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Abstract

This thesis is concerned with topics in chiral perturbation theory for pseudoscalar charmed mesons in a
manifestly Lorentz-invariant way. After constructing the chiral effective Lagrangian describing spinless
matter fields living in the fundamental representation of S U(N), we systematically study the effective
generating functional using the background field method up to leading one-loop order, i.e. O(p3), where
p denotes a small momentum or Goldstone boson mass. In general, when matter fields are included,
loop diagrams are both UV divergent and spoil the power counting rules. To obtain a well defined
effective generating functional, both free of UV divergences and power counting breaking (PCB) terms,
we renormalize it within the extended-on-mass-shell (EOMS) scheme on the Lagrangian level. Using
heat kernel expansion techniques, the divergences of the one-loop effective generating functional are
extracted. The divergences are absorbed by counterterms not only from the third order but also from
the second order chiral Lagrangian. Likewise, PCB terms are polynomials in chiral quantities, and thus
can be absorbed by conterterms. The PCB terms and the counterterms are calculated using the external
field expansion. The theory can be applied to any theory with a spontaneous symmetry breaking of
S U(N)L × S U(N)R to S U(N)V and spinless matter fields in the fundamental representation.

The theory is then applied to the scattering of the Goldstone bosons of chiral symmetry off the
pseudoscalar charmed mesons. To investigate the nonperturbative effects and describe the scattering
lengths at unphysically high pion masses, we unitarize the scattering amplitudes to fit the available
lattice data of the S -wave scattering lengths. The lattice data are well described. However, most of the
low-energy constants (LECs) determined from the fit bear large uncertainties. Lattice simulations in
more channels are necessary to pin down these values which can then be used to make predictions in
other processes related by chiral and heavy quark symmetries. Furthermore, we search for dynamically
generated open-charm states with JP

= 0+ as poles of the S -matrix on various Riemann sheets. The
trajectories of those poles for varying pion masses are presented as well.

To assess the contribution from the heavy quark spin partner, vector charmed mesons are included
explicitly in order to quantify their influences on the S -wave scattering lengths. The obtained results are
compared to the ones without an explicit contribution of the vector charmed mesons. It is found that the
difference is negligible for S -wave scattering in the threshold region. This validates the use of D∗-less
one-loop potentials in the study of the pertinent scattering lengths.

At last, we investigate the numerical values of the LECs of ChPT for charmed mesons. This thesis is
tackled from two sides: estimates using the resonance exchange model, and positivity constraints from
the general properties of the S -matrix including analyticity, crossing symmetry and unitarity. These
estimates and constraints are compared with the values of the scattering length determined by fitting to
lattice datas. Tensions are found, and possible reasons are discussed. We conclude that more data from
lattice calculations and experiments are necessary to fix these constants better. As a by-product, we also
estimate the coupling constant gDDa2

, with a2 the light tensor meson, via the QCD sum rule approach.
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CHAPTER 1

Introduction

The Standard Model (SM) Lagrangian encodes our knowledge of the fundamental interactions besides
gravity. In SM all interactions are governed by the gauge symmetries. Gauge invariance is first proposed
by Weyl to describe the electromagnetic interaction in quantum mechanics. It was extended to the non-
abelian case by C. N. Yang and Mills in 1954 [1], the Yang-Mills theory.1 However, the gauge symmetry
asks for exact massless gauge bosons, which lead to long-range interactions. It seems impossible to
describe the strong or weak interaction at that time. A landmark in constructing the SM is the introduction
of the Higgs mechanism,2 which is essential to explain the generation mechanism of the mass of gauge
bosons. The mechanism was incorporated into the SM by Weinberg and Salam. The unification of the
electromagnetism and weak interaction is accomplished under an S U(2)L × U(1)Y gauge group, where
S U(2)L and U(1)Y represent weak isospin and hypercharge, respectively. In the SM, the W±, Z0 bosons
acquire masses by the spontaneous gauge symmetry breaking (Higgs mechanism) of the electroweak
symmetry from S U(2)L ×U(1)Y to U(1)em, and the photon remains massless due to the unbroken U(1)em
symmetry which is different from U(1)Y . The theory also predicts the existence of at least a scalar Higgs
boson, which was observed in 2013 [5, 6]. Earlier, ’t Hooft had proven that Yang-Mills theories are
renormalizable [7, 8] in 1971.

