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1 Introduction

1.1 Motivation

Cluster algebras are a recent and active field of research. They were introduced by Fomin
and Zelevinsky [FZ02] in 2002 as a new approach to study the duals of Lusztig’s canonical

bases for quantum groups from a combinatorial point of view.

Cluster theory was soon revealed to have intimate connections to numerous mathematical
disciplines: among others, Kac-Moody algebras, root systems, representations of quivers

(with potential), Teichmiiller theory, preprojective algebras, and Calabi-Yau categories.

A groundbreaking discovery was that acyclic skew-symmetric cluster algebras admit a
categorification by cluster categories [BMR+06]. Another more general categorical model

was developed in [DWZ08; DWZ10] and uses representations of quivers with potential.

One important feature shared by Kac-Moody Lie algebras and cluster algebras is that
both can be defined in terms of generalized Cartan matrices. In this relationship, cluster

algebras with skew-symmetric exchange matrices have symmetric Cartan counterparts.

The symmetric case has been closely investigated in the recent past and is comparatively
well-understood. In contrast, there are many open problems in the symmetrizable situation.
Answering these problems and lifting constructions from the symmetric to the symmetrizable
setting is an area of current research (see e.g. [GLS16a; GLS16b; GLS16¢]).

In the representation theory of finite-dimensional algebras symmetric generalized Cartan
matrices are linked to quiver representations, while the symmetrizable case is covered by

representations of modulations for weighted quivers.

Gabriel initiated the investigation of modulations (or species) in [Gab73]. In a sequence
of articles [DR74; DR75; DR76] Dlab and Ringel developed the theory further. Their
most striking result is the finite-type classification of modulations, which parallels the

classification of semi-simple Lie algebras.

Finite-Dimensional Algebras
Fix a field K. We briefly revise how finite-dimensional algebras over K lead to modulations.

The module category mod(A) of a finite-dimensional algebra A over K is equivalent to
the module category mod(Ay,g.) of the basic algebra Ay, . = Endy (P)°P where P is any
multiplicity-free projective generator of mod(A). This is why it is common practice to

focus in representation theory on finite-dimensional basic algebras.

11



1 Introduction

For every finite-dimensional basic algebra A over K its reduction A,.q = A/rad(A) is

semi-simple and by the Artin-Wedderburn theorem even a product of division algebras.

Let A = Ext} (Ayeq, Areq) considered as a bimodule over R = End (A,q)°P. Naturally
associated with A we therefore have the tensor algebra R(A) of A.

If K is a perfect field, Benson [Ben98] motivated by [Gab73; Gab80] proves A = R(A)/J
for an admissible ideal J of R(A). The algebra A is hereditary if and only if J = 0.

Writing 1 = e; +- - - +e¢,, for a complete set of primitive orthogonal idempotents eq, ... e,
in A, the modules S; = Ae;/rad(Ae;) with 1 <4 < n form an up to isomorphism complete
set of simple A-modules. There is an induced factorization R = Ry X - -- X R,, of rings and a

;. A of bimodules where R; = End, (5;)°? and ;4; = Ext} (S;, S;).

If K is an algebraically closed field, then R; = K for all i and the tensor algebra R(A)
is the path algebra KQ of a quiver ) with dimK(in) arrows j < .

decomposition A = &P

Modulations
Let @ be a weighted quiver, i.e. a finite quiver () equipped with a function Qg — N, 7 — d;.

A modulation for @Q is a family (R;, A,); , of connected K-algebras R; with dim x (R;) = d
and non-zero R; @k R?p—modules A, indexed by the vertices i € @)y and arrows j e,
such that both g (Aq) and (A,)g, are free of finite rank. Let ;A; = @2, A

i

The modulation is minimal if dim x(A,) = lem(d;, d;) for all arrows j &

The situation where all R; are division algebras corresponds to what Gabriel called a

species in [Gab73] and what we shall call a division modulation.

The previous paragraph pointed out that every finite-dimensional K-algebra gives rise

to a division modulation.

Path Algebras of Modulations

Every modulation H = (R;, A,);, for a weighted quiver @ defines a path algebra: the
tensor algebra R(A) of the bimodule A = @, A, over the ground ring R =[], R;.

Work of Roganov [Rog75] and Iwanaga [Iwa80] shows that the projectivity of rA and Ag
implies that the path algebra R(A) is (n+1)-Gorenstein if the ground ring R is n-Gorenstein.
In this case, a module over R(A) has finite homological dimension if and only if it has

finite homological dimension when considered as a module over R.

GeiB, Leclerc, and Schréer exploited this fact recently in [GLS16a] for self-injective ground
rings R where n = 0. Another manifestation of this result is the famous slogan “Path

algebras of quivers are hereditary.”

Representations of Modulations

A representation of the modulation H is a module M over the path algebra R(A). It can be
identified with a pair (R M, 4 M) consisting of an R-module pkM = M and 4 M € Rep(A, M)

12



1.1 Motivation

for the space of A-representations

Rep(4, M) = Homp(A®@rM,M) = @Hoij(in ®Qp, e;M,e;M).

1]

Following [GLS16a] an R-module M is locally free if each e; M is a free module over R;.

Finite-dimensional locally free R-modules M have a rank vector rank(M) = (rank g, (e;M));.

Preprojective Algebras

Assume that R carries the structure R = K of a symmetric algebra. Let A* = Hom (A, K).
Denote by 4 M +— 4M" the isomorphism Rep(A, M) — Homp (M, A* @z M) induced by .

A compatible A-double representation (M, yM, 4« M) consists of an R-module M and
representations 4 M € Rep(A4, M) and 4. M € Rep(A*, M) with 4«Mo MY = 4 Mo 4.M".

Compatible A-double representations are the same as modules over the preprojective
algebra I1 = R(A & A*)/(p) where p € (A ® A*) & (A* ® A) is the preprojective relation.

More generally, the deformed preprojective algebra TI* = R(A @® A*)/(p — ) is defined
for every A in the center of R. All this builds on [GP79; Rie80; DR80; CH98; GLS16a).

If @ is acyclic, the path algebra H = R(A) is finite-dimensional and Baer, Geigle,
Lenzing’s [BGL87] alternative definition of the preprojective algebra II as the tensor algebra
of the H-bimodule Ext};(H*, H) = Homy (H, 7 (H)) gives a conceptual explanation for

the significance of II in the representation theory of finite-dimensional algebras.

Gabriel’'s Theorem

Gabriel’s Theorem [GabT72] classifies all representation-finite acyclic quivers. Namely, he
shows that an acyclic quiver is representation-finite if and only if it is a finite union of
Dynkin quivers. Right after proving this, Gabriel [Gab73] introduced division modulations
for weighted quivers (or valued graphs) to provide the framework for a generalization of his

celebrated classification to the non-simply laced situation.

Dlab and Ringel [DR75] were first in giving a proof of Gabriel’s Theorem in this more gen-
eral setting: A division modulation H for a weighted acyclic quiver @) is representation-finite
if and only if A is minimal and @ a union of Dynkin quivers. In this case, M — rank(M)
establishes a bijection between the isomorphism classes of indecomposable representations

in rep(#H) and the set of positive roots of the quadratic form g defined by Q.

Coxeter Functors

To give a satisfactory explanation for the appearance of finite simply-laced root systems in
Gabriel’s Theorem, Bernstein, Gelfand, and Ponomarev [BGP73| described for acyclic @
an adjoint pair (C~, CT) of endofunctors of rep(Q). The Cozeter functor C* (resp. C™)
acts on rank vectors of indecomposable non-projective (resp. non-injective) representations

as the Coxeter transformation (resp. its inverse) of the root lattice defined by Q.

13



1 Introduction

Again, it were Dlab and Ringel [DR74; DR76] who constructed similar endofunctors

of rep(H) for division modulations H of weighted acyclic quivers.

Inspired by an idea of Riedtmann, Gabriel [Gab80] makes the remarkable observation that
there are isomorphisms C1t7T = 77 and C~T = 7~ where 77 = (—)*oTr and 7~ = Tro(—)*

are the Auslander-Reiten translations of rep(Q) and 7" is a “twist” functor.

GLS Modulations

Let @ be a weighted acyclic quiver and let f;; = d;/ged(d;, d;) for 4,5 € Q.

GeiB, Leclerc, and Schréer [GLS16a] thoroughly examined the modulation H = (R;, A,);.4
for Q where for j <— i

R, = K[gi]/<6§li) : A, = Klej, ¢)] /(551 —6{”, e;-lj, sfi) .

For constant weights d; = ¢ the path algebra of H is the path algebra of the quiver @
over the truncated polynomial ring K[e]/(¢¢). In particular, rep(H) = rep(Q) in case ¢ = 1.

The arguments in [GLS16a] implicitly but consistently use that the ground ring R carries
the structure R %> K of a symmetric algebra in the sense of [Nak39] where ¢ is the linear

form dual to ), Efrl with respect to the basis formed by the €.

Geif3, Leclerc, and Schréer’s notable insight is that, for a suitable generalization of the
Coxeter functors C*, the Brenner-Butler-Gabriel isomorphisms C*7T 22 7+ are valid on

the full subcategory of rep(H) consisting of the locally free representations.

Moreover, the functors 7+ leave the subcategory of locally free representations M that
are rigid (i.e. Ext}, (M, M) = 0) invariant.

Using this, they were able to prove a much more general version of Gabriel’s Theorem:
The number of isomorphism classes of indecomposable locally free rigid representations
in rep(H) is finite if and only if @ is a union of Dynkin quivers. In this case, M + rank(M)

yields a bijection between these isomorphism classes and the positive roots of qg.

Cluster Algebras

Cluster algebras A, are subalgebras of the field Q(xy,...,z,,) of rational functions. Their
generators, the cluster variables, are grouped into overlapping clusters. All clusters are
obtained from the initial cluster (x4, .., z,,) by an iterative process called mutation. Cluster

mutation is governed by a weighted quiver () associated with the initial cluster.

It was proved in [FZ03] that a cluster algebra Ag has only a finite number of cluster

variables if and only if ) is mutation-equivalent to a union of Dynkin quivers.

Potentials and Caldero-Chapoton Formula

String theorists [Sei95; DM96] associated with certain supersymmetric gauge theories
quivers with superpotential, which often describe the endomorphism algebra End (6P, E;) of
an exceptional collection E,..., E, in a triangulated category [BP01; AF06; Bri05; BP06].

14



1.1 Motivation

Loosely based on these ideas, Derksen, Weyman, and Zelevinsky [DWZ08] developed a

mutation theory for quivers @ with potential (QPs) and their representations.

In doing so, they provided a categorical model for cluster mutation [DWZ10]. Namely,
the k-th variable in a non-initial cluster of A, obtained via mutation at a sequence i can

be computed as

(S, M N
zip = [Lo; 5 ST (Gra (M) x5
j=1

aeN"

In the formula, M is a representation of a non-degenerate QP (Q, W) over the complex
numbers C that is obtained from the negative simple representation S_; by mutation at i.
Furthermore, (—, —) is the 1-truncated Euler form, B the skew-symmetric matrix, and Gr,

the quiver Grassmannian of a-dimensional subrepresentations associated with (Q,W).
Originally, Caldero and Chapoton [CCO06] discovered this formula for Dynkin quivers.

Representations of (@, W) are by definition modules over the Jacobian algebra J (W),
the quotient of the completed path algebra of Q by the cyclic derivatives 9¢(W).

Cluster-Tilting Subcategories
Let II be the preprojective algebra and Wy the Weyl group of a finite acyclic quiver Q.

For every w € Wg Buan, Iyama, Reiten, and Scott [BIRS09] described a subcategory C,,
of the category of finite-dimensional nilpotent II-modules. This category C,, is Frobenius
and its stable category is 2-Calabi-Yau. Moreover, C,, can be regarded as a categorification

of a cluster algebra constructed by Gei}, Leclerc, and Schréer in [GLS11].

Each reduced expression s = (sy, ..., sy) for w determines a maximal rigid II-module 7'(s),
which induces a cluster-tilting subcategory of C,,. The 2-CY tilted algebra End(T'(s)) is a
strongly quasi-hereditary Jacobian algebra according to [BIRS11; GLS11].

Surface-Type Cluster Algebras

A cluster algebra Ag has finite mutation type if the number of (isomorphism classes of)
weighted quivers that are mutation-equivalent to @ is finite. It has surface type if Q is
the weighted adjacency quiver of a triangulation of a weighted orbifold. Fomin, Shapiro,
and Thurston [FSTO08] began with the investigation of surface-type cluster algebras in the
skew-symmetric case and Felikson, Shapiro, and Tumarkin [FST12a] extended their results

to the skew-symmetrizable setting.

The importance of surface-type cluster algebras is revealed by Felikson, Shapiro, and
Tumarkin’s [FST12a; FST12b] mutation-type classification: If @) is a connected weighted
quiver with at least three vertices and is not mutation-equivalent to one of 18 exceptions,

the cluster algebra A is of finite mutation type if and only if it is of surface type.

In theoretical particle physics, Cecotti and Vafa [CV13; Cecl3] applied this result to

classify all “complete” 4d N' = 2 supersymmetric gauge theories.

15



1 Introduction

Let Q(7) be the adjacency quiver of a triangulation 7 of a surface without orbifold points.
Assem et al. [ABCP10] (for unpunctured surfaces) and Labardini-Fragoso [Lab09a] (in the
general situation) described a potential W (7) on Q(7). For almost all surfaces it is shown
in [Lab09a; CL12; Lab16] that the QPs (Q(7), W(7)) and (Q(s), W(s)) correspond to each

other under mutation if the triangulations 7 and ¢ are related by flipping an arc.

1.2 Results

We sketch the main results chapter by chapter. More detailed introductions and summaries

can be found at the beginning of each chapter and its major sections.

As before, let K be a field. Fix a K-modulation H = (R;, 4,); , for a weighted quiver Q.
Let R=][, R; and A =&, A,.

Chapter 2: Background

For all elements TV in the completed path algebra R({A)) we define Jacobian algebras J(W).
Generalizing a result of [DWZ08] we have:

Proposition. Assume that the enveloping algebra R° = R®y R°P is basic semi-simple.
Every K'-algebra automorphism f of R{(A)) induces an isomorphism J(W) — J(f(W)).

An SP over R is a pair (A, W) consisting of a finite-dimensional R-bimodule A over K
and a potential W, i.e. an element in the trace space of R((A)). In the joint work [GL16a]

the mutation theory for quivers with potential (QPs) was lifted to a special class of SPs:

Generalization. Assume that the field K contains a d;-th primitive root of unity and
the algebras R; are intermediate fields of a cyclic Galois extension L/K. Then for every
vertex j there is an involution u; of the set of reduced-equivalence classes of SPs over R

that are 2-acyclic at j, which specializes to QP mutation if all weights d; are equal to one.

Parts of the mutation theory of QPs have previously been extended to several special
classes of modulations in [Dem10; Ngul2; LZ16; BL16].

Chapter 3: Symmetric Modulations

Let us assume that the ground ring R carries the structure R 2 K ofa symmetric algebra.
In this situation, an idea of [CH98| allows to identify the space of A*-representations on a
finite-dimensional locally free R-module M with the dual of the space of A-representations.

More precisely, there is a trace pairing that induces an isomorphism of K-vector spaces

Rep(A*, M) —— Rep(A, M)*.

Along this line, it is possible to prove the central result of [GLS16a] for arbitrary

symmeltric local modulations, i.e. whenever all R; are symmetric local algebras:

16



1.2 Results

Theorem. Let H be the path algebra of an acyclic symmetric local modulation. Moreover,
let C* be the Coxeter functors of mod(H) constructed as in [BGP73; BK12; GLS16a].

There is an H-bimodule 11, such that CTT = Homy(I1;,—) and C~T 2 11, @y — as
endofunctors of mod(H). Restricted to the category of locally free H-modules, there are

isomorphisms CtT = 7% and O~T = 7~ where 7+ are the Auslander-Reiten translations.

As a consequence, Gabriel’s Theorem as stated in [GLS16a] for locally free rigid modules

also holds in the setting of acyclic symmetric local modulations.

Finally, the following extensions of results of [CH98; BK12; GLS16a] could be of interest:

Proposition. Let H be the path algebra and II* with \ € Z(R) a deformed preprojective

algebra of a symmetric local modulation (R;, A,); . for a weighted acyclic quiver Q.

e For each vertex j in Q) one can construct two reflection functors E;t on Mod(IT*).
If \; € R]-X, there is r;(\) € Z(R) and Zj =X induces an equivalence

Mod (1) —=— Mod (IT"5 V) .

If Aj =0, then (X7, Ej) is a pair of adjoint endofunctors of Mod(IT").
e The preprojective algebra I1 = TIO is self-injective if Q is a Dynkin quiver.
e The module g1l is the direct sum of the “preprojective” modules 77 P(y H) with p € N.

e The “symmetry” Extl (M, N) = Extl;(N, M)* holds for locally free M, N € mod(II).
Comparable extensions of [GLS16a] were independently proposed in [LY15; Kiill6].

Chapter 4: Potentials for Cluster-Tilting Subcategories
Let w be an element in the Weyl group W, of a finite acyclic quiver Q). We will show:

Theorem. For every reduced expression s for w the quiver of Endp(T'(s)) admits an up

to right-equivalence unique non-degenerate potential W (s).

Chapter 5: Potentials for Tagged Triangulations
This chapter presents results of [GL16a].

We introduce and study potentials for (tagged) triangulations of weighted orbifolds in
the sense of [FST12a]. Roughly speaking, a weighted orbifold ¥ is a connected compact
oriented Riemann surface of genus g with b boundary components, m marked points, and
o weighted orbifold points. In this chapter we treat the case where all orbifold points have
weight two. Depending on coefficient functions u and z, we associate with each (tagged)
triangulation 7 of 3 an SP S, (1) = (A(7), W,, ,(7)).

Generalizing [Labl16] to the weighted situation, the main result is that flipping arcs in

tagged triangulations is compatible with the mutation of SPs:
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1 Introduction

Theorem. Assume g >0 orb+m-+o0 > 7. Let ¢ be obtained from a tagged triangulation T
of 3 by flipping an arc i. Then the SP mutation of S, ,(7) at i is equivalent to S, ,(<).

The important consequence is the non-degeneracy of the SPs S, ,(7) for all tagged

triangulations 7 of weighted orbifolds X that satisfy the condition in the theorem.

For non-closed orbifolds the choice of coefficients will be shown to be not essential:

Proposition. Assume b > 0. Let 7 be a (tagged) triangulation of X. The SPs S, ,(T)

and S, /(1) are equivalent for all valid coefficient functions u,u' and z, 2'.

Chapter 6: Potentials for Colored Triangulations
The contents of this chapter are drawn from [GL16b].

We continue the investigation of weighted orbifolds 3. Now we impose no restriction on

the weights of the orbifold points, but assume that all marked points lie on the boundary.

Following a construction of [AG16], we define chain complexes C,(7) for triangulations 7.
A colored triangulation is a pair (7,§) where 7 is a triangulation of ¥ and ¢ is a 1-cocycle in
the cochain complex C*(7) that is Fo-dual to C,(7).

After describing an SP S(7,&) = (A(7,&), W(T,§)) for each colored triangulation (7,&),

we prove the compatibility of flip and mutation:

Theorem. Assume that (s,&') is obtained from another colored triangulation (7,£) of X

by flipping an arc i. Then the SP mutation of S(7,&) at i is equivalent to S(s,&’).

A corollary of this result is the non-degeneracy of the potential W (7, ). On the other

hand, we will argue that the property to be non-degenerate essentially determines W (7, §):

Theorem. Assume X is not a monogon in which all orbifold points have the same weight.

Then every non-degenerate potential for A(t,§) is equivalent to W (r,§).

It is often useful to know that Jacobian algebras are finite-dimensional. Thus we prove:

Proposition. The Jacobian algebra J(1,§) defined by S(7,&) is finite-dimensional.

It is also interesting to observe that the isomorphism classes of Jacobian algebras [J (7, &)

corresponding to a fixed triangulation 7 are parametrized by a cohomology group:

Theorem. Let 7 be a triangulation of 3. There exists an isomorphism J(1,&) =2 J(1,¢)

of K -algebras fixing the vertices pointwise if and only if [£] = [€'] in cohomology.

Finally, we define a flip graph whose vertices are pairs (7, [¢]) of triangulations 7 of X

and cohomology classes [¢] € H'(C*(7)). This graph is disconnected unless ¥ is a disk:

Theorem. The flip graph of ¥ has at least 229701 connected components.
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1.3 Terminology

1.3 Terminology

Unless it is otherwise specified, all rings are unital, all algebras associative and unital, all

ideals two-sided, and all modules left modules.

1.4 Notations

(X1, ey xp)
Z(R)
char(R)
Gal(L/FE)
[L: E]
Trr /e
Trr(f)

op

an arbitrary field, fixed for this thesis

the functor Hom g (—, K)

the set of natural numbers 0,1,2, ...

the set of positive integers 1,2,3, ...

the ring of integers

the field of rational, real, and complex numbers, respectively

the finite field with ¢ elements

the category of modules over the ring R

the category of finite-dimensional modules over the K-algebra R

the dimension of the vector space V'

the (well-defined) rank of a module M

the radical of a module M

used to stress the fact that M should be considered as a (left) R-module
used to stress the fact that M should be considered as a right R-module
the ideal generated by xy,...,x,, in a ring that is clear from the context
the center of the ring R

the characteristic of the ring R

the Galois group of the Galois extension L/E

the degree of the field extension L/E

the trace in F relative to L of the E-algebra L as in [Bou70, III. §9 no. 3|
the trace of the R-linear endomorphism f in the commutative ring R

the Kronecker delta; equal to 1, if P is true, and equal to 0, if P is false
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2 Background

In this chapter we lay the foundation for the later parts of this thesis. § 2.1 briefly revises
weighted quivers and their relationship to Cartan matrices. Operations like reflection and
mutation are presented for modular quivers. § 2.2 introduces tensor algebras and § 2.3 tries
to justify the concept of K-modulations. In § 2.4 modulations are treated in detail. We
discuss natural constructions like pullback, dual, and double modulations. § 2.5 focuses on
cyclic Galois modulations. The concluding § 2.6 is concerned with Jacobian algebras and

species with potential (SPs). We describe SP mutation for a special class of modulations.

2.1 Weighted and Modular Quivers

2.1.1 Quivers

Most of the terminology introduced in this subsection is standard.

Definition 2.1.1. Let K be the Kronecker category, i.e. the category with two objects, 0
and 1, and two non-identity morphisms, s and ¢, both of the form 1 — 0. The category of

quivers Q is the category of functors from K to the category of finite sets.

The objects @ of Q are called quivers. We write @, for the image of z € {0,1} under Q.
The images under ) of the morphisms s and ¢ are again denoted by s and t. In plain
words, a quiver () consists of two finite sets, @)y and @)1, and two functions s,t: Q1 — Q.
The elements in @, are called the vertices and the elements in @; the arrows of Q. An

arrow a € Q1 with i = s(a) and j = t(a) starts in i and ends in j. This is visualized as
. a .
j—i € Q.
To state the fact that @ is a quiver whose vertex set is I, we say that @ is an I-quiver.

A morphism of I-quivers is a morphism of quivers ) i) Q' with f, =id;.

A quiver Q' is a subquiver of another quiver @ if there is a monomorphism @’ <i> Q
where f, are the inclusions of subsets Q. C @, for x € {0,1}. We then write Q' C Q.

A path a,, ---a; in Q is a tuple (z’n L Tp1s " 5 Lo &z’l, i & io) € Q7 withn e N
and the convention Q¥ = {i <~ i|i € Qy}. We say that the path p = a,, ---a; starts
in s(p) :=ig and ends in t(p) := i,. Paths p € Q} have length ¢(p) := n.

Set Pg(i, ) == Pq(i, ) N PG where Pg(i, j) is the set of paths in @ starting in 7 and
ending in j and P is the set of length-n paths in Q.
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Cyclic paths are paths in 738 = Uier Poli,i). If 738 NPg = @, the quiver Q is said to

be n-acyclic. It is loop-free if it is 1-acyclic, and acyclic if it is n-acyclic for all n € N
The quiver Q is n-acyclic at i € Qy and i is an n-acyclic verter in Q if Pg (i, ) NPG = 2.

The path category Py of Q is the category with object set @y and set of morphisms i — j
given by Pg(i, 7). The trivial paths e; are the identities. Composition is defined in the
obvious way as concatenation of paths. The assignment ) — Pg canonically extends to a

functor from Q to the category of strict small categories,

The quiver @ is connected if P, is a connected category. A subquiver Q' C Q is full if
the functor Py is full for the canonical inclusion @’ <i> Q.

Notation 2.1.2. For X C @, write Q— X for the Qy-subquiver of @ with arrow set @\ X.

For X C @, write Q|x for the full subquiver of @ with vertex set X.
For subquivers @', Q" C Q write @ = Q' & Q" if Qy = Q) UQ{ and Q; = Q| U QY.

2.1.2 Weighted Quivers

We introduce weighted quivers and describe two operations, reflection and premutation,
modifying a weighted quiver locally and producing another one. The first operation plays
a significant role in Chapter 3, whilst the second one is prominently used in Chapters 5
and 6.

Definition 2.1.3. A weighted quiver @) is a pair (Q, dQ) consisting of a quiver ) and a
Q
function Q) 4, N, i diQ. The integer diQ is called the weight of the vertex i.

A morphism of weighted quivers is a morphism i) Q' of quivers satisfying d?'o fo =de.

We simply write d instead of d¥ where it does not cause confusion.

Notation 2.1.4. Whenever a weighted quiver Q with weights d = d¥ has been fixed, we

use the following notations for i, j € Qq:

ij d: d4
d;; = ged(d;, d;), d? := lem(d;, d;), fij = dTJ] — dj’
Cij = 20i=j = fimij my; = {j i€ Qull +{j = i€}

Occasionally, we also use the abbreviation dyj; := ged(dy, d;, d;) for i, j, k € Q.

Remark 2.1.5. Fix a finite set I. A Cartan matriz C with symmetrizer D is a pair (C, D)

of integer (I x I)-matrices with the following properties:

(a) The diagonal entries of C' are 2 and the remaining entries non-positive.
(b) D is a diagonal matrix with positive entries.

(¢) DC is symmetric.
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2.1 Weighted and Modular Quivers

For every loop-free weighted I-quiver @ the matrix Cg := (¢;;); jer is a Cartan matrix

with symmetrizer Dy, := diag(d; |i € I).

Vice versa, every Cartan matrix C with symmetrizer D arises from a weighted quiver.
More specifically, there is a 2-acyclic weighted I-quiver () such that Cy = C and Dg = D.
The underlying graph G, of @ is determined by (C, D) up to isomorphism. The number

of edges joining two vertices i # j in G, is equal to

ged(legls [ejil) if ¢i5¢5; # 0,

0 otherwise.

Remark 2.1.6. Let I be a finite set. According to [FZ02, Definition 4.4] a pair (B, D) of
integer (I x I)-matrices is called a skew-symmetrizable matrix B with symmetrizer D if D
is a diagonal matrix with positive entries and DB is skew-symmetric. For the relation

between skew-symmetrizable matrices and Cartan matrices see [FZ02, Remark 4.6].

Let M be the set of skew-symmetrizable integer (I X I)-matrices with symmetrizer
and let Q; be the set of isomorphism classes of 2-acyclic weighted I-quivers. We have a
bijection

M ——— Q9

(B, diag(d;)) —— (Qp,i = d;)

where Qp has ged(|b;;], |bj;|) arrows j < if b;; > 0 and no arrows j < i otherwise.

Definition 2.1.7. The dual of a weighted quiver @ is the weighted Qy-quiver Q* with
Qf = {i —ilj—icQ}
and d?* = dZ-Q for all i € Qy. For b=a" € Q7 set b* :=a € Q.
The double of Q is the weighted Qy-quiver @ such that Q = Q © Q* as weighted quivers.
The reflection of a weighted quiver Q at j € @ is the subquiver Q*7 of Q with arrow set
QY ={k=icQiljg{il}}u{k—icQilie{ik}}.
The following definition is inspired by [LZ16, Definition 2.5].

Definition 2.1.8. The premutation of a weighted quiver @ at a 2-acyclic vertex j € Qg is
the weighted Qy-quiver @~/ such that Q™ = Q* © Q=7 where

—i balt . . .
Q) = {k;&z“ﬂij,j<izEQl,TGZ/rkﬁZ,qu/qkjiZ}.
Here, r1;; and gy;; are the positive integers ry;; = dy;/dy;; and qyj; = dyj; d;/(dy;d;;).

Remark 2.1.9. For each k < j «% iin Q the premutation Q™7 has TrjiThji = i dj/(djd;i)
composite arrows [balf. The reason for this number and the labeling of the arrows will

become clear in § 2.5.4. Note that q;; = rp;; = 1if dj, = d; = d;.
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Example 2.1.10. Let @ be the weighted quiver k &L j =i with dy = 12, d; =40, d; = 30.
Then dy; =4, d;; =10, dy,; = 6, dy;; = 2, ryj; = 3, qij; = 2. The premutation Q"7 has six
composite arrows k < i and looks as follows:

L

J
"
[bal}, [ba]
(7{ iy
I

ba]9, [ba?, [ba]g
0 1 2

2.1.3 Modular Quivers

Modular quivers will capture combinatorial aspects of cyclic Galois modulations.

oQ
Definition 2.1.11. A weighted quiver @ equipped with a function @ — |, i€Qu 7)d;; 7
such that a — o3 € 7./d;;Z for all j <& i€ Q is called a modular quiver.

A morphism of modular quivers is a morphism @ i> Q' of weighted quivers that satisfies
in addition 09 o f; = 0€.

We write o instead of 09 where it does not lead to confusion.
Definition 2.1.12. Let Q be a modular quiver.

The double Q of the weighted quiver Q is a modular quiver with O'd@ = 05(22 and ag = —a((;? .

The dual Q* and the reflections Q*/ are modular subquivers of Q.
The premutation Q™7 = Q*/ @& Q 7~ is a modular quiver where for k & j <= iinQ
Opa)t = (0p +04)s + dijir € Z/djiZZ.
Here, x — x, denotes the map Z/dy;;Z — Z/dy;,Z, n + dy;;Z — n + dy, Z, for 0 < n < djj;.
Let [ba]{ be the arrow [ba]?, in Q™7 with ' € Z/ry;;Z and Tfba)?, = —(—04 —0p) s — dyji7-
Ezample 2.1.13. Let @ be the weighted quiver from Example 2.1.10 considered as a

modular quiver with o, =1 € Z/4Z and 0, = 4 € Z/10Z. Then o}, + 0, = 1 € Z/27Z such
that o2 = 1+ 2r € Z/6Z and 0y = —0y, = 3 € Z/4Z and 04+ = —0, = 6 € Z/10Z.

Definition 2.1.14. A canceling 2-cycle in a modular quiver @) is a subquiver of () spanned
by two arrows j <— i and j L i with o, +o0,=0€Z/djZ.
A subquiver T C Q is trivial if T =T' @ ---@® T for canceling 2-cycles T, ..., T™ in Q.
A modular quiver Q is reduced at j € @ if it has no canceling 2-cycles that contain j.
It is reduced if it is reduced at all vertices.

A reduction of Q is a modular subquiver @’ of @ that is reduced and satisfies Q = Q' T
for some trivial T'. Similarly, Q" C @ is a reduction at j if Q = Q' & T and Q(j) — T} is a
reduction of the subquiver Q(j) of @ spanned by all arrows incident with j and T' C Q(j).

We say that a modular quiver is 2-acyclic (at j) after reduction if it has a reduction that
is 2-acyclic (at j). Two modular I-quivers are reduced-equivalent if they have reductions

that are isomorphic as modular I-quivers.
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Remark 2.1.15. All reductions of ) are isomorphic as modular Qy-quivers.

. % . 2
Ezxample 2.1.16. The modular quiver ? T} J <b—> k with d; = dj =dy =2,0,, =op, =1,
0 1

04, =0, 0y, =1 is 2-acyclic at ¢ after reduction, but is not 2-acyclic at j after reduction.

Lemma 2.1.17. Let I be a finite set. For j € I let Q(j) be the set of reduced-equivalence

classes of modular I-quivers that are 2-acyclic at j after reduction. There is an involution

Hj

Q) —— Q)

called mutation, given by Q — Q™7 for modular quivers Q that are 2-acyclic at j.

Proof. For each k & j <= i in @ the arrows [ba]? and [a*b*], ¢ span a canceling 2-cycle 7}
in (Q)7 =Q&@ya,q Tya O

b 7% a
Ezample 2.1.18. Let @ be the modular quiver t ——_——i with d, =d; =2, d; = 1. Note
that 0, = 0, = 0 and 0, = r € Z/2Z. The two arrows ¢ and [ba]! span a canceling 2-cycle
in the premutation @~/. The (in this example only) reduction of @~/ is the following

modular quiver with Tlba)0,, =7+ l#r=o0.
b*/j Y
k—F—1
[ba]r+1

Definition 2.1.19. A modular I-quiver @ is said to be X-admissible for X C I if it is
2-acyclic after reduction and if, recursively, the elements of 11;(Q) are X-admissible for
all j € X. It is called admissible if it is /-admissible.

Ezxample 2.1.20. The modular quiver in Example 2.1.18 is easily checked to be admissible.

Ezample 2.1.21. Let @ be the quiver from Example 2.1.18 regarded as a modular quiver
with dj, =d; =4, d; =2 and 0, = 0, = 0 € Z/2Z, 0. = 1 € Z/4Z. The premutation Q™
is not 2-acyclic after reduction, because its arrows k < i are ¢, := [ba]] and ¢; := [ba]}
and 0. + 0, =1+2r#0 € Z/4Z for all r € {0,1}. In particular, ) is not admissible.

Ezxample 2.1.22. The adjacency quivers investigated in Chapters 5 and 6 form a large and

interesting class of admissible modular quivers.

2.1.4 Weyl Groups and Root Systems

Convention 2.1.23. Fix a weighted quiver Q.

Notation 2.1.24. Let Z% be the free abelian group of integer-valued functions on Q.
The standard basis of Z90 is {e; | i € Qy} where e; is the function Qy — Z with e;(j) = d,—;.
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Definition 2.1.25. For i € Q the simple reflection s; is the automorphism of Z@0 given
on the standard basis as s;(e;) = e; — ¢;j€;.
The Weyl group is the subgroup W of Aut (ZQO) generated by all s; with ¢ € Q.
Denote by (—, —) and (—,—) the integer-valued bilinear forms on Z% given on the

standard basis as (e;, e;) = ¢;;

and (ei, 6]) = d]C]Z = d’LCZ]
The set Af; of positive real roots is W({e; |i € Qo}) N{a € Z9 | (i) > 0 for all i € Qp}.

We might write (—, —)g for (—, —) and A (Q) for Af to stress the dependence on Q.

Remark 2.1.26. The form (—, —) is always symmetric, while (—, —) is symmetric if and

only if Cg is symmetric. It is (—, —) = (—, —) if and only if d; = 1 for all i.

Remark 2.1.27. We can express the simple reflections as s; = id — (—, ¢;) e;.

2.2 Bimodules

We give an overview of bimodules and tensor algebras. The different notions of dual for
bimodules are recalled. Bimodule representations are seen to manifest themselves in up to
three different forms. Moreover, we observe that the category of bimodule representations
and the category of tensor-algebra modules are equivalent. Finally, the different notions of
dual bimodule are shown to coincide when R carries the structure of a symmetric algebra.

Convention 2.2.1. Fix a ring R.

For M € Mod(R) and z € Z(R) let z be the element in Endy(M) given by m + zm.

2.2.1 R-Algebras

Definition 2.2.2. An R-algebra is a ring H carrying an R-bimodule structure subject to
the conditions ((rzs)y)t = r(x(syt)) and rz = zr for all r,s,t € R, z,y € H, z € Z(H).

A morphism of R-algebras is a map H — H' that is a morphism of rings and R-bimodules.

Remark 2.2.3. Let H be an R-algebra and r,s,t € R, x,y € H, and 15y =1 € H. We can
unambiguously write rasyt for ((ras)y)t =r(z(syt)) € H and r € H for rly = 1yr € H.

Remark 2.2.4. An R-algebra is the same as a monoid in the category of R-bimodules.

2.2.2 Tensor Algebras

Notation 2.2.5. We denote the tensor algebra of an R-bimodule A by R(A), which has

as an R-bimodule the form

R(A) = @ A®"

neN
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where A®0 = R and A®" = A®@p A®(™=1) is the n-fold tensor product of A with itself.

Let ¢4 be the canonical inclusion A — R(A).

The assignment A — R(A) extends in the obvious way to a functor from the category
of R-bimodules to the category of R-algebras. The tensor algebra is the free R-algebra
on A in the sense that R(—) is left adjoint to the forgetful functor:

Lemma 2.2.6. Let H be an R-algebra and A i) H a morphism of R-bimodules. Then

there exists a unique morphism f of R-algebras making the following diagram commute:

A" 5 RA)

Proof. This is straightforward. O

Remark 2.2.7. Let S be a subring of Z(R). Call an R-bimodule A an R-bimodule over S
if S acts centrally on A, i.e. sx = xs for all s € S and x € A. An R-algebra over S is
an R-algebra H that is an R-bimodule over S. The functor R(—) restricts to a functor
from the full subcategory spanned by R-bimodules over S to the full subcategory spanned
by R-algebras over S. This restriction is still left adjoint to the forgetful functor, i.e. the

obvious generalization “over S” of Lemma 2.2.6 is true.
Remark 2.2.8. An R-bimodule is the same as an R-bimodule over Z.

Remark 2.2.9. The category of R-bimodules over S can be identified with Mod(R ®g R°P)
and the category of R-algebras over S with the category of monoids in Mod(R ® g R°P).

2.2.3 Dual Bimodules

Let A be an R-bimodule over K. In other words, A is a (left) module over the enveloping
algebra R® = R®j R°P. The left R-dual fA, the right R-dual A® the K-dual A*, and the

bimodule dual AT, carry natural R®-module structures. Namely, for r,s € R, and z € A,
f(zs)r for f € BA := Homp(RA, gpR),
sf(rz) for f € AR := Homp(Ap, RR),

(sfr)(z) =
flras) for f € A* := Homg (A, K),

rf(z)s for f € AT := Hompe (A, R°).

Remark 2.2.10. There is an isomorphism (—)*

= Hompge(—, (R®)*) induced by the adjoint
pair (R® ®pe —, Homy (R®, —)). Hence, (—)* = (—)F

if and only if pe(R®)* = pe R
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2.2.4 Bimodule Representations

Definition 2.2.11. Let A be an R-bimodule. An A-representation is a pair (M,ry;)
consisting of an R-module M and an R-module morphism A ®p M ML M.

A morphism of A-representations (M,ryy) N (N, ry) is a morphism M 1y N of R-

modules making the following square commute:
A@pM —2 5 M

[ Jf

A®RN T—N> N
Denote by Rep(A) the category of A-representations.
For M € Mod(R) the space of A-representations is Rep(A, M) := Homp(A®r M, M).

Remark 2.2.12. If A is an R-bimodule over S, the space Rep(A, M) of A-representations

on M carries a natural S-module structure.

Remark 2.2.13. Under the adjunction (A ®p —, Homp(A, —)) an A-representation (M, 7,;)
corresponds to a pair (M, 7,,;) where 7, is an R-module morphism M — Homp(A, M).

An R-module morphism M L4 N defines a morphism (M, 7)) R (N, 7y) whenever

the following square is commutative:

M — ™  Homp(A, M)

‘/f JHOmR(Avf)

N — ™ Homp(A,N)

To state a variation of the last remark, we recall the following classical result:

Lemma 2.2.14. Let A be an R-bimodule such that rA is finitely generated projective. For
every M € Mod(R) there is an isomorphism, natural in M, of left R-modules:

BA@p M — 5 Homp(A, M)
fomr—— (x+— f(x)m)
Proof. See [Bou70, II. §4 no. 2]. O

Definition 2.2.15. Let A be an R-bimodule such that pA is finitely generated projective.

For M, N € Mod(R) the isomorphism Hompr(A®p M, N) — Homp(M,Hompz(A, N))
of the tensor-hom adjunction given by f — (m — z — f(x ® m)) composed with

postcomposition with 77]?,1 yields an isomorphism

Homp(A®p M, N) — Homp(M,FA®LN),
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2.2 Bimodules

which we call the adjunction correspondence.

We write f¥ for ad(f) and Vg for ad™!(g).
Remark 2.2.16. Let A be an R-bimodule such that pA is finitely generated projective.
Then A ®p — = Homp(A, —) canonically by Lemma 2.2.14.

With the adjunction correspondence an A-representation (M, ;) corresponds to a

pair (M,rY,) where 7}, is an R-module morphism M — fA®z M.

An R-module morphism M L4 N defines a morphism (M, ry,) iR (N,rX) whenever

the following square is commutative:

Vv
M —M 5 BAg, M

lf Jid@f
v

N —~ s BAg,N

Let H be an R-algebra and M € Mod(R). Recall that an H-module structure on M is an
R-module morphism H @p M — M, x ® m — x - m, satisfying for all z,y € H and m € M

the relations 1-m = m and (zy) -m =z - (y - m).
Lemma 2.2.17. Let A be an R-bimodule and let H = R(A) be its tensor algebra. For
every A-representation (M,ry;) there is a unique H-module structure 7y; on M such that

A®RM LA®id

HopM

™M S

commutes. Furthermore, every morphism (M, ry) N (N,ryn) of A-representations is a

morphism M L> N of H-modules when the module structures are given by 7y and 7y .

Proof. This is straightforward. O

Notation 2.2.18. For H = R(A) and M € Mod(H ) denote by A®@x M AM M the map
obtained by postcomposing ¢4 ® id with the map H ® p M — M given by multiplication.

The rule M +— (rM, 4 M) canonically extends to a functor Mod(H) — Rep(A).

Corollary 2.2.19. Let A be an R-bimodule and let H = R(A) be its tensor algebra. Then
the functor M — (M, 4 M) defines an equivalence Mod(H) — Rep(A).

Proof. This is a direct consequence of Lemma 2.2.17. O

2.2.5 Symmetric Ground Rings

The following is one of the several common definitions of symmetric algebras:
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Definition 2.2.20. A K-algebra A is said to carry a Frobenius structure if it is equipped
with a K-linear form A 2 K satisfying the property:

(a) The zero ideal is the only left ideal of A contained in the kernel of .

The form ¢ is called a symmetric structure on A if it has additionally to (a) the property:
(b) p(sr) = @(rs) for all s,r € A.
A symmetric algebra is a finite-dimensional K-algebra that admits a symmetric structure.
Remark 2.2.21. It is well-known (see [Lam99, §3B]) that (a) in Definition 2.2.20 is left-right
symmetric. It can be substituted with the following equivalent condition:
(a’) The zero ideal is the only right ideal of A contained in the kernel of ¢.
Remark 2.2.22. Assume R = [[; R;. Then the ground ring R is a symmetric algebra if and

only if R; is a symmetric algebra for each i. More precisely, every symmetric structure ¢

on R corresponds to symmetric structures ¢; on R; such that ¢ = 3" ¢;.

Remark 2.2.23. The enveloping algebra R® = R ®p R°P is symmetric if R is symmetric.

More precisely, symmetric structures ¢ on R yield symmetric structures ¢° = ¢ ® ¢ on R°.

Remark 2.2.24. Let ¢ be a Frobenius structure on R. It is clear (see again [Lam99, §3B])
that ¢ induces an isomorphism ge R° =, re(R°)* that is defined by (r +— (s +— ¢°(s1)).
With Remark 2.2.10 we obtain a canonical isomorphism AT BANy'L given by f +— ¢®o f.

Lemma 2.2.25. For every symmetric structure R *5 K on R we have the following

isomorphisms of R-bimodules over K :

Ry =¥ o p* A* P AR
f——pof pof<——f

Proof. Property (a) in Definition 2.2.20 implies that ,¢ is bijective, while (b) shows that ,¢

is a morphism of R-bimodules. The existence of ¢, follows similarly from (a’) and (b). O

Notation 2.2.26. We write *p and * for the inverses of 4 =% A* and AR 2y A*,

2.3 From Bimodules to Quivers

Starting from an R-bimodule A over K with the only assumption that both R and A are
finite-dimensional over K, we discuss how decompositions R = [[, R; and A = @, A, give
rise to a weighted quiver Q with vertices ¢ and arrows a. We then observe how bimodule

representations of A can be regarded as quiver representations of Q.
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2.3 From Bimodules to Quivers

2.3.1 Decomposing Bimodules

Convention 2.3.1. Let R be a finite-dimensional algebra and let A be a finite-dimensional
R-bimodule over K. Factorize R as a product of connected algebras R;, indexed by the

elements 7 of some set I. Formally,

R=1][R:.

iel

Denote by e; € R the identity element of R,;. The bimodule A decomposes into the direct

sum of the R; @ RP-modules jA; == e;Ae;. We refine this decomposition as

jAZ - @Aa.

a€ly;
where [;; are pairwise disjoint sets. In this way, we obtain an I-quiver () with arrow set
Q = {j<ili,jel, acl;}.
The quiver @) can be regarded as a weighted quiver with weights d; = dim g (R;).

Remark 2.3.2. The summands occurring in the decomposition ;A; = @,c; A, are by the
Ji
Krull-Remak-Schmidt Theorem up to permutation and isomorphism uniquely determined

if we demand that each A, is an indecomposable R; @ RP-module.

The K-dual, the left dual, and the right dual of the bimodule A decompose as

A= P 4, A= P A, AR = P A, .
acQq acQq a€Qq
For j <= i the summands in these decompositions are the K-duals, Rj-duals, and R;-duals

of A,, which are defined as

Aq

= Homg (A, K), A, := Hoij(Aa,Rj), A,, = Homp (4,, R;).

All these duals carry natural R; ® R?p—module structures.

2.3.2 Quiver Representations

Notation 2.3.3. Every M € Mod(R) is the direct sum of the R;-modules M, := e, M:
M= P M,
1€Qg
With this decomposition we have for all M, N € Mod(R) canonically
Homp(M,N) = @B Homp, (M;, N;).
i€Q

By f; denote the component of f € Homp(M, N) belonging to Homp, (M;, N;).
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Similarly, there is a decomposition Homp(A®z M, N) = P, Homp (A, @g, M;, N;)
where j <= i runs through all arrows of Q. Again, we will write f, for the component of
amap f € Homg(A®p M, N) that belongs to Hompg, (A, ®g, M;, N;). In particular, the
space of A-representations of M € Mod(R) decomposes as

Rep(A’ M) = @ Hoij(Aa ®R,- Mzan)
VAl

We simply write M, for (4M), if M € Mod(R(A)) (compare Notation 2.2.18).

We summarize the discussion by stating the analog of [GLS16a, Proposition 5.1].

Lemma 2.3.4. Let H = R(A) be the tensor algebra of A. The category Mod(H) can be
canonically identified with the category whose objects are families (M;, M,); , with

M; € Mod(R;) indezed by i € Q,
M, € Homp, (A, @R, M;, M;) indexed by j &ie @y,
and whose morphisms (M;, M,); o — (N;, N,); o are tuples (f;); with
fi € Homp_ (M;, N;) indexed by i € Qq,
making the following diagram commute for all arrows j <— i in Q:
M{I/

A, ®p, Ny ——— N;
Proof. This follows from Corollary 2.2.19 and the decompositions presented above. O

Remark 2.3.5. Clearly, M is finitely generated if and only if all M, are finitely generated.

We also have a decomposition Homp(M,fA®z N) = @ﬂii Homp (M;, A, ®R, N;)
such that f = 3" f, with f, € Homp (M;, A, ®R, N;) for every f € Homp (M, FA@pN).

Remark 2.3.6. If R A is projective, choosing an H-module M amounts with Remark 2.2.16
also to the same as to specifying a family (M;, M,); , with

M; € Mod(R;) indexed by 7 € Q,

M, € Homp, (M;, A, ®p, M;) indexed by j +— i€ Q.

2.3.3 Locally Free Modules

We extend the terminology of locally freeness introduced in [GLS16a] to arbitrary R-algebras

and observe that the “adjunction formulas” from ibid. § 5.1 remain valid for locally free pA.
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Definition 2.3.7. Let H be an R-algebra. A module M € Mod(H) is called locally free
if M; is a free R;-module for all 7 € ().

Analogously, one defines locally freeness for right H-modules.

Remark 2.3.8. Let H be an R-algebra and assume that R, is local for all ¢ € ()¢. Then an
H-module M is locally free if and only if p M is projective.

