Quiver Modulations and Potentials

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.) der
Mathematisch-Naturwissenschaftlichen Fakultät
der
Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Jan Geuenich
aus Köln

Bonn 2016

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Erstgutachter:	Prof. Dr. Jan Schröer
Zweitgutachter:	Prof. Dr. Igor Burban
Tag der Promotion:	16.03 .2017
Erscheinungsjahr:	2017

Contents

1 Introduction 11
1.1 Motivation 11
1.2 Results 16
1.3 Terminology 19
1.4 Notations 19
2 Background 21
2.1 Weighted and Modular Quivers 21
2.1.1 Quivers 21
2.1.2 Weighted Quivers 22
2.1.3 Modular Quivers 24
2.1.4 Weyl Groups and Root Systems 25
2.2 Bimodules 26
2.2.1 R-Algebras 26
2.2.2 Tensor Algebras 26
2.2.3 Dual Bimodules 27
2.2.4 Bimodule Representations 28
2.2.5 Symmetric Ground Rings 29
2.3 From Bimodules to Quivers 30
2.3.1 Decomposing Bimodules 31
2.3.2 Quiver Representations 31
2.3.3 Locally Free Modules 32
2.4 Path Algebras for Weighted Quivers 33
2.4.1 Modulations 34
2.4.2 Pullback Modulations 35
2.4.3 Dual and Double Modulations 35
2.4.4 Path Algebras 36
2.5 Path Algebras for Modular Quivers 37
2.5.1 Cyclic Galois Modulations 38
2.5.2 Modulation of a Modular Quiver 38
2.5.3 Isotypical Components 39
2.5.4 Dual, Double, and Premutation 41
2.5.5 Comfy Modulations 41
2.5.6 Comfy vs. GLS Modulations 43
2.5.7 Path-Algebra Bases 44
2.6 Jacobian Algebras and Potentials 45
2.6.1 Topological Rings 45
2.6.2 Completed Path Algebras 46
2.6.3 Jacobian Algebras 50
2.6.4 Semi-Simple Structures 51
2.6.5 Cyclic Chain Rule 52
2.6.6 Potentials 53
2.6.7 Equivalence of Potentials 55
2.6.8 Subpotentials and Restricted Potentials 56
2.6.9 The Splitting Theorem 56
2.6.10 Mutation of Potentials 60
3 Symmetric Modulations 65
3.1 Gorenstein Tensor Algebras 65
3.1.1 Projectivity and Injectivity over the Ground Ring 66
3.1.2 Rank Vectors of Projectives and Injectives 68
3.1.3 Canonical Short Exact Sequences 68
3.1.4 Gorenstein Ground Rings 69
3.1.5 Filtered Modules 70
3.1.6 Euler Form 71
3.1.7 Auslander-Reiten Translation 71
3.1.8 Coxeter Transformation 72
3.2 Symmetric Modulations 73
3.2.1 Symmetric Structures 73
3.2.2 Non-Degenerate Trace Maps 74
3.2.3 Characteristic Elements 76
3.2.4 Calculation Rules for Adjoints 77
3.2.5 Rank-Aware Structures 77
3.3 Deformed Preprojective Algebras 78
3.3.1 Compatible Double Representations 78
3.3.2 Lifting Representations 80
3.3.3 Reflection Functors 81
3.4 Auslander-Reiten Translation via Coxeter Functors 84
3.4.1 BGP-Reflection and Coxeter Functors 84
3.4.2 Gabriel-Riedtmann Construction 85
3.4.3 $\quad \tau$-Locally Free Modules 92
3.4.4 Preprojective Algebras Revisited 93
4 Potentials for Cluster-Tilting Subcategories 97
4.1 Quiver of a Cluster-Tilting Subcategory 97
4.2 Rigid Potentials 98
4.3 Uniqueness of Non-Degenerate Potentials 100
5 Potentials for Tagged Triangulations 103
5.1 Triangulated Orbifolds 105
5.1.1 Orbifolds 105
5.1.2 Triangulations 106
5.1.3 Puzzle-Piece Decomposition 109
5.1.4 Flipping Arcs 110
5.1.5 Tagged Triangulations 111
5.1.6 Flipping Tagged Arcs 113
5.2 Modulation of a Tagged Triangulation 114
5.2.1 Adjacency Quiver of a Triangulation 114
5.2.2 Mutating Adjacency Quivers 117
5.2.3 Adjacency Quiver of a Tagged Triangulation 117
5.2.4 Adjacency Modulation 118
5.3 Potential of a Tagged Triangulation 119
5.3.1 Choosing Coefficients 119
5.3.2 Potential Components Induced by Puzzle Pieces 119
5.3.3 Potential Components Induced by Punctures 120
5.3.4 Potential of a (Tagged) Triangulation 120
5.3.5 Conjugating the Coefficients 121
5.4 Compatibility of Flip and Mutation 122
5.4.1 Compatibility for Triangulations 122
5.4.2 Compatibility for Tagged Triangulations 124
5.5 Uniqueness of Potentials 127
5.5.1 Non-Closed Orbifolds 127
5.5.2 Unpunctured Orbifolds 128
5.A Appendix 129
6 Potentials for Colored Triangulations 183
6.1 Triangulated Weighted Orbifolds 185
6.2 Colored Triangulations 185
6.2.1 Adjacency Quiver of a Triangulation 185
6.2.2 Mutating Adjacency Quivers 187
6.2.3 Modular Structures 188
6.2.4 Cocycles and Colored Triangulations 191
6.2.5 Adjacency Quiver of a Colored Triangulation 192
6.2.6 Flipping Colored Arcs 192
6.3 Modulation of a Colored Triangulation 194
6.4 Potential of a Colored Triangulation 194
6.4.1 Potential Components Induced by Triangles 194
6.4.2 Potential of a Colored Triangulation 195
6.5 Compatibility of Flip and Mutation 196
6.6 Uniqueness of Potentials 199
6.7 Jacobian Algebras 202
6.8 Geometric Realization of $\bar{X}_{\bullet}(\tau)$ 204
6.9 Counting Components of the Flip Graph 207
6.A Appendix 213
Bibliography 217

Acknowledgments

I thank Jan Schröer for many helpful discussions. Moreover, I am grateful for the hospitality of Christof Geiß and Daniel Labardini Fragoso during a stay in Mexico City. Special thanks go to Daniel for the collaboration whose outcome is presented in the last two chapters.

1 Introduction

1.1 Motivation

Cluster algebras are a recent and active field of research. They were introduced by Fomin and Zelevinsky [FZ02] in 2002 as a new approach to study the duals of Lusztig's canonical bases for quantum groups from a combinatorial point of view.

Cluster theory was soon revealed to have intimate connections to numerous mathematical disciplines: among others, Kac-Moody algebras, root systems, representations of quivers (with potential), Teichmüller theory, preprojective algebras, and Calabi-Yau categories.

A groundbreaking discovery was that acyclic skew-symmetric cluster algebras admit a categorification by cluster categories [BMR+06]. Another more general categorical model was developed in [DWZ08; DWZ10] and uses representations of quivers with potential.

One important feature shared by Kac-Moody Lie algebras and cluster algebras is that both can be defined in terms of generalized Cartan matrices. In this relationship, cluster algebras with skew-symmetric exchange matrices have symmetric Cartan counterparts.
The symmetric case has been closely investigated in the recent past and is comparatively well-understood. In contrast, there are many open problems in the symmetrizable situation. Answering these problems and lifting constructions from the symmetric to the symmetrizable setting is an area of current research (see e.g. [GLS16a; GLS16b; GLS16c]).

In the representation theory of finite-dimensional algebras symmetric generalized Cartan matrices are linked to quiver representations, while the symmetrizable case is covered by representations of modulations for weighted quivers.

Gabriel initiated the investigation of modulations (or species) in [Gab73]. In a sequence of articles [DR74; DR75; DR76] Dlab and Ringel developed the theory further. Their most striking result is the finite-type classification of modulations, which parallels the classification of semi-simple Lie algebras.

Finite-Dimensional Algebras

Fix a field K. We briefly revise how finite-dimensional algebras over K lead to modulations.
The module category $\bmod (\Lambda)$ of a finite-dimensional algebra Λ over K is equivalent to the module category $\bmod \left(\Lambda_{\text {basic }}\right)$ of the basic algebra $\Lambda_{\text {basic }}=\operatorname{End}_{\Lambda}(P)^{\text {op }}$ where P is any multiplicity-free projective generator of $\bmod (\Lambda)$. This is why it is common practice to focus in representation theory on finite-dimensional basic algebras.

For every finite-dimensional basic algebra Λ over K its reduction $\Lambda_{\mathrm{red}}=\Lambda / \operatorname{rad}(\Lambda)$ is semi-simple and by the Artin-Wedderburn theorem even a product of division algebras.

Let $A=\operatorname{Ext}_{\Lambda}^{1}\left(\Lambda_{\mathrm{red}}, \Lambda_{\mathrm{red}}\right)$ considered as a bimodule over $R=\operatorname{End}_{\Lambda}\left(\Lambda_{\mathrm{red}}\right)^{\text {op }}$. Naturally associated with Λ we therefore have the tensor algebra $R\langle A\rangle$ of A.

If K is a perfect field, Benson [Ben98] motivated by [Gab73; Gab80] proves $\Lambda \cong R\langle A\rangle / J$ for an admissible ideal J of $R\langle A\rangle$. The algebra Λ is hereditary if and only if $J=0$.

Writing $1=e_{1}+\cdots+e_{n}$ for a complete set of primitive orthogonal idempotents e_{1}, \ldots, e_{n} in Λ, the modules $S_{i}=\Lambda e_{i} / \operatorname{rad}\left(\Lambda e_{i}\right)$ with $1 \leq i \leq n$ form an up to isomorphism complete set of simple Λ-modules. There is an induced factorization $R=R_{1} \times \cdots \times R_{n}$ of rings and a decomposition $A=\bigoplus_{i, j} A_{i}$ of bimodules where $R_{i}=\operatorname{End}_{\Lambda}\left(S_{i}\right)^{\text {op }}$ and ${ }_{j} A_{i}=\operatorname{Ext}_{\Lambda}^{1}\left(S_{i}, S_{j}\right)$.

If K is an algebraically closed field, then $R_{i} \cong K$ for all i and the tensor algebra $R\langle A\rangle$ is the path algebra $K Q$ of a quiver Q with $\operatorname{dim}_{K}\left({ }_{j} A_{i}\right)$ arrows $j \leftarrow i$.

Modulations

Let Q be a weighted quiver, i.e. a finite quiver Q equipped with a function $Q_{0} \rightarrow \mathbb{N}_{+}, i \mapsto d_{i}$.
A modulation for Q is a family $\left(R_{i}, A_{a}\right)_{i, a}$ of connected K-algebras R_{i} with $\operatorname{dim}_{K}\left(R_{i}\right)=d_{i}$ and non-zero $R_{j} \otimes_{K} R_{i}^{\text {op }}$-modules A_{a} indexed by the vertices $i \in Q_{0}$ and arrows $j \stackrel{a}{\leftarrow} i \in Q_{1}$ such that both ${ }_{R_{j}}\left(A_{a}\right)$ and $\left(A_{a}\right)_{R_{i}}$ are free of finite rank. Let ${ }_{j} A_{i}=\bigoplus_{j}{ }^{a}{ }_{i}{ }_{i} A_{a}$.

The modulation is minimal if $\operatorname{dim}_{K}\left(A_{a}\right)=\operatorname{lcm}\left(d_{j}, d_{i}\right)$ for all arrows $j \stackrel{a}{\leftarrow} i$.
The situation where all R_{i} are division algebras corresponds to what Gabriel called a species in [Gab73] and what we shall call a division modulation.

The previous paragraph pointed out that every finite-dimensional K-algebra gives rise to a division modulation.

Path Algebras of Modulations

Every modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for a weighted quiver Q defines a path algebra: the tensor algebra $R\langle A\rangle$ of the bimodule $A=\bigoplus_{a} A_{a}$ over the ground ring $R=\prod_{i} R_{i}$.

Work of Roganov [Rog75] and Iwanaga [Iwa80] shows that the projectivity of ${ }_{R} A$ and A_{R} implies that the path algebra $R\langle A\rangle$ is ($n+1$)-Gorenstein if the ground ring R is n-Gorenstein. In this case, a module over $R\langle A\rangle$ has finite homological dimension if and only if it has finite homological dimension when considered as a module over R.

Geiß, Leclerc, and Schröer exploited this fact recently in [GLS16a] for self-injective ground rings R where $n=0$. Another manifestation of this result is the famous slogan "Path algebras of quivers are hereditary."

Representations of Modulations

A representation of the modulation \mathcal{H} is a module M over the path algebra $R\langle A\rangle$. It can be identified with a pair $\left({ }_{R} M,{ }_{A} M\right)$ consisting of an R-module ${ }_{R} M=M$ and ${ }_{A} M \in \operatorname{Rep}(A, M)$
for the space of A-representations

$$
\operatorname{Rep}(A, M)=\operatorname{Hom}_{R}\left(A \otimes_{R} M, M\right)=\bigoplus_{i, j} \operatorname{Hom}_{R_{j}}\left({ }_{j} A_{i} \otimes_{R_{i}} e_{i} M, e_{j} M\right)
$$

Following [GLS16a] an R-module M is locally free if each $e_{i} M$ is a free module over R_{i}. Finite-dimensional locally free R-modules M have a rank vector $\underline{\operatorname{rank}}(M)=\left(\operatorname{rank}_{R_{i}}\left(e_{i} M\right)\right)_{i}$.

Preprojective Algebras

Assume that R carries the structure $R \xrightarrow{\varphi} K$ of a symmetric algebra. Let $A^{*}=\operatorname{Hom}_{K}(A, K)$. Denote by ${ }_{A} M \mapsto{ }_{A} M^{\vee}$ the isomorphism $\operatorname{Rep}(A, M) \rightarrow \operatorname{Hom}_{R}\left(M, A^{*} \otimes_{R} M\right)$ induced by φ.

A compatible A-double representation $\left(M,{ }_{A} M,{ }_{A^{*}} M\right)$ consists of an R-module M and representations ${ }_{A} M \in \operatorname{Rep}(A, M)$ and ${ }_{A^{*}} M \in \operatorname{Rep}\left(A^{*}, M\right)$ with ${ }_{A^{*}} M \circ{ }_{A} M^{\vee}={ }_{A} M \circ{ }_{A^{*}} M^{\vee}$.

Compatible A-double representations are the same as modules over the preprojective algebra $\Pi=R\left\langle A \oplus A^{*}\right\rangle /\langle\rho\rangle$ where $\rho \in\left(A \otimes A^{*}\right) \oplus\left(A^{*} \otimes A\right)$ is the preprojective relation.

More generally, the deformed preprojective algebra $\Pi^{\lambda}=R\left\langle A \oplus A^{*}\right\rangle /\langle\rho-\lambda\rangle$ is defined for every λ in the center of R. All this builds on [GP79; Rie80; DR80; CH98; GLS16a].

If Q is acyclic, the path algebra $H=R\langle A\rangle$ is finite-dimensional and Baer, Geigle, Lenzing's [BGL87] alternative definition of the preprojective algebra Π as the tensor algebra of the H-bimodule $\operatorname{Ext}_{H}^{1}\left(H^{*}, H\right) \cong \operatorname{Hom}_{H}\left(H, \tau^{-}(H)\right)$ gives a conceptual explanation for the significance of Π in the representation theory of finite-dimensional algebras.

Gabriel's Theorem

Gabriel's Theorem [Gab72] classifies all representation-finite acyclic quivers. Namely, he shows that an acyclic quiver is representation-finite if and only if it is a finite union of Dynkin quivers. Right after proving this, Gabriel [Gab73] introduced division modulations for weighted quivers (or valued graphs) to provide the framework for a generalization of his celebrated classification to the non-simply laced situation.

Dlab and Ringel [DR75] were first in giving a proof of Gabriel's Theorem in this more general setting: A division modulation \mathcal{H} for a weighted acyclic quiver Q is representation-finite if and only if \mathcal{H} is minimal and Q a union of Dynkin quivers. In this case, $M \mapsto \underline{\operatorname{rank}}(M)$ establishes a bijection between the isomorphism classes of indecomposable representations in $\operatorname{rep}(\mathcal{H})$ and the set of positive roots of the quadratic form q_{Q} defined by Q.

Coxeter Functors

To give a satisfactory explanation for the appearance of finite simply-laced root systems in Gabriel's Theorem, Bernstein, Gelfand, and Ponomarev [BGP73] described for acyclic Q an adjoint pair $\left(C^{-}, C^{+}\right)$of endofunctors of rep (Q). The Coxeter functor C^{+}(resp. C^{-}) acts on rank vectors of indecomposable non-projective (resp. non-injective) representations as the Coxeter transformation (resp. its inverse) of the root lattice defined by Q.

Again, it were Dlab and Ringel [DR74; DR76] who constructed similar endofunctors of $\operatorname{rep}(\mathcal{H})$ for division modulations \mathcal{H} of weighted acyclic quivers.

Inspired by an idea of Riedtmann, Gabriel [Gab80] makes the remarkable observation that there are isomorphisms $C^{+} T \cong \tau^{+}$and $C^{-} T \cong \tau^{-}$where $\tau^{+}=(-)^{*} \circ \operatorname{Tr}$ and $\tau^{-}=\operatorname{Tr} \circ(-)^{*}$ are the Auslander-Reiten translations of $\operatorname{rep}(Q)$ and T is a "twist" functor.

GLS Modulations

Let Q be a weighted acyclic quiver and let $f_{i j}=d_{j} / \operatorname{gcd}\left(d_{i}, d_{j}\right)$ for $i, j \in Q_{0}$.
Geiß, Leclerc, and Schröer [GLS16a] thoroughly examined the modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for Q where for $j \stackrel{a}{\leftarrow} i$

$$
R_{i}=K\left[\varepsilon_{i}\right] /\left(\varepsilon_{i}^{d_{i}}\right), \quad \quad A_{a}=K\left[\varepsilon_{j}, \varepsilon_{i}\right] /\left(\varepsilon_{j}^{f_{i j}}-\varepsilon_{i}^{f_{j i}}, \varepsilon_{j}^{d_{j}}, \varepsilon_{i}^{d_{i}}\right) .
$$

For constant weights $d_{i}=c$ the path algebra of \mathcal{H} is the path algebra of the quiver Q over the truncated polynomial ring $K[\varepsilon] /\left(\varepsilon^{c}\right)$. In particular, $\operatorname{rep}(\mathcal{H})=\operatorname{rep}(Q)$ in case $c=1$.

The arguments in [GLS16a] implicitly but consistently use that the ground ring R carries the structure $R \xrightarrow{\varphi} K$ of a symmetric algebra in the sense of [Nak39] where φ is the linear form dual to $\sum_{i} \varepsilon_{i}^{d_{i}-1}$ with respect to the basis formed by the ε_{i}^{r}.

Geiß, Leclerc, and Schröer's notable insight is that, for a suitable generalization of the Coxeter functors $C^{ \pm}$, the Brenner-Butler-Gabriel isomorphisms $C^{ \pm} T \cong \tau^{ \pm}$are valid on the full subcategory of $\operatorname{rep}(\mathcal{H})$ consisting of the locally free representations.

Moreover, the functors $\tau^{ \pm}$leave the subcategory of locally free representations M that are rigid (i.e. $\left.\operatorname{Ext}_{\mathcal{H}}(M, M)=0\right)$ invariant.

Using this, they were able to prove a much more general version of Gabriel's Theorem: The number of isomorphism classes of indecomposable locally free rigid representations in $\operatorname{rep}(\mathcal{H})$ is finite if and only if Q is a union of Dynkin quivers. In this case, $M \mapsto \underline{\operatorname{rank}}(M)$ yields a bijection between these isomorphism classes and the positive roots of q_{Q}.

Cluster Algebras

Cluster algebras \mathcal{A}_{Q} are subalgebras of the field $\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ of rational functions. Their generators, the cluster variables, are grouped into overlapping clusters. All clusters are obtained from the initial cluster $\left(x_{1}, \ldots, x_{n}\right)$ by an iterative process called mutation. Cluster mutation is governed by a weighted quiver Q associated with the initial cluster.

It was proved in [FZ03] that a cluster algebra \mathcal{A}_{Q} has only a finite number of cluster variables if and only if Q is mutation-equivalent to a union of Dynkin quivers.

Potentials and Caldero-Chapoton Formula

String theorists [Sei95; DM96] associated with certain supersymmetric gauge theories quivers with superpotential, which often describe the endomorphism algebra $\operatorname{End}\left(\bigoplus_{i} E_{i}\right)$ of an exceptional collection E_{1}, \ldots, E_{n} in a triangulated category [BP01; AF06; Bri05; BP06].

Loosely based on these ideas, Derksen, Weyman, and Zelevinsky [DWZ08] developed a mutation theory for quivers Q with potential (QPs) and their representations.

In doing so, they provided a categorical model for cluster mutation [DWZ10]. Namely, the k-th variable in a non-initial cluster of \mathcal{A}_{Q} obtained via mutation at a sequence \mathbf{i} can be computed as

$$
x_{\mathbf{i}, k}=\prod_{j=1}^{n} x_{j}^{-\left\langle S_{j}, M_{\mathbf{i}, k}\right\rangle} \sum_{\alpha \in \mathbb{N}^{n}} \chi\left(\operatorname{Gr}_{\alpha}\left(M_{\mathbf{i}, k}\right)\right) \mathbf{x}^{B \alpha} .
$$

In the formula, $M_{\mathbf{i}, k}$ is a representation of a non-degenerate QP (Q, W) over the complex numbers \mathbb{C} that is obtained from the negative simple representation S_{-k} by mutation at \mathbf{i}. Furthermore, $\langle-,-\rangle$ is the 1-truncated Euler form, B the skew-symmetric matrix, and $\operatorname{Gr}_{\alpha}$ the quiver Grassmannian of α-dimensional subrepresentations associated with (Q, W).

Originally, Caldero and Chapoton [CC06] discovered this formula for Dynkin quivers.
Representations of (Q, W) are by definition modules over the Jacobian algebra $\mathcal{J}(W)$, the quotient of the completed path algebra of Q by the cyclic derivatives $\partial_{\xi}(W)$.

Cluster-Tilting Subcategories

Let Π be the preprojective algebra and \mathcal{W}_{Q} the Weyl group of a finite acyclic quiver Q.
For every $w \in \mathcal{W}_{Q}$ Buan, Iyama, Reiten, and Scott [BIRS09] described a subcategory \mathcal{C}_{w} of the category of finite-dimensional nilpotent Π-modules. This category \mathcal{C}_{w} is Frobenius and its stable category is 2-Calabi-Yau. Moreover, \mathcal{C}_{w} can be regarded as a categorification of a cluster algebra constructed by Geiß, Leclerc, and Schröer in [GLS11].

Each reduced expression $\underline{s}=\left(s_{1}, \ldots, s_{\ell}\right)$ for w determines a maximal rigid Π-module $T(\underline{s})$, which induces a cluster-tilting subcategory of \mathcal{C}_{w}. The 2-CY tilted algebra $\operatorname{End}_{\Pi}(T(\underline{s}))$ is a strongly quasi-hereditary Jacobian algebra according to [BIRS11; GLS11].

Surface-Type Cluster Algebras

A cluster algebra \mathcal{A}_{Q} has finite mutation type if the number of (isomorphism classes of) weighted quivers that are mutation-equivalent to Q is finite. It has surface type if Q is the weighted adjacency quiver of a triangulation of a weighted orbifold. Fomin, Shapiro, and Thurston [FST08] began with the investigation of surface-type cluster algebras in the skew-symmetric case and Felikson, Shapiro, and Tumarkin [FST12a] extended their results to the skew-symmetrizable setting.

The importance of surface-type cluster algebras is revealed by Felikson, Shapiro, and Tumarkin's [FST12a; FST12b] mutation-type classification: If Q is a connected weighted quiver with at least three vertices and is not mutation-equivalent to one of 18 exceptions, the cluster algebra \mathcal{A}_{Q} is of finite mutation type if and only if it is of surface type.

In theoretical particle physics, Cecotti and Vafa [CV13; Cec13] applied this result to classify all "complete" $4 \mathrm{~d} \mathcal{N}=2$ supersymmetric gauge theories.

Let $Q(\tau)$ be the adjacency quiver of a triangulation τ of a surface without orbifold points. Assem et al. [ABCP10] (for unpunctured surfaces) and Labardini-Fragoso [Lab09a] (in the general situation) described a potential $W(\tau)$ on $Q(\tau)$. For almost all surfaces it is shown in [Lab09a; CL12; Lab16] that the QPs $(Q(\tau), W(\tau))$ and $(Q(\varsigma), W(\varsigma))$ correspond to each other under mutation if the triangulations τ and ς are related by flipping an arc.

1.2 Results

We sketch the main results chapter by chapter. More detailed introductions and summaries can be found at the beginning of each chapter and its major sections.

As before, let K be a field. Fix a K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for a weighted quiver Q. Let $R=\prod_{i} R_{i}$ and $A=\bigoplus_{a} A_{a}$.

Chapter 2: Background

For all elements W in the completed path algebra $R\langle\langle A\rangle\rangle$ we define Jacobian algebras $\mathcal{J}(W)$. Generalizing a result of [DWZ08] we have:

Proposition. Assume that the enveloping algebra $R^{\mathrm{e}}=R \otimes_{K} R^{\mathrm{op}}$ is basic semi-simple. Every K^{I}-algebra automorphism f of $R\langle\langle A\rangle\rangle$ induces an isomorphism $\mathcal{J}(W) \rightarrow \mathcal{J}(f(W))$.

An $S P$ over R is a pair (A, W) consisting of a finite-dimensional R-bimodule A over K and a potential W, i.e. an element in the trace space of $R\langle\langle A\rangle\rangle$. In the joint work [GL16a] the mutation theory for quivers with potential (QPs) was lifted to a special class of SPs:

Generalization. Assume that the field K contains a d_{i}-th primitive root of unity and the algebras R_{i} are intermediate fields of a cyclic Galois extension L / K. Then for every vertex j there is an involution μ_{j} of the set of reduced-equivalence classes of SPs over R that are 2-acyclic at j, which specializes to QP mutation if all weights d_{i} are equal to one.

Parts of the mutation theory of QPs have previously been extended to several special classes of modulations in [Dem10; Ngu12; LZ16; BL16].

Chapter 3: Symmetric Modulations

Let us assume that the ground ring R carries the structure $R \xrightarrow{\varphi} K$ of a symmetric algebra. In this situation, an idea of [CH98] allows to identify the space of A^{*}-representations on a finite-dimensional locally free R-module M with the dual of the space of A-representations. More precisely, there is a trace pairing that induces an isomorphism of K-vector spaces

$$
\operatorname{Rep}\left(A^{*}, M\right) \xrightarrow{\cong} \operatorname{Rep}(A, M)^{*} .
$$

Along this line, it is possible to prove the central result of [GLS16a] for arbitrary symmetric local modulations, i.e. whenever all R_{i} are symmetric local algebras:

Theorem. Let H be the path algebra of an acyclic symmetric local modulation. Moreover, let $C^{ \pm}$be the Coxeter functors of $\bmod (H)$ constructed as in [BGP73; BK12; GLS16a].

There is an H-bimodule Π_{1} such that $C^{+} T \cong \operatorname{Hom}_{H}\left(\Pi_{1},-\right)$ and $C^{-} T \cong \Pi_{1} \otimes_{H}$ - as endofunctors of $\bmod (H)$. Restricted to the category of locally free H-modules, there are isomorphisms $C^{+} T \cong \tau^{+}$and $C^{-} T \cong \tau^{-}$where $\tau^{ \pm}$are the Auslander-Reiten translations.

As a consequence, Gabriel's Theorem as stated in [GLS16a] for locally free rigid modules also holds in the setting of acyclic symmetric local modulations.

Finally, the following extensions of results of [CH98; BK12; GLS16a] could be of interest:
Proposition. Let H be the path algebra and Π^{λ} with $\lambda \in Z(R)$ a deformed preprojective algebra of a symmetric local modulation $\left(R_{i}, A_{a}\right)_{i, a}$ for a weighted acyclic quiver Q.

- For each vertex j in Q one can construct two reflection functors $\Sigma_{j}^{ \pm}$on $\operatorname{Mod}\left(\Pi^{\lambda}\right)$. If $\lambda_{j} \in R_{j}^{\times}$, there is $r_{j}(\lambda) \in \mathrm{Z}(R)$ and $\Sigma_{j}^{+} \cong \Sigma_{j}^{-}$induces an equivalence

$$
\operatorname{Mod}\left(\Pi^{\lambda}\right) \xrightarrow{\simeq} \operatorname{Mod}\left(\Pi^{r_{j}(\lambda)}\right) .
$$

If $\lambda_{j}=0$, then $\left(\Sigma_{j}^{-}, \Sigma_{j}^{+}\right)$is a pair of adjoint endofunctors of $\operatorname{Mod}\left(\Pi^{\lambda}\right)$.

- The preprojective algebra $\Pi=\Pi^{0}$ is self-injective if Q is a Dynkin quiver.
- The module ${ }_{H} \Pi$ is the direct sum of the "preprojective" modules $\tau^{-p}\left({ }_{H} H\right)$ with $p \in \mathbb{N}$.
- The "symmetry" $\operatorname{Ext}_{\Pi}^{1}(M, N) \cong \operatorname{Ext}_{\Pi}^{1}(N, M)^{*}$ holds for locally free $M, N \in \bmod (\Pi)$.

Comparable extensions of [GLS16a] were independently proposed in [LY15; Kül16].

Chapter 4: Potentials for Cluster-Tilting Subcategories

Let w be an element in the Weyl group \mathcal{W}_{Q} of a finite acyclic quiver Q. We will show:
Theorem. For every reduced expression \underline{s} for w the quiver of $\operatorname{End}_{\Pi}(T(\underline{s}))$ admits an up to right-equivalence unique non-degenerate potential $W(\underline{s})$.

Chapter 5: Potentials for Tagged Triangulations

This chapter presents results of [GL16a].
We introduce and study potentials for (tagged) triangulations of weighted orbifolds in the sense of [FST12a]. Roughly speaking, a weighted orbifold $\boldsymbol{\Sigma}$ is a connected compact oriented Riemann surface of genus g with b boundary components, m marked points, and o weighted orbifold points. In this chapter we treat the case where all orbifold points have weight two. Depending on coefficient functions u and z, we associate with each (tagged) triangulation τ of $\boldsymbol{\Sigma}$ an $\operatorname{SP} \mathcal{S}_{u, z}(\tau)=\left(A(\tau), W_{u, z}(\tau)\right)$.

Generalizing [Lab16] to the weighted situation, the main result is that flipping arcs in tagged triangulations is compatible with the mutation of SPs:

Theorem. Assume $g>0$ or $b+m+o \geq 7$. Let ς be obtained from a tagged triangulation τ of $\boldsymbol{\Sigma}$ by flipping an arc i. Then the $S P$ mutation of $\mathcal{S}_{u, z}(\tau)$ at i is equivalent to $\mathcal{S}_{u, z}(\varsigma)$.

The important consequence is the non-degeneracy of the SPs $\mathcal{S}_{u, z}(\tau)$ for all tagged triangulations τ of weighted orbifolds $\boldsymbol{\Sigma}$ that satisfy the condition in the theorem.

For non-closed orbifolds the choice of coefficients will be shown to be not essential:
Proposition. Assume $b>0$. Let τ be a (tagged) triangulation of $\boldsymbol{\Sigma}$. The SPs $\mathcal{S}_{u, z}(\tau)$ and $\mathcal{S}_{u^{\prime}, z^{\prime}}(\tau)$ are equivalent for all valid coefficient functions u, u^{\prime} and z, z^{\prime}.

Chapter 6: Potentials for Colored Triangulations

The contents of this chapter are drawn from [GL16b].
We continue the investigation of weighted orbifolds $\boldsymbol{\Sigma}$. Now we impose no restriction on the weights of the orbifold points, but assume that all marked points lie on the boundary.

Following a construction of [AG16], we define chain complexes $C_{\bullet}(\tau)$ for triangulations τ. A colored triangulation is a pair (τ, ξ) where τ is a triangulation of $\boldsymbol{\Sigma}$ and ξ is a 1-cocycle in the cochain complex $C^{\bullet}(\tau)$ that is \mathbb{F}_{2}-dual to $C_{\bullet}(\tau)$.

After describing an $\operatorname{SP} \mathcal{S}(\tau, \xi)=(A(\tau, \xi), W(\tau, \xi))$ for each colored triangulation (τ, ξ), we prove the compatibility of flip and mutation:

Theorem. Assume that $\left(\varsigma, \xi^{\prime}\right)$ is obtained from another colored triangulation (τ, ξ) of $\boldsymbol{\Sigma}$ by flipping an arc i. Then the $S P$ mutation of $\mathcal{S}(\tau, \xi)$ at i is equivalent to $\mathcal{S}\left(\varsigma, \xi^{\prime}\right)$.

A corollary of this result is the non-degeneracy of the potential $W(\tau, \xi)$. On the other hand, we will argue that the property to be non-degenerate essentially determines $W(\tau, \xi)$:

Theorem. Assume $\mathbf{\Sigma}$ is not a monogon in which all orbifold points have the same weight. Then every non-degenerate potential for $A(\tau, \xi)$ is equivalent to $W(\tau, \xi)$.

It is often useful to know that Jacobian algebras are finite-dimensional. Thus we prove:
Proposition. The Jacobian algebra $\mathcal{J}(\tau, \xi)$ defined by $\mathcal{S}(\tau, \xi)$ is finite-dimensional.
It is also interesting to observe that the isomorphism classes of Jacobian algebras $\mathcal{J}(\tau, \xi)$ corresponding to a fixed triangulation τ are parametrized by a cohomology group:

Theorem. Let τ be a triangulation of $\boldsymbol{\Sigma}$. There exists an isomorphism $\mathcal{J}(\tau, \xi) \cong \mathcal{J}\left(\tau, \xi^{\prime}\right)$ of K-algebras fixing the vertices pointwise if and only if $[\xi]=\left[\xi^{\prime}\right]$ in cohomology.

Finally, we define a flip graph whose vertices are pairs ($\tau,[\xi]$) of triangulations τ of $\boldsymbol{\Sigma}$ and cohomology classes $[\xi] \in H^{1}\left(C^{\bullet}(\tau)\right)$. This graph is disconnected unless $\boldsymbol{\Sigma}$ is a disk:

Theorem. The flip graph of $\boldsymbol{\Sigma}$ has at least $2^{2 g+b-1}$ connected components.

1.3 Terminology

Unless it is otherwise specified, all rings are unital, all algebras associative and unital, all ideals two-sided, and all modules left modules.

1.4 Notations

$K \quad$ an arbitrary field, fixed for this thesis
$(-)^{*} \quad$ the functor $\operatorname{Hom}_{K}(-, K)$
\mathbb{N}
the set of natural numbers $0,1,2, \ldots$
$\mathbb{N}_{+} \quad$ the set of positive integers $1,2,3, \ldots$
$\mathbb{Z} \quad$ the ring of integers
$\mathbb{Q}, \mathbb{R}, \mathbb{C} \quad$ the field of rational, real, and complex numbers, respectively
$\mathbb{F}_{q} \quad$ the finite field with q elements
$\operatorname{Mod}(R) \quad$ the category of modules over the ring R
$\bmod (R) \quad$ the category of finite-dimensional modules over the K-algebra R
$\operatorname{dim}(V) \quad$ the dimension of the vector space V
$\operatorname{rank}(M) \quad$ the (well-defined) rank of a module M
$\operatorname{rad}(M) \quad$ the radical of a module M
${ }_{R} M \quad$ used to stress the fact that M should be considered as a (left) R-module
$M_{R} \quad$ used to stress the fact that M should be considered as a right R-module
$\left\langle x_{1}, \ldots, x_{n}\right\rangle \quad$ the ideal generated by x_{1}, \ldots, x_{n} in a ring that is clear from the context
$\mathrm{Z}(R) \quad$ the center of the ring R
$\operatorname{char}(R) \quad$ the characteristic of the ring R
$\operatorname{Gal}(L / E) \quad$ the Galois group of the Galois extension L / E
$[L: E] \quad$ the degree of the field extension L / E
$\operatorname{Tr}_{L / E} \quad$ the trace in E relative to L of the E-algebra L as in [Bou70, III. $\S 9$ no. 3]
$\operatorname{Tr}_{R}(f) \quad$ the trace of the R-linear endomorphism f in the commutative ring R
$\delta_{P} \quad$ the Kronecker delta; equal to 1 , if P is true, and equal to 0 , if P is false

2 Background

In this chapter we lay the foundation for the later parts of this thesis. § 2.1 briefly revises weighted quivers and their relationship to Cartan matrices. Operations like reflection and mutation are presented for modular quivers. § 2.2 introduces tensor algebras and § 2.3 tries to justify the concept of K-modulations. In $\S 2.4$ modulations are treated in detail. We discuss natural constructions like pullback, dual, and double modulations. § 2.5 focuses on cyclic Galois modulations. The concluding $\S 2.6$ is concerned with Jacobian algebras and species with potential (SPs). We describe SP mutation for a special class of modulations.

2.1 Weighted and Modular Quivers

2.1.1 Quivers

Most of the terminology introduced in this subsection is standard.
Definition 2.1.1. Let \mathcal{K} be the Kronecker category, i.e. the category with two objects, 0 and 1 , and two non-identity morphisms, s and t, both of the form $1 \rightarrow 0$. The category of quivers \mathcal{Q} is the category of functors from \mathcal{K} to the category of finite sets.

The objects Q of \mathcal{Q} are called quivers. We write Q_{x} for the image of $x \in\{0,1\}$ under Q. The images under Q of the morphisms s and t are again denoted by s and t. In plain words, a quiver Q consists of two finite sets, Q_{0} and Q_{1}, and two functions $s, t: Q_{1} \rightarrow Q_{0}$. The elements in Q_{0} are called the vertices and the elements in Q_{1} the arrows of Q. An arrow $a \in Q_{1}$ with $i=s(a)$ and $j=t(a)$ starts in i and ends in j. This is visualized as

$$
j \stackrel{a}{\leftarrow} i \in Q_{1} .
$$

To state the fact that Q is a quiver whose vertex set is I, we say that Q is an I-quiver. A morphism of I-quivers is a morphism of quivers $Q \xrightarrow{f} Q^{\prime}$ with $f_{0}=\operatorname{id}_{I}$.

A quiver Q^{\prime} is a subquiver of another quiver Q if there is a monomorphism $Q^{\prime} \stackrel{f}{\hookrightarrow} Q$ where f_{x} are the inclusions of subsets $Q_{x}^{\prime} \subseteq Q_{x}$ for $x \in\{0,1\}$. We then write $Q^{\prime} \subseteq Q$.

A path $a_{n} \cdots a_{1}$ in Q is a tuple $\left(i_{n} \stackrel{a_{n}}{\leftarrow} i_{n-1}, \cdots, i_{2} \stackrel{a_{2}}{\longleftarrow} i_{1}, i_{1} \stackrel{a_{1}}{\longleftarrow} i_{0}\right) \in Q_{1}^{n}$ with $n \in \mathbb{N}$ and the convention $Q_{1}^{0}=\left\{i \stackrel{e_{i}}{\leftarrow} i \mid i \in Q_{0}\right\}$. We say that the path $p=a_{n} \cdots a_{1}$ starts in $s(p):=i_{0}$ and ends in $t(p):=i_{n}$. Paths $p \in Q_{1}^{n}$ have length $\ell(p):=n$.

Set $\mathcal{P}_{Q}^{n}(i, j):=\mathcal{P}_{Q}(i, j) \cap \mathcal{P}_{Q}^{n}$ where $\mathcal{P}_{Q}(i, j)$ is the set of paths in Q starting in i and ending in j and \mathcal{P}_{Q}^{n} is the set of length- n paths in Q.

Cyclic paths are paths in $\mathcal{P}_{Q}^{\circlearrowleft}:=\bigcup_{i \in Q_{0}} \mathcal{P}_{Q}(i, i)$. If $\mathcal{P}_{Q}^{\circlearrowleft} \cap \mathcal{P}_{Q}^{n}=\varnothing$, the quiver Q is said to be n-acyclic. It is loop-free if it is 1 -acyclic, and acyclic if it is n-acyclic for all $n \in \mathbb{N}_{+}$.

The quiver Q is n-acyclic at $i \in Q_{0}$ and i is an n-acyclic vertex in Q if $\mathcal{P}_{Q}(i, i) \cap \mathcal{P}_{Q}^{n}=\varnothing$.
The path category \mathcal{P}_{Q} of Q is the category with object set Q_{0} and set of morphisms $i \rightarrow j$ given by $\mathcal{P}_{Q}(i, j)$. The trivial paths e_{i} are the identities. Composition is defined in the obvious way as concatenation of paths. The assignment $Q \mapsto \mathcal{P}_{Q}$ canonically extends to a functor from \mathcal{Q} to the category of strict small categories,

The quiver Q is connected if \mathcal{P}_{Q} is a connected category. A subquiver $Q^{\prime} \subseteq Q$ is full if the functor \mathcal{P}_{f} is full for the canonical inclusion $Q^{\prime} \stackrel{f}{\hookrightarrow} Q$.

Notation 2.1.2. For $X \subseteq Q_{1}$ write $Q-X$ for the Q_{0}-subquiver of Q with arrow set $Q_{1} \backslash X$.
For $X \subseteq Q_{0}$ write $\left.Q\right|_{X}$ for the full subquiver of Q with vertex set X.
For subquivers $Q^{\prime}, Q^{\prime \prime} \subseteq Q$ write $Q=Q^{\prime} \oplus Q^{\prime \prime}$ if $Q_{0}=Q_{0}^{\prime} \cup Q_{0}^{\prime \prime}$ and $Q_{1}=Q_{1}^{\prime} \dot{\cup} Q_{1}^{\prime \prime}$.

2.1.2 Weighted Quivers

We introduce weighted quivers and describe two operations, reflection and premutation, modifying a weighted quiver locally and producing another one. The first operation plays a significant role in Chapter 3, whilst the second one is prominently used in Chapters 5 and 6.

Definition 2.1.3. A weighted quiver Q is a pair $\left(Q, d^{Q}\right)$ consisting of a quiver Q and a function $Q_{0} \xrightarrow{d^{Q}} \mathbb{N}_{+}, i \mapsto d_{i}^{Q}$. The integer d_{i}^{Q} is called the weight of the vertex i.

A morphism of weighted quivers is a morphism $Q \xrightarrow{f} Q^{\prime}$ of quivers satisfying $d^{Q^{\prime}} \circ f_{0}=d^{Q}$.
We simply write d instead of d^{Q} where it does not cause confusion.
Notation 2.1.4. Whenever a weighted quiver Q with weights $d=d^{Q}$ has been fixed, we use the following notations for $i, j \in Q_{0}$:

$$
\begin{aligned}
& d_{i j}:=\operatorname{gcd}\left(d_{i}, d_{j}\right), \quad d^{i j}:=\operatorname{lcm}\left(d_{i}, d_{j}\right), \quad f_{i j}:=\frac{d_{j}}{d_{i j}}=\frac{d^{i j}}{d_{i}}, \\
& c_{i j}:=2 \delta_{i=j}-f_{i j} m_{i j}, \quad m_{i j}:=\left|\left\{j \leftarrow i \in Q_{1}\right\}\right|+\left|\left\{j \rightarrow i \in Q_{1}\right\}\right|
\end{aligned}
$$

Occasionally, we also use the abbreviation $d_{k j i}:=\operatorname{gcd}\left(d_{k}, d_{j}, d_{i}\right)$ for $i, j, k \in Q_{0}$.
Remark 2.1.5. Fix a finite set I. A Cartan matrix C with symmetrizer D is a pair (C, D) of integer $(I \times I)$-matrices with the following properties:
(a) The diagonal entries of C are 2 and the remaining entries non-positive.
(b) D is a diagonal matrix with positive entries.
(c) $D C$ is symmetric.

For every loop-free weighted I-quiver Q the matrix $C_{Q}:=\left(c_{i j}\right)_{i, j \in I}$ is a Cartan matrix with symmetrizer $D_{Q}:=\operatorname{diag}\left(d_{i} \mid i \in I\right)$.

Vice versa, every Cartan matrix C with symmetrizer D arises from a weighted quiver. More specifically, there is a 2-acyclic weighted I-quiver Q such that $C_{Q}=C$ and $D_{Q}=D$. The underlying graph G_{Q} of Q is determined by (C, D) up to isomorphism. The number of edges joining two vertices $i \neq j$ in G_{Q} is equal to

$$
m_{i j}= \begin{cases}\operatorname{gcd}\left(\left|c_{i j}\right|,\left|c_{j i}\right|\right) & \text { if } c_{i j} c_{j i} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Remark 2.1.6. Let I be a finite set. According to [FZ02, Definition 4.4] a pair (B, D) of integer $(I \times I)$-matrices is called a skew-symmetrizable matrix B with symmetrizer D if D is a diagonal matrix with positive entries and $D B$ is skew-symmetric. For the relation between skew-symmetrizable matrices and Cartan matrices see [FZ02, Remark 4.6].

Let \mathcal{M}_{I} be the set of skew-symmetrizable integer $(I \times I)$-matrices with symmetrizer and let \mathcal{Q}_{I} be the set of isomorphism classes of 2 -acyclic weighted I-quivers. We have a bijection

$$
\begin{gathered}
\mathcal{M}_{I} \longrightarrow \mathcal{Q}_{I} \\
\left(B, \operatorname{diag}\left(d_{i}\right)\right) \longmapsto\left(Q_{B}, i \mapsto d_{i}\right)
\end{gathered}
$$

where Q_{B} has $\operatorname{gcd}\left(\left|b_{i j}\right|,\left|b_{j i}\right|\right)$ arrows $j \leftarrow i$ if $b_{j i}>0$ and no arrows $j \leftarrow i$ otherwise.
Definition 2.1.7. The dual of a weighted quiver Q is the weighted Q_{0}-quiver Q^{*} with

$$
Q_{1}^{*}=\left\{j \xrightarrow{a^{*}} i \mid j \stackrel{a}{\leftarrow} i \in Q_{1}\right\}
$$

and $d_{i}^{Q^{*}}=d_{i}^{Q}$ for all $i \in Q_{0}$. For $b=a^{*} \in Q_{1}^{*}$ set $b^{*}:=a \in Q_{1}$.
The double of Q is the weighted Q_{0}-quiver \bar{Q} such that $\bar{Q}=Q \oplus Q^{*}$ as weighted quivers.
The reflection of a weighted quiver Q at $j \in Q_{0}$ is the subquiver $Q^{* j}$ of \bar{Q} with arrow set

$$
Q_{1}^{* j}=\left\{k \leftarrow i \in Q_{1} \mid j \notin\{i, k\}\right\} \cup\left\{k \rightarrow i \in Q_{1}^{*} \mid j \in\{i, k\}\right\}
$$

The following definition is inspired by [LZ16, Definition 2.5].
Definition 2.1.8. The premutation of a weighted quiver Q at a 2-acyclic vertex $j \in Q_{0}$ is the weighted Q_{0}-quiver $Q^{\sim j}$ such that $Q^{\sim j}=Q^{* j} \oplus Q^{-j-}$ where

$$
Q_{1}^{-j-}=\left\{k \stackrel{[b a]_{r}^{q}}{\longleftarrow} i \mid k \stackrel{b}{\leftarrow} j, j \stackrel{a}{\leftarrow} i \in Q_{1}, r \in \mathbb{Z} / r_{k j i} \mathbb{Z}, q \in \mathbb{Z} / q_{k j i} \mathbb{Z}\right\}
$$

Here, $r_{k j i}$ and $q_{k j i}$ are the positive integers $r_{k j i}=d_{k i} / d_{k j i}$ and $q_{k j i}=d_{k j i} d_{j} /\left(d_{k j} d_{j i}\right)$.
Remark 2.1.9. For each $k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ in Q the premutation $Q^{\sim j}$ has $q_{k j i} r_{k j i}=d_{k i} d_{j} /\left(d_{k j} d_{j i}\right)$ composite arrows $[b a]_{r}^{q}$. The reason for this number and the labeling of the arrows will become clear in $\S 2.5 .4$. Note that $q_{k j i}=r_{k j i}=1$ if $d_{k}=d_{j}=d_{i}$.

Example 2.1.10. Let Q be the weighted quiver $k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ with $d_{k}=12, d_{j}=40, d_{i}=30$. Then $d_{k j}=4, d_{j i}=10, d_{k i}=6, d_{k j i}=2, r_{k j i}=3, q_{k j i}=2$. The premutation $Q^{\sim j}$ has six composite arrows $k \leftarrow i$ and looks as follows:

2.1.3 Modular Quivers

Modular quivers will capture combinatorial aspects of cyclic Galois modulations.
Definition 2.1.11. A weighted quiver Q equipped with a function $Q_{1} \xrightarrow{\sigma^{Q}} \bigcup_{i, j \in Q_{0}} \mathbb{Z} / d_{j i} \mathbb{Z}$ such that $a \mapsto \sigma_{a}^{Q} \in \mathbb{Z} / d_{j i} \mathbb{Z}$ for all $j \stackrel{a}{\leftarrow} i \in Q_{1}$ is called a modular quiver.

A morphism of modular quivers is a morphism $Q \xrightarrow{f} Q^{\prime}$ of weighted quivers that satisfies in addition $\sigma^{Q^{\prime}} \circ f_{1}=\sigma^{Q}$.

We write σ instead of σ^{Q} where it does not lead to confusion.
Definition 2.1.12. Let Q be a modular quiver.
The double \bar{Q} of the weighted quiver Q is a modular quiver with $\sigma_{a}^{\bar{Q}}=\sigma_{a}^{Q}$ and $\sigma_{a^{*}}^{\bar{Q}}=-\sigma_{a}^{Q}$.
The dual Q^{*} and the reflections $Q^{* j}$ are modular subquivers of \bar{Q}.
The premutation $Q^{\sim j}=Q^{* j} \oplus Q^{-j-}$ is a modular quiver where for $k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ in Q

$$
\sigma_{[b a]_{r}^{q}}=\left(\sigma_{b}+\sigma_{a}\right)_{*}+d_{k j i} r \in \mathbb{Z} / d_{k i} \mathbb{Z}
$$

Here, $x \mapsto x_{*}$ denotes the $\operatorname{map} \mathbb{Z} / d_{k j i} \mathbb{Z} \hookrightarrow \mathbb{Z} / d_{k i} \mathbb{Z}, n+d_{k j i} \mathbb{Z} \mapsto n+d_{k i} \mathbb{Z}$, for $0 \leq n<d_{k j i}$.
Let $[b a]_{!r}^{q}$ be the arrow $[b a]_{r^{\prime}}^{q}$ in $Q^{\sim j}$ with $r^{\prime} \in \mathbb{Z} / r_{k j i} \mathbb{Z}$ and $\sigma_{[b a]_{r^{\prime}}^{q}}=-\left(-\sigma_{a}-\sigma_{b}\right)_{*}-d_{k j i} r$.
Example 2.1.13. Let Q be the weighted quiver from Example 2.1.10 considered as a modular quiver with $\sigma_{b}=1 \in \mathbb{Z} / 4 \mathbb{Z}$ and $\sigma_{a}=4 \in \mathbb{Z} / 10 \mathbb{Z}$. Then $\sigma_{b}+\sigma_{a}=1 \in \mathbb{Z} / 2 \mathbb{Z}$ such that $\sigma_{[b a]_{r}^{q}}=1+2 r \in \mathbb{Z} / 6 \mathbb{Z}$ and $\sigma_{b^{*}}=-\sigma_{b}=3 \in \mathbb{Z} / 4 \mathbb{Z}$ and $\sigma_{a^{*}}=-\sigma_{a}=6 \in \mathbb{Z} / 10 \mathbb{Z}$.

Definition 2.1.14. A canceling 2 -cycle in a modular quiver Q is a subquiver of Q spanned by two arrows $j \stackrel{a}{\leftarrow} i$ and $j \xrightarrow{b} i$ with $\sigma_{b}+\sigma_{a}=0 \in \mathbb{Z} / d_{j i} \mathbb{Z}$.

A subquiver $T \subseteq Q$ is trivial if $T=T^{1} \oplus \cdots \oplus T^{n}$ for canceling 2-cycles T^{1}, \ldots, T^{n} in Q.
A modular quiver Q is reduced at $j \in Q_{0}$ if it has no canceling 2-cycles that contain j. It is reduced if it is reduced at all vertices.

A reduction of Q is a modular subquiver Q^{\prime} of Q that is reduced and satisfies $Q=Q^{\prime} \oplus T$ for some trivial T. Similarly, $Q^{\prime} \subseteq Q$ is a reduction at j if $Q=Q^{\prime} \oplus T$ and $Q(j)-T_{1}$ is a reduction of the subquiver $Q(j)$ of Q spanned by all arrows incident with j and $T \subseteq Q(j)$.

We say that a modular quiver is 2-acyclic (at j) after reduction if it has a reduction that is 2-acyclic (at j). Two modular I-quivers are reduced-equivalent if they have reductions that are isomorphic as modular I-quivers.

Remark 2.1.15. All reductions of Q are isomorphic as modular Q_{0}-quivers.
Example 2.1.16. The modular quiver $i \underset{b_{0}}{\stackrel{a_{0}}{\rightleftarrows}} j \underset{b_{1}}{\stackrel{a_{1}}{\rightleftarrows}} k$ with $d_{i}=d_{j}=d_{k}=2, \sigma_{a_{0}}=\sigma_{b_{0}}=1$, $\sigma_{a_{1}}=0, \sigma_{b_{1}}=1$ is 2-acyclic at i after reduction, but is not 2-acyclic at j after reduction.

Lemma 2.1.17. Let I be a finite set. For $j \in I$ let $\mathcal{Q}(j)$ be the set of reduced-equivalence classes of modular I-quivers that are 2-acyclic at j after reduction. There is an involution

$$
\mathcal{Q}(j) \xrightarrow{\mu_{j}} \mathcal{Q}(j),
$$

called mutation, given by $Q \mapsto Q^{\sim j}$ for modular quivers Q that are 2-acyclic at j.
Proof. For each $k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ in Q the arrows [ba] ${ }_{r}^{q}$ and $\left[a^{*} b^{*}\right]_{!r}^{-q}$ span a canceling 2-cycle $T_{b, a}^{r, q}$ in $\left(Q^{\sim j}\right)^{\sim j}=Q \oplus \oplus_{b, a, r, q} T_{b, a}^{r, q}$.

Example 2.1.18. Let Q be the modular quiver $k \xrightarrow[c]{ } i$ with $d_{k}=d_{i}=2, d_{j}=1$. Note that $\sigma_{b}=\sigma_{a}=0$ and $\sigma_{c}=r \in \mathbb{Z} / 2 \mathbb{Z}$. The two arrows c and $[b a]_{r}^{0}$ span a canceling 2-cycle in the premutation $Q^{\sim j}$. The (in this example only) reduction of $Q^{\sim j}$ is the following modular quiver with $\sigma_{[b a]_{r+1}^{0}}=r+1 \neq r=\sigma_{c}$:

Definition 2.1.19. A modular I-quiver Q is said to be X-admissible for $X \subseteq I$ if it is 2-acyclic after reduction and if, recursively, the elements of $\mu_{j}(Q)$ are X-admissible for all $j \in X$. It is called admissible if it is I-admissible.

Example 2.1.20. The modular quiver in Example 2.1.18 is easily checked to be admissible.
Example 2.1.21. Let Q be the quiver from Example 2.1.18 regarded as a modular quiver with $d_{k}=d_{i}=4, d_{j}=2$ and $\sigma_{b}=\sigma_{a}=0 \in \mathbb{Z} / 2 \mathbb{Z}, \sigma_{c}=1 \in \mathbb{Z} / 4 \mathbb{Z}$. The premutation $Q^{\sim j}$ is not 2 -acyclic after reduction, because its arrows $k \leftarrow i$ are $\underline{c}_{0}:=[b a]_{0}^{0}$ and $\underline{c}_{1}:=[b a]_{1}^{0}$ and $\sigma_{c}+\sigma_{\underline{c}_{r}}=1+2 r \neq 0 \in \mathbb{Z} / 4 \mathbb{Z}$ for all $r \in\{0,1\}$. In particular, Q is not admissible.

Example 2.1.22. The adjacency quivers investigated in Chapters 5 and 6 form a large and interesting class of admissible modular quivers.

2.1.4 Weyl Groups and Root Systems

Convention 2.1.23. Fix a weighted quiver Q.
Notation 2.1.24. Let $\mathbb{Z}^{Q_{0}}$ be the free abelian group of integer-valued functions on Q_{0}. The standard basis of $\mathbb{Z}^{Q_{0}}$ is $\left\{e_{i} \mid i \in Q_{0}\right\}$ where e_{i} is the function $Q_{0} \rightarrow \mathbb{Z}$ with $e_{i}(j)=\delta_{i=j}$.

Definition 2.1.25. For $i \in Q_{0}$ the simple reflection s_{i} is the automorphism of $\mathbb{Z}^{Q_{0}}$ given on the standard basis as $s_{i}\left(e_{j}\right)=e_{j}-c_{i j} e_{i}$.
The Weyl group is the subgroup \mathcal{W} of $\operatorname{Aut}\left(\mathbb{Z}^{Q_{0}}\right)$ generated by all s_{i} with $i \in Q_{0}$.
Denote by $\langle-,-\rangle$ and $(-,-)$ the integer-valued bilinear forms on $\mathbb{Z}^{Q_{0}}$ given on the standard basis as $\left\langle e_{i}, e_{j}\right\rangle=c_{j i}$ and $\left(e_{i}, e_{j}\right)=d_{j} c_{j i}=d_{i} c_{i j}$.

The set $\Delta_{\text {re }}^{+}$of positive real roots is $\mathcal{W}\left(\left\{e_{i} \mid i \in Q_{0}\right\}\right) \cap\left\{\alpha \in \mathbb{Z}^{Q_{0}} \mid \alpha(i) \geq 0\right.$ for all $\left.i \in Q_{0}\right\}$.
We might write $(-,-)_{Q}$ for $(-,-)$ and $\Delta_{\mathrm{re}}^{+}(Q)$ for Δ_{re}^{+}to stress the dependence on Q.
Remark 2.1.26. The form $(-,-)$ is always symmetric, while $\langle-,-\rangle$ is symmetric if and only if C_{Q} is symmetric. It is $\langle-,-\rangle=(-,-)$ if and only if $d_{i}=1$ for all i.

Remark 2.1.27. We can express the simple reflections as $s_{i}=\mathrm{id}-\left\langle-, e_{i}\right\rangle e_{i}$.

2.2 Bimodules

We give an overview of bimodules and tensor algebras. The different notions of dual for bimodules are recalled. Bimodule representations are seen to manifest themselves in up to three different forms. Moreover, we observe that the category of bimodule representations and the category of tensor-algebra modules are equivalent. Finally, the different notions of dual bimodule are shown to coincide when R carries the structure of a symmetric algebra.

Convention 2.2.1. Fix a ring R.
For $M \in \operatorname{Mod}(R)$ and $x \in \mathrm{Z}(R)$ let x^{M} be the element in $\operatorname{End}_{R}(M)$ given by $m \mapsto x m$.

2.2.1 R-Algebras

Definition 2.2.2. An R-algebra is a ring H carrying an R-bimodule structure subject to the conditions $((r x s) y) t=r(x(s y t))$ and $r z=z r$ for all $r, s, t \in R, x, y \in H, z \in \mathrm{Z}(H)$.

A morphism of R-algebras is a map $H \rightarrow H^{\prime}$ that is a morphism of rings and R-bimodules.
Remark 2.2.3. Let H be an R-algebra and $r, s, t \in R, x, y \in H$, and $1_{H}=1 \in H$. We can unambiguously write $r x s y t$ for $((r x s) y) t=r(x(s y t)) \in H$ and $r \in H$ for $r 1_{H}=1_{H} r \in H$.

Remark 2.2.4. An R-algebra is the same as a monoid in the category of R-bimodules.

2.2.2 Tensor Algebras

Notation 2.2.5. We denote the tensor algebra of an R-bimodule A by $R\langle A\rangle$, which has as an R-bimodule the form

$$
R\langle A\rangle=\bigoplus_{n \in \mathbb{N}} A^{\otimes n}
$$

where $A^{\otimes 0}=R$ and $A^{\otimes n}=A \otimes_{R} A^{\otimes(n-1)}$ is the n-fold tensor product of A with itself.
Let ι_{A} be the canonical inclusion $A \hookrightarrow R\langle A\rangle$.
The assignment $A \mapsto R\langle A\rangle$ extends in the obvious way to a functor from the category of R-bimodules to the category of R-algebras. The tensor algebra is the free R-algebra on A in the sense that $R\langle-\rangle$ is left adjoint to the forgetful functor:

Lemma 2.2.6. Let H be an R-algebra and $A \xrightarrow{f} H$ a morphism of R-bimodules. Then there exists a unique morphism \hat{f} of R-algebras making the following diagram commute:

Proof. This is straightforward.

Remark 2.2.7. Let S be a subring of $\mathrm{Z}(R)$. Call an R-bimodule A an R-bimodule over S if S acts centrally on A, i.e. $s x=x s$ for all $s \in S$ and $x \in A$. An R-algebra over S is an R-algebra H that is an R-bimodule over S. The functor $R\langle-\rangle$ restricts to a functor from the full subcategory spanned by R-bimodules over S to the full subcategory spanned by R-algebras over S. This restriction is still left adjoint to the forgetful functor, i.e. the obvious generalization "over S " of Lemma 2.2.6 is true.

Remark 2.2.8. An R-bimodule is the same as an R-bimodule over \mathbb{Z}.
Remark 2.2.9. The category of R-bimodules over S can be identified with $\operatorname{Mod}\left(R \otimes_{S} R^{\mathrm{op}}\right)$ and the category of R-algebras over S with the category of monoids in $\operatorname{Mod}\left(R \otimes_{S} R^{\mathrm{op}}\right)$.

2.2.3 Dual Bimodules

Let A be an R-bimodule over K. In other words, A is a (left) module over the enveloping algebra $R^{\mathrm{e}}=R \otimes_{K} R^{\mathrm{op}}$. The left R-dual ${ }^{R} A$, the right R-dual A^{R}, the K-dual A^{*}, and the bimodule dual A^{\dagger}, carry natural R^{e}-module structures. Namely, for $r, s \in R$, and $x \in A$,

$$
(s f r)(x)= \begin{cases}f(x s) r & \text { for } f \in R^{R} A:=\operatorname{Hom}_{R}\left({ }_{R} A,{ }_{R} R\right), \\ s f(r x) & \text { for } f \in A^{R}:=\operatorname{Hom}_{R}\left(A_{R}, R_{R}\right), \\ f(r x s) & \text { for } f \in A^{*}:=\operatorname{Hom}_{K}(A, K), \\ r f(x) s & \text { for } f \in A^{\dagger}:=\operatorname{Hom}_{R^{e}}\left(A, R^{e}\right) .\end{cases}
$$

Remark 2.2.10. There is an isomorphism $(-)^{*} \cong \operatorname{Hom}_{R^{e}}\left(-,\left(R^{\mathrm{e}}\right)^{*}\right)$ induced by the adjoint pair $\left(R^{\mathrm{e}} \otimes_{R^{e}}-, \operatorname{Hom}_{K}\left(R^{\mathrm{e}},-\right)\right)$. Hence, $(-)^{*} \cong(-)^{\dagger}$ if and only if $R^{\mathrm{e}}\left(R^{\mathrm{e}}\right)^{*} \cong{ }_{R^{e}} R^{\mathrm{e}}$.

2.2.4 Bimodule Representations

Definition 2.2.11. Let A be an R-bimodule. An A-representation is a pair $\left(M, r_{M}\right)$ consisting of an R-module M and an R-module morphism $A \otimes_{R} M \xrightarrow{r_{M}} M$.

A morphism of A-representations $\left(M, r_{M}\right) \xrightarrow{f}\left(N, r_{N}\right)$ is a morphism $M \xrightarrow{f} N$ of R modules making the following square commute:

Denote by $\operatorname{Rep}(A)$ the category of A-representations.
For $M \in \operatorname{Mod}(R)$ the space of A-representations is $\operatorname{Rep}(A, M):=\operatorname{Hom}_{R}\left(A \otimes_{R} M, M\right)$.
Remark 2.2.12. If A is an R-bimodule over S, the space $\operatorname{Rep}(A, M)$ of A-representations on M carries a natural S-module structure.

Remark 2.2.13. Under the adjunction $\left(A \otimes_{R}-, \operatorname{Hom}_{R}(A,-)\right)$ an A-representation $\left(M, r_{M}\right)$ corresponds to a pair $\left(M, \tilde{r}_{M}\right)$ where \tilde{r}_{M} is an R-module morphism $M \rightarrow \operatorname{Hom}_{R}(A, M)$.

An R-module morphism $M \xrightarrow{f} N$ defines a morphism $\left(M, \tilde{r}_{M}\right) \xrightarrow{f}\left(N, \tilde{r}_{N}\right)$ whenever the following square is commutative:

To state a variation of the last remark, we recall the following classical result:
Lemma 2.2.14. Let A be an R-bimodule such that ${ }_{R} A$ is finitely generated projective. For every $M \in \operatorname{Mod}(R)$ there is an isomorphism, natural in M, of left R-modules:

$$
\begin{array}{r}
R_{A} \otimes_{R} M \xrightarrow{\eta_{M}} \operatorname{Hom}_{R}(A, M) \\
f \otimes m \longmapsto(x \mapsto f(x) m)
\end{array}
$$

Proof. See [Bou70, II. §4 no. 2].
Definition 2.2.15. Let A be an R-bimodule such that ${ }_{R} A$ is finitely generated projective.
For $M, N \in \operatorname{Mod}(R)$ the isomorphism $\operatorname{Hom}_{R}\left(A \otimes_{R} M, N\right) \rightarrow \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(A, N)\right)$ of the tensor-hom adjunction given by $f \mapsto(m \mapsto x \mapsto f(x \otimes m))$ composed with postcomposition with η_{N}^{-1} yields an isomorphism

$$
\operatorname{Hom}_{R}\left(A \otimes_{R} M, N\right) \xrightarrow{\text { ad }} \operatorname{Hom}_{R}\left(M, R^{R} A \otimes_{R} N\right),
$$

which we call the adjunction correspondence.
We write f^{\vee} for $\operatorname{ad}(f)$ and ${ }^{\vee} g$ for $\operatorname{ad}^{-1}(g)$.
Remark 2.2.16. Let A be an R-bimodule such that ${ }_{R} A$ is finitely generated projective. Then ${ }^{R} A \otimes_{R}-\cong \operatorname{Hom}_{R}(A,-)$ canonically by Lemma 2.2.14.

With the adjunction correspondence an A-representation (M, r_{M}) corresponds to a pair $\left(M, r_{M}^{\vee}\right)$ where r_{M}^{\vee} is an R-module morphism $M \rightarrow{ }^{R} A \otimes_{R} M$.

An R-module morphism $M \xrightarrow{f} N$ defines a morphism $\left(M, r_{M}^{\vee}\right) \xrightarrow{f}\left(N, r_{N}^{\vee}\right)$ whenever the following square is commutative:

Let H be an R-algebra and $M \in \operatorname{Mod}(R)$. Recall that an H-module structure on M is an R-module morphism $H \otimes_{R} M \rightarrow M, x \otimes m \mapsto x \cdot m$, satisfying for all $x, y \in H$ and $m \in M$ the relations $1 \cdot m=m$ and $(x y) \cdot m=x \cdot(y \cdot m)$.

Lemma 2.2.17. Let A be an R-bimodule and let $H=R\langle A\rangle$ be its tensor algebra. For every A-representation $\left(M, r_{M}\right)$ there is a unique H-module structure \hat{r}_{M} on M such that

commutes. Furthermore, every morphism $\left(M, r_{M}\right) \xrightarrow{f}\left(N, r_{N}\right)$ of A-representations is a morphism $M \xrightarrow{f} N$ of H-modules when the module structures are given by \hat{r}_{M} and \hat{r}_{N}.

Proof. This is straightforward.
Notation 2.2.18. For $H=R\langle A\rangle$ and $M \in \operatorname{Mod}(H)$ denote by $A \otimes_{R} M \xrightarrow{A^{M}} M$ the map obtained by postcomposing $\iota_{A} \otimes \mathrm{id}$ with the map $H \otimes_{R} M \rightarrow M$ given by multiplication.

The rule $M \mapsto\left({ }_{R} M,{ }_{A} M\right)$ canonically extends to a functor $\operatorname{Mod}(H) \rightarrow \operatorname{Rep}(A)$.
Corollary 2.2.19. Let A be an R-bimodule and let $H=R\langle A\rangle$ be its tensor algebra. Then the functor $M \mapsto\left({ }_{R} M,{ }_{A} M\right)$ defines an equivalence $\operatorname{Mod}(H) \rightarrow \operatorname{Rep}(A)$.

Proof. This is a direct consequence of Lemma 2.2.17.

2.2.5 Symmetric Ground Rings

The following is one of the several common definitions of symmetric algebras:

Definition 2.2.20. A K-algebra Λ is said to carry a Frobenius structure if it is equipped with a K-linear form $\Lambda \xrightarrow{\varphi} K$ satisfying the property:
(a) The zero ideal is the only left ideal of Λ contained in the kernel of φ.

The form φ is called a symmetric structure on Λ if it has additionally to (a) the property:
(b) $\varphi(s r)=\varphi(r s)$ for all $s, r \in \Lambda$.

A symmetric algebra is a finite-dimensional K-algebra that admits a symmetric structure.
Remark 2.2.21. It is well-known (see [Lam99, §3B]) that (a) in Definition 2.2.20 is left-right symmetric. It can be substituted with the following equivalent condition:
(a') The zero ideal is the only right ideal of Λ contained in the kernel of φ.
Remark 2.2.22. Assume $R=\prod_{i} R_{i}$. Then the ground ring R is a symmetric algebra if and only if R_{i} is a symmetric algebra for each i. More precisely, every symmetric structure φ on R corresponds to symmetric structures φ_{i} on R_{i} such that $\varphi=\sum_{i} \varphi_{i}$.

Remark 2.2.23. The enveloping algebra $R^{\mathrm{e}}=R \otimes_{K} R^{\mathrm{op}}$ is symmetric if R is symmetric. More precisely, symmetric structures φ on R yield symmetric structures $\varphi^{\mathrm{e}}=\varphi \otimes \varphi$ on R^{e}.

Remark 2.2.24. Let φ be a Frobenius structure on R. It is clear (see again [Lam99, §3B]) that φ^{e} induces an isomorphism $R^{e} R^{\mathrm{e}} \xrightarrow{\cong} R^{\mathrm{e}}\left(R^{\mathrm{e}}\right)^{*}$ that is defined by $\left(r \mapsto\left(s \mapsto \varphi^{\mathrm{e}}(s r)\right)\right.$. With Remark 2.2 .10 we obtain a canonical isomorphism $A^{\dagger} \xrightarrow{\varphi_{\dagger}} A^{*}$ given by $f \mapsto \varphi^{\mathrm{e}} \circ f$.

Lemma 2.2.25. For every symmetric structure $R \xrightarrow{\varphi} K$ on R we have the following isomorphisms of R-bimodules over K :
${ }^{R} A \xrightarrow{* \varphi} A^{*}$
$f \longmapsto \varphi \circ f$

$$
\begin{aligned}
& A^{*} \longleftarrow \varphi_{*} A^{R} \\
& \varphi \circ f \longleftarrow f
\end{aligned}
$$

Proof. Property (a) in Definition 2.2.20 implies that ${ }_{*} \varphi$ is bijective, while (b) shows that ${ }_{*} \varphi$ is a morphism of R-bimodules. The existence of φ_{*} follows similarly from (a') and (b).

Notation 2.2.26. We write ${ }^{*} \varphi$ and φ^{*} for the inverses of ${ }^{R} A \xrightarrow{* \varphi} A^{*}$ and $A^{R} \xrightarrow{\varphi_{*}} A^{*}$.

2.3 From Bimodules to Quivers

Starting from an R-bimodule A over K with the only assumption that both R and A are finite-dimensional over K, we discuss how decompositions $R=\prod_{i} R_{i}$ and $A=\bigoplus_{a} A_{a}$ give rise to a weighted quiver Q with vertices i and arrows a. We then observe how bimodule representations of A can be regarded as quiver representations of Q.

2.3.1 Decomposing Bimodules

Convention 2.3.1. Let R be a finite-dimensional algebra and let A be a finite-dimensional R-bimodule over K. Factorize R as a product of connected algebras R_{i}, indexed by the elements i of some set I. Formally,

$$
R=\prod_{i \in I} R_{i}
$$

Denote by $e_{i} \in R$ the identity element of R_{i}. The bimodule A decomposes into the direct sum of the $R_{j} \otimes_{K} R_{i}^{\mathrm{op}}$-modules ${ }_{j} A_{i}:=e_{j} A e_{i}$. We refine this decomposition as

$$
{ }_{j} A_{i}=\bigoplus_{a \in I_{j i}} A_{a}
$$

where $I_{j i}$ are pairwise disjoint sets. In this way, we obtain an I-quiver Q with arrow set

$$
Q_{1}=\left\{j \stackrel{a}{\leftarrow} i \mid i, j \in I, a \in I_{j i}\right\}
$$

The quiver Q can be regarded as a weighted quiver with weights $d_{i}=\operatorname{dim}_{K}\left(R_{i}\right)$.
Remark 2.3.2. The summands occurring in the decomposition ${ }_{j} A_{i}=\bigoplus_{a \in I_{j i}} A_{a}$ are by the Krull-Remak-Schmidt Theorem up to permutation and isomorphism uniquely determined if we demand that each A_{a} is an indecomposable $R_{j} \otimes_{K} R_{i}^{\mathrm{op}}$-module.

The K-dual, the left dual, and the right dual of the bimodule A decompose as

$$
A^{*}=\bigoplus_{a \in Q_{1}} A_{a}^{*}, \quad R^{R} A=\bigoplus_{a \in Q_{1}} A_{*}, \quad A^{R}=\bigoplus_{a \in Q_{1}} A_{a_{*}}
$$

For $j \stackrel{a}{\leftarrow} i$ the summands in these decompositions are the K-duals, R_{j}-duals, and R_{i}-duals of A_{a}, which are defined as

$$
A_{a}^{*}:=\operatorname{Hom}_{K}\left(A_{a}, K\right), \quad A_{* a}:=\operatorname{Hom}_{R_{j}}\left(A_{a}, R_{j}\right), \quad A_{a_{*}}:=\operatorname{Hom}_{R_{i}}\left(A_{a}, R_{i}\right)
$$

All these duals carry natural $R_{i} \otimes_{K} R_{j}^{\mathrm{op}}$-module structures.

2.3.2 Quiver Representations

Notation 2.3.3. Every $M \in \operatorname{Mod}(R)$ is the direct sum of the R_{i}-modules $M_{i}:=e_{i} M$:

$$
M=\bigoplus_{i \in Q_{0}} M_{i}
$$

With this decomposition we have for all $M, N \in \operatorname{Mod}(R)$ canonically

$$
\operatorname{Hom}_{R}(M, N)=\bigoplus_{i \in Q_{0}} \operatorname{Hom}_{R_{i}}\left(M_{i}, N_{i}\right)
$$

By f_{i} denote the component of $f \in \operatorname{Hom}_{R}(M, N)$ belonging to $\operatorname{Hom}_{R_{i}}\left(M_{i}, N_{i}\right)$.

Similarly, there is a decomposition $\operatorname{Hom}_{R}\left(A \otimes_{R} M, N\right)=\bigoplus_{a} \operatorname{Hom}_{R_{j}}\left(A_{a} \otimes_{R_{i}} M_{i}, N_{j}\right)$ where $j \stackrel{a}{\leftarrow} i$ runs through all arrows of Q. Again, we will write f_{a} for the component of a map $f \in \operatorname{Hom}_{R}\left(A \otimes_{R} M, N\right)$ that belongs to $\operatorname{Hom}_{R_{j}}\left(A_{a} \otimes_{R_{i}} M_{i}, N_{j}\right)$. In particular, the space of A-representations of $M \in \operatorname{Mod}(R)$ decomposes as

$$
\operatorname{Rep}(A, M)=\bigoplus_{j \leftarrow ্} \operatorname{Hom}_{R_{j}}\left(A_{a} \otimes_{R_{i}} M_{i}, M_{j}\right)
$$

We simply write M_{a} for $\left({ }_{A} M\right)_{a}$ if $M \in \operatorname{Mod}(R\langle A\rangle)$ (compare Notation 2.2.18).

We summarize the discussion by stating the analog of [GLS16a, Proposition 5.1].
Lemma 2.3.4. Let $H=R\langle A\rangle$ be the tensor algebra of A. The category $\operatorname{Mod}(H)$ can be canonically identified with the category whose objects are families $\left(M_{i}, M_{a}\right)_{i, a}$ with

$$
\begin{array}{ll}
M_{i} \in \operatorname{Mod}\left(R_{i}\right) & \text { indexed by } i \in Q_{0}, \\
M_{a} \in \operatorname{Hom}_{R_{j}}\left(A_{a} \otimes_{R_{i}} M_{i}, M_{j}\right) & \text { indexed by } j \stackrel{a}{\leftarrow} i \in Q_{1},
\end{array}
$$

and whose morphisms $\left(M_{i}, M_{a}\right)_{i, a} \rightarrow\left(N_{i}, N_{a}\right)_{i, a}$ are tuples $\left(f_{i}\right)_{i}$ with

$$
f_{i} \in \operatorname{Hom}_{R_{i}}\left(M_{i}, N_{i}\right) \quad \text { indexed by } i \in Q_{0} \text {, }
$$

making the following diagram commute for all arrows $j \stackrel{a}{\longleftarrow} i$ in Q :

Proof. This follows from Corollary 2.2.19 and the decompositions presented above.
Remark 2.3.5. Clearly, M is finitely generated if and only if all M_{i} are finitely generated.

We also have a decomposition $\operatorname{Hom}_{R}\left(M,{ }^{R} A \otimes_{R} N\right)=\bigoplus_{j \stackrel{a}{\leftarrow}}{ }_{i} \operatorname{Hom}_{R_{i}}\left(M_{i}, A_{*} a \otimes_{R_{j}} N_{j}\right)$ such that $f=\sum_{a} f_{a}$ with $f_{a} \in \operatorname{Hom}_{R_{i}}\left(M_{i}, A_{*} a \otimes_{R_{j}} N_{j}\right)$ for every $f \in \operatorname{Hom}_{R}\left(M,{ }^{R} A \otimes_{R} N\right)$.

Remark 2.3.6. If ${ }_{R} A$ is projective, choosing an H-module M amounts with Remark 2.2.16 also to the same as to specifying a family $\left(M_{i}, M_{a}^{\vee}\right)_{i, a}$ with

$$
\begin{array}{ll}
M_{i} \in \operatorname{Mod}\left(R_{i}\right) & \text { indexed by } i \in Q_{0}, \\
M_{a}^{\vee} \in \operatorname{Hom}_{R_{i}}\left(M_{i}, A_{*} a \otimes_{R_{j}} M_{j}\right) & \text { indexed by } j \stackrel{a}{\leftarrow} i \in Q_{1} .
\end{array}
$$

2.3.3 Locally Free Modules

We extend the terminology of locally freeness introduced in [GLS16a] to arbitrary R-algebras and observe that the "adjunction formulas" from ibid. $\S 5.1$ remain valid for locally free ${ }_{R} A$.

Definition 2.3.7. Let H be an R-algebra. A module $M \in \operatorname{Mod}(H)$ is called locally free if M_{i} is a free R_{i}-module for all $i \in Q_{0}$.

Analogously, one defines locally freeness for right H-modules.
Remark 2.3.8. Let H be an R-algebra and assume that R_{i} is local for all $i \in Q_{0}$. Then an H-module M is locally free if and only if ${ }_{R} M$ is projective.

If ${ }_{R} A$ is locally free, the inverse of the isomorphism $\eta=\eta_{M}$ from Lemma 2.2.14 can be explicitly described in terms of bases of the finitely generated free modules ${ }_{R_{j}}\left(A_{a}\right)$.

Lemma 2.3.9. Assume ${ }_{R_{j}}\left(A_{a}\right)$ is free for some $j \stackrel{a}{\leftarrow} i \in Q_{1}$ and let B_{a} be a basis of $R_{j}\left(A_{a}\right)$ and $\left\{b^{*} \mid b \in B_{a}\right\}$ its R_{j}-dual basis. For each $M \in \operatorname{Mod}(R)$ the inverse of η_{a} acts as follows:

$$
\begin{array}{r}
\operatorname{Hom}_{R_{j}}\left(A_{a}, M_{j}\right) \xrightarrow{\eta_{a}^{-1}} A_{*} \otimes_{R_{j}} M_{j} \\
g \\
\longmapsto \sum_{b \in B_{a}} b^{*} \otimes g(b)
\end{array}
$$

Proof. This is straightforward.

Corollary 2.3.10. Let $f \in \operatorname{Hom}_{R}\left(A \otimes_{R} M, N\right)$ and $g \in \operatorname{Hom}_{R}\left(M,{ }^{R} A \otimes_{R} N\right)$ for two modules $M, N \in \operatorname{Mod}(R)$. If $R_{j}\left(A_{a}\right)$ has a basis B_{a}, the formulas

$$
f_{a}^{\vee}(m)=\sum_{b \in B_{a}} b^{*} \otimes f(b \otimes m), \quad \vee(x \otimes m)=\sum_{b \in B_{a}} x_{b} g_{m, b}
$$

hold for all elements $m \in M_{i}$ and $x=\sum_{b} x_{b} b \in A_{a}$ where $g(m)=\sum_{b} b^{*} \otimes g_{m, b} \in A_{*} a \otimes_{R_{j}} N_{j}$ with $x_{b} \in R_{j}$ and $g_{m, b} \in N_{j}$.

Proof. This follows by direct calculations using Lemma 2.3.9.

We can restate Lemma 2.2.25 in the current context as follows:
Corollary 2.3.11. For every symmetric structure $R \xrightarrow{\varphi} K$ on R and every arrow $j \stackrel{a}{\longleftrightarrow} i$ in Q we have the following isomorphisms of $R_{i} \otimes_{K} R_{j}^{\mathrm{op}}{ }_{-}$modules:

$$
\begin{aligned}
& A_{*} a \xrightarrow{*} \varphi \\
& A_{a}^{*} A_{a}^{*} \longleftarrow \varphi_{*} A_{a_{*}} \\
& f \longmapsto \varphi_{j} \circ f \varphi_{i} \circ f \longleftarrow
\end{aligned}
$$

Proof. Use Lemma 2.2.25 and the decomposition $A=\bigoplus_{a} A_{a}$.

2.4 Path Algebras for Weighted Quivers

Convention 2.4.1. Fix a weighted quiver Q and recall Notation 2.1.4.

2.4.1 Modulations

Definition 2.4.2. A K-modulation for the weighted quiver Q is a family

$$
\mathcal{H}=\left(R_{i}, A_{a}\right)_{i \in Q_{0}, a \in Q_{1}}
$$

of connected K-algebras R_{i}, indexed by the vertices $i \in Q_{0}$, and non-zero $R_{j} \otimes_{K} R_{i}^{\text {op }}$ modules A_{a}, indexed by the arrows $j \stackrel{a}{\longleftarrow} i \in Q_{1}$, satisfying the following properties:
(a) $\operatorname{dim}_{K}\left(R_{i}\right)=d_{i}$ for each $i \in Q_{0}$.
(b) ${ }_{R_{j}}\left(A_{a}\right)$ and $\left(A_{a}\right)_{R_{i}}$ are free of finite rank for each $j \stackrel{a}{\leftarrow} i \in Q_{1}$.

Clearly, properties (a) and (b) imply the existence of positive integers d_{a} such that

$$
\operatorname{dim}_{K}\left(A_{a}\right)=d_{a} d^{j i}, \quad \operatorname{rank}_{R_{j}}\left(A_{a}\right)=d_{a} f_{j i}, \quad \operatorname{rank}\left(A_{a}\right)_{R_{i}}=d_{a} f_{i j}
$$

The modulation \mathcal{H} is minimal if $d_{a}=1$ for all $a \in Q_{1}$.
We call \mathcal{H} local (resp. symmetric) if R_{i} is a local (resp. symmetric) algebra for all $i \in Q_{0}$.
We say that \mathcal{H} is decomposed if for all $j \stackrel{a}{\leftarrow} i$ there is no decomposition $A_{a}=M_{1} \oplus M_{2}$ with non-zero $R_{j} \otimes_{K} R_{i}^{\mathrm{op}}$-modules M_{s} such that ${ }_{R_{j}}\left(M_{s}\right)$ and $\left(M_{s}\right)_{R_{i}}$ are free.

Let $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ and $\mathcal{H}^{\prime}=\left(R_{i}^{\prime}, A_{a}^{\prime}\right)_{i, a}$ be K-modulations for Q. A morphism $\mathcal{H} \xrightarrow{f} \mathcal{H}^{\prime}$ is a family $\left(f_{i}, f_{a}\right)_{i, a}$ of K-algebra homomorphisms $R_{i} \xrightarrow{f_{i}} R_{i}^{\prime}$ and linear maps $A_{a} \xrightarrow{f_{a}} A_{a}^{\prime}$ such that $f_{a}(s x r)=f_{j}(s) f_{a}(x) f_{i}(r)$ for all $j \stackrel{a}{\leftarrow} i \in Q_{1}, s \in R_{j}, x \in A_{a}, r \in R_{i}$.

An $\left(R_{i}\right)_{i}$-modulation for a weighted I-quiver Q is a K-modulation $\left(R_{i}, A_{a}\right)_{i, a}$ for Q.
Remark 2.4.3. If \mathcal{H} is local, it is decomposed if and only if all A_{a} are indecomposable.
Remark 2.4.4. Every minimal K-modulation is decomposed.
Remark 2.4.5. Let $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ be a K-modulation where all R_{i} are division algebras. Then $\left(R_{i},{ }_{j} A_{i}\right)_{i, j \in Q_{0}}$ with ${ }_{j} A_{i}:=\bigoplus_{j \nleftarrow{ }_{\leftarrow}^{a} \in Q_{1}} A_{a}$ is a modulation in the sense of [DR76].

Conversely, for families $\left(R_{i}\right)_{i \in Q_{0}}$ of connected K-algebras and $\left({ }_{j} A_{i}\right)_{i, j \in Q_{0}}$ of $R_{j} \otimes_{K} R_{i}^{\text {op }}$ modules ${ }_{j} A_{i}$ with $\operatorname{dim}_{K}\left(R_{i}\right)=d_{i}$ and ${ }_{R_{j}}\left({ }_{j} A_{i}\right),\left({ }_{j} A_{i}\right)_{R_{i}}$ free of finite rank, we can make the following two observations:
(i) Suppose there is exactly one arrow $j \stackrel{a}{\leftarrow} i$ in Q whenever $\operatorname{dim}_{K}\left({ }_{j} A_{i}\right) \neq 0$ and no arrow $j \leftarrow i$ otherwise. Set $A_{a}:={ }_{j} A_{i}$. Then $\left(R_{i}, A_{a}\right)_{i, a}$ is a K-modulation for Q.
(ii) The Krull-Remak-Schmidt Theorem yields a decomposition ${ }_{j} A_{i}=\bigoplus_{s=1}^{m} M_{s}$ whose summands are indecomposable and determined up to reordering and isomorphism. Let us assume that all R_{i} are local rings. Then $R_{j}\left(M_{s}\right)$ and $\left(M_{s}\right)_{R_{i}}$ are free modules. Supposing that Q has precisely m arrows a_{1}, \ldots, a_{m} from i to j, we set $A_{a_{s}}:=M_{s}$. Then $\left(R_{i}, A_{a}\right)_{i, a}$ is a decomposed (local) K-modulation for Q.

Remark 2.4.6. Dlab and Ringel require in $[\mathrm{DR} 76]$ that $\operatorname{Hom}_{R_{i}}\left(A_{a}, R_{i}\right) \cong \operatorname{Hom}_{R_{j}}\left(A_{a}, R_{j}\right)$
as $R_{i} \otimes_{K} R_{j}^{\mathrm{op}}$-modules. For every K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ where all R_{i} are division algebras such isomorphisms always exist. See Corollary 2.3.11 and Example 3.2.5.

