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Abstract

In this thesis we study several different operators that are related to Carleson’s theorem
and curves in the plane.

An interesting open problem in harmonic analysis is the study of analogues of Car-
leson’s operator that feature integration along curves. In that context it is natural to ask
whether the established methods of time-frequency analysis carry over to an anisotropic
setting. We answer that question and also provide certain partial bounds for the Car-
leson operator along monomial curves using entirely different methods. Another line of
results in this thesis concerns maximal operators and Hilbert transforms along variable
curves in the plane. These are related to Carleson-type operators via a partial Fourier
transform in the second variable. A central motivation for studying these operators
stems from Zygmund’s conjecture on differentiation along Lipschitz vector fields. One
of our results can be understood as proving a curved variant of this conjecture.

This thesis consists of five chapters.

In Chapter 0 we explain some of the historical background and the open problems
that motivated the work in this thesis and give a summary of the main results.

In Chapter 1 we prove a weak (2, 2) bound for an anisotropic analogue of Carleson’s
operator associated with a smooth multiplier. We also discuss some of the obstructions
for proving boundedness of a Carleson operator along curves and in particular, the mod-
ulation symmetries of the parabolic Carleson operator.

In Chapter 2 we prove Lp bounds for an anisotropic variant of the bilinear Hilbert
transform. The bilinear Hilbert transform is intimately related to Carleson’s operator
as hinted by their shared modulation symmetry.

In Chapter 3 we prove certain partial bounds for the Carleson operator along mono-
mial curves. The content of this chapter is taken from a joint work with Shaoming Guo,
Lillian Pierce and Po-Lam Yung which will appear in the Journal of Geometric Analysis.

In Chapter 4 we study maximal operators and Hilbert transforms along variable
curves in the plane. The content of this chapter is taken from a joint work with Shaom-
ing Guo, Jonathan Hickman and Victor Lie which will appear in the Proceedings of the
London Mathematical Society.
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Chapter 0

Introduction

A fundamental problem in harmonic analysis is to determine under what circumstances
the Fourier series of a function on the unit circle converges pointwisely. While it is rel-
atively easy to see that Fourier series of continuously differentiable functions converge
uniformly, a final answer for the case of continuous functions has eluded mathematicians
for decades. A breakthrough in the study of this problem was made by Lennart Carleson
in 1966 [Car66], when he proved that Fourier series of square-integrable functions con-
verge almost everywhere. This resolved a previously long-standing conjecture of Luzin.
Carleson’s proof introduced a number of new ideas and techniques to the field. Car-
leson’s theorem was extended to Lp functions (where 1 < p <∞) by Hunt [Hun68]. An
example due to Kolmogorov [Kol26] shows that there exist L1 functions whose Fourier
series diverge everywhere. From a modern perspective, the object that lies at the heart
of the proof of Carleson’s theorem is the Carleson maximal operator (also referred to as
Carleson operator)1:

C f(x) = sup
N∈R

∣∣∣∣∫ N

−∞
f̂(ξ)eixξdξ

∣∣∣∣ .
The boundedness properties of this operator are intimately tied to almost everywhere
convergence of the Fourier inversion integral. For instance, it is easy to see that the L2

bound
‖C f‖2 ≤ C‖f‖2

implies almost everywhere convergence of the Fourier inversion integral for L2(R) func-
tions. This follows by approximating the L2(R) function by test functions and then
using the boundedness of the Carleson operator to control the error term.

A good way to gain insight into the nature of a given operator is to look at its
symmetries. For this purpose it is convenient to express the Carleson operator as follows:

C f(x) = sup
N∈R
|MNHM−Nf(x, y)| , (1)

where Mξf(x) = eixξf(x) and H denotes the Fourier projection to the left half line

in frequency. That is, Ĥf = f̂1(−∞,0). The operator H can be written as a linear
combination of the Hilbert transform and the identity operator. From (1) it is evident

1We state the operator over the real numbers. Bounds carry over to the unit circle by a well-known
transference principle (see [KT80]). The use of the letter N stresses the historical origin of the Carleson
operator in the theory of Fourier series.
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that the Carleson operator not only commutes with translations and dilations (which
are the symmetries that characterize the Hilbert transform), but also hosts an additional
symmetry, which is modulation invariance. To be precise, we have

C (Mξf) = C f

for all ξ ∈ R. Since modulation acts by translation in frequency, this property causes
the failure of many classical tools such as Calderón-Zygmund theory and Littlewood-
Paley decomposition, that rely on the origin being a distinguished point in frequency. A
different kind of analysis is required for the study of such objects. The appropriate tech-
niques were pioneered by Carleson and are today referred to as time-frequency analysis.
C. Fefferman [Fef73] provided an alternative proof of Carleson’s theorem. His proof is
based on a careful decomposition of the Carleson operator, while Carleson’s proof was
based on decomposing the input function f . Finally, Lacey and Thiele [LT00] have
introduced yet another, simplified method of proof, which elegantly exploits the under-
lying symmetries and decomposes both the operator and the function at the same time.
Their method is inspired by their groundbreaking work on the bilinear Hilbert trans-
form [LT97b], [LT99], which led to the resolution of Calderón’s conjecture. The bilinear
Hilbert transform shares the property of modulation invariance with Carleson’s opera-
tor which is the reason that both operators are susceptible to the same time-frequency
methods.

A number of variants and generalizations of Carleson’s theorem have been considered
in the literature many of which incorporate new interesting aspects into the analysis.
These include higher dimensions, polynomial phase functions and Radon-type behavior.
The results contained in this thesis touch on all three of these aspects.

An extension of the Carleson-Hunt theorem to higher dimensions was given by Sjölin
[Sjö71] who used methods from Carleson’s original article [Car66]. Pramanik and Terwil-
leger [PT03] studied analogues of Carleson’s theorem in higher dimensions by adapting
the method of Lacey and Thiele. Also see [GTT04] for an extension of [PT03] to Lp for
p > 1.

A further direction of inquiry introduced a polynomial phase to the Carleson oper-
ator. Fix a natural number d. Consider the polynomial Carleson operator defined by

Cdf(x) = sup
P

∣∣∣∣∫
Rn
f(x− y)eiP (y)K(y)dy

∣∣∣∣ , (2)

where the supremum runs over all polynomials with real coefficients of degree not ex-
ceeding d and K is a Calderón-Zygmund kernel. Stein asked whether this operator
satisfies any Lp bounds. The main difficulty in this problem is caused by the presence
of polynomial modulation symmetries. More precisely, setting MP f(x) = eiP (x)f(x) for
an arbitrary polynomial P of degree up to d, we have

CdMP f = Cdf.

V. Lie [Lie09], [Lie11] was able to answer this question2 for the case n = 1 (with K(x) =
p.v. 1x) using a delicate extension of Fefferman’s time-frequency approach combined with
oscillatory integral techniques. The case n > 1 is still open.

2Like Fefferman, Lie was working over the unit circle, but again the results can be transferred to R.
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Stein and Wainger [SW01] used a very different approach based only on TT ∗ and
oscillatory integral estimates to obtain an L2 bound for a variant of the operator (2)
where the supremum is restricted to polynomials lacking linear terms. Their surprisingly
simple and elegant proof works for all n ≥ 1 and does not require any tools from time-
frequency analysis. The reason that this seemingly small modification of the operator
has such a dramatic effect is that it causes all modulation symmetries to disappear.

Pierce and Yung [PY15] have recently introduced a variant of the polynomial Car-
leson operator featuring Radon-type behavior by integrating along a paraboloid. Specif-
ically, they studied the operator

f 7→ sup
P

∣∣∣∣∫
Rn
f(x− t, y − |t|2)eiP (t)K(t)dt

∣∣∣∣ , (x, y) ∈ Rn × R, (3)

where n ≥ 2, K is a Calderón-Zygmund kernel and the supremum goes over all poly-
nomials P of degree not exceeding d which are lacking linear as well as certain types
of quadratic terms. They were able to obtain Lp bounds for 1 < p < ∞ for this op-
erator. Their method of proof is based on TT ∗ techniques in the spirit of Stein and
Wainger [SW01]. As a consequence of the restriction in the supremum, the operator
does not have any modulation symmetries. Moreover, the method does not work in the
two-dimensional case corresponding to n = 1 in (3).

A natural object in this context that guided a lot of the work for this thesis is the
Carleson operator along the monomial curve (t, td) in the plane.

Open Problem 1. Fix an integer d ≥ 2 and let

Hdf(x, y) = p.v.

∫
R
f(x− t, y − td)dt

t
, (x, y) ∈ R2,

Does the operator
C (d)f = sup

ξ∈R2

|M−ξHdMξf |

satisfy any Lp bounds?

(We continue to use the notation Mξf(x) = eix·ξf(x) for modulations in Rn. Here ·
denotes the Euclidean inner product.)

The operator C (d) features an anisotropic dilation symmetry. That is, setting

Dλf(x, y) = f(λx, λdy)

for λ > 0, we have
C (d)Dλf = DλC

(d)f.

Thus it is natural to ask whether the techniques of time-frequency analysis carry over to
the anisotropic setting. This turns out to be the case. The purpose of Chapters 1 and 2
is to develop and showcase the tools of time-frequency analysis in the anisotropic setting.
To do that we study anisotropic analogues of the two central objects in time-frequency
analysis, the Carleson operator and the bilinear Hilbert transform.

To state the main results of Chapters 1 and 2, let us fix a vector of positive integers
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α = (α1, . . . , αn). We equip Rn with the anisotropic dilations given by

δλ(x) = (λα1x1, . . . , λ
αnxn).

Let m be a bounded function on Rn that is smooth outside the origin and satisfies

m(δλξ) = m(ξ)

for all λ > 0 and ξ 6= 0. Define

Cmf(x) = sup
ξ∈Rn

|M−ξTmMξf(x)|,

where Tm denotes the Fourier multiplier associated with m, i.e. T̂mf = f̂m. If n = 1
and m = 1(−∞,0), then Cm coincides with the Carleson operator.

Theorem 2. Let m be a bounded function on Rn that is smooth outside the origin and
satisfies m(ξ) = m(δλ(ξ)) for all λ > 0 and ξ ∈ Rn. Then we have

‖Cmf‖2,∞ ≤ C‖f‖2,

with C ∈ (0,∞) depending on α and m.

The proof of this theorem is the main goal of Chapter 1 (see Theorem 1.1.1). It is
based on Lacey and Thiele’s time-frequency approach [LT00] and Pramanik and Terwil-
leger’s generalization [PT03] thereof. The main difficulties arise in the tree estimate and
reduction to the dyadic model operator. This provides a first step towards approaching
Open Problem 1. A fundamental obstacle in solving Open Problem 1 is the low regular-
ity of the multiplier of C (d). In an attempt to approach Open Problem 1 via Theorem 2
we define a certain one-parameter family of toy model operators in Section 1.2 with the
endpoint essentially being C (d). While we cannot reach that endpoint, we can at least
bound a certain range of the toy model operators.

For the special case of the parabolic Carleson operator C (2) there are additional
obstructions due to additional modulation symmetries. In particular, an L2 bound for
C (2) would immediately imply an L2 bound for Lie’s quadratic Carleson operator [Lie09]
(see Proposition 3.6.1).

We move on to discuss the main result of Chapter 2. Let B be a real and diagonal
n× n matrix. We are interested in the bilinear operator

(f1, f2) 7−→
∫
Rn
f1(x+ y)f2(x+By)K(y)dy.

Here K is the kernel associated with the anisotropic multiplier m (that is, K̂ = m).
In the case n = α = 1, K(y) = p.v. 1y this operator coincides with the classical bilinear
Hilbert transform studied by Lacey and Thiele [LT97b], [LT99]. The diagonal constraint
on B is due to the fact that a non-diagonal B would break the dilation symmetry of
the operator in the non-isotropic case. By duality it is equivalent to study the trilinear
form

Λm(f1, f2, f3) =

∫
R2n

f1(x+ y)f2(x+By)f3(x)K(y)d(x, y).

The main theorem of Chapter 2 reads as follows.
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Theorem 3. Let m be a bounded function on Rn that is smooth outside the origin and
satisfies m(ξ) = m(δλ(ξ)) for all λ > 0 and ξ ∈ Rn. Further, suppose that detB(1−B) 6=
0. Let 2 < p1, p2, p3 <∞ with 1

p1
+ 1

p2
+ 1

p3
= 1. Then there exists a constant C ∈ (0,∞)

depending on m,α,B, p1, p2, p3 such that

|Λm(f1, f2, f3)| ≤ C‖f1‖p1‖f2‖p2‖f3‖p3 .

In the proof we use the argument of Lacey and Thiele [LT97b] in reducing our tri-
linear form to a suitable model form. A difference is that our model form is continuous,
rather than discrete. To prove boundedness of the model form we employ the frame-
work of outer measure Lp spaces that was recently developed by Do and Thiele [DT15].
For that purpose we prove an extension of the generalized Carleson embedding theorem
from [DT15] to the multidimensional anisotropic setting. An obstacle in proving that
result is that the one-dimensional proof crucially depends on the linear ordering of R.

In Chapter 3 we approach Open Problem 1 from a different angle. The content
of this chapter is a joint work with Shaoming Guo, Lillian Pierce and Po-Lam Yung
[GPRY16]. Let m, d be positive integers and f a Schwartz function in the plane. For
N ∈ R let

Hm,d
N f(x, y) = p.v.

∫
R
f(x− t, y − tm)eiNt

d dt

t
.

The results from Chapter 3 can be summarized as follows.

Theorem 4. Let m, d be positive integers and p ∈ (1,∞). Then there exists a constant
Cp ∈ (0,∞) such that

1. if m 6= d and (m, d) 6= (2, 1), then

‖ sup
N∈R
‖Hm,d

N f(x, y)‖Lpy‖Lpx ≤ Cp‖f‖p,

2. if d > 1, then
‖ sup
N∈R
‖Hm,d

N f(x, y)‖Lpx‖Lpy ≤ Cp‖f‖p.

To see the relation to Open Problem 1, consider the cases d = m and d = 1. Observe
that Hm,m

N = M(0,N)HmM−(0,N) and Hm,1
N = M(N,0)HmM(−N,0). Thus we recognize

that, if d ∈ {1,m}, it is a special case of Open Problem 1 to show

‖ sup
N∈R
|Hm,d

N f |‖p . ‖f‖p. (4)

We cannot prove this estimate at the moment. However, note that if we interchange
the order of supremum and Lp norm, we obtain a much weaker inequality that follows
immediately from well-known singular Radon transform theory:

sup
N∈R
‖Hm,d

N f‖p . ‖f‖p.

In Theorem 4 we claim an improvement of this trivial inequality by interchanging “half”
of the Lp norm with the supremum.
As mentioned above, Pierce and Yung have studied polynomial Carleson operators along
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the paraboloid (3) in Rn+1 with n ≥ 2 in an earlier work [PY15]. The methods in that
paper did not work in the planar case, which is the subject of this result. Another
important aspect separating this work from [PY15] is that Theorem 4 treats some of
the modulation invariant cases. Namely, if d = m or d = 1, the operators under consid-
eration feature a linear modulation symmetry. In fact, one can see via a partial Fourier
transform and an application of Plancherel’s theorem that our bounds for these cases
imply Carleson’s theorem. This idea goes back to Coifman and El Kohen, who used
it in the context of Hilbert transforms along vector fields (also see the discussion in
[BT13]) and will also play a role in our upcoming discussion of Chapter 4. Our analysis
of the modulation invariant cases relies on a vector-valued estimate for the maximally
truncated Carleson operator (see Theorem 3.3.1), which is a standard consequence of
the scalar Carleson-Hunt theorem. If d 6= m and d > 1, we do not depend on Carleson’s
theorem. A new ingredient in that case is a certain refinement of the method of Stein
and Wainger [SW01]. Our core estimate depends on having good estimates from below
for the determinant of a certain 4× 4 matrix (see Lemma 3.4.5).

In Chapter 4 we prove Lp bounds for certain maximal operators and Hilbert trans-
forms along variable monomial. The content of this chapter consists of a joint work with
Shaoming Guo, Jonathan Hickman and Victor Lie [GHLR16].

To explain the motivation for this project let us recall a basic theorem in harmonic
analysis. The Lebesgue differentiation theorem states that, for a locally integrable func-
tion f on Rn, the limit

lim
r→0+

1

|Br|

∫
Br

f(x− y)dy

exists for almost every x ∈ Rn and is equal to f(x). Here Br denotes the ball of radius
r around the origin. The key to proving this theorem is providing a weak (1, 1) bound
for the Hardy-Littlewood maximal operator,

Mf(x) = sup
r>0

1

|Br|

∫
Br

|f(x− y)|dy.

There has been a lot of interest in the literature in replacing Euclidean balls by lower
dimensional geometric objects such as spheres (resp. circles) or curves.

The following problem, known as Zygmund’s conjecture (see [LL10] for further de-
tails), addresses the corresponding question for Lipschitz vector fields.

Open Problem 5. Let f be locally square-integrable and u Lipschitz continuous. Do
we have

lim
ε→0+

1

2ε

∫ ε

−ε
f(x− t, y − u(x, y)t)dt = f(x)

for almost every (x, y) ∈ R2 ?

A counterexample based on Besicovitch-Kakeya sets shows that this is false for u
being merely Hölder continuous of exponent strictly lower than one (see [LL10]).

For positive real numbers α, ε0 and a function u : R2 → R we define the maximal
operator

M(α)
u,ε0f(x, y) = sup

0<ε<ε0

1

2ε

∫ ε

−ε
|f(x− t, y − u(x, y)[t]α)|dt.

Here [t]α may either stand for |t|α or sgn(t)|t|α. To solve Open Problem 5 it would

6



suffice to give a weak (2, 2) bound forM(1)
u,ε0 for Lipschitz u and some parameter ε0 > 0.

While we are not able to do that, we can answer the corresponding question for α 6= 1.

Theorem 6. Let α be a positive real number with α 6= 1 and u : R2 → R a function.
Then the following hold:

1. if 2 < p ≤ ∞ and u is measurable, then we have

‖M(α)
u,∞f‖p ≤ Cp,α‖f‖p,

2. if u is Lipschitz continuous, then there exists ε0 = ε0(‖u‖Lip) > 0 such that for
every 1 < p ≤ 2 we have

‖M(α)
u,ε0f‖p ≤ Cp,α‖f‖p .

Here, Cp,α ∈ (0,∞) is a constant that depends only on p and α.

As a corollary we obtain that for f locally in Lp for any p > 1 and u Lipschitz we
have that

lim
ε→0+

1

2ε

∫ ε

−ε
f(x− t, y − u(x, y)[t]α)dt = f(x)

holds for almost every (x, y) ∈ R2.
After obtaining this result we learned that the first item (the case p > 2) was

already proven earlier by Marletta and Ricci in [MR98]. Their method of proof involves
reduction to Bourgain’s circular maximal operator from [Bou86] and uses that as a black
box. We use an alternative approach based on local smoothing estimates in the spirit
of Mockenhaupt, Seeger and Sogge [MSS92]. Another important ingredient is a certain
interpolation scheme of Nagel, Stein and Wainger [NSW78]. Key components of our
proof break down in the case α = 1 because of the lack of curvature. However, we
anticipate that other aspects of our proof might still shed some light on the case α = 1.

It is also natural to consider the singular integral version of this problem. Let

H(α)
u f(x, y) = p.v.

∫
R
f(x− t, y − u(x, y)[t]α)

dt

t
.

We cannot prove the analogue of Theorem 6 for H(α). Instead, we need a one-variable
assumption on the function u.

Theorem 7. Let α be a positive real number with α 6= 1 and u : R2 → R a measurable
function satisfying

u(x, y) = u(x, 0)

for almost every (x, y) ∈ R2. Then we have that for all 1 < p <∞ the following holds:

‖H(α)
u f‖p ≤ Cp,α‖f‖p.

The constant 0 < Cp,α <∞ depends only on p and α.

The corresponding result for the case α = 1 was proven by Bateman and Thiele in
[Bat13], [BT13] based on crucial earlier work by Lacey and Li [LL06], [LL10]. A key idea
in their proof, that our proof also depends on, is to exploit the one-variable assumption
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by noticing that it causes our operator to commute with Littlewood-Paley projections in
the second variable. Thus the argument naturally splits into a single annulus estimate
and a square-function estimate. Their method of completing these two steps is very
different from ours. In fact, the case α = 1 implies Carleson’s theorem and is thus best
attacked using time-frequency methods. In contrast to that, we exploit curvature and
use oscillatory estimates in the spirit of Stein and Wainger [SW01].

In order to achieve the Lp bounds for p other than two, we rely on a new point-
wise estimate for comparing averages along curves to averages over rectangles using the
shifted maximal function. By plugging in u ≡ 1 we thereby also obtain an alternative
proof for the Lp boundedness of the singular Radon transform along the curve (t, [t]α)
when p 6= 2.

The case of Lipschitz u and α = 1 corresponds to a well-known open problem (see
[LL10]). S. Guo [Guo15], [Guo17a] was able to make some partial progress towards this
open problem by extending the result of Bateman and Thiele to suitable measurable
vector fields that are constant on Lipschitz curves.

We proceed to describe one more result from Chapter 4. Let P
(2)
k denote a Littlewood-

Paley projection in the second variable. That is, P̂
(2)
k f(ξ, η) vanishes unless |η| ≈ 2k.

Theorem 8. For every positive real α with α 6= 2 and every 1 < p < ∞, there exists
0 < Cα,p <∞ such that for every measurable function u = (u1, u2) : R→ R2 we have∥∥∥p.v.∫

R
(P

(2)
k f)(x− t, y − u1(x)t− u2(x)[t]α)

dt

t

∥∥∥
p
≤ Cα,p‖f‖p,

uniformly in k ∈ Z.

This should be understood as an extension of Bateman’s single annulus estimate
[Bat13]. The proof is by oscillatory integral estimates and uses Bateman’s result as a
black box to deal with the low-frequency component.

To conclude this introduction we return to Carleson’s theorem by recording a simple
consequence of Theorem 8 that can be proven using the partial Fourier transform trick.

Corollary 9. For every positive real number α with α 6= 2, we have∥∥∥∥∥ sup
u1,u2∈R

∣∣∣∣p.v.∫
R
f(x− t)eiu1t+iu2[t]α dt

t

∣∣∣∣
∥∥∥∥∥

2

≤ Cα‖f‖2,

with a constant Cα depending only on α.

The case α = 0 is Carleson’s theorem. Note that the case α = 2 corresponds to
Lie’s quadratic Carleson operator C2 from (2) (see [Lie09]), which this result does not
encompass due to the quadratic modulation symmetries present in that case.

Notation. Throughout this thesis we adopt the convention that C is a positive and finite
constant that is only allowed to depend on certain fixed parameters depending on context. We
do not care about the precise value of C and it may change from line to line. We also write
A . B to denote A ≤ C ·B and A ≈ B to denote A . B and B . A. For convenience we choose
to define the Fourier transform as

Ff(ξ) = f̂(ξ) =

∫
Rn

eix·ξf(x)dx.

8



We will mostly ignore the resulting factors involving π that pop up when we use Fourier in-

version, Plancherel and other identities of Fourier analysis by including them into the constant.

Moreover, all functions (in particular the function f) are test functions (say, Schwartz functions)

unless specified otherwise. As a consequence, the estimates we obtain should be regarded as a

priori estimates, which lend themselves to extension via standard density arguments which we

will not comment on any further. All these are commonly used conventions in harmonic analysis.
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Chapter 1

Anisotropic time-frequency
analysis: The Carleson operator

1.1 Introduction

Let us consider Rn equipped with the anisotropic dilations given by

δλ(x) = (λα1x1, . . . , λ
αnxn). (1.1.1)

Here α = (α1, . . . , αn) is a fixed vector of natural numbers. We write |α| =
∑n

i=1 αi.
For an integer ν, we say that a function m on Rn is in the class M ν if

1. m is bounded and contained in Cν(Rn\{0}), i.e. ν times continuously differentiable
outside of the origin,

2. m(δλ(ξ)) = m(ξ) for all ξ 6= 0 and λ > 0.

Let us denote
‖m‖M ν = sup

0≤β1+···+βn≤ν
sup
ρ(ξ)=1

|∂β1
1 · · · ∂

βn
n m(ξ)|.

We define the Carleson operator associated with the multiplier m as

Cmf(x) = sup
N∈Rn

∣∣∣∣∫
Rn
f̂(ξ)eixξm(ξ −N)dξ

∣∣∣∣ .
Then we can state our main result as follows.

Theorem 1.1.1. Let ν0 be a sufficiently large integer (depending only on α). There
exists C > 0 depending only on α such that for all m ∈M ν0 we have

‖Cmf‖2,∞ ≤ C‖m‖M ν0‖f‖2. (1.1.2)

Here ‖ · ‖2,∞ denotes the quasinorm of the Lorentz space L2,∞(Rn) (also called weak
L2) which is defined as

‖f‖2,∞ = sup
λ>0

λ|{x ∈ Rn : |f(x)| > λ}|1/2.

Remark 1.1.1. An inspection of the proof shows that we can choose ν0 to be the smallest
multiple of α such that ν0 > 3|α|+2, where α is the least common multiple of α1, . . . , αn.
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We do not claim that this is optimal. However, any improvement to a lower bound below
|α| would require a different proof, since integrability of the integral in (1.3.2) is vital
at every major step.

The proof of this theorem is based on the time-frequency techniques of Lacey and
Thiele [LT00]. In the one-dimensional case n = 1, α = 1 we recover the weak (2, 2)
bound for Carleson’s operator, which immediately imply Carleson’s theorem on the
almost everywhere convergence of Fourier series [Car66] (up to transference). In the
isotropic case α = (1, . . . , 1) the theorem follows from a result of Sjölin [Sjö71]. In
[PT03], weak (2, 2) bounds for the isotropic case are studied using the method of Lacey
and Thiele. This is extended to strong (p, p) for 1 < p < ∞ in [GTT04]. We speculate
that Theorem 1.1.1 could also be extended to strong (p, p) for 1 < p < ∞ using the
methods from [GTT04].

The method of Lacey and Thiele involves several ingredients. The first step is a
reduction to a discrete dyadic model operator that involves summation over certain
regions in phase space which are called tiles. This is detailed in Section 1.3. In this step
we encounter a small complication which is caused by the absence of rotation invariance
in the anisotropic case. This is resolved using an anisotropic cone decomposition.

The next step is a certain procedure of combinatorial nature the purpose of which
is to organize the tiles into certain collections (which are called trees) each of which is
associated with a component of the operator that behaves more like a classical singular
integral operator (see Lemma 1.4.4). The combinatorial part of the argument requires
only little modification compared to the original procedure in [LT00] (see Sections 1.4,
1.5, 1.6). The technically most demanding part and the part where our proof differs
most from the corresponding sections in [LT00] and [PT03] is the tree estimate (see
Section 1.7).

Our main motivation for considering this anisotropic variant of Carleson’s theorem
roots in Open Problem 1 from Chapter 0. This will be further discussed in Section 1.2
along with an application of Theorem 1.1.1 to a certain family of rough multipliers that
can be seen as a toy model for Open Problem 1. We will also discuss the special case
of the parabolic Carleson operator in which there are further obstructions caused by
additional modulation symmetries.

In Section 1.8 we collect the proofs of several standard estimates that are used
throughout the main body of the argument.

Acknowledgments. The author thanks Christoph Thiele for his encouragement and count-

less valuable comments and conversations on this project. He is also indebted to Po-Lam Yung

for numerous detailed and fruitful discussions, in particular (but not only) regarding certain

aspects of the paper [PT03].

1.2 Motivation and an application

For a positive integer d ≥ 2, let us consider the multiplier of the Hilbert transform along
the curve (t, td) in the form

md(ξ, η) = p.v.

∫
R
eiξt−iηt

d dt

t
, (ξ, η) ∈ R2. (1.2.1)
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Open Problem 1 asks for bounds for the Carleson operator along the curve (t, td). The
multiplier md satisfies the anisotropic dilation symmetry

md(λξ, λ
dη) = md(ξ, η)

for λ > 0 and (ξ, η) 6= 0. However, Theorem 1.1.1 does not apply because md is too
rough to be in the class M ν for any positive integer ν.

In an attempt to approach Open Problem 1 we introduce a family of toy model
operators. In the following discussion we focus on the intersection of the quadrant
{ξ ≥ 0, η ≥ 0} with the region η

1
d ≤ 2ξ. The other quadrants can be treated similarly

(though depending on the parity of d the phase might not have a critical point in each
quadrant; this is an inconsequential subtlety that we will ignore). Our restriction to

the region η
1
d ≤ 2ξ is natural because stationary phase considerations show that md is

smooth away from the axis η = 0. For ξ > 0 and η > 0 we define

md,1(ξ, η) =
(
η

1
d ξ−1

) d′
2
e
i

(
η

1
d ξ−1

)−d′
ψ(η

1
d ξ−1), (1.2.2)

where 1
d + 1

d′ = 1 and ψ is a smooth cutoff function supported in [−2, 2] and equal to
one on a slightly smaller interval. We extend md,1 continuously by setting it equal to
zero on the remainder of R2.

From a standard computation using the stationary phase principle (see [Ste93, Ch.
VIII.1, Prop. 3]) we can see that, up to a negligible constant rescaling, this term
constitutes the main contribution to the oscillatory integral in (1.2.1). The remainder
term from stationary phase is smoother in the variables ξ and η and is therefore simpler
to handle. We will ignore it for the purpose of this discussion.

From the definition we see directly that md,1 (and therefore also md) is only Hölder

continuous of class C
1

2(d−1) along the axis η = 0 while it is infinitely differentiable away
from that axis.

Let us from here on denote

ζ = ζ(ξ, η) = η
1
d ξ−1

for ξ > 0, η > 0. Since we do not know how to handle md,1 we introduce a family of
modified, less oscillatory multipliers which is defined on the quadrant {ξ > 0, η > 0} by

md,δ(ξ, η) = ζ
d′
2 eiζ

−d′δ
ψ(ζ), (1.2.3)

where 0 ≤ δ ≤ 1 is a parameter (and we again extend md,δ to the rest of R2 by zero).
The multiplier md,δ still fails to be in M ν for every positive integer ν. Thus, it may

surprise that we can nevertheless apply Theorem 1.1.1 to bound Cmd,δ for small enough
δ. For this purpose we express ψ in the form

ψ =
∑
j≤0

ϕj ,

where ϕj(x) = ϕ(2−jx) and ϕ is a smooth bump function supported in [1/2, 2] and
satisfying

∑
j∈Z ϕj(x) = 1 for all x 6= 0. Then we have the following consequence of

Theorem 1.1.1.
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Corollary 1.2.1. There exists δ0 > 0 such that for all 0 ≤ δ < δ0 we have

‖Cmd,δf‖2,∞ . ‖f‖2.

Proof. Let us write

md,δ,j(ξ, η) = ζ
d′
2 eiζ

−d′δ
ϕj(ζ) (for ξ > 0, η > 0),

Tjf(x, y) =

∫
R2

f̂(ξ, η)md,δ,j(ξ, η)eixξ+iyηd(ξ, η).

By the change of variables η 7→ 2jdη, we see that

Tjf(x, y) = 2j
d′
2 2jd

∫
R2

f̂(ξ, 2jdη)m̃d,δ,j(ξ, η)eixξ+i2
jdyηd(ξ, η) = 2j

d′
2 D2jd T̃jD2−jdf(x, y),

where Dλf(x, y) = f(x, λy) and

m̃d,δ,j(ξ, η) = ζ
d′
2 ei2

−jd′δζ−d
′δ
ϕ(ζ) (for ξ > 0, η > 0),

T̃jf(x, y) =

∫
R2

f̂(ξ, η)m̃d,δ,j(ξ, η)eixξ+iyηd(ξ, η).

We have
‖m̃d,δ,j‖M ν . 2−jd

′δν

for every integer ν ≥ 0 (where the implied constant depends on ν, d, δ and ϕ). Using
Theorem 1.1.1 we therefore obtain

‖Cmd,δ‖L2→L2,∞ .
∑
j≤0

2j
d′
2 ‖Cm̃d,δ,j‖L2→L2,∞ .

∑
j≤0

2jd
′( 1

2
−δν0).

Thus, setting δ0 = 1
2ν
−1
0 yields the claim.

It is possible to increase δ0 by lowering the number ν0 in Theorem 1.1.1. However, we
do not expect to be able to reach Cmd,1 (and therefore bound Cmd) in this way. On the
other hand, note that we can bound Cmd,0 by this method even without the knowledge
that ν0 <∞.

For the case of the parabola, d = 2, there are some additional obstructions. Let us
write the parabolic Carleson operator as

C parf(x, y) = sup
N∈R2

∣∣∣∣p.v.∫
R
f(x− t, y − t2)eiN1t+iN2t2 dt

t

∣∣∣∣ .
Apart from the linear modulation symmetries given by

C parf = C parMNf

for N ∈ R2, there are some additional modulation symmetries. For a polynomial in two
variables, P = P (x, y), we write the corresponding polynomial modulation as

MP f(x, y) = eiP (x,y)f(x, y).
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Then we have that
C parMNx2f = C parf, (1.2.4)

C parMNx(y+x2)f = C parf,

C parMN(y+x2)2f = C parf

hold for all N ∈ R. We will see that these are all the polynomial modulation symmetries
of the operator C par (up to linear combination).

The quadratic modulation symmetry (1.2.4) suggests a connection to Lie’s quadratic
Carleson operator [Lie09]. Indeed, even a certain partial L2 bound for C par would
immediately imply an L2 bound for the quadratic Carleson operator (see Proposition
3.6.1 in Chapter 3 for the details).

In light of these symmetries it is natural to perform the change of variables y 7→ y+x2.
Let τ(x, y) = (x, y + x2). This is a measure-preserving map that can be understood as
a kind of nonlinear shear. Denoting

Af(x, y) = p.v.

∫
R
f(x− t, y − t2)

dt

t

and

Bf(x, y) = p.v.

∫
R
f(x− t, y − 2xt)

dt

t

we observe that
Af = B(f ◦ τ−1) ◦ τ.

It is a simple and curious fact that this observation allows us to conclude Lp bounds
for A from Lp bounds for B, which are known to hold in the range p > 3

2 by a more
general result of Bateman and Thiele on the Hilbert transform along one-variable vector
fields [BT13] (see Theorem 4.1.5) which is proven using techniques from time-frequency
analysis. On the other hand of course, A is long since known to be bounded in the
full range p > 1 by entirely different techniques from the theory of singular Radon
transforms (this follows for example as a special case of Theorem 4.1.2 in Chapter 4).

Similarly, any Lp bound for C par would be equivalent to an Lp bound for

C shf(x, y) = sup
N∈R2

∣∣∣∣p.v.∫
R
f(x− t, y − 2xt)eiN1t+iN2t2 dt

t

∣∣∣∣ .
Let us return to our original discussion of modulation symmetries of the parabolic Car-
leson operator. For the operator C sh these symmetries take a very simple form. Indeed,
it is easy to check that we have

C shMP f = C shf

for a polynomial P if and only if P is of degree at most two. Changing variables back
we see that the list of polynomial modulation symmetries that we gave above for C par

is complete.
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1.3 Reduction to a model operator

Before we begin we need to introduce some more notation and definitions. We fix the
anisotropic norm

ρ(x) = max{|xi|
1
αi : i = 1, . . . , n}.

Observe that ρ satisfies the triangle inequality with constant ≤ 1 (depending on α) and
moreover,

min(|x|∞, |x|1/|α|∞∞ ) ≤ ρ(x) ≤ max(|x|∞, |x|1/|α|∞∞ ), (1.3.1)

where |x|∞ = maxi |xi| for x ∈ Rn. It is easy to verify that∫
Rn

(1 + ρ(x))−νdx . 1 and
∑
u∈Zn

(1 + ρ(u))−ν . 1 (1.3.2)

hold for all ν > |α| with constants depending only on ν and |α|. We will also use the
notation

distα(A,B) = inf
x∈A,y∈B

ρ(x− y)

and distα(A, x) = distα(A, {x}). For a, b ∈ Rn we write

[a, b] =
n∏
i=1

[ai, bi]

and similarly (a, b), [a, b). We will refer to all such sets as rectangles. For a rectangle
I ⊂ Rn we define c(I) to be its center. By an anisotropic cube we mean a rectangle
[a, b] such that bi − ai = λαi holds for all i = 1, . . . , n and some λ > 0. We define the
collection of anisotropic dyadic cubes by

Dα = {[δ2k(`), δ2k(`+ 1)) : ` ∈ Zn, k ∈ Z} .

Every two anisotropic dyadic cubes have the property that they are either disjoint or
contained in one another. Moreover, for every I ∈ Dα there exists a unique dyadic cube
I+ ∈ Dα such that |I+| = 2|α||I| and I ⊂ I+. We call I+ the parent of I and say that I
is a child of I+.

Definition 1.3.1. A tile P is a rectangle in Rn × Rn of the form

P = IP × ωP ,

where IP , ωP ∈ Dα and |IP | · |ωP | = 1.

The set of tiles is denoted by P. Given a tile P we denote its scale by kP = |IP |1/|α|.
For r ∈ {0, 1}n and a tile P with ωP = [δ2−kP (`), δ2−kP (` + 1)] we define the semi-tile
P (r) by

P (r) = IP × ωP (r), where ωP (r) =
[
δ2−kP (`+

1

2
r), δ2−kP (`+

1

2
(r + 1))

]
.

Note that P (r) is not a tile and also ωP (r) 6∈ Dα. The model operator is built up using
a large family of wave packets adapted to tiles. It is convenient to generate this family
by letting the symmetry group of our operator act on a single bump function. For this
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purpose, let φ be a Schwartz function on Rn such that 0 ≤ φ̂ ≤ 1 with φ̂ being supported
in [− b0

2 ,
b0
2 ]n and equal to 1 on [− b1

2 ,
b1
2 ]n, where 0 < b1 < b0 � 1 are some fixed, small

numbers whose ratio is not too large (it becomes clear what precisely is required in
Section 1.7). For example, we may set b0 = 1

10 , b1 = 9
100 . We denote translation,

modulation and dilation of a function f by

Tyf(x) = f(x− y), (y ∈ Rn)

Mξf(x) = eixξf(x), (ξ ∈ Rn)

Dp
λf(x) = λ

− |α|
p f (δλ−1(x)) , (λ, p > 0),

where |α| =
∑n

i=1 αi.
Given a tile P and N ∈ Rn we define the wave packets φP , ψ

N
P on Rn by

φP (x) = Mc(ωP (0))Tc(IP )D
2
2k(P )φ(x) (1.3.3)

ψ̂NP (ξ) = TNm(ξ) · φ̂P (ξ) (1.3.4)

We would like to think of φP as being time-frequency supported in the semi-tile P (0).
However, as an instance of the Heisenberg uncertainty principle a non-zero function can
only be compactly supported either in frequency or in time (indeed, by the Paley-Wiener
theorem the Fourier transform of a compactly supported function is analytic). Here we

have that φ̂P is compactly supported in (a small cube centrally contained in) ωP (0) and
|φP | decays rapidly outside of IP .

For N ∈ Rn and r 6= 0 we introduce the dyadic model sum operator

Ar,mN f(x) =
∑
P∈P

〈f, φP 〉ψNP (x)1ωP (r)
(N). (1.3.5)

Theorem 1.3.2. For every large enough integer ν0 there exists C > 0 depending only
on ν0, α and the choice of φ such that for all multipliers m ∈M ν0 we have

‖ sup
N∈Rn

|Ar,mN f |‖2,∞ ≤ C‖m‖M ν0‖f‖2. (1.3.6)

In the isotropic case α = (1, . . . , 1) this theorem was proved by Pramanik and Ter-
willeger [PT03]. An extension to strong Lp for p ∈ (1,∞) is contained in [GTT04].
We speculate that one can also extend (1.3.6) to Lp for p ∈ (1,∞) bounds using the
approach of [GTT04].

The proof of the theorem is contained in Sections 1.4, 1.5, 1.6, 1.7. We conclude
this section by showing that Theorem 1.3.2 implies Theorem 1.1.1. For this purpose we
employ the averaging procedure of Lacey and Thiele [LT00] combined with an anisotropic
cone decomposition of the multiplier m. The term (anisotropic) cone will always refer
to a subset Θ ( Rn of the form

Θ = {δt(ξ) : t > 0, ξ ∈ Q}
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for some cube Q ⊂ Rn. Let us denote Bs = {x : ρ(x) ≤ s}. Let

Ar,mf(x) = lim
R→∞

1

R2|α|

∫
BR

∫
BR

∫ 1

0
M−ηT−yD

2
2−sA

r,m
2−sηD

2
2sTyMηf(x)dsdydη. (1.3.7)

Lemma 1.3.3. For every r ∈ {0, 1}n and every test function f , the function Ar,mf(x)
is well-defined and also a test function. We have

Âr,mf(ξ) = θr(ξ)m(ξ)f̂(ξ)

for some smooth function θr that is independent of m. Moreover, there exists a constant
ε0 > 0 and an anisotropic cone Θr such that

θr(ξ) > ε0 for all ξ ∈ Θr.

and
(−∞, ε0]n ⊂

⋃
r∈{0,1}n\{0}

Θr. (1.3.8)

Proof. Well-definedness (that is, existence of the limit) follows by pondering the follow-
ing proof with that issue in mind. By expanding definitions we see that

(M−ηT−yD
2
2−sA

r,m
2−sηD

2
2sTyMηf)∧(ξ)

is equal to (up to a universal constant)

m(ξ)
∑
P∈P

〈f̂ ,T−η+δ2s (c(ωP (0)))My−δ2−s (c(IP ))D
2
2s−kP

φ̂〉

× T−η+δ2s (c(ωP (0)))My−δ2−s (c(IP ))D
2
2s−kP

φ̂(ξ)1ωP (r)
(δ2−s(η)),

where we have used that m(δ2−s(ξ)) = m(ξ). The previous display equals

m(ξ)
∑
k∈Z

∑
`∈Zn

∑
u∈Zn

2−|α|(s−k)

∫
Rn
f̂(ζ)ei(y−δ2−s+k (u+ 1

2
))(ξ−ζ)φ̂

(
δ2−s+k(ζ + η)−

(
`+

1

4

))
dζ

× φ̂
(
δ2−s+k(ξ + η)−

(
`+

1

4

))
1ωP (r)

(δ2−s(η)).

