
Intuitive Exploration of
Multivariate Data

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt
von

Daniel Paurat
aus

Duisburg

Bonn, 2017

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Thomas Gärtner
2. Gutachter: Prof. Dr. Stefan Wrobel
Tag der Promotion: 15.03.2017
Erscheinungsjahr: 2017

Daniel Paurat

University of Bonn
Department of Computer Science III

and

Fraunhofer Institute for Intelligent Analysis
and Information Systems IAIS

Declaration

I, Daniel Paurat, confirm that this work is my own and is expressed in my own words.
Any uses made within it of the works of other authors in any form (e.g. ideas, equations,
figures, text, tables, programs) are properly acknowledged at the point of their use. A
full list of the references employed has been included.

Acknowledgements

I would like to express my sincere gratitude to Thomas Gärtner for the trust and for
encouraging me to start this work, for the constant support throughout it, countless
discussions and for being a great supervisor in general. Henrik Grosskreutz and Mario
Boley for guiding me through the first year. Roman Garnett, Tamás Horváth, Ulf Brefeld
and Kristian Kersting for all the quality discussions. Michael Kamp for innumerable
coffee and theory crafting sessions; I really enjoyed our talks a lot. The other PhD
students at Fraunhofer institute from Thomas’ and Kristian’s research groups, namely
Pascal Welke, Olana Missura, Dino Oglic, Katrin Ullrich, Anja Pilz, Fabian Hadiji,
Babak Ahmadi and Mirwaes Wahabzada. Not to forget my awesome office mates Sandy
Moons and Marion Neumann. All of you guys and some of the really inspiring students
that I met over the last couple of years provided an exquisite environment for me to
pursue my thesis. It was a great time for me and I certainly would drink work with all
of you again!

I would also like to thank my parents Roland and Ute Paurat for the trust they granted
me. My partner Stephanie Höppner for the freedom and the constant stream of motiva-
tion, as well as our son Jakob for providing me the final reason to complete this work.
Finally, I would like to thank all of my friends, who repeatedly had to endure my talks
on data analysis, with a special reference to Sebastian Ginzel for the (sometimes much
needed) discussions and talks. I owe all of you guys my deepest gratitude.

Part of this work was supported by the German Science Foundation (DFG) under the
reference numbers ‘GA 1615/1-1’ and ‘GA 1615/1-2’.

i

Abstract

Approaching a dataset with an analysis question is usually not a trivial process. Apart
from integrating, cleaning and pre-processing the data, typical issues are to generate and
validate hypotheses, to understand which algorithms to apply, to estimate parameter
settings and to interpret intermediate analysis results. To this end, it is often helpful
to explore the data at first in order to find and understand its main characteristics, the
driving influences, structures and relations among the data records, as well as revealing
outliers. Exploratory data analysis, a term coined by John W. Tukey (Tukey, 1977), is
a loose set of methods, mostly of graphical nature, to summarize and understand the
main characteristics of the data at hand. This work extends the set of exploratory data
analysis methods by proposing several new methods that support the analyst in his, or
her task of understanding the data. Over the course of this thesis, two conceptually
different approaches are investigated.

The first approach studies pattern mining algorithms, a family of methods that find
and report hypotheses which describe interesting sub-populations of the dataset to the
analyst, where the interestingness is measured by different quality functions. As the
results of pattern mining methods are interpretable by a human expert, these algo-
rithms are often utilized to study a dataset in an exploratory way. Note that many
pattern mining algorithms address the problem of finding a small set of diverse high
quality patterns. To this end, this work introduces two new algorithms, one for relevant
and one for ∆-relevant subgroup discovery. In addition an algorithmic framework for
sampling patterns according to different pattern quality measures is introduced. The
second approach towards exploratory data analysis leaves the discovery of interesting
sub-populations to the analyst and enables him, or her to study a two dimensional pro-
jection of the data and interact with it. A scatter plot visualization of the projected data
lets the analyst observe the data collection as a whole and visually uncover interesting
structures. Manipulating the locations of individual data records within the plot further
enables the analyst to alter the projection angle and to actively steer the projection.
This way relations among the data records can be set, or discovered and aspects of
the data’s underlying distribution can be explored in a visual manner. Finding the
according projections is not trivial and throughout this thesis three novel approaches
are proposed to do so.

The thesis concludes with a synthesis of both approaches. Classical pattern mining
algorithms often aim at reducing the output of patterns to a small set of highly interesting
and diverse patterns. However, by discarding most of the patterns, a trade-off has to
be made between ruling out potentially insightful patterns and possibly drowning the
analyst in results. Combining interactive visual exploration techniques with pattern
discovery, on the other hand, excels on working with larger pattern collections, as the
underlying pattern-distribution emerges more clearly. This way, the analyst does not
only retain an overview on the underlying structure of the dataset, but can also survey
the relations among the interesting aspects of the dataset.

iii

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contributions . 2
1.3 Previously Published Work . 5
1.4 Outline . 6

2 Local Pattern Discovery 9
2.1 Preliminaries . 10
2.2 Relevant Patterns . 16
2.3 ∆-Relevant Patterns . 28
2.4 Sampling Interesting Patterns . 42
2.5 Summary and Discussion . 48

3 Interactive Embeddings 51
3.1 Preliminaries . 52
3.2 Least Squared Error Projection . 62
3.3 Most Likely Embedding . 74
3.4 Constrained Kernel Principal Component Analysis 81
3.5 Summary and Discussion . 92

4 Synthesis 95
4.1 Embedding Patterns . 95
4.2 Interacting with Pattern Embeddings – A Case Study 97
4.3 Summary and Discussion . 105

5 Conclusion 107

Bibliography 111

Appendix 119
A InVis User Manual . 119

v

List of Algorithm Acronyms

BSD – Bitset based subgroup discovery

cKPCA – Constrained kernel principal component analysis

ClosedSD – Closed subgroup discovery

Closed�SD – Closed subgroup discovery on the positive labeled portion of the data

CN2-SD – Clark and Niblett’s CN2 algorithm for subgroup discovery

DP-subgroup – Depth pruning subgroup discovery

FP-growth – Frequent pattern growth

ICA – Independent component analysis

IMR – Inductive minimum representative construction

Isomap – Isometric mapping

KPCA – Kernel principal component analysis

LCM – Linear time closed itemset miner

LLE – Locally linear embedding

LSP – Least squared error projection

MDS – Multidimensional scaling

MLE – Most likely embedding

PCA – Principal component analysis

PP – Projection Pursuit

RelevantSD – Relevant subgroup discovery

SVD – Singular value decomposition

vi

List of Tables

2.1 Transactional cocktail database example . 10
2.2 A dataset to illustrate closed sets. 15
2.3 Example of the dominance relation . 17
2.4 Runtime and memory complexity comparison with RelevantSD 22
2.5 Dataset with fewer closed-on-the-positive then closed patterns 22
2.6 Datasets used in the evaluation. 24
2.7 Number of nodes visited by different pattern mining algorithms 27
2.8 A dataset illustrating the lack of transitivity in the ∆-dominance relation 32
2.9 The size of the ∆-relevant pattern set is not monotonous in ∆ 36
2.10 Redudancy of the top-20 patterns for different algorithms 40

3.1 Vector representation of example cocktails 53
3.2 LSP scalability . 67
3.3 Updates per second of MLE . 79
3.4 Average pairwise distances of cKPCA and LSP 88
3.5 Execution time of regular cKPCA and using rank-one updates 89

4.1 Ten highest quality patterns of different pattern-mining approaches . . . 98

vii

List of Figures

2.1 The pattern space layed out in a lattice . 13
2.2 Number of nodes considered during relevant pattern discovery 25
2.3 Number of nodes considered by (non-relevant) pattern mining algorithms 26
2.4 Highly correlated patterns . 28
2.5 Condensing redundant patterns creates space in result list 29
2.6 The ∆-dominance relation is not transitive. 33
2.7 The dominance graph of Example 2.9. 36
2.8 Reduction of ∆-relevant rules found depending on ∆ 38
2.9 AUC of the top�10 ∆-relevant patterns (Piatetsky-Shapiro quality) . . . 41
2.10 AUC of the top�10 ∆-relevant patterns (Binomial test quality) 42
2.11 Primary-tumor dataset: all patterns plotted frequency vs. Fisher score . 43
2.12 Differently drawn patterns, plotted frequency vs. Fisher score 46
2.13 Execution of LCM with lowering support threshold 47
2.14 Pattern mining execution time, LCM vs. frequency-based sampling 48

3.1 Three iterations of projection pursuit . 55
3.2 Approximating the distance on a manifold using the k nearest neighbors 56
3.3 Highlighting in a PCA embedding via color 59
3.4 Highlighting in a PCA embedding via point size and transparency 59
3.5 Interaction: Filter and re-embed . 60
3.6 Interaction: Search and Info-query . 61
3.7 Two dimensional projection (shadow) of a cup 62
3.8 Graduate change of an embedding on interaction 64
3.9 LSP scalability rendered updates . 66
3.10 LSP scalability calculated updated . 66
3.11 LSP scalability speedup . 66
3.12 LSP stability experiment . 68
3.13 Evolution of mimicking a target embedding via LSP 69
3.14 Development of the rmse for approximating a PCA embedding 70
3.15 Mimicking an embedding depends on the dimensionality of the dataset . 70
3.16 PCA embedding of facial images . 71
3.17 Distinguishing between people and poses, using LSP 71
3.18 Zoom into Figure 3.17 . 72
3.19 Flexibility of LSP . 73
3.20 Flexibility of MLE . 80

viii

3.21 Spread of cKPCA compared with LSP . 87
3.22 Speedup of cKPCA, using rank-one updates 90
3.23 Flexibility of cKPCA . 91
3.24 The InVis tool for interactive embeddings 93

4.1 Plain PCA embedding of the 1000 most frequent patterns 98
4.2 Highlighting ingredients in the PCA embedding of 1000 frequent patterns 99
4.3 Interacting with the embedding of the 1000 most frequent patterns 99
4.4 Closer inspection of a structure in the embedding of the frequent patterns 100
4.5 Uninformative classic embeddings of 1000 sampled patterns 101
4.6 Revealing structures by interacting with the sampled-pattern-embedding 102
4.7 Highlighting ingredients in the PCA embedding of 1000 subgroups 103
4.8 Re-embedding of a sub-selection of patterns 103
4.9 Using control points to refine a structure. 104
4.10 Inspecting the contents of two of the emerging clusters 104

A.1 Starting up the InVis tool. 119
A.2 The File menu. 120
A.3 The initial view, after the webtender dataset is loaded. 121
A.4 The edit menu. 121
A.5 Options that can be adjusted in the view menu. 123
A.6 A quick reminder of the shortcuts for interaction with the canvas. 124
A.7 Queried information on a single data record. 125
A.8 A control point. 125
A.9 A lasso-selected area and its most influential attribute combinations. . . . 125
A.10 Searching parts of the data record ID’s. 126
A.11 Colorizing the data records by an attribute value. 126

ix

1. Introduction

“Our information age more often feels like an era of information overload.
Excess amounts of information are overwhelming; raw data becomes useful
only when we apply methods of deriving insight from it.”

(Scott Murray, Interactive Data Visualization for the Web, 2013)

1.1 Background and Motivation . 1
1.2 Contributions . 2
1.3 Previously Published Work . 5
1.4 Outline . 6

1.1. Background and Motivation

Collecting data has become omnipresent. Online retailers collect and evaluate enormous
amounts of data to give better product recommendations to their users and thus increase
their sales. Companies log and assess information along their processes to optimize their
workflows, biologists utilize machine learning techniques on microarrays to discover
relations between genes and diseases, and governments collect and analyze communi-
cation traces to identify potential threads. Along with the presence of inexpensive and
available processing power, storage capacity and communication bandwidth researchers
and companies are collecting more and more data with the goal of extracting valuable
insights from it. The list of use-cases for discovering knowledge from databases is long
and all of them share the hope that the quality of the extracted insights increases with
the amount of collected data. Together with the growing processing and storing power,
the size of the data collections is steadily increasing; in the amount of assembled data
records, as well as the number of attributes that are being monitored.

With this overwhelming amount of data, there is an increasing need for efficient methods
that help an analyst to develop an understanding of the data (Chakrabarti et al., 2008).
Since there is usually no technique which directly extracts all the relevant insights, the
analyst needs to explore the data in order to identify important variables and relations,
detect anomalies, coin and test hypotheses and make algorithm and parameter choices.

1

Exploring the data, can help the analyst to understand the data’s underlying structure,
ask the right questions and ultimately uncover the desired insights. In general, extract-
ing knowledge from data is an iterative process that involves repetitive modelling and
understanding of it (Shearer, 2000) with the ultimate goal to gain previously unknown
and potentially useful information (Frawley et al., 1992). To this end exploratory data
analysis techniques can help the user to understand the underlying structure and rela-
tions of the data. In this thesis two orthogonal approaches were investigated, which both
focus on a presentation of the results that is interpretable by a human domain expert.
This yields the benefit that an expert of the domain from which the data derives can be
empowered to perform knowledge discovery tasks without possessing in-depth machine
learning knowledge. The first of the here investigated approaches studies techniques that
automatically deliver human-understandable descriptions of interesting partitionings of
the dataset to the analyst. The contributions from this part of the thesis to the scientific
community are mainly towards finding more concise local pattern descriptions in a more
efficient way. The other approach to exploratory data analysis investigates techniques
that let the analyst observe all data records of a dataset and their relations at a glance.
This part of the thesis studies a novel area of interactive visual data analysis. The idea
behind all here introduced approaches is to enable the analyst to browse and navigate
a two dimensional Scatter plot projection of the whole dataset in a live-updating and
interactive manner. Seeing related data records move in cohesion, while altering the
perspective, enables the analyst to understand their connections, coin and test hypothe-
ses and the grasp underlying structure of the data itself.

To guide the reader with a consistent example dataset, throughout this thesis a col-
lection of cocktail recipes will be used. This collection is based on 1702 recipes which
were retrieved from the website http://webtender.com and it comprises 334 different
ingredients. The cocktail dataset is on the one hand complex enough to be interesting
and contain non-trivial insights. On the other hand the domain is easily understandable
and the reader directly has an intuition for the results. Depending on the task and the
utilized algorithms, the cocktail recipe collection is pre-processed differently to form a
suitable dataset.

1.2. Contributions

This thesis addresses the human in the loop of data analysis tasks and extends the
research on human-understandable knowledge discovery and exploratory data analysis
methods by investigating two complementary approaches and their synthesis. The first
approach, discussed in Chapter 2, focuses on finding interesting and yet diverse local
patterns efficiently. In an exploratory data analysis setting, the discovered patterns
can be utilized to guide the analyst’s attention towards interesting sub-populations of
the data collection. Employing different pattern mining methods and interestingness
measures helps to uncover various aspects within the data. With respect to the pattern
mining community, the contributions of this dissertation are the following:

2

http://webtender.com

• Section 2.2 presents an efficient algorithm to solve the problem of listing relevant
patterns, as introduced by Garriga et al. (2008). It is a variation of an algo-
rithm, introduced by Boley and Grosskreutz (2009) to traverse the search space of
all closed and positively labeled patterns, following a “shortest-description-length-
first” search strategy. The here presented version of the algorithm is designed to
exhibit a small memory footprint, by applying an iterative deepening search strat-
egy and resulted in a publication at the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (Grosskreutz and
Paurat, 2011).

• A follow-up publication at the SIGKDD Conference on Knowledge Discovery and
Data Mining (Grosskreutz et al., 2012), refined the above mentioned relevance to
a stricter formulation. The so called ∆-relevance, as introduced in Section 2.3,
allows to omit patterns that are redundant to already discovered patterns up to
a certain threshold. Employing this pattern mining technique usually leads to a
more diverse result set of discovered interesting patterns, which are introduced in
Section 2.1.2.

• In contrast to finding a small result set of high-quality patterns, additionally the
idea of sampling patterns with a probability proportional to different interest-
ingness measures was investigated. This lead to a publication at the SIGKDD
Conference on Knowledge Discovery and Data Mining (Boley et al., 2011). The
investigated random pattern sampling procedure, as introduced in Section 2.4, can
be adjusted to expose different sampling biases that are closely related to different
interesting measures.

The second approach to exploratory data analysis that is studied in this dissertation
investigates direct interaction with a scatter plot visualization of all data records from a
data collection. The main idea behind all techniques, proposed in this work, is to interact
with the scatter plot visualization by manually placing individual points of the plot to
a desired location. This interaction serves as input to the underlying algorithm, which
maps the original data to a two dimensional space that is visualized, to consider the
the feedback and re-calculate the mapping accordingly. Interacting with a visualization
of all data records and directly receiving response helps the analyst to find interesting
sub-populations, craft and check hypotheses and ultimately develop an understanding of
the relations among the data records and the underlying structure of the whole dataset.
The main contributions to this area of research are the following:

• Section 3.2 introduces a way to interact with and control a (in this case two-
dimensional) projection of a dataset, by “grasping and dragging” individual data
points within a scatter plot visualization. This technique is not limited to a certain
algorithm and can be utilized to express domain knowledge, or to uncover struc-
tural properties of the dataset. A first implementation of this interaction method
employed the least squared error projection (LSP) algorithm which solely considers
the control points’ data and embedding locations and calculates a linear projection

3

with the least squared residual error. This lead to a publication at the European
Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases (Paurat and Gärtner, 2013) and build the foundation of a tool
for interactive visualization (InVis), which is also a part of the contributions of this
dissertation.

• A drawback of the LSP method is that with no control points placed, the algorithm
projects every data record to the origin of the embedding space. To overcome this
problem and some other limitations of the LSP method, when dealing with sparse
data, a probabilistic approach was investigated. The resulting embedding method,
discussed in Section 3.3, considers a prior belief about the embedding and regards
the placement of the control points as evidence. Section 3.3 also shows that for a
certain parameter choice this most likely embedding (MLE) is equivalent to the LSP
algorithm. Paurat et al. (2014) discuss the underlying technique in the context of
interactive visualizations briefly, as an almost identical mathematical framework
was proposed by Iwata et al. (2013).

• An alternative approach to overcome the limitations of LSP and to improve on
the flexibility of the underlying embedding algorithm lead to two publications on
knowledge based constraint Kernel-PCA (cKPCA). One publication at the NIPS
Workshop on Spectral Learning (Paurat et al., 2013b), the other one at the Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (Oglic et al., 2014). cKPCA is an interactive version of a
kernel-PCA, as introduced in Section 3.4, that can take several types of constraints
into account. These constraints can e.g. be given in the form of desired locations
within the embedding of individual points.

The last contribution of this dissertation shows a way of combining pattern discovery
and interactive embeddings. Large amounts of patterns tend to overload the analyst
with information. For this reason, many pattern mining techniques revolve around the
task of finding a small and condensed set of highly interesting and diverse patterns. The
combination of pattern discovery and interactive embeddings takes a different approach:

• In Chapter 4, a general procedure is introduced, which facilitates interactive em-
bedding methods to empower the user to interactively explore and understand
large amounts of discovered patterns. Exploring a pattern collection interactively,
helps the user to keep an overview on general topics among the patterns and al-
lows dive into regions of interest on demand. Following this approach resulted in a
publication at the ACM SIGKDD Workshop on Interactive Data Exploration and
Analytics (Paurat et al., 2014).

4

1.3. Previously Published Work

As just stated in Section 1.2 on the contributions of this dissertation, parts of it have
already been published in conference and workshop proceedings of the international
conference of the Association for Computing Machinery’s Special Interest Group on
Knowledge Discovery and Data Mining (ACM SIGKDD), the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD) and the international conference on Neural Information Processing Sys-
tems (NIPS). In detail that is:

1. Mario Boley, Claudio Lucchese, Daniel Paurat, and Thomas Gärtner. Direct
local pattern sampling by efficient two–step random procedures. In Proceedings of
the 17th annual ACM SIGKDD Conferences on Knowledge Discovery and Data
Mining, 2011

2. Henrik Grosskreutz and Daniel Paurat. Fast and memory–efficient discovery of
the top–k relevant subgroups in a reduced candidate space. In Proceedings of
the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases, 2011

3. Henrik Grosskreutz, Daniel Paurat, and Stefan Rüping. An enhanced relevance
criterion for more concise supervised pattern discovery. In Proceedings of the 18th
annual ACM SIGKDD Conferences on Knowledge Discovery and Data Mining,
2012

4. Daniel Paurat and Thomas Gärtner. Invis: A tool for interactive visual data
analysis. In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, 2013

5. Daniel Paurat, Dino Oglic, and Thomas Gärtner. Supervised PCA for interactive
data analysis. In Proceedings of the 2nd NIPS Workshop on Spectral Learning, 2013

6. Dino Oglic, Daniel Paurat, and Thomas Gärtner. Interactive knowledge–based
kernel pca. In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, 2014

7. Daniel Paurat, Roman Garnett, and Thomas Gärtner. Interactive exploration of
larger pattern collections: A case study on a cocktail dataset. In Proceedings of
the 2nd ACM SIGKDD Workshop on Interactive Data Exploration and Analytics,
2014

5

1.4. Outline

This section connects the chapters and sections by providing an outline through the
thesis. Chapter 2 tackles different local pattern mining techniques that can be useful to
an analyst in an exploratory data mining setting. Starting with the preliminaries and
introducing the formal notation the Sections 2.2, 2.3 and 2.4 deal with efficient listing
and sampling of local patterns. All of these techniques automatically find interesting
descriptions of partitionings of the dataset, guiding the analysts attention towards sta-
tistically outstanding sub-populations of the data distribution. Sections 2.2 and 2.3
investigate relevant and ∆-relevant pattern mining methods. These techniques aim at
efficiently listing the top non-redundant, concise and interesting subgroup descriptions
of a labeled transactional database. Section 2.4 introduces a fast way to sample local
patterns according to different interestingness measures. The chapter then concludes
with a summary and discussion of the techniques.

Having investigated techniques that automatically find and deliver interesting aspects
of the dataset, Chapter 3 changes the focus and studies methods that enable the analyst
to observe and interact with a projection of the whole dataset. Being able to observe
all data records and their relations at once and to directly interact with them, lets
the analyst study the dataset “from a bird’s eyes perspective” and discover interesting
aspects on his own. This way the analyst can decide for himself which partitionings are
of interest. The chapter starts again by introducing the preliminaries to these techniques
and then continues to introduce three different algorithms that project the data into
a lower dimensional space and allow the analyst to directly alter the projection. For
the purpose of interactive visual analysis this lower dimensional space is the 2d plane.
Here, the analyst can actively browse the whole dataset in a visual way, see some of
the relations among the data records and understand the underlying structure of the
dataset. Navigating the projection is done by relocating individual data records within
the visualization in a “drag and drop” like manner. Selecting and relocating such a
“control point” triggers the underlying embedding algorithm to consider the analysts
feedback and shift the projection angle accordingly. This work introduces three different
interactive embedding techniques that utilize the placement of control points to alter the
projection of the data. Section 3.2 introduces a straight forward approach to interact
with a projection via control points. From the here presented methods this is the fastest
and most scalable algorithm. However, the approach is limited in several ways. For
instance, with no control points given, the embedding collapses to the origin. Another
limitation comes when dealing with sparse data. In this case, poorly chosen, or too few,
control points can lead to a degenerated embedding that doesn’t reveal any interesting
aspect of the data. To overcome some of the limitations, in Section 3.3 a probabilistic
version of an interactive embedding algorithm presented. Without any control points
placed, it is able to start with a prior belief about a “good” projection of the data. Note
that a similar idea has been published independently by Iwata et al. (2013). Although it
does not focus on the interaction with the embedding, the underlying mathematics are
largely alike. Section 3.4 studies an alternative approach to overcome the limitations

6

of the initial approach to interact with the embedded data. It presents an interactive
version of a kernel PCA. This way, the embedding is not limited to linear projections
any more, the initialization problem is solved and sparse datasets do not degenerate, as
the variance among the data records is naturally taken into account. However, these
benefits come at the price of computational complexity. The chapter concludes again
with a summary and discussion.

The ideas and methods, presented in the Chapters 2 and 3 represent two very different
approaches to exploratory data analysis and on how to find, study and understand
the driving aspects of a dataset. Chapter 4 presents a natural way of combining these
approaches, by interactively and visually analysing large pattern collections. To do so,
the mined patterns have to be represented as vectors.

The final Chapter 5 concludes with a general discussion on this thesis, open issues and
further research areas that might possibly emerge from this work.

7

2. Local Pattern Discovery

2.1 Preliminaries . 10

2.2 Relevant Patterns . 16

2.3 ∆-Relevant Patterns . 28

2.4 Sampling Interesting Patterns . 42

2.5 Summary and Discussion . 48

In an exploratory data analysis setting, the analyst tries to find interesting aspects of
the data. This can be done, for instance, by studying and understanding the underlying
distribution from which the data derives. Pattern mining can be of help here, as it auto-
matically finds human interpretable descriptions of interesting partitionings of the data.
In an exploratory setting, these patterns can be used to guide the analyst’s attention
towards interesting aspects of the dataset. This chapter investigates how to efficiently
find interesting and yet diverse local patterns. To this end, two fundamentally different
pattern mining approaches are studied. The first one considers the space of all possible
patterns that are defined on a dataset and reports a small set of highly interesting, yet
non-redundant, ones. One way of avoiding redundancy in a pattern discovery scenario, is
to focus on the so called relevant patterns. As a contribution, this work proposes a novel
algorithm for listing the top relevant patterns. The algorithm is faster and possesses a
smaller memory footprint than it’s competitors. In addition, the notion of relevance is
re-considered to allow for some slack, which in terms yield a less redundant and more
condensed result set. Another pattern mining approach that avoids redundancy in a
natural way, is to randomly sample them. This work introduces a sampling procedure
that can be adjusted to draw random patterns with a probability proportional to differ-
ent interestingness measures. This way, the analyst can explore patterns with a certain
bias towards an interestingness measure, but is not strictly bound to the “top” ones. In
an exploratory setting, this leaves room to discover patterns that are highly attractive
to the analyst, but are not considered interesting in terms of the measure.

9

2.1. Preliminaries

The following section gives an introduction to the notation of pattern mining. It provides
the definition of a pattern that is used throughout this work, introduces basic concepts
and notions like, e.g., extention and support, the true- and false positives of a pattern
for a labeled dataset, and presents several measures of interest for a given pattern.

2.1.1. Patterns

For the task of pattern mining, we assume a database D of m data records, d1, . . . , dm,
with each data record being described by a set of n binary attributes, or features,�a1�di�, . . . , an�di�� > �0,1�n. A pattern p is a subset of the attribute set, i.e.
p b �a1, . . . , an�, with each single ai of the pattern being referred to as item. For a
given database D, a data record d satisfies a pattern p if a�d� � 1 for all a > p, that
is, patterns are interpreted conjunctively. The cardinality of a pattern SpS denotes the
number of contained items, meaning the number of attributes a for which a�d� � 1.
Sometimes also the notation ai1& . . .& aik is used instead of �ai1 , . . . , aik�, omitting the
items for which a�d� � 0. In addition, this work also refers to a pattern as a subgroup
description or subgroup. This comes due to the fact that parts of the here presented
research were done in the specific pattern mining area of subgroup discovery. Subgroup
descriptions are “regular” patterns in terms of their representation. The difference is
that in order to measure the interestingness of a subgroup, an additional feature, the
label, is considered. Hence, subgroup discovery algorithms explicitly consider labeled
datasets and perform the task of finding frequent patterns that exhibit an unusual label
distribution in comparison to the overall label distribution.

The expression D�p�, also referred to as the extention of p, describes the set of data
records d > D of a database D that satisfy the pattern p. The support of p, denoted
by supp�D, p� or short supp�p�, is the cardinality of the set of data records that are
described by D�p�. Considering the cocktail dataset, a pattern could for instance be
Vodka & Orange juice. It describes the extention of all cocktails which contain Vodka
and Orange juice at the same time. The Table 2.1 below shows an excerpt of five
cocktails represented as transactions from our exemplary cocktail database.

Id Name Itemset

1 Caipirinha Cachaça & Lime & Sugar
2 Mojito Light rum & Lime & Mint & Soda water & Sugar
3 Piña Colada Coconut milk & Light rum & Pineapple
4 Screwdriver Vodka & Orange juice
5 Tequila Sunrise Grenadine & Orange juice & Tequila
� � �

Table 2.1.: An itemset representation of five well known cocktails. The listed ingredients
indicate their presence in the cocktail.

10

Additionally, the data records can be associated with a label. For the sake of simplicity,
here only binary labels are considered, though in practice not all pattern mining meth-
ods are restricted to that. Formally, the label is a special attribute class�d� that has
the range �`,\�.
For such a binary labeled dataset the true positives (TP) and the false positives
(FP) of a pattern p can be defined, with respect to the database D, as

TP�D, p� �� �d > D�p� S class�d� � `� and

FP�D, p� �� �d > D�p� S class�d� � \�.
The cardinalities of the sets STP�D, p�S and SFP�D, p�S are denoted by supp��p� and
respectively supp��p�.
To stay in the previously given example of the cocktail dataset, the pattern Vodka
& Orange juice describes the extention of all cocktails in our database that contain
both ingredients Vodka and Orange juice at the same time. In our dataset there are
95 cocktails which support this pattern. Considering a label that indicates whether a
cocktail is creamy or not, only 5 out of the 95 cocktails are labeled as creamy. These five
data records are the true positives of the pattern, the other 90 form the false positives.