If R A is locally free, the inverse of the isomorphism 7 = 7, from Lemma 2.2.14 can be

explicitly described in terms of bases of the finitely generated free modules R, (A,).

Lemma 2.3.9. Assume g, (A,) is free for some j <= i € Q, and let B, be a basis of r, (4,)
and {b* |b € B,} its R;-dual basis. For each M € Mod(R) the inverse of 1, acts as follows:

-1
Homp, (Ag, M;) ——— A, @p M,

g ) b g(b)
beB,

Proof. This is straightforward. O

Corollary 2.3.10. Let f € Homp(A®z M, N) and g € Hompz(M,FA®z N) for two mod-
ules M, N € Mod(R). If R],(Aa) has a basis B,, the formulas

f(;/(m) = Zb*@f(b@m), Vga(x®m) = begm,b

beB, beB,

hold for all elements m € M; andx = ), xpb € A, where g(m) = >, b*®gp,p, € A, ®R, N;
with T, € R; and gy, € Nj.

Proof. This follows by direct calculations using Lemma 2.3.9. O

We can restate Lemma 2.2.25 in the current context as follows:

Corollary 2.3.11. For every symmetric structure R *5 K on R and every arrow j <— i

i @ we have the following isomorphisms of R; ® R?p—modules:

A, —F— A Af 2 A,
fr——pjof piof «—— f
Proof. Use Lemma 2.2.25 and the decomposition A =, A,. O

2.4 Path Algebras for Weighted Quivers

Convention 2.4.1. Fix a weighted quiver () and recall Notation 2.1.4.
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2.4.1 Modulations
Definition 2.4.2. A K-modulation for the weighted quiver () is a family

H - (Rw Aa)

1€Q0,a€Q
of connected K-algebras R;, indexed by the vertices i € @, and non-zero R; @ R{®-
modules A,, indexed by the arrows j «— i € Q;, satisfying the following properties:

(a) dim g (R;) = d; for each i € Q.

(b) R, (A,) and (A,)p, are free of finite rank for each j &ie Q.

Clearly, properties (a) and (b) imply the existence of positive integers d, such that

dimK(Aa) = dadji> rankRj(Aa) = dasz'a rank (Aa)Ri = dafij'

The modulation H is minimal if d, =1 for all a € Q4.
We call H local (resp. symmetric) if R; is a local (resp. symmetric) algebra for all i € Q.

We say that H is decomposed if for all j <= i there is no decomposition A, = M, ® M,
with non-zero R; ® R;-modules M; such that Rr,(M;) and (M;)p, are free.

S

Let H = (R;, A,); o and H' = (R}, A}); , be K-modulations for Q. A morphism H RNV
is a family (f;, f,); of K-algebra homomorphisms R; fé R! and linear maps A4, f—“> Al
such that f,(szr) = f;(s) fo() fi(r) for all j <= i € Qy, s € Rj, x € A,, 7 € R;.

An (R;);-modulation for a weighted I-quiver @ is a K-modulation (R;, A4,); . for Q.
Remark 2.4.3. If H is local, it is decomposed if and only if all A, are indecomposable.
Remark 2.4.4. Every minimal K-modulation is decomposed.

Remark 2.4.5. Let H = (R;, A,);, be a K-modulation where all R, are division algebras.
Then (R;, ;4;)i jeq, With ;A4; = @ﬂiite A, is a modulation in the sense of [DR76].
Conversely, for families (R;);cq, of connected K-algebras and (;A4;); jeq, of R; ®k R;" -
modules ;A; with dim x (R;) = d; and g (;4;), (;A;)g, free of finite rank, we can make the
j i

following two observations:
(i) Suppose there is exactly one arrow j <— i in ) whenever dim g (;A;) # 0 and no
arrow j < i otherwise. Set A, := ;A;. Then (R;, 4,);, is a K-modulation for Q.

(ii) The Krull-Remak-Schmidt Theorem yields a decomposition ;A; = @7, M, whose
summands are indecomposable and determined up to reordering and isomorphism.
Let us assume that all R; are local rings. Then g (M) and (M,)p, are free modules.
Supposing that ) has precisely m arrows ay, ..., ay, from i to j, we set A, := M,.
Then (R;, A,); o is a decomposed (local) K-modulation for Q.

Remark 2.4.6. Dlab and Ringel require in [DR76] that Homp, (A,, R;) = Homp, (Aq, R;)
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2.4 Path Algebras for Weighted Quivers

as I, @ R‘;p—modules. For every K-modulation H = (R;, A,); , where all R; are division

algebras such isomorphisms always exist. See Corollary 2.3.11 and Example 3.2.5.

Ezample 2.4.7. Let Q be the weighted quiver 1 <= 2 of type Ay with d; = dy = 2.
For p € Autg(C) we have an R-modulation H” = (R;, A7), , for Q with Ry = Ry = C
and A, = CP. Here C” is the C ® C-module with C? = C as R-vector space and bimodule
structure given by wzv :=w - z - p(v) for w,v € C and z € C*.

Let Autg(C) = {id, p} where p is complex conjugation. Then the maps f; = id, fo = p~*
and f, = id¢ define an isomorphism A4 RN ‘H? of K-modulations for Q.

Example 2.4.8. Taking Ry = Ry =C, A, = CRrC = C & C” defines an R-modulation ‘H
for the weighted quiver from Example 2.4.7. This modulation is local but not decomposed.
The K-modulation H’ for Q) given by R; = Ry = C, A, = C & C is not isomorphic to H.

Ezample 2.4.9. Let Q be the weighted quiver 1 +— 2 with d; = 2, dy = 3. Then R; = C,
Ry, = (JGR %), A, =R ®r Ry = (‘g %) defines a minimal non-local R-modulation H for Q.

In particular, H is decomposed. However, A, = (‘8 (g) @ (8 (8) is not indecomposable.

Ezxample 2.4.10. Let @ be as in Example 2.4.9 and let { be a primitive cube root of unity.
Then Ry = Q(¢), Ry = Q(V/2), A, = R4 ®q Ry yields a minimal local Q-modulation for Q.

Ezample 2.4.11. § 5 in [GLS16a] describes the minimal local K-modulation H = (R;, A,); 4

with R; = K[e,]/(efl) fori € Qg and A, = K[sj,gi]/(efij - efji, ejj, sji) for j <% i€ Q.

Ezample 2.4.12. With R; = K[g;]/(¢?) and A, = R, Qg Ry = Kley, 5]/ (¢3, €3) we get
a K-modulation for the weighted quiver 1 «— 2 with d; = dy = 2 from Example 2.4.7.

This modulation is local and decomposed but not minimal.

2.4.2 Pullback Modulations

Definition 2.4.13. Let H be a K-modulation of ). For a morphism Q' i) Q of weighted
quivers the pullback of H along f is the K-modulation

FH = (Ryan Aga)) ey arear

If f is the inclusion of a subquiver, we call f*H the submodulation of H induced by f.

Remark 2.4.14. More generally, the pullback f*H of H along f can be defined in a similar

way for every functor Py EN Pg where Apqny = A, ®p - QpAq if f(d') = a,---a;.

Here, the quiver Q" has to be considered as a weighted quiver with weights d?, = d?(i,).

2.4.3 Dual and Double Modulations

Convention 2.4.15. Fix a symmetric K-modulation H = (R;, A,); , for Q.
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Definition 2.4.16. The double of H is the K-modulation H = (RhAa)ie@O,ae@l for Q
with A, = A%. The dual of H is the submodulation H* of H induced by Q* C Q.

Remark 2.4.17. Corollary 2.3.11 ensures that H satisfies (b) in Definition 2.4.2.

Lemma 2.4.18. If H is a minimal/decomposed/local/symmetric modulation, H and H*

are minimal/decomposed/local/symmetric modulations.

Proof. This is straightforward. O

Example 2.4.19. Let ‘H be the GLS modulation from Example 2.4.11. Then H is symmetric.
More precisely, the map ¢; = t"** in [GLS16a, § 8.1] defines a symmetric structure on R;.

Fix j ¢~ i€ Q. In [GLS16a, § 5.1] two maps A and p are described, which yield an
isomorphism Ao p~! between A, and A, . Inspection shows that Ao p~1is the map ¢} 0 p;-

If one prefers to identify the K-dual A with ;A; = K[ai,ej]/(efji - 65”, ?i, 6?), as
GeiB, Leclerc, and Schréer do, it is possible to use the isomorphism ;A; — A7 that is given,

for 0 <q<d;;, 0<r < f;;, 0<s< fis, 65 :=€j; = 5?" :5;0”, by

r q s (fi;—1)—s (dij—1)—q (fj;—=1)—r\*
EicgE; = (e’:‘j €ji g .

This shows how (R;, A,) with A,« = ;A; can be regarded as the double of H.

1€Qy,a€Q,
2.4.4 Path Algebras

Convention 2.4.20. Fix a K-modulation H = (R;, A,); , for Q.
Definition 2.4.21. We will call the K-algebra Ry = Hier R; the ground ring and
the R-bimodule Ay = @,c(, A, over K the species of the modulation H.

The tensor algebra Hy = R(A) is the path algebra of @ defined by H.

We write R, A, H instead of Ry, Ay, Hy when confusion seems unlikely.

Notation 2.4.22. We use the notation introduced in § 2.3. In particular, e; stands for
the identity of R, considered as an element of R. So Zz’er e, =1 RCH.

Remark 2.4.23. If d; = 1 for all 4, then d;; = dJ = Ji; = 1 for all 4,j. In this case, up
to isomorphism, H = (R;, 4,); , with R; = K for all i and A, = K for all a is the only
minimal K-modulation for () and Hy, = KQ.

Remark 2.4.24. As an R-bimodule H decomposes as @j7i€Q0
think of elements in H as (Q, X Qy)-matrices. Multiplication in H is then nothing else

ejHe;. In this way, we can

but multiplication of these matrices. See Examples 2.4.25 and 2.4.26 for an illustration.

Ezample 2.4.25. Let Q be the weighted quiver 1 +— 2 with d; = 1, dy = 2 of type B, and
let H be the R-modulation for ) given by R =R, Ry = C and A, = C. Then the path
algebra H of @ defined by H is the matrix algebra (£ &).
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Example 2.4.26. Let H” be one of the K-modulations for the weighted quiver @ of type As
described in Example 2.4.7. The path algebra H” of ) defined by H” is ((g %p).

Example 2.4.27. Let H be the GLS modulation for ) from Example 2.4.11. As discussed in
detail in [GLS16a], the path algebra H of Q defined by H can be identified with KQ®/I(d),
where Q© is the quiver obtained from @ by adding a loop ¢; at each vertex i, and I(d) is
the ideal generated by the relations E?i =0 for i € Qg and asfj f = E;ija for j «— i€ Q.

Ezample 2.4.28. As pointed out in [GLS16a], in case d; = 2 for all vertices i € @, the
path algebra in Example 2.4.27 is the path algebra of @ over the dual numbers K[e]/(¢?),
which was investigated in [RZ13].

We end this section with a few elementary but useful observations.

Notation 2.4.29. Let R % R be a ring homomorphism and let A" be an R’-bimodule.
Write f, A’ for A’ regarded as an R-bimodule with szr := f(s)zf(r) for s,r € R, z € f A’

Lemma 2.4.30. Every morphism H EN H' of K-modulations for Q induces a K-algebra
morphism Ry, ER Ry between ground rings and an R-bimodule morphism Ay, EN feAayr.

Proof. This is straightforward. O

Corollary 2.4.31. FEvery morphism H i> H' of K-modulations for Q induces a morphism
of R-algebras Hy EN feHay.

Proof. Use Lemmas 2.2.6 and 2.4.30. O

Lemma 2.4.32. Let Q' i) Q@ be a morphism of weighted quivers with Q) <£> Qg injective.
Then f induces a non-unital K-algebra morphism H .y f—*> Hy,. In particular, if f is a

morphism of I-quivers, the induced morphism f, is a morphism of (unital) K-algebras.

Proof. Since @, <ﬁ> Qo is injective, Ry-9 = [[;(Ry) ¢y can be canonically regarded as a
non-unital subalgebra of Ry, = [[;(Ry);- Therefore the identities (Azey)ar — (Ap) f(ar)
induce an Rg+y-bimodule morphism Af.y; — Ay Now use Lemma 2.2.6. O

2.5 Path Algebras for Modular Quivers

This section is concerned with cyclic Galois modulations, a class of modulations suitable for
explicit computations. Introduced by Labardini and Zelevinsky in [LZ16] in the strongly
primitive setting, [GL16a] considers cyclic Galois modulations (R;, 4,); , in the general
situation. The idea is to take for the R; intermediate fields of a cyclic Galois extension L/K.

The valid choices for each bimodule A, are then parametrized by a Galois group.

Convention 2.5.1. Fix a weighted quiver Q.
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2.5.1 Cyclic Galois Modulations

Definition 2.5.2. A cyclic Galois extension L/K is Q-admissible if d; | [L : K] for all i.
In this case, denote by L; the intermediate field of L/K with [L; : K] = d;.

Example 2.5.3. An extension F,n /F, of finite fields is Q-admissible if and only if m is
divisible by all of the weights d;.

Definition 2.5.4. Let L/K be a Q-admissible cyclic Galois extension. A cyclic Galois
modulation over L/K for @) is a minimal K-modulation (R;, A,);, for Q with R; = L.

Remark 2.5.5. Cyclic Galois modulations are local, symmetric, and decomposed.

Ezample 2.5.6. Examples 2.4.7 and 2.4.25 presented cyclic Galois modulations over C/R.

2.5.2 Modulation of a Modular Quiver

The data 0@ stored in a modular quiver @ is devised to determine a K-modulation over any
(Q-admissible cyclic Galois extension L/K with fixed isomorphism Z/mZ = Gal(L/K).

Convention 2.5.7. For §§ 2.5.2 to 2.5.4 fix a Q-admissible cyclic Galois extension L/K.

Notation 2.5.8. We abbreviate L;; = L; N L; and Lt = L;L;.
For any intermediate field F' of L;;/K and p € Gal(F'/K) denote by ij the L; ®p L;-

module L; ®, L; where the tensor product is taken with respect to L; Lol L;.

Remark 2.5.9. Tt is [Lj; : K] = dj; and [LJ* : K] = d/*. If F = Lj;, then dim g (;Lf) = d’t.

Remark 2.5.10. Let p € Gal(F/K) for some intermediate field F' of the extension L;;/K.
Then 1@z =p(z)®1 € ij for all z € F'. In particular, jL;dsz' >~ [J" as L; @ g Li-module.
Convention 2.5.11. Let Z/mZ — Gal(L/K) be an isomorphism and set mp = [F : K]
for every intermediate field F of L/K. We have an isomorphism Z/m ;7 —2 Gal(F/K)

making the following square commute, where the horizontal arrows are the canonical maps:

Z/ml ——— Z/mpZ

o ~|or

Gal(L/K) — Gal(F/K)
We use the notation «a; for o, and ay; for ar, with 4,7 € Q.

Definition 2.5.12. Let @ be a modular quiver. The modulation of Q over (L/K,«) is
the K-modulation H = (R;, A,); , with R; = L, for all i and A, = jL?ﬁ(%) for all j «— i.

We write a for 1 ® 1 € A, when considered as an element in Ay C Hy,.

Ezxample 2.5.13. Let @ be the weighted quiver of type Ay and H? the modulation for @)
from Example 2.4.7, where p € Gal(C/R) is complex conjugation. If we turn @ into a
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modular quiver with o, = 1, the modulation of @ over (C/R, ) is H".

The following classical result or, more precisely, its corollary below justifies the slogan

“Every cyclic Galois modulation is the modulation of a modular quiver.”

Lemma 2.5.14. Let i,j € Qy. For every intermediate field ' of the extension L;;/ K, the
algebra L; @p L; is a basic semi-simple algebra. The rule p — ij establishes a bijection

between Gal(L;;/F) and the set of isomorphism classes of simple L; ® p L;-modules.

Proof. The separability of L/K guarantees that the field extension L,/F is generated by
a primitive element whose minimal polynomial f over F' is separable. It is a classical
fact that A = L; ®@p L; is semi-simple (see [Kna07, Proposition 2.29]). More precisely, the
number n of irreducible factors of f when considered as a polynomial over L; is the
i+ F] and
that ijl = ijQ if and only if p; = ps. O

number of simple summands of yA. It only remains to observe that n = [L

Remark 2.5.15. The semi-simplicity of A = L; ® L; is also a consequence of the following
two facts: On the one hand, A is finite-dimensional, so its reduction A/rad(A) is semi-simple.
On the other hand, A is reduced because of the separability of L;/F.

Ezample 2.5.16. For the cyclic Galois extension C/R Lemma 2.5.14 yields the decomposi-
tion C®r C = C & CP (compare Example 2.4.7).

Corollary 2.5.17. Let H = (L;, A,); o be a cyclic Galois modulation. For all j <ieq@
there exists p, € Gal(L;;/K) such that A, = ij“ as L; @ L;-modules.

Proof. Apply Lemma 2.5.14 with F = K. O

2.5.3 Isotypical Components

Let R = HieQO L;. From Lemma 2.5.14 we know that the category of R-bimodules over K
is semi-simple with simple objects ij parametrized by i,j € Qg and p € Gal(L;;/K).
This subsection introduces notation for isotypical components and investigates how the

tensor product of R-bimodules over K decomposes into simples.

Notation 2.5.18. For L; ® L;-modules M denote by M? their ij -isotypical component
and by 7, : M — M the idempotent corresponding to the canonical projection onto M?.

M = @Mﬂ.

peGal(L,;/K)

We have a decomposition

We refer to M? as the p-isotypical component of M. If the module M has finite length,
let [M : ;L7] denote the Jordan-Holder multiplicity of ;L7 in M.
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More generally, for intermediate fields I’ of L;;/K and v € Gal(F/K) let G;-Yi be the
coset of Gal(L;;/K) consisting of all p such that p|p = ~. The submodule

MY = f M
pEG;.’Z.
is called the «y-isotypical component of M. Set m, := ZpeGT Tp-
Jji

Remark 2.5.19. The notation [Lji : Lﬂ] is unambiguous. It represents the integer one, no

matter if it is interpreted as Jordan-Holder multiplicity or as degree of a field extension.

Remark 2.5.20. The v-isotypical component M” can be characterized as

M7 = {z e M|zu=y(u)x for all u € F}. (%)

We can now formulate the following corollary of Lemma 2.5.14. See [GL16a, Lemma 2.14].

Corollary 2.5.21. Let i,j € Q. For every intermediate field F' of the extension L;;/ K
and every v € Gal(F/K) it is [jLZ : jLﬂ =d,ec -
Ji

Proof. Equation (x) shows that there is a non-zero L; ® g L-module morphism ;L] — L}
defined by 1@ 1~ 1®1 for all p € GJ;, so [jLZ LY } > 0. The corollary now follows from
the fact that € pec, ;L7 and ;L] have the same dimension. O

For elements v € Gal(Ly;/K) and u € Gal(L;;/K) the composition vu is well-defined

on the intersection L, N L;; and will be considered as an element in Gal(Ly; N L;;/K).

The following result is standard. It can be found as Proposition 2.12 in [GL16a].

Lemma 2.5.22. Let i,j,k € Qy. For every v € Gal(Ly;/K) and € Gal(Lj;/K), it is

L;,:L..L. if pe G F,
[kLJV' Qr, i ka} = [ 7 ﬂ} ,kz
0 otherwise.

Proof. Let M = L = L; ®,, L; and N = L ®, L; ®, L;. Then N = [¥@; L.

Choose a basis B of L; over Ly;L;;. Let f = (f;)pcp be the morphism @,z M — N of
L, @ L;-modules where f; is defined by 1® 1 +— 1 ® b ® 1. Then f is an isomorphism,

since it is surjective by the choice of B and |B|-dim M = % . % = % = dim g N.
g °J J
Now use |B| = [L; : Ly;Lj;] and [M : L] = 6w by Corollary 2.5.21. O

Remark 2.5.23. The integers qy;; = dy;;d;/(dy;d;;) and ryj; = dy; /dy;; from Definition 2.1.8
are the degree [L; : Ly;Lj;] and the cardinality |G}*| = [Ly; : Ly; N Ly;).

Remark 2.5.24. The length of | L7 @y L7 sG] Ly« Ly Ly] = did [ (dygd ).
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2.5.4 Dual, Double, and Premutation

Lemma 2.5.25. Let H be the modulation of a modular quiver Q over (L/K,a). Then H
and H* are isomorphic to the modulations of Q and Q*, respectively, over (L/K,a).

—1

Proof. Given Definitions 2.1.12, 2.4.16 and 2.5.12, all we have to show is (ij)* = ij

This readily follows from (x). O

Notation 2.5.26. Given an R-bimodule A = @i’ker 1 A;, the premutation of A at j € Qg
is defined in [DWZ08, (5.3)] as the R-bimodule A~/ = D reo, k(A™7); with

(k)" if j € {i, k},

K(A™); = :
KA ® (1A ®r, jA;)  otherwise.

Lemma 2.5.27. Let j be a 2-acyclic vertex in a modular quiver Q. Denote by H and H™?
the modulations of Q and Q™7 over (L/K,«), respectively. Then Ay~; = A;{j.

Proof. Inspecting how Q™7 and H~/ are defined (see Definitions 2.1.12 and 2.5.12), this is

an immediate consequence of (ka )* = ka "' and Lemma 2.5.22. O

2.5.5 Comfy Modulations

The modulations considered in Chapters 5 and 6 are slightly less general than cyclic Galois
modulations. Below we define the kind of modulations that will be used in those chapters.

We also give explicit formulas for the projections 7, for such modulations.
Convention 2.5.28. Fix a cyclic Galois extension L/K.

Remark 2.5.29. Assume that K contains a primitive m-th root ¢ of unity for m = [L : K.
As a classical consequence of Hilbert’s Satz 90 (see [Bou81, V. §11 no. 6]) the extension L/K
is generated by a primitive element v with minimal polynomial €™ — w € KJe] over K.
Then we have an isomorphism Z/mZ SaSUN Gal(L/K) defined by 1 +— (v +— (v).

Definition 2.5.30. A com(putation)f(riendl)y extension is a triple (L/K, (,v) consisting
of a cyclic Galois extension L/K, a primitive [L : K]-th root of unity ¢ € K, and a primitive
element v € L for the extension L/K such that v!“5] € K.

Remark 2.5.31. Every cyclic Galois extension L/K where K contains a primitive [L : K]-th

root of unity is part of a comfy extension due to Remark 2.5.29.
Remark 2.5.32. The existence of a primitive m-th root of unity in K implies char(K) {m.

Ezample 2.5.33. The triples (C/R, —1,v) where v € C is any non-zero imaginary number

are comfy extensions.
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Ezxample 2.5.34. Let ¢ = p® be a prime power and m € N divisible by all of the weights d;.
Then F,m /F, is a Q-admissible cyclic Galois extension (see Example 2.5.3 ). By Dirichlet’s
theorem on arithmetic progressions there are, for each fixed m, infinitely many choices
for p such that m | p — 1. For such a choice, the field I, contains a primitive m-th root of

unity and Remark 2.5.29 allows us to find a comfy extension (F m /F,,(,v).

Ezxample 2.5.35. Let m be as in Example 2.5.34 and let ¢ be a primitive m-th root of unity
in the algebraic closure of K. Denote by F(t") the function field in t™ over F' = K(().
Then (F(t)/F(t™),(,t) is a comfy extension.

Convention 2.5.36. Fix a comfy extension (L/K,(,v) such that L/K is Q-admissible.

Definition 2.5.37. Let @@ be a modular quiver. The modulation of Q over (L/K,(,v) is
the modulation of @ over (L/K,a¢,).

Notation 2.5.38. For intermediate fields F of L/K let mp := [F : K] and m? := [L : F].

Set ¢F':= ¢™r and (p = CmF and vp 1= o

We abbreviate ¢, as (; and vy, as v; for i € Qy and CLji as (, for j <= i€ Q.

Remark 2.5.39. The triples (F/K,(p,vp) and (L/F, (Y, v) are again comfy extensions.

The statement of the next lemma partially appears in [GL16a, Proposition 2.15].

Lemma 2.5.40. Let M be an L; ® ¢ L;-module for some i, j € Qq. For every intermediate
field F of L;;/K and every p € Gal(F/K) we can write p = ¢, ,,.(r) for some r € Z.
Then we have p(vy,) = (GFvg for all s € Z and the projection T, acts on x € M as

1 mel
m,(x) = — p(vp)xvy® .
) = i D b

Proof. Clearly, p = ¢, .. (1) for some r € Z and p(vy) = (Fog for all s € Z, since ag,, .
is the isomorphism Z/mpZ — Gal(F/K) given by 1 — (vp — (pvp). Now let m,(z)
be the right-hand side of the equation in the lemma. It is a straightforward exercise to
verify m(z)vp = p(vp)m),(x). Equation (x) then implies 7,(M) C M’ because vp is a
primitive element for F/K. The identities Z;rfofl (= 0s—gmp for 0 < s < mp easily

yield 3 cqa(r/i) Tp(x) = . All in all, we can conclude () = m,(z). O

Ezample 2.5.41. Write Gal(C/R) = {id, p}. Then we have m4(z) = 3(z 4+ vzv~!) and
1

m,(x) = 3(x —vzv?) for every comfy extension (C/R,—1,v).
Ezample 2.5.42. Set w := v™~L such that €™ — w € K|e| is the minimal polynomial of v
over K. Let H = (R;, A,);, be the modulation of a modular quiver @ over (L/K,(,v).

o ds d. Ca .
;”— {”, g —w, sil—w) for j < 1.

Then R; = K[sl]/(sfl’ —w) and A, = Kl[e;, ]/ (¢ ;" —¢

Similarly as for the GLS modulation in Example 2.4.27, the path algebra Hy, can
be identified with the path algebra KQ® modulo an ideal I(d, o), which is in this case
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fii

generated by the relations z—:?i =w for i € Qp and ag;”" = Cgasf”a for j «—i € Q.

2.5.6 Comfy vs. GLS Modulations

Examples 2.4.27 and 2.5.42 revealed the striking similarities between comfy modulations
and the modulations considered in [GLS16a]. In this subsection we sketch how this

resemblance could be formalized and give a small example.

Convention 2.5.43. Fix a field K and a quiver () and denote by K the quotient of the
polynomial ring K[w, A, : a € Q] by the ideal (/\gji —1:j<~ie Q1)

Definition 2.5.44. Let @) be a weighted quiver. Then the family H= (]5;“ Ea)l . 1s called
the universal comfy modulation of @ where R; = K[g;]/ (sc»li — w) are indexed by i € Q

)

andA = [ ]/()\5 fl,sjj—w £; —w) are indexed by j «— i € Q.

Remark 2.5.45. The universal comfy modulation H is a “K-modulation for @7 in the sense

that (a) R; is free of rank d; over K for all i € Q, and (b) R(Ka) and (ga)ﬁ_ are free of
J 0

rank f;; and f;;, respectively, for all j % i € Q. Compare Definition 2.4.2.

Notation 2.5.46. The path algebra H of H is the tensor algebra §<A> of A= ®aEQ1
over R = HzeQ R We write a for 1 € A when considered as an element in A C H.

Remark 2.5.47. The path algebra H = R<A> can be identified with the path-algebra
quotient KQ° / I (d) where Q© is the quiver defined in Example 2.4.27 and I (d) is the ideal
generated by the relations 6;-1" =w for i € @y and ae{ji = )\aej“a for j <% i€ Q.

Remark 2.5.48. For the GLS modulation H for ) described in Examples 2.4.11 and 2.4.27
we have as K-algebras Hy = IN(OJ ®f(ﬁ with IN(OJ = K/(w X, —1:a€eQ)) 2K

Here # arises from H by specializing w — 0 and A\, — 1.

Remark 2.5.49. For the modulation H of a modular quiver @ over (L/K,(,v) we have as
K-algebras Hy = K, , ® H with K, = K/(w— o8N, — (@@ rae Q) = K

Now H arises from H by specializing w — v[L'K} and \, — (5°.
For the next example we formalize the definition of the (unweighted) quiver Q°:

Definition 2.5.50. The loop extension of a weighted quiver @ is the Qy-quiver Q° with
. & L.
Q? = Qlu{z%zMEQo}.

Ezample 2.5.51. Let Q be the modular quiver 1 <= 2 of type A, with d; = dy = 2
and o, = 1 € Z/27Z, which already appeared in Example 2.5.13. Then Q© is the quiver

€1 €2

) )

1+——2
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Let I be the ideal of RQ® generated by the relations € = w, €2 = w, agy = \,e1a for
some fixed w, A\, € K. For the choice w = —1 and A\, = (—1)% = —1 the quotient RQ/I
is the path algebra of the cyclic Galois modulation H” from Example 2.5.13, whereas the
choice w = 0 and A, = 1 gives rise to the path algebra of the GLS modulation.

2.5.7 Path-Algebra Bases

Below we describe a K-basis for the path algebra of the universal comfy modulation and
related K-bases for the path algebras of GLS and comfy modulations. These bases are
useful for explicit computations with path-algebra elements.

Definition 2.5.52. A path 5?@4@4 x '62-111611'838 in Q° withay,...,a; € Qyand qp,...,q €N

is said to be d-reduced if g, < d;_ for all 0 < s < {. By convention e) = ¢, for all i € Q.

Let ~ be the equivalence relation on the set of paths in Q° generated by

0
62-[

! ! /
q q q
Ngy-elo ~ eltqy-elhay - 0

AR i () ip 17 S

whenever i, Ll ig is a path in @ and there exist 0 < ¢ < ¢ and qg, q(,--.,qs, ¢y €N
with g, = ¢ for all s € {0,... .} \{t — Lt} and ¢y —q, = f;, s, and ¢;_1 — @1 = fii, .-
A Q-tensor class is an equivalence class of ~ that contains only d-reduced paths.

The representative 5?5 ap-+- sgllal -5;]8 of a Q-tensor class that minimizes (g, ..., q) with
respect to the lexicographical order on N1 is called a Q-tensor path of type ay - --a,. For
0 -1 d;

o ...,5/—1 of type e;.

each vertex i € )y we have Q-tensor paths e; = ¢, ¢;,

Denote by 75 (p) the set of Q-tensor paths of type p. Set Ty = Up path in Q To(p).
Ezample 2.5.53. For the weighted quiver @ from Example 2.5.51 we have T (a) = {a, ags}.
The element £;a represents the same @)-tensor class as agy but is itself not a @-tensor path.
The path eyae; ~ ac? in Q° does not define a Q-tensor class.

l y4 l
Lemma 2.5.54. |TQ (ig &l io)‘ = dio : H fis_lis = H dis/ H dis_ﬂ's'
s=0 s=1

s=1

Proof. Clearly, |Tg(e;)| = d;. Assume [Tg(ap—y---ay)| = fi, i, ,*** figi, - di, by induction
and note Tg(as—1---a1) ¥ {07 s Jigyiy — 1} — Tolag---ay) via (p, q) = %aep- [

Lemma 2.5.55. The path algebra H of the universal comfy modulation of Q is free over K.
A K-basis is given by the image of the map To — H defined as

qe a1 o e a1 90
€, Gp €A1 - ;) > € Qg E Ay €]
Proof. This is a consequence of the definitions of H = R<A> and Tg. O

Remark 2.5.56. The K-basis of H described in Lemma 2.5.55 “specializes” under each
of the isomorphisms in Remarks 2.5.48 and 2.5.49 to a K-basis of Hz. The elements of
%aé . -62-111@1 . 5{10 q1 do

these K-bases have the form ¢; and va, - --va; - v, respectively.
[ 20 e 3 o
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2.6 Jacobian Algebras and Potentials

2.6 Jacobian Algebras and Potentials

We recollect some basics about topological rings equipped with the m-adic topology and
discuss completed tensor algebras. After that, Jacobian algebras J (W) are introduced for
arbitrary completed tensor algebras by a minor modification of [DWZ08, Definition 3.1].
For potentials we define R-equivalence and the weaker notion of I-equivalence, which both

specialize to Derksen, Weyman, and Zelevinsky’s right-equivalence.

The last two subsections contain the results from [GL16a, §§ 3 and 10.1-2]. Namely,
we prove that the so-called Splitting Theorem remains true for cyclic Galois modulations.

Finally, premutation of potentials will be described for comfy modulations.

2.6.1 Topological Rings

Definition 2.6.1. An adic ring is a topological ring H together with an ideal my of H
where H carries the my-adic topology, i.e. each point z € H has {z + m}; |n € N} as a

fundamental system of open neighborhoods.

The order of an element z in an adic ring H is ordy(z) := min {n € N|z ¢ m’;"} with

the convention min @ = oco. If confusion seems unlikely, we write ord instead of ord.
A morphism H Iy B of adic rings is a continuous ring homomorphism H ENy:

The completion of an adic ring H is the adic ring H= @H/m% with mg = ﬁmHﬁ

A complete ring is an adic ring H for which the canonical map H — H is an isomorphism.
We collect some elementary facts about adic and complete rings in the next lemma.
Lemma 2.6.2. Let H be an adic ring.
(a) For every X C H its closure is [),cn(X +mYy). In particular, m¥; is closed for all n.

dist gy

(b) The map H x H
defines a pseudometric on H. The topology induced by disty is the topology of H.

R, (z,2') +— exp(—ordg(z — 2’)), where exp(—o0) := 0,

(c) A sequence (z,,)men i H is a Cauchy sequence with respect to disty if and only for
all n € N there is k € N such that x,, 1 — x,, € m% for allm > k.

(d) H is Hausdorff if and only if disty is a metric if and only if [, M = 0.
(e) H is a complete ring if and only if disty is a complete metric.

(f) A ring homomorphism H Iy H' between two adic rings is (sequentially) continuous
if and only if there exists n € N such that f(m’y) C my.

(9) If H is a complete ring, then my C rad(H) or, equivalently, 1 + my C H*.

Proof. Statements (a)—(f) are well-known and straightforwardly verified. For a proof of (g)
see [Lam91, (21.30)]. O
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Ezample 2.6.3. Let H = K|[z] be the polynomial ring viewed as adic ring with myz = (z).
The order of p =), p,2" € H with p,, € K is ordy(p) = min{n € N|p, # 0}.

Ezample 2.6.4. The adic ring H in Example 2.6.3 is not complete. The sequence (z"),,cn
is a Cauchy sequence with respect to disty that does not converge in H. However, in the

completion H one has lim,, ,, 2™ = 0. There is a canonical isomorphism K [[z]] = H.

Lemma 2.6.5. Let H be an adic ring. If H is Hausdorff, the canonical map H = Hisa

topological embedding with dense image.

Proof. See [War93, Corollary 5.22]. O

2.6.2 Completed Path Algebras

Definition 2.6.6. Let A be an R-bimodule over K. The completed tensor algebra of A is
the R-algebra R((A)) over K whose underlying R-bimodule is

R((A)) = JJ 4®".

neN
The product zy =Y, (zy), € R({(A)) of x =" x,,y =, y, € R((A)) is defined by

n
k=0

If R = Ry, A= Ay, for a K-modulation H of a weighted quiver Q, we call Hy, = R{(A))
the completed path algebra of ) defined by H.

Notation 2.6.7. For maps M EN R((A)) set fr,) := pr,of and f>, 1= prs, o f where pr,
and prs,, are the projections R((A)) — A®" and R((A)) — [], A®* of R-bimodules.

Convention 2.6.8. Fix a finite-dimensional R-bimodule A over K.
Abbreviate H = R(A) and H = R({A)). The tensor algebra H and the completed tensor

algebra H are regarded as adic rings, where my and my are the ideals generated by A.

Remark 2.6.9. Explicitly, mpy = @y, A®" and mg =[] A®", For each n € N there

is a commuting square of canonical maps:

neN,

H— * v f

| |

n = 7 n
H/wm}, —— H/mﬁ

We get an induced map H S H S @H /m?%, and realize that H is the completion of H.
It is clear that H is a complete ring. Since H is Hausdorff, Lemma 2.6.5 (a) applies.

Universal property of tensor algebra (see Lemma 2.2.6) and completion (inverse limit)

combine to the following universal property of the completed tensor algebra.
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Lemma 2.6.10. Let A be a complete R-algebra and A L> A a map of R-bimodules such
that the induced map R(A) Ny continuous, i.e. f(A®™) Cmy for some n. Then there

exists a unique morphism f of adic R-algebras making the following diagram commute:

A" L RU(A))

Here k4 denotes the canonical inclusion A — R((A)).

Proof. The property f(A®") C m, ensures that f induces a map R((A)) — @A/mx =A.

Since A is complete, we get a map as claimed in the lemma. O

Definition 2.6.11. Assume a factorization R = [[,.; R; is fixed.

i€l
Let A = R(A)/J and A’ = R(A")/J' with J C my and J' C my,. A morphism A L5 A/
of K-algebras is a K!-algebra morphism if f induces automorphisms R, =, R; foralli e 1.

Similarly, one defines K’-algebra morphisms for quotients of completed tensor algebras.

For loop-free weighted I-quivers every K!-algebra morphism between their (completed)

path algebras is automatically a morphism of topological algebras:

Lemma 2.6.12. Every K'!-algebra morphism A i> A between (completed) path algebras
defined by (R;);-modulations for loop-free weighted I-quivers @Q and Q' maps my into my,.

Proof. Say A = Hy, and A’ = Hyy for K-modulations H = (R;, A,); , and H' = (R;, AL); o-
If f(mp) € my,, then there are i, j € I and x € ;A; # 0 such that f(z) = e;f(z)e; = yo+y4
for some y, € ; R, and y, € ;(my/); with yy # 0. Hence ;R; # 0, s0 i = j. But then ;4; # 0
and @ is not loop-free. The proof for completed path algebras is the same. O

In the completed setting, Lemma 2.6.12 has a generalization for quivers with loops:

Lemma 2.6.13. Let H and H' be the completed path algebras defined by (R;);-modulations
for weighted I-quivers Q and Q' such that for all i € I either Q is loop-free at the verter i

or the algebra R; is local with nilpotent mazimal ideal p;.

Then every K'-algebra morphism H i> H' is continuous and f(m%) C mg, where
n = max ({1} U{n; |i € I not loop-free in Q})
and n; s the nilpotency degree of p;, i.e. the smallest positive integer k with pf =0.

Proof. Say H= I;TH for a K-modulation H = (R;, A,); ,- With the same argument given
in the proof of Lemma 2.6.12 one shows that f(x) € mp, for all z € ;A; with j # 4. For non-
zero x € ;A; the quiver () has a loop at ¢ and so R; is local with nilpotent maximal ideal p,.

We can write f(z) = e;f(x)e; = yo + y4 with 0 # yg € R; and y, € ;(mg,);. To prove the
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lemma, it suffices to show yq € p;. If this were not the case, then yq € R;\p; = R,. Let z be
the inverse of f~!(yy) in R;. Lemma 2.6.2 (g) implies that the element y, = —yof(1 — 22)
is a unit in Zﬁ i. But this contradicts the fact that pry(y,) = 0 is not invertible in R;. [

Under the assumption that the ground ring is a product of division algebras, Lemma 2.6.12

is hence also true for quivers with loops, at least in the completed world:

Corollary 2.6.14. Every K'-algebra morphism H i> H' between completed path algebras
defined by (R;);-modulations with division algebras R; satisfies f(mﬁ) Cmg,.

Proof. This is a direct consequence of Lemma 2.6.13. 0

Ezample 2.6.15. The GLS modulations (see Example 2.4.11) satisfy the assumption in
Lemma 2.6.13. The nilpotency degree of the maximal ideal of R; = K|[g;]/ (egi) is n; = d;.

Example 2.6.16. Let @ be the weighted quiver a C 1 with dy = 2. The completed path
algebra H of Q defined by the GLS modulation (see Example 2.4.27) is the ring H = R[[a]]
of formal power series over the dual numbers R = K] /(¢?) with mz = (a). Therulea — ¢
induces an R-algebra morphism H i> H. As claimed in Lemma 2.6.13, f is continuous,

since f(m%) =0 C my. However, f(mz) € my.

Ezxample 2.6.17. The path algebra H of « C 1 over K is the polynomial ring KJa| with
distinguished ideal my = (a). The K-algebra endomorphism of H given by the rule a +— 1
is not continuous. This shows that the statements of Lemma 2.6.13 and Corollary 2.6.14

are no longer true when replacing “completed path algebras” by “path algebras”.

Notation 2.6.18. For adic R-algebras H and H' we use the notation Hom},(H, H') for
the set of R-algebra morphisms H =Y satisfying f(mpy) C mY,.

Remark 2.6.19. Let H and H' be (R;);-modulations for weighted I-quivers @ and Q'. If Q
is loop-free, we have seen that Homk(Hy,, Hy;) = Homp(Hyy, Hy). Furthermore, if Q is
loop-free or all R; are division rings, Hom}%(fIH, ﬁIH/) = HomR(ﬁH, PAIH/).

The next lemma is the analog of [DWZ08, Proposition 2.4].
Lemma 2.6.20. Let A and A’ be R-bimodules. For every n € N there is a bijection:
Homy (R{(A)). R((A")) —» Homp (A,
f _— fla
Moreover, [ is an isomorphism if and only if the component f(1)‘A is an isomorphism.

Proof. The map in the proposition is well-defined, since f(A) C m}‘%< (A It is a bijection
because of Lemma 2.6.10. It remains to verify the last claim. For n > 1 it is trivially true,

since in this case neither f nor f(l)] 4 can be an isomorphism. So let us assume n = 1.
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For every element z = ) x,,, € R((A)) we have f()(z,,) = 0 for all m > 1 because of the
continuity of f and f;)(z¢) = 0 since f is a map of R-algebras. Thus f(1y = f1)la o pry)
such that for all g € Homkh(R({(A")), R({A))) one has (f9)wlar = fayla o 9aylar and,
similarly, (9f)yla = 9(1ylar © f1y|a- In particular, if f is an isomorphism, so is f(1)|4-

On the other hand, assume that f(;)|4 has an inverse A’ 2y A. Let R((A")) 9, R{(A))
be the induced map such that g|4» = go ky = k4 0 g. The universal property for R((A))
(Lemma 2.6.10) then implies go f = id, since go fory = gok a0 f(1)[a = kaogo f1)la = ka.

Similarly, one can prove f o g = id to conclude that f is an isomorphism. O

We adopt the terminology introduced in [DWZ08, Definition 2.5].

Definition 2.6.21. Let f € Autp(R((A))) and m = mp(4y).
Call f a change of arrows, if f(A) = A. We say f is unitriangular, if (f —id)(A) C m™+!

for some n € N, . For unitriangular f one defines the depth of f as
depth(f) := sup{n e N, [(f —id)(A) C m”‘H} .

Remark 2.6.22. An automorphism f € Autp(R((A))) is unitriangular of depth > n if and
only if for all a € A there is v, € m™*! such that f(a) =a + 1.

We repeatedly use the following statement implicitly. Compare [DWZ08, § 4].

Lemma 2.6.23. Let (f,)nen be a sequence of unitriangular R-algebra automorphisms
of R{(A)) with lim,,_, depth(f,) = co. Then the pointwise-defined limit lim,,_,o. f,, - fo
exists and is an R-algebra automorphism of R((A)).

Proof. For all z the sequence (f, -+ fo(%))nen is Cauchy because lim,,_, ., depth(f,,) = oco.
The completeness of R((A)) implies that the limit f = lim,,_,o f,, - - - fo exists. Clearly, f

is an R-algebra morphism. It is an automorphism because f(1)|4 is an automorphism. [

Recall that H = R(A) and H = R((A)). Via restriction of scalars every H-module can
also be viewed as an H-module. In the finite-dimensional world, H-modules are precisely

the nilpotent H-modules. This observation generalizes the discussion in [DWZ08, § 10].

Lemma 2.6.24. Restriction of scalars induces an equivalence mod(H) —— mod™(H)
where mod™(H) is the full subcategory of mod(H) consisting of modules, called nilpotent,

that are annihilated by A®™ for some large enough n.

Proof. Nilpotent H-modules can be naturally regarded as H-modules and a map between
nilpotent H-modules is an H-module homomorphism if and only if it is an H-module
homomorphism. Therefore it suffices to check that every finite-dimensional H-module M is
nilpotent. By Lemma 2.6.2 (g) itism =mpg C rad(ﬁ). Now m" M = m"M for some n,
if M is finite-dimensional. So m"M = 0 by Nakayama’s lemma (see [Lam91, (4.22)]). O
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We close this subsection with the following easy observation.

Lemma 2.6.25. Let (X,,),cn be a family of additive subgroups X, C A®" C H. Then
the topological closure of @, ey X, in H is [Len Xn-

Proof. Let X = @,,cny X, and Y =[], oy X,,- On the one hand, X C Y C X because
every y € Y is the limit of the sequence (anm yn)meN in X. On the other hand, Y =Y,
since a sequence in Y is a Cauchy sequence if and only if for all n € N its image in X, is

an eventually constant sequence, i.e. its limit lies in Y. O

2.6.3 Jacobian Algebras

Convention 2.6.26. As before, we denote by R® the enveloping algebra R ®y R°P of R.
We regard R-bimodules M over K as left R°-modules via (s ® r) - m = smr and as right
R®-modules via m - (s ® r) = rms for s®r € R® and m € M.

Recall the notations AT = Hompe (A, R®) and H = R(A) and H = R((A)).

0
Definition 2.6.27. For £ € At denote by A% = A®s~1@p Ay A®—s S A®n—1 the
K-linear map induced, for z € A%~ a € A, y € AY"% by the rule
o (way) = ya - £(a).
~ 8 o~

The cyclic derivative with respect to & is the K-linear map H —5 H defined as

oo n

=33
n=1 s=1

The Jacobian ideal OW of an element W € H is the closed ideal of H generated by all
cyclic derivatives 9 (W) with & € AT, The Jacobian algebra J(W) of W is J (W) := fI/(‘)W

Remark 2.6.28. Let m = my. The map 85 is well-defined as a map H—H and sends m"

n—1

into m"~!. The universal property of H = lim H /m" applied to H — H/m" —> H/m
yields the extension of 9, to a map H— H

Remark 2.6.29. Almost resembling [DWZ08, (3.1)], we can express J¢ as

n
8§(a1 e an) = Zas+1 B 771 R 0 PP g(as)
s=1

for ay,...,a, € A. In general, it is however not possible to “move” {(a,) to the left.

b j a

/01’\ .
Ezample 2.6.30. Let Q be the weighted quiver & ? v with dj, =d; =1 and d; = 2.
We consider the GLS modulation H = (RZ,A )ia for Q (see Example 2.4.11). Set ¢ :=¢;,.

ThebimodulesAIT:(ci:crHei®ek> A = (b b e ®ej), ALz(aT:aHej®ei>
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are cyclically generated. For W = (cybe + c1b)a one computes 0 + (W) = bea, 0 +(W) = ba,
0 1
Oyt (W) = cacy + acy, and 0,1 (W) = cobe + ¢1b. So the Jacobian algebra of W is

JW) = ﬁIH/ (bea, ba,cacy + acy, cobe + ¢1b) = Hq/(bea, ba,cacy + acy, cobe + ¢1b) .

2.6.4 Semi-Simple Structures

Definition 2.6.31. A basic semi-simple structure on a K-modulation H = (R;, 4,); , for Q
consists of a decomposition R, @5 R (R; @K R®) = @ijf into pairwise non-isomorphic
simple modules ij for all 4, j and a cyclic generator a of A, for all a.

Given such a basic semi-simple structure on H, we can write ), ip 1?2‘ =1 € R°® for

uniquely determined 1%, € ;L7 and have A, = ;Lj* for a unique index element p,.
In this case, we use the notation A := Hom pe (A,, .LP*) and denote by a' the generator

as j 4
of Al defined by a1, := 1?;.

Remark 2.6.32. A minimal K-modulation H admits a basic semi-simple structure if and

only if the enveloping algebra R° of its ground ring is basic semi-simple.

Ezample 2.6.33. Every modulation H = (R;, A,); , of a modular quiver @ over (L/K,a)
carries a canonical semi-simple structure. Namely, 1§i =m,(1®1) € L; ®k L; indexed

by p € Gal(L;;/K) and a =1®1 € A,. In this situation it is p, = a;;(c,) for j &

Lemma 2.6.34. Assume H is a K-modulation for QQ with basic semi-simple structure.
ForW e ﬁ% the Jacobian ideal OW is generated as a closed ideal by all 0,+(W) with a € Q.