Example 2.4.7. Let Q be the weighted quiver $1 \stackrel{a}{\leftarrow} 2$ of type A_{2} with $d_{1}=d_{2}=2$. For $\rho \in \operatorname{Aut}_{\mathbb{R}}(\mathbb{C})$ we have an \mathbb{R}-modulation $\mathcal{H}^{\rho}=\left(R_{i}, A_{a}^{\rho}\right)_{i, a}$ for Q with $R_{1}=R_{2}=\mathbb{C}$ and $A_{a}^{\rho}=\mathbb{C}^{\rho}$. Here \mathbb{C}^{ρ} is the $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$-module with $\mathbb{C}^{\rho}=\mathbb{C}$ as \mathbb{R}-vector space and bimodule structure given by $w z v:=w \cdot z \cdot \rho(v)$ for $w, v \in \mathbb{C}$ and $z \in \mathbb{C}^{\rho}$.

Let $\operatorname{Aut}_{\mathbb{R}}(\mathbb{C})=\{\mathrm{id}, \rho\}$ where ρ is complex conjugation. Then the maps $f_{1}=\mathrm{id}, f_{2}=\rho^{-1}$ and $f_{a}=\operatorname{id}_{\mathbb{C}}$ define an isomorphism $\mathcal{H}^{\text {id }} \xrightarrow{f} \mathcal{H}^{\rho}$ of K-modulations for Q.

Example 2.4.8. Taking $R_{1}=R_{2}=\mathbb{C}, A_{a}=\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}^{\rho}$ defines an \mathbb{R}-modulation \mathcal{H} for the weighted quiver from Example 2.4.7. This modulation is local but not decomposed. The K-modulation \mathcal{H}^{\prime} for Q given by $R_{1}=R_{2}=\mathbb{C}, A_{a}=\mathbb{C} \oplus \mathbb{C}$ is not isomorphic to \mathcal{H}.

Example 2.4.9. Let Q be the weighted quiver $1 \stackrel{a}{\leftarrow} 2$ with $d_{1}=2, d_{2}=3$. Then $R_{1}=\mathbb{C}$, $R_{2}=\binom{\mathbb{R} \mathbb{R}}{0}, A_{a}=R_{1} \otimes_{\mathbb{R}} R_{2} \cong\left(\begin{array}{c}\mathbb{C} \\ 0 \\ 0\end{array}\right)$ defines a minimal non-local \mathbb{R}-modulation \mathcal{H} for Q. In particular, \mathcal{H} is decomposed. However, $A_{a} \cong\left(\begin{array}{ll}\mathbb{C} & \mathbb{C} \\ 0 & 0\end{array}\right) \oplus\left(\begin{array}{ll}0 & 0 \\ 0 & \mathbb{C}\end{array}\right)$ is not indecomposable.

Example 2.4.10. Let Q be as in Example 2.4.9 and let ζ be a primitive cube root of unity. Then $R_{1}=\mathbb{Q}(\zeta), R_{2}=\mathbb{Q}(\sqrt[3]{2}), A_{a}=R_{1} \otimes_{\mathbb{Q}} R_{2}$ yields a minimal local \mathbb{Q}-modulation for Q.

Example 2.4.11.§ 5 in [GLS16a] describes the minimal local K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ with $R_{i}=K\left[\varepsilon_{i}\right] /\left(\varepsilon_{i}^{d_{i}}\right)$ for $i \in Q_{0}$ and $A_{a}=K\left[\varepsilon_{j}, \varepsilon_{i}\right] /\left(\varepsilon_{j}^{f_{i j}}-\varepsilon_{i}^{f_{j i}}, \varepsilon_{j}^{d_{j}}, \varepsilon_{i}^{d_{i}}\right)$ for $j \stackrel{a}{\leftarrow} i \in Q_{1}$.

Example 2.4.12. With $R_{i}=K\left[\varepsilon_{i}\right] /\left(\varepsilon_{i}^{2}\right)$ and $A_{a}=R_{1} \otimes_{K} R_{2} \cong K\left[\varepsilon_{1}, \varepsilon_{2}\right] /\left(\varepsilon_{1}^{2}, \varepsilon_{2}^{2}\right)$ we get a K-modulation for the weighted quiver $1 \stackrel{a}{\leftarrow} 2$ with $d_{1}=d_{2}=2$ from Example 2.4.7. This modulation is local and decomposed but not minimal.

2.4.2 Pullback Modulations

Definition 2.4.13. Let \mathcal{H} be a K-modulation of Q. For a morphism $Q^{\prime} \xrightarrow{f} Q$ of weighted quivers the pullback of \mathcal{H} along f is the K-modulation

$$
f^{*} \mathcal{H}=\left(R_{f\left(i^{\prime}\right)}, A_{f\left(a^{\prime}\right)}\right)_{i^{\prime} \in Q_{0}^{\prime}, a^{\prime} \in Q_{1}^{\prime}} .
$$

If f is the inclusion of a subquiver, we call $f^{*} \mathcal{H}$ the submodulation of \mathcal{H} induced by f.
Remark 2.4.14. More generally, the pullback $f^{*} \mathcal{H}$ of \mathcal{H} along f can be defined in a similar way for every functor $\mathcal{P}_{Q^{\prime}} \xrightarrow{f} \mathcal{P}_{Q}$ where $A_{f\left(a^{\prime}\right)}:=A_{a_{n}} \otimes_{R} \cdots \otimes_{R} A_{a_{1}}$ if $f\left(a^{\prime}\right)=a_{n} \cdots a_{1}$. Here, the quiver Q^{\prime} has to be considered as a weighted quiver with weights $d_{i^{\prime}}^{Q^{\prime}}=d_{f\left(i^{\prime}\right)}^{Q}$.

2.4.3 Dual and Double Modulations

Convention 2.4.15. Fix a symmetric K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for Q.

Definition 2.4.16. The double of \mathcal{H} is the K-modulation $\overline{\mathcal{H}}=\left(R_{i}, A_{a}\right)_{i \in \bar{Q}_{0}, a \in \bar{Q}_{1}}$ for \bar{Q} with $A_{a^{*}}=A_{a}^{*}$. The dual of \mathcal{H} is the submodulation \mathcal{H}^{*} of \mathcal{H} induced by $Q^{*} \subseteq \bar{Q}$.

Remark 2.4.17. Corollary 2.3.11 ensures that $\overline{\mathcal{H}}$ satisfies (b) in Definition 2.4.2.
Lemma 2.4.18. If \mathcal{H} is a minimal/decomposed/local/symmetric modulation, $\overline{\mathcal{H}}$ and \mathcal{H}^{*} are minimal/decomposed/local/symmetric modulations.

Proof. This is straightforward.
Example 2.4.19. Let \mathcal{H} be the $G L S$ modulation from Example 2.4.11. Then \mathcal{H} is symmetric. More precisely, the map $\varphi_{i}=t_{i}^{\max }$ in [GLS16a, § 8.1] defines a symmetric structure on R_{i}.

Fix $j \stackrel{a}{\leftarrow} i \in Q_{1}$. In [GLS16a, §5.1] two maps λ and ρ are described, which yield an isomorphism $\lambda \circ \rho^{-1}$ between A_{*} and $A_{a_{*}}$. Inspection shows that $\lambda \circ \rho^{-1}$ is the map $\varphi_{i}^{*} \circ{ }_{*} \varphi_{j}$.
If one prefers to identify the K-dual A_{a}^{*} with ${ }_{i} \Lambda_{j}=K\left[\varepsilon_{i}, \varepsilon_{j}\right] /\left(\varepsilon_{i}^{f_{j i}}-\varepsilon_{j}^{f_{i j}}, \varepsilon_{i}^{d_{i}}, \varepsilon_{j}^{d_{j}}\right)$, as Geiß, Leclerc, and Schröer do, it is possible to use the isomorphism ${ }_{i} \Lambda_{j} \rightarrow A_{a}^{*}$ that is given, for $0 \leq q<d_{i j}, 0 \leq r<f_{j i}, 0 \leq s<f_{i j}, \varepsilon_{i j}:=\varepsilon_{j i}:=\varepsilon_{i}^{f_{j i}}=\varepsilon_{j}^{f_{i j}}$, by

$$
\varepsilon_{i}^{r} \varepsilon_{i j}^{q} \varepsilon_{j}^{s} \mapsto\left(\varepsilon_{j}^{\left(f_{i j}-1\right)-s} \varepsilon_{j i}^{\left(d_{i j}-1\right)-q} \varepsilon_{i}^{\left(f_{j i}-1\right)-r}\right)^{*} .
$$

This shows how $\left(R_{i}, A_{a}\right)_{i \in \bar{Q}_{0}, a \in \bar{Q}_{1}}$ with $A_{a^{*}}={ }_{i} \Lambda_{j}$ can be regarded as the double of \mathcal{H}.

2.4.4 Path Algebras

Convention 2.4.20. Fix a K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for Q.
Definition 2.4.21. We will call the K-algebra $R_{\mathcal{H}}=\prod_{i \in Q_{0}} R_{i}$ the ground ring and the R-bimodule $A_{\mathcal{H}}=\bigoplus_{a \in Q_{1}} A_{a}$ over K the species of the modulation \mathcal{H}.
The tensor algebra $H_{\mathcal{H}}=R\langle A\rangle$ is the path algebra of Q defined by \mathcal{H}.
We write R, A, H instead of $R_{\mathcal{H}}, A_{\mathcal{H}}, H_{\mathcal{H}}$ when confusion seems unlikely.
Notation 2.4.22. We use the notation introduced in § 2.3. In particular, e_{i} stands for the identity of R_{i} considered as an element of R. So $\sum_{i \in Q_{0}} e_{i}=1 \in R \subseteq H$.

Remark 2.4.23. If $d_{i}=1$ for all i, then $d_{i j}=d^{i j}=f_{i j}=1$ for all i, j. In this case, up to isomorphism, $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ with $R_{i}=K$ for all i and $A_{a}=K$ for all a is the only minimal K-modulation for Q and $H_{\mathcal{H}} \cong K Q$.

Remark 2.4.24. As an R-bimodule H decomposes as $\bigoplus_{j, i \in Q_{0}} e_{j} H e_{i}$. In this way, we can think of elements in H as ($Q_{0} \times Q_{0}$)-matrices. Multiplication in H is then nothing else but multiplication of these matrices. See Examples 2.4.25 and 2.4.26 for an illustration.

Example 2.4.25. Let Q be the weighted quiver $1 \stackrel{a}{\leftarrow} 2$ with $d_{1}=1, d_{2}=2$ of type B_{2} and let \mathcal{H} be the \mathbb{R}-modulation for Q given by $R_{1}=\mathbb{R}, R_{2}=\mathbb{C}$ and $A_{a}=\mathbb{C}$. Then the path algebra H of Q defined by \mathcal{H} is the matrix algebra $\left(\begin{array}{l}\mathbb{R} \\ 0 \\ \mathbb{C}\end{array}\right)$.

Example 2.4.26. Let \mathcal{H}^{ρ} be one of the K-modulations for the weighted quiver Q of type A_{2} described in Example 2.4.7. The path algebra H^{ρ} of Q defined by \mathcal{H}^{ρ} is $\left(\begin{array}{ll}\mathbb{C} & \mathbb{C}^{\rho} \\ 0\end{array}\right)$.

Example 2.4.27. Let \mathcal{H} be the $G L S$ modulation for Q from Example 2.4.11. As discussed in detail in [GLS16a], the path algebra H of Q defined by \mathcal{H} can be identified with $K Q^{\circlearrowleft} / I(d)$, where Q^{\circlearrowleft} is the quiver obtained from Q by adding a loop ε_{i} at each vertex i, and $I(d)$ is the ideal generated by the relations $\varepsilon_{i}^{d_{i}}=0$ for $i \in Q_{0}$ and $a \varepsilon_{i}^{f_{j i}}=\varepsilon_{j}^{f_{j i}} a$ for $j \stackrel{a}{\leftarrow} i \in Q_{1}$.

Example 2.4.28. As pointed out in [GLS16a], in case $d_{i}=2$ for all vertices $i \in Q_{0}$, the path algebra in Example 2.4.27 is the path algebra of Q over the dual numbers $K[\varepsilon] /\left(\varepsilon^{2}\right)$, which was investigated in [RZ13].

We end this section with a few elementary but useful observations.
Notation 2.4.29. Let $R \xrightarrow{f} R^{\prime}$ be a ring homomorphism and let A^{\prime} be an R^{\prime}-bimodule. Write $f_{*} A^{\prime}$ for A^{\prime} regarded as an R-bimodule with $s x r:=f(s) x f(r)$ for $s, r \in R, x \in f_{*} A^{\prime}$.

Lemma 2.4.30. Every morphism $\mathcal{H} \xrightarrow{f} \mathcal{H}^{\prime}$ of K-modulations for Q induces a K-algebra morphism $R_{\mathcal{H}} \xrightarrow{f} R_{\mathcal{H}^{\prime}}$ between ground rings and an R-bimodule morphism $A_{\mathcal{H}} \xrightarrow{f} f_{*} A_{\mathcal{H}^{\prime}}$.

Proof. This is straightforward.
Corollary 2.4.31. Every morphism $\mathcal{H} \xrightarrow{f} \mathcal{H}^{\prime}$ of K-modulations for Q induces a morphism of R-algebras $H_{\mathcal{H}} \xrightarrow{f} f_{*} H_{\mathcal{H}^{\prime}}$.

Proof. Use Lemmas 2.2.6 and 2.4.30.
Lemma 2.4.32. Let $Q^{\prime} \xrightarrow{f} Q$ be a morphism of weighted quivers with $Q_{0}^{\prime} \xrightarrow{f_{0}} Q_{0}$ injective. Then f induces a non-unital K-algebra morphism $H_{f^{*} \mathcal{H}} \xrightarrow{f_{*}} H_{\mathcal{H}}$. In particular, if f is a morphism of I-quivers, the induced morphism f_{*} is a morphism of (unital) K-algebras.

Proof. Since $Q_{0}^{\prime} \xrightarrow{f_{0}} Q_{0}$ is injective, $R_{f^{*} \mathcal{H}}=\prod_{i^{\prime}}\left(R_{\mathcal{H}}\right)_{f\left(i^{\prime}\right)}$ can be canonically regarded as a non-unital subalgebra of $R_{\mathcal{H}}=\prod_{i}\left(R_{\mathcal{H}}\right)_{i}$. Therefore the identities $\left(A_{f^{*} \mathcal{H}}\right)_{a^{\prime}} \rightarrow\left(A_{\mathcal{H}}\right)_{f\left(a^{\prime}\right)}$ induce an $R_{f^{*} \mathcal{H}}$-bimodule morphism $A_{f^{*} \mathcal{H}} \rightarrow A_{\mathcal{H}}$. Now use Lemma 2.2.6.

2.5 Path Algebras for Modular Quivers

This section is concerned with cyclic Galois modulations, a class of modulations suitable for explicit computations. Introduced by Labardini and Zelevinsky in [LZ16] in the strongly primitive setting, [GL16a] considers cyclic Galois modulations $\left(R_{i}, A_{a}\right)_{i, a}$ in the general situation. The idea is to take for the R_{i} intermediate fields of a cyclic Galois extension L / K. The valid choices for each bimodule A_{a} are then parametrized by a Galois group.

Convention 2.5.1. Fix a weighted quiver Q.

2.5.1 Cyclic Galois Modulations

Definition 2.5.2. A cyclic Galois extension L / K is Q-admissible if $d_{i} \mid[L: K]$ for all i. In this case, denote by L_{i} the intermediate field of L / K with $\left[L_{i}: K\right]=d_{i}$.

Example 2.5.3. An extension $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ of finite fields is Q-admissible if and only if m is divisible by all of the weights d_{i}.

Definition 2.5.4. Let L / K be a Q-admissible cyclic Galois extension. A cyclic Galois modulation over L / K for Q is a minimal K-modulation $\left(R_{i}, A_{a}\right)_{i, a}$ for Q with $R_{i} \cong L_{i}$.

Remark 2.5.5. Cyclic Galois modulations are local, symmetric, and decomposed.
Example 2.5.6. Examples 2.4.7 and 2.4.25 presented cyclic Galois modulations over \mathbb{C} / \mathbb{R}.

2.5.2 Modulation of a Modular Quiver

The data σ^{Q} stored in a modular quiver Q is devised to determine a K-modulation over any Q-admissible cyclic Galois extension L / K with fixed isomorphism $\mathbb{Z} / m \mathbb{Z} \xrightarrow{\cong} \operatorname{Gal}(L / K)$.

Convention 2.5.7. For $\S \S 2.5 .2$ to 2.5 .4 fix a Q-admissible cyclic Galois extension L / K.
Notation 2.5.8. We abbreviate $L_{j i}=L_{j} \cap L_{i}$ and $L^{j i}=L_{j} L_{i}$.
For any intermediate field F of $L_{j i} / K$ and $\rho \in \operatorname{Gal}(F / K)$ denote by ${ }_{j} L_{i}^{\rho}$ the $L_{j} \otimes_{K} L_{i^{-}}$ module $L_{j} \otimes_{\rho} L_{i}$ where the tensor product is taken with respect to $L_{j} \stackrel{\rho}{\leftarrow} F \xrightarrow{\mathrm{id}} L_{i}$.

Remark 2.5.9. It is $\left[L_{j i}: K\right]=d_{j i}$ and $\left[L^{j i}: K\right]=d^{j i}$. If $F=L_{j i}$, then $\operatorname{dim}_{K}\left({ }_{j} L_{i}^{\rho}\right)=d^{j i}$.
Remark 2.5.10. Let $\rho \in \operatorname{Gal}(F / K)$ for some intermediate field F of the extension $L_{j i} / K$. Then $1 \otimes x=\rho(x) \otimes 1 \in{ }_{j} L_{i}^{\rho}$ for all $x \in F$. In particular, ${ }_{j} L_{i}^{\mathrm{id}} L_{j i} \cong L^{j i}$ as $L_{j} \otimes_{K} L_{i}$-module.

Convention 2.5.11. Let $\mathbb{Z} / m \mathbb{Z} \xrightarrow{\alpha} \operatorname{Gal}(L / K)$ be an isomorphism and set $m_{F}=[F: K]$ for every intermediate field F of L / K. We have an isomorphism $\mathbb{Z} / m_{F} \mathbb{Z} \xrightarrow{\alpha_{F}} \operatorname{Gal}(F / K)$ making the following square commute, where the horizontal arrows are the canonical maps:

We use the notation α_{i} for $\alpha_{L_{i}}$ and $\alpha_{j i}$ for $\alpha_{L_{j i}}$ with $i, j \in Q_{0}$.
Definition 2.5.12. Let Q be a modular quiver. The modulation of Q over $(L / K, \alpha)$ is the K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ with $R_{i}=L_{i}$ for all i and $A_{a}={ }_{j} L_{i}^{\alpha_{j i}\left(\sigma_{a}\right)}$ for all $j \stackrel{a}{\leftarrow} i$.

We write a for $1 \otimes 1 \in A_{a}$ when considered as an element in $A_{\mathcal{H}} \subseteq H_{\mathcal{H}}$.
Example 2.5.13. Let Q be the weighted quiver of type A_{2} and \mathcal{H}^{ρ} the modulation for Q from Example 2.4.7, where $\rho \in \operatorname{Gal}(\mathbb{C} / \mathbb{R})$ is complex conjugation. If we turn Q into a
modular quiver with $\sigma_{a}=1$, the modulation of Q over $(\mathbb{C} / \mathbb{R}, \alpha)$ is \mathcal{H}^{ρ}.

The following classical result or, more precisely, its corollary below justifies the slogan "Every cyclic Galois modulation is the modulation of a modular quiver."

Lemma 2.5.14. Let $i, j \in Q_{0}$. For every intermediate field F of the extension $L_{j i} / K$, the algebra $L_{j} \otimes_{F} L_{i}$ is a basic semi-simple algebra. The rule $\rho \mapsto{ }_{j} L_{i}^{\rho}$ establishes a bijection between $\operatorname{Gal}\left(L_{j i} / F\right)$ and the set of isomorphism classes of simple $L_{j} \otimes_{F} L_{i}$-modules.

Proof. The separability of L / K guarantees that the field extension L_{j} / F is generated by a primitive element whose minimal polynomial f over F is separable. It is a classical fact that $\Lambda=L_{j} \otimes_{F} L_{i}$ is semi-simple (see [Kna07, Proposition 2.29]). More precisely, the number n of irreducible factors of f when considered as a polynomial over L_{i} is the number of simple summands of ${ }_{\Lambda} \Lambda$. It only remains to observe that $n=\left[L_{j i}: F\right]$ and that ${ }_{j} L_{i}^{\rho_{1}} \cong{ }_{j} L_{i}^{\rho_{2}}$ if and only if $\rho_{1}=\rho_{2}$.

Remark 2.5.15. The semi-simplicity of $\Lambda=L_{j} \otimes_{F} L_{i}$ is also a consequence of the following two facts: On the one hand, Λ is finite-dimensional, so its reduction $\Lambda / \operatorname{rad}(\Lambda)$ is semi-simple. On the other hand, Λ is reduced because of the separability of L_{j} / F.

Example 2.5.16. For the cyclic Galois extension \mathbb{C} / \mathbb{R} Lemma 2.5 .14 yields the decomposition $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}^{\rho}$ (compare Example 2.4.7).

Corollary 2.5.17. Let $\mathcal{H}=\left(L_{i}, A_{a}\right)_{i, a}$ be a cyclic Galois modulation. For all $j \stackrel{a}{\leftarrow} i \in Q_{1}$ there exists $\rho_{a} \in \operatorname{Gal}\left(L_{j i} / K\right)$ such that $A_{a} \cong{ }_{j} L_{i}^{\rho_{a}}$ as $L_{j} \otimes_{K} L_{i}$-modules.

Proof. Apply Lemma 2.5.14 with $F=K$.

2.5.3 Isotypical Components

Let $R=\prod_{i \in Q_{0}} L_{i}$. From Lemma 2.5.14 we know that the category of R-bimodules over K is semi-simple with simple objects ${ }_{j} L_{i}^{\rho}$ parametrized by $i, j \in Q_{0}$ and $\rho \in \operatorname{Gal}\left(L_{j i} / K\right)$. This subsection introduces notation for isotypical components and investigates how the tensor product of R-bimodules over K decomposes into simples.

Notation 2.5.18. For $L_{j} \otimes_{K} L_{i}$-modules M denote by M^{ρ} their ${ }_{j} L_{i}^{\rho}$-isotypical component and by $\pi_{\rho}: M \rightarrow M$ the idempotent corresponding to the canonical projection onto M^{ρ}. We have a decomposition

$$
M=\bigoplus_{\rho \in \operatorname{Gal}\left(L_{j i} / K\right)} M^{\rho} .
$$

We refer to M^{ρ} as the ρ-isotypical component of M. If the module M has finite length, let $\left[M:{ }_{j} L_{i}^{\rho}\right]$ denote the Jordan-Hölder multiplicity of ${ }_{j} L_{i}^{\rho}$ in M.

More generally, for intermediate fields F of $L_{j i} / K$ and $\gamma \in \operatorname{Gal}(F / K)$ let $G_{j i}^{\gamma}$ be the coset of $\operatorname{Gal}\left(L_{j i} / K\right)$ consisting of all ρ such that $\left.\rho\right|_{F}=\gamma$. The submodule

$$
M^{\gamma}=\bigoplus_{\rho \in G_{j i}^{\gamma}} M^{\rho}
$$

is called the γ-isotypical component of M. Set $\pi_{\gamma}:=\sum_{\rho \in G_{j i}^{\gamma}} \pi_{\rho}$.
Remark 2.5.19. The notation $\left[L^{j i}: L^{j i}\right]$ is unambiguous. It represents the integer one, no matter if it is interpreted as Jordan-Hölder multiplicity or as degree of a field extension.

Remark 2.5.20. The γ-isotypical component M^{γ} can be characterized as

$$
M^{\gamma}=\{x \in M \mid x u=\gamma(u) x \text { for all } u \in F\}
$$

We can now formulate the following corollary of Lemma 2.5.14. See [GL16a, Lemma 2.14].
Corollary 2.5.21. Let $i, j \in Q_{0}$. For every intermediate field F of the extension $L_{j i} / K$ and every $\gamma \in \operatorname{Gal}(F / K)$ it is $\left[{ }_{j} L_{i}^{\gamma}:{ }_{j} L_{i}^{\rho}\right]=\delta_{\rho \in G_{j i}^{\gamma}}$.

Proof. Equation (\star) shows that there is a non-zero $L_{j} \otimes_{K} L_{i}$-module morphism ${ }_{j} L_{i}^{\gamma} \rightarrow{ }_{j} L_{i}^{\rho}$ defined by $1 \otimes 1 \mapsto 1 \otimes 1$ for all $\rho \in G_{j i}^{\gamma}$, so $\left[{ }_{j} L_{i}^{\gamma}:{ }_{j} L_{i}^{\rho}\right]>0$. The corollary now follows from the fact that $\bigoplus_{\rho \in G_{j i}^{\gamma}} L_{i}^{\rho}$ and ${ }_{j} L_{i}^{\gamma}$ have the same dimension.

For elements $\nu \in \operatorname{Gal}\left(L_{k j} / K\right)$ and $\mu \in \operatorname{Gal}\left(L_{j i} / K\right)$ the composition $\nu \mu$ is well-defined on the intersection $L_{k j} \cap L_{j i}$ and will be considered as an element in $\operatorname{Gal}\left(L_{k j} \cap L_{j i} / K\right)$.

The following result is standard. It can be found as Proposition 2.12 in [GL16a].
Lemma 2.5.22. Let $i, j, k \in Q_{0}$. For every $\nu \in \operatorname{Gal}\left(L_{k j} / K\right)$ and $\mu \in \operatorname{Gal}\left(L_{j i} / K\right)$, it is

$$
\left[{ }_{k} L_{j}^{\nu} \otimes_{L_{j} j} L_{i}^{\mu}:{ }_{k} L_{i}^{\rho}\right]= \begin{cases}{\left[L_{j}: L_{k j} L_{j i}\right]} & \text { if } \rho \in G_{k i}^{\nu \mu} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $M={ }_{k} L_{i}^{\nu \mu}=L_{k} \otimes_{\nu \mu} L_{i}$ and $N=L_{k} \otimes_{\nu} L_{j} \otimes_{\mu} L_{i}$. Then $N \cong{ }_{k} L_{j}^{\nu} \otimes_{L_{j} j} L_{i}^{\mu}$. Choose a basis B of L_{j} over $L_{k j} L_{j i}$. Let $f=\left(f_{b}\right)_{b \in B}$ be the morphism $\bigoplus_{b \in B} M \rightarrow N$ of $L_{k} \otimes_{K} L_{i}$-modules where f_{b} is defined by $1 \otimes 1 \mapsto 1 \otimes b \otimes 1$. Then f is an isomorphism, since it is surjective by the choice of B and $|B| \cdot \operatorname{dim}_{K} M=\frac{d_{k j i} d_{j}}{d_{k j} d_{j i}} \cdot \frac{d_{k} d_{i}}{d_{k j i}}=\frac{d^{k j} d^{j i}}{d_{j}}=\operatorname{dim}_{K} N$. Now use $|B|=\left[L_{j}: L_{k j} L_{j i}\right]$ and $\left[M:{ }_{k} L_{i}^{\rho}\right]=\delta_{\rho \in G_{k i}^{\nu \mu}}$ by Corollary 2.5.21.

Remark 2.5.23. The integers $q_{k j i}=d_{k j i} d_{j} /\left(d_{k j} d_{j i}\right)$ and $r_{k j i}=d_{k i} / d_{k j i}$ from Definition 2.1.8 are the degree $\left[L_{j}: L_{k j} L_{j i}\right]$ and the cardinality $\left|G_{k i}^{\nu \mu}\right|=\left[L_{k i}: L_{k j} \cap L_{j i}\right]$.

Remark 2.5.24. The length of ${ }_{k} L_{j}^{\nu} \otimes_{L_{j} j} L_{i}^{\mu}$ is $\left|G_{k i}^{\nu \mu}\right| \cdot\left[L_{j}: L_{k j} L_{j i}\right]=d_{k i} d_{j} /\left(d_{k j} d_{j i}\right)$.

2.5.4 Dual, Double, and Premutation

Lemma 2.5.25. Let \mathcal{H} be the modulation of a modular quiver Q over $(L / K, \alpha)$. Then $\overline{\mathcal{H}}$ and \mathcal{H}^{*} are isomorphic to the modulations of \bar{Q} and Q^{*}, respectively, over $(L / K, \alpha)$.

Proof. Given Definitions 2.1.12, 2.4.16 and 2.5.12, all we have to show is $\left({ }_{j} L_{i}^{\rho}\right)^{*} \cong{ }_{j} L_{i}^{\rho^{-1}}$. This readily follows from (\star).

Notation 2.5.26. Given an R-bimodule $A=\bigoplus_{i, k \in Q_{0}}{ }_{k} A_{i}$, the premutation of A at $j \in Q_{0}$ is defined in [DWZ08, (5.3)] as the R-bimodule $A^{\sim j}=\bigoplus_{i, k \in Q_{0}}\left(A^{\sim j}\right)_{i}$ with

$$
{ }_{k}\left(A^{\sim j}\right)_{i}= \begin{cases}\left({ }_{k} A_{i}\right)^{*} & \text { if } j \in\{i, k\} \\ { }_{k} A_{i} \oplus\left({ }_{k} A_{j} \otimes_{R_{j} j} A_{i}\right) & \text { otherwise }\end{cases}
$$

Lemma 2.5.27. Let j be a 2 -acyclic vertex in a modular quiver Q. Denote by \mathcal{H} and $\mathcal{H}^{\sim j}$ the modulations of Q and $Q^{\sim j}$ over $(L / K, \alpha)$, respectively. Then $A_{\mathcal{H}^{\sim j}} \cong A_{\mathcal{H}}^{\sim j}$.

Proof. Inspecting how $Q^{\sim j}$ and $\mathcal{H}^{\sim j}$ are defined (see Definitions 2.1.12 and 2.5.12), this is an immediate consequence of $\left({ }_{k} L_{i}^{\rho}\right)^{*} \cong{ }_{k} L_{i}^{\rho^{-1}}$ and Lemma 2.5.22.

2.5.5 Comfy Modulations

The modulations considered in Chapters 5 and 6 are slightly less general than cyclic Galois modulations. Below we define the kind of modulations that will be used in those chapters. We also give explicit formulas for the projections π_{ρ} for such modulations.

Convention 2.5.28. Fix a cyclic Galois extension L / K.
Remark 2.5.29. Assume that K contains a primitive m-th root ζ of unity for $m=[L: K]$. As a classical consequence of Hilbert's Satz 90 (see [Bou81, V. $\S 11$ no. 6]) the extension L / K
 Then we have an isomorphism $\mathbb{Z} / m \mathbb{Z} \xrightarrow{\alpha_{\zeta, v}} \operatorname{Gal}(L / K)$ defined by $1 \mapsto(v \mapsto \zeta v)$.

Definition 2.5.30. A com(putation)f(riendl)y extension is a triple ($L / K, \zeta, v$) consisting of a cyclic Galois extension L / K, a primitive $[L: K]$-th root of unity $\zeta \in K$, and a primitive element $v \in L$ for the extension L / K such that $v^{[L: K]} \in K$.

Remark 2.5.31. Every cyclic Galois extension L / K where K contains a primitive [$L: K$]-th root of unity is part of a comfy extension due to Remark 2.5.29.

Remark 2.5.32. The existence of a primitive m-th root of unity in K implies $\operatorname{char}(K) \nmid m$.
Example 2.5.33. The triples $(\mathbb{C} / \mathbb{R},-1, v)$ where $v \in \mathbb{C}$ is any non-zero imaginary number are comfy extensions.

Example 2.5.34. Let $q=p^{s}$ be a prime power and $m \in \mathbb{N}_{+}$divisible by all of the weights d_{i}. Then $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is a Q-admissible cyclic Galois extension (see Example 2.5.3). By Dirichlet's theorem on arithmetic progressions there are, for each fixed m, infinitely many choices for p such that $m \mid p-1$. For such a choice, the field \mathbb{F}_{p} contains a primitive m-th root of unity and Remark 2.5.29 allows us to find a comfy extension $\left(\mathbb{F}_{q^{m}} / \mathbb{F}_{q}, \zeta, v\right)$.

Example 2.5.35. Let m be as in Example 2.5.34 and let ζ be a primitive m-th root of unity in the algebraic closure of K. Denote by $F\left(t^{m}\right)$ the function field in t^{m} over $F=K(\zeta)$. Then $\left(F(t) / F\left(t^{m}\right), \zeta, t\right)$ is a comfy extension.

Convention 2.5.36. Fix a comfy extension $(L / K, \zeta, v)$ such that L / K is Q-admissible.
Definition 2.5.37. Let Q be a modular quiver. The modulation of Q over $(L / K, \zeta, v)$ is the modulation of Q over $\left(L / K, \alpha_{\zeta, v}\right)$.
Notation 2.5.38. For intermediate fields F of L / K let $m_{F}:=[F: K]$ and $m^{F}:=[L: F]$. Set $\zeta^{F}:=\zeta^{m_{F}}$ and $\zeta_{F}:=\zeta^{m^{F}}$ and $v_{F}:=v^{m^{F}}$.

We abbreviate $\zeta_{L_{i}}$ as ζ_{i} and $v_{L_{i}}$ as v_{i} for $i \in Q_{0}$ and $\zeta_{L_{j i}}$ as ζ_{a} for $j \stackrel{a}{\leftarrow} i \in Q_{1}$.
Remark 2.5.39. The triples $\left(F / K, \zeta_{F}, v_{F}\right)$ and $\left(L / F, \zeta^{F}, v\right)$ are again comfy extensions.
The statement of the next lemma partially appears in [GL16a, Proposition 2.15].
Lemma 2.5.40. Let M be an $L_{j} \otimes_{K} L_{i}$-module for some $i, j \in Q_{0}$. For every intermediate field F of $L_{j i} / K$ and every $\rho \in \operatorname{Gal}(F / K)$ we can write $\rho=\alpha_{\zeta_{F}, v_{F}}(r)$ for some $r \in \mathbb{Z}$. Then we have $\rho\left(v_{F}^{s}\right)=\zeta_{F}^{r s} v_{F}^{s}$ for all $s \in \mathbb{Z}$ and the projection π_{ρ} acts on $x \in M$ as

$$
\pi_{\rho}(x)=\frac{1}{m_{F}} \sum_{s=0}^{m_{F}-1} \rho\left(v_{F}^{s}\right) x v_{F}^{-s} .
$$

Proof. Clearly, $\rho=\alpha_{\zeta_{F}, v_{F}}(r)$ for some $r \in \mathbb{Z}$ and $\rho\left(v_{F}^{s}\right)=\zeta_{F}^{r s} v_{F}^{s}$ for all $s \in \mathbb{Z}$, since $\alpha_{\zeta_{F}, v_{F}}$ is the isomorphism $\mathbb{Z} / m_{F} \mathbb{Z} \xrightarrow{\cong} \operatorname{Gal}(F / K)$ given by $1 \mapsto\left(v_{F} \mapsto \zeta_{F} v_{F}\right)$. Now let $\pi_{\rho}^{\prime}(x)$ be the right-hand side of the equation in the lemma. It is a straightforward exercise to verify $\pi_{\rho}^{\prime}(x) v_{F}=\rho\left(v_{F}\right) \pi_{\rho}^{\prime}(x)$. Equation (\star) then implies $\pi_{\rho}^{\prime}(M) \subseteq M^{\rho}$ because v_{F} is a primitive element for F / K. The identities $\sum_{r=0}^{m_{F}-1} \zeta_{F}^{r s}=\delta_{s=0} m_{F}$ for $0 \leq s<m_{F}$ easily yield $\sum_{\rho \in \operatorname{Gal}(F / K)} \pi_{\rho}^{\prime}(x)=x$. All in all, we can conclude $\pi_{\rho}^{\prime}(x)=\pi_{\rho}(x)$.

Example 2.5.41. Write $\operatorname{Gal}(\mathbb{C} / \mathbb{R})=\{\mathrm{id}, \rho\}$. Then we have $\pi_{\mathrm{id}}(x)=\frac{1}{2}\left(x+v x v^{-1}\right)$ and $\pi_{\rho}(x)=\frac{1}{2}\left(x-v x v^{-1}\right)$ for every comfy extension $(\mathbb{C} / \mathbb{R},-1, v)$.

Example 2.5.42. Set $w:=v^{m_{L}}$ such that $\varepsilon^{m_{L}}-w \in K[\varepsilon]$ is the minimal polynomial of v over K. Let $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ be the modulation of a modular quiver Q over $(L / K, \zeta, v)$.
Then $R_{i} \cong K\left[\varepsilon_{i}\right] /\left(\varepsilon_{i}^{d_{i}}-w\right)$ and $A_{a} \cong K\left[\varepsilon_{j}, \varepsilon_{i}\right] /\left(\zeta_{a}^{\sigma_{a}} \varepsilon_{j}^{f_{j i}}-\varepsilon_{i}^{f_{j i}}, \varepsilon_{j}^{d_{j}}-w, \varepsilon_{i}^{d_{i}}-w\right)$ for $j \stackrel{a}{\leftarrow} i$.
Similarly as for the GLS modulation in Example 2.4.27, the path algebra $H_{\mathcal{H}}$ can be identified with the path algebra $K Q^{\circlearrowleft}$ modulo an ideal $I(d, \sigma)$, which is in this case
generated by the relations $\varepsilon_{i}^{d_{i}}=w$ for $i \in Q_{0}$ and $a \varepsilon_{i}^{f_{j i}}=\zeta_{a}^{\sigma_{a}} \varepsilon_{j}^{f_{i j}} a$ for $j \stackrel{a}{\leftarrow} i \in Q_{1}$.

2.5.6 Comfy vs. GLS Modulations

Examples 2.4.27 and 2.5.42 revealed the striking similarities between comfy modulations and the modulations considered in [GLS16a]. In this subsection we sketch how this resemblance could be formalized and give a small example.

Convention 2.5.43. Fix a field K and a quiver Q and denote by \widetilde{K} the quotient of the polynomial ring $K\left[w, \lambda_{a}: a \in Q_{1}\right]$ by the ideal $\left(\lambda_{a}^{d_{j i}}-1: j \stackrel{a}{\leftarrow} i \in Q_{1}\right)$.

Definition 2.5.44. Let Q be a weighted quiver. Then the family $\widetilde{\mathcal{H}}=\left(\widetilde{R}_{i}, \widetilde{A}_{a}\right)_{i, a}$ is called the universal comfy modulation of Q where $\widetilde{R}_{i}=\widetilde{K}\left[\varepsilon_{i}\right] /\left(\varepsilon_{i}^{d_{i}}-w\right)$ are indexed by $i \in Q_{0}$ and $\widetilde{A}_{a}=\widetilde{K}\left[\varepsilon_{j}, \varepsilon_{i}\right] /\left(\lambda_{a} \varepsilon_{j}^{f_{i j}}-\varepsilon_{i}^{f_{j i}}, \varepsilon_{j}^{d_{j}}-w, \varepsilon_{i}^{d_{i}}-w\right)$ are indexed by $j \stackrel{a}{\leftarrow} i \in Q_{1}$.
Remark 2.5.45. The universal comfy modulation $\widetilde{\mathcal{H}}$ is a " \widetilde{K}-modulation for Q " in the sense that (a) \widetilde{R}_{i} is free of rank d_{i} over \widetilde{K} for all $i \in Q_{0}$, and (b) $\widetilde{R}_{j}\left(\widetilde{A}_{a}\right)$ and $\left(\widetilde{A}_{a}\right)_{\widetilde{R}_{i}}$ are free of rank $f_{j i}$ and $f_{i j}$, respectively, for all $j \stackrel{a}{\leftarrow} i \in Q_{1}$. Compare Definition 2.4.2.

Notation 2.5.46. The path algebra \widetilde{H} of $\widetilde{\mathcal{H}}$ is the tensor algebra $\widetilde{R}\langle\widetilde{A}\rangle$ of $\widetilde{A}=\bigoplus_{a \in Q_{1}} \widetilde{A}_{a}$ over $\widetilde{R}=\prod_{i \in Q_{0}} \widetilde{R}_{i}$. We write a for $1 \in \widetilde{A}_{a}$ when considered as an element in $\widetilde{A} \subseteq \widetilde{H}$.
Remark 2.5.47. The path algebra $\widetilde{H}=\widetilde{R}\langle\widetilde{A}\rangle$ can be identified with the path-algebra quotient $\widetilde{K} Q^{\circlearrowleft} / \widetilde{I}(d)$ where Q^{\circlearrowleft} is the quiver defined in Example 2.4.27 and $\widetilde{I}(d)$ is the ideal generated by the relations $\varepsilon_{i}^{d_{i}}=w$ for $i \in Q_{0}$ and $a \varepsilon_{i}^{f_{j i}}=\lambda_{a} \varepsilon_{j}^{f_{i j}} a$ for $j \stackrel{a}{\leftarrow} i \in Q_{1}$.

Remark 2.5.48. For the GLS modulation \mathcal{H} for Q described in Examples 2.4.11 and 2.4.27 we have as K-algebras $H_{\mathcal{H}} \cong \widetilde{K}_{0,1} \otimes_{\widetilde{K}} \widetilde{H}$ with $\widetilde{K}_{0,1}=\widetilde{K} /\left(w, \lambda_{a}-1: a \in Q_{1}\right) \cong K$.

Here \mathcal{H} arises from $\widetilde{\mathcal{H}}$ by specializing $w \rightarrow 0$ and $\lambda_{a} \rightarrow 1$.
Remark 2.5.49. For the modulation \mathcal{H} of a modular quiver Q over $(L / K, \zeta, v)$ we have as K-algebras $H_{\mathcal{H}} \cong \widetilde{K}_{v[L: K], \sigma} \otimes_{\widetilde{K}} \widetilde{H}$ with $\widetilde{K}_{v[L: K], \sigma}=\widetilde{K} /\left(w-v^{[L: K]}, \lambda_{a}-\zeta_{a}^{\sigma_{a}}: a \in Q_{1}\right) \cong K$.

Now \mathcal{H} arises from $\widetilde{\mathcal{H}}$ by specializing $w \rightarrow v^{[L: K]}$ and $\lambda_{a} \rightarrow \zeta_{a}^{\sigma_{a}}$.
For the next example we formalize the definition of the (unweighted) quiver Q^{0} :
Definition 2.5.50. The loop extension of a weighted quiver Q is the Q_{0}-quiver Q^{\circlearrowleft} with

$$
Q_{1}^{\circlearrowleft}=Q_{1} \cup \dot{\cup}\left\{i \stackrel{\varepsilon_{i}}{\leftarrow} i \mid i \in Q_{0}\right\}
$$

Example 2.5.51. Let Q be the modular quiver $1 \stackrel{a}{\leftarrow} 2$ of type A_{2} with $d_{1}=d_{2}=2$ and $\sigma_{a}=1 \in \mathbb{Z} / 2 \mathbb{Z}$, which already appeared in Example 2.5.13. Then Q^{\circlearrowleft} is the quiver

Let I be the ideal of $\mathbb{R} Q^{\circlearrowleft}$ generated by the relations $\varepsilon_{1}^{2}=w, \varepsilon_{2}^{2}=w, a \varepsilon_{2}=\lambda_{a} \varepsilon_{1} a$ for some fixed $w, \lambda_{a} \in K$. For the choice $w=-1$ and $\lambda_{a}=(-1)^{\sigma_{a}}=-1$ the quotient $\mathbb{R} Q^{\circlearrowleft} / I$ is the path algebra of the cyclic Galois modulation \mathcal{H}^{ρ} from Example 2.5.13, whereas the choice $w=0$ and $\lambda_{a}=1$ gives rise to the path algebra of the GLS modulation.

2.5.7 Path-Algebra Bases

Below we describe a \widetilde{K}-basis for the path algebra of the universal comfy modulation and related K-bases for the path algebras of GLS and comfy modulations. These bases are useful for explicit computations with path-algebra elements.

Definition 2.5.52. A path $\varepsilon_{i_{\ell}}^{q_{\ell}} a_{\ell} \cdots \varepsilon_{i_{1}}^{q_{1}} a_{1} \cdot \varepsilon_{i_{0}}^{q_{0}}$ in Q^{\circlearrowleft} with $a_{1}, \ldots, a_{\ell} \in Q_{1}$ and $q_{0}, \ldots, q_{\ell} \in \mathbb{N}$ is said to be d-reduced if $q_{s}<d_{i_{s}}$ for all $0 \leq s \leq \ell$. By convention $\varepsilon_{i}^{0}=e_{i}$ for all $i \in Q_{0}$.
Let \sim be the equivalence relation on the set of paths in Q^{\circlearrowleft} generated by

$$
\varepsilon_{i_{\ell}}^{q_{\ell}} a_{\ell} \cdots \varepsilon_{i_{1}}^{q_{1}} a_{1} \cdot \varepsilon_{i_{0}}^{q_{0}} \sim \varepsilon_{i_{\ell}}^{q_{\ell}^{\prime}} a_{\ell} \cdots \varepsilon_{i_{1}}^{q_{1}^{\prime}} a_{1} \cdot \varepsilon_{i_{0}}^{q_{0}^{\prime}}
$$

whenever $i_{\ell} \stackrel{a_{\ell}}{\leftarrow} \cdots \stackrel{a_{1}}{\leftarrow} i_{0}$ is a path in Q and there exist $0<t \leq \ell$ and $q_{0}, q_{0}^{\prime}, \ldots, q_{\ell}, q_{\ell}^{\prime} \in \mathbb{N}$ with $q_{s}=q_{s}^{\prime}$ for all $s \in\{0, \ldots, \ell\} \backslash\{t-1, t\}$ and $q_{t}-q_{t}^{\prime}=f_{i_{t-1} i_{t}}$ and $q_{t-1}^{\prime}-q_{t-1}=f_{i_{t} i_{t-1}}$.

A Q-tensor class is an equivalence class of \sim that contains only d-reduced paths.
The representative $\varepsilon_{i_{\ell}}^{q_{\ell}} a_{\ell} \cdots \varepsilon_{i_{1}}^{q_{1}} a_{1} \cdot \varepsilon_{i_{0}}^{q_{0}}$ of a Q-tensor class that minimizes $\left(q_{\ell}, \ldots, q_{0}\right)$ with respect to the lexicographical order on $\mathbb{N}^{\ell+1}$ is called a Q-tensor path of type $a_{\ell} \cdots a_{1}$. For each vertex $i \in Q_{0}$ we have Q-tensor paths $e_{i}=\varepsilon_{i}^{0}, \varepsilon_{i}^{1}, \ldots, \varepsilon_{i}^{d_{i}-1}$ of type e_{i}.

Denote by $\mathcal{T}_{Q}(p)$ the set of Q-tensor paths of type p. Set $\mathcal{T}_{Q}=\dot{\bigcup}_{p \text { path in } Q} \mathcal{T}_{Q}(p)$.
Example 2.5.53. For the weighted quiver Q from Example 2.5 .51 we have $\mathcal{T}_{Q}(a)=\left\{a, a \varepsilon_{2}\right\}$. The element $\varepsilon_{1} a$ represents the same Q-tensor class as $a \varepsilon_{2}$ but is itself not a Q-tensor path. The path $\varepsilon_{2} a \varepsilon_{1} \sim a \varepsilon_{1}^{2}$ in Q^{\circlearrowleft} does not define a Q-tensor class.
Lemma 2.5.54. $\left|\mathcal{T}_{Q}\left(i_{\ell} \stackrel{a_{\ell}}{\leftarrow} \cdots \stackrel{a_{1}}{\leftarrow} i_{0}\right)\right|=d_{i_{0}} \cdot \prod_{s=1}^{\ell} f_{i_{s-1} i_{s}}=\prod_{s=0}^{\ell} d_{i_{s}} / \prod_{s=1}^{\ell} d_{i_{s-1} i_{s}}$.
Proof. Clearly, $\left|\mathcal{T}_{Q}\left(e_{i}\right)\right|=d_{i}$. Assume $\left|\mathcal{T}_{Q}\left(a_{\ell-1} \cdots a_{1}\right)\right|=f_{i_{\ell-2} i_{\ell-1}} \cdots f_{i_{0} i_{1}} \cdot d_{i_{0}}$ by induction and note $\mathcal{T}_{Q}\left(a_{\ell-1} \cdots a_{1}\right) \times\left\{0, \ldots, f_{i_{\ell-1} i_{\ell}}-1\right\} \xrightarrow{\cong} \mathcal{T}_{Q}\left(a_{\ell} \cdots a_{1}\right)$ via $(p, q) \mapsto \varepsilon_{i_{\ell}}^{q} a_{\ell} p$.
Lemma 2.5.55. The path algebra \widetilde{H} of the universal comfy modulation of Q is free over \widetilde{K}. A \widetilde{K}-basis is given by the image of the map $\mathcal{T}_{Q} \rightarrow \widetilde{H}$ defined as

$$
\varepsilon_{i_{\ell}}^{q_{\ell}} a_{\ell} \cdots \varepsilon_{i_{1}}^{q_{1}} a_{1} \cdot \varepsilon_{i_{0}}^{q_{0}} \mapsto \varepsilon_{i_{\ell}}^{q_{\ell}} a_{\ell} \cdots \varepsilon_{i_{1}}^{q_{1}} a_{1} \cdot \varepsilon_{i_{0}}^{q_{0}} .
$$

Proof. This is a consequence of the definitions of $\widetilde{H}=\widetilde{R}\langle\widetilde{A}\rangle$ and \mathcal{T}_{Q}.
Remark 2.5.56. The \widetilde{K}-basis of \widetilde{H} described in Lemma 2.5 .55 "specializes" under each of the isomorphisms in Remarks 2.5 .48 and 2.5.49 to a K-basis of $H_{\mathcal{H}}$. The elements of these K-bases have the form $\varepsilon_{i_{\ell}}^{q_{\ell}} a_{\ell} \cdots \varepsilon_{i_{1}}^{q_{1}} a_{1} \cdot \varepsilon_{i_{0}}^{q_{0}}$ and $v_{i_{\ell}}^{q_{\ell}} a_{\ell} \cdots v_{i_{1}}^{q_{1}} a_{1} \cdot v_{i_{0}}^{q_{0}}$, respectively.

2.6 Jacobian Algebras and Potentials

We recollect some basics about topological rings equipped with the \mathfrak{m}-adic topology and discuss completed tensor algebras. After that, Jacobian algebras $\mathcal{J}(W)$ are introduced for arbitrary completed tensor algebras by a minor modification of [DWZ08, Definition 3.1]. For potentials we define R-equivalence and the weaker notion of I-equivalence, which both specialize to Derksen, Weyman, and Zelevinsky's right-equivalence.

The last two subsections contain the results from [GL16a, $\S \S 3$ and 10.1-2]. Namely, we prove that the so-called Splitting Theorem remains true for cyclic Galois modulations. Finally, premutation of potentials will be described for comfy modulations.

2.6.1 Topological Rings

Definition 2.6.1. An adic ring is a topological ring H together with an ideal \mathfrak{m}_{H} of H where H carries the \mathfrak{m}_{H}-adic topology, i.e. each point $z \in H$ has $\left\{z+\mathfrak{m}_{H}^{n} \mid n \in \mathbb{N}\right\}$ as a fundamental system of open neighborhoods.

The order of an element z in an adic ring H is $\operatorname{ord}_{H}(z):=\min \left\{n \in \mathbb{N} \mid z \notin \mathfrak{m}_{H}^{n+1}\right\}$ with the convention $\min \varnothing=\infty$. If confusion seems unlikely, we write ord instead of ord_{H}.
A morphism $H \xrightarrow{f} H^{\prime}$ of adic rings is a continuous ring homomorphism $H \xrightarrow{f} H^{\prime}$.
The completion of an adic ring H is the adic ring $\widehat{H}=\varliminf_{\mathcal{l i m}} H / \mathfrak{m}_{H}^{n}$ with $\mathfrak{m}_{\widehat{H}}=\widehat{H} \mathfrak{m}_{H} \widehat{H}$. A complete ring is an adic ring H for which the canonical map $H \xrightarrow{\iota} \widehat{H}$ is an isomorphism.

We collect some elementary facts about adic and complete rings in the next lemma.
Lemma 2.6.2. Let H be an adic ring.
(a) For every $X \subseteq H$ its closure is $\bigcap_{n \in \mathbb{N}}\left(X+\mathfrak{m}_{H}^{n}\right)$. In particular, \mathfrak{m}_{H}^{n} is closed for all n.
(b) The map $H \times H \xrightarrow{\operatorname{dist}_{H}} \mathbb{R},\left(z, z^{\prime}\right) \mapsto \exp \left(-\operatorname{ord}_{H}\left(z-z^{\prime}\right)\right)$, where $\exp (-\infty):=0$, defines a pseudometric on H. The topology induced by dist_{H} is the topology of H.
(c) A sequence $\left(x_{m}\right)_{m \in \mathbb{N}}$ in H is a Cauchy sequence with respect to dist $_{H}$ if and only for all $n \in \mathbb{N}$ there is $k \in \mathbb{N}$ such that $x_{m+1}-x_{m} \in \mathfrak{m}_{H}^{n}$ for all $m \geq k$.
(d) H is Hausdorff if and only if dist $_{H}$ is a metric if and only if $\bigcap_{n \in \mathbb{N}} \mathfrak{m}_{H}^{n}=0$.
(e) H is a complete ring if and only if dist_{H} is a complete metric.
(f) A ring homomorphism $H \xrightarrow{f} H^{\prime}$ between two adic rings is (sequentially) continuous if and only if there exists $n \in \mathbb{N}$ such that $f\left(\mathfrak{m}_{H}^{n}\right) \subseteq \mathfrak{m}_{H^{\prime}}$.
(g) If H is a complete ring, then $\mathfrak{m}_{H} \subseteq \operatorname{rad}(H)$ or, equivalently, $1+\mathfrak{m}_{H} \subseteq H^{\times}$.

Proof. Statements (a)-(f) are well-known and straightforwardly verified. For a proof of (g) see [Lam91, (21.30)].

Example 2.6.3. Let $H=K[x]$ be the polynomial ring viewed as adic ring with $\mathfrak{m}_{H}=(x)$. The order of $p=\sum_{n} p_{n} x^{n} \in H$ with $p_{n} \in K$ is $\operatorname{ord}_{H}(p)=\min \left\{n \in \mathbb{N} \mid p_{n} \neq 0\right\}$.

Example 2.6.4. The adic ring H in Example 2.6.3 is not complete. The sequence $\left(x^{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to dist H_{H} that does not converge in H. However, in the completion \widehat{H} one has $\lim _{n \rightarrow \infty} x^{n}=0$. There is a canonical isomorphism $K[[x]] \xrightarrow{\cong} \widehat{H}$.
Lemma 2.6.5. Let H be an adic ring. If H is Hausdorff, the canonical map $H \xrightarrow{\iota} \widehat{H}$ is a topological embedding with dense image.

Proof. See [War93, Corollary 5.22].

2.6.2 Completed Path Algebras

Definition 2.6.6. Let A be an R-bimodule over K. The completed tensor algebra of A is the R-algebra $R\langle\langle A\rangle\rangle$ over K whose underlying R-bimodule is

$$
R\langle\langle A\rangle\rangle=\prod_{n \in \mathbb{N}} A^{\otimes n}
$$

The product $x y=\sum_{n}(x y)_{n} \in R\langle\langle A\rangle\rangle$ of $x=\sum_{n} x_{n}, y=\sum_{n} y_{n} \in R\langle\langle A\rangle\rangle$ is defined by

$$
(x y)_{n}=\sum_{k=0}^{n} x_{k} \otimes y_{n-k}
$$

If $R=R_{\mathcal{H}}, A=A_{\mathcal{H}}$ for a K-modulation \mathcal{H} of a weighted quiver Q, we call $\widehat{H}_{\mathcal{H}}=R\langle\langle A\rangle\rangle$ the completed path algebra of Q defined by \mathcal{H}.

Notation 2.6.7. For maps $M \xrightarrow{f} R\langle\langle A\rangle\rangle$ set $f_{(n)}:=\operatorname{pr}_{n} \circ f$ and $f_{\geq n}:=\operatorname{pr}_{\geq n} \circ f$ where pr_{n} and $\mathrm{pr}_{\geq n}$ are the projections $R\langle\langle A\rangle\rangle \rightarrow A^{\otimes n}$ and $R\langle\langle A\rangle\rangle \rightarrow \prod_{k \geq n} A^{\otimes k}$ of R-bimodules.

Convention 2.6.8. Fix a finite-dimensional R-bimodule A over K.
Abbreviate $H=R\langle A\rangle$ and $\widehat{H}=R\langle\langle A\rangle\rangle$. The tensor algebra H and the completed tensor algebra \widehat{H} are regarded as adic rings, where \mathfrak{m}_{H} and $\mathfrak{m}_{\widehat{H}}$ are the ideals generated by A.

Remark 2.6.9. Explicitly, $\mathfrak{m}_{H}=\bigoplus_{n \in \mathbb{N}_{+}} A^{\otimes n}$ and $\mathfrak{m}_{\widehat{H}}=\prod_{n \in \mathbb{N}_{+}} A^{\otimes n}$. For each $n \in \mathbb{N}$ there is a commuting square of canonical maps:

We get an induced map $H \stackrel{\iota}{\hookrightarrow} \widehat{H} \cong \lim _{\leftrightarrows} H / \mathfrak{m}_{H}^{n}$ and realize that \widehat{H} is the completion of H. It is clear that \widehat{H} is a complete ring. Since H is Hausdorff, Lemma 2.6.5 (a) applies.

Universal property of tensor algebra (see Lemma 2.2.6) and completion (inverse limit) combine to the following universal property of the completed tensor algebra.

Lemma 2.6.10. Let Λ be a complete R-algebra and $A \xrightarrow{f} \Lambda$ a map of R-bimodules such that the induced $\operatorname{map} R\langle A\rangle \xrightarrow{\hat{f}} \Lambda$ is continuous, i.e. $\hat{f}\left(A^{\otimes n}\right) \subseteq \mathfrak{m}_{\Lambda}$ for some n. Then there exists a unique morphism \tilde{f} of adic R-algebras making the following diagram commute:

Here κ_{A} denotes the canonical inclusion $A \hookrightarrow R\langle\langle A\rangle\rangle$.

Proof. The property $\hat{f}\left(A^{\otimes n}\right) \subseteq \mathfrak{m}_{\Lambda}$ ensures that f induces a map $R\langle\langle A\rangle\rangle \rightarrow \lim _{\longleftarrow} \Lambda / \mathfrak{m}_{\Lambda}^{n}=\widehat{\Lambda}$. Since Λ is complete, we get a map as claimed in the lemma.

Definition 2.6.11. Assume a factorization $R=\prod_{i \in I} R_{i}$ is fixed.
Let $\Lambda=R\langle A\rangle / J$ and $\Lambda^{\prime}=R\left\langle A^{\prime}\right\rangle / J^{\prime}$ with $J \subseteq \mathfrak{m}_{\Lambda}$ and $J^{\prime} \subseteq \mathfrak{m}_{\Lambda^{\prime}}$. A morphism $\Lambda \xrightarrow{f} \Lambda^{\prime}$ of K-algebras is a K^{I}-algebra morphism if f induces automorphisms $R_{i} \xrightarrow{\cong} R_{i}$ for all $i \in I$.

Similarly, one defines K^{I}-algebra morphisms for quotients of completed tensor algebras.

For loop-free weighted I-quivers every K^{I}-algebra morphism between their (completed) path algebras is automatically a morphism of topological algebras:

Lemma 2.6.12. Every K^{I}-algebra morphism $\Lambda \xrightarrow{f} \Lambda^{\prime}$ between (completed) path algebras defined by $\left(R_{i}\right)_{i}$-modulations for loop-free weighted I-quivers Q and Q^{\prime} maps \mathfrak{m}_{Λ} into $\mathfrak{m}_{\Lambda^{\prime}}$.

Proof. Say $\Lambda=H_{\mathcal{H}}$ and $\Lambda^{\prime}=H_{\mathcal{H}^{\prime}}$ for K-modulations $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ and $\mathcal{H}^{\prime}=\left(R_{i}, A_{a}^{\prime}\right)_{i, a}$. If $f\left(\mathfrak{m}_{\Lambda}\right) \nsubseteq \mathfrak{m}_{\Lambda^{\prime}}$, then there are $i, j \in I$ and $x \in{ }_{j} A_{i} \neq 0$ such that $f(x)=e_{j} f(x) e_{i}=y_{0}+y_{+}$ for some $y_{0} \in{ }_{j} R_{i}$ and $y_{+} \in{ }_{j}\left(\mathfrak{m}_{\Lambda^{\prime}}\right)_{i}$ with $y_{0} \neq 0$. Hence ${ }_{j} R_{i} \neq 0$, so $i=j$. But then ${ }_{i} A_{i} \neq 0$ and Q is not loop-free. The proof for completed path algebras is the same.

In the completed setting, Lemma 2.6.12 has a generalization for quivers with loops:
Lemma 2.6.13. Let \widehat{H} and \widehat{H}^{\prime} be the completed path algebras defined by $\left(R_{i}\right)_{i}$-modulations for weighted I-quivers Q and Q^{\prime} such that for all $i \in I$ either Q is loop-free at the vertex i or the algebra R_{i} is local with nilpotent maximal ideal \mathfrak{p}_{i}.

Then every K^{I}-algebra morphism $\widehat{H} \xrightarrow{f} \widehat{H}^{\prime}$ is continuous and $f\left(\mathfrak{m}_{\widehat{H}}^{n}\right) \subseteq \mathfrak{m}_{\widehat{H}^{\prime}}$ where

$$
n=\max \left(\{1\} \cup\left\{n_{i} \mid i \in I \text { not loop-free in } Q\right\}\right)
$$

and n_{i} is the nilpotency degree of \mathfrak{p}_{i}, i.e. the smallest positive integer k with $\mathfrak{p}_{i}^{k}=0$.

Proof. Say $\widehat{H}=\widehat{H}_{\mathcal{H}}$ for a K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$. With the same argument given in the proof of Lemma 2.6 .12 one shows that $f(x) \in \mathfrak{m}_{\widehat{H}^{\prime}}$ for all $x \in{ }_{j} A_{i}$ with $j \neq i$. For nonzero $x \in{ }_{i} A_{i}$ the quiver Q has a loop at i and so R_{i} is local with nilpotent maximal ideal \mathfrak{p}_{i}. We can write $f(x)=e_{i} f(x) e_{i}=y_{0}+y_{+}$with $0 \neq y_{0} \in R_{i}$ and $y_{+} \in_{i}\left(\mathfrak{m}_{\widehat{H}^{\prime}}\right)_{i}$. To prove the
lemma, it suffices to show $y_{0} \in \mathfrak{p}_{i}$. If this were not the case, then $y_{0} \in R_{i} \backslash \mathfrak{p}_{i}=R_{i}^{\times}$. Let z be the inverse of $f^{-1}\left(y_{0}\right)$ in R_{i}. Lemma 2.6.2 (g) implies that the element $y_{+}=-y_{0} f(1-z x)$ is a unit in ${ }_{i} \widehat{H}_{i}^{\prime}$. But this contradicts the fact that $\operatorname{pr}_{0}\left(y_{+}\right)=0$ is not invertible in R_{i}.

Under the assumption that the ground ring is a product of division algebras, Lemma 2.6.12 is hence also true for quivers with loops, at least in the completed world:

Corollary 2.6.14. Every K^{I}-algebra morphism $\widehat{H} \xrightarrow{f} \widehat{H}^{\prime}$ between completed path algebras defined by $\left(R_{i}\right)_{i}$-modulations with division algebras R_{i} satisfies $f\left(\mathfrak{m}_{\widehat{H}}\right) \subseteq \mathfrak{m}_{\widehat{H^{\prime}}}$.

Proof. This is a direct consequence of Lemma 2.6.13.
Example 2.6.15. The GLS modulations (see Example 2.4.11) satisfy the assumption in Lemma 2.6.13. The nilpotency degree of the maximal ideal of $R_{i}=K\left[\varepsilon_{i}\right] /\left(\varepsilon_{i}^{d_{i}}\right)$ is $n_{i}=d_{i}$.

Example 2.6.16. Let Q be the weighted quiver $a{ }^{a} 1$ with $d_{1}=2$. The completed path algebra \widehat{H} of Q defined by the GLS modulation (see Example 2.4.27) is the ring $\widehat{H}=R[[a]]$ of formal power series over the dual numbers $R=K[\varepsilon] /\left(\varepsilon^{2}\right)$ with $\mathfrak{m}_{\widehat{H}}=(a)$. The rule $a \mapsto \varepsilon$ induces an R-algebra morphism $\widehat{H} \xrightarrow{f} \widehat{H}$. As claimed in Lemma 2.6.13, f is continuous, since $f\left(\mathfrak{m}_{\widehat{H}}^{2}\right)=0 \subseteq \mathfrak{m}_{\widehat{H}}$. However, $f\left(\mathfrak{m}_{\widehat{H}}\right) \nsubseteq \mathfrak{m}_{\widehat{H}}$.

Example 2.6.17. The path algebra H of $a G 1$ over K is the polynomial ring $K[a]$ with distinguished ideal $\mathfrak{m}_{H}=(a)$. The K-algebra endomorphism of H given by the rule $a \mapsto 1$ is not continuous. This shows that the statements of Lemma 2.6.13 and Corollary 2.6.14 are no longer true when replacing "completed path algebras" by "path algebras".

Notation 2.6.18. For adic R-algebras H and H^{\prime} we use the notation $\operatorname{Hom}_{R}^{n}\left(H, H^{\prime}\right)$ for the set of R-algebra morphisms $H \xrightarrow{f} H^{\prime}$ satisfying $f\left(\mathfrak{m}_{H}\right) \subseteq \mathfrak{m}_{H^{\prime}}^{n}$.

Remark 2.6.19. Let \mathcal{H} and \mathcal{H}^{\prime} be $\left(R_{i}\right)_{i}$-modulations for weighted I-quivers Q and Q^{\prime}. If Q is loop-free, we have seen that $\operatorname{Hom}_{R}^{1}\left(H_{\mathcal{H}}, H_{\mathcal{H}^{\prime}}\right)=\operatorname{Hom}_{R}\left(H_{\mathcal{H}}, H_{\mathcal{H}^{\prime}}\right)$. Furthermore, if Q is loop-free or all R_{i} are division rings, $\operatorname{Hom}_{R}^{1}\left(\widehat{H}_{\mathcal{H}}, \widehat{H}_{\mathcal{H}^{\prime}}\right)=\operatorname{Hom}_{R}\left(\widehat{H}_{\mathcal{H}}, \widehat{H}_{\mathcal{H}^{\prime}}\right)$.

The next lemma is the analog of [DWZ08, Proposition 2.4].
Lemma 2.6.20. Let A and A^{\prime} be R-bimodules. For every $n \in \mathbb{N}_{+}$there is a bijection:

$$
\begin{gathered}
\operatorname{Hom}_{R}^{n}\left(R\langle\langle A\rangle\rangle, R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle\right) \\
f
\end{gathered}
$$

Moreover, f is an isomorphism if and only if the component $\left.f_{(1)}\right|_{A}$ is an isomorphism.
Proof. The map in the proposition is well-defined, since $f(A) \subseteq \mathfrak{m}_{R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle}^{n}$. It is a bijection because of Lemma 2.6.10. It remains to verify the last claim. For $n>1$ it is trivially true, since in this case neither f nor $\left.f_{(1)}\right|_{A}$ can be an isomorphism. So let us assume $n=1$.

For every element $x=\sum_{m} x_{m} \in R\langle\langle A\rangle\rangle$ we have $f_{(1)}\left(x_{m}\right)=0$ for all $m>1$ because of the continuity of f and $f_{(1)}\left(x_{0}\right)=0$ since f is a map of R-algebras. Thus $f_{(1)}=\left.f_{(1)}\right|_{A} \circ \operatorname{pr}_{(1)}$ such that for all $g \in \operatorname{Hom}_{R}^{1}\left(R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle, R\langle\langle A\rangle\rangle\right)$ one has $\left.(f g)_{(1)}\right|_{A^{\prime}}=\left.\left.f_{(1)}\right|_{A} \circ g_{(1)}\right|_{A^{\prime}}$ and, similarly, $\left.(g f)_{(1)}\right|_{A}=\left.\left.g_{(1)}\right|_{A^{\prime}} \circ f_{(1)}\right|_{A}$. In particular, if f is an isomorphism, so is $\left.f_{(1)}\right|_{A}$.
On the other hand, assume that $\left.f_{(1)}\right|_{A}$ has an inverse $A^{\prime} \xrightarrow{g} A$. Let $R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle \xrightarrow{\tilde{g}} R\langle\langle A\rangle\rangle$ be the induced map such that $\left.\widetilde{g}\right|_{A^{\prime}}=\widetilde{g} \circ \kappa_{A^{\prime}}=\kappa_{A} \circ g$. The universal property for $R\langle\langle A\rangle\rangle$ (Lemma 2.6.10) then implies $\widetilde{g} \circ f=$ id, since $\widetilde{g} \circ f \circ \kappa_{A}=\left.\widetilde{g} \circ \kappa_{A^{\prime}} \circ f_{(1)}\right|_{A}=\left.\kappa_{A} \circ g \circ f_{(1)}\right|_{A}=\kappa_{A}$. Similarly, one can prove $f \circ \widetilde{g}=$ id to conclude that f is an isomorphism.

We adopt the terminology introduced in [DWZ08, Definition 2.5].
Definition 2.6.21. Let $f \in \operatorname{Aut}_{R}(R\langle\langle A\rangle\rangle)$ and $\mathfrak{m}=\mathfrak{m}_{R\langle\langle A\rangle\rangle}$.
Call f a change of arrows, if $f(A)=A$. We say f is unitriangular, if $(f-\mathrm{id})(A) \subseteq \mathfrak{m}^{n+1}$ for some $n \in \mathbb{N}_{+}$. For unitriangular f one defines the depth of f as

$$
\operatorname{depth}(f):=\sup \left\{n \in \mathbb{N}_{+} \mid(f-\operatorname{id})(A) \subseteq \mathfrak{m}^{n+1}\right\}
$$

Remark 2.6.22. An automorphism $f \in \operatorname{Aut}_{R}(R\langle\langle A\rangle\rangle)$ is unitriangular of depth $\geq n$ if and only if for all $a \in A$ there is $\nu_{a} \in \mathfrak{m}^{n+1}$ such that $f(a)=a+\nu_{a}$.

We repeatedly use the following statement implicitly. Compare [DWZ08, § 4].
Lemma 2.6.23. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of unitriangular R-algebra automorphisms of $R\langle\langle A\rangle\rangle$ with $\lim _{n \rightarrow \infty} \operatorname{depth}\left(f_{n}\right)=\infty$. Then the pointwise-defined limit $\lim _{n \rightarrow \infty} f_{n} \cdots f_{0}$ exists and is an R-algebra automorphism of $R\langle\langle A\rangle\rangle$.

Proof. For all z the sequence $\left(f_{n} \cdots f_{0}(z)\right)_{n \in \mathbb{N}}$ is Cauchy because $\lim _{n \rightarrow \infty} \operatorname{depth}\left(f_{n}\right)=\infty$. The completeness of $R\langle\langle A\rangle\rangle$ implies that the limit $f=\lim _{n \rightarrow \infty} f_{n} \cdots f_{0}$ exists. Clearly, f is an R-algebra morphism. It is an automorphism because $\left.f_{(1)}\right|_{A}$ is an automorphism.

Recall that $H=R\langle A\rangle$ and $\widehat{H}=R\langle\langle A\rangle\rangle$. Via restriction of scalars every \widehat{H}-module can also be viewed as an H-module. In the finite-dimensional world, \widehat{H}-modules are precisely the nilpotent H-modules. This observation generalizes the discussion in [DWZ08, § 10].

Lemma 2.6.24. Restriction of scalars induces an equivalence $\bmod (\widehat{H}) \xrightarrow{\simeq} \bmod ^{\text {nil }}(H)$ where $\bmod ^{\text {nil }}(H)$ is the full subcategory of $\bmod (H)$ consisting of modules, called nilpotent, that are annihilated by $A^{\otimes n}$ for some large enough n.

Proof. Nilpotent H-modules can be naturally regarded as \widehat{H}-modules and a map between nilpotent H-modules is an \widehat{H}-module homomorphism if and only if it is an H-module homomorphism. Therefore it suffices to check that every finite-dimensional \widehat{H}-module M is nilpotent. By Lemma 2.6.2 (g) it is $\mathfrak{m}=\mathfrak{m}_{\widehat{H}} \subseteq \operatorname{rad}(\widehat{H})$. Now $\mathfrak{m}^{n+1} M=\mathfrak{m}^{n} M$ for some n, if M is finite-dimensional. So $\mathfrak{m}^{n} M=0$ by Nakayama's lemma (see [Lam91, (4.22)]).

We close this subsection with the following easy observation.
Lemma 2.6.25. Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a family of additive subgroups $X_{n} \subseteq A^{\otimes n} \subseteq \widehat{H}$. Then the topological closure of $\bigoplus_{n \in \mathbb{N}} X_{n}$ in \widehat{H} is $\prod_{n \in \mathbb{N}} X_{n}$.

Proof. Let $X=\bigoplus_{n \in \mathbb{N}} X_{n}$ and $Y=\prod_{n \in \mathbb{N}} X_{n}$. On the one hand, $X \subseteq Y \subseteq \bar{X}$ because every $y \in Y$ is the limit of the sequence $\left(\sum_{n \leq m} y_{n}\right)_{m \in \mathbb{N}}$ in X. On the other hand, $Y=\bar{Y}$, since a sequence in Y is a Cauchy sequence if and only if for all $n \in \mathbb{N}$ its image in X_{n} is an eventually constant sequence, i.e. its limit lies in Y.

2.6.3 Jacobian Algebras

Convention 2.6.26. As before, we denote by R^{e} the enveloping algebra $R \otimes_{K} R^{\mathrm{op}}$ of R. We regard R-bimodules M over K as left R^{e}-modules via $(s \otimes r) \cdot m=s m r$ and as right R^{e}-modules via $m \cdot(s \otimes r)=r m s$ for $s \otimes r \in R^{\mathrm{e}}$ and $m \in M$.

Recall the notations $A^{\dagger}=\operatorname{Hom}_{R^{\mathrm{e}}}\left(A, R^{\mathrm{e}}\right)$ and $H=R\langle A\rangle$ and $\widehat{H}=R\langle\langle A\rangle\rangle$.
Definition 2.6.27. For $\xi \in A^{\dagger}$ denote by $A^{\otimes n}=A^{\otimes s-1} \otimes_{R} A \otimes_{R} A^{\otimes n-s} \xrightarrow{\partial_{\xi}^{n, s}} A^{\otimes n-1}$ the K-linear map induced, for $x \in A^{\otimes s-1}, a \in A, y \in A^{\otimes n-s}$, by the rule

$$
\partial_{\xi}^{n, s}(x a y)=y x \cdot \xi(a)
$$

The cyclic derivative with respect to ξ is the K-linear map $\widehat{H} \xrightarrow{\partial_{\xi}} \widehat{H}$ defined as

$$
\partial_{\xi}:=\sum_{n=1}^{\infty} \sum_{s=1}^{n} \partial_{\xi}^{n, s} .
$$

The Jacobian ideal ∂W of an element $W \in \widehat{H}$ is the closed ideal of \widehat{H} generated by all cyclic derivatives $\partial_{\xi}(W)$ with $\xi \in A^{\dagger}$. The Jacobian algebra $\mathcal{J}(W)$ of W is $\mathcal{J}(W):=\widehat{H} / \partial W$.

Remark 2.6.28. Let $\mathfrak{m}=\mathfrak{m}_{H}$. The map ∂_{ξ} is well-defined as a map $H \rightarrow H$ and sends \mathfrak{m}^{n} into \mathfrak{m}^{n-1}. The universal property of $\widehat{H}=\lim H / \mathfrak{m}^{n}$ applied to $\widehat{H} \rightarrow H / \mathfrak{m}^{n} \xrightarrow{\partial_{\xi}} H / \mathfrak{m}^{n-1}$ yields the extension of ∂_{ξ} to a map $\widehat{H} \rightarrow \widehat{H}$.

Remark 2.6.29. Almost resembling [DWZ08, (3.1)], we can express ∂_{ξ} as

$$
\partial_{\xi}\left(a_{1} \cdots a_{n}\right)=\sum_{s=1}^{n} a_{s+1} \cdots a_{n} a_{1} \cdots a_{s-1} \cdot \xi\left(a_{s}\right)
$$

for $a_{1}, \ldots, a_{n} \in A$. In general, it is however not possible to "move" $\xi\left(a_{s}\right)$ to the left.

Example 2.6.30. Let Q be the weighted quiver
 We consider the GLS modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for Q (see Example 2.4.11). Set $\varepsilon:=\varepsilon_{j}$. The bimodules $A_{c_{r}}^{\dagger}=\left\langle c_{r}^{\dagger}: c_{r} \mapsto e_{i} \otimes e_{k}\right\rangle, A_{b}^{\dagger}=\left\langle b^{\dagger}: b \mapsto e_{k} \otimes e_{j}\right\rangle, A_{a}^{\dagger}=\left\langle a^{\dagger}: a \mapsto e_{j} \otimes e_{i}\right\rangle$
are cyclically generated. For $W=\left(c_{0} b \varepsilon+c_{1} b\right) a$ one computes $\partial_{c_{0}^{\dagger}}(W)=b \varepsilon a, \partial_{c_{1}^{\dagger}}(W)=b a$, $\partial_{b^{\dagger}}(W)=\varepsilon a c_{0}+a c_{1}$, and $\partial_{a^{\dagger}}(W)=c_{0} b \varepsilon+c_{1} b$. So the Jacobian algebra of W is

$$
\mathcal{J}(W)=\widehat{H}_{\mathcal{H}} / \overline{\left\langle b \varepsilon a, b a, \varepsilon a c_{0}+a c_{1}, c_{0} b \varepsilon+c_{1} b\right\rangle} \cong H_{\mathcal{H}} /\left\langle b \varepsilon a, b a, \varepsilon a c_{0}+a c_{1}, c_{0} b \varepsilon+c_{1} b\right\rangle .
$$

2.6.4 Semi-Simple Structures

Definition 2.6.31. A basic semi-simple structure on a K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for Q consists of a decomposition $R_{j} \otimes_{K} R_{i}^{\mathrm{op}}\left(R_{j} \otimes_{K} R_{i}^{\mathrm{op}}\right)=\bigoplus_{\rho j} L_{i}^{\rho}$ into pairwise non-isomorphic simple modules ${ }_{j} L_{i}^{\rho}$ for all i, j and a cyclic generator a of A_{a} for all a.
Given such a basic semi-simple structure on \mathcal{H}, we can write $\sum_{i, j, \rho} 1_{j i}^{\rho}=1 \in R^{e}$ for uniquely determined $1_{j i}^{\rho} \in{ }_{j} L_{i}^{\rho}$ and have $A_{a} \cong{ }_{j} L_{i}^{\rho_{a}}$ for a unique index element ρ_{a}.
In this case, we use the notation $A_{a}^{\dagger}:=\operatorname{Hom}_{R^{e}}\left(A_{a},{ }_{j} L_{i}^{\rho_{a}}\right)$ and denote by a^{\dagger} the generator of A_{a}^{\dagger} defined by $a \mapsto 1_{a}:=1_{j i}^{\rho_{a}}$.

Remark 2.6.32. A minimal K-modulation \mathcal{H} admits a basic semi-simple structure if and only if the enveloping algebra R^{e} of its ground ring is basic semi-simple.

Example 2.6.33. Every modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ of a modular quiver Q over $(L / K, \alpha)$ carries a canonical semi-simple structure. Namely, $1_{j i}^{\rho}=\pi_{\rho}(1 \otimes 1) \in L_{j} \otimes_{K} L_{i}$ indexed by $\rho \in \operatorname{Gal}\left(L_{j i} / K\right)$ and $a=1 \otimes 1 \in A_{a}$. In this situation it is $\rho_{a}=\alpha_{j i}\left(\sigma_{a}\right)$ for $j \stackrel{a}{\leftarrow} i$.

Lemma 2.6.34. Assume \mathcal{H} is a K-modulation for Q with basic semi-simple structure. For $W \in \widehat{H}_{\mathcal{H}}$ the Jacobian ideal ∂W is generated as a closed ideal by all $\partial_{a^{\dagger}}(W)$ with $a \in Q_{1}$.

Proof. This is obvious because $A^{\dagger}=\bigoplus_{a} A_{a}^{\dagger}$ and a^{\dagger} generates A_{a}^{\dagger}.
Lemma 2.6.35. Assume $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ is a K-modulation for Q with basic semi-simple structure. For every R-bimodule A^{\prime} and $\mathfrak{m}^{\prime}=\mathfrak{m}_{R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle}$ there is a bijection:

$$
\begin{aligned}
\operatorname{Hom}_{R}^{n}\left(R\langle\langle A\rangle\rangle, R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle\right) & \stackrel{\cong}{\longrightarrow}\left\{Q_{1} \stackrel{\nu}{\longrightarrow} \mathfrak{m}^{\prime n} \mid \nu(a) \in\left({ }_{j} \mathfrak{m}_{i}^{\prime}\right)^{\rho_{a}} \text { for } j \stackrel{a}{\longleftrightarrow} i \in Q_{1}\right\} \\
f & \left.\longmapsto\right|_{Q_{1}}
\end{aligned}
$$

Proof. Every map $Q_{1} \xrightarrow{\nu} \mathfrak{m}^{\prime n}$ with $\nu(a) \in\left({ }_{j} \mathfrak{m}_{i}^{\prime}\right)^{\rho_{a}}$ for all $j \stackrel{a}{\leftarrow} i \in Q_{1}$ uniquely extends to an R-bimodule morphism $A \rightarrow \mathfrak{m}^{\prime n}$. Now use Lemma 2.6.20.

Notation 2.6.36. For $X=\left\{a_{1}, \ldots, a_{\ell}\right\} \subseteq Q_{1}$ we say that $f \in \operatorname{Hom}_{R}\left(R\langle\langle A\rangle\rangle, R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle\right)$ is given by the substitution rules $a_{1} \mapsto f\left(a_{1}\right), \ldots, a_{\ell} \mapsto f\left(a_{\ell}\right)$ if $f(a)=a$ for all $a \in Q_{1} \backslash X$.

Notation 2.6.37. For a subquiver Q^{\prime} of Q we use the notation $\operatorname{Aut}_{Q^{\prime}}(R\langle\langle A\rangle\rangle)$ for the subset of $\operatorname{Aut}_{R}(R\langle\langle A\rangle\rangle)$ consisting of all f with $f(a)=a$ for all $a \in Q_{1}^{\prime}$.

Example 2.6.38. Let Q be the modular quiver ${ }^{a} G i \circlearrowleft b$ with $d_{i}=2$ and $\sigma_{a}=0, \sigma_{b}=1$ and let \hat{H} be the completed path algebra defined by the modulation of Q over $(\mathbb{C} / \mathbb{R}, \alpha)$.

The substitution rule $a \mapsto a+b^{2}$ determines an element $f \in \operatorname{Aut}_{R}(\widehat{H})$ with $f(b)=b$. There is no element in $\operatorname{End}_{R}(\widehat{H})$ determined by the rule $a \mapsto b$ because of $\sigma_{a} \neq \sigma_{b}$. Similarly, the rule $a \mapsto a+b a$ does not define an R-algebra endomorphism of \widehat{H} because $\pi_{\rho_{a}}(b a) \neq b a$.

2.6.5 Cyclic Chain Rule

This subsection contains straightforward generalizations of the cyclic Leibniz and cyclic chain rule found in [DWZ08]. As pointed out there, cyclic derivatives and a version of the cyclic chain rule were considered for arbitrary non-commutative K-algebras in [RSS80].

Notation 2.6.39. Following [DWZ08, § 3] we set $H \widehat{\otimes} H:=\prod_{q, r \in \mathbb{N}}\left(A^{\otimes q} \otimes_{K} A^{\otimes r}\right)$ and regard it as a topological R-bimodule with the sets $\prod_{q+r \geq n}\left(A^{\otimes q} \otimes_{K} A^{\otimes r}\right)$ indexed by $n \in \mathbb{N}$ as a fundamental system of open neighborhoods of zero. Actually, $H \widehat{\otimes} H$ is the completion of the adic ring $\Lambda=\Gamma \otimes_{K} \Gamma$ with $\mathfrak{m}_{\Lambda}=\mathfrak{m}_{\Gamma} \otimes_{K} \Gamma+\Gamma \otimes_{K} \mathfrak{m}_{\Gamma}$ where Γ is either of H or \widehat{H}.

We use the symbol \star for the right action of R^{e} on $H \widehat{\otimes} H$ given by $(u \otimes w) \star(x \otimes y)=u x \otimes y w$ for $x \otimes y \in R^{e}$ and $u \otimes w \in A^{\otimes q} \otimes_{K} A^{\otimes r}$.
For every $\xi \in A^{\dagger}$ let Δ_{ξ} be the continuous R-bimodule morphism $\widehat{H} \rightarrow H \widehat{\otimes} H$ defined by $\Delta_{\xi}($ xay $)=(x \otimes y) \star \xi(a)$ for $x \in A^{\otimes s-1}, a \in A, y \in A^{\otimes n-s}$. Furthermore, we write $t \square z$ for the image of $t \otimes z$ under the continuous K-linear map $(H \widehat{\otimes} H) \otimes_{K} \widehat{H} \rightarrow \widehat{H}$ that is defined by $(u \otimes w) \square z=w z u$ for $u \otimes w \in A^{\otimes q} \otimes_{K} A^{\otimes r}$ and $z \in \widehat{H}$. This map is a morphism of right R^{e}-modules for the action $(t \otimes z) \star r=(t \star r) \otimes z$ of $r \in R^{\mathrm{e}}$ on $t \otimes z \in(H \widehat{\otimes} H) \otimes_{K} \widehat{H}$.

Remark 2.6.40. For $a_{1}, \ldots, a_{n} \in A$ we can explicitly express Δ_{ξ} as

$$
\Delta_{\xi}\left(a_{1} \cdots a_{n}\right)=\sum_{s=1}^{n}\left(a_{1} \cdots a_{s-1} \otimes a_{s+1} \cdots a_{n}\right) \star \xi\left(a_{s}\right)
$$

The following lemma is completely analogous to [DWZ08, Lemma 3.8].
Lemma 2.6.41 (Cyclic Leibniz rule). Assume $R=\prod_{i \in I} R_{i}$. Let $\xi \in A^{\dagger}$ and $\left(i_{1}, \ldots, i_{\ell}\right) a$ finite sequence in I. For all $z_{s} \in{\widehat{i_{s}}}^{\hat{H}_{i_{s+1}}}$ with $s \in \mathbb{Z} / \ell Z$ we have the identity

$$
\partial_{\xi}\left(z_{1} \cdots z_{\ell}\right)=\sum_{s=1}^{\ell} \Delta_{\xi}\left(z_{s}\right) \square\left(z_{s+1} \cdots z_{\ell} z_{1} \cdots z_{s-1}\right) .
$$

Proof. Because of the K-linearity and continuity of the maps $\partial_{\xi}, \Delta_{\xi}$, and a it suffices to prove the identity for all z_{s} of the form $a_{s 1} \cdots a_{s n_{s}}$ with $a_{s r} \in A$. In this case it is clear that $\Delta_{\xi}\left(z_{1} \cdots z_{\ell}\right)=\sum_{s} z_{1} \cdots z_{s-1} \cdot \Delta_{\xi}\left(z_{s}\right) \cdot z_{s+1} \cdots z_{\ell}$. Thus

$$
\begin{aligned}
\partial_{\xi}\left(z_{1} \cdots z_{\ell}\right)=\Delta_{\xi}\left(z_{1} \cdots z_{\ell}\right) \square 1 & =\sum_{s}\left(z_{1} \cdots z_{s-1} \cdot \Delta_{\xi}\left(z_{s}\right) \cdot z_{s+1} \cdots z_{\ell}\right) \square 1 \\
& =\sum_{s} \Delta_{\xi}\left(z_{s}\right) \square\left(z_{s+1} \cdots z_{\ell} z_{1} \cdots z_{s-1}\right)
\end{aligned}
$$

Convention 2.6.42. For the rest of this subsection fix $\left(R_{i}\right)_{i}$-modulations \mathcal{H} and \mathcal{H}^{\prime} with basic semi-simple structure for two weighted I-quivers Q and Q^{\prime}.

