ac]c∗a∗[ac]z∗i zk

)
[ac]0  −π0

(
u0zizk[ac]c

∗a∗[ac]
)

[ac]1  −π1

(
u0ziz

∗
k[ac]c∗a∗[ac]

)

(
b := b0 + b1 , [ac] := [ac]0 + [ac]1 , [ac] := [ac]0 + [ac]1

)
T̃1 b0 [ac]0 b1 [ac]1 b0 [ac]0 b1 [ac]1

{
C̃, C̃

}
a∗zi ([ac]0 + [ac]1) zkc

∗

+ a∗zi ([ac]0 + [ac]1) zkc
∗

+ u0a
∗ ([ac]0 + [ac]1) c∗a∗ ([ac]0 + [ac]1) c∗

h/h

i

ki

k

c∗

��

a∗

��

c∗

__

a∗

??

[ac]0
oo

[ac]1oo

[ac]0 //

[ac]1
//

Table 5.A.51: flippant pair
{{
C̃, C̃

}
,
{
C̃, C̃

}}
.
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5.A Appendix

B̃
czkba

+ ωhia

+ ωihcb

+ ωiiaωhhcb hi

k

c

��

b

??

a
oo

ϕ̃ [cb]1 7→ −xk
yk

[cb]0 + 1
yk

[cb]1 ; b∗ 7→ −2ykb
∗v

ψ̃

a  b∗c∗

[cb]1  −ωhi
−ωhh[cb]0 ωii

T̃1 a [cb]1

B̃
b∗z∗kc

∗[cb]0

+ ωih[cb]0

+ ωhib
∗c∗

+ ωiib
∗c∗ ωhh[cb]0 h i

k

c∗
??

b∗

��

[cb]0
oo

Table 5.A.52: flippant pair
{
B̃, B̃

}
.
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5 Potentials for Tagged Triangulations

C̃+
+

czkb0a0 − 1
ui
czkb1a1

+ ωhhcb1a1
kh

i

i]

c
oo

b0

��

b1

??

a0

??

a1

��

ϕ̃
[cb0]1 7→ −xk

yk
[cb0]0 + 1

yk
[cb0]1

[cb1]1 7→ −xk
yk

[cb1]0 − ui
yk

[cb1]1
;

b∗0 7→ −2ykb
∗
0v

b∗1 7→ −2ykb
∗
1v

[cb1]0 7→ − 1
ui

[cb1]0

ψ̃

a0  b∗0c
∗

a1  −uib∗1c∗

[cb1]1  1
ui
ωhh[cb1]0

T̃1 a0 [cb0]1 a1 [cb1]1

C̃−−
[cb0]0b∗0z

∗
kc
∗ − 1

ui
[cb1]0b∗1z

∗
kc
∗

+ ωhh[cb1]0b∗1c
∗ k h

i

i]

c∗
oo

b∗0

??

b∗1

��

[cb0]0

��

[cb1]0

??

Table 5.A.53: flippant pair
{
C̃+

+, C̃
−
−
}

.
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C̃−
czk (b0 + b1) zia

+ ωhhc (b0 + b1) a

h

i k

c

��

b0 //

b1
//

a

__

ϕ̃
[b1a] 7→ −zizk[b0a]− z−1

k [b1a]

[b0a] 7→ z∗i zk[b0a] + z−1
k [b1a]

;
c 7→ 1

2
1
wyi

cv

b∗1 7→ −b∗1

ψ̃
c  −a∗ (b∗0 + b∗1) z−1

k

[b1a]  zk[b0a]ωhh

T̃1 c [b1a]

C̃+

a∗z∗i (b∗0 + b∗1) zk[b0a]

+ ωhha
∗ (b∗0 + b∗1) [b0a]

h

ik
b∗0 //

b∗1
//

a∗

��

[b0a]

__

Table 5.A.54: flippant pair
{
C̃−, C̃+

}
.
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D̃1

c0b00a0zh

− 1
ui
c0b01a1zh

− 1
uk
c1b10a0zh

+ 1
uiuk

c1b11a1zh

+ u0c1b11a1

h

i

ki]

k]

c0

__

c1

��

b00

��

b01

//

b10oo

b11

OO

a0

??

a1

��

ϕ̃

[a0c0]1 7→ −xh
yh

[a0c0]0 + 1
yh

[a0c0]1

b01 7→ − ui
yh
b01

[a1c0]1 7→ −xh
yh

[a1c0]0 + [a1c0]1

[a0c1]1 7→ −xh
yh

[a0c1]0 − uk
yh

[a0c1]1

[a1c1]1 7→ −uiuku0+xh
yh

[a1c1]0 + uiuk
yh

[a1c1]1

;

c∗0 7→ −2yhc
∗
0v

c∗1 7→ −2yhc
∗
1v

[a1c0]0 7→ − 1
ui

[a1c0]0

[a0c1]0 7→ − 1
uk

[a0c1]0

[a1c1]0 7→ 1
uiuk

[a1c1]0

ψ̃

b00  c∗0a
∗
0

b01  yhc
∗
0a
∗
1

b10  −ukc∗1a∗0
b11  uiukc

∗
1a
∗
1

T̃1 b00 [a0c0]1 b01 [a1c0]1 b10 [a0c1]1 b11 [a1c1]1

D̃1

a∗0[a0c0]0c∗0z
∗
h

− 1
uk
a∗0[a0c1]0c∗1z

∗
h

− 1
ui
a∗1[a1c0]0c∗0z

∗
h

+ 1
uiuk

a∗1[a1c1]0c∗1z
∗
h

+ u0a
∗
1[a1c1]0c∗1

h

i

ki]

k]

c∗0

??

c∗1

��

a∗0

__

a∗1

��

[a0c0]0

��

[a1c0]0
oo

[a0c1]0
//

[a1c1]0

OO

Table 5.A.55: flippant pair
{
D̃1, D̃1

}
.
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D̃−2 zh (c0 + c1) zkb0a0

− 1
ui
zh (c0 + c1) zkb1a1

+ u0 (c0 + c1) b1a1

k

h

ii] c0

��

c1

��

b0

__

b1

??

a0

??

a1

__

ϕ̃

[c1b0] 7→ −zkzh[c0b0] + z−∗k z−1
h [c1b0]

[c1b1] 7→
(

1
ui
zkzh − u0

)
[c0b1] +

(
− 1
ui
z∗kzh + u0

)−1
[c1b1]

[c0b0] 7→ z∗kzh[c0b0]

[c0b1] 7→
(
− 1
ui
z∗kzh + u0

)
[c0b1]

; c∗1 7→ −c∗1

ψ̃
a0  b∗0z

−1
k c∗1z

−1
h

a1  b∗1c
∗
1

(
− 1
ui
z∗kzh + u0

)−1

T̃1 a0 [c1b0] a1 [c1b1]

D̃+
2 z∗k (c∗0 + c∗1) zh[c0b0]b∗0

− 1
ui
z∗k (c∗0 + c∗1) zh[c0b1]b∗1

+ u0 (c∗0 + c∗1) [c0b1]b∗1

k

h

ii] c∗0

��

c∗1

��
b∗0

??

b∗1

__

[c0b0]

__

[c0b1]

??

Table 5.A.56: flippant pair
{
D̃−2 , D̃

+
2

}
.
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D̃3

(c0 + c1)zk(b0 + b1)zi(a0 + a1)zh

k

h

i

c0

��

c1

��

b0 //

b1
//

a0

__

a1

__

ϕ̃

[c1b1] 7→ −[c0b0] (zhzizk + u0) + [c1b1](zhziz
∗
k + u0)−1

[c0b1] 7→ −[c1b0] (z∗hzizk + u0) + [c0b1](z∗hziz
∗
k + u0)−1

[c0b0] 7→ zh[c0b0]ziz
∗
k + u0[c0b0]

[c1b0] 7→ zh[c1b0]z∗kzi + u0[c1b0]

; b∗1 7→ −b∗1

ψ̃

a0  π0

(
b∗1c
∗
1(zhziz

∗
k + u0)−1

)
a1  π1

(
b∗1c
∗
0(zhz

∗
i zk + u0)−1

)

T̃1 a0 [c1b1] a1 [c0b1]

D̃3

(b∗0 + b∗1)z∗k(c∗0 + c∗1)zh([c0b0] + [c1b0])zi

kh

i

c∗0 //

c∗1
//

b∗0

��

b∗1

��

[c0b0]

__

[c1b0]

__

Table 5.A.57: flippant pair
{
D̃3, D̃3

}
.

182



6 Potentials for Colored Triangulations

Motivation

This chapter continues the investigation of orbifolds. In contrast to the preceding chapter,

punctures are not allowed, but orbifold points now carry a weight. That is to say, we are

dealing with weighted unpunctured orbifolds: compact oriented surfaces Σ with marked

points M ⊆ ∂Σ and orbifold points O ⊆ Σ \ ∂Σ equipped with weights O→ {1, 4}, y 7→ dy.

Again, we will illustrate the introduction with an example. This time, we consider the

digon with M = {x1, x2} and O = {y1, y2}. For the weights we take dy1
= 1 and dy2

= 4.

The three arcs i1, i2, i3 shown below form a triangulation τ :

s1s2

x2

y1 y2

i1 i2

x1

i3

i3

i1 i2

s2 s1

a1

__

b1 //

c1
��

c2

??

a2

��

b2
oo

As before, there is a quiver X(τ) whose vertices are the sides of the triangles in τ with

arrows keeping track of adjacencies. It is a weighted quiver where sides i containing an

orbifold point y have weight di = dy and all other sides have weight 2.

In the example, we therefore have di1 = 1, di2 = 4 and ds1 = ds2 = di3 = 2.

The path algebras R〈A〉 for X(τ) are defined over a ground ring R = R(τ) =
∏
i∈X0(τ)Ri

where all Ri are intermediate fields of a cyclic Galois extension L/K of degree 4.

More precisely, we will assume L = K(v) with v4 ∈ K. Letting E = K(v2) this means

Ri =


K if di = 1,

E if di = 2,

L if di = 4.

For the bimodule A =
⊕

a∈X1(τ)Aa there are several choices. For each j
a←− i with both

weights di and dj divisible by 2 one can take Aa = Rj ⊗ρaRi with ρa|E ∈ Gal(E/K) ∼= Z/2Z.

To be well-behaved with respect to mutation, it is necessary to impose a “compatibility

condition.” In the example: ρc2ρb2ρa2
= idE . More generally, the “compatible” choices for
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6 Potentials for Colored Triangulations

the elements ρa are parametrized by the set of 1-cocycles Z1(τ) of the cocomplex dual to

C•(τ) : 0 // F2X̄2(τ)
∂2 // F2X̄1(τ)

∂1 // F2X̄0(τ) // 0

where
(
X̄0(τ), X̄1(τ)

)
is the underlying simple graph of the full subquiver of X(τ) on the

vertices with weight divisible by 2. The “faces” X̄2(τ) correspond to triangles of τ .

In the example, X̄0(τ) = {i2, i3, s1, s2} and X̄1(τ) = {c1, c2, b2, a2} and X̄2(τ) = {∆}
where ∆ is the triangle with sides s1, s2, i3. The differential ∂2 sends ∆ to c2 + b2 + a2

such that ξ(c2) + ξ(b2) + ξ(a2) = 0 for all ξ ∈ Z1(τ) ⊆ HomF2
(C1(τ),F2).

Colored Triangulations

A colored triangulation (τ, ξ) is a triangulation τ together with a cocycle ξ ∈ Z1(τ). For

all arcs i ∈ τ we define another colored triangulation: the flip µi(τ, ξ) = (µi(τ), ξ′).

Every colored triangulation determines a path algebra R〈A(τ, ξ)〉 for X(τ) over L/K.

We will construct an SP S(τ, ξ) = (A(τ, ξ),W (τ, ξ)).

In the running example the potential W (τ, ξ) is c1b1a1 + c2b2a2. Flipping the arc i3

yields the following triangulation µi3(τ):

s1s2

x2

y1 y2

i1 i2

x1

j3

j3

i1 i2

s2 s1

a∗1

��

[a1c2]

OO

c∗1

??

c∗2
��

a∗2

__
[a2c1]

��

The potential W (µi3(τ, ξ)) has the form a∗1[a1c2]c∗2 + a∗2[a2c1]c∗1.

Results

We will show that the SP S(µi(τ, ξ)) corresponds to the SP mutation µi(S(τ, ξ)) for all i.

In particular, this will imply the non-degeneracy of S(τ, ξ).

Furthermore, we will see that W (τ, ξ) is up to R(τ)-equivalence the unique non-degenerate

potential for A(τ, ξ) if we assume that the weighted orbifold under consideration is not a

monogon with all orbifold points of the same weight.

