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Abstract
We consider certain classes of diffusion and McKean-Vlasov processes and provide
non-asymptotic quantifications of the longtime behavior using coupling methods.
The thesis is divided into three main parts.

In the first part, we consider Rd valued diffusions of type

dX
t

= b(X
t

) dt + dB
t

.

Assuming a geometric drift assumption, we establish Kantorovich contractions with
explicit contraction rates for the transition kernels. The results are in the spirit of
Mattingly and Hairer’s extensions of Harris’ theorem, but do not rely on a small set
condition. Instead we use reflection coupling and adjust the underlying cost func-
tion of the Kantorovich distance in a very specific way to the diffusion model. The
resulting rate is given explicitly in terms of a one-sided Lipschitz bound on the drift
coefficient and the growth of a chosen Lyapunov function. Consequences include
exponential convergence in weighted total variation norms, gradient bounds, bounds
for ergodic averages, and Kantorovich contractions for nonlinear McKean-Vlasov pro-
cesses in the case of sufficiently weak but not necessarily bounded nonlinearities. We
also establish quantitative bounds for subgeometric ergodicity assuming a subgeo-
metric drift condition.

In the second part, we show that a related strategy can also be applied for a class
of infinite-dimensional and degenerate diffusion processes. Given a separable and real
Hilbert space H and a trace-class, symmetric and non-negative operator G : H ! H,
we examine the equation

dX
t

= �X
t

dt+ b(X
t

) dt+
p
2 dW

t

, X0 = x 2 H,

where (W
t

) is a G-Wiener process on H and b : H ! H is Lipschitz. We assume
that there is a splitting of H into a finite-dimensional space Hl and its orthogonal
complement Hh such that G is strictly positive definite on Hl and the nonlinearity b
admits a contraction property on Hh. Assuming a geometric drift condition, we derive
a Kantorovich contraction with an explicit contraction rate for the corresponding
Markov kernels. Our bounds on the rate are based on the eigenvalues of G on the
space Hl, a Lipschitz bound on b and a geometric drift condition.

In the third part, we present a novel approach of coupling two multidimensional and
nondegenerate Itô processes (X

t

) and (Y
t

) which follow dynamics with different drifts.
The coupling is sticky in the sense that there is a stochastic process (r

t

), which solves
a one-dimensional stochastic differential equation with a sticky boundary behavior at
zero, such that almost surely |X

t

� Y
t

|  r
t

for all t � 0. The coupling is constructed
as a weak limit of Markovian couplings. We provide explicit, non-asymptotic and
longtime stable bounds for the probability of the event {X

t

= Y
t

}.
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0 Introduction

We consider certain classes of diffusion and McKean-Vlasov processes and provide
non-asymptotic quantifications of the longtime behavior using coupling methods.
This thesis is divided into three main chapters.

In the first chapter, we consider Rd valued diffusion processes of type

dX
t

= b(X
t

) dt + dB
t

. (0.1)

Assuming a geometric drift condition, we establish contractions of the transition ker-
nels in Kantorovich (L1 Wasserstein) distances with explicit constants. We retrieve
constants that are explicit in parameters which can be computed with little effort
from one-sided Lipschitz conditions for the drift coefficient and the growth of a chosen
Lyapunov function. Consequences include exponential convergence in weighted to-
tal variation norms, gradient bounds, bounds for ergodic averages, and Kantorovich
contractions for nonlinear McKean-Vlasov diffusions in the case of sufficiently weak
but not necessarily bounded nonlinearities. We also establish quantitative bounds
for subgeometric ergodicity assuming a subgeometric drift condition.

In the second chapter, we consider a class of infinite-dimensional and possibly
degenerate diffusions of type

dX
t

= �X
t

dt + b(X
t

) dt + dW
t

on a separable Hilbert space H, where W
t

is a G-Wiener process and G a trace-class,
symmetric and non-negative operator. We assume there is a splitting of H into a
finite-dimensional space Hl and its orthogonal complement Hh such that G is strictly
positive definite on Hl and the nonlinearity b admits a contraction property on Hh.
Assuming a geometric drift condition, we derive a Kantorovich contraction with an
explicit contraction rate for the corresponding Markov transition functions. The
bounds on the rate are based on the eigenvalues of G on the space Hl, a Lipschitz
bound on b and a geometric drift condition. In comparison to the diffusions considered
in the first chapter, the major difficulty here is that the driving noise is possibly
degenerate. The results are obtained by a direct coupling approach.

In chapter three, we present a novel approach of coupling two multidimensional and
nondegenerate diffusions (X

t

) and (Y
t

) which follow dynamics with different drifts.
Our coupling is sticky in the sense that there is a stochastic process (r

t

), which solves
a one-dimensional stochastic differential equation with a sticky boundary behavior at
zero, such that almost surely |X

t

� Y
t

|  r
t

for all t � 0. The coupling is constructed

1



0 Introduction

as a weak limit of Markovian couplings. We provide explicit, non-asymptotic and
longtime stable bounds for the probability of the event {X

t

= Y
t

}. Sticky couplings
generalize the coupling approach for nonlinear diffusions from the first chapter.

Before we present the contributions of this thesis in detail, we recall some basics.
In Section 0.1 we introduce transportation distances. These distances are then used
to formulate contraction inequalities for Markov transition functions in Section 0.2.
We discuss a few of the many remarkable consequences such inequalities have and
make general remarks on how to establish them. In Section 0.3 we recall Harris
type theorems which are among the standard tools for studying ergodic properties of
Markov processes and can be used to derive contraction inequalities. The statements
in Sections 0.1 - 0.3 are formulated for general Markov chains taking values in a Polish
space. In Section 0.4 we get more concrete and discuss existing coupling approaches
for diffusions in Rd.

All statements in this chapter are essentially known and references are provided in
each section. Let us fix a Polish space (S, d) with Borel �-algebra B(S).

0.1 Transportation distances
We introduce transportation distances for measures. The set of probability measures
on B(S) is denoted by P(S). Let µ, ⌫ 2 P(S). A measure � 2 P(S ⇥ S) is called a
coupling of the measures (µ, ⌫) if

�(A⇥ S) = µ(A) and �(S ⇥ A) = ⌫(A) for any A 2 B(S).

The set of all such couplings is denoted by C(µ, ⌫). Let c : S ⇥ S ! [0,1) be a
measurable function. The optimal transportation cost of two measures µ, ⌫ 2 P(S)
w.r.t. the cost function c is defined by

W
c

(µ, ⌫) = inf

�2C(µ,⌫)

Z
c(x, y) �(dx dy) 2 [0,1]. (0.2)

If c is lower semicontinuous, then there is always a coupling � 2 C(µ, ⌫) which is
optimal in the sense that W

c

(µ, ⌫) =
R
c(x, y) �(dx dy), cf. [149, Theorem 4.1]. We

give examples of typical cost functions.

Example 1 (Kantorovich distance). Let ⇢ : S ⇥ S ! [0,1) be a metric on S which
is lower semicontinuous. Then W

⇢

is a metric on the set

P
⇢

(S) =

⇢
µ 2 P(S) :

Z
⇢(x, y)µ(dy) < 1 for some x 2 S

�
,

cf. [149, Section 6]. The distance W
⇢

is called Kantorovich distance w.r.t. ⇢. In the
sequel, we often work with lower semicontinuous functions ⇢ which are only semi-
metrics, i.e. which satisfy ⇢(x, y) = ⇢(y, x) for all x, y 2 S and ⇢(x, y) = 0 if and
only if x = y. In this case, the definition of W

⇢

remains meaningful and W
⇢

is a
semimetric on P

⇢

(S).

2



0.2 Kantorovich contractions

Example 2 (Lp Wasserstein distances). Let p 2 [1,1). More generally, the Lp

Wasserstein distance of two measures µ, ⌫ 2 P(S) is defined by

Wp

(µ, ⌫) = inf

�2C(µ,⌫)

✓Z
d(x, y)p �(dx dy)

◆1/p

.

One can show that (Wp,Pp

(S)) is a Polish space, where Pp

(S) is the set of measures
µ 2 P(S) such that

R
d(x, y)p µ(dy) < 1 for some, and hence all, x 2 S. Moreover,

if a sequence of measures (µ
n

) in Pp

(S) converges towards a measure µ 2 Pp

(S),
then µ

n

! µ weakly, cf. [149, Section 6].

Example 3 (Total variation distance). The total variation distance is a Kantorovich
distance w.r.t. ⇢(x, y) = I

x 6=y

, i.e.

kµ� ⌫kTV = sup

A2B(S)
|µ(A)� ⌫(A)| = W

⇢

(µ, ⌫).

Transportation distances have a long and comprehensive history. The statements
and definitions in this section are based on the book [149, Chapter 1 and Chapter
6]. There, one can also find a historic outline on the development of transportation
distances.

0.2 Kantorovich contractions
Fix an index set I = N or I = R+. In the following, (p

t

)

t2I denotes a Markov
transition function on S, i.e. a family of probability kernels p

t

: S ⇥ B(S) ! [0, 1]
such that p0(x, ·) = �

x

(·) and p
s

p
t

= p
s+t

for any s, t 2 I, where (p
s

p
t

)(x,A) :=R
p
s

(x, dy) p
t

(y, A). We use the notation µp
t

(dx) =

R
p
t

(y, dx)µ(dy) for measures
µ 2 P(S) and p

t

f(x) =

R
f(y) p

t

(x, dy) for functions f : S ! R, whenever the
latter integral is meaningful. Given a Markov transition function (p

t

)

t2I , one can
show that for any µ 2 P(S) there is a unique probability measure P

µ

on the product
space SI

= {! : I ! S} such that the canonical process (X
t

)

t2I , Xt

(!) := !(t), is
a Markov process with transition function (p

t

) and P
µ

� (X0)
�1

= µ, cf. e.g. [52]. In
this chapter, we always assume that the occurring transitions functions are Feller,
i.e. that for any f 2 C

b

and t 2 I we have that p
t

f 2 C
b

, where C
b

is the set of
continuous and bounded functions f : S ! R.

We are interested in contraction inequalities for Markov transition functions. We
say that (p

t

) satisfies a Kantorovich contraction w.r.t. a semimetric ⇢ : S ⇥ S !
[0,1), if there is a constant c 2 (0,1) such that

W
⇢

(µp
t

, ⌫p
t

)  e

�ct W
⇢

(µ, ⌫) holds for any µ, ⌫ 2 P(S) and t 2 I. (0.3)

The constant c is called contraction rate. Inequalities of this type already appear
in a work of Dobrushin in the 70s, cf. [40]. If ⇢ is a metric, then the largest c

3



0 Introduction

such that (0.3) holds is sometimes called Wasserstein curvature of the Markov chain
w.r.t. ⇢ [89, 124] which is motivated by a relation to the concept of Ricci curvature
on Riemannian manifolds, cf. [3, 150]. In order to draw from (0.3) conclusions on
the longtime behavior of the Markov process, we impose the following additional
assumption.

Assumption 1. The function ⇢ is lower semicontinuous. Moreover, there are a
measurable function V : S ! R+ and constants C1, C2, C3,� 2 (0,1) such that

d(x, y)  C1 ⇢(x, y), (0.4)
⇢(x, y)  C2 (1 + V (x) + V (y)) , (0.5)
p
t

V (x)  C3 + e

��t V (x), (0.6)

for any x, y 2 S and t 2 I.

The function V is called Lyapunov function. We discuss the role of such functions
later on in more detail. For the moment one might just think of it as an integrability
constraint ensuring that sup

t2I Ex

[V (X
t

)] < 1. The main purpose of imposing these
conditions is the following statement:

Consequence 1. If (0.3) and Assumption 1 hold true for a semimetric ⇢, then
there exists a unique measure ⇡ 2 P(S) such that ⇡p

t

= ⇡ for any t 2 I. Moreover,
⇡ 2 P

V

(S) ⇢ P
⇢

(S) and

W1
(µp

t

, ⇡)  C1 W⇢

(µp
t

, ⇡)  C1 e

�ct W
⇢

(µ, ⇡) (0.7)

for any µ 2 P(S) and t 2 I.

Here, P
V

(S) is the set of measures µ 2 P(S) such that
R
V dµ < 1. The proof

is given in the appendix for the readers convenience, cf. page 139. Consequence 1
demonstrates that, in the setting of Assumption 1, one cannot expect inequality (0.3)
to hold for an arbitrary Markov transition function. We discuss sufficient conditions
in the next section. For the moment, we assume that inequality (0.3) holds for a given
Markov transition function together with a semimetric ⇢ satisfying Assumption 1, and
discuss a few consequences.

Given a function g : S ! R, we define the Lipschitz constant of g w.r.t. ⇢ by

|g|Lip(⇢) = sup

⇢
|g(x)� g(y)|

⇢(x, y)
: x, y 2 S, x 6= y

�
2 [0,1] (0.8)

and write Lip(⇢) for the set of measurable functions g satisfying |g|Lip(⇢) < 1. The
following result is taken from [70, Proposition 2.8]. Similar statements occur in
[25, 152, 124, 31].

4



0.2 Kantorovich contractions

Consequence 2 (L2
(⇡) spectral gap). If ⇡ is reversible w.r.t. (p

t

), i.e. if
Z

I
A⇥B

(x, y) ⇡(dx) p(x, dy) =

Z
I
B⇥A

(x, y) ⇡(dx) p(x, dy) for any A,B 2 B(S),

and if Lip(⇢) \ L1
(⇡) is dense in L2

(⇡), then
����ptf �

Z
f d⇡

����
2

L

2(⇡)

 e

�2ct

����f �
Z

f d⇡

����
2

L

2(⇡)

for any f 2 L2
(⇡) and t � 0.

A sufficient condition for the density assumption is that (S, |·|) is a separable
Banach space and d(x, y) = |x� y|, cf. [70, Theorem 2.15].

Given a probability measure ⇡, a typical question in practice is how to estimate
integrals

R
fd⇡. One strategy to approach such a problem is to construct a Markov

chain (X
n

) admitting ⇡ as the unique invariant measure and then to argue that the
ergodic averages converge, i.e. that

1

n

nX

k=1

f(X
n

) !
Z

fd⇡ for n ! 1.

Following the work of Joulin and Ollivier [91, 90, 123], we present a non-asymptotic
quantification of this convergence based on Kantorovich contractions.

Consequence 3. Let g 2 |g|Lip(⇢). Then, for any n 2 N,
�����Ex

"
1

n

nX

k=1

g(X
n

)

#
�
Z

g d⇡

�����  1

cn
|g|Lip(⇢)

Z
⇢(x, y) ⇡(dy),

Var

x

"
1

n

nX

k=1

g(X
n

)

#
 1

2(1� e

�c

)n
|g|2Lip(⇢)

Z Z
⇢(y, z)2 p

n

(x, dy) p
n

(x, dz).

A proof can be found in [91]. Related statements for diffusions are given in [51].

The Kantorovich contraction (0.3) has many other interesting consequences and it
is impossible to give a full account here. Hopefully the few examples already show
that it is interesting to examine contraction inequalities of type (0.3). Notice that
for the above statements, ⇢ only needs to be a semimetric and the triangle inequality
is not needed.

Now we turn to the question how contractions of type (0.3) can be established.
Let us for the moment assume that I = N, i.e. that (X

n

)

n2N is a Markov chain
with one-step kernel p = p1. We call a probability kernel p̃ on S ⇥ S a coupling
for p, if �(x,y)p̃ 2 C(�

x

p
n

, �
y

p) for any x, y 2 S, i.e. if �(x,y)p̃ is a coupling of �
x

p and
�
y

p. In classical applications of coupling theory one often takes the ansatz of fixing

5



0 Introduction

a Kantorovich distance W
⇢

, e.g. the total variation distance, and then one tries to
construct a suitable coupling which yields an upper bound on W

⇢

(�
x

p
n

, �
y

p
n

) and
allows to conclude that W

⇢

(�
x

p
n

, �
y

p
n

) ! 0 for n ! 1. More generally, one can
also consider the underlying distance ⇢ as a variable parameter and look for suitable
combinations of couplings and distances. Assume that there exist a semimetric ⇢, a
constant c 2 (0, 1) and a coupling p̃, such that

˜L⇢(x, y)  �c ⇢(x, y) holds for any x, y 2 S, (0.9)

where ˜L := p̃� I denotes the generator associated with p̃. Then,

W
⇢

(µp, ⌫p)  (1� c)W
⇢

(µ, ⌫) holds for any µ, ⌫ 2 P(S).

We see that a contraction inequality can be obtained by aligning couplings and
distances such that (0.9) holds. A similar statement can be formulated for continuous-
time Markov processes, but there one needs to be more careful making sense of (0.9)
and one needs to impose some path regularity, cf. [26, Lemma A.6].

Up to the author’s knowledge, the ansatz of aligning couplings and distances in
such a way occurs first in the works [29, 28] by Mu-Fa Chen and Feng-Yu Wang in the
90s, see also [26]. There, the approach is used to retrieve bounds on spectral gaps for
elliptic operators. In the context of Kantorovich contractions, related approaches can
be found in the works of Mattingly, Hairer and Scheutzow [75, 69] and Eberle [50, 51].
Mattingly, Hairer and Scheutzow construct Harris type theorems in a general setup,
which allow to establish Kantorovich contractions for a large class of Markov processes
under verifiable assumptions. Eberle concentrates on a certain class of diffusions and
puts much effort in maximizing the contraction rate. Roughly speaking, the strategy
is to pick a reasonable Markovian coupling for the diffusions and then to construct
an underlying distance ⇢ such that (0.9) holds with c being “as large as possible”,
where ˜L denotes the generator of the coupling. We now present these results in more
detail and start with general Harris type theorems.

0.3 Harris type theorems
In this section, (X

n

)

n2N denotes a Markov chain on S with one-step kernel p and
generator L = p� I.

Harris type theorems are nowadays among the standard tools for studying ergodic
properties of Markov processes. The starting point for these theorems is the seminal
work [77] from T. E. Harris in the 50s. He investigated existence and uniqueness
of invariant measures for Markov chains on general state spaces. The main result is
that the Markov transition kernel p admits an, up to multiplication with constants,
unique invariant measure ⇡, if there is a set A ⇢ S such that P

x

[T
A

< 1] = 1 for
any x 2 S, where T

A

= inf{n � 1 : X
n

2 A}, and if there is a measure m 2 P(S)
together with ↵ 2 (0, 1) such that

inf

x2A
p(x,B) � ↵m(B) for any B 2 B(S). (0.10)

6



0.3 Harris type theorems

The latter condition is typically called small set or minorization condition and can
be interpreted as a local version of Doeblin’s condition, cf. [41, 42]. Harris formulated
the result actually under different conditions, but his conditions are equivalent to the
ones stated here, cf. [8, Corollary 2.1] and [125].

Nowadays, Harris’ type theorems typically use drift conditions to quantify the re-
currence behavior of the Markov process and combine them with small set conditions
to provide explicit bounds on the speed of convergence to equilibrium. In the case
of diffusions such a statement can be found in the work of Khasminskii [79, 96],
and in the general case it has been developed systematically by Meyn and Tweedie
[119, 120, 118]. For a historical overview, describing the development in more detail
and including references to authors which are not named here explicitly, we refer
the reader to the commentaries in [119, Chapter 9-13]. We now state a more recent
version of Harris’ theorem which is due to Mattingly and Hairer [75] and allows to
establish contraction inequalities. The first assumption is a geometric drift condition:

Assumption 2. There exists a measurable function V : S ! R+ and constants
C,� 2 (0,1) such that

LV (x)  C � �V (x) for any x 2 S. (0.11)

For given R 2 (0,1), we define the level set

A
R

:= {x 2 S : V (x)  R}.

If R > C/�, i.e. R = (1 + �)C/� for some � > 0, one can show that (0.11) implies
that E

x

[exp(

��

1+�

T
A

R

)] < 1 for any x 2 S. Notice that (0.11) implies (0.6) with
C3 = C/�.

Known result 1 (Harris’ theorem). If Assumption 2 holds true and if condition
(0.10) is satisfied for a set A

R

with R > 2C/� and corresponding ↵
R

2 (0, 1), then
there exist c

R

, ✏
R

2 (0,1) such that

W
⇢

(µp
n

, ⌫p
n

)  e�c

R

n W
⇢

(µ, ⌫) for all µ, ⌫ 2 P(S) and n 2 N,

where ⇢(x, y) = [1 + ✏
R

V (x) + ✏
R

V (y)] · I
x 6=y

. The constants are given explicitly by
c = � log(max(1 � ↵

R

/2, 1 � �, 1 � �
R

)), �
R

= ✏
R

(�R � 2C)/(1 + ✏
R

R) and ✏
R

=

↵
R

/(4C).

The statement is due to Hairer and Mattingly [75]. The formulation and constants
have been adapted and differ from the version given in the latter source. The proof
given in [75] is quite simple: The minorization condition implies a local contraction
in total variation distance, i.e.

W
⇢1(�xp, �yp)  (1� ↵

R

)W
⇢1(�xp, �yp) for any x, y 2 A

R

,

7



0 Introduction

where ⇢1(x, y) = I
x 6=y

. Moreover, because of (0.11) and R > 2C/�, there is �
R

2
(0, 1) such that

W
⇢2(�xp, �yp)  (1� �

R

)W
⇢2(�xp, �yp) for any (x, y) 62 A

R

⇥ A
R

,

where ⇢2(x, y) = [V (x) + V (y)] · I
x 6=y

. One can then consider a family of distances
⇢
✏

:= ⇢1+✏⇢2 and, choosing ✏ carefully, it is possible to establish a global contraction.

The result allows to establish global contractions based on local contractions in total
variation norm and a recurrence criteria in form of a geometric drift condition. On
locally compact state spaces the local contraction can often be established. We give
an example in the case of nondegenerate diffusion processes with values in Rd further
below. However, for Markov chains on infinite-dimensional spaces, the condition
might either be hard to verify or even false. Extending the result to a more general
setting, Mattingly, Hairer and Scheutzow designed a weak Harris’ theorem, where
the local contraction in total variation norm is replaced by a local contraction in a
possibly weaker distance. The main statement from [69] can be formulated as follows:

Known result 2 (Weak Harris’ theorem). Suppose that Assumption 2 is satisfied
for a continuous function V : S ! R+ and that there is a lower semicontinuous
semimetric d : S⇥S ! [0, 1] which is locally contracting for p, i.e. there is ↵ 2 (0, 1)
such that

W
d

(�
x

p, �
y

p)  ↵ d(x, y) for all x, y 2 S with d(x, y) < 1.

Moreover, assume that the levelset A = {x 2 S : V (x)  4C/�} is d-small, i.e. there
is � 2 (0, 1) such that

W
d

(�
x

p, �
y

p)  � for all x, y 2 A.

Then there exists c, ✏ 2 (0,1) such that

W
⇢

(µp
n

, ⌫p
n

)  e�cn W
⇢

(µ, ⌫) for any µ, ⌫ 2 P(S) and n 2 N,

where ⇢(x, y) =
p

d(x, y) (1 + ✏V (x) + ✏V (y)).

0.4 Diffusions

The statements in the latter sections have been formulated in an abstract setting.
Now we consider diffusion processes in Rd. First, we motivate why it is particularly
interesting to derive Kantorovich contractions with explicit contraction rates for such
processes. Afterwards, we discuss existing coupling approaches. In this section, |·|
and h·, ·i denote the euclidean norm and inner product on Rd respectively.

8



0.4 Diffusions

0.4.1 Motivation: Langevin equations

Assume that we are interested in a probabilty measure ⇡ 2 P(Rd

) determined by

⇡(dx) / exp (�U(x)) dx,

where U : Rd ! R is a smooth function satisfying
R
exp (�U(x)) dx < 1. Typical

questions in practice are how to generate samples from such a distribution or how
to approximate integrals

R
fd⇡ for which a direct computation might either not be

possible or feasible. Classical Markov chain Monte Carlo (MCMC) methods tackle
these question by constructing a Markov process (Z

t

) with transition function (p
t

)

admitting ⇡ as an invariant probability measure and such that �
x

p
t

! ⇡ for t !
1. For sufficiently large t, one can then use Z

t

as an approximate sample of ⇡.
Similarly, one can use ergodic averages 1

n

P
n

k=1 f(Zk

) to approximate integrals
R
fd⇡.

A comprehensive introduction into MCMC methods, including a historical overview,
can be found in [2].

Among the important dynamics used for these purposes are Langevin equations.
The Langevin equation describes in statistical physics the evolution of a particle in
Rd subject to damping, environmental influences and random collisions, cf. [53, 102].
In terms of stochastic differential equations (SDEs) the position (X

t

) and velocity
(V

t

) of the particle satisfy the equations

dX
t

= V
t

dt,

dV
t

= �� V
t

dt � m�1 rU(X
t

) dt +
p

2�m�1 dB
t

. (0.12)

Here, U : Rd ! R is a given potential, m 2 (0,1) denotes the mass of the particle,
� 2 (0,1) determines the friction and (B

t

) is a d-dimensional Brownian motion.
Closely related is the overdamped Langevin equation which is given by

dX
t

= �rU(X
t

) dt +
p
2 dB

t

. (0.13)

The latter equation is formally obtained from (0.12) by setting � = m�1 and passing
to the limit m ! 0, cf. e.g. [126]. One thing which makes the Langevin equations
(0.12) and (0.13) particularly interesting is that, under reasonable assumption on the
potential U , the unique invariant probability measures on R2d and Rd are given by
⇡ ⌦ N (0,m�1

) and ⇡ respectively. It is therefore not surprising that the dynamics
are the foundation for several MCMC techniques, see e.g. [136, 61, 36, 45, 15].

From this point of view it is particularly interesting to obtain explicit and sharp
bounds on the speed of convergence towards the invariant distribution. To this end,
there exist several approaches. One approach to study the speed of convergence
is based on functional inequalities, cf. e.g. [6] for results in this direction regarding
reversible diffusion processes and [148] for applications in non-reversible settings. We
focus in the following on direct coupling approaches.

9



0 Introduction

0.4.2 Couplings and Kantorovich contractions

We now consider diffusions in Rd of type

dX
t

= b(X
t

) dt + dB
t

, X0 = x0, (0.14)

where b : Rd ! Rd is locally Lipschitz continuous and (B
t

) is a d-dimensional Brow-
nian motion. We assume non-explosiveness. Thus, for any given Brownian motion
(B

t

) and any initial value x0 2 Rd, there is a unique and strong solution (X
t

) of
(0.14), i.e. a stochastic process with continuous trajectories such that, for almost
every trajectory, X0 = x0 and

X
t

�X0 =

Z
t

0

b(X
s

) ds + B
t

, t � 0.

If (X
t

) and (

˜X
t

) are solutions of (0.14) with the same initial value and w.r.t. the
same Brownian motion, then P [X

t

=

˜X
t

8t � 0] = 1. More generally, if (X
t

)

and (

˜X
t

) are solutions of (0.14) with the same initial value (but possibly defined on
different probability spaces), then the laws of the processes on C([0,1),Rd

) coincide.
The solution is a Markov process and we write (p

t

) and L =

1
2� + hb,ri for the

corresponding Markov transition function and generator respectively, cf. e.g. [87,
Chapter IV]. Given solutions (X

t

) and (Y
t

) of (0.14), a coupling of the processes is
a random variable (

˜X
t

, ˜Y
t

) with values in C([0,1),R2d
) such that the marginal laws

(

˜X
t

) and (

˜Y
t

) on C([0,1),Rd

) coincide with the laws of (X
t

) and (Y
t

) respectively.

We discuss conditions and approaches to establish Kantorovich contractions for
(p

t

). One possibility is to interpret (X
t

) as a discrete-time Markov process (X
n

)

n2N
and to apply general Harris type theorems for the one-step kernels p = p1. As we
have seen, two assumptions are needed for this: A drift condition and a minorization
condition. The drift condition can often be verified by elementary computations and
explicit bounds for the resulting constants can be obtained using the representation
of L as a second order differential operator. For processes of type (0.14) with locally
Lipschitz drift b satisfying a non-explosion criteria, the minorization condition (0.10)
holds true for any compact set A ⇢ Rd: One can argue that there is a continuous
and strictly positive density (x, y) 7! f(x, y) such that p1(x,B) =

R
B

f(x, y) dy for
any B 2 B, cf. [11, 10], and thus condition (0.10) is satisfied with m being the
uniform distribution on A and ↵ = �(A)min

x,y2A f(x, y) > 0, where �(A) denotes
the Lebesgue measure of the set A, cf. e.g. [101, Discussion after Remark 1.29].
However, the diameter of the set A

R

occurring in Harris’ theorem, see Known result
1 further above, typically depends on the dimension and trying to quantify ↵, one is
likely to end up with bounds which are exponentially small in the dimension, even
for seemingly well behaved drifts b. Moreover, the minorization condition is not
transparent in the sense that it is unclear how a perturbation of the drift b effects the
corresponding ↵ in Harris’ theorem. In this sense, Harris’ theorem is often applied
in a qualitative, rather then a quantitative way. A noteworthy exception is the work
[135] by Roberts and Rosenthal, who provide a way of quantifying the ↵ in the

10
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X
t

Y
t

Figure 0.1: Synchronous coupling of one-dimensional diffusions

minorization condition for diffusions of type (0.14) using coupling arguments. There,
the resulting ↵ is expressed in terms of “how much the drift b varies on the set A

R

”.
More explicitly, in one-dimension, the authors call a set C ⇢ R a “ [a, c]-medium set”,
if a  b(x)  c for any x 2 C. If A

R

is [a, c]-medium, the resulting ↵ given in [135]
depends on the difference D = c�a and vanishes exponentially fast for D ! 1. In a
multidimensional setting one can formulate similar statements, cf. [135, Theorem 9].
In the first part of this thesis, we go one step further and develop a Harris’ theorem
for diffusions where we replace the minorization condition by a one-sided Lipschitz
bound which yields more precise estimates in general. To this end, we now discuss
direct coupling approaches for diffusions.

A comprehensive discussion of couplings for diffusions has started in the 80s, cf.
[106, 107, 39, 27]. We recall two important couplings and applications regarding
contractions. Given initial values (x0, y0) 2 R2d and a d-dimensional Brownian mo-
tion (B

t

), we define a synchronous coupling of two solutions of (0.14) as a diffusion
process (X

t

, Y
t

) with values in R2d solving

dX
t

= b(X
t

) dt + dB
t

, X0 = x0,

dY
t

= b(Y
t

) dt + dB
t

, Y0 = y0,

i.e. both processes (X
t

) and (Y
t

) are driven by the same Brownian motion. Figure
0.1 shows a trajectory of a synchronous coupling for two one-dimensional diffusions.

Let us for the moment assume that there is c > 0 such that

hb(x)� b(y), x� yi  �c |x� y|2 holds for any x, y 2 Rd. (0.15)

11
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X
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d
ri
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d
rift

Figure 0.2: Diffusions inside a strictly convex potential

The condition is satisfied if b = �rU for a strictly convex function U 2 C2. Let
(X

t

, Y
t

) be a synchronous coupling. The definition of the coupling and (0.15) imply
that, for almost every trajectory, the difference process t 7! X

t

� Y
t

is continuously
differentiable and that

|X
t

� Y
t

|2  e

�2ct |x0 � y0|2 for any t � 0. (0.16)

This pathwise contraction implies in particular a Lp Wasserstein contraction for any
p 2 [1,1), i.e.

Wp

(�
x0pt, �y0pt)  e�ct Wp

(�
x0 , �y0) for any t � 0. (0.17)

A similar statement can already be found in the work of Mu Fa Chen and Shao Fu
Li [27] from 1989. If b = �rU for a C2 function U , then strict convexity is also a
necessary condition for (0.17) to hold, cf. the more recent result of von Renesse and
Sturm [150]. Let us stress two aspects: First of all, (0.16) also holds for solutions
(X

t

, Y
t

) of the deterministic dynamics

dX
t

= b(X
t

) dt, dY
t

= b(Y
t

) dt, (X0, Y0) = (x0, y0),

and therefore the driving Brownian motion plays no important role for the contraction
result. Secondly, synchronous couplings do not necessarily meet in finite time, cf.
[27]. Consider for example the case where b(x) = �c x with c > 0. A solution with
intial value x0 is given by X

t

= e�c tx0 + e

�ct

R
t

0 e
ct dB

s

. If (X
t

, Y
t

) is a synchronous
coupling, then, due to pathwise uniqueness, X

t

� Y
t

= e�c t

(x0 � y0). We see that
(X

t

, Y
t

) is an asymptotic coupling in the sense that X
t

� Y
t

! 0 for t ! 1, but,
unless x0 = y0, we have X

t

6= Y
t

for any t > 0.

We have seen that synchronous couplings are particularly useful if the underlying
deterministic dynamics admits a contraction property. Nevertheless, if the underlying
deterministic system is not globally contractive or if one wants to obtain bounds on
the total variation distance k�

x0pt � �
y0ptkTV, then purely synchronous couplings are

in general not a good choice.
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0.4 Diffusions

Figure 0.3: Reflection coupling of diffusions inside a double-well

Another important coupling for diffusions has been introduced by Lindvall and
Roger [107] in the 80s: Given initial values (x0, y0) 2 R2d and a d-dimensional Brow-
nian motion (B

t

), a reflection coupling of two solutions of (0.14) is a diffusion process
(X

t

, Y
t

) with values in R2d satisfying

dX
t

= b(X
t

) dt+ dB
t

,

dY
t

= b(Y
t

) dt+ (I � 2 e
t

he
t

, ·i) dB
t

for t < T,

Y
t

= X
t

for t � T,

(X0, Y0) = (x0, y0),

where T = inf{t � 0 : X
t

= Y
t

} is the coupling time and, for t < T , e
t

is the unit vec-
tor given by e

t

= (X
t

� Y
t

)/|X
t

� Y
t

|. Generalizations of this coupling for diffusions
on manifolds have been constructed in [32, 95]. Figure 0.3 shows a trajectory of a
reflection coupling for two one-dimensional diffusions inside a double-well potential
and Figure 0.4 shows such a coupling for two-dimensional Brownian motions without
drift in the plane.

A reflection coupling has many remarkable properties: One crucial property is that
the process r

t

:= |X
t

� Y
t

| satisfies almost surley the SDE

dr
t

= r�1
t

hX
t

� Y
t

, b(X
t

)� b(Y
t

)i dt+ 2 dW
t

, t < T, (0.18)

where (W
t

) is a one-dimensional Brownian motion, cf. e.g. [51]. In particular, the
driving noise (W

t

) has a direct impact on |X
t

� Y
t

|. Moreover, the question of whether
the two d-dimensional processes (X

t

) and (Y
t

) meet in finite time can be reduced to
a one-dimensional problem by considering (0.18) and, under relatively mild assump-
tions, they actually do so, cf. [107, Lemma 1] for a precise statement. In the case
b = 0, i.e. if one just considers Brownian motions without drift, reflection coupling is

13
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Figure 0.4: Reflection coupling of two-dimensional Brownian motions

optimal for the total variation distance, i.e.

k�
y0pt � �

x0ptkTV = E(x0,y0)[I(Xt

6= Y
t

)] for any t � 0, cf. [27].

We have seen that condition (0.15) implies a Lp Wasserstein contraction for the
corresponding Markov transition functions and that synchronous couplings provide
an elegant way of proving this. At least in the case p = 1, one can also use a reflection
coupling to show that (0.17) holds by exploiting (0.18). However, in this case we do
not have a pathwise contraction of |X

t

� Y
t

|, but only a contraction on average, i.e.
we have that E[|X

t

� Y
t

|]  e�ct |x0 � y0| for any t � 0.
Unfortunately, condition (0.15) is too restrictive for many applications. In the

recent works [50, 51], Eberle studies diffusion of type (0.14) assuming the condition
(0.15) only outside of a bounded set and derives Kantorovich contractions for the cor-
responding transition functions. The main result, cf. [51, Theorem 2.2 and Corollary
2.3], can be stated as follows:

Known result 3. Set

(r) := inf

⇢
2

hx� y, b(x)� b(y)i
|x� y|2

: x, y 2 Rd with |x� y| = r

�
.

Assume that (r) : (0,1) ! R is continuous, that
R 1

0 r(r)+dr < 1 and that

lim sup

r!1
(r) < 0. (0.19)
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Figure 0.5: Diffusions inside a double-well potential

Then, there is c 2 (0,1) such that for any t � 0 and any µ, ⌫ 2 P(S),

W
⇢

(µp
t

, ⌫p
t

)  e

�ct W
⇢

(µ, ⌫) and
W1

(µp
t

, ⌫p
t

)  2�(R0)
�1

e

�ct W 1
(µ, ⌫).

Here, ⇢(x, y) = f(|x� y|) where f is a strictly increasing, continuous and concave
function with f(0) = 0. The functions f , � and the rate c are given by

f(r) =

Z
r

0

�(s) g(s) ds, c�1
=

Z
R1

0

�(s)�(s) ds

�(r) = exp

✓
�1

4

Z
r

0

s(s)+ ds

◆
, �(r) =

Z
r

0

�(s) ds

g(r) = 1� 1

2

Z
r^R1

0

�(s)

�(s)
ds

�Z
R1

0

�(s)

�(s)
ds ,

and the constant R0, R1 2 (0,1) are given by

R0 = inf {R � 0 : (r)  0 8r � R} ,
R1 = inf {R � R0 : (r)R(R�R0)  �8 8r � R} .

Notice that the definition of  above differs from the definition given in [51] by a
factor �1.

The result yields explicit bounds on the contraction rate c and these bounds turn
out to be remarkable sharp in several situations, cf. [51, Lemma 2.9 and Remark 2.10]
for precise statements. Notice that the condition (0.19) is satisfied if b = �rU for a
C2 function U which is strictly convex outside of a bounded set. In particular, double-
well potentials (see Figure 0.5) are covered. For such potentials, the underlying
deterministic system is locally noncontractive and thus a Kantorovich contraction can
only be established by exploiting the noise. A reflection coupling is quite useful for
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this purpose, since by (0.18), the driving noise has a direct impact on r
t

= |X
t

� Y
t

|.
The idea leading to the above result is to use reflection coupling and then to carefully
construct a concave function f , such that f(|X

t

� Y
t

|) is contracting on average, i.e.
such that

E(x0,y0)[f(|Xt

� Y
t

|)]  e

�ct f(|x0 � y0|) for all t � 0. (0.20)

To this end, one may assume that f is an increasing and concave function with
f(0) = 0 so that (x, y) 7! f(|x� y|) is itself a distance. Assuming that f 2 C2, one
can apply Itô’s formula to f(r

t

) and conclude that, almost surely,

df(r
t

) = f 0
(r

t

) r�1
t

hX
t

� Y
t

, b(X
t

)� b(Y
t

)i dt + 2 f 00
(r

t

) dt + 2f 0
(r

t

) dW
t

 (f 0
(r

t

)(r
t

) r
t

+ 2f 00
(r

t

) ) dt + 2f 0
(r

t

) dW
t

for t < T

Thus, if f satisfies the inequality

f 0
(r)(r) r + 2f 00

(r)  �c f(r), for r 2 (0,1),

one can conclude (0.20). This ordinary differential (in)equality is solved explicitly
in [51] with a focus on maximizing the rate c. The resulting contraction is based
on two arguments. For small distances, (r) might be positive and thus one has to
choose f sufficiently concave, so that the noise provides a contraction on average. For
large distances, (0.19) implies that (r) is strictly negative and hence the underlying
deterministic system provides a contraction. This is reflected in choosing f to be
linear for large distances.

Notice that the combination of concave distance functions and reflection coupling
has been exploited by other authors before to obtain bounds on total variation dis-
tances, cf. e.g. [107, 33].

Finally, we remark that it is possible to construct “hybrid couplings” (X
t

, Y
t

) who
behave in some regions of the state space as reflection couplings and in other regions
like synchronous couplings. A rigoros way to define such couplings is given in [51,
Section 6]: Fix � > 0 and let (B1

t

) and (B2
t

) be independent d-dimensional Brow-
nian motions. Moreover, fix Lipschitz functions rc, sc : Rd ⇥ Rd ! [0, 1] satisfying
rc

2
+sc

2
= 1 and sc(x, y) = 1 for |x� y|  �. Let u 2 Rd be an arbitrary unit vector.

Then, the diffusion process (X
t

, Y
t

) with values in R2d solving the SDE

dX
t

= b(X
t

) dt + rc (U
t

) dB1
t

+ sc (U
t

) dB2
t

,

dY
t

= b(Y
t

) dt + rc (U
t

) (IdRd �2 e
t

he
t

, ·i) dB1
t

+ sc (U
t

) dB2
t

,

is a coupling of (0.21), where U
t

:= (X
t

, Y
t

), e
t

:= (X
t

�Y
t

)/ |X
t

� Y
t

| for |X
t

� Y
t

| > 0

and e
t

= u for |X
t

� Y
t

| = 0. Notice that the concrete choice of u is not relevant
for the dynamics, since rc(x, x) = 0. In [51] such couplings are used to establish
Kantorovich contractions for interacting particle systems. We demonstrate in this
thesis that such mixtures of synchronous and reflection couplings can be applied in
various situations to obtain explicit bounds on Kantorovich distances.
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0.5 Outline: Quantitative Harris type theorems for diffusions

0.5 Outline: Quantitative Harris type theorems for
diffusions

In the first main chapter, we discuss quantitative Harris type theorems for non-
degenerate diffusions and McKean-Vlasov processes on Rd. The results have been
distributed prior as a research paper on the online-portal ArXiv:

A. Eberle, A. Guillin, and R. Zimmer. Quantitative Harris type theorems for diffusions
and McKean-Vlasov processes. ArXiv e-print 1606.06012, June 2016

The article is a joint work with Andreas Eberle (University of Bonn) and Arnaud
Guillin (Université Blaise Pascal). Chapter 1 contains the article mostly as it has been
distributed on ArXiv subject to minor modifications in formulations and formatting.
One exception is, that the version presented here has an additional Section 1.6 which
is not part of the original article and gives slight extensions of the main results. In
this section, we give an outline of the main results with a focus on presenting ideas.
Mathematical precise statements and comparisons with the literature are given in
Chapter 1.

0.5.1 Diffusions

Let (B
t

) be a d-dimensional Brownian motion. We consider diffusions of type

dX
t

= b(X
t

) dt + dB
t

(0.21)

with values in Rd and assume that the drift b : Rd ! Rd is locally Lipschitz. We
assume that non-explosiveness holds and denote the corresponding Markov transition
function and generator by (p

t

) and L = hb,ri+ 1
2� respectively. The euclidean norm

and inner product on Rd are called |·| and h·, ·i respectively.

In Section 0.3, we have introduced classical Harris type theorems and, in Section
0.4.2, we have explained how one can use them to establish Kantorovich contractions
for diffusions. However, as pointed out, those theorems are typically applied in
a non-quantitative way since a quantification of the minorization condition is not
trivial. Our aim here is to establish a more quantitative version of Harris’ theorem
for diffusion of type (0.21) which is based on two main assumptions: a geometric drift
condition and a one-sided Lipschitz bound on b. We do not impose a minorization
condition.

In Section 0.4.2, we have seen a recent result by Eberle who establishes Kantorovich
contractions for diffusions of type (0.21) with explicit and in several cases sharp
contraction rates, cf. [50, 51]. The approach is based on using reflection coupling for
the diffusions and adapting the underlying cost function for the Kantorovich distance
carefully to the chosen coupling and the diffusion. One of the main assumptions
imposed in [50, 51] is the “contractivity at infinity condition” (0.19), which is satisfied
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if the drift has the form b = �rU for a C2 function U which is strictly convex outside
a compact set. One might ask if it is possible to replace this assumption by a more
general recurrence condition. Besides the wish to establish a quantitative Harris
theorem for diffusions, there are several reasons why this question is interesting. First
of all, perturbations or approximations of a drift satisfying (0.19) do not necessarily
inherit this property. One can therefore ask how stable the techniques from [50, 51]
are. Secondly, in more complicated diffusion models the condition (0.19) is typically
not satisfied, while a geometric drift condition often holds. We will see an example in
the second part of this thesis, where related techniques are used to derive Kantorovich
contractions for a class of infinite-dimensional and degenerate diffusions.