The cyclic chain rule below is a consequence of Lemma 2.6.41. Its proof in the current more general setting uses almost the same calculations as [DWZ08, Lemma 3.9].

Lemma 2.6.43 (Cyclic chain rule). For every K^{I}-algebra homomorphism $\widehat{H}_{\mathcal{H}^{\prime}} \xrightarrow{f} \widehat{H}_{\mathcal{H}}$, every $W \in \widehat{H}_{\mathcal{H}^{\prime}}$, and every $\xi \in A^{\dagger}$ we have

$$
\partial_{\xi}(f(W))=\sum_{a \in Q_{1}^{\prime}} \Delta_{\xi}(f(a)) \square f\left(\partial_{a^{\dagger}}(W)\right) .
$$

Proof. By K-linearity and continuity of $\partial_{\xi}, \Delta_{\xi}, ~ \square, \partial_{a^{\dagger}}$, and f, we can assume $W=z_{1} \cdots z_{\ell}$ with $z_{s} \in A_{a_{s}}^{\prime}$ and $a_{s} \in Q_{1}^{\prime}$ for all $1 \leq s \leq \ell$. Then $a_{s}^{\dagger}\left(z_{s}\right) \cdot a_{s}=z_{s}$ and one computes

$$
\Delta_{\xi}\left(f\left(z_{s}\right)\right)=\Delta_{\xi}\left(f\left(a_{s}^{\dagger}\left(z_{s}\right)\right) \cdot f\left(a_{s}\right)\right)=f\left(a_{s}^{\dagger}\left(z_{s}\right)\right) \cdot \Delta_{\xi}\left(f\left(a_{s}\right)\right) .
$$

With $W_{\widehat{s}}=z_{s+1} \cdots z_{\ell} z_{1} \cdots z_{s-1}$ it is $\partial_{a^{\dagger}}(W)=\sum_{s} W_{\widehat{s}} \cdot a^{\dagger}\left(z_{s}\right)$. Now, using Lemma 2.6.41 and $a^{\dagger}\left(z_{s}\right)=0$ for $a \neq a_{s}$, one obtains

$$
\begin{aligned}
\partial_{\xi}(f(W)) & =\sum_{s} \Delta_{\xi}\left(f\left(z_{s}\right)\right) \square f\left(W_{\widehat{s}}\right) \\
& =\sum_{a} \Delta_{\xi}(f(a)) \square f\left(\sum_{s} W_{\widehat{s}} \cdot a^{\dagger}\left(z_{s}\right)\right)=\sum_{a} \Delta_{\xi}(f(a)) \square f\left(\partial_{a^{\dagger}}(W)\right) .
\end{aligned}
$$

The outcome of the cyclic chain rule is that K^{I}-algebra isomorphisms between completed path algebras induce isomorphisms between Jacobian algebras.

Proposition 2.6.44. For every K^{I}-algebra morphism $\widehat{H}_{\mathcal{H}^{\prime}} \xrightarrow{f} \widehat{H}_{\mathcal{H}}$ and every $W \in \widehat{H}_{\mathcal{H}^{\prime}}$ one has $\partial f(W) \subseteq f(\partial W)$. In particular, if f is an isomorphism, $\partial f(W)=f(\partial W)$ such that f induces an isomorphism of Jacobian algebras $\mathcal{J}(W) \xrightarrow{\cong} \mathcal{J}(f(W))$.

Proof. With Lemma 2.6.43 the proof of [DWZ08, Proposition 3.7] can be used as is.

2.6.6 Potentials

Convention 2.6.45. Fix a factorization $R=\prod_{i} R_{i}$ and a finite-dimensional R-bimodule A over K. We continue to use the notation $\widehat{H}=R\langle\langle A\rangle\rangle$.

Definition 2.6.46. Recall that [DWZ08, Definition 3.4] defines the trace space $\operatorname{Tr}(H)$ of a topological R-algebra H over K as the K-vector space $H /\{H, H\}$, where $\{H, H\}$ stands for the closed K-vector subspace generated by the commutators $x y-y x$ with $x, y \in H$.

Remark 2.6.47. For $\widehat{H}=\prod_{n} A^{\otimes n}$ the closed K-vector subspace $\{\widehat{H}, \widehat{H}\}$ is generated by homogeneous elements. With Lemma 2.6.25 we see that $\{\widehat{H}, \widehat{H}\}=\prod_{n}\{\widehat{H}, \widehat{H}\}_{n}$ where

$$
\{\widehat{H}, \widehat{H}\}_{n}=\operatorname{span}_{K}\left\{x y-y x \mid x \in A^{\otimes k}, y \in A^{\otimes n-k}, 0 \leq k \leq n\right\} .
$$

Therefore we have a decomposition $\operatorname{Tr}(\widehat{H})=\prod_{n} \operatorname{Tr}(\widehat{H})_{n}$ with $\operatorname{Tr}(\widehat{H})_{n}=A^{\otimes n} /\{\widehat{H}, \widehat{H}\}_{n}$.

Remark 2.6.48. The image of ${ }_{j} \widehat{H}_{i}$ in $\operatorname{Tr}(\widehat{H})$ vanishes unless $i=j$. More precisely, it is $a_{1} a_{2} \cdots a_{n-1} a_{n}=a_{2} a_{3} \cdots a_{n} a_{1}=\cdots=a_{n} a_{1} \cdots a_{n-2} a_{n-1}$ in $\operatorname{Tr}(\widehat{H})$ for all $a_{1}, \ldots, a_{n} \in A$.

Example 2.6.49. Assume \widehat{H} is the completed path algebra of a weighted quiver Q defined by a K-modulation with basic semi-simple structure. Then $\{\widehat{H}, \widehat{H}\}$ is generated as a closed K-vector space by all elements of the form $\left(\omega_{\ell} a_{\ell} \cdots \omega_{2} a_{2}\right) \omega_{1} a_{1} \omega_{0}-a_{1} \omega_{0}\left(\omega_{\ell} a_{\ell} \cdots \omega_{2} a_{2}\right) \omega_{1}$ where $i_{\ell} \stackrel{a_{\ell}}{\longleftarrow} \cdots \stackrel{a_{1}}{\leftarrow} i_{0}$ is a cyclic path in Q and $\omega_{r} \in R_{i_{r}}$. This characterization of $\{\widehat{H}, \widehat{H}\}$ is used in [GL16a, Definition 3.11] to define (cyclic equivalence of) potentials.

Example 2.6.50. Assume that \widehat{H} is the completed path algebra of the double-loop quiver from Example 2.6.38. Then $b^{2} a=b a b=a b^{2}$ in $\operatorname{Tr}(\widehat{H})$.

Definition 2.6.51. The order of $z=\sum_{n} z_{n} \in \operatorname{Tr}(\widehat{H})$ with $z_{n} \in \operatorname{Tr}(\widehat{H})_{n}$ is defined as

$$
\operatorname{ord}(z):=\min \left\{n \in \mathbb{N} \mid z_{n} \neq 0 \in \operatorname{Tr}(\widehat{H})\right\}
$$

Remark 2.6.52. For the image of an element $z \in \widehat{H}$ in the trace space $\operatorname{Tr}(\widehat{H})$ we usually write again z. We then have $\operatorname{ord}(z) \geq \operatorname{ord}_{\widehat{H}}(z)$.

Definition 2.6.53. A potential for A is any element z in $\operatorname{Tr}(\widehat{H})$ with $\operatorname{ord}(z)>0$.
A species with potential $(S P)$ over R is a pair (A, W) consisting of a finite-dimensional R-bimodule A over K and a potential W for A.

Remark 2.6.54. As already explained in the introduction of [DWZ08], it is natural to think of potentials as elements in the trace space. However, ibid. the term potential is used to refer to elements in $\widehat{H}_{\text {cyc }}=\bigoplus_{i i}\left(\mathfrak{m}_{\widehat{H}}\right)_{i}$. Elements in $\widehat{H}_{\text {cyc }}$ are then said to be cyclical equivalent if they have the same image in the trace space. In a nutshell, what we call a potential here is the cyclic-equivalence class of a potential in the terminology of [DWZ08].

The next two facts are discussed in [GL16a, § 10.2] for comfy modulations.
Lemma 2.6.55. Assume A is the species of a cyclic Galois modulation for Q over L / K. For all $i, j \in Q_{0}$ and $m \in{ }_{j} \widehat{H}_{i}, n \in{ }_{i} \widehat{H}_{j}$ and $\mathrm{id}=\mathrm{id}_{L_{j}}$ the id-isotypical component of $m n$ is

$$
\pi_{\mathrm{id}}(m n)=\sum_{\rho \in \operatorname{Gal}\left(L_{j i} / K\right)} \pi_{\mathrm{id}}\left(\pi_{\rho^{-1}}(m) \pi_{\rho}(n)\right)
$$

Proof. Use $\pi_{\mathrm{id}}(m n)=\sum_{\rho, \rho^{\prime}} \pi_{\mathrm{id}}\left(\pi_{\rho^{\prime}}(m) \pi_{\rho}(n)\right)$ and (\star) in $\S 2.5 .3$.
Corollary 2.6.56. Assume A is the species of a cyclic Galois modulation for Q over L / K. For all $i, j \in Q_{0}$ and $m \in{ }_{j} \widehat{H}_{i}, n \in{ }_{i} \widehat{H}_{j}$ we have in $\operatorname{Tr}(\widehat{H})$ the identity

$$
m n=\sum_{\rho \in \operatorname{Gal}\left(L_{j i} / K\right)} \pi_{\rho^{-1}}(m) \pi_{\rho}(n)
$$

Proof. Because of Lemma 2.6.55 it suffices to show that $\pi_{\gamma}(z)=0$ in $\operatorname{Tr}(\widehat{H})$ for all $z \in{ }_{j} \widehat{H}_{j}$ and non-identity $\gamma \in \operatorname{Gal}\left(L_{j} / K\right)$. Now $x=\gamma(u)-u \neq 0$ for some u, if $\gamma \neq \mathrm{id}$. By (\star) it is $\gamma(u) \pi_{\gamma}(z)=\pi_{\gamma}(z) u=u \pi_{\gamma}(z)$ in $\operatorname{Tr}(\widehat{H})$. So $\pi_{\gamma}(z)=x^{-1}(\gamma(u)-u) \pi_{\gamma}(z)=0$ in $\operatorname{Tr}(\widehat{H})$.

Corollary 2.6.57. Assume A is the species of a cyclic Galois modulation for Q over L / K. For every potential W for A there are elements $\nu_{a} \in{ }_{i}\left(\mathfrak{m}_{\widehat{H}}\right)_{j}$ for all $j \stackrel{a}{\leftarrow} i \in Q_{1}$ such that

$$
W=\sum_{a \in Q_{1}} \nu_{a} a=\sum_{a \in Q_{1}} \pi_{\rho_{a}^{-1}}\left(\nu_{a}\right) a
$$

Proof. The existence of elements ν_{a} such that the first equality holds is clear. For the last equality use Corollary 2.6.56.

Example 2.6.58. Let \widehat{H} be the completed path algebra of $a G i 乌 b$ as in Example 2.6.38. Recall that $\sigma_{a}=0, \sigma_{b}=1 \in \mathbb{Z} / 2 \mathbb{Z}$. Then $b a=0$ but $b^{2} a \neq 0$ in $\operatorname{Tr}(\widehat{H})$.

It is clear that the cyclic derivatives ∂_{ξ} annihilate $\{\widehat{H}, \widehat{H}\}$ (compare Definition 2.6.27 and Remark 2.6.48). Therefore the following definition makes sense.

Definition 2.6.59. The K-linear map $\operatorname{Tr}(\widehat{H}) \rightarrow \widehat{H}$ induced by ∂_{ξ} is once again called the cyclic derivative with respect to $\xi \in A^{\dagger}$ and is also denoted by ∂_{ξ}.

2.6.7 Equivalence of Potentials

The main purpose of potentials W is to encode defining relations of Jacobian ideals ∂W. It is thus natural to introduce an equivalence relation on the space of potentials in such a way that equivalent potentials define isomorphic Jacobian algebras. Having this in mind, Proposition 2.6.44 motivates the next definition.

Convention 2.6.60. As before, assume $R=\prod_{i \in I} R_{i}$.
Let A, A^{\prime} be R-bimodules over K and $\widehat{H}=R\langle\langle A\rangle\rangle, \widehat{H}^{\prime}=R\left\langle\left\langle A^{\prime}\right\rangle\right\rangle$.
Definition 2.6.61. Two SPs (A, W) and $\left(A^{\prime}, W^{\prime}\right)$ are R-equivalent if there is an R-algebra isomorphism $\widehat{H} \xrightarrow{f} \widehat{H}^{\prime}$ with $f(W)=W^{\prime}$. In this case, we write $(A, W) \sim_{R}\left(A^{\prime}, W^{\prime}\right)$.

The SPs (A, W) and $\left(A^{\prime}, W^{\prime}\right)$ are I-equivalent if there exists an isomorphism $\widehat{H} \xrightarrow{f} \widehat{H}^{\prime}$ of K^{I}-algebras such that $f(W)=W^{\prime}$. Then we write $(A, W) \sim_{I}\left(A^{\prime}, W^{\prime}\right)$.

In case $A=A^{\prime}$ and $X \in\{R, I\}$, we say that the potentials W and W^{\prime} are X-equivalent, formally $W \sim_{X} W^{\prime}$, whenever the $\operatorname{SPs}(A, W)$ and $\left(A, W^{\prime}\right)$ are X-equivalent.

Remark 2.6.62. In the unweighted situation, i.e. if $R=\prod_{i} K$, both R-equivalence and I-equivalence coincide with what is called right-equivalence in [DWZ08]. We leave it to the judgment of the reader to decide which equivalence is the "right" one in general.

Example 2.6.63. Let Q be the modular quiver
 $\bigcirc e$ with $d_{k}=d_{i}=2, d_{j}=1$ and $\sigma_{c_{0}}=0, \sigma_{c_{1}}=1$. Let A be the species of the modulation of Q over $(\mathbb{C} / \mathbb{R},-1, v)$. Then the potentials $W=v\left(c_{0}+c_{1}\right) b a+e(e+1)$ and $W^{\prime}=-v\left(c_{0}+c_{1}\right) b a+e(e+1)$ for A are I-equivalent. Indeed, it is $W^{\prime}=f(W)$ for the element $f \in \operatorname{Aut}_{K^{I}}(\widehat{H})$ that acts on the
ground ring $R=\mathbb{C} e_{k} \times \mathbb{R} e_{j} \times \mathbb{C} e_{i}$ as $\operatorname{id}_{\mathbb{C}} \times \operatorname{id}_{\mathbb{R}} \times \rho$, where ρ is complex conjugation, and on the arrows as $f\left(c_{0}\right)=c_{1}, f\left(c_{1}\right)=c_{0}, f(b)=b, f(a)=a, f(e)=e$.

2.6.8 Subpotentials and Restricted Potentials

The suggestive notations for restricted species $\left.A\right|_{S}$, restricted potential $\left.W\right|_{S}$, subpotential W^{S}, induced subquiver Q^{W}, and induced subspecies A^{W} are made precise below.

Definition 2.6.64. Let $S \subseteq Q_{1}$ and $T=Q_{1} \backslash S$. We define $\left.A\right|_{T}:=\bigoplus_{a \in T} A_{a}$.
Let $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ be a K-modulation for the weighted quiver Q and let \mathcal{H}^{\prime} be the submodulation of \mathcal{H} induced by the inclusion of the Q_{0}-subquiver of Q spanned by S. Moreover, let J be the ideal of $\widehat{H}_{\mathcal{H}}$ generated by $\left.A\right|_{T}$.
Note that $\widehat{H}_{\mathcal{H}}=\widehat{H}_{\mathcal{H}^{\prime}} \oplus J$ and denote by $\widehat{H}_{\mathcal{H}} \xrightarrow{\pi_{S}} \widehat{H}_{\mathcal{H}^{\prime}} \xrightarrow{\iota_{S}} \widehat{H}_{\mathcal{H}}$ and $\widehat{H}_{\mathcal{H}} \xrightarrow{\pi_{J}} J \xrightarrow{\iota_{J}} \widehat{H}_{\mathcal{H}}$ the canonical projections and inclusions. Finally, let W be a potential for $A_{\mathcal{H}}$ and $p_{\mathcal{H}}^{-1}(W)$ a preimage of W under the canonical projection $\widehat{H}_{\mathcal{H}} \xrightarrow{p_{\mathcal{H}}} \operatorname{Tr}\left(\widehat{H}_{\mathcal{H}}\right)$.

The restriction of W to S is the potential $\left.W\right|_{S}:=p_{\mathcal{H}^{\prime}}\left(\pi_{S}\left(p_{\mathcal{H}}^{-1}(W)\right)\right)$ for $A_{\mathcal{H}^{\prime}}$. We will often regard $\left.W\right|_{S}$ as the potential $p_{\mathcal{H}}\left(\iota_{S} \pi_{S}\left(p_{\mathcal{H}}^{-1}(W)\right)\right)$ for $A_{\mathcal{H}}$.

The subpotential of W spanned by T is the potential $W^{T}:=p_{\mathcal{H}}\left(\iota_{J} \pi_{J}\left(p_{\mathcal{H}}^{-1}(W)\right)\right)$.
Remark 2.6.65. The potentials $\left.W\right|_{S}$ and W^{T} do not depend on the choice of $p_{\mathcal{H}}^{-1}(W)$.
Remark 2.6.66. We have $W=\left.W\right|_{S}+W^{Q_{1} \backslash S}$.
Definition 2.6.67. We sometimes say that $a \in Q_{1}$ occurs in the potential W if $W^{\{a\}} \neq 0$. We use the notation Q^{W} for the Q_{0}-subquiver of Q spanned by all arrows that occur in W. We call Q^{W} the subquiver and $A^{W}:=\left.A\right|_{Q_{1}^{W}}$ the subspecies induced by W.

Remark 2.6.68. It is $W^{Q_{1}^{W}}=\left.W\right|_{Q_{1}^{W}}=W$.
Example 2.6.69. For the potential $W=\left(c_{0} b \varepsilon+c_{1} b\right) a$ in Example 2.6.30 it is $W^{\left\{c_{0}\right\}}=c_{0} b \varepsilon a$.
Example 2.6.70. Consider Example 2.6.63. Let Q^{\prime} be the subquiver $k \xrightarrow{c_{1}} i \circlearrowleft e$ of Q. The restriction of $W=v\left(c_{0}+c_{1}\right) b a+e(e+1)$ to Q_{1}^{\prime} is $\left.W\right|_{Q_{1}^{\prime}}=e(e+1)$.

2.6.9 The Splitting Theorem

For modular quivers Q we have already seen that premutation requires "local" 2-acyclicity. However, even if a modular quiver was not 2-acyclic itself, it could have a 2 -acyclic reduction $Q_{\text {red }}$. The mutation of Q was then defined as the reduced-equivalence class of the premutation of $Q_{\text {red }}$ (see Lemma 2.1.17). In order to make a similar story work for quivers with potential, Derksen, Weyman, and Zelevinsky came up with the Splitting Theorem. We generalize it to species with potential defined by cyclic Galois modulations.

Convention 2.6.71. All species A, A^{\prime} etc. are assumed to be defined by $\left(L_{i}\right)_{i}$-modulations
$\mathcal{H}=\left(L_{i}, A_{a}\right)_{i, a}, \mathcal{H}^{\prime}=\left(L_{i}, A_{a}^{\prime}\right)_{i, a}$ of modular loop-free I-quivers Q, Q^{\prime} etc. over $(L / K, \alpha)$.
As usual, we use the notation $R=\prod_{i \in I} L_{i}$ and $\widehat{H}=\widehat{H}_{\mathcal{H}}$.
Definition 2.6.72. An $\mathrm{SP}(A, W)$ or the potential W is said to be reduced if $\operatorname{ord}(W)>2$. It is called trivial if $W=\operatorname{pr}_{2}(W)$ and $\partial W=\mathfrak{m}_{\widehat{H}}$.

For two SPs (A, W) and $\left(A^{\prime}, W^{\prime}\right)$ their sum is $(A, W) \oplus\left(A^{\prime}, W^{\prime}\right):=\left(A \oplus A^{\prime}, W+W^{\prime}\right)$.
Remark 2.6.73. The sum of two trivial (resp. reduced) SPs is trivial (resp. reduced).
Remark 2.6.74. In view of Lemma 2.6.12 being reduced is invariant under I-equivalence and R-equivalence. Proposition 2.6 .44 shows that for every change of arrows $f \in \operatorname{Aut}_{R}(\widehat{H})$ a potential W for A is trivial if and only if the potential $f(W)$ is trivial.

Remark 2.6.75. Proposition 4.5 in [DWZ08] explains the terminology "trivial SP": For all SPs (A, W) and all trivial $\operatorname{SPs}\left(A^{\prime}, W^{\prime}\right)$ the canonical map $R\langle\langle A\rangle\rangle \rightarrow R\left\langle\left\langle A \oplus A^{\prime}\right\rangle\right\rangle$ induces an isomorphism $\mathcal{J}(W) \rightarrow \mathcal{J}\left(W+W^{\prime}\right)$. In particular, $\mathcal{J}\left(W^{\prime}\right) \cong R$.

Given an SP (A, W) one is usually interested in the module category of its Jacobian algebra $\mathcal{J}(W)$. In view of the last remark it seems reasonable to "split off" the trivial part. Proposition 2.6.44 gives a clue how this can be done: Find a dimension-maximal trivial SP $\left(A^{\prime}, W^{\prime}\right)$ with $(A, W) \sim_{R}\left(A_{\text {red }}, W_{\text {red }}\right) \oplus\left(A^{\prime}, W^{\prime}\right)$, then replace (A, W) by $\left(A_{\text {red }}, W_{\text {red }}\right)$. It turns out that $\left(A_{\text {red }}, W_{\text {red }}\right)$ is reduced and up to R-equivalence uniquely determined. The proof of this fact is almost identical to [DWZ08, § 4] as soon as we have the following result on "normal forms" of potentials, which generalizes (4.6) ibid.

Recall that a canceling 2-cycle in Q is a subquiver $i \underset{b}{\stackrel{a}{\rightleftarrows}} j$ with $\sigma_{b}+\sigma_{a}=0 \in \mathbb{Z} / d_{j i} \mathbb{Z}$.
Lemma 2.6.76. Every potential W for A is R-equivalent to a potential of the form

$$
\sum_{s=1}^{r} b_{s} a_{s}+\sum_{a \in T_{1}} \nu_{a} a+W^{\prime}
$$

for canceling 2 -cycles $T^{s}=\underset{b_{s}}{\stackrel{b_{s}}{\rightleftarrows}}$ in Q such that $T:=\bigoplus_{s=1}^{r} T^{s}$ and $\left(W^{\prime}\right)^{T_{1}}=0, \operatorname{ord}\left(W^{\prime}\right)>2$,
and $\nu_{a} \in \widehat{H}^{\rho_{a}^{-1}}, \operatorname{ord}\left(\nu_{a} a\right)>2$ for all $j \stackrel{a}{\leftarrow} i \in T_{1}$. and $\nu_{a} \in{ }_{j} \widehat{H}_{i}^{\rho_{a}^{-1}}, \operatorname{ord}\left(\nu_{a} a\right)>2$ for all $j \stackrel{a}{\leftarrow} i \in T_{1}$.

More precisely, there is a change of arrows $\varphi \in \operatorname{Aut}_{R}(\widehat{H})$ with $\varphi(W)$ of the form $(\mathbf{\Psi})$.

Proof. Choose a total order \leq on Q_{0}. Set $S_{j i}^{\rho}:=\left\{j \stackrel{a}{\leftarrow} i \in Q_{1} \mid \rho_{a}=\rho\right\}$ for $i, j \in Q_{0}$ and $\rho \in \operatorname{Gal}\left(L_{j i} / K\right)$. Using Corollary 2.6.57 it is not hard to see that

$$
W=\sum_{\substack{i<j \\ \gamma \rho=\mathrm{id}}} \sum_{a \in S_{j i}^{\rho}} \sum_{b \in S_{i j}^{\gamma}} b \cdot\left(\mu_{b a} \cdot a\right)+W_{>2}
$$

with $\operatorname{ord}\left(W_{>2}\right)>2$ and $\mu_{b a} \in L_{j} \otimes_{K} L_{i}$. Pick a basis $U_{j i}$ of L_{j} over $L_{j i}$ for all $i, j \in Q_{0}$. For $a \in S_{j i}^{\rho}$ with $i<j$ we will regard A_{a} as an $L^{j i}$-vector space via $A_{a}=L_{j} \otimes_{\rho} L_{i} \cong L^{j i}$ induced by $x v \otimes u \mapsto x v u$ for $x \in L_{j i}, v \in U_{j i}, u \in U_{i j}$. Similarly, for $b \in S_{i j}^{\rho^{-1}}$ with $i<j$
we will view A_{b} as an $L^{j i}$-vector space via the isomorphism $A_{b}=L_{i} \otimes_{\rho^{-1}} L_{j} \xlongequal{\cong} L^{j i}$ induced by $u \otimes v x \mapsto u v x$ for $u \in U_{i j}, v \in U_{j i}, x \in L_{j i}$. Note that ${ }_{j} A_{i}^{\rho}=\left.A\right|_{S_{j i}^{\rho}}$.

With this preparation the rest of the argument is similar to [Geu13, Remark 3.2.5 (c)]. Note that $a \mapsto \partial_{a^{\dagger}}\left(\operatorname{pr}_{2}(W)\right)$ induces an $L^{j i}$-linear map ${ }_{j} A_{i}^{\rho} \xrightarrow{g}{ }_{i} A_{j}^{\rho^{-1}}$. Pick $f \in \operatorname{Aut}_{L^{j i}}\left({ }_{j} A_{i}^{\rho}\right)$ and $h \in \operatorname{Aut}_{L^{j i}}\left({ }_{i} A_{j}^{\rho^{-1}}\right)$ such that the matrix of $h \circ g \circ f$ has block form $\left(\begin{array}{cc}\mathbf{1}_{r} & 0 \\ 0 & 0\end{array}\right)$ with respect to the (arbitrary) ordered bases $S_{j i}^{\rho}=\left\{a_{1}, \ldots, a_{p}\right\}$ and $S_{i j}^{\rho^{-1}}=\left\{b_{1}, \ldots, b_{q}\right\}$, where $\mathbf{1}_{r}$ is the $(r \times r)$-identity matrix. Let $f^{\mathbf{T}}$ be the transpose of f. A straightforward calculation shows that the element $\varphi \in \operatorname{Aut}_{R}(\widehat{H})$ defined for all $i<j$ by the substitutions $a \mapsto f^{\mathbf{T}}(a)$ for $a \in S_{j i}^{\rho}$ and $b \mapsto h(b)$ for $b \in S_{i j}^{\rho^{-1}}$ satisfies $\operatorname{pr}_{2}(\varphi(W))=\sum_{s=1}^{r} b_{s} a_{s}$.

Using Corollary 2.6.57 it is now easy to see that $\varphi(W)$ is a potential of the form ($\mathbf{\Psi}$).
Corollary 2.6.77. For every trivial $S P(A, W)$ it is $A \cong B \oplus B^{*}$ for some R-bimodule B.

Proof. With Remark 2.6.74 and Lemma 2.6.76 we can assume that $W=\sum_{s=1}^{r} b_{s} a_{s}$ for cyclic paths $b_{s} a_{s}$ with $\rho_{b_{s}}=\rho_{a_{s}}^{-1}$ and $\left|\left\{a_{s}, b_{s} \mid 1 \leq s \leq r\right\}\right|=2 r$. Since $\partial W=\mathfrak{m}_{\widehat{H}}$, we must have $\left\{a_{s}, b_{s} \mid 1 \leq s \leq r\right\}=Q_{1}$. Take $B=\left.A\right|_{\left\{a_{s} \mid 1 \leq s \leq r\right\}}$.

For convenience we reproduce a simplified version of the proof of the existence statement in the Splitting Theorem, since we use similar arguments in Chapters 5 and 6.

Theorem 2.6.78. For every $S P(A, W)$ there exists a reduced $S P\left(A_{\mathrm{red}}, W_{\mathrm{red}}\right)$ and a trivial $S P\left(A_{\text {triv }}, W_{\text {triv }}\right)$ such that $(A, W) \sim_{R}\left(A_{\text {red }}, W_{\text {red }}\right) \oplus\left(A_{\text {triv }}, W_{\text {triv }}\right)$.

Moreover, $\left(A_{\text {red }}, W_{\text {red }}\right)$ and $\left(A_{\text {triv }}, W_{\text {triv }}\right)$ are uniquely determined up to R-equivalence.
Definition 2.6.79. Every SP that is R-equivalent to $\left(A_{\text {red }}, W_{\text {red }}\right)$ is called a reduced part and every trivial SP R-equivalent to $\left(A_{\text {triv }}, W_{\text {triv }}\right)$ a trivial part of (A, W).

Proof of Theorem 2.6.78. Replacing W with an R-equivalent potential, we can assume by Lemma 2.6.76 that there are $r \in \mathbb{N}$ and cyclic paths $a_{s}^{*} a_{s}$ in Q with $\sigma_{a_{s}^{*}}+\sigma_{a_{s}}=0$ such that $S=\left\{a_{s}, a_{s}^{*} \mid 1 \leq s \leq r\right\} \subseteq Q_{1}$ has $2 r$ elements and, for $W_{\text {triv }}=\sum_{s=1}^{r} a_{s}^{*} a_{s}$ and $W_{-1}^{\prime}=0$, it is $W_{0}:=W=W_{\text {triv }}+\sum_{a \in S} \nu_{0, a} a+W_{0}^{\prime}$ where $\left(W_{0}^{\prime}\right)^{S}=0$ and $\operatorname{ord}\left(W_{0}^{\prime}-W_{-1}^{\prime}\right), \operatorname{ord}\left(\nu_{0, a} a\right)>2$.

Now assume that for some $n \in \mathbb{N}$ we have

$$
W_{n}=W_{\text {triv }}+\sum_{a \in S} \nu_{n, a} a+W_{n}^{\prime}
$$

where $\left(W_{n}^{\prime}\right)^{S}=0$ and $\operatorname{ord}\left(W_{n}^{\prime}-W_{n-1}^{\prime}\right), \operatorname{ord}\left(\nu_{n, a} a\right)>n+2$. The element $\varphi_{n+1} \in \operatorname{Aut}_{R}(\widehat{H})$ given by the substitution rules $a \mapsto a-\pi_{\rho_{a}}\left(e_{j} \nu_{n, a^{*}} e_{i}\right)$ for $j \stackrel{a}{\leftarrow} i \in S$ (with $\left.a^{* *}:=a\right)$ is unitriangular of depth $\geq n$. A straightforward computation shows

$$
W_{n+1}:=\varphi_{n+1}\left(W_{n}\right)=W_{\text {triv }}+\sum_{a \in S} \nu_{n+1, a} a+W_{n+1}^{\prime}
$$

where $\left(W_{n+1}^{\prime}\right)^{S}=0$ and $\operatorname{ord}\left(W_{n+1}^{\prime}-W_{n}^{\prime}\right), \operatorname{ord}\left(\nu_{n+1, a} a\right)>(n+1)+2$.

We get a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}_{+}}$of unitriangular automorphisms with $\lim _{n} \operatorname{depth}\left(\varphi_{n}\right)=\infty$ such that the potentials $W_{n}=\widetilde{\varphi}_{n}(W)$ with $\widetilde{\varphi}_{n}=\varphi_{n} \cdots \varphi_{1}$ define a convergent sequence with limit $\lim _{n} W_{n}=W_{\text {triv }}+W_{\text {red }}$ for $W_{\text {red }}=\lim _{n} W_{n}^{\prime}$. Note that $\left(W_{\text {red }}\right)^{S}=0$.

The R-algebra automorphism $\widetilde{\varphi}=\lim _{n} \widetilde{\varphi}_{n}$ maps the potential W to $W_{\text {red }}+W_{\text {triv }}$ such that $(A, W) \sim_{R}\left(A_{\text {red }}, W_{\text {red }}\right) \oplus\left(A_{\text {triv }}, W_{\text {triv }}\right)$ where $\left(A_{\text {triv }}, W_{\text {triv }}\right)$ is trivial and $\left(A_{\text {red }}, W_{\text {red }}\right)$ reduced, for $A_{\text {triv }}=\left.A\right|_{S}$ and $A_{\text {red }}=\left.A\right|_{Q_{1} \backslash S}$.

The arguments given in [DWZ08, § 4] to show that the SPs $\left(A_{\text {red }}, W_{\text {red }}\right)$ and $\left(A_{\text {triv }}, W_{\text {triv }}\right)$ are up to R-equivalence uniquely determined work without modification in our setting.

Example 2.6.80. Let Q be the modular quiver $j \underset{a_{0}}{\stackrel{b_{0}}{\leftrightarrows} i \underset{a_{1}}{\leftrightarrows} h \text { with } d_{k}=1 \text { and } b_{1}}$ $d_{h}=d_{i}=d_{j}=2$ and $\sigma_{a_{0}}=\sigma_{a_{1}}=\sigma_{b_{1}}=0$ and $\sigma_{b_{0}}=1$. Consider the species A defined by the modulation of Q over $(\mathbb{C} / \mathbb{R},-1, v)$. The potential $W=b_{1} a_{1}+f e b_{0}\left(1+b_{1} a_{1}\right)$ for A is R-equivalent to $W^{\prime}=b_{1} a_{1}+f e b_{0}$ (indeed, $W=\varphi\left(W^{\prime}\right)$ for $\varphi \in \operatorname{Aut}_{R}(\widehat{H})$ defined by the substitution $\left.b_{1} \mapsto b_{1}+\pi_{\text {id }}\left(f e b_{0} b_{1}\right)\right)$. Hence, we have $(A, W) \sim_{R}\left(A_{\text {red }}, W_{\text {red }}\right) \oplus\left(A_{\text {triv }}, W_{\text {triv }}\right)$ with $\left(A_{\text {red }}, W_{\text {red }}\right)=\left(\left.A\right|_{\left\{a_{0}, b_{0}, e, f\right\}}, f e b_{0}\right)$ and $\left(A_{\text {triv }}, W_{\text {triv }}\right)=\left(A_{\left\{a_{1}, b_{1}\right\}}, b_{1} a_{1}\right)$.

We conclude this subsection with a few convenient definitions.
Definition 2.6.81. Let $X \in\{R, I\}$ and $j \in Q_{0}$.
We write $(A, W) \approx_{X}\left(A^{\prime}, W^{\prime}\right)$ if $\operatorname{SPs}(A, W)$ and $\left(A^{\prime}, W^{\prime}\right)$ are reduced-X-equivalent, i.e. there are trivial SPs (B, S) and $\left(B^{\prime}, S^{\prime}\right)$ such that $(A, W) \oplus(B, S) \sim_{X}\left(A^{\prime}, W^{\prime}\right) \oplus\left(B^{\prime}, S^{\prime}\right)$.
An $\mathrm{SP}(A, W)$ is 2 -acyclic (at j) if the corresponding quiver Q is 2 -acyclic (at j). It is 2-acyclic (at j) after reduction if it has a reduced part ($A_{\text {red }}, W_{\text {red }}$) that is 2-acyclic (at j).

Remark 2.6.82. An $\mathrm{SP}(A, W)$ can fail to be 2-acyclic after reduction even if the modular quiver Q is 2-acyclic after reduction. However, if Q is 2-acyclic after reduction, there always exists a potential W for A such that (A, W) is 2-acyclic after reduction.
 Consider the species A defined by the modulation of Q over $(\mathbb{C} / \mathbb{R},-1, v)$. The SP $(A, b a)$ is 2 -acyclic after reduction, whereas the $\mathrm{SP}(A, 0)$ is not.

Definition 2.6.84. Let $S \subseteq Q_{1}$. An SP (A, W) or the potential W is in S-split form if the potential W^{S} has the form $(\underset{)}{*})$ with $\nu_{a}=0$ for all $k \stackrel{a}{\longleftarrow} i \in T_{1}$. In this case, we define

$$
\begin{array}{lll}
\operatorname{red}_{S}^{W}(Q) & :=Q-T_{1}, & \operatorname{triv}_{S}^{W}(Q) \\
\operatorname{red}_{S}(W) & :=\left.W\right|_{Q_{1} \backslash T_{1}}, & \operatorname{triv}_{S}(W) \\
\operatorname{red}_{S}(A, W) & :=\left(\left.A\right|_{Q_{1} \backslash T_{1}},\left.W\right|_{Q_{1} \backslash T_{1}}\right), & \operatorname{triv}_{S}(A, W):=\left(\left.A\right|_{T_{1}},\left.W\right|_{T_{1}}\right)
\end{array}
$$

Let $S^{j}=\left\{k \leftarrow i \in Q_{1} \mid j \in\{i, k\}\right\}$. The $\operatorname{SP}(A, W)$ or the potential W is in j-split form if it is in S^{j}-split form. In this case, we simply write $\operatorname{red}_{j}^{W}$ for $\operatorname{red}_{S^{j}}^{W}$ and red_{j} for $\operatorname{red}_{S^{j}}$.

Remark 2.6.85. If (A, W) is in S-split form, then $W=\operatorname{red}_{S}(W)+\operatorname{triv}_{S}(W)$ and $\operatorname{triv}_{S}(A, W)$ is trivial. In particular, $\operatorname{red}_{S}(A, W) \approx_{R}(A, W)$.

2.6.10 Mutation of Potentials

This final subsection defines (pre)mutation for SPs. These operations play a key role in Chapters 4 to 6. The concept was introduced in [DWZ08, §5], generalized in [LZ16, § 8] to the strongly primitive setting, and appears in the form presented below in [GL16a, § 3].

Convention 2.6.86. Fix a comfy extension $(L / K, \zeta, v)$ and a 2-acyclic vertex j in Q.
We still assume all quivers to be loop-free.
Recall $Q^{\sim j}=Q^{* j} \oplus Q^{-j-}$ and $v_{j}=v^{\left[L: L_{j}\right]}$ and $r_{k j i}=d_{k i} / d_{k j i}$ and $q_{k j i}=d_{k j i} d_{j} /\left(d_{k j} d_{j i}\right)$.
Denote by $\widehat{H}=R\langle\langle A\rangle\rangle, \widehat{\bar{H}}=R\langle\langle\bar{A}\rangle\rangle, \widehat{H}^{\sim j}=R\left\langle\left\langle A^{\sim j}\right\rangle\right\rangle$ the completed path algebras defined by the modulations of the modular quivers $Q, \bar{Q}, Q^{\sim j}$ over $(L / K, \zeta, v)$.

We begin with the construction of a K-linear map

$$
\operatorname{Tr}(\widehat{H}) \stackrel{[-]}{\longrightarrow} \operatorname{Tr}\left(\widehat{H}^{\sim j}\right)
$$

making it possible to regard potentials W for A as potentials [W] for $A^{\sim j}$.
There are embeddings of R-algebras $\widehat{H} \stackrel{\iota}{\longleftrightarrow} \widehat{\bar{H}} \stackrel{\iota^{\sim j}}{\longleftrightarrow} \widehat{H}^{\sim j}$ where ι is given by $\iota(a)=a$ for all $a \in Q_{1}$ and $\iota^{\sim j}$ by

$$
\iota^{\sim j}(c)= \begin{cases}\pi_{\rho_{c}}\left(b v_{j}^{q} a\right) & \text { for } c=[b a]_{r}^{q} \in Q_{1}^{-j-} \text { with } k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i \text { in } Q \text { and } 0 \leq q<q_{k j i} \\ c & \text { for } c \in Q_{1}^{* j}\end{cases}
$$

Remark 2.6.87. We have $\left.A^{\sim j} \xrightarrow{\cong} \bar{A}\right|_{Q_{1}^{* j}} \oplus \bigoplus_{k \stackrel{b}{\leftarrow}{ }_{\leftarrow}^{\leftarrow}{ }_{i} \text { in } Q} A_{b} \otimes_{L_{j}} A_{a} \subseteq \widehat{\bar{H}}$ induced by the map $\iota^{\sim j}$ according to Lemma 2.5.27.

Lemma 2.6.88. There is a K-linear map $\operatorname{Tr}(\widehat{H}) \stackrel{[-]}{\longleftrightarrow} \operatorname{Tr}\left(\widehat{H}^{\sim j}\right)$ induced by ι and $\iota^{\sim j}$.

Proof. Since Q is loop-free at j, for every $i_{\ell} \stackrel{a_{\ell}}{\leftarrow} \cdots \stackrel{a_{1}}{\leftarrow} i_{0}$ in Q with $\ell>0$ there is $0 \leq s \leq \ell$ with $i_{s} \neq j$. Hence, $\iota\left(A_{a_{\ell}} \cdots A_{a_{1}}\right)=\iota\left(\left(A_{a_{s}} \cdots A_{a_{1}}\right)\left(A_{a_{\ell}} \cdots A_{a_{s+1}}\right) e_{i_{s}}\right) \subseteq \operatorname{im}\left(\iota^{\sim j}\right)$ in $\operatorname{Tr}(\widehat{\bar{H}})$. This shows that $\operatorname{im}(\iota) \subseteq \operatorname{im}\left(\iota^{\sim j}\right)$ in $\operatorname{Tr}(\widehat{\bar{H}})$. The observation that ι and $\iota^{\sim j}$ induce injective maps $\operatorname{Tr}(\widehat{H}) \hookrightarrow \operatorname{Tr}(\widehat{\bar{H}}) \hookleftarrow \operatorname{Tr}\left(\widehat{H}^{\sim j}\right)$ yields a map $\operatorname{Tr}(\widehat{H}) \hookrightarrow \operatorname{Tr}\left(\widehat{H}^{\sim j}\right), W \mapsto[W]$, with the property that $\iota(W)=\iota^{\sim j}([W])$ in $\operatorname{Tr}(\widehat{\bar{H}})$.

For the sake of readability, we introduce the following two abbreviations:
Notation 2.6.89. Set $[b a]^{q}:=\sum_{0 \leq r<r_{k j i}}[b a]_{r}^{q}$ for $k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ in Q.
Notation 2.6.90. Set $\Delta_{j}:=\sum_{k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i \text { in } Q} \Delta_{b a}$ where $\Delta_{b a}:=\frac{1}{q_{k j i}} \sum_{0 \leq q<q_{k j i}} v_{j}^{-q} b^{*}[b a]^{q} a^{*}$.

Remark 2.6.91. We have $\iota^{\sim j}\left([b a]^{q}\right)=b v_{j}^{q} a$ for $k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ in Q and $0 \leq q<q_{k j i}$.
Remark 2.6.92. It is $\iota^{\sim j}\left(\Delta_{b a}\right)=\frac{1}{q_{k j i}} \sum_{q} v_{j}^{-q} b^{*} b v_{j}^{q} a a^{*}$. Hence, $\iota^{\sim j}\left(\Delta_{b a}\right)=\pi_{\mathrm{id}}\left(b^{*} b\right) \pi_{\mathrm{id}}\left(a a^{*}\right)$ in $\operatorname{Tr}(\widehat{\bar{H}})$ for id $=\mathrm{id}_{L_{j}}$ by Lemmas 2.5.22 and 2.5.40 and Corollary 2.6.56.

Now we are ready for the central definition of this subsection.
Definition 2.6.93. Let $\operatorname{Tr}(\widehat{H}) \hookrightarrow \operatorname{Tr}\left(\widehat{H}^{\sim j}\right)$ be the map $W \mapsto W^{\sim j}:=[W]+\Delta_{j}$.
For every potential W for A the premutation of W at j is the potential $W^{\sim j}$ for $A^{\sim j}$.
The premutation of the $\mathrm{SP}(A, W)$ at j is defined as the $\mathrm{SP} \widetilde{\mu}_{j}(A, W):=\left(A^{\sim j}, W^{\sim j}\right)$.
More generally, for every $k \in Q_{0}$ and SP (A, W) in k-split form with $\operatorname{red}_{k}^{W}(Q) 2$-acyclic at k, the premutation at k is $\widetilde{\mu}_{k}(A, W):=\widetilde{\mu}_{k}\left(\operatorname{red}_{k}(A, W)\right)$ and $\widetilde{\mu}_{k}(W):=\left(\operatorname{red}_{k}(W)\right)^{\sim k}$.

Lemma 2.6.94. Let $\left\{k \leftarrow i \in Q_{1} \mid j \in\{i, k\}\right\} \subseteq S \subseteq Q_{1}$. For every potential W for A

$$
\widetilde{\mu}_{j}(A, W)=\left(\left.A\right|_{Q_{1} \backslash S} \oplus\left(\left.A\right|_{S}\right)^{\sim j},\left.W\right|_{Q_{1} \backslash S}+\left(W^{S}\right)^{\sim j}\right)
$$

Proof. This is obvious.

Example 2.6.95. Let Q be the modular quiver $k \xrightarrow[c]{ } i$ with $d_{k}=d_{i}=2, d_{j}=1$ and $\sigma_{c}=r \in \mathbb{Z} / 2 \mathbb{Z}$, which was examined in Example 2.1.18. Consider the species A defined by the modulation of Q over $(\mathbb{C} / \mathbb{R},-1, v)$. The premutation of the potential $W=c b a$ for A is $W^{\sim j}=[W]+\Delta_{j}$ where

$$
[W]=c[b a]^{0}=c\left([b a]_{0}^{0}+[b a]_{1}^{0}\right)=c[b a]_{r}^{0}, \quad \Delta_{j}=\Delta_{b a}=b^{*}[b a]^{0} a^{*}=b^{*}\left([b a]_{0}^{0}+[b a]_{1}^{0}\right) a^{*} .
$$

One easily checks that $W \sim_{R} W_{\text {red }}+W_{\text {triv }}$ where $W_{\text {red }}=b^{*}[b a]_{r+1}^{0} a^{*}$ is a reduced potential and $\left(\left.A\right|_{\left\{c,[b a]_{r}^{0}\right\}}, W_{\text {triv }}=c[b a]_{r}^{0}\right)$ a trivial SP.

Example 2.6.96. Let Q be the modular quiver $k \xrightarrow[c]{ } i$ with $d_{k}=d_{i}=1, d_{j}=2$. Consider the species A defined by the modulation of Q over $(\mathbb{C} / \mathbb{R},-1, v)$. We have $v_{j}=v$. The premutation of the potential $W=c b(x+y v) a$ for A with $x, y \in \mathbb{R}$ is $W^{\sim j}=[W]+\Delta_{j}$ where

$$
[W]=x c[b a]^{0}+y c[b a]^{1}, \quad \Delta_{j}=\Delta_{b a}=\frac{1}{2}\left(b^{*}[b a]^{0} a^{*}+v^{-1} b^{*}[b a]^{1} a^{*}\right) .
$$

If $x+y v \neq 0$, it is $W \sim_{R} W_{\text {red }}+W_{\text {triv }}$ for the reduced potential $W_{\text {red }}=b^{*}[b a]^{0} a^{*}$ and the trivial SP $\left(\left.A\right|_{\left\{c,[b a]^{1}\right\}}, W_{\text {triv }}=c[b a]^{1}\right)$.

The next lemma is the key to the verification that premutation preserves R-equivalence. It is Lemma 10.4 in [GL16a] and builds on [LZ16, Lemma 8.4] and [DWZ08, Lemma 5.3].

Notation 2.6.97. Set $\Delta_{j, \text { out }}:=\sum_{k \stackrel{b}{\leftarrow} j \in Q_{1}} \pi_{\mathrm{id}}\left(b^{*} b\right)$ and $\Delta_{j, \text { in }}:=\sum_{j \leftarrow_{\leftarrow}^{a}{ }_{i \in Q_{1}}} \pi_{\mathrm{id}}\left(a a^{*}\right)$.

Remark 2.6.98. We have $\iota^{\sim j}\left(\Delta_{j}\right)=\Delta_{j, \text { out }} \Delta_{j, \text { in }}$ in $\operatorname{Tr}(\widehat{\bar{H}})$.
Lemma 2.6.99. For every $\varphi \in \operatorname{Aut}_{R}(\widehat{H})$ there exists $\bar{\varphi} \in \operatorname{Aut}_{R}(\widehat{\bar{H}})$ satisfying $\bar{\varphi} \circ \iota=\iota \circ \varphi$ and $\operatorname{im}\left(\bar{\varphi} \circ \iota^{\sim j}\right)=\operatorname{im}\left(\iota^{\sim j}\right)$ and $\bar{\varphi}\left(\Delta_{j, \text { out }}\right)=\Delta_{j, \text { out }}$ and $\bar{\varphi}\left(\Delta_{j, \text { in }}\right)=\Delta_{j, \text { in }}$.

Proof. Abbreviate $\mathfrak{m}=\mathfrak{m}_{\hat{\bar{H}}}$. Set $\bar{\varphi}(c):=\varphi(c)$ for all $c \in Q_{1}$. This will ensure $\bar{\varphi} \circ \iota=\iota \circ \varphi$.
It remains to define $\bar{\varphi}\left(a^{*}\right)$ in ${ }_{i} \mathfrak{m}_{j}^{\rho_{a^{*}}}$ for $j \stackrel{a}{\leftarrow} i \in Q_{1}$ and $\bar{\varphi}\left(b^{*}\right)$ in ${ }_{j} \mathfrak{m}_{k}^{\rho_{b^{*}}}$ for $k \stackrel{b}{\leftarrow} j \in Q_{1}$ such that the induced $\bar{\varphi}$ is invertible, maps $\iota^{\sim j}\left(\widehat{H}^{\sim j}\right)$ to itself, and fixes $\Delta_{j, \text { out }}$ and $\Delta_{j, \text { in }}$.

Let $\widehat{\varphi}\left(a^{*}\right)$ in ${ }_{i} \mathfrak{m}_{j}$ for $j \stackrel{a}{\leftarrow} i \in Q_{1}$ and $\widehat{\varphi}\left(b^{*}\right)$ in ${ }_{j} \mathfrak{m}_{k}$ for $k \stackrel{b}{\leftarrow} j \in Q_{1}$ be defined just as in the proof of [LZ16, Lemma 8.4]. Using that $d_{j} \pi_{\mathrm{id}}(z)=\sum_{q=0}^{d_{j}-1} v_{j} z v_{j}^{-1}=\sum_{q=0}^{d_{j}-1} v_{j}^{-1} z v_{j}$ for $\mathrm{id}=\mathrm{id}_{L_{j}}$ by Lemma 2.5.40, the identities (8.20) and (8.15) in [LZ16] assume the form

$$
\sum_{k \overleftarrow{b} j \in Q_{1}} \pi_{\mathrm{id}}\left(\widehat{\varphi}\left(b^{*}\right) b\right)=\Delta_{j, \text { out }}, \quad \sum_{j \overleftarrow{a} i \in Q_{1}} \pi_{\mathrm{id}}\left(a \widehat{\varphi}\left(a^{*}\right)\right)=\Delta_{j, \text { in }}
$$

The invertibility of the matrices C_{0} and D_{0} in [LZ16, proof of Lemma 8.4] shows that $\widehat{\varphi}$ induces an R-bimodule automorphism of $e_{j} A^{* j} \oplus A^{* j} e_{j} \subseteq \bar{A}$.

Setting $\bar{\varphi}\left(c^{*}\right):=\pi_{\rho_{c^{*}}}\left(\widehat{\varphi}\left(c^{*}\right)\right)$ for all $k \stackrel{c}{\leftarrow} i \in Q_{1}$ with $j \in\{i, k\}$, we get by Lemma 2.6.35 an induced endomorphism $\bar{\varphi} \in \operatorname{End}_{R}(\widehat{\bar{H}})$. The map $\bar{\varphi}$ is an automorphism according to Lemma 2.6.20 because $\left.\bar{\varphi}_{1}\right|_{\bar{A}}=\left.\widehat{\varphi}_{1}\right|_{\bar{A}}$ is an automorphism. Clearly, $\operatorname{im}\left(\bar{\varphi} \circ \iota^{\sim j}\right)=\operatorname{im}\left(\iota^{\sim j}\right)$.

Finally, $\bar{\varphi}\left(\Delta_{j, \text { in }}\right)=\sum_{j \stackrel{a}{\leftrightarrows}}{ }_{i \in Q_{1}} \pi_{\text {id }}\left(a \bar{\varphi}\left(a^{*}\right)\right)=\sum_{j{ }_{\longleftarrow}^{a}}{ }_{i \in Q_{1}} \pi_{\text {id }}\left(a \widehat{\varphi}\left(a^{*}\right)\right)=\Delta_{j, \text { in }}$, where the identity in the middle uses Lemma 2.6.55. Similarly, one can prove $\bar{\varphi}\left(\Delta_{j, \text { out }}\right)=\Delta_{j, \text { out }}$.

The last lemma leads to the following important result.
Theorem 2.6.100. If $(A, W) \sim_{R}\left(A^{\prime}, W^{\prime}\right)$, then $\widetilde{\mu}_{j}(A, W) \sim_{R} \widetilde{\mu}_{j}\left(A^{\prime}, W^{\prime}\right)$.

Proof. The proof of [DWZ08, Theorem 5.2] works as is.

The next theorem is the SP analog of Lemma 2.1.17. It records the crucial fact that, up to reduced- R-equivalence, premutation at j is an involutive operation for SPs that are 2 -acyclic at j after reduction. The consequence is that the rule $\mathcal{J}(W) \mapsto \mathcal{J}\left(W^{\sim j}\right)$ defines an involution for isomorphism classes of Jacobian algebras by Proposition 2.6.44.

Theorem 2.6.101. Let $\left(d_{i}\right)_{i \in I}$ be a tuple of positive integers and let $R=\prod_{i \in I} L_{i}$ where L_{i} is the intermediate field of L / K of degree d_{i} over K for a comfy extension $(L / K, \zeta, v)$.

Denote by $\mathcal{A}(j)$ the set of reduced- R-equivalence classes of SPs over R that are 2-acyclic at $j \in I$ after reduction. We have an involution

$$
\mathcal{A}(j) \xrightarrow{\mu_{j}} \mathcal{A}(j),
$$

called mutation, given by $(A, W) \mapsto \widetilde{\mu}_{j}(A, W)$ for $S P s(A, W)$ that are 2-acyclic at j.

Proof. For the well-definedness of μ_{j} use Theorems 2.6.78 and 2.6.100. The proof that μ_{j} is involutive is almost the same as the one of [DWZ08, Theorem 5.7] and [LZ16, Theorem 8.10]. We sketch it briefly. A straightforward calculation shows

$$
W_{0}=\left(W^{\sim j}\right)^{\sim j}=[W]+\sum_{k \overleftarrow{b} j \overleftarrow{a}_{a} i} q_{k j i}^{-1} \sum_{q} v_{j}^{-\delta_{q \neq 0} q_{k j i}}\left[a^{*} b^{*}\right]^{-q}\left([b a]^{q}+b v_{j}^{q} a\right)
$$

The R-algebra automorphism of $\left(\widehat{H}^{\sim j}\right)^{\sim j}=R\left\langle\left\langle\left(A^{\sim j}\right)^{\sim j}\right\rangle\right\rangle$ determined by the substitution rules $b \mapsto-b$ for $k \stackrel{b}{\leftarrow} j \in Q_{1}$ and $\left[a^{*} b^{*}\right]^{q} \mapsto q_{k j i} v_{j}^{\delta_{q \neq 0} q_{k j i}}\left[a^{*} b^{*}\right]^{q}$ maps W_{0} to

$$
W_{1}=[W]+\sum_{k \overleftarrow{b} j \overleftarrow{a}} \sum_{q}\left[a^{*} b^{*}\right]^{-q}\left([b a]^{q}-b v_{j}^{q} a\right) .
$$

The element in $\operatorname{Aut}_{R}\left(\left(\widehat{H}^{\sim j}\right)^{\sim j}\right)$ given by the rules $[b a]^{q} \mapsto[b a]^{q}+b v_{j}^{q} a \operatorname{maps} W_{1}$ to

$$
W_{2}=W+\sum_{k \overleftarrow{b} j \not{a} i} \sum_{q}[b a]^{-q}\left(\left[a^{*} b^{*}\right]^{q}+\nu_{b, a, q}\right)
$$

where $\operatorname{ord}\left(\nu_{b, a, q}\right)>1$ and none of the arrows $\left[a^{*} b^{*}\right]_{r}^{q}$ occurs in any of the elements $\nu_{b^{\prime}, a^{\prime}, q^{\prime}}$. Finally, the rules $\left[a^{*} b^{*}\right]^{q} \mapsto\left[a^{*} b^{*}\right]^{q}-\nu_{b, a, q}$ send W_{2} to the potential $W+W_{\text {triv }}$ where

$$
W_{\text {triv }}=\sum_{k \overleftarrow{b} j \overleftarrow{a}_{i}} \sum_{q}[b a]^{-q}\left[a^{*} b^{*}\right]^{q}
$$

It merely remains to observe that the subquiver induced by $W_{\text {triv }}$ is the trivial modular quiver $T=\bigoplus_{b, a, r, q} T_{b, a}^{r, q}$ described in the proof of Lemma 2.1.17. Thus $\left(Q^{\sim j}\right)^{\sim j}=Q \oplus T$.

All in all, this proves $\left(\left(A^{\sim j}\right)^{\sim j},\left(W^{\sim j}\right)^{\sim j}\right) \sim_{R}\left(\left(A^{\sim j}\right)^{\sim j}, W+W_{\text {triv }}\right) \approx_{R}(A, W)$.

Finally, we recall the important notion of non-degeneracy from [DWZ08, Definition 7.2].
Definition 2.6.102. An SP (A, W) or the potential W is non-degenerate if for all $\ell \in \mathbb{N}$ and every finite sequence $\left(i_{1}, \ldots, i_{\ell}\right)$ of vertices in Q each of the reduced- R-equivalence classes $(A, W), \mu_{i_{1}}(A, W), \ldots, \mu_{i_{\ell}} \cdots \mu_{i_{1}}(A, W)$ contains a 2 -acyclic SP.

Remark 2.6.103. If the modular quiver Q is not admissible in the sense of Definition 2.1.19, every potential W for A is degenerate.

3 Symmetric Modulations

This chapter is concerned with a generalization of many of the results from [GLS16a] to a larger class of finite-dimensional algebras. In our terminology, the algebras considered ibid. are path algebras $R\langle A\rangle$ of weighted acyclic quivers $Q=(Q, d)$ defined by the K-modulation $\left(R_{i}, A_{a}\right)_{i \in Q_{0}, j \overleftarrow{j}^{a}}{ }_{i \in Q_{1}}$ where $R_{i}=K\left[\varepsilon_{i}\right] /\left(\varepsilon_{i}^{d_{i}}\right)$ are truncated polynomial rings and

$$
A_{a}=K\left[\varepsilon_{j}, \varepsilon_{i}\right] /\left(\varepsilon_{j}^{f_{i j}}-\varepsilon_{i}^{f_{j i}}, \varepsilon_{j}^{d_{j}}, \varepsilon_{i}^{d_{i}}\right)
$$

are R_{j} - R_{i}-bimodules, free on the left of rank $f_{j i}=d_{i} / \operatorname{gcd}\left(d_{j}, d_{i}\right)$ and free on the right of rank $f_{i j}=d_{j} / \operatorname{gcd}\left(d_{i}, d_{j}\right)$. The majority of the arguments given in [GLS16a] are independent of this explicit modulation. They work equally well for all K-modulations $\left(R_{i}, A_{a}\right)_{i, a}$ of weighted acyclic quivers Q where the R_{i} are symmetric local K-algebras.

This note was written while working on a version of Crawley-Boevey and Holland's [CH98] deformed preprojective algebras for symmetric modulations. Since then a very similar approach was proposed in [LY15] using the language of matrix algebras.

Convention 3.0.1. Fix a weighted quiver Q and a K-modulation $\mathcal{H}=\left(R_{i}, A_{a}\right)_{i, a}$ for Q. We will assume that \mathcal{H} is minimal, i.e. $\operatorname{dim}_{K}\left(A_{a}\right)=d^{j i}=\operatorname{lcm}\left(d_{j}, d_{i}\right)$ for all $j \stackrel{a}{\leftarrow} i \in Q_{1}$.
Denote by $H=R\langle A\rangle$ the path algebra defined by \mathcal{H}.
Remark 3.0.2. It is possible to drop the assumption that \mathcal{H} is minimal by defining Cartan matrix, Weyl group, and bilinear forms in terms of \mathcal{H} instead of Q.

3.1 Gorenstein Tensor Algebras

The algebras investigated in [GLS16a] belong to a special class of tensor algebras $H=R\langle A\rangle$, which are 1-Gorenstein due to the self-injectivity of R and the projectivity of ${ }_{R} A$ and A_{R}.

Let us be more precise. For a ring Λ denote by $\operatorname{Proj}^{n}(\Lambda)$ the full subcategory of $\operatorname{Mod}(\Lambda)$ consisting of all modules of projective dimension less than $n+1$ where $n \in \mathbb{N} \cup\{\infty\}$ and the convention $\infty+1=\infty$. Dually, $\operatorname{Inj}^{n}(\Lambda)$ is defined with projective replaced by injective. Let R be an n-Gorenstein ring. Then, by [Iwa80] it is

$$
\mathcal{F}(R):=\operatorname{Proj}^{\infty}(R)=\operatorname{Inj}^{\infty}(R)=\operatorname{Proj}^{n}(R)=\operatorname{Inj}^{n}(R) .
$$

Form the tensor algebra $H=R\langle A\rangle$ of an R-bimodule A that is projective on the left and projective on the right. An application of [Iwa80; Rog75] yields that H is $(n+1)$-Gorenstein
with

$$
\mathcal{F}(H)=\operatorname{Mod}(H) \cap \mathcal{F}(R)=: \mathcal{F}_{R}(H) .
$$

This section revises and generalizes [GLS16a, $\S \S 3$ and 4].
Remark 3.1.1. Given that $\operatorname{dim}_{K} R<\infty, R$ is 0-Gorenstein if and only if R is self-injective.

3.1.1 Projectivity and Injectivity over the Ground Ring

Notation 3.1.2. We use the abbreviations

$$
\operatorname{Proj}_{R}^{n}(H):=\operatorname{Mod}(H) \cap \operatorname{Proj}^{n}(R), \quad \operatorname{Inj}_{R}^{n}(H):=\operatorname{Mod}(H) \cap \operatorname{Inj}^{n}(R) .
$$

Denote by $\operatorname{proj}^{n}(H), \operatorname{inj}^{n}(H), \operatorname{proj}_{R}^{n}(H), \operatorname{inj}_{R}^{n}(H)$ the full subcategories of $\operatorname{Mod}(H)$ obtained by intersecting $\operatorname{Proj}^{n}(H), \operatorname{Inj}^{n}(H), \operatorname{Proj}_{R}^{n}(H), \operatorname{Inj}_{R}^{n}(H)$, respectively, with $\bmod (H)$.

If R is n-Gorenstein, define $\mathfrak{f}(R):=\mathcal{F}(R) \cap \bmod (R)$ and $\mathfrak{f}_{R}(H):=\mathcal{F}_{R}(H) \cap \bmod (H)$.
Remark 3.1.3. $M \in \operatorname{Mod}(H)$ lies in $\operatorname{Proj}_{R}^{n}(H)$ if and only if $M_{i} \in \operatorname{Proj}^{n}\left(R_{i}\right)$ for all $i \in Q_{0}$. Dually, $M \in \operatorname{Mod}(H)$ belongs to $\operatorname{Inj}_{R}^{n}(H)$ if and only if $M_{i} \in \operatorname{Inj}{ }^{n}\left(R_{i}\right)$ for all $i \in Q_{0}$.

Notation 3.1.4. Denote by $\operatorname{Mod}_{\text {l.f. }}(H)$ the full subcategory of $\operatorname{Mod}(H)$ consisting of the locally free modules (see Definition 2.3.7). Set $\bmod _{\text {l.f. }}(H):=\operatorname{Mod}_{\text {l.f. }}(H) \cap \bmod (H)$.

Definition 3.1.5. A locally free module is called locally-free simple if it has no non-zero proper locally free submodules. For $M \in \bmod _{\text {l.f. }}(H)$ define its rank vector as

$$
\underline{\operatorname{rank}}(M):=\sum_{i \in Q_{0}} \operatorname{rank}\left(M_{i}\right) \cdot e_{i} \in \mathbb{Z}^{Q_{0}}
$$

Remark 3.1.6. $\bmod _{\text {l.f. }}(H) \subseteq \bmod (H) \cap \operatorname{proj}(R)=\operatorname{proj}_{R}^{0}(H)$. If \mathcal{H} is local, equality holds.
Notation 3.1.7. For $i \in Q_{0}$ denote by E_{i} the locally-free simple H-module that is given by $\left(E_{i}\right)_{i}=e_{i} E_{i}={ }_{R_{i}} R_{i}$ and $\left(E_{i}\right)_{j}=e_{j} E_{i}=0$ for $j \neq i$. Note that $\underline{\operatorname{rank}}\left(E_{i}\right)=e_{i}$.

Remark 3.1.8. If Q is acyclic and R_{i} is local, the projective H-module $P_{i}=H e_{i}$ and the injective H-module $I_{i}=\left(e_{i} H\right)^{*}$ are indecomposable.

We begin with an elementary observation corresponding to [GLS16a, Proposition 3.1]. Recall that the acyclicity of Q is equivalent to $\operatorname{dim}_{K} H<\infty$.

Lemma 3.1.9. Every projective H-module is a projective R-module. More generally,

$$
\operatorname{Proj}^{n}(H) \subseteq \operatorname{Proj}_{R}^{n}(H)
$$

If Q is acyclic, the projective H-modules P_{i} are locally free with

$$
\underline{\operatorname{rank}}\left(P_{i}\right)=e_{i}+\sum_{j \leftarrow ্}{ }_{i \in Q_{1}} f_{j i} \cdot \underline{\operatorname{rank}}\left(P_{j}\right)
$$

Proof. By definition $H=R\langle A\rangle$ and ${ }_{R} A$ is projective such that [Rog75, Corollary 3] implies the first statement. The second one is a straightforward consequence.

The last statement can be proved with a discussion similar to the one in [GLS16a, § 3.1]. We present a slightly less explicit version: The cokernel of the injective multiplication map $H \otimes_{R} A \rightarrow H$ is as an H-module isomorphic to $\bigoplus_{i \in Q_{0}} E_{i}$. With this observation we get an exact sequence of H-modules

$$
0 \longrightarrow H \otimes_{R} A=\bigoplus_{a \in Q_{1}} H \otimes_{R} A_{a} \longrightarrow H=\bigoplus_{i \in Q_{0}} P_{i} \longrightarrow \bigoplus_{i \in Q_{0}} E_{i} \longrightarrow 0
$$

which is the sum over $i \in Q_{0}$ of the short exact sequences of H-modules

$$
0 \longrightarrow \underset{j \overleftarrow{a} i \in Q_{1}}{ } P_{j} \otimes_{R_{j}} A_{a} \longrightarrow P_{i} \longrightarrow E_{i} \longrightarrow 0
$$

If P_{j} is locally free for all j, then $\underline{\operatorname{rank}}\left(P_{j} \otimes_{R_{j}} A_{a}\right)=\operatorname{rank}_{R_{j}}\left(A_{a}\right) \cdot \underline{\operatorname{rank}}\left(P_{j}\right)=f_{j i} \cdot \underline{\operatorname{rank}}\left(P_{j}\right)$. So to prove the formula in the lemma it only remains to show that all P_{j} are locally free.

Now $P_{j} \cong \bigoplus_{\ell} \bigoplus_{a_{1}, \ldots, a_{\ell}} A_{a_{\ell}} \otimes_{R} \cdots \otimes_{R} A_{a_{1}} \otimes_{R} E_{j}$ where the sum is taken over all $\ell \in \mathbb{N}$ and all arrows $a_{1}, \ldots, a_{\ell} \in Q_{1}$ satisfying $s\left(a_{1}\right)=j$ and $i_{p}:=s\left(a_{p+1}\right)=t\left(a_{p}\right)$ for $0<p<\ell$. Set $i_{\ell}:=t\left(a_{\ell}\right)$. The $R_{i_{\ell}}$-module $A_{a_{\ell}} \otimes_{R} \cdots \otimes_{R} A_{a_{1}} \otimes_{R} E_{j} \cong A_{a_{\ell}} \otimes_{R_{i_{\ell-1}}} \cdots \otimes_{R_{i_{1}}} A_{a_{1}} \otimes_{R_{j}} E_{j}$ is free, since for $0<p \leq \ell$, each $A_{a_{p}}$ is a free $R_{i_{p}}$-module. Thus P_{j} is locally free.

We have the following dual version of Lemma 3.1.9.
Lemma 3.1.10. Every injective H-module is an injective R-module. More generally,

$$
\operatorname{Inj}^{n}(H) \subseteq \operatorname{Inj}_{R}^{n}(H)
$$

If Q is acyclic and R self-injective, the injective H-modules I_{i} are locally free with

$$
\underline{\operatorname{rank}}\left(I_{i}\right)=e_{i}+\sum_{i \leftarrow ্} \sum_{j \in Q_{1}} f_{j i} \cdot \underline{\operatorname{rank}}\left(I_{j}\right)
$$

Proof. Since $H=R\langle A\rangle$ and A_{R} is projective, [Rog75, Corollary 2] proves the first statement. The second one is a straightforward consequence.

There is an obvious dual version of Lemma 3.1.9 for right modules (since A_{R} is projective and $\left(A_{a}\right)_{R_{i}}$ is free for all $\left.j \stackrel{a}{\leftarrow} i \in Q_{1}\right)$. Hence, using ${ }_{R_{i}}\left(R_{i}\right)^{*} \cong{ }_{R_{i}} R_{i}$ for all i, the last claim follows by applying the duality $(-)^{*}$ to the projective right H-modules $e_{i} H$.

Corollary 3.1.11. If R is Gorenstein, $\operatorname{Proj}^{\infty}(H) \cup \operatorname{Inj}^{\infty}(H) \subseteq \mathcal{F}_{R}(H)$.

Proof. Use Lemmas 3.1.9 and 3.1.10 and $\mathcal{F}_{R}(H)=\operatorname{Proj}_{R}^{\infty}(H)=\operatorname{Inj}_{R}^{\infty}(H)$.

3.1.2 Rank Vectors of Projectives and Injectives

We state [GLS16a, Lemmas 3.2, 3.3 and Proposition 3.4] in our context.
Corollary 3.1.12. Assume Q is acyclic. Choose a total order $i_{1}<\cdots<i_{n}$ on Q_{0} such that there are no arrows $i_{k} \leftarrow i_{\ell}$ in Q with $i_{k}>i_{\ell}$. Then

$$
\underline{\operatorname{rank}}\left(P_{i_{k}}\right)=s_{i_{1}} \cdots s_{i_{k-1}}\left(e_{i_{k}}\right) \in \Delta_{\mathrm{re}}^{+}(Q),
$$

and, if R is self-injective, also

$$
\underline{\operatorname{rank}}\left(I_{i_{k}}\right)=s_{i_{n}} \cdots s_{i_{k+1}}\left(e_{i_{k}}\right) \in \Delta_{\mathrm{re}}^{+}(Q) .
$$

Proof. Let $x_{k}=s_{i_{1}} \cdots s_{i_{k-1}}\left(e_{i_{k}}\right)$. It is well-known and easily verified by induction that

$$
x_{k}=e_{i_{k}}-\sum_{j<i_{k}} c_{j i_{k}} x_{j}=e_{i_{k}}+\sum_{j \leftarrow i_{k}} f_{j i_{k}} x_{j} .
$$

In combination with Lemma 3.1.9 we get the first identity, since the e_{j} form a basis of $\mathbb{Z}^{Q_{0}}$. The second identity can be proved analogously using Lemma 3.1.10.

3.1.3 Canonical Short Exact Sequences

The next result is standard. It can be found as a lemma in [Rog75].
Lemma 3.1.13. There is a short exact sequence of H-bimodules

$$
0 \longrightarrow H \otimes_{R} A \otimes_{R} H \xrightarrow{\partial} H \otimes_{R} H \xrightarrow{\nu} H \longrightarrow 0
$$

with $\partial(1 \otimes x \otimes 1)=x \otimes 1-1 \otimes x$ and $\nu(1 \otimes 1)=1$.
Corollary 3.1.14. For all $M \in \operatorname{Mod}(H)$ there is a short exact sequence

$$
0 \longrightarrow H \otimes_{R} A \otimes_{R} M \xrightarrow{\partial} H \otimes_{R} M \xrightarrow{\nu} M \longrightarrow 0
$$

of H-modules with $\partial(1 \otimes x \otimes m)=x \otimes m-1 \otimes x m$ and $\nu(1 \otimes m)=m$.
This is a projective resolution for $M \in \operatorname{Proj}_{R}^{0}(H)$. More generally, for $M \in \operatorname{Proj}_{R}^{n}(H)$,

$$
H \otimes_{R} M, \quad H \otimes_{R} A \otimes_{R} M \in \operatorname{Proj}^{n}(H) .
$$

Proof. Apply $-\otimes_{H} M$ to the sequence in Lemma 3.1.13 to obtain a short exact sequence isomorphic to the one in the statement. Since ${ }_{R} A$ is projective, ${ }_{R}\left(A \otimes_{R} P\right)$ is projective for every projective R-module P. The functor $A \otimes_{R}$ - is exact, because A_{R} is projective. Applying it to a projective resolution for ${ }_{R} M$ of minimal length shows $A \otimes_{R} M \in \operatorname{Proj}^{n}(R)$. Now $H \otimes_{R} M, H \otimes_{R}\left(A \otimes_{R} M\right) \in \operatorname{Proj}^{n}(H)$ by [Rog75, Corollary 4].

Corollary 3.1.14 has a dual version, which is also treated in [Rog75].

Corollary 3.1.15. For all $M \in \operatorname{Mod}(H)$ there is a short exact sequence

$$
0 \longrightarrow M \longrightarrow \operatorname{Hom}_{R}(H, M) \longrightarrow \operatorname{Hom}_{R}\left(H, \operatorname{Hom}_{R}(A, M)\right) \longrightarrow 0
$$

of H-modules.
This is an injective resolution for $M \in \operatorname{Inj}_{R}^{0}(H)$. More generally, for $M \in \operatorname{Inj}_{R}^{n}(H)$,

$$
\operatorname{Hom}_{R}(H, M), \quad \operatorname{Hom}_{R}\left(H, \operatorname{Hom}_{R}(A, M)\right) \in \operatorname{Inj}^{n}(H) .
$$

Proof. Apply $\operatorname{Hom}_{H}(-, M)$ to the sequence in Lemma 3.1.13 to obtain the short exact sequence in the statement. Because A_{R} is projective, ${ }_{R}\left(\operatorname{Hom}_{R}\left({ }_{R} A, I\right)\right)$ is injective for every injective R-module I. The functor $\operatorname{Hom}_{R}\left({ }_{R} A,-\right)$ is exact, since ${ }_{R} A$ is projective. Applying it to an injective resolution for ${ }_{R} M$ of minimal length shows that $\operatorname{Hom}_{R}(A, M) \in \operatorname{Inj}{ }^{n}(R)$. Now $\operatorname{Hom}_{R}(H, M), \operatorname{Hom}_{R}\left(H, \operatorname{Hom}_{R}(A, M)\right) \in \operatorname{Inj}^{n}(H)$ by [Rog75, Corollary 4].

Remark 3.1.16. Let $M \in \bmod _{\text {l.f. }}(H)$. A discussion similar to the one at the end of the proof of Lemma 3.1.9 shows that as H-modules

$$
H \otimes_{R} M \cong \bigoplus_{i \in Q_{0}} P_{i}^{\operatorname{rank}\left(M_{i}\right)}, \quad H \otimes_{R} A \otimes_{R} M \cong \bigoplus_{j \overleftarrow{a} i \in Q_{1}} P_{j}^{f_{j i} \cdot \operatorname{rank}\left(M_{i}\right)}
$$

Moreover, if Q is acyclic and R self-injective, similarly

$$
\operatorname{Hom}_{R}(H, M) \cong \bigoplus_{i \in Q_{0}} I_{i}^{\mathrm{rank}\left(M_{i}\right)}, \quad \operatorname{Hom}_{R}\left(H, \operatorname{Hom}_{R}(A, M)\right) \cong \bigoplus_{i \leftarrow a j \in Q_{1}} I_{j}^{f_{j i} \cdot \operatorname{rank}\left(M_{i}\right)}
$$

3.1.4 Gorenstein Ground Rings

We generalize [GLS16a, § 3.5] combining results from [Rog75; Iwa80; AS81; AR91].
Proposition 3.1.17. There are inclusions:

$$
\begin{aligned}
& \operatorname{Proj}^{n}(H) \subseteq \operatorname{Proj}_{R}^{n}(H) \\
& \operatorname{Inj}^{n}(H) \subseteq \operatorname{Proj}^{n+1}(H) \\
& \operatorname{Inj}_{R}^{n}(H) \subseteq \operatorname{Inj}^{n+1}(H)
\end{aligned}
$$

Proof. This follows from Lemmas 3.1.9 and 3.1.10 and Corollaries 3.1.14 and 3.1.15.
Proposition 3.1.18. If R is n-Gorenstein, H is $(n+1)$-Gorenstein with $\mathcal{F}(H)=\mathcal{F}_{R}(H)$.

Proof. On the one hand, Proposition 3.1.17 implies that $\mathcal{F}_{R}(H) \subseteq \operatorname{Proj}^{n+1}(H) \cap \operatorname{Inj}{ }^{n+1}(H)$. On the other hand, $\operatorname{Proj}^{\infty}(H) \cup \operatorname{Inj}(H) \subseteq \mathcal{F}_{R}(H)$ by Corollary 3.1.11. Hence,

$$
\mathcal{F}_{R}(H)=\operatorname{Proj}^{\infty}(H)=\operatorname{Inj}^{\infty}(H)=\operatorname{Proj}^{n+1}(H)=\operatorname{Inj}^{n+1}(H)
$$

In particular, we have $\operatorname{idim}_{H} H \leq n+1$. With right-module versions of Proposition 3.1.17 and Corollary 3.1.11 one can similarly deduce $\operatorname{idim} H_{H} \leq n+1$.

The main theorem of $[\operatorname{Rog} 75]$ for path algebras reads:
Corollary 3.1.19. gldim $(R) \leq \lg \operatorname{ldim}(H) \leq \operatorname{gldim}(R)+1$.

Proof. Use Proposition 3.1.17 and the fact that by Corollary 2.2.19 every module in $\operatorname{Mod}(R)$ can be extended to a module in $\operatorname{Mod}(H)$.

We get the generalization of [GLS16a, Proposition 3.5, Corollary 3.7, and Theorem 3.9]:
Corollary 3.1.20. If \mathcal{H} is local and R self-injective, the path algebra H is 1-Gorenstein with $\bmod _{\text {l.f. }}(H)=\mathfrak{f}(H)$.

Proof. This follows from Remarks 3.1.1 and 3.1.6 and Proposition 3.1.18.
Corollary 3.1.21. Assume that Q is acyclic and R self-injective. Then $\mathfrak{f}(H)=\mathfrak{f}_{R}(H)$ is functorially finite in $\bmod (H)$. In particular, $\mathfrak{f}(H)$ has Auslander-Reiten sequences.

Proof. By Proposition 3.1.18, we have $\mathfrak{f}(H)=\operatorname{proj}^{1}(H)=\operatorname{inj}^{1}(H)$. As pointed out in the proof of [GLS16a, Theorem 3.9] the category $\mathfrak{f}(H)$ is functorially finite in $\bmod (H)$ by [AR91, Proposition 4.2] and thus has Auslander-Reiten sequences by [AS81, Theorem 2.4].

3.1.5 Filtered Modules

Definition 3.1.22. Let $\bmod _{\text {filtered }}(H)$ be the full subcategory of $\bmod (H)$ consisting of all modules M admitting a filtration of H-modules

$$
0=M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{\ell}=M
$$

such that for each $1 \leq p \leq \ell$ the factor M_{p} / M_{p-1} is isomorphic to $E_{i_{p}}$ for some $i_{p} \in Q_{0}$.
It is clear that the integer ℓ is independent of the choice of the filtration. We will denote it by $\ell(M)$ and call it the filtration length of M.

Lemma 3.1.23. $\bmod _{\text {filtered }}(H) \subseteq \operatorname{proj}_{R}^{0}(H)$.
Proof. This is clear because of $\left\{E_{i} \mid i \in Q_{0}\right\} \subseteq \operatorname{proj}_{R}^{0}(H)$.
Lemma 3.1.24. Assume Q is acyclic. Then $\bmod _{\text {l.f. }}(H) \subseteq \bmod _{\text {filtered }}(H)$. More precisely, for every $M \in \bmod _{\text {l.f. }}(H)$ there is a filtration like in (\#) where all M_{p} are locally free.

Proof. Let $M \neq 0$ be in $\bmod _{\text {l.f. }}(H)$ and let $\sigma(M)=\left\{i \in Q_{0} \mid M_{i} \neq 0\right\}$. We use induction on the cardinality of $\sigma(M)$. Choose a sink i in the full subquiver of Q with vertex set $\sigma(M)$. Then M_{i} is a submodule of M isomorphic to E_{i}^{r} for some $r>0$ and there is a short exact sequence $0 \rightarrow E_{i}^{r} \rightarrow M \rightarrow N \rightarrow 0$. Clearly, N belongs to $\bmod _{\text {l.f. }}(H)$ and $|\sigma(N)|<|\sigma(M)|$. By induction $N \in \bmod _{\text {filtered }}(H)$. Hence, $M \in \bmod _{\text {filtered }}(H)$.

Corollary 3.1.25. If \mathcal{H} is local and Q acyclic, $\bmod _{\text {filtered }}(H)=\bmod _{\text {l.f. }}(H)$.

Proof. This follows from Lemmas 3.1.23 and 3.1.24 and Remark 3.1.6.

3.1.6 Euler Form

The Euler form $\langle-,-\rangle_{H}$ is defined for H-modules M and N as

$$
\langle M, N\rangle_{H}=\sum_{n=0}^{\infty} \operatorname{dim}_{K} \operatorname{Ext}_{H}^{n}(M, N)
$$

given that, either $M \in \operatorname{proj}^{\infty}(H)$ and $N \in \bmod (H)$, or $M \in \bmod (H)$ and $N \in \operatorname{inj}{ }^{\infty}(H)$. In particular, it is well-defined on $\bmod _{\text {l.f. }}(H) \times \bmod _{\text {l.f. }}(H)$.

The symmetrized Euler form $(-, \cdot)_{H}:=\langle-, \cdot\rangle_{H}+\langle\cdot,-\rangle_{H}$ agrees with the symmetric form defined by Q with similar reasoning as in [GLS16a, § 4]:

Lemma 3.1.26. If Q is acyclic, $(M, N)_{H}=(\underline{\operatorname{rank}}(M), \underline{\operatorname{rank}}(N))_{Q}$ for $M, N \in \bmod _{1 . f \mathrm{f}}(H)$.

Proof. For $Y \in\{M, N\}$ there exist short exact sequences $0 \rightarrow X_{Y} \rightarrow Y \rightarrow Z_{Y} \rightarrow 0$ in $\bmod _{\text {l.f. }}(H)$ by Lemma 3.1.24. Both $\omega=(-,-)_{H}$ and $\omega=(\underline{\operatorname{rank}}(-), \underline{\operatorname{rank}}(-))_{Q}$ satisfy

$$
\omega(M, N)=\sum_{U, V \in\{X, Z\}} \omega\left(U_{M}, V_{N}\right)
$$

Therefore, by induction on the filtration length, we can assume $M=E_{i}$ and $N=E_{k}$. From the proof of Lemma 3.1.9 we have a short exact sequence of H-modules

$$
0 \longrightarrow \bigoplus_{j \leftarrow ্} i
$$

Applying $\operatorname{Hom}_{H}\left(-, E_{k}\right)$ and abbreviating $\operatorname{dim}_{K} \operatorname{Hom}_{H}(-,-)$ as $[-,-]$ we get

$$
\left\langle E_{i}, E_{k}\right\rangle_{H}=\left[P_{i}, E_{k}\right]-\sum_{j \overleftarrow{a} i} f_{j i} \cdot\left[P_{j}, E_{k}\right]=d_{k} \cdot\left(\delta_{i=k}-\sum_{k \overleftarrow{a} i} f_{k i}\right)
$$

where the last equality used that $\left[P_{m}, E_{k}\right]=\delta_{m=k} \cdot d_{k}$ because of $\operatorname{Hom}_{H}\left(P_{m}, E_{k}\right) \cong\left(E_{k}\right)_{m}$.
We conclude $\left(E_{i}, E_{k}\right)_{H}=\left\langle E_{i}, E_{k}\right\rangle_{H}+\left\langle E_{k}, E_{i}\right\rangle_{H}=\left(e_{i}, e_{k}\right)_{Q}$.

3.1.7 Auslander-Reiten Translation

Convention 3.1.27. Assume now that Q is acyclic and R self-injective.
In particular, the path algebra H is finite-dimensional and 1-Gorenstein.
Notation 3.1.28. Denote by τ^{+}and τ^{-}the Auslander-Reiten translations in $\bmod (H)$.
Lemma 3.1.29. Let $M \in \mathfrak{f}(H)$. For every projective resolution $0 \rightarrow P^{1} \rightarrow P^{0} \rightarrow M \rightarrow 0$ and injective resolution $0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow 0$ there are exact sequences in $\bmod (H)$

$$
\begin{aligned}
& 0 \longrightarrow \tau^{+}(M) \longrightarrow \nu^{+}\left(P^{1}\right) \longrightarrow \nu^{+}\left(P^{0}\right) \longrightarrow \nu^{+}(M) \longrightarrow \nu^{-}(M) \longrightarrow \nu^{-}\left(I^{0}\right) \longrightarrow \nu^{-}\left(I^{1}\right) \longrightarrow \tau^{-}(M) \longrightarrow 0 \\
& 0 \longrightarrow \nu^{-} \longrightarrow
\end{aligned}
$$

that are induced by the Nakayama functors $\nu^{+}:=\operatorname{Hom}_{H}(-, H)^{*}$ and $\nu^{-}:=\operatorname{Hom}_{H}\left(H^{*},-\right)$.
Moreover, for all $L \in \operatorname{ind}(H)$ and $N \in \bmod (H)$:
(a) $\tau^{+}(M) \cong \operatorname{Ext}_{H}^{1}(M, H)^{*}$
(b) $\tau^{-}(M) \cong \operatorname{Ext}_{H}^{1}\left(H^{*}, M\right)$
(c) $\operatorname{Ext}_{H}^{1}(M, N) \cong \operatorname{Hom}_{H}\left(N, \tau^{+}(M)\right)^{*}$
(d) $\operatorname{Ext}_{H}^{1}(N, M) \cong \operatorname{Hom}_{H}\left(\tau^{-}(M), N\right)^{*}$
(e) $\tau^{+}(L) \in \mathfrak{f}(H)$ non-zero $\Leftrightarrow \nu^{+}(L)=0$
(f) $\tau^{-}(L) \in \mathfrak{f}(H)$ non-zero $\Leftrightarrow \nu^{-}(L)=0$
(g) $N \in \mathfrak{f}(H) \Leftrightarrow \nu^{-} \tau^{+}(N)=0 \Leftrightarrow \nu^{+} \tau^{-}(N)=0$
(h) $\operatorname{Ext}_{H}^{1}(M, M)=0 \Leftrightarrow \operatorname{Hom}_{H}\left(M, \tau^{+}(M)\right)=0 \Leftrightarrow \operatorname{Hom}_{H}\left(\tau^{-}(M), M\right)=0$

Proof. These are well-known consequences of the identities $\mathfrak{f}(H)=\operatorname{proj}^{1}(H)=\operatorname{inj}^{1}(H)$, which hold by Proposition 3.1.18. See also [GLS16a, $\S \S 3.5$ and 11.1].

Corollary 3.1.30. Let $M \in \bmod _{\text {l.f. }}(H)$. Then:
(a) $\tau^{+}(M) \in \bmod _{1 . f .}(H)$ non-zero $\Leftrightarrow \nu^{+}(M)=0$
(b) $\tau^{-}(M) \in \bmod _{\text {l.f. }}(H)$ non-zero $\Leftrightarrow \nu^{-}(M)=0$

Proof. The implications \Rightarrow in (a) and (b) follow from Lemma 3.1.29 (e) and (f).
For \Leftarrow in (a) apply Lemma 3.1.29 to the projective resolution from Corollary 3.1.14, recall Remark 3.1.16, and note that $\nu^{+}\left(P_{i}\right)=I_{i}$ are locally free by Lemma 3.1.10.