We prove that the Jacobian algebra J (τ, ξ) is finite-dimensional and J (τ, ξ) ∼= J (τ, ξ′)

as KX0(τ)-algebras if and only if ξ and ξ′ are cohomologous cocycles.

Finally, the set of colored triangulations of a weighted unpunctured orbifold forms the

set of vertices of a simple graph in which two colored triangulations are joined with an edge

if and only if they are related by flipping an arc. The flip graph is obtained from this graph

by identifying colored triangulations (τ, ξ) and (τ, ξ′) where ξ and ξ′ are cohomologous.

The flip graph will be shown to be disconnected unless the surface Σ is a disk.
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6.1 Triangulated Weighted Orbifolds

6.1 Triangulated Weighted Orbifolds

The notion of triangulated weighted orbifolds is due to [FST12a]. In the present chapter

we only consider weighted orbifolds without punctures. This section discusses consequences

of the non-existence of punctures. In addition, it introduces relevant notation.

Definition 6.1.1. A weighted orbifold Σd is a pair (Σ, d) consisting of an orbifold Σ in

the sense of Definition 5.1.1 and a function O d−→ {1, 4}, 7→ d .

A triangulation of Σd is a triangulation of Σ (see Definition 5.1.14).

Convention 6.1.2. For the rest of the chapter fix a weighted orbifold Σd = (Σ, d) such

that Σ = (Σ,M,O) has no punctures. This means M ⊆ ∂Σ 6= ∅. For technical reasons we

assume that Σ is not a torus with exactly one boundary marked point.

We use Convention 5.1.2. In particular, we write s for the set of boundary segments, g

for the genus, b for the number of boundary components, m for the number of marked

points, and o for the number of orbifold points of Σ. Moreover, set o1 := |{ ∈ O | d = 1}|.

In the drawings we put a circle d close to every orbifold point to indicate its weight.

For triangulations τ of Σd and k ∈ {1, 4} we denote by τd=k the set of all pending arcs i

in τ such that the orbifold point that is an endpoint of i has weight d = k.

The set of non-pending arcs in τ will sometimes be written as τd=2.

Remark 6.1.3. With λ defined as in Convention 5.1.2 the invariant (g, λ, o, o1) determines

the weighted orbifold Σd up to diffeomorphism (see Remark 5.1.3).

Remark 6.1.4. Observe that by definition m ≥ b > 0 and o ≥ o1 ≥ 0.

Since Σ has no punctures, the ends of all tagged arcs in Σ are tagged in the same way.

Therefore the notions of triangulation and tagged triangulation coincide in the setting of this

chapter. The puzzle-piece decompositions of triangulations of Σd (see Proposition 5.1.23)

contain only pieces of those types shown in Figure 6.A.1. In particular, the puzzle pieces

of a triangulation of Σd are simply the triangles of the triangulation.

Finally, the non-existence of punctures also rules out many of the arctypes listed

in Tables 5.A.7 to 5.A.10 an arc in a triangulation of Σ can have. Not taking into account

the weights, we are left with only 14 arctypes. They are shown in Tables 6.A.2 to 6.A.4.

6.2 Colored Triangulations

6.2.1 Adjacency Quiver of a Triangulation

The adjacency quivers for triangulations of the weighted orbifold Σd are defined in complete

analogy to § 5.2.1. However, they are not modular but merely weighted quivers.
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6 Potentials for Colored Triangulations

Notation 6.2.1. Similar to Notation 5.2.1 we denote by X2(τ) the set of triangles of a

triangulation τ of Σd. For ∆ ∈ X2(τ) we write (i, j) ∈ ∆ if j follows i in ∆.

Definition 6.2.2. The (adjacency) quiver X(τ) = X(τ, d) of a triangulation τ of Σd is a

weighted quiver (X(τ), d) whose vertices are the arcs in τ and boundary segments of Σd.

Formally, X0(τ) = τ ∪ s. The weight of pending i ∈ X0(τ) is di = d where is the

endpoint of i belonging to O. For every other i ∈ X0(τ) define di = 2. The arrow set is

X1(τ) =

{
i

(∆,(i,j),r)−−−−−−−→ j |∆ ∈ X2(τ), i, j ∈ X0(τ) with (i, j) ∈ ∆,

r ∈ {0, 1} with r = 1 only if di = dj ∈ {1, 4}
}

.

The heavy part of X(τ) is the full subquiver Xd6=1(τ) of X(τ) consisting of all vertices i

with weight di 6= 1.

Notation 6.2.3. Set ∆(a) := ∆ and r(a) := r for every arrow a = (∆, (i, j), r) ∈ X1(τ).

We say that a is induced by the triangle ∆ of τ .

A cyclic path cba in X(τ) is induced by a triangle ∆ of τ if ∆(a) = ∆(b) = ∆(c) = ∆.

A path cba in X(τ) is triangle-induced if it is a cyclic path induced by some ∆ ∈ X2(τ).

For a triangle ∆ of τ we denote by X∆ the subquiver of X(τ) spanned by all arrows

induced by ∆. More generally, the subquiver of X(τ) induced by triangles ∆1, . . . ,∆` is

defined as the quiver X∆1 ⊕ · · · ⊕X∆` .

Remark 6.2.4. Assume O d−→ {1, 4} is constant with value 4. Then all vertices of X(τ)

have weight 2 or 4. As quiver X(τ) coincides with Q(τ) from Definition 5.2.2. The weight

of a vertex in X(τ) is the double of the weight of the corresponding vertex in Q(τ).

Remark 6.2.5. The full subquiver X◦(τ) of X(τ) spanned by τ (i.e. by all arcs that are not

boundary segments) is the “weighted quiver Q(τ, d) of τ with respect to d” in [GL16a].

Convention 6.2.6. In the illustrations we indicate the weight of a vertex i in X(τ) by

putting a circle di next to it whenever di ∈ {1, 4}. Vertices of weight 2 are not highlighted

in any special way. The part of X(τ) not belonging to X◦(τ) will be drawn in blue.

Remark 6.2.7. Analogously as in Remark 5.2.5 we can rephrase [FST12a, Lemma 4.10] in

our context as follows: There is a decomposition of weighted quivers

X(τ) =
⊕

∆

X∆

where the sum runs over all triangles ∆ of τ . The weighted quivers X∆ for the different

types of triangles (= puzzle pieces) are shown in Figures 6.A.5 to 6.A.7.

Remark 6.2.8. The quiver X(τ) of every triangulation τ is connected, since Σ is connected.

Remark 6.2.9. We have the following analog of Remark 5.2.7 concerning the number qji of

arrows j ←− i in X(τ):

186
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• qji ≤ 2. More precisely, the outdegree of i and the indegree of j are at most 2.

• If qij ≥ 1, then qji = 0.

• If di 6= dj , then qji ≤ 1.

• There is at most one arrow j ←− i induced by the same triangle unless di = dj 6= 2.

• If di = dj 6= 2 and qji ≥ 1, then qji = 2.

The second item shows that X(τ) is 2-acyclic.

Note that di = dj 6= 2 means that both i and j are pending arcs with the same weight,

while di 6= dj implies that at least one of i and j is pending.

Remark 6.2.10. Assume O d−→ {1, 4} is not constant with value 4. Let τ be a triangulation.

The skew-symmetrizable matrix B = B(τ, d) associated with the weighted quiver X◦(τ)

via the bijection of Remark 2.1.6 is one of the matrices described in [FST12a, § 4.3].

More precisely, the function O d−→ {1, 4} corresponds to the function O w−→
{

1
2 , 2
}

given

as w( ) = 2
d in [FST12a, Definition 4.15].1

6.2.2 Mutating Adjacency Quivers

The considerations in this subsection are similar to those in § 5.2.2. We discuss how the

weighted quiver X(µi(τ)) can be regarded as a subquiver of the premutation µ̃i(X(τ)).

Notation 6.2.11. Copying Notation 5.2.15 write X(τ, i) (resp. X(τ,¬i)) for the subquiver

of X(τ) induced by all triangles of τ containing (resp. not containing) the arc i in τ .

Remark 6.2.12. X(τ) = X(τ,¬i)⊕X(τ, i) and µ̃i(X(τ)) = X(τ,¬i)⊕ µ̃i(X(τ, i)).

We have the following analogs of Lemma 5.2.17 and Remark 5.2.18:

Lemma 6.2.13. Let τ and ς be triangulations of Σd that are related by a flip, say ς = µi(τ)

and τ = µj(ς). Then X¬ := X(τ,¬i) = X(ς,¬j) and there is a monomorphism

X(ς)
Φ

↪−−−−−→ µ̃i(X(τ))

of weighted quivers with Φ|X¬ = idX¬ and Φ(k) = k for all k ∈ X0(ς) \ {j} and Φ(j) = i.

The image of Φ is a maximal 2-acyclic subquiver of µ̃i(X(τ)).

Proof. This is similar to [FST12a, Lemma 4.12] and relies on Definitions 2.1.8 and 6.2.2.

Remark 6.2.14. One can demand in Lemma 6.2.13 that for every
b←− i a←− in X(τ) . . .

(i) . . . with ∆(b) 6= ∆(a), there is a triangle-induced cyclic path b∨c∨a∨ in X(ς) such

that Φ(b∨) = b∗, Φ(c∨) = [ba]0r(c∨), Φ(a∨) = a∗.

1Not to the function w( ) =
d

2
. The reason for this is that we call a diagonal integer matrix D a skew-

symmetrizer of B = B(τ) if DB is skew-symmetric, whilst [FST12a] requires BD to be skew-symmetric.
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(ii) . . . with di 6= 2, r(b) = r(a) = 0, there is a triangle-induced path b∨c∨a∨ in X(ς)

with r(b∨) = r(a∨) = 0 such that Φ(b∨) = b∗, Φ(c∨) = [ba]0r , Φ(a∨) = a∗ for some r.

This property determines Φ uniquely, if i is not the weight-1 pending arc in a triangle of

type B̃1, C̃14, or C̃41. In the case that i is such an arc, there are two choices for Φ.

These claims can easily be verified case by case. All possibilities for the image of X(ς, j)

under Φ are listed in Table 6.A.8 (where i corresponds to the boxed vertex).

Example 6.2.15. Let X(τ) = X∆ be the weighted quiver of type C̃14 shown in Figure 6.A.7.

The premutation µ̃i(X(τ)) is drawn below on the right. Flipping the arc i in τ yields a

triangulation ς consisting of a single triangle of type C̃41. The quiver X(ς) can be seen on

the left. One of the monomorphisms Φ satisfying the property in Remark 6.2.14 sends the

arrow c∨ to [ba]00, the other one sends c∨ to [ba]01.

h

j k
1 4

b∨oo

a∨

��

c∨

??

Φ
↪−−−−−−−−→

h

i k
1 4

c

��

b∗oo

a∗

��

??

[ba]00, [ba]01

??

A similar consideration works for the weight-1 arc in triangles ∆ of type B̃1 and C̃41.

6.2.3 Modular Structures

We have defined X(τ) not as a modular but only as a weighted quiver. Usually, X(τ) can

be turned into a modular quiver in several equally valid ways.

Definition 6.2.16. We call σ a modular structure for X(τ) if (X(τ), d, σ) is a modular

quiver. A modular structure σ for X(τ) is admissible if (X(τ), d, σ) is τ -admissible.

Remark 6.2.17. Recall that the admissibility of a modular quiver is a prerequisite for

admitting non-degenerate SPs (see Remark 2.6.103).

Example 6.2.18. Depicted below is a triangulation τ of the triangle with one weight-1 and

two weight-4 orbifold points. The weighted quiver X = X(τ) is drawn on the right.

s1s3

s2

k

i3

k−

i2

k+

4 4

1

i1

i3

i2

i1

k
1

s1

s2

k−

4

k+

4

s3

a4

��

b4

__

c4 //

c3

??

a3

��

b3

oo

b2

__

c2 //

a2

��

a1

__

b10 //

b11

//

c1

��
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The subquivers X∆ in the decomposition from Remark 6.2.7 are the full subquivers of X

spanned by the subsets {i1, k−, k+}, {i1, i2, s3}, {i2, s1, i3}, {i3, s2, k} ⊆ X0.

We have τd=1 = {k} and τd=4 = {k−, k+}.

To equip X with the structure of a modular quiver, we have to pick for each j
a←− i in X

an element σa ∈ Z/djiZ. Observe that

dji =


1 if i ∈ τd=1 ∨ j ∈ τd=1,

4 if i ∈ τd=4 ∧ j ∈ τd=4,

2 otherwise.

Therefore we have no choice for σb4 , σc4 , four possibilities for each of σb10
, σb11

, and two

possibilities for each of σa1
, σc1 , σa2

, σb2 , σc2 , σa3
, σb3 , σc3 , σa4

.

