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Abstract

The omnipresence of sexual reproduction in a highly competitive world is a fascinating
phenomenon. Its evolution and maintenance is up to now not completely understood since
it is known that sexual reproduction require from organisms a lot more costs and energy
than asexual reproduction would do.

In this thesis we show mathematically that sexual reproduction provides populations an
evolutionary advantage because they can better adapt to a changing ecological system. To
this end, we study a stochastic individual based model which describes the genetic evolu-
tion of a diploid hermaphroditic population reproducing sexually according to Mendelian
laws. This single locus model describes a population of interacting individuals that incor-
porate the canonical genetic mechanisms of birth, death, mutation, and competition.

In the first part of this thesis the genetic evolution of the population with two alleles is
studied under the assumption that a dominant allele is also the fittest one. It is shown that
after the invasion of a dominant allele in a resident population of homozygous recessive
genotypes, the recessive allele survives in heterozygous individuals for a time of order at
least K1/2−α, where K is the carrying capacity and α > 0. This time of survival of the
unfit allele is much longer than it would be in a population reproducing asexually. There-
fore, a suitable rescaling of the mutation rate made the appearance of a new advantageous
mutation possible before the extinction of the recessive allele.

In the second part of this thesis, we study the fate of the recessive allele after the occur-
rence of a further mutation to a more dominant allele. It is proven that resulting changes
in the composition of the population indeed opens the possibility that individuals of ho-
mozygous recessive genotype can reinvade and that coexistence of different genotypes is
possible. This leads to genetic variability and can be seen as a statement of genetic ro-
bustness exhibited by diploid populations performing sexual reproduction as well as an
indicator for the overwhelming biodiversity in nature.
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I. Introduction

In nature, sexual reproduction is the favoured kind of propagation in higher plants and ani-
mals. Most organisms belong to diploid populations which reproduce sexually. However, a
comparison of the reproduction types shows that asexual reproduction is more effective for
the survival of a population and less costly as the energy-sapping and inefficient partner-
dependent sexual reproduction. Up to now, many more or less convincing hypotheses exist
why sexual reproduction nevertheless evolved and is maintained in nature and evolutionary
advantageous. Yet for a universally valid explanation which is able to outweigh the many
costs of sex, biologists are still searching.

In this context, the mathematical endeavour is to construct models which mirror the real
life processes or the actual facts in demand as well as possible to get some interesting
conclusions on how evolution acts. The unpredictability and complexity of the biological
world turns this into a big challenge. The task is to reduce the high amount of natural
acting mechanisms and phenomena to the essential ones such that it is possible to build
up a mathematical tractable model which gives relevant and realistic implications for the
biological questions in demand. For this new methods had to and have to be developed.
Such models of populations give insight into the evolutionary population process and an
understanding of the acting mechanisms and give biologists a tool to find and to prove new
hypothesis.

In this thesis, we use mathematical modelling to show that sexual reproduction enables
competitive populations to react and adapt better to changes in the ecological system.
To be more precisely, we consider a stochastic population model consisting of diploid,
hermaphroditic individuals which reproduce sexually according to Mendelian laws and
prove that a subpopulation, carrying a recessive allele, which is forced to extinction by the
whole population can resurrect when the genetic composition of the population changes.

The study of Mendelian diploid models started at the beginning of 1900 by Yule, Fisher,
Wright and Haldane, the founding fathers of population genetics. But the models in this
context typically deal with finite population sizes and models inheritance at the expense
of competitive interaction of populations among themselves and their environment. In our
approach, we take these factors into account and consider a competitive population model,
described by a stochastic system of interacting individuals, which include the genetic re-
sults of reproduction, as well as ecological dynamics. Since individuals are competing
for resources, the environment of an individual it lives in and interacts with, is defined by
the composition of the population. This kind of model belongs to the theory of adaptive
dynamics, developed in the 90’ies, which is a variant of population genetics and models
the phenotypic evolution of a population in a varying environment. It allows variable pop-
ulation sizes controlled by the competitive interaction of the population. However, most of
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I. Introduction

the results in the context of adaptive dynamics are based on haploid asexual reproducing
population since, unfortunately, especially the Mendelian reproduction and the interac-
tion of genotypically and phenotypically different individuals makes the modelling of sex-
ual reproducing populations quite complicated. Therefore, the consideration of stochastic
models on the individual level in a genetic setting just started in 2012.

In this thesis we pick up this line of research and show that in a Mendelian diploid model,
under a dominance-recessivity assumption, there can appear a hitchhiking phenomenon of
recessive alleles in heterozygous individuals which leads to their prolonged survival in the
population and, moreover, after changes in the population composition and under fairly
natural assumptions, to genetic variability as well as biodiversity.

The remainder of the introduction is organised as follows. First a simplified overview
of the genetics needed to understand the biological background is presented followed by
an introduction of the Mendelian laws. We then discuss some historical facts which lead
to the theories of population genetics and adaptive dynamics and review the already ex-
isting research of diploid models. The first section ceases with the many costs of sexual
reproduction and theories why it is maintained in nature nonetheless. The second section
concerns the mathematical modelling approaches of the evolution of sexually reproducing
populations in the context of population genetics and adaptive dynamics. In Section 3 the
stochastic individual-based Mendelian diploid model studied in Chapter II and III is intro-
duced. The contributions of this thesis, presented in detail in Chapter II and III, are shortly
summarised in the last section of the introduction.

In Chapter II we examine the genetic evolution of the three genotypes aa, aA and AA
of the Mendelian diploid model, introduced in Section 2 of this introduction, in the large
population and rare mutation limit. The main results are, that under a dominant-recessivity
assumption on the alleles, the recessive a allele can survive in the population long enough
such that under a suitable rescaling of the mutation rate a new advantageous mutation
can appear before its extinction. This chapter is published in the Journal of Mathematical
Biology [84]. The content of Chapter III is the preprint [10] available on arXiv. It builds
on Chapter II and studies the population in the large population limit, when still enough
recessive a alleles are present and a mutation to a more beneficial B allele has appeared.
Therein, a six dimensional deterministic system is analytically studied and under rather
natural assumptions, the coexistence of the two homozygous subpopulations of genotype
aa and BB is proven. Both chapters together show that sexual reproduction gives to
populations an advantage because they can better adapt to a changing ecological system.
It could be an indication for the overwhelming biodiversity in nature.

1. Biological background and motivation

The simplest reason why it is important to study sexual reproduction is certainly its over-
whelming occurrence in nature. The vast majority of organisms in nature reproduce this
way. In this section we take a closer look at this kind of reproduction from a biological
viewpoint.

2



1. Biological background and motivation

1.1. Genetic background

We start by introducing the minimum genetics that is needed to understand the basic mech-
anisms of reproduction and Mendelian inheritance. For further readings and more details
we refer to Lodish [70] and Barton et al. [4].

An organism or individual is built up by one to many cells. Each of these cells has a cell
membrane which separate it from the others and encloses the cytoplasm and other cell or-
ganelles. The genetic material, called genome, is contained in the cytoplasm and consist of
Deoxyribonucleic acid (DNA). In procaryotes (cells without nucleus) the DNA is located
free in the cytoplasm whereas most of the genome of eukaryotes (cells with nucleus) is
located in its nucleus and is organised linearly in chromosomes whose number is charac-
teristic of each specie. A particular region of the DNA is called a gene. Each chromosome
consists of many genes and the position of a gene is called a locus. For example the hu-
man genome is composed of 23 chromosomes and 20000-25000 genes (Human Genome
Project, 2001 [65]). The set of genes defines the genotype of the organisms where the vari-
ant forms of a given gene are called alleles. Different alleles result in different phenotypes
which are the expressions of the genotype. Consequently, the phenotype of an individual
is the sum of all morphological and physiological traits plus behavioural features which
are determined by the alleles (e.g. body size, hair colour, intelligence). Individuals with
a single set of chromosomes are called haploid, and with more than two copies polyploid.
In this thesis we consider sexually reproducing diploid individuals, meaning organisms
whose cells have two homologous copies of each chromosome, usually one of the mother
and one of the father. Thus, for each gene the individual can carry two variant forms. If the
alleles of the two genes at a particular locus in a diploid individual are the same it is called
homozygous, otherwise heterozygous. An allele is called recessive if it is only expressed in
the homozygotes otherwise it is called dominant. As a consequence heterozygotes which
consist of one dominant and one recessive alleles always express the dominant character
in their phenotypes. If an organism reproduces asexually, like every prokaryote, then the
offspring’s genome is an exact copy of the individual’s one unless mutations alter alleles.
This is why it is also termed clonal reproduction. In contrast, during the sexual repro-
duction the diploid organism first creates gametes (sperm or egg) by a mechanism of cell
devision, called meiosis, which are haploid cells and contain a single set of the individual
chromosomes. During fertilisation two gametes of two different individuals fuse together
to a zygote, from which the offspring develops. The zygote is diploid again and contains
one set of chromosomes of each parent.
Therefore, the genome is the base for heredity and the basic laws how genes from the
parents are transmitted to the offsprings were first studied by the Austrian monk Gregor
Mendel during seven years (1857-1863) of hybridisation experiments with peas plants.

1.2. The contribution of Mendel to evolution

Gregor Mendel published his work, Versuche über Pflanzen-Hybride [73], 1866 just seven
years after Charles Darwin’s publication of The origin of species [25] where he argued
that natural selection would be the driving force of evolution. Darwin defined natural
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I. Introduction

selection as the process of unavoidable selection favouring individuals best adapted to their
environment. His work was the starting point of a big, controversially discussion about
evolution under biologists (see [32]). In contrast, Mendel’s results found less attention
and its importance for inheritance was unregarded and forgotten [77]. Only after his death
in January 1884, Mendel’s work was rediscovered in 1900 by Hugo de Vries [26], Carl
Correns [22] and Erich von Tschermak [94]. The Mendelian laws known today were not
originally stated by Mendel but named in his honour:

1. Law of independent segregation
During meiosis, the two alleles for each gene segregate from each other and are dis-
tributed to different gametes. Therefore, the gametes only contain one of the two
alleles for each trait. At fertilisation, two gametes of two different individuals fuse
together and define the genotype of the offspring. Consequently, the offspring is
diploid again and receives a pair of alleles for each trait one from each parent (see
Figure I.1 (left)).

2. Law of independent assortment
During meiosis, the segregation of the two alleles of one allelic pair is independent
of the segregation of the two alleles of another allelic pair. (see Figure I.1 (right)).

3. Law of dominance
The phenotypic trait is always defined by the dominant allele (in Figure I.1 (left) the
allele "g" and alleles "C" and "T" (right)).

These laws are only presented as hypotheses in Mendel’s paper [73]. De Vries was the first
who mentioned the expression "Mendel’s law" and it was rigorously defined by Correns
[22] in acknowledgment of Mendel’s work. But both did not distinguish between different
laws. Morgan first explicitly talked about the law of independent segregation and the law of
independent assortment [78] and integrated it with the Boveri-Sutton chromosome theory
of 1915 in the book "The Mechanism of Mendelian Heredity" [79]. It was Sir Ronald
Aylmer Fisher, in 1930, who worked out that Darwin’s theory of natural selection does not
stand in contradiction with Mendelian inheritance and how the two theories needs to be
combined [34, 35]. He considered evolution in a mathematical framework and is one of
the founding-fathers of population genetics.

1.3. Sexual reproduction - a biological puzzle

The evolution of sexual reproduction, precisely its origin and its maintenance in a highly
competitive world, is still a major problem in biology. Sexual reproduction compared to
asexual reproduction seems to be very costly (e.g. [23, 69, 93]). For a start, there are the
cellular-mechanical costs [68] which correspond to the large amount of cellular mecha-
nisms (meiosis, fusion of gametes (syngamy) and of nuclei (karyogamy)) which sexual
reproduction requires and which take a long time and energy. Furthermore, during meio-
sis, genetic recombination can destroy advantageous allele combinations which can result
in a decrease of the individual’s fitness and selection can act again [83]. Also noteworthy
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1. Biological background and motivation

Figure I.1.: Left: Law of independent segregation (grey colour is dominant, white
colour is recessive).
Right: Law of independent assortment (grey colour and long tail are
dominant, white colour and short tail are recessive).

are the costs for searching for potential partners, and the possibility of spreading diseases
between the partners [86]. Additionally, in sexually reproducing populations there is the
famous twofold cost of sex ( [93], see Figure I.2) for producing males. To make this con-
crete, in asexually reproducing population there is only one sex, precisely each individual
owns the female function, i.e. it gives birth to offsprings which again own the female
function. By contrast, in sexually reproducing populations there are both sexes present, fe-
males and males, at the same fraction. But only females give birth to offsprings of these 50
percent are males and 50 percent are females. Therefore, asexual females invest their full
energy in producing offsprings owning the female function whereas sexual females invest
50 percent of their resources in producing males which for their part cannot give birth to
offsprings. To be more precisely, assuming two offsprings per female by reproduction, an
asexual population double the size of individuals owning the female function whereas in a
sexual population the amount of females stay constant (see Figure I.2). In this thesis, we
consider a hermaphrodite sexual population (organisms with both sexes), where each indi-
vidual can undertake the male or the female function by reproduction. Nevertheless, also
such population grow more slowly compared to asexual ones due to the needed partner for
reproduction. To be more precisely, assuming an asexual and a sexual population of the
same size and that one reproduction event results in the same amount of offsprings in both
populations. Then, the asexual one has double the amount of offsprings compared to the

5



I. Introduction

sexual one because therein each individual produces descendants whereas in the sexually
reproducing population two individuals are needed for the same amount of descendants.

Figure I.2.: Twofold cost of sex: asexual reproduction (left), sexual reproduction
(right)

Since sexual reproduction is such a costly endeavour one would suggest that it is rare
in nature. But quite to the contrary, the vast majority of eukaryotic organisms reproduce
sexually and only 0.1% reproduce exclusively asexually [99]. Consequently, there must
be advantages for sexual populations which can outweigh the costs. Many models and
theories were developed to ensure the evolution and maintenance of sexual reproduction
(e.g. [6, 13, 87]). We will summarise briefly the most popular and respected ones.

1. Fisher-Muller hypothesis [35, 80]
Sexual reproduction accelerates the process of fixation of advantageous mutations
by combining beneficial mutations which initially appeared in different individuals
into the same genome. Comparatively, in asexual populations a second beneficial
mutation will only fixate if it appears by reproduction of an individual carrying al-
ready the first beneficial mutation.

2. Muller’s ratchet [33, 81]
This hypothesis states that there is an accumulation of deleterious mutations in small
asexual populations. Ignoring backward or compensatory mutations, in each gener-
ation there is a probability that the class of individuals with the least number of
deleterious mutation will disappear due to mutation at the same time or due to the
stop of reproduction. Thus, in future generations there will be no individuals with
fewer deleterious mutations. In this way, the number of mutations in the population
increases. Comparatively, in sexual population, due to recombination, these classes
of individuals with the least number of deleterious mutations can be recreated.

3. Red-Queen hypothesis [5, 98]
This is an environmental hypothesis describing that sexual reproduction enables in-
dividuals to adapt and evolve constantly to survive in coevolved interaction with

6



2. Modelling of sexual reproduction

other organisms in a deterministically changing environment. Thereby, recombi-
nation can create genotypes which are better adapted and have a competition ad-
vance. In coevolution of established populations, this leads to sustained oscillations
between genotype frequencies. The best-known application is the host-parasite, co-
evolution, showing that sexual reproduction implies the ability for hosts to resist
parasitic infection. Parasites may thus be the driving force for the maintenance of
sexual reproduction in their host [47, 48, 53].

4. Mutational deterministic hypothesis [62, 64]
Under the assumption that each additional deleterious mutation decreases the fitness,
sexually reproducing individuals have a short-term advantage because the amount
of mutations passed to the offsprings has a big variance. Since offsprings with a
majority number of deleterious mutations have also low fitness they will die out and
with them a vast number of mutations is eliminated.

Under strict assumptions all these theories give reasons for the evolution and maintenance
of sexual reproduction but one generally valid theory is not found so far. It is reasonable
to take a pluralistic approach [50,102] to explain the omnipresence of sexual reproduction
in nature. But up to now it remains a big puzzle and further work and rigorous studies of
population models are needed.

2. Modelling of sexual reproduction

Our contribution in this direction is to show in a rigorous mathematical framework advan-
tages of sexual compared to asexual reproduction by incorporating ecological dynamics
and the random elements of evolution in a population model with Mendelian reproduction.
To be more precise, we show that in such a population, the time until a recessive allele at
one locus becomes extinct is prolonged since it survives in the fitter heterozygous individ-
uals. If the genetic composition of the population changes, the population of homozygous
individuals carrying this recessive allele can recover and can probably live in coexistence
with other genetic different subpopulations. In this way, sexually reproducing populations
can better adapt to changes in the ecological system because recessive alleles, which can
be more advantageous in the changed environment, survive in heterozygotes. Under fairly
natural assumptions, this can also lead to genetic diversity, as we will show.

2.1. The evolutionary process

To understand the evolution of a population it is necessary to take a closer look at this
process of high complexity. The main acting mechanisms driving the evolutionary process
are:

• heredity - transmits the parental characteristics (morphological and physiological
properties) to the offspring,
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• variation - changes the characteristics of an individual (e.g. due to mutations, ge-
netic recombinations),

• selection - acts onto the different reproduction and survival ability (fitness) of the
individuals, a consequence of competition between individuals.

As already said, each individual is characterised by its genotype which is expressed in
its phenotype. The different phenotypes of a population compete for resources (e.g. wa-
ter, space, food), or with other species (e.g. predator, prey, parasites). This competition
process changes the mortality and fertility of each individual and affects the selection pro-
cess acting onto the viability of the different phenotypes. Consequently, the adaptation of a
phenotype depends on its environment which in turn is influenced by the phenotypes of the
present population. Therefore, the population dynamics is in interaction with the environ-
ment and also influences the genotypes through mutations in the genome and additionally
in sexually reproducing populations through meioses and recombination. Moreover, the
environment has an effect on the translation of the genotype into the phenotype (e.g during
its lifetime). This mapping is up to now not completely understood [89].

Consequently, the variable environment of a population plays a crucial role for its evolu-
tion and it is unavoidable to include it in a mathematical population model to be as realistic
as possible. Unfortunately, the whole complexity of the evolutionary process is not math-
ematically feasible and for modelling there are some simplifications needed at the expense
of realistic factors. The rest of this section is concerned with approaches in this direction
with a focus on Mendelian diploid populations.

2.2. Population genetics

A first attempt for modelling Mendelian inheritance was done by Fisher, Haldane and
Wright who are the founding fathers of the population genetics theory developed in the
1920’s and 1930’s [24, 32]. The theory integrates Mendel’s inheritance theory into Dar-
win’s theory of natural selection for modelling evolution. Population genetics does not
focus on individuals but rather deals with the changes of allele frequencies in the whole
population over time [82]. In this approach, the selection advantage of an individual, called
fitness, depend on its genotype. It is defined a priori and is equal to the expected number
of progeny [82]. Consequently, selection is directly acting on genotypes instead of pheno-
types and changes allele frequencies in accordance with their different fitnesses. The inter-
action of individuals with their environment is mostly omitted. Therefore, in these models
the adaptive landscape, first introduced by Wright in 1932 [104], is fixed and selection
drives the population in this fitness landscape upwards to a local maximum [103,105,106].
In this way, population genetics reduces the complexity of the real world and gives insight
into the complex patterns of genetic variation. It includes observational, experimental and
theoretical components [30, 32] and studies the dynamics and statics of evolution: first
arrived by changes in gene frequency under selection, latter by indicating factors which
maintain the population in an approximate equilibrium [24].

One milestone in this context and the traditional starting point of population genetics is
the Hardy-Weinberg-law, published in 1908 by Hardy [49] and Weinberg [101]. It states
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that, in the absence of gene frequency changing factors (mutation, selection, migration,
random drift), in an infinite population which has non-overlapping generations and mates
randomly, the genetic variation is conserved. To be more precisely, the gene frequencies
stay constant from one generation to the next from the second generation on [24, 32].
With the newly discovered molecular understanding of inheritance and the availability of
genomic data in the 60’ies, a new theory based on population genetics to treat evolution,
especially on the molecular level, arose. In 1968 Kimura [54,55], independently from King
and Jukes (1969, see [57]), developed the neutral theory of molecular evolution which
states that most of the variation within and between populations on a molecular level is
achieved by genetic drift (change in allele frequency due to random sampling) of neutral
mutations which do not affect the fitness of the organism such that natural selection is
not acting on them. It was extended to nearly neutral mutations which are only slightly
deleterious in 1973 by Ohta [85]. The theory is not in contradiction with Darwins theory
of natural selection as driving force for adaption, as Kimura pointed out [54, 82]. It only
considers evolution on the molecular level and states that phenotypic evolution is still
controlled by natural selection [54–56].

Despite this extensive knowledge about the genome structure and its evolution, achieved
by population genetics, the formation of new species in this context is not well understood
[75].

Nevertheless, the genetic aspect of the models in population genetics provides a good
tool to give insights for the overwhelming occurrence of sexual reproduction in nature.
These models are used, among others, to examine the genetic processes of segregation
and recombination, arrived by meiotic crossover, which are only present in sexually repro-
ducing populations and therefore have to be advantageous. For example Kirkpatrick and
Jenkins [58] use this theory to show that segregation could be one reason for the mainte-
nance of sex. They argue that in sexually reproducing diploid populations the substitution
of an advantageous mutation happen faster since it needs only the beneficial mutation of
one allele in individuals whereas in an asexual diploid population it needs this mutation two
times in the same lineage (the second mutation in a descendant of the particular individual
where the first took place). Further examples like a critical analysis of the contribution of
recombination to the maintenance of sex and of Mueller’s ratchet as well as the mainte-
nance of sex due to synergistic epistasis (the interaction of alleles at different loci), can be
found in [24, 42, 63]. For more insights on population dynamics, we refer to [24, 32, 82].

2.3. Adaptive dynamics

One weakness of the models of population genetics is that they mostly neglect the impor-
tant aspect of ecology for evolution and the coevolution and interaction of the individuals
with their environment. Moreover, mostly constant population sizes are assumed but a real
biological population should be able to regulate its size dependent on the environment it
lives in.

At the beginning of the 90ies, the theory of adaptive dynamics was developed (e.g.
[52, 72, 76]). This theory is a stochastic approach and studies the effects of ecological
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aspects of populations on evolution and mostly omit the genetics. It highlights the coevo-
lution of the environment with the population due to ecological interaction by a density-
dependent selection, that models the survival and reproduction ability of one individual
in relation to the whole population. Since genetics is omitted the only source of variation
are mutations acting directly on the phenotypes. Only phenotypic evolution is considered
whereas the genotypic background of the individuals is ignored. The main difference to
earlier approaches of population genetics is that the adaptive landscape is replaced by an
invasion fitness landscape which is not fixed anymore and measures the selective advan-
tage of an appearing mutant depending on the environment.

Starting points for the theory of adaptive dynamics are mostly asexually reproducing
populations consisting in the same phenotypic trait. These populations are called resident,
monomorphic population. Furthermore, it is assumed that the population size is large and
mutations are rare [29, 75] resulting in a separation of the evolutionary timescale from the
ecological one in such a way that the phase of competitive interaction is small compared
to the evolutionary one driven by mutations. This allows to define the invasion fitness of
an appearing mutant which is defined by the initial growth of the mutant under the en-
vironmental conditions set by the resident populations. Invasion fitness is related to the
probability of whether the mutant gets extinct or can fixate, i.e. grows from one individual
to a notable size, in the resident population [75, 76]. Thus compared to the fixed fitness
landscape, the invasion fitness landscape of adaptive dynamics coevolves with the popu-
lation since it defines the environment and describes the evolution by successive mutation
invasions [74,75,100]. Since the trait space is assumed to be continuous these models have
the advantage to represent the whole evolutionary process compared to earlier modelling
approaches [3]. Thus each new mutation has never appeared before and evolution does not
have to stop at the asymptotic evolutionary state [28, 39, 59].

The strength of this approach is that the techniques can be used to understand evolution-
ary phenomena in various ecological system especially the possibility of phenotypic diver-
sification. This interesting phenomenon of evolutionary branching where a phenotypic trait
splits into two coexisting lineages which evolve in different directions was first investigated
by Metz et al. in [75] and further studied in [28,39,40]. For example, in [75] and [39] it is
shown that the occurrence of evolutionary branching depends on the derivative of the fit-
ness function at so called evolutionary singularities. However, outside a neighbourhood of
such an evolutionary singularity and under the additional assumption that the invasion of a
mutant implies the extinction of the resident phenotype the population stays monomorphic
over time. This major concept is the trait substitution sequence (TSS) modelling evolution
as a continuous time Markov process jumping from one monomorphic population to an-
other according to higher fitness. It was introduced by Metz et al. [76] (see also [28, 75])
and mathematically studied in [14,15,17,18]. It can be extended to the polymorphic case,
polymorphic evolution sequence (PSE), where the mutant invades a polymorphic popula-
tion at the expense of one or more resident populations [28, 75]. The canonical equation
of adaptive dynamics (CEAD), introduced by Dieckmann and Law [28], is a deterministic
approximation of the monomorphic TSS, under the assumption that the difference between
the mutant and resident phenotypes is small. It models evolution as a gradual process due
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to small phenotypic changes. In other words it is a sequence of successfully established
mutations.

Adaptive dynamics and sexual reproduction

The theory of adaptive dynamics deals with the phenotypic long-term evolution of an ini-
tial haploid and asexual monomorphic population. The techniques can be applied to many
interesting evolutionary issues like virulence, seed size and cyclic evolution, parasite co-
existence and predator-prey systems [41, 61, 71, 91].

The phenomenon of evolutionary branching is one of the most important results of these
techniques since in biological implications it can be interpreted in the asexual case as
morphological speciation and as a driving force for the biodiversity. But as mentioned
above most individuals in nature reproduce sexually and, accordingly, the most interest-
ing phenomenon is the speciation in sexual populations, where one population splits into
two different lineages which are reproductively isolated. Consequently, to get a realistic
insight into evolution, including ecological dynamics and genetics, it is necessary to apply
the techniques of adaptive dynamics to sexually reproducing populations. If one wants
to adapt the concept of evolutionary branching to sexually reproducing populations one is
confronted with several problems. The first is to model the reproduction event. It is now
not only a cloning anymore but rather depends on mating success and fecundity of two
individuals. Moreover, it is subject to the Mendelian rules and mutations change alleles.
Consequently, the genotype of an individual is to take into account and a rule for map-
ping the genotype to the phenotype has to be assumed since selection acts on phenotypes.
Recall that in an asexual model, the genotype is identified with the phenotype and is thus
omitted in the evolutionary process. This way, mutations alter the phenotype instead of the
genotype. One solution to model the long-term evolution is to go back and consider evo-
lution in the allele space rather than in the phenotypic trait space [27, 38, 60, 95]. But even
if we get the branching phenomenon in the allele space, when translating back to the phe-
notype level we have to deal with the presence of the heterozygotes. Thus, for speciation
there are additional assumptions needed such as assortative mating (i.e. like individuals
mate more preferentially) [27, 38] or spatial segregation, called allopatric speciation [60].

The consideration of Mendelian diploid models just started in 1999 with a paper of
Kisdi and Geritz [59] followed by a number of works [38, 60, 90, 95–97]. All this papers
consider special models with Mendelian reproduction on a heuristic level. Most of them,
[38, 60, 95, 97], as also the one of Kisdi and Geritz [59], use a continuous diploid version
of Levene’s soft selection model ( [67], see Figure I.3) because of its relative simplicity
and its well-known population genetics. A haploid clonal counterpart of this model was
already studied in 1998 by Kisdi and Geritz [39] which makes a comparison of this model
with the Mendelian diploid model versions possible.

In [59], the authors consider one locus with a continuum of possible alleles and an
environment which consists of two habitats, 1 and 2, each having an optimal phenotype,
m1 and m2. They assume that the population size is constant in each generation and that
the habitats are of relative size c1 = c and c2 = 1− c (see Figure I.3). In these ecological
settings they model evolution of the population in allele space under frequency-dependent
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selection.
They assume rare mutations with small phenotypic effects, such that there is enough

time for a mutant to invade or extinct and for the population to reach its genetic equilibrium
before a further mutation occurs. In this way and since a continuum of possible alleles is
assumed in contrast to earlier aporaches, long-term evolution is studied as a sequence of
mutation invasions.

In the model, all individuals have the same fecundity and discrete, non-overlapping
generations. At the start of each generation, individuals are distributed randomly in the
two habitats. There is first a phase of viability selection within each habitat, where the
survival probability of an individual depends on its phenotype, x, and is given by the
Gaussian function,

fi(x) = αi exp
(
− (x−mi)2

2σ2

)
, (I.1)

for i ∈ {1, 2}, with variance σ2 and αi the maximal survival probability. Then follows a
second phase of nonselective contest competition during which the available living space
is allocated at random among the survivors. In this way, a fixed number of individuals is
recruited in each habitat (a fraction c in the first habitat und the remaining fraction 1 − c
in the second habitat, soft selection, see Figure I.3). These individuals form a population
where mating occurs randomly and offsprings are produced accordingly to Mendelian rules
at the end of each generation. It is assumed that alleles, x and y, act additively on the
phenotype, precisely, the heterozygote is exactly in between the two homozygotes (the
phenotype of an xy individual is given by x+y

2
). The invasion fitness of a rare mutant allele

y in a resident monomorphic population of allele x is given by

Sx(y) = c
f1

(
x+y

2

)
f1(x)

+ (1− c)
f2

(
x+y

2

)
f2(x)

. (I.2)

Kisdi and Geritz [59] show that in the diploid model evolutionary branching in a monomor-
phic population occurs under exactly the same ecological circumstances as in the haploid
model but the further evolution is completely different. In the diploid sexual model, resp.
haploid clonal model, the invasion of a mutant allele, resp. trait, implies substitution of the
resident allele, resp. trait, as long as the population is away from an evolutionary singular
point. If the haploid clonal population reaches an evolutionary singular point it converges
to an evolutionary stable dimorphism. Thus there is only one evolutionary outcome. On
the contrary, in the diploid sexual model there are up to three different possible outcomes
depending on the difference between the optimal phenotypes in the habitats and the habi-
tats’ sizes:

(i) a single evolutionary stable (which cannot be invaded by any further mutant allele)
genetic dimorphism (both homozygotes are habitat specialists),

(ii) two convergence and evolutionary stable genetic dimorphism (at each one the het-
erozygote and one of the homozygote are habitat specialists),
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Figure I.3.: Levene’s two habitat soft-selection model

(iii) three convergence and evolutionary stable genetic dimorphism (the ones of (i) and
(ii)).

In [59], Kisdi and Geritz also discuss the probability for reaching these polymorphisms.
However, observe that this branching phenomenon is completely different from the asex-
ual case since we achieve only genetic variability in the allele space which does not leads
automatically to speciation. To be more precisely, we end up in a protected genetic poly-
morphism but do not automatically get phenotypically distinct lineages. In their following
work [38], Kisdi and Geritz show that there could be indeed sympatric speciation (specia-
tion in the same geographic region). To be more precisely, they consider the polymorphic
population after the branching and show that there would be evolution of assortative mat-
ing and hence partial reproductive isolation. For this, they extend the single locus model
by a second locus with two possible alleles (one dominant over the other) which decodes
the mating group the individual belongs to and does not affect the individual fitness. Indi-
viduals mate with probability p within its mating group and with 1− p mating is random.
In [38], it is discussed that the first locus (which undergoes branching) and the second
(controlling mating) have to be in linkage disequilibrium (the nonrandom association of
the alleles at the two different loci). The development of such a linkage disequilibrium
is only possible if the difference between the two habitats is large enough, such that we
get the possible evolutionary outcomes (ii) and (iii) of the one locus model, and selection
against heterozygotes is strong. Then there is evolution of assortative mating and there
always exists only one evolutionary outcome where the two homozygotes are habitat spe-
cialists as in the clonal model. Nevertheless, the evolution of assortative mating is not the
only possibility for speciation as van Dooren [95] shows. For a similar version of Levene’s
soft selection model, as studied by Kisdi and Geritz [38,59], he demonstrates that the evo-
lution of dominance can lead to elimination of the phenotypic intermediate heterozygote.
In [97], van Doorn and Dieckmann study the long-term evolution in a multi-locus version
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of Levene’s soft selection model under the ecological settings in [59]. By simulations
they get that frequency-dependent selection does not maintained genetic polymorphism
at a large number of loci. Only one locus with large phenotypic effect retained genetic
variation.

2.4. The stochastic individual based model of adaptive
dynamics

Starting in the mid-90ies, stochastic individual based models were introduced and investi-
gated that allow for a rigorous derivation of many of the predictions of adaptive dynamics
on the basis of convincing models for populations of interacting individuals that incor-
porate the canonical genetic mechanisms of birth, death, mutation, and competition (see,
e.g., [14–17,28,36] and [3]). To be more precise, in these models finite populations of non-
constant size are considered consisting of individuals each owning a birth rate, a natural
death rate and an additional death rate due to competition with the other present individ-
uals. Moreover, there is a probability for mutation at each birth event. The population
dynamics in these approaches are density-dependent which keeps the population from ex-
ploding and allows for variable population size. The aim of these models, first introduced
by [8] and [66], is to study the macroscopic phenotypic long-term evolution of a population
by tracing it back to the microscopic individual level [14].

In the context of stochastic individual-based models, so far, the biological approach of
adaptive dynamics has been put on a rigorous mathematical footing almost exclusively
for haploid and asexually reproducing populations. In this framework an important and
interesting feature of these models is that the TSS, PES and the CEAD appear as limiting
processes on different time-scales as the population size tends to infinity while mutation
rates and mutation step-sizes tend to zero. In [14], Champagnat proves convergence to the
trait substitution sequence (TSS) in the simultaneous limit of large population and small
mutation and in [15], Champagnat, Ferrière and Ben Arous show that this process con-
verges in the limit of small mutation steps to the canonical equation of adaptive dynamics
(CEAD). Recently, Baar, Bovier, and Champagnat [2] prove the convergence to the CEAD
in the simultaneously combined limits of large population, rare mutations and small muta-
tion steps. The phenomenon of evolutionary branching was rigorously derived by Cham-
pagnat and Méléard. In [17], they obtained the convergence to the polymorphic evolution
sequence (PES), where jumps occur between equilibria that may include populations that
have multiple coexisting phenotypes.

Mendelian diploid model

In the context of individual-based models, the study of diploid sexual reproducing popu-
lation started recently. The first work in this direction is the one of Collet, Méléard and
Metz [18]. Therein they consider a Mendelian diploid model, a single locus model of a
finite, diploid population with sexual reproduction following the Mendelian rules, under
the assumption that alleles act additively on the phenotype, they are co-dominant. For this
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model they derived, in the limit of large population and rare mutations, the convergence of
the suitably time-rescaled process to the TSS model of adaptive dynamics, essentially as
shown by Champagnat [14] in the haploid case. This paper was the starting point followed
by a series of works by Coron [19,20] and Coron, Méléard, Porcher, and Robert [21] which
all consider single locus models. In the first work finite populations are considered. Coron
studies the fixation probability of one allele in the absence of mutations in the neutral case
(all individuals have the same birth, natural death and competition death rates) and in the
non-neutral case (the death rate of one allele slightly deviate from the neutral case). She
derived the TSS on the genotype space for the successive fixations of mutations by adding
rare mutations and rescaling properly the time. Moreover, if all mutations are deleterious,
in [19] it is shown that, after each fixation of a deleterious mutation the natural death rate of
the individuals increases. In this way, the existence of an extinction vortex is shown where
the increasing frequency of fixation of deleterious mutations is observed and the extinction
of the population is inevitable. This mutational meltdown for a model of a finite population
similar to the one of [19] is numerically studied in [21]. Therein, the impact of deleterious
mutation accumulations on the population size is analysed. Furthermore, the dependence
of the strength of the mutational meltdown on demographic parameters is considered. In
the last cited work on a Mendelian diploid model [20], Coron proves the convergence to
a slow-fast stochastic diffusion dynamic in the large population limit where mutations are
accelerated as a consequence of acceleration of the birth and death events and under a
fine-tuning of competition. In a second step she shows that this diffusion, conditioned
on non-extinction, permits a unique quasi-stationary distribution. Finally, the long-time
coexistence of two alleles in three cases (pure neutral competition, over-dominance and
separate niches) are numerically studied.

The results so far do not give indications for genetic variation and speciation such that
one can suggest an advantage of sexual reproduction in adaptive dynamics (except under
some special fine-tuning of parameters). As in the haploid case, also in the diploid case
[18], normally the time for fixation of mutant traits in a monomorphic resident population
is of the same order as the time for extinction of the residual trait. Thus as soon as a new
mutation appears the resident population is already monomorphic again.

One exception in the framework of individual based models is the work of Dieckmann
and Doebli [27]. They show that in a multi locus model with only two possible alleles
per locus (+ and −) speciation is possible. They assume that mating probabilities of in-
dividuals are expressed in an additional quantitative trait depending on the ecological trait
or a marker trait which is ecologically neutral. In the first case they show that evolution-
ary branching happens under slightly more restrictive conditions as in the corresponding
clonal model. However, in the latter case, the development of a linkage disequilibrium
between the ecological and the marker trait is needed which can be obtained by genetic
drift due to stochastic demographics effects. But in this case the parameter requirements
for evolutionary branching are more restrictive than those in the asexual case. However,
all these results based only on simulations.

In this thesis, we discuss the dramatic impact on genetic evolution in a Mendelian diploid
single locus model if we replace the assumption of co-dominance in [18] by assuming that
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the mutant allele is dominant. We will see that the time for extinction of the residual
recessive allele is extremely enlarged such that a further more advantageous mutation can
appear which paves the way for the appearance of a richer limiting process.

3. The Mendelian diploid model on base

In this section we present the Mendelian diploid model, which is studied in this thesis. It
is an extended version of the single locus model introduced in [18] and includes mating
groups.

At any time t ≥ 0, the population under consideration consists of a finite number of
individuals Nt on which the three basic mechanisms of evolution, Mendelian heredity,
mutation and selection, are acting. The genotype of each individual i is determined by
two alleles ui1u

i
2 at a single locus, taken from some allele space U ⊂ R. We suppress

parental effects, which means that we identify individuals with genotypes u1u2 and u2u1.
Each individual can act as father or mother, i.e. it is hermaphroditic. As explained above
the genotype defines the phenotype. In Chapters II and III we make a complete dominant-
recessivity assumption on the phenotype, i.e. the dominant allele defines the phenotype.
Heterozygous individuals thus exhibit the phenotype of the dominant allele which is the
same as the phenotype of the individuals which are homozygous for this allele. We con-
struct a Markov process modelling the Mendelian reproduction and the death of each in-
dividual without any assumption on the genotype-phenotype mapping. To this end, we
introduce the following parameters where we omit the dependence on the phenotype to
shorten the notation:

fu1u2 ∈ R+ the per capita birth rate (fertility) of an individual with
genotype u1u2,

Du1u2 ∈ R+ the per capita natural death rate of an individual with
genotype u1u2,

K ∈ N the carrying capacity, a parameter which scales the pop-
ulation size,

cu1u2,v1v2

K
∈ R+ the competition effect felt by an individual with genotype

u1u2 from an individual of genotype v1v2,
Ru1u2(v1v2) ∈ {0, 1} the reproductive compatibility of the genotype v1v2 with

genotype u1u2,
µK ∈ R+ the mutation probability per birth event. It is in-

dependent of the genotype,
m(u, dh) the mutation law of a mutant allelic trait u+ h ∈ U , born

from an individual with allelic trait u.