Another crucial breakthrough in the SM is the discovery that the non-abelian gauge theories may
reproduce a feature called asymptotic freedom, which is believed to be an important characteristic of the
strong interaction. Asymptotic freedom was independently discovered by Gross and Wilczek [9, 10], and
Politzer [11] in 1973.3 Based on the quark model, the local S U(3)C symmetry gives rise to Quantum
Chromodynamics (QCD), where the subscript C indicates the color space. Besides asymptotic freedom,
QCD enjoys another peculiar property that color charged particles cannot be isolated singularly, the
so-called color confinement. The incorporation of electroweak theory and QCD is recognized as the SM.
The theory describes the interaction of the fundamental particles: the leptons, quarks, gauge bosons and
Higgs boson, by the gauge symmetry of S U(3)C × S U(2)L × U(1)Y . It has shown huge and continuous
successes in experimental tests and predictions.

Different from Quantum Electrodynamics (QED), QCD has an ultraviolet (UV) fixed point at αs = 0
instead of an infrared fixed point, where αs denotes the strong coupling constant. This means that
perturbation theory works well in UV regions. According to the property of asymptotic freedom, quarks
and gluons interact very weakly in high-energy regions. One could employ perturbation theory safely to

1 R. Shaw introduced the same notion independently.
2 The Higgs mechanism is independently proposed almost simultaneously in 1964 by Brout and Englert [2]; by Higgs [3]; and

by Guralnik, Hagen, and Kibble [4].
3 ’t Hooft had found this result and announced it at a conference in 1972 [12, 13].
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Chapter 1 Introduction

study the short-distance interactions, referred to as perturbative QCD. The earliest application of QCD
is made in deep inelastic scattering, in which the operator product expansion (OPE) provides a very
powerful tool in extracting the short-range information to which perturbative calculations are safely
applied. However, with the decrease of the energy, due to the self-interaction of gluons, the coupling
constant αs grows, which would weaken the applicability of the perturbation theory. At energy, of the
order of 1 GeV, the coupling constant becomes so large that the perturbation theory fails totally. The
failure of the perturbative expansion in αs requires other approaches to study the low-energy behavior of
the strong interactions. However, up to today, an analytical solution from first principles of QCD is not
available. In the meantime, vast amounts of hadronic data which require theoretical interpretation have
been collected. Therefore, various methods and techniques have been developed to work with QCD at
low energies, e.g. various dynamical models (potential, MIT bag and Skyrme), effective field theories,
QCD sum rules, lattice QCD, 1/Nc expansions, and etc. Among them, effective field theories provides a
simple and systematic way to study the specific physics or physics in specific energy region, and therefore
become popular and paradigmatic tools in various fields of physics.

Chiral perturbation theory (ChPT) [14–16], as the low-energy effective theory of QCD, provides
a successful and systematical framework to study hadronic physics at low energies. The Goldstone
bosons are treated as the degrees of freedom explicitly instead of quarks and gluons. The hard modes
are integrated out and encoded into the coupling constants, the so-called low energy constants (LECs).
The effective Lagrangian is constructed with the same symmetries as QCD and is arranged in powers of
external momenta and light quark masses. Under a proper power counting scheme, a relation between
the momentum expansion and the loop expansion is well established. The systematic studies of the ChPT
for pure Goldstone bosons to O(p4) have been done by Gasser and Leutwyler [15, 16]. Matter fields
having nonvanishing masses in the chiral limit can be included in ChPT as well. ChPT including light
baryons is known as baryon ChPT. However, the occurrence of the new mass scale (baryon mass) leads
to the notable power counting breaking issue in baryon ChPT [17]. Various approaches were proposed
to address the PCB issue, e.g. the heavy baryon ChPT [18–20], the infrared reularization [21], and the
extended-on-mass-shell (EOMS) scheme [22]. Recently, the EOMS scheme was successfully applied to
the study of πN scattering up to O(p4) [23] and in the presence of ∆-resonance [24]. Likewise, ChPT
including other matter fields has the same powering counting breaking issue. The approaches used for
baryon ChPT can be employed to ChPT including other matter fields.

Since the standard ChPT is organized in a double expansion in terms of small external momenta and
light quark masses, the convergence of the chiral series would be in a question at relatively high energies,
especially at the energies where the resonances appear. The perturbative scattering potentials to any finite
chiral order can never reproduce the resonances in the relevant channels, and start to violate the unitarity
largely and can not be trusted anymore. One way to restore the situation is to unitarize the perturbative
potentials, however, usually with the price of losing the crossing symmetry.