Corollary 3.1.15 and Lemma 3.1.9 can be used in a similar way to verify (b).

3.1.8 Coxeter Transformation

This subsection generalizes results from [GLS16a, $\S \S 3.4$ and 11.1].
Definition 3.1.31. The Coxeter transformation $\Phi=\Phi_{H} \in \operatorname{Aut}\left(\mathbb{Z}^{Q_{0}}\right)$ of H is defined by

$$
\Phi\left(\underline{\operatorname{rank}}\left(P_{i}\right)\right)=-\underline{\operatorname{rank}}\left(I_{i}\right) .
$$

Remark 3.1.32. By Lemmas 3.1 .9 and 3.1.10 the vectors $\underline{\operatorname{rank}}\left(P_{i}\right)$ and the vectors $\underline{\operatorname{rank}}\left(I_{i}\right)$ form two bases of $\mathbb{Z}^{Q_{0}}$. This ensures that Φ is well-defined.

Remark 3.1.33. The Coxeter transformation Φ can be computed as the product

$$
-C_{\mathrm{inj}} \circ C_{\mathrm{proj}}^{-1}
$$

where $C_{\text {proj }}$ and C_{inj} act on $e_{i}=\underline{\operatorname{rank}}\left(E_{i}\right)$ as $C_{\mathrm{proj}}\left(e_{i}\right)=\underline{\operatorname{rank}}\left(P_{i}\right)$ and $C_{\mathrm{inj}}\left(e_{i}\right)=\underline{\operatorname{rank}}\left(I_{i}\right)$.

Lemma 3.1.34. Let $M \in \bmod _{\text {l.f. }}(H)$ be indecomposable and $p \in \mathbb{Z}$ such that $\tau^{q}(M)$ is locally free and non-zero for all $1 \leq q \leq p$ or for all $p \leq q \leq-1$. Then

$$
\underline{\operatorname{rank}}\left(\tau^{p}(M)\right)=\Phi^{p}(\underline{\operatorname{rank}}(M)) .
$$

Proof. This is standard. By induction it suffices to consider the case $p=+1$ and $p=-1$. For $p=+1$, just as in the proof of Corollary 3.1.30, apply Lemma 3.1.29 to the projective resolution from Corollary 3.1.14. Then use $\nu^{+}\left(P_{i}\right)=I_{i}$ and the fact that rank is additive on short exact sequences of locally free modules. The case $p=-1$ is similar.
It is also possible to adapt the proof of [GLS16a, Proposition 10.6] to our situation.

3.2 Symmetric Modulations

By the abstract nature of their proofs many of the results in [GLS16a] appear to be true in a broader context. Even though, some essential insights depend on explicit features of the modulations considered there. First and foremost, this concerns the possibility to identify the left dual ${ }^{R} A$, the right dual A^{R}, and the K-dual bimodule A^{*} with one another in a canonical way (compare Lemma 2.2.25). This section provides the necessary tools to prove that Geiß, Leclerc, and Schröer's results are valid for symmetric (local) modulations.

3.2.1 Symmetric Structures

Recall that a modulation $\left(R_{i}, A_{a}\right)_{i, a}$ is called symmetric if all R_{i} are symmetric algebras.
Definition 3.2.1. A strongly separable modulation is a symmetric modulation $\left(R_{i}, A_{a}\right)_{i, a}$ with fixed symmetric structures on all R_{i} given by $\operatorname{Tr}_{R_{i} / K}$.

Remark 3.2.2. A K-modulation $\left(R_{i}, A_{a}\right)_{i, a}$ is strongly separable if and only if all R_{i} are strongly separable algebras, i.e. the trace pairings $(x, y) \mapsto \operatorname{Tr}_{R_{i} / K}(x y)$ are non-degenerate.

Remark 3.2.3. If $\left(R_{i}, A_{a}\right)_{i, a}$ is a strongly separable modulation, the ground $\operatorname{ring} R=\prod_{i} R_{i}$ is a strongly separable algebra.

Example 3.2.4. Let L / K be a separable field extension and assume that $\mathcal{H}=\left(L_{i}, A_{a}\right)_{i, a}$ is a modulation where all L_{i} are intermediate fields of L / K. Then \mathcal{H} is strongly separable. In particular, this is the case for cyclic Galois modulations \mathcal{H}.

Example 3.2.5. Every finite-dimensional semi-simple K-algebra is a symmetric algebra. This includes all finite-dimensional division algebras over K.

Example 3.2.6. The GLS modulations are symmetric (see Example 2.4.19) but, in general, not strongly separable.

Convention 3.2.7. Assume now that all R_{i} carry a symmetric structure φ_{i}.

Denote by φ the induced symmetric structure $\sum_{i \in Q_{0}} \varphi_{i}$ on R. Lemma 2.4.18 guarantees the well-definedness of the dual modulation \mathcal{H}^{*}.

By Lemma 2.2.25 and Corollary 2.3 .11 the left and right dual bimodules A_{*} and $A_{a_{*}}$ can be identified with $A_{a^{*}}=A_{a}^{*}$ and, similarly, ${ }^{R} A=\bigoplus_{a} A_{*}$ and $A^{R}=\bigoplus_{a} A_{a_{*}}$ with A^{*}. More precisely, we have a diagram

where the horizontal maps are the isomorphisms given by postcomposition with φ and the vertical maps are the canonical inclusions and projections.

As usual, we will also identify the double K-dual bimodules $A_{a}^{* *}=\operatorname{Hom}_{K}\left(A_{a}^{*}, K\right)$ with A_{a} and, similarly, $A^{* *}=\operatorname{Hom}_{K}\left(A^{*}, K\right)$ with A via evaluation. Thus we have a diagram

where the horizontal maps are the evaluation maps ev that send x to the function ev_{x} given by evaluation at x, i.e. $\operatorname{ev}_{x}(f)=f(x)$.

With these identifications the adjunction correspondence (see Definition 2.2.15) yields canonical isomorphisms of K-vector spaces for all $M, N \in \operatorname{Mod}(R)$:

$$
\begin{gathered}
\operatorname{Hom}_{R}\left(A \otimes_{R} M, N\right) \xrightarrow{\text { ad }} \operatorname{Hom}_{R}\left(M, A^{*} \otimes_{R} N\right) \\
\operatorname{Hom}_{R}\left(A^{*} \otimes_{R} N, M\right) \xrightarrow{\text { ad }_{*}} \operatorname{Hom}_{R}\left(N, A \otimes_{R} M\right)
\end{gathered}
$$

Notation 3.2.8. Extending the notation introduced in Definition 2.2.15, we will write f^{\vee} both for $\operatorname{ad}(f)$ and for $\operatorname{ad}_{*}(f)$ and, similarly, \vee_{g} for $\operatorname{ad}^{-1}(g)$ and for $\operatorname{ad}_{*}^{-1}(g)$.

3.2.2 Non-Degenerate Trace Maps

The construction and statements about the trace maps presented below are variations of classical results. We use similar notation as [Bou70, III. §9 no. 1-4].

The symmetric structure φ on R can be used to define a K-valued trace map

$$
\operatorname{End}_{R}(M) \xrightarrow{\operatorname{tr}} K
$$

for every finitely generated projective R-module M.
The procedure to do this is standard: Because $R \xrightarrow{\varphi} K$ is symmetric, precomposing φ with the bilinear map $\operatorname{Hom}_{R}(M, R) \times M \longrightarrow R,(f, m) \mapsto f(m)$, induces a K-linear form

$$
\operatorname{Hom}_{R}(M, R) \otimes_{R} M \xrightarrow{\nu} K .
$$

Using that M is finitely generated projective, we get tr by precomposing ν with the inverse of the isomorphism $\operatorname{Hom}_{R}(M, R) \otimes_{R} M \longrightarrow \operatorname{End}_{R}(M)$ given by $f \otimes m \mapsto(n \mapsto f(n) m)$.

Analogously, using the symmetric structure φ_{i} on R_{i}, one gets a trace map

$$
\operatorname{End}_{R_{i}}\left(M_{i}\right) \xrightarrow{\operatorname{tr}_{i}} K
$$

for every finitely generated projective R_{i}-module M_{i}. By construction we have $\operatorname{tr}=\sum_{i} \operatorname{tr}_{i}$ as maps $\operatorname{End}_{R}(M) \rightarrow K$ for every finitely generated projective R-module $M=\bigoplus_{i} M_{i}$.

Lemma 3.2.9. If R_{i} is commutative, $\operatorname{tr}_{i}=\varphi_{i} \circ \operatorname{Tr}_{R_{i}}$. If $\varphi_{i}=\operatorname{Tr}_{R_{i} / K}$, then $\operatorname{tr}_{i}=\operatorname{Tr}_{K}$.
Proof. The first statement is clear by the construction of tr_{i}. For commutative R_{i} the second statement follows from the first one and $\operatorname{Tr}_{R_{i} / K} \circ \operatorname{Tr}_{R_{i}}=\operatorname{Tr}_{K}$. It is a straightforward, classical exercise to verify it also in the general situation.

Lemma 3.2.10. For $M, N \in \operatorname{proj}(R)$ and $f \in \operatorname{Hom}_{R}(M, N), g \in \operatorname{Hom}_{R}(N, M)$ it is

$$
\operatorname{tr}(f g)=\operatorname{tr}(g f) .
$$

For $M \in \bmod _{\text {l.f. }}(R)$ and $x \in \mathrm{Z}(R)$ it is $\operatorname{tr}\left(x^{M}\right)=\varphi(x) \cdot \underline{\operatorname{rank}}(M)=\sum_{i} \varphi_{i}\left(x_{i}\right) \operatorname{rank}\left(M_{i}\right)$.

Proof. The verification of the identity $\operatorname{tr}(f g)=\operatorname{tr}(g f)$ is a straightforward, classical exercise. For example, this can be done by computation with basis elements after reducing to the case that M and N are free. Here, the symmetry of φ plays a role. The rest is clear.

Lemma 3.2.11. For $M \in \operatorname{Mod}_{\text {l.f. }}(R)$ and $N \in \bmod _{\text {l.f. }}(R)$ the trace pairing $(f, g) \mapsto \operatorname{tr}(f g)$ on $\operatorname{Hom}_{R}(M, N) \times \operatorname{Hom}_{R}(N, M)$ induces an isomorphism:

$$
\begin{array}{rc}
\operatorname{Hom}_{R}(M, N) & \xrightarrow{\vartheta^{M, N}} \\
f & \operatorname{Hom}_{R}(N, M)^{*} \\
& (g \mapsto \operatorname{tr}(f g))
\end{array}
$$

Proof. We can reduce to the case $M=N=R$ and then have to prove the non-degeneracy of the bilinear form $(f, g) \stackrel{\omega}{\longmapsto} \operatorname{tr}(f g)=\varphi(f(1) g(1))$. The non-degeneracy of ω follows from the fact that the bilinear form $R \times R \rightarrow K,(x, y) \mapsto \varphi(x y)$, is non-degenerate, a reformulation of condition (a) in Definition 2.2.20 (see [Lam99, Theorem 3.15 and the ensuing Remark]).

Let $M \in \operatorname{Mod}(R)$. Recall that H-module structures on M are parametrized by

$$
\operatorname{Rep}(A, M)=\operatorname{Hom}_{R}\left(A \otimes_{R} M, M\right) .
$$

Corollary 3.2.12. For each $M \in \bmod _{\text {l.f. }}(R)$ there is an isomorphism of K-vector spaces:

$$
\begin{aligned}
& \operatorname{Rep}\left(A^{*}, M\right) \longrightarrow \theta^{M} \\
& A^{*} M \longmapsto \operatorname{Rep}(A, M)^{*} \\
&\left({ }_{A} M \mapsto \operatorname{tr}\left({ }_{A^{*}} M \circ{ }_{A} M^{\vee}\right)\right)
\end{aligned}
$$

Proof. Use Definition 2.2.15 and Lemma 3.2.11.

Inspired by [GLS16a, Proposition 8.3] one discovers the following relation.
Lemma 3.2.13. Let $M \in \operatorname{Proj}(R)$ and $N \in \operatorname{proj}(R)$. Then we have $\operatorname{tr}\left(f^{\vee} g\right)=\operatorname{tr}\left(f g^{\vee}\right)$ for all $f \in \operatorname{Hom}_{R}\left(A \otimes_{R} M, N\right)$ and $g \in \operatorname{Hom}_{R}\left(A^{*} \otimes_{R} N, M\right)$.

Proof. We can again reduce to the situation $M=N=R$. With a slight abuse of notation, identifying $A \otimes_{R} R$ and $A^{*} \otimes_{R} R$ in the canonical way with A and A^{*}, we have

$$
f \in \operatorname{Hom}_{R}(A, R), \quad g \in \operatorname{Hom}_{R}\left(A^{*}, R\right), \quad f^{\vee} \in \operatorname{Hom}_{R}\left(R, A^{*}\right), \quad g^{\vee} \in \operatorname{Hom}_{R}(R, A) .
$$

Using $\operatorname{tr}\left(f^{\vee} g\right)=\operatorname{tr}\left(g f^{\vee}\right)$ it is enough to show $\operatorname{tr}\left(g f^{\vee}\right)=\operatorname{tr}\left(f g^{\vee}\right)$. This is easy to verify:

$$
\operatorname{tr}\left(g f^{\vee}\right)=\varphi\left(g f^{\vee}(1)\right)=(\varphi g)(\varphi f)=(\varphi f)\left(\mathrm{ev}^{-1}(\varphi g)\right)=\varphi\left(f g^{\vee}(1)\right)=\operatorname{tr}\left(f g^{\vee}\right)
$$

3.2.3 Characteristic Elements

Certain constructions for symmetric modulations mirror intrinsic properties of the fixed symmetric structure φ. Some information is encoded in the characteristic elements.

The isomorphisms $A^{*} \xrightarrow{*}{ }^{R} A$ and $A^{*} \xrightarrow{\varphi^{*}} A^{R}$ of R-bimodules give rise to non-degenerate R-bilinear maps ${ }^{\varphi}\langle-,-\rangle$ and $\langle-,-\rangle^{\varphi}$ defined, for $x \in A$ and $f \in A^{*}$, as

$$
{ }^{\varphi}\langle x, f\rangle={ }^{*} \varphi(f)(x), \quad\langle f, x\rangle^{\varphi}=\varphi^{*}(f)(x)
$$

The R-bimodule map $A^{*} \otimes_{R} A \rightarrow R$ given by $f \otimes x \mapsto\langle f, x\rangle^{\varphi}$ postcomposed with the inverse of $A^{*} \otimes_{R} A \rightarrow \operatorname{End}_{R}\left({ }_{R} A\right)$ given by $f \otimes x \mapsto\left(y \mapsto{ }^{\varphi}\langle x, f\rangle y\right)$ yields a map $\vec{\Phi}: \operatorname{End}_{R}\left({ }_{R} A\right) \rightarrow R$.

Precomposing $\vec{\Phi}$ with the map $\mathrm{Z}(R) \rightarrow \operatorname{End}_{R}\left({ }_{R} A\right)$, which sends elements $r \in \mathrm{Z}(R)$ to left multiplication with r, gives a map $\mathrm{Z}(R) \rightarrow R$. It is not hard to see that its image is contained in $\mathrm{Z}(R)$. In this way, we obtain a K-linear map $\vec{\Phi}: \mathrm{Z}(R) \rightarrow \mathrm{Z}(R)$.

The dual construction for $A \otimes_{R} A^{*} \rightarrow R$ given by $x \otimes f \mapsto{ }^{\varphi}\langle x, f\rangle$ and the isomorphism $A \otimes_{R} A^{*} \rightarrow \operatorname{End}_{R}\left(A_{R}\right)$ given by $x \otimes f \mapsto\left(y \mapsto y\langle f, x\rangle^{\varphi}\right)$ yields $\overleftarrow{\Phi}: \mathrm{Z}(R) \rightarrow \mathrm{Z}(R)$.

For $j \stackrel{a}{\leftarrow} i \in Q_{1}$ the restriction of $\vec{\Phi}$ to $\mathrm{Z}\left(R_{j}\right)$ and of $\overleftarrow{\Phi}$ to $\mathrm{Z}\left(R_{i}\right)$ induce K-linear maps

$$
\mathrm{Z}\left(R_{j}\right) \xrightarrow{\vec{\Phi}_{a}} \mathrm{Z}\left(R_{i}\right), \quad \mathrm{Z}\left(R_{i}\right) \xrightarrow{\stackrel{\Phi}{\Phi}_{a}} \mathrm{Z}\left(R_{j}\right) .
$$

Definition 3.2.14. We call $\vec{\varphi}_{a}=\vec{\Phi}_{a}(1)$ and $\overleftarrow{\varphi}_{a}=\overleftarrow{\Phi}_{a}(1)$ the characteristic elements.
For $i, j \in Q_{0}$ define $\vec{\varphi}_{j i}=\vec{\Phi}_{j i}(1)$ and $\overleftarrow{\varphi}_{j i}=\overleftarrow{\Phi}_{j i}(1)$ where, for $y \in \mathrm{Z}\left(R_{j}\right)$ and $x \in \mathrm{Z}\left(R_{i}\right)$,

$$
\vec{\Phi}_{j i}(y)=\sum_{a} \vec{\Phi}_{a}(y), \quad \overleftarrow{\Phi}_{j i}(x)=\sum_{a} \overleftarrow{\Phi}_{a}(x)
$$

and the sums are taken over all arrows $j \stackrel{a}{\leftarrow} i \in \bar{Q}_{1}$.
Remark 3.2.15. Let C be a basis of ${ }_{R_{j}}\left(A_{a}\right)$ and B a basis of $\left(A_{a}\right)_{R_{i}}$. For elements $y \in \mathrm{Z}\left(R_{j}\right)$ and $x \in \mathrm{Z}\left(R_{i}\right)$ we have the formulas

$$
\vec{\Phi}_{a}(y)=\sum_{c \in C} \varphi_{i}^{*}\left(\varphi_{j} c^{*}\right)(y c), \quad \quad \overleftarrow{\Phi}_{a}(x)=\sum_{b \in B}{ }^{*} \varphi_{j}\left(\varphi_{i} b^{*}\right)(b x)
$$

3.2.4 Calculation Rules for Adjoints

In Corollary 2.3.10 we gave formulas for f^{\vee} and ${ }^{\vee} f$. We add the following calculation rules:
Lemma 3.2.16. Let $M \in \operatorname{Mod}(R), f \in \operatorname{Hom}_{R}\left(A \otimes_{R} M, M\right), g \in \operatorname{Hom}_{R}\left(A^{*} \otimes_{R} M, M\right)$, and $x \in \mathrm{Z}(R)$. We have the following identities:
(a) $\vee\left(\operatorname{id}_{A \otimes_{R} M}\right) \circ\left(x^{A \otimes_{R} M}\right)^{\vee}=(\vec{\Phi}(x))^{M}$
(b) $f^{\vee} \circ g=\left(f \circ\left(\mathrm{id}_{A} \otimes g\right)\right)^{\vee}$
(c) $f \circ g^{\vee}=\vee\left(f^{\vee} \circ g\right) \circ\left(\operatorname{id}_{A^{*} \otimes_{R} M}\right)^{\vee}=\vee\left(\operatorname{id}_{A^{*} \otimes_{R} M}\right) \circ\left(f^{\vee} \circ g\right)^{\vee}$

Proof. Using $R=\prod_{i} R_{i}$ and $A=\bigoplus_{a} A_{a}$, we can reduce to the case $A=A_{a}, M=M_{j} \oplus M_{i}$, $x=x_{j} \in \mathrm{Z}\left(R_{j}\right)$ for some $j \stackrel{a}{\leftarrow} i \in Q_{1}$. After choosing bases for ${ }_{R_{j}}\left(A_{a}\right)$ and $\left(A_{a}\right)_{R_{i}}$, the identities can now be checked by straightforward, explicit calculations with the help of the formulas given in Corollary 2.3.10 and Remark 3.2.15.

3.2.5 Rank-Aware Structures

Lemma 3.2.17. $\varphi_{i}\left(\vec{\varphi}_{a}\right)=f_{j i} \cdot \varphi_{j}(1)$ and $\varphi_{j}\left(\overleftarrow{\varphi}_{a}\right)=f_{i j} \cdot \varphi_{i}(1)$ for all $j \stackrel{a}{\leftarrow} i$.

Proof. Use Remark 3.2.15 and $\operatorname{rank}_{R_{j}}\left(A_{a}\right)=f_{j i}$ and $\operatorname{rank}\left(A_{a}\right)_{R_{i}}=f_{i j}$.
Definition 3.2.18. The symmetric structure φ for \mathcal{H} is rank-aware if for all $j \stackrel{a}{\leftarrow} i$

$$
\vec{\varphi}_{a}=\operatorname{rank}\left(A_{a}\right)_{R_{i}}=f_{i j}, \quad \quad \overleftarrow{\varphi}_{a}=\operatorname{rank}_{R_{j}}\left(A_{a}\right)=f_{j i}
$$

Remark 3.2.19. Assume Q is connected and $\operatorname{char}(K) \nmid d_{i}$ for all i. Let φ be a rank-aware structure for \mathcal{H}. By Lemma 3.2 .17 we have $d_{j} \varphi_{i}(1)=d_{i} \varphi_{j}(1)$ for all $i, j \in Q_{0}$. If $\varphi_{i}(1) \neq 0$, rescaling φ by $d_{i} / \varphi_{i}(1)=d_{j} / \varphi_{j}(1)$ yields a rank-aware structure $\tilde{\varphi}=\sum_{i} \tilde{\varphi}_{i}$ with $\tilde{\varphi}_{i}(1)=d_{i}$.

Example 3.2.20. Taking in Example 2.4.25 $\varphi_{1}=\operatorname{Tr}_{\mathbb{R} / \mathbb{R}}=\mathrm{id} \mathbb{R}$ and $\varphi_{2}=\operatorname{Tr}_{\mathbb{C} / \mathbb{R}}=2 \operatorname{Re}$ to define the symmetric structure φ, one computes $\overleftarrow{\varphi}_{a}=1=f_{21}$ and $\vec{\varphi}_{a}=2=f_{12}$. Therefore, this choice of φ yields a rank-aware structure.

To illustrate that symmetric structures φ are not necessarily rank-aware, we consider Example 2.4.25 in the general situation, where $\mathbb{R} \xrightarrow{\varphi_{1}} \mathbb{R}$ and $\mathbb{C} \xrightarrow{\varphi_{2}} \mathbb{R}$ are arbitrary nonzero \mathbb{R}-linear maps. Then, $x=\varphi_{1}(1) \in \mathbb{R}^{\times}$and $w=\varphi_{2}(1)-i \varphi_{2}(i) \in \mathbb{C}^{\times}$. It is not hard to check that ${ }^{*} \varphi_{1}(f)(z)=x^{-1} f(z)$ and $\varphi_{2}^{*}(f)(z)=w^{-1}(f(z)-i f(i z))$. Calculating, we see $\overleftarrow{\varphi}_{a}=2(x w)^{-1}$ and $\vec{\varphi}_{a}=x^{-1} \varphi_{2}(1)$. In particular, always $\overleftarrow{\varphi}_{a} \neq 0$, while $\vec{\varphi}_{a}=0$ is possible.

Example 3.2.21. Assume that \mathcal{H} is the strongly separable modulation of a modular quiver Q over a comfy extension $(L / K, \zeta, v)$. We show that $\varphi=\operatorname{Tr}_{R / K}=\sum_{i} \operatorname{Tr}_{L_{i} / K}$ is rank-aware:

For $j \stackrel{a}{\leftarrow} i \in Q_{1}$ it is $A_{a}={ }_{j} L_{i}^{\rho_{a}}=L_{j} \otimes_{\rho_{a}} L_{i}$ for some $\rho_{a} \in \operatorname{Gal}\left(L_{j i} / K\right)$. Let $m=[L: K]$, $v_{j}=v^{m / d_{j}}, v_{i}=v^{m / d_{i}}, v_{j i}=v^{m / d_{j i}}$. The set $\left\{b_{s}=v_{j}^{s} \otimes 1 \mid 0 \leq s<f_{i j}\right\}$ is a basis of $\left(A_{a}\right)_{R_{i}}$.

There are elements $h_{r s} \in K$ such that

$$
\gamma_{s}={ }^{*} \varphi_{j}\left(\varphi_{i} b_{s}^{*}\right)\left(b_{s}\right)=\sum_{r=0}^{d_{j}-1} h_{r s} v_{j}^{-r}
$$

We have $d_{j} h_{r s}=\operatorname{Tr}_{L_{j} / K}\left(v_{j}^{r} \gamma_{s}\right)=\varphi_{i} b_{s}^{*}\left(v_{j}^{r+s} \otimes 1\right)$ because ${ }^{*} \varphi_{j}\left(\varphi_{i} b_{s}^{*}\right)$ is L_{j}-linear. Let us write $r+s=p+q f_{i j}$ for some q and $0 \leq p<f_{i j}$. Define $\zeta_{a}=\rho_{a}\left(v_{j i}\right) / v_{j i}$. Then

$$
d_{j} h_{r s}=\operatorname{Tr}_{L_{i} / K}\left(b_{s}^{*}\left(c_{p}\right) \cdot \zeta_{a}^{-q} v_{i}^{q f_{j i}}\right)=\delta_{p=s} \delta_{q \equiv 0 \bmod d_{j i}} \cdot d_{i} \cdot \zeta_{a}^{-q} \lambda^{q / d_{j i}}=\delta_{r=0} \cdot d_{i}
$$

This shows $\gamma_{s}=d_{i} / d_{j}$. Hence, $\overleftarrow{\varphi}_{a}=f_{i j} \cdot d_{i} / d_{j}=f_{j i}$ by Remark 3.2.15. Similarly, $\vec{\varphi}_{a}=f_{i j}$.

3.3 Deformed Preprojective Algebras

Extending [CH98] we define deformed preprojective algebras Π^{λ} for symmetric modulations. The choice $\lambda=0$ recovers the ordinary preprojective algebra.

Convention 3.3.1. We still assume that a symmetric structure φ for \mathcal{H} is fixed.
As before, we use φ to identify the duals $A_{*} a$ and $A_{a_{*}}$ with A_{a}^{*} as well as the duals ${ }^{R} A$ and A^{R} with A^{*}. In the canonical way, $A_{a}^{* *}$ is identified with A_{a} and $A^{* *}$ with A.

3.3.1 Compatible Double Representations

Instead of working with modules over deformed preprojective algebras Π^{λ} we use the equivalent notion of λ-compatible A-double representations.

Recall that the double $\overline{\mathcal{H}}$ of \mathcal{H} is the K-modulation $\overline{\mathcal{H}}=\left(R_{i}, A_{a}\right)_{i \in \bar{Q}_{0}, a \in \bar{Q}_{1}}$ with $A_{a^{*}}=A_{a}^{*}$. As usual, we do not distinguish \bar{H}-modules from \bar{A}-representations.

Because of $\bar{A}=A \oplus A^{*}$ an \bar{A}-representation can be regarded as a triple $\left(M,{ }_{A} M,{ }_{A^{*}} M\right)$ where $\left(M,{ }_{A} M\right)$ is an A-representation and $\left(M,{ }_{A^{*}} M\right)$ an A^{*}-representation.

Definition 3.3.2. Let $\lambda \in \mathrm{Z}(R)$. A λ-compatible A-double representation $\left(M,{ }_{A} M,{ }_{A^{*}} M\right)$ consists of an A-representation $\left(M,{ }_{A} M\right)$ and an A^{*}-representation $\left(M,{ }_{A^{*}} M\right)$ making the following square commute "up to adding λ ":

More precisely, we require ${ }_{A^{*}} M \circ{ }_{A} M^{\vee}-{ }_{A} M \circ{ }_{A^{*}} M^{\vee}=\lambda^{M}$.
Remark 3.3.3. By Lemma 2.2.14 and its right-module version we have canonical isomorphisms

$$
\operatorname{End}_{R}\left({ }_{R} A\right) \xrightarrow{\Delta} A^{*} \otimes_{R} A, \quad \quad \operatorname{End}_{R}\left(A_{R}\right) \xrightarrow{\Delta_{*}} A \otimes_{R} A^{*}
$$

Definition 3.3.4. Viewing $A^{*} \otimes_{R} A$ and $A \otimes_{R} A^{*}$ as summands of the degree-2 component of the path algebra \bar{H}, the preprojective relation $\rho \in \bar{H}$ is defined as

$$
\rho=\Delta(\mathrm{id})-\Delta_{*}(\mathrm{id}) .
$$

Definition 3.3.5. The sign of an arrow $a \in \bar{Q}_{1}$ is

$$
\varepsilon_{a}:=\left\{\begin{aligned}
1 & \text { if } a \in Q_{1}, \\
-1 & \text { if } a \in Q_{1}^{*} .
\end{aligned}\right.
$$

Remark 3.3.6. Choose for each $j \stackrel{a}{\leftarrow} i \in \bar{Q}_{1}$ a basis B_{a} of ${ }_{R_{j}}\left(A_{a}\right)$ and let $\left\{b^{*} \mid b \in B_{a}\right\}$ be the R_{j}-dual basis of B_{a}. With respect to these bases and with Convention 3.3.1 the preprojective relation assumes the form $\rho=\sum_{a \in \bar{Q}_{1}, b \in B_{a}} \varepsilon_{a} \cdot b^{*} \cdot b$.
Remark 3.3.7. Clearly, $\rho=\sum_{i \in Q_{0}} \rho_{i}$ where $\rho_{i}=e_{i} \rho e_{i}$.
Remark 3.3.8. The preprojective relation ρ commutes with every element in the ground ring R, i.e. $\rho r=r \rho$ for all $r \in R$. As a consequence, for every module $M \in \operatorname{Mod}(\bar{H})$ left multiplication with ρ defines an endomorphism $\rho^{M} \in \operatorname{End}_{R}(M)$.

Definition 3.3.9. Let $\lambda \in Z(R)$. The deformed preprojective algebra $\Pi^{\lambda}=\Pi_{\mathcal{H}}^{\lambda}$ is

$$
\Pi^{\lambda}=\bar{H} /\langle\rho-\lambda\rangle .
$$

The preprojective algebra $\Pi=\Pi_{\mathcal{H}}$ is the deformed preprojective algebra Π^{0}.
Lemma 3.3.10. $\rho^{M}=\sum_{a \in \bar{Q}_{1}} \varepsilon_{a} \cdot M_{a^{*}} M_{a}^{\vee}={ }_{A^{*}} M \circ{ }_{A} M^{\vee}-{ }_{A} M \circ{ }_{A^{*}} M^{\vee}$ for $M \in \operatorname{Mod}(\bar{H})$. Proof. Note that $\Delta=\sum_{a \in Q_{1}} \Delta_{a}$ and $\Delta_{*}=\sum_{a \in Q_{1}^{*}} \Delta_{a}$, where, for $j \stackrel{a}{\leftarrow} i \in Q_{1}$, the maps

$$
\operatorname{End}_{R_{j}}\left(R_{j}\left(A_{a}\right)\right) \xrightarrow{\Delta_{a}} A_{* a} \otimes_{R_{j}} A_{a}, \quad \operatorname{End}_{R_{i}}\left(\left(A_{a}\right)_{R_{i}}\right) \xrightarrow{\Delta_{a^{*}}} A_{a} \otimes_{R_{i}} A_{a_{*}}
$$

are the canonical isomorphisms. For $j \stackrel{a}{\leftarrow} i \in \bar{Q}_{1}$ the formula for M_{a}^{\vee} in Corollary 2.3.10, and the description of Δ_{a} given in Lemma 2.2.14 show that $M_{a^{*}} M_{a}^{\vee} \in \operatorname{End}_{R_{i}}\left(M_{i}\right)$ is multiplication with $\Delta_{a}(\mathrm{id})$. Now use the definition of ρ.

Corollary 3.3.11. $M \mapsto\left({ }_{R} M,{ }_{A} M,{ }_{A^{*}} M\right)$ defines an equivalence $\operatorname{Mod}(\bar{H}) \rightarrow \operatorname{Rep}(\bar{A})$ and an equivalence between $\operatorname{Mod}\left(\Pi^{\lambda}\right)$ and the category of λ-compatible A-double representations.

Proof. Combine Corollary 2.2.19, Definition 3.3.2, and Lemma 3.3.10.
Notation 3.3.12. Denote by $j \leftarrow \bar{Q}_{1}$ the set of all arrows in \bar{Q} ending in the vertex $j \in Q_{0}$. For $M \in \operatorname{Mod}(\bar{H})$ abbreviate $A_{a}^{M}=A_{a} \otimes_{R_{i}} M_{i}$ for $j \stackrel{a}{\leftarrow} i \in \bar{Q}_{1}$ and

$$
j \leftarrow M=e_{j} \bar{A} \otimes_{R} M=\bigoplus_{a \epsilon_{j \leftarrow-\bar{Q}_{1}}} A_{a}^{M} .
$$

Let $A_{a}^{M} \xrightarrow{\mu_{a}}{ }_{j \leftarrow} M \xrightarrow{\pi_{a}} A_{a}^{M}$ be the canonical inclusion and projection and

$$
\pi_{j}=\sum_{a \epsilon_{j \leftarrow} \leftarrow \bar{Q}_{1}} M_{a} \pi_{a}, \quad \quad \mu_{j}=\sum_{a \epsilon_{j \leftarrow} \leftarrow \bar{Q}_{1}} \varepsilon_{a^{*}} \cdot \mu_{a} M_{a^{*}}^{\vee}
$$

Finally, define $\pi=\sum_{j \in Q_{0}} \pi_{j}$ and $\mu=\sum_{j \in Q_{0}} \mu_{j}$.
If it seems necessary to stress the dependence of π, μ etc. on M, we write π^{M}, μ^{M} etc.
Remark 3.3.13. Let $j \stackrel{a}{\leftarrow} i \in Q_{1}$. If M_{i} is free, then A_{a}^{M} is free. Furthermore, if M_{i} is free of finite rank m_{i}, we have $\operatorname{rank}_{R_{j}}\left(A_{a}^{M}\right)=\operatorname{rank}_{R_{j}}\left(A_{a}\right) \cdot m_{i}=f_{j i} m_{i}$.

The composition $\pi^{M} \mu^{M}$ can be viewed as an element in $\operatorname{End}_{R}(M)$. The following corollary corresponds to the discussion in [CH98, § 4] and [GLS16a, Proposition 5.2].

Corollary 3.3.14. $\rho^{M}=\pi^{M} \mu^{M}$ for $M \in \operatorname{Mod}(\bar{H})$, so $M \in \operatorname{Mod}\left(\Pi^{\lambda}\right) \Leftrightarrow \pi^{M} \mu^{M}=\lambda^{M}$.
Proof. Use Lemma 3.3.10.

3.3.2 Lifting Representations

The next lemma generalizes [CH98, Lemma 4.2]. Our proof is conceptually the same.
Proposition 3.3.15. For every $M \in \bmod _{\text {l.f. }}(H)$ there is a short exact sequence

$$
0 \rightarrow \operatorname{Ext}_{H}^{1}(M, M)^{*} \rightarrow \operatorname{Rep}\left(A^{*}, M\right) \xrightarrow{\mathfrak{J}} \operatorname{End}_{R}(M) \xrightarrow{\mathrm{t}} \operatorname{End}_{H}(M)^{*} \rightarrow 0
$$

where \mathfrak{d} and \mathfrak{t} act on ${ }_{A^{*}} M \in \operatorname{Rep}\left(A^{*}, M\right)$ and $f \in \operatorname{End}_{R}(M)$ as

$$
\mathfrak{d}\left({ }_{A^{*}} M\right)={ }_{A^{*}} M \circ{ }_{A} M^{\vee}-{ }_{A} M \circ{ }_{A^{*}} M^{\vee}, \quad \mathfrak{t}(f)=(g \mapsto \operatorname{tr}(f g)) .
$$

Proof. Applying $\operatorname{Hom}_{H}(-, M)$ to the short exact sequence from Corollary 3.1.14 yields an exact sequence

$$
0 \rightarrow \operatorname{End}_{H}(M) \xrightarrow{\nu^{\sharp}} \operatorname{Hom}_{H}\left(H \otimes_{R} M, M\right) \xrightarrow{\partial^{\sharp}} \operatorname{Hom}_{H}\left(H \otimes_{R} A \otimes_{R} M, M\right) \rightarrow \operatorname{Ext}_{H}^{1}(M, M) \rightarrow 0 .
$$

Using the tensor-hom adjunction we get a commutative square

where the vertical maps are the canonical isomorphisms and ∂^{b} is given, for all $f \in \operatorname{End}_{R}(M)$ and $x \otimes m \in A \otimes_{R} M$, by $\partial^{b}(f)(x \otimes m)=x f(m)-f(x m)$.

The map $\nu^{b}=\alpha \circ \nu^{\sharp}$ is the canonical inclusion. We get an exact sequence

$$
0 \rightarrow \operatorname{End}_{H}(M) \xrightarrow{\nu^{b}} \operatorname{End}_{R}(M) \xrightarrow{\partial^{b}} \operatorname{Rep}(A, M) \longrightarrow \operatorname{Ext}_{H}^{1}(M, M) \rightarrow 0
$$

Apply $(-)^{*}=\operatorname{Hom}_{K}(-, K)$ to obtain an exact sequence

$$
0 \rightarrow \operatorname{Ext}_{H}^{1}(M, M)^{*} \longrightarrow \operatorname{Rep}(A, M)^{*} \xrightarrow{\left(\partial^{b}\right)^{*}} \operatorname{End}_{R}(M)^{*} \xrightarrow{\left(\nu^{b}\right)^{*}} \operatorname{End}_{H}(M)^{*} \rightarrow 0 .
$$

The isomorphisms $\theta=\theta^{M}$ and $\vartheta=\vartheta^{M, M}$ from Lemma 3.2.11 and Corollary 3.2.12 make the following square commute:

It remains to verify that \mathfrak{d} and $\mathfrak{t}=\left(\nu^{b}\right)^{*} \circ \vartheta$ act as claimed. For \mathfrak{t} this is evident and for \mathfrak{d} it suffices to check

$$
\left(\left(\partial^{b}\right)^{*} \circ \theta\right)\left({ }_{A^{*}} M\right)=\vartheta\left({ }_{A^{*}} M \circ{ }_{A} M^{\vee}-{ }_{A} M \circ{ }_{A^{*}} M^{\vee}\right) .
$$

Evaluating at f and applying Lemmas 3.2.10 and 3.2.13, this means

$$
\operatorname{tr}\left(A_{A^{*}} M \circ\left(\partial^{b}(f)\right)^{\vee}\right)=\operatorname{tr}\left(A_{A^{*}} M \circ\left({ }_{A} M^{\vee} \circ f-\left(f \circ{ }_{A} M\right)^{\vee}\right)\right) .
$$

So we have to show $\left(\partial^{b}(f)\right)^{\vee}={ }_{A} M^{\vee} \circ f-\left(f \circ{ }_{A} M\right)^{\vee}$. According to Lemma 3.2.16 (b) this is equivalent to $\partial^{b}(f)={ }_{A} M \circ\left(\operatorname{id}_{A} \otimes f\right)-f \circ{ }_{A} M$, so we are done.

We have the following two corollaries. Compare [Cra01, Lemma 3.2].
Corollary 3.3.16. Let $M \in \bmod _{\text {l.f. }}\left(\Pi^{\lambda}\right)$. Then $\operatorname{tr}\left(\lambda^{M} \circ g\right)=0$ for all $g \in \operatorname{End}_{H}(M)$.

Proof. It is $\lambda^{M}=\rho^{M}={ }_{A^{*}} M \circ{ }_{A} M^{\vee}-{ }_{A} M \circ{ }_{A^{*}} M^{\vee}=\mathfrak{d}\left({ }_{A^{*}} M\right) \in \operatorname{ker}(\mathfrak{t})$ by Lemma 3.3.10, Corollary 3.3.14, and Proposition 3.3.15.

Corollary 3.3.17. Let $M \in \bmod _{\text {l.f. }}(H)$ be indecomposable.
(a) If M lifts to $a \Pi^{\lambda}$-module, then necessarily $\varphi(\lambda) \cdot \underline{\operatorname{rank}}(M)=0$.
(b) If M satisfies $\operatorname{Ext}_{H}^{1}(M, M)=0$, there is at most one way to lift M to a Π^{λ}-module.

Proof. For (a) combine Lemma 3.2.10 and Corollary 3.3.16 applied to $g=\mathrm{id}_{M}$. For (b) use Proposition 3.3.15.

3.3.3 Reflection Functors

In this subsection we introduce reflection functors for deformed preprojective algebras of symmetric modulations. The construction we present is a painless adaptation of CrawleyBoevey and Holland's [CH98]. Furthermore, Baumann and Kamnitzer's [BK12] variant of these functors for non-deformed preprojective algebras are covered as a special case.

While Crawley-Boevey and Holland defined the reflection functors only for vertices with invertible deformation parameter - and obtained equivalences - Baumann and Kamnitzer considered the non-deformed situation - and obtained a pair of adjoint functors.

Let $M \in \operatorname{Mod}\left(\Pi^{\lambda}\right)$ and fix $j \in Q_{0}$. For notational simplicity we write π, μ, and λ instead of π^{M}, μ^{M}, and λ^{M}. Recall that $\pi_{j} \mu_{j}=\lambda_{j}$ by Corollary 3.3.14. We define

$$
M_{j}^{+}=\operatorname{ker}\left(\pi_{j}\right), \quad \quad M_{j}^{-}={ }_{j \leftarrow} M / \operatorname{im}\left(\mu_{j}\right)
$$

Inspired by the diagram depicted in [BK12, Remark 2.4 (ii)] we have schematically

where μ_{j}^{+}and π_{j}^{-}are the canonical inclusion and projection and the maps π_{j}^{+}and μ_{j}^{-}are both induced by the endomorphism $\chi_{j}=\mu_{j} \pi_{j}-\lambda_{j}$.

Remark 3.3.18. The endomorphisms χ_{j} and $\gamma_{j}=\mu_{j} \pi_{j}$ form a pair of generalized orthogonal projections in the sense that $\chi_{j}^{2}=\lambda_{j} \chi_{j}, \gamma_{j}^{2}=\lambda_{j} \gamma_{j}$, and $\chi_{j} \gamma_{j}=\gamma_{j} \chi_{j}=0$.

Obviously, $\pi_{j}^{+} \mu_{j}^{+}=-\lambda_{j}$ and $\pi_{j}^{-} \mu_{j}^{-}=-\lambda_{j}$. If $\lambda_{j} \in R_{j}^{\times}$, then by Remark 3.3.18

$$
{ }_{j \leftarrow} M=\operatorname{ker}\left(\pi_{j}\right) \oplus \operatorname{im}\left(\mu_{j}\right), \quad \operatorname{ker}\left(\pi_{j}\right)=M_{j}^{+} \cong M_{j}^{-}, \quad \operatorname{im}\left(\mu_{j}\right) \cong M_{j}
$$

On the other hand, if $\lambda_{j}=0$, it is possible to fill in unique morphisms in the above diagram, indicated by dotted arrows, such that every subdiagram is commutative.

This construction yields modules $M^{+}, M^{-} \in \operatorname{Mod}(\bar{H})$, where for $\pm \in\{+,-\}, a \in{ }_{j \leftarrow} \bar{Q}_{1}$,

$$
M_{a}^{ \pm}=\pi_{j}^{ \pm} \mu_{a}, \quad M_{a^{*}}^{ \pm}={ }^{\vee}\left(\varepsilon_{a^{*}} \pi_{a} \mu_{j}^{ \pm}\right)
$$

and $M_{i}^{ \pm}=M_{i}$ for $i \neq j$ and $M_{a}^{ \pm}=M_{a}$ for $a \notin j \leftarrow \bar{Q}_{1}$.
The assignment $M \mapsto M^{ \pm}$extends in a canonical way to a functor $\operatorname{Mod}\left(\Pi^{\lambda}\right) \rightarrow \operatorname{Mod}(\bar{H})$.
Definition 3.3.19. Let $r_{j} \in \operatorname{Aut}_{K}(\mathrm{Z}(R))$ be the map defined, for $\lambda \in \mathrm{Z}(R), i \in Q_{0}$, by

$$
\left(r_{j}(\lambda)\right)_{i}=\left\{\begin{array}{cl}
-\lambda_{j} & \text { if } i=j \\
\lambda_{i}+\vec{\Phi}_{i j}\left(\lambda_{j}\right) & \text { otherwise }
\end{array}\right.
$$

Remark 3.3.20. It is $r_{j}^{2}=\operatorname{id}_{\mathrm{Z}(R)}$, and $\left(r_{j}(\lambda)\right)_{j}$ is invertible (resp. zero) if and only if λ_{j} is invertible (resp. zero). Moreover, $r_{j}=\mathrm{id}_{\mathrm{Z}(R)}$ if $\lambda_{j}=0$.

Remark 3.3.21. Assume that φ is a rank-aware structure for $\overline{\mathcal{H}}$. This implies $\vec{\varphi}_{i j}=-c_{i j}$. Thus $\left(r_{j}(\lambda)\right)_{i}=\lambda_{i}-c_{i j} \lambda_{j}$ for $i \neq j$ and $\lambda_{j} \in K$. So r_{j} restricts to a map $K^{Q_{0}} \rightarrow K^{Q_{0}}$ that is (induced by) the transpose of the simple reflection $s_{j} \in \operatorname{Aut}\left(\mathbb{Z}^{Q_{0}}\right)$. Compare [CH98, § 5].
The next lemma shows that $M \mapsto M^{ \pm}$induces a functor $\operatorname{Mod}\left(\Pi^{\lambda}\right) \xrightarrow{\Sigma_{j}^{ \pm}} \operatorname{Mod}\left(\Pi^{r_{j}}(\lambda)\right)$.
Lemma 3.3.22. The element $\rho-r_{j}(\lambda)$ annihilates $M^{ \pm}$.
Proof. We use Corollary 3.3.14. We already know $\pi_{j}^{ \pm} \mu_{j}^{ \pm}=-\lambda_{j}=\left(r_{j}(\lambda)\right)_{j}$. For $i \neq j$ and arrows $j \stackrel{a}{\leftarrow} i \in \bar{Q}_{1}$ by definition

$$
\left(M_{a^{*}}^{ \pm} \vee M_{a}^{ \pm}=\varepsilon_{a^{*}} \pi_{a} \mu_{j}^{ \pm} \pi_{j}^{ \pm} \mu_{a}=\varepsilon_{a^{*}} \pi_{a}\left(\mu_{j} \pi_{j}-\lambda_{j}\right) \mu_{a}=M_{a^{*}}^{\vee} M_{a}-\varepsilon_{a^{*}} \lambda_{j}^{A_{a} \otimes_{R_{i}} M_{i}}\right.
$$

Applying first $(-)^{\vee}$ and then ${ }^{\vee}\left(\operatorname{id}_{A_{a} \otimes_{R_{i}} M_{i}}\right) \circ-$, Lemma 3.2.16 (c) and (a) show

$$
M_{a^{*}}^{ \pm}\left(M_{a}^{ \pm}\right)^{\vee}=M_{a^{*}} M_{a}^{\vee}-\varepsilon_{a^{*}}^{\vee}\left(\operatorname{id}_{A_{a} \otimes_{R_{i}} M_{i}}\right) \circ\left(\lambda_{j}^{A_{a} \otimes_{R_{i}} M_{i}}\right)^{\vee}=M_{a^{*}} M_{a}^{\vee}-\varepsilon_{a^{*}} \vec{\Phi}_{a}\left(\lambda_{j}\right) .
$$

With the help of Lemma 3.3.10 and Corollary 3.3.14 we can conclude as desired

$$
\pi_{i}^{ \pm} \mu_{i}^{ \pm}=\sum_{j \overleftarrow{a} i \in \bar{Q}_{1}} \varepsilon_{a} M_{a^{*}}^{ \pm}\left(M_{a}^{ \pm}\right)^{\vee}=\pi_{i} \mu_{i}+\sum_{j \overleftarrow{a} i \in \bar{Q}_{1}} \vec{\Phi}_{a}\left(\lambda_{j}\right)=\lambda_{i}+\vec{\Phi}_{i j}\left(\lambda_{j}\right)=\left(r_{j}(\lambda)\right)_{i} .
$$

If $\lambda_{j} \in R_{j}$ is invertible, the functors Σ_{j}^{+}and Σ_{j}^{-}are isomorphic and we set $\Sigma_{j}:=\Sigma_{j}^{+}$. The next proposition is proved in complete analogy to [CH98, Theorem 5.1].

Proposition 3.3.23. Let $j \in Q_{0}$ such that $\lambda_{j} \in R_{j}^{\times}$. We have quasi-inverse equivalences:

$$
\operatorname{Mod}\left(\Pi^{\lambda}\right) \underset{\Sigma_{j}}{\stackrel{\Sigma_{j}}{\rightleftarrows}} \operatorname{Mod}\left(\Pi^{r_{j}}(\lambda)\right)
$$

For $M \in \bmod _{\underline{l . f} .}\left(\Pi^{\lambda}\right)$ the module $\Sigma_{j}(M)$ is locally free with $\underline{\operatorname{rank}}\left(\Sigma_{j}(M)\right)=s_{j}(\underline{\operatorname{rank}}(M))$.
Proof. It is an easy consequence of the construction and the invertibility of λ_{j} that the endofunctor $\Sigma_{j} \Sigma_{j}$ of $\operatorname{Mod}\left(\Pi^{\lambda}\right)$ is isomorphic to the identity. Analogously, this is the case for the endofunctor $\Sigma_{j} \Sigma_{j}$ of $\operatorname{Mod}\left(\Pi^{r_{j}}{ }^{(\lambda)}\right)$. The decomposition ${ }_{j \leftarrow} M=\operatorname{ker}\left(\pi_{j}\right) \oplus \operatorname{im}\left(\mu_{j}\right)$, where $\left(\Sigma_{j}(M)\right)_{j} \cong \operatorname{ker}\left(\pi_{j}\right)$ and $M_{j} \cong \operatorname{im}\left(\mu_{j}\right)$, shows that $\Sigma_{j}(M)$ is locally free because ${ }_{j \leftarrow} M$ and M_{j} are free. It also proves the formula for the rank vectors.

Every module $M \in \operatorname{Mod}\left(\Pi^{\lambda}\right)$ has a submodule $\operatorname{sub}_{j}(M)$ and a factor module fac $_{j}(M)$ given as $\operatorname{sub}_{j}(M)=\operatorname{ker}\left(\mu_{j}\right)$ and $\operatorname{fac}_{j}(M)=M /\left(\operatorname{im}\left(\pi_{j}\right)+\sum_{i \neq j} M_{i}\right)$. We have the following version of [BK12, Proposition 2.5] and [GLS16a, Proposition 9.1].

Proposition 3.3.24. Let $j \in Q_{0}$ such that $\lambda_{j}=0$. Then $\left(\Sigma_{j}^{-}, \Sigma_{j}^{+}\right)$is a pair of adjoint endofunctors of $\operatorname{Mod}\left(\Pi^{\lambda}\right)$ and there are short exact sequences

$$
0 \longrightarrow \operatorname{sub}_{j} \longrightarrow \mathrm{id} \longrightarrow \Sigma_{j}^{+} \Sigma_{j}^{-} \longrightarrow 0, \quad 0 \longrightarrow \Sigma_{j}^{-} \Sigma_{j}^{+} \longrightarrow \mathrm{id} \longrightarrow \mathrm{fac}_{j} \longrightarrow 0
$$

Proof. The adjunction follows from Lemma 2.3.4, $\lambda_{j}=0$, and the universal properties of kernels, cokernels, and direct sums. See [BK12, Proof of Proposition 2.5] and [GLS16a, Proof of Proposition 9.1], where the argument is given in detail. For the existence of the exact sequences note $M_{j}^{-+}=\operatorname{im}\left(\mu_{j}\right)$ and $M_{j}^{+-}={ }_{j \leftarrow} M / \operatorname{ker}\left(\pi_{j}\right) \cong \operatorname{im}\left(\pi_{j}\right)$.

3.4 Auslander-Reiten Translation via Coxeter Functors

This section builds on [GLS16a, $\S \S 9-12$]. We point out the necessary adaptations to make Geiß, Leclerc, and Schröer's arguments work for symmetric (local) modulations.

Gabriel proves in [Gab80] for path algebras $H=K Q$ of unweighted acyclic quivers that Bernstein, Gelfand, and Ponomarev's [BGP73] Coxeter functor C^{+}coincides with the Auslander-Reiten translation τ^{+}essentially up to a sign change. More precisely, the subbimodule Π_{1} of the preprojective algebra Π generated by the dual arrows a^{*} represents both, the twisted Coxeter functor $C^{+} T$ and the Auslander-Reiten translation τ^{+}, i.e.

$$
C^{+} T \cong \operatorname{Hom}_{H}\left(\Pi_{1},-\right) \cong \tau^{+} .
$$

Geiß, Leclerc, and Schröer showed that these isomorphisms are valid in a broader setting, not on the whole module category, but after restriction to locally free modules.

Convention 3.4.1. Assume that Q is acyclic and \mathcal{H} local and symmetric.
Fix a symmetric structure φ on R.

3.4.1 BGP-Reflection and Coxeter Functors

Notation 3.4.2. For $j \in Q_{0}$ let $\mathcal{H}^{* j}$ be the submodulation of $\overline{\mathcal{H}}$ induced by $Q^{* j} \subseteq \bar{Q}$.
Let $H^{* j}=H_{\mathcal{H}^{* j}}$ and denote by ι_{j} the R-algebra map $H^{* j} \hookrightarrow \bar{H}$ given by Lemma 2.4.32.
There is a functor $\operatorname{Mod}(H) \xrightarrow{\mathcal{L}_{0}} \operatorname{Mod}(\Pi)$ that extends each H-module M to a Π-module with $M_{a^{*}}=0$ for all $a \in Q_{1}$ (and maps morphisms to themselves).

Definition 3.4.3. For $j \in Q_{0}$ let $\operatorname{Mod}(\Pi) \xrightarrow{\boldsymbol{R}_{j}} \operatorname{Mod}\left(H^{* j}\right)$ be the restriction functor induced by the composition of ι_{j} with the canonical projection $\bar{H} \rightarrow \Pi$. Define

$$
F_{j}^{+}=\mathcal{R}_{j} \circ \Sigma_{j}^{+} \circ \mathcal{L}_{0}, \quad F_{j}^{-}=\mathcal{R}_{j} \circ \Sigma_{j}^{-} \circ \mathcal{L}_{0}
$$

In the case that j is a sink or a source in Q we define $\operatorname{Mod}(H) \xrightarrow{F_{j}} \operatorname{Mod}\left(H^{* j}\right)$ as

$$
F_{j}= \begin{cases}F_{j}^{+} & \text {if } j \text { is a sink } \\ F_{j}^{-} & \text {if } j \text { is a source }\end{cases}
$$

Remark 3.4.4. Let j be a sink or a source in Q. The functor F_{j} is a generalization of the "image functor" in [BGP73, §1]. For example, if j is a sink in Q, let $M \in \operatorname{Mod}(H)$ and

$$
{ }_{j \leftarrow} M=e_{j} A \otimes_{R} M \xrightarrow{\pi_{j}} M_{j}
$$

given by multiplication (compare Notation 3.3.12). Then $\left(F_{j}^{+}(M)\right)_{j}=M_{j}^{+}=\operatorname{ker}\left(\pi_{j}\right)$.
Recall that a module $M \in \operatorname{Mod}(H)$ is called rigid if $\operatorname{Ext}_{H}^{1}(M, M)=0$.
Proposition 3.4.5. Let j be a sink or a source in the quiver Q. For every locally free and rigid module $M \in \bmod (H)$ the module $F_{j}(M)$ is locally free and rigid, too.

Proof. With Proposition 3.3.24 at hand, we can use [GLS16a, Proof of Proposition 9.6].
Definition 3.4.6. Let $\pm \in\{+,-\}$ and let $\left(i_{1}, \ldots, i_{n}\right)$ be any \pm-admissible sequence for Q. The Coxeter functor $C^{ \pm}$for \mathcal{H} is the endofunctor $F_{i_{n}}^{ \pm} \cdots F_{i_{1}}^{ \pm}$of $\operatorname{Mod}(H)$.

Remark 3.4.7. As indicated in [GLS16a, § 9.4], the argument given in the proof of [BGP73, Lemma 1.2] shows that $C^{ \pm}$does not depend on the choice of the \pm-admissible sequence.

Remark 3.4.8. With Proposition 3.3 .24 it is easy to see that $\left(C^{-}, C^{+}\right)$is an adjoint pair.
Definition 3.4.9. The twist $T \in \operatorname{Aut}_{R}(H)$ of $H=R\langle A\rangle$ is induced by $A \xrightarrow{-\mathrm{id}} A \subseteq H$.
The automorphism of $\operatorname{Mod}(H)$ induced by $T \in \operatorname{Aut}_{R}(H)$ is again denoted by T.
The twisted Coxeter bimodule Π_{1} is the sub H-bimodule of $\Pi=\Pi_{\mathcal{H}}$ generated by A^{*}.
Remark 3.4.10. It is $T^{2}=\mathrm{id}$ and $C^{ \pm} T=T C^{ \pm}$for $\pm \in\{+,-\}$.
The following is the key result [GLS16a, Theorem 10.1] in our setting:
Theorem 3.4.11. We have $C^{+} T \cong \operatorname{Hom}_{H}\left(\Pi_{1},-\right)$ and $C^{-} T \cong \Pi_{1} \otimes_{H}$ - as endofunctors of $\operatorname{Mod}(H)$. Moreover, $C^{+} T \cong \tau^{+}$and $C^{-} T \cong \tau^{-}$as functors $\bmod _{\text {l.f. }}(H) \rightarrow \bmod (H)$.

3.4.2 Gabriel-Riedtmann Construction

Before giving a proof of Theorem 3.4.11, we discuss what form the Gabriel-Riedtmann construction takes in our context. Compare [Gab73, § 5] and [GLS16a, § 10.2].

Definition 3.4.12. The Riedtmann quiver defined by Q is the weighted quiver \widetilde{Q} with vertex set $\widetilde{Q}_{0}=\left\{i_{ \pm} \mid i \in Q_{0}, \pm \in\{+,-\}\right\}$, weights $d_{i_{ \pm}}=d_{i}$, and arrow set

$$
\widetilde{Q}_{1}=\left\{j_{ \pm} \stackrel{a_{ \pm}}{\leftrightarrows} i_{ \pm} \mid j \stackrel{a}{\leftarrow} i \in Q_{1}, \pm \in\{+,-\}\right\} \dot{\cup}\left\{j_{+} \xrightarrow{a^{*}} i_{-} \mid j{ }^{a} \stackrel{a}{\leftarrow} i \in Q_{1}\right\} .
$$

The Riedtmann modulation defined by \mathcal{H} is the K-modulation $\widetilde{\mathcal{H}}=\left(R_{\tilde{\mathrm{I}}}, A_{\tilde{a}}\right)_{\tilde{\tilde{r}}, \tilde{a}}$ for \widetilde{Q} defined by $R_{i_{ \pm}}=R_{i}, A_{a_{ \pm}}=A_{a}, A_{a^{*}}=A_{a}^{*}$. Let $\widetilde{R}=R_{\tilde{\mathcal{H}}}$ and $\widetilde{A}=A_{\tilde{\mathcal{H}}}$ and $\widetilde{H}=H_{\tilde{\mathcal{H}}}$.
Warning. In [GLS16a] the letter \widetilde{H} is not used for $H_{\tilde{\mathcal{H}}}$ but for its quotient $\widetilde{\Gamma}$ defined below.
Example 3.4.13. We reproduce [GLS16a, Example 10.2.2] to account for our slightly different notation. Let Q be the weighted quiver $j \stackrel{a}{\rightarrow} i \stackrel{b}{\leftarrow} k$ with $d_{j}=1, d_{i}=d_{k}=2$ of
type B_{3}. Then the Riedtmann quiver \widetilde{Q} looks as follows:

Notation 3.4.14. For $\pm \in\{+,-\}$ there are injective non-unital K-algebra morphisms

$$
H \stackrel{\eta_{ \pm}}{\longrightarrow} \tilde{H}
$$

induced by the identities $R_{i} \xrightarrow{\text { id }} R_{i_{ \pm}}$and $A_{a} \xrightarrow{\text { id }} A_{a_{ \pm}}$.
Furthermore, there is an injective K-algebra morphism

$$
H^{*} \xrightarrow{\eta_{\bullet}} \widetilde{H}
$$

induced by $R_{i} \xrightarrow{(\mathrm{id} \mathrm{id})^{\mathbf{T}}} R_{i_{-}} \oplus R_{i_{+}}$and $A_{a^{*}} \xrightarrow{\mathrm{id}} A_{a^{*}}$.
Inspired by [Gab73] (slightly deviating from [GLS16a]), we use the following notation for the restriction functors induced by $\eta_{ \pm}$and η_{\bullet} :

Remark 3.4.15. The ground ring of $\widetilde{\mathcal{H}}$ factorizes as $\widetilde{R}=R^{-} \times R^{+}$with $R^{ \pm}=\eta_{ \pm}(R)$ and the species decomposes as $\widetilde{A}=A^{-} \oplus A^{\bullet} \oplus A^{+}$with $A^{ \pm}=\eta_{ \pm}(A)$ and $A^{\bullet}=\eta_{\bullet}\left(A^{*}\right)$.

Remark 3.4.16. For $M \in \operatorname{Mod}(\tilde{H})$ as R-modules $\mathcal{R}_{\bullet}(M) \cong \mathcal{R}_{-}(M) \oplus \mathcal{R}_{+}(M)$ canonically. Moreover, note that $x m_{+} \in \mathcal{R}_{-}(M)$ and $x m_{-}=0$ for all $x \in A^{*} \subseteq H^{*}$ and $m_{ \pm} \in \mathcal{R}_{+}(M)$. Multiplication in the H^{*}-module $\mathcal{R}_{\bullet}(M)$ induces an R-module homomorphism

$$
A^{*} \otimes_{R} \mathcal{R}_{+}(M) \xrightarrow{. M} \mathcal{R}_{-}(M) .
$$

Definition 3.4.17. A Riedtmann A-representation is a triple $\left(M_{-}, M_{+}, \kappa_{M}\right)$ consisting of two H-modules $M_{ \pm}$and an R-module morphism $A^{*} \otimes_{R} M_{+} \xrightarrow{\kappa_{M}} M_{-}$.

A morphism of Riedtmann A-representations $\left(M_{-}, M_{+}, \kappa_{M}\right) \xrightarrow{\left(f_{-}, f_{+}\right)}\left(N_{-}, N_{+}, \kappa_{N}\right)$ is a pair of morphisms $M_{ \pm} \xrightarrow{f_{ \pm}} N_{ \pm}$of H-modules making the following square commute:

Lemma 3.4.18. The functor $M \mapsto\left(\mathcal{R}_{-}(M), \mathcal{R}_{+}(M), ~, M\right)$ defines an equivalence between the category $\operatorname{Mod}(\widetilde{H})$ and the category of Riedtmann A-representations.

More precisely, for Riedtmann A-representations $\left(M_{-}, M_{+}, \kappa_{M}\right)$ let M be the \widetilde{R}-module with underlying set $M_{-} \times M_{+}$and multiplication given as

$$
r m=\left(r_{-} m_{-}, r_{+} m_{+}\right)
$$

for all $r=\left(\eta_{-}\left(r_{-}\right), \eta_{+}\left(r_{+}\right)\right) \in R^{-} \times R^{+}=\widetilde{R}$ with $r_{-}, r_{+} \in R$ and $m=\left(m_{-}, m_{+}\right) \in M$. There is a unique \widetilde{H}-module structure $\widetilde{A} M$ on M making the following diagrams commute:

Proof. This is similar to the proof of Corollaries 2.2.19 and 3.3.11.

As mentioned during the definition of the preprojective algebra (at the beginning of § 3.3), there are isomorphisms

$$
\begin{aligned}
& \Delta^{+}: \operatorname{End}_{R}\left({ }_{R} A\right) \xrightarrow{\Delta} A^{*} \otimes_{R} A \xrightarrow{\eta_{\bullet} \otimes \eta_{+}} A^{\bullet} \otimes_{\widetilde{R}} A^{+} \subseteq \widetilde{H}, \\
& \Delta^{-}: \operatorname{End}_{R}\left(A_{R}\right) \xrightarrow{\Delta_{*}} A \otimes_{R} A^{*} \xrightarrow{\eta_{-} \otimes \eta_{\bullet}} A^{-} \otimes_{\widetilde{R}} A^{\bullet} \subseteq \widetilde{H} .
\end{aligned}
$$

Definition 3.4.19. The Riedtmann algebra for \mathcal{H} is $\widetilde{\Gamma}=\widetilde{H} /\langle\widetilde{\rho}\rangle$ where

$$
\widetilde{\rho}=\Delta^{+}(\mathrm{id})+\Delta^{-}(\mathrm{id}) \in \widetilde{H}
$$

Notation 3.4.20. Let $M \in \operatorname{Mod}(\widetilde{H})$. For arrows $j \stackrel{a}{\leftarrow} i \in \widetilde{Q}_{1}$ we abbreviate, similarly as before, $A_{a}^{M}=A_{a} \otimes_{R_{i}} M_{i}$ and $A_{a^{*}}^{M}=A_{a^{*}} \otimes_{R_{j}} M_{j}$. Moreover, define for each $j \in Q_{0}$

$$
j_{-} \leftarrow M=\bigoplus_{j_{-} \overleftarrow{a} i} A_{a}^{M}, \quad \quad j_{+} \rightarrow M=\bigoplus_{j_{+} \vec{a} i} A_{a^{*}}^{M}
$$

where the sums are taken over arrows in \widetilde{Q}.
Let $j_{-} \leftarrow M \xrightarrow{\widetilde{\pi}_{a}} A_{a}^{M}$ and $A_{a^{*}}^{M} \xrightarrow{\widetilde{\mu}_{a}}{ }_{j_{+} \rightarrow} M$ be the canonical projection and inclusion. Set

$$
\tilde{\pi}_{j_{-}}=\sum_{j_{-}{ }_{a} i} M_{a} \widetilde{\pi}_{a}, \quad \tilde{\mu}_{j_{+}}=\sum_{j_{+} \vec{a} i} \tilde{\mu}_{a} M_{a}^{\vee}
$$

Finally, define $\widetilde{\pi}=\sum_{j \in Q_{0}} \widetilde{\pi}_{j_{-}}$and $\widetilde{\mu}=\sum_{j \in Q_{0}} \widetilde{\mu}_{j_{+}}$.
When we want to stress the dependence of $\widetilde{\pi}, \widetilde{\mu}$ etc. on M we write $\widetilde{\pi}^{M}, \widetilde{\mu}^{M}$ etc.
Using the correspondence given by $j_{-} \stackrel{a_{-}}{\leftarrow} i_{-} \hookleftarrow j_{+} \xrightarrow{a^{*}} i_{-}$and $j_{-} \stackrel{a^{*}}{\leftarrow} k_{+} \hookleftarrow j_{+} \xrightarrow{a_{+}} k_{+}$, we identify ${ }_{j_{+} \rightarrow} M$ with ${ }_{j_{-} \leftarrow} M$ so that $\widetilde{\pi}^{M} \widetilde{\mu}^{M}$ is a well-defined element in

$$
\operatorname{End}_{R_{+} \rightarrow R_{-}}(M):=\bigoplus_{j \in Q_{0}} \operatorname{Hom}_{R_{j}}\left(M_{j_{+}}, M_{j_{-}}\right)
$$

We denote by $\widetilde{\rho}^{M}$ the element in $\operatorname{End}_{R_{+} \rightarrow R_{-}}(M)$ given by left multiplication with $\widetilde{\rho}$.

Lemma 3.4.21. Let $M \in \operatorname{Mod}(\widetilde{H})$. Then $\widetilde{\rho}^{M}=\sum_{a \in Q_{1}}\left(M_{a^{*}} M_{a_{+}}^{\vee}+M_{a_{-}} M_{a^{*}}^{\vee}\right)=\widetilde{\pi}^{M} \widetilde{\mu}^{M}$ In particular, $M \in \operatorname{Mod}(\widetilde{\Gamma})$ if and only if $\widetilde{\pi}^{M} \widetilde{\mu}^{M}=0$.

Proof. This can be proved analogously to Lemma 3.3.10 and Corollary 3.3.14.
Convention 3.4.22. Just as [Gab73, § 5.5] and [GLS16a, § 10] we will assume for notational simplicity that $Q_{0}=\{1, \ldots, n\}$ and $(1, \ldots, n)$ is a + -admissible sequence for Q.

Remark 3.4.23. Let $0 \leq \ell \leq n$. The full subquiver of \widetilde{Q} on the vertices i_{+}with $1 \leq i \leq \ell$ and i_{-}with $\ell<i \leq n$ can be identified with the quiver

$$
Q^{\ell}:=\left(\cdots\left(Q^{* 1}\right)^{* 2} \cdots\right)^{* \ell}
$$

via $Q^{\ell} \xrightarrow{\iota_{\ell}} \widetilde{Q}$ given by $i \mapsto i_{+}$for $1 \leq i \leq \ell$ and $i \mapsto i_{-}$for $\ell<i \leq n$ sending $j \stackrel{a}{\leftarrow} i \in Q_{1}^{\ell}$ to

$$
\iota_{\ell}(a)= \begin{cases}a_{-} & \text {if } i>\ell \text { and } j>\ell \\ a_{+} & \text {if } i \leq \ell \text { and } j \leq \ell \\ a & \text { otherwise }\end{cases}
$$

Definition 3.4.24. For $I \subseteq \widetilde{Q}_{0}$ we denote by $\widetilde{\Gamma}(I)$ the algebra $e_{I} \widetilde{\Gamma} e_{I}$ with $e_{I}=\sum_{i \in I} e_{i}$. For $0 \leq \ell \leq n$ set

$$
\begin{aligned}
\Gamma^{\ell} & :=\widetilde{\Gamma}\left(\left\{i_{+} \mid 1 \leq i \leq \ell\right\} \cup\left\{i_{-} \mid \ell<i \leq n\right\}\right), \\
\widetilde{\Gamma}^{\ell} & :=\widetilde{\Gamma}\left(\left\{i_{+} \mid 1 \leq i \leq \ell\right\} \cup\left\{i_{-} \mid 1 \leq i \leq n\right\}\right) .
\end{aligned}
$$

Let H^{ℓ} be the path algebra of $\left(\cdots\left(\mathcal{H}^{* 1}\right)^{* 2} \cdots\right)^{* \ell}$ and $H^{\ell} \xrightarrow{\widetilde{\eta}_{\ell}} \widetilde{\Gamma}^{\ell}$ the non-unital K-algebra homomorphism induced by the identities $R_{i} \rightarrow R_{\iota_{\ell}(i)}$ and $A_{a} \rightarrow A_{\iota_{\ell}(a)}$, whose image is Γ^{ℓ}.

For the restriction functors corresponding to $\widetilde{\eta}_{\ell}$ and the inclusion $\widetilde{\Gamma}^{\ell-1} \subseteq \widetilde{\Gamma}^{\ell}$ we write

$$
\operatorname{Mod}\left(\widetilde{\Gamma}^{\ell}\right) \xrightarrow{\widetilde{\mathcal{R}}_{\ell}} \operatorname{Mod}\left(H^{\ell}\right), \quad \operatorname{Mod}\left(\widetilde{\Gamma}^{\ell}\right) \xrightarrow{\operatorname{Res}_{\ell}} \operatorname{Mod}\left(\widetilde{\Gamma}^{\ell-1}\right) .
$$

Remark 3.4.25. As was pointed out in [Gab73, § 5.5], the right adjoint $\operatorname{Res}^{\ell}$ of $\operatorname{Res}_{\ell}$ can be explicitly described as follows: It sends each $\widetilde{\Gamma}^{\ell-1}$-module M to the $\widetilde{\Gamma}^{\ell}$-module M^{+}with

$$
M_{\ell_{+}}^{+}=\operatorname{ker}\left(\widetilde{\pi}_{\ell_{-}}^{M}\right), \quad M_{i}^{+}=M_{i} \text { for } i \neq \ell_{+},
$$

such that for all $j \stackrel{a}{\leftarrow} i$ the map $\left(M_{a}^{+}\right)^{\vee}$ is induced by the canonical projection, if $i=\ell_{+}$, and is equal to M_{a} otherwise. We summarize this remark in the next lemma.

Lemma 3.4.26. $\widetilde{\mathcal{R}}_{i} \operatorname{Res}^{i} \cong F_{i}^{+} \widetilde{\mathcal{R}}_{i-1}$.

Proof. This follows from Remark 3.4.25 and the definition of F_{i}^{+}. For a more detailed argument see [GLS16a, proof of Lemma 10.2].

Notation 3.4.27. Let $\pm \in\{+,-\}$. Denote by $\widetilde{\eta}_{ \pm}$the composition of $H \xrightarrow{\eta_{ \pm}} \widetilde{H}$ with the projection $\widetilde{H} \rightarrow \widetilde{\Gamma}$ and by $\widetilde{\mathcal{R}}_{ \pm}$the corresponding restriction functor $\operatorname{Mod}(\widetilde{\Gamma}) \rightarrow \operatorname{Mod}(H)$.

As usual, $H \xrightarrow{\widetilde{\eta}_{ \pm}} \widetilde{\Gamma}$ defines a coinduction functor:

$$
\begin{array}{cl}
\operatorname{Mod}(H) \\
M & \longmapsto \\
& \widetilde{\mathcal{R}}^{ \pm} \\
& \operatorname{Mod}(\widetilde{\Gamma}) \\
\operatorname{Hom}_{H}\left(\widetilde{\mathcal{R}}_{ \pm}(\widetilde{\Gamma}), M\right)
\end{array}
$$

Remark 3.4.28. It is a standard fact that $\left(\widetilde{\mathcal{R}}_{ \pm}, \widetilde{\mathcal{R}}^{ \pm}\right)$is an adjoint pair.
Remark 3.4.29. It is $\widetilde{\eta}_{+}=\widetilde{\eta}_{n}$ and $\widetilde{\eta}_{-}=\iota \circ \widetilde{\eta}_{0}$ for the canonical inclusion $\Gamma^{0}=\widetilde{\Gamma}^{0} \stackrel{\iota}{\hookrightarrow} \widetilde{\Gamma}$.
Therefore $\widetilde{\mathcal{R}}_{+}=\widetilde{\mathcal{R}}_{n}$ and $\widetilde{\mathcal{R}}_{-}=\widetilde{\mathcal{R}}_{0} \operatorname{Res}_{1} \cdots \operatorname{Res}_{n}$, so $\widetilde{\mathcal{R}}^{-} \cong \operatorname{Res}^{n} \cdots \operatorname{Res}^{1} \widetilde{\mathcal{R}}^{0}$ for every quasi-inverse of the equivalence $\widetilde{\mathcal{R}}^{0}$ of $\widetilde{\mathcal{R}}_{0}$.

Corollary 3.4.30. $C^{+} \cong \widetilde{\mathcal{R}}_{+} \widetilde{\mathcal{R}}^{-}$.

Proof. By Lemma 3.4.26 and Remark 3.4.29

$$
C^{+} \cong\left(F_{n}^{+} \cdots F_{1}^{+}\right) \widetilde{\mathcal{R}}_{0} \widetilde{\mathcal{R}}^{0} \cong \widetilde{\mathcal{R}}_{n}\left(\operatorname{Res}^{n} \cdots \operatorname{Res}^{1}\right) \widetilde{\mathcal{R}}^{0} \cong \widetilde{\mathcal{R}}_{+} \widetilde{\mathcal{R}}^{-} .
$$

Lemma 3.4.31. $\widetilde{\mathcal{R}}_{+} \widetilde{\mathcal{R}}^{-} \cong \operatorname{Hom}_{H}\left(\Pi_{1}, T(-)\right)$.
Proof. Let $I_{ \pm}=\left\{i_{ \pm} \mid i \in Q_{0}\right\}$ and $\widetilde{\Gamma}_{+}$be the H-bimodule with underlying set $e_{I_{-}} \widetilde{\Gamma} e_{I_{+}}$ and multiplication given, for $x, y \in H$ and $z \in{ }_{-} \widetilde{\Gamma}_{+}$, by

$$
x z y=\eta_{-}(T(x)) \cdot z \cdot \eta_{+}(y) .
$$

Then $\widetilde{\mathcal{R}}_{+} \widetilde{\mathcal{R}}^{-}=\widetilde{\mathcal{R}}_{+} \operatorname{Hom}_{H}\left(\widetilde{\mathcal{R}}_{-}(\widetilde{\Gamma}),-\right) \cong \operatorname{Hom}_{H}\left({ }_{-} \widetilde{\Gamma}_{+}, T(-)\right)$.
It only remains to observe that $_\widetilde{\Gamma}_{+} \cong \Pi_{1}$ as H-bimodule.

The next two definitions generalize [Gab73, § 5.4] and correspond to [GLS16a, § 10.4]. The aim is to provide an explicit description of $\widetilde{\mathcal{R}}^{-}$.

Definition 3.4.32. Let $\operatorname{Mod}(H) \xrightarrow{\overline{\mathcal{R}}^{-}} \operatorname{Mod}(\widetilde{H})$ be the functor that sends H-modules M to \widetilde{H}-modules \widetilde{M} with

$$
\begin{aligned}
& \mathcal{R}_{-}(\widetilde{M})=M, \quad \mathcal{R}_{+}(\widetilde{M})=\operatorname{Hom}_{R}\left(A^{*} \otimes_{R} H, M\right), \\
& \widetilde{M}(x \otimes f)=f(x \otimes 1) \quad \text { for } x \otimes f \in A^{*} \otimes_{R} \mathcal{R}_{+}(\widetilde{M}) .
\end{aligned}
$$

Take for the action of $\overline{\mathcal{R}}^{-}$on morphisms the obvious one.
Definition 3.4.33. For $f \in \mathcal{R}_{+}(\widetilde{M})$ we denote by $f^{\sharp}=f_{M}^{\sharp}$ the map $A \otimes_{R} A^{*} \otimes_{R} H \rightarrow M$ obtained by postcomposing $\operatorname{id}_{A} \otimes f$ with the multiplication map ${ }_{A} M$. Define

$$
\widetilde{\rho}_{+}=\Delta^{+}(\mathrm{id}), \quad \widetilde{\rho}_{-}=\Delta^{-}(\mathrm{id}) .
$$

For every $z \in H$ the element $\widetilde{\rho}_{+} z$ will be regarded as an element in $A^{*} \otimes_{R} H$ and $\widetilde{\rho}_{-} z$ as an element in $A \otimes_{R} A^{*} \otimes_{R} H$.
By the next lemma, $M \mapsto \widehat{M}$ induces a subfunctor $\operatorname{Mod}(H) \xrightarrow{\widehat{\mathcal{R}}^{-}} \operatorname{Mod}(\widetilde{\Gamma})$ of $\overline{\mathcal{R}}^{-}$where

$$
\mathcal{R}_{-}(\widehat{M})=M, \quad \mathcal{R}_{+}(\widehat{M})=\left\{f \in \mathcal{R}_{+}(\widetilde{M}) \mid f\left(\widetilde{\rho}_{+} z\right)+f^{\sharp}\left(\widetilde{\rho}_{-} z\right)=0 \text { for all } z \in H\right\} .
$$

Remark 3.4.34. Obviously, $\widetilde{\rho}_{+}+\widetilde{\rho}_{-}=\widetilde{\rho}$. In $\operatorname{Hom}_{R}(H, M)$ we have for each $f \in \mathcal{R}_{+}(\widetilde{M})$

$$
f\left(\widetilde{\rho}_{+} \cdot-\right)=f \circ{ }_{A} H^{\vee}, \quad f^{\sharp}\left(\widetilde{\rho}_{-} \cdot-\right)={ }_{A} M \circ f^{\vee} .
$$

Lemma 3.4.35. \widehat{M} is an \widetilde{H}-submodule of \widetilde{M} and is annihilated by $\widetilde{\rho}$.
Proof. To prove that \widehat{M} is an \widetilde{H}-submodule we have to verify $g=M_{a_{+}}(x \otimes f) \in \widehat{M}_{j_{+}}$for every $j \stackrel{a}{\leftarrow} i \in Q_{1}$ and $x \otimes f \in A_{a} \otimes_{R_{i}} \widehat{M}_{i_{+}}$. This is clear, since for all $z \in H e_{j}$

$$
g\left(\widetilde{\rho}_{+} z\right)=f\left(\widetilde{\rho}_{+} z x\right), \quad g^{\sharp}\left(\widetilde{\rho}_{-} z\right)=f^{\sharp}\left(\widetilde{\rho}_{-} z x\right) .
$$

A straightforward calculation yields for each $f \in \widetilde{M}_{i_{+}}$the identities

$$
\left(\sum_{a \in Q_{1}} \widetilde{M}_{a^{*}} \widetilde{M}_{a_{+}}^{\vee}\right)(f)=f\left(\widetilde{\rho}_{+}\right), \quad\left(\sum_{a \in Q_{1}} \widetilde{M}_{a_{-}} \widetilde{M}_{a^{*}}^{\vee}\right)(f)=f^{\sharp}\left(\widetilde{\rho}_{-}\right) .
$$

Lemma 3.4.21 now implies that $\widetilde{\rho}=\widetilde{\rho}_{+}+\widetilde{\rho}_{-}$annihilates \widehat{M}.
Lemma 3.4.36. $\widehat{\mathcal{R}}^{-} \cong \widetilde{\mathcal{R}}^{-}$.
Proof. It suffices to check that $\widehat{\mathcal{R}}^{-}$is another right adjoint of $\widetilde{\mathcal{R}}_{-}$. The proof of this fact is similar to [Gab73, § 5.4] and [GLS16a, proof of Lemma 10.3].
Let $N \in \operatorname{Mod}(\widetilde{\Gamma})$ and $M \in \operatorname{Mod}(H)$. Then we have as R-module $\widetilde{\mathcal{R}}_{-}(N) \cong \bigoplus_{i \in Q_{0}} N_{i_{-}}$ canonically. It is clear that the rule

$$
g=\left(g_{i}\right)_{i \in \widetilde{Q}_{0}} \mapsto\left(g_{i_{-}}\right)_{i \in Q_{0}}
$$

induces a map $\operatorname{Hom}_{\widetilde{\Gamma}}(N, \widehat{M}) \xrightarrow{r} \operatorname{Hom}_{H}\left(\widetilde{\mathcal{R}}_{-}(N), M\right)$, which is natural in N and M.
Using the definition of \widetilde{M}, the fact that g is a morphism of \widetilde{H}-modules can be reformulated as follows: The family $\left(g_{i_{-}}\right)_{i \in Q_{0}}$ is a morphism $\widetilde{\mathcal{R}}_{-}(N) \rightarrow M$ of H-modules and (\star) holds:
(\star) For all $i \in Q_{0}$ and $n \in N_{i_{+}}$and $\ell \stackrel{b}{\leftarrow} k \in Q_{1}$ and $y \in A_{b}^{*} \subseteq A^{*}$ and $z \in H e_{i}$,

$$
g_{i_{+}}(n)(y \otimes z)= \begin{cases}g_{j_{+}}\left(N_{a_{+}}(x \otimes n)\left(y \otimes z^{\prime}\right)\right) & \text { if } z=z^{\prime} x \text { with } j \stackrel{a}{\leftarrow} i \in Q_{1} \text { and } x \in A_{a}, \\ g_{k_{-}}\left(N_{b^{*}}(y \otimes n)\right) & \text { if } z=e_{i} \text { and } \ell=i, \\ 0 & \text { if } z=e_{i} \text { and } \ell \neq i .\end{cases}
$$

Note that $N_{a_{+}}(x \otimes n)=\eta_{+}(x) n$ and $N_{b^{*}}(y \otimes n)=\eta_{\bullet}(y) n$. Since Q is acyclic, condition (\star) is easily seen to be equivalent to the following:
(用) For all $i \in Q_{0}$ and $n \in N_{i_{+}}$and $\ell \stackrel{b}{\leftarrow} k \in Q_{1}$ and $y \in A_{b}^{*} \subseteq A^{*}$ and $z \in H e_{i}$,

$$
g_{i_{+}}(n)(y \otimes z)=g_{k_{-}}\left(\eta_{\bullet}(y) \eta_{+}(z) n\right) .
$$

Clearly, ($\hat{\star}$) implies the injectivity of r.
Vice versa, given a morphism $g=\left(g_{i_{-}}\right)_{i \in Q_{0}}$ from $\widetilde{\mathcal{R}}_{-}(N)$ to M, we can use $(\hat{\star})$ to extend it to a morphism $N \xrightarrow{g} \widetilde{M}$. Indeed, property $(\hat{\star})$ describes the well-defined R-linear map

$$
g_{i_{+}}(n)=g \circ m_{n},
$$

where $A^{*} \otimes_{R} H e_{i} \xrightarrow{m_{n}} N$ is given by $y \otimes z \mapsto \eta_{\bullet}(y) \eta_{+}(z) n$. Evidently, $g_{i_{+}}$is R_{i}-linear.
To conclude that r is surjective, it merely remains to check that g maps N into \widehat{M}. This means we have to show $f\left(\widetilde{\rho}_{+} z\right)+f^{\sharp}\left(\widetilde{\rho}_{-} z\right)=0$ for $n \in N_{i_{+}}, f=g_{i_{+}}(n)$, and $z \in H e_{i}$. Straightforward calculations yield $f\left(\widetilde{\rho}_{+} z\right)=g\left(\widetilde{\rho}_{+} \eta_{+}(z) n\right)$ and $f^{\sharp}\left(\widetilde{\rho}_{-} z\right)=g\left(\widetilde{\rho}_{-} \eta_{+}(z) n\right)$. This completes the proof, because the $\widetilde{\Gamma}$-module N is annihilated by $\widetilde{\rho}_{+}+\widetilde{\rho}_{-}=\widetilde{\rho}$.

Lemma 3.4.37. For all $M \in \bmod _{\text {l.f. }}(H)$ there is an isomorphism $\tau^{+}(M) \cong \widetilde{\mathcal{R}}_{+} \widehat{\mathcal{R}}^{-} T(M)$ that is natural in M.

Proof. We have a commutative diagram

where the vertical arrows are isomorphisms. Namely, $\vartheta=\vartheta^{H, M}$ is the isomorphism induced by the trace pairing (see Lemma 3.2.11). The map θ is the isomorphism given by trace and adjunction (see Definition 2.2.15 and Lemma 3.2.11), i.e. $\theta(f)(g)=\operatorname{tr}\left(f g^{\vee}\right)$. The two unnamed arrows are the canonical isomorphisms. Finally, $\partial^{\sharp}=\operatorname{Hom}_{H}(\partial, H)$ for the map ∂ from Corollary 3.1.14, $\widetilde{\partial}(f)(z)=f\left(\widetilde{\rho}_{+} z\right)-f_{M}^{\sharp}\left(\widetilde{\rho}_{-} z\right)$, and $\partial^{b}(g)(x \otimes m)=x g(m)-g(x m)$.

Compare ∂^{b} to the map with the same name appearing in the proof of Proposition 3.3.15. Similarly as there, but using additionally Remark 3.4.34, the commutativity of the lower square boils down to the formula

$$
\operatorname{tr}\left(f \circ\left(\partial^{b}(g)\right)^{\vee}\right)=\operatorname{tr}\left(\left(f \circ{ }_{A} H^{\vee}-{ }_{A} M \circ f^{\vee}\right) \circ g\right) .
$$

for all $f \in \operatorname{Hom}_{R}\left(A^{*} \otimes_{R} H, M\right)$ and $g \in \operatorname{Hom}_{R}(M, H)$. Lemmas 3.2.10, 3.2.13 and 3.2.16 together with the fact $\partial^{b}(g)={ }_{A} H \circ(\mathrm{id} \otimes g)-g \circ{ }_{A} M$ show that this is true.
Note that $\widetilde{\mathcal{R}}_{+} \widehat{\mathcal{R}}^{-} T(M)=\operatorname{ker}(\widetilde{\partial})$ because of $f_{T(M)}^{\sharp}=-f_{M}^{\sharp}$.
Hence $\widetilde{\mathcal{R}}_{+} \widehat{\mathcal{R}}^{-} T(M)=\operatorname{ker}(\widetilde{\partial}) \cong \operatorname{ker}\left(\left(\partial^{\sharp}\right)^{*}\right) \cong \operatorname{Ext}_{H}^{1}(M, H)^{*} \cong \tau^{+}(M)$ by Corollary 3.1.14 and Lemma 3.1.29 (a) and the commutativity of the diagram, which is natural in M.