Applying the Poisson summation formula to the summation in u and using the Fourier
support information of the function φ we see that the previous display equals (up to a
universal constant)

m(ξ)f̂(ξ)
∑
k∈Z

∑
`∈Zn
|φ̂|2

(
δ2−s+k(ξ + η)−

(
`+

1

4

))
1ωP (r)

(δ2−s(η)).

Observe that the expression no longer depends on the variable y. It remains to compute
the function θr(ξ) = c · limR→∞ IR(ξ), where c is a universal constant and

IR(ξ) =
1

R|α|

∫
BR

∫ 1

0

∑
k∈Z

∑
`∈Zn
|φ̂|2

(
δ2−s+k(ξ + η)−

(
`+

1

4

))
1ωP (r)

(δ2−s(η))dsdη.
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Note the formula ∫ 1

0

∑
k∈Z

F (2k−s)ds =
1

log 2

∫ ∞
0

F (t)
dt

t
,

which follows from a change of variables 2k−s → t. Using this we have

IR(ξ) =
c

R|α|

∫
BR

∫ ∞
0

∑
`∈Zn
|φ̂|2

(
δt(ξ + η)−

(
`+

1

4

))
1Qr(δt(η)− `)dt

t
dη,

where Qr =
[

1
2r,

1
2(r+ 1)

]
=
∏n
i=1

[
1
2ri,

1
2(ri+ 1)

]
and c = (log 2)−1 (c may change from

line to line in this proof). To simplify our expression further we perform the change of
variables

δt(ξ + η)− `→ ζ

in the integration in η. This yields

IR(ξ) = c

∫
Rn

∫ ∞
0

χ(ζ)1Qr(ζ − δt(ξ))

(∑
`∈Zn

1ρ(ζ+`−δt(ξ))≤tR

(tR)|α|

)
dt

t
dζ (1.3.9)

where we have set

χ(ζ) = |φ̂|2
(
ζ − 1

4

)
.

Observe that the integrand in (1.3.9) is supported in a compact subset of Rn × (0,∞)
(which depends on ξ). By counting the ` for which the summand is non-zero we see that
for every fixed ζ, ξ ∈ Rn and t > 0 the sum∑

`∈Zn

1ρ(ζ+`−δt(ξ))≤tR

(tR)|α|

converges to a universal constant as R→∞. Thus, from Lebesgue’s dominated conver-
gence theorem we conclude that

θr(ξ) = c

∫
Rn

∫ ∞
0

χ(ζ)1Qr(ζ − δt(ξ))
dt

t
dζ. (1.3.10)

Evidently we have θr(δt(ξ)) = θr(ξ) for every t > 0 and ξ ∈ Rn. From our choice of φ
we get that χ is supported on Q(0) and equal to one on Q(1), where

Q(j) =
[1

4
− bj

2
,
1

4
+
bj
2

]
for j = 0, 1. Let us set

Θr = {δt(ξ) : ξ ∈ Q(1) −Qr}.

Then we can read off (1.3.10) that θr is greater than some positive constant on Θ
(1)
r .

Note that

Q(j) −Qr =
[
− 1

2
r −

(1

4
+
bj
2

)
,−1

2
r +

(1

4
+
bj
2

)]
.

Looking at the anisotropic cone generated by each of the regions Q(1) −Qr we see that
(1.3.8) is satisfied for sufficiently small ε0.
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In the isotropic case α = (1, . . . , 1) we can assume without loss of generality that
the multiplier m is supported in some arbitrarily chosen cone (see [PT03]). Then we
could finish the proof of Theorem 1.1.1 by applying Theorem 1.3.2 to a fixed r and
the multiplier m̃(ξ) = θ−1

r (ξ)m(ξ). However, due to the lack of rotation invariance this
assumption becomes invalid in the anisotropic setting.

Proof of Theorem 1.1.1. Let m ∈M ν0 . Without loss of generality we may assume that
m is supported in the “quadrant” (−∞, 0]n (this is all that is left of rotation invariance
in the anisotropic setting). By (1.3.8) we can choose smooth functions (%r)r such that
%r is supported in Θr and ∑

r∈{0,1}n\{0}

%r(ξ) = 1

for ξ ∈ (−∞, 0]n. By the triangle inequality and Lemma 1.3.3, we have

‖Cmf‖2,∞ ≤
∑

r∈{0,1}n\{0}

‖ sup
N∈Rn

|Ar,θ−1
r %rmMNf |‖2,∞.

Here θ−1
r refers to the function ξ 7→ (θr(ξ))

−1, which is bounded on Θr. By (1.3.7) and
Minkowski’s integral inequality, the previous is no greater than

∑
r∈{0,1}n\{0}

lim sup
R→∞

1

R2|α|

∫
BR

∫
BR

∫ 1

0
‖ sup
N∈Rn

|Ar,θ
−1
r %rm

N D2
2sTyMηf |‖2,∞dsdydη,

which by Theorem 1.3.2 is bounded by

C
∑

r∈{0,1}n\{0}

‖θ−1
r %rm‖M ν0‖f‖2 . ‖m‖M ν0‖f‖2.

1.4 Boundedness of the model operator

In this section we describe the proof of Theorem 1.3.2. We follow [LT00]. First, we
perform some preliminary reductions. Given a measurable function N : Rn → Rn we
define

Tf(x) = ArN(x)f(x).

Note that the estimate (1.3.6) is equivalent to showing

‖Tf‖2,∞ ≤ C‖m‖M ν0‖f‖2

with C not depending on the choice of the measurable function N . This has the benefit
that we are now concerned with a linear operator, rather than a sublinear operator.
This linearization was already used by Kolmogorov and Seliverstov [KS24] to prove a
certain (very) weak predecessor of Carleson’s theorem. By duality, it is equivalent to
show

|〈Tf,1E〉| . ‖m‖M ν0 |E|
1
2 ‖f‖2,
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where E is an arbitrary measurable set. By scaling, we may assume without loss of
generality that ‖f‖2 = 1 and |E| ≤ 1. Thus, by the triangle inequality, it suffices to
show that ∑

P∈P
|〈f, φP 〉〈1E∩N−1(ωP (r))

, ψ
N(·)
P 〉| . ‖m‖M ν0 , (1.4.1)

for all finite sets of tiles P ⊂ P, with the implied constant being independent of
f,E,N,P. Throughout this and the following sections we fix r ∈ {0, 1}n \ {0}. Be-
fore we continue we need to introduce certain collections of tiles called trees. There is a
partial order on tiles defined by

P ≤ P ′ if IP ⊂ IP ′ and c(ωP ′) ∈ ωP .

Observe that two tiles are comparable with respect to ≤ if and only if they have a
non-empty intersection.

Definition 1.4.1. A finite collection T ⊂ P of tiles is called a tree if there exists P ∈ T
such that P ′ ≤ P for every P ′ ∈ T. In that case, P is uniquely determined and referred
to as the top of the tree T. We denote the top of a tree T by PT = IT × ωT and write
kT = |IT|1/|α|.
A tree T is called a 1–tree if c(ωT) 6∈ ωP (r) for all P ∈ T and it is called a 2–tree if
c(ωT) ∈ ωP (r) for all P ∈ T. These names are due to historical reasons (see [LT00]).

The notion of a tree was first introduced by C. Fefferman [Fef73]. For a tile P ∈ P
we write

EP = E ∩N−1(ωP ) and EP (r) = E ∩N−1(ωP (r)).

The mass of a single tile P is defined as

M(P ) = sup
P ′≥P

∫
EP ′

wν1
P ′(x)dx, (1.4.2)

where ν1 is a fixed large integer depending only on |α| that is to be determined later
and

wνP (x) = Tc(IP )D
1
2k(P )w

ν(x),

where the weight wν takes the form

wν(x) = (1 + ρ(x))−ν .

For convenience we also write wP = wν1
P . For a collection of tiles P ⊂ P we define their

mass as

M(P) = sup
P∈P
M(P ) = sup

P∈P
sup
P ′≥P

∫
EP ′

wP ′(x)dx. (1.4.3)

The energy of a collection of tiles P is defined as

E(P) = sup
T⊂P 2−tree

(
1

|IT |
∑
P∈T
|〈f, φP 〉|2

)1/2

. (1.4.4)

These quantities and the following lemmas originate in [LT00].
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Lemma 1.4.2 (Mass lemma). There exists C > 0 depending only on α such that for
every finite set of tiles P ⊂ P there is a decomposition P = Plight ∪ Pheavy such that

M(Plight) ≤ 2−2M(P) (1.4.5)

and Pheavy is a union of a set T of trees such that∑
T∈T
|IT| ≤

C

M(P)
. (1.4.6)

Lemma 1.4.3 (Energy lemma). There exists C > 0 depending only on α such that for
every finite set of tiles P ⊂ P there is a decomposition P = Plow ∪ Phigh such that

E(Plow) ≤ 2−1 E(P) (1.4.7)

and Phigh is a union of a set T of trees such that∑
T∈T
|IT| ≤

C

E(P)2
. (1.4.8)

Lemma 1.4.4 (Tree estimate). There exists C > 0 depending only on α such that if
m ∈M ν0, then the following inequality holds for every tree T:∑

P∈T
|〈f, φP 〉〈ψN(·)

P ,1EP (r)
〉| ≤ C‖m‖M ν0 |IT|E(T)M(T) (1.4.9)

The proofs of these lemmas are contained in Sections 1.5, 1.6 and 1.7. By iterated
application of these lemmas we obtain a proof of (1.4.1). This argument is literally the
same as in [LT00], but we include it here for convenience of the reader. Let P be a finite
collection of tiles. We will decompose P into disjoint sets (P`)`∈N (where N is some
finite set of integers) such that each P` satisfies

M(P`) ≤ 22` and E(P`) ≤ 2` (1.4.10)

and is equal to the union of a set of trees T` such that∑
T∈T`

|IT| ≤ C2−2`. (1.4.11)

This is achieved by the following procedure:

(1) Initialize Pstock := P and choose an initial ` that is large enough such that

M(Pstock) ≤ 22` and E(Pstock) ≤ 2`. (1.4.12)

(2) If M(Pstock) > 22(`−1), then apply Lemma 1.4.2 to decompose Pstock into Plight

and Pheavy. We add1 Pheavy to P` and update Pstock := Plight (thus, we now have
M(Pstock) ≤ 22(`−1)).

(3) If E(Pstock) > 2`−1, then apply Lemma 1.4.3 to decompose Pstock into Plow

1We can think of all the P` as being initialized by the empty set.
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and Phigh. We add Phigh to P` and update Pstock := Plow (thus, we now have
E(Pstock) ≤ 2`−1).

(4) If Pstock is not empty, then replace ` by `− 1 and go to Step (2).

Then we can finish the proof of (1.4.1) by using (1.4.10), (1.4.11), (1.4.9) and keeping
in mind that we always have M(P) ≤ ‖wν1‖1:∑

P∈P
|〈f, φP 〉〈1E∩N−1(ωP (r))

, ψ
N(·)
P 〉| =

∑
`∈N

∑
T∈T`

∑
P∈T
|〈f, φP 〉〈1E∩N−1(ωP (r))

, ψ
N(·)
P 〉|

. ‖m‖M ν0

∑
`∈N

2`min(1, 22`)
∑
T∈T`

|IT| . ‖m‖M ν0

∑
`∈Z

2−`min(1, 22`) . ‖m‖M ν0 .

To conclude this section we list several basic estimates for m,K, φP , ψ
N
P which are

used during the remainder of the proof. All of these are very standard, but for the sake
of completeness we provide proofs in Section 1.8. First, from the definition of M ν we
have the symbol estimate

|∂νi m(ξ)| ≤ ‖m‖M νρ(ξ)−ναi (1.4.13)

for every integer ν ≤ ν0 and i = 1, . . . , n. If we let K denote the corresponding kernel
(that is, K̂ = m), we have

|K(x)| . ‖m‖M |α|+1ρ(x)−|α| (1.4.14)

for x 6= 0. This is a consequence of an anisotropic variant of the well-known Hörmander-
Mikhlin multiplier theorem (we prove this estimate in Section 1.8).

Recall that α denotes the least common multiple of α1, . . . , αn. For every integer
ν ≥ 0 which is a multiple of α we have that ψNP satisfies the following decay estimate
provided that N 6∈ ωP (0):

|ψNP (x)| . ‖m‖M ν |IP |1/2wνP (x), (1.4.15)

where the implicit constant depends only on ν, α and the choice of φ.
The next estimates concern the interaction of two wave packets associated with

distinct tiles. Let P, P ′ ∈ P be tiles. The idea is that if P, P ′ are disjoint (or
equivalently, incomparable with respect to ≤) then their associated wave packets are
almost orthogonal, i.e. 〈φP , φP ′〉 is negligibly small. Indeed, if ωP and ωP ′ are disjoint,
then we even have 〈φP , φP ′〉 = 0. However, as an artifact of the Heisenberg uncertainty
principle, in the case that only IP and IP ′ are disjoint, we need to deal with tails. The
precise estimate we need is as follows. Assume that |IP | ≥ |IP ′ |. Then for every integer
ν ≥ |α|+ 1 we have that

|〈φP , φP ′〉| . |IP |−
1
2 |IP ′ |

1
2 (1 + 2−kP ρ(c(IP )− c(IP ′)))−ν , (1.4.16)

where the implicit constant depends only on ν and φ. See [Thi06, Lemma 2.1] for the
version of this estimate for one-dimensional wave packets. Similarly, we have

|〈ψNP , ψNP ′〉| . ‖m‖2M ν |IP |−
1
2 |IP ′ |

1
2 (1 + 2−kP ρ(c(IP )− c(IP ′)))−ν , (1.4.17)
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for every integer ν ≥ |α|+ 1 which is a multiple of α, provided that N 6∈ ωP (0) ∪ ωP ′(0).

1.5 Proof of the mass lemma

In this section we prove Lemma 1.4.2. The proof is in essence the same as in [LT00,
Prop. 3.1]. Let P be a finite set of tiles and set µ =M(P). We define the set of heavy
tiles by

Pheavy =
{
P ∈ P : M(P ) >

µ

4

}
and accordingly Plight = P\Pheavy. Then (1.4.5) is automatically satisfied. It remains
to show (1.4.6). By the definition of mass (1.4.2) we know that for every P ∈ Pheavy

there exists a P ′ = P ′(P ) ∈ P with P ′ ≥ P such that∫
EP ′

wP ′(x)dx >
µ

4
(1.5.1)

Note that P ′ need not be in P. Let P ′ be the maximal elements in

{P ′(P ) : P ∈ Pheavy}

with respect to the partial order ≤ of tiles. Then Pheavy is a union of trees with tops in
P ′. Therefore it suffices to show ∑

P∈P ′
|IP | ≤

C

µ
(1.5.2)

First we rewrite (1.5.1) as

∞∑
j=0

∫
EP∩(δ

2j
(IP )\δ

2j−1 (IP ))
wP (x)dx > Cµ

∞∑
j=0

2−j . (1.5.3)

where we adopt the temporary convention that δ2−1(IP ) = ∅ and for j ≥ 0,

δ2j (IP ) =

n∏
i=1

[
c(IP )i − 2(kP+j)αi−1, c(IP )i + 2(kP+j)αi−1

)
.

Thus, for every P ∈ P ′ there exists a j ≥ 0 such that∫
EP∩(δ

2j
(IP )\δ

2j−1 (IP ))

dx

(1 + 2−kP ρ(x− c(IP )))
ν1
> C|IP |µ2−j . (1.5.4)

Note that for x ∈ δ2j (IP )\δ2j−1(IP ) we have

1 + 2−kP ρ(x− c(IP )) ≥ C2j .

Using this we obtain from (1.5.4),

|IP | < Cµ−1|EP ∩ δ2j (IP )|2−(ν1−1)j . (1.5.5)
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Summarizing, we have shown that for every P ∈ P ′ there exists j ≥ 0 such that (1.5.5)
holds. This leads us to define for every j ≥ 0, a set of tiles Pj by

Pj = {P ∈ P ′ : |IP | < Cµ−1|EP ∩ δ2j (IP )|2−j(ν1−1)}.

The estimate (1.5.2) will follow by summing over j if we can show that∑
P∈Pj

|IP | ≤ C2−jµ−1 (1.5.6)

for all j ≥ 0. To show (1.5.6) we use a covering argument reminiscent of Vitali’s covering
lemma. Fix j ≥ 0. For every tile P = IP ×ωP we have an enlarged tile δ2j (IP )×ωP (this
is not a tile anymore). We inductively choose Pi ∈ Pj such that |IPi | is maximal among
the P ∈ Pj\{P0, . . . , Pi−1} and the enlarged tile of Pi is disjoint from the enlarged tiles
of P0, . . . , Pi−1. Since Pj is finite, this process terminates after finitely many steps, so
that we have selected a subset P ′j = {P0, P1, . . . } ⊂ Pj of tiles whose enlarged tiles are
pairwise disjoint. By construction, for every P ∈ Pj there exists a unique P ′ ∈ P ′j such
that |IP | ≤ |IP ′ | and the enlarged tiles of P and P ′ intersect. We call P associated with
P ′.
Now the claim is that if two tiles P,Q ∈ Pj are associated with the same P ′ ∈ P ′j , then
IP and IQ are disjoint. To see this note that ωP intersects ωP ′ by definition. Thus, since
|IP | ≤ |IP ′ |, we have ωP ′ ⊂ ωP . The same holds for Q. Therefore we have ωP ′ ⊂ ωP∩ωQ.
But P,Q ∈ Pj ⊂ P ′ are disjoint tiles, so we must have IP ∩ IQ = ∅. Moreover, all tiles
P associated with P ′ satisfy IP ⊂ δ2j+2(IP ′). Therefore we get

∑
P∈Pj

|IP | =
∑
P ′∈P ′j

∑
P∈Pj

assoc. withP ′

|IP | =
∑
P ′∈P ′j

∣∣∣∣∣∣∣∣
⋃
P∈Pj

assoc. withP ′

IP

∣∣∣∣∣∣∣∣
≤
∑
P ′∈P ′j

2(j+2)|α||IP ′ | ≤ Cµ−12−j(ν1−|α|−1)
∑
P ′∈P ′j

|E ∩N−1(ωP ′) ∩ δ2j (IP ′)|

≤ C2−jµ−1,

provided that ν1 > |α|+ 1. The penultimate inequality is a consequence of (1.5.5) and
the last inequality follows, because the sets N−1(ωP ′)∩δ2j (IP ′) are disjoint and |E| ≤ 1.

1.6 Proof of the energy lemma

In this section we prove Lemma 1.4.3. We adapt the argument of Lacey and Thiele
[LT00, Prop. 3.2]. The tree selection algorithm of Lacey and Thiele relies on the natural
ordering of real numbers. In our situation this can be replaced by any functional on
Rn that separates ωP (0) from ωP (r) for every tile P ∈ P (this was already observed
in [PT03]). Let i0 be such that ri0 = 1 (exists because r 6= 0). Let us introduce the
projection to the i0th coordinate: π0 : Rn → R, x 7→ xi0 . Then we have that

π0(ξ) < π0(η) (1.6.1)

24



holds for every ξ ∈ ωP (0), η ∈ ωP (r), P ∈ P.
Let ε = E(P). For a 2–tree T2 we define

∆(T2) =

 1

|IT2 |
∑
P∈T2

|〈f, φP 〉|2
1/2

.

We will now describe an algorithm to choose the desired collection of trees T and also
an auxiliary collection of 2–trees T2:

(1) Initialize T := T2 := ∅ and Pstock := P.

(2) Choose a 2–tree T2 ⊂ Pstock such that

(a) ∆(T2) ≥ ε/2, and

(b) π0(c(ωT2)) is minimal among all the 2–trees in Pstock satisfying (a).

If no such T2 exists, then terminate.

(3) Let T be the maximal tree in Pstock with top PT2 (with respect to set inclusion).

(4) Add T to T and T2 to T2. Also, remove all the elements of T from Pstock. Then
continue again with Step (2).

Since P is finite it is clear that the algorithm terminates after finitely many steps.
Also note for every T ∈ T there exists a unique T2 ∈ T2 with T2 ⊂ T, and vice versa.
After the algorithm terminates we set Plow = Pstock and Phigh to be the union of the
trees in T . Then, (1.4.7) is automatically satisfied and it only remains to show∑

T2∈T2

|IT2 | . ε−2. (1.6.2)

Before we do that we establish a geometric property of the selected trees that will be
crucial in the following. This has been referred to as strong disjointness (see [Lac04]).

Lemma 1.6.1. Let T2 6= T′2 ∈ T2 and P ∈ T2, P
′ ∈ T′2. If ωP ⊂ ω1P ′, then IP ′ ∩IT2 =

∅.

Proof. Note that c(ωT2) ∈ ωP ⊂ ωP ′(0) while c(ωT′2
) ∈ ωP ′(r). By (1.6.1) and condition

(b) in Step (2) we therefore conclude that T2 was chosen before T′2 during the above
algorithm. Let T be the tree in T such that T2 ⊂ T. Thus, if IP ′ was not disjoint
from IT2 = IT, then it would be contained in IT and therefore P ′ ≤ PT which means it
would have been included into T during Step (3). That is a contradiction.

The sum in (1.6.2) equals∑
T2∈T2

∆(T2)−2
∑
P∈T2

|〈f, φP 〉| ≤ 4ε−2
∑

P∈
⋃
T2

|〈f, φP 〉|2,

where
⋃
T2 =

⋃
T2∈T2 T2. Let us write∑

P∈
⋃
T2

|〈f, φP 〉|2 =
〈 ∑
P∈
⋃
T2

〈f, φP 〉φP , f
〉

(1.6.3)
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and use the Cauchy-Schwarz inequality to estimate this by∥∥∥ ∑
P∈
⋃
T2

〈f, φP 〉φP
∥∥∥

2
, (1.6.4)

where we used that ‖f‖2 = 1. So far we have shown that

ε2
∑

T2∈T2

|IT2 | .
∥∥∥ ∑
P∈
⋃
T2

〈f, φP 〉φP
∥∥∥

2
. (1.6.5)

Thus if we can show that∥∥∥ ∑
P∈
⋃
T2

〈f, φP 〉φP
∥∥∥2

2
. ε2

∑
T2∈T2

|IT2 |, (1.6.6)

then (1.6.2) follows. Expanding the L2 norm in (1.6.6) we get that the left hand side is
bounded by∑

P,P ′∈
⋃
T2,

ωP=ωP ′

|〈f, φP 〉〈f, φP ′〉〈φP , φP ′〉|+ 2
∑

P,P ′∈
⋃
T2,

ωP⊂ωP ′(0)

|〈f, φP 〉〈f, φP ′〉〈φP , φP ′〉|. (1.6.7)

Here we have used that 〈φP , φ′P 〉 = 0 if ωP (0)∩ωP ′(0) = ∅ and therefore either ωP = ωP ′ ,
ωP ⊂ ωP ′(0), or ωP ′ ⊂ ωP (0) (the last two cases are symmetric). We treat both sums in
this term separately. Estimating the smaller one of |〈f, φP 〉| and |〈f, φP ′〉 by the larger
one, we obtain that the first sum in (1.6.7) is

.
∑

P∈
⋃
T2

|〈f, φP 〉|2
∑

P ′∈
⋃
T2,

ωP=ωP ′

|〈φP , φP ′〉|.

Using (1.4.16) we estimate this by∑
P∈
⋃
T2

|〈f, φP 〉|2
∑

P ′∈
⋃
T2,

ωP=ωP ′

(1 + 2−kP ρ(c(IP )− c(IP ′)))−ν . (1.6.8)

Notice that IP ∩ IP ′ = ∅ for P 6= P ′ in the inner sum. This implies∑
P ′∈

⋃
T2,

ωP=ωP ′

(1 + 2−kP ρ(c(IP )− c(IP ′)))−ν .
∫
Rn

(1 + ρ(x))−νdx . 1,

provided that ν > |α|. Therefore (1.6.8) is

.
∑

T2∈T2

∑
P∈T2

|〈f, φP 〉|2 ≤ ε2
∑

T2∈T2

|IT2 |, (1.6.9)

as desired. It remains to estimate the second sum in (1.6.7). To that end it suffices to
show that ∑

P∈T2

∑
P ′∈SP

|〈f, φP 〉〈f, φP ′〉〈φP , φP ′〉| . ε2|IT2 |, (1.6.10)
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for every T2 ∈ T2, where

SP =
{
P ′ ∈

⋃
T2 : ωP ⊂ ωP ′(0)

}
.

Here we follow the argument given in [Lac04]. Observe that if P ∈ T2, then SP ∩T2 = ∅.
Interpreting the singleton {P} as a 2–tree we obtain

|〈f, φP 〉| ≤ ε|IP |1/2 (1.6.11)

for all P ∈ P. Combining this with (1.4.16) we can estimate the left hand side of (1.6.10)
by

ε2
∑
P∈T2

∑
P ′∈SP

|IP ′ |(1 + 2−kP ρ(c(IP )− c(IP ′)))−ν . (1.6.12)

This is the point where we make use of the strong disjointness property. Indeed, Lemma
1.6.1 implies that IT2∩IP ′ = ∅ for every P ∈ T2, P

′ ∈ SP . Moreover, it also implies that
for P ′ 6= P ′′ ∈ SP we have IP ′ ∩ IP ′′ = ∅. These facts facilitate the following estimate:∑
P∈T2

∑
P ′∈SP

|IP ′ |(1+2−kP ρ(c(IP )− c(IP ′)))−ν .
∑
P∈T2

∑
P ′∈SP

∫
IP ′

(1+2−kP ρ(c(IP )− x))−νdx

.
∑
P∈T2

∫
(IT2

)c
(1 + 2−kP ρ(c(IP )− x))−ν .

Since T2 is a tree, the last quantity can be estimated by∑
k≤kT2

∑
u∈Qk∩(Zn+ 1

2
)

∫
(IT2

)c
(1 + ρ(u− δ2−k(x)))−νdx,

where Qk ∈ Dα is an anisotropic dyadic rectangle of scale kT2 − k that is given by a
rescaling of IT2 . The previous display is no greater than a constant times

∑
k≤kT2

2k|α|

 ∑
u∈Qk∩(Zn+ 1

2
)

(1 + distα((Qk)
c, u)−|α|−γ

(∫
Rn

(1 + ρ(x))−(ν−|α|−γ)dx

)
,

(1.6.13)

where ν > 2|α| and γ is a fixed and sufficiently small positive constant. The integral
over x in the previous display is bounded by a constant depending on ν − |α| − γ > |α|.
To estimate the sum over u we note that for every u in the indicated range there exists
a lattice point v ∈ ∂Qk∩Zn such that distα((Qk)

c, u) ≥ 1
2ρ(v − u). Thus we may bound

the sum over u by∑
v∈∂Qk∩Zn

∑
u∈Zn+ 1

2

(1 + ρ(v − u))−|α|−γ . |∂Qk ∩ Zn| . 2(kT2
−k)|α|∞ .

Thus, (1.6.13) is bounded by a constant times

2kT2
|α|∞

∑
k≤kT2

2k(|α|−|α|∞) . 2kT2
|α| = |IT2 |.
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This proves (1.6.10).

1.7 Proof of the tree estimate

In this section we prove Lemma 1.4.4. The proof follows the method set forth in [LT00],
but diverges from it in some technical points. For a rectangle I =

∏n
i=1 Ii ∈ Dα we

denote by Ĩ the enlarged rectangle defined by

Ĩ =
n∏
i=1

(2αi+1 − 1)Ii.

Here λIi is the interval of length λ|Ii| with the same center as Ii. Let J be the partition
of Rn that is given by the collection of maximal anisotropic dyadic rectangles J ∈ Dα
such that J̃ does not contain any IP with P ∈ T (maximal with respect to inclusion).
Set ε = E(T) and µ =M(T). Choose phase factors (εP )P of modulus 1 such that∑

P∈T
|〈f, φP 〉〈ψN(·)

P ,1EP (r)
〉| =

∫
Rn

∑
P∈T

εP 〈f, φP 〉ψN(x)
P (x)1EP (r)

(x)dx

≤

∥∥∥∥∥∑
P∈T

εP 〈f, φP 〉ψNP 1EP (r)

∥∥∥∥∥
1

≤ K1 +K2,

where
K1 =

∑
J∈J

∑
P∈T,|IP |≤|J+|

‖〈f, φP 〉ψN(·)
P 1EP (r)

‖L1(J),

K2 =
∑
J∈J

∥∥∥∥∥∥
∑

P∈T,|IP |>|J+|

εP 〈f, φP 〉ψN(·)
P 1EP (r)

∥∥∥∥∥∥
L1(J)

.

We first estimate K1. This is the easy part, since in the sum defining K1 we have that
IP is disjoint from J̃ . Again, interpreting the singleton {P} as a 2–tree we see that
(1.6.11) holds for all P ∈ T. This gives

K1 ≤ ε
∑
J∈J

∑
P∈T

|IP |≤|J+|

2|α|kP /2‖ψN(·)
P 1EP (r)

‖L1(J).

Using (1.4.15) the previous display is seen to be no larger than a constant times

‖m‖M ν1+ν2ε
∑
J∈J

∑
P∈T

|IP |≤|J+|

∫
J∩EP (r)

wν1+ν2(2−kP (x− c(IP )))dx

≤ ‖m‖M ν1+ν2εµ
∑
J∈J

∑
P∈T

|IP |≤|J+|

2|α|kP sup
x∈J

wν2(2−kP (x− c(IP ))), (1.7.1)

28



where ν1 is as in (1.4.3) and ν2 is to be determined later. Since IP is disjoint from J̃ we
have

w(2−kP (x− c(IP ))) . w(2−kP distα(J, IP ))

for x ∈ J . Thus (1.7.1) is

. ‖m‖M ν1+ν2εµ
∑
J∈J

∑
k∈Z,

2k|α|≤|J+|

2|α|k
∑
P∈T,
kP=k

wν2(2−kdistα(J, IP )). (1.7.2)

Before we proceed, we claim that for every ν > |α|, k ∈ Z and fixed J ∈ J with
2k|α| ≤ |J+| we have ∑

P∈T,
kP=k

wν(2−kdistα(J, IP )) . 1, (1.7.3)

where the implicit constant blows up as ν approaches |α|. To verify the claim, let us
assume for simpler notation that J is centered at the origin. Then by disjointness of IP
and J̃ we have

distα(J, IP ) & distα(0, IP ) & 2kρ(m),

where m = (m1, . . . ,mn) ∈ Zn is such that IP =
∏n
i=1[2kαimi, 2

kαi(mi + 1)). Thus the
sum in (1.7.3) is

.
∑
m∈Zn

(1 + ρ(m))−ν ,

which implies the claim.
Now let us write ν2 = ν3 + ν4 with ν3, ν4 large enough and estimate (1.7.2) by

. ‖m‖M ν1+ν2εµ
∑
J∈J

wν3(2−kTdistα(J, IT ))
∑
k∈Z,

2k|α|≤|J+|

2|α|k. (1.7.4)

Here kT is the scale of IT and we have used (1.7.3) and

2−kdistα(J, IP ) ≥ 2−kTdistα(J, IT).

Summing the geometric series, (1.7.4) is

. ‖m‖M ν1+ν2εµ
∑
J∈J

wν3(2−kTdistα(J, IP ))|J |.

The sum in that expression can be estimated as follows:∑
J∈J

wν3(2−kTdistα(J, IP ))|J | .
∑
J∈J

∫
J
(1 + 2−kTρ(x− c(IT)))−ν2dx.

By disjointness of the J we can bound this by∫
Rn

(1 + 2−kTρ(x− c(IT)))−ν3dx = |IT|
∫
Rn

(1 + ρ(x))−ν3dx . |IT|,

where the last inequality requires ν2 to be strictly larger than |α|. To summarize, we
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showed that
K1 . ‖m‖M ν1+ν2εµ|IT|,

provided that ν2 > 2|α|.
Let us proceed to estimating K2. This is considerably more difficult. We may assume
that the sum runs only over those J for which there is a P ∈ T such that |IP | > |J+|.
Then |IT| > |J+| and J ⊂ ĨT. From now on let such a J be fixed. Define

GJ = J ∩
⋃

P∈T,|IP |>|J+|

EP (r) (1.7.5)

Before proceeding we prove the following.

Lemma 1.7.1. There exists a constant C > 0 independent of J such that

|GJ | ≤ Cµ|J | (1.7.6)

Proof. By definition of J , there exists P0 ∈ T such that IP0 is contained in J̃+. We claim
that there exists a tile P0 < P ′ < PT such that |IP ′ | = |J++|. Indeed, note |IP0 | ≤ |J++|.
If there is equality, we simply take P ′ = P0. Otherwise we take IP ′ ∈ Dα to be the unique
dyadic ancestor of IP0 such that |IP ′ | = |J++| and choose ωP ′ accordingly such that it
contains c(ωT). Now we have

|ωP | = |IP |−1 ≤ |J++|−1 = |IP ′ |−1 = |ωP ′ |

for every tile P ∈ T with |IP | > |J+|. This implies ωP ⊂ ωP ′ and thus

GJ ⊂ J ∩ EP ′ .

As a consequence,

|GJ | ≤
∫
EP ′

1J(x)dx . |IP ′ |
∫
EP ′

wP ′(x)dx . µ|J |.

Let us define

FJ =
∑
P∈T,
|IP |>|J+|

εP 〈f, φP 〉ψN(·)
P 1EP (r)

. (1.7.7)

Since every tree can be written as the union of a 1–tree and a 2–tree, we may treat each
of these cases separately.

1.7.1 The case of 1–trees

Assume that T is a 1–tree. This is the easier case. The reason is that for every P, P ′ ∈ T,
ωP 6= ωP ′ we have that ωP (r) and ωP ′(r) are disjoint and thus we have good orthogonality
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of the summands in (1.7.7). Using (1.6.11) and (1.4.15) we see that

|FJ(x)| ≤ cνε
∑
P∈T,
|IP |>|J+|

(1 + 2−kP ρ(x− c(IP )))−ν1EP (r)
(x).

Using disjointness of the EP (r) this can be estimated by

cνε · sup
k∈Z

∑
m∈Zn+ 1

2

(1 + 2−kρ(x− δ2k(m)))−ν .

By an index shift we see that∑
m∈Zn+ 1

2

(1 + 2−kρ(x− δ2k(m)))−ν =
∑

m∈Zn+ 1
2

(1 + ρ(m+ γ))−ν ,

where γ ∈ [0, 1]n depends on k and x. The last sum is . 1 independently of γ provided
that ν > |α|. Thus we proved the pointwise estimate

|FJ(x)| . cνε. (1.7.8)

Combining this with the support estimate (1.7.6) we obtain

‖FJ‖L1(J) . cνεµ|J |. (1.7.9)

Summing over the pairwise disjoint J ⊂ ĨT we obtain

K2 . cνεµ|IT|

as desired.

1.7.2 The case of 2–trees

Here we assume that T is a 2–tree. This is the core of the proof. The additional

x-dependence present in the wave packets ψ
N(x)
P makes this part more technically de-

manding than the congruent argument in [LT00]. This is also a main difficulty that
Pramanik and Terwilleger had to overcome in [PT03]. Our argument is perhaps a bit
simpler than that given in [PT03]. The anisotropic setting requires a few technical
modifications.

The goal is again to obtain a pointwise estimate for FJ . In the following we fix x ∈ J
such that FJ(x) 6= 0. Observe that the ωP (r), P ∈ T are nested. Let us denote the
smallest (resp. largest) ωP (r) (resp. ωP ) such that x ∈ N−1(ωP (r)) ∩ E by ω− (resp.

ω+). Let k+ ∈ Z be such that |ω+| = 2k+|α| and k− ∈ Z such that |ω−| = 2−k−|α|−n

(note from the definition that ω− 6∈ Dα if α 6= (1, . . . , 1)). Then the nestedness property
implies

FJ(x) =
∑
P∈T,

k+≤kP≤k−

εP 〈f, φP 〉ψN(x)
P (x)

Define
hx = Mc(ω+)D

1
2k+

φ+ −Mc(ω−)D
1
2k−

φ−,
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where φ+(x) = b−n1 φ(b−1
1 x) and φ− is a Schwartz function satisfying 0 ≤ φ̂− ≤ 1 such

that φ̂− is supported on [− b2
2 ,

b2
2 ] and equals to one on [− b3

2 ,
b3
2 ], where bj+2 = 1

2 + bj

for j = 0, 1. From the definition we see that ĥx is supported on b0b
−1
1 ω+ ∩ (2b3ω−)c

and equal to one on ω+ ∩ (2b2ω−)c. In particular, ĥx(ξ) equals to one if ξ ∈ suppφP
and k+ ≤ kP ≤ k− and vanishes if kP is outside this range. For technical reasons that
become clear further below we need the support of ĥx to keep a certain distance to ω−.
We obtain

FJ(x) =
∑
P∈T

εP 〈f, φP 〉(ψN(x)
P ∗ hx)(x).

Fix ξ0 ∈ ωT. We decompose

FJ(x) =
∑
P∈T

εP 〈f, φP 〉(ψξ0P ∗ hx)(x) +
∑
P∈T

εP 〈f, φP 〉(ψN(x)
P − ψξ0P ) ∗ hx)(x) (1.7.10)

= G ∗Mξ0K ∗ hx(x) +G ∗ (MN(x)K −Mξ0K) ∗ hx(x) (1.7.11)

where
G =

∑
P∈T

εP 〈f, φP 〉φP . (1.7.12)

Before proceeding with the proof we record the following simple variant of a standard
fact about maximal functions (see [Duo01]).

Lemma 1.7.2. Let λ > 0 and w be an integrable function on Rn which is constant on
{ρ(y) ≤ λ} and radial and decreasing with respect to ρ, i.e.

w(x) ≤ w(y)

if ρ(x) ≥ ρ(y), with equality if ρ(x) = ρ(y). Let x ∈ Rn and J ⊂ Rn be such that
J ⊂ {y : ρ(x− y) ≤ λ}. Then we have

|F ∗ w|(x) ≤ ‖w‖1 sup
J⊂I

1

|I|

∫
I
|F (y)|dy,

where the supremum is taken over all anisotropic cubes I ⊂ Rn.

Proof. First we assume that w is a step function. That is,

w(y) =

∞∑
j=1

cj1ρ(y)≤rj

with λ ≤ r1 < r2 < · · · . Then we have

F ∗ w(x) =
∑
j

r
|α|
j cj

1

r
|α|
j

∫
ρ(x−y)≤rj

|F (y)|dy ≤ ‖w‖1 sup
J⊂I

1

|I|

∫
I
|F (y)|dy.

The general case follows by approximation of w by step functions and an application of
Lebesgue’s dominated convergence theorem.

Since
|hx(y)| . 2−k+|α||φ+|(δ2−k+ (y)) + 2−k−|α||φ−|(δ2−k− (y)) (1.7.13)
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and x ∈ J , |J | ≤ 2k+|α| ≤ 2k−|α| we have from Lemma 1.7.2 that

|G ∗Mξ0K ∗ hx(x)| . sup
J⊂I

1

|I|

∫
I
|G ∗Mξ0K(y)|dy. (1.7.14)

Let us assume for the moment that we also have the estimate

|G ∗ (MN(x)K −Mξ0K) ∗ hx(x)| . ‖m‖M ν sup
J⊂I

1

|I|

∫
I
|G(y)|dy (1.7.15)

for some large enough integer ν. We will first show how to finish the proof from here.
At the end of the section we will then show that (1.7.15) indeed holds.
From (1.7.11), (1.7.14), (1.7.15) and Lemma 1.7.1 we see that∑
J∈J ,
J⊂ĨT

‖FJ‖L1(J) . µ
∑
J∈J ,
J⊂ĨT

|J |
(

sup
J⊂I

1

|I|

∫
I
|G ∗Mξ0K(y)|dy + ‖m‖M ν sup

J⊂I

1

|I|

∫
I
|G(y)|dy

)

By disjointness of the J ∈ J this is no greater than

µ
(
‖M(G ∗Mξ0K)‖

L1(ĨT)
+ ‖m‖M ν ‖M(G)‖

L1(ĨT)

)
, (1.7.16)

where M denotes the maximal function defined by

MF (y) = sup
y∈I

1

|I|

∫
I
|F |,

where the supremum runs over all anisotropic cubes I ⊂ Rn. Clearly,M is a bounded op-
erator L2(Rn)→ L2(Rn). To see this, note that it is bounded pointwise by a composition
of one-dimensional Hardy-Littlewood maximal functions applied in each component.

Applying the Cauchy-Schwarz inequality and the L2 boundedness ofM we see that
(1.7.16) is

. µ|IT |
1
2
(
‖G ∗Mξ0K‖2 + ‖m‖M ν ‖G‖2

)
.

By repeating the arguments that lead to the proof of (1.6.6), using (1.4.16) or (1.4.17),
respectively, we obtain that

‖G ∗Mξ0K‖2 + ‖m‖M ν ‖G‖2 . ‖m‖M νε|IT|
1
2

for large enough ν (it should be > 2|α| and a multiple of α). This concludes the proof.
It remains to prove (1.7.15). Let us write

R(y) = (MN(x)K −Mξ0K) ∗ hx(y).

