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Abstract

In morphometrics and its application fields like medicine and biology experts are

interested in causal relations of variation in organismic shape to phylogenetic,

ecological, geographical, epidemiological or disease factors – or put more succinctly

by Fred L. Bookstein, morphometrics is the study of covariances of biological form.

In order to reveal causes for shape variability, targeted statistical analysis cor-

relating shape features against external and internal factors is necessary but due

to the complexity of the problem often not feasible in an automated way. There-

fore, a visual analytics approach is proposed in this thesis that couples interactive

visualizations with automated statistical analyses in order to stimulate generation

and qualitative assessment of hypotheses on relevant shape features and their po-

tentially affecting factors. To this end long established morphometric techniques

are combined with recent shape modeling approaches from geometry processing

and medical imaging, leading to novel visual analytics methods for shape analysis.

When used in concert these methods facilitate targeted analysis of characteris-

tic shape differences between groups, co-variation between different structures on

the same anatomy and correlation of shape to extrinsic attributes. Here a special

focus is put on accurate modeling and interactive rendering of image deformations

at high spatial resolution, because that allows for faithful representation and com-

munication of diminutive shape features, large shape differences and volumetric

structures. The utility of the presented methods is demonstrated in case stud-

ies conducted together with a collaborating morphometrics expert. As exemplary

model structure serves the rodent skull and its mandible that are assessed via

computed tomography scans.
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Chapter 1

Introduction

A measure of an effective visualization can also be its ability to
generate unpredicted new insights, beyond predefined data
analysis tasks. After all, visualization should not only enable
biologists to find answers but also to find questions that identify
new hypotheses.

— Purvi Saraiya et al. 2005 [119]

This introductory chapter aims to motivate the usefulness of visualizations for

morphometric studies and introduce our visual analytics approach for exploration

of shape variability in a biomedical image ensemble. The needed concepts of shape

analysis for the presented approach are sketched and some background information

is given on the exemplary application to rodent skull morphology. The chapter

closes with the thesis outline and a tabular overview of the introduced methods.

1.1 Motivation

Evolution has spawned a fascinating variety of species, each with its characteristic

outwards appearance as well as unique structure and form of internal parts – all

of which are the subject of study in morphology. The form of organs, i.e. their

anatomy or shape, has always intrigued biologists because of the sheer variation

on all scales and throughout all orders – even within a species or between closely

related ones, no two individuals are alike. Identifying the determining factors that

affect organ shape and its variability is a major objective of morphometrics. Its
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tools are used in medicine and biology to correlate shape variation to phyloge-

netical, geographical, epidemiological or disease factors. Example applications in

biology include identification of traits that characterize evolutionary relationship

for taxonomic classification and deriving quantitative shape parameters that can

be used as phenotypical markers for genetic studies. Application in medicine is

targeted at image based diagnostics, for instance to differentiate pathological from

healthy organ shape or to predict the progress of a degenerative disease. Currently

both topics are actively being researched.

Unfortunately a fully automated morphometrical analysis is often not feasible

due to the complexity of the problem, i.e. the many degrees of freedom in shape

versus the multitude of influencing factors. In order to enable conclusive statistical

tests a careful study design is thus necessary where the expert a-priori selects

relevant shape features and formulates specific hypotheses on their affecting factors.

Apparently, for this the expert has to be well informed on the shape variation

in question and its potential relations to extrinsic factors. The required detail

knowledge is usually gained via an initial inspection of the shape ensemble, i.e.

an upstream exploratory study is conducted on the same dataset that is used

subsequently for detailed statistical analysis.

Traditionally, visualizations play a major role for this kind of exploration. On

the one hand there are abstract statistical displays that are good to illustrate

higher order relationship in-between the individuals of the ensemble, e.g. in form

of a scatter plot, while on the other hand there are more concrete 2D/3D displays

of shape and shape differences, e.g. by depicting a deformed shape or multiple

shapes superimposed. The latter method takes advantage of human shape per-

ception capabilities and communicate easily particular shape features. Although

visualizations play a critical role during morphometric studies, so far their designs

are primarily driven by the intent of communicating final results of a statistical

analysis.

The main motivation behind this thesis is to provide tools for an interactive

exploration that assists experts in getting insight into the variability of shape with

respect to its potential sources. More specifically, the envisaged exploration should

stimulate hypothesis generation and support subsequent qualitative assessment.

To accomplish this, a visual analytics approach is employed.
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1.2 A visual analytics approach to shape analysis

Visual analytics, as Daniel Keim et al. [76] put it, combines automated analysis

techniques with interactive visualizations for an effective understanding, reasoning

and decision making on the basis of very large and complex datasets. Applying

these concepts to shape analysis is what drives the methods developed in this

thesis – methods that therefore might be subsumed under the term visual shape

analytics [1].

Figure 1.1: Screenshot of the proposed visual analytics system. While the object space view
shows different visualizations of shape variability, the linked views provide abstract represen-
tations of shape space like the shown interactive scatter plot and coefficient histogram.

A central task of these methods is to establish a link between the two main data

spaces encountered in shape analysis: 3D object space that serves the geometric

representation of shape and shape space, a high-dimensional space where statistical

modeling and analysis of shape ensembles is carried out. The essential duality

between shape space and object space is also reflected in the user interface of our

software prototype as shown in Fig. 1.1. An effective link between these spaces is

realized by combining automated analysis techniques and interactive visualizations

to facilitate navigation of shape space. Fig. 1.2 shows an example where the shape

difference between two groups of a shape ensemble is characterized by a direction

in shape space that is computed automatically and visualized subsequently in an

animation of an accordingly deforming shape.

Although there are several works that deal with navigating shape spaces for 3D

modeling and content generation [25, 129, 40, 158], only few exploration systems

that support morphometric studies are described yet. Probably the first such

system was proposed by Busking et al. [37] focusing on unconstrained navigation

of a statistical shape model, without considering additional attributes. In a recent
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Figure 1.2: Exemplary visual shape analytics of a rodent mandible dataset, illustrating the
pipeline from (a) automatic pre-processing over (b) user-interaction to (c) final visualization,
shown both in 3D object space (left) and a 3D projection of shape space (right). In the
end, a characteristic difference in size and orientation of the rear processes between two
groups of rodents is apparent from the visualization and can also be quantified locally on
the mandible. (a) The image ensemble, that is registered against a template Ī, is mapped
into a linear representation of shape space. (b) The user interactively classifies the ensemble
into two phylogenetic groups. Based on that, a separating hyperplane with normal ϕ is
derived. (c) An interpolation of images, achieved by synthesis along direction ±ϕ, results in
an animation that reveals the characteristic shape difference between the two rodent families.
Color coded is the deformation magnitude ‖ϕ‖ where warmer color indicates larger absolute
difference from the template that is shown in blue.
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work Klemm et al. [85] demonstrate how to effectively relate large amounts of

heterogeneous attribute data with a statistical shape model using multiple linked

views to assist epidemiological studies.

In this thesis we extend these original works, that nicely demonstrate the fea-

sibility and effectiveness of an interactive navigation for shapes represented as 3D

surface meshes, to the computationally more demanding volumetric setting that

provides additional detail and makes non-surface structures accessible. Further,

we expand the manual navigation technique of Busking et al. to a portfolio of

techniques that support automated analysis in several ways. A noteworthy nov-

elty in this regard is navigation via model-based editing that allows steering in

shape space via direct user manipulation in 3D object view.

1.2.1 Workflow

Let us compare the visual analytics workflow against the established one in shape

analysis based on the graphical overview of the according pipelines provided in

Fig. 1.3. Both approaches have in common that they digitize a physical collec-

tion of specimens, e.g. via a computed tomography (CT) scans, yielding virtual

representations of the physical individuals. The following preprocessing subsumes

estimation of a template shape and determining transformations that encode the

shape variation of the ensemble. For landmark methods, corresponding feature

points have to be selected manually for this while for image based methods, re-

quired correspondences are automatically established via image registration algo-

rithms. Up to this point there is no difference between the two pipelines despite

that our approach is solely image based.

The main difference lies in subsequent analysis. Traditionally, a particular

statistical analysis is performed and its results are visualized afterwards. In that

way the analysis has to be rerun on any adjustment, e.g. change of hypothesis,

prior information, parameters of a particular analysis or on choosing a different

statistical method. This means that for an exploratory investigation the latter part

of the pipeline has to be repeated multiple times, often in a cumbersome, manual

way, involving separate software packages.



8 Chapter 1. Introduction

a)

b)

manual interaction
automatic

specimen
sample

digitization insightpreprocess statistical
analysis

graphical
display

visual analysis

user

interactive
analysis

specimen
sample

digitization insightpreprocess graphical
display

Figure 1.3: Comparison of work flows between (a) traditional statistical shape analysis and
(b) the proposed visual analytics based approach.

1.2.2 Navigating shape space

As pointed out, key to our exploration system is an efficient link between the ab-

stract shape space and 3D visualization of shape variation. The link is established

by mapping an arbitrary point from shape space to its corresponding 3D shape,

or more precisely speaking, an accordingly deformed template image. In the end

this facilitates the already mentioned navigation in shape space, that is, sampling

shapes at particular points, along any direction or even arbitrary trajectories in

shape space. This synthesis of deformation provides the basic exploration facility

of our visual analytics approach.

All exploration metaphors introduced in the work at hand are based on navigat-

ing shape space one way or another, based on different kinds of user input. Integral

to our approach is the development of visualization techniques designed to effec-

tively convey shape variation, because they facilitate the main feedback channel to

the user input. To this end several visualization techniques are employed, ranging

from dynamic volume and indirect isosurface rendering over vector field visualiza-

tion to the use of tensor glyphs in order to encode higher order attributes of shape

variation. Since these kinds of 3D representations in object space communicate the

main information to be realized by the user, they are always supplied in a central

view of the visual analytics system. Additional information is provided in linked

views that are also available for user input.

A completely manual navigation in the spirit of Busking et al. [37] is imple-

mented for instance via a linked scatter plot view where the user can specify

trajectories in 2D projections of shape space. By that, an initial unconstrained
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exploration of the shape variability contained in an ensemble can be performed,

where synthesized shapes are dynamically displayed in the object view in an ani-

mation.

For a more targeted analysis, navigation is assisted by methods designed to

operate on higher level semantic input from the user. This is accomplished by

means of interactive statistical methods that derive interesting trajectories in shape

space automatically. An example is the interactive classification illustrated in

Fig. 1.2.

1.2.3 Efficiency considerations

A key requirement for every interactive approach is efficiency in order to provide

instantaneous feedback to user actions. This constrains the choice of available

shape analysis methods to those that can be realized interactively.

For the shape space employed in this thesis, namely that emerging from diffeo-

morphic transformations, two efficient strategies for linearization can be identified

in this regard. In case of relatively small deformations one can resort to a well

known ad-hoc approach that operates on linear displacement vector fields. This

is the approach taken in Chap. 5 and 6. However, for ensembles exhibiting larger

deformations a more elaborate strategy is required. To this end a recently de-

veloped parameterization of diffeomorphisms based on stationary velocity fields is

adopted in Chap. 4, where an efficient implementation is derived, custom tailored

for interactive visualization.

For statistical modeling the normal distribution model is considered throughout

the work at hand as it is probably the most widespread model, with many success

stories in applications in computer graphics, computer vision and medical image

analysis as outlined in Chap. 2. In the second part of this thesis it is shown that

this model permits several efficient navigation techniques.

1.3 Contributions

The main contribution of this thesis lies in the provided portfolio of automated

analysis and interactive visualization methods for shape analysis in a morpho-

metric context. An illustrative overview of the introduced methods is given in

tables 1.1, 1.2, 1.3 at the end of this chapter. Put together and seen as a whole

these methods constitute a framework for visual shape analytics. In particular this

is accomplished to a great extent by the following technical contributions:
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• Fast and accurate rendering of image deformations based on a non-

linear deformation model. Based on recent advances in image analysis a

reliable interactive visualization of pronounced shape differences is enabled as

they typically arise in inter-species comparison. (Related methods: VIS1–4.)

• Novel methods for visual analytics of shape co-variates. Given a

user specified labeling of the ensemble according to potential influence fac-

tors, corresponding representatives are computed on the fly. Visualizing a

smooth interpolation in-between the representatives reveals the impact of

the different factors on shape and, for the special case of two labels, displays

their characteristic shape difference. (Related methods: VIS2, NAV2.)

• A novel tensorial description of covariance between points on the

shape. Based on the model-based editing framework of Blanz et al. [24], a

first set of visual analytics methods is derived for the research on modularity

and integration, see Sec. 1.5.2 below. (Related methods: VSA1–4.)

As is common practice in computer graphics, most of the work presented in this

thesis has been published previously [1, 2, 3, 4, 5].

1.4 Background on concepts of shape analysis

Exploration of shape variability builds upon a few central concepts of shape anal-

ysis, i.e. transformations that describe shape differences and allow to establish

a template or mean shape, shape spaces that model the entirety of shapes rep-

resentable for a specific class of transformations w.r.t. to such a template, and

statistical shape models that provide concise representations of shape variability in

shape space. Each of these concepts is briefly introduced now.

1.4.1 Transformations of shape

A century ago D’Arcy W. Thompson [134] recognized that the

essential task [of morphology] lies in the comparison of related forms

rather than in the precise definition of each; and the deformation of a

complicated figure may be a phenomenon easy of comprehension [...].

This statement holds several insights that are key to the exploration of shape

variability, namely that one is actually interested in the differences between shapes,

that these can be encoded via transformations that deform shape, and that the
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inherent complexity of the latter encoding can be effectively communicated via

visualization.

Thompson’s fundamental idea to encode shape difference via transformations

still pervades modern day computerized morphometrics. A first thorough formal-

ization of this approach is found in geometric morphometrics (GM) pioneered in the

late 1970’s by Kendall [77, 78], Bookstein [27] and many others, that is later even

celebrated as a “revolution” in morphometrics [117, 7]. In contrast to traditional

quantitative methods based on ruler measurements, GM describes the shape’s ge-

ometry explicitly by sampling the organ outline or contour at so called landmark

positions. These are defined as homologous feature points that are shared across

all shapes of an ensemble thereby establishing point-wise correspondences between

the shapes. A major achievement of GM is the development of shape statistics

for this kind of landmark point configurations, with the mean shape as one of its

central concepts. The mean shape, or template as we will refer to it, is computed

by superimposing all shapes in a common reference frame and averaging the co-

ordinates at each landmark position over all shapes in the ensemble. The crucial

step in this construction, i.e. the superimposition, is achieved by applying trans-

formations that remove differences in position and orientation, because those are

arbitrary and therefore of no further interest.1

Shortly after GM, the discipline of computational anatomy (CA) emerged based

on the general pattern theoretical framework of Grenander [64, 65]. CA contributes

shape statistics founded on diffeomorphisms, i.e. the set of smooth deformations

that possess a smooth inverse. Based on diffeomorphisms, plausible descriptions

and models of local shape differences for anatomies as different as bone and brain

structures are successfully derived. A key technique of CA is the modeling of

shape variability from 3D images at image resolution without the need for manually

selected feature points. Hence this technique, that is also referred to as deformation

based morphometry [15], is of special interest for medical image analysis.

1Depending on the particular study sometimes also differences in isotropic scale and/or shear
are factored out as well.
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Figure 1.4: Illustration of shape space and its linearization. (a) Shape space is a high-
dimensional non-linear, i.e. curved, manifold while a tangent space provides a template-
centered linearization that permits multivariate analysis. (Figure adapted from [20].) (b) A
statistical deformation model is derived via principal component analysis in tangent space.

1.4.2 Shape spaces

A shape space S comprises the set of all possible shapes or images representable

with respect to a particular class of transformations. Each point in S corresponds

to a specific transformation which applied to the template results in an actual shape

or image. For measuring (dis)similarity of two shapes, shape space is endowed

with a distance measure or metric that allows to define a shortest path or geodesic

connecting any two points. An important property is that a deformation along a

path in S is required to be smooth and invertible, such that a shape is altered in a

continuous fashion. The metric also facilitates definition of a generalized average,

a Fréchet mean, that corresponds to a mean or template shape.

Unfortunately, practical computations on S are computational expensive in

general because of its global non-linear structure. In order to enable standard

linear techniques of multivariate statistical analysis, S has to be linearized. To this

end a tangent space is spanned leading to a local flattening of shape space around

a particular reference point, corresponding to a template shape, see Fig. 1.4(a).
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1.4.3 Statistical shape models

Probably the most popular statistical model to explain the spread of samples in

(linearized) shape space is that of a multivariate Gaussian or normal distribution.

It is defined by first and second order moments, i.e. mean and variance. Since

shape spaces are high dimensional, the second order moment is estimated as a large

sample variance-covariance matrix. A much more compactly parameterized model

is achieved via a principal component analysis (PCA) that provides a canonical

coordinate system in terms of principal modes of shape variation, see Fig. 1.4(b).

Sampling from the PCA model allows to synthesize novel, virtual shapes that

are useful to illustrate shape variability. Efficient synthesis is one of the key tech-

niques to convey particular aspects of shape variation in the visual analytics ap-

proach proposed herein.

1.5 Applications to rodent skull morphology

The application to a real world dataset is always a great opportunity to demon-

strate the potential of novel analysis methods. We had the great luck to develop

our methods in a project together with Dr. Anja C. Schunke from the MPI Plön,

a morphometrics expert who provided us not only with a very unique collection of

high quality CT datasets of rodent skulls but also with her invaluable feedback and

supporting discussions during development. The provided data offers in particular

challenges like shape differences at interior, volumetric structures and large scale

variations that are hard to assess with previous methods which are either limited

to surface features or small scale image deformations.

Rodents in general and the mouse in particular is a popular model system

in biology because it is a mammal with a very high diversity. Rodent skull and

especially its mandible is a standard model for morphometric analysis which is

also emphasized by its use as worked example throughout a popular introductory

textbook on morphometrics [159].

For this thesis five datasets have been compiled as described in App. A, four

of them consisting of rodent mandibles and one dataset of the upper skull.
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1.5.1 Morphological structure of the rodent mandible

The rodent mandible is a particular interesting model structure, partly due to

its relatively simple structure, e.g. without articulations. Nonetheless, it comes

with several functional units, like incisor teeth for gnawing, cheek teeth for chew-

ing, one articular and several muscle bearing processes. Irregardless of its relative

simplicity, finding modules and modeling their interaction is considered a difficult

task [90, 88] as described in the next section. Additionally, the mandible pro-

vides also some interior structures like tooth roots and incisor arch that are only

accessible with 3D imaging.

Fig. 1.5 gives an overview of rodent mandible anatomy. Each separate half of

the mandible consists of a single bone with three processes in the back, a row of

molar teeth and the single incisor, whose posterior end lies far back in the mandible,

below or behind the coronoid process. A common functional segmentation is the

separation into two parts, the frontal region, bearing incisor and molar teeth, and

the rear processes with muscle attachments.

Figure 1.5: Anatomical parts of the rodent mandible referred to in this work. A common
subdivision into two functional subunits is indicated [90].

1.5.2 Applications

The high diversity of rodents results in many interesting traits potentially related

to phylogenetic and ecological factors. However, many sources for shape variation

on the mandible are still not fully understood and there is a need for exploratory

approaches to come to some useful hypotheses. With this in mind, datasets have

been purposefully compiled to reflect different factors of phylogeny at subfam-

ily and genus level as well as diet, distinguishing omni-, herbi- and carnivory.
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Corresponding traits are investigated separately in Chap. 5, including allometric

effects that are related to size. A simultaneous investigation of several factors

is demonstrated in Chap. 4 for phylogeny and diet, comparing and disentangling

their particular influences on shape variation. Another exploration in the same

chapter also hints at a geographic gradient in the skull dataset.

A topic that steered some attention in recent years is that of modularity and

integration. Integration refers to the degree that particular shape characteristics

interdepend, and modules are parts of the shape that are tightly integrated, but

are relatively independent from other modules [86]. Naively speaking, traits inside

an integrated module probably share some of the processes or actions that shaped

them during their evolution while separate modules may have developed more

or less independent of each other. Based on the assumption that the amount of

covariation between different shape features is a cue to their integration, a visual

shape analytics pipeline is devised in Chap. 6 to investigate such covariation at

multiple levels of detail.

1.6 Outline

The remainder of the thesis is structured as follows. Related work on shape space

exploration and visualization is reviewed in Chap. 2. The necessary basics about

modeling of form and its variability from images are introduced in Chap. 3. Key

aspects covered in this chapter are a group-wise image registration algorithm and

the calculation of a statistical deformation model. Initially, these aspects are in-

troduced for the classical linear deformation model.

After introducing the general visual shape analytics approach in the current

chapter and settling the basic modeling techniques in the subsequent two chapters,

the second part, consisting of Chap. 4, 5 and 6, comprises our portfolio of visual

shape analytics methods. The chapters of the second part should be sufficiently

self-contained such that they can be read in any order.

In Chap. 4 a non-linear extension of the standard deformation model is pre-

sented, together with four methods taking specific advantage of this novel model,

see table 1.1. Particularly the introduced group browser allows for a rapid investi-

gation of the influence of different external factors on shape. The chapter further

describes the implementation of a raycaster to render deformed images that is also

used in the methods described in subsequent chapters.

Chap. 5 shows two methods that, when used in combination, allow for a hierar-

chical navigation of shape space, see table 1.2. This is accomplished with respect
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to prior knowledge on classification and regions of interest (ROI). Selecting a ROI

allows to switch to a sub-space of shape space by recomputing PCA statistics with

respect to the chosen ROI. Classification on the other hand allows to navigate

to subspaces with particular shape differences filtered out, i.e. orthogonal to the

characteristic difference between the two selected groups.

Unlike the two previous chapters, the focus of Chap. 6 is not on correlating

shape variation against external attributes, but rather on the covariation between

different parts on the shape. As described above, this plays a crucial role in research

on modularity and integration. In order to investigate this kind of covariation and

identify hypotheses on module delimits, three tightly interlinked visualizations are

developed, see table 1.3. Together, they facilitate an effective interactive analysis

of covariation at different levels of detail. All of these methods are based on a novel

definition of a linear interaction operator that leads to two tensors, summarizing

different aspects of covariation. Further, an additional automatic segmentation

method is introduced based on one of this tensors. The resulting segmentation is

anatomically meaningful and provides an additional way to inspire hypotheses on

module delimits.

Each chapter in the second part devotes at least one substantial section to

applications of the developed methods. To this end real-world datasets of rodent

mandible and skull were investigated in collaboration with the domain expert Dr.

Schunke.

Finally, Chap. 7 concludes the thesis with a brief summary and discussion of

future prospects.
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VIS1 VIS2

VIS3 VIS4

VIS1: Likelihood volume

Brief: Integrated visualization of a whole trajectory in PCA space, e.g. to get
an overview of variation along principal modes.

Sample: Likelihood volume for the first principal mode (PC1) of a rodent mandible

dataset shows that most variability is found in the rear three processes.

VIS2: Group browser

Brief: Comparative visualization of impact of multiple factors by interpolating
between group mean shapes that are selected interactively, allowing to
sift quickly through multiple comparisons.

Sample: Interpolation between several group mean shapes arising from phylogeny and

diet shows that the impact of diet on shape is more emphasized in the second

phylogenetic group (Phylo 2) compared to the first one (Phylo 1).

VIS3: Projected streamlines

Brief: Visualization of tangential part of shape variation.
Sample: Streamlines of a shape variation (blue to yellow) and its tangential part (desat-

urated) show differentiated perpendicular and tangential trends in the process

to the lower right versus the central structure.

VIS4: Reformation

Brief: Render otherwise occluded structures in a single view.
Sample: Visualization of a mouse skull viewed from above, left without and right with

an applied reformation that makes incisor, auditory bulla and molar teeth

become visible in a single view for joint investigation.

Table 1.1: Overview of visualization and rendering methods introduced in Chap. 4.
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w/o ROI with ROI

NAV1 NAV2
NAV1: Region of interest

Brief: Define a PCA space w.r.t. to an interactively selected region of interest
in order to focus investigation on particular local structures.

Sample: After selection of a ROI the correspondingly weighted PCA model shows a

clear separation between two phylogenetic groups (orange and blue) on a single

PC axis and makes it thus more easy to discover in an exploration.

NAV2: Classification

Brief: Define a trait vector as a direction in PCA space corresponding to the
characteristic shape difference between two interactively specified groups.

Sample: A volumetric shape difference between two phylogenetic groups, i.e. in size and

orientation of a tooth root, becomes apparent from visualizing the extremes

of the corresponding phylogenetic trait vector in shape space.

Table 1.2: Overview of navigation methods introduced in Chap. 5.
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VSA1 VSA2

Detail A

VSA3 VSA4

Overview Focus A Focus BA

B

VSA1: Overview tensor

Brief: Provide guidance to regions of interesting covariation on the shape.
Sample: The rear processes at A and B show strong covariation with other parts on the

shape (related to size of glyph), although their preferred direction of variation

is slightly different (related to orientation and shape of glyph).

VSA2: Interaction tensor

Brief: Visualize the covariation pattern w.r.t. a particular point on the shape.
Sample: The pattern of the interaction tensor fields at the Coronoid (A) and the Condy-

lar process (B) reveals their mutual relationship.