2.1.2. Interestingness of a Pattern

The interestingness of a pattern p in the context of a database D is measured by a
quality function q�D, p� that assigns a real-valued quality to p. As patterns can be of
interest for different reasons, there are diverse measures to determine the interestingness
of a pattern. One common interestingness measure is the frequency of a pattern. It is
defined as the share of data records that are supported by the pattern over the amount
of all data records

freq�D, p� � supp�D, p�SDS .

Another prominent measure that does also not consider labels is the so called lift of a
pattern. It compares the observed support of a pattern to its expected support if all the
attributes were statistically independent. For instance, when considering the cocktail
dataset, 452 out of the 1702 cocktails contain Vodka and 249 Orange juice. That is,
26.5% of the cocktails contain Vodka and 14.6% Orange juice. If we assume that the
occurrence of these ingredients is independent, we would expect to observe that 3.8%
of all cocktails contain both ingredients at the same time. However, in the data we
observe 5.6% (95 cocktails) containing both ingredients. As this is almost 1.5 times our
expected value, the pattern Vodka & Orange juice is lift-wise considered as interesting.
More formally, the lift of the pattern p on the dataset D is defined as

lift�D, p� � freq�D, p�
Lpi>p freq�D, pi� .

11

Other prominent measures of interest additionally consider labels that are assigned to
the data records. To see how this can be of value, let us consider a label for the cocktail
dataset that indicates whether a cocktail is creamy, or not. For our previous example
pattern Vodka & Orange juice, only 5 out of 95 cocktails which supported the pattern
were creamy. Compared to the overall distribution, where 368 out of 1702 cocktails
are labeled as creamy, the pattern under-represents the creamy cocktails. The shift
of how much the label distribution of a pattern’s extention deviates from the overall
label distribution can be utilized as an interestingness measure. However, note that
considering solely the ratio between S` S and S\ S can be very sensitive to the amount of
supporting data records. If, e.g., another pattern p � would only be supported by a single
data record that also happens to be labeled as creamy, the ratio would be 1 out of 1.
Although the ratio indicates a highly interesting pattern, the extention that the pattern
describes would be much too small to be interesting to the analyst. To account for this
drawback, the ratio is usually weighted by a function of the frequency of the pattern.
This yields a quality measure which promotes patterns that expose a larger extention
and have an unusual label distribution. Some of the most common quality functions for
binary labeled data that capture this are of the form

q�D, p� � SD�p�Sα � �STP�D, p�SSD�p�S �
STP�D,g�SSDS � , (2.1)

where α is a constant such that 0 @ α B 1, and TP�D,g� simply denotes the set of all
positively labeled data records in the dataset. The family of quality functions char-
acterized by this equation includes some of the most popular quality functions: for
a � 1, it is order equivalent to the Piatetsky-Shapiro quality function (Klösgen, 1996)
and the weighted relative accuracy (WRACC) (Lavrač et al., 2004), while for a � 0.5 it
corresponds to the binomial test quality function (Klösgen, 1996).

2.1.3. Listing Patterns

This section gives a brief introduction to the algorithmic approach of enumerating inter-
esting patterns in an efficient way. Many pattern mining techniques find the interesting
patterns by traversing the space of all possible patterns over the given attributes in a
systematic way. Hereby the patterns are generated one after another and the quality of
the pattern is measured (and reported).

Traversing the Pattern Space

Many pattern mining algorithms consider the set of all possible patterns over a set of
attributes, ordered in a general to specific manner, as search space and traverse it in
order to find the interesting patterns. Figure 2.1 displays this search space for a dataset
over the three attributes a1, a2 and a3. Here the patterns are connected by an edge, if
they are in a super-/subset relation and differ by only one item. The patterns in this
lattice are arrange in the so called general to specific order. As each item of a pattern

12

constitutes a constraints, the empty set, a pattern with no items, is the most general
one. It does not exhibit any constraint and thus is supported by all data records of the
data set. The opposite constitutes the set of all items. Usually there are no, or only
very few, data records that satisfy all possible constraints and contribute to the support
set of the most specific pattern. Note that for any amount of attributes the general to
specific ordered search space always starts and ends in a single node, the empty set and
the set of all attributes.

Figure 2.1.: All patterns that can be formed from the attributes a1, a2 and a3. The
connections denote the super-/sub-set relation between the patterns. Starting from the
empty pattern, with each step down in the lattice, the patterns become more specific.

Traversing this pattern-lattice in a systematic way is the basis for a whole family of
pattern mining algorithms. Most of them can be seen as an instance, or a refinement of
the MIDOS algorithm (Wrobel, 1997). The difference among pattern mining algorithms
can often be found in the traversal strategy. Depending on the objective of the algo-
rithm, they usually start at one of the single-node endpoints and perform a breadth-, or
a depth-first-search on the graph. In addition, there are several methods that let the al-
gorithms terminate faster, or have a smaller memory footprint. One of these techniques,
for instance, is that the algorithms avoid multiple visits of the same node. More com-
plicated refinements involve an iterative deepening traversal strategy, or the application
of a heuristic in order to perform a greedy beam-search. Another common technique
which will be introduced in the following section is the so called pruning. In a scenario
where only a fix amount of the highest quality patterns are desired, pruning can help
to drastically reduce the runtime of an algorithm by excluding vast parts of the search
space from the search.

Frequency and Optimistic Estimator Pruning

Consider again our cocktail dataset. In this dataset, there are 334 different ingredients
and each of them may occur in a pattern, or not. This means that there are 2334

different patterns possible, a number with hundred and one digits. Usually it is not
feasible to test all of these patterns exhaustively for their interestingness, however,
there are ways to deal with this massive amount of patterns. Many interestingness
measures are anti-monotone towards specializations of a pattern. This means that

13

specializing a pattern can only lower, of retain the interestingness. As a consequence
for these interestingness measures, any specialization of a non-interesting pattern is also
not interesting. State-of-the-art top-k pattern mining algorithm do not traverse the
whole space of candidate patterns explicitly, but apply pruning to reduce the number of
patterns effectively visited (Atzmüller and Lemmerich, 2009; Grosskreutz et al., 2008;
Nijssen et al., 2009). The use of such techniques results in a dramatic reduction of the
execution time and is an indispensable tool for fast exhaustive subgroup discovery and
pattern mining algorithms in general (Atzmüller and Lemmerich, 2009; Grosskreutz
et al., 2008; Morishita and Sese, 2000).

Consider a scenario, where the analyst is only interested in the top-k most frequent
patterns of a dataset. In this case, not all patterns have to be tested for their fre-
quency. The support, or frequency, of a pattern is a quality measure that is in an
anti-monotone relation to the description length of the pattern. This can easily be
understood, if each item of a pattern is interpreted as a constraint on the data records
that support the pattern. The more constraints a pattern exhibits, the less data records
are able to fulfill all of them. This means that specializing a pattern, by augmenting
it with a new item, can only retain or lower the original support, but never increase it
(¦ p �

c p � supp�D, p �� B supp�D, p�). Hence, if a pattern does not exhibit a certain
minimum support, none of its specializations will. When searching for the k most
frequent patterns, the quality of the kth best pattern found so far can be utilized as a
minimum frequency threshold. While the algorithm finds better patterns, this threshold
increases dynamically and the part of the search space with patterns that can potentially
be among the k best ones shrinks. By dynamically increasing this threshold, the pattern
space left to explore for the algorithm can be pruned Combined with a quality-bound on
all specializations of patterns, a dynamically increasing threshold allows to ignore large
parts of the search space, as it is guaranteed that all specializations of already ruled out
patterns do not possess the desired minimum support.

A closely related concept is that of an optimistic estimate (Grosskreutz et al., 2008).
An optimistic estimator is a function that provides a bound on the quality of a pattern
and of all its specializations. Formally, an optimistic estimator for a quality measure q
is a function oe that maps a database D and a pattern p to a real value such that for
all D, p and specializations p �

c p, it holds that oe�D, p� C q�D, p ��. Note that pattern
mining algorithms, which traverse the lattice of all patterns, scale exponentially with the
amount of attributes. Utilizing an optimistic estimate pruning technique remedies this
effect in practice to a certain extend, as it improves the expected runtime performance
drastically (Grosskreutz et al., 2008; Morishita and Sese, 2000).

Reporting only the k best patterns also has the benefit that the resulting set of interesting
patterns has a convenient size for a human analyst. However, the k reported patterns
should not all revolve around the same aspect of the dataset. A good result set should

14

not only contain few highly interesting patterns, but also diverse ones. A common way
to promote diversity in the result set is to avoid redundancy among the patterns via a
closure system.

2.1.4. Avoiding Redundancy via a Closure System

A common mathematical framework that pattern mining methods employ to avoid re-
dundancy among the reported patterns is that of a closure operator. A closure oper-
ator Γ on a set S is a function Γ � P�S�� P�S� from the power set of S into the power
set of S that has to satisfy the following three properties for any two sets s, s� > P�S�:

1. s b Γ�s� (extensivity)

2. s b s� � Γ�s� b Γ�s�� (monotonicity)

3. Γ�s� � Γ�Γ�s�� (idempotence)

The closed sets are the fixpoints of a closure operator on a dataset (Pasquier et al.,
1999). Closed pattern mining algorithms find the (usually top-k) closed patterns of a
dataset. The above definition allows for different realizations of the closure operator. One
that has a broad application in pattern mining considers patterns of maximal description
length in their support equivalence class as closed. Note, that a closure may have different
generator sets, but that there is only one unique set of maximal description length.1 This
instantiation of the closure operator will be used throughout this work. This means that
a pattern p is closed if and only if there is no p � a p that is supported by the same
data records. Using this concept of the closure operator, classic closed pattern mining
algorithms report only the (unique) pattern of maximal description length for a support
equivalence class. An example of this closure operator is illustrated on the following
dataset:

Id a1 a2 a3 a4

1 1 1 1 1
2 1 1 1 0
3 1 1 1 0
4 1 1 0 0
5 1 1 0 0

Table 2.2.: A dataset to illustrate closed sets.

1 If two patterns p1 and p2 possess exactly the same extention, then p18p2 also possesses this extention.
(For illustration, have a look at the patterns �a1� and �a2� in Table 2.2.) The union of all patterns
of a support equivalence class P8 is of maximal length. There is also only one pattern of maximal
description length, because if there was another different pattern P � of the same support equivalence
class with the same (maximal) length, P � would have been part of P8 in the first place. As P8 is the
union of all patterns of that support equivalence class and P �

x P8, P �
` P8 and hence SP8S A SP �S.

15

Consider the patterns �a1�, �a2� and �a1 , a2�. All of them are supported by exactly
the same data records with the Ids �1,2,3,4,5�, hence, they are in the same support
equivalence class. For these three patterns the one with the longest description length,
the pattern �a1 , a2�, is chosen as their representative. The tile that it spans in the
dataset is highlighted in Table 2.2 with a dark blue outline. The other closed patterns
of this example dataset are the pattern �a1 ,a2 ,a3� and the pattern �a1 ,a2 ,a3 ,a4�.
Any of the 16 possible patterns over the attributes a1 to a4 belongs to one of the support
equivalence classes, described by those four patterns.

Why is avoiding redundancy among the reported patterns interesting? As stated earlier,
there is a huge space of candidate patterns that are potentially interesting to the analyst.
Even after eliminating all obviously not interesting patterns, the remaining collection
is usually still vast. As a human analyst is only capable of reviewing a small amount
of output patterns, most pattern mining algorithms try to deliver a compact set of
high quality patterns. For this small collection of patterns it is of great value, if the
contained patterns represent different concepts of the underlying distribution. A good
way to promote diversity is to discard patterns with redundant information.

There are many fast implementations of algorithms that find the frequent closed patterns
of a dataset. Of particular interest to us are IMR and LCM (Boley and Grosskreutz, 2009;
Uno et al., 2004), as they essentially perform depth first and breadth first search on the
space of the closed patterns. It is also notable that implementation of LCM by Uno et al.
(2004) was the winner of the FIMI contest (Bayardo et al., 2004) and is known among
the pattern mining community for it’s fast execution.

2.2. Relevant Patterns

The theory of relevance (Lavrač and Gamberger, 2005; Lavrač et al., 1999) aims at
eliminating irrelevant patterns, respectively subgroups. Similar to the closed patterns,
this remedies some of the redundancy among the finally reported patterns.

2.2.1. A Definition of Relevance

In order to be able to apply the theory of relevance to pattern mining approaches, the
patterns have to be closed and the data records have to possess a binary label. Given
this, a closed pattern pirr is considered irrelevant if it is dominated (or covered) by
another closed pattern p. More formal, a closed pattern pirr is considered irrelevant if
and only if a different closed pattern p exists in database D with

i) TP�D,pirr� b TP�D,p� and (2.2)

ii) FP�D,p� b FP�D,pirr�.

16

All patterns that are not dominated are considered relevant. Applying the theory of
relevance to pattern mining yields a set of finally reported patterns that are all closed
and relevant. This means that for each of the not reported patterns there is a dominating
relevant pattern in the result which is potentially of more value. The following Table
2.3 shows an example of the domination relation for the pattern pirr on a toy dataset of
only four labeled data records.

Row-Id Label pirr pa pb pc pd pe pf pg ph pi

1 ` � � � �

2 ` � � � � � � �

3 \ � � � � � � �

4 \ � � �

´¹¹¹¸¹¹¶ ´¹¹¹¸¹¹¹¶
patterns that patterns that do
dominate pirr not dominate pirr

Table 2.3.: A dataset of four labeled data records that exemplifies the dominance relation.
The �-symbol indicates that the pattern supports the data record with the according
Row-Id.

Here, the �-symbol indicates that a data record, identified by its Row-Id, supports
a pattern. In the sense of the above defined dominance relation the pattern pirr is
dominated by the patterns pa, pb, pc and pd. All of these patterns cover all positively
labeled instances of pirr (and possibly more), while covering at maximum all negatively
labeled instances of pirr. Note that it is possible for two patterns to dominate each other
(see pirr and pd), however only in the case that they have an identical extention. In this
case, they share a common unique representative, the earlier introduced closure (See
Section 2.1.4). On the other hand, the patterns pe, pf , pg, ph and pi do not dominate the
pattern pirr. Some of these patterns do not cover all of the positively labeled instances
that support pirr, others cover a superset of the negatively labeled data records. Note
that all patterns pa . . . ph have an overlap in their support set with the one of pirr. The
patterns pi and pirr, however, have no overlap in their support sets. Here pi can be seen
as a representative for all patterns that possess this property. Meaning, that pi and pirr
cannot dominate each other, as they are set-wise not comparable.

2.2.2. A Reformulation of Relevance

As shown by Garriga et al. (2008), the notation of relevance, as stated in equation 2.2,
can be restated by using the closure operator over a set of attributes A, only on the
positively labeled data records

Γ��p� �� �a > A S¦d > TP�D, p� � a�d� � 1�.

17

Γ� is a closure operator, as introduced in Section 2.1.4, meaning that it is a function
defined on the power-set of attributes P��a1, . . . , an�� such that for all patterns p, p �

>

P��a1, . . . , an��, (i) p b Γ�p� (extensivity), (ii) p b p �
� Γ�p� b Γ�p �� (monotonicity),

and (iii) Γ�p� � Γ�Γ�p�� (idempotence) holds. The fixpoints of Γ�, i.e. the patterns for
which p � Γ��p�, will further on be referred to as the closed-on-the-positives. The
main result of Garriga’s research for mining the relevant patterns in an efficient way is
the following:

Proposition 1 The space of relevant patterns consists of all patterns prel satisfying the
following:

(i) prel is closed-on-the-positives, and

(ii) there is no generalization p ø prel that is closed-on-the-positives such that SFP�D,p�S �SFP�D,prel�S.
This connection between relevancy and closure operators is particularly interesting be-
cause closure operators have extensively been studied in the area of closed pattern mining
(Boley and Grosskreutz, 2009; Klösgen, 1996; Pasquier et al., 1999; Uno et al., 2004).
However, unlike here, traditional closed pattern mining algorithms do not account for
the label of the data.

2.2.3. Listing all Relevant Patterns

The publication of Garriga et al. (2008) is the first that proposes an approach to solve
the relevant pattern discovery task. Making use of Proposition 1, Garriga et al. (2008)
have proposed a simple two-step approach to find the relevant patterns:

1. Find and store all closed-on-the-positives

2. Remove all dominated closed-on-the-positives using Proposition 1

In the following, this subgroup discovery approach will be referred to as Closed�SD. The
search space considered by this algorithm — the closed-on-the-positives — is a subset
of all closed patterns, thus it operates on a potentially exponentially smaller candidate
space than all earlier approaches. The downside is that it does not account for optimistic
estimate pruning, and that it has very high memory requirements, as the whole set of
closed-on-the-positives has to be stored.

2.2.4. Efficient Listing of the Top-k Relevant Patterns

In the following, an algorithm is derived that possesses a memory-efficient way to test
the relevance of a newly visited pattern while traversing the pattern space. For many
datasets it is infeasible to store all closed-on-the-positive patterns in memory and then
apply Proposition 1 to test for relevance. Instead, the following observation leads to a
solution:

18

Proposition 2 Let D be a dataset, q��� be a quality function of the form of Equation 2.1
and θ some real value. Then, the relevance of any closed-on-the-positive p with q�p� C θ
can be computed from the set of all generalizations of p with q�p� C θ:

G�
� �pgen ø p Spgen is relevant in D and q�D,pgen� C θ�

In particular, p is irrelevant if and only if there is a relevant pattern pgen in G� with the
same negative support.2

To prove the correctness of Proposition 2, we first present two lemmas:

Lemma 3 If a closed-on-the-positive pirr is irrelevant, i.e. if there is a generalization
p ø pirr closed on the positives with the same negative support as pirr, then there is also
at least one relevant generalization prel ø pirr with the same negative support.

Proof Let N be the set of all closed-on-the-positives generalizations of pirr with the
same negative support as p. There must be at least one prel in N such that none of the
patterns in N is a generalization of prel. From Proposition 1, we can conclude that prel
must be relevant and dominates pirr. j

Lemma 4 If a relevant pattern prel dominates another pattern pirr, then prel has higher
quality than pirr.

Proof As a pattern can only be dominated by its generalizations and because sup-
port is antimonotonic, we have that SD�prel�S C SD�pirr�S. Thus, to show that prel
has higher quality, it is sufficient to show STP�D,prel�S~SD�prel�S A

STP�D,pirr�S~SD�pirr�S. Be-
cause prel has to be a generalization of pirr and because of the anti-monotonicity
property, we can conclude that prel and pirr have the same number of false posi-
tives; let F denote this number. Using F , we can restate the above inequality as
STP�D,prel�S~�STP�D,prel�S � F � A STP�D,pirr�S~�STP�D,pirr�S � F �. All that remains to show is
thus that STP�D,prel�S A STP�D,pirr�S. By definition of relevance, STP�D,prel�S CSTP�D,pirr�S, and because prel and pirr are different and closed on the positives, the
inequality must be strict, which completes the proof. j

Based upon these lemmas, it is straightforward to prove Proposition 2:

Proof We first show that if p is irrelevant, then there is a generalization in G� with
the same negative support. From Lemma 3 we know that if p is irrelevant, then there is
at least one relevant generalization of p with same negative support dominating p. Let
pgen be such a generalization. Lemma 4 implies that q�D,pgen� C q�D,p� C θ, hence pgen
is a member of the set G�.
It remains to show that if p is relevant, then there is no generalization in G� with same
negative support. This follows directly from Proposition 1. j

2 Only the support is needed, as pgen is a generalization of p, which includes the extention of p.

19

Proposition 2 tells us that we can perform the relevance check based only on the top-k
relevant patterns visited so far: Applying an iterative deepening traversal strategy of
the space of all patterns in a general to specific order ensures that a pattern p is only
visited, once all of it’s generalizations have been visited first; so if the quality of the
newly visited pattern p exceeds that of the kth-best pattern visited so far, then the set of
the best k relevant patterns visited includes all generalizations of p with higher quality;
hence, we can check the relevance of p. On the other hand, if the quality of p is lower
than that of the kth-best pattern visited, then we don’t care about its relevance anyways.

This leads us to the relevant subgroup discovery Algorithm 1, further on referred to as
RelevantSD. The main program is responsible for the iterative deepening. The actual work
is done in the procedure findSubgroupsWithDepthLimit, which traverses the space of
the closed-on-the-positives in a depth-first fashion using a stack data structure. Thereby,
it ignores found (closed-on-the-positive) patterns that are longer than the length limit,
and avoids multiple visits of the same node using a standard technique like the prefix-
preserving property test (Uno et al., 2004). Moreover, the function applies standard
optimistic estimate pruning and dynamic quality threshold adjustment. The relevance
check is done in line 6, relying on Proposition 2.

Let us now turn to the complexity of the algorithm and analyse it. To do so, let n
denote the number of attributes in the dataset and m the number of records. Given
that the maximum recursion depth is n, the maximum size of the result queue is k, and
every pattern has length O�n�, the algorithm has to store at maximum n patterns of
length n, plus the k results (also of length n). This results in a memory complexity for
the RelevantSD algorithm in the order of O�n2

� kn�.
For the runtime complexity, the following observations have to be considered and put
together: For every node visited, the algorithm computes the quality, tests for rele-
vance and considers at most n augmentations. The quality computation can be done
in O�nm�, while the relevance check can be done in O�kn�. The computation of the
successors in Line 5 involves the execution of n closure computations, each in O�nm�,
which amounts to O�n2m�. Altogether, the cost-per-node is thus O�n2m� kn�. Finally,
the number of nodes considered is obviously bounded by O�SCpSn�, where Cp is the set of
closed-on-the-positives and the factor n is caused by the iterative deepening approach.
So all put together, the RelevantSD algorithm has a time complexity ofO�SCpS��n3m�n2k��.
Table 2.4 compares the runtime and space complexity of the RelevantSD algorithm
with that of Closed�SD, classical depth first search subgroup discovery with pruning
(DP-subgroup) and closed subgroup discovery algorithms (ClosedSD). Although these
algorithms solve a different and simpler task, it is interesting to observe they do not
have lower complexities. The expression S used in the table denotes set of all subgroup
descriptions, while C denote the set of closed subgroups.

20

Algorithm 1 Iterative Deepening Top-k RelevantSD

Input : An integer k, a database D over attributes �f1; ...; fn�,
a quality function q�� with an optimistic estimator oe��

Output : The top-k relevant subgroups

main:
1. let result = queue of maximum capacity k (initially empty)
2. let θ = 0
3. for limit = 1 to n do
4. findSubgroupsWithDepthLimit(result, limit, θ)
5. end for
6. return result

procedure findSubgroupsWithDepthLimit(result, limit, θ):
1. let stack = new stack initialized with g as initial pattern
2. while stack not empty do
3. let next = pop from stack
4. if Snext S B limit and oe(next) A θ then
5. add all direct specializations of next to stack (avoiding multiple visits)
6. if q(next) A θ and is not dominated by any p� > result then
7. add next to result
8. update θ to min� �q�p� S ¦p > result� �
9. end if

10. end if
11. end while

Let us consider some of the properties of these algorithms in more detail, starting with
the memory complexity: Except for Closed�SD, all approaches can employ depth-first-
search and thus have moderate memory requirements. Closed�SD, on the other hand,
has to collect all closed-on-the-positives, each of which has a description of length n.
Please note that no pruning is applied, meaning that n SCpS is not a loose upper bound
for number of nodes stored in memory, but the exact number — which is why the
Θ-notation in Table 2.4 is used. As the number of closed-on-the-positives can be expo-
nential in n, this approach can quickly become infeasible.

As for the runtime, let us compare the complexity of RelevantSD with that of classic,
and respectively closed subgroup discovery algorithms. Probably the most important
difference is that the algorithms operate on different spaces. While the time complexity
of RelevantSD is higher by a linear factor (resp. quadratic, compared to classic subgroup
discovery), the search space, i.e. the closed-on-the-positives Cp, can be exponentially
smaller than the one considered by the other approaches (i.e. C, respectively its superset
S). The exponential difference in the size of the search space can easily be seen for

21

Algorithm Memory Runtime Pruning
DP-subgroup O�n2

� kn� O�SS S � nm� yes
ClosedSD O�n2

� kn� O�SCS � n2m� yes
Closed�SD Θ�n SCpS� Θ�SCpS � n2m� no
RelevantSD O�n2

� kn� O�SCpS � �n3m � n2k�� yes

Table 2.4.: Runtime and memory complexity of different pattern discovery approaches,
compared to the here proposed RelevantSD algorithm.

datasets that are constructed as follows: We define a binary dataset Dn � d1, . . . , dn, dn�1
with n� 1 data records over n attributes a1, . . . , an and a label. The first n data records
are constructed as

aj�di� � ¢̈̈¦̈̈¤
0, if i � j
1, otherwise

and Label�di� � \
The dataset is then augmented with an additional entry dn�1, which contains solely 1-
entries and a positive class label �1, . . . ,1,`�. In this family of datasets, every pattern
is closed. The total number of closed patterns is thus 2n, while there is only one closed-
on-the-positives, namely �a1 . . . an�. The below Table 2.5 illustrates such a construction
for four attributes.

Id a1 a2 a3 a4 Label
1 0 1 1 1 \

2 1 0 1 1 \

3 1 1 0 1 \

4 1 1 1 0 \

5 1 1 1 1 `

Table 2.5.: A dataset with exponentially fewer closed-on-the-positive patterns than
regular-closed ones.

Finally, compared to Closed�SD, we see that in worst-case the iterative deepening ap-
proach causes an additional factor of n (the second term involving k is not much of a
problem, as in practice k is relatively small). For large datasets, this disadvantage is
however outweighed by the reduction of the memory footprint, which allows RelevantSD
to work datasets that cannot be processed by Closed�SD. Moreover, as the following
section will show, in practice this worst-case seldom happens: on real datasets, due to
the use of pruning, RelevantSD is mostly able to outperform Closed�SD.

22

2.2.5. Evaluation

In this section, the new relevant subgroup discovery algorithm will be compared em-
pirically with other existing algorithms. In particular, the following two questions were
considered:

• How does the algorithm perform compared to Closed�SD?

• How does the algorithm perform compared to classical and closed subgroup dis-
covery algorithms?

This section does not investigate and quantify the advantage of the relevant subgroups
over standard or closed subgroups, as the value of the relevance criterion on similar
datasets has already been demonstrated by Garriga et al. (2008).

Implementation and Setup

RelevantSD was implemented in JAVA, without the usage of sophisticated data structures
like fp-trees (Han et al., 2000) or bitsets (Lemmerich and Atzmüller, 2010). As minor
optimization, during the iterative deepening the length limit is increased in a way that
length limits for which no patterns exist are skipped (this is realized by keeping track,
in every iteration, of the length of the shortest pattern expanded exceeding the current
length limit).

In the following investigation, nine datasets from the UCI Machine Learning Repository
(Asuncion and Newman, 2007) were used, which are presented along with their most
important properties in Table 2.6. All numerical attributes where discretized using min-
imal entropy discretization. The experiments were run, using two quality functions: the
binomial test quality function and the WRACC quality (Equation 2.1 with α � 0.5 and
α � 1). For pruning, different optimistic estimators were used for different quality func-
tions. For the WRACC quality, the optimistic estimate STP�D, p�S2~SD�p�S ��1� STP�D,g�S~SDS�
from Grosskreutz et al. (2008) was used, while for the binomial test quality the function»STP�D, p�S � �1 � STP�D,g�S~SDS� was used as optimistic estimator. These estimates were
used in all implementations to make sure that the results are comparable. The experi-
ments were run on a Core2Duo 2.4 GHz PC with 4 GB of RAM.

Comparison with Closed�SD

This paragraph, draws a comparison between the algorithms RelevantSD and Closed�SD.
In order to abstract from the implementation, the number of visited nodes was com-
pared, rather than the runtime or the exact amount of memory used.

First, Figure 2.2 shows the number of nodes considered by RelevantSD and by Closed�SD.
Here, the binomial test and the WRACC quality measures were used, for two values
of k, namely 10 and 100. For the ’splice’ dataset, the number of nodes considered by

23

Dataset #data records #features target class
credit-g 1000 58 bad
lymph 148 50 mal lymph
mushroom 8124 117 poisonous
nursery 12960 27 recommend
sick 3772 66 sick
soybean 638 133 brown-spot
splice 3190 287 EI
tic-tac-toe 958 27 positive
vote 435 48 republican

Table 2.6.: Datasets used in the evaluation.

Closed�SD was almost 100 millions. As the algorithm Closed�SD has to keep all visited
nodes in memory, the computation failed, with an “out of memory” exception. This
illustrates that the memory footprint of Closed�SD can already for datasets of moderate
size become prohibitive. The RelevantSD algorithm, on the other hand, has no need to
keep all visited patterns in memory, and hence all computations succeeded. Moreover,
in total the RelevantSD approach considers way less nodes than Closed�SD.

Comparison with other subgroup miners

In this section, the RelevantSD algorithm is compared with subgroup miners that solve
a different but related task, namely classical subgroup discovery and closed subgroup
discovery. As representatives, the algorithms DP-subgroup (Grosskreutz et al., 2008) and
the depth-first closed subgroup miner from Boley and Grosskreutz (2009) were used.
The latter one is essentially an adaptation of LCM (Uno et al., 2004) to the task of
subgroup discovery. Note that the results are also representative for approaches like the
algorithms CN2-SD (Lavrač et al., 2004) and BSD (Lemmerich and Atzmüller, 2010),
which both operate on the space of all patterns.