Proof. This is obvious because A" = P, Al and af generates Al O

Lemma 2.6.35. Assume H = (R;, A,); o is a K-modulation for Q with basic semi-simple

structure. For every R-bimodule A’ and m' = Mgy there is a bijection:

(=23

Hom( (R((A)), R((A"))) —— {Q1 = m"" [v(a) € (jm})e for j <= i€ Q1}

f —— flo,

Proof. Every map Q; — m'" with v(a) € (jm;)Pe for all j <& i € Q uniquely extends to
an R-bimodule morphism A — m’". Now use Lemma 2.6.20. O

Notation 2.6.36. For X = {a,...,a,} € Q; we say that f € Homp(R((A)), R{({A"))) is
given by the substitution rules a; — f(ay), ..., ap = f(ay) if f(a) =a for alla € @1 \ X.

Notation 2.6.37. For a subquiver Q' of  we use the notation Auty (R((A))) for the
subset of Autz(R((A))) consisting of all f with f(a) = a for all a € Q.

Example 2.6.38. Let @ be the modular quiver « Q i LQ b withd; =2and o, =0, 0, =1

and let H be the completed path algebra defined by the modulation of @ over (C/R, «).
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The substitution rule a — a+ b2 determines an element f € Autg(H) with f(b) = b. There
is no element in End R(f] ) determined by the rule a +— b because of o, # 03,. Similarly, the

rule a — a + ba does not define an R-algebra endomorphism of H because 7, (ba) # ba.

2.6.5 Cyclic Chain Rule

This subsection contains straightforward generalizations of the cyclic Leibniz and cyclic
chain rule found in [DWZ08]. As pointed out there, cyclic derivatives and a version of the

cyclic chain rule were considered for arbitrary non-commutative K-algebras in [RSS80].

Notation 2.6.39. Following [DWZ08, § 3] we set H ® H := [1,en (A®I @K A®T) and
regard it as a topological R-bimodule with the sets HquTzn (A®1 @5 A®") indexed by n € N
as a fundamental system of open neighborhoods of zero. Actually, H ® H is the completion
of the adic ring A =I'®g ' with my = mp g I' + ' @ g mp where I is either of H or H.

We use the symbol « for the right action of R® on H® H given by (u@w)*(z®y) = ur@yw
forr®@y € R®and u®@w € A% @y A®".

For every £ € Af let A¢ be the continuous R-bimodule morphism H — H® H defined by
A¢(zay) = (x @ y) *&(a) for x € A% a € A, y € A®"~5. Furthermore, we write toz for
the image of ¢ ® z under the continuous K-linear map (H ® H) ®y H — H that is defined
by (u® w)oz = wzu for u®@ w € A% @, A®" and z € H. This map is a morphism of
right R®-modules for the action (t ® 2)«7 = (tx7)®zof r€e REont®z € (H® H) @ H.

Remark 2.6.40. For ay,...,a, € A we can explicitly express A, as
n
Af(al T an) = Z(al Trls ] DAyt an) *f(as) .
s=1

The following lemma is completely analogous to [DWZ08, Lemma 3.8].

Lemma 2.6.41 (Cyclic Leibniz rule). Assume R = [[;c; R;. Let § € Al and (iy,...,1) a
finite sequence in I. For all z, € isﬁis+1 with s € Z/Z we have the identity

l
8&(2’1 s Zg) = ZAf(Zs)D<ZS+1 TRyt .Zs—l) .
s=1

Proof. Because of the K-linearity and continuity of the maps J¢, A¢, and o it suffices to
prove the identity for all z, of the form ay; - --ay, with a,. € A. In this case it is clear
that Ag(zy---2¢) =D 21 2521 - Be(2s) * 2541 -+ - 2. Thus

Oe(z1- - 20) = Delz--zp)ol = 3 (21 2o - Ael2) - Zoq1 - 2) 0]
= ZSAf(Zs)D(ZsH"'Zezl"'zs—1)- ]
Convention 2.6.42. For the rest of this subsection fix (R;),-modulations H and H' with

basic semi-simple structure for two weighted I-quivers @ and Q’.
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The cyclic chain rule below is a consequence of Lemma 2.6.41. Its proof in the current

more general setting uses almost the same calculations as [DWZ08, Lemma 3.9].

Lemma 2.6.43 (Cyclic chain rule). For every K!-algebra homomorphism Hyy EN Hy,
every W € ﬁH/, and every & € A we have

Oe(fW)) = D Ae(f(a)of(Dyr (W)).

acQ]

Proof. By K-linearity and continuity of d¢, A¢, 0, 9,¢, and f, we can assume W = z; - 2
with z, € A, and a, € Q] for all 1 <s < /. Then a];(zs) -ag = z; and one computes

Ae(f(2) = Ag(f(al(2)) - f(as)) = Flal(2)) - Ag(f(as)) -
With Wy = 2,41 - 2021 -+ 2_1 it 18 Ot (W) = Y., W5 - al(z,). Now, using Lemma 2.6.41
and a'(z,) = 0 for a # a4, one obtains
0e(F(W)) = 2. Ac(f(25))o £ (W5)

= Yo Ae(f(a)o f(2, Ws-al(z)) = X, Ae(f(a))o f(9,1(W)). .

The outcome of the cyclic chain rule is that & ’-algebra isomorphisms between completed
path algebras induce isomorphisms between Jacobian algebras.

Proposition 2.6.44. For every K!-algebra morphism EIH/ IR ﬁH and every W € ﬁHl
one has Of (W) C f(OW). In particular, if f is an isomorphism, df (W) = f(OW) such
that f induces an isomorphism of Jacobian algebras J (W) =, J(f(W)).

Proof. With Lemma 2.6.43 the proof of [DWZ08, Proposition 3.7] can be used as is. [

2.6.6 Potentials

Convention 2.6.45. Fix a factorization R = [[, R; and a finite-dimensional R-bimodule A
over K. We continue to use the notation H = R((A)).

Definition 2.6.46. Recall that [DWZ08, Definition 3.4] defines the trace space Tr(H) of
a topological R-algebra H over K as the K-vector space H/{H, H}, where {H, H} stands

for the closed K-vector subspace generated by the commutators zy — yx with z,y € H.

Remark 2.6.47. For H = [1,, A®™ the closed K-vector subspace {ﬁ , H } is generated by
homogeneous elements. With Lemma 2.6.25 we see that {E[, ﬁ} =11, {ﬁ, ﬁ}n where

~ o~

{H,H}n = spanK{:):y—yac‘xeA@k,yeA@m_k,ngSn} .

Therefore we have a decomposition Tr (ﬁ) =11, Tr(f[)n with Tr(ﬁ)n = A®”/{I§', f[}n
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Remark 2.6.48. The image of jﬁi in Tr(ﬁ ) vanishes unless ¢ = j. More precisely, it is

10y - Qpy_ 10y = UG5+ GpQ] =+ = ApG1 " Gy_oG,_1 i0 Tr(H) for all aq,...,a, € A.

Example 2.6.49. Assume H is the completed path algebra of a weighted quiver ) defined
by a K-modulation with basic semi-simple structure. Then {ff , H } is generated as a closed
K-vector space by all elements of the form (wyay - - - woas)wiajwy — aqwo(wpay - - - Woay))wy
where ¢, &y ig is a cyclic path in ) and w, € R; . This characterization of {ﬁ , H }
is used in [GL16a, Definition 3.11] to define (cyclic equivalence of) potentials.

Ezxample 2.6.50. Assume that H is the completed path algebra of the double-loop quiver
from Example 2.6.38. Then b%a = bab = ab? in Tr(f[).

Definition 2.6.51. The order of z =3 2, € Tr(fI) with z,, € Tr(ﬁ)n is defined as
ord(z) := min{n € N|z, #0 € Tr(];’)} .

Remark 2.6.52. For the image of an element z € H in the trace space Tr(ﬁ ) we usually
write again z. We then have ord(z) > ord;(2).

Definition 2.6.53. A potential for A is any element z in Tr(f[) with ord(z) > 0.

A species with potential (SP) over R is a pair (A, W) consisting of a finite-dimensional
R-bimodule A over K and a potential W for A.

Remark 2.6.54. As already explained in the introduction of [DWZ08], it is natural to think
of potentials as elements in the trace space. However, ibid. the term potential is used
to refer to elements in fAICyC =P, Z(mﬁ)Z Elements in fAICyC are then said to be cyclical
equivalent if they have the same image in the trace space. In a nutshell, what we call a

potential here is the cyclic-equivalence class of a potential in the terminology of [DWZ08|.

The next two facts are discussed in [GL16a, § 10.2] for comfy modulations.

Lemma 2.6.55. Assume A is the species of a cyclic Galois modulation for Q over L/K.
For alli,5 € Q¢ and m € jﬁi, n e iﬁj and id = idLj the id-isotypical component of mn is

ma(mn) =Y ma(m,1 (m)m,(n).

peCal(L;;/K)

Proof. Use mgq(mn) =3, mq(m,y(m)m,(n)) and (x) in § 2.5.3. O

PP
Corollary 2.6.56. Assume A is the species of a cyclic Galois modulation for Q over L/K.
Foralli,j € Qg and m € jfl,;, n e iﬁj we have in Tr(ﬁ) the identity

mn = Zﬂp_1(m)7rp(n) .

p€Gal(L,;;/K)

Proof. Because of Lemma 2.6.55 it suffices to show that 7., (2) = 0 in Tr (fAI) for all z € ijIj
and non-identity v € Gal(L;/K). Now x = y(u) — u # 0 for some wu, if v # id. By (%) it is
y(u)my(2) = 7y (2)u = um,(2) in Tr(ﬁ). So m,(2) = 7 (v(u) —u)m,(z) = 0 in Tr(ﬁ[). O
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Corollary 2.6.57. Assume A is the species of a cyclic Galois modulation for Q over L/ K.
For every potential W for A there are elements v, € i(mﬁ)j for all j =i € Qy such that

= Z Vea = Z T -1(Ve)a

aEQl GEQl

Proof. The existence of elements v, such that the first equality holds is clear. For the last
equality use Corollary 2.6.56. O

Erample 2.6.58. Let H be the completed path algebra of « C Q b as in Example 2.6.38.
Recall that o, =0, 0, = 1 € Z/2Z. Then ba = 0 but b%a # 0 in Tr(H)

It is clear that the cyclic derivatives J¢ annihilate { H, H } (compare Definition 2.6.27

and Remark 2.6.48). Therefore the following definition makes sense.

Definition 2.6.59. The K-linear map Tr (ﬁl ) — H induced by & is once again called the
cyclic derivative with respect to & € Al and is also denoted by O

2.6.7 Equivalence of Potentials

The main purpose of potentials W is to encode defining relations of Jacobian ideals OW.
It is thus natural to introduce an equivalence relation on the space of potentials in such a
way that equivalent potentials define isomorphic Jacobian algebras. Having this in mind,

Proposition 2.6.44 motivates the next definition.

Convention 2.6.60. As before, assume R = [[,.; R;
Let A, A’ be R-bimodules over K and H = R((A)), H' = R{(A")).

Definition 2.6.61. Two SPs (A, W) and (A’, W') are R-equivalent if there is an R-algebra
isomorphism H L, B with f(W) =W’ In this case, we write (A, W) ~p (A", W').

The SPs (A, W) and (A’, W') are I-equivalent if there exists an isomorphism H Ny
of K!-algebras such that f(W) = W’. Then we write (4, W) ~; (A, W').

In case A = A" and X € {R, I}, we say that the potentials W and W’ are X -equivalent,
formally W ~x W’  whenever the SPs (A, W) and (A, W') are X -equivalent.

Remark 2.6.62. In the unweighted situation, i.e. if R = [[, K, both R-equivalence and
I-equivalence coincide with what is called right-equivalence in [DWZ08]. We leave it to the

judgment of the reader to decide which equivalence is the “right” one in general.

/01\

Ezxample 2.6.63. Let Q be the modular quiver k————i Q with d, =d; =2, d; =1
and o, = 0, 0., = 1. Let A be the species of the modula‘mon of @ over ((C/]R, —1,v).
Then the potentials W = v(cq + ¢1)ba + e(e + 1) and W/ = —v(cy + ¢1)ba + e(e + 1) for A
are [-equivalent. Indeed, it is W’ = f(W) for the element f € Aut Kz(ﬁ ) that acts on the
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ground ring R = Cej, X Re; X Ce; as id¢ x idg X p, where p is complex conjugation, and
on the arrows as f(cqg) = ¢, f(e1) = cg, f(b) =b, f(a) =a, f(e) =e.

2.6.8 Subpotentials and Restricted Potentials

The suggestive notations for restricted species A|g, restricted potential W|g, subpoten-

tial ¥, induced subquiver Q% and induced subspecies AW are made precise below.

Definition 2.6.64. Let S C @, and T'= Q) \ S. We define A|; :=P 1+ A

acT “ a-

Let H = (R;, A,)iq be a K-modulation for the weighted quiver @ and let H' be the
submodulation of ‘H induced by the inclusion of the Qy-subquiver of () spanned by S.
Moreover, let J be the ideal of .FAIH generated by Alp.

Note that ﬁH = ﬁf}_[/ @ J and denote by ﬁH LE ﬁ-’]_[/ R ﬁH and ﬁH LERGY N fIH
the canonical projections and inclusions. Finally, let W be a potential for A4, and p;ll(W)

a preimage of W under the canonical projection .FAIH Py Ty (fIH)

The restriction of W to S is the potential W|g := py (75(pz (W))) for Az, We will
often regard W|g as the potential py (tg7g (p;ll(W))) for Ay,.

The subpotential of W spanned by T is the potential W7 := Dy (Lﬂrj (p;tl(W)))
Remark 2.6.65. The potentials W|g and W7 do not depend on the choice of p;{l(W).
Remark 2.6.66. We have W = W|g + W@\,

Definition 2.6.67. We sometimes say that a € Q)1 occurs in the potential W if wiat £ .
We use the notation Q" for the Qy-subquiver of Q spanned by all arrows that occur in W.
We call QW the subquiver and AW = A‘Q¥V the subspecies induced by W.

Remark 2.6.68. Tt is WO = W|qw = W.
Ezample 2.6.69. For the potential W = (cobe + ¢1b)a in Example 2.6.30 it is Wi} = ¢ybea.

Example 2.6.70. Consider Example 2.6.63. Let Q" be the subquiver & _a, i LD e of ().
The restriction of W = v(cy + ¢1)ba + e(e + 1) to @ is Wy = e(e +1).

2.6.9 The Splitting Theorem

For modular quivers ) we have already seen that premutation requires “local” 2-acyclicity.
However, even if a modular quiver was not 2-acyclic itself, it could have a 2-acyclic
reduction @,.q. The mutation of () was then defined as the reduced-equivalence class of the
premutation of Q.4 (see Lemma 2.1.17). In order to make a similar story work for quivers
with potential, Derksen, Weyman, and Zelevinsky came up with the Splitting Theorem.

We generalize it to species with potential defined by cyclic Galois modulations.

Convention 2.6.71. All species A, A’ etc. are assumed to be defined by (L;);-modulations
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H = (L;, Ap)ias H' = (Li, AL); o of modular loop-free I-quivers @Q, Q" etc. over (L/K, o).

As usual, we use the notation R = [[,.; L; and H= lfIH.

Definition 2.6.72. An SP (A, W) or the potential W is said to be reduced if ord(W') > 2.
It is called trivial if W = pry(W) and OW =mg.

For two SPs (A, W) and (A’,W’) their sum is (A, W) @ (A, W'):= (A A, W +W').
Remark 2.6.73. The sum of two trivial (resp. reduced) SPs is trivial (resp. reduced).

Remark 2.6.74. In view of Lemma 2.6.12 being reduced is invariant under I-equivalence

and R-equivalence. Proposition 2.6.44 shows that for every change of arrows f € Autp(H)
a potential W for A is trivial if and only if the potential f(W) is trivial.

Remark 2.6.75. Proposition 4.5 in [DWZ08] explains the terminology “trivial SP”: For all
SPs (A, W) and all trivial SPs (A", W') the canonical map R((A)) — R((A & A’)) induces
an isomorphism J (W) — J(W + W'). In particular, J(W') & R.

Given an SP (A, W) one is usually interested in the module category of its Jacobian
algebra J(W). In view of the last remark it seems reasonable to “split off” the trivial part.
Proposition 2.6.44 gives a clue how this can be done: Find a dimension-maximal trivial
SP (A", W') with (A, W) ~p (Aseqs Wreqa) ® (A", W), then replace (4, W) by (Ayeqs Wred)-
It turns out that (A,eq, Wieq) is reduced and up to R-equivalence uniquely determined.
The proof of this fact is almost identical to [DWZ08, § 4] as soon as we have the following

result on “normal forms” of potentials, which generalizes (4.6) ibid.

Recall that a canceling 2-cycle in @ is a subquiver ¢ #j with o, + 0, =0 € Z/d;;Z.

Lemma 2.6.76. FEvery potential W for A is R-equivalent to a potential of the form

Zr: bsag + Z vea+ W' (x)
s=1

a€T)
aS

for canceling 2-cycles T* = =— in Q such that T := @Ts and (W™ =0, ord(W’) > 2,

~ —1 s
and v, € ;H* , ord(v,a) > 2 for all j Gier. =L

More precisely, there is a change of arrows ¢ € Autg(H) with o(W) of the form ().

Proof. Choose a total order < on @Qy. Set S;’i = {j <X i€ Q|p, = p} fori,je Qo
and p € Gal(L;;/K). Using Corollary 2.6.57 it is not hard to see that

WX S S b )+ W

1<j aeS? beSy.

yo=id MY
with ord(Ws4) > 2 and py, € L; ®g L;. Pick a basis Uj; of L; over Lj; for all 4,5 € Q.
For a € S, with i < j we will regard A, as an L7'-vector space via A, = L; ®,L; — L’

1
v € Uj;, u € Uy;. Similarly, for b € Sf;l with ¢ < j

induced by zv ® u +— zvu for x € L j

Fia
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o

we will view A, as an L*-vector space via the isomorphism A4, = L; ® o1 Lj — L7% induced

by u ® ve — uvx for u € Uy;, v € Uj;, x € Ly;. Note that jAf = Alge.
ji

With this preparation the rest of the argument is similar to [Geul3, Remark 3.2.5 (c)].
Note that @ — 0, (pry(W)) induces an L7'-linear map ;A7 9, iAé’_l. Pick f € Auty;i (;A7)
and h € Auty;i (iAfil) such that the matrix of hogo f has bl(l)ck form (%)r 8) with respect
to the (arbitrary) ordered bases S, = {ay,...,a,} and S}; = {by,...,b,}, where 1, is
the (r x r)-identity matrix. Let fT be the transpose of f. A straightforward calculation
shows that the element ¢ € Auty(H) defined for all i < j by the substitutions a — T (a)

for a € % and b h(b) for b e S7,  satisfies pry(p(W)) = 30_, byas.

Using Corollary 2.6.57 it is now easy to see that ¢(W) is a potential of the form (X). O

Corollary 2.6.77. For every trivial SP (A, W) it is A= B ® B* for some R-bimodule B.

Proof. With Remark 2.6.74 and Lemma 2.6.76 we can assume that W = >""_, b.a, for
cyclic paths bya, with p, = p;sl and [{a,,bs[1 < s <7} =2r. Since W = mp, we must
have {az, b, |1 < s <r}=0Q;. TakeB:A]{a | 1<s<r} O

For convenience we reproduce a simplified version of the proof of the existence statement

in the Splitting Theorem, since we use similar arguments in Chapters 5 and 6.

Theorem 2.6.78. For every SP (A, W) there exists a reduced SP (A,eq, Wrea) and a trivial
Sp (Atriva Wtriv) such that (A> W) ~R (Areda Wred) D (Atrivv Wtriv)'

Moreover, (Aeds Wred) and (Airiv, Wiriy) are uniquely determined up to R-equivalence.

Definition 2.6.79. Every SP that is R-equivalent to (A,eq, Wreq) s called a reduced part
and every trivial SP R-equivalent to (Agiy, Wisiv) a trivial part of (A, W).

Proof of Theorem 2.6.78. Replacing W with an R-equivalent potential, we can assume by
Lemma 2.6.76 that there are r € N and cyclic paths aga, in @ with o4: + 0, = 0 such that
S ={asal|1l<s<r}CQ has 2r elements and, for Wi, = > ._; ata, and W' =0, it
is Wo 1= W = Wiy +_qeg Yo.aa+ W where (W))¥ = 0 and ord(Wj—W',), ord( 4a) > 2.

Now assume that for some n € N we have

W, = Wiy + Z Vn,a@ + WTIL
acs

where (W})¥ = 0 and ord(W}, — W,_;),0rd(v, ,a) > n+ 2. The element ¢, ,; € Autp(H)

given by the substitution rules a — a — 7, (e, o-¢;) for j i e S (with @™ = a) is

unitriangular of depth > n. A straightforward computation shows

WnJrl = 90n+1(Wn) = Whiv + Z Vn4+1,a@ + W7/1+1
a€sS

where (W),_1)% = 0 and ord(W},,; — W},),0rd(v, 41 4a) > (n+1) + 2.
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We get a sequence (gpn)neN+ of unitriangular automorphisms with lim,, depth(yp,,) = 0o
such that the potentials W,, = ¢, (W) with ¢,, = ¢,, - - - ¢ define a convergent sequence
with limit lim,, W,, = Wi,sy + Wieq for Wieq = lim,, W/, Note that (W,.q)° = 0.

The R-algebra automorphism ¢ = lim,, ¢,, maps the potential W to W, ,q + Wiy, such
that (A7 W) ~R (Aredv Wred) D (Atriw Wtriv) where (Atrivv Wtriv) is trivial and (Ared7 Wred)
reduced, for Ay, = Alg and A,eq = Al \s-

The arguments given in [DWZ08, § 4] to show that the SPs (A,eq, Wiea) and (Agivy Wiriv)

are up to R-equivalence uniquely determined work without modification in our setting. [

e K f

. /bo \4 by

Ezample 2.6.80. Let @ be the modular quiver J i h with d;, = 1 and
d, =d;=d; =2 and 0, =0, =0, =0 and o, = 1. Consider the species A defined by
the modulation of @ over (C/R,—1,v). The potential W = bja; + feby(1 + bya,) for A
is R-equivalent to W’ = bya; + feby (indeed, W = o(W’) for ¢ € Autz(H) defined by the
substitution by — by +mq(febyby)). Hence, we have (A, W) ~p (Areds Wied) ® (Atrivs Wiriv)
With (Ared, Wred) = (Al{agbp.e.f3> F€00) and (Aprivs Weriv) = (Agay ,}» b101)-

ag aq

We conclude this subsection with a few convenient definitions.

Definition 2.6.81. Let X € {R,[} and j € Q,.
We write (4, W) ~x (A", W’) if SPs (A, W) and (A", W') are reduced-X -equivalent, i.e.
there are trivial SPs (B, S) and (B’,S’) such that (A, W) & (B,S) ~x (A, W) & (B, 5).
An SP (A, W) is 2-acyclic (at j) if the corresponding quiver @ is 2-acyclic (at j). It is
2-acyclic (at j) after reduction if it has a reduced part (A,eq, Wieq) that is 2-acyclic (at j).

Remark 2.6.82. An SP (A, W) can fail to be 2-acyclic after reduction even if the modular
quiver @ is 2-acyclic after reduction. However, if () is 2-acyclic after reduction, there

always exists a potential W for A such that (A, W) is 2-acyclic after reduction.

Ezxample 2.6.83. Let @Q be the modular quiver 4 *]’ with d; =d; =2 and 0, = 0, = 1.
Consider the species A defined by the modulation of @ over (C/R,—1,v). The SP (A, ba)

is 2-acyclic after reduction, whereas the SP (A, 0) is not.

Definition 2.6.84. Let S C @;. An SP (A, W) or the potential W is in S-split form if
the potential W has the form (%) with v, = 0 for all k <= i € T}. In this case, we define

redgV(Q) = Q -1, tring(Q) =T,
redg (W) = W|Q1\T17 trivg(W) = W\Tl,
redS(Av W) = (A‘Ql\Tl?W|Q1\T1) ) triVS(Av W) = (A|T17W|T1) .

Let S/ ={k<+ i€ Q|je€{i,k}}. The SP (A, W) or the potential W is in j-split form

if it is in S7-split form. In this case, we simply write red}/v for red‘é‘? and red; for redg;.
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Remark 2.6.85. If (A, W) is in S-split form, then W = redg(W)+trivg(W) and trivg(A, W)
is trivial. In particular, redg(A, W) ~p (4, W).

2.6.10 Mutation of Potentials

This final subsection defines (pre)mutation for SPs. These operations play a key role in
Chapters 4 to 6. The concept was introduced in [DWZ08, § 5], generalized in [LZ16, § 8|
to the strongly primitive setting, and appears in the form presented below in [GL16a, § 3].
Convention 2.6.86. Fix a comfy extension (L/K,(,v) and a 2-acyclic vertex j in Q.
We still assume all quivers to be loop-free.
Recall QN‘] = Q*‘] D Q_‘j_ and Uj = ’U[L:Lj] and Tkj’i = dkl/dka and ijz = dkjldj/(dkjdjl)

Denote by H = R((4)), 0= R{(A)), H™ = R{(A~7)) the completed path algebras
defined by the modulations of the modular quivers @, Q, Q™7 over (L/K,(,v).

We begin with the construction of a K-linear map

Te(8) L T (A7)

making it possible to regard potentials W for A as potentials [W] for A™.
There are embeddings of R-algebras H ' H <~ B~ where ¢ is given by t(a) = a

for all a € @y and ™7 by

i . b o.oa ..
(o) = T, (bvga) for c = [ba]f € Q77 with k+ j < iinQand 0 < ¢ < Qkjis
c for c € Q7.

Remark 2.6.87. We have A~ — Z‘Q*j @ @Mi,
1 j

map ¢~/ according to Lemma 2.5.27.

CHi
Eimo Ap®p, A, € H induced by the

Lemma 2.6.88. There is a K-linear map Tr(ﬁ) <i> Tr(ﬁ[”j) induced by v and ™.

Proof. Since @ is loop-free at j, for every i, &Ll g in @ with £ > 0 thereis 0 < s </

=

with g # j. Hence, «(A,, -+ Aq,) = t((Aq, -+ Aa,)(Ag, - Aa,,)Es,) C im(¢™7) in Tr(H).

=

This shows that im(:) C im(¢:~7) in Tr(H). The observation that ¢ and ¢™ induce injective

=

maps Tr(f]) — Tr(H) « Tr(ﬁwj) yields a map Tr(ﬁ) — Tr(f-\le), W — [W], with the

property that «(W) = ¢~ ([W]) in Tr(H). O
For the sake of readability, we introduce the following two abbreviations:

Notation 2.6.89. Set [ba]? := Yo, [balf for k < j i in Q.

Notation 2.6.90. Set A; := 3" Ay, where Ay, := ﬁﬂ ZOSq<qW v; b*[ba)?a*.

e i<iin Q
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Remark 2.6.91. We have ™7 ([ba]?) = bv?a for k &j LimQand0<g< Trji-

Remark 2.6.92. Tt is 1™ (A,) = é PO v;qb*bv?aa*. Hence, 1™ (Ap,) = miq(b*b)miq (aa*)
= g

in Tr(H) for id = idLj by Lemmas 2.5.22 and 2.5.40 and Corollary 2.6.56.

Now we are ready for the central definition of this subsection.

Definition 2.6.93. Let Tr(ﬁ[) — Tr(ﬁ”j) be the map W — W™ := W]+ A;.
For every potential W for A the premutation of W at j is the potential W~ for A™J.
The premutation of the SP (A, W) at j is defined as the SP fi;(A, W) := (A™~, W™).

More generally, for every k € Q, and SP (A, W) in k-split form with red}’ (Q) 2-acyclic
at k, the premutation at k is fi,(A, W) := fi(red,, (A, W)) and fig (W) := (red, (W))~*.

Lemma 2.6.94. Let {k‘ —ieQ]jed, k}} C S C Q. For every potential W for A
[ (A, W) = (A’Ql\S @ (Als)™, Wlgs + (WS)Nj) :

Proof. This is obvious. O

LN
Ezample 2.6.95. Let @@ be the modular quiver k——/——1i with d, =d; =2,d; =1
and o, = r € Z/27, which was examined in Example 2.1.18. Consider the species A defined
by the modulation of @ over (C/R,—1,v). The premutation of the potential W = cba

for Ais W7 = [W] 4+ A; where
(W] = c[ba]® = c([balg + [ba]?) = c[ba)?, Aj= Ay, =b" [ba]’a* = b*([balg + [ba]?)a* .

One easily checks that W ~p W,oq + Wiy, where Woq = b*[bal’, ;a* is a reduced potential
and (A|{C7[ba}9}, Wiy = c[bal?) a trivial SP.

N
FEzample 2.6.96. Let @ be the modular quiver k ——_——i with d, =d; =1, d; = 2.
Consider the species A defined by the modulation of @ over (C/R, —1,v). We have v; = v.
The premutation of the potential W = ¢b(z + yv)a for A with z,y € Ris W™ = [W]+ A;
where

1
(W] = zc[ba]® + ye[ba]' Aj= Ay, = i(b* [ba)’a* + v_lb*[ba]la*) :

If 2+ yv #0, it is W ~p Wyeq + Wiy for the reduced potential W,.q = b*[ba]’a* and the
trivial SP (A|{c,[ba]1}7 Wtriv = c[ba]l).

The next lemma is the key to the verification that premutation preserves R-equivalence.
It is Lemma 10.4 in [GL16a] and builds on [LZ16, Lemma 8.4] and [DWZ08, Lemma 5.3].

Notation 2.6.97. Set A; ;=

J o eo miq(aa*).

) 7Tld<b b) and Aj,in = Z](il cQ,
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=

Remark 2.6.98. We have LNj(Aj) = A outAjin in Tr(H).

Lemma 2.6.99. For every ¢ € AutR(}AI) there exists p € Autp (ﬁ) satisfying por = 1o
and im(@ o LNj> = im(LNj) and @(Aj’out) = A oy and @(Ag‘,in) =A;

J,1n

Proof. Abbreviate m = ms=. Set p(c) := ¢(c) for all ¢ € Q;. This will ensure por =10 .
It remains to define @(a*) in im?“* for j <% i € Q; and B(b*) in jmib* for k <> Jje @

such that the induced @ is invertible, maps ™7 (ﬁ[ ~i ) to itself, and fixes A; ;¢ and A,

Let @(a*) in ;m; for j <& i€ Qq and 3(b*) in jmy, for k &L j € @ be defined just as
1 1 d;—1 1

in the proof of [LZ16, Lemma 8.4]. Using that d;mq(z) = ZZJ;) v2v; 0 =) Ly vy 2y,

for id = idy,, by Lemma 2.5.40, the identities (8.20) and (8.15) in [LZ16] assume the form

Z Wid(@(b*)b) = Aj,outv Z Wid(asa(a*)) = Aj,in-

k<3 jeQq J<aieQy
The invertibility of the matrices Cy and Dy in [LZ16, proof of Lemma 8.4] shows that @
induces an R-bimodule automorphism of ejA*j @ A e; C A.

Setting p(c*) := m,_, (p(c*)) for all k «= i € Q with j € {i,k}, we get by Lemma 2.6.35
an induced endomorphism @ € Endg (I? ) The map @ is an automorphism according to

Lemma 2.6.20 because @, |5 = @] is an automorphism. Clearly, im (% 0 ¢™7) = im (™).
Finally, (Aj,) = Zﬂlie o, Tid (ap(a*)) = Zj<iz€ o, Mid (a@(a*)) = Ajin, where the

identity in the middle uses Lemma 2.6.55. Similarly, one can prove B(4; o) = A, ou- O

The last lemma leads to the following important result.

Theorem 2.6.100. If (A, W) ~p (A", W), then [1;(A, W) ~p ;(A", W').
Proof. The proof of [DWZ08, Theorem 5.2] works as is. O

The next theorem is the SP analog of Lemma 2.1.17. It records the crucial fact that,
up to reduced- R-equivalence, premutation at j is an involutive operation for SPs that are
2-acyclic at j after reduction. The consequence is that the rule J (W) — J(W™7) defines

an involution for isomorphism classes of Jacobian algebras by Proposition 2.6.44.

Theorem 2.6.101. Let (d;);c; be a tuple of positive integers and let R = [[;.; L; where L;
is the intermediate field of L/ K of degree d; over K for a comfy extension (L/K,(,v).

Denote by A(j) the set of reduced-R-equivalence classes of SPs over R that are 2-acyclic

at j € I after reduction. We have an involution
. Ky .
A@G) —— AG),

called mutation, given by (A, W) fi;(A, W) for SPs (A, W) that are 2-acyclic at j.
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Proof. For the well-definedness of y; use Theorems 2.6.78 and 2.6.100. The proof that p; is
involutive is almost the same as the one of [DWZ08, Theorem 5.7] and [LZ16, Theorem 8.10].
We sketch it briefly. A straightforward calculation shows

W, = (W)™ = [W Z quzz v; ‘”‘qu” [a*b*]~ ([ba]q+bv]qa).
ki< q

The R-algebra automorphism of (fl ~I)~ = R{{(A~7)™7)) determined by the substitution
rules b — —b for k - J € Qp and [a*b*]? > g0 (S#qu“[ *b*]9 maps W, to

Wy = W]+ Z Z [a*b*]79([ba)? — bv?a) .

kéjt—i 4
The element in Aut R((];AI ~7)~7) given by the rules [ba]? — [ba]? + bvja maps Wy to

Wo = W+ > > bl ([0 + vy0,)

k<gj<oi g

where ord(v;,,,) > 1 and none of the arrows [a*b*]} occurs in any of the elements v, ,
Finally, the rules [a*0*]? > [a*b*]7 — 1}, , , send W to the potential W + Wi, where

Woiw = Y > [ba] a"b]?

k<gisoi 4

It merely remains to observe that the subquiver induced by W, is the trivial modular
quiver T = @b’a’r g 7 described in the proof of Lemma 2.1.17. Thus Q@ N =QaT.

All in all, this proves ((A™)™~ (W~N)~I) ~p (AW 4+ W) =g (A, W). O
Finally, we recall the important notion of non-degeneracy from [DWZ08, Definition 7.2].

Definition 2.6.102. An SP (A, W) or the potential W is non-degenerate if for all £ € N
and every finite sequence (iy,...,ip) of vertices in @ each of the reduced-R-equivalence
classes (A, W), p; (A, W), ..., p, -+ py, (A, W) contains a 2-acyclic SP.

Remark 2.6.103. If the modular quiver () is not admissible in the sense of Definition 2.1.19,

every potential W for A is degenerate.
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3 Symmetric Modulations

This chapter is concerned with a generalization of many of the results from [GLS16a] to a
larger class of finite-dimensional algebras. In our terminology, the algebras considered ibid.
are path algebras R(A) of weighted acyclic quivers ) = (Q, d) defined by the K-modulation

(R;, Aa)ier’jﬁitewhere R, = K[EZ]/(efl) are truncated polynomial rings and

d; d;

;5 € )

are R;-R;-bimodules, free on the left of rank f;; = d;/ged(d;, d;) and free on the right of
rank f;; = d;/gcd(d;, d;). The majority of the arguments given in [GLS16a] are independent
of this explicit modulation. They work equally well for all K-modulations (R;, 4,); , of

Aa = K{eﬁgi] /(6517 - a{ji’

weighted acyclic quivers @) where the R; are symmetric local K-algebras.

This note was written while working on a version of Crawley-Boevey and Holland’s
[CH98] deformed preprojective algebras for symmetric modulations. Since then a very

similar approach was proposed in [LY15] using the language of matrix algebras.

Convention 3.0.1. Fix a weighted quiver @ and a K-modulation H = (R;, 4,); , for Q.
We will assume that 7 is minimal, i.e. dim ;(A4,) = &* = lem(d;, d;) for all j <ie Q.

Denote by H = R(A) the path algebra defined by #.

Remark 3.0.2. It is possible to drop the assumption that H is minimal by defining Cartan

matrix, Weyl group, and bilinear forms in terms of H instead of Q.

3.1 Gorenstein Tensor Algebras

The algebras investigated in [GLS16a] belong to a special class of tensor algebras H = R(A),
which are 1-Gorenstein due to the self-injectivity of R and the projectivity of A and Ap.

Let us be more precise. For a ring A denote by Proj™(A) the full subcategory of Mod(A)
consisting of all modules of projective dimension less than n 4+ 1 where n € NU {oo} and
the convention co 4+ 1 = co. Dually, Inj™(A) is defined with projective replaced by injective.

Let R be an n-Gorenstein ring. Then, by [Iwa80] it is
F(R) := Proj*(R) = Inj**(R) = Proj"(R) = Inj"(R).
Form the tensor algebra H = R(A) of an R-bimodule A that is projective on the left and

projective on the right. An application of [Iwa80; Rog75| yields that H is (n+1)-Gorenstein
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with
F(H) = Mod(H)NF(R) =: Fr(H).

This section revises and generalizes [GLS16a, §§ 3 and 4].

Remark 3.1.1. Given that dim xR < co, R is 0-Gorenstein if and only if R is self-injective.

3.1.1 Projectivity and Injectivity over the Ground Ring

Notation 3.1.2. We use the abbreviations
Proj%(H) := Mod(H) N Proj"(R), Inj%(H) := Mod(H) NInj"(R) .

Denote by proj™(H), inj" (H ), projs(H), inj}, (H ) the full subcategories of Mod(H) obtained
by intersecting Proj"(H), Inj"(H), Proj%(H ), Inj}(H), respectively, with mod(H).

If R is n-Gorenstein, define f(R) := F(R) Nmod(R) and fgr(H) := Fr(H) N mod(H).

Remark 3.1.3. M € Mod(H) lies in Proj's(H) if and only if M; € Proj"(R;) for all i € Q.
Dually, M € Mod(H) belongs to Inj%(H) if and only if M; € Inj"(R;) for all i € Q.

Notation 3.1.4. Denote by Mod,; (H) the full subcategory of Mod(H) consisting of the
locally free modules (see Definition 2.3.7). Set mod, ¢ (H) := Mod,; (H) Nmod(H).

Definition 3.1.5. A locally free module is called locally-free simple if it has no non-zero

proper locally free submodules. For M € mod,; (H) define its rank vector as

rank(M) = Z rank (M;) - e; € Z9 .
i€Qo

Remark 3.1.6. mod,¢ (H) C mod(H) N proj(R) = proj%(H). If H is local, equality holds.

Notation 3.1.7. For ¢ € () denote by F; the locally-free simple H-module that is given
by (E’L)Z = eiE’i = RiR’i and (EZ)] = ejEZ = (0 for ] 7& 1. Note that rank(EZ-) = €;.

Remark 3.1.8. If @) is acyclic and R; is local, the projective H-module P; = He; and the

injective H-module I; = (e; H)* are indecomposable.

We begin with an elementary observation corresponding to [GLS16a, Proposition 3.1].

Recall that the acyclicity of @ is equivalent to dim ; H < oo.

Lemma 3.1.9. FEvery projective H-module is a projective R-module. More generally,
Proj"(H) C Proji(H).

If Q is acyclic, the projective H-modules P; are locally free with

rank(P;) = e; + Z fji - rank(P;) .
JETieQy
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Proof. By definition H = R(A) and rA is projective such that [Rog75, Corollary 3] implies

the first statement. The second one is a straightforward consequence.

The last statement can be proved with a discussion similar to the one in [GLS16a, § 3.1].
We present a slightly less explicit version: The cokernel of the injective multiplication
map H®r A — H is as an H-module isomorphic to ®ZEQ0 E;. With this observation we

get an exact sequence of H-modules

0— HopA= P Hezrd, -~ H=P P — PE —0,
acQq 1€Qo 1€Qo

which is the sum over i € )y of the short exact sequences of H-modules

0— P Pjog, A, — P, — E; — 0.
JEai€eQq

If P; is locally free for all j, then rank(P; @, A,) = rank R, (A,) -rank(P;) = fj; -rank(P;).

So to prove the formula in the lemma it only remains to show that all P; are locally free.

Now P; = @B, DB, . 4, Aa, ®r  ®rAq, ®rE; where the sum is taken over all £ € N
and all arrows ay, ..., a, € Q; satisfying s(a;) = j and i), := s(a,41) = t(a,) for 0 <p < L.
Set ig = t(ag). The Rie—module Aa[ ®R R ®RACL1 ®RE] =~ Aaé ®Rie-1. .. ®Ri1 Aal ®Rj Ej
is free, since for 0 < p < ¢, each Aap is a free Rl-p—module. Thus P; is locally free. O

We have the following dual version of Lemma 3.1.9.

Lemma 3.1.10. Every injective H-module is an injective R-module. More generally,
Inj"(H) C Tnjly(H)
If Q is acyclic and R self-injective, the injective H-modules I; are locally free with

rank(l;) = e; + Z fji - rank(1;) .
g i€

Proof. Since H = R(A) and Ap, is projective, [Rog75, Corollary 2| proves the first statement.

The second one is a straightforward consequence.

There is an obvious dual version of Lemma 3.1.9 for right modules (since Ay is projective
and (A,)p, is free for all j <& i € Q). Hence, using r,(R;)* = g R, for all i, the last claim
follows by applying the duality (—)* to the projective right H-modules e; H. O

Corollary 3.1.11. If R is Gorenstein, Proj* (H) UInj*(H) C Fr(H).
Proof. Use Lemmas 3.1.9 and 3.1.10 and Fz(H) = Proj¥ (H) = Inj% (H). O
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3.1.2 Rank Vectors of Projectives and Injectives

We state [GLS16a, Lemmas 3.2, 3.3 and Proposition 3.4] in our context.

Corollary 3.1.12. Assume @Q is acyclic. Choose a total order iy < --- < i, on Qy such
that there are no arrows iy, < i, in Q with i, > i,. Then

rank(P; ) = s; ---5;,  (e;,) € AL(Q),
and, if R is self-injective, also

rank(l; ) = s; -8, (e;,) € AL(Q).

Proof. Let x, =s; ---s; _ (e; ). It is well-known and easily verified by induction that

T = €y — 2 :Cﬂkxj =€, + 2: jinj -

J<ig Jé—ip
In combination with Lemma 3.1.9 we get the first identity, since the e; form a basis of VAL

The second identity can be proved analogously using Lemma 3.1.10. O

3.1.3 Canonical Short Exact Sequences
The next result is standard. It can be found as a lemma in [Rog75].
Lemma 3.1.13. There is a short exact sequence of H-bimodules
0 HopAopH 23 HopH Y+ H —0
withd(1@zel) =21 -1z andv(l®1) =1. O
Corollary 3.1.14. For all M € Mod(H) there is a short exact sequence
00— HORARM —2 5 HopM —%5 M — 0

of H-modules with (1@ x@m) =x®@m —1®zm and v(1 @ m) = m.

This is a projective resolution for M € Proj%(H). More generally, for M € Proj%(H),

IT[(@R]\I7 H®RA®RM € PrOJn(H)

Proof. Apply —®yg M to the sequence in Lemma 3.1.13 to obtain a short exact sequence
isomorphic to the one in the statement. Since rA is projective, r(A ®p P) is projective
for every projective R-module P. The functor A ®p — is exact, because Ap is projective.
Applying it to a projective resolution for p M of minimal length shows A ®r M € Proj"(R).
Now H@prM,H ®r (A®r M) € Proj"(H) by [Rog75, Corollary 4]. O

Corollary 3.1.14 has a dual version, which is also treated in [Rog75].
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Corollary 3.1.15. For all M € Mod(H) there is a short exact sequence
0 — M — Hompg(H, M) — Homp(H,Hompg(A, M)) — 0

of H-modules.

This is an injective resolution for M € Inj%(H). More generally, for M € Inj}(H),

Hompz(H, M), Hompg(H,Hompg(A,M)) € Inj"(H).

Proof. Apply Homyg(—, M) to the sequence in Lemma 3.1.13 to obtain the short exact
sequence in the statement. Because Ay is projective, r(Homp(rA, I)) is injective for every
injective R-module I. The functor Homp(r A, —) is exact, since rA is projective. Applying
it to an injective resolution for r M of minimal length shows that Homz (A, M) € Inj"(R).
Now Hompz(H, M),Homp(H,Homp(A, M)) € Inj"(H) by [Rog75, Corollary 4]. O

Remark 3.1.16. Let M € mod,; (H). A discussion similar to the one at the end of the

proof of Lemma 3.1.9 shows that as H-modules

HogM = PP M HepdezMm = @ phmth,
1€Qo JETieQy

Moreover, if () is acyclic and R self-injective, similarly

Homp(H,M) = @ 1™ ™) | Homp(H,Homp(4, M)) = @ ™
1€Q 45 JEQ

3.1.4 Gorenstein Ground Rings

We generalize [GLS16a, § 3.5] combining results from [Rog75; Iwa80; AS81; AR91].

Proposition 3.1.17. There are inclusions:
Proj"(H) C Proj%(H) C Proj"*1(H)
Inj"(H) € Inji(H) € Inj"*'(H)

Proof. This follows from Lemmas 3.1.9 and 3.1.10 and Corollaries 3.1.14 and 3.1.15. [

Proposition 3.1.18. If R is n-Gorenstein, H is (n + 1)-Gorenstein with F(H) = Fr(H).

Proof. On the one hand, Proposition 3.1.17 implies that F(H) C Proj" ™ (H)NInj"**(H).
On the other hand, Proj**(H) U Inj**(H) C Fz(H) by Corollary 3.1.11. Hence,

Fip(H) = Proj*(H) = Inj*(H) = Proj""'(H) = Inj""(H).

In particular, we have idimgH < n + 1. With right-module versions of Proposition 3.1.17
and Corollary 3.1.11 one can similarly deduce idim Hy < n + 1. O
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3 Symmetric Modulations

The main theorem of [Rog75] for path algebras reads:

Corollary 3.1.19. gldim(R) < lgldim(H) < gldim(R) + 1.

Proof. Use Proposition 3.1.17 and the fact that by Corollary 2.2.19 every module in Mod(R)
can be extended to a module in Mod(H). O

We get the generalization of [GLS16a, Proposition 3.5, Corollary 3.7, and Theorem 3.9]:

Corollary 3.1.20. If H is local and R self-injective, the path algebra H is 1-Gorenstein
with mod, ¢ (H) = f(H).

Proof. This follows from Remarks 3.1.1 and 3.1.6 and Proposition 3.1.18. O

Corollary 3.1.21. Assume that Q is acyclic and R self-injective. Then f(H) = fr(H) is
functorially finite in mod(H). In particular, f(H) has Auslander-Reiten sequences.

Proof. By Proposition 3.1.18, we have f(H) = proj'(H) = inj*(H). As pointed out in the
proof of [GLS16a, Theorem 3.9] the category f(H) is functorially finite in mod(H) by [AR91,
Proposition 4.2] and thus has Auslander-Reiten sequences by [AS81, Theorem 2.4]. O

3.1.5 Filtered Modules

Definition 3.1.22. Let modgeeq(H) be the full subcategory of mod(H) consisting of all

modules M admitting a filtration of H-modules
0=MyC M C---CMy=M (#)

such that for each 1 < p </ the factor M,/M,_, is isomorphic to Eip for some ), € Q.

It is clear that the integer ¢ is independent of the choice of the filtration. We will denote
it by ¢(M) and call it the filtration length of M.

Lemma 3.1.23. modgjereq(H) C proj%(H).

Proof. This is clear because of {E;|i € Qy} C proj%(H). O

Lemma 3.1.24. Assume Q is acyclic. Then mod;¢ (H) C modgyereq(H). More precisely,
for every M € mod, ¢ (H) there is a filtration like in (#) where all M,, are locally free.

Proof. Let M # 0 be in mod, ¢ (H) and let o(M) = {i € Qq| M; # 0}. We use induction
on the cardinality of o(M). Choose a sink 7 in the full subquiver of () with vertex set o ().
Then M; is a submodule of M isomorphic to E; for some r > 0 and there is a short exact
sequence 0 - EI — M — N — 0. Clearly, N belongs to mod,; (H) and |o(N)| < |o(M)].
By induction N € modgereq(H). Hence, M € modgered (H)- O

Corollary 3.1.25. If H is local and Q acyclic, modgyiereq(H) = mod; ¢ (H).
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3.1 Gorenstein Tensor Algebras

Proof. This follows from Lemmas 3.1.23 and 3.1.24 and Remark 3.1.6. ]

3.1.6 Euler Form
The Euler form (—,—) is defined for H-modules M and N as

(e e]
(M,N)y = Y dimg Ext}; (M, N)
n=0
given that, either M € proj**(H) and N € mod(H), or M € mod(H) and N € inj*(H).
In particular, it is well-defined on mod,; (H) x mod; ¢ (H).
The symmetrized Euler form (—, - )y = (=, - )y + (-, —)y agrees with the symmetric
form defined by @ with similar reasoning as in [GLS16a, § 4]:

Lemma 3.1.26. IfQ is acyclic, (M, N)y = (rank(M ), rank(N)), for M, N € mod, ¢ (H).