Individuals are living in an environment which provides them an amount of resources,
called the carrying capacity of the environment and denoted by the scaling parameter
K ∈ N . Thus the competition is rescaled by 1

K
which amounts to scaling the population
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size to order K. This way the population size is controlled by the amount of resources
the environment offers and we count individuals weighted with 1

K
. We are interested in

asymptotic results when K is large and mutations are rare.
We denote by u1

1(t)u1
2(t), ..., uNt1 (t)uNt2 (t) the genotypes present at time t and the whole

population, νKt , at time t is represented by the rescaled sum of Dirac measures on U2,

νKt =
1

K

Nt∑
i=1

δui1(t)ui2(t). (I.3)

Formally, νKt takes values in the set of re-scaled point measures

MK =

{
1

K

n∑
i=1

δui1ui2

∣∣∣ n ≥ 0, u1
1u

1
2, ..., u

n
1u

n
2 ∈ U2

}
, (I.4)

on U2, equipped with the vague topology. Define 〈ν, g〉 as the integral of the measurable
function g : U2 → R with respect to the measure ν ∈ MK . Then 〈νKt ,1〉 = Nt

K
= nt

and for any u1u2 ∈ U2 the positive number 〈νt,1u1u2〉 is called the density at time t of the
genotype u1u2.

The dynamics of the process are as follows (see [36], [18]): We start at time t = 0 with
a (possibly random) distribution ν0 ∈ MK . Each individual with genotype u1u2 has three
independent exponential clocks:

�@10 a reproduction without mutation Exp (fu1u2(1− µ))-clock: When it rings then the
individual chooses at random an individual v1v2 as partner and reproduces with it at
rate fu1u1

fv1v2Ru1u2 (v1v2)

K〈νRu1u2 ,f〉
. The offspring’s genotype is a pair of two alleles, each one

chosen randomly of each parent.

�@10 a reproduction with mutation Exp (fu1u2µ)-clock: When it rings then the individual
chooses at random an individual v1v2 as partner and reproduces with it at the same
rate as before but the offspring gets a genotype where one of the parental alleles
changes from u to u + h with h chosen randomly according to the mutation law
m(u, dh). Since we assume rare mutations, i.e. µK � 1, only one parental allele
changes.

�@10 a death Exp(Du1u2 + 1
K

∑Nt
j=1 cu1u2,u

j
1u
j
2
)-clock: When it rings then the individual

dies. Observe that this parameter depends on the natural death rate and on an addi-
tional death rate due to ecological competition with the other individuals present in
the population.

Once one of the clocks rings all clocks are reset to zero.
Let us now construct the generator of this process (νKt )t≥0. As in [18] we first define,
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for the genotypes u1u2, v1v2 and a point measure ν, the Mendelian reproduction operator

(Au1u2,v1v2F )(ν)

=
1

4

[
F

(
ν +

δu1v1

K

)
+ F

(
ν +

δu1v2

K

)
+ F

(
ν +

δu2v1

K

)
+ F

(
ν +

δu2v2

K

)]
−F (ν),

(I.5)

and the Mendelian reproduction-cum-mutation operator

(Mu1u2,v1v2F )(ν) =
1

8

∫
R
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F

(
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δu1+h,v1

K

)
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K
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)
+ F

(
ν +

δu2+h,v2

K

))
m(u2, h)

+

(
F

(
ν +

δu1,v1+h

K

)
+ F

(
ν +

δu2,v1+h

K

))
m(v1, h)

+

(
F

(
ν +

δu1,v2+h

K

)
+ F

(
ν +

δu2,v2+h

K

))
m(v2, h)

]
dh−F (ν).

(I.6)

The process (νKt )t≥0 is then aMK-valued Markov process with generator LK , given for
any bounded measurable function F :MK → R by:

(LKF )(ν)

=

∫
U2

(
Du1u2 +

∫
U2

cu1u2,v1v2ν(d(v1v2))

)(
F

(
ν − δu1u2

K

)
− F (ν)

)
Kν(d(u1u2))

+

∫
U2

(1−µK)fu1u2

(∫
U2

fv1v2Ru1u2(v1v2)

〈νRu1u2 , f〉
(Au1u2,v1v2F )(ν)ν(d(v1v2))

)
Kν(d(u1u2))

+

∫
U2

µKfu1u2

(∫
U2

fv1v2Ru1u2(v1v2)

〈νRu1u2 , f〉
(Mu1u2,v1v2F )(ν)ν(d(v1v2))

)
Kν(d(u1u2)).

(I.7)

The first non-linear term is density-dependent and describes the competition between indi-
viduals. It makes selection frequency-dependent, i.e. the fitness of an individual depends
on the frequencies of the different individuals present in the population. The second and
last non-linear terms describe birth with and without mutation. Note that Ru1u2(v1v2) can
be interpreted as a mating ability and models whether an individual with genotype u1u2

can reproduce with an individual with genotype v1v2. Thus νRu1u2 is the population re-
stricted to the pool of potential partners of an individual of genotype u1u2.

For fixed K and all u1u2, v1v2 ∈ U2, under the following assumptions

• E(〈νK0 ,∞〉) <∞,
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3. The Mendelian diploid model on base

• The functions f,D and c are measurable and bounded, which means that there exists
f̄ , D̄, c̄ <∞ such that

0 ≤ fu1u2 ≤ f̄ , 0 ≤ Du1u2 ≤ D̄ and 0 ≤ cu1u2,v1v2 ≤ c̄, (I.8)

• There exists a function, m̄ : R → R+, such that
∫
m̄(h)dh < ∞ and m(u, h) ≤

m̄(h) for any u ∈ U and h ∈ R,

the existence and uniqueness in law of such a process, in the space D(R+,MK) of càdlàg
functions from R+ toMK , with infinitesimal generator LK can be derived from Fournier
and Méléard [36]. The construction of the process given in [36] as solution of a stochas-
tic differential equation driven by Poisson point measures describing each jump can be
adapted to our settings.

We are interested in the large population limit. In this case, under mild restrictive as-
sumptions, the process converges to a deterministic process, which is the solution to a
non-linear integro-differential equation. The proof of this can be deduced from Fournier
and Méléard [36] as well. We state here only the case where the mutation rate is zero
which can be interpreted as the short time evolution of an initial population.

Theorem I.1 (Theorem 3.1 in [18]). When K tends to infinity in law and if νK0
converges in law to a deterministic measure ν0, then, for any measurable, symmet-
ric function g : U2 → R, the process (νKt ) converges in law to the deterministic
continuous measure-valued function (νt)t≥0 solving

〈νt, g〉 =〈ν0, g〉 −
∫ t

0

〈
νs, g(u1u2)

(
Du1u2 +

1

K

Ns∑
j=1

cu1u2,v
j
1v
j
2

)〉
ds

+

∫ t

0

〈
νs ⊗ νs,

fu1u2fv1v2

4〈νs, f〉
(g(u1v1) + g(u1v2) + g(u2v1) + g(u2v2))

〉
ds.

(I.9)

We take a closer look at the three cases of initial populations which are of greatest
interest for this thesis:

(1) the one allele case where U = {A} and hence all individuals are homozygotes with
genotype AA,

(2) the two allele case where U = {a,A} and the population consists of the three geno-
types aa, aA and AA,

(3) the three allele case where U = {a,A,B} and the population consists of the six
genotypes aa, aA,AA, aB,AB and BB.

Already on these three simplest cases the problems of modelling a sexual diploid pop-
ulation become clear. An allele space U of n alleles provides a genotype space G of
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∑n
k=1 k = n(n+1)

2
genotypes. One new appearing allele, due to mutation, in the allele

space U blows up the genotype space G by n + 1 genotypes through the inevitable occur-
rence of heterozygotes, whereas in a haploid clonal population it increases only by one.
Moreover, the birth rates of the different genotypes are completely different and rather
more complicated compared to the clonal case. In a sexual population the birth rate of
an individual carrying a certain genotype depends on the whole state of the population or
of several subpopulations and not only on the population carrying this genotype as in the
clonal case. In the following we make this more precise in the three special cases.

(1) In the first case let us assume that the initial population consists of nK0 δAA individuals
with nK0 → n0, for K → ∞. By Theorem I.1 the process (nt)t≥0 converges in law,
when K →∞, to the solution of the classical logistic equation

ṅ(t) = n(t)(fAA −DAA − cAA,AAn(t)) and n(0) = n0. (I.10)

The unique stable fixed point of this equation is the equilibrium size of a monomor-
phic AA population and is equal to the carrying capacity:

n̄AA =
fAA −DAA

cAA,AA
. (I.11)

The birth rates bAA(n(t)), can be derived by computing the reproduction rates with
the Mendelian rules as described in (III.5). In this case it is simply bAA(n(t)) =
fAAnAA(t) and comparable to birth rates in the clonal case.

(2)+(3) In the last two cases (compare Proposition 3.2 in [18]) let us assume that the initial
condition nK0 = (naa(0), naA(0), nAA(0)), resp.
nK0 = (naa(0), naA(0), nAA(0), naB(0), nAB(0), nBB(0)) converges to a determinis-
tic vector (x0, y0, z0), resp. (u0, v0, w0, x0, y0, z0), for K → ∞. Then the process
(nt)t≥0 converges in law, for K →∞, to the solution of

ṅ(t) = b(n(t))− d(n(t)), (I.12)

with ṅi(t) = bi(n(t))− ni(t)

(
Di +

∑
i∈G

ci,jnj(t)

)
, ∀i ∈ G. (I.13)

The calculation of the birth rates bi(n(t)), i ∈ G, in these cases becomes quite
complicated. We will illustrate it by computing the birth rate of an aa individual.

In the thesis we consider the case where the fertility is neutral, that means that fi =
f , for all i ∈ G, and that the B allele is the most dominant and the a allele the
least dominant one. Consequently, the ascending order of dominance is given by
a < A < B. Furthermore, we make the dominant-recessivity assumption, that
the most dominant allele defines the phenotype and consider the case where the
a phenotype (consequently only expressed by individuals of genotype aa) is not
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3. The Mendelian diploid model on base

capable of reproducing with individuals of B phenotype (which are the ones with
genotypes aB, AB and BB). In mathematical terms,

Ri(j) =


1, for i, j ∈ {aa, aA,AA},
1, for i, j ∈ {aA,AA, aB,AB,BB},
0, for i = aa and j ∈ {aB,AB,BB},
0, for i ∈ {aB,AB,BB} and j = aa.

(I.14)

In case (2) possible matings which results in an aa individual are (see Figure I.4
(left)):

• aa× aa, with probability 1,

• aa× aA, with probability 1
2
,

• aA× aA, with probability 1
4
.

Since all individuals can reproduce with each other in this case, the whole population
acts as pool of possible partners when an individual chooses a partner. In this way
the birth rate of an individual of genotype aa is given by:

baa(n(t)) =
f(naa(t) + 1

2
naA(t))2

naa(t) + naA(t) + nAA(t)
. (I.15)

In case (3) we have to bear in mind that aa individuals are not capable of reproducing
with individuals of phenotype B. Consequently, the possible matings which result
in an aa individual in this case are (see Figure I.4 (right)):

• aa× aa, with probability 1,

• aa× aA, with probability 1
2
,

• aA× aA, with probability 1
4
,

• aA× aB, with probability 1
4
,

• aB × aB, with probability 1
4
.

The pool of possible partners for an aa individual consists, as in the case before, of
all individuals with genotypes aa, aA, and AA. In contrast, the whole population
acts as pool of possible partners for phenotypic A individuals and for phenotypic B
individuals the pool consist only of aA,AA, aB,AB and BB individuals. There-
fore, in this case the birth rate of an individual of genotype aa is given by:

baa(n(t)) =f
naa(t)

(
naa(t) + 1

2
naA(t)

)
naa(t) + naA(t) + nAA(t)

+ f
1
2
naA(t)

(
naa(t) + 1

2
naA(t) + 1

2
naB(t)

)
naa(t) + naA(t) + nAA(t) + naB(t) + nAB(t) + nBB(t)

+ f
1
2
naB(t)

(
1
2
naA(t) + 1

2
naB(t)

)
naA(t) + nAA(t) + naB(t) + nAB(t) + nBB(t)

. (I.16)
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Figure I.4.: Birth rate of an aa individual in Case (2) (left) and Case (3) (right).

One important result (see [18, 36]) is that on finite time intervals the behaviour of a
large population can be approximated by the solution of the deterministic system (I.12).
Consequently, the knowledge about the deterministic system is a good starting point for
understanding the behaviour of the stochastic system. However, this is not as easy as it
seems since the result holds only on finite time intervals and, as we will see in Chapter
II, we have to control the behaviour of a stochastic process over a time horizon that di-
verges like a power of K. This precludes, in particular, the use of functional laws of large
numbers, or the like which justifies that the stochastic system behaves like the determin-
istic system [31, 36]. Moreover, analysing the behaviour of high dimensional systems like
(I.12) is a considerable challenge. For the 3-dimensional system this is done by Collet,
Méléard and Metz in [18]. In Chapter III a rigorous analytic study of the 6-dimensional
deterministic system is provided.

4. Outline of Chapter II and III

Chapters II and III present the main results of this thesis. In Chapter II we study the genetic
time evolution of the stochastic individual-based model introduced in Section 3 which
describes a diploid hermaphroditic population reproducing according to Mendelian laws.
The aim is to show that under a complete dominance-recessivity assumption the recessive
allele has a prolonged survival time compared to the previous result in [18] under the co-
dominance assumption. Chapter III picks up the result of Chapter II and considers the
fate of the recessive allele in the population after a further mutation to a more dominant
allele in the large population limit. Although both chapters are related they can be read
independently from each other. The following two subsections outline these chapters.
Therein we will call an u1u2 population a population containing only individuals with
genotype u1u2 which we name u1u2 individuals or more briefly u1u2.
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4. Outline of Chapter II and III

4.1. Outline: Survival of a recessive allele in a Mendelian
diploid model

In the second chapter the evolution of a recessive allele in a Mendelian diploid model under
a complete dominance-recessivity assumption is studied. The results appeared as a joint
work with Prof. Dr. Anton Bovier in the Journal of Mathematical Biology [84]:

R. Neukirch and A. Bovier, Survival of a recessive allele in a Mendelian diploid
model, Journal of Mathematical Biology (2016), pp. 1-54.

Chapter II contains this article mostly as it has been published, only a straightforward
improvement of the lower bound on the survival time of the recessive allele to K1/2−α and
modifications in formatting are made.

We start with a monomorphic population of aa individuals with one additional mutant
with genotype aA. That means our allelic trait space consists of the recessive a allele and
the dominant A allele, U = {a,A}, which generates a genotype space G = {aa, aA,AA}.
In the model, an individual chooses a partner uniformly at random for reproduction, thus
Ri(j) = 1, for all i, j ∈ G, and all individuals can reproduce with each other. For the
mutant to be able to invade the resident aa population, it needs to have a higher fitness,
which we obtain by assuming that its natural death rate is slightly reduced, namely for
some ∆ > 0:

Daa = D + ∆ and DaA = D. (I.17)

We assume that all the other parameters, fu1u2 and cu1u2,v1v2 , are neutral which means that
they are the same for each phenotype.
In the article [18], Collet, Méléard and Metz studied this Mendelian diploid model under
the assumption that the two alleles are co-dominant and that the allele A is slightly fitter
than the allele a, namely:

Daa = D + ∆, DaA = D + 1
2
∆ and DAA = D. (I.18)

In these settings they show that, after the invasion of the mutant AA (which takes time of
order lnK), the genotypes containing the a allele, aa and aA, die out exponentially fast
in time of order lnK, as already derived in [14] for the haploid asexual model. Therefore,
the time scales for the fixation of a new trait and the extinction of the resident trait are the
same and the population is monomorphic again before a new mutation occurs.

Thus, as known from the haploid asexual case [14], the suitably time-rescaled process
converges to the TSS model of adaptive dynamics in the large population and rare mutation
limit. In other words, the population jumps from one homozygote to another homozygote
population according to higher fitness and no genetic variability is obtained. Therefore,
to get genetic variability it is necessary to ensure, that the recessive allele survives in the
population long enough such that a new advantageous mutation can appear before its ex-
tinction. For this reason we make the complete dominant-recessivity assumption, precisely
we assume that the a allele is recessive and the A allele is dominant. Consequently, indi-
viduals with genotype aA and genotype AA have both the same phenotype A, according
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to the third Mendelian law and since the parameters, introduced in Section 3, depend on
the phenotype we get for the natural death rates:

Daa = D + ∆ and DaA = DAA = D. (I.19)

Through the dependence of the parameters on the phenotype, this yields that the AA in-
dividuals are as fit as the aA individuals and both are fitter than the aa individuals. This
assumption has a dramatic effect on the evolution of the population. The resulting different
behaviour under the two assumptions can be traced back to the deterministic system that
arises in the large population limit. The linear stability analysis of the unique stable fixed
point n̄AA, corresponding to a monomorphic AA population, yields that it is degenerated
i.e. has a zero eigenvalue under the dominant-recessivity assumption. This leads to a dif-
ferent long-term behaviour towards the stable fixed point n̄AA compared to the model with
the co-dominance assumption. To be more precisely, it implies that in the deterministic
system, the aa and aA populations decay in time only polynomially fast to zero, namely
like 1

t2
and 1

t
, respectively, in contrast to the exponential decay in the co-dominant sce-

nario, corresponding to only strictly negative eigenvalues (see Figure I.5). This type of
decay of a recessive allele has been observed earlier in the context of population genetic
models (see, e.g., [82], Chapter 4). The main result of Chapter II is that this behaviour of

Figure I.5.: Evolution of the model from a resident aa population at equilibrium
with a small amount of mutant aA, and when the alleles a and A are
co-dominant (left) or when the mutant phenotype A is dominant (right).

the deterministic system translates in the stochastic model into survival of the genotypes
carrying the recessive allele for a time of order almost K1/2−α, for α > 0. This allows for
a reasonable scaling of the mutation rate µK such that a new mutant will occur with high
probability in the AA population before the a allele is extinct. To be more precisely, we
scale the mutation rate by

ln(K)� 1

KµK
� K1/2−α, as K →∞. (I.20)

This scaling can be motivated as follows: The mutation probability for an individual with
genotype u1u2 is given by µK . Hence, the time until the next mutation in the whole pop-
ulation is of order 1

KµK
. Since the time a mutant population needs to invade a resident
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4. Outline of Chapter II and III

population is of order ln(K) (which can be adapted from [14, 18]) we set the mutation
time 1

KµK
� ln(K) to ensure that the mutant invades before a new mutation appears. The

right hand side of (I.20), K1/2−α, is the time until which the recessive a allele survives in
the population, shown in Chapter II, and corresponds to the decay time of a function of 1

t
.

The exponent can be explained as follows: since the population carrying the recessive a
allele can get directly extinct when it decreases to the size of order of the natural fluctua-
tion, we can ensure its survival only until a slightly higher size, namely K−1/2+α. Notice,
that the extinction of the a allele depends on the aA population which decays although it
is as fit as the AA population but it is disadvantaged in reproduction. The aa population
behaves like the square of the aA population and thus can already die out, due to natural
fluctuations, but will always be reproduced by the aA population.

Under this scaling it is shown in Chapter II that the survival time of the a population,
consisting of all aa- and aA individuals, is of order K1/2−α and that there will be a further
mutation before the a allele get extinct. The main step is to show that the behaviour of the
deterministic system translate into the stochastic model. The difficulty thereby is, com-
pared to earlier works [14,18], to control the behaviour of the stochastic system, since now
time diverges like a power of K after the invasion of the AA population. This precludes to
adapt the techniques used in [14] and [18], in particular the use of functional laws of large
numbers, or the like. Instead, our proof relies on the stochastic Euler scheme developed
by Baar, Bovier and Champagnat [2]. This scheme combines coupling methods with dis-
crete time Markov chains and standard potential theoretic approaches for the exit from an
attractive domain and uses results from the theory of branching processes. Since we con-
sider a diploid sexual model instead of a haploid asexual one as in [2] we have to handle
three subpopulations rather than only two which all influences each other. Thus to apply
the Euler scheme to the present model a main task is to find the right order to control the
subpopulations over small steps such that we can show that the stochastic system follows
the deterministic system. The scaling of the mutation rate (I.20) allows the fitter AA pop-
ulation to invade the resident population but ensures that there will be a further mutation
before the a population is extinct. Consequently, unfit alleles can survive in heterozygotes
and there could appear a new mutant allele, call it B, which has strong competition with
the AA population but weak competition with the aa population and can coexists with the
recessive aa population. In this way a resurgence of the aa population at the expense of
the AA population and coexistence of the types aa and BB may be observed. This would
increase the genetic variability of the population and could be a first step in the direction
of speciation. These suggestions are the motivation for the following work of Chapter III.

4.2. Outline: The recovery of a recessive allele in a Mendelian
diploid model

In the third chapter we study the further evolution of the stochastic individual based model
of Chapter II in the large population limit. We show that after environmental changes the
aa population can recover and that coexistence of homozygous genotypes is possible. The
results are a joint work with Dr. Loren Coquille from the Institute Fourier (University of
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Grenoble Alpes) and Prof. Dr. Anton Bovier and are available as research paper on the
online-portal arXiv:

A. Bovier, L. Coquille and R. Neukirch, The recovery of a recessive allele in a
Mendelian diploid model, arXiv e-print 1703.02459, March 2017

Chapter III contains this article mostly as it has been published subject to minor modifi-
cations in formatting. The starting point is the scenario of Chapter II after the invasion
of the mutant AA. To understand the behaviour of the stochastic system, it is important
to study first the deterministic system, corresponding to the large population limit of the
stochastic counterpart, which should be a good approximation if the a population is not
killed by the typical fluctuations (see Figure I.6). To be more concrete, we start with the

Figure I.6.: time vs. individuals plot: deterministic model (left) stochastic model (right)

following initial conditions for the deterministic system which correspond to the situation
of the stochastic model after invasion of AA: the AA population is large and close to its
equilibrium (see (I.11)), the aA population is of size ε and consequently the aa population
is of order ε2. Moreover we assume that there occurs a further mutation to a most dominant
B allele such that individuals exhibiting the B phenotype are the fittest in the population
and we start with AB individuals of size ε3. Notice, that after this next mutation, we have
six possible genotypes, aa, aA,AA, aB,AB and BB present in the population, three of
phenotype B (aB,AB and BB), two of phenotype A (aA and AA) and only one of phe-
notype a (aa). Therefore, we have to deal with a six-dimensional deterministic system.
The high complexity of this system, composed of six interacting subpopulations, makes
the analysis intricate. To be able to identify fixed points of the system, we assume that
there is no reproduction and no competition between individuals of phenotype a and phe-
notype B. Observe that this assumption lets aa individuals and B individuals belong to
different species since they are reproductively isolated. In this way, we can show analyt-
ically the existence of a fixed point, paB, where the two subpopulations aa and BB can
coexist. However, the linear stability analysis fails since the system has at paB two zero
eigenvalues. Nevertheless, using the Center Manifold Theorem (asserting that the qualita-
tive behaviour of the dynamical system in a neighbourhood of the non-hyperbolic critical
point paB is determined by its behaviour on the center manifold near paB, [44,51]), we can
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indeed prove the stability of this fixed point and the convergence of the system towards
it. This can be translated in an evolution of biodiversity. Notice, that in the stochastic
system the population bearing the a allele can die out due to the natural fluctuations if it is
too small. Therefore, we prove that also in the deterministic model the a population stays
above a certain level which corresponds to the order of natural fluctuation in the stochastic
model. Another possibility to avoid the extinction of the a allele is to ensure that the aa
population only grows after the mutation. For that reason we introduce an additional pa-
rameter η which lowers the competition of BB with aA compared to the one of BB with
AA. This way, competition does not depend only on phenotypes anymore. Instead it can
be interpreted as a refinement of a phenotypic competition for resources with genotypic
influences: the strength (or ability to get resources) of an individual not only depends on
its phenotype but also on the degree of dominance of its genotype. To be more precise, the
AA individuals have one more dominant allele compared to the aA individuals, namely
a second A allele instead of the a allele. Consequently, they compete more strongly for
resources with the BB individuals than the aA individuals do. This lack in competition
accelerates the evolution of the system since η allows aA to decrease more slowly in such
a way that the AA and aA population get faster to the same order which is important for
the aa population to get exponential growth and thus to recover. In particular, the birth rate
of an aa individual (see (I.16)) has a term

fnaa
(naa + 1

2
naA)

naa + naA + nAA
, (I.21)

describing the reproduction of aa individuals with aa- and aA individuals out of the pool
of potential partners, which yields the exponential growth as soon as aA and AA are on
the same order.

An interesting feature of adding the system controlling parameter η is that there arises
a bifurcation phenomenon for η larger than some threshold. In particular, for these val-
ues of η the coexistence fixed point paB becomes unstable and the system converges to
another fixed point where all six subpopulations coexist. We discussed this by numerical
simulations (see Figure I.7).

The reason for this different limiting behaviour lies in the fact that if η is chosen large
enough the competition felt by aA from BB is not strong enough to force its extinction.
Therefore, a fraction of aA individuals survives in the population and through Mendelian
reproduction all other subpopulations are reproduced. To sum up, the main result of Chap-
ter III is:

Theorem I.2. Consider the dynamical system (I.12) started with the initial condi-
tions mentioned above. Suppose the following assumptions on the parameters hold:

(C1) ∆ sufficiently small,

(C2) f sufficiently large,

(C3) 0 ≤ η < c/2.
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Figure I.7.: 6-population fixed point: η = 0.6

Then the system converges to the fixed point paB. More precisely, for any fixed δ > 0,
as ε→ 0, it reaches a δ-neighbourhood of paB in a time of order Θ(ε−1/(1+ηn̄B−∆)).
Moreover, it holds:

1. for η = 0, the amount of allele a in the population decays to Θ(ε1+∆/(1+∆))
before reaching Θ(1),

2. for η > 4∆
n̄B

, the amount of allele a in the population is bounded below by Θ(ε)
for all t > 0,

where x = Θ(y) whenever x = O(y) and y = O(x) as ε → 0. The proof of this
theorem is divided into four phases.

In the first phase we show that the mutant B population grows up to a level ε0 expo-
nentially fast, with a rate corresponding to the invasion fitness of an AB individual in a
resident AA population, without perturbing the 3-system (aa, aA,AA).

The second phase ends when the aA population and the AA population are of the
same order. By a comparison result we show that in this phase the effective 3-system
(AA,AB,BB) is almost unperturbed and behaves like the 3-system (aa, aA,AA) anal-
ysed in Chapter II. We show that in this time BB approaches its equilibrium n̄BB.

In Phase 3 we ensure the exponential growth of the aa population until an ε0-neighbour-
hood of its equilibrium n̄aa. Notice that the growth rate of aa, which corresponds to the
invasion fitness, Saa,BB, of an aa individual in a resident BB population is given by

Saa,BB = f −D −∆, (I.22)

is much larger than the one of the B population in a resident AA population in Phase 1,
given by

SAB,AA = f −D + ∆− cn̄AA = ∆. (I.23)
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This follows from Assumption (C2) and that there is no competition between aa and BB
individuals.

Using the Center Manifold Theorem [44, 51] we prove in the last phase that the stable
fixed point is approached with speed 1

t
.

Finally we relax the assumption on the parameters and discuss the different limits of the
resulting models by numerical simulations. A rigorous analytic analysis is not possible
here since we are already unable to calculate all the fixed points.

The main requirement for the recovery of the aa population is that it has a positive inva-
sion fitness in a resident BB population. Consequently, we can relax the no competition
assumption between aa and the B phenotype and add small competition between them,
denoted caB. Therefore, also under this assumptions, we can end up with two or six coex-
isting populations depending on the parameters choices (see Figure I.8).

Figure I.8.: Model without reproduction between a and B: caB = 0.1 and η = 0
(left), caB = 0.1 and η = 0.6 (right)

If we instead remove the no reproduction assumption, that means we set Ri(j) ≡ 1, for all
i, j ∈ G, such that aa also reproduces with phenotypeB, the 2- population fixed point, paB,
cannot be observed anymore. The reason for this is that as soon as the aa population could
recover the coexisting BB- and aa population will instantly give birth to aB individuals.
Consequently, we observe a 3-population fixed point (see Figure I.9). The BB population
cannot increase to its monomorphic equilibrium, n̄BB, anymore due to competition with
aB. Adding competition caB and the factor η yields similar results as before, this time
with three or six coexisting populations (see Figure I.9). Based on reproduction among
all phenotypes this model is named all-with-all model. Notice, compared to the previous
models in this model the fecundity has to be much bigger to observe the recovery of the
aa population since all individuals act as possible partners and thus the birth rate of aa
individuals is smaller.

Finally, let us mention that if we set in both models (in the model without reproduction
between a andB and the all-with-all model) the competition between each phenotype neu-
tral, that means caB = c, and add a certain value η, we naturally end up in a 6-population
fixed point, since as argued above the reduced competition ensures the survival of a frac-
tion of aA individuals such that all subpopulations will be produced.
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Figure I.9.: All-with-all model: caB = 0 and η = 0 (top), caB = 0.1 and η = 0
(center), caB = 0.9 and η = 0.4 (bottom)
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II. Chapter

Survival of a recessive allele in a
Mendelian diploid model
Anton Bovier and Rebecca Neukirch

Abstract In this paper we analyse the genetic evolution of a diploid
hermaphroditic population, which is modelled by a three-type nonlinear birth-and-
death process with competition and Mendelian reproduction. In a recent paper, Col-
let, Méléard and Metz [18] have shown that, on the mutation time-scale, the process
converges to the Trait-Substitution Sequence of adaptive dynamics, stepping from
one homozygotic state to another with higher fitness. We prove that, under the as-
sumption that a dominant allele is also the fittest one, the recessive allele survives
for a time of order at leastK1/2−α, whereK is the size of the population and α > 0.

We acknowledge financial support from the German Research Foundation (DFG) through the Hausdorff
Center for Mathematics, the Cluster of Excellence ImmunoSensation, and the Priority Programme SPP1590
Probabilistic Structures in Evolution. We thank Loren Coquille for help with the numerical simulations and
for fruitful discussions.

1. Introduction
Mendelian diploid models have been studied for over a century in the context of population genetics
(see, e.g., [107], [34], [103], [45], and [46]). Text book expositions of population genetics are
given in, e.g., [24], [82], [32], and [12]. While population genetics typically deals with models of
fixed population size, adaptive dynamics, a variant that has been developed in the 90ies (e.g., [52],
[72], and [76]), allows for variable population sizes that are controlled by competition kernels that
rule the competitive interaction of populations with different phenotypes or geographic locations.
Diploid models have been considered in adaptive dynamics already by Kisdi and Geritz [59].

Starting in the mid-90ies, stochastic individual based models were introduced and investigated
that allow for a rigorous derivation of many of the predictions of adaptive dynamics on the basis
of convincing models for populations of interacting individuals that incorporate the canonical ge-
netic mechanisms of birth, death, mutation, and competition (see, e.g., [28], [15], [14], [36], [16],
and [17]). An important and interesting feature of these models is that various scaling limits when
the carrying capacity tends to infinity while mutation rates and mutation step-size tend to zero
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yield different limit processes on different time-scales. In this way, Champagnat [14] proves con-
vergence to the Trait Substitution Sequence (TSS) (see, e.g., [28], and [75]) and to the Canonical
Equation of Adaptive Dynamics (CEAD). Champagnat and Méléard [17] also rigorously derive the
phenomenon of evolutionary branching under the assumption of coexistence. In a recent paper [2]
the convergence to the CEAD is shown in the simultaneously combined limits of large population,
rare mutations and small mutation steps.

In the context of individual based models, so far almost exclusively haploid populations with
asexual reproduction were studied. Exceptions are the paper by Collet, Méléard and Metz [18]
where the TSS is derived in a Mendelian diploid model under certain assumptions (that we will
discuss below) and, more recently, some papers by Coron, Méléard, Porcher, and Robert [21]
and Coron [19, 20]. In the present paper we pick up this line of research and study a diploid
population with Mendelian reproduction similar to the one of Collet, Méléard and Metz [18], but
with one notable difference in the assumptions. Each individual is characterised by a reproduction
and death rates which depend on a phenotypic trait (e.g., body size, hair colour, rate of food intake,
age of maturity) determined by its genotype, for which there exist two alleles A and a on one
single locus. We examine the evolution of the trait distribution of the three genotypes aa, aA
and AA under the three basic mechanisms: heredity, mutation and selection. Heredity transmits
traits to new offsprings and thus ensures the continued existence of the trait distribution. Mutation
produces variation in the trait values in the population on which selection is acting. Selection
is a consequence of competition for resources or area between individual. Collet, Méléard and
Metz [18] have shown that in the limit of large population and rare mutations, and under a co-
dominance assumption of alleles, the suitably time-rescaled process, converges to the TSS model
of adaptive dynamics, essentially as shown by Champagnat [14] in the haploid case. We now
reverse the assumption made by Collet, Méléard and Metz [18] that the alleles a and A are co-
dominant and assume instead that A is the fittest and dominant allele, i.e., the genotypes aA and
AA have the same phenotype. We show that this has a dramatic effect on the evolution of the
population and, in particular, leads to a much prolonged survival of the "unfit" phenotype aa in the
population. More precisely, we prove that the mixed type aA decays like 1/t, in contrast to the
exponential decay observed by Collet, Méléard and Metz [18]. This type of behaviour has been
observed earlier in the context of population genetic models (see, e.g., [82], Chapter 4). The main
result of the present paper is to show that this fact translated in the stochastic model into survival
of the less fit a allele for a time of order almost K1/2, when K is the carrying capacity (i.e. the
order of the total population size). Let us emphasise that the main difficulty in our analysis is to
control the behaviour of the stochastic system over a time horizon that diverges like a power of K.
This precludes in particular the use of functional laws of large numbers, or the like. Instead, our
proof relies on the stochastic Euler scheme developed by Baar, Bovier and Champagnat [2]. One
could probably give a heuristic derivation of this fact in the context of the diffusion approximation
in the one locus two alleles model of population genetics (see, e.g., [32]), but we are not aware of
a reference where this has actually been carried out.

Sexual reproduction in a diploid population amounts for each parent to transmit one of its two
alleles to the genotype of the newborn. Hence, unfit alleles can survive in individuals with mixed
genotype and individuals with a pure genotype are potentially able to reinvade in the population
under certain circumstances, i.e. a new mutant allele B that appears before the extinction of the
a allele that has strong competition with the AA population but weak competition with the aa
population may lead to a resurgence of the aa population at the expense of the AA population and
coexistence of the types aa and BB. This would increase the genetic variability of the population.
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In other words, if we choose the mutation time scale in such a way that there remain enough a
alleles in the population when a new mutation occurs and if the new mutant can coexist with the
unfit aa individuals, then the aa population can recover. Numerical simulations show that this can
happen but requires subtle tuning of parameters. This effect will be analysed in a forthcoming
publication. Related questions have recently been addressed in haploid models by Billiard and
Smadi [7].

2. Model setup and goals

2.1. Introduction of the model
We consider a Mendelian diploid model introduced by Collet, Méléard and Metz [18]. It models
a population of a finite number of individuals with sexual reproduction, where each individual i
is characterised by two alleles, ui1u

i
2, from some allele space U ∈ R. These two alleles define

the genotype of individual i, which in turn defines its phenotype, φ(ui1u
i
2), through a function

φ : U2 → R. We suppress parental effects, thus φ(ui1u
i
2) = φ(ui2u

i
1). The individual-based

microscopic Mendelian diploid model is a non-linear stochastic birth-and-death process. Each
individual has a Mendelian reproduction rate with mutation and a natural death rate. Moreover,
there is an additional death rate due to ecological competition with the other individuals in the
population. The following demographic parameters depend all on the phenotype, but we suppress
this from the notation. Let us define

fu1u2 ∈ R+ the rate of birth (fertility) of an individual with genotype u1u2,
Du1u2 ∈ R+ the rate of natural death of an individual with genotype u1u2,
K ∈ N the parameter which scales the population size,
cu1u2,v1v2

K ∈ R+ the competition effect felt by an individual with genotype u1u2

from an individual with genotype v1v2,
µK ∈ R+ the mutation probability per birth event. Here it is independent of

the genotype,
σ > 0 the parameter scaling the mutation amplitude,
m(u, dh) mutation law of a mutant allelic trait u+ h ∈ U , born from an

individual with allelic trait u.

Scaling the competition function c down by a factor 1/K amounts to scaling the population size
to order K. K is called the carrying capacity. We are interested in asymptotic results when K is
very large. We assume rare mutations, i.e. µK � 1. Hence, if a mutation occurs at a birth event,
only one allele changes from u to u + σh where h is a random variable with law m(u, dh) and
σ ∈ [0, 1].

At any time t, there is a finite number, Nt, of individuals, each with genotype in U2. We denote
by u1

1u
1
2, ..., u

Nt
1 uNt2 the genotypes of the population at time t. The population, νt, at time t is

represented by the rescaled sum of Dirac measures on U2,

νt =
1

K

Nt∑
i=1

δui1ui2
. (II.1)

33



II. Chapter: Survival of a recessive allele in a Mendelian diploid model

νt takes values in

MK =

{
1

K

n∑
i=1

δui1ui2

∣∣∣n ≥ 0, u1
1u

1
2, ..., u

n
1u

n
2 ∈ U2

}
, (II.2)

whereM denotes the set of finite, nonnegative measures on U2 equipped with the vague topology.
Define 〈ν, g〉 as the integral of the measurable function g : U2 → R with respect to the measure
ν ∈ MK . Then 〈νt,1〉 = Nt

K and for any u1u2 ∈ U2, the positive number 〈νt,1u1u2〉 is called
the density at time t of the genotype u1u2. The generator of the process is defined as by Collet,
Méléard and Metz [18]: First we define, for the genotypes u1u2, v1v2 and a point measure ν, the
Mendelian reproduction operator:

(Au1u2,v1v2F )(ν) (II.3)

=
1

4

[
F

(
ν +

δu1v1

K

)
+ F

(
ν +

δu1v2

K

)
+ F

(
ν +

δu2v1

K

)
+ F

(
ν +

δu2v2

K

)]
− F (ν),

and the Mendelian reproduction-cum-mutation operator:

(Mu1u2,v1v2F )(ν) =
1

8

∫
R

[(
F

(
ν +

δu1+hv1

K

)
+ F

(
ν +

δu1+hv2

K

))
mσ(u1, h)

+

(
F

(
ν +

δu2+hv1

K

)
+ F

(
ν +

δu2+hv2

K

))
mσ(u2, h)

+

(
F

(
ν +

δu1v1+h

K

)
+ F

(
ν +

δu2v1+h

K

))
mσ(v1, h)

+

(
F

(
ν +

δu1v2+h

K

)
+ F

(
ν +

δu2v2+h

K

))
mσ(v2, h)

]
dh−F (ν).

(II.4)

The process (νt)t≥0 is then a MK-valued Markov process with generator LK , given for any
bounded measurable function F :MK → R and ν ∈MK by:

(LKF )(ν)

=

∫
U2

(
Du1u2 +

∫
U2

cu1u2,v1v2ν(d(v1v2))

)(
F

(
ν − δu1u2

K

)
− F (ν)

)
Kν(d(u1u2))

+

∫
U2

(1− µK)fu1u2

(∫
U2

fv1v2

〈ν, f〉
(Au1u2,v1v2F )(ν)ν(d(v1v2))

)
Kν(d(u1u2))

+

∫
U2

µKfu1u2

(∫
U2

fv1v2

〈ν, f〉
(Mu1u2,v1v2F )(ν)ν(d(v1v2))

)
Kν(d(u1u2)). (II.5)

The first non-linear term describes the competition between individuals. The second and last non-
linear terms describe the birth without and with mutation. There, fu1u2

fv1v2
K〈ν,f〉 is the reproduction

rate of an individual with genotype u1u2 with an individual with genotype v1v2. Note that we
assume random mating with multiplicative fertility (i.e. that birth rate is proportional to the product
of the fertilities of the mates).