As the compared algorithms originate from different sources, written by different pro-
grammers in different languages, comparing the number of visited nodes during the
traversal of the search space seems to be the most common indicator of the runtime.
Figure 2.3 shows the number of nodes considered by different algorithms for k set to
10 and 100, and for the binomial test and the WRACC quality function respectively.
Please note that for RelevantSD, all nodes are closed-on-the-positives, while for the closed
subgroup discovery approach (ClosedSD) they are closed and for the classic approach
(DP-subgroup) they are arbitrary subgroup descriptions. The results differ strongly de-
pending on the characteristics of the data. For several datasets, using RelevantSD results
in a decrease of the number of nodes considered. The difference to the classical subgroup
miner DP-subgroup is particularly apparent, as it sometimes amounts to several orders

24

(a) Binomial test quality, k=10 (b) Binomial test quality, k=100

(c) WRACC quality, k=10 (d) WRACC quality, k=100

Figure 2.2.: The number of nodes considered during relevant subgroup discovery for the
RelevantSD and the Closed�SD algorithm for different quality measures and k’s.

of magnitude. There are, however, several datasets where the RelevantSD algorithm
traverses more nodes than the classical approaches. Again, the effect is particularly
considerable when compared with the classical subgroup miner. Beside the overhead
caused by the multiple iterations, one reason for this effect is that the quality of the kth
pattern found differs for the different algorithms: for the relevant subgroup algorithm,
the k-best quality tends to be lower, because this approach suppresses high-quality but
irrelevant patterns. One could argue that it would be more fair to use a larger k-value
for the non-relevant algorithms, as their output contains more redundancy. Overall, the
RelevantSD algorithm can in practice compete with the other approaches. Although the
costs-per-node are lower for classical subgroup discovery than for the other approaches,
it does not compensate for the much larger number of nodes traversed, as the aggregated
Table 2.7 shows.

25

(a) Binomial test quality, k=10 (b) WRACC quality, k=10

(c) Binomial test quality, k=100 (d) WRACC quality, k=100

Figure 2.3.: Number of nodes considered by (non-relevant) pattern mining algorithms
for different quality measures and k values.

DP-subgroup ClosedSD RelevantSD

total number of visited nodes 346,921,363 1,742,316 590,068
percentage vs. DP-subgroup 100% 0.5% 0.17%

total Runtime [sec] 2,717 286 118
percentage vs. DP-subgroup 100% 10.5% 4.4%
Binomial test quality function

26

DP-subgroup ClosedSD RelevantSD

total number of visited nodes 15,873,969 459,434 120,967
percentage vs. DP-subgroup 100% 2.9% 0.76%

total Runtime [sec] 147 100 45
percentage vs. DP-subgroup 100% 68% 30%
WRACC quality function

Table 2.7.: Total number of nodes visited for the algorithms DP-subgroup, ClosedSD and
RelevantSD, and percentage compared to DP-subgroup (k=10). The table is split by the
different quality measures, binomial test quality and weighted relative accuracy.

27

2.3. ∆-Relevant Patterns

The theory of relevance provides a solid theoretical approach to the suppression of use-
less patterns, and has shown to be of great use in practical applications (see e.g. Lavrač
and Gamberger (2005)). However, the stringent definition of dominance can in practice
and especially for noisy data lead to unsatisfying results. The basic problem is depicted
in the following Figure 2.4. Here, we have aligned (or projected) the instances in a
two-dimensional space, and the green organically shaped area highlights a subset with a
high share of positively labeled instances (marked as “+”). The figure also shows three
patterns, visualized by rectangular boxes, that cover some of these instances. While it
is clear that all patterns are correct and non-identical descriptions of parts of the target
concept, they are highly correlated. The idea behind ∆-relevant pattern discovery is to
sacrifice a small amount of precision in favor of a more condensed result set. In the here
presented case, a single pattern would suffice to describe the target concept reasonably
well.

Figure 2.4.: A highly correlated set of patterns (boxes) that approximate a concept (area
of positive labeled instances). If a small loss of precision is acceptable in order to avoid
redundancy, only one of these patterns has to be reported.

Let us have a look at a short example why a criterion like ∆-relevance is useful. Let
p1 be a pattern which covers 1000 positive and 1 negative example. Further, let p2
be a specialization of p1 (p1 ` p2) that covers almost exactly the same examples, with
the exception of one positive and the negative one. Obviously, neither of the patterns
dominates each other, because although the true positives of p2 are contained in the
true positives of p1, the one false positive of p1 is missing for p2 (intuitively speaking,
p1 is better than p2 on the positives, but worse on the negatives). Although these
patterns do not dominate each other, in practice, however, one common representative
for both patterns would suffice. As redundant patterns occupy valuable space in the set
of finally reported k patterns which could have been given to other patterns that bear
more insights. This problem can be remedied by allowing for some controlled slack in
the definition of relevance. Figure 2.5 tries to illustrate this.

28

Q
ua
lit
y

(a) The relevant top-3 approach would de-
liver the three relevant patterns with the
highest quality. However, it is possible that
all these patterns revolve around the same
concept.

Q
ua
lit
y

(b) The ∆-relevant approach tries to ignore
roughly redundant descriptions of the same
concept. Thus, leaving room for other, di-
verse, patterns to enter the top-3 list.

Figure 2.5.: Condensing redundant patterns creates space for new patterns to enter the
result list. These new patterns offer the potential to uncover yet unknown concepts.

Motivated by this example, in the following, a definition of dominance will be introduced
that allows a share ∆ of missing false positives in the dominated pattern. I.e. the
dominated pattern may be better than the dominating one on the negatives, but only
slightly so. Thus, in the above example p2 would be dominated by p1 for an appropriate
choice of ∆.

2.3.1. ∆-Dominance

Recalling the definition of domination from Section 2.2 - equation 2.2, a closed pattern
pirr is dominated by the closed pattern p in database D if and only if

i) TP�D,pirr� b TP�D,p� and

ii) FP�D,p� b FP�D,pirr�.
In order to formulate the enhanced version of relevant pattern discovery, first the nota-
tion of dominance has to be generalized. To this end, the notation of ∆-domination is
introduced, where ∆ is a real-valued parameter between 0 and 1. The larger the value of
∆, the lower the requirements for a pattern to be dominated, and thus the more patterns
are (potentially) dominated.

Definition (∆-dominance) Let ∆ be some value, 0 B ∆ @ 1. The pattern pirr is
∆-dominated by the pattern p in database D iff.

i) TP�D,pirr� b TP�D,p� and

ii) SFP�D,p� � FP�D,pirr�S B ∆
1�∆ SD�pirr�S

29

Intuitively, this definition says that pirr is ∆-dominated if it supports the same or
less positives than the dominating pattern, and the number of additional negatives is
relatively small compared to the overall size of the pattern pirr. Meaning, it allows a
dominating pattern to have an arbitrary large growth in the covered positives, while
limiting the additional negatives.

Note that also alternative definitions of the second constraint would be possible, e.g. us-
ing a constant bound on the number of additional false positives. Boley et al. (2009)
studied a similar scenario, for strongly closed patterns. The main advantage of the rela-
tive definition is that it allows us to quantify the relation between the share of positives
in the dominated pattern and in the dominating patterns:

Proposition 5 If a pattern pirr is ∆-dominated by a pattern prel, then the share of
positives in prel is no lower than �1 �∆� times the share of positives in pirr. Formally,

STP�D,prel�SSD�prel�S C �1 �∆� STP�D,pirr�SSD�pirr�S .

With this proposition, ∆ becomes a parameter with a clearly defined semantic, namely
the control of the trade-off of compression versus allowed loss of precision prec�p� �

STP�D,prel�S~SD�prel�S. Hence, a user can easily choose an adequate value of ∆ that is
consistent with his practical application requirements. Note that the question of how
much loss of precision is still considered as tolerable is an external decision, hence it is
necessary to include a user-controllable parameter for this step.

Proof of Proposition 5. We know that the pattern prel has to be a generalization of
pirr, implying that FP�D,prel� c FP�D,pirr�. Further by definition FP�D,pirr� has an
empty intersection with FP�D,prel� � FP�D,pirr�. Knowing this, we can stat that the
false positives of prel are the false positives of pirr plus any additional false positives prel
makes, leading us to SFP�D,prel�S � SFP�D,pirr�S� SFP�D,prel� � FP�D,pirr�S. Now we
can state that

STP�D,prel�SSD�prel�S �
STP�D,prel�SSTP�D,prel�S � SFP�D,prel�S

�
STP�D,prel�SSTP�D,prel�S � SFP�D,pirr�S � SFP�D,prel� � FP�D,pirr�S

30

From the first condition of relevance we know that STP�D,prel�S C STP�D,pirr�S, so we
can conclude that the above must be larger than, or equal to

C
STP�D,pirr�SSTP�D,prel�S � SFP�D,pirr�S � SFP�D,prel� � FP�D,pirr�S .

Knowing that STP�D,prel�S � SFP�D,pirr�S C STP�D,pirr�S � SFP�D,pirr�S � SD�pirr�S
we can conclude that the above must be larger than, or equal to

C
STP�D,pirr�SSD�pirr�S � SFP�D,prel� � FP�D,pirr�S

Moreover, from the second condition we have

SFP�D,prel� � FP�D,pirr�S B ∆
1 �∆

SD�pirr�S

which together from the earlier inequality implies the proposition. j

2.3.2. Properties of the Generalized Dominance

In this part, we will prove some important properties of the generalized definition of
dominance that will be of importance later. As already mentioned, a higher value of
∆ has the effect that potentially more patterns are dominated. In fact, the following
implication holds:

Lemma 6 If a pattern p ∆-dominates another pattern pirr, then the pattern p ∆�-
dominates pirr for all ∆�

A ∆.

Proof This follows from the fact that the function f�∆� � ∆
1�∆ is monotonically increas-

ing for ∆ @ 1.

In particular, every pattern dominated according to the classical definition of dominance
is ∆-dominated for arbitrary ∆, as 0-dominance is equivalent to classical dominance. The
definition of ∆-dominance implies additional properties, which are similar to those of
the classical definition:

31

Lemma 7 The following holds:

1. Every pattern pnotCl not closed on the positives is dominated by some pattern p
which is closed on the positives; (and, hence, also ∆-dominated);

2. Let p1,p2 be different patterns closed on the positives. If p1 is ∆-dominated by p2,
then p2 is a generalization of p1;

3. Every pattern that is closed on the positives and that is ∆-dominated by some
pattern is also ∆-dominated by a closed-on-the-positive.

Proof For item 1, let pnotCl be some pattern not closed on the positives. Then pnotCl
is dominated by pclosed � Γ��pnotCl�. This can be verified by checking the conditions
of the definition of domination: 1. both patterns support the same set of positives (by
definition), hence the first condition is satisfied. 2. pclosed supports a subset of the
examples supported by pnotCl, hence the second condition is satisfied.

Item 2: By condition 1 of the definition of ∆-relevance, the TP supported by p1 are all
supported by p2. Hence, the closure on the positives of p1 is a superset of the pattern
p2. As p1 is closed on the positives, p1 must be a specialization of p2.

Item 3: Assume that pirr is dominated by some pattern pnotCl not closed on the
positives. Then, it must also be dominated by pclosed � Γ��pnotCl�: first, pclosed
and pnotCl support the same positives. Second, by Definition 2.3.1 we know thatSFP�D,pnotCl� � FP�D,pirr�S B ∆~�1 �∆� � SD�pirr�S. Moreover, the false positives of pnotCl
are a subset of the false positives of pclosed, which implies SFP�D,prel� � FP�D,pirr�S B
∆~�1 �∆� � SD�pirr�S and completes the proof.

In the following, an example is presented that illustrates the above and to shows that
dominance misses on one particular property, namely transitivity. Please consider the
example dataset which is given in Table 2.8. It includes three attributes, a1, a2 and a3,
and the support set for each of these attributes as singleton pattern is a subset of the
support set of the previous attributes (D�a1� a D�a2� a D�a3�).

Id a1 a2 a3 Label
1 1 1 1 `

2 1 1 0 \

3 1 1 0 `

4 1 0 0 \

5 1 0 0 `

6 0 0 0 \

Table 2.8.: A dataset which illustrates the lack of transitivity in the ∆-dominance rela-
tion.

32

The space of pattern descriptions of this example is visualized in Figure 2.6, together with
the records that support the different patterns (positive records are rendered with a gray
filling). The pattern �a3� (which is has the same extention as the pattern �a1,a2,a3�)
supports only one record, which is positive; the pattern �a2� (resp. �a1 , a2�) supports
three records, two of which are positive; and finally �a1� supports 5 records, three of
which are positive.

Figure 2.6.: The ∆-dominance relation is not transitive.

For ∆ � 0, ∆-domination does not differ from the classical definition of domination,
so none of the above patterns are dominated. For ∆ � 0.5, however, �a1� ∆-dominates�a1,a2�, but �a1� does not 0.5-dominate �a1,a2,a3�. As the true positives of �a1,a2�
(the data records 1 and 3) are also true positives of �a1�, there exists 1 false positive of�a1� that is no false positive of �a1 , a2� (the data record 4), �a1 , a2� covers a total
of 3 examples (1,2, and 3), and 1 B 3 � 0.5. Similarly, it is easy to verify that �a1 , a2�
0.5-dominates �a1 , a2 , a3�. This demonstrates that the ∆-dominance relation is not
transitive, which is still an open issue.

2.3.3. A Generalized Definition of Relevance

Now that we have defined ∆-dominance, we turn to the definition of ∆-relevance. It
might seem at first that ∆-relevance can be defined in complete analogy to classical
relevance (where a pattern is relevant if it is not dominated by any other pattern). This,
however, is problematic due to the different characteristics of ∆-dominance, namely the
missing transitivity. If we would define patterns to be ∆-relevant in the sense that they
are not ∆-dominated by any other pattern, then (unlike in classical relevance) patterns
could be suppressed, although the result set does not contain a ∆-dominating pattern.
To avoid such situations, we base the definition of ∆-relevance on the concept of a
covering of ∆-dominating patterns:

Definition (covering) Given a dataset D, a set of patterns S is called a covering of
∆-relevant patterns for D iff.

• For every pattern p in D, there is a pattern p� > S that ∆-dominates p.

• There are no two patterns p1, p2 > S such that p1 ∆-dominates p2.

• Every pattern in S is closed on the positives.

33

The first condition ensures that S is a covering, that is, every pattern has a ∆-relevant
representative. The second requires it to be minimal. The third condition says that we
want the covering to consist only of patterns closed on the positives, which we can use
as representatives.

The practical significance of this definition is that in combination with Proposition 5
we can now guarantee that if one is willing to tolerate an indistinctness of at most ∆,
it suffices to look only at the patterns within the covering. Part 1 of the definition
guarantees that for all other patterns we can find a pattern in the covering which is
almost as good.

While this definition seems to leave a high degree of freedom, in fact it specifies precisely
a single set of patterns. These can be found iteratively, based on the specialization graph
defined on the patterns closed-on-the-positives. This graph G � �V,E� has, as vertex
set V , the set of closed-on-the-positives, and its edge set consists of all �p, p�� such that
p� is a specialization of p (not necessarily a direct specialization). Based on this graph,
the covering of ∆-relevant patterns can be constructed as described in Algorithm 2. In
the following it will be shown that these construction rules correctly calculate a set of
patterns Cover that is a covering.

Algorithm 2 Covering of ∆-relevant Patterns

Input : A value 0 B ∆ B 1, a database D over attributes �f1, ..., fn�,
a binary label from the set �`,\� and a closure operator

Output : The cover of ∆-relevant subgroups

1. let G = the specialization graph of all patterns > D that are closed-on-the-positives
2. let Cover := �c > G S c has no generalization in G�
3. while G is not empty do
4. G �� the graph obtained from G by removing all ∆-dominated specializations of

nodes in Cover (and the corresponding edges).
5. let Cover := Cover 8 �c > G S c has no generalization in G�
6. end while
7. return Cover

Proof We first show inductively that all nodes in Cover must be part of the covering.
(Base case:) The set of vertices selected in Line 2 have to be part of the covering, be-
cause (i) they are closed on the positives, and (ii) there isn’t any closed-on-the-positive
generalization of them. Thus, according to Lemma 7 they are not ∆-dominated by any
other pattern and hence they must be part of the covering.

34

(Inductive step:) All nodes removed in 4 cannot be part of any covering. This follows
directly from the second part of the definition of a covering together with the fact that
the covering already includes a pattern that ∆-dominates them.

Moreover, all nodes added to the covering in Line 5 must be part of the covering. This
follows from Lemma 7 and the facts that (i) the covering does not yet include a pattern
which ∆-dominates them, and (ii) there isn’t any ∆-dominating pattern which could
alternatively be added to the covering, because for all generalizations we already know
that they either cannot be part of the covering or are not ∆-dominating.

The fact that the algorithm ends follows from the facts that the (initial) vertex set is
finite, and that in every loop the graph is replaced by a graph with strictly less vertexes
(because G has no cycles).

Finally, Cover must be a covering because for every vertex resp. pattern, either it is
in the covering or there is a dominating pattern in Cover. This directly follows from
the construction of the algorithm for patterns that are closed on the positives. For all
other patterns pnotCl, there are two different cases: Either their closure in the positives,
pclosed � Γ��pnotCl� is a member of Cover (in this case they are obviously dominated),
or their closure pclosed is dominated by some member prel of Cover. By statement 2 of
Lemma 7, prel is a generalization of pclosed. Hence, the true positives of prel are a superset
of the true positives of pclosed, resp. pnotCl and the first condition of the definition of
∆-dominance is satisfied. It remains to show that the second condition also holds. As
prel dominates pclosed, hence by Definition 2.3.1 we have SFP�D,prel� � FP�D,pclosed�S B
∆~�1 �∆� � SD�pclosed�S. Moreover, the false positives of pnotCl are a superset of the false
positives of pclosed, and the support set of pnotCl is a superset of the support set of pclosed.
This implies SFP�D,prel� � FP�D,pnotCl�S B ∆~�1 �∆� � SD�pnotCl�S. j

Based on this, we finally define ∆-relevance as follows:

Definition (∆-relevant pattern) For a dataset D, a subgroup, or pattern, is called
∆-relevant if and only if it is a member of D’s unique covering.

2.3.4. A Caveat

It is interesting to notice that a property like Lemma 6 (dealing with ∆-dominance)
does not hold for ∆-relevance: it is possible that a pattern becomes ∆-irrelevant for one
value of ∆, but that for another ∆�

A ∆, becomes ∆�-relevant again. This can lead to
the situation that a covering for one value of ∆ is actually smaller than that for a higher
value ∆�. For example, consider the data set in Table 2.9. For ∆ � 0.5, the pattern�a1 , a2� dominates the patterns �a1 , a2 , a3� and �a1 , a2 , a4�, but is not dominated
by �a1�. Hence, the relevant patterns for ∆ � 0.5 are �a1� and �a1 , a2�. For ∆ � 0.56,

35

�a1� dominates �a1 , a2�, but does dominate neither �a1 , a2 , a3� nor �a1 , a2 , a4�,
so there exists three relevant patterns, �a1�, �a1 , a2 , a3�, and �a1 , a2 , a4�. Again,
this has to do with the missing transitivity of dominance: �a1 , a2� does still dominate�a1 , a2 , a3� and �a1 , a2 , a4�, but as �a1 , a2� is suppressed from the result set, it
does not exclude its two specializations.

Id a1 a2 a3 a4 Label
1 1 1 1 0 `

2 1 1 0 1 `

3 1 1 0 0 `

4 1 0 0 0 `

5 1 0 0 0 \

6 1 0 0 0 \

7 1 1 0 0 \

8 1 0 0 0 \

9 1 0 0 0 \

10 1 0 0 0 \

Table 2.9.: The size of the ∆-relevant pattern set is not monotonous in ∆

Figure 2.7 shows the graph with the dominance dependencies between these patterns
together with the minimal ∆ for which the dominance holds. The experiments, however,
will demonstrate that this problem usually does not occur in practice.

> 0.56

> 0.86

> 0.
5

> 0.5

> 0.
86

a1{ } a1 a2∧{ }

a3∧a1 a2∧{ }

a4a1 a2∧{ }∧

Figure 2.7.: The dominance graph of Example 2.9.

2.3.5. Listing ∆-Relevant Patterns

Algorithm 2 computes the unique covering of ∆-relevant patterns for a database. While
the covering of ∆-relevant patterns can be much smaller than the whole set of (rele-
vant) patterns, depending on the database this set can still be unacceptably large. As
already mentioned in Section 2.1.3, one standard approach to deal with this issue is to
rank the pattern according to some quality function and keep only the top-k patterns.

36

This section describes how the new concept of ∆-relevance can be combined with top-k
approaches – more precisely, how it can be used to devise an improved pattern discovery
algorithm. Using the generalized notion of relevance, the task of pattern discovery will
be extended as follows:

Task (top-k ∆-relevant pattern discovery) Given a database D, a quality function q,
an integer k A 0 and a real value ∆, 0 B ∆ @ 1, find a set of patterns G of size k, such that

(i) all patterns in G are ∆-relevant, and

(ii) all ∆-relevant patterns not in G have a quality no higher than minp>G q�D,p�.
∆-relevant pattern discovery can be performed following Algorithm 2, where for every
discovered pattern its quality is calculated. In a subsequent step, all but the top-k
patterns are then discarded. However, it is not necessary to compute the graph G
beforehand, as this can be done dynamically during the execution of the algorithm. The
basic trick is that Property 2 of Lemma 7 allows to search through the space of closed
patterns in a general-to-specific order. If one is only interested in the top-k patterns,
then large parts of the specialization graph (used in the construction in Sec. 2.3.3)
can be pruned using optimistic estimators (see Section 2.1.3). Essentially, all vertices
corresponding to patterns with an optimistic estimate below a minimum threshold can
be ignored. Even if such a threshold is not specified beforehand, the threshold can
dynamically be determined using the quality of the best k relevant patterns so far
considered. Algorithm 1 from Section 2.2.4, which finds the top-k relevant patterns in
an efficient way, can easily be extended to also find the top-k ∆-relevant patterns.

2.3.6. Evaluation

In this section, the effect of the new definition of relevance is studied from a practical
perspective on several benchmark datasets. More precisely, the following two questions
are investigated:

1. To what extent does the new definition reduce the number of patterns?

2. Does the use of the stronger relevance criterion improve the quality of the top-k
patterns?

To answer these questions, again the datasets from the UCI repository (Asuncion and
Newman, 2007), that are listed in Table 2.6, were used to study ∆-relevant pattern
discovery in practice. To stay comparable, the datasets are the same that were already
used for the evaluation of the unrefined (∆ � 0) relevant pattern mining approach.

37

Reduction of the Number of Patterns

This section aims at showing that ∆-relevance significantly reduces the number of pat-
terns that are found in a database. Boley and Grosskreutz (2009) have already shown
that closed patterns very much reduce the number of patterns in comparison to all
possible patterns, while Garriga et al. (2008) have shown that going from closed pattern
to relevant patterns again very much reduces the amount of patterns found. Hence, it
suffices to show that going from relevant patterns, i.e. ∆-relevant patterns for ∆ � 0, to
∆-relevant patterns for ∆ A 0 reduces the number of patterns.

Figure 2.8 shows how the number of ∆-relevant patterns reduces depending on ∆. It
can be seen that for all datasets, the number of patterns reduces with increasing ∆.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

R
ed
uc
tio

n

Delta

credit-g
lymph
mushroom
nursery
sick
soybean
splice
tic-tac-toe
vote

Figure 2.8.: Reduction of ∆-relevant patterns found (percentage, y-axis) depending on
∆ (x-axis) for the Piatetsky-Shapiro quality measure.

Quality of the Patterns

Despite the reduction of the output space, the number of ∆-relevant patterns found
can still be too large to handle. Therefore, a combination with a top-k approach is
advisable. The benefit that comes with the usage of ∆-relevant patterns is that the
top-k ∆-relevant patterns are less redundant and more “interesting” than classical top-k
patterns.

In the following, first the redundancy of the top patterns will be examined by using
a visualization technique introduced in van Leeuwen and Knobbe (2011). Thereafter,
the effect of the ∆ parameter will be investigated for building predictive classifiers from
the top patterns. While optimizing accuracy is not the primary goal of the pattern
discovery methods, proposed by Lavrač et al. (2004), it is a common approach to evaluate
predictive accuracy in the absence of a better option to capture the “interestingness” of
the patterns.

38

Redundancy

To illustrate how mining the ∆-relevant patterns affects redundancy, a visualization
proposed by van Leeuwen and Knobbe (2011) is used. Here, the coverage of a set of
patterns, i.e. the set of data records satisfied by the individual patterns, is visualized as
a rectangular plot of black and white pixels. The plot has one row of pixels for every
pattern. Similarly, there is one column for every data record. The pixel at location�x, y� is plotted in black if the x-th pattern is supported by data record y; else, the pixel
is plotted in white. If a set of patterns is highly redundant, then the plot will reveal
noticeable vertical patterns: the reason is that the coverage of the patterns, and hence
the rows visualizing them, will be very similar. Table 2.10 shows an individual plot for
the top-k patterns found using different approaches. On top, we show the plot for the
top-20 classic subgroups; next, the plot for the top-20 closed patterns; thereafter, the
top-20 relevant patterns and finally the top-20 ∆0.1-relevant patterns. In these plots,
more vertical lines imply a higher degree of redundancy among the top-20 patterns,
which indicates slightly more diversity among the ∆-relevant patterns.

39

Dataset Method Redundancy figure

cr
ed

it-
g classic

closed
relevant

∆-relevant

ly
m

ph

classic
closed

relevant
∆-relevant

m
us

hr
oo

m classic
closed

relevant
∆-relevant

sic
k

classic
closed

relevant
∆-relevant

so
yb

ea
n classic

closed
relevant

∆-relevant

tic
-t

ac
-t

oe classic
closed

relevant
∆-relevant

vo
te

classic
closed

relevant
∆-relevant

Table 2.10.: Studying the redundancy of the top-20 patterns using classic, closed, relevant
and ∆-relevant patterns (for a ∆ of 0.1) on five of the datasets. Depicted is, for the first
400 data records, whether it supports a pattern (black dot), or not. For the ∆-relevant
patterns, vertical stripes are much less apparent, indicating less redundancy.

40

Predictive Accuracy

In the following experimental setup, a set of patterns is converted into a predictive model
in the following way: for any pattern p the class probability Pclass�p� � STP�D,p�S~SD�p�S is
computed. To any data record x that supports the pattern p, the predicted class prob-
ability Pclass�p� is assigned. In case x supports more than one pattern, the maximum
Pclass of all covering patterns is assigned to it. In the case where x is not covered by
any pattern, the default probability is assigned to it. This allows to compute the Area
under the Curve (AUC) of a set of patterns.

Figure 2.9 shows the AUC of the Top 10 ∆-relevant patterns for different values of
∆ and the Piatetsky-Shapiro quality function. It can be seen that the AUC tends to
increase for ∆ A 0 (for 5 datasets, there is a clear improvement; one dataset (“nursery”)
is completely unaffected; and finally, for two datasets (“lymph” and “vote”), the plot
shows that the AUC decreases after reaching a maximum for a value of ∆ around 0.05).
The results are similar for the binomial quality function in Figure 2.10: again, the AUC
tends to increase when ∆-relevant patterns are considered instead of classical relevant
patterns.

● ● ● ● ● ●
● ●

credit−g

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ●
● ●

● ●
●

lymph

0.00 0.05 0.10 0.15

0.
5

1.
0

●

● ● ● ● ● ● ●

mushroom

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ● ● ● ● ● ●

nursery

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ●
●

● ● ● ●

sick

0.00 0.05 0.10 0.15

0.
5

1.
0

●
● ● ● ● ● ● ●

soybean

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ● ● ● ●

●

●

tic−tac−toe

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ●
●

● ● ● ●

vote

0.00 0.05 0.10 0.15

0.
5

1.
0

Figure 2.9.: AUC of the top�10 ∆-relevant patterns (y-axis) depending on ∆ (x-axis)
for the Piatetsky-Shapiro quality measure.

41

● ●
● ● ●

●
● ●

credit−g

0.00 0.05 0.10 0.15

0.
0

0.
5

● ●
● ● ●

● ●

●

lymph

0.00 0.05 0.10 0.15

0.
5

1.
0

●

● ● ● ● ● ● ●

mushroom

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ● ● ● ● ● ●

nursery

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ● ● ● ● ● ●

sick

0.00 0.05 0.10 0.15

0.
5

1.
0

●

● ● ● ● ● ●
●

soybean

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ● ● ● ● ● ●

tic−tac−toe

0.00 0.05 0.10 0.15

0.
5

1.
0

● ● ● ●
●

● ● ●

vote

0.00 0.05 0.10 0.15

0.
5

1.
0

Figure 2.10.: AUC of the top�10 ∆-relevant patterns (y-axis) depending on ∆ (x-axis)
for the Binomial test quality measure.

2.4. Sampling Interesting Patterns

An alternative approach to systematically listing interesting patterns (like e.g, frequent
set mining or optimistic-estimator-based subgroup discovery) is to sample from the space
of all possible patterns over the given attribute set. In the following section, a general
pattern random sampling framework will be introduced which allows the analyst to draw
patterns with a probability that is proportional to a specified interestingness-measure.
The framework allows for different kinds of interestingness-measures.