Proof of Theorem 3.4.11. By Corollary 3.4.30 and Lemma 3.4.31 $C^{+} T \cong \operatorname{Hom}_{H}\left(\Pi_{1},-\right)$. We conclude $C^{-} T \cong \Pi_{1} \otimes_{H}$ - with Remark 3.4.8.

Let $M \in \bmod _{\text {l.f. }}(H)$. Then $\tau^{+}(M) \cong \widetilde{\mathcal{R}}_{+} \widetilde{\mathcal{R}}^{-} T(M)$ due to Lemmas 3.4.36 and 3.4.37. Together with Corollary 3.4 .30 this shows $\tau^{+}(M) \cong C^{+} T(M)$, natural in M.

To prove $\tau^{-}(M) \cong C^{-} T(M)$, recall that H^{*} is locally free by Lemma 3.1.10. Therefore

$$
\tau^{-}(M) \cong \operatorname{Ext}_{H}^{1}\left(H^{*}, M\right) \cong \operatorname{Hom}_{H}\left(M, \tau^{+}\left(H^{*}\right)\right)^{*}
$$

by Lemma 3.1.29 (b) and (c). Furthermore, $\tau^{+}\left(H^{*}\right) \cong C^{+} T\left(H^{*}\right)$. So with Remark 3.4.8

$$
\tau^{-}(M) \cong \operatorname{Hom}_{H}\left(M, C^{+} T\left(H^{*}\right)\right)^{*} \cong \operatorname{Hom}_{H}\left(C^{-} T(M), H^{*}\right)^{*} \cong C^{-} T(M)
$$

It remains to observe that this isomorphism is also natural in M.

3.4.3 τ-Locally Free Modules

This subsection generalizes the finite-type classification for $\bmod _{\tau-\text { l.f. }}(H)$ in [GLS16a, § 11].
Definition 3.4.38. Let $\bmod _{\tau-\text { l.f. }}(H)$ be the full subcategory of $\bmod _{\text {l.f. }}(H)$ consisting of all modules M such that $\tau^{p}(M) \in \bmod _{\text {l.f. }}(H)$ for all $p \in \mathbb{Z}$.

We state the analogs of [GLS16a, Proposition 11.4, Theorems 11.10 and 11.11].
Proposition 3.4.39. Let $M \in \bmod _{\text {l.f. }}(H)$ be rigid. Then $M \in \bmod _{\tau-1 . \mathrm{f} .}(H)$.
In particular, $P_{i}, I_{i}, E_{i} \in \bmod _{\tau-\text { l.f. }}(H)$ for all $i \in Q_{0}$.
Proof. The proof is identical to [GLS16a, proof of Proposition 11.4]. More precisely, combine Proposition 3.4.5, Theorem 3.4.11, Definition 3.4.6, and Lemmas 3.1.9 and 3.1.10.

Theorem 3.4.40. Let $H=H_{\mathcal{H}}$ be the path algebra of a symmetric local K-modulation \mathcal{H} for a weighted acyclic quiver Q. Then:
(a) $\operatorname{rank}\left(\left\{\tau^{-p}\left(P_{i}\right), \tau^{+p}\left(I_{i}\right) \mid p \in \mathbb{N}, i \in Q_{0}\right\} \backslash\{0\}\right) \subseteq \Delta_{\mathrm{re}}^{+}(Q)$.
(b) There are only finitely many isomorphism classes of indecomposables in $\bmod _{\tau-1 \text { l.f. }}(H)$ if and only if Q is a finite union of Dynkin quivers.
(c) If Q is a Dynkin quiver, $M \mapsto \underline{\operatorname{rank}}(M)$ yields a bijection between the set of isomorphism classes of indecomposables in $\bmod _{\tau-1 . \mathrm{f} .}(H)$ and the set of positive roots $\Delta_{\mathrm{re}}^{+}(Q)$.
(d) If Q is a Dynkin quiver, for every indecomposable $M \in \bmod _{1 . f .}(H)$:

$$
\begin{aligned}
M \in \bmod _{\tau-1 . \mathrm{f} .}(H) & \Leftrightarrow M \text { is rigid } \\
& \Leftrightarrow M \cong \tau^{-p}\left(P_{i}\right) \text { for some } p \in \mathbb{N}, i \in Q_{0} \\
& \Leftrightarrow M \cong \tau^{+p}\left(I_{i}\right) \text { for some } p \in \mathbb{N}, i \in Q_{0}
\end{aligned}
$$

Proof. The proofs of [GLS16a, Theorem 11.10 and 11.11] can be used verbatim.

3.4.4 Preprojective Algebras Revisited

This subsection generalizes results from [GLS16a, $\S \S$ 10.6, 11.3, and 12].
Recall that $H\left\langle\Pi_{1}\right\rangle$ stands for the tensor algebra of the H-bimodule Π_{1}.
Lemma 3.4.41. $\Pi \cong H\left\langle\Pi_{1}\right\rangle$ as H-algebras.
Proof. We use the same trick as the proof of [GLS16a, Proposition 6.5]. Consider $\bar{A}=A \oplus A^{*}$ as a graded bimodule where elements in A have degree 0 and elements in A^{*} degree 1 . The tensor algebra $\bar{H}=R\langle\bar{A}\rangle$ inherits an \mathbb{N}-grading from \bar{A}. Namely, the homogeneous component \bar{H}_{s} of degree s is generated by all $A^{\otimes r_{1}} \otimes_{R}\left(A^{*}\right)^{\otimes s_{1}} \otimes_{R} \cdots \otimes_{R} A^{\otimes r_{n}} \otimes_{R}\left(A^{*}\right)^{\otimes s_{n}}$ as an R-bimodule where $n \in \mathbb{N}$ and $r_{1}, s_{1}, \ldots, r_{n}, s_{n} \in \mathbb{N}$ such that $s_{1}+\cdots+s_{n}=s$.

We have $\Pi=\bar{H} / J$ where $J=\langle\rho\rangle$ is the ideal generated by the homogeneous element ρ of degree 1. Therefore the grading of \bar{H} induces decompositions $J=\bigoplus_{s} J_{s}$ and $\Pi=\bigoplus_{s} \Pi_{s}$ where $\Pi_{s}=\bar{H}_{s} / J_{s}$. Note that $J_{0}=0$ and $\Pi_{0}=\bar{H}_{0}=\bigoplus_{n} A^{\otimes n}=H$.

There is a morphism $\bar{A} \hookrightarrow H\left\langle\Pi_{1}\right\rangle$ of R-bimodules induced by the inclusions $A \hookrightarrow H$ and $A^{*} \hookrightarrow \Pi_{1}$. We have the following commutative diagram of canonical maps:

The dotted morphisms are given by the universal property of the tensor algebras $\bar{H}=R\langle\bar{A}\rangle$ and $H\left\langle\Pi_{1}\right\rangle$ (see Lemma 2.2.6). The dashed map \bar{f} is induced by the universal property of $\Pi=\bar{H} / J$. Indeed, $f(J)=0$ because J is generated in degree 1 and, clearly, $f\left(J_{1}\right)=0$. It is easy to see that \bar{f} and g are inverse H-algebra isomorphisms.

Proposition 3.4.42. ${ }_{H} \Pi \cong \bigoplus_{p \in \mathbb{N}} \tau^{-p}\left({ }_{H} H\right)$. In particular, ${ }_{\Pi} \Pi \in \operatorname{Mod}_{1 . f .}$ (Π).
Proof. This is identical to [GLS16a, proof of Theorem 11.12]. Namely, $\Pi_{1} \cong \operatorname{Ext}_{H}^{1}\left(H^{*}, H\right)$ as H-bimodule with the same argument as in [GLS16a, proof of Theorem 10.5]. Moreover, by induction and Lemma 3.1.29 (b) $\operatorname{Ext}_{H}^{1}\left(H^{*}, H\right)^{\otimes p} \cong \tau^{-p}(H)$. Now use Lemma 3.4.41 to obtain the first statement. For the last statement apply Proposition 3.4.39.

The next two facts are our version of [GLS16a, Proposition 12.1 and Corollary 12.2].
Lemma 3.4.43. There is an exact sequence of Π^{λ}-bimodules

$$
\Pi^{\lambda} \otimes_{R} \Pi^{\lambda} \xrightarrow{\partial_{1}} \Pi^{\lambda} \otimes_{R} \bar{A} \otimes_{R} \Pi^{\lambda} \xrightarrow{\partial_{0}} \Pi^{\lambda} \otimes_{R} \Pi^{\lambda} \xrightarrow{\nu} \Pi^{\lambda} \longrightarrow 0
$$

defined by $\partial_{1}(1 \otimes 1)=\rho \otimes 1+1 \otimes \rho, \partial_{0}(1 \otimes x \otimes 1)=x \otimes 1-1 \otimes x$, and $\nu(1 \otimes 1)=1$.

Proof. The proof is standard. Let $\Lambda=\Pi^{\lambda}$ and J the ideal of \bar{H} generated by $r=\rho-\lambda$.
By definition $\Lambda=\bar{H} / J$ and the Λ-bimodule morphism $\Lambda \otimes_{R} \Lambda \xrightarrow{\pi} J / J^{2}$ with $1 \otimes 1 \mapsto r$ is surjective. Recall that $\operatorname{Tor}_{1}^{\bar{H}}(\Lambda, \Lambda) \cong J / J^{2}$ (see [CE56, VI. Exercise 19]) and apply $\Lambda \otimes_{\bar{H}}-$ to the sequence from Corollary 3.1 .14 for $M=\Lambda$ to get an exact sequence of Λ-bimodules

$$
J / J^{2} \xrightarrow{\hat{\partial}_{1}} \Lambda \otimes_{R} \bar{A} \otimes_{R} \Lambda \xrightarrow{\partial_{0}} \Lambda \otimes_{R} \Lambda \xrightarrow{\nu} \Lambda \longrightarrow 0 .
$$

Let $\bar{H} \xrightarrow{\delta} \bar{H} \otimes_{R} \bar{A} \otimes_{R} \bar{H}$ be the R-derivation defined by $\delta(x)=1 \otimes x \otimes 1$ for $x \in \bar{A}$. According to [Sch85, Theorems 10.1 and 10.3] the map $\hat{\partial}_{1}$ can be taken to be induced by δ. Then $\hat{\partial}_{1} \circ \pi=\partial_{1}$, which proves the lemma.

Corollary 3.4.44. For all $M \in \operatorname{Mod}(\Pi)$ there is an exact sequence

$$
\Pi \otimes_{R} M \xrightarrow{\partial_{1}} \Pi \otimes_{R} \bar{A} \otimes_{R} M \xrightarrow{\partial_{0}} \Pi \otimes_{R} M \xrightarrow{\nu} M \longrightarrow 0
$$

of Π-modules with $\partial_{1}(1 \otimes m)=\rho \otimes m+1 \otimes \sum_{b}\left(\rho_{b}^{\prime} \otimes \rho_{b}^{\prime \prime} m\right)$ if $\rho=\sum_{b} \rho_{b}^{\prime} \rho_{b}^{\prime \prime}$ with $\rho_{b}^{\prime}, \rho_{b}^{\prime \prime} \in \bar{A}$, and $\partial_{0}(1 \otimes x \otimes m)=x \otimes m-1 \otimes x m$, and $\nu(1 \otimes m)=m$.

This is the end of a projective resolution for all $M \in \operatorname{Proj}_{R}^{0}(\Pi)$.

Proof. Apply $-\otimes_{\Pi} M$ to the sequence in Lemma 3.4.43 to obtain a sequence isomorphic to the one in the statement. For the exactness note that the sequence in Lemma 3.4.43 for $\lambda=0$ splits as a sequence of right R-modules, since Π_{R} is projective by the rightmodule version of Proposition 3.4.42. For the last claim we can argue as in the proof of Corollary 3.1.14, using that ${ }_{R} \Pi$ is projective according to Proposition 3.4.42.

Proposition 3.4.45. $\operatorname{Ext}_{\Pi}^{1}(M, N) \cong \operatorname{Ext}_{\Pi}^{1}(N, M)^{*}$ for $M \in \operatorname{Mod}_{\text {l.f. }}(\Pi), N \in \bmod _{\text {l.f. }}(\Pi)$. This isomorphism is natural in M and N.

Proof. Applying $\operatorname{Hom}_{\Pi}(-, N)$ to the exact sequence from Corollary 3.4.44 we get a commutative diagram where the vertical maps are the canonical isomorphisms:

Moreover, $\partial_{0}^{M, N}$ acts on $f \in \operatorname{Hom}_{R}(M, N)$ and $\partial_{1}^{M, N}$ on $g \in \operatorname{Hom}_{R}\left(\bar{A} \otimes_{R} M, N\right)$ as

$$
\partial_{0}^{M, N}(f)=\sum_{a \in \bar{Q}_{1}}\left(N_{a} \circ(\mathrm{id} \otimes f)-f M_{a}\right), \quad \partial_{1}^{M, N}(g)=\sum_{a \in \bar{Q}_{1}} \varepsilon_{a} \cdot\left(N_{a^{*}} g_{a}^{\vee}-g_{a} M_{a^{*}}^{\vee}\right)
$$

By Corollary 3.4.44 and the commutative diagram above we know that

$$
\operatorname{Hom}_{\Pi}^{1}(M, N) \cong \operatorname{ker}\left(\partial_{0}^{M, N}\right), \quad \operatorname{Ext}_{\Pi}^{1}(M, N) \cong \operatorname{ker}\left(\partial_{1}^{M, N}\right) / \operatorname{im}\left(\partial_{0}^{M, N}\right)
$$

Hence, it suffices to show that there is a commutative diagram, natural in M and N, where the vertical maps are isomorphisms:

It is easy to check (similarly as for the last diagram in the proof of Proposition 3.3.15) that the isomorphisms ϑ and θ given by $\vartheta(f)(g)=\operatorname{tr}(f g)$ and $\theta(f)(g)=\sum_{a \in \bar{Q}_{1}} \varepsilon_{a} \operatorname{tr}\left(f_{a} g_{a^{*}}^{\vee}\right)$ make the diagram commute.

Corollary 3.4.46. For $M, N \in \bmod _{\text {l.f. }}$ (П) one has

$$
(M, N)_{H}=\operatorname{dim}_{K} \operatorname{Hom}_{\Pi}^{1}(M, N)+\operatorname{dim}_{K} \operatorname{Hom}_{\Pi}^{1}(N, M)-\operatorname{dim}_{K} \operatorname{Ext}_{\Pi}^{1}(M, N) .
$$

Proof. Use (part of) the proof of [GLS16a, Theorem 12.6].

The concluding corollary is the analog of [GLS16a, Corollary 12.7].
Corollary 3.4.47. If Q is a Dynkin quiver, Π is self-injective.
Proof. The algebra Π is finite-dimensional because of Theorem 3.4.40 and Proposition 3.4.42. Right-module versions of Corollary 3.4.44 and Proposition 3.4.42 yield an exact sequence $0 \rightarrow Z \rightarrow P \rightarrow \Pi^{*} \rightarrow 0$ of finite-dimensional locally free right Π-modules with P_{Π} projective. Applying (-$)^{*}$ leads to an exact sequence $0 \rightarrow \Pi \rightarrow P^{*} \rightarrow Z^{*} \rightarrow 0$ of locally free Π-modules. This sequence splits thanks to $\operatorname{Ext}_{\Pi}^{1}\left(Z^{*}, \Pi\right) \cong \operatorname{Ext}_{\Pi}^{1}\left(\Pi, Z^{*}\right)^{*}=0$. Hence, $\Pi_{\Pi} \Pi$ is injective as a summand of the injective module ${ }_{\Pi} P^{*}$.

4 Potentials for Cluster-Tilting Subcategories

Let $\Delta=(V, E)$ be an undirected multigraph without loops and with $V=\{1, \ldots, n\}$.
Buan, Iyama, Reiten, and Scott associated in [BIRS09, § II.4] a quiver $Q(\underline{s})=Q(\Delta, \underline{s})$ with every finite sequence $\underline{s}=\left(s_{1}, \ldots, s_{\ell}\right)$ in V. We show in this chapter that any full subquiver of $Q(\underline{s})$ admits an up to right-equivalence unique non-degenerate potential.

If \underline{s} corresponds to a reduced expression for an element of the Weyl group \mathcal{W}_{Δ} of Δ, the quiver $Q^{\prime}(\underline{s})$ of the cluster-tilting subcategory associated with \underline{s} in [BIRS09] is a full subquiver of $Q(\underline{s})$. Furthermore, $Q^{\prime}(\underline{s})$ is the quiver $\Gamma(\underline{s})^{\text {op }}=\Gamma(-\underline{s})$ from [BFZ05, § 2.2] when \underline{s} and $-\underline{s}$ are considered as reduced expressions for elements of $\mathcal{W}_{\Delta} \times \mathcal{W}_{\Delta}$.

4.1 Quiver of a Cluster-Tilting Subcategory

Let us recall and rephrase for our convenience the definition of $Q=Q(\Delta, \underline{s})$.
The vertices of Q are $Q_{0}=\{1, \ldots, \ell\}$. To define the arrows we need some notation:
(a) For $v \in V$ denote by $I^{v}=\left\{i_{1}^{v}<\cdots<i_{t_{v}}^{v}\right\}$ the subset of Q_{0} such that $\left(s_{i}\right)_{i \in I^{v}}$ is the subsequence of \underline{s} consisting of the members equal to v. We set $\tau\left(i_{j}^{v}\right):=i_{j-1}^{v}$.
(b) For $v \neq w$ in V let $I_{1}^{v, w} \dot{\cup} \ldots \dot{\cup} I_{t_{v, w}, w}^{v,}$ be the partition of $I^{v} \cup I^{w}$ such that

- $I_{j}^{v, w}>I_{j-1}^{v, w}$ for each $j>1$, i.e. $i>i^{\prime}$ for all $i \in I_{j}^{v, w}, i^{\prime} \in I_{j-1}^{v, w}$, and
- $\left(s_{i}\right)_{i \in I_{j}^{v, w}}$ is constant for each j, say with value $c_{j}^{v, w}$, where $c_{j}^{v, w} \neq c_{j-1}^{v, w}$ for $j>1$.

Denote by $i_{j}^{v, w}$ the greatest element of $I_{j}^{v, w}$ and call it the last vertex in the j-th v / w-group. If $v \xrightarrow{e} w$ is an edge in Δ we write $t_{e}, i_{j}^{e}, I_{j}^{e}$ etc. for $t_{v, w}, i_{j}^{v, w}, I_{j}^{v, w}$ etc.

Now we can describe the arrows of Q. For each $v \in V$ and $1<j \leq t_{v}$ there is an arrow

$$
i_{j-1}^{v} \stackrel{b_{j}^{v}}{\longleftarrow} i_{j}^{v}
$$

in Q. We set $b\left(i_{j}^{v}\right):=b_{j}^{v}$. Furthermore, for each $v \xrightarrow{e} w \in E$ and $1 \leq j<t_{e}$ the quiver Q has an arrow

$$
i_{j}^{v, w} \xrightarrow{a_{j}^{e}} i_{j+1}^{v, w}
$$

Hence, Q has as many parallel arrows from the last vertex in the j-th v / w-group to the last vertex in the $(j+1)$-st v / w-group as Δ has edges between v and w.

This concludes the definition of Q.
We continue with the construction of a rigid potential on Q.

4.2 Rigid Potentials

Convention 4.2.1. Let $\widehat{K Q}$ be the completed path algebra of Q over K.
Two potentials W and W^{\prime} on Q are right-equivalent if there is $f \in \operatorname{Aut}_{K^{Q_{0}}}(\widehat{K Q})$ such that $f(W)=W^{\prime}$. Compare Definition 2.6.61 and Remark 2.6.62.

For non-zero elements $x \in \widehat{K Q}$ (or for potentials x on Q) denote by $x_{\min }:=\operatorname{pr}_{\text {ord }(x)}(x)$ (see Notation 2.6.7) the non-zero homogeneous component of x of lowest degree with respect to the length grading. Set $0_{\text {min }}:=0$.

We write $x \stackrel{\min }{\approx} y$ for elements $x, y \in \widehat{K Q}$ (or for potentials x, y on Q) if $x_{\min }=y_{\min }$. Potentials W and W^{\prime} are minimal-degree equivalent if $W_{\min }$ and $W_{\min }^{\prime}$ are right-equivalent.

The set of paths in the quiver Q is denoted by \mathcal{P}_{Q}. A cycle in Q is a subquiver of Q spanned by a cyclic path. Every cyclic path can be naturally regarded as a potential on Q.

Notation 4.2.2. For $v \neq w$ in V and $1<j<t_{v, w}$ there exists a (unique) $o_{j}^{v, w} \in \mathbb{N}_{+}$with

$$
\tau^{o_{j}^{v, w}}\left(i_{j+1}^{v, w}\right)=i_{j-1}^{v, w}
$$

Set $b_{j}^{v, w}(t):=b\left(\tau^{t-1}\left(i_{j+1}^{v, w}\right)\right)$. Then for $v \xrightarrow{e} w \in E$ we have the following cycle c_{j}^{e} in Q :

With the abbreviation $b_{j}^{e}:=b_{j}^{v, w}:=b_{j}^{v, w}\left(o_{j}^{v, w}\right) \cdots b_{j}^{v, w}(1)$ we can write $c_{j}^{e}=b_{j}^{e} a_{j}^{e} a_{j-1}^{e}$.
Definition 4.2.3. Taking the sum of the cycles c_{j}^{e} over all $e \in E$ and $1<j<t_{e}$ yields a potential on $Q(\Delta, \underline{s})$:

$$
W(\Delta, \underline{s}):=\sum_{v, w} b_{j}^{v, w} \sum_{e} a_{j}^{e} a_{j-1}^{e}=\sum_{e, j} c_{j}^{e}
$$

As was already observed in [BIRS11, Theorem 6.5], the potential $W(\Delta, \underline{s})$ is rigid.
We prove that it is up to right-equivalence the only non-degenerate potential on $Q(\Delta, \underline{s})$. These facts rely on the following observation.

Lemma 4.2.4. Every cycle in $Q(\Delta, \underline{s})$ is of the form $p b_{j}^{e} a_{j}^{e}$ for some $e \in E, 1<j<t_{e}$, and some path p in $Q(\Delta, \underline{s})$.

Proof. Let c be a cycle in $Q=Q(\Delta, \underline{s})$. Choose $i \in\{1, \ldots, \ell\}=Q_{0}$ minimal with the property that i belongs to c. Then by the definition of Q there exist $v \in V, 1<j^{\prime} \leq t_{v}$, and $0 \leq r \leq t_{v}-j^{\prime}$ such that $i=i_{j^{\prime}-1}^{v}$ and $b=b_{j^{\prime}}^{v} \cdots b_{j^{\prime}+r}^{v}$ occurs in c. Let us assume that r is maximal with this property. Then there is $e \in E$ and $1<j<t_{e}$ such that $b a_{j}^{e}$ occurs in c. By the choice of i we must have $b=b^{\prime} b_{j}^{e}$ for some path b^{\prime} in Q.

Before we continue with the central statements we introduce some additional notation.
Notation 4.2.5. For each path p in $Q=Q(\Delta, \underline{s})$ we denote by $\ell(p)$ its length and by $\vec{\ell}(p)$ the degree of p with respect to the \rightarrow-grading, i.e. the grading of $K Q$ that assigns to each arrow a_{j}^{e} degree 1 and to each arrow b_{j}^{v} degree 0 .

In plain words, $\vec{\ell}(p)$ counts the occurrences of arrows of type a_{j}^{e} in the path p.
Let x be an element in $\widehat{K Q}$ (or a potential on Q). We write $\ell(x)$ or $\vec{\ell}(x)$ for the degree and \rightarrow-degree of x, if x is length-homogeneous or \rightarrow-homogeneous, respectively.

Denoting by $\overrightarrow{\mathrm{pr}}_{\ell}(x)$ the projection of x onto its ℓ-th \rightarrow-homogeneous component, define

$$
\overrightarrow{\operatorname{ord}}(x):=\min \left\{\ell \in \mathbb{N} \mid \overrightarrow{\operatorname{pr}}_{\ell}(x) \neq 0\right\}
$$

A unitriangular automorphism $f \in \operatorname{Aut}_{K^{Q_{0}}}(\widehat{K Q})$ is said to be of \rightarrow-depth $n \in \mathbb{N}$ if

$$
\overrightarrow{\operatorname{ord}}(f(x)-x) \geq \overrightarrow{\operatorname{ord}}(x)+n=\vec{\ell}(x)+n
$$

for all \rightarrow-homogeneous $x \in \widehat{K Q}$.
Proposition 4.2.6. The potential $W=W(\Delta, \underline{s})$ is rigid. More precisely, for every cycle c in $Q=Q(\Delta, \underline{s})$ there are \rightarrow-homogeneous p_{j}^{e} in $K Q$ with $\vec{\ell}\left(p_{j}^{e}\right)=\vec{\ell}(c)-1$ such that

$$
c=\sum_{e, j} p_{j}^{e} \partial_{a_{j}^{e}}(W)
$$

Proof. By Lemma 4.2 .4 there exist $e^{\prime} \in E, 1<j^{\prime}<t_{e^{\prime}}$, and $p \in \mathcal{P}_{Q}$ such that $c=p b_{j^{\prime}}^{e^{\prime}} a_{j^{\prime}}^{e^{\prime}}$. Clearly, $\vec{\ell}(p)=\vec{\ell}(c)-1$.

If $j^{\prime}=2$, we have

$$
c=p \partial_{a_{j^{\prime}-1}^{e^{\prime}}}\left(c_{j^{\prime}}^{e^{\prime}}\right)=p \partial_{a_{j^{\prime}-1}^{e^{\prime}}}(W)
$$

If $j^{\prime}>2$, the identity $\partial_{a_{j^{\prime}-1}^{e^{\prime}}}(W)=\partial_{a_{j^{\prime}-1}^{e^{\prime}}}\left(c_{j^{\prime}-1}^{e^{\prime}}\right)+\partial_{a_{j^{\prime}-1}^{e^{\prime}}}\left(c_{j^{\prime}}^{e^{\prime}}\right)=a_{j^{\prime}-2}^{e^{\prime}} b_{j^{\prime}-1}^{e^{\prime}}+b_{j^{\prime}}^{e^{\prime}} a_{j^{\prime}}^{e^{\prime}}$ shows

$$
c=p \partial_{a_{j^{\prime}-1}^{e^{\prime}}}(W)-p a_{j^{\prime}-2}^{e^{\prime}} b_{j^{\prime}-1}^{e^{\prime}}
$$

By induction we can write $\tilde{c}:=p a_{j^{\prime}-2}^{e^{\prime}} b_{j^{\prime}-1}^{e^{\prime}}=\sum_{e, j} \tilde{p}_{j}^{e} \partial_{a_{j}^{e}}(W)$ with $\vec{\ell}\left(\tilde{p}_{j}^{e}\right)=\vec{\ell}(\tilde{c})-1=\vec{\ell}(c)-1$.
Thus $c=\sum_{e, j} p_{j}^{e} \partial_{a_{j}^{e}}(W)$ where $p_{j}^{e}=-\tilde{p}_{j}^{e}$ for all $(e, j) \neq\left(e^{\prime}, j^{\prime}-1\right)$ and $p_{j^{\prime}-1}^{e^{\prime}}=p-\tilde{p}_{j^{\prime}-1}^{e^{\prime}}$.
Moreover, it is $\vec{\ell}\left(p_{j}^{e}\right)=\vec{\ell}(c)-1$ as desired.

Notation 4.2.7. Let Q^{\prime} be a full subquiver of Q and let W be a potential on Q.
Following Definition 2.6 .64 we write $\left.W\right|_{Q^{\prime}}:=\left.W\right|_{Q_{1}^{\prime}}$ for the potential obtained by restricting W to Q^{\prime}.

For elements $x=\sum_{p \in \mathcal{P}_{Q}} x_{p} p$ in $\widehat{K Q}$ with $x_{p} \in K$ we set $\left.x\right|_{Q^{\prime}}:=\sum_{p \in \mathcal{P}_{Q^{\prime}}} x_{p} p$.

Corollary 4.2.8. Let Q^{\prime} be a full subquiver of $Q=Q(\Delta, \underline{s})$ and let $W=W(\Delta, \underline{s})$. Then for every cycle c in Q^{\prime} there are \rightarrow-homogeneous $p_{j}^{e} \in \widehat{K Q^{\prime}}$ with $\vec{\ell}\left(p_{j}^{e}\right)=\vec{\ell}(c)-1$ such that

$$
c=\sum_{e, j} p_{j}^{e} \partial_{a_{j}^{e}}\left(\left.W\right|_{Q^{\prime}}\right) .
$$

Proof. This follows immediately from Proposition 4.2.6 and the fact that for $a \in Q_{1}$ we have $\left.\partial_{a}(W)\right|_{Q^{\prime}}=\partial_{a}\left(\left.W\right|_{Q^{\prime}}\right)$ if $a \in Q_{1}^{\prime}$ and $\left.\partial_{a}(W)\right|_{Q^{\prime}}=0$ otherwise.

4.3 Uniqueness of Non-Degenerate Potentials

Theorem 4.3.1. Let Q^{\prime} be a full subquiver of $Q=Q(\Delta, \underline{s})$ and let $W=W(\Delta, \underline{s})$. Then every non-degenerate potential on Q^{\prime} is right-equivalent to $\left.W\right|_{Q^{\prime}}$.

Proof. As a first step, we will show that for every cycle c_{j}^{e} completely contained in Q^{\prime} every non-degenerate potential on Q^{\prime} restricts to a potential on the full subquiver spanned by c_{j}^{e} that is minimal-degree equivalent to the restriction of W.

For adjacent vertices v, w in Δ and each j the subquiver $Q_{j}^{v, w}$ of Q^{\prime} spanned by all cycles c_{j}^{e} contained in Q^{\prime} with $v-\frac{e}{w} \in E$ is empty or the following full subquiver of Q^{\prime} :

Let $E_{v, w}$ be the subset of E consisting of the edges between v and w. If $Q_{j}^{v, w}$ is non-empty, every potential $W_{j}^{v, w}$ on $Q_{j}^{v, w}$ has the form

$$
b_{j}^{v, w} \sum_{e, f \in E_{v, w}} \alpha_{e, f} a_{j}^{f} a_{j-1}^{e}+\tilde{W}
$$

with $\alpha_{e, f} \in K$ and $\operatorname{ord}(\tilde{W})>\ell\left(b_{j}^{v, w}\right)+2$.
It is not hard to see that $W_{j}^{v, w}$ is non-degenerate if and only if the matrix $C=\left(\alpha_{e, f}\right)_{e, f}$ is invertible. Assume this is the case. Write $C^{-1}=\left(\beta_{f, e}\right)_{f, e}$ and let $\varphi_{j}^{v, w}$ be the automorphism of $\widehat{K Q^{\prime}}$ given by the substitutions $a_{j}^{f} \mapsto \sum_{e} \beta_{f, e} a_{j}^{e}$. Then $W_{j}^{v, w}$ is mapped by $\varphi_{j}^{v, w}$ to

$$
\sum_{e \in E_{v, w}} c_{j}^{e}+\varphi_{j}^{v, w}(\tilde{W}) \stackrel{\min }{\approx} \sum_{e \in E_{v, w}} c_{j}^{e}=\left.W\right|_{Q_{j}^{v, w}} .
$$

Now let W^{\prime} be any non-degenerate potential on Q^{\prime}. To prove the theorem, we must show that W^{\prime} is right-equivalent to $\left.W\right|_{Q^{\prime}}$.

Assume there is some $j \geq 1$ such that $\left.\left.W^{\prime}\right|_{Q_{j^{\prime}}^{v, w}} \stackrel{\text { min }}{\approx} W\right|_{Q_{j^{\prime}}^{v, w}}$ for all $Q_{j^{\prime}}^{v, w} \subseteq Q^{\prime}$ with $j^{\prime}<j$.

Set $\varphi_{j}=\prod_{v, w} \varphi_{j}^{v, w}$ where the product is taken over all $Q_{j}^{v, w} \subseteq Q^{\prime}$ and $\varphi_{j}^{v, w}$ is defined as in the previous paragraph with $W_{j}^{v, w}=\left.W^{\prime}\right|_{Q_{j}^{v, w}}$. Note that $\left.W^{\prime}\right|_{Q_{j}^{v, w}}$ is indeed nondegenerate as the restriction of a non-degenerate potential to a full subquiver and φ_{j} does not depend on the order in which the $\varphi_{j}^{v, w}$ are composed.

Without loss of generality, we can replace W^{\prime} by the right-equivalent potential $\varphi_{j}\left(W^{\prime}\right)$. Then we have $\left.\left.W^{\prime}\right|_{Q_{j^{\prime}}^{v, w}} \stackrel{\text { min }}{\approx} W\right|_{Q_{j^{v}}^{v, w}}$ for all $Q_{j^{\prime}}^{v, w} \subseteq Q^{\prime}$ with $j^{\prime}<j+1$. Using induction we can assume that the non-degenerate potential W^{\prime} satisfies $\left.\left.W^{\prime}\right|_{Q_{j}^{v, w}} \stackrel{\text { min }}{\approx} W\right|_{Q_{j}^{v, w}}$ for all $Q_{j}^{v, w} \subseteq Q^{\prime}$.

By this assumption $W^{\prime}=\left.W\right|_{Q^{\prime}}+\tilde{W}^{\prime}$ for some potential \tilde{W}^{\prime} on Q^{\prime} with $\overrightarrow{\operatorname{ord}}\left(\tilde{W}^{\prime}\right) \geq 3$. Using Corollary 4.2.8 there exist elements $p_{0}^{e, j} \in \widehat{K Q^{\prime}}$ with $\overrightarrow{\operatorname{ord}}\left(p_{0}^{e, j}\right) \geq 2$ such that

$$
W^{\prime}=\left.W\right|_{Q^{\prime}}+\sum_{e, j} p_{0}^{e, j} \partial_{a_{j}^{e}}\left(\left.W\right|_{Q^{\prime}}\right) .
$$

Set $\varphi_{0}:=$ id. Assume that for some $n \in \mathbb{N}$ a unitriangular automorphism φ_{n} of $\widehat{K Q^{\prime}}$ and a potential $\tilde{W}_{n}^{\prime}=\sum_{e, j} p_{n}^{e, j} \partial_{a_{j}^{e}}\left(\left.W\right|_{Q^{\prime}}\right)$ with $\overrightarrow{\operatorname{ord}}\left(p_{n}^{e, j}\right) \geq 2^{n}+1$ are given such that

$$
\begin{equation*}
W_{n}^{\prime}:=\varphi_{n}\left(W^{\prime}\right)=\left.W\right|_{Q^{\prime}}+\tilde{W}_{n}^{\prime} \tag{*}
\end{equation*}
$$

The automorphism $\widetilde{\varphi}_{n+1}$ of $\widehat{K Q^{\prime}}$ defined by the rules $a_{j}^{e} \mapsto a_{j}^{e}-p_{n}^{e, j}$ is unitriangular and has \rightarrow-depth 2^{n}. A straightforward calculation yields

$$
\widetilde{\varphi}_{n+1}\left(\left.W\right|_{Q^{\prime}}\right)=\left.W\right|_{Q^{\prime}}-\tilde{W}_{n}^{\prime}+\sum_{e, j} b_{j}^{e} p_{n}^{e, j} p_{n}^{e, j-1}
$$

By Corollary 4.2.8 there are $p_{n+1}^{e, j} \in \widehat{K Q}$ with $\overrightarrow{\operatorname{ord}}\left(p_{n+1}^{e, j}\right) \geq 2 \cdot\left(2^{n}+1\right)-1=2^{n+1}+1$ and

$$
\sum_{e, j} b_{j}^{e} p_{n}^{e, j} p_{n}^{e, j-1}+\left(\widetilde{\varphi}_{n+1}\left(\tilde{W}_{n}^{\prime}\right)-\tilde{W}_{n}^{\prime}\right)=\sum_{e, j} p_{n+1}^{e, j} \partial_{a_{j}^{e}}\left(\left.W\right|_{Q^{\prime}}\right)=: \tilde{W}_{n+1}^{\prime}
$$

Setting $\varphi_{n+1}:=\widetilde{\varphi}_{n+1} \circ \varphi_{n}$, Equation (*) holds with n replaced by $n+1$.
Since $\lim _{n \rightarrow \infty} \overrightarrow{\operatorname{ord}}\left(x_{n}\right)=\infty$ is equivalent to $\lim _{n \rightarrow \infty} \operatorname{ord}\left(x_{n}\right)=\infty$, the sequence of potentials $\left(W_{n}^{\prime}\right)_{n \in \mathbb{N}}$ converges to $\left.W\right|_{Q^{\prime}}$ and the sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ determines a unitriangular automorphism $\varphi:=\lim _{n \rightarrow \infty} \varphi_{n}$ with $\varphi\left(W^{\prime}\right)=\left.W\right|_{Q^{\prime}}$ (compare Lemma 2.6.23).

Corollary 4.3.2. Let \underline{s} be a reduced expression for an element in the Weyl group \mathcal{W}_{Δ} of Δ. Then $\Gamma(\underline{s})$ and $\Gamma(-\underline{s})$ admit an up to right-equivalence unique non-degenerate potential.

5 Potentials for Tagged Triangulations

Motivation

The objects motivating this chapter are most practically introduced with an example.
Roughly speaking, an orbifold is a compact oriented surface Σ with two distinguished finite sets $\mathbb{M}, \mathbb{O} \subseteq \Sigma$ of points. These points are used as the vertices of triangulations.

For instance, we can see below the triangle with set of marked points $\mathbb{M}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and orbifold points $\mathbb{O}=\left\{y_{1}, y_{2}\right\}$. It has been triangulated by arcs $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}, i_{7}$. The sides s_{1}, s_{2}, s_{3} are boundary segments.

Every triangulation τ gives rise to a quiver $Q(\tau)$. The vertices are the sides of the triangles in the triangulation and the arrows keep track of adjacencies. The quiver $Q(\tau)$ is weighted. Sides containing an orbifold point have weight 2 , all other sides have weight 1 .

For our example the quiver $Q(\tau)$ can be seen on the right; its weights are $d_{i_{6}}=d_{i_{7}}=2$ and $d_{s_{1}}=d_{s_{2}}=d_{s_{3}}=d_{i_{1}}=d_{i_{2}}=d_{i_{3}}=d_{i_{4}}=d_{i_{5}}=1$.
There is a path algebra $R\langle A\rangle$ for $Q(\tau)$ over \mathbb{R} where $R=R(\tau)=\prod_{i \in Q_{0}(\tau)} R_{i}$ with

$$
R_{i}= \begin{cases}\mathbb{R} & \text { if } d_{i}=1 \\ \mathbb{C} & \text { if } d_{i}=2\end{cases}
$$

The R-bimodule $A=A(\tau)=\bigoplus_{a \in Q_{1}(\tau)} A_{a}$ is chosen in such a way that

$$
R_{j} \otimes_{\mathbb{R}} R_{i}=\left\{\begin{array}{cl}
A_{a} & \text { for all } j \overleftarrow{a} i \text { with } d_{i} \neq 2 \text { or } d_{j} \neq 2, \\
A_{a_{0}} \oplus A_{a_{1}} & \text { for all } j \underset{a_{0}}{a_{0}} i \text { with } d_{i}=2 \text { and } d_{j}=2 .
\end{array}\right.
$$

In our example, $A_{a_{50}} \oplus A_{a_{51}}=\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \ni 1 \otimes 1=: a_{5}$ and we have a potential

$$
W(\tau)=W^{\Delta}(\tau)+W^{\bullet}(\tau)
$$

where $W^{\Delta}(\tau)=c_{1} b_{1} a_{1}+c_{2} b_{2} a_{2}+c_{3} b_{3} a_{3}+c_{4} b_{4} a_{4}+c_{5} b_{5} a_{5}$ and $W^{\bullet}(\tau)=a_{1} a_{2} a_{3} a_{4}$.

Such a potential can be constructed for every triangulated orbifold and will depend on the choice of two coefficient functions $u: \mathbb{M} \backslash \partial \Sigma \rightarrow \mathbb{R}^{\times}$and $z: \mathbb{O} \rightarrow \mathbb{C} \backslash \mathbb{R}$. Just as in the example, the potential of a triangulation τ has the form
where the first sum is taken over all puzzle pieces, the building blocks of the triangulation τ, and the second sum over all (non-enclosed) punctures, the interior marked points.
What makes triangulations interesting, is that (some of) their arcs can be flipped, yielding other triangulations of the same orbifold.

Flipping the arc i_{5} in our example, leads to another triangulation $\mu_{i_{5}}(\tau)$ with the same arcs as τ except that the "diagonal" i_{5} of the "quadrilateral" with vertices $y_{1}, y_{2}, x_{3}, x_{4}$ is replaced by the other "diagonal" j_{5} :

On the level of weighted quivers, this change of triangulation is reflected by mutation.
The potential $W\left(\mu_{i_{5}}(\tau)\right)=W^{\Delta}\left(\mu_{i_{5}}(\tau)\right)+W^{\bullet}\left(\mu_{i_{5}}(\tau)\right)$ of the flipped triangulation in the running example, defined by $W^{\Delta}\left(\mu_{i_{5}}(\tau)\right)=c_{1} b_{1} a_{1}+c_{2} b_{2} a_{2}+c_{3} b_{3} a_{3}+c_{5}^{*}\left[c_{5} b_{4}\right] b_{4}^{*}+c_{4}^{*}\left[c_{4} b_{5}\right] b_{5}^{*}$ and $W^{\bullet}\left(\mu_{i_{5}}(\tau)\right)=a_{1} a_{2} a_{3} b_{4}^{*} c_{4}^{*}$, is easily seen to be obtained from $W(\tau)$ via mutation at i_{5}.

Results

The first main result of this chapter is the construction of an $\operatorname{SP} \mathcal{S}_{u, z}(\tau)=\left(A(\tau), W_{u, z}(\tau)\right)$ for every triangulation τ such that, whenever $\mu_{i}(\tau)$ is obtained from τ by flipping an arc, the SP $\mathcal{S}_{u, z}\left(\mu_{i}(\tau)\right)$ coincides with the SPs in $\mu_{i}\left(\mathcal{S}_{u, z}(\tau)\right)$ up to reduced- $Q_{0}(\tau)$-equivalence.

Ordinary triangulations can possess non-flippable arcs. For applications to cluster-algebra theory it is however desirable that every arc can be flipped. As a remedy, one can replace ordinary triangulations by an "enriched" version of so-called tagged triangulations.

We extend the result already mentioned to the tagged situation. That is, we will define an SP $\mathcal{S}_{u, z}(\boldsymbol{\tau})=\left(A(\boldsymbol{\tau}), W_{u, z}(\boldsymbol{\tau})\right)$ for every tagged triangulation $\boldsymbol{\tau}$. Assuming that the orbifold under consideration is not a sphere whose total number of boundary components, marked points, and orbifold points is less than seven, we will again prove that the $\operatorname{SP} \mathcal{S}_{u, z}\left(\mu_{i}(\boldsymbol{\tau})\right)$ is reduced- $Q_{0}(\boldsymbol{\tau})$-equivalent to the SPs in the mutation $\mu_{\boldsymbol{i}}\left(\mathcal{S}_{u, z}(\boldsymbol{\tau})\right)$ for all tagged arcs \boldsymbol{i}. The important consequence is the non-degeneracy of $\mathcal{S}_{u, z}(\boldsymbol{\tau})$.

For orbifolds with non-empty boundary the $Q_{0}(\boldsymbol{\tau})$-equivalence class of the SP $\mathcal{S}_{u, z}(\boldsymbol{\tau})$ will be shown to be independent of the particular choice of the coefficient functions u and z.

5.1 Triangulated Orbifolds

Fomin, Shapiro, and Thurston [FST08] introduced tagged triangulations of bordered surfaces with marked points to model the mutation combinatorics of an interesting class of skewsymmetric cluster algebras: Cluster mutation corresponds to flipping arcs in triangulations.

Felikson, Shapiro, and Tumarkin [FST12a] defined tagged triangulations in a more general setting for orbifolds. In this way, they cover all non-exceptional skew-symmetrizable cluster algebras of finite mutation type.

This section is a short introduction to triangulated orbifolds.

5.1.1 Orbifolds

The following notion of orbifolds is due to [FST12a].
Definition 5.1.1. An orbifold is a triple $\boldsymbol{\Sigma}=(\Sigma, \mathbb{M}, \mathbb{O})$ satisfying the following properties:
(a) Σ is a connected compact oriented smooth surface with boundary $\partial \Sigma$.
(b) \mathbb{M} is a non-empty finite subset of Σ.
(c) \mathbb{O} is a finite subset of $\Sigma \backslash(\mathbb{M} \cup \partial \Sigma)$.
(d) \mathbb{M} intersects each connected component of $\partial \Sigma$ at least once.
(e) $\boldsymbol{\Sigma}$ is neither a sphere with $|\mathbb{M} \cup \mathbb{O}|<4$ nor a monogon with $|\mathbb{M} \cup \mathbb{O}|<3$.
(f) $\boldsymbol{\Sigma}$ is neither a digon nor a triangle with $(\mathbb{M} \backslash \partial \Sigma) \cup \mathbb{O}=\varnothing$.

As in [FST08], $\boldsymbol{\Sigma}$ is called a c-gon if Σ is a disk and $|\mathbb{M} \cap \partial \Sigma|=c$. A monogon, digon, triangle, quadrilateral etc. is a 1 -gon, 2 -gon, 3 -gon, 4 -gon etc.

The points in \mathbb{M} are called marked points, those in $\mathbb{P}=\mathbb{M} \backslash \partial \Sigma$ punctures, those in $\mathbb{M} \cap \partial \Sigma$ boundary marked points, and those in \mathbb{O} orbifold points. We say that $\boldsymbol{\Sigma}$ is unpunctured, once-punctured, twice-punctured etc. if the cardinality of \mathbb{P} is $0,1,2$ etc.

A connected component of $\partial \Sigma \backslash \mathbb{M}$ is called a boundary segment of $\boldsymbol{\Sigma}$.
Convention 5.1.2. For the rest of the whole chapter we fix an orbifold $\boldsymbol{\Sigma}=(\Sigma, \mathbb{M}, \mathbb{O})$.
The set of punctures $\mathbb{M} \backslash \partial \Sigma$ will be denoted by \mathbb{P}, the genus of Σ by g, and the number of connected components of the boundary $\partial \Sigma$ by b. We define $m=|\mathbb{M}|, p=|\mathbb{P}|, o=|\mathbb{O}|$.

Moreover, we write \mathfrak{s} for the set of boundary segments of $\boldsymbol{\Sigma}$.
Finally, let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{b}\right)$ be the integer partition of $m-p$ defined by $\lambda_{s}=\left|\mathbb{M} \cap C_{s}\right|$ where $\partial \Sigma=C_{1} \dot{\cup} \cdots \dot{\cup} C_{b}$ is a partition of the boundary of Σ into connected components such that the cardinality of $\mathbb{M} \cap C_{s}$ decreases in s.

In illustrations we draw marked points as \bullet, orbifold points as \times, and boundary segments as
$\bullet--\bullet$. The orientation of drawn surfaces is always assumed to be clockwise.

Remark 5.1.3. By the classification of compact orientable smooth surfaces with boundary, the invariant (g, λ, p, o) determines $\boldsymbol{\Sigma}$ up to diffeomorphism. The surface Σ can be obtained from the g-fold torus by cutting out b pairwise disjoint open disks. Compare Example 5.1.6.

Remark 5.1.4. Note that, contrary to the terminology, punctures belong to the surface and orbifold points have neighborhoods diffeomorphic to an open set in Euclidean space.

In [GL16a] orbifolds are called "surfaces with marked points and orbifold points."
Remark 5.1.5. An orbifold is a triple $(\Sigma, \mathbb{M}, \mathbb{O})$ where $(\Sigma, \mathbb{M} \cup \mathbb{O})$ is a bordered surface with marked points in the sense of [FST08, Definition 2.1] where $\mathbb{M} \neq \varnothing$ and $\mathbb{O} \subseteq \Sigma \backslash(\mathbb{M} \cup \partial \Sigma)$.

Example 5.1.6. The surface with invariant $g=3, \lambda=(3,1), p=1, o=2$ is a 3 -fold torus with two boundary components. It is the quotient of the $4 g$-sided figure drawn below in which sides carrying the same label are identified as indicated.

Example 5.1.7. The quadrilateral with two orbifold points, the once-punctured triangle, and the once-punctured torus with one orbifold point:

Example 5.1.8. We regard the point at infinity as a point of the drawing plane. Both of the following two pictures represent a twice-punctured sphere with two orbifold points.

5.1.2 Triangulations

The definitions of arcs and triangulations given in this section are based on [FST12a]. In case of doubt, it could be helpful to consult [FST08, Definition 2.2]. However, a rigorous
understanding of these definitions is not essential for this chapter and they should rather be considered a motivation. Namely, we will always work with puzzle-piece decompositions, which allow us to use purely combinatorial arguments. No topology or geometry is needed.

Definition 5.1.9. A curve γ in $\boldsymbol{\Sigma}$ is the image of a simple curve $[0,1] \xrightarrow{\iota} \Sigma$ such that:
(a) $\iota(\{0,1\}) \subseteq \mathbb{M} \cup \mathbb{O}$ and $\iota(\{0,1\}) \cap \mathbb{M} \neq \varnothing$ and $\iota((0,1)) \cap(\mathbb{M} \cup \mathbb{O} \cup \partial \Sigma)=\varnothing$.
(b) γ does not cut out an unpunctured monogon with less than two orbifold points.
(c) γ does not cut out an unpunctured digon without orbifold points.

The points in $\iota(\{0,1\})$ are the endpoints of γ; those in $\iota((0,1))$ are the inner points of γ. The curve γ is called ordinary, if its endpoints belong to \mathbb{M}, and pending, if one of its endpoints lies in \mathbb{O} and the other in \mathbb{M}. Every curve in $\boldsymbol{\Sigma}$ is either ordinary or pending.

Two curves γ and γ^{\prime} in $\boldsymbol{\Sigma}$ are ambient-isotopic if there exists a homotopy $\Sigma \times[0,1] \rightarrow \Sigma$ relative $\mathbb{M} \cup \mathbb{O} \cup \partial \Sigma$ given by $(s, t) \mapsto H_{t}(s)$ such that $H_{0}=\mathrm{id}_{\Sigma}, H_{1} \circ \gamma=\gamma^{\prime}$, and H_{t} is a homeomorphism for all $t \in[0,1]$.

An arc i in $\boldsymbol{\Sigma}$ is an ambient-isotopy class of a curve in $\boldsymbol{\Sigma}$. The endpoints of an arc are the endpoints of a curve representing the arc. An arc is said to be ordinary resp. pending if it can be represented by an ordinary resp. pending curve.

Two arcs i and i^{\prime} in $\boldsymbol{\Sigma}$ are compatible if they can be represented by curves γ and γ^{\prime} that do not intersect each other except possibly in their endpoints belonging to \mathbb{M}.

A set of arcs in $\boldsymbol{\Sigma}$ is compatible if its elements are pairwise compatible.
Remark 5.1.10. It is known that every compatible set $\left\{i_{1}, \ldots, i_{\ell}\right\}$ of arcs in $\boldsymbol{\Sigma}$ can be represented by curves $\gamma_{1}, \ldots, \gamma_{\ell}$ in $\boldsymbol{\Sigma}$ that do not intersect each other in $\Sigma \backslash \mathbb{M}$.

Furthermore, as a consequence of Whitney's Approximation Theorem, $\gamma_{1}, \ldots, \gamma_{\ell}$ can be assumed to be images of smooth simple curves in Σ.

Remark 5.1.11. Let γ_{0} and γ_{1} be curves in $\boldsymbol{\Sigma}$ given as the images of simple curves ι_{0} and ι_{1} in Σ. It is known that γ_{0} and γ_{1} are ambient-isotopic if ι_{0} and ι_{1} are isotopic, i.e. there is a family of curves γ_{t} in $\boldsymbol{\Sigma}$ given as the images of simple curves ι_{t} in Σ such that $(s, t) \mapsto \iota_{t}(s)$ defines a homotopy $[0,1] \times[0,1] \rightarrow \Sigma$ from ι_{0} to ι_{1}.

Example 5.1.12. Let $\boldsymbol{\Sigma}$ be the quadrilateral with two orbifold points. The left picture below displays images of simple curves $[0,1] \rightarrow \Sigma$ that are not curves in $\boldsymbol{\Sigma}$. On the right one can see three curves in $\boldsymbol{\Sigma}$ that all represent the same arc.

Example 5.1.13. The leftmost picture below illustrates three (representing curves of) compatible arcs, whereas each of the other two pictures shows a pair of incompatible arcs.

Definition 5.1.14. A triangulation τ of $\boldsymbol{\Sigma}$ is an inclusion-wise maximal set of pairwise compatible arcs in $\boldsymbol{\Sigma}$. We call the pair $(\boldsymbol{\Sigma}, \tau)$ a triangulated orbifold.

Remark 5.1.15. Triangulations are called ideal triangulations in [FST08] and [FST12a].
Proposition 5.1.16. Every compatible set of arcs in $\boldsymbol{\Sigma}$ is contained in a triangulation. All triangulations of $\boldsymbol{\Sigma}$ have the same number n of arcs. Explicitly,

$$
n=6(g-1)+3 b+m+2(p+o) .
$$

Every compatible set of $n-1$ arcs in $\boldsymbol{\Sigma}$ is contained in at most two triangulations.

Proof. See [FST08, Proposition 2.10, Definition 3.1] and [FST12a].

Example 5.1.17. The number of arcs in triangulations of the quadrilateral with two orbifold points is $n=-6+3+4+4=5$. Two such triangulations are shown below.

Example 5.1.18. Triangulations of the once-punctured triangle have $n=-6+3+4+2=3$ arcs. Here are two examples:

The next two propositions reveal the combinatorial nature of triangulations.

Figure 5.1.1: non-degenerate triangles: ordinary, once-, twice-, and triply-orbifolded.

Figure 5.1.2: self-folded triangle.

Proposition 5.1.19. Let τ be a triangulation of $\boldsymbol{\Sigma}$ represented by curves $\gamma_{1}, \ldots, \gamma_{n}$ that do not intersect in $\Sigma \backslash \mathbb{M}$. Then every closure of a connected component of $\Sigma \backslash\left(\gamma_{1} \cup \cdots \cup \gamma_{n}\right)$ (considered up to ambient isotopy) is one of the triangles shown in Figures 5.1.1 and 5.1.2.

Proof. See [FST08, § 2] and [FST12a, § 4] for references.
Remark 5.1.20. The triply-orbifolded triangle (rightmost in Figure 5.1.1) can only occur in triangulations of the once-punctured sphere with three orbifold points. It is the one and only triangle of each such triangulation.

Definition 5.1.21. The side of a self-folded triangle (Figure 5.1.2) connecting two different marked points is called folded; the other side is the enclosing loop.

The marked point shared by the folded side and the enclosing loop is referred to as the basepoint and the other endpoint of the folded side is called the enclosed puncture.

Corollary 5.1.22. All triangulations of $\boldsymbol{\Sigma}$ have the same number t of triangles, where

$$
t=4(g-1)+2 b+m+p+o .
$$

Proof. See [FG07, § 2].

5.1.3 Puzzle-Piece Decomposition

For a detailed version of the next statement see [FST08, Remark 4.2] and [FST12a, § 4].
Proposition 5.1.23. Every triangulated orbifold $(\boldsymbol{\Sigma}, \tau)$ can be obtained as follows:
(1) Take several copies of the (clockwise oriented) puzzle pieces shown in Figure 5.A.1.
(2) Partially pair up the outer sides of the pieces chosen in the first step, but never pair two sides of the same piece.
(3) Glue each paired outer side with its partner, making orientations match. The outer sides without a partner become boundary segments.

Figure 5.1.3: triangulated once-punctured torus.

Corollary 5.1.24. Let τ be a triangulation of $\boldsymbol{\Sigma}$. Every puzzle piece $\left\{_{2}^{3}\right.$ (see Figure 5.A.1) of τ contains a unique non-degenerate triangle $\Delta\left(\sum_{\imath}^{\Omega}\right)$ of τ (see Figure 5.1.1). Vice versa, every non-degenerate triangle Δ of τ is contained in a unique puzzle piece $\left\{_{\{ }^{2}\right\}_{\tau}(\Delta)$ of τ.

Remark 5.1.25. By dint of the puzzle-piece decomposition described in Proposition 5.1.23 the arcs of any triangulation τ of $\boldsymbol{\Sigma}$ can be classified as follows: Every arc in τ is either
(a) an inner side of a puzzle piece, called an unshared arc in τ; or
(b) an outer side of exactly two puzzle pieces, called a shared arc in τ.

An unshared arc in τ is either pending or belongs to a self-folded triangle of τ. In total there are 18 arctypes for non-folded unshared arcs. They are listed in Table 5.A.10.

For a shared arc i in τ let its kind be the total number of arcs shared by the two puzzle pieces containing i. The kind of an unshared arc i in τ is defined as zero.

The kind of an arc in τ is at most two unless $(\boldsymbol{\Sigma}, \tau)$ is the triangulated once-punctured torus depicted in Figure 5.1.3 (where the kind of all arcs is three).

All possibilities how two puzzle pieces can share a fixed arc whose kind is one, two, or three, respectively, are listed in Tables 5.A. 7 to 5.A.9. Summing up, there are $\binom{9}{2}=45$ arctypes of kind one, $\binom{6}{2}=21$ arctypes of kind two, and just one arctype of kind three. All together, we have $85=18+45+21+1$ different arctypes for non-folded arcs.

Example 5.1.26. Indicated below are the puzzle-piece decompositions for some of the triangulations from Examples 5.1.17 and 5.1.18:

5.1.4 Flipping Arcs

Removing an arc i from a triangulation τ, one is left with a compatible set of $n-1$ arcs. By Proposition 5.1.16 there can be at least one other triangulation $\mu_{i}(\tau)$ containing this compatible set. Deciding whether such $\mu_{i}(\tau)$ exists is simple:

Proposition 5.1.27. Let τ be a triangulation of $\boldsymbol{\Sigma}$ and $i \in \tau$. Then $\tau \backslash\{i\}$ is contained in a triangulation $\mu_{i}(\tau)$ of $\boldsymbol{\Sigma}$ different from τ if and only if i is a non-folded arc in τ.

Proof. See [FST08, § 3].

Definition 5.1.28. Let i be a non-folded arc in a triangulation τ. The triangulation $\mu_{i}(\tau)$ is said to be obtained by flipping i in τ.

Example 5.1.29. The right triangulation in Example 5.1.18 is obtained from the left one by flipping the enclosing loop. The folded side cannot be flipped.

Remark 5.1.30. Let τ and ς be two triangulations related by flipping an arc, say $\varsigma=\mu_{i}(\tau)$ and $\tau=\mu_{j}(\varsigma)$. Then i is pending if and only if j is pending. Denote by $\kappa_{\tau}(i)$ the kind of i in τ and by $\kappa_{\varsigma}(j)$ the kind of j in ς. Then $\kappa_{\tau}(i)=\kappa_{\varsigma}(j)$ or $\left\{\kappa_{\tau}(i), \kappa_{\varsigma}(j)\right\}=\{0,2\}$.

Remark 5.1.31. A set $\{X, Y\}$ of arctypes (see Remark 5.1.25) is called a flippant pair if there are triangulations τ and ς of some orbifold $\boldsymbol{\Sigma}$ that are related by flipping, say $\varsigma=\mu_{i}(\tau)$ and $\tau=\mu_{j}(\varsigma)$, such that the arctype of i in τ is X and the arctype of j in ς is Y. Inspection shows that there are 46 flippant pairs. All of them are listed in Table 5.A.11.

Each pair of triangulations of an orbifold can be connected by a finite sequence of flips in the following sense:

Proposition 5.1.32. For every two triangulations τ and ς of $\boldsymbol{\Sigma}$ there are arcs i_{1}, \ldots, i_{ℓ} in $\boldsymbol{\Sigma}$ such that $\varsigma=\mu_{i_{\ell}} \cdots \mu_{i_{1}}(\tau)$ and $\tau \cap \varsigma \subseteq \mu_{i_{s}} \cdots \mu_{i_{1}}(\tau)$ for all $0<s<\ell$.

Proof. See [FST08, Proposition 3.8] and [FST12a, Theorem 4.2].

5.1.5 Tagged Triangulations

The fact that folded arcs cannot be flipped is the reason for introducing a more sophisticated type of triangulation. These tagged triangulations arise from triangulations by replacing enclosing loops and by "tagging" arcs at their ends (i.e. by marking some ends with a "notch" $\bowtie)$. In a tagged triangulation every arc can be flipped.

Notation 5.1.33. Recall from [FST08, Definition 7.1] that every arc i in $\boldsymbol{\Sigma}$ has two "ends" and each end e of i contains precisely one point $x(e)$ from $\mathbb{M} \cup \mathbb{O}$.

We denote by $\mathfrak{e}(i)$ the set of ends of i. If i is a loop enclosing $x \in \mathbb{P}$, i.e. i cuts out a once-punctured monogon with puncture x, let $i^{\#}$ be the unique arc in $\boldsymbol{\Sigma}$ such that i and $i^{\#}$ form a self-folded triangle. For arcs i that are not enclosing loops set $i^{\sharp}:=i$.

Definition 5.1.34. A tagged arc \boldsymbol{i} in $\boldsymbol{\Sigma}$ is a pair (i, tag) where i is an arc in $\boldsymbol{\Sigma}$ that is not an enclosing loop and $\mathfrak{e}(i) \xrightarrow{\text { tag }}\{\circ, \bowtie\}$ is a function with $\operatorname{tag}(e)=\circ$ whenever $x(e) \notin \mathbb{P}$. If $\boldsymbol{\Sigma}$ is a once-punctured closed orbifold (i.e. $b=0, p=1$) we require $\operatorname{tag}(e)=\circ$ for all e.

For tagged arcs $\boldsymbol{i}=(i, \operatorname{tag})$ set $\boldsymbol{i}^{b}:=i$ and for boundary segments $\boldsymbol{i} \in \mathfrak{s}$ set $\boldsymbol{i}^{\boldsymbol{b}}:=\boldsymbol{i}$.
Let $\varepsilon \in\{ \pm 1\}^{\mathbb{P}}$ and i an arc in $\boldsymbol{\Sigma}$. For $x \in \mathbb{M} \cup \mathbb{O}$ let

$$
\widetilde{\varepsilon}(i, x)=\left\{\begin{aligned}
+1 & \text { if } x \notin \mathbb{P} \text { or } b=0, p=1 \\
-\varepsilon(x) & \text { if } i \text { is a loop enclosing } x \in \mathbb{P} \\
\varepsilon(x) & \text { otherwise }
\end{aligned}\right.
$$

Denote by i^{ε} the tagged $\operatorname{arc}\left(i^{\sharp}, \operatorname{tag}_{\varepsilon}\right)$ given by

$$
\operatorname{tag}_{\varepsilon}(e)= \begin{cases}\circ & \text { if } \widetilde{\varepsilon}(i, x(e))=+1 \\ \bowtie & \text { if } \widetilde{\varepsilon}(i, x(e))=-1\end{cases}
$$

A tagged triangulation $\boldsymbol{\tau}$ of $\boldsymbol{\Sigma}$ is a set of tagged arcs such that $\boldsymbol{\tau}=\tau^{\varepsilon}:=\left\{i^{\varepsilon} \mid i \in \tau\right\}$ for some triangulation τ of $\boldsymbol{\Sigma}$ and some $\varepsilon \in\{ \pm 1\}^{\mathbb{P}}$.

For a tagged triangulation $\boldsymbol{\tau}$ the (uniquely determined) triangulation τ with $\boldsymbol{\tau}=\tau^{\varepsilon}$ for some suitable $\varepsilon \in\{ \pm 1\}^{\mathbb{P}}$ is called the underlying triangulation of $\boldsymbol{\tau}$. We set $\boldsymbol{\tau}^{b}:=\tau$.

A tagged arc \boldsymbol{i} is called pending if $\boldsymbol{i}^{\boldsymbol{b}}$ is pending. Define $\boldsymbol{\tau}^{\times}:=\{\boldsymbol{i} \in \boldsymbol{\tau} \mid \boldsymbol{i}$ pending $\}$.
Two tagged arcs are compatible if there is a tagged triangulation of $\boldsymbol{\Sigma}$ containing both of them. A set of tagged arcs is compatible if its elements are pairwise compatible.

The ends e of arcs with $\operatorname{tag}(e)=\bowtie$ are tagged notched and will be visualized as $\cdots \cdots \bullet$. The ends with $\operatorname{tag}(e)=0$ will not be accentuated in any special way.

Remark 5.1.35. Let $\varepsilon \in\{ \pm 1\}^{\mathbb{P}}$. Then $\left(i^{\varepsilon}\right)^{b}=i^{\sharp}$ for every arc i in $\boldsymbol{\Sigma}$.
In particular, $\left\{\boldsymbol{i}^{b} \mid \boldsymbol{i} \in \boldsymbol{\tau}\right\} \subseteq \boldsymbol{\tau}^{b}$ for every tagged triangulation $\boldsymbol{\tau}$. This inclusion is proper if and only if $\boldsymbol{\tau}^{b}$ contains a self-folded triangle.

Remark 5.1.36. To facilitate the formulation of Proposition 5.1.45, Definition 5.1.34 slightly deviates from [FST08; FST12a] for once-punctured closed orbifolds.

Remark 5.1.37. See the original reference [FST08, § 7] and [FST12a] for various helpful examples and a more illustrative version of Definition 5.1.34.

Example 5.1.38. The triangulation τ of the twice-punctured quadrilateral drawn below on the left gives rise to the tagged triangulation τ^{ε} on the right where $\varepsilon(x)=-1$ and $\varepsilon(y)=1$.

Example 5.1.39. The picture on the left and in the middle each shows a set of compatible tagged arcs, whereas on the right picture one sees a pair of incompatible tagged arcs:

Definition 5.1.40. Let $\boldsymbol{\tau}$ be a tagged triangulation and let $\mathbb{P}_{\boldsymbol{\tau}} \subseteq \mathbb{P}$ be the set of punctures that are enclosed by arcs of $\tau=\boldsymbol{\tau}^{b}$. Restriction $\left.\varepsilon \mapsto \varepsilon\right|_{\mathbb{P}_{\boldsymbol{\tau}}}$ establishes a bijection

$$
E_{\boldsymbol{\tau}}=\left\{\varepsilon \in\{ \pm 1\}^{\mathbb{P}} \mid \tau^{\varepsilon}=\boldsymbol{\tau}\right\} \longrightarrow\{ \pm 1\}^{\mathbb{P}_{\boldsymbol{\tau}}}
$$

The preimage $\varepsilon_{\boldsymbol{\tau}}$ of the function with constant value +1 under this bijection is called the weak signature of $\boldsymbol{\tau}$ (see [Lab16, Definition 2.10]).

The elements of $E_{\boldsymbol{\tau}}$ are called sign functions for $\boldsymbol{\tau}$.

5.1.6 Flipping Tagged Arcs

Here are the analogs of Propositions 5.1.16 and 5.1.27 for tagged triangulations:
Proposition 5.1.41. Every compatible set of tagged arcs in $\boldsymbol{\Sigma}$ is contained in a tagged triangulation of $\boldsymbol{\Sigma}$. Every compatible set of $n-1$ tagged arcs is contained in exactly two tagged triangulations.

Proof. See [FST08, Theorem 7.9] and [FST12a].
Corollary 5.1.42. Let $\boldsymbol{\tau}$ be a tagged triangulation of $\boldsymbol{\Sigma}$ and $\boldsymbol{i} \in \boldsymbol{\tau}$. Then $\boldsymbol{\tau} \backslash\{\boldsymbol{i}\}$ is contained in exactly one tagged triangulation $\mu_{\boldsymbol{i}}(\boldsymbol{\tau})$ of $\boldsymbol{\Sigma}$ different from $\boldsymbol{\tau}$.

Definition 5.1.43. The tagged triangulation $\mu_{\boldsymbol{i}}(\boldsymbol{\tau})$ is said to be obtained by flipping \boldsymbol{i}.
Corollary 5.1.44. Let τ be a triangulation of $\boldsymbol{\Sigma}$ and $\varepsilon \in\{ \pm 1\}^{\mathbb{P}}$. Then $\left(\mu_{i}(\tau)\right)^{\varepsilon}=\mu_{i^{\varepsilon}}\left(\tau^{\varepsilon}\right)$ for every non-folded arc i in τ.

Proof. This follows from Proposition 5.1.27, Corollary 5.1.42, and Definition 5.1.34.

The following result is often used to see that properties that are invariant under flipping arcs hold for all tagged triangulations of an orbifold if they hold for any.

Proposition 5.1.45. For every two tagged triangulations $\boldsymbol{\tau}$ and $\boldsymbol{\varsigma}$ of $\boldsymbol{\Sigma}$ there are tagged $\operatorname{arcs} \boldsymbol{i}_{1}, \ldots, \boldsymbol{i}_{\ell}$ in $\boldsymbol{\Sigma}$ with $\boldsymbol{\varsigma}=\mu_{\boldsymbol{i}_{\ell}} \cdots \mu_{\boldsymbol{i}_{1}}(\boldsymbol{\tau})$ and $\boldsymbol{\tau} \cap \boldsymbol{\varsigma} \subseteq \mu_{\boldsymbol{i}_{s}} \cdots \mu_{\boldsymbol{i}_{1}}(\boldsymbol{\tau})$ for all $0<s<\ell$.

Proof. See [FST08, Proposition 7.10] and [FST12a, Theorem 4.2, proof of Lemma 4.3].

Remark 5.1.46. The tagged fip graph $\mathbf{E}^{\bowtie}(\boldsymbol{\Sigma})$ of $\boldsymbol{\Sigma}$ is the simple graph whose vertices are the tagged triangulations of $\boldsymbol{\Sigma}$ and in which two vertices are joined by an edge if and only if they can be obtained from one another by flipping an arc (see [FST08, § 7]).

By Corollary 5.1.42 and Proposition 5.1.45 the graph $\mathbf{E}^{\bowtie}(\boldsymbol{\Sigma})$ is n-regular and connected.
Example 5.1.47. Below on the left one sees the tagged triangulation induced by the first triangulation of Example 5.1.18. Flipping the tagged $\operatorname{arcs} \boldsymbol{i}$ and \boldsymbol{j}, respectively, yields the tagged triangulations shown in the middle and on the right.

5.2 Modulation of a Tagged Triangulation

We will define a modular quiver $Q(\tau)$ for each (tagged) triangulation τ of an orbifold $\boldsymbol{\Sigma}$.

5.2.1 Adjacency Quiver of a Triangulation

The quiver $Q^{\prime}(\tau)$ of a triangulation τ defined in [GL16a] carries the same information as the signed adjacency matrix used in [FST08; FST12a]. Apart from keeping track of orientation and weights in a slightly different way, they are the diagrams of [FZ03].

The adjacency quiver $Q(\tau)$ introduced here is closely related to $Q^{\prime}(\tau)$ but has additional "frozen" vertices corresponding to the boundary segments.

The purpose of this subsection is to settle notation and to revise how the puzzle-piece decomposition of a triangulation gives rise to a decomposition of the adjacency quiver, the so-called block decomposition from [FST08; FST12b].

Notation 5.2.1. We denote by $Q_{2}(\tau)$ the set of non-degenerate triangles (see Figure 5.1.1) of a triangulation τ of $\boldsymbol{\Sigma}$. For a triangle $\Delta \in Q_{2}(\tau)$ and $i, j \in \tau \cup \mathfrak{s}$ we will write

$$
(i, j) \in \Delta
$$

if both i and j are sides of Δ and j follows i in Δ with respect to the orientation of $\boldsymbol{\Sigma}$.
Copying [FST08, Definition 4.1] let $\tau \cup \mathfrak{s} \xrightarrow{\pi_{\tau}} \tau \cup \mathfrak{s}$ be the idempotent function with $\pi_{\tau}(i)= \begin{cases}j & \text { if } i \text { is the folded side of a self-folded triangle in } \tau \text { with enclosing loop } j, \\ i & \text { otherwise. }\end{cases}$

Definition 5.2.2. Let τ be a triangulation of $\boldsymbol{\Sigma}$. The (adjacency) quiver $Q(\tau)$ of τ is the modular quiver $(Q(\tau), d, \sigma)$ whose vertices are the arcs in τ and boundary segments of $\boldsymbol{\Sigma}$.

Formally, $Q_{0}(\tau)=\tau \cup \mathfrak{s}$. Vertices $i \in Q_{0}(\tau)$ have weight $d_{i}=2$ if i is a pending arc and weight $d_{i}=1$ otherwise. The arrow set is

$$
Q_{1}(\tau)=\left\{i \xrightarrow{(\Delta,(i, j), r)} j \mid \Delta \in Q_{2}(\tau), i, j \in Q_{0}(\tau) \text { with }\left(\pi_{\tau}(i), \pi_{\tau}(j)\right) \in \Delta, r \in \mathbb{Z} / d_{j i} \mathbb{Z}\right\} .
$$

The tuple $\left(\sigma_{a}\right)_{a \in Q_{1}(\tau)}$ is defined by $\sigma_{a}=r$ for each $a=(\Delta,(i, j), r) \in Q_{1}(\tau)$.
 We say that a is induced by the (non-degenerate) triangle Δ or the puzzle piece $\left\{_{i}^{2}\right\}(a)$.

 of $Q(\tau)$ the subquiver induced by the puzzle pieces $\left\{\begin{array}{l}\{3 \\ 1\end{array}, \ldots,\left\{_{2}^{2}\right\}\right.$.

Remark 5.2.4. Obviously, $a=\left(\Delta(a),(s(a), t(a)), \sigma_{a}\right)$ for every $a \in Q_{1}(\tau)$.
Remark 5.2.5. According to [FST12a, Lemma 4.10] there is a decomposition

$$
Q(\tau)=\bigoplus_{\substack{\pi}} Q^{\varepsilon_{3}^{2}}
$$

where the sum runs over all puzzle pieces $\left\{_{3}^{\Omega}\right\}$ of τ. The modular quivers $Q^{\left.\varepsilon_{3}^{r}\right\}}$ for the different types of puzzle pieces are listed in Figures 5.A. 2 to 5.A.6. See also Example 5.2.12.

Remark 5.2.6. The quiver $Q(\tau)$ of every triangulation τ is connected, since Σ is connected.
Remark 5.2.7. Proposition 5.1.23 and Remark 5.2.5 lead to the following observations concerning the number $q_{j i}$ of arrows $j \leftarrow i$ in $Q(\tau)$:

- $q_{j i} \leq 2$.
- If $q_{i j} \geq 1$, then $q_{j i} \leq 1$.
- If $d^{j i}=2$ and $d_{i j}=1$, then $q_{j i} \leq 1$.
- If $d_{j i} \neq 2$, there is at most one arrow $j \leftarrow i$ induced by the same triangle.
- If $d_{j i}=2$ and $q_{j i} \geq 1$, then $q_{i j}=0$ and $q_{j i}=2$ and $\left\{\sigma_{a} \mid j \stackrel{a}{\leftarrow} i \in Q_{1}(\tau)\right\}=\mathbb{Z} / 2 \mathbb{Z}$.

The second item shows that $Q(\tau)$ has a unique maximal 2-acyclic subquiver.
Note that $d_{j i}=2$ means that both i and j are pending, while $d^{j i}=2$ and $d_{i j}=1$ means that exactly one of i and j is pending.

Remark 5.2.8. The full subquiver $Q^{\circ}(\tau)$ of $Q(\tau)$ spanned by τ (i.e. by all vertices that are not boundary segments) is called the "unreduced weighted quiver of τ " in [GL16a].

Remark 5.2.9. Let τ be a triangulation and $Q^{\prime}(\tau)$ the maximal 2-acyclic subquiver of $Q^{\circ}(\tau)$.
The skew-symmetrizable matrix $B(\tau)$ corresponding to the weighted quiver $Q^{\prime}(\tau)$ under the bijection of Remark 2.1.6 is one of the matrices described in [FST12a, § 4.3].

Convention 5.2.10. We illustrate vertices i in $Q(\tau)$ with $d_{i}=2$ as ' i, , and arrows a with $\sigma_{a}=2$ as $\sim \stackrel{a}{\sim}$. The part of $Q(\tau)$ not belonging to $Q^{\circ}(\tau)$ will be drawn in blue.

Example 5.2.11. The triangulation τ of the once-punctured triangle with one orbifold point shown below on the left gives rise to the modular quiver $Q(\tau)$ on the right. The arrows $a_{0}, a_{1}, b_{0}, b_{1}, c$ are all induced by the triangle whose sides are h, i, k.

Example 5.2.12. The second triangulation of Example 5.1.17 has the modular quiver $Q(\tau)$

Example 5.2.13. Every triangulation τ of the once-punctured torus with one orbifold point looks like the one below. Its quiver $Q(\tau)$ can be seen on the right.

With respect to the ordering $i<k<h<j<\ell$ on $Q_{0}(\tau)$ the matrix $B(\tau)$ has the form

$$
\left(\begin{array}{rrrrr}
0 & -2 & 1 & -1 & 1 \\
1 & 0 & -1 & 0 & 0 \\
-1 & 2 & 0 & -1 & 1 \\
1 & 0 & 1 & 0 & -2 \\
-1 & 0 & -1 & 2 & 0
\end{array}\right) .
$$

5.2.2 Mutating Adjacency Quivers

Given a triangulation $\mu_{i}(\tau)$ obtained from another triangulation by flipping an arc i, we will identify the modular quiver $Q\left(\mu_{i}(\tau)\right)$ with a subquiver of the premutation $\widetilde{\mu}_{i}(Q(\tau))$.

Convention 5.2.14. The unique maximal 2-acyclic subquiver $Q^{\prime}(\tau)$ of $Q(\tau)$ is a reduction in the sense of Definition 2.1.14. We define $\widetilde{\mu}_{i}(Q(\tau)):=\widetilde{\mu}_{i}\left(Q^{\prime}(\tau)\right)$ for all $i \in \tau$.

Notation 5.2.15. For an arc i of a triangulation τ write $Q(\tau, i)$ for the subquiver of $Q(\tau)$ induced by all (at most two) puzzle pieces of τ that contain i.

Let $Q(\tau, \neg i)$ be the subquiver of $Q(\tau)$ induced by all puzzle pieces of τ not containing i.
Remark 5.2.16. It is $Q(\tau)=Q(\tau, \neg i) \oplus Q(\tau, i)$ and $\widetilde{\mu}_{i}(Q(\tau))=Q(\tau, \neg i) \oplus \widetilde{\mu}_{i}(Q(\tau, i))$.
Lemma 5.2.17. Let τ and ς be two triangulations related by flipping an arc, say $\varsigma=\mu_{i}(\tau)$ and $\tau=\mu_{j}(\varsigma)$. Then $Q^{\urcorner}:=Q(\tau, \neg i)=Q(\varsigma, \neg j)$ and there is a monomorphism

$$
Q(\varsigma) \xrightarrow{\Phi} \widetilde{\mu}_{i}(Q(\tau))
$$

of modular quivers with $\left.\Phi\right|_{Q_{\urcorner}}=\operatorname{id}_{Q\urcorner}$ and $\Phi(k)=k$ for all $k \in Q_{0}(\varsigma) \backslash\{j\}$ and $\Phi(j)=i$.
The image of Φ contains a maximal 2 -acyclic subquiver of $\widetilde{\mu}_{i}(Q(\tau))$.

Proof. This follows from [FST12a, Lemma 4.12] and Definitions 2.1.12 and 5.2.2. It can be verified directly by inspecting Tables 5.A.12 to 5.A.57.

Remark 5.2.18. Additionally, one can demand in Lemma 5.2.17 that the monomorphism Φ has the property that for every path $\stackrel{b}{\leftarrow} i \stackrel{a}{\leftarrow}$ in $Q(\tau) \ldots$
(i) \ldots with $\Delta(b) \neq \Delta(a)$, there is a path $b^{\vee} c^{\vee} a^{\vee}$ in $Q(\varsigma)$ with $\Delta\left(b^{\vee}\right)=\Delta\left(c^{\vee}\right)=\Delta\left(a^{\vee}\right)$ such that $\Phi\left(b^{\vee}\right)=b^{*}, \Phi\left(c^{\vee}\right)=[b a]_{0}^{0}, \Phi\left(a^{\vee}\right)=a^{*}$.
(ii) \ldots with $d_{i}=2, \sigma_{b}=\sigma_{a}=0$, the arrow $[b a]_{0}^{0}$ lies in the image of Φ.

Such Φ exists. It is unique if $\boldsymbol{\Sigma}$ is neither the once-punctured torus (Figure 5.1.3) nor the once-punctured sphere with three orbifold points (i.e. puzzle piece \widetilde{D}_{3}).

Example 5.2.19. The first weighted quiver appearing in each of the Tables 5.A. 12 to 5.A. 57 is $Q(\tau, i)$, where i corresponds to the boxed vertex, while the second one is $\Phi(Q(\varsigma, j))$ for a monomorphism Φ satisfying the property in Remark 5.2.18.

5.2.3 Adjacency Quiver of a Tagged Triangulation

The quiver of a tagged triangulation is defined analogously as in the untagged situation.
Notation 5.2.20. For tagged triangulations $\boldsymbol{\tau}$ set $\pi_{\boldsymbol{\tau}}(\boldsymbol{i}):=\pi_{\boldsymbol{\tau}^{b}}\left(\boldsymbol{i}^{b}\right)$ for all $\boldsymbol{i} \in \boldsymbol{\tau} \cup \mathfrak{s}$.
Definition 5.2.21. Let $\boldsymbol{\tau}$ be a tagged triangulation of $\boldsymbol{\Sigma}$. The (adjacency) quiver $Q(\boldsymbol{\tau})$ of $\boldsymbol{\tau}$ is the modular quiver with vertex set $Q_{0}(\boldsymbol{\tau})=\boldsymbol{\tau} \cup \mathfrak{s}$. Vertices \boldsymbol{i} in this quiver have
weight $d_{\boldsymbol{i}}=2$ if \boldsymbol{i}^{b} is a pending arc and weight $d_{\boldsymbol{i}}=1$ otherwise. The arrow set is
$Q_{1}(\boldsymbol{\tau})=\left\{\boldsymbol{i} \xrightarrow{(\Delta,(i, j), r)} \boldsymbol{j} \mid \Delta \in Q_{2}\left(\boldsymbol{\tau}^{\mathrm{b}}\right), \boldsymbol{i}, \boldsymbol{j} \in Q_{0}(\boldsymbol{\tau})\right.$ with $\left.\left(\pi_{\tau}(\boldsymbol{i}), \pi_{\boldsymbol{\tau}}(\boldsymbol{j})\right) \in \Delta, r \in \mathbb{Z} / d_{j \boldsymbol{i}} \mathbb{Z}\right\}$. The tuple $\left(\sigma_{a}\right)_{a \in Q_{1}(\boldsymbol{\tau})}$ is defined by $\sigma_{a}=r$ for each $a=(\Delta,(\boldsymbol{i}, \boldsymbol{j}), r) \in Q_{1}(\boldsymbol{\tau})$.

 spanned by all arrows that are induced by one of the pieces $\left.\sum_{2}^{2} 1, \ldots,,_{2}^{2}\right\}$.

Remark 5.2.22. Let $\boldsymbol{\tau}$ be a tagged triangulation of $\boldsymbol{\Sigma}$ and ε a sign function for $\boldsymbol{\tau}$. Moreover, let $\tau=\tau^{b}$ be the underlying triangulation of τ.

There is a unique isomorphism of modular quivers

$$
Q(\tau) \xrightarrow{\iota_{\boldsymbol{\tau}, \varepsilon}} Q(\boldsymbol{\tau})
$$

that extends the bijection $Q_{0}(\tau) \rightarrow Q_{0}(\boldsymbol{\tau})$ given by $i \mapsto i^{\varepsilon}$ (where $i^{\varepsilon}:=i$ for $i \in \mathfrak{s}$) and satisfies $\Delta\left(\iota_{\boldsymbol{\tau}, \varepsilon}(a)\right)=\Delta(a)$ for all $a \in Q_{1}(\tau)$.

5.2.4 Adjacency Modulation

For every (tagged) triangulation τ we have now defined an associated modular quiver $Q(\tau)$. All vertex weights in this quiver are either 1 or 2 . To obtain a comfy modulation for $Q(\tau)$, we must therefore choose a degree-2 Galois extension.

Convention 5.2.23. For the rest of the chapter fix a comfy extension $(L / K,-1, v)$
Abbreviate $w:=v^{2} \in K$.
Write z^{*} for the conjugate of $z \in L$, i.e. $z^{*}=\rho(z)$ for the non-trivial $\rho \in \operatorname{Gal}(L / K)$.
Remark 5.2.24. Fixing a comfy extension $(L / K,-1, v)$ is the same as choosing a degree-2 field extension L / K with $\operatorname{char}(K) \neq 2$ and picking an element $v \in L$ with $v^{2} \in K$.

Remark 5.2.25. Let $z=x+y v \in L$ with $x, y \in K$. From field theory we know $z^{*}=x-y v$, $\mathrm{N}_{L / K}(z)=z z^{*}=x^{2}-w y^{2}, \operatorname{Tr}_{L / K}(z)=z+z^{*}=2 x$, and $z-z^{*}=2 y v$.

Example 5.2.26. For L / K we could take \mathbb{C} / \mathbb{R} or $\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ for any odd prime power q. In the former case, we could also assume that $v^{2}=w=-1$.

Definition 5.2.27. The modulation $\mathcal{H}(\tau)$ of a (tagged) triangulation τ is the modulation of $Q(\tau)$ over $(L / K,-1, v)$.

The ground ring, species, path algebra, and completed path algebra of $\mathcal{H}(\tau)$ will be denoted by $R(\tau), A(\tau), H(\tau), \widehat{H}(\tau)$, respectively.

Remark 5.2.28. Let $\boldsymbol{\tau}$ and ε be as in Remark 5.2.22. Using the isomorphism $\iota_{\boldsymbol{\tau}, \varepsilon}$ to identify the modular quivers $Q(\tau)$ and $Q(\boldsymbol{\tau})$, there is an induced isomorphism of K-modulations

$$
\mathcal{H}(\tau) \xrightarrow{\iota_{\tau, \varepsilon}} \mathcal{H}(\boldsymbol{\tau}) .
$$

All components $R_{i}(\tau) \xrightarrow{\iota_{\tau, \varepsilon}} R_{\iota_{\tau, \varepsilon}(i)}(\boldsymbol{\tau})$ and $A_{a}(\tau) \xrightarrow{\iota_{\tau, \varepsilon}} A_{\iota_{\tau, \varepsilon}(a)}(\boldsymbol{\tau})$ are the identity maps. Hence, $\iota_{\boldsymbol{\tau}, \varepsilon}$ induces isomorphisms $H(\tau) \xrightarrow{\iota_{\boldsymbol{\tau}, \boldsymbol{\varepsilon}}} H(\boldsymbol{\tau})$ and $\widehat{H}(\tau) \xrightarrow{\iota_{\boldsymbol{\tau}, \varepsilon}} \widehat{H}(\boldsymbol{\tau})$ of K-algebras.

5.3 Potential of a Tagged Triangulation

Inspired by the series of articles [Lab09a; Lab09b; CL12; Lab16] we constructed in [GL16a] for each (tagged) triangulation τ a potential for the species $A(\tau)$.

5.3.1 Choosing Coefficients

The potentials we define in this section depend on the following choice of coefficients.
Convention 5.3.1. Fix two functions:

Define for arcs i in $\boldsymbol{\Sigma}$

$$
\begin{aligned}
& u_{i}:= \begin{cases}u_{\bullet} & \text { if } i \text { is a loop enclosing } \bullet \in \mathbb{P}, \\
1 & \text { otherwise },\end{cases} \\
& z_{i}:= \begin{cases}z_{x} & \text { if } i \text { is pending and contains } \times \in \mathbb{O}, \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Furthermore, for triangulations τ of $\boldsymbol{\Sigma}$ and $i \in \tau$ set $u_{i}^{\tau}:=\left(-u_{\pi_{\tau}(i)}\right)^{-\delta_{\pi_{\tau}(i) \neq i}}$.
Example 5.3.2. One valid choice is $u_{\bullet}=1$ for all $\bullet \in \mathbb{P}$ and $z_{\mathrm{x}}=v$ for all $\mathrm{x} \in \mathbb{O}$.
Remark 5.3.3. In [GL16a] we considered the choice $z_{\mathrm{x}}=1-v$ for all $\mathrm{x} \in \mathbb{O}$.