For all u1u2, v1v2 ∈ U2, we make the following Assumptions (A):
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(A1) The functions f,D and c are measurable and bounded, which means that there exist f̄ , D̄, c̄ <
∞ such that

0 ≤ fu1u2 ≤ f̄ , 0 ≤ Du1u2 ≤ D̄ and 0 ≤ cu1u2,v1v2 ≤ c̄. (II.6)

(A2) fu1u2 −Du1u2 > 0 and there exists c > 0 such that c ≤ cu1u2,v1v2 .

(A3) For any σ > 0, there exists a function, m̄σ : R → R+, such that
∫
m̄σ(h)dh < ∞ and

mσ(u, h) ≤ m̄σ(h) for any u ∈ U and h ∈ R.

For fixed K, under the Assumptions (A1) + (A3) and assuming that E(〈ν0,1〉) <∞, Fournier and
Méléard [36] have shown existence and uniqueness in law of a process with infinitesimal generator
LK . For K →∞, under more restrictive assumptions, and assuming the convergence of the initial
condition, they prove the convergence in D(R+,MK) of the process νK to a deterministic process,
which is the solution to a non-linear integro-differential equation. Assumption (A2) ensures that
the population does not explode or becomes extinct too fast.

2.2. Goal
We start the process with a monomorphic aa population, where one mutation to an A allele has
already occurred. That means, the initial population consists only of individuals with genotype aa
except one individual with genotype aA. The mutation probability for an individual with genotype
u1u2 is given by µK . Hence, the time until the next mutation in the whole population is of order

1
KµK

. Since the time a mutant population needs to invade a resident population is of order lnK

(see, e.g., [14]), we set the mutation rate 1
KµK

� ln(K) in order to be able to consider the fate of
the mutant and the resident population without the occurrence of a new mutation. In this setting,
the allele space U = {a,A} consists only of two alleles. Our results will imply that if the mutation
rate is bigger than 1

KK1/2−α , α > 0, then a mutation will occur while the resident phenotypic
a population is small, but still alive, in contrast to the setting of Collet, Méléard and Metz [18],
where the a allele dies out by time lnK. This different behaviour can be traced to the deterministic
system that arises in the large K limit. Figure II.1 (A allele fittest and dominant) and Figure II.2
(a and A alleles co-dominant) show simulations of the deterministic systems of the two different
models. We see that in the settings of Collet, Méléard and Metz [18] the mixed type aA dies out
exponentially fast, whereas in the model where A is the dominant allele, the mixed type decays
much slowly. We will show below that this is due to the fact that, under our hypothesis, the stable
fixed point of the deterministic system is degenerate, leading to an algebraic rather than exponential
approach to the fixed point. The main task is to prove that this translates into a survival of the unfit
allele in the stochastic model for a time of order Kβ . We show that this is indeed the case, with
β = 1/2 − α. This implies that for mutation rates of order 1/K lnK, a further mutant will occur
in the AA population before the aa allele is extinct.

2.3. Assumptions on the model
Let Nuv(t) be the number of individuals with genotype uv ∈ {aa, aA,AA} in the population at
time t and set nuv(t) ≡ 1

KNuv(t).
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Definition II.1. The equilibrium size of a monomorphic uu population, u ∈ {a,A}, is the
fixed point of a 1-dim Lotka-Volterra equation and is given by

n̄u =
fuu −Duu

cuu,uu
. (II.7)

Definition II.2. For any u, v ∈ {a,A},

Suv,uu = fuv −Duv − cuv,uun̄u, (II.8)

is called the invasion fitness of a mutant uv in a resident uu population, where n̄u is given
by (III.11).

We assume that the dominant A allele defines the phenotype of an individual, i.e. AA and Aa
individuals have the same phenotype. In particular, the fertility and the natural death rates are the
same for aA and AA individuals. For simplicity, we assume that the competition rates are the same
for all the three different genotypes. To sum up, we make the following Assumptions (B) on the
rates:

(B1) faa = faA ≡ fAA =: f ,

(B2) DAA ≡ DaA =: D but Daa = D + ∆,

(B3) cu1u2,v1v2 =: c, ∀u1u2, v1v2 ∈ {aa, aA,AA}.

Remark II.1. We choose constant fertilities and constant competition rates for simplicity.
What is really needed, is that the fitness of the aA and AA types are equal and higher than
that of the aa type.

Observe that, under Assumptions (B),

SaA,aa = SAA,aa = f −D − cn̄aa = f −D − cf −D −∆

c
= ∆,

Saa,aA = Saa,AA = f −D −∆− cn̄AA = f −D −∆− cf −D
c

= −∆. (II.9)

Therefore, the aA individuals are as fit as theAA individuals and both are fitter than the aa individ-
uals. In our model, an individual chooses a partner uniformly at random for reproduction, and, ac-
cording the Mendelian laws, each individual transmits one allele, chosen uniformly at random from
its genotype, to the offspring’s genotype. For example, if we want to produce an individual with
genotype aa, there are four possible combinations for the parents: aa ↔ aa, aa ↔ aA, aA ↔ aa
and aA↔ aA. The first combination results in an aa individual with probability 1, the second and
third one with probability 1

2 and the last one with probability 1
4 . Therefore we have the following

birth rates:

baa(Naa(t), NaA(t), NAA(t)) =
f
(
Naa(t) + 1

2NaA(t)
)2

Naa(t) +NaA(t) +NAA(t)
,

baA(Naa(t), NaA(t), NAA(t)) =
2f
(
Naa(t) + 1

2NaA(t)
) (
NAA(t) + 1

2NaA(t)
)

Naa(t) +NaA(t) +NAA(t)
,

bAA(Naa(t), NaA(t), NAA(t)) =
f
(
NAA(t) + 1

2NaA(t)
)2

Naa(t) +NaA(t) +NAA(t)
. (II.10)
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The death rates are the sum of the natural death and the competition:

daa(Naa(t), NaA(t), NAA(t)) = Naa(t) (D + ∆ + c(naa(t) + naA(t) + nAA(t))) ,

daA(Naa(t), NaA(t), NAA(t)) = NaA(t) (D + c(naa(t) + naA(t) + nAA(t))) ,

dAA(Naa(t), NaA(t), NAA(t)) = NAA(t) (D + c(naa(t) + naA(t) + nAA(t))) . (II.11)

In the sequel, the sum process, Σ(t), defined by

Σ(t) = naa(t) + naA(t) + nAA(t), (II.12)

plays an important role. A simple calculation shows that the sum process jumps up to 1/K (resp.
down) with rate bΣ (resp. dΣ) given by

bΣ(Naa(t), NaA(t), NAA(t)) = fKΣ(t), (II.13)
dΣ(Naa(t), NaA(t), NAA(t)) = (D + cΣ(t))KΣ(t) + ∆Naa(t). (II.14)

3. Main theorems
In the sequel we denote by τn, n ≥ 1, the ordered sequence of times when a mutation occurs in the
population. We assume τ0 = 0 and make the following Assumption (C) on the mutation rate µK :

(C) ln(K)� 1

KµK
� K1/2−α. (II.15)

We recall one result from Collet, Méléard and Metz [18] (Proposition D.2) which carries over to our
setting: it is shown that if the resident population naa(t) is in a δ-neighbourhood of its equilibrium
n̄a, then naa(t) stays in this neighbourhood for an exponentially long time, as long as the mutant
population is smaller than δ. The proof of this result is based on large deviation estimates (see [37]).

Proposition II.1 (Proposition D.2 in [18]). Let supp(νK0 ) = {aa} and let τ1 denote the
first mutation time. For any sufficiently small δ > 0, if 〈νK0 ,1aa〉 belongs to the δ/2-
neighbourhood of n̄a then the time of exit of 〈νKt ,1aa〉 from the δ-neighbourhood of n̄a is
bigger than eV K ∧ τ1, for V > 0, with probability converging to 1. Moreover, there exists a
constant M , such that, for any sufficiently small δ > 0, this remains true, if the death rate
of an individual with genotype aa,

D + cK〈νKt ,1aa〉, (II.16)

is perturbed by an additional random process that is uniformly bounded by Mδ.

We start the population process when naa is in a δ/2-neighbourhood of its equilibrium, n̄a, and
there is one individual with genotype aA. The first theorem says that there is a positive probabil-
ity that the mutant population fixates in the resident aa population and the second theorem gives
the time for the invasion of the mutant population and a lower bound on the survival time of the
recessive a allele. Define

τmutδ ≡ inf{t ≥ 0 : 2nAA(t) + naA(t) ≥ δ}, (II.17)
τmut0 ≡ inf{t ≥ 0 : 2nAA(t) + naA(t) = 0}. (II.18)
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Theorem II.1 (Proposition D.4 in [18]). Let (zK) be a sequence of integers such that zK
K

converges to n̄a, for K →∞. Then

lim
δ→0

lim
K→∞

P zK
K
δaa+ 1

K
δaA

(τmutδ < τmut0 ) =
∆

f
, (II.19)

where we recall that ∆ is the invasion fitness of a mutant aA in a resident aa population
(cf. III.17).

We now state the main results of this paper:

Theorem II.2. Consider the model verifying Assumptions A and B. Let δ > ε, α > 0 and

τhitη ≡ inf{t ≥ τmutδ : naA(t) ≤ η}. (II.20)

Define τsur ≡ τhit
K−1/2+α − τhitε . Then, conditional on survival of the mutant, i.e., on the

event {τmutδ < τmut0 }, with probability converging to one as K ↑ ∞, the following statements
hold:

(i) τhitε = O(lnK), and

(ii) τsur = O(K1/2−α).

Remark II.2. As long as there are aA individuals in the population, the smaller aa pop-
ulation does not die out, since the aA population always gives birth to aa individuals. For
smaller values of the power 1

2 − α in (ii), the natural fluctuations of the big AA population
are too high: the death rate of naA(t) can be too large due to the competition felt by nAA(t)
and could induce the death of the aA population and hence also of the aa population.

The next theorem states that if the mutation rate satisfies Assumption C, then a new mutation to a
(possibly fitter) allele,B, occurs while some a alleles are still alive. This mutation will happen after
the invasion of the mutant population and when the mixed type aA population already decreased to
a small level again. More precisely,

Theorem II.3. Assume that Assumption C is satisfied. Then, with probability converging
to one,

τhitε ∧ τ1 = τhitε and τ1 ∧ τhit0 = τ1. (II.21)

The interest in this result lies in the fact that a new mutant allele B that appears before the
extinction of the a allele that has strong competition with the AA population but weak competition
with the aa population may lead to a resurgence of the aa population at the expense of the AA
population and coexistence of the types aa and BB. Numerical simulations, which are objects of a
following publication, show that this can happen but requires subtle tuning of parameters. Since the
proofs of the main theorems (Theorem II.1, II.2 and II.3) have several parts and are quite technical,
we first give an outline of them before we turn to the details (Section 5.2).
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3.1. Outline of the proofs
Heuristics leading to the main theorems

The basis of the main theorems is the observation of the different behaviour of the limiting deter-
ministic system, when A is the fittest and dominant one and when the alleles are co-dominant [18].
More precisely, they have dissimilar long term behaviour (cf. Figure II.1 and II.2).
By analysing the systems one gets that both have the same fixed points naa ≡ (n̄a, 0, 0) and
nAA ≡ (0, 0, n̄A). The computation of the eigenvalues of the Jacobian matrix at the fixed point
naa yields in both models two negatives and one positive eigenvalues. Hence in both systems the
fixed point naa is unstable. In contrast, the eigenvalues at the fixed point nAA are all negative in the
system of Collet, Méléard and Metz [18] whereas in this model there is one zero eigenvalue. This
leads to the different long term behaviour towards the stable fixed point nAA. In Collet, Méléard
and Metz’s [18] model the aA population dies out exponentially fast whereas in this model the
degenerated eigenvalue corresponds to a decay of naA(t) like a function f(t) = 1

t . The goal is to
show that the stochastic system behaves like the deterministic system.

Figure II.1.: Our Model: A fittest type
and dominant

Figure II.2.: Collet et al. Model: a and A
co-dominant

Organisation of the proofs

The main theorems describe the invasion of a mutant in the resident population, and the survival of
the recessive allele. This invasion can be divided into three phases, in a similar way as in [14], [18],
or [2] (cf. Figure II.3) (the general idea that an invasion can be divided in these phases is much
older, see, e.g., [92]):

Phase 1: Fixation of the mutant population,

Phase 2: Invasion of the mutant population,

Phase 3: Survival of the recessive allele.

The first two phases are similar to the ones in Collet, Méléard and Metz [18], whereas the last phase
will be analysed in eight steps. Technically, the analysis uses tools developed by Baar, Bovier and
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Figure II.3.: The three phases of the proof

Champagnat [2] and classical potential methods (see, e.g., [11]).

Settings for the steps

Step 1: Upper bound on Σ(t),

Step 2: Upper bound on naa(t),

Step 3: Lower bound on Σ(t),

Step 4: Upper and lower bound on nAA(t),

Step 5: Decay of naA(t),

Step 6: Decay time of naA(t),

Step 7: Decay and decay time of naa(t),

Step 8: Growth and growth time of Σ(t),

Total decay time of naA(t).

Phase 1: Fixation of the mutant population. In the first phase we show that there
is a positive probability that the fitter mutant population A(t) ≡ naA(t) + 2nAA(t) fixates in the
resident population. More precisely, as long as the mutant population size is smaller than a fixed
δ, the resident aa population stays close to its equilibrium n̄a (Proposition II.1) and its dynamics
are nearly the same as before since the influence of the mutant population is negligible. We can
approximate the dynamics of the mutant population A(t) by a rescaled birth and death process and
can show that the probability that this branching process increases to a δ-level is close to its survival
probability and hence also the probability that the mutant population A(t) ≡ naA(t) + 2nAA(t)
grows up to a size δ. This is the content of Theorem II.1.
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Phase 2: Invasion of the mutant population. The fixation (Phase 1) ends with a
macroscopic mutant population of size δ. In the second phase the mutant population invades the res-
ident population and suppresses it. By the Large Population Approximation (Theorem II.11, [36])
the behaviour of the process is now close to the solution of the deterministic system (II.43) with
the same initial condition on any finite time interval, when K tends to infinity. Thus, we get from
the analysis of the dynamical system in Section 4 that any solution starting in a δ-neighbourhood
of (n̄a, 0, 0) converges to an ε-neighbourhood of (0, 0, n̄A) in finite time (t2 in Figure II.3). Since
we see in the dynamical system that as soon as the AA population is close to its equilibrium, the
aA population decays like 1

t , we only proceed until naA decreases to an ε-level to ensure that the
duration of this phase is still finite.

In [14], it is shown that the duration of the first phase is of order O(lnK) and that the time for
the second phase is bounded. Thus the time needed by the aA population to reach again the ε-level
after the fixation is of order O(lnK) (cf. Theorem II.2 (i)). From Proposition II.1 we get that the
resident aa population stays in a δ-neighbourhood of its equilibrium n̄a an exponentially long time
exp(V K) as long as the mutant population is smaller than δ. Thus we can approximate the rate
of mutation until this exit time by µKfKn̄a. Hence the waiting time for mutation to occur is of
order 1

KµK
. Champagnat [14] proved that there is also no accumulation of mutations in the second

phase. More precisely, he shows that, for any initial condition, the probability of a mutation on any
bounded time interval is very small:

Lemma II.1 (Lemma 2 (a) in [14]). Assume that the initial condition of νt satisfies
supK E(〈ν0,1〉) <∞. Then, for any η > 0, there exists an ε > 0 such that, for any t > 0,

lim sup
K→∞

PKν0

(
∃n ≥ 0 :

t

KµK
≤ τn ≤

t+ ε

KµK

)
< η, (II.22)

where τn are the ordered sequence of times when a mutation occurs, defined in the beginning
of Section 3.

Using Lemma II.1, we get that, for fixed η > 0, there exists a constant, η > ρ > 0, such that, for
sufficiently large K,

P zK
K
δaa+ 1

K
δaA

(
τ1 <

ρ

KµK

)
< δ, (II.23)

where τ1 is the time of the next mutation. Thus, the next mutation occurs with high probability not
before a time ρ

KµK
. Hence, under the assumption that

ln(K)� 1

KµK
, (II.24)

(cf. left inequality of (II.15)) there appears no mutation before the first and second phase are
completed.

Phase 3: Survival of the recessive allele. The last phase starts as soon as naA(t) has
decreased to an ε-level. This phase is different from the one in [14] and [18], since the analysis of
the deterministic system in Section 4 reveals that naA(t) decreases only like a function f(t) = 1

t ,
in contrast to the exponential decay in [18]. Thus, we may expect that the time to extinction will
not beO(lnK) anymore, and the recessive allele a will survive in the population for a much longer
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time. This is a situation similar to the one encountered by Baar, Bovier and Champagnat [2], where
it was necessary to show that the stochastic system remains close to a deterministic one over times
of order Kα due to the fact that the evolutionary advantage of the mutant population vanishes like
a negative power of K. Just as in that case, we cannot use the Law of Large Numbers, but we
adopt the stochastic Euler scheme from [2] to show that the behaviour of the deterministic and the
stochastic systems remain close for a time of order K1/2−α.

Let us put this scheme on a mathematically footing:

Figure II.4.: Steps of the proof

Settings for the steps. Let

γ ≡ f

4n̄A(f + ∆)
, γ∆/2 ≡

f + ∆
2 (1− ϑ)

4n̄A(f + ∆)
and γ∆ ≡

f + ∆
2

4n̄A(f + ∆)
. (II.25)

We define stopping times depending on naA(t) in such a way that we can control the other processes
naa(t), nAA(t), and Σ(t) on the resulting time intervals. Fix ε > 0 and ϑ > 0 such that ε < ∆

2 <
ϑ < ∆. We set

x =

(
f + ϑ

f + ∆

) 1
2

, (II.26)
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and, for 0 ≤ i ≤
⌊
− ln(εK1/2−α)

ln(x)

⌋
−1 =: σ−1, with α > 0, we define the stopping times on naA(t)

by

τ i−aA ≡

{
τhitε , for i = 0,

inf
{
t ≥ τ (i−1)−

aA : naA(t) ≤ xiε
}
, else,

(II.27)

τ i+aA ≡ inf
{
t ≥ τ i−aA : naA(t) ≥ xiε+K−1/2+3/4α

}
. (II.28)

During the time intervals t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA

]
, naA(t) ∈

[
xi+1ε, xiε+K−1/2+3/4α

]
. The

upper bound on i is chosen in such a way that

xi+1ε ≥ K−1/2+α. (II.29)

The following eight steps will be iterated from i = 0 to i = σ − 1 =
⌊
− ln(εK1/2−α)

ln(x)

⌋
− 1.

Remark II.3. Since in Phase 3 the biggest contribution to the birth rate of naa(t) is given by
the combination of two aA individuals, naa behaves like n2

aA. We let naA decrease only until
K−1/2+α. Afterwards it would be of smaller order than K−1/2 and the natural fluctuations
of the big AA population, of order K−1/2, would induce its death.

Step 1: Upper bound on Σ(t). We show that, on the time interval t ∈
[
τ i−aA, τ

i+
aA ∧

τ
(i+1)−
aA ∧ eV K

α/2]
, there exists a constant, MΣ > 0, such that the sum process Σ(t) does not

exceed the level n̄A +MΣK
−1/2+α/2, with high probability:

Proposition II.2. For all M > 0 and 0 ≤ i ≤
⌊
− ln(εK1/2−α)

ln(x)

⌋
− 1, let

ταΣ,M ≡ inf
{
t > τ i−aA : Σ(t)− n̄A ≥MK−1/2+α/2

}
. (II.30)

Then there exists a constant MΣ > 0 such that

P
[
ταΣ,MΣ

< τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2
]

= o(K−1). (II.31)

To prove Proposition II.2, we define the difference process between Σ(t)K and n̄AK and couple
it with a birth-death process. We show that this process jumps up with probability less than 1

2 and
show that the probability that the process reaches the level MΣK

1/2+α/2 before going to zero, is
very small. Then we show that the process returns many times to zero until it reaches the level
MΣK

1/2+α/2 and calculate the time for one such return.

Remark II.4. This is only a coarse bound on the sum process Σ(t) but with our initial
conditions we are not able to get a finer one. After Step 7 we have enough information to
refine it but for the iteration this upper bound suffices.

Step 2: Upper bound on naa(t). An upper bound on naa(t) is obtained similarly as in

Step 1. We show that, on the time interval t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
, there exists a con-

stant, Maa > 0, such that the aa population does not exceed the level γ∆x
2iε2 +Maa(x

2iε2)1+α,
with high probability:
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Proposition II.3. For all M > 0 and 0 ≤ i ≤
⌊
− ln(εK1/2−α)

ln(x)

⌋
− 1, let

ταaa,M ≡ inf
{
t > τ i−aA : naa(t)− γ∆x

2iε2 ≥M(x2iε2)1+α
}
. (II.32)

Then there exists a constant, Maa > 0, such that

P
[
ταaa,Maa

< τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2
]

= o(K−1). (II.33)

The proof is similar to the one of Proposition II.2.

Step 3: Lower bound on Σ(t). With Proposition II.2 and II.3, we can bound Σ(t) from

below. We show that on the time interval t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]

the sum process does

not drop below n̄A − ∆+ϑ
cn̄A

γx2iε2 −MΣK
−1/2+α/2, with high probability:

Proposition II.4. For all M > 0 and 0 ≤ i ≤
⌊
− ln(εK1/2−α)

ln(x)

⌋
− 1, let

ταΣ,M ≡ inf

{
t > τ i−aA : Σ(t)−

(
n̄A −

∆ + ϑ

cn̄A
γx2iε2

)
≤ −MK−1/2+α/2

}
. (II.34)

Then there exists a constant, MΣ > 0, such that

P
[
ταΣ,MΣ

< τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2
]

= o(K−1). (II.35)

The proof is similar to those of Proposition II.2 and II.3.

Step 4: Lower and upper bound on nAA(t). Since we now have bounded the
processes naa(t), naA(t) and Σ(t) from above and below (for naa(t) it suffices to set the lower
bound to zero), it is easy to get a lower and an upper bound on nAA(t) on the time interval
t ∈

[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
. Precisely, there exists a constant, MAA > 0, such that with

high probability nAA(t) does not drop below n̄A−xiε−MAA(x2iε2 +K−1/2+3/4α) (Proposition
II.5), and does not exceed the level n̄A − x(i+1)ε+MAAK

−1/2+α/2 (Proposition II.6):

Proposition II.5. For all M > 0 and 0 ≤ i ≤
⌊
− ln(εK1/2−α)

ln(x)

⌋
− 1, let

τ2i
AA,M ≡ inf

{
t > τ i−aA : nAA(t)−

(
n̄A − xiε

)
≤ −M(x2iε2 +K−1/2+3/4α)

}
. (II.36)

Then there exists a constant MAA > 0 such that

P
[
τ2i
AA,MAA

< τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2
]

= o(K−1). (II.37)

Proposition II.6. For all M > 0 and 0 ≤ i ≤
⌊
− ln(εK1/2−α)

ln(x)

⌋
− 1, let

ταAA,M ≡ inf
{
t > τ i−aA : nAA(t)−

(
n̄A − xi+1ε

)
≥MK−1/2+α/2

}
. (II.38)

Then there exists a constant, MAA > 0, such that

P
[
ταAA,MAA

< τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2
]

= o(K−1). (II.39)
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Step 5: Decay of naA(t). We now have upper and lower bounds for all the single processes,

for t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
. Using these bounds, we prove that naA(t) has the tendency

to decrease on a given time interval. We show that, with high probability, naA(t), restarted at xiε
(i.e. we set τ i−aA = 0), hits the level xi+1ε before it reaches the level xiε+K−1/2+3/4α.

Proposition II.7. There exists a constant C> 0 such that, for all 0≤ i ≤
⌊
− ln(εK1/2−α)

ln(x)

⌋
−1

P
[
τ i+aA < τ

(i+1)−
aA

∣∣naA(0) = xiε
]
≤ K1/2−3/4α exp

(
−CK7/4α

)
. (II.40)

For the proof we couple naA(t) with majorising and minorising birth-death processes and show
that these processes jump up with probability less than 1

2 . This way we prove that with high proba-
bility naA(t) reaches xi+1ε before going back to xiε+K−1/2+3/4α.

Step 6: Decay time of naA(t). This is the step where we see that naA(t) decays like a
function f(t) = 1

t . Precisely, it is shown that the time which the aA population needs to decrease
from xiε to xi+1ε is of order 1

xiε
:

Proposition II.8. Let

θi(aA) ≡ inf
{
t ≥ 0 : naA(t) ≤ xi+1ε

∣∣naA(0) = xiε
}
, (II.41)

be the decay time of naA(t) on the time interval t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
. Then

there exist positive constants, Cl, Cu, and a constant M > 0, such that for all 0 ≤ i ≤⌊
− ln(εK1/2−α)

ln(x)

⌋
− 1

P
[
Cu
xiε
≥ θi(aA) ≥ Cl

xiε

]
≥ 1− exp

(
−MK2α

)
. (II.42)

To prove this proposition we calculate an upper and a lower bound on the decay time of the
majorising resp. minorising processes obtained in Step 5 which are of the same order. Precisely,
we estimate the number of jumps the processes make until they reach xi+1ε, and the time of one
jump.

Step 7: Decay and decay time of naa(t). To carry out the iteration, we have to ensure
that, on a given time interval, the aa population decreases below the upper bound needed for the
next iteration step. Precisely, we show that naa(t) decreases from γ∆x

2iε2 + Maa(x
2iε2)1+α to

γ∆/2x
2i+2ε2, and stays smaller than γ∆x

2i+2ε2 when naA(t) reaches xi+1ε:

Proposition II.9. For t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
, the process naA decreases from

xiε to xi+1ε and naa(t) decreases from γ∆x
2iε2 +Maa(x

2iε2)1+α below γ∆x
2i+2ε2.

The proof of this proposition has three parts: First, as in Step 5, we show that naa(t) has the ten-
dency to decrease and that it reaches γ∆/2x

2i+2ε2 before going back to γ∆x
2iε2 +Maa(x

2iε2)1+α.
The second part is similar to Step 6, where we estimate the number of jumps and the duration of one
jump of the process. In the last part we show, as in Step 2, that the process stays below γ∆x

2i+2ε2

until naA(t) hits the level xi+1ε and the next iteration step starts.

45



II. Chapter: Survival of a recessive allele in a Mendelian diploid model

Step 8: Growth and growth time of Σ(t). Similarly to Step 7, we also have to
ensure that the sum process increases from the level n̄A − ∆+ϑ

cn̄A
γx2iε2 −MΣK

−1/2+α/2 to n̄A −
∆+ϑ/2
cn̄A

γx2i+2ε2 on a given time interval and is greater than n̄A − ∆+ϑ
cn̄A

γx2i+2ε2 when the aA

population reaches the level xi+1ε. Observe that this step is only needed for i ≤
⌊
− ln(εK1/4−α/4)

ln(x)

⌋
,

afterwards x2iε2 ≤ K−1/2+α/2 and the bound n̄A −MΣK
−1/2+α/2 suffices for the iteration.

Proposition II.10. For 0 ≤ i ≤
⌊
− ln(εK1/4−α/4)

ln(x)

⌋
, while naA decreases from xiε to xi+1ε,

the sum process Σ(t) increases from n̄A− ∆+ϑ
cn̄A

x2iε2−MΣK
−1/2+α/2 to n̄A− ∆+ϑ/2

cn̄A
γx2i+2ε2

and stays above n̄A − ∆+ϑ
cn̄A

γx2i+2ε2 until the aA population hits the xi+1ε-level.

The proof uses the same three parts as described in the proof of Proposition II.9.

Final Step: Total decay time of naA(t). We iterate Step 1 to 8 until i=
⌊
− ln(εK1/2−α)

ln(x)

⌋
,

the value for which naA(t) is of order K−1/2+α. Finally, we sum up the decay time of the aA
population in each iteration step and get the desired result (Theorem II.2 (ii)).
Moreover, we ensure that the upper bound on the mutation probability µK in Assumption (C)
(II.15) is satisfied.

4. The deterministic system

4.1. The large population approximation
The main ingredient for the second phase is the deterministic system, since we know from [36]
or [18] that, for large populations, the behaviour of the stochastic process is close to the solution of
a deterministic equation. Thus we analyse it here.

Proposition II.11 (Proposition 3.2 in [18]). Let T > 0 and C ⊂ R3
+ be compact. Assume

that the initial condition 1
K (N0

aa, N
0
aA, N

0
AA) converges almost surely to a deterministic vector

(x0, y0, z0) ∈ C when K goes to infinity. Let (x(t), y(t), z(t)) = φ(t; (x0, y0, z0)) denote the
solution to

φ̇(t; (x0, y0, z0))=

 b̃aa(x(t), y(t), z(t))− d̃aa(x(t), y(t), z(t))

b̃aA(x(t), y(t), z(t))− d̃aA(x(t), y(t), z(t))

b̃AA(x(t), y(t), z(t))− d̃AA(x(t), y(t), z(t))

=:X(x(t), y(t), z(t)),

(II.43)

where

b̃aa(x(t), y(t), z(t)) =
(faax(t) + 1

2faAy(t))2

(faax(t) + faAy(t) + fAAz(t))
,

d̃aa(x(t), y(t), z(t)) = x(t)(Daa + caa,aax(t) + caa,aAy(t) + caa,AAz(t)),

and similar expression for the aA and AA types. Then, for all T > 0,

lim
K→∞

sup
t∈[0,T ]

|nuv(t)− φuv(t; (x0, y0, z0))| = 0 , a.s., (II.44)

for all uv ∈ {aa, aA,AA}.
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Thus, to understand the behaviour of the process we have to analyse the deterministic system
(II.43) above. The vector field (II.43) of the model we consider is given by

X(x, y, z) = X∆(x, y, z) =


f

(x+ 1
2
y)2

x+y+z − (D + ∆ + c(x+ y + z))x

2f
(x+ 1

2
y)(z+ 1

2
y)

x+y+z − (D + c(x+ y + z))y

f
(z+ 1

2
y)2

x+y+z − (D + c(x+ y + z))z

 , (II.45)

which has some particular properties:

Theorem II.4. Assume (A)+(B) and let ε > 0, then

(i) the vector field (II.45) has the unstable fixed point naa ≡ (n̄a, 0, 0) and the stable fixed
point nAA ≡ (0, 0, n̄A),

(ii) the Jacobian matrix at the unstable fixed point naa, DX∆(naa), has two negative and
one positive eigenvalues,

(iii) the Jacobian matrix at the stable fixed point nAA, DX∆(nAA), has two negative and
one zero eigenvalues,

(iv) for 0 < % < f∆, and as soon as the aA population decreased to an ε-level, then

2n̄A(f + ∆)

(f∆ + %)t+ 2n̄A(f+∆)
ε

≤ naA(t) ≤ 2n̄A(f + ∆)

(f∆− %)t+ 2n̄A(f+∆)
ε

. (II.46)

There is also a biological explanation for the behaviour of naA(t) described in Theorem II.4 (iv).
Since the A allele is the fittest and dominant one and because of the phenotypic viewpoint the aA
population is as fit as the AA population and both die with the same rate. The aA population only
decreases because of the disadvantage in reproduction due to the less fit, decreasing aa population.
Observe that Theorem II.4 (i)+(ii) also holds in the model of Collet, Méléard and Metz [18] (cf.
Proposition 3.3 therein) but the Jacobian matrix of their fixed point nAA has three negative eigen-
values and thus they get the exponential decay of naA(t).
The behaviour of solutions of the deterministic system can be analysed using the following result
of Collet, Méléard and Metz [18]:

Theorem II.5 (Theorem C.2 in [18]). Let ζ = uA − ua be the variation of the allelic trait.
Suppose it is non zero and of small enough modulus. If ζ dSaA,aadζ (0) > 0 then the fixed point
naa is unstable and we have fixation for the macroscopic dynamics.
More precisely, there exists an invariant stable curve Γζ which joins naa to nAA. Moreover
there exists an invariant tubular neighbourhood V of Γζ such that the orbit of any initial
condition in V converges to nAA.
If ζ dSaA,aadζ (0) < 0 the fixed point naa is stable and the mutant disappears in the macroscopic
dynamics.

Their proof works as follows. First they consider the unperturbed version X0 of the vector field
(II.43) in the case of neutrality between the alleles A and a. That is fu1u2 = f , Du1u2 = D
and Cu1u2,v1v2 = c, for u1u2, v1v2 ∈ {aa, aA,AA}. They get that this system has a line of fixed
points Γ0 which is transversally hyperbolic. Afterwards they consider the system Xζ with small
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perturbations ζ. From Theorem 4.1 in Hirsch, Pugh and Shub [51] they deduce that there exists
an attractive and invariant curve Γζ , converging to Γ0, as ζ → 0. Hence, there is a small enough
tubular neighbourhood V of Γ0 such that Γζ is contained in V and attracts all orbits with initial
conditions in V (cf. Figure II.5). To show that the orbit of any initial condition on Γζ converges to
one of the two fixed points naa or nAA, one have to ensure that the vector field does not vanish on
Γζ , except for these two fixed points. Since the curve Γζ is attractive, it is equivalent to look for the
fixed points in the tubular V . For finding the zero points in V , Collet, Méléard and Metz [18] use
linear combinations of the left eigenvectors of DX0(Γ0(v))t, with the perturbed vector field Xζ .
First they quote to zero the two linear combinations with the eigenvectors which span the stable
affine subspace. By the implicit function Theorem, they get a curve which contains all possible
zeros in V (cf. Proposition B.2 in [18]). Then they consider the last linear combination and look
for the points on the received curve where it vanish. Under the conditions that the derivative of
the third linear combination at the point n̄A is non zero and does not vanishes between the fixed
points±n̄A they get that Xζ has only two zeros in a tabular neighbourhood of Γ0 (cf. Theorem B.4
in [18]).
We have to do some extra work to get the same result for the model with dominant A allele since
the derivative of the third linear combination in our model, described above, is zero at the point
n̄A. But by an easy calculation (see (II.77) and (II.78)) we can indeed prove that this point is
an isolated zero and we can deduce from Theorem II.5 the following corollary, which is the main
result we need about the dynamical system.

Corollary II.1. Let ∆ 6= 0 small enough.

(i) The attracting and invariant curve Γ∆ of the perturbed vector field X∆ (II.43) contained
in the positive quadrant, is the piece of unstable manifold between the equilibrium
points naa and nAA.

(ii) There exists an invariant tubular neighbourhood V of Γ∆ such that the orbit of any
initial condition in V converges to the equilibrium point nAA.

Hence, if we start the process in a neighbourhood of the unstable fixed point naa, it will leave
this neighbourhood in finite time and converge to a neighbourhood of the stable fixed point nAA.

5. Proofs of Theorem II.4 and the main theorems

5.1. Analysis of the deterministic system
Because of Proposition II.11 we have to analyse the deterministic system (II.43) (a simulation is
shown in Figure II.1).

Proof of Theorem II.4. In the following we consider the differential equations of naa(t),
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Figure II.5.: The curves Γ0, Γ∆ and the tube V in the perturbed vector field X∆

naA(t) and nAA(t), given by (II.45):

ṅaa(t) = f

(
naa(t) + 1

2naA(t)
)2

Σ(t)
− naa(t)(D + ∆ + cΣ(t)), (II.47)

ṅaA(t) = 2f

(
naa(t) + 1

2naA(t)
) (
nAA(t) + 1

2naA(t)
)

Σ(t)
− naA(t)(D + cΣ(t)), (II.48)

ṅAA(t) = f

(
nAA(t) + 1

2naA(t)
)2

Σ(t)
− nAA(t)(D + cΣ(t)). (II.49)

The Fixed Points: By summing (II.47) to (II.49) first, and two times (II.49) and
(II.48), we see that the vector field (II.45) vanishes for the points naa and nAA. The
Jacobian matrix at the fixed point naa is given by

DX∆((n̄a, 0, 0)) =

−f +D + ∆ −f +D + ∆ −2f +D + ∆
0 ∆ 2f
0 0 −f + ∆

 . (II.50)

The matrix has the three eigenvalues λ1 = −(f − D − ∆), λ2 = ∆ and λ3 = −(f − ∆).
For ∆ small enough and from Assumption (A2) we know that λ1, λ3 < 0, whereas λ2 > 0.
Thus the fixed point naa is unstable.
The Jacobian matrix at the fixed point nAA is given by

DX∆((0, 0, n̄A)) =

 −f −∆ 0 0
2f 0 0

−2f +D −f +D −f +D

 , (II.51)

it has the three eigenvalues λ1 = −f − ∆ < 0, λ2 = 0 and λ3 = −(f − D) < 0, from
Assumption (A2). The fact that one of the eigenvalues is zero is the main novel feature of
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this system compared to that count in [18]. Because of the zero eigenvalue, nAA is a non-
hyperbolic equilibrium point of the system and linearization fails to determine its stability
properties. Instead, we use the result of the center manifold theory [51,88] that asserts that
the qualitative behaviour of the dynamical system in a neighbourhood of the non-hyperbolic
critical point nAA is determined by its behaviour on the center manifold near nAA.

Theorem II.6 (The Local Center Manifold Theorem 2.12.1 in [88]). Let f ∈ Cr(E), where
E is an open subset of Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and
Df(0) has c eigenvalues with zero real parts and s eigenvalues with negative real parts,
where c+ s = n. Then the system ż = f(z) can be written in diagonal form

ẋ = Cx+ F (x, y)

ẏ = Py +G(x, y), (II.52)

where z = (x, y) ∈ Rc×Rs, C is a c× c-matrix with c eigenvalues having zero real parts, P
is a s×s-matrix with s eigenvalues with negative real parts, and F (0) = G(0) = 0, DF (0) =
DG(0) = 0. Furthermore, there exists δ > 0 and a function, h ∈ Cr(Nδ(0)), where Nδ(0) is
the δ-neighbourhood of 0, that defines the local center manifold and satisfies:

Dh(x)[Cx+ F (x, h(x))]− Ph(x)−G(x, h(x)) = 0, (II.53)

for |x| < δ. The flow on the center manifold W c(0) is defined by the system of differential
equations

ẋ = Cx+ F (x, h(x)), (II.54)

for all x ∈ Rc with |x| < δ.