2.4.1. Motivation for Sampling Patterns

Pattern sampling can be of great use if the listing strategy of the mining algorithm
does not coincide with the desired measure of interestingness. For instance, an analyst
could be interested in patterns that discriminate between two target labels on a dataset.
The Fischer score is a measure which captures this well. However, the analyst might
choose to utilize a pattern mining algorithm that lists the patterns according to another
measure of interest, e.g. the frequency of occurrence. This would not be unreasonable,
as the frequent patterns often tell the analyst something about the most dominant
attribute combinations of the dataset at hand, thus providing a basic intuition for it.
Unfortunately, as many frequent pattern mining algorithms traverse the lattice of all
patterns in a general-to-specific order, the most frequent patterns would be listed first
and the most interesting ones could be listed last and the analyst might have to wait
a long time. With a bit of bad luck, the analyst might have to wait a long time.
This can, for instance, occur in datasets with a heavy label imbalance. A pattern that

42

describes exactly the data records of the minority class would be highly discriminative,
but infrequent. A good example of this can be observed e.g. on the primary-tumor
dataset. Here the most interesting patterns (according to the Fisher score) are among
the least frequent ones. Frequent pattern mining algorithm like e.g. Apriori, FP-growth or
LCM (Agrawal et al., 1996; Han et al., 2000; Uno et al., 2004) would list literally millions
of less interesting patterns, before finally delivering the “nuggets” at the very end.

Figure 2.11.: All patterns of primary-tumor dataset plotted with their frequency (x-axis)
against their Fisher score (y-axis).

Another motivation is that even though pattern mining algorithms strive for speed, their
execution time can still take hours or days, depending on the task. This motivates the
introduction of algorithms that only sample a representative set of patterns without
explicitly searching in the pattern space. Such algorithms exist in the literature (Al
Hasan and Zaki, 2009; Boley et al., 2010; Chaoji et al., 2008) but they provide either
no control over the distribution of their output or only asymptotic control by simulating
a stochastic process on the pattern space using the Markov chain Monte Carlo method
(MCMC). In addition to only offering approximate sampling, MCMC methods have
a scalability problem: the number of required process simulation steps is often large
and, even more critical, individual simulation steps typically involve expensive support
counting operations. Hence, these algorithms are often infeasible for large input datasets.
In the following, a pattern generation framework is introduced that samples patterns
exactly proportional to a probability distribution and directly, i.e., without simulating
time-consuming stochastic processes.

2.4.2. Sampling According to Frequency

Before going into technical details, some additional notations have to be introduced. For
a finite set X we denote by P�X� its power set and by u�X� the uniform probability
distribution on X. Moreover, for positive weights w � X � R� let w�X� denote the dis-
tribution on X arising from normalizing w by x(w�x�~Px�>X w�x�. For simplicity the
dataset D is assumed to be binary over some finite attribute ground set A � �a1, . . . , an�.

43

A naive approach for sampling a pattern according to a distribution π is to generate a list
of all patterns p1, . . . , pN that have a chance of occurring (π�p� A 0), draw an x > �0,1�
uniformly at random, and then return the unique set pk with Pk�1

i�1 π�pi� B x @ Pki�1 π�pi�.
However, this exhaustive enumeration of all possible patterns is precisely what we want
to avoid. That is, we are interested in a non-enumerative sampling algorithm. In the
following, Algorithm 3 for frequency-based pattern sampling is introduced. It is inspired
by the elementary procedures used by Karp et al. (1989). The key idea for randomly
drawing a pattern proportional to its frequency of occurrence, i.e., π � qfreq�P�A��, is
that random experiments are good in reproducing frequent events. Namely, if we look at
a pattern that is supported by a random data record we are likely to observe a pattern
that is supported by many data records altogether. This intuition leads the following
fast and simple two-step non-enumerative sampling routine:

• First select a data record of the input dataset randomly with a probability that is
proportional to the size of its power set,

• then return a uniformly sampled subset of that data record.

The random set, which results from combining those two steps exhibits indeed the desired
distribution, as the following proof shows:

Proof Let Z � PpbA SD�p�S be the normalizing constant and d denote the random data
record that is drawn in step 2 of Algorithm 3. For the probability distribution of the
returned random set r we have

P�r � r� � Q
d>D

P�d � d , r � r�
� Q

d>D�r�

1
2SdS

2SdS

Z

�
SD�r�S
Z

�
supp�D, r�

Z

with a normalizing Z � Pd>D 2SdS which is equal to the desired PpbA SD�p�S and constant
for all samples.

The two step procedure for randomly sampling a pattern with a probability that is
proportional to its support can now be formalized in the following algorithm:

44

Algorithm 3 Frequency-based Sampling

Require: dataset D over attribute ground set A,
Returns: random set r � qfreq�P�A�� � q supp�P�A��

1. let weights w be defined by w�d� � 2SdS for all d > D
2. draw d � w�D�
3. return r � u�P�d��

Regarding the computational complexity of the sampling algorithm we can observe that
it is indeed efficient, as a single random set can be produced in time O�log SDS � SAS�.
The two terms correspond to producing a random number for drawing a data record in
step 1 and to drawing one of its subsets in step 2, respectively. Both requirements can
be achieved via a single initial pass over the dataset. Thus, given an input dataset D
over the attributes A, a family of k realizations of a random set R � qfreq�P�A�� can be
generated in time O�YDY � k�SAS � log SDS��.
2.4.3. Sampling According to Other Measures

As already stated, it is possible to adapt the idea of Algorithm 3 to sample patterns with
a probability proportional to other measures of interest. By adjusting the probability
of a data record being drawn in the steps 1 and 2 and refining the rejection procedure
in step 3 of Algorithm 3, the returned patterns can be drawn according to other proba-
bilities / interestingness-measures. Boley et al. (2011) and Boley et al. (2012) introduce
and discuss a variaty of different adaptions to this two step sampling procedure. Namely
pattern sampling according to a patterns frequency, its area, discreminativity and rarity
are introduced, Here, discriminativity referrs to a form of label discriminativity, given
by qdisc�D, p� � qfreq�D�, p� � �1 � qfreq�D�, p�, while rarity describes the probability
of observing the pattern, weighted by the probabilities of the patterns’ items not to
occurr; qrare�D, p� � freq�D, p�Lpi>p�1 � freq�D, pi��. Boley et al.’s publications intro-
duce also versions of the above mentioned measures that are multiplied with a power
of the patterns frequency of occurrence. Examples for this are frequency2, frequency3,
area�frequency, rarity�frequency2 and discriminativity�frequency�, where frequency�

here denotes the relative support of a pattern only on the positively labeled instances.

A drawback of Algorithm 3 is that the weight w, used in step 2, have to be computed
beforehand for each data record. Especially for higher order interestingness measures, as
discriminativity or measures that incorporate frequencyn, calculating the initial weights
can be costly. In order to realize these more sophisticated interestingness measures, it is
necessary to draw an n-tuple of data records. Here the size of the tuple n depends on the
complexity of the interestingness measures. This means that the increased expressivity
comes at a price: due to the necessity of weight computation for all possible n-tuples of
data records, we end up with a space and time complexity of the preprocessing phase

45

that is polynomial in the order of the cardinality n of the tuples. To counteract this
behaviour, Boley et al. (2012) suggest to sample the tuples, based on the simulation of
a stochastic process, instead of precomputing all weights in advance. Their proposed
approach utilizes coupling from the past, a sampling technique that allows to draw the
tuples with a controlled probability and limits the memory footprint to be linear. Note
that sampling the data record tuples is a random process, such that the execution time
can, in theory, exceed the time that would be needed to calculate all sampling weights
needed for step 2 of Algorithm 3 in advance. In practice, however, utilizing the proposed
coupling from the past approach does not only save memory, but also time.

2.4.4. Empirical Demonstration

This section demonstrates the above stated benefits of pattern sampling in an empirical
way. Figure 2.12 shows the 10000 patterns from the primary-tumor dataset, retrieved
by two different algorithms, plotted by their frequency against their Fisher score. The
Fisher score is a measure of discriminativity for class labels for an arbitrary number
of classes C. It measures the relation of the inter-class variance of a feature to its
intra-class variances and is given via:

qfish�p� �
Pc>C SDcS � �qfreq�Dc, p� � qfreq�D, p��2
Pc>C Pd>Dc

�δ�d c p� � qfreq�Dc, p��2
In the above equation, Dc denotes all data records of a class c and δ�d c p� � � 1, if d c p

0, otherwise
indicates whether a data record d supports a pattern p or not.

Figure 2.12.: Pattern collections generated from the primary-tumor dataset by top-k
closed frequent pattern listing (k � 10000) and frequency-based sampling. The drawn
patterns are plotted by frequency (x-axis) against Fisher score (y-axis).

The left graphic of Figure 2.12 shows the most frequent patterns, drawn by the LCM
algorithm (Uno et al., 2004). By design, the patterns with a lower frequency are drawn
last by this type of algorithm. For the above example, this leads to the issue that the

46

patterns with an extraordinary high Fisher score are not found at all, due to their low
frequency. However, using a frequency-based sampling approach (right image of Figure
2.12) results in a pattern collection with an emphasis on frequency, but with a larger
diversity among the drawn patterns. This naturally lists also some of the high Fisher
score patterns. The example constitutes exactly the motivational case from Section 2.4.1,
where the measure of interest diverges from the listing strategy, which in terms can lead
to discovered patterns of poor quality. Note that this is not bound to the frequency and
Fisher score, as listing a pattern space systematically always bears the danger of ruling
out a sub-space of patterns that might be of high interest to the analyst. The exemplary
case here is especially severe, as there are far more infrequent than frequent patterns
and the time of execution for a frequent pattern mining algorithm grows rapidly with a
shrinking support threshold. This is depicted in Figure 2.13 which shows the runtime
behaviour of LCM, depending on the support threshold for the datasets from Table 2.6.

Figure 2.13.: As there are usually far more infrequent than frequent patterns, the exe-
cution time of a frequent pattern listing algorithm (in this case LCM) increases rapidly
with a lowering support threshold.

When exploring and understanding a dataset via pattern mining, the analyst is usu-
ally not limited to finding a pattern collection that strictly follows a given measure of
interest. Here, a collection that exhibits a more general coverage of the pattern space
with a bias towards a certain measure of interest can be very attractive. In order to be
practically feasible, the sampling procedures also have to be competitive to state-of-the-
art algorithms in terms of execution speed. Figure 2.14 compares the execution time of
frequency-based sampling to that of LCM for the task of drawing an identical number of
patterns. For better visibility, the result is split in two pictures, one for medium sized
and one for large scale datasets. Note that both figures use logarithmic axes.

47

(a) Medium sized datasets from Table 2.6 (b) Larger datasets from the FIMI workshop

Figure 2.14.: Time that the LCM algorithm takes versus time of frequency-based sampling
to draw an identical number of patterns.

For the experiment, first the LCM algorithm was employed and the support threshold pa-
rameter was decreased from 100% in 5% steps, until either all patterns were mined or the
execution time exceeded 20 seconds. Then, the same amount of patterns were sampled,
using the frequency-based sampling method, and the execution times are compared. The
left part of Figure 2.14 shows the results for the nine datasets from Table 2.6. Note that
the sampling methods perform better for the larger datasets. The right figure displays
the results for two much larger datasets from the FIMI workshop, the 1 GB sized web-
docs dataset and a 500 MB sized random dataset for all 5%-support thresholds up to an
execution time of 500 seconds. This direct execution time comparison against the highly
tweaked LCM implementation constitutes a hard setting. First, because within the group
of exhaustive pattern mining methods frequent set mining algorithms usually produce
the largest output per time unit and second, because the employed LCM implementation
is known to be among the fastest of them (winner of the FIMI contest (Bayardo et al.,
2004)).

2.5. Summary and Discussion

The chapter started with a formal introduction of notations and definitions to the area
of pattern mining. The terms pattern and subgroup were introduced, as well, as dif-
ferent ways to measure the interestingness of patterns. In addition, basic strategies for
listing such interesting patterns were presented in combination with commonly applied
techniques to speed up the mining process and avoid redundancy.

48

In general pattern mining techniques have to deal with the problem of pattern redun-
dancy. When using pattern mining as a tool for data exploration, this becomes a key
aspect, as it is infeasible for a human analyst to study large sets of potentially insightful
patterns over and over again, without loosing focus. For this reason, state-of-the-art
algorithms aim to find a compact result set of highly interesting and diverse patterns.
A first step towards this is the standard method of considering only the top-k closed
patterns. In case the data records are assigned with binary labels, an additional crite-
rion can be applied that condenses the result set even more; the theory of relevance.
It reduces the amount of redundancy among the mined patterns by reporting only
patterns to the analyst that are considered relevant by the theory of relevance. Using
the property that relevant patterns have to be closed on the positively labeled instances,
made it possible to develop an algorithm for listing them efficiently. A theoretical and
empirical comparison of the runtime and memory complexity with other pattern mining
algorithms shows that mining the relevant patterns is competitive with state-of-the-art
algorithms. This makes the relevant patterns a good candidate to explore a dataset by
pattern mining methods, as for the same time and memory consumption, a more diverse
and more condensed result set is compiled.

To focus further on avoiding redundancy, a modified notion of relevance was consid-
ered. The ∆-relevant patterns are a generalization of the relevant patterns that allow
a dominating pattern to support a controlled amount of additional negatively labeled
instances. Note that this new formulation of ∆-relevance is not transitive any more. The
idea of reporting only a single representative for a group of similar relevant patterns and
discarding the others comes with the benefit that other, possibly more diverse, patterns
can now be shown to the analyst. In this chapter, an efficient algorithm for finding these
∆-relevant patterns was introduced. The according experiments indicated a clear re-
duction of the redundancy among the reported patterns. In addition, for varying values
of ∆, the top-20 patterns were utilized to predict the label of a data record. It could be
observed, that a slight introduction of slack also increased the predictive performance
of the result set. This initial improvement of predictive performance was interpreted as
an indicator for an overall better quality of the patters that are finally shown the analyst.

A third part of this chapter covered a technique that enables the analyst to draw pattern
samples proportional to different probability distributions. A two step sampling algo-
rithm was introduced that draws random patterns with the probability proportional to
their frequency of occurrence. The key idea for frequency-based sampling is that random
experiments are good at reproducing frequent events. By adjusting each of the two steps
within the algorithm, a whole family of pattern sampling algorithms is characterized.
This way, the sampling procedure can, for instance, be biased to prefer patterns that
are frequent on the positively labeled data records, but infrequent on the negatively
labeled ones. Note that for this section the focus is not on avoiding redundancy among
the reported patterns. As the samples are independent of each other, the set of sampled
patterns naturally exhibits more diversity in comparison to enumerative pattern mining
approaches. In an exploratory data analysis scenario this can be beneficial. As the

49

analyst might not be willing, or able to wait for the algorithm to evaluate all possible
pattern combinations, the most interesting among the first found patterns are the ones
that the analyst has to work with. If, however, the algorithm follows a bad heuristic
in its search for the interesting patterns, the preliminary results can be poor. A very
sever example of this was presented in Figure 2.12. This issue is naturally remedied
by employing sampling based methods. Even with an unfavorable sampling bias, the
diversity among the sampled patterns still produces some patterns that are of actual
interest to the analyst. An additional experimental evaluation of the frequency-based
pattern sampling method showed that the patterns can be produced very quickly in
terms of “patterns per second”, which makes this technique a viable tool for real life
data exploration tasks. In the later Section 4, we will see a concrete example of how a
larger sampled pattern set can be used to explore a data collection.

While exploring a dataset by using the above proposed pattern mining methods can
already give a great amount of insight to the analyst, it is not very interactive. Recall
that data mining is a process, where an analyst iteratively explores and deduces aspects
of a dataset. However, when applying pattern mining techniques in the classic way, the
analyst has to change parameters and re-calculate everything in order to dig deeper into
the data. For the above introduced methods, this usually means changing the inter-
estingness measure, the ∆ parameter, the k threshold, or selecting another attribute as
label. In the next section, we will introduce an alternative approach towards exploratory
data mining that does not deliver a pre-selected collection of phenomena to the analyst.
This approach focuses on presenting the data collection to the analyst as a whole and
lets him intuitively interact with it to discover and study interesting aspects.

50

3. Interactive Embeddings

3.1 Preliminaries . 52
3.2 Least Squared Error Projection . 62
3.3 Most Likely Embedding . 74
3.4 Constrained Kernel Principal Component Analysis 81
3.5 Summary and Discussion . 92

In the last chapter we have seen how pattern mining can be used to explore and un-
derstand a dataset by guiding the analyst’s attention towards interesting phenomena
within the data. It is an approach that finds partitionings of the dataset which are
outstanding according to some measure of interest. Using different pattern mining tech-
niques, interestingness measures and target-attributes, makes this approach a valuable
tool in an exploratory data analysis setting.

Apart from these methods, there also exist techniques that do not directly guide the
analyst, but rather try to give a global overview on the distribution of whole data and
the relations among its records. This helps the analyst to understand and study the
underlying structure of the data and discover aspects that might not have been found
by strictly following a quality function. A common way to provide this overview is to
project the data into a lower dimensional space (usually two, or three dimensions) and
visualize it in a scatter plot. The projected data is also referred to as embedding, or
embedded into the lower dimensional space. Classically, different embedding techniques
with different objectives and parameter settings are used to give the analyst a birds-eye
view on interesting projections and aspects of the data. However, switching between
these different projections may distract the analyst and cause him to loose focus, as the
transitions between different embeddings are usually not obvious. To counteract this,
the following chapter introduces methods that enable the analyst to interact directly
with the visualization of the embedded data.

Unlike in pattern mining, the data exploration process by studying interactive em-
beddings is not lead by the algorithm, but rather becomes an interaction between the
analyst and the visualization of the data. To do so, the analyst can actively steer
the perspective of a two dimensional projection of the data. Altering the perspective

51

and seeing how related data records move together, zooming and filtering the data
collection and inspecting structures within the embedding closer, can help the analyst
to understand the underlying structure of the data and formulate hypotheses. One way
to provide an interface for the interaction is to let the analyst select data points as
control points and relocate them within the embedding (see e.g. Paurat and Gärtner
(2013), Endert et al. (2011), Brown et al. (2012) and Iwata et al. (2013)). Altering the
positions of these control points triggers the utilized embedding technique to recalculate
the whole projection, subject to the updated control-point locations. However, the just
cited methods are primarily meant to implement a good user interface for tweaking the
parameters of an algorithm and none of them is especially designed for the interactive
visual exploration of the data’s underlying structure.

The contributions of this chapter are tightly coupled to investigating the idea of actively
altering a two dimensional projection of high dimensional data in an intuitive way. Fol-
lowing the idea of moving individual data points within the projection to new locations in
order to steer the overall embedding of the data, three different algorithms are presented
that utilize this interaction technique: i) the least squared error projection algorithm,
which solely considers the control points’ data and embedding locations to calculate a
linear projection with the least squared residual error. ii) a probabilistic approach on
embedding data which considers a prior belief about the embedding and the placement
of the control points1 and iii) an interactive version of a kernel PCA that can take several
types of constraints into account. In addition, a tool for interactive visualization (InVis)
was developed over the course of this thesis, which implements all of the above men-
tioned techniques in a single program with a unified graphical user interface. Note that
all of these algorithms put also emphasis on performance, as immediate visual feedback
(i.e. seeing the embedding change in a life-updating manner) can help the analyst to
understand common relations among the data records.

3.1. Preliminaries

The following section gives a quick introduction to the used notations, reviews some of
the classical static embedding methods and introduces three embedding techniques that
enable the analyst to directly interact with the projected data.

3.1.1. The Data

In this chapter the algorithms use a different representation of the data than a trans-
actional database, which is classically used in pattern discovery. Here we consider a
dataset D to consist of n data records, d1, . . . , dn over D attributes, with each data
record being an instance of RD. Each dimension of the vector represents an attribute,
so that the data ultimately can be arranged into an n � D matrix. Table 3.1 shows

1 It is also shown that for a very basic parameter choice this most likely embedding is equivalent to the
least squared error projection algorithm.

52

the five example cocktails, earlier presented as itemsets in Table 2.1, in their vector
representation form, aggregated into a matrix. The values indicate the share of each
ingredient within the cocktail, such that e.g. the cocktail Mojito is now represented by
the vector �0, 0, 0.46, 0.3, 0.05, 0, 0, 0.15, 0.04, 0, 0, 0, . . . , 0�.

Cocktail names In
gr

ed
ie

nt
s

C
oc

on
ut

m
ilk

G
re

na
di

ne

Li
gh

t
ru

m

Li
m

e

M
in

t

O
ra

ng
e

ju
ic

e

P
in

ea
pp

le

So
da

w
at

er

Su
ga

r

Te
qu

ila

Vo
dk

a

...

Mojito (0, 0, 0.46, 0.3, 0.05, 0, 0, 0.15, 0.04, 0, 0, 0,)
Piña Colada (0.21, 0, 0.58, 0, 0, 0, 0.21, 0, 0, 0, 0, 0,)
Screwdriver (0, 0, 0, 0, 0, 0.33, 0, 0, 0, 0, 0.67, 0,)
Tequila Sunrise (0, 0.01, 0, 0, 0, 0.25, 0, 0, 0, 0.74, 0, 0,)
�

Table 3.1.: A collection of four well known cocktails, represented as vectors. The values
indicate the share an ingredient has to the cocktail.

Note that it is always possible to transform a transactional dataset into a numerical one,
e.g. by mapping the categorical attributes to real numbered values. However, it should
be done with care. While values like low, medium and high imply a logical order and
can be mapped to e.g. 1, 2 and 3, a problem arises if the categorical values are not in
an ordered relation. In this case it makes more sense to split the original attribute into
new binary valued attributes, one for each occurring category. This way the values do
not imply an order.

3.1.2. Embedding Data Into Lower Dimensional Spaces

When talking about embeddings in this work, the idea is that data records are mapped
from their original D dimensional instance space A into another space B. While in theory
B can be of arbitrary dimensionality, the here considered embeddings are usually, for the
sake of a scatter plot visualization, two dimensional. Because dimensionality reduction
techniques embed the data in a meaningful way into a lower-dimensional space, they
are often utilized for the visualization of data. The importance of these techniques
for visualization purposes in data science is not new and has already been stated by
Tukey (1975). In the following, before diving into interactive embedding techniques,
let us quickly review some of the most known classical (and mostly static) embedding
techniques.

Linear Embedding Techniques

Probably the best known dimensionality reduction technique is Principal Component
Analysis (PCA) (for the original publication see Pearson (1901), for introductions to
PCA in standard literature see e.g. Jolliffe (1986) and Hastie et al. (2001)). PCA aims

53

at finding a set of orthogonal axes that explains the most variance within the data. A
common way to find these axes is to perform a spectral decomposition of the covariance
matrix of the centered data. The following calculation derives this technique.

Consider X to be a set of n D-dimensional random variables x1, . . . , xn > RD. Further,
let u be a D-dimensional vector of unit length. It is important that the length of u
is constant, as the optimization problem otherwise becomes unbounded. To find the
first principal direction of the data, we are looking for a vector u� that maximizes the
variance of x1, . . . , xn, projected onto it:

u� � argmax
u� SSuSS�1

var�uX��
With the variance of a random variable W defined as

var�W � � E��W �E�W ��2�
and considering the mean as the empirical estimate of the expected value, we retrieve
the following equation:

u� � argmax
u� SSuSS�1

E�� uX�
�E�uX���2�

To simplify the calculation we can assume without loss of generality that X is centered
around its mean, which leads us to:

u� � argmax
u� SSuSS�1

E�� uX�
�E�uX��´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�0

�2�
� argmax

u� SSuSS�1
E��uX��2�

� argmax
u� SSuSS�1

1
n
� uX�Xu�

Note that for a collection C of centered D-dimensional data records 1
n � X

�X can be
considered the covariance matrix Σ of C, as

Σ � E��C � E�C�²
�0

�� � �C � E�C�²
�0

�� � E�C�C� � 1
n
�C�C.

Because the eigenvector of a matrix that corresponds to the largest eigenvalue, signifies
the largest stretch of the linear transformation performed by the matrix, we can follow
that the particular u� which maximizes u�Σu has to be the eigenvector of Σ with the
largest eigenvalue. Projecting X into a space that is orthogonal to this first principal
direction and repeating the process yields the second principal direction, which exhibits
the largest variance of X orthogonal to the first principal direction. This process can be
applied iteratively in order to find the first k principal directions of the data. Later on
in Section 3.4 a kernelized interactive extention of PCA will be introduced.

54

Projection Pursuit (PP) techniques are linear embedding methods that were originally
proposed by Kruskal (1969, 1972) with the goal of finding and visualizing interesting
projections of high dimensional data. The first publicly accessible implementation of
PP was introduced in a publication of Friedman and Tukey (1974), which also coined
the name Projection Pursuit. The key idea behind PP is to project the data into a two
or three dimensional space such that the resulting embedding deviates heavily from a
normal distribution and reveals a large amount of structure. To do so, projection pursuit
calculates a measure (in the literature referred to as index) to each projection axis of
the data which tries to capture the amount of structure. For each projection axis, this
index is greedily optimized to steer the projection towards more interesting angles.

In the version, proposed by Friedman and Tukey, the function to calculate the index
is the product of two factors. One factor captures the global spread (they used the
trimmed standard deviation), while the other one measures local density of the data
(here the sum of the pairwise distances within an ε-neighborhood for each data point
was used). Utilizing this index-function usually results in an embedding which shows
cluster structures that are well separated. Huber (1985) gives a good survey on PP
methods, their applications, benefits and downsides and different objective functions
which drive the heuristic search for an interesting projection.

Figure 3.1 below shows three different linear projections of the cocktail dataset, all
derived by PP in different stages of optimizing the index value. The tool GGobi (see
http://www.ggobi.org) generated the figures and provided the implementation of the
PP algorithm. The left figure shows an initial random projection of the data that looks
roughly normal distributed and exhibits a low corresponding index value. As PP has
not started to optimize the index value, the embedding is not biased towards showing
structure. The middle and the right figure depict the stages of PP during optimizing
the index value and after convergence.

Figure 3.1.: Three stages of projection pursuit, visualizing the cocktail dataset. Depicted
are the projection of the data before, during and after optimizing the index value.

Non-Linear Embedding Techniques

For the non-linear embedding methods, there are two major directions. One tries to
preserve the global structure of the data in the embedding, while the other tries to
preserve the local structure. The following section introduces a few of these methods.

55

http://www.ggobi.org

It is by no means a comprehensive survey, but rather tries to indicate the range of the
different approaches and how well the field is studied.

Of the global structure preserving techniques, Multi Dimensional Scaling (MDS)
techniques are probably the most known ones. With their origin dating back to the
mid sixties (Kruskal, 1964; Torgerson, 1965) and still being actively used (Cox and Cox,
2000), the general idea of MDS is to find a lower dimensional embedding of the data such
that the pairwise (Euclidean) distances resemble the pairwise distances, measured in
the original high dimensional space. More formal, let ∆ and δ be the pairwise distance
matrices of the data, in the original high dimensional space and the lower dimensional
embedding space. Further let SSASSF denote the Froebenius norm of the matrix A, given
by SSASSF �

¼
Paij>A�aij�2. The task of MDS is to find an embedding of the data that min-

imizes SS∆� δSS2F . There are two major methods to find such an embedding. One method
iteratively refines an initial embedding, minimizing a loss function, in the context of
MDS referred to as stress. The other method performs a spectral decomposition of the
centred matrix of all pairwise squared-distances. The coordinates of the k-dimensional
embedding can now be found in the k most significant eigen-vectors. Note that only the
first of these methods results in a non-linear embedding of the data.

A very natural extension, introduced by Tenenbaum et al. (2000), to the classic MDS
algorithm is Isometric mapping (Isomap). It assumes that the data lies on a lower
dimensional manifold, which is embedded into the higher dimensional space. To account
for that, the distances are measured along this manifold and not in Euclidean space. As
an example for a manifold think of a dataset where the data records all lie on the hull
of a sphere, as depicted in the following Figure 3.2.

Figure 3.2.: Approximating the shortest path between two points on the hull of a sphere.
The estimated geodesic distance between two points is the sum of the Euclidean distances
along the shortest path, connecting them on the k-nearest-neighbor-graph.

Although the data “lives” in a three dimensional space, the position of each record is
constrained to lie on a curved plane (the manifold), which gives the data an intrinsic
dimensionality of two. The geodesic distance can be approximated, by accumulating the
Euclidean distances of the shortest paths on the k-nearest-neighbor-graph of the data.
Figure 3.2 illustrates this for a dataset where all data records lie on the hull of a sphere.

56

Once all pairwise distances on the manifold are estimated and composed into a matrix,
a lower dimensional embedding of the data that reflects these distances can then be
retrieved via classical MDS.
Another structure preserving technique is the originally by Schölkopf et al. (1997) intro-
duced Kernel Principal Component Analysis (KPCA). It is an extension of classic
PCA which uses kernel methods to perform the linear operations of PCA with a non-
linear mapping. The idea behind this will be introduced more thoroughly in Section
3.4.1. Note that, depending on the choice of the kernel, this technique can be used to
either preserve the global, or the local structure of the data.