The goal is to estimate R in a way that allows us to apply Lemma 1.7.2. We will give
two different estimates for R. The first one is only effective if ρ(y) is large and the
second one if ρ(y) is small. Let us start with the first estimate. By Fourier inversion,
we can write R(y) (up to a constant) as∫

Rn
(m(ξ −N(x))−m(ξ − ξ0))ĥx(ξ)eiξydξ. (1.7.17)
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Fix y and let i be such that ρ(y) = |yi|1/αi . Then we integrate by parts in the ith
component to see that (1.7.17) is bounded by

. ρ(y)−ν
′αi

∫
Rn

∣∣∣∂ν′ξi [(m(ξ −N(x))−m(ξ − ξ0))ĥx(ξ)
]∣∣∣dξ (1.7.18)

for every integer ν ′ ≥ 0, where we have used that ρ(y) ≥ 2k− to estimate |δ2−k− (y)| ≥
2−k−ρ(y). Let ` be a non-negative integer. Using (1.4.13) we obtain∣∣∣∂`ξi[m(ξ −N(x))−m(ξ − ξ0)

]∣∣∣ ≤ ‖m‖M `(ρ(ξ −N(x))−`αi + ρ(ξ − ξ0)−`αi). (1.7.19)

Recall that ξ0 and N(x) are contained in ω− and the integrand of (1.7.18) is supported
on b0b

−1
1 ω+ ∩ (2b3ω−)c. Also, there exist ω1, . . . , ωM ∈ Dα such that

ω− ( ω1 ( · · · ( ωM = ω+

and |ωj | = 2−kj |α| with k1 = k− and kj+1 = kj − 1. If ξ ∈ (2b3ω−)c we have

min(ρ(ξ −N(x)), ρ(ξ − ξ0)) & 2−k− . (1.7.20)

On the other hand, if ξ ∈ (b0b
−1
1 ωj) ∩ ωcj−1 for j = 2, . . . ,M , then

min(ρ(ξ −N(x)), ρ(ξ − ξ0)) & 2−kj . (1.7.21)

Combining (1.7.19) and (1.7.20), (1.7.21) we get

|∂`ξi
[
m(ξ −N(x))−m(ξ − ξ0)

]
| . ‖m‖M `

M∑
j=1

2kj`αi1b0b−1
1 ωj

(ξ). (1.7.22)

We also have
|∂`ξi ĥx(ξ)| . 2k+`αi1b0b−1

1 ω+
(ξ) + 2k−`αi12b3ω−(ξ). (1.7.23)

Thus we see from (1.7.22) and (1.7.23) that for all i = 1, . . . , n and 0 ≤ ` ≤ ν ′ we obtain∫
Rn

∣∣∣∂`ξi[m(ξ −N(x))−m(ξ − ξ0)
]
∂ν
′−`
ξi

ĥx(ξ)
∣∣∣dξ . ‖m‖M ν′2

k−(ν′αi−|α|),

provided that ν ′αi ≥ |α|. Setting ν = ν ′αi ≥ ν ′, we have shown that

|R(y)| . ‖m‖M ν2−k−|α|(2−k−ρ(y))−ν , (1.7.24)

where ν is a multiple of α satisfying ν ≥ |α|. It remains to find a good estimate for R(y)
when ρ(y) is small. Let us estimate

|R(y)| ≤ R+(y) +R−(y),

where
R± = |(MN(x)K −Mξ0K) ∗D1

2k±
φ±|.
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The first claim is that if ρ(y) ≤ 2k±+1, then

R±(y) . ‖m‖M |α|+12−k±|α|. (1.7.25)

(Here and throughout the proof of this claim ± always stands for a fixed choice of sign,
either + or −.) To see this, we first estimate R±(y) by

2−k±|α|
∫
Rn
|(ei(N(x)−ξ0)z − 1)K(z)φ±(2−k±(y − z))|dz . 2−k±|α|(I + II),

where

I =

∫
ρ(z)≤2k±+2

|(ei(N(x)−ξ0)z − 1)K(z)φ±(2−k±(y − z))|dz, and

II =
∞∑
j=2

∫
2k±+j≤ρ(z)≤2k±+j+1

|K(z)φ±(2−k±(y − z))|dz.

We first estimate I. Changing variables z 7→ δ2k±+2(z) we see that

I .
∫
ρ(z)≤1

|(eiδ2k±+2 (N(x)−ξ0)z − 1)K(z)|dz.

Since |K(z)| . ‖m‖M |α|+1ρ(z)−|α|, the previous display is

. ‖m‖M |α|+1 |δ2k±+2(N(x)− ξ0)|
∫
ρ(z)≤1

|z|ρ(z)−|α|dz.

Using (1.3.1) and ρ(δ2k±+2(N(x)− ξ0)) = 2k±+2ρ(N(x)− ξ0) . 1 we can bound this
further as

. ‖m‖M |α|+1

∫
ρ(z)≤1

ρ(z)1−|α|dz . ‖m‖M |α|+1 .

This proves that I . ‖m‖M |α|+1 . It remains to treat II. Here we make use of the fact
that we have ρ(y − z) ≥ 2k±+j−1 in the integrand of II, because of our assumption
ρ(y) ≤ 2k± . Using the decay of φ± we obtain

II . ‖m‖M |α|+1

∞∑
j=2

2−j
∫

2k±+j≤ρ(z)≤2k±+j+1
ρ(z)−|α|dz . ‖m‖M |α|+1 .

Thus we have proved (1.7.25). The only further ingredient which we need in order to
verify (1.7.15) is a good estimate for R+(y) when 2k++1 ≤ ρ(y) ≤ 2k− . In order to do
this we need to do a slightly more careful decomposition. Let us write

Q` = [δ2k+ (`), δ2k+ (`+ 1)) =
n∏
i=1

[2k+αi`i, 2
k+αi(`i + 1))

for ` ∈ Zn. Assume that y ∈ Q` with 1 ≤ |`|∞ < 2k−−k+ . We have

R+(y) ≤ 2−k+|α|
∑
s∈Zn

∫
Qs

|(ei(N(x)−ξ0)z − 1)K(z)φ+(2−k+(y − z))|dz. (1.7.26)
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Moreover, the same estimates that were used to prove (1.7.25) yield∫
Qs

|(ei(N(x)−ξ0)z − 1)K(z)φ+(2−k+(y − z))|dz

. ‖m‖M |α|+12k+−k−(1 + ρ(s− `))−ν(1 + ρ(s))1−|α|

Plugging this inequality into (1.7.26) we obtain

R+(y) . ‖m‖M |α|+12−k−2k+(1−|α|)
∑
s∈Zn

(1 + ρ(s− `))−ν(1 + ρ(s))1−|α|

. ‖m‖M |α|+12−k−(2k+ρ(`))1−|α|,

where the last inequality requires ν to be large enough. Therefore,

R+(y) . ‖m‖M |α|+12−k−ρ(y)1−|α|. (1.7.27)

Finally, summarizing (1.7.24), (1.7.25) and (1.7.27) we have shown that

|R(y)| . ‖m‖M ν (w0(y) + w+(y) + w−(y) + w1(y)),

where
w0(y) = 2−k−|α|(2−k−ρ(y))−ν1ρ(y)≥2k− ,

w±(y) = 2−k±|α|1ρ(y)≤2k±+1 ,

w1(y) = 2−k−ρ(y)1−|α|12k++1≤ρ(y)≤2k− ,

and ν ≥ |α|+ 1 is an integer multiple of α. Each of these functions is integrable with an
L1(Rn) norm not depending on k−, k+, radial and decreasing with respect to ρ in the
sense of Lemma 1.7.2 and constant on {ρ(y) ≤ 2k+} or {ρ(y) ≤ 2k−}. Thus, applying
Lemma 1.7.2 to each of these functions yields (1.7.15).

1.8 Proofs of auxiliary estimates

In this section we prove (1.4.14), (1.4.15), (1.4.16) and (1.4.17).

Proof of (1.4.14). The proof is a straight-forward adaptation of the proof in the isotropic
case (see [Ste93, Ch. VI.4, Prop. 2, p. 245]). Let ϕ be a smooth function supported in
1/2 ≤ ρ(ξ) ≤ 2 such that ∑

j∈Z
ϕj(ξ) = 1

for all ξ 6= 0, where ϕj(ξ) = ϕ(δ2−j (ξ). Let us set

Kj(x) =

∫
Rn
eixξm(ξ)ϕj(ξ)dξ.

Then it suffices to show that∑
j∈Z
|Kj(x)| . ‖m‖M |α|+1ρ(x)−|α|.
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We will show this by estimating |Kj(x)| in two different ways. First, by the triangle
inequality we have

|Kj(x)| ≤ ‖m‖∞2j|α|. (1.8.1)

To obtain the second estimate let us think of x as being fixed and let i be such that
ρ(x) = |xi|1/αi . From integration by parts and the triangle inequality we see that

|Kj(x)| ≤ |xi|−ν
∫
Rn
|∂νξi(m(ξ)ϕj(ξ))|dξ . ‖m‖M νρ(x)−ναi2j(|α|−ναi) (1.8.2)

for every integer ν ≥ 0. From (1.8.1) and (1.8.2) we obtain

∑
j∈Z
|Kj(x)| . ‖m‖M ν

 ∑
2j≤ρ(x)−1

2j|α| + ρ(x)−ναi
∑

2j>ρ(x)−1

2j(|α|−ναi)

 .

Choosing ν to be the smallest integer > |α|
αi

(which is ≤ |α| + 1) we obtain the desired
conclusion. Here we remark that the lower bound required on ν could be improved by
following the proof of the corresponding improved version of the Hörmander-Mikhlin
theorem.

Proof of (1.4.15). Expanding definitions and using Fourier inversion we see that, up to
a universal constant, |ψNP (x)| is equal to

2kP |α|/2
∣∣∣∣∫

Rn
eiξ(x−c(IP ))m(ξ −N)φ̂(δ2kP (ξ − c(ωP (0))))dξ

∣∣∣∣ .
Via a change of variables δ2kP (ξ− c(ωP (0)))→ ζ and using that m(ξ) = m(δ2kP (ξ)) this
becomes

2−kP |α|/2
∣∣∣∣∫

Rn
eiζδ2−kP (x−c(IP ))m(ζ + δ2kP (c(ωP (0))−N))φ̂(ζ)dζ

∣∣∣∣ . (1.8.3)

Let us fix x and P and take i to be such that ρ(x− c(IP )) = |xi− c(IP )i|1/αi . From
repeated integration by parts we see that (1.8.3) is bounded by

2−kP |α|/2(2−kP ρ(x− c(IP )))−ν
′αi

∫
Rn

∣∣∣∂ν′ζi (m(ζ + δ2kP (c(ωP (0))−N))φ̂(ζ))
∣∣∣ dζ,

for every integer ν ′ ≥ 0. We set ν ′ = ν/αi. Since N 6∈ ωP (0) we have |ζ+δ2kP (c(ωP (0))−
N)| & 1. Therefore,∫

Rn

∣∣∣∂ν′ζi (m(ζ + δ2kP (c(ωP (0))−N))φ̂(ζ))
∣∣∣ dζ . ‖m‖M ν′ ≤ ‖m‖M ν .

This concludes the proof of (1.4.15) in the case that ρ(x− c(IP )) ≥ 1. In the case
ρ(x− c(IP )) ≤ 1 we simply use the triangle inequality on (1.8.3).

Proof of (1.4.16) and (1.4.17). If c(IP ) = c(IP ′), the estimates are trivial. Thus we
may assume c(IP ) 6= c(IP ′). We have

|〈φP , φP ′〉| ≤ |IP |−
1
2 |IP ′ |−

1
2

∫
Rn
|φ(δ2kP (x− c(IP )))φ(δ

2kP ′
(x− c(IP ′)))|dx. (1.8.4)
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Since
ρ(c(IP )− c(IP ′)) ≤ ρ(x− c(IP )) + ρ(x− c(IP ′)),

at least one of ρ(x− c(IP )), ρ(x− c(IP ′)) is ≥ 1
2ρ(c(IP )− c(IP ′)). Thus, splitting the

integral over x accordingly, using rapid decay of φ and the fact that ‖φP ‖1 = |IP |
1
2 ‖φ‖1,

the right hand side of (1.8.4) is no greater than a constant times

|IP |−
1
2 |IP ′ |

1
2 (1 + 2−kP ρ(c(IP )− c(IP ′)))−ν + |IP |

1
2 |IP ′ |−

1
2 (1 + 2−kP ′ρ(c(IP )− c(IP ′)))−ν .

Recalling that we assumed |IP | ≥ |IP ′ | we see that the previous display is bounded by
a constant times

|IP |−
1
2 |IP ′ |

1
2 (1 + 2−kP ρ(c(IP )− c(IP ′)))−ν ,

provided that ν ≥ |α|+ 1. This proves (1.4.16). The estimate (1.4.17) can be proven in
the same way, by using the decay estimate (1.4.15).
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Chapter 2

Anisotropic time-frequency
analysis: The bilinear Hilbert
transform

2.1 Introduction

In this chapter we study an anisotropic variant of the bilinear Hilbert transform. We
continue to use the notations α, δλ(x), ρ(x),Tyf,D

p
λf,Mηf,M ν which were introduced

in Chapter 1. Let m be a bounded function that is sufficiently smooth outside of the
origin and satisfies m(δλ(ξ)) = m(ξ) for all ξ 6= 0, λ > 0. By K we again denote the
associated kernel, that is K̂ = m. Let B be a real and diagonal n× n matrix. Consider
the bilinear operator

(f1, f2) 7−→
∫
Rn
f1(x+ y)f2(x+By)K(y)dy.

The case n = α = 1, K(y) = p.v. 1y is the classical bilinear Hilbert transform studied by
Lacey and Thiele [LT97a], [LT97b], [LT98], [LT99]. The diagonal constraint on B is due
to the fact that a non-diagonal B would break the anisotropic dilation symmetry of our
operator if α 6= (1, . . . , 1). By duality, it is equivalent to study the trilinear form

Λm(f1, f2, f3) =

∫
Rn

∫
Rn
f1(x+ y)f2(x+By)f3(x)K(y)dxdy.

Our main theorem is the following.

Theorem 2.1.1. Let m ∈ M ν0 for a sufficiently large integer ν0 (depending only on
α). Suppose that detB(1−B) 6= 0. Let 2 < p1, p2, p3 <∞ with 1

p1
+ 1

p2
+ 1

p3
= 1. Then

there exists a constant C > 0 such that

|Λm(f1, f2, f3)| ≤ C‖f1‖p1‖f2‖p2‖f3‖p3 .

Remark 2.1.1. We will not make the number ν0 explicit in the proof in order to simplify
notation.

To prove this result we employ the framework of outer measure Lp spaces that
was recently developed by Do and Thiele [DT15]. This framework can be seen as an
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alternative to the original formulation of the Lacey-Thiele approach. Indeed, it is also
possible to formulate the proof of Carleson’s theorem using the outer measure language
(see the recent work by Uraltsev [Ura16], where the focus lies on variation norm bounds
for the one-dimensional Carleson operator).

The outer measure language nicely modularizes the bulk of the proof into two sepa-
rate parts. The first part is a reduction of the original operator to a certain model form
that involves an integration over the operator’s symmetry space and is more akin to the
language of outer measure spaces. Do and Thiele [DT15] give a short and elegant argu-
ment for performing this reduction in the case of the classical bilinear Hilbert transform.
This approach no longer works in our setting. Instead, we adapt the argument of Lacey
and Thiele [LT97b]. This is the content of Section 2.2.

The second part involves the application of a certain generalized Carleson embedding
theorem (see Section 2.3). The generalized Carleson embedding contains the main tech-
nical components of the proof. Our proof is based on the proof of the one-dimensional
version given in [DT15]. The multidimensional setting causes certain technicalities in the
tent selection procedure. The problem to overcome is basically that the one-dimensional
proof uses the natural ordering on R when identifying upper and lower parts of tents.
Roughly speaking, we address this issue by doing the selection componentwise. This
seems to be quite arbitrary and other approaches are possible. See also Section 1.6 and
the comments on ordering in the introduction and Section 5 of Pramanik and Terwil-
leger’s work [PT03].

Note that in contrast to Demeter and Thiele [DT10], we study a fully non-degenerate
case, whereas their analysis is focused on the more problematic degenerate cases.

Acknowledgments. The author thanks Christoph Thiele for his guidance and many useful

discussions.

2.2 Reduction to a model form

We first introduce some notation. Let 0 < ε0 < 1 be a small constant to be chosen later.
A Schwartz function ϕ on Rn will be called admissible if ϕ̂(ξ) = 0 for ρ(ξ) > ε0. For
(y, η, t) ∈ Rn × Rn × (0,∞) we denote

ϕy,η,t(x) = TyMηD
2
tϕ(x) = eiη(x−y)t−|α|/2ϕ(δt−1(x− y)).

For short we write ϕy,t = ϕy,0,t. Slightly abusing notation we also write

ϕt,y,η(x) = D2
tTyMηϕ(x) = eiη(δt−1 (x)−y)t−|α|/2ϕ(δt−1(x)− y).

We can use the relation ϕy,η,t = ϕt,δt−1 (y),δt(η) to switch between the two whenever it
seems convenient. For vectors x1, . . . , xm ∈ Rn we write

diam{x1, . . . , xm} = max
i,j
|xi − xj |.

The reduction presented here resembles the approach of Lacey and Thiele in [LT97b],
[LT99] to reduce the classical bilinear Hilbert transform. We need two lemmas.
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Lemma 2.2.1. Let L ∈ Rn with |L| > 1 sufficiently large. We have

K(y) =

∫ ∞
0

Kt(y)
dt

t

with Kt(y) = D1
tK1(y) = t−|α|K1(δt−1(y)), where K1 is a Schwartz function such that

K̂1 is supported on ρ(y − L) ≤ 1.

Proof. Pick a Schwartz function a0 on R with
∫∞

0 a0(t)dtt = 1. Let a(ξ) = a0(ρ(ξ)) for
ξ ∈ Rn. Then

m(ξ) =

∫ ∞
0

m(ξ)a0(t)
dt

t
=

∫ ∞
0

m(δt(ξ))a(δt(ξ))
dt

t
.

The claim follows with K1 = (m·a)∨ by applying the Fourier transform to both sides.

Lemma 2.2.2 (Gabor reproducing formula). Let f be a Schwartz function in Rn and
‖ϕ‖2 = 1. Then for all t > 0 and x ∈ Rn we have

f(x) =

∫
Rn

∫
Rn
〈f, ϕt,y,η〉ϕt,y,η(x)dydη. (2.2.1)

Proof. Note that, by a change of variables, the right hand side of (2.2.1) is invariant
under replacing ϕt,y,η by ϕy,η,t. From Fourier inversion, we have∫

Rn
〈f, ϕy,η,t〉ϕy,η,t(x)dy = cn

∫
Rn
f̂(ξ)|ϕ̂η,t(ξ)|2eixξdξ

for some absolute constant cn. This implies the claim:∫
Rn

∫
Rn
〈f, ϕy,η,t〉ϕy,η,t(x)dydη = cn

∫
Rn

∫
Rn
f̂(ξ)|ϕ̂η,t(ξ)|2eixξdξdη

= cn

∫
Rn
f̂(ξ)eixξ

∫
Rn
|ϕ̂(η)|2dηdξ

=

∫
Rn
f̂(ξ)eixξdξ = f(x).

Here we have used that cn‖ϕ̂‖22 = ‖ϕ‖22 = 1.

Now we begin by expanding each of the functions f1, f2, f3 into a Gabor representa-
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tion and splitting the kernel:

Λm(f1, f2, f3) =

∫ ∞
0

∫
Rn

∫
Rn
f1(x+ y)f2(x+By)f3(x)Kt(y)dxdy

dt

t

=

∫ ∞
0

∫
R6n

〈f1, ϕt,u1,η1〉〈f2, ϕt,u2,η2〉〈f3, ϕt,u3,η3〉

×
( ∫
R2n

ϕt,u1,η2(x+ y)ϕt,u2,η2(x+By)ϕt,u3,η3(x)Kt(y)d(x, y)
)
d(u, η)

dt

t

=

∫ ∞
0

∫
R6n

t−|α|/2〈f1, ϕt,u1,η1〉〈f2, ϕt,u2,η2〉〈f3, ϕt,u3,η3〉G(u, η, t)d(u, η)
dt

t
,

(2.2.2)

where we have set

G(u, η, t) = t|α|/2
∫
R2n

ϕt,u1,η2(x+ y)ϕt,u2,η2(x+By)ϕt,u3,η3(x)Kt(y)d(x, y).

and u = (u1, u2, u3), η = (η1, η2, η3) with ui, ηi ∈ Rn. We proceed to estimate G in two
different ways. By the triangle inequality we obtain that |G(u, η, t)| is bounded by

t−2|α|
∫
R2n

|ϕ(δt−1(x+ y)− u1)ϕ(δt−1(x+By)− u2)ϕ(δt−1(x)− u3)K1([y]t−1)|dxdy

(2.2.3)

=

∫
R2n

|ϕ(x+ y − u1)ϕ(x+By − u2)ϕ(x− u3)K1(y)|dxdy.

At least one of the parameters x+y−u1, x+By−u2, x−u3, y is larger than Cdiam{u1, u2, u3}
where C > 0 is a constant only depending on B. This is because we can write ui − uj
for i, j = 1, 2, 3 as linear combinations of the parameters above. Namely,

u1 − u2 = −(x+ y − u1) + (x+By − u2)− (B − I)y

and therefore

|u1 − u2| ≤ (3 + ‖B‖) max{|x+ y − u1|, |x+By − u2, |x− u3|, |y|},

similarly for u2 − u3 and u1 − u3. Since ϕ,K1 are Schwartz functions we get

|G(u, η, t)| ≤ Cm(1 + diam{u1, u2, u3})−m (2.2.4)

for every m ∈ N. On the other hand we can use Plancherel’s theorem in R2n to see that
G(u, η, t) equals (up to a universal multiplicative constant)

t|α|/2
∫
R2n

F [ϕt,u1,η1(x+ y)ϕt,u2,η2(x+By)](ξ, τ)F [ϕt,u3,η3(x)Kt(y)](ξ, τ)d(ξ, τ).

(2.2.5)
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We have

F [ϕt,u1,η1(x+ y)ϕt,u2,η2(x+By)](ξ, τ) =

∫
R2n

e−i(ξ·x+η·y)ϕt,u1,η1(x+ y)ϕt,u2,η2(x+By)d(x, y).

Substituting v = x+ y and w = x+By and using Fubini we find the last display to be
a constant multiple of

ϕ̂t,u1,η1(−ABξ +Aτ)ϕ̂t,u2,η2(Aξ −Aτ+),

where A = (1−B)−1. By Fubini’s theorem we also see

F [ϕt,u3,η3(x)Kt(y)](ξ, τ) = ϕ̂t,u3,η3(ξ)K̂t(τ).

Plugging this back into (2.2.5) gives

G(u, η, t) = Ct|α|/2
∫
R2n

ϕ̂t,u1,η1(−ABξ +Aτ)ϕ̂t,u2,η2(Aξ −Aτ)ϕ̂t,u3,η3(ξ)K̂t(τ)d(ξ, τ).

The triangle inequality yields

|G(u, η, t)| ≤ Ct2|α|
∫
R2n

|ϕ̂(δt(−ABξ +Aτ)− η1)ϕ̂(δt(Aξ −Aτ)− η2)ϕ̂(δt(ξ)− η3)K̂1(δt(τ))|dξdτ

= C

∫
R2n

|ϕ̂(−ABξ +Aτ − η1)ϕ̂(Aξ −Aτ − η2)ϕ̂(ξ − η3)K̂1(τ)|dξdτ

Suppose that G(u, η, t) 6= 0. Then there exist τ, ξ ∈ Rn such that the integrand is
non-zero. Therefore ρ(τ − L) ≤ 1 and ρ(ξ − η3) ≤ b. We deduce,

ρ(η3 − (B−1L−A−1B−1η1)) ≤ Cb,
ρ(η3 − (L+A−1η2)) ≤ Cb,

where C depends only on α,B. We change the variables in (2.2.2) introducing new
variables η, λ1, λ2, u, v1, v2 as follows:

λ1 = η3 −B−1L+A−1B−1η1,
λ2 = η3 − L−A−1η2,
η = η3,


v1 = u3 − u1,
v2 = u3 − u2,
u = u3.

Dropping the integration in λ1, λ2 over the compact setK = {ρ(λ1) ≤ Cb, ρ(λ2) ≤ Cb},
applying the triangle inequality and the estimate (2.2.3) leaves us with

|Λm(f1, f2, f3)| ≤ Cν sup
λ∈K

∫
R2n

F (λ, v)(1 + max{|v1|, |v2|})−νdv,

where λ = (λ1, λ2), v = (v1, v2), ν a large integer that is to be determined later and

F (λ, v) =

∫ ∞
0

∫
R2n

t−
|α|
2 |〈f1, ϕt,u+v1,−ABη+AL+ABλ1〉〈f2, ϕt,u+v2,Aη−AL−Aλ2〉〈f3, ϕt,u,η〉|d(u, η)

dt

t
.
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Theorem 2.1.1 follows if there is some integer ν ′ such that

|F (λ, v)| ≤ C(1 + max{|v1|, |v2|})ν
′‖f1‖p1‖f2‖p2‖f3‖p3 (2.2.6)

for all λ ∈ K, v1, v2 ∈ Rn.

2.3 Boundedness of the model form

In this section we prove the following lemma, which implies estimate (2.2.6) and therefore
the claim of Theorem 2.1.1. We make use of the Lp theory for outer measures introduced
by Do and Thiele in [DT15]. This lemma should be seen as a generalized variant of
Lemma 6.2 in [DT15].

Lemma 2.3.1. Let 2 < p1, p2, p3 < ∞ such that 1
p1

+ 1
p2

+ 1
p3

= 1, ϕ(j) admissible,
Mj real, invertible, diagonal n× n matrices and aj ∈ Rn pairwise different. There exist
C > 0 such that∣∣∣∣∣∣

∞∫
0

∫
Rn

∫
Rn

t−|α|/2
3∏
j=1

〈fj , ϕ(j)
u,Mjη+δt−1 (aj),t

〉dudηdt
t

∣∣∣∣∣∣ ≤ C‖f1‖p1‖f2‖p2‖f3‖p3 . (2.3.1)

The constant C takes the form

C = Cn,Mj ,aj ,pj max
j=1,2,3

sup
β∈Nn0 ,x∈Rn

|Dβϕ(j)(x)|(1 + |x|)ν (2.3.2)

for some sufficiently large integer ν.

For the sake of simpler notation we will not track the dependence of the constant on
the decay of the bump functions ϕ(j) during the proof. It is clear from the proof that
the constant takes the form (2.3.2).

Proof. The plan is to apply an outer Hölder inequality, Proposition 3.4 in [DT15], and
then generalized Carleson embedding. Let X = Rn×Rn×(0,∞). We consider the outer
measure induced by the premeasure σ(T(x, ξ, s)) = s|α| on the collection T of all tents

T = T(x, ξ, s) = {(y, η, t) ∈ X : ρ(y − x) ≤ s− t, ρ(η − ξ) ≤ Lt−1}

with (x, ξ, s) ∈ X, where L > 0 is a large number to be chosen later. For all Borel
measurable functions F on X and all T ∈ T we define the size

S(F )(T) =
1

σ(T)

∫
T
|F (y, η, t)|dydηdt

t
.

We set
Fj(y, η, t) = 〈fj , ϕ(j)

y,Mjη+δt−1 (aj),t
〉

for j = 1, 2, 3, (y, η, t) ∈ X. By an application of Proposition 3.6 in [DT15] we see that
the left hand side of (2.3.1) is bounded by C‖t|α|/2F1F2F3‖L1(X,σ,S). In order to apply
the outer Hölder inequality we need to define three more sizes. First define

T(j) = T(j)(x, ξ, s) = {(y, η, t) ∈ X : ρ(y − x) ≤ s−t, ρ(M−1
j (η − ξ)−M−1

j δt−1(aj)) ≤ bt−1}
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for j = 1, 2, 3, where b is given by

b =
mini 6=j{ρ(ai − aj)}

4 maxi{ρ(Mi)}
> 0.

Here ρ(M) is defined as ρ((µ1, . . . , µn)) for a diagonal matrix M = diag(µ1, . . . , µn). The
choice of b is such that the T(j) are pairwise disjoint. Indeed, assume that (y, η, t) ∈
T(i) ∩T(j) for i 6= j. By symmetry we may assume that i = 1, j = 2. Then we have{

ρ(M−1
1 (η − ξ)−M−1

1 δt−1(a1)) ≤ bt−1,

ρ(M−1
2 (η − ξ)−M−1

2 δt−1(a2)) ≤ bt−1

Multiplication by M1,M2 in the respective inequalities gives

ρ((η − ξ)− δt−1(aj)) ≤ max{ρ(M1), ρ(M2)}bt−1

for j = 1, 2 and thus ρ(a1 − a2) ≤ 2 max{ρ(M1), ρ(M2)}b, which is a contradiction. We
define the sizes

Sj(F )(T) =
( 1

σ(T)

∫
T\T(j)

|F (y, η, t)|2dydηdt
t

) 1
2

+ sup
(y,η,t)∈T

t−|α|/2|F (y, η, t)|.

It remains to show compatibility of the sizes in order to apply the outer Hölder inequality.
Setting F (y, η, t) = t−|α|/2F1(y, η, t)F2(y, η, t)F3(y, η, t), we have

σ(T)S(F )(T) =

∫
T
|F (y, η, t)|dydηdt

t

=

∫
T\(T(1)∪T(2)∪T(3)

|F (y, η, t)|dydηdt
t

+
3∑
j=1

∫
T∩T(j)

|F (y, η, t)|dydηdt
t

≤
(

sup
(y,η,t)∈T

t−|α|/2|F1(y, η, t)|
) 3∏
j=2

(∫
T\T(j)

|Fj(y, η, t)|2dydη
dt

t

) 1
2
+

+
3∑
j=1

sup
(y,η,t)∈T

t−|α|/2|Fj(y, η, t)|
∏
j 6=k

(∫
T\T(k)

|Fk(y, η, t)|2dydη
dt

t

) 1
2
.

Here we have used the Cauchy-Schwarz inequality, as well as disjointness of the tents
T(j) in the second summand. As a consequence we obtain

S(F )(T) ≤ 4
3∏
j=1

Sj(Fj)(T).

Combined with the previous, the outer Hölder inequality implies that the left hand side
of (2.3.1) is no greater than

C
3∏
j=1

‖Fj‖Lpj (X,σ,Sj).
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The generalized Carleson embedding theorem (Theorem 2.4.1) now gives

‖Fj‖Lpj (X,σ,Sj) ≤ C‖fj‖pj .

This concludes the proof.

2.4 A generalized Carleson embedding theorem

In this section we provide a more general variant of the generalized Carleson embedding
theorem proved in [DT15] (see Theorem 5.1). To formulate the embedding theorem we
first need to set up some definitions. Let X = Rn × Rn × (0,∞). Fix a real, invertible,
diagonal n×n matrix M = diag{M1, . . . ,Mn} and a vector a ∈ Rn such that ρ(M) ≤ 1
and ρ(a) ≤ h < 1 with 0 < h < 1 being a sufficiently small number to be chosen later.
By T we denote the collection of tents

T = T(x, ξ, s) = {(y, η, t) ∈ X : ρ(y − x) ≤ s− t, ρ(M(η − ξ) + δt−1(a)) ≤ t−1}.

A tent is the outer measure equivalent of a tree from the Lacey-Thiele method (see
Definition 1.4.1). We equip X with the outer measure ω generated by the premeasure
on tents given by σ(T(x, ξ, s)) = s|α|. Additionally, we need the inner tents

Tb = Tb(x, ξ, s) = {(y, η, t) ∈ X : ρ(y − x) ≤ s− t, ρ(η − ξ) ≤ bt−1},

where 0 < b < ε is a parameter and 0 < ε < 1 is a sufficiently small constant to be chosen
later. To achieve shorter formulas we will sometimes denote points in the outer measure
space by u = (x, ξ, s) ∈ X and we define the measure µ on X by dµ(u) = dxdξ dtt .
Accordingly, ϕu = ϕy,η,t. For any Borel measurable function f on X and T ∈ T we
define the sizes

S2(F )(T) =
( 1

σ(T)

∫
T\Tb

|F (v)|2dµ(v)
) 1

2
, S∞(F )(T) = sup

v=(y,η,t)∈T
t−|α|/2|F (v)|,

S(F )(T) = S2(F )(T) + S∞(F )(T)

Theorem 2.4.1. Let M,a, b be as above and ϕ an admissible Schwartz function. For
u ∈ X we define F (u) = 〈f, ϕu〉. Then for 2 < p ≤ ∞ there exists 0 < C <∞ such that

‖F‖Lp(X,σ,S) ≤ C‖f‖p (2.4.1)

and

‖F‖L2,∞(X,σ,S) ≤ C‖f‖2. (2.4.2)

The proof is based on the proof of the one-dimensional embedding theorem, found in
[DT15]. Our multidimensional setting causes a number of minor technical complications.
Before we turn to the proof let us mention a few auxiliary statements which we will need
at different places.

Lemma 2.4.2. Let ϕ, ϕ̃ be Schwartz functions on Rn. If 0 < t < s and x, y ∈ Rn, then
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for all sufficiently large integers m we have

|〈ϕx,t, ϕ̃y,s〉| ≤ Ct|α|/2s−|α|/2(1 + |δs−1(x− y)|)−m.

The proof for the case n = α = 1 can be found in [Thi06, Lemma 2.1]. For the
anisotropic version see the estimate (1.4.16) and its proof in Section 1.8 in Chapter 1.
If the Fourier transform of a Schwartz function in one variable is supported away from
the origin, then its primitive decays rapidly.

Lemma 2.4.3. Let ϕ be a Schwartz function on R with supp ϕ̂ ⊂ [−δ, δ]c and 0 < δ < 1.
Then for all m ∈ N0 we have∣∣∣ ∫ x

−∞
ϕ(y)dy

∣∣∣ ≤ Cmδ−m‖ϕ‖1(1 + |x|)−m

where Cm is independent of ϕ, x, δ.

We turn to the proof of Theorem 2.4.1. The claim will follow by Marcinkiewicz
interpolation between the endpoints p = 2 and p = ∞. See [DT15] for further details
on Marcinkiewicz interpolation for Lp spaces of outer measures.

2.4.1 The endpoint p =∞

To prove the bound (2.4.1) for p =∞ we need to show

S2(F )(T(u)) + S∞(F )(T(u)) ≤ C‖f‖∞

for all u ∈ X. We handle the S2 and S∞ separately. First,

S∞(F )(T(u)) ≤ sup
(y,η,t)∈T(u)

t−|α|/2
∫
Rn
|f(x)ϕy,η,t(x)|dx ≤ ‖ϕ‖1‖f‖∞.

To bound the L2 size we first prove a lemma.

Lemma 2.4.4. For all u ∈ X and f ∈ L2(Rn) we have∫
T(u)\Tb(u)

|F (v)|2dµ(v) ≤ C‖f‖22. (2.4.3)

Proof. Fix u = (x, ξ, s). Then

T(u)\Tb(u) ⊂ {(y, η, t) ∈ X : bt−1 ≤ ρ(η − ξ) ≤ ct−1},

where c = 2ρ(M−1) > b. Therefore the left hand side of (2.4.3) is bounded by∫ ∞
0

∫
Rn

∫
bt−1≤ρ(η−ξ)≤ct−1

|F (y, η, t)|2dηdydt
t
.

By a substitution γ = δt(η − ξ) in the variable η and Fubini’s theorem this becomes∫
b≤ρ(γ)≤c

∫ ∞
0

∫
Rn
s|t−|α|/2F (y, δt−1(γ) + ξ, t)|2dydt

t
dγ.
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Dropping the outer integral over a compact set we see that it suffices to show∫ ∞
0

∫
Rn
|〈f, ψy,γ,t〉|2dy

dt

t
≤ C‖f‖22, (2.4.4)

for all γ ∈ Rn with b ≤ ρ(γ) ≤ c, where

ψy,γ,t(y
′) = ei(ξ+δt−1 (γ))(y′−y)t−|α|ϕ(δt−1(y′ − y)) = TyMξ+δt−1 (γ)D

1
tϕ(y′).

Note that the Fourier transform of the function M−ξψy,γ,t is supported away from zero by
the support assumption on ϕ. It is tempting to invoke Calderón’s reproducing formula
at this point. However this is not possible, because the parameter γ causes translations
on the Fourier side making it impossible to account for the normalization of the bump
functions needed in Calderón’s reproducing formula. Instead we must use an almost
orthogonality argument and careful estimates of the bump functions. We claim that it
suffices to show∫ ∞

0

∫
Rn
|〈ψy,γ,t, ψz,γ,r〉|dz

dr

r
=

∫ ∞
0

∫
Rn
|〈ψy,γ,t, ψz,γ,r〉|dz

dr

r
≤ C. (2.4.5)

Indeed, let A denote the left hand side of (2.4.4). Then we have by the Cauchy-Schwarz
inequality that

A2 ≤
∥∥∥∥∫ ∞

0

∫
Rn
〈f, ψy,γ,t〉ψy,γ,tdy

dt

t

∥∥∥∥2

2

‖f‖22

From expanding the L2 norm we see that this is no greater than

‖f‖22
∫ ∞

0

∫
Rn

∫ ∞
0

∫
Rn
|〈f, ψy,γ,t〉〈ψy,γ,t, ψz,γ,r〉〈f, ψz,γ,r〉|dy

dt

t
dz
dr

r
.

By estimating the smaller one of |〈f, ψy,γ,t〉| and |〈f, ψz,γ,r〉| by the larger one and using
symmetry we estimate this by

2‖f‖22
∫ ∞

0

∫
Rn
|〈f, ψy,γ,t〉|2

(∫ ∞
0

∫
Rn
|〈ψy,γ,t, ψz,γ,r〉|dz

dr

r

)
dy
dt

t
,

which by (2.4.5) is at most 2C‖f‖22A. Dividing both sides by A we obtain (2.4.4). It
remains to show (2.4.5). We first estimate the region t ≤ r. Writing 〈ψy,γ,t, ψz,γ,r〉 =
〈M−ξψy,γ,t,M−ξψz,γ,r〉, doing partial integration in every component, each time inte-
grating M−ξψy,γ,t while differentiating M−ξψz,γ,r and using Lemma 2.4.3 we obtain

|〈ψy,γ,t, ψz,γ,r〉| ≤ C
∫
Rn
r−2|α|(1 + |δt−1(y′ − y)|)−(n+1)(1 + |δr−1(y′ − z)|)−(n+1)dx
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Therefore,∫ ∞
t

∫
Rn
|〈ψy,γ,t, ψz,γ,r〉|dz

dr

r

≤ C
∫ ∞
t

∫
Rn

∫
Rn
r−2|α|(1 + |δt−1(y′ − y)|)−(n+1)(1 + |δr−1(y′ − z)|)−(n+1)dy′dz

dr

r

≤ C
∫ ∞
t

∫
Rn
r−|α|−1(1 + |δt−1(y′ − y)|)−(n+1)dy′dr

≤ C
∫
Rn
t−|α|(1 + |δt−1(y′ − y)|)−(n+1)dy′ ≤ C

The region t ≥ r is estimated analogously.

We return to finishing the proof for the endpoint p =∞. Let f ∈ L∞(Rn). To make
use of the lemma we apply a cut-off to f to obtain an L2 function and estimate the
remaining part by a rough tail estimate. Namely, let

D = {y ∈ Rn : ρ(x− y) ≤ 2s} and f = f1 + f2,

where f1 = f1D and f2 = f − f1. Accordingly we let F1(v) = 〈f1, ϕv〉 and F2(v) =
〈f2, ϕv〉. We estimate S2(F1)(T(u)) and S2(F2)(T(u)) separately. By definition we have
f1 ∈ L2(Rn) with ‖f1‖2 ≤ s|α|/2‖f‖∞. This and Lemma 2.4.4 give the required bound
on S2(F1)(T(u)). It remains to estimate the L2 size on F2. Let (y, η, t) ∈ T(u). Then
we have t < s and ρ(y − x) ≤ s− t < s. Thus,

|F (y, η, t)| ≤
∫
ρ(w−x)≥2s

|f(w)t−|α|/2ϕ(δt−1(w − y))|dw

≤ ‖f‖∞t|α|/2
∫
ρ(w)≥s

|t−|α|ϕ(δt−1(w))|dw

≤ t|α|/2‖f‖∞
∫
ρ(w)≥s/t

|ϕ(w)|dw

≤ Ct|α|/2‖f‖∞
∫
ρ(w)≥s/t

ρ(w)−|α|(1 + |w|)−(n+1)dw

≤ Ct3|α|/2s−|α|‖f‖∞

Hence S2(F2)(T(u)) is no greater than

C‖f‖∞
( 1

s|α|

∫ s

0

∫
ρ(ξ−η)≤ct−1

∫
ρ(x−y)≤s

t3|α|s−2|α|dydη
dt

t

)1/2
≤ C‖f‖∞.

2.4.2 The endpoint p = 2

Proving the weak L2 bound involves selecting a countable collection of tents covering
the “bad” points of X in an good way by maximizing certain parameters. For this
procedure to make sense we require the space of tents to be discrete. That is, the choice
of tops will be restricted to a discrete subset of X. This motivates the following. Let
0 < ε1, ε2 < 1 be small constants to be determined later. Then X∆ is defined to be the
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set of (x, ξ, s) ∈ X such that there exist k ∈ Z,m, l ∈ Zn with

x = δε12k(m), ξ = δε22−k(l), s = 2k.

For (y, η, t), (x, ξ, s) ∈ X we say that (y, η, t) is centrally contained in T(x, ξ, s), if

δs < t ≤ 2δs,

ρ(x− y) ≤ ε1s,
ρ(ξ − η) ≤ ε2s−1.

where 0 < δ < 1 is a constant to be determined later. By T∆ we denote the set of
tents T(u) such that u ∈ X∆. Let ω∆ be the outer measure on X generated by the
premeasure σ∆ = σ |T∆ . We claim that the original outer measure ω and its discretized
version ω∆ are equivalent. To show this we need to be able to cover tents by tents with
tops in X∆.