The fact that the center manifold of our system near nAA has dimension one, simplifies
the problem of determining the stability and the qualitative behaviour of the flow on it
near the non-hyperbolic critical point. The Local Center Manifold Theorem shows that
the non-hyperbolic critical point nAA is indeed a stable fixed point and that the flow on
the center manifold near the critical point behaves like a function 1

t . This can be seen as
follows: Assume that naA(t) has decreased to a level ε. Let nAA(t) = z(t), naA(t) = y(t)
and naa(t) = x(t). By the affine transformation nAA 7→ nAA − n̄A we get a translated
system

Y (z, y, x) =


f

(z+n̄A+ 1
2
y)2

z+y+x+n̄A
− (D + c(z + y + x+ n̄A))(z + n̄A)

2f
(z+n̄A+ 1

2
y)(x+ 1

2
y)

z+y+x+n̄A
− (D + c(z + y + x+ n̄A))y

f
(x+ 1

2
y)2

z+y+x+n̄A
− (D + ∆ + c(z + y + x+ n̄A))x

 , (II.55)

which has a critical point at the origin. The Jacobian matrix of Y at the fixed point (0, 0, 0)
is given by

DY ((0, 0, 0)) =

−(f −D) −(f −D) −(2f −D)
0 0 2f
0 0 −(f + ∆)

 , (II.56)
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which has the eigenvalues λ1 = −(f −D), λ2 = 0 and λ3 = −(f + ∆) with corresponding
eigenvectors

EV1 =

1
0
0

 , EV2 =

−1
1
0

 , and EV3 =


fD+∆(2f−D)
(f+∆)(D+∆)

− 2f
f+∆

1

 . (II.57)

We perform a new change of variable to work in the basis of eigenvectors of Y (z, y, x)

T =

1 1 D
D+∆

0 1 2f
f+∆

0 0 1

 , (II.58)

The change of variables z̃ỹ
x̃

 = T

zy
x

 , (II.59)

casts the system into the form

˙̃z = ż + ẏ +
D

D + ∆
ẋ, ˙̃y = ẏ +

2f

f + ∆
ẋ, ˙̃x = ẋ. (II.60)

Let h(ỹ) be the local center manifold. We approximate h(ỹ) =
(
h1

h2

)
ỹ2+O(ỹ3) and substitute

the series expansions into the center manifold equation (III.304)(
2h1ỹ

2h2ỹ

)
˙̃y(h1ỹ

2, ỹ, h2ỹ
2) =

( ˙̃z(h1ỹ
2, ỹ, h2ỹ

2)
˙̃x(h1ỹ2, ỹ, h2ỹ2)

)
. (II.61)

To determine h1 and h2 we compare the coefficients of the same powers of ỹ. We first
consider ˙̃y(h1ỹ

2, ỹ, h2ỹ
2) and get that the coefficient of ỹ is zero. The first coefficients which

are not zero at the right hand side are the ones of ỹ2. Thus we have to compare these with the
coefficient of ỹ2 on the left hand side which is zero. Hence, the coefficient of ˙̃x(h1ỹ

2, ỹ, h2ỹ
2)

of ỹ2, which is −h2(f+∆)+ f
4n̄A

, equals zero and we get h2 = f
4n̄A(f+∆) . From the coefficient

of ˙̃z(h1ỹ
2, ỹ, h2ỹ

2) of ỹ2, which is Dh1− f∆(2D+∆)
4n̄A(f+∆)(D+∆) , we get h1 = f∆(2D+∆)

4n̄AD(f+∆)(D+∆) . Thus
the local center manifold is given by

h(ỹ) =

(
f∆2

4n̄AD(f+∆)(D+∆)
f

4n̄A(f+∆)

)
ỹ2 +O(ỹ3). (II.62)

Substitution of this result into ˙̃y yields the flow on the local center manifold

˙̃y = − f∆

2n̄A(f + ∆)
ỹ2 +O(ỹ3). (II.63)

We can bound the solution of this equation with initial condition y(0) = ε by

2n̄A(f + ∆)

(f∆ + %)t+ 2n̄A(f+∆)
ε

≤ ỹ(t) ≤ 2n̄A(f + ∆)

(f∆− %)t+ 2n̄A(f+∆)
ε

, (II.64)

for 0 < % < f∆. Thus we see that nAA is a stable fixed point and naA(t) approaches this
fixed point like a function 1

t .
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In contrast to the model of Collet, Méléard and Metz [18], we see in the proof that naA(t) does
not dies out exponentially fast. Instead it decays like a function f(t) = 1

t , as soon as naA +nAA ≈
n̄A and thus survives a longer time in the population (cf. Figure II.1 and II.2). Up to now, we
know how the deterministic system evolves near its fixed points. Namely: if we start the process
in a neighbourhood of the unstable fixed point naa, it will leave this neighbourhood in finite time.
Whereas, if the process is in a neighbourhood of the stable fixed point nAA, it converges to this
point nAA, but the convergence is slower than in the model of Collet, Méléard and Metz [18].
We now turn to the analysis of the behaviour between these points.

Behaviour between the Fixed Points: We show that the deterministic system (II.43)
moves from a neighbourhood of the unstable fixed point naa to a neighbourhood of the stable fixed
point nAA (Corollary II.1).

Proof of Corollary II.1. The proof is similar to the proof of Theorem C.2 in [18]. It only
differs in the last step. The general unperturbed vector field X0 in the case of neutrality
between the a and A alleles is given by

X0 =


f

(x+ 1
2
y)2

x+y+z − (D + c(x+ y + z))x

2f
(x+ 1

2
y)(z+ 1

2
y)

x+y+z − (D + c(x+ y + z))y

f
(z+ 1

2
y)2

x+y+z − (D + c(x+ y + z))z

 . (II.65)

The content of Theorem B.1 in [18] is that X0 (II.65) has a line of fixed points given by,

Γ0(v) =


(v−n̄A)2

4n̄A

−v2−n̄2
A

2n̄A
(v+n̄A)2

4n̄A

 , v ∈ [−n̄A, n̄A], (II.66)

and that the differential of the vector field X0 at each point of the curve Γ0, DX0(Γ0(v)),
has the three eigenvectors

e1(v) =


(v−n̄A)2

4n̄A

−v2−n̄2
A

2n̄A
(v+n̄A)2

4n̄A

 , e2(v) =


v−n̄A
2n̄A
− v
n̄A

v+n̄A
2n̄A

 , e3(v) =
1

2n̄A

 1
−2
1

 , (II.67)

with respective eigenvalues −(f − D) < 0, 0 and −f < 0. DX0(Γ0(v))t has the three
eigenvalues, −f +D, 0, and −f , with corresponding eigenvectors

β1(v) =
1

n̄A

1
1
1

 , β2(v) =

−
v+n̄A
n̄A
− v
n̄A

−v−n̄A
n̄A

 , β3(v) =


(v+n̄A)2

2n̄A
v2−n̄2

A
2n̄A

(v−n̄A)2

2n̄A

 , (II.68)

which satisfy, for any i, j ∈ {1, 2, 3} and any v,

〈βi(v), ej(v)〉 = δi,j . (II.69)
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Next we analyse the asymptotics of the flow associated to the perturbed vector field, X∆

(II.45), as t → ∞. From Theorem B.1 in [18] we know that the curve of fixed points, Γ0,
is transversally hyperbolic and invariant for the vector field X0. Thus, Theorem 4.1 in [51]
implies that, for small enough ∆, there is an attractive curve, Γ∆ that is invariant under
X∆. Moreover, Γ∆ is regular and converges to Γ0, as ∆ → 0. Hence, there is a small
tubular neighbourhood, V, of Γ0 such that Γ∆ is contained in V and attracts all orbits with
initial conditions in V (cf. Figure (II.5)).

We want to study the flow associated to the vector field X∆. From the remarks above we
know that the curve Γ∆ is attractive for this flow. Thus, it suffices to analyse the flow on
the curve. Precisely, we want to show that the vector field does not vanish on Γ∆ except for
the two fixed points, naa and nAA. Thus the orbit of any initial condition on Γ∆ converges
to one of the two fixed points. It is easier to look for the fixed points in the tube V, which
is equivalent to looking for fixed points on Γ∆ because of the attractiveness of this curve.
Since Hirsch, Pugh and Shub [51] gives us only a local statement, we consider V in local
frames. A point (x, y, z) ∈ V is represented by the parametrisation

M(v, r, s) = Γ0(v) + re1(v) + se3(v) = (1 + r)Γ0(v) + s
d2Γ0(v)

dv2
, (II.70)

with v ∈ [−n̄A − δ, n̄A + δ] and r, s ∈ [−δ, δ], with δ > 0 chosen small enough. The
determinant of the Jacobian matrix of the transformation (v, r, s) 7→ (x, y, z) = M(v, r, s) is
− r+1

2 and thus invertible and does not vanish if 0 < δ < 1. Moreover, it is a diffeomorphism
which maps [−n̄A − δ, n̄A + δ]× [−δ, δ]2 to a closed neighbourhood of V.
For finding the zero points in V, we use linear combinations of the left eigenvectors βi, i ∈
{1, 2, 3}, with the perturbed vector field X∆. First we look for zeros of the two linear
combinations of X∆ with the eigenvectors β1 and β3 which spans the stable affine subspace.
By the implicit function Theorem, we obtain a curve which contains all possible zeros in
V. Then we consider the last linear combination of X∆ with β2 and zeros of this linear
combination on the curve above.

Proposition II.12 (Proposition B.2 in [18]). For any δ > 0 small enough, there is a
number ∆0 = ∆0(δ) such that, for any ∆ ∈ [−∆0,∆0], there is a smooth curve Z∆ =
(r∆(v), s∆(v)) ⊂ R2, depending smoothly on ∆ and converging to 0 when ∆ tends to zero
such that, for any v ∈ [−n̄A − δ, n̄A + δ], we have

〈β1(v), X∆(M(v, r∆(v), s∆(v)))〉 = 〈β3(v), X∆(M(v, r∆(v), s∆(v)))〉 = 0. (II.71)

Moreover, if a point (v, r, s) with v ∈ [−n̄A − δ, n̄A + δ], r and s small enough is such that

〈β1(v), X∆(M(v, r, s))〉 = 〈β3(v), X∆(M(v, r, s))〉 = 0, (II.72)

then (r, s) = (r∆(v), s∆(v)).

Next, we look for the points of the resulting curve (obtained from Proposition II.12)
where the third linear combination of the components vanishes. Since

〈β2(v), X(0,M(v, r0(v), s0(v)))〉=〈β2(v), X(0,M(v, 0, 0))〉=〈β2(v), X(0,Γ0(v))〉=0,
(II.73)
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this function vanishes for ∆ = 0 in v and we apply the Malgrange preparation Theorem [43],
which provides a representation for the linear combination near ∆ = 0:

〈β2(v), X(∆,M(v, r∆(v), s∆(v)))〉 = ∆2h(∆, v) + ∆g(v), (II.74)

where h, g are two smooth functions. To show that the third linear combination indeed
vanishes only in small neighbourhoods of the points ±n̄A, Collet, Méléard and Metz [18]
use a representation for the function g which is independent of the perturbation ∆.

Lemma II.2 (Lemma B.3 in [18]). The function g in (II.74) is given by

g(v) = 〈β2(v), ∂∆X0(Γ0(v))〉. (II.75)

Then they ensure that this function has only two zeros, which implies, because of the
representation (II.74), for |∆| 6= 0 small enough, that the perturbed vector field X∆ has
only the two known fixed points naa and nAA.

Theorem II.7 (Theorem B.4 in [18]). Assume the function

g(v) = 〈β2(v), ∂∆X0(Γ0(v))〉, (II.76)

satisfies dg
dv (±n̄A) 6= 0 and does not vanish in (−n̄A, n̄A). Then, for |∆| 6= 0 small enough,

the vector field X∆ has only two zeros in a tubular neighbourhood of Γ0. These zeros
are (naa(∆), 0, 0) and (0, 0, nAA(∆)), with naa(∆) and nAA(∆) regular near ∆ = 0 and
naa(0) = nAA(0) = n̄A.

While the hypothesis dg
dv (±n̄A) 6= 0 does not hold here, the conclusion of Theorem II.7

remains true. Namely, we have from (II.45) that

∂∆X∆(x, y, z) =

−x0
0

 , (II.77)

and thus

g(v) = 〈β2(v), ∂∆X0(Γ0(v))〉 =

〈−
v+n̄A
n̄A
− v
n̄A

−v−n̄A
n̄A

 ,

− (v−n̄A)2

4n̄A
0
0

〉 =
(v + n̄A)(v − n̄A)2

4n̄2
A

.

(II.78)

Obviously, g(±n̄A) = 0 and g has no other zeros, in particular, it does not vanish in
(−n̄A, n̄A). Hence, it follows from the representation (II.74) that there is a δ > 0 such
that, for ∆ small enough, 〈β2(v), X∆(M(v, r∆(v), s∆(v)))〉 has only two zeros in v ∈ [−δ −
n̄A, n̄A + δ]. From Theorem II.4 we get the existence of these two fixed points, which have
to be the points naa and nAA. Finally, we need the following lemma, which is analogous to
Theorem C.1 in Collet, Méléard and Metz [18].

Lemma II.3.

(a) The local stable manifold of the unstable fixed point naa = (n̄a, 0, 0) intersects the
closed positive quadrant only along the line y = z = 0.
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(b) The local unstable manifold is contained in the curve Γ∆.

Proof. We start by proving (a). From Theorem II.4 we get the hyperbolicity, thus we can
apply Theorem 4.1 in Hirsch, Pugh and Shub [51]. The Jacobian matrix DX∆((n̄a, 0, 0))
(cf. (II.50)) has the three eigenvalues λ1 = −(f −D−∆), λ2 = ∆ and λ3 = −(f −∆) with
corresponding eigenvectors

EV (λ1) =

1
0
0

 = e1(−n̄A) (II.79)

EV (λ2) =

−1
1
0

+
∆

f −D

1
0
0

 = e2(−n̄A) +O(∆) (II.80)

EV (λ3) =
1

2n̄A

 1
−2
1

+
∆

2n̄A(f −D)

1
0
0

 = e3(−n̄A) +O(∆). (II.81)

Let Esaa(∆) the two dimensional affine stable subspace spanned by the eigenvectors EV (λ1)
and EV (λ3) with origin in naa:

Esaa(∆) = {x ∈ R3|x = (n̄a, 0, 0)t + sEV (λ1) + tEV (λ3), ∀s, t ∈ R}. (II.82)

Again, by the lamination and permanence condition in Theorem 4.1 in [51], we get the
existence of a stable manifold W s,loc

aa and an unstable manifold W u,loc
aa of the fixed point

naa. The local stable manifold W s,loc
aa is a piece of regular manifold tangent in naa to the

subspace Esaa(∆). We see that the x-axis is invariant for X∆ and is contained in W s,loc
aa .

From (II.82), we get that Esaa(∆) intersects the closed positive quadrant only along the line
y = z = 0. Hence, the same is true forW s,loc

aa since it is a piece of the subspace Esaa(∆). This
shows (a). To show (b), we show that the local unstable manifold W u,loc

aa is contained in
the closed positive quadrant. This follows because W u,loc

aa is tangent to the linear unstable
direction in EV (λ2) in naa, which points into the positive quadrant. From Theorem 4.1
in [51] we get that the invariant curve, Γ∆, is unique, thus W u,loc

aa ⊂ Γ∆ and (b) follows by
the invariance of the positive quadrant under the flow.

The preceding steps conclude the proof of Corollary II.1.

5.2. Proof of the main theorems in Section 3
We carry out the proofs of the main theorems (Section 3) in full detail.
The mutant process A(t) = 2nAA(t) + naA(t) jumps up (resp. down) by rate bA (resp. dA) given
by:

bA =
2fK

Σ(t)

((
nAA(t) + 1

2naA(t)
)2

+
(
nAA(t) + 1

2naA(t)
) (
naa(t) + 1

2naA(t)
))

= fK(2nAA(t) + naA(t)) = A(t)Kf, (II.83)
dA = 2nAA(t)K(D + cΣ(t)) + naA(t)K(D + cΣ(t)) = A(t)K(D + cΣ(t)). (II.84)
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Phase 1: Fixation of the mutant population

Recall the stopping times (II.28) and (II.27), when the mutant population A(t) increased to a
δ-level and its stopping time of extinction. We show Theorem II.1:

Proof of Theorem II.1. We start the population process with a monomorphic aa population
which stays in a δ/2K-neighbourhood of its equilibrium n̄aK and one mutant with genotype
aA, i.e. τ0 = 0. Because of (II.15), there will be no further mutation in the process as we
will show.
Proposition II.1 states that if the resident population naa is in a δ/2-neighbourhood of its
equilibrium n̄a then naa will stay in a δ-neighbourhood for an exponentially long time as
long as the mutant population is less than δ. Hence we get that, as long as the mutant
population is smaller than δ, the time the process naa(t) needs to exit from its domain n̄a
is bigger than exp(V K) with probability converging to 1, for some V > 0 (cf. [14, 18]) and
the dynamics of the mutant population are negligible for naa(t).
With this knowledge we analyse the fate of the mutants for t < τmutδ ∧ τmut0 ∧ eV K . We
use the comparison results of birth and death processes (Theorem 2 in [14]) to bound the
mutant process from below and above. We denote by 4 the following stochastic dominant
relation: if P1 and P2 are the laws of R-valued processes, we will write P1 4 P2 if we can
construct on the same probability space (Ω,F ,P) two processes X1 and X2 such that the
law of the processes is L(Xi) = Pi, i ∈ {1, 2} and for all t > 0, ω ∈ Ω : X1

t (ω) ≤ X2
t (ω).

First we construct a process Al(t) 4 A(t) which is the minorising process of the mutant
process. This process has the birth and death rates:

bl(t) = Al(t)Kf, dl(t) = Al(t)K[D + c(n̄a + 2δ)]. (II.85)

A(t) 4 Au(t) is the majorising process with rates:

bu(t) = Au(t)fK, du(t) = Au(t)K[D + c(n̄a − δ)]. (II.86)

We define the stopping times

T ln/K ≡ inf
{
t ≥ 0 : Al(t) =

n

K

}
, T un/K ≡ inf

{
t ≥ 0 : Au(t) =

n

K

}
(II.87)

Θa ≡ inf {t ≥ 0 : |naa(t)− n̄a| > δ} , (II.88)

which are the first times that the processes Al, resp. Au reach the level n
K and the exit time

of naa(t) from the domain [n̄a − δ, n̄a + δ].
Note that both processes Al(t) and Au(t) are super-critical. In the following we use the

results for super-critical branching processes proven by Champagnat [14]:

Lemma II.4 (Theorem 4 (b) in [14]). Let b, d > 0. For any K ≥ 1 and any z ∈ N/K,
let PKz the law of the N/K-valued Markov linear birth and death process (ωt, t ≥ 0) with
birth and death rates b and d and initial state z. Define, for any ρ ∈ R, on D(R+,R), the
stopping time

Tρ = inf{t ≥ 0 : ωt = ρ}. (II.89)

Let (tK)K≥1 be a sequence of positive numbers such that lnK � tK . If b > d, for any ε > 0,

(a) lim
K→∞

PK1
K

(
T0 ≤ tK ∧ TdεKe/K

)
=
d

b
, (II.90)

(b) lim
K→∞

PK1
K

(
TdεKe/K ≤ tK

)
= 1− d

b
. (II.91)
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With respect to Theorem II.3, we prove the theorem for arbitrary µK . From (II.23) we
know that the next mutation occurs with high probability not before a time ρ

KµK
. Then

P1
K

[
T ldδKe/K < T l0 ∧

ρ
KµK

∧Θa

]
≤ P1

K

[
τmutδ < τmut0 ∧ ρ

KµK
∧Θa

]
≤ P1

K

[
T udδKe/K < T u0 ∧

ρ
KµK

∧Θa

]
. (II.92)

Using Proposition II.1, there exists V > 0 such that, for sufficiently large K,

P 1
K

[
τ1 ∧ eV K < Θa

]
≥ 1− δ. (II.93)

With (II.93) and for K large enough we can estimate,

P1
K

[
T ldδKe/K < T l0 ∧

ρ
KµK

∧Θa

]
≥ P1

K

[
T ldδKe/K < T l0 ∧

ρ
KµK

∧ eV K
]
− δ

= P1
K

[
T ldδKe/K < T l0 ∧

ρ
KµK

]
− δ

≥ P1
K

[{
T ldδKe/K < T l0 ∧

ρ
KµK

}
∩
{
T l0 ≥

ρ
KµK

}]
− δ

= P1
K

[{
T ldδKe/K < ρ

KµK

}
∩
{
T l0 ≥

ρ
KµK

}]
− δ

≥ P1
K

[
T ldδKe/K < ρ

KµK

]
− P 1

K

[
T l0 <

ρ
KµK

]
− δ. (II.94)

The extinction time for a binary branching process when b 6= d is given by (cf. page 109
in [1])

Pn(T0 ≤ t) =

(
d(1− e−(b−d)t)

b− de−(b−d)t

)n
, (II.95)

for any t ≥ 0 and n ∈ N. Under our condition on µK (II.15) in Theorem II.3, this implies
that

lim
K→∞

P1
K

[
T l0 ≤

ρ
KµK

]
= 0. (II.96)

Together with Lemma II.4, we get

lim
K→∞

P1
K

[
τmutδ < τmut0 ∧ ρ

KµK
∧Θa

]
≥ 1− dl

bl
− δ =

∆

f
−
(
c(M + 1)

f
+ 1

)
δ. (II.97)

If we next consider the upper bound of (II.92), we see that

P 1
K

[
T udδKe/K < T u0 ∧

ρ
KµK

∧Θa

]
≤ P1

K

[
T udδKe/K < T u0 ∧

ρ
KµK

]
. (II.98)

Similar as in (II.97)

lim
K→∞

P 1
K

[
τmutδ < τmut0 ∧ ρ

KµK
∧Θa

]
=

∆

f
+
cMδ

f
. (II.99)

Now, we let δ → 0 and get the desired result.
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Phase 2: Invasion of the mutant

If the mutant invades in the resident aa population then the first phase ends with a macroscopic
mutant population. Especially, we know that the aA population is of order δ due to its advantage
in recombination in contrast to the AA population. Applying the Large Population Approximation
(Theorem II.11, [36]) with this initial condition, we get that the behaviour of the process is close
to the solution of the deterministic system (II.43), when K tends to infinity. We approximate the
population process by the solution of the dynamical system (II.43). Result (III.36) in Proposition
II.43 is known (see [17] or [18]). We use this result only until the aA population decreases to an
ε-level.

Phase 3: Survival of the recessive a allele

This phase starts as soon as the aA population hits the ε value. At this time we restart the
population-process, that means we set the time to zero. The analysis of the deterministic dynamical
system up to this point shows that we get the following initial conditions:

naA(0) = ε, (II.100)

naa(0) ≤ f

4n̄A(f + ∆)
ε2 +Maaε

2+α, (II.101)

|nAA(0)− (n̄A − ε)| ≤MAAε
2, (II.102)∣∣∣Σ(0)−

(
n̄A − ∆

cn̄A
γε2
)∣∣∣ ≤MΣε

2+α, (II.103)

where Mi, i ∈ {aa,AA,Σ} are constants.
In the following stopping times denoted by τ are always stopping times on rescaled processes,
whereas stopping times denoted by T are the stopping times of the corresponding non-rescaled
processes.
We transform the birth and death rates of the processes Naa(t), NaA(t), NAA(t) and the sum pro-
cess Σ(t)K in such a way that we can consider them as the birth and death rates of linear birth-death
processes:

bΣ(t) = fΣ(t)K,

dΣ(t) = DΣ(t)K + cΣ2(t)K + ∆Naa(t), (II.104)

baa(t) = fNaa(t)

(
1− nAA(t)

Σ(t)

)
+

fK

4Σ(t)
n2
aA(t),

daa(t) = Naa(t)(D + ∆ + cΣ(t)), (II.105)

baA(t) = fNaA(t)

(
1− naA(t)

2Σ(t)

)
+ 2fNaa(t)

nAA(t)

Σ(t)
,

daA(t) = NaA(t)(D + cΣ(t)), (II.106)

bAA(t) = fNAA(t)

(
1− naa(t)

Σ(t)

)
+

fK

4Σ(t)
n2
aA(t),

dAA(t) = NAA(t)(D + cΣ(t)). (II.107)

We proceed as described in the outline. Recall the settings for the steps (II.26), (II.27), (II.28) and
(II.29).
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Step 1: We prove the upper bound of the sum process (Proposition II.2). For this we construct a
process, the difference process, which records the drift from the sum process away from the upper
bound n̄AK.

Proof of Proposition (II.2). The difference processXuΣ
t between Σ(t)K and n̄AK is a branch-

ing process with the same rates as Σ(t)K. Set

XuΣ
t = Σ(t)K − n̄AK,

TX,uΣ
0 ≡ inf{t ≥ 0 : XuΣ

t = 0},
TX,uΣ
α,MΣ

≡ inf{t ≥ 0 : XuΣ
t ≥MΣK

1/2+α/2}. (II.108)

This is a process in continuous time. For the following we need the discrete process Y uΣ
n

associated to XuΣ
t . To obtain this process we introduce a sequence of stopping times ϑn

which records the times, when XuΣ
t makes a jump. Formally, ϑn is the smallest time t

such that XuΣ
t 6= XuΣ

s , for all ϑn−1 ≤ s < t. We set XuΣ
ϑn

= Y uΣ
n . This discretisation has

probability less than 1
2 to make an upward jump:

Lemma II.5. For n ∈ N such that ϑn ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]

and 1 ≤ k ≤
MΣK

1/2+α/2 there exists a constant C0 > 0 such that

P[Y uΣ
n+1 = k + 1|Y uΣ

n = k] ≤ 1

2
− C0kK

−1 ≡ pΣ(k). (II.109)

Proof. With the rates (II.104), we get by some straightforward computations

P[Yn+1 = k + 1|Yn = k] =
bΣ

bΣ + dΣ

=
(n̄AK + k)f

(n̄AK + k)[f +D + c(n̄A + kK−1)] + ∆Naa(t)

≤ 1

2
+

1
2f −

1
2D −

1
2cn̄A −

1
2ckK

−1 − 1
2

∆Naa(t)
n̄AK+k

f +D + c(n̄A + kK−1) + ∆Naa(t)
n̄AK+k

≤ 1

2
+

−1
2ckK

−1 − 1
2

∆naa(t)
n̄A+kK−1

2f + ckK−1 + ∆naa(t)
n̄A

+O((xiε)4+α)

≤ 1

2
−

1
2ckK

−1

2f + ckK−1 + ∆naa(t)
n̄A

+O((xiε)4+α)

=
1

2
− C0kK

−1. (II.110)
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To obtain a Markov chain we couple the process Y uΣ
n with a process ZuΣ

n via:

(1) ZuΣ
0 = Y uΣ

0 ∨ 0, (II.111)

(2) P[ZuΣ
n+1 = k + 1|Y uΣ

n < ZuΣ
n = k] = pΣ(k), (II.112)

(3) P[ZuΣ
n+1 = k − 1|Y uΣ

n < ZuΣ
n = k] = 1− pΣ(k), (II.113)

(4) P[ZuΣ
n+1 = k + 1|Y uΣ

n+1 = k + 1, Y uΣ
n = ZuΣ

n = k] = 1, (II.114)

(5) P[ZuΣ
n+1 = k + 1|Y uΣ

n+1 = k − 1, Y uΣ
n = ZuΣ

n = k] =
pΣ(k)−P[Y uΣ

n+1=k+1|Y uΣ
n =k]

1−P[Y uΣ
n+1=k+1|Y uΣ

n =k]
, (II.115)

(6) P[ZuΣ
n+1 = k − 1|Y uΣ

n+1 = k − 1, Y uΣ
n = ZuΣ

n = k] = 1− pΣ(k)−P[Y uΣ
n+1=k+1|Y uΣ

n =k]

1−P[Y uΣ
n+1=k+1|Y uΣ

n =k]
.

(II.116)

Observe that by construction ZuΣ
n < Y uΣ

n , a.s. and that P
[
ZuΣ
n+1 = 1|ZuΣ

n = 0
]

= 1. The
marginal distribution of ZuΣ

n is the desired Markov chain with transition probabilities

P
[
ZuΣ
n+1 = k + 1|ZuΣ

n = k
]

= pΣ(k)P
[
Y uΣ
n < ZuΣ

n |ZuΣ
n = k

]
+ P

[
Y uΣ
n+1 = k + 1|Y uΣ

n = k
]
P
[
Y uΣ
n = ZuΣ

n |ZuΣ
n = k

]
+

pΣ(k)−P[Y uΣ
n+1=k+1|Y uΣ

n =k]
1−P[Y uΣ

n+1=k+1|Y uΣ
n =k]

P
[
Y uΣ
n = ZuΣ

n |ZuΣ
n = k

] (
1− P

[
Y uΣ
n+1 = k + 1|Y uΣ

n = k
])

= pΣ(k)
(
P
[
Y uΣ
n < ZuΣ

n |ZuΣ
n = k

]
+ P

[
Y uΣ
n = ZuΣ

n |ZuΣ
n = k

])
= pΣ(k), (II.117)

P
[
ZuΣ
n+1 = k − 1|ZuΣ

n = k
]

= 1− pΣ(k), (II.118)

and invariant measure

µ(n) =

∏n−1
k=1

1
2 − C0kK

−1∏n
k=1

1
2 + C0kK−1

, (II.119)

with µ(0) = 1 and µ(1) = 1
1
2

+C0K−1 . We want to calculate the probability that the Markov

chain ZuΣ
n , starting at a point 0 < zK < 1

2MΣK
1/2+α/2, reaches first MΣK

1/2+α/2 before
going to zero, which is the equilibrium potential of a one dimensional chain (see [9]). Using
Equation 7.1.57 in the book by Bovier and den Hollander [11], Chapter 7.1.4, we get (for
K large enough)

PzK [TZα,MΣ
< TZ0 ] =

∑zK
n=1

1
1−pΣ(n)

1
µ(n)∑3MΣ(x2iε2)1+αK

n=1
1

1−pΣ(n)
1

µ(n)

=

∑zK
n=1

∏n−1
k=1

1+2C0kK−1

1−2C0kK−1∑MΣK1/2+α/2

n=1

∏n−1
k=1

1+2C0kK−1

1−2C0kK−1

≤

∑zK
n=1 exp

(∑n−1
k=1 ln

(
1+2C0kK−1

1−2C0kK−1

))
∑MΣK1/2+α/2

n=1 exp
(∑n−1

k=1 ln
(

1+2C0kK−1

1−2C0kK−1

))
≤

∑zK
n=1 exp

(∑n−1
k=1 4C0kK

−1
)

∑MΣK1/2+α/2

n=1 exp
(∑n−1

k=1 4C0kK−1 −O ((kK−1)2)
)
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≤
∑zK

n=1 exp
(
2C0n

2K−1 − 2C0nK
−1
)∑MΣK1/2+α/2

n=1 exp (2C0n2K−1 − 2C0nK−1 −O (n(nK−1)2))

≤
zK exp

(
2C0z

2K
)∑MΣK1/2+α/2

n=1/2MΣK1/2+α/2 exp (2C0n2K−1 − 2C0nK−1 −O (n(nK−1)2))

≤
2zK−1/2−α/2 exp

(
2C0z

2K
)

MΣ exp
(

1
2C0M2

ΣK
α − 2C0MΣK−1/2+α/2 −O

(
K−1/2+3/2α

))
≤ exp

(
−2Ĉ0K

α
(

1
4M

2
Σ − z2K1−α)) . (II.120)

We denote by R the number of times that the process ZuΣ
n returns to zero before it reaches

MΣK
1/2+α/2. Let Rkz = PzK [R = k] be the probability that this number is k when starting

in zK. We define the times of the n-th returns to zero:

T 1
0 = inf{t > 0 : ZuΣ

t = 0}, Tn0 = inf{t > Tn−1
0 : ZuΣ

t = 0}. (II.121)

We then have

Rkz = PzK
[
T0 < TZ

uΣ

α,MΣ

] (
1− P0

[
TZ

uΣ

α,MΣ
< T0

])k−1
P0

[
TZ

uΣ

α,MΣ
< T0

]
≤ (1−A)k−1A,

(II.122)

where

A ≡ P0

[
TZ

uΣ

α,MΣ
< T0

]
=
∑
i≥1

p(0, i)Pi
[
TZ

uΣ

α,MΣ
< T0

]
= p(0, 1)P1

[
TZ

uΣ

α,MΣ
< T0

]
≤ exp

(
−C̃0M

2
ΣK

α
)
, (II.123)

for some finite positive constant C̃0 and p(0, i) = P
[
ZuΣ
n = 0|ZuΣ

n+1 = i
]
. Then

P[R ≤ N ] ≤
N∑
i=1

Riz ≤
N∑
i=1

(1−A)i−1A = 1− (1−A)N . (II.124)

We choose, e.g., N ∼ 1
K2A

, so that P [R ≤ N ] = o
(
K−1

)
. Let I0 ≡ T 1

0 and In ≡ Tn0 −T
n−1
0

the time the process needs for return to zero. The (Ij)j∈N are i.i.d. random variables and
it holds:

R∑
n=1

In ≤ TZ
uΣ

α,MΣ
≤

R+1∑
n=1

In. (II.125)

The underlying process, the sum process Σ(t) (II.12), of ZuΣ
n jumps with a rate

λΣ = fΣ(t)K +DΣ(t)K + cΣ(t)2K + ∆Naa(t) ≤ CλK. (II.126)

Since the Markov chain ZuΣ
n has to jump at least one time, it holds that, for all j ∈ N, Ij >

W , a.s., where W ∼ exp(CλK). Thus

P[Ij < y] ≤ P[W < y] = 1− exp(−CλKy). (II.127)
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We have

P
[
TZ

uΣ

α,MΣ
< τ i+aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
≤ P

[
TZ

uΣ

α,MΣ
< eV K

α/2
]

= P
[
TZ

uΣ

α,MΣ
< eV K

α/2 ∩ {R > N}
]

+ P
[
TZ

uΣ

α,MΣ
< eV K

α/2 ∩ {R ≤ N}
]

≤ P
[
TZ

uΣ

α,MΣ
< eV K

α/2 ∩ {R > N}
]

+ P[R ≤ N ]. (II.128)

First we estimate P
[
TZ

uΣ

α,MΣ
< eV K

α/2 ∩ {R > N}
]
. Since TZuΣ

α,MΣ
≥
∑R

n=1 In, it holds that if
n
2 of the Ij are greater than 2

neV K
α/2 , then TZuΣ

α,MΣ
≥ eV K

α/2 .

P
[
TX,uΣ
α,MΣ

< eV K
α/2 ∩ {R > N}

]
≤
∞∑
n=N

P
[
TX,uΣ
α,MΣ

< eV K
α/2 ∩ {R = n}

]

≤
∞∑
n=N

P

 n∑
j=1

Ij < eV K
α/2


≤
∞∑
n=N

P

 n∑
j=1

1{
Ij<

2
n

eVK
α/2
} > n

2

 . (II.129)

We have pn ≡ P
[
Ij <

2
neV K

α/2
]
≤ P

[
W < 2

neV K
α/2
]

= 1 − exp
(
−2CλK

n eV K
α/2
)
. The

number of random variables Ij that are greater than 2
neV K

α/2 is binomial distributed with
parameters pn, n.

∞∑
n=N

P

 n∑
j=1

1{
Ij<

2
n

eVK
α/2
} > n

2

 =
∞∑
n=N

n∑
m=n/2

(
n

m

)
(1− pn)n−mpmn

≤
∞∑
n=N

4np
n
2
n ≤

(16pN )N/2

1− 4p
1/2
N

, (II.130)

where we used that, in the range of summation, pn ≤ pN . Then, for K large enough,
4p

1/2
N ≤ 1/2, and

(16pN )N/2 ≤
(

16
(

1− exp
(
−2Cλ

N KeV K
α/2
)))N/2

≤
(

16
(

2Cλ
N KeV K

α/2
))N/2

=
(

16
(

2CλAK
3eV K

α/2
))N/2

. (II.131)

Recalling that A = e−O(Kα), one sees that (II.130) is bounded by o
(
e−K

α). Hence we get

P
[
TX,uΣ
α,MΣ

< τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2
]
≤ P

[
TX,uΣ
α,MΣ

< eV K
α/2 ∩ {R > N}

]
+ P[R ≤ N ]

= o

(
1

K

)
. (II.132)

This concludes the proof of Proposition II.2.
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Step 2: We derive a rough upper bound on the process naa (Proposition II.3). Recall that

γ∆ ≡
f + ∆

2

4n̄A(f + ∆)
. (II.133)

Proof of Proposition II.3. The proof is similar to the one of Proposition II.2. Again, we
define the difference process Xaa

t between Naa and γ∆x
2iε2K. This is a branching process

with the same rates as naa. Set

Xaa
t = Naa(t)− γ∆x

2iε2K, (II.134)
TX,aa0 ≡ inf{t ≥ 0 : Xaa

t = 0}, (II.135)

TX,aaα,Maa
≡ inf{t ≥ 0 : Xaa

t ≥Maa(x
2iε2)1+αK}. (II.136)

Let Y aa
n be the discretisation of Xaa

t , obtained as described in Step 1.

Lemma II.6. For n ∈ N such that ϑn ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
and

1 ≤ k ≤Maa(x
2iε2)1+αK, there exists a constant C0 > 0 such that

P
[
Y aa
n+1 = k + 1|Y aa

n = k
]
≤ 1

2
− C0 ≡ paa. (II.137)

Proof. In the following we use Proposition II.1 for the first iteration step, since the mu-
tant population nAA increased to an ε-neighbourhood of its equilibrium n̄A and the other
two populations decreased to an ε order. Thus the influence of the small aA- and aa
populations is negligible for the dynamics of nAA and the AA population will stay in the
n̄A-neighbourhood an exponentially long time. Now for the ith iteration-step we use the
finer bounds of nAA(t) (Proposition II.5 and II.6) and Σ(t) (Proposition II.4) estimated in
the (i− 1)th iteration-step before. By (II.105), we have

P[Y aa
n+1 = k + 1|Y aa

n = k]

=
(γ∆x

2iε2K + k)f
(

1− nAA(t)
Σ(t)

)
+ fK

4Σ(t)n
2
aA(t)

(γ∆x2iε2K + k)
[
f
(

1− nAA(t)
Σ(t)

)
+D + ∆ + cΣ(t)

]
+ fK

4Σ(t)n
2
aA(t)

=
1

2
+

1
2f −

f
2Σ(t)nAA(t) + fK

8Σ(t)

n2
aA(t)

(γ∆x2iε2K+k)
− 1

2D −
1
2∆− 1

2cΣ(t)

f
(

1− nAA(t)
Σ(t)

)
+D + ∆ + cΣ(t) + fK

4Σ(t)

n2
aA(t)

(γ∆x2iε2K+k)

. (II.138)

Using Propositions II.6, II.4 , and II.2 and (II.25), one sees that the numerator in the second
summand of (II.138) is bounded from above by

f

2
− f(n̄A−xi−1ε)

2(n̄A+MΣK−1/2+α/2)
+ f(xiε+K−1/2+3/4α)2

8γ∆x2iε2(n̄A−∆+ϑ
cn̄A

γx2i−2ε2+MΣK−1/2+α/2)
− D+∆+cn̄A

2 +O(xiε)

≤ −f + ∆

2
+

f

8n̄Aγ∆
+O(xiε) = −∆(f + ∆)

2(2f + ∆)
+O(xiε). (II.139)

For ε small enough, there exists a constant C0 > 0 such that

P[Y aa
n+1 = k + 1|Y aa

n = k] ≤ 1

2
− C0 ≡ paa. (II.140)
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As in Step 1 we couple Y aa
n with a process Zaan via:

(1) Zaa0 = Y aa
0 ∨ 0, (II.141)

(2) P[Zaan+1 = k + 1|Y aa
n < Zaan = k] = paa, (II.142)

(3) P[Zaan+1 = k − 1|Y aa
n < Zaan = k] = 1− paa, (II.143)

(4) P[Zaan+1 = k + 1|Y aa
n+1 = k + 1, Y aa

n = Zaan = k] = 1, (II.144)

(5) P[Zaan+1 = k + 1|Y aa
n+1 = k − 1, Y aa

n = Zaan = k] =
p0−P[Y aan+1=k+1|Y aan =k]

1−P[Y aan+1=k+1|Y aan =k] , (II.145)

(6) P[Zaan+1 = k − 1|Y aa
n+1 = k − 1, Y aa

n = Zaan = k] = 1− p0−P[Y aan+1=k+1|Y aan =k]

1−P[Y aan+1=k+1|Y aan =k] . (II.146)

Observe that by construction Zaan < Y aa
n , a.s.. The marginal distribution of Zaan is the

desired Markov chain with transition probabilities

P[Zaan+1 = k + 1|Zaan = k] = paa = 1− P[Zaan+1 = k − 1|Zaan = k], (II.147)

and invariant measure

µ(n) =

∏n−1
k=1

(
1
2 − C0

)∏n
k=1

(
1
2 + C0

) =

(
1
2 − C0

)n−1(
1
2 + C0

)n . (II.148)

The remainder of the proof is a complete re-run of the proof of Proposition II.2 and we skip
the details.