Locality preserving methods

Some, usually non-linear, embedding techniques try to preserve the local structure of
the high dimensional data in the embedding. Common to all these techniques is the
assumption that the data lies on a lower dimensional manifold that exists within the
high dimensional space in which the data is represented.

An example for such a locality preserving method is the Locally Linear Embedding
method (LLE). The algorithm tries to flatten the manifold by aligning the local neighbor-
hoods. To do so, every data record is expressed as a linear combination of its k-nearest
neighbors. The algorithm then constructs a lower dimensional embedding, with each
data point being described by the same linear combination of its neighbors.

Local Tangent Space Alignment, which was introduced by Zhang and Zha (2004),
also follows the thought of flattening the manifold. The key idea behind this method
is that if unfolded correctly, all hyperplanes that are tangent to the manifold should
align. To approximate the tangent hyperplanes, the algorithm finds the d first principal
components of the k-nearest neighbors for each point (here d is the dimensionality of
the embedding space).

Another non-linear technique that preserves the local neighborhood is the Laplacean
Eigenmap embedding (Belkin and Niyogi, 2003). Similar to a PCA it performs a spectral
decomposition and embeds the data via the first d eigenvectors. The key difference is,
that that the decomposition is not done on the covariance matrix, but instead on the
Laplacean matrix of the k-nearest neighbor graph of the data.

Other Embedding Techniques

There are numerous other embedding techniques and the here presented list of algorithms
that can be used to embed data into a new space is by no means comprehensive. Some
techniques try to find a small set of outstanding representatives of the data and express
the rest as a linear, or convex combination of them. Examples for this are Simplex
Volume Maximization (Thurau et al., 2010) and Archetypal Analysis (Cutler and
Breiman, 1994). However, most techniques, including already mentioned ones, like PCA,

57

MDS, Isomap and Laplacean Eigenmaps, use matrix factorization techniques to embed the
data. Here a data matrix X is factorized into a set of matrices that, when multiplied
together, generate or approximate X again. The resulting factor matrices can then
be used generate a lower dimensional embedding of the data. For instance, the CUR
matrix factorization technique (Drineas et al., 2006) tries to find a set of columns C and
rows R from the data matrix and an additional diagonal matrix U , such that CUR �X.
For data that has only positive entries, the Non-negative Matrix Factorization (Lee
and Seung, 1999) technique can be of use. Here, the data matrix is factorized into two
matrices W and H, which contain only positive entries. Depending on the case, this can
be helpful when trying to interpret the results. Lastly, an excellent survey on different
embedding techniques and how they relate to each other can be found in “Dimensionality
reduction: A comparative review”, published by van der Maaten et al. (2009).

3.1.3. Interacting with Embeddings

There are many possibilities that enable an analyst to interact with the visualization of
embedded data. One already mentioned way of interaction is to actively steer the pro-
jection of the data into the lower dimensional embedding space. The Sections 3.2, 3.4
and 3.3 introduce different methods that empower an analyst to directly steer the pro-
jection. On the other hand, the analyst does not necessarily have to alter the projection
in order to interact with the embedding. There are numerous ways to explore a static
embedding, e.g. by color coding properties of the data records, or by annotating them.
In the following, both ways of interaction are discussed in more detail and according
interaction methods are introduced.

Examining Static Structures

A great guide line to exploring data was formulated by Ben Shneiderman in his famous
visualization mantra “Overview first, then zoom and filter, details on demand” (Shnei-
derman, 1996). Consider the overview on the data given by the rendered embedding.
The analyst can observe all data records scattered in the plane and hopefully spot
interesting structures and patterns that emerge. The question arises how to examine
such structures on a larger scale, which constitutes the “zoom and filter” step. To this
end, several techniques come to mind.

One way to filter and guide the focus of the analyst, is to simply highlight a property
of the data records within the embedding. This can be e.g. be done by using colors.
In the following Figure 3.3, an embedding of the cocktail data into its first two prin-
cipal directions is depicted. The images(a) and (b) highlight the two most frequently
appearing ingredients Vodka and Orange juice by color. Here, the intensity of the color
is proportional to the value of the attribute and reveals that not only the cocktails con-
taining Vodka are to the left side of the embedding, but also that there is an increase in
the amount of Vodka the further left a point is embedded. Image (c) on the right of the
figure highlights all cocktails that simultaneously contain Vodka and Orange juice. This

58

image illustrates two things. First, the color does not necessarily have to indicate the
value. It can also simply encode whether a data record possesses a certain property, or
not. Second, not only attributes that are directly part of the dataset can be highlighted.
Here, the simultaneous presence of two attributes is highlighted, but it could well be a
more complicated property, like e.g. the numbers of neighbors within an ε-neighborhood
in order to emphasize dense regions.

(a) (b) (c)

Figure 3.3.: The figure shows the cocktail dataset projected onto the first two principal
directions. The first two images tint the cocktails proportional to their share of Vodka
(a) and Orange juice (b) with a blue intensity. The right image (c) emphasizes the set
of cocktails that contain Vodka and Orange juice simultaneously.

Of course there are other ways to highlight and emphasize data records within the em-
bedding; widely used are also the point’s opacities or their sizes. In general any graphical
property of the points can be used. The Figure 3.4 below conveys the same information,
as Figure 3.3 (a), but utilizes the point’s transparencies and sizes to highlight the share
of Vodka.

(a) (b)

Figure 3.4.: Highlighting can also be done via transparency (a), or the size of the points
(b). Again the share of Vodka is indicated by the highlighting method. Note that in
these illustrations the points do have a minimum transparency/size, such that cocktails
containing no Vodka at all are still displayed.

59

A conceptually different approach to interact with an embedding is to convey information
about a region of interest within the embedded data that has been selected by the analyst.
These information can e.g. be the output of standard knowledge discovery methods, like
listing the most frequent or relevant patterns (in case a label is present). The first image
of Figure 3.5 illustrates this concept. Depicted are the five most frequent patterns for
the data records of the region that hosts the cocktails containing Vodka and Orange
juice at the same time. Using this method, it becomes clear that the two ingredients
are dominant here, but also other fruity and juicy components show their presence. To
further investigate a structure, or region of interest, the analyst can now filter out all
data records which do not belong to the marked region. Re-embedding the remaining
sub-selection of data records often shows a structure of its own, which again can be
investigated deeper. The second image of Figure 3.5 illustrates this and shows a PCA
embedding of only the cocktails selected in the first image. The new embedding often
directly raises new questions about structure, or symmetries that can be found and invite
the analyst to explore it deeper.

(a) (b)

Figure 3.5.: (a) Selecting a subset of the data records and querying a summary. This
particular selection holds the cocktails containing Vodka and Orange juice. (b) Re-
embedding only the selected cocktails in a new PCA embedding shows that the sub-
selection has a structure of its own.

Remembering Shneiderman’s visualization mantra, the last part of it suggested to pro-
vide details on demand. Although not complex to realize, being able to retrieve detailed
information on individual data records is certainly a “must have” for any interactive
visualization. Figure 3.6 presents two different ways to fulfill such requests; first, by en-
abling the analyst to search for data records by their Id or name and second by allowing
him to inspect the attribute values of a single data record.

60

(a) (b)

Figure 3.6.: (a) Searching for all cocktails with the word “screwdriver” as part of their
name. (b) Querying the data behind two of those Screwdriver cocktails reveals why they
were projected to different locations.

Altering the Projection

In addition to interacting with an embedding via highlighting, filtering and querying
detailed information, there is also the possibility to alter the projection itself. The
idea behind all here presented methods to interact with the visualization and shape the
embedding, is to incorporate domain knowledge by providing feedback to the underlying
embedding algorithm on individual data records. In this work, the utilized approach
is to interact with the embedding via the placement of control points. The idea
behind control points is that the analyst may select a data record within the visualized
projection and relocate it to a new position. Moving a control point to a new location
is interpreted as feedback by the underlying embedding algorithm and triggers a re-
calculation of the projection, which tries to respect the desired location of the control
point. Note that there may exist constellations of control points, where the underlying
algorithm is not able satisfy all of the desiderata. How this issue is resolved depends on
the underlying technique.

An analogy to steering a projection via control points can be found in observing the
shadow of a point cloud, for instance, as depicted in Figure 3.7 a cup.2 The cup can
be oriented in such a way that certain parts of the shadow fall onto desired locations.
Demanding new positions for these desired locations calls for a re-orientation of the cup.
This way the projection can actively be steered. Figure 3.7 illustrates this analogy by
using three control points as desired projection locations. In the following Sections 3.2,
3.3 and 3.4, three different algorithms are introduced that make use of control point
placement.
In general, there are also other methods to actively provide feedback on individual data
records to an embedding algorithm and this way alter the projection. Two commonly
used methods, which are not discussed in more detail in this work, are the usage of must-
link/cannot-link constraints between pairs of data records, and the idea of taking label
2 The data records are spacial coordinates, retrieved from laser-scanning an IKEA cup. For the dataset

see Neumann et al. (2012).

61

Figure 3.7.: The constellation of the control points, marked by red x’s, and the angle
of the projection are dependent. Demanding specified locations for the control points
induces a certain projection.

information on individual data records into account, when calculating the embedding.
For must- and cannot-link constraints, the analyst specifies pairwise similarity examples;
for the label incorporation, the analyst simply labels individual data records within the
visualization. The underlying embedding algorithm incorporates this kind of feedback,
by projecting data records that must-link, or are of the same label, in proximity to each
other and the data records that cannot-link, or are of different label, apart from each
other.

3.2. Least Squared Error Projection

Least Squared Error Projection (LSP) is a very simple, yet effective, method to steer
an embedding via control points. It enables the user to layout a two dimensional embed-
ding of a possibly higher dimensional dataset by selecting some of the embedded data
points as control points and placing them to a desired location. LSP then calculates the
linear transformation with the least accumulated squared error in the residuals between
the desired and the projected location of the control points. Once this transformation is
found, it is applied to all data records in order to retrieve the full embedding.

3.2.1. Concept and Computation of LSP

Consider a dataset X with n data records x1, ..., xn from an instance space X b RD and
the general task to map �x1, ..., xn� into an embedding space Y b R2, yielding �y1, ...yn�.
To determine this mapping, the user chooses a set of m data records from X, denoted
by Xm, and fixes their coordinates in the embedding space, providing Ym. It can be
assumed without loss of generality that the first m records of X are those control points.
Given Xm and Ym, LSP calculates a linear transformation with the smallest accumu-
lated squared error in the residuals between the m desired and the m actual control
point locations. Regarding Xm and Ym as data matrices of shape m �D and m � 2, we
are looking for a projection matrix P > RD�2

� X � Y that solves the equation PX�
m � Ym.

62

This is a system of linear equations that can be solved efficiently. Starting from PX�
m �

Ym, we augment the equation by right-multiplying on both sides first Xm and then
second the inverse of X�

mXm, yielding:

PX�

m � Ym

PX�

mXm � YmXm

and
P �X�

mXm��X�

mXm��1
� YmXm�X�

mXm��1

Together with �X�
mXm��X�

mXm��1 being the m�m identity matrix and Xm�X�
mXm��1

being the pseudo inverse of Xm, denoted by X�
m, we finally retrieve:

P � YmXm�X�

mXm��1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
X�

m

� YmX
�

m (3.1)

Note that if there is no inverse to a matrix, the pseudo inverse is known to solve the
underlying system of linear equations with a minimum squared residual error. This
computation of P can be solved efficiently, especially since it only depends on the data
and embedding positions of the m control points and not all n data points. Once the
projection matrix is found, the final embedding of all n data records can be retrieved
by applying P to all data records. This can easily be done via the matrix multiplication
PX�

� Y .

When interacting with the embedding and altering the locations of the control points,
P has to be recalculated. As long as the control points stay the same and only their
locations within the embedding change, P can be derived by multiplying the matrices
YmX

�
m with a time complexity of O�mD�, where only Ym changes. However, if the

user alters the selection of the control points, e.g. by adding a new one, the pseudo
inverse X�

m has to be recalculated, which leads to an additional calculation with a time
complexity of O�mD2

�m2D �m3� (see Section 3.2.3).

3.2.2. Direct Interaction with the Embedding

In practice, the computation of a single LSP embedding can be performed several hundred
times per second. This opens the possibility of a live-updating interactive embedding. In
this scenario, the analyst selects a control point within the visualization and drags it to
a new location. While dragging the control point, the projection matrix is continuously
updated with the intermediate locations of the control point by calculating YmX†

m and
the resulting embedding is instantly rendered. Since altering the location of a control
point by only a tiny amount, leads to only small changes in the resulting embedding
(as is shown in the upcoming Section 3.2.3), the transitions between the individual
embeddings are smooth. Being able to steer the angle of projection in such a way and
without leaving the visualization lets the user experience the interface as a natural
environment. This supports the analysts cognitive workflow and helps to keep the focus,

63

while studying the data. The direct visual feedback of seeing how the distribution of all
data records changes upon interaction enables the analyst to understand the underlying
structure of the data and formulate, or test hypotheses.

The following Figure 3.8 shows three intermediate steps of an interaction with an LSP
embedding of the cocktail dataset. In this example, four random control points are placed
roughly at opposing locations to generate the embedding. One can see how dragging
the Artillery control point results in a smooth transition of the sequence of embeddings.
As most cocktails in this dataset do not share any ingredient with the Artillery cocktail,
their locations are not influenced by the interaction. On the other hand, cocktails which
do share ingredients with this control point, are influenced. To illustrate this in the
below figure, as the Artillery cocktail contains a significant amount of Gin (86%), the
share of this ingredient within each cocktail is color coded in blue. One can observe that
the cocktails containing more Gin are influenced stronger by the displacement of the
Artillery control point, than the ones containing less.

Figure 3.8.: Three intermediate steps of an interaction with the LSP embedded cocktail
dataset, using four control points (highlighted in pink). A stronger blue color indicates
more presence of Gin in a cocktail. One can see how the placement of the Artillery control
point (which contains 86% Gin) influences cocktails that contain more Gin stronger.

3.2.3. Evaluation

This section demonstrates three properties of the LSP technique. In Scalability, the time
complexity is analyzed and it is shown that the underlying algorithm scales well with
larger datasets, however, the graphic library that is used to render the visualization
doesn’t. In Stability, it is shown that using LSP as a live-updating embedding technique
is intuitive to the analyst, as it behaves in a robust and expected way, when altering
the placement of the control points. Finally, in Flexibility, it is demonstrated that LSP
can illuminate different aspects of the data, by placing a only few control points in an
exemplary way.

Scalability

As the least squared error projection method only depends on positions and the original
high dimensional data of the control points, the calculation of the projection matrix
scales well with the size of the dataset. In practice, the pseudo inverse is usually

64

calculated by performing a singular value decomposition (SVD).3 The computa-
tional complexity of an SVD for an m � D matrix lies in O�mD2

� m2D � m3�. As
the number of control points is usually rather small, the cubic term does not delay the
calculation too much, however, for very high dimensional datasets the quadratic term
may very well have a significant impact. Also note that while the analyst does not
change the selection of the control points, it is not necessary to calculate the pseudo
inverse and the projection matrix can be calculated via matrix multiplication in O�mD�.
In practice, though, the bottle neck is not the embedding algorithm, but the graphical
library which renders the visualization. To illustrate that, the performance of LSP is
benchmarked on 28 datasets from the UCI machine learning repository, the cocktail
and the ICDM 2001 abstracts dataset (Kontonasios and Bie, 2010). In the experiments,
the LSP embedding is calculated, based on ten uniform at random selected and placed
control points. Over the course of ten seconds, it was measured how many embeddings
were calculated and how many of these were actually rendered. The Figures 3.9, 3.10
and 3.11 visualize the results of this experiment. The properties of the datasets and the
numeric results can be seen in Table 3.2.

Image 3.9 shows the amounts of updates that could be rendered, i.e. drawn, per second,
which mainly depends on the number of data records that have to be rendered. The
second image, Figure 3.10, illustrates that the embedding algorithm LSP is able to
deliver many more updates per second, than the graphical library can handle. Crucial
for the amount of embeddings that can be calculated (not rendered) is the size of the
dataset. However, even for the dataset with the largest size (in this case webtender,
aka the cocktail dataset), the algorithm is still able to deliver �850 updates per second,
where as only �16 of these can be rendered. The speedup between what is calculated and
what is rendered, depicted in Figure 3.11, mainly depends on the number of attributes
the dataset has. This is not surprising, since for high dimensional datasets, as earlier
stated, the computational complexity of LSP is dominated by the number of attributes.

3 Here, the matrix X is decomposed into UΣV �, with Σ being a matrix that contains only entries on
the diagonal. The pseudo inverse X† is then given by V Σ†U�, where Σ† is simply the element-wise
reciprocal of Σ, as Σ contains no off-diagonal entries.

65

0 100

200

300

400

500

attributes

0
5

10
15
20
25
30
35

up
da

te
s

/s
ec

0 500
1000
1500
2000
2500
3000
3500
4000

data records
0 100000
200000
300000
400000
500000
600000

dataset size

Figure 3.9.: LSP experiments on 30 datasets on the scalability of rendered updates. The
number of displayed updates per second depends mainly on the number of data records.

0 100

200

300

400

500

attributes

0

2000

4000

6000

8000

10000

12000

up
da

te
s

/s
ec

0 500
1000
1500
2000
2500
3000
3500
4000

data records

0 100000
200000
300000
400000
500000
600000

dataset size

Figure 3.10.: Experiments on the scalability of calculated updates. The number of cal-
culated updates depends on the size of the dataset.

0 100

200

300

400

500

attributs

0
50

100
150
200
250
300
350
400
450

sp
ee

du
p

0 500
1000
1500
2000
2500
3000
3500
4000

data records

0 100000
200000
300000
400000
500000
600000

dataset size

Figure 3.11.: The speedup seems to depend mainly on the number of attributes.

66

Rendered Calculated
Dataset Columns Rows Size updates/sec updates/sec Speedup
autoPrice 15 159 2385 28.4 8052.9 283.5
bodyfat 14 252 3528 27.9 7855.9 281.5
breastTumor 8 277 2216 27.1 8620.4 318.1
cholesterol 14 297 4158 26.8 7290.0 272.0
cleveland 14 297 4158 27.1 7146.0 263.7
communities 122 1994 243268 14.8 1690.0 114.2
cpu 6 209 1254 28.1 10372.0 369.1
galaxy 5 323 1615 26.8 10178.5 379.8
glass 9 214 1926 27.6 8859.0 321.0
housing 13 506 6578 25.2 7041.1 279.4
hypothyroid 28 3772 105616 9.6 2809.0 292.6
ICDM abstracts 500 859 429500 21.0 836.7 39.8
ionosphere 32 351 11232 26.6 6093.3 229.1
kr vs. kp 37 3196 118252 10.7 2384.2 222.9
lowbwt 9 189 1701 28.2 8727.0 309.5
machine cpu 6 209 1254 27.9 10512.4 376.8
movies 20 2727 54540 13.0 4130.7 317.7
primary-tumor 18 339 6102 26.3 6461.4 245.7
pharynx 11 193 2123 28.4 8255.9 290.7
pwLinear 10 200 2000 28.2 7498.5 265.9
sensory 12 576 6912 26.0 7179.1 276.1
servo 12 167 2004 29.0 8056.6 277.8
sick 30 3772 113160 9.5 2671.3 281.2
soybean 35 683 23905 22.3 5023.7 225.3
stock 10 950 9500 21.8 6629.8 304.1
triazines 61 186 11346 28.1 5783.6 205.8
veteran 8 137 1096 28.6 8819.4 308.4
webtender 334 1702 568468 16.1 848.2 52.7
yeast 8 1484 11872 18.1 7624.5 421.2
zoo 16 101 1616 30.1 8456.9 281.0

Table 3.2.: Scalability experiments for the LSP method on 30 datasets. The column
Size denotes the number of entries in the dataset (n �m). Speedup measures the ration
between calculated and rendered embeddings.

Stability

In order to achieve a smooth live-updating interactive embedding, there should not be
any sudden and unexpected jumps in the visualization upon interaction. The following
experiment demonstrates that LSP possesses this property, by showing that altering the
location of the control points by only a tiny amount, also only leads to small changes in
the resulting embedding.

67

In the experiment, a dataset is embedded via LSP, based on 5, 10, 15, 20 and 25 uniform
at random chosen control points that are placed to the positions of their PCA embedding.
This base-embedding is then perturbed, by dis-locating each control point by some offset
into a random direction. The offset is a multiple of the median pairwise distance of the
embedded data records and the multiplying factor is denoted here as perturbation. To
measure the distortion between the base- and the perturbed embedding, the average
displacement of a point between the two embeddings is calculated and scaled by the
median pairwise distance of the base-embedding. Figure 3.12 shows this experiment,
averaged over 100 runs on all 30 datasets from Table 3.2. Notable are two effects; first,
overall there seems to be the tendency that using more control points stabilizes the
embedding. However, the distortion, when using five control points, is clearly lower
than the distortion of using ten. The explanation for this lies in the fact that the control
points are sampled uniform at random and not chosen carefully. As the PCA embedding
does not scatter the data records uniformly, but tends to have a dense center, randomly
selecting only a few control points increases the chance of drawing them from close to
the center. This implies a higher chance, that the resulting embedding does not exhibit
much spread, which again disturbs the measurement of distortion. The second effect to
notice is that the distortion scales with the intensity of the perturbation. This shows
that the embedding is robust towards little changes in the placement of the control
points and that the results of the interaction are feasible to provide a live-update that
is intuitive to the analyst, as it behaves in an expected way.

0.125
0.25

2.0

0.5

1.0

perturbation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

di
st
or
ti
on

#control
points:

5
10
15
20
25

Figure 3.12.: Little perturbation in the control points’ placement induces only small
distortion of the resulting embedding. One can observe that the usage of more control
points stabilizes the projection.

Flexibility

To demonstrate flexibility, a target embedding is mimicked by LSP. With no control
points set, LSP projects all data records to the origin of the embedding coordinate
system. To approximate the desired target embedding, more and more control points
are chosen and placed to the locations, which they possess in the target embedding.

68

To quantify the similarity of both embeddings, the difference between the target and
the approximated embedding is measured by the average root mean squared error
(rmse) of the displacement of each point, which for two points x, y > Rd is calculated by

rmse�x, y� �
¿ÁÁÀ1

d

d

Q
i�1
�xi � yi�2.

Note that this expression has no upper bound and can be any non-negative number.
As target embedding, the projection of the cocktail dataset onto its first two principal
components was chosen. For our experiments this means that a smaller rmse indicates
a better fit of the approximation, however, rmse values between different experiments
are not directly comparable. In the experiment, control points are select uniform at
random and placed according to their PCA embedding locations. Figure 3.13 shows
three examples of mimicking a target embedding for different amounts of used control
points. The black circles show the resulting LSP embedding for placing 5, 15 and 30
(emphasized in pink) control points to their according PCA embedding locations. Blue
depicts the targeted PCA embedding and the red lines indicate the residuals between
the embeddings. Although for 5 control points the difference to the desired embedding
is strong, and thus the rmse is high, one can already see the structure of the intended
embedding arising.

(a) (c) (b)

Figure 3.13.: Mimicking a PCA embedding via LSP on the cocktail dataset, using 5 (a),
15 (b) and 30 (c) control points. The blue points in the background show the target PCA
embedding. By using more and more control points (depicted in pink), the resulting LSP
embedding (black circles) resembles more and more the desired PCA embedding. The
displacement of each point is highlighted by a red line.

The following Figure 3.14 shows the development of the rmse for different amounts of
control points over 100 runs. Depicted are the median in red and the 75% quantile
as a box. The whiskers indicate smallest and largest rmse values over the course of the
experiment. As expected, the more control points are used to mimic the PCA embedding,
the stronger the residual error drops.

69

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

control points
0.00

0.02

0.04

0.06

0.08

0.10

rm
se

Figure 3.14.: The development of the rmse when approximating the PCA embedding
of the cocktail dataset (as shown in Figure 3.13), depending on the number of control
points.

However, the error does not solely depend on the amount of control points. It is also
coupled to the dimensionality of the dataset. The more dimensions a dataset possesses,
the more control points are needed to consolidate the embedding. Figure 3.15 displays
the average rmse over 100 runs, depending on the number of utilized control points and
the dimensionality of the dataset. Again the cocktail data was chosen and for each run
both, control points and the dimensions (attributes) were uniform sampled at random.
One can see that higher dimensional datasets need more control points to mimic the
PCA embedding well.

Figure 3.15.: Root mean squared error (averaged over 100 runs) of the approximation of
the PCA embedding on the cocktail dataset for different numbers of control points and
dimensions of the dataset.

To show that LSP can be useful on high dimensional data, even with only few con-
trol points, consider the CMU Face Images dataset from the UCI dataset repository
(Asuncion and Newman, 2007). The dataset consists of several gray-scale face images
of different poses for twenty persons. Each image has a resolution of 32 � 30 pixels and
treating each pixel as an individual dimension, yields a 960 dimensional dataset. In this
experiment, all images from four different persons were considered and embedded via
PCA and LSP. The following Figure 3.16 shows the images embedded in their first two
most significant principal directions.

70

(a) (b)

Figure 3.16.: The left image (a) shows the complete PCA embedding of the facial images.
For better visibility, the right image (b) focusses on the cluster, emphasized by a red
circle in image (a). Both figures do not immediately reveal any interesting structure
among the facial images.

On the other hand, by utilizing LSP and arranging eight of the image control points,
different aspects of the dataset can be emphasized. In Figure 3.17 (a) two images of
each person were selected as control points. Already grouping two control points per
person in different regions of the embedding space clusters the images by person. On
the same data, selecting two examples of each pose as control points and grouping the
pictures by these poses reveals a different aspect of the data. In Figure 3.17 (b) one
can see that the embedding now highlights the different poses of looking-up, -straight,
-left and -right. The following Figure 3.18 shows again a zoom into the left most cluster
of both embeddings. The resulting projections do not always yield clusters, as in the
above figures, but arranging the control points with a concept in mind usually yields a
local neighborhood that seemed to reflect it. This exemplifies well how an analyst can
incorporate domain knowledge to find and study the emerging structures.

(a) (b)

Figure 3.17.: Different aspects of the same dataset can be shown by selecting and placing
the control points (highlighted in green) in a different ways. In image (a) the control
points are grouped by persons, while image (b) brings out the poses of looking-straight,
-up, -left and -right. The red circled areas are displayed separately in the Figure 3.18.

71

(a) (b)

Figure 3.18.: For better visibility, a zoom into the left clusters of the Figures 3.17 (a)
and (b).

To further demonstrate the flexibility of LSP, the experiment of mimicking the embed-
ding into the first two principal components by setting control points accordingly was
performed on the 30 datasets from Table 3.2. The results are depicted in the following
Figure 3.19, where each rmse measure is given as the average over ten runs. Notably,
all scatter plots exhibit the tendency of less rmse over the usage of more control points,
thus the approximation of the target embedding becomes more accurate. For datasets of
lower dimensionality (like e.g. galaxy) the projection matrix onto the first two principal
components can even be mimicked exactly after placing only a few control points. Also
note that the rmse, although it technically has no upper bound, in these experiments
never exceeds a value of 1.8. This comes due to the employed implementation of the
PCA target embedding. Here, a library was used that not only centers the data, but also
normalizes it by scaling each dimension to possess a standard deviation of 1.0. Because
of this normalization, most data records are embedded into a range of �1 and 1 for each
axis, which impedes the rmse from growing large.

72

0.41

0.50ICDM abstracts

0

1 autoPrice

0.0

0.8 bodyfat

0.0

1.2 breastTumor

0.0

1.4 cholesterol

0.0

1.4 cleveland

0.2

1.4 communities

0.0

0.5 cpu

0.0

0.9 galaxy

0.0

0.8 glass

0.0

1.4 housing

0.0

1.8 hypothyroid

0.0

1.6 ionosphere

0.2

1.6 krvskp

0

1 lowbwt

0.0

0.5 machine cpu

0.0

1.2 movies

0.0

1.4 pharynx

0.0

1.2 primarytumor

0.0

1.2 pwLinear

0.0

1.4 sensory

0

1 servo

0.0

1.8 sick

0.2

1.6 soybean

0

1 stock

0 5 10 15 20
0.0

1.2 triazines

0 5 10 15 20
0.0

1.4 veteran

0 5 10 15 20
0.2

0.4 webtender

0 5 10 15 20
0.0

0.6 yeast

0 5 10 15 20
0.0

1.6 zoo

control points

rm
se

Figure 3.19.: Mimicking the embedding of the data into the third and fourth principal
components via LSP on the 30 datasets from Table 3.2. Depicted is how the rmse between
the target and the actual embedding develops over the amount of control points used.

73

3.3. Most Likely Embedding

While LSP is a fast and flexible method to create an interactive embedding, it also has
some drawbacks. Computing the projection solely based on the control points’ placement
has the disadvantage that the resulting embedding may be poor with badly chosen, or
too few control points utilized. Note that in the very initial embedding of LSP, with no
control points set, every data record is projected to the origin of the embedding space.
Further considering a sparse dataset with only few, or poorly chosen control points,
many data records may not share any non-zero attributes with the control points. This
is problematic, as it forces LSP again to embed these data records to the origin.