VSA3: Model based editing

Brief: Visualize effects of a specific directional variation at a point interactively.
Sample: Model based editing shows particulars of covariation, e.g. that the Condylar

follows the position of the Coronoid process.

VSA4: Anatomic segmentation

Brief: Automatically partition the shape w.r.t. its intrinsic covariance.
Sample: The computed anatomic segmentation nicely correlates with functional units.

Table 1.3: Overview of the methods introduced in Chap. 6 to facilitate visual shape analytics
of anatomic covariation, e.g. to identify hypotheses on module boundaries.
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Chapter 2

State-of-the-art

A brief review of related work on navigating shape spaces and visualization of

shape variability is compiled in this chapter to put this thesis into context.

2.1 Navigation in shape space

A particular focus of application of shape space representations in computer graph-

ics is effective authoring of 3D content by means of interpolation in available 3D

model databases, see [25, 9, 10] to cite just a few works in this field. In computer vi-

sion [45] and medical image segmentation [69] shape space representations are used

to introduce model knowledge. A special advantage in all these works is their com-

bination of statistical analysis and efficient synthesis to generate novel 3D shapes

that are plausible w.r.t. a statistical model. This is exactly what is necessary for

interactive visual exploration of shape variability in the context of visual shape

analytics. However, in order to enable targeted exploration of a shape ensemble,

additional methods for navigation in shape space are required. A key challenge in

this context is to make the high dimensionality of shape spaces accessible.
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2.1.1 Navigation along traits

A first idea on this was already given by Blanz and Vetter [25] who parametrized

the shape of human faces via regression on semantically motivated traits like age,

sex, weight, etc. in PCA space. They demonstrated that exaggerating these traits

can be used to create easily understandable caricatures of certain type. Matusik

et al. [102] showed that navigation along traits is an effective means of identifying

specific appearance characteristics of surface reflectance functions. In the context

of visual shape analytics this idea is applied in Chap. 5 to relate shape variation

to external attributes.

2.1.2 Navigation via scatter plots

Manual exploration using two dimensional views as interfaces for navigation have

been suggested by several authors. Kilian et al. [79] present a shape exploration

based on barycentric interpolation between example shapes. To this end a 2D

embedding view of the shape ensemble is derived via multidimensional scaling

(MDS) followed by a triangulation. By drawing curves in this view, arbitrary

interpolations can be explored. Instead of a triangulation, Smith et al. [129] rely

on generalized barycentric interpolation inside a convex control polygon that, by

clicking a point inside the polygon, allows the user to dial up a particular affine

combination of a set of registered car shape models. Additional regression values

on specific attributes like sportiness are overlaid on the polygon for guidance. For

the specific case of mesh animations, Cashman et al. [40] use a combination of

MDS and radial basis functions to come up with a 2D map visualization of the

animation as a spline curve. On this map, a repetitive motion will for instance

show up as a curve with several loops. By manipulating the curve, the animation

can be edited in a high level way. Busking et al. [37] use a scatter plot that shows

a 2D projection of PCA space. The projection can be adjusted interactively by

manipulating 2D representations of a set of axes or vectors in shape space [23].

For synthesis of shapes in-between sample points in the 2D projection natural

neighbors interpolation is used, based on a Voronoi tessellation that is computed

efficiently on the GPU. Klemm et al. [85] use multiple linked views to explore

medical population data for epidemiology, e.g. to identify disease-specific risk

factors. Aim of their interactive visual analysis is parameter and group selection

for subsequent statistical analysis. The data also includes MR images from which

3D surface models of the lumbar spine are semi-automatically extracted. During

exploration, mean shapes of selected groups are displayed, colored according to
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their difference to the global mean shape.

2.1.3 Direct manipulation approaches

An interesting alternative to interaction with abstract 2D views and scatter plots

are direct manipulation approaches to explore and generate shape variations. Prob-

ably one of the first approaches in this regard is model based editing introduced

by Blanz et al. [24]. Based on the user modifying the position of just a few feature

points their approach optimizes the most likely shape that matches the user input

as closely as possible. Thanks to the linearity of the PCA model this optimization

turns out to be a simple least squares problem that can be solved efficiently. Lewis

and Anjyo [97] pick up the same idea for editing facial blendshape models while

Tena et al. [133] and Berner et al. [22] present generalizations of this approach to

part based shape models. Coffey et al. [44] present an interactive manipulation

interface to navigate the space of simulation outputs in order to refine the design

of a mechanical biopsy device, taking into account its functionality. Interestingly,

the metaphor of direct spatial manipulation has been recently applied also to time-

varying scatter plots [92], where dragging around a point facilitates navigation in

time by matching the input to an existing point and its temporal trajectory. In

Chap. 6 model based deformation is used to analyze covariance on shapes.

2.1.4 Navigation of subensembles

For industrial CT images comparative visualizations were made for the analysis of

defects for material sciences [112]. In order to visualize the shape distribution of

a set of feature objects, pores or other material defects in form of an uncertainty

cloud the concept of mean objects was introduced. Clustering of mean objects

provides a hierarchical representation well suited for exploration.

A common task for exploratory morphometric analysis is to disentangle the fac-

tors that determine shape variation. A visual analytics method to accomplish this

is introduced in Chap. 4. Categorical factors decompose the shape ensemble into

subsets, for instance into several phylogenetic or dietary groups. In order to unveil

the impact of each factor on shape variation, mean shapes of the corresponding

subsets are derived on the fly, enabling interpolation in-between group means and

the ensemble template.
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2.2 Visualization of shape variability

Although visualization plays such a central role in shape analysis, there seem to

be only two articles published yet that give sort of a survey [89, 38]. Klingen-

berg [88] critically discusses common visualization methods for landmark analy-

ses in geometric morphometrics and provides helpful guidelines for practitioners.

Different visualization options for statistical deformation models used in compu-

tational anatomy are compared by Caban et al. [38] and evaluated in a small user

study. Both works contribute valuable insights about effectiveness and limitations

of many important visualization techniques. However, some often encountered

visualizations such as color coded isosurfaces or vector fields are missing in the

mentioned surveys, and animation is not discussed either.

In the following a brief review of visualization techniques is given, organized

by their primary underlying visual paradigm: Superimposition and side-by-side

comparison relate to spatial layout, direct visualization focuses on ways to display

deformation by warping methods, encoded visualization is about the use of color-

coding and glyphs to communicate higher order information and finally, animation

deals with the temporal dimension.

2.2.1 Superimposition

The original shape samples are shown superimposed in a reference coordinate sys-

tem, e.g. given by Procrustes alignment. This kind of display is quite common and

effective for 2D landmark and contour data [89] and is used in many publications

and textbooks in geometric morphometrics. An advantage is, that it does not re-

quire a deformation or statistical model per se. Nevertheless, plotting for instance

superimposed landmarks yields point clouds whose distributions reveal the local

covariance structure at each landmark. Superimposing contour data gives a good

overview of global variability but quickly becomes cluttered for many contours. In

our experience, this cluttering becomes even worse when superimposing 3D sur-

faces [18], because of the additional occlusion interfering with the superimposition.

In practice we observe that at most three surfaces are shown superimposed using

alpha blending and contrasting colors, see e.g. Abbasloo et al. [6].

Superimposition is also used to assess results of pairwise registration of sur-

faces or images. The interactive 3D volume registration system of Smit et al. [128]

makes use of multi-volume rendering to superimpose fixed and moving volume,

color-coded and opacity blended to reveal areas of mis-registration. The checker-

board method is an alternative way of superimposing two 2D images (or slices of



2.2. Visualization of shape variability 25

a volume) that does not require blending. The white squares of the checkerboard

offer a view onto one of the images, the black squares onto the other. A generaliza-

tion of this technique to more than two images was presented by Malik et al. [100]

and a generalization to tensor field visualization was recently given by Zhang et

al. [161].

Likelihood volumes [38, 71] can be understood as a generalized superimpo-

sition of 3D images by means of blending more than two images. An efficient

implementation of a likelihood volume for a non-linear deformation model is pre-

sented in Chap. 4 where it is used as an overview visualization. When sampling

a deformation densely, likelihood volumes produce a visualization resembling mo-

tion blur. A similar approach was taken to visualize the uncertainty of estimated

isosurfaces [109, 108].

2.2.2 Side-by-side comparison

Instead of superimposing one or more shapes in a single view, multiple views can

be employed as well. This provides an alternative in cases where superimposition is

not applicable or would lead to a cluttered display. Unfortunately, small scale shape

variations are hard to recognize in a side-by-side display. Following Tufte’s small

multiples [139], a small-scale shape rendering can serve as an iconic representation

that allows comparative displays showing many shapes at once. This technique is

used for instance to overlay small shape renderings on a scatter plot showing a 2D

projection of shape space [37] or to visualize mean shapes of different sub groups

of the dataset [85].

2.2.3 Direct visualization

This paradigm subsumes approaches that depict deformations explicitly by de-

forming a graphical representation of the shape or the embedding 3D space. A

specific appeal of direct space warping techniques is their generality, that they can

be applied to landmark and surface data in 2D or 3D in the exact same manner.

Showing a distorted Cartesian grid is amongst the classic methods to illustrate

anatomic differences, as it was made popular by D’Arcy Thompson [134] and used

even earlier by Artists like Dürer and Da Vinci in their anatomical studies. While

these early examples were hand-crafted, the first automatic graphics procedure

was introduced by Bookstein [26] based on thin-plate spline (TPS) interpolation

of space in between landmarks. TPS remains one of the dominant visualizations in

morphometrics to this day [89], not least because its efficiency. Wiley et al. [151] use
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TPS for instance to interpolate between known sample shapes from an evolutionary

tree to generate hypothetical ancestral shapes.

Somewhat a hybrid between direct and encoded visualization (see below) are

the deformable grids [41, 38]. Initially developed for 2D uncertainty data [41] they

were generalized to show anatomic variation from statistical deformation models

in 3D by Caban et al. [38]. A very coarse grid is overlaid onto the image and

deformation is visualized by modulating the depiction of grid edges, e.g. by drawing

an edge as a sinusoid curve with the local deformation magnitude mapped to its

amplitude.

2.2.4 Encoded visualization

In contrast to direct visualization, methods that fall under this paradigm visual-

ize particular aspects of deformation implicitly by means of color coding or glyph

rendering. Scalar attributes are easily visualized via color coding by applying a

transfer function that maps the scalar value range to some color gradient. In com-

putational anatomy one often encounters variability and probability maps that

color code magnitude of local variability and outcome of statistical tests respec-

tively [135]. Hamarneh [67] use color coding to highlight “hot spots” of localized

shape variation. Lüthi et al. [99] use color coding to visualize the remaining flex-

ibility of a statistical shape model after parts of it have been fixed, for instance

by a semi-automatic model based registration procedure. Zollikofer and Ponce de

Léon [163] show a successful combination of color coding and vector field visual-

ization on 3D surfaces to communicate deformation decomposed into directions

parallel (vector field) and perpendicular (color) to the surface. Kirschner and We-

sarg [83] present an implementation of this kind of visualization in an interactive

system for active shape models.

Kindlmann et al. [81] visualize anatomic covariance tensor fields using su-

perquadric tensor glyphs that summarize the local covariance structure at each

sample point on the surface of a mean shape. For each point a 3×3 sample covari-

ance matrix on the set of displacement vectors from the mean to each individual

is computed. Additional scalar measures derived from the covariance tensor data

like fractional anisotropy and Frobenius norm are used for color coding glyphs and

shape surface respectively. The same glyph visualization is used for the covariance

tensors described in Chap. 6. Van Golen [141] uses custom glyphs to show the

influence of each landmark on an active shape model, i.e. how strongly the overall

shape variation described by the model depends on a particular landmark.

When dealing with image based shape models, deformations are often rep-
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resented as dense vector fields. This enables vector field visualization methods

like color coding of Jacobians [115], detection of critical points and display via

glyphs [136] or color coding custom tailored scalar flow measures [36]. Streamline

rendering is another vector field visualization method [124] that is used in Chap. 4

to uncover the tangential component of non-linear shape variations.

2.2.5 Animation

Showing a particular variation as image deformation in an animated way is an

ideal presentation to the human eye [135, 96]. It allows to utilize the excellent

motion perception capabilities of humans that renders small deformations much

better perceivable than from a set of static images. Therefore, animation is one

of the preferred visualizations in many approaches. It is an obvious choice when

illustrating dynamic processes like respiratory motion of lungs and inner organs in

humans. Handels and Hacker use animation to present an interactive anatomical

atlas [68], exemplary modeling the kidney via a medial representation [62].

Real time animation, while easy to achieve in principle for 3D surface models,

poses a challenge for 3D image models. This results from the fact that 3D image

warping involves the inverse mapping, that is computationally expensive to ap-

proximate. An in-depth discussion of that fact is given in Chap. 4 where advantage

is taken of the log-domain framework to efficiently realize the inverse deformation.
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Chapter 3

Modeling of form and its variability
from images

Even as our understanding of the encoded parts of biology has
exploded since Thompson’s time, our appraisals of form lagged
far behind, awaiting the technologies of medical imaging and
interactive computer graphics. Once those technologies arrived,
the driver of studies of biological form became not biophysics but
the cognitive sciences: the same evolved perceptions of form and
form-comparison now filtered through the formalisms of
quantitative pattern engines and the representations of
uncertainty that, for lack of a better word, we call statistics.

— Fred L. Bookstein 2011

The goal of the visual analytics methods developed in this thesis is to enable the

user to gain insight into the variability of form contained in a biomedical image

ensemble. Pre-requisite to this goal is mathematical modeling of form and its

variability from images. This chapter reviews the used modeling techniques and

algorithms for analysis and synthesis of variation in form and settles basic notation

and definitions. The statistical deformation model employed throughout this thesis

is introduced together with a custom algorithm for group wise image registration

that provides an average template against which variation is measured.
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3.1 Introduction

3.1.1 What is form? What is shape?

In order to model variation in form, one has to specify first what is meant by the

term “form”. In an anatomic context it is intuitive to define form as the spatial

layout of an organ, or introducing yet another term, its shape. This conception is

in agreement with Websters college dictionary [48]:

form (fôrm), n., v., formed, form·ing. –n. 1. external appearance

of a clearly defined area, as distinguished from color or material [...].

2. the shape of a thing or person. [...] 5. something that gives or

determines shape; a mold.

Commonly the term “shape” is related to the outer surface of an object, as

perceived by the human eye. In addition to this outer surface view, in medical

imaging also internal structures are made visible that constitute the organs spatial

layout. In our holistic approach this additional information is taken explicitly into

account and accordingly, the terms form and shape are meant here to encompass

also interior structure. Both terms, form and shape, will be used interchangeably in

the following. However, one should be aware of potentially different connotations

in the cited literature. For instance, in geometric morphometrics the term shape is

used to designate specifically the geometry of organs after factoring out differences

due to location, orientation and size.

3.1.2 Transformations to define shape and its variation

A mathematical definition of shape can be given in terms of its invariance to

specific linear transformations; or as David George Kendall [77] succinctly puts it:

The idea is to filter out effects resulting from translations, changes of

scale and rotations and declare that shape is ‘what is left’.

This does not only apply to surface and point data that is usually associated with

the term shape, but also to the volumetric structure of an anatomy as represented

in biomedical images. Before the analysis of variation, at least rigid transforma-

tions, i.e. translation and rotation, are factored out because position and orien-

tation are arbitrary, depending solely on the choice of some external coordinate

frame. Sometimes the class of rigid motions is extended to similarity transforma-

tions, including isotropic scaling, or even to the fully affine case, depending on the
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study at hand. After filtering out linear transformations the remaining difference

in form is subsequently considered as the shape variation of interest. To character-

ize the difference between shapes another class of transformations comes into play,

namely non-rigid ones that provide additional degrees of freedom allowing for lo-

cal deformations. Although the separation of shape and its variation according to

different classes of transformations may be ambiguous in general, see for instance

the nice discussion in Yezzi and Soatto [155], it is especially sound in the case of

stiff bone structures such as the rodent skull data considered in this work.

As a consequence of these considerations, whenever comparing two shapes via

a transformation ϕ that maps one shape onto the other, ϕ is decomposed into two

parts

ϕ = ϕglobal ◦ ϕlocal. (3.1)

where ◦ denotes concatenation of mappings. The global part ϕglobal accounts for

non-shape differences and will be realized by a linear transformation as discussed.

When comparing an ensemble of shapes against some template shape, all global

parts will be factored out first in a preprocessing step. The particular procedure to

do this is referred to as alignment. Thereby a common coordinate frame between

the anatomies of an ensemble is established, i.e. the one of the template. After

the alignment procedure, the remaining local parts ϕlocal are pivotal to further

analysis, as they represent the shape variation of the ensemble. In summary, one

can say that ϕglobal defines what shape is, while ϕlocal encodes shape difference and

variation.

3.1.3 Modeling pipeline

Equipped with a concept of shape and its variation, the modeling pipeline used

in this work can be outlined. This will also provide an overview of the relevant

definitions and methods introduced in the remainder of the chapter. Figure 3.1

illustrates the pipeline. The starting point (a) is the input dataset I that consists of

n images denoted as I = {I1, . . . , In}. Variation of form is modeled on this through

a set of deformations {ϕ1, . . . , ϕn} with respect to a template image Ī. Each

deformation ϕi maps the template image Ī onto the i-th individual. Deformations

and template image are both estimated simultaneously in the registration stage

(b). This also includes the separation of each deformation into its global and local

part, i.e. the registration stage subsumes image alignment. The resulting aligned

image set is denoted as I ′ = {I ′1, . . . , I ′n}. In the subsequent analysis stage (c) these

deformations are considered as samples from an underlying normal distribution and



32 Chapter 3. Modeling of form and its variability from images

...

b) Registration

PC 1

PC 2

c) Analysis

...

...

a) Image ensemble

d) Synthesis

Figure 3.1: The modeling pipeline.

a statistical deformation model is set up accordingly. The model provides principal

modes of variation that compactly encode the gross of variability. Later, interactive

analysis will be performed in this reduced model space, where each individual is

represented as a point. One can think of the distance between two points in

this space to reflect the (dis)similarity in form of the corresponding anatomies,

while the distance of a point to the origin is interpreted as the probability of the

particular deformation represented by that point under the normal distribution

model. For interactive analysis and visualization, arbitrary points in model space

will be synthesized as deformations, illustrated in the last stage (d). In order to

actually produce an image of the correspondingly deformed anatomy, a synthesized

deformation is applied to the template via image warping.

Obviously, defining the template image Ī is a crucial step in model building.

To this end a custom group wise registration algorithm is introduced in Sec. 3.4.

Before that, some general concepts of image registration are required that are given

in Sec. 3.3. Finally, the statistical deformation model and its efficient computation

is described in detail in Sec. 3.5, setting the stage for the next chapters. But first,

some basic methods and notation regarding 3D images have to be settled.
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3.2 Biomedical images and their deformation

Common image modalities that capture the 3D geometry of an organismic anatomy

at high quality are x-ray computed tomography (CT) and magnetic resonance

imaging (MRI). Both modalities are represented by 3D images with scalar values

that relate to tissue type specific characteristics, namely x-ray absorption in CT

and nuclear resonance behavior in MRI. While CT excels in assessment of bone

structures, brain imaging is a prominent domain of MRI. In case of CT data,

Hounsfield units provide a calibrated measurement scale that eases the classifica-

tion of air, fat tissue, muscle tissue and bone. In the following, images and their

deformations are defined independent of a particular modality. The methods of

this thesis are demonstrated on ensembles of CT images but apply also to MRI

data, although this requires the choice of different metrics for image registration

as discussed below.

3.2.1 Images

Throughout this work a 3D image I is treated as a scalar function

I : Ω→ R with Ω ⊂ R3 (3.2)

representing some sort of intensity over a compact domain Ω. It is important to

note that in practice the image domain Ω is discretized, commonly over a regular

grid, holding intensity information only at discrete positions, i.e. the image voxels.

We will use the symbol Ω to denote continuous as well as discretized domain,

depending on context. Addressing intensity in the discrete domain at positions in

between voxels requires interpolation. Although fairly easy and efficient to realize

on a regular grid, special treatment is required in case of an arbitrary sampled or

deformed domain as described below.

3.2.2 Transformations and deformations

In order to relate the geometric difference between the same anatomy in different

images or to express a particular geometric variation we will make use of image

deformations. Mathematically a deformation ϕ of an image can be understood as

a mapping between two image domains Ω,Ω′ ⊂ R3, i.e.

ϕ : Ω→ Ω′. (3.3)
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Usually the target domain Ω′ is identified with Ω′ = Ω for notational simplicity. In

practical implementations one has of course to deal with a different extent of the

target domain when applying the deformation to an image. However, for our image

ensembles we will devise a canonical parameterization domain Ω below. Particular

transformation classes will be discussed below in Sec. 3.3.

A general representation of a deformation ϕ is to prescribe a displacement u(x)

at each position x ∈ Ω to encode the mapping

ϕ(x) = x+ u(x) with u : Ω→ R3, (3.4)

where u is accordingly called displacement field. Note that u shares the same

parameterization as the image domain, i.e. it is discretized at voxel positions.

Algebraic operations on sets of deformations represented by (3.4) are the subject

of Sec. 3.5. To this end, a discretized displacement field u will be written as

column vector u ∈ R3N , where N denotes the number of voxels. An alternative

representation to (3.4) based on a differential equation is presented in Chap. 4.

3.2.3 Image warping

For visualization, and also during image registration, deformed images have to be

computed. Applying a deformation ϕ to an image I is also referred to as image

warping and will result in a deformed image I∗, sometimes denoted as

I
ϕ−→ I∗. (3.5)

Naively mapping each voxel position xvoxel of I will result in general in positions

x∗ = ϕ(xvoxel) that are not lying on voxels in the target image I∗. That is because

I∗ is discretized over the same regular grid as I. In order to avoid scattered data

interpolation when computing the deformed image, an established procedure in

image warping is to iterate over the voxel positions of the target image I∗ instead

of the voxel positions in I. Thereby, for each voxel in I∗ a corresponding position

in the undeformed image I is found, where standard interpolation techniques can

be applied. This is realized by applying the backward or inverse mapping ϕ−1, i.e.

I∗(x) =
(
I ◦ ϕ−1

)
(x) = I(ϕ−1(x)). (3.6)

Obviously, (3.6) requires a bijective mapping such that an inverse exists and is

well defined. Fortunately that is by definition the case for the diffeomorphisms

considered throughout the thesis.
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Computing the inverse of a mapping

For linear transformations analytical inverses are easy to define. Unfortunately,

for non-linear transformations, computation of an inverse mapping is very expen-

sive in general. Therefore many efficient approximations and heuristics have been

developed, especially for 2D image warping [152].

A heuristic that is commonly used in interactive raycasting systems [114, 33]

is to simply negate the displacement field

ϕ−1(x) ≈ x− u(x). (3.7)

Note that the approximation error of this heuristic grows quadratically with the

(maximum) displacement magnitude [114], see App. C for a proof. This behavior

makes the heuristic suitable only for very smooth and overall small deformations.

In Chap. 4 we will see a much better approximation that can also deal with large

scale deformations.

3.3 Image registration

Image registration is the problem of spatially superimposing two or more images.

For a pair of images the task at hand is to find a reasonable transformation that

deforms one image into the other, such that corresponding structures are spatially

superimposed afterwards as best as possible, rendering the deformed image similar

to the other one. Choosing different definitions for what a reasonable transforma-

tion is and how to measure image similarity, a multitude of registration approaches

for particular applications arise. Together with segmentation, image registration is

one of the core techniques in medical image analysis [156]. It is applied for instance

to register medical images of the same patient organ from multiple modalities, e.g.

CT and MRI, or between consecutive points in time, e.g. pre- and post-operative,

in order to combine the different information contained by removing difference

due to patient movement between scans. The population studies targeted in the

present work face yet another scenario in that images usually stem from different

subjects and, even more important, the transformation is not considered a nui-

sance parameter that has to be removed. Instead, one is not so much interested in

the superimposed image per se, but much more in the transformation itself as it

encodes difference in form [15].

Formally, pairwise image registration superimposes a source (moving) image

I1 onto a target (fixed) image I0 by applying a transformation ϕ to I1. The task
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of finding an optimal transformation ϕ can be stated as an optimization problem

with a cost or energy function E(ϕ, I0, I1) 7→ R of the general form

E(ϕ, I0, I1) = Sim(I0, I1 ◦ ϕ) + αReg(ϕ) (3.8)

that is minimized with respect to ϕ. The energy (3.8) comprises two terms: An

image similarity term Sim(·, ·) that measures the quality of registration and a

regularization term Reg(·) that is used to control properties of the transformation

and render the problem well-posed. Both terms are trade-off using a weighting

parameter α ∈ R+. In general, finding an optimal transformation minimizing

the similarity measure alone is an ill-posed problem [59] because of many local

minima arising from ambiguities in superimposition. Therefore different kind of

regularization terms are employed to restrict the set of solutions.

Image similarity measure

The similarity measure is a data term that assures for the superimposed images

to match locally, for instance favoring similar intensity values. A common image

metric is the sum of squared intensity differences (SSD)

SimSSD(I, I ′ ◦ ϕ) =
1

2

∫
Ω

(I(x)− I ′ ◦ ϕ(x))
2

dx. (3.9)

The assumption underlying this metric is that homologous points exhibit the same

intensity in both images, modulo Gaussian noise. Since this is a valid assumption

for the CT images considered throughout this work, SimSSD will be used exclusively

herein.

