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ABSTRACT

Sometimes simple is better! For certain situations and tasks, simple
but robust methods can achieve the same or better results in the same
or less time than related sophisticated approaches. In the context
of robots operating in real-world environments, key challenges are
perceiving objects of interest and obstacles as well as building maps
of the environment and localizing therein. The goal of this thesis
is to carefully analyze such problem formulations, to deduce valid
assumptions and simplifications, and to develop simple solutions that
are both robust and fast. All approaches make use of sensors capturing
three-dimensional (3D) information, such as consumer color and depth
(RGB-D) cameras. Comparative evaluations show the performance of
the developed approaches.

For identifying objects and regions of interest in manipulation tasks,
a real-time object segmentation pipeline is proposed. It exploits several
common assumptions of manipulation tasks such as objects being on
horizontal support surfaces (and well separated). It achieves real-time
performance by using particularly efficient approximations in the in-
dividual processing steps, subsampling the input data where possible,
and processing only relevant subsets of the data. The resulting pipeline
segments 3D input data with up to 30 Hz.

In order to obtain complete segmentations of the 3D input data, a
second pipeline is proposed that approximates the sampled surface,
smooths the underlying data, and segments the smoothed surface into
coherent regions belonging to the same geometric primitive. It uses
different primitive models and can reliably segment input data into
planes, cylinders and spheres. A thorough comparative evaluation
shows state-of-the-art performance while computing such segmenta-
tions in near real-time.

The second part of the thesis addresses the registration of 3D input
data, i.e., consistently aligning input captured from different view
poses. Several methods are presented for different types of input data.
For the particular application of mapping with micro aerial vehicles
(MAVs) where the 3D input data is particularly sparse, a pipeline is
proposed that uses the same approximate surface reconstruction to ex-
ploit the measurement topology and a surface-to-surface registration
algorithm that robustly aligns the data. Optimization of the resulting
graph of determined view poses then yields globally consistent 3D

maps. For sequences of RGB-D data this pipeline is extended to include
additional subsampling steps and an initial alignment of the data in lo-
cal windows in the pose graph. In both cases, comparative evaluations
show a robust and fast alignment of the input data.
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ZUSAMMENFASSUNG

In den letzten Jahren und Jahrzehnten vollzog die Robotikforschung
einen Wandel von der vorherrschenden Forschung an vorprogram-
mierten Robotern hinter Sicherheitszäunen hin zu autonomen intelli-
genten Systemen, die selbstständig in Alltagsumgebungen handeln
können. Diese neuen Anwendungen öffnen zwar neue Märkte, brin-
gen aber auch neue Fragen- und Problemstellungen mit sich. Von
besonderer Bedeutung sind hierbei Fähigkeiten zur Wahrnehmung
der Umgebung des Roboters wie zum Beispiel die Wahrnehmung der
zu manipulierenden Objekte, der Hindernisse in der unmittelbaren
Umgebung, oder von menschlichen Benutzern und Mitarbeitern. Für
die meisten dieser Problemstellungen wurden hochentwickelte Lö-
sungsansätze vorgestellt, die sich vor allem in ihrer Robustheit und
ihrer Komplexität unterscheiden. Ein Schlüsselkriterium für den Er-
folg eines Verfahrens ist jedoch nicht nur eine hohe Erfolgsrate ohne
das Auftreten von Fehlern, sondern auch eine kurze Laufzeit, um Un-
terbrechungen im Arbeitsfluss des Roboters zu vermeiden. Für viele
Situationen und Aufgaben können einfache aber robuste Verfahren
effizienter als hochentwickelte Verfahren sein, indem sie in derselben
oder weniger Zeit dieselben oder bessere Ergebnisse liefern. Ziel dieser
Arbeit ist es, die erwähnten Problemstellungen genau zu untersuchen,
Annahmen und Vereinfachungen abzuleiten, und solche simplen aber
effizienten Lösungsansätze zu entwickeln. Die Effizienz der entwick-
elten Verfahren wird dabei in umfangreichen Vergleichen mit dem
aktuellen Stand der Technik verglichen. In allen Verfahren werden
3D Sensoren verwendet, die ihre Umgebung räumlich abtasten. Der
Fokus liegt dabei auf sogenannten RGB-D Kameras, die bei geringen
Anschaffungskosten und geringer Größe, Farb- und Tiefenbilder mit
hoher Bildrate aufnehmen. Vor allem die Topologie der Messungen
wird dabei ausgenutzt, um geringe Laufzeiten zu erreichen.

Die erste Problemstellung in dieser Reihe ist die Wahrnehmung
von Objekten in Manipulationsaufgaben. Um manipulierbare Ob-
jekte zu finden und weitere Verarbeitungsschritte auf relevante Re-
gionen in den Daten fokussieren zu können, wird eine Echtzeit-
Verarbeitungspipeline vorgestellt. Die Pipeline nutzt verschiedene
Annahmen aus, wie die dass Objekte meist auf horizontalen Flächen
stehen und einen gewissen Abstand voneinander haben. Zusätzlich
wird Geschwindigkeit dadurch erzielt, dass in den einzelnen Schritten
nur Untermengen der Eingabedaten oder nur Daten in relevanten
Regionen verarbeitet werden. Ferner werden in den einzelnen Verar-
beitungsschritten nur besonders schnelle Verfahren, wie zum Beispiel
für die Berechnung von Oberflächennormalen, verwendet. Die resul-
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tierende Pipeline segmentiert Eingabedaten in horizontale Flächen
und potentielle Objekte darauf in Echtzeit (30 Hz).

Um 3D Eingabedaten vollständig in Ebenen und andere geometrische
Primitive zu segmentieren, wird eine zweite Pipeline vorgestellt. Diese
berechnet zunächst eine approximierte Oberflächenrekonstruktion,
glättet die Daten, und segmentiert dann die geglättete Oberfläche in
kohärente Regionen, die zu einem Primitiv gehören. Die Pipeline kann
mehrere Primitive wie Ebenen, Zylinder und Kugeln unterscheiden.
Eine ausführliche Vergleichsevaluation zeigt Segmentierungen ver-
gleichbar mit dem Stand der Technik und Laufzeiten im Bereich der
Echtzeitverarbeitung.

Der zweite Teil der Arbeit beschäftigt sich mit der Registrierung
von 3D Eingabedaten, die von unterschiedlichen Beobachtuntspunkten
und -orientierungen aufgenommen wurden, also dem korrekten Aus-
richten der Daten zueinander. Für verschiedene Typen von Eingabe-
daten werden entsprechende Verfahren vorgestellt. Speziell für die
Kartierung der Umgebung mit Leichtfluggeräten werden ein spezieller
3D Laser Scanner und ein Verfahren zur Registrierung der besonders
spärlichen Daten des Scanners vorgestellt. Die Pipeline berechnet
zunächst wieder approximierte Oberflächenrekonstruktionen für die
aufgenommenen Laser Scans und registriert diese dann, indem die
Oberflächen zueinander ausgerichtet werden. Optimierung der re-
sultieren Graphen aus bestimmten Beobachtungsposen ermöglicht
dann die Konstruktion einer konsistenten dreidimensionalen Karte
der Umgebung. Für Sequenzen von RGB-D Daten, wird die Pipeline
schließlich um weiteres Subsampling und initiale Registrierungen in
lokalen Fenstern benachbarter Beobachtungsposen erweitert. In beiden
Fällen (spärliche 3D Laser Scans und RGB-D Sequezen) zeigen Vergleich-
sevaluationen robuste und schnelle Registrierung der Eingabedaten.
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1 I NTRODUCT ION

Everything should be made as simple as possible, but no simpler.1

— Albert Einstein (1879–1955)

A problem well stated is a problem half solved.

— Charles Franklin Kettering (1876–1958)

The past decades have seen tremendous progress in robotics re-
search. While we are still far away from the highly capable fictional
robots and androids as imagined in novels and movies, real robotic
systems have already revolutionized many domains especially auto-
mated manufacturing. Moreover, in recent years, a challenging new
market is addressed, namely that of service robots. In contrast to con-
trolled factory and laboratory environments, service robots operate
in everyday environments, possibly in the vicinity of humans or even
in collaboration with a human operator or co-worker. Applications
in the health care domain, for example, envision autonomous robotic
systems assisting the elderly to allow them to stay at home and re-
main independent past the point they would usually be unable to live
alone. In other applications, robots help people with disabilities and
take over duties and responsibilities of professional caregivers. The
common goal of these applications is to increase the user’s life quality
and, at the same time, entail cost-effectiveness to the public expendi-
tures on healthcare. However, operating in uncontrollable everyday
environments comes at a price: it is far more challenging than operat-
ing an industrial robot behind fences that replays pre-programmed
instructions and gets stopped in case of potential risks, e.g., when a
human enters the workspace of the robot.

Robots operating in uncontrollable environments need advanced
perception and cognition abilities in order to understand the situation
and to react accordingly. In particular, autonomous mobile robots
need a rough understanding of their surroundings in order to act in a
goal-directed manner and plan actions effectively. Understanding the
scene means to

• perceive spatial and visual information about the scene,
• extract spatial composition and geometry of rooms and environ-

mental structures,

1 From “It can scarcely be denied that the supreme goal of all theory is to make the irreducible
basic elements as simple and as few as possible without having to surrender the adequate
representation of a single datum of experience.” (Einstein, 1934)

1
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• segment the scene into distinct objects, and
• classify them into distinct classes like walls, doors, tables, chairs

or people.
Moreover, robots need a representation or map of their surroundings
and the abilities to

• localize objects and themselves in such maps and to
• build and update such maps during operation.

Naturally, requirements for robotic applications are both 1) being fast
to avoid longer interruptions in the workflow of the robot and 2) be-
ing robust to reliably provide correct results while avoiding errors
such as false positives. Especially the last decade has brought up a
myriad of sophisticated approaches addressing the aforementioned
tasks. They vary in complexity—both algorithmic complexity and run-
time/memory requirements—as well as in robustness and reliability.
For many situations and tasks, however, a simple but robust approach
can achieve the same or even better results than sophisticated related
approaches in the same or even less time. That is, well-engineered
simple solutions can be far more efficient (in terms of computation
time and achievable results) than state-of-the-art solutions, especially
if task and situation are constrained. If, for example, certain assump-
tions can be made about the task and the environment, exploiting
these assumptions can considerably simplify the problem and make
an approach for solving the problem less complex. In other words,
one can overfit the approach to the problem to gain efficiency. While
this comes at the price of loosing generality, it can allow simple but
well-engineered solutions to outperform sophisticated general solu-
tions. Investing such simple but efficient approaches is an essential
part of this thesis.

This thesis focuses on environment perception and extracting rele-
vant information for mobile manipulation and mapping. As the main
sensing modalities, sensors capturing the three-dimensional (3D) ge-
ometry of the surroundings are used. These include 3D laser scanners,
time-of-flight (ToF) cameras and consumer color and depth (RGB-D)
cameras. The goal of this thesis is to develop simple but efficient
approaches for problems in autonomous mobile robot perception and
mapping as well as investigating how they compare to state-of-the-art
approaches.

1.1 list of contributions

Real-time RGB-D plane segmentation and object detection: A wide range
of tasks in the domain of (domestic) service robots involves the
manipulation of objects and pick and place tasks in particular.
In order to avoid interruptions in the robot’s operation, both
perception and planning components need to be fast and ideally
exhibit real-time applicability.
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A segmentation pipeline specifically designed for ToF cameras
is presented that efficiently detects horizontal support surfaces,
objects and the shape of objects (Holz et al., 2010). For object
detection in real-time, another efficient pipeline is developed
that makes use of several heuristics to achieve reliable detection
of potential object candidates in table scenes (Holz et al., 2011).
Experimental results show reliable detections with the update
rate of the used RGB-D camera.

The approach finds application in various other projects. In a
joint work with Jörg Stückler and Ricarda Steffens, it is combined
with an efficient approximate grasp planner in order to detect
and grasp objects in table scenes and plan grasps in less than
a second (Stückler et al., 2013b). In a joint work with Angeliki
Topalidou-Kyniazopoulou and Jörg Stückler, another perception
and grasping pipeline was developed that allows for picking
automotive parts from pallets with particularly low cycle times
of only several seconds (Holz et al., 2015a; Holz et al., 2015b).

Fast and accurate segmentation of RGB-D and range images: A key aspect
of scene understanding in the context of mobile robotics is the
decomposition of the scene into environmental structures such
as walls, floor and ceiling. In man-made environments, these
structures are mainly composed of planes and other simple
geometric primitives such as cylinders.

Focusing on planes to detect dominant planes and environmen-
tal structures, an efficient approach to range image segmentation
is developed (Holz and Behnke, 2012; Holz and Behnke, 2014a).
The approach first approximately reconstructs the sensed sur-
face in RGB-D point clouds. The obtained mesh is then used to
efficiently cache neighborhoods and relations, compute local fea-
tures, smooth the underlying data, and segment the measured
points into dominant planes and other geometric primitives.

In experiments, the proposed approach shows state-of-the-art
performance for range image segmentation on publicly available
datasets and data acquired using RGB-D cameras while being
considerably faster than related approaches.

Fast registration and mapping of sparse 3D point clouds: In contrast to
RGB-D cameras with dense depth and color images, the point
clouds acquired by (continuously rotating) 3D laser scanners
are sparse, especially when rotated fast. Registration of such
data with standard registration algorithms suffers from effects
resulting from the different point densities within and between
individual scan lines of the point cloud.

For the registration of sparse laser scans acquired by an au-
tonomous micro aerial vehicle (MAV), an efficient approach is
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developed that makes use of information about the underlying
surface to compensate for the different point densities (Holz
and Behnke, 2014b). As in the range image segmentation ap-
proach, the surface information is obtained using approximate
reconstruction, that is adapted to sparse laser scans. In order
to build allocentric 3D maps, the registration algorithm is used
in a complete simultaneous localization and mapping (SLAM)
pipeline using graph-based pose optimization (Holz and Behnke,
2014c). By using multiple point correspondences between view
poses instead of a single pose estimate, accurate 3D maps can be
built even with inaccurate registration results.

In experiments, it is demonstrated that accurate 3D maps can be
built from the acquired sparse laser scans in near real-time and
without aggregation of the data (Holz and Behnke, 2015a).

Fast registration and mapping for RGB-D Cameras: Streams of RGB-D im-
ages pose quite different challenges on registration pipelines
than the non-uniform density 3D laser scans: they are dense and
arrive at high frame rates.

For the efficient registration of RGB-D images and mapping with
RGB-D cameras, the registration and mapping approach is extend-
ed by aligning new images in local windows of the pose graph
to minimize draft and by different subsampling steps to reduce
the amount of data, e.g., the processed points per frame and the
edges between connected frames (Holz and Behnke, 2015b).

Experiments show that the extended pipeline can reliably regis-
ter streams of RGB-D images and build 3D maps with a moving
RGB-D camera. Moreover, the approach can keep up with the
performance of related approaches.

In a last series of experiments, the extensions are applied to the
non-uniform density 3D laser scans again, showing an increase
in performance for both initial alignments and final registra-
tions (Razlaw et al., 2015).

1.2 publications

Parts of this thesis have been published in journals and conference
proceedings. The publications are provided in chronological order:

• Holz, D., R. Schnabel, D. Droeschel, J. Stückler, and S. Behnke
(2010). “Towards Semantic Scene Analysis with Time-of-Flight
Cameras.” In: Proceedings of the RoboCup International Symposium.
Vol. 6556. Lecture Notes in Computer Science. Singapore, Singa-
pore: Springer, pp. 121–132.
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• Holz, D., S. Holzer, R. B. Rusu, and S. Behnke (2011). “Real-Time
Plane Segmentation using RGB-D Cameras.” In: Proceedings of the
15th RoboCup International Symposium. Vol. 7416. Lecture Notes
in Computer Science. Istanbul, Turkey: Springer, pp. 307–317.

• Holz, D. and S. Behnke (2012). “Fast Range Image Segmentation
and Smoothing using Approximate Surface Reconstruction and
Region Growing.” In: Proceedings of the 12th International Confer-
ence on Intelligent Autonomous Systems (IAS). Jeju Island, Korea.

• Stückler, J., R. Steffens, D. Holz, and S. Behnke (2013b). “Efficient
3D object perception and grasp planning for mobile manipu-
lation in domestic environments.” In: Robotics and Autonomous
Systems 61.10, pp. 1106–1115.

• Holz, D. and S. Behnke (2014a). “Approximate triangulation
and region growing for efficient segmentation and smooth-
ing of range images.” In: Robotics and Autonomous Systems 62.9,
pp. 1282–1293. issn: 0921-8890.

• Holz, D. and S. Behnke (2014b). “Registration of Non-Uniform
Density 3D Point Clouds using Approximate Surface Recon-
struction.” In: Proceedings of the 45th International Symposium on
Robotics (ISR) and 8th German Conference on Robotics (ROBOTIK).
Munich, Germany.

• Holz, D. and S. Behnke (2014c). “Mapping with Micro Aerial
Vehicles by Registration of Sparse 3D Laser Scans.” In: Proceed-
ings of the 13th International Conference on Intelligent Autonomous
Systems (IAS). Padova, Italy.

• Holz, D., A. Topalidou-Kyniazopoulou, M. R. P. Francesco
Rovida, V. Krüger, and S. Behnke (2015a). “A Skill-Based Sys-
tem for Object Perception and Manipulation for Automating
Kitting Tasks.” In: Proceedings of the IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA). Luxem-
burg.

• Holz, D., A. Topalidou-Kyniazopoulou, J. Stückler, and S. Behnke
(2015b). “Real-Time Object Detection, Localization and Veri-
fication for Fast Robotic Depalletizing.” In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Hamburg, Germany, pp. 1459–1466.

• Holz, D. and S. Behnke (2015a). “Registration of Non-Uniform
Density 3D Laser Scans for Mapping with Micro Aerial Vehicles.”
In: Robotics and Autonomous Systems 74, Part B, pp. 318–330.

• Holz, D. and S. Behnke (2015b). “Approximate Surface Recon-
struction and Registration for RGB-D SLAM.” In: Proceedings of
the European Conference on Mobile Robots (ECMR). Lincoln, UK.
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• Razlaw, J., D. Droeschel, D. Holz, and S. Behnke (2015). “Eval-
uation of Registration Methods for Sparse 3D Laser Scans.” In:
Proceedings of the European Conference on Mobile Robots (ECMR).
Lincoln, UK.

1.3 outline

The thesis is structured as follows:

section 2 : Efficient Perception for Object Manipulation presents mo-
bile manipulation as a first application of real-time perception
approaches. After discussing relevant related work, the devel-
oped real-time object segmentation pipeline is described. The
section also presents the conducted experimental evaluation and
discusses the achievable results and applications of the approach.

section 3 : Efficient Segmentation of RGB-D Images addresses the prob-
lem of segmenting 3D point clouds and identifying environmen-
tal structures. After a discussion of related work, it presents the
proposed segmentation algorithm based on approximate surface
reconstruction. The section also features an extensive compara-
tive evaluation of the proposed approach and a variety of related
works.

section 4 : Registration and Mapping with Micro Aerial Vehicles pre-
sents the problem of simultaneous localization and mapping
(SLAM) as another important problem domain. It features both
the presentation of the proposed approach to laser scan registra-
tion using approximate surface information and the presentation
of the full SLAM approach for building allocentric 3D maps using
registered laser scans. The section also features a discussion of re-
lated work and a comparative evaluation of different approaches
and error metrics for both SLAM and the registration problem.

section 5 : Registration and Mapping for RGB-D Cameras presents the
extensions of the SLAM pipeline to streams of RGB-D images
including initial alignments in local windows and efficient sub-
sampling. The section also features a discussion of related work
and a comparative evaluation showing that the resulting pipeline
compares well to related works for both RGB-D mapping and
mapping with micro aerial vehicles.

section 6 : Discussion and Conclusion concludes the thesis, discusses
the achieved results and outlines applications of the proposed
approaches as well as future works.

Chapters 2 to 5 are written self-contained with each chapter con-
taining an introduction, an individual discussion of related works,
experiments and results.



Part I

P E R C E P T I O N A N D S E G M E N TAT I O N

. . . in which robotic environment sensors are introduced
and the central question is how to process the acquired data
efficiently. In this thesis, two applications are distinguished:
1. perceiving certain parts of the environment that are
relevant for a particular task like mobile manipulation
and 2. complete segmentations of input data into coherent
parts for further processing and applications like scene
understanding.

Perception for (mobile) manipulation aims at extracting
task-relevant regions in the input data such as finding
the object to manipulate and its support surface as well
as detecting obstacles in the surroundings of the object
and the robot that may restrict applicable manipulation
motions.

The problem of segmentation is to (completely) partition
the input data into coherent regions or clusters. A promi-
nent example which is also the main problem addressed
in this thesis is planar segmentation, i.e., partitioning in-
put data into planar segments. Such a partition forms a
simplification of the scene while still containing the rele-
vant information about dominant environmental structures
such as walls, floor, ceiling and table surfaces. Segmenta-
tion into planes and other geometric primitives forms a
fundamental pre-processing step in a large variety of appli-
cations such as estimating the three-dimensional (3D) scene
geometry, building planar environment maps or semantic
scene classification.

Both perception for manipulation and segmentation share
that the amount of data is typically large and that the
involved computations are expensive. On the contrary, in
order to avoid longer interruptions in the workflow of the
robot, the data needs to be processed fast. The following
chapters particularly focus on deducing and exploiting
simplifying assumptions that allow for fast yet reliable
perception pipelines.





2 EFF I C I ENT PERCEPT ION FOR
OBJECT MAN IPULAT ION

Real-time 3D perception of the surrounding environment is a crucial
precondition for the reliable and safe application of mobile service
robots in domestic environments. In this chapter, we present a system
for acquiring and processing 3D (semantic) information at frame rates
of up to 30 Hz. It allows a mobile robot to reliably detect obstacles as
well as to segment graspable objects and supporting surfaces.

After a brief introduction and a discussion of related works, we
first present a table top perception pipeline that was specifically de-
signed for time-of-flight (ToF) cameras. In contrast to other approaches
working with highly detailed and accurate 3D laser scans, the pipeline
features several processing steps for coping with the special measure-
ment characteristics of ToF cameras. For being able to acquire semantic
information from ToF camera data, we 1. pre-process the data includ-
ing outlier removal, filtering and phase unwrapping for correcting
erroneous distance measurements, and 2. apply a randomized algo-
rithm for detecting shapes such as planes, spheres, and cylinders (e.g.,
for planning possible grasps and to obtain a parameterized represen-
tation of the scene). We present experimental results that show that
the robustness against noise and outliers of the underlying random
sample consensus (RANSAC) paradigm allows segmenting objects in
3D ToF camera data captured in natural mobile manipulation setups.

In the second part, we then present several extensions to the orig-
inal pipeline that make it particularly efficient and robust for object
detection with color and depth (RGB-D) cameras. By restructuring the
pipeline and replacing several processing steps with highly efficient
approximations, the resulting pipeline can detect potential object can-
didates in table top scenes at 30 Hz, i.e., with the frame-rate of the
RGB-D camera. The system is tested in different setups in a real house-
hold environment. The results show that the system is capable of
reliably detecting objects and obstacles at high frame rates, even in
case of objects that move fast or do not considerably stick out of the
ground. The segmentation of all planes in the 3D data even allows for
correcting characteristic measurement errors and for reconstructing
the original scene geometry in far ranges. We present experimental
results that show that the extended pipeline can reliably segment
horizontal support surfaces and potential object candidates thereon in
real-time.

Finally, we present two applications of the real-time segmentation
pipeline: 1. real-time object perception and grasp planning where the
segmented regions are used efficiently grasp objects without prior

9
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knowledge about the objects, and 2. mobile robot depalletizing where
the pipeline is used to detect objects on transport pallets and grasp
them. For both applications we present proof-of-concept experiments
and results. The performance of the approaches is measured using
two criteria: the success rate for detecting and grasping parts, and the
cycle time, i.e., the time it takes for detecting and grasping the part
including motion planning and execution.

2.1 introduction

Autonomous mobile robots need environment models in order to plan
actions and navigate effectively. Two-dimensional metric maps, built
from two-dimensional (2D) laser range scans, became the de-facto
standard to tackle navigation problems such as path planning and
localization of the robot platform. For planning arm motions and
grasps, however, 3D (semantic) information becomes crucial since:

1. Objects need to be detected in the presence of other objects (e.g.,
on a cluttered table).

2. The robot needs to determine whether or not an object is gras-
pable (e.g., with respect to its size).

3. The robot needs to determine the 3D pose of the object as a goal
for its end-effector.

4. The robot needs to determine the 3D pose (and boundaries) of
neighboring objects in order to plan an obstacle-free path.

The context of the work presented here are different projects on
mobile manipulation including larger European projects and the
RoboCup@Home league. The latter addresses service robot applica-
tions and focuses on navigation (and SLAM) in dynamic environments,
mobile manipulation and human-robot-interaction. A typical task for a
mobile (service) robot is the manipulation of objects like, for instance,
retrieving objects for a human user. Besides the interaction with the
user, these tasks require the robot to be capable of safely navigating in
cluttered and dynamic environments, reliably perceiving the involved
objects under varying conditions, and planning and executing motions
for manipulating the objects.

Mobile manipulation in domestic environments has seen a lot of
progress recently and many different platforms have been developed
and presented in the past years. A very prominent example is the PR2

developed by Willow Garage (Meeussen et al., 2010). It is equipped
with two 7 degree-of-freedom (DoF) compliant arms and a parallel
gripper with touch sensor matrices on the gripper tips. Leeper et al.
(2012) use the system in a tele-operated setting. Besides directly con-
trolling the robot’s end effector, the user can follow different strategies
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for grasping objects. In one of the strategies, the user selects a grasp
from a set of feasible poses suggested by the planner of Hsiao et al.
(2010). Bohren et al. (2011) used the PR2 platform for opening a refrig-
erator, grasping beverages, and delivering them to human users. Beetz
et al. (2011) presented a demonstration where a PR2 collaboratively
prepared pancakes with another custom built robot.

Another popular (research) platform is the Baxter robot developed
and marketed by Rethink Robotics1. It is designed for manipulation
tasks in close collaboration with human users. The arms and grippers,
for example, can be easily moved by users to teach motions to the
robot. The robot has two 7-DoF arms and different grippers like two-
finger grippers and suction cups. It also features a display, e.g., for
communicating with the user or visualizing internal information.

The German Aerospace Center (Deutsches Zentrum für Luft- und
Raumfahrt; DLR) has developed Rollin’ Justin, a mobile manipulator
with a particularly compliant whole-body motion design. Bäuml et
al. (2011) presented a demonstration with Rollin’ Justin where the
robot prepared coffee for human users. The task involved opening
and closing the pad drawer, grasping coffee pads and putting them
into the pad machine.

Fraunhofer IPA has developed the Care-O-Bot platform and its suc-
cessors (Hans et al., 2002). The platform is designed for both mobile
manipulation and intuitive interaction.

Jain and Kemp (2010) presented the robot platform EL-E, a mobile
manipulator that shall assist the impaired. The user can draw the
robot’s attention to objects on tables and the floor by pointing on the
objects with a laser pointer. The robot then picks the object up and
delivers it to the user.

Srinivasa et al. (2008) presented a mobile tray that delivers mugs to
a statically mounted manipulator. The tray navigates through visual
ceiling markers to the predefined position of the manipulator. The
manipulator then grasps the mugs from the tray and loads them into
a dishwasher rack. The mugs are perceived using a real-time vision
system specifically designed for the mugs. For the mobile manipulator
HERB, Srinivasa et al. (2010) extended the vision system to include a
more general object recognition approach.

The above mentioned examples primarily include different plat-
forms for mobile manipulation. However, it is not the design of a
platform which solves a task but the robot’s abilities to perceive its
environment, to reason about the task, its knowledge and what it has
observed, and to act (and react) in a reasonable way. In this chapter, we
focus on a crucial part of the perception of objects namely detecting
potential object candidates in table top scenes. This problem is also
often referred to as object discovery. We present a pipeline for finding

1 http://www.rethinkrobotics.com/baxter
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(a) 2D laser perception (b) 3D camera perception

Figure 2.1: Perceiving objects on the table. With the trunk laser scanner
(a), the second object is occluded and not perceived. Using a 3D

camera (b), mounted in the robot’s head allows perceiving both
objects.

potential object candidates (and grasping them) without the need for
a special vision system or object models known a priori.

In previous work (Stückler and Behnke, 2009), we used a 2D laser
scanner for detecting possible object locations on tables. The 2D po-
sitions of the object candidates were then projected into the image
plane of a color camera for feature-based object recognition. In case
of a successful recognition (i.e., the object to deliver was among the
candidates), grasping of the object was initiated. The drawback of
this approach (as illustrated in Figure 2.1) is that objects can occlude
each other in the two-dimensional measurement plane of the laser
range scanner. In this chapter, we focus on detecting potential object
candidates with 3D cameras including ToF cameras and RGB-D cameras.

The two pipelines presented in this chapter were first published and
presented at the International RoboCup Symposium in 2010 (Holz
et al., 2010) and 2011 (Holz et al., 2011).

2.2 related work

In typical household environments objects are usually constrained in
their position to well defined parts like, for instance, table tops, shelves
and other horizontal support planes. This natural restriction of space
is exploited in the majority of approaches to object perception and
search. A common processing scheme (Rusu et al., 2009b; Holz et al.,
2010) and perception pipeline for detecting and recognizing objects in
depth images and 3D point clouds is to

1. detect the horizontal support planes,

2. extract and cluster the measurements on top of these planes, and
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3. perform further processing, e.g., recognizing, classifying or track-
ing the found clusters.

Differing in related works are, most notably, the used methods for
the individual processing steps that determine, amongst others, the
robustness, speed, and runtime requirements of the overall system.

Rusu et al. (2009b) propose to segment point clouds into objects on
planar surfaces. They suggest to use RANSAC to detect planes and to
extract shape primitives on the objects. Remaining points are described
by meshes. Schnabel et al. (2007) decompose noisy point cloud data
into geometric shape primitives with an efficient multi-resolution
approach. In this chapter, we combine planar pre-segmentation as
done by Rusu et al. (2009b) with efficient object modeling using shape
primitives (Schnabel et al., 2007), and make the approaches applicable
to the measurements of ToF cameras. Amongst others, we present
techniques to cope with the specific error sources of the cameras, to
speed up processing by exploiting the image-like data organization,
and for detecting geometric primitives in the found object clusters.

Rusu et al. (2009c) extract shape primitives and use them as obsta-
cles for a motion planner. Sucan et al. (2010) extend this approach to
identify areas of a scan that are occluded by the robot. They maintain
these areas from a sequence of scans while the robot is moving. In this
way, the robot can still avoid obstacles that it occludes during its mo-
tion. Muja et al. (2011) present a complete open source framework for
detecting, recognizing, and localizing objects using intensity images.
It allows for combining different detection and recognition methods
in order to achieve reliable results in varying settings.

For discovering objects in 2D images a rich literature of algorithms
is available. While we focus on RGB-D object discovery, we refer to
the overview and comparison of Tuytelaars et al. (2010) for object
discovery approaches in 2D images.

Collet et al. (2011) present a framework for object segmentation that
combines and fuses color and depth information. They first segment
the scene into regions based on color and depth and then estimate
for each region how much structure is contained. This estimation is
based on simple image and range features and separates objects from
the mostly planar background. In experiments, they can show that the
highest ranked regions w.r.t. to the measure of structureness belong to
the most dominant objects in the scene, e.g., objects on a table top.

For oversegmenting RGB-D images, Weikersdorfer et al. (2012) present
an extension of superpixels from the 2D image domain to include
depth. Papon et al. (2013) present a similar supervoxel-based overseg-
mentation of RGB-D images that uses different voxel relationships in
order to produce accurate oversegmentations that are fully consistent
with the 3D geometry of the scene. Such oversegmentations are used,
for example, by Stein et al. (2014) who first oversegment RGB-D images
and then connect clusters to objects primarily by focusing on convex-
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ity. That is, they make the assumptions that objects are convex and
that segments belonging to the same object belong completely to that
object and show relationships of convexity to other segments of the
object. Moosmann et al. (2009) also use a local convexity criterion in a
graph-based approach for segmenting the ground and objects on the
ground in 3D laser data.

Richtsfeld et al. present a multi-stage pipeline that also starts with
an oversegmentation of the input image and the estimation of surface
patches using planes and non-uniform rational B-splines (Richtsfeld et
al., 2012; Richtsfeld et al., 2014). In the next step, a graph is constructed
representing pairwise relationships between surface patches. Support
vector machines (SVMs) are used to classify the relations and to derive
the grouping of patches. The approach can reliably segment objects in
cluttered scenes, even when the objects are stacked or touching one
another. In our pipeline, we primarily aim for efficiency and only ad-
dress detecting regions of interest, rather than accurately segmenting
the regions into individual objects.

Karpathy et al. (2013) also start from a pre-segmentation of the scene
and then estimate for each segment a measure of objectness, i.e., how
likely the segment belongs to an object and not to the background or
other environmental structures. This estimation is based on different
intrinsic shape measures such as compactness, convexity, symmetry
and smoothness. Especially the symmetry criterion helps in distin-
guishing man-made objects from cluttered backgrounds as was shown,
for example, by Palmer (1985). Triebel et al. (2010) pre-segment RGB-D

images using a graph-based clustering in both geometric space and
feature space, and use a conditional random field (CRF) to label ex-
tracted regions. In an extension of the approach, previously unknown
objects are extracted from cluttered scenes based on whether or not
they appear multiple times in an image (Shin et al., 2010). In our ap-
proach we do not make assumptions about the reappearance of objects
or assumptions about the convexity, symmetry or smoothness of the
objects’ shapes.

A popular approach for object discovery is to use the biologically
inspired concept of saliency. Leroy et al. (2015) first segment RGB-D

images into supervoxels and then use bottom-up saliency maps to
identify how salient the individual voxels are. A similar approach is
followed by Frintrop et al. (2014) who compute both a segmentation
of the images and a saliency map. Thresholding in the saliency map
then allows for identifying salient regions in the segmented image.
The approaches find similar results as our pipeline for objects on
tables and shelves whereas we explicitly make assumptions about
these horizontal surface instead of using saliency.

Herbst et al. (2011a) exploit changes in the environment in a se-
quence of RGB-D images in order to detect and model moving objects.
Herbst et al. (2011b) then extend to approach to use a multi-scene
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Markov Random Field (MRF) as well as shape, visibility, and color
cues. In a similar fashion Mason et al. (2012) detect objects by disap-
pearance, i.e., when a certain region of the image is no longer present
and does no longer occlude other parts of the scene. Ma and Sibley
(2014) present a complete framework for estimating the camera mo-
tion in a scene as well as segmenting, tracking, and modeling moving
objects. In our pipeline, we do not assume and require objects to move
or disappear, but instead segment single RGB-D images.

2.3 table top segmentation with tof cameras

One of the first applications in robotics considering ToF cameras as
an alternative to laser scanning has been presented by Weingarten
et al. (2004) who evaluated a SwissRanger SR-2 camera in terms of
basic obstacle avoidance and local path-planning capabilities. Another
early application was human-assisted 3D mapping in the context of the
RoboCup Rescue league as presented by Sheh et al. (2006). Ohno et al.
(2006) used a SwissRanger SR-2 camera for estimating the trajectory
of a mobile robot and reconstructing the surface of the environment.
More recently, May et al. (2009) presented and evaluated different
approaches for registering multiple range images of a SwissRanger
SR-3000 camera in the context of a fully autonomous 3D mapping
system.

All the aforementioned approaches have shown that ToF cameras
require taking care of their complex error model (May et al., 2009).
The specific characteristics of ToF cameras can cause spurious mea-
surements that do not correspond to any object in the real physical
environment. Several works address the sensor characteristics of ToF

cameras as well as methods for calibrating the cameras (Fuchs and
Hirzinger, 2008) or filtering noisy and erroneous measurements (May
et al., 2006; Fuchs and May, 2007; Pathak et al., 2008). In our pipeline
we include pre-processing steps that address these problems. In a post-
processing step, we use the approach of Schnabel et al. (2007) to detect
geometric shape primitives in the detected object clusters. The rest
of the pipeline resembles a standard so-called table-top segmentation
pipeline (Rusu et al., 2009b).

2.3.1 Pipeline Overview

The pipeline is split into three stages: pre-processing, segmentation,
and post-processing. Referring to Figure 2.2, input point clouds are
first filtered to cope with the special characteristics of ToF cameras.
Using a probabilistic graphical model, measurements larger than the
maximally measurable distance are reconstructed by projecting them
into the correct distance interval (distance unwrapping). A jump edge
filter then removes spurious measurements between occluding and
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Figure 2.2: Overview of the object detection pipeline: input point clouds are
filtered to cope with the special characteristics of ToF cameras. In
the filtered point clouds, we first compute local point features
and then detect the support plane and cluster the points above
the plane. In a post-processing step, we detect geometric shape
primitives and build the final parameterized model of the scene.

occluded surfaces. For the actual segmentation of the filtered point
cloud, we first compute local features such as surface normal and
curvature which are used in the various processing steps thereafter.
The segmentation then continues to detect the dominant (horizontal)
planes in the scene. The plane inliers are extracted and for the remain-
ing points it is checked whether or not they lie above the detected
plane. The points that are found to lie above then plane are then
clustered to obtain potential object candidates and regions for further
processing steps. As one application of the found object clusters, we
detect geometric shape primitives in a post-processing step and build
a parameterized environment representation for mobile manipulation.
This representation models the support plane and its boundary as
well as the geometric shape of objects on the support plane.

The results of the pipeline are 1. a model for the support plane p
that includes the plane equation in Hesse normal form and its contour
(we use the convex hull of the plane inliers) and 2. the set of objects O,
where every object oi ∈ O is represented by a subset of the original
filtered point cloud P′ of points belonging to the object as well as the
centroid of the object, its principal axes and the dimensions along the
principal axes using Principal Component Analysis (PCA). In addition,
it provides for every object oi ∈ O the set of detected shapes Si and
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the set of remaining points R where no shape was detected (usually
empty or containing few outliers).

2.3.2 Preprocessing

Besides a large variety of systematic and non-systematic errors, ToF

cameras show two problems that are characteristic for their measure-
ment principle. Both problems cause spurious measurements that do
not correspond to any object in the real physical environment. The first
problem is the ambiguity of distance measurements. The second prob-
lem is that the acquired point clouds contain phantom measurements
occurring at distance discontinuities, i.e., at the boundaries of surfaces
partially occluding each other. By means of phase unwrapping and
jump edge filtering both problems are addressed when pre-processing
the acquired point clouds.

2.3.2.1 Phase Unwrapping

ToF cameras illuminate the environment by means of an array of LEDs
that emit amplitude-modulated near-infrared light. The reflected light
is received by a CCD/CMOS chip. Depth information is gained for all
pixels in parallel by measuring the phase shift between the emitted
and the reflected light. This phase shift is proportional to the object’s
distance to the sensor modulo the wavelength of the modulation
frequency. This characteristic results in a distance ambiguity. That is,
objects farther away from the sensor than the maximum measurable
distance dmax are, respectively, wrapped and projected into the interval
[0, dmax]. An example of a range image that contains such wrapped
distances can be seen in Figure 2.3.