Another, related, drawback is that there is no inherent spread among the embedded
points that stems from data records simply being different, regardless of the control
points. To exemplify this, think of the cocktail dataset and a scenario, where the only
control point that is placed is a cocktail that contains 100% Vodka. In this case, two
cocktails that are completely different, except for a common share of Vodka, would be
embedded exactly to the same location. The straight lines that form the arms in Figure
3.8 of the last chapter exhibit this behaviour and demonstrate that the effect also occurs
in practice. This can be counter intuitive when utilizing the interactive embedding to
explore the data. To remedy this effect, this section introduces a probabilistic interac-
tive embedding method that considers a prior belief about the embedding. Key to the
approach is the assumption that the projection matrix is matrix-normal distributed, a
matrix-valued extension to the normal distribution. Given a prior belief on the projection
matrix and conditioned on the control points’ placements as evidence, the embedding
with the least uncertainty about the placement of the data records is calculated. Hence
the name Most Likely Embedding (MLE). A very condensed survey on this method
can also be found in the workshop publication (Paurat et al., 2014). Note that this
idea is close to Iwata, Houlsby and Ghahramani’s work (Iwata et al., 2013), who utilizes
MLE as a semi-supervised static embedding technique, rather than directly interacting
with the embedding. Additionally and in contrast to their method, the here introduced
variant does not use the Laplacian of the nearest-neighbor graph, but instead the pro-
jection onto the first two principal components as prior belief about the embedding. In
addition, the here discussed method considers the placement of the control points not
to be exact. It rather assumes that analyst places the control points “about right” and
that small deviations from the location are tolerable.

3.3.1. Matrix Normal Distribution

The matrix normal distribution is a generalization of the multivariate normal distribution
to matrix-valued entries. Similar to the multivariate normal distribution, mean and
variance terms are required. For the matrix normal distribution, however, there exist
a row and a column variance and the parameters are given in matrix form. For a
random matrix R > Rp�q that follows the matrix normal distribution MN p,q�M,Σ,Ψ�

74

the probability density function is given by

p�R SM,Σ,Ψ� � 1�2π� pq
2 SΣS q2 SΨS p2 � exp��1

2 tr�Σ�1�R �M�Ψ�1�R �M����.
Here M > Rp�q is the location parameter that encodes the mean and Σ > Rp�p and
Ψ > Rq�q relate to the row and column covariances of M . Note that there is also a direct
relationship between the matrix normal and the multivariate normal distribution. If the
matrix R follows the matrix normal distribution MN p,q�M,Σ,Ψ�, then vect�R� follows
the multivariate normal distribution N �vect�M�,ΨaΣ�.4
The parameters M,Σ and Ψ of a matrix normal distribution have intuitive interpre-
tations. The parameter M is simply the (matrix-valued) expected value of R, that is
M � E�R�. From vect�R� � N �vect�M�,Ψ a Σ�, we can see that the term Ψ a Σ can
also be rewritten as cΨ a c�1Σ for an arbitrary constant c > R � �0�. For the choice of
c � 1, however, Σ and Ψ are directly the row and column covariance matrices of M and
we retrieve

Σ � E��R �M���R �M�� and
Ψ � E��R �M��R �M���.

A very useful property for our purpose of the matrix normal distribution is that it is
closed under bilinear transformations. This means that, given R > Rp�q has a matrix
normal distribution R �MN p,q�M,Σ,Ψ�, for any two arbitrary matrices A > Rn�p and
B > Rm�q it holds that ARB�

�MN n,m�AMB�, AΣA�, BΨB��.
Consider the scenario of embedding D dimensional data into a d dimensional space, and
suppose we have a matrix normal belief about a linear embedding matrix R > Rd�D, i.e.
p�R� �MN �R SM,Σ,Ψ�. Given a vector from the high-dimensional input space, x > RD,
our belief about the embedded location u � Rx� is multivariate normal, meaning:

p�u� � p�Rx�� � N �Mx�, �xΨx��Σ�.
This can be seen by setting A � I, B � x. Also notice, that if the norm of x is fixed
to a constant xx� � C, the vector with the most uncertainty about its embedded loca-
tion subject to this constraint is in the direction of the eigenvector of Ψ with largest
eigenvalue. The same holds about the vector with the least uncertainty, as it is in the
direction of the eigenvector of Ψ with smallest eigenvalue. Now, in a similar way, given
a dataset of n data records > RD, X > Rn�D, our belief about all embedded data records
U � RX� is matrix normal and we have

p�U� �MN �U SMX, Σ, X�ΨX�.
4 Here vect�R� denotes the vectorization operation, which stacks the columns of R to form a vector and

the a-symbol signifies the Kronecker product.

75

In order to be able to refine our belief about the projection matrix R by considering
evidence (i.e. the placement of control points), we will need to be able to calculate
conditional distributions of R.

Conveniently, the family of matrix normal distributions is closed under the operation of
conditioning it on observing a subset of the rows, or columns. Analogous to condition-
ing a multivariate normal distribution, this means that conditioning a matrix normal
distributed matrix R on observing a subset of the columns, or rows, leaves us with a
matrix normal distribution on the remaining columns, or rows. Consider the matrices
R, M , Σ and Ψ partitioned in the following way:

R � �R11 R12
R21 R22

	 M � �M11 M12
M21 M22

	 Σ � �Σ11 Σ12
Σ21 Σ22

	 Ψ � �Ψ11 Ψ12
Ψ21 Ψ22

	 ,
with R11 > Rr�s, M11 > Rr�s, Σ11 > Rs�s and Ψ11 > Rr�r.

Further, we define

R1� � �R11 R12� and R�1 � �R11
R21

	
and R2�, R�2, Σ1�, etc. in an analogous way. Now we can express the conditional row
and column probabilities as follows:
Given that Σ�1

22 exists,

p�R1� SR2�� �MN �M1� �Σ12Σ�1
22�X2� �M2��, Σ11 �Σ12Σ�1

22Σ21, Ψ� (3.2)

and given that Ψ�1
22 exists,

p�R�1 SR�2� �MN �M�1 � �X�2 �M�2�Ψ�1
22Ψ21, Σ, Ψ11 �Ψ12Ψ�1

22Ψ21�. (3.3)

In the next section, we will use this property to learn the most likely projection matrix,
given a prior belief about the embedding and a set of control points placed by the analyst
within the embedding.

3.3.2. Deriving the Most Likely Embedding

Suppose we believe that the projection matrix R follows a matrix normal distribution

p�RSθ� �MN �RSM,Σ,Ψ�,
where θ denotes the hyperparameters M , Σ, and Ψ of the distribution. In the following,
the dataset is denoted by X and consists of n data records from RD, organized in the
data matrix of the shape n�D. The m data records that correspond to control points are
denoted as Xm and their locations within the two dimensional embedding are given by
Ym. In addition, for a simpler notation, the tuples of control points and corresponding
data records �Xm, Ym� that will be used as evidence are denoted by E . Given this, the
current understanding of the desired embedding of X can be presented to the analyst in

76

a straightforward way, by showing the maximum a posteriori (MAP) embedding of X.
This means that the presented embedding is given by MX�, the mean of the projection
matrix R, which constitutes the most likely embedding.

Let us further assume that the control points may not be exactly located, as intended by
the analyst, but are corrupted by some iid5 isotropic Gaussian distributed noise around
the locations. Again, this can be expressed as the matrix normal distribution

p�YmSRX�

m, θ, σ
2� �MN �YmSRX�

m, I, σ
2I�, (3.4)

which indicates that each of the values in Ym differs from RX�
m by entrywise iid Gaus-

sian noise with a variance of σ2. From now on, σ2 will also be included in the set of
hyperparameters θ.

Now, in order to incorporate user placed control points, consider concatenating R and
RX�

m to form the block matrix �R RX�
m�. Again, we can utilize to the bilinearity of

matrix normal distributions and together with A � I and B�
� �ID X�

m�, we can derive
the following distribution:

p��R RX�
m�� �MN

���M MX�
m� ,Σ, � Ψ ΨX�

m

XmΨ XmΨX�
m
	��.

This algebraic expression can be combined with equation (3.4) to find the joint distri-
bution of R and the control point locations Ym. By doing so, we retrieve

p��R Ym�� �MN
���M MX�

m� ,Σ, � Ψ ΨX�
m

XmΨ XmΨX�
m � σ2I

	��.
Finally, by utilizing equation 3.2, we can reason about the linear projection matrix R
that is most likely, given a prior belief about the embedding and conditioned on the
observed values Ym:

p�RSXm, Ym, θ� �MN �R SMRSE ,Σ,ΨRSE�,
where

MRSE �M � �Ym �MX�

m��XmΨRSEX
�

m � σ2I��1XmΨRSE and (3.5)

ΨRSE � Ψ �ΨX�

m�XmΨX�

m � σ2I��1XmΨ. (3.6)

In order to retrieve the final most likely embedding of all the data points X, we simply
have to calculate MRSEX

�. In case of a live-updating embedding, there are two different
interaction scenarios that may occurr. The first one happens on relocating a control
point. Here, only the matrix MRSE has to be recalculated. In the second case, the
analyst alters the selection of the control points, i.e. selecting new or de-selecting old
ones. Now, ΨRSE has to be updated before MRSE can be calculated.
5 iid stands for “independent and identically distributed”.

77

3.3.3. Connection to LSP

It is interesting to mention that MLE constitutes a generalization of LSP. Recall the
projection matrix P of the LSP method from Section 3.2. In equation 3.1 it was calculated
via P � YmXm�X�

mXm��1
� YmX

†
m. In case of the here presented most likely embedding

method, this projection matrix corresponds to MRSE . With no prior in M (meaning that
M is an all zero matrix 0), assuming that the control points are placed exact (meaning
σ � 0) and the covariance among the non-control point data records is ignored (meaning
that Ψ is the identity matrix I), MLE turns out to be LSP. Using these assumptions,
equation 3.5

MRSE � M

�̄0

��Ym �MX�

m´¹¹¹¹¸¹¹¹¹¹¶
�0

��Xm Ψ®
� I

X�

m � σ2I°
�0

��1Xm Ψ®
� I

transforms into

MRSE � Ym�XmX
�

m��1Xm.

Using the rules �AB��1
� B�1A�1 and AB � B�A� for matrix calculus, the expression

Ym�XmX
�
m��1Xm can be rewritten as YmXm�X�

mXm��1, which is exactly the formula-
tion of the projection matrix P from Section 3.2.

3.3.4. Evaluation

In this section the scalability and the flexibility of MLE are evaluated. In all presented
experiments, the prior belief about the embedding is the projection of the data onto the
first two principal components of a PCA. Keep in mind, however, that this prior belief
can easily be substituted by any other embedding, it also does not necessarily have to
be the result of a linear projection. An example of this method starting with a non-
linear embedding is e.g. given by Iwata et al. (2013), who employ a Laplacean eigenmap
embedding (see Section 3.1.2) as prior belief.

Scalability

MLE is a fast method that can be utilized to interact with an embedding in a live-updating
manner. As earlier stated in Section 3.3.2, the calculations differ, depending on the type
of interaction. If it solely consists of relocating control points, then only MR SE has to
be calculated according to equation 3.5. This can be done with a time complexity of
O�mD2�, assuming mP D, as the computational complexity of calculating the pseudo
inverse lies in O�mD2

�m2D �m3� (see Section 3.2.3) and all matrix multiplications
in equation 3.5 can be done in O�mD2�, or less. If, however, the set of control points
changes, the matrix ΨR SE has to be calculated in addition. For the additional cost of
calculating ΨR SE via equation 3.6, the same arguments hold and it can also be done with
a time complexity of O�mD2�. Table 3.3 shows that MLE is for the 30 datasets from
Table 3.2 well suited to handle live-updating the embedding upon user interaction.

78

Updates/Second Updates/Second
only ΨR SE and only ΨR SE and

Dataset MR SE MR SE Dataset MR SE MR SE

autoPrice 5899.3 3366.1 machine cpu 6067.5 3470.2
bodyfat 5814.6 3336.8 movies 3282.9 2279.9
breastTumor 5814.3 3407.2 pharynx 5630.1 3202.2
cholesterol 5660.9 3288.0 primary-tumor 5247.9 3011.3
cleveland 5617.0 2880.6 pwLinear 4877.4 3173.6
communities 2727.8 756.1 sensory 5004.0 3071.0
cpu 6101.7 3504.8 servo 5682.5 3170.5
galaxy 5708.6 3347.6 sick 2670.7 1962.1
glass 5923.9 3294.3 soybean 4602.3 1870.5
housing 5317.3 3135.0 stock 4513.0 2818.0
hypothyroid 2797.3 2001.8 triazines 5200.5 2372.2
ICDM abstracts 1850.5 89.0 veteran 5753.1 3340.3
ionosphere 5239.4 2909.0 webtender 1497.0 206.0
kr vs. kp 2974.4 1924.1 yeast 4122.4 2739.8
lowbwt 5803.0 3322.9 zoo 5720.6 3226.0

Table 3.3.: Updates per second that MLE achieves for changing five control points on
the 30 datasets, averaged over 10 runs. Different calculations are needed for (i) only
relocating the control points and for (ii) altering the set of selected control point.

Note that calculating the projection matrix only depends on d, D and m, but not on the
number of attributes n. This is e.g. reflected in the amount of updates per second for
the two datasets pwLinear and stock. Both have 10 attributes, but differ in the amount
of data records, namely 200 and 950. Nevertheless, both achieve similar high amount of
updates per second.

Flexibility

To demonstrate the flexibility of MLE, the experiment of mimicking a PCA embedding
from Section 3.2.3 is recreated. However, as the implementation of the here utilized
version of MLE considers the first two principal components already as prior for the em-
bedding, the flexibility of the method is now demonstrated by placing the control points
in such a way that now the third and fourth principal component are approximated.
The results are depicted in the Figure 3.23. Again, the rmse measures are averaged over
ten runs. For most of the scatter plots, the graphs exhibit a tendency of less rmse for
a larger number of placed control points, which indicates a better approximation of the
target embedding.

79

0.46

0.62ICDM abstracts

0.6

0.9 autoPrice

0.5

0.8 bodyfat

0.7

1.1 breastTumor

0.85

1.25 cholesterol

0.85

1.25 cleveland

1.10

1.45 communities

0.32

0.50 cpu

0.55

0.85 galaxy

0.5

0.8 glass

0.8

1.4 housing

1.3

1.9 hypothyroid

1.3

1.6 ionosphere

1.15

1.50 krvskp

0.65

1.00 lowbwt

0.32

0.50 machine cpu

0.70

1.05 movies

0.90

1.35 pharynx

0.8

1.1 primarytumor

0.8

1.3 pwLinear

0.8

1.4 sensory

0.65

0.95 servo

1.3

1.9 sick

1.3

1.9 soybean

0.65

1.00 stock

0 5 10 15 20
0.85

1.25 triazines

0 5 10 15 20
0.90

1.35 veteran

0 5 10 15 20
0.32

0.46 webtender

0 5 10 15 20
0.35

0.60 yeast

0 5 10 15 20
1.1

1.7 zoo

control points

rm
se

Figure 3.20.: Mimicking the PCA3,4 embedding via MLE on the 30 datasets. Depicted is
how the rmse between the target and the actual embedding develops over the amount
of used control points.

80

3.4. Constrained Kernel Principal Component Analysis

In this section, a constrained kernel principal component analysis (cKPCA) is
introduced which not only embeds the control points to the user specified locations, but
also puts emphasis to the variance among the embedded data points. This approach
naturally remedies the spread issue that LSP exhibits for sparse data and augments
the well established PCA method with the concept of interacting with it via control
points. Apart from the point that PCA is well understood and has a clear interpretation,
the kernelized version additionally offers some benefits. First, a kernel-PCA (KPCA) is
able to capture non-linear dependencies within the data and second, show Ham et al.
(2004) that choosing specially designed kernels can transform the PCA embedding into
other embeddings, like e.g. Isomap, MDS or LLE. Hence, the here introduced cKPCA
directly yields a way to provide interaction via control points to other (until now static)
embedding techniques.

3.4.1. A Kernelized Version of PCA

Since in real world data often non-linear dependencies among the data records exist,
considering solely linear projections may lead to poor results. A remedy to this can be
found by utilizing kernel methods. Here the idea is to map the data in a very specific
way to a (usually higher dimensional) feature space, with the hope that the mapping
exposes a structure within the data that eases the task at hand. A very good general
book on kernel methods, how they work, where they can be applied and how to design
kernels has been published by Schölkopf and Smola (2002). It also contains a chapter
on KPCA, which goes much along the lines of Schölkopf et al. (1997). In addition, a nice
application of KPCA with the goal of de-noising data was published by Mika et al. (1998).

Recalling the regular PCA from Section 3.1.2, the idea was to find the axis u that exposed
the most variance, when linearily projecting the data records X � �x1, . . . , xn� onto it.
This brought us to the optimization problem

u� � argmax
u� SSuSS�1

uX�Xu�, which can be rewritten as

� argmax
u� SSuSS�1

n

Q
i�1
�`xi, ue�2.

(3.7)

Note that at the core of the above stated equation 3.7 lies a linear projection of the data
X onto u. Generalizing this optimization problem can be done by substituting the linear
function of this projection with another (possibly non-linear) function f . The idea here
is to map all instances x and x� from the instance space X via a function Φ into some dot
product space V. Let us denote the inner product of the mapped data `Φ�x�,Φ�x��e

V

with k�x,x�� and introduce a special dot product space that will be used for V.

81

Definition (Reproducing Kernel Hilbert Space) from the book “Learning with
Kernels” (Schölkopf and Smola, 2002). Let X be a nonempty set (often called the index
set) and H a Hilbert space of functions f � X � R. Then H is called a reproducing kernel
Hilbert space endowed with the dot product `�, �e (and the norm SSf SS �� »`f, fe) if there
exists a function k�X �X � R with the following properties.

1. k has the reproducing property `k�x, ��, fe � f�x� for all f > H; in particular`k�x, ��, k�x�, ��e � k�x,x��
2. k spans H, i.e. H � span�k�x, ��Sx > X� where X denotes the completion of the set

X.

Choosing V to be a Hilbert space Hk of the kernel k that possesses the reproducing
property and denoting f�x� to be the inner product `k��, x�, feHk

, the PCA problem of
equation 3.7 can be restated as

f� � argmax
f>Hk � SSf SS�1

n

Q
i�1
�`k��, xi�, feHk

�2. (3.8)

Note that the optimizer f� of this problem can be an arbitrary element of Hk. However,
this is not the case, as the following shows. We can write the optimizer f� as the sum of
two othogonal parts v and w, with v being an element of HX � span�k�xi, ��Sxi >X�, i.e.
the span the data spans within Hk, and w >Hk �HX . Inserting f � v �w into equation
3.8 and using the bilinearity of the dot product yields

`k��, xi�, v �weHk
� `k��, xi�, veHk

� `k��, xi�,weHk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, as w�HX

This lets us conclude, that the optimizer f� lies in HX and thus can be represented as a
linear combination of the training data xi, leading us to f� � Pni�1 αik�xi, �� with α > Rn.
Stating that f� can be written in this algebraic form is also referred to as the weak
representer theorem. Schölkopf et al. (2001) have shown that for a whole family
of optimization problems, defined over a reproducing kernel Hilbert space, which all
minimize a regularized empirical risk functional, the minimizer f� can be expressed as a
finite linear combination of kernel products from the training data xi. The significance
of this representer theorem is that for many different learning algorithms the solution
can be expressed in terms of the training examples.

3.4.2. The cKPCA Optimization Problem

The key idea behind the here introduced cKPCA is to augment the optimization problem
of a classic (kernel) PCA with constraints that respect the placement of the control points.
The resulting embedding is a projection of the data that embeds the control points to
the user specified locations and simultaneously maximizes the variance of the unlabeled
data ‘along’ the set of unit norm functions in Hilbert space. To ensure feasibility of the

82

resulting optimization problem while retaining satisfactory visualization, the usual hard
orthogonality constraint of the principal directions is replaced by a conveniently chosen
soft-orthogonality term in the objective function.

Let X � �x1, . . . , xn� be a sample from an instance space X with positive definite kernel
k � X � X � R. Without loss of generality it can be assumed that the first m points
are labeled with y � �y1, . . . , ym�. Furthermore, let H be the reproducing kernel Hilbert
space of kernel k and HX � span�k�xi, ��Sxi >X�. To calculate each of the d dimensions
of the embedding the unit HX -norm functions f1, . . . , fd of the following optimization
problem are solved in succession

f�s � argmax
f>H

1
n

n

Q
i�1
�f�xi� � `f, µe�2

� ν
s�1
Q
s��1

`fs� , fe2
subject to YfYHX

� 1,
f�xi� � yis ¦ 1 B i Bm,

(3.9)

where µ � 1
n P

n
i�1 k�xi, ��. Each term of this problem has a clear meaning. In the equation,

the first term maximizes the variance and second encourages the found direction to be
orthogonal to the already found ones; so far a classic KPCA with soft orthogonality. For
the hard constraints, the fist part restrains the solution to lie on a hypersphere and the
second condition demands the control points placement to be respected by the projection.
Efficiently solving this problem remains possible in this case and follows along the lines
of the upcoming Section 3.4.3.

3.4.3. Solving the cKPCA Optimization Problem

In this section the optimization problem 3.9 is rewritten in terms of matrix operations,
such that a closed form solution can be given. The problem is defined over the re-
producing kernel Hilbert space H with kernel k��, �� and the weak representer theorem
(Dinuzzo and Schölkopf, 2012; Schölkopf et al., 2001) implies that its optimizer f�s can
be represented as f�s � Pnj�1 αsjk�xj , ��, with αs1, αs2, . . . , αsn > R.

Let K be the kernel matrix with its first m rows (the labeled ones) be denoted as
Km. Further let H be the centering matrix H � I � 1

n11�, where 1 denotes a vector
of all ones. As an optimizer fs > H, we can write fs � us � vs with us Ù vs and us >
HX . Plugging the substitution into Equation (3.9), we conclude that the optimization
objective is independent of vs and the weak representer theorem holds in this case. For
the computation of the s-th variance direction fs �s A 1�, we additionally have the
orthogonality terms `fs, fs�e � `us�vs, fs�e � `us, fs�e (s� @ s), which are also independent
of vs. The hard constraint term f�xi� � yis is also independent of vs as it holds that
fs�x� � us�x� for all x > X. Therefore, the weak representer theorem holds for problem
(3.9). Using f � Pnj�1 αjk�xj , �� we can rewrite the individual terms of problem 3.9 in
the following way:

83

f�xi� �

n

Q
j�1

αjk�xj , xi� � Kiα

`f, µe �
1
n

n

Q
i�1

n

Q
j�1

αik�Ñxi, Ñxj� �
1
n

1�Kα

s�1
Q
s��1

`fs� , fe2 � α�K �s�1
Q
s��1

αs�α
�

s��Kα �

s�1
Q
s��1

�α�Kαs��2

Now, constructing the matrix HK � �I � 1
n11��K � K �

1
n11�K and observing its ith

row yields us Ki �
1
n1�K. This result can be multiplied with α and we retrieve the term

Kiα �
1
n1�Kα, which is exactly f�xi� � `f, µe, the first term over which is summed in

problem 3.9. Using the fact that H2
�H and K is symmetric, Pni�1 �f�xi� � `f, µe�2 can

be expressed as Pni�1 �HKα�2
i � �HKα��HKα � α�KHKα and problem (3.9) can be

rewritten, as follows

αs � argmax
α>Rn

1
n
α�KHKα � ν

s�1
Q
s��1

�α�Kαs��2

subject to α�Kα � 1
Kmα � ys.

(3.10)

This can be reformulated in a much nicer form. Introducing a substitution K 1
2α � u and

denoting

W �K
1
2 � 1

n
H � ν

s�1
Q
s��1

αs�α
�

s��K 1
2 ,

L �KmK
�

1
2 ,

problem (3.10) can be stated as

argmax
u>Rn

u�Wu

subject to u�u � 1,
Lu � ys.

(3.11)

To solve this problem, the linear term Lu � ys needs to be eliminated from the problem
statement. If this term is of rank m @ n, it can be eliminated and problem 3.11 can
be rewritten to optimize a quadratic over an �n �m�-dimensional hypersphere. To do
so, let us start with a QR factorization of the matrix L�. It implies that L � R�Q�,
where Q > Rn�n is an orthogonal matrix and R > Rn�m is an upper triangular matrix.
Introducing a substitution

Q�u � � x
z
	

84

with x > Rm and z > Rn�m, the objective function u�Wu of problem (3.11) becomes
u�QQ�WQQ�u � �Q�u��Q�WQ�Q�u�. Now, considering the matrixQ�WQ partitioned
into four sub-matrices, with the split at position m

Q�WQ � � A B�

B C
	 , with A > Rm�m,B > R�n�m��m and C > R�n�m���n�m�,

we can transform the objective function u�Wu into x�Ax � 2z�Bx � z�Cz. A similar
transformation can be applied to the constraint terms. First, ys is transformed into

ys � Lu � R
��Q�u� � � R̄

0�n�m�
	� � x

z
	 � R̄�x

where R̄ are the first n positions of R and 0�n�m� is a vector of length �n�m� of all zeros.
From this expression we can follow that x � �R̄���1ys. Now for the other constraint, the
following transformation can be done

1 � u�u � �Q�u���Q�u� � x�x � z�z
Knowing that x is a constant vector that we can calculate via x � �R̄���1ys, this equation
can be rearranged to obtain

z�z � 1 � x�x´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
�� t2

.

Again, using x to be a constant vector, we can eliminate x�Ax from the optimization
objective and rewrite problem (3.11) with b � �Bx as

argmax
z

z�Cz � 2b�z

subject to z�z � t2,
(3.12)

This is a canonical form of optimization problems with a known solution, provided and
derived by Gander et al. (1989). The solution steps follow along these lines: To compute
the solution to an optimization problem of the form of problem 3.12, one can first form
the principal Lagrangian function and show that the maximum is achieved for the largest
value of the Lagrangian parameter associated with the hypersphere constraint. Then,
it is shown that finding the largest value of this parameter is equivalent to solving a
quadratic eigenvalue problem. Furthermore, the quadratic eigenvalue problem can be
written as a linear eigenvalue problem using block matrices, which yields the following
solution:

z� � �C � λmaxI�n�m���1b,

where λmax is the largest real eigenvalue of

� C �I�n�m�

�
1
t2 bb

� C
	 � γ

η
	 � λ � γ

η
	 .

85

Hence, the solution to problem (3.10) is given by

α�

s �K
�

1
2Q

<@@@@>
�R̄���1

ys�C � λmaxI�n�m���1
b

=AAAA? .
As Q, R̄, C, λmax and b can be calculated from the original data and the placement
of the control points, the above equation provides a solution to problem 3.9, given by
f � Pnj�1 αjk�xj , ��.
3.4.4. Other Knowledge-based Constraints

An enhanced version of the initial constrained kernel PCA problem 3.9 was investigated by
Oglic et al. (2014). The idea there is to formulate additional knowledge based constraints
and integrate them into the optimization problem, such that it can still be transformed
to the canonical form of problem 3.12 and thus be solved in the same way. The new
objective function can be formulated as

f�s � argmax
f>H

1
n

n

Q
i�1
�f�xi� � `f, µe�2

� λΩ�f, θ�
subject to YfYHX

� r,

Ψ�f, θ� � 0,

(3.13)

with Ω denoting a soft- and Ψ a hard-constraint term. The variable r > R� describes
the radius of the hypersphere over which is optimized and θ represents a set of hyper-
parameters, which depend on the utilized constraint type.

Oglic et al. (2014) show for three different types of constraints how they can be formu-
lated and merged with the optimization problem without altering the canonical form
of problem 3.12. In the previous Section 3.4.2, the placement of the control points was
treated as hard constraint. To still ensure feasibility of the optimization problem, the
hard orthogonality of the maximum variance directions, as it is usually demanded for a
PCA, was replaced by a soft-orthogonality. This results in an embedding that maximizes
the variance along the directions and their orthogonality as much as possible, while en-
suring that the projection of the control points falls exactly to the user desired locations.
Using the new formulation, it is possible to flip this around and demand strictly orthog-
onal directions of maximum variance, while the projections of the control points should
fall “as good as possible” to the user desired locations. A different type of knowledge
based constraint that can be incorporated, is to provide must- and cannot-link informa-
tion about individual pairs of data records. Here, the analyst declares some of the data
records to be linked together, and some of them to be disjoint. The resulting embedding
places must-linked data records close to each other and spatially separates the cannot-
linked ones. As a last constraint type, label information can be incorporated. Here, the
underlying assumption is that data records of the same class-label should be embedded

86

close to each other. In their publication, Oglic et al. (2014) suggest to place a term in
the objective function which rewards a placement of the labeled data records close to
the class mean within the embedding. As a benefit to this enhanced formulation of the
optimization problem, all of these constraint types can also be utilized simultaneously,
as substitution allows it to transform the problem to the canonical form 3.12 again. Note
that technically, it is possible to demand the same thing simultaneously as hard- and
as soft-constraint. (For instance, the placement of control points, or the orthogonality
of the embedding directions.) However, as the hard constraint constitutes the optimal
case for the soft constraint, it will drive the solution of the optimization problem.

3.4.5. Evaluation

Apart from investigating the scalability and flexibility of cKPCA, this evaluation also
studies the spread of the data points in the embedding.