5.3.2 Potential Components Induced by Puzzle Pieces

For every cyclic path $i \stackrel{c}{\leftarrow} k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ in $Q(\tau)$ induced by $\left.{ }_{L}{ }^{\imath}\right\}$ the potential

$$
u_{k}^{\tau} u_{j}^{\tau} u_{i}^{\tau} c z_{k} b z_{j} a z_{i}
$$

for $A(\tau)$ is called a potential component induced by

5.3.3 Potential Components Induced by Punctures

Definition 5.3.6. Let τ be a triangulation of $\boldsymbol{\Sigma}$ and $\bullet \in \mathbb{P}$ not enclosed by any arc of τ. Not drawing enclosing loops, an infinitesimal neighborhood of \bullet in $(\boldsymbol{\Sigma}, \tau)$ looks as follows:

A path $i_{1} \stackrel{a_{\ell}}{\longleftarrow} i_{\ell} \stackrel{a_{\ell-1}}{\longleftarrow} \cdots \stackrel{a_{2}}{\longleftarrow} i_{2} \stackrel{a_{1}}{\longleftarrow} i_{1}$ in $Q(\tau)$ is induced by \bullet if $\Omega_{\Omega}\left(a_{s}\right)=\left\{_{\Omega}\right\}_{s}$ for all s.
For every cyclic path $a_{\ell} \cdots a_{1}$ in $Q(\tau)$ induced by \bullet the potential

$$
u_{\bullet} a_{\ell} \cdots a_{1}
$$

for $A(\tau)$ is called a potential component induced by \bullet.
The potential $W_{u}^{\bullet}(\tau)$ induced by \bullet is the sum of all potential components induced by

5.3.4 Potential of a (Tagged) Triangulation

Definition 5.3.7. The potential of a triangulation τ of $\boldsymbol{\Sigma}$ is defined as
where $\left\{^{2}\right\}$ runs through all puzzle pieces of τ and \bullet through all punctures in $\boldsymbol{\Sigma}$ that are not enclosed by any arc of τ.

The species with potential of τ is $\mathcal{S}_{u, z}(\tau)=\left(A(\tau), W_{u, z}(\tau)\right)$.
Lemma 5.3.8. $\mathcal{S}_{u, z}(\tau)$ is 2-acyclic after reduction for every triangulation τ.

Proof. If $Q(\tau)$ contains a cyclic path $b a$ whose two vertices are i and j, then i and j are arcs in τ with arctypes $\left\{X^{\uparrow}, Y^{\downarrow}\right\}$ and $\left\{X^{\downarrow}, Y^{\uparrow}\right\}$ for some $X, Y \in\{A, B, \widetilde{B}\}$ (see Table 5.A.9). Then $d_{i}=d_{j}=1$, the subquiver Q^{\prime} of $Q(\tau)$ spanned by a, b is full and $\left.W_{u, z}(\tau)\right|_{Q_{1}^{\prime}}=u_{\bullet} b a$ for some $\bullet \in \mathbb{P}$. Since $u_{\bullet} \in K^{\times}$, we can conclude that $\mathcal{S}_{u, z}(\tau)$ is 2-acyclic after reduction.

Example 5.3.9. For the triangulations from the examples in the previous subsection it is

$$
\begin{array}{ll}
W_{u, z}(\tau)=c z_{k}\left(b_{0} a_{0}-\frac{1}{u_{i}} b_{1} a_{1}\right)+c_{2} b_{2} a_{2}+c_{3} b_{3} a_{3} & \quad(\text { Example 5.2.11), } \\
W_{u, z}(\tau)=c z_{k}\left(b_{0}+b_{1}\right) z_{i} a+c_{2} b_{2} a_{2}+c_{3} b_{3} a_{3}+c_{4} b_{4} a_{4} & (\text { Example 5.2.12), } \\
W_{u, z}(\tau)=c_{0} z_{k} b_{0} a_{0}+c_{1} b_{1} a_{1}+c_{2} b_{2} a_{2}+u_{\bullet} c_{1} b_{2} a_{1} c_{0} b_{0} c_{2} b_{1} a_{2} a_{0} & \quad \text { (Example 5.2.13). }
\end{array}
$$

Example 5.3.10. Every triangulation τ of the sphere with one puncture \bullet and three orbifold points consists of exactly one puzzle piece \sum_{3}^{Ω} of type \widetilde{D}_{3} (see Figure 5.A.1). The modular

$$
W_{u}^{\bullet}(\tau)=u_{\bullet}\left(c_{0}+c_{1}\right)\left(b_{0}+b_{1}\right)\left(a_{0}+a_{1}\right) .
$$

Example 5.3.11. The triangulation τ of the twice-punctured monogon with one orbifold point seen below on the left has the quiver $Q(\tau)$ drawn on the right. For the non-enclosed puncture \bullet we have $W_{u}^{\bullet}(\tau)=u_{\bullet} c_{2} b_{2} c_{1} b_{1} a_{3}$.

Definition 5.3.12. Let $\boldsymbol{\tau}$ be a tagged triangulation and ε a sign function for $\boldsymbol{\tau}$. Denote by $\varepsilon \cdot u$ the function $\mathbb{P} \rightarrow K^{\times}$given by pointwise multiplication of ε and u.
The ε-potential of $\boldsymbol{\tau}$ is $W_{u, z}^{\varepsilon}(\boldsymbol{\tau})=\iota_{\boldsymbol{\tau}, \varepsilon}\left(W_{\varepsilon \cdot u, z}(\tau)\right)$.
The potential of $\boldsymbol{\tau}$ is $W_{u, z}(\boldsymbol{\tau})=W_{u, z}^{\varepsilon_{\tau}}(\boldsymbol{\tau})$ where $\varepsilon_{\boldsymbol{\tau}}$ is the weak signature of $\boldsymbol{\tau}$.
Define $\mathcal{S}_{u, z}^{\varepsilon}(\boldsymbol{\tau})=\left(A(\boldsymbol{\tau}), W_{u, z}^{\varepsilon}(\boldsymbol{\tau})\right)$ and $\mathcal{S}_{u, z}(\boldsymbol{\tau})=\left(A(\boldsymbol{\tau}), W_{u, z}(\boldsymbol{\tau})\right)$.
Convention 5.3.13. Let τ and ς be (tagged) triangulations with $\mu_{i}(\tau)=\varsigma$ and $\mu_{j}(\varsigma)=\tau$.
The bijection $Q_{0}(\tau) \rightarrow Q_{0}(\varsigma)$ that maps i to j and every $k \in(\tau \cap \varsigma) \cup \mathfrak{s}$ to itself induces an isomorphism $R(\tau) \rightarrow R(\varsigma)$ of K-algebras. This isomorphism will be used to consider the path algebra $H(\varsigma)$ and the completed path algebra $\widehat{H}(\varsigma)$ as $R(\tau)$-algebras.

For $X \in\{\tau \cup \mathfrak{s}, R(\tau)\}$ and $\operatorname{SPs} \mathcal{S}=(A(\tau), W), \mathcal{S}^{\prime}=\left(A(\varsigma), W^{\prime}\right)$ we write $\mathcal{S}^{\prime} \approx_{X} \mu_{i}(\mathcal{S})$ to indicate that every (equivalently, any) SP in $\mu_{i}(\mathcal{S})$ is reduced- X-equivalent to \mathcal{S}^{\prime}.

We write \sim_{τ} for $\sim_{\tau \cup \mathfrak{s}}$ and \sim_{R} for $\sim_{R(\tau)}$ and, similarly, \approx_{τ} for $\approx_{\tau \cup \mathfrak{s}}$ and \approx_{R} for $\approx_{R(\tau)}$.

5.3.5 Conjugating the Coefficients

Definition 5.3.14. For (tagged) arcs i in $\boldsymbol{\Sigma}$ let $\mathbb{O} \xrightarrow{z^{* i}} L \backslash K$ be the function $\times \mapsto z_{\mathrm{x}}^{* i}$ given as

$$
z_{x}^{* i}= \begin{cases}z_{x}^{*} & \text { if } i \text { contains } \times \\ z_{x} & \text { otherwise }\end{cases}
$$

Remark 5.3.15. Obviously, $\left(z^{* i}\right)^{* i}=z$ for all i and $z^{* i}=z$ for non-pending i.

Lemma 5.3.16. For every (tagged) triangulation τ and $i \in \tau$ it is $\mathcal{S}_{u, z^{* i}}(\tau) \sim_{\tau} \mathcal{S}_{u, z}(\tau)$.

Proof. Abbreviate $Q=Q(\tau), R=R(\tau), A=A(\tau)$. If $d_{i}=1$, there is nothing to show. We will therefore assume $d_{i}=2$.

The non-identity element f_{i} in $\operatorname{Gal}\left(R_{i} / K\right)$ and the identities $f_{j}=\operatorname{id}_{R_{j}}$ for $j \neq i$ induce an automorphism $R \xrightarrow{f} R$.

In view of Remark 5.2.7 there is a bijection $Q_{1} \xrightarrow{g} Q_{1}$ such that for $k \stackrel{a}{\leftarrow} j \in Q_{1}$

$$
g(a)= \begin{cases}a^{\prime} & \text { if } i \in\{j, k\} \text { and } d_{k j}=2 \\ \text { where } a^{\prime} \text { is the unique arrow } k \leftarrow j \text { with } \sigma_{a^{\prime}} \neq \sigma_{a} \\ a & \text { otherwise }\end{cases}
$$

In either case, we have $\rho_{g(a)} f_{j}=f_{k} \rho_{a}$ on $R_{k} \cap R_{j} \subseteq L$. Hence, the identities $A_{a} \rightarrow A_{g(a)}$ of K-vector spaces induce an R-bimodule isomorphism $A \xrightarrow{g} f_{*} A$.

The induced isomorphism $H(\tau) \xrightarrow{g} f_{*} H(\tau)$ of R-algebras can be regarded as an auto-

5.4 Compatibility of Flip and Mutation

We will prove that $\mathcal{S}_{u, z}(\tau)$ and $\mathcal{S}_{u, z}(\varsigma)$ correspond to each other under mutation, if the triangulations τ and ς are related by flipping an arc.

5.4.1 Compatibility for Triangulations

Theorem 5.4.1. Let τ be a triangulation of $\boldsymbol{\Sigma}$ and let i be a non-folded arc of τ. Then we have $\mathcal{S}_{u, z^{* i}}\left(\mu_{i}(\tau)\right) \approx_{R} \mu_{i}\left(\mathcal{S}_{u, z}(\tau)\right)$. In particular, $\mathcal{S}_{u, z}\left(\mu_{i}(\tau)\right) \approx_{\tau} \mu_{i}\left(\mathcal{S}_{u, z}(\tau)\right)$.

Proof. Let $\varsigma=\mu_{i}(\tau), \tau=\mu_{j}(\varsigma)$. The last claim follows from the first one by Lemma 5.3.16.
We prove the theorem case by case. In each case, we assume that the arctype of i in τ is a previously fixed one (see Remark 5.1.25). In total, we thus have 85 cases.

Since $\mathcal{S}_{u, z^{* i}}(\varsigma) \approx_{R} \mu_{i}\left(\mathcal{S}_{u, z}(\tau)\right) \Leftrightarrow \mathcal{S}_{u, z}(\tau) \approx_{R} \mu_{j}\left(\mathcal{S}_{u, z^{* i}}(\varsigma)\right)$ by Theorem 2.6.101, we can swap τ, i, z for $\varsigma, j, z^{* i}$ whenever we like to. This reduces the number of cases to consider to 46 (see Remark 5.1.31). Moreover, we can always assume that i is not an enclosing loop.

Abbreviate $Q=Q(\tau, i)$ and $Q^{\prime}=Q(\varsigma, j)$ and $\widetilde{Q}=\widetilde{\mu}_{i}(Q)$. Recall that $\left.Q(\tau)=Q\right\urcorner \oplus Q$ and $Q(\varsigma)=Q\urcorner \oplus Q^{\prime}$ and $\left.\widetilde{\mu}_{i}(Q(\tau))=Q\right\urcorner \oplus \widetilde{Q}$ for some $\left.Q\right\urcorner$.

Let $Q(\varsigma) \stackrel{\Phi}{\longleftrightarrow} \widetilde{\mu}_{i}(Q(\tau))$ be a monomorphism of modular quivers like in Lemma 5.2.17 satisfying the property of Remark 5.2 .18 . Then Φ restricts to a map $Q^{\prime} \hookrightarrow \widetilde{Q}$ and induces an injective $R(\tau)$-algebra homomorphism

$$
H^{\prime}=H(\varsigma) \xrightarrow{\Phi} \widetilde{\mu}_{i}(H(\tau))=\widetilde{H}
$$

Let $W=\left(W_{u, z}(\tau)\right)^{Q_{1}}$ and $W^{\prime}=\left(W_{u, z^{* i}}(\varsigma)\right)^{Q_{1}^{\prime}}$.
We will proceed as follows:
(1) Construct $\vartheta \in \operatorname{Aut}_{Q(\tau)-Q_{1}}(H(\tau))$ such that $\vartheta(W)$ is in i-split form.
(2) Compute the premutation $\widetilde{W}=\widetilde{\mu}_{i}(\vartheta(W))$.
(3) Construct $\widetilde{\vartheta} \in \operatorname{Aut}_{\widetilde{\mu}_{i}(Q(\tau))-\widetilde{Q}_{1}}(\widetilde{H})$ such that $\widetilde{\vartheta}(\widetilde{W})$ is in \widetilde{Q}_{1}-split form.
(4) Compute $\widetilde{W}^{\prime}=\operatorname{red}_{\widetilde{Q}_{1}}(\widetilde{\vartheta}(\widetilde{W}))$ and $\widetilde{T}=\operatorname{triv}_{\widetilde{Q}_{1}}(\widetilde{\vartheta}(\widetilde{W})) \subseteq \widetilde{Q}$.

We will choose ϑ and $\widetilde{\vartheta}$ in such a way that $\Phi\left(W^{\prime}\right)=\widetilde{W^{\prime}}$ and $\widetilde{Q}=\widetilde{Q}^{\prime} \oplus \widetilde{T}$ for $\widetilde{Q}^{\prime}=\Phi\left(Q^{\prime}\right)$. All in all, this will prove the theorem, since then

$$
\Phi\left(W_{u, z^{*}}(\varsigma)\right)=\operatorname{red}_{\widetilde{Q}_{1}}\left(\widetilde{\vartheta}\left(\widetilde{\mu}_{i}\left(\vartheta\left(W_{u, z}(\tau)\right)\right)\right)\right) .
$$

It remains to construct the maps ϑ and $\widetilde{\vartheta}$ such that indeed $\Phi\left(W^{\prime}\right)=\widetilde{W^{\prime}}$ and $\widetilde{Q}=\widetilde{Q}^{\prime} \oplus \widetilde{T}$. Tables 5.A. 12 to 5.A. 57 give instructions how to do this. Each table has the following form:

| X | W | | | | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| φ | φ_{1} | \leadsto | \cdots | \leadsto | $\varphi_{\ell(\varphi)}$ |
| ψ | ψ_{1} | \leadsto | \cdots | \leadsto | $\psi_{\ell(\psi)}$ |
| T_{1} | \ldots | | | | |
| $\widetilde{\varphi}$ | $\widetilde{\varphi}_{1}$ | \leadsto | \cdots | \leadsto | $\widetilde{\varphi}_{\ell(\tilde{\varphi})}$ |
| $\widetilde{\psi}$ | $\widetilde{\psi}_{1}$ | \leadsto | \cdots | \leadsto | $\widetilde{\psi}_{\ell(\tilde{\psi)}}$ |
| \widetilde{T}_{1} | \cdots | | | | |
| Y | \widetilde{W}^{\prime} | | | | \widetilde{Q}^{\prime} |

To begin with, locate the table where X is the arctype of i in τ and Y the arctype of j in ς. If you don't find any such table, or, if $\{X, Y\}=\{\{A, A\},\{A, A\}\}$ and W is not of the form shown in the first row of Table 5.A.28, swap τ, i, z for $\varsigma, j, z^{* i}$ and try again.

The quivers Q and \widetilde{Q}^{\prime} as well as the potential W are shown in the table at the indicated places. The boxed vertex in the depiction of Q and \widetilde{Q}^{\prime} is i.

It is not hard to see that W has the form appearing in the table. The subscripted letters ω represent elements in $H(\tau) \cap \widetilde{H} \cap H^{\prime}$. They are used as placeholders in summands of W and \widetilde{W}^{\prime} induced by punctures.

Define $\vartheta=\psi \circ \varphi$ and $\widetilde{\vartheta}=\widetilde{\psi} \circ \widetilde{\varphi}$ where $f=f_{\ell(f)} \circ \cdots \circ f_{1}$ for $f \in\{\varphi, \psi, \widetilde{\varphi}, \widetilde{\psi}\}$. If the table does not contain a row labeled f, take for f the identity. The maps f_{r} are represented in the tables by their defining substitution rules $a \mapsto f_{r}(a)$. The notation $a \rightsquigarrow \nu_{a}$ is used as
an abbreviation for the rule $a \mapsto a+\nu_{a}$. Sometimes the letters x_{h} and y_{h} are used for the scalars in K that appear in the decomposition $z_{h}=x_{h}+y_{h} v$ (see Remark 5.2.25).
To check that \widetilde{W}^{\prime} has the form written down in the table requires straightforward but in many cases lengthy computation. The identity $\Phi\left(W^{\prime}\right)=\widetilde{W}^{\prime}$ is then obvious in all cases. This concludes the proof.

Remark 5.4.2. Similar computations as those compiled in Tables 5.A. 12 to 5.A. 57 were carried out in [Lab09a; Lab09b; CL12; Lab16; GL16a]. Some tables treat triangulations of spheres $\boldsymbol{\Sigma}$ with $m+o=4$ not considered in the articles just mentioned.

5.4.2 Compatibility for Tagged Triangulations

Notation 5.4.3. For tagged triangulations $\boldsymbol{\tau}$ and sign functions ε for $\boldsymbol{\tau}$ denote by $\boldsymbol{i}^{\boldsymbol{\tau}, \varepsilon}$ the preimage of $\boldsymbol{i} \in \boldsymbol{\tau}$ under the bijection $\iota_{\boldsymbol{\tau}, \varepsilon}$ from Remark 5.2.22.

Corollary 5.4.4. Let $\boldsymbol{\tau}$ be a tagged triangulation of $\boldsymbol{\Sigma}$ and ε a sign function for $\boldsymbol{\tau}$. Then for all $\boldsymbol{i} \in \boldsymbol{\tau}$ such that $\boldsymbol{i}^{\boldsymbol{\tau}, \varepsilon}$ is non-folded in $\boldsymbol{\tau}^{b}$ we have $\mathcal{S}_{u, z^{* i}}^{\varepsilon}\left(\mu_{\boldsymbol{i}}(\boldsymbol{\tau})\right) \approx_{R} \mu_{\boldsymbol{i}}\left(\mathcal{S}_{u, z}^{\varepsilon}(\boldsymbol{\tau})\right)$.

Proof. Let $i=\boldsymbol{i}^{\boldsymbol{\tau}, \varepsilon}, \tau=\boldsymbol{\tau}^{b}, \varsigma=\mu_{i}(\tau)$. Then $\mathcal{S}_{\varepsilon \cdot u, z^{* i}}(\varsigma) \approx_{R} \mu_{i}\left(\mathcal{S}_{\varepsilon \cdot u, z}(\tau)\right)$ by Theorem 5.4.1. Now use $\boldsymbol{\varsigma}:=\mu_{i}(\boldsymbol{\tau})=\left(\mu_{i}(\tau)\right)^{\varepsilon}, W_{u, z}^{\varepsilon}(\boldsymbol{\tau})=\iota_{\tau, \varepsilon}\left(W_{\varepsilon \cdot u, z}(\tau)\right), W_{u, z^{* i}}^{\varepsilon}(\boldsymbol{\varsigma})=\iota_{\varsigma}, \varepsilon\left(W_{\varepsilon \cdot u, z^{* i}}(\varsigma)\right)$.

The next proposition will be used to derive the compatibility of flip and mutation for tagged triangulations from Corollary 5.4.4. Its proof is taken with suitable adaptations from [Lab16, Proposition 6.4] and [GL16a, Proposition 6.4].

Proposition 5.4.5. Assume $g>0$ or $b+m+o \geq 7$. For every tagged triangulation $\boldsymbol{\tau}$ of $\boldsymbol{\Sigma}$ and all sign functions ε and ε^{\prime} for $\boldsymbol{\tau}$ we have $\mathcal{S}_{u, z}^{\varepsilon}(\boldsymbol{\tau}) \sim_{R} \mathcal{S}_{u, z}^{\varepsilon^{\prime}}(\boldsymbol{\tau})$.

Proof. We can reduce to the case in which ε and ε^{\prime} take the same value at all but one $y \in \mathbb{P}$. Without loss of generality $\varepsilon(y)=+1$ and $\varepsilon^{\prime}(y)=-1$. The bijection in Definition 5.1.40 shows that there is an arc k in $\tau=\tau^{b}$ enclosing y. In particular, $m \geq 2$.

We can replace $\boldsymbol{\tau}$ by any tagged triangulation $\varsigma=\varsigma^{\varepsilon}=\varsigma^{\varepsilon^{\prime}}$ where ς is a triangulation of $\boldsymbol{\Sigma}$ containing k and k^{\sharp} :
Indeed, $\tau=\mu_{i_{\ell}} \cdots \mu_{i_{1}}(\varsigma)$ for $\operatorname{arcs} i_{1}, \ldots, i_{\ell}$ all different from k and k^{\sharp} by Proposition 5.1.32. Since $\boldsymbol{i}_{s}:=i_{s}^{\varepsilon}=i_{s}^{\varepsilon^{\prime}}$ for all s, it is $\boldsymbol{\tau}=\mu_{\boldsymbol{i}_{\ell}} \cdots \mu_{\boldsymbol{i}_{1}}(\boldsymbol{s})$ by Corollary 5.1.44. With Corollary 5.4.4 and Theorem 2.6.101 we see $\left(\forall z: \mathcal{S}_{u, z}^{\varepsilon}(\boldsymbol{\tau}) \sim_{R} \mathcal{S}_{u, z}^{\varepsilon^{\prime}}(\boldsymbol{\tau})\right) \Leftrightarrow\left(\forall z: \mathcal{S}_{u, z}^{\varepsilon}(\boldsymbol{\varsigma}) \sim_{R} \mathcal{S}_{u, z}^{\varepsilon^{\prime}}(\boldsymbol{\varsigma})\right)$.
Abbreviate $Q=Q(\boldsymbol{\varsigma})$ and $H=H(\boldsymbol{\varsigma})$ and $\widehat{H}=\widehat{H}(\boldsymbol{\varsigma})$.
Let x be the basepoint of the self-folded triangle with sides k and k^{\sharp}. Set $\boldsymbol{k}:=k^{\varepsilon}=\left(k^{\sharp}\right)^{\varepsilon^{\prime}}$ and $\boldsymbol{k}^{\prime}:=k^{\varepsilon^{\prime}}=\left(k^{\sharp}\right)^{\varepsilon}$.
If $x \in \partial \Sigma$, take for ς a triangulation with a puzzle piece $\sum_{3}^{〔}$ of type B containing k and k^{\sharp}.

The subpotentials of $W_{u, z}^{\varepsilon}(\boldsymbol{\varsigma})$ and $W_{u, z}^{\varepsilon^{\prime}}(\boldsymbol{\varsigma})$ spanned by $\{c, \underline{c}\}$ are, respectively,

$$
\begin{aligned}
W & =\left(c b-\frac{1}{u_{k}} \underline{c b}\right) a \\
W^{\prime} & =\left(\frac{1}{u_{k}} c b+\underline{c b}\right) a
\end{aligned}
$$

Hence, $W_{u, z}^{\varepsilon^{\prime}}(\varsigma)=\varphi\left(W_{u, z}^{\varepsilon}(\varsigma)\right)$ for $\varphi \in \operatorname{Aut}_{Q-\{c, c\}}(H)$ given by the rules $c \mapsto \frac{1}{u_{k}} c, \underline{c} \mapsto-u_{k} \underline{c}$. This concludes the proof for the case $x \in \partial \Sigma$.

We now consider the case $x \in \mathbb{P}$. Then $\boldsymbol{\Sigma}$ admits a triangulation ς containing three puzzle pieces $\left\}_{1} \text {, }\left\{_{\Omega}\right\}_{2} \text {, } \int_{\Omega}\right\}_{3}$ sharing arcs as depicted below:
(a) For $g=1, b=0, m=2, o=0$ (twice-punctured closed torus without orbifold points) such a triangulation ς is shown on the right.
(b) For $g \geq 1, g+b+m+o>3$ (g-fold torus) such a triangulation ς can be easily constructed in the model described in Remark 5.1.3 and Example 5.1.6.
(c) For $g=0$ (a sphere with boundary) we have by assumption $b+m+o \geq 7$ and the existence of such a triangulation ς is easy to verify.
 the identification $\underline{h}=h$).

$$
\begin{gathered}
g=0 \\
b+m+o \geq 7
\end{gathered}
$$

$$
\begin{gathered}
g \geq 1 \\
g+b+m+o>3
\end{gathered}
$$

$$
g=1
$$

$$
b=0, m=2, o=0
$$

The subpotentials of $W_{u, z}^{\varepsilon}(\varsigma)$ and $W_{u, z}^{\varepsilon^{\prime}}(\varsigma)$ spanned by Q_{1}^{\prime} have the respective form

$$
\begin{aligned}
& W=\left(c b-\frac{1}{u_{k}} \underline{c b}\right) a+g p q+\underline{g p q}+\omega(\underline{g p q})+\underline{c b}(g \underline{g} q) a \alpha \\
& W^{\prime}=\left(\frac{1}{u_{k}} c b+\underline{c b}\right) a+g p q+\underline{g p q}+\omega(\underline{g} p \underline{q})+c b(g \underline{p} q) a \alpha
\end{aligned}
$$

with $\alpha=\underline{\omega}+\underline{\nu}(\underline{g} p \underline{q}) \nu$ for some $\omega, \underline{\omega}, \nu,\left.\underline{\nu} \in H\right|_{Q-Q_{1}^{\prime}}$ where $\left.H\right|_{Q-Q_{1}^{\prime}}$ is the path algebra of the submodulation of $\mathcal{H}(\varsigma)$ induced by $Q-Q_{1}^{\prime} \subseteq Q$.

The rules $a \mapsto a+u_{k}(g \underline{p q}) a \alpha, c \mapsto \frac{1}{u_{k}} c, \underline{c} \mapsto-u_{k} \underline{c}$ define an element $\varphi_{0} \in \operatorname{Aut}_{Q-Q_{1}^{\prime}}(H)$ that maps W to

$$
W_{0}=W^{\prime}-g(\lambda g \underline{p}) q
$$

for $\lambda=\underline{p} q a\left(u_{k} \alpha\right)^{2} \underline{c b}$. The unitriangular automorphism $\varphi_{1} \in \operatorname{Aut}_{Q-Q_{1}^{\prime}}(H)$ defined by the substitution rule $p \mapsto p+\lambda g \underline{p}$ maps W_{0} to a potential of the form

$$
W_{1}=W^{\prime}+\gamma_{1}(g \underline{p q})+\delta_{1}(g p \underline{q})
$$

for some $\gamma_{1}, \delta_{1} \in H$ with $\operatorname{ord}\left(\gamma_{1}\right)>0\left(\right.$ and $\left.\delta_{1}=0\right)$.
The subpotential $\left(W^{\prime}\right)^{\{q, \underline{g}\}}$ has the form $g p q+\underline{g p q}+\tilde{\omega}(\underline{g} p \underline{q})+\tilde{\nu}(g \underline{p} q)+\hat{\omega}(\underline{g p q}) \underline{\hat{\nu}}(g \underline{p} q)$ for some $\tilde{\omega}, \hat{\omega}, \tilde{\nu},\left.\hat{\nu} \in H\right|_{Q-\{q, g\}}$ with ord $(\tilde{\nu})>0$. Given, for some $r \in \mathbb{N}_{+}$,

$$
W_{r}=W^{\prime}+\gamma_{r}(g \underline{p q})+\delta_{r}(g p \underline{q})
$$

with $\gamma_{r}, \delta_{r} \in H$, it is thus straightforward to verify that the element $\varphi_{r+1} \in \operatorname{Aut}_{Q-Q_{1}^{\prime}}(H)$ defined by the substitutions $\underline{g} \mapsto \underline{g}-\gamma_{r} g, q \mapsto q-\underline{q} \delta_{r}$ maps W_{r} to a potential of the form

$$
W_{r+1}=W^{\prime}+\gamma_{r+1}(g \underline{p q})+\delta_{r+1}(g p \underline{q})
$$

where $\gamma_{r+1}=\left(\varphi_{r}\left(\gamma_{r}\right)-\gamma_{r}\right)+\delta_{r} \lambda_{r}$ and $\delta_{r+1}=\left(\varphi_{r}\left(\delta_{r}\right)-\delta_{r}\right)+\gamma_{r} \eta_{r}$ for some $\lambda_{r}, \eta_{r} \in H$ with $\operatorname{ord}\left(\lambda_{r}\right)>0$. In particular, the two inequalities $\operatorname{ord}\left(\gamma_{r+1}\right)>\min \left(\operatorname{ord}\left(\gamma_{r}\right), \operatorname{ord}\left(\delta_{r}\right)\right)$ and $\operatorname{ord}\left(\delta_{r+1}\right) \geq \min \left(\operatorname{ord}\left(\gamma_{r}\right), \operatorname{ord}\left(\delta_{r}\right)\right)$ hold.

By induction we get a sequence $\left(\varphi_{r}\right)_{r \in \mathbb{N}_{+}}$of unitriangular elements in $\mathrm{Aut}_{Q-Q_{1}^{\prime}}(H)$ such that $\lim _{r \rightarrow \infty} \operatorname{depth}\left(\varphi_{r}\right)=\infty$ and the sequence $\left(W_{r}\right)_{r \in \mathbb{N}}$ of potentials $W_{r}=\widetilde{\varphi}_{r}(W)$ with $\widetilde{\varphi}_{r}=\varphi_{r} \cdots \varphi_{1} \varphi_{0}$ converges to W^{\prime}. Therefore we have $W_{u, z}^{\varepsilon^{\prime}}(\boldsymbol{\varsigma})=\widetilde{\varphi}\left(W_{u, z}^{\varepsilon}(\boldsymbol{\varsigma})\right)$ for the automorphism $\widetilde{\varphi}=\lim _{r \rightarrow \infty} \widetilde{\varphi}_{r} \in \operatorname{Aut}_{Q-Q_{1}^{\prime}}(\widehat{H})$. This proves the proposition.

Finally, we can state the main result of this chapter:
Theorem 5.4.6. Assume $g>0$ or $b+m+o \geq 7$. Let $\boldsymbol{\tau}$ be a tagged triangulation of $\boldsymbol{\Sigma}$. For all $\boldsymbol{i} \in \boldsymbol{\tau}$ it is $\mathcal{S}_{u, z^{* i}}\left(\mu_{\boldsymbol{i}}(\boldsymbol{\tau})\right) \approx_{R} \mu_{\boldsymbol{i}}\left(\mathcal{S}_{u, z}(\boldsymbol{\tau})\right)$. In particular, $\mathcal{S}_{u, z}\left(\mu_{\boldsymbol{i}}(\boldsymbol{\tau})\right) \approx_{\boldsymbol{\tau}} \mu_{\boldsymbol{i}}\left(\mathcal{S}_{u, z}(\boldsymbol{\tau})\right)$.

Proof. The last claim follows from the first one by Lemma 5.3.16.
Let $\boldsymbol{\varsigma}=\mu_{\boldsymbol{i}}(\boldsymbol{\tau}), \boldsymbol{\tau}=\mu_{\boldsymbol{j}}(\boldsymbol{\tau})$ and $\tau=\boldsymbol{\tau}^{b}, \varsigma=\boldsymbol{\varsigma}^{b}$ and $i=\boldsymbol{i}^{\boldsymbol{\tau}, \varepsilon_{\boldsymbol{\tau}}}, j=\boldsymbol{j}^{\boldsymbol{\varsigma}, \varepsilon_{\varsigma}}$.
After possibly swapping $\boldsymbol{i}, \boldsymbol{\tau}, z$ for $\boldsymbol{j}, \boldsymbol{\varsigma}, z^{* i}$, we can assume that j is non-folded in ς, since $\mathcal{S}_{u, z^{* i}}(\boldsymbol{\varsigma}) \approx_{R} \mu_{\boldsymbol{i}}\left(\mathcal{S}_{u, z}(\boldsymbol{\tau})\right) \Leftrightarrow \mathcal{S}_{u, z}(\boldsymbol{\tau}) \approx_{R} \mu_{\boldsymbol{j}}\left(\mathcal{S}_{u, z^{* i}}(\boldsymbol{\varsigma})\right)$ by Theorem 2.6.101.

If i is a non-folded arc in $\tau, \varepsilon_{\boldsymbol{\tau}}=\varepsilon_{\boldsymbol{\varsigma}}$ and Corollary 5.4.4 yields $\mathcal{S}_{u, z^{* i}}(\boldsymbol{\varsigma}) \approx_{R} \mu_{i}\left(\mathcal{S}_{u, z}(\boldsymbol{\tau})\right)$.
If i is folded in $\tau, \boldsymbol{i}^{\boldsymbol{\tau}, \varepsilon_{\boldsymbol{\varsigma}}}$ is non-folded in τ and $\mathcal{S}_{u, z^{*} i}(\boldsymbol{\varsigma}) \approx_{R} \mu_{i}\left(\mathcal{S}_{u, z}^{\varepsilon_{\boldsymbol{\varsigma}}}(\boldsymbol{\tau})\right)$ by Corollary 5.4.4. With Proposition 5.4.5 and Theorem 2.6.100 we have $\mu_{i}\left(\mathcal{S}_{u, z}^{\varepsilon_{\zeta}}(\boldsymbol{\tau})\right) \approx_{R} \mu_{i}\left(\mathcal{S}_{u, z}(\boldsymbol{\tau})\right)$.

Corollary 5.4.7. Assume $g>0$ or $b+m+o \geq 7$. Then $\mathcal{S}_{u, z}(\boldsymbol{\tau})$ is non-degenerate for every tagged triangulation $\boldsymbol{\tau}$ of $\boldsymbol{\Sigma}$.

Proof. This is a direct consequence of Theorem 5.4.6 and Lemma 5.3.8.

5.5 Uniqueness of Potentials

We conclude with the observation that the equivalence class of $\mathcal{S}_{u, z}(\boldsymbol{\tau})$ does not depend on the particular choice of u and z, if $b>0$ or $p=0$.

5.5.1 Non-Closed Orbifolds

The next statement is a variant of [Lab16, Proposition 10.2] and [GL16a, Proposition 8.6].
Corollary 5.5.1. Assume $b>0$. Then $\mathcal{S}_{u, z}(\tau) \sim_{\tau} \mathcal{S}_{u^{\prime}, z^{\prime}}(\tau)$ for all (tagged) triangulations τ of $\boldsymbol{\Sigma}$ and all functions $u, u^{\prime}: \mathbb{P} \rightarrow K^{\times}$and $z, z^{\prime}: \mathbb{O} \rightarrow L \backslash K$.

Proof. We assume that τ is a triangulation. The proof for tagged triangulations is similar.
We clearly can reduce to the case in which $\left|\left\{y \in \mathbb{P} \mid u_{y} \neq u_{y}^{\prime}\right\}\right|+\left|\left\{\mathbf{x} \in \mathbb{O} \mid z_{\mathrm{x}} \neq z_{\mathrm{x}}^{\prime}\right\}\right|=1$. It suffices to prove $\mathcal{S}_{u, z}(\varsigma) \sim_{\varsigma} \mathcal{S}_{u^{\prime}, z^{\prime}}(\varsigma)$ for any triangulation ς of $\boldsymbol{\Sigma}$ by Proposition 5.1.32 and Theorems 2.6.101 and 5.4.1.

Let us first assume that u and u^{\prime} take the same value at all but one puncture $y \in \mathbb{P}$. Then $m \geq 2$. Let ς be a triangulation containing a puzzle piece $\left.{ }_{2}^{2}\right\}$ of type B such that the basepoint x of the self-folded triangle in $\sqrt{2} \sqrt{2}$ lies on the boundary. The subquiver $Q^{2,2}$ of $Q=Q(\varsigma)$ is the left quiver shown in Figure 5.A.3. By definition

$$
\left(W_{u, z}(\varsigma)\right)^{\left\{c_{1}\right\}}=-\frac{1}{u_{y}} c_{1} b_{1} a, \quad\left(W_{u^{\prime}, z}(\varsigma)\right)^{\left\{c_{1}\right\}}=-\frac{1}{u_{y}^{\prime}} c_{1} b_{1} a .
$$

Hence, $W_{u^{\prime}, z}(\varsigma)=\varphi\left(W_{u, z}(\varsigma)\right)$ for $\varphi \in \operatorname{Aut}_{Q-\left\{c_{1}\right\}}(H(\tau))$ defined by $c_{1} \mapsto \frac{u_{y}}{u_{y}^{\prime}} c_{1}$.
Let us now assume that z and z^{\prime} take the same value at all but one orbifold point $\mathbf{x} \in \mathbb{O}$. Let ς be a triangulation containing a puzzle piece $\left.{ }_{〔}^{\Omega}\right\}$ of type \widetilde{B} such that the marked point on its pending arc belongs to the boundary. The subquiver $Q^{c_{0,3}^{c t}}$ is the right quiver shown in Figure 5.A.3. By definition

$$
\left(W_{u, z}(\varsigma)\right)^{\{c\}}=c z_{\mathrm{x}} b a, \quad\left(W_{u, z^{\prime}}(\varsigma)\right)^{\{c\}}=c z_{\mathrm{x}}^{\prime} b a
$$

Hence, $W_{u, z^{\prime}}(\varsigma)=\varphi\left(W_{u, z}(\varsigma)\right)$ for $\varphi \in \operatorname{Aut}_{Q-\{c\}}(H(\tau))$ defined by $c \mapsto c z_{x}^{\prime} z_{x}^{-1}$.

5.5.2 Unpunctured Orbifolds

Unpunctured orbifolds will be treated in greater detail in the next chapter. We anticipate the next theorem for its relevance in the current context.

Notation 5.5.2. If $p=0$, the function u is empty and we define $\mathcal{S}_{z}(\tau)=\mathcal{S}_{u, z}(\tau)$.
Theorem 5.5.3. Assume $p=0$ and $\boldsymbol{\Sigma}$ is not a monogon. Every non-degenerate potential for $A(\tau)$ is $R(\tau)$-equivalent to $W_{z}(\tau)$. In particular, $\mathcal{S}_{z}(\tau) \sim_{R(\tau)} \mathcal{S}_{z^{\prime}}(\tau)$ for all z, z^{\prime}.

Proof. This is similar to the proof of Theorem 6.6.8 and uses Convention 5.2.23.

5.A Appendix

Figure 5.A.3: $Q^{\sqrt{23}}$ and $W_{u, z}^{\sqrt{2 \pi}}$ for pieces of type B (left) and \widetilde{B} (right).

$$
c_{0} b_{00} a_{0}-\frac{1}{u_{i}} c_{0} b_{01} a_{1}-\frac{1}{u_{k}} c_{1} b_{10} a_{0}+\frac{1}{u_{k} u_{i}} c_{1} b_{11} a_{1}
$$

$$
c_{0} b_{0} z_{i} a-\frac{1}{u_{k}} c_{1} b_{1} z_{i} a
$$

$$
c z_{k}\left(b_{0}+b_{1}\right) z_{i} a
$$

$$
\begin{gathered}
c_{00} b_{00} a_{00} \\
-\frac{1}{u_{i}} c_{00} b_{01} a_{10}-\frac{1}{u_{k}} c_{01} b_{10} a_{00}-\frac{1}{u_{h}} c_{10} b_{00} a_{01} \\
+\frac{1}{u_{k} u_{h}} c_{11} b_{10} a_{01}+\frac{1}{u_{i} u_{h}} c_{10} b_{01} a_{11}+\frac{1}{u_{k} u_{i}} c_{01} b_{11} a_{10} \\
-\frac{1}{u_{k} u_{i} u_{h}} c_{11} b_{11} a_{11}
\end{gathered}
$$

$$
c_{0} b_{00} a_{0} z_{h}-\frac{1}{u_{i}} c_{0} b_{01} a_{1} z_{h}-\frac{1}{u_{k}} c_{1} b_{10} a_{0} z_{h}+\frac{1}{u_{k} u_{i}} c_{1} b_{11} a_{1} z_{h}
$$

$$
\left(c_{0}+c_{1}\right) z_{k}\left(b_{0}+b_{1}\right) z_{i}\left(a_{0}+a_{1}\right) z_{h}
$$

Figure 5.A.6: $Q^{q_{n}^{2 \sqrt{3}}}$ and $W_{u, z}^{\varepsilon_{n}^{2 / 3}}$ for pieces of type \widetilde{D}_{1} (top), \widetilde{D}_{2} (middle), \widetilde{D}_{3} (bottom).

Table 5.A.7: two puzzle pieces sharing exactly one arc (bold).

Table 5.A.8: two puzzle pieces sharing exactly three arcs; one shared arc (bold) fixed.

Table 5.A.9: two puzzle pieces sharing exactly two arcs; one shared arc (bold) fixed.

Table 5.A.10: puzzle piece with one non-folded inner side (bold) fixed.

X	Y	Table
$\{A, A\}$	$\{A, A\}$	$5 . \mathrm{A} .28$
$\left\{A, B^{+}\right\}$	$\left\{A, B^{-}\right\}$	$5 . \mathrm{A} .29$
$\left\{A, \widetilde{B}^{+}\right\}$	$\left\{A, \widetilde{B}^{-}\right\}$	$5 . \mathrm{A} .30$
$\{A, C\}$	$\left\{B^{+}, B^{-}\right\}$	$5 . \mathrm{A} .31$
$\left\{A, \widetilde{C}_{+}\right\}$	$\left\{B^{-}, \widetilde{B}^{+}\right\}$	$5 . \mathrm{A} .32$
$\left\{A, \widetilde{C}_{-}\right\}$	$\left\{B^{+}, \widetilde{B}^{-}\right\}$	$5 . \mathrm{A} .33$
$\{A, \widetilde{C}\}$	$\left\{\widetilde{B}^{+}, \widetilde{B}^{-}\right\}$	$5 . \mathrm{A} .34$
$\left\{B^{+}, B^{+}\right\}$	$\left\{B^{-}, B^{-}\right\}$	$5 . \mathrm{A} .35$
$\left\{B^{+}, \widetilde{B}^{+}\right\}$	$\left\{B^{-}, \widetilde{B}^{-}\right\}$	$5 . \mathrm{A} .36$
$\left\{B^{+}, C\right\}$	$\left\{B^{-}, C\right\}$	$5 . \mathrm{A} .37$
$\left\{B^{+}, \widetilde{C}_{+}\right\}$	$\left\{B^{-}, \widetilde{C}_{-}\right\}$	$5 . \mathrm{A} .38$
$\left\{B^{+}, \widetilde{C}_{-}\right\}$	$\left\{\widetilde{B}^{-}, C\right\}$	$5 . \mathrm{A} .39$

X	Y	Table
$\left\{B^{+}, \widetilde{C}\right\}$	$\left\{\widetilde{B}^{-}, \widetilde{C}_{-}\right\}$	$5 . \mathrm{A} .40$
$\left\{B^{-}, \widetilde{C}_{+}\right\}$	$\left\{\widetilde{B}^{+}, C\right\}$	$5 . \mathrm{A} .41$
$\left\{B^{-}, \widetilde{C}\right\}$	$\left\{\widetilde{B}^{+}, \widetilde{C}_{+}\right\}$	$5 . \mathrm{A} .42$
$\left\{\widetilde{B}^{+}, \widetilde{B}^{+}\right\}$	$\left\{\widetilde{B}^{-}, \widetilde{B}^{-}\right\}$	$5 . \mathrm{A} .43$
$\left\{\widetilde{B}^{+}, \widetilde{C}_{-}\right\}$	$\left\{\widetilde{B}^{-}, \widetilde{C}_{+}\right\}$	$5 . \mathrm{A} .44$
$\left\{\widetilde{B}^{+}, \widetilde{C}\right\}$	$\left\{\widetilde{B}^{-}, \widetilde{C}\right\}$	$5 . \mathrm{A} .45$
$\{C, C\}$	$\{C, C\}$	$5 . \mathrm{A} .46$
$\left\{C, \widetilde{C}_{+}\right\}$	$\left\{C, \widetilde{C}_{-}\right\}$	$5 . \mathrm{A} .47$
$\{C, \widetilde{C}\}$	$\left\{\widetilde{C}_{+}, \widetilde{C}_{-}\right\}$	$5 . \mathrm{A} .48$
$\left\{\widetilde{C}_{+}, \widetilde{C}_{+}\right\}$	$\left\{\widetilde{C}_{-}, \widetilde{C}_{-}\right\}$	$5 . \mathrm{A} .49$
$\left\{\widetilde{C}_{+}, \widetilde{C}\right\}$	$\left\{\widetilde{C}_{-}, \widetilde{C}\right\}$	$5 . \mathrm{A} .50$
$\{\widetilde{C}, \widetilde{C}\}$	$\{\widetilde{C}, \widetilde{C}\}$	$5 . \mathrm{A} .51$

X	Y	Table
\widetilde{B}	\widetilde{B}	$5 . \mathrm{A} .52$
\widetilde{C}_{+}^{+}	\widetilde{C}_{-}^{-}	$5 . \mathrm{A} .53$
\widetilde{C}^{-}	\widetilde{C}^{+}	$5 . \mathrm{A} .54$
\widetilde{D}_{1}	\widetilde{D}_{1}	$5 . \mathrm{A} .55$
\widetilde{D}_{2}^{-}	\widetilde{D}_{2}^{+}	$5 . \mathrm{A} .56$
\widetilde{D}_{3}	\widetilde{D}_{3}	$5 . \mathrm{A} .57$

Table 5.A.11: all flippant pairs $\{X, Y\}$.

Table 5.A.12: flippant pair $\left\{\left\{A^{\circlearrowleft}, A^{\circlearrowleft}\right\},\left\{A^{\circlearrowleft}, A^{\circlearrowleft}\right\}\right\}$.

$\left\{A^{\downarrow}, A^{\downarrow}\right\}$	$\begin{aligned} & c b a \\ + & \underline{c b a} \\ + & \omega_{\underline{k} \underline{k}} \underline{b a \underline{c}}+\omega_{k k} b \underline{a} c \\ + & \omega_{\underline{k} k} k \underline{a} c \omega_{k \underline{k} \underline{b}} \underline{a} \underline{c} \end{aligned}$	
$\widetilde{\varphi}$	$\begin{aligned} & c^{*} \mapsto-c^{*} \\ & \underline{a}^{*} \mapsto-\underline{a}^{*} \end{aligned}$	
$\widetilde{\psi}$	$\begin{aligned} b & \rightsquigarrow c^{*} a^{*} \\ {[a c] } & \rightsquigarrow-[\underline{a c}] \omega_{k k} \\ \underline{b} & \rightsquigarrow \underline{c}^{*} \underline{a}^{*} \\ {[\underline{a c}] \rightsquigarrow } & -[a c] \omega_{k k} \\ & -[a \underline{a c}] \omega_{\underline{k k} k} b[\underline{a c}] \omega_{k \underline{k}} \end{aligned}$	
\widetilde{T}_{1}	$b \quad\left[\begin{array}{llll} \\ \end{array}\right] \quad \underline{b} \quad[\underline{a c}]$	
$\left\{A^{\uparrow}, A^{\uparrow}\right\}$	$\begin{aligned} & {[\underline{a} c] c^{*} \underline{a}^{*} } \\ + & {[a \underline{a}] \underline{c}^{*} a^{*} } \\ + & \omega_{\underline{k} \underline{c^{*}} \underline{c}^{*} \underline{a}^{*}[a \underline{c}]+\omega_{k k} c^{*} a^{*}[\underline{a} c]}^{+} \omega_{\underline{k} k} c^{*} a^{*}[\underline{a} c] \omega_{k \underline{k} \underline{c^{*}} \underline{U}^{*} \underline{*}^{*}[a \underline{c}]} \end{aligned}$	

Table 5.A.13: flippant pair $\left\{\left\{A^{\downarrow}, A^{\downarrow}\right\},\left\{A^{\uparrow}, A^{\uparrow}\right\}\right\}$.

$\left\{A^{\downarrow}, B^{\downarrow}\right\}$	$\begin{aligned} & c b a \\ + & \underline{c}_{0} \underline{b}_{0} \underline{a}-\frac{1}{u_{\underline{k}}} \underline{c}_{1} \underline{b}_{1} \underline{a} \\ + & u_{0} a \underline{c}_{1} \underline{b}_{1} \\ + & \omega_{k k} b \underline{a} c \end{aligned}$		
$\widetilde{\varphi}$	$\left[\underline{a c_{1}}\right] \mapsto u_{0} u_{\underline{\underline{k}}}\left[a \underline{c}_{1}\right]-u_{\underline{k}}\left[\underline{a c_{1}}\right]$	$\left[a \underline{c}_{1}\right] \mapsto-\frac{1}{u_{\underline{k}}}\left[a \underline{c}_{1}\right]$	$\leadsto \quad c^{*} \mapsto-c^{*},$
$\widetilde{\psi}$	$\begin{aligned} & b \rightsquigarrow c^{*} a^{*} \\ & {[a c] \rightsquigarrow-[\underline{a} c] \omega_{k k}} \\ & \underline{b}_{0} \\ & \rightsquigarrow \underline{c}_{0}^{*} \underline{a}^{*} \\ & \underline{b}_{1} \end{aligned} \rightsquigarrow-u_{\underline{k}^{*}}^{c_{1}^{*}} \underline{a}^{*} .$		
\widetilde{T}_{1}	$b\left[\begin{array}{lllll}\text { ac] }\end{array} \underline{b}_{0} \quad\left[\begin{array}{l}\left.\underline{a} c_{0}\right]\end{array} \underline{b}_{1} \quad\left[\underline{a c}_{1}\right.\right.\right.$		
$\left\{A^{\uparrow}, B^{\uparrow}\right\}$	$\begin{aligned} & {[\underline{a} c] c^{*} \underline{a}^{*} } \\ + & {\left[a \underline{c}_{0}\right] \underline{c}_{0}^{*} a^{*}-\frac{1}{u_{\underline{k}}}\left[a \underline{c}_{1}\right] \underline{c}_{1}^{*} a^{*} } \\ + & u_{0} \underline{a}^{*}\left[a a_{1}\right] \underline{c}_{1}^{*} \\ + & \omega_{k k} c^{*} a^{*}[\underline{a} c] \end{aligned}$		

Table 5.A.14: flippant pair $\left\{\left\{A^{\downarrow}, B^{\downarrow}\right\},\left\{A^{\uparrow}, B^{\uparrow}\right\}\right\}$.

Table 5.A.15: flippant pair $\left\{\left\{A^{\downarrow}, \widetilde{B}^{\downarrow}\right\},\left\{A^{\uparrow}, \widetilde{B}^{\uparrow}\right\}\right\}$.

$\left\{B^{\downarrow}, B^{\downarrow}\right\}$	$\begin{aligned} & c_{0} b_{0} a-\frac{1}{u_{k}} c_{1} b_{1} a \\ + & \underline{c}_{0} \underline{b}_{0} \underline{a}-\frac{1}{u_{\underline{k}}} \underline{c}_{1} \underline{b}_{1} \underline{a} \\ + & u_{1} c_{1} b_{1} \underline{a}+u_{0} a \underline{c}_{1} \underline{b}_{1} \end{aligned}$	
$\widetilde{\varphi}$	$\left.\begin{array}{ll} {\left[a c_{1}\right] \mapsto u_{1} u_{k}\left[\underline{a} c_{1}\right]-u_{k}\left[a c_{1}\right]} \\ {\left[\underline{a} c_{1}\right] \mapsto u_{0} u_{\underline{k}}\left[a \underline{c}_{1}\right]-u_{\underline{k}}\left[\underline{a c_{1}}\right]} & \end{array} \quad\left[\begin{array}{l} \left.\underline{a} c_{1}\right] \mapsto-\frac{1}{u_{k}}\left[\underline{a} c_{1}\right] \\ \\ \end{array}\right] \underline{a}_{1}\right] \mapsto-\frac{1}{u_{\underline{k}}}\left[a \underline{c}_{1}\right]$	$\leadsto \quad \begin{aligned} & c_{0}^{*} \mapsto-c_{0}^{*} \\ & c_{1}^{*} \mapsto-c_{1}^{*} \\ & \underline{a}^{*} \mapsto-\underline{a}^{*} \end{aligned}$
$\widetilde{\psi}$	$\begin{aligned} & b_{0} \rightsquigarrow c_{0}^{*} a^{*} \\ & b_{1} \rightsquigarrow-u_{k} c_{1}^{*} a^{*} \\ & \underline{b}_{0} \rightsquigarrow \underline{c}_{0}^{*} \underline{a}^{*} \\ & \underline{b}_{1} \rightsquigarrow-u_{\underline{k}} \underline{c}_{1}^{*} \underline{a}^{*} \end{aligned}$	
\widetilde{T}_{1}	$b_{0} \quad\left[\begin{array}{llllllll} \\ \left.c_{0}\right] & b_{1} & {\left[a c_{1}\right]} & \underline{b}_{0} & {\left[\underline{a c_{0}}\right]} & \underline{b}_{1} & {\left[\underline{a c_{1}}\right]}\end{array}\right.$	
$\begin{aligned} & \left\{B^{\uparrow}, B^{\uparrow}\right\} \\ & \end{aligned}$	$\begin{aligned} & {\left[\underline{a} c_{0}\right] c_{0}^{*} \underline{a}^{*}-\frac{1}{u_{k}}\left[\underline{a} c_{1}\right] c_{1}^{*} \underline{a}^{*} } \\ + & {\left[a \underline{c}_{0}\right] \underline{c}_{0}^{*} a^{*}-\frac{1}{u_{\underline{k}}}\left[a \underline{c}_{1}\right] \underline{c}_{1}^{*} a^{*} } \\ + & u_{1}\left[\underline{a}_{1} c_{1}\right] c_{1}^{*} a^{*}+u_{0} \underline{a}^{*}\left[a \underline{c}_{1}\right] \underline{c}_{1}^{*} \end{aligned}$	

Table 5.A.16: flippant pair $\left\{\left\{B^{\downarrow}, B^{\downarrow}\right\},\left\{B^{\uparrow}, B^{\uparrow}\right\}\right\}$.

Table 5.A.17: flippant pair $\left\{\left\{B^{\downarrow}, \widetilde{B}^{\downarrow}\right\},\left\{B^{\uparrow}, \widetilde{B}^{\uparrow}\right\}\right\}$.

Table 5.A.18: flippant pair $\left\{\left\{\widetilde{B}^{\downarrow}, \widetilde{B}^{\downarrow}\right\},\left\{\widetilde{B}^{\uparrow}, \widetilde{B}^{\uparrow}\right\}\right\}$.

$\left\{A^{\downarrow}, A^{\uparrow}\right\}$	$\begin{aligned} & c b a \\ + & \underline{c b a} \\ + & u_{0} a \underline{a} \\ + & \omega_{\underline{k} k} b \underline{c}+\omega_{k \underline{k}} \underline{b} c \\ + & \omega_{\underline{k} \underline{k} \underline{b} c} \omega_{k k} b \underline{c} \end{aligned}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} \underline{c b} \\ & \underline{a} \rightsquigarrow-c b \end{aligned}$	
T_{1}	$a \quad \underline{a}$	
	$\begin{aligned} & c^{*} \underline{b}^{*}[\underline{b} c]-\frac{1}{u_{0}} b \underline{c}[\underline{b} c] \\ + & \omega_{k \underline{k}}[\underline{b c}] \\ + & \omega_{\underline{k} k} b \underline{c} \\ + & \omega_{\underline{k k}}[\underline{b} c] \omega_{k k} b \underline{c} \end{aligned}$	

Table 5.A.19: flippant pair $\left\{\left\{A^{\downarrow}, A^{\uparrow}\right\}, B\right\}$.

$\left\{A^{\downarrow}, B^{\uparrow}\right\}$	cba $\begin{aligned} & +\underline{c}_{0} \underline{b}_{0} \underline{a}-\frac{1}{u_{\underline{k}}} c_{1} \underline{b}_{1} \underline{a} \\ & +u_{0} a \underline{a} \\ & +\omega_{k k} b \underline{c}_{1} \underline{b}_{1} c \end{aligned}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} c_{0} \underline{b}_{0}+\frac{1}{u_{0} u_{\underline{u}}} c_{1} \underline{b}_{1} \\ & \underline{a} \rightsquigarrow-c b \end{aligned}$	
T_{1}	$a \quad \underline{a}$	
$\widetilde{\varphi}$	$\underline{b}_{1}^{*} \mapsto-\frac{1}{u_{\underline{k}}} \underline{b}_{1}^{*}$	
	$\begin{aligned} & c^{*} \underline{b}_{0}^{*}\left[\underline{b}_{0} c\right]-\frac{1}{u_{\underline{k}}} c^{*} \underline{b}_{1}^{*}\left[\underline{b}_{1} c\right]-\frac{1}{u_{0}} b \underline{c}_{0}\left[\underline{b}_{0} c\right]+\frac{1}{u_{0} u_{\underline{k}}} b c_{1}\left[\underline{b}_{1} c\right] \\ + & \omega_{k k} b \underline{c}_{1}\left[\underline{b}_{1} c\right] \end{aligned}$	

Table 5.A.20: flippant pair $\left\{\left\{A^{\downarrow}, B^{\uparrow}\right\}, C^{+}\right\}$.

$\left\{A^{\uparrow}, B^{\downarrow}\right\}$	$\begin{aligned} & c b a \\ + & \underline{c}_{0} \underline{b}_{0} \underline{a}-\frac{1}{u_{\underline{k}}} \underline{c}_{1} \underline{b}_{1} \underline{a} \\ + & u_{0} a \underline{a} \\ + & \omega_{k k} b \underline{c}_{1} \underline{b}_{1} c \end{aligned}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} \underline{c}_{0} \underline{b}_{0}+\frac{1}{u_{\underline{k}} u_{0}} \underline{c}_{1} \underline{b}_{1} \\ & \underline{a} \rightsquigarrow-c b \end{aligned}$	
T_{1}	$a \quad \underline{a}$	
$\widetilde{\varphi}$	$\underline{c}_{1}^{*} \mapsto-\frac{1}{u_{\underline{k}}} \underline{c}_{1}^{*}$	
	$\begin{aligned} & {\left[b \underline{c}_{0}\right] \underline{c}_{0}^{*} b^{*}-\frac{1}{u_{0}}\left[b \underline{c}_{0}\right] \underline{b}_{0} c-\frac{1}{u_{\underline{k}}}\left[b \underline{c}_{1}\right] \underline{c}_{1}^{*} b^{*}+\frac{1}{u_{\underline{k}} u_{0}}\left[b \underline{c}_{1}\right] \underline{b}_{1} c } \\ + & \omega_{k k}\left[b \underline{c}_{1}\right] \underline{b}_{1} c \end{aligned}$	

Table 5.A.21: flippant pair $\left\{\left\{A^{\uparrow}, B^{\downarrow}\right\}, C^{-}\right\}$.

$\left\{A^{\downarrow}, \widetilde{B}^{\uparrow}\right\}$	$\begin{gathered} c b a \\ +\underline{c}_{z_{\underline{k}}} \underline{b a} \\ + \\ +u_{0} a \underline{a} \\ + \\ \omega_{k k} b \underline{c b c} c \end{gathered}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} \underline{c} z_{\underline{k}} \underline{b} \\ & \underline{a} \rightsquigarrow-c b \end{aligned}$	
T_{1}	$a \quad \underline{a}$	
$\widetilde{\varphi}$	$\underline{b}^{*} \mapsto \underline{b}^{*} z_{\underline{\underline{k}}}$	
	$\begin{aligned} & c^{*} \underline{b}^{*} z_{\underline{k}}[\underline{b} c]-\frac{1}{u_{0}} b \underline{c} z_{\underline{k}}[\underline{b} c] \\ + & \omega_{k k} b \underline{b c}[\underline{b} c] \end{aligned}$	

Table 5.A.22: flippant pair $\left\{\left\{A^{\downarrow}, \widetilde{B}^{\uparrow}\right\}, \widetilde{C}_{-}^{+}\right\}$.

$\left\{A^{\uparrow}, \widetilde{B}^{\downarrow}\right\}$	$\begin{aligned} & c b a \\ + & \underline{c} z_{k} \underline{b} \underline{a} \\ + & u_{0} a \underline{a} \\ + & \omega_{k k} b \underline{c b} c \end{aligned}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} \underline{c} z_{\underline{k}} \underline{b} \\ & \underline{a} \rightsquigarrow-c b \end{aligned}$	
T_{1}	$a \quad \underline{a}$	
$\widetilde{\varphi}$	$\underline{c}^{*} \mapsto z_{\underline{k}} \underline{c}^{*}$	
	$\begin{aligned} & {[b \underline{c}] z_{\underline{k}} \underline{c}^{*} b^{*}-\frac{1}{u_{0}}[b \underline{c}] z_{\underline{k}} \underline{b} c } \\ + & \omega_{k k}[b \underline{c}] \underline{b} c \end{aligned}$	

Table 5.A.23: flippant pair $\left\{\left\{A^{\uparrow}, \widetilde{B}^{\downarrow}\right\}, \widetilde{C}_{+}^{-}\right\}$.

$\left\{B^{\downarrow}, B^{\uparrow}\right\}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} c_{0} \underline{b}_{0}+\frac{1}{u_{0} u_{\underline{k}}} c_{1} \underline{b}_{1} \\ & \underline{a} \rightsquigarrow-c_{0} b_{0}+\frac{1}{u_{k}} c_{1} b_{1} \end{aligned}$
T_{1}	$a \quad \underline{a}$
$\widetilde{\varphi}$	$\begin{aligned} & c_{1}^{*} \mapsto-\frac{1}{u_{k}} c_{1}^{*} \\ & \underline{b}_{1}^{*} \mapsto-\frac{1}{u_{\underline{k}}} b_{1}^{*} \end{aligned}$

Table 5.A.24: flippant pair $\left\{\left\{B^{\downarrow}, B^{\uparrow}\right\}, D\right\}$.

$\left\{B^{\downarrow}, \widetilde{B}^{\uparrow}\right\}$	$\begin{aligned} & c_{0} b_{0} a \\ - & \frac{1}{u_{k}} c_{1} b_{1} a \\ + & \underline{c} z_{k} \underline{b a} \\ + & u_{0} \underline{a} \\ + & u_{1} c_{1} b_{1} \underline{c} \underline{b} \end{aligned}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} \underline{c} z_{\underline{k}} \underline{b} \\ & \underline{a} \rightsquigarrow-c_{0} b_{0}+\frac{1}{u_{k}} c_{1} b_{1} \end{aligned}$	
T_{1}	$a \quad \underline{a}$	
$\widetilde{\varphi}$	$\begin{aligned} & c_{1}^{*} \mapsto-\frac{1}{u_{k}} c_{1}^{*} \\ & \underline{b}^{*} \mapsto \underline{b}^{*} z_{\underline{k}} \end{aligned}$	
	$\begin{aligned} & {\left[\underline{b} c_{0}\right] c_{0}^{*} \underline{b}^{*} z_{\underline{k}} } \\ - & \frac{1}{u_{0}}\left[\underline{b} c_{0}\right] b_{0} \underline{c} z_{\underline{k}} \\ - & \frac{1}{u_{k}}\left[\underline{b} c_{1}\right] c_{1}^{*} \underline{b}^{*} z_{\underline{k}} \\ + & \frac{1}{u_{0} u_{k}}\left[\underline{b} c_{1}\right] b_{1} \underline{c} z_{\underline{k}} \\ + & u_{1}\left[\underline{b} c_{1}\right] b_{1} \underline{c} \end{aligned}$	

Table 5.A.25: flippant pair $\left\{\left\{B^{\downarrow}, \widetilde{B}^{\uparrow}\right\}, \widetilde{D}_{1}^{-}\right\}$.

$\left\{B^{\uparrow}, \widetilde{B}^{\downarrow}\right\}$	$\begin{aligned} & c_{0} b_{0} a \\ - & \frac{1}{u_{k}} c_{1} b_{1} a \\ + & \underline{c} z_{k} \underline{b a} \\ + & u_{0} \underline{a a} \\ + & u_{1} c_{1} b_{1} \underline{c} \underline{b} \end{aligned}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} c z_{\underline{k}} \underline{b} \\ & \underline{a} \rightsquigarrow-c_{0} b_{0}+\frac{1}{u_{k}} c_{1} b_{1} \end{aligned}$	
T_{1}	$a \quad \underline{a}$	
$\widetilde{\varphi}$	$\begin{aligned} & b_{1}^{*} \mapsto-\frac{1}{u_{k}} b_{1}^{*} \\ & \underline{c}^{*} \mapsto z_{\underline{k}} \underline{c}^{*} \end{aligned}$	
	$\begin{aligned} & \underline{c}^{*} b_{0}^{*}\left[b_{0} \underline{c}\right] z_{\underline{k}} \\ - & \frac{1}{u_{k}} \underline{c}^{*} b_{1}^{*}\left[b_{1} \underline{c}\right] z_{\underline{k}} \\ - & \frac{1}{u_{0}} \underline{b} c_{0}\left[b_{0} \underline{c}\right] z_{\underline{k}} \\ + & \frac{1}{u_{0} u_{k}} \underline{b} c_{1}\left[b_{1} \underline{c}\right] z_{\underline{k}} \\ + & u_{1} \underline{b} c_{1}\left[b_{1} \underline{c}\right] \end{aligned}$	

Table 5.A.26: flippant pair $\left\{\left\{B^{\uparrow}, \widetilde{B}^{\downarrow}\right\}, \widetilde{D}_{1}^{+}\right\}$.

$\begin{aligned} & \left\{\widetilde{B}^{\downarrow}, \widetilde{B}^{\uparrow}\right\} \\ & \underbrace{\infty} \times \end{aligned}$	$\begin{array}{r} c z_{k} b a \\ +\underline{c} z_{\underline{k}} \underline{b a} \\ +u_{0} a \underline{a} \\ +u_{1} c b \underline{b} \underline{b} \end{array}$	
φ	$\underline{a} \mapsto \frac{1}{u_{0}} \underline{a}$	
ψ	$\begin{aligned} & a \rightsquigarrow-\frac{1}{u_{0}} c z_{k} \underline{b} \underline{b} \\ & \underline{a} \rightsquigarrow-c z_{k} b \end{aligned}$	
T_{1}	$\cdots \quad \underline{a}$	
$\widetilde{\varphi}$	$\begin{aligned} & c^{*} \mapsto z_{k} c^{*} \\ & \underline{ }^{*} \mapsto \underline{b}^{*} z_{\underline{k}} \end{aligned}$	
	$\begin{aligned} & z_{\underline{k}}\left([\underline{b}]_{0}+\left[\underline{b} c c_{1}\right) z_{k} c^{*} \underline{b}^{*}\right. \\ - & \frac{1}{u_{0}} z_{\underline{k}}\left([\underline{b} c]_{0}+[\underline{b} c]_{1}\right) z_{k} b \underline{c} \\ + & u_{1}\left([\underline{b} c]_{0}+[\underline{b} c]_{1}\right) b \underline{c} \end{aligned}$	

Table 5.A.27: flippant pair $\left\{\left\{\widetilde{B}^{\downarrow}, \widetilde{B}^{\uparrow}\right\}, \widetilde{D}_{2}\right\}$.

$\{A, A\}$	
$\widetilde{\varphi}$	$\begin{aligned} & c^{*} \mapsto-c^{*} \\ & \underline{a}^{*} \mapsto-\underline{a}^{*} \end{aligned}$
$\widetilde{\psi}$	
\widetilde{T}_{1}	$b \quad\left[\begin{array}{lll}\text { ac] }\end{array} \underline{b} \quad[\underline{a c]}\right.$
$\{A, A\}$	

Table 5.A.28: flippant pair $\{\{A, A\},\{A, A\}\}$.

$\left\{A, B^{+}\right\}$	
$\widetilde{\varphi}$	$\underline{c}_{1} \mapsto-u_{\underline{k}} \underline{c}_{1} \quad \leadsto \quad\left[\underline{b}_{1} c\right] \mapsto-\frac{1}{u_{\underline{k}}}\left[\underline{b}_{1} c\right] \quad \sim \quad \begin{aligned} & c^{*} \mapsto-c^{*} \\ & \underline{b}_{0}^{*} \mapsto-\underline{b}_{0}^{*} \\ & \\ & \underline{b}_{1}^{*} \mapsto-\underline{b}_{1}^{*} \end{aligned}$
$\widetilde{\psi}$	
\widetilde{T}_{1}	$b \begin{array}{llllll}{[a c]} & \underline{c}_{0} & {\left[\underline{b}_{0} \underline{a}\right]} & \underline{c}_{1} & {\left[\underline{b}_{1} \underline{a}\right]}\end{array}$
$\left\{A, B^{-}\right\}$	$\begin{aligned} & a^{*}[a \underline{a}] \underline{a}^{*} \\ + & \underline{b}_{0}^{*}\left[\underline{b}_{0} c\right] c^{*}-\frac{1}{u_{\underline{k}}} \underline{b}_{1}^{*}\left[\underline{b}_{1} c\right] c^{*} \\ + & \omega_{\underline{h i}}[a \underline{a}] \\ + & \omega_{i k} c^{*} a^{*} \\ + & \omega_{k \underline{h}} \underline{a}^{*} \underline{b}_{1}^{*}\left[\underline{b}_{1} c\right] \\ + & \omega_{\underline{h} k} c^{*} a^{*} \omega_{i i}[a \underline{a}] \\ + & \omega_{k i}[a \underline{a}] \omega_{\underline{h h}} \underline{a}^{*} \underline{b}_{1}^{*}\left[\underline{b}_{1} c\right] \\ + & \omega_{k k} c^{*} a^{*} \omega_{i \underline{h}} \underline{a}^{*} \underline{b}_{1}^{*}\left[\underline{b}_{1} c\right] \\ + & \omega_{k i}[a \underline{a}] \omega_{\underline{h} k} c^{*} a^{*} \omega_{i \underline{h}} \underline{a}^{*} \underline{b}_{1}^{*}\left[\underline{b}_{1} c\right]+\omega_{k k} c^{*} a^{*} \omega_{i i}[a \underline{a}] \omega_{h \underline{h}} \underline{a}^{*} \underline{b}_{1}^{*}\left[\underline{b}_{1} c\right] \end{aligned}$

Table 5.A.29: flippant pair $\left\{\left\{A, B^{+}\right\},\left\{A, B^{-}\right\}\right\}$.

$\left\{A, \widetilde{B}^{+}\right\}$	
$\widetilde{\varphi}$	$\underline{c} \mapsto \underline{c} z_{\underline{k}}^{-1} \quad \leadsto \quad[\underline{b} c] \mapsto z_{\underline{k}}[\underline{b} c] \quad \leadsto \quad \begin{aligned} & c^{*} \mapsto-c^{*} \\ & \underline{b}^{*} \mapsto-\underline{b}^{*} \end{aligned}$
$\widetilde{\psi}$	
\widetilde{T}_{1}	$b \quad[a c] \quad \underline{c} \quad[\underline{b a}]$
$\left\{A, \widetilde{B}^{-}\right\}$	$\begin{aligned} & a^{*}[a \underline{a}] \underline{a^{*}} \\ + & \underline{b}^{*} z_{\underline{\underline{k}}}[\underline{b} c] c^{*} \\ + & \omega_{\underline{h} i}[a \underline{a}] \\ + & \omega_{i k} c^{*} a^{*} \\ + & \omega_{k \underline{k}} \underline{a}^{*} \underline{b}^{*}[\underline{b} c] \\ + & \omega_{\underline{h} k} c^{*} a^{*} \omega_{i i}[a \underline{a}] \\ + & \omega_{k i}[a \underline{a}] \omega_{h \underline{h}} \underline{a^{*}} \underline{b}^{*}[\underline{b} c] \\ + & \omega_{k k} c^{*} a^{*} \omega_{i \underline{h}} \underline{a}^{*} \underline{b}^{*}[\underline{b} c] \\ + & \omega_{k i}[a \underline{a}] \omega_{\underline{h} k} c^{*} a^{*} \omega_{i \underline{h}} \underline{a}^{*} \underline{b}^{*}[\underline{b} c]+\omega_{k k} c^{*} a^{*} \omega_{i i}[a \underline{a}] \omega_{\underline{h} \underline{a_{2}}} \underline{a}^{*} \underline{b}^{*}[\underline{b} c] \end{aligned}$

Table 5.A.30: flippant pair $\left\{\left\{A, \widetilde{B}^{+}\right\},\left\{A, \widetilde{B}^{-}\right\}\right\}$.

$\{A, C\}$	
$\widetilde{\varphi}$	$\begin{aligned} & \underline{b}_{01} \mapsto-u_{\underline{i}} \underline{b}_{01} \\ & {\left[\underline{o}_{0} \underline{c}_{1}\right] \mapsto-u_{\underline{k}}\left[\underline{a}_{0} \underline{c}_{1}\right]} \\ & {\left[\underline{a}_{1} \underline{c}_{1}\right] \mapsto u_{\underline{i}} u_{\underline{k}}\left[\underline{a}_{1} \underline{c}_{1}\right]} \end{aligned} \quad \leadsto \quad\left[\begin{array}{l} {\left[\underline{a}_{1} c\right] \mapsto-\frac{1}{u_{\underline{i}}}\left[\underline{a}_{1} c\right]} \\ {\left[a \underline{c}_{1}\right] \mapsto-\frac{1}{u_{\underline{k}}}\left[a \underline{c}_{1}\right]} \end{array} \quad \leadsto \begin{array}{l} c^{*} \mapsto-c^{*} \\ \underline{a}_{0}^{*} \mapsto-\underline{a}_{0}^{*} \\ \\ \end{array} \quad \underline{a}_{1}^{*} \mapsto-\underline{a}_{1}^{*}\right.$
$\widetilde{\psi}$	$\begin{array}{llll} b & \rightsquigarrow & c^{*} a^{*} \\ {[a c]} & \rightsquigarrow-\omega_{i k} & \\ & \rightsquigarrow \underline{c}_{0}^{*} \underline{a}_{0}^{*} & & \\ \underline{b}_{00} & \rightsquigarrow & {[a c]} & \rightsquigarrow-\omega_{i i}\left[a \underline{c}_{1}\right] \underline{c}_{1}^{*} \underline{a}_{1}^{*}\left[\underline{c}_{1} c\right] \omega_{k k} \\ \underline{b}_{01} & \rightsquigarrow & \underline{c}_{0}^{*} \underline{a}_{1}^{*} & \\ \underline{b}_{10} & \rightsquigarrow-u_{\underline{k}} \underline{c}_{1}^{*} \underline{a}_{0}^{*} & & {\left[\underline{a}_{1} \underline{c}_{1}\right] \rightsquigarrow-\frac{1}{u_{\underline{i}} u_{\underline{k}}}\left[\underline{a}_{1} c\right] \omega_{k k} c^{*} a^{*} \omega_{i i}\left[a \underline{c}_{1}\right]} \\ \underline{b}_{11} & \rightsquigarrow & u_{\underline{i}} u_{k} \underline{c}_{1}^{*} \underline{a}_{1}^{*} & \\ {\left[\underline{a}_{1} \underline{c}_{1}\right] \rightsquigarrow} & -\frac{1}{u_{i} u_{k}}\left[\underline{a}_{1} c\right] \omega_{k i}\left[a \underline{c}_{1}\right] & & \\ & -\frac{1}{u_{\underline{i}} u_{\underline{k}}}\left[\underline{a}_{1} c\right] \omega_{k k} b \omega_{i i}\left[a \underline{c}_{1}\right] & & \end{array}$
\widetilde{T}_{1}	$b \quad\left[\begin{array}{llllllllll}\text { ac] }\end{array} \underline{b}_{00} \quad\left[\underline{a}_{0} \underline{c}_{0}\right] \quad \underline{b}_{01} \quad\left[\underline{a}_{1} \underline{c}_{0}\right] \quad \underline{b}_{10} \quad\left[\underline{a}_{0} \underline{c}_{1}\right] \quad \underline{b}_{11} \quad\left[\underline{a}_{1} \underline{c}_{1}\right]\right.$
$\left\{B^{+}, B^{-}\right\}$	

Table 5.A.31: flippant pair $\left\{\{A, C\},\left\{B^{+}, B^{-}\right\}\right\}$.

$\left\{A, \widetilde{C}_{+}\right\}$	
$\widetilde{\varphi}$	$\begin{aligned} & \underline{b}_{0} \mapsto z_{\underline{k}}^{-1} \underline{b}_{0} \\ & \underline{b}_{1} \mapsto-u_{\underline{i}} z_{\underline{k}}^{-1} \underline{b}_{1} \end{aligned} \quad \leadsto \quad \begin{aligned} & {\left[\underline{a}_{1} c\right] \mapsto-\frac{1}{u_{\underline{i}}}\left[\underline{a}_{1} c\right]} \\ & {[a \underline{c}] \mapsto[a \underline{c}] z_{\underline{k}}} \end{aligned} \quad \leadsto \quad \begin{aligned} & c^{*} \mapsto-c^{*} \\ & \underline{a}_{0}^{*} \mapsto-\underline{a}_{0}^{*} \\ & \underline{a}_{1}^{*} \mapsto-\underline{a}_{1}^{*} \end{aligned}$
$\widetilde{\psi}$	$\begin{array}{rlrl} b & \rightsquigarrow & c^{*} a^{*} \\ {[a c]} & \rightsquigarrow & -\omega_{i k} & \\ & -\omega_{i i}[a c] \underline{b}_{1}\left[\underline{a}_{1} c\right] \omega_{k k} & & {[a c] \rightsquigarrow-\omega_{i i}[a c] \underline{c}^{*} \underline{a}_{1}^{*}\left[\underline{a}_{1} c\right] \omega_{k k}} \\ \underline{b}_{0} & \rightsquigarrow & \underline{c}^{*} \underline{a}_{0}^{*} & \\ \underline{b}_{1} & \rightsquigarrow & \underline{c}^{*} \underline{a}_{1}^{*} & {\left[\underline{a}_{1} \underline{c}\right] \rightsquigarrow-\left[\underline{a}_{1} c\right] \omega_{k k} c^{*} a^{*} \omega_{i i}[a \underline{c}]} \\ {\left[\underline{a}_{1} \underline{c}\right]} & \rightsquigarrow-\left[\underline{a}_{1} c\right] \omega_{k i}[a c] & & \end{array}$
\widetilde{T}_{1}	$b \begin{array}{lllllll}{[a c]} & \underline{b}_{0} & {\left[\underline{a}_{0} \underline{c}\right]} & \underline{b}_{1} & {\left[\underline{a}_{1} \underline{c}\right]}\end{array}$
$\left\{B^{-}, \widetilde{B}^{+}\right\}$	

Table 5.A.32: flippant pair $\left\{\left\{A, \widetilde{C}_{+}\right\},\left\{B^{-}, \widetilde{B}^{+}\right\}\right\}$.

Table 5.A.33: flippant pair $\left\{\left\{A, \widetilde{C}_{-}\right\},\left\{B^{+}, \widetilde{B}^{-}\right\}\right\}$.

Table 5.A.34: flippant pair $\left\{\{A, \widetilde{C}\},\left\{\widetilde{B}^{+}, \widetilde{B}^{-}\right\}\right\}$.

Table 5.A.35: flippant pair $\left\{\left\{B^{+}, B^{+}\right\},\left\{B^{-}, B^{-}\right\}\right\}$.

Table 5.A.36: flippant pair $\left\{\left\{B^{+}, \widetilde{B}^{+}\right\},\left\{B^{-}, \widetilde{B}^{-}\right\}\right\}$.

Table 5.A.37: flippant pair $\left\{\left\{B^{+}, C\right\},\left\{B^{-}, C\right\}\right\}$.

Table 5.A.38: flippant pair $\left\{\left\{B^{+}, \widetilde{C}_{+}\right\},\left\{B^{-}, \widetilde{C}_{-}\right\}\right\}$.

Table 5.A.39: flippant pair $\left\{\left\{B^{+}, \widetilde{C}_{-}\right\},\left\{\widetilde{B}^{-}, C\right\}\right\}$.

Table 5.A.40: flippant pair $\left\{\left\{B^{+}, \widetilde{C}\right\},\left\{\widetilde{B}^{-}, \widetilde{C}_{-}\right\}\right\}$.

Table 5.A.41: flippant pair $\left\{\left\{B^{-}, \widetilde{C}_{+}\right\},\left\{\widetilde{B}^{+}, C\right\}\right\}$.

Table 5.A.42: flippant pair $\left\{\left\{B^{-}, \widetilde{C}\right\},\left\{\widetilde{B}^{+}, \widetilde{C}_{+}\right\}\right\}$.

Table 5.A.43: flippant pair $\left\{\left\{\widetilde{B}^{+}, \widetilde{B}^{+}\right\},\left\{\widetilde{B}^{-}, \widetilde{B}^{-}\right\}\right\}$.

Table 5.A.44: flippant pair $\left\{\left\{\widetilde{B}^{+}, \widetilde{C}_{-}\right\},\left\{\widetilde{B}^{-}, \widetilde{C}_{+}\right\}\right\}$.

Table 5.A.45: flippant pair $\left\{\left\{\widetilde{B}^{+}, \widetilde{C}\right\},\left\{\widetilde{B}^{-}, \widetilde{C}\right\}\right\}$.

$\{C, C\}$	
$\widetilde{\varphi}$	$b_{01} \mapsto-u_{i} b_{01}$ $\left[\underline{a}_{1} c_{0}\right] \mapsto-\frac{1}{u_{\underline{i}}}\left[\underline{a}_{1} c_{0}\right]$ $\left[a_{0} c_{1}\right] \mapsto-u_{k}\left[a_{0} c_{1}\right]$ $\left[\underline{a}_{0} c_{1}\right] \mapsto-\frac{1}{u_{k}}\left[\underline{a}_{0} c_{1}\right]$ $\left[a_{1} c_{1}\right] \mapsto u_{i} u_{k}\left[a_{1} c_{1}\right]$ \sim $\left.\left.\underline{a}_{1} c_{1}\right] \mapsto-\frac{1}{u_{k} u_{\underline{i}}} \underline{a}_{1} \underline{c}_{1}\right]$$\backsim c_{0}^{*}$
$\widetilde{\psi}$	$\begin{array}{lll} b_{00} & \rightsquigarrow & c_{0}^{*} a_{0}^{*} \\ b_{01} & \rightsquigarrow & c_{0}^{*} a_{1}^{*} \\ b_{10} & \rightsquigarrow & -u_{k} c_{1}^{*} a_{0}^{*} \\ b_{11} & \rightsquigarrow & u_{i} u_{k} c_{1}^{*} a_{1}^{*} \\ \underline{b}_{00} & \rightsquigarrow & \underline{c}_{0}^{*} \underline{a}_{0}^{*} \\ \underline{b}_{01} & \rightsquigarrow & \underline{c}_{0}^{*} \underline{a}_{1}^{*} \\ \underline{b}_{10} & \rightsquigarrow & -u_{\underline{k}} \underline{c}_{1}^{*} \underline{a}_{0}^{*} \\ \underline{b}_{11} & \rightsquigarrow & u_{\underline{k}} u_{i} \underline{c}_{1}^{*} \underline{a}_{1}^{*} \\ {\left[\underline{a}_{1} \underline{c}_{1}\right] \rightsquigarrow} & -\frac{u_{0}}{u_{\underline{k}} u_{i} u_{k} u_{\underline{i}}}\left[\underline{a}_{1} c_{1}\right] b_{11}\left[a_{1} \underline{c}_{1}\right] \end{array}$
\widetilde{T}_{1}	
$\{C, C\}$	

Table 5.A.46: flippant pair $\{\{C, C\},\{C, C\}\}$.

Table 5.A.47: flippant pair $\left\{\left\{C, \widetilde{C}_{+}\right\},\left\{C, \widetilde{C}_{-}\right\}\right\}$.

	$\begin{aligned} & c_{0} b_{00} a_{0}-\frac{1}{u_{i}} c_{0} b_{01} a_{1}-\frac{1}{u_{k}} c_{1} b_{10} a_{0}+\frac{1}{u_{k} u_{i}} c_{1} b_{11} a_{1} \\ + & \underline{c} z_{\underline{k}}\left(\underline{b}_{0}+\underline{b}_{1}\right) z_{\underline{i}} \underline{a} \\ + & \left.u_{0} c_{1} b_{11} a_{1} \underline{c} \underline{b_{0}}+\underline{b}_{1}\right) \underline{a} \end{aligned}$
$\widetilde{\varphi}$	
$\widetilde{\psi}$	
\widetilde{T}_{1}	$b_{00}\left[\begin{array}{lllllllllllllllll}\left.a_{0} c_{0}\right] & b_{01} & {\left[a_{1} c_{0}\right]} & b_{10} & {\left[a_{0} c_{1}\right]} & b_{11} & {\left[a_{1} c_{1}\right]} & \underline{b}_{0} & {[\underline{a c}]_{0}} & \underline{b}_{1} & {[\underline{a c}]_{1}}\end{array}\right.$
$\left\{\tilde{C}_{+}, \tilde{C}_{-}\right\}$	$\begin{aligned} & a^{*} z_{i}\left[\underline{[}\left[\underline{c} c_{0}\right] c_{0}^{*}-\frac{1}{u_{k}} a^{*} z_{i}\left[\underline{[} \underline{a} c_{1}\right] c_{1}^{*}\right. \\ &+a_{0}^{*}\left[a_{0} c\right] z_{\underline{k}}^{c^{*}}-\frac{1}{u_{i}} a_{1}^{*}\left[a_{1} c\right] z_{\underline{k}}^{c^{*}} \\ &+ u_{0} \underline{a}^{*}\left[\underline{a}\left[\underline{c_{1}}\right] c_{1}^{*} a_{1}^{*}\left[a_{1} c\right] c^{*}\right. \end{aligned}$

Table 5.A.48: flippant pair $\left\{\{C, \widetilde{C}\},\left\{\widetilde{C}_{+}, \widetilde{C}_{-}\right\}\right\}$.

Table 5.A.49: flippant pair $\left\{\left\{\widetilde{C}_{+}, \widetilde{C}_{+}\right\},\left\{\widetilde{C}_{-}, \widetilde{C}_{-}\right\}\right\}$.