Proof. For Y € {M, N} there exist short exact sequences 0 - Xy — Y — Zy — 0
in mod, ¢ (H) by Lemma 3.1.24. Both w = (—, =)y and w = (rank(—), rank(—)), satisfy
W(M,N) = > w(Uy, Vy)-

UVe{X,z}

Therefore, by induction on the filtration length, we can assume M = E; and N = E,,.

From the proof of Lemma 3.1.9 we have a short exact sequence of H-modules

0— @Pfﬁ—>Pi—>E,»—>0.

VAN
Applying Homg(—, E},) and abbreviating dimg Homg(—, —) as [—, —] we get
(B By)g = [P Byl — Z Jii - [Py, B = dj, - <5z‘_k - Z fki) )
i ké—i

where the last equality used that [P,,, E}] = d,,—; - d;, because of Homy (P,,, Ei) = (E),) -
We conclude (E;, Ey) g = (Ey, Ex) y + (Ex, Ei) g = (€5 ekz)Q' O

3.1.7 Auslander-Reiten Translation

Convention 3.1.27. Assume now that @ is acyclic and R self-injective.
In particular, the path algebra H is finite-dimensional and 1-Gorenstein.

Notation 3.1.28. Denote by 7+ and 7~ the Auslander-Reiten translations in mod(H).

Lemma 3.1.29. Let M € §(H). For every projective resolution 0 — P — PO — M — 0
and injective resolution 0 — M — I° — I' — 0 there are evact sequences in mod(H )

0—— 7" (M) —— v (P) —— v (P") ——vF (M) ——0

0——v (M) ——v (I°) —— v (I') —— 7 (M) ——0
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3 Symmetric Modulations

that are induced by the Nakayama functors vt := Homy(—, H)* and v~ := Homy (H*,—).
Moreover, for all L € ind(H) and N € mod(H):
(a) TH(M) = Exth (M, H)*
(b) 77 (M) = Exty (H*, M)

12

Hom (N, 7 (M))*

f
(f) 7= (L) € f(H) non-zero < v~— (L) =0
) e v T (N)=0< vtr (N)=0
(h) Exty (M, M) =0 < Homy (M, 7 (M)) = 0 < Homy(r— (M), M) =0

Proof. These are well-known consequences of the identities f(H) = proj'(H) = inj(H),
which hold by Proposition 3.1.18. See also [GLS16a, §§ 3.5 and 11.1]. O

Corollary 3.1.30. Let M € mod,; (H). Then:

(a) 77 (M) € mod,; (H) non-zero < v (M)
(b) 7= (M) € mod, ¢ (H) non-zero < v— (M)

0
0

Proof. The implications = in (a) and (b) follow from Lemma 3.1.29 (e) and (f).

For < in (a) apply Lemma 3.1.29 to the projective resolution from Corollary 3.1.14,
recall Remark 3.1.16, and note that vt (P;) = I; are locally free by Lemma 3.1.10.

Corollary 3.1.15 and Lemma 3.1.9 can be used in a similar way to verify (b). O

3.1.8 Coxeter Transformation

This subsection generalizes results from [GLS16a, §§ 3.4 and 11.1].

Definition 3.1.31. The Cozeter transformation ® = & € Aut(Z%) of H is defined by
O (rank(P;)) = —rank(l;).

Remark 3.1.32. By Lemmas 3.1.9 and 3.1.10 the vectors rank(P;) and the vectors rank(/;)

form two bases of Z®@0. This ensures that @ is well-defined.

Remark 3.1.33. The Coxeter transformation ® can be computed as the product

C*l

. O .
nj proj

e

where C'

broj and Ci; act on e; = rank(FE;) as C,

proj

(e;) = rank(P;) and Cinj(ei) = rank([;).
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3.2 Symmetric Modulations

Lemma 3.1.34. Let M € mod, ¢ (H) be indecomposable and p € Z such that 71(M) is
locally free and non-zero for all 1 < q < p or for allp < q < —1. Then

rank(r?(M)) = ®(rank(M)) .

Proof. This is standard. By induction it suffices to consider the case p = +1 and p = —1.
For p = +1, just as in the proof of Corollary 3.1.30, apply Lemma 3.1.29 to the projective
resolution from Corollary 3.1.14. Then use v*(P;) = I; and the fact that rank is additive

on short exact sequences of locally free modules. The case p = —1 is similar.

It is also possible to adapt the proof of [GLS16a, Proposition 10.6] to our situation. [J

3.2 Symmetric Modulations

By the abstract nature of their proofs many of the results in [GLS16a] appear to be true
in a broader context. Even though, some essential insights depend on explicit features
of the modulations considered there. First and foremost, this concerns the possibility to
identify the left dual P4, the right dual A%, and the K-dual bimodule A* with one another
in a canonical way (compare Lemma 2.2.25). This section provides the necessary tools to

prove that Geif}, Leclerc, and Schréer’s results are valid for symmetric (local) modulations.

3.2.1 Symmetric Structures

Recall that a modulation (R;, A,); , is called symmetric if all R; are symmetric algebras.

Definition 3.2.1. A strongly separable modulation is a symmetric modulation (R;, 4,); ,

with fixed symmetric structures on all R; given by Trp /x.

Remark 3.2.2. A K-modulation (R;, 4,); , is strongly separable if and only if all R; are

strongly separable algebras, i.e. the trace pairings (z,y) — Trg, /k(zy) are non-degenerate.

Remark 3.2.3. If (R;, A,); o is a strongly separable modulation, the ground ring R =[], R;

is a strongly separable algebra.

Ezample 3.2.4. Let L/K be a separable field extension and assume that H = (L;, 4,); 4 is
a modulation where all L; are intermediate fields of L/K. Then H is strongly separable.

In particular, this is the case for cyclic Galois modulations H.

Ezxample 3.2.5. Every finite-dimensional semi-simple K-algebra is a symmetric algebra.

This includes all finite-dimensional division algebras over K.

Ezxample 3.2.6. The GLS modulations are symmetric (see Example 2.4.19) but, in general,

not strongly separable.

Convention 3.2.7. Assume now that all R; carry a symmetric structure ;.
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3 Symmetric Modulations

Denote by ¢ the induced symmetric structure Zier p; on R. Lemma 2.4.18 guarantees
the well-definedness of the dual modulation H*.

By Lemma 2.2.25 and Corollary 2.3.11 the left and right dual bimodules A , and A,

can be identified with A, = A% and, similarly, "4 = @, 4, and A" =P, 4, with A*.

More precisely, we have a diagram
RA AR
A*a Aa*

where the horizontal maps are the isomorphisms given by postcomposition with ¢ and the

IR

4
I
= Al =

vertical maps are the canonical inclusions and projections.

As usual, we will also identify the double K-dual bimodules A%* = Homg (A}, K) with A,

and, similarly, A** = Homg (A*, K) with A via evaluation. Thus we have a diagram

A= A%

[

*ok
Ay~ Af

where the horizontal maps are the evaluation maps ev that send x to the function ev,

given by evaluation at z, i.e. ev,(f) = f(z).

With these identifications the adjunction correspondence (see Definition 2.2.15) yields
canonical isomorphisms of K-vector spaces for all M, N € Mod(R):

d
Homp(A®p M, N) —— Homp(M, A* @5 N)

d
Homp(A* @5 N, M) ——— Homp(N, A®x M)

Notation 3.2.8. Extending the notation introduced in Definition 2.2.15, we will write fV
both for ad(f) and for ad,(f) and, similarly, Vg for ad~*(g) and for ad;(g).

3.2.2 Non-Degenerate Trace Maps
The construction and statements about the trace maps presented below are variations of
classical results. We use similar notation as [Bou70, III. §9 no. 1-4].
The symmetric structure ¢ on R can be used to define a K-valued trace map
Endg(M) 2 K
for every finitely generated projective R-module M.

The procedure to do this is standard: Because R 2K is symmetric, precomposing ¢
with the bilinear map Hompz(M, R) x M — R, (f,m) — f(m), induces a K-linear form

Homp(M,R)®@x M = K .
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3.2 Symmetric Modulations

Using that M is finitely generated projective, we get tr by precomposing v with the inverse
of the isomorphism Hompg(M, R) @ M — Endg(M) given by f ® m +— (n+— f(n)m).

Analogously, using the symmetric structure ¢; on R;, one gets a trace map

tr

Endp, (M;) — K

for every finitely generated projective R;-module M;. By construction we have tr = ), tr;

as maps Endg(M) — K for every finitely generated projective R-module M = &, M;.
Lemma 3.2.9. If R; is commutative, tr; = ;0 Trg.. If ; = Trg i, then tr; = Trg.
Proof. The first statement is clear by the construction of tr;. For commutative R; the

second statement follows from the first one and Trp o Trp, = Trg. It is a straightforward,

classical exercise to verify it also in the general situation. O

Lemma 3.2.10. For M, N € proj(R) and f € Homg(M,N), g € Homp(N, M) it is

tr(fg) = tr(gf)-

For M € mod;; (R) and x € Z(R) it is tr(z™) = ¢(z) - rank(M) = 3, ¢;(;) rank (M;).

Proof. The verification of the identity tr(fg) = tr(gf) is a straightforward, classical exercise.
For example, this can be done by computation with basis elements after reducing to the

case that M and N are free. Here, the symmetry of ¢ plays a role. The rest is clear. [

Lemma 3.2.11. For M € Mod,; (R) and N € mod,; (R) the trace pairing (f,g) — tr(fg)
on Homp (M, N) x Homp(N, M) induces an isomorphism:

Homp(M, N) — 2" Homp(N, M)*

[ (9= t(fg))

Proof. We can reduce to the case M = N = R and then have to prove the non-degeneracy of
the bilinear form (f, g) ~ tr(fg) = ©(f(1)g(1)). The non-degeneracy of w follows from the
fact that the bilinear form Rx R — K, (z,y) — ¢(xy), is non-degenerate, a reformulation of
condition (a) in Definition 2.2.20 (see [Lam99, Theorem 3.15 and the ensuing Remark]). [

Let M € Mod(R). Recall that H-module structures on M are parametrized by
Rep(A,M) = HOHIR(A(X)RM, M) .
Corollary 3.2.12. For each M € mod, ¢ (R) there is an isomorphism of K -vector spaces:

QM

Rep(A*, M) ———  Rep(4, M )*

M —— (AM — tr(gM o 4 MY))
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3 Symmetric Modulations

Proof. Use Definition 2.2.15 and Lemma 3.2.11. O

Inspired by [GLS16a, Proposition 8.3] one discovers the following relation.

Lemma 3.2.13. Let M € Proj(R) and N € proj(R). Then we have tr(fYg) = tr(fg")
for all f € Homgp(A®r M, N) and g € Homp(A* @z N, M).

Proof. We can again reduce to the situation M = N = R. With a slight abuse of notation,
identifying A ® R and A* ®z R in the canonical way with A and A*, we have

f €Homp(A R), g¢cHomp(A* R), fY € Homg(R,A*), ¢"c Homp(R,A).
Using tr(fYg) = tr(gf") it is enough to show tr(gf") = tr(fg"). This is easy to verify:
tr(gfY) = @(gf¥ (1) = (p9)(ef) = (¢f)(ev " (pg)) = ¢(fg" (1)) = tr(fg") O

3.2.3 Characteristic Elements

Certain constructions for symmetric modulations mirror intrinsic properties of the fixed

symmetric structure . Some information is encoded in the characteristic elements.

The isomorphisms A* 2y Bg and A* 25 AR of R-bimodules give rise to non-degenerate
R-bilinear maps #—, —) and (—, —)¥ defined, for z € A and f € A*, as

Az, ) = "(f)(z), (f,2)? = " (f)@).
The R-bimodule map A* ®r A — R given by f®x — (f, z)¥ postcomposed with the inverse
of A*®p A — Endp(rA) given by f®z — (y — Az, f}y) yields a map o Endgp(r4) — R.

Precomposing & with the map Z(R) — Endy(zA), which sends elements r € Z(R) to
left multiplication with r, gives a map Z(R) — R. It is not hard to see that its image is
contained in Z(R). In this way, we obtain a K-linear map & : Z(R) — Z(R).

The dual construction for A®@pr A* — R given by x ® f +— ¥z, f) and the isomorphism
A®pA* — Endp(Ag) given by 2 ® f — (y — y(f, 2)¥) yields & : Z(R) — Z(R).
For j +% i € Q; the restriction of & to Z(R;) and of ® to Z(R;) induce K-linear maps

Z(R;) _ % Z(R;) 7(R;) _ % Z(R;) .

Definition 3.2.14. We call 3, = &,(1) and @, = ,(1) the characteristic elements.
For i,j € Q define g;; = Cfﬁji(l) and @;; = $;;(1) where, for y € Z(R;) and x € Z(R;),
‘f)jz’(y) = Z éa(?/)? ‘f)jz'(x) = Z §a(x)
a a
and the sums are taken over all arrows j «— i € Q.

Remark 3.2.15. Let C' be a basis of g (A,) and B a basis of (4,)g,. For clements y € Z(R;)

and = € Z(R;) we have the formulas

Baly) = Y oilp;c)ye), Bo(2) = ) Tipi(pib")(bx) .

ceC beB
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3.2.4 Calculation Rules for Adjoints

In Corollary 2.3.10 we gave formulas for f¥ and Vf. We add the following calculation rules:

Lemma 3.2.16. Let M € Mod(R), f € Homgr(A®rM,M), g € Homp(A* @z M, M),
and x € Z(R). We have the following identities:

(a) V(idag, ) o (zA9RM)Y = (B(x))M
(b) fYog = (fol(ids®g))"
(c) fog” =Y(fYog)o ([dag,m)” = Y(idargpar) o (fY 0g)Y

Proof. Using R = []; R, and A = P, A,, we can reduce to the case A = A,, M = M,;® M,,
x = x; € Z(R;) for some j +— i € Q. After choosing bases for Rr;(4,) and (4,)p,, the
identities can now be checked by straightforward, explicit calculations with the help of the

formulas given in Corollary 2.3.10 and Remark 3.2.15. O

3.2.5 Rank-Aware Structures
Lemma 3.2.17. 307,((73(1) = fj’L . QOJ(l) and @J(ﬁa) = fl] . @Z(l) for allj (i 1.

Proof. Use Remark 3.2.15 and rank R]_(Aa) = fj; and rank (A,) g, = fi;- O

Definition 3.2.18. The symmetric structure ¢ for H is rank-aware if for all j <= i

()5@ — rank (Aa)Ri = f”’ ()5(1 = rankRj(Aa) = f]Z

Remark 3.2.19. Assume (@ is connected and char(K) td; for all i. Let ¢ be a rank-aware
structure for H. By Lemma 3.2.17 we have d;p;(1) = d;p;(1) for all i, j € Q. If ;(1) # 0,
rescaling ¢ by d;/¢;(1) = d;/p;(1) yields a rank-aware structure ¢ = ), ¢; with @;(1) = d;.

Ezample 3.2.20. Taking in Example 2.4.25 ¢, = Trg g = idg and ¢y = Tre/r = 2Re to
define the symmetric structure ¢, one computes ¢, = 1 = f5; and g, = 2 = f5. Therefore,

this choice of ¢ yields a rank-aware structure.

To illustrate that symmetric structures ¢ are not necessarily rank-aware, we consider
Example 2.4.25 in the general situation, where R Z1, R and C 25 R are arbitrary non-
zero R-linear maps. Then, z = (1) € R* and w = ¢5(1) — i py(i) € C*. It is not hard
to check that %, (f)(z) = 271 f(2) and @5(f)(2) = wL(f(2) —if(iz)). Calculating, we see
¢, =2 (zw)~! and G, = 27 1py(1). In particular, always @, # 0, while @, = 0 is possible.

Example 3.2.21. Assume that H is the strongly separable modulation of a modular quiver @
over a comfy extension (L/K,(,v). We show that ¢ = Trg i = >, Trp /x is rank-aware:

For j <% i€ Qitis A, = ij“ =L;®, L;forsome p, € Gal(L;;/K). Let m = [L : K],

;= v™4%i. The set {b, = v;®1|0 < s < fi;}is abasis of (4,)p,-

V. :Um/dj, Ui :Um/di’ vﬂ

J
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There are elements h,, € K such that

Vs = *(p](gpzb:)(bs) = Z hrsU;T'

We have d;h,, = TrLj/K(v}"ys) = <,0ib§(vg+s ® 1) because “p;(¢;b5) is L;-linear. Let us
write r + s = p + qf;; for some ¢ and 0 < p < f;;. Define ¢, = p,(v;;)/vj;- Then
—q,4fi _ g
djhrs = TrLi/K <b:(cp) ’ Ca ! U? ! ) = Op=s 5qEO mod dj; dz : Ca 1 )‘q/dﬂ = 57“:0 : dz .

This shows v, = d;/d;. Hence, ¢, = f;; - d;/d; = f;; by Remark 3.2.15. Similarly, g, = f;,.

3.3 Deformed Preprojective Algebras

Extending [CH98] we define deformed preprojective algebras IT* for symmetric modulations.

The choice A = 0 recovers the ordinary preprojective algebra.

Convention 3.3.1. We still assume that a symmetric structure ¢ for H is fixed.

As before, we use ¢ to identify the duals A , and A, with A7 as well as the duals B
and AT with A*. In the canonical way, A%* is identified with A, and A*™* with A.

3.3.1 Compatible Double Representations

Instead of working with modules over deformed preprojective algebras II* we use the

equivalent notion of A-compatible A-double representations.

Recall that the double H of H is the K-modulation H = (R;, Aa)ie@0 e, with A, = AZ.

As usual, we do not distinguish H-modules from A-representations.

Because of A = A @ A* an A-representation can be regarded as a triple (M, 4 M, 4-M)
where (M, 4 M) is an A-representation and (M, 4+M) an A*-representation.

Definition 3.3.2. Let A € Z(R). A X-compatible A-double representation (M, oM, M)
consists of an A-representation (M, 4 M) and an A*-representation (M, 4+M) making the

following square commute “up to adding \”:

\Y
M aM A @p M
A*MVJ lA*M
Acp M — M

More precisely, we require 4«M o 4MY — 4 M o MY =AM,

Remark 3.3.3. By Lemma 2.2.14 and its right-module version we have canonical isomor-
phisms
EndR(RA) L}A*(@RA, EHdR(AR) L)14(8]%14*

78



3.3 Deformed Preprojective Algebras

Definition 3.3.4. Viewing A* ®p A and A ®p A* as summands of the degree-2 component
of the path algebra H, the preprojective relation p € H is defined as

p = A(id) — A, (id) .
Definition 3.3.5. The sign of an arrow a € Q; is

1 ifaGQl,
-1 ifae€@7.

Remark 3.3.6. Choose for each j <= i € Q, a basis B, of Rr,(A,) and let {b"[b € B,}
be the Rj-dual basis of B,. With respect to these bases and with Convention 3.3.1 the

preprojective relation assumes the form p = > w0y, beB, Ea b* - b.
Remark 3.3.7. Clearly, p = Zier p; Where p; = e;pe;.

Remark 3.3.8. The preprojective relation p commutes with every element in the ground
ring R, i.e. pr = rp for all » € R. As a consequence, for every module M € Mod(H) left
multiplication with p defines an endomorphism p™ € Endg(M).

Definition 3.3.9. Let A\ € Z(R). The deformed preprojective algebra TI* = Hg\_[ is
M = H/(p—\).
The preprojective algebra TI = I1,; is the deformed preprojective algebra II°.

Lemma 3.3.10. pM =" eg MyM) = oMo g, MY — 4 Mo 4M" for M € Mod(H).

a€Q,
Proof. Note that A = Zate A, and A, = ZaeQ{ A,, where, for j <= i € Q,, the maps
Aa Aa*
Endpg (g, (4) —— A, Or, Ay, Endpg, ((Ag)r,) — Aa @, Aq,

are the canonical isomorphisms. For j +— i € @, the formula for M) in Corollary 2.3.10,
and the description of A, given in Lemma 2.2.14 show that M,M, € Endg (M;) is
multiplication with A,(id). Now use the definition of p. O

Corollary 3.3.11. M ~ (M, 4 M, 4.M) defines an equivalence Mod(H) — Rep(A) and

an equivalence between Mod(IIM) and the category of A-compatible A-double representations.

Proof. Combine Corollary 2.2.19, Definition 3.3.2, and Lemma 3.3.10. O

Notation 3.3.12. Denote by j<_@1 the set of all arrows in Q ending in the vertex j € Q.
For M € Mod(H) abbreviate AM = A, ®p, M; for j < i€ @, and

]<_M = €]E®RM = @ Aéw

a€;Q,
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Let AM My jeM LN AM be the canonical inclusion and projection and

T = Z M7, , py o= Z Eg  fgMY .

a€j<_@1 aeﬁ—@l

Finally, define 7 = Zjer m; and p = Zjer 1

If it seems necessary to stress the dependence of 7, i etc. on M, we write 7, M etc.

Remark 3.3.13. Let j <% i € Q. If M; is free, then AM is free. Furthermore, if M; is free

of finite rank m;, we have rank p_ (AM) = rank R, (Ag) -m; = fm;.

The composition 7 pM can be viewed as an element in Endg(M). The following

corollary corresponds to the discussion in [CH98, § 4] and [GLS16a, Proposition 5.2].

Corollary 3.3.14. pM = aMuM for M € Mod(H), so M € Mod(IT") & 7MyM = \M

Proof. Use Lemma 3.3.10. O

3.3.2 Lifting Representations
The next lemma generalizes [CH98, Lemma 4.2]. Our proof is conceptually the same.
Proposition 3.3.15. For every M € mod, ¢ (H) there is a short exact sequence

0 — Bxth (M, M)* — Rep(A*, M) = Endg(M) — Endg(M)* — 0
where 0 and t act on 4«M € Rep(A*, M) and f € Endr(M) as

(M) = g Mo ;MY — 4 Mo MY, t(f) = (9 tr(fg))-

Proof. Applying Hompy(—, M) to the short exact sequence from Corollary 3.1.14 yields an

exact sequence
0 — Endy (M) %5 Homy (H @5 M, M) %5 Homyy (H ® 5 A® g M, M) — Exty, (M, M) — 0.
Using the tensor-hom adjunction we get a commutative square

Hompy(H @z M, M) LHomH(HQ@RA@RM,M)

| J

End (M) o Rep(A, M)

where the vertical maps are the canonical isomorphisms and 9" is given, for all f € Endg(M)
and x®@m € A®r M, by &(f)(x @ m) = zf(m) — f(zm).

The map 1> = a o ! is the canonical inclusion. We get an exact sequence

0 — Endy (M) —2— Endp(M) —2— Rep(A, M) —— Extl, (M, M) — 0.
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3.3 Deformed Preprojective Algebras

Apply (—)* = Homg (—, K) to obtain an exact sequence

by Vb *
0 — Extly (M, M)* —— Rep(A, M)* 225 Endp(M)* —225 Endyy (M)* — 0.

The isomorphisms 0 = #M and ¥ = 9™ from Lemma 3.2.11 and Corollary 3.2.12 make

the following square commute:

ab *
Rep(A, M)* L2 End,(M)*

o] [

Rep(A*, M) —— End (M)

It remains to verify that 0 and t = (1°)* o 9 act as claimed. For t this is evident and for

it suffices to check
(&) 00) (M) = O(pMo 4,MY — gMo 4. M),
Evaluating at f and applying Lemmas 3.2.10 and 3.2.13, this means
tr(a-M o (0°(f))Y) = tr(a-Mo (4 MY o f—(foaM)Y)).

So we have to show (9°(f))Y = 4MV o f — (f o 4M)Y. According to Lemma 3.2.16 (b) this
is equivalent to Bb(f) = AMo(idy ® f) — f o oM, so we are done. O

We have the following two corollaries. Compare [Cra0l, Lemma 3.2].
Corollary 3.3.16. Let M € mod, ¢ (IT1*). Then tr(AM o g) = 0 for all g € Endy (M).

Proof. Tt is \M = pM = ;Mo 4,MY — 4 M o 4-M" =0(4-M) € ker(t) by Lemma 3.3.10,
Corollary 3.3.14, and Proposition 3.3.15. O

Corollary 3.3.17. Let M € mod;; (H) be indecomposable.
(a) If M lifts to a TN -module, then necessarily ¢()\) - rank(M) = 0.
(b) If M satisfies Extt (M, M) = 0, there is at most one way to lift M to a TI*-module.

Proof. For (a) combine Lemma 3.2.10 and Corollary 3.3.16 applied to g = id;;. For (b)
use Proposition 3.3.15. O

3.3.3 Reflection Functors

In this subsection we introduce reflection functors for deformed preprojective algebras of
symmetric modulations. The construction we present is a painless adaptation of Crawley-
Boevey and Holland’s [CH98]. Furthermore, Baumann and Kamnitzer’s [BK12] variant of

these functors for non-deformed preprojective algebras are covered as a special case.
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While Crawley-Boevey and Holland defined the reflection functors only for vertices with
invertible deformation parameter — and obtained equivalences —, Baumann and Kamnitzer

considered the non-deformed situation — and obtained a pair of adjoint functors.
Let M € Mod(II*") and fix j € Q,. For notational simplicity we write 7, 1, and X instead
of ¥ M and AM. Recall that mif; = A; by Corollary 3.3.14. We define

M;_ = ker(7rj)7 Mj_ = ]<_M/1m(u])

Inspired by the diagram depicted in [BK12, Remark 2.4 (ii)] we have schematically

where ,u;r and m; are the canonical inclusion and projection and the maps 7[';_ and p; are
both induced by the endomorphism x; = p;m; — A;.
Remark 3.3.18. The endomorphisms x; and «; = p;7; form a pair of generalized orthogonal
projections in the sense that X? = AjX;s 7]2 = A;7j, and x;v; = ;x5 = 0.

Obviously, W;“u;' = —\; and T = —Aj IE A € R]-X, then by Remark 3.3.18

jeM = ker(m;) @ im(u;), ker(m;) = ]\4]Jr = My, im(py) = M.

On the other hand, if A\; = 0, it is possible to fill in unique morphisms in the above diagram,

indicated by dotted arrows, such that every subdiagram is commutative.

This construction yields modules M*, M~ € Mod(H), where for + € {+,-}, a € ;, Qy,
M;t = W;tuav M(iE = v(Ea*T(a:u';'t)?
and MZ-i = M, for i # j and M = M, for a & Q1.
The assignment M ~ M¥ extends in a canonical way to a functor Mod(I1*) — Mod(H).

Definition 3.3.19. Let r; € Auty(Z(R)) be the map defined, for A € Z(R), i € Qy, by

(ri(A)i = - .
)\i —+ (I)U()\]) OtherWISe.

if i = j,

Remark 3.3.20. It is 7,]2 = idy(p), and (r;())); is invertible (resp. zero) if and only if A; is

invertible (resp. zero). Moreover, r; = idzpy if A; = 0.
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3.3 Deformed Preprojective Algebras

Remark 3.3.21. Assume that ¢ is a rank-aware structure for . This implies Bij = —Cij-
Thus (r;(A)); = A; — ¢;jA; for i # j and \; € K. So r; restricts to a map K@ — K@ that

is (induced by) the transpose of the simple reflection s; € Aut(Z%0). Compare [CH98, § 5].

o
The next lemma shows that M — M= induces a functor Mod(IT*) —— Mod(IT"iV) .

Lemma 3.3.22. The element p — r;(\) annihilates M*.

Proof. We use Corollary 3.3.14. We already know W;E/L;t = —X\; = (rj()\));. Fori # j and

arrows j <— i € @, by definition

Aa ®Ri Mz

+ + + _+
(Ma*)vMa = Eax Mgl Ty g = Ea*ﬂ-a(:u’jﬂj - Aj):U’a = M(;/*Ma _Ea*)‘j

Applying first (—)" and then v(idAa @p. M,) ©—, Lemma 3.2.16 (c) and (a) show

v A M.
ME(MEY = My MY — ¢, (idAa@)R‘Mi) o (A.“®R" :

\% -
j ) = Ma*ML;/_Ea*(ﬁa(Aj)

With the help of Lemma 3.3.10 and Corollary 3.3.14 we can conclude as desired

mEpE = Y e MEME)Y = mp + Y B,() = N+ 3;(0) = (). O
j<—ai€@1 j<—ai€@1

If A\; € R; is invertible, the functors Z;r and 2 are isomorphic and we set ¥; := E;r.

The next proposition is proved in complete analogy to [CH98, Theorem 5.1].

Proposition 3.3.23. Let j € Qg such that \; € ij. We have quasi-inverse equivalences:

Mod (IT*) <—T>] Mod (117 M)

J

For M € mod, ¢ (TI) the module ¥ (M) is locally free with rank(¥;(M)) = s;(rank(M)).

Proof. 1t is an easy consequence of the construction and the invertibility of A; that the
endofunctor ¥;%; of Mod(IT*) is isomorphic to the identity. Analogously, this is the case
for the endofunctor X;%; of Mod(IT"iV). The decomposition jeM = ker(m;) @ im(p;),
where (X;(M)); = ker(r;) and M; = im(y;), shows that X;(M) is locally free because ;,_ M

and M; are free. It also proves the formula for the rank vectors. O

Every module M € Mod(IT*) has a submodule sub,(M) and a factor module fac;(M)
given as sub;(M) = ker(u;) and fac;(M) = M/(im(m;) + >, .; M;). We have the following
version of [BK12, Proposition 2.5] and [GLS16a, Proposition 9.1].

Proposition 3.3.24. Let j € Qg such that \; = 0. Then (Z;,E;’) is a pair of adjoint

endofunctors of Mod(IT*) and there are short exact sequences

Oﬂsubjﬂid—)z;_gj_%o, OHZ;EjHidHfachO.
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3 Symmetric Modulations

Proof. The adjunction follows from Lemma 2.3.4, A; = 0, and the universal properties of
kernels, cokernels, and direct sums. See [BK12, Proof of Proposition 2.5] and [GLS16a,
Proof of Proposition 9.1], where the argument is given in detail. For the existence of the

exact sequences note Mj_Jr = im(y;) and Mj+_ = jM/ker(m;) = im(7;). O

3.4 Auslander-Reiten Translation via Coxeter Functors

This section builds on [GLS16a, §§ 9-12]. We point out the necessary adaptations to make

Geif}, Leclerc, and Schréer’s arguments work for symmetric (local) modulations.

Gabriel proves in [Gab80] for path algebras H = K@ of unweighted acyclic quivers that
Bernstein, Gelfand, and Ponomarev’s [BGP73] Coxeter functor C* coincides with the
Auslander-Reiten translation 77 essentially up to a sign change. More precisely, the subbi-
module II; of the preprojective algebra II generated by the dual arrows a* represents both,

the twisted Coxeter functor C*T and the Auslander-Reiten translation 77, i.e.
CTT = Homy(Il;,—) = 7.

Geif}, Leclerc, and Schréer showed that these isomorphisms are valid in a broader setting,

not on the whole module category, but after restriction to locally free modules.

Convention 3.4.1. Assume that () is acyclic and H local and symmetric.

Fix a symmetric structure ¢ on R.

3.4.1 BGP-Reflection and Coxeter Functors

Notation 3.4.2. For j € @, let H*/ be the submodulation of H induced by @* C Q.

Let H*) = Hy+; and denote by t; the R-algebra map H*J — H given by Lemma 2.4.32.

There is a functor Mod(H) Lo, Mod(II) that extends each H-module M to a II-module
with M . = 0 for all a € @; (and maps morphisms to themselves).

R; .
Definition 3.4.3. For j € Qy let Mod(Il) —~ Mod(H*’) be the restriction functor

induced by the composition of ¢; with the canonical projection H — 11. Define
F]f:Rjozjoco, F7 = Rjo¥; oLy.
F; 4
In the case that j is a sink or a source in Q we define Mod(H) —— Mod(H*) as

F1 if j is a sink
_ J ’
F; =

Fj_ if j is a source.

Remark 3.4.4. Let j be a sink or a source in ). The functor Fj is a generalization of the
“Image functor” in [BGP73, §1]. For example, if j is a sink in @, let M € Mod(H) and
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3.4 Auslander-Reiten Translation via Coxeter Functors

given by multiplication (compare Notation 3.3.12). Then (F]*(M))j = M;r = ker(m;).

Recall that a module M € Mod(H) is called rigid if Ext} (M, M) = 0.

Proposition 3.4.5. Let j be a sink or a source in the quiver Q. For every locally free
and rigid module M € mod(H) the module F;(M) is locally free and rigid, too.

Proof. With Proposition 3.3.24 at hand, we can use [GLS16a, Proof of Proposition 9.6]. [

Definition 3.4.6. Let + € {+, —} and let (iy,...,%,) be any t-admissible sequence for Q.
The Coxeter functor CF for H is the endofunctor F.= - - szf of Mod(H).

Remark 3.4.7. As indicated in [GLS16a, § 9.4], the argument given in the proof of [BGP73,

Lemma 1.2] shows that C* does not depend on the choice of the +-admissible sequence.
Remark 3.4.8. With Proposition 3.3.24 it is easy to see that (C~,C7) is an adjoint pair.

Definition 3.4.9. The twist T' € Autr(H) of H = R(A) is induced by A =, ACH.
The automorphism of Mod(H) induced by T' € Autz(H) is again denoted by T'.
The twisted Cozeter bimodule 11; is the sub H-bimodule of II = II;, generated by A*.

Remark 3.4.10. Tt is T? = id and C*T = TC* for + € {+, -}

The following is the key result [GLS16a, Theorem 10.1] in our setting:

Theorem 3.4.11. We have CTT = Homy (I}, —) and C~T =11, ® g — as endofunctors
of Mod(H). Moreover, CYT = 1% and C~T = 7~ as functors mod,; (H) — mod(H).

3.4.2 Gabriel-Riedtmann Construction

Before giving a proof of Theorem 3.4.11, we discuss what form the Gabriel-Riedtmann
construction takes in our context. Compare [Gab73, § 5] and [GLS16a, § 10.2].

Definition 3.4.12. The Riedtmann quiver defined by @ is the weighted quiver @ with
vertex set Qg = {ipz|i€Qy,+ € {+,—}}, weights d;, = d;, and arrow set
Q1 = {j:t<—ii:|:|j<ii€le te{+, -} U{j,——i |j+«ieQ}.
The Riedtmann modulation defined by H is the K-modulation H = (Ry, Ag)ig for Q
defined by R;, = R;, Ay, = Aq, Agr = Aj. Let R= Ry and A = Ag and H = Hy.
Warning. In [GLS16a] the letter H is not used for Hy; but for its quotient I defined below.

Ezample 3.4.13. We reproduce [GLS16a, Example 10.2.2] to account for our slightly
different notation. Let Q be the weighted quiver j — i &k with dj=1,d; =dj, =2 of
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3 Symmetric Modulations

type Bs. Then the Riedtmann quiver @ looks as follows:

_ iy

~
-

L
N S

k k.

Notation 3.4.14. For + € {4, —} there are injective non-unital K-algebra morphisms

H = H

induced by the identities R; d, R; and A, i, A, -
Furthermore, there is an injective K-algebra morphism

H* <,

(idid)T

induced by R; R @R, and A, -5 A,

Inspired by [Gab73] (slightly deviating from [GLS16a]), we use the following notation

for the restriction functors induced by ny and 7n,:

Mod () ——, Mod(H) Mod () ——=*— Mod(H*)
M — R (M) M — Ro(M)

Remark 3.4.15. The ground ring of H factorizes as R = R~ x Rt with R* = 7, (R) and
the species decomposes as A = A~ @ A* ® AT with AT = 5, (A) and A® = 7, (A*).

Remark 3.4.16. For M € Mod(H) as R-modules Ry(M) = R_(M) & R, (M) canonically.
Moreover, note that zm, € R_(M) and am_ =0 for all z € A* C H* and m, € R, (M).

Multiplication in the H*-module R4(M) induces an R-module homomorphism
* oM
A QpR, (M) —— R_(M).

Definition 3.4.17. A Riedtmann A-representation is a triple (M_, M, r),) consisting

of two H-modules My and an R-module morphism A* ®@p M, MM

(f—.f+)
TR

A morphism of Riedtmann A-representations (M_, M, k) (N_,N,,ky)isa

pair of morphisms M4 f—i> N4 of H-modules making the following square commute:

A @M, —— g

J(id® i lf_

A OpN, NN

Lemma 3.4.18. The functor M +— (R_(M), R (M), M) defines an equivalence between
the category Mod(f[) and the category of Riedtmann A-representations.
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3.4 Auslander-Reiten Translation via Coxeter Functors

More precisely, for Riedtmann A-representations (M_, M, ky;) let M be the R-module

with underlying set M_ x M, and multiplication given as
rm = (r_m_,rymy),

forallr = (n_(r_),ny(ry)) € R~ x Rt = R with r_,ry € Randm= (m_,my,) € M.

There is a unique H-module structure ;M on M making the following diagrams commute:

14+ ®id e ®id

ARpM, ——— S ATz M, A*@r M, A* @M,
;;Z;\\y iM % aM
My M_
Proof. This is similar to the proof of Corollaries 2.2.19 and 3.3.11. O

As mentioned during the definition of the preprojective algebra (at the beginning of

§ 3.3), there are isomorphisms
AT Endp(pAd) — 2 At @ A A gn AT CH,

1N- e

A= : Endg(Ap) — = Agp A* A~ @pA* CH.

Definition 3.4.19. The Riedtmann algebra for H is T = H/(p) where
p = At(Gd)+A(id) € H.

Notation 3.4.20. Let M € Mod(H). For arrows j <= i € Q) we abbreviate, similarly as
before, AM = A, ®p, M; and AM = A,. ®R, M;. Moreover, define for each j € Qg

a*t —
_ M _ M
M= A, M= G Al
s Jpari

where the sums are taken over arrows in Q).

a*

=~ _ = ~ _ ~ \
i = Z Maﬂ-a ’ :ujJr - Z .uaMa :
R i

Let ; . M LN AM and AM Hay . M be the canonical projection and inclusion. Set
J— J4+—

Finally, define 7 = Zjer 7; and ji = szQo 1j, -

When we want to stress the dependence of 7, [i etc. on M we write 7, ™ etc.

Using the correspondence given by j,(—a; i j+a—*> 7_ and j,<a—* ky < j+—(£r—> k.,

we identify ;M with ; . M so that MM is a well-defined element in

EndR+_>R_(M) = @ HOij(Mj+,Mj_).
JEQo

We denote by p™ the element in End r,—r_(M) given by left multiplication with p.
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Lemma 3.4.21. Let M € Mod(H). Then pM = Yacq, (Mg My, + M, M) =7MpM
In particular, M € Mod(f) if and only if ™M M = 0.

Proof. This can be proved analogously to Lemma 3.3.10 and Corollary 3.3.14. O
Convention 3.4.22. Just as [Gab73, § 5.5] and [GLS16a, § 10] we will assume for
notational simplicity that Qo = {1,...,n} and (1,...,n) is a +-admissible sequence for Q.

Remark 3.4.23. Let 0 < ¢ < n. The full subquiver of @ on the vertices ¢, with 1 <7 </
and i_ with ¢ < i <n can be identified with the quiver

Q= (- (Q)2.. )M
viaQéL—Z>C§givenbyir—>i+forlgigfandi»—m'_for£<i§nsendingj<ii€tho

a_ ifi>/fand j >/,
yla) = ¢a, ifi<flandj </,

a otherwise.

Definition 3.4.24. For I C Q, we denote by f‘(I) the algebra e;l'e; with e; = Y icr Ei
For 0 < /¢ < n set

M= T({ip|1<i<e}u{i_[e<i<n}),

I = T({ig|1<i<f}uf{i_|1<i<n}).

Let HY be the path algebra of (- -- (H*1)*2...)* and H* ey T the non-unital K-algebra
homomorphism induced by the identities R; — R,,;) and A, — A, (,), whose image is It

For the restriction functors corresponding to 77, and the inclusion 1 C T we write

Res,

Mod(T%) —24 Mod(H?), Mod(T) — s Mod(T*Y).

Remark 3.4.25. As was pointed out in [Gab73, § 5.5], the right adjoint Res’ of Res, can be
explicitly described as follows: It sends each I“~L-module M to the I-module M+ with

for i # 4,

7 (2

M, = ker ("), M = M;

such that for all j <% i the map (M;")" is induced by the canonical projection, if i = ¢ T

and is equal to M, otherwise. We summarize this remark in the next lemma.

Lemma 3.4.26. ﬁz Res® = F;r ﬁi,l.

Proof. This follows from Remark 3.4.25 and the definition of FZ-+. For a more detailed
argument see [GLS16a, proof of Lemma 10.2]. O
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Notation 3.4.27. Let + € {4, —}. Denote by 77 the composition of H <™ H with the
projection H —» I and by R the corresponding restriction functor Mod(I') — Mod (H).

As usual, H % L T defines a coinduction functor:

Mod(H) R Mod(T)
M ———  Hompy (R4 ('), M)
Remark 3.4.28. 1t is a standard fact that (ﬁi, ﬁi) is an adjoint pair.

Remark 3.4.29. Tt is 77, = 7,, and 7j_ = 1 0 7}, for the canonical inclusion I'* = 0T,

Therefore R L= ﬁn and R_ = ﬁo Res; - - - Res,,, so R~ = Res”---Res! R? for every

quasi-inverse of the equivalence RY of R,.

Corollary 3.4.30. C* =R, R™.
Proof. By Lemma 3.4.26 and Remark 3.4.29

Ct = (Ff- - FNRyR® = R, (Res™-- - Res) ) RY =~ R, R™. O
Lemma 3.4.31. ﬁJr R~ = Homy (I, T(-)).

Proof. Let I, = {iy|i € Qy} and ,f+ be the H-bimodule with underlying set e; feLr
and multiplication given, for z,y € H and z € _f+, by

zzy = n-(T(x)) -z n(y).
Then R, R~ = R, Homy(R_(T),—) = Homp(_T,,T(-)).

It only remains to observe that T L =11, as H-bimodule. O

The next two definitions generalize [Gab73, § 5.4] and correspond to [GLS16a, § 10.4].

The aim is to provide an explicit description of R

Definition 3.4.32. Let Mod(H) N Mod(H) be the functor that sends H-modules M
to H-modules M with

R_(WD) = M, Ry (M) = Homp(A* @y H, M),
Mo f) = fzol) forx®f€A*®RR+(]\7).

Take for the action of R~ on morphisms the obvious one.

Definition 3.4.33. For f € R+(J\7) we denote by f = f]ﬁv[ the map AQprA*®@rH — M
obtained by postcomposing id 4 ® f with the multiplication map 4 M. Define

P = AT(id), o= A(id).
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For every z € H the element p, z will be regarded as an element in A* ®z H and p_z as
an element in AQp A* ®@p H.

By the next lemma, M — M induces a subfunctor Mod(H) R, Mod(T) of R~ where

—

R_(M) = M, R (M) ={feR (M)|f(5e2)+ f{(p_z) =0forall zc H}.
Remark 3.4.34. Obviously, p, + p_ = p. In Hompg(H, M) we have for each f € R+(M)
F(fr-=) = foull”,  f(p_-=) = aMof".
Lemma 3.4.35. M is an H-submodule ofM and is annihilated by p.

Proof. To prove that M is an H-submodule we have to verify g = M, (x® f) € M j, for

at
This is clear, since for all z € He;

—

every j «— i€ Q, and z® f € A, @p, M

iy
9(p1z) = f(pyzz), 9ﬁ<ﬁ—z) = fﬁ(ﬁ—zx)-
A straightforward calculation yields for each f € M iy the identities
( > MG*ML)U) = f(74), < > Mam><f> = fp).
ate ate

Lemma 3.4.21 now implies that p = p, + p_ annihilates M. O

Lemma 3.4.36. R~ = R~.

Proof. 1t suffices to check that R~ is another right adjoint of R_. The proof of this fact is
similar to [Gab73, § 5.4] and [GLS16a, proof of Lemma 10.3].

Let N € Mod(T') and M € Mod(H). Then we have as R-module R_(N) Dico, Vi
canonically. It is clear that the rule
9 = (9)ic, = (9 )icq,
induces a map Homg (N, ]\/D - Homy (73,(]\/'), M), which is natural in N and M.

Using the definition of M , the fact that ¢ is a morphism of H-modules can be reformulated

as follows: The family (g; );cq, is @ morphism R_(N) — M of H-modules and (x) holds:

(*)ForalliEQoandTZENi+ and€<—b—k€Q1andyeAng*andzEHei,

9j, (Na+(x®n)(y ®2)) if z =2z with j <~ i€ Q and z € 4,,
9, (M) (y®z) = g (Np-(y®n)) if z=¢; and ¢ =1,
0 if z =e; and ¢ # 1.

Note that N,, (x®n) = n, (z)n and Np-(y@n) = n,(y)n. Since Q is acyclic, condition (x)

is easily seen to be equivalent to the following:
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(%) For all i € Q zmdneNi+ andé(—b—k:te and y € Ay C A* and z € He;,
9, (M) (y®2) = gp_(Me(y)ny(2)n) .

Clearly, (%) implies the injectivity of r.

Vice versa, given a morphism g = (g;_);cq, from R_(N) to M, we can use (%) to extend

it to a morphism N 9y M. Indeed, property (%) describes the well-defined R-linear map
gl+(n) = gomy,,
where A* ®p He; —s N is given by y ® z > Ne(y)n4 (2)n. Evidently, g;, is R;-linear.
To conclude that r is surjective, it merely remains to check that g maps N into M.

This means we have to show f(p,z) + f*(p_2) =0forne N, , f = 9i, (n), and z € He;.

'L+7

Straightforward calculations yield f(p,z) = g(p 1. (2)n) and fH(p_z) = g(p_n,(2)n).
This completes the proof, because the I-module N is annihilated by p,. +p_ =p. O

Lemma 3.4.37. For all M € mod,; (H) there is an isomorphism 77 (M) = 75,+7/?\,_T(M)
that is natural in M.

Proof. We have a commutative diagram

RyR T(M) = Homp(A*®@r H, M) Homp(H, M)

I I
(0°)*

Homp(A®pr M, H)* Hompz(M, H)*

l |

Hompy(H ®r A®r M, H)* ——————— Hompy(H @z M, H)*

where the vertical arrows are isomorphisms. Namely, ¥ = 9™ is the isomorphism induced
by the trace pairing (see Lemma 3.2.11). The map 6 is the isomorphism given by trace
and adjunction (see Definition 2.2.15 and Lemma 3.2.11), i.e. 8(f)(g) = tr(fg"). The two
unnamed arrows are the canonical isomorphisms. Finally, & = Homy (9, H) for the map 0
from Corollary 3.1.14, 9(f)(z) = f(pyz) — f}h(ﬁ_z), and 0 (g)(z ® m) = zg(m) — g(zm).

Compare & to the map with the same name appearing in the proof of Proposition 3.3.15.
Similarly as there, but using additionally Remark 3.4.34, the commutativity of the lower

square boils down to the formula
tr(f o (0°(9))") = tr((foal" —aMof')og).
for all f € Homp(A* ®r H, M) and g € Hompg(M, H). Lemmas 3.2.10, 3.2.13 and 3.2.16
together with the fact 8°(g) = 4H o (id ® g) — g o 4 M show that this is true.
Note that 7%+7€_T(M) = ker(d) because of f:ﬁF(M) = —f]ﬁv‘,.
Hence 7€+7€_T(M) = ker(9) = ker((8%)*) Ext}; (M, H)* = 7+ (M) by Corollary 3.1.14

and Lemma 3.1.29 (a) and the commutativity of the diagram, which is natural in M. O
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3 Symmetric Modulations

Proof of Theorem 3.4.11. By Corollary 3.4.30 and Lemma 3.4.31 C*T = Hom (IT;, —).
We conclude C~T = II; @ y — with Remark 3.4.8.

Let M € modj; (H). Then 7 (M) = 7%+7€*T(M) due to Lemmas 3.4.36 and 3.4.37.
Together with Corollary 3.4.30 this shows 77 (M) = CtT(M), natural in M.