In other words, we have to make a choice for all arrows that lie in the heavy part Xd6=1(τ).

However, not all of these choices define modular structures that are admissible.

Lemma 6.2.19. A modular structure σ for X(τ) is admissible if and only if there is an

automorphism X(τ)
π−→ X(τ) of Q0-quivers such that

(a) σπ(c) + σπ(b) + σπ(a) = 0 in Z/2Z for all triangle-induced paths cba in Xd6=1(τ); and

(b) σc0 6= σc1 for each pair of parallel arrows c0 6= c1 in X(τ) connecting arcs in τd=4.

Furthermore, σa = 0 for all arrows a in X(τ)−Xd6=1
1 (τ).

Definition 6.2.20. Let τ and ς be triangulations of Σd such that ς = µi(τ). For every

modular structure σ for X(τ) denote by

X(ς)
Φσ

↪−−−−−→ µ̃i(X(τ))

the monomorphism Φ satisfying the property of Remark 6.2.14 such that, if i is the pending

arc of a triangle ∆ of type B̃1, C̃14, or C̃41, it is

[ba]0σc+1 ∈ im(Φ)

where i
a←− c←− b←− i is the cyclic path in X(τ) induced by ∆ (compare Example 6.2.15).

Proof of Lemma 6.2.19. The last claim is obvious

To prove the “only if” part of the first claim, let us assume that (a) or (b) is violated.

Due to Remark 6.2.9 there are at most two arrows between each pair of vertices in X(τ).

Moreover, for every cyclic path cba in Xd6=1(τ) at most one of the arrows a, b, c can have a

parallel arrow in X(τ) different from itself (compare Tables 6.A.2 to 6.A.4). Hence, the

subquiver Xcba of X(τ) induced by all ∆(f) with f parallel to a, b, c is full.

If (a) is violated for all π, the preceding discussion shows that there are cyclic paths c0b0a0

and c1b1a1 in Xd6=1(τ) such that c0 and c1 are parallel arrows in X(τ) and σcp+σb0 +σa0
6= 0

or σc1−p + σb1 + σa1
6= 0 for all p ∈ {0, 1}. In this case, let X ′ = Xc0b0a0 = Xc1b1a1 .
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6 Potentials for Colored Triangulations

If (b) is violated, let ∆ be the triangle of type C̃44 inducing the parallel arrows c0 and c1

and let X ′ be the full subquiver X∆ of X(τ).

In both cases, we consider X ′ as a (full) modular subquiver of (X(τ), d, σ). It is easy to

check that µ̃jµ̃i(X
′) is not 2-acyclic after reduction for some i, j. Thus σ is not admissible.

For the “if” part of the first claim, it is sufficient to verify that for all arcs i ∈ τ the

premutation X̃ = µ̃i(X(τ), d, σ) has the form X̃ = Φσ((X(ς), d, σ′))⊕ T̃ with T̃ trivial and

conditions (a) and (b) hold after replacing τ , σ with ς = µi(τ), σ′ = σ ◦ Φσ, where the

modular structure for X̃ induced by σ is still denoted by σ.

Without loss of generality, we will assume that (a) and (b) hold for π = id.

Fix i ∈ τ . First, we consider the case in which i is an arc shared by two triangles ∆0

and ∆1 of τ (see Tables 6.A.2 and 6.A.3). In this case, Φ = Φσ does not depend on σ.

For q ∈ {0, 1} let kq
bq←− i

aq←−− hq be the paths in X(τ) with ∆(aq) = ∆(bq) = ∆q.

By the properties of Φ there are paths j
b∨q←−− k1−q

c∨q←−− hq
a∨q←−− j in X(ς) induced each by

some ∆′q ∈ X2(ς) such that Φ
(
b∨q
)

= b∗1−q, Φ
(
c∨q
)

=
[
b1−qaq

]
0
0, Φ

(
a∨q
)

= a∗q .

If b∨q c
∨
q a
∨
q is contained in Xd 6=1(ς), then

σ′b∨q + σ′c∨q + σ′a∨q = σb∗1−q + σ[b1−qaq ]
0
0

+ σa∗q = 0 ∈ Z/2Z .

If there is c′q 6= c∨q with ∆(c′q) = ∆′q parallel to c∨q in X(ς), then hq, k1−q ∈ ςd=4 and the

arrows k1−q ←− hq in X̃ are [b1−qaq]
0
0 and [b1−qaq]

0
1. Thus Φ(c′q) = [b1−qaq]

0
1 and

σ′b∨q + σ′c′q + σ′a∨q = σb∗1−q + σ[b1−qaq ]
0
1

+ σa∗q = 0 ∈ Z/2Z .

Moreover, σ′c∨q = σ[b1−qaq ]
0
0
6= σ[b1−qaq ]

0
1

= σ′c′q .

Since X2(ς) = (X2(ς) ∩X2(τ)) ∪ {∆′0,∆′1} and each arrow in X1(ς) \X1(τ) is induced

by either ∆′0 or ∆′1, we can conclude that (a) and (b) hold with τ , σ replaced by ς, σ′.

Let T̃ be the modular subquiver of X̃ spanned by all arrows not in the image of Φ. This

means T̃1 consists of the arrows kq −→ hq induced by ∆q (for q ∈ {0, 1}) and those in{
kq

[bqaq ]
s
r←−−−−− hq | s ∈ {0, 1} with s = 1 only if dhq = dkq = 1,

r ∈ {0, 1} with r = 1 only if dhq = dkq = 4

}
.

If dkqhq = 2, then σcq + σ[bqaq ]
0
0

= σcq + σbq + σaq = 0 in Z/2Z by condition (a) for the

unique arrow kq
cq−−→ hq in X̃ induced by ∆q.

If dkqhq = 4, there are precisely two arrows kq
cqr−−→ hq (r ∈ {0, 1}) in X̃ induced by ∆q.

Conditions (a) and (b) imply σcqr + σ[bqaq ]
0
f(r)

= 0 in Z/4Z for a permutation f of {0, 1}.

This shows that T̃ is a trivial modular quiver. Hence, the image of Φ is a reduction of

the modular quiver X̃ by Lemma 6.2.13.

It remains to consider the case in which i is an inner side of some triangle ∆ of τ (see

Table 6.A.4). Using Remark 6.2.12 we can assume that ∆ is the only triangle of τ . Then ς
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consists as well of only one triangle ∆′. The weighted quivers X(τ) = X∆ and X(ς) = X∆′

are among those in Figures 6.A.6 and 6.A.7 and i is one of their vertices of weight 1 or 4.

A straightforward case-by-case inspection shows that X̃ = Φσ((X(ς), d, σ′))⊕ T̃ , where T̃

is trivial, and conditions (a) and (b) still hold when τ , σ is replaced by ς, σ′.

Example 6.2.21. The weighted quivers of type B̃1 and C̃41 in Figures 6.A.6 and 6.A.7 each

admit two modular structures (σa, σb, σc) ∈ {(0, 0, 0), (1, 0, 0)}. Both are admissible.

The only modular structure for the weighted quiver of type C̃11 in Figure 6.A.7 takes

the value zero everywhere. It is admissible.

Example 6.2.22. The modular structure (σa, σb, σc) = (0, 1, 1) for the weighted quiver of

type A in Figure 6.A.5 is admissible, whereas (σa, σb, σc) = (1, 1, 1) is not.

For the weighted quiver of type C̃44 in Figure 6.A.7 (σa, σb0 , σb1 , σc) = (0, 0, 2, 0) is

admissible, while (σa, σb0 , σb1 , σc) ∈ {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0)} are not.

6.2.4 Cocycles and Colored Triangulations

We introduce colored triangulations (τ, ξ). These are triangulations τ enriched with an

additional datum ξ encoding an admissible modular structure σξ for X(τ).

Notation 6.2.23. Denote by X̄2(τ) the subset of X2(τ) consisting of all triangles ∆ such

that all sides of ∆ belong to the heavy part Xd6=1(τ).

Let X̄(τ) be the quiver obtained from the heavy part Xd6=1(τ) by identifying parallel

arrows that connect arcs in τd=4.

Remark 6.2.24. By definition c0 = c1 in X̄(τ) whenever c0 6= c1 is a pair of parallel arrows

in Xd6=1(τ) between weight-4 pending arcs.

Example 6.2.25. For X(τ) = X∆ with ∆ of type A, B̃4 or C̃44 like in Figures 6.A.5 to 6.A.7

the quiver X̄(τ) is the simple triangle quiver (where b := b0 = b1 in the C̃44 case):

c

��

b //

a

__

For triangles ∆ of type B̃1, C̃14, C̃41 the quiver X̄(τ) is the subquiver of X∆ spanned

by the single arrow that connects the two vertices of weight unequal one.

For triangles ∆ of type C̃11 the quiver X̄(τ) consists of just one vertex.

Lemma 6.2.19 suggests to view admissible modular structures for X(τ) as cocycles of

a cochain complex with coefficients in F2 = Z/2Z.
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6 Potentials for Colored Triangulations

Definition 6.2.26. A colored triangulation (τ, ξ) of Σd consists of a triangulation τ of Σd

and ξ ∈ Z1(τ) where Z1(τ) is the set of 1-cocycles of C•(τ) = HomF2
(C•(τ),F2) and

C•(τ) : 0 // F2X̄2(τ)
∂2 // F2X̄1(τ)

∂1 // F2X̄0(τ) // 0 .

The non-zero differentials of C•(τ) are defined on basis elements as

∂2(∆) = c+ b+ a for ∆ ∈ X̄2(τ),

where cba is a cyclic path in X(τ) induced by ∆,

∂1(a) = j + i for j
a←− i ∈ X̄1(τ).

Remark 6.2.27. A chain complex similar to C•(τ) was considered in [AG16, § 2.2].

Remark 6.2.28. Clearly, H0(C•(τ)) ∼= F2 by Remark 6.2.8 and Hn(C•(τ)) = 0 for all n > 1.

6.2.5 Adjacency Quiver of a Colored Triangulation

Definition 6.2.29. The quiver X(τ, ξ) of a colored triangulation (τ, ξ) of Σd is the modular

quiver (X(τ), d, σξ) with σξa = ξ(a) + 2r(a) for all a ∈ Xd 6=1
1 (τ).

Here, F2 is regarded as a subset of Z/4Z via the inclusion 0 7→ 0, 1 7→ 1.

Lemma 6.2.30. The modular quiver X(τ, ξ) is admissible.

Proof. This is a reformulation of the “if” part of Lemma 6.2.19 for π = id.

Example 6.2.31. For X∆ of type A like in Figure 6.A.5 the cocycle ξ = a∗ + b∗ determines

the modular structure
(
σξa, σ

ξ
b , σ

ξ
c

)
= (1, 1, 0).

For X∆ of type C̃44 like in Figure 6.A.7 (where r(bs) = s) the cocycle ξ = a∗+b∗0 = a∗+b∗1
yields the modular structure

(
σξa, σ

ξ
b0
, σξb1 , σ

ξ
c

)
= (1, 1, 3, 0).

6.2.6 Flipping Colored Arcs

The next lemma formalizes the fact that the admissible modular structures for X(τ) and

those for X(ς) are in canonical bijection whenever τ and ς are related by a flip.

Lemma 6.2.32. Let τ and ς be triangulations of Σd related by flipping an arc, say ς = µi(τ)

and τ = µj(ς). Then we have a pair of mutually inverse bijections

Z1(τ) Z1(ς)
ϕς,τ

ϕτ,ς

such that for all ξ ∈ Z1(τ) the map Φξ = Φσξ from Definition 6.2.20 is a monomorphism

of modular quivers X(ς, ϕς,τ (ξ)) ↪→ µ̃i(X(τ, ξ)).

In particular, X(ς, ϕς,τ (ξ)) and µ̃i(X(τ, ξ)) are reduced-equivalent for all ξ ∈ Z1(τ).

192
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Proof. Let ξ ∈ Z1(τ) and denote by µ̃iσ
ξ the modular structure of µ̃i(X(τ, ξ)).

According to Lemma 6.2.30 σξ is admissible. The proof of Lemma 6.2.19 shows that

there is a unique cocycle ϕς,τ (ξ) = ξ′ in Z1(ς) such that µ̃iσ
ξ ◦ Φξ = σξ

′
.

Tracing Definitions 2.1.12 and 6.2.20 we have explicitly for e′ ∈ X̄1(ς)

ϕς,τ (ξ)(e′) =



ξ(e′) if e′ ∈ X̄1(τ),

ξ(a) if Φξ(e′) = a∗ for some a ∈ X̄1(τ),

ξ(a) + ξ(b) if di 6= 1 and Φξ(e′) = [ba]0r

for some path ba in X̄(τ) and some r,

ξ(c) + 1 if di = 1 and Φξ(e′) = [ba]0r

for some triangle-induced path cba in X(τ) and some r.