A common way to handle these distance ambiguities is to neglect
measurements based on the ratio of measured distance and intensity
as done by May et al. (2009). The amplitude of the reflected signal
decreases quadratically with the measured distance. Sorting out points
not following this scheme, e.g., points with a low intensity at a short
distance, removes the majority of wrapped measurements but also
valid measurements on less reflective surfaces.

In contrast to these approaches, we correct the wrapped measure-
ments instead of neglecting them. We apply phase unwrapping tech-
niques to reconstruct depth measurements behind the sensor’s non-
ambiguity range. The goal of phase unwrapping is to infer a number
of phase jumps from the wrapped signal. Under the assumption that
neighboring measurements are more likely close to each other than
farther apart, relative phase jumps between neighboring pixels can be
extracted. The signal can be unwrapped by integrating these phase
jumps into the wrapped signal. We use a probabilistic approach based
on the work of Frey et al. (2001) that relies on discontinuities in the
image to infer these phase jumps. In addition to depth discontinuities,
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(a) Scene (b) Wrapped cloud (c) Unwrapped cloud

Figure 2.3: Principle of phase unwrapping. By correcting the depth image at
detected phase jumps, we can obtain valid measurements from
objects being farther away from the sensor than the maximum
measurable distance dmax. Here the red measurements need to be
corrected, the green points naturally lie in the interval [0, dmax].

we incorporate the intensity of the reflected signal, since it depends
on the object’s distance and can indicate inconsistencies between a
measured and the corresponding real distance. An example of an
unwrapped range image can be seen in Figure 2.3. For more details
on the approach, we refer to the original paper by Droeschel et al.
(2010a). An extension of the approach is to use multiple different
modulation frequencies in order to reliably identify wrapped distance
measurements (Droeschel et al., 2010b).

2.3.2.2 Jump Edge Filtering

Jump edges are known to cause spurious measurements that should
either be corrected or neglected when processing ToF depth infor-
mation. For simply neglecting these measurements, sufficient results
are achieved by examining local neighborhood relations. From a set
of 3D points P = {pi ∈ R3|i = 1, · · · , Np}, jump edges J can be
determined by comparing the opposing angles θi,n of the triangle
spanned by the focal point f = 0, point pi and its eight neighbors
Pi(n) = {pi,n|i = 1, · · · , Np : n = 1, · · · , 8} with a threshold θth:

θi = max arcsin
( ||pi,n||
||pi,n − pi||

sin ϕ

)
, (2.1)

J = {pi|θi > θth} , (2.2)

where ϕ is the apex angle between two neighboring pixels. That is,
neighboring points that lie on a common line-of-sight to the focal point
f are, respectively, removed from the point cloud and marked as being
invalid. A typical result of applying this filter is shown in Figure 2.4.
As can be seen, the table occluding the ground planes causes spurious
measurements in between the two surfaces. The jump edge filter
reliably removes these points just like the spurious measurements
between the objects on the table and the table plane.
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(a) Scene (side view) (b) Unfiltered cloud (c) Filtered cloud

Figure 2.4: Sorting out measurements at jump edges. Shown are a photo of
an example scene (a), the captured unfiltered point cloud (b) and
the filtered cloud (c). It can be seen that the majority of erroneous
measurements caused by jump edges, e.g., between table and
floor in (b), are sorted out in the filtered cloud (c).

The detection of tables and objects in the filtered point clouds is
conducted in three steps: We first compute local surface normals and
variations for all points. This information is then used to detect larger
horizontal planes and fitting corresponding planar models into the
data. Points above these planes but inside their boundaries are then
clustered in order to form the object candidates for further processing.

2.3.3 Normal and Curvature Estimation

A common way for determining the normal to a point pi on a surface
is to approximate the problem by fitting a plane to the point’s local
neighborhood Pi in the least squares error sense. This neighborhood
is formed either by the k nearest neighbors or by all points within a
radius r from pi.

Searching for nearest neighbors is computationally expensive. Even
specialized algorithms like approximate search in kd-trees (Mount
and Arya, 1997) can cause longer runtimes when building the search
structure for a larger point set. Instead of really searching for near-
est neighbors, we approximate the problem and exploit the order of
the measurements in the point cloud (176× 144 distance measure-
ments). We build a lookup table storing, for every point index, the
ring-neighborhood being formed by the k closest indices in index
space. That is, starting from pi we circle around the image index
(x = i mod 176, y = i/176) in anti-clockwise order and store the
point index for the traversed pixels in the lookup table. When pro-
cessing a new point cloud we only update the squared distances from
every point pi to its k neighbors as provided by the lookup table.

The approximated nearest neighbors do not resemble the true near-
est neighbors in the vicinity of transitions between different surfaces
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or partial occlusions, and if the point cloud is highly affected by noise
and erroneous measurements. To take this into account, we check the
computed squared distances and mark those being larger than some
threshold r2 as being invalid. That is, our local neighborhood Pi is
bounded by both a maximum number of neighbors k and a maximum
distance r.

Given the local neighborhood Pi, the local surface normal ni can be
computed by fitting a plane through the points in Pi (Shakarji, 1998;
Rusu, 2009) . The computed tangent plane goes through the centroid
p̄i of Pi and its normal is the local surface normal ni. With the centroid

p̄i =
1
‖Pi‖

‖Pi‖
∑
j=1

pj, (2.3)

where ‖Pi‖ is the number of points in the local neighborhood Pi,
the surface normal can be estimated by analyzing the eigenvectors of
the covariance matrix Σi ∈ R3×3 of Pi through Principal Component
Analysis (PCA):

Σi =
1
‖Pi‖

‖Pi‖
∑
j=1

(
pj − p̄i

) (
pj − p̄i

)T , and (2.4)

Σivi,j = λi,jvi,j, j = {0, 1, 2}. (2.5)

An estimate of ni can be obtained from the eigenvector vi,0 correspond-
ing to the smallest eigenvalue λi,0. The ratio between the smallest
eigenvalue and the sum of eigenvalues provides an estimate of the
local curvature κi or local variance:

κi =
λi,0

λi,0 + λi,1 + λi,2
. (2.6)

The eigenvector corresponding to the smallest eigenvalue is only
an approximation of the local surface normal and its orientation
is ambiguous since it depends on the order and positions of the
points in the local neighborhood. In order to obtain consistent normal
orientations, we flip normals pointing away from the sensor towards
the sensor. Also, at surface boundaries the approximated normals can
be inaccurate since the local neighborhoods may contain points from
more than one surface. Rusu (2009) proposed to compute the centroids
and the normals in two stages where the best fitting plane through
the points is first computed in a RANSAC-based approach in order
to determine inliers and outliers. The distances of the points in the
neighborhood to the best fitting plane are then used to derive weights
(per point) for the computation of the centroid p̄i and the covariance
matrix Σi in Equations (2.3) and (2.4). In order to avoid sweeping
through the data twice, we accept the inaccuracies at boundaries and
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(a) Intensities (b) Normals (c) Curvature

Figure 2.5: Computing local surface normals and curvature. Shown are the
input point cloud with intensity information (a) as well as the
computed surface normals (b) and local curvature changes (c).
The used parameters are k = 40 and r = 5 cm.

compute the local surface normal approximations in a single sweep
with constant weights (the weights are neglected in the equations).

Figure 2.5 shows a typical example of local surface normals and
curvature changes as computed for a pre-processed point cloud with
normal and curvature estimates. The aforementioned neighborhood
approximation by using fixed lookup tables drastically decreases
the computational complexity of the surface normal and curvature
estimation. However, more important is that the involved inaccuracies
did not considerably degrade the results in our experiments.

2.3.4 Table Plane Detection

In order to detect the table plane, we exploit the assumption that
objects are usually standing on horizontal surfaces. For detecting
tables in the vicinity of the robot, we extract those points pi from
the point cloud that are close to the robot, e.g., not more than 2 m
away and that lie in a height in which we expect planes, e.g., above
the ground and no higher than 1.5 m. In order to obtain an efficient
representation of tables and to segment individual objects, we fit a
planar model to the extracted point set using the M-estimator sample
consensus (MSAC) framework, an extension to the well-known RANSAC

paradigm where inliers receive a certain score depending on how
well they fit the data (Torr and Zisserman, 2000). This M-Estimator is
particularly robust against noise and outliers. For other variants of the
RANSAC paradigm we refer to the extensive overview and evaluation
of Choi et al. (2009). In the detection, we restrict the MSAC to only use
horizontal planes, i.e., planes whose plane normals are not roughly
parallel to the Ẑ-axis are neglected. The planes are expressed with
normal n and distance d to the origin. In order to identify the inliers,
we use the following constraints:

1. the point is close to the computed plane, i.e., ‖n · pi + d‖ < εd

2. the surface normal ni points along the plane normal, i.e., ni ‖ n,

3. the surface around pi is smooth (i.e., κi ≈ 0).
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(a) Inliers supporting the model (b) Polygonal approximation

Figure 2.6: Detecting the table plane. Shown are the inliers (red) supporting
the planar model (a) as well as the 3D polygonal approximation
(b) formed by the two-dimensional convex hull of the inliers
(projected onto the table plane).

For the point cloud from Figure 2.5, all extracted points belong
to the same table. The result of fitting a planar model to the points
is shown in Figure 2.6. The planar model that best fits the data is
almost parallel to the xy-plane and is supported by 20 731 inliers. It
can already be seen that, despite some points on the table’s boundaries,
the outliers correspond to the objects on the table.

Once the set of inliers is determined, we re-compute the planar
model as in Equation (2.3) and Equation (2.4) where Pi is replaced
by the set of all plane inliers. Once the planar model has been found,
we project all inliers onto the detected plane and compute the 2D

convex hull by means of Graham’s Scan Algorithm (Graham, 1972).
The convex hull for the 20 731 points from Figure 2.6 consists of 9
points and accurately represents the surface of the table top.

2.3.5 Object Detection

All outliers from fitting the planar model as well as the points that have
not been considered for the table point set T are potential object points.
That is, they could have been measured on the surface of an object.
Since we are only interested in objects on top of the table, we first sort
out all points lying below the table plane as well as those points that
do not lie within the bounding polygon. In order to obtain point sets
that represent a common object, we apply a simple clustering based
on the Euclidean distance between neighboring points. Neighboring
points whose point-to-point distance is below a threshold dmax are
recursively merged into clusters. Clusters whose cardinality exceed
a minimum number nmin of support points are considered as object
candidates.

The resulting segmentation of the ongoing examples from Figure 2.5
and Figure 2.6 is shown in Figure 2.7. In order to use the segmented
object clusters for grasp and motion planning, we compute the centroid
as well as the oriented bounding box for all points in each cluster.
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(a) Outliers from planar fit (b) Object candidates

Figure 2.7: Detecting object candidates. Shown are the unclustered outliers (a)
and the object candidates (b) obtained from Euclidean clustering.
Object candidates are colored. The remaining points are gray.
Here, the parameters are dmax = 2.5 cm and nmin = 250.

2.3.6 Object Shape Detection

After obtaining the object candidates in the form of point clusters, we
now present a possible post-processing step to determine geometric
primitives, e.g., to ease grasp planning and obtaining a parameterized
scene representation. In order to robustly detect different kinds of
geometric primitives like planes, spheres, and cylinders, we employ
an efficient RANSAC algorithm that directly operates on the extracted
clustered point clouds and the associated surface normal information.
In our setting we can closely follow a simplified version of the ap-
proach proposed by Schnabel et al. (2007). While the original method
focuses on achieving efficiency even on huge point clouds, the point
clouds in the considered application are comparatively small and thus
not all optimizations worthwhile.

Given a point cloud P = {pi ∈ R3|i = 1, . . . , Np} with associated
normals {ni, . . . , nNp}, the output of the algorithm is a set of primitive
shapes Ψ = {ψ1, . . . , ψn} with corresponding disjoint sets of points
PΨ = {Pψ1 ⊂ P, . . . , Pψn ⊂ P} and a set of remaining points R =

P \⋃ψ Pψ.
Similar to Roth and Levine (1993) and Décoret et al. (2003), the shape

extraction problem is framed as an optimization problem defined by a
score function σP. In each iteration of the algorithm, the primitive with
maximal score is searched using the RANSAC paradigm. New shape
candidates are generated by randomly sampling minimal subsets
of the point cloud P. Candidates of all considered shape types are
generated for every minimal set and all candidates are collected in the
set C. Thus, no special ordering has to be imposed on the detection of
different types of shapes. After new candidates have been generated,
the candidate m with the highest score is computed employing an
efficient lazy score evaluation scheme. The best candidate is only
accepted if, given the number of inliers |m| of the candidate and
the number of drawn candidates |C|, the probability that no better
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candidate was overlooked during sampling is high enough (Fischler
and Bolles, 1981). If a candidate is accepted, the corresponding points
Pm are removed from P and the candidates Cm generated with points
in Pm are deleted from C. The algorithm terminates as soon as the
probability of detection for a shape with a user defined minimal size
τ is large enough.

2.3.6.1 Shape Estimation

The shapes we consider in this work are planes, spheres, and cylinders
with different numbers of parameters. Every 3D point pi can fix only
one parameter of the shape. In order to reduce the number of points
in a minimal set, we also use the approximate surface normal ni for
each point, so that the direction gives us two more parameters per
sample. That way it is possible to estimate each of the considered basic
shapes from at most three point samples. However, always using one
additional sample is advantageous because the surplus parameters
can be used to immediately verify a candidate and thus eliminate
the need of evaluating many relatively low scored shapes (Matas and
Chum, 2002).

For a plane, {p1, p2, p3} constitutes a minimal set when not taking
into account the normals in the points. To confirm the plausibility of
the generated plane, the deviation of the plane’s normal from n1, n2, n3

is determined and the candidate plane is accepted only if all deviations
are less than the predefined angle α.

A sphere is fully defined by two points with corresponding normal
vectors. We use the midpoint of the shortest line segment between
the two lines given by the points p1 and p2 and their normals n1

and n2 to define the center of the sphere c. The sphere radius is then
approximated by

r =
‖p1 − c‖+ ‖p2 − c‖

2
. (2.7)

The sphere is accepted as a shape candidate only if all three points are
within a distance of εd of the sphere and their normals do not deviate
by more than εθ degrees.

In order to generate a cylinder from two points with normals, we
first establish the direction of the axis with a = n1 × n2. Then we
project the two parametric lines p1 + tn1 and p2 + tn2 along the axis
onto the plane a · x = 0. We then take their intersection as the center
c. The radius of the candidate is the distance between c and p1 in that
plane. Again the cylinder is verified by applying the thresholds εd and
εθ to distance and normal deviation of the samples.
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2.3.6.2 Score Function

The score function σP is responsible for measuring the quality of a
given shape candidate. We use the following aspects in our scoring
function:

1. To measure the support of a candidate, we use the number of
points that fall within an ε-band around the shape.

2. To ensure that the points inside the band roughly follow the
curvature pattern of the given primitive, we only count those
points inside the band whose normals do not deviate from the
normal of the shape more than a given angle εθ .

3. In addition, we incorporate a connectivity measure: Among the
points that fulfill the previous two conditions, only those are
considered that constitute the largest connected component on
the shape.

More formally, given a shape ψ whose fidelity is to be evaluated, σP

is defined as follows:

σP(ψ) = |Pψ|. (2.8)

That is, we count the number of points in Pψ. Pψ is defined in the
following two steps:

P̂ψ = {p|p∈P ∧ |d(ψ, p)|<εd ∧ arccos(|n(p)·n(ψ, p)|)<εθ}
(2.9)

Pψ = maxcomponent(ψ, P̂ψ), (2.10)

where d(ψ, p) is the signed distance of point p to the shape primitive ψ,
n(p) is the normal in p and n(ψ, p) is the normal of ψ in p’s projection
on ψ. maxcomponent(ψ, P̂ψ) extracts the group of points in P̂ψ whose
projections onto ψ belong to the largest connected component on ψ.

We find connected components in a bitmap in the parameter domain
of the shape. A pixel in the bitmap is set if a point is projected into
it. Clustering the set pixels in the bitmap yields the largest connected
component. For details on the score function and the bitmap used for
clustering, we refer to the original paper of Schnabel et al. (2007).

2.3.6.3 Score Evaluation

Obviously the cost of evaluation would be prohibitive without any
optimizations because in a naïve implementation, the distance to all
points in P would have to be computed together with a normal at
a corresponding position on the shape for each candidate. But since
in each run we are only interested in the candidate that achieves the
highest score, using the entire point cloud P when computing σP(ψ) is
not necessary for every shape candidate. We significantly reduce the
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number of points that have to be considered in the evaluation of σP(ψ)

by splitting the point cloud P into a set of disjoint random subsets:
P = S1

⋃
. . .
⋃

Sr.
After a shape candidate was generated and successfully verified, the

candidate is only scored against the first subset S1 and no connected
component is extracted yet. From the score σS(ψ) on a subset S ⊂ P
an estimate σ̂P(ψ) for the score σP(ψ) on all points can be extrapolated
using the well known induction from inferential statistics:

σ̂P(ψ, S) = −1− f (−2− |S|,−2− |P|,−1− |Sψ|) ,

(2.11)

where f (N, x, n) =
xn±

√
xn(N−x)(N−n)

N−1

N
(2.12)

is the mean plus/minus the standard deviation of the hypergeometric
distribution. σ̂P(ψ) is a confidence interval [lψ, uψ] that describes a
range of likely values for the true score σP(ψ). The expected value
E(σP(ψ)) is given by lψ+uψ

2 . With this extrapolation the potentially
best candidate ψm can be quickly identified by choosing the one with
the highest expected value. Since the uncertainty of the estimation is
captured in the confidence intervals, the truly maximal candidate can
be found by comparing the confidence intervals of the candidates.

If the confidence intervals of ψm and another candidate ψi overlap,
the score on an additional subset is evaluated for both candidates and
new extrapolations are computed, now taking into account the scores
on all subsets that have already been computed.

σ̂P(ψ) = σ̂(ψ,
⋃

i

Si) (2.13)

The more subsets have been considered, the smaller becomes the range
of the confidence intervals, since the uncertainty in the estimation
decreases. Further subsets are included until the confidence intervals
of ψi and ψm no longer overlap and it can be decided if either ψi or
ψm is better.

To include the effect of the connectedness condition in the extrapola-
tion, every time an additional subset has been evaluated, the maximal
connected component is found among all the compatible points that
have been discovered so far. The advantage of this priority-based can-
didate evaluation is that it is less dependent on the random order in
which candidates are generated.

We present a typical example of the results of the complete pipeline
in Figure 2.8. After determining the parameterized model of the sup-
port plane (plane model and contour) and clustering the potential
object points, the different primitive shapes are detected. The detected
shape primitives also show a shortcoming of our approach: in noisy
regions planar surfaces may be better described by a cylinder with a
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(a) Scene (b) Clustered objects (c) Detected shapes

Figure 2.8: Typical shape detection results for a scene with planes (red), cylin-
ders (green), and spheres (yellow). Shown are the table scene (a),
the extracted object clusters (b), and the detected shape primitives
(c). There is one false detection (the left side of the box is detected
as a cylinder due to the highly inaccurate data in this region).

large radius. If it can be assumed that cylinders with large radii are
not present in the scene, they can easily be ignored thus allowing to
correctly detect even noisy planar surfaces.

2.3.7 Preliminary Experiments and Results

As a proof-of-concept for this initial segmentation pipeline, we have
conducted experiments with the autonomous mobile manipulator
Dynamaid (Stückler and Behnke, 2011). It consists of an omnidirectional
mobile base with four individually steerable differential drives and a
size of 60 cm by 42 cm. For the purpose of navigation, it is equipped
with two 2D safety laser scanners, one in roughly 20 cm height and
one shortly above the ground. It also features an anthropomorphic
upper body with two arms and grippers, and a movable head hosting
two standard visual cameras in a stereo pair, a directed microphone,
and a MESA SwissRanger SR4000 ToF camera. The whole platform is
designed to be of low weight and low cost.

For the experiments, the robot was driven in front of a table with
different sets of objects. We put a special emphasis on having objects
of different shapes on the table, e.g., cylindrical mugs, a spherical ball,
and a box with planar walls. For every setting, the robot acquired
one point cloud with the ToF camera. Results of applying the object
and shape detection pipeline to one of these clouds is shown in Fig-
ure 2.9. In all experiments, the robot could reliably detect all objects
on the tables and the estimated shape parameters were close to the
ground truth parameters of the objects (see Table 2.1). A particular
shortcoming of the approach is that noisy planes can be misinter-
preted as cylinders or spheres with large radii. Visually inspecting the
input point clouds where these false detection happen shows that the
sampled surface in fact shows a cylindrical shape rather than a planar
surface. Limiting the shape parameter space, e.g., using a maximum
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Object o 0

Object o 1

Object o 2

Table t0

Detected Shapes

Figure 2.9: Typical result of table, object, and shape detection. After fitting
the planar model, the 20 753 inliers are removed and the table
is represented solely by the model parameters and the convex
hull of the inliers. The remaining 4591 points are segmented into
3 clusters (random colors) and successfully classified as being a
sphere (yellow) and two cylinders (green).

Objects Detected shapes and parameters (units in m)

Table
Detected primitive: Plane, 20 753 inliers
Normal vector: [−0.0232 − 0.0156 0.9996]
Distance to 0: 0.742 795

Object o0 (cup)

Detected primitive: Cylinder, 758 inliers
Centroid: [0.6847 − 0.0166 0.7885]
Radius: 0.0314 (ground truth: 0.034)
Axis direction: [0.0869 − 0.0120 0.9961]

Object o1 (ball)
Detected primitive: Sphere, 1738 inliers
Centroid: [0.6871 0.2058 0.8598]
Radius: 0.0778 (ground truth: 0.082)

Object o2 (cup)

Detected primitive: Cylinder, 815 inliers
Centroid: [0.6847 − 0.0166 0.7885]
Radius: 0.0284 (ground truth: 0.032)
Axis direction: [0.1028 0.0080 0.9915]

Table 2.1: Detected shapes and parameters. Although the input point cloud
is quite noisy, the object are reliably detected and classified w.r.t.
the dominant shape. The estimated shape parameters differ only
slightly from ground truth (determined using a measuring tape).
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radius for cylinders and spheres, considerably reduces these false
detections.

In its current state, the presented approach can process complete
point clouds of 25 344 points (i.e., without working on a sub-sampled
copy of the cloud) with 2.5 Hz to 5 Hz. Although very simple, the
pipeline has been found to be an efficient and robust tool chain for
extracting (semantic) information from ToF camera data for mobile
manipulation tasks. It comprises techniques for correcting erroneous
measurements caused by the ambiguity in distance measurements
as well as for filtering points on jump edges. These pre-processing
steps are optional and only necessary for ToF cameras that exhibit
these special characteristics. That is, for cameras not showing these
error characteristics, the pre-processing steps can be skipped to safe
computation time.

Furthermore, the pipeline features an approach for detecting prim-
itive shapes in the detected objects. Although the detected shape
primitives are particularly useful for object recognition as well as
grasp and motion planning (Holz et al., 2014a), they form only one of
the many applications of the clustered objects and an exemplary post-
processing step in the pipeline. In case, the object clusters are used as
masks for further recognition like for instance using the recognition
infrastructure REIN (Muja et al., 2011), this post-processing step can
also be skipped.

In the remainder of this section, an improved version of the pipeline
is presented where we do not use the pre-processing and post-process-
ing steps, but replace some processing steps by faster approximations
and focus processing on relevant portions of the data even more.
Overall, this improved pipeline allows segmenting complete 640× 480
RGB-D point clouds in near real-time.

2.4 fast rgb-d table top segmentation

Real-time 3D perception of the surrounding environment is a crucial
precondition for the reliable and safe application of mobile service
robots in domestic environments. Both the perception of the envi-
ronment and the planning of grasps and motions are computation-
ally expensive and can cause longer interruptions in the workflow
of a robot. Color and depth (RGB-D) cameras, such as the Microsoft
Kinect™ camera, acquire both visual information (RGB) like regular
camera systems and depth information (D) at high frame rates. In
terms of measurement accuracy in low ranges (up to a few meters),
the acquired depth information does not considerably rank behind
the accuracy achieved with 3D laser scanners. However, for applying
and making use of these cameras in typical mobile manipulation prob-
lems like detecting objects and avoiding collisions, the acquired RGB-D
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Figure 2.10: Overview of the fast object detection pipeline: input point clouds
are first subsampled (160× 120 or less) to speed up internal com-
putations. The next difference to the former pipeline is a method
for fast approximation of local surface normals and extracting
points with horizontal normals. In the extract points, plane are
detected and the outliers above the plain are clustered. Both
plane and object points are provided in both the subsampled
and the original resolution.

camera data needs to be processed in real-time (possibly with limited
computing power).

In this section, we present an improved pipeline specifically de-
signed for RGB-D cameras which explicitly makes use of the organized
structure of RGB-D camera data. It acquires and processes 3D informa-
tion at frame rates of up to 30 Hz, and allows for

1. reliably detecting obstacles (e.g., on the ground plane),

2. detecting graspable objects as well as the planes supporting
them, and

3. segmenting and classifying all planes in the acquired 3D data.

An important characteristic of the proposed system is that all the
above outcomes can be obtained at frame rates of up to 30 Hz.

2.4.1 Pipeline Overview

The pipeline allows a mobile robot to reliably detect obstacles and
segment graspable objects and supporting surfaces as well as the over-
all scene geometry. An overview of the extended pipeline is shown
in Figure 2.10. In essence, we replace several components of the ta-
ble top segmentation from Section 2.3 with fast approximations such
as using vector cross products and integral images for computing
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local surface normals. For segmenting planes, we cluster, segment,
and classify points in both normal space and spherical coordinates.
For object segmentation, we change the order of components thus
focusing computations on relevant portions of the data. Furthermore,
we subsample the full resolution input point clouds for many pro-
cessing steps while still providing the segmented output clusters in
full resolutions. Overall, these extensions make it possible to process
640 × 480 RGB-D point clouds in real-time. The system is tested in
different setups in a real household environment. The results show
that the system is capable of reliably detecting obstacles at high frame
rates, even in case of obstacles that move fast or do not considerably
stick out of the ground. We also present a first approach to compute
planar segmentations of input point clouds by segmenting all planes
in the 3D data for correcting characteristic measurement errors and for
reconstructing the original scene geometry in far ranges.

2.4.2 Fast Computation of Local Surface Normals

Local geometric features such as surface normal or curvature at a
point form a fundamental basis for extracting semantic information
from 3D sensor data. A common way for determining the normal to a
point pi on a surface is to approximate the problem by fitting a plane
to the point’s local neighborhood Pi. This neighborhood is formed
either by the k nearest neighbors of pi or by all points within a radius
r from pi. Given the neighborhood Pi, the local surface normal ni can
be estimated by analyzing the eigenvectors of the covariance matrix
Σi ∈ R3×3 of Pi. The eigenvector vi,0 corresponding to the smallest
eigenvalue λi,0 can be used as an estimate of ni (see Section 2.3.3). The
ratio between λi,0 and the sum of eigenvalues provides an estimate of
the local curvature.

Both k and r highly influence how well the estimated normal repre-
sents the local surface at pi. Chosen too large, environmental structures
are considerably smoothed so that local extrema such as corners com-
pletely vanish. If the neighborhood is too small, the estimated normals
are highly affected by the depth measurement noise. A common way
to compensate these effects that is also used by Rusu et al. (2009b) is
to compute the distances of all points in Pi to the local plane through
pi. These distances are then used in a second run to weight the points
in Pi in the covariance computation. By this means, corners and edges
are less smoothed and the estimated normals better approximate the
local surface structure. However, with or without this second run, esti-
mating the point’s local neighborhood is computationally expensive,
even when using approximate search in kD-trees which is O(n log n)
for n randomly distributed data points (plus the construction of the
tree). Another possibility to compensate for the aforementioned ef-
fects is to compute the normals in different neighborhood ranges or
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Figure 2.11: Fast normal computation using integral images (a). Two vec-
tors tangential to the surface (dotted blue lines) at the desired
position are computed using the blue points. The local surface
normal is computed using the cross product of the tangential
vectors. A typical result of an acquired point cloud with surface
normals is shown in (b).

different scales of the input data and to select the most likely surface
normal for each point (Holzer et al., 2012).

Less accurate, but considerably faster than approximate neighbor-
hood search using kd-trees is to consider pixel neighborhoods instead
of spatial neighborhoods (Holz et al., 2010). That is, the organized
structure of the point cloud as acquired by ToF or RGB-D cameras is
used instead of searching through the 3D space spanned by the points
in the cloud. Compared to a fixed radius r or a fixed number of neigh-
bors k, using a fixed pixel neighborhood has the advantage of having
smaller neighborhoods in close range (causing more accurate normals)
and larger neighborhoods smoothing the data in far ranges that are
more affected by noise and other error sources.

By using a fixed pixel neighborhood and, in addition, neglecting pre-
computed neighbors outside of some maximum range r as in (Holz
et al., 2010), one can avoid the computationally expensive neighbor
search, but still needs to compute and analyze the local covariance
matrix. Here, we use an approach that directly computes the normal
vector over the neighboring pixels in x and y image space.

The basic principle of our approach is to compute two vectors
which are tangential to the local surface at the point pi. From these
two tangential vectors we can easily compute the normal using the
cross product. The simplest approach for computing the normals is
to compute them between the left and right neighboring pixel and
between the upper and lower neighboring pixel, as illustrated in
Figure 2.11.a. However, since we expect noisy data and regions where
no depth information is available (a special characteristic of the used
cameras), the resulting normals would also be highly affected. For this
reason, we apply a smoothing on the tangential vectors by computing
the average vectors within a certain neighborhood. To perform this
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smoothing efficiently we use integral images. We first create two maps
of tangential vectors, one for the x- and one for the y-direction (again
in image space). The vectors for these maps are computed between
the corresponding 3D points in the point cloud. That is, each element
of these images is a 3D vector. For each of the channels (Cartesian x, y,
and z) of each of the maps we compute an integral image, which leads
to a total number of six integral images. Using these integral images,
we can compute the average tangential vectors with only 2× 4× 3
memory accesses, independent of the size of the smoothing area. The
overall runtime complexity is linear in the number of points for which
normals are computed (see the experiments on runtime and accuracy
of computing surface normals in Section 2.5.1).

The computation of normals is conducted in the local image coordi-
nate frame (Ẑ-axis pointing forwards in measurement direction). For
further processing, we transform both Cartesian coordinates of the
points as well as the local surface normals into the base coordinate
frame of the robot (right-handed coordinate frame with the X̂-axis
pointing in measurement and driving direction and the Ẑ-axis point-
ing upwards thereby representing the height of points). In case this
transformation is not known, we only apply the corresponding reflec-
tion matrix and a translation by 2cm along the Ŷ-axis that accounts for
the difference in position between the regular camera and the infrared
camera that senses the emitted pattern for depth reconstruction. It
should be noted that this transformation (or the knowledge of the
camera’s position and orientation in space) is not necessary for the
fast plane segmentation in Section 2.4.4, but only for task-specific
applications like the extraction of horizontal surfaces.

In addition to the fast normal estimation, we compute spherical
coordinates (r, φ, θ) of the local surface normals that ease the clas-
sification of measured points and the processing steps presented in
the following. We define φ as the angle between the local surface
normal (projected onto the X̂Ŷ-plane) and the X̂-axis, r the distance
to the origin in normal space, and θ the angle between the normal
and the X̂Ŷ-plane. (r, φ) is of special interest in obstacle detection, as
it represents direction and distance of an obstacle to the robot (in the
X̂Ŷ-plane). For plane segmentation, r is abused in our implementation
to hold the plane’s distance from the origin (in Cartesian space).

2.4.3 Extracting Horizontal Points

For finding planes in 3D point clouds common procedures are least
squares fitting (if the cloud does not contain plane outliers) and
RANSAC-based approaches to detect a plane and its inliers as well
as to identify the outliers. Least squares fitting is computationally
complex and can only be applied if the data is already pre-segmented
to contain only points belonging to the plane to be fit. RANSAC-based
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approaches fit planes only to subsets of data and use the rest of the
data to determine the amount of points supporting the plane model fit
to the subset. Since many iterations are necessary to find the dominant
plane in a complete RGB-D point cloud our main idea is to not process
points which are not likely to lie on this plane. That is, we focus
processing on a subset of points which is likely to constitute the plain
we are looking for.

For detecting tables in the vicinity of the robot, we extract those
points pi from the point cloud that have a surface normal ni that
points upwards, i.e., ni is nearly parallel to the z-axis (ni ‖ Ẑ). The
extracted points have likely been measured on the surface of a table
and form an initial set of table points T ⊆ P. In order to distinguish
multiple tables, we examine the distribution in the measured heights
pz

i , pi ∈ T and split T into multiple sets T1, . . . , Tn in case of larger
fluctuations. The same is done for larger variations in the position
(px

i py
i )

T of the points. The obtained clusters can directly be used to
estimate support planes, either by directly fitting planes to the sets or
by using a RANSAC-based approach to filter out potential outliers in
the set. In our implementation, we first cluster the table point set in
Euclidean space and select the largest cluster for RANSAC-based plane
fitting.

The segmentation output of the pipeline suits two purposes: obstacle
detection during navigation, and object and obstacle detection for
manipulation. For navigation purposes, only the ground floor plane
(z-component of normal nz

i ≈ 1 and distance to origin or height above
ground z ≈ 0) is considered safe. All other points and planes including
other horizontal surfaces such as tables are considered as obstacles.
For object detection, we limit the search space by the height range in
which the robot can manipulate (0 < z ≤ 1.5 m). Clusters of horizontal
points outside of these ranges are ignored.

2.4.4 Fast Plane Segmentation

In the object detection pipeline only horizontal support planes need
to be found. However, the same approximation that is used to find
sets of horizontal points can be extended to compute complete planar
segmentations of input point clouds, i.e., detecting all larger 3D planes.
In order to compute complete planar segmentations, we extend our
pipeline to cluster all planar regions based on clustering of the local
surface normals. We segment local surface normals in two steps:
we 1. cluster (and merge) the points in normal space (nx, ny, nz)T to
obtain clusters of plane candidates and 2. cluster (and merge) planes
of similar local surface normal orientation in distance space (distance
between plane and origin). After clustering and merging the initial
plane segments, we obtain a complete planar segmentation of the input
point cloud. Although the clustering-based segmentation is very naïve,
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it can already achieve reliable segmentations of larger environmental
structures in real-time.

2.4.4.1 Initial segmentation in normal space

For the initial clustering step in which we want to find clusters of
points with similar local surface normal orientations, we construct
a voxel grid either in normal space or using the spherical coordi-
nates. Using the spherical coordinates allows for clustering in the
two-dimensional (φ, θ)-space, but requires a larger neighborhood in
the subsequent processing step in which we merge clusters. Both
results and processing times do not differ, however.

For clustering in normal space, we compute a three-dimensional
voxel grid and map local surface normals to the corresponding grid
cell w.r.t. the cell’s size. Points for which the surface normals fall into
the same cell, form the initial cluster and potential set of planes with
the same normal orientation. Either all non-empty cells or only those
with a minimum number of points are considered as initial clusters.

In order to compensate for the involved discretization effects, we
examine the cell’s neighbors in the three-dimensional grid structure.
If the deviation of the average surface normal orientations in two
neighboring grid cells falls below the cluster size (and the desired
accuracy), the corresponding clusters are merged. For being able
to merge multiple clusters, we keep track of the conducted merges.
In case cluster a should be merged with cluster b that was already
merged with cluster c, we check if we can merge a and c, or if a + b
is a better merge than b + c. Although this procedure is less adaptive
(and complex) as sophisticated clustering algorithms like k-Means,
mean-shift-clustering or, e.g., ISODATA (Memarsadeghi et al., 2007), this
simple approach allows for reliably detecting larger planes in 3D point
clouds at high frame rates. In all modes and resolutions of the camera,
plane segmentation is only a matter of milliseconds. In contrast to
region growing algorithms, we find a single cluster for planes that are
not geometrically connected, e.g., parts of the same wall.

An example segmentation is shown in Figure 2.12. Planes with
similar (or equal) local surface normal orientations are contained in
the same cluster and visualized with the same color.

2.4.4.2 Segmentation refinement in distance space

Up to now the found clusters do not represent single planes but sets
of planes with similar or equal surface normal orientation. For some
applications like extracting all horizontal surfaces, this information
can directly be used. For other applications, we split these normal
clusters into plane clusters such that each cluster resembles a single
plane in the environment.
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(a) Input camera image (b) Segmented cloud

(c) nx space (d) ny space (e) nz space

Figure 2.12: Typical result of the first segmentation step: points with similar
surface normal orientation in the input data (a) are merged into
clusters (b, shown in both Cartesian and normal space). The
components of the normals (nx, ny, and nz) are visualized in
(c-e) using a color coding from -1 (red) to 1 (blue). This simple
clustering allows for a fast segmentation of planes with similar
surface normal orientation., e.g., extracting all horizontal planes.

Under the assumption that all points in a cluster are lying on the
same plane, we use the corresponding averaged and normalized sur-
face normal to compute the distance from the origin to the plane
through the point under consideration. Naturally these distances dif-
fer for points on different parallel planes and we can split clusters in
distance space. For compensating the fact that measurements farther
away from the sensor are stronger affected by the different error and
noise sources, we compute a logarithmic histogram. Again, points
whose distances fall into the same bin form initial clusters. These clus-
ters are then refined by examining the neighboring bins just like in the
refinement of the normal segmentation. An example of the resulting
plane clusters is shown in Figure 2.13. We include this clustering-based
complete plane segmentation as “Holz et al. (2011)” in the comparative
evaluation of plane segmentation algorithms in Section 3.7.3.

2.4.5 Table Plane and Object Detection

In order to obtain an efficient representation of tables and to segment
individual objects, we extract the horizontal points (Section 2.4.3)
and cluster them into planes (Section 2.4.4). The found plane models
consisting of the averaged normals and plane-origin distances in
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(a) 3 Normal clusters (b) Distance space (c) 8 Plane clusters

Figure 2.13: Typical result of the second segmentation step: Clusters with
similar surface normal orientations (a) are clustered in distance
space (b). Clusters with similar normal orientations but varying
distances (of the respective planes to the origin) are split. For
compensating discretization effects, neighboring clusters are
again merged to form the segmented planes (c). Color coding
in (a+c) is random per cluster, and in distance space from 0.4m
(red) to 1.3m (blue) in (b).

each plane cluster are then optimized again using MSAC (Torr and
Zisserman, 2000) to filter out residual outliers. Since plane fitting is
only conducted in the largest and closest sets of horizontal points
the detection is considerably faster than finding dominant planes in
the complete point cloud. Moreover, since the majority of points in a
cluster (if not all points) belong to the same plane, few iterations are
sufficient to find a good plane estimate.