We now give an outline of the main results. Our main assumptions are:

Assumption 3 (Geometric drift condition). There is a C2 function V : Rd ! R+

as well as constants C,� 2 (0,1) such that V (x) ! 1 as |x| ! 1, and

LV (x)  C � �V (x) for any x 2 Rd. (0.22)

Assumption 4 (Generalized one-sided Lipschitz condition). There is a continuous
function  : (0,1) ! [0,1) such that

R 1

0 r (r) dr < 1, and

hx� y, b(x)� b(y)i  (|x� y|) · |x� y|2 for any x, y 2 Rd.

Notice that for constant , this is just a one-sided Lipschitz bound. Given these
conditions, we aim to establish a Kantorovich contraction for (p

t

) with a contrac-
tion rate which can be computed given C, �, V and . At the end of Section 0.2,
we have seen that contraction inequalities can be established by finding reasonable
combinations of couplings and distances.

Let us first think about the coupling strategy. We aim at using a “hybrid cou-
pling” (X

t

, Y
t

), i.e. a coupling which behaves in some regions of the state space as
a synchronous coupling and in some regions as a reflection coupling, cf. page 16.
We describe how we want this coupling to behave in different regions of the state
space. Roughly speaking, the geometric drift condition allows us to find a compact
set S which is recurrent for the marginal processes (X

t

) and (Y
t

) of any such hybrid
coupling. While X

t

2 S and Y
t

2 S, we use a reflection coupling of the processes
with the aim of driving X

t

and Y
t

together. If either X
t

62 S or Y
t

62 S, we use
a synchronous or reflection coupling depending on the application and the chosen
distance. However, in many cases, the concrete coupling in this situation is not par-
ticularly relevant, since the recurrence property is a result of the drift and not the
noise. The coupling approach is visualized in Figure 0.6.

Let us now think about distances. We first consider a distance of type

⇢1(x, y) = [ f(|x� y|) + ✏V (x) + ✏V (y) ] · I
x 6=y

, (0.23)

where f is a concave function, V the Lyapunov function and ✏ 2 (0,1) a constant.
The distance is partially motivated by Mattingly and Hairer’s extension of Harris’
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0.5 Outline: Quantitative Harris type theorems for diffusions
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Figure 0.6: Coupling approach for a quantitative Harris’ theorem

theorem [75]. The usage of the concave function is inspired by [50, 51]. Imposing a
growth condition on the chosen Lyapunov function, our first result states that it is
possible to choose f and ✏ in an explicit way such that

W
⇢1(µpt, ⌫pt)  e�ct W

⇢1(µ, ⌫) (0.24)

holds for all µ, ⌫ 2 P(Rd

) and t � 0, cf. Theorem 1 in Chapter 1. Moreover, we
provide an explicit expression for the contraction rate c which can be quantified with
little effort given �, C and V from Assumption 3 and  from Assumption 4. Conse-
quences include exponential convergence towards the unique stationary distribution
in weighted total variation distances (Corollary 1), exponential convergence in Lp

Wasserstein distances (Remark 3) and quantifications of ergodic averages (Corollary
2). In the case of convex potentials, i.e. where we can choose  ⌘ 0 in Assumption
4, we obtain contraction rates with a polynomial dimension dependance, cf. Section
1.3.3 for precise statements. We also consider replacing the geometric drift condition
by a subgeometric one. Using the distance ⇢1, we obtain in this case explicit bounds
on the decay of k�

x

p
t

� �
y

p
t

kTV for t ! 1 (Theorem 5).

The “additive distance” ⇢1 is very simple and contractions w.r.t. W
⇢1 have many

interesting consequences. However, the distance has the disadvantage that in general
⇢1(x, y) 6! 0 as x ! y. Therefore, a contraction w.r.t. W

⇢1 can only be expected to
hold if there is a coupling (X

t

, Y
t

) such that P (X
t

= Y
t

) ! 1 as t ! 1. In the case of
nondegenerate diffusions as in (0.21), it is not difficult to construct such a coupling.
However, for degenerate, infinite-dimensional or nonlinear diffusions such couplings
might either be difficult or even impossible to construct. Partially motivated by
the weak Harris’ theorem [69] by Mattingly, Hairer and Scheutzow, we also consider
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0 Introduction

contractions w.r.t. a semimetric of type

⇢2(x, y) = f(|x� y|) (1 + ✏V (x) + ✏V (y)) . (0.25)

This distance allows to derive quantitative bounds for asymptotic couplings in the
sense of [72, 115, 69], i.e., for couplings (X

t

, Y
t

) where X
t

and Y
t

get arbitrarily
close to each other but do not necessarily meet in finite time. It is therefore also
suited for applications in more complicated diffusion models and it is used within
this thesis to derive contractions for McKean-Vlasov processes, as well as a class of
infinite-dimensional and degenerate diffusions. The corresponding contraction result
for diffusions of type (0.21) w.r.t. this semimetric is given in Theorem 3. Corollary
4 demonstrates that this contraction can be used to derive gradient bounds for the
transition semigroup.

0.5.2 McKean-Vlasov processes

We also consider contractions for nonlinear diffusions satisfying an SDE of type

dX
t

= b(X
t

) dt + ⌧

Z
#(X

t

, y)µx

t

(dy) dt + dB
t

, X0 = x, (0.26)

µx

t

= Law(X
t

).

Here ⌧ 2 R is a given (small) constant, b : Rd ! Rd and # : Rd ⇥ Rd ! Rd are
Lipschitz functions, and (B

t

) is a d-dimensional Brownian motion. Under the imposed
assumptions, Equation (0.26) has a unique solution (X

t

) which is a nonlinear Markov
process in the sense of McKean, i.e., the future development after time t depends
both on the current state X

t

and on the law of X
t

, cf. [144, 117]. Such SDEs arise
naturally as marginal limits of mean field interacting particle systems

dX i

t

= b(X i

t

) dt +
⌧

n

nX

j=1

#(X i

t

, Xj

t

) dt + dBi

t

, i = 1, . . . n, (0.27)

as n ! 1. Here, the (Bi

t

) are independent Brownian motions. For such interact-
ing systems, assuming that |⌧ | is sufficiently small, that b satisfies condition (0.19)
and that # is Lipschitz, Eberle derived in [51] Kantorovich contractions w.r.t. an
underlying distance of type ⇢(x, y) =

P
n

i=1 f(|xi � yi|), where f is a suitable concave
function. The coupling approach leading to this contraction can be described as fol-
lows: One considers componentwise couplings (X i

t

, Y i

t

). Given a parameter � > 0,
one uses a reflection coupling if |X i

t

� Y i

t

| > � and a synchronous coupling otherwise.
The contraction result is obtained when considering the limit of the resulting bounds
as � # 0.

We wanted to understand this coupling approach for the interacting particle system
in more detail and see whether a similar strategy can be applied directly to the
nonlinear SDE to establish contractions for the corresponding laws. It turns out that
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0.6 Outline: Explicit contraction rates for a class of degenerate diffusions
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Figure 0.7: Coupling approach for nonlinear diffusions

this is indeed true (Theorem 3). Moreover, using the multiplicative semimetric ⇢2,
we are able to relax assumption (0.19) on the drift b to a geometric drift condition
and establish a (local) contraction result for (0.26) (Theorem 4). We are of course
not the first to study convergence to equilibrium for such equations. References to
existing results and comparisons are given in Section 1.2.3 and Section 1.3.5. Notice
that our contraction results are obtained under the assumption that |⌧ | is sufficiently
small. This assumption is natural, since for large ⌧ , Equation (0.26) can have several
distinct stationary solutions. Nevertheless, we do not claim that our bound on ⌧ is
sharp. The coupling approach for nonlinear diffusions considered here is extended
and generalized in Chapter 3, where we construct sticky couplings for diffusions with
different drifts.

0.6 Outline: Explicit contraction rates for a class
of degenerate diffusions

In the second chapter, we establish Kantorovich contractions for a class of degenerate
and infinite-dimensional diffusion processes. The results have been distributed prior
as a research paper on the online-portal ArXiv:

R. Zimmer. Explicit contraction rates for a class of degenerate and infinite-dimensional
diffusions. ArXiv e-print 1605.07863, May 2016

Chapter 2 contains the article mostly as it has been distributed on ArXiv subject
to small changes. In this section, we give an outline of the main results with a
focus on presenting ideas. Mathematical precise statements and comparisons with
the literature are given in Chapter 2.

In the first chapter of this thesis, we derive Kantorovich contractions for diffusions
of type (0.21) on a finite-dimensional state space. In the second chapter, we consider
diffusions on a separable and real Hilbert space (H, |·|). Let G : H ! H be a trace-
class, symmetric and nonnegative operator. Such a bounded and linear operator can
be “diagonalized”, i.e. there is an orthonormal basis (e

k

)

k2N+ of H and nonnegative
real numbers (�

k

), such that Ge
k

= �
k

e
k

, see e.g. [132]. Moreover, the trace-class
property implies that

P1
k=1 �k

< 1. Denote by (W
t

) a G-Wiener process on H, i.e.

21



0 Introduction

let W
t

=

P1
k=1

p
�
k

Bk

t

e
k

for independent Brownian motions (Bk

t

). We are interested
in the equation

dX
t

= �X
t

dt+ b(X
t

) dt+
p
2 dW

t

, X0 = x 2 H, (0.28)

where b : H ! H is Lipschitz. In this setting, one can show (very similar as for
finite-dimensional diffusions) that (0.28) admits a unique and strong solution (X

t

),
cf. e.g. [103].

The motivation for studying equation (0.28) is, that it has a natural appearance
in the domain of sampling problems and acts as a diffusion limit for Markov chain
Monte Carlo (MCMC) methods, see [71, 114, 38, 143, 70] and the references therein.
In particular, if U : H ! R+ is a smooth function, if G is positive definite and if we
choose the nonlinearity b(x) = �GrHU(x) in (0.28), then the results from [71] imply
that the unique invariant probability measure ⇡ for the equation is determined by
⇡(dx) / exp(�U(x))N (0,G)(dx), where N (0,G) denotes a centered normal distri-
bution on H with covariance operator G. Such measures appear for example in the
area of diffusion bridges, cf. [71].

From this point of view it is particularly interesting to obtain explicit bounds on
the speed of convergence to equilibrium for solutions of (0.28) in the above setting. It
is most likely possible to use the weak Harris’ theorem [69] to obtain a Kantorovich
contraction for the corresponding Markov transition functions, see in this context
also [70]. However, it is not clear how to apply such a general framework to obtain
explicit bounds. Instead, we use a more direct coupling approach and construct
a simple and very explicit asymptotic coupling using a mixture of reflection and
synchronous couplings. In order to establish a Kantorovich contraction, we adapt
the underlying (semi)distance carefully to the chosen coupling and model following
the strategy from [50, 51] and the first chapter of this thesis.

We discuss this approach in more detail. Inspired by the sampling setup, we
work in the following setting: We consider a splitting of the Hilbert space H into
a space Hl

= he1, . . . , en

i, spanned by the first n basis vectors, and its orthogonal
complement Hh, i.e. H = Hl � Hh. Here, n 2 N+ is some fixed number. We call Hl

low -dimensional and Hh high-dimensional space. Given x 2 H, we denote by xl and
xh the orthogonal projections onto Hl and Hh respectively.

Assumption 5. There are constants 0  H
h

< 1 and L
l

, L
h

, H
l

� 0 such that
��bh(x)� bh(y)

��  H
l

��xl � yl
��
+H

h

��xh � yh
�� and (0.29)

��bl(x)� bl(y)
��  L

l

��xl � yl
��
+ L

h

��xh � yh
�� for any x, y 2 H. (0.30)

Assumption 6. G is strictly positive definite on Hl, i.e. for any k 2 N with 1  k 
n, we have �

k

> 0.

In the sampling setup described above, assuming that the map x 7! rU(x) is
Lipschitz on H, it is always possible to find a splitting H = Hl � Hh such that
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0.6 Outline: Explicit contraction rates for a class of degenerate diffusions

Assumptions 5 and 6 are satisfied. In addition to the above conditions, we assume
a geometric drift condition. Based on these assumptions, we derive quantitative
Kantorovich contractions for the associated Markov transition functions (Theorem
9). The resulting contraction rates are given explicitly in terms of the eigenvalues of
G on the space Hl, the constants from Assumption 5 and a geometric drift condition.
In comparison to the first chapter, the main difficulty here is that the driving noise
is possibly degenerate on the space Hh.

Let us briefly explain the coupling strategy leading to the contraction result: As-
sume for a moment that (X

t

, Y
t

) is a synchronous coupling of solutions to (0.28), i.e.
let the processes (X

t

) and (Y
t

) be driven by the same noise. We argue pathwise.
Assume that X

t

� Y
t

satisfies for some t � 0 the inequality

H
l

��X l

t

� Y l

t

��  (1�H
h

)

��Xh

t

� Y h

t

�� /2, (0.31)

then Assumption 5 implies that
��bh(X

t

)� bh(Y
t

)

��  H
l

��X l

t

� Y l

t

��
+ H

h

��Xh

t

� Y h

t

��  (1 +H
h

)

��Xh

t

� Y h

t

�� /2,

where (1 + H
h

)/2 < 1 by assumption. In particular, as long as X
t

� Y
t

satisfies
(0.31),

��Xh

t

� Y h

t

�� decreases exponentially fast. At some point, as time increases,
X

t

� Y
t

might not satisfy (0.31) any more. Then, we use a reflection coupling of
X l

t

and Y l

t

in the space Hl (on which the noise is nondegenerate by Assumption
6) with the aim of decreasing

��X l

t

� Y l

t

�� relative to
��Xh

t

� Y h

t

��. Iterating these two
arguments, it is possible to construct an asymptotic coupling (X

t

, Y
t

) such that, for
almost every trajectory, X

t

�Y
t

! 0 for t ! 1. The coupling approach is visualized
in Figure 2.1 on page 90. On an abstract level, the strategy can be summarized as
follows: We identify regions of the state space, where the underlying deterministic
system of (0.28) admits a contraction property and then, we use the noise to position
the coupling inside of those regions. Up to the author’s knowledge, asymptotic
couplings have been used first by Mattingly and Hairer [72, 115, 65, 67, 68] in settings
related to the stochastic 2D Navier-Stokes equation to prove exponential mixing
for degenerate systems. The strategy of splitting the underlying Hilbert space into
a finite-dimensional space Hu of “unstable modes”, where the dynamics is forced
directly with noise, and an infinite-dimensional complement Hs of “stable modes”,
where the driving noise can be degenerate, also occurs in the literature regarding
the stochastic 2D Navier-Stokes equation, cf. [157, 115, 113, 100, 99, 158, 17, 16]
and also [72]. In comparison to those results, we use a more direct and very explicit
coupling approach leading to explicit bounds on the speed of convergence. A more
comprehensive discussion of the existing literature is given in Chapter 2.

The above coupling is combined with an underlying semimetric of type

⇢(x, y) = f
���xl � yl

��
+ ↵

��xh � yh
���
(1 + ✏V (x) + ✏V (y)) ,

to establish a Kantorovich contraction. As before, f is a concave function, ✏ 2 (0,1)

and V is a chosen Lyapunov function. The constant ↵ 2 [1,1) is used to put
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0 Introduction

additional weight on the components in the space Hh. This enables us to exploit the
contraction property provided by Assumption 5.

In Section 2.3.2, we argue that a similar strategy can also be applied for finite-
dimensional diffusion approximations of (0.28) yielding contractions with a dimension-
independent and explicit rate.

0.7 Outline: Sticky couplings of diffusions
In the third chapter, we introduce a novel approach of coupling multidimensional
diffusions with different drifts. The results have been distributed prior as a research
article on the online-portal ArXiv:

A. Eberle and R. Zimmer. Sticky couplings of multidimensional diffusions with different
drifts. ArXiv e-print 1612.06125, December 2016

The article is a joint work with Andreas Eberle (University of Bonn). Chapter
3 contains the article mostly as it has been distributed on ArXiv subject to minor
modifications in formulations and formatting. In this section, we give a brief outlook
of the main results with a focus on motivation and presenting ideas in form of a
collage. Mathematical precise statements and more comprehensive comparisons with
the literature are given in Chapter 3.

Let (B
t

) and (

˜B
t

) be d-dimensional Brownian motions. We consider two diffusion
processes with values in Rd which follow dynamics with different drifts, i.e.

dX
t

= b(t,X
t

) dt + dB
t

, X0 = x, (0.32)
dY

t

=

˜b(t, Y
t

) dt + d ˜B
t

, Y0 = y. (0.33)

We assume that the drift coefficients b,˜b : R+⇥Rd ! Rd are locally Lipschitz. More-
over, we impose assumptions which imply that a geometric Lyapunov drift condition
holds for (0.32) and that there is a constant M > 0 such that uniformly |b�˜b|  M .

Diffusions with different drifts occur in many application areas. For example, one
can consider a Langevin diffusion (X

t

) and a perturbation or approximation (Y
t

)

of the latter. Other natural examples are McKean-Vlasov processes, as introduced
in Section 0.5.2 further above. A natural question arising is how to obtain explicit
bounds for the distance of X

t

and Y
t

in Kantorovich distances, e.g. in total variation
norm. There are a few articles which try to answer this question in a general setting:
Using Girsanov’s theorem and coupling on the path space, the works [92, 104, 105]
establish bounds on the total variation norm of such diffusions. In [12] bounds for
the distance between transition probabilities of diffusions with different drifts are
derived using analytic arguments, see also the related work [112]. The drawback of
these approaches is that the derived bounds are typically only useful for small time
horizons and are not longtime stable. The article [9] provides bounds for the distance
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0.7 Outline: Sticky couplings of diffusions

between stationary measures of diffusions with different drifts. Coupling methods are
used in [46] to provide longtime stable bounds on the distance between a Langevin
diffusion and its Euler approximation. Howitt constructs in [84] a sticky coupling
of two one-dimensional Brownian motions with different drifts using time-change
arguments which are restricted to the one-dimensional setting.

In Chapter 3, we discuss a novel approach of constructing couplings (X
t

, Y
t

) of
solutions to (0.32) and (0.33) in a multidimensional setting. Let us point out the
difficulty of this problem: Consider the case where ˜b differs from b by a non-zero
constant m, i.e., ˜b(t, x) = b(t, x) + m for some m 2 Rd, and let (X

t

) and (Y
t

) be
solutions of (0.32) and (0.33) respectively. In this case, whenever X

t

and Y
t

meet, the
drift forces the processes to immediately move apart from each other. It is clear that,
regardless of how the processes are coupled, one cannot hope for the existence of an
almost surely finite stopping time T such that P [X

t

= Y
t

8t � T ] = 1. Nevertheless,
we construct a coupling such that for any given t > 0, we have P [X

t

= Y
t

] > 0

and the coupling is sticky in the sense that there is a continuous semimartingale (r
t

)

which solves a one-dimensional stochastic differential equation with a sticky boundary
behavior at zero such that almost surely |X

t

� Y
t

|  r
t

for all t � 0. This allows us
to establish explicit, non-asymptotic and longtime stable bounds for the probability
of the event {X

t

= Y
t

}, cf. Theorem 10. A visualization of a sticky coupling for
one-dimensional diffusions is presented in Figure 3.1 on page 109.

Let us describe the setting in more detail. We assume that the drift coefficients
b,˜b : R+ ⇥ Rd ! Rd are locally Lipschitz and impose the following conditions:

Assumption 7. There is a constant M 2 [0,1) such that
���b(t, x)� ˜b(t, x)

���  M for any x 2 Rd and t � 0.

Assumption 8. There is a Lipschitz function  : [0,1) ! R such that

hx� y, b(t, x)� b(t, y)i  (|x� y|) · |x� y|2 for any x, y 2 Rd and t � 0.

Outside of a bounded interval, the function  is constant and strictly negative.

Our sticky coupling generalizes the coupling approach for interacting particle sys-
tems in [51] and for McKean-Vlasov processes in Chapter 1 respectively. This ap-
proach is outlined in Section 0.5.2 further above. The idea is to construct a family of
couplings (X�

t

, Y �

t

), � > 0, where reflection coupling is applied for
��X�

t

� Y �

t

�� > � and
a synchronous coupling for X�

t

= Y �

t

. One can define such a “hybrid coupling” similar
to the one described at the end of Section 0.4.2 on page 16. Moreover, we construct
for any � > 0 a one-dimensional diffusion (r�

t

) on R+ such that
��X�

t

� Y �

t

��  r�
t

holds almost surely for all t � 0. We argue, that the sequence (X�

t

, Y �

t

, r�
t

) converges
weakly (along a subsequence) towards a limiting process (X

t

, Y
t

, r
t

) as � # 0 and that
|X

t

� Y
t

|  r
t

holds almost surely for all t � 0. It turns out that the process (r
t

) is
a solution of the equation

dr
t

= (M + (r
t

) r
t

) dt + 2 I(r
t

> 0) dW
t

, r0 = |x� y| , (0.34)

25



0 Introduction

on R+, where (W
t

) is a one-dimensional Brownian motion, and M and  are given
by Assumption 7 and Assumption 8 respectively (Theorem 13). If M = 0, then zero
is an absorbing boundary for the diffusion process (r

t

). In the case M > 0, it is a
sticky reflecting boundary. Let us explain this in more detail: Suppose that (r

t

) is
a solution of (0.34) with M > 0. An application of the Itô-Tanaka formula to f(r

t

)

with the function f(x) = max(0, x) and a comparison with (0.34) shows that almost
surely,

Z
t

0

M I(r
s

= 0) ds =

1

2

`0
t

(r), 0  t < 1, (0.35)

where `0
t

(r) = lim

✏#0 ✏�1
R

t

0 I(0  r
s

 ✏) d [r]
s

is the right local time of (r
t

). Equation
(0.35) shows that there is reflection at zero. Moreover, for almost all trajectories,
the Lebesgue measure of the set {0  s  t : r

s

= 0} increases whenever `0
t

(r)
increases. In this sense (r

t

) is sticky at zero, cf. [54] for a similar argument. The
discovery of a sticky boundary behavior for one-dimensional diffusions seems to go
back to Feller [56, 57]. An overview over the literature regarding sticky processes
is given in Section 3.3. In order to obtain bounds on the probability of the event
{X

t

= Y
t

} for the limiting coupling, we argue that equation (0.34) admits an invariant
measure ⇡ which puts positive mass on the point zero, i.e. ⇡({0}) > 0 (Lemma 23).
We prove that there exists a synchronous coupling for equation (0.34) (Theorem 13)
and use this coupling to provide explicit and non-asymptotic bounds on the speed
of convergence to equilibrium for the process (r

t

) (Theorem 14). The above outline
gives only a very rough sketch of the arguments. The precise arguments are given in
Chapter 3, where we also provide references to the works of other authors. Finally,
we remark that it is possible to use sticky couplings to extend the result for McKean-
Vlasov processes from Chapter 1 (Theorem 3) and prove an exponential decay of the
corresponding laws in total variation norm (Theorem 12).
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1 Quantitative Harris type
theorems for diffusions and
McKean-Vlasov processes

We consider Rd valued diffusion processes of type

dX
t

= b(X
t

) dt + dB
t

.

Assuming a geometric drift condition, we establish contractions of the transition ker-
nels in Kantorovich (L1 Wasserstein) distances with explicit constants. Our results
are in the spirit of Hairer and Mattingly’s extension of Harris’ Theorem. In par-
ticular, they do not rely on a small set condition. Instead we combine Lyapunov
functions with reflection coupling and concave distance functions. We retrieve con-
stants that are explicit in parameters which can be computed with little effort from
one-sided Lipschitz conditions for the drift coefficient and the growth of a chosen
Lyapunov function. Consequences include exponential convergence in weighted to-
tal variation norms, gradient bounds, bounds for ergodic averages, and Kantorovich
contractions for nonlinear McKean-Vlasov diffusions in the case of sufficiently weak
but not necessarily bounded nonlinearities. We also establish quantitative bounds
for subgeometric ergodicity assuming a subgeometric drift condition.

A. Eberle, A. Guillin, and R. Zimmer. Quantitative Harris type theorems for diffusions
and McKean-Vlasov processes. ArXiv e-print 1606.06012, June 2016
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1.1 Introduction
We consider Rd valued diffusion processes of type

dX
t

= b(X
t

) dt + dB
t

, (1.1)

where b : Rd ! Rd is locally Lipschitz, and (B
t

) is a d-dimensional Brownian mo-
tion. We assume non-explosiveness, and we denote the transition function of the
corresponding Markov process by (p

t

).

The classical Harris’ Theorem [77, 118] gives simple conditions for geometric er-
godicity of Markov processes. In the case of diffusion processes on Rd it goes back
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1 Quantitative Harris type theorems for diffusions

to Khasminskii [79, 96], in the general case it has been developed systematically by
Meyn and Tweedie [119, 120, 118]. For solutions of (1.1), it is often not difficult to
verify the assumptions in Harris’ Theorem, a minorization condition for the tran-
sition probabilities on a bounded set, and a global Lyapunov type drift condition.
However, it is not at all easy to quantify the constants in Harris’ Theorem, and, even
worse, the resulting bounds are far from sharp, and they usually have a very bad
dimensional dependence. Therefore, although Harris’ Theorem has become a stan-
dard tool in many application areas, it is mostly used in a purely qualitative way, a
noteworthy exception being Roberts and Rosenthal [135].

Besides the Harris’ approach, there is a standard approach for studying mixing
properties of Markov processes based on spectral gaps, logarithmic Sobolev inequal-
ities, and more general functional inequalities, see for example the monograph [6].
This approach has the advantage of providing sharp bounds in simple model cases
but it sometimes yields slightly weaker, and less probabilistically intuitive results.
Recent attempts [5, 4] to connect these functional inequalities to Lyapunov condi-
tions have been proven successful but they are restricted to the reversible setting (or
the explicit knowledge of the invariant measure). The concept of the intrinsic cur-
vature of a diffusion process in the sense of Bakry-Emery leads to sharp bounds and
many powerful results in the case where there is a strictly positive lower curvature
bound  [150]. In our context, this means that @b(x)  � I

d

for all x in the sense
of quadratic forms.

Several of the bounds in the positive curvature case can be derived in an elegant
probabilistic way by considering synchronous couplings and contraction properties in
L2 Wasserstein distances. In general, Wasserstein distances have been proven crucial
in the study of linear and nonlinear diffusions both via coupling techniques [27, 109,
22], or via analytic techniques based on profound results on optimal transportation,
see [20, 21, 149, 13, 14] and references therein. In the case where the curvature is
only strictly positive outside of a compact set, reflection coupling has been applied
successfully to obtain total variation bounds for the distance to equilibrium [107] as
well as explicit contraction rates of the transition semigroup in Kantorovich distances
[50, 51].

An important question is how to apply a Harris’ type approach in order to obtain
explicit bounds that are close to sharp in certain contexts. A breakthrough towards
the applicability to high- and infinite dimensional models has been made by Hairer
and Mattingly in [67], and in the subsequent publications [69, 75]. The key idea
was to replace the underlying couplings with finite coupling time by asymptotic
couplings where the coupled processes only approach each other as t ! 1 [72,
115], and the minorization condition by a contraction in an appropriately chosen
Kantorovich distance. In recent years, the resulting weak Harris’ theorem has been
applied successfully to prove (sub)geometric ergodicity in infinite dimensional models,
see e.g. [19], and to quantify the dimension dependence in high dimensional problems
[70]. Nevertheless, in contrast to the approach based on functional inequalities, the
constants in applications of the weak Harris theorem are usually far from optimal.
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1.2 Main results

This is in particular due to the fact that the corresponding Kantorovich distance is
still chosen in a somehow ad hoc way.

It turns out that a key for making the bounds more quantitative is to adapt the
underlying metric on Rd and the corresponding Kantorovich metric on the space
of probability measures in a very specific way to the problem under consideration.
For diffusion processes solving (1.1), this approach has been discussed in [51] as-
suming strict contractivity for the corresponding deterministic dynamics outside a
ball. Our goal here is to replace this “contractivity at infinity” condition by a Lya-
punov condition, thus providing a more specific quantitative version of the (weak)
Harris’ theorem. Indeed, we will define explicit metrics on Rd depending both on the
drift coefficient b and the Lyapunov function V such that the transition semigroup is
contractive with an explicit contraction rate c w.r.t. the corresponding Kantorovich
distances. Such a contraction property has remarkable consequences including not
only a non-asymptotic quantification of the distance to equilibrium, but also non-
asymptotic bounds for ergodic averages, gradient bounds for the transition semi-
group, stability under perturbations etc.

Outline: In Section 1.2, we present our main results. Section 1.3 contains a dis-
cussion of the results including more detailed comparisons to the existing literature.
The couplings considered here are introduced in Section 1.4 and the proofs of our
results are given in Section 1.5. Extensions of the results from Section 1.2 to a more
general setup are discussed in Section 1.6.

1.2 Main results
Let h·, ·i and |·|, respectively, denote the euclidean inner product and the correspond-
ing norm on Rd. We assume a generalization of a global one-sided Lipschitz condition
for b combined with a Lyapunov condition. These assumptions can be weakened, cf.
Section 1.6 further below for an extension of the results to a more general setup.

Assumption 9 (Generalized one-sided Lipschitz condition). There is a continuous
function  : (0,1) ! [0,1) such that

R 1

0 r (r) dr < 1, and

hx� y, b(x)� b(y)i  (|x� y|) · |x� y|2 for any x, y 2 Rd. (1.2)

Notice that for constant , (1.2) is a one-sided Lipschitz condition. In particular,
if b = �rU for some function U 2 C2

(Rd

), then the assumption with constant 
is equivalent to a global lower bound on the Hessian of U . If U is strictly convex
outside a ball in Rd, then we can choose (r) = 0 in (1.2) for sufficiently large r. Let
L =

1
2 � + hb(x),ri denote the generator of the diffusion process.

Assumption 10 (Geometric drift condition). There is a C2 function V : Rd ! R+

as well as constants C,� 2 (0,1) such that V (x) ! 1 as |x| ! 1, and

LV (x)  C � �V (x) for any x 2 Rd. (1.3)
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1 Quantitative Harris type theorems for diffusions

It is well-known that Assumption 10 implies the non-explosiveness of solutions for
(1.1), see e.g. [96, 120]. The function V in (1.3) is called a Lyapunov function.

Remark 1 (Choice of Lyapunov functions). Assume there are R > 0, � > 0 and
q � 1 such that

hb(x), xi  �� |x|q for any |x| � R.

Then Lyapunov functions of the following form can be chosen depending on the values
of q and �:

• Let ↵ > 0. If V is a C2 function with V (x) = exp(↵ |x|q) outside of a compact
set, then (1.3) holds for arbitrary � > 0 with a finite constant C(↵,�) provided
q > 1 and ↵ 2 (0, 2�/q), or q = 1 and � > ↵

2 +

�

↵

.

• Let ↵ > 0 and p 2 [1, q). If V is C2 with V (x) = exp(↵ |x|p) outside of a
compact set, then (1.3) holds for arbitrary � > 0 with a finite constant C(↵,�).

• Let q � 2 and p > 0. If V is C2 with V (x) = |x|p outside of a compact set,
then (1.3) holds with a finite constant C(�, p) if q > 2 and � > 0, or if q = 2

and � 2 (0, p�).

Besides the two key assumptions made above, we will need a growth assumption
on the Lyapunov function, cf. Assumption 11 below for our first main result, or
Assumption 12 below for our second main result.

The Kantorovich distance of two probability measures µ and ⌫ on a metric space
(S, ⇢) is defined by

W
⇢

(⌫, µ) = inf

�2C(⌫,µ)

Z
⇢(x, y) �(dx dy),

where the infimum is taken over all couplings with marginals ⌫ and µ respectively.
W

⇢

(⌫, µ) can be interpreted as the L1 transportation cost between the probability
measures ⌫ and µ w.r.t. the underlying cost function ⇢(x, y). As such, it is also
well-defined if ⇢ is only a semimetric, i.e., a function on S ⇥ S that is symmetric
and nonnegative with ⇢(x, y) > 0 for x 6= y but that does not necessarily satisfy
the triangle inequality. In Subsections 1.2.1 and 1.2.2, we derive contractions of the
transition semigroup with respect to W

⇢

based on two different types of underlying
cost functions ⇢. The first one, called the “additive distance”, is a metric, whereas
the second one, called the “multiplicative distance”, in general is only a semimetric.
We then consider a variation of our approach that applies to McKean-Vlasov diffu-
sions, cf. Subsection 1.2.3. Subsection 1.2.4 discusses replacing the geometric by a
subgeometric Lyapunov condition.
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1.2 Main results

1.2.1 Geometric ergodicity with explicit constants:
First main result

We first consider an underlying distance of the form

⇢1(x, y) = [ f(|x� y|) + ✏V (x) + ✏V (y) ] · I
x 6=y

(1.4)

where f is a suitable bounded, non-decreasing and concave continuous function sat-
isfying f(0) = 0, and ✏ 2 (0,1) is a positive constant. The choice of a distance
is partially motivated by [75], where an underlying metric of the form (x, y) 7!
[2 + ✏V (x) + ✏V (y)] I

x 6=y

is considered in order to retrieve a Kantorovich contraction
based on a small set condition. We define functions �,� : R+ ! R+ by

�(r) = exp

✓
�1

2

Z
r

0

t(t) dt

◆
and �(r) =

Z
r

0

�(t) dt (1.5)

with  as in Assumption 9. For constant , we have �(r) = exp(�r2/4). We will
choose the function f to be constant outside a finite interval [0, R2] where R2 is
defined in (1.10) below. Inside the interval, the function f satisfies

1

2

�(r)  f(r)  �(r).

We consider a set S1 which is recurrent for any Markovian coupling (X
t

, Y
t

) of solu-
tions of (1.1):

S1 =

�
(x, y) 2 Rd ⇥ Rd

: V (x) + V (y)  4C/�
 
. (1.6)

The set S1 is chosen such that for (x, y) 2 R2d \ S1,

LV (x) + LV (y)  ��

2

(V (x) + V (y) ) .

Here the factor 1/2 is, to some extent, an arbitrary choice. The “diameter”

R1 = sup {|x� y| : (x, y) 2 S1} (1.7)

of the set S1 determines our choice of ✏ in (1.4):

✏�1
= 4C

Z
R1

0

�(r)�1 dr = 4C

Z
R1

0

exp

✓
1

2

Z
r

0

t(t) dt

◆
dr. (1.8)

Notice that R1 is always finite since V (x) ! 1 as |x| ! 1. An upper bound is
given by

R1  2 sup{ |x| : V (x)  4C/�}.

We now state our third key assumption that links  and V :
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1 Quantitative Harris type theorems for diffusions

Assumption 11 (Growth condition). There exist a constant ↵ > 0 and a bounded
set S2 ◆ S1 such that for any (x, y) 2 R2d \ S2, we have

V (x) + V (y) � 4C

�

✓
1 + ↵

Z
R1

0

�(r)�1 dr �(|x� y|)
◆
. (1.9)

Assumptions linking curvature and Lyapunov functions already appeared in [24]
to prove a logarithmic Sobolev inequality in the reversible setting for the case where
the curvature may explode (polynomially). Similarly to R1, we define

R2 = sup {|x� y| : (x, y) 2 S2} . (1.10)

Notice that � grows at most linearly. If one chooses ↵�1
=

R
R1

0 �(r)�1 dr, then
Condition (1.9) takes the simple form

V (x) + V (y) � 4C

�

 
1 +

Z |x�y|

0

exp

✓
�1

2

Z
r

0

t(t) dt

◆
dr

!
.

Lemma 1. If there exists a finite constant R � R1 such that

V (x) � 4C��1
(1 + 2 |x|) for any x 2 Rd with |x| � R,

then Assumption 11 is satisfied with ↵�1
=

R
R1

0 �(r)�1 dr and

S2 = {(x, y) 2 Rd ⇥ Rd

: max(|x| , |y|} < R).

The proofs of Lemma 1 and the subsequent results in Section 1.2.1 are given in
Section 1.5.1 below. Let P

V

(Rd

) denote the set of all probability measures µ on Rd

such that
R
V dµ < 1. We can now state our first main result:

Theorem 1 (Contraction rates for additive metric). Suppose that Assumptions 9, 10
and 11 hold true. Then there exist a concave, bounded and non-decreasing continuous
function f : R+ ! R+ with f(0) = 0 and constants c, ✏ 2 (0,1) s.t.

W
⇢1(µpt, ⌫pt)  e�ct W

⇢1(µ, ⌫) for any µ, ⌫ 2 P(Rd

) and t � 0. (1.11)

Here the underlying distance ⇢1 is defined by (1.4) with ✏ determined by (1.8), and
c = min (�,↵,�) /2 where

��1
=

Z
R2

0

�(r)�(r)�1ds =

Z
R2

0

Z
s

0

exp

✓
1

2

Z
s

r

u(u) du

◆
dr ds. (1.12)

The function f is constant for r � R2, and

1

2

 f 0
(r) exp

✓
1

2

Z
r

0

t(t) dt

◆
 1 for any r 2 (0, R2).

The precise definition of the function f is given in the proof in Section 1.5.1.
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1.2 Main results

Example 4 (Bounds under global one-sided Lipschitz condition). Suppose that there
is a constant  � 0 such that for any x, y 2 Rd, we have

hx� y, b(x)� b(y)i   |x� y|2 .

Then we can state our result in a simplified form. Suppose that Assumption 10 holds,
and there is a bounded set S2 ◆ S1 such that for any (x, y) 62 S2,

V (x) + V (y) � 4C

�

 
1 +

Z |x�y|

0

exp

�
�r2/4

�
dr

!
.

Then (1.11) holds with c = min

�
2R�2

2 , R�1
1 ,�

�
/2 for  = 0, and

c =
1

2

min

 r


⇡

✓Z
R2

0

exp

�
r2/4

�
dr

◆�1

,

✓Z
R1

0

exp

�
r2/4

�
dr

◆�1

, �

!
(1.13)

for  > 0. Here R1 and R2 are defined as above, and the underlying distance ⇢1 is
given by (1.4) with ✏�1

= 4C
R

R1

0 exp (s2/4) ds and a concave, bounded and increas-
ing continuous function f : R+ ! R+ satisfying f(0) = 0 and

1/2  f 0
(r) exp

�
r2/4

�
 1 for 0 < r < R2.

Remark 2. For  = 0 and, more generally, for R2
2 = O(1), the lower bound c

for the contraction rate in the example is of the optimal order ⌦(min(R�2
2 ,�)). In

general, under the assumptions made above, the bound on the contraction rate given
by (1.13) is of optimal order in �, and of optimal order in R2 up to polynomial
factors, see the discussion below Lemma 1 in [51].

It is well-known, see e.g. [73], that the local Lipschitz assumption on b and As-
sumption 10 imply that (p

t

) has a unique invariant measure ⇡ 2 P
V

(Rd

) satisfyingR
V d⇡  C/�. A result from [75, Lemma 2.1] then shows that the Kantorovich

contraction in Theorem 1 implies bounds for the distance of µp
t

and ⇡ in a weighted
total variation norm.

Corollary 1 (Exponential Convergence in Weighted Total Variation Norm). Under
the assumptions of Theorem 1, there exists a unique stationary distribution ⇡ 2
P

V

(Rd

), and
Z

Rd

V d |µp
t

� ⇡|  ✏�1
exp(�c t)W

⇢1(µ, ⇡) for any µ 2 P(Rd

).

In particular, for any � > 0 and x 2 Rd, the mixing time

⌧(�, x) = inf{t � 0 :

Z

Rd

V d |p
t

(x, •)� ⇡| < � }

is bounded from above by

⌧(�, x)  c�1
log

+


R2 ✏�1

+ V (x) + C/�

�

�
.
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1 Quantitative Harris type theorems for diffusions

Remark 3 (Exponential Convergence in Lp Wasserstein distances).
For p 2 [1,1), the standard Lp Wasserstein distance Wp can be controlled by a
weighted total variation norm:

Wp

(µ, ⌫)  2

1/q

✓Z
|x|p |µ� ⌫| (dx)

◆1/p

,

where 1/q + 1/p = 1, see e.g. [149, Theorem 6.15]. Thus if there is a constant
K > 0 such that |x|p  K V (x) holds for all x 2 Rd, then Corollary 1 also implies
exponential convergence in Lp Wasserstein distance.

Following ideas from [90, 91, 51], we show that Theorem 1 can be used to control
the bias and the variance of ergodic averages. Let

|g|Lip(⇢) = sup

�
|g(x)� g(y)| /⇢(x, y) : x, y 2 Rd, x 6= y

 
(1.14)

denote the Lipschitz norm of a measurable function g : Rd ! R w.r.t. a metric ⇢.

Corollary 2 (Ergodic averages). Suppose that the assumptions of Theorem 1 hold
true. Then for any x 2 Rd and t > 0,

����Ex


1

t

Z
t

0

g(X
s

) ds�
Z

g d⇡

�����  1� e�c t

c t
|g|Lip(⇢1)

✓
R2 + ✏V (x) + ✏

C

�

◆
.

If, moreover, the function x 7! V (x)2 satisfies the geometric drift condition

(LV 2
)(x)  C⇤ � �⇤V 2

(x) for any x 2 Rd (1.15)

with constants C⇤,�⇤ 2 (0,1), then

Var

x


1

t

Z
t

0

g(X
s

)ds

�
 3

c t
|g|2Lip(⇢1)

�
R2

2 + 2✏2
⇥
C⇤/�⇤

+ e��

⇤
tV (x)2

⇤�
.

1.2.2 Geometric ergodicity with explicit constants:
Second main result

The additive distance W
⇢1 defined in (1.4) is very simple, and contractivity w.r.t.

W
⇢1 even implies bounds in weighted total variation norms. However, this distance

has the disadvantage that in general ⇢1(x, y) 6! 0 as x ! y. Therefore, a contraction
w.r.t. W

⇢1 as stated in (1.11) can only be expected to hold if there is a coupling
(X

t

, Y
t

) such that P (X
t

= Y
t

) ! 1 as t ! 1. In the case of nondegenerate diffusions
as in (1.1), it is not difficult to construct such a coupling, but for generalizations
to infinite dimensional or nonlinear diffusions, such couplings might either not be
natural or difficult to construct, see e.g. the results in Chapter 2 and Chapter 3, and
Section 1.2.3 further below.
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1.2 Main results

Partially motivated by the weak Harris Theorem in [69], we will now replace the
additive metric by a multiplicative semimetric. This will allow us to derive quan-
titative bounds for asymptotic couplings in the sense of [72, 69], i.e., couplings for
which X

t

and Y
t

get arbitrarily close to each other but do not necessarily meet in
finite time. To this end we consider an underlying distance-like function

⇢2(x, y) = f(|x� y|) (1 + ✏V (x) + ✏V (y)) (1.16)

where f is a suitable, non-decreasing, bounded and concave continuous function
satisfying f(0) = 0. Note that in general, the function ⇢2 is a semimetric but not
necessarily a metric, since the triangle inequality may be violated. Nevertheless, the
Lipschitz norm w.r.t. ⇢2 is still well-defined by (1.14). In [69, Lemma 4.14], conditions
are given under which ⇢2 satisfies a weak triangle inequality, i.e., under which there is
a constant C > 0 such that ⇢2(x, z)  C(⇢2(x, y)+ ⇢2(y, z)) holds for all x, y, z 2 Rd.
This is for example the case if V is strictly positive and grows at most polynomially,
or if V (x) = exp(↵ |x|) for large |x|. In any case, ⇢2 has the desirable property that
⇢2(x, y) ! 0 as x ! y.

As before, we assume that Assumptions 9 and 10 hold true. The growth condi-
tion on the Lyapunov function in Assumption 11 is now replaced by the following
condition:

Assumption 12. The logarithm of V is Lipschitz continuous, i.e.,

sup

|rV |
V

< 1.

Notice that in contrast to Assumption 11, Assumption 12 does not depend on .
The global bound on rV can be replaced by a local bound, see Section 1.6 for an
extension. Assumption 12 is satisfied if, for example, V is strictly positive, and,
outside of a compact set, V (x) = |x|↵ or V (x) = exp(↵ |x|) for some ↵ > 0.