In the hadronic world, many excited charmed/bottomed states and charmonia/bottomonia have been
observed experimentally, see Refs. [25, 26] and the references therein. This leads to considerable
theoretical works attempting to investigate properties of the new states and trying to assign them into the
hadronic spectrum. According to the conventional quark model, hadrons consist of a quark-antiquark
pair or three quarks. However, numerous exotic candidates which cannot fit into the conventional quark
model have been observed. Studies on these exotic candidates do not only shed light on their nature, but
also allow us to further understand the underlying QCD. The quark potential model is a powerful tool in
studying the low lying excited states and assigning them in the hadronic spectrum. However, some states
with quantum numbers allowed in conventional quark model are in disagreement with the expectations
from quark potential models, e.g. D∗s0(2317) and D∗s1(2460). A number of possible explanations have
been proposed to unravel their nature. More and more evidence suggests that the D∗s0(2317) is dominantly
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a DK hadronic molecule [27–30]. Employing ChPT for D mesons, the scattering of charmed and
Goldstone mesons provides a systematical tool to probe the inner structure of the D∗s0(2317).

In this work, we will systematically investigate the ChPT for spinless matter fields living in the S U(N)
fundamental representation to O(p3), i.e. one-loop level, and its application to the interactions between
charmed mesons and Goldstone bosons. The work is organized as follow: In Chapter 2, we present
an introduction to ChPT with special focus on the inclusion of matter fields and the accompanying
power counting breaking issue. In Chapter 3, I give a brief introduction to the unitarization of two-body
interaction. In Chapter 4, we will calculate the effective generating functional to O(p3), i.e. leading
one-loop order, and then systematically renormalize it using the background field method and heat kernel
techniques. In addition, the EOMS scheme will be performed to obtain a generating functional with
a consistent power counting. From the effective generating functional, one can read off the two-body
scattering amplitudes directly. Chapter 5 is devoted to the application of unitarized ChPT to charmed
meson(D)- Goldstone boson(φ) scattering. By fitting to the available lattice data, we determine the LECs
of the relevant chiral Lagrangian. Moreover, we will investigate the pole structures of the scattering
potentials in various channels. In Chapter 6, the charmed vector mesons are included explicitly to the
chiral Lagrangian and a full ChPT calculation is performed to investigate the importance of charmed
vector resonances in Dφ scattering. Due to the large number of LECs and the scarcity of the available
lattice data, the LECs are poorly determined by the fit. The resonance exchange model is employed to
investigate the numerical values of LECs in the chiral effective Dφ Lagrangian in Chapter 7. In addition,
positivity constraints derived from the general properties of the S -matrix will be also discussed.
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CHAPTER 2

Chiral effective theories

QCD, responsible for the strong interaction and the hadronic spectrum, has not been analytically solved
from first principles due to the high nonlinearity and the related nonperturbative property at low energies.
Various effective field theories (EFTs), phenomenological approaches and numerical simulations are
introduced to describe the strong processes at low energies and the hadronic properties.

In past years, EFTs have become valuable and practical tools in many branches of physics, in particular
in condensed matter physics and particle physics. EFTs can avoid complicated calculations and unknown
knowledge on details of the distinct scales. In this chapter, we will give a brief review on the EFTs of
QCD and demonstrate how to construct ChPT and including matter fields.

2.1 Effective field theories

One of the most astonishing features about the world is that we can understand the physics at a given
scale without knowing everything at other scales. In particle physics, a process may involve a large range
of scales, from the sub-eV region to the TeV region. A detailed calculation involving the large energy
range may be very complicated and impossibly achieved. Fortunately, we do not need to know everything
to describe the phenomena at given (low) energies. EFTs provide us a valuable tool to simplify the
calculation and allow us to focus on the physics or phenomena at the given energy without worrying
about the poor knowledge of the underlying physics and the consequent complications. More details on
the discussion of EFTs can be found in Refs. [31–36].