To prove 77 (M) = C~T(M), recall that H* is locally free by Lemma 3.1.10. Therefore
(M) = Ext} (H*, M) = Hompy (M, (H*))*
by Lemma 3.1.29 (b) and (c¢). Furthermore, 77 (H*) = C*T(H*). So with Remark 3.4.8
77 (M) = Hompg(M,CTT(H*))* = Homy(C~T(M), H*)* = C~T(M).

It remains to observe that this isomorphism is also natural in M. O

3.4.3 7-Locally Free Modules

This subsection generalizes the finite-type classification for mod,_;¢ (H) in [GLS16a, § 11].

Definition 3.4.38. Let mod,_;; (H) be the full subcategory of mod, ¢ (H) consisting of
all modules M such that 77(M) € mod,; (H) for all p € Z.

We state the analogs of [GLS16a, Proposition 11.4, Theorems 11.10 and 11.11].

Proposition 3.4.39. Let M € mod, ¢ (H) be rigid. Then M € mod,_; (H).
In particular, P;, I;, E; € mod,_1¢ (H) for all i € Q.
Proof. The proof is identical to [GLS16a, proof of Proposition 11.4]. More precisely, combine

Proposition 3.4.5, Theorem 3.4.11, Definition 3.4.6, and Lemmas 3.1.9 and 3.1.10. [

Theorem 3.4.40. Let H = Hy, be the path algebra of a symmetric local K-modulation H
for a weighted acyclic quiver Q. Then:

(a) rank ({T7P(P), 77P(L;) [p € N, i € Qo } \ {0}) € AL(Q).

(b) There are only finitely many isomorphism classes of indecomposables in mod,_; ¢ (H)

if and only if Q is a finite union of Dynkin quivers.

(¢) If Q is a Dynkin quiver, M — rank(M) yields a bijection between the set of isomor-

phism classes of indecomposables in mod.._y ¢ (H) and the set of positive roots AL (Q).

(d) If Q is a Dynkin quiver, for every indecomposable M € mod,; (H):
M emod,_1;(H) & M is rigid
& M X 77P(P) for somep €N, i € Q

& M2 7P(L) for somep €N, i€ Q

Proof. The proofs of [GLS16a, Theorem 11.10 and 11.11] can be used verbatim. O
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3.4 Auslander-Reiten Translation via Coxeter Functors

3.4.4 Preprojective Algebras Reuvisited

This subsection generalizes results from [GLS16a, §§ 10.6, 11.3, and 12].
Recall that H (II;) stands for the tensor algebra of the H-bimodule IT;.

Lemma 3.4.41. 11 = H(II;) as H-algebras.

Proof. We use the same trick as the proof of [GLS16a, Proposition 6.5]. Consider A = A®A*
as a graded bimodule where elements in A have degree 0 and elements in A* degree 1.
The tensor algebra H = R(A) inherits an N-grading from A. Namely, the homogeneous
component H, of degree s is generated by all A®™ @p (A*)®1 @p -+ @p A% @p (A*)D5n

as an R-bimodule where n € N and r{, s1,...,7,,S, € Nsuch that s; +---+s,, = s.

We have IT = H/J where J = (p) is the ideal generated by the homogeneous element p
of degree 1. Therefore the grading of H induces decompositions J = @, J, and IT = @, II,
where II, = H,/J,. Note that J, =0 and IIy = Hy = ,, A" = H.

There is a morphism A < H(II;) of R-bimodules induced by the inclusions A — H

and A* — II;. We have the following commutative diagram of canonical maps:

/

=
T
&

Hiy g e

—_
~
A

/
N\

The dotted morphisms are given by the universal property of the tensor algebras H = R(A)
and H(II;) (see Lemma 2.2.6). The dashed map f is induced by the universal property
of Il = H/J. Indeed, f(J) = 0 because J is generated in degree 1 and, clearly, f(J;) = 0.

It is easy to see that f and ¢ are inverse H-algebra isomorphisms. O

Proposition 3.4.42. ylI =@ g7 P(gH). In particular, Il € Mod, ¢ (II).

Proof. This is identical to [GLS16a, proof of Theorem 11.12]. Namely, T1; = Extk (H*, H)
as H-bimodule with the same argument as in [GLS16a, proof of Theorem 10.5]. Moreover,
by induction and Lemma 3.1.29 (b) Extl,(H*, H)®P = r=P(H). Now use Lemma 3.4.41 to
obtain the first statement. For the last statement apply Proposition 3.4.39. O

The next two facts are our version of [GLS16a, Proposition 12.1 and Corollary 12.2].
Lemma 3.4.43. There is an exact sequence of II*-bimodules
Mo 2 ey Aoyl 20 e, 5 I 0

defined by 0;(1®1) =pR1+1®p, )(1@2xR1) =21 -1z, andv(l®1)=1.
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3 Symmetric Modulations

Proof. The proof is standard. Let A = IT* and J the ideal of H generated by r = p — \.

By definition A = H/.J and the A-bimodule morphism A ®z A — J/J? with 1®1 + r is
surjective. Recall that Tor{! (A, A) = J/J? (see [CE56, VI. Exercise 19]) and apply A ®7 —

to the sequence from Corollary 3.1.14 for M = A to get an exact sequence of A-bimodules
IO s A Aoph — s A@pA Y A 0.

Let H -2 H®prA®pH be the R-derivation defined by §(z) = 1® 2 ® 1 for z € A.
According to [Sch85, Theorems 10.1 and 10.3] the map él can be taken to be induced by §.
Then él om = 0;, which proves the lemma. O

Corollary 3.4.44. For all M € Mod(II) there is an exact sequence

0 — 0, v
of -modules with ;(1@m) = p@m+1® >, (p, @ pf m) if p= >, phpi with p}, pj € A,
and (1@ zx@m) =x@m —1®xzm, and v(1 ® m) = m.

This is the end of a projective resolution for all M € Proj%(H).

Proof. Apply — ®g M to the sequence in Lemma 3.4.43 to obtain a sequence isomorphic
to the one in the statement. For the exactness note that the sequence in Lemma 3.4.43
for A = 0 splits as a sequence of right R-modules, since Il is projective by the right-
module version of Proposition 3.4.42. For the last claim we can argue as in the proof of

Corollary 3.1.14, using that pII is projective according to Proposition 3.4.42. O

Proposition 3.4.45. Ext{;(M, N) = Ext (N, M)* for M € Mod, ¢ (IT), N € mod, ; (IT).

This isomorphism is natural in M and N.

Proof. Applying Homp(—, N) to the exact sequence from Corollary 3.4.44 we get a com-

mutative diagram where the vertical maps are the canonical isomorphisms:

a4 . a4
Hompy(IT®@z M, N) —— Homy(IlI®@z A®@p M, N) —— Homy (Il @z M, N)

J gM.N J oM.N J

Homp(M, N) ——— Hompz(A®pr M, N) ——— Homp(M, N)
Moreover, Bé\/[’N acts on f € Homg(M, N) and af” on g € Homp(A®pr M,N) as

86\4’]\](]0) = Z (Nao (1d®f) _fMa>7 8{\/[7]\[(9) = Z €q (Na*gc\z/ _gaMz;/*) .

acQ, a€Q,

By Corollary 3.4.44 and the commutative diagram above we know that

Homj;(M, N) = ker (85", Exti (M, N) = ker (8;"") /im(95") .
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Hence, it suffices to show that there is a commutative diagram, natural in M and N, where

the vertical maps are isomorphisms:

8M,N . 8M’N
Homp(M,N) ———— Homp(A®z M, N) ———— Homp(M, N)

Loy P

Homp(N, M)* = Homp(A®x N, M)* ——— Homp(N, M)*

It is easy to check (similarly as for the last diagram in the proof of Proposition 3.3.15)
that the isomorphisms ¢ and 6 given by ¥(f)(g) = tr(fg) and 6(f)(9) = >_.cq, €a tr(f,g0x)

make the diagram commute. O

Corollary 3.4.46. For M, N € mod,;; (II) one has
(M,N)y = dimg Hom}(M, N) 4 dim g Hom{;(N, M) — dim Ext; (M, N) .
Proof. Use (part of) the proof of [GLS16a, Theorem 12.6]. O

The concluding corollary is the analog of [GLS16a, Corollary 12.7].

Corollary 3.4.47. If Q) is a Dynkin quiver, 11 is self-injective.

Proof. The algebra II is finite-dimensional because of Theorem 3.4.40 and Proposition 3.4.42.
Right-module versions of Corollary 3.4.44 and Proposition 3.4.42 yield an exact sequence
0 — Z — P — II* — 0 of finite-dimensional locally free right II-modules with Py projective.
Applying (—)* leads to an exact sequence 0 — I — P* — Z* — 0 of locally free II-modules.
This sequence splits thanks to Extl;(Z*, 1) = Ext{;(II, Z*)* = 0. Hence, II is injective as

a summand of the injective module 7 P*. O
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4 Potentials for Cluster-Tilting Subcategories

Let A = (V, E) be an undirected multigraph without loops and with V' = {1,...,n}.

Buan, Iyama, Reiten, and Scott associated in [BIRS09, § I1.4] a quiver Q(s) = Q(A,s)
with every finite sequence s = (sy,...,8y) in V. We show in this chapter that any full

subquiver of Q(s) admits an up to right-equivalence unique non-degenerate potential.

If s corresponds to a reduced expression for an element of the Weyl group Wx of A,
the quiver Q’(s) of the cluster-tilting subcategory associated with s in [BIRS09] is a full
subquiver of Q(s). Furthermore, Q’'(s) is the quiver I'(s)°? = I'(—s) from [BFZ05, § 2.2]

when s and —s are considered as reduced expressions for elements of Wa X Wa.

4.1 Quiver of a Cluster-Tilting Subcategory

Let us recall and rephrase for our convenience the definition of @ = Q(A, s).

The vertices of @ are Qg = {1,...,¢}. To define the arrows we need some notation:

(a) For v € V denote by IV = {i} <--- < ifv} the subset of Qg such that (s;);crv is the
subsequence of s consisting of the members equal to v. We set T(Z;)) = ;’ 1-

(b) Forv#win V let I;""U--- UIZ”w be the partition of IV U I such that

« I7Y > 17" for each j > 1, ie. i >4 foralli € [, i' € I}, and

* (87);erv is constant for each j, say with value ¢, where ¢ # ¢ for j > 1.
J

Denote by i3 the greatest element of I;"" and call it the last vertez in the j-th v/w-group.

If v —w is an edge in A we write ¢, j, If ete. for £, » q;w, I;-)’w etc.

Now we can describe the arrows of (). For each v € V and 1 < j < ¢, there is an arrow

by
i ———if.
in Q. We set b(z;’) := b}. Furthermore, for each v <~ w € Fand 1< j<t, the quiver Q
has an arrow
05" i34 -

Hence, @ has as many parallel arrows from the last vertex in the j-th v/w-group to the

last vertex in the (j + 1)-st v/w-group as A has edges between v and w.
This concludes the definition of Q).

We continue with the construction of a rigid potential on Q.
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4 Potentials for Cluster-Tilting Subcategories

4.2 Rigid Potentials

Convention 4.2.1. Let I/(ZQ be the completed path algebra of ) over K.

Two potentials W and W' on Q are right-equivalent if there is f € Aut,.q, ([/(@) such
that f(W) = W’'. Compare Definition 2.6.61 and Remark 2.6.62.

For non-zero elements = € KQ (or for potentials z on @) denote by @i, = Proq(z)(7)
(see Notation 2.6.7) the non-zero homogeneous component of z of lowest degree with respect

to the length grading. Set 0,,;, := 0.

min

We write ¢ ~ y for elements z,y € I/(Z) (or for potentials z,y on Q) if T = Ymin-

Potentials W and W' are minimal-degree equivalent if W,;, and W) . are right-equivalent.
The set of paths in the quiver @ is denoted by Pg. A cycle in Q is a subquiver of Q
spanned by a cyclic path. Every cyclic path can be naturally regarded as a potential on Q).

Notation 4.2.2. For v # win V and 1 < j <t,,, there exists a (unique) o;"" € N, with

o (i) =i

Set by (t) := b(Tt_l(igfl)). Then for v -~ w € E we have the following cycle ¢§ in Q:

€
tj

i
j—1 ERCKY) v, W j+1
bj (Oj ) bj (1)

With the abbreviation b5 := b;f’w = b;f’w(o;f’w) . -b;f’w(l) we can write ¢ = bafa$_;.

Definition 4.2.3. Taking the sum of the cycles ¢§ over all e € E'and 1 < j <, yields a
potential on Q(A, s):

W(A,s) = Zb}”wZa?a;_l = ch
VW e e,]

As was already observed in [BIRS11, Theorem 6.5], the potential W (A, s) is rigid.

We prove that it is up to right-equivalence the only non-degenerate potential on Q(A, s).

These facts rely on the following observation.

Lemma 4.2.4. Every cycle in Q(A,s) is of the form pbla§ for some e € E, 1 < j <t,,

and some path p in Q(A,s).

Proof. Let ¢ be a cycle in Q@ = Q(A,s). Choose i € {1,...,} = @y minimal with the
property that i belongs to c. Then by the definition of Q) there exist v € V, 1 < 7' <t,,
and 0 < r <t, — j such that i = i;?_l and b = b;?,---b}?uﬁ
that r is maximal with this property. Then there is e € £ and 1 < j < ¢, such that baj

occurs in c. Let us assume

occurs in ¢. By the choice of i we must have b =/ bj for some path b in Q. O
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Before we continue with the central statements we introduce some additional notation.

Notation 4.2.5. For each path p in Q = Q(A, s) we denote by £(p) its length and by £(p)
the degree of p with respect to the —-grading, i.e. the grading of K@) that assigns to each

arrow aj degree 1 and to each arrow b} degree 0.
In plain words, Z(p) counts the occurrences of arrows of type aj in the path p.

Let z be an element in KQ (or a potential on Q). We write £(z) or £(x) for the degree

and —-degree of x, if x is length-homogeneous or —-homogeneous, respectively.

Denoting by ﬁg(m) the projection of x onto its /-th —-homogeneous component, define

cﬁi(z) := min {{ € N| pty () # 0}.

A unitriangular automorphism f € Aut o, (@) is said to be of —-depth n € N if

— — -

ord(f(z) —z) > ord(z) +n = l(x) +n
for all —--homogeneous = € I/(Z)

Proposition 4.2.6. The potential W = W (A, s) is rigid. More precisely, for every cycle ¢
in Q@ = Q(A,s) there are —-homogeneous p; in KQ with Z(pj) = 0(c) — 1 such that

¢ = pi0.(W
e,J

Proof. By Lemma 4.2.4 there exist ¢’ € E, 1 < j' < t./, and p € P such that ¢ = pbjiajﬁ.
Clearly, (p) = 0(c) —

If 7/ = 2, we have

If j' > 2, the identity 0 ., (W) =20 2 (c¢5r_1) + 0, () = a # 2be, L+ b;;aji shows

Ty

c—pc')/(W) pa b
J

By induction we can write ¢ := pa b =2 13;38 (W) with Z(ﬁj) =) —1=4(c)—
Thus ¢ =3, ; 50, (W) where p§ = —pf for all (e, j) # (€', j'— 1) and P;jq =p— ;5;;71.

—

Moreover, it is K(pj) ={(c) — 1 as desired. O

Notation 4.2.7. Let Q' be a full subquiver of @ and let W be a potential on Q.

Following Definition 2.6.64 we write W|g := I/V|Q/1 for the potential obtained by
restricting W to @'.

For elements x = ZPEPQ T, p in I/(ZQ with z, € K we set x|gp = ZpGPQ/ T, .
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Corollary 4.2.8. Let Q' be a full subquiver of Q = Q(A,s) and let W = W(A,s). Then
for every cycle ¢ in Q' there are —-homogeneous p; € @’ with E(p?) = E(c) — 1 such that

c = Zp;aa;(Wkg/) .
e?j

Proof. This follows immediately from Proposition 4.2.6 and the fact that for a € Q; we
have 0,(W)|g = 0,(W|¢g) if a € Q] and 9,(W)|o = 0 otherwise. O

4.3 Uniqueness of Non-Degenerate Potentials

Theorem 4.3.1. Let Q' be a full subquiver of Q = Q(A,s) and let W = W(A,s). Then

every non-degenerate potential on Q' is right-equivalent to Wig-

Proof. As a first step, we will show that for every cycle ¢§ completely contained in Q' every
non-degenerate potential on @’ restricts to a potential on the full subquiver spanned by cj

that is minimal-degree equivalent to the restriction of W.

For adjacent vertices v,w in A and each j the subquiver sz’w of @' spanned by all

cycles ¢§ contained in Q' with v--w € E is empty or the following full subquiver of Q':

3,
po b+t
J

Let E,,, be the subset of E consisting of the edges between v and w. If Q7" is non-empty,

every potential W;)’w on Qg’w has the form

v, w f € 1
b; Z e pazajy + W
evfeEv,w

with o, ; € K and ord (W) > £(b7") + 2.

It is not hard to see that W]v " is non-degenerate if and only if the matrix C' = (e f)e,s 18
invertible. Assume this is the case. Write C~1 = (3 f.e) e and let gpg’w be the automorphism
of KQ' given by the substitutions a;-c = 32 Breal. Then W is mapped by ¢ to

Yo G (W) RN ¢ = Wgee.

GEE,U’,UJ eeEv,w

Now let W’ be any non-degenerate potential on @’. To prove the theorem, we must

show that W’ is right-equivalent to W/

min

Assume there is some j > 1 such that W'|gue = Wlgew for all Q3" C Q' with 5 < j.
J J
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Set ¢; = vaw gp?’w where the product is taken over all Q;”w C Q' and @?’w is defined

as in the previous paragraph with W = W'|gew. Note that W'|gew is indeed non-
J J

degenerate as the restriction of a non-degenerate potential to a full subquiver and ¢; does

not depend on the order in which the gp?’w are composed.

Without loss of generality, we can replace W' by the right-equivalent potential ¢;(W’).
Then we have W'|gvw ~ W|gv.w for all Q;f,’w C @' with j' < j+ 1. Using induction we can
J J min

assume that the non-degenerate potential W’ satisfies W’]Qy,w ~ W \Qy,w for all Q;f’w cqQ.
J J
- - —
By this assumption W’ = W{g, + W’ for some potential W’ on Q" with ord(W’) > 3.
Using Corollary 4.2.8 there exist elements p”’ € KQ' with ord(pG”) > 2 such that

W’ = W|Q/ + Zpg’jaa (W‘Q/)

€
- J
€,J

Set g := id. Assume that for some n € N a unitriangular automorphism ¢,, of I?C\Q’ and
~ . — .
a potential Wy, =3~ pf{yaai(W\Q/) with ord(py?) > 2" + 1 are given such that

W, = @,(W) = Wl + W),. (%)

The automorphism ¢, of @’ defined by the rules af — aj — pf;’j is unitriangular and
has —-depth 2". A straightforward calculation yields

Pui1(Wlo) = Wl — Wiy + Y b5piipi? ™
e’j
] 0 i — €.J n _ on+1
By Corollary 4.2.8 there are p, % ; € KQ with ord(pn_H) >2-(2"+1)—1=2"""+1and
Zbip%jp%jil + (an—&-l(wrlz) - W;) = Zp?ilaa;(w’@’) = erH—l :
e7j 87‘7
Setting ¢, 11 = @,41 © ¥, Equation (x) holds with n replaced by n + 1.

—
Since lim,,_,. ord(x,) = oo is equivalent to lim,,_, . ord(z,) = oo, the sequence of
potentials (W},),en converges to W|e, and the sequence (,,),en determines a unitriangular

automorphism ¢ := lim,,_,, ¢, with o(W') = W/|y (compare Lemma 2.6.23). O

Corollary 4.3.2. Let s be a reduced expression for an element in the Weyl group Wa of A.

Then I'(s) and T'(—s) admit an up to right-equivalence unique non-degenerate potential. [
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5 Potentials for Tagged Triangulations

Motivation
The objects motivating this chapter are most practically introduced with an example.

Roughly speaking, an orbifold is a compact oriented surface ¥ with two distinguished

finite sets M, O C ¥ of points. These points are used as the vertices of triangulations.

For instance, we can see below the triangle with set of marked points Ml = {x{, x4, x5, 24}

and orbifold points O = {y;,y,}. It has been triangulated by arcs iy, iy, i3, i4, i5, g, i7.

. as50 .
g ———= iy

a-

51
is
"N

I3l

e N
as ay
DN A
A 2 .
lg —— 11

N
,S'z

The sides sy, Sq, s3 are boundary segments.

S3 51

Every triangulation 7 gives rise to a quiver Q(7). The vertices are the sides of the
triangles in the triangulation and the arrows keep track of adjacencies. The quiver Q(7) is

weighted. Sides containing an orbifold point have weight 2, all other sides have weight 1.

For our example the quiver Q(7) can be seen on the right; its weights are di, =d; =2
and dy =d,, =d,, =d; =d;, =d;, =d;, =d;_ =1.

There is a path algebra R(A) for Q(7) over R where R = R(7) = [[,cq, () B With

iy is

The R-bimodule A = A(7) = @,cq, (r) Aa is chosen in such a way that

A, for all j +%—i with d; # 2 or d; # 2,

R;@p ity = T
Ay, ©Ag, forall ji——1i with d; =2 and d; = 2.
ay

In our example, 4, @& A, =C®rC>1®1=: a5 and we have a potential

asy

W(r) = WA(r) + W*(r)

where W2 (1) = ¢1byay + cobyas + csbsas + cybyay + czbsas and W(7) = ajasasay.
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5 Potentials for Tagged Triangulations

Such a potential can be constructed for every triangulated orbifold and will depend on
the choice of two coefficient functions w : M\ 0¥ — R* and z: O — C\ R. Just as in the
example, the potential of a triangulation 7 has the form

Wuo(r) = D Wil + Y Wir)
&b °
where the first sum is taken over all puzzle pieces, the building blocks of the triangulation 7,

and the second sum over all (non-enclosed) punctures, the interior marked points.

What makes triangulations interesting, is that (some of) their arcs can be flipped, yielding

other triangulations of the same orbifold.

Flipping the arc i5 in our example, leads to another triangulation j;, (1) with the same
arcs as 7 except that the “diagonal” 75 of the “quadrilateral” with vertices yq, yq, T3, x4 is

replaced by the other “diagonal” js:

On the level of weighted quivers, this change of triangulation is reflected by mutation.

The potential W (p; (7)) = WA(,uZ»5 (7)) + W*(p;, (7)) of the flipped triangulation in the
running example, defined by W4 (115, (7)) = c1bray + cabaag + c3bzag + c5[csba] by + cj[cabs|b3

and W*(p,, (7)) = ajagasbicy, is easily seen to be obtained from W (r) via mutation at is.

Results

The first main result of this chapter is the construction of an SP S, ,(7) = (A(7), W,, (7))
for every triangulation 7 such that, whenever u,;(7) is obtained from 7 by flipping an arc,

the SP' S, ,(p;(7)) coincides with the SPs in 1,;(S, (7)) up to reduced-Q(7)-equivalence.

Ordinary triangulations can possess non-flippable arcs. For applications to cluster-algebra
theory it is however desirable that every arc can be flipped. As a remedy, one can replace

ordinary triangulations by an “enriched” version of so-called tagged triangulations.

We extend the result already mentioned to the tagged situation. That is, we will define an
SP S, (1) = (A(T), W, ,(7)) for every tagged triangulation 7. Assuming that the orbifold
under consideration is not a sphere whose total number of boundary components, marked
points, and orbifold points is less than seven, we will again prove that the SP S, ,(1;(7))
is reduced-Q(7)-equivalent to the SPs in the mutation j;(S,, (7)) for all tagged arcs 4.

The important consequence is the non-degeneracy of S, (7).

For orbifolds with non-empty boundary the Q((7)-equivalence class of the SP S, ,(7)

will be shown to be independent of the particular choice of the coefficient functions u and z.
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5.1 Triangulated Orbifolds

5.1 Triangulated Orbifolds

Fomin, Shapiro, and Thurston [FSTO08] introduced tagged triangulations of bordered surfaces
with marked points to model the mutation combinatorics of an interesting class of skew-

symmetric cluster algebras: Cluster mutation corresponds to flipping arcs in triangulations.

Felikson, Shapiro, and Tumarkin [FST12a] defined tagged triangulations in a more
general setting for orbifolds. In this way, they cover all non-exceptional skew-symmetrizable

cluster algebras of finite mutation type.

This section is a short introduction to triangulated orbifolds.

5.1.1 Orbifolds

The following notion of orbifolds is due to [FST12al.
Definition 5.1.1. An orbifold is a triple ¥ = (X, M, O) satisfying the following properties:

(a) X is a connected compact oriented smooth surface with boundary 9%.

(b) M is a non-empty finite subset of 3.

(c) O is a finite subset of ¥\ (MU 9X).

(d) M intersects each connected component of 0¥ at least once.

(e) 3 is neither a sphere with [M U Q| < 4 nor a monogon with [MU Q| < 3.

(f) X is neither a digon nor a triangle with (M\ 0X) U O = @.

As in [FSTO08], X is called a c-gon if ¥ is a disk and |[M N 90X| = ¢. A monogon, digon,
triangle, quadrilateral etc. is a 1-gon, 2-gon, 3-gon, 4-gon etc.

The points in M are called marked points, those in P = M\ 03 punctures, those in MI(N9%
boundary marked points, and those in Q orbifold points. We say that 3 is unpunctured,

once-punctured, twice-punctured etc. if the cardinality of P is 0, 1, 2 etc.

A connected component of 0¥ \ M is called a boundary segment of 3.

Convention 5.1.2. For the rest of the whole chapter we fix an orbifold ¥ = (X, M, Q).

The set of punctures M \ 0% will be denoted by P, the genus of ¥ by ¢, and the number
of connected components of the boundary 0¥ by b. We define m = |M|, p = |P|, o = |O].

Moreover, we write s for the set of boundary segments of X.

Finally, let A = (\{,..., ;) be the integer partition of m — p defined by A\, = [M N C|
where 0¥ = Oy U --- U C is a partition of the boundary of ¥ into connected components

such that the cardinality of M N C; decreases in s.

In illustrations we draw marked points as e, orbifold points as x, and boundary segments

as e----o. The orientation of drawn surfaces is always assumed to be clockwise.
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5 Potentials for Tagged Triangulations

Remark 5.1.3. By the classification of compact orientable smooth surfaces with boundary,
the invariant (g, A, p, 0) determines X up to diffeomorphism. The surface ¥ can be obtained

from the g-fold torus by cutting out b pairwise disjoint open disks. Compare Example 5.1.6.

Remark 5.1.4. Note that, contrary to the terminology, punctures belong to the surface and

orbifold points have neighborhoods diffeomorphic to an open set in Euclidean space.

In [GL16a] orbifolds are called “surfaces with marked points and orbifold points.”

Remark 5.1.5. An orbifold is a triple (X, M, @) where (X,MUQ) is a bordered surface with
marked points in the sense of [FSTO08, Definition 2.1] where M # @ and O C ¥\ (MU 9Y).

Ezample 5.1.6. The surface with invariant g =3, A = (3,1), p =1, o = 2 is a 3-fold torus
with two boundary components. It is the quotient of the 4¢g-sided figure drawn below in

which sides carrying the same label are identified as indicated.

6 1
& >

.- a1
p N

=
-

Ezample 5.1.7. The quadrilateral with two orbifold points, the once-punctured triangle,

and the once-punctured torus with one orbifold point:
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Ezample 5.1.8. We regard the point at infinity as a point of the drawing plane. Both of

the following two pictures represent a twice-punctured sphere with two orbifold points.

5.1.2 Triangulations

The definitions of arcs and triangulations given in this section are based on [FST12al. In

case of doubt, it could be helpful to consult [FST08, Definition 2.2]. However, a rigorous
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5.1 Triangulated Orbifolds

understanding of these definitions is not essential for this chapter and they should rather
be considered a motivation. Namely, we will always work with puzzle-piece decompositions,

which allow us to use purely combinatorial arguments. No topology or geometry is needed.

Definition 5.1.9. A curve v in 3 is the image of a simple curve [0,1] < ¥ such that:
(a) ¢({0,1}) CMUO and ¢({0,1}) "M # @ and ¢((0,1)) N (MUOUIX) = &.
(b) ~ does not cut out an unpunctured monogon with less than two orbifold points.
(¢) ~ does not cut out an unpunctured digon without orbifold points.

The points in ¢({0,1}) are the endpoints of +; those in ¢((0, 1)) are the inner points of ~.
The curve + is called ordinary, if its endpoints belong to M, and pending, if one of its

endpoints lies in @ and the other in M. Every curve in X is either ordinary or pending.

Two curves v and 4/ in X are ambient-isotopic if there exists a homotopy X x [0,1] — X
relative MU Q U 9% given by (s,t) — H,(s) such that Hy = idy,, H; oy =+/, and H, is a
homeomorphism for all ¢ € [0, 1].

An arc ¢ in X is an ambient-isotopy class of a curve in 3. The endpoints of an arc are
the endpoints of a curve representing the arc. An arc is said to be ordinary resp. pending

if it can be represented by an ordinary resp. pending curve.

Two arcs 7 and ¢/ in 3 are compatible if they can be represented by curves v and 7/ that

do not intersect each other except possibly in their endpoints belonging to M.

A set of arcs in X is compatible if its elements are pairwise compatible.

Remark 5.1.10. It is known that every compatible set {iq,...,i,} of arcs in ¥ can be

represented by curves vq,...,7, in X that do not intersect each other in 3 \ M.

Furthermore, as a consequence of Whitney’s Approximation Theorem, ~v;,...,7, can be

assumed to be images of smooth simple curves in X.

Remark 5.1.11. Let vy and 7, be curves in 3 given as the images of simple curves ¢y and ¢;
in . It is known that v, and v, are ambient-isotopic if ¢( and ¢; are isotopic, i.e. there is a
family of curves ~, in 3 given as the images of simple curves ¢, in ¥ such that (s,t) — ¢,(s)

defines a homotopy [0, 1] x [0, 1] — ¥ from ¢q to ¢;.

Ezample 5.1.12. Let X be the quadrilateral with two orbifold points. The left picture
below displays images of simple curves [0, 1] — ¥ that are not curves in 3. On the right

one can see three curves in X that all represent the same arc.
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5 Potentials for Tagged Triangulations

Ezample 5.1.13. The leftmost picture below illustrates three (representing curves of)

compatible arcs, whereas each of the other two pictures shows a pair of incompatible arcs.

Definition 5.1.14. A triangulation 7 of 3 is an inclusion-wise maximal set of pairwise

compatible arcs in ¥. We call the pair (X, 7) a triangulated orbifold.
Remark 5.1.15. Triangulations are called ideal triangulations in [FSTO08] and [FST12a].

Proposition 5.1.16. FEvery compatible set of arcs in 3 is contained in a triangulation.

All triangulations of X have the same number n of arcs. Fxplicitly,
n=~6g-—1)+3b+m+2(p+o).

Every compatible set of n — 1 arcs in X is contained in at most two triangulations.

Proof. See [FST08, Proposition 2.10, Definition 3.1] and [FST12a]. O

Example 5.1.17. The number of arcs in triangulations of the quadrilateral with two orbifold

points is n = —6 + 3 +4 + 4 = 5. Two such triangulations are shown below.

Example 5.1.18. Triangulations of the once-punctured triangle have n = —6+3+4+2 =3

arcs. Here are two examples:

The next two propositions reveal the combinatorial nature of triangulations.
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5.1 Triangulated Orbifolds

Figure 5.1.1: non-degenerate triangles: ordinary, once-, twice-, and triply-orbifolded.

Figure 5.1.2: self-folded triangle.

Proposition 5.1.19. Let 7 be a triangulation of 3 represented by curves vy, ...,7, that
do not intersect in X\ M. Then every closure of a connected component of ¥\ (y;U---U"~,)

(considered up to ambient isotopy) is one of the triangles shown in Figures 5.1.1 and 5.1.2.

Proof. See [FST08, § 2] and [FST12a, § 4] for references. O

Remark 5.1.20. The triply-orbifolded triangle (rightmost in Figure 5.1.1) can only occur in
triangulations of the once-punctured sphere with three orbifold points. It is the one and

only triangle of each such triangulation.

Definition 5.1.21. The side of a self-folded triangle (Figure 5.1.2) connecting two different
marked points is called folded; the other side is the enclosing loop.

The marked point shared by the folded side and the enclosing loop is referred to as the
basepoint and the other endpoint of the folded side is called the enclosed puncture.

Corollary 5.1.22. All triangulations of X have the same number t of triangles, where

t=4(¢g—-1)+2b+m+p+o.

Proof. See [FGO7, § 2]. O

5.1.3 Puzzle-Piece Decomposition

For a detailed version of the next statement see [FST08, Remark 4.2] and [FST12a, § 4].

Proposition 5.1.23. FEwvery triangulated orbifold (3,7) can be obtained as follows:

(1) Take several copies of the (clockwise oriented) puzzle pieces shown in Figure 5.A.1.

(2) Partially pair up the outer sides of the pieces chosen in the first step, but never pair

two sides of the same piece.

(3) Glue each paired outer side with its partner, making orientations match. The outer

sides without a partner become boundary segments. Ol
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5 Potentials for Tagged Triangulations

Figure 5.1.3: triangulated once-punctured torus.

Corollary 5.1.24. Let T be a triangulation of 3. Every puzzle piece r (see Figure 5.A.1)
of T contains a unique non-degenerate triangle A(<r) of T (see Figure 5.1.1). Vice versa,

every non-degenerate triangle A of T is contained in a unique puzzle piece 35, (A) of 7. O
Remark 5.1.25. By dint of the puzzle-piece decomposition described in Proposition 5.1.23
the arcs of any triangulation 7 of ¥ can be classified as follows: Every arc in 7 is either
(a) an inner side of a puzzle piece, called an unshared arc in T; or
(b) an outer side of exactly two puzzle pieces, called a shared arc in T.

An unshared arc in 7 is either pending or belongs to a self-folded triangle of 7. In total

there are 18 arctypes for non-folded unshared arcs. They are listed in Table 5.A.10.

For a shared arc 7 in 7 let its kind be the total number of arcs shared by the two puzzle

pieces containing i. The kind of an unshared arc ¢ in 7 is defined as zero.

The kind of an arc in 7 is at most two unless (X, 7) is the triangulated once-punctured

torus depicted in Figure 5.1.3 (where the kind of all arcs is three).

All possibilities how two puzzle pieces can share a fixed arc whose kind is one, two, or
three, respectively, are listed in Tables 5.A.7 to 5.A.9. Summing up, there are (g) =45
arctypes of kind one, (g) = 21 arctypes of kind two, and just one arctype of kind three. All
together, we have 85 = 18 + 45 + 21 + 1 different arctypes for non-folded arcs.

Ezxample 5.1.26. Indicated below are the puzzle-piece decompositions for some of the

triangulations from Examples 5.1.17 and 5.1.18:

5.1.4 Flipping Arcs

Removing an arc ¢ from a triangulation 7, one is left with a compatible set of n — 1 arcs.
By Proposition 5.1.16 there can be at least one other triangulation u;(7) containing this

compatible set. Deciding whether such p;(7) exists is simple:
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5.1 Triangulated Orbifolds

Proposition 5.1.27. Let 7 be a triangulation of ¥ and i € 7. Then 7\ {i} is contained

in a triangulation p; (1) of X different from 7 if and only if i is a non-folded arc in 7.

Proof. See [FSTO8, § 3]. O

Definition 5.1.28. Let i be a non-folded arc in a triangulation 7. The triangulation p;(7)

is said to be obtained by flipping ¢ in 7.

Ezample 5.1.29. The right triangulation in Example 5.1.18 is obtained from the left one
by flipping the enclosing loop. The folded side cannot be flipped.

Remark 5.1.30. Let 7 and ¢ be two triangulations related by flipping an arc, say ¢ = p;(7)
and 7 = p1;(c). Then i is pending if and only if j is pending. Denote by #,(i) the kind of
in 7 and by £_(j) the kind of j in ¢. Then &, (i) = k. (j) or {r,.(7), k. (j)} = {0,2}.

Remark 5.1.31. A set {X,Y} of arctypes (see Remark 5.1.25) is called a flippant pair if
there are triangulations 7 and ¢ of some orbifold X that are related by flipping, say ¢ = p;(7)
and 7 = p;(), such that the arctype of i in 7 is X and the arctype of j in ¢ is Y. Inspection
shows that there are 46 flippant pairs. All of them are listed in Table 5.A.11.

Each pair of triangulations of an orbifold can be connected by a finite sequence of flips

in the following sense:

Proposition 5.1.32. For every two triangulations T and < of X there are arcs iy,..., 1,
in 3 such that ¢ = pi;, - pi; (1) and TN ¢ C p; -+ p; (T) for all 0 < s < L.

Proof. See [FST08, Proposition 3.8] and [FST12a, Theorem 4.2]. O

5.1.5 Tagged Triangulations

The fact that folded arcs cannot be flipped is the reason for introducing a more sophisticated
type of triangulation. These tagged triangulations arise from triangulations by replacing
enclosing loops and by “tagging” arcs at their ends (i.e. by marking some ends with a

“notch” ). In a tagged triangulation every arc can be flipped.

Notation 5.1.33. Recall from [FST08, Definition 7.1] that every arc ¢ in 3 has two “ends”

and each end e of i contains precisely one point z(e) from M U O.

We denote by ¢(i) the set of ends of i. If i is a loop enclosing © € P, i.e. i cuts out a
once-punctured monogon with puncture z, let i¥ be the unique arc in 3 such that ¢ and

form a self-folded triangle. For arcs i that are not enclosing loops set i := i.

Definition 5.1.34. A tagged arc ¢ in X is a pair (i, tag) where 7 is an arc in 3 that is not
an enclosing loop and e(7) e, {o,>q} is a function with tag(e) = o whenever z(e) & P.

If ¥ is a once-punctured closed orbifold (i.e. b = 0, p = 1) we require tag(e) = o for all e.
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For tagged arcs ¢ = (i, tag) set i := i and for boundary segments ¢ € s set P =

Let ¢ € {£1}¥ and 7 an arc in 3. For z € MU QO let

+1 ifxdPorb=0,p=1,
€(i,z) = ¢ —e(x) ifiis a loop enclosing z € P,

e(z) otherwise.
Denote by ¢ the tagged arc (z’ﬁ, tage) given by

o ife(i,xz(e)) = +1,

tag(€) = s if 34, z(e)) = —1.

A tagged triangulation T of X is a set of tagged arcs such that 7 = 7°¢ := {f |i e 7'} for

some triangulation 7 of ¥ and some ¢ € {£+1}F.

For a tagged triangulation 7 the (uniquely determined) triangulation 7 with = = 7¢ for

some suitable € € {+1}F is called the underlying triangulation of T. We set ™=
A tagged arc  is called pending if ¢ is pending. Define 7% := {1 € 7|1 pending}.

Two tagged arcs are compatible if there is a tagged triangulation of ¥ containing both

of them. A set of tagged arcs is compatible if its elements are pairwise compatible.

The ends e of arcs with tag(e) = < are tagged notched and will be visualized as ~—f—e.

The ends with tag(e) = o will not be accentuated in any special way.

Remark 5.1.35. Let € € {#1}F. Then (i°)" = i* for every arc i in 3.

In particular, {ib EXS ’T} C 7’ for every tagged triangulation 7. This inclusion is proper

if and only if 7° contains a self-folded triangle.

Remark 5.1.36. To facilitate the formulation of Proposition 5.1.45, Definition 5.1.34 slightly
deviates from [FST08; FST12a] for once-punctured closed orbifolds.

Remark 5.1.37. See the original reference [FSTO08, § 7] and [FST12a] for various helpful

examples and a more illustrative version of Definition 5.1.34.

Example 5.1.38. The triangulation 7 of the twice-punctured quadrilateral drawn below on

the left gives rise to the tagged triangulation 7¢ on the right where e(x) = —1 and (y) = 1.
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Ezxample 5.1.39. The picture on the left and in the middle each shows a set of compatible

tagged arcs, whereas on the right picture one sees a pair of incompatible tagged arcs:

Definition 5.1.40. Let T be a tagged triangulation and let P, C IP be the set of punctures

that are enclosed by arcs of 7 = 7°. Restriction € — elp, establishes a bijection

E,={ce {£1}F|r* =1} —— {£1}}~.

The preimage ¢, of the function with constant value +1 under this bijection is called
the weak signature of T (see [Labl6, Definition 2.10]).

The elements of E, are called sign functions for T.

5.1.6 Flipping Tagged Arcs

Here are the analogs of Propositions 5.1.16 and 5.1.27 for tagged triangulations:

Proposition 5.1.41. FEvery compatible set of tagged arcs in X is contained in a tagged
triangulation of 3. Every compatible set of n — 1 tagged arcs is contained in exactly two

tagged triangulations.

Proof. See [FST08, Theorem 7.9] and [FST12a). O

Corollary 5.1.42. Let T be a tagged triangulation of ¥ and ¢ € 7. Then 7\ {i} is

contained in exactly one tagged triangulation pu;(T) of X different from T. O
Definition 5.1.43. The tagged triangulation yu;(7) is said to be obtained by flipping 1.

Corollary 5.1.44. Let T be a triangulation of ¥ and ¢ € {£1}F. Then (u;(1))° = e (7°)

for every non-folded arc i in 7.
Proof. This follows from Proposition 5.1.27, Corollary 5.1.42, and Definition 5.1.34. O

The following result is often used to see that properties that are invariant under flipping

arcs hold for all tagged triangulations of an orbifold if they hold for any.

Proposition 5.1.45. For every two tagged triangulations T and ¢ of 3 there are tagged
arcs iy, ..., 4 i X with ¢ = pig, -+~ p; (1) and T N6 C py -+~ pug (7) for all 0 < s < L.

Proof. See [FST08, Proposition 7.10] and [FST12a, Theorem 4.2, proof of Lemma 4.3]. [

113



5 Potentials for Tagged Triangulations

Remark 5.1.46. The tagged flip graph E™(X) of X is the simple graph whose vertices are
the tagged triangulations of 3 and in which two vertices are joined by an edge if and only

if they can be obtained from one another by flipping an arc (see [FSTO08, § 7]).
By Corollary 5.1.42 and Proposition 5.1.45 the graph E™(3) is n-regular and connected.
Ezample 5.1.47. Below on the left one sees the tagged triangulation induced by the first

triangulation of Example 5.1.18. Flipping the tagged arcs ¢ and j, respectively, yields the

tagged triangulations shown in the middle and on the right.

5.2 Modulation of a Tagged Triangulation

We will define a modular quiver Q(7) for each (tagged) triangulation 7 of an orbifold X.

5.2.1 Adjacency Quiver of a Triangulation

The quiver Q'(7) of a triangulation 7 defined in [GL16a] carries the same information
as the signed adjacency matriz used in [FST08; FST12a]. Apart from keeping track of
orientation and weights in a slightly different way, they are the diagrams of [FZ03].

The adjacency quiver Q(7) introduced here is closely related to Q'(7) but has additional

“frozen” vertices corresponding to the boundary segments.

The purpose of this subsection is to settle notation and to revise how the puzzle-piece
decomposition of a triangulation gives rise to a decomposition of the adjacency quiver, the
so-called block decomposition from [FST08; FST12b].

Notation 5.2.1. We denote by Q5(7) the set of non-degenerate triangles (see Figure 5.1.1)
of a triangulation 7 of ¥. For a triangle A € Q4(7) and 4,j € 7 Us we will write

(1,7) € A

if both 7 and j are sides of A and j follows i in A with respect to the orientation of X.

Copying [FSTO08, Definition 4.1] let 7Us 7y 7 Us be the idempotent function with

(0) j if 7 is the folded side of a self-folded triangle in 7 with enclosing loop j,
(i) =
1 otherwise.
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Definition 5.2.2. Let 7 be a triangulation of 3. The (adjacency) quiver Q(7) of T is the

modular quiver (Q(7),d, o) whose vertices are the arcs in 7 and boundary segments of X.

Formally, Qq(7) = 7 Us. Vertices i € Qq(7) have weight d; = 2 if 7 is a pending arc and

weight d; = 1 otherwise. The arrow set is

Qur) = {i 22 5[ A€ Qu(r), i € Qulr) with (x, (i), 7, (j)) € A, 7 € Z/d;iZ}

The tuple (0,)qcq, (r) is defined by o, = r for each a = (A, (i, 7),7) € Q(7).

Notation 5.2.3. Set A(a) := A and d:7(a) := 9p,(A) for arrows a = (A, (¢,7),7r) € Q(7).
We say that a is induced by the (non-degenerate) triangle A or the puzzle piece 2r(a).

For each puzzle piece <% of 7 we will denote by Q™ the subquiver of Q(7) spanned by all
arrows that are induced by <. More generally, we call every subquiver Q%1 @ - - - @ Q™
of Q(7) the subquiver induced by the puzzle pieces 95ry, . .., 907p.

Remark 5.2.4. Obviously, a = (A(a), (s(a),t(a)),o,) for every a € Q(7).
Remark 5.2.5. According to [FST12a, Lemma 4.10] there is a decomposition
Q) = Pe¥
P
where the sum runs over all puzzle pieces £i> of 7. The modular quivers Q™ for the different
types of puzzle pieces are listed in Figures 5.A.2 to 5.A.6. See also Example 5.2.12.
Remark 5.2.6. The quiver Q(7) of every triangulation 7 is connected, since ¥ is connected.

Remark 5.2.7. Proposition 5.1.23 and Remark 5.2.5 lead to the following observations

concerning the number g;; of arrows j <4 in Q(7):

If ¢;; > 1, then g;; < 1.
o If @ =2 and d;; =1, then g; < 1.
o If dj; # 2, there is at most one arrow j < i induced by the same triangle.
o If dj; =2 and q;; > 1, then ¢;; = 0 and g;; = 2 and {0, | j +— i € Q1(7)} = Z/2Z.
The second item shows that Q(7) has a unique maximal 2-acyclic subquiver.
Note that dj; = 2 means that both ¢ and j are pending, while d’* =2 and d;; =1 means

that exactly one of ¢ and j is pending.

Remark 5.2.8. The full subquiver Q°(7) of Q(7) spanned by 7 (i.e. by all vertices that are

not boundary segments) is called the “unreduced weighted quiver of 7” in [GL16a].

Remark 5.2.9. Let T be a triangulation and @'(7) the maximal 2-acyclic subquiver of Q°(7).

The skew-symmetrizable matrix B(7) corresponding to the weighted quiver Q’(7) under
the bijection of Remark 2.1.6 is one of the matrices described in [FST12a, § 4.3].
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Convention 5.2.10. We illustrate vertices i in Q(7) with d; = 2 as (;\, and arrows a

with o, = 2 as ~>. The part of Q(7) not belonging to Q°(7) will be drawn in blue.

Ezample 5.2.11. The triangulation 7 of the once-punctured triangle with one orbifold
point shown below on the left gives rise to the modular quiver Q(7) on the right. The

arrows ag, a1, by, by, c are all induced by the triangle whose sides are h, i, k.

Ezample 5.2.12. The second triangulation of Example 5.1.17 has the modular quiver Q(7)
depicted on the right. The dashed gray boxes indicate the decomposition Q(7) = P... Q™.

~7
SN
S TNA

Sy

Example 5.2.13. Every triangulation 7 of the once-punctured torus with one orbifold point

looks like the one below. Its quiver Q(7) can be seen on the right.

With respect to the ordering i < k < h < j < £ on Qy(7) the matrix B(7) has the form

0-2 1-1 1
1 0-1 0 O
-1 2 0-1 1
1 0 1 0-2
-1 0-1 2 O
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5.2 Modulation of a Tagged Triangulation

5.2.2 Mutating Adjacency Quivers

Given a triangulation p,;(7) obtained from another triangulation by flipping an arc i, we

will identify the modular quiver Q(u;(7)) with a subquiver of the premutation i, (Q(7)).

Convention 5.2.14. The unique maximal 2-acyclic subquiver Q'(7) of Q(7) is a reduction
in the sense of Definition 2.1.14. We define 11;,(Q(7)) := 1;(Q’(7)) for all i € 7.

Notation 5.2.15. For an arc i of a triangulation 7 write Q(7, %) for the subquiver of Q(7)

induced by all (at most two) puzzle pieces of 7 that contain i.
Let Q(7,—i) be the subquiver of Q(7) induced by all puzzle pieces of 7 not containing i.
Remark 5.2.16. It is Q(7) = Q(1, i) & Q(7,1) and 1;,(Q(7)) = Q(7, ~i) & 1;(Q(7,17)).