	$\begin{aligned} & c z_{k} b_{0} a_{0}-\frac{1}{u_{i}} c z_{k} b_{1} a_{1} \\ + & \underline{c} z_{\underline{k}}\left(\underline{b}_{0}+\underline{b}_{1}\right) z_{\underline{i}} \underline{a} \\ + & u_{0} c b_{1} a_{1} \underline{c}\left(\underline{b_{0}}+\underline{b}_{1}\right) \underline{a} \end{aligned}$	
$\widetilde{\varphi}$		$\leadsto \quad \begin{aligned} & c^{*} \mapsto-c^{*} \\ & \\ & \quad \underline{a}^{*} \mapsto-\underline{a}^{*} \end{aligned}$
$\widetilde{\psi}$		$\begin{aligned} & {\left[a_{1} c\right] \rightsquigarrow-u_{0}\left[a_{1} \underline{c} \underline{c}_{c^{*}} \underline{\underline{a}}^{*}\left([\underline{a} c]_{0}+[\underline{a} c]_{1}\right)\right.} \\ & {[\underline{a c}]_{0} \rightsquigarrow-\pi_{0}\left(u_{0} z_{\underline{z}} \underline{z}_{\underline{z}}\left([\underline{a} c]_{0}+[\underline{a} c]_{1}\right) c^{*} a_{\hat{1}}^{*}\left[a_{1} c\right]\right)} \\ & {[\underline{a c}]_{1} \rightsquigarrow-\pi_{1}\left(u_{0} z_{\underline{z}}^{*} \underline{\underline{k}}_{\underline{*}}\left([\underline{a} c]_{0}+[\underline{a}]_{1}\right) c^{*} a_{1}^{*}\left[a_{1} c\right]\right)} \end{aligned}$
\widetilde{T}_{1}	$b_{0} \quad\left[\begin{array}{llllllll}\left.a_{0} c\right] & b_{1} & {\left[a_{1} c\right]} & \underline{b}_{0} & {[\underline{a c}]_{0}} & \underline{b}_{1} & {[\underline{a c}]_{1}}\end{array}\right.$	
	$\begin{aligned} & a_{0}^{*}\left[a_{0} \underline{c}\right] z_{\underline{k}} \underline{c}^{*}-\frac{1}{u_{i}}{ }_{1}^{*}\left[a_{1} \underline{c}\right] z_{\underline{k}} \underline{c}^{*} \\ + & \underline{a}^{*} z_{i}\left([\underline{a}]_{0}+\left[\underline{a} c_{1}\right) z_{k} c^{*}\right. \\ + & u_{0} a_{1}^{*}\left[a_{1} \underline{c}\right] \underline{c}^{*} \underline{a}^{*}\left([\underline{a}]_{0}+[\underline{a} c]_{1}\right) c^{*} \end{aligned}$	

Table 5.A.50: flippant pair $\left\{\left\{\widetilde{C}_{+}, \widetilde{C}\right\},\left\{\widetilde{C}_{-}, \widetilde{C}\right\}\right\}$.

$\begin{aligned} & \{\tilde{C}, \tilde{C}\} \\ & +++ \end{aligned}$	$\begin{aligned} & c z_{k}\left(b_{0}+b_{1}\right) z_{i} a \\ + & \underline{c} z_{\underline{k}}\left(\underline{b}_{0}+\underline{b}_{1}\right) z_{\underline{i}} \underline{a} \\ + & u_{0} c\left(b_{0}+b_{1}\right) a \underline{c}\left(\underline{b}_{0}+\underline{b}_{1}\right) \underline{a} \end{aligned}$
$\widetilde{\varphi}$	$[a c]_{0}$ $\mapsto z_{i}^{-1}[a c]_{0} z_{k}^{-1}$ $\underline{a} c]_{0} \mapsto z_{\underline{i}}[\underline{a} c]_{0} z_{k}$ $[a c]_{1} \mapsto z_{i}^{-1}[a c]_{1} z_{k}^{-1}$ $[\underline{a} c]_{1} \mapsto z_{\underline{\underline{L}}}[\underline{a} c]_{1} z_{k}$ \sim $c^{*} \mapsto-c^{*}$ $[\underline{a c}]_{0} \mapsto z_{\underline{i}}^{-1}[\underline{a c}]_{0} z_{\underline{\underline{k}}}^{-1}$ $[a \underline{c}]_{0} \mapsto z_{i}[a \underline{c}]_{0} z_{\underline{k}}$ $\underline{a}^{*} \mapsto-\underline{a}^{*}$ $[\underline{a c}]_{1} \mapsto z_{\underline{i}}^{-1}[\underline{a c}]_{1} z_{\underline{k}}^{-1}$ $[a \underline{a c}]_{1} \mapsto z_{i}[a \underline{a c}]_{1} z_{\underline{k}}$
$\widetilde{\psi}$	
\widetilde{T}_{1}	$b_{0} \quad\left[\begin{array}{llllllll} & b_{0} & b_{1} & {[a c]_{1}} & \underline{b}_{0} & {[\underline{a c}]_{0}} & \underline{b}_{1} & {[\underline{a c}]_{1}}\end{array}\right.$
$\begin{aligned} & \{\widetilde{C}, \widetilde{C}\} \\ & +++ \end{aligned}$	$\begin{aligned} & a^{*} z_{i}\left([a \underline{a}]_{0}+[a \underline{c}]_{1}\right) z_{\underline{k}} \underline{c}^{*} \\ + & \underline{a}^{*} z_{\underline{i}}\left([\underline{a} c]_{0}+[\underline{a} c]_{1}\right) z_{k} c^{*} \\ + & u_{0} a^{*}\left([a \underline{c}]_{0}+[a \underline{c}]_{1}\right) \underline{c}^{*} \underline{a}^{*}\left([\underline{a} c]_{0}+[\underline{a} c]_{1}\right) c^{*} \end{aligned}$

Table 5.A.51: flippant pair $\{\{\widetilde{C}, \widetilde{C}\},\{\widetilde{C}, \widetilde{C}\}\}$.

$\begin{gathered} \widetilde{B} \\ x \end{gathered}$	$\begin{aligned} & c z_{k} b a \\ + & \omega_{h i} a \\ + & \omega_{i h} c b \\ + & \omega_{i i} a \omega_{h h} c b \end{aligned}$		
$\widetilde{\varphi}$	$[c b]^{1} \mapsto-\frac{x_{k}}{y_{k}}[c b]^{0}+\frac{1}{y_{k}}[c b]^{1}$	$b^{*} \mapsto-2 y_{k} b^{*} v$	
$\widetilde{\psi}$	$\begin{aligned} a & \rightsquigarrow \\ {[c b]^{1} \rightsquigarrow } & b^{*} c^{*} \\ & -\omega_{h i} \\ & -\omega_{h h}[c b]^{0} \omega_{i i} \end{aligned}$		
\widetilde{T}_{1}	$a \quad[c b]^{1}$		
$\begin{aligned} & \widetilde{B} \\ & x \end{aligned}$	$\begin{aligned} & b^{*} z_{k}^{*} c^{*}[c b]^{0} \\ + & \omega_{i h}[c b]^{0} \\ + & \omega_{h i} b^{*} c^{*} \\ + & \omega_{i i} b^{*} c^{*} \omega_{h h}[c b]^{0} \end{aligned}$		

Table 5.A.52: flippant pair $\{\widetilde{B}, \widetilde{B}\}$.

	$\begin{aligned} & c z_{k} b_{0} a_{0}-\frac{1}{u_{i}} c z_{k} b_{1} a_{1} \\ + & \omega_{h h} c b_{1} a_{1} \end{aligned}$		
$\widetilde{\varphi}$	$\begin{aligned} & {\left[c b_{0}\right]^{1} \mapsto-\frac{x_{k}}{y_{k}}\left[c b_{0}\right]^{0}+\frac{1}{y_{k}}\left[c b_{0}\right]^{1}} \\ & {\left[c b_{1}\right]^{1} \mapsto-\frac{x_{k}}{y_{k}}\left[c b_{1}\right]^{0}-\frac{u_{i}}{y_{k}}\left[c b_{1}\right]^{1}} \end{aligned}$	$\begin{aligned} b_{0}^{*} & \mapsto-2 y_{k} b_{0}^{*} v \\ b_{1}^{*} & \mapsto-2 y_{k} b_{1}^{*} v \\ {\left[c b_{1}\right]^{0} } & \mapsto-\frac{1}{u_{i}}\left[c b_{1}\right]^{0} \end{aligned}$	
$\widetilde{\psi}$	$\begin{array}{lll} a_{0} & \rightsquigarrow & b_{0}^{*} c^{*} \\ a_{1} & \rightsquigarrow & -u_{i} b_{1}^{*} c^{*} \\ {\left[c b_{1}\right]^{1}} & \rightsquigarrow & \frac{1}{u_{i}} \omega_{h h}\left[c b_{1}\right]^{0} \end{array}$		
\widetilde{T}_{1}	$a_{0} \quad\left[\begin{array}{llll}\left.c b_{0}\right]^{1} & a_{1} & {\left[c b_{1}\right]^{1}}\end{array}\right.$		
	$\begin{aligned} & {\left[c b_{0}\right]^{0} b_{0}^{*} z_{k}^{*} c^{*}-\frac{1}{u_{i}}\left[c b_{1}\right]^{0} b_{1}^{*} z_{k}^{*} c^{*} } \\ + & \omega_{h h}\left[c b_{1}\right]^{0} b_{1}^{*} c^{*} \end{aligned}$		

Table 5.A.53: flippant pair $\left\{\widetilde{C}_{+}^{+}, \widetilde{C}_{-}^{-}\right\}$.

	$\begin{array}{r} c z_{k}\left(b_{0}+b_{1}\right) z_{i} a \\ +\omega_{h h} c\left(b_{0}+b_{1}\right) a \end{array}$		
$\widetilde{\varphi}$	$\begin{aligned} & {\left[b_{1} a\right] \mapsto-z_{i} z_{k}\left[b_{0} a\right]-z_{k}^{-1}\left[b_{1} a\right]} \\ & {\left[b_{0} a\right] \mapsto z_{i}^{*} z_{k}\left[b_{0} a\right]+z_{k}^{-1}\left[b_{1} a\right]} \end{aligned}$	$\leadsto \quad \begin{array}{ll} c & \mapsto \frac{1}{2} \frac{1}{w y_{i}} c v \\ \quad b_{1}^{*} & \mapsto-b_{1}^{*} \end{array}$	
$\widetilde{\psi}$	$\begin{aligned} & c \quad \rightsquigarrow-a^{*}\left(b_{0}^{*}+b_{1}^{*}\right) z_{k}^{-1} \\ & {\left[b_{1} a\right] \rightsquigarrow z_{k}\left[b_{0} a\right] \omega_{h h}} \end{aligned}$		
\widetilde{T}_{1}	c $\left[b_{1} a\right]$		
	$\begin{aligned} & a^{*} z_{i}^{*}\left(b_{0}^{*}+b_{1}^{*}\right) z_{k}\left[b_{0} a\right] \\ + & \omega_{h h} a^{*}\left(b_{0}^{*}+b_{1}^{*}\right)\left[b_{0} a\right] \end{aligned}$		

Table 5.A.54: flippant pair $\left\{\widetilde{C}^{-}, \widetilde{C}^{+}\right\}$.

	$\begin{aligned} & c_{0} b_{00} a_{0} z_{h} \\ - & \frac{1}{u_{i}} c_{0} b_{01} a_{1} z_{h} \\ - & \frac{1}{u_{k}} c_{1} b_{10} a_{0} z_{h} \\ + & \frac{1}{u_{i} u_{k}} c_{1} b_{11} a_{1} z_{h} \\ + & u_{0} c_{1} b_{11} a_{1} \end{aligned}$	
$\widetilde{\varphi}$	$\begin{aligned} {\left[a_{0} c_{0}\right]^{1} } & \mapsto-\frac{x_{h}}{y_{h}}\left[a_{0} c_{0}\right]^{0}+\frac{1}{y_{h}}\left[a_{0} c_{0}\right]^{1} \\ b_{01} & \mapsto-\frac{u_{i}}{y_{h}} b_{01} \\ {\left[a_{1} c_{0}\right]^{1} } & \mapsto-\frac{x_{h}}{y_{h}}\left[a_{1} c_{0}\right]^{0}+\left[a_{1} c_{0}\right]^{1} \\ {\left[a_{0} c_{1}\right]^{1} } & \mapsto-\frac{x_{h}}{y_{h}}\left[a_{0} c_{1}\right]^{0}-\frac{u_{k}}{y_{h}}\left[a_{0} c_{1}\right]^{1} \\ {\left[a_{1} c_{1}\right]^{1} } & \mapsto-\frac{u_{i} u_{k} u_{0}+x_{h}}{y_{h}}\left[a_{1} c_{1}\right]^{0}+\frac{u_{i} u_{k}}{y_{h}}\left[a_{1} c_{1}\right]^{1} \end{aligned}$	$\begin{array}{ll} c_{0}^{*} & \mapsto-2 y_{h} c_{0}^{*} v \\ c_{1}^{*} & \mapsto-2 y_{h} c_{1}^{*} v \\ {\left[a_{1} c_{0}\right]^{0}} & \mapsto-\frac{1}{u_{i}}\left[a_{1} c_{0}\right]^{0} \\ {\left[a_{0} c_{1}\right]^{0}} & \mapsto-\frac{1}{u_{k}}\left[a_{0} c_{1}\right]^{0} \\ {\left[a_{1} c_{1}\right]^{0}} & \mapsto \frac{1}{u_{i} u_{k}}\left[a_{1} c_{1}\right]^{0} \end{array}$
$\widetilde{\psi}$	$\begin{aligned} & b_{00} \rightsquigarrow c_{0}^{*} a_{0}^{*} \\ & b_{01} \rightsquigarrow y_{h} c_{0}^{*} a_{1}^{*} \\ & b_{10} \rightsquigarrow- \\ & b_{11} \rightsquigarrow u_{k} c_{1}^{*} a_{0}^{*} \\ & b_{i} u_{k} c_{1}^{*} a_{1}^{*} \end{aligned}$	
\widetilde{T}_{1}	$b_{00} \quad\left[\begin{array}{lllllll}\left.a_{0} c_{0}\right]^{1} & b_{01} & {\left[a_{1} c_{0}\right]^{1}} & b_{10} & {\left[a_{0} c_{1}\right]^{1}} & b_{11} & {\left[a_{1} c_{1}\right]^{1}}\end{array}\right.$	
	$\begin{aligned} & a_{0}^{*}\left[a_{0} c_{0}\right]^{0} c_{0}^{*} z_{h}^{*} \\ - & \frac{1}{u_{k}} a_{0}^{*}\left[a_{0} c_{1}\right]^{0} c_{1}^{*} z_{h}^{*} \\ - & \frac{1}{u_{i}} a_{1}^{*}\left[a_{1} c_{0}\right]^{0} c_{0}^{*} z_{h}^{*} \\ + & \frac{1}{u_{i} u_{k}} a_{1}^{*}\left[a_{1} c_{1}\right]^{0} c_{1}^{*} z_{h}^{*} \\ + & u_{0} a_{1}^{*}\left[a_{1} c_{1}\right]^{0} c_{1}^{*} \end{aligned}$	

Table 5.A.55: flippant pair $\left\{\widetilde{D}_{1}, \widetilde{D}_{1}\right\}$.

Table 5.A.56: flippant pair $\left\{\widetilde{D}_{2}^{-}, \widetilde{D}_{2}^{+}\right\}$.

	$\left(c_{0}+c_{1}\right) z_{k}\left(b_{0}+b_{1}\right) z_{i}\left(a_{0}+a_{1}\right) z_{h}$	
$\widetilde{\varphi}$	$\begin{aligned} {\left[c_{1} b_{1}\right] } & \mapsto-\left[c_{0} b_{0}\right]\left(z_{h} z_{i} z_{k}+u_{0}\right)+\left[c_{1} b_{1}\right]\left(z_{h} z_{i} z_{k}^{*}+u_{0}\right)^{-1} \\ {\left[c_{0} b_{1}\right] } & \mapsto-\left[c_{1} b_{0}\right]\left(z_{h}^{*} z_{i} z_{k}+u_{0}\right)+\left[c_{0} b_{1}\right]\left(z_{h}^{*} z_{i} z_{k}^{*}+u_{0}\right)^{-1} \\ {\left[c_{0} b_{0}\right] } & \mapsto z_{h}\left[c_{0} b_{0}\right] z_{i} z_{k}^{*}+u_{0}\left[c_{0} b_{0}\right] \\ {\left[c_{1} b_{0}\right] } & \mapsto z_{h}\left[c_{1} b_{0}\right] z_{k}^{*} z_{i}+u_{0}\left[c_{1} b_{0}\right] \end{aligned}$	$\leadsto \quad b_{1}^{*} \mapsto-b_{1}^{*}$
$\widetilde{\psi}$	$\begin{aligned} & a_{0} \rightsquigarrow \pi_{0}\left(b_{1}^{*} c_{1}^{*}\left(z_{h} z_{i} z_{k}^{*}+u_{0}\right)^{-1}\right) \\ & a_{1} \rightsquigarrow \pi_{1}\left(b_{1}^{*} c_{0}^{*}\left(z_{h} z_{i}^{*} z_{k}+u_{0}\right)^{-1}\right) \end{aligned}$	
\widetilde{T}_{1}	$a_{0} \quad\left[c_{1} b_{1}\right] \quad a_{1} \quad\left[c_{0} b_{1}\right]$	
	$\left(b_{0}^{*}+b_{1}^{*}\right) z_{k}^{*}\left(c_{0}^{*}+c_{1}^{*}\right) z_{h}\left(\left[c_{0} b_{0}\right]+\left[c_{1} b_{0}\right]\right) z_{i}$	

Table 5.A.57: flippant pair $\left\{\widetilde{D}_{3}, \widetilde{D}_{3}\right\}$.

6 Potentials for Colored Triangulations

Motivation

This chapter continues the investigation of orbifolds. In contrast to the preceding chapter, punctures are not allowed, but orbifold points now carry a weight. That is to say, we are dealing with weighted unpunctured orbifolds: compact oriented surfaces Σ with marked points $\mathbb{M} \subseteq \partial \Sigma$ and orbifold points $\mathbb{O} \subseteq \Sigma \backslash \partial \Sigma$ equipped with weights $\mathbb{O} \rightarrow\{1,4\}, y \mapsto d_{y}$.

Again, we will illustrate the introduction with an example. This time, we consider the digon with $\mathbb{M}=\left\{x_{1}, x_{2}\right\}$ and $\mathbb{O}=\left\{y_{1}, y_{2}\right\}$. For the weights we take $d_{y_{1}}=1$ and $d_{y_{2}}=4$. The three $\operatorname{arcs} i_{1}, i_{2}, i_{3}$ shown below form a triangulation τ :

As before, there is a quiver $X(\tau)$ whose vertices are the sides of the triangles in τ with arrows keeping track of adjacencies. It is a weighted quiver where sides i containing an orbifold point y have weight $d_{i}=d_{y}$ and all other sides have weight 2 .

In the example, we therefore have $d_{i_{1}}=1, d_{i_{2}}=4$ and $d_{s_{1}}=d_{s_{2}}=d_{i_{3}}=2$.
The path algebras $R\langle A\rangle$ for $X(\tau)$ are defined over a ground ring $R=R(\tau)=\prod_{i \in X_{0}(\tau)} R_{i}$ where all R_{i} are intermediate fields of a cyclic Galois extension L / K of degree 4 .

More precisely, we will assume $L=K(v)$ with $v^{4} \in K$. Letting $E=K\left(v^{2}\right)$ this means

$$
R_{i}= \begin{cases}K & \text { if } d_{i}=1 \\ E & \text { if } d_{i}=2 \\ L & \text { if } d_{i}=4\end{cases}
$$

For the bimodule $A=\bigoplus_{a \in X_{1}(\tau)} A_{a}$ there are several choices. For each $j \stackrel{a}{\leftarrow} i$ with both weights d_{i} and d_{j} divisible by 2 one can take $A_{a}=R_{j} \otimes_{\rho_{a}} R_{i}$ with $\left.\rho_{a}\right|_{E} \in \operatorname{Gal}(E / K) \cong \mathbb{Z} / 2 \mathbb{Z}$. To be well-behaved with respect to mutation, it is necessary to impose a "compatibility condition." In the example: $\rho_{c_{2}} \rho_{b_{2}} \rho_{a_{2}}=\mathrm{id}_{E}$. More generally, the "compatible" choices for
the elements ρ_{a} are parametrized by the set of 1-cocycles $Z^{1}(\tau)$ of the cocomplex dual to

$$
C_{\bullet}(\tau): 0 \longrightarrow \mathbb{F}_{2} \bar{X}_{2}(\tau) \xrightarrow{\partial_{2}} \mathbb{F}_{2} \bar{X}_{1}(\tau) \xrightarrow{\partial_{1}} \mathbb{F}_{2} \bar{X}_{0}(\tau) \longrightarrow 0
$$

where $\left(\bar{X}_{0}(\tau), \bar{X}_{1}(\tau)\right)$ is the underlying simple graph of the full subquiver of $X(\tau)$ on the vertices with weight divisible by 2 . The "faces" $\bar{X}_{2}(\tau)$ correspond to triangles of τ.

In the example, $\bar{X}_{0}(\tau)=\left\{i_{2}, i_{3}, s_{1}, s_{2}\right\}$ and $\bar{X}_{1}(\tau)=\left\{c_{1}, c_{2}, b_{2}, a_{2}\right\}$ and $\bar{X}_{2}(\tau)=\{\Delta\}$ where Δ is the triangle with sides s_{1}, s_{2}, i_{3}. The differential ∂_{2} sends Δ to $c_{2}+b_{2}+a_{2}$ such that $\xi\left(c_{2}\right)+\xi\left(b_{2}\right)+\xi\left(a_{2}\right)=0$ for all $\xi \in Z^{1}(\tau) \subseteq \operatorname{Hom}_{\mathbb{F}_{2}}\left(C_{1}(\tau), \mathbb{F}_{2}\right)$.

Colored Triangulations

A colored triangulation (τ, ξ) is a triangulation τ together with a cocycle $\xi \in Z^{1}(\tau)$. For all arcs $i \in \tau$ we define another colored triangulation: the fip $\mu_{i}(\tau, \xi)=\left(\mu_{i}(\tau), \xi^{\prime}\right)$.

Every colored triangulation determines a path algebra $R\langle A(\tau, \xi)\rangle$ for $X(\tau)$ over L / K. We will construct an $\operatorname{SP} \mathcal{S}(\tau, \xi)=(A(\tau, \xi), W(\tau, \xi))$.

In the running example the potential $W(\tau, \xi)$ is $c_{1} b_{1} a_{1}+c_{2} b_{2} a_{2}$. Flipping the arc i_{3} yields the following triangulation $\mu_{i_{3}}(\tau)$:

The potential $W\left(\mu_{i_{3}}(\tau, \xi)\right)$ has the form $a_{1}^{*}\left[a_{1} c_{2}\right] c_{2}^{*}+a_{2}^{*}\left[a_{2} c_{1}\right] c_{1}^{*}$.

Results

We will show that the $\mathrm{SP} \mathcal{S}\left(\mu_{i}(\tau, \xi)\right)$ corresponds to the SP mutation $\mu_{i}(\mathcal{S}(\tau, \xi))$ for all i. In particular, this will imply the non-degeneracy of $\mathcal{S}(\tau, \xi)$.

Furthermore, we will see that $W(\tau, \xi)$ is up to $R(\tau)$-equivalence the unique non-degenerate potential for $A(\tau, \xi)$ if we assume that the weighted orbifold under consideration is not a monogon with all orbifold points of the same weight.

We prove that the Jacobian algebra $\mathcal{J}(\tau, \xi)$ is finite-dimensional and $\mathcal{J}(\tau, \xi) \cong \mathcal{J}\left(\tau, \xi^{\prime}\right)$ as $K^{X_{0}(\tau)}$-algebras if and only if ξ and ξ^{\prime} are cohomologous cocycles.

Finally, the set of colored triangulations of a weighted unpunctured orbifold forms the set of vertices of a simple graph in which two colored triangulations are joined with an edge if and only if they are related by flipping an arc. The flip graph is obtained from this graph by identifying colored triangulations (τ, ξ) and $\left(\tau, \xi^{\prime}\right)$ where ξ and ξ^{\prime} are cohomologous. The flip graph will be shown to be disconnected unless the surface Σ is a disk.

6.1 Triangulated Weighted Orbifolds

The notion of triangulated weighted orbifolds is due to [FST12a]. In the present chapter we only consider weighted orbifolds without punctures. This section discusses consequences of the non-existence of punctures. In addition, it introduces relevant notation.

Definition 6.1.1. A weighted orbifold $\boldsymbol{\Sigma}_{d}$ is a pair $(\boldsymbol{\Sigma}, d)$ consisting of an orbifold $\boldsymbol{\Sigma}$ in the sense of Definition 5.1.1 and a function $\mathbb{O} \xrightarrow{d}\{1,4\}, \times \mapsto d_{x}$.

A triangulation of $\boldsymbol{\Sigma}_{d}$ is a triangulation of $\boldsymbol{\Sigma}$ (see Definition 5.1.14).
Convention 6.1.2. For the rest of the chapter fix a weighted orbifold $\boldsymbol{\Sigma}_{d}=(\boldsymbol{\Sigma}, d)$ such that $\boldsymbol{\Sigma}=(\Sigma, \mathbb{M}, \mathbb{O})$ has no punctures. This means $\mathbb{M} \subseteq \partial \Sigma \neq \varnothing$. For technical reasons we assume that $\boldsymbol{\Sigma}$ is not a torus with exactly one boundary marked point.

We use Convention 5.1.2. In particular, we write \mathfrak{s} for the set of boundary segments, g for the genus, b for the number of boundary components, m for the number of marked points, and o for the number of orbifold points of $\boldsymbol{\Sigma}$. Moreover, set $o_{1}:=\left|\left\{\mathbf{x} \in \mathbb{O} \mid d_{\mathbf{x}}=1\right\}\right|$.

In the drawings we put a circle d_{x} close to every orbifold point x to indicate its weight.
For triangulations τ of $\boldsymbol{\Sigma}_{d}$ and $k \in\{1,4\}$ we denote by $\tau^{d=k}$ the set of all pending arcs i in τ such that the orbifold point \times that is an endpoint of i has weight $d_{\mathbf{x}}=k$.

The set of non-pending arcs in τ will sometimes be written as $\tau^{d=2}$.
Remark 6.1.3. With λ defined as in Convention 5.1.2 the invariant (g, λ, o, o_{1}) determines the weighted orbifold $\boldsymbol{\Sigma}_{d}$ up to diffeomorphism (see Remark 5.1.3).

Remark 6.1.4. Observe that by definition $m \geq b>0$ and $o \geq o_{1} \geq 0$.
Since $\boldsymbol{\Sigma}$ has no punctures, the ends of all tagged arcs in $\boldsymbol{\Sigma}$ are tagged in the same way. Therefore the notions of triangulation and tagged triangulation coincide in the setting of this chapter. The puzzle-piece decompositions of triangulations of $\boldsymbol{\Sigma}_{d}$ (see Proposition 5.1.23) contain only pieces of those types shown in Figure 6.A.1. In particular, the puzzle pieces of a triangulation of $\boldsymbol{\Sigma}_{d}$ are simply the triangles of the triangulation.

Finally, the non-existence of punctures also rules out many of the arctypes listed in Tables 5.A. 7 to $5 . \mathrm{A} .10 \mathrm{an}$ arc in a triangulation of $\boldsymbol{\Sigma}$ can have. Not taking into account the weights, we are left with only 14 arctypes. They are shown in Tables 6.A.2 to 6.A.4.

6.2 Colored Triangulations

6.2.1 Adjacency Quiver of a Triangulation

The adjacency quivers for triangulations of the weighted orbifold $\boldsymbol{\Sigma}_{d}$ are defined in complete analogy to $\S 5.2 .1$. However, they are not modular but merely weighted quivers.

Notation 6.2.1. Similar to Notation 5.2.1 we denote by $X_{2}(\tau)$ the set of triangles of a triangulation τ of $\boldsymbol{\Sigma}_{d}$. For $\Delta \in X_{2}(\tau)$ we write $(i, j) \in \Delta$ if j follows i in Δ.

Definition 6.2.2. The (adjacency) quiver $X(\tau)=X(\tau, d)$ of a triangulation τ of $\boldsymbol{\Sigma}_{d}$ is a weighted quiver $(X(\tau), d)$ whose vertices are the arcs in τ and boundary segments of $\boldsymbol{\Sigma}_{d}$.
Formally, $X_{0}(\tau)=\tau \cup \mathfrak{s}$. The weight of pending $i \in X_{0}(\tau)$ is $d_{i}=d_{\mathbf{x}}$ where \times is the endpoint of i belonging to \mathbb{O}. For every other $i \in X_{0}(\tau)$ define $d_{i}=2$. The arrow set is

$$
\begin{aligned}
X_{1}(\tau)=\{i \xrightarrow{(\Delta,(i, j), r)} j \mid & \Delta \in X_{2}(\tau), i, j \in X_{0}(\tau) \text { with }(i, j) \in \Delta, \\
& \left.r \in\{0,1\} \text { with } r=1 \text { only if } d_{i}=d_{j} \in\{1,4\}\right\} .
\end{aligned}
$$

The heavy part of $X(\tau)$ is the full subquiver $X^{d \neq 1}(\tau)$ of $X(\tau)$ consisting of all vertices i with weight $d_{i} \neq 1$.

Notation 6.2.3. Set $\Delta(a):=\Delta$ and $r(a):=r$ for every arrow $a=(\Delta,(i, j), r) \in X_{1}(\tau)$. We say that a is induced by the triangle Δ of τ.

A cyclic path cba in $X(\tau)$ is induced by a triangle Δ of τ if $\Delta(a)=\Delta(b)=\Delta(c)=\Delta$.
A path $c b a$ in $X(\tau)$ is triangle-induced if it is a cyclic path induced by some $\Delta \in X_{2}(\tau)$.
For a triangle Δ of τ we denote by X^{Δ} the subquiver of $X(\tau)$ spanned by all arrows induced by Δ. More generally, the subquiver of $X(\tau)$ induced by triangles $\Delta_{1}, \ldots, \Delta_{\ell}$ is defined as the quiver $X^{\Delta_{1}} \oplus \cdots \oplus X^{\Delta_{\ell}}$.

Remark 6.2.4. Assume $\mathbb{O} \xrightarrow{d}\{1,4\}$ is constant with value 4. Then all vertices of $X(\tau)$ have weight 2 or 4 . As quiver $X(\tau)$ coincides with $Q(\tau)$ from Definition 5.2.2. The weight of a vertex in $X(\tau)$ is the double of the weight of the corresponding vertex in $Q(\tau)$.

Remark 6.2.5. The full subquiver $X^{\circ}(\tau)$ of $X(\tau)$ spanned by τ (i.e. by all arcs that are not boundary segments) is the "weighted quiver $Q(\tau, d)$ of τ with respect to d " in [GL16a].

Convention 6.2.6. In the illustrations we indicate the weight of a vertex i in $X(\tau)$ by putting a circle d_{i} next to it whenever $d_{i} \in\{1,4\}$. Vertices of weight 2 are not highlighted in any special way. The part of $X(\tau)$ not belonging to $X^{\circ}(\tau)$ will be drawn in blue.

Remark 6.2.7. Analogously as in Remark 5.2.5 we can rephrase [FST12a, Lemma 4.10] in our context as follows: There is a decomposition of weighted quivers

$$
X(\tau)=\bigoplus_{\Delta} X^{\Delta}
$$

where the sum runs over all triangles Δ of τ. The weighted quivers X^{Δ} for the different types of triangles (= puzzle pieces) are shown in Figures 6.A.5 to 6.A.7.

Remark 6.2.8. The quiver $X(\tau)$ of every triangulation τ is connected, since Σ is connected.
Remark 6.2.9. We have the following analog of Remark 5.2.7 concerning the number $q_{j i}$ of arrows $j \leftarrow i$ in $X(\tau)$:

- $q_{j i} \leq 2$. More precisely, the outdegree of i and the indegree of j are at most 2 .
- If $q_{i j} \geq 1$, then $q_{j i}=0$.
- If $d_{i} \neq d_{j}$, then $q_{j i} \leq 1$.
- There is at most one arrow $j \leftarrow i$ induced by the same triangle unless $d_{i}=d_{j} \neq 2$.
- If $d_{i}=d_{j} \neq 2$ and $q_{j i} \geq 1$, then $q_{j i}=2$.

The second item shows that $X(\tau)$ is 2-acyclic.
Note that $d_{i}=d_{j} \neq 2$ means that both i and j are pending arcs with the same weight, while $d_{i} \neq d_{j}$ implies that at least one of i and j is pending.

Remark 6.2.10. Assume $\mathbb{O} \xrightarrow{d}\{1,4\}$ is not constant with value 4 . Let τ be a triangulation.
The skew-symmetrizable matrix $B=B(\tau, d)$ associated with the weighted quiver $X^{\circ}(\tau)$ via the bijection of Remark 2.1.6 is one of the matrices described in [FST12a, § 4.3].

More precisely, the function $\mathbb{O} \xrightarrow{d}\{1,4\}$ corresponds to the function $\mathbb{O} \xrightarrow{w}\left\{\frac{1}{2}, 2\right\}$ given as $w(\mathbf{x})=\frac{2}{d_{\mathbf{x}}}$ in [FST12a, Definition 4.15]. ${ }^{1}$

6.2.2 Mutating Adjacency Quivers

The considerations in this subsection are similar to those in $\S 5.2 .2$. We discuss how the weighted quiver $X\left(\mu_{i}(\tau)\right)$ can be regarded as a subquiver of the premutation $\widetilde{\mu}_{i}(X(\tau))$.

Notation 6.2.11. Copying Notation 5.2 .15 write $X(\tau, i)$ (resp. $X(\tau, \neg i)$) for the subquiver of $X(\tau)$ induced by all triangles of τ containing (resp. not containing) the arc i in τ.

Remark 6.2.12. $X(\tau)=X(\tau, \neg i) \oplus X(\tau, i)$ and $\widetilde{\mu}_{i}(X(\tau))=X(\tau, \neg i) \oplus \widetilde{\mu}_{i}(X(\tau, i))$.

We have the following analogs of Lemma 5.2.17 and Remark 5.2.18:
Lemma 6.2.13. Let τ and ς be triangulations of $\boldsymbol{\Sigma}_{d}$ that are related by a flip, say $\varsigma=\mu_{i}(\tau)$ and $\tau=\mu_{j}(\varsigma)$. Then $\left.X\right\urcorner:=X(\tau, \neg i)=X(\varsigma, \neg j)$ and there is a monomorphism

$$
X(\varsigma) \stackrel{\Phi}{\longrightarrow} \widetilde{\mu}_{i}(X(\tau))
$$

of weighted quivers with $\left.\Phi\right|_{X\urcorner}=\mathrm{id}_{X\urcorner}$ and $\Phi(k)=k$ for all $k \in X_{0}(\varsigma) \backslash\{j\}$ and $\Phi(j)=i$.
The image of Φ is a maximal 2-acyclic subquiver of $\widetilde{\mu}_{i}(X(\tau))$.

Proof. This is similar to [FST12a, Lemma 4.12] and relies on Definitions 2.1.8 and 6.2.2.
Remark 6.2.14. One can demand in Lemma 6.2 .13 that for every $\stackrel{b}{\leftarrow} i \stackrel{a}{\leftarrow}$ in $X(\tau) \ldots$
(i) \ldots with $\Delta(b) \neq \Delta(a)$, there is a triangle-induced cyclic path $b^{\vee} c^{\vee} a^{\vee}$ in $X(\varsigma)$ such that $\Phi\left(b^{\vee}\right)=b^{*}, \Phi\left(c^{\vee}\right)=[b a]_{r\left(c^{\vee}\right)}^{0}, \Phi\left(a^{\vee}\right)=a^{*}$.

[^0](ii) \ldots with $d_{i} \neq 2, r(b)=r(a)=0$, there is a triangle-induced path $b^{\vee} c^{\vee} a^{\vee}$ in $X(\varsigma)$ with $r\left(b^{\vee}\right)=r\left(a^{\vee}\right)=0$ such that $\Phi\left(b^{\vee}\right)=b^{*}, \Phi\left(c^{\vee}\right)=[b a]_{r}^{0}, \Phi\left(a^{\vee}\right)=a^{*}$ for some r.

This property determines Φ uniquely, if i is not the weight-1 pending arc in a triangle of type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}. In the case that i is such an arc, there are two choices for Φ.

These claims can easily be verified case by case. All possibilities for the image of $X(\varsigma, j)$ under Φ are listed in Table 6.A. 8 (where i corresponds to the boxed vertex).

Example 6.2.15. Let $X(\tau)=X^{\Delta}$ be the weighted quiver of type \widetilde{C}_{14} shown in Figure 6.A.7. The premutation $\widetilde{\mu}_{i}(X(\tau))$ is drawn below on the right. Flipping the arc i in τ yields a triangulation ς consisting of a single triangle of type \widetilde{C}_{41}. The quiver $X(\varsigma)$ can be seen on the left. One of the monomorphisms Φ satisfying the property in Remark 6.2 .14 sends the arrow c^{\vee} to $[b a]_{0}^{0}$, the other one sends c^{\vee} to $[b a]_{1}^{0}$.

\qquad

A similar consideration works for the weight- 1 arc in triangles Δ of type \widetilde{B}_{1} and \widetilde{C}_{41}.

6.2.3 Modular Structures

We have defined $X(\tau)$ not as a modular but only as a weighted quiver. Usually, $X(\tau)$ can be turned into a modular quiver in several equally valid ways.

Definition 6.2.16. We call σ a modular structure for $X(\tau)$ if $(X(\tau), d, \sigma)$ is a modular quiver. A modular structure σ for $X(\tau)$ is admissible if $(X(\tau), d, \sigma)$ is τ-admissible.

Remark 6.2.17. Recall that the admissibility of a modular quiver is a prerequisite for admitting non-degenerate SPs (see Remark 2.6.103).

Example 6.2.18. Depicted below is a triangulation τ of the triangle with one weight- 1 and two weight-4 orbifold points. The weighted quiver $X=X(\tau)$ is drawn on the right.

The subquivers X^{Δ} in the decomposition from Remark 6.2.7 are the full subquivers of X spanned by the subsets $\left\{i_{1}, k_{-}, k_{+}\right\},\left\{i_{1}, i_{2}, s_{3}\right\},\left\{i_{2}, s_{1}, i_{3}\right\},\left\{i_{3}, s_{2}, k\right\} \subseteq X_{0}$.
We have $\tau^{d=1}=\{k\}$ and $\tau^{d=4}=\left\{k_{-}, k_{+}\right\}$.
To equip X with the structure of a modular quiver, we have to pick for each $j \stackrel{a}{\leftarrow} i$ in X an element $\sigma_{a} \in \mathbb{Z} / d_{j i} \mathbb{Z}$. Observe that

$$
d_{j i}= \begin{cases}1 & \text { if } i \in \tau^{d=1} \vee j \in \tau^{d=1} \\ 4 & \text { if } i \in \tau^{d=4} \wedge j \in \tau^{d=4} \\ 2 & \text { otherwise }\end{cases}
$$

Therefore we have no choice for $\sigma_{b_{4}}, \sigma_{c_{4}}$, four possibilities for each of $\sigma_{b_{10}}, \sigma_{b_{11}}$, and two possibilities for each of $\sigma_{a_{1}}, \sigma_{c_{1}}, \sigma_{a_{2}}, \sigma_{b_{2}}, \sigma_{c_{2}}, \sigma_{a_{3}}, \sigma_{b_{3}}, \sigma_{c_{3}}, \sigma_{a_{4}}$.

In other words, we have to make a choice for all arrows that lie in the heavy part $X^{d \neq 1}(\tau)$. However, not all of these choices define modular structures that are admissible.

Lemma 6.2.19. A modular structure σ for $X(\tau)$ is admissible if and only if there is an automorphism $X(\tau) \xrightarrow{\pi} X(\tau)$ of Q_{0}-quivers such that
(a) $\sigma_{\pi(c)}+\sigma_{\pi(b)}+\sigma_{\pi(a)}=0$ in $\mathbb{Z} / 2 \mathbb{Z}$ for all triangle-induced paths cba in $X^{d \neq 1}(\tau)$; and
(b) $\sigma_{c_{0}} \neq \sigma_{c_{1}}$ for each pair of parallel arrows $c_{0} \neq c_{1}$ in $X(\tau)$ connecting arcs in $\tau^{d=4}$.

Furthermore, $\sigma_{a}=0$ for all arrows a in $X(\tau)-X_{1}^{d \neq 1}(\tau)$.
Definition 6.2.20. Let τ and ς be triangulations of $\boldsymbol{\Sigma}_{d}$ such that $\varsigma=\mu_{i}(\tau)$. For every modular structure σ for $X(\tau)$ denote by

$$
X(\varsigma) \xrightarrow{\Phi^{\sigma}} \widetilde{\mu}_{i}(X(\tau))
$$

the monomorphism Φ satisfying the property of Remark 6.2 .14 such that, if i is the pending arc of a triangle Δ of type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}, it is

$$
[b a]_{\sigma_{c}+1}^{0} \in \operatorname{im}(\Phi)
$$

where $i \stackrel{a}{\leftarrow} \stackrel{c}{\leftarrow} \stackrel{b}{\leftarrow} i$ is the cyclic path in $X(\tau)$ induced by Δ (compare Example 6.2.15).
Proof of Lemma 6.2.19. The last claim is obvious
To prove the "only if" part of the first claim, let us assume that (a) or (b) is violated. Due to Remark 6.2.9 there are at most two arrows between each pair of vertices in $X(\tau)$. Moreover, for every cyclic path $c b a$ in $X^{d \neq 1}(\tau)$ at most one of the arrows a, b, c can have a parallel arrow in $X(\tau)$ different from itself (compare Tables 6.A.2 to 6.A.4). Hence, the subquiver $X^{c b a}$ of $X(\tau)$ induced by all $\Delta(f)$ with f parallel to a, b, c is full.

If (a) is violated for all π, the preceding discussion shows that there are cyclic paths $c_{0} b_{0} a_{0}$ and $c_{1} b_{1} a_{1}$ in $X^{d \neq 1}(\tau)$ such that c_{0} and c_{1} are parallel arrows in $X(\tau)$ and $\sigma_{c_{p}}+\sigma_{b_{0}}+\sigma_{a_{0}} \neq 0$ or $\sigma_{c_{1-p}}+\sigma_{b_{1}}+\sigma_{a_{1}} \neq 0$ for all $p \in\{0,1\}$. In this case, let $X^{\prime}=X^{c_{0} b_{0} a_{0}}=X^{c_{1} b_{1} a_{1}}$.

If (b) is violated, let Δ be the triangle of type \widetilde{C}_{44} inducing the parallel arrows c_{0} and c_{1} and let X^{\prime} be the full subquiver X^{Δ} of $X(\tau)$.

In both cases, we consider X^{\prime} as a (full) modular subquiver of $(X(\tau), d, \sigma)$. It is easy to check that $\widetilde{\mu}_{j} \widetilde{\mu}_{i}\left(X^{\prime}\right)$ is not 2-acyclic after reduction for some i, j. Thus σ is not admissible.

For the "if" part of the first claim, it is sufficient to verify that for all arcs $i \in \tau$ the premutation $\widetilde{X}=\widetilde{\mu}_{i}(X(\tau), d, \sigma)$ has the form $\widetilde{X}=\Phi^{\sigma}\left(\left(X(\varsigma), d, \sigma^{\prime}\right)\right) \oplus \widetilde{T}$ with \widetilde{T} trivial and conditions (a) and (b) hold after replacing τ, σ with $\varsigma=\mu_{i}(\tau), \sigma^{\prime}=\sigma \circ \Phi^{\sigma}$, where the modular structure for \widetilde{X} induced by σ is still denoted by σ.

Without loss of generality, we will assume that (a) and (b) hold for $\pi=\mathrm{id}$.
Fix $i \in \tau$. First, we consider the case in which i is an arc shared by two triangles Δ_{0} and Δ_{1} of τ (see Tables 6.A. 2 and 6.A.3). In this case, $\Phi=\Phi^{\sigma}$ does not depend on σ.
For $q \in\{0,1\}$ let $k_{q} \stackrel{b_{q}}{\longleftarrow} i \stackrel{a_{q}}{\longleftarrow} h_{q}$ be the paths in $X(\tau)$ with $\Delta\left(a_{q}\right)=\Delta\left(b_{q}\right)=\Delta_{q}$.
By the properties of Φ there are paths $j \stackrel{b_{q}^{\vee}}{\leftarrow} k_{1-q} \stackrel{c_{q}^{\vee}}{\leftarrow} h_{q} \stackrel{a_{q}^{\vee}}{\leftarrow} j$ in $X(\varsigma)$ induced each by some $\Delta_{q}^{\prime} \in X_{2}(\varsigma)$ such that $\Phi\left(b_{q}^{\vee}\right)=b_{1-q}^{*}, \Phi\left(c_{q}^{\vee}\right)=\left[b_{1-q} a_{q}\right]_{0}^{0}, \Phi\left(a_{q}^{\vee}\right)=a_{q}^{*}$.

If $b_{q}^{\vee} c_{q}^{\vee} a_{q}^{\vee}$ is contained in $X^{d \neq 1}(\varsigma)$, then

$$
\sigma_{b_{q}^{\vee}}^{\prime}+\sigma_{c_{q}^{\vee}}^{\prime}+\sigma_{a_{q}^{\vee}}^{\prime}=\sigma_{b_{1-q}^{*}}+\sigma_{\left[b_{1-q} a_{q}\right]_{0}^{0}}+\sigma_{a_{q}^{*}}=0 \in \mathbb{Z} / 2 \mathbb{Z}
$$

If there is $c_{q}^{\prime} \neq c_{q}^{\vee}$ with $\Delta\left(c_{q}^{\prime}\right)=\Delta_{q}^{\prime}$ parallel to c_{q}^{\vee} in $X(\varsigma)$, then $h_{q}, k_{1-q} \in \varsigma^{d=4}$ and the arrows $k_{1-q} \leftarrow h_{q}$ in \widetilde{X} are $\left[b_{1-q} a_{q}\right]_{0}^{0}$ and $\left[b_{1-q} a_{q}\right]_{1}^{0}$. Thus $\Phi\left(c_{q}^{\prime}\right)=\left[b_{1-q} a_{q}\right]_{1}^{0}$ and

$$
\sigma_{b_{q}^{\vee}}^{\prime}+\sigma_{c_{q}^{\prime}}^{\prime}+\sigma_{a_{q}^{\vee}}^{\prime}=\sigma_{b_{1-q}^{*}}+\sigma_{\left[b_{1-q} a_{q}\right]_{1}^{0}}+\sigma_{a_{q}^{*}}=0 \in \mathbb{Z} / 2 \mathbb{Z}
$$

Moreover, $\sigma_{c_{q}^{\vee}}^{\prime}=\sigma_{\left[b_{1-q} a_{q}\right]_{0}^{0}} \neq \sigma_{\left[b_{1-q} a_{q}\right]_{1}^{0}}=\sigma_{c_{q}^{\prime}}^{\prime}$.
Since $X_{2}(\varsigma)=\left(X_{2}(\varsigma) \cap X_{2}(\tau)\right) \cup\left\{\Delta_{0}^{\prime}, \Delta_{1}^{\prime}\right\}$ and each arrow in $X_{1}(\varsigma) \backslash X_{1}(\tau)$ is induced by either Δ_{0}^{\prime} or Δ_{1}^{\prime}, we can conclude that (a) and (b) hold with τ, σ replaced by $\varsigma, \sigma^{\prime}$.

Let \widetilde{T} be the modular subquiver of \widetilde{X} spanned by all arrows not in the image of Φ. This means \widetilde{T}_{1} consists of the arrows $k_{q} \rightarrow h_{q}$ induced by Δ_{q} (for $q \in\{0,1\}$) and those in

$$
\left\{\begin{array}{r}
k_{q} \stackrel{\left[b_{q} a_{q}\right]_{r}^{s}}{\longleftarrow} h_{q} \mid s \in\{0,1\} \text { with } s=1 \text { only if } d_{h_{q}}=d_{k_{q}}=1 \\
r \in\{0,1\} \text { with } r=1 \text { only if } d_{h_{q}}=d_{k_{q}}=4
\end{array}\right\} .
$$

If $d_{k_{q} h_{q}}=2$, then $\sigma_{c_{q}}+\sigma_{\left[b_{q} a_{q}\right]_{0}^{0}}=\sigma_{c_{q}}+\sigma_{b_{q}}+\sigma_{a_{q}}=0$ in $\mathbb{Z} / 2 \mathbb{Z}$ by condition (a) for the unique arrow $k_{q} \xrightarrow{c_{q}} h_{q}$ in \widetilde{X} induced by Δ_{q}.

If $d_{k_{q} h_{q}}=4$, there are precisely two arrows $k_{q} \xrightarrow{c_{q r}} h_{q}(r \in\{0,1\})$ in \widetilde{X} induced by Δ_{q}. Conditions (a) and (b) imply $\sigma_{c_{q r}}+\sigma_{\left[b_{q} a_{q}\right]_{f(r)}^{0}}=0$ in $\mathbb{Z} / 4 \mathbb{Z}$ for a permutation f of $\{0,1\}$.

This shows that \widetilde{T} is a trivial modular quiver. Hence, the image of Φ is a reduction of the modular quiver \widetilde{X} by Lemma 6.2.13.

It remains to consider the case in which i is an inner side of some triangle Δ of τ (see Table 6.A.4). Using Remark 6.2 .12 we can assume that Δ is the only triangle of τ. Then ς
consists as well of only one triangle Δ^{\prime}. The weighted quivers $X(\tau)=X^{\Delta}$ and $X(\varsigma)=X^{\Delta^{\prime}}$ are among those in Figures 6.A. 6 and 6.A. 7 and i is one of their vertices of weight 1 or 4 .

A straightforward case-by-case inspection shows that $\widetilde{X}=\Phi^{\sigma}\left(\left(X(\varsigma), d, \sigma^{\prime}\right)\right) \oplus \widetilde{T}$, where \widetilde{T} is trivial, and conditions (a) and (b) still hold when τ, σ is replaced by $\varsigma, \sigma^{\prime}$.

Example 6.2.21. The weighted quivers of type \widetilde{B}_{1} and \widetilde{C}_{41} in Figures 6.A. 6 and 6.A. 7 each admit two modular structures $\left(\sigma_{a}, \sigma_{b}, \sigma_{c}\right) \in\{(0,0,0),(1,0,0)\}$. Both are admissible.

The only modular structure for the weighted quiver of type \widetilde{C}_{11} in Figure 6.A. 7 takes the value zero everywhere. It is admissible.

Example 6.2.22. The modular structure $\left(\sigma_{a}, \sigma_{b}, \sigma_{c}\right)=(0,1,1)$ for the weighted quiver of type A in Figure 6.A.5 is admissible, whereas $\left(\sigma_{a}, \sigma_{b}, \sigma_{c}\right)=(1,1,1)$ is not.

For the weighted quiver of type \widetilde{C}_{44} in Figure 6.A.7 $\left(\sigma_{a}, \sigma_{b_{0}}, \sigma_{b_{1}}, \sigma_{c}\right)=(0,0,2,0)$ is admissible, while $\left(\sigma_{a}, \sigma_{b_{0}}, \sigma_{b_{1}}, \sigma_{c}\right) \in\{(0,0,0,0),(0,0,0,1),(0,0,1,0)\}$ are not.

6.2.4 Cocycles and Colored Triangulations

We introduce colored triangulations (τ, ξ). These are triangulations τ enriched with an additional datum ξ encoding an admissible modular structure σ^{ξ} for $X(\tau)$.

Notation 6.2.23. Denote by $\bar{X}_{2}(\tau)$ the subset of $X_{2}(\tau)$ consisting of all triangles Δ such that all sides of Δ belong to the heavy part $X^{d \neq 1}(\tau)$.

Let $\bar{X}(\tau)$ be the quiver obtained from the heavy part $X^{d \neq 1}(\tau)$ by identifying parallel arrows that connect arcs in $\tau^{d=4}$.

Remark 6.2.24. By definition $c_{0}=c_{1}$ in $\bar{X}(\tau)$ whenever $c_{0} \neq c_{1}$ is a pair of parallel arrows in $X^{d \neq 1}(\tau)$ between weight- 4 pending arcs.

Example 6.2.25. For $X(\tau)=X^{\Delta}$ with Δ of type A, \widetilde{B}_{4} or \widetilde{C}_{44} like in Figures 6.A. 5 to 6.A. 7 the quiver $\bar{X}(\tau)$ is the simple triangle quiver (where $b:=b_{0}=b_{1}$ in the \widetilde{C}_{44} case):

For triangles Δ of type $\widetilde{B}_{1}, \widetilde{C}_{14}, \widetilde{C}_{41}$ the quiver $\bar{X}(\tau)$ is the subquiver of X^{Δ} spanned by the single arrow that connects the two vertices of weight unequal one.
For triangles Δ of type \widetilde{C}_{11} the quiver $\bar{X}(\tau)$ consists of just one vertex.
Lemma 6.2.19 suggests to view admissible modular structures for $X(\tau)$ as cocycles of a cochain complex with coefficients in $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$.

Definition 6.2.26. A colored triangulation (τ, ξ) of $\boldsymbol{\Sigma}_{d}$ consists of a triangulation τ of $\boldsymbol{\Sigma}_{d}$ and $\xi \in Z^{1}(\tau)$ where $Z^{1}(\tau)$ is the set of 1-cocycles of $C^{\bullet}(\tau)=\operatorname{Hom}_{\mathbb{F}_{2}}\left(C_{\bullet}(\tau), \mathbb{F}_{2}\right)$ and

$$
C_{\bullet}(\tau): 0 \longrightarrow \mathbb{F}_{2} \bar{X}_{2}(\tau) \xrightarrow{\partial_{2}} \mathbb{F}_{2} \bar{X}_{1}(\tau) \xrightarrow{\partial_{1}} \mathbb{F}_{2} \bar{X}_{0}(\tau) \longrightarrow 0 .
$$

The non-zero differentials of $C_{\bullet}(\tau)$ are defined on basis elements as

$$
\partial_{2}(\Delta)=c+b+a \quad \text { for } \Delta \in \bar{X}_{2}(\tau)
$$

where $c b a$ is a cyclic path in $X(\tau)$ induced by Δ,

$$
\partial_{1}(a)=j+i \quad \text { for } j \stackrel{a}{\leftarrow} i \in \bar{X}_{1}(\tau) .
$$

Remark 6.2.27. A chain complex similar to $C_{\bullet}(\tau)$ was considered in [AG16, § 2.2].
Remark 6.2.28. Clearly, $H_{0}\left(C_{\bullet}(\tau)\right) \cong \mathbb{F}_{2}$ by Remark 6.2 .8 and $H_{n}\left(C_{\bullet}(\tau)\right)=0$ for all $n>1$.

6.2.5 Adjacency Quiver of a Colored Triangulation

Definition 6.2.29. The quiver $X(\tau, \xi)$ of a colored triangulation (τ, ξ) of $\boldsymbol{\Sigma}_{d}$ is the modular quiver $\left(X(\tau), d, \sigma^{\xi}\right)$ with $\sigma_{a}^{\xi}=\xi(a)+2 r(a)$ for all $a \in X_{1}^{d \neq 1}(\tau)$.

Here, \mathbb{F}_{2} is regarded as a subset of $\mathbb{Z} / 4 \mathbb{Z}$ via the inclusion $0 \mapsto 0,1 \mapsto 1$.
Lemma 6.2.30. The modular quiver $X(\tau, \xi)$ is admissible.

Proof. This is a reformulation of the "if" part of Lemma 6.2.19 for $\pi=\mathrm{id}$.
Example 6.2.31. For X^{Δ} of type A like in Figure 6.A. 5 the cocycle $\xi=a^{*}+b^{*}$ determines the modular structure $\left(\sigma_{a}^{\xi}, \sigma_{b}^{\xi}, \sigma_{c}^{\xi}\right)=(1,1,0)$.

For X^{Δ} of type \widetilde{C}_{44} like in Figure 6.A. 7 (where $r\left(b_{s}\right)=s$) the cocycle $\xi=a^{*}+b_{0}^{*}=a^{*}+b_{1}^{*}$ yields the modular structure $\left(\sigma_{a}^{\xi}, \sigma_{b_{0}}^{\xi}, \sigma_{b_{1}}^{\xi}, \sigma_{c}^{\xi}\right)=(1,1,3,0)$.

6.2.6 Flipping Colored Arcs

The next lemma formalizes the fact that the admissible modular structures for $X(\tau)$ and those for $X(\varsigma)$ are in canonical bijection whenever τ and ς are related by a flip.

Lemma 6.2.32. Let τ and ς be triangulations of $\boldsymbol{\Sigma}_{d}$ related by fipping an arc, say $\varsigma=\mu_{i}(\tau)$ and $\tau=\mu_{j}(\varsigma)$. Then we have a pair of mutually inverse bijections

$$
Z^{1}(\tau) \underset{\varphi^{\tau, \varsigma}}{\stackrel{\varphi^{\varsigma, \tau}}{\rightleftarrows}} Z^{1}(\varsigma)
$$

such that for all $\xi \in Z^{1}(\tau)$ the map $\Phi^{\xi}=\Phi^{\sigma^{\xi}}$ from Definition 6.2.20 is a monomorphism of modular quivers $X\left(\varsigma, \varphi^{\varsigma, \tau}(\xi)\right) \hookrightarrow \widetilde{\mu}_{i}(X(\tau, \xi))$.

In particular, $X\left(\varsigma, \varphi^{\varsigma, \tau}(\xi)\right)$ and $\widetilde{\mu}_{i}(X(\tau, \xi))$ are reduced-equivalent for all $\xi \in Z^{1}(\tau)$.

Proof. Let $\xi \in Z^{1}(\tau)$ and denote by $\widetilde{\mu}_{i} \sigma^{\xi}$ the modular structure of $\widetilde{\mu}_{i}(X(\tau, \xi))$.
According to Lemma 6.2.30 σ^{ξ} is admissible. The proof of Lemma 6.2.19 shows that there is a unique cocycle $\varphi^{\varsigma, \tau}(\xi)=\xi^{\prime}$ in $Z^{1}(\varsigma)$ such that $\widetilde{\mu}_{i} \sigma^{\xi} \circ \Phi^{\xi}=\sigma^{\xi^{\prime}}$.

Tracing Definitions 2.1.12 and 6.2 .20 we have explicitly for $e^{\prime} \in \bar{X}_{1}(\varsigma)$

$$
\varphi^{\varsigma, \tau}(\xi)\left(e^{\prime}\right)= \begin{cases}\xi\left(e^{\prime}\right) & \text { if } e^{\prime} \in \bar{X}_{1}(\tau), \\ \xi(a) & \text { if } \Phi^{\xi}\left(e^{\prime}\right)=a^{*} \text { for some } a \in \bar{X}_{1}(\tau), \\ \xi(a)+\xi(b) & \text { if } d_{i} \neq 1 \text { and } \Phi^{\xi}\left(e^{\prime}\right)=[b a]_{r}^{0} \\ & \text { for some path } b a \text { in } \bar{X}(\tau) \text { and some } r \\ \xi(c)+1 & \text { if } d_{i}=1 \text { and } \Phi^{\xi}\left(e^{\prime}\right)=[b a]_{r}^{0} \\ & \text { for some triangle-induced path } c b a \text { in } X(\tau) \text { and some } r .\end{cases}
$$

A similar formula holds for $\varphi^{\tau, \varsigma}\left(\xi^{\prime}\right)(e)$ with $e \in \bar{X}_{1}(\tau)$.
To show that $\varphi^{\tau, \varsigma} \circ \varphi^{\varsigma, \tau}$ is the identity, we must verify $\varphi^{\tau, \varsigma}\left(\xi^{\prime}\right)(e)=\xi(e)$ for all $e \in \bar{X}_{1}(\tau)$.
Clearly, $\varphi^{\tau, \varsigma}\left(\xi^{\prime}\right)(e)=\xi(e)$ if $e \in \bar{X}_{1}(\varsigma)$ or if $\Phi^{\xi^{\prime}}(e)=a^{\prime *}$ (since then $\Phi^{\xi}\left(a^{\prime}\right)=e^{*}$).
Let us now assume that $\Phi^{\xi^{\prime}}(e)=\left[b^{\prime} a^{\prime}\right]_{r^{\prime}}^{0}$. Then there exist $a, b \in X_{1}(\tau)$ induced by $\Delta(e)$ with $\Phi^{\xi^{\prime}}(a)=b^{\prime *}, \Phi^{\xi^{\prime}}(b)=a^{\prime *}$ and $\Phi^{\xi}\left(a^{\prime}\right)=b^{*}, \Phi^{\xi}\left(b^{\prime}\right)=a^{*}$.
In case $d_{i} \neq 1$, we get $\varphi^{\tau, \varsigma}\left(\xi^{\prime}\right)(e)=\xi^{\prime}\left(a^{\prime}\right)+\xi^{\prime}\left(b^{\prime}\right)=\xi(b)+\xi(a)=\xi(e)$ where the last equality uses that ξ is a cocycle.

In case $d_{i}=1$, let $c^{\prime} b^{\prime} a^{\prime}$ be a triangle-induced cyclic path in $X(\varsigma)$. Then it is $\Phi^{\xi}\left(c^{\prime}\right)=[b a]_{r}^{0}$ for some r, so $\varphi^{\tau, \varsigma}\left(\xi^{\prime}\right)(e)=\xi^{\prime}\left(c^{\prime}\right)+1=(\xi(e)+1)+1=\xi(e)$.

This proves that $\varphi^{\tau, \varsigma} \circ \varphi^{\varsigma, \tau}$ is the identity. Analogously, $\varphi^{\varsigma, \tau} \circ \varphi^{\tau, \varsigma}$ is the identity.
Remark 6.2.33. For $\varsigma=\mu_{i}(\tau)$ the condition

$$
d_{i}=1 \wedge
$$

$\exists \xi \in Z^{1}(\tau), e^{\prime} \in \bar{X}_{1}(\varsigma), c b a$ triangle-induced in $X(\tau), r \in\{0,1\}: \Phi^{\xi}\left(e^{\prime}\right)=[b a]_{r}^{0}$
is non-empty if and only if i is a weight- 1 arc in a triangle of τ with type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}. Moreover, the arrow e^{\prime} is uniquely determined and independent of ξ.

Corollary 6.2.34. Let $\varsigma=\mu_{i}(\tau)$. If i is not the weight-1 pending arc in a triangle of τ with type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}, then $\varphi^{\varsigma, \tau}$ and $\varphi^{\tau, \varsigma}$ are mutually inverse vector-space isomorphisms.

Proof. Use Lemma 6.2.32 and Remark 6.2.33.
Corollary 6.2.35. Let $\varsigma=\mu_{i}(\tau)$ and $\tau=\mu_{j}(\varsigma)$. Two cocycles ξ_{1} and ξ_{2} in $Z^{1}(\tau)$ are cohomologous if and only if the cocycles $\varphi^{\varsigma, \tau}\left(\xi_{1}\right)$ and $\varphi^{\varsigma, \tau}\left(\xi_{2}\right)$ in $Z^{1}(\varsigma)$ are cohomologous.

Proof. If j is the weight- 1 arc in a triangle Δ of ς with type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}, then i is the weight-1 arc in a triangle of τ with type $\widetilde{B}_{1}, \widetilde{C}_{41}$, or \widetilde{C}_{14}.

If this is the case, let e^{\prime} be the unique arrow in $X^{d \neq 1}(\varsigma)$ that is induced by Δ and let $e^{\prime V}$ be its dual in $C^{1}(\varsigma)$ (i.e. $e^{\prime \vee}(a)=\delta_{a=e^{\prime}}$ for all $\left.a \in \bar{X}_{1}(\varsigma)\right)$. Otherwise, let $e^{\prime \vee}=0$.

In either case, $e^{\wedge \vee} \in Z^{1}(\varsigma)$ and the formula in the proof of Lemma 6.2.32 together with Remark 6.2.33 show that $f_{1}: \xi \mapsto \varphi^{\varsigma, \tau}(\xi)+e^{\nu \vee}$ defines an isomorphism $Z^{1}(\tau) \rightarrow Z^{1}(\varsigma)$ that makes the following diagram commute:

Here, ∂^{0} are the differentials $\operatorname{Hom}_{\mathbb{F}_{2}}\left(\partial_{1}, \mathbb{F}_{2}\right)$ and f_{0} is the isomorphism given by $k^{\vee} \mapsto k^{\vee}$ for vertices $k \neq i$ in $\bar{X}(\tau)$ and $i^{\vee} \mapsto j^{\vee}$. We get an induced isomorphism in cohomology

$$
H^{1}\left(C^{\bullet}(\tau)\right) \xrightarrow{f_{*}} H^{1}\left(C^{\bullet}(\varsigma)\right) .
$$

In particular, $\xi_{1}-\xi_{2}=0$ in $H^{1}\left(C^{\bullet}(\tau)\right)$ if and only if $\varphi^{\varsigma, \tau}\left(\xi_{1}\right)-\varphi^{\varsigma, \tau}\left(\xi_{2}\right)=f_{*}\left(\xi_{1}-\xi_{2}\right)=0$ in $H^{1}\left(C^{\bullet}(\varsigma)\right)$, which proves the corollary.

Definition 6.2.36. Let (τ, ξ) be a colored triangulation of $\boldsymbol{\Sigma}_{d}$ and $\varsigma=\mu_{i}(\tau)$. The colored triangulation $\mu_{i}(\tau, \xi):=\left(\varsigma, \varphi^{\varsigma, \tau}(\xi)\right)$ is obtained by fipping the $\operatorname{arc} i$ in (τ, ξ).

6.3 Modulation of a Colored Triangulation

The possible weights for vertices in $X(\tau, \xi)$ are $1,2,4$. Fixing a degree-4 comfy extension determines therefore a modulation of the modular quiver $X(\tau, \xi)$ over this extension.

Convention 6.3.1. For the rest of the chapter fix a degree-4 comfy extension $(L / K, \zeta, v)$.
Abbreviate $w:=v^{4} \in K$ and $u:=v^{2} \in K(u)=: E$.
Definition 6.3.2. The modulation $\mathcal{H}(\tau, \xi)$ of a colored triangulation (τ, ξ) is the modulation of $X(\tau, \xi)$ over $(L / K, \zeta, v)$.

The ground ring, species, path algebra, and completed path algebra of $\mathcal{H}(\tau, \xi)$ will be denoted by $R(\tau, \xi), A(\tau, \xi), H(\tau, \xi), \widehat{H}(\tau, \xi)$, respectively.

6.4 Potential of a Colored Triangulation

6.4.1 Potential Components Induced by Triangles

Definition 6.4.1. Let (τ, ξ) be a colored triangulation of $\boldsymbol{\Sigma}_{d}$ and let Δ be a triangle of τ. The potential $W^{\Delta}(\xi)$ induced by Δ is the following potential for $A(\tau, \xi)$:

$$
W^{\Delta}(\xi)= \begin{cases}c b a & \text { if } \Delta \text { has neither type } \widetilde{C}_{11} \text { nor type } \widetilde{C}_{44}, \\ & \text { where } c b a \text { is a path in } X(\tau) \text { induced by } \Delta . \\ c b_{0} a+c b_{1} a & \text { if } \Delta \text { has type } \widetilde{C}_{44}, \\ & \text { where } c b_{0} a \neq c b_{1} a \text { are paths in } X(\tau) \text { induced by } \Delta, \\ c b_{0} a+c b_{1} a u \quad & \text { if } \Delta \text { has type } \widetilde{C}_{11}, \\ & \text { where } c b_{0} a \neq c b_{1} a \text { are paths in } X(\tau) \text { induced by } \Delta \\ & \text { such that } r\left(b_{0}\right)=0 \text { and } r\left(b_{1}\right)=1 .\end{cases}
$$

Remark 6.4.2. Apparently, the potential $W^{\Delta}(\xi)$ looks the same for all ξ.
Example 6.4.3. Figures 6.A. 5 to 6.A. 7 show $W^{\Delta}=W^{\Delta}(\xi)$ for all types of triangles Δ.

6.4.2 Potential of a Colored Triangulation

Definition 6.4.4. The potential of a colored triangulation (τ, ξ) of $\boldsymbol{\Sigma}_{d}$ is defined as

$$
W(\tau, \xi)=\sum_{\Delta} W^{\Delta}(\xi)
$$

where Δ runs through all triangles of τ.
The species with potential of (τ, ξ) is $\mathcal{S}(\tau, \xi)=(A(\tau, \xi), W(\tau, \xi))$.
The Jacobian algebra of (τ, ξ) is $\mathcal{J}(\tau, \xi)=\mathcal{J}(W(\tau, \xi))$.
Remark 6.4.5. It is $(W(\tau, \xi))^{X_{1}^{\Delta}}=W^{\Delta}(\xi)$ for all triangles Δ of τ.
Example 6.4.6. For a colored triangulation (τ, ξ) with τ as in Example 6.2 .18 it is

$$
W(\tau, \xi)=c_{1}\left(b_{10}+b_{11}\right) a_{1}+c_{2} b_{2} a_{2}+c_{3} b_{3} a_{3}+c_{4} b_{4} a_{4} .
$$

Example 6.4.7. We compute the cyclic derivatives of the potential $W=W(\tau, \xi)$ for an arbitrary colored triangulation (τ, ξ). To do this, fix a triangle Δ of τ and let $X=X(\tau)$.
In view of Remark 6.4.5 we have $\partial_{a^{\dagger}}(W)=\partial_{a^{\dagger}}\left(W^{\Delta}(\xi)\right)$ for all arrows $j \stackrel{a}{\leftarrow} i$ in X^{Δ}. Note also that $z \cdot a^{\dagger}(a)=\pi_{\rho_{a}^{-1}}(z)$ for $z \in_{i} \widehat{H}_{j}$.

- If Δ has type A or \widetilde{B}_{4}, then X^{Δ} has the form $i \leftarrow^{c} k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow}_{\leftarrow} i$ and $W^{\Delta}(\xi)=c b a$. We have $d_{i k}=d_{k j}=d_{j i}=2$ and $\rho_{c^{-1}}=\rho_{b} \rho_{a}, \rho_{b^{-1}}=\rho_{a} \rho_{c}, \rho_{a^{-1}}=\rho_{c} \rho_{b}$. One computes

$$
\partial_{c^{\dagger}}(W)=b a, \quad \partial_{b^{\dagger}}(W)=a c, \quad \partial_{a^{\dagger}}(W)=c b .
$$

- If Δ has type \widetilde{C}_{44}, then X^{Δ} has the form $i \stackrel{c}{\leftarrow} k \underset{b_{1}}{b_{0}} j \stackrel{a}{\leftarrow} i$. Set $b:=b_{0}+b_{1} \in A(\tau, \xi)$ and $b^{\dagger}:=b_{0}^{\dagger}+b_{1}^{\dagger} \in A^{\dagger}(\tau, \xi)$ and $\rho_{b}:=\left.\rho_{b_{0}}\right|_{E}=\left.\rho_{b_{1}}\right|_{E}$. Then $W^{\Delta}(\xi)=c b_{0} a+c b_{1} a=c b a$. It is $\rho_{c^{-1}}=\rho_{b} \rho_{a}, \rho_{b^{-1}}=\rho_{a} \rho_{c}, \rho_{a^{-1}}=\rho_{c} \rho_{b}$ and $G_{j i}^{\rho_{b}}=\left\{\rho_{b_{0}}, \rho_{b_{1}}\right\}$ such that again

$$
\partial_{c^{\dagger}}(W)=b a, \quad \partial_{b^{\dagger}}(W)=a c, \quad \partial_{a^{\dagger}}(W)=c b .
$$

- If Δ has type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}, then X^{Δ} has the form $i \leftarrow^{c} k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ with $d_{k j}=2$ and $d_{i k}=d_{j i}=1$. It is $W^{\Delta}(\xi)=c b a$ and

$$
\partial_{c^{\dagger}}(W)=b a, \quad \partial_{b^{\dagger}}(W)=\pi_{\rho_{b}^{-1}}(a c), \quad \partial_{a^{\dagger}}(W)=c b .
$$

 Then $W^{\Delta}(\xi)=c b_{0} a+c b_{1} a u$ and

$$
\partial_{c^{\dagger}}(W)=b_{0} a+b_{1} a u, \quad \partial_{b_{0}^{\dagger}}(W)=a c, \quad \partial_{b_{1}^{\dagger}}(W)=a u c, \quad \partial_{a^{\dagger}}(W)=c b_{0}+u c b_{1} .
$$

6.5 Compatibility of Flip and Mutation

All is said and done to prove the first main result of this chapter: the compatibility of flip and mutation. It is the variant of Theorems 5.4.1 and 5.4.6 for colored triangulations.

Convention 6.5.1. We make use of the obvious generalization of Convention 5.3.13 for colored triangulations (replace $Q, \tau, \varsigma=\widetilde{\mu}_{i}(\tau)$ by $X,(\tau, \xi),\left(\varsigma, \xi^{\prime}\right)=\widetilde{\mu}_{i}(\tau, \xi)$, respectively).

Theorem 6.5.2. $\mathcal{S}\left(\mu_{i}(\tau, \xi)\right) \approx_{R} \mu_{i}(\mathcal{S}(\tau, \xi))$ for all colored triangulations (τ, ξ) and $i \in \tau$.

Proof. The proof is similar to the proof of Theorem 5.4.1.
Let $\left(\varsigma, \xi^{\prime}\right)=\mu_{i}(\tau, \xi)$ and $\tau=\mu_{j}(\varsigma)$. Abbreviate $X=X(\tau, i), X^{\prime}=X(\varsigma, j), \widetilde{X}=\widetilde{\mu}_{i}(X)$. Consider $X, X^{\prime}, \widetilde{X}$ as modular subquivers of $X(\tau, \xi), X\left(\varsigma, \xi^{\prime}\right), \widetilde{\mu}_{i}(X(\tau, \xi))$, respectively.
Recall that $X(\tau)=X\urcorner \oplus X$ and $X(\varsigma)=X\urcorner \oplus X^{\prime}$ and $\left.\widetilde{\mu}_{i}(X(\tau))=X\right\urcorner \oplus \widetilde{X}$ for some $\left.X\right\urcorner$.
Let $\sigma=\sigma^{\xi}$ and $\Phi=\Phi^{\sigma}$ be the map $X\left(\varsigma, \xi^{\prime}\right) \hookrightarrow \widetilde{\mu}_{i}(X(\tau, \xi))$ described in Definition 6.2.20, which is a morphism of modular quivers by Lemma 6.2.32. It restricts to a map $X^{\prime} \hookrightarrow \widetilde{X}$ and induces an injective $R(\tau)$-algebra homomorphism

$$
H^{\prime}:=H\left(\varsigma, \xi^{\prime}\right) \xrightarrow{\Phi} \widetilde{\mu}_{i}(H(\tau, \xi))=: \widetilde{H} .
$$

Let $W=(W(\tau, \xi))^{X}$ and $W^{\prime}=\left(W\left(\varsigma, \xi^{\prime}\right)\right)^{X^{\prime}}$ and $\widetilde{\operatorname{Aut}}=\operatorname{Aut}_{\widetilde{\mu}_{i}(X(\tau, \xi))-\widetilde{X}_{1}}(\widetilde{H})$.
We will proceed as follows:
(1) Compute the premutation $\widetilde{W}=\widetilde{\mu}_{i}(W)$.
(2) Construct $\widetilde{\vartheta} \in \widetilde{\text { Aut }}$ such that $\widetilde{\vartheta}(\widetilde{W})$ is in \widetilde{X}_{1}-split form.
(3) Compute $\widetilde{W}^{\prime}=\operatorname{red}_{\tilde{X}_{1}}(\widetilde{\vartheta}(\widetilde{W}))$ and $\widetilde{T}=\operatorname{triv}_{\widetilde{X}_{1}}(\widetilde{\vartheta}(\widetilde{W})) \subseteq \widetilde{X}$.

We will choose $\widetilde{\vartheta}$ in such a way that $\Phi\left(W^{\prime}\right)=\widetilde{W}^{\prime}$ and $\widetilde{X}=\Phi\left(X^{\prime}\right) \oplus \widetilde{T}$. This will prove the theorem, since then

$$
\Phi\left(W\left(\varsigma, \xi^{\prime}\right)\right)=\operatorname{red}_{\widetilde{X}_{1}}\left(\widetilde{\vartheta}\left(\widetilde{\mu}_{i}(W(\tau, \xi))\right)\right) .
$$

For the construction of $\widetilde{\vartheta}$ we distinguish four cases: (a) i is a non-pending arc; (b) i is a pending arc in a triangle of type \widetilde{C}_{11} or $\widetilde{C}_{44} ;(\mathrm{c}) i$ is the weight- 4 arc in a triangle of type $\widetilde{B}_{4}, \widetilde{C}_{14}$, or $\widetilde{C}_{41} ;(\mathrm{d}) i$ is the weight- 1 arc in a triangle of type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}.
(a) Let us assume that i is non-pending. Then $d_{i}=2$ and i is an arc shared by two triangles Δ_{0} and Δ_{1} of τ (see Tables 6.A. 2 and 6.A.3).

Let $i \stackrel{a_{q}}{\longleftarrow} h_{q} \stackrel{c_{q r}}{\longleftarrow} k_{q} \stackrel{b_{q}}{\longleftarrow} i$ be the cyclic paths in $X(\tau)$ induced by Δ_{q} such that $r\left(c_{q r}\right)=r$, where $q, r \in\{0,1\}$ with $r=1$ only if $h_{q}, k_{q} \in \tau^{d=4}$ or $h_{q}, k_{q} \in \tau^{d=1}$. We set $\bar{q}:=1-q$ and

$$
\begin{array}{ll}
x_{q}:=\delta_{h_{q}, k_{q} \in \tau^{d=4}}, & x_{q}^{\prime}:=\delta_{h_{q}, k_{\bar{q}} \in \tau^{d=4}} \\
y_{q}:=\delta_{h_{q}, k_{q} \in \tau^{d=1}}, & y_{q}^{\prime}:=\delta_{h_{q}, k_{\bar{q}} \in \tau^{d=1}}
\end{array}
$$

Then $x_{q} y_{q}=x_{q}^{\prime} y_{q}^{\prime}=x_{q}^{\prime} y_{q}=x_{q} y_{q}^{\prime}=0$.
Now $X=X^{\Delta_{0}} \oplus X^{\Delta_{1}}$ and $W=\sum_{q \in\{0,1\}} W_{q}$ with

$$
W_{q}=W^{\Delta_{q}}(\xi)=c_{q 0} b_{q} a_{q}+x_{q} c_{q 1} b_{q} a_{q}+y_{q} c_{q 1} b_{q} u a_{q}
$$

We compute the premutation as $\widetilde{W}=\sum_{q \in\{0,1\}} \widetilde{W}_{q}$ where

$$
\begin{aligned}
\widetilde{W}_{q} & =c_{q 0}\left[b_{q} a_{q}\right]_{!0}^{0}+x_{q} c_{q 1}\left[b_{q} a_{q}\right]_{!1}^{0}+y_{q} \quad c_{q 1}\left[b_{q} a_{q}\right]_{0}^{1} \\
& +a_{q}^{*} b_{q}^{*}\left[b_{q} a_{q}\right]_{0}^{0}+x_{q} a_{q}^{*} b_{q}^{*}\left[b_{q} a_{q}\right]_{1}^{0}+y_{q} a_{q}^{*} u^{-1} b_{q}^{*}\left[b_{q} a_{q}\right]_{0}^{1} \\
& +a_{q}^{*} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{0}^{0}+x_{q}^{\prime} a_{q}^{*} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{1}^{0}+y_{q}^{\prime} a_{q}^{*} u^{-1} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{0}^{1} .
\end{aligned}
$$

Let $\rho_{q r}:=\rho_{c_{q r}}=\left(\rho_{\left[b_{q} a_{q}\right]_{!}^{0}}\right)^{-1}$ and $\widetilde{\psi}_{1 q} \in \widetilde{\text { Aut }}$ the element determined by the rules:

$$
\begin{aligned}
c_{q 0} & \mapsto c_{q 0}-\pi_{\rho_{q 0}}\left(a_{q}^{*} b_{q}^{*}\right) \\
c_{q 1} & \mapsto c_{q 1}-x_{q} \pi_{\rho_{q 1}}\left(a_{q}^{*} b_{q}^{*}\right)-y_{q} a_{q}^{*} u^{-1} b_{q}^{*} \quad\left(\text { if } x_{q} \neq 0 \text { or } y_{q} \neq 0\right)
\end{aligned}
$$

As potentials $\nu\left[b_{q} a_{q}\right]_{!r}^{0}=\pi_{\rho_{q r}}(\nu)\left[b_{q} a_{q}\right]_{!r}^{0}$ for $\nu \in \widetilde{H}$ (see Corollary 2.6.56). Now we have $\widetilde{\psi}_{1 q}\left(\widetilde{W}_{\bar{q}}\right)=\widetilde{W}_{\bar{q}}$ and a straightforward calculation shows

$$
\begin{aligned}
\widetilde{\psi}_{1 q}\left(\widetilde{W}_{q}\right) & =c_{q 0}\left[b_{q} a_{q}\right]_{!0}^{0}+x_{q} c_{q 1}\left[b_{q} a_{q}\right]_{!1}^{0}+y_{q} \quad c_{q 1}\left[b_{q} a_{q}\right]_{0}^{1} \\
& +a_{q}^{*} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{0}^{0}+x_{q}^{\prime} a_{q}^{*} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{1}^{0}+y_{q}^{\prime} a_{q}^{*} u^{-1} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{0}^{1}
\end{aligned}
$$

If $y_{q}^{\prime} \neq 0$, let $\widetilde{\psi}_{2 q} \in \widetilde{\text { Aut }}$ be the element defined by the substitutions

$$
a_{q}^{*} \mapsto a_{q}^{*} u, \quad\left[b_{\bar{q}} a_{q}\right]_{0}^{0} \mapsto\left[b_{\bar{q}} a_{q}\right]_{0}^{1}, \quad\left[b_{\bar{q}} a_{q}\right]_{0}^{1} \mapsto\left[b_{\bar{q}} a_{q}\right]_{0}^{0}
$$

Otherwise (in particular, if $x_{q}^{\prime} \neq 0$), let $\widetilde{\psi}_{2 q}$ be the identity.
With $\widetilde{\vartheta}=\widetilde{\psi}_{22} \circ \widetilde{\psi}_{21} \circ \widetilde{\psi}_{12} \circ \widetilde{\psi}_{11}$ it is $\widetilde{W}^{\prime}=\operatorname{red}_{\widetilde{X}_{1}}(\widetilde{\vartheta}(\widetilde{W}))=\sum_{q \in\{0,1\}} \widetilde{W}_{q}^{\prime}$ where

$$
\widetilde{W}_{q}^{\prime}=a_{q}^{*} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{0}^{0}+x_{q}^{\prime} a_{q}^{*} b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{1}^{0}+y_{q}^{\prime} a_{q}^{*} u b_{\bar{q}}^{*}\left[b_{\bar{q}} a_{q}\right]_{0}^{1}
$$

By the properties of Φ (see Remark 6.2.14) there is for each $q \in\{0,1\}$ a triangle Δ_{q}^{\prime} of ς inducing a path $b_{q}^{\vee} c_{q}^{\vee} a_{q}^{\vee}$ such that $\Phi\left(b_{q}^{\vee}\right)=b_{\bar{q}}^{*}, \Phi\left(c_{q}^{\vee}\right)=\left[b_{\bar{q}} a_{q}\right]_{r\left(c_{q}^{\vee}\right)}^{0}, \Phi\left(a_{q}^{\vee}\right)=a_{q}^{*}$

This readily implies $\Phi\left(W^{\prime}\right)=\sum_{q \in\{0,1\}} \Phi\left(W^{\Delta_{q}^{\prime}}\left(\xi^{\prime}\right)\right)=\widetilde{W^{\prime}}$ as desired.
Finally, observe that $\widetilde{T}=\operatorname{triv}_{\widetilde{X}_{1}}(\widetilde{\vartheta}(\widetilde{W}))$ coincides with the modular quiver \widetilde{T} described in the proof of Lemma 6.2.19. Hence, $\widetilde{X}=\Phi\left(X^{\prime}\right) \oplus \widetilde{T}$.
(b) Let i be a pending arc in a triangle Δ of type \widetilde{C}_{11} or \widetilde{C}_{44}. Since the other case is symmetric, we will assume that the arctype for i is \widetilde{C}^{-}(see Table 6.A.4).

There are two paths $i \stackrel{a}{\leftarrow} \stackrel{c}{\leftarrow} \stackrel{b_{r}}{\leftarrow} i$ with $r\left(b_{r}\right)=r \in\{0,1\}$ in $X(\tau)$ induced by Δ.
We have $X=X^{\Delta}$ and $W=W^{\Delta}(\xi)=c b_{0} a+c b_{1} a u^{x}$ for $x:=\delta_{i \in \tau^{d=1}}$. Thus

$$
\begin{aligned}
\widetilde{W} & =c\left[b_{0} a\right]_{0}^{0}+c\left[b_{1} a\right]_{0}^{0} u^{x} \\
& +a^{*} b_{0}^{*}\left[b_{0} a\right]_{0}^{0}+a^{*} b_{1}^{*}\left[b_{1} a\right]_{0}^{0} .
\end{aligned}
$$

Let $\widetilde{\varphi} \in \widetilde{\text { Aut }}$ be the element defined by $b_{1}^{*} \mapsto-b_{1}^{*},\left[b_{1} a\right]_{0}^{0} \mapsto\left(\left[b_{1} a\right]_{0}^{0}-\left[b_{0} a\right]_{0}^{0}\right) u^{-x}$. Then

$$
\widetilde{\varphi}(\widetilde{W})=c\left[b_{1} a\right]_{0}^{0}+a^{*} b_{0}^{*}\left[b_{0} a\right]_{0}^{0}-a^{*} b_{1}^{*}\left[b_{1} a\right]_{0}^{0} u^{-x}+a^{*} b_{1}^{*}\left[b_{0} a\right]_{0}^{0} u^{-x}
$$

Let $\widetilde{\psi_{1}} \in \widetilde{\text { Aut }}$ be given by $c \mapsto c+\pi_{\rho_{c}}\left(u^{-x} a^{*} b_{1}^{*}\right)$.
If $x \neq 0$, let $\widetilde{\psi}_{2} \in \widetilde{\text { Aut }}$ be given by $a_{q}^{*} \mapsto u a_{q}^{*}, b_{0}^{*} \mapsto b_{1}^{*}, b_{1}^{*} \mapsto b_{0}^{*}$. Otherwise, let $\widetilde{\psi_{2}}=\mathrm{id}$.
Let $\widetilde{\vartheta}=\widetilde{\psi_{2}} \circ \widetilde{\psi_{1}} \circ \widetilde{\varphi}$. Then $\widetilde{W^{\prime}}=a^{*} b_{0}^{*}\left[b_{0} a\right]_{0}^{0}+a^{*} b_{1}^{*}\left[b_{0} a\right]_{0}^{0} u^{x}=\Phi\left(W^{\prime}\right)$ and $\widetilde{X}=\Phi\left(X^{\prime}\right) \oplus \widetilde{T}$.
(c) Let i be the weight- 4 arc in a triangle Δ of type $\widetilde{B}_{4}, \widetilde{C}_{14}$, or \widetilde{C}_{41}.

There is a unique cyclic path $i \stackrel{a}{\leftarrow} \stackrel{c}{\leftarrow} \stackrel{b}{\leftarrow} i$ in $X(\tau)$ induced by Δ.
It is $X=X^{\Delta}, W=W^{\Delta}(\xi)=c b a$, and

$$
\begin{array}{rlr}
\widetilde{W} & =c[b a]_{0}^{0}+\quad c[b a]_{0}^{1} \\
& +a^{*} b^{*}[b a]_{0}^{0}+a^{*} u^{-1} b^{*}[b a]_{0}^{1} .
\end{array}
$$

The substitution $[b a]_{0}^{1} \mapsto[b a]_{0}^{1}-[b a]_{0}^{0}$ defines $\widetilde{\varphi} \in \widetilde{\text { Aut }}$ such that

$$
\widetilde{\varphi}(\widetilde{W})=c[b a]_{0}^{1}+a^{*}\left(1-u^{-1}\right) b^{*}[b a]_{0}^{0}+a^{*} u^{-1} b^{*}[b a]_{0}^{1} .
$$

Let $\widetilde{\psi} \in \widetilde{\text { Aut }}$ be given by $a^{*} \mapsto a^{*} z, c \mapsto c-\pi_{\rho_{c}}\left(a^{*} z u^{-1} b^{*}\right)$ for $z=\left(1-u^{-1}\right)^{-1}$.
For $\widetilde{\vartheta}=\widetilde{\psi} \circ \widetilde{\varphi}$ we have $\widetilde{W^{\prime}}=a^{*} b^{*}[b a]_{0}^{0}=\Phi\left(W^{\prime}\right)$ and $\widetilde{X}=\Phi\left(X^{\prime}\right) \oplus \widetilde{T}$.
(d) Let i be the weight- 1 arc in a triangle of type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}.