Step 3: We estimate the lower bound on Σ(t), for t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
.

Proof of Proposition II.4. The proof is similar to those of Proposition II.2 and II.3. We
only perform the crucial steps. This time the difference process is given by the difference
of Σ(t) and n̄A − ∆+ϑ

cn̄A
γ∆x

2iε2. Let

X lΣ
t = Σ(t)K −

(
n̄A − ∆+ϑ

cn̄A
γx2iε2

)
K, (II.149)

TX,lΣ0 ≡ inf{t ≥ 0 : X lΣ
t = 0}, (II.150)

TX,lΣα,MΣ
≡ inf{t ≥ 0 : X lΣ

t ≤ −MΣK
1/2+α/2}. (II.151)

As described in Step 1 we construct the discrete process Y lΣ
n associated to X lΣ

t . We show
that Y lΣ

n jumps down with a probability less than 1
2 :

Lemma II.7. For n ∈ N such that ϑn ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
and 1 ≤ k ≤

MΣK
1/2+α/2 there exists a constant C0 > 0 such that

P[Yn+1 = −k − 1|Yn = −k] ≤ 1

2
− C0x

2iε2 − C1kK
−1 ≡ pΣ. (II.152)

Proof. Using the rates of the sum process (II.104) and the upper bound on naa (Proposition
II.3), this is a simple computation and we skip the details.
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As in Step 1, to obtain a Markov chain we couple the process Y lΣ
n with a process Z lΣn via:

(1) Z0 = Y0 ∨ 0, (II.153)

(2) P[Z lΣn+1 = −k + 1|Y lΣ
n > Z lΣn = −k] = 1− pΣ, (II.154)

(3) P[Z lΣn+1 = −k − 1|Y lΣ
n > Z lΣn = −k] = pΣ, (II.155)

(4) P[Z lΣn+1 = −k − 1|Y lΣ
n+1 = −k − 1, Y lΣ

n = Z lΣn = −k] = 1, (II.156)

(5) P[Z lΣn+1 = −k − 1|Y lΣ
n+1 = −k + 1, Y lΣ

n = Z lΣn = −k] =
pΣ−P[Y lΣn+1=−k−1|Y lΣn =−k]

1−P[Y lΣn+1=−k−1|Y lΣn =−k]
,

(II.157)

(6) P[Z lΣn+1 = −k + 1|Y lΣ
n+1 = −k + 1, Y lΣ

n = Z lΣn = −k]=1− pΣ−P[Y lΣn+1=−k−1|Y lΣn =−k]

1−P[Y lΣn+1=−k−1|Y lΣn =−k]
.

(II.158)

Observe that by construction Z lΣn 4 Y lΣ
n , a.s.. The marginal distribution of Z lΣn is the

desired Markov chain with transition probabilities

P
[
Z lΣn+1 = k + 1|Z lΣn = k

]
= pΣ, (II.159)

P
[
Z lΣn+1 = k − 1|Z lΣn = k

]
= 1− pΣ, (II.160)

and invariant measure

µ(n) =

∏n−1
k=1

(
1
2 − C0x

2iε2 − C1kK
−1
)∏n

k=1

(
1
2 + C0x2iε2 + C1kK−1

) . (II.161)

The remainder of the proof follows along the lines of the proof given in Step 1. We prove
that the process returns to zero many times before it hits MΣK

1/2+α/2 and calculate the
duration of one zero-return to get the desired result.

Step 4: With Propositions II.2-II.4 and the settings we are able to calculate a lower (Step 4.1)
and an upper bound (Step 4.2) for nAA(t), for t ∈

[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
.

Step 4.1: We now prove Proposition II.5, the lower bound on nAA.

Proof of Proposition II.5. From Proposition II.4 we know that Σ(t) ≥ n̄A − ∆+ϑ
cn̄A

γx2iε2−
MΣK

1/2+α/2. With the upper bound in Proposition II.3 for naa and the settings for the
steps used for the aA population, we get

nAA(t) = Σ(t)− naA(t)− naa(t)

≥ n̄A − xiε− x2iε2
(

∆+ϑ
cn̄A

γ + γ∆

)
−Maa(x

2iε2)1+α −O
(
K−1/2+3/4α

)
≥ n̄A − xiε−O

(
x2iε2 +K−1/2+3/4α

)
. (II.162)
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Step 4.2: We prove Proposition II.6, the upper bound on nAA.

Proof of Proposition II.6. From Proposition II.2 we know that Σ(t) ≤ n̄A +MΣK
−1/2+α/2.

With the lower bound on naA(t) defined in the settings we get

nAA(t) = Σ(t)− naA(t)− naa(t)
≤ n̄A +MΣK

−1/2+α/2 − xi+1ε

≤ n̄A − xi+1ε+O(K−1/2+α/2). (II.163)

Step 5: Up to now we have estimated upper and lower bounds for all single processes: Σ(t),
naa(t), naA(t) and nAA(t), for t ∈

[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
. Now, we prove that naA(t) has

the tendency to decrease on the time intervals defined in the settings. For this we restart naA when
the process hits xiε and show that with high probability the aA- population decreases to xi+1ε
before it exceeds again the xiε + K−1/2+3/4α-value (Proposition II.7). For this we couple naA(t)
with a process which minorises it and on one which majorises it and show that these processes
decrease to xi+1ε before going back to xiε+K−1/2+3/4α.

Proof of Proposition II.7. As before let Y aA
n (cf. Step 1) be the associated discrete process

to NaA(t). We start by coupling Y aA
n with a Markov chain Zn such that Zun < Y aA

n , a.s..

Lemma II.8. For n ∈ N such that ϑn ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
there exists a con-

stant C0 > 0 such that

P
[
Y aA
n+1 = k + 1|Y aA

n = k
]
≤ 1

2
− C0x

i+1ε ≡ puaA. (II.164)

Proof. For t < τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2 , we have

P
[
Y aA
n+1 = k + 1|Y aA

n = k
]

=
fk
(

1− kK−1

2Σ(t)

)
+ 2fNaa(t)

nAA(t)
Σ(t)

fk
(

1− kK−1

2Σ(t)

)
+ 2fNaa(t)

nAA(t)
Σ(t) + k[D + cΣ(t)]

≤ 1

2
+

1
2f −

f
4Σ(t)kK

−1 + fnAA(t)
kΣ(t) Naa(t)− 1

2D −
1
2cΣ(t)

f
(

1− kK−1

2Σ(t)

)
+ 2fNaa(t)

k
nAA(t)

Σ(t) + [D + cΣ(t)]
.

(II.165)

As in the previous steps, we bound the nominator of the second summand in (II.165) using
Propositions II.2, II.4, and II.6, from above by

1
2f −

f
4n̄A

kK−1 +
f(n̄A−xi+1ε+O(K−1/2+α/2))

kK−1
(
n̄A−

∆+ϑ
cn̄A

γx2iε2−MΣK−1/2+α/2
)γ∆x

2iε2

− 1
2D −

1
2c
(
n̄A − ∆+ϑ

cn̄A
γx2iε2 −MΣK

−1/2+α/2
)

+O
((
xiε
)1+2α

)
≤ −

f
(
ϑ− ∆

2

)
4n̄A(f + ϑ)

xi+1ε+O
((
xiε
)1+2α

+K−1/2+α/2
)
. (II.166)
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This term is negative since ∆
2 < ϑ. Hence, we get

P
[
Y aA
n+1 = k + 1|Y aA

n = k
]
≤ 1

2
− C0x

i+1ε. (II.167)

To obtain a Markov chain we couple the process Y aA
n with a process Zun via:

(1) Zu0 = Y aA
0 , (II.168)

(2) P[Zun+1 = k + 1|Y aA
n < Zun = k] = puaA, (II.169)

(3) P[Zun+1 = k − 1|Y aA
n < Zun = k] = 1− puaA, (II.170)

(4) P[Zun+1 = k + 1|Y aA
n+1 = k + 1, Y aA

n = Zun = k] = 1, (II.171)

(5) P[Zun+1 = k + 1|Y aA
n+1 = k − 1, Y aA

n = Zun = k] =
puaA−P[Y aAn+1=k+1|Y aAn =k]

1−P[Y aAn+1=k+1|Y aAn =k]
, (II.172)

(6) P[Zun+1 = k − 1|Y aA
n+1 = k − 1, Y aA

n = Zun = k] = 1− puaA−P[Y aAn+1=k+1|Y aAn =k]

1−P[Y aAn+1=k+1|Y aAn =k]
. (II.173)

Observe that by construction Zun < Y aA
n , a.s.. The marginal distribution of Zun is the desired

Markov chain with transition probabilities

P[Zun+1 = k + 1|Zun = k] = puaA, (II.174)
P[Zun+1 = k − 1|Zun = k] = 1− puaA, (II.175)

and invariant measure

µ(n) =

∏n−1
k=1

(
1
2 − C0x

i+1ε
)∏n

k=1

(
1
2 + C0xi+1ε

) =

(
1
2 − C0x

i+1ε
)n−1(

1
2 + C0xi+1ε

)n . (II.176)

We define the stopping times

TZi+ ≡ inf
{
ϑn ≥ 0 : Zn ≥ xiεK +K1/2+3/4α

}
, (II.177)

TZ(i+1)− ≡ inf
{
ϑn ≥ 0 : Zn ≤ xi+1εK

}
. (II.178)

For xi+1ε ≤ z < xiε, we get as before the following bound on the harmonic function

PzK
[
TZ

u

i+ < TZ
u

(i+1)−

]
=

∑zK
n=xi+1εK+1

(
1+2C0xi+1ε
1−2C0xi+1ε

)n−1

∑xiεK+K max{x2iε2,K−1/2}
n=xi+1εK+1

(
1+2C0xi+1ε
1−2C0xi+1ε

)n−1

≤ K1/2−3/4α exp
(
−C̃K7/4α

)
. (II.179)

Now we couple Y aA
n with a Markov chain Z ln such that Z ln 4 Y aA

n , a.s..

Lemma II.9. For n ∈ N such that ϑn ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
there exists a con-

stant C1 > 0 such that

P
[
Yn+1 = k + 1|Y aA

n = k
]
≥ 1

2
− C1x

iε ≡ plaA. (II.180)
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Proof. The proof is completely analogous to the proof of Lemma II.8 and we skip the
details.

To obtain a Markov chain we couple the process Y aA
n with a process Z ln via:

(1) Z l0 = Y0, (II.181)

(2) P[Z ln+1 = k + 1|Y aA
n > Z ln = k] = plaA, (II.182)

(3) P[Z ln+1 = k − 1|Y aA
n > Z ln = k] = 1− plaA, (II.183)

(4) P[Z ln+1 = k − 1|Yn+1 = k − 1, Y aA
n = Z ln = k] = 1, (II.184)

(5) P[Z ln+1 = k − 1|Yn+1 = k + 1, Y aA
n = Z ln = k] =

P[Yn+1=k+1|Y aAn =k]−plaA
P[Yn+1=k+1|Y aAn =k]

, (II.185)

(6) P[Z ln+1 = k + 1|Yn+1 = k + 1, Y aA
n = Z ln = k] = 1− P[Yn+1=k+1|Y aAn =k]−plaA

P[Yn+1=k+1|Y aAn =k]
. (II.186)

Observe that by construction Z ln 4 Y aA
n , a.s.. The marginal distribution of Z ln is the desired

Markov chain with transition probabilities

P[Z ln+1 = k + 1|Z ln = k] = plaA, (II.187)

P[Z ln+1 = k − 1|Z ln = k] = 1− plaA. (II.188)

Similar to the upper process, we can show that the lower process reaches xi+1εK before
returning to xiεK + K1/2+3/4α, with high probability. This concludes the proof of the
proposition.

Step 6: In this step we calculate the time which naA(t) needs to decrease from xiε to xi+1ε
(Proposition II.8).

Proof of Proposition II.8. Let Z ln 4 Y aA
n 4 Zun be defined as in the step before and Y0 =

Z l0 = Zu0 = xiεK.
Recalling (II.106), we get

λaA(t) = fNaA(t)

(
1− naA(t)

2Σ(t)

)
+ 2fNaa(t)

nAA(t)

Σ(t)
+NaA(t)[D + cΣ(t)]

≥ 2fxi+1εK +O(x2iε2K) ≡ Cλxi+1εK ≡ λlaA, (II.189)

λaA(t) = fNaA(t)

(
1− naA(t)

Σ(t)

)
+ 2fNaa(t)

nAA(t)

Σ(t)
+NaA(t)[D + cΣ(t)]

≤ 2fxiεK +O(x2iε2K) ≡ CλxiεK ≡ λuaA. (II.190)

Let n∗ := inf
{
n ≥ 0 : Y aA

n − Y aA
0 ≤ −(1− x)xiεK

}
be the random variable which counts

the number of jumps Y aA
n − Y aA

0 makes until it is smaller than −(1 − x)xiεK. The time
between two jumps of naA(t) is given by τm − τm−1. It holds that Jum � τm − τm−1 � J lm,
where J lm (resp. Jum) are i.i.d. exponential distributed random variables with parameter
λlaA (resp. λuaA). We want to estimate bounds for the times that the processes Zun , resp.
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Z ln, need to decrease from xiεK to xi+1εK. Thus we show, for constants Cu, Cl > 0, that

(i) P

[
n∗∑
m=1

Jum >
2Cu

Cλxi+1ε

]
≤ exp(−MK2α), (II.191)

(ii) P

[
n∗∑
m=1

J lm <
Cl

2Cλxiε

]
≤ exp(−MK2α). (II.192)

We start by showing (II.191). We need to find N such that, with high probability, n∗ ≤ N .
To do this, we use the majorising process Zu. Let W u

k be i.i.d. random variables with

P[W u
k = 1] =

1

2
− C0x

i+1ε, P[W u
k = −1] =

1

2
+ C0x

i+1ε and E[W u
1 ] = −2C0x

i+1ε.

(II.193)

W u
k records a birth or a death event of the process Zun . From Lemma II.8 we get

P[n∗ ≤ N ] ≥ P

[
∃n ≤ N :

n∑
k=1

Wk ≤ −
⌊
(1− x)xiεK

⌋]

≥ P

[
N∑
k=1

Wk ≤ −
⌊
(1− x)xiεK

⌋]

≥ 1− P

[
N∑
k=1

(Wk − EWk) ≥ 2NC0x
i+1ε−

⌊
(1− x)xiεK

⌋]
. (II.194)

By Hoeffding’s inequality and choosing N = 1−x
C0x

K =: CuK, we get

P[n∗ ≤ CuK] ≥ 1− exp

(
−
C0

(
xiε
)2
Kx(1− x)

2

)
≥ 1− exp

(
−K2αC0(1− x)x/2

)
,

(II.195)
where we used that xiε ≥ K−1/2+α. Thus

P

[
n∗∑
m=1

Jum >
2Cu

Cλxi+1ε

]
≤ P

[
CuK∑
m=1

Jum >
2Cu

Cλxi+1ε

]
+ exp(−K2αC0x(1− x)/2). (II.196)

By applying the exponential Chebyshev inequality we get

P

[
CuK∑
m=1

Jum >
2Cu

Cλxi+1ε

]
≤ exp (−CuK/2) . (II.197)

Next we show (II.192). For this we need to find N such that P[n∗ ≤ N ] is very small. For
this we use the process Z l. Let W l

k be i.i.d. random variables which record a birth or a
death event of the process Z ln. They satisfy

P[W l
k = 1] =

1

2
− C1x

iε, P[W l
k = −1] =

1

2
+ C1x

iε and E[W l
1] = −2C1x

iε. (II.198)
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Note that from Lemma II.9

P[n∗ ≤ N ] ≤ P
[
inf
{
n ≥ 0 : Z ln − Z l0 ≤ −

⌊
(1− x)xiεK

⌋}
≤ N

]
(II.199)

= P

[
∃n ≤ N :

n∑
k=1

(Wk − EWk) ≤ 2nC1x
iε−

⌊
(1− x)xiεK

⌋]

≤
N∑
n=0

P

[
n∑
k=1

(Wk − EWk) ≤ 2nC1x
iε−

⌊
(1− x)xiεK

⌋]
. (II.200)

If we choose N = 1−x
4C1

K =: ClK, using Hoeffding’s inequality, we get, for all n ≤ N ,

P

[
n∑
k=1

(Wk − EWk) ≥
⌈
(1− x)xiεK

⌉
− 1

2
(1− x)xiεK

]
≤ exp(−K2αC1(1− x)/2).

(II.201)

Thus

P

[
n∗∑
m=1

J lm <
Cl

2Cλxiε

]
≤ P

[
ClK∑
m=1

J lm <
Cl

2Cλxiε

]
+ ClK exp

(
−K2αC1(1− x)/2

)
. (II.202)

It holds that

P

[
ClK∑
m=1

J lm >
Cl

2Cλxiε

]
= 1− P

[
ClK∑
m=1

J lm <
Cl

2Cλxiε

]
= 1− P

[
−

ClK∑
m=1

J lm > − Cl
2Cλxiε

]
.

(II.203)

A simple use of the exponential Chebyshev inequality shows that

P

[
ClK∑
m=1

J lm <
Cl

2Cλxiε

]
≤ exp (−ClK/2) . (II.204)

Thus we have that P
[∑n∗

m=1 J
l
m < Cl

2Cλxiε

]
≤ exp

(
−MK2α

)
, for some constant M > 0.

Step 7: In this step it is shown that naa(t) decreases under the upper bound γ∆x
2i+2ε2, which

we need to proceed the next iteration step, in at least the time naA(t) needs to decrease from
xiε to xi+1ε (Proposition II.9). We set the time to zero when naA(t) hits xiε. Hence naa(0) ≤

γ∆x
2iε2 +Maa(x

2iε2)1+α. Remember, γ∆/2 =
f+

∆
2 (1−ϑ)

4n̄A(f+∆) and let

θ+
i (aa) ≡ inf

{
t ≥ 0 : naa(t) ≥ γ∆x

2iε2 + 3Maa(x
2iε2)1+α

}
, (II.205)

θ−i (aa) ≡ inf
{
t ≥ 0 : naa(t) ≤ γ∆/2x

2i+2ε2
}
. (II.206)

For the proof we proceed in three parts. First we show that naa(t) has the tendency to decrease.
For this we construct a majorising process for naa(t) and show that this process decreases on the
given time interval. This process is used in the second part to estimate an upper bound on the time
which the aa population needs for the decay from γ∆x

2iε2 +Maa(x
2iε2)1+α to γ∆/2x

2i+2ε2. As
result we will get that naa(t) reaches the next upper bound before the aA population decreases to
xi+1ε. Thus in the third part we ensure that naa(t) stays below the bound γ∆x

2i+2ε2 until naA(t)
reaches xi+1ε.
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Part 1: We show

Proposition II.13. For t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
there are constants C̄, C̃ > 0

such that

P
[
θ+
i (aa) < θ−i (aa)|naa(0) ≤ γ∆x

2iε2 +Maa(x
2iε2)1+α

]
≤ exp(−C̃Kα). (II.207)

In this part the same strategy as in Step 5 is used. We couple naa(t) with a process which
majorises it and show that this process decreases from γ∆x

2iε2 +Maa(x
2iε2)1+α to γ∆/2x

2i+2ε2

with high probability.

Proof. As before, let Y aa
n be the discretisation of Naa(t). We start with the construction of

the upper process.

Lemma II.10. For n ∈ N such that ϑn ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
there exists a

constant Cu > 0 such that

P
[
Y aa
n+1 = k + 1|Y aa

n = k
]
≤ 1

2
− Cu ≡ pu. (II.208)

Proof. We know that, for t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
, naA(t) ∈

[
xi+1ε, xiε+

K−1/2+3/4α
]
. Again with (II.105) we have

P
[
Y aa
n+1 = k + 1|Yn = k

]
=

fk
(

1− nAA(t)
Σ(t)

)
+ fK

4Σ(t)n
2
aA(t)

fk
(

1− nAA(t)
Σ(t)

)
+ fK

4Σ(t)n
2
aA(t) + k[D + ∆ + cΣ(t)]

≤ 1

2
+

1
2f−

f
2Σ(t)nAA(t) + fK

8Σ(t)

n2
aA(t)
k − 1

2D −
1
2cΣ(t)− 1

2∆

f
(

1− nAA(t)
Σ(t)

)
+ fK

4Σ(t)

n2
aA(t)
k + [D + ∆ + cΣ(t)]

.

(II.209)

Using Proposition II.2, II.4 and II.6, we bound the numerator in the second summand from
above by

−f + ∆

2
+

f

8n̄Aγ∆/2x2
+O

(
xiε1 +K−1/4α

)
≤ −

(f + ∆)
(
f
(
ϑ− ∆

2 −
∆ϑ
2

)
+ ∆ϑ

2 (1− ϑ)
)

2(f + ∆
2 (1− ϑ))(f + ϑ)

+O
(
xiε+K−1/4α

)
. (II.210)

Since ∆
2 < ϑ there exists a constant Cu > 0 such that

P[Yn+1 = k + 1|Yn = k] ≤ 1

2
− Cu ≡ pu. (II.211)
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By replacing paa by pu, we couple Y aa
n in the same way with a process Zun as it was done

in Step 2. Observe that by construction Zun < Y aa
n , a.s.. The marginal distribution of Zun is

the desired Markov chain with transition probabilities

P[Zun+1 = k + 1|Zun = k] = pu, (II.212)
P[Zun+1 = k − 1|Zun = k] = 1− pu, (II.213)

and invariant measure

µ(n) =

∏n−1
k=1

(
1
2 − Cu

)∏n
k=1

(
1
2 + Cu

) =

(
1
2 − Cu

)n−1(
1
2 + Cu

)n . (II.214)

We define the stopping times

T+
i (aa) ≡ inf

{
t ≥ 0 : Zun ≥ γ∆x

2iε2K + 3Maa(x
2iε2)1+αK

}
, (II.215)

T−i (aa) ≡ inf
{
t ≥ 0 : Zun ≤ γ∆/2x

2i+2ε2K
}
. (II.216)

Again with the formula of the equilibrium potential we estimate for γ∆/2x
2i+2ε2K ≤ zK <

γ∆x
2iε2K +Maa(x

2iε2)1+αK

PzK
[
T+
i (aa) < T−i (aa)

]
=

∑zK
n=γ∆/2x

2i+2ε2K+1

(
1+2Cu
1−2Cu

)n−1

∑γ∆x2iε2K+3Maa(x2iε2)1+αK

n=γ∆/2x
2i+2ε2K+1

(
1+2Cu
1−2Cu

)n−1 ≤ exp(−C̃Kα).

(II.217)

Part 2: Similary to Step 6, we calculate an upper bound on the time which naa(t) needs at most
to decrease from γ∆x

2iε2 +Maa(x
2iε2)1+α to γ∆/2x

2i+2ε2.

Proposition II.14. Let

θi(aa) ≡ inf
{
t ≥ 0 : naa(t) ≤ γ∆/2x

2i+2ε2|naa(0) = γ∆x
2iε2 +Maa(x

2iε2)1+α
}
, (II.218)

be the decay time of naa(t), for t ∈
[
τ i−aA, τ

i+
aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
. Then there exist finite,

positive constants Caau and M , such that for all 0 ≤ i ≤ − ln(εK1/2−α)
ln(x) − 1

P [θi(aa) > Caau ] ≤ exp
(
−MK2α

)
. (II.219)

Proof. The proof works like the one of Proposition II.8. We calculate an upper bound on
the decay time of the majorising process Zun . Let Y aa

n and Zun be defined as in the step
before and let W u be i.i.d. random variables with

P[W u = 1] =
1

2
− Cu, P[W u = −1] =

1

2
+ Cu and E[W u

1 ] = −2Cu. (II.220)

The W u’s record a birth or a death event of Zun . Similar as in Step 6, we choose
N =

γ∆−x2γ∆/2+Maa(xiε)2α

Cu
x2iε2K =: C̄

Cu
x2iε2K and show that P[n∗ ≤ C̄

Cu
x2iε2K] ≥ 1−

exp(−K2αC̄Cu/2). It holds

λaa(t) = fNaa(t)
(

1− nAA(t)
Σ(t)

)
+ fK

4Σ(t)n
2
aA(t) +Naa(t)[D + ∆ + cΣ(t)]

≤ Cλx2i+2ε2K ≡ λlaa. (II.221)
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Again, let τm−τm−1 be the time between two jumps of naa(t) and let Jaam be i.i.d. exponen-
tial random variables with parameter λlaa. As in Step 6, using the exponential Chebyshev
inequality, we get that

P

C̄/Cux2iε2K∑
m=1

Jaam >
2C̄

CuCλx2

 ≤ exp
(
− C̄

2Cu
K2α

)
, (II.222)

and hence

P

[
n∗∑
m=1

Jaam >
2C̄

CuCλx2

]
≤ exp

(
−MK2a

)
. (II.223)

Part 3: We see that naa(t) reaches γ∆/2x
2i+2ε2 before naA(t) decreases to xi+1ε. Similar

to Step 2 we can show that once naa(t) hits γ∆/2x
2i+2ε2 it will stay close to it an expo-

nentially long time and will not exceed γ∆x
2i+2ε2 again. Thus we can ensure that naa(t) is

below γ∆x
2i+2ε2 when naA(t) reaches xi+1ε.

Step 8: For the iteration we have to ensure that the sum process increases on the given time
interval from the value n̄A − ∆+ϑ

cn̄A
γx2iε2 −MΣK

−1/2+α/2 to n̄A − ∆+ϑ
cn̄A

γx2i+2ε2 and stays there
until the next iteration-step (Proposition II.10). We set the time to zero when the aA population
hits xiε. Hence Σ(0) ≥ n̄A − ∆+ϑ

cn̄A
γx2iε2 −MΣK

−1/2+α/2. Observe that we have to carry out

this step only until i ≤ − ln(εK1/4−α/4)
ln(x) , since afterwards x2iε2 ≤ K−1/2+α/2 and thus Σ(t) ≥

n̄A −MΣK
−1/2+α/2 which is enough for the further iteration. As in the proof of Proposition II.9

we divide the proof into three parts.

Part 1: Similarly to Part 1 in Step 7, we show that with high probability Σ(t) increases to
n̄A − ∆+ϑ

cn̄A
γx2i+2ε2 before going back to n̄A − ∆+ϑ/2

cn̄A
γx2iε2 − 3MΣK

−1/2+α/2 . We define
stopping times on Σ(t):

τ i−Σ ≡ inf
{
t ≥ 0:Σ(t)≤ n̄A−∆+ϑ

cn̄A
γx2iε2−3MΣK

−1/2+α/2≡ v(Σ−)−3MΣK
−1/2+α/2

}
,

(II.224)

τ i+Σ ≡ inf
{
t ≥ 0:Σ(t) ≥ n̄A − ∆+ϑ/2

cn̄A
γx2i+2ε2 ≡ v(Σ+)

}
, (II.225)

where MΣ > 0.

Proposition II.15. There are constants C̄, C̃ > 0 such that for all 0 ≤ i ≤ − ln(εK1/4−α/4)
ln(x)

P[τ i−Σ < τ i+Σ |Σ(0) ≥ n̄A − ∆+ϑ
cn̄A

γx2iε2 +MΣ(x2iε2)1+α] ≤ exp
(
−C̃Kα

)
. (II.226)

Proof. From the step before we know that naa(t) decreases under the value γ∆x
2i+2ε2 in a

time of order 1 and does not exceed this bound once it hits it. Thus, with the knowledge
of Step 3, we show that, for t ∈

[
τ i−aA + θi(aa), τ i+aA ∧ τ

(i+1)−
aA

]
, the sum process has the

tendency to increase and exceed the lower bound n̄A − ∆+ϑ
cn̄A

γx2i+2ε2 before naA(t) hits
xi+1ε. As before, let Y Σ

n be the associated discrete process to Σ(t).
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Lemma II.11. For n ∈ N such that ϑn ∈
[
τ i−aA + θi(aa), τ i+aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
there

exists a constant C0 > 0 such that for all 0 ≤ i ≤ − ln(εK1/4−α/4)
ln(x)

P
[
Y Σ
n+1 = k − 1|Y Σ

n = k
]
≤ 1

2
− C0x

2i+2ε2 ≡ p0(Σ). (II.227)

Proof. To show the lemma we use the results of the steps before. It holds:

P
[
Y Σ
n+1 = k − 1|Y Σ

n = k
]
≤ 1

2
+
−1

2(f −D) + 1
2ckK

−1 + ∆
2kNaa(t)

f +D + ckK−1 + ∆
kNaa(t)

. (II.228)

We estimate the nominator

≤ −f −D
2

+
1

2
ckK−1 +

∆

2
γ∆x

2i+2ε2k−1K. (II.229)

This term assumes its maximum at k=v(Σ+). If we insert this bound, n̄A− ∆+ϑ/2
cn̄A

γx2i+2ε2,
we can estimate

≤ −f −D
2

+
c

2
n̄A −

∆ + ϑ/2

2n̄A
γx2i+2ε2 +

∆

2n̄A
γ∆x

2i+2ε2 +O(x4i+4ε4)

≤ − ϑf −∆2

16n̄2
A(f + ∆)

x2i+2ε2 +O(x4i+4ε4). (II.230)

Thus, there exists a constant C0 > 0 such that

P
[
Y Σ
n+1 = k − 1|Y Σ

n = k
]
≤ 1

2
− C0x

2i+2ε2. (II.231)

Again we couple Y Σ
n with Z ln via:

(1) Z l0 = Y Σ
0 , (II.232)

(2) P[Z ln+1 = k + 1|Y Σ
n > Z ln = k] = 1− p0(Σ), (II.233)

(3) P[Z ln+1 = k − 1|Y Σ
n > Z ln = k] = p0(Σ), (II.234)

(4) P[Z ln+1 = k − 1|Y Σ
n+1 = k − 1, Y Σ

n = Z ln = k] = 1, (II.235)

(5) P[Z ln+1 = k − 1|Y Σ
n+1 = k + 1, Y Σ

n = Z ln = k] =
p0(Σ)−P[Y Σ

n+1=k−1|Y Σ
n =k]

1−P[Y Σ
n+1=k−1|Y Σ

n =k]
, (II.236)

(6) P[Z ln+1 = k + 1|Y Σ
n+1 = k + 1, Y Σ

n = Z ln = k] = 1− p0(Σ)−P[Y Σ
n+1=k−1|Y Σ

n =k]

1−P[Y Σ
n+1=k−1|Y Σ

n =k]
. (II.237)

Observe that by construction Z ln 4 Y Σ
n , a.s.. The marginal distribution of Z ln is the desired

Markov chain with transition probabilities

P
[
Z ln+1 = k + 1|Z ln = k

]
= 1− p0(Σ), (II.238)

P
[
Z ln+1 = k − 1|Z ln = k

]
= p0(Σ), (II.239)
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and invariant measure

µ(n) =

∏n−1
k=1

(
1
2 + C0x

2i+2ε2
)∏n

k=1

(
1
2 − C0x2i+2ε2

) =

(
1
2 + C0x

2i+2ε2
)n−1(

1
2 − C0x2i+2ε2

)n . (II.240)

Again we get a bound on the harmonic function, for n̄A − ∆+ϑ
cn̄A

γx2iε2 −MΣK
−1/2+α/2 ≤

z < n̄A − ∆+ϑ/2
cn̄A

γ2i+2
x ε2,

PzK
[
T i−Σ < T i+Σ

]
=

∑Kv(Σ+)
n=zK+1

(
1−2C0x2i+2ε2

1+2C0x2i+2ε2

)n−1

∑Kv(Σ+)

n=Kv(Σ−)−3MΣK1/2+α/2+1

(
1−2C0x2i+2ε2

1+2C0x2i+2ε2

)n−1 ≤exp
(
−C̃Kα

)
.

(II.241)

Part 2: As in Step 6, to calculate an upper bound on the time which Σ(t) need to increase from
n̄A − ∆+ϑ

cn̄A
γx2iε2 −MΣK

−1/2+α/2 to n̄A − ∆+ϑ/2
cn̄A

γx2i+2ε2, we estimate the number of jumps of
the sum process and the duration of one single jump from above on a given time interval.

Proposition II.16. Let

θi(Σ) ≡ inf
{
t ≥ 0 : Σ(t) ≥ n̄A−∆+ϑ/2

cn̄A
γx2i+2ε2

∣∣∣
Σ(0) = n̄A − ∆+ϑ

cn̄A
γx2iε2 −MΣK

−1/2+α/2
}
, (II.242)

be the growth time of Σ(t) on the time interval t ∈
[
τ i−aA + θi(aa), τ i+aA ∧ τ

(i+1)−
aA

]
. Then there

exist finite, positive constants, CΣ
l and M , such that for all 0 ≤ i ≤ − ln(εK1/4−α/4)

ln(x)

P
[
θi(Σ) > CΣ

l

]
≤ exp

(
−MK4α

)
. (II.243)

Proof. Let Y Σ
n be defined as in the step before and let Wk be i.i.d. random variables with

P[Wk = 1] =
1

2
+ C0x

2i+2ε2, P[Wk = −1] =
1

2
− C0x

2i+2ε2 and E[W1] = 2C0x
2i+2ε2,

(II.244)

which record a birth or a death event of the lower process Z ln. We choose N = C̃K
4C0x2 , with

C̃ = ∆+ϑ−x2(∆+ϑ/2)
cn̄A

, and show that P [n∗ ≤ N ] ≥ 1 − exp
(
−KαC0C̃x

2/2
)
. We estimate

from above the time the process Σ(t) needs to make one jump:

λΣ(t) = fΣ(t)K + Σ(t)K[D + ∆ + cΣ(t)] + ∆Naa(t) ≥ CλK ≡ λlΣ. (II.245)

As before let τm−τm−1 the time between two jumps of Σ(t) and let JΣ
m are i.i.d. exponential

random variables with parameter λlΣ. As in Step 6, by applying the exponential Chebyshev
inequality, we get that P

[∑C̃K
m=1 J

Σ
m > C̃

2C0x2Cλ

]
≤ exp

(
− C̃

2C0x2K
)
and hence

P

[
n∗∑
m=1

JΣ
m >

C̃

2C0x2Cλ

]
≤ exp (−MKα) . (II.246)
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Part 3: For the iteration we have to ensure that once Σ(t) hits the upper bound
n̄A− ∆+ϑ/2

cn̄A
γx2i+2ε2 it will stay close to it for an exponential time on the given time interval. This

ensures that the sum process is larger than n̄A− ϑ+∆
cn̄A

γx2i+2ε2 when naA(t) hits xi+1ε and the next
iteration step can start.

Proposition II.17. Assume that Σ(0) = n̄A − ∆+ϑ/2
cn̄A

γx2i+2ε2. Let

τ̂αΣ ≡ inf
{
t > 0 : Σ(t)− n̄A + ∆+ϑ/2

cn̄A
γx2i+2ε2 ≤ − ϑ

2cn̄A
γx2i+2ε2

}
. (II.247)

Then, for all 0 ≤ i ≤ − ln(εK1/4−α/4)
ln(x)

P[τ̂αΣ < τ i+aA ∧ τ
(i+1)−
aA ∧ eV K

α/2
] = o(K−α). (II.248)

Proof. The proof is similar to Step 3. Again we define the difference process X̂t between
Σ(t)K and n̄AK − ∆+ϑ/2

cn̄A
γx2i+2ε2K, which is a branching process with the same rates as

Σ(t):

X̂t = Σ(t)K − n̄AK + ∆+ϑ/2
cn̄A

γx2i+2ε2K, (II.249)

T̂X0 ≡ inf{t ≥ 0 : X̂t = 0}, (II.250)
T̂Xα,MΣ

≡ {t ≥ 0 : X̂t ≤ − ϑ
2cn̄A

γx2i+2ε2K}. (II.251)

Let Ŷn be the discrete process associated to X̂t, obtained as described in Step 1.

Lemma II.12. For n ∈ N such that ϑn ∈
[
τ i−aA + θi(aa), τ i+aA ∧ τ

(i+1)−
aA ∧ eV K

α/2
]
, there

exists a constant Ĉ0 > 0 such that for all 0 ≤ i ≤ − ln(εK1/4−α/4)
ln(x)

P[Ŷn+1 = −k − 1|Ŷn = −k] ≤ 1

2
− Ĉ0x

2i+2ε2 ≡ p̂Σ. (II.252)

The proof is a re-run of Step 3 by using the rates (II.104). The rest of the proof of
Proposition II.17 is similar to Step 3.

Final Step:

Calculation of the Decay Time of naA: The following proves Theorem II.2 (ii). Set

σ ≡ − ln(εK1/2−α)

ln(x)
. (II.253)

Observe that xσε ≥ K−1/2+α is just the value until which we can control the decay of naA(t).
Thus, to calculate the time of the controlled decay of the aA population we iterate the system,
described above, until i = σ−1. Observe that

∑σ−1
j=0

Cu
xjε

= Cux
1−x(K1/2−α−ε−1) ≥ Clx

1−x(K1/2−α−
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ε−1) =
∑σ−1

j=0
Cl
xjε

and that the θj(aA) = τ
(j+1)−
aA − τ j+aA are independent random variables. Thus,

for some constant M̃ > M > 0, we get

P
[
Cux

1− x

(
K1/2−α − ε−1

)
≥ τσ−aA − τ

0+
aA ≥

Clx

1− x

(
K1/2−α − ε−1

)]
(II.254)

= P

 Cux

1− x

(
K1/2−α − ε−1

)
≥

σ−1∑
j=0

(
τ

(j+1)−
aA − τ j+aA

)
≥ Clx

1− x

(
K1/2−α − ε−1

) (II.255)

≥ P
[
Cu
xε
≥ θ1(aA) ≥ Cl

xε
, ...,

Cu
xσε
≥ θσ(aA) ≥ Cl

xσε

]
(II.256)

≥ 1− σ exp(−MK2α) ≥ 1− exp(−M̃K2α). (II.257)

Remark II.5. A function f(t) = 1
t needs a time t1 − t0 = K1/2−α − 1

ε to decrease from
f(t0) = ε to f(t1) = K−1/2+α. Compared to the decay-time of naA we see that it is of the
same order. Thus the stochastic process behaves as the dynamical system.

Survival until Mutation: Now we prove Theorem II.3. We already know that there is
no mutation before a time of order 1

KµK
(cf. Lemma II.1 and (II.23)). Since we have seen that

the duration of the first step is O(lnK) and the time needed for the second step is bounded, the
left hand side of (II.15) ensures that the first two phases are ended before the occurrence of a new
mutation. Thus we get the first statement of (II.21).
To justify the second statement of (II.21), we have to calculate an upper bound on the mutation time
such that there are still enough aA individuals in the population, when the next mutation to a new
allele occurs. We saw that we can control the process only until the aA population has decreased
to K−1/2+α. Thus we have to verify that the mutation time is smaller than O

(
K1/2−α), the time

the process naA needs to decrease to K−1/2+α.
The mutation rate of the whole population is the sum of the mutation rates of each subpopulation.
For t ∈ [τ0+

aA , τ
σ−
aA ] with high probability, the new mutation occurs in the AA population, because

naa(t) and naA(t) are very small.
Let

pA(t) =
nAA(t) + 1

2naA(t)

naa(t) + naA(t) + nAA(t)
(II.258)

be the relative frequency of A alleles in the population at time t. The mutation rate of the AA
population is given by

µAAK = µKfpA(t)nAA(t)K. (II.259)

For t ∈ [τ0+
aA , τ

σ−
aA ] we know from the results before that nAA is in an ε-neighbourhood of its

equilibrium, n̄A, and naA, naa ≤ ε. We can estimate µAAK :

µAAK ≥ µKf(n̄A −O(ε))K. (II.260)

From (II.259) we get that the time of a new mutation is smaller or equal to 1
f (̄nA−O(ε)KµK

. Thus
to ensure that we still have a alleles in the population, we have to choose µK in such a way that

1

KµK
� K1/2−α, (II.261)

77



II. Chapter: Survival of a recessive allele in a Mendelian diploid model

since we can ensure the survival of naA(t) until the time Clx
1−x

(
K1/2−α − ε−1

)
(cf. (II.254)).