We define a bounded non-decreasing function Q : (0,1) ! [0,1) by

Q(✏) = sup

|rV |
max(V, 1/✏)

. (1.17)

In contrast to Section 1.2.1, we now allow the constant ✏ in (1.16) to be chosen
freely inside a given range. We require that

(4C✏)�1 �
Z

R1

0

Z
s

0

exp

✓
1

2

Z
s

r

u(u) du + 2Q(✏) (s� r)

◆
dr ds (1.18)

with C and  given by Assumptions 10 and 9, respectively. Notice that since Q is
non-decreasing, (1.18) is always satisfied for ✏ sufficiently small. Further below, we
demonstrate how the freedom to choose ✏ can be exploited to optimize the resulting
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1 Quantitative Harris type theorems for diffusions

contraction rate in certain cases. Similarly to Section 1.2.1, we define functions
�,� : R+ ! R+ by

�(r) = exp

✓
�1

2

Z
r

0

t(t) dt � 2Q(✏) r

◆
, �(r) =

Z
r

0

�(t) dt. (1.19)

The function f in (1.16) will be chosen such that

1

2

�(r)  f(r)  �(r) for r  R2, and f(r) = f(R2) for r � R2,

where we define

S1 =

�
(x, y) 2 Rd ⇥ Rd

: V (x) + V (y)  2C/�
 
, (1.20)

S2 =

�
(x, y) 2 Rd ⇥ Rd

: V (x) + V (y)  4C(1 + �)/�
 
, (1.21)

R
i

= sup {|x� y| : (x, y) 2 S
i

} , i = 1, 2. (1.22)

Here the sets S1 and S2 have been chosen such that

LV (x) + LV (y) < 0 for (x, y) 62 S1, and

✏LV (x) + ✏LV (y) < ��

2

min (1, 4C✏) (1 + ✏V (x) + ✏V (y)) for (x, y) 62 S2.

We now state our second main result.

Theorem 2 (Contraction rates for multiplicative semimetric). Suppose that Assump-
tions 9, 10, and 12 hold true. Fix ✏ 2 (0,1) such that (1.18) is satisfied. Then there
exist a concave, bounded and non-decreasing continuous function f : R+ ! R+ with
f(0) = 0 and a constant c 2 (0,1) such that

W
⇢2(µpt, ⌫pt)  e�c t W

⇢2(µ, ⌫) for any µ, ⌫ 2 P(Rd

) and t � 0. (1.23)

Here c = min (�,�, 4C✏�) /2 where

��1
=

Z
R2

0

�(r)�(r)�1 dr

=

Z
R2

0

Z
s

0

exp

✓
1

2

Z
s

r

u(u) du + 2Q(✏) (s� r)

◆
dr ds,

the distance ⇢2 is defined by (1.16), and f is constant for r � R2 and satisfies

1

2

 f 0
(r) exp

✓
1

2

Z
r

0

u(u) du + 2Q(✏) r

◆
 1 for r 2 (0, R2).

The precise definition of the function f is given in the proof in Section 1.5.2.

In order to optimize our bounds by choosing ✏ appropriately, we replace Assump-
tion 12 by a slightly stronger condition:
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Assumption 13.

rV (x)

V (x)
! 0 as |x| ! 1.

If Assumption 13 holds then Q(✏) ! 0 as ✏ ! 0. Therefore, by choosing ✏ suffi-
ciently small, we can ensure that the term Q(✏)(s� r) occurring in the exponents in
(1.18) and in the definition of � is bounded by 1. Explicitly, we choose

✏ = min

⇣
Q�1

(R�1
2 ),

�
4Ce2 I(R1)

��1
⌘
, (1.24)

where Q�1
(t) = sup{✏ > 0 : Q(✏)  t} 2 (0,1] for t > 0 by Assumption 13, and

I(r) =

Z
r

0

Z
s

0

exp

✓
1

2

Z
s

r

u(u) du

◆
dr ds.

Corollary 3 (Contraction rates for multiplicative semimetric II).
Suppose that Assumptions 9, 10, and 13 hold true. Then the assertion of Theorem 2
is satisfied with ✏ given by (1.24) and

c � 1

2

min

�
e�2/I(R2), �, �e

�2/I(R1), 4C�Q�1
(1/R2)

�
.

The corollary is particularly useful if b = �rU for a convex (but not strictly
convex) function U . In this case we can choose  = 0, and hence I(r) = r2/2:

Example 5 (Convex case). Let b(x) = �rU(x) for a convex function U 2 C2
(Rd

),
and suppose that Assumption 10 holds with V satisfying V (x) = |x|p outside of a
compact set for some p 2 [1,1). Then there is a constant A 2 (0,1) such that
Q�1

(t) � A tp for any t > 0, and hence

c � min

�
e�2R�2

2 , �/2, �e�2R�2
1 , 2C�AR�p

2

�
.

In particular, c�1
= O(R2

2) if V (x) = |x|2 outside a compact set.

Similarly as in Corollary 2 above, the bounds in Theorem 2 can be used, among
other things, to control the bias and variance of ergodic averages. Furthermore, a
statement as in (1.23) implies gradient bounds for the transition kernel:

Corollary 4 (Gradient bounds for the transition semigroup). Suppose that the as-
sumptions in Theorem 2 are satisfied. Then

|p
t

g|Lip(⇢2)  e�c t |g|Lip(⇢2)

holds for any t � 0 and for any function g : Rd ! R that is Lipschitz continuous
w.r.t. ⇢2. In particular, if p

t

g is differentiable at x, then

|rp
t

g(x)|  |g|Lip(⇢2) ( 1 + 2 ✏V (x) ) e�c t. (1.25)

The proof is included in Section 1.5.2 further below.
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1.2.3 McKean-Vlasov diffusions

We now apply our approach to nonlinear diffusions on Rd satisfying an SDE of type

dX
t

= b(X
t

) dt + ⌧

Z
#(X

t

, y)µx

t

(dy) dt + dB
t

, X0 = x, (1.26)

µx

t

= Law(X
t

).

Here ⌧ 2 R is a given constant and (B
t

) is a d-dimensional Brownian motion. Under
appropriate conditions on the coefficients b and #, Equation (1.26) has a unique
solution (X

t

) which is a nonlinear Markov process in the sense of McKean, i.e., the
future development after time t depends both on the current state X

t

and on the
law of X

t

[144, 117]. To ensure that standard existence and uniqueness results apply,
we assume that b is Lipschitz (this can probably be relaxed), and in Assumption 14
below we will also assume that # is Lipschitz (this is an essential assumption for our
results below). Corresponding nonlinear SDEs arise naturally as marginal limits of
mean field interacting particle systems

dX i

t

= b(X i

t

) dt +
⌧

n

nX

j=1

#(X i

t

, Xj

t

) dt + dBi

t

, i = 1, . . . n, (1.27)

as n ! 1. Here, the (Bi

t

) are independent Brownian motions.

Convergence to equilibrium, or contractivity, for the nonlinear equation and the
particle system are longstanding problems. Assuming b = �rV and #(x, y) =

rW (y)�rW (x) with smooth potentials V and W , the convex case for the nonlin-
ear equation was tackled by Carrillo, McCann and Villani [20, 21] using PDE tech-
niques, and by Malrieu [109] and Cattiaux, Guillin and Malrieu [22] using coupling
arguments. More recently, using direct control of the derivative of the Wasserstein
distance, Bolley, Gentil and Guillin [14] have proven an exponential trend to equilib-
rium for small bounded and Lipschitz perturbations of the strictly convex case. In
the spirit of Meyn-Tweedie’s approach, and via nonlinear Markov chains, Butkovsky
[18] established exponential convergence to equilibrium in the bounded perturbation
case. In [51, Corollary 3.4], a contraction property for the particle system (1.27) has
been derived for sufficiently small ⌧ with a dimension-independent contraction rate
using an approximation of a componentwise reflection coupling.

We now show that a similar strategy as in [51] can be applied directly to the
nonlinear equation. We assume that the interaction coefficient # : Rd ⇥ Rd ! Rd is
a globally Lipschitz continuous function:

Assumption 14. There exists a constant L 2 (0,1) such that

|#(x, x0
)� #(y, y0)|  L · (|x� y|+ |x0 � y0|) for any x, x0, y, y0 2 Rd.

In our first theorem, we assume the contractivity at infinity condition (1.28) instead
of a Lyapunov condition. Existence and uniqueness of solutions of the nonlinear SDE
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1.2 Main results

can then be proven as in [22]. In that case we can obtain contractivity w.r.t. an
underlying metric of type

⇢0(x, y) = f(|x� y|)

where f is an appropriately chosen concave function. Let W1 denote the standard
L1 Wasserstein distance defined w.r.t. the Euclidean metric on Rd. Notice that in
the upcoming theorem, we allow the function  from Assumption 9 to take negative
values. We obtain the following counterpart to Corollary 3.4 in [51]:

Theorem 3 (Contraction rates for nonlinear diffusions I). Suppose that Assumptions
9 and 14 hold true with a function  : (0,1) ! R satisfying

lim sup

r!1
(r) < 0. (1.28)

For x 2 Rd, let (µx

t

) denote the marginal laws of a strong solution (X
t

) of Equation
(1.26) with initial condition X0 = x. Then there exist a concave and non-decreasing
continuous function f : R+ ! R+ with f(0) = 0 and constants c,K,A 2 (0,1) such
that for any ⌧ 2 R and x, y 2 Rd,

W
⇢0(µ

x

t

, µy

t

)  exp ( (|⌧ |K � c) t) ⇢0(x, y), and (1.29)
W1

(µx

t

, µy

t

)  2A exp ( (|⌧ |K � c) t ) |x� y|. (1.30)

The constants are explicitly given by

c�1
=

Z
R2

0

Z
s

0

exp

✓
1

2

Z
s

r

u+
(u), du

◆
dr ds,

A = exp

✓
1

2

Z
R1

0

s+
(s) ds

◆
,

K = 4L exp

✓
1

2

Z
R1

0

s+
(s) ds

◆
, (1.31)

where

R1 = inf{R � 0 : (r)  0 for all r � R}, and (1.32)
R2 = inf{R � R1 : (r)R (R�R1)  �4 for all r � R}. (1.33)

The function f is linear for r � R2, and

1

2

 f 0
(r) exp

✓
1

2

Z
r^R1

0

s+
(s) ds

◆
 1 for 0 < r < R2.

The precise definition of the function f is given in the proof in Section 1.5.3.

Our next goal is to replace (1.28) by the following dissipativity condition:
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1 Quantitative Harris type theorems for diffusions

Assumption 15 (Drift condition). There exist constants D,� 2 (0,1) such that

hx, b(x)i  �� |x|2 for any x 2 Rd with |x| � D.

Let V (x) = 1+ |x|2. Assumption 15 implies that V is a Lyapunov function for the
nonlinear diffusion (1.26), cf. Lemma 3 below.

A major difficulty in the McKean-Vlasov case is that solutions X
t

and Y
t

with
different starting points follow dynamics with different drifts. Therefore, it is not
clear how to construct a coupling (X

t

, Y
t

) such that X
t

= Y
t

for t > T holds for an
almost surely finite stopping time T . Using the multiplicative semimetric we are still
able to retrieve a local contraction:

Theorem 4 (Contraction rates for nonlinear diffusions II). Suppose that Assump-
tions 9, 14 and 15 hold true. For x 2 Rd, let (µx

t

) denote the marginal laws of a
strong solution (X

t

) of Equation (1.26) with initial condition X0 = x. Then there
exist a concave, bounded and non-decreasing continuous function f : R+ ! R+ with
f(0) = 0 and constants c, ✏, K0, K1 2 (0,1) such that:

(i) For any R 2 (0,1) there is ⌧0 2 (0,1) such that for any ⌧ 2 R and x, y 2 Rd

with |⌧ |  ⌧0 and |x|, |y|  R,

W
⇢2(µ

x

t

, µy

t

)  exp(�c t) ⇢2(x, y), and (1.34)
W1

(µx

t

, µy

t

)  K0 exp(�c t) |x� y| (1 + ✏V (x) + ✏V (y)) . (1.35)

(ii) There is ⌧0 2 (0,1) s.t. for any ⌧ 2 R with |⌧ |  ⌧0 and x, y 2 Rd,

W
⇢2(µ

x

t

, µy

t

)  exp(�c t)
�
⇢2(x, y) +K1 [✏V (x) + ✏V (y)]2

�
. (1.36)

The function ⇢2 is given by (1.16). For the explicit definition of the function f and
the constants c, ✏, ⌧0, K0, K1 see the proof in Section 1.5.3.

The assumption that ⌧ is sufficiently small is natural, since for large ⌧ , Equation
(1.26) can have several distinct stationary solutions. Nevertheless, we do not claim
that our bound on ⌧ is sharp.

1.2.4 Subgeometric ergodicity with explicit constants

We now consider the case where the drift is not strong enough to provide a Kan-
torovich contraction like (1.11). Instead of Assumption 10, we only assume a subge-
ometric drift condition as it has been used for example in [43].

Assumption 16 (Subgeometric drift condition). There are a function V 2 C2
(Rd

)

with inf

x2Rd V (x) > 0, a strictly positive, increasing and concave C1 function ⌘ :

R+ ! R+ such that ⌘(V (x)) ! 1 as |x| ! 1, as well as a constant C 2 (0,1)

such that
LV (x)  C � ⌘(V (x)) for any x 2 Rd.
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1.2 Main results

The following example shows how V and ⌘ can be chosen explicitly, cf. also [43].

Example 6 (Choice of V and ⌘). Suppose that

hb(x), xi  �� |x|q

holds for |x| � R with constants R, � 2 (0,1) and q 2 (0, 1). Let V 2 C2
(Rd

) be
a strictly positive function such that outside a compact set, V (x) = exp(↵ |x|q) for
some ↵ 2 (0, 2�/q), and fix � 2 (0, � � ↵q/2). Then Assumption 16 is satisfied with

⌘(r) =

8
<

:
↵

2
q

�1q�r log(r)2�
2
q for r � e

2
q

�1,

↵
2
q

�1�
⇣

2
q

� 1

⌘1� 2
q

⇣
2e1�

2
q

(q � 1)r2 + (4� 3q)r
⌘

for r < e
2
q

�1.

From now on we assume that Assumption 9 holds true, and we define the functions
' and � as in (1.5) above. Let R1 = sup {|x� y| : (x, y) 2 S1}, where

S1 =

�
(x, y) 2 Rd ⇥ Rd

: ⌘(V (x)) + ⌘(V (y))  4C
 
.

The set S1 is chosen such that for (x, y) 62 S1,

LV (x) + LV (y)  � ( ⌘(V (x)) + ⌘(V (y)) ) /2.

Notice that R1 is finite, since ⌘(V (x) ) ! 1 as |x| ! 1. Moreover, S1 is recurrent
for any Markovian coupling (X

t

, Y
t

) of solutions of (1.1). Let

✏�1
= max

✓
1, 4C

Z
R1

0

�(r)�1 dr

◆
= max

✓
1, 4C

Z
R1

0

e
1
2

R
r

0 t(t) dt dr

◆
. (1.37)

The following growth condition on the Lyapunov function replaces Assumption 11:

Assumption 17 (Growth condition in subgeometric case). There exist a constant
↵ > 0 and a bounded set S2 ◆ S1 such that for any (x, y) 2 R2d \ S2, we have

⌘(V (x)) + ⌘(V (y)) � 4C

✓
1 + ↵

Z
R1

0

�(r)�1 dr ⌘(�(|x� y|))
◆
.

Notice that � grows at most linearly. Let R2 = sup {|x� y| : (x, y) 2 S2}. We
state our main result for the subgeometric case.

Theorem 5 (Subgeometric decay rates). Suppose that Assumptions 9, 16 and 17 hold
true. Then there exist a concave, bounded and non-decreasing continuous function
f : R+ ! R+ with f(0) = 0 and constants c, ✏ 2 (0,1) s.t.

kp
t

(x, ·)� p
t

(y, ·)kTV  ⇢1(x, y)

H�1
(c t)

for any x, y 2 Rd and t � 0. (1.38)
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Here the distance ⇢1 is defined by (1.4) and (1.37), the function H : [l,1) ! [0,1)

is given by

H(t) =

Z
t

l

1

⌘(s)
ds with l = 2 ✏ inf

x2Rd

V (x),

c = min (↵, �, �) /2 where � is given by (1.12), and

� = inf { ✏ ⌘(r)/⌘(✏r) : r � l/✏} .

The function f is constant for r � R2, and

1

2

 f 0
(r) exp

✓
1

2

Z
r

0

t(t) dt

◆
 1 for any r 2 (0, R2).

The precise definition of the function f is given in the proof in Section 1.5.4.

The crucial difference in comparison to Theorem 1 is, that we do not provide upper
bounds on W

⇢1 , but use the additive distance to derive moment bounds for coupling
times instead. These bounds are partially based on a technique from [74], see Section
1.3.6 further below.

Remark 4. Since ⌘(s) is concave, it is growing at most linearly as s ! 1. In
particular,

R1
l

(1/⌘(s)) ds = 1, and thus the inverse function H�1 maps [0,1) to
[l,1). Since ✏  1 and ⌘ is increasing, we always have � � ✏ . If ⌘(r) = ra for some
a 2 (0, 1), then � � ✏1�a.

It is well-known that the local Lipschitz assumption on b together with Assump-
tion 16 implies the existence of a unique invariant probability measure ⇡ satisfyingR
⌘(V (x)) ⇡(dx)  C, see e.g. [74, Section 4]. Theorem 5 can be used to quan-

tify the speed of convergence towards the invariant measure using cut-off arguments.
Following [74, Section 4], we obtain:

Corollary 5. Under the Assumptions of Theorem 5,

kp
t

(x, ·)� ⇡kTV  R2 + ✏V (x)

H�1
( c t )

+

(2 ✏ b+ 1)C

⌘(bH�1
( c t ))

for any x 2 Rd and t � 0,

where b = ⌘�1
(2C)/l.

The proofs are given in Section 1.5.4.

42
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1.3 Discussion

1.3.1 Comparison to Meyn-Tweedie approach

The classical Harris theorem, as propagated by Meyn-Tweedie, allows to derive geo-
metric ergodicity for a large class of Markov chains under conditions which are easy
to verify. The approach is very generally applicable, but it is usually not trivial to
make the results quantitative. The first assumption is that the Markov chain at
hand is recurrent w.r.t. some bounded subset S of the state space and that one has
some kind of control over the average length of excursions from this set. The second
assumption which is typically imposed is a minorization condition which often takes
the following form: There are constants t, ✏ 2 (0,1) and a probability measure Q
such that

p
t

(x, ·) � ✏Q(·) (1.39)

holds for all x 2 S, where p
t

denotes the transition kernel of the chain.

The recurrence condition can be quantified performing direct computations with
the generator of the Markov chain via Lyapunov techniques. The minorization con-
dition is usually much harder to quantify. In the context of diffusions of the form
(1.1) there are abstract methods available which allow to conclude that the condition
(1.39) can indeed be satisfied, cf. e.g. [101, Discussion after Remark 1.29]. Never-
theless, using such methods, it is not clear how the resulting constant ✏ depends on
the drift coefficient b and how a perturbation of b translates to a change of ✏. In the
diffusion setting, Roberts and Rosenthal developed in [135] a method to provide ex-
plicit bounds for ✏ that are closely connected to the drift coefficient b. Their method
is based on reflection coupling and an application of the Bachelier-Lévy formula.
In comparison to their results, we establish contractions of the transition kernels,
and our contraction rates are based only on one-sided Lipschitz bounds for the drift
coefficient. This often leads to much more precise bounds.

1.3.2 Relation to functional inequalities

Functional inequalities are now a common tool to get rates for convergence to equi-
librium in L2 distance or in entropy. For the class of diffusion processes considered
here, the Poincaré inequality takes the form

Var
⇡

(f)  1

2

C
P

Z
|rf |2 d⇡ (1.40)

for smooth functions f , where ⇡ is the stationary distribution. Equation (1.40) is
equivalent to L2 convergence to equilibrium (and in fact L2 contractivity) with rate
C�1

P

. It turns out to be quite difficult to prove a Poincaré inequality for a general
non-reversible diffusion such as (1.1), as usual criteria rely on the explicit knowledge
of the invariant probability measure ⇡. If we assume that b(x) = �rV (x)/2, then the
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1 Quantitative Harris type theorems for diffusions

diffusion is reversible with respect to d⇡ / e�V dx and plenty criterias are available to
prove Poincaré inequalities. In particular, it is shown in [4], that if there exists a set
B, constants �, C 2 (0,1), and a positive twice continuously differentiable function
V such that

LV  ��V + C I
B

,

and a local Poincaré inequality of the form
Z

B

(f � ⇡(f I
B

))

2 d⇡  1

2


B

Z
|rf |2 d⇡

holds, then a global Poincaré inequality holds with constant C
P

= ��1
(1 + C 

B

).
Notice that a Poincaré inequality implies back the Lyapunov condition. Using the
additive metric and Corollary 1, one has that a Poincaré inequality holds, but the
identification of the constant is a hard task in general. However, using the multiplica-
tive semimetric and the gradient bounds of Corollary 4, one may prove that in the
reversible case a Poincaré inequality holds with the same constant c than in Corollary
4. Here the reflection coupling serves as an alternative to a local Poincaré inequal-
ity. The latter is usually established via Holley-Stroock’s perturbation argument [82]
which may lead to quite poor estimates.

Notice also that, by a result of Sturm and von Renesse [150], for a reversible
diffusion with stationary distribution given by e�V dx, a strict contraction in Lp

Wasserstein distance is equivalent to a lower bound on the Hessian of V . The lat-
ter condition is a special case of the Bakry-Emery criterion and usually linked to
logarithmic Sobolev inequalities, cf. [3]. In [23], a reinforced Lyapunov condition
has been used to prove stronger functional inequalities than Poincaré inequalities
(namely super Poincaré inequalities, including logarithmic Sobolev inequalities). In
a similar spirit, one can replace the global curvature condition (9) by a local one
using a reinforced Lyapunov condition, cf. Section 1.6 further below. Note however
that, although our results are sufficient to prove back some Poincaré inequality, it
does not seem possible to get stronger inequalities starting from our contractions.

1.3.3 Dimension dependence

In our results above, dependence on the dimension d usually enters through the
value of the constant C in the Lyapunov condition, which affects the size of R2. For
example, in Theorem 1, the contraction rate is c = min (↵, �,�) /2, where ↵ and
� are given by Assumptions 11 and 10 respectively, and the constant � defined in
(1.12) depends both on R2 and on the function  defined in Assumption 9. In order
to illustrate the dependence on the dimension of R2, let us assume that there are
constants A, � 2 (0,1) and q � 1 such that

hx, b(x)i  �� |x|q for all |x| � A.
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Suppose first that q = 2. Then V (x) = 1 + |x|2 satisfies the Lyapunov condition
in Assumption 10 with constants C = O(d) and � = ⌦(1). In this case, the set S2

in Assumption 11 can be chosen such that R2 = O(

p
d). Hence, assuming a one-

sided Lipschitz condition with constant  as in Example 4, the lower bound c for the
contraction rate in Theorem 1 is of order ⌦(1/d) if  = 0 (convex case), or, more
generally, if  = O(1/d). On the other hand, for  = ⌦(1), c is exponentially small
in the dimension. By Example 5, similar statements hold true for the lower bound
on the contraction rate w.r.t. the multiplicative semimetric derived in Corollary 3.

Now assume more generally q � 1. In this case, a Lyapunov function with poly-
nomial growth does not necessarily exist. Instead, by Remark 1, one can choose
a Lyapunov function V with constant � = 1 such that outside of a compact set,
V (x) = exp (a |x|q) for some a < 2�/q. In this case, C = O(exp(⌘d)) for some finite
constant ⌘ > 0, and one can choose R2 of order O(d1/q). Again, assuming a one-sided
Lipschitz condition, the constant c in Theorem 1 is of polynomial order ⌦(d�2/q

) if
 = 0 (convex case), or, more generally, if  = O(d�2/q

). For the multiplicative
semimetric, we are not able to prove a polynomial order in the dimension in this
case. Nevertheless, for q 2 (1, 2), an application of Corollary 3 with a Lyapunov
function satisfying V (x) = exp(|x|↵) for large |x| for some ↵ 2 (2 � q, 1) yields at
least a sub-exponential order in d. For  = ⌦(1), the values of c decay exponentially
in the dimension.

We finally remark that, in some situations, it is possible to combine the techniques
presented here with additional arguments to derive explicit and dimension-free con-
traction rates for diffusions, see for example the results presented in Chapter 2 of
this thesis.

1.3.4 Extensions of the results

Similarly as in [51], the results presented above can easily be generalized to diffusions
with a constant and nondegenerate diffusion matrix �. In the case of non-constant
and non-degenerate diffusion coefficients �(x), it should still be possible to retrieve
related results replacing reflection coupling by the Kendall-Cranston coupling w.r.t.
the intrinsic Riemannian metric induced by the diffusion coefficients, cf. [95, 32].

The main contraction results, Theorem 1 and Theorem 2, are based on Assumption
9, a global generalized one-sided Lipschitz condition. It is possible to relax this
condition to a local bound which, up to some technical details, holds only on the set
for which the coupling (X

t

, Y
t

) is recurrent. A corresponding generalization is given
in Section 1.6.

In the recent work [108], Majka extends the results from [51] to stochastic differen-
tial equations driven by Lévy jump processes with rotationally invariant jump mea-
sures, deriving Kantorovich contractions for the transition semigroups with explicit
constants, see also [153]. One of the key assumptions in [108] is the “contractivity at
infinity” condition (1.28). Using an additive distance similar to (1.4), it should be
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possible to extend the results presented there, replacing the latter assumption by a
more general geometric drift condition.

An extension of the theory presented in this article to a class of degenerate and
infinite-dimensional diffusions is considered in Chapter 2 combining asymptotic cou-
plings with the multiplicative distance (1.16).

In this work, we derive explicit contraction rates for diffusion processes. An im-
portant question is whether similar results can be obtained for time-discrete approx-
imations. There are at least two different approaches to tackle this question. The
first approach, which is considered in forthcoming work by one of the authors, is to
establish related coupling approaches directly for Markov chains. Another possibil-
ity is to consider time discretization as a perturbation of the diffusion process, and
to apply directly the contraction results for the diffusion, cf. [36, 45, 46] and also
[134, 138, 121, 128, 58, 137].

1.3.5 McKean-Vlasov equations

For the class of nonlinear diffusions considered above, Theorems 3 and 4 consider-
ably relax assumptions in previous works. Both, the PDE approach in [20] and the
approach based on synchronous coupling in [109, 22] require global positive curva-
ture bounds. In the case where the curvature is strictly positive with degeneracy
at a finite number of points, algebraic contraction rates have been derived by syn-
chronous coupling. The “dissipation of W 2 approach” in [14] yields exponential decay
to equilibrium for sufficiently small ⌧ provided the confinement and interaction forces
both derive from a potential, the confinement force satisfies condition (1.28), and the
interaction potential is bounded with a lower bound on the curvature. The approach
in [18] yields exponential convergence to equilibrium in total variation distance in the
small and bounded interaction case. Theorem 3 above relaxes these assumptions on
the interaction potential while requiring only a “strict convexity at infinity” condition
on the confinement potential. Moreover, Theorem 4 replaces the latter condition on
the confinement potential by the dissipativity condition in Assumption 15. With
additional technicalities, it should be possible to relax this dissipativity condition to
hx, b(x)i  �� |x| and generalize Lemma 3.

1.3.6 Subgeometric ergodicity

Our results in the subgeometric case can be interpreted as a variation of statements
from the lecture notes [74, Section 4]. There, M. Hairer derives subgeometric ergodic-
ity for diffusions, estimating hitting times of recurrent sets and combining these with
a minorization condition. While the principle result from [74, Section 4] is already
contained in [5, 43], the method of proof shows new and interesting aspects avoiding
discrete-time approximations. The main tool used is the following statement, which
gives an elegant proof for the integrability of hitting times:
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Lemma 2 ([74], reformulated). Let ⌘ : R+ ! R+ be a strictly positive, increasing
and concave C1 function and denote by (Z

t

) a continuous semimartingale, i.e. Z
t

=

Z0+A
t

+M
t

, where (A
t

) is of finite variation, (M
t

) is a local martingale, E[Z0] < 1
and A0 = M0 = 0. Let T be a stopping time. If there are constants l, c 2 (0,1) such
that

Z
t

� l and A
t

 �c

Z
t

0

⌘(Z
s

) ds almost surely for t < T , (1.41)

then T is almost surely finite and satisfies the inequality

E
⇥
H�1

( c T )

⇤
 E

⇥
H�1

(H(Z
T

) + c T )

⇤
 E[Z0 ],

where H : [l,1) ! [0,1) is given by H(t) =
R

t

l

1
⌘(s) ds.

Our result for the subgeometric case, Theorem 5, relies on the above tool. The
main difference to [74] is that we do not impose any kind of minorization condition or
renewal theory. Instead, we consider a reflection coupling (X

t

, Y
t

) of the diffusions,
defined in Section 1.4.2, and we directly establish bounds on the integrability of the
coupling time T = inf{t � 0 : X

t

= Y
t

} using Lemma 2 and the additive distance
(1.4). For the reader’s convenience, a proof of Lemma 2 is included in Section 1.5.4.
It should be mentioned that subgeometric ergodicity of Markov processes has been
studied by many others authors in various settings, see [44, 59, 122, 145, 146, 19,
110, 83] and the references therein.

1.4 Couplings

1.4.1 Synchronous coupling for diffusions

Given initial values (x0, y0) 2 R2d and a d-dimensional Brownian motion (B
t

), we
define a synchronous coupling of two solutions of (1.1) as a diffusion process (X

t

, Y
t

)

with values in R2d solving

dX
t

= b(X
t

) dt + dB
t

, X0 = x0,

dY
t

= b(Y
t

) dt + dB
t

, Y0 = y0.

1.4.2 Reflection coupling for diffusions

Reflection coupling goes back to [107]. Given initial values (x0, y0) 2 R2d and a d-
dimensional Brownian motion (B

t

), we define a reflection coupling of two solutions
of (1.1) as a diffusion process (X

t

, Y
t

) with values in R2d satisfying

dX
t

= b(X
t

) dt+ dB
t

,

dY
t

= b(Y
t

) dt+ (I � 2 e
t

he
t

, ·i) dB
t

for t < T,

Y
t

= X
t

for t � T,

(X0, Y0) = (x0, y0),
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where T = inf{t � 0 : X
t

= Y
t

} is the coupling time. Here, for t < T , e
t

is the unit
vector given by e

t

= (X
t

� Y
t

)/|X
t

� Y
t

|.

1.4.3 Coupling for McKean-Vlasov processes

We construct a coupling for two solutions of (1.26). The coupling will be realized as
a process (X

t

, Y
t

) with values in R2d. We first describe the coupling in words: We
fix a parameter � > 0 and use a reflection coupling of the driving Brownian motions
whenever |X

t

� Y
t

| � �. If, on the other hand, |X
t

� Y
t

|  �/2 we use a synchronous
coupling. Inbetween there is a transition region, where a mixture of both couplings
is used. One should think of � being close to zero.

The technical realization of the coupling is near to [51]. In order to implement
the above coupling, we introduce Lipschitz functions rc : Rd ⇥ Rd ! [0, 1] and
sc : Rd ⇥ Rd ! [0, 1] satisfying

sc

2
(x, y) + rc

2
(x, y) = 1. (1.42)

We impose that rc(x, y) = 1 holds whenever |x� y| � � and rc(x, y) = 0 holds if
|x� y|  �/2. The functions rc and sc can be constructed using standard cut-off
techniques. Notice that in the case where the drift coefficient b and the nonlinearity
# are Lipschitz, equation (1.26) admits a unique, strong and non-explosive solution
(X

t

) for any initial value x0 2 Rd. The uniqueness holds pathwise and in law.
Moreover, the law µx0

t

of X
t

has finite second moments, i.e.
R
|y|2 µx0

t

(dy) < 1, see
[117, Theorem 2.2] and [144]. For a fixed x0 2 Rd we define

bx0
(t, y) = b(y) + ✓

Z
#(y, z)µx0

t

(dz).

The results from [117, Theorem 2.2] imply that the function bx0
: R+ ⇥ Rd ! Rd is

continuous. It is easy to see that Assumption 14, in combination with a Lipschitz
bound on b, implies that there is M > 0 such that

sup

t�0
| bx0

(t, y)� bx0
(t, z) |  M · |y � z| for any y, z 2 Rd. (1.43)

Fix now initial values (x0, y0) 2 R2d, the parameter � > 0 and two independent
Brownian motions (B1

t

) and (B2
t

). For the given x0 and y0, we construct diffusion
coefficients bx0 and by0 , as above, and define the coupling (U

t

) = (X
t

, Y
t

) as the
solution of the standard diffusion

dX
t

= bx0
(t,X

t

) dt +rc(U
t

) dB1
t

+ sc(U
t

) dB2
t

,

dY
t

= by0(t, Y
t

) dt +rc(U
t

) (I � 2e
t

he
t

, ·i) dB1
t

+ sc(U
t

) dB2
t

,

with (X0, Y0) = (x0, y0) and

e
t

=

X
t

� Y
t

|X
t

� Y
t

| for X
t

6= Y
t

, e
t

= u for X
t

= Y
t

,
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1.5 Proofs

where u 2 Rd is some arbitrary fixed unit vector. Note that the concrete choice of u is
irrelevant for the dynamic, since rc(x, x) = 0. Inequality (1.43) implies that the above
diffusion process admits a unique, strong and non-explosive solution. Using Levy’s
characterization of Brownian motion and (1.42), one can verify that the marginal
processes (X

t

) and (Y
t

) solve the standard equations

dX
t

= bx0
(t,X

t

) dt+B
t

, X0 = x0 (1.44)
dY

t

= by0(t, Y
t

) dt + ˆB
t

, Y0 = y0. (1.45)

with respect to the Brownian motions

B
t

=

Z
t

0

rc(U
s

) dB1
s

+

Z
t

0

sc(U
s

) dB2
s

and (1.46)

ˆB
t

=

Z
t

0

rc(U
s

) (I � 2e
s

he
s

, ·i) dB1
s

+

Z
t

0

sc(U
s

) dB2
s

.

Since the solutions (X
t

) and (Y
t

) of (1.44) and (1.45) are pathwise unique, they
coincide a.s. with the strong solutions of (1.26) w.r.t. the Brownian motions (B

t

) and
(

ˆB
t

) and initial values x0 and y0, respectively. Hence (X
t

, Y
t

) is indeed a coupling for
(1.26).

1.5 Proofs
Let us start with a crucial tool which will be used throughout our proofs: A general
construction of the function f appearing in the main theorems, characterized by a
differential inequality. We define a concave function f : [0,1) ! [0,1) depending
on various parameters. Fix constants R1, R2 2 R+ such that R1  R2, and let
functions

h : [0, R2] ! [0,1), j : [0, R2] ! [0,1) and i : [0, R1] ! [0,1)

be given. We suppose that i and j are continuous, j is non-decreasing and h is
continuously differentiable with h0 � 0. The function f is given by

f(r) =

Z
r^R2

0

�(s) g(s) ds,

where � and g are defined as

�(r) = exp(�h(r)) and

g(r) = 1� �

4

Z
r^R2

0

j(�(s) )�(s)�1 ds� ⇠

4

Z
r^R1

0

i(s)�(s)�1 ds.
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Here the function � and the constants � and ⇠ are given by

�(r) =

Z
r

0

�(s) ds, ��1
=

Z
R2

0

j(�(s) )�(s)�1 ds, ⇠�1
=

Z
R1

0

i(s)�(s)�1 ds.

(1.47)
The function f is a generalization of the concave distance function constructed in [51].
It is continuously differentiable on (0, R2) and constant on [R2,1). The derivative f 0

on (0, R2) is given by the product �g, where � and g are positive and non-increasing
functions. Hence f is a concave and non-decreasing function. Notice that g maps
the interval [0, R2] into [1/2, 1], which implies that the following inequalities hold for
any r 2 [0, R2]:

r �(R2)  �(r)  2 f(r)  2�(r)  2 r. (1.48)

The crucial property of the function f is that it is twice continuously differentiable
on (0, R1) [ (R1, R2) and that it satisfies on this set the (in)equality

f 00
(r) = �h0

(r) f 0
(r)� �

4

j(�(r) )� ⇠

4

i(r) I
r<R1

 �h0
(r) f 0

(r)� �

4

j( f(r) )� ⇠

4

i(r) I
r<R1 . (1.49)

Observe that f is not continuously differentiable at the point R2 and thus we some-
times work with the left-derivative f 0

� which exists everywhere. The function f can
formally be extended to a concave function on R by setting f(r) = �r for r < 0. We
can associate with f a signed measure µ

f

on R, which takes the role of a generalized
second derivative. For x < y the measure is defined by µ

f

( [x, y) ) = f 0
�(y) � f 0

�(x).
On the set (0, R1) [ (R1, R2) the measure satisfies

µ
f

(dx) = f 00
(x) dx,

since f is twice continuously differentiable. Furthermore,

µ
f

((�1, 0] [ (R2,1)) = 0 and µ
f

({R1, R2})  0.

1.5.1 Proofs of results in Section 1.2.1

Proof of Lemma 1. Let (x, y) 2 R2d such that (x, y) 62 S2. Assume w.l.o.g. that
max(|x| , |y|) = |x| � R. Using our assumption, the triangle inequality and the
estimate �(r)  r, we get

V (x) � 4C��1
(1 + 2 |x|) � 4C��1

(1 + |x� y|) � 4C��1
(1 + �(|x� y|)).
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1.5 Proofs

Proof of Theorem 1. We use the function f defined at the beginning of Section 1.5
with the following parameters: The constants R1 and R2 are specified by (1.7) and
(1.10) respectively. For r � 0 we set i(r) = 1, j(r) = r and

h(r) =
1

2

Z
r

0

s(s) ds, where  is defined in Assumption 9. (1.50)

We fix initial values (x, y) 2 R2d and prove (1.11) for Dirac measures �
x

and �
y

. This
is sufficient, since for general µ, ⌫ 2 P

V

(Rd

) one can show, arguing similarly to [149,
Theorem 4.8], that for any coupling � of µ and ⌫ we have

W
⇢1(µpt, ⌫pt) 

Z
W

⇢1(�xpt, �ypt) �(dx dy).

Let U
t

= (X
t

, Y
t

) be a reflection coupling with initial values (x, y), as defined in
Section 1.4.2. We will argue that E [ec t⇢1(Xt

, Y
t

)]  ⇢1(x, y) holds for any t � 0.
Denote by T = inf {t � 0 : X

t

= Y
t

} the coupling time. Set Z
t

= X
t

�Y
t

and r
t

= |Z
t

|.
The process (Z

t

) satisfies the SDE

dZ
t

= (b(X
t

)� b(Y
t

)) dt+ 2 e
t

he
t

, dB
t

i for t < T,

dZ
t

= 0 for t � T, where e
t

= Z
t

/r
t

.

Until the end of the proof, all Itô equations and differential inequalities hold almost
surely for t < T , even though we do not mention it every time. An application of
Itô’s formula shows that (r

t

) satisfies the equation

dr
t

= he
t

, b(X
t

)� b(Y
t

)i dt+ 2 he
t

, dB
t

i for t < T . (1.51)

Let (Lx

t

) denote the right-continuous local time of the semimartingale (r
t

). Since f is
a concave function, we can apply the general Itô-Tanaka formula of Meyer and Wang
(cf. e.g. [93, Thm. 22.5] or [133, Ch. VI]) to conclude

f(r
t

)� f(r0) =

Z
t

0

f 0
�(rs) hes, b(Xs

)� b(Y
s

)i ds+ 2

Z
t

0

f 0
�(rs) hes, dBs

i

+

1

2

Z 1

�1
Lx

t

µ
f

(dx) for t < T, (1.52)

where f 0
� denotes the left-derivative of f and µ

f

is the non-positive measure represent-
ing the second derivative of f , i.e., µ

f

( [x, y) ) = f 0
�(y)� f 0

�(x) for x  y. Moreover,
the generalized Itô formula implies for every measurable function v : R ! [0,1) the
equality

Z
t

0

v(r
s

) d[r]
s

=

Z 1

�1
v(x)Lx

t

dx for any t < T. (1.53)

Observe that (1.53) implies that the Lebesgue measure of the set {0  s  T : r
s

2
{R1, R2}}, i.e., the time that (r

s

) spends at the points R1 and R2 before coupling,
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is almost surely zero. Our function f is twice continuously differentiable on (0,1) \
{R1, R2}. The measure µ

f

(dy) is non-positive and thus (1.53) implies
Z 1

�1
Lx

t

µ
f

(dx) 
Z 1

�1
IR\{R1,R2}(x)f

00
(x)Lx

t

dx = 4

Z
t

0

f 00
(r

s

) ds, t < T.

We can conclude that a.s. the following differential inequalities hold for t < T :

df(r
t

)  (f 0
(r

t

) he
t

, b(X
t

)� b(Y
t

)i+ 2 f 00
(r

t

)) dt+ 2 f 0
(r

t

) he
t

, dB
t

i (1.54)
 (�(�/2) f(r

t

) I
r

t

<R2 � (⇠/2) I
r

t

<R1) dt+ 2 f 0
(r

t

) he
t

, dB
t

i .

For the second inequality, we have used that f is constant on [R2,1) and that
inequality (1.49) holds on (0, R2) \ {R1} with h given by (1.50). Moreover, using
Assumption 9, we estimated

he
t

, b(X
t

)� b(Y
t

)i = hZ
t

/r
t

, b(X
t

)� b(Y
t

)i  (r
t

) r
t

.

We now turn to the Lyapunov functions. Assumption 10 implies that a.s.

d (✏V (X
t

) + ✏V (Y
t

))  2C ✏� � (✏V (X
t

) + ✏V (Y
t

)) dt+ dM
t

,

where (M
t

) denotes a local martingale. If r
t

� R1, the definition of S1 implies

2C ✏� � (✏V (X
t

) + ✏V (Y
t

))  �(�/2) (✏V (X
t

) + ✏V (Y
t

)) .

If r
t

� R2, then by Assumption 11,

2C✏� � (✏V (X
t

) + ✏V (Y
t

))  �(↵/2) f(r
t

) � (�/2) (✏V (X
t

) + ✏V (Y
t

)) ,

where we have used that by (1.8) and (1.47), ✏ = ⇠/(4C) and �(r) � f(r). We can
conclude that a.s. ,

d(✏V (X
t

) + ✏V (Y
t

))

 ((⇠/2)I
r

t

<R1 � (↵/2)f(r
t

)I
r

t

�R2 � (�/2)(✏V (X
t

) + ✏V (Y
t

))) dt+ dM
t

.

Summarizing the above results, we can conclude that a.s., for t < T ,

d⇢1(Xt

, Y
t

) = df(r
t

) + d (✏V (X
t

) + ✏V (Y
t

))  �c ⇢1(Xt

, Y
t

) dt+ dM 0
t

,

where (M 0
t

) denotes a local martingale and c = min(↵, �,�)/2. The product rule for
semimartingales then implies a.s. for t < T :

d(ec t⇢1(Xt

, Y
t

)) = c ec t⇢1(Xt

, Y
t

) dt+ ec t d⇢1(Xt

, Y
t

)  ec t dM 0
t

.

We introduce a sequence of stopping times (T
n

)

n2N given by

T
n

= inf{t � 0 : |X
t

� Y
t

|  1/n or max(|X
t

| , |Y
t

|) � n}.

We have T
n

" T a.s. by non-explosiveness. Therefore we finally obtain:

W
⇢1 (�xpt, �ypt)  E [⇢1(Xt

, Y
t

)I
t<T

] = lim

n!1
E [⇢1(Xt

, Y
t

)I
t<T

n

]

 e

�c t

lim inf

n!1
E
⇥
e

c(t^T
n

) ⇢1(Xt^T
n

, Y
t^T

n

)

⇤
 e

�c t W
⇢1(�x, �y)
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Bounds for Example 4. The statement is a special case of Theorem 1. The only thing
to verify is the lower bound

� �
p

/⇡

✓Z
R2

0

exp

�
r2/4

�
dr

◆�1

.