Lemma 5.2.17. Let 7 and s be two triangulations related by flipping an arc, say < = p;(7)
and T = p;(s). Then Q7 := Q(7,—i) = Q(s, ~j) and there is a monomorphism

Q) —— (Q(7))
of modular quivers with ®|g- = idg-~ and ®(k) =k for all k € Qy(s) \ {j} and ®(j) = .

The image of ® contains a maximal 2-acyclic subquiver of ;(Q(T)).

Proof. This follows from [FST12a, Lemma 4.12] and Definitions 2.1.12 and 5.2.2. It can
be verified directly by inspecting Tables 5.A.12 to 5.A.57. O

Remark 5.2.18. Additionally, one can demand in Lemma 5.2.17 that the monomorphism &
has the property that for every path Lt in Q(T) ...

(i) ...with A(b) # A(a), there is a path bYc"a" in Q(s) with A(bY) = A(cY) = A(a")
such that ®(bY) = b*, ®(c¥) = [ba]}, ®(a) = a*.

(ii) ...with d; = 2, o, = 0, = 0, the arrow [ba]} lies in the image of .

Such @ exists. It is unique if 3 is neither the once-punctured torus (Figure 5.1.3) nor

the once-punctured sphere with three orbifold points (i.e. puzzle piece 135)

Example 5.2.19. The first weighted quiver appearing in each of the Tables 5.A.12 to 5.A.57
is Q(,1), where i corresponds to the boxed vertex, while the second one is ®(Q(s,j)) for

a monomorphism & satisfying the property in Remark 5.2.18.

5.2.3 Adjacency Quiver of a Tagged Triangulation

The quiver of a tagged triangulation is defined analogously as in the untagged situation.
Notation 5.2.20. For tagged triangulations 7 set 7, (i) := m_, (4°) for all 4 € T U s.

Definition 5.2.21. Let T be a tagged triangulation of ¥. The (adjacency) quiver Q(T)

of T is the modular quiver with vertex set Qq(7) = 7 Us. Vertices ¢ in this quiver have
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5 Potentials for Tagged Triangulations

weight d; = 2 if i’ is a pending arc and weight d; = 1 otherwise. The arrow set is

Qu(r) = {i HED, G| A € Qu(r), i, € Quolr) with (m,(i), 7, (§)) € A, 7 € Z/dyiZ} .

The tuple (0,)qcq, (+) is defined by o, = for each a = (A, (4,7),7) € Q (7).
The arrow a = (A, (2,7),r) is induced by &r = 4r (A). Set Aa) := A and $p(a) = 4.

The subquiver of Q(7) induced by puzzle pieces %ary, .. .,9r, is the subquiver of Q(7)
spanned by all arrows that are induced by one of the pieces 92py, . . ., 5wy

Remark 5.2.22. Let 7 be a tagged triangulation of ¥ and ¢ a sign function for 7. Moreover,

let 7 = 7° be the underlying triangulation of 7.
There is a unique isomorphism of modular quivers
L‘I',E
Q1) ——— Q(7)

that extends the bijection Qy(7) — Qo(7) given by ¢ — ¢ (where i€ := i for ¢ € s) and
satisfies A(tr .(a)) = A(a) for all a € Q;(7).

5.2.4 Adjacency Modulation

For every (tagged) triangulation 7 we have now defined an associated modular quiver Q(7).
All vertex weights in this quiver are either 1 or 2. To obtain a comfy modulation for Q(7),

we must therefore choose a degree-2 Galois extension.

Convention 5.2.23. For the rest of the chapter fix a comfy extension (L/K,—1,v)
Abbreviate w := v? € K.

Write z* for the conjugate of z € L, i.e. z* = p(z) for the non-trivial p € Gal(L/K).

Remark 5.2.24. Fixing a comfy extension (L/K,—1,v) is the same as choosing a degree-2
field extension L/K with char(K) # 2 and picking an element v € L with v? € K.

Remark 5.2.25. Let z = x +yv € L with x,y € K. From field theory we know z* = x — yv,

2

Ny k(2) = 22" = 2* —wy?, Tr g (2) = 2+ 2* = 2z, and z — 2* = 2yv.

Ezample 5.2.26. For L/K we could take C/R or F 2 /IF, for any odd prime power ¢. In the

former case, we could also assume that v? = w = —1.

Definition 5.2.27. The modulation H(7) of a (tagged) triangulation T is the modulation
of Q(7) over (L/K,—1,v).

The ground ring, species, path algebra, and completed path algebra of H(7) will be
denoted by R(7), A(T), H(T), ﬁ(r), respectively.

Remark 5.2.28. Let T and ¢ be as in Remark 5.2.22. Using the isomorphism ¢, . to identify

the modular quivers Q(7) and Q(7), there is an induced isomorphism of K-modulations

H(r) — = H(T).
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5.3 Potential of a Tagged Triangulation

All components R;(T) e R, () and A,(7) e A, _(a)(T) are the identity maps.

Hence, ¢, . induces isomorphisms H (7) SEAEIN H(7) and ﬁ(T) ST, ﬁI(T) of K-algebras.

5.3 Potential of a Tagged Triangulation

Inspired by the series of articles [Lab09a; Lab09b; CL12; Lab16] we constructed in [GL16a]
for each (tagged) triangulation 7 a potential for the species A(T).

5.3.1 Choosing Coefficients

The potentials we define in this section depend on the following choice of coefficients.
Convention 5.3.1. Fix two functions:
P —— KX 0 —=>L\K

o ——— u, X ——— 2z,
Define for arcs ¢ in X

ue if 7 is a loop enclosing e € P,

1 otherwise,

. if 7 is pending and contains x € O,
1  otherwise.
Furthermore, for triangulations 7 of ¥ and i € 7 set u] := (—uWT(i))fé"f(”?“.
Example 5.3.2. One valid choice is u, = 1 for all e € P and z, = v for all x € Q.

Remark 5.3.3. In [GL16a] we considered the choice z, =1 — v for all x € O.

5.3.2 Potential Components Induced by Puzzle Pieces

Definition 5.3.4. Let 7 be a triangulation of ¥ and ;» a puzzle piece of 7.
A cyclic path induced by <= is a cyclic path cba in Q(7) with 4ip(a) = 4r(b) = 42r(c) = .
For every cyclic path i «+— k & j <+~ iin Q(7) induced by <> the potential
uguju; czpbziaz;
for A(7) is called a potential component induced by <.

The potential Wf“j; induced by <5p is the sum of all potential components induced by b

Example 5.3.5. Figures 5.A.2 to 5.A.6 list Wfﬁi for all types of puzzle pieces <.
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5 Potentials for Tagged Triangulations

5.3.3 Potential Components Induced by Punctures

Definition 5.3.6. Let 7 be a triangulation of ¥ and e € P not enclosed by any arc of 7.

Not drawing enclosing loops, an infinitesimal neighborhood of e in (X, 7) looks as follows:

ap—1 ag a

A path i) - 4, iy ¢ iy in Q(7) is induced by e if 43(a,) = <k, for all s.

For every cyclic path a,---ay in Q(7) induced by e the potential
u. a//e ... al

for A(7) is called a potential component induced by e.

The potential Wy (7) induced by e is the sum of all potential components induced by e.

5.3.4 Potential of a (Tagged) Triangulation

Definition 5.3.7. The potential of a triangulation 7 of 3 is defined as
Woo(r) = Y Wil + Y Wi)
&b o

where 97> runs through all puzzle pieces of 7 and e through all punctures in X that are not

enclosed by any arc of 7.

The species with potential of T is S, (1) = (A(7), W, .(7)).

Lemma 5.3.8. S, ,(7) is 2-acyclic after reduction for every triangulation 7.

Proof. If Q(7) contains a cyclic path ba whose two vertices are i and j, then ¢ and j are arcs
in 7 with arctypes {XT,Y+} and {X*, YT} for some X,Y € {A, B, B} (see Table 5.A.9).
Then d; = d; = 1, the subquiver Q' of Q(7) spanned by a, b is full and W, .(7)|¢; = ueba for

some e € P. Since u, € K*, we can conclude that S, ,(7) is 2-acyclic after reduction. [J

Ezxample 5.3.9. For the triangulations from the examples in the previous subsection it is

W,..(1) = czp(bpag — =bray) + cobyay + c3bzas (Example 5.2.11) ,
W (T) = czi(by + b1)z;a + cobgag + c3bsas + c4byay (Example 5.2.12) ,
Wo.(T) = coziboag + c1byay + cobaag + ug c1byaicobocabiasay  (Example 5.2.13) .
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5.3 Potential of a Tagged Triangulation

Ezxample 5.3.10. Every triangulation 7 of the sphere with one puncture e and three orbifold
points consists of exactly one puzzle piece a:» of type l~)3 (see Figure 5.A.1). The modular
quiver Q(7) = Q™ and the potential Wﬁ are shown in Figure 5.A.6. We have

Wa(7) = ug (co+c1)(by +b1)(ag +ay) .

Ezample 5.3.11. The triangulation 7 of the twice-punctured monogon with one orbifold
point seen below on the left has the quiver Q(7) drawn on the right. For the non-enclosed

puncture e we have W3 (7) = u, cobycbyas.

Definition 5.3.12. Let 7 be a tagged triangulation and ¢ a sign function for 7. Denote

by & - u the function P — K* given by pointwise multiplication of ¢ and w.
The e-potential of T is W (T) = tr e (We . (7).
The potential of T is W, .(7) = Wa%(7) where e, is the weak signature of 7.

Define S (1) = (A(7), W (7)) and S, .(T) = (A(T), W, .(T)).

Convention 5.3.13. Let 7 and ¢ be (tagged) triangulations with u,(7) = ¢ and (<) = 7.

The bijection Qu(7) = Qo(s) that maps i to j and every k € (7 N¢) Us to itself induces
an isomorphism R(7) — R(s) of K-algebras. This isomorphism will be used to consider the
path algebra H(<) and the completed path algebra H (<) as R(t)-algebras.

For X € {tUs,R(7)} and SPs § = (A(7),W), &' = (A(s), W) we write 8" ~x 1;(S)
to indicate that every (equivalently, any) SP in y;(S) is reduced-X-equivalent to S'.

We write ~ for ~,, and ~p for ~p(;y and, similarly, ~_ for ~ ; and ~p for ~p).
5.3.5 Conjugating the Coefficients

Definition 5.3.14. For (tagged) arcs i in ¥ let O AN § \ K be the function x — 2}

given as
if 4 contains x,

otherwise.

Remark 5.3.15. Obviously, (2*))* = z for all i and z* = z for non-pending i.
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5 Potentials for Tagged Triangulations

Lemma 5.3.16. For every (tagged) triangulation 7 and i € T it is S, ,«i(T) ~; S, ().

Proof. Abbreviate Q = Q(7), R = R(7), A = A(7). If d; = 1, there is nothing to show.
We will therefore assume d; = 2.

The non-identity element f; in Gal(R;/K) and the identities f; = id R, for j # 4 induce
an automorphism R i> R.

In view of Remark 5.2.7 there is a bijection (4 2, Q; such that for k «+— j € Q

a' ifie {jk} and dy; = 2,
g(a) = where a’ is the unique arrow k < j with o, # o,

a otherwise.

In either case, we have py(q)f; = frpa on R N R; C L. Hence, the identities A, — Ay(q)

of K-vector spaces induce an R-bimodule isomorphism 4 -2+ L A.

The induced isomorphism H () 2 f.H (1) of R-algebras can be regarded as an auto-
morphism of the K@-algebra H (7). It is easy to see that g(W, (1)) = W, .« (7). O

5.4 Compatibility of Flip and Mutation

We will prove that S, ,(7) and S, (<) correspond to each other under mutation, if the

triangulations 7 and ¢ are related by flipping an arc.

5.4.1 Compatibility for Triangulations

Theorem 5.4.1. Let 7 be a triangulation of 3 and let i be a non-folded arc of 7. Then
we have Su,z*i (/.LZ(T)) ~R :ui(Su,z(T))' In particular, Su,z (:uz(T)) e My (Su,z(T))'

Proof. Let ¢ = p;(7), 7 = p;(s). The last claim follows from the first one by Lemma 5.3.16.

We prove the theorem case by case. In each case, we assume that the arctype of ¢ in 7 is

a previously fixed one (see Remark 5.1.25). In total, we thus have 85 cases.

Since S, ,+i(s) ~p 1i(Sy, (7)) © Sy .(T) =g (S, 2+i(c)) by Theorem 2.6.101, we can
swap 7, i, z for ¢, j, z** whenever we like to. This reduces the number of cases to consider

to 46 (see Remark 5.1.31). Moreover, we can always assume that  is not an enclosing loop.
Abbreviate Q = Q(7,4) and Q' = Q(s,j) and Q= 1;(Q). Recall that Q(7) = Q™ & Q
and Q(s) = Q" @ Q' and [1;(Q(7)) = Q” © Q for some Q.
Let Q(s) 2 1;(Q(7)) be a monomorphism of modular quivers like in Lemma 5.2.17

satisfying the property of Remark 5.2.18. Then @ restricts to a map Q' — @ and induces

an injective R(7)-algebra homomorphism

H' = H(s) —— ii(H(r)) = H.
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5.4 Compatibility of Flip and Mutation

/

Let W = (W, ()9 and W' = (W, ,-(<))?1.
We will proceed as follows:

1) Construct ¥ € Autg(,)—q, (H (7)) such that J(W) is in i-split form.

(1)

(2) Compute the premutation W= i (9(W)).

(3) Construct ¥ € Au‘cﬁi(Q(T))i@1 (H) such that 5(/1/17) is in Q-split form.
(4) Compute W' = redél(ﬁ(W)) and T = trivél(g(W)) cQ.

We will choose ¢ and 9 in such a way that ®(W’) = W' and Q =Q' &7 for Q' = (Q).

All in all, this will prove the theorem, since then

(W, 2i(s)) = redg (T( (W, -(1)))))

It remains to construct the maps ¢ and 9 such that indeed (W) = W’ and Q = Q' & T.
Tables 5.A.12 to 5.A.57 give instructions how to do this. Each table has the following form:

X w Q
¢ R S
o
o

Pl e o~ e~ E
¢ oo Ty
5

y o &

To begin with, locate the table where X is the arctype of ¢ in 7 and Y the arctype of j
in ¢. If you don’t find any such table, or, if {X,Y} = {{4, A},{A4, A}} and W is not of
the form shown in the first row of Table 5.A.28, swap 7, i, z for ¢, j, z** and try again.

The quivers ) and @’ as well as the potential W are shown in the table at the indicated
places. The boxed vertex in the depiction of @) and @’ is 1.

It is not hard to see that W has the form appearing in the table. The subscripted
letters w represent elements in H(7)N HNH. They are used as placeholders in summands

of W and W' induced by punctures.
Define ¥ = 1oy and J = ¢ o & where f = fopyo- o fifor f € {p,¢,p,¢}. If the table

does not contain a row labeled f, take for f the identity. The maps f, are represented in

the tables by their defining substitution rules a — f,(a). The notation a ~~ v, is used as
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5 Potentials for Tagged Triangulations

an abbreviation for the rule a — a + v,. Sometimes the letters x; and y; are used for the

scalars in K that appear in the decomposition z;, = z;, + y,v (see Remark 5.2.25).

To check that W’ has the form written down in the table requires straightforward but in
many cases lengthy computation. The identity ®(W') = W' is then obvious in all cases.

This concludes the proof. O

Remark 5.4.2. Similar computations as those compiled in Tables 5.A.12 to 5.A.57 were
carried out in [Lab09a; Lab09b; CL12; Lab16; GL16a]. Some tables treat triangulations of

spheres ¥ with m + o0 = 4 not considered in the articles just mentioned.

5.4.2 Compatibility for Tagged Triangulations

Notation 5.4.3. For tagged triangulations 7 and sign functions ¢ for 7 denote by i™°

the preimage of ¢ € 7 under the bijection ¢, . from Remark 5.2.22.

Corollary 5.4.4. Let T be a tagged triangulation of 3 and € a sign function for 7. Then
for all i € T such that i™° is non-folded in T° we have 8o i(pi(7)) =R 1s(Sg . (1))

Proof. Let i =47, 71 =17, ¢ = pi(T). Then S,.,, .+i(¢) =g #1;(Szu, - (7)) by Theorem 5.4.1.
Now use ¢ := /UJ’L(T) - (Mi(’r))ga WS,Z(T) - LT,&(Wau,z(T))v Wiz*i (C) - Lc,&(WE-mz*i (C)) O

The next proposition will be used to derive the compatibility of flip and mutation for
tagged triangulations from Corollary 5.4.4. Its proof is taken with suitable adaptations
from [Lab16, Proposition 6.4] and [GL16a, Proposition 6.4].

Proposition 5.4.5. Assume g > 0 orb+m+ 0 > 7. For every tagged triangulation T

of ¥ and all sign functions € and &' for T we have S;, ,(T) ~g SZ:Z(T).

Proof. We can reduce to the case in which € and &’ take the same value at all but one y € P.
Without loss of generality e(y) = +1 and £'(y) = —1. The bijection in Definition 5.1.40

b

shows that there is an arc k in 7 = 7 enclosing y. In particular, m > 2.

We can replace T by any tagged triangulation ¢ = ¢® = ¢ where ¢ is a triangulation

of ¥ containing k and kf:

Indeed, 7 = pu;, - - - 3, (<) for arcs iy, . . . , i, all different from k and k¥ by Proposition 5.1.32.
Since 4, 1= i€ = i< for all s, it is T = ti, - i, () by Corollary 5.1.44. With Corollary 5.4.4
and Theorem 2.6.101 we see (Vz : S5 (T) ~g Sﬁlyz(‘r)) & (V2 : 85 .(s) ~g Silz(q))

Abbreviate Q = Q(s) and H = H(s) and H = H(s).

Let z be the basepoint of the self-folded triangle with sides k and k¥. Set k := k¢ = (k?)¢’
and k' == k¢ = (kb)°.

If 2 € 9%, take for ¢ a triangulation with a puzzle piece 4% of type B containing k and k.
The puzzle piece << and the subquiver Q™ of Q look as follows:
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5.4 Compatibility of Flip and Mutation

The subpotentials of W ,(s) and lez (¢) spanned by {c,c} are, respectively,
— _ 1
W = (cb ukgb)a
W' = (icb%—gb)a
U
Hence, lez(g) = (W .(s)) for ¢ € Autg_y. 1 (H) given by the rules ¢ — u—lkc, cH —uyc.

This concludes the proof for the case x € 9%.

We now consider the case x € P. Then ¥ admits a triangulation ¢ containing three

puzzle pieces 9571, 9apy, 9ars sharing arcs as depicted below:

(a) For g=1,b=0, m =2, o =0 (twice-punctured closed torus without orbifold points)
such a triangulation ¢ is shown on the right.

(b) For g > 1, g+ b+ m+ o > 3 (g-fold torus) such a triangulation ¢ can be easily
constructed in the model described in Remark 5.1.3 and Example 5.1.6.

(¢) For g =0 (a sphere with boundary) we have by assumption b+ m + o > 7 and the
existence of such a triangulation ¢ is easy to verify.

The subquiver Q' of @ induced by 425, 9ry, darg is visualized below (in case (a) with
the identification h = h).

g=0 g=>1 g=1
b+m+o0>7 gt+tb+m+o0>3 b=0,m=2,0=0
k @ 0 E . =
P, () @,
. &Wrs .

J

/.
AN

AN
AN
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The subpotentials of Wy ,(s) and ij’/z (¢) spanned by @} have the respective form

W = (cb— g-cb)a+ gpq + gpg +w(gpg) + cb(gpg)ac,
W' = (u—zcb+gb)a+gpq+@+w(gpg) + cb(gpq)ac,

with o = w + v(gpg)v for some w,w,v,v € H\Q_Qfl where H|Q_Q/1 is the path algebra of
the submodulation of H(s) induced by @ — Q) C Q.

The rules a — a + uy(gpq)ac, ¢ — u—lkc, ¢ — —uyc define an element ¢, € Ath,Q/1 (H)
that maps W to
Wy = W' —g(Agp)q

for X = pga(uga)?ch. The unitriangular automorphism ¢; € Autg_q, (H) defined by the
substitution rule p — p + Agp maps W), to a potential of the form

Wi = W'+ v(gpa) + 01(9pq)
for some v;,9; € H with ord(y;) > 0 (and §; = 0).

The subpotential (W’){q’g} has the form gpq + gpq + @(gpq) + v(g9pq) + &(gpq)v(gpq) for

some @,w, 7,V € H|g_gq4y With ord(?) > 0. Given, for some r € N_,

W, = W'+ Tr (QIE) + 6r (QPQ)

with ~,., 6, € H, it is thus straightforward to verify that the element ¢, 1 € Autg g, (H)
defined by the substitutions g — g — 7,9, ¢ = ¢ — g, maps W, to a potential of the form

Wi = W+ v41(9p9) + 6,41(9p9)

where 7,1 = (QOT(’YT) - 77‘) + 6, A, and 0,1 = ((pr(d/‘) - 67‘) + 1, for some A.,n,. € H
with ord(A,) > 0. In particular, the two inequalities ord(vy,,;) > min(ord(vy,), ord(d,))
and ord(6, 1) > min(ord(v,),ord(d,)) hold.

By induction we get a sequence (@r)reN+ of unitriangular elements in Ath_Q/1 (H)
such that lim,_, . depth(y,) = oo and the sequence (W,),cy of potentials W, = . (W)
with @, = ¢, -+ - 1y converges to W’'. Therefore we have Wﬁ:z(g) = o(W; ,(s)) for the
automorphism ¢ = lim, ., ¢, € Autg ¢ (fl ). This proves the proposition. O

Finally, we can state the main result of this chapter:

Theorem 5.4.6. Assume g >0 orb+m+o0>7. Let T be a tagged triangulation of X.
For alli € T it is Su,z*i (/‘%(T)) ~R M'L’(Su,z(T))' In particular, Su,z(:ui(T)) ~r :ui(Su,z(T))‘

Proof. The last claim follows from the first one by Lemma 5.3.16.

Let ¢ = pi;(7), 7 = pj(7) and 7 = 7, ¢ =¢"and i = i"°T, j = jO5s.

After possibly swapping i, T, z for j, ¢, 2**, we can assume that j is non-folded in ¢,

since S, ,+i(S) g 1;(Sy, . (T)) © Sy . (T) =g 11;(S, ,+i(s)) by Theorem 2.6.101.
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If i is a non-folded arc in 7, e, = &¢ and Corollary 5.4.4 yields S, ,+i(s) ~p 1;(S, .(T))-
If i is folded in 7, 7% is non-folded in 7 and S, i (s) ~g p;(Su%-(7)) by Corollary 5.4.4.
With Proposition 5.4.5 and Theorem 2.6.100 we have 11;(Sa%. (7)) ~g i (Sy 2 (T))- O

Corollary 5.4.7. Assume g >0 orb+m+o0>7. Then S, .(T) is non-degenerate for

every tagged triangulation T of 2.

Proof. This is a direct consequence of Theorem 5.4.6 and Lemma 5.3.8. O

5.5 Uniqueness of Potentials

We conclude with the observation that the equivalence class of S, ,(7) does not depend on

the particular choice of u and z, if b > 0 or p = 0.

5.5.1 Non-Closed Orbifolds

The next statement is a variant of [Lab16, Proposition 10.2] and [GL16a, Proposition 8.6].

Corollary 5.5.1. Assumeb > 0. Then S, ,(T) ~; Sy .(T) for all (tagged) triangulations T
of ¥ and all functions u,u’ : P — K* and z,2' : O — L\ K.

Proof. We assume that 7 is a triangulation. The proof for tagged triangulations is similar.

We clearly can reduce to the case in which [{y € P|u, # uy}| + [{x € O]z, # z}| = 1.
It suffices to prove S, ,(s) ~¢ Sy /(<) for any triangulation ¢ of 3 by Proposition 5.1.32
and Theorems 2.6.101 and 5.4.1.

Let us first assume that v and v’ take the same value at all but one puncture y € P.
Then m > 2. Let ¢ be a triangulation containing a puzzle piece %> of type B such that
the basepoint x of the self-folded triangle in < lies on the boundary. The subquiver Q%
of @ = Q(s) is the left quiver shown in Figure 5.A.3. By definition

(Wu,z(g)){cl} = *uilyclblaa (Wu’,z(g)){cl} = *u%/clbla'

Hence, Wy, .(s) = (W, .(s)) for ¢ € Autg_(.,y(H (7)) defined by ¢; — Z—}’cl.
Y

Let us now assume that z and 2’ take the same value at all but one orbifold point x € Q.
Let ¢ be a triangulation containing a puzzle piece q,r of type B such that the marked
point on its pending arc belongs to the boundary. The subquiver Q™ is the right quiver
shown in Figure 5.A.3. By definition

(Wu,z(g)){C} = szbaa (Wu,z’ (g)){C} = Cz;ba'
Hence, W, ./(s) = p(W,, .(<)) for ¢ € Autg_(H(7)) defined by ¢ +— ezl L. O
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5.5.2 Unpunctured Orbifolds

Unpunctured orbifolds will be treated in greater detail in the next chapter. We anticipate

the next theorem for its relevance in the current context.
Notation 5.5.2. If p = 0, the function u is empty and we define S,(7) = S, (7).

Theorem 5.5.3. Assume p =0 and X is not a monogon. FEvery non-degenerate potential

for A(7) is R(7)-equivalent to W_(7). In particular, S,(T) ~gry Su(7) for all z,2'.

Proof. This is similar to the proof of Theorem 6.6.8 and uses Convention 5.2.23. O
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cba

Figure 5.A.2: Q% and WE‘U‘}Z for pieces of type A.

b b -
1 0 i b l k>
N o~
k;ﬁ a k a c
S €0 h
h
cobpa — iclbla cziba

Figure 5.A.3: Q* and Wlﬁ for pieces of type B (left) and B (right).
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b
]{jﬁ 10 Z
Sl
ao
bll h bOO
ay
o
.ﬁ k
L bo1
1
cobooao — ujcobmal Clbloao +3 Clbllal
-
h 'y
aq ag / bo
PL c i A a k
by bo \ !
L~
k) h
N o~
czpbgag — u%czkblal cobpz;a — iclblzia

lz\,\,\,\N\,\N\,\,\N\NV;Ik\

NS

czi,(by + b1)za

Figure 5.A.4: Q% and Wﬁ for pieces of type C (top), éJr (left), C_ (right), C (bottom).
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ao1

At

Kt

00b0oa0o
1 1 1
— 2 Coobo1a10 = 5-Co1b10000 — 7~ C10bo0@01
L . p L b 1 . p
e, C11010001 + 5o C10001011 + 7 Co1011010

1
T upuguy, ciibyiag

Figure 5.A.5: Q% and Wf}z for pieces of type D.
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kﬁ / |
bll bOO
/ \
i k
1
cobooaozn — ujcobmalzh - Clbloaozh +3 clbllalzh

T
~

/ §

it c1§|co 7
\ ag

zp(co + ¢1)zboag — U%.Zh(co + ¢1)zkbrag

RS
~

Y b s
N\ 0 \
I APSSSS Vv O A
A by N o
a €1
ag €o
PN

\
( h

(co + c1)z(by + b1)zi(ag + ay)z,

Figure 5.A.6: Q" and Wfi for pieces of type 51 (top), 152 (middle), 53 (bottom).
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Bt - Bt B~

NP PR DR DR RC RE A6
» Q@O G GG 0
4 PP rrertr
4 PGB0
4 e
: (KRG
. (% G Ok
. & OF
: Ok

Table 5.A.7: two puzzle pieces sharing exactly one arc (bold).

A©

AO

Table 5.A.8: two puzzle pieces sharing exactly three arcs;
one shared arc (bold) fixed.
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Al At

d

@@
© ©
~® =

&

Table 5.A.9: two puzzle pieces sharing exactly two arcs;
one shared arc (bold) fixed.

C’+

5'+

KL

Table 5.A.10: puzzle piece with one non-folded inner side (bold) fixed.
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136

X

Y

Table

{A° A9} {AY, A9} 5.A12

X Y  Table
X v Table {4}, AT} B 5.A19
At BTV Ct 5.A.20
{Ab Av} {AT AT} 5.A13 {AT Bi} - 5 A9l
{AY, BV} (A", BT} 5.A.14 { ’~} ~
- - {AY, BT} Ct 5.A.22
{AY, BV} {A", BT} 5.A.15 T
{AT,B*} C7 5.A.23
{B*,B'} {B",B'} 5.A.16
- - {B*,B"} D b5.A24
{B*,B*} {B",B'} 5.A17 ~ 0~
o~ o~ {B*,B'} Dy 5.A25
{B*,B'} {B",B'} 5.A.18 ~ 1~
{B",B*} Df 5.A.26
{B*,B'} D, 5.A.27
X Y Table X Y Table
{A,A})  {A A} 5.A.28 {B*,?} {E:,é_} 5.A.40
{A,B*}  {A,B7} 5.A29 {B~,C,} {B*,C} 5.A41
{A,BT}  {A, B~} 5.A.30 {B~,C} {B*,C,.} 5.A.42
{A,C}  {B*,B~} 5.A31 {B+,B*} {B~,B~} 5.A.43
{A,C,} {B~,B*} 5.A.32 (B+,C_} {B~,C,} 5.A.44
{A,C_} {B*,B~} 5.A.33 {B+,C} {B~,C} 5.A45
{A,C} {B*,B~} 5.A34 {c,c}  {c,c}  5.A46
{B+,€+} {B‘,?‘} 5.A.35 {c.C,} {C.C_} 5.A47
{B*,B*} {B~,B"} 5.A.36 {c.C} {C,.C_} 5.A.48
{B+,~C} {B_,NC} 5.A.37 {éj,@} {C_,C_} 5.A.49
{B+,c:+} {B:,C,} 5.A.38 (C,,C} {C_,C} 5.A50
{B*,C_} {B~,C} 5.A.39 {(¢,c} {C,C} 5.A51
X Y Table
B B 5.A.52
Ct CZ 5A53
C~ Ot 5A54
D, D, 5.A55
Dy Dj 5.A.56
D; Dy 5.A.57

Table 5.A.11: all flippant pairs {X,Y}.
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{AO’AO} cba i/g:b;k/g
b
+ cba a c
~+ ugcbacba
h/h
b~ —c*a*
a b cfa* ~ [ac] o Ug [QC]Q*Q* [ag]
z ~ L
lac] ~  uglac]ca*[ad]
lac] ~> —uglac]blac]
T b lac] b [ad]
{49, A%} a*ladc* k/E:HBj i/i
+ a*[aclc® -
+ wuga*lac]c*a*ac]c* :
oafacla face -

Table 5.A.12: flippant pair {{AO,AO}, {AO,AO}}.
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(4 4)

cha
+ cba
+ wirbac + wyibac

+ wyrbacwybac

= ="

[ac] ~ —lac]wyy

b o~ ca”

lac] ~ —[ac]wyy,
—lad] wyrblac] wyy,

lac] ~ —[ac]wyca*[ac] wyy,

lac] ~ —lad wye*a®[ac] wyy,

Ty

b fad b lad

{47, 4T}

lac]c*a*
+ [ac|c*a*
+ wpctatad] + wycta*lac]

+ wyica*|ac] wy,c*a*ad]
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Table 5.A.13: flippant pair {{Ai,Ai}, {AT,AT}}.
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b
{A,BY} o . %
+ coboa — g-cibia
+ ugac; by k a k
+ wprbac \ B
B L = —c*
¢ lac)] = wouglag] — uyfacy] lac)] = =g lae] N .
- a” — —a
b~ ca*
[ac] ~ —lac]wyg
P
by~ ot
by o~ —ycia”
Tl b [ac] by [acy] by lac]
{4",B"} lac]c*a* N .
o ' <
+ lagc)cga” — g-lacy]eia”
B k a*||a” k

+ upa*facJef

+ wyrctaac]

lac]

Table 5.A.14: flippant pair {{Ai, Bi}, {AT,BT}}.
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(44, B4 cba . .
+ czpba
alla g \
+ ugach k ¢ E
+ wypbac \ /
ifi
= —c*
g lad = —ugladz " + [adz,t ~ fad = fadz,
- - B a* = —a*
b~ c*a*
P lac] ~ —[ac]wiy,
b o~ zlca
T b lac] b [ad
_
{4", B} lac]cta* - -
+ [ac]zc*a*
. N
+ uga*[aclc* k “ £
+ wrc*a*[ac] fad foc
ifi
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Table 5.A.15: flippant pair {{Ai, Ei}, {AT,ET}}.
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{B".B'}

cobpa — ﬁclbla
+ coboa — g-cibia

+ uierbia + ugaci by

¢ =
[aci] = wyug[ac)] — uglac:] laci] = —ﬁ[ﬁcl]
@ ~r N = —cf
laci] = uguglac)] — uylacy] [ac1] = —,lac] . .
& a*— —a
by ~  cpa*
by ~ —upcia*
a k ok
by~ e
by~ —ugcia”
T bo lacg] b1 [aci] by lacy] by [ac]
(B",B1) lacolefa* — 5-laci]cja” >

+ lacolca” — 7 [acilcja” k

+ wlac]efa” + upatfacJf

Table 5.A.16: flippant pair {{B¢, BL}, {BT, BT}}.
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h/h
(B, B4} coboa — Lerbra // \
+ QZEb—a k koalla (/&‘\/
+ uycibra + upach
by by b
ifi
| g = —¢g
_ [aci] = wyuglacy] — uglacy] laci] = —-lacy]
@ ~ i = —c
lac] — —uglacz; ' + [ac)z; ! lad > [ac]z
- - - a* — —a*

* %
by ~ cpa
P by ~ —ugcia*

b~ z'c'a

T by lacg] by facy] b [ac]
{B",B"} lacolcja” — 7 lacilcja” 2 \
+ [ac]zpcta* & . [/E‘\/

+ uqlacq]cia* + uga*lac|c*
1 0

lac]

Table 5.A.17: flippant pair {{Bi, Ei}, {BT, ET}}
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{E{EQ czpba / \
+ czba [/k‘> olla l/k\>
X_@ + uqcba + ugach - -
b b
i/i
_ lac] = —uylac)z;t + [aclz; ! lac] — [ac]z, = =
12
lac] — 7u0[ag]z£1 + [@]zgl lac] — lac]z a* — —a*
b~ zk_lc*a*
v —1
b~ oz cta”
i b lad b lad
@y | e VRN
* s Yo
+ [ad)zca Ok |l T
(> |+ wladere + uoglode - -
lac] lad]
i/i

Table 5.A.18:

flippant pair {{Ei,gi}, {ET,ET}}.
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cba
{ab, At} 4 cha / \
+ upaa k alle k
+ UJ&)J]Q‘F wkkbc
+ wﬂbcwkkbg ' ‘
i/h
¢ av ga
1
" “ e
a ~ —cb
T a a
k
P eIl ~ el g \
+ wkk[bc]
@ + wirbe o - e
+ W lbe] wirbe \ /
k
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Table 5.A.19: flippant pair {{Ai,AT}, B}.
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{A%BT} cha . W
1
+ coboa — 3e1bya
+ upaa k &
+ wirbebye b %
© a — %Q
1 1
" @~ —gcobo + graraiby
a ~ —cb
T a a
~ . 1%
12 b —@Q
o+

b boe] — iC*E{ [by¢] = -beglboc] + UOI—%bgl [bic]

+ wrrbe [byc]

Table 5.A.20: flippant pair {{A}, BT},C*}.
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{A",B}} cha , R
+ coboa — y-cibia /

+ upaa R “

+ wikbeibye \

(Bl

1 1
a ~ _?OQOQO + ——cb

Up Uy
,‘J) B
a ~ —cb
T a a
~ * _1 %
® [ ]
c-

[beolesb™ — s [beolboe — - [beyJcib® + o fbe Jbye

@ + wirlbey]bye

Table 5.A.21: flippant pair {{A", B¥},C~}.
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{ Ai,gT} cba . .
+ QZEILG
+ upaa k ¢ (E)
+ wyrbcbe \ /
i/h
¢ av a
. a~ —eczh
a ~ —cb
Ty a a
71 b Q*ZE
)
&t : b
c*b* z[be] — uiobgzﬁ [be]
OIR " z

Table 5.A.22: flippant pair {{Ai, ET}, 6"’_’}
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[be] 2" b* — 1710 [be]zbe

+ wy[be]be

[i2]
{AT,EJ'} cha
b <
+ cziba /
alla ’ ‘\
+ upaa k e [\k/ )
+ wpbebe \ /
hfi
¢ ar a
1
w a ~ —-czph
a ~ —cb
T a a
] ¢ =zt
k
Cy
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Table 5.A.23: flippant pair {{AT, §¢}, 5’;}
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{B. B}

cobpa — iclbla
+ coboa — ycrbra

+ ugaa + uycibyeyby

(e

© av e
1 1
@~ —gcobo + graraiby
¥ _ 1
a ~ —coby + ukclbl
T a a
B = 7icf
® * 1 7%
b — *@91
i/h
D
bylbocoles — aebolbocalel — abilbacoles + Zhrbilbiealed
1 1 1 1
= g lbocolbo + g olbocilby + gogei[brcolbo — s cilbiealby

+ ugeq[brer]by

Table 5.A.24: flippant pair {{Bi,BT},D}.
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coboa
5% 1
{B", B} - yabia > C’/ \
+ czpba Koalle k)
9@ e 4
b by c
+ ujcybich "
ifh
1
® 2 e

Ty a

[iS]

* 1 x
_ = =

b= b*ZE

lbeglcgb” i
2 - uflo[llco]bogzg
— a-lbe]eib
+ ﬁ[ﬁcﬂbﬁ%

+ uy[ber]bic

[bey]

<

Table 5.A.25: flippant pair
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coboar
1 c
iy | e v \
+czba k Koalle k)
+ upaa -
€1
+ ujcybich N t
h/i
1
© e 3,8
a ~ —iczkb
(U
a ~ —coby + ¢ clbl
T a a
N bt — ——b*
12
c* = ozt
c*bbocl 2, hi f
DY 1
1 = wrc'bilbidz \ %

- ,Tlobco [bod] 2k
+ aabey[biclzy,

uouk -

+ uybey [by]

E b5

N

Table 5.A.26: flippant pair {{BT,Ei}, ZNDI“}
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= a2 ([bco + [bely) zibe
+ uy ([belo + [bely) be

o~ czba
{B{ BT} c b
+ czpba
+ ugaa ‘\k,\’ I ‘\E,\/
@—x + uycbch \ /
i/h
1
®» a — wl
a~ —eezph
(U
a ~ —czb
T a a
_ * =zt
4
b= b*ZE
)
Do 2, ([belo + [bely) zp,c70" / \
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Table 5.A.27: flippant pair {{El,ET},INDQ}.
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{4, 4}

+ o+ o+ o+ o+ o+ o+ o+ o+ o+

cha

cba

wikb + wikh

Wiiac + wWy;ac

wi&bwékb

Wb wjac + wﬁéwl-iag

Wi AC W ac

wirb wihgwﬂgc

wkiagwkkb wjiac

wkiagwkkb wikbwﬂgc + wipb wiiagwﬁbwﬂgc

wWrbwiacwipbwiac + wiacwyacwypb wirb

lac] ~ —wyy,

b

lac] ~ —wc*a* wy,

lac] — wipc*a* wlac] wyy,
— Ww;;|lac|w, - -
" [7 ] kk[ ) — wirca* wylac] wy;lac] wyg
— W;;|ac| W, |lac| w, o - -
TR — wyilac] wppe*a* wy[acl wyg,

~ o cfa* — wjlac] wppca® wylac] wyy

lac] ~ — Wik — Wi [ac] wylac] w@g*g* Wik

— wylac] wy, lac] ~ —wc*a* wy

—wirbwik — wylac] wypctat wy,

— wiilac] wybwi, — wyilad] wy;lac] wipcta* wy,
— wylac] wyac] wikbwiy, —wjilad weieta® wilac] Wy
— wylac] wypbw;;[ac] wyy —wjilad wyreta® wilac] wyy,
= wylac] wybw;;lac] wyy —wipca* wiilac] wy;ac] Wy
—wirbwgi[ac wy;lac] Wik

b

[ac] b [ad]

{44}

e i S e S S

a*lac|c*

a*lac]e*

wiglae] + wyilad]

wipca’ + wycta”

wyilac] wy;[ac]

wrc*a* wiilac] + wypc"at wylac]

wipc*a” wipcta®

wyi[ac] wyy.c*a* wyac]

wic*a* wipc*a* wylac)

wrilac wppe®a® wic"a wylac] + wyca” wlac] wyrcta” wylac]

W€ a* wyj[ac] wygcta* wylac] + wy;lac] wy;lac] wycta® wic*a*

Table 5.A.28: flippant pair {{A, A}, {A,A}}.
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cha
1 i b k
+ coboa — grerbra \ /
—+ w-kb a c
{4,B%} '
+ wpaa
+ wipcibie b K
bews:
+ WhibWi;aa i R k
+ wkkbwibgllllc
+ wyiaawypc bic @ £
+ wkiagwﬁkbwiﬁglbchr wkkbwiiagwwglblc h
= —c*
73 €1 —URCy ~> [bic] — —u—li[blc] ~> by — b
b = —b]
b ~ o cfa*
lac] ~ —wy
—wjilaa] wp lac] ~ —wipa*bi[byc] Wi
—wipC[byc] Wi — wipa*bi[b c] wy;aa] wpy,
p —wipey [by ] wyi[aa] wy — wjilaa] wyyabi[by ] wyy,
~
— Wi [a’g] Whhl1 [Ql C] Wik [Q1Q] - [Q1C] wkkc*a* win
o o~ a'lp —[by ] wy;laa] wppcta* wp,
¢ o~ a'h] —[by ] wirca* wyilaa) wyy,
[bya] ~ —[byc] Wkh
—[byc] wyilaa] wyp
. b lad ¢ [boa]l ¢ [bia]
o' laala” foa)
h ag] )
+ Blbocle” — G bilbicle” B '
+ w;,[ag] o g
{4,B~} b
+ wpcta*
+ wenabilbyc] / b
+ wprcta* wy;laal
k c* kb
+ wpilaa] wppa*bi(b; ]
+ wprc*a* wia*bi[by ] 0% b,
+ wiilaa] wycta* wipa by [byc] + wicta® wy[aa] wya*bi (b c] k
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Table 5.A.29: flippant pair {{A, B+}, {A, B_}}.
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chba
i b
4 QZEbj i k
~ + wih \ /
{4,B%} l
T Whioa
+ wppcbe \
+ wyrbwaa o=
i [ Lk,
+ wirbwipcbe e
+ wi;aawycbe /
+ wyiaawypbwiche + wybwgaawy,,cbe b
. = —c*
@ c = czy ~> [be] = z[bc] ~>
= é* — _b*
b~ c*a*
lac] ~ —wy o
wislad] w [ac] ~ —w;pa™b*[be] wyy
— wii|aa) Wy pk
wonyelbe] — wipa*b"[be] wig[aa] wyy
— winclbe| Wy gk
- " — wylaa] wya*b" [be] wyy,
g — winelbe] wy;[aa] wyy, ~
— wiilaa] whnclbe] wi [ba] ~ —[be]wygeta” wi,
¢ - atb —[be] wylaa] wyrca” wyy
- o —[be] wype*a” wlaa] wyy,
lba] ~ —[be] o
—[be] wy;[aa] wyy,
7 b lad ¢ [ba]
a*[aa)a*
. I [aa] i
+ b*z[bc]c*
= + wyilad] \ /
{4,B7} N
+ wycta*
+ wypa”b*[b] /
+ wprc’a” wiilag] o
k ¢
+ wylaa] wppa’b*be] o
+ UJ}gkC*a* th@*b* [bc] [be]
+ wiilaa] wyrea® wipab*[be] + wipca” wylaal wy,ab*[be] k

Table 5.A.30: flippant pair {{A, §+}, {A, E‘}}
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cha
{a,c}
+ wikb

+ wyiac byarc

+ wprbwiiac byac

1

1 1
+ Cobooo — 5-Cobo1@1 — 7101080 F TGl

[Ed

= —u;boy

byy
7] lager] = —uglage]

[ay¢1] = wiugla ]

laic] — _uiz la;q]

lac)] — —171& lacy]

= —c*
*
— —a

* *
— —a}

b ~ o cfa*

— Wik
€
G4y

—UpCiaH
uuECIay

1
Uilp

layc] wyilac ]

- ﬁ [ay ] wprb wislacy ]

lac]  ~ —wjilac|caila; ] wyp

_1

laycy] ~ *uﬂ[ﬂﬂ] wirc"a* wilacy]

lageo] b1 [a1co)

big

lape] 011 agcy]

(55,5} lacolcha” — 7 laci|cja”
+ aflagcc” — g-ailay cle”
+ wipcta® 7

+ wyilaci|ciaia, ]

+ wircta* wilac]cfaifa; o]

lacy]

Table 5.A.31: flippant pair {{4,C},{B*,B"}}.
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i ’ k
- cha \ /
{4.8,} 1
+ czpboag — o-czpbiay h/h
+ Wikb a a9
+ wiiach g, ¢ )
it c i
+ wppbwiach ac
by )
(kD
n L = —c*
_ bo = 2" bg la;c] = —3-lad] . .
4 A ~ N ~ ag TG
by = —uiz by lac] +~ [ac]z . .
ay — —a;
b ~ o cfa*
lac] ~ —wy
— wyilaclb, [ay o] wy, lac] ~ —wyilaclc*ai|a;c] wyy
¢ b ~ o crfad ~ ok
=0 ==0 lard] ~ —[a;c]wic”a” wyifac]
by o~ )
larc] ~ —a;c] wyifac]
o b [ad by lagd by layd]
la,d]
~ atlagc)e — Lat[a,clc* i
(g | @lede ~ dailnd
+ [ac]zpcta* o #
+ wcta* h/h
+ wyilaclc*aifa,c] \
+ wyrcta’ wlaclc aifa c] -
a*  k >
i

Table 5.A.32: flippant pair {{4, 5+}, {B‘,E*’}}.
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i b k
_ cba \ /
{a.6.} 1
+ cobyzia — g-cibizia h/h
+ wipb / el
+ wy;acibiac . . y
+ wipbwjiac byac
by by
(i)
laco] = 2 laco] lad +~ zac] ¢ et
@ - ~> - ~>
lac,] = —uyz; *[ac] lac)] = —-lac] at e —a*
b ~ o cfa*
lac] ~ —wy
o by o~ chatz ! ~ lac] ~ —wjlaci|cia*|ac] wyy,
by —uciatz! lac)) ~  frzlad wpcta” wilag)
ac)] ~ ﬁzg lac] wyifac)]
'hTng lac] wirbwiilacy]
. b olac by lac] by [acy]
i
y foe.]
. 4
- acylcha* — *lac)|cia* k “ k
. lacolepa’ — Llacilci
+ a*zlaclc* o <
+ wiilacileia(ac] /
+ wyrcta’ wlac]cja(ac] =
[\11/ c*
N
k
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Table 5.A.33: flippant pair {{A,é_}, {B+,§_}}.




5.A Appendix

_ cha i k
{4.¢}

+ czp, (bg + by) 20 a .

+ wipb Wk

+ wyiac (bg + by) ac / Y

+ wyrbwjiac (by + by) ac .- b -

[\E )(;w‘x/j )

_ laclg — z{l[@]ozk_l lac] — zac] c* = —c*
© - >

acly — z; ac)z ac] — laclz a* — —a

[ad] 7 Hach ! lad] — lac]zg ¥ *

b ~ o cfa*

lac] ~ —wy

by ~ <z§ 1y 1c*g*>

lac] ~ —wylaclc™a™[ac] wyy

laclg ~ —m (zlzi[ac] wki[ac]>

¥ ~ laclo ~ =70 (%Z@[&C] wgpca® Wiz‘[aQ])
— (% zlac wyrbwi; [GQ]>

s~ ren) b -t

1 W& <k =2

lach, ~ i (s2flac) wislad]

—m (zizz[gc] wibw; [ag])
T b fac] by [acy b lacly
i
J lac)zpcta* k o
{B+,B"} - o

+ a*zlaclc*
+ wipcta*
+ wiiladc a*[ac]

+ wpre*a® wyacle*a*lac]

Table 5.A.34: flippant pair { {4, 5’}, {§+,§_}}.
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5 Potentials for Tagged Triangulations

{B*,B7}

cobpa — ﬁclbla
+ coboa — g-cibra
+ whﬁglbla + wﬁhclblﬁ

+ Whhclblﬁwﬂgbl a

T
s

€1 —URCy [bya] — —ﬁ[bla]
~s )

o = U bra] = —L [bya]

b5 — —by

by = b

cg ~  a'b
¢~ a'hy
[bra] ~ —[ba] Whh
¢ ~ a'bp
g ~ a'hy
[bya] ~ —[byal Whh

—[bya] wpper[bra] win

[bra] ~ —[bya] wypa*bi[bya] wyy,

[bra] ~ —[bya] wppa*bi[bial wpp

co lboa]l e [bia] ¢ [boa] ¢ [biq]

{557}

bilboala” — Lbilbiala”
+ bylboala® — -bi[byala”
+ wina i [bya] + wypa*bi[bia]

+ wppabilbia] wppabilb al

[bya]

0

A

[boa]
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Table 5.A.35: flippant pair {{B*,B*},{B~,B" }}.