For other imaging modalities or when considering mixed modalities, alterna-

tive similarity measures are advised. In order to overcome the assumption that

homologous points exhibit the exact same intensity, alternative measures are mod-

eled after different models on the relationship between intensities. For instance,

the correlation coefficient assumes a linear relationship, while mutual information

assumes a more general, probabilistic one. A comprehensive overview of image

similarity measures can be found in the survey by Crum et al. [50].
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Transformation classes

In order to distinguish non-form and form related variation as in (3.1), two different

classes of transformations are considered. Affine mappings are used for initial

global alignment of the image ensemble while subsequent non-linear registration

is based on diffeomorphisms. The latter step is also referred to as deformable

registration since it allows for local deformations to superimpose corresponding

structures. For an overview on deformable registration we refer to the recent

survey by Sotiras et al. [130].

In deformable registration one distinguishes two different settings, that of small

and that of large deformations. In the small deformation setting the concatenation

of two deformations is approximated by addition of the corresponding displace-

ment fields. The advantage of this assumption is that it enables to perform linear

multivariate analysis directly based on displacement fields, as shown in Sec. 3.5.

Obviously this first order approximation is only valid for small variations in shape,

like for instance the ones observed in Chap. 5 and 6. The more general large defor-

mation setting requires more involved non-linear methods. A greater flexibility is

for instance achieved by modeling deformation as temporal flow, whose properties

are governed by a differential equation [43, 55]. Thereby a large scale deforma-

tion is assembled by concatenating many small scale deformations over time. An

efficient parameterization of diffeomorphisms will be discussed in Chap. 4.

3.3.1 Global alignment

The transformation for global alignment is parameterized via a matrix A ∈ R3x3

and translation vector t ∈ R3 leading to

ϕglobal(x) = Ax+ t. (3.10)

Following the above discussion on non-form related transformations in Sec. 3.1.2,

the mapping A is restricted to the class of similarity transformations, i.e. rotation

and isotropic scaling. This means that A can be decomposed as A = RΛ into an

orthogonal matrix R, i.e. RTR = I, that represents a pure rotation that does not

include a reflection, i.e. det(R) = 1, and a diagonal matrix Λ =
( λ

λ
λ

)
with a

uniform scale factor λ ∈ R+.

Rotation and translation have each three DoF while uniform scale contributes

a single one. The parameterization of a similarity transform thus ends up with

seven DoF. This constrains the transformation space reasonably and no explicit
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regularization term in (3.8) is enforced.

The optimal parameters for (3.10) are estimated by minimizing the cost func-

tion (3.8) with respect to the seven DoF here. To this end, iterative optimization

procedures are employed that operate on a multiresolution scheme. The most ba-

sic method would be a gradient descent. An overview of optimization methods for

global alignment can for instance be found in the paper by Klein et al. [84].

3.3.2 Deformable registration

The transformation for deformable registration is parameterized using the already

introduced general representation (3.4) via a displacement vector field

ϕlocal(x) = x+ u(x). (3.11)

This kind of deformation has as many DoF as the image voxel count and thus

requires a regularization to render a solution tractable. For this task a diffusion

regularization is assumed throughout this work.

Regdiff (u) =
1

2

∫
Ω

‖∇u‖2 dx (3.12)

In particular, the symmetric log-domain diffeomorphic demons algorithm by Ver-

cauteren et al. [142] is used for deformable registration here. Although the de-

scribed optimization algorithm does not directly minimize (3.8) with above regu-

larizer (3.12), it can conceptually be understood within this general framework [58,

143].

Diffusion registration belongs to the class of physics-based deformation mod-

els [105, 130]. Alternatives within this class include elastic body and viscous fluid

flow models [58]. Also from this class, and very related to the log-domain method,

are flows of diffeomorphisms that are implemented in the framework of large dis-

placement diffeomorphic metric mappings (LDDMM) [21]. These are prominently

introduced in computational anatomy and are especially suited to study anatom-

ical variability [103]. Because performing synthesis in LDDMM requires compu-

tationally expensive algorithms like geodesic shooting [104], these methods are

out of reach for interactive applications in the foreseeable future. Very promis-

ing alternative representation based on stationary velocity fields (SVF) recently

emerged [13, 14]. As shown in Chap. 4, these allow for efficient visualizations.

Another class of deformation models very popular for studies of anatomic vari-

ability are derived from interpolation theory. In contrast to the above displace-
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ment representation (3.11), these approaches are parameterized over interpolating

functions that provide a more compact representation amenable to efficient opti-

mization schemes. Important examples are free form deformations (FFD) and thin

plat spline (TPS) interpolation. For FFD the deformation is represented as low-

degree b-splines on a coarse control grid [19, 122]. Rueckert et al. [118] introduced

statistical deformation models based on FFD by applying PCA to the b-spline

coefficients. TPS take a special role in geometric morphometrics where they serve

two purposes. Since TPS interpolate smoothly between given control points by

minimizing bending energy [146], it is a suitable way to augment the result of a

landmark analysis to the space in between landmarks for visualization purposes.

In addition, TPS has led to an alternative shape analysis framework where PCA is

not performed on the landmark covariance matrix but on the TPS bending energy

matrix, a theory introduced by Bookstein et al. [26]. Drawbacks of the parametric

TPS and FFD approaches are, that they are not inherently diffeomorphic. FFD

easily produces self-overlaps while TPS interpolation often yields implausible de-

formations away from its control points. Further, both methods provide only a

limited resolution determined by the grid size in FFD and control point placement

in TPS. In order to pertain the full information at image resolution we avoided

these parametric approaches and chose to directly operate on dense representations

like (3.11).

3.4 Estimating an average template

This section describes a method that, based on pair-wise image registration, will

simultaneously register an ensemble of images and estimate a template image that

serves as mean shape.

3.4.1 Template estimation in shape space

A central notion in studying shape variability is the average or mean shape against

which differences and eventually variation is measured. The definition of such a

mean shape can be understood in analogy to the computation of a centroid of a

set of points, i.e. the ordinary Euclidean mean1. Recall that in the context of this

work, shape is represented by images and consequently a template image takes the

role of a mean shape here.

1Equally, one can consider as physical analogy the barycenter of a set of point sized particles
bearing unit mass.
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The Euclidean mean has a minimum squared error property that gives rise to

a construction via optimization. Consider for this a set of n points in d dimensions

in a Euclidean space, i.e. pi ∈ Rd for i = 1, . . . , n. In this situation the mean p̄ is

defined as

p̄ := arg min
p∗

1

n

n∑
i=1

‖pi − p∗‖2. (3.13)

The point p̄ is the unique point that has minimal squared distance on average to

all other points.

In computational anatomy metrics for the space of diffeomorphism are em-

ployed to define distance or dissimilarity between anatomies as geodesics, i.e.

shortest connections with respect to the particular metric. In order to define a

statistical mean on such smooth manifolds a generalization of the above formula

is invoked. For a metric space (X, d), consisting of a smooth manifold X endowed

with a metric d, the Fréchet mean of a set {x1, . . . , xn}, xi ∈ X, if it exists and is

unique, is defined as

x̄ := arg min
x∗

1

n

n∑
i=1

d(xi, x
∗)2. (3.14)

In order to compute average templates for computational anatomy, several

group-wise registration approaches have been developed [66, 17, 73] based on (3.14).

Starting from a candidate image, the general concept is to iteratively update this

image such that the average of squared geodesic distances between template and

each individual approaches a minimum.

3.4.2 Linearized situation

The optimization algorithms involved in above described template estimation are

quite complex and computationally very expensive. Fortunately, if an adequate

linearization of shape space is available, the optimization can be performed in an

Euclidean setting [98]. Ideally, this would lead to a closed form solution. However,

since imperfections in image registration remain, still an iterative procedure is

required.

In this thesis two different linearizations will be treated:

• For small deformations, the trivial linearization in form of linear displace-

ments provides an adequate approximation. Therefore one can simply oper-

ate linearly on the displacement vector fields, without any additional map-

ping between a tangent space and the manifold of diffeomorphisms. This

approach is pursued in the remainder of this chapter as well as Chap. 5 and 6.
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Figure 3.2: Superimposition of a rodent mandible ensemble consisting of 16 representatives,
aligned via similarity transforms. The display illustrates the result of a global alignment
computed by the group-wise image registration algorithm.

• For large deformations a better approximation is required. To this end we

choose the efficient log-domain representation of Arsigny et al. [13]. The log-

domain provides a particular tangent space that parameterizes (part of) the

manifold of diffeomorphisms. In log-domain one can operate linearly while

results have to be explicitly mapped to diffeomorphic deformations via an

exponential map. This approach is discussed and utilized in Chap. 4.

An alternative characterization of the Euclidean centroid that will be used

in our group-wise registration algorithm is introduced now. It is based on the

property that the average over the vectors (pi − x̄) from the average to all other

points i = 1, . . . , n turns out as zero vector,

1

n

n∑
i=1

(pi − p̄) = 0. (3.15)

One can think of (pi−p̄) as a set of force vectors from p̄ to pi that is in balance. It is

obvious that the arithmetic mean p̄ fulfills this property2 and clearly it is the unique

point doing so. Although (3.15) is a rather trivial observation in Rd, it will turn

into a useful stopping criterion in our algorithm for estimating an average template

in the space of admissible deformations. Similarly to the centroid, the mean shape

can be characterized as that shape exhibiting on average a null deformation to all

other individuals.

2Plugging in the definition yields 1
n

∑n
i=1(pi− p̄) = 1

n

∑n
i=1 pi−

1
n

∑n
i=1 p̄ = 1

n

∑n
i=1 pi− p̄ = 0.
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3.4.3 Group-wise registration algorithm

We will now describe a common iterative bootstrapping procedure for the esti-

mation of a template Ī. The introduced algorithm is based on pair-wise image

registration and described here for the small deformation setting. Starting with

an initial estimate for the template, all individual images are registered pairwise

against this. The estimate is then updated to better approximate a suitable en-

semble average. These two steps, registration and update, are iterated until a

sufficiently good approximation is found.

The general procedure is borrowed from generalized Procrustes analysis (GPA)

that serves the same purpose of estimating a mean shape in landmark analy-

sis [63]. Both algorithms work iteratively and refine an initial estimate, usually

one of the individuals from the dataset, until convergence against some charac-

terization of ensemble average. A key difference is that in the landmark setting,

point wise correspondences are already known, and thus a deformable registration

is not required. Alignment in GPA is implemented via Procrustes superimposition

to factor out similarity transformations, while this is accomplished using global

image registration here.

Algorithm 3.1 conceptualizes our implementation. In each iteration, all im-

ages are registered against the current template estimate Ī in two steps. First, a

global image registration is performed yielding aligned images I ′i. Second, dense

correspondences encoded as deformations ϕi are established via non-linear image

registration. Subsequently the average template Ī is updated and an average de-

formation ϕ̄ is computed. Following the reasoning of the previous section and

particularly (3.15), an average template is found as soon as ϕ̄ becomes the iden-

tity mapping Id. Due to non-perfect dense registration, the average deformation

ϕ̄ will in practice not arrive at Id and a soft convergence criterion ‖ϕ̄‖ < ε with

a threshold ε � 1 is used. The remaining bias in ϕ̄ is finally removed from the

template and the deformations are accordingly centered to this unbiased template.

The central step of the algorithm is to average deformations (line 6), and this

is the only step depending on the particular deformation model in use, at least

explicitly. In the small displacement setting a set of deformations {ϕ1, . . . , ϕn} is

averaged as

ϕ̄ = Id + ū with ū =
1

n

n∑
i=1

ui where ϕi = Id + ui. (3.16)

Implicitly also the breaking condition ‖ϕ̄‖ < ε depends on the deformation model
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and is computed here simply via the Frobenius norm on the average displacement

field ‖ϕ̄‖ := ‖ū‖. All other steps of the algorithm are expressed in terms of warping

images, i.e. applying a transformation to an image, denoted by ◦. Additionally, ex-

pensive computations of inverse mappings ϕ−1
i are required in each iteration when

computing the intensity average (line 5). In Chap. 4 the algorithm is generalized

to log-domain via an average over stationary velocity fields (4.6). Additionally, the

log-domain approach will simplify the computation of inverse mappings.

Algorithm 3.1 Template construction

Input: Set of images {I1, . . . , In}.
Output: Average template Ī and a set of deformations {ϕ1, . . . , ϕn} with Ī ◦ ϕ−1

i ≈ I ′i.

1: Initialize Ī ← I1.
2: repeat
3: Find global linear transformations Ai for i = 1, . . . , n such that

Ī ≈ I ′i = Ii ◦Ai.

4: Find local non-linear deformations ϕi for i = 1, . . . , n such that

I ′i ≈ Ī ◦ ϕi.

5: Compute average intensity image

Ī ← 1

n

n∑
i=1

I ′i ◦ ϕ−1
i .

6: Compute average deformation

ϕ̄←

{
use Eq. (3.16) for displacement models in Chap. 5, 6

use Eq. (4.6) for SVF model in Chap. 4.

7: until ‖ϕ̄‖ < ε
8: Center deformations

ϕi ← ϕi ◦ ϕ̄−1 for i = 1, . . . , n.

9: Remove remaining bias from template

Ī ← Ī ◦ ϕ̄−1.
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3.5 Statistical deformation model

The variability contained in a shape ensemble represented by a set of (scalar)

images I = {I1, . . . , In} is often described using first and second order moments,

i.e. mean and covariance. The mean is implicitly provided by the template image

that results from the group-wise registration presented in the previous section.

The same algorithm computes the (shape) differences between template and each

individual, that are encoded as deformations given by the set {ϕi}. From these

deformations a statistical deformation model (SDM) can be set up. Please note

that the model is only about deformations and as such is only concerned with

spatial and not intensity variation.

3.5.1 Mean and covariance

In a statistical deformation model [118] (shape) difference is encoded via displace-

ment vector fields u : Ω → R3. Analysis of the vector field data u can be reduced

to multivariate statistics by treating each voxel and each dimension separately.

For this purpose it is convenient to consider a vector field as a long column vector

u ∈ R3N where N denotes the number of voxels in the discretized image domain Ω.

Using this notation, the first moment is simply the arithmetic average

ū =
1

n

n∑
i=1

ui. (3.17)

According to the group-wise registration the displacement fields are already cen-

tered, i.e. they encode deformations in the coordinate system of the template image

that represents the average anatomy. Consequently the mean deformation should

be the identity transformation implying a zero displacement vector everywhere

ū = 0. The set of centered displacement fields constitute the data matrix

X = [u1, . . . ,un] ∈ R3N×n (3.18)

for further analysis.

The second moment is estimated from the 3N × 3N sample covariance matrix

Σ =
1

n− 1

n∑
i=1

(ui − ū)(ui − ū)T . (3.19)

In the case of a zero first moment (3.19) simplifies to Σ = 1
n−1

∑n
i=1 uiu

T
i , or
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written in matrix form Σ = 1
n−1

XXT .

3.5.2 Linear generative model

In order to ease interpretation of covariance, a principal component analysis (PCA)

is applied. It provides an uncorrelated basis B for the vector field data, i.e. in this

basis the covariance matrix becomes diagonal, and each displacement field gains a

new representation

ui = Bci for i = 1, . . . , n (3.20)

in terms of a coefficient vector ci. The coefficient vectors give the coordinates of

each sample ui in PCA space. How many dimensions does this space have? Since

in our setting n � 3N the rank of the covariance matrix is at most n′ = n − 1.

This means that there exist only n′ = dim(Σ) < n � 3N many basis vectors

and therefore ci ∈ Rn′ . For a unique representation, the n′ pairwise orthogonal

columns of B are ordered descending according to their variances σ2
i , given by

their length. Note that each basis vector represents itself a deformation encoded

as displacement vector field and is also termed mode of (shape) variation.

Taking linear combinations of these modes constitutes a generative model

u = Bc (3.21)

where c = (c1, . . . , cn′)
T should be chosen with ci ∈ [−3,+3] conforming to a range

of three standard deviations σi of the underlying normal distribution model, as

introduced in Sec. 3.5.4 below. In the navigation process, novel deformations ϕ

are synthesized from (3.21) via

ϕ = Id + u = Id + Bc (3.22)

where the vectorial representation (3.21) is implicitly interpreted again as displace-

ment vector field u.
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3.5.3 Principal component analysis

The linear model (3.21) is computed by diagonalizing the covariance matrix Sigma.

By that, a change of basis is found such that in the new basis the covariance matrix

has only diagonal entries. Recall that the diagonal entries σii of a covarianve matrix

give the variance in direction of the i-th basis vector, while off-diagonal entries σij

with i 6= j give the covariance between dimension i and j. Because covariance is

proportional to linear correlation this procedure in effect decorrelates the data.

The change of basis is realized by an eigenvalue decomposition. Omitting the

normalization 1
n−1

for now, the decomposition has the form

XXT = US2UT (3.23)

where U ∈ R3N×n′ is a set of orthonormal eigenvectors, i.e. UTU = I, and S2 is

a diagonal matrix containing the corresponding eigenvalues. The notation S2 is

used to indicate that the eigenvalues correspond to the squared singular values of

X. Note that for symmetric matrices such a decomposition always exists, see for

instance [132], and that the covariance matrix is symmetric by construction.

The diagonalization (3.23) can be computed via singular value decomposition

(SVD) [137] of the data matrix

X = USVT (3.24)

where U is as before, S a diagonal matrix of singular values and V is an additional

orthogonal matrix, i.e. VVT = I, that will be identified with the coefficients in

the new basis below. Expanding (3.23) with (3.24) shows that valid eigenvectors

and eigenvalues are found

XXT = USVT
(
USVT

)T
= USVTVSUT = US2UT (3.25)

and clarifies that the eigenvalues in S2 are the squares of the singular values in S.

In order to recover the basis of the linear model (3.21) the matrix of eigenvectors

U has to be scaled by their eigenvalues and the previously omitted normalization
1

n−1
has to be taken into account again:

B =
1√
n− 1

US (3.26)

Dimensionality reduction can be conducted by forming a smaller basis Bk, which

contains only the first k < n′ scaled eigenvectors corresponding to the largest
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eigenvalues. Thus, Bk captures most of the variance of the dataset.

The representation C of the input data in terms of the new basis are that

coefficients of the unique linear combinations of columns of B such that X = BC.

Inverting the last equations yields

C = B−1X =
1√
n− 1

S+UTX. (3.27)

where S+ denotes a pseudo-inverse that only inverts the non-zero entries along the

diagonal matrix S. Expanding further via Eq. (3.24) shows that the coefficients

are actually given by the matrix VT with a scale factor

C =
1√
n− 1

VT . (3.28)

In Chap. 5 a weighted PCA variant will be presented that allows to decompose

variance with respect to particular parts on the shape, i.e. regions of interest.

Partial least squares (PLS) is an alternative linear analysis based on SVD that

will be described in Chap. 6.

3.5.4 Normal distribution

PCA estimates a normal distribution on the displacement fields modeled as a

random variable [72]. By the above construction, the corresponding coefficients c

follow a centered normal distribution of unit variance and the probability density

takes the form

p(c) = (2π)−n
′/2 e−

1
2
‖c‖2 .

In Chap. 6 we will make use of the negative log-likelihood of the above

− log p(c) =
1

2
‖c‖2 + const. (3.29)

as a measure for penalizing unlikeliness of a displacement field.
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3.5.5 Efficient computation

As explained above, performing PCA is essentially a diagonalization of the sample

covariance matrix. Computing a full diagonalization has a computational time

complexity in O(m3) where m is the number of rows/columns of the square ma-

trix [110]. Unfortunately the size of the covariance matrix is quite large for typical

image sizes, i.e. 3N × 3N in terms of number of voxels N , leading to a com-

putationally prohibitive runtime. However, looking closely at the singular value

decomposition (3.24), a much more efficient implementation is possible.

We exploit the well-known fact that the eigen decomposition of the two matrices

XXT and XTX share the same eigenvalues. This can be seen by comparing the

expansions of (3.24) for each matrix. The former matrix XXT is proportional to

the covariance estimate with the expansion (3.25) given above. Similarly, the latter

matrix XTX, that is simply referred to as scatter matrix, expands to a valid eigen

decomposition

XTX = VS2VT . (3.30)

with identical eigenvalues S2.

The key observation is that above scatter matrix is of size n × n and that is

in our setting always much smaller than 3N × 3N because there are much fewer

images in the ensemble than voxels in each image, i.e. n� N . Performing a direct

eigen decomposition of the smaller scatter matrix thereby leads to a more efficient

way to compute coefficient matrix VT and eigenvalues S2, required to describe

PCA space. In order to recover the original eigenvectors of the (non-normalized)

covariance matrix from this, a single matrix multiplication suffices, solving (3.24)

for

U = XVS−
1
2 . (3.31)

In order to achieve the efficiency necessary for an interactive approach, nav-

igation methods and automated analysis will operate on this compact represen-

tation V. Where applicable, computations will consequently be mapped from

high-dimensional shape space, i.e. where the eigenmodes U live, to the smaller

n-dimensional space of coefficients V.
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3.6 Summary

This chapter introduced necessary concepts and techniques to set up our visual

analytics methods presented in the following part of this thesis. A specific formal-

ization of an ensemble’s shape variability is obtained by group-wise image registra-

tion. Its result is a template image and an associated set of deformations, mapping

the template to each individual in the common reference frame. From this data a

statistical deformation model is computed via PCA.

Conluding this chapter, the whole pipeline is shown again in Fig. 3.3. Further

details on the preprocessing of the datasets are given in App. A.

Automatic 
segmentation 

Group-wise 
registration 

Visual analysis 
Template + 

deformations 

CT dataset 

Sec. 3.5 Sec. 3.4 

Sec. 3.3 
Global alignment + 

Deformable registration App. A 

App. A Chap. 4, 5, 6 

Statistical 
deformation 

model 

Figure 3.3: The preprocessing pipeline.
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Part II

Visual shape analytics
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Chapter 4

Accurate interactive visualization of large
deformations and variability in biomedical
image ensembles

As we have seen [...], modeling images leads to objects and these
objects have shape – so we need stochastic models of shape, the
ultimate non-linear sort of thing.

— David Mumford 2002

Large image deformations pose a challenging problem for the visualization and

statistical analysis of 3D image ensembles. Simple linear interpolation in the tan-

gent space of the ensemble introduces artifactual anatomical structures that ham-

per the application of targeted visual shape analytics techniques. In this chapter

we make use of the theory of stationary velocity fields to facilitate interactive non-

linear image interpolation and plausible extrapolation for high quality rendering

of large deformations and devise an efficient image warping method on the GPU.

This does not only improve quality of existing visualization techniques, but opens

up a field of novel interactive methods for shape ensemble analysis. Taking advan-

tage of the efficient non-linear 3D image warping, we showcase four visualizations:

1) browsing on-the-fly computed group mean shapes to learn about shape differ-

ences between specific classes, 2) interactive reformation to investigate complex

morphologies in a single view, 3) likelihood volumes to gain a concise overview

of variability and 4) streamline visualization to show variation in detail, specifi-

cally uncovering its component tangential to a reference surface. Evaluation on
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a real world dataset shows that the presented method outperforms the state-of-

the-art in terms of visual quality while retaining interactive frame rates. A case

study with a domain expert was performed in which the novel analysis and vi-

sualization methods are applied on standard model structures, namely skull and

mandible of different rodents, to investigate and compare influence of phylogeny,

diet and geography on shape. The visualizations enable for instance to distinguish

(population-)normal and pathological morphology, assist in uncovering correlation

to extrinsic factors and potentially support assessment of model quality.

Figure 4.1: Interactive visual reconstruction of two rodent mandible anatomies using pre-
vious (linear) and proposed SVF approach. Linear reconstruction fails at A-C w.r.t. global
structures while, even more severe for interpretation, at D-F artifacts that resemble anatom-
ical features are introduced. Both kinds of error are remedied by our approach, decreasing
the RMSE by about a factor of two on average.



4.1. Introduction 55

4.1 Introduction

As described in the first part of this thesis, only recently the potential of interac-

tive visual analysis for understanding anatomic variability by interpolating shapes

or images has been recognized [35, 37, 85]. In these works, the visualization it-

self becomes an analytical tool enabling targeted inspection of different aspects of

variability. Navigating the space spanned by an ensemble of anatomies via interpo-

lation serves as an initial exploration vehicle before applying quantitative analysis,

e.g. for feature selection or hypothesis generation.

To this end non-linear deformations are quintessential that describe the mor-

phological differences in a biomedical image ensemble. An intuitive and widely

used visualization of these differences (and the induced variability) is achieved by

interpolation. Unfortunately, interpolation between 3D images at a high quality

requires computationally expensive algorithms. Therefore, to be sufficiently fast,

previous interactive applications resort to a heuristic [114, 33] whose error grows

quadratically with deformation magnitude. A severe drawback of this heuristic is

that it produces visual artifacts that unfortunately are similar to plausible anatom-

ical structures. This impedes the interpretation and the usefulness of the visual

analysis to a great extent as is confirmed by a morphometric expert we collaborated

with. Fig. 4.1 shows a typical example.