As
R1
0 exp(r2/4) dr =

p
⇡/, this follows from the definitions of � and �:

��1
=

Z
R2

0

�(r)�1
�(r) dr 

p
/⇡

Z
R2

0

exp

�
r2/4

�
dr.

Proof of Corollary 1. It is well-known that, in our setup, the Markov transition ker-
nels (p

t

) admit a unique invariant measure ⇡ satisfying ⇡p
t

= ⇡ for any t � 0 andR
V (x) ⇡(dx)  C/�, see e.g. [73]. In [75, Lemma 2.1] it is proven that for any

probability measures ⌫1 and ⌫2 we have
Z

Rd

V (x) |⌫1 � ⌫2| (dx) = inf

�

Z
[V (x) + V (y) ] I

x 6=y

�(dx dy),

where the infimum is taken over all couplings � with marginals ⌫1 and ⌫2 respectively.
In our setup, this implies that for any µ 2 P

V

(Rd

) and t � 0,
Z

Rd

V (z) |µp
t

� ⇡| (dz)  ✏�1W
⇢1(µpt, ⇡pt)  ✏�1 e�c t W

⇢1(µ, ⇡).

This implies the bound on the mixing time, since

W
⇢1(�x, ⇡) 

Z
[f(|x� y|) + ✏V (x) + ✏V (y) ] ⇡(dy)  R2 + ✏V (x) + ✏C/�.

Proof of Corollary 2. The proof relies on arguments from [51]. Let x 2 Rd. Assump-
tion 10 implies that �

x

p
t

2 P
V

(Rd

) for any t � 0 and hence p
t

g(x) = E
x

[g(X
t

)] is well
defined and finite for any measurable g which is Lipschitz w.r.t. ⇢1. Fix (x, y) 2 R2d

and t � 0, and let (X
t

, Y
t

) be an arbitrary coupling of �
x

p
t

and �
y

p
t

. We bound the
Lipschitz norm of x 7! p

t

g(x):

|p
t

g(x)� p
t

g(y)|  E(x,y)[|g(Xt

)� g(Y
t

)|]  |g|Lip(⇢1) E(x,y)[⇢1(Xt

, Y
t

)].

Since the above inequality holds for any coupling, Theorem 1 implies

|p
t

g|Lip(⇢1)  |g|Lip(⇢1) e
�c t.
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This estimate implies bounds on the bias of ergodic averages:
����Ex


1

t

Z
t

0

g(X
s

) ds�
Z

g d⇡

����� 
1

t

Z
t

0

Z
|p

s

g(x)� p
s

g(y)| ⇡(dy) ds

 1� e�c t

c t
|g|Lip(⇢1)

Z
⇢1(x, y) ⇡(dy)

 1� e�c t

c t
|g|Lip(⇢1)

✓
R2 + ✏V (x) + ✏

C

�

◆
,

where we have used that f is bounded by R2.
We now turn to the variance bound. Integrating (1.15) implies

E
x

[V (X
t

)

2
]  C⇤/�⇤

+ e��

⇤
t V (x)2 for any t � 0.

For reals a, b, c, the inequality (a+ b+ c)2  3(a2 + b2 + c2) holds true. Hence
Z Z

⇢1(y, z)
2 p

t

(x, dy) p
t

(x, dz)  3

✓
R2

2 + 2 ✏2
Z

V (y)2 p
t

(x, dy)

◆

 3

�
R2

2 + 2 ✏2
⇥
C⇤/�⇤

+ e��

⇤
t V (x)2

⇤�
.

Let A = 3

�
R2

2 + 2 ✏2
�
C⇤/�⇤

+ e��

⇤
t V (x)2

��
. For t � 0 and h � 0,

Var

x

[g(X
t

)] =

1

2

Z Z
( g(y)� g(z) )2 p

t

(x, dy) p
t

(x, dz)  A

2

|g|2Lip(⇢1) ,

Var

x

[(p
h

g)(X
t

)]  A

2

|p
h

g|2Lip(⇢1)  A

2

|g|2Lip(⇢1) e
�2 c h.

We get an estimate on the decay of correlations by Cauchy-Schwarz:

Cov

x

[g(X
t

), g(X
t+h

)] = Cov

x

[g(X
t

), (p
h

g)(X
t

)]

 Var

x

[g(X
t

)]

1/2
Var

x

[(p
h

g)(X
t

)]

1/2  A

2

|g|2Lip(⇢1) e
�c h.

Finally, we obtain the variance bound

Var

x


1

t

Z
t

0

g(X
s

)ds

�
=

2

t2

Z
t

0

Z
t

r

Cov

x

[ g(X
s

) , g(X
r

) ] ds dr

=

A

t2
|g|2Lip(⇢1)

Z
t

0

Z
t

r

e�c (s�r) ds dr =

A

c t
|g|2Lip(⇢1) .

1.5.2 Proofs of results in Section 1.2.2

Proof of Theorem 2. We use the function f defined at the beginning of Section 1.5
with the following parameters: The constants R1 and R2 are specified by (1.22), we
fix ✏ 2 (0,1) satisfying (1.18), set i(r) = �(r) and j(r) = r and define

h(r) =

1

2

Z
r

0

s(s) ds+ 2Q(✏) r, (1.55)
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where �,  and Q are given by (1.19), Assumption 9 and (1.17) respectively.
Fix initial values (x, y) 2 R2d. It is enough to prove (1.23) for Dirac measures

�
x

and �
y

, see the proof of Theorem 1 for details. Let U
t

= (X
t

, Y
t

) be a reflection
coupling with initial values (x, y), as defined in Section 1.4.2. We will argue that
E [ec t⇢2(Xt

, Y
t

)]  ⇢2(x, y) holds for any t � 0. Denote by T = inf {t � 0 : X
t

= Y
t

}
the coupling time. Set Z

t

= X
t

� Y
t

and r
t

= |Z
t

|. The proof of Theorem 1 shows
that f(r

t

) satisfies a.s.

df(r
t

)  (f 0
(r

t

) he
t

, b(X
t

)� b(Y
t

)i+ 2f 00
(r

t

)) dt+ 2 f 0
(r

t

) he
t

, dB
t

i (1.56)

for t < T , where e
t

= Z
t

/r
t

. As in the proof of Theorem 1, the Lebesgue measure of
the set {0  s  T : r

s

2 {R1, R2}}, i.e. the time that (r
t

) spends at the points R1

and R2 before coupling, is almost surely zero. This justifies to write f 0 and f 00 in the
above inequality. Observe that Assumption 9 implies the upper bound

he
t

, b(X
s

)� b(Y
s

)i = hZ
t

/r
t

, b(X
t

)� b(Y
t

)i  (r
t

) r
t

.

The function f is constant on [R2,1), and f(r)  �(r). Moreover, on (0, R2) \
{R1} the function f satisfies inequality (1.49). By (1.56), (1.49) and (1.55), we can
conclude that a.s. for t < T ,

df(r
t

)  (�4Q(✏) f 0
(r

t

)� �/2f(r
t

) I
r

t

<R2 � ⇠/2f(r
t

) I
r

t

<R1) dt (1.57)
+ 2 f 0

(r
t

) he
t

, dB
t

i .

We now turn to the Lyapunov functions and set G(x, y) = 1+ ✏V (x)+ ✏V (y). By
definition of the coupling in Section 1.4.2, we have a.s. for t < T :

dG(X
t

, Y
t

) = (✏LV (X
t

) + ✏LV (Y
t

)) dt (1.58)
+✏ hrV (X

t

) +rV (Y
t

), dB
t

i � 2 ✏ he
t

,rV (Y
t

)i he
t

, dB
t

i .

Assumption 10 implies LV (X
t

)+LV (Y
t

)  2C �� (V (X
t

)+V (Y
t

)). Notice that by
(1.18), (1.19) and (1.47) with i(r) = �(r),

2C✏ 
✓
2

Z
R1

0

�(r)�(r)�1 dr

◆�1

= ⇠/2.

Recall that c = min (�,�, 4C✏�) /2. Using the definitions (1.20) and (1.21) of the
sets S1 and S2 respectively, we can conclude that a.s. for t < T :

d(✏V (X
t

) + ✏V (Y
t

))  (⇠/2I
r

t

<R1 � cG(X
t

, Y
t

)I
r

t

�R2) dt

+ ✏ hrV (X
t

) +rV (Y
t

), dB
t

i � 2✏ he
t

,rV (Y
t

)i he
t

, dB
t

i .
(1.59)

By (1.52) and (1.58), the covariation of f(r
t

) and ✏V (X
t

) + ✏V (Y
t

) is, almost surely
for t < T , given by:

d[ f(r) , ✏V (X) + ✏V (Y ) ]

t

= 2 f 0
(r

t

) ✏ hrV (X
t

)�rV (Y
t

), e
t

i dt.
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Using Cauchy-Schwarz and (1.17), we can derive the following bound for any x, y 2 Rd

with x 6= y:

✏

⌧
rV (x)�rV (y),

x� y

|x� y|

�
 (1 + ✏V (x) + ✏V (y))

✏ |rV (x)|+ ✏ |rV (y)|
(1 + ✏V (x) + ✏V (y))

 2Q(✏)G(x, y).

Hence, almost surely for t < T :

d[ f(r) , ✏V (X) + ✏V (Y ) ]

t

 4Q(✏) f 0
(r

t

)G(X
t

, Y
t

) dt. (1.60)

The product rule for semimartingales implies almost surely for t < T :

d (f(r
t

)G(X
t

, Y
t

)) = G(X
t

, Y
t

) df(r
t

) + f(r
t

) dG(X
t

, Y
t

) + [f(r), G(X, Y )]

t

.

By (1.57), we have

G(X
t

, Y
t

)df(r
t

)  (��/2 ⇢2(Xt

, Y
t

) I
r

t

<R2 � ⇠/2 ⇢2(Xt

, Y
t

) I
r

t

<R1) dt

�4Q(✏) f 0
(r

t

)G(X
t

, Y
t

) dt+ dM1
t

, (1.61)

where (M1
t

) is a local martingale. Moreover, (1.59) implies

f(r
t

) dG(X
t

, Y
t

)  [⇠/2 f(r
t

) I
r

t

<R1 � c ⇢2(Xt

, Y
t

) I
r

t

�R2 ] dt+ dM2
t

, (1.62)

where (M2
t

) is again a local martingale. Observe that G � 1. Combining (1.60),
(1.61) and (1.62) we can conclude a.s. for t < T :

d⇢2(Xt

, Y
t

)  �c ⇢2(Xt

, Y
t

) + dM
t

,

d
�
ec t⇢2(Xt

, Y
t

)

�
= c ec t ⇢2(Xt

, Y
t

) dt+ ec t d⇢2(Xt

, Y
t

)  ec t dM
t

,

where (M
t

) is a local martingale. We can finish the proof of (1.23) using a stopping
argument, see the end of the proof of Theorem 1 for details.

Proof of Corollary 4. Analogously to the proof of Corollary 2, we can conclude that
p
t

g(x) is finite for any function g which is Lipschitz w.r.t. ⇢2, any x 2 Rd and t � 0.
Moreover,

|p
t

g|Lip(⇢2)  |g|Lip(⇢2) e
�c t holds for any t � 0.

In particular, for any x, y 2 Rd we can conclude that

|p
t

g(x)� p
t

g(y)|  |g|Lip(⇢2) e
�c t⇢2(x, y)

 |g|Lip(⇢2) e
�c t |x� y| (1 + ✏V (x) + ✏V (y)) ,

where we used f(r)  r. If the map x 7! p
t

g(x) is differentiable at x 2 Rd, we can
deduce the gradient bound (1.25).
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1.5.3 Proofs of results in Section 1.2.3

Proof of Theorem 3. In contrast to the proofs above, we do not use the function f
defined in the beginning of Section 1.5, but the one constructed in [51], i.e., we set

f(r) =

Z
r

0

�(s) g(s ^R2) ds,

where � and g are defined as

�(r) = exp

✓
�1

2

Z
r

0

u+
(u) du

◆
and g(r) = 1� c

2

Z
r

0

�(s)�(s)�1 ds.

The function � and the constant c are given by

�(r) =

Z
r

0

�(s) ds and c�1
=

Z
R2

0

�(s)�(s)�1 ds.

The constants R1 and R2 are defined in (1.32) and (1.33) respectively. Notice that
by definition, +

(r) = 0 for any r � R1 and thus f is linear on the interval [R2,1).
The function f is twice continuously differentiable on (0, R2), and

2 f 00
(r) = � r +

(r) f 0
(r)� c�(r)  � r +

(r) f 0
(r)� c f(r). (1.63)

We now prove (1.29) and fix initial values (x, y) 2 R2d as well as a small constant
� > 0. The coupling U

t

= (X
t

, Y
t

), defined in Section 1.4.3, yields the upper bound

W
⇢0(µ

x

t

, µy

t

)  E[⇢0(Xt

, Y
t

)] = E[f(|X
t

� Y
t

|)].

Let � = c � |⌧ | K. Set Z
t

= X
t

� Y
t

and r
t

= |Z
t

|. We will argue that there is a
constant C > 0, independent of �, such that

e� tE[f(r
t

)]  f(r0) + e� t C � holds true for any t � 0. (1.64)

From this inequality one can then conclude, that for any t � 0 we have

W
⇢0(µ

x

t

, µy

t

)  e�� t ⇢0(x, y) + C �,

which finishes the proof of (1.29) since � > 0 can be chosen arbitrarily small. More-
over (1.30) directly follows from (1.29) and the inequality

r �(R1)  �(r)  2 f(r)  2�(r)  2 r.

We now show (1.64). By definition of the coupling in Section 1.4.3,

dZ
t

= (bx(t,X
t

)� by(t, Y
t

)) dt+ 2 rc(U
t

) e
t

dW
t

,

where W
t

=

R
t

0 hes, dB
1
s

i is a one dimensional Brownian motion. Notice that whenever
r
t

< �/2, we have rc(U
t

) = 0 by definition. Using an approximation argument, cf.
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the proof of Lemma 8 further below or arguing similarly to [51, Lemma 6.2], one can
show that r

t

satisfies almost surely the equation

dr
t

= hẽ
t

, bx(t,X
t

)� by(t, Y
t

)i dt+ 2 rc(U
t

) dW
t

, (1.65)

where ẽ
t

= Z
t

/r
t

for r
t

6= 0, ẽ
t

= (bx(t,X
t

)� by(t, Y
t

))/ |bx(t,X
t

)� by(t, Y
t

)| if r
t

= 0

and |bx(t,X
t

)� by(t, Y
t

)| > 0, and ẽ
t

is an arbitrary unit vector otherwise. Similarly
as in the proof in Section 1.5.1, we now apply the Itô-Tanaka formula for semimartin-
gales to conclude that almost surely,

f(r
t

)� f(r0) =

Z
t

0

f 0
�(rs) hẽs, bx(s,Xs

)� by(s, Y
s

)i ds

+2

Z
t

0

rc(U
s

) f 0
�(rs) dWs

+

1

2

Z 1

�1
Lx

t

µ
f

(dx),

where Lx

t

is the right-continuous local time of (r
t

) and µ
f

is the non-positive measure
representing the second derivative of f . By (1.53), the Lebesgue measure of the set
{0  s  t : r

s

2 {R1, R2}} is almost surely zero. Since f is twice continuously
differentiable, except possibly at R1 and R2, we can replace f 0

� by f 0 in the equation
above. Moreover, since f is concave, the measure of the points R1 and R2 w.r.t. µ

f

is non-positive. Hence by (1.53),
Z 1

�1
Lx

t

µ
f

(dx) 
Z

t

0

f 00
(r

s

) d[r]
s

= 4

Z
t

0

rc(U
s

)

2 f 00
(r

s

) ds a.s., and thus

f(r
t

) = f(r0) + M
t

+

Z
t

0

H
s

ds, where (1.66)

M
t

= 2

Z
t

0

rc(U
s

)f 0
(r

s

)dW
s

, and (1.67)

H
s

 f 0
(r

s

) hẽ
s

, bx(t,X
s

)� by(t, Y
s

)i + 2 rc(U
s

)

2 f 00
(r

s

). (1.68)

We can bound the inner product using the definitions of bx, by and , as well as the
Lipschitz bounds on b and #:

hẽ
t

, bx(t,X
t

)� by(t, Y
t

)i (1.69)

= hẽ
t

, b(X
t

)� b(Y
t

)i+ ⌧

⌧
ẽ
t

,

Z
#(X

t

, z)µx

t

(dz)�
Z

#(Y
t

, z)µy

t

(dz)

�

 I
r

t

��

r
t

(r
t

) + I
r

t

<�

|b|Lip � + |⌧ |L(r
t

+W1(µx

t

, µy

t

)).

Notice that W1
(µx

t

, µy

t

)  E[r
t

]. Remembering that by (1.31), K =

4L
�(R1)

and
combining (1.69) with the inequality r  2 f(r)/�(R1), we obtain

hẽ
t

, bx(t,X
t

)� by(t, Y
t

)i
 I

r

t

��

r
t

(r
t

) + I
r

t

<�

|b|Lip � + |⌧ | K/2 (f(r
t

) + E[f(r
t

)]).
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The product rule for semimartingales shows that

d(e� t f(r
t

)) = e�t dM
t

+ e�t (� f(r
t

) + H
t

) dt.

Using that � = c� |⌧ |K and the bound f 0  1, we can conclude that

d(e� t f(r
t

))  e�t dM
t

+ e�t |⌧ | K/2 (E[f(r
t

)]� f(r
t

)) dt

+e�t I
r

t

<�

⇣
c f(r

t

) + |b|Lip �
⌘
dt (1.70)

+e�t I
r

t

��

(c f(r
t

) + r
t

(r
t

) f 0
(r

t

) + 2f 00
(r

t

)) dt.

Here we used that f 00  0 and rc(U
t

) = 1 whenever r
t

� �. We now argue that for
any r 2 (0,1) \ {R2} we have

c f(r) + r (r) f 0
(r) + 2 f 00

(r)  0. (1.71)

For r 2 (0, R2) this inequality follows directly from the definition of f , see (1.63). For
r > R2 we have f 00

(r) = 0, but (r) is sufficiently negative instead: First notice that
for r � R1, �(r) is constant and hence �(r) = �(R1) + �(R1)(r � R1). Analogously
to [51, Theorem 2.2.] we get

Z
R2

R1

�(s)�(s)�1ds =

Z
R2

R1

(�(R1) + �(R1)(s�R1))�(R1)
�1ds

= �(R1)�(R1)
�1
(R2 �R1) + (R2 �R1)

2/2

� (R2 �R1)(�(R1) + �(R1)(R2 �R1))�(R1)
�1/2

= (R2 �R1)�(R2)�(R1)
�1/2.

For r � R2 we have f 0
(r) = �(R1)/2, and thus we get

f 0
(r) r (r)  �2

�(R1)

R2 �R1

r

R2
 �2

�(R1)

R2 �R1

�(r)

�(R2)
 �c�(r)  �c f(r),

where we used the definition of R2 in (1.33) and the fact that c�1
=

R
R2

0 �(s)/�(s) ds.
Hence (1.71) holds for any r 2 (0,1) \ {R2}. By (1.70), we conclude that

E[e� tf(r
t

)� f(r0)]  �
⇣
|b|Lip + c

⌘ Z
t

0

e�s ds,

where we used that f(r)  r.

We now prepare the proof of Theorem 4 by providing a priori bounds. Notice that
Assumption 14 implies that there are constants A,B > 0 s.t.

|#(x, y)|  A+B ( |x|+ |y| ) for any x, y 2 Rd. (1.72)
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Lemma 3 (A priori bounds). Let V (x) = 1 + |x|2. Suppose that Assumptions 14
and 15 hold true. Then there is a constant C 2 (0,1) such that for any ⌧ 2 R with
|⌧ |  �/(8B), x 2 Rd and t � 0, a solution (X

t

) of (1.26) with X0 = x satisfies

dV (X
t

) 

(C � �V (X

t

)) +

✓
2 |⌧ |B |X

t

|E[|X
t

|]� �

4
|X

t

|2
◆�

dt+ 2 hX
t

, dB
t

i .

In particular, E [V (X
t

)]  C/�+ e�� t V (x).

Proof of Lemma 3. Let M
t

=

R
t

0 hXs

, dB
s

i. By Itô’s formula,

1

2

dV (X
t

) = hX
t

, b(X
t

)i dt+ ⌧hX
t

,

Z
#(X

t

, y)µx

t

(dy)i dt+ d dt+ dM
t

.

Using Assumption 15, inequality (1.72) and |⌧ |  �/(8B), we conclude

1

2

dV (X
t

)  [C1 � � |X
t

|2 + |⌧ | (A |X
t

|+B(|X
t

|2 + |X
t

|E
x

[|X
t

|]))]dt+ dM
t



C2 �

5

8

� |X
t

|2 + |⌧ |B |X
t

|E
x

[|X
t

|]
�
dt+ dM

t

,

with C1 = sup|x|D

��hx, b(x)i+ � |x|2 + d
�� and a constant C2 > C1 s.t.

�� r2/4 + |⌧ | Ar  C2 � C1 for any r 2 R+.

It follows that we can find a constant C > 0 such that

dV (X
t

) 

C � �V (X

t

) + 2 |⌧ | B |X
t

| E[|X
t

|] � �

4

|X
t

|2
�
dt+ 2dM

t

.

Applying the product rule for semimartingales we get

d(e� t V (X
t

))  e� t


C + 2 |⌧ | B |X

t

| E[|X
t

|] � �

4

|X
t

|2
�
dt+ 2 e� t dM

t

.

We introduce the stopping times T
n

= inf{t � 0 : |X
t

| � n} and remark that almost
surely, T

n

" 1, since the solution (X
t

) is non-explosive. Using Fatou’s Lemma and
monotone convergence, we can conclude that

E
x

[e� t V (X
t

)]  lim inf

n!1
E

x

[e� (t^T
n

) V (X
t^T

n

)]

 V (x) +

Z
t

0

e� s


C + 2 |⌧ | BE[|X

s

|]2 � �

4

E[|X
s

|2]
�
ds.

This concludes the proof, since by assumption, |⌧ |  �/(8B).
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Proof of Theorem 4. We use the Lyapunov function V (x) = 1+ |x|2. Assumption 15
provides a rate � and Lemma 3 a constant C. We follow Section 1.2.2 defining

S1 =

�
(x, y) 2 Rd ⇥ Rd

: V (x) + V (y)  2C/�
 
,

S2 =

�
(x, y) 2 Rd ⇥ Rd

: V (x) + V (y)  8C/�
 
,

R
i

= sup {|x� y| : (x, y) 2 S
i

} , i = 1, 2.

We define f as in the beginning of Section 1.5 w.r.t. the following parameters:

h(s) =
1

2

Z
s

0

r(r)dr + 2s, j(s) = s, i(s) = �(s), c =
1

4

min(�,�), ✏ =
⇠

4C
,

with  given by Assumption 9. We assume |⌧ | < �/(8B) so that Lemma 3 applies.
Fix initial values (x, y) 2 R2d, as well as a small constant � > 0. The coupling

U
t

= (X
t

, Y
t

) defined in Section 1.4.3 yields the upper bound

W
⇢2(µ

x

t

, µy

t

)  E[⇢2(Xt

, Y
t

)].

Set Z
t

= X
t

� Y
t

and r
t

= |Z
t

|. Equations (1.65), (1.66), (1.67) and (1.68) are still
valid in our setup. By (1.69) we can conclude that

H
t


⇣
I
r

t

��

f 0
(r

t

)(r
t

)r
t

+ I
r

t

<�

|b|Lip �
⌘
+ 2 rc(U

t

)

2f 00
(r

t

) + |⌧ |L(r
t

+ E[r
t

]).

By definition, f is constant on [R2,1), and, for r 2 (0, R2) \ {R1},

2 f 00
(r)  �f 0

(r) [(r) r + 4]� (�/2) f(r)� (⇠/2) f(r) I
r<R1 .

Using that f is concave with f(r)  r and rc(U
t

) = 1 for r
t

� �, we obtain

df(r
t

) 

��

2

f(r
t

)I
r

t

<R2 �
⇠

2

f(r
t

) I
r

t

<R1 � 4 rc(U
t

)

2 f 0
(r

t

)

�
dt

+

✓
|b|Lip +

�

2

+

⇠

2

◆
� dt+ |⌧ | L (r

t

+ E[r
t

]) dt+ 2 rc(U
t

) f 0
(r

t

) dW
t

. (1.73)

Next, we observe that Lemma 3 implies

dV (X
t

)  [C � �V (X
t

)] dt+ 2 |⌧ | B V (X
t

)E[V (X
t

)] dt+ 2 hX
t

, dB
t

i ,

dV (Y
t

)  [C � �V (Y
t

)] dt+ 2 |⌧ | B V (Y
t

)E[V (Y
t

)] dt+ 2

D
Y
t

, d ˆB
t

E
,

where (B
t

) and (

ˆB
t

) are the Brownian motions defined in (1.46). Let

G(x, y) = 1 + ✏V (x) + ✏V (y).

The set S1 is chosen such that 2C ✏ � � ✏V (X
t

) + � ✏V (Y
t

)  0 whenever r
t

� R1.
For r

t

� R2 we have

2C ✏� � ✏V (X
t

) + � ✏V (Y
t

)  �2C ✏� (�/2) ✏V (X
t

)� (�/2) ✏V (Y
t

)

 �min(�/2,�/2)G(X
t

, Y
t

),
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since ✏ = ⇠/(4C) and ⇠ � �. We conclude that

dG(X
t

, Y
t

)  I
r

t

<R12C ✏� I
r

t

�R2 min(�/2,�/2)G(X
t

, Y
t

) dt+ ✏ 2 hX
t

, dB
t

i

+ 2✏ |⌧ |B [V (X
t

)E[V (X
t

)] + V (Y
t

)E[V (Y
t

)]] dt+ ✏ 2
D
Y
t

, d ˆB
t

E
. (1.74)

Note that |rV (x)| = 2|x|  V (x). Therefore, and by (1.66) and (1.67), we obtain
similarly to (1.60):

d[f(r), G(X, Y )]

t

= 2 rc(U
t

)

2 f 0
(r

t

) ✏hrV (X
t

)�rV (Y
t

), e
t

i dt
 2 rc(U

t

)

2 f 0
(r

t

)G(X
t

, Y
t

) dt. (1.75)

Using the product rule together with (1.73),(1.74) and (1.75), we see that

d⇢2(Xt

, Y
t

) = d (f(r
t

)G(X
t

, Y
t

))

= G(X
t

, Y
t

)df(r
t

) + f(r
t

)dG(X
t

, Y
t

) + d[f(r), G(X, Y )]

t

 �min(�/2,�/2) f(r
t

)G(X
t

, Y
t

) dt+ |⌧ | LG(X
t

, Y
t

) (r
t

+ E[r
t

]) dt

+2 ✏ |⌧ | B f(r
t

) [V (X
t

)E[V (X
t

)] + V (Y
t

)E[V (Y
t

)]] dt

+G(X
t

, Y
t

)

⇣
|b|Lip + (� + ⇠)/2

⌘
� dt+ d ˜M

t

,

where (

˜M
t

) denotes a local martingale. We further bound the perturbation terms
originating from the nonlinearity. For r < R2, inequality (1.48) holds true and thus
there is a constant K0 2 (0,1) s.t. for any x, y 2 Rd we have

|x� y|  K0 f(|x� y|) (1 + ✏V (x) + ✏V (y)) = K0 ⇢2(x, y).

Hence, we can bound

|⌧ | LG(X
t

, Y
t

) (r
t

+ E[r
t

])  |⌧ | LK0 (⇢2(Xt

, Y
t

) +G(X
t

, Y
t

)E[⇢2(Xt

, Y
t

)]).

Moreover,

✏V (X
t

)E[V (X
t

)] + ✏V (Y
t

)E[V (Y
t

)]  ✏�1 E[G(X
t

, Y
t

)]G(X
t

, Y
t

).

Recall that 2c = min(�/2,�/2). Hence by the bounds above,

d(ec t⇢2(Xt

, Y
t

)) = c ⇢2(Xt

, Y
t

) ec t dt+ ec td⇢2(Xt

, Y
t

)  ectJ
t

dt + ec td ˜M
t

,

where

J
t

= �c⇢2(Xt

, Y
t

) + |⌧ | LK0 (⇢2(Xt

, Y
t

) +G(X
t

, Y
t

)E[⇢2(Xt

, Y
t

)])

+ 2 |⌧ | B ✏�1 E[G(X
t

, Y
t

)] ⇢2(Xt

, Y
t

) +G(X
t

, Y
t

)

⇣
|b|Lip + (� + ⇠)/2

⌘
�.

Optional stopping and Fatou’s lemma now shows that

E[ec t⇢2(Xt

, Y
t

)]  ⇢2(x, y) +

Z
t

0

ecs E[J
s

] ds.
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Using the a priori bounds from Lemma 3, we see that there is a constant C1 2 (0,1),
not depending on �, such that

⇣
|b|Lip + (� + ⇠)/2

⌘ Z
t

0

ec s E[G(X
s

, Y
s

)] ds  C1.

Since G � 1, we can conclude that

|⌧ | LK0

Z
t

0

(E[⇢2(Xs

, Y
s

)] + E[G(X
s

, Y
s

)]E[⇢2(Xs

, Y
s

)]) ec s ds

+2 |⌧ | B ✏�1

Z
t

0

E[G(X
s

, Y
s

)]E[⇢2(Xs

, Y
s

)] ec s ds

 |⌧ |C2

Z
t

0

E[G(X
s

, Y
s

)]E[⇢2(Xs

, Y
s

)] ec s ds,

where C2 = 2 (LK0 +B/✏). Moreover, the a priori estimates imply
Z

t

0

ec s E[G(X
s

, Y
s

)]E[⇢2(Xs

, Y
s

)] ds

 C3

Z
t

0

ec s E[⇢2(Xs

, Y
s

)] ds+ C4(x, y)

Z
t

0

e(c��) s E[⇢2(Xs

, Y
s

)] ds,

where C3 = 1+ ✏ 2C/� and C4(x, y) = ✏V (x) + ✏V (y). If ⌧ is sufficiently small, i.e.,
if |⌧ |C2(C3 + C4(x, y))  c, we can conclude that for any � > 0,

W
⇢2(µ

x

t

, µy

t

)  E[⇢2(Xt

, Y
t

)]  e�c t ⇢2(x0, y0) + C1 �.

However, observe that C4 depends on the initial values x and y, i.e. we get a local
contraction in the sense that for a given R > 0, we can find a constant ⌧0 2 (0,1),
such that (1.34) holds for all |⌧ |  ⌧0 and initial values x, y 2 Rd with |x| , |y|  R.
Inequality (1.35) follows readily from (1.34) and the definition of K0.

In order to obtain a related statement which is valid for any initial condition, see
(1.36), we assume |⌧ |C2C3 < c. Similarly as above, we obtain

E[⇢2(Xt

, Y
t

)]

 e�c t ⇢2(x0, y0) + C1 � + e�c t |⌧ | C2 C4(x, y)

Z
t

0

e(c��) s E[⇢2(Xs

, Y
s

)] ds

Using once again the apriori estimates and the bound f  R2, we see that
Z

t

0

e(c��) sE[⇢2(Xs

, Y
s

)]ds  R2(1 + 2 ✏C/�+ ✏V (x) + ✏V (y))

Z
t

0

e(c��) sds.

Since � > c, there is a constant K1 2 (0,1), neither depending on the initial values
(x, y) nor on �, such that

E[⇢2(Xt

, Y
t

)]  e�c t ⇢2(x0, y0) + C1 � + e�c t K1 (✏V (x) + ✏V (y))2.

Since � > 0 is arbitrary, we have shown (1.36).
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1.5.4 Proofs of results in Section 1.2.4

Before proving Theorem 5, we include a proof of Lemma 2 from Section 1.3.6 that is
based on [74, Section 4].

Proof of Lemma 2. The function H is C2 with strictly positive first derivative, and
thus the inverse function H�1

: [0,1] ! [l,1] is also strictly increasing and C2. We
define a function G : [l,1)⇥ [0,1) ! [0,1) by

G(x, t) = H�1
(H(x) + c t ).

Observe that for any fixed t � 0 the map x 7! G(x, t) is a concave C2 function on
(l,1), which can be seen by the following computation:

@2
x

G = @
x

✓
⌘ �G
⌘

◆
=

(⌘⌘0) �G
⌘2

� (⌘ �G) ⌘0

⌘2
 0.

Since x 7! G(x, t) is concave, Itô’s formula shows that almost surely,

dG(Z
t

, t)  @
t

G(Z
t

, t) dt+ @
x

G(Z
t

, t) dA
t

+ dW
t

,

where (W
t

) denotes a local martingale. Observe that @
t

G = c ⌘ � G > 0 and
@
x

G =

⌘�G
⌘

> 0. Using our Assumption (1.41), we can conclude that a.s.

dG(Z
t

, t)  dW
t

for t < T.

Let (T
n

)

n2N be a localizing sequence for (W
t

) with T
n

" 1. We see

E[G(Z
t^T , t ^ T ) ] = E[ lim inf

n!1
G(Z

t^T^T
n

, t ^ T ^ T
n

) ]

 lim inf

n!1
E [G(Z

t^T^T
n

, t ^ T ^ T
n

) ]  E[G(Z0, 0 ) ] = E[Z0 ].

Since H is nonnegative and H�1 is increasing, we get

E[H�1
( c (t ^ T ) ) ]  E[G(Z

t^T , t ^ T ) ]  E[Z0 ] < 1.

Since the inequality holds for any t � 0 and H�1
(t) ! 1 as t ! 1, the time T is

a.s. finite, and we can finish the proof using Fatou’s lemma:

E[H�1
( c T ) ]  E[G(Z

T

, T )]  lim inf

t!1
E[G(Z

t^T , t ^ T ) ]  E[Z0 ].

Proof of Theorem 5. We use the function f defined in the beginning of Section 1.5
with the following parameters: i ⌘ 1 constant, j = ⌘, and h(r) =

1
2

R
r

0 s(s) ds,
where  is defined in Assumption 9.

We now prove (1.38). Let U
t

= (X
t

, Y
t

) be a reflection coupling with initial values
(x, y), as defined in Section 1.4.2. Denote by T = inf {t � 0 : X

t

= Y
t

} the coupling
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time. We will argue that the stochastic process (⇢1(Xt

, Y
t

)) satisfies the conditions
of Lemma 2, except that the map t 7! ⇢1(Xt

, Y
t

) is not continuous at t = T . Nev-
ertheless, this obstacle can be overcome by a stopping argument. Set Z

t

= X
t

� Y
t

and r
t

= |Z
t

|. Following the lines of the proof of Theorem 1, one can show that a.s.
for t < T , f(r

t

) satisfies

df(r
t

)  [f 0
(r

t

) he
t

, b(X
t

)� b(Y
t

)i+ 2f 00
(r

t

)] dt+ 2 f 0
(r

t

) he
t

, dB
t

i
 [��/2 ⌘( f(r

t

) ) I
r

t

<R2 � ⇠/2 I
r

t

<R1 ] dt+ 2 f 0
(r

t

) he
t

, dB
t

i .

We turn to the Lyapunov functions. Assumption 16 implies that a.s.,

d(✏V (X
t

) + ✏V (Y
t

))  (2C✏� (✏ ⌘(V (X
t

) ) + ✏ ⌘(V (Y
t

) ))) dt+ dM
t

,

where (M
t

) is a local martingale. Observe that by definition of � in Theorem 5, and
by concavity of ⌘, we have

✏( ⌘(V (X
t

) ) + ⌘(V (Y
t

) )) � ✏ ⌘(V (X
t

) + V (Y
t

) ) � � ⌘( ✏V (X
t

) + ✏V (Y
t

) ).

If r
t

� R1, we know by definition of S1 that

2C✏� (✏ ⌘(V (X
t

) ) + ✏ ⌘(V (Y
t

) ))  � �/2 ⌘( ✏V (X
t

) + ✏V (Y
t

) ).

If r
t

� R2, then by Assumption 17,

2C✏� (✏V (X
t

) + ✏V (Y
t

))  �↵/2 ⌘( f(r
t

) ) � �/2 ⌘( ✏V (X
t

) + ✏V (Y
t

) ),

where we have used that ⌘ is increasing, ✏ = ⇠/(4C), and � � f . Thus a.s.,

d(✏V (X
t

) + ✏V (Y
t

))  (⇠/2I
r

t

<R1 � ↵/2 ⌘( f(r
t

) ) I
r

t

�R2)

��/2 ⌘( ✏V (X
t

) + ✏V (Y
t

) ) dt+ dM
t

.

Summarizing the above results, we can conclude that almost surely, the following
differential inequality holds for t < T :

d⇢1(Xt

, Y
t

) = df(r
t

) + d(✏V (X
t

) + ✏V (Y
t

))

 �min(↵, �)/2 ⌘( f(r
t

) )� �/2 ⌘(✏V (X
t

) + ✏V (Y
t

)) dt+ dM 0
t

 �min(↵, �, �)/2 ⌘( ⇢1(Xt

, Y
t

) ) dt+ dM 0
t

,

where (M 0
t

) denotes a local martingale and min(↵, �, �)/2 = c.

Now let T
n

= inf{t � 0 : |X
t

� Y
t

|  1
n

}. By non-explosiveness we have T
n

" T . We
have shown that the semimartingale R

t

= ⇢1(Xt^T
n

, Y
t^T

n

) satisfies the assumptions
of Lemma 2 for the stopping time T

n

. Thus

E[H�1
( c T ) ]  lim inf

n!1
E[H�1

( c T
n

) ]

 lim inf

n!1
E
⇥
H�1

(H(R
T

n

) + c T
n

)

⇤
 E[R0 ] = ⇢1(x, y).
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Inequality (1.38) now follows from an application of the Markov inequality, and by
the fact that H�1 is strictly increasing:

P [T > t] = P [H�1
(c T ) > H�1

(c t) ]  E[H�1
(c T )]

H�1
(c t)

 ⇢1(x, y)

H�1
(c t)

.

Proof of Corollary 5. The proof is similar to the one of [74, Theorem 4.1]. Consider
the probability measure ⇡

R

(·) = ⇡(· \ A
R

)/⇡(A
R

) where A
R

= {x 2 Rd

: V (x)  R}
for some constant R 2 (0,1) to be determined below. Since ⇡p

t

= ⇡,

kp
t

(x, ·)� ⇡kTV 
Z

kp
t

(x, ·)� p
t

(y, ·)kTV ⇡
R

(dy) + k⇡
R

p
t

� ⇡ p
t

kTV


R
⇢1(x, y) ⇡R

(dy)

H�1
(c t)

+ ⇡(Ac

R

) 
R2 + ✏V (x) + ✏

R
V (y) ⇡

R

(dy)

H�1
(c t)

+ ⇡(Ac

R

),

where we have used that f  R2. Similarly to [19, Lemma 4.1], one can see that
Assumption 16 implies that the invariant measure ⇡ satisfies

R
⌘(V (y) ) ⇡(dy)  C.

Hence, the Markov inequality implies ⇡(Ac

R

)  C/⌘(R). Since x 7! ⌘(x)/x is non-
increasing we have

V (x)  ⌘(V (x) )R/ ⌘(R )

for any x 2 Rd such that V (x)  R. This yields the upper bound
Z

VR

V d⇡  C R/⌘(R).

We can conclude that

kp
t

(x, ·)� ⇡kTV  R2 + ✏V (x)

H�1
(c t)

+

✏C R

⇡(A
R

) ⌘(R)H�1
(ct)

+

C

⌘(R)

.

We now choose R. Set b = ⌘�1
( 2C )/l and define R = bH�1

(c t). Since
⌘(bH�1

(0)) = ⌘( b l ) = 2C, we also have a lower bound for ⇡(A
R

):

⇡(A
R

) = 1� ⇡(Ac

R

) � 1� C/⌘(R) � 1/2.

Combining the bounds, we obtain the assertion

kp
t

(x, ·)� ⇡kTV  R2 + ✏V (x)

H�1
( c t )

+

C ( 2 ✏ b+ 1 )

⌘( bH�1
(c t))

.
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1.6 Extensions
This section is not part of the original article [48] and has been added by the third
author. We extend Theorem 1 and Theorem 2 from Section 1.2 replacing the global
one-sided Lipschitz condition (1.2) by a local bound.

We assume that the drift coefficient b is locally Lipschitz. Let |b|Lip(S) be the local
Lipschitz constant of b on a bounded set S ⇢ Rd ⇥ Rd, i.e.

|b|Lip(S) := sup

⇢
|b(x)� b(y)|

|x� y| : (x, y) 2 S, x 6= y

�
< 1.

In particular, for any bounded set S ⇢ Rd ⇥ Rd, there is a continuous function
(S, ·) : (0,1) ! [0,1) such that

Z 1

0

r (S, r) dr < 1 and (1.76)

hx� y, b(x)� b(y)i  (S, |x� y|) · |x� y|2 for any (x, y) 2 S. (1.77)

Clearly, the constant function (S) ⌘ |b|Lip(S) satisfies (1.76) and (1.77).

1.6.1 Extension of Theorem 1

We derive Kantorovich contractions w.r.t. the additive distance (1.4). Suppose that
Assumption 10 holds true and fix a function V with corresponding constants C,� 2
(0,1). Exactly as in Section 1.2.1, we define a set S1 and its diameter R1 by (1.6)
and (1.7) respectively. Assumption 11 is replaced by the slightly more complicated
growth condition:

Assumption 18. There exist a constant ↵ > 0 and a bounded set S2 ◆ S1 such that
for any (x, y) 2 R2d \ S2, we have

V (x) + V (y) � 4C

�

✓
1 +

1

⇠(S2)
(2 |b(x)� b(y)|+ ↵ |x� y|)

◆
,

where 1/⇠(S2) =
R

R1

0 exp

�
1
2

R
r

0 t(S2, t) dt
�
dr and (S2, ·) is a continuous function

satisfying (1.76) and (1.77).

Suppose that Assumption 18 holds true and fix ↵, S2 and (S2). As before, we
define

R2 = sup {|x� y| : (x, y) 2 S2} . (1.78)

Since the set S2 is fixed, we just write (t) instead of (S2, t) and use this function
to define the maps � and � by (1.5), completely analogous to Section 1.2.1.
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Theorem 6 (Contraction rates for additive metric). Suppose that Assumptions 10
and 18 hold true. Then there exist a concave, bounded and non-decreasing continuous
function f : R+ ! R+ with f(0) = 0 and constants c, ✏ 2 (0,1) s.t.

W
⇢1(µpt, ⌫pt)  e�ct W

⇢1(µ, ⌫) for any µ, ⌫ 2 P(Rd

) and t � 0. (1.79)

Here the underlying distance ⇢1 is defined by (1.4) with ✏ determined by (1.8). The
contraction rate is given by c = min (�,↵,�) /2, where � is given by (1.12). The
function f is constant for r � R2, and

1

2

 f 0
(r) exp

✓
1

2

Z
r

0

t(t) dt

◆
 1 for any r 2 (0, R2).

The precise definition of the function f is given in the proof.

Before we prove the theorem, we briefly demonstrate the applicability. We write
B

R

:= {x 2 Rd

: |x| < R} for a ball in Rd with radius R.

Lemma 4. If there exists constants ↵,R 2 (0,1) s.t. for any x 2 Rd with |x| � R,

V (x) � 4C

�

 
1 +

2

⇠(BR ⇥ BR)

 
2 sup

|y||x|
|b(y)|+ ↵ |x|

!!
,

then Assumption 18 holds true.

The statement can be proven similarly to Lemma 1 in Section 1.2.1.