A similar formula holds for ϕτ,ς(ξ′)(e) with e ∈ X̄1(τ).

To show that ϕτ,ς ◦ϕς,τ is the identity, we must verify ϕτ,ς(ξ′)(e) = ξ(e) for all e ∈ X̄1(τ).

Clearly, ϕτ,ς(ξ′)(e) = ξ(e) if e ∈ X̄1(ς) or if Φξ′(e) = a′∗ (since then Φξ(a′) = e∗).

Let us now assume that Φξ′(e) = [b′a′]0r′ . Then there exist a, b ∈ X1(τ) induced by ∆(e)

with Φξ′(a) = b′∗, Φξ′(b) = a′∗ and Φξ(a′) = b∗, Φξ(b′) = a∗.

In case di 6= 1, we get ϕτ,ς(ξ′)(e) = ξ′(a′) + ξ′(b′) = ξ(b) + ξ(a) = ξ(e) where the last

equality uses that ξ is a cocycle.

In case di = 1, let c′b′a′ be a triangle-induced cyclic path in X(ς). Then it is Φξ(c′) = [ba]0r

for some r, so ϕτ,ς(ξ′)(e) = ξ′(c′) + 1 = (ξ(e) + 1) + 1 = ξ(e).

This proves that ϕτ,ς ◦ ϕς,τ is the identity. Analogously, ϕς,τ ◦ ϕτ,ς is the identity.

Remark 6.2.33. For ς = µi(τ) the condition

di = 1 ∧

∃ ξ ∈ Z1(τ), e′ ∈ X̄1(ς), cba triangle-induced in X(τ), r ∈ {0, 1} : Φξ(e′) = [ba]0r

is non-empty if and only if i is a weight-1 arc in a triangle of τ with type B̃1, C̃14, or C̃41.

Moreover, the arrow e′ is uniquely determined and independent of ξ.

Corollary 6.2.34. Let ς = µi(τ). If i is not the weight-1 pending arc in a triangle of τ with

type B̃1, C̃14, or C̃41, then ϕς,τ and ϕτ,ς are mutually inverse vector-space isomorphisms.

Proof. Use Lemma 6.2.32 and Remark 6.2.33.

Corollary 6.2.35. Let ς = µi(τ) and τ = µj(ς). Two cocycles ξ1 and ξ2 in Z1(τ) are

cohomologous if and only if the cocycles ϕς,τ (ξ1) and ϕς,τ (ξ2) in Z1(ς) are cohomologous.

Proof. If j is the weight-1 arc in a triangle ∆ of ς with type B̃1, C̃14, or C̃41, then i is the

weight-1 arc in a triangle of τ with type B̃1, C̃41, or C̃14.
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If this is the case, let e′ be the unique arrow in Xd6=1(ς) that is induced by ∆ and let e′∨

be its dual in C1(ς) (i.e. e′∨(a) = δa=e′ for all a ∈ X̄1(ς)). Otherwise, let e′∨ = 0.

In either case, e′∨ ∈ Z1(ς) and the formula in the proof of Lemma 6.2.32 together with

Remark 6.2.33 show that f1 : ξ 7→ ϕς,τ (ξ) + e′∨ defines an isomorphism Z1(τ) → Z1(ς)

that makes the following diagram commute:

C0(τ) Z1(τ)

C0(ς) Z1(ς)

∂0

f0 f1

∂0

Here, ∂0 are the differentials HomF2
(∂1,F2) and f0 is the isomorphism given by k∨ 7→ k∨

for vertices k 6= i in X̄(τ) and i∨ 7→ j∨. We get an induced isomorphism in cohomology

H1(C•(τ))
f∗−−−−−→ H1(C•(ς)) .

In particular, ξ1− ξ2 = 0 in H1(C•(τ)) if and only if ϕς,τ (ξ1)−ϕς,τ (ξ2) = f∗(ξ1− ξ2) = 0

in H1(C•(ς)), which proves the corollary.

Definition 6.2.36. Let (τ, ξ) be a colored triangulation of Σd and ς = µi(τ). The colored

triangulation µi(τ, ξ) := (ς, ϕς,τ (ξ)) is obtained by flipping the arc i in (τ, ξ).

6.3 Modulation of a Colored Triangulation

The possible weights for vertices in X(τ, ξ) are 1, 2, 4. Fixing a degree-4 comfy extension

determines therefore a modulation of the modular quiver X(τ, ξ) over this extension.

Convention 6.3.1. For the rest of the chapter fix a degree-4 comfy extension (L/K, ζ, v).

Abbreviate w := v4 ∈ K and u := v2 ∈ K(u) =: E.

Definition 6.3.2. The modulation H(τ, ξ) of a colored triangulation (τ, ξ) is the modula-

tion of X(τ, ξ) over (L/K, ζ, v).

The ground ring, species, path algebra, and completed path algebra of H(τ, ξ) will be

denoted by R(τ, ξ), A(τ, ξ), H(τ, ξ), Ĥ(τ, ξ), respectively.

6.4 Potential of a Colored Triangulation

6.4.1 Potential Components Induced by Triangles

Definition 6.4.1. Let (τ, ξ) be a colored triangulation of Σd and let ∆ be a triangle of τ .

The potential W∆(ξ) induced by ∆ is the following potential for A(τ, ξ):
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W∆(ξ) =



cba if ∆ has neither type C̃11 nor type C̃44,

where cba is a path in X(τ) induced by ∆.

cb0a+ cb1a if ∆ has type C̃44,

where cb0a 6= cb1a are paths in X(τ) induced by ∆,

cb0a+ cb1au if ∆ has type C̃11,

where cb0a 6= cb1a are paths in X(τ) induced by ∆

such that r(b0) = 0 and r(b1) = 1.

Remark 6.4.2. Apparently, the potential W∆(ξ) looks the same for all ξ.

Example 6.4.3. Figures 6.A.5 to 6.A.7 show W∆ = W∆(ξ) for all types of triangles ∆.

6.4.2 Potential of a Colored Triangulation

Definition 6.4.4. The potential of a colored triangulation (τ, ξ) of Σd is defined as

W (τ, ξ) =
∑
∆

W∆(ξ)

where ∆ runs through all triangles of τ .

The species with potential of (τ, ξ) is S(τ, ξ) = (A(τ, ξ),W (τ, ξ)).

The Jacobian algebra of (τ, ξ) is J (τ, ξ) = J (W (τ, ξ)).

Remark 6.4.5. It is (W (τ, ξ))X
∆
1 = W∆(ξ) for all triangles ∆ of τ .

Example 6.4.6. For a colored triangulation (τ, ξ) with τ as in Example 6.2.18 it is

W (τ, ξ) = c1(b10 + b11)a1 + c2b2a2 + c3b3a3 + c4b4a4 .

Example 6.4.7. We compute the cyclic derivatives of the potential W = W (τ, ξ) for an

arbitrary colored triangulation (τ, ξ). To do this, fix a triangle ∆ of τ and let X = X(τ).

In view of Remark 6.4.5 we have ∂a†(W ) = ∂a†(W
∆(ξ)) for all arrows j

a←− i in X∆.

Note also that z · a†(a) = πρ−1
a

(z) for z ∈ iĤj .

• If ∆ has type A or B̃4, then X∆ has the form i k
coo j

boo i
aoo and W∆(ξ) = cba. We

have dik = dkj = dji = 2 and ρc−1 = ρbρa, ρb−1 = ρaρc, ρa−1 = ρcρb. One computes

∂c†(W ) = ba , ∂b†(W ) = ac , ∂a†(W ) = cb .

• If ∆ has type C̃44, then X∆ has the form i k
coo j

b1
oo
b0oo i

aoo . Set b := b0 + b1 ∈ A(τ, ξ)

and b† := b†0+b†1 ∈ A†(τ, ξ) and ρb := ρb0 |E = ρb1 |E . Then W∆(ξ) = cb0a+cb1a = cba.

It is ρc−1 = ρbρa, ρb−1 = ρaρc, ρa−1 = ρcρb and G
ρb
ji = {ρb0 , ρb1} such that again

∂c†(W ) = ba , ∂b†(W ) = ac , ∂a†(W ) = cb .
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• If ∆ has type B̃1, C̃14, or C̃41, then X∆ has the form i k
coo j

boo i
aoo with dkj = 2

and dik = dji = 1. It is W∆(ξ) = cba and

∂c†(W ) = ba , ∂b†(W ) = πρ−1
b

(ac) , ∂a†(W ) = cb .

• If ∆ has type C̃11, then X∆ has the form i k
coo j

b1
oo
b0oo i

aoo with r(b0) = 0 and r(b1) = 1.

Then W∆(ξ) = cb0a+ cb1au and

∂c†(W ) = b0a+ b1au , ∂
b†0

(W ) = ac , ∂
b†1

(W ) = auc , ∂a†(W ) = cb0 + ucb1 .

6.5 Compatibility of Flip and Mutation

All is said and done to prove the first main result of this chapter: the compatibility of flip

and mutation. It is the variant of Theorems 5.4.1 and 5.4.6 for colored triangulations.

Convention 6.5.1. We make use of the obvious generalization of Convention 5.3.13 for

colored triangulations (replace Q, τ , ς = µ̃i(τ) by X, (τ, ξ), (ς, ξ′) = µ̃i(τ, ξ), respectively).

Theorem 6.5.2. S(µi(τ, ξ)) ≈R µi(S(τ, ξ)) for all colored triangulations (τ, ξ) and i ∈ τ .

Proof. The proof is similar to the proof of Theorem 5.4.1.

Let (ς, ξ′) = µi(τ, ξ) and τ = µj(ς). Abbreviate X = X(τ, i), X ′ = X(ς, j), X̃ = µ̃i(X).

Consider X, X ′, X̃ as modular subquivers of X(τ, ξ), X(ς, ξ′), µ̃i(X(τ, ξ)), respectively.

Recall that X(τ) = X¬⊕X and X(ς) = X¬⊕X ′ and µ̃i(X(τ)) = X¬⊕ X̃ for some X¬.

Let σ = σξ and Φ = Φσ be the map X(ς, ξ′) ↪−→ µ̃i(X(τ, ξ)) described in Definition 6.2.20,

which is a morphism of modular quivers by Lemma 6.2.32. It restricts to a map X ′ ↪−→ X̃

and induces an injective R(τ)-algebra homomorphism

H ′ := H(ς, ξ′)
Φ

↪−−−−−→ µ̃i(H(τ, ξ)) =: H̃ .

Let W = (W (τ, ξ))X and W ′ = (W (ς, ξ′))X
′

and Ãut = Aut
µ̃i(X(τ,ξ))−X̃1

(H̃).

We will proceed as follows:

(1) Compute the premutation W̃ = µ̃i(W ).

(2) Construct ϑ̃ ∈ Ãut such that ϑ̃(W̃ ) is in X̃1-split form.

(3) Compute W̃ ′ = red
X̃1

(
ϑ̃(W̃ )

)
and T̃ = triv

X̃1

(
ϑ̃(W̃ )

)
⊆ X̃.

We will choose ϑ̃ in such a way that Φ(W ′) = W̃ ′ and X̃ = Φ(X ′)⊕ T̃ . This will prove

the theorem, since then

Φ(W (ς, ξ′)) = red
X̃1

(
ϑ̃
(
µ̃i(W (τ, ξ))

))
.
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For the construction of ϑ̃ we distinguish four cases: (a) i is a non-pending arc; (b) i is

a pending arc in a triangle of type C̃11 or C̃44; (c) i is the weight-4 arc in a triangle of

type B̃4, C̃14, or C̃41; (d) i is the weight-1 arc in a triangle of type B̃1, C̃14, or C̃41.

(a) Let us assume that i is non-pending. Then di = 2 and i is an arc shared by two

triangles ∆0 and ∆1 of τ (see Tables 6.A.2 and 6.A.3).

Let i
aq←−− hq

cqr←−− kq
bq←−− i be the cyclic paths in X(τ) induced by ∆q such that r(cqr) = r,

where q, r ∈ {0, 1} with r = 1 only if hq, kq ∈ τd=4 or hq, kq ∈ τd=1. We set q̄ := 1− q and

xq := δhq ,kq∈τd=4 , x′q := δhq ,kq̄∈τd=4 ,

yq := δhq ,kq∈τd=1 , y′q := δhq ,kq̄∈τd=1 .

Then xqyq = x′qy
′
q = x′qyq = xqy

′
q = 0.

Now X = X∆0 ⊕X∆1 and W =
∑

q∈{0,1}Wq with

Wq = W∆q(ξ) = cq0bqaq + xqcq1bqaq + yqcq1bquaq .