The key to accurately represent large deformations as well as avoid mentioned

artifacts is a non-linear deformation model. Inspired by the great success of dif-

feomorphic transformations in computational anatomy, in this chapter we describe

a fast and accurate image warping algorithm based on the theory of stationary

velocity fields (SVF) [13], tailored for interactive visualizations. The SVF based

approach has shown to successfully model variability of anatomies as different as

human brain [14, 30] and femur bone [124], but so far it has not been applied in an

interactive application. A huge benefit is that it provides a sound tangent space,

the log-domain, for the group of diffeomorphisms whose elements are lifted onto

the non-linear group structure by simple integration. This does not only allow us

to trivially carry over classical, linear shape statistics, but also extends the design

space of visual analysis methods. In particular, the below presented techniques

take advantage of the following properties, not available in any previous interac-

tive system: 1) linear combinations of deformations are robust to evaluate and

artifact free, 2) stable extrapolation is possible as well and 3) for each deforma-

tion an inverse mapping exists and its computation comes at no extra cost. The

last property is pivotal for fast and accurate image warping, while the conceptual



56 Chapter 4. Accurate interactive visualization of large deformations

Figure 4.2: Transforming a rectangular grid by a displacement field (top) and a velocity field
(bottom) representing each a clockwise rotation R around θ = 60◦ (center). Arrows indicate
vector fields and deformation trajectories are shown in blue. Evaluating scaled versions of the
vector fields demonstrate inter- and extrapolation. While displacements follow linear paths,
resulting in shrinkage and expansion of the transformed grid, integrating in log-domain leads
to curved trajectories, perfectly reproducing expected rotations of 0.5θ = 30◦ and 1.5θ = 90◦.

importance of the first two properties is illustrated in Fig. 4.2.

A great motivation for our research is rooted in the emerging application area of

population imaging [31], where large deformations are inherent. Recent advances

in image registration now permit the creation of detailed models for inter-subject

and population studies and we expect to see many more of these in the future.

We designed our methods with the complexity of such studies in mind, leading to

tools for rapid investigation of complex shape variation in dependence of various

influencing factors. To that effect the high degree of image detail in our visu-

alizations nicely complements the elaborate integrated visual analysis pipeline of

existing approaches [85, 131].

4.1.1 Overview and contributions

To the best of the authors’ knowledge, the presented methods comprise the first

interactive system for visual analysis of a non-linear volumetric deformation model.

This chapter is split into two parts. The first part introduces our novel image

warping method and showcases four visualizations taking explicit advantage of the

SVF model (Sec. 4.3). One novel and three established techniques are described,

adapted and extended in several ways to perform interactive visual analysis of

shape variability:
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• Group browsing is a novel technique to render mean shapes of subgroups

of the ensemble, that are interactively selected to facilitate comparison of

shape difference between different classes related to extrinsic factors.

• Volumetric reformation [93, 144] enables investigation of variation on

complex morphologies in a single view.

• Likelihood volumes [38, 71] display the probability of shape variation along

principal modes for an overview.

• Projected streamlines visualize details of shape variation, paying special

attention to its component tangential to a surface.

The picked visualizations are not exhaustive, but each highlights one of the new

design possibilities gained through using the SVF model. Using the methods in

combination allows us to perform visual analysis of shape ensembles containing

large deformations. This is demonstrated on two datasets of rodent skull anatomy,

investigating influence of phylogeny, diet and geography on shape (Sec. 4.5).

The second part of the chapter is devoted to an in depth evaluation of the

introduced methods (Sec. 4.4). A thorough benchmark on a real world dataset

confirms that in fact a higher visual quality is achieved. Furthermore, a detailed

comparison substantiates that artifacts of the linear method are actually remedied.

4.2 Related work

4.2.1 Image registration with diffeomorphisms

Recall from Chap. 3 that variation between two shapes is assessed via image reg-

istration algorithms. In particular, deformable image registration is an ill-posed

problem and a well defined solution is achieved by regularization, restricting the

set of allowed transformations to the problem at hand [59]. When no additional

a-priori information is available, as in our case, choosing a set of diffeomorphisms

are considered a “good working framework” [143]. Because of their definition as

smooth mappings with a smooth inverse they exhibit no singularities, i.e. no holes

are created nor do folds occur and thus anatomy is kept intact. In fact, many

successful image registration algorithms rely on the theory of large deformation

diffeomorphic metric mapping (LDDMM) that is well established in computational

anatomy [21, 103], not only for registration, but also for statistics on deformation

features; see [140] and references therein.
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In the LDDMM framework a diffeomorphic mapping ϕ is constructed as a time-

varying flow φ(x, t), x ∈ Ω, t ∈ [0, 1] with ϕ(x) = φ(x, 1). The flow is given as a

solution to the transport equation

d

dt
φ(x, t) = w(φ(x, t), t) (4.1)

with initial condition φ(x, 0) = x, parameterized over vector fields w in the tangent

space of the Riemannian manifold of diffeomorphisms. Integrating (4.1) over time

yields the final mapping. This theory has turned out to be very powerful and ver-

satile in many applications. However, computations based on time-varying flows

are quite expensive and memory intensive and thus this setting is not suitable for

interactive visual analysis. Fortunately, interesting alternatives using a station-

ary, i.e. time independent, parameterization are available [13, 14] that admit fast

synthesis with low memory footprint, as is demonstrated here.

4.2.2 Stationary velocity fields

Arsigny et al. [13] propose a Log-Euclidean framework for diffeomorphisms in which

Eq. (4.1) is treated using a stationary vector field v(x) ≡ v(x, t) instead of a time-

varying one,
d

dt
φ(x, t) = v(φ(x, t)) (4.2)

with φ(x, 0) = x and the final mapping ϕ(x) = φ(x, 1) achieved by integration to

time t = 1, as before. Interestingly, (4.2) covers (almost) the entire space of diffeo-

morphisms and is thereby deemed as expressive as (4.1), improving performance

of registration algorithms [14, 142] and also proved successful in modeling the vari-

ability of a range of different anatomies [14, 30, 124]. The term Log-Euclidean

alludes to the fact that v is considered the logarithm of ϕ, and integration now

takes the role of an exponential map of v [13]. Considering an analogy to the

group of rotations SO(3) should give some intuition. There, the matrix logarithm

provides a so called infinitesimal generator. Using generators, interpolation of ro-

tations reduces to simple algebraic manipulation (component wise addition and

scaling) of their logarithms, retrieving the final rotation via matrix exponential.

In this spirit, the exponential of the vector field v defined as

ϕ(x) = exp(v)(x) := φ(x, 1) = φ(x, 0) +

∫ 1

0

v(φ(x, t)) dt (4.3)
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will always produce a diffeomorphism. One can imagine that integrating (4.2)

describes the trajectory of a particle traveling according to the velocity v prescribed

at each location.

So far, SVFs have not been used for interactive visualization. Amongst other

things we show how existing systems, that work with displacements (3.4), can be

extended to handle SVF’s by simply integrating (4.3) in the rendering stage. This

can for instance be applied to some of the methods presented in chapters 5 and 6.

4.2.3 Visualization of image deformations

Several GPU raycasting methods have been proposed to render deformed im-

ages [95, 114, 47, 46], all based on the paradigm of direct space warping [19]. The

general idea is to not trace straight rays through a deformed image, but rather de-

form the traced rays via the inverse deformation, reading the intensity information

from the original, undeformed image. In that way, the rendering will display the

correctly deformed image, while the image data itself stays unchanged in memory

and interpolation capabilities of graphics hardware can be exploited. Based on

this technique, Kurzion and Yagel [95] propose a set of analytical, invertible local

mappings which can be combined to achieve volumetric deformations. A fast imple-

mentation for texture based volume rendering was introduced by Rezk-Salama et

al. [114], deforming a coarser proxy geometry gained by subdivision of the volume

into piecewise linear patches with subsequent interpolation. In Brunet et al. [33]

a modern, single pass raycasting solution is devised to enable interactive image

manipulation via freely movable control points. The costly computation of the

inverse mapping is deferred in their approach to the CPU and thus does not scale

to complex deformation models. More similar to our approach, Correa et al.[47]

derive a deformation by linearly combining (inverse) displacement maps, well de-

signed to enable illustrative volume rendering by introducing cuts [46]. However,

the algorithm they describe can only combine two such maps on the GPU.

Caban et al. [38] presented a comprehensive review of visualization techniques

for statistical deformation models and also introduced likelihood volumes, that are

integrated into our interactive system in Sec. 4.3.6. Kindlmann et al. [81] applied

superquadric glyphs to visualize anatomic covariance in a very concise way. This

technique is ideal for an overview but does not give access to individual modes of

variation and navigation techniques as presented in this and later chapters.

Another class of approaches is based on visualizing deformation properties de-

rived from a displacement vector field. These include color-coding the determi-

nant of the Jacobian [115, 36], revealing growth and atrophy, or displaying critical
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points [136]. On top of this, our ODE approach admits further flow visualization

techniques like streamline integration.

4.3 Visual analysis methods

4.3.1 A log-domain approach

The basis of our approach is, that we do not consider displacement vector fields

to capture shape variation, but instead choose a SVF representation (4.3), i.e.

ϕ = exp(v). A key advantage of this approach is that the log-domain, where

velocity fields live, offers a natural linearization

ϕa ◦ ϕb = exp(va) ◦ exp(vb) = exp(va + vb) (4.4)

that is lifted to the diffeomorphic group structure by integration. As a consequence,

the exact inverse mapping is found by simply integrating −v, i.e.

ϕ−1(x) = exp(−v)(x). (4.5)

We also take advantage of the robust extrapolation possible in the SVF model.

Considering an arbitrary deformation given as velocity field v, an extrapolation is

achieved by evaluating exp(λv) for a scale factor λ > 1, resulting in an exaggerated

deformation that can be used for caricaturistic visualization [111].

4.3.2 Non-linear SVF model and its navigation

As presented in Sec. 3.4.3, we use a group wise image registration to estimate a

template image Ī and a set of deformations. But this time, the latter are given

in terms of velocity fields {vi} such that ϕi(x) = exp(vi) describe non-linear tra-

jectories from the template to each individual anatomy. During registration, the

template Ī is estimated so that the set of velocity fields is centered in log-domain,

i.e. v̄ = 1
n

∑n
i=1 vi = 0. For this purpose Algorithm 3.1 now makes uses of the

following average ϕ̄ of a set of deformations {ϕ1, . . . , ϕn} that is computed as

ϕ̄ = exp(v̄) with v̄ =
1

n

n∑
i=1

vi where ϕi = exp(vi). (4.6)
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When computing the template image, all images of the ensemble are deformed into

the template domain and their intensities are averaged

Ī =
1

n

n∑
i=1

I ′i ◦ exp(vi). (4.7)

Individual images I ′i can thus be reconstructed from the template as

I ′i ≈ Ī ◦ exp(−vi). (4.8)

Exploiting the linearity in log-domain, the same linear PCA statistics as de-

scribed in Sec. 3.5 can be applied on the set {vi}, where velocity fields are con-

sidered for this purpose as column vectors vi ∈ R3N providing a data matrix

X̂ = [v1, . . . ,vn]. The result of diagonalizing the sample covariance matrix Σ̂ =
1

n−1
X̂X̂T is a generative model

vĉ = B̂ĉ (4.9)

with a basis matrix B̂ ∈ R3N×n′ of principal velocities, where n′ denotes the di-

mensionality/rank of Σ̂. Shape variability is explored by synthesis of novel de-

formations from this model by choosing a coefficient vector ĉ and integrating

ϕ̂ = exp(B̂ĉ) where the column vector B̂ĉ is implicitly identified with its cor-

responding velocity field v̂ for notational simplicity. An image is synthesized to

visualize the deformation by warping the template according to ϕ̂−1. Interpola-

tion along a specific direction ĉ in PCA space can be shown in an animation, for

instance to inspect a particular mode as illustrated in Fig. 4.12. Alternative vi-

sualizations to this include the below presented likelihood volumes and projected

streamlines.

Other navigation strategies based on choosing a direction ĉ in PCA space can

directly be applied to the SVF model as well, including those presented in Chap. 5

and 6. A very common way to assess principal modes of variation is to interpo-

late a single entry in ĉ over the range [−3,+3] [96]. In Chap. 5 a technique is

presented that applies a support vector machine to identify a direction ĉ in PCA

space, thereby describing shape difference between two classes of the dataset, and

interpolate along this direction. In Chap. 6 a technique for analysis of co-variation

between structures on the same shape is introduced. There, the user prescribes a

local shape deformation manually and the most likely coefficient set ĉ according

to the model is computed, revealing correlated shape changes.
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Figure 4.3: Browsing mean shapes of different phylogenetic and dietary groups allows com-
parative analysis of the impact of these factors onto anatomy. The template is highlighted.
Note that dietary mean shapes, shown in color, are extrapolated to emphasize difference.

4.3.3 Browsing group mean shapes

A common task for exploratory analysis is to disentangle the factors that determine

shape variation. Categorical factors decompose the shape ensemble into subsets,

for instance into several phylogenetic or dietary groups as in our mouse mandible

ensemble. In order to unveil the impact of each factor on shape variation, we de-

rive mean shapes of the corresponding subsets, enabling interpolation in-between

group means and the ensemble template. This way it is possible to investigate

the difference between particular groups defined by their associated factor while

considering their distinctiveness within the shape ensemble by comparison to the

template. Precomputing mean shapes of all possible (in the worst case exponen-

tially many) subsets is not practical and thus we opt for an online computation,

allowing the user to flexibly define groups on the fly. An example of browsing

group means, in combination with extrapolation, is given in Fig. 4.3.

We define a group mean ĪG for a particular subset G ⊆ {1, . . . , n} of the

ensemble in the same way as the template Ī for all individuals. The characteristic

property of a group mean is that it has on average a zero deformation to all other

images in its group, like a barycenter of mass points. We thus have to find a set of

velocity fields {v′i}i∈G that is centered and maps ĪG to each group individual Ii∈G.

This is achieved by subtracting the (non-zero) average

v̄G =
1

|G|
∑
i∈G

vi (4.10)
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from the available vi, leading to v′i = vi− v̄G. It is easily confirmed that the average

of v′i∈G is zero. From this centered set of velocity fields we can now define the group

mean similar to (4.7) as

ĪG =
1

|G|
∑
i∈G

I ′i ◦ exp(vi − v̄G). (4.11)

Unfortunately, a näıve evaluation of ĪG would require |G| image warps, which is

not feasible for interactive exploration. However, by sacrificing the correct intensity

average of the group (but not its shape!) a more efficient computation can be

devised. To this end we replace each individual image I ′i occuring in (4.11) by its

reconstruction (4.8), leading to the following approximation:

ĪG ≈ 1

|G|
∑
i∈G

Ī ◦ exp(−vi) ◦ exp(vi − v̄G) (4.12)

=
1

|G|
∑
i∈G

Ī ◦ exp(−v̄G) (4.13)

= Ī ◦ exp(−v̄G) (4.14)

With (4.14) we arrive at an estimate for the group mean that requires only a single

image warp based on the velocity field v̄G. Note that here the expensive multiple

image warps of (4.11) are exchanged with a simple arithmetic average over veloc-

ity fields included in the group G, providing a deformation that is subsequently

removed from the ensemble template Ī via a single integration of the sum given

in (4.10).

4.3.4 Volumetric reformation

Instead of showing anatomical structures in their original spatial configuration, in

a reformation the shape is purposefully deformed to aid interpretation. A classical

example is curved planar reformation [74] where tubular structures, like blood ves-

sels and colon, are “unrolled” by resampling the input image onto curved planes

following the centerline of the particular structure. The thus reformed image pro-

vides a more concise visualization and minimizes camera interaction. Our approach

does not use planar but volumetric reformation targeting the same goal. Inspired

by the work of Kretschmer et al. [93] our reformation approach is based on lo-

cal, volumetric deformations of structures of interest. But instead of using an

as-rigid-as-possible deformation model like they do, we derive velocity fields for

local transformations, that are blended. In spirit, this is very similar to the orig-
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Figure 4.4: Volumetric reformation of five regions on a mouse skull to assess otherwise
occluded structures in a single view. Efficient image warping enables realtime manipulation
and simultaneous browsing of PCA space (see Fig. 4.12). Top: Isosurface and DVR rendering
from top view without and with reformation. Bottom: Alternate views.

inal approach by von Funck et al. [144] for mesh editing based on integration of

divergence-free vector fields. The application we demonstrate is to reform a com-

plex anatomy such that otherwise occluded structures become visible and can be

investigated in a single view. This particularly reduces cognitive load in dynamic

displays of shape variability, where one can stay focused on the information en-

coded in the animation without having to adjust camera or synchronize (mentally)

between multiple views. See Figs. 4.4 and 4.12 for an example.

Since the reformation should be applicable in combination with our other vi-

sualizations, we will represent it via a SVF that can be added to any further de-

formation. To this end an arbitrary diffeomorphic transformation can be deduced

via the scaling and squaring method [13] or, more efficiently, we could make use

of a polyaffine deformation [12]. In order to preserve spatial context, we restrict

ourself in this showcase to stiff transformations and choose to setup our reforma-

tion from local rotations in a region of interest (ROI). Consider that a rotation of

angle θ < π around an arbitrary axis is given as a 3 × 3 matrix R together with

its center of rotation xpivot ∈ R3. In order to incorporate this transformation into

the integration (4.2) we take the matrix logarithm L = log(R), yielding an anti-

symmetric matrix [70], commensurate with the log-domain representation. With
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that, the velocity field of the local rotation is defined as

vrot(x) = w(x)L(x− xpivot) (4.15)

where w : Ω → [0, 1] is a weighting function that smoothly interpolates between

w(x) = 1 inside the ROI, and w(x) = 0 outside of it. In the resulting deforma-

tion the ROI is rotated, while w ascertains a continuous transition between the

rotated ROI and the non-rotated remainder of the volume. Note that eventually

the rotation vrot is added to a deformation v for combined visualization.

Simple and efficient choices of ROI weights w include spheres and bounding

boxes. For these geometries the weights can be trivially parameterized over 1D

functions, either based on the distance to the rotation center or to the planes of the

box. Let tin and tout denote the distance range for the transition between inside

and outside of the ROI, for instance 0 < tin < tout ≤ r for a spherical ROI with

radius r. For smooth interpolation of weights in the transition area tin ≤ t ≤ tout

the following standard cubic function is used

w1D(t) = 1−
(

t− tin
tout − tin

)2(
3− 2

(
t− tin
tout − tin

))
(4.16)

while weights interior t < tin are set to 1 and exterior t > tout to 0. The choice

of tin and tout controls the extent of the transition area. Its particular choice

is a trade off between global and local spatial context. Choosing a large area

increases smoothness of the transition, providing global context, but disturbs local

structures, since angle and volume preservation are abandoned in the transition

area. In our experience, the choice depends on the complexity of the structure. For

a structure exhibiting local variations, like for instance the ear bulla of a mouse

skull, a sharper transition is advised than for reforming structures with large scale

variation, like the incisor of the mouse skull.

A complex volumetric reformation is realized by adding several user specified

rotations and their ROIs as in Eq. (4.15). For m such rotations {v(1)
rot, . . . , v

(m)
rot }

the final reformation velocity field reads

vreform = v
(1)
rot + · · ·+ v

(m)
rot . (4.17)

After choosing axis and center for a single rotation, the rotation angle can be tuned

by just scaling the logarithm L→ λL where λ ∈ R controls the interpolation from

no rotation (λ = 0) to the specified rotation (λ = 1) and can even be extrapolated

(λ > 1) or inverted (λ < 0) robustly. Together with the presented raycasting
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Figure 4.5: Streamline visualization of PC2. Shown are the mean shape in blue, a displaced
version in yellow and streamlines color-coded according to integration time [t0, tmax]. Top:
tmax = 1.5 and tmax = 3.0 respectively. Bottom: Projection onto mean shape (grayscale)
provides additional information about the tangential component of shape variation.

procedure, this facilitates a user interface for interactive volume editing, where

every aspect of the reformation is adjustable in realtime. Interestingly, being able

to interpolate from normal to reformed anatomy turned out to be quite useful in

establishing (“learning”) the mental mapping between the two, which is essential

to interpret this kind of visualization.

4.3.5 Projected streamlines

A natural new opportunity for analysis of variation arises from the chosen repre-

sentation (4.2) of deformations as ODE, for which a rich set of vector field and flow

visualizations are available. A particular method, nicely displaying the now curved

trajectories, is streamline integration, that can readily be applied to our data and

has been already used for static illustration of SVFs [124]. In order to convey

specifically the surface parallel component of shape variation, we describe an ex-

tension of streamline integration that computes a projection onto an isosurface of

the template. Displaying tangential variation in this way provides an advantage

over direct visualization of a deforming shape that is affected by the aperture prob-

lem, i.e. that motion can only be perceived in direction perpendicular to contours.

An example of our final visualization is shown in Fig. 4.5.
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Figure 4.6: Streamline projection onto an isosurface (see text for details).

Streamlines are generated by evaluating the integration of a velocity field at a

monotone sequence of time points t1 < . . . < tk resulting in a trajectory of positions

x1, . . . , xk, that are connected with lines for final display. The projection of the

streamline onto an isosurface S is illustrated in Fig. 4.6. We assume that the seed

point x1 already lies on the surface. For each subsequent point xi, i > 1 on the

original trajectory a projected point x′i lying on the surface S has to be found. We

found a projection via gradient descent to be unstable on our CT images, because

intensity variation outside the anatomy is not smooth and contains singularities.

Therefore we propose a more robust two step procedure. In the first step, xi is

projected onto the tangent plane of its (projected) predecessor, defined by the

normal at x′i−1. This yields an intermediate point x′′, already closer to S, but

still an unsatisfying approximation in areas with local curvature. Therefore, in

the second step, a normal direction n′′ is estimated and a Newton iteration on

the intensity function along −n′′ is executed to find x′i as the closest point on S.

Normal estimation n′′ = ∇I(x′′)/‖∇I(x′′)‖ is stabilized in the vicinity of S by

operating on a prefiltered (smoothed) image. Let S be defined by the isovalue γ,

then a Newton iteration on f(α) = I(x′′i + αni) can be formalized as

αn+1 = αn −
f(αn)− γ
f ′(αn)

. (4.18)

It will eventually end up in a zero-crossing converging after say l steps, defining the

projected point x′i = x′′i + αlni. In our implementation we choose a fixed number

of l = 10 steps to avoid conditional branching in the shader program.

In the example in Fig. 4.5 seed points are chosen uniformly sampled over a

mesh, corresponding to an outer isosurface of the template. Projection is done

onto a surface with slightly lower isovalue, resulting in a small offset of the trajec-

tories from the rendered mesh surface, enhancing visibility. Streamlines are color

coded according to integration time, while the projection is shown in a desaturated

gradient, evoking the impression of a shadow. Note that the projection remains
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Figure 4.7: Likelihood visualization. The motion of a particular variation mode over [−3σ,+3σ] is accumulated
in a single likelihood volume, color coded from blue to yellow. Top: Direct volume rendering of likelihood
function. Bottom: Alternative visualization that provides context via contour lines and isosurface. The
transfer function is adjusted to bi-partition areas of low (yellow) and high (blue) variability more clearly.

visible also in areas where streamlines penetrate the surface and get occluded.

This is a desirable feature when investigating the tangential component of shape

variation.

4.3.6 Likelihood volumes

Likelihood volumes were previously used by Jiao et al. [71] to visualize uncertainty

of orientation distribution functions in HARDI. Caban et al. [38] introduced a

similar technique to display the probabilistic properties of a shape ensemble in

a single, static visualization. To this end they sample images according to the

probability density of the PCA model and integrate them in a single volume.

More precisely, their likelihood volume counts for each voxel how many times it

was covered by the deformed anatomy, classified by thresholding the sample images.

The result of a direct volume rendering of this is reminiscent of a motion blurred

picture, where areas of higher shape variability appear smoothed out. While the

original likelihood volume is precomputed once offline, our SVF model allows an

online evaluation. This enables to interactively derive displays of variability in user

chosen subspaces of the PCA model. Fig. 4.7 displays for instance the principal

modes of variation for an overview.

In order to derive a likelihood volume, we synthesize a discrete sample of k

velocity fields from our model along a particular direction ĉdir, ‖ĉdir‖ = 1 in PCA

space and average the correspondingly warped images. For a uniform sampling

γ1, . . . , γk of the domain [−3, 3], covering three times standard deviation, this yields

a likelihood image

Ilikelihood =
1

k

k∑
i=1

Ī ◦ exp(γiB̂ĉdir). (4.19)
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Considering that the integration exp() dominates GPU runtime, k should be small,

especially for non sparse coefficient sets where computing B̂ĉdir requires additional

texture lookups. In our experiments already a minimal sampling using k = 6

produced informative summaries at interactive framerates, without requiring any

preprocessing.

4.3.7 Implementation and workflow

Each described visual analysis method prescribes a different velocity field v, based

on user input. But instead of being restricted to deploy one method at a time, the

log-domain representation enables seamless integration of several methods at once

by simply adding their corresponding velocities. In this way, algorithm 4.1 com-

prises either PCA navigation or group browsing, both combined with a reformation

that is specified in advance; likelhood volumes are treated separately via (4.19).