There is a unique cyclic path $i \stackrel{a}{\leftarrow} \stackrel{c}{\leftarrow} \stackrel{b}{\leftarrow} i$ in $X(\tau)$ induced by Δ.
It is $X=X^{\Delta}, W=W^{\Delta}(\xi)=c b a$, and

$$
\widetilde{W}=c[b a]_{\sigma_{c}}^{0}+a^{*} b^{*}[b a]_{0}^{0}+a^{*} b^{*}[b a]_{1}^{0}
$$

Let $\widetilde{\vartheta}$ be given by the substitution $c \mapsto c-\pi_{\rho_{c}}\left(a^{*} b^{*}\right)$.
Then $\widetilde{W^{\prime}}=a^{*} b^{*}[b a]_{\sigma_{c}+1}^{0}=\Phi\left(W^{\prime}\right)$ and $\widetilde{X}=\Phi\left(X^{\prime}\right) \oplus \widetilde{T}$.
Corollary 6.5.3. $\mathcal{S}(\tau, \xi)$ is non-degenerate for every colored triangulation (τ, ξ) of $\boldsymbol{\Sigma}_{d}$.

Proof. This is a direct consequence of Theorem 6.5.2 and Remark 6.2.9.

6.6 Uniqueness of Potentials

In this section we prove that $A(\tau, \xi)$ admits up to R-equivalence exactly one non-degenerate potential, namely $W(\tau, \xi)$, if $\boldsymbol{\Sigma}_{d}$ is not a monogon with constant $\mathbb{O} \xrightarrow{d}\{1,4\}$.

As a preparation for the proof we collect a few combinatorial facts in the lemmas below.
Convention 6.6.1. Fix a colored triangulation (τ, ξ) of $\boldsymbol{\Sigma}_{d}$.
Abbreviate $X=X(\tau), H=H(\tau, \xi), \widehat{H}=\widehat{H}(\tau, \xi)$.
Denote by $q_{j i}$ the number of arrows $j \leftarrow i$ in X.

Every cyclic path of length three in X contains at most one arrow $j \leftarrow i$ with $q_{j i} \neq 1$. In other words, the paths $i \stackrel{c}{\leftarrow} k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ with $q_{k j}=q_{j i}=1$ are up to rotation all cyclic paths of length three in X. We record this fact in the next lemma.

Lemma 6.6.2. For all $i, j, k \in X_{0}$ with $q_{k j}, q_{j i}>0$ either $q_{k j}=1$ or $q_{j i}=1$.

Proof. This follows easily by inspecting the puzzle-piece decomposition of τ.

Remark 6.2.9 and Lemma 6.6.2 allow us to label the arrows of each $\Delta \in X_{2}$ as follows:
(a) Pick a path $i \stackrel{c_{\Delta}}{\longleftarrow} k \stackrel{b_{\Delta}}{\longleftarrow} j \stackrel{a_{\Delta}}{\longleftarrow} i$ in X induced by Δ with $q_{k j}=q_{j i}=1$ and $r\left(c_{\Delta}\right)=0$.
(b) Whenever $q_{i k}>1$ let $i \stackrel{c_{\Delta}}{\leftarrow} k$ be the unique arrow in X unequal c_{Δ}.
(c) Whenever $q_{i k}=1$ set $\underline{c}_{\Delta}:=0$ regarded as an element of H.

Convention 6.6.3. Fix such a labeling for the rest of the section.
Lemma 6.6.4. If cba is a cyclic path in X with $\Delta(a) \neq \Delta(c) \neq \Delta(b)$, it is $\Delta(b)=\Delta(a)$. More generally, X contains no cyclic path $a_{\ell} \cdots a_{1}$ with $\Delta\left(a_{q}\right) \neq \Delta\left(a_{q-1}\right)$ for all $q \in \mathbb{Z} / \ell \mathbb{Z}$.

Proof. Assume to the contrary $p=a_{\ell} \cdots a_{1}$ is a cyclic path in X with $\Delta\left(a_{q}\right) \neq \Delta\left(a_{q-1}\right)$ for all $q \in \mathbb{Z} / \ell \mathbb{Z}$. Then all vertices of p are shared arcs in the triangulation τ and by definition of the arrows in X the triangles $\Delta\left(a_{1}\right), \ldots, \Delta\left(a_{\ell}\right)$ must form a configuration as depicted in Definition 5.3.6, a contradiction to the fact that $\boldsymbol{\Sigma}$ is unpunctured.

We will need the following more general version of the previous lemma:

Lemma 6.6.5. Let $p=a_{\ell} \cdots a_{1}$ be a cyclic path in X. Then there exists $q \in \mathbb{Z} / \ell \mathbb{Z}$ such that either $\Delta\left(a_{q}\right)=\Delta\left(a_{q-1}\right)$ is a triangle of type A or $\Delta\left(a_{q+1}\right)=\Delta\left(a_{q}\right)=\Delta\left(a_{q-1}\right)$.

Proof. Assume p does not verify the property in the lemma. Then, after possibly replacing p by $a_{\ell-1} \cdots a_{1} a_{\ell}$, we can write $p=p_{s} \cdots p_{1}$ where each p_{q} is either an arrow or a path $\stackrel{b_{q}}{\leftarrow} \stackrel{a_{q}}{\leftarrow}$ in X that connects two shared arcs in τ and, in the latter case, $\Delta\left(p_{q}\right):=\Delta\left(b_{q}\right)=\Delta\left(a_{q}\right)$ is a triangle of type \widetilde{B}. Moreover, we must have $\Delta\left(p_{q}\right) \neq \Delta\left(p_{q-1}\right)$ for all $q \in \mathbb{Z} / s \mathbb{Z}$. Analogously as in the proof of Lemma 6.6.4 the triangles $\Delta\left(p_{1}\right), \ldots, \Delta\left(p_{s}\right)$ would form a configuration as depicted in Definition 5.3.6 in contradiction to the fact that $\boldsymbol{\Sigma}$ is unpunctured.

Lemma 6.6.6. If $i \stackrel{c}{\leftarrow} k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ is a path in X with $q_{k j}=q_{j i}=1$, then either cba is triangle-induced or there is a unique cyclic path cba in X induced by some triangle $\underline{\Delta}$ such that $\underline{c b a}$ is induced by some triangle Δ and both Δ and $\underline{\Delta}$ are triangles of type A.

Proof. If $\Delta(c)=\Delta(b)$, then we already have $\Delta(c)=\Delta(b)=\Delta(a)$ because of $q_{j i}=1$. Similarly, $\Delta(a)=\Delta(c)$ implies that $c b a$ is triangle-induced. If $\Delta(a) \neq \Delta(c) \neq \Delta(b)$, we must have $\Delta:=\Delta(b)=\Delta(a)$ according to Lemma 6.6.4. Since $c b a$ is not triangle-induced, necessarily $q_{i k}>1$ or, equivalently, $q_{i k}=2$. Because of $\Delta(c) \neq \Delta(b)$ the arcs i and k must be shared by two triangles Δ and $\underline{\Delta}$ of type A (see Table 6.A.3). The claim follows.

Proposition 6.6.7. Let W be a non-degenerate potential for $A(\tau, \xi)$. Then there exists a potential $W_{>3}$ with $\operatorname{ord}\left(W_{>3}\right)>3$ such that $W \sim_{R} W(\tau, \xi)+W_{>3}$.

Proof. For $x \in\{4,1\}$ denote by X_{2}^{x} the subset of X_{2} consisting of triangles of type $\widetilde{C}_{x x}$. Let $X_{2}^{0}=X_{2} \backslash\left(X_{2}^{4} \cup X_{2}^{1}\right)$.

With Lemmas 6.6.2 and 6.6.6 it is not hard to see that $W=\sum_{q \in\{0,4,1\}} \sum_{\Delta \in X_{2}^{q}} W_{\Delta}+W_{>3}$ where $\operatorname{ord}\left(W_{>3}\right)>3$ and

$$
W_{\Delta}= \begin{cases}x_{\Delta} c_{\Delta} b_{\Delta} a_{\Delta}+\underline{x}_{\Delta} \underline{c}_{\Delta} b_{\Delta} a_{\Delta} & \text { for } \Delta \in X_{2}^{0} \text { and some } x_{\Delta}, \underline{x}_{\Delta} \in E \\ c_{\Delta} \alpha_{\Delta} b_{\Delta} a_{\Delta}+\underline{c}_{\Delta} \underline{\alpha}_{\Delta} b_{\Delta} a_{\Delta} & \text { for } \Delta \in X_{2}^{4} \text { and some } \alpha_{\Delta}, \underline{\alpha}_{\Delta} \in L \\ c_{\Delta} b_{\Delta} z_{\Delta} a_{\Delta}+\underline{c}_{\Delta} b_{\Delta} \underline{z}_{\Delta} a_{\Delta} & \text { for } \Delta \in X_{2}^{1} \text { and some } z_{\Delta}, \underline{z}_{\Delta} \in E\end{cases}
$$

Step by step, we will replace W with $R(\tau)$-equivalent potentials, thereby achieving in a first step (a) $x_{\Delta}=1$ and $\underline{x}_{\Delta}=0$ for $\Delta \in X_{2}^{0}$, in a second step (b) $\alpha_{\Delta}=\underline{\alpha}_{\Delta}=1$ for $\Delta \in X_{2}^{4}$ and in the final step (c) $z_{\Delta}=1$ and $\underline{z}_{\Delta}=u$ for $\Delta \in X_{2}^{1}$. This will prove the proposition.
(a) Let $\Delta \in X_{2}^{0}$.

If $\underline{c}_{\Delta}=0$, then $\left(W_{\Delta}\right)^{X_{1}^{\prime}}=W_{\Delta}$ for $X^{\prime}=X^{\Delta}$. Moreover, $x_{\Delta} \in E^{\times}$because of the nondegeneracy. Replacing W with $\varphi(W)$, where $\varphi \in \operatorname{Aut}_{X-X_{1}^{\prime}}(H)$ is given by $c_{\Delta} \mapsto x_{\Delta}^{-1} c_{\Delta}$, we get $x_{\Delta}=1$ and can take $\underline{x}_{\Delta}=0$.

If $\underline{c}_{\Delta} \neq 0$, there exists $\underline{\Delta} \in X_{2}^{0}$ inducing $\underline{c}_{\Delta}=c_{\Delta}$. We have $\left(W_{\Delta}\right)^{X_{1}^{\prime}}=W_{\Delta}+W_{\Delta}$ for $X^{\prime}:=X^{\Delta} \oplus X^{\Delta}$. It is not hard to check that the non-degeneracy of W implies that
the inverse matrix

$$
\left(\begin{array}{ll}
\nu_{\Delta} & \underline{\nu}_{\Delta} \\
\underline{\nu}_{\Delta} & \nu_{\Delta}
\end{array}\right)=\left(\begin{array}{ll}
x_{\Delta} & \underline{x}_{\Delta} \\
\underline{x}_{\Delta} & x_{\Delta}
\end{array}\right)^{-1}
$$

exists. Therefore the substitutions $c_{\Delta} \mapsto \nu_{\Delta} c_{\Delta}+\underline{\nu}_{\Delta} \underline{c}_{\Delta}$ and $\underline{c}_{\Delta} \mapsto \underline{\nu}_{\Delta} c_{\Delta}+\nu_{\Delta} \underline{c}_{\Delta}$ define an element $\varphi \in \operatorname{Aut}_{X-X_{1}^{\prime}}(H)$. Replacing W by $\varphi(W)$ we attain $x_{\Delta}=1$ and $\underline{x}_{\Delta}=0$.
(b) For all $\Delta \in X_{2}^{4}$ and $X^{\prime}:=X^{\Delta}$ we have $\left(W_{\Delta}\right)^{X_{1}^{\prime}}=W_{\Delta}$. The non-degeneracy of W implies $\alpha_{\Delta}, \underline{\alpha}_{\Delta} \in L^{\times}$. Clearly, $c_{\Delta} \mapsto c_{\Delta} \alpha_{\Delta}^{-1}, \underline{c}_{\Delta} \mapsto \underline{c}_{\Delta} \underline{\alpha}_{\Delta}^{-1}$ defines $\varphi \in \operatorname{Aut}_{X-X_{1}^{\prime}}(H)$ such that, after replacing W with $\varphi(W)$, one has $\alpha_{\Delta}=\underline{\alpha}_{\Delta}=1$.
(c) For all $\Delta \in X_{2}^{1}$ and $X^{\prime}:=X^{\Delta}$ we have $\left(W_{\Delta}\right)^{X_{1}^{\prime}}=W_{\Delta}$. The non-degeneracy implies that $z_{\Delta}, \underline{z}_{\Delta}$ are linearly independent over K. Write $z_{\Delta}^{-1} \underline{z}_{\Delta}=x+y u$ with $x \in K, y \in K^{\times}$. Define an element $\varphi \in \operatorname{Aut}_{X-X_{1}^{\prime}}(H)$ by $b_{\Delta} \mapsto b_{\Delta} z_{\Delta}^{-1}, c_{\Delta} \mapsto c_{\Delta}-x y^{-1} \underline{c}_{\Delta}, \underline{c}_{\Delta} \mapsto y^{-1} \underline{c}_{\Delta}$. Replacing W with $\varphi(W)$ we achieve $z_{\Delta}=1$ and $\underline{z}_{\Delta}=u$.

Theorem 6.6.8. Assume $\boldsymbol{\Sigma}_{d}$ is not a monogon where all orbifold points have the same weight. Then every non-degenerate potential W for $A(\tau, \xi)$ is $R(\tau)$-equivalent to $W(\tau, \xi)$.

Proof. The assumption guarantees the existence of a triangulation ς of $\boldsymbol{\Sigma}_{d}$ without triangles of type \widetilde{C}_{11} and \widetilde{C}_{44}.

It is $\left(\varsigma, \xi^{\prime}\right)=\mu_{i_{\ell}} \cdots \mu_{i_{1}}(\tau, \xi)$ for some ξ^{\prime} and some $\operatorname{arcs} i_{1}, \ldots, i_{\ell}$ by Proposition 5.1.32. Now $W^{\prime}:=\mu_{i_{\ell}} \cdots \mu_{i_{1}}(W) \sim_{R} W\left(\varsigma, \xi^{\prime}\right) \Leftrightarrow W \sim_{R} W(\tau, \xi)$ by Theorems 2.6.101 and 6.5.2.

Replacing (τ, ξ) and W by $\left(\varsigma, \xi^{\prime}\right)$ and W^{\prime}, we can assume that τ does neither contain any triangle of type \widetilde{C}_{11} nor any of type \widetilde{C}_{44}. Then

$$
W(\tau, \xi)=\sum_{\Delta \in X_{2}} c_{\Delta} b_{\Delta} a_{\Delta}
$$

Now assume that for some $k \in \mathbb{N}$ we have a potential

$$
W_{k}=W(\tau, \xi)+W_{>k+3}
$$

with $\operatorname{ord}\left(W_{>k+3}\right)>k+3$. In view of Lemma 6.6 .5 we can write

$$
W_{>k+3}=\sum_{\Delta \in X_{2}}\left(\nu_{c_{\Delta}} b_{\Delta} a_{\Delta}+c_{\Delta} \nu_{b_{\Delta}} a_{\Delta}+c_{\Delta} b_{\Delta} \nu_{a_{\Delta}}\right)
$$

for some elements $\nu_{a} \in \widehat{H}$ with $\operatorname{ord}\left(\nu_{a}\right)>k+1$ such that $\nu_{a}=0$ if $j \stackrel{a}{\leftarrow} i$ is induced by a triangle of type $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41} and $d_{j i} \neq 1$.

Let $\sigma=\sigma^{\xi}$. By the choice of ξ (see Lemma 6.2.19) we have $\sigma_{a}=\sigma_{b}+\sigma_{c}$ in $\mathbb{Z} / d_{j i} \mathbb{Z}$ for all triangle-induced cyclic paths $i \stackrel{c}{\leftarrow} k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ in X such that we can assume $\nu_{a}=\pi_{\rho_{a}}\left(\nu_{a}\right)$ (note that, if $\nu_{a} \neq 0$, either $d_{j i}=1$ or $d_{k i}=d_{j k}=d_{j i}$; compare Corollary 2.6.56).

The depth of the unitriangular automorphism φ_{k+1} of \widehat{H} given by the rules $a \mapsto a-\nu_{a}$ for $a \in X_{1}$ is at least $k+1$. A straightforward computation shows

$$
W_{k+1}:=\varphi_{k+1}\left(W_{k}\right)=W(\tau, \xi)+W_{>(k+1)+3}
$$

with $\operatorname{ord}\left(W_{>(k+1)+3}\right)>(k+1)+3$.
Replacing W with an equivalent potential like in Proposition 6.6.7, we can take $W_{0}=W$. The construction just described yields a sequence $\left(\varphi_{k}\right)_{k \in \mathbb{N}_{+}}$of unitriangular automorphisms with $\lim _{k} \operatorname{depth}\left(\varphi_{k}\right)=\infty$ and $\lim _{k} W_{k}=W(\tau, \xi)$ for $W_{k}=\widetilde{\varphi}_{k}(W)$ and $\widetilde{\varphi}_{k}=\varphi_{k} \cdots \varphi_{1}$. Thus $W(\tau, \xi)=\widetilde{\varphi}(W)$ for $\widetilde{\varphi}=\lim _{r} \widetilde{\varphi}_{r}$, which proves the theorem.

6.7 Jacobian Algebras

The Jacobian algebras $\mathcal{J}(\tau, \xi)$ will be shown to be finite-dimensional. Moreover, we prove that for each fixed triangulation τ the isomorphism classes of Jacobian algebras $\mathcal{J}(\tau, \xi)$ are parametrized by a cohomology group. More precisely, there is a bijection

$$
\begin{aligned}
H^{1}\left(C^{\bullet}(\tau)\right) & \cong \\
{[\xi] } & \left.\longmapsto \mathcal{J}(\tau, \xi) \mid \xi \in Z^{1}(\tau)\right\} / \cong_{\tau} \\
& \mathcal{J}(\tau, \xi)
\end{aligned}
$$

where the set on the right-hand side consists of isomorphism classes of $K^{X_{0}(\tau)}$-algebras.
As a preparation, we need the following lemma.
Lemma 6.7.1. For every path $i_{1} \stackrel{a_{\ell}}{\longleftarrow} i_{\ell} \stackrel{a_{\ell-1}}{\longleftarrow} \ldots \stackrel{a_{1}}{\longleftarrow} i_{1}$ in $X(\tau)$ of length $\ell>3\left|X_{0}(\tau)\right|$ there is $1<q \leq \ell$ such that $\Delta\left(a_{q}\right)=\Delta\left(a_{q-1}\right)$ and i_{q} is a shared arc in τ.

Proof. Let $p=a_{\ell} \cdots a_{1}$ if $a_{\ell} \cdots a_{1}$ starts at a shared arc. Otherwise, let p be one of the cyclic paths $a_{1} a_{\ell} \cdots a_{2}$ and $a_{\ell-1} \cdots a_{1} a_{\ell}$ such that p starts at a shared arc.

Write $p=p_{s} \cdots p_{1}$ such that each path p_{r} connects two shared arcs and has unshared arcs as its inner vertices. Then all arrows of p_{r} are induced by the same triangle Δ_{r} of τ.

Arguing as in the proof of Lemma 6.6 .5 we must have either $\Delta_{r}=\Delta_{r-1}$ for some $1<r \leq s$ or $\Delta_{1}=\Delta_{s}$. If $\Delta_{r} \neq \Delta_{r-1}$ for all $1<r \leq s$, then $\Delta_{1}, \ldots, \Delta_{s-1}$ would be pairwise different and form a configuration looking as follows:

In particular, we would have $s \leq\left|X_{0}(\tau)\right|$. Since the length of each path p_{r} is at most 3, the length of p would be at most $3\left|X_{0}(\tau)\right|$ in contradiction to $\ell>3\left|X_{0}(\tau)\right|$. Therefore we must have $\Delta_{r}=\Delta_{r-1}$ for some $1<r \leq s$. This readily implies the lemma.

Let $\mathfrak{m}=\mathfrak{m}_{\widehat{H}(\tau, \xi)}$. An ideal J of $\widehat{H}(\tau, \xi)$ is admissible if there is $\ell \in \mathbb{N}$ with $\mathfrak{m}^{\ell} \subseteq J \subseteq \mathfrak{m}^{2}$.

Proposition 6.7.2. The Jacobian ideal $\partial(W(\tau, \xi))$ is an admissible ideal. In particular, the Jacobian algebra $\mathcal{J}(\tau, \xi)$ is finite-dimensional with $\operatorname{rad}(\mathcal{J}(\tau, \xi))=\mathfrak{m} / \partial(W(\tau, \xi))$.

Proof. Let $A=A(\tau, \xi)$ and $W=W(\tau, \xi)$.
Obviously, ∂W is generated by elements in \mathfrak{m}^{2} (see Example 6.4.7). To show that ∂W is admissible, it is thus sufficient to verify the inclusion $A_{a_{\ell}} \cdots A_{a_{1}} \subseteq \partial W$ for every cyclic path $i_{1} \stackrel{a_{\ell}}{\longleftarrow} i_{\ell} \stackrel{a_{\ell-1}}{\leftarrow} \cdots \stackrel{a_{1}}{\longleftarrow} i_{1}$ in $X(\tau)$ of length $\ell>3\left|X_{0}(\tau)\right|$.

According to Lemma 6.7 .1 for all such paths there is $1<q \leq \ell$ such that $\Delta\left(a_{q}\right)=\Delta\left(a_{q-1}\right)$ and i_{q} is a shared arc in τ. Hence, $d_{i_{q}}=2$.
If $d_{i_{q+1} i_{q}}=2$ or $d_{i_{q} i_{q-1}}=2$, then $a_{q} a_{q-1}$ generates the R-bimodule $A_{a_{q}} A_{a_{q-1}}$. Moreover, it is $a_{q} a_{q-1} \in \partial W$ by Example 6.4.7.

If $d_{i_{q+1} i_{q}} \neq 2$ and $d_{i_{q} i_{q-1}} \neq 2$, then $d_{i_{q+1}}=d_{i_{q-1}}=1$ and $\Delta\left(a_{q}\right)$ is a triangle of type \widetilde{C}_{11}. In this case, the generators $a_{q} a_{q-1}$ and $a_{q} u a_{q-1}$ of $A_{a_{q}} A_{a_{q-1}}$ also lie in ∂W by Example 6.4.7.

We can conclude in either case $A_{a_{\ell}} \cdots A_{a_{1}} \subseteq \partial W$ as desired.
Theorem 6.7.3. For colored triangulations $(\tau, \xi),\left(\tau, \xi^{\prime}\right)$ of $\boldsymbol{\Sigma}_{d}$ the following are equivalent:
(a) $\xi=\xi^{\prime}$ in $H^{1}\left(C^{\bullet}(\tau)\right)$.
(b) $\mathcal{J}(\tau, \xi) \cong \mathcal{J}\left(\tau, \xi^{\prime}\right)$ as $K^{X_{0}(\tau)}$-algebras.
(c) $A(\tau, \xi) \cong f_{*} A\left(\tau, \xi^{\prime}\right)$ as R-bimodules over K for some $f \in$ Aut $_{K^{X_{0}(\tau)}}(R(\tau))$.

Proof. Let $R=R(\tau)=\prod_{i \in \tau} L_{i}$. We write f_{i} for the i-th component of $f \in \operatorname{End}_{K^{X_{0}(\tau)}}(R)$.
For $Y \in\{A, W, \widehat{H}, \mathcal{J}\}$ abbreviate $Y:=Y(\tau, \xi)$ and $Y^{\prime}:=Y\left(\tau, \xi^{\prime}\right)$. Moreover, denote by ρ_{a} and ρ_{a}^{\prime} the unique elements in $\operatorname{Gal}\left(L_{j i} / K\right)$ such that $A_{a}={ }_{j} L_{i}^{\rho_{a}}$ and $A_{a}^{\prime}={ }_{j} L_{i}^{\rho_{a}^{\prime}}$.

We add two more statements:
(a') There is $\bar{X}_{0}(\tau) \xrightarrow{g} \mathbb{F}_{2}$ with $\xi(a)+\xi^{\prime}(a)=g(j)+g(i)$ for all $j \stackrel{a}{\leftarrow} i \in \bar{X}_{1}(\tau)$.
(c') There is an automorphism f of the $K^{X_{0}(\tau)}$-algebra R and an automorphism π of the $X_{0}(\tau)$-quiver $X(\tau)$ such that $\rho_{\pi(a)}^{\prime} f_{i}=f_{j} \rho_{a}$ on $L_{j i}$ for all $j \stackrel{a}{\leftarrow} i \in X_{1}(\tau)$.
(a) $\Leftrightarrow\left(\mathrm{a}^{\prime}\right)$: True by definition.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: Thanks to Proposition 6.7.2 an $K^{X_{0}(\tau)}$-algebra isomorphism $\mathcal{J} \xrightarrow{f} \mathcal{J}^{\prime}$ induces an R-bimodule isomorphism $A \cong \operatorname{rad}(\mathcal{J}) / \operatorname{rad}^{2}(\mathcal{J}) \rightarrow f_{*}^{\prime} \operatorname{rad}\left(\mathcal{J}^{\prime}\right) / \operatorname{rad}^{2}\left(\mathcal{J}^{\prime}\right) \cong f_{*}^{\prime} A^{\prime}$ where f^{\prime} is the automorphism $R \cong \mathcal{J} / \operatorname{rad}(\mathcal{J}) \rightarrow \mathcal{J}^{\prime} / \operatorname{rad}\left(\mathcal{J}^{\prime}\right) \cong R$ induced by f.
$(\mathrm{c}) \Rightarrow\left(\mathrm{c}^{\prime}\right):$ The isomorphism $A \rightarrow f_{*} A^{\prime}$ induces for all $i, j \in X_{0}(\tau)$ an isomorphism

$$
\bigoplus_{j \leftarrow ্} i=L_{i}^{\rho_{a}}=\bigoplus_{j \leftarrow ্} A_{a}={ }_{j} A_{i} \stackrel{\cong}{\Longrightarrow} j\left(f_{*} A^{\prime}\right)_{i}=\bigoplus_{j \leftarrow ্} i
$$

According to Lemma 2.5.14 there must exist π like in (c^{\prime}).
$\left(\mathrm{c}^{\prime}\right) \Rightarrow(\mathrm{b})$: The identity $\rho_{a}=f_{j}^{-1} \rho_{\pi(a)}^{\prime} f_{i}$ implies $f_{*} A_{\pi(a)}^{\prime} \cong{ }_{j} L_{i}^{\rho_{a}}$ as simple R-bimodules over K in view of (\star) in \S 2.5.3. Let g_{a} be the isomorphism $A_{a}={ }_{j} L_{i}^{\rho_{a}} \rightarrow f_{*} A_{\pi(a)}^{\prime}$ given by $a \mapsto \pi(a)$. We obtain an induced R-bimodule isomorphism

$$
A=\bigoplus_{a} A_{a} \xrightarrow{\cong} \bigoplus_{a} f_{*} A_{\pi(a)}^{\prime}=f_{*} A^{\prime}
$$

and thereby an induced isomorphism $\widehat{H}=R\langle\langle A\rangle\rangle \xrightarrow{g} R\left\langle\left\langle f_{*} A^{\prime}\right\rangle\right\rangle=\widehat{H}^{\prime}$ of $K^{X_{0}(\tau)}$-algebras.
It is $g(W) \sim_{R} W^{\prime}$ (via $b_{1} \mapsto-b_{1}$ for all $i \leftarrow \leftarrow \leftarrow b^{b_{1}} \leftarrow i$ in $X(\tau)$ with $r\left(b_{1}\right)=1$ and $f_{i} \neq \operatorname{id}_{R_{i}}$ induced by triangles of type \widetilde{C}_{11}). Hence, $\mathcal{J} \cong \mathcal{J}^{\prime}$ as $K^{X_{0}(\tau)}$-algebras by Proposition 2.6.44.
$\left(\mathrm{a}^{\prime}\right) \Rightarrow\left(\mathrm{c}^{\prime}\right)$: As before, we regard \mathbb{F}_{2} as a subset of $\mathbb{Z} / 4 \mathbb{Z}$ via $0 \mapsto 0,1 \mapsto 1$. Let $\alpha=\alpha_{\zeta, v}$ be the fixed isomorphism $\mathbb{Z} / 4 \mathbb{Z} \rightarrow \operatorname{Gal}(L / K)$ We use Convention 2.5.11.

Let $f \in \operatorname{Aut}_{K^{X_{0}(\tau)}}(R)$ given by $f_{i}=\alpha_{i}(g(i))$ for all $i \in \bar{X}_{0}(\tau)$.
If $j \stackrel{b_{r}}{\longleftarrow} i$ with $r\left(b_{r}\right)=r \in\{0,1\}$ are parallel arrows in $X(\tau)$ connecting weight- 4 arcs, then $b:=b_{0}=b_{1}$ in $\bar{X}(\tau)$ and $\rho_{b_{r}}=\alpha_{j i}(\xi(b)+2 r)$ and $\rho_{b_{r}}^{\prime}=\alpha_{j i}\left(\xi^{\prime}(b)+2 r\right)$.

Since $\xi(b)+\xi^{\prime}(b)=g(j)+g(i)$ holds in \mathbb{F}_{2}, there is $p \in\{0,1\}$ such that for all $r \in\{0,1\}$ one has the identity $\left(\xi^{\prime}(b)+2(r+p)\right)+g(i)=g(j)+(\xi(b)+2 r)$ in $\mathbb{Z} / 4 \mathbb{Z}$.

Then we have $\rho_{\pi\left(b_{r}\right)}^{\prime} f_{i}=f_{j} \rho_{b_{r}}$ for $\pi\left(b_{r}\right)=b_{|r-p|}$.
Extending π to an automorphism of the quiver $X(\tau)$ with $\pi(a)=a$ for all arrows $j \stackrel{a}{\leftarrow} i$ in $X(\tau)$ not connecting weight- 4 arcs, we get f and π as in ($\left.c^{\prime}\right)$.
$\left(\mathrm{c}^{\prime}\right) \Rightarrow\left(\mathrm{a}^{\prime}\right):$ Let $\bar{X}_{0}(\tau) \xrightarrow{g} \mathbb{F}_{2}$ with $g(i)=\alpha_{i}^{-1}\left(f_{i}\right)$ regarded as element in $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$.
For $j \stackrel{a}{\leftarrow} i \in \bar{X}_{1}(\tau)$ the condition $\rho_{\pi(a)}^{\prime} f_{i}=f_{j} \rho_{a}$ translates to $\xi(a)+\xi^{\prime}(\pi(a))=g(j)+g(i)$ in \mathbb{F}_{2}, since $\rho_{\pi(a)}^{\prime}=\alpha_{j i}\left(\xi^{\prime}(\pi(a))+2 r(a)\right)$ and $\rho_{a}=\alpha_{j i}(\xi(a)+2 r(a))$.
For single arrows $j \stackrel{a}{\leftarrow} i$ in $\bar{X}(\tau)$ it is $\pi(a)=a$ in $\bar{X}(\tau)$, so $\xi(a)+\xi^{\prime}(a)=g(j)+g(i)$.
For $\pi(a) \neq a$ in $\bar{X}(\tau)$ let $i \stackrel{c}{\leftarrow} k \stackrel{b}{\leftarrow} j \stackrel{a}{\leftarrow} i$ be the path in $X(\tau)$ induced by $\Delta(a)$. Then it is $\Delta(a) \in \bar{X}_{2}(\tau)$ and one computes

$$
\begin{aligned}
\xi(a)+\xi^{\prime}(a) & =(\xi(c)+\xi(b))+\left(\xi^{\prime}(c)+\xi^{\prime}(b)\right) \\
& =\left(\xi(c)+\xi^{\prime}(c)\right)+\left(\xi(b)+\xi^{\prime}(b)\right) \\
& =(g(i)+g(k))+(g(k)+g(j))=g(j)+g(i) .
\end{aligned}
$$

The first equality holds because ξ and ξ^{\prime} are cocycles and the last equality because c and b are single arrows in $\bar{X}(\tau)$ (see Lemma 6.6.2).

6.8 Geometric Realization of $\bar{X}_{\bullet}(\tau)$

In the spirit of [AG16, Lemma 2.3] the cohomology of $C^{\bullet}(\tau)$ can be identified with the singular cohomology of Σ with \mathbb{F}_{2}-coefficients. This observation is particularly interesting in combination with the parametrization of Jacobian algebras by the first cohomology
group $H^{1}\left(C^{\bullet}(\tau)\right) \cong \mathbb{F}_{2}^{2 g+b-1}$ described in \S 6.7. For instance, one can deduce immediately that the isomorphism class of $\mathcal{J}(\tau, \xi)$ does not depend on ξ if Σ is a disk.

Construction of $|\bar{X}(\tau)|$

Fix a triangulation τ of $\boldsymbol{\Sigma}_{d}$ and let $\left(\gamma_{i}\right)_{i \in \tau}$ be a family of curves in $\boldsymbol{\Sigma}$ whose elements do not intersect each other in $\Sigma \backslash \mathbb{M}$ such that γ_{i} represents i (see Remark 5.1.10).

For boundary segments $i \in \mathfrak{s}$ define $\gamma_{i}=i$. Abbreviate $\bar{X}_{k}=\bar{X}_{k}(\tau)$ for $k \in\{0,1,2\}$.
Construct a subspace $|\bar{X}|=\bigcup_{k \in\{0,1,2\}} \bigcup_{i \in \bar{X}_{k}} x_{i}$ of Σ as follows:
(a) For every $i \in \bar{X}_{0}$ let $x_{i}=\left\{p_{i}\right\}$ for some inner point p_{i} of γ_{i}.
(b) For every $j \stackrel{a}{\leftarrow} i \in \bar{X}_{1}$ pick a curve x_{a} in $\left(\Sigma, \mathbb{M} \cup\left\{p_{i}, p_{j}\right\}, \mathbb{O}\right)$ with endpoints $\left\{p_{i}, p_{j}\right\}$ and inner points in $\Delta(a) \backslash \bigcup_{\ell} \gamma_{\ell}$.

Make these choices in such a way that for all $a \neq b$ in \bar{X}_{1} the curves x_{a} and x_{b} do not intersect each other in their inner points.
(c) For every $\Delta \in \bar{X}_{2}$ the set $c_{\Delta}=\bigcup_{a \in \bar{X}_{1}: \Delta(a)=\Delta} x_{a}$ is the image of a closed simple curve.

Let x_{Δ} be the closure of the component of $\Sigma \backslash c_{\Delta}$ not intersecting any of the γ_{i}.

Example 6.8.1. For the triangulation τ of the triangle with one weight- 1 and two weight- 4 orbifold points from Example 6.2 .18 we have visualized below on the left the "geometric realization" $|\bar{X}| \subseteq \Sigma$ of \bar{X}_{\bullet}. On the right one can see the quiver $\bar{X}(\tau)$.

Notation 6.8.2. We denote for topological spaces X by $C_{\bullet}(X ; R)$ the singular complex of X with coefficients in R and by $H_{\bullet}(X ; R)$ its homology. By definition $C_{k}(X ; R)$ is the free R-module generated by all continuous maps $\Delta^{k} \rightarrow X$ where Δ^{k} is the standard k-simplex.

To relate the homology of $C_{\bullet}(\tau)$ to the singular homology of $|\bar{X}|$ fix for all $k \in\{0,1,2\}$ and $i \in \bar{X}_{k}$ a continuous map $\Delta^{k} \xrightarrow{\theta(i)}|\bar{X}|$ with image x_{i} that is injective on the interior of Δ^{k} and has the properties that \ldots
(a) \ldots for each $\Delta \in \bar{X}_{2}$ and each face F of Δ^{2} there is $a \in \bar{X}_{1}$ with $\left.\theta(\Delta)\right|_{F}=\theta(a)$,
(b) \ldots for each $j \stackrel{a}{\leftarrow} i \in \bar{X}_{1}$ the image of $\partial \Delta^{1}$ under $\theta(a)$ is $\left\{p_{i}, p_{j}\right\}$.

In $C_{\bullet}\left(|\bar{X}| ; \mathbb{F}_{2}\right)$ one has with these choices $\partial_{2}(\theta(\Delta))=\theta(c)+\theta(b)+\theta(a)$ for all $\Delta \in \bar{X}_{2}$, where $c b a$ is a cyclic path induced by Δ, and $\partial_{1}(\theta(a))=\theta(j)+\theta(i)$ for all $j \stackrel{a}{\leftarrow} i \in \bar{X}_{1}$.

To cut this long story short, the rule $i \mapsto \theta(i)$ with $i \in \bar{X}_{k}$ induces a chain map

$$
C_{\bullet}(\tau) \xrightarrow{\theta} C_{\bullet}\left(|\bar{X}| ; \mathbb{F}_{2}\right)
$$

Proposition 6.8.3. The map θ induces an isomorphism $H_{\bullet}\left(C_{\bullet}(\tau)\right) \xrightarrow{\cong} H_{\bullet}\left(|\bar{X}| ; \mathbb{F}_{2}\right)$.

Proof. This is a standard result in algebraic topology. Compare e.g. [Hat02, Chapter 2.1] where a similar construction is discussed for integral coefficients.

Postcomposing the map θ with the map $C_{\bullet}\left(|\bar{X}| ; \mathbb{F}_{2}\right) \rightarrow C_{\bullet}\left(\Sigma ; \mathbb{F}_{2}\right)$ induced by the canonical inclusion $|\bar{X}| \stackrel{\iota}{\hookrightarrow} \Sigma$ we get a chain map $C_{\bullet}(\tau) \rightarrow C_{\bullet}\left(\Sigma ; \mathbb{F}_{2}\right)$, which we denote again by θ.

Proposition 6.8.4. The map θ induces an isomorphism $H_{\bullet}\left(C_{\bullet}(\tau)\right) \xrightarrow{\cong} H_{\bullet}\left(\Sigma ; \mathbb{F}_{2}\right)$.

Proof. Having in mind Remark 5.1.3, Example 5.1.6, and Proposition 5.1.23, it is not hard to see that $|\bar{X}|$ is a strong deformation retract of Σ. Consequently, ι induces an isomorphism $H_{\bullet}\left(|\bar{X}| ; \mathbb{F}_{2}\right) \xrightarrow{\cong} H_{\bullet}\left(\Sigma ; \mathbb{F}_{2}\right)$. Now Proposition 6.8.3 implies the claim.

Corollary 6.8.5. $H_{1}\left(C_{\bullet}(\tau)\right) \cong \mathbb{F}_{2}^{2 g+b-1}$.

Proof. Use Proposition 6.8.4 and the well-known fact $H_{1}\left(\Sigma ; \mathbb{F}_{2}\right) \cong \mathbb{F}_{2}^{2 g+b-1}$.
Remark 6.8.6. It is also possible to verify $H_{1}\left(C_{\bullet}(\tau)\right) \cong \mathbb{F}_{2}^{2 g+b-1}$ directly:
By Remark 6.2.28 the dimension of $H_{1}\left(C_{\bullet}(\tau)\right)$ is

$$
r:=1-\chi\left(C_{\bullet}(\tau)\right)=1-\left|\bar{X}_{0}(\tau)\right|+\left|\bar{X}_{1}(\tau)\right|-\left|\bar{X}_{2}(\tau)\right|
$$

where $\chi\left(C_{\bullet}(\tau)\right)=\sum_{k \in \mathbb{N}} \operatorname{dim}_{\mathbb{F}_{2}} H_{k}\left(C_{\bullet}(\tau)\right)$ is the Euler characteristic.
The number n of arcs and t of triangles in τ are by Proposition 5.1.16 and Corollary 5.1.22

$$
\begin{aligned}
& n=6(g-1)+3 b+m+2 o \\
& t=4(g-1)+2 b+m+o
\end{aligned}
$$

Denote by t_{q} the number of triangles of τ with exactly q weight- 1 orbifold points. Then we can express $t=t_{0}+t_{1}+t_{2}$ and $o_{1}=t_{1}+2 t_{2}$.

Note that $\left|\bar{X}_{0}(\tau)\right|=n+m-o_{1}$ and $\left|\bar{X}_{1}(\tau)\right|=3 t_{0}+t_{1}$ and $\left|\bar{X}_{2}(\tau)\right|=t_{0}$.
All in all, $r=2 t-n-m+1=2 g+b-1$.

6.9 Counting Components of the Flip Graph

Motivated by [FST08, $\S \S 3$ and 7], Proposition 5.1.45, and Remark 5.1.46 one can ask the question whether "the flip graph of colored triangulations is connected." Since colored triangulations with the same underlying triangulation and cohomologous cocycles define isomorphic Jacobian algebras, we take for the vertices of the flip graph "cohomology classes" of colored triangulations instead of colored triangulations themselves.

Definition 6.9.1. The flip graph $\mathbf{E}^{\mathrm{H}}\left(\boldsymbol{\Sigma}_{d}\right)$ is the simple graph whose vertices are pairs (τ, x) consisting of a triangulation τ of $\boldsymbol{\Sigma}_{d}$ and an element $x \in H^{1}\left(C^{\bullet}(\tau)\right)$.

Vertices (τ, x) and ($\left.\varsigma, x^{\prime}\right)$ are joined by an edge if and only if there are $\xi \in x$ and $\xi^{\prime} \in x^{\prime}$ such that the colored triangulations (τ, ξ) and $\left(\varsigma, \xi^{\prime}\right)$ are related by flipping an arc.

Theorem 6.9.2. The flip graph $\mathbf{E}^{\mathrm{H}}\left(\boldsymbol{\Sigma}_{d}\right)$ is disconnected if Σ is not a disk. More precisely, it has at least $2^{2 g+b-1}$ connected components.

Proof. Let $\mathbb{O}_{1}=\left\{x \in \mathbb{O} \mid d_{\times}=1\right\}$ and let $\widehat{\Sigma}$ be the surface $\Sigma \backslash \mathbb{O}_{1}$.
Let V be the set of vertices of $\mathbf{E}^{\mathrm{H}}\left(\boldsymbol{\Sigma}_{d}\right)$ and $V_{\tau}=\left\{(\tau, x) \mid x \in H^{1}\left(C^{\bullet}(\tau)\right)\right\} \subseteq V$.
We will define $V \xrightarrow{\text { inv }} H^{1}\left(\widehat{\Sigma} ; \mathbb{F}_{2}\right)$ such that inv $\left.\right|_{V_{\tau}}$ is injective for every τ and inv is constant when restricted to the vertex set of any connected component. This will imply the theorem, since $\left|V_{\tau}\right|=\left|H^{1}\left(C^{\bullet}(\tau)\right)\right|=\left|H_{1}\left(C_{\bullet}(\tau)\right)\right|=2^{2 g+b-1}$ by Corollary 6.8.5.

We begin with the construction of inv. To do this, fix a triangulation τ of $\boldsymbol{\Sigma}_{d}$.
Call a triangle exceptional if its type is $\widetilde{B}_{1}, \widetilde{C}_{14}$, or \widetilde{C}_{41}.
For pending arcs i in τ let Δ_{i}^{τ} be the triangle of τ containing i. If $i \in \tau^{d=1}$ and Δ_{i}^{τ} is exceptional, denote by δ_{i}^{τ} the unique arrow in $\bar{X}(\tau)$ induced by Δ_{i}^{τ}.

Construction of the Chain Complex $\widehat{C}_{\bullet}(\tau)$

Let $\widehat{X}_{k}(\tau)=\bar{X}_{k}(\tau)$ for $k \neq 1$ and $\widehat{X}_{1}(\tau)=\bar{X}_{1}(\tau) \dot{\cup}\left\{\varepsilon_{i}^{\tau} \mid i \in \tau^{d=1}\right\}$. Define

$$
\partial_{1}\left(\varepsilon_{i}^{\tau}\right)= \begin{cases}\partial_{1}\left(\delta_{i}^{\tau}\right) & \text { if } \Delta_{i}^{\tau} \text { is exceptional } \\ 0 & \text { otherwise }\end{cases}
$$

Let $\widehat{C}_{\bullet}(\tau)=\left(\mathbb{F}_{2} \widehat{X}_{k}(\tau)\right)_{k \in \mathbb{N}}$ be the chain complex whose differentials for elements in $\bar{X}_{k}(\tau)$ are given by the same rules as the differentials of the complex $C_{\bullet}(\tau)$ in Definition 6.2.26. Let $\widehat{C}^{\bullet}(\tau)=\operatorname{Hom}_{\mathbb{F}_{2}}\left(\widehat{C}_{\bullet}(\tau), \mathbb{F}_{2}\right)$ be the dual cochain complex. We have a chain map

where ρ_{τ} is defined on basis elements in degree one as

$$
\rho_{\tau}(a)= \begin{cases}a & \text { for } a \in \bar{X}_{1}(\tau) \\ \delta_{i}^{\tau} & \text { for } a=\varepsilon_{i}^{\tau} \text { with } \Delta_{i}^{\tau} \text { exceptional, } \\ 0 & \text { for } a=\varepsilon_{i}^{\tau} \text { with } \Delta_{i}^{\tau} \text { non-exceptional. }\end{cases}
$$

The map ρ_{τ} induces maps $H_{1}\left(\widehat{C}_{\bullet}(\tau)\right) \xrightarrow{\rho_{\tau}} H_{1}\left(C_{\bullet}(\tau)\right)$ and $H^{1}\left(C^{\bullet}(\tau)\right) \stackrel{\rho_{\tau}^{*}}{\longrightarrow} H^{1}\left(\widehat{C}^{\bullet}(\tau)\right)$.

Construction of the Geometric Realization $|\widehat{X}(\tau)|$

Fix a geometric realization $|\bar{X}(\tau)|$ of $\bar{X}(\tau)$ with data $\left(\gamma_{i}, x_{i}, \theta(i)\right)_{i}$ as described in \S 6.8. Construct a subspace $|\widehat{X}(\tau)|=|\bar{X}(\tau)| \cup \bigcup_{i \in \tau^{d=1}} x_{\varepsilon_{i}^{\tau}}$ of $\widehat{\Sigma}$ as follows:
(b') For every $i \in \tau^{d=1}$ let $\{h, j\}=\left\{\ell \in X_{1}^{d \neq 1}(\tau) \mid \ell\right.$ belongs to $\left.\Delta_{i}^{\tau}\right\}$ and pick a curve $x_{\varepsilon_{i}^{\tau}}$ in $\left(\Sigma, \mathbb{M} \cup\left\{p_{h}, p_{j}\right\}, \mathbb{O}\right)$ with endpoints $\left\{p_{h}, p_{j}\right\}$ and inner points in $\Delta \backslash \bigcup_{\ell \neq i} \gamma_{\ell}$.
Make these choices in such a way that for all $a \neq b$ in $\widehat{X}_{1}(\tau)$ the curves x_{a} and x_{b} do not intersect each other in their inner points.

Depending on the type of Δ_{i}^{τ} the curve $x_{\varepsilon_{i}^{\tau}}$ looks as follows in $|\widehat{X}(\tau)| \cap \Delta \subseteq \widehat{\Sigma}$:

Fix for $a=\varepsilon_{i}^{\tau}$ a continuous map $\Delta^{1} \xrightarrow{\theta(a)}|\widehat{X}(\tau)|$ with image x_{a} such that it is injective on the interior of Δ^{1} and the image of $\partial \Delta^{1}$ under $\theta(a)$ is $\left\{p_{h}, p_{j}\right\}$.
Analogously as in $\S 6.8$, we obtain a chain map $\widehat{C}_{\bullet}(\tau) \xrightarrow{\theta_{\tau}} C_{\bullet}\left(\widehat{\Sigma} ; \mathbb{F}_{2}\right)$ acting as $i \mapsto \theta(i)$ on $i \in \widehat{X}_{k}(\tau)$, which induces an isomorphism $H_{\bullet}\left(\widehat{C}_{\bullet}(\tau)\right) \rightarrow H_{\bullet}\left(\widehat{\Sigma} ; \mathbb{F}_{2}\right)$.
Let $H^{\bullet}\left(\widehat{\Sigma} ; \mathbb{F}_{2}\right) \xrightarrow{\theta_{\tau}^{*}} H^{\bullet}(\widehat{C} \bullet(\tau))$ be the isomorphism induced by θ_{τ}.

Definition of the Map inv

Let $\varepsilon^{\tau}=\sum_{i \in \tau^{d=1}}\left(\varepsilon_{i}^{\tau}\right)^{\vee}$ where $\left\{a^{\vee} \mid a \in \widehat{X}_{1}(\tau)\right\}$ is the basis of $\widehat{C}^{1}(\tau)$ dual to $\widehat{X}_{1}(\tau)$.
Note that ε^{τ} is a cocycle and define for $x \in H^{1}\left(C^{\bullet}(\tau)\right)$

$$
\operatorname{inv}(\tau, x):=\left(\theta_{\tau}^{*}\right)^{-1}\left(\rho_{\tau}^{*}(x)+\varepsilon^{\tau}\right) .
$$

The restriction inv $\left.\right|_{V_{\tau}}$ is injective because of the injectivity of ρ_{τ}^{*}.

The Map inv Is Constant on Flip-Graph Components

To show that inv is constant on the vertex set of every connected component of the flip graph, it is enough to check that $\operatorname{inv}(\tau, \xi)=\operatorname{inv}\left(\varsigma, \varphi^{\varsigma, \tau}(\xi)\right)$ whenever (τ, ξ) and $\left(\varsigma, \varphi^{\varsigma, \tau}(\xi)\right)$ are two colored triangulations related by flipping an arc (compare Definition 6.2.36).

Let τ and ς be triangulations of $\boldsymbol{\Sigma}$ related by a flip, say $\varsigma=\mu_{i}(\tau)$ and $\tau=\mu_{j}(\varsigma)$.
By Corollary 6.2.35 the map $\varphi^{\varsigma, \tau}$ induces a map $H^{1}\left(C^{\bullet}(\tau)\right) \xrightarrow{\varphi^{\varsigma, \tau}} H^{1}\left(C^{\bullet}(\varsigma)\right)$ of sets.
To conclude the proof of the theorem, we have to verify the commutativity of

where $\operatorname{inv}_{\tau}=\operatorname{inv}(\tau,-)$ and $\operatorname{inv}_{\varsigma}=\operatorname{inv}(\varsigma,-)$.
This will be achieved by the construction of a chain map $\widehat{C}_{\bullet}(\varsigma) \xrightarrow{\vartheta_{\tau, \varsigma}} \widehat{C}_{\bullet}(\tau)$ such that the induced map $\vartheta_{\tau, \varsigma}^{*}$ in cohomology makes the following diagram commute:

Using the duality $\operatorname{Hom}_{\mathbb{F}_{2}}\left(-, \mathbb{F}_{2}\right)$, the commutativity $\vartheta_{\tau, \varsigma}^{*} \circ \theta_{\tau}^{*}=\theta_{\varsigma}^{*}$ of the "roof" may be checked in homology instead.

In summary, it suffices to construct a chain map $\widehat{C}_{\bullet}(\varsigma) \xrightarrow{\vartheta_{\tau, \varsigma}} \widehat{C}_{\bullet}(\tau)$ making

commute and the identity $\rho_{\varsigma}^{*}\left(\varphi^{\varsigma, \tau}(x)\right)+\varepsilon^{\varsigma}=\vartheta_{\tau, \varsigma}^{*}\left(\rho_{\tau}^{*}(x)+\varepsilon^{\tau}\right)$ hold for all $x \in H^{1}(C \cdot(\tau))$.

Construction of the Chain Map $\vartheta_{\tau, \varsigma}$

For the construction of $\vartheta_{\tau, \varsigma}$ we distinguish the following cases:
(1) $i \in \tau^{d=1}$ belongs to an exceptional triangle of τ.
(2) $i \in \tau^{d=1}$ belongs to a non-exceptional triangle of τ.
(3) $i \in \tau^{d=4}$ belongs to an exceptional triangle of τ.
(4) $i \in \tau^{d=4}$ belongs to a non-exceptional triangle of τ.
(5) $i \in \tau^{d=2}$ belongs to two triangles in $\bar{X}_{2}(\tau)$.
(6) $i \in \tau^{d=2}$ belongs to a triangle in $\bar{X}_{2}(\tau)$ and to an exceptional triangle of τ.
(7) $i \in \tau^{d=2}$ belongs to two exceptional triangles of τ and is a source or sink in $X(\tau)$.
(8) $i \in \tau^{d=2}$ belongs to two exceptional triangles of τ and is not a source or sink in $X(\tau)$.
(9) $i \in \tau^{d=2}$ belongs to a triangle in $\bar{X}_{2}(\tau)$ and to a triangle of type \widetilde{C}_{11} in τ
(10) $i \in \tau^{d=2}$ belongs to an exceptional triangle and to a triangle of type \widetilde{C}_{11} of τ

The list is non-redundant and exhaustive, i.e. for fixed τ, i exactly one of the items is true.
For $(\pi, k) \in\{(\tau, i),(\varsigma, j)\}$ let $\bar{X}^{k}(\pi)$ be the subquiver of $\bar{X}(\pi)$ spanned by all arrows induced by triangles of π with side k.

Then $\bar{X}(\tau)=\bar{X}^{i}(\tau) \oplus Q$ and $\bar{X}(\varsigma)=\bar{X}^{j}(\varsigma) \oplus Q$ for some Q (see Lemma 6.2.13).
Tables 6.9.1 and 6.9.2 depict the possible pairs $\left(\bar{X}^{i}(\tau), \bar{X}^{j}(\varsigma)\right)$ in all ten cases. The dotted arrows are not part of the quiver $\bar{X}^{k}(\pi)$ and illustrate the elements of

$$
E^{k}(\pi)=\left\{\varepsilon_{h}^{\pi} \mid k \text { is a side of } \Delta_{h}^{\pi}\right\}
$$

Define the map $\widehat{C}_{\bullet}(\varsigma) \xrightarrow{\vartheta_{\tau, \varsigma}} \widehat{C}_{\bullet}(\tau)$ on basis elements as

$$
\vartheta_{\tau, \varsigma}(x)= \begin{cases}x & \text { for } x \in\left(\bar{X}_{0}(\varsigma) \backslash\{j\}\right) \cup\left(\bar{X}_{1}(\varsigma) \backslash \bar{X}_{1}^{j}(\varsigma)\right) \cup\left(\bar{X}_{2}(\varsigma) \cap \bar{X}_{2}(\tau)\right) \\ i & \text { for } x=j \\ \varepsilon_{h}^{\tau} & \text { for } x=\varepsilon_{h}^{\varsigma} \notin E^{j}(\varsigma) \\ 0 & \text { for the triangles } x \in \bar{X}_{2}(\varsigma) \backslash \bar{X}_{2}(\tau)\end{cases}
$$

It remains to specify $\vartheta_{\tau, \varsigma}(x)$ for the elements $x \in \bar{X}_{1}^{j}(\varsigma) \cup E^{j}(\varsigma)$. This is done case by case in Tables 6.9.1 and 6.9.2.

It is not hard to see that $\vartheta_{\tau, \varsigma}$ is a morphism of chain complexes.
The identities $\rho_{\varsigma}^{*}\left(\varphi^{\varsigma, \tau}(x)\right)+\varepsilon^{\varsigma}=\vartheta_{\tau, \varsigma}^{*}\left(\rho_{\tau}^{*}(x)+\varepsilon^{\tau}\right)$ for $x \in H^{1}\left(C^{\bullet}(\tau)\right)$ are easily checked via the explicit formula for $\varphi^{\varsigma, \tau}$ given in the proof of Lemma 6.2.32.

Direct inspection shows that in each case $\theta_{\tau} \circ \vartheta_{\tau, \varsigma}=\theta_{\varsigma}$ in homology.
This finishes the proof.

Table 6.9.1: $\vartheta_{\tau, \varsigma}$ for pending arcs i in exceptional triangles of τ.

\#	$\bar{X}^{i}(\tau)$	$\bar{X}^{j}(\varsigma)$	$\vartheta_{\tau, \varsigma}$
1	$\cdot r_{\varepsilon_{T}^{T}}^{\delta_{T}} \text {. }$	$\cdot_{\delta_{\delta_{j}}}^{\varepsilon_{j}}$	$\begin{aligned} & \delta_{i}^{\tau} \leftrightarrow \varepsilon_{j}^{\varepsilon_{0}} \\ & \varepsilon_{i}^{\tau} \leftrightarrow \delta_{j}^{\delta} \end{aligned}$
2	$\varepsilon_{t}^{t}{ }^{\circ} \cdot{ }^{\text {r }}$	$\varepsilon_{S} \overbrace{}^{\circ}$ r ε_{h}	$\begin{aligned} & \varepsilon_{i}^{\tau} \leftrightarrow \varepsilon_{j}^{s_{j}} \\ & \varepsilon_{h}^{\tau} \leftrightarrow \varepsilon_{h}^{\delta} \end{aligned}$
3^{-}			$\delta_{h}^{\tau} \leftrightarrow \delta_{h}$
3^{+}	$\cdot \cdot^{\sigma_{k}} \varepsilon_{\varepsilon_{\hbar}^{\prime}}^{\varepsilon_{i}} \text { 回 }$		$\varepsilon_{h}^{f} \leftrightarrow \varepsilon_{h}^{\delta}$

Table 6.9.2: $\vartheta_{\tau, \varsigma}$ for $\operatorname{arcs} i$ not pending in an exceptional triangle of τ.

\#	$\bar{X}^{i}(\tau)$	$\bar{X}^{j}(\varsigma)$	$\vartheta_{\tau, \varsigma}$
4			$\begin{array}{lll} a & \leftarrow a^{*} \\ b & \leftarrow b^{*} \\ b+a & \leftarrow f \end{array}$
5			$\begin{array}{ll} a_{p} & \leftrightarrow a_{p}^{*} \\ b_{p} & \leftrightarrow b_{p}^{*} \\ b_{p}+a_{1-p} & \leftarrow f_{p} \end{array}$
6^{-}			a $\leftarrow a^{*}$ b_{p} $\leftarrow b_{p}^{*}$ $b_{0}+a$ $\leftarrow f$ $b_{1}+\varepsilon_{h}^{\tau}+b_{0}$ $\leftarrow \varepsilon_{h}^{\varsigma}$
6^{+}			$\begin{array}{ll} a_{p} & \leftarrow a_{p}^{*} \\ b & \leftarrow b^{*} \\ b+a_{0} & \leftarrow f \\ a_{0}+\varepsilon_{h}^{\tau}+a_{1} & \leftarrow \varepsilon_{h}^{\varsigma} \end{array}$
7^{-}	$\bullet_{k_{0}}^{\varepsilon_{h}^{\tau}} \geq \underbrace{-\varepsilon_{k}^{\tau}}_{r_{n}}>\cdot$	$\cdot \bullet_{r}^{b_{0}^{*}} \varepsilon_{\varepsilon_{k}^{*}}^{b_{k}} j_{b_{1}^{*}} \cdot$	$\begin{aligned} & b_{p} \quad \hookleftarrow b_{p}^{*} \\ & b_{1}+\varepsilon_{h}^{\tau}+b_{0} \leftrightarrow \varepsilon_{h}^{\varsigma} \\ & b_{0}+\varepsilon_{k}^{\tau}+b_{1} \hookleftarrow \varepsilon_{k}^{\tau} \end{aligned}$
7^{+}	$\cdot{ }_{r_{k}}^{a_{\varepsilon_{h}^{\tau}}^{a_{0}}} \underbrace{\varepsilon_{k}^{\tau}}_{a_{1}} \cdot$	$\bullet_{K} a_{a_{0}^{*}}^{\varepsilon_{k}^{*}} \underbrace{-a_{1}^{*}}_{r} \geq \text { • }$	$\begin{array}{ll} a_{p} & \leftrightarrow a_{p}^{*} \\ a_{0}+\varepsilon_{h}^{\tau}+a_{1} & \leftrightarrow \varepsilon_{h}^{\kappa} \\ a_{1}+\varepsilon_{k}^{\tau}+a_{0} & \leftrightarrow \varepsilon_{k}^{\kappa} \end{array}$
8	$\left.\bullet_{k}{ }_{b}^{\varepsilon_{h}^{\tau}}-\right]_{k}{ }_{a}^{\varepsilon_{k}^{\tau}}=$		$\begin{array}{ll} a & \leftarrow a^{*} \\ b & \leftarrow b^{*} \\ b+a & \leftarrow f \\ \varepsilon_{h}^{\tau}+b & \leftarrow \varepsilon_{h}^{\varsigma} \\ a+\varepsilon_{k}^{\tau} & \leftarrow \varepsilon_{k}^{\varsigma} \end{array}$
9		$\bullet_{k} \varepsilon_{a^{*}}^{\varepsilon_{k}^{\prime}} \underbrace{}_{k^{*}}=$	$\begin{array}{lll} a & \leftrightarrow a^{*} \\ b & \leftrightarrow b^{*} \\ b+\varepsilon_{h}^{\tau} & \leftrightarrow \varepsilon_{h}^{\varsigma} \\ \varepsilon_{k}^{\tau}+a & \leftrightarrow \varepsilon_{k}^{\zeta} \end{array}$
10^{-}	$\bullet_{k}^{\varepsilon_{h}^{\tau}} \xrightarrow[\underbrace{}_{b}]{\varepsilon_{\ell}^{\tau}}$		$\begin{array}{lll} b & \leftrightarrow b^{*} \\ \varepsilon_{h}^{\tau}+b & \leftrightarrow \varepsilon_{h}^{\varsigma} \\ b+\varepsilon_{k}^{\tau} & \leftrightarrow \varepsilon_{k}^{\varepsilon_{k}^{\kappa}} & \varepsilon_{\ell}^{\tau} \\ \varepsilon^{\tau} \end{array}$
10^{+}		$\bullet_{K^{*}}^{\varepsilon_{k}^{\varepsilon}}, \frac{1}{j}$	$\begin{array}{ll} a & \leftrightarrow a^{*} \\ a+\varepsilon_{h}^{\tau} & \leftarrow \varepsilon_{h}^{\varsigma} \\ \varepsilon_{k}^{\tau}+a & \leftrightarrow \varepsilon_{k}^{\varepsilon_{k}^{\zeta}} \\ \varepsilon_{\ell}^{\tau} & \leftarrow \varepsilon_{\ell}^{\varsigma} \end{array}$

Remark 6.9.3. The rules in Table 6.9.2 can be expressed in a more compact and uniform way. Namely, if i is not a pending arc in an exceptional triangle of τ, it is

$$
\vartheta_{\tau, \varsigma}(x)=\left\{\begin{array}{cl}
x^{*} & \text { for } k \stackrel{x}{\leftarrow} h \text { in } \bar{X}^{j}(\varsigma) \text { with } j \in\{h, k\}, \\
& \text { where } x^{*} \text { is the unique arrow } \vartheta_{\tau, \varsigma}(k) \rightarrow \vartheta_{\tau, \varsigma}(h) \text { in } \bar{X}^{i}(\tau), \\
a^{*}+b^{*} & \text { for } k \stackrel{x}{\leftarrow} h \text { in } \bar{X}^{j}(\varsigma) \text { with } j \notin\{h, k\}, \\
& \text { where }{ }_{\leftarrow}{ }^{x} \leftarrow^{\circ} \text { is the path in } \bar{X}^{j}(\varsigma) \text { induced by } \Delta(x) . \\
\mu_{h}^{\tau}+\varepsilon_{h}^{\tau}+\nu_{h}^{\tau} & \text { for } x=\varepsilon_{h}^{\varsigma} \in E^{j}(\varsigma), \\
& \text { where } \mu_{h}^{\tau} \text { and } \nu_{h}^{\tau} \text { are the elements defined below. }
\end{array}\right.
$$

For $\ell^{\varsigma} \stackrel{\varepsilon_{h}^{\delta}}{\leftarrow} k^{\varsigma} \in E^{j}(\varsigma)$ and $\ell^{\tau} \stackrel{\varepsilon_{h}^{\tau}}{\leftarrow} k^{\tau} \in E^{i}(\tau)$ the elements ν_{h}^{τ} and μ_{h}^{τ} are characterized as:

- ν_{h}^{τ} is the unique $k^{\tau} \leftarrow \vartheta_{\tau, \varsigma}\left(k^{\varsigma}\right)$ in $\bar{X}_{1}^{i}(\tau)$ in case $\vartheta_{\tau, \varsigma}\left(k^{\varsigma}\right) \neq k^{\tau}$; otherwise, $\nu_{h}^{\tau}=0$.
- μ_{h}^{τ} is the unique $\vartheta_{\tau, \varsigma}\left(\ell^{\varsigma}\right) \leftarrow \ell^{\tau}$ in $\bar{X}_{1}^{i}(\tau)$ in case $\vartheta_{\tau, \varsigma}\left(\ell^{\varsigma}\right) \neq \ell^{\tau}$; otherwise, $\mu_{h}^{\tau}=0$.

Definition 6.9.4. Let τ be a triangulation of $\boldsymbol{\Sigma}_{d}$. Denote by

$$
H^{1}\left(C^{\bullet}(\tau)\right) \stackrel{\operatorname{inv}_{\tau}}{\longrightarrow} H^{1}\left(\Sigma \backslash \mathbb{O}_{1} ; \mathbb{F}_{2}\right)
$$

the function constructed in the proof of Theorem 6.9.2.
We call a sequence $\left(i_{1}, \ldots, i_{\ell}\right) \tau$-admissible if $i_{1} \in \tau, i_{2} \in \mu_{i_{1}}(\tau), \ldots, i_{\ell} \in \mu_{i_{\ell-1}} \cdots \mu_{i_{1}}(\tau)$.
The proof of the last theorem has the following interesting consequences:
Corollary 6.9.5. Let $(\tau, \xi),\left(\varsigma, \xi^{\prime}\right)$ be colored triangulations of $\boldsymbol{\Sigma}_{d}$ with $\operatorname{inv}_{\tau}(\xi) \neq \operatorname{inv}_{\varsigma}\left(\xi^{\prime}\right)$. Then $\mu_{i_{\ell}} \cdots \mu_{i_{1}}(\tau, \xi) \neq\left(\varsigma, \xi^{\prime}\right)$ for every τ-admissible sequence $\left(i_{1}, \ldots, i_{\ell}\right)$.

Proof. With the notation and arguments used in the proof of Theorem 6.9.2, we have

$$
\operatorname{inv}\left(\mu_{i_{\ell}} \cdots \mu_{i_{1}}(\tau, \xi)\right)=\cdots=\operatorname{inv}\left(\mu_{i_{1}}(\tau, \xi)\right)=\operatorname{inv}(\tau, \xi)=\operatorname{inv}_{\tau}(\xi)
$$

and $\operatorname{inv}\left(\varsigma, \xi^{\prime}\right)=\operatorname{inv}_{\varsigma}\left(\xi^{\prime}\right)$. Thus $\mu_{i_{\ell}} \cdots \mu_{i_{1}}(\tau, \xi) \neq\left(\varsigma, \xi^{\prime}\right)$ because $\operatorname{inv}_{\tau}(\xi) \neq \operatorname{inv}_{\varsigma}\left(\xi^{\prime}\right)$.
Corollary 6.9.6. Let (τ, ξ) and $\left(\tau, \xi^{\prime}\right)=\mu_{i_{\ell}} \cdots \mu_{i_{1}}(\tau, \xi)$ be colored triangulations of $\boldsymbol{\Sigma}_{d}$. Then the Jacobian algebras $\mathcal{J}(\tau, \xi)$ and $\mathcal{J}\left(\tau, \xi^{\prime}\right)$ are isomorphic.

Proof. The proof of Corollary 6.9.5 $\operatorname{shows}_{\operatorname{inv}}^{\tau}(\xi)=\operatorname{inv}_{\tau}\left(\xi^{\prime}\right)$. So $\xi=\xi^{\prime}$ in $H^{1}\left(C^{\bullet}(\tau)\right)$ because of the injectivity of $\operatorname{inv}_{\tau}$. Now use Theorem 6.7.3.

6.A Appendix

Figure 6.A.1: the seven types of weighted triangles: $A, \widetilde{B}_{1}, \widetilde{B}_{4}, \widetilde{C}_{11}, \widetilde{C}_{14}, \widetilde{C}_{41}, \widetilde{C}_{44}$.

Table 6.A.2: two triangles without punctures sharing exactly one arc (bold).

Table 6.A.3: two triangles without punctures sharing exactly two arcs; one shared arc (bold) fixed.

Table 6.A.4: triangles with one inner side (bold) fixed.

Figure 6.A.5: X^{Δ} and W^{Δ} for weighted triangles of type A.

Figure 6.A.6: X^{Δ} and W^{Δ} for weighted triangles of type \widetilde{B}_{1} (left) and \widetilde{B}_{4} (right).

$$
c b_{0} a+c b_{1} a u
$$

$c b a$

Figure 6.A.7: X^{Δ} and W^{Δ} for weighted triangles of type $\widetilde{C}_{11}, \widetilde{C}_{14}, \widetilde{C}_{41}, \widetilde{C}_{44}$ (from top left to bottom right; the wiggling of b_{1} indicates $r\left(b_{1}\right)=1$).

\#	type of \square	type of j	$\Phi(X(\varsigma, j))$
1	$\{A, A\}$	$\{A, A\}$	cf. $2^{\text {nd }}$ quiver in Table 5.A. 28
2	$\left\{A, \widetilde{B}^{+}\right\}$	$\left\{A, \widetilde{B}^{-}\right\}$	cf. $2^{\text {nd }}$ quiver in Table 5.A. 30
3	$\left\{A, \widetilde{B}^{-}\right\}$	$\left\{A, \widetilde{B}^{+}\right\}$	symmetric to \#2
4	$\{A, \widetilde{C}\}$	$\left\{\widetilde{B}^{+}, \widetilde{B}^{-}\right\}$	cf. $2^{\text {nd }}$ quiver in Table 5.A. 34
5	$\left\{\widetilde{B}^{+}, \widetilde{B}^{+}\right\}$	$\left\{\widetilde{B}^{-}, \widetilde{B}^{-}\right\}$	cf. $2^{\text {nd }}$ quiver in Table 5.A. 43
6	$\left\{\widetilde{B}^{+}, \widetilde{B}^{-}\right\}$	$\{A, \widetilde{C}\}$	d_{k} $d_{\underline{\underline{k}}}$ $-\cdots$ 4 1 $[b c]$ 1 4 $[b c]$ 1 1 $[b c]^{0}$ and $[b c]^{1}$ 4 4 $[b c]_{0}$ and $[b c]_{1}$
7	$\left\{\widetilde{B}^{+}, \widetilde{C}\right\}$	$\left\{\widetilde{B}^{-}, \widetilde{C}\right\}$	looks like \#6
8	$\left\{\widetilde{B}^{-}, \widetilde{B}^{-}\right\}$	$\left\{\widetilde{B}^{+}, \widetilde{B}^{+}\right\}$	symmetric to \#5
9	$\left\{\widetilde{B}^{-}, \widetilde{C}\right\}$	$\left\{\widetilde{B}^{+}, \widetilde{C}\right\}$	symmetric to \#7
10	$\left\{A^{\downarrow}, A^{\downarrow}\right\}$	$\left\{A^{\uparrow}, A^{\uparrow}\right\}$	cf. $2^{\text {nd }}$ quiver in Table 5.A. 13
11	$\left\{A^{\uparrow}, A^{\uparrow}\right\}$	$\left\{A^{\downarrow}, A^{\downarrow}\right\}$	symmetric to \#10
12	\widetilde{B}	\widetilde{B}	d_{k} $\xrightarrow{\longrightarrow} \quad$$\longrightarrow$ 1$\left[^{[c b]_{0} \text { or }[c b]_{1}}\right.$ 4 $[c b]$
13	\widetilde{C}^{-}	\widetilde{C}^{+}	
14	\widetilde{C}^{+}	\widetilde{C}^{-}	symmetric to \#13

Table 6.A.8: the (at most two) choices for the embedding Φ in Remark 6.2.14; in some cases, there are two possibilities for the dotted arrows.

Bibliography

[AG16] C. Amiot and Y. Grimeland, "Derived invariants for surface algebras," J. Pure Appl. Algebra, vol. 220, no. 9, pp. 3133-3155, 2016.
DOI: 10.1016/j.jpaa.2016.02.008. arXiv: 1411.0383 [math.RT].
[AF06] P. S. Aspinwall and L. M. Fidkowski, "Superpotentials for quiver gauge theories," J. High Energy Phys., no. 10, 047, 25 pp. (electronic), 2006. DOI: $10.1088 / 1126-6708 / 2006 / 10 / 047$. arXiv: hep-th/0506041.
[ABCP10] I. Assem, T. Brüstle, G. Charbonneau-Jodoin, and P.-G. Plamondon, "Gentle algebras arising from surface triangulations," Algebra Number Theory, vol. 4, no. 2, pp. 201-229, 2010. DOI: 10.2140/ant.2010.4.201. arXiv: 0903.3347 [math.RT].
[AS81] M. Auslander and S. O. Smalø, "Almost split sequences in subcategories," J. Algebra, vol. 69, no. 2, pp. 426-454, 1981. DOI: 10.1016/0021-8693(81)90214-3.
[AR91] M. Auslander and I. Reiten, "Applications of contravariantly finite subcategories," Adv. Math., vol. 86, no. 1, pp. 111-152, 1991. DOI: 10.1016/0001-8708(91) 90037-8.
[BGL87] D. Baer, W. Geigle, and H. Lenzing, "The preprojective algebra of a tame hereditary Artin algebra," Comm. Algebra, vol. 15, no. 1-2, pp. 425-457, 1987. DOI: 10.1080/00927878708823425.
[BK12] P. Baumann and J. Kamnitzer, "Preprojective algebras and MV polytopes," Represent. Theory, vol. 16, pp. 152-188, 2012.
DOI: $10.1090 /$ S1088-4165-2012-00413-7. arXiv: 1009.2469 [math.RT].
[BL16] R. Bautista and D. López-Aguayo, "Potentials for some tensor algebras," version 6, 2016. arXiv: 1506.05880 [math.RT].
[BP01] C. E. Beasley and M. R. Plesser, "Toric duality is Seiberg duality," J. High Energy Phys., no. 12, Paper 1, 38, 2001. DOI: $10.1088 / 1126-6708 / 2001 / 12 / 001$. arXiv: hep-th/0109053.
[Ben98] D. J. Benson, Representations and cohomology. I. Cambridge University Press, Cambridge, 1998, vol. 30, pp. xii+246.
[BFZ05] A. Berenstein, S. Fomin, and A. Zelevinsky, "Cluster algebras. III. Upper bounds and double Bruhat cells," Duke Math. J., vol. 126, no. 1, pp. 1-52, 2005. DOI: 10.1215/S0012-7094-04-12611-9. arXiv: math/0305434 [math.RT].
[BP06] A. Bergman and N. Proudfoot, "Moduli spaces for D-branes at the tip of a cone," J. High Energy Phys., no. 3, 073, 9 pp. (electronic), 2006. DOI: $10.1088 / 1126-6708 / 2006 / 03 / 073$. arXiv: hep-th/0510158.
[BGP73] I. N. Bernšteĭn, I. M. Gel'fand, and V. A. Ponomarev, "Coxeter functors, and Gabriel's theorem," Uspehi Mat. Nauk, vol. 28, no. 2(170), pp. 19-33, 1973.
[Bou70] N. Bourbaki, Eléments de mathématique: Algèbre, chapitres 1 à 3. Masson, 1970.
[Bou81] N. Bourbaki, Eléments de mathématique: Algèbre, chapitres 4 à 7. Masson, 1981.
[Bri05] T. Bridgeland, "t-structures on some local Calabi-Yau varieties," J. Algebra, vol. 289, no. 2, pp. 453-483, 2005. DOI: $10.1016 / \mathrm{j} . j a l$ gebra.2005.03.016. arXiv: math/0502050 [math.AG].
[BIRS09] A. B. Buan, O. Iyama, I. Reiten, and J. Scott, "Cluster structures for 2-Calabi-Yau categories and unipotent groups," Compos. Math., vol. 145, no. 4, pp. 1035-1079, 2009. DOI: 10.1112/S0010437X09003960. arXiv: math/0701557 [math.RT].
[BIRS11] A. B. Buan, O. Iyama, I. Reiten, and D. Smith, "Mutation of cluster-tilting objects and potentials," Amer. J. Math., vol. 133, no. 4, pp. 835-887, 2011. DOI: 10.1353/ajm.2011.0031. arXiv: 0804.3813 [math.RT].
[BMR+06] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, "Tilting theory and cluster combinatorics," Adv. Math., vol. 204, no. 2, pp. 572-618, 2006. DOI: 10.1016/j.aim.2005.06.003. arXiv: math/0402054 [math.RT].
[CC06] P. Caldero and F. Chapoton, "Cluster algebras as Hall algebras of quiver representations," Comment. Math. Helv., vol. 81, no. 3, pp. 595-616, 2006. DOI: $10.4171 / \mathrm{CMH} / 65$. arXiv: math/0410187 [math.RT].
[CE56] H. Cartan and S. Eilenberg, Homological algebra. Princeton University Press, Princeton, N. J., 1956, pp. xv+390.
[Cec13] S. Cecotti, "Categorical tinkertoys for $\mathrm{N}=2$ gauge theories," Internat. J. Modern Phys. A, vol. 28, no. 5-6, pp. $1330006,124,2013$.
DOI: $10.1142 /$ S0217751X13300068. arXiv: 1203.6734 [hep-th].
[CV13] S. Cecotti and C. Vafa, "Classification of complete $N=2$ supersymmetric theories in 4 dimensions," in Surveys in differential geometry. Geometry and topology, vol. 18, Int. Press, Somerville, MA, 2013, pp. 19-101.
DOI: 10.4310/SDG.2013.v18.n1.a2. arXiv: 1103.5832 [hep-th].
[CL12] G. Cerulli Irelli and D. Labardini-Fragoso, "Quivers with potentials associated to triangulated surfaces, part III: Tagged triangulations and cluster monomials," Compos. Math., vol. 148, no. 6, pp. 1833-1866, 2012.
DOI: 10.1112/S0010437X12000528. arXiv: 1108.1774 [math.RT].
[Cra01] W. Crawley-Boevey, "Geometry of the moment map for representations of quivers," Compositio Math., vol. 126, no. 3, pp. 257-293, 2001. DOI: $10.1023 / \mathrm{A}: 1017558904030$.
[CH98] W. Crawley-Boevey and M. P. Holland, "Noncommutative deformations of Kleinian singularities," Duke Math. J., vol. 92, no. 3, pp. 605-635, 1998. DOI: 10.1215/S0012-7094-98-09218-3.
[Dem10] L. Demonet, "Mutations of group species with potentials and their representations. Applications to cluster algebras," version 2, 2010. arXiv: 1003.5078 [math.RT].
[DWZ08] H. Derksen, J. Weyman, and A. Zelevinsky, "Quivers with potentials and their representations. I. Mutations," Selecta Math. (N.S.), vol. 14, no. 1, pp. 59-119, 2008. DOI: $10.1007 /$ s00029-008-0057-9. arXiv: 0704.0649 [math.RA].
[DWZ10] H. Derksen, J. Weyman, and A. Zelevinsky, "Quivers with potentials and their representations II: Applications to cluster algebras," J. Amer. Math. Soc., vol. 23, no. 3, pp. 749-790, 2010. DOI: 10.1090/S0894-0347-10-00662-4. arXiv: 0904.0676 [math.RA].
[DR76] V. Dlab and C. M. Ringel, "Indecomposable representations of graphs and algebras," Mem. Amer. Math. Soc., vol. 6, no. 173, pp. v+57, 1976.
[DR75] V. Dlab and C. M. Ringel, "On algebras of finite representation type," J. Algebra, vol. 33, pp. 306-394, 1975.
[DR74] V. Dlab and C. M. Ringel, Representations of graphs and algebras. Department of Mathematics, Carleton University, Ottawa, Ont., 1974, pp. iii+86.
[DR80] V. Dlab and C. M. Ringel, "The preprojective algebra of a modulated graph," in Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), vol. 832, Springer, Berlin-New York, 1980, pp. 216-231.
[DM96] M. R. Douglas and G. Moore, "D-branes, quivers, and ALE instantons," version 1, 1996. arXiv: hep-th/9603167.
[FST12a] A. Felikson, M. Shapiro, and P. Tumarkin, "Cluster algebras and triangulated orbifolds," Adv. Math., vol. 231, no. 5, pp. 2953-3002, 2012. DOI: $10.1016 / \mathrm{j}$. aim. 2012.07 .032. arXiv: 1111.3449 [math.C0].
[FST12b] A. Felikson, M. Shapiro, and P. Tumarkin, "Cluster algebras of finite mutation type via unfoldings," Int. Math. Res. Not. IMRN, no. 8, pp. 1768-1804, 2012. DOI: $10.1093 / \mathrm{imrn} / \mathrm{rnr} 072$. arXiv: 1006.4276 [math. CO].
[FG07] V. V. Fock and A. B. Goncharov, "Dual Teichmüller and lamination spaces," in Handbook of Teichmüller theory. Vol. I, vol. 11, Eur. Math. Soc., Zürich, 2007, pp. 647-684. DOI: 10.4171/029-1/16. arXiv: math/0510312 [math.DG].
[FST08] S. Fomin, M. Shapiro, and D. Thurston, "Cluster algebras and triangulated surfaces. I. Cluster complexes," Acta Math., vol. 201, no. 1, pp. 83-146, 2008. DOI: $10.1007 /$ s11511-008-0030-7. arXiv: math/0608367 [math.RA].
[FZ02] S. Fomin and A. Zelevinsky, "Cluster algebras. I. Foundations," J. Amer. Math. Soc., vol. 15, no. 2, 497-529 (electronic), 2002. DOI: 10.1090/S0894-0347-01-00385-X. arXiv: math/0104151 [math.RT].
[FZ03] S. Fomin and A. Zelevinsky, "Cluster algebras. II. Finite type classification," Invent. Math., vol. 154, no. 1, pp. 63-121, 2003. DOI: $10.1007 / \mathrm{s} 00222-003-0302-\mathrm{y}$. arXiv: math/0208229 [math.RA].
[Gab80] P. Gabriel, "Auslander-Reiten sequences and representation-finite algebras," in Representation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), vol. 831, Springer, Berlin, 1980, pp. 1-71.
[Gab73] P. Gabriel, "Indecomposable representations. II," in Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), Academic Press, London, 1973, pp. 81-104.
[Gab72] P. Gabriel, "Unzerlegbare Darstellungen. I," Manuscripta Math., vol. 6, 71-103, correction, ibid. 6 (1972), 309, 1972.
[GLS11] C. Geiß, B. Leclerc, and J. Schröer, "Kac-Moody groups and cluster algebras," Adv. Math., vol. 228, no. 1, pp. 329-433, 2011. DOI: $10.1016 / \mathrm{j}$. aim. 2011.05.011. arXiv: 1001.3545 [math.RT].
[GLS16a] C. Geiß, B. Leclerc, and J. Schröer, "Quivers with relations for symmetrizable Cartan matrices I: Foundations," version 5, 2016, to appear in Invent. Math. arXiv: 1410.1403 [math.RT].
[GLS16b] C. Geiß, B. Leclerc, and J. Schröer, "Quivers with relations for symmetrizable Cartan matrices II: Change of symmetrizers," version 3, 2016, to appear in Int. Math. Res. Not. arXiv: 1511.05898 [math.RT].
[GLS16c] C. Geiß, B. Leclerc, and J. Schröer, "Quivers with relations for symmetrizable Cartan matrices III: Convolution algebras," Represent. Theory, vol. 20, pp. 375-413, 2016. DOI: $10.1090 / \mathrm{ert} / 487$. arXiv: 1511.06216 [math.RT].
[GP79] I. M. Gel'fand and V. A. Ponomarev, "Model algebras and representations of graphs," Funktsional. Anal. i Prilozhen., vol. 13, no. 3, pp. 1-12, 1979.
[Geu13] J. Geuenich, "Quivers with potentials on three vertices," Master's thesis, Universität Bonn, 2013.
[GL16a] J. Geuenich and D. Labardini-Fragoso, "Species with potential arising from surfaces with orbifold points of order 2, part I: One choice of weights," version 3, 2016, to appear in Math. Z. DOI: $10.1007 /$ s00209-016-1795-6. arXiv: 1507.04304 [math.C0].
[GL16b] J. Geuenich and D. Labardini-Fragoso, "Species with potential arising from surfaces with orbifold points of order 2, part II: Arbitrary weights," version 1, 2016. arXiv: 1611.08301 [math.RA].
[Hat02] A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002, pp. xii +544.
[Iwa80] Y. Iwanaga, "On rings with finite self-injective dimension. II," Tsukuba J. Math., vol. 4, no. 1, pp. 107-113, 1980.
[Kna07] A. W. Knapp, Advanced algebra. Birkhäuser Boston, Inc., Boston, MA, 2007, pp. xxiv+730.
[Kül16] J. Külshammer, "Prospecies of algebras I: Basic properties," version 1, 2016. arXiv: 1608.01934 [math.RT].
[Lab09a] D. Labardini-Fragoso, "Quivers with potentials associated to triangulated surfaces," Proc. Lond. Math. Soc. (3), vol. 98, no. 3, pp. 797-839, 2009. DOI: $10.1112 / \mathrm{plms} / \mathrm{pdn} 051$. arXiv: 0803.1328 [math.RT].
[Lab09b] D. Labardini-Fragoso, "Quivers with potentials associated to triangulated surfaces, part II: Arc representations," version 2, 2009. arXiv: 0909.4100 [math.RT].
[Lab16] D. Labardini-Fragoso, "Quivers with potentials associated to triangulated surfaces, part IV: Removing boundary assumptions," Selecta Math. (N.S.), vol. 22, no. 1, pp. 145-189, 2016. DOI: $10.1007 /$ s00029-015-0188-8. arXiv: 1206.1798 [math.CO].
[LZ16] D. Labardini-Fragoso and A. Zelevinsky, "Strongly primitive species with potentials I: Mutations," Bol. Soc. Mat. Mex. (3), vol. 22, no. 1, pp. 47-115, 2016. DOI: $10.1007 / \mathrm{s} 40590-015-0063-9$. arXiv: 1306.3495 [math.RA].
[Lam91] T. Y. Lam, A first course in noncommutative rings. Springer-Verlag, New York, 1991, vol. 131, pp. xvi +397 . DOI: 10.1007/978-1-4684-0406-7.
[Lam99] T. Y. Lam, Lectures on modules and rings. Springer-Verlag, New York, 1999, vol. 189, pp. xxiv +557 . DOI: $10.1007 / 978-1-4612-0525-8$.
[LY15] F. Li and C. Ye, "Representations of Frobenius-type triangular matrix algebras," version 3, 2015. arXiv: 1511.08040 [math.RA].
[Nak39] T. Nakayama, "On Frobeniusean algebras. I," Ann. of Math. (2), vol. 40, pp. 611-633, 1939.
[Ngu12] B. Nguefack, "Potentials and Jacobian algebras for tensor algebras of bimodules," version 3, 2012.
arXiv: 1004.2213 [math.RT].
[Rie80] C. Riedtmann, "Algebren, Darstellungsköcher, Überlagerungen und zurück," Comment. Math. Helv., vol. 55, no. 2, pp. 199-224, 1980. DOI: $10.1007 / \mathrm{BF} 02566682$.
[RZ13] C. M. Ringel and P. Zhang, "Representations of quivers over the algebra of dual numbers," version 2, 2013.
arXiv: 1112.1924 [math.RT].
[Rog75] J. V. Roganov, "The dimension of the tensor algebra of a projective bimodule," Mat. Zametki, vol. 18, no. 6, pp. 895-902, 1975.
[RSS80] G.-C. Rota, B. Sagan, and P. R. Stein, "A cyclic derivative in noncommutative algebra," J. Algebra, vol. 64, no. 1, pp. 54-75, 1980. DOI: 10.1016/0021-8693(80) 90133-7.
[Sch85] A. H. Schofield, Representation of rings over skew fields. Cambridge University Press, Cambridge, 1985, vol. 92, pp. xii +223 . DOI: 10.1017/CB09780511661914.
[Sei95] N. Seiberg, "Electric-magnetic duality in supersymmetric non-abelian gauge theories," Nuclear Phys. B, vol. 435, no. 1-2, pp. 129-146, 1995. DOI: 10.1016/0550-3213(94)00023-8. arXiv: hep-th/9411149.
[War93] S. Warner, Topological rings. North-Holland Publishing Co., Amsterdam, 1993, vol. 178, pp. $\mathrm{x}+498$.

[^0]: ${ }^{1}$ Not to the function $w(\mathbf{x})=\frac{d_{\mathbf{x}}}{2}$. The reason for this is that we call a diagonal integer matrix D a skewsymmetrizer of $B=B(\tau)$ if $D B$ is skew-symmetric, whilst [FST12a] requires $B D$ to be skew-symmetric.