The rest of the pipeline does not considerably differ from the one
presented in Section 2.3. We project the points of a cluster onto the
found plane and compute the convex hull. These steps are repeated
for all horizontal planes that have been found in the given height
range. For all points from non-horizontal plane clusters, we then check
if they lie above a supporting plane (within a range of e.g. 30 cm) and
within the corresponding convex hull (again with a tolerance of a
few centimeters). Points meeting both requirements are then clustered
to obtain object candidates. For each of the candidates we compute
the centroid and the oriented bounding box in order to distinguish
graspable from non-graspable objects. Here we simply assume that
the minimum side length of graspable objects needs to lie between
1 cm and 10 cm. Furthermore, we neglect clusters where the number
of contained points falls below a threshold (e.g. 50 points).

Here, the main difference to the pipeline in Section 2.3 lies in the
fact that so far all processing steps have used a subsampled version
of the original point cloud. For a full-resolution segmentation output,
we project both the object points and the table points back into the
original full resolution image. If previously not processed points are
directly connected to an object or a table point they get the same label
if and only if they support the same plane model and fit into the same
object cluster, respectively.
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Figure 2.14: Examples of detected tables and objects in the OSD dataset by
Richtsfeld et al. (2012). Shown are the original RGB input images
with a color overlay encoding pixels with no depth information
(white), table plane (green), and objects (randomly colored per
object). Despite objects being clustered together (bottom right),
all objects are reliably detected and clustered.

An example segmentation of a table and the objects thereon can
be seen in Figure 2.14. The object clustering assumes well separated
parts and, consequently, objects touching each other may get clus-
tered together. In order to reliably cluster touching objects in cluttered
scenes, more sophisticated (but also computationally more demand-
ing) approaches need to be used such as the works of Marton et al.
(2014) and Richtsfeld et al. (2014). However, since our pipeline is only
designed for efficiently segmenting the input scene into horizontal
support surfaces and potential object points we do not further separate
such multi-object clusters. That is, reliably detecting points belonging
to objects is sufficient in our case as the segmentation output is used
as a set of regions of interest for further processing.

2.5 experiments and results

In order to evaluate the performance of the presented fast object detec-
tion pipeline, we have conducted a series of experiments focusing on
the accuracy of approximated surface normals, the object detection ac-
curacy, and the runtimes of both the overall pipeline and the involved
components.

2.5.1 Accuracy and Runtime for Computing Normals

Both the planar segmentation and the detection of graspable objects
and obstacles highly depend on the quality of the estimated surface
normals. In order to evaluate the accuracy of the estimated normals,
we conducted a sequence of experiments comparing the estimated
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Runtime Normal deviation

Resolution mean (± std) mean (± std) considerable

640× 480 (VGA) 36.73± 6.12 ms 4.15± 2.31 deg roughly 2%

320× 240 (QVGA) 11.08± 2.29 ms 5.23± 2.35 deg roughly 1.2%

160× 120 (QQVGA) 4.32± 0.58 ms 3.76± 1.84 deg roughly 1%

Table 2.2: Normal estimation: runtime and accuracy.

surface normal at each point with the one computed over the real
neighbors using the two-run RANSAC and PCA approach as described
earlier (Rusu, 2009). For the neighbor search a radius r has been
chosen that linearly depends on the measured range to the point
under consideration, i.e., a smaller radius for the more accurate close
range measurements and a larger radius for measurements being
farther away from the sensor. This radius function has been manually
adapted for each of the point clouds used in the experiments in order
to guarantee correct (and ground truth-like) normals.

The presented results have been measured over 40 points clouds
taken in 4 different scenes in a real house-hold environment: 1) a table
top scene with only one object, 2) a cluttered table top scene with > 20
objects, 3) a room with a cluttered table top and distant walls, 4) a
longer corridor with several cabinets where measurements of up to
6m have been taken. In average, a deviation of roughly 5° has been
measured (see Table 2.2). This is primarily caused by the fact that
the current implementation does not specifically handle edges and
corners as is done with the second PCA run on the weighted covariance.
Furthermore, using nearest neighbor search better compensates for
missing measurements in regions where no depth information is
available. However, especially in close range (e.g. up to 2 m), the
estimated normals are quite accurate and do not deviate from the
true local surface normals. Only one to two percent of the estimated
normals considerably deviated from the true normals (deviations
larger than 25°).

2.5.2 Object Detection Accuracy

In order to assess the detection accuracy of the object detection
pipeline, we have used the object segmentation database (OSD)2 by
Richtsfeld et al. (2012). It contains a total of 66 RGB-D point clouds with
640× 480 points and per-pixel labeling. The labels are 0 for pixels not
belonging to any object and positive (label > 0) for pixels belonging
to objects. In the latter case, the label encodes the object scene id—all
objects in the scene are numbered starting with id 1. The dataset con-

2 OSD is available at: http://users.acin.tuwien.ac.at/arichtsfeld/?site=4

http://users.acin.tuwien.ac.at/arichtsfeld/?site=4
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Objects Object Pixels

Scene Detected∗ Rate Detected Rate

Boxes 36 / 36 100% 449 786 / 438 101 97.4%

Stacked Boxes 21 / 21 100% 233 882 / 228 926 97.8%

Occluded 14 / 14 100% 130 135 / 121 520 93.3%

Cylindric 42 / 42 100% 339 014 / 320 576 94.5%

Mixed 81 / 81 100% 628 524 / 608 185 96.7%

Complex 166 / 166 100% 1 138 116 / 1 064 854 93.5%

Total 360 / 360 100% 2 919 457 / 2 782 162 95.2%
∗Objects are detected if more than 90% of its pixel are detected as object pixels.

Table 2.3: Detection results for OSD v0.2, the semantic object detection
dataset (Richtsfeld et al., 2012).

tains six different scene types: scenes with boxes, stacked boxes, boxes
occluding each other, cylindrical objects, mixed scenes with boxes
and cylindrical objects, and complex scenes where objects are both
stacked and occluded. For measuring the detection accuracy, we use
two metrics: the success rate of detecting object pixels and the success
rate for detecting objects. We consider an object pixel as detected if
a pixel with a positive label in the ground truth data is detected as
belonging to an object by the pipeline. If more 90% of the pixels of an
object in the ground truth labeling are detected by the pipeline, we
consider that object as being detected. We report the detailed results
in Table 2.3.

False positives are not shown in the table since the pipeline did not
incorrectly label any object points. Only few detected object points
were not contained in the ground truth labeling but were found to lie
on the objects by visual inspection of the segmentation results. These
differences are caused by inaccuracies in the ground truth labeling.
Furthermore, the ground truth labeling incorrectly classifies some
points on the support surface occluded by an object as belonging to
the object. Consequently, these are (correctly) missed by the pipeline.
Both types of inaccuracies in the ground truth labeling have been the
motivation for using a 90% pixel overlap as the threshold for detecting
an object.

Overall, the object detection pipeline correctly found all 360 objects
in the dataset and correctly labeled more than 95% of the object pixels.
Missed object points were either caused by inaccuracies in the ground
truth labeling or at object boundaries coinciding with the support
surface. In the latter case, the points are labeled as belonging to the
support surface and are not included in the object clustering. Typical
examples of the different scene types and the segmentation results of
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Figure 2.15: Example segmentations for OSD v0.2, the semantic object detec-
tion dataset (Richtsfeld et al., 2012). The detection results are
shown as semi-transparent overlays over the original RGB im-
ages with invalid depth measurements (white), support surface
(green), and object candidates (red). Despite some minor devi-
ations at object boundaries, all pixels belonging to an object in
the ground truth data are correctly detected as object candidate
points.

our pipeline are shown in Figure 2.15. In all 66 point clouds of the
data both the support plane and the objects thereon are accurately
found.

2.5.3 Runtime Evaluation

In order to obtain runtime estimates for the complete object detection
pipeline and the involved components, we have recorded RGB-D point
clouds in ten different settings. The scenes range from an empty room
over close empty tables to cluttered table scenes (up to 10 objects per
scene) in different distances from the camera. For each scene, 10 000
range images have been acquired and segmented. We measured both
the overall execution time of the pipeline to segment one point cloud
and the runtimes of the individual processing steps such as computing
surface normals, detecting the support plane, computing the convex
hull and clustering the points over the support plane. In all cases, the
original 640× 480 point clouds were subsampled to 160× 120 in the
pipeline while the final object point labeling and clustering was done
in the original resolution in order to obtain full-resolution masks for
further processing steps. Figure 2.16 shows the measured execution
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Figure 2.16: Execution times for object detection in ten different scenes.
Shown are the average execution time as well as the minimum
and maximum execution time. Despite few outliers, the overall
execution time stays under 33.3 ms, i.e., segments input point
clouds at 30 Hz.

times of the pipeline and its components. On average, the overall
execution time stays under 33.3 ms, i.e., segments input point clouds
at 30 Hz. Naturally, the maximum execution time shows few outliers.
However, the approach never needed more than 50 ms to obtain a
segmentation into background, support surface, and objects.

The experiments have been carried out on an Intel(R) Core(TM)
i7-3740QM Central Processing Unit (CPU) at 2.70 GHz without paral-
lelization, i.e., all processing was conducted in a single thread on a
single CPU. Using the integral image approach, normals can be esti-
mated rapidly for the 19 200 pixels in the subsampled image within
approximately 6.5 ms on average. The extraction of horizontal points
takes on average 1 ms. Limiting the search space for the support plane
does not consume significant runtime (i.e., � 1 ms). A more costly
step is the application of RANSAC to find the support plane. It amounts
to about 6 ms on average. Extracting the points in the support plane,
constructing the convex hull of the plane, and extracting the points
on objects above the support polygon again require low runtimes of
about 2 ms each. The clustering of the points into objects takes about
10 ms. The computation time in this step depends on the number of
objects in the scene and the number of points measured on the surface
of the objects. The measured runtimes demonstrate that our approach
is very performant and that it yields robust detection results in short
computation times.
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2.6 application to fast object perception and grasping

Mobile manipulation tasks require a wide variety of perception and
action capabilities ranging from navigation over object detection and
recognition to planning and executing grasps and arm motions. In ad-
dition, robots are expected to not just to achieve an assigned task, but
also to perform it in a reasonable amount of time. While much research
has been invested into the general solution of complex perception and
motion planning problems, little work has been focused on methods
that solve such tasks efficiently in order to allow for continuous task
execution without interruptions. In a joint work with Ricarda Steffens
and Jörg Stückler, the proposed real-time object detection pipeline
was integrated with efficient object tracking and grasp planning into a
complete system for (near real-time) object perception and grasping of
previously unknown parts (Stückler et al., 2013b). The resulting system
is successfully applied on the mobile service robots Dynamaid (Stückler
and Behnke, 2011) and Cosero (Stückler et al., 2013a).

2.6.1 Introduction

The context of this work is the RoboCup@Home league—an annual
international competition for mobile service robots interacting with
human users (Holz et al., 2014b; Iocchi et al., 2015). The league ad-
dresses service robot applications and focuses on navigation (and
SLAM) in dynamic environments, mobile manipulation and human-
robot-interaction. A typical task in the competition is the manipulation
of objects like, for instance, retrieving objects for a human user. Such
tasks pose two specific challenges: 1. the robot needs to accomplish the
task quickly and without interruptions (there is a maximum amount
of time for each task), and 2. the environment is both cluttered and
highly dynamic, i.e., humans and other robots may be present in the
robot’s workspace, and objects (including furniture) may move since
the robot has last observed them.

To cope with the dynamics, we follow a coarse-to-fine strategy for
aligning the robot to the objects involved in the task. When told to
retrieve an object from a table, for example, the robot first approaches
the last known position of the table within the reference frame of a
static map. To compensate for deviations in the position, the robot
then adjusts in distance (in height) to the table. Both robots feature an
anthropomorphic upper body which can be lifted and rotated using
two additional degrees of freedom. Finally, it aligns itself to bring the
object into the workspace of its arms.

In order to achieve fast performance without (longer) interruptions,
we integrate the real-time object perception pipeline with efficient
grasp planning and motion control. The object segmentation pipeline
processes depth images in real-time. From the extracted object point
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(a) Example table scene (b) Colored point cloud (c) Detected objects

Figure 2.17: Real-time segmentation results for an example setting (a) with
the raw point cloud from the Microsoft Kinect™ camera (b) and
the detected table and objects (c).

clusters, the efficient grasp planning method derives feasible, collision-
free grasps. We consider two types of grasps on the objects: from the
side and from above, depending on the orientation of the computed
principal axes. For example, a longer object lying on the table is
grasped from the top while it is grasped from the side if it is standing
upright.

2.6.2 Perception and Grasping Pipeline

The perception and grasping pipeline consists of four processing steps:
1. segmentation of the support surface of the table or shelf and the
objects thereon, 2. tracking the detected objects over several frames to
get better estimates of their positions and dimensions, 3. computing
feasible and collision-free grasps on the detected object to grasp, and
4. executing the grasping motion.

2.6.2.1 Real-Time Object Segmentation

The segmentation of the objects and the support surface does not
deviate from the pipeline presented in Section 2.4. For all points,
we compute local surface normals using the fast approximation of
Section 2.4.2. Referring to Figure 2.17, we then extract all points with
vertical normals (normals pointing upwards along the Ẑ-axis). Using
the fast clustering-based segmentation approach (Section 2.4.4) and
MSAC (Torr and Zisserman, 2000), we detect the support surface and
compute the planar model. For all points that do not belong to the
most dominant horizontal support plane, we extract those that are
above the plane and whose projections lie within the plane’s convex
hull. The extracted points are then clustered to obtain individual sets
of points and object candidates, respectively. In case of grasping objects
in shelves, we slightly shrink the convex hull in order to neglect points
at a side or back wall of the shelf.
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2.6.2.2 Tracking Detected Objects

RGB-D cameras a prone to various error and noise characteristics. De-
pending on the objects on the table, e.g., their visibility and reflection
properties, only parts of the object may be visible in an image. Con-
sequently, the object position (centroid of the segmented cluster) and
its dimensions (extents along the principal axes) may be inaccurate
when computed in a single frame. In order to improve position and
dimension estimates over several frames, we track the segmented the
object clusters using a multi-hypotheses object tracker. For each hy-
pothesis, we estimate 3D position and velocity in the reference frame
of the mobile base through Kalman Filters (KFs). In the KF prediction
step, we use odometry information to compensate for the motion of
the robot. The tracks are corrected with the observations of their 3D

position and extents. In order to associate the object detections in a
new frame uniquely with existing hypotheses, we use the Hungarian
method (Kuhn, 1955). Especially for objects with diffuse reflection
properties and smaller objects not considerably sticking out of the sup-
port plane, tracking the estimated parameters considerably improves
the accuracy of the computed parameters.

2.6.2.3 Grasp Planning

We distinguish two kinds of grasps for which we apply parameter-
izable motion primitives. Side-grasps are designed to approach the
object along its vertical axis by keeping the parallel grippers aligned
horizontally. To grasp objects from the top, we pitch the end-effector
by 45◦ downwards to grasp objects with the finger tips. In addition
we distinguish two poses in the grasping process: the grasping pose
in which the object is inside the gripper and a pre-grasp pose above
the object from which the grasping pose can be reached by following
a straight line in Cartesian space.

The grasp planner generates candidate grasping poses (and pre-
grasp poses) along the principal axes of the object for both grasping
from the side and grasping from the top. Since the initial sampling
does not consider any feasibility constraints or collisions, we then filter
the grasp candidates taking into account four different criteria: we
reject grasps 1. if the object’s width orthogonal to the grasp direction
does not fit into the gripper, 2. if the object is too low (for side-grasps),
3. if the grasp is outside the reachable workspace, and 4. if there are
collisions during the motions to the pre-grasp pose and the grasping
pose. The collision-free and feasible grasps are then ranked, again,
using different criteria such as preferring a smaller distance to the
object, a smaller angle between the line towards the shoulder and
the grasping direction, and a smaller distance to the shoulder. After
ranking, we extract the best top- and side-grasps and select the most
appropriate one depending on the object and its largest extent in the
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(a) Examples for sides-grasps: grasping a box (left) and a glue stick (right)

(b) Examples for top-grasps: grasping a pen (left) and a bowl (right)

Figure 2.18: Sampled and selected pre-grasp poses for both types of grasps.
The visualizations show the segmented object, the sampled pre-
grasp poses (red), and the select grasp (red-green-blue coordi-
nate frame). The photos show the end-effector while grasping
the object. For more examples, we refer to (Stückler et al., 2013b).

Side-grasp Top-grasp

Table Shelf Table Shelf Runtime

Object detection 41/41 37/37 55/55 49/49 ≈33 ms

Grasp planning 41/41 37/37 50/55 47/49 ≈100 ms

Table 2.4: Detection and grasping results. In all experiments, side-grasps
have been successful whereas some top-grasps on more complex
objects failed. The pipeline allows for fast object detection and
grasp planning (detection at 30 Hz, planning at 10 Hz).

horizontal plane. Examples of the sampled and selected grasp poses
for different objects and grasps can be seen in Figure 2.18.

2.6.3 Experiments and Results

In order to evaluate the robustness and efficiency of the approach, we
have conducted different series of experiments with different objects
in different orientations and positions. In the first series, the objects
were put on a table, in the second series they have been put into a
shelf. Referring to the detailed results in Table 2.4, the objects have
been well detected both on the table and in the shelf. The majority
of the planned grasps was successfully executed and the part was
grasped: 100% for side-grasps, 91% and 96% for top-grasps. Only few
top-grasps failed especially for more complex objects like the small
pen or the bowl (see Figure 2.18).
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Both the detection of objects and the planning of grasps are partic-
ularly efficient. Objects are detected and tracked with the frame rate
of the camera, i.e., 30 Hz. Collision-free and feasible grasps for the de-
tected objects are obtained within 100 ms. In conclusion, the integrated
pipeline allows for grasping previously unseen objects without prior
knowledge and is efficient enough to avoid interruptions in the robot’s
workflow. After reaching a table and looking down to the object, it is a
matter of not more than a single second until the robot starts grasping
the part. This approach has also been successfully demonstrated at
RoboCup@Home competitions.

2.7 application to mobile robot depalletizing

In a joint work with Angeliki Topalidou-Kyniazopoulou and Jörg
Stückler, another object perception and grasping pipeline was de-
veloped that, again, makes use of the proposed object detection
pipeline (Holz et al., 2015b; Holz et al., 2015a). We present this work
here as a second application for the approach.

2.7.1 Introduction

Another application where the developed segmentation pipeline was
used is mobile robot depalletizing, i.e., picking parts from pallets.
Picking parts from pallets is a fundamental task in so-called kitting type
distribution. Kitting became popular in the automotive industry due to
a paradigm shift from mass production to increased customization of
products (build-to-order). More customized products with increased
assembly combinations implicitly means more components to store,
transport and feed to the production line. Most often, human operators
called pickers collect parts as needed from the respective containers,
i.e., bins and pallets, and place them in kitting boxes with several
compartments. Once complete, the kits are delivered to the production
line and synchronized with the cars being produced. In the course of
a larger project on kitting using mobile manipulators (Figure 2.19), we
have developed a system for automated grasping of parts from pallets.

2.7.2 Object Perception Pipeline

Referring to Figure 2.20, the object perception and grasping pipeline
comprises the following steps.

1. Using the respective workspace camera (to the left or right side
of the robot), we detect the pallet and object candidates using
the real-time object detection pipeline. If no object is found (e.g.,
when the pallet is cleared) the robot stops and reports to the
operator.
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(a) Final demonstrator (b) Lab setup (c) Simulation

Figure 2.19: Robot platforms and pallets: shown are the demonstrator at the
industrial end-user site (a), the lab setup used for development
(b) and a visualization of the lab setup (c). The platforms are
equipped, respectively, with a Universal Robots UR10 and a
FANUC M-20iA/35M arm, a Robotiq 3-finger gripper, and four
RGB-D cameras for perceiving the workspace and objects in front
of the gripper.

Figure 2.20: Object detection and localization. From left to right: workspace
camera point cloud with extracted object candidates (yellow)
and selected object (red), and wrist camera point clouds during
localization, approach and grasping.

2. The wrist camera is positioned on top of the object candidate
being closest to the pallet center.

3. Using the wrist camera, we recognize and localize the part, again
after an initial segmentation using the real-time object detection
pipeline. The quality of the found matching is used for object
verification. Poor matching quality indicates that a wrong object
was found. In case of a wrong object, the robot stops, reports
the error and waits for an operator instruction to continue its
operation.

4. A grasp is selected from a set of predefined grasps and the robot
plans a motion to reach it.

5. The robot grasps the object and plans a motion to an intermediate
pose for the subsequent placement in the kitting box.
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2.7.2.1 Initial Part Detection

The task of picking an object from the pallet starts, respectively, when
navigation has already taken place and the robot is positioned in the
vicinity of the pallet. In order to compensate for potential misalign-
ments or inaccuracies in the estimated poses of robot and pallet, we
first use the workspace camera to find the pallet and to get a first
estimate of where to find potential object candidates. Assuming that
we know on which side of the robot the pallet is located, we acquire
images of the corresponding workspace camera and search for hori-
zontal support surfaces above the ground plane. In order to achieve
real-time performance, we use the efficient object detection pipeline
presented in this chapter.

Referring to Figure 2.20, we restrict the extracted (horizontal) planes
to lie in the region where we expect to find the pallet, e.g., not outside
the robot’s reachable workspace, and neglect others such as the ground
plane. In order to find potential object candidates, we then select
the most dominant support plane, compute both convex hull and
minimum area bounding box, and select all RGB-D measurements
lying within these polygons and above the extracted support plane. We
slightly shrink the limiting polygons in order to neglect measurements
caused by the exterior walls of the pallet. The selected points are
clustered (to obtain object candidates), and the cluster being closest to
the center of the pallet is selected to be approached first.

After approaching the selected object candidate with the end effector,
the same procedure is repeated with the wrist camera in order to
separate potential objects from the support surface. Using the centroid
of the extracted cluster as well as the main axes (as derived from
principal component analysis), we obtain a rough initial guess of the
object pose. With the subsequent registration stage, it does not matter
when objects are not well segmented (connected in a single cluster) or
when the initial pose estimate is inaccurate.

2.7.2.2 Object Pose Refinement

The initial part detection only provides a rough estimate of the po-
sition of the object candidate. In order to accurately determine both
position and orientation of the part, we apply a dense registration of
the extracted object cluster against a pre-trained model of the part.
We use muli-resolution surfel maps (MRSMAPs) as a concise dense
representation of the RGB-D measurements on an object (Stückler and
Behnke, 2014). In a training phase, we collect one to several views on
the object whose view poses can be optimized using pose graph opti-
mization techniques. Our pose refinement approach is closely related
to the soft-assignment surfel registration approach of (Droeschel et al.,
2014b) for registering sparse 3D point clouds.
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Instead of considering each point individually, we map the RGB-D

image acquired by the wrist camera into an MRSMAP and match sur-
fels. This needs several orders of magnitudes less map elements for
registration. Optimization of the surfel matches (and the underly-
ing joint data-likelihood) yields the rigid 6 degree-of-freedom (DoF)
transformation from scene to model, i.e., the pose of the object in
the coordinate frame of the camera. The actual optimization is done
through expectation-maximization (Bishop, 2006).

2.7.2.3 Object Verification

After pose refinement, we verify that the observed segment fits to
the object model for the estimated pose. We can thus find wrong
registration results, e.g., if the observed object and the known object
model do not match or if a wrong object has been placed on the pallet.
In such cases the robot stops immediately and reports to the operator
(a special requirement of the end-user).

For the actual verification, we establish surfel associations between
segment and object model map, and determine the observation like-
lihood similar as in the object pose refinement. In addition to the
surfel observation likelihood, we also consider occlusions by model
surfels of the observed RGB-D image as highly unlikely. Such occlu-
sions can be efficiently determined by projecting model surfels into
the RGB-D image given the estimated alignment pose and determining
the difference in depth at the projected pixel position. The resulting
segment observation likelihood is compared with a baseline likelihood
of observing the model MRSMAP by itself. We determine a detection
confidence from the re-scaled ratio of both log likelihoods thresholded
between 0 and 1.

2.7.2.4 Grasping Found Parts

In case, no part was found or if the found part could not be successfully
verified, the robot moves back to its initial pose and reports to the
operator. In case an object was found, we select a collision-free grasp
from a set of predefined grasps. Grasp planning is not desired in
this domain, since many of the parts are fragile and there are only
few allowed grasps to manipulate them. We then plan a collision-free
motion to reach the grasping pose, pick up the part, and move the
part to the kitting box. In order to save motion planning time, we split
the necessary motions into chunks and pre-compute as many of them
as possible. For this purpose, we use grids of poses to the left and
right side of the robot and, for every pose in the grid, pre-compute
the shortest path to and from the initial pose of the arm.
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2.7.3 Experiments and Results

In order to assess robustness and performance of our approach, we
conducted a series of experiments of both individual components and
the integrated platform. As evaluation criteria, we focus on the success
rates and the execution times of the individual components and the
overall cycle times of the integrated system for picking an object from
the pallet.

The purpose of the integrated depalletizing test is to test the com-
plete object perception and grasping pipeline. In the experiment, the
pallet is equipped with a total of 12 objects: 10 being the right part to
pick, and two wrong objects (a very similar one and a very different
one). A typical experiment setup is depicted in Figure 2.21a. Instead
of waiting for a particular pick order, the robot is repeatedly asked
to pick an object from the pallet. The robot is expected to clear the
pallet by grasping all (correct) objects, stop and report to the operator
when it has found a wrong object, and to report when the pallet is
empty. In case of failure (wrong object, empty pallet, etc.), the robot
waits for commands by an operator, e.g., to continue operation. The
latter is a special requirement by the industrial partner. It is intended
that robots and human workers not only share a workspace but work
hand-in-hand.

In all ten runs, the pallet was cleared without major failures. Only
for a single out of the 100 grasps, a grasp failure occurred: during
approach, the robot avoided a phantom obstacle, collided with the
object and failed grasping. The robot stopped operation due to the
detected collision and reported the error. After inspection of the scene,
the operator commanded the robot to continue. When the same object
was approached again later, it was successfully grasped. In another
case, the robot stopped execution due to a phantom object: when
approaching and grasping the last object on the pallet, a phantom
obstacle (erroneous measurements caused by the surrounding packag-
ing) appeared right on top of the object. The problem was reported to
the operator who commanded the robot to continue after inspecting
the scene. The robot then successfully continued grasping the object.
Both failures were caused by incorrectly updating the obstacle map
used for motion planning. The problem was resolved and did not
occur in later runs.

Regarding object detection, localization and verification, no errors
occurred. The robot correctly localized all objects, correctly identified
wrong objects, and correctly detected that the pallet had been cleared
in 100 % of the cases. None of the components had false positives (or
false negatives).

As for the execution times, the initial object (candidate) detection
and pallet detection runs roughly with the framerate of the workspace
camera (30 Hz). Object localization and verification using the wrist
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(a) Photo sequence of one run (detecting, localizing, grasping and releasing the part)

Execution Times Success Rate

Component Mean Successful / Total

Initial detection 26.3 ms ± 10.3 ms 120 / 120 (100 %)

Detecting empty pallets 10 / 10 (100 %)

Localization & verification 532.7 ms ± 98.2 ms 100 / 100 (100 %)

Identifying wrong objects 20 / 20 (100 %)

Grasping a found object 7.80 s ± 0.56 s 99 / 100 (99 %)

Detection and grasping 13.84 s ± 1.89 s 99 / 100 (99 %)

(b) Execution times and success rates per component (measured over 10 complete
runs). Cycle times include releasing and moving to initial pose.

Figure 2.21: Depalletizing experiments. In a total of 10 runs, the robot clears
a pallet containing 10 correct objects (a). It correctly detects the
objects on the pallet and detects, localizes, and verifies parts
with high success rates and low execution times (b). Only a
single grasp fails due to a collision. The robot reports the error
and successfully grasps the object after being commanded to
continue operation. Overall, we achieve cycle times for detecting
and grasping objects of approximately 13 s (c). Note that we
focus on object perception and neglect further optimization of
motion execution.

camera takes roughly 0.5 s. Overall, none of the object perception
components considerably interrupts the operation of the robot and
increases cycle time. That is, almost 100 % of the reported cycle times
is spent on motion planning and execution.

In recent and ongoing work, the pipeline has been integrated into
a skill-based robot control architecture (Holz et al., 2015a) and was
successfully tested on the final demonstrator platform at the industrial
end-user site (Holz et al., 2015b). We refer to these papers for more
details and more experimental results.

2.8 conclusion

In this chapter, we have presented a complete pipeline for segmenting
organized point clouds into horizontal support surfaces and objects
thereon. For ToF cameras, two optional pre-processing steps are pre-
sented that unwrap distance measurements outside the measurement
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interval and filter out spurious measurements between occluding
edges and occluded surfaces. Using the filtered data a first pipeline
was presented that detects dominant support planes, extracts points
above these planes, and clusters the extracted points as potential ob-
ject candidates for further processing. Examining the position, the
principal axes and the dimensions of the object clusters allows for
determining whether or not an object is graspable by a robot, i.e., if
the object is within the reachable workspace, if the object fits into
the gripper, and if the object can be reached using a collision-free
motion. As one possible post-processing step, we detected geometric
shape primitives such as planes, cylinders and spheres. Such shape
primitives are particularly useful for tasks like grasp planning.

In order to speed up processing and considerably reduce the run-
time of the approach, we have extended the pipeline by replacing
several components by fast approximations. Instead of computing
local covariance matrices and normals, we use an efficient approach
for approximating local tangential vectors in integral images and com-
puting the normals using the cross product of the tangential vectors.
Experiments have shown that the approximated normals are accurate
and only slightly deviate from normals obtained using a state-of-
the-art computation in two runs. Instead of trying to find dominant
planes in input point clouds, we segment the point cloud into planes
by clustering points in both normal and distance spaces. In order to
further speed up processing, we limit the search space for the planar
segmentation using only points with normals pointing upwards and
lying in a given height range. Furthermore, internal processing steps
use subsampled point clouds where possible. The resulting pipeline
can reliably detect horizontal support surfaces and objects thereon at
30 Hz for 640× 480 RGB-D point clouds. If objects are well separated
on the support plane (e.g., having an inter-object distance of at least
2 cm), they are also reliably clustered into individual objects.

Not restricting the planar segmentation to horizontal planes allows
for segmenting complete point clouds and extracting all planes. Even
though individual points may be missed in the detected planes (e.g.,
due to noise in the coordinates and/or the normal), this approach
achieves reliable segmentations of all larger planes in the tested scenes.
We include this approach as a baseline in the experimental evaluation
of Section 3.7.3.

Finally, we have presented two applications of the real-time object
detection: a particularly fast pipeline for perceiving and grasping
objects without a priori knowledge, and an efficient pipeline for de-
tecting, localizing, verifying, and grasping known objects. In both
applications, the real-time object detection allows for reliable object
perception at particularly low cycle times.





3 EFF I C I ENT SEGMENTAT ION OF
RGB -D IMAGES

Decomposing sensory measurements into coherent parts is a fun-
damental prerequisite for scene understanding that is required for
solving complex tasks, e.g., in the field of mobile manipulation. In
this chapter, we describe methods for efficient segmentation of range
images and organized point clouds acquired by consumer color and
depth (RGB-D) cameras. In order to achieve real-time performance in
complex environments, we focus our approach on simple but robust
solutions. We present a fast approach to surface reconstruction in
range images and organized point clouds by means of approximate
polygonal meshing. The obtained local surface information and neigh-
borhoods are then used to 1) smooth the underlying measurements,
and 2) segment the image into planar regions and other geometric
primitives. A comparative evaluation using publicly available datasets
shows that our approach achieves state-of-the-art performance while
being significantly faster than other methods.

3.1 introduction

As robots and autonomous systems move away from laboratory setups
towards complex real-world scenarios, both the perception capabilities
of these systems and their abilities to acquire and model semantic
information must become more powerful. A key issue for this is the
decomposition of sensory measurements into homogeneous parts that
are relevant for the tasks of the robot. For mobile manipulation in
complex environments, for example, the perception of objects and their
surroundings is a key prerequisite. A common approach (Rusu et al.,
2009b) in three-dimensional (3D) object and environment perception
is to exploit typical characteristics of man-made environments and to
apply the following processing pipeline:

1. detect horizontal support planes,

2. extract and cluster points on top of these planes, and

3. perform further processing in the found clusters, e.g., recogniz-
ing, classifying or tracking objects.

One of the fundamental challenges in this pipeline is to segment the
3D data into planes and other geometric primitives—or regions of local
surface continuity in general.

In this chapter, we address the problem of segmenting range images
and organized point clouds in real-time using only a single CPU.

55
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(a) Approximate surface reconstruction (b) Smoothed mesh

(c) Segmented mesh (d) Polygonalization (detected planes)

Figure 3.1: Surface reconstruction and plane segmentation of an RGB-D point
cloud: (a) initial approximate triangulation; (b) the smoothed
mesh after multilateral filtering; (c) the result of segmenting
planes in the mesh (random colors per plane, red triangles are
assigned to multiple planes and lie along borders); (d) a complete
polygonalization of the scene as a collection of alpha shapes.

The central idea of our approach is to approximately reconstruct
the surface and segment the range image by growing regions using
the resulting local mesh neighborhoods. Through the use of easily
exchangeable components, our generalized region growing approach
allows for different region models (e.g., planes) to be segmented in
the data. We present models for segmenting planes, regions of local
surface continuity, and simple geometric primitives at high frame
rates. Figure 3.1 shows an example of plane segmentation in an indoor
environment.

We further use the same mesh neighborhoods to efficiently com-
pute local surface normals and curvature estimates, as well as to
smooth both the 3D measurements and the computed normals using a
multilateral filter.

This chapter organized as follows: After a discussion of related work
on range image and 3D plane segmentation methods in Section 3.2,
we give an overview of our segmentation pipeline in Section 3.3. Our
methods for approximate surface reconstruction, efficient computation
of local surface normals and curvature, and filtering of the constructed
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mesh are presented in Section 3.4. In Section 3.5, we describe our
generalized region growing algorithm as well as different models for
plane segmentation and the detection of other geometric primitives.
We investigate different camera noise models that assist both initial
mesh construction and segmentation in Section 3.6. We evaluate effi-
ciency and robustness of our approach on multiple publicly available
datasets and summarize the results in Section 3.7. We show that our
approach achieves state-of-the-art performance while being faster than
other methods.

The approximate surface reconstruction approach and the region
growing based segmentation method were first published and pre-
sented at the 12th International Conference on Intelligent Autonomous
Systems (Holz and Behnke, 2012). An extended version of this paper
(and an early version of this chapter, respectively) was published in
Robotics and Autonomous Systems (Holz and Behnke, 2014a).

3.2 related work

Research on computer and robot vision has yielded a wide variety of
approaches to range image segmentation—and plane segmentation
in particular. Hoover et al. (1996) compiled a survey and performed
an evaluation of early work. For an overview of more recent work,
we refer to the survey of Vosselman et al. (2004). In principle, four
different types of approaches can be distinguished according to the
underlying working principle: methods using variants of the random
sample consensus (RANSAC) algorithm (Fischler and Bolles, 1981), 3D

Hough transforms, scan line grouping, and region growing.

3.2.1 Segmentation based on Sample Consensus

RANSAC-based approaches try to find models for geometric primitives
that best explain a set of points and the set of inliers supporting it. For
segmenting a complete range image, Lee et al. (1998) sequentially find
a model using RANSAC, remove inliers from the original dataset, and
continue the segmentation with the residual points. Silva et al. (2002)
first identify connected regions and apply RANSAC region-wise. Go-
tardo et al. (2003) compute an edge map for pre-segmentation and fit
model parameters using a robust estimator based on the M-estimator
sample consensus (MSAC) by Torr and Zisserman (2000). Gotardo et al.
(2004) extend the approach to segmenting planar and quadric surfaces
using both a robust estimator—again based on MSAC—and a genetic
algorithm for accelerating the optimization process and avoiding pre-
mature convergence. Bab-Hadiashar and Gheissari (2006) propose an
approach that simultaneously identifies the type of geometric primi-
tive for the underlying surface region while performing a complete
segmentation of the input image. Segmentation and model selection
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are based on defining and minimizing the strain energy of fitted
surfaces. The resulting approach is able to segment various types of
planar and curved objects.

Another efficient solution to the problem of segmenting even un-
organized point clouds and detecting simple geometric primitives
such as planes, cylinders, and spheres has been proposed by Schnabel
et al. (2007). They decompose unorganized point clouds using octree
subdivision and apply RANSAC only to subsets of the original point
cloud.

In previous work (Section 2.3; Holz et al., 2010), we adapted the
perception scheme from Section 3.1 as well as the techniques of Rusu
et al. (2009b) and Schnabel et al. (2007), and made them applicable
to the measurements of time-of-flight (ToF) cameras. We presented
techniques to cope with the specific error sources of the cameras, and
to speed up processing by exploiting the image-like data organization.
After detecting the most dominant plane, we applied the octree-based
primitive detection of Schnabel et al. (2007) only to already extracted
and segmented points above that plane. In another previous work (Sec-
tion 2.4; Holz et al., 2011), we further sped up the segmentation process
by using integral images for computing local surface normals more
efficiently, and using the index neighborhood underlying the 3D data
to extract and track segments of points and object candidates, respec-
tively. The overall approach is applicable in real time on a Microsoft
Kinect™ RGB-D camera and has been used for real-time object tracking
and grasp planning (Stückler et al., 2011).

3.2.2 Hough-based Plane Segmentation and Clustering

The Hough transform is the de-facto standard for finding lines and
circles in two-dimensional (2D) images. Various extensions to 3D exist
that try to find, respectively, planes and maxima in histograms over the
possible space of plane orientations and distances. For an overview of
the different variants and an evaluation of Hough-based segmentation
approaches, we refer to the works of Vosselman et al. (2004) and
Borrmann et al. (2011).

RANSAC- and Hough-based segmentation share a common disadvan-
tage. Points belonging to the same segment do not necessarily lie on
connected components. Both approaches will merge plane segments
if they share a common orientation and distance to the origin. For
example, in a shelf with vertical separators, boards on the same level
are merged, although they do not physically lie on the same surface.
In addition, Hough-based segmentation may suffer from discretization
effects.

Frigui and Krishnapuram (1999) present a robust clustering algo-
rithm for finding various shapes in noisy datasets. It starts with a
large number of clusters and iteratively reduces the number of clusters
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(converging to the actual number of clusters) by competitive agglom-
eration. Despite other clustering applications, they also present an
objective function for segmenting range images into planar regions.
The approach is included in our comparative experimental evaluation
in Section 3.7.3.

In (Holz et al., 2011), we present a fast plane segmentation approach
that uses a similar parameter space as the Hough transform. We pre-
cluster points and segment planes first in normal space and then,
for each cluster, in distance space to obtain individual planes. We
compensate for discretization effects by conducting a post-processing
step in which neighboring segments are merged if their parameters
do not considerably deviate. Still, unconnected planar patches may
get merged into the same cluster (in contrast to scan line grouping
and the region growing-based approaches following).