Example 7. Assume that there are constants A,D, � 2 (0,1), q � 1 and 0  p < q
such that

hb(x), xi  � � |x|q for all |x| � D and
|b(x)|  A (1 + |x|p) for all x 2 Rd.

According to Remark 1 there are constants a,�, C 2 (0,1) and a function V satis-
fying V (x) = exp(a |x|q) for large |x|, such that Assumption 10 is satisfied. For any
R > 0 and (x, y) 2 B

R

⇥ B
R

with |x� y| = r > 0, we have that
⌧

x� y

|x� y| ,
b(x)� b(y)

|x� y|

�
 2A (1 +Rp

)/r

and thus (1.76) and (1.77) are satisfied for (B
R

⇥B
R

, t) := 2A (1 +Rp

)/t. Since
p < q, Lemma 4 is applicable.
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Proof of Theorem 6. The proof is analogous to the proof of Theorem 1 and only small
changes have to be made. We use the function f defined at the beginning of Section
1.5 with the following parameters: The constants R1 and R2 are the diameter of
the sets S1 and S2, and are given by (1.6) and (1.78) respectively. We set i(r) ⌘ 1,
j(r) = r and define

h(r) =
1

2

Z
r

0

s(s) ds, with (s) = (S2, s) as in Assumption 18.

We fix initial values (x, y) 2 R2d and prove (1.79) for Dirac measures �
x

and �
y

. Let
U
t

= (X
t

, Y
t

) be a reflection coupling with initial values (x, y), as defined in Section
1.4.2. We will argue that E [ec t⇢1(Xt

, Y
t

)]  ⇢1(x, y) holds for any t � 0. Denote
by T = inf {t � 0 : X

t

= Y
t

} the coupling time. Set Z
t

= X
t

� Y
t

and r
t

= |Z
t

|.
Notice that the differential (in)equalities (1.51) and (1.54) still hold true. Clearly,
if (X

t

, Y
t

) 2 S1, then r
t

 R1 and if (X
t

, Y
t

) 2 S2, then r
t

 R2. Moreover, the
Lebesgue measure of the time (r

t

) spends at the points R1 and R2 before coupling
is almost surely zero, see the proof of Theorem 1 for details. By (1.77), we have for
(X

t

, Y
t

) 2 S2 and t < T ,
he

t

, b(X
t

)� b(Y
t

)i  (S2, rt) rt.

Using inequality (1.49), (1.54) and the facts that |f 0|  1 and f 00  0, we can conclude
that almost surely for t < T ,

df(r
t

)  (f 0
(r

t

) he
t

, b(X
t

)� b(Y
t

)i+ 2 f 00
(r

t

)) dt+ 2 f 0
(r

t

) he
t

, dB
t

i
 (�(�/2) f(r

t

) I(X
t

,Y

t

)2S2 � (⇠/2) I(X
t

,Y

t

)2S1) dt

+ |b(X
t

)� b(Y
t

)| I(X
t

,Y

t

) 62S2 dt + 2 f 0
(r

t

) he
t

, dB
t

i . (1.80)

We now turn to the Lyapunov functions. Assumption 10 implies that a.s.
d (✏V (X

t

) + ✏V (Y
t

))  2C ✏� � (✏V (X
t

) + ✏V (Y
t

)) dt+ dM
t

,

where (M
t

) denotes a local martingale. If (X
t

, Y
t

) 62 S1, then by definition
2C ✏� � (✏V (X

t

) + ✏V (Y
t

))  �(�/2) (✏V (X
t

) + ✏V (Y
t

)) .

In the case (X
t

, Y
t

) 62 S2, Assumption 18 implies
2C✏� � (✏V (X

t

) + ✏V (Y
t

))

 �(↵/2) f(r
t

) � |b(X
t

)� b(Y
t

)|� (�/2) (✏V (X
t

) + ✏V (Y
t

)) ,

where we have used that by (1.8) and (1.47), ✏ = ⇠(S2)/(4C) and that f(r)  r. We
can conclude that almost surely,

d(✏V (X
t

) + ✏V (Y
t

))  ((⇠/2)I(X
t

,Y

s

)2S1 � (�/2)(✏V (X
t

) + ✏V (Y
t

))) dt (1.81)
� ((↵/2)f(r

t

) + |b(X
t

)� b(Y
t

)|) I(X
t

,Y

t

) 62S2 dt + dM
t

.

Combining (1.80) and (1.81), we can conclude that a.s. for t < T ,
d⇢1(Xt

, Y
t

) = df(r
t

) + d (✏V (X
t

) + ✏V (Y
t

))  �c ⇢1(Xt

, Y
t

) dt+ dM 0
t

,

where (M 0
t

) denotes a local martingale and c = min(↵, �,�)/2. The proof can now
be finished in the same way as the proof of Theorem 1.
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1.6.2 Extension of Theorem 2

We consider Kantorovich contractions w.r.t. the multiplicative semimetric (1.16). As
before, the aim is to replace the global bounds by local ones. To this end, we need a
slightly more general geometric drift condition.

Assumption 19. There is a C2 function V : Rd ! R+, a constant C 2 (0,1) and
a continuous function  : Rd ! R+ with � = inf

x

 (x) > 0 such that V (x) ! 1 as
|x| ! 1, and

LV (x)  C � (x)V (x) for any x 2 Rd.

Similar drift conditions occur in [23]. The idea to use this type of drift condition
in the context of the multiplicative semimetric is due to A. Guillin.

Remark 5. Assume that there are constants R > 0, � > 0 and q � 1 such that

hb(x), xi  � � |x|q for any |x| � R.

Let V be a C2 function with V (x) = exp(a |x|q) outside of a compact set. If a,� 2
(0,1) satisfy aq

2 +

�

aq

< �, then there is C 2 (0,1) such that Assumption 19 is
satisfied with  (x) = �max(1, |x|2q�2

).

We proceed similarly to Section 1.2.2, but replace global bounds by local versions.
The set S1 ⇢ R2d and its diameter R1 are now defined by

S1 =

�
(x, y) 2 Rd ⇥ Rd

: [ V ](x) + [ V ](y)  2C
 

and (1.82)
R1 = sup {|x� y| : (x, y) 2 S1} , (1.83)

where [ V ](x) =  (x)V (x). Similarly to Assumption 12, we impose the following
condition.

Assumption 20. The logarithm of V is locally Lipschitz continuous, i.e., for any
bounded set S ⇢ Rd, we have that

sup

x2S

|rV (x)|
V (x)

< 1.

For bounded sets S ⇢ Rd ⇥ Rd, we define

Q(S) = sup

(x,y)2S

✓
|rV (x)|
V (x)

+

|rV (y)|
V (y)

◆
< 1. (1.84)

We impose the following growth condition:
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Assumption 21. There exist constants ↵, R 2 (0,1) such that for any x, y 2 Rd

with x 6= y and (x, y) 62 B2
R

:= B
R

⇥ B
R

, we have

[ V ](x) + [ V ](y) � 2C +

✓
4C

⇠(B2
R

)

+ V (x) + V (y)

◆✓
|b(x)� b(y)|

|x� y| +

↵

2

◆
,

where 1/⇠(B2
R

) =

R
R1

0

R
s

0 exp

�
1
2

R
s

r

u(B2
R

, u) du + Q(B2
R

)(s� r)
�
dr ds and (B2

R

, ·)
is a continuous function satisfying (1.76) and (1.77).

Fix ↵, S2 = B2
R

and (t) = (S2, t). We write Q = Q(S2), ⇠ = ⇠(S2) and set

R2 = sup{|x� y| : (x, y) 2 S2}. (1.85)

The reason for choosing S2 as a product of balls is only to reduce technical complexity
in the proofs. As before, we define functions � and � by

�(r) = exp

✓
�1

2

Z
r

0

t(t) dt � Qr

◆
, �(r) =

Z
r

0

�(t) dt (1.86)

and set ✏ = ⇠/(4C).
Theorem 7 (Contraction rates for multiplicative semimetric). Suppose that Assump-
tions 19, 20 and 21 hold true. Then there exist a concave, bounded and non-decreasing
continuous function f : R+ ! R+ with f(0) = 0 and a constant c 2 (0,1) such that

W
⇢2(µpt, ⌫pt)  e�c t W

⇢2(µ, ⌫) for any µ, ⌫ 2 P(Rd

) and t � 0. (1.87)

Here c = min (�,↵) /2 where

��1
=

Z
R2

0

�(r)�(r)�1 dr

=

Z
R2

0

Z
s

0

exp

✓
1

2

Z
s

r

u(u) du +Q (s� r)

◆
dr ds,

the distance ⇢2 is defined by (1.16), and f is constant for r � R2 and satisfies

1

2

 f 0
(r) exp

✓
1

2

Z
r

0

u(u) du + Qr

◆
 1 for r 2 (0, R2).

The precise definition of the function f is given in the proof.

Before we prove the statement, we make brief remarks on applicability.
Lemma 5. Suppose that Assumption 19 holds true. Moreover, we assume that the
function V is of type V (x) = V (|x|) and that it is non-decreasing in |x|. If there are
constants ↵,R 2 (0,1) and such that for all |x| � R,

V (x) � 4C max

✓
1

�
,

1

⇠(B2
R)

◆
and (1.88)

 (x) � 6

✓
|b|

Lip
⇣
B

2
|x|

⌘
+

↵

2

◆
, (1.89)

then Assumption 21 holds true.
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Proof of Lemma 5. Let (x, y) 62 B2
R and assume w.l.o.g. that |x| = max(|x| , |y|) � R.

Using (1.88), (1.89), the monotonicity of V and that  � �, we can conclude that

[ V ](x) � �

2

V (x) +
1

2

[ V ](x)

� 2C + 3V (x)

✓
|b|

Lip
⇣
B

2
|x|

⌘
+

↵

2

◆

� 2C +

✓
4C

⇠(B2
R)

+ V (x) + V (y)

◆✓
|b(x)� b(y)|

|x� y| +

↵

2

◆
.

Example 8. Assume that there are constants D, � 2 (0,1) and q > 1 such that

hb(x), xi  � � |x|q for all |x| � D.

Then, there are constants a,�, C 2 (0,1), a function V satisfying V (x) = exp(a |x|q)
outside of a compact set, and  (x) = �max(1, |x|2q�2

) such that Assumption 19 is
satisfied. Moreover, for this choice, there are constants A,B 2 (0,1) such that

Q(B
R

⇥ B
R

)  A+BRq�1.

Assume that there are constants 0  p  q � 1 and D,E 2 (0,1) such that for any
R > 0,

|b|Lip
(

B

2
R

)

 D + E Rp.

Then, the constant function (B
R

⇥B
R

) ⌘ D+E Rp satisfies (1.76) and (1.77) and
there are constants F,m 2 (0,1) such that 1/⇠(B

R

⇥B
R

)  F exp(mRq�1
) with this

choice of . In particular, there is R 2 (0,1) such that (1.88) is satisfied. Moreover,
since 2q � 2 > q � 1 � p, (1.89) is satisfied for large enough R and arbitrary ↵.

Proof of Theorem 7. The proof is similar to the proof of Theorem 2. We use the
function f defined at the beginning of Section 1.5 with the following parameters: The
set S1 and its diameter R1 are specified by (1.82) and (1.83) respectively. Assumption
21 yields a set S2 = B2

R

and the corresponding diameter R2 is defined by (1.85). We
set j(r) = r, i(r) = �(r), (t) = (S2, t) and Q = Q(S2), where �(r) is determined
by (1.86). We define

h(r) =

1

2

Z
r

0

s(s) ds +Qr.

Coupling: We construct a coupling of solutions to (1.1). It is realized as a stan-
dard diffusion process (X

t

, Y
t

) with values in R2d. We use a mixture of synchronous
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and reflection coupling, similar to Section 1.4.3. The technical realization of the cou-
pling is near to [51]. Fix small � > 0. One should think of � being close to zero. We
introduce Lipschitz functions rc, sc : Rd ⇥ Rd ! [0, 1] satisfying (1.42) and

rc(x, y) = 1 whenever (x, y) 2 B2
R��

and |x� y| � �,

rc(x, y) = 0 whenever (x, y) 62 B2
R

or |x� y|  �/2.

The functions can be constructed using standard cut-off techniques. Fix initial values
(x, y) 2 R2d and two independent Brownian motions (B1

t

) and (B2
t

). We define our
coupling U

t

= (X
t

, Y
t

) as the solution of the SDE

dX
t

= b(X
t

) dt + rc(U
t

) dB1
t

+ sc(U
t

) dB2
t

dY
t

= b(Y
t

) dt + rc(U
t

) (I � 2 e
t

he
t

, ·i) dB1
t

+ sc(U
t

) dB2
t

,

with (X0, Y0) = (x, y) and

e
t

=

X
t

� Y
t

|X
t

� Y
t

| for X
t

6= Y
t

, e
t

= u for X
t

= Y
t

,

where u 2 Rd is some arbitrary fixed unit vector. Notice that the concrete choice of
u is irrelevant for the dynamic, since rc(x, x) = 0. The equation is a standard SDE
with locally Lipschitz coefficients satisfying a non-explosive criteria and thus there
is a unique, strong and global solution. Using Levy’s characterization of Brownian
motion and (1.42), one can verify that (X

t

, Y
t

) is indeed a coupling.

Calculations: We now prove (1.87) and fix initial values (x, y) 2 R2d as well as
small � > 0. It is enough to prove the statement for Dirac measures �

x

and �
y

. The
coupling U

t

= (X
t

, Y
t

), defined in the last paragraph, yields the upper bound

W
⇢2(�xpt, �ypt)  E[⇢2(Xt

, Y
t

)].

Set Z
t

= X
t

� Y
t

and r
t

= |Z
t

|. We will argue that for each t � 0 and � > 0, there
is a constant ˜C(t, �) 2 (0,1) with the property ˜C(t, �) ! 0 for � ! 0 and fixed t,
such that

ec tE[⇢2(Xt

, Y
t

)]  ⇢2(x, y) + ˜C(t, �) holds true. (1.90)

From this inequality one can then conclude, that for any t � 0 we have

W
⇢2(�xpt, �ypt)  e�c t ⇢2(x, y) + ˜C(t, �),

which then finishes the proof of (1.87) since � > 0 can be chosen arbitrarily small.

We now argue (1.90). Observe that W
t

=

R
t

0 hes, dB
1
s

i is a one-dimensional Brow-
nian motion. The process (Z

t

) satisfies almost surely the equation

dZ
t

= (b(X
t

)� b(Y
t

)) dt + 2 rc(U
t

) e
t

dW
t

.
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Using an approximation argument, similarly to [159, Lemma 3], one can show that
(r

t

) satisfies almost surely the equation

dr
t

= he
t

, b(X
t

)� b(Y
t

)i dt+ 2 rc(U
t

) dW
t

.

Similarly as in the proof in Section 1.5.1, we apply the Itô-Tanaka formula for semi-
martingales to conclude that almost surely,

f(r
t

)� f(r0) =

Z
t

0

f 0
�(rs) hes, b(Xs

)� b(Y
s

)i ds

+2

Z
t

0

rc(U
s

) f 0
�(rs) dWs

+

1

2

Z 1

�1
Lx

t

µ
f

(dx), (1.91)

where Lx

t

is the right-continuous local time of (r
t

), f 0
� is the left derivative of f and

µ
f

is the non-positive measure representing the second derivative of f . By (1.53), we
conclude that, almost surely for all t > 0,

L({0  s  t : r
s

2 {R1, R2} and rc(U
s

) > 0}) = 0, (1.92)

i.e. the Lebesgue measure of the time r
s

spends at the points R1 and R2 while
rc(U

s

) > 0, is almost surely zero. Notice that f is continuous differentiable on the
set (0,1) \ {R2} and twice continuously differentiable on (0,1) \ {R1, R2}. Since
µ
f

is non-positive and by (1.53), we can conclude that, almost surely for all t > 0,
Z 1

�1
Lx

t

µ
f

(dx) 
Z 1

�1
I
x 62{R1,R2} L

x

t

µ
f

(dx) =

Z
t

0

I
r

s

62{R1,R2} f
00
(r

s

) d[r]
s

= 4

Z
t

0

I
r

s

62{R1,R2} rc(Us

)

2 f 00
(r

s

) ds, i.e. ,

df(r
t

) 
�
f 0
�(rt) het, b(Xt

)� b(Y
t

)i + I
r

s

62{R1,R2} 2 rc(U
t

)

2 f 00
(r

t

)

�
dt+ dM1

t

,

where M1
t

= 2

R
t

0 rc(Us

) f 0
�(rs) dWs

. We now turn to the Lyapunov functions and set
G(x, y) = 1 + ✏V (x) + ✏V (y). By definition of the coupling, we have a.s.

dG(X
t

, Y
t

) = (✏LV (X
t

) + ✏LV (Y
t

)) dt (1.93)
+ ✏ sc(U

t

)

⌦
rV (X

t

) +rV (Y
t

), dB2
t

↵

+ ✏ rc(U
t

)

⌦
rV (X

t

) +rV (Y
t

), dB1
t

↵

� 2 ✏ rc(U
t

) hrV (Y
t

), e
t

i
⌦
e
t

, dB1
t

↵
.

By Assumption 19, we can conclude that

dG(X
t

, Y
t

)  ✏ (2C � [ V ](X
t

)� [ V ](Y
t

)) dt+ dM2
t

,

where [ V ](x) =  (x)V (x) and M2
t

is a local martingale. By (1.91) and (1.93), the
covariation of f(r

t

) and G(X
t

, Y
t

) is given by:

d[ f(r) , G(X, Y ) ]

t

= 2 rc(U
t

)

2 f 0
�(rt) ✏ hrV (X

t

)�rV (Y
t

), e
t

i dt.
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Whenever (X
t

, Y
t

) 62 S2, we have rc(U
t

) = 0 by definition. Moreover, using Cauchy-
Schwarz and (1.84), we can derive the following bound for (x, y) 2 S2 with x 6= y:

✏

⌧
rV (x)�rV (y),

x� y

|x� y|

�
 (1 + ✏V (x) + ✏V (y))

✏ |rV (x)|+ ✏ |rV (y)|
(1 + ✏V (x) + ✏V (y))

 QG(x, y).

Hence, almost surely,

d[ f(r) , G(X, Y ) ]

t

 2 rc(U
t

)

2 Qf 0
�(rt)G(X

t

, Y
t

) dt. (1.94)

The product rule for semimartingales, (1.91), (1.93) and (1.94) imply that, almost
surely,

d (f(r
t

)G(X
t

, Y
t

)) = G(X
t

, Y
t

) df(r
t

) + f(r
t

) dG(X
t

, Y
t

) + [f(r), G(X, Y )]

t

 H
t

dt + dM3
t

,

where M3
t

is a local martingale and

H
t

= G(X
t

, Y
t

)

�
f 0
�(rt) het, b(Xt

)� b(Y
t

)i + I
r

t

62{R1,R2} 2 rc(U
t

)

2 f 00
(r

t

)

�

+ ✏ f(r
t

) (2C � [ V ](X
t

)� [ V ](Y
t

))

+ 2 rc(U
t

)

2 Qf 0
�(rt)G(X

t

, Y
t

).

Define

J
t

= f 0
�(rt)G(X

t

, Y
t

) |b(X
t

)� b(Y
t

)| + ✏ f(r
t

) (2C � [ V ](X
t

)� [ V ](Y
t

)) .
(1.95)

We argue that there is ˜C(�) 2 (0,1) with the property ˜C(�) ! 0 for � ! 0 such
that almost surely for all t � 0,

Z
t

0

H
s

ds  �c

Z
t

0

⇢2(Xs

, Y
s

) ds+ C(�) t (1.96)

We do a case distinction to derive this upper bound.

Case 1: (X
s

, Y
s

) 62 S2. In this case we have rc(U
s

) = 0 and thus H
s

 J
s

. By
Assumption 21, we can conclude that

J
s


✓
f 0
�(rt)�

f(r
t

)

r
t

◆
G(X

t

, Y
t

) |b(X
t

)� b(Y
t

)| � ↵/2 ⇢2(Xt

, Y
t

)

 � c ⇢2(Xt

, Y
t

),

where we have used that ✏ = ⇠/(4C), that f(r) � f 0
�(r) r for 0 < r  R2 and that

f 0
�(r) = 0 for r > R2.

Case 2: (X
s

, Y
s

) 2 B2
R

and (X
s

, Y
s

) 62 B2
R��

. Assume w.l.o.g. that max(|X
s

| , |Y
s

|) =
|X

s

| and let X 0
s

be the point on the boundary of the ball B
R

= {x 2 Rd

: |x| < R}

75



1 Quantitative Harris type theorems for diffusions

which is on the line passing through 0 and X
s

and is closer to X
s

. Observe that
|X

s

�X 0
s

|  �. We define J 0
s

similarly to (1.95), replacing X
s

by X 0
s

and r
s

by
r0
s

= |X 0
s

� Y
s

|. Observe that (X 0
s

, Y
s

) 62 SR

2 and thus by Assumption 21, we have
similarly as in Case 1, J 0

s

 �c ⇢2(X 0
s

, Y
s

). We define

K
s

= rc(U
s

)

2 G(X
s

, Y
s

)

�
I
r

s

62{R1,R2} 2 f
00
(r

s

) + 2 f 0
�(rs)Q

�

Notice that H
s

 J
s

+ K
s

. Observe that K
s

= 0 if rc(U
s

) = 0. If rc(U
s

) > 0, we
may assume by (1.92) that r

s

62 {R1, R2} and by (1.49) that K
s

 0. Moreover,

J
s

 J 0
s

+ |J 0
s

� J
s

|  � c ⇢2(Xs

, Y
s

) + c |⇢2(X 0
s

, Y
s

)� ⇢2(Xs

, Y
s

)| + |J 0
s

� J
s

| .

Observe that the functions f and f 0
� are uniformly continuous and bounded on the set

[0, R2]. Moreover, the functions b,  and V are uniformly continuous and bounded
on the set B

R

. Therefore, for any � > 0 there is C1
(�) 2 (0,1) with the property

C1
(�) ! 0 for � ! 0 such that

J
s

 �c ⇢2(Xs

, Y
s

) + C1
(�).

Case 3: (X
s

, Y
s

) 2 B2
R��

and |X
s

� Y
s

| < �. Similarly to the arguments in Case
2, we can conclude that H

s

 J
s

+ K
s

and may assume that K
s

 0. Notice that
on the ball B

R

, V is bounded and b is Lipschitz. Moreover, f(r)  r for all r � 0.
We can conclude that there is a constant C2

(�) 2 (0,1) which converges to zero for
� ! 0 such that J

s

 �c ⇢2(Xs

, Y
s

) + C2
(�).

Case 4: (X
s

, Y
s

) 2 B2
R��

and |X
s

� Y
s

| � �. In this case we have r
s

< R2

and rc(U
s

) = 1. In particular, we may assume by (1.92) that r
s

6= R1. Recall the
definition of H

s

. By (1.77), we have the bound

G(X
s

, Y
s

) f 0
(r

s

) he
s

, b(X
s

)� b(Y
s

)i  G(X
s

, Y
s

) f 0
(r

s

)(r
s

) r
s

.

Inequality (1.49) implies

G(X
s

, Y
s

) 2 f 00
(r

s

)  �G(X
s

, Y
s

) f 0
(r

s

) ((r
s

) r
s

+ 2Q)

� �

2

⇢2(Xs

, Y
s

)� I
r

s

<R1

⇠

2

⇢2(Xs

, Y
s

).

Notice that if r
s

> R1, then (X
s

, Y
s

) 62 S1 and thus

✏ f(r
t

) (2C � [ V ](X
t

)� [ V ](Y
t

))  0.

Moreover, since ✏ = ⇠/(4C) and since G � 1,

✏ f(r
t

) 2C  ⇠

2

⇢2(Xs

, Y
s

).

We see that H
s

 �(�/2) ⇢2(Xs

, Y
s

).
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Combining the arguments from the four cases, we can conclude (1.96). Applying
the product rule for semimartingales and using the latter mentioned inequality, we
see that

d(ec t ⇢2(Xt

, Y
t

))  ec t dM3
t

+ ec t c ⇢2(Xt

, Y
t

) dt+ ec t d⇢2(Xt

, Y
t

)

 ec t dM3
t

+ ec t C(�) dt.

Using a stopping argument, we can conclude (1.90) for an appropriate constant ˜C(t, �)
satisfying ˜C(t, �) ! 0 for � ! 0.
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2 Explicit contraction rates for a
class of degenerate and
infinite-dimensional diffusions

Given a separable and real Hilbert space H and a trace-class, symmetric and non-
negative operator G : H ! H, we examine the equation

dX
t

= �X
t

dt+ b(X
t

) dt+
p
2 dW

t

, X0 = x 2 H,

where (W
t

) is a G-Wiener process on H and b : H ! H is Lipschitz. We assume there
is a splitting of H into a finite-dimensional space Hl and its orthogonal complement
Hh such that G is strictly positive definite on Hl and the nonlinearity b admits
a contraction property on Hh. Assuming a geometric drift condition, we derive a
Kantorovich (L1 Wasserstein) contraction with an explicit contraction rate for the
corresponding Markov kernels. Our bounds on the rate are based on the eigenvalues
of G on the space Hl, a Lipschitz bound on b and a geometric drift condition. The
results are derived using coupling methods.

R. Zimmer. Explicit contraction rates for a class of degenerate and infinite-dimensional
diffusions. ArXiv e-print 1605.07863, May 2016
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2.1 Introduction
Let (H, h·, ·i , |·|) be a separable and real Hilbert space with inner product h·, ·i and
norm |·|. Suppose that a trace-class, symmetric and nonnegative operator G : H ! H
is given. Let (e

k

)

k2N+ be an orthonormal basis of H such that for nonnegative real
numbers (�

k

), we have Ge
k

= �
k

e
k

and
P1

k=1 �k

< 1, see e.g. [132] for the existence
of such a basis. Denote by (W

t

) a G-Wiener process on H, i.e. W
t

=

P1
k=1

p
�
k

Bk

t

e
k

for independent Brownian motions (Bk

t

). We consider the stochastic differential
equation

dX
t

= �X
t

dt+ b(X
t

) dt+
p
2 dW

t

, X0 = x 2 H, (2.1)

on the space H and assume that the nonlinearity b : H ! H is Lipschitz. In par-
ticular, there is a strong, non-explosive and continuous solution (X

t

) taking val-
ues in H, see e.g. [103]. Moreover, (X

t

) is a Feller process and we denote the
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Markov transition kernels by (p
t

). Given a probability measure µ on H, we write
µp

t

(dx) =
R
p
t

(y, dx)µ(dy).
Equation (2.1) has a natural appearance in the domain of sampling problems and

acts as a diffusion limit for Markov chain Monte Carlo (MCMC) methods, see [71,
114, 38, 143, 70] and the references therein. In particular, if U : H ! R+ is a smooth
function, if G is positive definite and if we choose the nonlinearity b(x) = �GrHU(x)
in (2.1), then the results from [71] imply that the Markov kernels (p

t

) admit a unique
invariant probability measure ⇡ satisfying ⇡p

t

= ⇡ for any t � 0. The measure ⇡ is
given by

⇡(dx) / exp(�U(x)) N (0,G)(dx), (2.2)

where N (0,G) denotes a centered normal distribution on H with covariance operator
G. Such measures appear for example in the area of diffusion bridges, cf. [71].

Let µ be a given initial distribution. Given the outlined connection to sampling
problems, an important question is whether the measure µp

t

converges towards ⇡ for
t ! 1 in some reasonable distance and how one can obtain explicit rates for the
speed of convergence. We give conditions under which the convergence takes place
in Kantorovich and Lp Wasserstein distances at an exponential rate and focus on
establishing concrete bounds on the speed of convergence. Inspired by the sampling
setup, we work in the following setting: Fix n 2 N+. We consider a splitting of the
Hilbert space H into a space Hl

= he1, . . . , en

i, spanned by the first n basis vectors,
and its orthogonal complement Hh, i.e. H = Hl � Hh. We call Hl low -dimensional
and Hh high-dimensional space. Given x 2 H, we denote by xl and xh the orthogonal
projections onto Hl and Hh respectively. Our main assumptions are:

Assumption 22. There are constants 0  H
h

< 1 and L
l

, L
h

, H
l

� 0 such that
��bh(x)� bh(y)

��  H
l

��xl � yl
��
+H

h

��xh � yh
�� and (2.3)

��bl(x)� bl(y)
��  L

l

��xl � yl
��
+ L

h

��xh � yh
�� for any x, y 2 H. (2.4)

Assumption 23. G is strictly positive definite on Hl, i.e. for any k 2 N with 1 
k  n, we have �

k

> 0.

In the sampling setup described above, assuming that the map x 7! rU(x) is Lips-
chitz on H, it is always possible to find a splitting H = Hl�Hh such that Assumptions
22 and 23 are satisfied, cf. Section 2.3. In addition to the above assumptions, we need
some kind of localization argument, i.e. we assume either that b is vanishing outside
of a ball or that a geometric drift condition holds, cf. Assumptions 24 and 25 respec-
tively. Based on these assumptions we derive quantitative Kantorovich contractions
for the Markov kernels using coupling methods. The resulting contraction rates are
given explicitly in terms of the eigenvalues of G on the space Hl, the constants from
Assumption 22 and the localization argument.

Outline. The main results are presented in Section 2.2.1. The key statements
are Theorem 8 and Theorem 9. The couplings are specified in Section 2.2.2 and the
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2.1 Introduction

proofs are given in Section 2.2.3. Applications are considered in Section 2.3. In the
remaining part of the introduction we present additional motivation and references.

The ergodicity of degenerate and infinite-dimensional models has been extensively
studied in the last two decades and by now there exists a comprehensive theory
[67, 69, 68, 34]. Huge parts of the theory have been developed trying to answer the
question, whether the 2D stochastic Navier-Stokes equation is uniquely ergodic in a
hypoelleptic setting, where only a few dimensions are stimulated directly with noise,
cf. [66, 65]. As an intermediate step to tackle the truly hypoelleptic setting, many
authors [157, 115, 113, 100, 99, 158, 17, 16] worked in an intermedium setting: They
considered a splitting of the underlying Hilbert space into a finite-dimensional space
Hu of “unstable modes”, where the dynamics is forced directly with noise, and an
infinite-dimensional complement Hs of “stable modes”, where the driving noise can
be degenerate. Stable and unstable modes means in this context that the long time
behavior of the dynamics is determined by the behavior on the space Hu, cf. [72].
In this context, J.C. Mattingly proposed in [115] a coupling approach to conclude
exponential mixing properties for the 2D stochastic Navier-Stokes equation. In a
related context, M. Hairer demonstrated in [72] the strength of asymptotic couplings
to show mixing properties of degenerate systems. Finally, J.C. Mattingly and M.
Hairer were able to proof the unique ergodicity of the 2D Navier-Stokes equation in
a hypoelleptic setting, which was a milestone in the development of ergodic theory
for degenerate and infinite-dimensional systems [65, 67, 68]. Embedding some of
the key concepts of the theory into a uniformly applicable framework, Mattingly,
Hairer and Scheutzow developed the weak Harris theorem [69]. It can be interpreted
as a generalization of classical Harris type theorems [77, 118, 96, 135, 75] which
have become standard tools for proving geometric ergodicity of finite-dimensional
Markov processes. The weak Harris theorem further extends the range of possible
applications and allows to establish geometric ergodicity under verifiable conditions.
Nevertheless, being a uniform framework, applicable for a large class of Markov
processes, the (weak) Harris theorem usually does not provide sharp constants for
specific models and the resulting constants are often not connected to the structure
of the model in a transparent way. This is due to the fact that the corresponding
Kantorovich distance is usually chosen in a somehow ad hoc way, cf. [48].

In this work we do not have the aim of developing a uniform framework for var-
ious models. We focus on the very specific model (2.1) and establish Kantorovich
contractions with explicit constants by adapting the underlying Kantorovich dis-
tance in a very specific way to the structure of the model. The approach is based
on a technique from [50, 51]. Here, A. Eberle establishes Kantorovich contractions
with explicit constants for finite-dimensional and nondegenerate diffusions using a
combination of reflection coupling [107] and concave distance functions. While the
principle idea to study Kantorovich distances w.r.t. concave underlying distances oc-
curred at other places in the literature before [28, 69], it is noteworthy that [50, 51]
presents a technique, how one can construct an explicit concave distance function
which, under some reasonable assumptions, maximizes the resulting contraction rate
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2 Explicit contraction rates for a class of degenerate diffusions

under the reflection coupling up to constant factors. Eberle’s results are based on the
assumption that the underlying deterministic system of the diffusion is contractive
for “large distances”. In the recent work [48] this assumption is replaced by a more
general Lyapunov drift condition combining Lyapunov functions with concave dis-
tance functions and reflection coupling, partially motivated by [69, 75]. In this work,
we use the main ideas from [50, 51, 48] and extend them to the infinite-dimensional
and possibly degenerate process (2.1) by constructing an explicit asymptotic coupling
(X

t

, Y
t

) of solutions to (2.1) in the sense of [72, 115], i.e. a coupling for which the
processes X

t

and Y
t

converge to each other but do not necessarily meet in finite time.
The Kantorovich contraction of the Markov kernels is then established by adapting
the underlying cost function in a very specific way to the chosen coupling and model.

Up to the author’s knowledge there are currently two works which use a reflection
coupling to conclude exponential mixing properties of infinite-dimensional systems.
In [33] a reflection coupling is used to prove exponential convergence for a reaction-
diffusion and Burgers equation driven by space-time white noise. The article [151]
makes use of an “approximated reflection coupling” to derive gradient estimates and
exponential mixing for a class of nonlinear monotone SPDES, where the driving
noise is a G-Wiener process, G being trace-class and satisfying hx,Gxi > 0 for any
x 2 H. Moreover, it is assumed that the solution of the SPDE lies in the image of
G, i.e. that the equation has some kind of smoothing properties. In both articles
exponential convergence in total variation norms is concluded. In contrast to these
settings, we allow the operator G to be degenerate on the infinite-dimensional space
Hh and equation (2.1) does not provide the additional smoothing assumed in [151].
Moreover, in our setting it is in general not true that for arbitrary x, y 2 H we have
k�

x

p
t

� �
y

p
t

kTV ! 0 for t ! 1, see e.g. [66, Example 3.14].

2.2 Main results
We present our main results. In Section 2.2.1 we formulate the main statements. The
coupling approach leading to those statements is explained in Section 2.2.2. Finally,
the proofs are provided in Section 2.2.3.

2.2.1 Results

We now formulate our contraction results. As a preparation, we first introduce a
norm |·|

↵

on H which is equivalent to the Hilbert space norm, but has the advantage
that it puts additional weight on the components in the space Hh. This enables us
to exploit the contraction property provided by Assumption 22. We then formulate
three Kantorovich contractions with an increasing level of difficulty: In Proposition 1
we assume that the map b is a contraction w.r.t. |·|

↵

and thus a Kantorovich contrac-
tion can be established with ease. In Theorem 8 we assume that b is a contraction
w.r.t. |·|

↵

only for “large distances” and adapt the underlying metric of the Kan-
torovich distance accordingly by involving a concave function. Finally, in Theorem
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2.2 Main results

9 we replace the contraction property for large distances by a more general geomet-
ric drift condition and combine the metric considered in Theorem 8 with Lyapunov
functions.

Suppose that Assumption 22 holds true. Denote

↵ =

1 + L
h

1�H
h

� 1 and � = ↵H
l

+ L
l

� 1. (2.5)

We define a norm |·|
↵

on H, where the Hh component is weighted by ↵:

|x|
↵

=

��xl

��
+ ↵

��xh

�� .

Observe that |·|
↵

is equivalent to |·|, i.e. for any x 2 H,

|x|  |x|
↵


p
2 ↵ |x| . (2.6)

Assumption 22 implies that the nonlinearity b is a contraction w.r.t. |·|
↵

in “certain
regions of H”. More precisely, we have the following statement:

Lemma 6. Assumption 22 implies the inequality

|b(x)� b(y)|
↵

 (1 + �)
��xl � yl

��
↵

+

✓
1� 1

↵

◆ ��xh � yh
��
↵

for any x, y 2 H. (2.7)

Moreover, if x, y 2 H satisfy

(1 + �)
��xl � yl

��  1

2

��xh � yh
�� , (2.8)

then it follows

|b(x)� b(y)|
↵


✓
1� 1

2↵

◆
|x� y|

↵

. (2.9)

Proof. Assumption 22 implies the inequalities

|b(x)� b(y)|
↵

=

��bl(x)� bl(y)
��
+ ↵

��bh(x)� bh(y)
��

 (↵ H
l

+ L
l

)

��xl � yl
��
+ (H

h

+ L
h

/↵)↵
��xh � yh

��

= (1 + �)
��xl � yl

��
↵

+ (1� 1/↵)
��xh � yh

��
↵

.

If (2.8) holds true, then we can further estimate:

|b(x)� b(y)|
↵


��xh � yh

��
↵

� 1/2
��xh � yh

��

 |x� y|
↵

�
��xl � yl

��� 1/(2↵)
��xh � yh

��
↵

 (1�min {1/(2↵), 1}) |x� y|
↵

.

Since ↵ � 1, we conclude that min {1/(2↵), 1} = 1/(2↵).
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2 Explicit contraction rates for a class of degenerate diffusions

Given a continuous function d : H ⇥ H ! R+, the L1 transportation cost of two
Borel probability measures µ and ⌫ on H w.r.t. the cost function d is defined by

W
d

(⌫, µ) = inf

�

Z
d(x, y) �(dx dy),

where the infimum is taken over all couplings � with marginals ⌫ and µ respectively.
If the function d is a metric, then W

d

is called Kantorovich distance. Let P be the
set of Borel probability measures on H with finite first moment, i.e.

R
|x|µ(dx) < 1

for µ 2 P .
If � < 0, then (2.7) reveals that b is a contraction on H w.r.t. |·|

↵

which implies
the following trivial result.

Proposition 1. Let Assumption 22 be true and � < 0, then

W
d1(µpt, ⌫pt)  e�c t W

d1(µ, ⌫) for any µ, ⌫ 2 P and t � 0, (2.10)

where the distance d1 and the rate c are given by

d1(x, y) = |x� y|
↵

and c = min

�
↵�1, |�|

 
.

The assumption � < 0 implies that the underlying deterministic system of (2.1)
is contractive and thus the statement even holds in the case G ⌘ 0. A proof using
synchronous coupling is given in Section 2.2.3 for the readers convenience.

In order to tackle the case � � 0, we demand that the noise in the space Hl is
nondegenerate, i.e. that Assumption 23 holds true. Moreover, we assume that b is a
contraction w.r.t. |·|

↵

for “large distances”. More precisely, we assume :

Assumption 24. There are R 2 (0,1) and 0  M < 1 such that

|b(x)� b(y)|
↵

 M |x� y|
↵

for any x, y 2 H with |x� y|
↵

� R.

The assumption is for example satisfied, if b vanishes outside of a ball. Subse-
quently, we will replace Assumption 24 by a more general geometric drift condition,
cf. Assumption 25. Denote by �

?

= min{�
k

: k 2 N, 1  k  n} the smallest
eigenvalue of G on Hl. We present our first main statement.

Theorem 8. Let Assumption 22, 23, and 24 be true and assume � � 0. There is a
distance d2 and a constant c 2 (0,1) such that

W
d2(µpt, ⌫pt)  e�c t W

d2(µ, ⌫) for any µ, ⌫ 2 P and t � 0. (2.11)

The rate c is given explicitly in (2.41). If � > 0, a lower bound is given by

c � 1

2

exp

✓
� �

8�
?

R2

◆
min

⇢
�, 1�M,

1

2↵

�
. (2.12)
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2.2 Main results

The distance d2 is equivalent to |·| and is given by

d2(x, y) = f (|x� y|
↵

) ,

where f : R+ ! R+ is a strictly increasing, concave and continuous function with
f(0) = 0. The function is explicitly defined in (2.38). It satisfies the relations

1

2

 f 0
(r) exp

✓
�

8�
?

r2
◆

 1 for 0 < r < R and

f(r) = f(R) +

1

2

exp

✓
� �

8�
?

R2

◆
(r �R) for r � R.

Theorem 8 extends ideas from [50, 51] to an infinite-dimensional and degenerate
setting using asymptotic couplings in a similar spirit as [72, 115]. The proof is given
in Section 2.2.3. The occurring factors 1/2 and 1/8 are, to some extend, arbitrary.
Notice that the degenerate case G|Hh ⌘ 0 is covered by the statement. Given p � 1,
we write

Wp

(µ, ⌫) =

✓
inf

�

Z
|x� y|p �(dx dy)

◆1/p

for the Lp Wasserstein distance of two measures µ and ⌫. The Kantorovich contrac-
tion (2.11) has several consequences. Following [51], we present some applications.

Corollary 6. There is a unique invariant probability measure ⇡ 2 P such that

W1
(�

x

p
t

, ⇡)  4↵ e
�R

2

8�
? e�c t W1

(�
x

, ⇡) for any x 2 H and t � 0. (2.13)

For measurable g : H ! R, we denote the Lipschitz constant w.r.t. d2 by

|g|Lip(d2) = sup {|g(x)� g(y)|/d2(x, y) : x, y 2 H, x 6= y} . (2.14)

Corollary 7. For any Lipschitz function g and t � 0,

sup

⇢
|(p

t

g)(x)� (p
t

g)(y)|
|x� y| : x, y 2 H, x 6= y

�


p
2↵ |g|Lip(d2) e

�c t.

Further consequences are discussed after Theorem 9.
We now generalize Theorem 8 and replace Assumption 24 by a geometric drift

condition using arguments related to the recent work [48]. Lyapunov drift conditions
are widely used to study ergodicity and stability of Markov processes, see e.g. [118, 96,
69] and the references therein. Suppose that a continuous function V : H ! [1,1)

is given for which the Fréchet derivatives DV and D2V exist, are continuous and
bounded in bounded subsets of H. Let

LV (x) = hDV (x),�x+ b(x)i +

1

2

1X

k=1

�
k

D2V (x) [e
k

, e
k

]. (2.15)
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2 Explicit contraction rates for a class of degenerate diffusions

Assumption 25. There are constants C, ⌘ 2 (0,1) such that for any x 2 H,

LV (x)  C � ⌘ V (x). (2.16)

Moreover, we assume that

lim

r!1
inf

|x|=r

V (x) = 1 and ✓ = sup

x2H

|DV (x)|
V (x)

< 1.

The condition ✓ < 1 is imposed for simplicity and can be weakened. We call a
function V satisfying the above conditions a Lyapunov function. A typical candidate
for a Lyapunov function is V (x) = 1 + |x|2. Let

S = {(x, y) 2 H⇥H : V (x) + V (y) < 8C/⌘} and R = sup

(x,y)2S
|x� y|

↵

. (2.17)

The set is chosen such that for any (x, y) 62 S,

LV (x) + LV (y)  �(⌘/2) ( V (x) + V (y) ) � 2 C. (2.18)

Since V is bounded from below, the set S cannot be empty and by continuity of V ,
R > 0. Moreover, Assumption 25 implies that R < 1.

Let P
V

be the set of probability measures µ on H satisfying
R
V (x)µ(dx) < 1

and write �?

= max{�
k

: k 2 N, 1  k  n} for the largest eigenvalue of G on Hl.
We call a continuous function d : H ⇥ H ! [0,1) a semimetric, if it is symmetric
and satisfies d(x, y) = 0 if and only if x = y. We present our main result.

Theorem 9. Let Assumptions 22, 23 and 25 be true and assume � � 0. There is a
semimetric d3 and a constant c 2 (0,1) such that

W
d3(µpt, ⌫pt)  e�c t W

d3(µ, ⌫) for any µ, ⌫ 2 P
V

and t � 0. (2.19)

The rate c is given explicitly in (2.61). If � > 0, then a lower bound is given by

c � 1

2

min

⇢
exp

✓
� �

8�
?

R2 � 2✓
�?

�
?