2.1.1 The principles of effective field theories

For a quantum system, the physics is encoded into the S -matrix, or amplitudes, which in general depends
on the momenta of external particles in a complicated way. By analytic continuation, the amplitudes can
be regarded as a complex function on the external momenta. It may exhibits complicated nonanalytic
structures, e.g. branch cuts and poles, which arise when the internal particles can be on-shell. If the
kinematic region that a given internal particle could be on-shell is far from the region concerned, the
contribution of that internal particle can be well approximated by the first few terms in a Taylor expansion
in some proper parameters (for a very heavy particle, the external momenta would be a nice expansion
parameter). The procedure can be more simply achieved at the Lagrangian level, since the nonanalytic
behavior that is due to the on-shellness of relevant light degrees of freedom in the low energy region are
untouched in this Taylor expansion. In the language of the path integral, the irrelevant particle fields
(or degrees of freedom) are integrated out. The expanded Lagrangian is usually called an effective
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Chapter 2 Chiral effective theories

Lagrangian. In general, it consists of an infinite sum of local operators which are organized according
to decreasing importance with increasing order of the proper parameters. In practice, one only needs
to consider the first few terms of the Lagrangian according to the accuracy desired for the process in
question. Like above, the EFTs obtained by integrating out the heavy fields from a more fundamental
underlying theory are called top-down EFTs. In fact, EFTs can also be constructed when the underlying
theory is unknown. The construction of the effective Lagrangian is guided by the symmetries, the
so-called bottom-up EFTs.

Top-down and bottom-up approaches

In the top-down approach to EFTs, the underlying theory is known and we are interested in the low-energy
sector. The basic principle of the top-down approach is removing heavy fields (or heavy components)
from the Lagrangian by integrating them out. The role of the heavy fields (UV physics) in the infrared
(IR) behavior of the theory was first discussed by Appelquist and Carazzone in Ref. [37]. It led to the
decoupling theorem [37, 38], which states that if the low energy Lagrangian is renormalizable, then all
effects of the heavy particles appear either as a renormalization of the coupling constants or else are
suppressed by powers of the heavy particle masses. It is in accord with physical expectations since the
influence of the heavy particles to low energy observables would disappear in the limit of infinite mass of
the heavy particle. The virtual exchange of the heavy particle leads to powers of heavy particle mass at
low energies by a proper Taylor expansion. The effective Lagrangian can be derived via

eiZeff[`]
=

∫
[dh]eiZ[`,h]∫
[dh]eiZ[0,h] , (2.1)

where ` and h represents the light and heavy fields respectively, Z[`, h] is the underlying action, Zeff[`] is
the resulting effective action. In detail, considering a linear coupling of h to some combination of fields
J(`), with the Lagrangian

L = L` +
1
2

(∂µh∂µh − m2h2) + Jh, (2.2)

where L` is the pure light field Lagrangian. Then the effective Lagrangian is obtained at tree level by

eiZeff[`]
= ei

∫
d4 xLeff(x)

=

∫
[dh]ei

∫
d4 xL(h,`)∫

[dh]ei
∫

d4 xL(h,0)

=

∫
[dh] exp

{
i
∫

d4x[− 1
2 (h −D−1J)D(h −D−1J) + 1

2 JD−1J +L`

}
]∫

[dh] exp
{
i
∫

d4x[−1
2 hDh]

}
= ei

∫
d4 x(L`+

1
2 JD−1 J), (2.3)

whereD = ∂2
+ m2. From Eq. (2.3) we obtain

Leff = L` +
1
2

JD−1J. (2.4)
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2.1 Effective field theories

Noting that the heavy particle propagator is far from on-shell in the low-energy sector concerning, one
may obtain a local effective Lagrangian using Taylor expansion

(∂2
+ m2)−1

=
1

m2

(
1 −

∂2

m2 +
∂4

m4 − . . .
)
. (2.5)

Then we obtain an effective local Lagrangian series organized in powers of inverse of the heavy field
mass

Leff(x) = L` +
1

2m2 J(x)J(x) −
1

2m4 J(x)∂2J(x) +
1

2m6 J(x)∂4J(x) + . . . . (2.6)

From the above procedure, the contribution of heavy field is expanded in a tower of increasing power
of the inverse heavy field mass. At low energies, the series can be amputated according to the desired
accuracy. The pure light sector Lagrangian L` is untouched, thus the symmetries of the light fields in the
underlying theory are still symmetries of the effective Lagrangian. The procedure can be extended to the
loop level and a theory having several different heavy mass scales consecutively.