3.2.3 Scan Line Grouping

In the context of segmenting 3D laser range scans, another popular
approach is scan line grouping. It aims for computational efficiency
by first detecting lines in planar cuts (and 2D range scans forming a
3D scan), and by merging neighboring line segments to regions in a
second step. The basic idea behind this principle is the observation
that planes in a 3D scan form straight lines in two-dimensional scan
lines and that points on the same line segment belong to the same 3D

plane. Jiang and Bunke (1994) store detected line segments in a link-
based data structure that eases region growing for extracting planar
patches from detected lines. The approach is extended and further
evaluated by Jiang and Bunke (1996). Jiang (2000) then combines
this edge detection with an adaptive edge grouping algorithm for
efficiently solving the contour closure problem. The resulting approach
successfully detects closed contours and achieves better segmentation
results. It is included in our comparative experimental evaluation.
Nüchter et al. (2003) follow a similar approach but use RANSAC and
the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992)
for plane detection, and label detected planes as belonging to floor,
ceiling and walls. Gutmann et al. (2008) improve various aspects of
the original formulation by computing and analyzing statistics about
points on a scan line for splitting line segments and growing regions.
An et al. (2012) first cluster the scan lines and only consider the end
points of line segments to speed up line and plane detection. Recently,
Georgiev et al. (2011) applied scan line grouping on data acquired
from RGB-D cameras. We include the approaches of Jiang (2000) and
Georgiev et al. (2011) in our experimental evaluation (Section 3.7.3).



60 efficient segmentation of rgb-d images

3.2.4 Segmentation using Region Growing

The underlying idea of region growing-based segmentation is to ex-
ploit the image-like data structure of organized point clouds. Koster
and Spann (2000) estimate the scale of local Gaussian distributions
around points and then detect identical distributions. Segmentation is
performed by iteratively growing regions of points that have identical
Gaussian distributions. Checchin et al. (1997) also propose a two-stage
approach making use of both edges and regions. They first compute an
over-segmentation of the range images primarily based on local depth
discontinuities. This over-segmentation is presented in a connectivity
graph. Neighboring segments in the graph are then merged using a
surface-based description and comparison. Hähnel et al. (2003) connect
neighboring points in 3D laser range scans to a mesh-like structure. The
scans are then segmented recursively by merging connected patches
that are likely to lie on the same planar surface. Poppinga et al. (2008)
apply the same approach to Time-of-Flight cameras and re-formulate
the algorithm in an incremental fashion. They grow planar regions by
adding neighboring points whose distances to the currently grown
plane lie below a threshold. The centroid and covariance matrix for
estimating the plane’s parameters are thereby updated incrementally.
Here, we follow a similar approach for segmenting planes. Instead of
incrementally computing the covariance matrix however, we compute
the normals for all points beforehand and simply average local surface
normals to obtain an estimate of the plane normal. That is, we only
store and incrementally update the centroids in both Cartesian and
normal space. We include the approaches of Koster and Spann (2000)
and Checchin et al. (1997) as well as our probabilistic plane segmenta-
tion based on the work of Poppinga et al. (2008) and our approximate
variant in our experimental evaluation (Section 3.7.3).

Other popular region growing approaches to range image segmen-
tation make use of local surface curvature. Regions are grown until
points with a considerably larger curvature are reached. Just like Go-
tardo et al. (2003) for RANSAC-based segmentation, Harati et al. (2006),
first compute an edge map to find connected regions of local surface
continuity. Rabbani et al. (2006) approximate local surface curvature
by first fitting planar segments to local point neighborhoods and then
computing, for each point, the distance to that plane. Recently, Cupec
et al. (2011) followed a similar approach. They first apply two-and-a-
half-dimensional (2.5D) Delaunay triangulation on a range image to
obtain an initial triangular mesh and then use the maximum distance
of an examined point to all triangles in a region to determine whether
or not the point is added.

Similar to our approach for segmenting geometric primitives such
as cylinders and spheres is the work of Attene et al. (2006) who hierar-
chically cluster and decompose a triangular 3D mesh into geometric
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primitives. They first initialize every single triangle to be an individ-
ual cluster and then form new clusters by connecting triangles (and
clusters respectively) to neighboring triangles. When forming a new
cluster the primitive best explaining the connected triangles is chosen
to represent the new cluster. That is, clusters and detected primitives
are iteratively grown and optimized. In contrast, we first pre-segment
the mesh and estimate the best fitting primitive for each segment.

Here, we deduce a surface reconstruction directly from the image-
like data structure, and use the local ring neighborhood around ver-
tices to 1) efficiently compute local surface normals and curvature
estimates, and 2) efficiently smooth the depth measurements using
a multilateral filter. Our framework allows for using different types
of models for region growing, including the approaches of Rabbani
et al. (2006), Cupec et al. (2011) and Poppinga et al. (2008), as well as
our fast approximation (see Section 3.5.2).

3.3 overview of the segmentation pipeline

The proposed approach to range image segmentation consists of a
complete pipeline of several methods ranging from data acquisition
over pre-processing and surface reconstruction to segmenting the
resulting mesh representation and detecting geometric primitives such
as planes, cylinders and spheres. The overall processing pipeline of
our approach is composed of the following components:

1. Deducing an approximate mesh from the image neighborhoods.

2. Using the mesh neighborhoods to compute approximate local
surface normals and curvature estimates.

3. Multilateral filtering to smooth both points and normals.

4. Segmentation based on region growing (using different region
models depending on the desired segmentation).

As an optional last step, we replace found segments by the geometric
primitives best fitting the contained points in order to obtain a compact
representation. Planes are replaced by polygons, e.g., the convex hull
and the model parameters for the plane. An overview of our system is
shown in Figure 3.2. Not shown in the overview figure are basic input
and output operations such as retrieving range images, loading 3D

point clouds from datasets or storing the final and intermediate results.
Furthermore, depending on the configuration of the pipeline, some
components can run repeatedly and alternating, e.g., computing the
normals, filtering both points and normals, and then re-computing the
normals for the filtered points rather than using the filtered normals.

Compared to related work, our approach is particularly efficient
since local point neighborhoods as well as distances and changes in
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Figure 3.2: Overview of the processing pipeline (following the black arrows
from top left): for an input organized point cloud or range im-
age, we first deduce an approximate triangle or quad mesh. We
efficiently compute local surface normals and curvature directly
on the mesh and apply a multilateral filter to smooth both the
points and their normals. The smoothed mesh is then segmented
into planar regions. In a last (optional) processing step, detected
planes are replaced by polygons.

surface orientations between neighboring points are not only com-
puted efficiently using the approximate mesh but also cached in the
mesh structure for further processing. All components described in
the above list use the same cached neighborhoods. Moreover, there is
a wide range of mesh processing algorithms available that makes use
of the contained topology. Both the possibility to cache information
in the edges and the availability of a large corpus of mesh processing
algorithms constitute the two reasons why polygonal meshes are used
as the underlying data representation in this pipeline.

3.4 fast approximate surface reconstruction

Whereas range images form a dense 2.5D representation, point clouds
are ordered or unordered collections of points in 3D space. Naturally,
these points provide an intuition of the shape of the surface they have
been sampled from but cannot explicitly represent this surface. Surface
reconstruction algorithms aim at building a surface representation
from the loose collection of 3D points, e.g., in the form of polygonal
meshes (explicit representation) or in the form of a signed distance
field (implicit form). Polygonal meshes approximate the surface us-
ing a collection of polygons with arbitrary topology. Thereby, they
represent the underlying surface in the form of piece-wise smooth
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surfaces. A commonly used form of polygonal meshes is the tri-
angle mesh. It can be represented as a graph G = {V , E ,F} with
vertices V = {v1, v2, . . . , vn}, edges E = {e1, e2, . . . , em}, and triangles
F = { f1, f2, . . . , fk}. Edges form straight line segments between two
vertices and encode adjacency, i.e., ei ∈ V × V . Triangles include three
edges and connect three vertices in the topology, i.e., fi ∈ V × V × V .
Every vertex has a position in 3D space and, consequently, the vertex
positions themselves form a 3D point cloud P = {p1, p2, . . . , pn}.

3.4.1 Surface Reconstruction Algorithms

Surface reconstruction is a well understood problem and a wide variety
of algorithms has been proposed in the last decades. In general, surface
reconstruction has two goals: 1. the reconstructed surface should be
geometry close to the sampled surface, and 2. the reconstructed surface
should be topologically equivalent to the sampled surface. That is,
neighboring sample points on the object should also be close to each
other in the topology of the reconstructed mesh and the reconstructed
mesh should not (considerably) extend into the interior or exterior of
the sampled object. Several distance error metrics for evaluating the
quality of surface reconstructions and especially the local smoothness
of the resulting meshes have been investigated by Berger et al. (2013).

One of the classic early algorithms for surface reconstruction is
Marching Cubes (Lorensen and Cline, 1987). It first computes a voxel-
based subdivision of the input point clouds, and then iterates over
the neighboring voxels of a voxel to compute the local orientation
of the surface. The efficiency of the approach comes from explicitly
formulating all connectivity cases and looking up the corresponding
polygon configuration for the local isosurface in the voxel. The exact
positions of the vertices on the edges of the voxels is computed by
linear interpolation. Several extensions and improvements especially
regarding the interpolation have been proposed in the last years in-
cluding the work by Hoppe et al. (1992) and the approach of Carr
et al. (2001) that uses radial basis functions. Another approach for both
uniform and adaptive grid structures has been proposed by Li et al.
(2010) for reconstructing extremal surfaces.

Many surface reconstruction algorithms start with Delaunay trian-
gulations or Voronoi diagrams like, for instance, the Cocone family of
algorithms (Amenta et al., 2000; Dey et al., 2001; Dey and Goswami,
2003). A particularly popular algorithm is Poisson surface reconstruc-
tion (Kazhdan et al., 2006). Given a set of points with local surface
normals, Poisson surface reconstruction aims at fitting an implicit
function to the surface whose values are zero at the points and whose
gradient at the point equals to the normal vector. The function and
the optimization are based on Poisson’s equation—a partial differential
equation of elliptic type. Kazhdan and Hoppe (2013) extend the ap-
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(a) 3D point cloud (b) Reconstructed mesh

Figure 3.3: Example of 3D surface reconstruction. Shown are a point cloud of
the well-known “Stanford Bunny” as scanned by Turk and Levoy
(1994) and a polygonal reconstruction obtained using Poisson
Surface Reconstruction (Kazhdan et al., 2006).

proach to explicitly incorporate the sampling points as interpolation
constraints and also reduce the runtime complexity of the optimiza-
tion to be linear in the number of points, i.e., O(n). An example of
a reconstructed surface from a sample of 3D points using Poisson
reconstruction can be seen in Figure 3.3.

Another popular approach is the Smooth Signed Distance (SSD) Sur-
face Reconstruction of Calakli and Taubin (2011). It computes signed
distance functions in an octree representing the input point cloud.
Instead of forcing the implicit function to approximate the implicit
surface, SSD reconstruction forces the implicit function to be a smooth
approximation of the signed distance function to the surface. This
reconstruction algorithm and its variants became particularly popular
with the advent of 3D mapping algorithms that inherently make use
of signed distance functions such as KinectFusion (Newcombe et al.,
2011). After building the grid-based map, the reconstructed surface
can be easily computed from the signed distance functions. Wiemann
et al. (2016), for example, use an open source implementation of a
large-scale KinectFusion variant, extract the reconstructed surface
from the truncated signed distance functions, and apply an efficient
Marching cubes implementation to obtain topologically correct surface
reconstructions. For building textured reconstructions from sequences
of RGB-D images, Steinbruecker et al. (2014) compute signed distance
functions in an octree which is updated when new data arrives. The
surface reconstruction is derived from the signed distance functions
in the octree cells, and updated octree cells change by keeping track
of the dependencies between mesh regions and octree cells.

All the methods mentioned above do not assume a particular or-
dering of the points and do not exploit a certain structure. Hence,
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algorithms exploiting a certain structure can be considerably faster
in case the input has the assumed structure. Schmitt and Chen (1991)
proposed a planar segmentation approach which includes an approxi-
mate surface reconstruction specifically designed for range images. In
essence, it computes a 2.5D Delaunay triangulation in the range image.
Since it is computationally less complex than the full 3D approaches for
unorganized point clouds, the triangulation has been used in several
other methods, including the range image segmentation algorithm by
Cupec et al. (2011).

A hybrid approach for unorganized 3D points is to extract local
neighborhoods around points, fit a plane to the neighborhood, project
the points onto the plane, and then compute a local 2.5D triangulation
on this plane (Gopi and Krishnan, 2002). A particularly efficient and
robust variant of this approach has been presented by Marton et al.
(2009).

3.4.2 Exploiting Structure for Approximate Meshing

The central idea of our surface reconstruction approximation is to
deduce the desired mesh structure directly from the image-like organi-
zation of measurements. In fact, the following algorithms could easily
be applied on local index neighborhoods in range images. However,
an approximate mesh allows for 1) the application of a wide variety
of sophisticated algorithms for processing meshes, and 2) the stor-
age of edge weights for caching point attributes or relations between
points, e.g., differences in local surface normal orientations or the
difference vectors for integral image-based normal computation as in
our previous work (Holz et al., 2011).

We traverse a given range image or organized point cloud P once
and check for every point pi = P(u, v)

• if P(u, v) and its neighbors P(u, v + 1), P(u + 1, v + 1), and
P(u + 1, v) in the next row and the next column are valid depth
measurements, and

• if all edges between P(u, v) and these three neighbors are not oc-
cluded, i.e., the edge connects points lying on the same physical
surface.

The first check is necessary because of the structure in the sensory
data that we are exploiting. If the sensor cannot acquire a valid depth
measurement for a certain pixel, it stores an invalid one, in order
to keep the structure organized. The invalid measurements are then
ignored in the reconstruction.

The latter occlusion checks are necessary to avoid that points ly-
ing on different physical surfaces are connected. When one surface
occludes another spurious measurements may be caused along these
so-called jump edges (May et al., 2009). Obviously, these phantom points
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should not be included in the final surface reconstruction. Further-
more, even if no jump edges cause such spurious measurements, a
point on the occluding surface should not be connected to a point on
the occluded surface. Both can be efficiently checked for by examining
the difference vectors between pi and its three neighbors. If one of the
difference vectors falls into a common line of sight with the viewpoint
from where the measurements were taken (the focal point f = 0), then
one of the underlying surfaces occludes the other. The condition for
having an occluded edge between point pi and its neighbor pj can be
formulated as

valid =
(∣∣cos θi,j

∣∣ ≤ cos εθ

)
∧
(
di,j ≤ ε2

d
)

, (3.1)

with θi,j =
(pi − f ) ·

(
pi − pj

)
‖pi − f‖ ‖pi − pj‖

, (3.2)

and di,j = ‖pi − pj‖2, (3.3)

where εθ and εd denote maximum angular and length tolerances,
respectively. In the same way, we can check for jump edges (May et al.,
2009), i.e., erroneous measurements often induced by range sensors
in the vicinity of occlusions and depth discontinuities. Note that in
addition to checking whether or not an edge falls into a common
line of sight with the focal point, we also use a distance threshold in
Equation (3.1). Whenever points are too far apart from each other a
connecting edge can be avoided even if the connecting edge passes
the angle check in Equation (3.2).

If all checks pass, P(u, v) and its neighbors are used to extend the
so far built mesh. Otherwise, holes arise. Referring to Figure 3.4, we
distinguish four types of meshes:

1. Quad meshes are formed by connecting the point P(u, v) to
P(u, v + 1), P(u + 1, v + 1) and P(u + 1, v). After going over all
points, this forms quads, i.e., polygons with four edges.

2. Fixed left cut and right cut triangular meshes are formed by
cutting quads either from top right to bottom left (left cut) or
from top left to bottom right (right cut).

3. Adaptive triangulation cuts the quad along the diagonal that
has a smaller length. Compared to the fixed triangulations, it
achieves a higher accuracy in the vicinity of edges.

For triangulations, a single invalid neighbor causes that only one
triangle is added. After construction, we simplify the resulting mesh
by removing all vertices that are not used in any polygon. Example
triangulations are shown in Figures 3.1 and 3.2.

Recently, Orts-Escolano et al. (2015) us this approximate surface
reconstruction in their pipeline for computing local feature descriptors
for object recognition on a graphics processing unit (GPU). In addition
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(a) Quad mesh (b) Adaptive triangle mesh

(c) Triangle mesh: left cuts only (d) Triangle mesh: right cuts only

Figure 3.4: Visualization of mesh types: fast approximate meshing using a
quad mesh (a) and different triangulations (b-d). Compared to
the adaptive approach (b), triangulations using only left cuts (c)
or only right cuts (d) can be obtained slightly faster.

to the two validity checks, they introduced a third criterion checking
for the compatibility of surface normal orientations, i.e., whether a
point and its neighbors have similarly oriented surface normals. Con-
sequently, the mesh is not only disconnected at depth discontinuities
between surfaces but also at differently oriented surfaces, e.g., convex
and concave edges between walls. We do not check for similar surface
normal orientations in order to have all physically connected surfaces
connected in the mesh.

3.4.3 Fast Computation of Local Surface Normals

We compute the local surface normal ni for a point pi as the weighted
average of the plane normals of the NT faces surrounding pi.

ni =
∑NT

j=0 wjnj

‖∑NT
j=0 wjnj‖

, (3.4)

There are different ways of including and weighting neighboring
triangles in Equation (3.4). For an extensive overview of these different
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a = p1,b = p4,c
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Figure 3.5: Computing local surface normals on the mesh. After computing
the four face normals, the local surface normal ni of the point pi
is obtained by averaging over the face normals and normalizing
the resulting vector.

formulations we refer to the work of Jin et al. (2005). Using the cross
product between the difference vectors of the bounding vertices to
compute the face normals nj and not normalizing the resulting vectors
automatically gives a higher influence to larger faces, i.e., faces where a
higher stability in surface normal orientation can be assumed. That is,
by not normalizing the face normals and choosing weights of wj = 1,
we implicitly choose the weights to be proportional to the area of the
surrounding triangles. We compute the normal ni as:

ni =
∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)

‖∑NT
j=0(pj,a − pj,b)× (pj,a − pj,c)‖

, (3.5)

where pj,a, pj,b and pj,c form triangle j. Our formulation of the approx-
imation resembles the seminal work of Gouraud (1971).

An example of computing the local surface normal of a point sur-
rounded by four faces in a triangle mesh can be seen in Figure 3.5.
In the actual implementation, we simply iterate over the faces, com-
pute the difference vectors and their cross products, and add them
to the normals of the involved points. Finally, we normalize all point
normals at once. The local surface curvature of a point is then ap-
proximated by the standard deviation of the normal directions of its
neighbors (Magid et al., 2007). An example of computed local surface
normals (color coded) can be seen in Figure 3.2.

Since we compute local surface normals on the mesh deduced from
the range image and not on the range image itself (as in the case of
integral image-based normal estimation (Holz et al., 2011; Holzer et al.,
2012) we get proper normal estimates even in the vicinity of depth
discontinuities whereas image-based methods tend to smooth over
edges and depth discontinuities.
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(a) Views of an unfiltered mesh. Noise produces high curvature corners on planes.

(b) Views of the filtered mesh. Planar regions appear smooth in the mesh.

Figure 3.6: Typical results of multi-lateral filtering: two views on an adaptive
triangular mesh (a) before and (b) after filtering. The surface is
considerably smoothed while preserving edges and corners.

3.4.4 Multilateral Filtering

Naturally, sensor measurements are affected by noise. Since this noise
may hinder further processing, e.g. segmentation, we apply a filter for
smoothing both the points and their normals while preserving edges
in the sensed geometric structures. The formulation of our filter is
motivated by the concept of multilateral filtering (Butt and Rajpoot,
2009) and measures the similarity of points w.r.t. their position, surface
orientation, and appearance. As for the other components in our
pipeline, we directly extract the neighborhood of a point from the
mesh instead of searching for nearest neighbors. We filter both a point
pi and its normal ni over its 1-ring-neighborhood Ni, i.e., all points
that are directly connected to pi by an edge in the mesh:

pi = ∑
j∈Ni

wijpj/ ∑
j∈Ni

wij, and (3.6)

ni = ∑
j∈Ni

wijnj/ ∑
j∈Ni

wij, (3.7)

with wij = eα‖pi−pj‖︸ ︷︷ ︸
distance term

eβ‖ni−nj‖1︸ ︷︷ ︸
normal term

eγ(Ii−Ij)/cI︸ ︷︷ ︸
intensity term

, (3.8)

where the optional intensity term is only evaluated for colored point
clouds and range images where also an intensity image is available.
The normalization constant cI is used to scale the intensity differences
to lie in the interval [0, 1]. Weights α, β, and γ can be used to adjust
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the behavior of the filter. Equally weighting distance and surface
normal deviation term already achieves considerable smoothing while
preserving edges and corners. Depending on the desired smoothing
level, we can extend a point’s neighborhood to include the neighbors
of neighbors and ring neighborhoods farther away from the point. An
example of filtering an input mesh (weights α = 1, β = 1, γ = 0) can
be seen in Figure 3.6.

A similar filter has been used by Fleishman et al. (2003) to smooth
the surface of 3D object meshes. However, the only incorporate the
Euclidean distance between points and their distances to a plane
fit through the local neighborhood, whereas our multilateral filter
incorporates three components: the Euclidean distance, the deviation
of local surface normals and the difference in intensity.

3.5 region models and segmentation

For being able to efficiently segment 3D data of various types, e.g.,
range images as well as both organized and unorganized point clouds,
we have implemented a generalized segmentation framework. It al-
lows the involved components such as the underlying region model
(e.g., planes or non-planar locally smooth surfaces), the module for
estimating the sensor noise, and the method for obtaining the local
neighborhoods of query points (and the corresponding distances and
surface normal deviations) to be easily switched. Whereas for orga-
nized data, we only require a look-up in the initially constructed and
smoothed mesh, for unorganized data we need to either apply the
greedy projection-based surface reconstruction algorithm by Marton
et al. (2009) or search for the neighbors for all points using fast approx-
imate neighbor search (Muja and Lowe, 2009) and cache the neighbors
for later use.

3.5.1 Region Growing-based Segmentation

Despite the generalization over different neighborhood searches and
region models, the implementation of our segmentation algorithm
does not considerably deviate from other region growing algorithms
in literature. Given is a set of seed points (and a priority queue of
seeds) or simply the array of all points.

Outer loop, until all points are processed:

1) Select the next seed point,

2) initialize the region model of interest, and

3) put the seed point onto the empty processing queue.

Inner loop, while the processing queue is not empty:
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4) Take the next point from the processing queue (and go back
to 1) if it is empty),

5) check the compatibility of the point with the region model,
and

6) add it in case of compatibility. If necessary, update the
region model w.r.t. the new point.

7) Add the neighbors of the point to the processing queue if
they pass a neighbor compatibility check.

3.5.2 Different Region Models for Segmentation

We have encapsulated the processing steps 2) initialization, 5) point
compatibility, 6) model update, and 7) neighbor compatibility in ex-
changeable region models allowing the behavior of the segmentation
to be configured and controlled. Note that we distinguish two types of
compatibility checks—one for points determining whether or not they
belong to the currently grown region and one for a point’s neighbors
determining whether or not they are added to the processing queue
at all.

We have implemented several region models for plane segmentation:
a probabilistic incremental formulation based on the approach of
Poppinga et al. (2008) and an approximate variant using local surface
normals, as well as for segmenting regions of local surface continuity
as a pre-segmentation for further processing. In addition, we added
models that reproduce the behavior of other segmentation algorithms
found in the literature, amongst others, the approaches of Rabbani
et al. (2006) and Cupec et al. (2011).

3.5.3 Probabilistic Plane Segmentation

In order to reliably detect planes even in noisy data, we use a prob-
abilistic region model that is based on the incremental plane fitting
algorithm of Poppinga et al. (2008). Aimed at time-of-flight cameras,
their approach exploits the sequential structure of the data and uses
incremental updates of both the centroid and covariance matrix of
the inliers. The centroid and covariance matrix are not only used
to determine the plane parameters, but also the uncertainty of the
estimated plane parameters. A point is added to the probabilistic
region model if the incrementally updated mean square error of the
plane fit and the point’s distance to the estimated plane model do
not exceed a threshold. Despite the efficient incremental updates to
centroid, covariance and mean square error, the probabilistic model
is computationally more demanding than other region models in our
framework, but achieves reliable plane detection results (Section 3.7).
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3.5.4 Approximate Plane Segmentation

In order to further speed up plane segmentation while preserving
reliable plane detections, we have developed an approximate variant
of the probabilistic plane segmentation model. For approximate plane
segmentation, we initialize the centroid and the normal of the region
model using the seed point and its normal. Both can be taken directly
from the smoothed approximate mesh instead of computing an initial
centroid and covariance matrix using an initial set of points as in
the probabilistic approach. In order to determine the compatibility
of a point pi with the model, we simply check the angle between
its normal ni and the normal of the plane model, as well as pi’s
distance to the plane. To incorporate pi in the model, we incrementally
update the plane’s centroid, but instead of incrementally updating a
covariance matrix to derive a plane normal from it, we incrementally
update its centroid in normal space. That is, by pre-computing the
surface normals on the mesh neighborhood, and approximating the
plane normal by averaging over point normals, we can reduce the
number of required computations considerably. Note, for assessing
the uncertainty in the determined plane parameters, e.g., for the
registration of planar segments as done by Pathak et al. (2009), we can
compute the necessary Hessian and covariance matrices after region
growing using the final sets of inliers.

In order to obtain full polygonalizations such as the one shown
in Figure 3.2, we compute the convex or concave hulls (using alpha
shapes) for all planar patches. In case a triangulation is required for
further processing, we decompose resulting polygons again using ear
clipping (which is fast and produces satisfactory results in most cases).
This post-processing step allows for the creation of highly efficient
scene representations—thousands of triangles or quads are replaced
by a fraction as many polygons, while still representing all dominant
planes.

3.5.5 Smooth Surfaces and Geometric Primitives

For detecting geometric primitives, we need a rough pre-segmentation
of the scene. This can easily be accomplished within the neighbor
compatibility check of the models by, e.g., examining changes in the
local surface curvature or comparing a point’s surface normal with
either the region’s mean surface normal or the surface normal of
the seed point. A typical result of applying a segmentation that uses
the latter model is shown in Figure 3.7. Points on the same physical
(locally smooth) surface end up in the same segment.

For every locally smooth segment, we try to find the geometric
primitive that best explains the underlying point set. Whereas we can
directly compute a least squares plane fit to all the points in a segment,
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Soccer ball
(r = 10.6 cm, rgt = 10.6 cm)

Wooden block
(h = 30.0 cm, hgt = 30.0 cm)
Pringles can
(h = 23.3 cm, hgt = 23.3 cm)

(a) Examples of all primitives (cylinder, planes, and sphere) in a simple scene

(b) Segmented example scene with detail view of the segmentation error

Figure 3.7: Detecting planes (yellow), cylinders (cyan), and spheres (ma-
genta). Points and polygons belonging to multiple segments are
colored red. All points are projected onto the found models.
(a) The estimated model parameters are accurate to the millime-
ter, e.g., measuring h = 23.302 cm for the Pringles can instead
of the ground truth object height hgt = 23.368 cm. (b) In case of
cylinders where outer and inner part form two distinct clusters,
two cylinders are detected. The model parameters for the inner
part tend to be prone to errors.
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we use RANSAC to find the best sphere and cylinder model. Here,
the computational efficiency of our approach comes from applying
RANSAC only if the computed planar model does not fully explain the
segment. Typical results of applying the rough pre-segmentation and
primitive detection are shown in Figure 3.7.

Since we still stick to the RANSAC-based primitive detection for
spheres and cylinders, we focus the experimental evaluation to plane
segments directly obtainable from region segmentation and extracted
using our approximate model.

3.6 camera noise models

The key to both the initial construction of the approximate mesh and
its segmentation is to know whether or not neighboring points in
the range image are close to each other and lie on the same physical
surface.

For all of the aforementioned region models, parameters such as, for
instance, the distance to the model and the deviation between surface
normals play an important role. Whereas the latter can (almost) be
neglected after applying the multilateral filter, the distance to the
model is a parameter that is crucial for the quality of the segmentation.
It resembles the amount of noise hindering a measurement from lying
on the ideal model.

In order to obtain a rough estimate of the amount of noise at a
given point, we use a simple isotropic noise model. As suggested by
Anderson et al. (2005), we assume Gaussian noise N (0, σ2) and use a
simple quadratic polynomial as a function of distance to determine
σ, since noise in range sensors usually increases quadratically with
the measured distance. Since the primary sensor used in our work
is a Microsoft Kinect™ RGB-D camera, we have computed a simple
error model for this sensor. In 10 different scenes (ranging from scenes
with only close range measurements to views of wide open space),
we have collected 100 range images each. For each of the locations,
we compute the mean and standard deviation per pixel and perform
a least squares fit to find appropriate coefficients for the quadratic
model; resulting in:

σFIT(z) = 0.00263z2 − 0.00519z + 0.00755. (3.9)

This simple model considers only the expected measurement noise
but already provides a good estimate (see Section 3.7.2) although it
neglects both the characteristic camera errors induced by the quantiza-
tion of measurements, and the angle to the surface that measurements
are acquired on. Measurements taken at extreme angles (e.g., on walls
while traversing a corridor) are considerably more affected by noise.
Nguyen et al. (2012) measure both lateral and axial noise distributions
as a function of both distance and angle to the sensed surfaces. They
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Figure 3.8: Isotropic noise models for Microsoft Kinect™ cameras (left). The
detail view (right) shows that most models underestimate the
noise in close ranges, compared to our fitted σ3 model.

report an (almost) angle independent error when neglecting spurious
data measured under extreme angles (smaller than 10° or larger than
60°). For this regular case their approximation is:

σNguyen(z) = 0.0019 (z− 0.4)2 + 0.0012. (3.10)

Holzer et al. (2012) neglect the angle-dependent error and provide a
noise model solely based on the quantization effect induced by the
measurement principle:

σHolzer(z) = 0.0028z2. (3.11)

Smisek et al. (2011) conduct a similar set of experiments and assess
the quantization effect of a Microsoft Kinect camera as being

σSmisek(z) = 0.00273z2 + 0.00074z− 0.00058. (3.12)

We have conducted a set of experiments (see Section 3.7.2) to eval-
uate the influence of the noise model used for both approximate
meshing and region segmentation. Although the final segmentation
performance does not considerably deviate for the different noise
models, the best results can be achieved with a combination of the
quantization-based models of Holzer et al. (2012) and Smisek et al.
(2011), and the fitting-based models of Nguyen et al. (2012) as well as
our σFIT). In the remainder of this chapter we will use this combination
which we simply coin σHolz.

σHolz(z) =

σFIT(z) if z ≤ 0.85 m, and

σHolzer(z) if z > 0.85 m.
(3.13)

The different natures of the two model types are reflected by the two
curve clusters in Figure 3.8.
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3.7 experiments and results

In order to assess the performance of our approach and the influence
of the individual components, we perform a set of experiments. We
evaluate the correctness and efficiency of our approach using two
publicly available datasets for which ground truth plane (and cylin-
der) segmentations are available: the SegComp dataset collection1 by
Hoover et al. (1996), and the recently published Kinect datasets2 by
Oehler et al. (2011). The latter follows the same file formats and conven-
tions as the SegComp datasets. From the SegComp dataset, we have
used the ABW and the PERCEPTRON parts. For the evaluation, we follow
(and refer to) the scheme of Hoover et al. (1996). The two SegComp
parts consist of 10 training and 30 test images. For all images ground
truth segmentations and plane parameters are available. The evalu-
ation tool averages over all test images correctly segmented planes,
oversegmented planes, undersegmented planes and false detections
(labeled as “noise”). The Kinect dataset by Oehler et al. (2011) consists
of two parts—one for planes and one for cylinders—with 30 organized
RGB-D point clouds each. Training and test data is not distinguished
and the evaluation includes all point clouds. Ground truth plane orien-
tations are not available for the Kinect dataset. However, Oehler et al.
provide a modified evaluation tool2 that neglects plane orientations.
The following comparative evaluations include segmentation results
gathered by Gotardo et al. (2003) and Oehler et al. (2011), achieved
results using publicly available implementations of Georgiev et al.
(2011) and Trevor et al. (2013), our previous work (Holz et al., 2011),
and the plane and cylinder segmentation models used in this work.

In all experiments, we follow the original metrics as used by Hoover
et al. (1996), i.e., we inspect the numbers of correctly detected planes,
oversegmented planes, undersegmented planes, not detected planes
and erroneously detected planes all averaged over all images in the
respective testing dataset (see the legend in Table 3.1). Furthermore,
in order to allow a direct comparison with the results reported by
Hoover et al. (1996), Gotardo et al. (2003), and Oehler et al. (2011), we
use a pixel overlap of 80 %.

3.7.1 Runtime Evaluation

In order to assess the runtime of the overall approach and of the
involved components, we have defined a baseline system consisting
of the following components: adaptive triangular meshing, our noise
model σHolz, the multilateral filter with weights α = 1, β = 1, γ =

0, and the region model for approximate plane segmentation. The

1 The SegComp datasets are available at: http://marathon.csee.usf.edu/seg-comp.
2 The segmentation datasets and the modified evaluation tool of Oehler et al. are

available at: http://www.ais.uni-bonn.de/download/segmentation/kinect.html.

http://marathon.csee.usf.edu/seg-comp
http://www.ais.uni-bonn.de/download/segmentation/kinect.html
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Result Description

correct Average number of correctly segmented planes.

over Average number of over-segmented planes, i.e.,
correctly found planes but detected as more than one
plane segment.

under Average number of under-segmented panes, i.e.,
detected planes that span over more than one groud
truth plane.

miss Average number of undetected planes, e.g., smaller
planes in the ground truth annotation that are not
detected.

noise Average number of planes that are not existing in the
ground truth annotation, e.g., detecting a plane in a
region labeled as noise, or detecting plane segments
on the surface of a cylinder.

Table 3.1: Legend for the comparative evaluations using the SegComp
datasets and evaluation toolkit of Hoover et al. (1996) and Oehler et
al. (2011). All values are averaged over all images of the respective
testing dataset.

baseline system is applied to all training and test images of both
the SegComp and the Kinect datasets. The Kinect dataset has been
downsampled to assess the runtimes for all resolutions offered by
the camera (see Table 3.2). We can segment all dominant planes with
roughly 7.7 Hz at VGA resolution, and more than two times faster than
the camera measurement frequency at the downsampled 160×120
resolution.

Compared to the approach of Oehler et al. (2011), we obtain better
segmentation results while being faster by a factor of eight (they re-
port runtimes of >100 ms for 160×120, and > 2 s for 640×480). The
approach of Trevor et al. (2013) achieves roughly 10 Hz (VGA) at the
cost of inferior segmentation results, just as with the approach of
Georgiev et al. (2011) with roughly 8 Hz (VGA). For both implementa-
tions parameters yielding the best results have been chosen. Slightly
faster than the approach of Trevor et al. (2013) is our clustering method
from previous work (Holz et al., 2011) with roughly 15 Hz (VGA), again
at the cost of segmentation performance. Using the probabilistic plane
segmentation model (instead of our approximate one), the runtime for
the segmentation step in Table 3.2 increases to approximately 95 ms
leading to an overall computation frequency of roughly 5 Hz at VGA

resolution.
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Resolution

Component 160×120 320×240 512×512 640×480

Mesh Reconstruction 6.1 ms 17.2 ms 40.4 ms 48.4 ms

Computing normals 1.5 ms 3.6 ms 12.2 ms 14.1 ms

Filtering 4.5 ms 11.6 ms 27.4 ms 33.5 ms

(Plane) segmentation 3.2 ms 11.3 ms 26.3 ms 32.9 ms

Overall frequency ≈65 Hz ≈23 Hz ≈10 Hz ≈7.7 Hz

Table 3.2: Runtimes of the individual processing steps for the images from
the SegComp ABW and PERCEPTRON datasets (512×512) and Kinect
frames with different resolutions: 160×120 (QQVGA), 320×240
(QVGA), and 640×480 (VGA). Runtimes are measured over 10 000
runs on a single core of an Intel Core i7-3740QM CPU @ 2.7 GHz
(no parallelization), using adaptive triangulation (Section 3.4.2)
and approximate plane segmentation (Section 3.5.4).

3.7.2 Influence of the Camera Noise Model

We have conducted a set of experiments to assess the influence of the
applied noise model on both approximate meshing and segmentation.
Using the Kinect planes dataset by Oehler et al. (2011), we evaluated
the average plane detection results for the same baseline system as
in the runtime evaluation (see Section 3.7.1), but with different noise
models.

The dataset contains two different parts together with the corre-
sponding ground truth segmentations—one for plane segmentation
and one for cylinder segmentation. The ground truth segmentations
only contain the respective primitive type (e.g., plane or cylinder)
while instances of other primitives in the data is labeled as noise.
Naturally, we obtain a larger amount of oversegmentations here, since
larger cylinders in the planes part are labeled as noise, while uncon-
nected regions belonging to a single plane are labeled as one segment.
However, visually inspecting the segmentation results reveals that all
dominant planes are reliably segmented.

Typical plane segmentation results (for the baseline system with
model σHolz) as well as the detailed segmentation results are shown in
Figure 3.9 and Table 3.3. Although the final segmentation performance
does not considerably deviate for the different noise models under
consideration, visual inspection of the triangulation results showed
that the quantization-based models (Holzer et al. (2012) and Smisek
et al. (2011)) underestimate the noise in close ranges (leading to over-
segmentations) while the fitting-based models (Nguyen et al. (2012)
and our σFIT) underestimate at larger distances (causing missed detec-
tions). In the dataset this does not further affect the overall detection
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(a) 5/9, 2 over, 2 miss (b) 11/14, 2 over, 1 miss

(c) 9/13, 2 over, 2 miss (d) 5/8, 3 over

Figure 3.9: Examples for the Kinect planes dataset. The segmented planes are
randomly colored. Overall, we obtain clean segmentation results
without major failures, e.g., missing larger planes. Despite minor
differences, all noise models achieve very similar segmentations
and results.

Segmentation Result

Approach correct over under miss noise

Li
t. Oehler et al. (2011) 4.50 (36.3%) 0.60 0.40 6.80 16.2

N
oi

se
m

od
el

σFIT 7.10 (57.2%) 3.63 0.10 1.46 13.2

σNguyen 7.10 (57.2%) 3.63 0.10 1.46 13.2

σHolzer 7.20 (58.0%) 3.67 0.10 1.33 13.0

σSmisek 7.20 (58.0%) 3.67 0.10 1.33 13.0

σHolz 7.23 (58.3%) 3.70 0.10 1.27 12.9

Table 3.3: Results for the Kinect Planes dataset as reported by the author of
the dataset (Oehler et al., 2011) and obtained using the baseline
system and the different noise models. Larger cylinders are seg-
mented into multiple planes. Overall, about 58 % of the 12.4 planes
are correctly segmented using the baseline system (assuming 80 %
pixel overlap). The performance does not considerably deviate
with the different noise models.
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results and is only reflected by missing or not missing few very small
planes and oversegmenting or not oversegmenting a few very close
planes. Combining the two classes in the new noise model with σHolz
yields the best results.