Lemma 2.4.5. Let (x′, ξ′, s′) ∈ X. Then there exists (x, ξ, s) ∈ X∆ such that (x′, ξ′, s′)
is centrally contained in T(x, ξ, s). Moreover, there exist 2n points (x, ξ(1), s), . . . , (x, ξ(2n), s) ∈ X∆

such that

T(x′, ξ′, s′) ⊂
2n⋃
i=1

T(x, ξ(i), s), and (2.4.6)

2n⋂
i=1

Tb(x, ξ(i), s) ∩T(x′, ξ′, s′) ⊂ Tb(x′, ξ′, s′). (2.4.7)

Proof. There exists exactly one k ∈ Z such that 2k ∈
[
s′

2δ ,
s′

δ

)
. Choose s = 2k. Then

there exist m, l ∈ Zn such that for x = δε1s(m) and ξ = δε2s−1(l) we have ρ(x′ − x) ≤ ε1s
and ρ(ξ′ − ξ) ≤ ε2s

−1. In every component j we can decide whether to choose ξj to
the left of ξ′j or to the right of ξ′j . For every j with 1 ≤ j ≤ n choose ξ1,j ∈ R
with ξ1,j ≥ ξ′j and ξ−1,j ∈ R with ξ−1,j ≤ ξ′j such that |ξ±1,j − ξj |1/αj ≤ ε2s

−1

and (ξ1,j)j=1,...,n, (ξ−1,j)j=1,...,n ∈ X∆. Pick a bijection ι : {1, . . . , 2n} → {1,−1}n,
i 7→ (ι1(i), . . . , ιn(i)). For every i ∈ {1, . . . , 2n} set ξ(i) = (ξιj(i),j)j=1,...,n. By construc-

tion, ξ(i) ∈ X∆ and (x′, ξ′, s′) is centrally contained in T(x, ξ(i), s) for all i. It remains to
show (2.4.6), (2.4.7). For this purpose we assume without loss of generality that Mj ≥ 0
for all 1 ≤ j ≤ n. Let (y, η, t) ∈ T(x′, ξ′, s′) and 1 ≤ j ≤ n. If Mj(ηj − ξ′j) + ajt

−αj ≥ 0
then

−t−αj ≤ −
( s′

2δ

)−αj
≤ −(ε2(s′)−1)αj ≤Mj(ξ

′
j − ξ1,j)

≤Mj(ξ
′
j − ξ1,j) +Mj(ηj − ξ′j) + ajt

−αj

= Mj(ηj − ξ1,j) + ajt
−αj

≤Mj(ηj − ξ′j) + ajt
−αj ≤ t−αj

Likewise, in the case Mj(ηj − ξ′j) + ajt
−αj ≤ 0 we have

−t−αj ≤Mj(ηj − ξ−1,j) + ajt
−αj ≤ t−αj .
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Thus, by applying ι−1 to the vector of signs of Mj(ηj − ξ′j) + ajt
−αj we obtain an i such

that (y, η, t) ∈ T(x, ξ(i), s). This proves (2.4.6). Assume that (y, η, t) ∈ T(x′, ξ′, s′) and
(y, η, t) ∈ Tb(x, ξ(i), s) for all 1 ≤ i ≤ 2n. If ηj ≥ ξ′j then

−bt−αj ≤ 0 ≤ ηj − ξ′j ≤ ηj − ξ−1,j ≤ bt−αj ,

whereas if ηj ≤ ξ′j then

−bt−αj ≤ ηj − ξ1,j ≤ ηj − ξ′j ≤ 0 ≤ bt−αj .

This shows (2.4.7).

The lemma implies ω ≤ Cω∆ and therefore the equivalence of ω and ω∆. We also
define the discrete sizes S2,∆, S∞,∆, S∆ by restriction of the respective original sizes. As
a consequence of the above we have that the norms ‖ · ‖L2,∞(X,σ,S) and ‖ · ‖L2,∞(X,σ∆,S∆)

are equivalent. To prove the endpoint estimate (2.4.2) it therefore suffices to show its
discrete variant

‖F‖L2,∞(X,σ∆,S∆) ≤ C‖f‖2. (2.4.8)

To demonstrate this it suffices to find for each λ > 0 a collection E ⊂ T∆ of tents such
that ∑

T∈E
σ(T) ≤ Cλ−2‖f‖22 and (2.4.9)

S(F1X\E)(T′) ≤ λ (2.4.10)

for all T′ ∈ T∆, where E =
⋃

T∈E T. As before we will proceed by treating the L∞ and
L2 portions of the size separately.

Lemma 2.4.6 (L∞ size). For every λ > 0 there exists a collection E0 ⊂ T∆ of tents
such that ∑

T∈E0

σ(T) ≤ Cλ−2‖f‖22 and (2.4.11)

and t−|α|/2|F (v)| ≤ λ
2 for all v = (y, η, t) ∈ X\E0, where E0 =

⋃
T∈E0 T.

In order to formulate the L2 size lemma we need a few more definitions. The L2 tent
selection algorithm requires us to sort tents by frequency. We overcome the problem
of the absence of a natural ordering on Rn by performing the selection in each compo-
nent. This requires us to consider the following auxiliary tents. For 1 ≤ j ≤ n and
u = (x, ξ, s) ∈ X we set

Tb,j(u) = {(y, η, t) ∈ X : ρ(y − x) ≤ s− t, |ηj − ξj | ≤ (bt−1)αj}.

Then we have

Tb(u) =

n⋂
j=1

Tb,j(u). (2.4.12)

51



For a fixed frequency ξ ∈ Rn we also set

X+,j
ξ = {(y, η, t) ∈ X : ηj ≥ ξj}, X−,jξ = X\X+,j

ξ

and we define the auxiliary sizes

S±,j2 (F )(T(u)) =
( 1

s|α|

∫
X±,jξ ∩T(u)∩(Tb,j(u))c

|F (v)|2dµ(v)
)1/2

,

Sj2 = S+,j
2 + S−,j2 ,

for u = (x, ξ, s) ∈ X∆.

Lemma 2.4.7 (L2 size). Let 1 ≤ j ≤ n. For every λ > 0 there exist E+,j , E−,j ⊂ T∆

such that ∑
T∈E+,j∪E−,j

σ(T) ≤ Cλ−2‖f‖22 and (2.4.13)

Sj2(F1X\(E0∪E+,j∪E−,j))(T
′) ≤ λ

2n
(2.4.14)

for all T ′ ∈ T∆, where E±,j =
⋃

T∈E±,j T.

Before we turn to the proof of these claims, we show how they imply the desired
conclusion. Fix λ > 0. Define

E = E0 ∪
n⋃
j=1

E+,j ∪ E−,j .

Then (2.4.9) holds. It remains to show that (2.4.10) is true. Set E =
⋃

T∈E T. Then
(2.4.12) and Lemmas 2.4.6 and 2.4.7 imply

S2(F1X\E)(T) ≤
n∑
j=1

Sj2(F1X\E) ≤ λ

2
,

S(F1X\E)(T) = S∞(F1X\E)(T) + S2(F1X\E)(T) ≤ λ

2
+
λ

2
= λ.

Now it only remains to prove Lemma 2.4.6 and 2.4.7. Both proofs consist of three main
components. First an algorithm to select the proper tents is established. Then one ap-
peals to an almost orthogonality argument using a disjointness property of the selected
tents. Finally one has to make sure that all bad points are really covered.

Proof of Lemma 2.4.6. Fix λ > 0. By renormalizing we may assume ‖f‖2 = 1. We
want to cover the set of bad points

Ω = {(y, η, t) ∈ X : t−|α|/2|F (y, η, t)| > λ}

with tents. By the Cauchy-Schwarz inequality we have |F (y, η, t)| ≤ ‖ϕ‖2. Thus, if
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(y, η, t) ∈ Ω then we have an a priori bound on t given by

t ≤ Cλ−
2
|α| .

We set up the following iterative procedure to generate an increasing chain of collec-
tions of tents E0 ⊂ E1 ⊂ E2 ⊂ · · · . Initially define E0 = ∅. Assume that we have already
constructed E0, . . . , Ek−1. If Ω\Ek−1 is empty then the algorithm terminates. Otherwise,
among the non-empty set

{(v, u) ∈ X ×X∆ : v ∈ Ω\Ek−1, v centrally contained in T(u)}

we choose a pair (vk, uk), vk = (yk, ηk, tk), uk = (xk, ξk, sk) such that sk is maximal.
This is possible by the a priori bound on tk and because sk is chosen from a discrete set.
By N we denote the number of steps after which the algorithm terminates or N =∞ if
it never terminates. We claim that

N∑
k=1

s
|α|
k ≤ Cλ

−2.

For every m ∈ N0 let Km be the set of k with 1 ≤ k ≤ N such that

2mλ ≤ t−|α|/2|F (yk, ηk, tk)| ≤ 2m+1λ.

Then we have

N∑
k=1

s
|α|
k ≤ C

∞∑
m=0

∑
k∈Km

t
|α|
k ≤ C

∞∑
m=0

2−2mλ−2
∑
k∈Km

|F (yk, ηk, tk)|2.

As a consequence it is enough to show∑
k∈Km

|F (yk, ηk, tk)|2 ≤ C

For convenience we will write ϕk = ϕyk,ηk,tk . Setting A =
∑

k∈Km |〈f, ϕk〉|
2 we have by

Cauchy-Schwarz

A2 ≤
∥∥∥ ∑
k∈Km

〈f, ϕk〉ϕk
∥∥∥2

2
≤

∑
k,l∈Km

〈f, ϕk〉〈ϕk, ϕl〉〈ϕl, f〉

≤ 2
∑

k,l∈Km,sl≤sk

|〈f, ϕk〉〈ϕk, ϕl〉〈ϕl, f〉|

Since k, l ∈ Km they are at most by a factor 2 apart. So the previous display is no
greater than

4
∑

k,l∈Km,sl≤sk

t
|α|/2
l t

−|α|/2
k |〈f, ϕk〉2|〈ϕk, ϕl〉|.

Estimating |〈ϕk, ϕl〉| by Lemma 2.4.2 we see that it is now enough to show that we have
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for all k ∈ Km ∑
l∈Km,sl≤sk,〈ϕk,ϕl〉6=0

t
|α|
l (1 + |δt−1

k
(yk − yl)|)−(n+1) ≤ Ct|α|k (2.4.15)

To show this we need to exploit a disjointness property of the selected tents.

Claim. If l′, l ∈ Km are such that l′ ≤ l, sl′ , sl ≤ sk and 〈ϕk, ϕl〉 6= 0, 〈ϕk, ϕl′〉 6= 0,
then

{ρ(δs−1
l

(x− xl)) ≤ ε} ∩ {ρ(δs−1
l′

(x− xl′)) ≤ ε} = ∅.

Proof of the claim. Suppose not. Then we claim that (yl′ , ηl′ , tl′) is an element of
the tent T(xl, ξl, sl). This would yield a contradiction since l′ ≤ l means that Tl′ was
chosen prior to Tl. Indeed we have

ρ(yl′ − xl) ≤ ρ(yl′ − xl′) + ρ(xl′ − xl)
≤ ε1sl′ + 2εsl < sl − tl′

if δ < 1
2(1− 2ε− ε1) which we can certainly arrange. Also by looking at the support of

ϕ̂ we see,

ρ(M(ηl′ − ξl) + δt−1
l′

(a))

≤ ρ(ηl′ − ηl) + ρ(ηl − ξl) + ht−1
l′

≤ (7ε0 + 2ε2δ + h)t−1
l′ ≤ t

−1
l′

provided ε0, ε, δ, h are appropriately chosen, which is certainly possible.
We shall now prove (2.4.15). By central containment the left hand side is no greater

than

C
∑

l∈Km,sl≤sk,〈ϕk,ϕl〉6=0

s
|α|
l (1 + δs−1

k
(xk − xl))−(n+1)

≤ C
∑

l∈Km,sl≤sk,〈ϕk,ϕl〉6=0

∫
{ρ(x−xl)≤slε}

(1 + δs−1
k

(x− xk))−(n+1)dx

The above claim shows that this can be estimated by

C

∫
Rn

(1 + δs−1
k

(x− xk))−(n+1) ≤ Ct|α|k

Set E0 =
⋃N
k=1 Ek. It remains to be shown that E0 =

⋃
T∈E0 T really covers Ω. This

is clear if N <∞. If on the other hand N =∞, then sk must converge to 0 as k →∞.
Thus, for any (y, η, t) ∈ X we must have sk < t for large enough k. If in addition (y, η, t)
is in Ω then by maximality of the sk it had to be chosen before the kth step, so Ω ⊂ E0

as required.

Proof of Lemma 2.4.7. Fix λ > 0. We may assume without loss of generality that
f̂ has compact support. The proof of this translates verbatim from [DT15, Section 5.2].

54



We also renormalize so that ‖f‖2 = 1. Fix 1 ≤ j ≤ n. We will write π(ξ) = ξj for ξ ∈ Rn
to reduce indices. Also, we will omit the index j from the indices in E±,j , S±,j , X±ξ .

We construct a sequence of tents (T(uk))k with uk ∈ X∆. Suppose u1, . . . , uk−1 have
been selected already. A point u = (x, ξ, s) ∈ X∆ is called bad if

S+
2 (F1X\E0∪E+

k−1))(T(u)) ≥ ελ2

If there is no bad point, then the algorithm terminates. Otherwise, we choose uk =
(xk, ξk, sk) to be the bad points such that π(ξk) and sk are maximized in lexicographical
order, where the frequency component takes precedence. This is possible because we
have a priori bounds on s by Lemma 2.4.3 and on π(ξ) by Lemma 2.4.3 and the compact
support assumption.

Define E+
k =

⋃k
i=1 T(ui), Tk = T(uk),T

b,j
k = Tb,j(uk), X

+
k = X+

ξk
and

T∗k = Tk ∩X+
k ∩ (Tb,j

k ∪ E
0 ∪ E+

k−1)c.

By N we denote the number of steps after which the algorithm terminates or we set
N =∞ in case the algorithm does not terminate.

We need to show that
N∑
k=1

s
|α|
k ≤ Cλ

−2 (2.4.16)

By definition we have

N∑
k=1

s
|α|
k ≤ ε

−1λ−2
N∑
k=1

∫
T∗k

|F (v)|2dµ(v). (2.4.17)

Therefore it is enough to show

N∑
k=1

∫
T∗k

|〈f, ϕv〉|2dµ(v) ≤ C (2.4.18)

Denote the left hand side of the last display by A. Then by the Cauchy-Schwarz in-
equality we have

A2 ≤
∥∥∥ N∑
k=1

∫
T∗k

〈f, ϕv〉ϕvdµ(v)
∥∥∥2

2

=

N∑
k,l=1

∫
T∗k

∫
T∗l

〈f, ϕv〉〈ϕv, ϕv′〉〈ϕv′ , f〉dµ(v′)dµ(v)

≤
N∑

k,l=1

∫
T∗k

∫
T∗l ,L

−1t≤t′≤Lt
〈f, ϕv〉〈ϕv, ϕv′〉〈ϕv′ , f〉dµ(v′)dµ(v)

+ 2
N∑

k,l=1

∫
T∗k

∫
T∗l ,Lt

′≤t
〈f, ϕv〉〈ϕv, ϕv′〉〈ϕv′ , f〉

where L > 1 is a large number to be determined later.
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The diagonal part can be easily estimated to be bounded by CA . To bound the
off-diagonal part we need to exploit the tent selection procedure to get a suitable dis-
jointness property.

Claim. Set Ωy,η,t = {(z, ζ, r) ∈ T∗l for some l s.t.Lr ≤ t, 〈ϕy,η,t, ϕz,ζ,r〉 6= 0}. There
exists a function Q : Rn → (0,∞) such that

Ωy,η,t ⊂ {ρ(z − xk) > sk − t, r ∈ [Q(z), LQ(z))}.

Proof of the claim. For the purpose of clarity we assume Mj ≥ 0 . Suppose that
(z, ζ, r) ∈ Ωy,η,t. Then

ρ(η − ζ) ≤ ε0(L−1 + 1)r−1

by support considerations of ϕ̂. Also, (y, η, t) ∈ Tk ∩X+
k implies

π(M(η − ξk) + δt−1(a)) ≤ t−αj ,

so that we have
π(η − ξk) ≤M−1

j (1− aj)t−αj ≤M−1
j t−αj .

Moreover, (z, ζ, r) ∈ X+
l ∩ (Tb,j

l )c implies

π(ζ − ξl) > bαjr−αj .

Therefore we obtain

π(ξk − ξl) = π(ξk − η) + π(η − ζ) + π(ζ − ξl)
≥ −M−1

j t−αj − (ε0(L−1 + 1))αjr−αj + bαjr−αj

≥ (bαj −M−1
j L−αj − (ε0(L−1 + 1))αj )r−αj ≥ 0

provided that L, ε0 are chosen properly. From this we can conclude that Tk has been
selected prior to Tl. Now we prove ρ(z − xk) ≥ sk − t. We have

ρ(M(ζ − ξk) + δr−1(a)) ≤ ρ(M(ζ − η)) + ρ(M(ζ − η) + δt−1(a)) + ρ(δr−1(a)) + ρ(δt−1(a))

≤ ((ε0 + h)(L−1 + 1) + L−1)r−1 ≤ r−1

provided that ε0, h, L are chosen properly, which is possible. Since Tk was chosen before
Tl we have (z, ζ, r) 6∈ Tk we must have |z − xk| ≥ sk − r ≥ sk − t.

To show the other half of the claim pick another point (z′, ζ ′, r′) ∈ Ωy,η,t. If we
assume Lr′ ≤ r, then by an analogous argument as above we get that Tl was chosen
prior to Tl′ which in particular implies z 6= z′. Therefore if two points in Ωy,η,t have
the same spatial component, then their scales can be at most by a factor of L apart. In
other words, the set of all points in Ωy,η,t with a given fixed spatial component has their
scale contained in an interval of the form [Q,L ·Q] for some Q ∈ (0,∞).

The claim enables us to estimate the off-diagonal part by CA . We have shown
(2.4.16). If N < ∞ then there exist no more bad points after the algorithm has ter-
minated. Suppose that N = ∞. If π(ξk) → −∞, then we are done. Otherwise π(ξk)
converges to some value ν1 in a discrete set. We restart the iteration continuing to
choose bad points, which are not covered yet, giving a sequence of points with frequency
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components ξ(1),k. We must have a strict inequality π(ξ(1),k) < ν1. If this new sequence
also fails to terminate or diverge towards −∞ it must converge towards some ν2 < ν1.
We rerun the argument again and iterate. In the worst case we end up with an infinite
sequence ν1 > ν2 > ν3 > · · · . Since the νi are restricted to be within a discrete set
they must converge towards −∞, which means that if we unite all the tents chosen
and call this collection E+,j , we are done. One treats the size S−2 similarly by reversing
appropriate inequality signs in the above argument.
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Chapter 3

Polynomial Carleson operators
along monomial curves in the
plane

This chapter consists of a joint publication with Shaoming Guo, Lillian B. Pierce and Po-Lam

Yung [GPRY16], which will appear in The Journal of Geometric Analysis. The copyright is held

by Mathematica Josephina, Inc. and the article appears as part of this thesis in accordance with

their copyright regulations.

3.1 Introduction

3.1.1 Historical background.

In 1966, Carleson [Car66] proved an L2 bound for the Carleson operator

f(x) 7−→ sup
N∈R

∣∣∣p.v.∫
R
f(x− t)eiNtdt

t

∣∣∣. (3.1.1)

This provided the key step in proving almost everywhere convergence of Fourier series
of L2 functions and thereby resolved a conjecture of Luzin. The Lp boundedness of the
Carleson operator for 1 < p <∞ was then shown by Hunt [Hun68], and further proofs of
Carleson’s theorem were later given by Fefferman [Fef73] and Lacey and Thiele [LT00].

E. M. Stein suggested the following generalization: fix a natural number d and
consider the operator given by

f(x) 7−→ sup
P

∣∣∣∣∫
Rn
f(x− y)eiP (y)K(y)dy

∣∣∣∣ , (3.1.2)

where K is an appropriately chosen Calderón-Zygmund kernel and the supremum runs
over all real-valued polynomials P of degree at most d in n variables. Stein asked whether
this polynomial Carleson operator is bounded from Lp to Lp for 1 < p <∞. Stein and
Wainger [SW01] used a TT ∗ argument and certain oscillatory integral estimates of van
der Corput type to obtain Lp bounds for a variant of the operator (3.1.2), where the
polynomial P is restricted to the set of polynomials of degree at most d that vanish
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to at least second order at the origin (so in particular, have no linear term; of course
constant terms may be disregarded). In dimension n = 1, a positive answer to Stein’s
full question was provided by Lie [Lie09], [Lie11], who developed a sophisticated time-
frequency approach. In higher dimensions n > 1, boundedness of the full polynomial
Carleson operator remains an open problem.

Pierce and Yung [PY15] have introduced a new aspect to the study of polynomial
Carleson operators, by considering an operator that also features Radon-type behavior
in the sense of integration along an appropriate hypersurface. More precisely, they
considered the operator

f(x, y) 7−→ sup
P

∣∣∣∣∫
Rn
f(x− t, y − |t|2)eiP (t)K(t)dt

∣∣∣∣ , (3.1.3)

acting on functions f on Rn×R where n ≥ 2, K is a Calderón-Zygmund kernel, and the
supremum runs over a suitable vector subspace of the space of all real-valued polynomials
P of degree at most d in n variables. In particular, this allowable subspace requires that
the polynomials considered should omit linear as well as certain types of quadratic terms.
The key result of [PY15] then proves Lp, 1 < p < ∞, bounds for this operator, via a
method of proof based on square functions, TT ∗ techniques in the spirit of Stein and
Wainger [SW01], and certain refined van der Corput estimates. Notably, the method
of [PY15] does not work in the planar case n = 1, which is the main subject of the
present paper. Our goal here is to prove bounds for a new class of polynomial Carleson
operators along curves in the plane, and to demonstrate the curious feature that even
partial results for these new operators along curves are in some sense as strong as
Carleson’s original theorem (and its variants) in the purely one-dimensional setting.

3.1.2 Statements of main results.

Let m, d be positive integers and f a Schwartz function on R2. For N ∈ R let

HNf(x, y) = Hm,d
N f(x, y) = p.v.

∫
R
f(x− t, y − tm)eiNt

d dt

t
.

The natural goal, in the spirit of Carleson operators, is to prove that for all 1 < p <∞,∥∥∥∥sup
N∈R
|HNf |

∥∥∥∥
Lp(dxdy)

≤ C‖f‖Lp(dxdy). (3.1.4)

This would be analogous to the results of Stein and Wainger [SW01] in the Radon-
type context of (3.1.2). We recall the useful strategy of linearization via a linearizing
stopping time function: we define for an arbitrary measurable function N(x, y) : R2 7→ R
the operator f 7→ HN(x,y)f(x, y). Then proving

‖HN(x,y)f(x, y)‖Lp(dxdy) ≤ C‖f‖Lp(dxdy)

with a constant C independent of the choice of the function N is equivalent to proving
(3.1.4).

To prove this inequality appears to be out of reach of our current methods. Recalling
instead that a special case of [SW01] already shows that for any integer d > 1 the
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operator

f(x) 7−→ p.v.

∫
R
f(x− t)eiN(x)td dt

t
(3.1.5)

is bounded on Lp(R) for 1 < p < ∞, we are motivated to consider the case when we
twist the operator (3.1.5) with an additional Radon transform, while preserving the
dependence of the linearizing function N on one variable only.

Thus for an arbitrary measurable function N : R→ R, we define our main operators
of interest:

Am,dN f(x, y) := Hm,d
N(x)f(x, y) (3.1.6)

and
Bm,d
N f(x, y) := Hm,d

N(y)f(x, y). (3.1.7)

Before turning to our main results, we briefly note that certain special cases of these
operators may be treated immediately: namely, for d ≥ 1 the operators A1,d

N and B1,d
N

are bounded on Lp(R2) for 1 < p <∞. Indeed even the operator supN∈R |H
1,d
N f(x, y)| is

bounded on Lp(R2) for 1 < p <∞. This follows immediately by integrating Carleson’s
theorem for (3.1.1) (in the case d = 1), or the result of Stein and Wainger [SW01] for
(3.1.2) (in the case d > 1), along the straight lines of slope 1 in R2, using Fubini’s
theorem.

The remaining cases, with m > 1, are highly nontrivial. We formulate our main
results as two theorems, which despite superficial similarities have quite different flavors,
due to the differing symmetry groups of the involved operators (see Section 3.2.1). Our
first main result can be stated as follows.

Theorem 3.1.1. Let N : R→ R be a measurable function and d,m > 1, d 6= m integers.
Then for 1 < p <∞, ∥∥∥Am,dN f

∥∥∥
p
≤ C‖f‖p, (3.1.8)∥∥∥Bm,d

N f
∥∥∥
p
≤ C‖f‖p, (3.1.9)

with the constant 0 < C <∞ depending only on d,m, p and not on N, f .

Note that uniformity of (3.1.8) in N is tantamount to the estimate∥∥∥∥sup
N∈R
‖HNf(x, y)‖Lp(dy)

∥∥∥∥
Lp(dx)

≤ C‖f‖p. (3.1.10)

Similarly, (3.1.9) corresponds to∥∥∥∥sup
N∈R
‖HNf(x, y)‖Lp(dx)

∥∥∥∥
Lp(dy)

≤ C‖f‖p. (3.1.11)

Our proof of Theorem 3.1.1 proceeds via van der Corput estimates, and does not
depend on Carleson’s theorem; this is in contrast to our second result, which we state
as follows.
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Theorem 3.1.2. Let N : R→ R be a measurable function. Then for 1 < p <∞,∥∥∥Am,1N f
∥∥∥
p
≤ C‖f‖p, for any integer m ≥ 3, (3.1.12)∥∥∥Bm,m

N f
∥∥∥
p
≤ C‖f‖p, for any integer m ≥ 2, (3.1.13)

with the constant C depending only on m, p and not on N, f .

A novel feature of our proof of Theorem 3.1.2 is that we combine Carleson’s theorem
with TT ∗ estimates in the spirit of Stein and Wainger. One surprising feature of our
proof, compared to the original work [SW01] is that these TT ∗ estimates can handle
certain cases of phase polynomials with a linear term (c.f. estimates (3.5.16)–(3.5.18)).

Remark 3.1.1. One is led to ask what happens to the remaining nontrivial (m > 1)
cases that are not covered by Theorems 3.1.1 and 3.1.2, namely A2,1

N , Am,mN and Bm,1
N

where m > 1 is an integer. The key again lies in the symmetries of these operators:
they are different from the symmetries of the operators in Theorems 3.1.1 and 3.1.2, and
this points to why our current proofs do not apply in these situations. Despite these
difficulties, at least the L2 bounds for all these problematic cases still follow from known
Carleson theorems via partial Fourier transform and Plancherel’s theorem; see Section
3.6.2. The full Lp bounds remain an open problem in these cases.

3.1.3 Consequences of bounding partial Carleson operators

We now turn to the surprising feature that L2 bounds for partial operators along curves
imply L2 bounds for Carleson-type operators acting on functions of one variable. Here
we summarize several deductions of this kind; proofs are given in Section 3.6.

First, L2 bounds for certain operators Am,1 and Bm,m are in some sense equivalent
to an L2 bound for Carleson’s operator. More precisely, for any integer m ≥ 1, the
L2 boundedness of Am,1N implies the L2 boundedness for the one-dimensional Carleson
operator (3.1.1), by a Plancherel argument (see Section 6.1). In the other direction, we
use the boundedness of the maximal truncated Carleson operator (3.3.2) (itself dom-
inated by the Carleson operator according to the inequality (3.7.1)) to prove the L2

boundedness of Am,1 for m ≥ 3 in Theorem 3.1.2, while the L2 bound for A2,1 may be
deduced from Carleson’s theorem (see Section 3.6.2).

Similarly, for any odd integer m ≥ 1, the L2 boundedness of Bm,m
N implies an L2

bound for the one-dimensional Carleson operator (see Section 3.6.1), while in the other
direction we use the maximal truncated Carleson operator to prove Theorem 3.1.2.

Of course, the most natural challenge in the setting of Carleson operators along
curves in the plane is the quadratic Carleson operator along the parabola defined by

C parf(x, y) = sup
N∈R2

∣∣Hpar
N f(x, y)

∣∣ , (3.1.14)

where for f a Schwartz function on R2,

Hpar
N f(x, y) = p.v.

∫
R
f(x− t, y − t2)eiN1t+iN2t2 dt

t
.

This operator combines all the features that have proved troublesome in the study
of (3.1.3) in [PY15]: apart from acting on functions in the plane, the phase consists
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entirely of the problematic linear and quadratic terms. Assuming that N1, N2 : R→ R
are arbitrary measurable functions depending only on x, observe that for N1 = 0 this
gives our operator A2,2 (which our present arguments cannot treat) and for N2 = 0 it
gives our problematic operator A2,1 (which again our present arguments cannot treat).
So we are quite far from knowing how to bound (3.1.14).

But in the spirit of studying partial versions of Carleson operators, we point out that
even a partial estimate for Hpar

N of the form∥∥∥∥ sup
N∈R2

‖Hpar
N f‖L2(dy)

∥∥∥∥
L2(dx)

≤ C‖f‖2, (3.1.15)

would suffice to imply an analogue over R of Lie’s L2 result on the quadratic Carleson
operator [Lie09]; see Section 3.6.1 for details. These considerations indicate the interest
in pursuing the partial Carleson operators we consider.

3.2 Overview of the methods

3.2.1 Symmetries of our operators

To make precise the differences between Theorems 3.1.1 and 3.1.2, we now characterize
symmetries of the operators Am,dN and Bm,d

N as m and d vary. First there is an anisotropic
dilation symmetry. If we denote

Dλf(x, y) = f(λx, λmy) (3.2.1)

for λ > 0, then
D−1
λ Hm,d

N Dλ = Hm,d
λ−dN

.

Second, due to the convolution structure, Hm,d
N commutes with translations of the plane,

for any m, d.
Third, the operators in Theorem 3.1.2 additionally have certain modulation symme-

tries. Let
Mξ,ζf(x, y) = eixξ+iyζf(x, y) (3.2.2)

for ξ, ζ ∈ R. Then if d = 1, we have

M−1
ξ,0A

m,1
N Mξ,0 = Am,1N−ξ (3.2.3)

for all ξ ∈ R. Similarly if d = m, we have

M−1
0,ζB

m,m
N M0,ζ = Bm,m

N−ζ (3.2.4)

for all ζ ∈ R. Simultaneous translation and modulation invariance is a characteristic
property of the Carleson operator. Hence we are led to use Carleson’s theorem in parts
of the proof of Theorem 3.1.2.

Finally, we remark briefly that for A2,1
N , the modulation symmetries are more in-

volved. The problem is that in addition to the modulation symmetry (3.2.3), it also has
a certain quadratic modulation symmetry. Let

Qbf(x, y) = eibx
2
f(x, y). (3.2.5)
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Then
Q−1
b M−1

0,bA
2,1
N M0,bQb = A2,1

N−2bx. (3.2.6)

Recall that for the operator A2,1
N , the linearizing function N depends on the variable x.

Thus, by N − 2bx we mean the function x 7→ N(x) − 2bx, also only depending on x.
Moreover, notice that in (3.2.6), the linear modulation acts on the y variable, while the
quadratic modulation acts on the x variable. Hence there is a certain “twist” in this
modulation symmetry.

3.2.2 Method of proof: Theorem 3.1.1

We now sketch the proof of Theorem 3.1.1. The strategy follows broadly that of Stein
and Wainger, but the means of obtaining the key estimates is necessarily different.
More precisely, we proceed by splitting the integral defining Am,dN or Bm,d

N into two
parts, according to the size of the phase Ntd: for Ntd sufficiently small, we compare
the resulting operator to a maximal truncated Hilbert transform along a curve, and for
Ntd large, we use TT ∗ and van der Corput estimates to handle the operator that arises.
It is in the treatment of this latter operator where we must assume that the stopping
time depends on one variable only, so that we may perform a Fourier transform in the
free variable, along which the linearizing function is constant. This idea goes back to
Coifman and El Kohen, who used it in the context of Hilbert transforms along vector
fields (see the discussion in Bateman and Thiele [BT13]).

Another important ingredient is a certain refinement of Theorem 1 of [SW01]. The
main novelty is that our core estimate, which we now record, allows us to consider phases
with monomials of fractional exponents.

Lemma 3.2.1. Fix real numbers α, β > 0, α 6= β, α, β 6= 1. Let ψ be smooth and
supported on [1, 2]. For λ = (λ1, λ2) ∈ R2 and t > 0, let

Φλ(t) = eiλ1tα+iλ2tβψ(t)/t, (3.2.7)

and set Φλ(−t) = 0. For a > 0, let

Φλ
a(t) = a−1Φλ(t/a). (3.2.8)

Let |λ| = |λ1|+ |λ2|. Then there exists γ0 > 0 such that for all r ≥ 1 and all F ∈ L2(R),∥∥∥∥∥ sup
a>0,|λ|≥r

|F ∗ Φλ
a |

∥∥∥∥∥
L2(dx)

. r−γ0‖F‖L2(dx).

Remark 3.2.1. For α, β ∈ N this is merely a special case of Stein and Wainger’s Theorem
1 in [SW01], but to prove Lemma 3.2.1 in full generality requires estimates of a very
different flavor. See also the work of the first author [Guo16] for a similar result regarding
a phase composed of a single fractional monomial. Fractional exponents appear naturally
during the analysis of the operators Bm,d via a change of variables tm → t (for instance,
see (3.4.6) and (3.5.14)). (In addition, Theorems 3.1.1 and 3.1.2 could be somewhat
generalized to non-integral m, d, but we have chosen the integer setting for our main
results, to avoid unnecessary complications.)

The key contrast of our proof of Lemma 3.2.1 with the corresponding result in Stein
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and Wainger [SW01] appears in the proof of Lemma 3.4.1. The strategy is to linearize
the operator F 7→ supa>0,|λ|≥r |F ∗ Φλ

a | using stopping times for a, λ, and to bound an
oscillatory integral by showing that for all but a small exceptional region of the integral,
the phase has a large derivative of some order. Our proof enables us to make the
exceptional region independent of the precise stopping time λ, thus obviating the need
for the small set maximal functions that appear in [SW01]; at the cost of restricting
our attention to phases with only two monomials, we are also able to handle fractional
powers.

3.2.3 Method of proof: Theorem 3.1.2

Next, we sketch the proof of Theorem 3.1.2. To analyze Am,1N , where m ≥ 3 is an integer,
we first decompose the operator as

Am,1N =
∑
k∈Z

Am,1N ◦ Pk,

where Pk is a Littlewood-Paley projection onto frequency ∼ 2k in the y-variable. In view
of the modulation invariance (3.2.3) in the x-variable, this is the only viable Littlewood-
Paley decomposition we can use for the operator Am,1; a Littlewood-Paley decomposition
in the x-variable is doomed to fail. We also note that the Littlewood-Paley projection
in the y-variable commutes with Am,1N , since the stopping time N in the operator Am,1N

depends only on x but not on y.
Now to analyze each Littlewood-Paley piece of Am,1N , we decompose the integral

Am,1N ◦ Pkf(x, y) =

∫
R

(Pkf)(x− t, y − tm)eiN(x)tdt

t

into two parts, where t is small or large compared to the frequency 2k. For t small,
we compare the resulting integral to a maximally truncated Carleson operator in the
x-variable; this is natural in view of the remarks in Section 3.1.3. The error will be given
by a strong maximal function, since Pkf is localized in frequency in the y-variable. For
t large, we need to use a van der Corput estimate: again we take advantage of the fact
that the stopping time N of Am,1N depends only on x, to take a partial Fourier transform
in the y-variable.

In order to reassemble the various Littlewood-Paley pieces, the main ingredient is a
vector-valued estimate for the maximally truncated Carleson operator (Theorem 3.3.1).

A similar strategy works for Bm,m
N for m ≥ 2 an integer. There is, however, an

interesting distinction depending on whether m is odd or even: when m is odd, we need
to use the maximally truncated Carleson operator in the y-variable, whereas when m
is even, the component of the operator that would correspond to the maximally trun-
cated Carleson operator magically vanishes. (See equation (3.5.5), and the discussion
immediately thereafter.)

Roughly speaking, our proof of Theorem 3.1.2 works because the linearizing function
depends on the same variable in which the modulation invariance occurs, so the other
variable is at our disposal to use Plancherel’s theorem and localize in frequency via
Littlewood-Paley decomposition. Essential parts of this proof fail in the remaining cases
A2,1, Am,m and Bm,1, where m > 1. For Am,m, the linearizing function varies with x, so
we would like to use Plancherel’s theorem in y and localize in the y frequency. However,
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the modulation invariance in (3.2.4) causes translation invariance in the y frequency so
that any attempt at doing a Littlewood-Paley decomposition is doomed from the start.
Similar behavior occurs for Bm,1.

3.3 Preliminaries

3.3.1 Notation

The notation A . B always means A ≤ C · B with 0 < C < ∞ depending only
on m, d and the function ψ chosen below (and within the proof of Lemma 3.2.1, on
α, β). Similarly, A ≈ B means C1A ≤ B ≤ C2A with 0 < C1 ≤ C2 < ∞ and the
same dependence. We use the Fourier transform f̂(ξ) =

∫
R f(x)e−iξxdx with inverse

ǧ(x) = (2π)−1
∫
R g(ξ)eixξdξ and Plancherel identity ‖f‖2 = (2π)−1/2‖f̂‖2.

3.3.2 Littlewood-Paley decomposition

Once and for all we fix a smooth function ψ : R→ R supported on {t : 1/2 ≤ |t| ≤ 2}
such that 0 ≤ ψ(t) ≤ 1 and

∑
k∈Z ψk(t) = 1 for all t 6= 0, where ψk(t) = ψ(2−kt). Define

the associated Littlewood-Paley projection of a function F on R by

Fk(w) = PkF (w) =

∫
R
F (u)ψ̌k(w − u)du, (3.3.1)

where ψ̌k denotes the inverse Fourier transform of the function ψk. The standard
Littlewood-Paley estimates apply, in the form

‖F‖p .
∥∥∥(∑

k

|PkF |2
)1/2 ∥∥∥

p
. ‖F‖p.

We will apply this in the x-variable or y-variable of f(x, y), depending which is free.

3.3.3 Vector-valued inequalities

In this section we collect several vector-valued estimates that will play important roles
in our work.

Define the maximally truncated Carleson operator by

C ∗F (x) = sup
N∈R,ε>0

∣∣∣p.v.∫
|t|≤ε

F (x− t)eiNtdt
t

∣∣∣. (3.3.2)

Note that this operator is usually studied with the inequality |t| ≤ ε being reversed; we
may of course reduce to that case by subtracting the Carleson operator from C ∗.

Theorem 3.3.1. For 1 < p <∞,∥∥∥(∑
k∈Z
|C ∗Fk|2

)1/2∥∥∥
p
.
∥∥∥(∑

k∈Z
|Fk|2

)1/2∥∥∥
p
, (3.3.3)

with a constant depending only on p.
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We assemble the necessary results to verify Theorem 3.3.1 in Section 3.7.1.
Next, let M be the maximal operator of Radon-type along the curve (t, tm):

M f(x, y) = sup
r>0

1

2r

∫ r

−r
|f(x− t, y − tm)|dt. (3.3.4)

This is known to be a bounded operator of Lp for 1 < p ≤ ∞ (e.g. by a small modification
of the proof in the case of the parabola (t, t2), [Ste93, Chapter XI §1.2, §2]). We require
a vector-valued inequality for fk := Pkf , with Pk acting on either the x-variable or
y-variable (to be specified later):

Theorem 3.3.2. For 1 < p <∞ we have∥∥∥(∑
k∈Z
|M fk|2

)1/2∥∥∥
p
.
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
p
, (3.3.5)

with a constant depending only on p.

This result is stated in [RdFRT86, Theorem 2.5], as a consequence obtainable from
a more general theory. For completeness, we offer a brief, self-contained proof for our
special case in Section 3.7.2; we thank E. M. Stein for sharing with us this method
of proof, which appears in a significantly more general form in the preprint [MST15,
Appendix A, Theorem A.1].

Finally, we will need two one-variable Hardy-Littlewood maximal functions in the
plane, denoted by M1 and M2, respectively. Indeed, they will act on the first and second
variables respectively:

M1f(x, y) = sup
r>0

1

2r

∫ r

−r
|f(x− u, y)|du (3.3.6)

M2f(x, y) = sup
r>0

1

2r

∫ r

−r
|f(x, y − t)|dt. (3.3.7)

They are bounded on Lp(R2) for all 1 < p <∞, and satisfy the following vector-valued
inequality, which follows easily by integrating a corresponding result of Fefferman and
Stein:

Theorem 3.3.3. For 1 < p <∞ and i = 1, 2, we have∥∥∥(∑
k∈Z
|Mifk|2

)1/2∥∥∥
p
.
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
p
, (3.3.8)

with a constant depending only on p.

See e.g. [Ste93, Chapter II §1.1] for further details.

3.4 The asymmetric case: Theorem 3.1.1

First we prove Theorem 3.1.1, assuming Lemma 3.2.1; then in Section 3.4.3 we prove
the lemma.

For convenience, we define the auxiliary variable z = z(x, y) to be understood as
indicating either z(x, y) = x or z(x, y) = y, so that N(z) can mean either N(x) or N(y).
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To simplify notations, we also define

Tf(x, y) = Hm,d
N(z)f(x, y), (3.4.1)

with m, d satisfying the conditions of Theorem 3.1.1. With ψ` as defined in Section
3.3.2, define for each ` ∈ Z

T`f(x, y) =

∫
R
f(x− t, y − tm)eiN(z)tdψ`(t)

dt

t
.

Let n : R→ Z be such that for all z ∈ R,

2−n(z)d ≤ |N(z)| < 2−(n(z)−1)d. (3.4.2)

Then we decompose T = T (1) + T (2) with

T (1)f(x, y) =
∑
`≤n(z)

T`f(x, y)

and
T (2)f(x, y) =

∑
`>0

Tn(z)+`f(x, y).

The motivation for this decomposition is that when ` ≤ n(z), ψ`(t) localizes to |t| ≤
2`+1 ≤ 2n(z)+1 and the exponential factor eiN(z)td is well approximated by 1. Conse-
quently we write T (1)f(x, y) as∑
`≤n(z)

∫
R
f(x− t, y− tm)(eiN(z)td − 1)ψ`(t)

dt

t
+
∑
`≤n(z)

∫
R
f(x− t, y− tm)ψ`(t)

dt

t
. (3.4.3)

We may estimate the absolute value of the first summand brutally by applying (3.4.2):

.
∑
`≤n(z)

∫
R
|f(x− t, y − tm)| · |N(z)td−1ψ`(t)|dt .