Spread

Figure 3.21 (left) illustrates the problem with using LSP as an embedding technique on
the ICDM 2001 abstracts dataset (Kontonasios and Bie, 2010) and shows how cKPCA is
able to overcome it. The LSP embedding collapses towards the origin mainly because
the dataset has sparse entries. The five control points (highlighted in red) have few
to no attributes in common with the other embedded data records, which leaves LSP
unable to embed them anywhere but the origin. As cKPCA also maximizes the variance,
the resulting embedding has more spread. This gives the user more insights about the
underlying structure of the data, as well as the possibility to better select new control
points and interact with the embedding. Note that the small number of control points
reflects the actual use case of an interactive embedding. In general, a user would not
want to interact with too many control points, but rather with a few known or highly
expressive ones.

Figure 3.21.: Left, LSP and cKPCA embedding of the ICDM 2001 abstracts dataset.
Middle and right, control points are placed according to their third and fourth principal
components coordinates. The middle one shows the development of the averaged pairwise
distance of the embedded data over the number of control points selected. The right
one shows the development of the root mean squared error between the third and forth
principal component and the actual embedding.

87

The middle picture of Figure 3.21 shows how the average pairwise distance of the em-
bedded data develops depending on the amount of control points. In this experimental
setting a number of control points were chosen uniform at random and placed according
to their third and fourth principal components coordinates. One can see how cKPCA
starts as a regular PCA and develops with more and more control points selected towards
the new embedding, while keeping the high spread among the embedded data records
from the beginning on. LSP on the other hand initially places all points at the origin
and only slowly develops the desired spread. The right part of Figure 3.21 shows how
the rmse between the projection onto the third and forth principal direction and the
cKPCA and LSP embedding develops over the amount of placed control points. With
an increasing number of control points, cKPCA develops away from the regular PCA
embedding towards the new embedding.

In addition, the stray of cKPCA and LSP was evaluated on the thirty datasets that were
already used in the evaluation of LSP in Section 3.2.3. The above explained experimental
setup was performed for a fixed number of five control points. For the cKPCA algorithm, a
linear kernel was used and the ν-value, which weights the axes-orthogonality term was set
to 1.0. Table 3.4 shows the averaged results over 10 runs. One can see that the resulting
embeddings, especially for the sparse datasets ICDM abstracts and webtender, have a
higher average pairwise distance among the embedded data for the cKPCA algorithm.
This can be interpreted as a sign of more stray among the embedded data.

Pairwise distance Pairwise distance
Dataset cKPCA LSP Dataset cKPCA LSP

autoPrice 2.25 1.32 machine cpu 1.22 1.12
bodyfat 1.88 1.17 movies 2.48 1.52
breastTumor 1.85 1.38 pharynx 2.01 1.20
cholesterol 2.08 1.09 primary-tumor 2.23 1.00
cleveland 2.17 1.09 pwLinear 1.93 1.50
communities 6.13 2.54 sensory 2.09 1.40
cpu 1.25 1.00 servo 2.09 1.43
galaxy 1.20 1.20 sick 2.43 1.04
glass 1.85 1.43 soybean 3.24 1.62
housing 2.01 1.28 stock 1.92 1.58
hypothyroid 2.38 1.05 triazines 4.23 2.41
ICDM abstracts 3.83 0.36 veteran 1.81 1.56
ionosphere 2.90 1.49 webtender 0.52 0.08
kr vs. kp 2.71 1.21 yeast 0.91 0.58
lowbwt 1.84 1.30 zoo 2.53 1.58

Table 3.4.: Average pairwise distances for the cKPCA and the LSP algorithm for a fixed
amount of five control points on thirty datasets, averaged over 10 runs. As cKPCA is
designed to expose more spread among the projected data records, it shows consistently
larger values than LSP.

88

Scalability

Solving the optimization problem behind cKPCA is a time consuming operation, which
can be performed with a time complexity of O�dn3�, where d is the dimensionality of
the embedding space. For datasets with only few records this approach is fast enough
for a live-updating embedding. However, as soon as the number of data records exceeds
a couple of hundred, the calculation becomes infeasible for live interaction. Oglic et al.
(2014) show in their publication how to utilize rank-one updates, when updating the
selection of control points. This way, only one initial costly calculation with cubic
time complexity has to be performed. Subsequent selection and de-selection of control
points, as well as and relocating them can be calculated in O�d2n2�. This is a huge
improvement, which makes cKPCA also viable for larger datasets. Table 3.5 shows the
execution times on the 30 datasets for the regular and the rank-one update approach.
In the experiment, the average execution time was measured of ten times updating a
cKPCA embedding with five control points, chosen uniform at random. In addition to
Table 3.5, the Figure 3.22 shows how the execution times depend on the number of data
records, as listed in Table 3.2. Note that the plot has a logarithmic scale on the y-axis.

Seconds/Update Seconds/Update
Dataset Regular Rank-one Dataset Regular Rank-one
autoPrice 0.04 0.06 machine cpu 0.09 0.06
bodyfat 0.16 0.11 movies 1050.68 1.88
breastTumor 0.22 0.08 pharynx 0.12 0.08
cholesterol 0.27 0.13 primary-tumor 0.36 0.13
cleveland 0.26 0.14 pwLinear 0.08 0.09
communities 355.11 1.87 sensory 4.76 0.24
cpu 0.09 0.06 servo 0.06 0.05
galaxy 0.33 0.04 sick 3172.33 2.88
glass 0.09 0.07 soybean 11.17 0.28
housing 1.28 0.18 stock 33.82 0.23
hypothyroid 3180.72 2.89 triazines 5.65 0.02
ICDM abstracts 26.29 0.53 veteran 0.07 0.05
ionosphere 0.40 0.14 webtender 208.09 1.32
kr vs. kp 1823.93 2.72 yeast 137.98 0.47
lowbwt 0.07 0.06 zoo 0.01 0.02

Table 3.5.: Execution time of the 30 datasets from Table 3.2 for performing an update
step with the regular cKPCA approach and for using rank-one updates.

89

0 500 1000 1500 2000 2500 3000 3500 4000
Number of instances

10−3

10−2

10−1

100

101

102

103

104

T
im

e
[s

ec
]

1 sec

1 h

Rank-one updates
Regular approach

Figure 3.22.: Execution time of the 30 datasets for updating the cKPCA embedding versus
the number of data records, using the straight forward approach (triangles) and utilizing
rank-one updates (circles).

Flexibility

To demonstrate the flexibility of cKPCA, the experiment of mimicking a PCA embedding
from Section 3.2.3 is recreated. However, as the initial embedding of cKPCA with a linear
kernel coincides with the regular PCA, in the following experiments, the projection onto
the third and the fourth principal component is mimicked via the placement of control
points. The results are depicted in the following Figure 3.23, again with each rmse
measure given as the average over ten runs. As expected, all scatter plots exhibit the
tendency to show less rmse for a larger number of placed control points, which indicates
a better approximation of the target embedding.

90

0.2

1.4ICDM abstracts

0.4

1.4 autoPrice

0.4

1.4 bodyfat

0.5

1.1 breastTumor

0.6

1.2 cholesterol

0.6

1.2 cleveland

0.8

1.4 communities

0.2

1.4 cpu

0.4

1.2 galaxy

0.2

1.4 glass

0.4

1.4 housing

0.8

1.6 hypothyroid

0.7

1.5 ionosphere

0.85

1.25 krvskp

0.4

1.2 lowbwt

0.2

1.4 machine cpu

0.4

1.1 movies

0.6

1.2 pharynx

0.6

1.3 primarytumor

0.6

1.2 pwLinear

0.6

1.2 sensory

0.5

1.1 servo

0.7

1.6 sick

1.0

1.6 soybean

0.4

1.2 stock

0 5 10 15 20
0.5

1.4 triazines

0 5 10 15 20
0.5

1.4 veteran

0 5 10 15 20
0.2

1.4 webtender

0 5 10 15 20
0.4

1.4 yeast

0 5 10 15 20
0.8

1.4 zoo

control points

rm
se

Figure 3.23.: Mimicking the PCA3,4 embedding on the 30 datasets from Table 3.2. De-
picted is the development of the rmse between the target and the actual embedding,
depending on the amount of placed control points.

91

3.5. Summary and Discussion

Visualizing high dimensional multivariate data via lower dimensional embeddings of
it has a long tradition. In addition to just visualizing the data in a static way, this
chapter investigated semi-supervised embedding techniques that let the analyst directly
interact with the visualization and steer the whole embedding by moving individual
data records within it. To this end, the interactive embedding methods LSP, MLE and
cKPCA were introduced. Using these techniques, the analyst has not only the possibility
to observe the whole data and its inter-dependencies from a birds-eye perspective, but
also to intuitively browse it and elaborate a metric that reflects domain knowledge for
the task at hand.

Computationally, LSP is by far the fastest of the three introduced methods, since the
calculation of the projection matrix solely depends on the control points and their
embedding locations. As the experiments have shown, it is also flexible in terms of
mimicking a target embedding and only few control points are needed to shape out a
concept. However, depending on the sparsity of the dataset at hand, embeddings that
are generated by using the LSP technique may lack a certain spread among the embedded
data records. This phenomenon becomes more severe with sparser data. An additional
drawback is that the initial embedding, with no control points placed, projects all data
records to the origin. For practical purposes, however, LSP does not have to start with
no control points placed. A reasonable initialization can, for instance, be made by using
the most extreme data records from the regular PCA embedding and to pre-place them
as control points.

The MLE technique solves the problem of the initialization, as it is based on the idea
of refining the prior belief about an embedding. In terms of efficiency, MLE can be
calculated quite fast, as it runs for m P D with a time complexity of O�mD2�. This
makes it a viable choice to interact with embeddings of several thousand data records
in a life-updating manner.6 It is also notable that the algorithm merely demands any
embedding coordinates as initial belief about the embedding. Obvious candidates for
these can be found in the classical static embeddings (PCA, LLE, Isomap, etc.), which
focus on structural aspects of the data. Using such a technique, offers the chance that
the initial embedding already exhibits a good layout to the analyst. In addition to this
flexible initialization, MLE also possesses a natural extension towards active learning.
Knowing the conditioned covariance matrix ΨR SE , which is calculated along the way of
deriving the most likely embedding, enables the analyst to reason about the uncertainty
in the placement of each data record. In a scenario, where the analyst’s goal is not data
exploration, but rather interactively composing a metric, this can be helpful. Here, the

6 Like for LSP, the performance is slowed down the most by the graphical library that was used to draw
the embedding.

92

embedding algorithm could suggest control point candidates to the analyst that help to
converge faster on the desired layout.

Like MLE, also the cKPCA method from Section 3.4 remedies the geometric spread issue
that LSP may encounter and comes with the extension of kernels. In a natural way,
cKPCA also solves the initialization problem of LSP, as the plain embedding, without
any constraints and using a linear kernel turns out to be a regular PCA embedding. It
is notable that Ham et al. (2004) show in their work that MDS, Isomap and LLE can be
considered instances of a kernel PCA with a suitably defined kernel matrix. Thus, the
here introduced cKPCA offers a convenient way to extend these embedding techniques
into interactive versions. The clear drawback of using cKPCA is its computational com-
plexity. Even though the application of rank-one updates accelerates the interactive
part massively, an initial computation of with a time complexity O�dn3� of the matrix
that is rank-one updated cannot be skipped. In addition, the calculations that are
performed on interaction still depend on the number of data records. Hence, a fluent
live-updating interaction with cKPCA via control points is only possible for smaller
datasets and remains an open issue. A way to remedy the dependence on the number of
data records might be to down-sample the kernel matrix to a convenient size and work
only with an approximation of the KPCA.

In addition to the investigations and the experiments of this chapter, over the course
of this thesis, the InVis tool has been developed, which integrates all three interac-
tive (and some classic static) embedding methods in one application. The tool can be
found at http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=
31. Reading about an analyst interacting with data in a playful way and doing it are
two very different things. The following Figure 3.24 shows a screenshot of an interactive
session with InVis on the cocktail dataset, the manual can be found in Appendix A.

Figure 3.24.: A screenshot of the InVis tool for interactive data visualization that was
developed over the course of this thesis.

93

http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=31
http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=31

The next Chapter will discuss a way to combine pattern mining and interactive embed-
ding techniques in a fruitful manner. To do so, a pattern collection that is too large for
manual inspection will be mined, then interactive embedding methods will be used to
discover the common concepts that the patterns revolve around.

94

4. Synthesis

4.1 Embedding Patterns . 95
4.2 Interacting with Pattern Embeddings – A Case Study 97
4.3 Summary and Discussion . 105

This chapter introduces a general procedure, which facilitates interactive embedding
methods to enable the user to interactively explore and understand large amounts of dis-
covered patterns. In Section 3.1.3 we have already seen a way to integrate pattern mining
techniques into the explorative workflow of interacting with an embedding. Figure 3.5
there shows in addition to the visualized embedding the ten most interesting patterns
of a selected region, i.e. the patterns augment the visualization. This section, however,
follows a different direction and proposes to create an embedding of the patterns them-
selves. Now every point in the embedding represents a pattern. Further utilizing the
earlier introduced interactive embedding methods, enables the analyst to quickly gain
an overview on the distribution of all interesting patterns and their underlying structure.

Note that classical pattern mining algorithms reduce the output for the analyst to a
small set of highly interesting and diverse patterns. However, by discarding most of
the patterns, these methods have to make a trade-off between ruling out potentially
insightful patterns and possibly drowning the analyst in results. Combining interactive
embedding methods with pattern discovery, on the other hand, excels by working with
larger pattern collections, as the underlying pattern-distribution emerges more clearly.
Actively exploring this distribution enables the analyst to understand the major concepts
that make a pattern of the considered dataset interesting and helps to interpret the
patterns that are reported by classical pattern-mining methods.

4.1. Embedding Patterns

The question arises how to embed a set of discovered patterns. While the natural
representation of patterns are item sets, most embedding techniques either rely on the
data records being represented as vectors, or on a matrix of pairwise distances between
the records. A very natural way to measure the distance between two sets is to turn
Jaccard’s similarity index into a distance measure. The Jaccard index is defined in the

95

following way:
Let A and B be two finite sample sets. The Jaccard similarity index J�A,B� between
these two sets is the size of the sets intersection over the size of their union.

J�A,B� � SA 9BSSA 8BS
This similarity is bounded between zero and one and can be turned into a proper distance
measure, denoted as Jaccard’s distance DJ�A,B�, by subtracting it from one.

DJ�A,B� � 1 � SA 9BSSA 8BS
In order to embed a set of patterns, Berardi et al. (2006) proposed to measure the pair-
wise distances between the patterns via Jaccard’s distance and employ classical MDS
to render the pattern-embedding. Their work, however, does not trace the benefits of
considering larger pattern collections, nor does it utilize interactive methods to explore
the embedding. Their main goal is to introduce a more insightful presentation for a set
of discovered patterns. However, Berardi et al. (2006) do point out another interest-
ing aspect of measuring the distance between two patterns. Considering that patterns
describe subsets of a given dataset, there are two different sets which can be used to
calculate the pattern distance; which one to employ depends ultimately on the task.

1. The intention is the attribute set which constitutes the pattern itself. Utilizing
the intention-set considers the difference between the patterns in terms of how the
patterns are described.

2. The extention is the support-set of a pattern. This is the set of all data records
(or their transaction IDs) that support a given pattern. This can e.g. be used to
measure the difference in the patterns semantic meaning, as one interesting aspect
of a dataset (given by a sub set of its data records) can be described by several
completely different patterns.

Another way to measure the distance between two sets over a finite common element
language is to simply vectorize the sets by encoding each pattern as a binary vector over
all ordered attributes and measure their Euclidean distance.1 Consider, for instance, the
pattern {Vodka, Orange juice}, which describes the earlier already mentioned Screw-
driver cocktail. Assuming that the presence of the attributes Vodka and Orange juice is
encoded in the first two dimensions of the binary representation, this pattern translates
into the vector �1,1,0, . . . ,0� Using this canonical form, every pattern over a dataset
has a vector representation and all distances between the patterns can be calculated. In
the remainder of the chapter this binary vectorization will be used in a case study on
the cocktail dataset that demonstrates the above sketched synthesis between interactive
embedding methods with pattern discovery.
1 Note that the order can be arbitrary, but has to be fix. To this end, often the order of appearance in

the representation of the data, or the lexicographical order of the attributes are utilized.

96

4.2. Interacting with Pattern Embeddings – A Case Study

This section introduces a simple and effective framework to combine pattern mining
methods and the use of interactive exploration via an embedding in a natural way. The
approach mainly consists of two steps: (i) mining a larger collection of patterns and (ii)
exploring a visualized embedding of the patterns in an interactive way. To apply this
idea practically, the procedure has to be broken down in a finer manner, as e.g.:

1. Mine a large collection of patterns.

2. Represent the patterns in a canonical way as vectors.

3. Embed these vectors with an interactive embedding method and explore the pat-
tern distribution.

4. Inspect the emerging structures of interest deeper.

Note that each of the four steps still has a large amount of freedom, i.e. how many
patterns to find, which algorithm to use, which vector representation to employ, the
choice of the interactive embedding technique, etc. For the upcoming case study, three
exemplary pattern mining methods were chosen and the resulting pattern collections
were explored with the following settings of the above introduced framework:

1. 1000 patterns were mined from the cocktail dataset, using (i) frequent item-set
mining, (ii) pattern sampling according to the rarity measure, as introducend in
Section 2.4.3 and (iii) the top-1000 subgroup descriptions, using the binomial test
quality measure, as introducen in Section 2.1.2.

2. Each pattern is represented by a binary vector over all occurring attributes of the
pattern collection in lexicographical order, as described earlier in Section 4.1.

3. The pattern vectors are visualized, using the MLE technique from Section 3.3 with
an initial PCA embedding as prior. The performed interaction to find interesting
structures was mainly done by selecting and relocating control points.

4. Inspecting these structures deeper, as introduced in Section 3.1.3, was done by
highlighting patterns that contain certain ingredients by color, by listing the five
most-present single items of the structure in a tag cloud and by re-embedding and
inspecting a selected region.

The following Table 4.1 shows a list of the top-10 patterns, retrieved by four classical
pattern mining approaches. Over the course of the case study, these results will be used
to illustrate how visually exploring larger pattern collections can help to interpret the
top-k patterns and to understand the major aspects of the data and their relations.

97

Frequent (closed) item sets Sampled patterns with high lift

Vodka Vodka & Cranberry juice
Orange juice Vodka & Triple sec
Amaretto Baileys & Kahlúa
Pineapple juice Vodka & Gin
Grenadine Vodka & Blue curaçao
Gin Pineapple juice & Malibu rum
Baileys Vodka & Amaretto
Tequila Vodka & Rum
Kahlúa Orange juice & Amaretto
Triple sec Vodka & Tequila

closed subgroups ∆1-relevant subgroups

Baileys Baileys
Crème de cacao Crème de cacao
Milk Milk
Kahlúa Kahlúa
Baileys & Kahlúa Cream
Cream Irish cream
Irish cream Crème de banana
Vodka & Baileys Butterscotch schnapps
Crème de banana Whipped cream
Baileys & Butterscotch schnapps Vodka & Kahlúa

Table 4.1.: The ten highest quality patterns, delivered by different pattern-mining ap-
proaches on the cocktail dataset. Note that here the top-10 frequent item sets are also
all closed. The high-lift patterns were sampled according to their rarity measure and
the label for subgroup discovery indicates whether a cocktail is creamy or not.

4.2.1. Exploring the 1000 Most Frequent Patterns

Let us begin the case study by investigating the results of mining the 1000 most frequent
patterns on the cocktail dataset. Figure 4.1 shows these patterns, represented as binary
vectors over all items, embedded into their first two principal directions. Immediately,
two well separated clusters can be seen that resemble roughly in their shape.

Figure 4.1.: The 1000 most-frequent item sets of the cocktail dataset, embedded into
their first two principal directions.

98

Studying these clusters closer reveals that the right one contains only patterns that
include the ingredient Vodka, the single most-frequent attribute in the original dataset,
whereas the left one doesn’t (see Figure 4.2, left). The second most-frequent ingredient,
Orange juice, determines whether a pattern is mapped to the top or to the bottom of
the embedding (see Figure 4.2, right).

Figure 4.2.: Highlighting the ingredients Vodka (left picture) and Orange juice (right
picture) in the plain PCA embedding of the 1000 most-frequent patterns of the cocktail
dataset.

Interacting with the embedding by relocating two control points, as shown in Figure 4.3,
unravels the blending of the patterns that contain Orange juice and the ones that don’t.
The resulting four clusters clearly separate the patterns by their presence or absence of
the ingredients Vodka and Orange juice.

Figure 4.3.: Dragging two control points (emphasized in blue) to new locations, reveals a
structure that was previously hidden in the PCA embedding. The four clusters indicate
the presence or absence of the two ingredients Vodka and Orange juice.

Figure 4.4 inspects one of these emerging structures, the top-right “Vodka and no Orange
juice cluster” from Figure 4.3, in a closer manner.
With a glance at the top-left picture of Figure 4.4 it is visible that the corresponding
patterns containing Vodka but no Orange juice also frequently contain other strong
alcohols, especially Rum, Gin, and Triple sec. There can also a sub-cluster structure
within this particular embedding be observed, which is determined by the presence
or absence of the ingredients Rum (top-right, highlighted in green) and Gin (bottom-
left, highlighted in blue). The ingredient Triple sec (bottom-right, highlighted in red),
although frequent within this cluster, seems not to contribute to the sub-structure, but
can be found in all of the sub-clusters. This is an interesting finding, as Triple sec is much

99

Figure 4.4.: A closer look at the top-right cluster of Figure 4.3 reveals the ingredients
that the patterns from the “Vodka and no Orange juice cluster” are frequently mixed
with (top-left). The other three pictures indicate the presence of Rum (highlighted in
green), Gin (blue), and Triple sec (red).

more frequent than Rum. In fact, Rum does not even occur among the ten most-frequent
ingredients, yet it has a striking influence on the sub-structure of this cluster. Note that
this is an insight that could not have been drawn purely from the results of Table 4.1.
In the following sections similar studies will be performed, with pattern collections that
were drawn according to more-sophisticated interestingness measures than frequency of
occurrence.

4.2.2. Exploring 1000 Patterns Sampled According to their Rarity

A fruitful way to quickly draw patterns from a dataset according to different interest-
ingness measures is to sample. Although sampling itself provides diversity among the
drawn patterns, sorting them by the measure and listing only the top-k ones, as is done
to retrieve the ten entries for the rare patterns in Table 4.1, can reintroduce a certain
amount of redundancy. On the other hand, diversity is not impaired when exploring the
set of all sampled patterns using this interactive exploration technique and the analyst
is further enabled to discover the different concepts among the patterns.

In this study, a 1000 patterns were sampled from the cocktail dataset, according to their
rarity measure, a variant of the lift measure which promotes patterns containing items
that are statistically dependent, as already mentioned in Section 2.4.3. The rarity of a
pattern approximates the probability of occurrence of the whole pattern weighted by the
probabilities of the single items that build the pattern not occurring. So for a pattern
p, consisting of k of these items P � �p1, . . . , pk�, and the transactional database over a
fix set of items D, the rarity of p is calculated by

qrare�D, p� � freq�D, p�M
pi>p

�1 � freq�D, pi��.

100

Also note that there is a relation to the classic lift measure of a pattern. While rarity
considers the absence-frequency of the singleton items, lift considers the inverse of the
singleton’s frequency. This can be seen, when writing the equation to calculate the lift
measure in a similar format, as the equation to calculate the rarity above:

lift�D, p� � freq�D, p�M
pi>p

1
freq�pi,D�

In the following, the samples of the rare patterns were drawn by using the direct local
pattern sampling tool which was provided by Boley et al. (2012) and can be downloaded
from http://kdml-bonn.de/?page=software details&id=23. The retained collection of
the sampled patterns demonstrates well how the proposed approach benefits from the
use of interactive embedding techniques. The plain PCA embedding of the frequent
patterns in the previous Section 4.2.1 already exhibited a clear structure, which directly
invited the analyst to further explore it. For this particular set of sampled patterns,
however, this is not the case. Figure 4.5 shows the sampled rare patterns embedded into
two dimensions, using different techniques, namely PCA, Isomap, and LLE.

Figure 4.5.: 1000 patterns sampled from the cocktail dataset, according to the rarity mea-
sure (Boley et al., 2012) and embedded, using different techniques: principal component
analysis (left), locally linear embedding (middle), and isometric mapping (right).

Although these static embeddings exhibit no structures that immediately raise the an-
alysts attention, relocating just one control point in the interactive embedding reveals
clusters that were previously obscured. The following Figure 4.6 (top) shows this . The
two middle pictures of the figure highlight the patterns containing Vodka (left) and
Orange juice (right). The Vodka cluster can be clearly identified, but the other clus-
ters come as a surprise. They do not relate to the Vodka / Orange juice segmentation
that was already discovered in Section 4.2.1, but capture concepts of their own. The
two highlighted ones at the bottom of the figure revolve around juicy and Rum-heavy
cocktails. Because of the initially mentioned redundancy among the highest rated rare
patterns, the results from Table 4.1 mainly exhibit patterns associated with Vodka. This
interactive discovery approach, however, was able to overcome this drawback and reveal
other, novel concepts among the high-rarity patterns.

101

http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=23

Figure 4.6.: Relocating a control point, using the interactive embedding reveals a clear
cluster structure (top). The middle pictures highlight the patterns containing Vodka
(left) and Orange juice (right). The bottom pictures inspect the composition of two of
these clusters.

4.2.3. Exploring the 1000 Most Striking Subgroup Descriptions

As we know from Section 2.1.2, patterns can be discovered according to different mea-
sures of interest. In the previous parts of this case study, the pattern sets were drawn
proportional to their frequency or rarity. In some cases, however, the analyst might also
want to consider label information. A classic pattern-mining approach that does so is
subgroup discovery. It ranks the patterns by how much the label distribution of the
data records described by the pattern diverges from the label distribution of the whole
dataset. This section investigates the top-1000 closed subgroup descriptions from the
cocktail dataset, ranked according to the binomial test quality measure, see Section 2.1.2.
Figure 4.10 shows the embedding of these 1000 patterns into their first two principal
directions.

102

Figure 4.7.: The top-1000 subgroup descriptions associated to the label creamy, em-
bedded onto their first two principal components. The four clusters coincide with the
presence/absence of the two most striking ingredients among creamy cocktails: Baileys
(left) and Kahlúa (right).

Similar to the embedding of the frequent patterns, but without the help of any interac-
tion, the mined patterns fall directly into four clusters. This time, the clustering goes
along with the presence or absence of two other frequently occurring ingredients: Baileys
(left) and Kahlúa (right). From the list of frequent patterns in Table 4.1 it is known
that these ingredients are highly frequent, while the list of subgroups indicates that they
have a stark impact on the label of a cocktail. In this sense, the observed segmenta-
tion doesn’t come as a total surprise. However, following the results of Table 4.1 might
instead rather have lead to an expectation of Crème de cacao, instead of Kahlúa. The
visualization helps to understand the relations among the listed patterns and invites for
further exploration of the exhibited structure. To do so, this time the interaction with
the embedding does not come via the earlier utilized control points, but rather by focus-
ing on a subset of the distribution. Now the pattern collection is filtered to keep only
the ones that contain neither Kahlúa nor Baileys and re-embed them into their first two
principal directions. The selection corresponds to the patterns belonging to the bottom
right cluster of Figure 4.7. The re-embedding of these selected patterns can be seen in
Figure 4.8 below.

Figure 4.8.: A PCA embedding of the patterns belonging to the bottom right cluster,
displayed in Figure 4.7. Again, the embedded patterns can be neatly segmented by the
presence of two highly frequent ingredients, this time Vodka (left) and Crème de cacao
(right).

As the re-embedding is not a zoom, but a newly calculated PCA embedding, structures
can be discovered that were previously hidden due to the covariance among the patterns
that are now filtered out. Once again the patterns form four clusters, corresponding to

103

highly frequent ingredients, this time Vodka and Crème de cacao. Note that this ‘four
cluster segmentation’ is not immanently part of the used method, but stems form the
sparsity which transactional databases often expose. To achieve a clearer separation of
the clusters in the visualization, control points can be placed, as shown in the following
Figure 4.9.

Figure 4.9.: To retrieve a better separation between the clusters, appropriate control
points are selected and relocated.

As an example, let us pick two of the clusters from Figure 4.9 and study their composi-
tions. Figure 4.10 below shows the five most-frequent ingredients within the patterns of
these clusters in a tag cloud.

Figure 4.10.: Inspecting the contents of two of the emerging clusters. One interesting
finding is the occurring separation between milky and chocolaty patterns. The cluster
segmentation stems from the presence of the ingredients Vodka and Crème de cacao.

It can be observed that the inspected regions contain patterns that stem from two
different types of creamy cocktails: milky and chocolaty ones. This is an interesting
finding, as the strict separation between the clusters does not stem from the milky
ingredients within the patterns, but from the ingredients Vodka and Crème de cacao.
However, using the interactive visualization, made it possible to craft the hypothesis
that milky and chocolaty cocktails form different types of creamy cocktails, offering a
good next direction to explore.