Navigation in shape space is facilitated by choosing a direction ĉ using one of the

methods from Sec. 4.3.2 or interactive selection of a group G. The corresponding

animation is controlled via a scalar parameter λ, mapped for instance to a GUI

slider. On camera or parameter change, a deformation is computed via numerical

integration of velocities vfused, as detailed next. The impact of different integration

schemes on quality and performance are compared in Sec. 4.4.3.

Algorithm 4.1 Linear fusion of velocity fields

Input: Position x ∈ Ω.
Output: Velocity vfused ∈ R3.

1: Evaluate reformation vreform at x via (4.17).

2: Evaluate vmodel at x by interpolating...

...using (4.9) along direction ĉ in PCA space with λ ∈ [−3, 3]:

vmodel = λB̂ĉ

...using (4.10) between Ī and mean of group G with λ ∈ [0, 1]:

vmodel = λv̄G

3: Return vfused = vreform + vmodel.
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Direct volume rendering

For direct volume rendering backward integration is performed during raycasting at

each sample position x along a ray, resulting in a displaced position x′ = ϕ−1(x) =

exp(−vfused)(x). The remaining implementation is that of a standard raycaster for

direct volume rendering, with the only difference that instead of reading intensity

information from Ī(x) it is now read from Ī(x′). We use a single pass fragment

shader implementation, similar to Brunet et al. [33].

Vertex displacement

An alternative to the described direct space warping in volume rendering is to ap-

ply the forward deformation ϕ(x) = exp(vfused)(x) on 3D point samples x, either

representing vertices of a precomputed isosurface mesh or seed points for stream-

line integration. This can be efficiently realized by implementing algorithm 4.1

and numerical integration in a geometry shader, either displacing mesh vertices

resulting in a deformed surface, or outputting a line strip connecting intermediate

positions of the integration, resulting in a streamline.

4.4 Evaluation

In order to assess visual quality of SVF and linear approach we consider PCA

reconstruction results of the mouse mandible dataset, because these represent real

shapes with known anatomical structure, aiding the discussion. Since direct space

warping is employed, final renderings have to be compared. We benchmark on

four different views, that are typical choices in exploration and expose variation

in several directions. A baseline is created for each specimen using a high quality

image warping algorithm in advance, that is subsequently rendered with exactly

the same raycaster and transfer function as the online reconstruction. The error

of a particular rendering is measured as intensity difference to the baseline, accu-

mulated over all views. The root mean square error (RMSE) is calculated over

renderings of size 512×512, yielding a single number measuring the overall visual

quality, with higher values indicating stronger deviations from the baseline.
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Figure 4.8: Evaluation of visual quality between linear and SVF model using different
integration schemes. (See text for details.)

4.4.1 Visual quality

A summary of our benchmarks is given in Fig. 4.8, comparing different SVF in-

tegration methods to solve (4.3) against the heuristic inverse (3.7) of the linear

model. The selected integration methods all provide interactive performance; see

Sec. 4.4.3. Apparently the Runge-Kutta 4 scheme with two steps (RK4-2) pro-

duces the best results while the linear method performs worst. Choosing more

steps and/or a higher order scheme than RK4-2 does not lead to a noticeable in-

crease in quality, probably because of the used quantization; see Sec. 4.6. Overall

one can observe that increase in error in dependence of the deformation magnitude

has a substantially lower slope for RK4-2 than for the linear method, leading to the

assumption that also datasets with even larger deformations than the chosen one

can be treated with the proposed method. Notably a single Euler step outperforms

the linear method, even though both have identical computational complexity.
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Figure 4.9: Additional examples of apparent anatomical artifacts produced by the linear
method that are successfully resolved in the proposed SVF approach. Heat maps tell the
absolute 8-bit intensity difference to the baseline, inset numbers denote RMSE.

Discussion of artifacts

Detailed examples of the benchmark are shown for Mer-Ger and Pachyuromys

in Fig. 4.1 and Oxy-Sca and Deo-Ura in Fig. 4.9. On a first glance the figures

illustrate that both, linear and SVF method, produce renderings matching the

baseline at coarse scale, although the RMSE shows about a factor of 2 increased

quality of the SVF over the linear method. Closer examination in the areas of

higher local error in the linear reconstruction reveals apparent anatomical differ-

ences in the depiction. We can distinguish between two typical kinds of errors in

the linear approach. In Fig. 4.1 at locations B and C approximation errors are

visible prominently on contours of shape structures, that do not match the ones

of the baseline. This can partly be attributed to the errors accumulated in the

linear combination of the displacement fields in the PCA reconstruction, similar to

the motivating example in Fig. 4.2, and partly to the approximation error of the

heuristic inverse. Another, even more severe class of error occurs in areas of locally

varying deformation, as shown in the closeups at locations D-F in Fig. 4.1 and in

additional examples in Fig. 4.9. In such less smooth areas of the deformation the

heuristic inverse produces severe artifacts that, although locally confined, unfor-

tunately resemble plausible (but non-existent) anatomical structure, as confirmed

by the morphometric expert of our team. One could say that the linear method

“hallucinates” virtual anatomical structures that render any analysis based on this

visualization at least uncertain. Even datasets not exhibiting strong, global defor-

mation may still feature locally varying changes, that lead to the second class of

errors when rendered using the linear approach.
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4.4.2 Comparison of PCA spaces

By replacing the usually employed displacement vector fields with velocity fields

in statistical analysis, the impact on the particular PCA space is of interest. In

general, different PCA spaces are not compatible, but nevertheless we can observe

that in our case the PC coordinates of both models are very close, as illustrated

in Fig. 4.10. This of course results from the fact, that both inputs, displacement

and velocity fields, encode the same deformation. Actually the displacements are

gained by integrating the corresponding velocity field. Consequently it is not

surprising that the principal modes of variation match each other closely. In a

scatter plot matrix, the greatest difference is visible in mode pair PC4/5, that is

explainable by very close eigenvalues leading to a rotation, as shown in the inset in

Fig. 4.10(b). Overall, the two models differ only marginally in their PCA spaces,

but much more in their visualization of synthesis results.

(a) (b)

Figure 4.10: Comparison between PCA spaces for SVFs and linear displacement fields shows
only a marginal difference for rodent mandible dataset. (a) Scatter plot of first two modes,
where same shapes in both models are connected by a line and the region covering two
standard deviations is marked. (b) Difference measured as rotation angle between PC basis
pairs. The average rotation angle of 3.04◦ reflects high agreement. Inset scatter plot shows
PC pair with greatest discrepancy.
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4.4.3 Performance

Since we aim at an interactive system, performance is obviously a critical point.

Fig. 4.11 shows an evaluation in this regard for navigating the PCA shape model.

Because integrating a linear combination of principal modes requires many texture

lookups, the navigation scenario is a computationally representative test case. The

diagram shows that even in the worst case, all integration methods (taking always

two steps in this evaluation) provide interactive performance at a minimum of 4

frames per second (FPS). In order to achieve higher framerates during user in-

teraction and animation, for instance when manipulating coefficients or adjusting

camera, we switch in this situations to a preview rendering at a lower resolution

of 256×256. Please note that the just described worst case behaviors only occur

when considering all modes of our dataset at once. For many relevant application

scenarios much fewer modes are sufficient, because most of the variability is con-

centrated on few modes, e.g. in the rodent mandible dataset 90% of variability is

explained by the first six modes. In some situations, when dealing with moderate

variations, the Midpoint scheme is an acceptable trade off between efficiency and

quality.

The dominating factor on performance is the number of integrations (with

according texture lookups) executed per fragment, illustrated in Fig. 4.11 on the

right hand side. A potential optimization would be to avoid tracing most of the

empty space by replacing the currently used very coarse bounding box by a much

tighter bounding geometry, say a precomputed isosurface mesh of the template,

that is warped very efficiently in the geometry shader as described in Sec. 4.3.7.

All tests were undertaken on a GeForce GTX 780 graphics card, rendering to

a framebuffer texture of size 512×512, averaging FPS over 10 seconds for each

integrator / number of modes combination to reduce CPU and operating system

side effects, limited at 50Hz marking realtime performance.

4.5 Visual analysis of rodent anatomy

In order to evaluate the usefulness of the presented visual analysis methods, a small

case study was performed with a morphometric expert of our team. In advance,

two ensembles of rodent anatomy were chosen, both with extrinsic factors with

partly known and partly unknown impact on shape. One is a set of mandibles, a

morphologically relatively simple structure, from diverse rodents, e.g. old and new

world mice, gerbils etc., displaying a great variability based on different degrees
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Figure 4.11: Rendering performance for quality and preview framebuffer size, plotted against
number of terms in linear combination (measurement limited at 50Hz). Heat map shows
number of integrations per pixel.

of relationships and diet types. The other comprises a set of skulls from a single

species, with the skull having a considerably larger complexity than the mandible.

The two ensembles were analyzed in two separate sessions of each about 30

minutes, not including time for explaining the visualizations and user interface.

Overall, the visualization used most of the time was to navigate single modes of

variation. This is not surprising since it comes closest to the usually employed

static illustrations of mode extrema. In comparison, the dynamic visualization

was described to provide a “better understanding” in the sense that the particular

variation becomes more obvious, especially for smaller structures. For the mandible

ensemble, most of the time was spent browsing group means, which was directly

accessible to the expert, who appreciated that groups could be defined interactively

and used this feature intensively. A small hindrance was that group selection

required to manually look up additional information on phylogeny. A linked view

showing a taxonomy tree for interactive selection would provide a more intuitive

browsing interface, but is outside the scope of our present work.

4.5.1 Inspection of skull ensemble

For exploration of the skull ensemble, no hypotheses were assumed a-priori, and

only PCA navigation was employed, illustrated in Fig. 4.12. The first mode was

quickly related to shape variation due to size (allometry), observing the typical

difference in proportions between extent of brain case and length of snout, i.e.

larger brain case and shorter snout for smaller specimen and vice versa. Further

exploration revealed eventually a geographic signal in third and fourth mode, after
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switching back-and-forth between different modes. In advance of the session, the

anatomic reformation was shown to the expert who found especially the animated

interpolation between normal and reformed anatomy helpful to understand how

to read the latter. The reformed view was mostly used for overview, for instance

to decide upon which structures to consider for further inspection. It served well

to detect presence of variation at relevant structures like the two ear bullae, that

otherwise would have required at least two different camera views. For final in-

spection an unreformed view was preferred, providing the correct morphological

context required for interpretation.

4.5.2 Analysis of mandible ensemble

The aim of the mandible case study was to verify if known hypotheses about

impact of diet and phylogeny could also be observed in our volumetric model, which

could actually be confirmed by browsing group means as illustrated in Fig. 4.3.

Differences in the respective signals are clearly visible for the two phylogenetic

groups. While the Gerbillinae (Phylo 1) are known to have a unique manidble

morphology (see also Fig. 4.10(a), Mer-Ger and Pachyuromys) and thus display a

stronger phylogenetic signal (greater similarity along the row), the second group

(Phylo 2) shows a stronger dietary signal (stronger similarity along the columns).

Between carni- and omnivore group mean, one can see the characteristic difference

in height of the central structure, potentially attributed to different mechanical

demands in chewing different kinds of food.

At the beginning of the session likelihood volumes as in Fig. 4.7 were shown

as overview. Even though not being accustomed to this kind of visualization,

the expert could directly relate to it, and discovered an interesting correlation

at the three rear processes in PC2, closely related to the dietary signal. While

the overview does not inform on the direction of the observed correlation, this

becomes apparent when displaying streamlines as in Fig. 4.5. Noteworthy, the

expert recognized candidate regions for morphological modules [88], delineated by

areas of different flow characteristics in tangential variation (see also Chap. 6).

This is a promising insight that awaits further investigation.
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Figure 4.12: Browsing PCA shape space. Columns show the mean shape (center) deformed
according to the principal mode of variation (PC1) synthesized for different standard devia-
tions σ1. Color coded is deformation strength perpendicular to the surface where blue/red
indicates shrinkage/expansion. Note that reformation and PCA synthesis are applied simul-
taneously, while only the latter is color coded. (a) Reformed anatomy, (b) original anatomy,
(c) alternate view on original anatomy.
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4.6 Discussion

Limitations

Two main limitations of the presented approach arise with respect to scalability

and representation of discontinuous mappings. Sec. 4.4.3 shows that our current

implementation stays interactive when combining up to 15 velocity fields during

integration. The factor limiting GPU performance here are the number of texture

lookups involved. To circumvent this bottleneck, additional strategies are required;

for instance based on a multi-pass approach or sets of precomputed sums. GPU

memory can become another limiting factor in the view of large population studies

that cover several hundred individuals. However, thanks to smoothness of veloc-

ity fields and lower dynamic range compared to displacements, downsampling in

resolution and quantization can be effectively applied to reduce memory consump-

tion. In our experiments velocity fields were reduced from 2002×400 at 32-bit

(183MB/field) to 1002×200 at 8-bit (6MB/field) without significant loss in quality.

Still, further investigation of optimal interpolation schemes for downsampling and

additional compression methods is appropriate. For compression it should be pos-

sible to exploit the fact that most of the ensemble variance is concentrated on a

few principal modes, irregardless of sample size. A limitation inherent to the SVF

approach is that it can not model discontinuous mappings nor changes in topology.

For that purpose a combination of our approach with the discontinuity maps of

Correa et al. [47] seems a promising endeavor.

Future directions

The presented methods provide a starting point for interactive analysis of shape

variation in presence of large deformations. So far the focus was on efficient syn-

thesis of deformed images and the shown visualizations are prototypical and can be

improved in many regards. Subject to future work are custom-tailored adaptions

that guide the user to deformations of interest and convey specific local aspects of

variability. A related issue in this regard is to assess model quality. To this end

it is planned to enhance the presented visualizations to explicitly take registration

uncertainty into account. For instance, the streamline visualization could help to

uncover tangential drift that indicates a suboptimal group wise registration re-

sult [52]. Another aspect not considered here is that variation occurs at different

scales. In this regard it would be interesting to see our methods extended to the

hierarchical polyaffine model of Seiler et. al [123]. Due to the complexity inherent
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in such a hierarchy, interactive displays of variability at multiple scales provide an

ideal exploration vehicle.

For group browsing an efficient computation of group averages has been devised.

It is yet unclear how this procedure can be generalized to also estimate group

covariances on the fly; that would allow to interactively browse complete PCA

spaces of each and every group.

We also see potential applications of our interactive SVF approach beyond

shape analysis. For instance, image registration algorithms could be monitored

during runtime using our fast image warping method, enabling debug visualiza-

tions for parameter tuning in the spirit of RegistrationShop [128], adding diffeo-

morphisms to its class of transformations. Concerning 3D modeling it would be

interesting to see if the easy and efficient modeling of weighted local rotations,

used in our reformation technique, does provide benefits for interactive editing of

3D volumes [42, 32] and meshes [144].

4.7 Conclusion

In this chapter we presented an efficient algorithm for 3D image warping in a GPU

raycaster, applied to visualize statistical deformation models, based on the theory

of stationary velocity fields. Albeit simple in implementation, it improves visual

quality significantly compared to previous work, that relies on a linear model of

displacements and a heuristic algorithm for image warping. In our approach, image

warping is naturally combined with a non-linear deformation model of diffeomor-

phisms, linearized in log-domain via SVFs. We showed that this combination

extends the design space for visual analysis of anatomic variability and introduced

a novel technique for targeted browsing of subgroups of an ensemble in relation

to extrinsic factors. A comparative study on rodent mandibles and a population

study on mouse skulls, performed by a morphometrics expert of our team, attested

the applicability of the presented methods.
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Chapter 5

Visual analysis based on prior classification
knowledge and regions of interest

For a semantically steered exploration of shape space we identify in this chap-

ter two prominent objectives for visual investigation. The first objective is auto-

matic detection of distinguished shape variations between anatomically different,

a-priori known groups of individuals. The second is to take into account and ex-

ploit expert knowledge about relevant regions on the shapes. In order to meet the

first objective, we advocate the use of dimensionality reduction methods combined

with a parameterization defined on user specified classifications. This idea was

already successfully applied in data-driven reflectance models and also turns out

to be valuable in the context of morphometry, as it allows for efficient assessment

of characteristic shape differences between groups. The second objective can be

achieved by an appropriate weighted linear analysis that facilitates navigation to

sub-spaces in which local shape variations appear more pronounced with respect

to a user defined region of interest.
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5.1 Introduction

In this chapter we utilize semantic concepts to facilitate visual analytics of shape

spaces built from biomedical image ensembles. We present two interaction meth-

ods to guide the exploration of shape space semantically. These methods extend

related existing approaches as summarized schematically in Fig. 5.1. The first

method extracts an interesting direction (trait vector) in shape space describing

the characteristic shape change between two groups, see Fig. 5.2 for an example.

In the second method relevant sub-spaces are considered corresponding to regions

of interest on the shape. These methods prove especially valuable when confronted

with conceptual difficulties in visual analysis of high dimensional shape spaces as

they emerge especially for 3D image data. In order to enable semantic-driven inter-

active exploration in this high dimensional setting, efficient techniques to compute

the underlying statistical deformation model as outlined in Chap. 3 are employed.

The semantically steered visual analysis is demonstrated on a datasets of rodent

mandibles, investigating shape differences with respect to subfamily, genus, diet

and size. First promising results in the context of morphometrics are described.

(a) Previous approaches
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(b) Proposed approach
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Figure 5.1: Schematical workflow. (a) In previous shape space exploration systems such
as [25, 9, 10, 129, 37] interaction is restricted to the visualization stage. (b) The approach
presented in this chapter features two novel methods (yellow arrows) that facilitates an
interactive feedback to the model stage.



5.1. Introduction 83

Figure 5.2: Smooth interpolation in shape space along a semantic trait vector. The visualization shows the
characteristic shape difference between two subfamilies in the Gerbillinae-Murinae dataset. Top row: Isosurface
rendering, warmer colors (orange) indicate difference to the mean shape (blue). Bottom row: Direct volume
rendering showing internal structure changes.

5.1.1 Semantic concepts for shape space exploration

We identified two kinds of basic semantic information in morphometric studies.

The following two observations are not only basic requirements of standard visual

analysis techniques, but will also be of central importance in the exploration of

complex shape spaces arising from 3D image data:

S1 Knowledge about classifications of individuals into different groups, e.g. ac-

cording to biological taxonomy such as the phylogenetic tree or other factors

such as diet, size or ecological factors. A known classification into two classes

or a scalar labeling (e.g. size in mm) will be used to compute a corresponding

direction in shape space.

S2 Prior hypotheses about the importance of specific areas on the shape for a

specific study. Restricting exploration to a sub-space of shape space cor-

responding to an important area enables the investigation of local shape

covariances and will make smaller shape details accessible.

The idea of how to include classification knowledge (S1) is inspired by the work

of Matusik et al. [102], who adopt user supplied classifications for a meaningful

parameterization of the space of reflectance functions. We transfer this idea to the

domain of statistical shape analysis. Relevant sub-parts of shapes (S2) have been

considered in the context of shape analysis to the best of the authors knowledge

only for non-interactive applications so far, see Sec. 5.2.
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5.1.2 PCA based exploration of high dimensional datasets

There are conceptual differences in the way the different results of principal compo-

nent analysis applied to low dimensional landmark and high dimensional volume

datasets need to be interpreted. The first problem is due to the higher dimen-

sionality of the input data. For landmark data it is often sufficient to examine

the principal axes of the PCA to find correlations between shape and investigated

trait. However, for higher dimensional data a PCA is often ambigious and the

correlation under investigation is not captured by a single axis but spread over

several axes (see Sec. 2.3.1 in [162] for an illustrative example). This renders ex-

amination of warps along the principal axes alone inadequate. A solution would

be to consider arbitrary directions and not only principal axes. Since exhaustive

manual search for meaningful directions is not effective (and rather prohibitive)

one could use some additional information about the investigated trait to com-

pute a corresponding direction automatically. The second problem arises from the

fact that in the high dimensional setting we have much fewer input shapes than

dimensions in shape space (whose dimensionality is the number of voxels in each

volume). However, the dimensionality of the PCA model is limited by the num-

ber of samples, i.e. input shapes. Accordingly smaller shape variations which are

not captured in this lower dimensional PCA model are lost and not accessible.

A trivial observation here is that if one performs a PCA on a part of the initial

volume, shape variation with respect to this part would be captured in more detail

(at the cost of omitting some global characteristics). Again, manual inspection of

all possible volume partitionings is prohibitive.

5.2 Related work

Related works for navigating shape spaces have been pointed out in Chap. 2.

The idea to build a statistical shape model based on a weighted analysis was

already presented by Blanz et al. [24] for 3D meshes. Although the authors note

that the weights may reflect an importance assigned to specific feature point, the

weights are chosen proportional to measurement noise to achieve a robust surface

reconstruction.

Busking et al. [37] presented a first interactive system for shape space explo-

ration of a set of registered 3D meshes. Similar to our approach, smooth interpo-

lation of shape changes along linear paths in shape space can be performed. In

contrast to our approach, there is no possibility of including semantic knowledge
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in the course of an exploration, since in [37] the shape model stays fixed.

Capturing small scale shape variations for detailed shape models built from

small sample sets has initially been considered for 2D contour data in the litera-

ture. Davatzikos et al. [51] develop a hierarchical shape model using the wavelet

transform to partition the contour simultaneously in space as well as in frequency.

Alcantara et al. [8] propose a special localized PCA which not only optimizes the

explained variation per component but also its sparsity and local connectedness. A

similar idea but slightly different technical realization using sparse PCA is followed

in [127]. All these approaches have in common that they automatically partition

the shape to optimize the model and do not take into account semantic informa-

tion. In contrast to this we rely on a user selected region of interest on which basis

we adapt our shape model using weighted PCA.

5.2.1 Canonical variate analysis

A widespread method in morphometrics to separate known groups is canonical

variate analysis (CVA). CVA can be considered as a rotation of the PCA principal

axes [39] such that the first rotated axis maximizes the ratio of between- to within-

group variation. Therefore the efficient PCA techniques presented in this work also

apply for CVA. Nevertheless for reasons of robustness and improved separation

quality we rely here on support vector machine classification to separate groups

and derive trait vectors.
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5.3 Weighted analysis of a region of interest

The goal of this section is to include information about the importance of specific

regions on the shape into the computation of the SDM introduced in Sec. 3.5.

The resulting weighted SDM will provide a basis of eigenmodes which explains the

variability of the specific, important regions.

We assign to each voxel i = 1, . . . , N an importance weight ψi ∈ [0, 1]. This

weighting is derived from a region of interest (ROI), which is selected interactively

in a visualization of the template image. A hard threshold is applied by setting

ψi =

1 if voxel i is inside ROI

0 if voxel i is outside ROI.

Choosing a hard threshold is equivalent to performing a local PCA restricted to

the selected region. More general weighting functions can easily be defined in this

setting, e.g. applying a smooth transition near the border of the ROI. Moreover,

different importance weights can be assigned to separate regions of the shape,

reflecting semantic prior assumptions about relative importance of these specific

parts on the undertaken morphometric investigation.

In order to carry out weighted analysis, the SDM is re-evaluated using a

weighted PCA. For this purpose we define a diagonal 3N × 3N weighting matrix

Ψ = diag(ψ1, ψ1, ψ1, . . . , ψN , ψN , ψN), where each weight is repeated three times

to account for the 3D displacement vectors encoded in the columns of X. Accord-

ingly, the spectral decomposition of the smaller scatter matrix for the weighted

PCA is now given by

XTΨX = VΨS2
ΨVT

Ψ. (5.1)

and is computed efficiently in the same way as described before in Sec. 3.5.5.

Note that for synthesis we still reconstruct the principal modes UΨ using the

original, unweighted deformation fields

UΨ = XVΨS
− 1

2
Ψ . (5.2)

This ensures that complete individuals are synthesized and not only partial anatomy

inside the ROI.
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5.4 Robust classification using machine learning

To integrate classification knowledge in the exploration process, we will employ

machine learning methods to automatically compute a trait vector in shape space,

pointing in the direction of the greatest difference between two groups. By adding

or subtracting multiples of this trait vector to the mean shape, the corresponding

shape difference can be visualized. See Fig. 5.2 for an example. The trait vector

is computed in the same way as Matusik et al. [102] computes trait vectors in the

space of reflectance distribution functions.

We consider here binary classification of the dataset into two groups given in the

form of a label vector l ∈ {−1,+1}n. A multitude of algorithms exists for learning

the classification, and we choose to use a linear Support Vector Machine (SVM)

here (see [49] for an introduction). The advantages of using a SVM in our setting

are that it produces reliable results also for small sample sets, exhibits a maximum

margin criterion which stabilizes the trait vector direction in our experiments, and

can also separate groups which are not strictly linearly separable by using a soft

margin criterion.

For efficiency, the SVM classifier is trained on the rows of the smaller ma-

trix V. Recall that the j-th row contains the coefficients corresponding to the

j-th displacement field in reconstrution of the eigenmodes (3.31). Note that we

might also use the reduced matrix Vk for training, which contains only the first

k eigenvectors. This can be more robust to misclassification due to uninformative

or noisy parts of the eigenmode spectrum. In our application such a problematic

behaviour wasn’t observed, but this could be of relevance for other datasets.