3.7.3 Plane Segmentation

In the following, we present our plane detection results for the publicly
available SegComp datasets PERCEPTRON and ABW by Hoover et al.
(1996). Since our noise model σHolz has been developed for RGB-D cam-
eras, and the Microsoft Kinect in particular, it can only be applied to
the datasets recorded by Oehler et al., 2011. In a first evaluation (Holz
and Behnke, 2015a), an ad hoc error model was used for the Seg-
Comp datasets. It was computed by fitting a quadratic polynomial
to the mean square distance of the measurements in the PERCEPTRON

and ABW training images to the underlying ground truth planes. The
resulting noise model was approximated by:

σSegComp(z) = 0.0036z2. (3.14)

The same noise model was used in the approximate surface recon-
struction as the maximum edge length

εd = 2.5σz with σz = σSegComp(z) (3.15)

for both PERCEPTRON and ABW. In the following comparative eval-
uation it is referred to the plane segmentation variants using this
simple noise model as PPS (Probabilistic Plane Segmentation) and APS

(Approximate Plane Segmentation).
For the evaluation in this section, different configurations and pa-

rameter setups have been computed and tested per dataset. We will
refer to these updated variants as PPS+σABW and APS+σABW for the ABW

dataset, and PPS+σPERC and APS+σPERC for the PERCEPTRON dataset.
Since the two sensors used for recording the datasets have different
measurement and noise characteristics, using different noise models
for PERCEPTRON and ABW can yield slightly better results than those
reported earlier (Holz and Behnke, 2015a). For completeness, we in-
clude both configurations and parameterizations in the following. As
a reminder, the noise models are used for both approximate surface
reconstruction and inlier detection in the segmentation, i.e., deciding
whether or not a point belongs to the currently grown planar region.

In the earlier evaluation (Holz and Behnke, 2015a), we used εd in
Equation (3.15) for both approximate surface reconstruction and planar
segmentation. Using the training images, we computed different noise
models for ABW and PERCEPTRON as well as different models for
the reconstruction and the segmentation. For the reconstruction, we
computed a distance-dependent maximum edge length by examining
the average distance of points to neighboring points on the same planar
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Reconstruction Segmentation

Edge length Distance Normal deviation

ABW εd(z) = ∞ dmax(z) = 0.0042z2 θmax = 20°

PERCEPTRON εd(z) = 0.008z2 dmax(z) = 0.008z2 θmax = 20°

Table 3.4: Noise models and parameters (SegComp)

segment. For the segmentation, we computed a distance-dependent
maximum distance to planar segments by examining the distances of
points to their ground truth plane segments. Quadratic functions have
been fit to both resulting in the parameter configurations reported in
Table 3.4. The ABW dataset, in particular, contains numerous planes
whose orientations are almost perpendicular to the line of sight, i.e.,
the planes are barely visible and points belonging to the same planar
segment may have larger distances in between. Consequently, it turned
out that using a fully connected mesh, i.e., using edges between all
valid measurements, yields the best results.

In addition to the edge length and distance thresholds, we used a
maximum angle during region growing to discard points with local
surface normals that considerably deviate from the orientation of
the grown planar region. The latter, however, is only relevant for the
approximate variant (APS) where it forms the primary comparison
function to decide whether or not a point is an inlier. The probabilistic
region model (PPS) incrementally computes the mean square error
of the planar fit and uses this value together with the maximum
distance threshold for comparison. For this reason, in the updated
configurations we use a maximum normal deviation of θmax = 20°
only for the approximate variant (APS).

Typical results of applying the presented plane segmentation ap-
proaches on range images of the two datasets can be seen in Fig-
ures 3.10 and 3.11. Considering our goal of obtaining a fast decompo-
sition into dominant planes and other objects of interest, the obtained
results are more than satisfying. Moreover, as it can be seen in the
detailed comparisons of Tables 3.5 and 3.6, the proposed approximate
plane segmentation method and the probabilistic model achieve state-
of-the-art range image segmentation performance, while providing
very efficient means to compute—within milliseconds—rough scene
segmentations.

On the ABW dataset (Hoover et al., 1996), our approximate plane
segmentation approach tends to oversegment the range image. This
is caused by a special characteristic of the used camera that is not
explicitly handled here. It results in inconsistent normal orientations.
Besides oversegmented planar patches, both plane detection mod-
els correctly detect more than 80% of the planes. The approach of
Georgiev et al. (2011) considerably undersegments planes meeting at
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(a) 10/11,
2 over

(b) 9/10,
2 over

(c) 9/9 (d) 8/8 (e) 8/10,
1 over, 1 miss

Figure 3.10: Examples for the ABW dataset. The segmented planes are ran-
domly colored. Overall, we obtain clean segmentation results
without major failures, e.g., missing larger planes.

Segmentation Result

Approach correct over under miss noise

Se
gC

om
p

USF* 12.7 (83.5 %) 0.2 0.1 2.1 1.2
WSU* 9.7 (63.8 %) 0.5 0.2 4.5 2.2
UB* 12.8 (84.2 %) 0.5 0.1 1.7 2.1
UE* 13.4 (88.1%) 0.4 0.2 1.1 0.8
OU** 9.8 (64.4 %) 0.2 0.4 4.4 3.2
PPU** 6.8 (44.7 %) 0.1 2.1 3.4 2.0
UA** 4.9 (32.2 %) 0.3 2.2 3.6 3.2

Li
te

ra
tu

re

Checchin et al. (1997) 13.0 (85.5 %) 0.6 0.3 1.0 1.3
Frigui et al. (1999) 13.0 (85.5 %) 0.8 0.1 1.3 2.1
Jiang (2000) 13.5 (88.8%) 0.2 0.0 1.5 0.6
Koster et al. (2000) 13.4 (88.1%) 0.4 0.3 0.8 1.1
Gotardo et al. (2003) 13.0 (85.5 %) 0.5 0.1 1.6 1.4
Gotardo et al. (2004) 13.4 (88.1 %) 0.4 0.1 1.2 1.7
Oehler et al. (2011) 11.1 (73.0 %) 0.2 0.7 2.2 0.8
Enjarini et al. (2012) 13.2 (86.8 %) 0.3 0.2 1.1 1.8
Feng et al. (2014) 12.8 (84.2 %) 0.1 0.0 2.4 0.7
Husain et al. (2015) 10.0 (66.0 %) 0.3 0.8 3.0 1.9

O
th

er
s Georgiev et al. (2011) 6.9 (45.4 %) 0.6 1.9 3.6 2.1

Trevor et al. (2013) 9.7 (63.8 %) 0.8 0.4 3.9 2.8
Holz et al. (2011) 8.4 (55.1 %) 1.2 0.5 4.2 2.3

O
ur

s

PPS (3.5.3) 12.8 (84.2 %) 0.5 0.1 1.7 2.1
APS (3.5.4) 12.2 (80.1 %) 1.8 0.1 0.9 1.3
PPS+σABW (3.5.3) 13.2 (86.8 %) 0.3 0.1 1.1 1.8
APS+σABW (3.5.4) 13.0 (85.5 %) 0.4 0.1 1.3 1.2

* As reported by Hoover et al. (1996). ** As reported by Jiang et al. (2000)

Table 3.5: Results for the ABW dataset as given in literature (top), reproduced
using available implementations (middle) and our approach (bot-
tom). Our approach (using approximate plane segmentation tends
to oversegment the planes in this dataset. On average, 13.2 and
13.0 planes out of 15.2 planes are correctly segmented.
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(a) 6/6 (b) 5/5 (c) 9/11,
2 misses

(d) 9/10,
1 miss

(e) 8/8

(f) 10/14,
4 misses

(g) 18/24,
6 misses

(h) 10/13,
2 over, 1 miss

(i) 12/13,
1 over

(j) 22/22

Figure 3.11: Examples for the PERCEPTRON dataset. The segmented planes are
randomly colored. Overall, we obtain clean segmentation results
without major failures, e.g., missing larger planes.

Segmentation Result

Approach correct over under miss noise

Se
gC

om
p USF* 8.9 (60.9 %) 0.4 0.0 5.3 3.6

WSU* 5.9 (40.4 %) 0.5 0.6 6.7 4.8
UB* 9.6 (65.7 %) 0.6 0.1 4.2 2.8
UE* 10.0 (68.4 %) 0.2 0.3 3.8 2.1

Li
te

ra
tu

re

Checchin et al. (1997) 10.6 (72.6 %) 0.2 0.6 2.6 2.0
Frigui et al. (1999) 9.6 (65.8 %) 0.7 0.2 3.7 3.6
Jiang (2000) 10.5 (71.9%) 0.0 0.2 3.6 1.6
Koster et al. (2000) 11.2 (76.7%) 0.1 0.2 2.9 5.2
Gotardo et al. (2003) 11.0 (75.3%) 0.3 0.1 3.0 2.5
Gotardo et al. (2004) 10.8 (73.9 %) 0.1 0.1 3.4 2.0
Oehler et al. (2011) 7.4 (50.1 %) 0.3 0.4 6.2 3.9
Enjarini et al. (2012) 10.7 (73.3 %) 0.4 0.1 3.6 4.4
Feng et al. (2014) 8.9 (60.9 %) 0.2 0.2 5.1 2.1

O
th

er
s Georgiev et al. (2011) 6.5 (44.2 %) 2.3 0.3 5.8 5.0

Trevor et al. (2013) 8.3 (57.0 %) 0.6 0.2 5.2 2.1
Holz et al. (2011) 7.9 (54.1 %) 1.4 0.8 5.9 3.5

O
ur

s

PPS (3.5.3) 11.0 (75.3%) 0.4 0.2 2.7 0.3
APS (3.5.4) 11.0 (75.3%) 0.4 0.2 2.7 0.3
PPS+σPERC (3.5.3) 11.2 (76.7%) 0.2 0.2 2.6 0.3
PPS+σPERC (3.5.4) 11.2 (76.7%) 0.2 0.2 2.6 0.3

* As reported by Hoover et al. (1996).

Table 3.6: Results for the PERCEPTRON dataset as given in literature (top),
reproduced using available implementations (middle) and our
two approaches (bottom). Our approaches achieve state-of-the-art
performance by correctly segmenting 76.7 % of the 14.6 planes.
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obtuse angles, while the approach of Trevor et al. (2013) misses smaller
planar patches. We present typical results for the ABW testing dataset
using our approximate plane segmentation in Figure 3.10. Detailed
results as measured with the SegComp evaluation tool are reported
in Table 3.5. Using ABW-specific noise models and parameters con-
siderably improves the segmentation performance. The probabilistic
segmentation (PPS) is only slightly better than the considerably faster
approximate variant (APS). With the former, we achieve results com-
parable to Enjarini and Graser (2012). The faster APS can still keep up
with the performance of Checchin et al. (1997), Frigui and Krishnapu-
ram (1999), and Gotardo et al. (2003). Only Jiang (2000), Koster and
Spann (2000), and Gotardo et al. (2004), achieve better results. From
the original SegComp competitors, only the University of Edinburgh
(UE) achieves better results than the presented pipeline.

In the PERCEPTRON dataset, no special sensor characteristics cause
errors and our approach yields similar results as the work by Koster
and Spann (2000) and Gotardo et al. (2003). Again, the noise model
computed specifically for the PERCEPTRON dataset achieves a consider-
ably better performance. Only Koster and Spann (2000) can achieve
the same overall rate of correct detections. However, at the same
time Koster and Spann also produce a considerably larger amount
of inexistent planes, i.e., noise in the form of smaller planes that are
not contained in the ground truth annotations. Compared to other
related works and the original entries in the SegComp competition
as presented by Hoover et al. (1996), we achieve considerably better
segmentations.

Muller (2013) proposed another planar segmentation pipeline that
combines jump edge detection, region growing based segmentation,
graph cut optimization and a subsequent connected component la-
beling. For the PERCEPTRON dataset, Muller reports an average cor-
rect detection of 10.3 % (80 % pixel overlap) as opposed to the 11.2 %
achieved using both our probabilistic plane segmentation approach
and our approximate plane segmentation as well as the best result
found in the literature by Koster and Spann (2000). We excluded the
results of Muller from the comparison in Table 3.6 since he does not
report detailed results on oversegmentations, undersegmentations.
missed planes and false detections.

We present typical results for the PERCEPTRON testing dataset using
our approximate plane segmentation (APS) in Figure 3.11. Detailed
results measured using the SegComp evaluation tool are reported
in Table 3.6. Not correctly found by our approaches are very small
plane segments, e.g., the inner parts of the objects in Figure 3.11f and
Figure 3.11g. In addition, some planes are oversegmented due to noise,
e.g., the support plane in Figure 3.11h.

For both ABW and PERCEPTRON, oversegmentations are rare for our
approach. Instead, a considerable number of ground truth planes
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are not perceived. These planes are formed by only a small number
of points and are neglected here due to a minimum region cardi-
nality |R| = 200 that we use to eliminate outliers and very small
planar patches. The approach of Georgiev et al. (2011) considerably
oversegments in particular smaller planar patches. Insufficient pixel
overlap causes a considerable amount of missed planes (especially the
dominant support planes) in the approach of Trevor et al. (2013).

Our previous approach from Section 2.4.4 (Holz et al., 2011) suffers
from the same inconsistent normal orientations in the ABW dataset and
tends to oversegment. Furthermore, it does not consider models of the
underlying noise, but uses fixed distance-independent thresholds. As
a consequence, the algorithm tends to oversegment in both the ABW

and the PERCEPTRON dataset. Although it merges neighboring plane
clusters to compensate for discretization effects in the histograms, not
all oversegmentations are resolved. In addition, since the approach
does not consider the neighborhood of a pixel, larger normal devi-
ations in noisy regions can lead to individual pixels not belonging
to the same planar segment as its neighbors. Since the evaluation
considers an 80% pixel overlap with the ground truth segmentations,
the pixels left out cause some planes to be missed. Overall, our previ-
ous approach (Holz et al., 2011) achieves similar performance as the
algorithms of Georgiev et al. (2011) and Trevor et al. (2013), but ranks
behind state-of-the-art segmentation performance. However, it was
the fastest in our experiments (over 15 Hz at VGA resolution), roughly
20 % to 25 % faster than the proposed approach.

3.7.4 Cylinder Segmentation

In order to assess the reliability of our approach to detect simple
geometric primitives, we have used the Kinect cylinder dataset by
Oehler et al. (2011). As described in Section 3.5.5, we first segment the
recorded RGB-D point clouds into regions of local surface continuity
and then fit plane, cylinder, and sphere models to each region and
select the model best supporting the underlying point set. Both de-
tected planes and spheres (no spheres were detected in the dataset)
are marked as belonging to the background, since the dataset contains
only ground truth pixels for cylinders whereas all other pixels are
labeled as noise. Typical results of cylinder detection as well as the
overall segmentation performance on the Kinect cylinder dataset are
shown in Figure 3.12 and Table 3.7.

All larger cylinders in the dataset are reliably detected. Cylinders
being sensed from above, i.e., where both outer and inner part are
visible, reveal a systematic effect of our approach. In the segmentation
of regions with local surface continuity, the two parts are split since
the outer part occludes the inner part and is unconnected in the mesh,
and the small connected regions to the sides show discontinuities in
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(a) 2/2 (b) 3/3, 1 non-existent

(c) 4/4 (d) 4/6, 2 over,1 missed

Figure 3.12: Examples for the Kinect Cylinders dataset. Shown are cylinder
detections (random colors) and plane detections (random gray
tones). A systematic effect of our segmentation approach can
be seen in the oversegmentation in (d) where outer (front) and
inner (back) part of the cylinder are separate regions.

Segmentation Result

Approach correct over under miss noise

Oehler et al. (2011) 1.13 (34.2%) 0.007 0 2.100 6.300

Ours (Sec. 3.5.5) 2.33 (71.4%) 0.667 0 0.366 0.100

Table 3.7: Results for the Kinect Cylinders dataset. Our approach (first seg-
menting smooth surfaces and then segmenting planes and other
geometric primitives) clearly outperforms the approach of Oehler
et al. (2011). Oversegmentations are primarily caused by not merg-
ing segments belonging to the same cylinder (e.g., inner back and
outer front of a single cylinder).
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the surface normal orientations. Currently, cylinders found twice are
not merged until we replace the regions with cylinder models in the
final polygonalization step. This causes, on average, one cylinder to be
oversegmented in every second point cloud. In contrast, not a single
cylinder was undersegmented. With respect to missed detections,
some of the cylinders in the dataset are rather small (radius < 10 cm)
and far away from the sensor (distance > 2 m). All cylinders missed in
the evaluation—on average one in every three point clouds—belong
to this class.

A typical problem that arises when not solely segmenting cylinders
but all geometric primitives is that larger cylinders are segmented as
multiple planes. Especially in larger distances from the sensor, larger
distance and normal deviations may be caused by local noise which in
turn may cause that a single primitive (e.g., a cylinder) gets segmented
into more than one region. As already mentioned, initial segmentations
are currently not corrected even if neighboring segments are found
to lie on the same primitive, i.e., have the same primitive type and
the roughly the same parameters such as radius in case of cylinders.
Naturally, parts of larger cylinders can also be well explained by
tangential planes which pass through to the centroid of the part.
Consequently, especially in larger scenes (with measurements close to
the maximally measurable distance) or scenes captured with especially
noisy sensors such as ToF cameras, cylinders may get detected as
several planes just as with the cylinders in the planar segmentation
dataset of Oehler et al. (2011). In the experiments in Section 3.7.2,
cylinders were not considered and by only detecting planar segments
the aforementioned behavior of segmenting cylinders as planes is the
default. When segmenting both types of primitives at the same time,
this behavior does usually not show up since all relevant parameters
(thresholds for distance and normal deviations within a segment, and
thresholds for distance and normal deviations within a primitive) are
automatically fine-tuned using training data and the noise models of
Section 3.6.

3.8 application to stair detection

Detecting planes and other geometric primitives has a wide range of
applications including, for example, creating two-dimensional floor
plans of buildings using planes and edges detected in sequences of
RGB-D images (Zhang et al., 2012c) or representing and recognizing
objects as compounds of geometric primitives in the context of mobile
manipulation (Berner et al., 2013; Holz et al., 2014a). Planar segmenta-
tions are especially useful in problems where the object of interest is
mainly composed of planes and edges between planes. In the context
of the Diploma thesis of Elmasry (2013), we applied the approximate
plane segmentation approach to detect the horizontal and vertical
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planes which form a staircase. The main idea was to develop a multi-
modal pipeline using the color (RGB) image, the depth (D) image, and
a computed image of surface normals, and to detect both planes and
edges. Using the detected planes and edges, the final goal would have
been to create a semantic model of the staircase as done by Schmit-
twilken et al. (2007). Whereas the latter could not be achieved during
project runtime, the multimodal pipeline was found to reliably detect
the planes and edges of sensed staircases. Hence, the pipeline forms a
useful preprocessing step in stair detection problems.

In this section, we implemented a simple pipeline for detecting steps
of staircases as a possible application of the region-growing-based
planar segmentation. It consists of the following steps.

1. Initial Segmentation: computing the approximate surface recon-
struction for the input point cloud, smoothing the data using the
multilateral filter, and segmenting the filtered mesh using the
approximate plane segmentation.

2. Sorting: sorting the detected planes with respect to distance
from the sensor and height. For sorting the plane we use In-
troSort (Musser, 1997) which has a complexity of O(n log n) in
the worst and the average case where n is the number of detected
planes.

3. Sequencing: splitting the ordered sequence into sequences of
ascending and descending neighboring planes and deducing
missing planes, e.g., a not detected vertical plane in a sequence
of two horizontal planes.

4. Step detection: iterating over the ordered and filled sequences
of detected planes and grouping pairs of horizontal and vertical
planes into steps.

Since the detected planes are already sorted, the runtime of sequencing
and step detection is linear in the number of detected and deduced
planes.

In order to assess the performance of this approach for detecting
the planes of staircases, we have recorded a dataset3 of a staircase in
the LBH building of the University of Bonn. The dataset was recorded
with a hand-held ASUS Xtion PRO RGB-D camera. A total of 165 RGB-D

point clouds show parts of ascending stairs, descending stairs or both.
We assess the performance in two stages and metrics: 1. success rate of
detecting visible planes belonging to the staircase, and 2. success rate
of detecting steps of the staircase, i.e., a connected pair of a vertical
plane and a horizontal plane. For the latter, we only count steps which
are fully visible in the scene, i.e., steps where both the vertical plane
and the horizontal plane are contained in the acquired point cloud (or

3 The dataset is available at http://ais.uni-bonn.de/data/stairs.

http://ais.uni-bonn.de/data/stairs
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Planes Steps

Type Detected Deduced Total Detected Total

Asc. 1569 (91%) 1664 (97%) 1717 785 (97%) 808

Desc. 607 (78%) 607∗ (78%) 783 611 (78%) 783
∗Deduced but not visible vertical planes are excluded.

Table 3.8: Stair detection results: success rates for detecting planes and steps.
For ascending stairs, the pipeline detects (and deduces) 97% of the
planes and steps. In case of descending stairs the approach fails in
regions with only few measurements.

(a) Input point cloud (b) Segmented planes (c) Detected stairs

Figure 3.13: Stair detection results. Shown are a typical input RGB-D point
cloud with a staircase, a handrail and an adjacent wall (a), the
planes found using approximate plane segmentation (b), and
stairs deduced from the detected planes and edges (c). As can be
seen, the deduced stairs give a good intuition of the underlying
surface and edges but are not consistent over the flight of stairs
and need to be corrected, e.g., using a semantic stair model.

can be deduced from the sequence). We report the detailed results in
Table 3.8. A typical example of a single scene in the dataset is shown
in Figure 3.13 together with the results of detecting planes and steps.

The primary reason for not detecting a plane is sampling not enough
points on the plane. In order to avoid false positives in plane detection,
we neglect planar regions with less than 50 points. In addition, in
larger distances not only the point density decreases but also the
probability of not measuring a valid distance. That is, steps and planes
farther away from the sensor contain holes of invalid measurements
in the data. Moreover, steps may be occluded depending on the slope
of the stairs and the orientation of the camera (ascending stairs) or
the inclination angle to steps in the height of the sensor (ascending
stairs). Consequently, the steps belonging to these planes cannot be
adequately detected in case there is no preceding and/or succeeding
step in the staircase. In the latter case, the missing part of the step
can be deduced from the former and next step (see Figure 3.13). In
addition to the number of correctly detected planes, we report the
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(a) Planes (b) 3D point cloud (c) Detail view

Figure 3.14: Problem with descending stairs: steps farther away from the
sensor are not accurately detected, e.g., the last two steps in (a).
These planes do not appear as individual steps and planes in
the RGB-D point clouds but as a single curvy surface following
the slope of the staircase (b+c).

number of planes deduced, i.e., planes which are visible in the scene
but have not been detected. In the case of ascending stairs, horizontal
planes are often represented by only few points in the RGB-D point
cloud and are rejected in our initial detection. However, two sequential
vertical planes allow deducing the missing horizontal plane in between.
In case of descending stairs, the vertical planes are not visible. They
can be deduced from sequential horizontal planes. Consequently, the
steps of descending stairs can be detected by solely detecting the
horizontal planes. However, since they are not visible in the scene,
the deduced vertical planes in descending stairs have been excluded
from our results. Overall, the approach reliably detects the planes and
steps closer to the camera and only fails for only partially visible steps
farther away from the camera.

Overall, the pipeline of first segmenting the input RGB-D point clouds
into planes and then deducing sequences of sequential planes, missing
planes, and steps has been found to reliably detect steps for both
ascending and descending staircases. The approach only fails in re-
gions farther away from the sensor where the quality of distance
measurements does not allow detecting planes in the 3D points. In
these regions, especially the quantization effects and the local mea-
surement noise make sequences of planes appear as a single curvy
surface instead of individual plane segments. Consequently, the planes
in these regions are either detected as a single larger plane (see Fig-
ure 3.14) or not detected at all. It remains a matter of future work, to
use these initial per-frame segmentations in order to build a global
representation of the staircase and to derive a parameterized model,
e.g., as proposed by Schmittwilken et al. (2007).
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3.9 conclusions

We have presented a fast yet robust approach for segmenting range
images and organized point clouds. Using an approximate polygonal
mesh reconstruction directly deduced from the image-like structure,
we are able to efficiently compute point features such as local surface
normals, smooth the measured data using a multilateral filter, and
detect planes and other geometric primitives.

Experimental evaluation has shown that our approach achieves state-
of-the-art range image segmentation performance. To achieve real-time
processing, we proposed several simplifications and approximations
that make the overall segmentation (and primitive detection) algorithm
run within milliseconds on a CPU for point clouds acquired by typical
RGB-D cameras. Further speeding up the approach by parallelizing
individual components is expected to considerably increase efficiency.

Finally, we have presented a potential application where the planar
segmentation is used to detected steps and staircases. Experiments
have shown reliable detections and that the pipeline is able to deduce
planes that have not been detected in the initial segmentation (e.g., not
visible vertical planes in descending staircases). Possible applications
of such an initial detection are semantic modeling of staircases (Schmit-
twilken et al., 2007) or planning the motions of an autonomous mobile
robot to climb staircases (Osswald et al., 2011).

It remains a matter of future work to exploit the extracted seg-
mented planar patches (and geometric primitives) in further process-
ing steps for purposes such as registration. Potential applications of
this segmentation pipeline include extracting dominant planes and
environmental structures, e.g., for automatically generating floor plans
from sequences of RGB-D images as is done by Zhang et al. (2012b).
The implementations of most of the components presented in this
chapter are publicly available within the open source Point Cloud
Library (PCL)4.

Since the approach is both robust and efficient, it has already been
used in many other works. Most recently, Fernández-Moral et al. (2016)
used the pipeline to extract planar patches from RGB-D images. They
represent the scene using graphs of connected planes, and register the
images using graph matching.

4 The latest stable release of PCL is available at http://pointclouds.org.

http://pointclouds.org




Part II

R E G I S T R AT I O N A N D M A P P I N G

. . . in which sensor readings acquired at different view
points are accurately aligned to build consistent maps of
the environemnt.

3D Registration is the problem of consistently aligning two
or more point clouds, i.e., sets of three-dimensional points.
Often point clouds are acquired using 3D sensors such as 3D

laser scanners or 3D cameras. In order to sense all parts of
an object or an environment, multiple point clouds need to
be acquired from different viewpoints. It is the task of reg-
istration to find the relative pose (position and orientation)
between the acquired views in a global coordinate frame,
such that the overlapping areas between the point clouds
match as well as possible. After registration, the aligned
point clouds can be fused into to a single point cloud so
that subsequent processing steps like object modeling can
be applied.

Simultaneous localization and mapping (SLAM) refers to
the problem of building a model of an object or an environ-
ment while localizing the sensor in the so far built model.
It involves the registration of all acquired point clouds and
often comprises several processing steps including a rough
initial alignment and an accurate refinement in order to
build globally consistent models.

This part of the thesis focuses on registration and SLAM us-
ing two different types of 3D sensors: custom light-weight
3D laser scanners carried by micro aerial vehicles and con-
sumer color and depth cameras such as the popular Mi-
crosoft Kinect™ camera.





4 REG I STRAT ION AND MAPP ING
W ITH M ICRO AER IAL VEH ICLES

Micro aerial vehicles (MAVs) pose specific constraints on onboard
sensing, mainly limited payload and limited processing power. For
accurate three-dimensional (3D) mapping even in GPS-denied environ-
ments, we have designed a lightweight 3D laser scanner specifically for
the application on MAVs. Similar to other custom-built 3D laser scan-
ners composed of a rotating two-dimensional (2D) laser range finder,
it exhibits different point densities within and between individual
scan lines. When rotated fast, such non-uniform point densities influ-
ence neighborhood searches which in turn may negatively affect local
feature estimation and scan registration. In this chapter a complete
pipeline is presented that allows for 3D mapping including pair-wise
registration and global alignment of such non-uniform density 3D

point clouds acquired in-flight. For registration, a state-of-the-art regis-
tration algorithm is extended to include topological information from
approximate surface reconstructions. For global alignment, a graph-
based approach is applied that makes use of the same error metric
and iteratively refines the complete vehicle trajectory. In experiments,
the proposed approach can compensate for the effects caused by dif-
ferent point densities up to very low angular resolutions. It allows for
building accurate and consistent 3D maps in-flight with a micro aerial
vehicle.

4.1 introduction

MAVs such as quadrotors have attracted much attention in the field of
aerial robotics in recent years. Their size and weight limitations, how-
ever, pose a problem in designing sensory systems for environment
perception. Most of today’s MAVs are equipped with ultrasonic sensors
and camera systems due to their minimal size and weight. While these
small and lightweight sensors provide valuable information, they suf-
fer from a limited field-of-view. Furthermore, cameras are sensitive to
illumination conditions. Only few MAVs (Tomić et al., 2012; Grzonka
et al., 2009; Bachrach et al., 2009; Shen et al., 2011) are equipped with 2D

laser range finders (LRFs) that are used for navigation. These provide
accurate distance measurements to the surroundings but are limited
to the two-dimensional scanning plane of the sensor. Objects below or
above that plane are not perceived.

3D laser scanners provide robots with the ability to extract spatial
information about their surroundings, detect obstacles in all direc-
tions, build 3D maps, and localize. In the course of a larger project

95
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(a) Flying micro aerial vehicle with scanner (b) Example of an acquired scan

Figure 4.1: Sensor setup and example scan: the laser scanner is mounted
slightly below the MAV facing forwards. Continuously rotating
it allows an almost omnidirectional perception of its surround-
ings. The resulting 3D scans (aggregated over one half rotation
using visual odometry) show different point densities within and
between individual scan lines.

on mapping inaccessible areas with autonomous micro aerial vehi-
cles, we have developed a lightweight 3D scanner (Droeschel et al.,
2014a) specifically suited for the application on MAVs. It consists of
a Hokuyo 2D laser range scanner, a rotary actuator and a slip ring
to allow continuous rotation. Just as with other rotated scanners, the
acquired point clouds (aggregated over a half rotation of the scanner)
show the particular characteristic of having non-uniform point densi-
ties: usually a high density within each scan line and a larger angle
between scan lines (see Figure 4.1). Since we use the laser scanner for
omnidirectional obstacle detection and collision avoidance, we rotate
it quickly with 1 Hz, resulting in a particularly low angular resolution
of roughly 9° to 10°. The resulting non-uniform point densities affect
neighborhood searches and cause problems in local feature estima-
tion and registration when keeping track of the MAV movement and
building allocentric 3D maps by means of simultaneous localization
and mapping (SLAM).

In this paper, we present a complete processing pipeline for building
globally consistent 3D maps with this sensor on a flying MAV. To
compensate for the non-uniform point densities, we approximate
the underlying measured surface and use this information in both
initial pairwise registration of consecutive 3D scans to track the MAV

movement and graph-based optimization for building a consistent
and accurate 3D map. For initial registration, we extend the state-of-
the-art registration algorithm Generalized-ICP (GICP) by Segal et al.
(2009) to include topological surface information instead of a point’s
3D neighborhood. We represent the resulting trajectory in a pose
graph (Kümmerle et al., 2011) and connect neighboring poses by edges
representing point-pair correspondences between scans and encoding
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the same error metric using topological surface information. This
graph is iteratively refined, re-estimating the point correspondences
in each iteration, to build a consistent 3D map.

This chapter is structured as follows. After a discussion of related
work in Section 4.2, we present our registration approach including
the approximate surface reconstruction and the approximate feature
estimation in Section 4.3. In Section 4.4, we discuss the extension to a
complete SLAM system: we extend the registration approach to also es-
timate the pose uncertainty and use this information for graph-based
SLAM (single edge between connected nodes) as a baseline system. We
then introduce our SLAM approach using multiple edges per connec-
tion where every edge encodes a point-to-point correspondence (in
terms of the GICP error metric). In Section 4.5, we present the results
of a thorough experimental evaluation of both the plain registration
approach and the two SLAM variants. Finally, we summarize the main
conclusions and discuss future work in Section 4.6.

The registration algorithm has been published and presented at the
International Symposium on Robotics (Holz and Behnke, 2014b). The
extension to a complete SLAM system including the registration algo-
rithm was published and presented at the International Conference
on Intelligent and Autonomous Systems (Holz and Behnke, 2014c).
An extended version of these two papers (and an early version of
this chapter, respectively) was published in Robotics and Autonomous
Systems (Holz and Behnke, 2015a).

4.2 related work

Particularly important for the autonomous application of MAVs is the
ability to perceive and avoid obstacles. Building environment maps
is necessary for goal-directed navigation planning and executing the
planned trajectories.

In the following, we discuss related works with a focus on 1) per-
ception, 2) registration and 3) mapping. The former two allow sensing
environmental structures, keeping track of the motion of the MAV, and
aggregating measurements in local egocentric maps in order to be able
to reliably avoid collisions. The latter aims for building allocentric 3D

environments for being able to plan paths and missions.

4.2.1 Perception and Mapping with Micro Aerial Vehicles

Scaramuzza et al. (2014) present vision-based perception, control and
mapping for a swarm of MAVs. In contrast to our work, 3D mapping is
done on a ground station gathering visual keypoints from all MAVs,
and dense 3D maps are reconstructed from the final trajectories off-
line. Moreover, the approach is purely vision-based and restricted to
downward-facing cameras whereas our approach aims at omnidirec-
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tional perception thereby allowing to map environmental structures
that are not below the MAV.

For mobile ground robots, 3D laser scanning sensors are widely
used due to their accurate distance measurements even in bad lighting
conditions and their large field-of-view. For instance, autonomous cars
often perceive obstacles by means of a rotating laser scanner with a
360° horizontal field-of-view, allowing for the detection of obstacles in
every direction (Urmson et al., 2008; Montemerlo et al., 2008).

Up to now, such 3D laser scanners are rarely used on lightweight
MAVs—due to payload limitations.

Instead, two-dimensional laser range finders are often used (Tomić
et al., 2012; Grzonka et al., 2009; Bachrach et al., 2009; Shen et al., 2011;
Grzonka et al., 2012; Huh et al., 2013). Using a statically mounted 2D

laser range finder restricts the field-of-view to the two-dimensional
measurement plane of the sensor. This poses a problem especially
for reliably perceiving obstacles surrounding the MAV. When moving
however, and in combination with accurate pose estimation, these sen-
sors can very well be used to build 3D maps of the measured surfaces.
Fossel et al. (2013), for example, use Hector SLAM (Kohlbrecher et al.,
2011) for registering horizontal 2D laser scans and OctoMap (Hor-
nung et al., 2013) to build a three-dimensional occupancy model of the
environment at the measured heights.

Morris et al. (2010) follow a similar approach and in addition use
visual features to aid motion and pose estimation. Still, perceived
information about environmental structures is constrained to lie on
the 2D measurement planes of the moved scanner. In contrast, we
use a continuously rotating laser range finder that does not only
allow capturing 3D measurements without moving, but also provides
omnidirectional sensing at comparably high frame rates (2 Hz in our
setup by aggregating scans over one half rotation).

A similar sensor is described by Scherer et al. (2012) and Cover et al.
(2013). Their MAV is used to autonomously explore rivers using visual
localization and laser-based 3D obstacle perception. In contrast to their
work, we use the 3D laser scanner for both omnidirectional obstacle
perception and mapping the environment in 3D.

For building maps with a hand-held rotating 2D laser range finder,
Zhang and Singh (2014) compute edge points and planar points in
the acquired range scans. They split the SLAM task in two problems:
matching range scans to obtain motion estimates at a high frame
rate and accurate registration for mapping at a lower frame rate. The
method produces accurate 3D maps of smaller environments but does
not detect loop closures, i.e., entering previously mapped regions.
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4.2.2 3D Scan Registration

The fundamental problem in 3D map building is registration in order to
align the acquired 3D laser scans and estimate the poses (positions and
orientations) where the scans have been acquired. Over the past two
decades, many different registration algorithms have been proposed.
Prominent examples for estimating the motion of mobile ground
robots using 3D scan registration are the works of Segal et al. (2009),
Nüchter et al. (2005), and Magnusson et al. (2007).

3D laser scanners built out of an actuated 2D laser range finder are
usually (especially on ground robots) rotated comparably slower than
ours to gain a higher and more uniform density of points. Most of
the approaches to register such scans are derived from the Iterative
Closest Point (ICP) algorithm (Besl and McKay, 1992). It iteratively
searches for corresponding points between to point clouds and com-
putes a transformation that minimizes the point-to-point distances
between the found matches. In contrast, approaches based on the
normal distributions transform (NDT) algorithm by Biber and Straßer
(2003) model local statistics in the neighborhoods of the points and
align these in a surface-to-surface alignment. Magnusson et al. (2007)
extend this approach to 3D. Generalized-ICP (GICP) algorithm (Segal
et al., 2009) unifies the ICP formulation for various error metrics such
as point-to-point, point-to-plane, and plane-to-plane. The effect of
using this generalized error metric is that corresponding points in
two 3D laser scans are not directly dragged onto another, but onto
the underlying surfaces. For our non-uniform density point clouds,
however, GICP tends to fail since the local neighborhoods of points do
not adequately represent the underlying surface. We adapt the GICP

approach here to use extracted information from approximate surface
reconstructions in the acquired 3D scans.

Our approach explicitly addresses the non-uniform point densities
and tries to compensate for the resulting effects by using the approxi-
mated surface information. An alternative for using such sparse data
in registration and mapping is to aggregate the point clouds in local
maps and thereby increase the point density as is done in another
work (Droeschel et al., 2014c) within the same project on MAV-based
mapping as the work at hand. Both ways constitute problems in their
own right.

Bosse et al. (2012) use a spring to passively articulate a 2D laser
range finder and present a registration algorithm for building accu-
rate 3D point cloud maps. Due to the passivity of the spring-based
articulation, however, their sensor setup cannot guarantee complete
omnidirectional point clouds at fixed controllable intervals as is the
case for a continuously rotating scanner. Furthermore, it requires the
carrying vehicle to move in order to induce oscillation. For registra-
tion, Bosse et al. use a surfel-based approach and efficiently solve both
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aggregating point clouds and building globally consistent 3D maps.
Since surfels are computed on local neighborhoods, the approach may
suffer from the same degradation effects as GICP when applied to the
non-uniform density data of our sensor setup.

4.2.3 Multi-View Scan Registration and SLAM

Simultaneous localization and mapping (SLAM) is a key problem in
mobile robotics. Registering pairs of consecutive laser scans on its
own can only provide estimates about the movement in between
the poses where the scans have been acquired but cannot be used
for building consistent maps due to inaccuracies and drift (when
propagating estimated movements over registrations). Instead, pure
pairwise registration algorithms are usually used in the front-end of
SLAM systems to obtain a rough initial vehicle trajectory and to detect
loop closures, i.e., regions where the robot has been before.