We compute the premutation as W̃ =
∑

q∈{0,1} W̃q where

W̃q = cq0[bqaq]
0
!0 + xq cq1[bqaq]

0
!1 + yq cq1[bqaq]

1
0

+ a∗qb
∗
q [bqaq]

0
0 + xq a

∗
qb
∗
q [bqaq]

0
1 + yq a

∗
qu
−1b∗q [bqaq]

1
0

+ a∗qb
∗
q̄ [bq̄aq]

0
0 + x′q a

∗
qb
∗
q̄ [bq̄aq]

0
1 + y′q a

∗
qu
−1b∗q̄ [bq̄aq]

1
0 .

Let ρqr := ρcqr =
(
ρ[bqaq ]

0
!r

)−1
and ψ̃1q ∈ Ãut the element determined by the rules:

cq0 7→ cq0 − πρq0(a∗qb
∗
q)

cq1 7→ cq1 − xqπρq1(a∗qb
∗
q)− yqa∗qu−1b∗q (if xq 6= 0 or yq 6= 0)

As potentials ν[bqaq]
0
!r = πρqr(ν)[bqaq]

0
!r for ν ∈ H̃ (see Corollary 2.6.56). Now we have

ψ̃1q

(
W̃q̄

)
= W̃q̄ and a straightforward calculation shows

ψ̃1q

(
W̃q

)
= cq0[bqaq]

0
!0 + xq cq1[bqaq]

0
!1 + yq cq1[bqaq]

1
0

+ a∗qb
∗
q̄ [bq̄aq]

0
0 + x′q a

∗
qb
∗
q̄ [bq̄aq]

0
1 + y′q a

∗
qu
−1b∗q̄ [bq̄aq]

1
0 .

If y′q 6= 0, let ψ̃2q ∈ Ãut be the element defined by the substitutions

a∗q 7→ a∗qu , [bq̄aq]
0
0 7→ [bq̄aq]

1
0 , [bq̄aq]

1
0 7→ [bq̄aq]

0
0 .

Otherwise (in particular, if x′q 6= 0), let ψ̃2q be the identity.

With ϑ̃ = ψ̃22 ◦ ψ̃21 ◦ ψ̃12 ◦ ψ̃11 it is W̃ ′ = red
X̃1

(
ϑ̃(W̃ )

)
=
∑

q∈{0,1} W̃
′
q where

W̃ ′q = a∗qb
∗
q̄ [bq̄aq]

0
0 + x′q a

∗
qb
∗
q̄ [bq̄aq]

0
1 + y′q a

∗
qub
∗
q̄ [bq̄aq]

1
0 .
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By the properties of Φ (see Remark 6.2.14) there is for each q ∈ {0, 1} a triangle ∆′q of ς

inducing a path b∨q c
∨
q a
∨
q such that Φ(b∨q ) = b∗q̄ , Φ(c∨q ) = [bq̄aq]

0
r(c∨q ), Φ(a∨q ) = a∗q

This readily implies Φ(W ′) =
∑

q∈{0,1}Φ(W∆′q(ξ′)) = W̃ ′ as desired.

Finally, observe that T̃ = triv
X̃1

(
ϑ̃(W̃ )

)
coincides with the modular quiver T̃ described

in the proof of Lemma 6.2.19. Hence, X̃ = Φ(X ′)⊕ T̃ .

(b) Let i be a pending arc in a triangle ∆ of type C̃11 or C̃44. Since the other case is

symmetric, we will assume that the arctype for i is C̃− (see Table 6.A.4).

There are two paths i
a←− c←− br←−− i with r(br) = r ∈ {0, 1} in X(τ) induced by ∆.

We have X = X∆ and W = W∆(ξ) = cb0a+ cb1au
x for x := δi∈τd=1 . Thus

W̃ = c[b0a]00 + c[b1a]00 u
x

+ a∗b∗0[b0a]00 + a∗b∗1[b1a]00 .

Let ϕ̃ ∈ Ãut be the element defined by b∗1 7→ −b∗1, [b1a]00 7→ ([b1a]00 − [b0a]00)u−x. Then

ϕ̃
(
W̃
)

= c[b1a]00 + a∗b∗0[b0a]00 − a∗b∗1[b1a]00 u
−x + a∗b∗1[b0a]00 u

−x .

Let ψ̃1 ∈ Ãut be given by c 7→ c+ πρc(u
−xa∗b∗1).

If x 6= 0, let ψ̃2 ∈ Ãut be given by a∗q 7→ ua∗q , b
∗
0 7→ b∗1, b∗1 7→ b∗0. Otherwise, let ψ̃2 = id.

Let ϑ̃ = ψ̃2 ◦ ψ̃1 ◦ ϕ̃. Then W̃ ′ = a∗b∗0[b0a]00 + a∗b∗1[b0a]00 u
x = Φ(W ′) and X̃ = Φ(X ′)⊕ T̃ .

(c) Let i be the weight-4 arc in a triangle ∆ of type B̃4, C̃14, or C̃41.

There is a unique cyclic path i
a←− c←− b←− i in X(τ) induced by ∆.

It is X = X∆, W = W∆(ξ) = cba, and

W̃ = c[ba]00 + c[ba]10

+ a∗b∗[ba]00 + a∗u−1b∗[ba]10 .

The substitution [ba]10 7→ [ba]10 − [ba]00 defines ϕ̃ ∈ Ãut such that

ϕ̃
(
W̃
)

= c[ba]10 + a∗(1− u−1)b∗[ba]00 + a∗u−1b∗[ba]10 .

Let ψ̃ ∈ Ãut be given by a∗ 7→ a∗z, c 7→ c− πρc(a
∗zu−1b∗) for z = (1− u−1)−1.

For ϑ̃ = ψ̃ ◦ ϕ̃ we have W̃ ′ = a∗b∗[ba]00 = Φ(W ′) and X̃ = Φ(X ′)⊕ T̃ .

(d) Let i be the weight-1 arc in a triangle of type B̃1, C̃14, or C̃41.

There is a unique cyclic path i
a←− c←− b←− i in X(τ) induced by ∆.

It is X = X∆, W = W∆(ξ) = cba, and

W̃ = c[ba]0σc + a∗b∗[ba]00 + a∗b∗[ba]01 .
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Let ϑ̃ be given by the substitution c 7→ c− πρc(a
∗b∗).

Then W̃ ′ = a∗b∗[ba]0σc+1 = Φ(W ′) and X̃ = Φ(X ′)⊕ T̃ .

Corollary 6.5.3. S(τ, ξ) is non-degenerate for every colored triangulation (τ, ξ) of Σd.

Proof. This is a direct consequence of Theorem 6.5.2 and Remark 6.2.9.

6.6 Uniqueness of Potentials

In this section we prove that A(τ, ξ) admits up to R-equivalence exactly one non-degenerate

potential, namely W (τ, ξ), if Σd is not a monogon with constant O d−→ {1, 4}.

As a preparation for the proof we collect a few combinatorial facts in the lemmas below.

Convention 6.6.1. Fix a colored triangulation (τ, ξ) of Σd.

Abbreviate X = X(τ), H = H(τ, ξ), Ĥ = Ĥ(τ, ξ).

Denote by qji the number of arrows j ←− i in X.

Every cyclic path of length three in X contains at most one arrow j ←− i with qji 6= 1.

In other words, the paths i
c←− k b←− j a←− i with qkj = qji = 1 are up to rotation all cyclic

paths of length three in X. We record this fact in the next lemma.

Lemma 6.6.2. For all i, j, k ∈ X0 with qkj , qji > 0 either qkj = 1 or qji = 1.

Proof. This follows easily by inspecting the puzzle-piece decomposition of τ .

Remark 6.2.9 and Lemma 6.6.2 allow us to label the arrows of each ∆ ∈ X2 as follows:

(a) Pick a path i
c∆←− k b∆←− j a∆←−− i in X induced by ∆ with qkj = qji = 1 and r(c∆) = 0.

(b) Whenever qik > 1 let i
c∆←−− k be the unique arrow in X unequal c∆.

(c) Whenever qik = 1 set c∆ := 0 regarded as an element of H.

Convention 6.6.3. Fix such a labeling for the rest of the section.

Lemma 6.6.4. If cba is a cyclic path in X with ∆(a) 6= ∆(c) 6= ∆(b), it is ∆(b) = ∆(a).

More generally, X contains no cyclic path a` · · · a1 with ∆(aq) 6= ∆(aq−1) for all q ∈ Z/`Z.

Proof. Assume to the contrary p = a` · · · a1 is a cyclic path in X with ∆(aq) 6= ∆(aq−1) for

all q ∈ Z/`Z. Then all vertices of p are shared arcs in the triangulation τ and by definition

of the arrows in X the triangles ∆(a1), . . . ,∆(a`) must form a configuration as depicted

in Definition 5.3.6, a contradiction to the fact that Σ is unpunctured.

We will need the following more general version of the previous lemma:
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6 Potentials for Colored Triangulations

Lemma 6.6.5. Let p = a` · · · a1 be a cyclic path in X. Then there exists q ∈ Z/`Z such

that either ∆(aq) = ∆(aq−1) is a triangle of type A or ∆(aq+1) = ∆(aq) = ∆(aq−1).

Proof. Assume p does not verify the property in the lemma. Then, after possibly replacing p

by a`−1 · · · a1a`, we can write p = ps · · · p1 where each pq is either an arrow or a path
bq←−

aq←−
in X that connects two shared arcs in τ and, in the latter case, ∆(pq) := ∆(bq) = ∆(aq) is a

triangle of type B̃. Moreover, we must have ∆(pq) 6= ∆(pq−1) for all q ∈ Z/sZ. Analogously

as in the proof of Lemma 6.6.4 the triangles ∆(p1), . . . ,∆(ps) would form a configuration

as depicted in Definition 5.3.6 in contradiction to the fact that Σ is unpunctured.

Lemma 6.6.6. If i
c←− k b←− j a←− i is a path in X with qkj = qji = 1, then either cba is

triangle-induced or there is a unique cyclic path cba in X induced by some triangle ∆ such

that cba is induced by some triangle ∆ and both ∆ and ∆ are triangles of type A.

Proof. If ∆(c) = ∆(b), then we already have ∆(c) = ∆(b) = ∆(a) because of qji = 1.

Similarly, ∆(a) = ∆(c) implies that cba is triangle-induced. If ∆(a) 6= ∆(c) 6= ∆(b), we

must have ∆ := ∆(b) = ∆(a) according to Lemma 6.6.4. Since cba is not triangle-induced,

necessarily qik > 1 or, equivalently, qik = 2. Because of ∆(c) 6= ∆(b) the arcs i and k must

be shared by two triangles ∆ and ∆ of type A (see Table 6.A.3). The claim follows.

Proposition 6.6.7. Let W be a non-degenerate potential for A(τ, ξ). Then there exists a

potential W>3 with ord(W>3) > 3 such that W ∼R W (τ, ξ) +W>3.

Proof. For x ∈ {4, 1} denote by Xx
2 the subset of X2 consisting of triangles of type C̃xx.

Let X0
2 = X2 \ (X4

2 ∪X1
2 ).

With Lemmas 6.6.2 and 6.6.6 it is not hard to see that W =
∑

q∈{0,4,1}
∑

∆∈Xq
2
W∆+W>3

where ord(W>3) > 3 and

W∆ =


x∆c∆b∆a∆ + x∆c∆b∆a∆ for ∆ ∈ X0

2 and some x∆, x∆ ∈ E,

c∆α∆b∆a∆ + c∆α∆b∆a∆ for ∆ ∈ X4
2 and some α∆, α∆ ∈ L,

c∆b∆z∆a∆ + c∆b∆z∆a∆ for ∆ ∈ X1
2 and some z∆, z∆ ∈ E.

Step by step, we will replace W with R(τ)-equivalent potentials, thereby achieving in a

first step (a) x∆ = 1 and x∆ = 0 for ∆ ∈ X0
2 , in a second step (b) α∆ = α∆ = 1 for ∆ ∈ X4

2

and in the final step (c) z∆ = 1 and z∆ = u for ∆ ∈ X1
2 . This will prove the proposition.

(a) Let ∆ ∈ X0
2 .

If c∆ = 0, then (W∆)X
′
1 = W∆ for X ′ = X∆. Moreover, x∆ ∈ E× because of the non-

degeneracy. Replacing W with ϕ(W ), where ϕ ∈ AutX−X′1(H) is given by c∆ 7→ x−1
∆ c∆,

we get x∆ = 1 and can take x∆ = 0.