R

◆
min

⇢
�

2

,
1

4↵

�
, ⌘

�
. (2.20)

The semimetric d3 is given by

d3(x, y) = f (|x� y|
↵

) (1 + ✏V (x) + ✏V (y)) , (2.21)

where ✏ 2 (0,1) is a small constant. The function f : R+ ! R+ is non-decreasing,
concave and continuous with f(0) = 0. It is constant for r � R and satisfies for
0 < r < R the inequality

1

2

 f 0
(r) exp

✓
�

8�
?

r2 + 2✓
�?

�
?

r

◆
 1.

The explicit definitions of f and ✏ are given in (2.59) and (2.61) further below.
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The extension of Theorem 8 to the case of a geometric drift condition is in the same
spirit as in the related work [48]. The multiplicative structure of d3 is inspired by
[69]. A proof of the theorem is given in Section 2.2.3. Notice that the function d3 is
in general not a metric, since the triangle inequality might be violated. Nevertheless,
as pointed out in [69, Lemma 4.14], one can show that if the Lyapunov function V
growths at most exponentially in |x|, then d3 satisfies a weak triangle inequality, i.e.
there is K 2 (0,1) s.t. for all x, y, z 2 H we have d3(x, y)  K[d3(x, z) + d3(z, y)].
This is sufficient for several applications, as we discuss now. The applications are
well-known in the literature.

Corollary 8. Suppose that the assumptions of Theorem 9 hold true. Let p � 1 and
assume there is a constant K 2 (0,1) such that |x� y|p  K (V (x) + V (y)) for
any x, y 2 H. Then, the Markov kernels (p

t

) admit a unique invariant probability
measure ⇡ 2 P

V

such that for any µ 2 P
V

and t � 0,

Wp

(µp
t

, ⇡)p  2 exp

✓
�

8�
?

+ 2✓
�?

�
?

◆
max

⇢
1,

K

✏ min{1, R}

�
e�c t W

d3(µ, ⇡).

If ⇡ is symmetric w.r.t. (p
t

), which is for example the case in the setting considered
in Section 2.3.1 further below, then Corollary 8 implies a L2

(⇡) spectral gap, cf.
[70, Proposition 2.8 and Theorem 2.15] for a precise statement. A Kantorovich
contraction as in Theorem 9 has further remarkable consequences: For example it
allows to make statements about Markov processes which are perturbations of (X

t

),
cf. e.g. [69, Section 4.1: Stability of invariant measures]. Moreover, it allows for
quantifications of bias and variances of ergodic averages, cf. [91, 51, 48]. Since the
latter sources do not provide statements which are directly applicable in the setting
of Theorem 9, we formulate slightly adapted versions. Notice that similarly to (2.14)
we can define | · |Lip(d3) for the semimetric d3.

Corollary 9. Under the assumptions of Theorem 9, it holds

sup

⇢
|(p

t

g)(x)� (p
t

g)(y)|
|x� y| : x 6= y

�


p
2↵ |g|Lip(d2) (1 + ✏V (x) + ✏V (y)) e�c t

for any measurable function g satisfying |g|Lip(d3) < 1 and any t � 0.

In particular, if x 7! p
t

g(x) is Fréchet differentiable at some point x 2 H, then
Corollary 9 provides a bound on |rp

t

g(x)|.

Corollary 10. Under the assumptions of Corollary 8, we have for any measurable
function g : H ! R with |g|Lip(d3) < 1, any x 2 H and t > 0,

����Ex


1

t

Z
t

0

g(X
s

) ds�
Z

gd⇡

�����  1� e�c t

c t
|g|Lip(d3) R (1 + ✏V (x) + ✏C/⌘).
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Corollary 11. Suppose that the assumptions of Theorem 9 hold true. Moreover, we
assume that the function x 7! V (x)2 satisfies the geometric drift condition

(LV 2
)(x)  C? � ⌘?V (x)2 for any x 2 Rd,

with constants C?, ⌘? 2 (0,1). It follows that

|Cov
x

[g(X
t

), g(X
t+h

)]|  3R2

2

|g|2Lip(d3)(1 + 2 ✏2[C?/⌘? + e�⌘

?

tV (x)2])e�c h(2.22)

for any measurable function g satisfying ||g||Lip(d3) < 1 and any t � 0. In particular,

Var

x


1

t

Z
t

0

g(X
s

) ds

�
 3R2

c t
||g||2Lip(d3)

�
1 + 2 ✏2

⇥
C?/⌘? + e�⌘

?

t V (x)2
⇤�

.

The proofs of Corollaries 9, 10 and 11 are nearly identical to the ones given in
[51, 48] and are not repeated here. We remark that Theorem 9 can also be used to
make statements about the existence of solutions for the Poisson equation �Lu = g
associated with (2.1) for a certain class of functions g. For a precise statement
regarding this topic, we refer the reader to [147, Theorem 3.1].

2.2.2 Couplings

We introduce the couplings used to derive upper bounds on the Kantorovich distances
occurring in Proposition 1, Theorem 8 and Theorem 9.

Synchronous coupling

Fix initial values (x0, y0) 2 H⇥H. We call (X
t

, Y
t

) a synchronous coupling, if it is a
solution of the equation

dX
t

= �X
t

dt + b(X
t

) dt +

p
2 dW

t

,

dY
t

= �Y
t

dt + b(Y
t

) dt +

p
2 dW

t

, (X0, Y0) = (x0, y0),

on the space H � H, where (W
t

) is a G-Wiener process on H. The coupling is well-
known and used to prove Proposition 1.

Reflection coupling for nondegenerate and finite-dimensional diffusions

In order to explain the coupling leading to Theorem 8 and Theorem 9, we shortly
recall reflection coupling for nondegenerate and finite-dimensional diffusions, which
goes back to [107]. We consider the following SDE in Rd:

dR
t

= a(R
t

) dt + � dB
t

, (2.23)
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where a : Rd ! Rd is (say) Lipschitz, � 2 Rd⇥d satisfies det(�) > 0 and (B
t

) is a d-
dimensional Brownian motion. A reflection coupling (R

t

, S
t

) starting at (r0, s0) 2 R2d

is a solution of the equation

dR
t

= a(R
t

) dt + � dB
t

, (R0, S0) = (r0, s0),

dS
t

= a(S
t

) dt + �

✓
I

d

�2

��1
(R

t

� S
t

)

|��1
(R

t

� S
t

)|

⌧
��1

(R
t

� S
t

)

|��1
(R

t

� S
t

)| , ·
�◆

dB
t

, t < T

S
t

= R
t

, t � T,

where T = inf{t � 0 : X
t

= Y
t

} is the coupling time. One of the crucial properties
of reflection coupling is that r

t

= |R
t

� S
t

| satisfies almost surley the equation

dr
t

= r�1
t

hR
t

� S
t

, a(R
t

)� a(S
t

)i dt+ 2

����1
(R

t

� S
t

)

���1
r
t

dW
t

, t < T,

where (W
t

) is a one-dimensional Brownian motion. We see that the driving noise
(W

t

) has a direct impact on |R
t

� S
t

|, see [51] for details.

Switching between reflection and synchronous coupling

We present the coupling used to prove Theorem 8 and Theorem 9. Before we intro-
duce the coupling in a rigorous way, we shortly explain the strategy: Let (X

t

, Y
t

) be
a synchronous coupling of solutions to (2.1), i.e. let the processes (X

t

) and (Y
t

) be
driven by the same noise. We argue pathwise. Assume that X

t

�Y
t

satisfies for some
t � 0 the inequality

H
l

��X l

t

� Y l

t

��  (1�H
h

)

��Xh

t

� Y h

t

�� /2, (2.24)

then Assumption 22 implies that
��bh(X

t

)� bh(Y
t

)

��  H
l

��X l

t

� Y l

t

��
+ H

h

��Xh

t

� Y h

t

��  (1 +H
h

)

��Xh

t

� Y h

t

�� /2,

where (1+H
h

)/2 < 1 by assumption. In particular, as long as X
t

�Y
t

satisfies (2.24),��Xh

t

� Y h

t

�� decreases exponentially fast, while
��X l

t

� Y l

t

�� might increase at the same
time. At some point, as time increases, X

t

� Y
t

might not satisfy (2.24) any more.
The idea is now to use a reflection coupling of X l

t

and Y l

t

in the space Hl with the
aim of decreasing

��X l

t

� Y l

t

�� relative to
��Xh

t

� Y h

t

��. As soon as X
t

�Y
t

satisfies again
(2.24), we switch the coupling to a synchronous coupling and wait for a decrease of��Xh

t

� Y h

t

��. If
��Xh

t

� Y h

t

�� gets again “small” compared to
��X l

t

� Y l

t

��, we switch to a
reflection coupling in Hl and so an and so forth. The coupling is visualized in Figure
2.1. As remarked above, during the phases X

t

� Y
t

satisfies (2.24),
��X l

t

� Y l

t

�� might
increase. In order to see a contraction of X

t

� Y
t

, we measure the distance with
the weighted norm |·|

↵

and replace the sector condition (2.24) by (2.8) provided by
Lemma 6. Indeed, as long as X

t

�Y
t

satisfies (2.8), |X
t

� Y
t

|
↵

decreases exponentially
fast. This is of course not true, if X

t

� Y
t

fails to satisfy (2.8). Nevertheless, in the
setting of Theorem 8, an exponential decay of f(|X

t

� Y
t

|
↵

) still holds on average,
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��X l

· � Y l

·
��

��Xh

· � Y h

·
��

X0 � Y0
A

B

Region A
reflection coupling in Hl

synchronous coupling in Hh

Region B
synchronous coupling in HX

t

� Y
t

Figure 2.1: Asymptotic coupling for a degenerate diffusion

if we use an appropriate concave function f following [51]. The coupling strategy
is similar to the ones from [72, 115]: We identify a region where the deterministic
system corresponding to (2.1) has a contraction property and then use the available
noise to drive the coupling into those regions.

We now define the coupling in a rigorous way. Fix small � > 0 and denote

S
SC

=

�
x 2 H : 4 (� + 1)

��xl

�� 
��xh

�� [ {x 2 H : |x|
↵

 �/2} , (2.25)
S
RC

=

�
x 2 H : 2 (� + 1)

��xl

�� �
��xh

�� \ {x 2 H : |x|
↵

� �} .

In comparison to the informal description further above, we add transition regions
to realize transitions between the different coupling types. We describe the coupling
first in words: The driving noise in the subspace Hh is always coupled synchronously,
i.e. the same noise is used to drive Xh

t

and Y h

t

. In the finite-dimensional subspace Hl

we use a reflection coupling of the driving noise if X
t

� Y
t

2 S
RC

and a synchronous
coupling if X

t

� Y
t

2 S
SC

. The definition of the above sets is motivated by Lemma
6. The two sets S

RC

and S
SC

are closed, disjoint and inf

x2S
RC

,y2S
SC

|x� y| > 0. The
region “in between”, i.e. H \ (S

RC

[ S
SC

), is a transition region where a mixture of
both couplings is used. The parameter � occurs only for technical reasons and one
should think of � being close to 0.

We now specify the technical realization of the coupling which follows [51, Section
6]. For given (x, y) 2 H ⇥ H, we define linear operators R(x, y) : H ! H and
S(x, y) : H ! H by

S(x, y)z = zh + sc(x, y) zl and
R(x, y)z = rc(x, y) zl.

Here sc, rc : H�H ! [0, 1] are Lipschitz functions, satisfying for any x, y 2 H,

sc

2
(x, y) + rc

2
(x, y) = 1 and rc(x, y) =

(
1 if (x� y) 2 S

RC

.

0 if (x� y) 2 S
SC

.
(2.26)

90



2.2 Main results

Regarding the existence of the above functions, we remark that it is enough to con-
struct a suitable function h : R+ ⇥ R+ ! [0, 1] such that

rc(x, y) = h
���xh � yh

�� ,
��xl � yl

��� and sc(x, y) =

p
1� rc

2
(x, y)

satisfy the above conditions. This can be done using standard cut-off techniques.
Let now W1 and W2 be independent G-Wiener processes on H and fix some arbitrary
unit vector u 2 Hl. Given starting points (x0, y0) 2 H⇥H we define (X

t

, Y
t

)

t�0 as a
strong solution of

dX
t

= �X
t

dt+ b(X
t

) dt+
p
2R(U

t

) dW1
t

+

p
2S(U

t

) dW2
t

,

dY
t

= �Y
t

dt+ b(Y
t

) dt+
p
2G1/2

(I � 2e
t

he
t

, ·i)G�1/2 R(U
t

) dW1
t

+

p
2S(U

t

) dW2
t

,

on H�H, where (X0, Y0) = (x0, y0), Ut

= (X
t

, Y
t

) and

e
t

=

(��G�1/2
(X l

t

� Y l

t

)

���1 G�1/2
(X l

t

� Y l

t

) if
��X l

t

� Y l

t

�� > 0,

u if
��X l

t

� Y l

t

��
= 0.

(2.27)

Notice that
��X l

t

� Y l

t

��
= 0 implies rc(X

t

, Y
t

) = 0 and thus the arbitrary value u in
(2.27) is not relevant for the dynamic. The operator G�1/2 is well defined on the
space Hl due to Assumption 23. Furthermore, by assumption, the maps (x, y) 7!
(b(x), b(y)), (x, y) 7! R(x, y) and (x, y) 7! S(x, y) are Lipschitz on H � H. Observe
that (W

t

) defined by W
t

= (W1
t

,W2
t

) is a G-Wiener process on H�H with G(x, y) =
(Gx,Gy). Therefore, the above equation is a standard SDE with Lipschitz coefficients
on the Hilbert space H�H. The existence of a continuous, unique and non-explosive
solution is well-known, see e.g. [103, Theorem 3.3]. Using the infinite-dimensional
analog of Levy’s characterization of Brownian motion, see e.g. [35, Theorem 4.4],
and (2.26) one can check that

t 7!
Z

t

0

R(U
s

) dW1
s

+

Z
t

0

S(U
s

) dW2
s

and

t 7!
Z

t

0

G1/2
(I � 2e

s

he
s

, ·i)G�1/2 R(U
s

) dW1
s

+

Z
t

0

S(U
s

) dW2
s

are G-Wiener processes on H and hence (X
t

, Y
t

) is indeed a coupling.

2.2.3 Proofs

Proof of Proposition 1. Fix initial values x0, y0 2 H. We first show that (2.10) holds
for Dirac measures µ = �

x0 and ⌫ = �
y0 . Let (X

t

, Y
t

) be a synchronous coupling as
defined in Section 2.2.2. In the following, all Itô differential (in)equalities hold almost
surely for all t � 0 without further mentioning.

Observe that the difference process Z
t

= X
t

� Y
t

satisfies the equation

dZ
t

= ( �Z
t

+ b(X
t

)� b(Y
t

) ) ds. (2.28)

As before, we write Z l

t

and Zh

t

for the orthogonal projections of Z
t

onto Hl and Hh

respectively.
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Lemma 7. The processes (

��Z l

t

��
) and (

��Zh

t

��
) satisfy the equations

d
��Z l

t

��
= I

Z

l

t

6=0

*
Z l

t��Z l

t

�� ,�Z
t

+ b(X
t

)� b(Y
t

)

+
dt, (2.29)

d
��Zh

t

��
= I

Z

h

t

6=0

*
Zh

t��Zh

t

�� ,�Z
t

+ b(X
t

)� b(Y
t

)

+
dt. (2.30)

We proof Lemma 7 further below and continue, assuming that it holds true. The
coupling (X

t

, Y
t

) yields an upper bound for the Kantorovich distance:

W
d1(�x0pt, �y0pt)  E [|Z

t

|
↵

] = e�c t E
⇥
ec t |Z

t

|
↵

� |Z0|
↵

⇤
+ e�c t E [|Z0|

↵

] .

The product rule for semimartingales implies

d(ec t |Z
t

|
↵

) = c ec t |Z
t

|
↵

dt + ec t d |Z
t

|
↵

. (2.31)

Combining Lemma 7 and (2.7), we conclude that

d |Z
t

|
↵


�
�
��Z l

t

��� ↵�1
��Zh

t

��
↵

�
dt  � c |Z

t

|
↵

dt. (2.32)

By (2.31) and (2.32), E [ect |Z
t

|
↵

� |Z0|
↵

]  0 and therefore Proposition 1 holds for
Dirac measures. For the general case, let µ, ⌫ 2 P . With arguments similar to [149,
Theorem 4.8] one can show that for any coupling � of µ and ⌫, it holds

W
d1(µpt, ⌫pt) 

Z
W

d1(�xpt, �ypt) �(dx dy)  e�c t

Z
d1(x, y) �(dx dy).

Taking the infimum over all couplings �, we finish the proof of Proposition 1.

Proof of Lemma 7. We argue pathwise. The chain rule combined with (2.28) yields

d
��Z l

t

��2
= 2

⌦
Z l

t

,�Z
t

+ b(X
t

)� b(Y
t

)

↵
dt, (2.33)

d
��Zh

t

��2
= 2

⌦
Zh

t

,�Z
t

+ b(X
t

)� b(Y
t

)

↵
dt. (2.34)

We introduce a C2 approximation of the map t 7!
p
t. Given ✏ > 0, we define

s(r) =

(
�(1/8) ✏�3/2 r2 + (3/4) ✏�1/2 r + (3/8) ✏1/2 r < ✏
p
r r � ✏.

(2.35)

For any r 2 [0,1), s(r) !
p
r for ✏ # 0. Let rl

t

=

��Z l

t

��2. Using (2.33) and the chain
rule, we see that for any t � 0,

s(rl
t

)� s(rl0) =

Z
t

0

I
r

l

u

�✏

⌧
Z l

u

|Z l

u

| ,�Z
u

+ b(X
u

)� b(Y
u

)

�
du (2.36)

+

Z
t

0

I0<r

l

u

<✏

s0(rl
u

) 2

⌦
Z l

u

,�Z
u

+ b(X
u

)� b(Y
u

)

↵
du. (2.37)
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Observe that for 0 < rl
u

< ✏,
��⌦X l

u

� Y l

u

,�(X
u

� Y
u

) + b(X
u

)� b(Y
u

)

↵��  ✏ +

p
✏ |b(X

u

)� b(Y
u

)| .

Moreover, sup

u2[0,t] |b(Xu

)� b(Y
u

)| can be bounded by a constant, since (X
u

) and
(Y

u

) are continuous and b is Lipschitz. Observe that sup0r✏

|s0(r)| . ✏�1/2. The
Lebesgue dominated convergence theorem yields that the integral (2.37) vanishes in
the limit as ✏ # 0. Arguing similarly for the integral on the r.h.s. of (2.36), we retrieve
(2.29). The proof of (2.30) is analogous.

Proof of Theorem 8. We first define the function f explicitly. The function is con-
structed using a technique from [51, 50]. Related constructions can be found in
[28, 29, 33, 48]. For real numbers a and b, we write a ^ b = min{a, b}.

f(r) =

Z
r

0

�(s ^R) g(s ^R) ds, �(r) =

Z
r

0

�(s ^R) ds, (2.38)

�(r) = exp

✓
� �

8�
?

r2
◆
, ��1

=

Z
R

0

�(s)�1
�(s) ds,

g(r) = 1� �

2

Z
r

0

�(s)�1
�(s) ds.

We summarize important properties. The derivative of the function f at r 2 (0,1)

is given by the product �(r^R) g(r^R). The functions � and g are strictly positive
and non-increasing on (0, R) and thus f is strictly increasing and concave. Notice
that g(R) = 1/2. On the interval [R,1) the function f is linear with slope �(R)/2.
Moreover, for any r 2 (0,1),

r  �(R)

�1
�(r), �(r)  r, and �(r)/2  f(r)  �(r), (2.39)

which follows directly from the above definitions. Notice that f(r) is twice continu-
ously differentiable at r 2 (0, R) and that it satisfies for such r the (in)equality

4�
?

f 00
(r) = �� f 0

(r) r � 2�
?

� �(r)  �� f 0
(r) r � 2�

?

� f(r). (2.40)

We define the rate c by

c = min {f 0
(R) (1�M), f 0

(R)/(2↵), 2�
?

�} . (2.41)

In order to see (2.12), observe that f 0
(R) = �(R)/2 and

��1
=

Z
R

0

�(s)�1
�(s)ds 

Z
R

0

exp

✓
�

8�
?

s2
◆
s ds = 4�

?

exp

⇣
�

8�
?

R2
⌘
� 1

�
.

Fix (x0, y0) 2 H⇥H. We argue that (2.11) holds for Dirac measures µ = �
x0 and

⌫ = �
y0 . Fix small � > 0 and let U

t

= (X
t

, Y
t

) be the coupling with initial values
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2 Explicit contraction rates for a class of degenerate diffusions

(x0, y0) defined in Section 2.2.2. We use the notation Z
t

= X
t

� Y
t

and r
t

= |Z
t

|
↵

.
The coupling yields an upper bound for the Kantorovich distance:

W
d2(�x0pt, �y0pt)  E [f(r

t

)] = e�c tE
⇥
ec tf(r

t

)� f(r0)
⇤
+ e�c tE [f(r0)] . (2.42)

We now establish bounds on E [ec tf(r
t

)� f(r0)]. All Itô differential (in)equalities
hold almost surely for all t � 0 without further mentioning.

Lemma 8. The process (r
t

) satisfies

dr
t

= I
Z

l

t

6=0

*
Z l

t��Z l

t

�� ,�Z
t

+ b(X
t

)� b(Y
t

)

+
dt + 2

p
2 rc(U

t

)

��Z l

t

��
��G�1/2Z l

t

�� dBt

+ ↵ I
Z

h

t

6=0

*
Zh

t��Zh

t

�� ,�Z
t

+ b(X
t

)� b(Y
t

)

+
dt,

where B
t

=

R
t

0

D
G�1/2e

t

, dW1,l
t

E
is a one-dimensional Brownian motion.

Observe that by (2.26) and (2.25), Z l

s

= 0 implies rc(U
s

) = 0.

Lemma 9. The process (f(r
t

)) satisfies

df(r
t

) = f 0
(r

t

) dr
t

+ 4 I
r

t

6=R

f 00
(r

t

) rc(U
t

)

2
��Z l

t

��2��G�1/2Z l

t

���2
dt.

Assuming that Lemma 9 holds true, we can apply the product rule for semimartin-
gales to conclude

d
�
ec tf(r

t

)

�
= c ec t f(r

t

) dt + ec t df(r
t

). (2.43)

Lemma 10. There is a function h : R+ ! R+ with lim

r#0 h(r) = 0 such that

df(r
t

)  �c f(r
t

) dt + h(�) dt + f 0
(r

t

) dM1
t

, (2.44)

where M1
t

=

R
t

0 2
p
2 rc(U

t

)

��Z l

t

�� ��G�1/2Z l

t

���1
dB

t

.

Notice that M1
t

is a martingale and f 0  1. By Lemma 10, (2.42) and (2.43),

W
d2(�x0pt, �y0pt)  h(�)/c+ e�c t W

d2(�x0 , �y0).

Passing to the limit � ! 0, we see that (2.11) holds for Dirac measures. The general
case can be concluded with the same argument used at the end of the proof of
Proposition 1.

Proof of Lemma 8. We first consider the projection of Z
t

onto Hh. From the defini-
tion of the coupling in Section 2.2.2, we see that

dZh

t

=

�
�Zh

t

+ bh(X
t

)� bh(Y
t

)

�
dt.
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Using the same approximation argument as in the proof Lemma 7, we conclude

d
��Zh

t

��
= I

Z

h

t

6=0

��Zh

t

���1 ⌦
Zh

t

,�Z
t

+ b(X
t

)� b(Y
t

)

↵
dt.

Using the definition of the coupling in Section 2.2.2, we see that the projection of Z
t

onto Hl satisfies

dZ l

t

=

�
�Z l

t

+ bl(X
t

)� bl(Y
t

)

�
dt + 2

p
2 rc(U

t

)G1/2 e
t

D
G�1/2e

t

, dW1,l
t

E
,

Notice that B
t

=

R
t

0

⌦
G�1/2e

s

, dW1,l
s

↵
is a one-dimensional Brownian motion, which

follows from Levy’s characterization of Brownian motion. A Hilbert space version of
Itô’s formula, see e.g. [60, Theorem 2.9], allows to conclude

d
��Z l

t

��2
= 2

⌦
Z l

t

,�Z
t

+ b(X
t

)� b(Y
t

)

↵
dt+ 8 rc(U

t

)

2
��G1/2e

t

��2 dt
+ 4

p
2 rc(U

t

)

⌦
Z l

t

,G1/2e
t

↵
dB

t

.

Given ✏ > 0, let s(t) be the C2 approximation of t 7!
p
t defined in (2.35). Itô’s

formula shows

s
⇣��Z l

t

��2
⌘
� s

⇣��Z l

0

��2
⌘

=

Z
t

0

s0(
��Z l

v

��2
) 2

⌦
Z l

v

,�Z
v

+ b(X
v

)� b(Y
v

)

↵
dv (2.45)

+

Z
t

0

s0(
��Z l

v

��2
) 8 rc(U

v

)

2
��G1/2e

v

��2 dv

+

Z
t

0

s00(
��Z l

v

��2
) 16 rc(U

v

)

2
(

⌦
Z l

v

,G1/2e
v

↵
)

2dv

+

Z
t

0

s0(
��Z l

v

��2
) 4

p
2 rc(U

v

)

⌦
Z l

v

,G1/2e
v

↵
dB

v

.

We now pass to the limit ✏ # 0. The integral on the r.h.s. of (2.45) converges to
Z

t

0

I
Z

l

u

6=0

��Z l

u

���1 ⌦
Z l

u

,�Z
u

+ b(X
u

)� b(Y
u

)

↵
du,

which can be argued similarly as in the proof of Lemma 7. Regarding the limits of
the remaining integrals, notice that by (2.25) and (2.26),

��Z l

t

�� <
�

4

min

⇢
1,

1

4 ↵ (� + 1)

�
(2.46)

implies rc(U
t

) = 0. Indeed, if
��Zh

t

��  �/(4↵) and (2.46) holds, then |Z
t

|
↵

< �/2 and
thus Z

t

2 SSC. If
��Zh

t

�� > �/(4↵) and (2.46) holds, then

4 (� + 1)

��Z l

t

�� < �/(4↵) <
��Zh

t

��

and thus again Z
t

2 SSC. On the other hand, s(t) =
p
t for t � ✏, which concludes

the lemma.
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Proof of Lemma 9. The function f can be continued to a concave function on R by
setting f(x) = x for x < 0. The generalized Itô formula for concave functions, see
e.g. [93, Thm. 22.5], implies that (f(r

t

)) satisfies the equation

f(r
t

)� f(r0) =

Z
t

0

f 0
�(rs) drs +

1

2

Z 1

�1
Lx

t

µ
f

(dx), (2.47)

where f 0
� denotes the left-derivative of f , µ

f

is the signed measure induced by f 0
�,

i.e. µ
f

[x, y) = f 0
�(y) � f 0

�(x) for x  y, and Lx

t

denotes the right-continuous local
time of (r

t

). A further consequence of the generalized Itô formula is that, outside of
a fixed null set, we retrieve for any measurable and nonnegative function v : R ! R+

the equality
Z

R
Lx

t

v(x) dx =

Z
t

0

v(r
s

) d[r]
s

8t � 0, (2.48)

see e.g. [93, Thm. 22.5]. Since f 0 exists everywhere and is continuous, we have
µ
f

[{R}] = 0. Observe that f is twice continuously differentiable except at the point
R. Hence by (2.47), (2.48) and Lemma 8, we can conclude that (f(r

t

)) satisfies the
equations

f(r
t

)� f(r0) =

Z
t

0
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��2
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Proof of Lemma 10. Let

w(U
t

) = I
Z

l

t

6=0

��Z l

t

���1 ⌦
Z l

t

,�Z
t

+ b(X
t

)� b(Y
t

)

↵

+ ↵ I
Z

h

t

6=0

��Zh

t

���1 ⌦
Zh

t

,�Z
t

+ b(X
t

)� b(Y
t

)

↵
.

Combining Lemma 8 and 9, we conclude

df(r
t

) =

 
f 0
(r

t

)w(U
t

) + 4 I
r

t

6=R

f 00
(r

t

) rc(U
t

)

2

��Z l

t

��2
��G�1/2Z l

t

��2

!
dt+ dM2

t

.(2.49)

with M2
t

=

R
t

0 f
0
(r

t

) dM1
t

. Notice that for any t � 0,
��G�1/2Z l

t

��  ��1/2
?

��Z l

t

�� . (2.50)

Moreover, Lemma 6 implies that

w(U
t

)  �r
t

+ |b(X
t

)� b(Y
t

)|
↵

 �
��Zh

t

��
+ �

��Z l

t

�� . (2.51)
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Recall that f is concave and non-decreasing. By (2.49), (2.50) and (2.51),

df(r
t

)  f 0
(r

t

) (�r
t

+ |b(X
t

)� b(Y
t

)|
↵

) dt (2.52)
+ 4�

?

I
r

t

6=R

f 00
(r

t

) rc(U
t

)

2 dt + dM2
t

.

If r
t

� R, then Assumption 24 and (2.39) imply

�r
t

+ |b(X
t

)� b(Y
t

)|
↵

 �(1�M) r
t

 �(1�M) f(r
t

). (2.53)

If Z
t

62 SRC and r
t

� �, then by (2.25) and Lemma 6

�r
t

+ |b(X
t

)� b(Y
t

)|
↵

 �1/(2↵) r
t

 �1/(2↵) f(r
t

). (2.54)

If Z
t

2 SRC and �  r
t

< R, we argue as follows: By definition we have rc(U
t

) = 1.
Lemma 6 implies the bound

�r
t

+ |b(X
t

)� b(Y
t

)|
↵

 � r
t

. (2.55)

Observe that for r 2 (0, R), inequality (2.40) holds true and therefore

f 0
(r

t

) � r
t

+ 4�
?

f 00
(r

t

)  �2�
?

� f(r
t

). (2.56)

Recall (2.38) and (2.39) to see that if r
t

 � holds, then we can estimate

f 0
(r

t

) � r
t

 � � and f(r
t

)  r
t

 �. (2.57)

Combining (2.52), (2.53), (2.54), (2.55), (2.56), (2.57) and (2.41), we conclude

df(r
t

)  �c f(r
t

) dt + (c+ �) � dt + dM2
t

. (2.58)

The claim follows by setting h(�) = (c + �) �.

Proof of Corollary 6. By (2.39), (2.11) and (2.6), we conclude for any x, y 2 H,

W1
(�

x

p
t

, �
y

p
t

)  2 �(R)

�1W
d2(�xpt, �ypt)  4↵�(R)

�1 e�c t W1
(�

x

, �
y

).

The fact that the Markov kernels (p
t

) admit a unique invariant measure ⇡ satisfying
⇡p

t

= ⇡ for any t � 0 now follows by standard arguments, see e.g. [51, Corollary
2.5].

Proof of Corollary 7. The proof follows [51, Section 4]. Let (X
t

) be a solution of
(2.1) with X0 = x. Assumption 24 implies that the first moments of X

t

are uniformly
bounded in time, i.e. sup

t�0 Ex

[|X
t

|] < 1. In particular, for any x 2 H, t � 0 and
any Lipschitz function g,

R
g(y) p

t

(x, dy) < 1. Fix x, y 2 H and let (X
t

, Y
t

) be any
coupling of �

x

p
t

and �
y

p
t

. It follows

|(p
t

g)(x)� (p
t

g)(y)|  E[|g(X
t

)� g(Y
t

)|]  |g|Lip(d2) E[d2(Xt

, Y
t

)],

and hence by (2.11), (2.6) and (2.39),

|(p
t

g)(x)� (p
t

g)(y)|  |g|Lip(d2) e
�c tf (|x� y|

↵

) 
p
2↵ |g|Lip(d2) e

�c t |x� y| .
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Proof of Theorem 9. The proof is close to the proof of Theorem 8. We use again the
coupling from Section 2.2.2, but use a slightly different function f .

f(r) =

Z
r^R

0

�(s) g(s) ds �(r) =

Z
r^R

0

�(s) ds (2.59)

�(r) = exp

✓
� �

8�
?

r2 � 2✓
�?

�
?

r

◆
��1

=

Z
R

0

�(s)�(s)�1 ds

g(r) = 1� �

2

Z
r^R

0

�(s)�(s)�1 ds

We highlight the differences to the situation in Theorem 8. This time, f is constant
on [R,1) and it is not differentiable at the point R. Nevertheless, it is concave and
the left-derivative f 0

� exists everywhere. Observe that the inequalities (2.39) still
hold true on the interval [0, R]. Moreover, the function f is twice continuously
differentiable on (0, R) and satisfies there the (in)equality

4�
?

f 00
(r) = �f 0

(r) (� r + 8 ✓ �?

)� 2�
?

� �(r) (2.60)
 �f 0

(r) (� r + 8 ✓ �?

)� 2�
?

� f(r).

The contraction rate c in (2.19) and the constant ✏ in (2.21) are given by

c = min

⇢
�
?

�,
�(R)

8 ↵
,
⌘

2

�
and 2 C ✏ = min

⇢
�
?

�,
�(R)

8 ↵

�
� c. (2.61)

The lower bound (2.20) can be derived similarly as in the proof of Theorem 8.

Fix small � > 0, initial conditions (x0, y0) 2 H ⇥ H and let U
t

= (X
t

, Y
t

) be the
coupling defined in Section 2.2.2. We use the notation

Z
t

= X
t

� Y
t

, r
t

= |Z
t

|
↵

,

G(x, y) = 1 + ✏V (x) + ✏V (y) Q
t

= f(r
t

) G(X
t

, Y
t

).

The coupling yields an upper bound for the Kantorovich distance:

W
d3(�x0pt, �y0pt)  E [Q

t

] = e�c tE
⇥
ec tQ

t

�Q0

⇤
+ e�c tE [Q0] . (2.62)

We now estimate E [ec tQ
t

�Q0] and proceed similarly to the proof of Theorem 8.
Observe that Lemma 8 still holds true, since we use the same coupling as in the proof
of Theorem 8.

Lemma 11. The process (f(r
t

)) satisfies

df(r
t

) = f 0
�(rt) drt +

1

2

Z 1

�1
Lx

t

µ
f

(dx)

 f 0
�(rt) drt + 4 I

r

t

6=R

f 00
(r

t

) rc(U
t

)

2
��Z l

t

��2��G�1/2Z l

t

���2
dt.

The notation µ
f

and Lx

t

is defined in the proof of Lemma 9.

98



2.2 Main results

Lemma 12. The process (G(X
t

, Y
t

)) satisfies

dG(X
t

, Y
t

) = ✏ ( LV (X
t

) + LV (Y
t

) ) dt + dM3
t

, (2.63)

where (M3
t

) is a local martingale given by

dM3
t

=

p
2 ✏
D
DV (X

t

) +DV (Y
t

), dW2,h
t

E

+

p
2 ✏ sc(U

t

)

D
DV (X

t

) +DV (Y
t

), dW2,l
t

E

+

p
2 ✏ rc(U

t

)

D
DV (X

t

) +DV (Y
t

), dW1,l
t

E

� 2

p
2 ✏ rc(U

t

)

⌦
DV (Y

t

),G1/2e
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↵ D
G�1/2e

t

, dW1,l
t

E
.

The product rule for semimartingales implies

d
�
ec tQ

t

�
= c ec t Q

t

dt + ec t dQ
t

. (2.64)

Lemma 13. There is h : R+ ! R+ with lim

r#0 h(r) = 0 such that

dQ
t

 �cQ
t

dt + (1 + ✏V (X
t

) + ✏V (Y
t

))h(�) dt + dM4
t

, (2.65)

where M4
t

=

R
t

0 f(rs) dM
3
s

+

R
t

0 G(X
s

, Y
s

) f 0
�(rs) dM

1
s

is a local martingale.

The martingale (M1
t

) is defined in Lemma 10.

Lemma 14. For any t � 0, there is K
t

2 (0,1), not depending on �, such that

E
⇥
ec tQ

t

�Q0

⇤
 K

t

h(�).

Combining Lemma 14 with (2.62) yields

W
d3(�x0pt, �y0pt)  K

t

h(�) + e�c t W
d3(�x0 , �y0).

Passing to the limit � ! 0, we see that (2.19) holds for Dirac measures. The general
case can be concluded with the same argument used at the end of the proof of
Proposition 1.

Proof of Lemma 11. The proof is analogous to the proof of Lemma 9, except that now
f is not continuously differentiable everywhere. In particular, f 0

� has a discontinuity
at the point R and therefore we do not have µ

f

[{R}] = 0. Nevertheless, since f is
concave we know that µ

f

[{R}] < 0.

Proof of Lemma 12. The assumptions imposed on V allow to apply Itô’s formula in
a Hilbert space setting, see e.g. [60, Theorem 2.9]. Recalling the definition of the
coupling from Section 2.2.2, we see that (2.63) holds true.
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Proof of Lemma 13. The product rule for semimartingales implies that (Q
t

) satisfies

dQ
t

= G(X
t

, Y
t

) df(r
t

) + f(r
t

) dG(X
t

, Y
t

) + d [f(r·), G(X·, Y·)]
t

, (2.66)

where [·, ·] denotes the quadratic variation. By Lemma 11, (2.50) and (2.51),
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,

where M5
t

=

R
t

0 G(X
s

, Y
s

)f 0
�(rs) dM

1
s

is a local martingale.
Lemma 12 and Assumption 25 imply that
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t
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t

)  f(r
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t

) + V (Y
t

))) dt + dM6
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, (2.68)

with M6
t

=

R
t

0 f(rt) dM
3
t

. Using Lemma 8, 11 and 12, we establish the bound
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where �? is the largest eigenvalue of G on Hl. Assumption 25 implies

[f(r·), G(X·, Y·)]t  8 ✓ �?
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) ds. (2.69)

Combining (2.66), (2.67), (2.68) and (2.69), we conclude that
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))) dt + dM5
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+ dM6
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.

We are now in a position to argue (2.65) and do a pathwise case distinction:

If r
t

> R, then (X
t

, Y
t

) 62 S by (2.17). By (2.18) and (2.61),

f(r
t

) ✏ (2C � ⌘ (V (X
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) + V (Y
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)))  f(r
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) (�2C ✏� ⌘/2 (✏V (X
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) + ✏V (Y
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 �c f(r
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)G(X
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) = �c Q
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.

Moreover, f is constant on (R,1) and thus f 0
(r

t

) = f 00
(r

t

) = 0.

Now assume that �  r
t

 R and Z
t

2 SRC. By (2.26), we have that rc(U
t

) = 1.
Notice that equality (2.48) implies for any fixed t � 0,

�Leb ({0  s  t : r
s

= R and rc(U
s

) > 0}) = 0, (2.70)

i.e. the Lebesgue measure of the time (r
s

) spends at the point R up to time t,
while rc(U

s

) > 0 is almost surely zero. This allows us to neglect the case r
t

= R.
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Moreover, f is twice continuously differentiable on (0, R) and fulfils inequality (2.60).
We conclude that for �  r

t

< R with Z
t

2 SRC,
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,

where we used (2.61) and G � 1.
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��Z l
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�� 
��Zh
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��, but we do not
necessarily have rc(U
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) = 1. Nevertheless, (2.70) is still true and (2.60) implies
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Lemma 6 shows that
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and thus
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where we used (2.61) and the fact that f 0 is nonnegative and decreasing on (0, R)

with f 0
�(R) = �(R)/2.

Now assume r
t

 �. Similarly to the last case, (2.71) holds true. Since f 0
�  1 and

f(r)  r, we can estimate
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We conclude the lemma setting h(�) = (c+ � + 2C ✏) �.

Proof of Lemma 14. We introduce stopping times

T = inf{t � 0 : X
t

= Y
t

} and
T
m

= inf{t � 0 : |X
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� Y
t
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|} � m}.
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Fix m 2 N and notice that the stopped process (M4
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) defined in Lemma 13 is a
martingale. Using (2.64) and Lemma 13, we conclude
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Assumption 25 implies that there is a constant A 2 (0,1) such that

sup

t2[0,1)
( E[V (X

t

)] + E[V (Y
t

)] ) < A.

Proof of Corollary 8. Let x, y 2 H with |x� y|
↵

 min{1, R}. By (2.6) and (2.39),

|x� y|p  |x� y|
↵

 2��1
(min{1, R}) f(|x� y|

↵

) (1 + ✏V (x) + ✏V (y)).

On the other hand, if |x� y|
↵

> min{1, R}, then we get

|x� y|p  K(V (x) + V (y))  K

✏f(min{1, R})f(|x� y|
↵

)(1 + ✏V (x) + ✏V (y)).

By (2.39), f(min{1, R}) � �(min{1, R})/2 � min{1, R} �(min{1, R})/2. Com-
bining the bounds, we get for any x, y 2 H,

|x� y|p  2��1
(min{1, R}) max

⇢
1,

K

✏ min{1, R}

�
d3(x, y). (2.73)

Using (2.73) and Theorem 9, we can conclude that
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, ⌫p
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)

p  2��1
(min{1, R}) max

⇢
1,

K

✏ min{1, R}

�
e�c tW

d3(µ, ⌫) (2.74)

for any µ, ⌫ 2 P
V

and t � 0. Notice that Assumption 25 implies that

sup

t�0

Z
V (y) (�

x

p
t

)(dy) < 1 for any x 2 H. (2.75)

In particular, (2.74) and (2.75) together imply that there is a constant C 2 (0,1)

such that

Wp

(�
x

p
m

, �
x

p
n

)

p

= Wp

(�
x

p
m�n

p
n

, �
x

p
n

)

p  C e�c n (2.76)

for any integers m > n > 0. We see that (�
x

p
n

)

n2N is a Cauchy sequence w.r.t. Wp.
Moreover, the Lp Wasserstein space is Polish and convergence w.r.t. Wp implies weak
convergence. The Krylov-Bogolioubov criteria thus implies that there is a measure
⇡0 such that ⇡0p1 = ⇡0, cf. e.g. [74, Theorem 1.10]. It is straightforward to check that
⇡ =

R 1

0 ⇡0ps ds is invariant w.r.t. (p
t

), cf. e.g. [98, Section 3]. Moreover, Assumption
25 implies that any invariant probability measure ⇡? satisfies ⇡? 2 P

V

, cf. e.g. [73,
Proposition 4.24], and thus (2.74) implies that ⇡ is the only invariant measure.

2.3 Applications
We demonstrate the applicability of the results from Section 2.2.
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2.3 Applications

2.3.1 Absolutely continuous measures w.r.t. a normal
distribution

General setup

Suppose that G is the covariance operator of a non-degenerate and centered normal
distribution N (0,G) on a separable Hilbert space (H, h·, ·i , |·|), i.e. G is trace-class,
symmetric and positive-definite. Define a probability measure ⇡ by (2.2), where U :

H ! R is a given potential which is bounded from below, Fréchet differentiable and
for which x 7! rU(x) is Lipschitz. We define b in equation (2.1) as b(x) = �GrU(x).
The results from [71] imply that ⇡ is an invariant measure for (p

t

), i.e. ⇡p
t

= ⇡ for
any t � 0. We now give sufficient conditions under which the results from Section
2.2 are applicable in this context.

Remark 6. The article [71] by Hairer, Stuart and Voss considers two different
SPDEs for which ⇡ is a stationary distribution and which can both be used for sam-
pling purposes. The first one is given by

d ˜X
t

= �

˜X
t

dt � rU(

˜X
t

) dt +
p
2 d ˜W

t

, (2.77)

where (

˜W
t

) is a cylindrical Wiener process over H. The second one is given by
(2.1) and this is the one we study in this article. Formally, the latter equation is
obtained from (2.77) by “preconditioning”. The solutions for the equations behave
quite differently: While (2.77) only admits mild solutions in general, strong solutions
are possible for (2.1). Moreover, as pointed out in [71] under reasonable assumptions,
the process (

˜X
t

) is strong Feller and it is possible to apply classical Harris’ theorems
to study ergodic properties. In contrast to this, the process (X

t

) solving (2.1) is not
strong Feller in general and the study of ergodic properties is more involved.