Hence, the right hand side of (II.15) gives us that a new mutation occurs before the aA population
died out. This finishes the proof of Theorem II.3.
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III. Chapter

The recovery of a recessive allele
in a Mendelian diploid model
Anton Bovier, Loren Coquille and Rebecca Neukirch

Abstract We study the large population limit of a stochastic individual-based
model which describes the time evolution of a diploid hermaphroditic population
reproducing according to Mendelian rules. In [84] it is proved that sexual reproduc-
tion allows unfit alleles to survive in individuals with mixed genotype much longer
than they would in populations reproducing asexually. In the present paper we prove
that this indeed opens the possibility that individuals with a pure genotype can rein-
vade in the population after the appearance of further mutations. We thus expose a
rigorous description of a mechanism by which a recessive allele can re-emerge in
a population. This can be seen as a statement of genetic robustness exhibited by
diploid populations performing sexual reproduction.

We acknowledge financial support from the German Research Foundation (DFG) through the Hausdorff
Center for Mathematics, the Cluster of Excellence ImmunoSensation, and the Priority Programme SPP1590
Probabilistic Structures in Evolution. L.C. has been partially supported by the LabEx PERSYVAL-Lab
(ANR-11-LABX-0025-01) through the Exploratory Project CanDyPop and by the Swiss National Science
Foundation through the grant No. P300P2_161031.
We would like to thank Pierre Collet and Vincent Beffara for their help on the theory of dynamical systems
and fruitful discussions.

1. Introduction
In population genetics, the study of Mendelian diploid models of fixed population size began more
than a century ago (see e.g. [12,23,32,34,45,46,82,103,107]), while their counterparts of variable
population size models were studied in the context of adaptive dynamics from 1999 onwards [59].
The approach of adaptive dynamics is to introduce competition kernels to regulate the population
size instead of maintaining it constant, see [52, 72, 76].

Stochastic individual-based versions of these models appeared in the 1990s, see [14–17, 28, 36].
They assume single events of reproduction, mutation, natural death, and death by competition
happen at random times to each individual in the population. An important and interesting fea-
ture of these models is that different limiting processes on different time-scales appear as the
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carrying capacity tends to infinity while mutation rates and mutation step-size tend to zero (see
[2,14,17,28,75]). One of the major results in this context is the convergence of a properly rescaled
process to the so called Trait Substitution Sequence (TSS) process, which describes the evolution
of a monomorphic population as a jump process between monomorphic equilibria. More generally,
Champagnat and Méléard [17] obtained the convergence to a Polymorphic Evolution Sequence
(PES), where jumps occur between equilibria that may include populations that have multiple co-
existing phenotypes. The appearance of co-existing phenotypes is, however, exceptional and hap-
pens only at so-called evolutionary singularities. From a biological point of view, this is somewhat
unsatisfactory, as it apparently fails to explain the biodiversity seen in real biological systems.

Most of the models considered in this context assume haploid populations with a-sexual repro-
duction. Exceptions are the paper [18] by Collet, Méléard and Metz from 2013 and a series of
papers by Coron and co-authors [19–21] following it. In [18], the Trait Substitution Sequence is
derived in a Mendelian diploid model under the assumption that the fitter mutant allele and the
resident allele are co-dominant.

The main reason why both in haploid models and in the model considered in [18] the evolution
along monomorphic populations is typical is that the time scales for the fixation of a new trait
and the extinction of the resident trait are the same (both of order lnK) (unless some very special
fine-tuning of parameters occurs that allows for co-existence). This precludes (at least in the rare
mutation scenarios considered) that an initially less fit trait survives long enough until after possibly
several new mutations occurred that might create a situation where this trait may become fit again
and recover.

In a follow-up paper to [18], two of the present authors [84], it was shown that, if instead one
assumes that the resident allele is recessive, the time to extinction of this allele is dramatically
increased. This will be discussed in detail in Section 1.2 and paves the way for the appearance of a
richer limiting process.

The general framework in [18] and [84] is the following. Each individual is characterised by
a reproduction and death rate which depend on a phenotypic trait determined by its genotype,
which here is determined by two alleles (e.g. A and a) on one single locus. The evolution of the
trait distribution of the three genotypes aa, aA and AA is studied under the action of (1) heredity,
which transmits traits to new offsprings according to Mendelian rules, (2) mutation, which produces
variations in the trait values in the population onto which selection is acting, and (3) of competition
for resources between individuals.

The paper [84] proves that sexual reproduction allows unfit alleles to survive in individuals with
mixed genotype much longer than they would in populations reproducing asexually. This opens
the possibility that while this allele is still alive in the population, the appearance of new mutants
alters the fitness landscape in such a way that is favourable for this allele and allow it to reinvade
in the population, leading to a new equilibrium with co-existing phenotypes. The goal of this
paper is to rigorously prove that such a scenario indeed occurs under fairly natural assumptions.
Recently, Billiard and Smadi [7] considered related questions for haploid individuals (performing
clonal reproduction). The authors show that a deleterious allele can reinvade after a new mutation,
but the range of parameters allowing this behaviour is though very small.

1.1. The stochastic model
The individual-based microscopic Mendelian diploid model is a non-linear birth-and-death pro-
cess. We consider a model for a population of a finite number of hermaphroditic individuals which
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reproduce sexually. Each individual i is characterised by two alleles, ui1u
i
2, taken from some allele

space U ⊂ R. These two alleles define the genotype of the individual i. We suppress parental ef-
fects, which means that we identify individuals with genotype u1u2 and u2u1. Each individual has
a Mendelian reproduction rate with possible mutations and a natural death rate. Moreover, there is
an additional death rate due to ecological competition with the other individuals in the population.
Let

fu1u2 ∈ R+ the per capita birth rate (fertility) of an individual with genotype u1u2,
Du1u2 ∈ R+ the per capita natural death rate of an individual with genotype u1u2,
K ∈ N the carrying capacity, a parameter which scales the population size,
cu1u2,v1v2

K ∈ R+ the competition effect felt by an individual with genotype u1u2 from
an individual of genotype v1v2,

Ru1u2(v1v2) ∈ {0, 1} the reproductive compatibility of the genotype v1v2 with u1u2,
µK ∈ R+ the mutation probability per birth event. Here it is independent of the

genotype,
m(u, dh) mutation law of a mutant allelic trait u+ h ∈ U , born from an

individual with allelic trait u.

Scaling the competition function c down by a factor 1/K amounts to scaling the population size to
order K. We are interested in asymptotic results when K is large. We assume rare mutation, i.e.
µK � 1. If a mutation occurs at a birth event, only one allele changes from u to u+ h where h is
a random variable with law m(u, dh).

At any time t, there is a finite number, Nt, of individuals, each with genotype in U2. We denote
by u1

1(t)u1
2(t), ..., uNt1 (t)uNt2 (t) the genotypes of the population at time t. The population, νt, at

time t is represented by the rescaled sum of Dirac measures on U2,

νt =
1

K

Nt∑
i=1

δui1(t)ui2(t). (III.1)

Formally, νt takes values in the set of re-scaled point measures

MK =

{
1

K

n∑
i=1

δui1ui2

∣∣∣ n ≥ 0, u1
1u

1
2, ..., u

n
1u

n
2 ∈ U2

}
, (III.2)

on U2, equipped with the vague topology. Define 〈ν, g〉 as the integral of the measurable function
g : U2 → R with respect to the measure ν ∈ MK . Then 〈νt,1〉 = Nt

K and for any u1u2 ∈ U2, the
positive number 〈νt,1u1u2〉 is called the density at time t of the genotype u1u2. The generator of
the process is defined as in [18]: first we define, for the genotypes u1u2, v1v2 and a point measure
ν, the Mendelian reproduction operator:

(Au1u2,v1v2F )(ν)

=
1

4

[
F

(
ν +

δu1v1

K

)
+ F

(
ν +

δu1v2

K

)
+ F

(
ν +

δu2v1

K

)
+ F

(
ν +

δu2v2

K

)]
− F (ν),

(III.3)
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and the Mendelian reproduction-cum-mutation operator:

(Mu1u2,v1v2F )(ν) =
1

8

∫
R

[(
F

(
ν +

δu1+h,v1

K

)
+ F

(
ν +

δu1+h,v2

K

))
m(u1, h)

+

(
F

(
ν +

δu2+h,v1

K

)
+ F

(
ν +

δu2+h,v2

K

))
m(u2, h)

+

(
F

(
ν +

δu1,v1+h

K

)
+ F

(
ν +

δu2,v1+h

K

))
m(v1, h)

+

(
F

(
ν +

δu1,v2+h

K

)
+ F

(
ν +

δu2,v2+h

K

))
m(v2, h)

]
dh− F (ν).

(III.4)

The process (νt)t≥0 is then a MK-valued Markov process with generator LK , given for any
bounded measurable function F :MK → R by:

(LKF )(ν) =

∫
U2

(
Du1u2 +

∫
U2

cu1u2,v1v2ν(d(v1v2))

)(
F

(
ν − δu1u2

K

)
− F (ν)

)
Kν(d(u1u2))

+

∫
U2

(1− µK)fu1u2

(∫
U2

fv1v2Ru1u2(v1v2)

〈νRu1u2 , f〉
(Au1u2,v1v2F )(ν)ν(d(v1v2))

)
Kν(d(u1u2))

+

∫
U2

µKfu1u2

(∫
U2

fv1v2Ru1u2(v1v2)

〈νRu1u2 , f〉
(Mu1u2,v1v2F )(ν)ν(d(v1v2))

)
Kν(d(u1u2)).

(III.5)

The first non-linear term describes the competition between individuals. The second and last
non-linear terms describe the birth with and without mutation. There, fu1u2

fv1v2Ru1u2 (v1v2)

K〈νRu1u2 ,f〉
is the

reproduction rate of an individual with genotype u1u2 with an individual with genotype v1v2. Note
that νRu1u2 is the population restricted to the pool of potential partners of an individual of genotype
u1u2.

For all u1u2, v1v2 ∈ U2, we make the following Assumptions (A):

(A1) The functions f,D and c are measurable and bounded, which means that there exists f̄ , D̄, c̄ <
∞ such that

0 ≤ fu1u2 ≤ f̄ , 0 ≤ Du1u2 ≤ D̄ and 0 ≤ cu1u2,v1v2 ≤ c̄. (III.6)

(A2) fu1u2 −Du1u2 > 0 and there exists c > 0 such that c ≤ cu1u2,v1v2 .

(A3) There exists a function, m̄ : R → R+, such that
∫
m̄(h)dh < ∞ and m(u, h) ≤ m̄(h) for

any u ∈ U and h ∈ R.

For fixedK, under the Assumptions (A1)+(A3) and assuming that E(〈ν0,1〉) <∞, Fournier and
Méléard [36] have shown existence and uniqueness in law of a process with infinitesimal generator
LK . For K → ∞, under mild restrictive assumptions, they prove the convergence of the process
νK in the space D(R+,MK) of càdlàg functions from R+ to MK , to a deterministic process,
which is the solution to a non-linear integro-differential equation. Assumption (A2) ensures that
the population does not tend to infinity in finite time or becomes extinct too fast.
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1.2. Previous works
Consider the process starting with a monomorphic aa population, with one additional mutant indi-
vidual of genotype aA. Assume that the phenotype difference between the mutant and the resident
population is small. The phenotype difference is assumed to be a slightly smaller death rate com-
pared to the resident population, namely:

Daa = D, DaA = D −∆. (III.7)

for some small enough ∆ > 0. The mutation probability for an individual with genotype u1u2 is
given by µK . Hence, the time until the next mutation in the whole population is of order 1

KµK
.

Now assume that the demographic parameters introduced in Section 1.1 depend continuously on
the phenotype. In particular, they are the same for individuals bearing the same phenotype.

In [18] it is proved that if the two alleles a and A are co-dominant and if the allele A is slightly
fitter than the allele a, namely

Daa = D, DaA = D −∆, DAA = D − 2∆, (III.8)

then in the limit of large population and rare mutations (lnK � 1
µKK

� eV K for some V > 0),
the suitably time-rescaled process converges to the TSS model of adaptive dynamics, essentially as
shown in [14] in the haploid case. In particular, the genotypes containing the unfit allele a decay
exponentially fast after the invasion of AA (see Figure III.1).

If in place of co-dominance we assume, as in [84], that the fittest phenotype A is dominant,
namely

Daa = D, DaA = D −∆, DAA = D −∆, (III.9)

then this has a dramatic effect on the evolution of the population and, in particular, leads to a much
prolonged survival of the unfit phenotype aa. Indeed, it was know for some time (see e.g. [82]) that
in this case the unique stable fixpoint (0, 0, n̄AA) corresponding to a monomorphic AA population
is degenerate, i.e. its Jacobian matrix has zero-eigenvalue. This implies that in the deterministic
system, the aa and aA populations decay in time only polynomially fast to zero, namely like 1/t2

and 1/t, respectively. This is in contrast to the exponential decay in the co-dominant scenario (see
Figure III.1). In [84] it was shown that the deterministic system remains a good approximation
of the stochastic system as long as the size of the aA population remains much larger than K1/2

and therefore that the a allele survives for a time of order at least K1/2−α, for any α > 01. Note
that this statement is a non trivial fact, since it is not a consequence of the law of large numbers,
because the time window diverges as K grows. In summary, the unfit recessive a allele survives in
the population much longer due to the slow decay of the aA population.

It is argued in [84] that if we choose the mutation time scale in such a way that there remain
enough a alleles in the population when a new mutation occurs, i.e.

lnK � 1

µKK
� K1/2−α as K →∞, for some α > 0, (III.10)

and if the new mutant can coexist with the unfit aa individuals, then the aa population can poten-
tially recover. This is the starting point of the present paper.

1In [84] only state that survival occurs up to time K1/4−α. However, taking into account that it is
really only the survival of the aA population that needs to be ensured, one can easily improve
this to K1/2−α
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III. Chapter: The recovery of a recessive allele in a Mendelian diploid model

Figure III.1.: Evolution of the model from a resident aa population at equilibrium
with a small amount of mutant aA, and when the alleles a and A
are co-dominant (left) or when the mutant phenotype A is dominant
(right).

1.3. Goal of the paper
The goal of this paper is to show that under reasonable hypothesis, the prolonged survival of the
a allele after the invasion of the A allele can indeed lead to a recovery of the aa-type. To do this,
we assume that there will occur a new mutant allele, B, that on the one hand has a higher fitness
than the AA-phenotype but that (for simplicity) has no competition with the aa-type. The possible
genotypes after this mutation are aa, aA,AA, aB,AB, and BB, so that even for the deterministic
system we have now to deal with a 6-dimensional dynamical system whose analysis if far from
simple.

Under the assumption of dominance of the fittest phenotype, and mutation rate satisfying (III.10),
we consider the model described in Section 1.1 starting at the time of the second mutation, that is
(with probability converging to 1 as K → ∞) the AA population being close to its equilibrium
and the aA population having decreased to a size of order KµK , while the aa population is of the
order of the square of the aA population. We assume that there just occurred a mutation to a fitter
(and most dominant) allele B: we thus start with a quantity 1

K of genotype AB. We will start with
a population where AA is close to its equilibrium, the populations of aa and aA are already small
(of order ε2 and ε), and by mutation a single individual of genotype AB appears.

By using well known techniques [14, 17, 18], we know that the AB population behaves as a
super-critical branching process and reaches the level ε with positive probability in a time of order
lnK, without perturbing the 3-system (aa, aA,AA).

We see in numerical solutions to the deterministic system that a reduced fertility together with a
reduced competition between a andB phenotypes constitutes a sufficient condition for the recovery
of the aa population. For simplicity and in order to prove rigorous results, we suppose that there can
be no reproduction between individuals of phenotypes a andB, nor competition between them, and
we reduce the number of remaining parameters as much as possible (see Section 2). We study the
deterministic system which corresponds to the large population limit of the stochastic counterpart,
and we show that (for an initial quantity ε of aA, ε2 of aa and ε3 of AB) the system converges to a
fixed point denoted by paB consisting of the two coexisting populations aa and BB. If no further
assumptions are made, we will show that the number of individuals bearing an a allele decreases to
level ε1+∆/(1−∆) (where ∆ is defined in (III.7)) before aa grows and stabilises at order 1.
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If ∆ < α
1−2α , this control on the a allele is in principle sufficient in order for the stochastic

system to exhibit the recovery of aa with positive probability in the large population limit. Indeed,
if the mutation time is of order K

1
2
−α, then the initial amount of aa and aA genotypes is close

to the typical fluctuations of those populations. Following the heuristics of [84] (although the six-
dimensional stochastic process is surely much more tedious to study), the deterministic system
should constitute a good approximation of the process if the typical fluctuations of populations
containing an a allele do not bring them to extinction. If ∆ < α

1−2α this ensures that the population
containing an a allele is not falling below order K−1/2 at any time.

In order to go deeper and control the speed of recovery of the aa population, we look for a param-
eter regime which ensures that the aa population always grows after the invasion of B. Ensuring
this lower bound on aa is not trivial at all, and the solution we found is to introduce an additional
parameter η, which lowers the competition between the aA and BB populations, compared to the
one between AA and BB. Note that the competition does not depend only on the phenotype, and
can be interpreted as a refinement of a phenotypic competition for resources: the strength (or ability
to get resources) of an individual not only depends on its phenotype but also on the dominance of
its genotype. We show that for η larger than some positive value (of order ∆), the aa population
always grows after the invasion of B. The time of convergence to the coexistence fixed point is
thus lowered, see Figure III.5. Moreover, we point out the existence of a bifurcation: for η larger
than some threshold, the co-existence fixed point paB becomes unstable and the system converges
to another fixed point where all populations coexist.

Our contribution is a rigorous description of a mechanism by which a recessive allele can re-
emerge in a population. This can be seen as a statement of genetic robustness exhibited by diploid
populations performing sexual reproduction.

The structure of the paper is the following. In Section 2 we describe our assumptions on the
parameters of the model, and compute the large population limit; in Section 3 we present our
results on the evolution of the deterministic system towards the co-existence fixed point paB , and
we give a heuristic of the proof. Section 4 is dedicated to the proof of these results. The closing
Section 5 contain a heuristic considerations and numerical simulations of the model with relaxed
assumption on the parameters.

Notation. We write x = Θ(y) whenever x = O(y) and y = O(x) as ε→ 0.

2. Model setup
Let G = {aa, aA,AA, aB,AB,BB} be the genotype space. Let ni(t) be the number of individu-
als with genotype i ∈ G in the population at time t and set nKi (t) ≡ 1

Kni(t).

Definition III.1. The equilibrium size of a monomorphic uu population, u ∈ {a,A,B}, is
the fixed point of a 1-dimensional Lotka-Volterra equation and is given by

n̄u =
fuu −Duu

cuu,uu
. (III.11)

Definition III.2. For u, v ∈ {a,A,B}, we call

Suv,uu = fuv −Duv − cuv,uun̄u, (III.12)

the invasion fitness of a mutant uv in a resident uu population.
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III. Chapter: The recovery of a recessive allele in a Mendelian diploid model

Figure III.2.: Simulation of the stochastic system for f = 6, D = 0.7, ∆ = 0.1,
c = 1, η = 0.02, ε = 0.014 and K = 7000.

We take the phenotypic viewpoint and assume that the B allele is the most dominant one. That
means the ascending order of dominance (in the Mendelian sense) is given by a < A < B, i.e.

1. phenotype a consists of the genotype aa,

2. phenotype A consists of the genotypes aA,AA,

3. phenotype B consists of the genotypes aB,AB,BB.

For simplicity, we assume that the fertilities are the same for all genotypes, and that natural death
rates are the same within the three different phenotypes. Moreover, we assume that there can be no
reproduction between a and B phenotypes.
To sumarize, we make the following Assumptions (B) on the rates:

(B1) Fertilities. For all i ∈ G, and some f > 0

fi ≡ f, (III.13)

(B2) Natural death rates. The difference in fitness of the three phenotypes is realised by choosing
a slightly higher natural death-rate of the a-phenotype and a slightly lower death-rate for the
B-phenotype. For some 0 < ∆ < D,

Daa = D + ∆, (III.14)
DAA ≡ DaA = D, (III.15)

DaB ≡ DAB ≡ DBB = D −∆. (III.16)
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(B3) Competition rates. We require that phenotypes a and B do not compete with each other.
Moreover, we introduce a parameter η ≥ 0 which lowers the competition between BB and
aA. For some 0 ≤ η < c,

(ci,j){i,j}∈G×G =:

aa aA AA aB AB BB

aa c c c 0 0 0

aA c c c c c c− η
AA c c c c c c

aB 0 c c c c c
AB 0 c c c c c
BB 0 c− η c c c c

A biological interpretation for this kind of competition could be that it is coded in the alleles
which food an individual with a given genotype prefers. Since an AB individual shares one
B allele with a BB individual, they compete stronger for the same food than AA with BB
since those have completely different alleles.

(B4) Reproductive compatibility. We require that phenotypes a and B do not reproduce with each
other,

(Ri(j)){i,j}∈G×G ≡

aa aA AA aB AB BB

aa 1 1 1 0 0 0

aA 1 1 1 1 1 1
AA 1 1 1 1 1 1

aB 0 1 1 1 1 1
AB 0 1 1 1 1 1
BB 0 1 1 1 1 1

Observe that, under Assumptions (B),

SAB,AA = f − (D −∆)− cn̄AA = f −D + ∆− cf −D
c

= ∆, (III.17)

Saa,BB = f −D −∆. (III.18)

Therefore, the mutant AB has a positive invasion fitness in the population AA, as well as aa in the
BB population (due to the absence of competition between them).

2.1. Birth rates
We assume that there is no recombination between phenotypes a and B. Thus,

1. the pool of possible partners for the phenotype a consists of phenotypes a and A; the total
population of this pool is denoted by

Σ3 := naa + naA + nAA, (III.19)

2. the pool of possible partners for the phenotype A consists of the three phenotypes a, A, and
B; the total population of this pool is denoted by

Σ6 := naa + naA + nAA + naB + nAB + nBB, (III.20)
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3. the pool of possible partners for the phenotype B consists of phenotypes A and B; the total
population of this pool is denoted by

Σ5 := naA + nAA + naB + nAB + nBB. (III.21)

Computing the reproduction rates with the Mendelian rules as described in (III.5) leads to the
following (time-dependant) birth-rates bi = bi(n(t)):

baa =f
naa

(
naa + 1

2naA
)

naa + naA + nAA
+ f

1
2naB

(
1
2naA + 1

2naB
)

naA + nAA + naB + nAB + nBB

+ f
1
2naA

(
naa + 1

2naA + 1
2naB

)
naa + naA + nAA + naB + nAB + nBB

, (III.22)

baA =f
naa

(
1
2naA + nAA

)
naa + naA + nAA

+ f
1
2naA

(
1
2naB + 1

2nAB
)

+ 1
2naB (nAA + nAB)

naA + nAA + naB + nAB + nBB

+ f

(
1
2naA + nAA

) (
naa + naA + 1

2naB
)

+ 1
4naAnAB

naa + naA + nAA + naB + nAB + nBB
, (III.23)

bAA =f
1
2nAB

(
1
2naA + nAA + 1

2nAB
)

naA + nAA + naB + nAB + nBB
+ f

(
1
2naA + nAA

) (
1
2naA + nAA + 1

2nAB
)

naa + naA + nAA + naB + nAB + nBB
,

(III.24)

baB =f

(
1
2naA + naB

) (
1
2naB + 1

2nAB + nBB
)

naA + nAA + naB + nAB + nBB
+ f

1
2naA

(
1
2naB + 1

2nAB + nBB
)

naa + naA + nAA + naB + nAB + nBB
,

(III.25)

bAB =f

(
1
2naA + nAA + nAB

) (
1
2naB + 1

2nAB + nBB
)

naA + nAA + naB + nAB + nBB

+ f

(
1
2naA + nAA

) (
1
2naB + 1

2nAB + nBB
)

naa + naA + nAA + naB + nAB + nBB
, (III.26)

bBB =f
1
4 (naB + nAB + 2nBB)2

naA + nAA + naB + nAB + nBB
. (III.27)

2.2. Death rates
The death rates are the sum of the natural death and the competition:

daa = naa(D + ∆ + c(naa + naA + nAA)), (III.28)
daA = naA(D + c(naa + naA + nAA + naB + nAB) + (c− η)nBB), (III.29)
dAA = nAA(D + c(naa + naA + nAA + naB + nAB + nBB)), (III.30)
daB = naB(D −∆ + c(naA + nAA + naB + nAB + nBB)), (III.31)
dAB = nAB(D −∆ + c(naA + nAA + naB + nAB + nBB)), (III.32)
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dBB = nBB(D −∆ + (c− η)naA + c(nAA + naB + nAB + nBB)). (III.33)

2.3. Large population limit
By [36] or [18], for large populations, the behaviour of the stochastic process is close to the solution
of a deterministic equation.

Proposition III.1 (Generalisation of Proposition 3.2 in [18]).
Let T > 0 and C ⊂ R6

+ be a compact set. Assume that the initial condition nK(0) =
1
K (naa(0), naA(0), nAA(0), naB(0), nAB(0), nBB(0)) converges almost surely to a determin-
istic vector x0 = (x0

1, x
0
2, x

0
3, x

0
4, x

0
5, x

0
6) ∈ C, as K →∞.

Let ñ(t, x0) denote the solution to

ṅ(t) = b(n(t))− d(n(t)) ≡ F (n(t)), (III.34)

rm i.e. ṅi(t) = bi(n(t))−

Di +
∑
j∈G

ci,jnj(t)

ni(t), for all i ∈ G, (III.35)

with initial condition x0, where (bi)i∈G and (di)i∈G are given in (III.22)-(III.27) and (III.28)-
(III.33). Then, for all T > 0,

lim
K→∞

sup
t∈[0,T ]

|nKi (t)− ñi(t, x0))| = 0, a.s., (III.36)

for all i ∈ G.

2.4. Initial condition
Fix ε > 0 sufficiently small. For the results below, we will consider the dynamical system (III.34)
starting with the initial condition:

n̄A ≥ nAA(0) ≥ n̄A −Θ(ε), (III.37)
naA(0) = ε, (III.38)

naa(0) = Θ(ε2), (III.39)

nAB(0) = ε3, (III.40)
nBB(0) = 0, (III.41)
naB(0) = 0. (III.42)

Remark III.1. In all the figures below, the choice of parameters is the following:

f = 6, D = 0.7, ∆ = 0.1, c = 1, ε = 0.01,

and the parameter η is specified on each picture.
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Figure III.3.: General qualitative behaviour of {ni(t), i ∈ G} and projection of the
dynamical system on the coordinates aa,AA and BB. The re-invasion
of the aa population happens sooner and sooner as η grows (η = 0.02
for both pictures).

3. Results
We are working with a 6-dimensional dynamical system, and computing all the fixed points an-
alytically is impossible for a general choice of the parameters. We can, however, compute those
which are relevant for our study. We will call pA (resp. pB) the fixed points corresponding to the
monomorphic AA (resp. BB) population at equilibrium, and paB the fixed point corresponding to
the coexisting aa and BB populations. Setting the relevant populations to 0 and solving ṅ(t) = 0,
we get:

pA = (0, 0, n̄A, 0, 0, 0), (III.43)
pB = (0, 0, 0, 0, 0, n̄B), (III.44)
paB = (n̄a, 0, 0, 0, 0, n̄B), (III.45)

where n̄a = f−D−∆
c , n̄A = f−D

c , and n̄B = f−D+∆
c . Note that the BB equilibrium population is

the same in pB and paB . This is due to the non-interaction between phenotypes a and B.
Our general result is that starting with initial conditions (III.37)-(III.42), that is close to pA

(with small coordinates in directions aa, aA and AB), and under minimal assumptions on the
parameters, the system gets very close to pB before finally converging to paB , see Figure III.3.

Theorem III.1. Consider the dynamical system (III.34) started with initial conditions
(III.37)-(III.42). Suppose the following Assumptions (C) on the parameters hold:

(C1) ∆ sufficiently small,

(C2) f sufficiently large,

(C3) 0 ≤ η < c/2.

90



3. Results

Then the system converges to the fixed point paB. More precisely, for any fixed δ > 0, as
ε→ 0, it reaches a δ-neighbourhood of paB in a time of order Θ(ε−1/(1+ηn̄B−∆)).
Moreover, it holds:

1. for η = 0, the amount of allele a in the population decays to Θ(ε1+∆/(1+∆)) before
reaching Θ(1),

2. for η > 4∆
n̄B

, the amount of a allele in the population is bounded below by Θ(ε) for all
t > 0.

Remark III.2. For η large, we prove that the fixed point paB is unstable. We observe
numerically that the system is attracted to a fixed point where all the 6 populations coexist,
but we do not prove this.

Let us now briefly discuss the linear stability of the relevant fixed points and give an heuristics
of the proof of Theorem III.1.

3.1. Linear stability analysis
The Jacobian matrix JF := (∂Fi/∂nj)ij of the map F defined in (III.34) can be explicitly com-
puted at pA and paB and the situation is as follows:

• The eigenvalues of JF (pA) are 0,∆ > 0 and −(f − D),−(f + ∆),−(f − ∆) (double)
which are all strictly negative under Assumptions (C). The fixed point pA is thus unstable.

• The eigenvalues of JF (paB) are 0 (double), and −(2f − D),−(f − D + ∆),−(f − D −
∆),−((f − D)(5f − 4D) + f∆)/(4(f − D) + ηn̄B) which are strictly negative under
Assumptions (C). The linear analysis thus does not imply the stability of paB but the Phase
4 of the proof does (see Section 4.5) .

It turns out that JF (pB) is singular but as the invasion fitness of aa is positive, i.e. Saa,BB > 0
(see (III.17)), this implies that a small perturbation in the first coordinate will be amplified, and
thus implies the instability of the fixed point pB .

3.2. Heuristics of the proof
Recall we start the dynamical system (III.34) with initial conditions (III.37)-(III.42). A numerical
solution of the system is provided on Figure III.4.

Remark III.3. Assumption C1 of Theorem III.1 is needed throughout the proof in order
to be able to use the results of [84] which rely on the Center Manifold Theorem (a line of
fixed points becomes an invariant line under small enough perturbation).

Phase 1. Time period: until nAB = ε0.
The mutant population, consisting of all individuals of phenotype B, first grows up to ε0 ex-
ponentially fast with rate ∆ without perturbing the behaviour of the 3-system (aa, aA,AA).
The rate of growth corresponds to the invasion fitness of AB in the resident population AA,
see (III.17). Following [84], AA stays close to n̄A, while aA and aa continue to decay like
1/t and 1/t2 respectively. The duration T1 of this phase is such that Θ(ε3)et∆ = Θ(1) ⇔
T1 = Θ(| log ε|).
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Phase 2. Time period: until naA = Θ(nAA).
The evolution is a perturbation of an effective 3-system (AA,AB,BB) which behaves ex-
actly the same as in [84], since the parameters satisfy the same hypotheses (slightly lower
death rate for phenotype B than for phenotype A, and constant competition parameters). A
comparison result (following Theorem III.2 below) shows that this 3-system is almost unper-
turbed until naA = Θ(nAA). If that happens in a time T2 diverging with ε (which we ensure
throughout the calculation), we thus know that BB approaches n̄B , while nAB ∝ 1/t and
nAA ∝ 1/t2.
The important fact in this phase is that the amount of allele a in the population decays
for η small while it increases for large enough η. Indeed, let us derive some bounds on
ΣaA,aB = naA + naB . The population ΣaA,aB reproduces by taking the dominant al-
lele in a population of order Θ(1) and the allele a in itself. Thus its birth rate satisfy
bΣaA,aB ≈ fΣaA,aB . We can compute its death rate exactly and use that nBB ≈ Σ5 ≈ n̄B:

dΣaA,aB = ΣaA,aB(D −∆ + cΣ5)− ηnaAnBB + ∆naA

≈ fΣaA,aB − naA(ηn̄B −∆), (III.46)

Σ̇aA,aB ≈ naA(ηn̄B −∆)

= Θ(ΣaA,aB · nAB)(ηn̄B −∆). (III.47)

The last equality comes from the fact that aA newborns have mainly their a allele coming
from ΣaA,aB and their A allele coming from AB. Using the 1/t decay of AB we get:

Σ̇aA,aB ≈
Θ(ΣaA,aB)

Θ(1) + Θ(1)t
(ηn̄B −∆). (III.48)

As ΣaA,aB(T1) = Θ(ε) we deduce that ΣaA,aB(t) = Θ(ε)(Θ(1) + Θ(1)t)Θ(ηn̄B−∆), and
thus naA = Θ(nAB ·ΣaA,aB) = Θ(ε)(Θ(1) + Θ(1)t)Θ(ηn̄B−∆)/(Θ(1) + Θ(1)t). By solv-
ing naA = Θ(nAA) = Θ(n2

AB) we get the order of magnitude of T2 = Θ
(
ε−1/(1+ηn̄B−∆)

)
.

Note that for η = 0, ΣaA,aB(T2) = Θ
(
ε1+∆/(1−∆)

)
. Moreover, (III.47) implies that for

η > ∆/n̄B , we have Σ̇aA,aB > 0, which proves points 1 and 2 of Theorem III.1.

Phase 3. Time period: until aa reaches equilibrium.
The fact that naA = Θ(nAA) has a crucial effect on the birth rate of aa (see (III.22)) since
the term (naa + 1

2naA)/(naa + naA + nAA) becomes of order Θ(1). As long as AA stays
smaller than Θ(ε), we get a lower bound on naa which grows exponentially fast since f is
chosen large enough (Assumption C2):

baa ≥ fnaaΘ(1), (III.49)
daa ≤ naa(D + ∆ + Θ(ε)), (III.50)
ṅaa ≥ naa(fΘ(1)−D −∆−Θ(ε)). (III.51)

As aa grows, it makes ΣaA,aB grow, and thusAA andAB as well. We have to show that this
could not prevent aa from reaching equilibrium. We do not give a detailed argument here,
but essentially, the presence of the macroscopic BB population prevents all the non-aa pop-
ulations to grow too much. Note that if η is too large, then aA could get a positive fitness
and grow to a macroscopic level. That is why we have to impose Assumption C3, which

92



3. Results

Figure III.4.: Numerical solution of the deterministic system for η = 0.02, logplot.

will become clearer heuristically in the next phase. We recall that aa does not compete with
BB and thus it grows exponentially fast with rate f − (D + ∆) until an ε0-neighbourhood
of the fixed point where aa and BB coexist. The rate of growth corresponds to the invasion
fitness of aa in the resident population BB, see (III.17). Note that, due to Assumption C2,
this rate is much larger than the invasion rate of BB into AA. That is why the fourth phase
looks very steep on Figure III.4, see the stretched version on Figure III.6. This phase lasts a
time T3 = Θ(| log ε|).

Phase 4. The Jacobian matrix of the field (III.34) at the fixed point paB has two zero, and 4
negative eigenvalues. paB is thus a non-hyperbolic equilibrium point of the system and
linearisation fails to determine its stability properties. Instead, we use the result of center
manifold theory [51, 88] that asserts that the qualitative behaviour of the dynamical system
in a neighbourhood of the non-hyperbolic critical point paB is determined by its behaviour
on the center manifold near paB . Using the Center Manifold Theorem, we show that asymp-
totically as f → ∞, the field is attractive for η < c · rmax where rmax ' 0.593644 is
the maximum of the rational function (III.322). Thus paB is a stable fixed point which is
approached with speed 1

t as long as η < c ·rmax. For higher values of η, numerical solutions
show that the system converges to a fixed point where the 6 populations co-exist, but we do
not prove this.
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4. Proof
Definition III.3. Let x, y, z ∈ {aa, aA,AA, aB,AB,BB} and h ∈ R. We define

T x=y = inf{t > 0 : nx(t) = ny(t)}, (III.52)

T x=δy = inf{t > 0 : nx(t) = δny(t)}, (III.53)
T xh = inf{t > 0 : nx(t) > h}, (III.54)

T x+y
h = inf{t > 0 : nx(t) + ny(t) > h}, (III.55)

T x+y+z
h = inf{t > 0 : nx(t) + ny(t) + nz(t) > h}. (III.56)

Moreover, let
∆ > ε0 > ε > 0. (III.57)

The value ε0 is the small order 1 level in the Phase 1, see the proof heuristics (Section 3.2). We
consider ∆ fixed and sufficiently small, and will first send ε→ 0 and then ε0 → 0.

4.1. Preliminaries
We first prove general facts which will be useful through the proof.

Lemma III.1. Let c > 0 and n(t) be such that

• ṅ(t) ≤ g(t)− c · n(t) for all t ∈ T ⊂ R+,

• c · n(0) ≤ g(0),

if c · n(t) = g(t)⇒ c · ṅ(t) ≤ ġ(t) for all t ∈ T then c · n(t) ≤ g(t) for all t ∈ T .

Proof. This is an easy analysis exercise.

Proposition III.2. If naB(0) < nAB(0) then naB(t) ≤ nAB(t).

Proof. Intuitively this inequality comes from the fact that phenotype a individuals cannot
reproduce with phenotype B. Indeed, if we consider the couples that could give rise to an
AB (resp. aB) individual, they are of the form (Ag1, Bg2) (resp. (ag1, Bg2)), with g1, g2 ∈
{a,A,B} and the combination (AA,Bg2) is possible whereas (aa,Bg2) is impossible. Here
is the rigorous derivation of the result: We compare the birth- and the death-rates of nAB
and naB

daB
naB

= D −∆ + c(naA + nAA + naB + nAB + nBB) =
dAB
nAB

, (III.58)

baB = fnaB

1
2naB + 1

2nAB + nBB

naA + nAA + naB + nAB + nBB
+ IaB, (III.59)

bAB = fnAB

1
2naB + 1

2nAB + nBB

naA + nAA + naB + nAB + nBB
+ IAB. (III.60)

We see that the death-rates of the two populations are the same, whereas the birth-rates
differ only in a factor which comes from the reproduction of the other populations. If we
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take a closer look to these factors IaB, IAB under the assumption that naB = nAB we see
that

IAB = f
(

1
2naA + nAA

)( 1
2naB + 1

2nAB + nBB

Σ5
+

1
2naB + 1

2nAB + nBB

Σ6

)

= IaB + fnAA

(
1
2naB + 1

2nAB + nBB

Σ5
+

1
2naB + 1

2nAB + nBB

Σ6

)
. (III.61)

Thus IAB > IaB. Hence, ṅAB > ṅaB and nAB(t) stays above naB(t) for all t > 0.

4.2. Phase 1: Perturbation of the 3-system (aa, aA,AA) until
AB reaches Θ(1)

We start with initial conditions given by (III.37)-(III.42). We will show that the mutant popula-
tion, consisting of all individuals of phenotype B, grows up to some ε0 > ε without perturbing the
behaviour of the 3-system (aa, aA,AA) in this time. Let

T1 := T aB+AB+BB
ε0 . (III.62)

Proposition III.3. With the initial conditions (III.37)-(III.42), for all t ∈ [0, T1], it holds,

1. nAB(t) grows exponentially with rate ∆. It reaches the level ε0 in a time at most of
order Θ

(
log
(

(ε0/ε
3)

1
∆−Θ(ε0)

))
.