1

2n(z)+2

∫ 2n(z)+1

−2n(z)+1

|f(x− t, y − tm)|dt.

The right hand side is bounded by M f(x, y), where M denotes the maximal operator
along (t, tm) defined in (3.3.4).

The second summand in (3.4.3) is bounded in absolute value by the maximal trun-
cated Hilbert transform along the curve (t, tm), defined by

H∗f(x, y) = sup
ε,R>0

∣∣∣ ∫
ε<|t|<R

f(x− t, y − tm)
dt

t

∣∣∣, (3.4.4)

plus an error term bounded by M f(x, y) (which arises at the endpoint when passing
from smooth bump functions to a sharp truncation). Thus in total we have obtained
the pointwise estimate

|T (1)f | .M f +H∗f.

Since both H∗, M are known to be bounded in Lp, 1 < p < ∞ (for example, by slight
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modifications of Stein and Wainger’s work for (t, t2) in [SW78]), we may conclude that

‖T (1)f‖p . ‖f‖p

for all 1 < p <∞.
It remains to show the same for T (2). Let

S`f(x, y) = Tn(z)+`f(x, y);

we claim that it suffices to prove that there exists some γ0 > 0 such that for all ` > 0,

‖S`f‖2 . 2−γ0`‖f‖2. (3.4.5)

Indeed, the triangle inequality implies the pointwise estimate |S`f | . M f , so that we
immediately obtain ‖S`f‖p . ‖f‖p for all 1 < p < ∞; by interpolation with (3.4.5) we
then obtain for any 1 < p <∞ there exists some γp > 0 such that

‖S`f‖p . 2−γp`‖f‖p.

Finally, summing over ` ≥ 0 gives

‖T (2)f‖p . ‖f‖p.

All that remains is to prove (3.4.5); we proceed by distinguishing two cases.

3.4.1 The Bm,d
N operators.

Here we consider the case z(x, y) = y. Applying Plancherel’s theorem in the free x-
variable, we obtain

‖S`f(x, y)‖L2(dx) = (2π)−1/2
∥∥∥∫

R
gξ(y − tm)eiN(y)td−iξtψn(y)+`(t)

dt

t

∥∥∥
L2(dξ)

,

where

gξ(y) =

∫
R
e−iξxf(x, y)dx.

Therefore to prove (3.4.5) it will suffice to prove a bound of the form∥∥∥∫
R
F (y − tm)eiN(y)td−iξtψn(y)+`(t)

dt

t

∥∥∥
L2(dy)

. 2−γ0`‖F‖2,

uniformly in ξ ∈ R, for all single variable functions F . Recall that the cutoff function
ψn(y)+` has supports both in the positive half line and in the negative half line. Ac-
cordingly let us split the integration over t into a positive and a negative part. We
consider the positive part; the negative component is treated in an entirely analogous
way. Changing variables tm 7→ t, we see that it suffices to show there exists some γ0 > 0
such that for all ` > 0 and all F ∈ L2(R),

∥∥∥ ∞∫
0

F (y − t)eiN(y)td/m−iξt1/mψn(y)+`(t
1/m)

dt

t

∥∥∥
L2(dy)

. 2−γ0`‖F‖2, (3.4.6)
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uniformly in ξ. In fact (3.4.6) is an immediate consequence of the key Lemma 3.2.1, with
α = d/m, β = 1/m. To see this, we first rewrite N(y) = 2−n(y)d+r(y)d with 0 < r(y) < 1
for all y. Then for a ∈ R and λ ∈ R2, we define Φλ

a := a−1Φλ(t/a), where

Φλ(t) := eiλ1tα+iλ2tβψ(t1/m)t−1 for t > 0,

and Φλ(t) = 0 for t ≤ 0. One then observes that the integral on the left hand side of
(3.4.6) is equal to F ∗ Φλ

a(y), with parameters

a = 2(n(y)+`)m, λ1 = 2`d+r(y)d, λ2 = −ξ2n(y)+`.

Then (recalling ` > 0, 0 < r(y) < 1), we have

|λ| = |λ1|+ |λ2| ≥ 2`d+r(y)d ≥ 2`d,

and we see from Lemma 3.2.1 that for any fixed ` > 0,

∥∥∥ ∞∫
0

F (y−t)eiN(y)td/m−iξt1/mψn(y)+`(t
1/m)

dt

t

∥∥∥
L2(dy)

. ‖ sup
a>0,|λ|≥2`d

|F∗Φλ
a |‖2 . 2−γ0`‖F‖2,

as desired. This proves (3.4.6) and hence (3.4.5) in this case.

3.4.2 The Am,d
N operators.

Here we treat the case z(x, y) = x. Applying Plancherel’s theorem in the free y-variable,
we obtain∥∥∥S`f(x, y)

∥∥∥
L2(dy)

= (2π)−1/2
∥∥∥∫

R

gη(x− t)eiN(x)td−iηtmψn(x)+`(t)
dt

t

∥∥∥
L2(dη)

with

gη(x) =

∫
R
e−iηyf(x, y)dy.

By Plancherel’s theorem it suffices to show that there exists γ0 > 0 such that for each
` > 0, ∥∥∥∫

R

F (x− t)eiN(x)td−iηtmψn(x)+`(t)
dt

t

∥∥∥
L2(dx)

. 2−γ0`‖F‖2

uniformly in η. Now it is clear that we may proceed similarly to (3.4.6), and deduce
this bound from Lemma 3.2.1 with α = d, β = m.

3.4.3 Proof of Lemma 3.2.1

In order to complete the proof of Theorem 3.1.1, it remains to prove Lemma 3.2.1. Due
to a minor technical issue we will assume the pair {α, β} 6= {2, 3} in the proof. However,
this case is of course already covered by Stein and Wainger’s work [SW01, Theorem 1].

In fact it suffices to prove there exists γ0 such that for all r ≥ 1,

‖ sup
a>0, r≤|λ|≤2r

|F ∗ Φλ
a |‖2 . r−γ0‖F‖2. (3.4.7)
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With this result in hand, we immediately obtain the desired result,∥∥∥ sup
a>0, |λ|≥r

|F ∗ Φλ
a |
∥∥∥

2
≤
∞∑
k=0

∥∥∥ sup
a>0, 2kr≤|λ|≤2k+1r

|F ∗ Φλ
a |
∥∥∥

2
. r−γ0‖F‖2.

We proceed by linearizing the supremum. For measurable functions a : R→ (0,∞),
λ : R→ R2 with r ≤ |λ(u)| ≤ 2r for all u ∈ R, we define an operator Λ : L2(R)→ L2(R)
by

ΛF (u) = F ∗ Φ
λ(u)
a(u)(u) =

∫
R
F (t)Φ

λ(u)
a(u)(u− t)dt.

The bound (3.4.7) will follow from proving ‖Λ‖2→2 . r−γ0 for some γ0 > 0 with the

implicit constant independent of a, λ. Since ‖Λ‖2→2 = ‖ΛΛ∗‖1/22→2, we will in fact prove

‖ΛΛ∗‖2→2 . r
−2γ0 . (3.4.8)

We calculate

ΛΛ∗F (u) =

∫
R
F (s)(Φν

a1
∗ Φ̃µ

a2
)(u− s)ds, (3.4.9)

with Φ̃(u) := Φ(−u) and ν = λ(u), µ = λ(s), a1 = a(u), a2 = a(s). Note that by
rescaling we may write

(Φν
a1
∗ Φ̃µ

a2
)(s) = a−1

2 (Φν
a1/a2

∗ Φ̃µ
1 )(a−1

2 s) = a−1
1 (Φν

1 ∗ Φ̃µ
a2/a1

)(a−1
1 s).

Thus we will deduce (3.4.8) from applying the following bounds, which are the heart of
the proof:

Lemma 3.4.1. There exists γ1 > 0 such that for 0 < h ≤ 1, r ≤ |ν|, |λ| ≤ 2r we have

|(Φν
h ∗ Φ̃µ

1 )(s)| . r−γ11{|s|≤4}(s) + 1{|s|≤r−γ1}(s), (3.4.10)

|(Φν
1 ∗ Φ̃µ

h)(s)| . r−γ11{|s|≤4}(s) + 1{|s|≤r−γ1}(s). (3.4.11)

Remark 3.4.1. Note that the exceptional sets in (3.4.10), (3.4.11) do not depend on ν, µ.
This is in contrast to [SW01, Lemma 4.1]. As a consequence we do not require Stein
and Wainger’s small set maximal function [SW01, Proposition 3.1].

We first proceed with the proof of Lemma 3.2.1, and then prove Lemma 3.4.1 in
Section 3.4.4. Applying (3.4.10) and (3.4.11) appropriately (depending on whether a1 ≥
a2 or a1 ≤ a2), we deduce

|(Φν
a1
∗ Φ̃µ

a2
)(s)| . r−γ1

2∑
k=1

(
a−1
k 1{|s|≤4ak}(s) + (akr

−γ1)−11{|s|≤r−γ1ak}(s)
)
.

Thus for any G ∈ L2 we may compute

|〈ΛΛ∗F,G〉| =
∣∣∣ ∫

R

∫
R

(Φν
a1
∗ Φ̃µ

a2
)(u− s)F (s)G(u)dsdu

∣∣∣
. r−γ1

(∫
R
MF (u)|G(u)|du+

∫
R
|F (s)|MG(s)ds

)
,
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where M denotes the standard one-variable Hardy-Littlewood maximal function. (Here
the important point is that we have integrated first in whichever variable was indepen-
dent of the stopping time ak, for the two terms k = 1, 2.) Via the Cauchy-Schwarz
inequality and the boundedness of M on L2, we obtain

|〈ΛΛ∗F,G〉| . r−γ1‖F‖2‖G‖2.

This completes the proof of (3.4.7) with γ0 = γ1/2.

3.4.4 Proof of Lemma 3.4.1

We will only prove (3.4.10), as (3.4.11) follows by symmetry. By definition,

(Φν
h ∗ Φ̃µ

1 )(s) =

∫
R
eiν1tα+iν2tβ−iµ1(ht−s)α−iµ2(ht−s)β ψ(t)

t

ψ(ht− s)
ht− s

dt. (3.4.12)

First notice that the support of Φν
h ∗ Φ̃µ

1 (s) is contained in {s : |s| ≤ 4}.
In order to apply van der Corput estimates, we need to analyze when the phase

function
Q(t, s) = ν1t

α + ν2t
β − µ1(ht− s)α − µ2(ht− s)β

has a large derivative of some order. Here we recall that νi = λi(u) are fixed with respect
to t, s (the relevant variables of integration in (3.4.9)), and that r ≤ |ν1| + |ν2| ≤ 2r.
On the other hand, µi = λi(u − s) depends on s (in an unknown way), and thus our
strategy is to make our argument independent of µ1, µ2.

Case 1: Suppose that 0 < h ≤ h0, where 0 < h0 < 1 is to be determined later,
depending on r, α, β; this is the easier case.

Let 0 < ε1 < 1 be small and fixed. Within the support of ψ(t)ψ(ht− s), we estimate

|∂tQ(t, s)| ≥ |αν1t
α−1 + βν2t

β−1| − hCr,

where C is a positive constant only depending on the exponents α, β. Let us define the
function

F (t) = αν1t
α−1 + βν2t

β−1,

and its associated exceptional set

E = {t ∈ [1/2, 2] : |F (t)| ≤ τr1−ε1},

where τ is a positive constant that depends only on α, β and is to be determined later.
Our strategy will be to choose τ so that |E| is small and then apply van der Corput’s
lemma outside of E.

We will prove (at the end of the considerations for Case 1):

Lemma 3.4.2. There exists a choice of τ (depending only on α, β) such that

|E| . r−ε2 (3.4.13)

with ε2 = ε1/|β − α|.
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Assuming τ is chosen as in the lemma, we now specify h0 to be such that

h0C =
1

2
τr−ε1 . (3.4.14)

Then whenever h ≤ h0, for all t ∈ [1/2, 2] \ E,

|∂tQ(t, s)| & r1−ε1 . (3.4.15)

We now split the integral in (3.4.12) according to whether t ∈ [1/2, 2] \E or t ∈ E. We
estimate the portion of the integral over E trivially by the measure of E, which is small
. r−ε2 by Lemma 3.4.2.

We will estimate the portion of the integral over [1/2, 2] \ E by applying van der
Corput’s lemma combined with the lower bound (3.4.15).

Here we encounter a delicate point: as stated in [Ste93, Chapter VIII §1.2] van
der Corput’s lemma for a first derivative assumes monotonicity. We circumvent this
assumption as follows. We first note that E (and thus also [1/2, 2]\E) is a finite union
of intervals, with the number of intervals being bounded by a small absolute constant.
To see this note that the equation

αν1t
α−1 + βν2t

β−1 ± τr1−ε1 = 0

has at most 3 solutions in t > 0 (see for example [SW70, Lemma 3]).
Thus we may apply the following slight variant of van der Corput’s lemma (proved

at the end of Case 1) to each such interval:

Lemma 3.4.3. Suppose φ is real-valued and smooth in (a, b) and that both |φ′(x)| ≥ σ1

and |φ′′(x)| ≤ σ2 for all t ∈ (a, b). Then∣∣∣∣∫ b

a
eiλφ(t)dt

∣∣∣∣ ≤ (a− b)
(
σ2

σ2
1

)
λ−1.

Here we note that for s fixed, we have that Q(t, s) is C∞ with respect to t for all t
in the support of ψ(t)ψ(ht− s); in particular note that both t, ht− s are bounded away
from the origin. We also verify trivially that for all such t,

|∂2
tQ(t, s)| . r, (3.4.16)

with a constant depending only on α, β. Hence applying Lemma 3.4.3 with the bounds
(3.4.15) and (3.4.16) to each of the finitely many finite-length intervals in [1/2, 2] \ E,
we obtain for each such portion of the integral a bound of size . r(r1−ε1)−2 = r−(1−2ε1).
In total, combining this with our trivial estimate for the portion of the integral over E,
we have proved

|(Φν
h ∗ Φ̃µ

1 )(s)| . r−(1−2ε1) + r−ε2 . r−ε3 ,

for all |s| ≤ 4, for a suitable ε3 > 0, which suffices for (3.4.10) in this case. All that
remains is to verify Lemmas 3.4.2 and 3.4.3.

Proof of Lemma 3.4.2. We observe that if one of |ν1|, |ν2| dominates the other then
|F (t)| is large, that is |F (t)| & r. More precisely, recall that |ν1|+ |ν2| ≈ r, and suppose
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that |ν2|/|ν1| ≤ c0 for some small constant c0 (so in particular |ν1| & r). Then

|F (t)| = |ν1|
∣∣∣∣αtα−1 + β

ν2

ν1
tβ−1

∣∣∣∣ ;
if c0 is chosen sufficiently small (with respect to α, β) we may guarantee that for all
t ∈ [1/2, 2],

αtα−1 ≥ 2

∣∣∣∣β ν2

ν1
tβ−1

∣∣∣∣
and hence

|F (t)| ≥ |ν1|
α

2
tα−1 ≥ c1r,

say. We may argue similarly to obtain |F (t)| ≥ c′1r if |ν1|/|ν2| ≤ c′0 where c′0 depends
only on α, β.

By choosing τ < min{c0, c
′
0} (hence depending only on α, β) we then see that if E

is to be non-empty, we must be in the regime where (c′0)−1 ≤ |ν1|/|ν2| ≤ c0, that is,
|ν1| ≈ |ν2|. In this case, we will deduce that (3.4.13) holds. Suppose that α < β; write
c := ν2/ν1 so that |c| ∈ [(c′0)−1, c0]. Then

F (t) = αν1t
α−1(1 + c(β/α)tβ−α),

so that for all t ∈ E we must have

r|1 + c(β/α)tβ−α| . |F (t)| ≤ τr1−ε1 ,

that is, t must satisfy
|1 + c(β/α)tβ−α| . r−ε1 .

The measure of such t is . r−ε1/(β−α), with an implicit constant dependent on α, β. For
the case α > β we argue in an entirely analogous way. This proves Lemma 3.4.2.

Proof of Lemma 3.4.3. We recall the proof of the original van der Corput lemma in the
case of a first derivative [Ste93, Ch VIII, Proposition 2], which bounds the integral in
question by

λ−1

∫ b

a

∣∣∣∣ ddt
(

1

φ′

)∣∣∣∣ dt = λ−1

∫ b

a

∣∣∣∣ φ′′(t)φ′(t)2

∣∣∣∣ dt,
where we have evaluated the derivative rather than invoking monotonicity of φ′ to bring
the absolute values outside the integral. The inequality claimed in Lemma 3.4.3 then
clearly follows.

We have now concluded the proof of Lemma 3.4.1 in Case 1.
Case 2. In the remaining case, h0 ≤ h ≤ 1. Fix any small 0 < ε4 < 1; if |s| ≤ r−ε4

we use the triangle inequality to bound (3.4.12) trivially by 1, which is sufficient for the
second term in (3.4.10). Thus from now on we assume that

|s| ≥ r−ε4 (3.4.17)
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and work to obtain a small bound for the integral. Note that as a vector,
∂tQ(t, s)
∂2
tQ(t, s)
∂3
tQ(t, s)
∂4
tQ(t, s)

 = Mt,s


αν1t

α−1

−αµ1(ht− s)α−1

βν2t
β−1

−βµ2(ht− s)β−1

 , (3.4.18)

where Mt,s is the 4× 4 matrix

Mt,s =


1 h 1 h

a1t
−1 a1h

2(ht− s)−1 b1t
−1 b1h

2(ht− s)−1

a2t
−2 a2h

3(ht− s)−2 b2t
−2 b2h

3(ht− s)−2

a3t
−3 a3h

4(ht− s)−3 b3t
−3 b3h

4(ht− s)−3

 , (3.4.19)

and

a1 = α− 1, a2 = (α− 1)(α− 2), a3 = (α− 1)(α− 2)(α− 3),

b1 = β − 1, b2 = (β − 1)(β − 2), b3 = (β − 1)(β − 2)(β − 3).

If we can show that | detMt,s| is sufficiently large, that is

|detMt,s| & r−κ (3.4.20)

for some κ > 0, then we will apply the following lemma (whose proof we defer to the
end of the section):

Lemma 3.4.4. Let A be an invertible n× n matrix and x ∈ Rn. Then

|Ax| ≥ |detA|‖A‖1−n|x|,

where ‖A‖ denotes the matrix norm sup|x|=1 |Ax|.

Note that ‖Mt,s‖ . 1 (since we only consider t in the support of ψ(t)ψ(ht− s), so
that both t, ht− s are bounded away from the origin). If we have shown (3.4.20) for t in
a certain interval, then applying Lemma 3.4.4 to (3.4.18), we see that throughout that
interval, (

4∑
k=1

|∂kt Q(t, s)|2
)1/2

& r−κ|(ν1, ν2, µ1, µ2)T | & r1−κ. (3.4.21)

Then applying the van der Corput lemma to that portion of the integral (3.4.12)
shows that portion is bounded by r−(1−κ)/4. (Note: to be precise, if only the first order
term |∂tQ(t, s)| dominates in (3.4.21), then we must apply the variant Lemma 3.4.3 of
the van der Corput lemma, using the trivial upper bound |∂2

tQ(t, s)| . r, similar to our
argument in Case 1. This will result in a bound for the portion of the integral over that
interval of size . r−(1−2κ), which is sufficient.)

In fact, we will show that | detMt,s| is sufficiently large in this manner for all but
a small exceptional set E of t, with measure . r−κ

′
for some small κ′ > 0. (As in our

argument in Case 1, we will also note that this exceptional set is a union of a finite
number of intervals, dependent only on α, β, so that we may apply the above argument
to each individual component of [1/2, 2]\E.) Thus this strategy is sufficient to complete
the proof of (3.4.10).
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We require the following purely algebraic identity.

Lemma 3.4.5. Let a0, . . . , a3, b0, . . . , b3, x, y be arbitrary real numbers. Then∣∣∣∣∣∣∣∣
a0 a0 b0 b0
a1x a1y b1x b1y
a2x

2 a2y
2 b2x

2 b2y
2

a3x
3 a3y

3 b3x
3 b3y

3

∣∣∣∣∣∣∣∣ = (c(x2 + y2) + dxy)(x− y)2xy,

where c, d are given by

c = −
∣∣∣∣a0 b0
a1 b1

∣∣∣∣ · ∣∣∣∣a2 b2
a3 b3

∣∣∣∣ , d = c+

∣∣∣∣a0 b0
a3 b3

∣∣∣∣ · ∣∣∣∣a1 b1
a2 b2

∣∣∣∣ . (3.4.22)

Proof. Expand the determinant along the first row, combine the terms corresponding to
the first and second columns, and those corresponding to the third and fourth columns,
respectively. Then again expand each of the two resulting 3× 3 determinants along the
first row.

Let M̃ denote the matrix in Lemma 3.4.5. Rescaling the individual rows and columns
of Mt,s appropriately to clear denominators, we see that

detMt,s = h2t−6(ht− s)−6 det M̃

where within M̃ we set a0 = b0 = 1, x = ht− s and y = ht. Then we may apply Lemma
3.4.5 to compute

detMt,s = t−5(ht− s)−5s2h3S(t), (3.4.23)

with
S(t) = h2(2c+ d)t2 − h(2c+ d)st+ cs2,

where c, d are as in (3.4.22). Note that with a0 = b0 = 1 and the other ai, bi as specified
above, then c 6= 0 is equivalent to α 6= β, α, β 6= 1, 2.

Now, in order to verify that |detMt,s| is sufficiently large, as in (3.4.20), we distin-
guish between two cases.

Case 2A. Suppose first that 2c+d = 0, so that S(t) = cs2. We must then verify that
c 6= 0. Since 2c + d = 0, clearly if c = 0 then d = 0. But recall from above that c = 0
implies that either α = 2 or β = 2 (since the hypotheses of Lemma 3.2.1 already ruled
out α = β, α = 1 or β = 1). Recall also that we assume in this stage of the proof that
the pair (α, β) is not (2, 3).

Suppose that α = 2. Then we would have d = (β − 1)2(β − 2)2(β − 3)(α − 1),
which is clearly non-zero (since β 6= 3). Analogously we see that β = 2 leads to a
contradiction. Thus we may conclude that c 6= 0, and recalling |s| ≥ r−ε4 from (3.4.17)
and h ≥ h0 & r−ε1 from (3.4.14), we may compute immediately from (3.4.23) that

| detMt,s| & r−4ε4−3ε1 ,

holds for all t ∈ [1/2, 2]. This verifies (3.4.20) and allows us to apply the van der Corput
lemma to bound the full integral (3.4.12) by r−κ for some κ > 0, completing the proof
of (3.4.10) in this case.
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Case 2B. The final case we must consider is when 2c+d 6= 0. Fix any small 0 < ε5 < 1
and define

E = {t ∈ [1/2, 2] : |S(t)| ≤ r−2ε5−2ε1}.

Note first that E is a union of at most two intervals, since S is a quadratic polynomial.
Then for t ∈ [1/2, 2] \ E, (3.4.23) in combination with |s| ≥ r−ε4 , h & r−ε1 implies

| detMt,s| & r−2ε4−5ε1−2ε5 ,

verifying (3.4.20) so that we may apply the van der Corput lemma to bound the portion
of the integral over [1/2, 2]\E by . r−κ for some κ > 0, which suffices for the first term
in (3.4.10).

We will bound the portion of the integral over E trivially, so all that remains is to
verify that E has small measure, for which we call upon the following lemma (see Christ
[Chr85, Lemma 3.3]):

Lemma 3.4.6. Let I ⊂ R be an interval, k ∈ N, f ∈ Ck(I), and suppose that for some
σ > 0, |f (k)(x)| ≥ σ for all x ∈ I. Then there exists a constant 0 < C < ∞ depending
only on k such that for every ρ > 0,

|{x ∈ I : |f(x)| ≤ ρ}| ≤ C
(ρ
σ

)1/k
. (3.4.24)

By the choice of h0 in (3.4.14) we have

|S′′(t)| & h2 & h2
0 & r

−2ε1 .

Thus by Lemma 3.4.6, we have |E| . r−ε5 , which suffices for the second term in (3.4.10).
All that remains to complete the proof of Lemma 3.4.1, and hence of the main

Lemma 3.2.1, is to verify Lemma 3.4.4.

Proof of Lemma 3.4.4. First we show ‖A−1‖ ≤ ‖A‖n−1/|detA|. By homogeneity we
can assume ‖A‖ = 1. Then all the eigenvalues of AA∗ are between 0 and 1. Let λ
be the smallest eigenvalue of AA∗. Then ‖A−1‖ = λ−1/2 ≤ det(AA∗)−1/2 = | detA|−1.
Therefore in general,

|x| = |A−1Ax| ≤ ‖A−1‖ · |Ax| ≤ ‖A‖n−1|detA|−1|Ax|,

as desired.

3.5 The symmetric case: Theorem 3.1.2

Here we prove Theorem 3.1.2. We present the proof in detail only for Bm,m; thus in the
following we write T = Bm,m. The proof for Am,1 is, mutatis mutandis, analogous, and
we merely sketch the necessary changes in Section 3.5.3.

Recalling the function ψk fixed in Section 3.3.2, we define the Littlewood-Paley
projection in the free x-variable by

fk(x, y) = Pkf(x, y) =

∫
R
f(u, y)ψ̌k(x− u)du, (3.5.1)
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where ψ̌k denotes the inverse Fourier transform of the function ψk. In particular, note
that TPk = PkT .

3.5.1 Single annulus estimate.

We fix k0 ∈ Z and split the operator as T = T
(1)
k0

+ T
(2)
k0

, where for any fixed k, T
(1)
k is

defined as

T
(1)
k f(x, y) := p.v.

∫
|t|≤2−k

f(x− t, y − tm)eiN(y)tm dt

t

and T
(2)
k := T − T (1)

k accordingly.

Our key estimate for T
(1)
k0

is the pointwise bound:

|T (1)
k0
Pk0f(x, y)| . C ∗Pk0f(x, y) +M1M2Pk0f(x, y), (3.5.2)

where the maximally truncated one-variable Carleson operator C ∗ is defined as in (3.3.2);
here our understanding is that C ∗ acts only on the second variable. Also, M1 and
M2 refer to the Hardy-Littlewood maximal function in the first and second variables
respectively, as defined in (3.3.6), (3.3.7).

We will prove (3.5.2) by using the fact that under the single annulus assumption

f = Pk0f, (3.5.3)

the function f(x− t, y− tm) is well approximated by f(x, y− tm). Precisely, we assume
(3.5.3) and estimate

|T (1)
k0
f(x, y)| ≤ I + II,

where

I =

∫
|t|≤2−k0

|f(x− t, y − tm)− f(x, y − tm)|dt
|t|
, (3.5.4)

II =
∣∣∣p.v. ∫

|t|≤2−k0

f(x, y − tm)eiN(y)tm dt

t

∣∣∣. (3.5.5)

At this point there is a striking dichotomy in our treatment, depending on the parity
of m: if m is even, the term II vanishes identically due to the integrand being an odd
function. On the other hand, if m is odd, we can change variables tm 7→ t (appropriately
in the cases t > 0, t < 0) to see

II . sup
ε>0

∣∣∣p.v. ∫
|t|≤ε

f(x, y − t)eiN(y)tdt

t

∣∣∣ ≤ C ∗f(x, y), (3.5.6)

where the maximally truncated Carleson operator acts only on the second variable. This
contributes the first term in (3.5.2).

Next, we note that the first term I can be estimated by a maximal function due to
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the single annulus assumption (3.5.3). We write

f(x− t, y − tm)− f(x, y − tm) =

∫
R
f(x− u, y − tm)(ψ̌k0(u− t)− ψ̌k0(u))du. (3.5.7)

By the rapid decay of the first derivative of ψ̌ we certainly have

| d
dξ

(ψk0 )̌ | = | d
dξ

(2k0ψ̌(2k0ξ))| ≤ 22k0(1 + |2k0ξ|)−2. (3.5.8)

Now suppose that for some j ≥ 0, u is in the annulus

2−k0+j−1 ≤ |u| ≤ 2−k0+j , (3.5.9)

so that for |t| ≤ 2−k0 we have both 2−k0+j−2 ≤ |u|, |u − t| ≤ 2−k0+j+1. Thus applying
the mean value theorem and the decay (3.5.8), for u in the annulus (3.5.9) we have

|ψ̌k0(u− t)− ψ̌k0(u)| . |t| · 22(k0−j),

where the implicit constant depends only on the choice of ψ.
Therefore (3.5.7) can be estimated in absolute value by

. |t|22k0

∞∑
j=0

2−2j

∫
|u|≤2−k0+j

|f(x− u, y − tm)|du. (3.5.10)

This allows us to bound the term I by

.
∞∑
j=0

2−j
1

2−k02−k0+j

∫
|u|≤2−k0+j

∫
|t|≤2−k0

|f(x− u, y − tm)|dtdu. (3.5.11)

We may dominate this by the maximal functions M1 and M2 as follows. Indeed, we
focus temporarily on the inner integration in t in (3.5.11):

1

2−k0

∫
|t|≤2−k0

|f(x− u, y − tm)|dt ≤ C

2−k0

∫
|s|≤2−k0m

|f(x− u, y − s)||s|
1
m
−1ds

Since |s|
1
m
−11|s|≤2−k0m is radially decreasing and integrable in s, with integral equal to

C2−k0 , by [Ste70, Chapter III Theorem 2], we can bound the above by .M2f(x−u, y).
Thus (3.5.11) is bounded by M1M2f(x, y). This completes the proof of the inequality

(3.5.2) for T
(1)
k0

.

We now turn to estimating T
(2)
k0
f , still under the single annulus assumption (3.5.3).

Let us define for any integer `

T`f(x, y) =

∫
R
f(x− t, y − tm)eiN(y)tmψ`(t)

dt

t
.

Then certainly

|T (2)
k0
f | .M f +

∞∑
`=0

|T−k0+`f |; (3.5.12)
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here we need merely observe that the maximal operator M along (t, tm) (defined in
(3.3.4)) arises in (3.5.12) due to the transition to smooth cutoffs.

Next, we claim that (still under the assumption (3.5.3)) there exists a constant γ > 0
such that for all ` ≥ 0,

‖T−k0+`f‖2 . 2−γ`‖f‖2. (3.5.13)

To prove (3.5.13) we proceed similarly to Section 3.4.1. First we apply Plancherel’s theo-
rem in the free x-variable, so that it is equivalent to prove that for gξ(y) =

∫
R e
−iξxf(x, y)dx,∥∥∥∫

R

gξ(y − tm)eiN(y)tm−iξtψ−k0+`(t)
dt

t

∥∥∥
L2(dξ,dy)

. 2−γ`‖gξ‖L2(dξ,dy).

In particular, we note that due to the assumption (3.5.3), gξ is nonzero only in the
frequency annulus 2k0−1 ≤ |ξ| ≤ 2k0+1.

We then split the integral into a positive and a negative part, which are dealt with
analogously. We focus here on the positive portion of the integral; by a change of
variables tm 7→ t the claim (3.5.13) is reduced to showing

∥∥∥ ∞∫
0

F (y − t)eiN(y)t−iξt1/mψ−k0+`(t
1/m)

dt

t

∥∥∥
L2(dy)

. 2−γ`‖F‖L2(dy) (3.5.14)

for all single variable functions F , uniformly in 2k0−1 ≤ |ξ| ≤ 2k0+1.
As in the proof of Lemma 3.2.1 we proceed by the TT ∗ method. For convenience we

write
ψ̃k(t) = ψk(t

1/m)1(0,∞)(t),

and denote the operator on the left hand side of (3.5.14) by T̃ . Then ‖T̃‖2→2 =

‖T̃ T̃ ∗‖1/22→2, where

T̃ T̃ ∗F (y) =

∫
R
F (y − s)KN(y),N(y−s)(s)ds (3.5.15)

and for any λ1, λ2 ∈ R the kernel Kλ1,λ2 is given by

Kλ1,λ2(s) =

∫
R
eiλ1t−iλ2(t−s)−iξ(t1/m−(t−s)1/m) ψ̃−k0+`(t− s)

t− s
ψ̃−k0+`(t)

t
dt.

Via the substitution t 7→ ρt with ρ = 2m(−k0+`) we obtain

ρKλ1,λ2(ρs) =

∫
R
eiλ1ρt−iλ2ρ(t−s)−iξ2−k0+`(t1/m−(t−s)1/m) ψ̃0(t− s)

t− s
ψ̃0(t)

t
dt.

We need to analyze the phase function

Q(t, s) = λ1ρt− λ2ρ(t− s) + η(t1/m − (t− s)1/m), (3.5.16)

where η = −ξ2−k0+`, so in particular

2`−1 ≤ |η| ≤ 2`+1. (3.5.17)
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On first sight this may not look promising, because the phase function includes linear
terms which tend to cause trouble (compare Stein and Wainger [SW01]). However, it
turns out that we are allowed to take derivatives to isolate the non-linear term (recall
m ≥ 2) because we know by (3.5.17) that its coefficient η is large. Taking two derivatives
with respect to t, we obtain

∂2
tQ(t, s) = cη(tα − (t− s)α)

with α = 1
m − 2 and c = 1

m( 1
m − 1). Suppose that |s| ≥ 2−`/2. Then by the mean

value theorem and (3.5.17), |∂2
tQ(t, s)| & 2`/2 throughout the region of t and t − s

considered (depending only on the support of ψ̃0). In this case, an application of the
second derivative test shows that

|ρKλ1,λ2(ρs)| . 2−`/4.

On the other hand, if |s| ≤ 2−`/2 we merely use the triangle inequality for the trivial
estimate

|ρKλ1,λ2(ρs)| . 1.

Altogether we have proved, with ρ = 2m(−k0+`),

|Kλ1,λ2(s)| . 2−`/4ρ−11{|s|≤4ρ}(s) + ρ−11{|s|≤2−`/2ρ}(s),

uniformly in λ1, λ2. Applying this in (3.5.15) allows us to deduce that

|T̃ T̃ ∗F (y)| . 2−`/4MF (y), (3.5.18)

where MF denotes the standard one-variable Hardy-Littlewood maximal function. An
application of the L2 estimate for M now implies our claim (3.5.14) with γ = 1/8; by
Plancherel we then finally obtain (3.5.13).

3.5.2 Square function estimate

In this section we assemble the single annulus estimates of the previous section to derive
the Lp boundedness of our operator T = Bm,m. This application of the Littlewood-Paley
theory is in the spirit of Bateman and Thiele [BT13].

In view of the relation TPk = PkT and the standard Littlewood-Paley inequalities,
we have

‖Tf‖p .
∥∥∥(∑

k∈Z
|TPkf |2

)1/2 ∥∥∥
p
.
∥∥∥(∑

k∈Z
|T (1)
k Pkf |2

)1/2 ∥∥∥
p

+
∥∥∥(∑

k∈Z
|T (2)
k Pkf |2

)1/2 ∥∥∥
p

In the term for T
(1)
k on the right hand side we apply the estimate (3.5.2); then

by applying the vector-valued estimates of Theorems 3.3.1 and 3.3.3 to the maximally
truncated Carleson operator and the one-variable maximal function, we obtain

∥∥∥(∑
k∈Z
|T (1)
k Pkf |2

)1/2 ∥∥∥
p
.
∥∥∥(∑

k∈Z
|Pkf |2

)1/2 ∥∥∥
p
. ‖f‖p.
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For T
(2)
k , we recall that by (3.5.12)

|T (2)
k Pkf | .MPkf +

∞∑
`=0

|T−k+`Pkf |,

so that by Minkowski’s inequality for integrals,

∥∥∥(∑
k∈Z
|T (2)
k Pkf |2

)1/2 ∥∥∥
p
.
∥∥∥(∑

k∈Z
|MPkf |2

)1/2 ∥∥∥
p

+

∞∑
`=0

∥∥∥(∑
k∈Z
|T−k+`Pkf |2

)1/2 ∥∥∥
p
.

We may apply Theorem 3.3.2 to obtain a bound . ‖f‖p for the first term; for the second
term it would suffice to show that for each 1 < p < ∞ there exists γ > 0 such that for
every ` ≥ 0,

∥∥∥(∑
k∈Z
|T−k+`Pkf |2

)1/2 ∥∥∥
p
. 2−γ`

∥∥∥(∑
k∈Z
|Pkf |2

)1/2 ∥∥∥
p
. 2−γ`‖f‖p. (3.5.19)

For p = 2 this follows from (3.5.13). But recall that we always have the simple estimate
|T`Pkf | . MPkf for all k, ` ∈ Z by the triangle inequality. Therefore Theorem 3.3.2
implies a bound without decay, namely

∥∥∥(∑
k∈Z
|T−k+`Pkf |2

)1/2 ∥∥∥
r
. ‖f‖r, (3.5.20)

valid for all 1 < r < ∞. Now in general, (3.5.19) follows for all 1 < p < ∞ by
interpolating between the L2 → L2(`2) case of (3.5.19) and the Lr → Lr(`2) bound
(3.5.20) for the vector-valued map f 7→ {T−k+`Pkf}k∈Z. The proof of Theorem 3.1.2 is
now complete.

3.5.3 Remarks on the proof for Am,1

As mentioned above, we will not repeat the proof explicitly for Am,1, but merely comple-
ment the sketch already provided in Section 3.2.3 by pointing out two key modifications.
Of course one interchanges the roles of the x and y variables. In addition:

(1) The cancellation miracle for even m in the term II of (3.5.5) does not occur
for Am,1. Instead one always needs to invoke Carleson’s theorem in the form of
Theorem 3.3.1, analogous to the computation already carried out for odd m in
(3.5.6).

(2) In the treatment of Am,1, the restriction m 6= 2 originates because the relevant
phase function analogous to (3.5.16) is

Q(t, s) = λ1ρt− λ2ρ(t− s) + η(tm − (t− s)m).

Visibly, when m = 2, the phase function Q(t, s) is now linear in t, so that its
second derivative vanishes, and consequently we fail in this case to obtain a good
bound for the kernel.
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3.6 Deductions for partial Carleson operators

3.6.1 L2 consequences of partial Carleson bounds

As stated in Section 3.1.3, the L2 boundedness of Am,1N , for any fixed integer m ≥ 1,
implies the L2 boundedness of Carleson’s operator (3.1.1). Similarly, the L2 boundedness
of Bm,m

N , when m ≥ 1 is an odd integer, implies the L2 boundedness of Carleson’s
operator. (Of course, in the work of this paper, our logic is actually the other way
round: in proving Theorem 3.1.2, we used Carleson’s theorem as a black box.)

We will see how to carry out these deductions from a more general argument we now
give in the context of the quadratic Carleson operator C par along the parabola (defined
in equation (3.1.14)). We prove that an inequality of the form (3.1.15) would imply the
analogue over R of Lie’s result [Lie09] on the one-variable quadratic Carleson operator
CQ:

Proposition 3.6.1. Assume the veracity of the estimate∥∥∥∫
ε≤|t|≤R

f(x− t, y − t2)eiN1(x)t+iN2(x)t2 dt

t

∥∥∥
L2(dxdy)

≤ C‖f‖2, (3.6.1)

for all Schwartz functions f , where N1, N2 : R 7→ R are measurable functions, 0 < ε < R
are real parameters, and the constant C is independent of f,N1, N2, ε, R. Then the
operator

f 7→ CQf(x) := sup
N∈R2

∣∣∣p.v.∫
R
f(x− t)eiN1t+iN2t2 dt

t

∣∣∣
is bounded on L2(R).

Note that in our assumed bound (3.6.1), the linearizing functions N1, N2 are inde-
pendent of y, so this is a far weaker assumption than the conjectured L2 bound for C par

in (3.1.14). In the argument that we will now give for (3.6.1), if we replace the curve
(t, t2) by (t, tm) and the phase by N1(x)t+N2(x)tm, and furthermore specify that N2 is
identically zero, we may deduce Carleson’s original theorem from the partial bound for
Am,1N for any integer m ≥ 1; or, if we specify N1 is identically zero, we may deduce Car-
leson’s original theorem from the partial bound for Bm,m

N for m an odd integer. (When
m is even, under the specification N1 ≡ 0, the operator in (3.6.1) would vanish, due to
the integrand being an odd function.)

In general, to prove Proposition 3.6.1, we use an elementary tensor f(x, y) = h(x)g(y),
where h, g are real Schwartz functions, in which case (3.6.1) implies∥∥∥∫

ε≤|t|≤R
h(x− t)eiN1(x)t+iN2(x)t2g(y − t2)

dt

t

∥∥∥
L2(dxdy)

≤ C‖h‖2‖g‖2.

Applying Plancherel’s theorem in the y variable we obtain∥∥∥∫
ε≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2 ĝ(η)e−iηt
2 dt

t

∥∥∥
L2(dxdη)

≤ C‖h‖2‖g‖2. (3.6.2)

Suppose for the time being that we have chosen g such that we have an estimate of the
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form∥∥∥∫
ε≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2 ĝ(η)(e−iηt
2 − 1)

dt

t

∥∥∥
L2(dxdη)

≤ C‖h‖2‖g‖2. (3.6.3)

We would deduce from (3.6.2) and (3.6.3) that∥∥∥∫
ε≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2 ĝ(η)
dt

t

∥∥∥
L2(dxdη)

≤ C‖h‖2‖g‖2,

so that by Plancherel and Fubini,∥∥∥∫
ε≤|t|≤R

h(x− t)eiN1(x)t+iN2(x)t2 dt

t

∥∥∥
2
≤ C‖h‖2.

Via Fatou’s lemma this gives the L2 boundedness of the quadratic Carleson operator
h 7→ CQh, as claimed in Proposition 3.6.1.