If c∆ 6= 0, there exists ∆ ∈ X0
2 inducing c∆ = c∆. We have (W∆)X

′
1 = W∆ + W∆

for X ′ := X∆ ⊕X∆. It is not hard to check that the non-degeneracy of W implies that
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6.6 Uniqueness of Potentials

the inverse matrix ν∆ ν∆

ν∆ ν∆

 =

x∆ x∆

x∆ x∆

−1

exists. Therefore the substitutions c∆ 7→ ν∆c∆ + ν∆c∆ and c∆ 7→ ν∆c∆ + ν∆c∆ define an

element ϕ ∈ AutX−X′1(H). Replacing W by ϕ(W ) we attain x∆ = 1 and x∆ = 0.

(b) For all ∆ ∈ X4
2 and X ′ := X∆ we have (W∆)X

′
1 = W∆. The non-degeneracy of W

implies α∆, α∆ ∈ L×. Clearly, c∆ 7→ c∆α
−1
∆ , c∆ 7→ c∆α

−1
∆ defines ϕ ∈ AutX−X′1(H) such

that, after replacing W with ϕ(W ), one has α∆ = α∆ = 1.

(c) For all ∆ ∈ X1
2 and X ′ := X∆ we have (W∆)X

′
1 = W∆. The non-degeneracy implies

that z∆, z∆ are linearly independent over K. Write z−1
∆ z∆ = x+ yu with x ∈ K, y ∈ K×.

Define an element ϕ ∈ AutX−X′1(H) by b∆ 7→ b∆z
−1
∆ , c∆ 7→ c∆ − xy−1c∆, c∆ 7→ y−1c∆.

Replacing W with ϕ(W ) we achieve z∆ = 1 and z∆ = u.

Theorem 6.6.8. Assume Σd is not a monogon where all orbifold points have the same

weight. Then every non-degenerate potential W for A(τ, ξ) is R(τ)-equivalent to W (τ, ξ).

Proof. The assumption guarantees the existence of a triangulation ς of Σd without triangles

of type C̃11 and C̃44.

It is (ς, ξ′) = µi` · · ·µi1(τ, ξ) for some ξ′ and some arcs i1, . . . , i` by Proposition 5.1.32.

Now W ′ := µi` · · ·µi1(W ) ∼R W (ς, ξ′)⇔W ∼R W (τ, ξ) by Theorems 2.6.101 and 6.5.2.

Replacing (τ, ξ) and W by (ς, ξ′) and W ′, we can assume that τ does neither contain

any triangle of type C̃11 nor any of type C̃44. Then

W (τ, ξ) =
∑

∆∈X2

c∆b∆a∆ .

Now assume that for some k ∈ N we have a potential

Wk = W (τ, ξ) +W>k+3

with ord(W>k+3) > k + 3. In view of Lemma 6.6.5 we can write

W>k+3 =
∑

∆∈X2

(
νc∆b∆a∆ + c∆νb∆a∆ + c∆b∆νa∆

)
for some elements νa ∈ Ĥ with ord(νa) > k + 1 such that νa = 0 if j

a←− i is induced by a

triangle of type B̃1, C̃14, or C̃41 and dji 6= 1.

Let σ = σξ. By the choice of ξ (see Lemma 6.2.19) we have σa = σb + σc in Z/djiZ for

all triangle-induced cyclic paths i
c←− k b←− j a←− i in X such that we can assume νa = πρa(νa)

(note that, if νa 6= 0, either dji = 1 or dki = djk = dji; compare Corollary 2.6.56 ).

The depth of the unitriangular automorphism ϕk+1 of Ĥ given by the rules a 7→ a− νa
for a ∈ X1 is at least k + 1. A straightforward computation shows

Wk+1 := ϕk+1(Wk) = W (τ, ξ) +W>(k+1)+3

201
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with ord(W>(k+1)+3) > (k + 1) + 3.

Replacing W with an equivalent potential like in Proposition 6.6.7, we can take W0 = W .

The construction just described yields a sequence (ϕk)k∈N+
of unitriangular automorphisms

with limk depth(ϕk) = ∞ and limkWk = W (τ, ξ) for Wk = ϕ̃k(W ) and ϕ̃k = ϕk · · ·ϕ1.

Thus W (τ, ξ) = ϕ̃(W ) for ϕ̃ = limr ϕ̃r, which proves the theorem.

6.7 Jacobian Algebras

The Jacobian algebras J (τ, ξ) will be shown to be finite-dimensional. Moreover, we prove

that for each fixed triangulation τ the isomorphism classes of Jacobian algebras J (τ, ξ)

are parametrized by a cohomology group. More precisely, there is a bijection

H1(C•(τ)) {J (τ, ξ) | ξ ∈ Z1(τ)}/∼=τ

[ξ] J (τ, ξ)

∼=

where the set on the right-hand side consists of isomorphism classes of KX0(τ)-algebras.

As a preparation, we need the following lemma.

Lemma 6.7.1. For every path i1
a`←−− i`

a`−1←−−− · · · a1←−− i1 in X(τ) of length ` > 3|X0(τ)|
there is 1 < q ≤ ` such that ∆(aq) = ∆(aq−1) and iq is a shared arc in τ .

Proof. Let p = a` · · · a1 if a` · · · a1 starts at a shared arc. Otherwise, let p be one of the

cyclic paths a1a` · · · a2 and a`−1 · · · a1a` such that p starts at a shared arc.

Write p = ps · · · p1 such that each path pr connects two shared arcs and has unshared

arcs as its inner vertices. Then all arrows of pr are induced by the same triangle ∆r of τ .

Arguing as in the proof of Lemma 6.6.5 we must have either ∆r = ∆r−1 for some 1 < r ≤ s
or ∆1 = ∆s. If ∆r 6= ∆r−1 for all 1 < r ≤ s, then ∆1, . . . ,∆s−1 would be pairwise different

and form a configuration looking as follows:

∆1

∆s−1

∆s = ∆1

In particular, we would have s ≤ |X0(τ)|. Since the length of each path pr is at most 3,

the length of p would be at most 3|X0(τ)| in contradiction to ` > 3|X0(τ)|. Therefore we

must have ∆r = ∆r−1 for some 1 < r ≤ s. This readily implies the lemma.

Let m = m
Ĥ(τ,ξ)

. An ideal J of Ĥ(τ, ξ) is admissible if there is ` ∈ N with m` ⊆ J ⊆ m2.
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Proposition 6.7.2. The Jacobian ideal ∂(W (τ, ξ)) is an admissible ideal. In particular,

the Jacobian algebra J (τ, ξ) is finite-dimensional with rad(J (τ, ξ)) = m/∂(W (τ, ξ)).

Proof. Let A = A(τ, ξ) and W = W (τ, ξ).

Obviously, ∂W is generated by elements in m2 (see Example 6.4.7). To show that ∂W

is admissible, it is thus sufficient to verify the inclusion Aa` · · ·Aa1
⊆ ∂W for every cyclic

path i1
a`←−− i`

a`−1←−−− · · · a1←−− i1 in X(τ) of length ` > 3|X0(τ)|.

According to Lemma 6.7.1 for all such paths there is 1 < q ≤ ` such that ∆(aq) = ∆(aq−1)

and iq is a shared arc in τ . Hence, diq = 2.

If diq+1iq
= 2 or diqiq−1

= 2, then aqaq−1 generates the R-bimodule AaqAaq−1
. Moreover,

it is aqaq−1 ∈ ∂W by Example 6.4.7.

If diq+1iq
6= 2 and diqiq−1

6= 2, then diq+1
= diq−1

= 1 and ∆(aq) is a triangle of type C̃11.

In this case, the generators aqaq−1 and aquaq−1 of AaqAaq−1
also lie in ∂W by Example 6.4.7.

We can conclude in either case Aa` · · ·Aa1
⊆ ∂W as desired.

Theorem 6.7.3. For colored triangulations (τ, ξ), (τ, ξ′) of Σd the following are equivalent:

(a) ξ = ξ′ in H1(C•(τ)).

(b) J (τ, ξ) ∼= J (τ, ξ′) as KX0(τ)-algebras.

(c) A(τ, ξ) ∼= f∗A(τ, ξ′) as R-bimodules over K for some f ∈ AutKX0(τ)(R(τ)).

Proof. Let R = R(τ) =
∏
i∈τ Li. We write fi for the i-th component of f ∈ EndKX0(τ)(R).

For Y ∈ {A,W, Ĥ,J } abbreviate Y := Y (τ, ξ) and Y ′ := Y (τ, ξ′). Moreover, denote

by ρa and ρ′a the unique elements in Gal(Lji/K) such that Aa = jL
ρa
i and A′a = jL

ρ′a
i .

We add two more statements:

(a’) There is X̄0(τ)
g−→ F2 with ξ(a) + ξ′(a) = g(j) + g(i) for all j

a←− i ∈ X̄1(τ).

(c’) There is an automorphism f of the KX0(τ)-algebra R and an automorphism π of the

X0(τ)-quiver X(τ) such that ρ′π(a)fi = fjρa on Lji for all j
a←− i ∈ X1(τ).

(a) ⇔ (a’): True by definition.

(b) ⇒ (c): Thanks to Proposition 6.7.2 an KX0(τ)-algebra isomorphism J f−→ J ′ induces

an R-bimodule isomorphism A ∼= rad(J )/rad2(J )→ f ′∗ rad(J ′)/rad2(J ′) ∼= f ′∗A
′ where f ′

is the automorphism R ∼= J /rad(J ) −→ J ′/rad(J ′) ∼= R induced by f .

(c) ⇒ (c’): The isomorphism A −→ f∗A
′ induces for all i, j ∈ X0(τ) an isomorphism⊕

j←−a i
jL

ρa
i =

⊕
j←−a i

Aa = jAi
∼=−−−→ j(f∗A

′)i =
⊕
j←−a i

f∗A
′
a =

⊕
j←−a i

jL
f−1
j ρ′afi
i .

According to Lemma 2.5.14 there must exist π like in (c’).
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(c’) ⇒ (b): The identity ρa = f−1
j ρ′π(a)fi implies f∗A

′
π(a)
∼= jL

ρa
i as simple R-bimodules

over K in view of (?) in § 2.5.3. Let ga be the isomorphism Aa = jL
ρa
i → f∗A

′
π(a) given

by a 7→ π(a). We obtain an induced R-bimodule isomorphism

A =
⊕
a

Aa
∼=−−−→

⊕
a

f∗A
′
π(a) = f∗A

′ .

and thereby an induced isomorphism Ĥ = R〈〈A〉〉 g−→ R〈〈f∗A′〉〉 = Ĥ ′ of KX0(τ)-algebras.

It is g(W ) ∼R W ′ (via b1 7→ −b1 for all i←− b1←−←− i in X(τ) with r(b1) = 1 and fi 6= idRi
induced by triangles of type C̃11). Hence, J ∼= J ′ as KX0(τ)-algebras by Proposition 2.6.44.

(a’) ⇒ (c’): As before, we regard F2 as a subset of Z/4Z via 0 7→ 0, 1 7→ 1. Let α = αζ,v

be the fixed isomorphism Z/4Z −→ Gal(L/K) We use Convention 2.5.11.

Let f ∈ AutKX0(τ)(R) given by fi = αi(g(i)) for all i ∈ X̄0(τ).

If j
br←−− i with r(br) = r ∈ {0, 1} are parallel arrows in X(τ) connecting weight-4 arcs,

then b := b0 = b1 in X̄(τ) and ρbr = αji(ξ(b) + 2r) and ρ′br = αji(ξ
′(b) + 2r).

Since ξ(b) + ξ′(b) = g(j) + g(i) holds in F2, there is p ∈ {0, 1} such that for all r ∈ {0, 1}
one has the identity (ξ′(b) + 2(r + p)) + g(i) = g(j) + (ξ(b) + 2r) in Z/4Z.

Then we have ρ′π(br)
fi = fjρbr for π(br) = b|r−p|.

Extending π to an automorphism of the quiver X(τ) with π(a) = a for all arrows j
a←− i

in X(τ) not connecting weight-4 arcs, we get f and π as in (c’).

(c’) ⇒ (a’): Let X̄0(τ)
g−→ F2 with g(i) = α−1

i (fi) regarded as element in F2 = Z/2Z.

For j
a←− i ∈ X̄1(τ) the condition ρ′π(a)fi = fjρa translates to ξ(a)+ξ′(π(a)) = g(j)+g(i)

in F2, since ρ′π(a) = αji(ξ
′(π(a)) + 2r(a)) and ρa = αji(ξ(a) + 2r(a)).

For single arrows j
a←− i in X̄(τ) it is π(a) = a in X̄(τ), so ξ(a) + ξ′(a) = g(j) + g(i).

For π(a) 6= a in X̄(τ) let i
c←− k b←− j a←− i be the path in X(τ) induced by ∆(a). Then it

is ∆(a) ∈ X̄2(τ) and one computes

ξ(a) + ξ′(a) = (ξ(c) + ξ(b)) + (ξ′(c) + ξ′(b))

= (ξ(c) + ξ′(c)) + (ξ(b) + ξ′(b))

= (g(i) + g(k)) + (g(k) + g(j)) = g(j) + g(i) .