For globally aligning all acquired scans and building a consistent
map, the registration problem is usually formulated in terms of a
graph where poses or landmark positions form the vertices, and
view or movement constraints form the edges. A standard approach
is to encode relative pose estimates between connected view poses
(vertices) in a single edge, e.g., a homogeneous transformation matrix,
together with a covariance estimate. We present such a system making
use of the proposed registration algorithm as a baseline system for
comparison in Section 4.4.2. For optimizing a graph of poses with
initial estimates many different approaches have been proposed (Frese
et al., 2005; Olson et al., 2006; Grisetti et al., 2010; Grisetti et al., 2009).
For a survey on different mapping problems and their relation to
graph-based SLAM, we refer the interested reader to the survey of
Agarwal et al. (2014). The difficulty in our case is that our laser scans
are particularly sparse. Consequently, our estimated transformations
are accurate but not as accurate as each individual laser measurement
(see the results of our experimental evaluation of pairwise registration
in Section 4.5.1).

As a second mean for compensating for the non-uniform densities
in our scans, we do not use a single edge between 3D scans to encode
their relative position but estimate point correspondences in between
the scans and iteratively refine the resulting system. For each corre-
spondence, we add an edge to the graph that follows the same error
metric as our registration algorithm—again using the information
extracted from approximate surface reconstruction. To optimize the
resulting graph, we use g2o (Kümmerle et al., 2011), a state-of-the-
art open-source graph optimization framework. In a final optional
processing step, we build a 3D map with the optimized poses using
OctoMap (Hornung et al., 2013) for being able to plan paths in future
missions of the MAV.
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In multi-view scan matching, multiple poses from which scans have
been taken are determined simultaneously by aligning all scans in a
single error function or optimization framework. In the 2D domain, a
popular multi-view scan registration approach is the algorithm pro-
posed by Lu and Milios (Lu and Milios, 1997) which is often referred to
as LUM. Borrmann et al. extend this approach to six degrees of freedom
for the alignment of 3D scans and present methods to efficiently deal
with the resulting nonlinearities (Borrmann et al., 2008). Several further
extensions and optimizations have been proposed by the same and
other authors since then. The resulting SLAM approach first applies
the ICP algorithm to align consecutive point clouds and then builds a
graph based on the determined connectivity of view poses similar to
our approach. Both the determined relative transformations between
view poses and the sets of point correspondences are represented in
the edges. From both transformation and correspondences a measure-
ment vector and its covariance matrix are computed which are then
fed as one block into a large linear system. The linear system is then
solved for the optimal relative transformations and view poses. In
contrast, in the proposed multi-edge approach, every correspondence
pair forms a block in the final non-linear error function. Its simplifica-
tion is thereby left to g2o, e.g., using sparse Cholesky decomposition.
Furthermore, LUM uses a point-to-point error metric as in the original
ICP algorithm which conflicts with the particularly sparse nature of
our point clouds. Instead, we approximate the underlying surface and
use a probabilistic surface-to-surface error metric in both the initial
pairwise registration and the point correspondence edges of the graph.

4.2.4 Landmark-based SLAM

Using multiple edges constraining the relative transformation between
two view poses also forms the underlying idea of landmark-based
SLAM and bundle adjustment. In landmark-based SLAM, features are
extracted from the data acquired by the moving sensor and used as
landmarks in the graph. In order to form constraints in the graph of
poses and landmarks, the extracted features are matched. Matching is
usually performed in a higher-dimensional descriptor space to ease
the involved data association problem. Prominent examples include
using 3D features such as FPFH (fast point feature histogram, Rusu
et al., 2009a) or appearance-based features such as SIFT (scale-invariant
feature transform, Lowe, 2004), SURF (speeded-up robust features, Bay
et al., 2008), BRIEF (binary robust independent elementary features,
Calonder et al., 2010) or ORB (Oriented FAST and Rotated BRIEF, Rublee
et al., 2011; Rosten and Drummond, 2006; Rosten et al., 2010; Calonder
et al., 2010) as compared in the evaluation of Endres et al. (2012a).
Repeatable features are not easily extractable from our 3D laser scans,
especially since the different scans are likely to not include the same
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parts of environmental structures due to the low angular resolution
between individual scan lines. Instead, our matching is purely based
on proximity of the raw points. Due to the low angular resolution,
it is very likely that none of the matching pairs is formed by two
measurements of the same point, but by measuring two points in close
vicinity, possibly on different surfaces. By using a robust surface-to-
surface error metric, we compensate for this inaccuracy. To compensate
for false correspondences in the initial matching steps, we iteratively
refine both transformation and matches in the initial registration
and the global alignment with a decreasing distance threshold in an
ICP-like fashion. Hence, our approach can be categorized as being
somewhere between multi-view scan matching and landmark-based
SLAM.

Similar to our multi-edge global alignment step is the approach of
Ruhnke et al. (2012). They also use raw point matches as constraints
in the graph and apply a surfel-based error metric to iteratively refine
both the sensor poses and the positions of the points. Their approach
can build highly accurate object models but requires a rough initial
alignment of the dense RGB-D data. In contrast, we present a complete
pipeline that is tailored for the challenging non-uniform density point
clouds instead of dense RGB-D data and that can cope with unavailable
and erroneous initial pose estimates. Both the initial registration and
the multi-edge global alignment make use of approximate surface
reconstructions and the same surface-to-surface error metric.

Recently, Zlot and Bosse (2014) presented a 3D mapping system
for mines that uses a continuously spinning SICK scanner. They use
non-rigid surfel registration and graph optimization for aggregating
point clouds and building consistent maps. Compared to our work,
their scanner is rotated slower, equipped with an accurate inertial
measurement unit, and mounted on a slowly driving truck. Moreover,
the aggregation is performed in larger local windows to increase the
density of the data in a similar fashion as Droeschel et al. (2014c)
who build local egocentric maps. Instead, we address the problem
of registration and mapping directly using the sparse non-uniform
density point clouds.

4.3 registration of sparse laser scans

Under the assumption of good motion estimates (e.g., GPS, visual
odometry, or inertial measurement units) at least over short periods of
time, acquired range scans can be aggregated to form locally consistent
3D point clouds. Throughout this paper, we will assume such an
estimate as given (robust visual odometry) and process point clouds
aggregated over one half rotation of the laser range scanner. For details
on scan aggregation, initial motion estimate and sensor characteristics,
we refer to the detailed description in (Droeschel et al., 2014a).
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In contrast to the motion estimate being reliable over short periods
of time for aggregating point clouds, we do not assume a good pose
estimate between aggregated point clouds and good motion estimates
over longer periods of time in general. Instead, we design our approach
to be robust against noisy, erroneous and no initial pose estimates
so as to estimate the motion of the MAV between the acquisition of
aggregated point clouds. This allows mapping and localization purely
based on point cloud registration even in case of sensor outages and
other localization errors.

4.3.1 Registration of 3D Point Clouds

A point cloud is a data structure P used to represent a collection of
multi-dimensional points p ∈ P. In a 3D point cloud, the elements usu-
ally represent the X, Y, and Z geometric coordinates of an underlying
sampled surface. When more information is available (such as color
information) or information about local surface normal n or curvature
κ, the points p ∈ P become n-dimensional.

Given a source point cloud P with points p ∈ P, and a target point
cloud Q with points q ∈ Q, the problem of registration is to find
correspondences between P and Q, and estimate a transformation T
that, when applied to P, aligns all pairs of corresponding points(

pi ∈ P, qj ∈ Q
)
. One fundamental problem of registration is that

these correspondences are usually not known and need to be deter-
mined by the registration algorithm.

Iterative registration algorithms align pairs of 3D point clouds by
alternately searching for correspondences between the clouds and
minimizing the distances between matches. A standard algorithm is
the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992). In
order to align a point cloud P with a point cloud Q, it searches for
closest neighbors in Q for points pi ∈ P and minimizes the point-to-
point distances d(T)

ij =qj−T pi of the set of found correspondences C
in order to find the optimal transformation T?:

T? = arg min
T

∑
(ij)∈C

‖d(T)
ij ‖2. (4.1)

As a result, points in P are dragged onto their corresponding points
in Q. Assuming (predominantly) correct correspondences, the ICP

algorithm can reliably register regular uniform density point clouds
(if the initial alignment is not considerably off). In case of our non-
uniform density point clouds, closest points do not correspond to the
same physical point in the measured environment. Consequently, the
point-to-point error metric leads to dragging the high-density 2D scan
lines onto another instead of correctly aligning sensed environmental
structures.
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4.3.2 Generalized Iterative Point Cloud Registration

A particularly robust variant is the Generalized-ICP (GICP) algorithm
proposed by Segal et al. (2009) which generalizes over the different
available error metrics (point-to-point, point-to-plane, plane-to-plane)
and thus takes into account information about the underlying surface.
Instead of minimizing the distances d(T)

ij between corresponding points
pi and qj as in the ICP algorithm, it inspects the distribution

d(T)
ij ∼ N

(
qj − T pi, Σ

Q
j + RΣP

i RT
)

(4.2)

where R is the rotation matrix of T . The underlying assumption is that
both points in P and points in Q are drawn from independent normal
distributions, i.e., pi ∼ N (p̂i, ΣP

i ) and qj ∼ N (q̂j, Σ
Q
j ). The optimal

transformation T? best aligning P to Q can be found using maximum
likelihood estimation (MLE):

T? = arg max
T

∏
ij∈C

p
(

d(T)ij

)
= arg max

T
∑

ij∈C
log
(

p
(

d(T)ij

))
(4.3)

' arg min
T

∑
ij∈C

d(T)ij

T(
Σ

Q
j + RΣP

i RT
)−1

d(T)ij .︸ ︷︷ ︸
= simplified likelihood L(T)

(4.4)

The effect of minimizing Equation (4.4) is that corresponding points
are not directly dragged onto another, but the underlying surfaces rep-
resented by the local covariance matrices ΣP

i and Σ
Q
j . The covariance

matrices are computed so that they express the expected uncertainty
along the local surface normals at the points. Consequently, the con-
vergence of GICP degrades with inaccurate estimates of the covariances
with regular neighborhood searches as illustrated in Figure 4.2a. If
the neighborhood radius is too small, the covariance only reflects a
single scan line and not the surface. If it is too large, the covariance
can become inaccurate compared to the underlying surface.

At the heart of our approach is the idea to approximate the surfaces
in the point clouds in order to compensate for the non-uniform point
densities and to compute accurate covariances that better reflect the
underlying surfaces.

4.3.3 Approximate Surface Reconstruction

In order to get a better estimate of the underlying covariances, we
perform an approximate surface reconstruction as done in Chapter 3

in the context of range image segmentation (Holz and Behnke, 2014a).
We traverse an organized point cloud P once and build a simple quad
mesh by connecting every point p = P(u, v) (v-th point in the u-th
scan line) to its neighbors P(u, v + 1), P(u + 1, v + 1), and P(u + 1, v)
in the same and the subsequent scan line (see Figure 4.2). We only add
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r

u u-1u+1

(a) Topology visualization (b) Example reconstruction

Figure 4.2: Measurement topology and neighborhood searches: (a) Classic
neighbor searches in non-uniform density clouds may only find
points in the same scan line (red), whereas a topological neigh-
borhood (green) may better reflect the underlying surface. (b)
Example of an approximate surface reconstruction: edges in the
quad mesh connect neighboring points in the same scan and
between neighboring scans. Points in the first and last scan of a
half rotation are not connected.

a new quad to the mesh if P(u, v) and its three neighbors are valid
measurements, and if all connecting edges between the points are
not occluded. The first check accounts for possibly missing or invalid
measurements in the organized structure. The second check avoids that
neighboring points which have been measured on different surfaces
are not connected in the resulting quad mesh. If all checks pass, we add
a new quad to the incrementally built mesh representation. Otherwise,
holes arise. After construction, we simplify the resulting mesh by
removing all vertices that are not used in any quad (see Section 3.4
for more details on the approximate surface reconstruction). A typical
result of applying our approximate surface reconstruction to a 3D scan
acquired by our MAV is shown in Figure 4.2b.

For the sparse point clouds acquired by the MAV the occlusion check
in Equation (3.1) is, however, inaccurate since the larger angle ∆θ

between scan lines causes that occluding edges may not get scanned
as in dense point clouds. That is, the scanner may sample the surfaces
farther away from the occluding boundaries. Hence, it is often not
possible to directly deduce an occlusion from the raw measurements.
Instead, reformulate the edge validity check to only limit the maximum
length of edges in the mesh:

valid =
(
di,j ≤ ε2

d
)

, (4.5)

with di,j = ‖pi − pj‖2, (4.6)
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We adapt the threshold εd for the maximum edge length to capture
the expected distance between neighboring points on the same surface
and the expected angular resolution within and between scan lines:

εd(di) =


√

2 di tan ∆θ between scan lines, and
√

2 di tan ∆φ within scan lines.
(4.7)

The threshold εd(di) depends on the measured distance to point pi, i.e.,
di = ‖pi − v‖ where v is the viewpoint from where the measurements
has been acquired. It is computed for every point. For neighboring
points within a scan line, we use a different threshold that corresponds
to the angular resolution ∆φ of the range scanner (and taking into
account subsampling if applied).

4.3.4 Approximate Covariance Estimates

To estimate the covariance matrix of a point, we directly extract its
local neighborhood from the topology in the mesh instead of searching
for neighbors. Depending on the desired smoothing level (usually
controlled with the search radius), we can extend the neighborhood of
a point to include the neighbors of neighbors and ring neighborhoods
farther away from the point.

Instead of computing the empirical covariances as done by Segal
et al. (2009), we approximate them using the local surface normals. We
first compute the normal ni for a point pi directly on the mesh as the
weighted average of the plane normals of the NT faces surrounding
the point pi:

ni =
∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)

‖∑NT
j=0(pj,a − pj,b)× (pj,a − pj,c)‖

, (4.8)

with face vertices pj,a, pj,b and pj,c (the same method is used in Sec-
tion 3.4.3). In the actual implementation, we first compute the face
normal (unnormalized cross product) for each polygons and add them
to the point normals of the vertices spanning the polygon. Afterwards,
all point normals are normalized. This automatically gives a higher
influence to larger (and thus more stable) polygons on the compu-
tation of the point normals. That is, point normals are computed as
a weighted sum with weights being proportional to the ares of the
connected polygons.

After computing the point normals, the local covariance matrices
ΣA

i and ΣB
i are computed as initially proposed by Segal et al. (2009):

ΣP
i = RP

ni

(
ε 0 0
0 1 0
0 0 1

)
RP

ni

T
, and Σ

Q
j = RQ

nj

(
ε 0 0
0 1 0
0 0 1

)
RQ

nj

T
(4.9)

with rotation matrices RP
ni

and RQ
ni so that ε reflects the uncertainty

along the approximated normals nP
i and nQ

i . The intuition behind this
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is that we assume the point to lie on the approximated surface while
not knowing where the point is lying on the surface. The lower the ε

the more local planarity is assumed around the point. Consequently,
with a low value (ε ≤ 10−3), the registration error in Equation (4.4) to
be minimized converges to a plane-to-plane error metric.

4.3.5 Registration with Approximate Covariance Estimates

The actual registration of, respectively, two point clouds and the two
approximated surface meshes does not deviate from the original GICP

algorithm or any other ICP variant. Given a source point cloud P and
a target point cloud Q (usually the current and the last aggregated 3D

point cloud), we first compute approximate surface reconstructions
for both clouds and remove all points not contained in any polygon
of the mesh. Using the surface approximations, we compute for all
residual points (subsets P′ and Q′) approximate covariance estimates
using Equation (4.9). In each iteration, we then search for closest
points in Q′ for all points p′ ∈ P′. Each found correspondence pair
(ij) contributes a measurement error to the non-linear optimization
problem using the generalized error metric in Equation (4.4). For find-
ing the optimal transformation minimizing Equation (4.4), we use
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. BFGS approx-
imates Newton’s method for nonlinear optimization problems. The
required second-order derivatives can be efficiently computed ana-
lytically due to the simple form of the simplified likelihood L(T) in
Equation (4.4). Optimization using Newton’s method with the found
correspondence pairs is stopped when the algorithm converges (usu-
ally in 3 to 5 iterations in our experiments) or when the maximum
number of iteration steps is reached (in our implementation 10). We
inspect the computed pose change and stop the iterative alignment if
the pose no longer changes. In case of changes, we apply the computed
transformation and start the next iteration with new correspondence
pairs.

A typical example of registering non-uniform density point clouds
using both the original GICP and our variant with approximate co-
variance estimates is shown in Figure 4.3. The low angular resolution
in these point clouds affects the convergence of the original GICP. In
effect, it aligns the individual scan lines and not the sensed environ-
mental structures. Hence, it diverges even from a good initial pose
estimate. Our approach accurately aligns the two 3D point clouds.

For a thorough experimental evaluation of the convergence and
divergence behavior of our approach, we refer to the pairwise reg-
istration experiments in Section 4.5. Overall, the approximate mesh
registration can robustly align sparse point clouds, but shows minimal
inaccuracies in the final alignment (e.g., deviations in the range of
centimeters when compared to ground truth pose estimates).
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(a) Generalized-ICP (top and detail view)

(b) Ours (top and detail view)

Figure 4.3: Registering non-uniform density point clouds. (a) Generalized-
ICP suffers from inaccurate covariance estimates and incorrectly
aligns the two point cloud origins (see detail view) and the indi-
vidual scan lines. (b) Our approach correctly aligns the two point
clouds.

4.4 mapping with sparse 3d laser scans

Registration of sparse 3D point clouds (Section 4.3) can be used to
compute the relative transformation between the view poses where
two point clouds have been acquired (or aggregated in our case).
Likewise, sequential pairwise scan-to-scan registration can be used
to obtain an initial trajectory estimate. However, by only using the
last point cloud to align a newly acquired one, even small registration
errors accumulate and lead to a drift in the estimated trajectory. The
resulting trajectories are usually locally accurate and smooth but
globally not consistent. The drift can lead to inconsistencies in the
map when returning to a previously visited place (loop closures).

4.4.1 Graph-Based Simultaneous Localization and Mapping

Graph-based simultaneous localization and mapping aims at comput-
ing globally consistent trajectories and maps by building and opti-
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mizing a pose graph in which the edges encode the spatial relation
between connected poses. The graph optimization forms the back-end
of the system while a front-end detects loop closures and computes
relative poses to feed the back-end.

In its simplest form, pairwise registration as in Section 4.3 can be
used as a front-end to determine an initial trajectory estimate and the
vicinity of estimated poses determines the connectivity in the graph,
e.g., by connecting all poses within a certain radius and having a
similar orientation. Since the laser scanner of our MAV perceives the
environment almost omnidirectionally, we can neglect the orientation
of view poses and instead connect purely based on Euclidean distance
(see Figure 4.4a). In the following, we will present two versions of
vertex connectivity:

1. a single-edge baseline system: a classic version with a single edge
encoding the relative transformation between two view poses
and the associated covariance matrix representing the uncer-
tainty in the relative transformation, and

2. the proposed multi-edge system: a graph where the connectivity
between vertices is not represented using a single edge encoding
a relative transformation but instead using multiple edges each
encoding a point-to-point correspondence.

In both cases, the graph G = (V , E) represents view poses vi as a
set of vertices V and spatial relations between two view poses vi
and vj as edges eij in the set of edges E . Each edge in the graph
encodes two entities: a local contribution to the measurement error
e and an information matrix H which represents the uncertainty of
the measurement error. The information matrix is defined as the
inverse of the covariance matrix, i.e., it is symmetric and positive
semi-definite. The difference between the two systems is the type and
number of edge constrains eij, i.e., the choice of e and H. In both
cases, however, we model and optimize the graph using the graph
optimization framework g2o (Kümmerle et al., 2011).

4.4.2 Baseline System — Single Edge Connections

A straightforward extension of our approximate surface registration
approach to a graph-based mapping system can be achieved by first
applying registration sequentially to pairs of consecutive point clouds
(Pi, Pj=i+1) in order to determine both the relative transforms i

jT and
the initial graph connectivity. In this stage, all poses within a radius
r get connected in the graph (see Figure 4.4a). In the second phase,
we register all connected pairs (Pi, Pj 6=i+1) that have not yet been
registered in the initial registration of consecutive point clouds. In
both stages we collect, for every registered pair of point clouds (Pi, Pj),
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the estimated transformation i
jT as well as the associated covariance

matrix Σi
jT

and its inverse, the information matrix Σ−1
i
jT

.

In order to get an estimate of the relative pose uncertainty in the
form of Σi

jT
, we do not only use the estimated transform i

jT but also
the set C of found point correspondences. We compute Σi

jT
using the

approximation by Censi (2007):

Σi
jT
≈
(

∂2L
∂x2

)−1
∂2L

∂z∂x
Σ(z)

∂2L
∂z∂x

T (
∂2L
∂x2

)−1

(4.10)

where L is the simplified likelihood function from Equation (4.4), z
denotes the individual found correspondences C between the two
point clouds Pi and Pj, and Σ(z) the covariance of the correspondence
pairs. Here, the relative transformation between two view poses is
not represented as a homogeneous transformation matrix i

jT , but in a
parameterized form x = (t, q)T with translation t and rotation by the
unit quaternion q ∈H.

After registration and covariance estimation, we add a single edge
eij with

measurement error eij(T) = i
jT (4.11)

and information matrix Hij = Σ−1
i
jT

(4.12)

to G as a spatial constraint between view poses vi and vj.
For the actual optimization, we use sparse Cholesky decomposi-

tion and Levenberg-Marquardt within the g2o framework (Kümmerle
et al., 2011). In order to compensate for loop closures not present in
the initial trajectory estimate but introduced by the optimization, we
re-compute the connectivity graph. In case of changes (added con-
nections, removed connections or changed connections), we optimize
the newly constructed graph again. If no such changes are detected
or if a maximum number of iteration steps is exceeded (10 in our
experiments), we stop optimizing the graph and compute the final
map by aggregating all point clouds using the updated view poses.

4.4.3 Proposed Approach — Multi-Edge Connections

The acquired point clouds are quite sparse and, consequently, our
estimated transformations are accurate but not as accurate as each
laser measurement itself (see Section 4.5.1). When connecting view
poses using a single edge encoding transformation and relative pose
uncertainty, all the individual correspondence covariances are merged
into a single estimate. The merged covariances provide adequate
information for refining individual transformations when optimizing
over multiple point cloud connections, but can lose the accuracy in
individual point correspondences.
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(a) Graph structure

vi vj

Pi

Pj

i
jT

(pi,m, pj,n)

(b) Connecting edges (one per correspondence)

Figure 4.4: Graph construction and vertex connectivity: (a) For each pose,
we add a vertex to the graph. We connect a vertex (green) to all
neighboring vertices (red) within search radius r. (b) Instead of
adding a single edge (solid line) encoding the transformation
i
jT between two vertices vi and vj (as in the baseline approach
in Section 4.4.2), we add an edge (dotted lines) for every point
correspondence between the two point clouds Pi and Pj in the
proposed multi-edge approach (Section 4.4.3).

Instead, we do not use a single edge between vertices to encode
their relative pose but connect directly using estimated point corre-
spondences in between the point clouds (see Figure 4.4b). In particular,
for every pair of neighboring vertices (vi, vj) we search for point cor-
respondences between the respective 3D point clouds Pi and Pj. The
central idea behind this decision is three-fold: 1.) we maintain local
surface-to-surface alignment accuracy (over multiple point clouds),
2.) we gain a second mean for compensating for the non-uniform
densities in our scans and 3.) using point correspondences as edges
allows iteratively optimizing the graph and re-estimating the updated
correspondences.

For each point correspondence, we add an edge to the graph again
using the information extracted from approximate surface reconstruc-
tion. Assuming that we already computed local surface normals and
approximate covariance estimates as in Equations (4.8) and (4.9),
the idea is to use the same error metric as in the pairwise regis-
tration, see Equation (4.4). As a straightforward error measurement
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between, respectively, two vertices vi and vj and the correspondence
pair (pi,m, pj,n), we use the point-to-point difference vector and approx-
imate its information matrix using the error metric of our registration
algorithm:

measurement error eij,mn(
i
jT) = pj,n − i

jT pi,m, (4.13)

and information matrix Hij,mn(
i
jT) =

(
Σ

Pj
n + RΣPi

m RT
)−1

(4.14)

The effect is that every edge contributes its approximate surface-to-
surface error term to the system information matrix—thus automati-
cally giving lower influence to incompatible or false correspondences
and quickly leading to alignment even for the sparse non-uniform
density point clouds.

For the actual optimization, we follow an iterative procedure by
1.) estimating correspondence pairs for all (or a subset of) points
pi,m ∈ Pi in Pj for every two vertices (vi, vj) that are to be connected
and 2.) optimizing the resulting linearized system for a maximum
of ten inner iterations. We repeat these two steps for a maximum
of ten outer iterations. For a fast initial coarse alignment in early
and an accurate refinement in later outer iterations, we use a linearly
decreasing distance threshold between correspondence pairs, starting
with double the distance between the vertices. In every outer iteration
step, the graph is optimized using dense Cholesky decomposition
and Levenberg-Marquardt within the g2o framework (Kümmerle et al.,
2011). For both inner and outer iterations, we stop when the system
has converged. Convergence in graph optimization (inner iterations)
can be detected based on the changes in both view poses and system
error as well as the damping factor applied by Levenberg-Marquardt.
For detecting convergence in the overall graph refinement in the
outer iterations, we check whether the view pose connectivity and the
correspondences between connected view poses have changed. When
no more changes are found and the inner optimization has converged,
we stop optimizing the trajectory estimate and build the final map of
the environment.

4.5 experiments and results

In order to assess the performance of our approach and the involved
components, we have run a series of experiments. For making the
presented results both reproducible and comparable, we have recorded
different datasets which we make publicly available1.

1 We have made all datasets in this chapter publicly available. They can be obtained
from: http://www.ais.uni-bonn.de/mav_mapping.

http://www.ais.uni-bonn.de/mav_mapping
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4.5.1 Experiments on Pairwise Registration

The first series of experiments concerns the robustness of our registra-
tion approach in terms of both the convergence and the divergence
behavior under different resolutions (angles between individual scan
lines) and under different initial conditions (e.g., noise in the initial
pose estimates).

Registration problems considerably vary depending on the avail-
ability and quality of initial pose estimates. Assuming an optimal
(ground truth) pose estimate, the point clouds are already aligned and
a correct registration result is equal to the initial estimate. That is, any
transformation applied by the registration causes the alignment to
diverge from the optimal solution. Consequently, a deviation from the
ground truth transformation is considered an error in translation and
rotation. The divergence behavior is usually not examined in related
works but is of utmost importance here since the sparse point clouds
acquired by our MAV quickly cause standard registration approaches
to diverge when the angles between individual scan lines increase. We
also analyze the convergence behavior of the registration approach as
is done in related works. Here, the central question is if and how well
a registration algorithm converges to the optimal solution for initial
pose estimates that are noisy or considerably deviate from the optimal
alignment.

In order to evaluate convergence and divergence behavior for differ-
ent angular resolutions, we have created a dataset of organized point
clouds containing ground truth pose information. It was recorded
using the same rotating laser scanner but on a mobile ground robot
standing still while acquiring 3D point clouds—thus avoiding inac-
curacies in laser scan aggregation. The dataset contains point clouds
from eight different poses with a total of 6890 2D laser scans acquired
over multiple full rotations at each pose. The total trajectory length
between the eight poses is roughly 50 m. It was recorded by Schadler
et al. (2014) in the arena of the DLR SpaceBot Cup2 competition for
semi-autonomous exploration and mobile manipulation in rough ter-
rain (see Figure 4.5). For the dataset, we collected all 2D scan lines
acquired at each of the poses, sorted them by rotation angle and
re-organized the data to obtain eight full resolution organized point
clouds (∆θ ≈ 0.3°). We annotated each point cloud with the ground
truth pose estimate obtained from an accurate multi-resolution surfel
mapping approach for dense point clouds (Schadler et al., 2014). For
the experimental evaluation, we generated thinned out versions of
these eight original point clouds with different angular resolutions
and angles ∆θ ∈ [1°, 90°].

2 More information on the DLR SpaceBot Cup can be found on the NimbRo Centauro
project website: http://www.ais.uni-bonn.de/nimbro/Centauro.

http://www.ais.uni-bonn.de/nimbro/Centauro
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Figure 4.5: Arena of the DLR SpaceBot Cup 2014 where the dataset was
recorded. Shown are all aligned point clouds (dense, ∆θ = 1°)
and a photo of the arena.

For both convergence and divergence behavior, we measure reg-
istration success in terms of the registration error. In particular, for
consecutive point clouds acquired at times i and i + 1, we inspect the
relative deviations Ei with

Ei :=
(

Q−1
i Qi+1

)−1 (
P−1

i Pi+1

)
(4.15)

between ground truth poses Q and estimated poses P. As suggested
by Sturm et al. (2012), we focus on the translation error

et,i = ‖ trans (Ei) ‖2, (4.16)

i.e., the Euclidean distance between the estimated (relative) pose esti-
mates (trans (·) extracts the translation component). In case of Pi = Qi
and Pi+1 = Qi+1, Ei is the identity matrix and et,i = 0.

4.5.1.1 Divergence Behavior

In order to evaluate the divergence behavior, we have chosen pairs of
consecutive point clouds from the dataset and registered the respective
thinned out copies. In a comparative evaluation, we registered the
point clouds of each pair using both the original GICP algorithm and
our variant with approximate surface registration. Figure 4.6 shows
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(f) Point cloud pair (P6, P5)

Legend: Translation errors et,i depending on the angle ∆θ between scan lines for:
—— Generalized-ICP —— Approximate surface registration

Figure 4.6: Divergence behavior for decreasing density (increasing angles
∆θ between scan lines) of our approximate surface registration
approach compared to Generalized-ICP for the alignment of six
pairs of point clouds (left and right). Translation errors et,i increase
with an increasing angle ∆θ between scan lines.

the results of this comparison with decreasing angular resolution
(increasing angle ∆θ between scans).

Both algorithms achieve optimal registration results for the dense
point clouds with deviations from ground truth of only few centime-
ters. In fact, it is hard to tell whether the pose estimate used as ground
truth is better or worse than the achieved alignment. For increasing
angles between scan lines, the GICP algorithm quickly starts to fail
showing the aforementioned behavior of dragging individual scan
lines (and the scan origins) onto another instead of aligning sensed en-
vironmental structures. In its extreme, both scan origins coincide and
the maximum error in the registration results reflects the Euclidean
distance between the ground truth poses. Our approach achieves fairly
acceptable results even for very low angular resolutions (angles be-
tween scans of ∆θ > 15°). For smaller angles (∆θ ≤ 10°), the resulting
alignments are very accurate.
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4.5.1.2 Convergence Behavior

In order to evaluate the convergence behavior, we have used the same
pairs of point clouds as in the evaluation of the divergence behavior.
Instead of using all available angular resolutions, we focus on the
expected angular resolution of our scanner when flying (i.e., ∆θ ≈ 9°).
For each scan pair, we registered the respective point clouds under
different initial conditions and quality of initial pose estimates. In
particular, we simulate inaccuracies using translation errors of up to
2 m along the x and y axes (i.e., the plane the robot is moving on) and
rotation errors of up to 80° about the z axis (i.e., affecting the robot’s
heading estimate).

In order to measure registration success for the different initial
conditions, we have chosen two thresholds for the final translation
error et,i in Equation (4.16): a stricter one (0.25 m) and a weaker one
(1 m) similar to the evaluation of registration algorithms by Magnusson
et al. (2009a). The intuition behind the two thresholds is that poses
within the stricter translation threshold are difficult to tell apart for
a human observer; poses within the weaker threshold are inaccurate
but still fairly well aligned. We consider a registration as failed if the
translation error exceeds the weaker threshold. Figure 4.7 presents the
results of the evaluation with different initial conditions for the same
two scan pairs as used in the evaluation of the divergence behavior.
As can be seen, our approach fails in only very few cases (with high
initial rotational error and/or high translation error). In the majority of
registrations (even with high initial rotational and translation errors),
our approach achieves an acceptable alignment even with the strict
threshold. With very few exceptions, where the translation error stays
within the weaker threshold, the GICP algorithm fails in almost all
cases.

4.5.2 Experiments on Simultaneous Localization and Mapping

In order to evaluate the performance of our complete mapping pipeline,
we recorded a dataset with the flying MAV in a smaller indoor scenario
equipped with a motion capture system. It contains a total of 1772
laser range scans in 82 aggregated point clouds. The overall trajectory
length is 18.10 m. In a comparative evaluation, we process the com-
plete dataset with different approaches: the original GICP algorithm vs.
our approximate mesh registration and the baseline SLAM approach
with single edge connections vs. the proposed multi-edge approach.
We also compare the two SLAM variants without prior registration, i.e.,
optimizing the initial vehicle trajectory. In order to evaluate the per-
formance of the approaches under different initial conditions (quality
of initial pose estimates), we run three series of experiments: with
visual odometry estimates as initial pose estimates, without initial
pose estimates (all transformations being identity), and with pose
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(e) Point cloud pair (P5, P4)

-2 m

-1 m

 0 m

 1 m

 2 m

-2 m -1 m  0 m  1 m  2 m

-2 m

-1 m

 0 m

 1 m

 2 m

-2 m -1 m  0 m  1 m  2 m

Approx. Mesh Registration Generalized-ICP

(f) Point cloud pair (P6, P5)

Figure 4.7: Convergence behavior for poor initial pose estimates at ∆θ = 10°.
Registration success is measured w.r.t. the translation error et,i
using a strict threshold and a weaker threshold. Exceeding the
weaker threshold is considered a failure. Each subplot encodes
translation errors along the x and y axes with seven initial orien-
tations from −80° to 80° rotation error with 0° pointing along the
horizontal axis. For comparison, despite few exceptions General-
ized-ICP fails in all cases.
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estimates considerably affected by noise (translation errors of up to
2 m and rotation errors of up to 45°).

For evaluating the accuracy of the pose estimates, we use an error
metric proposed by Sturm et al. (2012): the absolute trajectory error
(ATE). The absolute trajectory error (ATE) focuses on global consistency
by aligning and directly comparing absolute pose estimates (and
trajectories):

ATE (Fi:n) :=

(
1
m

m

∑
i=1
‖ trans (Fi (∆)) ‖2

)1/2

(4.17)

with Fi(∆) := Q−1
i SPi, where S is the rigid-body transformation

mapping the estimated trajectory Pi:n to the ground truth trajectory
Qi:n. The operator trans (F) extracts the 3× 1 translational component
of the individual transformation errors F.

For evaluating the quality of the resulting map (aggregated point
map of all aligned point clouds), we use a measure of mean map
entropy. For every point pi in the resulting point map P, we compute
the local entropy h by:

h(pi) =
1
2

ln |2πeΣ(pi)| , (4.18)

where Σ(pi) is the covariance of the points in a radius r around pi.
The mean map entropy H(P) is then averaged over all points pi in the
map:

H(P) =
1
|P|

|P|
∑
i=1

h(pi), (4.19)

where |P| is the number of points in P. The intuition behind this metric
is the following: the sharper a map region is the lower is the value of
the local point entropies in this region. That is, it encodes how planar
the region appears in the final map. Consequently, a high-quality map
with flat walls, floor and ceiling as well as sharp corners and edges
will have a lower map entropy compared to a map resulting from a
globally consistent but slightly inaccurate trajectory estimate. However,
the metric assumes that the maps to be compared are roughly globally
consistent for a fair comparison. Because of that, we also visually
inspect the resulting maps and mark those that show inconsistencies.

As an example of accurately aligned point clouds for this dataset,
we present an overlay of all acquired point clouds as aligned using
our approach in Figure 4.8. In Table 4.1, we report both the mean
map entropy of the resulting point maps and the absolute trajectory
errors (with root mean square error (RMSE), mean, standard deviation
(stdev), min. and max. translation error). The most important finding
here is that the proposed multi-edge graph-based approach with
the approximate surface registration error metric outperforms the
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6.80 m

5.20
m

Figure 4.8: Typical registration results: shown are top view(s) of the scans
aligned using our approach (mesh registration + global optimiza-
tion). The room has a size of roughly 6.80 m×5.20 m. All walls,
floor and ceiling are in sight of the MAV at any time. The trajectory
has a length of roughly 18.10 m (black line strip around the center
of the room).

baseline approach with standard single-edge connections. Moreover,
our approach yields exactly the same optimal results for all initial
conditions.

4.5.2.1 Approximate Mesh Registration vs. GICP

As can be expected from the direct comparison on pairwise registra-
tion in Section 4.5.1, our variant with approximate surface information
clearly outperforms the original GICP algorithm. The more accurate
covariance estimates computed directly on the approximated surfaces
allow correcting local alignments. Naturally, the estimated trajectory
still drifts away from the ground truth estimate since smaller inac-
curacies are accumulated in pairwise registration. Consequently, the
resulting point map is globally not consistent.

4.5.2.2 SLAM with Multi-Edge vs. Single-Edge Connectivity

Both approaches can adequately compensate for the drift and produce
globally consistent trajectories and maps. Still, by using locally very
accurate correspondence covariances in the edges of the graph, the
multi-edge variant achieves more accurate alignments and scores
better in both absolute trajectory error and mean map entropy. Even
in case of large simulated errors in the pose estimates, the initial
registration with approximate surface information allows both variants
converging to a globally consistent estimate.

4.5.2.3 SLAM without initial registration

In addition to the proposed pipelines of initial registration and subse-
quent pose graph optimization, we also evaluated the performance of
pose graph optimization without initial registration, i.e., directly on
the initial trajectory estimates. Here, the multi-edge variant quickly
converges to its solution (within at most 5 outer iterations), regardless
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ATE (m) Map entropy

Init. Sequence RMSE mean ± stdev min max mean

V
is

ua
lO

do
m

et
ry

Initial 0.0297 0.0279±0.0101 0.0095 0.0544 −2.6575

GICP 0.5723 0.5448±0.1753 0.1348 1.0191 −2.1956?

MR 0.0988 0.0874±0.0459 0.0088 0.1899 −3.4229?

MR+BL 0.0296 0.0267±0.0135 0.0050 0.0644 −3.4344

MR+OPT 0.0249 0.0223±0.0110 0.0030 0.0542 −3.8095

BL only 0.0286 0.0256±0.0128 0.0043 0.0622 −3.4920

OPT only 0.0249 0.0223±0.0110 0.0031 0.0563 −3.8098

N
on

e
(a

ll
Id

en
ti

ty
) Initial 0.9371 0.8971±0.2707 0.3329 1.5810 −2.0035?

GICP 0.7958 0.7632±0.2252 0.2600 1.2173 −2.2896?

MR 0.0988 0.0874±0.0459 0.0088 0.1899 −3.4229?

MR+BL 0.0299 0.0267±0.0134 0.0055 0.0640 −3.4380

MR+OPT 0.0249 0.0223±0.0110 0.0031 0.0563 −3.8096

BL only 0.2723 0.1492±0.2277 0.0152 1.3935 −2.5073?

OPT only 0.0249 0.0223±0.0111 0.0031 0.0563 −3.8097

Si
m

ul
at

ed
Er

ro
rs

Initial 6.2885 5.9298±2.0934 1.1895 11.790 −3.3392?

GICP 4.3437 3.8863±1.9400 0.8205 8.5243 −2.5488?

MR 0.1216 0.1075±0.0568 0.0129 0.2265 −3.4135?