To obtain the estimate (3.6.3), we choose δ with 0 < δ < 1/R2 and specify that g
be a Schwartz function on R such that ĝ is supported on [−δ, δ] and ‖g‖2 > 0. Then by
Minkowski’s inequality and Fubini, the left hand side of (3.6.3) is bounded by

‖h‖2
∫
ε≤|t|≤R

‖ĝ(η)(e−iηt
2 − 1)‖L2(dη)

dt

|t|
. (3.6.4)

The mean value theorem, followed by Plancherel, shows that for |t| ≤ R,∫
R

∣∣∣ĝ(η)(e−iηt
2 − 1)

∣∣∣2dη ≤ δ2t4‖g‖22.

This implies that (3.6.4) is no greater than

‖h‖2‖g‖2 · δ
∫
ε≤|t|≤R

|t|dt ≤ ‖h‖2‖g‖2, (3.6.5)

which completes the proof of (3.6.3), and hence Proposition 3.6.1.

3.6.2 L2 deductions for partial Carleson operators

Remark 3.1.1 stated that L2 bounds for A2,1
N , Am,mN and Bm,1

N (with m > 1) follow
from known Carleson theorems. We briefly indicate these deductions, which are along
the lines of arguments in Sections 3.4.1 and 3.4.2. By Plancherel’s theorem in the free
y-variable,

‖Am,mN f‖L2(dxdy) =
∥∥∥∫

R
gη(x− t)ei(N(x)−η)tm dt

t

∥∥∥
L2(dxdη)

where gη(x) =
∫
R e
−iηyf(x, y)dy. Then an L2 bound of the form∥∥∥∫

R
gη(x− t)ei(N(x)−η)tm dt

t

∥∥∥
L2(dx)

. ‖gη‖L2(dx),

uniform in η, follows from Stein and Wainger [SW01] (since m > 1), and this suffices.
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In the next case,

‖A2,1
N f‖L2(dxdy) =

∥∥∥∫
R
gη(x− t)eiN(x)t−iηt2 dt

t

∥∥∥
L2(dxdη)

.

Observe that
iηt2 = iη(x− t)2 − iηx2 + 2iηxt.

Define Qηf(x) = eiηx
2
f(x) and set Ñ(x) = N(x)− 2ηx. Then,

∫
R
gη(x− t)eiN(x)t−iηt2 dt

t
= eiηx

2

∫
R
Q−ηgη(x− t)eiÑ(x)tdt

t
= QηHÑ(x)

Q−ηgη(x),

where HNf(x) =
∫
R f(x − t)eiNt dtt . Since Qη is an isometry in L2, our claim follows

from the L2 bound for the Carleson operator.
In the final case, by Plancherel’s theorem in the free x-variable,

‖Bm,1
N f‖L2(dxdy) =

∥∥∥∫
R
gξ(x− tm)ei(N(x)−η)tdt

t

∥∥∥
L2(dξdy)

where gξ(x) =
∫
R e
−iξxf(x, y)dx. Thus the required L2 bound follows from sending

t 7→ t1/m and applying Guo [Guo16] to the resulting operator, which has one fractional
monomial in the phase.

3.7 Proof of vector-valued inequalities

3.7.1 Proof of Theorem 3.3.1

We assemble results from the Grafakos texts [Gra14a], [Gra14b]. By [Gra14b, Lemma
6.3.2], there is a positive constant c > 0 such that for any 1 ≤ p <∞, for all f ∈ Lp(R)
we have the pointwise inequality

C ∗f ≤ cMf +M(C f), (3.7.1)

where M is the standard one-dimensional Hardy-Littlewood maximal function. Since
the vector-valued Lp(`2) inequality analogous to (3.3.3) is known to hold for the Hardy-
Littlewood maximal function (see e.g. [Ste93, Chapter II §1.1]), the problem is then
reduced to proving the analogue of (3.3.3) for the Carleson operator C . In fact, this is
a special case of [Gra14b, Exercise 6.3.4], which claims that for all 1 < p, r <∞ and all
weights w ∈ Ap,

∥∥∥(∑
k

|C fk|r
)1/r ∥∥∥

Lp(w)
≤ Cp,r(w)

∥∥∥(∑
k

|fk|r
)1/r ∥∥∥

Lp(w)
(3.7.2)

for all sequences of functions fk ∈ Lp(w). This inequality may be verified, following
Grafakos, by the method of extrapolation. We need only note that [Gra14b, Theorem
6.3.3] provides a weighted estimate

‖C f‖Lp(w) ≤ C(p, [w]Ap)‖f‖Lp(w), (3.7.3)
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for every 1 < p < ∞ and w ∈ Ap. This is sufficient to prove (3.7.2) for all the stated
values of r, p by applying the vector-valued extrapolation result [Gra14a, Corollary 7.5.7].
(Here we remark on the detail that Corollary 7.5.7, to which we appeal, requires that
C(p, [w]Ap) be an increasing function in [w]Ap . We can ensure that this is the case if
we have the statement, slightly stronger than (3.7.3), that for every B > 0 there exists
a constant Cp(B) such that for all w ∈ Ap with [w]Ap ≤ B we have ‖C f‖Lp(w) ≤
Cp(B)‖f‖Lp(w); such a statement is verified by the explicit version of (3.7.3) given by
Lerner and Di Plinio [DPL14, Theorem 1.1].)

Alternatively, once one has the pointwise inequality (3.7.1) and has consequently
reduced matters to proving an Lp(`2) vector-valued inequality for C , one can turn to
the original result [RdFRT86] in the Lp(`2) case, or the recent streamlined proof [DS15,
Theorem 7.1].

3.7.2 Proof of Theorem 3.3.2

We recall that the scalar-valued Lp-bound for M was obtained by comparing it to a
square function [Ste93, Chapter XI §1.2]. Indeed, let χ(t) be a non-negative smooth
function with compact support on the interval [−2, 2], such that χ(t) ≡ 1 on [−1, 1]. For
k ∈ Z, let χk(t) = 2−kχ(2−kt), dµk(x, y) = δy=xmχk(x), and

Akf(x, y) = f ∗ dµk(x, y) =

∫
R
f(x− t, y − tm)χk(t)dt.

Also let φ(x, y) be a smooth function with compact support on the unit ball in R2,
normalized such that ∫

R2

φ(x, y)dxdy =

∫
R
χ(t)dt.

For k ∈ Z, let φk(x, y) = 2−(m+1)kφ(2−kx, 2−mky), and

Bkf(x, y) = f ∗ φk(x, y) =

∫
R2

f(x− u, y − v)φk(u, v)dudv.

Then for non-negative functions f , we have the pointwise inequality

M f ≤ sup
k∈Z

Bkf + Sf, (3.7.4)

where S is the following square function:

Sf :=

(∑
k∈Z
|Akf −Bkf |2

)1/2

. (3.7.5)

Now supk∈ZBkf is bounded by the standard maximal function associated to non-
isotropic ‘squares’ of sizes R×Rm on R2. It is known that a vector-valued estimate holds
for the maximal function associated to these non-isotropic squares; that is an analogue
of Theorem 3.3.3. Thus the inequality (3.3.5) of Theorem 3.3.2 holds for 1 < p < ∞ if
we have supk∈ZBk in place of M on the left hand side. Hence to prove the desired form
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of (3.3.5), all we need to do is to establish∥∥∥∥∥∥
(∑
`∈Z
|Sf`|2

)1/2
∥∥∥∥∥∥
Lp

.p

∥∥∥∥∥∥
(∑
`∈Z
|f`|2

)1/2
∥∥∥∥∥∥
Lp

(3.7.6)

where S is defined by (3.7.5), and 1 < p <∞.
The following scalar-valued inequality for 1 < p < ∞ is already known [Ste93,

Section 4, Theorem 11]:
‖Sf‖Lp .p ‖f‖Lp . (3.7.7)

But to deduce (3.7.6) we will instead use a related scalar-valued inequality for a signed
operator. For εk a random sequence of signs ±1, define

Tf :=
∑
k∈Z

εk(Akf −Bkf).

It is known that
‖Tf‖Lp .p ‖f‖Lp (3.7.8)

for all 1 < p < ∞, independent of the signs εk. At the end of this section, we briefly
recall a proof of this, for which one uses crucially the non-vanishing of the curvature of
the curve (t, tm), but we first deduce (3.7.6) from (3.7.8).

To do so, note that since T is linear, the Marcinkiewicz-Zygmund theorem implies
that

‖ |Tf`|`2 ‖Lp .p ‖ |f`|`2 ‖Lp

for 1 < p <∞, i.e. ∥∥∥∥∥∥
∣∣∣∣∣∑
k∈Z

εk(Akf` −Bkf`)

∣∣∣∣∣
`2(d`)

∥∥∥∥∥∥
Lp

.p ‖ |f`|`2 ‖Lp .

(We write `2(d`) to emphasize that the `2 norm is taken with respect to the variable
`.) Now we take the expectation, denoted E, over all the possible choices of εk; by
Khintchine’s inequality,(∑

k∈Z
|Akf` −Bkf`|2

)1/2

' E

∣∣∣∣∣∑
k∈Z

εk(Akf` −Bkf`)

∣∣∣∣∣ .
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Taking the `2(d`) and then Lp norms on both sides, we get∥∥∥∥∥∥∥
∑
k,`∈Z

|Akf` −Bkf`|2
1/2

∥∥∥∥∥∥∥
Lp

'

∥∥∥∥∥∥
(
E

∣∣∣∣∣∑
k∈Z

εk(Akf` −Bkf`)

∣∣∣∣∣
)
`2(d`)

∥∥∥∥∥∥
Lp

≤ E

∥∥∥∥∥∥
∣∣∣∣∣∑
k∈Z

εk(Akf` −Bkf`)

∣∣∣∣∣
`2(d`)

∥∥∥∥∥∥
Lp

.p E‖ |f`|`2 ‖Lp
= ‖ |f`|`2 ‖Lp .

(The first inequality is the Minkowski inequality.) The left hand side above is precisely
‖ |Sf`|`2 ‖Lp . This proves (3.7.6), and hence (3.3.5) of Theorem 3.3.2, for 1 < p <∞.

There are at least two ways of proving (3.7.8). One is by complex interpolation, along
the lines of arguments in [SW78, Section 4], which we will not discuss here. Alternatively,
we can deduce (3.7.8) from a result of Duoandikoetxea and Rubio de Francia [DRdF86]
without using complex interpolation. To do so, let

dσk = εk(dµk − φkdxdy).

Then dσk has total mass ‖dσk‖ . 1, and its Fourier transform satisfies

|d̂σk(ξ, η)| . min{2k‖(ξ, η)‖, (2k‖(ξ, η)‖)−1/m}.

(Here we see the curvature of (t, tm).) Furthermore, the operator supk∈Z |f ∗ |dσk||
is bounded by the maximal Radon transform along the curve (t, tm) plus the Hardy-
Littlewood maximal operator adapted to certain non-isotropic balls in R2. It fol-
lows that supk∈Z |f ∗ |dσk|| is bounded on Lq(R2) for all 1 < q < ∞. Thus The-
orem B of Duoandikoetxea and Rubio de Francia [DRdF86] applies, and shows that
Tf =

∑
k∈Z f ∗ dσk is bounded on Lp for all 1 < p < ∞. This completes our proof of

(3.7.8).
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Chapter 4

Maximal functions and Hilbert
transforms along variable non-flat
homogeneous curves

This chapter consists of a joint publication with Shaoming Guo, Jonathan Hickman and Victor

Lie [GHLR16], which will appear in the Proceedings of the London Mathematical Society. The

copyright is held by the London Mathematical Society and the article appears as part of this thesis

in accordance with their copyright regulations.

4.1 Introduction

This paper focuses on the study of certain maximal and singular integral operators that
act by integration along variable homogeneous curves in the plane, of the form

Γαu(t) := (t, u · [t]α) ,

where here and throughout the paper, the exponent α is a fixed positive real number, the
notation [t]α stands for either |t|α or sgn(t)|t|α, while the “coefficient” u(·, ·) is allowed
to change depending on the base point (x, y) ∈ R2.

More precisely, given u : R2 → R a measurable function and 0 < ε0 ≤ ∞ a parameter,
we consider the following objects:

• the (ε0-truncated) maximal operator along Γαu , defined by

M(α)
u,ε0f(x, y) = sup

0<ε<ε0

1

2ε

∫ ε

−ε
|f(x− t, y − u(x, y)[t]α)|dt. (4.1.1)

• the (ε0-truncated) Hilbert transform along Γαu , given by

H(α)
u,ε0f(x, y) = p.v.

∫ ε0

−ε0
f(x− t, y − u(x, y)[t]α)

dt

t
. (4.1.2)

For convenience, in what follows we will use the convention that [t]1 = t. Moreover,
when α = 1, we will leave out the dependence on α and simply write Mu,ε0 and Hu,ε0 .

The same principle applies to ε0 =∞: in this case we will simply writeM(α)
u and H(α)

u ,
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respectively.

A difficult problem in the area of harmonic analysis is to understand the weakest

possible regularity assumptions on u that guarantee the Lp boundedness of M(α)
u,ε0 and

H(α)
u,ε0 . Our aim in this paper is to provide a partial solution to this problem when we

impose a nontrivial curvature condition by requiring α 6= 1.

We will now state our main results. The first result regards the boundedness of the
maximal operator (4.1.1) and extends an earlier result of Marletta and Ricci [MR98].

Theorem 4.1.1. Let α > 0 and α 6= 1. Then the following hold:

1. [MR98] If u : R2 → R is measurable, then for every 2 < p ≤ ∞ we have

‖M(α)
u f‖p ≤ Cp,α‖f‖p . (4.1.3)

2. If u : R2 → R is Lipschitz, then there exists ε0 = ε0(‖u‖Lip) > 0 such that for
every 1 < p ≤ 2 we have

‖M(α)
u,ε0f‖p ≤ Cp,α‖f‖p . (4.1.4)

Here Cp,α ∈ (0,∞) is a constant that depends only on p and α.

The second main result regards the boundedness of the Hilbert transform (4.1.2).

Theorem 4.1.2. Let α > 0 and α 6= 1. Let u : R2 → R be a measurable function and
assume that

u(x, y) = u(x, 0) for every x, y ∈ R. (4.1.5)

Then we have that for all 1 < p <∞ the following holds:

‖H(α)
u f‖p ≤ Cp,α‖f‖p. (4.1.6)

The constant Cp,α ∈ (0,∞) depends only on p and α.

Remark 4.1.1. We would first like to stress that the analogue of estimate (4.1.3) for the

Hilbert transform H(α)
u fails for every p ∈ (1,∞) if we only assume u to be measurable.

This follows by a straight-forward modification of Karagulyan’s [Kar07] construction of
a counterexample in the case α = 1. However, if we assume u to be Lipschitz it is

possible that the analogue of (4.1.4) for H(α)
u holds. Unfortunately, as of now, we are

not able to prove or disprove this.

Remark 4.1.2. Notice that unlike the situation described in Theorem 4.1.1, in Theorem
4.1.2 we do not require any regularity assumptions on the function u(x, 0). Next, we
remark that as opposed to (4.1.4), the ε0-truncation is not present in statement (4.1.6).
This is a direct consequence of a standard scaling argument that makes the truncation in

H(α)
u,ε0 from (4.1.2) become irrelevant. Nevertheless, the one-variable assumption (4.1.5)

should be understood as being strictly stronger than the Lipschitz assumption imposed
in Theorem 4.1.1. Indeed, we have the following corollary of Theorem 4.1.1.
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Corollary 4.1.3. Under the same assumptions as in Theorem 4.1.2, we have

‖M(α)
u f‖p ≤ Cp,α‖f‖p (4.1.7)

for all 1 < p ≤ ∞.

The proof of Corollary 4.1.3 is via an anisotropic scaling argument which we sketch
presently. First of all, by the scaling x → λx, y → λαy, and a density argument, it
suffices to show that

‖M(α)
u,ε0f‖p ≤ Cp,α‖f‖p, (4.1.8)

for all compactly supported smooth functions f . Here ε0 is the same as in Theorem
4.1.1. Now we approximate the chosen measurable function u pointwisely by a sequence
of Lipschitz functions {un}n∈N satisfying un(x, y) = un(x, 0) for every (x, y) ∈ R2 and
whose Lipschitz norms might grow to infinity. By changing variables x → x, y → λy
in the Lp integration on the left hand side of (4.1.4), we obtain (4.1.8) with u replaced
by un, and with a constant independent of n ∈ N. In the end, we apply the dominated
convergence theorem to conclude (4.1.8).

The curvature condition is fundamental in the proofs of both Theorem 4.1.1 and
Theorem 4.1.2. Our approach relies on stationary phase methods, TT ∗−arguments,
local smoothing estimates and square function estimates. We speculate that the case
α = 1 will require a combination of time-frequency techniques and methods presented
in the current paper, but this subject remains open for future investigation.

In the following we present the historical evolution of the subject that motivated
our interest for this study. We then continue with a discussion of our main results,
embedding them in the historical context and also state some further results.

4.1.1 Historical Background

The historical landmark that generated much of the literature discussed below is the
so-called Zygmund conjecture. This long-standing open problem asks whether Lipschitz
regularity of u suffices to guarantee any non-trivial Lp bounds for the maximal operator

Mu,ε0f(x, y) = sup
0<ε<ε0

1

2ε

∫ ε

−ε
|f(x− t, y − u(x, y)t)|dt, (4.1.9)

provided ε0 is small enough depending on ‖u‖Lip. A counterexample based on a con-
struction of the Besicovitch-Kakeya set shows that we cannot expect any Lp bounds
other than the trivial L∞ bound if u is only assumed to be Hölder continuous with some
exponent strictly smaller than one. The analogous question for Hu,ε0 is also widely open.
For a detailed discussion of these conjectures, the interested reader is invited to consult
Lacey and Li [LL10].

Notice that these two fundamental problems address the boundedness properties of
(4.1.1) and (4.1.2) along Γαu in the following context:

• no regularity above Lipschitz class is assumed;

• no curvature in the t parameter is present, i.e. α = 1, and thus these objects have
rich classes of symmetries.
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Partial progress towards understanding the above open problems developed relatively
slowly in the past three decades; in direct relation with the itemization above it revolved
around the nature of regularity and/or suitable curvature conditions imposed on the
vector field u.

Bourgain [Bou89] proved that for every real analytic function u there exists ε0 > 0
such that the associated maximal operator Mu,ε0 is bounded on L2. His argument can
be extended to Lp for all p > 1 by using a suitable interpolation argument. For smooth
vector fields, Christ, Nagel, Stein and Wainger [CNSW99] proved, under some extra
curvature conditions, that the associated maximal operator and singular integral opera-
tors are bounded on Lp for p > 1. The analogous result to that of Bourgain for singular
integral operators was proved by Stein and Street [SS12]. Indeed, the result in [SS12] is
far more general: in addition to the case of curves (t, u · tα) with u analytic and α ∈ N,
they, in fact, consider all polynomials with analytic coefficients.

The first major breakthrough in terms of regularity came when Lacey and Li [LL06]
brought tools from time-frequency analysis into the problem of Hilbert transforms along
vector fields. To state these results, we introduce some notation.

Let ψ0 : R→ R be a non-negative smooth function supported on the set [−2,−1/2]∪
[1/2, 2] such that for all t 6= 0, ∑

l∈Z
ψl(t) = 1 , (4.1.10)

where ψl(t) := ψ0(2−lt). For every k ∈ Z, let P
(2)
k denote the Littlewood-Paley projec-

tion in the y-variable corresponding to ψk. That is,

P
(2)
k f(x, y) :=

∫
R
f(x, y − η)ψ̌k(η)dη. (4.1.11)

Similarly, we define P
(1)
k . Now we are ready to state the main result of Lacey and Li.

Theorem 4.1.4 ([LL06]). Let u : R2 → R be an arbitrary measurable function. For
every p ≥ 2 there exists 0 < Cp <∞ such that the following hold:

• For all k ∈ Z we have

‖HuP (2)
k f‖2,∞ ≤ C2‖P (2)

k f‖2. (4.1.12)

• For all p > 2 and k ∈ Z we have

‖HuP (2)
k f‖p ≤ Cp‖P (2)

k f‖p. (4.1.13)

A few years later, by further developing Lacey and Li’s methods in [LL06] and [LL10],
Bateman [Bat13] and Bateman and Thiele [BT13] proved the following result.

Theorem 4.1.5 ([Bat13], [BT13]). Let u : R2 → R be a measurable function satisfying

u(x, y) = u(x, 0) a.e. x, y ∈ R. (4.1.14)

Then for every 1 < p <∞ there exists 0 < Cp <∞ such that

‖HuP (2)
k f‖p ≤ Cp‖P (2)

k f‖p (4.1.15)
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uniformly in k ∈ Z. Moreover, for all p > 3/2, we have

‖Huf‖p ≤ Cp‖f‖p . (4.1.16)

An earlier result on maximal operators and Hilbert transforms along one-variable
vector fields can be found in Carbery, Seeger, Wainger and Wright [CSWW99]. An
especially interesting aspect of that work is that they gave an endpoint result on the
product Hardy space H1

prod(R×R) under a certain curvature assumption on the function
u.

To pass from (4.1.15) to (4.1.16), Bateman and Thiele [BT13] relied crucially on the
commutation relation

HuP (2)
k = P

(2)
k Hu. (4.1.17)

Unfortunately, this relation fails for the maximal operatorMu as it is only a sub-linear
operator. For this reason the following problem still remains open.

Open Problem 1. Let u : R2 → R be a measurable function satisfying (4.1.14). IsMu

bounded on Lp(R2) for some p <∞?

This open problem served as our original motivation for the aim formulated at the
beginning of our current paper. Further motivation for our study is provided by the
rich literature addressing the boundedness of maximal and singular Radon transforms,
focusing on curvature conditions. This corresponds to the case of Γαu when α 6= 1.

Apart from the work [MR98] that has been mentioned already, one more relevant
result from this body of literature is due to Seeger and Wainger [SW03]. In this paper
the variable curve (t, u(x, y) · [t]α)t∈R appears as a special case of the more general curve
Γ(x, y, t) which satisfies some convexity and doubling hypothesis uniformly in (x, y).
For such curves Γ(x, y, t), the authors proved that the associated maximal operator and
singular integral operators are bounded on Lp for p > 1.

For more results in the same spirit, we refer to Nagel, Stein and Wainger [NSW79],
Seeger [See94] and the references therein.

4.1.2 Comments on the main results

We will start our discussion with Theorem 4.1.1.
As mentioned earlier, item (1) is the restatement of the result of Marletta and Ricci

in [MR98]. To prove this result they used Bourgain’s result on the circular maximal
operator [Bou86] as a black box. In contrast, we will provide an alternative approach that
is more self-contained. In a certain sense we are unraveling the mechanism behind the
boundedness of the circular maximal operator, by using the local smoothing estimates
of Mockenhaupt, Seeger and Sogge [MSS92] and the l2Lp decoupling inequalities for
cones of Wolff [Wol00], Bourgain [Bou13] and Bourgain and Demeter [BD15]. We do
not claim any originality in this approach: that local smoothing estimates can be used
to prove the boundedness of the circular maximal operator has already been pointed
out in [MSS92]. Moreover, the observation that decoupling inequalities for cones can
provide certain progress toward the local smoothing conjecture is due to Wolff [Wol00].

The next comment regards both items (1) and (2): recall that one of the main
obstacles in the analysis of the maximal operator is that the analogue of the commutation
relation (4.1.17) fails due to sublinearity (see also (4.1.19) below). Thus, in order to prove

92



estimates (4.1.3) and (4.1.4) our strategy is to work with all frequency annuli at the same
time and take advantage of the non-trivial curvature provided by Γαu(t) = (t, u(x, 0)[t]α)
in the situation α 6= 1.

The method of proving Theorem 4.1.1 in the absence of the analogue of the commu-
tation relation (4.1.17) might also provide some insight toward Open Problem 1.

We now focus our discussion on Theorem 4.1.2. This result can be regarded as the
“curved” analogue of (4.1.16) from Bateman and Thiele’s Theorem 4.1.5. In fact, in the
next subsection we will state another result that includes the single annulus version of
both Theorem 4.1.2 and Theorem 4.1.5, corresponding to (4.1.15) (see Theorem 4.1.6
below). Moreover, in a forthcoming paper of the first, third and fourth author we will be
relying in part on the ideas developed by the third author in [Lie15a], [Lie15b] in order
to extend Theorem 4.1.2 to the setting of general curves (not necessarily homogeneous)
obeying some suitable smoothness and curvature conditions.

Regarding the proof of Theorem 4.1.2, we rely on several ingredients. Following the
general scheme in [BT13], we first prove a single annulus estimate

‖H(α)
u P

(2)
k f‖p . ‖P (2)

k f‖p (4.1.18)

for all p > 1 and then we use the commutation relation

H(α)
u P

(2)
k = P

(2)
k H

(α)
u (4.1.19)

to pass to a square function estimate. However, it is worth stressing here that the
methods through which we achieve (4.1.18) and then (4.1.6) are quite different from
the ones in [BT13]: there the authors use time-frequency techniques while in our case
we rely on almost-orthogonality, stationary-phase and TT ∗ methods derived from the
presence of curvature.

This difference is also reflected in estimate (4.1.6) from Theorem 4.1.2 where we have
an improved Lp range including bounds for all p close to 1. In contrast with this, the
potential range for estimate (4.1.16) in Theorem 4.1.5 to hold is p > 4/3. This exponent
is related to the exponents in the variation norm Carleson theorem [OST+12]. We refer
to Bateman and Thiele [BT13] for a more detailed discussion.

In order to achieve the Lp bounds for all p > 1 we develop a pointwise estimate for
taking averages along variable curves, via the shifted (strong) Hardy-Littlewood maxi-
mal function1. This pointwise estimate has a natural geometric interpretation: roughly
speaking, it says that the averages along a thickened segment2 of the curve (t, u·|t|α) can
be pointwisely controlled, up to a small logarithmic loss, by a sum of averages taken over
a number of rectangles. We remark that in the case u ≡ 1, our proof of Theorem 4.1.2
reduces to an alternative proof for the Lp boundedness of the classical singular Radon
transform along the curve (t, [t]α) for p 6= 2, which does not seem to have appeared in
the literature.

1See (4.3.19) below.
2That is, a small neighborhood of a segment.
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4.1.3 Further results

Here we present two more results.
As already mentioned above, the first result encompasses the single annulus estimates

corresponding to Theorem 4.1.2 and Theorem 4.1.5.

Theorem 4.1.6. Let u : R2 → R2 be a measurable function with u(x, y) = (u1(x, y), u2(x, y)).
We then define the Hilbert transform along the variable polynomial curve

(t, u1(x, y)t+ u2(x, y)[t]α)t∈R

by

H(α)
u f(x, y) = p.v.

∫
R
f(x− t, y − u1(x, y)t− u2(x, y)[t]α)

dt

t
. (4.1.20)

Suppose now that
u(x, y) = u(x, 0) a.e. x, y ∈ R . (4.1.21)

Then, for each α > 0 with α 6= 2 and each p > 1, there exists Cα,p > 0 such that

‖H(α)
u P

(2)
k f‖p ≤ Cα,p‖P (2)

k f‖p, (4.1.22)

uniformly in k ∈ Z, where here we recall that P
(2)
k stands for the Littlewood-Paley

projection operator in the y-variable.

Notice that, by applying a partial Fourier transform in the y-variable and using
Plancherel, our theorem implies the following.

Corollary 4.1.7. For each α > 0 with α 6= 2, we have∥∥∥∥∥ sup
u1,u2∈R

∣∣∣∣p.v.

∫
R
f(x− t)eiu1t+iu2[t]α dt

t

∣∣∣∣
∥∥∥∥∥

2

≤ Cα‖f‖2, (4.1.23)

with a constant Cα depending only on α.

Remark that the case α = 2 is a deep result due to the third author [Lie09] which
Corollary 4.1.7 does not encompass due to the quadratic modulation symmetries present
if α = 2. The third author also proved bounds for the full polynomial Carleson operator
[Lie11],

f 7→ sup
P

∣∣∣∣p.v.

∫
R
f(x− t)eiP (t)dt

t

∣∣∣∣ , (4.1.24)

where the supremum goes over all polynomials P with real coefficients of degree less
than a fixed number. The proof uses a sophisticated time-frequency approach. If α is
a positive integer, (4.1.23) is of course a corollary of the L2 bounds for (4.1.24). It is
interesting however, that we can prove (4.1.23) essentially using only Carleson’s theorem
as a black box.

Theorem 4.1.6 is about a single annulus estimate. It can be viewed as an extension
of Bateman’s result [Bat13]. The proof of this result is a combination of the stationary
phase method with an application of Bateman’s single annulus estimate [Bat13].
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Next, we will state a second single annulus estimate. It is the counterpart of Lacey
and Li’s result Theorem 4.1.4, and will provide a key insight towards proving Theorem
4.1.1. However, it requires a completely different proof compared with Theorem 4.1.6.

Theorem 4.1.8. Given α > 0 and α 6= 1. For each measurable function u : R2 → R,
we have

‖H(α)
u P

(2)
k f‖p ≤ Cp,α‖P (2)

k f‖p, (4.1.25)

for each p > 2. Here Cp,α does not depend on k ∈ Z.

The range p > 2 is sharp in the sense that Theorem 4.1.8 fails for p ≤ 2. This can
be seen by testing the estimate against the characteristic function of the unit ball.

The proof relies on the local smoothing estimates by Mockenhaupt, Seeger and Sogge
[MSS92]. The local smoothing estimates only work for p > 2 which is reflected in the
constraint p > 2 in the above theorem. It is worth mentioning that we will not need
the full strength of the local smoothing estimates, but only an “ε−amount” of them,
and only for a single p > 2. For this reason, we are able to provide a simple and self-
contained proof of the local smoothing estimates we need, via decoupling inequalities for
cones in R3. This is the content of Section 4.6. We would like to emphasize again that
the approach is due to Wolff [Wol00]. Moreover, in terms of the decoupling inequalities
we use for cones in R3, we do not need the full range 2 ≤ p ≤ 6 in Bourgain and Demeter
[BD15], but only the range 2 ≤ p ≤ 4. The decoupling inequalities for p in this range
again have a simple proof. For the sake of completeness, we include it here, see Section
4.7. This argument is due to Bourgain [Bou13].

Structure of the paper.

• In Section 4.2 we prove Theorem 4.1.6. This is a single annulus version of the
estimate in Theorem 4.1.2.

• In Section 4.3 we prove the full Theorem 4.1.2. The proof will rely on a vector-
valued estimate for the shifted maximal operator.

• In Section 4.4 we show Theorem 4.1.8 whose proof serves as a preparation for the
corresponding proof of Theorem 4.1.1.

• In Section 4.5 we provide the proof of Theorem 4.1.1. Theorems 4.1.8 and 4.1.1
rely on the local smoothing estimate in Theorem 4.6.1.

• In Section 4.6 we provide the proof of Theorem 4.6.1 via decoupling inequalities
for cones in R3, following the approach of Wolff [Wol00].

• In Section 4.7 we provide a proof of the decoupling inequalities we need, following
the approach of Bourgain [Bou13].

Acknowledgments. S.G. and J.R. would like to thank Christoph Thiele for his guidance

on this project. They also thank Brian Street and Po-Lam Yung for useful discussions.
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4.2 A single annulus estimate

In this section we prove Theorem 4.1.6. The special case v ≡ 0 will later be a key
ingredient in the proof of Theorem 4.1.2.

Dropping the dependence on u, v and α in our notation, we now set3

Hf(x, y) :=

∫
R
f(x− t, y − v(x)t− u(x)[t]α)

dt

t
. (4.2.1)

Recall that throughout this section we always assume α /∈ {1, 2}. We intend to show
that

‖HP (2)
k f‖p . ‖P (2)

k f‖p, (4.2.2)

for each p > 1 and k ∈ Z. The proof is a combination of the TT ∗ method in the spirit of
Stein and Wainger [SW01], and the single annulus estimate for Hilbert transforms along
one-variable vector fields by Bateman [Bat13]. Here we will need a maximally truncated
version of Bateman’s result.

We start the proof of (4.2.2). By an anisotropic scaling

x→ x, y → λy, (4.2.3)

it suffices to prove (4.2.2) for k = 0. In the rest of this section we will always assume

that f = P
(2)
0 f . Furthermore, we assume without loss of generality that u(x) > 0 for

almost every x. The case u(x) < 0 can be handled similarly.

Observe that

Hf(x, y) =
∑
l∈Z

∫
R
f(x− t, y − v(x)t− u(x)[t]α)ψl(u(x)1/αt)

dt

t
. (4.2.4)

Here ψl is as defined in (4.1.10). Writing φ0 =
∑

l≤0 ψl, we split the operator H into
two parts:

Hf(x, y) =

∫
R
f(x− t, y − v(x)t− u(x)[t]α)φ0(u(x)1/αt)

dt

t

+
∑
l∈N

∫
R
f(x− t, y − v(x)t− u(x)[t]α)ψl(u(x)1/αt)

dt

t
.

(4.2.5)

We bound these two terms separately in the following two subsections.

4.2.1 Low frequency part

Here we treat the first summand on the right hand side of (4.2.5). The idea is to compare
it with the (maximally truncated) Hilbert transform along the one-variable vector field
(t, v(x)t)t∈R given by

H̃∗f(x, y) :=

∫
R
f(x− t, y − v(x)t)φ0(u(x)1/αt)

dt

t
. (4.2.6)

3Here and throughout the remainder of this text we will omit the principal value notation.
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We want the estimate
‖H̃∗f‖p . ‖f‖p (4.2.7)

to hold for all p > 1. In the case v ≡ 0 this follows from the boundedness of the
maximally truncated Hilbert transform. For an arbitrary v it is a result essentially due
to Bateman [Bat13]. For a stronger variation norm estimate, see [Guo17b] by the first
author. Now we look at the difference, which is given by∫

R
[f(x− t, y − v(x)t− u(x)[t]α)− f(x− t, y − v(x)t)]φ0(u(x)1/αt)

dt

t
. (4.2.8)

Recall that

f(x, y) =

∫
R
f(x, y − z)ψ̌0(z)dz. (4.2.9)

Substituting this identity into (4.2.8) we obtain∫
R

∫
R
f(x− t, y − v(x)t− z)

[
ψ̌0(z − u(x)[t]α)− ψ̌0(z)

]
φ0(u(x)1/αt)

dt

t
dz. (4.2.10)

Using the key restriction |u(x)1/αt| . 1 derived from (4.2.10), we apply the fundamental
theorem of calculus to deduce∣∣ψ̌0(z − u(x)[t]α)− ψ̌0(z)

∣∣ .∑
m∈Z

1

(|m|+ 1)2
1[m,m+1](z) · u(x)|t|α. (4.2.11)

Due to the sufficiently fast decay of (|m| + 1)−2, we will see that the summation in m
does not cause any problems. For every m ∈ Z we consider the term∫ m+1

m

∫
R
|f(x− t, y − v(x)t− z)|u(x)|t|αφ0(u(x)1/αt)

dt

|t|
dz (4.2.12)

arising from applying (4.2.11) to (4.2.10) in the range m < z < m + 1. To bound this
object in Lp we will make use of the following simple observation.

Lemma 4.2.1. Let Γ : R2 → R be a measurable function and 1 ≤ p ≤ ∞. If K is a
non-negative measurable function of two variables such that

f 7−→
∫
R
f(x− t)K(x, t)dt (4.2.13)

is bounded as an operator Lp(R)→ Lp(R) with constant C, then also

f 7−→
∫
R
f(x− t, y − Γ(x, t))K(x, t)dt (4.2.14)

is bounded as an operator Lp(R2)→ Lp(R2) with constant C.

Proof. Take the Lp norm of the right hand side of (4.2.14). For fixed x consider the
quantity (∫

R

∣∣∣∣∫
R
f(x− t, y − Γ(x, t))K(x, t)dt

∣∣∣∣p dy)1/p

. (4.2.15)
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Applying Minkowski’s integral inequality we bound this by∫
R
‖f(x− t, y − Γ(x, t))‖Lp(dy)K(x, t)dt. (4.2.16)

Notice that Γ(x, t) is independent of y, hence by a simple change of variable, (4.2.16) is
equal to ∫

R
‖f(x− t, y)‖Lp(dy)K(x, t)dt. (4.2.17)

Now take the Lp norm in x and apply the hypothesis (4.2.13) to g(x) = ‖f(x, ·)‖p. This
concludes the proof of Lemma 4.2.1.

By Minkowski’s inequality, the Lp norm of (4.2.12) is no greater than∫ m+1

m

(∫
R

∫
R

∣∣∣∣∫
R
|f(x− t, y − v(x)t− z)|u(x)|t|αφ0(u(x)1/αt)

dt

|t|

∣∣∣∣p dydx)1/p

dz.

(4.2.18)
Defining

K(x, t) := u(x)|t|αφ0(u(x)1/αt)
1

|t|
(4.2.19)

we see that the operator in (4.2.13) is dominated by the Hardy-Littlewood maximal
operator, which is bounded on Lp(R) for all p > 1. Hence (4.2.18) is bounded by (a
constant multiple of) ‖f‖p. This completes the proof for the first summand on the right
hand side of (4.2.5).

4.2.2 High frequency part

Here we handle the second summand on the right hand side of (4.2.5). By the triangle
inequality it suffices to prove that there exists γ > 0 such that∥∥∥∥∫

R
f(x− t, y − v(x)t− u(x)[t]α)ψl(u(x)1/αt)

dt

t

∥∥∥∥
p

. 2−γl‖f‖p. (4.2.20)

By Lemma 4.2.1, (4.2.20) holds for all p > 1 without the exponentially decaying factor
2−γl.

Hence by interpolation it suffices to prove (4.2.20) for p = 2. This will be the goal
of the present subsection.

To proceed, we apply a partial Fourier transform to the left hand side of (4.2.20) in
the y-variable. In view of Plancherel’s theorem, (4.2.20) for p = 2 is equivalent to∥∥∥∥∫

R
gη(x− t)eiv(x)ηt+iu(x)η[t]αψl(u(x)1/αt)

dt

t

∥∥∥∥
L2(dxdη)

. 2−γl‖f‖2, (4.2.21)

where

gη(x) :=

∫
R
e−iηyf(x, y)dy (4.2.22)

denotes the Fourier transform of the function f in its second variable. By Fubini’s
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theorem this reduces to proving the following one-dimensional estimate:∥∥∥∥∫
R
g(x− t)eiv(x)t+iu(x)[t]αψl(u(x)1/αt)

dt

t

∥∥∥∥
2

. 2−γl‖g‖2 (4.2.23)

for all g in L2(R).
Observe that the phase function contains a linear term. This amounts to providing

L2 bounds for a modulation invariant operator with a special polynomial phase.
Given the shape of the operator one might guess that one has to use the time-

frequency approach implemented by the third author in [Lie09], [Lie11]. However, using
crucially that α 6= 1, 2, one can rely exclusively on TT ∗ arguments in order to prove
(4.2.23). A similar idea first appeared in a slightly simpler context in [GPRY16] by
Pierce, Yung, the first author and the fourth author.

The first step to prove (4.2.23) is to decompose the integral inside the norm on
the left hand side of (4.2.23) into regions where t is either positive or negative. Both
parts are treated in the same way, so we only detail the estimate for the positive part.
Accordingly, we denote

Tg(x) :=

∫ ∞
0

g(x− t)eiv(x)t+iu(x)tαψl(u(x)1/αt)
dt

t
. (4.2.24)

Then we have

TT ∗g(y) =

∫
R

(Φl
u(y),v(y) ∗ Φ̃l

u(x),v(x))(y − x)g(x)dx, (4.2.25)

where here we set

Φl
u,v(ξ) := eivξ+iuξ

α ψ(2−lu1/αξ)

ξ
and Φ̃l

u,v(ξ) := Φl
u,v(−ξ) , (4.2.26)

with ψ(ξ) := ψ0(ξ)χ(0,∞)(ξ). The kernel of TT ∗ satisfies

|Φl
u(y),v(y) ∗ Φ̃l

u(x),v(x)|(ξ)

=

∣∣∣∣∣
∫
R
ei(v(y)−v(x))η+iu(y)ηα−iu(x)(η−ξ)α ψ(2−lu(y)1/αη)

η

ψ(2−lu(x)1/α(η − ξ))
η − ξ

dη

∣∣∣∣∣ .
(4.2.27)

Let us assume for the moment that u(x) ≤ u(y). Denoting

h :=

(
u(x)

u(y)

)1/α

and a := 2−lu(x)1/α, (4.2.28)

via the change of variables
2−lu(y)1/αη → η, (4.2.29)

we see that (4.2.27) equals to

a

∣∣∣∣∫
R
eiwη+i2αlηα−i2αl(hη−aξ)α ψ(η)

η

ψ(hη − aξ)
hη − aξ

dη

∣∣∣∣ (4.2.30)
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where w is some quantity depending on x, y and l, the value of which will be irrelevant
to us. In the case u(y) ≤ u(x) we interchange the roles of u(x) and u(y).

To finish this argument we use the following oscillatory integral estimate.

Lemma 4.2.2. As above, assume α /∈ {1, 2} and let ψ be a smooth function supported
in [1/2, 2]. Then, there exists λ > 0 such that for all ξ, w ∈ R, 0 < h ≤ 1 and l > 0 we
have ∣∣∣∣∫

R
eiwη+i2αlηα−i2αl(hη−ξ)α ψ(η)

η

ψ(hη − ξ)
hη − ξ

dη

∣∣∣∣
. 1[−2−λl,2−λl](ξ) + 2−λl1[−2,2](ξ).

(4.2.31)

We postpone the proof to the end of this section. Using the lemma we deduce that

|Φl
u(y),v(y) ∗ Φ̃l

u(x),v(x)|(ξ) .
∑
i=1,2

(ai1[−2−λl,2−λl](aiξ) + 2−λlai1[−2,2](aiξ)),

where a1 := 2−lu(y)1/α, a2 := 2−lu(x)1/α. Therefore we have

|〈TT ∗g, h〉| ≤
∫
R

∫
R
|(Φl

u(y),v(y) ∗ Φ̃l
u(x),u(y))(y − x)g(x)h(y)|dxdy

. 2−λl
(∫

R

∫
R
Mg(x)|h(y)|dxdy +

∫
R

∫
R
|g(x)|Mh(y)dxdy

)
. 2−λl‖g‖2‖h‖2.