As a result the linear SVM classification returns a separating hyperplane in the

n-dimensional V-space, given by its normal w ∈ Rn and its distance to the origin

b ∈ R. The classification function for a point x ∈ Rn in the row space of V is given

by the sign of its distance to this hyperplane, sgn(x ·w + b). In order to recover a

deformation mode ϕw = Id + uw corresponding to the learnt direction w, we have

to project w into the column space of V and reconstruct a displacement vector

field uw from this, i.e.

vw = Vw and uw = Xvw. (5.3)

Based on the trait vector, we can also compute a new linear model where the

modes are chosen orthogonal to the trait vector while further fulfilling the PCA

criterion to maximize the explained deformation variance per mode. This new
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model can be derived by projecting X into the subspace orthogonal to uw by

X⊥ = X− uwuTwX

and performing PCA on X⊥. Note that by this procedure the influence of the

shape difference between the two groups is greatly reduced in the resulting model.

5.5 Semantic exploration

Actual exploration of shape space is facilitated in a dynamic visualization. To this

end, deformations are synthesized from the SDM as described in Sec. 3.5.2 and

applied to the mean shape, which in turn is displayed using conventional volume

rendering techniques [33]. To perform visual analysis of shape space the proposed

methods are integrated in the following ways.

For assigning importance weights to specific parts of the shape, a simple inter-

active selection mechanism can be used to specify the ROI. Subsequently a new

SDM is computed using weighted PCA, and the exploration can be continued,

constrained to the corresponding sub-space.

Given a classification into two groups, a corresponding trait vector ϕw is com-

puted. To visualize the dominant shape difference between the two groups, we

synthesize images I = Ī ◦ αϕw, where α ∈ [−1, 1] is interactively adjusted to pro-

duce a smooth animation like the one illustrated in Fig. 5.2. Additionally, a new

SDM can be derived by projecting into the sub-space orthogonal to ϕw.

In the course of an exploration session, ROI and trait vector can be used in

combination. Applying the respective sub-space projections iteratively, a new way

to navigate in shape space emerges. This navigation is not restricted to a fixed

shape space representation, but can be used to narrow down the exploration to

sub-spaces, which provide a more compact representation of the specific shape

covariation under investigation.
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Figure 5.3: Prominent structural differences in Gerbillinae-Murinae dataset.

5.6 Visual analysis of traits in Gerbillinae and Murinae

In this section we demonstrate the proposed trait-based navigation by exploring

the shape space of the Gerbillinae-Murinae dataset described in more detail in

App. A. The dataset is chosen from two closely related subfamilies, namely mice

and rats (Murinae) and gerbils and jirds (Gerbillinae). Both groups contain species

that vary in diet as well as in size, thus enabling analyses of shape changes based

on different factors. The analysed traits are in particular:

Trait 1: Subfamily Murinae vs. Gerbillinae

Trait 2: Genus Apodemus vs. Mus

Trait 3: Diet herbivore vs. carnivore

Trait 4: Size

Note that shape differences between Gerbillinae and Murinae subfamilies are quite

characteristic as can be seen for instance by overlaying the respective mean shapes

of each subfamily in Fig. 5.3. Particular strong differences are visible at the back

of the mandible in location and shape of the upper coronoid and the lower angular

process. These processes seem to tilt outwards from Murinae to Gerbillinae, as

can be seen from the posterior view.

In the following the visual exploration of each of the aforementioned traits are

described.
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(a) PCA without ROI weighting

(b) Weighted PCA according to selected ROI

Figure 5.4: Comparison of global and weighted analyses of subfamily classification based on
scatter plot matrices of the first 6 PC’s which capture over 65% of the shape variance, see
inset in (a). This is an example where the proposed ROI selection method provides a more
concise PCA model better suited for visual analysis. (a) In global analysis no combination
of PCs separate the subfamily classes. (b) A weighted analysis provides clear subfamily
separation along the third PC (green line). The spherical ROI (yellow) is choosen to include
the three rear mandible processes which are supposed to be important shape features in
discerning the subfamilies.
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Trait 1: Subfamily Murinae vs. Gerbillinae

An initial visual exploration of PCA plots based on all specimens shows that none

resulted in complete separation of the two subfamilies, see Fig. 5.4a. After ap-

plying a ROI selection on the posterior part of the mandible (inset in Fig. 5.4b),

the third PC calculated according to this selection provides a good separation.

Additionally, a relatively good separation of the subfamilies is apparent in a com-

bination of first and third PC for the complete dataset (Fig. 5.6), which is also

reflected by the computed trait vector. The hyperplane normal to the learnt trait

vector ϕtrait1 separates both groups without error, i.e. a cross validation shows no

misclassification. Fig. 5.5 illustrates the shape changes as captured by the learnt

trait vector via a smooth interpolation from the mean shape in directions of Muri-

nae and Gerbillinae. The trait vector features most of the expected differences,

mainly in the posterior part of the mandible, where the three processes display

characteristic deformations, and a less well known shape difference in the incisor.

Direct volume rendering provides additional information on changes in the roots of

the molar teeth, as illustrated in Fig. 5.7. The roots tend to be longer and slightly

more slender and point further downwards in the Gerbillinae while they are shorter

and more bulky in the Murinae, where the molar roots also point downwards and

backwards (highlighted in the close-ups), except for the anteriormost root of the

first molar. Differences in the cheek teeth of the two subfamilies are actually more

pronounced in the roots than in the crowns.

Figure 5.5: Smooth interpolation along trait vector ϕtrait1 learnt from classification into
Gerbillinae and Murinae (posterior view). An isosurface is shown color-coded according
to local deformation strength. For comparison the respective mean shapes per group are
depicted to the left and right.
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Figure 5.6: PCA plot of best separating axes for analysis Gerbillinae vs. Murinae. The
learnt trait vector ϕtrait1 is shown (green arrow) together with its separating hyperplane and
margins (green lines).

Figure 5.7: Volumetric shape difference in roots of molar teeth as captured by the subfamily
trait vector ϕtrait1. Part of the root of the anteriormost molar is highlighted (yellow contour).
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Trait 2: Genus Apodemus vs. Mus

Given that the dataset used here is extremely heterogeneous we also ran an analysis

using only a small, much more homogeneous subset. It consists of the members

of the genera Apodemus and Mus, which differ little within and among groups.

Nonetheless it is possible to separate the genera as visible in Fig. 5.9. The learnt

trait vector ϕtrait2 is visualized in Fig. 5.8. It shows the typical slight elongation in

Apodemus vs. the shortening in Mus and an additional slight shift in the position

of the molar roots from rather vertical in Mus to slightly backwards inclined in

Apodemus.

Figure 5.8: Trait vector ϕtrait2 for genus Apodemus vs. Mus.

Figure 5.9: PCA plot of best separating axes for analysis Apodemus vs. Mus. The learnt
trait vector ϕtrait2 is shown (green arrow) together with its separating hyperplane and margins
(green lines).
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Trait 3: Diet

The following analyses are restricted to the murine species, as in this subgroup

at least three samples for each character state are available. We start with an

analysis of dietary effects, using only animal-eating (carnivorous) and plant-eating

(herbivorous) species, because omnivory is a diet mixed of carnivory and herbivory

and would thus only add noise to the results. Again the classification results in

a trait vector (shown in Fig. 5.10) that corresponds to shape changes matching

the general observations. For dietary effects these are an elongated mandible in

carnivorous murines and a short, higher one in herbivores. Teeth lie closer to the

articular process in the latter, and the incisor describes a tighter arc of a circle.

Figure 5.10: Traits 3 and 4. (Top:) Trait ϕtrait3 for diet herbivore vs. carnivore. (Bottom:)
Trait ϕtrait4 for smallest vs. largest individuals.

Trait 4: Size

Finally we investigate allometric effects by using the smallest and largest species.

Fig. 5.10 shows the according visualization for trait vector ϕtrait4. In this case,

which also achieves a good separation of the two groups, relatively complex shape

changes can be observed. From small to large species the molar teeth row becomes

relatively smaller, the tooth roots more narrow, the arc of circle of the incisor

smaller, and the angular process shorter and it moves forward, to name just a

few. It is already known that the size of the molar teeth row changes less with
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size changes of the whole mandible; the other characters await investigations with

larger sample size to validate their generalization.

Summary of visual analysis

Altogether the results match those observed for usual 3D landmark analyis (Schunke

& Tautz, in prep.), which also showed a good separation of Gerbillinae and Muri-

nae, carnivorous and herbivorous as well as large and small species. Although the

differences observed here tended to be less pronounced than those for the set of

twenty landmarks, the traits gave valuable additional information of the complete

shape changes also in between extreme points. Additionally it was possible to

analyse data inside the mandible, namely the tooth roots, which already provided

some promising observations that need further investigation.

5.7 Conclusion

We showed in this chapter that by using efficient linear models to describe shape

space, interactive visual analysis based on additional semantic information can be

conducted on dense deformation models retaining the full information as acquired

in medical imaging. However, due to the additional information of this deforma-

tion model and its higher dimensionality compared to landmark based models,

characteristic traits may not coincide with principal component axes, as is often

the case in landmark analysis, and the searched trait is spread across several PCs.

Therefore we considered an optimal linear combination of the PCs to extract the

trait in question, which is found in a robust way via a support vector machine.

Since shape spaces are inherently non-linear, linear models tend to capture

only the prominent shape variations reliably. To face this concern we proposed

and implemented a method to derive linear models for sub-spaces of a shape space

in order to obtain a more reliable representation of shape variability.

The usefulness of each of these methods was demonstrated on a dataset of

rodent mandibles, including one combined application for trait 1 of classification

and ROI. We are convinced that, for larger datasets exhibiting many more complex

volumetric structures, the advantages of a combined application of both methods

will become most apparent. Such a complex example displaying many volumetric

structures is the rodent skull (see Fig. 5.11), which is considered for further studies.

In summary we presented in this chapter two methods for exploiting semantic

knowledge to facilitate a meaningful visual analysis of morphological shape spaces.
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Figure 5.11: Examples of volumetric structures in rodent skull shown on a CT slice of a
Rattus norvegicus individual: ear ossicles (red), cochlea (blue), semicircular canals (green),
bulla (yellow).

These allow us to integrate relevant expert knowledge in form of classification,

e.g. according to biological taxonomy, and to highlight regions of interest on the

shape. We demonstrated the usefulness of these methods on a dataset of rodent

mandibles. Further evaluation studies are subject to future work.
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Chapter 6

Visual analysis of anatomic covariation

Visualization is an essential component of understanding
anatomic variability. Effective visualizations provide feedback for
verifying the various algorithmic steps in computing variability,
and offer flexible means of displaying and interacting with the
data so as to form and refine hypothesizes about the structure
and origins of anatomic variability.

— Gordon L. Kindlmann et al.[81]

Gaining insight into anatomic covariation helps the understanding of organismic

shape variability in general and is of particular interest for delimiting morpholog-

ical modules. Generation of hypotheses on structural covariation is undoubtedly

a highly creative process, and as such, requires an exploratory approach. In this

chapter we propose a generalization of the known anatomic covariance tensor.

While the latter is a direct representation of the local covariance structure at a

particular point, the methods introduced in this chapter encode the covariation in-

between different points on the shape, a concept referred to as interaction for better

disambiguation. A novel interaction operator, interaction tensor and overview ten-

sor facilitate exploration of interaction at different levels of detail, stimulating rapid

formation and (qualitative) evaluation of hypotheses. Considering interaction as

a generalized decomposition of covariation, the visualizations of this chapter show

an unprecedented detail in representation of covariation.

An exemplary case study about modularity of the rodent mandible is con-

ducted, comparing the proposed approach against state-of-the-art methods. Re-

sults substantiate the effectiveness of our interactive visualization in producing



98 Chapter 6. Visual analysis of anatomic covariation

module hypotheses that are in agreement with recent morphological theories, but

provide a much more detailed model of covariation and interaction.

6.1 Introduction

In this chapter we are particularly concerned with shape covariation and novel

visual analytics methods to reveal the often complex interdependency between

specific structural parts and the shape as a whole. In biology and anthropology

the concept of morphological integration and modularity, particularly of skull and

mandible, has gained increasing interest over the last decade, see for instance the

work of Klingenberg [88] and references therein. Differences in covariation within

and between certain parts of a morphological structure are described, aiming at a

better understanding of morphology in general as well as of underlying develop-

mental, functional, or genetic constraints.

At the core of this chapter stands a new covariance tensor, the interaction

tensor, which is derived from the model-based deformation framework of Blanz et

al. [24]. The introduced tensor summarizes covariation between a specific point

and the remainder of the shape and thus generalizes the anatomic covariance ten-

sor used by Kindlmann et al. [81]. A key observation made here is that for linear

shape models, that are probably the most common type in morphometric studies,

the covariation between a point p and all other points q on the shape is a lin-

ear relationship itself, expressed as interaction operator below. While the latter

comprises all details of interaction, i.e. covariance between two points, a second

not so obvious observation will lead us to another abstraction. It will allow us

to summarize relevant aspects of all interaction tensor fields in a single so called

overview tensor field. Based on that, an automatic segmentation into anatomically

meaningful parts is possible, providing an additional kind of overview.

Although linear analysis yields efficient visualization algorithms for a single

interaction tensor field, there are as many such fields as voxels in the dataset.

Even for image data as small as 643 voxels, manual examination of all possible

tensor fields becomes prohibitive. On the other hand, a single such tensor field

is already a simplifying summary of the underlying linear relationship. Therefore

additional (visual) navigation strategies are required.

Following Shneiderman’s information visualization mantra “overview, zoom &

filter, then details-on-demand” [126] we provide three different visualizations with

decreasing level of abstraction. By going forth-and-back between the different

visualizations the massive amount of detailed information on covariation can be
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Figure 6.1: The proposed visual analysis of covariation is performed on three levels of abstraction, demonstrated
on a mouse mandible: A static overview (left) provides guidance to candidate points exhibiting non-trivial
covariation patterns with the remaining shape. For a particular point p a focus visualization (center) reveals
the underlying covariation pattern to p. By interactively dragging around p, details of the correlated shape
variation can be investigated in a dynamic animation (right), uncovering also specific directional dependencies
of covariation.

effectively investigated. The complete pipeline is illustrated in Fig. 6.1. An initial

overview visualization highlights strength and directional dependency of covaria-

tion associated with certain areas on the structure. Thereby it provides guidance to

potentially interesting substructures for further exploration. Each interaction ten-

sor field of a candidate region can in turn be looked at in greater detail in a second

glyph visualization. This gives insight into the overall strength and proportions

of covariation between a candidate region and global shape, but omits directional

dependencies. To examine the latter at the level of individual shape variations,

a third visualization provides the possibility to perform model-based deformation

interactively in a click-and-drag style, inspired by recent works in facial animation.

In combination, the presented three visualizations provide an intuitive and in-

formative interface to visual analysis of shape covariance. Results on our model or-

ganism, the rodent mandible, document its utility. Note that the rodent mandible

is a particularly suitable choice for demonstration, because it received consider-

able attention in research on biological modularity in recent years. This allows us

to perform a comparison of our findings against results from literature that were

achieved with state-of-the-art methods.
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6.2 Related work

6.2.1 Interactive approaches to investigate anatomic covariance

In the last years a rich set of interactive visual analysis tools for landmark data and

linear shape models has been released [87, 37, 107, 94, 147]. All of these systems

feature a PCA model for exploration, while some additionally provide support for

canonical variates analysis (CVA) and regression tools like partial-least squares

(PLS). CVA can be used to analyze covariation with respect to specific groups

of individuals in the dataset, providing an orthogonal parameter space similar

to PCA for exploration. A PLS regression can be calculated between two a priori

selected landmark groups, i.e. shape parts, to visually analyze covariation between

them in a 2D correlation plot [87, 147]. Once a hypotheses on co-varying groups

of individuals or landmarks is formed, CVA and PLS methods provide a valuable

tool for further exploration. The generation of hypotheses on shape covariation in

the first place is so far only supported by browsing the PCA model.

Inspiration for the presented interaction method are the direct manipulation

approaches described in Chap. 2, stemming primarily from works in facial ani-

mation [97, 133]. Although these works are a great source of inspiration and we

will internally use the same least-squares minimization [24], the ultimate goals of

artistic animation and visual analysis of shape variation are quite contrary.

6.2.2 Anatomic covariance field

The method introduced by Kindlmann et al. [81] provides a very concise way

to convey the overall variability contained in a dataset. To this end the local

covariance at a sample point on the shape is evaluated, resulting in an anatomic

covariance tensor that is visually encoded in an easy to read glyph.

Transferred to our volumetric setting, the tensor is defined for a particular point

p ∈ Ω in image domain as the sample covariance matrix of the set of associated

displacement vectors {up,1, . . . ,up,n} where up,i ∈ R3 is the difference between the

correspondence of p in the i-th ensemble image to the template image. Using this

notation, the 3× 3 anatomic covariance tensor is defined as

Tglobal(p) =
1

n− 1

n∑
i=1

up,iu
T
p,i (6.1)

The glyph-based visualization is based on a spectral analysis that yields prin-
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cipal directions and variances along these for each tensor. A graphical primitive,

typically a sphere, is oriented and scaled accordingly to illustrate the covariance

structure. Since a covariance tensor T is symmetric it can be diagonalized as

T = RΛRT (6.2)

into a rotation R from the unit to an eigenvector basis and a diagonal matrix

Λ =
( λ1

λ2
λ3

)
of corresponding eigenvalues, sorted in descending order λ1 ≥ λ2 ≥

λ3. The ratios between the eigenvalues delineate the anisotropy of local shape

variation [148].

The same spectral analysis and glyph-based visualization is adapted for our

interaction and overview tensors.

6.2.3 Partial least-squares analysis

A state-of-the-art approach to assess shape covariation is to perform a partial least-

squares analysis (PLS), pioneered by Tucker [138] and Wold [153] and introduced

to morphometrics by Rohlf and Corti [116]. It requires a precise hypothesis about a

two-block separation of the shape. By reordering the rows of our original data ma-

trix we can represent the two blocks as XT =
[
X1

T X2
T
]
. PLS is technically similar

to PCA, but instead of the covariance matrix Σ = XXT , the cross-covariance ma-

trix Σ12 = X1X2
T is diagonalized. Since Σ12 is no longer symmetric, this yields

not an eigenvalue but a singular value decomposition Σ12 = LD12R
T with differ-

ent left and right singular vectors. Where the first PCA eigenvector u maximizes

the covariance |cov(XTu,XTu)|, the first pair of singular vectors (l, r) maximizes

the cross-covariance between the two blocks |cov(X1
T l,X2

T r)|. The same holds

for further pairs of singular vectors in the respective orthogonal subspaces. Exten-

sions to three and more blocks exist [29], although lacking a closed form solution.

By stacking singular vector pairs, full deformation fields for the complete shape

can be constructed for visualization purposes. The different size of the blocks has

to be taken into account though [91].

In our literature research we found PLS analysis to be virtually the only visual

tool used to study shape covariation, see for instance [90] and references in Sec. 4.5.

However, it does not allow inspection of covariation at a finer level than the blocks,

which have to be selected a-priori, and individual covariation patterns remain

superimposed in the singular vectors.
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6.2.4 Shape segmentation

Decomposing an anatomy into modules can also be understood as a shape segmen-

tation problem. Unfortunately, standard approaches to this problem do not take

deformation statistics into account. For an overview of state-of-the-art approaches

for mesh segmentation one can refer to the survey of Shamir [125]. The segmen-

tation of multiple meshes with dense correspondence is considered in analysis and

compression of mesh animations. There, similar temporal vertex trajectories are

clustered [120]. De Smet and van Gool [53] present an approach to define optimal

regions for model-based 3D face reconstruction. In their work, an ad-hoc statistic

on normalized displacement magnitudes is taken into account.

In Sec. 6.3.5 we will introduce an approach for segmentation of the template

image into anatomically meaningful parts based on a statistical deformation model.

This is accomplished by considering the information encoded in our overview tensor

that provides a much richer statistic compared to the one utilized by De Smet et

al. [53].

6.3 Inter-point covariance

Our approach builds upon the least-squares framework introduced by Blanz et

al. [24] for model-based deformation, which is briefly summarized first before intro-

ducing interaction operator, interaction tensor and overview tensor in the following

subsections.

6.3.1 Model-based deformation

For linear shape models Blanz et al. [24] propose a model-based deformation frame-

work which allows the user to produce plausible shapes via manual displacement of

single vertices. The “plausibility” of a shape is defined via its probability according

to the Gaussian distribution underlying all PCA shape models, see Sec. 3.5.

In a least-squares optimization, the coefficients c in PCA space of a plausibly

deformed shape are estimated where the displaced vertices up (the user edit) are

considered as soft-constraints and the optimization is additionally regularized by

the shape’s probability, penalizing improbable outcomes. Using a squared data

term and the negative log-likelihood (3.29) the optimization can be expressed via

the following energy functional

E(c) =
1

2
‖up −Bpc‖2

2 +
γ

2
‖c‖2

2 (6.3)
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where up is the stacked vector of displacements and Bp is the shape space basis

matrix reduced to the rows corresponding to the displaced vertex coordinates in up.

At the constrained positions p the minimizer of E(c) will try to match the edited

shape up while the remaining vertices are deformed to yield a highly probable

shape, depending on the choice of the regularization parameter γ ∈ R. In this

work we take on the view that the result of the above optimization gives us the

shape variation correlated to the edit up, at least for a fixed γ. The regularization

parameter γ is chosen via cross-validation in a leave-one-out fashion benchmarked

on the average reconstruction error, see App. B for details. In our applications the

resulting error function is found to be smooth and in particular stable around the

optimum allowing for a robust choice of γ.

An example application of model-based editing in order to uncover directional

dependency in covariation on the shape is shown in Fig. 6.2.

Figure 6.2: Model-based editing on Mus dataset at coronoid process. The visualiza-
tion shows an isosurface of the template displaced by uq, color coded from cool to warm
(0 max) with the magnitude of the displacement. The templates silhouette is
overlaid in black for comparison. Inset bar plots describe the first 5 PC coefficients in units of
standard deviations. Observe that varying the coronoid position is strongly associated with
the condylar process (a), while changing its length impacts the rear of the mandible at a
larger scale (b).

6.3.2 A linear operator for inter-point covariation

The same model-based deformation framework (6.3) can directly be applied to

statistical deformation models, where instead of vertices now displacement vectors

are constrained. Restricting to the special case of a single constrained position p,

we now derive a linear operator for covariation between the point p and any other

point q ∈ Ω. The displacement predicted from (6.3) at q to a variation at p is what

we interpret in this paper as the correlated shape change, or interaction, between

p and q.
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Once, optimal coefficients copt that minimize Eq. (6.3) are found, the corre-

sponding displacement uq at q co-varying with the change up at p is given by

uq = Bqcopt where copt := argc minE(c). (6.4)

We follow the default ansatz to solve this least squares optimization problem and

start from the necessary optimality criterion of a vanishing gradient ∂
∂c
E

!
= 0:

∂

∂c
E(c) = 0

∂

∂c

[
1

2
‖up −Bpc‖2

2 +
γ

2
‖c‖2

2

]
= 0

1

2

∂

∂c
(up −Bpc)T (up −Bpc) +

γ

2

∂

∂c
cTc = 0

1

2

∂

∂c

[
uTp up − 2cTBT

p up + cTBT
p Bpc

]
+ γc = 0

BT
p Bpc−BT

p up + γc = 0

(BT
p Bp + γI)︸ ︷︷ ︸

A

c = BT
p up︸ ︷︷ ︸

const.

Considering that the last line has the canonical form Ac = const. with a symmetric

n × n system matrix A that is guaranteed to be of full rank for γ > 0, a unique

inverse exists and the solution is given by

copt = A−1BT
p up. (6.5)

Expanding (6.5) into (6.4) we arrive at a displacement vector

uq = Bq(B
T
p Bp + γI)−1BT

p up. (6.6)

With that we define now our interaction operator as exactly that linear rela-

tionship between displacements at p and q given by the 3× 3 matrix

Zpq := Bq(B
T
p Bp + γI)−1BT

p . (6.7)

Note that the reflexive operator is not necessarily the identity in general, i.e. Zpp 6=
I, because of the regularization term that penalizes unlikely edits. It can also

happen that the edit is not contained in the span of B at all, meaning it has zero

probability. One should further keep in mind that the relationship is not symmetric

and Zpq 6= Z−1
qp in general.
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(a) (b)

Figure 6.3: Illustration of interaction operator and tensor. (a) The interaction operator
predicts a displacement uq at a point q given a displacement up at a point p. (b) The
interaction tensor describes the covariance response at q with respect to an unbiased unit
covariance perturbation at p based on the interaction operator.

6.3.3 A new shape covariance tensor

We will now summarize the covariance structure of the interaction operator in the

so-called interaction tensor. The connection between operator and tensor is illus-

trated in Fig. 6.3. For a given displacement at point p in the shape, Eq. (6.7) pre-

dicts the most probable corresponding displacement at q. To visualize this relation-

ship encoded in Zpq we resort to statistical covariance analysis. There, covariance

structure of a random vector x is defined as Σ(x) = E
{

(x− E(x))(x− E(x))T
}

with expectation E. Assuming that input displacements up are random vectors

drawn from a distribution with covariance Σ(up), the covariance structure at q

follows directly from the linearity of expectation:

Σ(uq) = Σ(Zpqup) = ZpqΣ(up)Z
T
pq (6.8)

For our directed interaction we want an unbiased estimate of Σ(uq) and assume

thus a prior of isotropic covariance at p. By setting therefore Σ(up) = I we

arrive at the following simple formula for a novel covariance tensor. We define the

interaction tensor at q for a fixed p as

Tp(q) := ZpqZ
T
pq. (6.9)

From the properties of the interaction operator, i.e. Zpp 6= I and Zpq 6= Z−1
qp , it

follows that Tp(q) describes a one-sided, directed interaction from p towards q and

in general a posterior covariance Tp(p) 6= I at p.