5.A Appendix

_ k @ Kkt
{BT.B*} cobpa — iclbla
+ QZE@ by by
+ wppcba + wppeibia L
+ wpnc1biawpycba \
G
h/
B ¢ = —ugcp [ba] > zg[ba a* — —a*
4 ¢ ezt 1 ~
€T [bia] = —7-[b1a] bt = —b"
cg ~  a'b
¢~ a'h]
. [bra] ~ —[bya]wp, [bra] ~ —[bya) wppa™b* [ba] wyy,
¢~ al [ba] ~ —[ba] wypabi[bra] wyy
[ba] ~ —[ba]wyy,
—[ba] wypc [bra] wpp
Ty co [boa] ¢ [b1a] ¢ [ba]
h
7
K a* k
{B~.B7} blboala” — -bi[brala® /
b

+ 0"z [ba]a*
+ wypa*b*ba] + wy,a*bilbyal

+ wypabi[bia] wy,a*b*[bal

-
Ik

N
7

[ba]

Table 5.A.36: flippant pair {{B"‘,E“L}, {B_,E_}}.
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5 Potentials for Tagged Triangulations

h
/ o
k a K
Bt C
{B*,C} cobpa — iclbm x /
+ coboogo — iﬁobmgl - uigﬂlwﬂo + @21911@1
+ wppcrbicibyiaa
£
oo
k
C1 = Uy [aa] — —%[ﬁla]
A * —n*
by 5 —ugh 1 @
boy ibo1 [bico] = —-[bico]
o ~> k ~> ag — —ag
lager] = —uglage] [bocy] — — 2 [bocy]
0C1 ag boct .y gt
- ap a4
lare1] = weusfarey] brer) = G lbicy]
cg ~ a'b
¢ ~ a*by
boo G545
¥ b - [bra] ~ —[byci]ciaifara] wpy
001 ay
bip  ~ —upcial laci] ~ —%lul[ﬂﬂ] whra bilbrc]
by~ wucia)
laicy] ~ —ukjul[ﬁla] wpnelbie]
Ty co [boal e [bia] bgy [agce] bor [arce] bio [agen] by [are]
h
laya]
it o i
{57} aflagala” — Lafla,ala” p
+ bglbocoley — 171&56 [bocicf — a-bilbrcolch + u&%kbf [brca]ct
+ wpna*bilbici]ciaia, al
gl \u
by 1
k [bico K
/ﬁ 'M
i
k Boaa] k

Table 5.A.37: flippant pair {{B*,C},{B~,C}}.
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5.A Appendix

h
/ \
k a Kt
e
{B*,Cy} coboa — L-cibya \ /
+ QZEQ)QO - u%QZEQQl i/h
+ wpperbichiaa o o
it < i
by by
L
Lk
] = —upc _1 * e
1 kC1 laia] = —-[a;d] a* — —a
& b = 7 by ~ lbed o Bodz ~ aj e —af
by = —uizg 'y [bid] = — 3 bidlzy aj = —aj
cg ~  a'bf
¢~ a'hy
. [bra] ~ —[bic]c*a[a a] wyy,
v by ~ Cap
lard] ~ —[a;a] wypa*bi[bic]
b o~ ay
[a1c] ~ —[aya] wypeq [bid]
T co [boa]l e [bra] by [apd by e
h
y W
it a i
8,0} ajlaga)a’ — Laflajala® N "
+ blboc 2™ — b [brclepc i/
+ wppa*bilbidctailayal / \
k < Kt
e
Lk

Table 5.A.38: flippant pair {{B+,6’+}, {B_,CN’_}}.
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5 Potentials for Tagged Triangulations

n
/ \
k a K
B+,C_ 1
{ } coboa — 5-cibia X /
+ cobyzia — Goeabiza n
+ Whncibicibiaa / o
k e K
@
laa] — z]aa]
P —uRe b
1 P
7 laco] = 2 Haco) ~> brgo] = h [brco) ~ @ e
T Hac
- _ 1 * P
o] > —uge; o ol = =z, ol g
(1] = ﬁl%[blgl]
cg ~ a'by
g~ a'h]
& by s crgtal - [bra] ~ —[bici]cia*aal wyy,
by €A
.1 lac)] ~  7-z[aal wyya*bi[bic]
by~ —ucaty E
lac] ~ uizi [aa] wypey[bic]
f1 co [boa]l e [bia] by [ac] by [ac]
h
faa]
s \
o Ci
{B~,C} a*z;[aala* /.
+ bylbocoleh — g bblbocalet — Fbilbicoles + 7 bilbieilet
+ wpnabi[bici]cia*(aa]
k oz k

Table 5.A.39: flippant pair {{B*’,é_}, {E‘,C}}.
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5.A Appendix

{B*.C} coboa — iclbla k “ K
+ ¢z (bg +by) Zia \ /
+ wpperbie (by + by) aa -
i/h
l E:)i;wt({\/
€1 gl laa] + zaal
N a* — —a*
& laclo = 7 'laclozt  ~ [bod = [bodz ~
Q* — —a*
lac]; — z;l[@hz; [bic] —i[blg]zh
cg ~  a'bf
¢~ a'hy
by ~ m (zflz—lc*a*) [b1a] ~ —[bic]c*a*[aa] wyp
by ol% 2 ca
aclg ~ —mol zz[aal wy,a*bi[bic
v lacly ~ —mg (Zz%[ﬂa] whhcl[b1£]> ~ il 0( lasl e bil ])
A lacly ~ (=32 faa] winabilbrc))
91 1\ ~ £4a
[@]1 VT (zizg[ga] Whhcl[b1§]>
T co [boa]l e [bia] by [acly by [ac,
h
[aa]
- (i)
{B~,C_} a*z;[aala* /
+ bylboclzxe” — -bi[brc)zpe” o
+ e bilbicea’lad) / \
k < it
(k)

Table 5.A.40: flippant pair {{BJF,G}7 {E*,CN’_}}.
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5 Potentials for Tagged Triangulations

i
/ \
KF ° k
{B~,C.} cobpa — ﬁclbla \ /
+ capbotg — czbiay Ik
+ wyacha;ciby a, K
lﬂ c i
L
L
[acy] facy] [arco] — *i[@lco] ¢y = —¢
acy] — —uglacy -
i A 0 Fe e I e
’ BT arer] = 2 fager] ag > —a
— =, w1 =
by —ug 1, 161 up 19161 L) 0
b %, b
c lac] > [ac]z aj — —aj
by ~  cha*
by~ —wcia® |
| [acy] ~ uy Wi lac]c"aj[aic1]
P laci] ~  S-wiladbifaye]  ~ L
b .ok [ard] ~ —lae1]cia” wylac]
Y Qg
by~ el
. bo laco] by [acy] by lapd by land]
i
v
-
| E> a*
N
{Bt.C} lad]zc*a* o
+ aflageolc — yaglagerlet — g-atlarcoleh + ggailaci]e}
+ wiladeailae]eja”
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Table 5.A.41: flippant pair {{B_,5+}, {E*’,C}}.




5.A Appendix

{B~.C}

cobpa — iclbla Kt k
+ CZy (b() + bl) Zia /
+ wyac (by + by) acyby
/h
\\/ b \/ -
[ E,/ by \l,/
laci] = —ugac)] laco] = z[acy) Q==
@ lado = 2; 'ladoz; laci] = —grzlae]  ~ o =
lad, — 2 ad, 2" [ad + [ad)z, a* = —a*
by ~  cha*
by~ —uycia®
lac)) ~ - wiilaclerat[acy]
b() ~ T <z‘_12k_19*@*> up 0
v o lay - o (zzlacieta” wfad))
lacly = 7o (L2i28laci b1 wifac]) o
, S lacly ~ —m (=2 laci]cja” wifad]
b ()
lac]y ~ Wl(ﬁ zizplaci)by Wn[ac])
f1 bo lacg] by facy] by by [ac),
i
/E‘ -
{Bt,C.} [ac]zpc*a*

+ a*zfaco]cy — %Q*Zg laci]e

+ wilacJc*a*ac]cia*

7
N
/

lacy]

/b

laco]

Table 5.A.42: flippant pair {{B_,é}7 {§+7C~’+}}.
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5 Potentials for Tagged Triangulations

{B+.B+}

czba
+ QZ@ILG
+ whﬁgba+ wﬁhcbg

+ wppcbawyycba

+ wppa’d*[ba] + wypa*b*[ba)

+ wpa*b*[ba] wy,a*b*[bal

[ba]

1=

18,

¢ ezt [ba] — z[ba) a* — —a*
7] 1 ~> - ~
ez [ba] — z[ba) b — —b*
¢~ a*b*
[ba} ~ _[bﬁ] Whh [ba] - —[b@] w@Q*Q* [Qa] Wi
P c o~ a't ~r
[ba] ~ —[ba] wy,pa*b*[ba] why,
[ba] ~ —[ba] Whh
—[ba] wypclba) wpp
T ¢ [ba] ¢ [bd]
h
[ba
w (kD
{E’,E’} b* z[bala* -
+ b*zy,[ba)a* b
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Table 5.A.43: flippant pair {{ZN?JF,E“L}, {é‘,é‘}}.




5.A Appendix

{B+.c}

czba
+ cobozia — p-c1byzia

+ wpnchbeibiaa

B
T

-1
c — czy,

laco] = 27 'faco] ~

lac;] — *%Zgl[@ﬂ

laa] — z[ad]
[beo] = zi[beg] ~

[bey] —171&% [bey]

c ~ o a*h*
* %, —1
by ety

b, ~ 7uﬁgfg*z;1

lac)] ~  o-zlaa] wynelbe]

[ba] ~ —[bei]cia”[aal wyy,

lac,] ~ i% [aa] wyp,a"b*[be ]

c [ba] by lacy] by lag)

{B~.C.}

a*z;[aala*
+ b zlbegley — bt zilbelet

+ wypab*[beycia*ad]

laa]

Table 5.A.44: flippant pair {{§+,C~'_}, {E‘,C~'+}}.
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5 Potentials for Tagged Triangulations

{§+7CN’} czba

+ ¢z (bg +by) Zi
+ wppebe (by +by) aa

lady = 2 'ladiz; "

¢ wem! laa] > zfad)
7 lac]y — z{l[@]ozgl ~ [belo = z[bclozi

[bcly = z[be]izp

¢ ~ o atb*

~ 71'0

(=
(12

- 7r1<z 5 'ca )
(

lachy ~ (2 laa] wnne ([belo + [och))

& lacly ~ —mo( zz,[aal wype ([belo + [bdly ))

[ba] ~ —([bc]o + [be]y) c*a”[aa] wyy,
lacg ~ —my (Zgzg[@l] whppa*b* ([bely + [bg]l)>

lac ~ —m (27 laa wwa”b" (oo + b))

T c [ba] by lacly by lacly
h
aa]
{Eié} a*z;[aala* o K;)
+ b2 (bl + [bely) e /
+ wnnat* ([belo + [bcly) ¢*a’faa] al

Table 5.A.45: flippant pair {{§+,5}, {E‘,é’}}
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5.A Appendix

- bU!
it

k
biy /
4 big .
kie——1
ay Co
1 1 1 “ a0
cobooao — uj.cobmal - aﬁbmao + vy c1briay

{c.c}

+ coboozo — i%llm@l - %&911110% + @len@l

+ ugcybyyarcibyiag

bor = —u;byy layco] — —ui[%co]

[ager] = —uglagen] lager] = —i[@ocl] QG = =
_ [arc1] = wyuglare] laycq] = ﬁ[&cl] ==
7 ~ = ~> . .

boy = —ubyy larco] — *171.[0120] ay — —dg

lapey] = —ugfage] lagey] — *i [agcq] aj = —aj

la1c1] = wpuglar ey la1c] = @[0121]

boo  ~ cGag

bor  ~ cpal

bio  ~ —uciag

bir  ~ wugcial

[a101] ~ =g Jare)]ciafay 1]

P byy  ~ Gyah ~ .

b Fat la,¢,] ~ —%[2101]Cfa’f[0121]

Yo1 ~ G o

big  ~ —ukdiag

by~ wpucial

[a1e1] ~ — o [melbnlae]
Tl boo [aocol bor [aico]l b laoer] b laial] boo [aoce] bor [aico) bio [apct] biy o [agc]

{c.c}

aglageoleh — a-aglaoeilel — F-aflacoles + 7 ailarcef
+ aglagcolch — graflager)ei — ig’{[@lco]d‘) + ﬁg{ la;ci]et

+ upailae]ciaifa )]

Table 5.A.46: flippant pair {{C’, C}, {C, C}}

171



5 Potentials for Tagged Triangulations

# o !
buy bog
.
ay Co
~ €1 o
16,04} cobooto — 5-coborar — g-c1bioao + g-cibiiay
+ QZEQ)QO - uiiQZEQ1Q1 h/h
+ upcrbyarchiay a K
it c i
b by
(kD
N
bor = —u;bo 1] = *u%.[ﬁlco]
N cy = —cp
[ager] = —ugfaged] lager] = —7-laged] .
_ | = =
@ [arc1] = wulare ]~ la,¢1] = gz laial] e
- ) )
-1
by =z, by [age] + [aoc]zy .
. . a; — —a}
b = =z by [a1d —;[019}2@
boo  ~  cGap
boy  ~ cgol
b~ —uciag
. [arc1] ~ —F2-[ardc*afay 1]
P b~ wukciaj oyl fayer]etatlard
aic] ~ —Upla G jciag|aic
[arc1] ~ —F2-[ardby[ayc1]
by g
by~ '}
T boo [aoco] bor [arcol bio [aoci] b [arer] o by [ayd]
{60} aflagcolet — Eajlagerlei — Lailarcoleh + phrailaselet
+ aglaodzke” — hailaydlzet
+ woaila,cilciaifarclc”
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Table 5.A.47: flippant pair {{C, 6’+}, {C, 6’_}}




5.A Appendix

bog

~ ki
{6.¢} Cobooao — u%cobmal *Clbloao +3 c11711@1 a <
+ ez (b + by) zia [
b by+0b
+ ugcrbyyarc(by +by)a W
(e y)
bor > —ubyy
laco] = zlacy)
lager] = —ugfagey] 1 ¢ = =
_ laci] = —-zlac]
® lare1] = wruglare) ~ ~ cf = =
. . [age] — [aod 2k N .
lacly = z; “laclozy . at — —a
lad; ~ _1[ ] . laic] = *uj[alg]zg
acly z; laclizy
boo ~  hag
bor ~  cpai
bio  ~ —ugciag
by~ waucial [arc] dera*lacy]
T by o~ (z{lz,zlg*g*) ~ laclp ~ —mg (uozl-zﬁ[gcl}c’{a’{[alg])
lacly ~ —o (72224 ac by [ard]) = —m (wzizileci]cjaiford])
by o~ om (Z = lg*g*)
lac]y ~ —m; <ukuzz zk[acl bn[alc])
T boo [aoco] bor [arco]l b0 lager] b ] by lacly b acl
=
\l /
laco \
k a* kb
{C+.0-}

a*zlacolch — g-a”zac]c}
+ aglage)zpe” — -ailarclze”

+ upa*[aci]ejaifascle “

g,

VI

[aoe] %

Table 5.A.48: flippant pair {{C,é}, {6+,C~’_}}.
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5 Potentials for Tagged Triangulations

k)
RN
i c P
{04} czpboag — u%czkblal \ /
+ czboag — 512@1@1 h/h
+ ugchyaichyag a K
1“ c i
k)
by + zk_lbo lage] = [agc]z, . «
c = —C
by > —u;z; by lare] = —5-larclz
4 ~1 ~ ) a5 —ag
by = 2, by laoe] = [aod] 2y . X
1 ay — —ap
by =~z by [are] = —-lardz
by ~ caj
by~ cfa}
[arc] ~ —ug[arcc*atlay ]
0 by ~ c'ag
. [arc] ~ —ug[a; cJc*ailar]
by o~ ay
[ar¢] ~ —ug[a;c]b;[arc]
T bo [aod] b1 i) by laod by [and]
Ok
111 c* i
(C=C; ailagdere’ — Lajladae o /
+ aplagd 2k — ajlardzpct Wk
+ upailayclc*affarclet / \
i c it
)
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Table 5.A.49: flippant pair {{5+,5’+}, {5_,6’_}}.




5.A Appendix

{C..C} / \

czboag — uiczkblal i ¢ it

? % + czp, (bg + by) 20 \ /

+ ugebiasc(by +by)a

h/h
/ \
- b =
k ooy g
£ 0 N
by = 25t laclo = zilaclozk
B by e —uzgth lacl; — zlac]; 2, = =
@ ) ) ~> ~
laclo = z; ladloz, [aod] = [aoclz @' —a”
lacl, = z; '[adi2; ! lard] = —-lardlz

larc] ~ —uplacJe™a” ([ac]o + [ac)y)

by ~ <zi_lzﬁ_19*@*)

2 lacly ~ —mg (uoz 2 ([aclo + lac]y) 51[019]> oo (uOZﬁE([QC]O e al[alg])
- (z{*z;i*g*) lac]y ~ —m (UOZLZE ([acly + lac]y) C*aﬂalg])
lacl ~ —m (w02 ([acly + lacly) bifarc))

T bo lage] by faie] by [acly by [ach

k)

a|r N
{C_.C} aglagc]zpct — u%a’{ [a1c]zc*
+ a*z; ([acly + [ac]y) zpc* /
+ upailaiclea” ([acly + [ac]) ¢

Table 5.A.50: flippant pair {{C~’+, 6}, {6_, 6’}}
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5 Potentials for Tagged Triangulations

ez, (b + by) zia
+ ez, (g + by) 20

+ ugc (b + 1) ac (b + by) a

;= by .=
[EB==————s
~_ by 7

laclo = 2; 'acloz; lacly = zlacloz
lac]y = 27 Yac) 2" lacly — zlac]; 2, = =
] ~r - ~r
lacly = Zfl[@]ozﬁl lacly = zi[aclozi a*— —a’
lac]; — Z{l[adlzk lacly = zilac]i 2
by ~ m (z{lzflc*a*)
by ~ m (z;*z 1C*a*) laclg ~ —mg (uo lac]c*a [ac]zlzk)
by~ w2tz cta lac]; ~ —my (uplac)c*a*(ac]z] 2,
('s'ew) . ( )
¥ lacly ~ —m (uo[ac]zkbzl[ac]z zk> lacly ~ —m (uoz zgladcta [ac])
by ~om (z{*z 1c"g") lac]; ~ —m; (uoz z;laclcta [ac)
facl ~ —m (uolac]zbzilac)z; =)
(b:=bg+b1, [ac:=laclo +lacly , lac] := [ado + [ac]1)
T bo laclo b1 [acli by lacy b lach
Ki; laclo /i\\
~ L Tdh N
{¢.c} a*z; ([aclo + lad]y) zxc* /
+ Q*Zi ([QC]O + [Qc]l) ZkC* h/b
+ uga* (facly + lacly) ¢*a* ([adlo + [acl;) ¢* / \
[/; [ac]y [/];>
_ laclo ~_
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Table 5.A.51: flippant pair {{6, 6}, {6, 6}}




5.A Appendix

~ czpba
B k
+ wpa
b c
+ wihcb
+ wiawppch i T h
73 [eb]' = =[]0 + -[eb]' b* = —2yb*
a ~  b*c*
v [eb]' ~ —wp
—wpn[eb]” wyg
i a [ch]!
~ b*zc*[eb]” —
B ¥ k )
+ wip[ch]° —
c* b*
+ wpb*c* / \

+ wyb*ct wpp[ch]®

Table 5.A.52: flippant pair {E, E}
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5 Potentials for Tagged Triangulations

ct

czboag — u%czkblal

+ wppcbiay

/\
\/"

[ebo]! — —Z&[cho]® + L [cby! ol
0 Yk 0 Yy L770

7] ~ by — —2ypbiv
chy]' = —Z[chy]0 — Lfeby )t
feby]1 > —Z[eby]0 — 2 [eby] b e
ag  ~ bic*

T ay o~ —ubic*
ebi]' ~ ok wpn[ey]

T ag [ebo]' ay [ehy]!

6,

cho]Obgzict — L cb1 Oby2;
0%k

+ wpp[eby )07

2%
A
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Table 5.A.53: flippant pair {éi, C

-1




5.A Appendix

o czy, (bg + by) z;a = b b
@ + wine (b +b1) a \ /
% h
_ [bra] = —ziz4lboa) - 2" [bral € gy
[p 3k K
[boa] = 2} z[boal + 2 [b1a] by = —b]
¢~ —a* (b5 + b)) 2t
P
[bra] ~  zg[boa] wpp
T ¢ [bid]
- " =
At Lk \mit
“ a*2; (b + b7) z4lbual ST
+ wna® (5 + 57) lboal = :

Table 5.A.54: flippant pair {5_, 5’+}
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5 Potentials for Tagged Triangulations

- ﬁaé lage]0ciz):

b .
obooaozn K - !
Dy — a-coborarzn \ /
1 =
_ aclbmaozh s o
N
+ uilukclbllalzh a
Co
+ ugcqbiiaq
it or k
lageo]" = —Flageo]® + 5-lagco]! % = —2ypcgu
bor = = Ebo o = —2ypciv
@ larco]! *%[‘1100]0 + [arco]! - [aico)”® — *u%.[awo]o
lager]! = —%[0001]0 - Zf[aocl]l lager)” — —i[aocl]o
larey]! s —g0tEh a0 4 Hkay ¢y ] lae))” = olarey])”
bog ~  chag
bor ~  ynchal
P
bip ~ —uciag
bip ~  wugcial
T boo lagco]' bor [arcol' b0 [ager]' bur lare]!
y a1 o]
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6 Potentials for Colored Triangulations

Motivation

This chapter continues the investigation of orbifolds. In contrast to the preceding chapter,
punctures are not allowed, but orbifold points now carry a weight. That is to say, we are
dealing with weighted unpunctured orbifolds: compact oriented surfaces > with marked
points Ml C 0% and orbifold points O C X\ 0¥ equipped with weights O — {1,4}, y > d,,.

Again, we will illustrate the introduction with an example. This time, we consider the
digon with Ml = {2, 25} and O = {y;,y,}. For the weights we take d, =1 and d,, = 4.

The three arcs i1, i9, i3 shown below form a triangulation 7:

As before, there is a quiver X (7) whose vertices are the sides of the triangles in 7 with
arrows keeping track of adjacencies. It is a weighted quiver where sides ¢ containing an

orbifold point y have weight d; = d,, and all other sides have weight 2.
In the example, we therefore have d; =1, d;, =4 and d, =d,, = d;, = 2.
The path algebras R(A) for X (7) are defined over a ground ring R = R(7) = [L;cx,(r) B

where all R; are intermediate fields of a cyclic Galois extension L/K of degree 4.

More precisely, we will assume L = K (v) with v* € K. Letting E = K (v?) this means

L ifd; =4.

For the bimodule A = ¢ x, (r) Aa there are several choices. For each j <% i with both
weights d; and d; divisible by 2 one can take A, = R; ®, R; with p,|p € Gal(E/K) = Z/2Z.
To be well-behaved with respect to mutation, it is necessary to impose a “compatibility

condition.” In the example: p. py, pq, = idg. More generally, the “compatible” choices for
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6 Potentials for Colored Triangulations

the elements p, are parametrized by the set of 1-cocycles Z!(7) of the cocomplex dual to
_ o — 1o} >
Co(T) 1 00—y Xy (1) — = Fo X1 (7) ——— Fo X (1) ——— 0

where (X(7), X;(7)) is the underlying simple graph of the full subquiver of X (7) on the
vertices with weight divisible by 2. The “faces” X,(7) correspond to triangles of 7.

In the example, Xo(7) = {iy,is, 51,52} and X (7) = {cy,c,b9, a5} and Xy(7) = {A}
where A is the triangle with sides sy, sq, i3. The differential 0, sends A to ¢y + by + ag
such that £(cp) + £(bg) + £(ag) = 0 for all ¢ € Z'(7) C Homy, (Cy (1), Fy).

Colored Triangulations

A colored triangulation (1,€) is a triangulation 7 together with a cocycle ¢ € Z!(r). For

all arcs i € 7 we define another colored triangulation: the flip p;(7,&) = (1;(7), ).

Every colored triangulation determines a path algebra R(A(T,€)) for X(7) over L/K.
We will construct an SP S(7,&) = (A(T,&), W(r,£)).

In the running example the potential W (7,§) is ¢1bya; + cybyay. Flipping the arc ig
yields the following triangulation j;, (1):

iy iy
% V

] J3 [

S9 81

laicy agcq]

The potential W (y;,(7,&)) has the form aj[a,co]ch + aj[age]e].

Results

We will show that the SP S(p;(7,&)) corresponds to the SP mutation y;(S(7,&)) for all i.
In particular, this will imply the non-degeneracy of S(7,§).

Furthermore, we will see that W (7, ) is up to R(7)-equivalence the unique non-degenerate
potential for A(7,§) if we assume that the weighted orbifold under consideration is not a

monogon with all orbifold points of the same weight.

We prove that the Jacobian algebra J(7,&) is finite-dimensional and J(7,&) = J(7,&')

as KXo(")_algebras if and only if € and ¢ are cohomologous cocycles.

Finally, the set of colored triangulations of a weighted unpunctured orbifold forms the
set of vertices of a simple graph in which two colored triangulations are joined with an edge
if and only if they are related by flipping an arc. The flip graph is obtained from this graph
by identifying colored triangulations (7,&) and (7,¢’) where £ and & are cohomologous.

The flip graph will be shown to be disconnected unless the surface X is a disk.
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6.1 Triangulated Weighted Orbifolds

6.1 Triangulated Weighted Orbifolds

The notion of triangulated weighted orbifolds is due to [FST12a]. In the present chapter
we only consider weighted orbifolds without punctures. This section discusses consequences

of the non-existence of punctures. In addition, it introduces relevant notation.

Definition 6.1.1. A weighted orbifold ¥, is a pair (3, d) consisting of an orbifold X in
the sense of Definition 5.1.1 and a function O -% {1,4}, x — d,.

A triangulation of 3, is a triangulation of 3 (see Definition 5.1.14).

Convention 6.1.2. For the rest of the chapter fix a weighted orbifold ¥; = (X, d) such
that ¥ = (3,M, O) has no punctures. This means M C 9% # @. For technical reasons we

assume that 3 is not a torus with exactly one boundary marked point.

We use Convention 5.1.2. In particular, we write s for the set of boundary segments, g
for the genus, b for the number of boundary components, m for the number of marked

points, and o for the number of orbifold points of ¥. Moreover, set 0; := [{x € O |d, = 1}|.
In the drawings we put a circle dx close to every orbifold point x to indicate its weight.

For triangulations 7 of ¥, and k € {1,4} we denote by 7%= the set of all pending arcs 4
in 7 such that the orbifold point x that is an endpoint of ¢ has weight d, = k.

The set of non-pending arcs in 7 will sometimes be written as 79=2.

Remark 6.1.3. With \ defined as in Convention 5.1.2 the invariant (g, A, 0, 01) determines
the weighted orbifold ¥, up to diffeomorphism (see Remark 5.1.3).

Remark 6.1.4. Observe that by definition m > b > 0 and 0 > 0; > 0.

Since ¥ has no punctures, the ends of all tagged arcs in 3 are tagged in the same way.
Therefore the notions of triangulation and tagged triangulation coincide in the setting of this
chapter. The puzzle-piece decompositions of triangulations of ¥, (see Proposition 5.1.23)
contain only pieces of those types shown in Figure 6.A.1. In particular, the puzzle pieces

of a triangulation of ¥, are simply the triangles of the triangulation.

Finally, the non-existence of punctures also rules out many of the arctypes listed
in Tables 5.A.7 to 5.A.10 an arc in a triangulation of ¥ can have. Not taking into account

the weights, we are left with only 14 arctypes. They are shown in Tables 6.A.2 to 6.A.4.

6.2 Colored Triangulations

6.2.1 Adjacency Quiver of a Triangulation

The adjacency quivers for triangulations of the weighted orbifold 3; are defined in complete

analogy to § 5.2.1. However, they are not modular but merely weighted quivers.
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6 Potentials for Colored Triangulations

Notation 6.2.1. Similar to Notation 5.2.1 we denote by X, (7) the set of triangles of a
triangulation 7 of ;. For A € X,(7) we write (¢,75) € A if j follows 7 in A.

Definition 6.2.2. The (adjacency) quiver X (1) = X (7,d) of a triangulation 7 of 3 is a
weighted quiver (X (7),d) whose vertices are the arcs in 7 and boundary segments of 3.
Formally, X(7) = 7 Us. The weight of pending i € X,(7) is d; = d,, where x is the
endpoint of i belonging to @. For every other i € X(7) define d; = 2. The arrow set is
X,(r) = {2 LBEDD, 5| A€ Xy(r), iyj € Xo(7) with (i, ) € A,
r € {0,1} with r = 1 only if d; = d; € {1,4} }

The heavy part of X (1) is the full subquiver X971 (7) of X (7) consisting of all vertices i
with weight d; # 1.

Notation 6.2.3. Set A(a) := A and r(a) := r for every arrow a = (A, (i,7),r) € X;(7).
We say that a is induced by the triangle A of T.
A cyclic path cba in X (7) is induced by a triangle A of T if A(a) = A(b) = A(c) = A.
A path cba in X (1) is triangle-induced if it is a cyclic path induced by some A € X, (7).

For a triangle A of 7 we denote by X the subquiver of X (7) spanned by all arrows
induced by A. More generally, the subquiver of X(7) induced by triangles Ay, ..., A, is
defined as the quiver X21 @ --- @ X2¢,

Remark 6.2.4. Assume O - {1,4} is constant with value 4. Then all vertices of X (1)
have weight 2 or 4. As quiver X (7) coincides with Q(7) from Definition 5.2.2. The weight
of a vertex in X (7) is the double of the weight of the corresponding vertex in Q(7).

Remark 6.2.5. The full subquiver X°(7) of X (7) spanned by 7 (i.e. by all arcs that are not
boundary segments) is the “weighted quiver Q(7,d) of 7 with respect to d” in [GL16a].

Convention 6.2.6. In the illustrations we indicate the weight of a vertex i in X (7) by
putting a circle d, next to it whenever d; € {1,4}. Vertices of weight 2 are not highlighted
in any special way. The part of X (7) not belonging to X°(7) will be drawn in blue.

Remark 6.2.7. Analogously as in Remark 5.2.5 we can rephrase [FST12a, Lemma 4.10] in

our context as follows: There is a decomposition of weighted quivers
X(r) = Px°
A

where the sum runs over all triangles A of 7. The weighted quivers X2 for the different

types of triangles (= puzzle pieces) are shown in Figures 6.A.5 to 6.A.7.
Remark 6.2.8. The quiver X (7) of every triangulation 7 is connected, since ¥ is connected.

Remark 6.2.9. We have the following analog of Remark 5.2.7 concerning the number g;; of

arrows j <— i in X (7):
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6.2 Colored Triangulations

® g;; < 2. More precisely, the outdegree of ¢ and the indegree of j are at most 2.
[ ]

If d; # d;, then ¢;; < 1.
e There is at most one arrow j < 7 induced by the same triangle unless d; = d; # 2.
o If d; = d; #2 and g;; > 1, then ¢;; = 2.
The second item shows that X (7) is 2-acyclic.
Note that d; = d; # 2 means that both i and j are pending arcs with the same weight,
while d; # d; implies that at least one of 7 and j is pending.
Remark 6.2.10. Assume O % {1,4} is not constant with value 4. Let 7 be a triangulation.

The skew-symmetrizable matrix B = B(7, d) associated with the weighted quiver X°(7)
via the bijection of Remark 2.1.6 is one of the matrices described in [FST12a, § 4.3].

More precisely, the function O LN {1,4} corresponds to the function @ {%, 2} given
as w(x) = % in [FST12a, Definition 4.15).!

6.2.2 Mutating Adjacency Quivers

The considerations in this subsection are similar to those in § 5.2.2. We discuss how the

weighted quiver X (p;(7)) can be regarded as a subquiver of the premutation ;(X(7)).

Notation 6.2.11. Copying Notation 5.2.15 write X (7,4) (resp. X (7, —i)) for the subquiver

of X (7) induced by all triangles of 7 containing (resp. not containing) the arc i in 7.

Remark 6.2.12. X (1) = X (7,-4) & X (7,4) and 1;(X (7)) = X (7, 1) & 1;(X(7,7)).

We have the following analogs of Lemma 5.2.17 and Remark 5.2.18:

Lemma 6.2.13. Let T and < be triangulations of £, that are related by a flip, say < = p;(7)
and T = p;(c). Then X~ := X (7,-i) = X(5,~j) and there is a monomorphism

>
X(¢) = mi(X(7))
of weighted quivers with ®|x- = idx- and ®(k) =k for all k € Xy(s) \ {j} and ®(j) = .

The image of ® is a mazimal 2-acyclic subquiver of [;( X (7)).

Proof. This is similar to [FST12a, Lemma 4.12] and relies on Definitions 2.1.8 and 6.2.2. [J

Remark 6.2.14. One can demand in Lemma 6.2.13 that for every Lt in X(7) ...

(i) ...with A(b) # A(a), there is a triangle-induced cyclic path b¥cYa" in X (<) such

that ®(b") = b*, ‘I)(Cv) = [ba]g(cvy ®(a’) = a*.

'Not to the function w(x) = % The reason for this is that we call a diagonal integer matrix D a skew-

symmetrizer of B = B(7) if DB is skew-symmetric, whilst [FST12a] requires BD to be skew-symmetric.
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6 Potentials for Colored Triangulations

(ii) ...with d; # 2, r(b) = r(a) = 0, there is a triangle-induced path v'c"a" in X ()
with 7(bY) = r(a") = 0 such that ®(b¥) = b*, ®(c") = [ba]?, ®(a") = a* for some r.

This property determines ® uniquely, if ¢ is not the weight-1 pending arc in a triangle of

type El, 514, or 641. In the case that ¢ is such an arc, there are two choices for ®.

These claims can easily be verified case by case. All possibilities for the image of X (g, j)

under @ are listed in Table 6.A.8 (where i corresponds to the boxed vertex).

Ezample 6.2.15. Let X(7) = X? be the weighted quiver of type C~’14 shown in Figure 6.A.7.
The premutation i;(X (7)) is drawn below on the right. Flipping the arc ¢ in 7 yields a
triangulation ¢ consisting of a single triangle of type 641. The quiver X (<) can be seen on
the left. One of the monomorphisms ® satisfying the property in Remark 6.2.14 sends the

arrow ¢" to [ba]), the other one sends ¢V to [ba]!.

A similar consideration works for the weight-1 arc in triangles A of type El and 541.

6.2.3 Modular Structures

We have defined X (7) not as a modular but only as a weighted quiver. Usually, X (7) can

be turned into a modular quiver in several equally valid ways.

Definition 6.2.16. We call o a modular structure for X (1) if (X(7),d,o) is a modular

quiver. A modular structure o for X (7) is admissible if (X (7),d, o) is T-admissible.

Remark 6.2.17. Recall that the admissibility of a modular quiver is a prerequisite for

admitting non-degenerate SPs (see Remark 2.6.103).
Ezxample 6.2.18. Depicted below is a triangulation 7 of the triangle with one weight-1 and
two weight-4 orbifold points. The weighted quiver X = X (7) is drawn on the right.

4 : 4
’10
ko =k
o *

ey .
L SN
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6.2 Colored Triangulations

The subquivers X2 in the decomposition from Remark 6.2.7 are the full subquivers of X
Spanned by the subsets {7:1, k;f, k+}, {i17 i2, 53}, {iz, S1, ’1:3}7 {’1:3, So, k} g Xo.

We have 741 = {k} and 74 = {k_, k_}.

To equip X with the structure of a modular quiver, we have to pick for each j <— i in X
an element o, € Z/d;;7Z. Observe that

1 ifier®=lvjer=l
djy = {4 ifier™tA e rd=t,
2 otherwise.

Therefore we have no choice for oy, o.,, four possibilities for each of oy, , 03, , and two

cyo

possibilities for each of o, ,0. ,04,,00,,0¢,:0a,: 0, Ocys Ta,-
In other words, we have to make a choice for all arrows that lie in the heavy part X4 (7).

However, not all of these choices define modular structures that are admissible.

Lemma 6.2.19. A modular structure o for X (1) is admissible if and only if there is an
automorphism X (1) = X (1) of Qq-quivers such that

(@) Oney + Tr) + Ona) = 0 in Z/2Z for all triangle-induced paths cba in X47(r); and

(b) o, # 0., for each pair of parallel arrows cy # ¢, in X(T) connecting arcs in Td=4,

Furthermore, o, = 0 for all arrows a in X (1) — Xf#(T).
Definition 6.2.20. Let 7 and ¢ be triangulations of ¥, such that ¢ = u,;(7). For every

modular structure o for X(7) denote by

X(s) — s (X (7))

the monomorphism @ satisfying the property of Remark 6.2.14 such that, if 7 is the pending
arc of a triangle A of type El, 514, or C~’41, it is

ball, .1 € im(®)

where 7 <% <% ¢% i is the cyclic path in X(7) induced by A (compare Example 6.2.15).

Proof of Lemma 6.2.19. The last claim is obvious

To prove the “only if” part of the first claim, let us assume that (a) or (b) is violated.
Due to Remark 6.2.9 there are at most two arrows between each pair of vertices in X (7).
Moreover, for every cyclic path cba in X%#1(7) at most one of the arrows a, b, ¢ can have a
parallel arrow in X (7) different from itself (compare Tables 6.A.2 to 6.A.4). Hence, the
subquiver X of X (1) induced by all A(f) with f parallel to a, b, c is full.

If (a) is violated for all 7, the preceding discussion shows that there are cyclic paths cybyay
and ¢;bya; in X%1(7) such that ¢, and ¢, are parallel arrows in X () and Oc,+0b, 104, #0
or o, + oy, +0, #0forall p€{0,1}. In this case, let X' = Xeobodo = Xerbrar,
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6 Potentials for Colored Triangulations

If (b) is violated, let A be the triangle of type 644 inducing the parallel arrows ¢y and ¢;
and let X’ be the full subquiver X2 of X (7).

In both cases, we consider X’ as a (full) modular subquiver of (X (7),d, o). It is easy to

check that fi;j;(X') is not 2-acyclic after reduction for some i, j. Thus o is not admissible.

For the “if” part of the first claim, it is sufficient to verify that for all arcs i € 7 the
premutation X = fi;(X (), d, o) has the form X = ®°((X(s),d,0")) ® T with T trivial and
conditions (a) and (b) hold after replacing 7, o with ¢ = u;(7), 0’ = 0 0 ®7, where the

modular structure for X induced by o is still denoted by o.
Without loss of generality, we will assume that (a) and (b) hold for = = id.

Fix i € 7. First, we consider the case in which 7 is an arc shared by two triangles A,
and Ay of 7 (see Tables 6.A.2 and 6.A.3). In this case, & = ®7 does not depend on o.

b a
For q € {0,1} let k, <— i <—— h, be the paths in X( ) With Afa,) = A(b,) = A,
b
By the properties of ® there are paths j +— k;_ q % hy H j in X (<) induced each by

some A} € X (c) such that ®(b;) = b5, ®(c)) = [b1_4a q]o, ®(a)) =al

q q q°

If bYcy

d#1
vcYay is contained in X%1(c), then

/ / I _
O'bt\]/ +UC<\Z/ +Ja}{ = Ubf,q +O—[b1—qaq}8 +0’a; =0 € Z/QZ

If there is ¢, # ¢, W~ith A(c}) = A, parallel to ¢! in X(s), then hy, k;_, € ¢?=* and the
arrows ky_, < h, in X are [by_,a,]) and [b;_,a,]}. Thus () = [b;_,q,]} and

O'bv+0' +O' v = Jb* q+0[b17qaq}?+0—a?; =0 € Z/QZ

! -
Moreover, Ty = O, a8 # Ty _gagl = Tt

Since X5(s) = (Xa(s) N Xy(7)) U{Af, A} and each arrow in X () \ X;(7) is induced
by either Af, or A}, we can conclude that (a) and (b) hold with 7, ¢ replaced by ¢, o’

Let T be the modular subquiver of X spanned by all arrows not in the image of ®. This
means T} consists of the arrows k, — hq induced by A, (for ¢ € {0,1}) and those in

by | 1} with s = 1 only if d,_ = dj, = 1
g & hy| s€{0,1} with s =1 only i h, = dr, =1,
r€{0,1} with r =1 only if dj = dj =4 }

If dy p, =2, then o, + Olb,agly = T , T b, +0,,=0in Z,/27 by condition (a) for the
unique arrow k, e, h in X induced by A,

If quhq = 4, there are precisely two arrows k, Sar, h, (r € {0,1}) in X induced by A,

Conditions (a) and (b) imply o, + Tlbya,)9,,, = 0 in Z/AZ for a permutation f of {0,1}.

This shows that 7 is a trivial modular quiver. Hence, the image of ® is a reduction of

the modular quiver X by Lemma 6.2.13.

It remains to consider the case in which i is an inner side of some triangle A of 7 (see

Table 6.A.4). Using Remark 6.2.12 we can assume that A is the only triangle of 7. Then ¢

190



6.2 Colored Triangulations

consists as well of only one triangle A’. The weighted quivers X (1) = X and X (¢) = X&'

are among those in Figures 6.A.6 and 6.A.7 and i is one of their vertices of weight 1 or 4.

A straightforward case-by-case inspection shows that X = ®7((X (<), d, 0"))®T, where T
is trivial, and conditions (a) and (b) still hold when 7, ¢ is replaced by ¢, o’ O

Ezample 6.2.21. The weighted quivers of type El and C~'41 in Figures 6.A.6 and 6.A.7 each
admit two modular structures (o,, 03, 0,) € {(0,0,0),(1,0,0)}. Both are admissible.

The only modular structure for the weighted quiver of type 611 in Figure 6.A.7 takes
the value zero everywhere. It is admissible.
Ezample 6.2.22. The modular structure (o,,03,0,) = (0,1,1) for the weighted quiver of
type A in Figure 6.A.5 is admissible, whereas (o,, 0y, 0.) = (1,1,1) is not.

For the weighted quiver of type C~’44 in Figure 6.A.7 (0,,03,,0,,0.) = (0,0,2,0) is
admissible, while (o4, 0y,,0%,,0.) € {(0,0,0,0),(0,0,0,1),(0,0,1,0)} are not.

6.2.4 Cocycles and Colored Triangulations

We introduce colored triangulations (7,&). These are triangulations 7 enriched with an

additional datum ¢ encoding an admissible modular structure ¢ for X (7).

Notation 6.2.23. Denote by X,(7) the subset of X,(7) consisting of all triangles A such
that all sides of A belong to the heavy part X! (7).

Let X (7) be the quiver obtained from the heavy part X%*!(7) by identifying parallel

arrows that connect arcs in 742,

Remark 6.2.24. By definition ¢y = ¢; in X (7) whenever ¢, # ¢, is a pair of parallel arrows

in X%1(r) between weight-4 pending arcs.

Ezample 6.2.25. For X (1) = X with A of type A, B, or Cy, like in Figures 6.A.5 to 6.A.7
the quiver X (7) is the simple triangle quiver (where b := by = b; in the 544 case):

NA

For triangles A of type El, 5’14, 5'41 the quiver X (7) is the subquiver of X spanned

by the single arrow that connects the two vertices of weight unequal one.

For triangles A of type 5’11 the quiver X (7) consists of just one vertex.

Lemma 6.2.19 suggests to view admissible modular structures for X (7) as cocycles of

a cochain complex with coefficients in Fy = Z/27Z.
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6 Potentials for Colored Triangulations

Definition 6.2.26. A colored triangulation (7,&) of 3, consists of a triangulation 7 of X,
and & € Z1(7) where Z'(7) is the set of 1-cocycles of C*(7) = Homy, (C,(7), F5) and
_ 0. — 0 =
Co(T) 1 0———Fo Xy (1) —2—Fo X, (1) ——— Fy X (1) ——— 0.
The non-zero differentials of Co(7) are defined on basis elements as
05(A) = c+b+a for A e Xy(7),
where cba is a cyclic path in X (7) induced by A,

O1(a) = j+i for j <= i€ X;(7).

Remark 6.2.27. A chain complex similar to C,(7) was considered in [AG16, § 2.2].

Remark 6.2.28. Clearly, Hy(C,(7)) = Fy by Remark 6.2.8 and H,,(C,(7)) = 0 for all n > 1.

6.2.5 Adjacency Quiver of a Colored Triangulation

Definition 6.2.29. The quiver X (7, &) of a colored triangulation (7, ) of X is the modular
quiver (X(7),d, o) with 6§ = £(a) + 2r(a) for all a € Xfl#(T).

Here, Fy is regarded as a subset of Z/47Z via the inclusion 0 — 0, 1 +— 1.

Lemma 6.2.30. The modular quiver X (7,§) is admissible.

Proof. This is a reformulation of the “if” part of Lemma 6.2.19 for 7 = id. O

Ezample 6.2.31. For X of type A like in Figure 6.A.5 the cocycle £ = a* + b* determines
the modular structure (O'g, 05705) = (1,1,0).

C
For X2 of type Cy like in Figure 6.A.7 (where (b,) = s) the cocycle £ = a*+b§ = a*+bj
yields the modular structure (Ug, ago, 051,05) =(1,1,3,0).

[

6.2.6 Flipping Colored Arcs

The next lemma formalizes the fact that the admissible modular structures for X (7) and

those for X (<) are in canonical bijection whenever 7 and ¢ are related by a flip.
Lemma 6.2.32. Let T and < be triangulations of 34 related by flipping an arc, say s = p;(7)
and T = 11;(c). Then we have a pair of mutually inverse bijections

ZN1) ——— Z1(q)

S0T7§

such that for all € € Z'(1) the map ®¢ = Po* from Definition 6.2.20 is a monomorphism
of modular quivers X (s,0>7(€)) — u;(X(7,§)).

In particular, X (s,957(€)) and f;(X(7,€)) are reduced-equivalent for all & € Z'(r).
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6.2 Colored Triangulations

Proof. Let ¢ € Z'(7) and denote by ji;0¢ the modular structure of jz;(X (7, ¢)).
According to Lemma 6.2.30 o¢ is admissible. The proof of Lemma 6.2.19 shows that
there is a unique cocycle 7 (€) = ¢ in Z'() such that fi;0¢ o ®¢ = o¢'.

Tracing Definitions 2.1.12 and 6.2.20 we have explicitly for e/ € X;(s)

&(e) if ¢/ € X,(7),
&(a) if ®¢(e') = a* for some a € X;(7),
E(a) +&£(b) if d; # 1 and ®E(e) = [ba)?
for some path ba in X (7) and some 7,
E(e)+1 if d; =1 and ®¢(e) = [ba)?

for some triangle-induced path cba in X (7) and some r.

A similar formula holds for ¢7*(¢")(e) with e € X, (7).
To show that ™ 07 is the identity, we must verify ¢™<(£')(e) = £(e) for all e € X (7).
Clearly, ©™(£')(e) = &(e) if e € X, (s) or if ®E'(e) = a’* (since then ®¢(a’) = e*).
Let us now assume that ®¢'(e) = [b'a’]%,. Then there exist a,b € X;(7) induced by A(e)
with ®¢'(a) = 0", ®¢'(b) = o’* and ®¢(a’) = b*, BE(V) = a*.

In case d; # 1, we get (') (e) = &' (') + &' (V) = £(b) + &(a) = &(e) where the last
equality uses that £ is a cocycle.

In case d; = 1, let ¢b'a’ be a triangle-induced cyclic path in X (¢). Then it is ®¢(¢/) = [ba]®
for some r, so ¢™(&')(e) =&'() + 1= (§(e) + 1) + 1 =E(e).