2. naB(t) ≤ Θ(ε1−Θ(ε0)ε0), naA(t) ≤ Θ(ε1−Θ(ε0)), naa(t) ≤ Θ(ε2−Θ(ε0)) and n̄A −
Θ(ε0) ≤ nAA(t) ≤ n̄A + Θ(ε0).

3. nBB(t) = Θ
(
n2
AB(t)

)
.

Proof. Until T1 the perturbation of the dynamics of the 3-system (aa, aA,AA) is at most
of order ε0. Thus we have n̄A−Θ(ε0) ≤ nAA(t) ≤ n̄A + Θ(ε0), as well as naa, naA ≤ Θ(ε0).
With this rough bounds we will find finer bounds.

1. The ∆ reduced death rate of the mutant AB gives it a positive fitness, and the
growth is exponential until it reaches a macroscopic level. For an upper bound on the
time T aB+AB+BB

ε0 , we have to construct a minorising process for nAB. Indeed, let us
compare the birth and death rates:

bAB ≥ 1
2nAB

2fnAA
nAA + Θ(ε0)

= nAB(f −Θ(ε0)), (III.63)

dAB ≤ nAB(D −∆ + cn̄A + Θ(ε0)) = nAB(f −∆ + Θ(ε0)). (III.64)

Hence, we get for the minorising process

ṅAB ≥ nAB(∆−Θ(ε0)), (III.65)

nAB(t) ≥ ε3e(∆−Θ(ε0))t, (III.66)
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Figure III.5.: Log-plots of {ni(t), i ∈ G} for η = 0 (top), η = 0.003 (center) and
η = 0.014 (bottom).
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and the time T1 is at most of order Θ
(

log((ε0/ε
3)

1
∆−Θ(ε0)

)
. For an lower bound on

the time T1, we have to construct a majorising process for nAB. We compare the
birth and death rates:

bAB ≤ nAB(f + Θ(ε0)), (III.67)
dAB ≥ nAB(D −∆ + cn̄A −Θ(ε0)) = nAB(f −∆−Θ(ε0)). (III.68)

Hence, we get for the majorising process

ṅAB ≤ nAB(∆ + Θ(ε0)), (III.69)

nAB(t) ≤ ε3e(∆+Θ(ε0))t, (III.70)

and the time T1 is at least of order Θ
(

log((ε0/ε
3)

1
∆−Θ(ε0)

)
.

2. Heuristically, the newborns of genotype aA are still in majority produced by re-
combination of AA and aA, because the mutant population is not large enough to
contribute. The newborns of genotype aB are in majority produced by reproduction
of the aA population with the B population. Finally, the newborns of genotype aa
are in majority produced by recombination of aA and aA, because the only mutant
which could perturb it is aB which is of smaller order.

a) We show that naa ≤ n2
aA, or according to Lemma III.1, ṅaa−2ṅaAnaA ≤ 0 when

naa = n2
aA. Observe that ṅaa−2ṅaAnaA = baa−2naAbaA−daa+ 2naAdaA. The

biggest contributing terms of baa − 2naAbaA and daa − 2naAdaA at naa = n2
aA

are

baa − 2naAbaA = f
4Σ5

n2
aB −

2f
Σ6
nAAn

2
aA, (III.71)

daa − 2naAdaA = −n2
aA(f −∆ + Θ(ε0)). (III.72)

Thus we get, as long as naB < naA, that

ṅaa − 2ṅaAnaA = baa − 2naAbaA − daa + 2naAdaA

≤ n2
aA

(
f − 2f

Σ6
nAA −∆ + Θ(ε0)

)
+ f

4Σ5
n2
aB < 0. (III.73)

b) We show that naB really stays smaller than naA, precisely we show that naB ≤
naAnAB or equivalently according to Lemma III.1 ṅaB− ṅaAnAB− ṅABnaA ≤ 0
at naB = naAnAB.
The biggest contributing terms are

baB − nABbaA − naAbAB =naAnAB

(
f

4Σ5
+ f

4Σ6
− f

Σ6
nAA − f

2Σ5
nAA − f

2Σ6
nAA

)
+ naAnBB

(
f

2Σ5
+ f

2Σ6
− f

Σ5
nAA − f

Σ6
nAA

)
,

(III.74)

daB − nABdaA − naAdAB =− naAnAB(D + cΣ6 − ηnBB). (III.75)

Thus we get

ṅaB − ṅaAnAB − ṅABnaA ≤naAnAB
(
−f + f

2Σ5
+ Θ(ε0)

)
− naAnBB

(
2f − f

Σ5
−Θ(ε0)

)
< 0. (III.76)
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c) We show that naA ≤ Θ
(
ε1−ε0

)
.

We construct a majorising process on aA. The biggest contributing terms are

baA ≤ f
Σ6
nAAnaA + naAΘ(ε0), (III.77)

daA ≥ naA(f −Θ(ε0)), (III.78)

and we get that

ṅaA ≤ Θ(ε0)naA, (III.79)

naA(t) ≤ εeΘ(ε0)t, (III.80)

what shows that until time T1, naA ≤ Θ
(
ε1−ε0

)
.

d) We show n̄A − ε ≤ Σ5 ≤ n̄A + 2∆ε0.
We construct a minorising and a majorising processes on Σ5:

bΣ5 ≤ fΣ5 + Θ(naa), (III.81)

bΣ5 ≥ fΣ5 −Θ(n2
aA), (III.82)

dΣ5 ≥ Σ5(D + cΣ5)− (∆ + 2ηnaA)(naB + nAB + nBB), (III.83)
dΣ5 ≤ Σ5(D + cΣ5 + cnaa), (III.84)

Σ̇5 ≤ Σ5(f −D − cΣ5) + (∆ + 2ηnaA)(naB + nAB + nBB), (III.85)

Σ̇5 ≥ Σ5(f −D − cΣ5 − cnaa). (III.86)

At the upper bound we have Σ̇5 ≤ 0 and at the lower bound Σ̇5 ≥ 0, which
ensure the claimed bounds by Lemma III.1.

3. The newborns of genotype BB are in majority produced by recombination of AB
with itself. Indeed, by comparison of the birth- and death-rates,

bBB ≤ fnBB
naB + nAB + nBB

naA + nAA + naB + nAB + nBB
+

f

naA + nAA + naB + nAB + nBB
n2
AB

≤ fnBBΘ(ε0) + f
n̄A
n2
AB + Θ(ε3

0), (III.87)

bBB ≥ fnBBΘ(ε0) + f
4n̄B

n2
AB, (III.88)

dBB ≥ nBB(D −∆ + cn̄A −Θ(ε0)) = nBB(f −∆−Θ(ε0)), (III.89)
dBB ≤ nBB(D −∆ + cn̄B + Θ(ε0)) = nBB(f + Θ(ε0)). (III.90)

We get the upper bound for the process

ṅBB ≤ −nBB(f(1−Θ(ε0))−∆−Θ(ε0)) + f
n̄A
n2
AB, (III.91)

and the lower bound

ṅBB ≥ −nBB(f + Θ(ε0)) + f
4n̄B

n2
AB. (III.92)

By applying Lemma III.1 to n = nBB and g = n2
AB (with constants in front), as

nBB(0) = 0 < nAB(0) = ε3 and by Proposition III.3 (2) ṅAB ≥ 0 for all t ∈ [0, T1] ,
we deduce that nBB(t) ≤ Θ(n2

AB(t)), for all t ∈ [0, T1].

Note that Proposition III.3 implies that

T1 = T aB+AB+BB
ε0 = TABε0 ≤ Θ

(
log
((
ε0/ε

3
) 1

∆−Θ(ε0)

))
. (III.93)
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4.3. Phase 2: Perturbation of the 3-system (AA,AB,BB) until
naA = Θ(nAA)

Let δ > 0 (to be chosen sufficiently small in the sequel). Let

T2 := T aA=δAA ∧ T aB=δAB ∧ T aa=aA∧aB. (III.94)

We will show that for t ∈ [T1, T2] the system behaves as a main 3-system (AA,AB,BB) plus
perturbations of order δ. The 3-system (AA,AB,BB) behaves exactly the same as in [84] since
the parameters satisfy the same hypotheses (slightly lower death rate for phenotype B than for
phenotype A individuals, and constant competition parameters).

Moreover, the crucial role of the parameter η is that the population containing an allele a only
continues to grow in this phase when η is large enough. This is due to the smaller competition that
aA feels from BB, the aA population is thus higher and induces the growth of aB.

We start by considering how the growth of aA- and aB populations can perturb the 3-system
(AA,AB,BB).

Lemma III.2. Let nup. (t) be the population of the unperturbed 3- system (AA,AB,BB).
The 3-system (AA,AB,BB) satisfies

ṅBB ≥ ṅupBB − (naA + naB)

(
f
(

1
2nAB+nBB

)2

(nAA+nAB+nBB)2 + cnBB

)
, (III.95)

ṅBB≤ ṅupBB + (naA + naB)

(
f
(

1
4naB + 1

2nAB + nBB
)

Σ5
+ cnBB

)
, (III.96)

ṅAB ≥ ṅupAB − (naa + naA + naB)

(
f(nAB + nAA)

(
1
2nAB + nBB

)
(nAA + nAB + nBB)2

+ cnAB

)
, (III.97)

ṅAB ≤ ṅupAB + f
Σ5
naA

(
1
2naB + 1

2nAB + nBB
)

+ f
Σ5
naB

(
1
2nAB + nAA

)
, (III.98)

ṅAA ≥ ṅupAA − (naa + naA + naB)

(
f
(

1
2naA+

1
2nAB+nAA

)2

(nAA+nAB+nBB)2 + cnAA

)
, (III.99)

ṅAA ≤ ṅupAA + f
2Σ5

naA
(

1
2naA + nAB + nAA

)
. (III.100)

Proof. We consider the rates of AA,AB and BB under the perturbation of aa, aA and aB:

bBB =
f

Σ5

(
1
2nAB + nBB

)2
+
fnaB

(
1
4naB + 1

2nAB + nBB
)

Σ5

=bupBB −
f
((

1
2nAB + nBB

)2
(naA + naB)

)
Σ5(nAA + nAB + nBB)

+
fnaB

(
1
4naB + 1

2nAB + nBB
)

Σ5
, (III.101)

dBB =dupBB + cnBB(naB + naA)− ηnaAnBB. (III.102)

Thus,

ṅBB ≤ṅupBB + f
Σ5
naB

(
1
4naB + 1

2nAB + nBB
)

+ ηnaAnBB, (III.103)

ṅBB ≥ṅupBB −
f(naA + naB)

(
1
2nAB + nBB

)2
Σ5(nAA + nAB + nBB)

− cnBB(naA + naB). (III.104)
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For the AB population we get:

bAB =
2f
(

1
2nAB + nBB

) (
1
2nAB + nAA

)
Σ5

−
fnaanAA

(
1
2naB + 1

2nAB + nBB
)

Σ5Σ6
+
fnaBnAA

2Σ6

+
fnaB(nAA + nAB)

2Σ5
+
fnaA

(
1
2naB + 1

2nAB + nBB
)

2Σ5
+
fnaA

(
1
2naB + 1

2nAB + nBB
)

2Σ6

=bupAB + naA
(

1
2naB + 1

2nAB + nBB
) ( f

2Σ5
+ f

2Σ6

)
+ naBnAA

(
f

2Σ5
+ f

2Σ6

)
+
fnaBnAB

2Σ5

−
fnaanAA

(
1
2naB + 1

2nAB + nBB
)

Σ5Σ6
−

2f
(

1
2nAB + nAA

)(
1
2nAB + nBB

)
(naA + naB)

Σ5(nAA + nAB + nBB)
,

(III.105)

dAB =dupAB + cnAB(naB + naA), (III.106)

ṅAB ≤ṅupAB + f
Σ5
naA

(
1
2naB + 1

2nAB + nBB
)

+ f
Σ5
naBnAA + f

2Σ5
naBnAB, (III.107)

ṅAB ≥ṅupAB −
2f
(

1
2nAB + nAA

) (
1
2nAB + nBB

)
Σ5(nAA + nAB + nBB)

(naA + naB) (III.108)

−
f
(

1
2naB + 1

2nAB + nBB
)

Σ5Σ6
naanAA − cnAB(naB + naA).

And finally for the AA population:

bAA =
f
(

1
2nAB + nAA

)2
Σ5

+
fnaAnAB

4Σ5
+
fnaA

(
1
2naA + nAA + 1

2nAB
)

2Σ6

−
fnaanAA

(
1
2naA + nAA + 1

2nAB
)

Σ5Σ6
(III.109)

=bupAA −
f
(

1
2nAB + nAA

)2
(naA + naB)

Σ5(nAA + nAB + nBB)
+
fnaAnAB

4Σ5
+
fnaA

(
1
2naA + nAA + 1

2nAB
)

2Σ6

−
fnaanAA

(
1
2naA + nAA + 1

2nAB
)

Σ5Σ6
, (III.110)

dAA =dupAA + cnAA(naa + naA + naB), (III.111)

ṅAA ≤ṅupAA +
fnaAnAB

4Σ5
+
fnaA

(
1
2naA + nAA + 1

2nAB
)

2Σ6
, (III.112)

ṅAA ≥ṅupAA −
f
(

1
2naA + 1

2nAB + nAA
)2

(naa + naA + naB)

Σ5(nAA + nAB + nBB)
− cnAA(naa + naA + naB).

(III.113)

As solutions of a dynamical system are continuous with respect to its parameters (in particular
with respect to δ), the latter theorem shows that until T2, the 3-system (AA,AB,BB) is at most
perturbed by Θ(δ). We will show that T2 diverges with ε. Thus, for small enough δ, AB will have
time to reach the small fixed value

√
ε0 > 0 in this phase, and we can use the asymptotic decay

of the AB and AA populations which is proved in [84]. We now start to analyse the growth of the
small aa-, aA- and aB populations. The sum-process Σ5 plays a crucial role for the behaviour of
the system in this phase and we need finer bounds on it:

100



4. Proof

Proposition III.4. The sum-process Σ5 = naA + nAA + naB + nAB + nBB satisfies for all
t ∈ [T1, T2]:

n̄B −
∆

cn̄B
nAA −

∆2

cn̄B
nAA ≤ Σ5 ≤ n̄B −

∆

cn̄B
nAA +

∆2

cn̄B
nAA. (III.114)

Proof. We estimate a minorising process and a majorising process on Σ5:

bΣ5 ≤f
(nAA + nAB + nBB)(naA + nAA + naB + nAB + nBB)

naA + nAA + naB + nAB + nBB

+ f
(naA + naB)(3

4naA + nAA + 3
4naB + nAB + nBB)

naA + nAA + naB + nAB + nBB
+ Θ(δ) ≤ fΣ5 + Θ(δ),

(III.115)

bΣ5 ≥f
(nAA + nAB + nBB)(naA + nAA + naB + nAB + nBB)

naA + nAA + naB + nAB + nBB

+ f
(naA + naB)(3

4naA + nAA + 3
4naB + nAB + nBB)

naA + nAA + naB + nAB + nBB
−Θ(δ) ≥ fΣ5 −Θ(δ),

(III.116)

dΣ5 ≤Σ5(D −∆ + cΣ5) + ∆(nAA + naA)− 2ηnaAnBB + Θ(δ), (III.117)
dΣ5 ≥Σ5(D −∆ + cΣ5) + ∆(nAA + naA)− 2ηnaAnBB. (III.118)

We get

Σ̇5 ≤ −cΣ2
5 + Σ5(f −D + ∆)−∆nAA + Θ(δ), (III.119)

Σ̇5 ≥ −cΣ2
5 + Σ5(f −D + ∆)−∆nAA −Θ(δ). (III.120)

We start with the proof of the upper bound. We use Lemma III.1 and show that when
Σ5 reaches the upper-bound, it decays faster than the latter. Using (III.119) we compute
Σ̇5 at the bound. Note that if Σ5 ≤ n̄B − ∆

cn̄B
nAA + ∆2

cn̄B
nAA, then Σ2

5 ≤ n̄2
B −

2∆
c nAA +

∆2

c2n̄2
B
n2
AA + 2∆2

c nAA + Θ(∆4)n2
AA, thus

Σ̇5 ≤ −∆2nAA − ∆2

cn̄2
B
n2
AA + Θ(δ) < 0. (III.121)

It is left to show that Σ̇5 ≤ − ∆
cn̄B

ṅAA + ∆2

cn̄B
ṅAA. Since we already know (cf. Lemma III.2)

that (AA,AB,BB) behaves like a 3-system with Θ(δ) perturbations, then AA is decreasing,
ṅAA ≤ 0, this finishes the proof of the upper bound.

Now we check the lower bound. If Σ5 ≥ n̄B− ∆
cn̄B

nAA− ∆2

cn̄B
nAA then Σ2

5 ≥ n̄2
B−

2∆
c nAA−

∆2

c2n̄2
B
nAA − 2∆2

c nAA. Using (III.120), the derivative of Σ5 at the lower bound is thus lower
bounded by

Σ̇5 ≥ ∆2nAA − ∆2

cn̄2
B
nAA −Θ(δ) ≥ ∆2nAA

(
1− 1

cn̄B

)
−Θ(δ) > 0. (III.122)

By Lemma III.1, it is enough to show that at the lower bound Σ̇5 ≥ − ∆
cn̄B

ṅAA. For this we
calculate a majorising process on AA:

bAA ≤ f
Σ5
nAA(nAA + nAB) + f

4Σ5
n2
AB + Θ(δ), (III.123)

dAA ≥ fnAA, (III.124)

ṅAA ≤ − f
Σ5
nAAnBB + f

4Σ5
n2
AB + Θ(δ). (III.125)
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Hence we have to show that ∆2nAA

(
1− 1

cn̄B

)
−Θ(δ) ≥ ∆f

cn̄B n̄A

(
nAAnBB − 1

4n
2
AB

)
−Θ(δ∆),

in the case nAAnBB > 1
4n

2
AB. This is equivalent to show that χ := nAAnBB − 1

4n
2
AB ≤

∆n̄A
f (cn̄B − 1)nAA. For this we use once again Lemma III.1 and estimate the derivative

of χ from above with the help of minorising processes on AA and BB and a majorising
process on AB:

bAA ≥ f
Σ5
nAA(nAA + nAB) + f

4Σ5
n2
AB −Θ(δ), (III.126)

dAA ≤ (f + ∆)nAA + Θ(δ), (III.127)

ṅAA ≥ − f
Σ5
nAAnBB −∆nAA + f

4Σ5
n2
AB −Θ(δ). (III.128)

bBB ≥ f
Σ5
nBB(nAB + nBB) + f

4Σ5
n2
AB −Θ(δ), (III.129)

dBB ≤ fnBB, (III.130)

ṅBB ≥ − f
Σ5
nAAnBB + f

4Σ5
n2
AB + Θ(δ). (III.131)

bAB ≤ f
Σ5
nAB

(
nAA + 1

2nAB + nBB
)

+ 2f
Σ5
nAAnBB + Θ(δ), (III.132)

dAB ≥ (f −∆)nAB, (III.133)

ṅAB ≤ 2f
Σ5
nAAnBB − f

2Σ5
n2
AB + ∆nAB + Θ(δ). (III.134)

The derivative is given by:

χ̇ = ṅAAnBB + nAAṅBB − 1
2 ṅABnAB

≤ −fχ+ Θ(δ). (III.135)

At the upper bound we get:

χ̇ ≤ −∆n̄A(cn̄B − 1)nAA + Θ(δ) < 0. (III.136)

It is left to show that χ̇ ≤ ∆n̄A
f (cn̄B−1)ṅAA. Using the minorising process ṅAA ≥ −∆nAA−

f
n̄A
χ−Θ(δ) we show that

0 ≤ (f − 2∆)χ− ∆n̄A
n̄B

(cn̄B − 1)χ− ∆2n̄A
f (cn̄B − 1)nAA −Θ(δ). (III.137)

An easy calculation proves this fact and finishes the proof of the lower bound.

Lemma III.3. For t ∈ [T1, T2] and for ∆ sufficiently small it holds,

Σ̇aA,aB ≥ −Θ(∆)ΣaA,aB. (III.138)

Proof. Using Propositions III.4, we have the following bound on the process:

bΣaA,aB ≥ f
naA(1

2naA+nAA+naB+nAB+nBB)+naB(nAA+ 1
2naB+nAB+nBB)

naA+nAA+naB+nAB+nBB
−Θ(δnaA)

≥ fΣaA,aB −Θ(δnaA), (III.139)
dΣaA,aB = ΣaA,aB(D −∆ + cΣ5)− ηnaAnBB + ∆naA + cnaAnaa

≤ fΣaA,aB − naA(ηnBB −∆) + Θ(∆2nAA)Σ2
aA,aB, (III.140)

Σ̇aA,aB ≥ naA(ηnBB −∆−Θ(δ))Θ(∆2nAA)Σ2
aA,aB

≥ naA(−∆−Θ(δ))−Θ(δ∆2nAA)ΣaA,aB

≥ ΣaA,aB(−∆−Θ(δ)). (III.141)
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4. Proof

Lemma III.4. For all t ∈ [T1, T2] the aa population is bounded by

f

4n̄B(f + ∆)
Σ2
aA,aB ≤ naa ≤

f

n̄A(D + ∆)
Σ2
aA,aB. (III.142)

Observe that this implies T2 = T aA=δAA ∧ T aB=δAB .

Proof. First observe that the inequality is satisfied at t = T1. We start with the upper
bound and show that naa would decrease at this bound. For this we estimate a majorising
process on aa:

baa ≤ f
naa+naA+nAA

naa
(

1
2naA + naa

)
+ f

4Σ5
Σ2
aA,aB + f

2Σ5
naAnaa, (III.143)

daa ≥ naa(D + ∆), (III.144)

ṅaa ≤ f
naa+naA+nAA

n2
aa + f

naa+naA+nAA
naanaA + f

4Σ5
Σ2
aA,aB − naa(D + ∆). (III.145)

We calculate the slope of this process at the upper bound:

ṅaa ≤ f
4Σ5

Σ2
aA,aB −

f
n̄A

Σ2
aA,aB + Θ(Σ2

aA,aBnaA) ≤ −3f−Θ(δ)
4n̄A

Σ2
aA,aB < 0. (III.146)

By Lemma III.1, to ensure that (III.142) stays an upper bound it is enough to show that

−3f−Θ(δ)
4n̄A

Σ2
aA,aB ≤

2f
n̄A(D+∆) Σ̇aA,aBΣaA,aB. (III.147)

This is a consequence of Lemma III.3.
For the lower bound we proceed similarly. This time, with the knowledge of the upper
bound, we estimate a minorising process on aa:

baa ≥ f
Σ5

Σ2
aA,aB −Θ

(
Σ3
aA,aB

)
, (III.148)

daa ≤ naa(f + ∆), (III.149)

ṅaa ≥ f
n̄B

Σ2
aA,aB − naa(f + ∆)−Θ

(
Σ3
aA,aB

)
. (III.150)

At the lower bound the process increases:

ṅaa ≥
(
f
n̄B
− f

4n̄B

)
Σ2
aA,aB −Θ(Σ3

aA,aB) = 3f
4n̄B

Σ2
aA,aB −Θ

(
Σ3
aA,aB

)
> 0. (III.151)

By Lemma III.1, it is left to show that ṅaa ≥ f
2n̄B(f+∆) Σ̇aA,aBΣaA,aB. Thus we have to

calculate a majorising process on ΣaA,aB:

bΣaA,aB ≤ fΣaA,aB + Θ
(
Σ2
aA,aB

)
, (III.152)

dΣaA,aB ≥ (f −∆)ΣaA,aB + naA(∆− ηnBB)

≥ (f −∆)ΣaA,aB − (f −D)ΣaA,aB

= (D −∆)ΣaA,aB, (III.153)

Σ̇aA,aB ≤ (f −D + ∆)ΣaA,aB + Θ
(
Σ2
aA,aB

)
. (III.154)

Thus we get
f(f−D+∆)
2n̄B(f+∆) Σ2

aA,aB −
3f

4n̄B
Σ2
aA,aB + Θ(Σ3

aA,aB) = − f
2n̄B

Σ2
aA,aB

(
3
2 −

f−D+∆
f+∆

)
+ Θ

(
Σ3
aA,aB

)
= − f

2n̄B
Σ2
aA,aB

f+2D+∆
2(f+∆) + Θ

(
Σ3
aA,aB

)
< 0.

(III.155)

This finishes the proof of the lower bound.
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Let
T≡ = inf{t > T1 : naA(t) = naB(t)}. (III.156)

Proposition III.5. For all t ∈ [T1, T=] it holds

naB ≤ naA = Θ(ε). (III.157)

Proof. In this time interval the newborns of genotype aA are in majority produced by re-
productions of a population of order one, namely AB or AA, with the population aA. Since
naA feels competition from a macroscopic population (AA, AB or BB) the aA population
stays of order Θ(ε). We make this more rigorous. To show this we consider a majorising
process on aA and use Proposition III.4, and Lemma III.4:

baA ≤ fnaA − f
Σ5
naA(nBB + 1

2nAB) + f
2Σ5

naB(2nAA + nAB) + Θ
(
Σ2
aA,aB

)
, (III.158)

daA ≥ naA(f + ∆− ∆
n̄B
nAA − ηnBB −Θ

(
∆2nAA)

)
, (III.159)

ṅaA ≤−naA
(
nBB

f−ηΣ5

Σ5
+ f

2Σ5
nAB+∆

(
1− nAA

n̄B

)
−Θ

(
∆2nAA

))
+ f

Σ5
naB

(
1
2nAB+nAA+Θ(δ)

)
≤−naA

(
nBB

D+∆
Σ5

+ f
2Σ5

nAB+∆
(

1− nAA
n̄B

)
−Θ

(
∆2nAA

))
+ f

Σ5
naB

(
1
2nAB+nAA + Θ(δ)

)
≤−naA

(
f

Σ5

(
D+∆
f nBB+ 1

2nAB

)
+∆

(
1− nAA

n̄B

)
−Θ

(
∆2nAA

))
+ f

Σ5
naB

(
1
2nAB+nAA+Θ(δ)

)
.

(III.160)

By Proposition III.2 and [84] there exists a time t0 = Θ(1) such that the expression in the
first bracket becomes bigger than the expression in the second bracket. Thus naA decreases
after t0 and since aA does not exceed Θ(ε) until t0 it will stay smaller or equal to Θ(ε) until
T=.

We show that as soon as aB crosses aA the BB population is already bigger than or equal to the
AA population. First we estimate a upper bound for aB:

Lemma III.5. For all t ∈ [T1, T2] the aB population is upper bounded by

naB ≤
nAB + 2nBB + 2∆

c

nAB + 2nAA
naA ≡ C(t)naA. (III.161)

Proof. First observe that the bound is fulfilled at t = T1. Similarly to the proof of Lemma
III.4 we estimate a majorising process on aB given by:

ṅaB ≤ −naB
(

f
2Σ5

(nAB + 2nAA)− ∆
n̄B
nAA −Θ(∆2nAA)

)
+ naA

f
2Σ5

(nAB + 2nBB + Θ(δ)).

(III.162)

By Lemma III.1, we have to show that as soon as aB reaches the upper bound it decreases
faster than the bound, thus we calculate the slope of the majorising process at this value:

ṅaB ≤− f
2Σ5

(
nAB + 2nBB + 2∆

c −Θ(∆2nAA)
)
naA + ∆(nAB+2nBB+2∆/c)

n̄B(nAB+2nAA) nAAnaA

+ f
2Σ5

(nAB + 2nBB)naA

≤− ∆f−Θ(∆2nAA)
cΣ5

naA + ∆
Σ5

(
1
2nAB + nBB + ∆

c

)
naA

≤∆+Θ(∆2nAA)
Σ5

naA

(
n̄B + ∆

c −
f
c

)
≤− ∆+Θ(∆2nAA)

cΣ5
(D − 2∆)naA ≤ 0. (III.163)
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4. Proof

We have to show that ṅaB ≤ C(t)ṅaA + Ċ(t)naA. Since the 3-system converges towards
(0, 0, n̄B), C(t) is a monotone increasing function and hence Ċ(t) ≥ 0. Thus if we can show
that ṅaB ≤ C(t)ṅaA we are done. For this we have to calculate the slope of the minorising
process on aA when aB would reach the upper bound. This process is given by:

ṅaA ≥ −naA
(
f
2 + ∆− ηnBB + f

2Σ5
(nBB − nAA) + Θ(δ)

)
+ naB

f
2Σ5

(nAB + 2nAA).

(III.164)

The slope at the upper bound is:

ṅaA ≥ −naA
(
f
2 + ∆− ηnBB + f

2Σ5
(nBB − nAA)− f

2Σ5

(
nAB + 2nBB + 2∆

c + Θ(δ)
))

≥ −naA
(

∆− ηnBB − ∆f
cΣ5

+ Θ(δ)
)

≥ naA
(

∆D−∆
cΣ5

+ ηnBB −Θ(δ)
)
≥ 0. (III.165)

Since C(t) > 0 this finishes the proof.

Lemma III.6. We have T= ≤ T2. Moreover it holds,

nAA(T=) ≤ nBB(T=) + Θ(∆). (III.166)

Proof. We first show that T= < T2. Using Proposition III.4 we construct two processes that
provide an upper bound and a lower bound on naB, respectively:

baB ≥ fnaB − f
Σ5
naB(1

2nAB + nAA) + f
Σ5
naA(1

2nAB + nBB −Θ(δ2)), (III.167)

baB ≤ fnaB − f
Σ5
naB(1

2nAB + nAA) + f
Σ5
naA(1

2nAB + nBB + Θ(δ)), (III.168)

daB ≤ naBf, (III.169)

daB ≥ naB(f − ∆
n̄B
nAA −Θ(∆2nAA)), (III.170)

ṅaB ≤ −naB

(
f(1

2nAB + nAA)

Σ5
− ∆

n̄B
nAA −Θ(∆2nAA)

)
+ naA

f(1
2nAB + nBB + Θ(δ))

Σ5
,

(III.171)

ṅaB ≥ −naB
f(1

2nAB + nAA)

Σ5
+ naA

f(1
2nAB + nBB −Θ(δ2))

Σ5
. (III.172)

We first show that T= < ∞. We know that the 3-system (AA,AB,BB) converges to
(0, 0, n̄B) and that naB ≤ naA = Θ(ε) (Proposition III.5), for t ≤ T=. We consider the
worst case and assume that naB < naA then we get from (III.172) that at some time t0,
where nAB + 2nBB is already macroscopic,

ṅaB ≥ Θ(ε), naB ≥ Θ(ε)t. (III.173)

Thus the time aB needs to reach naA = Θ(ε) is of order Θ(1). This time is shorter than
TaA=δAA. Indeed, suppose the contrary, then by Proposition III.5 naA does not exceed
Θ(ε) before T2, and thus T aA=δAA ≥ TAAΘ(ε/δ) = Θ

(
(δ/ε)2

)
which diverges with ε. A similar

reasoning shows that T= < T aB=δAB. Hence T= < T2.
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It is left to show that nAA(T=) ≤ nBB(T=) + Θ(∆). From Lemma III.5 we deduce that at
T= it holds

1
2nAB + nAA ≤ 1

2nAB + nBB + ∆
c

nAA ≤ nBB + Θ(∆). (III.174)

Lemma III.7. For all t ∈ [T1, T2] the AB population is bounded by

1. nAB ≥ 2
√
n̄BnAA − 2nAA

(
1 + ∆

cn̄B

)
,

2. nAB ≤ 2

√
n̄BnAA

(
1 + ∆

f

)
− 2nAA.

Proof. 1. The proof works like the one of Lemma III.4. First observe that the bound
holds at t = T1. Then we calculate a minorising process on AB:

bAB ≥ f(2nAA + nAB)− f
Σ5

(2nAA + nAB)(nAA + 1
2nAB + Θ(δ2)), (III.175)

dAB ≤ fnAB, (III.176)

ṅAB ≥ −nAB f
Σ5

(
1
2nAB + nAA + Θ(δ2)

)
+ 2fnAA − 2f

Σ5
nAA

(
1
2nAB + nAA + Θ(δ2)

)
.

(III.177)

We use Proposition III.4 and show that this minorising process would increase quicker
than the lower-bound if AB reaches it:

ṅAB ≥− 2f
Σ5

(√
n̄BnAA − nAA

(
1 + ∆

cn̄B

))(√
n̄BnAA − ∆

cn̄B
nAA + Θ(δ2)

)
+ 2fnAA − 2f

Σ5
nAA

(√
n̄BnAA − ∆

cn̄B
nAA

)
≥ 2f

Σ5

∆
cn̄B

nAA(2
√
n̄BnAA − nAA)−Θ(∆2) > 0. (III.178)

It is left to show that at the lower bound,

ṅAB ≥
n̄BṅAA√
n̄BnAA

− 2ṅAA

(
1 + ∆

cn̄B

)
. (III.179)

For this we calculate a majorising process on AA:

bAA ≤ f
Σ5
nAA(nAA + nAB) + f

4Σ5
n2
AB + Θ(δ), (III.180)

dAA ≥ fnAA, (III.181)

ṅAA ≤ −nAA
(
f − f

Σ5
(nAA + nAB)

)
+ f

4Σ5
n2
AB + Θ(δ). (III.182)

If we now insert the lower bound and use Proposition III.4 we get

ṅAA ≤ − f
Σ5

∆
cn̄B

nAA(
√
n̄BnAA − nAA) + Θ(∆2) < 0. (III.183)

Thus (III.179) is fulfilled.
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4. Proof

2. First, observe that the upper bound is fullfiled at t = T1. We then have to estimate
a majorising process on AB:

bAB ≤ f(2nAA + nAB)− f(2nAA + nAB)
nAA + 1

2nAB

Σ5
+ Θ(δ), (III.184)

dAB ≥ nAB(D −∆ + cn̄B − ∆
n̄B
nAA −Θ(∆2nAA)) (III.185)

≥ nAB(f − ∆
n̄B
nAA −Θ(∆2nAA)), (III.186)

ṅAB ≤ − f
2n̄B

n2
AB − nAB

2f−∆
n̄B

nAA + 2fnAA − 2f
n̄B
n2
AA + Θ(∆2nAA). (III.187)

As before we calculate the slope of this majorising process if it would reach the upper
bound:

ṅAB ≤ − 2∆
n̄B
n2
AA + Θ(∆2nAA) < 0. (III.188)

By Lemma III.1 we have to show that

ṅAB ≤ ṅAA
(

n̄B(1+∆/f)√
n̄BnAA(1+∆/f)

− 2

)
. (III.189)

For this we calculate the slope of a minorising process on AA given by

ṅAA ≥ −nAA
(
f − f

Σ5
(nAA + nAB) + ∆ + Θ(δ2)

)
+ f

4Σ5
n2
AB. (III.190)

At the upper bound AA would start to increases:

ṅAA ≥ ∆
n̄B
n2
AA −Θ(δ2) > 0. (III.191)

Thus we get

ṅAA

(
n̄B(1+∆/f)√
n̄BnAA(1+∆/f)

− 2

)
− ṅAB ≥ ∆(1+∆/f)√

n̄BnAA(1+∆/f)
n2
AA −Θ(∆2nAA) > 0.

(III.192)

This finishes the proof.

The following Proposition is a statement for the 3-system (AA,AB,BB) but it holds also true
until T2 in the 6-system (aa, aA,AA, aB,AB,BB) for δ < ∆.

Proposition III.6. The maximal value nmaxAB of nAB in [T1, T2] is bounded by

n̄B
2
−Θ(∆) ≤ nmaxAB ≤

n̄B
2

+ Θ(∆). (III.193)

Moreover, let TmaxAB be the time when nAB takes on its maximum, then nAA and nBB are
bounded by

n̄B
4
−Θ(∆) ≤ nAA(TmaxAB ) ≤ n̄B

4
+ Θ(∆), (III.194)

n̄B
4
−Θ(∆) ≤ nBB(TmaxAB ) ≤ n̄B

4
+ Θ(∆). (III.195)
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Proof. From Lemma III.7 (1) we get that

nAB ≥ 2
√
n̄BnAA − 2nAA

(
1 + ∆

cn̄B

)
, (III.196)

We look for the value of AA where the expression on the right hand side takes on its
minimum, thus we have to derivate nAA and set it to zero:

n̄B√
n̄BnAA

−
(

2 + ∆
cn̄B

)
= 0 (III.197)

n̄2
B =

(
4− 4 ∆

cn̄B
+ Θ(∆2)

)
n̄BnAA (III.198)

n̄B
4
−Θ(∆) = nAA. (III.199)

If we insert this in nAB we get the lower bound:

nAB ≥ n̄B
2 + Θ(∆). (III.200)

For the upper bound on nAB we proceed similarly. Form Lemma III.7 (2) we get

nAB ≤ 2

√
n̄BnAA

(
1 + ∆

f

)
− 2nAA. (III.201)

Setting the derivation of the rhs to zero gives:

0 =
n̄B

(
1+

∆
f

)
√
n̄BnAA

(
1+

∆
f

) − 2 (III.202)

nAA =
n̄B
4

+ Θ(∆). (III.203)

Finally we get

nAB ≤ n̄B
2 −Θ(∆) and nAA = n̄B

4 −Θ(∆). (III.204)

Remark III.4. Note that nAA = nBB ± Θ(∆) = n̄B
4 ± Θ(∆) as soon as nAB reaches its

maximal value.

Proposition III.7. For all t ∈ [T1, T2],

naA ≤ Θ(ε) ∨ naB. (III.205)

Proof. For t ≤ T= this follows from Proposition III.5. For t > T= we show this by con-
structing a majorising process on naA(t):

baA ≤f
(naA + naB)(2nAA + nAB + Θ(δ))

2Σ5

≤f+Θ(δ)
2 (naA + naB) +

f(nAA − nBB)

2n̄A
(naA + naB), (III.206)

daA ≥naA
(
D + cn̄B − ∆

n̄B
nAA − ηnBB −Θ(∆2nAA)

)
≥naA(f − ηnBB), (III.207)

ṅaA ≤− naA
(
f
2 −

f(nAA−nBB)
2n̄A

− ηnBB −Θ(δ)
)

+ naB

(
f
2 + f(nAA−nBB+Θ(δ))

2n̄A

)
. (III.208)
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By Lemma III.1, it is left to show that ṅaA ≤ ṅaB whenever naA = naB. At this upper
bound we have ṅaA ≤ naB( f

n̄A
(nAA−nBB) +ηnBB + Θ(δ)). We now calculate a minorising

process on naB:

baB ≥ f
2Σ5

(naA + naB)(naB + nAB + 2nBB), (III.209)

daB ≤ naB(D −∆ + cn̄B) = fnaB, (III.210)

ṅaB ≥ f
2Σ5

naA(naB + nAB + 2nBB)− f
2Σ5

naB(2nAA + 2naA − naB − nAB). (III.211)

Thus ṅaB ≥ f
Σ5
naB(nBB − nAA + nAB) whenever naA = naB, and hence ṅaB − ṅaA ≥

f
n̄A
naB(2nBB−2nAA+ηnBB−Θ(∆)) > 0 by Proposition III.6. This finishes the proof.

Now we show that the time T aA=δAA is finite and prove that it is smaller than or equal to
T aB=δBB . To estimate the order of magnitude of the time T2 we need bounds on naA which
depends on ΣaA,aB .

Lemma III.8. For all t ∈ [T1, T2] the aA population is bounded by

f(nAB + 2nAA)

4n̄B(f + ∆)
ΣaA,aB ≤ naA ≤

f(nAB + 2nAA)

n̄A(D − 2∆)
ΣaA,aB. (III.212)

Proof.