104

4.3. Summary and Discussion

The case study demonstrated the possibilities which the research areas of interactive
embeddings and pattern discovery can offer for one another. Although only demon-
strated on a toy example, the study shows how interactive embedding techniques can
provide an edge to counteract the information overload that comes naturally with the
consideration of larger pattern collections. The presented framework mainly follows a
two step procedure: (i) mine a large collection of patterns and (ii) explore a visualized
embedding of the patterns in an interactive way. For the second step it is helpful to
follow the information-seeking mantra and explore the obtained pattern collections in
a top-down manner. Starting with a visual overview of the whole pattern distribution
and then digging deeper on striking structures by interacting with the visualization
and investigating the emerging structures in different ways. In the here presented case
study this was namely done by reshaping the embedding via relocation of control points,
filtering out and re-embedding the remaining patterns, listing the most-frequent items of
an inspected structure and highlighting all patterns that contain an ingredient of interest.

Also note that interactively exploring the pattern collections brought up some insights
that could not have been drawn by purely considering the results of Table 4.1. For
instance, by inspecting the sub-clusters that emerged from our interaction, we found a
surprisingly strong influence of the ingredient Rum on the cocktails containing Vodka
but not those containing Orange juice. However, the strength of this approach lies not
in these discoveries, but in the deeper understanding of the relations among the patterns
that it provides in combination with the classical pattern-mining methods. By exploring
the pattern embedding, interacting with it, exposing interesting structures, and always
collating the crafted theories and insights with the pattern mining results from Table
4.1, we were able to develop an understanding of the different concepts that the original
cocktail data revolves around.

105

5. Conclusion

Exploratory data analysis is a field of growing interest. As more and more data is
collected in almost all areas of our life, naturally the desire arises to make sense and use
of it. Commercial providers, like IBM Cognos1, Tableau2, SiSense3, Spotfire4 and Qlik5,
to name just a few of the interactive data dashboard and exploration suits, are starting
to react to this demand. These commercial systems aim primarily at displaying selected
attributes of the data (and aggregations of it) in linked visualizations, displayed together
on a common dashboard. The analyst can then interact with the linked visualizations
of the monitored attributes in the classical ways, as described in Section 3.1.3, and draw
data-driven conclusions. However, there is a key difference between the here presented
work and the commercial systems. A good dashboard is build from a collection of well
chosen linked visualizations that monitor key aspects of the data. In order to select the
right attributes and aggregations to display on the dashboard, the analyst has to know
them in advance. In contrast, the here presented exploratory data analysis techniques
aim at supporting the analyst in the task of finding these meaningful relations within
the data in the first place.

For the practical use, these techniques have repeatedly demonstrated their usefulness.
To give just two examples, in a data analysis piloting project with a globally operating
power plant manufacturer, they helped to identify non-obvious reasons for why different
divisions of the manufacturer performed drastically different. In another data analysis
project, together with a braking-pad manufacturer, interactive projections lead the way
in understanding the driving aspects behind an ingredient mixture and certain desired
properties of the finished braking-pad.

Summary

This work studied the task of exploring multivariate data in an intuitive way. To this
end, two very different approaches were investigated. The first one covered local pattern
mining methods, which automatically discover and report interesting partitionings of
the dataset. These partitionings usually yield insights about the data to the analyst and
trigger further questions which, together with the reported results, guide the analyst in
his data exploration. With respect to the pattern mining community, this work provides
1 http://www.ibm.com/software/analytics/cognos
2 http://www.tableau.com
3 http://www.sisense.com
4 http://spotfire.tibco.com
5 http://www.qlik.com

107

http://www.ibm.com/software/analytics/cognos
http://www.tableau.com
http://www.sisense.com
http://spotfire.tibco.com
http://www.qlik.com

the investigation of efficient algorithms for mining relevant and ∆-relevant patterns, as
well as sampling patterns with a probability proportional to different interestingness
measures.

In chapter 3, an alternative approach to exploratory data analysis was presented. There
several interactive embedding methods were studied, which enable an analyst to directly
shape and visually explore a projection of the data. These techniques allow a user to
grasp the collection of all data records as a whole, understand the relations between
the data records, incorporate domain knowledge and ultimately let him discover the
interesting aspects of the dataset on his own. The chapter introduces three different
techniques, which allow the analyst to directly control the projection by the usage of
control points. These three different methods to directly interact with the embedded
data constitute (i) a fast and scalable approach which, however, does not cope too well
with sparse data, (ii) a probabilistic one that considers a prior believe about the desired
embedding and evidence in form of placed control points and last (iii) an interactive
kernel PCA that can, given the right kernel, also be utilized as interactive versions of
Isomap, MDS and LLE. Note that all approaches towards data exploration, studied in the
chapters 2 and 3, yield interpretable results to the analyst. Patterns are represented by
a set of “attribute equals value” assignments, which is usually easy to understand by a
domain expert. On the other hand, embeddings of the dataset show each data record as
a point in a scatter plot graphic, where the distance between points encodes the relation
between the data records.

In Chapter 4 of this work, a synthesis of the two data exploration approaches was intro-
duced, which illustrated how both research areas can capitalize from one another in a
practical setting. There, a general procedure is introduced that remedies the information
overload an analyst may face, when investigating a large list of collected patterns. The
idea behind this procedure is to expand the application range of the earlier introduced
interactive embedding methods towards pattern collections. This allows the analyst to
explore the dataset on different levels. The embedded patterns represent driving aspects
of the underlying dataset, while the embedding reveals relations between the patterns.
The analyst is now equipped with the power to gain an overview and understanding on
the relations of the data records, as well, as an overview on the striking aspects of the
dataset, given by its interesting patterns. To the best of the authors knowledge, this
approach is the very first towards interactively exploring a large pattern collection in a
visual way.

In addition to these contributions, the InVis tool for interactive data visualization was
developed over the course of this thesis. It implements the interactive embedding tech-
niques that were introduced in this work and some static embedding methods in a single
program with a unified user interface. In order to be usable as a productive tool for
interactive visual data exploration, it also implements some common static embedding
methods and basic interaction methods, like searching, highlighting and filtering. An
overview of the tool’s full functionality can be seen in Appendix A.

108

Future Work

Having reviewed the direct contributions of this work, it is also important to note that
it opens potential research topics which might emerge from it. One possible future
research topic that might derive from this thesis is, to explain unpopulated regions of an
embedding. Here the analyst would mark an empty region of the embedding space and
local patterns could be used to describe on an intuitive level why this particular region is
blank. Finding, e.g. frequent attribute combinations of virtual data records that would
be embedded into the empty space could help the analyst to further understand the
underlying distribution of the data and verify old, or craft new hypotheses about it. A
step towards this idea has already been investigated and published on by Paurat et al.
(2013a). There, the authors construct meaningful and novel data records that project
to a user specified location within any linear projection. As there can be infinite many
candidates to choose from, this is not a trivial task; the problem is also known as the
pre-image problem.

Another possible future research direction of this work could be to equip all interactive
embedding methods with additional functionality to express domain knowledge. Such
could e.g. be the employment of must- and cannot-link constraints. For cKPCA, Oglic
et al. (2014) have already shown how other constraint types can be incorporated into
the optimization objective of the problem by introducing specially designed punishment
and reward terms. However, for the LSP and MLE approaches this constitutes still a
non-trivial and open issue.

In general, this work investigated different exploratory data analysis techniques and
addresses the idea of combining and integrating them. However, apart from the here
investigated methods, there exist numerous other approaches that can help an analyst to
explore a dataset at hand; for instance text mining, clustering, classification, regression,
time series analysis and other pattern mining and visualization techniques, to name just
a few general techniques. In practice, however, they are often only used stand-alone to
tackle a specific analysis task at hand. Daisy-chaining the techniques and comparing and
investigating the intersection of the results is rarely done. It is the strong belief of the au-
thor that integrating data preparation, mining and visualization techniques into a fluent
and overarching workflow constitutes the future of exploratory data analysis. Chapter
4 introduced an integrated workflow of two different knowledge discovery methods and
elaborated the benefits of this synthesis. A great future research direction would be to
find a general approach towards integrating different knowledge discovery techniques,
but also data cleaning, transformation, aggregation and visualization techniques in an
intuitive and practically usable way.

109

Bibliography

Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and Inkeri A.
Verkamo. Fast Discovery of Association Rules. In Proceedings of the Conference on
Advances in Knowledge Discovery and Data Mining, pages 307–328. MIT Press, 1996.

Mohammad Al Hasan and Mohammed J. Zaki. Output Space Sampling for Graph
Patterns. Proceedings of the Very Large Databases Endowment, 2(1):730–741, 2009.

Arthur Asuncion and David J. Newman. UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml, 2007.

Martin Atzmüller and Florian Lemmerich. Fast Subgroup Discovery for Continuous
Target Concepts. In Proceedings of the International Symposium on Methodologies for
Intelligent Systems, pages 35–44, 2009.

Roberto Bayardo, Bart Goethals, and Mohammed J. Zaki, editors. Proceedings of the
IEEE International Conference on Data Mining Workshop on Frequent Itemset Mining
Implementations, 2004, volume 126 of Proceedings of the Central Europe Workshop,
2004. CEUR-WS.org.

Mikhail Belkin and Partha Niyogi. Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation. Neural computation, 15(6):1373–1396, 2003.

Margherita Berardi, Annalisa Appice, Corrado Loglisci, and Pietro Leo. Supporting Vi-
sual Exploration of Discovered Association Rules Through Multi-dimensional Scaling.
In Proceedings of Foundations of Intelligent Systems, pages 369–378. Springer, 2006.

Mario Boley and Henrik Grosskreutz. Non-redundant Subgroup Discovery Using a Clo-
sure System. In Proceedings of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, pages 179–194. Springer,
2009.

Mario Boley, Tamás Horváth, and Stefan Wrobel. Efficient discovery of interesting
patterns based on strong closedness. Statistical Analysis and Data Mining, 2(5-6):
346–360, 2009.

111

Mario Boley, Thomas Gärtner, and Henrik Grosskreutz. Formal Concept Sampling for
Counting and Threshold-Free Local Pattern Mining. In Proceedings of the SIAM
International Conference on Data Mining, pages 177–188, 2010.

Mario Boley, Claudio Lucchese, Daniel Paurat, and Thomas Gärtner. Direct Local
Pattern Sampling by Efficient Two–Step Random Procedures. In Proceedings of the
17th ACM SIGKDD Conferences on Knowledge Discovery and Data Mining. ACM,
2011.

Mario Boley, Sandy Moens, and Thomas Gärtner. Linear Space Direct Pattern Sampling
Using Coupling from the Past. In Proceedings of the 18th ACM SIGKDD Conferences
on Knowledge Discovery and Data Mining, pages 69–77. ACM, ACM, 2012.

Eli T. Brown, Jingjing Liu, Carla E. Brodley, and Remco Chang. Dis-function: Learning
Distance Functions Interactively. In Proceedings of the IEEE Conference on Visual
Analytics Science and Technology, pages 83–92. IEEE, 2012.

Soumen Chakrabarti, Earl Cox, Eibe Frank, Ralf Hartmut Güting, Jiawei Han, Xia
Jiang, Micheline Kamber, Sam S Lightstone, Thomas P Nadeau, Richard E Neapoli-
tan, et al. Data Mining: Know It All: Know It All. Morgan Kaufmann, 2008.

Vineet Chaoji, Mohammad Al Hasan, Saeed Salem, Jérémy Besson, and Mohammed J.
Zaki. ORIGAMI: A Novel and Effective Approach for Mining Representative Orthog-
onal Graph Patterns. Statistical Analysis and Data Mining: The ASA Data Science
Journal, 1(2):67–84, 2008.

Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling. Chapman and
Hall/CRC, 2000.

Adele Cutler and Leo Breiman. Archetypal Analysis. Technometrics, 36(4):338–347,
1994.

Francesco Dinuzzo and Bernhard Schölkopf. The representer theorem for hilbert spaces:
A necessary and sufficient condition. In Proceedings of the Conference on Neural
Information Processing Systems, pages 189–196, 2012.

Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo Algorithms
for Matrices III: Computing a Compressed Approximate Matrix Decomposition. SIAM
Journal on Computing, 36(1):184–206, 2006.

112

Alex Endert, Chao Han, Dipayan Maiti, Leanna House, Scotland Leman, and Chris
North. Observation-level Interaction with Statistical Models for Visual Analytics.
In Proceedings of the IEEE Conference on Visual Analytics Science and Technology,
pages 121–130. IEEE, 2011.

William J. Frawley, Gregory Piatetsky-Shapiro, and Christopher J. Matheus. Knowledge
Discovery in Databases: An Overview. AI magazine, 13(3):57, 1992.

Jerome H. Friedman and John W. Tukey. A Projection Pursuit Algorithm for Ex-
ploratory Data Analysis. IEEE Transactions onComputers, 100(9):881–890, 1974.

Walter Gander, Gene Golub, and Urs von Matt. A Constrained Eigenvalue Problem.
Linear Algebra and Its Applications, 114-115:815–839, 1989.

Gemma C. Garriga, Petra Kralj, and Nada Lavrač. Closed Sets for Labeled Data.
Journal of Machine Learning Research, 9:559–580, 2008. ISSN 1533-7928.

Henrik Grosskreutz and Daniel Paurat. Fast and Memory–efficient Discovery of the Top–
k Relevant Subgroups in a Reduced Candidate Space. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases. Springer, 2011.

Henrik Grosskreutz, Stefan Rüping, and Stefan Wrobel. Tight Optimistic Estimates
for Fast Subgroup Discovery. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases, pages
440–456. Springer, 2008.

Henrik Grosskreutz, Daniel Paurat, and Stefan Rüping. An Enhanced Relevance Crite-
rion For More Concise Supervised Pattern Discovery. In Proceedings of the 18th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2012.

Jihun. Ham, Daniel D. Lee, Sebastian Mika, and Bernhard Schölkopf. A Kernel View of
the Dimensionality Reduction of Manifolds. In Proceedings of the 21st International
Conference on Machine Learning, ICML 2004, 2004.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining Frequent Patterns without Candidate
Generation. In Proceedings of the Special Interest Group on Management of Data,
pages 1–12, 2000.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics, 2001.

Peter J. Huber. Projection Pursuit. The annals of statistics, pages 435–475, 1985.

113

Tomoharu Iwata, Neil Houlsby, and Zoubin Ghahramani. Active Learning for Interac-
tive Visualization. In Proceedings of the 16th International Conference on Artificial
Intelligence and Statistics, pages 342–350, 2013.

Ian T. Jolliffe. Principal Component Analysis. Springer, 1986.

Richard M. Karp, Michael Luby, and Neal Madras. Monte-Carlo Approximation Algo-
rithms for Enumeration Problems. Journal of algorithms, 10(3):429–448, 1989.

Willi Klösgen. Explora: A Multipattern and Multistrategy Discovery Assistant. In
Proceedings of the Conference on Advances in Knowledge Discovery and Data Mining,
pages 249–271. MIT Press, 1996.

Kleanthis-Nikolaos Kontonasios and Tijl De Bie. An Information-theoretic Approach to
Finding Informative Noisy Tiles in Binary Databases. In Proceedings of the SIAM
International Conference on Data Mining, 2010.

Joseph B. Kruskal. Multidimensional Scaling by Optimizing Goodness of Fit to a Non-
metric Hypothesis. Psychometrika, 29(1):1–27, 1964.

Joseph B. Kruskal. Toward a Practical Method Which Helps Uncover the Structure of a
Set of Multivariate Observations by Finding the Linear Transformation Which Opti-
mizes a New ’Index of Condensation’. In Proceedings of the Conference on Statistical
Computation, pages 427–440. Academic Press, New York, Citeseer, 1969.

Joseph B. Kruskal. Linear Transformation of Multivariate Data to Reveal Clustering.
Multidimensional Scaling: Theory and Applications in the Behavioural Sciences, 1:
179–191, 1972.

Nada Lavrač and Dragan Gamberger. Relevancy in Constraint-Based Subgroup Dis-
covery. In Proceedings of Constraint-Based Mining and Inductive Databases, pages
243–266, 2005.

Nada Lavrač, Dragan Gamberger, and Viktor Jovanoski. A Study of Relevance for
Learning in Deductive Databases. The Journal of Logic Programming, 40(2-3):215–
249, 1999.

Nada Lavrač, Branko Kavšek, Peter Flach, and Ljupčo Todorovski. Subgroup Discovery
With CN2-SD. Journal of Machine Learning Research, 5(Feb):153–188, 2004. ISSN
1533-7928.

Daniel D. Lee and Sebastian H. Seung. Learning the Parts of Objects by Non-negative
Matrix Factorization. Nature, 401(6755):788–791, 1999.

114

Florian Lemmerich and Martin Atzmüller. Fast Discovery of Relevant Subgroup Pat-
terns. In Proceedings of the Florida Artificial Intelligence Research Society. AAAI,
2010.

Sebastian Mika, Bernhard Schölkopf, Alexander J. Smola, Klaus-Robert Müller,
Matthias Scholz, and Gunnar Rätsch. Kernel PCA and De-Noising in Feature Spaces.
In Proceedings of the Conference on Neural Information Processing Systems, vol-
ume 11, pages 536–542. Citeseer, Citeseer, 1998.

Shinichi Morishita and Jun Sese. Traversing Itemset Lattice with Statistical Metric
Pruning. In Proceedings of the ACM Symposium on Principles of Database Systems,
pages 226–236. ACM, 2000.

Marion Neumann, Roman Garnett, Plinio Moreno, Novi Patricia, and Kristian Kersting.
Propagation Kernels for Partially Labeled Graphs. In Proceedings of the International
Conference on Machine Learning Workshop on Mining and Learning with Graphs,
Edinburgh, UK, 2012. dtai.cs.kuleuven.be/events/mlg2012/.

Siegfried Nijssen, Tias Guns, and Luc De Raedt. Correlated Itemset Mining in ROC
Space: A Constraint Programming Approach. In Proceedings of the 15th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 647–656. ACM,
2009.

Dino Oglic, Daniel Paurat, and Thomas Gärtner. Interactive Knowledge–Based Kernel
PCA. In Proceedings of the European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases. Springer, 2014.

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient Mining of
Association Rules Using Closed Itemset Lattices. Information systems, 24(1):25–46,
1999.

Daniel Paurat and Thomas Gärtner. InVis: A Tool for Interactive Visual Data Analysis.
In Proceedings of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases. Springer, 2013.

Daniel Paurat, Roman Garnett, and Thomas Gärtner. Constructing Cocktails from a
Cocktail Map. In Proceedings of the Neural Information Processing Systems 1st Work-
shop on Constructive Machine Learning. http://www-kd.iai.uni-bonn.de/cml2013/,
2013a.

Daniel Paurat, Dino Oglic, and Thomas Gärtner. Supervised PCA for Interactive Data
Analysis. In Proceedings of the Neural Information Processing Systems 2nd Workshop
on Spectral Learning. Springer, 2013b.

115

Daniel Paurat, Roman Garnett, and Thomas Gärtner. Interactive Exploration of Larger
Pattern Collections: A Case Study on a Cocktail Dataset. In Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2nd Workshop
on Interactive Data Exploration and Analytics. http://poloclub.gatech.edu/idea2014/,
2014.

Karl Pearson. On Lines and Planes of Closest Fit to Systems of Points in Space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):
559–572, 1901.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Kernel Principal
Component Analysis. In Proceedings of the International Conference on Artificial
Neural Networks, pages 583–588. Springer, 1997.

Bernhard Schölkopf, Ralf Herbrich, and Alexander J. Smola. A Generalized Representer
Theorem. In Proceedings of the 14th Conference on Computational Learning Theory.
Springer, 2001.

Colin Shearer. The CRISP-DM Model: the New Blueprint for Data Mining. Journal of
data warehousing, 5(4):13–22, 2000.

Ben Shneiderman. The Eyes Have it: A Task by Data Tpe Taxonomy for Information
Visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages
336–343. IEEE, IEEE, 1996.

Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A Global Geometric Frame-
work for Nonlinear Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

Christian Thurau, Kristian Kersting, and Christian Bauckhage. Yes We Can: Simplex
Volume Maximization for Descriptive Web-scale Matrix Factorization. In Proceedings
of the 19th ACM International Conference on Information and Knowledge Manage-
ment, pages 1785–1788. ACM, ACM, 2010.

Warren S. Torgerson. Multidimensional Scaling of Similarity. Psychometrika, 30(4):
379–393, 1965.

John W. Tukey. Mathematics and the Picturing of Data. In Proceedings of the Interna-
tional Congress of Mathematicians, volume 2, pages 523–531. EMS Publishing House,
1975.

116

John W. Tukey. Exploratory Data Analysis. Addison-Wesley series in behavioral science.
Addison-Wesley Publishing Company, 1977.

Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. An Efficient Algorithm
for Enumerating Closed Patterns in Transaction Databases. In Proceedings of the
Conference on Discovery Science, pages 16–31. Springer, 2004.

Laurens J. P. van der Maaten, Eric O. Postma, and Jaap H. van den Herik. Dimension-
ality Reduction: A Comparative Review. Journal of Machine Learning Research, 10
(1-41):66–71, 2009.

Matthijs van Leeuwen and Arno J. Knobbe. Non-redundant Subgroup Discovery in
Large and Complex Data. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases, pages
459–474. Springer, 2011.

Stefan Wrobel. An Algorithm for Multi-relational Discovery of Subgroups. In Proceedings
of the European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 78–87. Springer, 1997.

Zhen-yue Zhang and Hong-yuan Zha. Principal Manifolds and Nonlinear Dimensionality
Reduction via Tngent Space Alignment. Journal of Shanghai University (English
Edition), 8(4):406–424, 2004.

Appendix

A. InVis User Manual

InVis is a tool for Interactive Visualization of high dimensional datasets, which can be
downloaded from the following location: http://www-kd.iai.uni-bonn.de/index.php?
page=software_details&id=31. It is free for academic use and open source under the
MIT-license. At the current state it covers a set of static and interactive algorithms
that enable a user to explore two dimensional projections of a dataset. The following
Figure A.1 shows a screenshot of the graphical user interface of the tool, without any
dataset loaded. In the following sections, the menu entries and the user interface will be
explained.

Figure A.1.: Starting up the InVis tool.

The File Menu

The File menu lets the user load a dataset and export the parameters that generate the
currently viewed projection. In addition, basic implementations of four different pattern
mining algorithms are available that let the user export the top-k patterns in a format
that can be re-imported by the tool.

119

http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=31
http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=31

Figure A.2.: The File menu.

Loading a Dataset

In general, csv, arff and libsvm data-files can be loaded into the tool. Note, that for
loading csv files, the parser is quite strict. The data is read row-wise, with the first line
being a header and every subsequent row being interpreted as a data-record. The first
column is considered to be a string-valued ID or name of each data record. All values
of a row have to be separated by commas and only the name entry is allowed to be
non-numeric. Also, by default, the last column is considered as label and the numeric
entries may not be quoted (e.g. ”12.54”). The following table illustrates the csv dialect
that is well understood by the tool.

Example of an accepted csv file
name,a1,a2,a3,label
Name1,1.0,2.3,2.1,100
Name2,3.0,1.3,2.3,80

Example of a not accepted csv file
missing values can be interpreted as zero
”Name1”; 1.0; 2.3; ”2.1”; A
”Name2”; 3.0; ; ”2.3”; B

Once a dataset is loaded, the tool automatically performs a principal component analysis
and renders a visualization of the data, projected into the first two principal directions.
The attributes of the dataset are displayed on the right hand side. In case, the user
wants to ignore an attribute, he can do so by un-checking the corresponding entry.

120

Figure A.3.: The initial view, after the webtender dataset is loaded.

The Edit Menu

This menu lets the user adjust the area (in pixel) that is considered adjacent to an
embedded data record. Especially when using a touch screen, this can be a helpful
option. Also the way that the numeric entries of the data records are discretized can
be adjusted here. This option can be helpful, when exporting patterns from the dataset
(via the Edit menu), or for displaying the ten most frequent item sets within a selected
area of the embedding (see next Section). In addition, for the ease of use, when utilizing
the experimental feature of must-link and cannot-link constraints, this menu offers to
clear all links.

Figure A.4.: The edit menu.

The Projection Algorithm Menu

Here, the user can select the embedding algorithm that renders the visualization. The
menu is sub-divided into static and interactive techniques. The first constitute a set of
classic embedding methods, which have proven to be fruitful time and time again. The
second set of algorithms allows the user to playfully interact with the layout embedding.

121

[
Available projection algorithms in InVis.]The set of algorithms that can be used by the

analyst to project the data into two dimensions.

Static Embeddings

The static embeddings let a user have a look at the data via commonly used embedding
techniques:

• XY (An xy-scatter plot of the two first selected attributes)

• PCA (Princial Component Analysis)

• LLE (Locally Linear Embedding)

• Isomap (Isometric mapping: basically, multidimensional scaling applied to the knn-
graph)

• ICA (Independent Component Analysis)

Note that while in a static embedding, the user can still interact with the visualization
via searching, highlighting and filtering, etc.. The user can also set and un-set control
points, however, since the embeddings are static, he cannot relocate them.

Interactive Embeddings

The interactive embeddings let the user actively layout and shape the projection of the
data by selecting and re-location individual data records within the embedding as control
points. Relocating these control points triggers the underlying embedding algorithm to
re-calculate the projection with respect to the user provided feedback. The result is
rendered instantly, which yields a life updating visualization. The three interactive
embedding techniques implemented in this tool are:

• LSP (Least Squared Error Projection)

122

• cKPCA (Constrained Kernel Principal Component Analysis)

• MLE (Most Likely Embedding)

The View Menu

This menu lets the user control the look and feel of the visualized data. The adjustments
can be made in the following way: The first four entries let the analyst chose the color
scheme in which the data records are highlighted; the default is a blue scale. In addition,
the point size for each data record can be set proportional to the considered label value.
This can e.g. be of use when studying a dataset of patterns, with the label being their
support.

Figure A.5.: Options that can be adjusted in the view menu.

The third section lets the user toggle the visibility of various elements which may be of
help during an analysis session. The last option is an experimental feature which is only
available for the MLE algorithm. A side product that can easily be calculated by this
probabilistic algorithm, is the confidence about the location of each data record within
the embedding. This confidence is then used to colorize the visualization. In one of the
following sections, a “magic wand” button is introduced that auto-selects good control
points for the MLE method. The magic behind the selection procedure uses exactly this
confidence value.

The Help Menu

A survey of the most commonly used interaction methods with the visualization and
their keyboard shortcuts. In addition, this document is displayed on pressing F1.

123

• Left-click & drag lets the user re-locate the nearest control-point in a “drag ’n
drop” like manner.

• Right-click displays information of the clicked data-record (e.g: attribute name:valuesA0)

• Middle-click lets the user select or de-select a data-record as control-point.

• Mouse-wheel lets the user zoom in and out on the mouse pointer.

• Ctrl+left-click-lasso-select lets the user select all data records in a region of
the embedding.

Figure A.6.: A quick reminder of the shortcuts for interaction with the canvas.

Interaction

When using the InVis tool in combination with a touch screen, a keyboard might be
disturbing. For this scenario (and for shortcut lazy users) all interaction methods are also
available via the graphical user interface. Note that the buttons change their appearance
to a colored version once they are active. The buttons meanings are the following:

, Query information on an individual data record, by clicking on it.

, Selecting a data record as control point.

, “Magic wand” control point selection (only available for MLE).

, , Introduce must- and cannot-link constraints data record pairs.

, Lasso-select all data records within a region in the embedding.

124

, Consider only the lasso-selected data records.

Clear all search annotations and information queries.

When querying information on a single data record, usually the attribute values of that
data record are of interest. For a high dimensional dataset this can quickly get out of
hand. For this reason, here only the non-zero entries are displayed.

Figure A.7.: Queried information on a single data record.

The selected control points are highlighted with a pink bold border. This way they are
easy to distinguish from the regular data records.

Figure A.8.: A control point.

When lasso-selecting an area, the enclosed data records are emphasized and a word cloud
of the ten most frequent attribute sets is displayed in the bottom left corner. This helps
the user to quickly grasp the dominant attributes and attribute combinations within the
region of interest.

Figure A.9.: A lasso-selected area and its most influential attribute combinations.

125

Highlighting and Searching

A user can also search for a sub-string that is contained in the data-records name. This
can be done by using the free text fields at the bottom right corner of the user interface.
The matching results will be highlighted in red. Here, the search term “bloody” reveals
the embedding locations of all data records that possess this term as part of their name
(e.g. the bloody marry).

Figure A.10.: Searching parts of the data record ID’s.

The second free text field offers the user to enter an attribute name, by which the data
points are colored. The value of the attribute determines the shade of the color. For
the webtender dataset, the first principal direction coincides heavily with the attribute
vodka.

Figure A.11.: Colorizing the data records by an attribute value.

126

127

	1 Introduction
	1.1 Background and Motivation
	1.2 Contributions
	1.3 Previously Published Work
	1.4 Outline

	2 Local Pattern Discovery
	2.1 Preliminaries
	2.2 Relevant Patterns
	2.3 Delta-Relevant Patterns
	2.4 Sampling Interesting Patterns
	2.5 Summary and Discussion

	3 Interactive Embeddings
	3.1 Preliminaries
	3.2 Least Squared Error Projection
	3.3 Most Likely Embedding
	3.4 Constrained Kernel Principal Component Analysis
	3.5 Summary and Discussion

	4 Synthesis
	4.1 Embedding Patterns
	4.2 Interacting with Pattern Embeddings – A Case Study
	4.3 Summary and Discussion

	5 Conclusion
	Bibliography
	Appendix
	A InVis User Manual