The first equality holds because ξ and ξ′ are cocycles and the last equality because c and b

are single arrows in X̄(τ) (see Lemma 6.6.2).

6.8 Geometric Realization of X̄•(τ)

In the spirit of [AG16, Lemma 2.3] the cohomology of C•(τ) can be identified with the

singular cohomology of Σ with F2-coefficients. This observation is particularly interesting

in combination with the parametrization of Jacobian algebras by the first cohomology

204



6.8 Geometric Realization of X̄•(τ)

group H1(C•(τ)) ∼= F2g+b−1
2 described in § 6.7. For instance, one can deduce immediately

that the isomorphism class of J (τ, ξ) does not depend on ξ if Σ is a disk.

Construction of |X̄(τ)|

Fix a triangulation τ of Σd and let (γi)i∈τ be a family of curves in Σ whose elements do

not intersect each other in Σ \M such that γi represents i (see Remark 5.1.10).

For boundary segments i ∈ s define γi = i. Abbreviate X̄k = X̄k(τ) for k ∈ {0, 1, 2}.

Construct a subspace |X̄| =
⋃
k∈{0,1,2}

⋃
i∈X̄k xi of Σ as follows:

(a) For every i ∈ X̄0 let xi = {pi} for some inner point pi of γi.

(b) For every j
a←− i ∈ X̄1 pick a curve xa in (Σ,M ∪ {pi, pj},O) with endpoints {pi, pj}

and inner points in ∆(a) \
⋃
` γ`.

Make these choices in such a way that for all a 6= b in X̄1 the curves xa and xb do

not intersect each other in their inner points.

(c) For every ∆ ∈ X̄2 the set c∆ =
⋃
a∈X̄1:∆(a)=∆ xa is the image of a closed simple curve.

Let x∆ be the closure of the component of Σ \ c∆ not intersecting any of the γi.

Example 6.8.1. For the triangulation τ of the triangle with one weight-1 and two weight-4

orbifold points from Example 6.2.18 we have visualized below on the left the “geometric

realization” |X̄| ⊆ Σ of X̄•. On the right one can see the quiver X̄(τ).

ps1ps3

ps2

pi3

pk−

pi2

pk+

4 4

pi1

1

i3

i2

i1

s1

s2

k− k+

s3

a4

��

c3

??

a3

��

b3

oo

b2

__

c2 //

a2

��

a1

__

b10 = b11 //

c1

��

Notation 6.8.2. We denote for topological spaces X by C•(X;R) the singular complex

of X with coefficients in R and by H•(X;R) its homology. By definition Ck(X;R) is the free

R-module generated by all continuous maps ∆k → X where ∆k is the standard k-simplex.

To relate the homology of C•(τ) to the singular homology of |X̄| fix for all k ∈ {0, 1, 2}
and i ∈ X̄k a continuous map ∆k θ(i)−−−→ |X̄| with image xi that is injective on the interior

of ∆k and has the properties that . . .

(a) . . . for each ∆ ∈ X̄2 and each face F of ∆2 there is a ∈ X̄1 with θ(∆)|F = θ(a),
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(b) . . . for each j
a←− i ∈ X̄1 the image of ∂∆1 under θ(a) is {pi, pj}.

In C•(|X̄|;F2) one has with these choices ∂2(θ(∆)) = θ(c) + θ(b) + θ(a) for all ∆ ∈ X̄2,

where cba is a cyclic path induced by ∆, and ∂1(θ(a)) = θ(j) + θ(i) for all j
a←− i ∈ X̄1.

To cut this long story short, the rule i 7→ θ(i) with i ∈ X̄k induces a chain map

C•(τ) C•(|X̄|;F2) .θ

Proposition 6.8.3. The map θ induces an isomorphism H•(C•(τ))
∼=−→ H•(|X̄|;F2).

Proof. This is a standard result in algebraic topology. Compare e.g. [Hat02, Chapter 2.1]

where a similar construction is discussed for integral coefficients.

Postcomposing the map θ with the map C•(|X̄|;F2) −→ C•(Σ;F2) induced by the canonical

inclusion |X̄| ι
↪−→ Σ we get a chain map C•(τ) −→ C•(Σ;F2), which we denote again by θ.

Proposition 6.8.4. The map θ induces an isomorphism H•(C•(τ))
∼=−→ H•(Σ;F2).

Proof. Having in mind Remark 5.1.3, Example 5.1.6, and Proposition 5.1.23, it is not

hard to see that |X̄| is a strong deformation retract of Σ. Consequently, ι induces an

isomorphism H•(|X̄|;F2)
∼=−→ H•(Σ;F2). Now Proposition 6.8.3 implies the claim.

Corollary 6.8.5. H1(C•(τ)) ∼= F2g+b−1
2 .

Proof. Use Proposition 6.8.4 and the well-known fact H1(Σ;F2) ∼= F2g+b−1
2 .

Remark 6.8.6. It is also possible to verify H1(C•(τ)) ∼= F2g+b−1
2 directly:

By Remark 6.2.28 the dimension of H1(C•(τ)) is

r := 1− χ(C•(τ)) = 1− |X̄0(τ)|+ |X̄1(τ)| − |X̄2(τ)| ,

where χ(C•(τ)) =
∑

k∈N dimF2
Hk(C•(τ)) is the Euler characteristic.

The number n of arcs and t of triangles in τ are by Proposition 5.1.16 and Corollary 5.1.22

n = 6(g − 1) + 3b+m+ 2o ,

t = 4(g − 1) + 2b+m+ o .

Denote by tq the number of triangles of τ with exactly q weight-1 orbifold points. Then

we can express t = t0 + t1 + t2 and o1 = t1 + 2t2.

Note that |X̄0(τ)| = n+m− o1 and |X̄1(τ)| = 3t0 + t1 and |X̄2(τ)| = t0.

All in all, r = 2t− n−m+ 1 = 2g + b− 1.
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6.9 Counting Components of the Flip Graph

6.9 Counting Components of the Flip Graph

Motivated by [FST08, §§ 3 and 7], Proposition 5.1.45, and Remark 5.1.46 one can ask the

question whether “the flip graph of colored triangulations is connected.” Since colored

triangulations with the same underlying triangulation and cohomologous cocycles define

isomorphic Jacobian algebras, we take for the vertices of the flip graph “cohomology classes”

of colored triangulations instead of colored triangulations themselves.

Definition 6.9.1. The flip graph EH(Σd) is the simple graph whose vertices are pairs (τ, x)

consisting of a triangulation τ of Σd and an element x ∈ H1(C•(τ)).

Vertices (τ, x) and (ς, x′) are joined by an edge if and only if there are ξ ∈ x and ξ′ ∈ x′

such that the colored triangulations (τ, ξ) and (ς, ξ′) are related by flipping an arc.

Theorem 6.9.2. The flip graph EH(Σd) is disconnected if Σ is not a disk. More precisely,

it has at least 22g+b−1 connected components.

Proof. Let O1 = { ∈ O | d = 1} and let Σ̂ be the surface Σ \O1.

Let V be the set of vertices of EH(Σd) and Vτ = {(τ, x) |x ∈ H1(C•(τ))} ⊆ V .

We will define V
inv−−−→ H1(Σ̂;F2) such that inv|Vτ is injective for every τ and inv is

constant when restricted to the vertex set of any connected component. This will imply

the theorem, since |Vτ | = |H1(C•(τ))| = |H1(C•(τ))| = 22g+b−1 by Corollary 6.8.5.

We begin with the construction of inv. To do this, fix a triangulation τ of Σd.

Call a triangle exceptional if its type is B̃1, C̃14, or C̃41.

For pending arcs i in τ let ∆τ
i be the triangle of τ containing i. If i ∈ τd=1 and ∆τ

i is

exceptional, denote by δτi the unique arrow in X̄(τ) induced by ∆τ
i .

Construction of the Chain Complex Ĉ•(τ)

Let X̂k(τ) = X̄k(τ) for k 6= 1 and X̂1(τ) = X̄1(τ)
.
∪
{
ετi | i ∈ τd=1

}
. Define

∂1(ετi ) =

∂1(δτi ) if ∆τ
i is exceptional,

0 otherwise.

Let Ĉ•(τ) =
(
F2X̂k(τ)

)
k∈N be the chain complex whose differentials for elements in X̄k(τ)

are given by the same rules as the differentials of the complex C•(τ) in Definition 6.2.26.

Let Ĉ•(τ) = HomF2
(Ĉ•(τ),F2) be the dual cochain complex. We have a chain map

Ĉ•(τ) : 0

ρτ

����

// F2X̂2(τ)
∂2 // F2X̂1(τ)

∂1 //

ρτ

����

F2X̂0(τ) // 0

C•(τ) : 0 // F2X̄2(τ)
∂2 // F2X̄1(τ)

∂1 // F2X̄0(τ) // 0
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where ρτ is defined on basis elements in degree one as

ρτ (a) =


a for a ∈ X̄1(τ),

δτi for a = ετi with ∆τ
i exceptional,

0 for a = ετi with ∆τ
i non-exceptional.

The map ρτ induces maps H1(Ĉ•(τ))
ρτ−−→→ H1(C•(τ)) and H1(C•(τ))

ρ∗τ
↪−−→ H1(Ĉ•(τ)).

Construction of the Geometric Realization |X̂(τ)|

Fix a geometric realization |X̄(τ)| of X̄(τ) with data (γi, xi, θ(i))i as described in § 6.8.

Construct a subspace |X̂(τ)| = |X̄(τ)| ∪
⋃
i∈τd=1 xετi of Σ̂ as follows:

(b’) For every i ∈ τd=1 let {h, j} = {` ∈ Xd6=1
1 (τ) | ` belongs to ∆τ

i } and pick a curve xετi
in
(
Σ,M ∪ {ph, pj},O

)
with endpoints {ph, pj} and inner points in ∆ \

⋃
` 6=i γ`.

Make these choices in such a way that for all a 6= b in X̂1(τ) the curves xa and xb do

not intersect each other in their inner points.

Depending on the type of ∆τ
i the curve xετi looks as follows in |X̂(τ)| ∩∆ ⊆ Σ̂:

i

1

xδτi

xετi

ph pj

ph

xετi

i

1 4

pj

xδτi

pj

i

4 1

ph

xδτi xετi

k

ph = pj

xετi

i

1 1
xετk

Fix for a = ετi a continuous map ∆1 θ(a)−−−→ |X̂(τ)| with image xa such that it is injective

on the interior of ∆1 and the image of ∂∆1 under θ(a) is {ph, pj}.

Analogously as in § 6.8, we obtain a chain map Ĉ•(τ)
θτ−−→ C•(Σ̂;F2) acting as i 7→ θ(i)

on i ∈ X̂k(τ), which induces an isomorphism H•(Ĉ•(τ)) −→ H•(Σ̂;F2).

Let H•(Σ̂;F2)
θ∗τ−−→ H•(Ĉ•(τ)) be the isomorphism induced by θτ .

Definition of the Map inv

Let ετ =
∑

i∈τd=1(ετi )∨ where {a∨ | a ∈ X̂1(τ)} is the basis of Ĉ1(τ) dual to X̂1(τ).

Note that ετ is a cocycle and define for x ∈ H1(C•(τ))

inv(τ, x) := (θ∗τ )−1(ρ∗τ (x) + ετ ) .

The restriction inv|Vτ is injective because of the injectivity of ρ∗τ .

The Map inv Is Constant on Flip-Graph Components

To show that inv is constant on the vertex set of every connected component of the flip

graph, it is enough to check that inv(τ, ξ) = inv(ς, ϕς,τ (ξ)) whenever (τ, ξ) and (ς, ϕς,τ (ξ))

are two colored triangulations related by flipping an arc (compare Definition 6.2.36).
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Let τ and ς be triangulations of Σ related by a flip, say ς = µi(τ) and τ = µj(ς).

By Corollary 6.2.35 the map ϕς,τ induces a map H1(C•(τ))
ϕς,τ−−−→ H1(C•(ς)) of sets.

To conclude the proof of the theorem, we have to verify the commutativity of

H1(Σ̂;F2)

H1(C•(τ)) H1(C•(ς))

invτ

ϕς,τ

invς

where invτ = inv(τ,−) and invς = inv(ς,−).