1. We start with the upper bound. First observe that it holds at t = T1. By Lemma III.1
it is enough to show that if naA would reach the upper bound it would decrease faster than
the bound. Using Proposition III.4 and that η < c a majorising process on aA is given by

baA ≤ f
2Σ5

ΣaA,aB(nAB + 2nAA + Θ(δ)), (III.213)

daA ≥ naA
(
D + cn̄B − ∆

n̄B
nAA − ηnBB −Θ(∆2nAA)

)
≥ naA(D − 2∆), (III.214)

ṅaA ≤
f(2nAA + nAB + Θ(δ))

2Σ5
ΣaA,aB − naA(D − 2∆). (III.215)

We calculate the slope of the majorising process at the upper bound:

ṅaA ≤ f(2nAA + nAB)ΣaA,aB

(
1

2Σ5
− 1

n̄A
+ Θ(δ)

)
≤ − f

2n̄A
(2nAA + nAB + Θ(δ))ΣaA,aB.

(III.216)

We have to show that at the upper bound,

ṅaA ≤
f(ṅAB + 2ṅAA)

n̄A(D − 2∆)
ΣaA,aB +

f(nAB + 2nAA)

n̄A(D − 2∆)
Σ̇aA,aB. (III.217)

To do this we calculate minorising processes on nAB and nAA:

bAB ≥ f
Σ5
nAB

(
1
2nAB + nAA + nBB

)
+ 2f

Σ5
nAA(nBB −Θ(δ2)), (III.218)

dAB ≤ nABf, (III.219)

ṅAB ≥ − f
2Σ5

n2
AB + 2f

Σ5
nAA(nBB −Θ(δ2)), (III.220)

bAA ≥ f
Σ5
nAA

(
nAB + nAA −Θ(δ2)

)
+ f

4Σ5
n2
AB, (III.221)

dAA ≤ nAA(f + ∆ + Θ(δ2)), (III.222)

ṅAA ≥ −nAA
(
f

Σ5
nBB + ∆ + Θ(δ2)

)
+ f

4Σ5
n2
AB. (III.223)
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Hence we get that

ṅAB + 2ṅAA ≥ nAA
(

2f
Σ5
nBB − 2f

Σ5
nBB − 2∆−Θ(δ2)

)
= −2(∆ + Θ(δ2))nAA. (III.224)

By Lemma III.3, we know that Σ̇aA,aB ≥ −∆ΣaA,aB. Thus the right-hand side minus the
left-hand side of (III.217) is bounded from below by

−
2f(∆ + Θ(δ2))nAAΣaA,aB

n̄A(D − 2∆)
−
f∆(nAB + 2nAA)ΣaA,aB

n̄A(D − 2∆)
+
f(nAB + 2nAA + Θ(δ))ΣaA,aB

2n̄A

≥
fnAAΣaA,aB

n̄A

(
1− 4∆

D − 2∆

)
+
fnABΣaA,aB

2n̄A

(
1− 2∆

D − 2∆

)
+ Θ(δ2) > 0. (III.225)

This finishes the proof of the upper bound.

2. For the lower bound we proceed similarly (using Lemma III.1). This time we show that
if naA would reach the lower bound it would start to increase faster than the bound. Using
Proposition III.4 a minorising process on naA is given by

baA ≥ f
2Σ5

ΣaA,aB(2nAA + nAB −Θ(δ)), (III.226)

daA ≤ naA(f + ∆ + Θ(δ2)), (III.227)

ṅaA ≥
f(2nAA + nAB −Θ(δ))

2n̄B
ΣaA,aB − naA(f + ∆). (III.228)

We calculate the slope of the minorising process at the lower bound:

ṅaA ≥
f(2nAA + nAB −Θ(δ))

2n̄B
ΣaA,aB −

f(2nAA + nAB)

4n̄B
ΣaA,aB

=
f(2nAA + nAB −Θ(δ))

4n̄B
ΣaA,aB > 0. (III.229)

Thus the minorising process on naA would increase when the aA population would reach
the lower bound. To ensure this lower bound we have to show

ṅaA ≥
f(ṅAB + 2ṅAA)

4n̄B(f + ∆)
ΣaA,aB +

f(nAB + 2nAA)

4n̄B(f + ∆)
Σ̇aA,aB. (III.230)

For this we consider a majorising process on ΣaA,aB given by:

Σ̇aA,aB ≤ ∆
n̄B
nAAΣaA,aB − naA(∆− ηnBB) + Θ(∆2nAA). (III.231)

Using that η < c, the slope of this process if naA reaches the lower bound is estimated by

Σ̇aA,aB ≤ ∆
n̄B
nAAΣaA,aB −

f(2nAA + nAB)

4n̄B(f + ∆)
(∆− ηnBB)ΣaA,aB + Θ(∆2nAA)

≤ f(2nAA + nAB)

4n̄B

f −D
f + ∆

ΣaA,aB + ∆
n̄B
nAAΣaA,aB + Θ(∆2nAA). (III.232)
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Moreover we need majorising processes on AA and AB:

bAB ≤ f
Σ5
nAB

(
1
2nAB + nAA + nBB

)
+ 2f

Σ5
nAAnBB + Θ(δ), (III.233)

dAB ≥ nAB
(
f − ∆(1+∆)

n̄B
nAA

)
, (III.234)

ṅAB ≤ − f
2Σ5

n2
AB + 2f

Σ5
nAAnBB + ∆(1+∆)

n̄B
nAAnAB + Θ(δ), (III.235)

bAA ≤ f
Σ5
nAA (nAB + nAA) + f

4Σ5
n2
AB + Θ(δ), (III.236)

dAA ≥ nAA
(
f + ∆− ∆(1+∆)

n̄B
nAA

)
, (III.237)

ṅAA ≥ −nAA
(
f

Σ5
nBB + ∆− ∆(1+∆)

n̄B
nAA

)
+ f

4Σ5
n2
AB + Θ(δ). (III.238)

Thus we have

ṅAB + 2ṅAA ≤ −∆nAA

(
2− 2nAA+nAB

n̄B

)
+ Θ

(
∆2nAA

)
< Θ

(
∆2nAA

)
. (III.239)

It is enough to show that

ṅaA ≥
f(2nAA + nAB)

4n̄B(f + ∆)
Σ̇aA,aB + Θ

(
∆2nAA

)
ΣaA,aB, (III.240)

using that η < c we have

f(2nAA + nAB −Θ(δ))

4n̄B
ΣaA,aB −

f2(nAB + 2nAA)2

16n̄2
B(f + ∆)

f −D
f + ∆

ΣaA,aB

− f(nAB + 2nAA)

4n̄B(f + ∆)

∆

n̄B
nAAΣaA,aB −Θ

(
∆2nAA

)
ΣaA,aB

≥ f(2nAA + nAB −Θ(δ))

4n̄B
ΣaA,aB −

f(2nAA + nAB)

8n̄B
ΣaA,aB

(
1 +

2∆(1 + ∆)nAA
n̄B(f + ∆)

)
−Θ

(
∆2nAA

)
ΣaA,aB

> 0. (III.241)

This concludes the proof.

Proposition III.8. For all t ∈ [T1, T2] the process ΣaA,aB is bounded by

1. Σ̇aA,aB ≤ naA
(
ηnBB −∆nAB+Θ(∆nAA)

nAB+2nAA

)
.

2. Σ̇aA,aB ≥ naA(ηnBB −∆−Θ(δ)).

Proof.

1. We construct a majorising process on ΣaA,aB and use Proposition III.4 and Lemma III.4:

bΣaA,aB ≤ naA
f
(

1
2naA+nAA+naB+nAB+nBB

)
Σ5

+ naB
f
(
nAA+

1
2naB+nAB+nBB

)
Σ5

+ Θ
(
Σ2
aA,aB

)
≤ fΣaA,aB + Θ

(
Σ2
aA,aB

)
, (III.242)

dΣaA,aB ≥ ΣaA,aB(D −∆ + cΣ5) + ∆naA − ηnaAnBB
≥ ΣaA,aB(f − ∆(1+∆)

n̄B
nAA) + ∆naA − ηnaAnBB, (III.243)

Σ̇aA,aB ≤ ∆(1+∆)
n̄B

nAAnaB − naA(∆− ∆(1+∆)
n̄B

nAA − ηnBB) + Θ
(
Σ2
aA,aB

)
. (III.244)
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To bound naB we use Lemma III.5:

Σ̇aA,aB ≤ naA

(
∆(1 + ∆)nAA
nAB + 2nAA

nAB + 2nBB + 2∆
c

n̄B
−∆ + ∆(1+∆)

n̄B
nAA + ηnBB + Θ(δ)

)

≤ naA
(
ηnBB +

∆(nAA(nAB+2nBB)+nAA(nAB+2nAA)−n̄B(nAB+2nAA))+Θ(∆2nAA)
n̄B(nAB+2nAA)

)
≤ naA

(
ηnBB −∆

nAB + Θ(∆nAA)

nAB + 2nAA

)
. (III.245)

2. This time we construct a minorising process on ΣaA,aB by using Proposition III.4 and
Lemma III.4:

bΣaA,aB ≥ f
naA

(
1
2naA+nAA+naB+nAB+nBB

)
+naB

(
nAA+ 1

2naB+nAB+nBB
)

naA + nAA + naB + nAB + nBB
−Θ

(
δ2
)

≥ fΣaA,aB −Θ
(
δ2
)
, (III.246)

dΣaA,aB ≤ ΣaA,aB(D −∆ + cΣ5)− ηnaAnBB +
(
∆ + Θ

(
δ2
))
naA

≤ fΣaA,aB − naA
(
ηnBB −∆−Θ

(
δ2
))
, (III.247)

Σ̇aA,aB ≥ naA(ηnBB −∆−Θ(δ)). (III.248)

From this Proposition we can deduce

Corollary III.1. There exists a t∗ ∈ [T1, T2], such that for all t ∈ [t∗, T2] and η > 4∆
n̄B

=: η?,
it holds

Σ̇aA,aB(t) > 0. (III.249)

Proof. A fine calculation will show that the competition c − η felt by an aA individual
from a BB individual allow the sum ΣaA,aB to grow when η is large enough, whereas it
decreases when η = 0. Note that we consider here the sum ΣaA,aB because the influence of η
cannot be seen in the rates of the aB population alone. Heuristically, the growth of the aB
population happens due to the indirect influence (source of a allele) of the less decaying aA
population. We prove that the minorising process on ΣaA,aB estimated in the Proposition
III.8 starts to increase:

Σ̇aA,aB ≥ naA(ηnBB −∆−Θ(δ)). (III.250)

As soon as nBB > ∆/η, the sum-process ΣaA,aB starts to increase. From Lemma III.6 and
Proposition III.6 we know that, for t ≥ T=, we have nBB ≥ n̄B

4 −Θ(∆). Hence, if we choose
η > 4∆

n̄B
the sum-process ΣaA,aB increases.

Now we calculate the time T aA=δAA ∧ T aB=δAB and we will see that T aA=δAA ∧ T aB=δAB =
T aA=δAA.

Theorem III.2. The time T2 = Θ(ε−1/(1+ηn̄B−∆)).
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Proof. From Proposition III.8 (2) we have a lower bound on Σ̇aA,aB, and with Lemma III.8
(2) we can bound this further from below by:

Σ̇aA,aB ≥ naA(ηnBB −∆−Θ(δ))

≥ (ηnBB(t)−∆−Θ(δ))
f(nAB(t) + 2nAA(t))

4n̄B(f + ∆)
ΣaA,aB(t)

≥ Θ(ηn̄B/4−∆)

Θ(1) + Θ(1)t
ΣaA,aB(t), (III.251)

where the last estimation on nBB and on nAB comes from Proposition III.6 and from [84]
since we know from there that the time until nAB = Θ(

√
nAA), starts to decrease like 1/t

is of order Θ(1). As ΣaA,aB(T1) = Θ(ε), the solution of the ODE that gives a lower bound
is:

ΣaA,aB(t) ≥ Θ(ε)(Θ(1) + Θ(1)t)Θ(ηn̄B/4−∆). (III.252)

By using Proposition III.8 (1), we get the same kind of solution as an upper bound on
ΣaA,aB (note on the last step we can upper bound nBB by n̄B):

ΣaA,aB(t) ≤ Θ(ε)(Θ(1) + Θ(1)t)Θ(ηn̄B−∆). (III.253)

Using (III.252) and Lemma III.8 we get a minorising process on aA:

naA(t) = Θ(nABΣaA,aB) ≥ Θ(ε)(Θ(1) + Θ(1)t)Θ(ηn̄B/4−∆)/(Θ(1) + Θ(1)t). (III.254)

The corresponding majorising process has an n̄B instead of n̄B/4. By solving naA = δnAA =
Θ(n2

AB) we get the order of magnitude of Taa=δAA:

Θ
(
ε−1/(1+ηn̄B−∆)

)
≤ Taa=δAA ≤ Θ

(
ε−1/(1+ηn̄B/4−∆)

)
. (III.255)

Note that 1 + ηn̄B −∆ > 0 for ∆ small enough, and thus Taa=δAA diverges with ε and the
order calculations above are justified.

It is left to ensure that aB does not exceed δnAB in this time. It follows from Lemma III.8
that during the time interval [T1, T2], we have ΣaA,aB = Θ(naB). Thus, solving naB = δnAB
amounts to solving Θ(ΣaA,aB) = Θ(1)/(Θ(1) + Θ(1)t) which gives the very same order of
magnitude as for TaA=δAA. Thus the two times are of the same order.

Note that for η = 0, ΣaA,aB(T2) = Θ
(
ε1+∆/(1−∆)

)
. This proves point 1 of Theorem

III.1.

Proposition III.9. T2 = T aA=δAA.

Proof. This follows from Theorem III.2 and Lemma III.4.

Proposition III.10. At time t = T2 and if f is taken sufficiently large (Assumption C2),
naa starts to grow out of itself: there exists some positive constant cT2 > 0 such that

ṅaa ≥ cT2 · naa. (III.256)

113



III. Chapter: The recovery of a recessive allele in a Mendelian diploid model

Proof. We have nAA(T2) = Θ
(
ε2/(1+ηn̄B−∆)

)
. Thus, at the end of the second phase,

baa ≥ fnaa
1
2δnAA

nAA(1 + Θ(δ))
=

δfnaa
2(1 + Θ(δ))

, (III.257)

daa ≤ naa(D + ∆ + nAA(1 + Θ(δ))) = naa(D + ∆ + Θ
(
ε2/(1+ηn̄B−∆)

)
, (III.258)

ṅaa ≥ naa
(
δf
2 −D −∆−Θ

(
ε2/(1+ηn̄B−∆)

))
, (III.259)

the right-hand side is positive for f large enough.

4.4. Phase 3: Exponential growth of aa until co-equilibrium
with BB

Since aa is growing now also out of itself it will influence the sum-process Σ5 = naA + nAA +
naB + nAB + nBB and we need new lower bounds on Σ5 in the following steps, the proof of this
works similar to the one of Proposition III.4 by taking into account all contributing populations.
Let us compute the ODE to which Σ5 is the solution:

Proposition III.11. The sum-process Σ5 is the solution to

Σ̇5 =Σ5 (f −D −∆− cΣ5)−∆ (naA + nAA)− cnaa (naA + nAA) + 2ηnaAnBB

+ f
Σ3
naa

(
1
2naA + nAA

)
− f

4Σ5
naB(naA + naB)− f

4Σ6
naA (2naa + naA + naB) .

(III.260)

Proof. We calculate the birth- and the death-rate of Σ5 under consideration of the aa

Figure III.6.: Zoom-in when aa recovers, general qualitative behaviour of {ni (t) , i ∈
G} (lhs) and log-plot (rhs).
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population:

bΣ5 = f
Σ3
naa

(
1
2naA + nAA

)
+ f

Σ5

(
(naB + nAB + nBB) Σ5 − 1

4naB (naA + naB)
)

+
f

Σ6

(
(naA + nAA) Σ6 − naA

(
1
2naa + 1

4naA + 1
4naB

))
=fΣ5 + f

Σ3
naa

(
1
2naA + nAA

)
− f

4Σ5
naB (naA + naB)− f

4Σ6
naA (2naa + naA + naB) ,

(III.261)

dΣ5 =Σ5 (D −∆ + cΣ5) + (cnaa + ∆) (naA + nAA)− 2ηnaAnBB, (III.262)

Σ̇5 =Σ5 (f −D −∆− cΣ5)− (cnaa + ∆) (naA + nAA) + 2ηnaAnBB (III.263)

+ f
Σ3
naa

(
1
2naA + nAA

)
− f

4Σ5
naB(naA + naB)− f

4Σ6
naA (2naa + naA + naB) .

(III.264)

We introduce some notation for the order of magnitude of nAA(T2). We write nAA(T2) = Θ(εγ)
with

γ := 2/(1 + ηn̄B −∆). (III.265)

Let
T3 := T aa

n̄a−εγ/2 = inf
{
t > T2 : naa(t) = n̄a − εγ/2

}
. (III.266)

We have to ensure that the aa population grows until a neighbourhood of its equilibrium. At the
end of the second Phase it holds true that naA, nAA, naB ≤ nAB < ∆. We start to bound Σ5:

Lemma III.9. The sum-process Σ5 is bounded from above and below by

n̄B − 2(f+∆)
cn̄B

nAB ≤ Σ5 ≤ n̄B + 3(f+∆)
cn̄B

nAB. (III.267)

Proof. We use Lemma III.1 and construct minorising and majorising processes on Σ5 and
nAB. First observe that the bounds are satisfy at t = T2 by Proposition III.4.

fΣ5 − fnAB ≤ bΣ5 ≤ fΣ5 + 2fnAB, (III.268)
Σ5(D −∆ + cΣ5) + 2(f + ∆)nAB ≥ dΣ5 ≥ Σ5(D −∆ + cΣ5)− (f + ∆)nAB,

(III.269)

Σ5(f −D + ∆− cΣ5)− (2f + ∆)nAB ≤ Σ̇5 ≤ Σ5(f −D + ∆− cΣ5) + (3f + ∆)nAB.
(III.270)

At the lower bound we get that the sum-process would increase:

Σ̇5 ≥ ∆nAB −Θ
(
n2
AB

)
> 0, (III.271)

and at the upper bound it would decrease:

Σ̇5 ≤ −2∆nAB + Θ
(
n2
AB

)
< 0. (III.272)

It is left to show that

−2(f+∆)
cn̄B

ṅAB ≤ Σ̇5 ≤ 3(f+∆)
cn̄B

ṅAB. (III.273)

115



III. Chapter: The recovery of a recessive allele in a Mendelian diploid model

For this we construct a minorising process on AB:

bAB ≥ fnAB − 9f
4Σ5

n2
AB, (III.274)

dAB ≤ nAB(D −∆ + cΣ5), (III.275)

ṅAB ≥ nAB
(
f −D + ∆− cΣ5 − 9f

4Σ5
n2
AB

)
. (III.276)

At the lower bound we have ṅAB ≥ −f+8∆
4n̄B

n2
AB + Θ

(
n3
AB

)
and the lhs of (III.273) ≤

(f+8∆)(f+∆)
2cn̄2

B
n2
AB + Θ

(
n3
AB

)
< ∆nAB − Θ

(
n2
AB

)
. At the upper bound we get ṅAB ≥

−21f+4∆
4n̄B

n2
AB −Θ

(
n3
AB

)
and that the rhs of (III.273) is larger or equal to

−3(f+∆)(21f+4∆)
4cn̄2

B
n2
AB −Θ

(
n3
AB

)
> −2∆nAB −Θ

(
n2
AB

)
.

The following lemma ensure that the aA- and the AA populations stay smaller than Θ
(
n2
AB

)
:

Lemma III.10. 1. For all t ∈ [T2, T3], the AA population is bounded from above by

nAA ≤ 2
n̄B
n2
AB, (III.277)

2. For all t ∈ [T2, T3] and η < c
2

(
1− Θ(∆)

f−D+∆

)
, the aA population is bounded from above

by

naA ≤ 10f
n̄B(D−∆)n

2
AB. (III.278)

Proof. The proof uses again Lemma III.1. First observe that by Lemma III.7 (1) and since
naA(T2) = δnAA(T2) the bounds are satisfy at t = T2.

1. We construct a majorising process on AA:

bAA ≤ f
Σ5
nAA(naA + nAA + nAB) + f

4Σ5
(naA + nAB)2, (III.279)

dAA ≥ nAA(f −Θ(∆)), (III.280)

ṅAA ≤ −nAA
(
f

Σ5
(naB + nAB)−Θ(∆)

)
+ f

Σ5
n2
AB. (III.281)

This process decreases at the upper bound: ṅAA ≤ − f
n̄B
n2
AB + Θ

(
∆n2

AB

)
< 0. It is

left to show that

ṅAA ≤ 4
n̄B
nABṅAB. (III.282)

For this we construct a minorising process on AB, given by ṅAB ≥ −9f+Θ(∆)
2n̄B

n2
AB.

Thus the rhs of (III.282) is larger or equal to −18f+Θ(∆)
n̄2
B

n3
AB ≥ −

f
n̄B
n2
AB+Θ

(
∆n2

AB

)
.

2. Similarly to (1) we construct a majorising process on aA:

baA ≤ f
2Σ3

naanaA + 9f
2n̄B

n2
AB + f

2Σ6
naanaA + Θ(∆n2

AB), (III.283)

daA ≥ naA (f + ∆− ηn̄B + cnaa −Θ(nAB)) , (III.284)

ṅaA ≤ −naA
(
f
2 − ηn̄B + f−2(D−∆)

2Σ5
naa

)
+ 9f

2n̄B
n2
AB + Θ(∆n2

AB), (III.285)

ṅaA ≤ −naA f−2ηn̄B
2 + 9f+Θ(∆)

2n̄B
n2
AB. (III.286)
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At the upper bound we get: ṅaA ≤ n2
AB

(
9f+Θ(∆)

2n̄B
− 10f(f−2ηn̄B)

2n̄B(D−∆)

)
. It is to show that

ṅaA ≤ 20f
n̄B(D−∆)nABṅAB. (III.287)

For this we construct a minorising process on AB, given by ṅAB ≥ −9f+Θ(∆)
2n̄B

n2
AB.

Thus the rhs of (III.287) is larger or equal to −90f+Θ(∆)
n̄B(D−∆)n

3
AB. Thus we have to ensure

that
(

9f+Θ(∆)
2n̄B

− 10f(f−2ηn̄B)
2n̄B(D−∆)

)
< −90f+Θ(∆)

n̄B(D−∆) ∆. This yields the condition on η:

η < f−D−Θ(∆)
2n̄B

= c
2

(
1− Θ(∆)

f−D+∆

)
. (III.288)

Remark III.5. Observe that the condition η < c
2

(
1− Θ(∆)

f−D+∆

)
in Lemma III.10 prevent

aA to grow exponentially fast. Inequality (III.285) shows that for larger values for η, naA
would start to grow out of itself and thus the system would converge towards the 6-point
equilibrium as we checked numerically. Hence, the assumption η < c

2

(
1− Θ(∆)

f−D+∆

)
is

essential in this phase and propagates to the following lemmata since we need therein the
n2
AB-dependent bound on aA.

Using Lemma III.10 we can also compute a lower bound for AA:

Lemma III.11. For η ≤ c
2 −Θ(∆), the AA population is bounded from below by

1
8n̄B

n2
AB ≤ nAA. (III.289)

Proof. By Lemma III.1 we construct a minorising process on AA. The bound is satisfy by
Lemma III.7 2. at t = T2.

bAA ≥ f
4Σ5

n2
AB, (III.290)

dAA ≤ nAA(D + cΣ5 + cnaa), (III.291)

ṅAA ≥ −nAA
(
f + ∆ + 3(f+∆)

n̄B
nAB + cnaa

)
+ f

4Σ5
n2
AB. (III.292)

At the lower bound this process increases ṅAA ≥ D−Θ(∆2)
8n̄B

n2
AB > 0. It is left to show that

ṅAA ≥ 1
4n̄B

nABṅAB. (III.293)

We construct a majorising process on AB, given by ṅAB ≤ 2(f+∆+Θ(∆2))
4n̄B

n2
AB +fnaA, using

Lemma III.10 we get that the rhs of (III.293) is smaller or equal to f
4n̄B

nABnaA+Θ
(
n3
AB

)
≤

Θ
(
n3
AB

)
.

With all these lemmata we are now able to show that nAB stays of order Θ
(
εγ/2

)
until T3 when

naa reaches the neighbourhood of its equilibrium.

Lemma III.12. For the time TAB
εγ/2

, until AB exceed the order εγ/2, it holds

TAB
εγ/2
≥ Θ

(
ε−γ/2

)
. (III.294)
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Proof. We construct a majorising process on AB:

bAB ≤ fnAB + Θ
(
n2
AB

)
, (III.295)

dAB ≥ nAB
(
f −Θ

(
n2
AB

))
, (III.296)

ṅAB ≤ Θ
(
n2
AB

)
. (III.297)

With the initial condition nAB(T2) = Θ
(
εγ/2

)
, this ODE has the solution

nAB(t) ≤ Θ(1)

Θ(1)t−Θ
(
ε−γ/2

) . (III.298)

Thus TAB
εγ/2
≥ Θ

(
ε−γ/2

)
.

Observe, it follows that TAAεγ = Θ(ε−γ/2).
To ensure the exponential growth of aa we need that the aA population reaches the order Θ(εγ)

and stays there for a long enough time.

Lemma III.13. For η ≤ c
2 −Θ(∆) and for all t ≤ T2 + Θ

(
ε−γ/2

)
, if naa ≤ naA ≤ nAA or

naA ≤ naa ≤ nAA, it holds

naA ≥ Θ
(
δn2

AB

)
. (III.299)

Proof. We construct a minorising process on aA in a very rough way. The death rate can
be estimate by:

daA ≤ naA(f + ∆ + Θ(nAB)). (III.300)

At time T2 we know that naA = δnAA = Θ
(
δn2

AB

)
. Thus, using Lemma III.12, at T2, naA

is given by:

naA(t) ≤ Θ(1)

Θ(1)t−Θ(δ)ε−γ
. (III.301)

This process would need time of order Θ (δε−γ−α), for α > 0, to decrease under order
Θ (δεγ) which is larger than the time nAB needs to leave order Θ

(
εγ/2

)
. This way we can

ensure that naA does not decrease under order Θ
(
δn2

AB

)
in time Θ

(
ε−γ/2

)
.

Now we show that naa increases to a neighbourhood of its equilibrium before time TAB
εγ/2

.

Lemma III.14. For η ≤ c
2 − Θ(∆) and all t ∈ [T2, T3] the aa population increases to a

ε
γ
2 -neighbourhood of its equilibrium n̄a exponentially fast and it holds T3 < TAB

εγ/2
.

Proof. We construct a minorising process on aa and distinguishe some cases. First observe
that by Lemma III.10 it holds that daa ≤ naa

(
D + ∆ + cnaa + Θ

(
n2
AB

))
.

1. If naa ≤ naA ≤ nAA or naA ≤ naa ≤ nAA
In that case the birth-rate is given by baa ≥ fnaa naA

6nAA
. With Lemma III.10 and III.13

we get baa ≥ Θ(δ)fnaa and ṅaa ≥ naa
(
Θ(δ)f −D −∆−Θ

(
n2
AB

))
. Hence the time

T aaεγ = Θ (ln(ε−γ)) until aa reaches Θ(εγ).
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2. If naa, nAA ≤ naA
In that case, by Lemma III.10 we get baa ≥ f

6naa and ṅaa ≥ naa
(
f
6−D−∆−Θ

(
n2
AB

))
.

Hence the time T aaεγ = Θ (ln (ε−γ)) until aa reaches Θ (εγ).

3. If naA ≤ nAA ≤ naa ≤ nAB
In that case, by Lemma III.10, baa ≥ f

3naa and ṅaa ≥ naa
(
f
3−D−∆−cnaa−Θ

(
n2
AB

))
.

Hence the time T aa
εγ/2

= Θ
(
ln
(
ε−γ/2

))
until aa reaches Θ

(
εγ/2

)
.

4. If nAA ≤ naA ≤ naa ≤ nAB
In that case, by Lemma III.10, baa ≥ f

2naa and ṅaa≥ naa
(
f
2−D−∆−cnaa−Θ

(
n2
AB

))
.

Hence the time T aa
εγ/2

= Θ
(
ln
(
ε−γ/2

))
until aa reaches Θ

(
εγ/2

)
.

5. If naa > nAB

In that case, by Lemma III.10, baa ≥ naa

(
f −Θ

(
n2
AB
naa

))
and ṅaa ≥ naa

(
f − D −

∆− cnaa −Θ
(
n2
AB
naa

))
. Hence the time T3 = Θ(εγ ln(ε−γ)) ≤ TAB

εγ/2
.

4.5. Phase 4: Convergence to paB = (n̄a, 0, 0, 0, 0, n̄B)

The Jacobian matrix of the field (III.34) at the fixed point paB has the 6 eigenvalues: 0 (double), and
−(2f−D),−(f−D+∆),−(f−D−∆),−((f−D)(5f−4D)+f∆)/(4(f−D)+ηn̄B) which are
strictly negative under Assumptions (C). Because of the zero eigenvalues, paB is a non-hyperbolic
equilibrium point of the system and linearisation fails to determine its stability properties. Instead,
we use the result of the center manifold theory (51,88) that asserts that the qualitative behaviour of
the dynamical system in a neighbourhood of the non-hyperbolic critical point paB is determined by
its behaviour on the center manifold near paB .

Theorem III.3 (The Local Center Manifold Theorem 2.12.1 in 88). Let f ∈ Cr(E), where
E is an open subset of Rn containing the origin and r ≥ 1. Suppose that f(0) = 0 and
Df(0) has c eigenvalues with zero real parts and s eigenvalues with negative real parts,
where c+ s = n. Then the system ż = f(z) can be written in diagonal form

ẋ = Cx+ F (x, y), (III.302)
ẏ = Py +G(x, y), (III.303)

where z = (x, y) ∈ Rc×Rs, C is a c× c-matrix with c eigenvalues having zero real parts, P
is a s×s-matrix with s eigenvalues with negative real parts, and F (0) = G(0) = 0, DF (0) =
DG(0) = 0. Furthermore, there exists δ > 0 and a function, h ∈ Cr(Nδ(0)), where Nδ(0) is
the δ-neighbourhood of 0, that defines the local center manifold and satisfies:

Dh(x)[Cx+ F (x, h(x))]− Ph(x)−G(x, h(x)) = 0, (III.304)

for |x| < δ. The flow on the center manifold W c(0) is defined by the system of differential
equations

ẋ = Cx+ F (x, h(x)), (III.305)

for all x ∈ Rc with |x| < δ.
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The Local Center Manifold Theorem shows that the non-hyperbolic critical point paB is indeed
a stable fixed point and that the flow on the center manifold near the critical point approaches paB
with speed 1

t . This can be seen as follows:
By the affine transformation (naa, nBB) 7→ (naa − n̄a, nBB − n̄B) we get a translated system

F̃ (n) which has a critical point at the origin. The two eigenvectors corresponding to 0 eigenvalues
of the Jacobian matrix of F̃ at the fixed point (0, 0, 0, 0, 0, 0) are

EV1 = (0, 0, 0, 0, 1, 0,−1) and EV2 = (0, 0, 0, 0,−1, 1, 0). (III.306)

We perform a new change of variable to work in the basis of eigenvectors of F̃ (n). Let us call the
new coordinates x1, . . . , x6. Let h(x1, x2) be the local center manifold. We shall look at its local
shape near (0, 0) and expand it up to second order:

h(x1, x2) =


λ3x

2
1 + ν3x1x2 + µ3x

2
2

λ4x
2
1 + ν4x1x2 + µ4x

2
2

λ5x
2
1 + ν5x1x2 + µ5x

2
2

λ6x
2
1 + ν6x1x2 + µ6x

2
2

+O
(
x3
)
. (III.307)

We then substitute the series expansions into the center manifold equation (III.304) which gives us
12 equations for the 12 unknowns λ3, . . . , µ6. Substitution of the explicit second order approxima-
tion of the center manifold equation into (III.305) yields the flow on the local center manifold:

ẋ1 =
A1

B1
x1x2 +

C1

D1
x2

2 +
E1

F1
x1

2 +O
(
x3
)
, (III.308)

ẋ2 =
A2

B2
x1x2 +

C2

D2
x2

2 +
E2

F2
x1

2 +O
(
x3
)
, (III.309)

where

A1 = 3c2Df2 − c2∆f2 − 3c2f3, (III.310)

B1 = (D −∆− f)
(
4cD2 − 9cDf + c∆f + 5cf2 − 4D2η + 4D∆η + 8Dηf − 4∆ηf − 4ηf2

)
,

(III.311)

C1 = 12c2D3f2 − 4c2D2∆f2 − 39c2D2f3 + 12c2D∆f3 + 42c2Df4 − c2∆2f3 − 8c2∆f4

− 15c2f5 + 12cD3ηf2 − 16cD2∆ηf2 − 36cD2ηf3 + 4cD∆2ηf2 + 32cD∆ηf3

+ 36cDηf4 − 4c∆2ηf3 − 16c∆ηf4 − 12cηf5, (III.312)
D1 = 8(D − 2f)(D − f)(D −∆− f)×

×
(
4cD2 − 9cDf + c∆f + 5cf2 − 4D2η + 4D∆η + 8Dηf − 4∆ηf − 4ηf2

)
, (III.313)

E1 = cf, F1 = 2(−D + ∆ + f), (III.314)

and

A2 = 2c2D2f − 3c2Df2 + c2f3 − 2cD2ηf + 2cD∆ηf + 4cDηf2 − 2c∆ηf2 − 2cηf3, (III.315)

B2 = (D −∆− f)
(
4cD2 − 9cDf + c∆f + 5cf2 − 4D2η + 4D∆η + 8Dηf − 4∆ηf − 4ηf2

)
,

(III.316)

C2 = −3cDηf2 + c∆ηf2 + 3cηf3, (III.317)

D2 = 2(D − 2f)
(
4cD2 − 9cDf + c∆f + 5cf2 − 4D2η + 4D∆η + 8Dηf − 4∆ηf − 4ηf2

)
,

(III.318)

E2 = 0, F2 = 1. (III.319)
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It is left to show that the above system flows toward the origin, at least for η smaller than a certain
constant. To do that, we perform another change of variables which allows us to work in the
positive quadrant. We call the new coordinates (on the center manifold) y1 and y2, and the new
field F̂ . Observe that it is sufficient to prove that the scalar product of the field with the position is
negative. We thus consider the function

s(y1, y2) =
(
F̂ (y1, y2), (y1, y2)

)
, (III.320)

which is a quadratic form in y1 and y2. As the field F̂ is homogeneous of degree 2 in its
variables, it is enough to consider any direction given by y2 = λy1, and prove that s(y1, λy1) < 0
for all λ > 0. As the expressions are so ugly, we work perturbatively in f and consider it as large as
needed. Observe that the numerator and the denominator of s(y1, λy1) are polynomials of degree
5 in f . We thus look at the coefficients in front of f5:

s(y1, λy1) =
cy1

3
(
c
(
16λ3 + 7λ2 + 16λ+ 40

)
− 4η

(
5λ3 + 8λ2 + 8λ+ 8

))
64η − 80c

f5 + Θ
(
f4
)
.

(III.321)

Observe that the denominator is always negative (because by the assumption that η ≤ c). The
minimal value of the ratio

r(λ):=
16λ3 + 7λ2 + 16λ+ 40

4 (5λ3 + 8λ2 + 8λ+ 8)
, (III.322)

is rmax ' 0.593644, thus, asymptotically as f → ∞, the field is attractive for η < c · rmax. Thus
we see that paB is a stable fixed point which is approached with speed 1

t as long as η < c · rmax.
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Figure III.7.: Flow of the dynamical system in the center manifold of the fixed point
paB, for η = 0.02 (left) and η = 0.6 (right).
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5. Discussion
In the rigorous results we have presented in this paper, we made some particular assumptions on
the parameters of our model in order to simplify the analysis of the (already difficult) dynamical
system. In this section we discuss which of these assumptions can be relaxed, based on heuristic
considerations and numerical simulations.

The no-reproduction-small-competition model. In the model considered so far, we
assume that the mutation to the B allele produces a new species different to the one of phenotype
a. This is done by the no reproduction assumption between individuals of phenotype a and of
phenotype B.

These requirements are not needed to observe the recovery of the aa population. In fact, what
we require is that the invasion fitness of the aa population into a residentBB population is positive.
Therefore, we can ease the no-competition assumption in our model and can add a small competi-
tion, caB , between aa individuals and BB individuals. This additional competition increases the
time until aa can reinvade and also affects the two-population fixed point paB such that the two co-
existing populations aa andBB will not reach their monomorphic equilibrium n̄a and n̄B anymore
(see Figure III.8).

Figure III.8.: Numerical solution of the deterministic process, loglogplot for η = 0
and caB = 0.1.

Adding the factor η results in accelerating the process of recovery and consequently, allows to
increase the competition caB (see Figure III.9).

For small η we end up in a aa-BB equilibrium but by accelerating (increasing η or decreasing
caB) the process enough we can also end up in a 6-point equilibrium (all six population coexist)
(see Figure III.10).

If we have competition between individuals of phenotype a and of phenotype B (caB > 0)
the aa and BB populations have smaller equilibria as the no-competition equilibria n̄a and n̄B ,
obtained when caB = 0. Thus the competition felt from aA by aa and BB is lower and a smaller
η is enough to observe the 6-point equilibrium.

The all-with-all model. The assumption of no reproduction between individuals of pheno-
type a and of phenotype B is not really necessary in order to get the recovery of the aa population.
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Figure III.9.: Numerical solution of the deterministic process, loglog-plot (left) for
η = 0.01 and caB = 0.1, (right) for η = 0.01 and caB = 0.2.

Figure III.10.: Numerical solution of the deterministic process, loglog-plot (left) for
η = 0.56 and caB = 0, (right) for η = 0.17 and caB = 0.2.

Let us discuss the all-with-all model where all phenotypes can reproduce among themselves, that
is where the reproductive compatibility is Ri(j) = 1, for all i, j ∈ G. From numerical simula-
tions we find that most of the results for the previous models also hold for this model but one main
difference is that the 2-point equilibrium is replaced by a 3-point-equilibrium. The reason for this
is that the reproduction between a and B individuals will always give birth to aB individuals and
thus also an aB population survives (see Figure III.11). Also in the all-with-all model we can add
small competition between individuals of phenotype a and individuals of phenotype B and get the
3-point equilibrium (see Figure III.11). As in the no-reproduction model, adding the factor η results
in accelerating the process (see Figure III.12 (left)). Notice, compared to the previous models the
fecundity f in the all-with-all model has to be much bigger to get the recovery of the aa population
due to reproduction of all individuals among each other (see Figure III.12 (right)). Since in this
case the whole population acts as potential partner for each individual the birth rate of aa scales
with Σ6 and thus f have to be big enough to compensate its death rate and to get a positive in-
vasion fitness. With reasonable choices for η and caB , we end up in a 6-point-equilibrium where
all populations coexists (see Figure III.13). Observe, the aB population can be bigger than the
AB population, because it gets an additional birth factor from the reproduction of individuals of
genotype aa with individuals of phenotype B which outcompetes the birth of AB individuals by
reproduction of individuals of genotype AA and of phenotype B.
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Figure III.11.: Numerical solution of the all-with-all deterministic process, loglog-
plot (left) for f = 6, η = 0 and caB = 0, (right) for f = 6, η = 0 and
caB = 0.05.

Figure III.12.: Numerical solution of the all-with-all deterministic process, loglog-plot
(left) for η = 0.02 and caB = 0, (right) for η = 0, caB = 0 and f = 3.

Figure III.13.: Numerical solution of the all-with-all deterministic process, loglog-
plot for η = 0.17 and caB = 0.925 (left), rescaled individual plot for
η = 0.17 and caB = 0.925 (left).
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