Fix an orthonormal basis (e
k

)

k2N+ of H such that Ge
k

= �
k

e
k

holds for a se-
quence (�

k

) of positive reals satisfying
P1

k=1 �k

< 1. For the sake of simplicity,
we assume �

k

# 0 and �1 = 1. Observe that Theorem 8 and 9 still hold true, if we
replace Assumptions 22 and 24 by the slightly more general Assumptions 26 and 27
respectively.

Assumption 26. There are constants 0  H
h

< 1 and L
l

, L
h

, H
l

� 0 such that
⌧

xh � yh

|xh � yh| , b(x)� b(y)

�
 H

l

��xl � yl
��
+ H

h

��xh � yh
�� (2.78)

for any x, y 2 H with xh 6= yh and in the case xl 6= yl, we have
⌧

xl � yl

|xl � yl| , b(x)� b(y)

�
 L

l

��xl � yl
��
+ L

h

��xh � yh
�� . (2.79)
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2 Explicit contraction rates for a class of degenerate diffusions

Assumption 27. There are R 2 (0,1) and 0  M < 1 such that

I
x

l 6=y

l

⌧
xl � yl

|xl � yl| , b(x)� b(y)

�
+ I

x

h 6=y

h↵

⌧
xh � yh

|xh � yh| , b(x)� b(y)

�
 M |x� y|

↵

for any x, y 2 H with |x� y|
↵

� R.

In the following we focus on potentials U : H ! R of the form

U(x) =

a

2

|x|2 + m(x), (2.80)

where a � 0 and m : H ! R satisfies:

Assumption 28. The function m is bounded from below and Fréchet differentiable.
There is L � 1 such that

|rm(x)�rm(y)|  L |x� y| holds true for any x, y 2 H.

Lemma 15. Let Assumption 28 be true and define n = min

�
k 2 N+ : �

k+1 <
1
2L

 
.

We consider the splitting H = Hl � Hh with Hl

= he1, . . . , en

i. In this setting,
Assumption 26 is satisfied with

H
l

= H
h

= 1/2, L
l

= L
h

= L, ↵ = 2 (1 + L) and � = 2L.

Proof. Let x, y 2 H with xh � yh 6= 0. We have

�
⌦
xh � yh,G(rU(x)�rU(y))

↵
= �a

⌦
xh � yh,G(x� y)

↵

�
⌦
xh � yh,G(rm(x)�rm(y))

↵
.

Observe that �a
⌦
xh � yh,G(x� y)

↵
 0. Using Cauchy-Schwarz, we get

��⌦xh � yh,G(rm(x)�rm(y))
↵��  �

n+1 L
��xh � yh

�� |x� y|
 1/2

��xh � yh
�� |x� y| .

This implies (2.78) with H
l

= H
h

= 1/2. Inequality (2.79) can be argued similarly.

Lemma 16. Assume that there is R > 0 such that rm(x) = 0 for any |x| � R.
Then Assumption 27 can be satisfied with M = 3/4 and R = 8LR.

Proof. Let x, y 2 H with |x� y|
↵

� R. The statement is clear if min{|x| , |y|} � R.
Assume w.l.o.g. that |x| < R, |y| � R and let z 2 H with |z| = R, then

I
x

l 6=y

l

⌧
xl � yl

|xl � yl| , b(x)� b(y)

�
+ I

x

h 6=y

h ↵

⌧
xh � yh

|xh � yh| , b(x)� b(y)

�


���(G(rm(x)�rm(z)))l

��� + ↵
���(G(rm(x)�rm(z)))h

���
 L |x� z| + ↵�

n+1 L |x� z|  2LR+ 2 (1 + L)R  3/4 |x� y|
↵

.
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2.3 Applications

Corollary 12. If the assumptions of Lemma 15 and 16 are satisfied, then Theorem
8 holds with 4 c � exp (�32L4 R2

) /(1 + L).

We give a sufficient condition for the existence of a Lyapunov function.

Lemma 17. Let Assumption 28 be true and set V (x) = 1+|x|2. If there are constants
b 2 (0,1) and 0  c < 1 such that

|rm(x)|  b + c |x| holds for any x 2 H, (2.81)

then for any 0 < ⌘ < 1� c there is C 2 (0,1) such that Assumption 25 is satisfied
with (V,C, ⌘).

Proof. We have to find C such that (2.16) holds true for all x 2 H. Observe that,

LV (x) = 2 hx,�x� a G x� Grm(x)i + trace(G)
 2

�
� |x|2 + b |x|+ c |x|2

�
+ trace(G).

The claim follows since c < 1.

We see that Theorem 9 is applicable if the assumptions of Lemma 17 are satisfied.

Transition path sampling

We present a concrete sampling context for which the results from the last subsection
are applicable. We follow here [71] and consider the Rd-valued SDE

dX
t

= �rRd W (X
t

) dt + dB
t

, X0 = 0, (2.82)

where (B
t

) is a d-dimensional Brownian motion.

Assumption 29. The potential W : Rd ! R is given by

W (x) =

a

2

|x|2 + H(x),

with a > 0 and H : Rd ! R is a C4 function for which all k-fold partial derivatives,
k 2 {1, 2, 3, 4}, satisfy

��@kH(x)
�� |x|k�2 ! 0 for |x| ! 1.

Suppose that we are interested in the law ⇡ of (X
t

)

t2[0,1] conditioned on the event
X1 = 0. We describe a typical setup for the above situation. Set H = L2

([0, 1],Rd

)

and let (�0, D0) be the self-adjoint Laplacian with Dirichlet boundary condition, i.e.
the domain D0 is given by all differentiable functions f , such that f 0 is absolutely
continuous with f 00 2 L2 and such that f(0) = f(1) = 0. Let G = ���1

0 . Observe
that e

k

=

p
2 sin(⇡kt), k 2 N, is an orthonormal basis of H satisfying Ge

k

= �
k

e
k

with �
k

= (⇡k)�2. In particular, the operator G is trace-class, symmetric and positive
definite on H. It is well-known, that the distribution of a standard Brownian Bridge
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2 Explicit contraction rates for a class of degenerate diffusions

on H is a centered normal distribution with covariance operator G. Under Assumption
29 one can argue, using Girsanov’s theorem and Itô’s formula, that the law ⇡ of
(X

t

)

t2[0,1] conditioned on X1 = 0 is given by (2.2), with U : H ! R defined by

U(x) =

1

2

Z 1

0

�(x
s

) ds and �(x) = |rRdW (x)|2 +�RdW (x). (2.83)

We refer the reader to [71] for a detailed exposition. It is now a straightforward
calculation to check that Lemma 17 is applicable, if Assumption 29 is satisfied.

2.3.2 Finite-dimensional approximations

In this work we focus on explicit contraction rates for the process (2.1). In the light
of sampling applications one might ask, if it is possible to make related statements
about finite-dimensional approximations. We shortly argue, that this is indeed the
case.

Suppose that Assumptions 22, 23, and 24 are true. Let Hl be of dimension n 2 N+.
Fix some d > n and write Hd

= he1, . . . , ed

i for the subspace spanned by the first
d basis vectors. Given x 2 H, we write xd for the orthogonal projection onto Hd.
Let (X

t

) be a solution of (2.1) with X0 = x0. A straightforward d-dimensional
approximation (

˜X
t

) is given by the solution of the SDE

d ˜X
t

= � ˜X
t

dt + bd( ˜X
t

) dt +

p
2 dW d

t

, ˜X0 = xd

0. (2.84)

A similar approximation is e.g. considered in [38]. Observe that the nonlinearity
x 7! bd(x) satisfies Assumptions 22 and 24 on the space Hd with the same constants
as x 7! b(x) on H. In particular, we can apply Theorem 8 to equation (2.84) and
see that the corresponding Markov kernels satisfy a Kantorovich contraction with a
dimension-independent and explicit contraction rate. A related statement holds true
for Theorem 9. We remark that the unique invariant measure ⇡d for (2.84) does in
general not agree with the invariant measure ⇡ of (2.1). A study of the approximation
error can be found in [38].

It might also be possible to use the presented results to make statements about
the speed of convergence of time-discrete approximations of (2.84), e.g. Euler ap-
proximations. There are at least two different approaches to this question: The
first possibility is to implement a similar coupling strategy directly for Markov
chains. We refer in this context to the forthcoming work [47]. The second possi-
bility is to interpret the approximation as a perturbation of the original equation, see
[138, 121, 128, 137, 36, 45] and the references therein. Nevertheless, the last question
goes beyond the scope of this work.
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3 Sticky couplings of
multidimensional diffusions with
different drifts

We present a novel approach of coupling two multidimensional and nondegenerate
Itô processes (X

t

) and (Y
t

) which follow dynamics with different drifts. Our coupling
is sticky in the sense that there is a stochastic process (r

t

), which solves a one-
dimensional stochastic differential equation with a sticky boundary behavior at zero,
such that almost surely |X

t

� Y
t

|  r
t

for all t � 0. The coupling is constructed
as a weak limit of Markovian couplings. We provide explicit, non-asymptotic and
longtime stable bounds for the probability of the event {X

t

= Y
t

}.

A. Eberle and R. Zimmer. Sticky couplings of multidimensional diffusions with different
drifts. ArXiv e-print 1612.06125, December 2016

Financial support from the German Science foundation through the Hausdorff Center for Mathematics is
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3.1 Introduction
Let (B

t

) and (

˜B
t

) be d-dimensional Brownian motions. We consider two diffusion
processes with values in Rd which follow dynamics with different drifts, i.e.

dX
t

= b(t,X
t

) dt + dB
t

, X0 = x, (3.1)
dY

t

=

˜b(t, Y
t

) dt + d ˜B
t

, Y0 = y. (3.2)

We assume that the drift coefficients b,˜b : R+⇥Rd ! Rd are locally Lipschitz. More-
over, we impose assumptions which imply that a geometric Lyapunov drift condition
holds for (3.1) and that there is a constant M > 0 such that uniformly |b� ˜b|  M .

Diffusions with different drifts occur in many application areas. For example, one
could consider a Langevin diffusion (X

t

) and a perturbation or approximation (Y
t

)

of the latter. Other natural examples are McKean-Vlasov processes, where the drift
coefficients depend not only on the current position of the process but also on the
corresponding law. A natural question arising is how to obtain explicit bounds for the
distance of X

t

and Y
t

in Kantorovich distances, e.g. in total variation norm. There are
a few articles which try to answer this question in a general setting: Using Girsanov’s
theorem and coupling on the path space, the works [92, 104, 105] establish bounds on
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3 Sticky couplings of diffusions

the total variation norm of such diffusions. In [12] bounds for the distance between
transition probabilities of diffusions with different drifts are derived using analytic
arguments, see also the related work [112]. The drawback of these approaches is
that the derived bounds are typically only useful for small time horizons and are not
longtime stable. The article [9] provides bounds for the distance between stationary
measures of diffusions with different drifts. Coupling methods are used in [46] to
provide longtime stable bounds on the distance between a Langevin diffusion and
its Euler approximation. Howitt constructs in [84] a sticky coupling of two one-
dimensional Brownian motions with different drifts using time-change arguments
which are restricted to the one-dimensional setting.

In this article, we discuss a novel approach of constructing couplings (X
t

, Y
t

) of
solutions to (3.1) and (3.2) in a multidimensional setting. Consider for example the
case where ˜b differs from b by a non-zero constant m, i.e., ˜b(t, x) = b(t, x) + m for
some m 2 Rd, and let (X

t

) and (Y
t

) be solutions of (3.1) and (3.2) respectively. In
this case, whenever X

t

and Y
t

meet, the drift forces the processes to immediately
move apart from each other. It is clear that, regardless of how the processes are
coupled, one cannot hope for the existence of an almost surely finite stopping time T
such that P [X

t

= Y
t

8t � T ] = 1. Nevertheless, we construct a coupling such that for
any given t > 0, we have P [X

t

= Y
t

] > 0 and the coupling is sticky in the sense that
there is a continuous semimartingale (r

t

) which solves a one-dimensional stochastic
differential equation with a sticky boundary behavior at zero such that almost surely
|X

t

� Y
t

|  r
t

for all t � 0. This allows us to establish explicit, non-asymptotic and
longtime stable bounds for the probability of the event {X

t

= Y
t

}. The coupling is
constructed as a weak limit of Markovian couplings. The idea for the coupling is based
on [51, 48] where coupling approaches for particle systems and nonlinear McKean-
Vlasov processes are discussed, cf. Section 3.2.2 for a comprehensive comparison.
We show that sticky couplings can be applied effectively to provide total variation
bounds between the laws of both linear and nonlinear diffusions with varying drifts.

Outline: The main results are presented in Section 3.2. In Section 3.3 we recall
results on the existence and uniqueness of one-dimensional SDEs with sticky bound-
ary, we establish an approximation result for the latter, and we study the longtime
behavior of solutions to such equations using coupling methods. Based on these re-
sults, the proof of our main theorem and the construction of the sticky coupling are
presented in Section 3.4.

3.2 Main results

3.2.1 Sticky couplings

We impose the following assumptions:
Assumption 30. There is a constant M 2 [0,1) such that

���b(t, x)� ˜b(t, x)
���  M for any x 2 Rd and t � 0.
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3.2 Main results

Figure 3.1: Sticky coupling of one-dimensional diffusions with different drifts

Assumption 31. There is a Lipschitz function  : [0,1) ! R such that

hx� y, b(t, x)� b(t, y)i  (|x� y|) · |x� y|2 for any x, y 2 Rd and t � 0.

Outside of a bounded interval, the function  is constant and strictly negative.

The assumptions imply in particular that the unique strong solutions (X
t

) and
(Y

t

) of (3.1) and (3.2) respectively are non-explosive. We present our main result:

Theorem 10 (Sticky coupling). Suppose that Assumptions 30 and 31 hold true.
Then for any initial values x, y 2 Rd, there is a coupling (X

t

, Y
t

) of solutions to
(3.1) and (3.2), respectively, such that X

t

� Y
t

is sticky at zero in the sense that the
difference is controlled by a solution of a one-dimensional SDE with a sticky boundary
behavior at zero. More precisely, there is a real-valued process (r

t

) solving the SDE

dr
t

= (M + (r
t

) r
t

) dt + 2 I(r
t

> 0) dW
t

, r0 = |x� y| , (3.3)

driven by a one-dimensional Brownian motion (W
t

), such that almost surely,

|X
t

� Y
t

|  r
t

for any t � 0. (3.4)

The process (r
t

) is sticky at zero in the sense that almost surely,

2M

Z
t

0

I(r
s

= 0) ds = `0
t

(r), 0  t < 1, (3.5)

where `0
t

(r) is the right local time at 0 of (r
t

), i.e.,

`0
t

(r) = lim

✏#0

1

✏

Z
t

0

I(0  r
s

< ✏) d[r]
s

= 4 lim

✏#0

1

✏

Z
t

0

I(0 < r
s

< ✏) ds.

Equation (3.3) admits an invariant probability measure ⇡. For M = 0, ⇡ = �0, and
for M > 0, ⇡ is determined by

⇡(dx) /
✓

2

M
�0(dx) + exp

✓
1

2

Z
x

0

(M + (y) y) dy

◆
�(0,1)(dx)

◆
. (3.6)
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3 Sticky couplings of diffusions

If the initial conditions coincide, i.e., if x = y, then for any t � 0,

P [X
t

= Y
t

] � ⇡[{0}] =

✓
1 +

M

2

Z 1

0

exp

✓
1

2

Z
x

0

(M + (y) y) dy

◆
dx

◆�1

.(3.7)

In general, there are constants c, ✏ 2 (0,1), depending only on M and , such that
for any t > 0 and any initial values x, y 2 Rd,

P [X
t

6= Y
t

]  1

✏

c

ec t � 1

|x� y| + ⇡[(0,1)]. (3.8)

The constants c and ✏ are given by

c =

✓
2

Z
R1

0

�(s)

�(s)
ds

◆�1

and ✏ = min

(✓
2

Z
R1

0

1

�(s)
ds

◆�1

, c�(R1)

)
,

where �(r) = exp

�
�1

2

R
r

0 (M + (s) s)+ ds
�
, �(r) =

R
r

0 �(s) ds,

R0 = inf{R � 0 : (M + (r) r)  0 for any r � R}, and (3.9)
R1 = inf{R � R0 : R(R�R0) (M/r + (r))  �4 for any r � R}.(3.10)

In Section 3.3 we also provide explicit bounds on the expected values E[|X
t

� Y
t

|],
cf. Theorem 14 further below.

The coupling (X
t

, Y
t

) in Theorem 10 is constructed as a weak limit of Markovian
couplings. The construction of the coupling and the proof of the theorem are given
in Section 3.4.

Remark 7 (Reflection coupling). The classical reflection coupling of Lindvall and
Rogers [107] occurs as a special case of the coupling in Theorem 10 when the drift
coefficients coincide, i.e., b =

˜b. In this case we can choose M = 0 so that 0 is an
absorbing boundary for the diffusion process (r

t

). The equation (3.11) reduces to

P [X
t

6= Y
t

]  1

✏

c

ec t � 1

|x� y| , (3.11)

which is a well-known bound for reflection coupling [107, 27].

In the two special cases M = 0 and x = y, the bound in (3.11) takes a very simple
and intuitive form. In general, however, the rate c depends on M . This dependence
can be avoided by considering a modified coupling.

Theorem 11. There is a coupling (

˜X
t

, ˜Y
t

) of solutions to (3.1) and (3.2) such that

P [

˜X
t

6= ˜Y
t

]  1

✏̃

c̃

ec̃t � 1

|x� y| + ⇡[(0,1)] for any t � 0, (3.12)

where c̃, ✏̃ are defined analogously to c and ✏ but with M = 0.
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3.2 Main results

Proof of Theorem 11. Consider a process (Z
t

) satisfying

dZ
t

= b(t, Z
t

) dt + dB
t

, Z0 = y.

Let ( ˜X
t

, ˜Z
t

) be a standard reflection coupling of (X
t

) and (Z
t

), i.e., a sticky coupling
in the case where the drifts coincide. Then we can glue this coupling with a sticky
coupling of (Z

t

) and (Y
t

), i.e., there are processes (

˜X
t

, ˜Z
t

, ˜Y
t

) defined on a joint
probability space such that (

˜X
t

, ˜Z
t

) is a sticky coupling of (X
t

, Z
t

), and (

˜Z
t

, ˜Y
t

) is a
sticky coupling of (Z

t

, Y
t

), see e.g. the “glueing lemma” in [149]. For t � 0, we obtain
by Theorem 10:

P [

˜X
t

6= ˜Y
t

]  P [

˜X
t

6= ˜Z
t

] + P [

˜Z
t

6= ˜Y
t

]  1

✏̃

c̃

ec̃t � 1

|x� y| + ⇡[(0,1)].

To make the bounds in the theorems more explicit, we now assume that we are
given constants R, L 2 [0,1) and K 2 (0,1) such that for any t � 0,

hx� y, b(t, x)� b(t, y)i 
(
L |x� y|2 for any x, y 2 Rd,

�K |x� y|2 for x, y 2 Rd s.t. |x� y| � R.
(3.13)

Hence Assumption 31 is satisfied with (r) = L I(r < R)�K I(r � R). In this case,
the exponential decay rate c̃ in Theorem 11 is bounded from below by

c̃�1 

8
><

>:

4 max(R2, K�1
) if L = 0,

3e max(R2, 4K�1
) if LR2  4,

8

p
⇡L�1/2

(L�1
+K�1

)R�1
exp (LR2/4) + 16K�2R�2 if LR2 > 4,

see Lemma 1 in [51] (Note that the definitions of the function  and the constant
c in [51] differ from the definitions above by a factor �2, 2, respectively). The
following lemma provides explicit upper bounds on the longtime asymptotics of the
probabilities in (3.11) and (3.12). The proof is included in Section 3.4.

Lemma 18. Suppose that Condition (3.13) is satisfied. Then ⇡[(0,1)] = ↵/(1 +↵)
where ↵ is a nonnegative constant such that for M  KR,

↵ 
�
⇡1/2e1/2K�1/2

+ 2Rmax(4, LR2
+ 2MR)

�1
�
M exp

�
MR/2 + LR2/4

�
,

and for M � KR,

↵ 
✓r

⇡

K
+

2R
max(4, 2MR+ LR2

)

◆
M exp

✓
M2

4K
+

L+K

4

R2

◆
.

The theorems imply bounds on the total variation distance between the laws of X
t

and Y
t

for any time t � 0. We now verify that in two simple examples, the bound in
(3.12) is of the correct order:
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3 Sticky couplings of diffusions

Example 9 (Ornstein-Uhlenbeck processes). Fix m 2 Rd \ {0}. We consider Orn-
stein-Uhlenbeck processes on Rd, given by

dX
t

= �X
t

/2 dt + dB
t

, X0 = x, (3.14)
dY

t

= �(Y
t

�m)/2 dt + d ˜B
t

, Y0 = y, (3.15)

where (B
t

) and (

˜B
t

) are d-dimensional Brownian motions. Let d(t) denote the total
variation distance between the laws of X

t

and Y
t

at time t. It is well-known that X
t

and Y
t

are normally distributed with

Law(X
t

) = N
�
e�t/2 x, (1� e�t

) I

d

�
,

Law(Y
t

) = N
�
e�t/2 y + (1� e�t/2

) m, (1� e�t

) I

d

�
.

The total variation distance between d-dimensional normal distributions N (a, bI
d

)

and N (ã, bI
d

) with a, ã 2 Rd and b 2 (0,1) is given by �1(|a� ã| /(2
p
b)) where

�1(r) :=

p
2/⇡

Z
r

0

exp(�x2/2) dx,

cf. e.g. [37, Exercise 15.12]. Hence for any t > 0,

d(t) = ||Law(X
t

)� Law(Y
t

)||
TV

= �1

 ��m+ e�t/2
(y �m� x)

��

2

p
1� e�t

!
. (3.16)

We now compare the upper bound (3.12) for the total variation distance that has been
derived by sticky couplings to the exact expression (3.16). Observe that Assumptions
30 and 31 are satisfied with M = |m| /2 and the constant function (r) = �1/2
respectively. By a straightforward computation we obtain

⇡[(0,1)] = 1 �
⇣
1 +

p
⇡/8 |m| em2

/8
(1 + �1(|m| /2))

⌘�1

. (3.17)

Asymptotically as t ! 1, the upper bound for P [

˜X
t

6= ˜Y
t

] in (3.12) approaches
(3.17), whereas the total variation distance d(t) converges to �1(|m| /2). Comparing
both expressions for small and large values of |m|, we see that as |m| ! 0,

⇡[(0,1)] ⇠
p

⇡/8 |m| , whereas �1(|m| /2) ⇠ |m| /
p
2⇡,

and as |m| ! 1,

1� ⇡[(0,1)] ⇠ 2p
2⇡ |m|

e�|m|2/8, whereas 1� �1(|m| /2) ⇠ 4p
2⇡ |m|

e�|m|2/2.

Hence as m # 0, the bounds for the long time limit of the total variation distance
provided by sticky couplings are of the correct order up to a multiplicative constant,
whereas for m ! 1, we loose a factor 4 in the exponential.
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Furthermore, we can compare the decay rate c̃ in (3.12) with the rate of convergence
of d(t) to its limit �1(|m| /2). Asymptotically as t " 1, (3.16) implies

|d(t)� �1(|m| /2)| ⇠ �

0
1(|m| /2)e�t/2 |y �m� x| /2

= (2⇡)�1/2e�m

2
/8e�t/2 |y �m� x| . (3.18)

On the other hand, in this case c̃ = 1/8 and ✏̃ = 1/(2
p
8), so by (3.12),

P [

˜X
t

6= ˜Y
t

]� ⇡[(0,1)]  2

�1/2
(et/8 � 1)

�1 |x� y| . (3.19)

We see that the exponential rate of decay in our bound differs from the optimal rate
only by a factor 4.
Example 10 (Confined Brownian motion). Fix R, k,m 2 (0,1), and let

b(x) = 0 for |x|  R, and b(x) = �k(x�R sgn(x))/2 otherwise.

Moreover, let ˜b(x) = b(x) + m/2. In this case, Condition (3.13) is satisfied with
L = 0, K = k/6 and R = 3R, and Assumption 30 holds with M = m/2. Assuming
m  kR and mR  4/3, Theorem 11 and the first bound in Lemma 18 show that
there is a coupling (

˜X
t

, ˜Y
t

) of the corresponding solutions to (3.1) and (3.2) with
arbitrary initial values x and y such that

lim sup

t!1
P [

˜X
t

6= ˜Y
t

] 
✓
3e

4

R +

�
3⇡e3/2

�1/2
k�1/2

◆
m. (3.20)

On the other hand, the unique invariant probability measures for (3.1) and (3.2)
are given explicitly by ⌫(dx) = Z�1

f

f(x) dx, µ(dx) = Z�1
g

g(x) dx, respectively, where
f(x) = exp(�kmax(|x| � R, 0)2/2), g(x) = exp(mx)f(x), Z

f

=

R1
�1 f(x) dx and

Z
g

=

R1
�1 g(x) dx. Noting that Z

g

� Z
f

, an explicit computation yields the lower
bounds

kµ� ⌫k
TV

� (exp(�mR)� 1 +mR)/(mR),

and, for Rk1/2  1,

kµ� ⌫k
TV

�
�
1� exp(�mR +m2/(2k)) + 2

1/2
(⇡k)�1/2m exp(�mR)

�
/4,

see page 134 further below. In particular,

lim inf

m#0
kµ� ⌫k

TV

/m � 1

4

�
R + (2/⇡)1/2k�1/2

�
.

Hence for small m, the bound in (3.20) is sharp up to a constant factor.
Remark 8 (Comparison with Girsanov couplings). An alternative approach to con-
struct couplings of solutions to (3.1) and (3.2) is by Girsanov’s Theorem. If the initial
conditions X0 and Y0 coincide and T 2 [0,1) is a fixed constant, then Girsanov’s
Theorem can be applied to construct a coupling (X

s

, Y
s

) such that with positive prob-
ability, X

s

= Y
s

for all s 2 [0, T ]. Moreover, explicit bounds on this probability can be
derived via Hellinger integrals [92, 104, 105]. Notice, however, that the corresponding
bounds typically degenerate rapidly as T ! 1. Hence Girsanov’s Theorem provides a
very strong coupling over short time intervals, whereas the sticky couplings introduced
above are stable for long times in the sense that lim inf

t!1 P [X
t

= Y
t

] � ⇡[{0}] > 0.
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3 Sticky couplings of diffusions

3.2.2 McKean-Vlasov processes

We consider nonlinear diffusions on Rd of type

dX
t

= ⌘(X
t

) dt + ⌧

Z
#(X

t

, y) µx

t

(dy) dt + dB
t

, X0 = x, (3.21)

µx

t

= Law(X
t

),

where (B
t

) is a d-dimensional Brownian motion and ⌧ 2 R. The SDE is nonlinear
in the sense of McKean, i.e., the future development after time t depends on the
current state X

t

and on the law of X
t

, cf. e.g. [144, 117]. Let ⌘ : Rd ! Rd and
# : Rd ⇥ Rd ! Rd be Lipschitz continuous functions. Then the equation above
admits a unique strong solution, cf. [117, Theorem 2.2]. Let us fix initial values
x0, y0 2 Rd, x0 6= y0, and consider solutions (X

t

) and (Y
t

) of (3.21) with X0 = x0

and Y0 = y0 respectively. We define drift coefficients

bx0
(t, x) = ⌘(x) + ⌧

Z
#(x, y) µx0

t

(dy), (3.22)

by0(t, x) = ⌘(x) + ⌧

Z
#(x, y) µy0

t

(dy), (3.23)

which are uniformly Lipschitz in x and continuous in t. Notice that due to pathwise
uniqueness, (X

t

) and (Y
t

) are the unique strong solutions to the equations

dX
t

= bx0
(t,X

t

) dt + dB
t

, X0 = x0, (3.24)
dY

t

= by0(t, Y
t

) dt + dB
t

, Y0 = y0, (3.25)

and hence we can interpret the processes as two diffusions with different drifts.

Assumption 32. There is a Lipschitz function  : [0,1) ! R such that

hx� y, ⌘(x)� ⌘(y)i  (|x� y|) · |x� y|2 for any x, y 2 Rd and t � 0.

Outside of a bounded interval, the function  is constant and strictly negative.

Assuming that Assumption 32 holds, we have shown in [48] that there are constants
A,�, ⌧0 2 (0,1) such that for |⌧ |  ⌧0,

W1
(µx

t

, µy

t

)  A e�� t |x� y| for any t � 0 and x, y 2 Rd, (3.26)

where W1 denotes the standard L1 Wasserstein distance. The proof is based on
an application of reflection coupling if |X

t

� Y
t

| � � and synchronous coupling if
|X

t

� Y
t

|  �/2, where � is a small positive constant. In the intermediate region,
a combination of both couplings is applied. The bound in (3.26) is obtained when
considering the limit of the resulting bounds as � # 0. The couplings considered in
[48] now turn out to be approximations of a sticky coupling. By applying directly
the sticky coupling and using Corollary 13 further below, we can extend the result
in [48] and derive a corresponding exponential decay in total variation norm:
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Theorem 12. Let ⌘ and # be Lipschitz and let Assumption 32 be true. There is ⌧0 2
(0,1) such that for any |⌧ |  ⌧0 and any x, y 2 Rd there are constants B, c 2 (0,1)

such that,

kµx

t

� µy

t

k
TV

 B e�c t for any t � 0. (3.27)

The proof is given in Section 3.4.

3.2.3 Outlook1

The concept of sticky couplings sheds new light onto several results that have been
previously derived using combinations of reflection and synchronous couplings. A
first example of this type has been given in Theorem 12. Without carrying out
details, we mention three further results that probably can be reinterpreted in terms
of sticky couplings:

a) Componentwise reflection couplings for interacting diffusions. In [51], Wasser-
stein bounds for interacting diffusions with small interaction term (for example of
mean-field-type) have been derived by coupling each component independently with
a reflection coupling if the distance is greater than a given constant � > 0, and
with a synchronous coupling otherwise. Instead, one could now directly consider a
componentwise sticky coupling. As time evolves, more and more components in this
coupling would get stuck at nearby positions until, after some finite coupling time, all
components coincide. We expect that such a coupling could be used to derive total
variation bounds similar to those in Theorem 12 for interacting particle systems.

b)Couplings for infinite-dimensional diffusions. In [159], Wasserstein contraction
rates have been derived for a class of diffusions on a Hilbert space with possibly
degenerate noise. Here a reflection coupling has been applied to the projection of the
process on a finite dimensional subspace, whereas the remaining (orthogonal) com-
ponents have been coupled synchronously. Again, because of the interaction between
the components, the reflection coupling is switched off when the finite dimensional
projections of the two copies are close to each other. Similarly as above, it should
be possible to replace the coupling for the finite dimensional projection by a sticky
coupling. The resulting infinite dimensional coupling process would then spend a
certain amount of time at states where the finite dimensional projections of the two
copies coincide. Under the assumptions made in [159], the orthogonal infinite di-
mensional components would approach each other for large t, and, consequently, the
finite dimensional projections would coincide for an increasing proportion of time.

c) Couplings for Langevin processes. In a forthcoming paper, we consider couplings
for (kinetic) Langevin diffusions (X

t

, V
t

)

t�0 with state space R2d that are given by
stochastic differential equations of type

dX
t

= V
t

dt, (3.28)
dV

t

= ��V
t

dt � urU(X
t

) dt +
p

2�u dB
t

.

1
This outlook is due to A. Eberle and is not a contribution of this thesis.
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3 Sticky couplings of diffusions

Here (B
t

)

t�0 is a d dimensional Brownian motion, u and � are positive constants,
and U is a C1 function on Rd. We apply a reflection coupling that is replaced by
a synchronous coupling when the values of X

t

+ ��1V
t

are close to each other for
both components. Again, at least informally, this coupling could be replaced by a
coupling ((X

t

, V
t

), (X 0
t

, V 0
t

)) that is sticky when X
t

+ ��1V
t

= X 0
t

+ ��1V 0
t

. Under
the assumptions that we impose on U , the coupling would be contractive on the
corresponding 3d dimensional linear subspace of R4d, and as time evolves, it would
spend a positive amount of time on this subspace.

We hope that the potential applications listed above show how sticky couplings
provide a valuable concept for building intuition about ways to couple diffusion pro-
cesses in an efficient way. Carrying out carefully the ideas described above would go
far beyond the scope of this paper.

3.3 Diffusions on R
+

with a sticky reflecting
boundary

In this section we prove some basic results on diffusions on R+ with a sticky boundary
at 0. In particular, we prove the existence of a synchronous coupling of two sticky
diffusions and a corresponding comparison theorem, which is then applied to study
the long time behavior of the processes. At first, we need to adapt some known
facts on existence and uniqueness of weak solutions to our setup. We consider the
stochastic differential equation

dr
t

= ↵(t, r
t

) dt + 2 I(r
t

> 0) dW
t

, Law(r0) = µ, (3.29)

on the positive real line R+ = [0,1), where (W
t

) is a one-dimensional Brownian
motion and µ is a probability measure on R+. Below, we will impose conditions on
the drift coefficient ↵ : R+ ⇥R+ ! R which imply existence and uniqueness of weak
solutions. In particular, we will assume that ↵(t, 0) > 0 for any t � 0. Let us briefly
discuss the consequences of this assumption: Suppose that (r

t

) is a solution of (3.29).
An application of the Itô-Tanaka formula to f(r

t

) with the function f(x) = max(0, x)
and a comparison with (3.29) shows that almost surely,

Z
t

0

↵(s, 0) I(r
s

= 0) ds =

1

2

`0
t

(r), 0  t < 1, (3.30)

where `0
t

(r) = lim

✏#0 ✏�1
R

t

0 I(0  r
s

 ✏) d [r]
s

is the right local time of (r
t

). Equation
(3.30) shows that there is reflection at zero. Moreover, for almost all trajectories, the
Lebesgue measure of the set {0  s  t : r

s

= 0} increases whenever `0
t

(r) increases.
In this sense (r

t

) is sticky at zero.
Stochastic differential equations with boundary conditions have a long history. The

discovery of a sticky boundary behavior for one-dimensional diffusions seems to go
back to Feller [56, 57]. A historical overview is given in [127]. We give references to the
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3.3 Diffusions on R+ with a sticky reflecting boundary

most relevant works for our application and some recent developments. Existence and
uniqueness results for multidimensional diffusion processes with various boundary
behaviors have been established by Ikeda and Watanabe in [85, 155, 156]. These are
based on results by Skorokhod and McKean [139, 140, 116]. Martingale problems
with boundary conditions have been investigated by Stroock and Varadhan [141], see
also the related work [62]. Non-existence of a strong solution to the SDE for sticky
Brownian motion has been established in [30]. In [154], Warren identifies the law of
a sticky Brownian motion conditioned on the driving Wiener process, see also the
related work [76]. A recent publication on existence and uniqueness, which is also a
good introduction into the topic, is the work by Engelbert and Peskir [54] and the
related work [7]. First steps towards sticky couplings in a one-dimensional setting
have been made by Howitt in [84] based on time-changes. The recent articles [63, 64]
use Dirichlet forms to investigate sticky diffusions and provide some ergodicity results.
Rácz and Shkolnikov [131] construct a multidimensional sticky Brownian motion as
a limit of exclusion processes, see also [1] and [78].

3.3.1 Existence, uniqueness and comparison of solutions

We use the concept of weak solutions. Let (⌦,A, (F
t

), P ) be a filtered probability
space satisfying the usual conditions. An (F

t

) adapted process (r
t

,W
t

) on (⌦,A, P )

is called a weak solution of (3.29) if P � r�1
0 = µ, (W

t

) is a one-dimensional (F
t

)-
Brownian motion w.r.t. P , and (r

t

) is continuous, nonnegative, and P -almost surely,

r
t

� r0 =

Z
t

0

↵(s, r
s

) ds +

Z
t

0

2 I(r
s

> 0) dW
s

, 0  t < 1.

We will make the following assumptions on the drift coefficient:

Assumption 33. For any R > 0, inf
t2[0,R] ↵(t, 0) > 0.

Assumption 34. For any R > 0 there is L
R

2 (0,1) such that

|↵(t, x)� ↵(s, y)|  L
R

( |t� s| + |x� y| ) for any x, y, s, t 2 [0, R].

Assumption 35. There is C 2 (0,1) such that for any x 2 R+,

sup

t2[0,1) ↵(t, x)  C ( 1 + |x| )

The assumptions above imply existence and uniqueness in law of weak solutions
to (3.29). This has been proven by Watanabe in [155, 156] assuming that the maps
(t, x) 7! ↵(t, x) and t 7! 1/↵(t, 0) are bounded and Lipschitz. Using localization
techniques for martingale problems, following the work of Stroock and Varadhan
[142], Watanabe’s results can be transferred to our slightly more general setup:
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3 Sticky couplings of diffusions

Uniqueness in law

Let W = C(R+,R) be the space of continuous functions endowed with the topology
of uniform convergence on compacts, and let B(W) denote the Borel �-Algebra. Let
F

t

= �(r
s

: 0  s  t) be the natural filtration generated by the canonical process
r
t

(!) = !(t). Given a solution (r
t

) of (3.29), defined on a probability space (⌦,A, P ),
we write P = P � r�1 for the law of r on (W,B(W)). We say that solutions to (3.29)
are unique in law, if any two solutions (r1

t

) and (r2
t

) with coinciding initial law have
the same law on the space (W,B(W)).

In order to apply existing localization techniques for martingale problems, we in-
terpret equation (3.29) as an equation on R, instead of R+, setting ↵(t, x) = ↵(t, 0)
for x < 0. This does not cause any problems since, under the assumptions imposed
above, any solution (r

t

) with initial law supported on R+ satisfies almost surely r
t

� 0

for all t � 0, see e.g. the argument in [54, Proof of Theorem 5].
We follow [142, 94] and define a family of second order differential operators

(L
t

f)(x) = ↵(t, x) f 0
(x) + (1/2) I(x > 0) f 00

(x).

A probability measure P on (W,B(W)) is called a solution to the martingale problem
w.r.t. (L

t

) iff for any f 2 C2
0(R),

M f

t

= f(r
t

)� f(r0)�
Z

t

0

(L
u

f)(r
u

) du

is a continuous (F
t

)-martingale under P. The solution to the martingale problem is
called unique, if any two solutions P1 and P2 coincide whenever P1 � r�1

0 = P2 � r�1
0 .

The next two results are well-known:

Lemma 19. [142, 94] The following statements are equivalent:

(i) There is a weak solution of (3.29) with initial distribution µ.

(ii) There is a solution P to the martingale problem w.r.t. (L
t

) s.t. P � r�1
0 = µ.

Moreover, the uniqueness of solutions to the martingale problem w.r.t. (L
t

) and the
uniqueness in law of weak solutions to (3.29) are equivalent.

Lemma 20. [155, 156] Assume that the maps (t, x) 7! ↵(t, x) and t 7! 1/↵(t, 0) are
bounded and Lipschitz. Then for any initial law µ on R+, there is a weak solution to
(3.29) which is unique in law.

A detailed proof of Lemma 19 can be found in [94, Chapter 5, Section 4.B]. A
proof of Lemma 20 is given in [87, Chapter IV, Section 7].

Lemma 21. If Assumptions 33 and 34 are satisfied then the solution to the martin-
gale problem w.r.t. (L

t

) is unique for a given initial law, and thus uniqueness in law
holds for solutions to (3.29).
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Proof. We set ↵
n

(s, x) = ↵(s ^ n, x ^ n) for n 2 N. By the assumptions, the maps
(t, x) 7! ↵

n

(t, x) and t 7! 1/↵
n

(t, 0) are bounded and Lipschitz continuous. Hence
uniqueness holds for the corresponding martingale problem for any initial law µ on
R+ according to Lemma 20 and 19. The uniqueness for the martingale problem
w.r.t. (L

t

) for such initial laws can now be shown by a localization argument, cf.
[142, Theorem 10.1.2].

Approximation, existence and coupling of solutions

We now consider two equations of the form (3.29) with drift coefficients � and � that
both satisfy Assumptions 33, 34 and 35. We construct a synchronous coupling of
solutions to these equations as a weak limit of solutions to approximating equations
with locally Lipschitz continuous coefficients. We introduce the family of stochastic
differential equations, indexed by n 2 N, given by

dr̃n
t

= �(t, r̃n
t

) dt + 2 #n

(r̃n
t

) d ˜W
t

, Law(r̃n0 , s̃
n

0 ) = µ̃n ⌦ ⌫̃n, (3.31)
ds̃n

t

= �(t, s̃n
t

) dt + 2 #n

(s̃n
t

) d ˜W
t

,

Here (

˜W
t

) is a Brownian motion, and we assume that:

Assumption 36. (µ̃n

) and (⌫̃n

) are sequences of probability measures on R+ con-
verging weakly towards probability measures µ̃ and ⌫̃, respectively.

Assumption 37. For each n 2 N, the function #n

: R+ ! [0, 1] is Lipschitz contin-
uous with #n

(0) = 0, #n

(x) > 0 for x > 0, and #n

(x) = 1 for x � 1/n.

Remark 9. In [54], a sticky Brownian motion (r
t

) satisfying

dr
t

= I(r
t

6= 0) d ˜W
t

, I(r
t

= 0)µ dt = d`0
t

(r), µ 2 (0,1),

is approximated by solutions of equations

drn
t

=

⇣p
2µ/n I(|rn

t

|  1/n) + I(|rn
t

| > 1/n)
⌘
d ˜W

t

,

The approximation is tailored in such a way that it is compliant with the time-changes
frequently used to show existence and uniqueness of weak solutions to sticky SDEs,
see e.g. [54, 156]. Our approximation result follows a similar spirit but it does not
rely on time changes.

Lemma 22. Suppose that � and � satisfy Assumptions 33, 34 and 35. Moreover,
let Assumptions 36 and 37 be true. Then for each n 2 N, there is a strong solution
(r̃n

t

, s̃n
t

) of Equation (3.31) with values in R2
+. Moreover, uniqueness in law holds.

Proof. Fix n 2 N. For x < 0 we set #n

(x) = 0, �(t, x) = �(t, 0), and �(t, x) = �(t, 0).
Equation (3.31) is then a standard SDE on R2 with locally Lipschitz coefficients.
Hence there is a strong and pathwise unique solution. Moreover, Assumption 35
implies that the solution is non-explosive. Similarly to [54, Proof of Theorem 5], we
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can apply the Itô-Tanaka formula to the negative part of r̃n
t

in order to show that
the process is nonnegative. Indeed,

(r̃n
t

)

� � (r̃n0 )
�

= �
Z

t

0

I(r̃n
s

 0) dr̃n
s

+

1

2

`0
t

(r̃n),

where `0
t

(r̃n) is the right local time of (r̃n
t

), i.e.,

`0
t

(r̃n) = lim

✏#0
✏�1

Z
t

0

I(0  r̃n
s

 ✏) d [r̃n]
s

= 4 lim

✏#0
✏�1

Z
t

0

I(0  r̃n
s

 ✏)#n

(r̃n
s

)

2 ds.

Since #n is Lipschitz with #n

(0) = 0, the local time vanishes. Therefore, and since
�(s, 0) > 0 for any s � 0, we have 0  (r̃n

t

)

�  (r̃n0 )
�
= 0. A similar argument can

be used for (s̃n
t

).

For each n 2 N, there are a probability space (⌦

n,An, P n

) and random variables
r̃n, s̃n : ⌦

n ! W such that (r̃n
t

, s̃n
t

) is a solution of (3.31). Let Pn

= P n � (r̃n, s̃n)�1

denote the law on W ⇥ W. For w = (w1, w2) 2 W ⇥ W, we define the coordinate
mappings r(w) = w1 and s(w) = w2.