This will be achieved by the construction of a chain map Ĉ•(ς)
ϑτ,ς−−−→ Ĉ•(τ) such that

the induced map ϑ∗τ,ς in cohomology makes the following diagram commute:

H1(Σ̂;F2)

H1(Ĉ•(τ)) H1(Ĉ•(ς))

H1(C•(τ)) H1(C•(ς))

θ∗τ θ∗ς

ϑ∗τ,ς

ρ∗τ+ετ

ϕς,τ

ρ∗ς+ες

Using the duality HomF2
(−,F2), the commutativity ϑ∗τ,ς ◦ θ∗τ = θ∗ς of the “roof” may be

checked in homology instead.

In summary, it suffices to construct a chain map Ĉ•(ς)
ϑτ,ς−−−→ Ĉ•(τ) making

H1(Σ̂;F2)

H1(Ĉ•(τ)) H1(Ĉ•(ς))

θτ θς

ϑτ,ς

commute and the identity ρ∗ς (ϕ
ς,τ (x)) + ες = ϑ∗τ,ς(ρ

∗
τ (x) + ετ ) hold for all x ∈ H1(C•(τ)).

Construction of the Chain Map ϑτ,ς

For the construction of ϑτ,ς we distinguish the following cases:

(1) i ∈ τd=1 belongs to an exceptional triangle of τ .

(2) i ∈ τd=1 belongs to a non-exceptional triangle of τ .

(3) i ∈ τd=4 belongs to an exceptional triangle of τ .

(4) i ∈ τd=4 belongs to a non-exceptional triangle of τ .

(5) i ∈ τd=2 belongs to two triangles in X̄2(τ).

(6) i ∈ τd=2 belongs to a triangle in X̄2(τ) and to an exceptional triangle of τ .

(7) i ∈ τd=2 belongs to two exceptional triangles of τ and is a source or sink in X(τ).
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(8) i ∈ τd=2 belongs to two exceptional triangles of τ and is not a source or sink in X(τ).

(9) i ∈ τd=2 belongs to a triangle in X̄2(τ) and to a triangle of type C̃11 in τ

(10) i ∈ τd=2 belongs to an exceptional triangle and to a triangle of type C̃11 of τ

The list is non-redundant and exhaustive, i.e. for fixed τ , i exactly one of the items is true.

For (π, k) ∈ {(τ, i), (ς, j)} let X̄k(π) be the subquiver of X̄(π) spanned by all arrows

induced by triangles of π with side k.

Then X̄(τ) = X̄i(τ)⊕Q and X̄(ς) = X̄j(ς)⊕Q for some Q (see Lemma 6.2.13).

Tables 6.9.1 and 6.9.2 depict the possible pairs
(
X̄i(τ), X̄j(ς)

)
in all ten cases. The

dotted arrows are not part of the quiver X̄k(π) and illustrate the elements of

Ek(π) =
{
επh | k is a side of ∆π

h

}
.

Define the map Ĉ•(ς)
ϑτ,ς−−−→ Ĉ•(τ) on basis elements as

ϑτ,ς(x) =



x for x ∈ (X̄0(ς) \ {j}) ∪ (X̄1(ς) \ X̄j
1(ς)) ∪ (X̄2(ς) ∩ X̄2(τ)),

i for x = j,

ετh for x = εςh 6∈ E
j(ς),

0 for the triangles x ∈ X̄2(ς) \ X̄2(τ).

It remains to specify ϑτ,ς(x) for the elements x ∈ X̄j
1(ς) ∪ Ej(ς). This is done case by

case in Tables 6.9.1 and 6.9.2.

It is not hard to see that ϑτ,ς is a morphism of chain complexes.

The identities ρ∗ς (ϕ
ς,τ (x)) + ες = ϑ∗τ,ς(ρ

∗
τ (x) + ετ ) for x ∈ H1(C•(τ)) are easily checked

via the explicit formula for ϕς,τ given in the proof of Lemma 6.2.32.

Direct inspection shows that in each case θτ ◦ ϑτ,ς = θς in homology.

This finishes the proof.

Table 6.9.1: ϑτ,ς for pending arcs i in exceptional triangles of τ .

# X̄i(τ) X̄j(ς) ϑτ,ς

1 • •
δτi

ετi

• •
εςj

δςj

δτi 7→εςj
ετi 7→δςj

2 •ετi ετh •εςj εςh
ετi 7→εςj
ετh 7→εςh

3− • i
ετh

δτh

• j
δςh

εςh
δτh 7→δςh
ετh 7→εςh

3+ • i
δτh

ετh

• j
εςh

δςh
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Table 6.9.2: ϑτ,ς for arcs i not pending in an exceptional triangle of τ .

# X̄i(τ) X̄j(ς) ϑτ,ς

4

• •

i

c

ab

• •

j

f

a∗b∗
a 7→a∗

b 7→b∗

b+ a 7→f

5

•

•

•

•

i

c0

a0b0

c1

a1 b1

•

•

•

•

jf0

b∗0

a∗1

f1

b∗1

a∗0 ap 7→a∗p
bp 7→b∗p
bp + a1−p 7→fp

6− •

•

•

i
ετh

b0

c

a

b1

•

•

•

j
εςh

b∗1
f

b∗0

a∗
a 7→a∗

bp 7→b∗p
b0 + a 7→f

b1 + ετh + b0 7→εςh

6+ •

•

•

i
ετh

a0

c

a1

b

•

•

•

j
εςh

a∗1

f

b∗

a∗0
ap 7→a∗p
b 7→b∗

b+ a0 7→f

a0 + ετh + a1 7→εςh

7− • •i
ετh

b0 ετk

b1
• •j

b∗0

εςk b∗1

εςh

bp 7→b∗p
b1 + ετh + b0 7→εςh
b0 + ετk + b1 7→εςk

7+ • •i

a0

ετh a1

ετk
• •j

εςk

a∗0 εςh

a∗1
ap 7→a∗p
a0 + ετh + a1 7→εςh
a1 + ετk + a0 7→εςk

8 • •i
ετh

b a

ετk

•

•

j

b∗

a∗

f

εςh

εςk

a 7→a∗

b 7→b∗

b+ a 7→f

ετh + b 7→εςh
a+ ετk 7→εςk

9

•

•

i

a

b

c

ετk

ετh

• •j
εςk

a∗ b∗

εςh

a 7→a∗

b 7→b∗

b+ ετh 7→εςh
ετk + a 7→εςk

10− • i
ετh

b

ετk

ετ`

• j
b∗

εςk

εςh

ες`

b 7→b∗

ετh + b 7→εςh
b+ ετk 7→εςk
ετ` 7→ες`

10+ • i
a

ετh

ετk

ετ`

• j
εςk

a∗

εςh

ες`

a 7→a∗

a+ ετh 7→εςh
ετk + a 7→εςk
ετ` 7→ες`
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Remark 6.9.3. The rules in Table 6.9.2 can be expressed in a more compact and uniform

way. Namely, if i is not a pending arc in an exceptional triangle of τ , it is

ϑτ,ς(x) =



x∗ for k
x←− h in X̄j(ς) with j ∈ {h, k},

where x∗ is the unique arrow ϑτ,ς(k) −→ ϑτ,ς(h) in X̄i(τ),

a∗ + b∗ for k
x←− h in X̄j(ς) with j 6∈ {h, k},

where
a←− x←− b←− is the path in X̄j(ς) induced by ∆(x).

µτh + ετh + ντh for x = εςh ∈ E
j(ς),

where µτh and ντh are the elements defined below.

For `ς
εςh←−− kς ∈ Ej(ς) and `τ

ετh←−− kτ ∈ Ei(τ) the elements ντh and µτh are characterized as:

• ντh is the unique kτ ←− ϑτ,ς(kς) in X̄i
1(τ) in case ϑτ,ς(k

ς) 6= kτ ; otherwise, ντh = 0.

• µτh is the unique ϑτ,ς(`
ς)←− `τ in X̄i

1(τ) in case ϑτ,ς(`
ς) 6= `τ ; otherwise, µτh = 0.

Definition 6.9.4. Let τ be a triangulation of Σd. Denote by

H1(C•(τ))
invτ

↪−−−−−→ H1(Σ \O1;F2)

the function constructed in the proof of Theorem 6.9.2.

We call a sequence (i1, . . . , i`) τ -admissible if i1 ∈ τ , i2 ∈ µi1(τ), . . . , i` ∈ µi`−1
· · ·µi1(τ).

The proof of the last theorem has the following interesting consequences:

Corollary 6.9.5. Let (τ, ξ), (ς, ξ′) be colored triangulations of Σd with invτ (ξ) 6= invς(ξ
′).

Then µi` · · ·µi1(τ, ξ) 6= (ς, ξ′) for every τ -admissible sequence (i1, . . . , i`).

Proof. With the notation and arguments used in the proof of Theorem 6.9.2, we have

inv(µi` · · ·µi1(τ, ξ)) = · · · = inv(µi1(τ, ξ)) = inv(τ, ξ) = invτ (ξ)

and inv(ς, ξ′) = invς(ξ
′). Thus µi` · · ·µi1(τ, ξ) 6= (ς, ξ′) because invτ (ξ) 6= invς(ξ

′).

Corollary 6.9.6. Let (τ, ξ) and (τ, ξ′) = µi` · · ·µi1(τ, ξ) be colored triangulations of Σd.

Then the Jacobian algebras J (τ, ξ) and J (τ, ξ′) are isomorphic.

Proof. The proof of Corollary 6.9.5 shows invτ (ξ) = invτ (ξ
′). So ξ = ξ′ in H1(C•(τ))

because of the injectivity of invτ . Now use Theorem 6.7.3.
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6.A Appendix

A

h

i k

B̃d

i h

k

d

C̃d−d+

h

ki

d− d+

Figure 6.A.1: the seven types of weighted triangles: A, B̃1, B̃4, C̃11, C̃14, C̃41, C̃44.

A B̃+ B̃− C̃

A

B̃+

B̃−

Table 6.A.2: two triangles without punctures sharing exactly one arc (bold).

A↑ A↓

A↑

A↓

Table 6.A.3: two triangles without punctures sharing exactly two arcs;

one shared arc (bold) fixed.

B̃ C̃+ C̃−

Table 6.A.4: triangles with one inner side (bold) fixed.

213



6 Potentials for Colored Triangulations

h

i k

c

��

b //

a

__

cba

Figure 6.A.5: X∆ and W∆ for weighted triangles of type A.

h

i k
1

c

��

b //

a

__

h

i k
4

c

��

b //

a

__

cba cba

Figure 6.A.6: X∆ and W∆ for weighted triangles of type B̃1 (left) and B̃4 (right).

h

i k
1 1

c

��

b0 //

b1
//

a

__

h

i k
1 4

c

��

b //

a

__

cb0a+ cb1au cba

h

i k
4 1

c

��

b //

a

__

h

i k
4 4

c

��

b0 //

b1
//

a

__

cba c(b0 + b1)a

Figure 6.A.7: X∆ and W∆ for weighted triangles of type C̃11, C̃14, C̃41, C̃44

(from top left to bottom right; the wiggling of b1 indicates r(b1) = 1).
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# type of type of j Φ(X(ς, j))

1
{
A,A

} {
A,A

}
cf. 2nd quiver in Table 5.A.28

2
{
A, B̃+

} {
A, B̃−

}
cf. 2nd quiver in Table 5.A.30

3
{
A, B̃−

} {
A, B̃+

}
symmetric to #2

4
{
A, C̃

} {
B̃+, B̃−

}
cf. 2nd quiver in Table 5.A.34

5
{
B̃+, B̃+

} {
B̃−, B̃−

}
cf. 2nd quiver in Table 5.A.43

6
{
B̃+, B̃−

} {
A, C̃

}
h

i/h

k

i

k

b∗

??

a∗

__

c∗

��

a∗

��

[aa]
//

oo

dk dk //

4 1 [bc]

1 4 [bc]

1 1 [bc]0 and [bc]1

4 4 [bc]0 and [bc]1

7
{
B̃+, C̃

} {
B̃−, C̃

}
looks like #6

8
{
B̃−, B̃−

} {
B̃+, B̃+

}
symmetric to #5

9
{
B̃−, C̃

} {
B̃+, C̃

}
symmetric to #7

10
{
A↓, A↓

} {
A↑, A↑

}
cf. 2nd quiver in Table 5.A.13

11
{
A↑, A↑

} {
A↓, A↓

}
symmetric to #10

12 B̃ B̃

h i

k

c∗

??

b∗

��
oo

dk //

1 [cb]0 or [cb]1

4 [cb]

13 C̃− C̃+

h

ik //

a∗

��

__

dk di // //

4 1 [ba]0 or [ba]1 b∗

1 4 [ba] b∗

1 1 [b0a] b∗0 and b∗1

4 4 [b0a] b∗0 and b∗1

14 C̃+ C̃− symmetric to #13

Table 6.A.8: the (at most two) choices for the embedding Φ in Remark 6.2.14;

in some cases, there are two possibilities for the dotted arrows.
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