MR+BL 0.0297 0.0265±0.0134 0.0054 0.0649 −3.4435

MR+OPT 0.0249 0.0223±0.0111 0.0031 0.0563 −3.8096

BL only 0.0824 0.0747±0.0346 0.0148 0.175 93 −3.0243?

OPT only 0.0250 0.0226±0.0113 0.0035 0.0567 −3.8080
? The resulting maps are globally not consistent, e.g., due to drifts.

Table 4.1: Results for the Motion Capture Dataset: absolute trajectory error
(ATE) and map quality for the different approaches under different
initial conditions: visual odometry as initial pose estimates, no
initial pose estimates, and noise-affected pose estimates simulating
errors (±200 cm,±45°, uniformly distributed).
Legend: GICP (Generalized-ICP), MR (Mesh Reg., Generalized-
ICP with approximate covariances), BL (single edge connections,
Section 4.4.2), OPT (multi-edge connections, Section 4.4.3).
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of the quality of the initial pose estimates. In fact, the resulting trajec-
tories and maps are almost identical. The baseline approach converges
considerably slower (especially for large errors in the initial pose esti-
mates) and does not find a globally consistent trajectory estimate in
10 iterations.

4.5.3 Runtime Evaluation

In order to obtain runtime estimates per component and processing
step of the registration and mapping pipeline, we have collected mea-
sured runtimes in all experiments. In each processing step, runtimes
have been measured in each component either per point cloud (e.g.,
preprocessing steps), per pair of registered point clouds (in the initial
alignment), and for the complete global optimization. Furthermore,
the overall total runtime for processing the whole dataset was mea-
sured. Naturally, the measured vary depending on the dataset (e.g.,
number of vertices and edges in the optimization) and depending on
the individual point clouds being processed. In the initial alignment,
for example, the runtime greatly depends on the convergence speed
when optimizing the surface-to-surface metric. Consequently, for pairs
of point clouds that are already well aligned, optimization converges
earlier than for pairs where the initial relative pose estimate is con-
siderably off. In order to obtain amortized runtime estimates for all
components, the individual runtimes were averaged per point cloud
being processed. We report the detailed results with mean execution
time and standard deviation in Table 4.2.

The most important result here is that 1. point clouds are processed
faster than they are acquired (or aggregated), 2. the complete dataset
is processed faster than it is recorded. Since the global optimization
processes all point clouds in the graph, it may take longer than the time
for aggregating a single new point cloud. However, the optimization
can easily be decoupled from the rest of the pipeline by letting it run in
a separate thread or process thus allowing to pre-process and initially
align new point clouds while optimizing the so far built graph. The
overall result of the runtime experiments is that the approach can be
used onboard to incrementally build environment map online.

4.5.4 Mapping an Indoor Environment

As a first proof-of-concept, we have recorded a dataset with the con-
tinuously spinning laser scanner on the flying MAV. The MAV was
manually remote-controlled through a parking garage of 40 m× 15 m.
Overall, the dataset contains a total of 4420 2D scan lines which are
aggregated to 200 3D point clouds (each aggregated over one half
rotation of the scanner). The overall trajectory length is 73 m (traveled
in 100 s). The measurements cover the complete parking garage and
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Component Runtime

Preprocessing (per 3D scan)

Aggregation & Organization �1 ms

Approx. surface reconstruction <1 ms

Normal and covariance estimation <1 ms

Setting up the search tree (for registration) <1 ms

Registration (per pair of consecutive 3D scans)∗

Estimating correspondences 12±3 ms

Alignment 29±9 ms

Global graph optimization (5 loops)∗∗

Estimating graph adjacency �1 ms

Estimating correspondences 47±26 ms

Optimization 152±91 ms
∗Average over all pairs of consecutive point clouds (all datasets).
∗∗Average per point cloud in all datasets.

Table 4.2: Runtimes per component and processing step. The reported run-
times are have been collected per component in all datasets (motion
capture volume, indoor and outdoor datasets) and averaged over
all processed point clouds to obtain an amortized runtime estimate.

allow for creating a complete model including pillars and other en-
vironmental structures as well as parking cars. We used two fish-eye
stereo camera pairs on the MAV and visual odometry (Schneider et al.,
2013) to obtain an initial pose estimate and to aggregate the individual
2D scan planes to 3D point clouds. As can be seen in Figure 4.9, the
visual odometry estimate drifts—leading to an inconsistent map when
used on its own, but is accurate enough for scan aggregation, i.e.,
estimating the movement of the MAV during one half rotation of the
spinning laser scanner (500 ms).

In order to obtain a consistent and accurate 3D map out of the
acquired data, we register all pairs of consecutive scans (using visual
odometry as an initial estimate), and then create a graph where each
of the 200 pose vertices is connected to all neighboring vertices within
a search radius of 3 m. We iteratively refine the whole graph over
five iterations where, in each iteration, the correspondences between
connected scans are re-estimated.

Overall, our approach takes roughly 45 s to build a consistent ac-
curate 3D map, including pre-processing, registration, and graph op-
timization (approximately 6000 connections with a total of roughly
580 000 edges). Figure 4.9 shows the aligned scans before (visual
odometry only) and after our alignment in a side view to visualize the
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(a) Aligned scans using visual odometry only (side view) (top view)

(b) Aligned scans after registration and optimization (side view) (top view)

(c) Views on the built 3D map (ceiling removed) with pillar and car silhouette

Figure 4.9: Results of an indoor mapping mission. Shown are all point clouds
acquired in the parking garage and aligned using (a) visual odom-
etry only, and (b) after registration and graph optimization (points
colored by height). Using visual odometry only leads to a drift
while our approach provides a consistent and accurate map, as
can be seen in the detail views of a corner with a cylindrical pillar
and the silhouette of a car. Note that axes (and color coding) are
not aligned to environmental structures but reflect the orientation
of the flying MAV.

removal of drift, and in a top view on environmental details (a cylin-
drical pillar and the silhouette of a car) that show the accuracy in the
final model. Using the mean map entropy as a measure of map qual-
ity, we obtain an entropy of −2.30 for visual odometry, whereas our
approach achieves a lower entropy (sharper map) of −3.58. Visually
inspecting the constructed map shows neither major inconsistencies
nor minor inaccuracies.

4.5.5 Complete Outdoor Mapping Missions

The indoor environment in the experiment series in the motion capture
volume does not pose major challenges. In fact, since it is only a
single room where all environmental structures can be sensed from
every view pose, the dataset constitutes the best case for registration
algorithms. The environment in the previous mapping experiment is
larger and the vehicle trajectory is more complex to optimize since
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it does not form a complete loop. Still, the overall dataset has to
be considered rather simple since, again, almost all environmental
structures such as walls and pillars are visible from any view point in
the dataset.

As a proof-of-concept for the complete system, we conducted two
complete outdoor mapping missions. In these missions, the micro
aerial vehicle autonomously navigated to a set of predefined waypoints
in order to map a building of Gut Frankenforst—a research station
operated by the Institute for Veterinary Research at the University of
Bonn (see Figure 4.10a). Not only at the predefined waypoints but over
the whole trajectory, the MAV collected laser range scans which where
then processed offline by our approximate mesh registration and multi-
edge pose graph optimization approach. This environment poses far
more challenges than the indoor scenario: most notably a larger part
of the measurements do not lie on the distinctive structures of the
building but on vegetation around the building, thus forming rather
random measurements when seen in individual sparse point clouds.
Moreover, the point clouds only capture parts of the environment
making it necessary to correctly detect and align loop closures.

The first mission aims at mapping the front facade of the building.
The MAV captured a total of 2409 laser range scans over a trajectory of
30.43 m along the facade of the building. On a single core of an Intel
Core i7-3740QM CPU, our approach took 92 s to construct a globally
consistent point map out of the 118 aggregated point clouds. Most of
this time was spent on the pose graph optimization while aggregating
and pre-processing point clouds as well as registering consecutive
point clouds was a matter of only few milliseconds per cloud. The
pose graph optimization converged after four iterations. The resulting
point map and trajectory estimate are shown in Figure 4.10c.

In the second mission, waypoints were distributed around the com-
plete building. The MAV traveled a total of 307.13 m to reach all way-
points and collected 21 475 laser range scans. The scans were aggre-
gated to 859 point clouds. Our approach took roughly 200 s to align
all point clouds and construct a globally consistent map of the build-
ing and the surrounding vegetation. The resulting point map and
trajectory estimate are shown in Figure 4.10d. Finally, we construct
an OctoMap (Hornung et al., 2013) as a memory-efficient representa-
tion of the environment, e.g., for being able to plan paths for future
missions. It is shown in Figure 4.10b.

4.6 conclusions and future work

We have presented a complete pipeline for registration and mapping
with particularly sparse laser scans acquired by an autonomous MAV.
The non-uniform point densities within and between individual laser
range scans in the aggregated point clouds negatively affect standard
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(a) Photo of the building (b) Final 3D map of the building

(c) Mapping the front facade: point map and trajectory

(d) Mapping the building: point map and trajectory

Figure 4.10: Results of two complete missions for mapping a building (a): a
shorter mission for mapping the front facade (c) and a longer
mission for mapping the complete building (d). Shown are both
the resulting map as an aggregation of all aligned point clouds
and the estimated vehicle trajectory. The OctoMap (Hornung
et al., 2013) constructed for the longer mission is shown in (b).
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approaches to registration as well as neighborhood searches and local
feature estimation. In order to compensate for the non-uniform point
densities in the point clouds, we exploited the organized data structure
and computed an approximate surface reconstruction. Point features
such as local surface normals and covariances were then deduced from
the topology in the resulting mesh in order to obtain proper estimates
of the underlying surface even in regions where the measurement
density is particularly sparse.

We presented a registration approach based on the Generalized-ICP
algorithm that makes use of the approximated surface information. It
is able to adequately align aggregated point clouds regardless of the
quality of initial pose estimates. Moreover, experiments have shown
that the proposed approach clearly outperforms the original GICP

algorithm for the sparse point clouds acquired by our MAV. It is very
likely that the combination of approximate surface reconstruction and
deducing surface statistics from the resulting mesh can also improve
the performance of other surface-based registration algorithms, e.g.,
the NDT registration algorithm of Magnusson et al. (2007).

For being able to construct globally consistent 3D environment
maps, we have presented an approach to pose graph optimization
again making use of the approximated surface information. Instead of
representing relative pose estimates in single edges between connected
vertices in the graph, it uses one edge per point correspondence
between the acquired point clouds. Each of these edges encodes the
same error metric as in the registration approach. Our experiments
indicate that this multi-edge variant shows superior performance
compared to a baseline system following the single-edge approach
with robust covariance estimates.

In a final experiment, we could demonstrate that our approach is
able to adequately align point clouds aggregated in real mapping
missions and to provide both globally consistent environment maps
and reliable trajectory estimates.

Regarding possible extensions and future work, the presented ap-
proach was only used offline to process the data after it had been ac-
quired in a mapping mission. Furthermore, our approach adequately
aligns the aggregated point clouds but does not change the pose of
individual laser range scans within an aggregated point cloud. That is,
our approach can compensate for pose estimation errors between view
poses where point clouds have been aggregated but not for errors in
the motion estimation during point cloud aggregation. In the worst
case, a single point cloud may become ill-formed and not correctly
aligned to the other point clouds (i.e., an outlier point cloud in the
resulting map). It is a matter of future work to apply the registration
and pose graph optimization pipeline online and also to correct the
pose of individual laser range scans once the neighboring aggregated
point clouds are aligned.
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In addition, the proposed approach clearly distinguished between
initial alignment and final optimization. Moreover, the final optimiza-
tion was performed on the complete pose graph. In the following
chapter, we further investigate optimizing the pose graph hierarchi-
cally by aligning newly acquired point clouds in local windows of
point clouds and view poses, and to only globally optimize the com-
plete pose graph if the optimization of the subgraph in the local
window shows larger view pose deviations or conflicts.





5 REG I STRAT ION AND MAPP ING
FOR RGB -D CAMERAS

Consumer color and depth cameras (RGB-D cameras) have attracted
much attention in the fields of robotics and computer vision, especially
for object modeling and environment mapping. A key problem in all
these applications is the registration of sequences of RGB-D images.
In this chapter, we present an efficient yet reliable approach to align
pairs and sequences of RGB-D images that makes use of local surface
information. We extend our works (Chapter 4) on three-dimensional
(3D) mapping with micro aerial vehicles (MAVs) to sequences of RGB-D

images. The resulting alignment is based on a robust surface-to-surface
error metric and uses multiple surface-to-surface patch matches be-
tween pairs of RGB-D images. We focus on the questions 1. if the
approach can also work with sequences of RGB-D images and 2. what
needs to be changed to make it both efficient and reliable. The latter is
achieved with several extensions which are introduced in this chap-
ter. These extensions involve filtering to smooth the underlying data,
sampling to reduce the amount of data being processed and aligning
newly acquired point clouds in local windows of poses in order to
make the alignment more stable while at the same time gaining effi-
ciency. Quantitative evaluations show that the resulting approach is
competitive with state-of-the-art approaches to RGB-D simultaneous
localization and mapping (SLAM).

5.1 introduction

RGB-D cameras have huge potential in improving the perception ca-
pabilities of robots and automated vision systems in general. They
acquire color (RGB) images and depth (D) images both at high frame
rates, e.g., 30 Hz. Intrinsic and extrinsic calibration of the two im-
age sources yields colored 3D point clouds (see Figure 5.1). Due to
their comparably low cost, low weight, and small form factor, RGB-D

cameras have attracted much attention in the fields of robotics and
computer vision, especially for object modeling and environment map-
ping. What most applications have in common is that they require
RGB-D images to be taken from multiple different viewpoints and
that the acquired images need to be reliably registered such that the
overlapping regions in the images match as well as possible. In the
literature, this problem is usually referred to as SLAM: building a map
of the environment and localizing the information acquiring sensor(s)
therein so as to consistently update and extend the map.

129
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Figure 5.1: Typical registration result for a sequence of RGB-D images. Left:
approximate surface reconstruction (unfiltered) of the first cloud.
Right: the points of all aligned colored point clouds.

In recent years, many different approaches to visual odometry (Kitt
et al., 2010; Huang et al., 2011; Engel et al., 2013), SLAM (Scherer and
Zell, 2013; Henry et al., 2012; Kerl et al., 2013; Forster et al., 2014; Endres
et al., 2014; Engel et al., 2014), and dense mapping (Newcombe et al.,
2011; Stückler and Behnke, 2014; Whelan et al., 2013; Steinbruecker
et al., 2013) have been proposed of which some are specifically tai-
lored for RGB-D cameras. These methods are either based on features
matched and tracked over sequences of images, or directly operate
on the (semi-) dense color and depth images. Most approaches select
a set of keyframes and optimize the resulting pose graph in order
to obtain a globally consistent trajectory and map. State-of-the-art
methods achieve globally consistent trajectories with low errors in
pose estimation at high frame rates. We include some of them in a
comparative evaluation.

In this chapter, we state and address the problem of RGB-D SLAM in
terms of multi-view 3D registration based on point correspondences
between frames that encode a surface-to-surface error metric. The
approach is based on the method in Chapter 4 for 3D laser scan regis-
tration and mapping with micro aerial vehicles. In order to compensate
for the non-uniform point densities within and between individual
scan lines of the fast rotating scanner, we approximated the under-
lying surface and used a generalized error metric (Segal et al., 2009)
for obtaining robust registrations and accurate 3D maps of the sensed
environmental structures such as buildings. In this chapter, we extend
the approach to be applicable to sequences of RGB-D images and make
the following contributions:

1. In order to reduce the drift during the initial tracking of the
camera, we register a newly acquired image against a local
window of frames as opposed to the last (key) frame.
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2. We integrate our previous works on range image segmenta-
tion (Holz and Behnke, 2014a) for efficiently computing local
features such as surface normals on an approximate mesh repre-
sentation, and for edge-aware filtering of the underlying points
and the computed features to compensate for noise especially in
the depth images.

3. To cope with the larger amount of data of RGB-D images in
our multi-edge alignment approach, we efficiently sample both
points in the images and found correspondences.

As a result, our approach of using multiple edges between views that
encode surface-to-surface constraints can be applied to RGB-D video.
Moreover, its performance is competitive with other state-of-the-art
approaches. In fact, the proposed local window multi-edge alignment
has a huge potential of contributing to other SLAM and object modeling
pipelines. We present results of a thorough comparative experimental
evaluation that proof these claims.

The approach presented in this chapter was first published at the
European Conference on Mobile Robots (Holz and Behnke, 2015b).

5.2 related work

Approaches to SLAM using monocular cameras, RGB-D cameras and
stereo cameras can in general be split into two different categories:
feature-based methods that compute and track distinct repeatable
key points and associate them using feature descriptors, and direct
methods densely registering the acquired data.

For monocular cameras, a hybrid approach is the semi-dense visual
odometry method proposed by Engel et al. (2013). It first computes
inverse depth maps which are then used to align subsequent frames.
A similar approach is followed by Forster et al. (2014). Engel et al.
(2014) extend their approach to build globally consistent maps even of
large-scale environments.

Scherer and Zell (2013) present an RGB-D SLAM approach that is
efficient enough to be computed onboard an autonomous micro aerial
vehicle. It is based on tracking FAST keypoints (Rosten and Drum-
mond, 2006; Rosten et al., 2010) and the fast hierarchical graph opti-
mization of Grisetti et al. (2010). The FAST corner detector is also used
by Huang et al. (2011) in their visual odometry method FOVIS.

A popular approach developed specifically for RGB-D images is
RGB-D SLAM (Endres et al., 2012b; Endres et al., 2014). It uses the color
image to extract and match visual keypoints and descriptors (SURF,
SIFT and ORB). The alignment relies on the 3D coordinates of keypoints
obtained from the depth image. A similar approach is followed by
Henry et al. (2012) with FAST keypoints.
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One of the first successful demonstrations of dense registration and
mapping has been presented by Newcombe et al. and was coined
KinectFusion (Newcombe et al., 2011). KinectFusion uses signed dis-
tance functions in a grid-based environment representation and ICP-
based registration (Besl and McKay, 1992) for aligning newly acquired
depth images. All components are implemented on a GPU and allow
(near) real-time operation. Assuming the camera movements between
frames are small, this incremental registration can reliably align the
data and update the environment model. By using more information
than only a single frame against which KinectFusion registers consid-
erably reduces drift usually arising in pairwise registration. In many
cases, incremental registration can achieve globally consistent environ-
ment maps without the need for detecting loop closures and global
optimization, e.g., as shown in a previous work on two-dimensional
(2D) laser-based mapping (Holz and Behnke, 2010). The drawback of
incremental registration is that errors made in the update of the used
environment representation cannot be corrected later. In this chapter,
we address the alignment of captured frames in terms of multi-view
registration and do not build a particular environment representation.

Newcombe et al. (2015) later presented DynamicFusion, an exten-
sion of KinectFusion for modeling dynamic objects, e.g., the heads of
human users with different facial expressions and moving in front of
an RGB-D camera. Another very recent extension is ElasticFusion (Whe-
lan et al., 2015) that in contrast to most other SLAM approaches does
not use a pose graph which is optimized. Instead, ElasticFusion is
map-centric and builds a deformable environment map. As the camera
moves, parts in the immediate vicinity of the visible scene become
active and are updated and optimized as new information is acquired.
This formulation is particularly efficient and allows for real-time scene
modeling without an explicit pose graph.

Steinbruecker et al. (2013) also use signed distance functions for
dense mapping but organize the map in an octree structure. Stück-
ler and Behnke (2014) proposed a surfel-based registration method
for constructing muli-resolution surfel maps (MRSMAPs) that are also
represented in an octree. Kerl et al. (2013) follow a different visual
SLAM approach (called DVO-SLAM where DVO stands for dense visual
odometry) by minimizing the photometric and the depth error over all
pixels. We include RGB-D SLAM (Endres et al., 2012b), MRSMAP (Stückler
and Behnke, 2014), DVO-SLAM (Kerl et al., 2013), and an open source
implementation of KinectFusion (Newcombe et al., 2011) in a compar-
ative experimental evaluation. In a second series of experiments, we
also include results reported for Kintiniuous (Whelan et al., 2012) and
ElasticFusion (Whelan et al., 2015).

Recently, Maier et al. (2014) presented an efficient approach to RGB-D

object modeling. They split the camera trajectory into chunks of equal
size, and first optimize the alignments within the chunks before glob-
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ally aligning the chunks to each other. Since the camera is moved
around the object to model, these splits along the trajectory yield
spatially coherent partitions. We achieve a similar behavior by us-
ing local windows in the initial alignment of newly acquired frames.
Moreover, the local windows include earlier frames in case of loop clo-
sures. The local alignment can then compensate for the accumulated
drift or trigger a global optimization of the trajectory in case conflicts
are found. Our local alignment approach is inspired by the double
window approach in the SLAM framework of Strasdat et al. (2011).

In multi-view scan matching, poses are determined simultaneously
by aligning all scans. In the 2D domain, a popular approach is the
one by Lu and Milios (1997) which is often referred to as LUM. Bor-
rmann et al. (2008) extend this approach to six degrees of freedom
for the alignment of 3D scans and present methods to efficiently deal
with the resulting nonlinearities (Borrmann et al., 2008). The resulting
approach first applies the ICP algorithm to align consecutive point
clouds and then builds a graph based on the determined connectivity
of view poses similar to our approach. Both the determined transfor-
mations and the sets of point correspondences are represented in the
edges. From both, a measurement vector and its covariance matrix are
computed which are then fed as one block into a large linear system
for optimization. In contrast, in our approach, every correspondence
pair forms a block in the final non-linear error function. Furthermore,
LUM uses a point-to-point error metric as in the original ICP algo-
rithm. Instead, we approximate the surface and use a probabilistic
surface-based error metric.

Similar to our multi-edge alignment step are the approaches of
Zlot and Bosse (2014) and Ruhnke et al. (2012). For mapping mines
with a continuously spinning laser scanner, Zlot and Bosse (2014) use
non-rigid surfel registration and graph optimization for aggregating
point clouds and building consistent maps. Ruhnke et al. (2012) also
use raw point matches as constraints in the graph and apply a surfel-
based error metric to iteratively refine both the sensor poses and
the positions of the points. Their approach can build highly accurate
object models but requires a rough initial alignment of the dense
RGB-D data. Moreover, by optimizing the position of every point in the
resulting object model, the approach is computationally complex. In
contrast, we aim at both initially aligning the acquired point clouds
and building globally consistent environment models while trying to
reduce the complexity of the involved processing steps, e.g., by using
only descriptive subsets o the dense RGB-D data and local windows.
The idea behind this chapter is to 1. apply our pipeline for 3D mapping
with MAVs (Chapter 4) to dense RGB-D data, 2. make the necessary
adaptions to make it both applicable and feasible, and 3. evaluate
how the resulting system compares to state-of-the-art RGB-D SLAM

approaches.
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Figure 5.2: System overview and data flow. For a newly acquired point
cloud, we first approximate the underlying surface reconstruction.
Using the mesh topology, we compute approximate local surface
normals and apply a multilateral filter to smooth both points and
normals. We then compute local covariances and feed the point
clouds as well as the computed features into the local alignment.
Global optimization then yields globally consistent trajectories in
the form of the optimized posed graph G.

5.3 method

Our approach is split into three stages. In the first stage, we approx-
imate, for each frame, the underlying surface in the form of a quad
mesh. The mesh serves three purposes: it allows 1. computing features
such as surface normals directly on the mesh, 2. extracting neigh-
borhoods from the mesh topology, and 3. caching values such as
computed distances and normal deviations in its edges. Referring to
Figure 5.2, the extracted mesh is then smoothed and used for feature
extraction. In the second stage, both the mesh and the computed fea-
tures are fed into the local alignment so as to keep track of the camera
pose. If loop closures are detected, the so far estimated trajectory is
globally optimized in the third stage. The number of frames being
processed increases in the stages. Approximate surface reconstruction
and feature estimation is done once per frame, i.e., only a single frame
is processed at a time. The local window alignment processes k frames
where k is, respectively, the size of the local window and the number
of poses in the subgraph. Finally, the global alignment stage processes
all frames and optimizes all poses in the graph.
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The resulting processing pipeline resembles the mapping pipeline
for MAV-mounted 3D laser scanners (Chapter 4), and extends it by 1. a
local window alignment in order to get more robust initial pose esti-
mates, 2. efficient sampling of points and inter-frame correspondences
in order to reduce the amount of data and speed up computations,
and 3. re-using the original approximate surface reconstruction for
RGB-D images and noise models as used for range image segmentation
(Chapter 3). In the following, we will present all components in the
pipeline and show experimental results which show that the resulting
approach can reliably register sequences of RGB-D images.

5.3.1 Approximate Surface Reconstruction

Surface reconstructions are compact representations of the underlying
sensed environmental structures and can become handy in a variety
of pre-processing tasks such as computing point neighborhoods, lo-
cal surface normals or smoothed (and upsampled or downsampled)
representations (Holz and Behnke, 2014a). In order to compute an
approximate surface reconstruction, we follow the same approach as
in Chapter 3 in the context of range image segmentation. We traverse
an organized point cloud P once and build a simple quad mesh by
connecting every point p = P(u, v) (in the u-th row and the v-th
column) to its neighbors P(u, v + n), P(u + n, v + n), and P(u + n, v)
in the next row and column (with n 6= 1 the input point cloud is di-
rectly subsampled). Subsampling, e.g., with n = 4 drastically reduces
the amount of data per frame while keeping information about all
dominant structures needed for reliably aligning the resulting mesh.

As in Chapter 3, we only add a new quad to the mesh if P(u, v)
and its three neighbors are valid measurements, and if all connecting
edges between the points are not occluded. The first check accounts
for possibly missing or invalid measurements in the organized data
structure. For the latter occlusion checks, we examine if one of the
connecting edges falls into a common line of sight with the viewpoint
v = 0. We define an edge to be valid iff the maximum edge length
is not exceeded (threshold εd) and the angle between the connected
points passes the occlusion check (threshold εθ), see Equation (3.1).

The first check accounts for sensor noise, i.e., tolerable depth dis-
continuities such as quantization effects in the depth images. We use
a simple isotropic noise model for Microsoft Kinect™ cameras that
we have already used for segmenting RGB-D images (see Chapter 3). It
depends on the measured distance z to pi:

εd(z) = n
√

2 σ(z), (5.1)

with σ(z) = 0.00263z2 − 0.00519z + 0.00755, (5.2)

where n is the subsampling factor applied, i.e., using only every n-th
row and column for constructing the quad mesh. If both distance
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and occlusion checks pass, we add a new quad. Otherwise, holes
arise. After construction, we simplify the resulting mesh by removing
unused vertices. We evaluate different subsampling factors in the
experimental evaluation in Section 5.4.

5.3.2 Multilateral Filtering

Naturally, sensor measurements are affected by noise. Especially depth
images suffer from distance-dependent noise and quantization effects.
In order to compensate for local noise in depth measurements, we
apply a filter for smoothing both the points and their normals while
preserving edges in the sensed geometric structures. The formulation
of our filter is motivated by the concept of multilateral filtering (Butt
and Rajpoot, 2009) and measures the similarity of points w.r.t. their
position, surface orientation, and appearance. We use the same filter
as in Section 3.4.4. In this pipeline, we filter both a point pi and its
normal ni over its 1-ring-neighborhood Ni, i.e., all points that are
directly connected to pi by an edge in the mesh. As in Section 3.4.4,
three weights α, β, and γ can be used to adjust the behavior of the
filter. Equally weighting distance, surface normal and color deviation
term already achieves considerable smoothing while preserving edges
and corners (α = β = γ = 1). Depending on the desired smoothing
level, we extend the point neighborhood to include the neighbors of
neighbors and ring neighborhoods farther away from the point. We
include several parameterizations of the bilateral in the experimental
evaluation in Section 5.4.

5.3.3 Approximate Normal and Covariance Estimates

In order to estimate local surface normal and covariance matrix of a
point, we directly extract its local neighborhood from the topology in
the mesh instead of searching for neighbors. We compute the normal
ni for a point pi directly on the mesh as the weighted average of the
plane normals of the NT faces surrounding pi (extracted from the
topology):

ni =
∑NT

j=0(pj,a − pj,b)× (pj,a − pj,c)

‖∑NT
j=0(pj,a − pj,b)× (pj,a − pj,c)‖

, (5.3)

with face vertices pj,a, pj,b and pj,c. We then compute the local covari-
ance matrix Σi as done by Segal et al. (2009):

Σi = Rni

(
ε 0 0
0 1 0
0 0 1

)
Rni

T (5.4)

with a rotation matrix Rni so that ε reflects the uncertainty along the
approximated local surface normal ni. The intuition behind this is
that we assume the point to lie on the approximated surface while
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not knowing where the point is lying on the surface. The lower the
uncertainty ε the more we assume local planarity around measured
points. Consequently, with a low value (0 < ε ≤ 10−3), the registration
error to be minimized (introduced in the following) converges to a
plane-to-plane error metric.

5.3.4 Surface-to-Surface Alignment

In order to align, respectively, two approximated surfaces and two
organized point clouds P and Q, we follow the same approach as in
the context of 3D mapping with MAVs: we search for closest neighbors
in Q for points pi ∈ P and iteratively minimize the distances between
the found matches. Instead of minimizing the point-to-point distances
d(T)

ij = qj−T pi of the set of found correspondences C to determine
the transformation T as in the original Iterative Closest Point algo-
rithm (Besl and McKay, 1992), we use the generalized error metric
introduced by Segal et al. (2009). It generalizes over the different avail-
able error metrics (point-to-point, point-to-plane, plane-to-plane) and
thus takes into account information about the underlying surface. The
Generalized-ICP (GICP) models the distribution

d(T)
ij ∼ N

(
bj − Tai, ΣB

j + RΣA
i RT

)
where R is the rotation matrix of T under the assumption that both
points in P and points in Q are itself drawn from independent normal
distributions, i.e., pi ∼ N (p̂i, ΣP

i ) and qj ∼ N (q̂j, Σ
Q
j ). Given the

correspondences ij ∈ C, the optimal transformation T? best aligning P
to Q can then be found using maximum likelihood estimation (MLE):

T? = arg max
T

∏
ij∈C

p
(

d(T)ij

)
= arg max

T
∑

ij∈C
log
(

p
(

d(T)ij

))
' arg min

T
∑

ij∈C
d(T)ij

T(
Σ

Q
j + RΣP

i RT
)−1

d(T)ij .︸ ︷︷ ︸
= simplified Likelihood L(T)

(5.5)

The effect of minimizing Equation (5.5) is that corresponding points
are not directly dragged onto another, but the underlying surfaces rep-
resented by the local covariance matrices ΣP

i and Σ
Q
j . The covariance

matrices are computed so that they express the expected uncertainty
along the local surface normals at the points, see Equation (5.4).

In Chapter 4. we have used this approach for 3D SLAM with a light-
weight continuously rotating 3D laser scanner carried by a micro aerial
vehicle (MAV). In order to compensate for smaller inaccuracies in pair-
wise registration, we used multiple edges between neighboring poses
in the final trajectory optimization, where every single edge encoded
a surface-to-surface error correspondence using the error metric in
Equation (5.5). In contrast, in this chapter we no longer distinguish



138 registration and mapping for rgb-d cameras

vi−1 vi v0

i
i−1T

i
0T

Figure 5.3: Multiple edge connections. Example of connecting a frame at
vertex vi to the last frame vi−1 and the first frame v0. Instead of
using a single edge encoding the transformations (dashed lines),
we use one edge per point correspondence. Instead of repeatable
features, we use raw points and iteratively refine the matching.

between pairwise initial alignment and subsequent global optimiza-
tion. Instead, both the initial alignment in the local windows and the
global trajectory optimization in case of loop closures are formulated
in exactly the same multi-edge graph optimization approach.

5.3.5 Multi-Edge Graph Optimization

In a graph G(V , E), neighboring poses in the trajectory form the
vertices vi ∈ V and spatial constraints (transformations) between two
vertices vi and vj are represented by edges eij ∈ E . Instead of adding
only a single edge between two vertices that encodes a transformation
and the corresponding covariance matrix, we search for corresponding
points between the respective point clouds and add multiple edges,
one for each found correspondence (see Figure 5.3).

Each edge in the graph encodes two entities: a local contribution
to the measurement error e and an information matrix H which rep-
resents the uncertainty of the measurement error. The information
matrix is defined as the inverse of the covariance matrix, i.e., it is
symmetric and positive semi-definite. For the error measurement be-
tween, respectively, two vertices vi and vj and the correspondence pair
(pi,m, pj,n), we use the point-to-point difference vector and approxi-
mate its information matrix using the error generalized error metric
from Equation (5.5):

mean eij,mn(
i
jT) = pj,n − i

jT pi,m, (5.6)

and Hij,mn(
i
jT) =

(
Σ

Pj
m + RΣPi

n RT
)−1

. (5.7)

The effect is that every edge contributes its approximate surface-to-
surface error term to the system information matrix—thus automati-
cally giving lower influence on incompatible or false correspondences
and quickly leading to alignment even in case of larger initial displace-
ments.
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For the actual optimization, we follow an iterative procedure by 1. es-
timating correspondence pairs for all (or a subset of) points pi,m ∈ Pi
in Pj for every two vertices (vi, vj) that are to be connected and 2. op-
timizing the resulting linearized system for a maximum of ten inner
iterations. We repeat these two steps for a maximum of ten outer
iterations. For a fast initial coarse alignment in early and an accu-
rate refinement in later outer iterations, we use a linearly decreasing
distance threshold for correspondence pairs, starting with 2 m (∞ in
the first iteration) and going to two times the expected local noise
as defined in Equation (5.1). In every outer iteration step, the graph
is optimized using dense Cholesky decomposition and Levenberg-
Marquardt within the g2o framework (Kümmerle et al., 2011). For both
inner and outer iterations, we stop when the system has converged.
Convergence in graph optimization (inner iterations) can be detected
based on the changes in both view poses and system error as well as
the damping factor applied by Levenberg-Marquardt. For detecting
convergence in the overall graph refinement in the outer iterations, we
check whether the view pose connectivity and the correspondences be-
tween connected view poses have changed. When no more changes are
found and the inner optimization has converged, we stop optimizing
the trajectory.

5.3.6 Local Window Alignment

In order to estimate a rough initial pose estimate for a newly ac-
quired frame, standard SLAM procedures would first register the new
frame against the last (key) frame, and then search for possible loop
closures for a subsequent global optimization of the estimated trajec-
tory. Instead, we determine a local window of neighboring poses and
simultaneously align the new frame against all frames acquired at
poses within the local window. Referring to Figure 5.4, for a pose at
vi we search for closest poses (i.e., camera origins) in 3D. The found
candidates are checked for a similar viewing direction by means of
the angle between the camera z axes. This rough initial check suffices
since the following alignment accurately deals with overlapping and
non-overlapping measurement volumes. We define the local window
to contain 1. the last acquired frame and the last acquired key frame,
respectively, as well as 2. all poses within a radius r around the camera
origin w.r.t. the current pose estimate that have a similar orientation.
In order to obtain constant-time initial alignments, we additionally
use an upper limit of w for the number of neighboring poses in the
local window and sample the matches in between neighboring frames
to keep both the number of vertices and the number of edges in the
constructed subgraph constant.

Once the local window is determined, the newly acquired frame
is aligned to all frames in the local window by estimating only the
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Figure 5.4: Local window alignment as opposed to pairwise alignments.
Aligning a frame (x-axis red, y-axis green, and z-axis red) to
multiple other frames tends to be more stable and to drift less.
In this example of a camera moving along a circular trajectory,
the local window around the vertex vi includes the last frame (at
vi−1) and the starting pose v0 upon loop closure.

pose of the frame being aligned. The other poses are fixed during
optimization. In contrast to pairwise registration, this one-to-many
alignment is more stable and tends to drift less (see the experimental
evaluation in Section 5.4). Moreover, it allows for efficiently detecting
loop closures and possible inconsistencies in the trajectory estimate as
described next.

5.3.7 Loop Closure Detection and Global Optimization

Our primary mean for detecting loop closures is to inspect the poses
found in the local window. Naturally, if a similar pose is found that
has been acquired long ago (in terms of time and frame index), a loop
closure is detected. Since our local initial alignment is quite stable
without considerable drifts, loop closures can be easily detected as
long as the camera trajectory is bound to a single room. In larger
environments, drifts in the local alignments accumulate and more
sophisticated means for recognizing previously visited places are
needed, e.g., using visual features (Cummins and Newman, 2010;
Lynen et al., 2014; Lowry et al., 2015), 3D features (Steder et al., 2011;
Magnusson et al., 2009b; Bosse and Zlot, 2013), a combination of both,
or even detected objects in the scene and relative poses in between
them (Finman et al., 2015).

Once, the local window contains an earlier pose along the trajectory,
we compare the transformations obtained from the alignment in the
local window with those in the so far built global graph. In case of
conflicts, e.g., larger jumps in the estimated pose or no convergence
in the optimization, we trigger an alignment in an extended local
window. This extended window includes the 1-ring neighborhood of
the local window. For the alignment, all poses in the local window are
now optimized, and only the poses in the extended border (i.e., in the
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1-ring neighborhood) are fixed. If the extended local window contains
earlier poses or shows conflicts after local alignment, global trajectory
optimization is triggered.

The global optimization of the trajectory follows the same principle
as the local alignment. In order to save processing time, however,
the global graph does not contain all poses but only a limited set of
keyframes.

5.3.8 Keyframe Selection

Several strategies exist to select whether or not to add a new key frame,
e.g., adding every n-th frame, applying rotational and translational
thresholds (Konolige and Agrawal, 2008; Lim et al., 2011; Strasdat et al.,
2011), or applying thresholds on registration error variances or the
number of matched features (Henry et al., 2012). Middelberg et al.
(2014), for example, do not only inspect the number of inliers in the
matching but also their distribution over the image, and add a new
keyframe if the majority of inliers lie in the upper left, upper right,
bottom left, or bottom right part of the image.

We apply a rotational threshold and a translational threshold as
fixed upper limits in order to avoid larger distances between key
frames even if the alignments in between are good. In addition, we
use a measure based on matching quality and uncertainty along the
dimensions of the transformation. After the local alignment of a newly
acquired frame, we inspect the determined transformation T to the
last keyframe and compute an estimate of the uncertainty. We use the
approximation by Censi (2007) to compute the covariance matrix:

ΣT ≈
(

∂2L
∂x2

)−1
∂2L
∂c∂x

Σ(z)
∂2L
∂c∂x

T (
∂2L
∂x2

)−1

, (5.8)

where L is the simplified likelihood function in Equation (5.5), c de-
notes the individual found correspondences C between the two point
clouds Pi and Pj, and Σ(c) is the covariance of the correspondence
pairs. Stückler and Behnke (2014) use the same approximation to ob-
tain a measure of matching quality and pose uncertainty. Note that
in Equation (5.8), the relative transformation between two view poses
is not represented as a homogeneous transformation matrix T , but in
a parameterized form x = (t, q)T with translation t and rotation by
the unit quaternion q ∈H. We then follow the approach of Kerl et al.
(2013) to compute an entropy-based measure

H (T , ΣT) ∝ ln (|ΣT |) , (5.9)

using the determinant of ΣT . The entropy of the current transformation
(against the last key frame) is then compared to the stored entropy
of the last key frame (when it was added). If the ratio between the
two entropy measures falls below a predefined threshold, the last (not
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the currently aligned) frame is added as a key frame, and the local
alignment is repeated. A similar strategy is followed by Lim et al.
(2014) but with direct thresholding and computing statistics on the
Fisher information.