Theorem 13. Suppose that � and � satisfy Assumptions 33, 34 and 35, and let µ̃
and ⌫̃ be probability measures on R+. Suppose that the sequences (#n

), (µ̃n

) and (⌫̃n

)

satisfy Assumptions 36 and 37. Then there is a random variable (r̃, s̃) with values
in W ⇥ W, defined on some probability space (⌦,A, P ), such that (r̃

t

, s̃
t

) is a weak
solution of

dr̃
t

= �(t, r̃
t

) dt + 2 I(r̃
t

> 0) d ˜W
t

, Law(r̃0, s̃0) = µ̃⌦ ⌫̃, (3.32)
ds̃

t

= �(t, s̃
t

) dt + 2 I(s̃
t

> 0) d ˜W
t

,

for some Brownian motion (

˜W
t

). Moreover, there is a subsequence (n
k

) such that
P n

k � (r̃nk , s̃nk

)

�1 converges weakly towards P � (r̃, s̃)�1. If additionally,

�(t, x)  �(t, x) for any x, t 2 R+, and (3.33)
P n

[ r̃n0  s̃n0 ] = 1 for any n 2 N, (3.34)

then P [ r̃
t

 s̃
t

for all t � 0 ] = 1.

Proof. We fix sequences of diffusion coefficients (#n

) and initial conditions (µ̃n

) and
(⌫̃n

) satisfying Assumptions 36 and 37.
Tightness: We claim that the sequence (Pn

)

n2N of probability measures on (W ⇥
W,B(W) ⌦ B(W)) is tight. This can be shown by similar arguments as in [80, 81],
so we only explain briefly how to adapt these arguments to our setting. At first, we
observe that a uniform Lyapunov condition holds for the Markov processes (r̃n

t

, s̃n
t

)

defined by (3.31). Indeed, these processes solve a local martingale problem w.r.t. the
generators

Ln

t

= �(t, ·) @
r

+ �(t, ·) @
s

+ 2(#n

)

2
(@2

r

+ @2
s

) (3.35)
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defined on smooth functions on R2. Let V (x) := 1 + |x|2 for x 2 R2. Recall that
the drift coefficients in (3.35) do not depend on n and that they satisfy the linear
growth Assumption 35. Moreover, the diffusion coefficients are uniformly bounded
by one. It follows that there is a constant � 2 (0,1), not depending on n, such
that Ln

t

V  �V for any n 2 N. From this one can conclude that for each finite
time interval [0, T ] and every ✏ > 0, there is a compact set K ✓ R2 such that for
any n 2 N, P [(r̃n

t

, s̃n
t

) 2 K for t  T ] � 1 � ✏. Moreover, the drift and diffusion
coefficients are uniformly bounded on the set K. Combining these arguments, we
can conclude tightness of the laws on W ⇥ W. We refer to [80, 81] for a detailled
proof in a similar setting. By Prokhorov’s Theorem, we can conclude that there is
a subsequence n

k

! 1 and a probability measure P on W ⇥W such that Pn

k ! P
weakly. To simplify notation we will write in the following n instead of n

k

, keeping
in mind that we have convergence only along a subsequence.

Identification of the limit: We now characterize the measure P. In principle, we
follow well-known strategies for identifying limits of semimartingales, cf. [142, 88, 55].
However, we can not apply those results directly, because the diffusion coefficients in
(3.32) are discontinuous.

We know that P � (r0, s0)�1
= µ ⌦ ⌫, since Pn � (r0, s0)�1

= µn ⌦ ⌫n converges
weakly to µ⌦ ⌫ by assumption. We define maps M ,N : W⇥W ! W by

M
t

= r
t

� r0 �
Z

t

0

�(u, r
u

) du and N
t

= s
t

� s0 �
Z

t

0

�(u, s
u

) du.

We claim that (M
t

,F
t

,P) and (N
t

,F
t

,P) are martingales w.r.t. the canonical fil-
tration F

t

= �((r
u

, s
u

)0ut

). Indeed, the mappings M and N are continuous on
W, so by the continuous mapping theorem, Pn � (r, s,M ,N )

�1 converges weakly
to P � (r, s,M ,N )

�1. Notice that for each n 2 N, (M
t

,F
t

,Pn

) is a martingale.
Moreover, for any fixed t � 0, the family (M

t

,Pn

)

n2N is uniformly integrable. Hence
(M

t

,F
t

,P) is a continuous martingale, cf. [88, Chapter IX, Proposition 1.12]. In
particular, the quadratic variation ([M ]

t

) exists P-almost surely. Notice that, by
(3.31), [M ]

t

 4t Pn-almost surely for every n. Thus for any t � 0,

E

sup

0st

|M
s

|2
�
 lim inf

R!1
E

sup

0st

|M
s

|2 ^R

�
= lim inf

R!1
lim

n!1
En


sup

0st

|M
s

|2 ^R

�

 lim inf

n!1
En


sup

0st

|M
s

|2
�

 4 lim inf

n!1
En

[ [M ]

t

]  16 t,

Hence, under P, (M
t

) is a square integrable martingale, and thus (M 2
t

� [M ]

t

) is a
martingale, cf. [97, Theorem 21.70]. Similar statements hold for (N

t

).
As a next step, we compute the quadratic variations and covariations of (M

t

) and
(N

t

) under P. Here we follow arguments from [131]. Similarly as above, the family
(M 2

t

,Pn

) is uniformly integrable for any fixed t � 0, i.e.,

lim

�!1
sup

n2N
En

[ |M
t

|2 ; |M
t

|2 > � ] = 0. (3.36)
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3 Sticky couplings of diffusions

Indeed, by Burkholder’s inequality, there is a constant C 2 (0,1) such that

En

⇥
M 4

t

⇤
 C En

⇥
[M ]

2
t

⇤
 16 C t2 for any n 2 N.

Let G : W ! R+ be bounded, continuous and nonnegative. Equation (3.36) implies

lim

�!1
sup

n2N
En

⇥
|GM 2

t

�G(M 2
t

^ �)|
⇤

 |G|1 lim inf

�!1
sup

n2N
En

⇥
M 2

t

;M 2
t

> �
⇤

= 0.

Hence for any such G and any t � 0,

E
⇥
GM 2

t

⇤
= lim

�!1
E
⇥
G (M 2

t

^ �)
⇤
= lim

�!1
lim

n!1
En

⇥
G (M 2

t

^ �)
⇤

(3.37)

= lim

n!1
lim

�!1
En

⇥
G (M 2

t

^ �)
⇤
= lim

n!1
En

⇥
GM 2

t

⇤
.

We now show that (M 2
t

� 4

R
t

0 I(ru

> 0) du,P) is a submartingale. Fix 0  s < t.
Then for any continuous, bounded and F

s

-measurable function G : W ! R+,

lim

n!1
En


G

Z
t

s

4#n

(r
u

)

2 du

�
= lim

n!1
En

⇥
G
�
M 2

t

�M 2
s

�⇤
= E

⇥
G
�
M 2

t

�M 2
s

�⇤
.

(3.38)

On the other hand, the map w 7!
R ·
0 I(w

s

> ✏) ds from W to W is lower semicontin-
uous for any ✏ � 0. Fatou’s lemma and the Portemanteau theorem imply

E

G

Z
t

s

I(r
u

> 0) du

�
 lim inf

✏#0
E

G

Z
t

s

I(r
u

> ✏) du

�
(3.39)

 lim inf

✏#0
lim inf

n!1
En


G

Z
t

s

I(r
u

> ✏) du

�
.

Notice that for any fixed ✏ > 0,

lim inf

n!1
En


G

✓Z
t

s

#n

(r
u

)

2 du�
Z

t

s

I(r
u

> ✏) du

◆�
� 0. (3.40)

By (3.38), (3.39) and (3.40), we have

E

G

✓
M 2

t

�M 2
s

� 4

Z
t

s

I(r
u

> 0) du

◆�
� 0.

Invoking a monotone class argument, cf. [130, Theorem 8], we see that (M 2
t

�
4

R
t

0 I(rs

> 0) ds,F
t

,P) is indeed a submartingale. We show that it is also a su-
permartingale and hence a martingale. By (3.37), for any function G as above,

E
⇥
G
�
M 2

t

�M 2
s

� 4 (t� s)
�⇤

= lim

n!1
En

⇥
G
�
M 2

t

�M 2
s

� 4 (t� s)
�⇤

 0

Hence, M 2
t

� 4 t is a supermartingale under P. The uniqueness of the Doob-Meyer
decomposition [130, Theorem 16] implies that the map t 7! [M ]

t

� 4 t is P-almost
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3.3 Diffusions on R+ with a sticky reflecting boundary

surely decreasing. Observe that (r
t

,F
t

,P) is a continuous semimartingale with [r] =
[M ]. Hence the Itô-Tanaka formula implies that P-almost surely,

Z
t

0

I(r
u

= 0)d [M ]

u

=

Z
t

0

I(r
u

= 0)d [r]
u

=

Z 1

�1
I(y = 0)`y

t

(r)dy = 0.(3.41)

We conclude that for any 0  s < t,

[M ]

t

� [M ]

s

=

Z
t

s

I(r
u

> 0) d[M ]

u

 4

Z
t

s

I(r
u

> 0) du,

and hence for any F
s

-measurable function G 2 C
b

(W),

E

G

✓
M 2

t

�M 2
s

� 4

Z
t

s

I(r
u

> 0) du

◆�
 0.

As above we conclude by a monotone class argument that (M 2
t

� 4

R
t

0 I(ru

> 0) du)
is a supermartingale, and hence a martingale, i.e.,

[M ] = 4

Z ·

0

I(r
u

> 0) du P-almost surely. (3.42)

Similarly, we can show that

[N ] = 4

Z ·

0

I(s
u

> 0) du P-almost surely. (3.43)

Moreover, we claim that

[M ,N ] = 4

Z ·

0

I(r
u

> 0, s
u

> 0) du P-almost surely. (3.44)

The proof does not involve new arguments, so we just sketch the main steps: With
the same arguments as before, one can conclude that

t 7! M
t

N
t

� 4

Z
t

0

I(r
u

> 0, s
u

> 0) du

is a submartingale and that the map t 7! M
t

N
t

� 4t is P-almost surely decreasing.
Moreover, by (3.42), (3.43), and the Kunita-Watanabe inequality, we see that P-a.s.,

Z
t

s

I(r
u

= 0 or s
u

= 0) d [M ,N ]

u

= 0 for 0  s  t, and thus

[M ,N ]

t

� [M ,N ]

s

=

Z
t

s

I(r
u

> 0, s
u

> 0) d [M ,N ]

u

 4

Z
t

s

I(r
u

> 0, s
u

> 0) du for 0  s  t.

123



3 Sticky couplings of diffusions

This completes the proof of (3.44). Invoking a martingale representation theorem,
see e.g. [87, Ch. II, Theorem 7.1’], we conclude that there is a probability space
(⌦,A, P ) supporting a Brownian motion ˜W , and random variables (r̃, s̃) such that
P � (r̃, s̃)�1

= P � (r, s)�1, and such that (r̃
t

, s̃
t

, ˜W
t

) is a weak solution of (3.32).
It remains to show that (3.33) and (3.34) imply P [r̃

t

 s̃
t

for all t � 0] = 1.
Applying a comparison theorem [86, Theorem 1] to the approximating diffusions
(3.31) shows that Pn

[r
t

 s
t

for all t � 0] = 1 for all n. The monotonicity carries
over to the limit, since Pn � (r, s)�1 converges weakly, along a subsequence, towards
P � (r, s)�1.

3.3.2 Long time behavior

We now derive bounds for solutions to (3.29) that are stable for long times. We
assume that t 7! ↵(t, x) is non-increasing, so that the stickiness of solutions to (3.29)
is non-decreasing in time.

Assumption 38. The function ↵ : [0,1)⇥[0,1) ! R is locally Lipschitz continuous
with ↵(t, x)  ↵(s, x) for any s  t and x 2 R+, ↵(t, 0) > 0 for any t � 0, and

lim sup

r!1
(r�1↵(0, r)) < 0. (3.45)

Notice that Assumption 38 implies Assumptions 33, 34 and 35 from above.

Invariant measure in the time-homogenous case

We first consider drift coefficients which do not depend on time, i.e., functions of the
form ↵(t, x) = ↵(x).

Lemma 23. Suppose that Assumption 38 holds true, and ↵(t, ·) = ↵ for a function
↵ : [0,1) ! R. Let ⇡ be the probability measure on [0,1) defined by

⇡(dx) =

1

Z

✓
2

↵(0)
�0(dx) + exp

✓
1

2

Z
x

0

↵(y) dy

◆
�(0,1)(dx)

◆
(3.46)

where Z =

2
↵(0) +

R1
0 exp

�
1
2

R
x

0 ↵(y) dy
�
dx. Then ⇡ is invariant for (3.29), i.e., if

(r
t

) is a solution with initial law ⇡, then Law(r
t

) = ⇡ for any t � 0.

Proof. We use an approximation as in (3.31) with �(t, x) = ↵(x) and a sequence of
smooth functions #n

: [0,1) ! [0, 1] satisfying Assumption 37. It is well-known
that under our assumptions, for each n 2 N, the probability measure µ̃n on R+ with
distribution function

˜F n

(x) =

R
x

0
1

#

n(y)2 exp

⇣R
y

1/n
↵(z)

2#n(z)2dz
⌘
dy

R1
0

1
#

n(y)2 exp

⇣R
y

1/n
↵(z)

2#n(z)2dz
⌘
dy

x 2 [0,1),
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3.3 Diffusions on R+ with a sticky reflecting boundary

is an invariant measure for the process (r̃n
t

) defined by (3.31), see e.g. [111, Chapter
4.4, Theorem 7]. Note in particular that by Assumptions 38 and 37, the occurring
integrals are well defined and finite. Let F denote the distribution function of ⇡. We
show that for any x > 0, ˜F n

(x) ! F (x) as n ! 1, which implies that µ̃
n

! ⇡
weakly. Indeed, fix x 2 (0,1]. Then for n > 1/x,

Z
x

0

1

#n

(y)2
exp

✓Z
y

1/n

↵(z)

2#n

(z)2
dz

◆
dy (3.47)

=

Z
x

1/n

exp

✓Z
y

1/n

1

2

↵(z)dz

◆
dy +

Z 1/n

0

1

#n

(y)2
exp

✓Z
y

1/n

↵(z)

2#n

(z)2
dz

◆
dy.

If C 2 (0,1) is a constant then
Z 1/n

0

1

#n

(y)2
exp

✓Z
y

1/n

C

#n

(z)2
dz

◆
dy = lim

✏#0

Z 1/n

✏

1

#n

(y)2
exp

✓Z
y

1/n

C

#n

(z)2
dz

◆
dy

= lim

✏#0

1

C

 
1� exp

 
�
Z 1/n

✏

C

#n

(z)2
dz

!!
=

1

C
. (3.48)

For 0 < y < 1/n, we have the bounds

exp

✓
max

u2[0,1/n]
↵(u)

Z
y

1/n

1

2#n

(z)2
dz

◆
 exp

✓Z
y

1/n

↵(z)

2#n

(z)2
dz

◆

 exp

✓
min

u2[0,1/n]
↵(u)

Z
y

1/n

1

2#n

(z)2
dz

◆
.

Using (3.47), the continuity of ↵, and (3.48), we can conclude that as n ! 1,
Z

x

0

1

#n

(y)2
exp

✓Z
y

1/n

↵(z)

2#n

(z)2
dz

◆
dy !

Z
x

0

exp

✓Z
y

0

1

2

↵(z)dz

◆
dy +

2

↵(0)
.

Since this also holds for x = 1, we see that ˜F n

(x) ! F (x) for any x > 0, and
hence µ̃

n

! ⇡ weakly. Consequently, by Lemma 21 and Theorem 13, the laws of
the solutions of (3.31) with initial distributions µ̃n converge weakly to the law of the
solution of (3.29) with initial distribution ⇡. Since the approximating processes are
stationary, the limit process is stationary, too. Hence ⇡ is an invariant measure.

Long time stability in the time-inhomogeneous case

Let (r
t

) be a solution of (3.29) with an arbitrary but fixed initial distribution µ on
R+. Our aim is to provide bounds on P [r

t

> 0] and E[r
t

] for any fixed t � 0. To
this end we fix a continuous function a : [0,1) ! R such that

↵(0, x)  a(x) for any x 2 [0,1), and lim sup

r!1
(r�1a(r)) < 0. (3.49)
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3 Sticky couplings of diffusions

For example, by Assumption 38, we can always choose a(x) = ↵(0, x). However,
sometimes it can be more convenient to choose the function a in a different way.
Following [50, 51] (see also [27, 28, 29, 33]), we define constants R0, R1 2 (0,1) and
a concave function f : R+ ! R+ by

R0 = inf{R � 0 : a(r)  0 for any r � R}, (3.50)
R1 = inf{R � R0 : R(R�R0) a(r)/r  �4 for any r � R}, (3.51)

f(r) =

Z
r

0

�(s) g(s) ds, where �(r) = exp

✓
�1

2

Z
r

0

a(s)+ds

◆
and (3.52)

g(r) = 1� 1

4

Z
r^R1

0

�(s)

�(s)
ds

�Z
R1

0

�(s)

�(s)
ds � 1

4

Z
r^R1

0

1

�(s)
ds

�Z
R1

0

1

�(s)
ds

with �(r) =
R

r

0 �(s) ds. The function f is concave, strictly increasing and continuous.
Observe that (3.49) implies that 0 < R0 < R1 < 1. We define constants

c =

✓
2

Z
R1

0

�(s)

�(s)
ds

◆�1

, ✏ = min

(✓
2

Z
R1

0

1

�(s)
ds

◆�1

, c�(R1)

)
. (3.53)

Notice that 1/2  g  1, and thus �(r)/2  f(r)  �(r). Hence for 0 < r < R1,

2 f 00
(r) + f 0

(r) a(r)+  �✏ � c �(r)  � (✏ + c f(r)) . (3.54)

Lemma 24. Suppose that Assumption 38 holds true. Let (r
t

) be a solution of (3.29),
and let T0 = inf{t � 0 : r

t

= 0}. Then for any t > 0,

E[f(r
t

) ; t < T0]  e�c t E[f(r0)], and (3.55)

P [t < T0]  1

✏

c

ec t � 1

E[f(r0)]. (3.56)

Proof. Notice that the function f can be extended to a concave function on R by
setting f(x) = x for x < 0. Since the process (r

t

) is a continuous semimartingale, we
can apply the Itô-Tanaka formula to conclude that almost surely,

df(r
t

) = f 0
(r

t

)↵(t, r
t

) dt+ 2 f 00
(r

t

) I(r
t

> 0) dt+ dM
t

, (3.57)

where M
t

= 2

R
t

0 f
0
(r

s

) I(r
s

> 0) dW
s

is a martingale. By Assumption 38 and (3.49),
↵(t, r

t

)  ↵(0, r
t

)  a(r
t

). Therefore, for 0 < r
t

< R1, we can apply (3.54) to bound
the right hand side of (3.57). On the other hand, for r

t

� R1, we have f 00
(r

t

) = 0 and
r�1
t

↵(r
t

) < 0. Moreover, by definition of f and �, f 0
(r

t

) = �(R0)/2, and by (3.51),
R1(R1 � R0)↵(rt)/rt�1  �4. Therefore, we can conclude similarly to [51, Proof of
Theorem 2.2] that for r

t

> R1,

f 0
(r

t

)↵(t, r
t

)  �(R0)a(rt)/2  �2

�(R0)

R1 �R0

r
t

R1
< �2

�(R0)

R1 �R0

�(r
t

)

�(R1)

 ��(r
t

)

�Z
R1

R0

�(s)�(s)�1 ds  �2 c�(r
t

) (3.58)

 �c�(R1) � c f(r
t

)  � (✏+ c f(r
t

)) .
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Here we have used that
R

R1

R0
�(s)�(s)�1 ds � (R1 �R0)�(R1)�(R0)

�1/2. Combining
(3.57), (3.54) and (3.58), we see that almost surely,

df(r
t

)  � (✏+ c f(r
t

)) dt + dM
t

for t < T0. (3.59)

Using Itô’s product rule and (3.59), we finally obtain

ect E[f(r
t

); t < T0]  E[f(r0)] + E[ec(t^T0)f(r
t^T0)� f(r0)]

 E[f(r0)] � ✏

c

�
E
⇥
ec (t^T0)

⇤
� 1

�
, and

P [t < T0]  E


ec (t^T0) � 1

ec t � 1

�
 1

✏

c

ec t � 1

E[f(r0)].

For s 2 [0,1), we denote by ⇡
s

the invariant probability measure for the time-
homogeneous sticky diffusion with drift ↵(s, ·) that is given by (3.46), i.e.,

⇡
s

(dx) / 2

↵(s, 0)
�0(dx) + exp

✓
1

2

Z
x

0

↵(s, y) dy

◆
�(0,1)(dx). (3.60)

Theorem 14. Suppose that Assumption 38 holds true, and let (r
t

) be a solution of
(3.29) with initial distribution µ on R+. Then for any t > 0,

E[f(r
t

)]  e�c t E[f(r0)] +

Z
f d⇡0, E[r

t

]  2�(R0)
�1E[f(r

t

)], and

P [r
t

> 0]  1

✏

c

ec t � 1

E[f(r0)] + ⇡0[(0,1)].

Proof. Based on the results of Theorem 13, we can construct a filtered probability
space (⌦,A, (F

t

), P ) satisfying the usual conditions and supporting random variables
r,W, r̃, s̃, ˜W : ⌦! W such that w.r.t. (⌦,A, (F

t

), P ),

• (r,W ) and (r̃, s̃, ˜W ) are independent,

• (r
t

,W
t

) is a weak solution of (3.29) with initial distribution µ, and

• (r̃
t

, s̃
t

, ˜W
t

) is a weak solution of (3.32) with �(t, x) = ↵(t, x), �(t, x) = ↵(0, x),
µ̃ = �0, ⌫̃ = ⇡0, and

P [ r̃
t

 s̃
t

for all t � 0 ] = 1. (3.61)

Let T := inf{t � 0 : r
t

= r̃
t

} be the first meeting time of (r
t

) and (r̃
t

). We define

r̄
t

:= r
t

for t < T, and r̄
t

:= r̃
t

for t � T. (3.62)

Then (r̄
t

) solves the martingale problem corresponding to (3.29) with initial law µ,
cf. e.g. [129, Section 3.1]. By Lemma 21, this martingale problem has a unique
solution. Hence, we can conclude that the laws of r̄ and r on W coincide. Let
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T0 = inf{t � 0 : r
t

= 0}. Observe that since t 7! r
t

and t 7! r̃
t

are continuous with
r̃0 = 0  r0, we have T  T0. In particular, by Lemma 24, (3.61), and since f is
increasing,

E[f(r
t

)] = E[f(r̄
t

)] = E[f(r
t

); t < T ] + E[f(r̃
t

); t � T ]

 E[f(r
t

); t < T0] + E[f(s̃
t

)]  e�c t E[f(r0)] +

Z
f d⇡0.

Here we have used that by Lemma 23, the process (s̃
t

) is stationary. By (3.52), (3.50),
and since g � 1/2, we have f 0 � �(R0)/2. Hence the inequality r  2�(R0)

�1f(r)
holds for any r � 0, and thus, we can conclude that

E[r
t

]  2�(R0)
�1E[f(r

t

)].

Finally, by the second part of Lemma 24, we see that

P [r
t

> 0] = P [r̄
t

> 0] = P [r
t

> 0, t < T ] + P [r̃
t

> 0, t � T ]

 P [t < T0] + P [s̃
t

> 0]  1

✏

c

ec t � 1

E[f(r0)] + ⇡0[(0,1)].

By applying Theorem 14 on the time intervals [s, t] and [0, s], we obtain:

Corollary 13. Suppose that Assumption 38 holds true, and let (r
t

) be a solution of
(3.29). Then for any 0  s < t,

E[f(r
t

)]  e�ctE[f(r0)] + e�c (t�s)

Z
f d⇡0 +

Z
f d⇡

s

, and

P [r
t

> 0]  1

✏

c

ec (t�s) � 1

✓
e�csE[f(r0)] +

Z
f d⇡0

◆
+ ⇡

s

[(0,1)].

where f , c and ✏ are defined as above. Furthermore,

E[f
s

(r
t

)]  2

�(R0)
e�c

s

(t�s)

✓
e�csE[f(r0)] +

Z
f d⇡0

◆
+

Z
f
s

d⇡
s

, and

P [r
t

> 0]  2

�(R0)✏s

c
s

ecs (t�s) � 1

✓
e�csE[f(r0)] +

Z
f d⇡0

◆
+ ⇡

s

[(0,1)],

where f
s

, c
s

and ✏
s

are defined by (3.52), (3.53) and (3.46) with a replaced by ↵(s, ·).

Proof. Fix s 2 [0,1). Then the process (r
s+t

)

t�0 solves (3.29) with drift coefficient
↵
s

(t, x) = ↵(s+ t, x) and initial distribution P � r�1
s

. Since ↵
s

(t, x)  ↵(s, x)  a(x)
for any t, x � 0, we can apply Theorem 14 either with a, f, c and ✏ as above, or with
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a, f, c and ✏ replaced by ↵(s, ·), f
s

, c
s

and ✏
s

. For t > s we obtain

E[f(r
t

)]  e�c (t�s) E[f(r
s

)] +

Z
f d⇡

s

,

P [r
t

> 0]  1

✏

c

ec (t�s) � 1

E[f(r
s

)] + ⇡
s

[(0,1)],

E[f
s

(r
t

)]  e�c

s

(t�s) E[f
s

(r
s

)] +

Z
f
s

d⇡
s

,

P [r
t

> 0]  1

✏
s

c
s

ecs (t�s) � 1

E[f
s

(r
s

)] + ⇡
s

[(0,1)].

Noting that f
s

(r
s

)  r
s

, the assertion follows by applying Theorem 14 once more.

3.4 Coupling construction and proofs of the main
results

In this section, we prove our main theorems. First of all, we construct the sticky
coupling (X

t

, Y
t

) of solutions to (3.1) and (3.2) respectively, advertised in Theorem
10. The coupling is obtained as a weak limit of Markovian couplings (X�

t

, Y �

t

), � > 0.
The couplings (X�

t

, Y �

t

) are reflection couplings for |X�

t

� Y �

t

| � � and synchronous
couplings for |X�

t

� Y �

t

| = 0. Inbetween there is an interpolation between the two
types of couplings. We argue that the family of couplings is tight and thus there is a
subsequence converging to a coupling (X

t

, Y
t

)

t�0. It is then argued that this limiting
coupling is sticky and shares the properties stated in Theorem 10.

We now define the couplings (X�

t

, Y �

t

) rigorously. The technical realization follows
[51]. We introduce Lipschitz functions rc

�, sc� : R+ ! [0, 1] such that rc

�

(0) = 0,
rc

�

(r) > 0 for 0 < r < �, rc�(r) = 1 for r � �, and

rc

�

(r)2 + sc

�

(r)2 = 1 for any r � 0. (3.63)

Let (B1
t

) and (B2
t

) be independent d-dimensional Brownian motions, and let u 2 Rd

be some arbitrary unit vector. We define the coupling (X�

t

, Y �

t

) for (3.1) and (3.2) as
a diffusion process in R2d satisfying the stochastic differential equation

dX�

t

= b(t,X�

t

) dt + rc

�

�
r̃�
t

�
dB1

t

+ sc

�

�
r̃�
t

�
dB2

t

, (3.64)
dY �

t

=

˜b(t, Y �

t

) dt + rc

�

�
r̃�
t

� �
IdRd �2 e�

t

⌦
e�
t

, ·
↵�

dB1
t

+ sc

�

�
r̃�
t

�
dB2

t

, (3.65)

with initial condition (X�

0 , Y
�

0 ) = (x, y). Here Z�

t

= X�

t

�Y �

t

, r̃�
t

=

��Z�

t

��, e�
t

= Z�

t

/r̃�
t

if
r̃�
t

6= 0, and e�
t

= u if r̃�
t

= 0. Since rc�(0) = 0, the arbitrary value u is not relevant for
the dynamics. The process (X�

t

, Y �

t

) can be realized as a standard diffusion process in
R2d with locally Lipschitz coefficients. Moreover, Assumptions 30 and 31 imply the
non-explosiveness of the process. Using Lévy’s characterization of Brownian motion
and (3.63), one can check that (X�

t

, Y �

t

) is indeed a coupling of solutions to Equations
(3.1) and (3.2). Notice that the process W �

t

=

R
t

0

⌦
e�
s

, dB1
s

↵
is a one-dimensional

Brownian motion.
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Lemma 25. Suppose that Assumptions 30 and 31 are satisfied. Then, almost surely,

dr̃�
t

=

D
e�
t

, b(t,X�

t

)� ˜b(t, Y �

t

)

E
dt + 2 rc

�

�
r̃�
t

�
dW �

t

(3.66)


�
M + (r̃�

t

) r̃�
t

�
dt + 2 rc

�

�
r̃�
t

�
dW �

t

. (3.67)

Proof. By (3.64) and (3.65),

d(r̃�
t

)

2
= 2

D
Z�

t

, b(t,X�

t

)� ˜b(t, Y �

t

)

E
dt+ 4 rc

�

�
r̃�
t

�2
dt+ 4 rc

�

�
r̃�
t

� ⌦
Z�

t

, e�
t

↵
dW �

t

.

For ✏ > 0, we define a C2 approximation of the square root by

S
✏

(r) = �(1/8) ✏�3/2 r2 + (3/4) ✏�1/2 r + (3/8) ✏1/2 for r < ✏, (3.68)

S
✏

(r) =
p
r for r � ✏. By Itô’s formula,

dS
✏

((r̃�
t

)

2
) = 2S 0

✏

((r̃�
t

)

2
)

D
Z�

t

, b(t,X�

t

)� ˜b(t, Y �

t

)

E
dt+ 4S 0

✏

((r̃�
t

)

2
) rc

�

�
r̃�
t

�2
dt

+ 8S 00
✏

((r̃�
t

)

2
) rc

�

�
r̃�
t

�2
(r̃�

t

)

2 dt + 4S 0
✏

((r̃�
t

)

2
) rc

�

�
r̃�
t

�
r̃�
t

dW �

t

.

We can now pass to the limit ✏ # 0 to obtain (3.66). Notice that sup0r✏

|S 0
✏

(r)| .
✏�1/2, sup0r✏

|S 00
✏

(r)| . ✏�3/2 and that rc

� is Lipschitz with rc

�

(0) = 0. Hence, one
can use Lebesgue’s dominated convergence theorem for the convergence of the first
three integrals. Moreover, the stochastic integral converges almost surely, along a
subsequence, to

R
t

0 2 rc

�

�
r̃�
s

�
dW �

s

. Finally, by Assumptions 30 and 31,
D
Z�

t

, b(t,X�

t

)� ˜b(t, Y �

t

)

E


D
Z�

t

, b(t,X�

t

)� b(t, Y �

t

) + b(t, Y �

t

)� ˜b(t, Y �

t

)

E

 M r̃�
t

+ (r̃�
t

) (r̃�
t

)

2.

In order to control the distance of X�

t

and Y �

t

, we introduce a one-dimensional
process (r�

t

) that is defined as the unique and strong solution to the equation

dr�
t

=

�
M + (r�

t

) · r�
t

�
dt + 2 rc

�

�
r�
t

�
dW �

t

, r�0 = r̃�0, (3.69)

with (r̃�
t

) and (W �

t

) as above.

Lemma 26. We have
��X�

t

� Y �

t

��
= r̃�

t

 r�
t

, almost surely for all t � 0.

Proof. The processes (r̃�
t

) and (r�
t

) are driven by the same noise, start at the same
position, and, by (3.67), the drift of (r̃�

t

) is smaller or equal to the one of (r�
t

).
Therefore, the assertion follows by Ikeda-Watanabe’s comparison theorem for one-
dimensional diffusions, cf. [86, Theorem 1.1].
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Proof of Theorem 10. We consider the diffusion U �

t

:= (X�

t

, Y �

t

, r�
t

) on R2d+1. Let P�

denote the law of U � on the space C(R+,R2d+1
). We define X,Y : C(R+,R2d+1

) !
C(R+,Rd

) and r : C(R+,R2d+1
) ! C(R+,R) as the canonical projections onto the

first d, the second d, and the last coordinate.
Notice that in each of the equations (3.64), (3.65) and (3.69), the drift coefficients

do not depend on � and the diffusion coefficients are uniformly bounded. Moreover,
Assumptions 30 and 31 imply that, similarly as in the proof of Theorem 13, the
diffusions (U �

t

) satisfy uniformly a Lyapunov non-explosion criterion, and the drift
coefficients are uniformly bounded on compact sets. Therefore, the family (P�

) is
tight, cf. [80, 81]. In particular, there is a sequence �

n

# 0 such that (P�

n

) converges
towards a measure P on C(R+,R2d+1

). For each � > 0, (X�

t

) and (Y �

t

) are solutions
to (3.1) and (3.2) respectively. Since those solutions are unique in law, we know that
P� � (X�

)

�1
= P�X�1 and P� � (Y �

)

�1
= P�Y �1 for any � > 0. Hence, P� (X,Y )

�1

is a coupling of (3.1) and (3.2). Moreover, Lemma 21 and the proof of Theorem 13
reveal that, after extending the underlying probability space, there is a Brownian
motion (

˜W
t

) such that (r
t

, ˜W
t

) is a solution of (3.3). The statement from Lemma
26 carries over to the limiting processes, since such inequalities are preserved under
weak convergence, and thus (3.4) holds. The inequality (3.8) is implied by Theorem
14 setting ↵(t, x) = a(x) = M + (x) · x.

Proof of Lemma 18. By (3.6), ⇡[(0,1)] =

↵

1+↵

with

↵ :=

M

2

Z 1

0

exp

✓
1

2

Z
x

0

(M + (y) y) dy

◆
dx.

In order to provide upper bounds on ↵, we decompose ↵ = M(a+ b)/2 with

a =

Z 1

R
exp

✓
1

2

Z
x

0

(M + (y) y) dy

◆
dx and

b =

Z R

0

exp

✓
1

2

Z
x

0

(M + (y) y) dy

◆
dx.

By Condition (3.13), we have

1

2

Z
x

0

(M + (y) y) dy =

1

2

Z R

0

(M + Ly) dy +

1

2

Z
x

R
(M �K y) dy

= Mx/2�Kx2/4 + (L+K)R2/4

= �K(x�M/K)

2/4 +M2/(4K) + (L+K)R2/4

for x � R and

1

2

Z
x

0

(M + (y) y) dy =

1

2

Z
x

0

(M + Ly) dy = Mx/2 + Lx2/4
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for x  R. We obtain

a = exp

�
M2/(4K) + (L+K)R2/4

� Z 1

R
exp

�
�K (x�M/K)

2 /4
�
dx

=

p
2p
K

exp

�
M2/(4K) + (L+K)R2/4

� Z 1

(R�M/K)
p

K/2

exp

�
�z2/2

�
dz and

b =

Z R

0

exp

�
Mx/2 + Lx2/4

�
dx

and give upper bounds for these quantities:

b  R exp

�
MR/2 + LR2/4

�
(3.70)

b = exp

�
MR/2 + LR2/4

� Z R

0

exp

�
M(R� x)/2� L(R2 � x2

)/4
�
dx(3.71)

= exp

�
MR/2 + LR2/4

� Z R

0

exp (�My/2� Ly (2R� y) /4) dy

 exp

�
MR/2 + LR2/4

� Z R

0

exp (�My/2� LRy/4) dy

 1

M/2 + LR/4
exp

�
MR/2 + LR2/4

�
.

Combining (3.70) and (3.71), we conclude that

b  4R
max(4, 2MR+ LR2

)

exp

�
MR/2 + LR2/4

�
. (3.72)

We use the bound
R1
0 e�z

2
/2dz 

p
2⇡ to conclude that

a  2

p
⇡/K exp

�
M2/(4K) + (L+K)R2/4

�
(3.73)

= 2

p
⇡/K exp

�
K(R�M/K)

2/4
�
exp

�
MR/2 + LR2/4

�

 2

r
⇡e

K
exp

�
MR/2 + LR2/4

�
for K(R�M/K)

2  2.

On the other hand,
R1
y

e�z

2
/2 dz  e�y

2
/2/y for any y > 0 and thus

a  2

K

1

R�M/K
exp

�
(�K(R�M/K)

2
+M2/K + (L+K)R2

)/4
�

(3.74)

=

2p
K

1p
K(R�M/K)

2
exp

�
MR/2 + LR2/4

�


p
2p
K

exp

�
MR/2 + LR2/4

�

132



3.4 Coupling construction and proofs of the main results

provided R � M/K and K(R �M/K)

2 � 2. Combining (3.72), (3.73) and (3.74),
we obtain in the case R � M/K the bound

↵ = M(a+ b)/2


�
⇡1/2e1/2K�1/2

+ 2Rmax(4, LR2
+ 2MR)

�1
�
M exp

�
MR/2 + LR2/4

�

In the case R  M/K, (3.72) implies

b  4R
max(4, 2MR+ LR2

)

exp

�
M2/(4K) + (L+K)R2/4

�
. (3.75)

Combining (3.75) and (3.73), we can conclude for R  M/K the bound

↵ 
✓r

⇡

K
+

2R
max(4, 2MR+ LR2

)

◆
M exp

✓
M2

4K
+

L+K

4

R2

◆
.

Proof of Theorem 12. The proof is similar to the proof of Theorem 10. We fix x0, y0 2
Rd and corresponding drifts b(t, x) = bx0

(t, x) and ˜b(t, x) = by0(t, x) as in (3.22) and
(3.23) respectively. Moreover, we choose ⌧0 2 (0,1) such that (3.26) holds for
|⌧ |  ⌧0. Since # is Lipschitz, we can conclude by (3.26) that for any x 2 Rd,

|b(t, x)� ˜b(t, x)| = |⌧ | ·
����
Z

#(x, y)µx0
t

(dy)�
Z

#(x, y)µy0
t

(dy)

����

 |⌧ |L W1
(µx0

t

, µy0
t

)  L A e�� t |x0 � y0| ,

where L is the corresponding Lipschitz constant. We can now repeat the procedure
leading to the proof of Theorem 10, replacing M by |⌧ |LAe�� t |x0 � y0|. In partic-
ular, we can conclude that there is a coupling (X

t

, Y
t

) of (3.24) and (3.25) and a
solution (r

t

,W
t

) of (3.29) with r0 = |x0 � y0| and drift

↵(t, x) = |⌧ |LAe�� t |x0 � y0|+ (x)x (3.76)

such that |X
t

� Y
t

|  r
t

. Notice that Assumption 32 implies Assumption 38 for the
drift ↵. We now want to apply Corollary 13. First, we fix the function a in (3.49) as
a(·) := ↵(0, ·). Applying Corollary 13 now yields that for any 0  s < t,

kµx0
t

� µy0
t

k
TV

 1

✏

c

ec (t�s) � 1

✓
e�csf(|x0 � y0|) +

Z
f d⇡0

◆
+ ⇡

s

[(0,1)].

By (3.60), Assumption 38, and since f(r)  r, we have f(|x0 � y0|)  |x0 � y0| andR
f d⇡0 < 1. Moreover, by (3.60), (3.76) and Assumption 38,

⇡
s

[(0,1)]  1

2

↵(s, 0)

Z 1

0

exp

✓
1

2

Z
x

0

↵(s, y) dy

◆
dx  C e��s
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where C :=

1
2 |⌧ |LA

R1
0 exp

�
1
2

R
x

0 ↵(s, y) dy
�
dx is a finite constant. Thus, there is a

constant A 2 (0,1) such that

kµx0
t

� µy0
t

k
TV

 A

ec (t�s) � 1

+ Ce�� s

= e�c (t�s) A

1� e�c (t�s)
+ Ce�� s

for any 0  s < t. We can now set s = t/2 and use the boundedness of k · k
TV

to see
that there is a constant B 2 (0,1) such that

kµx0
t

� µy0
t

k
TV

 B exp(�min(c,�) t/2) for all t � 0.

It should be stressed, that the constants B and c depend on the initial conditions.

Computations for Example 10
We now prove lower bounds on the total variation distance between the probabil-
ity measures ⌫(dx) = Z�1

f

f(x) dx and µ(dx) = Z�1
g

g(x) dx on R1 that have been
considered in Example 10. Noticing that by symmetry of f ,

Z
g

=

Z 1

�1
g(x) dx =

Z 1

�1
emxf(x) dx =

Z 1

0

(emx

+ e�mx

)f(x) dx

� 2

Z 1

0

f(x) dx =

Z 1

�1
f(x) dx = Z

f

, we obtain

kµ� ⌫k
TV

=

Z

R
(1� dµ/d⌫)+ d⌫ =

Z

R
(1� emxZ

f

/Z
g

)

+ ⌫(dx)

�
Z 0

�1
(1� emx

) ⌫(dx) =

Z 1

0

�
1� e�mx

�
⌫(dx)

= ⌫[(0, R)]

Z
R

0

(1� e�mx

) dx

�
R

+ ⌫[(R,1)]

Z 1

R

(1� e�mx

)e�k(x�R)2/2 dx

�Z 1

R

e�k(x�R)2/2 dx (3.77)

= ⌫[(0, R)]

�
mR� 1 + e�mR

�
/(mR)

+ ⌫[(R,1)]

Z 1

0

(1� e�m(R+t)
)e�kt

2
/2 dt

�Z 1

0

e�kt

2
/2 dt .

Using that (e�x � 1 + x)/x  1� e�x for any x > 0, we obtain the lower bound

kµ� ⌫k
TV

� (e�mR � 1 +mR)/(mR).

We now derive an improved bound for small k. Suppose that R
p
k  1. Then

⌫[(R,1)]/⌫[(0, R)] =

Z 1

0

e�kt

2
/2 dt

�
R =

p
⇡/(2k)R�1
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implies ⌫[(R,1)] =

1
2

⇣
1 + R

p
2k/⇡

⌘�1

� 1
4 . Hence by (3.77),

kµ� ⌫k
TV

� 1

4

Z 1

0

(1� e�m(R+t)
)e�kt

2
/2 dt

�Z 1

0

e�kt

2
/2 dt

=

1

4

 
1� e�mR+m

2
/(2k)

 
1�

p
2/⇡

Z
m/

p
k

0

e�s

2
/2 ds

!!

� 1

4

⇣
1� e�mR+m

2
/(2k)

+

p
2/(⇡k)me�mR

⌘
.
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Supplements for Chapter 0
Proof of Consequence 1. Fix arbitrary x 2 S. Inequality (0.6) implies that �

x

p
t

2
P

V

(S) for any t 2 I. Moreover, (0.4) and (0.5) show that P
V

(S) ⇢ P
⇢

(S) ⇢ P1
(S).

Fix t, s 2 I with t > s. The semigroup property, (0.4) and (0.3) allow to conclude
the inequality

W1
(�

x

p
t

, �
x

p
s

) = W1
(�

x

p
t�s

p
s

, �
x

p
s

)  C1 e

�cs W
⇢

(�
x

p
t�s

, �
x

). (3.78)

Moreover, inequalities (0.5) and (0.6) show that

sup

t2I
W

⇢

(�
x

p
t

, �
x

) < 1

and hence, (�
x

p
t

)

t2I is a Cauchy sequence in the Polish space (W1,P1
). In particular,

there is ⇡ 2 P1 such that W1
(�

x

p
t

, ⇡) ! 0 for t ! 1 and thus �
x

p
t

! ⇡ weakly.
Using the Feller property, we can conclude that for any f 2 C

b

and t 2 I,
Z
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)(dx)

and thus ⇡p
t

= ⇡ for any t 2 I. Let ⇡̃ be some invariant probability measure for
(p

t

). For any n 2 N and t 2 I \ {0},
Z

(V (x) ^ n) ⇡̃(dx) =

Z
(V (x) ^ n) (⇡̃p

t

)(dx) =

Z
(p

t

(V ^ n))(x) ⇡̃(dx)


Z

n ^ (p
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V )(x) ⇡̃(dx)  n ^ C3 + e

��t

Z
n ^ V (x) ⇡̃(dx)

and thus
R
(V (x) ^ n) ⇡̃(dx)  n ^ C3. Using Fatou’s lemma, we can conclude that

⇡̃ 2 P
V

(S). Now (0.3) implies that the measure ⇡ obtained above is actually the
unique invariant measure.

Similar arguments can be found in [73, 74, 69].
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