(4.2.32)

Here M denotes the Hardy-Littlewood maximal function and we have used its L2 bound-
edness as well as the Cauchy-Schwarz inequality in the last step. This concludes the
proof of (4.2.23).

Proof of Lemma 4.2.2. Denote the left hand side of (4.2.31) by Iξ. First note that Iξ = 0
if |ξ| > 2. Next, if |ξ| ≤ 2−λl, then the estimate follows from the triangle inequality and
so we also assume that |ξ| > 2−λl. In the following we consider only η such that the
integrand in the integral defining Iξ is not zero. This implies that η, hη − ξ ∈ [1/2, 2].
We analyze the phase function

Qξ(η) := wη + 2αl(ηα − (hη − ξ)α). (4.2.33)

Note that
Q′′ξ (η) = α(α− 1)2αl(ηα−2 − h2(hη − ξ)α−2), (4.2.34)

Q′′′ξ (η) = α(α− 1)(α− 2)2αl(ηα−3 − h3(hη − ξ)α−3), (4.2.35)

and observe that the vector X :=

(
Q′′ξ (η)

Q′′′ξ (η)

)
can be written as

α(α− 1)2αl
(

1 1
(α− 2)η−1 (α− 2)h(hη − ξ)−1

)(
ηα−2

−h2(hη − ξ)α−2

)
. (4.2.36)

This point of the argument crucially depends on the hypothesis α 6= 2. Denoting the
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2× 2 matrix in the above expression by M we calculate

| det(M)| = |(α− 2)ξ|
(hη − ξ)η

& |ξ| > 2−λl. (4.2.37)

This allows us to estimate
|X| & 2(α−λ)l. (4.2.38)

Invoking van der Corput’s lemma [Ste93, Chapter VIII.1] we conclude that

Iξ . 2−(α−λ)/3l = 2−λl , (4.2.39)

where we have set λ := α
4 .

4.3 Proof of Theorem 4.1.2

Throughout this section we omit the dependence on u, α and simply refer to our operator
as H. Recalling the commutation relation4

HP (2)
k = P

(2)
k H , (4.3.1)

by Littlewood-Paley theory it suffices to prove that∥∥∥(∑
k∈Z
|HP (2)

k f |2
)1/2∥∥∥

p
. ‖f‖p . (4.3.2)

We stress here that the one-variable assumption (4.1.5) is the key fact that guar-
antees the commutation relation (4.3.1). This is the only place in this section where
the one-variable assumption (4.1.5) is explicitly used. An implicit appearance is in the
estimate (4.3.10) for the case p = 2, which is the content of the previous section.

We return to the proof of (4.3.2). In Section 4.2 we already established that

‖HP (2)
k f‖p . ‖P (2)

k f‖p

holds (this is the case v ≡ 0). Here we should note that the proof in Section 4.2 needs
a small modification in the case when v ≡ 0 and α = 2. Namely, in that situation the
exponential decay estimate (4.2.20) is essentially a special case of a well-known result
due to Stein and Wainger (see [SW01, Theorem 1]).

Fix now k ∈ Z. In view of the shape of the phase of our multiplier, we decompose
our operator into a low and high frequency component, respectively:

HP (2)
k f(x, y) =

∑
l∈Z

∫
R

(P
(2)
k f)(x− t, y − u(x)[t]α)ψl(u(x)1/αt)

dt

t

=
( ∑
l≤−k/α

+
∑

l>−k/α

)∫
R

(P
(2)
k f)(x− t, y − u(x)[t]α)ψl(u(x)1/αt)

dt

t
.

(4.3.3)

4Recall that P
(2)
k denotes a Littlewood-Paley projection in the second variable.
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We denote

Tk,0f(x, y) :=
∑

l≤−k/α

∫
R
f(x− t, y − u(x)[t]α)ψl(u(x)1/αt)

dt

t
(4.3.4)

and, for j ≥ 1,

Tk,jf(x, y) :=

∫
R
f(x− t, y − u(x)[t]α)ψ− k

α
+j(u(x)1/αt)

dt

t
. (4.3.5)

Using the triangle inequality we obtain∥∥∥(∑
k∈Z
|HP (2)

k f |2
)1/2∥∥∥

p
.
∥∥∥(∑

k∈Z
|Tk,0P

(2)
k f |2

)1/2∥∥∥
p

+
∑
j∈N

∥∥∥(∑
k∈Z
|Tk,jP

(2)
k f |2

)1/2∥∥∥
p
.

(4.3.6)

As in the previous section (see (4.2.8) – (4.2.18)) we treat Tk,0P
(2)
k f as a perturbation

of ∑
l≤−k/α

∫
R
P

(2)
k f(x− t, y)ψl(u(x)1/αt)

dt

t
. (4.3.7)

This yields

|Tk,0P
(2)
k f | .MS(P

(2)
k f) +H∗(P

(2)
k f). (4.3.8)

Here MS denotes the strong maximal function and H∗ a maximally truncated Hilbert
transform applied in the first variable. Indeed, one may deduce (4.3.8) using the same
arguments as in Section 4.2.1. The vector-valued estimates for MS follow from the
corresponding estimates for the one dimensional Hardy-Littlewood maximal function
which are well-known (see Stein [Ste93, Chapter II.1]). Similarly, the vector-valued
estimates for H∗ follow from Cotlar’s inequality and the vector-valued estimates for the
Hilbert transform and the maximal function. Thus we have∥∥∥(∑

k∈Z
|Tk,0P

(2)
k f |2

)1/2∥∥∥
p
.
∥∥∥(∑

k∈Z
|P (2)
k f |2

)1/2∥∥∥ . ‖f‖p (4.3.9)

for all p > 1. This finishes the proof for the first term on the right hand side of (4.3.6).

To bound the second term in (4.3.6) we will prove that there exists γp > 0 such that∥∥∥(∑
k∈Z
|Tk,jP

(2)
k f |2

)1/2∥∥∥
p
. 2−γpj‖f‖p. (4.3.10)

For p = 2 this follows from (4.2.20) with v ≡ 0. Note here again that in the case
v ≡ 0, α = 2 the estimate (4.2.20) is a consequence of [SW01, Theorem 1]. Hence, by
interpolation it suffices to prove∥∥∥(∑

k∈Z
|Tk,jP

(2)
k f |2

)1/2∥∥∥
p
. j4‖f‖p. (4.3.11)

Let us first note that if p is sufficiently close to 2, then (4.3.11) follows immediately
from an interpolation argument. To carry out this interpolation, we observe the trivial
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pointwise bound

|Tk,jP
(2)
k f | . 2αjMS(P

(2)
k f). (4.3.12)

This implies that ∥∥∥(∑
k∈Z
|Tk,jP

(2)
k f |2

)1/2∥∥∥
p
. 2αj‖f‖p (4.3.13)

for all p > 1. Interpolating with the bound for p = 2 in (4.3.10), we can find a positive
constant ε0 > 0 such that (4.3.10) holds true for all p ∈ (2− ε0, 2 + ε0).

Recall that our goal is to prove (4.3.11) for all p > 1. For convenience we choose to
present only the case [t]α = |t|α. The other case [t]α = sgn(t)|t|α can be treated by the
same arguments.

Our strategy is to derive a sufficiently fine-grained pointwise estimate of |Tk,jP
(2)
k f |

by appropriate shifted maximal functions and then apply vector-valued bounds to con-
clude (4.3.11). The use of the shifted maximal operator was inspired by the work of the
third author [Lie15b] (see there Section 2.4., Lemma 2).

First let us consider the case k = 0. By definition we have

T0,jP
(2)
0 f(x, y) =

∫∫
R2

f(x− t, y − s− u(x)|t|α)
ψj(u(x)

1
α t)

t
ψ̌(s)dtds. (4.3.14)

Up to Schwartz tails in s, this is essentially an average of f over a thickened segment of
a translate of the curve (t, u(x)|t|α). The idea is to cut up this thickened curve segment
into pieces that are well approximated by rectangles.

Taking absolute values and using the triangle inequality we see that the previous
display is

.
1

λx,j

∫
|t|≈λx,j

∫
R
|f(x− t, y − s− u(x)|t|α)ψ̌(s)|dsdt, (4.3.15)

where λx,j := 2ju(x)−1/α and the notation |t| ≈ λ means 1
2λ ≤ |t| ≤ 2λ. By the rapid

decay of ψ̌ this is

.
∑
τ∈Z

1

(1 + |τ |)10

1

λx,j

∫
|t|≈λx,j

∫ τ+1

τ
|f(x− t, y − s− u(x)|t|α)|dsdt. (4.3.16)

Once at this point, the intuition is given by the following observation: the function

f = P
(2)
0 f “sees” the y−universe in unit steps; that is, f is morally y−constant on

segments of length one. Consequently, it is natural to further discretize the location of
t in intervals on which the variation of the term u(x)|t|α does not exceed the order of
one. This invites us to consider the following construction.

Set δx,j := 2−(α−1)ju(x)−1/α and cover the region 1
2λx,j ≤ |t| ≤ 2λx,j by intervals

{Im}
Nj−1
m=0 where

Im =
{
t :

1

2
λx,j +mδx,j ≤ |t| ≤

1

2
λx,j + (m+ 1)δx,j

}
and Nj ∈ N is such that 3

2λx,j ≤ Njδx,j ≤ 2λx,j . Notice that Nj ∼ 2αj and moreover
that Nj can be chosen independently of x.
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With this we have

1

λx,j

∫
|t|≈λx,j

∫ τ+1

τ
|f(x− t, y − s− u(x)|t|α)|dsdt

.
1

Nj

Nj−1∑
m=0

1

|Im|

∫
Im

∫ 1

0
|f(x− t, y − s− τ − u(x)|t|α)|dsdt. (4.3.17)

We now set

Cm :=
{

(t, s+ τ + u(x)|t|α) : t ∈ Im, s ∈ [0, 1]
}
⊂ Im × Jm,

where

Jm =

[
τ + u(x)

(1

2
λx,j +mδx,j

)α
, τ + 1 + u(x)

(1

2
λx,j + (m+ 1)δx,j

)α]
.

Notice that, because of our choice of δx,j , the thickened curve segment Cm is contained
in a rectangular region of comparable area. Indeed, we have by the mean value theorem,

|Jm| ∼α 1 + u(x)δx,jλ
α−1
x,j ∼α 1.

Thus we further have that (4.3.17) is bounded by a constant multiple of

1

Nj

Nj−1∑
m=0

1

|Im × Jm|

∫∫
Im×Jm

|f(x− t, y − s)|dtds.

Given a non-negative parameter σ, we define the shifted maximal operator as

M (σ)f(z) := sup
z∈I⊂R

1

|I|

∫
I(σ)

|f(ζ)|dζ. (4.3.18)

Here the supremum goes over all bounded intervals I containing z, and I(σ) denotes a
shift of the interval I = [a, b] given by

I(σ) := [a− σ · |I|, b− σ · |I|] ∪ [a+ σ|I|, b+ σ|I|].

Note that

1

|Im × Jm|

∫∫
Im×Jm

|f(x− t, y − s)|dtds ≤M (σ
(1)
m )

1 M
(σ

(2)
m +τ)

2 f(x, y),

where {
σ

(1)
m := 2αj−1 +m,

σ
(2)
m := cα(2j + 2−(α−1)jm)α,

and cα is a constant only depending on α and M
(n)
1 (respectively, M

(n)
2 ) denotes the

shifted maximal operator applied in the first (respectively, second) variable. Notice that

since Nj ∼ 2αj and m < Nj we have that σ
(i)
m . 2αj for i = 1, 2.
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Altogether we have now proved that

|T0,jP
(2)
0 f(x, y)| .

∑
τ∈Z

1

(1 + |τ |)10

1

Nj

Nj−1∑
m=0

M
(σ

(1)
m )

1 M
(σ

(2)
m +τ)

2 f(x, y).

By a scaling argument
we have that for all k ∈ Z the following holds:

|Tk,jP
(2)
k f(x, y)| .

∑
τ∈Z

1

(1 + |τ |)10

1

Nj

Nj−1∑
m=0

M
(σ

(1)
m )

1 M
(σ

(2)
m +τ)

2 P
(2)
k f(x, y). (4.3.19)

Inserting these two bounds into the left hand side of (4.3.11) yields

∥∥∥(∑
k∈Z

(∑
τ∈Z

1

(1 + |τ |)10

1

Nj

Nj−1∑
m=0

M
(σ

(1)
m )

1 M
(σ

(2)
m +τ)

2 P
(2)
k f(x, y)

)2)1/2∥∥∥
p
. (4.3.20)

By the triangle inequality this is no greater than

∑
τ∈Z

1

(1 + |τ |)10

1

Nj

Nj−1∑
m=0

∥∥∥(∑
k∈Z

(
M

(σ
(1)
m )

1 M
(σ

(2)
m +τ)

2 P
(2)
k f(x, y)

)2)1/2∥∥∥
p
. (4.3.21)

Thus, to show (4.3.11) it suffices to prove that∥∥∥(∑
k∈Z

(
M

(σ
(1)
m )

1 M
(σ

(2)
m +τ)

2 P
(2)
k f(x, y)

)2)1/2∥∥∥
p
. j4 · log2(2 + |τ |)‖f‖p. (4.3.22)

Since σ
(i)
m . 2αj for i = 1, 2, by Fubini’s theorem we have that (4.3.22) is a consequence of

the following vector-valued estimate for the one-dimensional shifted maximal operator:∥∥∥∥∥(∑
k∈Z
|M (n)fk|2

)1/2
∥∥∥∥∥
p

. (log〈n〉)2
∥∥∥(∑

k∈Z
|fk|2

)1/2∥∥∥
p
, (4.3.23)

where we adopt the Japanese bracket notation 〈n〉 := 2 + |n|. We give the proof of this
last statement below.

Let D denote the set of dyadic intervals I = [2km, 2k(m + 1)) with k,m ∈ Z. In
accordance with the above definition we have,

I(n) = [2k(m− n), 2k(m− n+ 1)) ∈ D

for n ∈ Z. For simplicity we discuss only the dyadic variant of M (n), defined as

M (n)f(x) = sup
x∈I∈D

1

|I|

∫
I(n)

|f(y)|dy.

Everything here carries over to the non-dyadic version with the constants having the
same dependence on n (see Muscalu [Mus14, p. 741]).
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Theorem 4.3.1. For 1 < p <∞, 1 < q ≤ ∞ we have∥∥∥(∑
k∈Z
|M (n)fk|q

)1/q∥∥∥
p
. (log〈n〉)2

∥∥∥(∑
k∈Z
|fk|q

)1/q∥∥∥
p
. (4.3.24)

We did not find a reference for this result in the literature, so we provide a short
self-contained proof. The scalar version of this estimate involves standard Calderón-
Zygmund techniques and can be found in [Mus14], where the author attributes it to
Stein [Ste93].

Before starting the proof we make few more observations: firstly, notice that the
endpoints 1 < p = q ≤ ∞ and q = ∞ of Theorem 4.3.1 follow immediately from the
scalar version, and thus interpolation establishes the result for 1 < p ≤ q <∞. Secondly,
the exponent 2 for the log loss is only chosen for convenience; the proof actually gives a
slightly better exponent.

Now the proof we present below relies on a weighted estimate in the spirit of
Fefferman-Stein [FS71]:

Lemma 4.3.2. Let ω ≥ 0 be a locally integrable function. For all λ > 0,

ω({x : M (n)f(x) > λ}) . λ−1
(

log〈n〉‖f‖L1(M(−n)ω) + ‖f‖L1(Mω)

)
, (4.3.25)

where M denotes the Hardy-Littlewood maximal function.

Proof. Fix λ > 0. Let I be the collection of maximal dyadic intervals I such that

1

|I|

∫
I
|f | > λ. (4.3.26)

Given I ∈ I we denote by J Ii the collection of dyadic intervals J such that |J | = 2−i|I|,
J (n) ⊂ I and 1

|J |
∫
J(n) |f | > λ. This is the i-th generation of shifted subintervals of I.

We call i large if 2−i|n| < 1 and otherwise we call i small. It will be important that this
depends only on n. Denote J I =

⋃
i≥0 J Ii . Observe that

{x : M (n)f(x) > λ} ⊂
⋃
I∈I

⋃
J∈J I

J. (4.3.27)

Indeed, if x is such that M (n)f(x) > λ then there exists J ∈ D with x ∈ J and
1
|J |
∫
J(n) |f | > λ. By definition of I there is some I ∈ I with J (n) ⊂ I and therefore

x ∈ J ∈ J I . The crucial observation is that if J ∈ J Ii and i is large, then J is contained
in 3I.

Thus we can estimate

ω({x : M (n)f(x) > λ}) ≤
∑
I∈I

( ∑
J∈J Ii ,
i small

∫
J
ω +

∫
3I
ω
)
. (4.3.28)

For J ∈ J Ii , since (J (n))(−n) = J we have that∫
J
ω ≤ 1

λ

∫
J(n)

|f(x)| ·
(

1

|J |

∫
J
ω(y)dy

)
dx ≤ 1

λ

∫
J(n)

|f(x)|M (−n)ω(x)dx. (4.3.29)
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Similarly, ∫
3I
ω .

1

λ

∫
I
|f(x)|Mω(x)dx. (4.3.30)

Thus we can estimate (4.3.28) by

λ−1
(∑
I∈I

∑
J∈J Ii ,
i small

∫
J(n)

|f |M (−n)ω +
∑
I∈I

∫
I
|f |Mω

)
. (4.3.31)

For fixed i the J ∈ J Ii are disjoint and we have
⋃
J∈J Ii

J (n) ⊂ I. Since there are about

log〈n〉 small i, the previous display is bounded by

λ−1
(

log〈n〉‖f‖L1(M(−n)ω) + ‖f‖L1(Mω)

)
. (4.3.32)

This finishes the proof of Lemma 4.3.2.

Now let us treat the range p ≥ q. Lemma 4.3.2 says that M (n) is a bounded
operator L1(M̃ (−n)ω)→ L1,∞(ω) with constant . log〈n〉 where M̃ (n) = M (n) +M . By
interpolation with the trivial L∞ bound we get∫

(M (n)fk)
qω . log〈n〉

∫
|fk|qM̃ (−n)ω (4.3.33)

for all 1 < q <∞. Let r be the dual exponent of p/q. We have∥∥∥(∑
k∈Z
|M (n)fk|q

)1/q∥∥∥q
p

=
∥∥∥∑
k∈Z
|M (n)fk|q

∥∥∥
p/q

= sup
‖ω‖r≤1

∫ ∑
k∈Z

(M (n)fk)
qω. (4.3.34)

Using the previous estimate we bound this by

log〈n〉
∫ ∑

k∈Z
|fk|qM̃ (−n)ω. (4.3.35)

By Hölder’s inequality and the scalar logarithmic bound for M (n) we have∫ ∑
k∈Z
|fk|qM̃ (−n)ω ≤

∥∥∥(∑
k∈Z
|fk|q

) 1
q
∥∥∥q
p
‖M̃ (−n)ω‖r . (log〈n〉)

1
r

∥∥∥(∑
k∈Z
|fk|q

) 1
q
∥∥∥q
p
.

(4.3.36)
This finishes the proof of our theorem.

4.4 Proof of Theorem 4.1.8

In this section we prove Theorem 4.1.8. The main tool we will be using is the local
smoothing estimate from Theorem 4.6.1.

We start the proof by recalling that

H(α)
u f(x, y) :=

∫
R
f(x− t, y − u(x, y)[t]α)

dt

t
. (4.4.1)

107



We will only present the proof of the case α > 1; the remaining case 0 < α < 1 can
be treated using the same methods and is somewhat easier. As α and u will always be
fixed, we will leave out the dependence on them in our notation and simply use T to

denote H(α)
u . In this section, we will prove

‖TP (2)
k f‖p . ‖P (2)

k f‖p, (4.4.2)

for all p > 2 and all measurable function u : R2 → R, with a bound independent of
k ∈ Z and u. By the anisotropic scaling

x→ x, y → λy, (4.4.3)

it suffices to prove (4.4.2) for k = 0.

In order to simplify our presentation, we introduce some notation. We let

z = (x, y) and uz := u(x, y), (4.4.4)

and set vz to be the unique integer such that

2vz ≤ uz < 2vz+1. (4.4.5)

For a given k0 ∈ Z, define
u(k0)
z := 2k0−vzuz. (4.4.6)

Observe that u
(vz)
z = uz, u

(k0)
z ∈ [2k0 , 2k0+1) and u

(k0)
z = 2k0u

(0)
z .

Denote

Tk0f(x, y) :=

∫
R
f(x− t, y − u(k0)

z [t]α)
dt

t
. (4.4.7)

Remark 4.4.1. Roughly speaking, we will bound TP
(2)
0 f by the “square function”( ∑

k0∈Z
|Tk0P

(2)
0 f |p

)1/p
. (4.4.8)

Here we are using an lp sum instead of an l2 sum. This is because p is always larger than
two. At first glance, it might be a bit surprising that the term (4.4.8) is still a bounded
operator. The proof of this fact will be achieved by applying a finer decomposition for
the function f , and then seeking for enough “off-diagonal” decay via a local smoothing
estimate.

We now begin our analysis by performing a dyadic decomposition of the kernel 1
t

around the singularity t = 0. In particular, let

Tk0,lf(x, y) :=

∫
R
f(x− t, y − u(k0)

z [t]α)ψl((u
(0)
z )βt)

dt

t
, (4.4.9)

where β = 1
α−1 . Recall that α > 1 and so β is always positive. The motivation for using

the factor (u
(0)
z )β and the choice of β will become clear much later during the main

argument (see the proof of Lemma 4.4.1, specifically (4.4.31)).
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Next, we perform a Littlewood-Paley decomposition in the x-variable, and write

Tk0P
(2)
0 f =

∑
l∈Z

∑
k∈Z

Tk0,lP
(1)
k P

(2)
0 f. (4.4.10)

We will split the sums in l, k ∈ Z into two major cases according to the behavior
of the phase of the “multiplier” (see the discussion preceding (4.4.11) below) associated
with Tk0,l:

1. low frequency case: l < max{−k,−k0/α};
In this situation the operator Tk0,l behaves like a one-dimensional convolution
operator.

2. high frequency case: l ≥ max{−k,−k0/α};
This case splits into two subcases:

(a) l sits below the critical point of the phase;

(b) l sits above the critical point of the phase.

In what follows we explain the heuristic for the above partition of our analysis.

Fix l, k ∈ Z and focus on the function Tk0,lP
(1)
k f . Imagine for the moment that the

function u
(k0)
z is a constant u(k0) on the interval [2k0 , 2k0+1). Then Tk0,lP

(1)
k becomes a

convolution type operator, and hence it makes sense to speak about its multiplier as∫
R
ei2

ltξ+iu(k0)2αl[t]αηψ0([u(0)
z ]βt)

dt

t
. (4.4.11)

Recall that ξ ∼ 2k and η ∼ 1. In the situation described by item (1) either 2lξ . 1 or
u(k0)2αlη . 1. When one of these two inequalities occurs, say u(k0)2αlη . 1, then in the
expression (4.4.9), we can view f(x−t, y−u(k0)[t]α) as a perturbation of f(x−t, y). This
is what we meant when saying that the operator Tk0,l behaves like a one-dimensional
operator.

Assume now that we are in the situation of item (2), that is l ≥ max{−k,−k0/α}.
In this case we have two possibilities:

k < k0/α and k ≥ k0/α . (4.4.12)

In the first instance, k < k0/α, the phase function in (4.4.11) does not admit any critical
point, which makes this case much easier to handle. This is the reason for which we will
only focus on the latter case k ≥ k0/α.

Now, as explained above, the cutoff between case (2a) and (2b) is indicated by the
stationary phase principle. Analyzing the stationary points we deduce the requirement

2l+k ∼ 2αl+k0 =⇒ |l − β · (k − k0)| . 1 . (4.4.13)

Once at this point, we let the situation in item (2a) be defined by the conditions:

k ≥ k0/α and l < β · (k − k0) . (4.4.14)
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while the situation in item (2b) be defined by the conditions:

k ≥ k0/α and l ≥ β · (k − k0) . (4.4.15)

With this heuristic, based on items (1) and (2) above we split (4.4.10) as

Tk0P
(2)
0 f =

∑
k∈Z

∑
l≤max{−k,−k0/α}

Tk0,lP
(1)
k P

(2)
0 f +

∑
k∈Z

∑
l>max{−k,−k0/α}

Tk0,lP
(1)
k P

(2)
0 f

(4.4.16)

=: Ik0 + IIk0 .

These two terms are treated separately in the following two subsections.

4.4.1 The high frequency case

In this subsection, we will treat the term IIk0 which is the main term in (4.4.16).
Recall from our heuristic that in the situation k < k0/α the phase function in

(4.4.11) does not admit a critical point. That makes this case easier to handle. The
precise arguments are the same as for the main term, so we will not detail them here.
That is, we will only treat the case k ≥ k0/α. Accordingly we redefine

IIk0 :=
∑

k≥k0/α

∑
l>−k0/α

Tk0,lP
(1)
k P

(2)
0 f. (4.4.17)

As α > 1, in this situation we always have

−k0/α ≤ β · (k − k0).

Thus we split IIk0 into two parts

IIk0 =
∑
k≥ k0

α

β·(k−k0)∑
l>−k0/α

Tk0,lP
(1)
k P

(2)
0 f +

∑
k≥ k0

α

∑
l>β·(k−k0)

Tk0,lP
(1)
k P

(2)
0 f (4.4.18)

=: II
(1)
k0

+ II
(2)
k0

.

Our goal here will be to prove that∥∥∥( ∑
k0∈Z
|II(j)

k0
|p
)1/p∥∥∥

p
. ‖f‖p for j ∈ {1, 2} . (4.4.19)

For this, we first apply the change of variables5 l → l + β(k − k0) , and use Fubini to
deduce that

II
(1)
k0

=
0∑

l=−∞

∑
k>

k0
α
− l
β

Tk0,β(k−k0)+lP
(1)
k P

(2)
0 f , (4.4.20)

5Note that β(k − k0) might not be an integer but this is irrelevant.
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and

II
(2)
k0

=
∞∑
l=1

∑
k≥ k0

α

Tk0,β(k−k0)+lP
(1)
k P

(2)
0 f . (4.4.21)

In order to prove (4.4.19) it will be sufficient to show that for all p > 2 we have∥∥∥( ∑
k0∈Z
|
∑

k>
k0
α
− l
β

Tk0,β·(k−k0)+lP
(1)
k P

(2)
0 f |p

)1/p∥∥∥
p
. 2−γp|l|‖f‖p, (4.4.22)

and ∥∥∥( ∑
k0∈Z
|
∑
k≥ k0

α

Tk0,β·(k−k0)+lP
(1)
k P

(2)
0 f |p

)1/p∥∥∥
p
. 2−γpl‖f‖p, (4.4.23)

for some γp > 0. Here and throughout the paper γp is a positive constant that is allowed
to change from line to line. We claim that for p > 2 there exists γp > 0 such that

• if l ≤ 0 and k > k0
α −

l
β , then

‖Tk0,β(k−k0)+lP
(1)
k P

(2)
0 f‖p . 2−γp·(αβk−βk0+l)‖P (1)

k P
(2)
0 f‖p, and (4.4.24)

• if l > 0 and k ≥ k0
α , then

‖Tk0,β(k−k0)+lP
(1)
k P

(2)
0 f‖p . 2−γp·(αβk−βk0+αl)‖P (1)

k P
(2)
0 f‖p. (4.4.25)

Before we prove this claim, we will demonstrate how it is used to show (4.4.22) and
(4.4.23). Here we only prove (4.4.22); the estimate (4.4.23) follows in essentially the
same way.

For a fixed l ≤ 0, we expand the Lp norm on the left hand side of (4.4.22), and then
apply (4.4.24) to obtain( ∑

k0∈Z

( ∑
k>

k0
α
− l
β

2−γp·(αβk−βk0+l)‖P (1)
k P

(2)
0 f‖p

)p) 1
p
.

By applying Hölder’s inequality to the summation in k, we obtain that the above ex-
pression is bounded by( ∑

k0∈Z

∑
k>

k0
α
− l
β

2−γp·(αβk−βk0+l)‖P (1)
k P

(2)
0 f‖pp

) 1
p
.

Now we apply Fubini’s theorem and exchange the order of summations in k and k0 to
further bound this by

2γp·l(α−1)
(∑
k∈Z
‖P (1)

k P
(2)
0 f‖pp

) 1
p . 2γp·l(α−1) ‖f‖p.

This finishes the proof of the desired estimate (4.4.22).

It remains to prove (4.4.24) and (4.4.25). The idea is to reduce to the local smoothing
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estimate provided in Theorem 4.6.1. We will do this in a slightly more general setting in
view of further applications in Section 4.5. To this end, given parameters u > 0, w, l ∈ Z,
we introduce

Au,w,lf(z) :=

∫
f(x− t, y − u[t]α)ψl(2

w
α (2−vu)βt)

dt

|t|
,

where v ∈ Z is such that u ∈ [2v, 2v+1). Note that 2−vu ∈ [1, 2). With this notation we
have Tk0,l = A

2k0u
(0)
z ,0,l

. The extra parameter w will only be needed in the Section 4.5.

Lemma 4.4.1. Let r = rz : R2 → [1, 2) be measurable and m, k, v, l ∈ Z such that

M := max{k + l − w

α
,m+ lα− w + v} ≥ 0. (4.4.26)

Then, for every p > 2 there exists γp > 0 such that

‖A2vrz ,w,lP
(1)
k P (2)

m f(z)‖Lpz .p 2−γpM‖f‖p, (4.4.27)

where the implicit constant depends only on p and α.

Before we proceed to proving this statement let us first note that it directly implies
(4.4.24) and (4.4.25) (here we use the identity β + 1 = αβ and α > 1).

Proof of Lemma 4.4.1. We have

A2vrz ,w,lP
(1)
k P (2)

m f(z) =

∫
R
P

(1)
k P (2)

m f(x− t, y − 2vrz[t]
α)ψl(2

w
α rβz t)

dt

|t|
. (4.4.28)

By a change of variables t→ 2l−
w
α t we obtain∫

R
P

(1)
k P (2)

m f(x− 2l−
w
α t, y − 2lα−w+vrz[t]

α)ψ0(rβz t)
dt

|t|
. (4.4.29)

Define Da,bf(x, y) := f(2ax, 2by) and

Bf(z) :=

∫
R
f(x− t, y − rz[t]α)ψ0(rβz t)

dt

|t|
. (4.4.30)

Changing variables t → r−βz t and using the identity β = αβ − 1 we see that B can be
written in terms of the averaging operator from (4.6.1):

Bf(z) =

∫
R
f(x− r−βz t, y − r−βz [t]α)ψ0(t)

dt

|t|
= A

r−βz
f(z). (4.4.31)

From (4.4.28) – (4.4.30) we see that

A2vrz ,w,lP
(1)
k P (2)

m f(z) = D−l+w
α
,−lα+w−vBDl−w

α
,lα−w+vP

(1)
k P (2)

m f(z). (4.4.32)

Since Da,bP
(1)
k P

(2)
m = P

(1)
k+aP

(2)
m+bDa,b, the right hand side in the previous display can be

written as
D−l+w

α
,−lα+w−vBP

(1)
k+l−w

α
P

(2)
m+lα−w+vDl−w

α
,lα−w+vf(z). (4.4.33)
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Since conjugation by Da,b is an Lp isometry, the Lp norm of (4.4.33) equals

‖BP (1)
k+l−w

α
P

(2)
m+lα−w+vf‖p. (4.4.34)

The claim now follows from Theorem 4.6.1 once we notice that the frequency support

of P
(1)
k+l−w

α
P

(2)
m+lα−w+vf is contained in the annulus ‖(ξ, η)‖ ∼ 2M .

4.4.2 The low frequency case

In this subsection, we bound the first term in (4.4.16). We write it as

Ik0 =
∑
k∈Z

∑
l≤max{−k,−k0/α}

Tk0,lP
(1)
k P

(2)
0 f

=
∑
k∈Z

∑
l≤− k0

α

Tk0,lP
(1)
k P

(2)
0 f +

∑
k≤ k0

α

∑
− k0
α
≤l≤−k

Tk0,lP
(1)
k P

(2)
0 f

=: I
(1)
k0

+ I
(2)
k0
.

(4.4.35)

The first term can be bounded by the strong maximal function and the maximally

truncated Hilbert transform in the x-variable. Indeed, comparing I
(1)
k0

with

∑
l≤− k0

α

∫
R
P

(2)
0 f(x− t, y)ψl(t)

dt

t
,

we find that their difference is bounded by the strong maximal function. This follows
by the same argument as in Section 4.2.1.

We pass now to the treatment of the second term, I
(2)
k0

. For this purpose we first
define the “one-dimensional” operator

Uk0,lf(x, y) :=

∫
R
f(x, y − u(k0)

z [t]α)ψl([u
(0)
z ]βt)

dt

t
. (4.4.36)

Notice that when [t]α is an even function this operator is identically zero. We next
rewrite the second term as

I
(2)
k0

=
∞∑
l=0

∑
k≤ k0

α
−l

(T
k0,− k0

α
+l
P

(1)
k P

(2)
0 f − U

k0,− k0
α

+l
P

(1)
k P

(2)
0 f) +

∞∑
l=0

∑
k≤ k0

α
−l

U
k0,− k0

α
+l
P

(1)
k P

(2)
0 f.

(4.4.37)

For the contribution coming from the latter term, by the triangle inequality, it suffices
to prove that

∥∥∥ sup
k0∈Z

∣∣∣ ∑
k≤ k0

α
−l0

∫
R

(P
(1)
k P

(2)
0 f)(x, y − u(k0)

z [t]α)ψ− k0
α

+l0
([u(0)

z ]βt)
dt

t

∣∣∣∥∥∥
p
. 2−γp·l0‖f‖p,

(4.4.38)
for each l0 ∈ N, and for a constant γp depending only on p. This further follows from
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the pointwise bound∣∣∣ ∑
k≤ k0

α
−l0

∫
R

(P
(1)
k P

(2)
0 f)(x, y − u(k0)

z [t]α)ψ− k0
α

+l0
([u(0)

z ]βt)
dt

t

∣∣∣ . 2−γ·l0MSf(x, y),

(4.4.39)
which is again a consequence of the mean zero property of ψ− k0

α
+l0

(t)· 1t . Indeed, (4.4.39)

follows from classical Calderón-Zygmund theory. We leave the details for the interested
reader.

Turning our attention towards the contribution from the former term on the right
hand side of (4.4.37), we notice that it is enough to show that∥∥∥ sup

k0∈Z

∣∣∣ ∑
k≤ k0

α
−l0

(
T
k0,− k0

α
+l0
P

(1)
k P

(2)
0 f − U

k0,− k0
α

+l
P

(1)
k P

(2)
0 f

)∣∣∣∥∥∥
p
. 2−γp·l0‖f‖p, (4.4.40)

for each l0 ∈ N. This in turn follows from

Claim 4.4.2. In the above setting, for each l0, j0 ∈ N and k0 ∈ Z the following estimate
holds uniformly:∥∥∥ sup

k0∈Z

∣∣∣T
k0,− k0

α
+l0
P

(1)
k0
α
−l0−j0

P
(2)
0 f − U

k0,− k0
α

+l
P

(1)
k0
α
−l0−j0

P
(2)
0 f

∣∣∣∥∥∥
p
. 2−γp·max{l0, j09 }‖f‖p .

(4.4.41)

Proof. We first look at the case j0 ≤ 9 · l0. Based on the treatment of I
(2)
k0

, it is enough
to show that

‖T
k0,− k0

α
+l0
P

(1)
k0
α
−l0−j0

P
(2)
0 f‖p . 2−γp·l0‖f‖p, (4.4.42)

for each fixed k0, l0 and j0. This follows from Lemma 4.4.1.
Next we consider the case j0 ≥ 9 · l0. It suffices to prove the pointwise bound∣∣T

k0,− k0
α

+l0
P

(1)
k0
α
−l0−j0

P
(2)
0 f − U

k0,− k0
α

+l
P

(1)
k0
α
−l0−j0

P
(2)
0 f

∣∣ . 2−γ·j0 ·MS(f), (4.4.43)

for some positive γ > 0. By scaling it suffices to look at the case k0 = 0. We now
observe that the left hand side of (4.4.43) can be written as∣∣∣ ∫

R

[
(P

(1)
−l0−j0P

(2)
0 f)(x− t, y− u(0)

z [t]α)− (P
(1)
−l0−j0P

(2)
0 f)(x, y− u(0)

z [t]α)
]
ψl0([u(0)

z ]βt)
dt

t

∣∣∣.
(4.4.44)

Now our claim follows by applying the fundamental theorem of calculus in the first

variable of P
(1)
−l0−j0P

(2)
0 f .

4.5 Proof of Theorem 4.1.1

The proof is organized as follows:

• In Section 4.5.1 we reduce our proof to the exponential decay estimate (4.5.6).

• In Section 4.5.2 we prove this decay estimate for p > 2, by only assuming u to be
a measurable function. This recovers the result of Marletta and Ricci [MR98].
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• In Section 4.5.3 we prove the estimate (4.5.6) for p ≤ 2. This relies on the Lip-
schitz assumption of the function u, a condition that is used when applying a
suitable change of variables (see (4.5.31)). To enable that change of variables, we
will introduce several auxiliary functions and make use of Lemma 4.5.1 on the
boundedness of maximal operators along curves in lacunary directions. The proof
of this lemma is provided in Section 4.5.4.

4.5.1 Preliminaries

Since we are dealing with a positive operator we may assume without loss of generality
that f ≥ 0. Furthermore, we may assume that u(x, y) > 0 for all (x, y) ∈ R2. We will
adopt the notation (4.4.4) – (4.4.6) from the previous section.

For a positive real number u and l ∈ Z we define

Au,lf(z) =

∫
R
f(x− t, y − u[t]α)ψl(2

v
α (2−vu)βt)

dt

|t|
,

where v ∈ Z is such that u ∈ [2v, 2v+1) and β := 1
α−1 . In particular, 2−vu ∈ [1, 2).

Observe that
M(α)

u,ε0f(z) . sup
l : vz∈El

Auz ,lf(z),

where
El := {v ∈ Z : 2l ≤ cαε02

v
α }, (4.5.1)

for v ∈ Z and cα is a fixed constant depending only on α. Linearizing the supremum we
introduce the operator

Mf(z) := Auz ,lzf(z),

where z 7→ lz is an arbitrary measurable map R2 → Z such that vz ∈ Elz for all z. To
prove our theorem it suffices to show that

‖Mf‖p .α,p ‖f‖p

for all 1 < p <∞. By the Fourier inversion formula we have

Auz ,lf(z) =

∫
R2

f̂(ξ, η)eixξ+iyηml(z, ξ, η)d(ξ, η),

with the symbol ml(z, ξ, η) given by

ml(z, ξ, η) :=

∫
R
e−i(ξt+ηuz [t]α)ψl(2

vz
α (u(0)

z )βt)
dt

|t|
, (4.5.2)

where u
(0)
z := 2−vzuz, as defined in (4.4.5). As in our previous analysis, our approach

relies on decomposing our operator relative to the behavior of the phase function of the
multiplier. Our initial focus will be on the behavior of the η component of the phase
which corresponds in the spatial variable to the component containing the vector field
u. Thus, we will discuss the following two cases:

• the η−low frequency regime: |η|2αl ≤ 1;

• the η−high frequency regime: |η|2αl > 1.
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Following the above description, we perform a Littlewood-Paley decomposition in
the y-variable and write

Auz ,lz =
∑
k∈Z

Auz ,lzP
(2)
k =

∑
k≤−αlz

Auz ,lzP
(2)
k +

∑
k>−αlz

Auz ,lzP
(2)
k . (4.5.3)

Case 1. η−low frequency.

The sum over k ≤ −αlz can be estimated by the strong maximal operator and is
therefore bounded on all Lp, 1 < p ≤ ∞. This follows by the same arguments as in
Section 4.2.1.

Case 2. η−high frequency.

The remaining term equals6∑
k∈N

Auz ,lzP
(2)
−αlz+k =

∑
k∈N

∑
m∈Z

Auz ,lzP
(1)
m P

(2)
−αlz+k. (4.5.4)

Fix a k ∈ N, and for the following heuristic, let us imagine for a moment that uz is

a constant. Then from (4.5.2), the symbol of Auz ,lzP
(2)
−αlz+k becomes∫

R
ei(2

lzu
− 1
α

z ξt+η2α·lz [t]α)ψ0(t)
dt

|t|
.

From the stationary phase principle it is plausible to expect an exponential decay for
the Lp norm of the term (4.5.4) in terms of k ∈ N. Indeed, this is the case for Hilbert
transforms along one-variable curves (see the estimate (4.3.10)). However, in the present
situation we do not know how to exhibit such an exponential decay. To remedy this we
first remove from the term (4.5.4) the ξ−low frequency component; the remaining part
then admits an exponential decay estimate in k ∈ N.

We split the term in (4.5.4) into two components corresponding to

• the ξ−low frequency regime: |2lzu−
1
α

z ξ| < 1;

• the ξ−high frequency regime: |2lzu−
1
α

z ξ| ≥ 1.

That is, we write (4.5.4) as∑
k∈N

Auz ,lz
∑

m≤−lz+ vz
α

P (1)
m P

(2)
−αlz+k +

∑
k∈N

∑
m∈N

Auz ,lzP
(1)
−lz+ vz

α
+m

P
(2)
−αlz+k. (4.5.5)

Case 2.1. ξ−low frequency.

This corresponds to the first term in (4.5.5). The contribution from this term can
be controlled by the strong maximal function using the same argument as in the η-low
frequency case. We omit the details.

6Here and in the following our notation will ignore the issue that −αlz might not be an integer as
this can be easily addressed by setting P

(i)
α = P

(i)

bαc.
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Case 2.2. ξ−high frequency.