An example application of the interaction tensor unveiling patterns of covaria-

tion is shown in Fig. 6.4.
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Figure 6.4: Interaction tensor fields Tp of Mus dataset for probes at incisor and angular
process, visualized using super quadric glyphs where the probing location p is highlighted.
Note that the incisor tensor field is scaled by a factor of 2.5, attributed to the smaller overall
interaction strength (compare Fig. 6.5). While the incisor probe produces a global covariation
pattern, the response at the angular process is concentrated locally.

Efficient tensor sampling

To speed up the computation of local tensor fields we split Zpq into two factors,

depending each solely on p and q, respectively:

Zpq = BqZp where Zp = (BT
p Bp + γI)−1BT

p

Thereby the matrix inversion in Zp has only to be done once on positioning the

probe, while the associated tensor field (6.9) can be sampled at the cost of a matrix

multiplication per sample.

Sample-based computation

An alternative derivation of (6.9) can be given using a sample estimated covariance

matrix. Thereby it could also be applied for other, even non-linear, deformation

models. Given a set of sample displacement vectors ûp,i with i = 1, . . . , k and

associated displacement predictions ûq,i from (6.7) or another model, the local

covariance is estimated as

T̂p(q) =
1

k − 1

k∑
i=1

ûq,iû
T
q,i
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Choosing unit length displacements ûp,i with orientations normally distributed on

the sphere, T̂p(q) approaches Tp(q) for k →∞.

6.3.4 Overview tensor

For an overview visualization we want to assess which directions of displacement

up at a point p will result in large deformations on the remaining shape, describing

potentially interesting covariation. The strength of interaction inflicted by up can

be measured by averaging the squared magnitude of the displacement responses

uq = Zpqup. Such a scalar measure is provided by

ηp(up) =
1

|Ω|
∑
q∈Ω

‖Zpqup‖2 =
1

|Ω|
∑
q∈Ω

uTp ZT
pqZpqup. (6.10)

Notice the occurrence of the quadratic forms ZT
pqZpq in the definition of this scalar

measure. These terms carry the relevant global information about interaction that

we are interested in. Based on this observation, a first tensorial description of

global interaction can be defined by averaging the quadratic forms, resulting in

Γ′(p) =
1

|Ω|
∑
q∈Ω

ZT
pqZpq. (6.11)

We would like to stress that this is not an average of interaction tensors ZpqZ
T
pq

but one of the form ZT
pqZpq. The advantage of the latter form is that the spectrum

of its average Γ′ informs on which editing directions up impact the shape stronger

(large λi) and weaker (small λi), while the magnitude ‖Γ′‖Frob relates to the overall

interaction strength between a particular point and the whole shape.

However, this relation is not scaled correctly yet because the scalar measure

ηp from which (6.11) is derived treats all local perturbations up as equally impor-

tant, irregardless of their probability due to the shape model. In order to take

into account that the effects of unlikely perturbations are of lesser interest for an

overview, we weight Γ′ with the interaction tensor Tp(p) of a point towards itself

because that describes exactly the posterior local covariance and thereby the like-

lihood of local perturbations at p with respect to the shape model. Including this

weighting the final definition of the overview tensor reads

Γ(p) = TT
p (p) Γ′(p) Tp(p). (6.12)

An example overview visualization based on (6.12) is shown in Fig. 6.5. Note
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that in order to exaggerate tensors with smaller trace glyphs are scaled by the

square-root of tensor eigenvalues here.

Figure 6.5: Overview tensor visualization of Mus dataset. Here glyph size encodes overall
strength of the underlying interaction pattern Tp (compare Fig. 6.4 to point B) while glyph
shape informs on directional dependency of variation (compare Fig. 6.2 to point A).

6.3.5 Anatomic segmentation

Interestingly, based on the overview tensor 6.12 a novel automatic segmentation

into anatomically meaningful parts can be defined, see Fig. 6.6. To this end the

tensor field is clustered based on a distance function that is a weighted average

between a metric on covariance matrices and spatial distance

d(pi, pj) = ‖Γ(pi)− Γ(pj)‖Frob + α‖pi − pj‖2 (6.13)

where a weight α > 0 favors spatially localized clusters. Spatial closeness is simply

measured via Euclidean distance because we are dealing with 3D volumes and not

surfaces. As tensor metric Frobenius norm ‖ · ‖Frob is used. Alternative choices in-

clude the Log-Euclidean metric [60] that is popular for analyzing diffusion tensors.

A comparison of different distance measures between covariance matrices and their

invariance properties is given by Dryden et al. [54].

Once, a dissimilarity like the one above is defined, any distance based clustering

algorithm can be employed to compute a segmentation. In our experiments, results

were chosen as the best of 100 runs of a k-medoids algorithm [75]. By selecting a

relational clustering approach, that re-uses original data points as cluster centers,

the computation of tensor averages is avoided. In case of Frobenius norm the

average can be far off the data, that really represents only positive semi-definite

matrices, while for other metrics the computation of average requires gradient
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Figure 6.6: Anatomic segmentation of Mus dataset (α = 0, k = 9) compared against plain
k-means result, shown in the inset. Note how clusters a to e nicely match the functional
anatomy of molar teeth, rear processes and tip of the incisor.

descent or similar iterative procedures, increasing time complexity of the clustering

procedure.

6.4 Visualization system

6.4.1 Interactive model based editing using a rubber band metaphor

We use a direct visualization approach that renders deformed shapes in a raycaster

as described in Chap. 4. Deformations are synthesized as displacement fields from

the PCA model based on coefficients copt that minimize Eq. (6.5) based on a user

edit uedit.

The user interface for editing utilizes the metaphor of a rubber band that is being

pulled at one end, after the other end was attached to a fixed position on the shape.

In this picture the amount of stretching of the rubber band that is required to

achieve a noticeable effect in deformation gives information about the “rigidity” of

the structure the band is attached to, i.e. the probability of a local shape variation

into pull direction. Note that also for nearly rigid points, strong covariations in

other parts of the shape may show up, see for instance Fig. 6.17(g)-(h). Rubber

band deflection and attachment position specify the edit vector uedit and location

p for the underlying model-based deformation. During interaction with the rubber

band, the energy minimization (6.3) is solved perpetually and the raycaster will

show the resulting computed deformation of the template in real time.

The selection of a starting point for interactive editing is performed on a user

defined isosurface via ray-picking, implemented directly in the raycaster. Selected

is the intersection point of a ray cast from under the mouse cursor with the isosur-
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face, which is closest to the viewer. Alternatively, a visibility-driven ray-picking

technique like that of Wiebel et al. [149] can easily be integrated into our system,

thus removing the requirement to specify an isovalue explicitly. After the start-

ing point p0 is selected, the user inputs the edit displacement vector by dragging

around the mouse. The 2D mouse position is then mapped to another point q

to define the edit vector uedit = q − p0. In a naive approach, q is computed by

projecting the mouse position onto a plane through p0, parallel to the screen. This

has the drawback that the specified edit vector depends on the exact camera posi-

tion and viewing angle. Since shape variation is eventually split up into tangential

and normal part in many analyses, we project the mouse position into these di-

rections depending on the surface normal at the starting point. As long as the

projected point is not near a contour of the shape, we project onto the tangent

plane that in this situation is roughly parallel to the screen. Near contour points

the normal is nearly perpendicular to the viewing direction and a projection onto

a screen parallel plane is preferred, allowing the user to edit the contour in normal

direction.

The raycaster provides direct volume rendering (DVR) and indirect isosurface

rendering. While DVR makes interior structures accessible, it requires additional

techniques to be employed for color-coding due to color-mixing along a cast ray.

For simplicity we encode additional information like displacement magnitude only

in the isosurface rendering. Our implementation achieves on average 11 fps during

editing on a Intel Core2 Q6600 CPU at 2.4GHz equipped with a Nvidia GTX 460

graphics card.

6.4.2 Tensor field visualization

For the visualization of covariance tensor fields we use the same glyph-based tech-

nique as Kindlmann et al. [81]. In a glyph based approach, an effective visualization

is achieved by scaling and rotating a geometrical primitive, typically a sphere, ac-

cording to R and Λ from the tensors diagonalization (6.2). Instead of a sphere, we

follow Kindlmann et al. and use a superquadric glyph [80] because of its qualities

for visual disambiguation of linear, planar and spherical shaped tensors, that is

relevant to our visual analysis.

The geometric encoding of tensor properties is accompanied by color-coding the

glyph according to local anisotropy. In deformation models the anisotropy informs

on the amount of directional dependency of shape variation and is particularly

helpful for our local analysis in understanding the exact interaction between two
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points. A suitable measure in this context is fractional anisotropy, defined as

FA :=

(
3

2

(λ1 − µ)2 + (λ2 − µ)2 + (λ3 − µ)2

(λ1 + λ2 + λ3)2

)1/2

. (6.14)

FA interpolates between the spherical case (λ1 = λ2 = λ3 and FA = 0) and the

linear one (λ1 � λ2 ≈ λ3 = 0 and FA = 1), irregardless of tensor norm ‖T‖F .

The final visualization is produced by sampling the tensor field on a regular grid

and placing a corresponding superquadric glyph with color mapped FA at each

sample position.

For the local covariance visualization the tensor field Tp serves as input, for

which a probe is positioned in 3D at a point p of interest in advance. The overview

visualization is generated from the precomputed tensor field Γ. For all visual-

izations and computations the image domain Ω is thresholded to the Hounsfield

range of bone structures. Additional methods like glyph packing [82] and ha-

los [121] could be applied to enhance visual disambiguation of the often observed

highly anisotropic patterns.

6.5 Experiment on a toy dataset

In order to illustrate the utility of our model-based editing method for exploring

shape covariation, we designed a synthetic dataset of smiley figures with known

covariation between parts. The dataset contains 49 faces of size 128× 128 exhibit-

ing two independent patterns of covariation in facial expression and ear size, see

Fig. 6.7. Registration and template estimation is performed with the same meth-

ods as used later for the scientific datasets. We will now shortly describe each of

the properties we regard as relevant for the intended navigation.

Continuity

For the rubber band metaphor it is important that the reaction of the edited

shape is proportional to the deflection of the band, as it is the case in model-based

deformation. Fig. 6.8 (top row) illustrates that continuously changing the edit

vector results in a continuous deformation of the shape. This enables the user

to judge the rigidity of a manipulated structure by means of deflection. Further,

small scale variations can be emphasized by pulling the rubber band farther away.
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Figure 6.7: The synthetic dataset is sampled from two independent variations: Horizontally,
a smile turns into a frown. Note that the curvature of the mouth is correlated to orientation
of the brows. Vertically, size of the ears changes bilateral.

Figure 6.8: Illustration of continuity (top) and influence of γ (bottom) on synthetic dataset.

Influence of γ

The scale of γ can be understood from the Bayesian derivation of the energy

minimization (6.3), given in Blanz et al. [24]. There, the coefficients c to an

displacement field u are found by maximizing the posterior probability P (c|u).

Modeling u as a measurement subject to independent Gaussian noise in shape

space of variance σN in all dimensions, an equivalent minimization is found where

γ = σ2
N . In our applications we measure displacements in image units, i.e. number

of pixels/voxels. Hence, a choice of γ = 1 amounts in the Bayesian setting to

a measurement error in the input displacement of about ±3 pixels. In this case

the solution can not be expected to deviate more than 3 pixels from the edit

displacement uedit, irregardless how improbable the edit is. Hence, choosing γ too

small will lead to over-fitting artifacts. With increasing γ the solution coefficients
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will be shifted more and more towards the mean shape until ultimately c = 0, as

illustrated in Fig. 6.8 (bottom row). This shows the importance of cross-validation

to automatically select an optimal γ value for real world datasets.

Correlated shape change

Fig. 6.9 illustrates, that the response of the editing system to different local edits

shows reasonable covariation on a global scale. For instance, raising a single corner

of the mouth results in a transition to a smiling face with raised eyebrows (a). As

expected, the PCA explains the two independent variations on different principal

components. Thus, the sparse PC coefficients copt in (a)-(c) verify that the so-

lutions also separate between the two variations nicely, depending on the edited

structure. Edit (b) shows the robustness of the system against pulling into ar-

bitrary directions, where the result only reflects the probable component of the

movement, leading to enlarged but not distorted ears. Edit (d) shows a sanity

check that the system does not answer with spurious solutions to totally improb-

able inputs.

Figure 6.9: Editing results on synthetic dataset, rows from top to bottom show: The
performed edit (red arrow) on the template Ī, the magnitude of the resulting displacement
field u, the warped template and the PCA coefficients copt. Edits (a)-(c) illustrate that the
different correlated structures can be edited separately while (d) shows the rigidity of the
system in case of deformations not seen in the example dataset. Note that edit vectors are
slightly scaled for illustration purposes.
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6.6 Visual analysis of modularity in Mus

A comparative modularity analysis performed with our approach is described now.

This case study on a real world dataset is undertaken on the backdrop of morpho-

logical integration and modularity, for which the mouse mandible is a standard

model [90, 160, 34, 113]. As mentioned in Sec. 1.5, finding modules and modeling

their interaction is considered a difficult task. In the majority of studies so far,

hypotheses of the existence and position of modules have been formulated a priori

and tested subsequently. So far, PLS analysis is the primary method to visualize

covariation on the shape in such studies.

Modular structure of the mouse mandible

The structure of the mouse mandible anatomy is described in Sec. 1.5 together with

the common functional segmentation into frontal region and rear processes. How-

ever it is speculated that there could be an additional set of modules at a smaller

scale [90] and in recent work several finer scale subdivisions [160, 34, 113] are

addressed. For convenience, the illustration from Sec. 1.5 is repeated in Fig. 6.10.

Figure 6.10: Anatomical parts of the rodent mandible referred to in this work. A common
subdivision into two functional subunits is indicated [90].



6.6. Visual analysis of modularity in Mus 115

PCA model

The analysis is conducted on the Mus dataset consisting of left mandibles of 30

house mice (Mus musculus), described in more detail in Appendix A. In the PCA

model 93% of shape variability is captured by the first 5 components, see Fig. 6.11.

For synthesis and model-based editing the PCA model was reduced to these first

five modes, while all tensor computations were performed on the full model.

Figure 6.11: PCA eigenmodes of Mus dataset capturing 93% of the total variance. Shown
are the vectorfields on a representative iso-surface decomposed into a surface orthogonal and
tangential part, visualized color-coded and as vector glyphs respectively with glyphs of max.
magnitude scaled to same length. (Visualization based on [163].)
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6.6.1 Global analysis and PLS

For later comparison, we will first describe results achieved with previous methods

of related work in morphometrics, applied to our dataset. Particularly PCA [160,

106], PLS [34] and a combination of both [113, 90] was used. Additionally we will

apply the anatomic covariance visualization of Kindlmann et al. [81].

Global methods like PCA give us an impression of the overall variability con-

tained in the dataset. Fig. 6.11 shows the relevant PCA eigenmodes. We observe

that processes and incisor are each influenced by several modes, so the PCA does

not reveal a clear separation into modules. A more concise overview of shape vari-

ation is provided by the anatomic covariance field in Fig. 6.12. It can be read

from the glyph pattern that the three processes have different principal directions

of variation. At the posterior part of the incisor, inside the mandible, a strongly

anisotropic region is visible following nicely the incisor curvature. Note that the

anatomic covariance field shows point-wise variability of the dataset but does not

convey information on covariance in-between different points on the shape.

Figure 6.12: Anatomic covariance field [81] for Mus dataset. A lateral view is shown in the
inset for comparison with Fig. 6.15.

Results of a PLS analysis are visualized in Fig. 6.13. The visible similarity in

PLS1 of the rear processes to (minus) PC1 is also encountered in landmark analy-

ses [90] and can probably be attributed to the fact that the processes constitute a

great proportion of global variation. The PLS2 modes specifically indicate an in-

teraction between coronoid and condylar process and between incisor and angular

process. Modes beyond PLS1 are harder to interpret because they only represent

covariation orthogonal to previous mode pairs.
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Figure 6.13: PLS analysis on Mus dataset with four different segmentations into white and red blocks as
indicated in the insets, visualization design as in Fig. 6.11. Note the similarity of PLS1 for the rear processes
which resembles the first mode PC1 (up to sign) of the global analysis. The variation patterns of PLS2 shows
strong covariation between coronoid and condylar processes (top row) while the incisor affects more the angular
process (bottom row).
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6.6.2 Results on Mus dataset

In this section we validate our approach by reproducing hypotheses on module

delimitations and interactions from literature [90, 160, 34, 113]. Additionally new

observations of our analysis are described, pointing to a finer-scaled hypothesis

on module segmentation. Our analysis follows the pipeline illustrated in Fig. 6.1,

going back-and-forth between the different views.

Starting from the overview shown in Fig. 6.5 one can identify several candidate

regions. Among them, in agreement with literature [90], the rear processes and

tip of the incisor (visible in frontal view) exhibit strong impact on covariation, as

indicated by glyph sizes. Additionally the posterior end of the incisor inside the

mandible also shows up prominently. The latter could not be observed in previous

approaches based on landmark data and focusing on the outline of mandible shape;

therefore it is excluded in the following as it can not serve for validation.

A main advantage of our approach is that one can assess covariation at the

level of individual displacements. This enables to distinguish directional depen-

dencies in covariation as for instance found at the coronoid process. The overview

suggests at least two different covariation patterns: Principal direction of the cor-

responding glyph at (A) in Fig. 6.5 predicts a stronger response on variation of

length (vertical) versus position (horizontal) of the process. The specific shape

variations are quite different as an investigation in detail view shows, illustrated

in Fig. 6.2. Editing the coronoid process also reveals a coupled interaction to the

adjacent condylar process. The existence of an interaction between these processes

was known already [160] and is confirmed by PLS analysis, but the specific pattern

of covariation visualized in focus view in Figs. 6.14 and 6.15 provides a new level

of detail not seen previously.

Looking further at the condylar process in the overview suggests a separation

between a tip part and a proximal part, closer to the mandible center. While the

pattern near the tip is quite homogeneous, the proximal one is more diverse. In

fact, editing the condylar process shows different reactions depending on the exact

position of the probe on the process. This suggests a more fine-scaled analysis,

proposed also in recent work [34, 113], with the here presented methods.

Examining incisor and angular process in focus view provides good examples

of two extremes of global and local patterns, visible in Fig. 6.4. The angular

probe is locally concentrated but still exhibits highly directed (λ1 � λ2 ≈ λ3 ≈ 0)

interaction with the upper two processes. The strength of interactions for incisor

and angular probes again reproduce PLS findings. Since the complete incisor

structure spans throughout the mandible, an effect on the rear processes is expected
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Figure 6.14: Local covariance fields for probes at coronoid and condylar processes, probing
points highlighted in red. A strong interaction in-between the two processes becomes ap-
parent and shows the diminishing impact on angular process and incisor. This finding is in
agreement with PLS analysis and results of Zelditch et al. [160].

Figure 6.15: Close-ups of local covariance fields for coronoid and condylar processes show
their consistent interaction. While the local region close to each probe (highlighted in red)
exhibits more isotropic covariation, the reaction pattern at the other process is more directed.
This reveals which part of the anatomic covariance field can be attributed to this particular
interaction between the two processes.
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on variation in the incisor tip. Editing the tip of the incisor as shown in Fig. 6.16

reveals further that the associated variation can be decomposed into two parts,

depending roughly on the principal axes of the local tensor near the incisor tip.

Pulling in directions of the principal axis (a),(b) inflicts a deformation at the upper

coronoid and the lower angular process, while pulling orthogonal (c) to the axis

has associated variation at the central condylar process and the rear part of the

mandible. This is another example of directional dependencies, which can not be

explored with previous methods.

Figure 6.16: Model-based editing on Mus dataset at incisor, same legend as in Fig. 6.2.
Pulling the incisor in directions (a) and (b) leads to the expected elongation / foreshortening,
seemingly correlated with the shape of the tips of the rear processes. Dragging the incisor
orthogonally (c)-(d) keeps the front nearly rigid showing minor interaction in the posterior
part.

The anisotropy pattern in the focus view in Fig. 6.15 also nicely illustrates some

properties of our local tensor, setting it apart from the anatomic covariance field of

Kindlmann et al. [81]. Anisotropy near the probe is expected to be similar to that

of the probe, indicating strong local covariation (typical for stiff bone structures).

That anisotropy is higher in the process opposite of the probe indicates a structured

covariation. Note that these patterns are distinct from the anatomic covariation

field shown in the inset in Fig. 6.12. From this we conclude that our system allows

one to focus on particular components of the global pattern attributed to specific

inter-part interactions.



6.7. Visual analysis of group differences in Cricetinae 121

6.7 Visual analysis of group differences in Cricetinae

This section describes a trait and covariance analysis conducted on the Cricetinae

dataset. This is done to illustrate a combined use of the interactive model-based

editing presented in this chapter with the classification method from Chap. 5. The

investigated dataset consists of nine mandibles of two hamster species, see App. A.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.17: Rubber band edits on Cricetinae dataset at coronoid process (a)-(c) and incisor
(e)-(h). Color coded is the magnitude of the displacement from the template (d). Inset
bar plots describe the first 5 PC coefficients in units of standard deviations. Edits (a)-(b)
show clearly a covariation of the rear processes, while (c) produces are more diffuse pattern.
Pulling the incisor in directions (e) and (f) leads to the expected elongation / foreshortening,
seemingly correlated with the shape of the tips of the rear processes. Dragging the incisor
vertical (g)-(h) keeps the front of the incisor nearly rigid but inflicts changes in the complete
posterior part of the mandible.

Fig. 6.17 depicts an interactive editing session investigating two prominent

structures on the mandible. Edits (a) to (c) focus on the coronoid process, while

(e) to (f) manipulate the incisor. The investigation reveals interesting covariation

between the two groups in the dataset and give an impression on how to interpret

results of the rubber band method.

Coronoid process

Pulling the rubber band orthogonal to the contour of the process in (a) and (b)

leads the contour to follow the edit direction. This induces a shape change on

the process itself from Cricetus-like to Cricetulus-like. Globally, a covariation in

the tips of the other two processes and the incisor can be observed. The behavior

drastically changes when pulling for instance in direction (c). Here, the process

responds more rigidly and provides a totally different pattern of covariation. Note

that the more pronounced rigidity can be recognized in the small deviation from
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the mean shape (d), despite the longer stretching of the rubber band than in (a)

and (b). A presumption following from these findings is, that (a) and (b) describe

shape differences between the two sub-groups of the dataset, while (c) does not.

This is supported by the PCA plot shown in Fig. 6.18, where (a) and (b) are close

to the barycenter of each group. The green line in the PCA plot shows a separating

hyperplane between the groups, computed with a support vector machine as de-

scribed in Chap. 5. The angle between the hyperplane and linear trajectories from

the mean shape at (0, 0) to each of the edits shows that the trajectories to (a) and

(b) will run nearly orthogonal to the hyperplane, but almost parallel towards (c).

This suggests that (c) does not carry shape covariation relevant to discriminate

between the two groups, at least not in the first two components.

Figure 6.18: PCA plot of Cricetinae dataset and edits (a)-(c) from Fig. 6.17 (black dots)
onto first two components, where individuals are color coded by their corresponding sub-
groups Cricetus (red) and Cricetulus (blue), being clearly separated as illustrated (green line).
Edits (a) and (b) navigate between group-wise shape characteristics at the rear processes,
while results of an edit (c) orthogonal to (a) and (b) stays indifferent.

Incisor

Editing the tip of the incisor in directions (e) and (f) produces covariations similar

to (a) and (b). Looking at the PC coefficients in the insets, we can see that

the similarity is mainly due to a congruent behavior of the first two principal

components, while the third and fourth mode vary oppositely. Note that the tip

of the incisor follows nicely along with the edits, making it longer and shorter.

This tells us, that this is a typical, in the sense of likely, shape variation in the

hamster dataset. Trying to change the position vertically in (g) and (h) induces
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much less deformation on the front of the incisor, although nearly the same amount

of “force”, i.e. magnitude of the edit, was used. Interestingly, a strong covariation

can be observed in the central region, between the processes. This effect can be

understood from the anatomy of the incisor, whose bone structure describes an arc

throughout the mandible, starting from the tip of the incisor and ending exactly

in the just observed covarying region between the rear processes. This shows that

also long-range interactions on far-away parts on the mandible are captured in our

model.

6.8 Conclusion

Starting from an existing method for shape animation and reconstruction, we de-

veloped in this chapter a complete visual analysis pipeline for effective exploration

of shape covariation in statistical deformation models. To this end a new local

covariance tensor was derived and integrated, yielding two novel visualizations ac-

companying the model-based deformation of Blanz et al. [24]. Together, all three

methods complement each other in a visual analysis of interactions between differ-

ent parts of the shape at varying degrees of detail. In addition, a novel automatic

segmentation procedure could be derived based on the overview tensor, that de-

composes the shape into anatomic meaningful parts.