5.3.9 Point Subsampling and Correspondence Filtering

An important aspect in the alignment is determining correspondences
between frames. Every such correspondence will contribute in the
form of an edge to both subgraph and global graph optimization.
In order to use only a small number of correspondences without
loosing much information, we follow a multi-stage strategy: we first
subsample query points from the frame to be aligned and then reject
found correspondences that are unlikely to contribute to the alignment.

We sample query points from two distributions: uniformly over the
rows and columns of the image and uniformly in normal space. The
intuition behind the latter is that we want to draw samples from all
surface orientations in the scene so as to robustify the alignment along
all dimensions. Note that the sampled set of query points is stored for
later correspondence searches if the frame is added as a keyframe.

In order to search for corresponding points in the other frames, we
first project each query point into the camera coordinate frame of the
target frame and check whether it is visible by frustum culling (May
et al., 2009). If the query point lies within the view frustum of the
target frame, we use the closest point in the smoothed mesh of the
target point cloud. The resulting set of correspondences is then filtered
again 1. to remove false correspondences that can negatively affect the
alignment, and 2. to further reduce the number of correspondences.
We remove correspondences that include surface boundary points (e.g.,
introduced by occlusions), and apply filters on the residual correspon-
dence pairs that remove 1. pairs whose point-to-point distance exceeds
the median point-to-point distance over all correspondences, 2. pairs
whose local surface normal orientations considerably deviate, and
3. pairs that contain the same matching point in the target frame. In
the latter case, only the pair with the smallest point-to-point distance
is kept. The local surface normals are considered to avoid that points
with normals pointing in opposite directions form a correspondence.

5.4 experiments and results

In order to assess the performance of our approach, we use the datasets
and error metrics from the publicly available RGB-D SLAM Benchmark1

by Sturm et al. (2012).

1 http://vision.in.tum.de/data/datasets/rgbd-dataset

http://vision.in.tum.de/data/datasets/rgbd-dataset
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Pairwise Mesh Registration Local Alignment∗∗∗

Mesh Registration∗ + Filtering∗∗ (n=4) + Filtering (n=4, k=4)

Dataset n=1 n=2 n=4 k=1 k=2 k=3 k=4 w=2 w=3 w=4 w=5 w=10

fr1_xyz 0.204 0.216 0.199 0.192 0.172 0.159 0.156 0.119 0.087 0.068 0.052 0.041

fr1_rpy 0.197 0.205 0.189 0.181 0.175 0.160 0.162 0.127 0.101 0.099 0.081 0.059

fr1_desk 0.303 0.313 0.324 0.235 0.218 0.207 0.201 0.165 0.138 0.108 0.094 0.084

fr1_desk2 0.457 0.436 0.429 0.324 0.301 0.281 0.256 0.152 0.129 0.117 0.102 0.096

fr1_room 0.383 0.375 0.390 0.281 0.262 0.239 0.241 0.189 0.148 0.120 0.098 0.084

fr1_360 0.831 0.802 0.806 0.651 0.612 0.495 0.492 0.271 0.229 0.191 0.171 0.162

fr1_teddy 0.102 0.148 0.114 0.101 0.099 0.098 0.098 0.089 0.085 0.081 0.078 0.078

fr1_plant 0.143 0.152 0.141 0.135 0.136 0.131 0.131 0.111 0.083 0.074 0.059 0.052

fr2_desk 0.198 0.192 0.201 0.152 0.148 0.138 0.139 0.091 0.072 0.051 0.039 0.030

fr3_long_office_ . . . 0.103 0.124 0.101 0.093 0.093 0.091 0.089 0.071 0.060 0.055 0.041 0.034

Avg. improvement — −1.5% 1% 20% 24% 31% 32% 52% 61% 66% 72% 75%
∗ Mesh Registration: the input images are subsampled by using only every n-th row and column, e.g., n = 4 corresponds to a 160×120 image.
∗∗ Filtering: the local neighborhood used by the multilateral filter is sequentially expanded to include the 1 to k-ring neighrborhoods.
∗∗∗ Local alignment: the window size w determines the number of (closest) vertices used for optimization of the subgraph.

Table 5.1: Relative pose error (RPE) in initial alignments (without global optimization), RMSE of RPE (∆) in m/s with ∆ = 1 s
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5.4.1 Accuracy of Local Alignments

For measuring the drift in initial alignments (without global optimiza-
tion), we use the relative pose error (RPE) proposed by Sturm et al.
(2012). It computes the root mean square error (RMSE) of the trans-
lational errors between the estimated poses and the corresponding
ground truth poses in an interval ∆. We use ∆ = 1 s to measure the
drift in meters per second (m/s). For different datasets, we compare
the results in terms of the RPE for different processing steps and pa-
rameters. In particular, we focus on the effect of subsampling the input
image (in order to reduce processing time), filtering the approximated
surfaces (to smooth the underlying data), and the size of the local win-
dow. We report all results in Table 5.1. Note that in these experiments,
global trajectory optimization is disabled.

For all processing steps and parameter sets, we computed the aver-
age translational drifts and compared them with the average drift of
the plain pairwise registration as a baseline to obtain an average im-
provement. The subsampling experiments indicate that, since both the
query points and the found correspondences are already drastically
sampled, the effect of subsampling the input image in the course of
approximate surface reconstruction is only minor. For this reason, we
have chosen to process 160× 120 images (n = 4) to reduce computa-
tions in the pre-processing steps which are conducted for every single
frame.

In contrast, smoothing the underlying data (and thus also the surface
normals used in the alignment) significantly improves the alignments
and reduces the translational drift. In most of the datasets, a larger por-
tion of the data is not sensed on the object of interest (e.g., the teddy,
the plant, or the desks), but on environmental structures such as walls
farther away from the sensor. Therefore, the respective depth measure-
ments are more affected by quantization effects. With an increasing
smoothing factor (the included k-ring neighborhoods), the multilateral
filter can effectively smooth over the emerging depth discontinuities
while preserving edges. We achieved the best results with k = 4 and
suggest to not use ring neighborhoods farther away (i.e., k ≥ 5), since
especially the local surface normals become too inaccurate and details
will be smoothed away. Overall, an improvement of roughly 30 % can
be achieved for pairwise registration if the data is smoothed before
alignment.

Compared to pairwise registration that only uses the last keyframe
(i.e., w = 1), using a local window for the alignment drastically
reduces the drift. The more other frames are used in the alignment,
the more stable and accurate the estimated pose becomes. However,
this improvement comes at the price of optimizing a larger subgraph
(see Figure 5.5). Since the average improvement does not considerably
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Figure 5.5: Average runtimes of the local alignment (per frame), measured
over all datasets (with 10 complete runs per dataset) on a single
core of an Intel Core i7-3740QM CPU (2.70GHz).

increase for larger local windows, we use a window size of w = 5 as
it allows locally aligning new frames at roughly 10 Hz.

5.4.2 Trajectory Optimization and Global Alignment

In a final series of experiments, we used our complete pipeline with
global trajectory optimization enabled. We subsample the point clouds
with n = 4 in the approximate surface reconstruction, include all
local neighbors for smoothing up to ring k = 4, and initially align
newly acquired point clouds in a local window of size of w = 5. For
measuring the errors in the final optimized trajectory, we use the
absolute trajectory error (ATE) (Sturm et al., 2012). It determines a
transformation best aligning the estimated trajectory and the ground
truth trajectory in order to compute errors between individual frames
regardless of the used base coordinate frame.

In the first series of experiments, We compare both our local and
our global alignment approaches to DVO-SLAM by Kerl et al. (2013),
MRSMAP by Stückler and Behnke (2014), RGB-D SLAM by Endres et al.
(2012b) and Endres et al. (2014) and KinFu, the open source implemen-
tation of KinectFusion by Newcombe et al. (2011) which is available in
the Point Cloud Library PCL. Since we have not been able to produce
better results than Kerl et al. (2013) in our experiments, we compare
against the values reported. As in the case of the translational drift,
we report the RMSE in Table 5.2 with example results in Figure 5.6.

Naturally, our multi-view registration approach cannot outperform
sophisticated state-of-the-art dense visual SLAM methods specifically
designed for RGB-D data. For example, both DVO-SLAM (Kerl et al.,
2013) and MRSMAP (Stückler and Behnke, 2014) apply a coarse-to-
fine registration on different resolutions. In contrast, we use only the
initially sampled subsets of points and the found matches during
the alignment. Hence, our alignment neglects details such as smaller
objects on the tables or texture details in general. This is reflected in a
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(a) fr3_office with detail views of a larger object (bear) and smaller objects (mugs)

(b) fr1_desk (c) fr1_desk2 (d) fr1_room

(e) fr1_xyz (f) fr1_rpy (g) fr1_360

(h) fr1_plant (i) fr1_teddy (j) fr2_desk

Figure 5.6: RGB-D SLAM results. Shown are the acquired RGB-D point clouds
aligned using the determined poses (top view). The poses are vi-
sualized using the respective coordinate frames (x-axis red, y-axis
green, and z-axis blue). In addition, we visualize the estimated
camera trajectory as a black line connecting consecutive poses.
All maps and trajectories are globally consistent.
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Dataset Ours
(local)

Ours
(global)

DVO-

SLAM∗
MRS-

MAP∗
RGB-D

SLAM∗
KinFu∗

fr1_xyz 0.051 0.013 0.011 0.013 0.014 0.026

fr1_rpy 0.131 0.028 0.020 0.027 0.026 0.133

fr1_desk 0.052 0.028 0.021 0.043 0.023 0.057

fr1_desk2 0.081 0.039 0.046 0.049 0.043 0.420

fr1_room 0.142 0.073 0.053 0.069 0.084 0.313

fr1_360 0.254 0.082 0.083 0.069 0.079 0.913

fr1_teddy 0.082 0.090 0.034 0.039 0.079 0.154

fr1_plant 0.051 0.025 0.028 0.026 0.091 0.598

fr2_desk 0.090 0.046 0.017 0.052 — —

fr3_long_ . . .0.043 0.037 0.035 — — 0.064

Average 0.097 0.046 0.034 0.043 0.054 0.297
∗Results as reported by Kerl et al. (2013).

Table 5.2: Absolute trajectory error (ATE) in comparison, RMSE in m

slightly higher ATE for our approach(es). The higher error stems from
minor local inaccuracies in the overall globally consistent trajectory
estimates. Still, we get a better ATE in two datasets (fr1_desk2 and
fr1_plant).

While, on average, DVO-SLAM (Kerl et al., 2013) and MRSMAP (Stück-
ler and Behnke, 2014) outperform the other approaches, our global
alignment comes in third and achieves a lower average ATE than both
RGB-D SLAM (Endres et al., 2012b) and KinFu. Most notably, however,
is that our local alignment approach (without global optimization),
achieves very good initial trajectory estimates without the need of
optimizing more than a local window. Hence, we believe that our
approach has a large potential for inspiring related approaches and
for contributing to other SLAM pipelines.

In a second series of experiments, we have used the synthetic dataset
of Handa et al. (2014). It contains four sequences of simulated RGB-D

images in the a synthetic living room scene. Two versions of each
sequence are available, one with the original simulated RGB-D images
(used here for visualization purposes) and one with simulated noise
that is used in the evaluation. We show a typical point cloud with
simulated noise (1st point cloud from the sequence kt0) in Figure 5.7
together with the filtered point cloud extracted from the approximated
mesh. As can be seen, initially the point clouds are quite noisy and
contain a considerable amount of jump edges and spurious measure-
ments at depth discontinuities respectively. The cloud extracted from
the approximate mesh is considerably smoother and does not contain
any spurious measurements along jump edges. Points caused by depth
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(a) Noisy point cloud (b) Mesh vertices

Figure 5.7: Noise and filtering: example of a noisy point cloud (a) and a
filtered cloud (b). The validity checks in the surface reconstruction
reliably filter out the jump edges, while the multilateral filtering
efficiently smooths the data.

discontinuities are reliably filtered out by the edge validity checks
in the mesh reconstruction while the local noise is smoothed by the
multilateral filter. As a result, the difference between the rendered and
the noisy point is negligible.

Since they are simulated in a synthetic environment, the datasets
can serve different purposes ranging from visual odometry over SLAM

to surface reconstruction. As in the case of the RGB-D-SLAM Benchmark
by Sturm et al. (2012), we focus on the global trajectory error (ATE)
to estimate the accuracy of our trajectory estimates. We compare our
results to DVO-SLAM by Kerl et al. (2013), RGB-D SLAM by Endres et al.
(2012b) and Endres et al. (2014), MRSMAP by Stückler and Behnke (2014),
Kintiniuous by Whelan et al. (2012), and ElasticFusion by Whelan et
al. (2015). We report the detailed results for the four sequences in
Table 5.3. In addition we show visualizations of the aligned point
clouds in Figure 5.8 and Figure 5.9. While we used the sequences of
noisy point clouds in the experiments, we used the rendered point
clouds without noise for visualization purposes in Figures 5.8 and 5.9.
For comparison, we included all results reported by Whelan et al.
(2015). In addition, we use the publicly available implementations of
DVO-SLAM, RGB-D SLAM, and MRSMAP (in contrast to Kintinuous and
ElasticFusion all CPU-only). Since in some of the implementations the
focal length is hard-coded, we patched them to include the proper
focal lengths for the datasets (481.20 for the x-axis and -480.00 for the
y-axis). Furthermore, since neither of the approaches explicitly handles
jump-edges, we included our approximate surface reconstruction and
the bilateral filtering to remove spurious points along jump edges
and to locally smooth the measurements. As can be seen in the table,
especially for the MRSMAP-based approach considerably better results
can be achieved using these pre-processing steps.

Whereas ElasticFusion and Kintinuous achieve the best results in
terms of the ATE, it is to be noted that our approach with the global op-
timization compares well and, in particular, is not considerably worse
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Absolute trajectory error (RMSE) in m

Method kt0 kt1 kt2 kt3
Li

te
ra

tu
re
∗

DVO SLAM 0.104 0.029 0.191 0.152

RGB-D SLAM 0.026 0.008 0.018 0.433

MRSMap 0.204 0.228 0.189 1.090

Kintiniuous 0.072 0.005 0.010 0.355

ElasticFusion 0.009 0.009 0.014 0.106

Im
pl

. DVO SLAM∗∗ 0.102 0.031 0.186 0.141

RGB-D SLAM∗∗ 0.026 0.015 0.019 0.257

MRSMap∗∗ 0.072 0.051 0.123 0.259

O
ur

s Local alignment 0.462 0.251 0.249 0.531

Global alignment 0.082 0.043 0.176 0.148
∗As reported by Whelan et al. (2015).
∗∗With approximate surface reconstruction and bilateral filtering.

Table 5.3: Results for the synthetic dataset by Handa et al. (2014) as reported
in the literature (top), with public CPU-only implementations
with pre-processing using approximate surface reconstruction and
multilateral filtering (middle) and ours.

than the other approaches. With the local alignment alone (global
optimization disabled), poses can be reliably determined in smaller
windows, but the overall trajectories tend to show inconsistencies re-
flected in a high ATE. With global optimization enabled, the approach
lines up with the other methods with an average performance, i.e.,
neither being the best nor the worst method for a particular dataset
sequence. For the sequences kt0, kt1, and kt2 we obtain accurate pose
estimates and globally consistent maps of the living room. If at all,
minor inconsistencies arise, e.g., in the kt0 sequence where several
frames only show a single wall, i.e., no distinctive geometric structure.
Since our method is purely based on 3D measurements and neglects
color in the registration the television screen is not correctly mapped
(see Figure 5.8). In case of kt1 and kt2 not even minor inconsistencies
arise and both maps appear correct (see Figure 5.9). Only in case of kt3
a major inconsistency arises at the upper wall where the loop in the
estimated trajectory is not correctly closed. In our current implemen-
tation, we only use 3D point matches (i.e., closest points in 3D space).
It is expected that additionally matching visual keypoints and feature
descriptors extracted in the RGB image and augmenting the multi-edge
graph with the found matches will considerably increase the accuracy
in situations as the one described above. That is, the surface-to-surface
correspondences also work in scene geometries without textures while
the keypoint-to-keypoint matches also work in scenes with texture but
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Figure 5.8: Result for the kt0 dataset: shown are the aligned point clouds
and the estimated trajectory (left) as well as detail views showing
minor inconsistencies (right).

(a) kt1 (b) kt2 (c) kt3

Figure 5.9: Results for datasets kt1, kt2 and kt3. Although the ATE for kt2
is higher, kt3 is the only sequence for which we do not obtain a
globally consistent map.

low geometrical detail. However, it remains a matter of future work to
evaluate such a combination.

5.5 local window alignment for mapping with mavs

In Chapter 4, newly acquired 3D laser scans where first initially reg-
istered against the scan and then globally aligned with all acquired
scans. With the expected result of improving the accuracy of initial
alignments, in this series of experiments the pairwise registration from
Section 4.3.5 is compared to the local window alignment presented
in this chapter. For this purpose, we use two of the datasets from
Chapter 4—the dataset recorded in the motion capture volume and the
dataset of the Frankenforst facade—and compute trajectory estimates
using 1. pairwise registration using approximate covariance estimates
(without global optimization), 2. local window alignment (without
global optimization), and 3. global optimization of the trajectory ob-
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tained from pairwise registration. As parameters for the local window
alignment, we do not use subsampling in the approximate surface
reconstruction (n = 1) and a fully connected mesh (i.e., no distance
and angle checks) in order to process all data points. Furthermore,
we do not use bilateral filtering (k = 0) since the points are already
very accurate compared to the noisy RGB-D images. As a side note is
to remark that filtering only makes sense within scan lines and not
over several scan lines. For the alignment, we use a local window size
of k = 10, i.e., a newly aggregated point cloud is aligned to the closest
10 other point clouds.

For comparison, we also include the results reported in an experi-
mental evaluation of different registration algorithms for registering
the acquired 3D scans in local egocentric maps (Razlaw et al., 2015).
The egocentric maps are represented as local multi-resolution surfel
maps (Stückler and Behnke, 2014; Droeschel et al., 2014c). They model
the surroundings of the MAV in a grid in which the grid cell sizes
increase with an increasing distance from the MAV. Each grid cell
represents the underlying surface with a surfel—a Gaussian represent-
ing the position, orientation and flatness of the sensed environmental
structures falling into the cell. Registering newly acquired scans with
the so far built map, and incrementally extending and updating the
map with the aligned scan is naturally more robust than pairwise
registration (see the SLAM approach using ICP-based incremental reg-
istration by Holz and Behnke, 2010). The incremental registration
algorithms under comparison are ICP, GICP, normal distributions trans-
form (NDT) and the surfel registration of Droeschel et al. (2014b).
Furthermore, we include the accuracy of the initial trajectory estimate
obtained from visual odometry (VO). Whereas the visual odometry
trajectory estimate has been used as is in the evaluation, for the other
registration algorithms parameters were optimized with respect to
the ATE in the motion capture volume dataset using hyper parameter
optimization (see Razlaw et al., 2015). The optimized parameters for
each algorithm include, amongst others, the maximum number of iter-
ations and other termination criteria, the distance thresholds between
corresponding points, and the resolution and the number of levels in
the built multi-resolution surfel map. In addition, algorithm-specific
parameters such as the grid resolution in NDT or the parameters for
the soft assignments in the surfel-based registration of Droeschel et al.
(2014b).

Since no ground truth information is available for the outdoor
dataset recorded at Gut Frankenforst, we focus the comparison on two
measures of map quality and the average runtime for processing one
range scan. The map quality measures include the mean map entropy
from Section 4.5 and a ground truth registration error. The latter is
obtained by first creating a ground truth map of the environment.
For the motion capture volume, a dense 3D laser scan was recorded
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Ground truth Map entropy Runtime∗

Method Reg. error [m] mean [] mean [s]

M
ot

io
n

ca
pt

ur
e

vo
lu

m
e VO 0.005 840 −2.520 13 —

ICP 0.003 698 −3.6524 1.665 ± 0.386
GICP 0.003 100 −3.4111 1.353 ± 1.192
NDT 0.002 149 −3.7414 5.249 ± 1.736
Surfel 0.002 039 −3.8087 0.046 ± 0.014

Pairwise reg. 0.003 212 −3.4135 0.030 ± 0.010
Local window 0.001 927 −3.8058 0.109 ± 0.038
Global opt. 0.001 919 −3.8096 0.492 ± 0.103

Fr
an

ke
nf

or
st

fa
ca

de

VO 0.272 254 −2.330 82 —

ICP 0.066 056 −2.654 60 1.026 ± 0.382
GICP 0.064 002 −2.555 05 0.319 ± 0.235
NDT 0.069 701 −2.633 96 2.062 ± 0.712
Surfel 0.093 749 −2.813 87 0.350 ± 0.152

Pairwise reg. 0.091 376 −2.490 55 0.039 ± 0.013
Local window 0.042 143 −2.723 91 0.131 ± 0.041
Global opt. 0.042 096 −2.731 82 0.586 ± 0.172

∗ Runtimes are measured per 3D scan being registered.

Table 5.4: Map quality and runtime evaluation results.

over several full rotations of the scanner while standing still. For
the Frankenforst dataset, a highly accurate georeferenced 3D point
cloud was recorded by the Institute of Geodesy and Geoinformation
at the University of Bonn. The first 3D point cloud of each dataset was
then registered to the ground truth map (manual initial alignment
and registration-based fine alignment) in order to obtain a common
reference frame for comparison. After aligning all point clouds using
the different approaches, the resulting map obtained from all aligned
point clouds is registered against the ground truth map using ICP.
The obtained RMSE from this registration provides a good measure of
map correctness and can reveal both minor inaccuracies and major
inconsistencies. All results are shown in Table 5.4.

As expected, the accuracy of aligning a newly aggregated point
cloud in the local window is considerably better than for the pair-
wise registration. In fact, the subsequent global optimization is only
slightly better in both map quality measures. Visually inspecting the
results shows no differences between the aggregated clouds. That is,
if processing time is limited and the area to be mapped is small, local
window alignment is already sufficient to produce highly accurate
and globally consistent maps. For larger environments, however, it is
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expected that global optimization becomes necessary just as for the
RGB-D sequences in Section 5.4.2.

5.6 conclusions

We have presented a complete pipeline for aligning pairs and se-
quences of RGB-D images. Our approach is based on approximating
the underlying surface in the form of a quad mesh, and using the
mesh for fast feature estimation (normals, covariances, etc.) and edge-
aware smoothing. The alignment makes use of graph optimization
with multiple edges between vertices, where every edge encodes a
surface-to-surface error constraint, inspired by the Generalized-ICP
algorithm (Segal et al., 2009). In order to reduce computation time, we
efficiently subsample both points and used correspondences between
frames for almost constant-time local alignments. Our experiments
show that aligning newly acquired images in a local window as op-
posed to pair-wise alignment with the last frame reduces drift and
achieves low relative pose estimation errors. Optimizing the complete
graph after loop closures and as a last processing step yields globally
consistent alignments and trajectory estimates.

In experiments, we could show that our approach is competitive
with state-of-the-art approaches in terms of pose estimation accuracy.
Naturally, our approach cannot be as good as sophisticated (RGB-D)
SLAM approaches in terms of detail and speed (e.g., compared to the
multi-resolution surfel maps of Stückler and Behnke (2014) or the
dense models based on signed distance functions). However, our ap-
proach, and especially the surface-based alignment in local windows,
have a huge potential for contributing to other SLAM frameworks.
Moreover, the multi-edge approach can be easily extended to include
point-to-point correspondences, e.g., from matching visual or 3D fea-
tures.

In another set of experiments, the presented approach could suc-
cessfully be applied to the 3D laser scanner data captured by a MAV
in the previous chapter. By aligning newly aggregated point clouds
against a local window of point clouds instead of only the previous
point cloud, the resulting transformations were considerably more
accurate than those achieved with pairwise registration. At the same
time, keeping both the number of point clouds in the local window
and the number of correspondences between connected point clouds
constant allows for near constant time updates and, overall, real-time
local alignment of point clouds. Compared to other approaches, the
resulting alignment achieves a good trade-off between processing time
and pose accuracy.

In its current implementation, our approach distinguishes only local
and global alignment. A logical next step would be to extend it to
a completely hierarchical approach (Olson, 2009; Zhang et al., 2012a)
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with the complete trajectory and subgraphs on higher levels, and
sub-regions and single points in images on lower levels so as to allow
the alignment to correct individual measurements and inaccuracies
within 3D point clouds.



6 D I SCUSS ION AND CONCLUS ION

The cornerstones of this thesis are simplicity and efficiency. The Stanford
Encyclopedia of Philosophy1 distinguishes two principles of simplicity
in the context of Ockham’s Razor: 1. the epistemic principle (“if theory
T is simpler than theory T∗, then it is rational to believe T rather than
T∗.”), and 2. the methodological principle (“if T is simpler than T∗ then
it is rational to adopt T as one’s working theory for scientific purposes.”).
Whereas “cases where competing hypotheses explain a phenomenon equally
well are comparatively rare” in many fields of science (Holsinger, 1981;
Baker, 2007), technical problems where competing methods solve a
problem equally well are quite common especially in robotics and
computer vision research. Moreover, publicly available datasets and
benchmarks allow to directly compare methods for a particular task,
situation, and input. This comparability of methods makes it possible
to identify the best method available for a given task and given criteria.

A particularly important criterion for methods in the domain of
robotics research is efficiency, i.e., not only producing the expected
results but also producing these results as fast as possible in order
to avoid longer interruptions in the robot’s workflow. Following the
definition of Merriam-Webster2, efficiency is “the ability to do something
or produce something without wasting materials, time, or energy”. With the
above in mind, Ockham’s razor can be re-interpreted as

if method M is equally performing but faster than M∗ for a problem
it is rational to use M to solve it.

Since the runtime of (software) components primarily depends
on the complexity of the implemented algorithms, the underlying
idea of the thesis was to find solutions which are particularly simple
and efficient by 1. minimizing both the number of computations and
the amount of data being processed, as well as 2. using methods of
particularly low computational complexity for all processing steps.
Consequently, all methods presented in this thesis share several re-
appearing components such as subsampling the input data where
possible, focusing processing on relevant regions and subsets of data,
and using efficient approximations where possible. Furthermore, the
addressed problems have been carefully analyzed to deduce assump-
tions and simplifications. Whereas these assumptions may easily fail
for general problems in the respective domains, they are valid for

1 Stanford Encyclopedia of Philosophy: http://plato.stanford.edu
2 “Efficiency.” Merriam-Webster.com. Accessed January 7, 2016.

155

http://plato.stanford.edu


156 discussion and conclusion

the particular problem being addressed and the environment and
situation in which the problem has to be solved.

Three problems have been addressed in the context of this thesis:

1. Object perception for mobile manipulation, where the main task
is to identify regions in three-dimensional (3D) input data that
belong to task-relevant objects,

2. Scene segmentation, where the main task is to segment 3D input
data into planes and other geometric primitives, and

3. Registration and mapping, where the main task is to align 3D

data acquired from different positions and orientations, and to
build 3D maps of the environment.

Object Perception for Mobile Manipulation

For detecting regions of interest and potential object candidates in
mobile manipulation tasks, a real-time 3D processing pipeline is pre-
sented in Chapter 2. The pipeline exploits the organized image-like
data structure and the assumption that (manipulable) objects are lo-
cated on top of horizontal support surfaces such as tables, shelves,
or the ground. Using a particularly efficient approximation of local
surface normals the data is first enriched with information about the
local orientation of the sampled surfaces. Processing then focuses
on points with vertical surface normals since these are most likely
being sampled on horizontal surfaces. After detecting the dominant
horizontal planes in the extracted points, all points in the input data
(except for the inliers of the found planes), are checked for lying above
the found planes and within the planes’ boundaries. Clustering these
points results in image regions where we assume manipulable objects
to be. Whereas this result is provided in the original resolution of
the input data, the processing steps in between work on subsampled
data in order to considerably reduce the amount of computations.
The pipeline also features several pre-processing steps such as the
subsampling but also filters to cope with special error and noise char-
acteristics of the used 3D cameras. In addition, post-processing steps
and potential applications are presented where the pipeline is used to
detect, localize, and grasp objects.

Particular achievements of this approach are that table top seg-
mentation pipelines designed for accurate high-resolution laser scan-
ning (Rusu, 2009) have been made applicable to particularly noisy time-
of-flight (ToF) cameras as well as consumer color and depth (RGB-D)
cameras, and that the pipeline allowed for real-time object detection.
In the reported applications, the pipeline was used for real-time object
perception and grasp planning for unknown objects (Stückler et al.,
2013b), and for detecting and grasping automotive parts on pallets for
automating kitting tasks (Holz et al., 2015b).
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Scene Segmentation

In order to compute complete segmentations of 3D input point clouds,
another particularly efficient pipeline is presented in Chapter 3. The
underlying idea of the pipeline is to approximate and segment the
sampled surface. In the first step, an approximate surface reconstruc-
tion is deduced from the organized measurement topology in depth
camera images. Local features such as surface normals are approxi-
mated directly on the approximated surface. In the next step, both
the points and the features of the surface are smoothed using an
edge-aware multilateral filter. Finally, the filtered surface is segmented
using region growing. Different models are presented that allow for
segmenting the scene into planar patches, locally smooth regions, or
other geometric primitives such as cylinders and spheres. Experiments
have shown that the pipeline compares well to state-of-the-art segmen-
tation methods in terms of segmentation accuracy while allowing to
compute segmentations at high frame rates.

Especially planar segmentations are particularly useful as an effi-
cient representation of the scene as a compound of dominant planar
environmental structures as well as for mapping and place recognition
using such compounds (Fernández-Moral et al., 2016).

Registration and Mapping

A wide variety of tasks such as navigation and manipulation planning
require for more information about the environment than is contained
in a single image or 3D point cloud. It becomes necessary to acquire
data from different positions and orientations for a complete coverage
of the scene. In order to register multiple point clouds in a common
coordinate frame and to build a complete 3D map, the thesis presents
different methods for different types of input data.

Particularly challenging is the registration of point clouds acquired
by a fast rotating 3D laser scanner due to the different point densities in
the cloud: a high density within the individual scan lines and a larger
angular region without measurements in between. There are two
ways for registering point clouds with non-uniform point densities:
1. aggregating multiple point clouds in local maps in order to increase
the point density, or 2. using alternative means for registration that
can cope with the non-uniform densities. Both strategies constitute
problems in their own right.

The former strategy is followed by Droeschel et al. (2014b) who
build local egocentric maps in which newly acquired point clouds
are aggregated using either visual odometry as a relative pose esti-
mate or registration once the map contains information of a certain
number of point clouds, i.e., the density is higher. Registering the
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local maps allows for building globally consistent maps of the whole
environment (Droeschel et al., 2014c).

In this thesis, we addressed the latter strategy. To compensate for the
non-uniform densities, a pipeline is presented in Chapter 4 that uses
the approximate surface reconstruction from the scene segmentation
pipeline for approximating the sampled surface from the measure-
ment topology and computing registration-relevant features on the
deduced surface mesh. The point clouds are then aligned using a
robust surface-to-surface error metric and using the features com-
puted on the mesh. The pipeline allows for reliably registering the
acquired point clouds even when the scanner is rotating fast and the
angle between scan lines gets large (e.g., 15°). For creating consistent
maps, the initial pose estimates from the registration are globally opti-
mized. The optimization uses point correspondences between point
clouds and the same surface-to-surface error metric as in the initial
registration. Experimental results show that the pipeline can reliably
register scans and build maps from laser scans acquired in-flight with
a micro aerial vehicle (MAV). Moreover, a comparative experimental
evaluation (Razlaw et al., 2015) has shown that the two strategies and
methods, i.e., the approach of Droeschel et al. (2014b) and the method
presented in Chapter 4, compare well in terms of both registration
error and runtime.

For registering sequences of RGB-D images, an extension of the
mapping pipeline is presented in Chapter 5 that features additional
steps to reduce the amount of data, the amount of correspondences
between point clouds, and the amount of point clouds during (initial)
registration in order to gain efficiency and make the pipeline applicable
to RGB-D cameras. After computing and smoothing the approximate
surface reconstructions and the local features, point clouds are initially
aligned in local windows of neighboring poses and point clouds,
respectively. In case of loop closures or after processing all point
clouds, the graph of poses is completely optimized to obtain a globally
consistent 3D map of the environment. Experiments have shown that
both the initial alignment and the final optimization achieve reliable
and accurate registrations that compare well with state-of-the-art
methods. Moreover, even without the global optimization the local
window alignment allows accurate and consistent 3D mapping for
shorter sequences making it possible to register RGB-D images at 10 Hz.

In all of the aforementioned approaches it could be shown that
by carefully analyzing the problem at hand, and deducing common
assumptions and simplifications simple but efficient approaches can be
derived that do not only compare well to state-of-the-art approaches
but are also particularly efficient. All approaches can process 3D point
clouds at high frame rates without parallelization or the use of a
graphics processing unit (GPU).
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Outlook and Future Work

In this thesis, the selected problems have been addressed on their own.
Possible starting points for future work are to combine the methods
and findings for addressing new applications and problem domains.
The planar segmentation of the scene (Chapter 3), for example, can be
coupled with the surface-to-surface alignment (Chapter 4) in order to
align 3D point clouds solely based on the dominant planar surfaces
in the scene and to build planar maps as a particularly efficient rep-
resentation especially for man-made environments. Registration of
3D planar patches has been done, for example, by Pathak et al. (2010)
and was found to be particularly efficient and robust. A very recent
work going into this direction, which already uses the planar segmen-
tation presented in this thesis, is the approach of Fernández-Moral
et al. (2016). Fernández-Moral et al. segment the scene into planes and
represent the connectivity of planes in a graph. Matching the graphs
and subgraphs of connected planes allows them to align the 3D point
clouds and also to recognize the scene and detect loop closures.

Another interesting line of thought is to combine the object segmen-
tation with registration and mapping so as to build semantic object
maps. Rusu et al. (2009b), for example, build semantic maps in house-
hold environments that, in addition to furniture and environmental
structures, explicitly map objects using either geometric primitives
or triangular meshes. Silberman et al. (2012) do not only detect the
surfaces and objects in scenes but also deduce physical support rela-
tions. However, Silberman et al. only work on single color and depth
images, and do not yet build complete 3D maps of surfaces, objects,
and support relations. A first work into this direction in the context
of this thesis was to combine the registration of 3D point clouds with
segmenting support surfaces and objects in order to classify points and
represent them with different resolutions in the final 3D map (Wurm
et al., 2011). In the voxel-based octree representation, objects were
modeled in a high resolution of only few millimeters, the tables with a
resolution of 1 cm and the background in a resolution of 5 cm. That is,
the space-efficient final representation focused on objects while keep-
ing obstacle-relevant information about support surfaces and other
environmental structures. However, the objects were not tracked over
time in order to update the respective parts of the model. A recent
work in this direction is the approach of Stückler and Behnke (2015)
who segment the scene and simultaneously build a 3D map in which
coherent parts can be individually moved and updated.

Yet another application of the presented work is to combine the
object detection pipeline with the region growing-based segmentation
so as to further segment detected object clusters. The segmentation
into geometric primitives, for example, allows for decomposing the
detected objects into shapes and functional parts as well as to represent
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objects as compounds of shape primitives (Holz et al., 2014a). Also,
objects touching each other or being stacked onto one another end up
in a single cluster in the object detection pipeline. Segmenting locally
smooth surfaces, convex shapes, or shape primitives allows splitting
the clusters to better describe the actual composition of the cluster.

In addition to the aforementioned combinations, the presented meth-
ods can be extended individually. The object segmentation pipeline,
for example, stopped after identifying regions in the input data that
contain objects. As has been seen in two applications, the segmenta-
tion approach can be easily integrated into complete object perception
pipelines, e.g., to recognize or classify the found objects. Especially
for the recognition of objects a wide variety of local and global fea-
ture descriptors have been proposed, see the tutorial of Aldoma et al.
(2012a) for an overview of publicly available implementations. Global
feature descriptors describe complete objects rather than parts of it
(as done by local descriptors) and, hence, need a prior segmentation
of the scene. For a recognition task, the objects segmented using the
presented approach can easily be described by global feature descrip-
tors such as the viewpoint feature histogram (VFH) of Rusu et al. (2010)
or the improved OUR-CVFH by Aldoma et al. (2012b). Lai et al. (2011),
for example, present a tree-based semantic representation for jointly
segmenting, recognizing and localizing objects.

All approaches presented in this thesis have been designed for
real-time processing on a single CPU core without any parallelization.
If, however, a GPU or multiple CPU cores are available most of the
approaches can be parallelized in order to gain additional speed-ups.
Orts-Escolano et al. (2015), for example, use the approximate surface
reconstruction from Chapter 3 and implemented a variant where the
individual triangles or quads are processed in parallel on a GPU. Both
the segmentation and the mapping pipelines can be considerably
accelerated when parallelizing all processing steps.

The registration and mapping pipeline as presented in Chapter 5

only distinguished between a local window for the initial alignment of
new 3D point clouds and the complete graph to optimize all estimated
poses. A possible extension to the pipeline is to address the registration
and mapping problem in a completely hierarchical approach with
several levels (Olson, 2009; Zhang et al., 2012a) where new 3D point
clouds are aligned in a local window that represents a region of the
environment. On an upper level, regions are aligned to each other to
represent the complete environment. The global optimization then
processes a considerably reduced amount of data, but the changes
done on the upper level need to be propagated to other levels. On
lower levels, subsets of the point clouds such as individual scan lines
can be are re-aligned using updated surface statistics after optimizing
the pose of neighboring point clouds in the region. Since the point
clouds in the MAV application are aggregated solely based on pose
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estimates by visual odometry the exact pose of a scan line in the point
cloud may be inaccurate and could be refined. On the lowest level,
individual measurements can be corrected, e.g., to compensate for
noise. A particularly challenging problem in such an approach is to
decide when to do changes and which changes need to be made in
which level.

Finally, a particularly prominent line of thinking (see, for example,
the recent workshop on real-time simultaneous localization and map-
ping (SLAM) systems at ICCV 2015) is that of combining (deep) learning
techniques with real-time SLAM systems to simultaneously build, seg-
ment, and label 3D environment representations. Salas-Moreno et al.
(2014), for example, segment planar surface patches in RGB-D images
on a GPU and propagate found segments in a real-time dense SLAM

system. As a result, the environment can be efficiently represented
solely using planar patches and a set of surfels representing the non-
planar regions in the scene. Similarly, Stückler et al. (2015) combine
object class segmentation using random forests with a real-time SLAM

system. A central question for future developments is how to improve
SLAM using semantic information and how to improve the extraction
of semantic information using the results of the SLAM system, i.e.,
having the two approaches augment and improve each other rather
then letting them run in parallel.
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