To handle the latter term on the right hand side of (4.5.5), it suffices to show that
for every p > 1 there exists γp > 0 such that∥∥∥ ∑

m∈N
Auz ,lzP

(1)
−lz+ vz

α
+m

P
(2)
−αlz+kf

∥∥∥
p
. 2−γpk‖f‖p. (4.5.6)

In view of the Littlewood-Paley square function estimate, the argument splits natu-
rally into two cases: p > 2 and p ≤ 2.

4.5.2 The case p > 2

In this section we reprove the result of Marletta and Ricci [MR98] and, in particular,
we only require the function u to be measurable. We also do not need to consider a
truncated maximal function; under the measurability assumption, the truncated case is
equivalent to the untruncated case, by a scaling argument. Hence we take ε0 =∞.

We first remark that the left hand side of (4.5.6) is bounded from above by∥∥∥(∑
l∈Z

∣∣∣ ∑
m∈N

Auz ,lP
(1)
−l+ vz

α
+m

P
(2)
−αl+kf

∣∣∣p)1/p∥∥∥
p
. (4.5.7)

Hence, it suffices to prove that for every l ∈ Z one has∥∥∥ ∑
m∈N

Auz ,lP
(1)
−l+ vz

α
+m

P
(2)
−αl+kf

∥∥∥
p
. 2−γpk‖f‖p . (4.5.8)

For a fixed v ∈ Z, recall the definition of u
(v)
z from (4.4.6). Then the left hand side

of (4.5.8) can be bounded by∥∥∥(∑
v∈Z

∣∣∣ ∑
m∈N

A
u

(v)
z ,l

P
(1)
−l+ v

α
+mP

(2)
−αl+kf

∣∣∣p)1/p∥∥∥
p
. (4.5.9)

Taking into account (4.5.7) –(4.5.9), we see that it suffices to show that for every p > 2
there exists γp > 0 such that for every k,m ∈ N and l, v ∈ Z we have∥∥∥A

u
(v)
z ,l

P
(1)
−l+ v

α
+mP

(2)
−αl+kf(z)

∥∥∥
p
. 2−γp max{k,m} ‖f‖p . (4.5.10)

Noting that A
u

(v)
z ,l

= A
2vu

(0)
z ,v,l

we recognize this as precisely the conclusion of Lemma
4.4.1.

4.5.3 Lp estimates for p ≤ 2

In this subsection we will prove (4.5.6) for all 1 < p ≤ 2. Note that we are working here
with two extra assumptions, as compared with the previous subsection:

• First, we assume that u is Lipschitz. This is because if u is only assumed to be

measurable, then it is possible for M(α)
u,ε0 to be unbounded for each p ≤ 2. One
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may verify this by simply plugging the characteristic function of the unit ball into
the inequality.

• Second, the truncation ε ≤ ε0 will play a crucial role. That is, in effect we will
have to take into account the range restriction of lz expressed by (4.5.1).

Both of these assumptions will only be used to ensure the validity of the Lipschitz change
of variables in (4.5.31).

Let us begin with the proof. By interpolation with the case p > 2, it suffices to prove
an estimate without decay; that is, it suffices to show that∥∥∥ ∑

m>−lz+ vz
α

Auz ,lzP
(1)
m P

(2)
−αlz+kf(z)

∥∥∥
Lpz
. ‖f‖p. (4.5.11)

Again we get rid of the z-dependence of lz by inserting a sum over all possible values
of lz, similar to (4.5.7). In particular, we bound the expression inside the Lp norm on
the left hand side of (4.5.11) by7

( ∑
l : vz∈El

∣∣∣ ∑
m>−l+ vz

α

Auz ,lP
(1)
m P

(2)
−αl+kf(z)

∣∣∣2)1/2
. (4.5.12)

We write (4.5.12) as(∑
l∈Z

∣∣∣1El(vz) ∑
m>−l+ vz

α

Auz ,lP
(1)
m P

(2)
−αl+kf(z)

∣∣∣2)1/2
. (4.5.13)

To estimate (4.5.13) we will run an interpolation argument which requires one to consider
estimates of the form∥∥∥(∑

l∈Z

∣∣∣1El(vz) ∑
m>−l+ vz

α

Auz ,lP
(1)
m P

(2)
−αl+kf(z)

∣∣∣q)1/q∥∥∥
p
.
∥∥∥(∑

l∈Z

∣∣∣P (2)
−αl+kf

∣∣∣q)1/q∥∥∥
p
.

(4.5.14)
When q =∞, it is not difficult to see that the expression inside the Lp norm on the left
hand side of the last display is bounded by

M(α)
u,ε0(MSf)(z). (4.5.15)

Here MS denotes the strong maximal operator. Recall that we already proved the Lp

boundedness of M(α)
u,ε0 for all p > 2 in Section 4.5.2. This implies that

(4.5.14) holds for all p > 2 and q =∞. (4.5.16)

We will interpolate estimate (4.5.16) with∥∥∥1El(vz) ∑
m>−l+ vz

α

Auz ,lP
(1)
m P

(2)
−αl+kf(z)

∥∥∥
p
. ‖f‖p, (4.5.17)

7At this point we fix ε0 possibly depending on α so that this estimate becomes valid.
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for all p > 1. Suppose for the moment that (4.5.17) holds. Therefore

(4.5.14) holds for all p = q > 1. (4.5.18)

Then, interpolating (4.5.18) with (4.5.16) we obtain that

‖(4.5.13)‖p . ‖f‖p, (4.5.19)

for all p > 4
3 . Combining this with (4.5.15) implies that

(4.5.14) holds for p >
4

3
and q =∞. (4.5.20)

We interpolate (4.5.20) with (4.5.17) to see that (4.5.19) holds for all p > 8
7 . Repeating

this interpolation procedure sufficiently many times, we obtain that (4.5.13) is bounded
on Lp for all p > 1. We learned this interpolation trick from Nagel, Stein and Wainger
[NSW78].

Before we turn to the proof of (4.5.17) we need to introduce some new notation. For
n ∈ Z and z ∈ R2 we define

un(z) :=

{
uz if vz = n,
2n if vz 6= n.

Note carefully that un(z) is different from u
(n)
z . Both take values in the interval [2n, 2n+1).

However, the function un retains more of the regularity of u than z 7→ u
(n)
z . This will

be important during the proof of (4.5.17) (see (4.5.29), (4.5.38)).
Eliminating the z-dependence of vz by introducing another sum we estimate the left

hand side of (4.5.17) by∥∥∥( ∑
v∈El

∣∣∣ ∑
m>−l+ v

α

Auv(z),lP
(1)
m P

(2)
−αl+kf(z)

∣∣∣2)1/2∥∥∥
p
. (4.5.21)

By the triangle inequality this is no greater than∑
m>0

∥∥∥( ∑
v∈El

∣∣∣Auv(z),lP
(1)
m−l+ v

α
P

(2)
−αl+kf(z)

∣∣∣2)1/2∥∥∥
p
. (4.5.22)

Thus (4.5.17) will follow if we can show that there exist constants γp > 0 such that for
every k,m ∈ N, l ∈ Z we have∥∥∥( ∑

v∈El

∣∣∣Auv(z),lP
(1)
m−l+ v

α
P

(2)
−αl+kf(z)

∣∣∣2)1/2∥∥∥
p
. 2−γp max{k,m} ‖f‖p. (4.5.23)

We first prove (4.5.23) for p = 2. By Lemma 4.4.1 we obtain that for all p > 2 there
exists γp > 0 such that∥∥∥Auv(z),lP

(1)
m−l+ v

α
P

(2)
−αl+kf(z)‖p . 2−γp max{k,m} ‖f‖p. (4.5.24)
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Thus, in order to show (4.5.23) for p = 2 it will be enough to show the estimate∥∥∥Auv(z),lP
(1)
m−l+ v

α
P

(2)
−αl+kf(z)‖p . ‖f‖p. (4.5.25)

for an arbitrary p < 2. In the following we will prove something stronger, namely that∥∥∥Auv(z),lf(z)‖p . ‖f‖p (4.5.26)

holds for all p > 1 provided that v ∈ El. Before commencing the proof of (4.5.26), we
need to introduce another auxiliary function. If at a point z = (x, y) we have vz = n,
then let ũn(z) := uz. We now extend ũn to the whole space, requiring only that

ũn(z) ∈ [2n, 2n+1) and ‖ũn‖Lip ≤ 2‖u‖Lip. (4.5.27)

The advantage is that, unlike un, the function ũn is Lipschitz continuous with controlled
Lipschitz norm. This will later be of key importance in ensuring the validity of the
Lipschitz change of variables (4.5.31). Most importantly, the way that ũn and un are
designed is such that they stay very “close” to each other, in the sense that if we define
the following maximal operator:

Mdyadf(z) := sup
j∈Z

sup
ε>0

1

2ε

∫ ε

−ε
|f(x− t, y − 2j [t]α)|dt. (4.5.28)

then we have the pointwise estimate

Auv(z),lf(z) .Mdyadf(z) +Aũv(z),lf(z) (4.5.29)

for all v, l ∈ Z, z ∈ R2. The maximal operator Mdyad is bounded in Lp for all p > 1.

Lemma 4.5.1. For each p > 1, we have

‖Mdyadf‖p . ‖f‖p. (4.5.30)

The implicit constant depends only on p.

We postpone the proof of this fact until the end of this subsection and turn our
attention toward the second term in (4.5.29). By Minkowski’s integral inequality, the
Lp norm of Aũv(z),lf(z) is at most∫

R

(∫
R2

(f(x− t, y − ũv(z)[t]α)ψl(2
v
α rzt))

pdz

)1/p dt

|t|
.

where rz := (2−vũn(z))β ≈ 1. To bound this term, we apply the change of variables{
x1 := x− t
y1 := y − ũv(x, y) [t]α

. (4.5.31)

This is the only point at which we use the Lipschitz regularity of u and it is also where
we need to exploit the range restriction on l, i.e. that 2l ≤ cαε02

v
α . Indeed, computing
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the determinant of the corresponding Jacobian J , we have

det J =

∣∣∣∣∂(x1, y1)

∂(x, y)

∣∣∣∣ =

∣∣∣∣ 1 0

−∂ũv
∂x [t]α 1− ∂ũv

∂y [t]α

∣∣∣∣ = 1− ∂ũv
∂y

[t]α . (4.5.32)

Observe that t in (4.5.31) obeys

|[t]α| ≈ 2l−
v
α ≤ cαε0

and hence

|det J | =
∣∣∣1− ∂ũn

∂y
[t]α
∣∣∣ ≥ 1− c̃α‖ũn‖Lipε0 ≥

1

2
, (4.5.33)

where we have chosen ε0 to be smaller than (2c̃α‖u‖Lip)−1. Here c̃α is a constant depend-
ing only on α. This shows that the change of variables (4.5.31) is valid and therefore

‖Aũv(z),lf‖p . ‖f‖p (4.5.34)

holds for all p > 1. Hence we can infer that also (4.5.26) holds. This concludes the proof
of (4.5.23) in the case p = 2.

It remains to prove (4.5.23) for the remaining values of p. By interpolation with
(4.5.23) at p = 2, it suffices to prove that we have the estimate without decay,∥∥∥( ∑

v∈El

∣∣∣Auv(z),lP
(1)
m−l+ v

α
P

(2)
−αl+kf(z)

∣∣∣2)1/2∥∥∥
p
. ‖P (2)

−αl+kf‖p ∼
∥∥∥(∑

v∈Z

∣∣∣P (1)
−l+m+ v

α
P

(2)
−αl+kf

∣∣∣2)1/2∥∥∥
p

(4.5.35)
for all p > 1. We will again use the interpolation trick from Nagel, Stein and Wainger
[NSW78]. Thus we consider the more general estimate∥∥∥( ∑

v∈El

∣∣∣Auv(z),lP
(1)
m−l+ v

α
P

(2)
−αl+kf(z)

∣∣∣q)1/q∥∥∥
p
.
∥∥∥(∑

v∈Z

∣∣∣P (1)
−l+m+ v

α
P

(2)
−αl+kf

∣∣∣q)1/q∥∥∥
p

(4.5.36)
for 1 < p <∞ and 1 < q ≤ ∞.

Recall that in Section 4.5.2 we proved that

‖M(α)
u,ε0f‖p . ‖f‖p for all p > 2. (4.5.37)

Moreover, we have the pointwise bound

|Auv(z),lf(z)| .Mdyadf(z) +M(α)
u,ε0f(z) for all v, l ∈ Z. (4.5.38)

Note that this pointwise estimate does not hold if uv is replaced by ũv, because we
do not know how ũv behaves outside of the region where it coincides with the original
Lipschitz function u.

From (4.5.37), (4.5.38) and Lemma 4.5.1 we see that (4.5.36) holds for q = ∞ and
p > 2. Moreover, by (4.5.26) we know that (4.5.36) holds for all q = p > 1. By
interpolation we obtain (4.5.36) for q = 2 and p > 4/3. This in turn implies that

‖M(α)
u,ε0f‖p . ‖f‖p, (4.5.39)
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for all p > 4/3. Iterating this process sufficiently many times we prove (4.5.35) for
every p > 1. This finishes the proof of (4.5.23) and thereby also concludes the proof of
Theorem 4.1.1.

We close this subsection with several remarks regarding the last part of the proof:

1. In the proof of (4.5.26), we did not need the full strength of Lemma 4.5.1. For
that purpose it would have been sufficient to take a fixed j in the definition of
Mdyad instead of taking the supremum over j ∈ Z. The full strength of Lemma
4.5.1 is only needed during the interpolation procedure that is used for proving
(4.5.23) for p < 2.

2. One might wonder why we did not use the auxiliary function ũv right away, rather
than first introducing the auxiliary function uv. Again, the point is that this would
cause the interpolation argument for p < 2 to fail, because the pointwise estimate
(4.5.38) would no longer be available.

4.5.4 Proof of Lemma 4.5.1

Before we start the proof of this lemma, we emphasize that this lemma was first estab-
lished by Hong, Kim and Yang [HKY09]. Indeed, their results have a much wider scope,
in the sense that they considered general polynomials in all dimensions. Due to such
generality, their proof is significantly more intricate. For the sake of completeness, we
provide here the proof of Lemma 4.5.1.

We will present the argument for α = 2 and [t]2 = t2; the general case follows mutatis
mutandis.

For k, j ∈ Z we set

M j
kf(x, y) :=

∣∣∣ 1

2k

∫ 2k+1

2k
f(x− t, y − 2−jt2)dt

∣∣∣. (4.5.40)

Fix j ∈ Z consider the maximal operator along the parabola (t, 2−jt2), which is given
by

M jf(x, y) := sup
k∈Z

M j
kf(x, y). (4.5.41)

Hence
Mdyadf(x, y) = sup

j
M jf(x, y) = sup

k,j
M j
kf(x, y). (4.5.42)

A key idea to prove the L2 bounds for Mdyad is to compare its components M j
k with

some suitable smoother versions M̃ j
k and prove bounds for the corresponding square

function (∑
j∈Z

∑
k∈Z
|M j

k − M̃
j
k |

2
)1/2

. (4.5.43)

As a first attempt for finding a good candidate for M̃ j
k one may consider the linearized

model

M̄ j
kf(x, y) :=

1

2k · 3 · 22k

∫ 2k+1

2k

∫ 22k+2

22k

f(x− t, y − 2−jτ)dtdτ. (4.5.44)
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It turns out that while the operator
(∑

k∈Z |M
j
k−M̄

j
k |

2
)1/2

is indeed bounded on L2, one
does not have a good control over the double indexed sum in (4.5.43). For this reason,
one needs to choose a variant that is closer in spirit to (4.5.40), which is simultaneously
smoother and preserves the quadratic nature of the initial operator:

M̃ j
kf(x, y) :=

1

2k · 2k

∫ 2k+1

2k

∫ 2k+1

2k
f(x− t, y − 2−jτ2)dtdτ. (4.5.45)

It is not difficult to see that we have the pointwise bound

M̃ j
kf(x, y) .MSf(x, y) , (4.5.46)

and thus, in order to prove the Lp bound of Mdyad, it suffices to prove the Lp bound
for (∑

j∈Z

∑
k∈Z
|M j

k − M̃
j
k |

2
)1/2

. (4.5.47)

As opposed to the general Lp case, the proof for the L2 boundedness of (4.5.47) is
significantly simpler and thus we choose to present it first.

4.5.4.1 L2 boundedness

In order to prove the L2 bounds we rely on Plancherel’s theorem. Naturally, we start
by analyzing the multipliers for the corresponding operators M j

k and M̃ j
k .

The multiplier of M j
k is given by

mj
k(ξ, η) :=

∫ 2

1
ei2

ktξ+i22k−jt2ηdt , (4.5.48)

while the multiplier of the operator (4.5.45) is given by

m̃j
k(ξ, η) :=

∫ 2

1

∫ 2

1
ei2

ktξ+i22k−jτ2ηdtdτ . (4.5.49)

By Plancherel’s theorem, it suffices to prove that∑
j∈Z,k∈Z

∣∣∣mj
k(ξ, η)− m̃j

k(ξ, η)
∣∣∣2 ≤ C, (4.5.50)

for all (ξ, η) ∈ R2 and some universal constant C > 0. This in turn follows from∑
j∈Z,k∈Z

∣∣∣mj
k(ξ, η)− m̃j

k(ξ, η)
∣∣∣ . 1, for all ξ ∼ 1 and η ∼ 1. (4.5.51)

• Case I: k + 10 ≥ j ≥ 0. Applying van der Corput’s lemma, we have∣∣∣mj
k(ξ, η)− m̃j

k(ξ, η)
∣∣∣ . 2−(k− j

2
). (4.5.52)

The last display is easily seen to be summable within the range k ≥ j ≥ 0.
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• Case II: 4k ≥ j > k + 10 ≥ 0 or k ≥ 0, j ≤ 0 or j ≤ 4k ≤ 0. For simplicity, we
only detail the case 4k ≥ j > k ≥ 0. Under this assumption, the phase functions
in (4.5.49) and (4.5.48) do not admit any critical point. Thus,∣∣∣mj

k(ξ, η)− m̃j
k(ξ, η)

∣∣∣ . 2−k. (4.5.53)

By summing over 10 + k < j ≤ 4k, we obtain the upper bound 3k · 2−k, which is
summable in k ∈ N.

• Case III: j ≥ 4k ≥ 0 or k ≤ 0, j ≥ 0 or k ≤ j ≤ 0. Again we only detail one
case, that of j ≥ 4k ≥ 0. By definition, we have

mj
k(ξ, η)− m̃j

k(ξ, η) =

∫ 2

1
ei2

ktξ+i22k−jt2ηdt−
∫ 2

1

∫ 2

1
ei2

ktξ+i22k−jτ2ηdtdτ

=

∫ 2

1
ei2

ktξ
(
ei2

2k−jt2η − 1
)
dt−

∫ 2

1

∫ 2

1
ei2

ktξ
(
ei2

2k−jτ2η − 1
)
dtdτ.

(4.5.54)

By the fundamental theorem of calculus, the last display can be bounded by 22k−j ,
which is summable in j ≥ 4k ≥ 0.

Here we mention that the term M̄ j
kf from (4.5.44) would also work in this case.

• Case IV: 4k ≤ j ≤ k ≤ 0. In this case we will see the main difference between
M̄ j
k and M̃ j

k . By definition,

mj
k(ξ, η)− m̃j

k(ξ, η) =

∫ 2

1
ei2

ktξ+i22k−jt2ηdt−
∫ 2

1

∫ 2

1
ei2

ktξ+i22k−jτ2ηdtdτ

=

∫ 2

1

(
ei2

kτ − 1
)
ei2

2k−jτ2
dτ −

∫ 2

1

∫ 2

1

(
ei2

kt − 1
)
ei2

2k−jτ2
dtdτ.

(4.5.55)

By the fundamental theorem of calculus, we bound the last display by 2k. Summing
over 4k ≤ j ≤ k, we obtain |k| · 2k, which is summable for k ≤ 0.

This finishes the proof of the L2 boundedness of our operator defined in (4.5.42).

4.5.4.2 Lp boundedness

In what follows we will make use of some ideas from Nagel, Stein and Wainger [NSW78]
and Carlsson, Christ et al. [CCC+86]. We denote

M j
kf := µjk ∗ f, with µ̂jk(ξ, η) := mj

k(ξ, η). (4.5.56)

A key insight in [CCC+86], is to compare µjk with σjk, where

σjk := µjk ∗ [(φjk − δ)⊗ (φ̃jk − δ)]. (4.5.57)
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Here φ and φ̃ are two non-negative smooth functions supported on [−1, 1] having mean
one, while

φjk(t) := 2−kφ(2−kt) , φ̃jk(t) := 2−2k−2+jφ̃(2−2k−2+jt) , (4.5.58)

and δ is the Dirac point mass at the origin. The meaning of the tensor product in
(4.5.57) is that its first component acts on the first variable while its second component
acts on the second variable.

The difference µjk −σ
j
k can be bounded by the strong maximal operator, by noticing

that the corresponding multiplier has fast decay at infinity. In particular,

sup
k,j
|(µjk − σ

j
k) ∗ f | .MSf. (4.5.59)

Thus, it only remains to bound supk,j |σ
j
k ∗ f |. For this, we will perform a conical

Littlewood-Paley decomposition for the function f :

PCone
k f(x, y) :=

∫
R
f̂(ξ, η)ψk

( ξ
η

)
eixξ+iyηdξdη, (4.5.60)

and write
sup
k,j
|σjk ∗ f | = sup

k,j

∣∣∣σjk ∗ (∑
l∈Z

PCone
k−j+lf

)∣∣∣ (4.5.61)

Remark 4.5.1. The case l = 0 corresponds to the case where the phase function of

µ̂jk = mj
k has a critical point.

To bound the term (4.5.61) on Lp, by the triangle inequality, it suffices to prove that

‖ sup
k,j
|σjk ∗ (PCone

k−j+lf)|‖p . 2−γp|l|‖f‖p, (4.5.62)

for some γp > 0. This decay in l comes from the fact that away from the case l = 0 one

never sees the critical point of the phase function of µ̂jk.
In the following, we only focus on the case l = 0. The case of general l ∈ Z follows

a similar approach, with the extra twist of involving the non-stationary phase method
(integration by parts). We refer to Carlsson, Christ et al. [CCC+86] for details.

Roughly speaking, estimate (4.5.62) follows from interpolating the L2 bound of
Mdyad with some simple endpoint bound. This interpolation is again in the spirit
of Nagel, Stein and Wainger [NSW78]. To enable this, we need to rewrite (4.5.62) in a
slightly different way:

sup
j,k
|σjk ∗ P

Cone
k−j f | = sup

j,k
|σk−jk ∗ PCone

j f | =: sup
j,k
|σ̃jk ∗ P

Cone
j f |, (4.5.63)

where
σ̃jk := σk−jk . (4.5.64)

We bound (4.5.63) by the square function:(∑
j

sup
k
|σ̃jk ∗ (PCone

j f)|2
)1/2

. (4.5.65)
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To prove the Lp boundedness of the last expression, we first place it in a more general
framework by considering inequalities of the form∥∥∥(∑

j

sup
k
|σ̃jk ∗ (PCone

j f)|q1
)1/q1

∥∥∥
q2
. ‖(

∑
j

|PCone
j f |q1)1/q1‖q2 . (4.5.66)

For the case q1 =∞ and q2 = 2, by going back to σ = µ−(µ−σ), it is not difficult to see
that the left hand side of the last expression can be bounded by ‖Mdyadf‖2 + ‖MSf‖2,
which, by the L2 bound in the previous part, can be further bounded by ‖f‖2.

Hence, it remains to prove that for each fixed j and each q1 > 1, one has

‖ sup
k
|σ̃jk ∗ (PCone

j f)||‖q1 . ‖PCone
j f‖q1 . (4.5.67)

That (4.5.65) is bounded on Lp for all p > 1 follows from an iterative interpolation
argument in the spirit of [NSW78].

Now we prove (4.5.67).
We bound its left hand side by a square function, and prove that∥∥∥(∑

k

|σ̃jk ∗ (PCone
j f)|2

)1/2
|
∥∥∥
q1
. ‖PCone

j f‖q1 . (4.5.68)

By a simple anisotropic scaling argument, it suffices to consider the case j = 0.
Notice that working with the projection operator PCone

0 f means that we are within
a frequency cone having {(ξ, η) : ξ ∼ η}. We continue by performing a finer frequency
decomposition, as follows: denote by PCone

0,k the frequency projection into the region

ξ ∼ 2k, η ∼ 2k; then (4.5.68) is equivalent to∥∥∥(∑
k

|σ̃0
k ∗ (

∑
l∈Z

PCone
0,k+lf)|2

)1/2
|
∥∥∥
q1
. ‖PCone

0 f‖q1 . (4.5.69)

By the triangle inequality, it suffices to prove for some λq1 > 0 that∥∥∥(∑
k

|σ̃0
k ∗ (PCone

0,k+lf)|2
)1/2
|
∥∥∥
q1
. 2−λq1 |l|‖PCone

0 f‖q1 . (4.5.70)

The above estimate for q1 = 2 follows simply from Plancherel’s theorem and the mean
zero property of σ̃0

k. Thus, by interpolation and standard Littlewood-Paley theory, it
suffices to prove that∥∥∥(∑

k

|σ̃0
k ∗ (PCone

0,k+lf)|2
)1/2
|
∥∥∥
q1
.
∥∥∥(∑

k

|PCone
0,k+lf |2

)1/2∥∥∥
q1
. (4.5.71)

As before, we first consider this estimate in a more general framework of inequalities of
the form ∥∥∥(∑

k

|σ̃0
k ∗ (PCone

0,k+lf)|p1

)1/p1

|
∥∥∥
q1
.
∥∥∥(∑

k

|PCone
0,k+lf |p1

)1/p1
∥∥∥
q1
. (4.5.72)
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The case p1 =∞ and q1 = 2 follows from the L2 boundedness of Mdyad while the case
p1 = q1 > 1 is trivial. Applying the usual interpolation trick we obtain that (4.5.71)
holds for all q1 > 1. �

4.6 A local smoothing estimate

Let ψ0 : R→ R be a non-negative smooth function supported on [1/2, 3] with ψ0(t) = 1
for each t ∈ [1, 2]. Moreover, let ϕ0 : R → R be a non-negative smooth function
supported on [−3, 3] with ϕ0(t) = 1 for each t ∈ [−1, 1]. For a given positive real
number u, let Au denote the averaging operator

Auf(x, y) :=

∫
R
f(x− ut, y − utα)ψ0(t)dt. (4.6.1)

Here α is a positive real number with α 6= 1. For k ∈ Z, let Pk denote a Littlewood-Paley
projection operator on the plane, say

Pkf(x, y) :=

∫
R2

eixξ+iyηf̂(ξ, η)ψ0

( 1

2k

(
ξ2 + η2

) 1
2
)
dξdη. (4.6.2)

Then we have

Theorem 4.6.1. Let k ∈ N be a positive integer. For each positive α 6= 1, and each
p > 2, there exists γp,α > 0 such that

‖ sup
u∈[1,2]

|AuPkf |‖p . 2−γp,α·k‖f‖p. (4.6.3)

Here the implicit constant depends only on p and α.

In this section, we will prove Theorem 4.6.1 by reducing it to a decoupling inequality
for cones (see Proposition 4.6.3) due to Bourgain [Bou13] and Bourgain and Demeter
[BD15]. This follows the approach of Wolff [Wol00]. We will then provide a proof of the
relevant decoupling inequality in the next section.

4.6.1 Several reductions

First of all, by applying the change of variable tα → s, we see that it suffices to consider
the case α > 1. Second, to simplify our presentation, we will only work on the case
α = 2. The other values of α > 1 can be handled in a similar way.

We take the Fourier transform of Auf :

Âuf(ξ, η) = f̂(ξ, η)

∫
R
eiutξ+iut

αηψ0(t)dt. (4.6.4)

By a stationary phase computation (for instance see page 360 in Stein [Ste93] or Lemma
1.2 in Iosevich [Ios94]),∫

R
eitξ+it

2ηψ0(t)dt = a(ξ, η)e
i ξ

2

η + a∞(ξ, η). (4.6.5)
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Here a∞(ξ, η) is a smooth symbol, and a(ξ, η) is a symbol belonging to the class S−
1
2

and is supported on {
(ξ, η) : −10 ≤ ξ

η
≤ − 1

10

}
. (4.6.6)

The contribution from the smooth symbol a∞(ξ, η) can be handled via a standard ar-
gument, see for instance Stein [Ste76]. We omit the details.

Now we turn to the former term on the right hand side of (4.6.5). Define

Tf(u, x, y) :=

∫
R2

f̂(ξ, η)a(uξ, uη)e
ixξ+iyη+iu ξ

2

η dξdη, (4.6.7)

and
Tkf(u, x, y) := ψ0(u) · T ◦ Pkf(u, x, y). (4.6.8)

Moreover, we define a variant of Tk given by

Skf(u, x, y) := ψ0(u)·
∫
R2

P̂kf(ξ, η)ϕ0

(
− ξ

100η

)
(1+ξ2+η2)−

1
4 e
ixξ+iyη+iu ξ

2

η dξdη. (4.6.9)

We will prove

Theorem 4.6.2. Let k ∈ N be a positive integer. For each p > 2, there exists γp > 0
such that

‖Skf‖Lp(R3) . 2
−( 1

p
+γp)k‖Pkf‖p. (4.6.10)

We will apply Theorem 4.6.2 to prove

‖∆
s
2
uTkf‖Lp(R3) . 2

−( 1
p

+γp)k+sk‖f‖p. (4.6.11)

Here

∆
s
2
uF (u, x, y) :=

∫
R
eiuτ (1 + |τ |2)

s
2 F̃ (τ, x, y)dτ, (4.6.12)

and F̃ denotes the partial Fourier transform taken in the u variable only. The desired
estimate (4.6.3) follows from (4.6.11) via the fractional L∞ Sobolev embedding inequality

‖h‖L∞u (R) . ‖∆
s
2
uh‖Lpu(R),

whenever 2 ≤ p <∞ and s > 1
p .

Now we come to the proof of (4.6.11). By taking the partial Fourier transform of
Skf in the u variable, we see that

(Skf)∼(τ, x, y) =

∫
R2

P̂kf(ξ, η)ϕ0

(
− ξ

100η

)
(1 + ξ2 + η2)−

1
4 ψ̌0

(
τ − ξ2

η

)
eixξ+iyηdξdη

is supported in the region {τ ∈ R : τ ∼ 2k}. Hence by Young’s inequality and Theorem
4.6.2, we obtain

‖∆
s
2
uSkf‖Lp(R3) . 2sk‖Skf‖Lp(R3) . 2

−( 1
p

+γp)k+sk‖f‖p. (4.6.13)

The estimate (4.6.11) follows from (4.6.13) via the standard Hörmander-Mikhlin multi-
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plier theorem, by realizing that∣∣∣∂αξ,η a(uξ, uη)

(1 + ξ2 + η2)−
1
4

∣∣∣ .α (1 + |ξ|+ |η|)−|α| for all multi-indices α ∈ N2
0,

uniformly in u ∈ [1, 2].

4.6.2 Proof of Theorem 4.6.2 via a decoupling inequality

Define a rescaled version of the operator Sk from (4.6.9) by

Ekf(u, x, y) := ψk(u) ·
∫
R2

P̂0f(ξ, η)ϕ0

(
− ξ

100η

)
(1 + ξ2 + η2)−

1
4 e
ixξ+iyη+iu ξ

2

η dξdη,

(4.6.14)
where ψk(u) := ψ0( u

2k
). By applying a change of variables

ξ → 2kξ, η → 2kη (4.6.15)

to Skf and the desired estimate (4.6.10), we see that (4.6.10) is equivalent to

‖Ekf‖Lp(R3) . 2
k
2
−γp·k‖f‖p, for some γp > 0. (4.6.16)

We apply a conical frequency decomposition for P0f . Let

Σk :=
{ j

2
k
2

: j ∈ Z,−100 · 2
k
2 ≤ j ≤ 100 · 2

k
2

}
(4.6.17)

and decompose P0f by writing

P̂0f =
∑
θ∈Σk

f̂θ :=
∑
θ∈Σk

ψ0

(
2
k
2

( ξ
η
− θ
))
· P̂0f. (4.6.18)

The estimate (4.6.10) in Theorem 4.6.2 follows immediately from the following two
results.

Proposition 4.6.3 (Bourgain [Bou13], Bourgain and Demeter [BD15]). For each 2 ≤
p ≤ 4 and each ε > 0, we have

‖Ekf‖Lp(R3) . 2
k
2

( 1
2
− 1
p

)+ε
(
∑
θ∈Σk

‖Ekfθ‖pLp(R3)
)

1
p . (4.6.19)

Here the implicit constant depends only on p, α and ε.

Lemma 4.6.4. For each p ≥ 2, we have( ∑
θ∈Σk

‖Ekfθ‖pLp(R3)

) 1
p
. 2

k
p ‖f‖L2(R2). (4.6.20)

The proof of Proposition 4.6.3 can be found in Bourgain [Bou13] and the last section
of Bourgain and Demeter [BD15]. Note that here we only rely on a weak form of the
decoupling inequality; that is, the exponent p is in the restricted range 2 ≤ p ≤ 4, but
not 4 < p ≤ 6. The latter is part of the main content in Bourgain and Demeter [BD15].
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As the proof of Proposition 4.6.3 is short and can be made (essentially) self-contained,
we will provide it in the next section.

The proof of Lemma 4.6.4 is standard. Here we sketch the proof. By interpolation,
it suffices to prove (4.6.20) for p = 2 and p = ∞. At p = 2, the proof is via a simple
almost orthogonality argument. For each fixed u ∈ [0, 2k], we have( ∑

θ∈Σk

‖Ekfθ(u, ·)‖2L2
x,y(R2)

) 1
2
.
( ∑
θ∈Σk

‖fθ‖2L2(R2)

) 1
2
. ‖f‖L2(R2). (4.6.21)

In the end, we integrate in u and collect the factor 2
k
2 .

At p =∞, by Young’s inequality, it suffices to show that∥∥∥∫
R2

ϕ0

(
− ξ

100η

)
ψ0(η)ψ0

(
2
k
2

( ξ
η
− θ
))
e
ixξ+iyη+iu ξ

2

η dξdη
∥∥∥
L1
x,y(R2)

. 1, (4.6.22)

uniformly in θ and u ∈ [0, 2k]. Without loss of generality, we take θ = 0. By the change

of variables 2
k
2 ξ → ξ, the last estimate is equivalent to∥∥∥∫

R2

ψ0(η)ψ0

( ξ
η

)
e
ixξ+iyη+iu ξ

2

η dξdη
∥∥∥
L1
x,y(R2)

. 1, (4.6.23)

uniformly in u ∈ [0, 1]. However, by the non-stationary phase method, when |x|+|y| � 1,
we always have ∣∣∣ ∫

R2

ψ0(η)ψ0

( ξ
η

)
e
ixξ+iyη+iu ξ

2

η dξdη
∣∣∣ . 1

|x|10 + |y|10
.

This further implies the desired estimate (4.6.23).

4.7 The proof of a decoupling inequality

For a dyadic interval ∆ ⊂ [0, 1], define the extension operator associated with ∆ and
the parabola (ξ, ξ2) by

E∆g(x) :=

∫
∆
g(ξ)eix1ξ+ix2ξ2

dξ. (4.7.1)

In this section we will prove

Theorem 4.7.1 (Bourgain [Bou13]). For each 2 ≤ p ≤ 4 and ε > 0, we have

‖E[0,1]g‖Lp(R2) . δ
−( 1

2
− 1
p

+ε)
( ∑

∆⊂[0,1];l(∆)=δ

‖E∆g‖pLp(R2)

) 1
p
. (4.7.2)

Proposition 4.6.3 follows from Theorem 4.7.1 via Fubini’s theorem and an iteration
argument. This iteration first appeared in the work of Pramanik and Seeger [PS07]. We
refer to Proposition 8.1 in Bourgain and Demeter [BD15] for the details.
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In the remaining part, we will provide a proof of Theorem 4.7.1. First of all, by
a simple localization argument, and by Hölder’s inequality, the estimate (4.7.2) follows
from

‖E[0,1]g‖Lp(wB) . δ
−ε
( ∑

∆⊂[0,1];l(∆)=δ

‖E∆g‖2Lp(wB)

) 1
2
, (4.7.3)

for each ball B of radius δ−2. Here wB is a weight associated with B given by

wB(x) :=
(

1 +
‖x− cB‖
δ−2

)−N
,

for a large integer N which will not be specified. To prove (4.7.3) for all 2 ≤ p ≤ 4, by
interpolation with the trivial bound at p = 2, it suffices to look at the case p = 4. We
refer to Garrigós and Seeger [GS10] for the details of such an interpolation argument.

The proof of (4.7.3) for p = 4 will be accomplished in three steps, which correspond
to the following three subsections.

4.7.1 A bilinear restriction estimate for the parabola

The following proposition follows simply via Plancherel’s theorem.

Proposition 4.7.2. Let R1, R2 ⊂ [0, 1] be two dyadic intervals with dist(R1, R2) ≥ ν
for some ν > 0. We have the bilinear restriction estimate∥∥∥|ER1g1ER2g2|

1
2

∥∥∥
L4(R2)

.ν ‖g1‖
1
2
2 ‖g2‖

1
2
2 . (4.7.4)

The details are left to the interested reader.

4.7.2 A bilinear decoupling inequality

Recall that R1 and R2 are two dyadic intervals whose distance is not smaller than ν.

Proposition 4.7.3. We have a bilinear version of the desired decoupling inequality
(4.7.3):

∥∥∥(ER1g1ER2g2)
1
2

∥∥∥
L4(wB)

.ν
( 2∏
j=1

∑
∆⊂Rj :l(∆)=δ

‖E∆gj‖2L4(wB)

) 1
4
, (4.7.5)

for each ball B of radius δ−2.

We start by introducing some notation. Let τj be the δ2-neighborhood of the
parabola that lies on top of Rj ; that is,

τj := {(ξ, ξ2 + η) : ξ ∈ Rj , |η| ≤ δ2}.

We let Pj be a finitely overlapping cover of τj with curved regions θ of the form

θ = {(ξ, ξ2 + η) : ξ ∈ [c, c+ δ], |η| ≤ δ2} for some constant c.

For a function f supported on τj , we let fθ denote the restriction of f to θ.
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Let f1 and f2 be two functions supported on τ1 and τ2, respectively. The bilinear
estimate (4.7.4) implies

‖(f̂1f̂2)
1
2 ‖L4(R2) . δ‖f1‖

1
2

L2(R2)
‖f2‖

1
2

L2(R2)
. (4.7.6)

This can be proven by applying (4.7.4) to each fiber {(ξ, ξ2 + ηj)} for fixed ηj (j = 1, 2),
and then applying Minkowski’s inequality to the variables ηj . Now we apply the L2

orthogonality and a simple localization argument to further obtain

‖(f̂1f̂2)
1
2 ‖L4(wB) . δ

( 2∏
j=1

∑
θ∈Pj

‖f̂j,θ‖2L2(wB)

) 1
4
. (4.7.7)

In the end, we apply Hölder’s inequality to the right hand side of the last expression

‖(f̂1f̂2)
1
2 ‖L4(wB) .

( 2∏
j=1

∑
θ∈Pj

‖f̂j,θ‖2L4(wB)

) 1
4
. (4.7.8)

This implies the desired estimate in Proposition 4.7.3 by taking fj = ERjgj .

4.7.3 Bilinear decoupling implies linear decoupling

We come to the final step of proving the desired decoupling inequality (4.7.3). The idea
is that the bilinear decoupling inequality in Proposition 4.7.3 will imply (4.7.3). This is
done via a simple version of the Bourgain-Guth argument from [BG11].

We proceed with the details. Fix a large constant K � δ−1. We split the interval
[0, 1] into smaller intervals of length K−1. We use α to denote such an interval. Then
on each ball BK of radius K, the function |Eαg| behaves like a constant. To sketch the
argument we will simply write |Eαg|(BK) to denote the value of that constant.

For each given BK , we let α∗ denote the interval that maximizes |Eα∗g|(BK). We
look at the collection of α, with dist(α∗, α) ≥ 1

K , and

|Eαg|(BK) ≥ 1

10K
|Eα∗g(Bk)|.

There are two cases. The first case is that this collection is empty. Then

|E[0,1]g|(x) . |Eα∗g|(Bk), for each x ∈ Bk. (4.7.9)

The second case is that this collection contains at least one element. Call it α∗∗. Then

|E[0,1]g|(BK) . K3|Eα∗g|
1
2 (BK)|Eα∗∗g|

1
2 (BK). (4.7.10)
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Putting these two estimates together, we obtain

‖E[0,1]g‖L4(wBK ) ≤ C
( ∑
α:l(α)= 1

K

‖Eαg‖2L4(wBK )

) 1
2

+ C ·K3
( ∑
dist(α1,α2)≥ 1

K

∥∥∥|Eα1g|
1
2 |Eα2g|

1
2

∥∥∥2

L4(wBK )

) 1
2
,

(4.7.11)

for a universal constant C. We raise both sides of this estimate to the fourth power, and
sum over all balls BK inside B, a ball of radius δ−2, to obtain that (4.7.11) indeed holds
true with BK being replaced by B. Now we apply the bilinear decoupling inequality
that has been proven in the previous subsection to obtain

‖E[0,1]g‖L4(wB) ≤ C
( ∑
α:l(α)= 1

K

‖Eαg‖2L4(wB)

) 1
2

+ CK ·K10
( ∑

∆:l(∆)=δ

‖E∆g‖2L4(wB)

) 1
2
,

(4.7.12)

for a possibly larger C and a constant CK depending on K. In the end, by invoking a
parabolic rescaling, we iterate the last estimate for logK(1

δ ) many times, and obtain

‖E[0,1]g‖Lp(wB) ≤ C logK( 1
δ

) · CK ·K10
( ∑

∆:l(∆)=δ

‖E∆g‖2Lp(wB)

) 1
2
. (4.7.13)

We just need to observe that by choosing K large enough, compared with C, we can
always obtain the desired estimate (4.7.3).
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