Exploratory analysis on a scientific dataset was carried out on the backdrop

of morphological integration, illustrating the utility of the visual analysis in the

search for module boundaries. Comparison to state-of-the-art techniques, namely

PLS, PCA and anatomic covariance tensor, showed that the presented approach

enables an exploration at a finer level of detail including for the first time directional

dependencies. Reproducing several hypotheses from recent works in morphometry

can be taken as sanity check here.

Further applications in morphometric studies are expected a) on datasets with

higher diversity consisting of different species and b) on more complex structures

like the rodent skull. It would also be interesting to see how effective the approach

is in uncovering other, non-anatomic sources of shape variation like (structured)

registration or reconstruction errors. Realtime sampling and interactive filtering

of local covariance fields is subject to future work.
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Part III
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Chapter 7

Conclusion

The main challenge to be overcome for multivariate
morphometric studies concerns visualizing and communicating
the findings, which is probably why so many geometric
morphometric studies of the brain have focused on simple two
dimensional structures such as the corpus callosum.

— John Ashburner and Stefan Klöppel [16]

7.1 Summary

In this thesis we applied a visual analytics approach to study shape variability in

biomedical image ensembles in relation to extrinsic as well as intrinsic attributes.

To this end a portfolio of interactive visualization and analysis methods along the

lines of Busking et al. [37] and Klemm et al. [85] was introduced that expand the

state-of-the-art in at least three respects:

• So far, interactive shape analysis was restricted to landmark and surface

models. The methods developed in this thesis show efficient ways to operate

on much denser deformation models that describe shape variation at image

resolution.

• The previously available set of exploration methods is extended by interactive

classification, weighted local analysis, a first direct manipulation approach

and novel tensor visualizations.
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• An efficient and accurate visualization of non-linear deformations is facili-

tated by a GPU raycasting algorithm.

The very unique collection of high quality CT datasets of rodent skulls con-

tributed by Dr. Schunke provided an ideal testbed for our methods. The contin-

uous feedback from a morphometrics expert was invaluable during development

and evaluation of the novel visual analytics methods. Together with Dr. Schunke,

exemplary investigations on the influence of phylogeny, diet and geography on the

form of rodent skull and mandible were conducted that demonstrate the potential

of our visual shape analytics methods.

7.2 Future prospects

Visual analytics perspective

Visual analytics methods have found application in nearly every domain that re-

quires the analysis of large and high dimensional data sets, ranging from finan-

cial market to climate research. This thesis is among the first works that apply

the visual analytics paradigm to problems in shape analysis and morphometrics.

Therefore we concentrated on central problems that are of general interest to many

practitioners in the field, like unconstrained navigation and targeted analysis with

respect to specific factors. Of course, there is additional potential in providing

custom tailored linked views based on a geographic map, a phylogenetic tree or a

Manhattan plot.

We believe that the previous works as well as what is presented in this thesis

represents a “critical mass” of visual shape analytics methods that calls for a com-

parative study. Such a study can serve practitioners as a guide to the best method

for a particular problem and help the visual analytics researchers to uncover poten-

tial shortcomings that require additional attention in future research. Of course,

the design of a such a study is a challenge on its own. A possible approach could

be to somehow measure the performance of experts in discovering shape variations

and correlations in a data set that was purposefully designed after representative

morphometric tasks.

Another noteworthy point is that visual shape analytics is often implemented in

tight cooperation between a computer scientist and a domain expert. This makes

it an interesting instance for pair analytics [11] in order to understand the scientific

reasoning process in morphometry.
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In the future we hope to see applications of the presented methods in studies in

morphometrics and computational anatomy. Especially population studies could

provide an ideal application domain because of their exploratory nature [31, 85].

However, the ensemble sizes treated in these studies is at the order of several hun-

dreds of individuals while the largest dataset treated with our methods had less

than 50 specimen. To this end scalability of the presented methods has to be

considered, either improving the current implementation, e.g. by further paral-

lelization or distributed computing, or by investigating other ingenious means to

represent the variability of larger ensembles by fewer representatives.

Shape analysis perspective

From a technical point of view we see several directions for future work. Although

our methods were developed to work with image data and statistical deformation

models, transferring them to landmark and surface data and corresponding PCA

based statistical models is rather straight forward. Nevertheless, adaption to other

successful shape representations and statistical models beyond that is presumably

challenging and would broaden the class of anatomy ensembles our methods can be

applied to. Medial representations [62] for instance provide another very powerful

non-linear statistical model, namely principal geodesic analysis [61]. A further

challenging example is the recent model of Durrleman et al. [56] that describes

dense deformations with sparse parameters and can thereby also handle varying

topologies, including cases that do not allow a perfect registration.

A recently very active topic are hierarchical shape models that allow investiga-

tion of shape variation at multiple scales. There exist several promising approaches

utilizing different decompositions of shape variation, either based on wavelet the-

ory [51] (particularly popular in medical image analysis [154, 157, 57]), sparse

PCA [127], polyaffine transformation tree [123] or deflation of principal warps [28].

However, effective means of navigating such complex multiscale representations

have only sparely been addressed so far, partly because the complexity of some

of the methods rules out an interactive approach. At least two of the methods

developed in this thesis could provide promising starting points for navigation and

efficient implementation of hierarchical models: The local analysis of a region of

interest, described in Chap. 5, allows already for a manual navigation at differ-

ent scales, while the tensor based segmentation, introduced in Chap. 6, identifies

anatomic meaningful regions automatically.

The methods of this thesis were designed to investigate shape variability based

on statistical shape models. A crucial step in establishing such models is to define
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correspondences across all shapes by means of a registration algorithm. We believe

that some of our visualizations could be adapted to investigate the quality of reg-

istration and that of the resulting statistical model. For instance do the projected

streamlines reveal tangential parts of deformation that is otherwise also used as an

indicator for mis-registration, as excessive tangential drift increases the entropy of

the statistical model unnecessarily [52].
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Data sets and preprocessing

A.1 Acknowledgements

All rodent skull data sets used throughout this thesis are courtesy of Dr. Anja

C. Schunke, who assembled and digitized this truly unique collection at the Max

Planck Institute for evolutionary biology, Plön. The original specimens were kindly

loaned by Dr. Rainer Hutterer, Zoological Research Museum Alexander Koenig,

Bonn. Preprocessing of the CT images was supported by Vitalis Wiens and Kr-

ishna P. Soundararajan that were employed as student researchers under a grant

by Deutsche Forschungsgesellschaft (DFG) within the priority program SPP1335

Scalable Visual Analytics.

A.2 Acquisition

Each individual was scanned by Dr. Schunke using a Scanco VivaCT-40 µCT

scanner located at the Max Planck Institute for evolutionary biology, Plön.
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A.3 Data sets used in this thesis

A list of the data sets used in this thesis is given in Table A.1. Some of the data

sets are illustrated in Figs. A.1 and A.2.

Dataset n Description

Apodemus Flavicollis (S) 22 Samples of Apodemus Flavicollis throughout Europe.
(Chap. 4)

Cricetinae (M) 9 Samples from two hamster species, 6 Cricetus cricetus (com-
mon hamster), 3 Cricetulus migratorius (dwarf hamster).
(Chap. 6)

Diet and phylogeny (M) 16 Representatives of two diets (8 omnivorous, 8 carnivorous)
and phylogeny (8 diet/genus pairs), averaged over a sample
of 48 specimens.
(Chap. 4)

Gerbillinae-Murinae (M) 29 Samples from two subfamilies, 22 Murinae, 7 Gerbillinae.
(Chap. 5)

Mus (M) 30 Samples from single species Mus musculus (house mice).
(Chap. 6)

Table A.1: Data sets used in this work. Legend: (M)=Mandible, (S)=Upper skull,
n=number of input images to PCA analysis (not necessarily the number of individuals,
see text).

A.4 Preprocessing

All data sets are semi-automatically segmented into three parts, the upper skull

and two mandibles [150]. For all analyses except the dataset on phylogeny and diet

(see below), only a single mandible was considered for analysis, out of symmetry

reasons. We chose canonically the left one if it was available. If the left mandible

specimen was missing or damaged, it was replaced with its mirrored right counter-

part where possible. Differences due to translation, rotation and scale are factored

out via an image based similarity alignment. The alignment is optimized based

on L2 intensity error on histogram equalized images using the elastix toolbox [84].

Elastic registration is performed with the symmetric log-domain diffeomorphic

demons algorithm [142]. Group-wise registration was initialized with a typical

representative individual chosen manually by Dr. Schunke. For the data sets at

hand, three to five iterations of the registration algorithm presented in Chap. 3

were sufficient to reach convergence.
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Prior to registration, input images were resampled to a resolution of 200 ×
200× 400 isotropic voxels for all data sets except the dataset Gerbillinae-Murinae

that was resampled to 135 × 173 × 280 voxels. The resulting deformation fields,

irregardless if they represent displacements or velocities, were subsequently resam-

pled by a factor of four to 50 × 50 × 100 and a factor of two to 68 × 87 × 140 in

case of the Gerbillinae-Murinae dataset. The downsampling factor for deformation

fields was estimated empirically on several examples in such a way, that PCA on

the resampled fields resulted in the same coefficient as for the original resolution

and no visual difference between PCA reconstructions from PCA models, set up

from original and resampled images, could be perceived. See also the discussion

in Chap. 4 on downsampling deformation fields. Note that for visualization, re-

sampled deformations are interpolated and applied to a full resolution template

image.

Special treatment of dataset on phylogeny and diet

The dataset on phylogeny and diet that is analyzed in Chap. 4 received some ad-

ditional preprocessing steps. This particular dataset is compiled from 48 specimen

in order to investigate and compare influence of diet and phylogeny (on a genus

level) on mandible shape. To alleviate a bias due to different number of samples

in the phylogenetic groups, one representative mandible is considered per genus,

averaged over all of its specimens. Left and right mandible of each specimen were

averaged in advance to remove asymmetric effects. Eventually, 16 representatives

are analyzed, 8 omnivorous and 8 carnivorous. The closest omni- and carnivore

relatives supply 8 diet/genus pairs.
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Figure A.1: Dataset Gerbillinae-Murinae consists of 22 Murinae and 7 Gerbillinae mandibles. The shown
isosurfaces illustrate the shape variability present in this dataset.

Figure A.2: Dataset Cricetinae consists of 9 individuals from the two sub-groups Cricetulus
(first row) and Cricetus (second and third row). Shape characteristics at the rear processes
are highlighted.
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Cross-validation of regularization parameter
for model-based deformation

B.1 Cross-validation algorithm

The model-based editing in Chap. 6 requires the minimization of the energy (6.3),

that is repeated here for convenience:

E(c) =
1

2
‖up −Bpc‖2

2 +
γ

2
‖c‖2

2 (B.1)

Only due to Tikhonov regularization with a parameter γ has this energy a well

defined unique minimum. Therefore, for the methods described in Chap. 6 to work,

it is important to reason about the choice of γ. Fortunately, a suitable value for γ

can be found automatically via a leave-one-out cross-validation procedure that is

given in algorithm B.1. For each value γ it computes the average reconstruction

error for a left-out displacement field when expressed in the PCA model according

to Eq. (6.3), where the PCA model is set up over the remaining displacement fields.

Using the same notation as in the algorithm, the ordinary cross-validation

function that is minimized can be stated as

V0(γ) =
1

n

n∑
r=1

{
1

|Ω|
∑
p∈Ω

‖ur −B(r)
p c

(r)
opt(γ) + u(r)‖

}
.

Note that here the reconstruction error of the complete vectorfield ur is measured
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Figure B.1: Cross-validation result for the
Mus dataset with an optimum at γ = 50.

and not only at the displacement vector ur,p at position p, else wise V0 would

trivially achieve its minimum for γ = 0.

Algorithm B.1 Cross-validate γ parameter

Input: Set of displacement fields [u1, . . . ,un] ∈ R3|Ω|×n

Output: Sampling of ordinary cross-validation function V0(γ)

1: for each left out datum ur do

2: u(r) ← 1
n−1

∑
i 6=r ui

3: X(r) ← [u1 − u(r), . . . ,ur−1 − u(r),ur+1 − u(r), . . . ,un − u(r)]

4: Compute eigenvectors B(r) of (X(r))TX(r)

5: for each γ ∈ {γ1, . . . , γk} do BSampling of γ, e.g. perform a line search

6: for each voxel position p ∈ Ω do

7: Z
(r)
p (γ)←

(
(B

(r)
p )TB

(r)
p + γI

)−1
(B

(r)
p )T BDepends on γ

8: c
(r)
opt(γ)← Z

(r)
p (γ)

(
ur,p − u

(r)
p

)
9: er,γ(p)← ‖ur −B(r)c

(r)
opt(γ) + u(r)‖ BReconstruction error

10: end for

11: eγ(r)← 1
|Ω|
∑

p∈Ω er,γ(p)

12: end for

13: V0(γ)← 1
n

∑n
r=1 eγ(r)

14: end for

B.2 Smoothness of cross-validation function

Noteworthy, the cross-validation function turned out to be smooth with a unique

minimum for all considered data sets. Therefore, a robust choice for the parameter

γ could be made automatically in all cases. See Fig. B.1 for an example.
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Proof of error estimate for heuristic inverse

C.1 Linear approximation of inverse

We consider a continuous mapping between open sets Ω ⊂ Rd where usually d =

2, 3 for the application of (interactive) image warping. The mapping ϕ : Ω→ Ω is

realized as

ϕ(x) = x+ u(x) (C.1)

using a displacement vector field u : Rd → Rd.

A computationally very efficient approximation of the inverse mapping ϕ−1 is to

consider a first order linearization ϕ̃−1 ≈ ϕ−1 that simply negates the displacement

field, i.e.

ϕ̃−1(x) = x− u(x). (C.2)

Theorem

For a maximum displacement magnitude η in d the above approximation has an

error in the order of O(γ2), i.e. (C.2) is in fact a linearization and it holds

ϕ̃−1(ϕ(x)) = x+O(γ2). (C.3)
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Proof

Applying the definition results in

ϕ̃−1(ϕ(x)) = ϕ(x)− u(ϕ(x))

= x+ u(x)− u(x+ u(x)).

A Taylor expansion of the last term yields

ϕ̃−1(ϕ(x)) = x+ u(x)−
(
u(x) +∇u(x)u(x) +O(|u(x)|2)

)
= x−∇u(x)u(x) +O(|u(x)|2).

where ∇u(x) denotes the Jacobi matrix of u(x) at x.

By definition we know that the maximum displacement has a length of γ, i.e.

|u(x)| ≤ γ. This allows us to rewrite our displacement field u using an auxiliary

field g as

u(x) = γg(x).

It follows that g has the property |∇g(x)g(x)| ≤ 1. Expanding this into the Taylor

expansion gives an upper bound on the approximation error and concludes the

proof:

ϕ̃−1(ϕ(x)) ≤ x− γ2∇g(x)g(x) + o(γ2)

= x+ o(γ2)
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Mathematical notation & acronyms

D.1 Mathematical notation

Basics

R, Rd,

Rd1×d2
Set of real numbers and its associated d and d1×d2 dimensional tuple sets, from

which scalars, vectors and matrices are drawn respectively.

‖ · ‖ Standard L2 norm on Rd, i.e. ‖(a1, . . . , ad)
T ‖ :=

√
a2

1 + · · ·+ a2
d if not noted

otherwise.

3D vector and matrix algebra

· Scalar product, e.g.
( ax
ay
az

)
·
( bx
by
bz

)
= axbx + ayby + azbz.

∇ First order differential operator, e.g. ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ).

A Linear map A : R3 → R3 in matrix representation A ∈ R3×3.

Ax Matrix vector product that applies linear mapping represented by A to a vector

x.

I Identity matrix I =
( 1

1
1

)
.

Λ Diagonal matrix Λ =
( λ1

λ2
λ3

)
and for uniform scaling λ1 = λ2 = λ3.

R Rotation matrix R ∈ SO(3) ⊂ R3×3, i.e. RRT = I and det(R) = +1.

t Translation vector t ∈ R3 used in combination with a linear map A ∈ R3×3 to

represent a rigid, similarity or fully affine transformation.
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Dimensions

n Number of images in an ensemble.

N Number of voxels in (template) image.

n′ Rank of sample covariance matrix and dimensionality of shape space as repre-

sented by a statistical deformation model.

Images

Ω Compact rectangular image domain Ω ⊂ R3.

x 3D position x ∈ R3 as column vector, usually a position in an image domain Ω

that is treated either as continous or voxel position, depending on context.

p, q Two 3D positions in image domain Ω that relate to each other, used specifically

in analysis of covariance between two different points in Chap. 6.

I Input image ensemble as a set of n input images I = {I1, . . . , In}.
I, Ii 3D intensity image I : Ω → R parameterized over a compact domain Ω ⊂ R3,

discretized over a rectilinear grid into voxels. Indexed version Ii represent indi-

vidual images from the image ensemble I.

I ′i Aligned image, i.e. input image Ii after global registration of image ensemble.

I∗ A synthesized or otherwise deformed image.

Ī Template image that represents an ensemble average.

Deformations

ϕ Transformation/deformation that maps the image domain Ω ⊂ R3 onto itself,

i.e. ϕ : Ω → Ω, usually parameterized over 3D positions x ∈ Ω that are either

treated continously or discretely at voxel positions, depending on context.

ϕ1 ◦ ϕ2 Concatenation of mappings, i.e. ϕ1 ◦ ϕ2(x) = ϕ1(ϕ2(x)).

Id Identity mapping Id: Ω→ Ω with Id(x) := x.

ϕ−1 Inverse mapping to ϕ defined by ϕ ◦ ϕ−1 = Id.

u, u Displacement vector field u : Ω→ R3 that is used in the general representation

of a deformation ϕ(x) = x+ u(x). Bold face identifies an encoding of the field

as single long column vector u ∈ R3N .

v, v Velocity field v : Ω → R3 that is assumed to be sufficiently smooth to generate

a diffeomorphic deformation when integrated via exp(v). Bold face identifies an

encoding of the field as single long column vector v ∈ R3N .

exp(·) Either denotes a matrix exponential, see exp(A), or an exponential map of a

stationary velocity field, see exp(v).

log(·) Either denotes a matrix logarithm, see log(A), or a principal logarithm of a

diffeomorphic deformation, see log(u).
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exp(v) Integration of a stationary velocity field v whose result is a diffeomorphic defor-

mation. For interactive rendering integration is computed via standard numer-

ical schemes like Runge-Kutta, otherwise a scaling and squaring approach [13]

is used.

log(u) Stationary velocity field as an infinitesimal generator of a diffeomorphic defor-

mation represented by a displacement field u. It is computed via an inverse

scaling and squaring algorithm [13] and can be interpreted as a kind of pincipal

logarithm of the diffeomorphism.

exp(A) Matrix exponential [70].

log(A) Matrix logarithm [70].

Statistical deformation model

X Data matrix of displacement vector fields X = [u1, . . . ,un] ∈ R3N×n. Usually

X is considered to be centered, i.e. of zero column mean ū = 1
n

∑n
i=1 ui = 0.

Σ Sample covariance matrix, for a centered data matrix Σ = 1
n−1XXT .

B Basis of linear model B ∈ R3N×n′ with principal modes of variation encoded in

its columns.

Bp Rows of B corresponding to displacements at voxel p ∈ Ω, i.e. Bp ∈ R3×n′ .

c,C Coefficient vector c ∈ Rn′ used for reconstruction/synthesis of displacements

u = Bc and coefficient matrix C = [c1, . . . , cn] such that X = BC for a

centered data matrix.

T Tensor field T : Ω→ R3×3 assigning a 3×3 positive semidefinite matrix T(p) to

each (sample) point in image domain Ω. Used for the global covariance tensor

Tglobal and the novel interpoint covariance tensor Tp(q) in Chap. 6.

Zpq Interaction operator Zpq ∈ R3×3 introduced in Chap. 6.

Γ Overview tensor field, parameterized as T above.

For the statistical model based on velocity fields that is introduced in Chap. 4 the

according accented symbols B̂, ĉ and Σ̂ are used for better disambiguation.
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D.2 List of acronyms

Acronyms are introduced on their first occurrence in each chapter.

AAM Active appearance model.

ASM Active shape model.

CA Computational anatomy.

CVA Canonical variate analysis.

CPU Central processing unit.

CT Computed tomography.

DoF Degrees of freedom.

FA Fractional anisotropy.

FFD Free form deformation.

FPS Frames per second.

GM Geometric morphometrics.

GPU Graphics processing unit.

GUI Graphical user interface.

HARDI High angular resolution diffusion imaging.

LDDMM Large displacement diffeomorphic metric mapping.

MDS Multi-dimensional scaling.

MRI Magentic resonance imaging.

ODE Ordinary differential equation.

PCA Principal component analysis.

PC Principal component.

PLS Partial least squares.

RK4-2 Fourth order numerical Runge-Kutta integrator applied with two steps.

RMSE Root mean square error.

ROI Region of interest.

SDM Statistical deformation model.

SVD Singular value decomposition.

SVF Stationary velocity field.

SVM Support vector machine.

TPS Thin plate spline.

VA Visual analytics.
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[111] Rautek, P., Viola, I., and Gröller, M. E. Caricaturistic visualization.
IEEE Transactions on Visualization & Computer Graphics (TVCG) 12, 5 (2006),
1085–1092. (Cited on page 60)

[112] Reh, A., Gusenbauer, C., Kastner, J., Groller, M. E., and Heinzl,
C. Mobjects–a novel method for the visualization and interactive exploration of
defects in industrial xct data. IEEE Transactions on Visualization & Computer
Graphics (TVCG) 19, 12 (2013), 2906–2915. (Cited on page 23)

[113] Renaud, S., Alibert, P., and Auffray, J.-C. Modularity as a source of new
morphological variation in the mandible of hybrid mice. BMC Evolutionary Biology
12, 1 (2012), 141. (Cited on pages 114, 116 and 118)

[114] Rezk-Salama, C., Scheuering, M., Soza, G., and Greiner, G. Fast vol-
umetric deformation on general purpose hardware. In Proceedings of the ACM
Siggraph/Eurographics workshop on graphics hardware (2001), pp. 17–24. (Cited

on pages 35, 55 and 59)



154 Bibliography

[115] Riddle, W. R., Li, R., Fitzpatrick, J. M., DonLevy, S. C., Dawant,
B. M., and Price, R. R. Characterizing changes in MR images with color-coded
Jacobians. Magnetic resonance imaging 22, 6 (2004), 769–777. (Cited on pages 27

and 59)

[116] Rohlf, F. J., and Corti, M. Use of two-block partial least-squares to study
covariation in shape. Systematic Biology 49, 4 (2000), 740–753. (Cited on page 101)

[117] Rohlf, F. J., and Marcus, L. F. A revolution morphometrics. Trends in
Ecology & Evolution 8, 4 (1993), 129–132. (Cited on page 11)

[118] Rueckert, D., Frangi, A. F., and Schnabel, J. A. Automatic construction
of 3D statistical deformation models using non-rigid registration. In Proceedings
of the 4th international conference on Medical Image Computing and Computer-
Assisted Intervention 2001 (MICCAI’01) (2001), Springer, pp. 77–84. (Cited on

pages 39 and 44)

[119] Saraiya, P., North, C., and Duca, K. An insight-based methodology for
evaluating bioinformatics visualizations. IEEE Transactions on Visualization &
Computer Graphics (TVCG) 4, 2 (2005), 443–456. (Cited on page 3)

[120] Sattler, M., Sarlette, R., and Klein, R. Simple and efficient compres-
sion of animation sequences. In Proceedings of Eurographics/ACM SIGGRAPH
Symposium on Computer Animation (SCA) (2005), pp. 209–217. (Cited on page

102)

[121] Schultz, T., and Kindlmann, G. Superquadric glyphs for symmetric second-
order tensors. IEEE Transactions on Visualization & Computer Graphics (TVCG)
16, 6 (2010), 1595–1604. (Cited on page 111)

[122] Sederberg, T. W., and Parry, S. R. Free-form deformation of solid geometric
models. In Proceedings of the 13th Annual ACM Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’84) (1986), pp. 151–160. (Cited on page

39)

[123] Seiler, C., Pennec, X., and Reyes, M. Capturing the multiscale anatomical
shape variability with polyaffine transformation trees. Medical Image Analysis 16,
7 (2012), 1371 – 1384. (Cited on pages 78 and 129)

[124] Seiler, C., Pennec, X., Ritacco, L., and Reyes, M. Femur specific polyaffine
model to regularize the log-domain demons registration. In Proceedings of SPIE
Medical Imaging 2011: Image Processing (Mar. 2011), vol. 7962. (Cited on pages

27, 55, 58 and 66)

[125] Shamir, A. A survey on mesh segmentation techniques. Computer Graphics
Forum 27, 6 (2008), 1539–1556. (Cited on page 102)

[126] Shneiderman, B. The eyes have it: a task by data type taxonomy for information
visualizations. In Proceedings of the IEEE Symposium on Visual Languages, 1996
(1996), pp. 336–343. (Cited on page 98)



Bibliography 155
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