This proves that ¢™¢ o ¢>7 is the identity. Analogously, ©*7 o ©™° is the identity.  []

Remark 6.2.33. For ¢ = u;(7) the condition

3¢ e ZY(1), ¢ € X,(), cba triangle-induced in X (7),r € {0,1} : ®¢(¢’) = [ba]®

is non-empty if and only if i is a weight-1 arc in a triangle of 7 with type El, 5’14, or 5’41.

Moreover, the arrow €’ is uniquely determined and independent of &.

Corollary 6.2.34. Let ¢ = u;(7). Ifi is not the weight-1 pending arc in a triangle of T with

type El, 514, or 5’41, then ©>7 and ™ are mutually inverse vector-space isomorphisms.

Proof. Use Lemma 6.2.32 and Remark 6.2.33. 0

Corollary 6.2.35. Let ¢ = p1;(7) and 7 = p;(s). Two cocycles & and & in Z'(1) are
cohomologous if and only if the cocycles ™ (&) and ¢ (&) in Z1(s) are cohomologous.

Proof. 1f j is the weight-1 arc in a triangle A of ¢ with type El, 5’14, or 541, then ¢ is the
weight-1 arc in a triangle of 7 with type El, 541, or 6’14.
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6 Potentials for Colored Triangulations

If this is the case, let €’ be the unique arrow in X%1(c) that is induced by A and let e’V
be its dual in C1(s) (i.e. ¢’V(a) = 6,_. for all a € X;(s)). Otherwise, let e’V = 0.

In either case, ¢’V € Z1(c) and the formula in the proof of Lemma 6.2.32 together with
Remark 6.2.33 show that f; : & = 57 (€) + ¢’V defines an isomorphism Z'(7) — Z'()

that makes the following diagram commute:

CO(r) -2 Z'(7)

T

CO() = Z()
Here, 0" are the differentials Homp, (0, ;) and f; is the isomorphism given by EV — kY

for vertices k # i in X(7) and iV + j¥. We get an induced isomorphism in cohomology

HY(C*(r)) —— H'(C*(c)).

In particular, & —& = 0 in H'(C*(7)) if and only if ¢*7(&;) — 57 (&) = fu(é1 —&) =0
in H'(C*(s)), which proves the corollary.

Definition 6.2.36. Let (7,£) be a colored triangulation of 3; and ¢ = yu;(7). The colored
triangulation p;(7,€) := (s, ¢>7(§)) is obtained by flipping the arc i in (7,§).

6.3 Modulation of a Colored Triangulation

The possible weights for vertices in X(7,§) are 1, 2, 4. Fixing a degree-4 comfy extension
determines therefore a modulation of the modular quiver X (7, &) over this extension.
Convention 6.3.1. For the rest of the chapter fix a degree-4 comfy extension (L/K,(,v).

Abbreviate w := v! € K and v :=v? € K(u) =: E.

Definition 6.3.2. The modulation H(7,&) of a colored triangulation (7,&) is the modula-
tion of X (7,&) over (L/K,(,v).

The ground ring, species, path algebra, and completed path algebra of H(r, &) will be

~

denoted by R(1,&), A(T,&), H(,§), H(T,§), respectively.

6.4 Potential of a Colored Triangulation

6.4.1 Potential Components Induced by Triangles

Definition 6.4.1. Let (7,£) be a colored triangulation of 3; and let A be a triangle of 7.
The potential W2 (€) induced by A is the following potential for A(r,¢):
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cba if A has neither type 511 nor type 544,
where cba is a path in X (7) induced by A.
cbpa + cbja  if A has type 6'44,
W) = where cbya # cbya are paths in X (7) induced by A,
cbpa + cbyau if A has type 6’11,
where cbya # cbya are paths in X (7) induced by A
such that r(by) = 0 and r(b;) = 1.

Remark 6.4.2. Apparently, the potential W2 () looks the same for all &.

Ezample 6.4.3. Figures 6.A.5 to 6.A.7 show W2 = W4 () for all types of triangles A.

6.4.2 Potential of a Colored Triangulation

Definition 6.4.4. The potential of a colored triangulation (1,§) of ¥, is defined as
W(r&) = Y WA
A

where A runs through all triangles of .
The species with potential of (1,€) is S(7,&) = (A(T,&), W (T,£)).
The Jacobian algebra of (1,€) is J(7,§) = T (W (,€)).

Remark 6.4.5. Tt is (W (r, {))XiA = WA(€) for all triangles A of 7.

Ezample 6.4.6. For a colored triangulation (7,¢) with 7 as in Example 6.2.18 it is
I/‘/(T7 g) = Cl(blo + bll)al =+ (,12b2(12 =+ (131)3(13 + (74])4(1,4 .

Ezample 6.4.7. We compute the cyclic derivatives of the potential W = W(r,¢) for

an

arbitrary colored triangulation (7,£). To do this, fix a triangle A of 7 and let X = X (7).

In view of Remark 6.4.5 we have 9,1 (W) = 9,1 (W2(€)) for all arrows j «— i in X2,

Note also that z - af(a) = 7 ,-1(2) for z € lI?I]

e If A has type A or By, then X2 has the form i <% k %bj <% and WA (€) = cba.

We

have dy, = dy; = dj; = 2 and pe-1 = pppa; Pp-1 = PaPes Pa—1 = PcPp- One computes

0q4+(W) = ba, Ot (W) = ac, 0, (W) =cb.

~ b
e If A has type Cyy, then X2 has the form i << k %Oj i Set bi=by+ by € A(T,€)
and b := bg—i—bJ{ € Af(r,€) and p, = PoylE = pbl\E.l Then W2 (€) = cbya+chia = cha.

Tt iS pe-1 = PpPas Po1t = PaPes Pa—t = PPy and G52 = {py, py, } such that again

O+ (W) = ba, Oyt (W) = ac, 0,+(W) =cb.

a
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6 Potentials for Colored Triangulations

e If A has type El, 514, or 541, then X has the form i +% k&j <4 with dy; =2
and d;, = d;; = 1. It is WA(€) = cba and

0,

[

(W) =ba, Oyt (W) = ﬂp;l(aC) , 0, (W) =cb.

~ b
e If A has type C,;, then X has the form i <= k %Oj +~i with r(by) = 0 and r(b;) = 1.
Then W2(&) = cbya + cbyau and '

0, (W) =bpa + byau, 0

y b(T)(W) =ac, Oy(W)=auc, 0,(W) = chy+ uch;.

1

6.5 Compatibility of Flip and Mutation

All is said and done to prove the first main result of this chapter: the compatibility of flip

and mutation. It is the variant of Theorems 5.4.1 and 5.4.6 for colored triangulations.

Convention 6.5.1. We make use of the obvious generalization of Convention 5.3.13 for

colored triangulations (replace Q, 7, ¢ = p;(7) by X, (7,€), (s,&') = ;(7, &), respectively).

Theorem 6.5.2. S(u;(7,8)) =g 1;(S(7,€)) for all colored triangulations (1,€) and i € T.

Proof. The proof is similar to the proof of Theorem 5.4.1.

Let (5,&") = p;(7,€) and 7 = p;(s). Abbreviate X = X(7,1), X' = X(s,5), X = [;(X).
Consider X, X/, X as modular subquivers of X(1,8), X(s,&), 1;(X(7,€)), respectively.

Recall that X(7) = X" @ X and X(¢) = X" & X’ and 3;(X (7)) = X~ @ X for some X .
Let 0 = 0¢ and ® = ®7 be the map X (s, &) < [1;(X (7,€)) described in Definition 6.2.20,

which is a morphism of modular quivers by Lemma 6.2.32. It restricts to a map X' — X

and induces an injective R(7)-algebra homomorphism

H' = H(<,&) —— Ji,(H(r,€)) = H.

_ X ’_ NP & At ~
Let W = (W(7,£))* and W' = (W(s,£’))* and Aut = AUtﬁi(X(T,f))—Xl(H)'
We will proceed as follows:
(1) Compute the premutation W = (W),
(2) Construct J € Aut such that 5(/1/17) is in X;-split form.
(3) Compute W' = redil(g(W)) and T = trivil(ﬁ(W)) C X.

We will choose 9 in such a way that ®(W’) = W’ and X = ®(X’) & T. This will prove

the theorem, since then

(W (s,¢)) = redg (I(m;(W(r,9)))) -
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For the construction of 9 we distinguish four cases: (a) i is a non-pending arc; (b) i is
a pending arc in a triangle of type 511 or 6'44; (c) i is the weight-4 arc in a triangle of

type 54, 514, or 541; (d) i is the weight-1 arc in a triangle of type El, C~'14, or 541.

(a) Let us assume that ¢ is non-pending. Then d; = 2 and ¢ is an arc shared by two
triangles Ay and A; of 7 (see Tables 6.A.2 and 6.A.3).
T b . . . .
Let i ¢t h, S k, < i be the cyclic paths in X (7) induced by A, such that r(c,,.) = r,
where ¢,7 € {0,1} with » = 1 only if h,, k, € 7% or h,, k, € 7%= We set §:= 1 — ¢ and

q’""q q’°"q
/
T, = 0 d=4 zh =0 d=a
q hgskq€T ’ q hqkg€T )
R /o
yq = 5hq,kq€Td:17 yq = 6hq7k§€7'd:1 .

Then z,y, = x4y = TqYy = Ty = 0.

Now X = X% @ X& and W = Y (o 1y W, with
W, = Wha(¢) = Cq0bqy + TyCp1byag + YuCprbyuay .

We compute the premutation as W= qu (0,1} Wq where

W, = ch[bqaq]?o + 4 qu[bqaq]?l + Yq cq1[bga ](1)
1o
1
0

azbilbya,ld + x,albibya,l)
](1) + y{l aZu_lbg[bqa]

q7q97q

1b[bga

q
*, —1p%

+ ygagubylbay

qYq q

+ a
+ agbglbgagly + wga q
Let pg, == Pe,, = (p[bqaq]? )71 and ¥, € Aut the element determined by the rules:

Co " G Tp(aghy)

g Cq —xgm, (aghy) — Yoaiu by (if z, # 0 or y, #0)

As potentials v[b,a,]), = Ty (V) [b,a,]). for v € H (see Corollary 2.6.56). Now we have

Iy

(P (Wq) = Wq and a straightforward calculation shows

D1g(Wy) = cplbgaliy + 24 cqulbaglt + g Cq1[bgaqls
+ agbilbgagls + @4 agbglbaaglt + wgaguTbzlbsagls
If yy # 0, let Py, € Aut be the element defined by the substitutions
* * 0 1 1 0
aq = agu, [bqaq]o — [bqaq]o, [bqaq]o — [bqaq]o.
Otherwise (in particular, if zj, # 0), let 15, be the identity.
With 9 = gy 0 gy 0 Pyp 0 Py it is W = redgl(ﬁ(ﬁf)) =D ef01} V[N/é where

W) = a;bilbga,)y + afaibilbsa,)) + vl ajubl[bsa,ll -
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By the properties of ® (see Remark 6.2.14) there is for each ¢ € {0,1} a triangle A} of ¢

inducing a path by ¢y a, such that ®(by) = b%, ®(c)) = [béaq]g(cg)’ D(ay) = a}

This readily implies ®(W’) = 3- 1o 13 S(W2Ri(¢')) = W' as desired.

Finally, observe that T = triv Xl(g(W)) coincides with the modular quiver T described
in the proof of Lemma 6.2.19. Hence, X = ®(X") & T.

(b) Let i be a pending arc in a triangle A of type 5’11 or 5’44. Since the other case is

symmetric, we will assume that the arctype for ¢ is Cc- (see Table 6.A.4).
There are two paths i <= «— & with r(b,.) =r € {0,1} in X(7) induced by A.
We have X = X2 and W = WA(€) = cbya + cbyau® for x := §;c,a=1. Thus

W = cbyald +  clbialdu”

0
0
+ a*b(*)[boa]g + a*bﬂbla]g

Let € Aut be the element defined by b} — —b*, [bya)d — ([b1a]d — [boa]d)u~*. Then

S(W) = cbial) + a*bjlboaly — a*bibralju™ + a*bi[byalfu" .

Let §, € Aut be given by ¢ — ¢+ 7, (u™"a*by).

If x #£0, let Py € Aut be given by aj — uag, bj + b1, b] — by. Otherwise, let 1y = id.
Let 0 = @ 0 @7 0 3. Then W’ = a*b[byal + a*bi[byald u® = ®(W') and X = ®(X') & T.
(c) Let i be the weight-4 arc in a triangle A of type By, Cyy, or Cyy.

There is a unique cyclic path i <+ < Loiinx (1) induced by A.

Itis X = X2 W = W2(€) = cba, and

W = c[bal

8 + c[ba](l)
+ a*b*[bal 5

+ a*u"tb*[ba)
The substitution [ba]§ — [ba]j — [ba])) defines ¢ € Aut such that
§5(fV[7) = cfbal} + a*(1—u )b [baly + a*u"'b*[ba)} .
Let ¢ € Aut be given by a* — a*z, ¢ — ¢ — m, (a*zu™1b*) for z = (1 —wu™1)71.
For J = ¢ o § we have W' = a*b*[ba)y = ®(W') and X=9(X)oT.
(d) Let i be the weight-1 arc in a triangle of type By, Cy4, or Cyy.
There is a unique cyclic path i <— <= &iin X (1) induced by A.

Itis X = X2, W = W2(§) = cha, and

W = c[ba]gc + a*b*[bal) + a*b*[bal) .
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Let 9 be given by the substitution ¢ — ¢ — T, (a*b).
Then W' = a*b*[ba]?, ,; = ®(W') and X = &(X") & T. O

Corollary 6.5.3. S(7,&) is non-degenerate for every colored triangulation (1,£) of Xg4.

Proof. This is a direct consequence of Theorem 6.5.2 and Remark 6.2.9. 0

6.6 Uniqueness of Potentials

In this section we prove that A(, &) admits up to R-equivalence exactly one non-degenerate

potential, namely W (r,§), if ¥, is not a monogon with constant O 4, {1,4}.

As a preparation for the proof we collect a few combinatorial facts in the lemmas below.

Convention 6.6.1. Fix a colored triangulation (7,¢) of 3.
Abbreviate X = X(7), H = H(r,£), H = H(r,¢€).
Denote by ¢;; the number of arrows j <7 in X.
Every cyclic path of length three in X contains at most one arrow j < i with g;; # 1.

In other words, the paths i <~ k A j < i with qxj = qj; = 1 are up to rotation all cyclic
paths of length three in X. We record this fact in the next lemma.

Lemma 6.6.2. For all i, j, k € X with qx;,q;; > 0 either q; =1 or q;; = 1.
Proof. This follows easily by inspecting the puzzle-piece decomposition of 7. O

Remark 6.2.9 and Lemma 6.6.2 allow us to label the arrows of each A € X5 as follows:

(a) Pick a path i Lol j <2 i in X induced by A with qxj = qj; = 1 and r(cp) = 0.
(b) Whenever ¢;;, > 1 let 4 <2 [ be the unique arrow in X unequal CA-
(¢) Whenever ¢;;, = 1 set ¢y := 0 regarded as an element of H.

Convention 6.6.3. Fix such a labeling for the rest of the section.

Lemma 6.6.4. If cba is a cyclic path in X with A(a) # A(c) # A(b), it is A(b) = A(a).

More generally, X contains no cyclic path a,---ay with A(a,) # Aa,_y) for all g € Z/{Z.

Proof. Assume to the contrary p = a,---a; is a cyclic path in X with A(a,) # A(a,_;) for
all ¢ € Z/0Z. Then all vertices of p are shared arcs in the triangulation 7 and by definition
of the arrows in X the triangles A(a;), ..., A(a,) must form a configuration as depicted

in Definition 5.3.6, a contradiction to the fact that ¥ is unpunctured. O

We will need the following more general version of the previous lemma:
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Lemma 6.6.5. Let p=a,---aq be a cyclic path in X. Then there exists q € Z/VZ such
that either A(a,) = A(ag—1) is a triangle of type A or A(agyq) = Ala,) = Ala,_q).

Proof. Assume p does not verify the property in the lemma. Then, after possibly replacing p
by ap_; -+ - ajay, we can write p = pg - - - p; where each p, is either an arrow or a path el
~ q) = A(aq
triangle of type B. Moreover, we must have A(p,) # A(p,_1) for all ¢ € Z/sZ. Analogously

in X that connects two shared arcs in 7 and, in the latter case, A(p,) := A(b )isa

as in the proof of Lemma 6.6.4 the triangles A(p;),...,A(p,) would form a configuration
as depicted in Definition 5.3.6 in contradiction to the fact that 3 is unpunctured. O

Lemma 6.6.6. If i < k ij & ds a path in X with qrj = G5 = 1, then either cba is
triangle-induced or there is a unique cyclic path cba in X induced by some triangle A such

that cba is induced by some triangle A and both A and A are triangles of type A.

Proof. If A(c) = A(b), then we already have A(c) = A(b) = A(a) because of ¢;; = 1.
Similarly, A(a) = A(c) implies that cba is triangle-induced. If A(a) # A(c) # A(b), we
must have A := A(b) = A(a) according to Lemma 6.6.4. Since cba is not triangle-induced,
necessarily ¢;;, > 1 or, equivalently, ¢;;, = 2. Because of A(c) # A(b) the arcs i and k must
be shared by two triangles A and A of type A (see Table 6.A.3). The claim follows. [

Proposition 6.6.7. Let W be a non-degenerate potential for A(t,€). Then there exists a
potential Wy 3 with ord(Ws3) > 3 such that W ~g W(7,§) + Ws3.

Proof. For x € {4,1} denote by X3 the subset of X, consisting of triangles of type Crn-
Let X9 = X, \ (X5 U XJ).

With Lemmas 6.6.2 and 6.6.6 it is not hard to see that W =3 4 1 ZAGX& Wa+Wy3
where ord(W.3) > 3 and

wacabaan + zacabpan  for A € X9 and some xp,zp € F,
Wa = caapnbaan +caapbpan for A € Xj and some apn,an € L,

cabazaan +cabazaan  for A € X3 and some zp,24 € E.

Step by step, we will replace W with R(7)-equivalent potentials, thereby achieving in a
first step (a) xo = 1 and 25 = 0 for A € X9, in a second step (b) ap = ap = 1 for A € X3
and in the final step (c) 2o = 1 and z5 = u for A € XJ. This will prove the proposition.

(a) Let A € X§.

If ¢ = 0, then (Wa)Xi = W, for X’ = X2. Moreover, 5 € EX because of the non-
degeneracy. Replacing W with (W), where ¢ € AUtX—Xi (H) is given by cp +— xgch,
we get xao = 1 and can take z5 = 0.

If cp # 0, there exists A € XY inducing ¢y = cp. We have (Wp)X1 = Wa + Wa
for X' := X2 @ X2, Tt is not hard to check that the non-degeneracy of W implies that
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the inverse matrix

LON AN Ia  ZA

LYNERN LA TA
exists. Therefore the substitutions cy + vaca +vaca and cp = vaca + vaca define an
element ¢ € Auty_x/(H). Replacing W by p(W) we attain zp =1 and z5 = 0.

(b) For all A € X} and X’ := X* we have (Wx)X1 = W,. The non-degeneracy of W
implies an,an € L*. Clearly, ca = cpapl, ca +> caax’ defines ¢ € Autx _x;(H) such
that, after replacing W with (W), one has ap = ap = 1.

(c) For all A € X} and X’ := X® we have (W,)*1 = W,. The non-degeneracy implies
that za, 2z are linearly independent over K. Write z;lgA =x+yuwithzx e K, ye K*.
Define an element ¢ € Autx_x/(H) by ba +— bAzgl, Ca +r ca — Y e, ea — Y ea.
Replacing W with (W) we achieve zp = 1 and 2z = u. O

Theorem 6.6.8. Assume X, is not a monogon where all orbifold points have the same

weight. Then every non-degenerate potential W for A(t,§) is R(T)-equivalent to W (t,§).

Proof. The assumption guarantees the existence of a triangulation ¢ of 33; without triangles

of type 5’11 and 544.

It is (6, &) = pg, - - - py, (1,€) for some & and some arcs iy, ..., i, by Proposition 5.1.32.
Now W' := pi;, -+ p; (W) ~p W(s,§') & W ~p W(r,£) by Theorems 2.6.101 and 6.5.2.

Replacing (7,&) and W by (¢,&’) and W', we can assume that 7 does neither contain
any triangle of type 511 nor any of type 644. Then

W(r,&) = Y cabaan.

AEX,
Now assume that for some k£ € N we have a potential
Wy, = W(T,8) + Wapys
with ord(Ws,3) > k + 3. In view of Lemma 6.6.5 we can write

Wogis = Z (Z/CAbAaA +cavp,an + CAbAVaA)
AEX,
for some elements v, € H with ord(v,) > k + 1 such that v, = 0 if j «= i is induced by a
triangle of type El, 5’14, or 6'41 and dj; # 1.

Let 0 = 0. By the choice of ¢ (see Lemma, 6.2.19) we have o, = 0}, + 0, in Z/d;;Z for
all triangle-induced cyclic paths i <= k a j < iin X such that we can assume v, = 5, (Va)
(note that, if v, # 0, either d;; = 1 or dy; = d,j, = dj; compare Corollary 2.6.56 ).

The depth of the unitriangular automorphism ¢y, of H given by the rules a — a — v,
for a € X is at least k + 1. A straightforward computation shows

Wip1 = @ (Wi) = WI(T, &) + Werg1y43
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6 Potentials for Colored Triangulations

Replacing W with an equivalent potential like in Proposition 6.6.7, we can take W, = W.
The construction just described yields a sequence (¢},) keN, of unitriangular automorphisms
with limy, depth(p;,) = oo and lim, W), = W (r,§) for W, = ¢,(W) and ¢, = @i« 1.
Thus W(r,&) = ¢(W) for ¢ = lim, ¢,, which proves the theorem. O

6.7 Jacobian Algebras

The Jacobian algebras J(7, ) will be shown to be finite-dimensional. Moreover, we prove
that for each fixed triangulation 7 the isomorphism classes of Jacobian algebras J(,¢&)

are parametrized by a cohomology group. More precisely, there is a bijection

HY(C*(7)) —— {T (1. &) |§ € Z}(7)}/=~,
€] — J(7,€)

where the set on the right-hand side consists of isomorphism classes of K~0(7)-algebras.

As a preparation, we need the following lemma.

ag—1

Lemma 6.7.1. For every path iy «—— i, Gy i X(7) of length £ > 3| Xo(7)]
there is 1 < q < £ such that A(a,) = Aa,_q) and i, is a shared arc in T.

Proof. Let p=a,---a; if ay---a; starts at a shared arc. Otherwise, let p be one of the

cyclic paths aja,---ay and ay_; - - - aja, such that p starts at a shared arc.

Write p = p, - - - p; such that each path p, connects two shared arcs and has unshared

arcs as its inner vertices. Then all arrows of p, are induced by the same triangle A, of 7.

Arguing as in the proof of Lemma 6.6.5 we must have either A, = A,_; forsome 1 <r <'s
or A=A, If A, #A,_{forall 1l <r <s, then Ay,...,A,_; would be pairwise different

and form a configuration looking as follows:

In particular, we would have s < |X,(7)|. Since the length of each path p, is at most 3,
the length of p would be at most 3| Xy(7)| in contradiction to £ > 3|X(7)|. Therefore we

must have A, = A,_; for some 1 < r < s. This readily implies the lemma. O]

Let m = M6 An ideal J of ﬁ(T, €) is admissible if there is ¢ € N with mf C J Cm?.
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6.7 Jacobian Algebras

Proposition 6.7.2. The Jacobian ideal (W (7,§)) is an admissible ideal. In particular,
the Jacobian algebra J(7,&) is finite-dimensional with rad(J(1,§)) = m/O(W (1,§)).

Proof. Let A= A(,§) and W = W (r,€).
Obviously, W is generated by elements in m? (see Example 6.4.7). To show that W

is admissible, it is thus sufficient to verify the inclusion 4,,--- A, C OW for every cyclic
ap . Qy—1 a

path iy ip o+ 4—— iy in X(7) of length £ > 3| X (7)|.

According to Lemma 6.7.1 for all such paths there is 1 < ¢ < £ such that A(a,) = A(a,_q)

and i, is a shared arc in 7. Hence, di =2

If d; 1ig = 201 d i, = 2, then aga,_; generates the R-bimodule 4, A . Moreover,
it is aga,_ € OW by Example 6.4.7.
Ifd;, . #2andd;;  #2 thend; ~=d;  =1and A(a,) is a triangle of type Ciy.

In this case, the generators a,a,_; and ajua,_; of Aaq Aaq_1 also lie in OW by Example 6.4.7.

We can conclude in either case 4,, - A, C OW as desired. O

Theorem 6.7.3. For colored triangulations (1,€), (1,£') of X4 the following are equivalent:
(a) &= ¢ in H'(C*(7)).
(b) T(1,6) = T(1,€) as KXo _algebras.
(c) A(1,8) = f,A(1,&') as R-bimodules over K for some f € Aut .x, (R(T)).

Proof. Let R = R(7) =[]~

For Y € {A, VV,ﬁ,j} abbreviate Y := Y (7,€) and Y’ := Y (7,¢’). Moreover, denote
by p, and p, the unique elements in Gal(L;;/K) such that A, = ij“ and Al = ijg.

L;. We write f; for the i-th component of f € End .x ) (R).

We add two more statements:
(a’) There is Xo(7) L Fy with £(a) + &' (a) = g(j) + g(i) for all j <= i € X (7).

(¢’) There is an automorphism f of the K Xo(7)_algebra R and an automorphism 7 of the
Xo(7)-quiver X (7) such that p;(a)fi = fjpq on Lj; for all j <ie Xq(7).

(a) & (a’): True by definition.

(b) = (c): Thanks to Proposition 6.7.2 an K~0(7)_algebra isomorphism J ER J’ induces
an R-bimodule isomorphism A 2 rad(J)/rad?(J) — f.rad(J’)/rad?®(J’) = fL A’ where f’
is the automorphism R = 7 /rad(J) — J'/rad(J’) = R induced by f.

(¢) = (¢”): The isomorphism A — f, A" induces for all 7, j € X,(7) an isomorphism

@ ]Lpa B @ Aa _ j % f*A/ @ f*A/ ]Lf;lpflfz .

i jéoi jé5i Jj<ai

According to Lemma 2.5.14 there must exist m like in (c’).
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6 Potentials for Colored Triangulations

(¢’) = (b): The identity p, = f;lp; (a) fi implies f A’ (@) = ij @ as simple R-bimodules
over K in view of (x) in § 2.5.3. Let g, be the isomorphism A, = ij ¢ = fLAL (a) given

by a + m(a). We obtain an induced R-bimodule isomorphism
— = / _ '
A=A — DrA = £4.
a a

and thereby an induced isomorphism H = R((A)) X R((f,A")) = H’' of KXo(")_algebras.
Tt is g(W) ~p W' (via by > —by for all i <<« i in X (7) with r(b) = 1 and f; # idp,
induced by triangles of type CN’H). Hence, J = J" as K¥o(")_algebras by Proposition 2.6.44.
(a’) = (c’): As before, we regard [y as a subset of Z/4Z via 0+ 0, 1+ 1. Let a = o,
be the fixed isomorphism Z/4Z — Gal(L/K) We use Convention 2.5.11.
Let f € Autx,(R) given by f; = o;(g(i)) for all i € Xo(7).
If 5 & with r(b,) =1 € {0,1} are parallel arrows in X (7) connecting weight-4 arcs,
then b := by = by in X(7) and p, = a;;(£(b) +2r) and p, = (€' (b) +2r).

Since £(b) + &' (b) = g(j) + g(4) holds in Fy, there is p € {0, 1} such that for all r € {0,1}
one has the identity (¢'(b) + 2(r +p)) + g(i) = g(j) + (£(b) + 2r) in Z/4Z.

Then we have p;(bT)fi = fpp, for m(b,) = bj,_p-

Extending 7 to an automorphism of the quiver X (7) with 7(a) = a for all arrows j «— i
in X (7) not connecting weight-4 arcs, we get f and 7 as in (¢’).

(¢") = (a'): Let Xo(r) 5 Fy with g(i) = a; '(f;) regarded as element in Fy = Z/27.

For j <~ i € X, () the condition p;(a)fi = fjp, translates to &(a)+&'(7(a)) = g(j) +g(i)
in Fy, since p;(a) = a;;(€(n(a)) +2r(a)) and p, = a;;(&(a) + 2r(a)).

For single arrows j <— i in X (7) it is 7(a) = a in X(7), so &(a) + €'(a) = g(4) + g(i).

For m(a) # a in X (7) let i < k <ij & i be the path in X () induced by A(a). Then it
is A(a) € X5(7) and one computes

£(a) + &' (a) = (§(e) +&(b)) + (&'(c) + (D))
= (§(c) +&'(c)) + (£(b) +£(b))
= (9(2) + g(k)) + (g(k) + 9(j)) = g(4) + 9(i) .

The first equality holds because £ and &’ are cocycles and the last equality because ¢ and b

are single arrows in X (7) (see Lemma 6.6.2). O

6.8 Geometric Realization of X,(7)
In the spirit of [AG16, Lemma 2.3 the cohomology of C*(7) can be identified with the

singular cohomology of ¥ with Fy-coefficients. This observation is particularly interesting

in combination with the parametrization of Jacobian algebras by the first cohomology
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6.8 Geometric Realization of X,(T)

group HY(C*(1)) & ]Fgg%*1 described in § 6.7. For instance, one can deduce immediately
that the isomorphism class of J(7,&) does not depend on ¢ if ¥ is a disk.

Construction of | X (7)|

Fix a triangulation 7 of 3; and let (7;);c, be a family of curves in ¥ whose elements do

not intersect each other in ¥\ M such that 7; represents ¢ (see Remark 5.1.10).
For boundary segments i € 5 define 7; = i. Abbreviate X, = X, (1) for k € {0,1,2}.

Construct a subspace |X| = Ukeqo,1,2) Uiex, @i of X as follows:

(a) For every i € X let x; = {p;} for some inner point p; of 7;.

(b) For every j <~ i € X, pick a curve z, in (X,MU {pi,p;},0) with endpoints {p;,p;}
and inner points in A(a) \ U, e

Make these choices in such a way that for all @ # b in X; the curves z, and x; do

not intersect each other in their inner points.

(c) For every A € X, the set cp = Uanle(a):A x, 1s the image of a closed simple curve.

Let x5 be the closure of the component of ¥ \ ¢5 not intersecting any of the ~;.
Example 6.8.1. For the triangulation 7 of the triangle with one weight-1 and two weight-4

orbifold points from Example 6.2.18 we have visualized below on the left the “geometric

realization” |X| C ¥ of X,. On the right one can see the quiver X (7).

k_ —>k+

NS
A

L

Notation 6.8.2. We denote for topological spaces X by C,(X; R) the singular complex
of X with coefficients in R and by H,(X; R) its homology. By definition C},(X; R) is the free
R-module generated by all continuous maps A¥ — X where A* is the standard k-simplex.

To relate the homology of C,(7) to the singular homology of | X| fix for all k£ € {0,1,2}
o . L 00)
and i € X, a continuous map A¥ —= | X| with image x; that is injective on the interior

of A¥ and has the properties that ...

(a) ...for each A € X, and each face F of A? there is a € X; with 0(A)|p = 0(a),
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6 Potentials for Colored Triangulations

(b) ...for each j += i € X; the image of A! under 6(a) is {pisp;}-

In C,(|X|;Fy) one has with these choices 9,(0(A)) = 8(c) + 0(b) + (a) for all A € X,,
where cba is a cyclic path induced by A, and 8;(0(a)) = 0(5) + 0(i) for all j <= i € X.

To cut this long story short, the rule i — (i) with i € X}, induces a chain map

Co(r) —— C(|X|;Fy).
Proposition 6.8.3. The map 6 induces an isomorphism Hy(C4(T)) =, H,(|X|;Fy).

Proof. This is a standard result in algebraic topology. Compare e.g. [Hat02, Chapter 2.1]

where a similar construction is discussed for integral coefficients. O

Postcomposing the map 6 with the map C, (| X|;Fy) — C,(%;F,) induced by the canonical
inclusion | X| <% ¥ we get a chain map C, (1) = Co(X;TF,), which we denote again by 6.

o

Proposition 6.8.4. The map 6 induces an isomorphism Hq(Cq(T)) — Hq(X;Fy).

Proof. Having in mind Remark 5.1.3, Example 5.1.6, and Proposition 5.1.23, it is not
hard to see that |X| is a strong deformation retract of ¥. Consequently, + induces an

isomorphism H, (| X|;Fy) = H,(%;TF,). Now Proposition 6.8.3 implies the claim. O

Corollary 6.8.5. H,(C,(1)) = Fgﬁb—l,

Proof. Use Proposition 6.8.4 and the well-known fact H(X;F,) = Fgﬁb*l. O

Remark 6.8.6. It is also possible to verify H;(C,(T)) = Fgﬁb_l directly:
By Remark 6.2.28 the dimension of H;(C,(7)) is
ri=1-x(Co(7)) = 1—[Xo(7)| + X1 (7)] = [ Xa(7)],
where X(Co(7)) = > pen dimp, Hy(Co(7)) is the Euler characteristic.

The number n of arcs and ¢ of triangles in 7 are by Proposition 5.1.16 and Corollary 5.1.22

n = 6(g—1)+3b+m+ 2o,
t = 4(g—1)+2b+m+ o.

Denote by t, the number of triangles of 7 with exactly ¢ weight-1 orbifold points. Then

we can express t =ty + 11 + 9 and o; = 11 + 2t5.
Note that |Xy(7)| =n +m — 0, and | X;(7)| = 3ty + t; and | Xo(7)| = t,.
Allinall, r =2t —n—m+1=2g+b— 1.
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6.9 Counting Components of the Flip Graph

6.9 Counting Components of the Flip Graph

Motivated by [FST08, §§ 3 and 7], Proposition 5.1.45, and Remark 5.1.46 one can ask the
question whether “the flip graph of colored triangulations is connected.” Since colored

triangulations with the same underlying triangulation and cohomologous cocycles define

)

isomorphic Jacobian algebras, we take for the vertices of the flip graph “cohomology classes’

of colored triangulations instead of colored triangulations themselves.
Definition 6.9.1. The flip graph EY(X2,) is the simple graph whose vertices are pairs (7, z)
consisting of a triangulation 7 of ¥, and an element z € H'(C*(7)).

Vertices (7, x) and (¢, 2’) are joined by an edge if and only if there are £ € x and ¢ € 2/

such that the colored triangulations (7,¢) and (¢, &) are related by flipping an arc.

Theorem 6.9.2. The flip graph EX(2,) is disconnected if ¥ is not a disk. More precisely,

it has at least 22912~ connected components.

Proof. Let Oy = {x € O|d, = 1} and let & be the surface X\ .
Let V be the set of vertices of EX(X;) and V, = {(7,z) |z € HY(C*(7))} C V.

We will define V. —2 [ l(fl;IE“z) such that inv|y, is injective for every 7 and inv is

constant when restricted to the vertex set of any connected component. This will imply
the theorem, since |V, | = |[H'(C*(7))| = |H,(C,4(7))| = 22970~ by Corollary 6.8.5.

We begin with the construction of inv. To do this, fix a triangulation 7 of 3.
Call a triangle exceptional if its type is El, 514, or 541.

For pending arcs ¢ in 7 let A7 be the triangle of 7 containing ¢. If 7 € %=1 and AT is

exceptional, denote by ¢] the unique arrow in X () induced by AT.

Construction of the Chain Complex 5,(7)
Let X, (1) = X, (7) for k # 1 and X, (1) = X, (1) U {eT|i € 7951}, Define

01(67) if AT is exceptional,

0 otherwise.

Let 6.(7) = (FQ)?k(T))keN

are given by the same rules as the differentials of the complex C,(7) in Definition 6.2.26.

be the chain complex whose differentials for elements in X, (7)

Let C*(7) = HomFQ(é\’.(T), [Fy) be the dual cochain complex. We have a chain map

Ou(r) + 0Ty Xy(71) — 2 Ty Xy (1) — s Fy Ky (1) ——— 0
C.(T) 0 _— FQXQ(T) L F2X1(T> L} FQX()(T) —_— O
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6 Potentials for Colored Triangulations

where p, is defined on basis elements in degree one as

a forac X(7),
pr(a) = 0] for a =¢] with A] exceptional,

0 for a =¢] with A] non-exceptional.

The map p, induces maps H,(Cy(7)) =% H,(C,(7)) and H(C*(1)) L HY(C*(7)).

Construction of the Geometric Realization | X (7)|

Fix a geometric realization | X (7)| of X (7) with data (v;,;,0(i)); as described in § 6.8.
Construct a subspace | X ()| = | X ()| U Uiera=1 @7 of 5 as follows:
(b’) For every i € 9= let {h,j} = {¢ € Xf#(T) | € belongs to AT} and pick a curve z-
in (E, MU {pp,p,}, (O)) with endpoints {py,,p,} and inner points in A\ U#i Yp.

Make these choices in such a way that for all a # b in X 1(7) the curves z, and z; do

not intersect each other in their inner points.

Depending on the type of AT the curve z.r looks as follows in |5(:(7')‘ NACS:

Ppj Pr=Dj

Fix for a = €7 a continuous map A’ BON |X' (7)| with image x, such that it is injective
on the interior of A! and the image of A under 6(a) is {py,p;}-

Analogously as in § 6.8, we obtain a chain map C(7) LN C,(3:Fy) acting as i — 0(i)
on i € X;(7), which induces an isomorphism H,(Cy(7)) — Hqy (5 Fy).

Let H*(3;F,) O, H*(C*(7)) be the isomorphism induced by 6, .

Definition of the Map inv
Let €™ =3 ;o a=1(e])" where {a” |a € X,(7)} is the basis of C1(7) dual to X; (7).
Note that 7 is a cocycle and define for z € HY(C*(7))

nv(r,a) = (01)7 (pi(a) +<7).

The restriction invly, is injective because of the injectivity of pJ.

The Map inv Is Constant on Flip-Graph Components

To show that inv is constant on the vertex set of every connected component of the flip
graph, it is enough to check that inv(7, &) = inv(s, ¢>7(§)) whenever (7,€) and (s, 9*7(£))

are two colored triangulations related by flipping an arc (compare Definition 6.2.36).
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Let 7 and ¢ be triangulations of X related by a flip, say ¢ = y;(7) and 7 = p;(<).
By Corollary 6.2.35 the map ¢*7 induces a map H'(C*(7)) BN H(C*(c)) of sets.

To conclude the proof of the theorem, we have to verify the commutativity of

Hl(i;%)

H(C*(7))

where inv, = inv(r, —) and inv. = inv(s, —).

. 0.~
This will be achieved by the construction of a chain map C,(¢) —= C,(7) such that

the induced map 97 ¢ in cohomology makes the following diagram commute:

HI@; Fs)
S,
HY(C* (7)) 5 HY(C*(5))
pr-E"T Tﬂ:-&-é
HY(C*(7)) HY(C*(9))

Using the duality Homg, (—,F5), the commutativity 97 c o 07 = 67 of the “roof” may be

checked in homology instead.

ol 197' o) .
In summary, it suffices to construct a chain map C,(s) —= C,(7) making

yﬂl(i F2)‘&

T,s

Hy(Cu(r)) Hy(Cy(s))

commute and the identity pZ(¢°7(2)) + &% = 9% (pi(z) + £7) hold for all z € H'(C*(7)).

Construction of the Chain Map 9,
For the construction of ¥, . we distinguish the following cases:
1) i € 791 belongs to an exceptional triangle of 7.

2) i € 71 belongs to a non-exceptional triangle of 7.

i € 7%= belongs to an exceptional triangle of 7.

i € 7%=* belongs to a non-exceptional triangle of 7.

i € 792 belongs to a triangle in X,(7) and to an exceptional triangle of 7.

)
)
)
5) i € 7972 belongs to two triangles in X, (7).
)
) i € 792 belongs to two exceptional triangles of 7 and is a source or sink in X (7).
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(8) i € 7772 belongs to two exceptional triangles of 7 and is not a source or sink in X (7).
(9) i € 7972 belongs to a triangle in X,(7) and to a triangle of type 611 inT
(10) i € 7%=2 belongs to an exceptional triangle and to a triangle of type 511 of T
The list is non-redundant and exhaustive, i.e. for fixed 7, i exactly one of the items is true.
For (m, k) € {(,1),(s,5)} let X*(x) be the subquiver of X (7) spanned by all arrows
induced by triangles of m with side k.
Then X (7) = X(7) ® Q and X(s) = X?(s) @ Q for some Q (see Lemma 6.2.13).
Tables 6.9.1 and 6.9.2 depict the possible pairs (X(7), X?(c)) in all ten cases. The

dotted arrows are not part of the quiver X*(7) and illustrate the elements of
EF(m) = {eh | k is a side of A} }.

o 197' S o .
Define the map C,(¢) —= C,(7) on basis elements as

z for € (Xo(o) \ {7} U (X1(6) \ X{(6)) U (Xs(s) N Xy(7)),
i for x = j,
&7, for x = €5, & F(q),

0 for the triangles z € X5 (<) \ Xo(7).

197,@ (DL') =

It remains to specify 9, (z) for the elements z € X { (s) U E’(s). This is done case by
case in Tables 6.9.1 and 6.9.2.

It is not hard to see that 9, . is a morphism of chain complexes.

The identities pZ(¢°7 (2)) +&° = ¥ (pk(x) + ") for x € H'(C*(7)) are easily checked

via the explicit formula for ¢>7 given in the proof of Lemma 6.2.32.
Direct inspection shows that in each case . o9, . = 6  in homology.

This finishes the proof. O

Table 6.9.1: ¥, . for pending arcs 7 in exceptional triangles of 7.

” Xi(r) X9(s) Ve
5 & 0T i &
P Ty i J
1 v . SRl g 0
i gs
2 )',. L . r l - _Z,
En &
— hog - d, ~
3 N /. A
i < 5 e s
o7 & b€
%~ Shos
3t fro RN /
€h Oh
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Table 6.9.2: 9, . for arcs ¢ not pending in an exceptional triangle of 7.

X ¢ X J g
# X(T) X7(<) U
B c—e e —— X
N / AN AN a —oa
b a . .
4 N b N /n b - B
b+a < f
. g ——> e . .
N / T\ Vs
bo a9 by aj .
N N/ o oo
5 /\ fo /\ i b, b
a by a; b J by+ai_, < f,
KA X 4 N
. .
N A a ~ a*
by a
T . "
6- o i )/ ! . b \,/ ; by — b
by TR ch b by +a “ f
a b .
N N by €] +by &
M .
. .
Ve "
I)/( (1(, ‘ (lp <~ (lp
ap / €, / b —b*
6+ << 0 c | r
€ N o TR b+ ag “ f
ay b* c
N ’\J agtef+a; g,
. .
M
o b b — & b b
_ Shoey ~ ~ Thoey £
7 v, K P o7 r\,, e by+ef+by €
0 Sk Ck 1 .
by +ep+b g
a —ay
+ 0~ oy T N o ;
7 AT P e * doteptar e
<h 1 af <h
ay+ e +ay — g,
. *
I\ h a @
b*
. . b b
h s Gy N
8 r\b/,\"/' f /‘ b+a <« f
s
/a’ e +b g
o
. * atep < g,
.
N i
W a a — a*
N\ g € b *
h — b
o |+ me ST |
/S b bte) €
b
. r =
.\/ €h epta g
i * b b
o
ch b* e +b &
10 | el ¢ o g "
b= T~ & b+ef, «— g,
=S
= i €y — e
€L &,
& ! a —~ a*
o7 =5
10t atey, < og
epta — g
T =
e o A g
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Remark 6.9.3. The rules in Table 6.9.2 can be expressed in a more compact and uniform

way. Namely, if 7 is not a pending arc in an exceptional triangle of 7, it is

z* for k <= h in X7(s) with j € {h, k},
where z* is the unique arrow 9, (k) — 9, (h) in X*(7),
9. (z) = a* +b* for k <iah iil Xl;jgg) with j 9-{'{’1;’?}’ '
’ where <— <— < is the path in X7(¢) induced by A(x).
w4+ ep +vp for x = e € EI(g),

where ;7 and v} are the elements defined below.

For (5« kS € FJ (¢) and £7 kT e E'(7) the elements v] and u} are characterized as:
e U] is the unique k7 <— 9, (k°) in X}(7) in case ¥, (k°) # k7; otherwise, v] = 0.

e u is the unique ¥, (£°) «— €7 in X{(7) in case ¥, (£°) # (7; otherwise, uj = 0.

Definition 6.9.4. Let 7 be a triangulation of ¥,;. Denote by
H'(C*(7)) — H'(£\ Oy; Fy)
the function constructed in the proof of Theorem 6.9.2.

We call a sequence (iy, ..., i) T-admissible if iy € 7,49 € p; (T), ..., g € g, = 13, (7).

The proof of the last theorem has the following interesting consequences:

Corollary 6.9.5. Let (1,€), (s,&') be colored triangulations of Xy with inv,(£) # inv (£).
Then p;, - -~ p;, (1,€) # (5,§') for every T-admissible sequence (iy, ... ,1ip). O

Proof. With the notation and arguments used in the proof of Theorem 6.9.2, we have
V(i - 1, (1,€)) = -+ = inv(py, (1,€)) = inv(r, &) = inv,(€)

and inv(c, &) = inv (¢'). Thus g, -, (7,€) # (s,€') because inv, (€) # inv(¢). O

Corollary 6.9.6. Let (1,£) and (1,£) = p;, - i, (7, &) be colored triangulations of 3.
Then the Jacobian algebras J(1,€) and J(7,&') are isomorphic.

Proof. The proof of Corollary 6.9.5 shows inv,(£) = inv,(¢). So &€ = ¢ in HY(C*(7))

because of the injectivity of inv.. Now use Theorem 6.7.3. 0
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6.A Appendix

6.A Appendix

P2 A
/N / AN
/N / \
// \\ / \\
y \ / k \
) // \\ I |
i/ \F N |
/ \ il 1h
/ \ \ |
/ \ \ dy /
/ \, \ /
/ \, \ /
/ \ \\ /7
¢ ® ~-o
h

Figure 6.A.1: the seven types of weighted triangles: A, El, §4, 511, 5’14, 541, 644.

AR
|| Do
| D

Table 6.A.2: two triangles without punctures sharing exactly one arc (bold).

Al A

AT

At

Table 6.A.3: two triangles without punctures sharing exactly two arcs;

one shared arc (bold) fixed.

Table 6.A.4: triangles with one inner side (bold) fixed.
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6 Potentials for Colored Triangulations

cba

Figure 6.A.5: X and W2 for weighted triangles of type A.

h h

cba cba

Figure 6.A.6: X2 and W* for weighted triangles of type El (left) and §4 (right).

1 1 4
by \ /
h

cbya + cbyau cba

4 b 1 4
? \ / k b1
h

h

cba c(by + by)a

Figure 6.A.7: X and W* for weighted triangles of type 611, 5’14, 541, 644
(from top left to bottom right; the wiggling of b, indicates r(b;) = 1).

214



6.A Appendix

# | type of ]| typeof j D(X(s,4))
1 {4,4} {4,4} cf. 224 quiver in Table 5.A.28
2 {A, Bt} {A,B"} cf. 224 quiver in Table 5.A.30
3 {A4,B7)} {A,B*} symmetric to #2
4 {a,¢} {B*, B~} cf. 284 quiver in Table 5.A.34
5 || {B“.B'} | {B,B} cf. 28 quiver in Table 5.A.43
6 {B+,B"} {A,C}
7 {B*+,C} {B~,C} looks like #6
8 {B~,B"} {B*,B*} symmetric to #5
9 {B~,C} {B*+,C} symmetric to #7
10 {Ab, A4} {Af, AT} cf. 224 quiver in Table 5.A.13
11 {Ar, AT} {4}, A4} symmetric to #10
A
12 B B / \ 1| [l or (et
ne ; 4 | [cb]
dy | d; s
kr-mmmmm - % 4 | 1| [ba]yor [ba], | b*
13 - o+ / 1] 4| ) v
i 1| 1| [byal by and b}

4 | 4] [boa] by and b}

14 ct c- symmetric to #13

Table 6.A.8: the (at most two) choices for the embedding ® in Remark 6.2.14;

in some cases, there are two possibilities for the dotted arrows.
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