In the bottom-up approach to the EFTs, the underlying theory is either unknown or known but
impossible to solve at low energies. QCD is one of the later cases, where the degrees of freedom at high
energies (quarks and gluons) are different from those at low energies (hadrons). Due to the lack of the
knowledge of underlying theory, no constraint is imposed on the construction of the effective Lagrangian
except for the consideration of symmetries. The standard procedure to construct EFTs in the bottom-up
approach is first specifying the degrees of freedom at the given energy scale, then writing down the most
general possible local operators that satisfying the symmetries we are imposing. The coefficients of the
operators, called Wilson coefficients or low energy constants (LECs), can be determined by comparing
with experimental and/or lattice data. Similar with the top-down EFTs where the series of operators in
Lagrangian is ordered in a systematic expansion in the power of inverse of heavy field mass, the most
general operators in bottom-up EFTs also need a consistent power counting rule to organize the infinite
number of operators and evaluate their importance.

Power counting scheme

A power counting scheme is to assess the importance of each local operator in the Lagrangian and the
generated Feynman diagrams. It plays an essential role in the construction of EFTs. In the top-down
low-energy EFTs, the Lagrangian is Taylor expanded in the power of 1/mh, with mh the mass of the
integrated out heavy field. In general, an effective Lagrangian can be expressed in the form

Leff = L
(0)
eff

+
1
Λ
L

(1)
eff

+
1

Λ
2L

(2)
eff

+ . . . , (2.7)

where Λ represents a large energy scale of emerging new physics, including underlying theory with
heavy fields. Since the energy scale Λ � E, with E the energy we are considering, the terms with
higher dimension (denoted by the superscripts) can be neglected or taken into account perturbatively.
As a result, counting the power of 1/Λ serves a natural and proper rule to assess the importance of
each term in Lagrangian. At tree level, the amplitudes generated by L(n) is suppressed by pn/Λn, where
p (e.g. external momenta, mass of light fields, peculiar components of momenta or fields, and etc.)
collectively denotes the small expansion parameter compared with Λ. Therefore, the power counting rule
for organizing the effective Lagrangian is straightforward. A systematic rule of assessing the importance
of diagrams generated by the various terms of Lagrangian is subtle and needs our attention. The power D
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Chapter 2 Chiral effective theories

of a given diagram with amplitudeM(p) can be evaluated by analysing the behavior of the amplitude
under a linear rescaling of all small parameters p→ tp by [14]

M(tp) = tD
M(p). (2.8)

Considering a diagram with NV vertices, letting Nn be the number of vertices arising from the effective
Lagrangian L(n)

eff
, we have NV =

∑
n Nn. Under the rescaling p→ tp and M → tM with M the mass of

light field, each internal propagator rescales as∫
d4k

(2π)4

i

k2
− M2

+ iε
→

∫
d4k

(2π)4

i

k2
− t2M2

+ iε

= t−2
∫

d4k

(2π)4

i

t−2k2
− M2

+ iε

= t2
∫

d4l

(2π)4

i

l2 − M2
+ iε

. (2.9)

For each vertex generated from L(n)
eff

, we obtain symbolically a factor pn and a four-momentum conser-
vation delta function, which lead to rescaling as tn and t−4, respectively. Therefore, the corresponding
S -matrix rescales as t2NI+

∑
n Nn(n−4), where NI denotes the number of internal lines. Recalling that

S ∼ iMδ4(p f − pi) (2.10)

and δ4(tp f − tpi)→ t−4δ4(p f − pi), one finds

D = 4 + 2NI +
∑

n

Nn(n − 4). (2.11)

For a diagram with NV vertices, it needs NV − 1 internal lines to connect all vertices at tree level, then the
number of independent loops NL increases each time when an extra internal line is added. So we have a
relation

NL = (NI − NV ) + 1. (2.12)

Inserting Eq. (2.12) into Eq. (2.11) and using NV =
∑

n Nn, we finally obtain the Weinberg’s power
counting scheme [14]

D = 2 +
∑

n

Nn(n − 2) + 2NL. (2.13)

It is easy to conclude that a diagram with NL loops are suppressed by a power (p/Λ)2NL compared with
the tree diagrams.1 A relation between the p/Λ expansion on Lagrangian level and the loop expansion is
well established allowing us to systematically applying EFTs with loops. Loops contain the important
analytical structures for the analysis of S -matrix, the nonanalytical properties and the imaginary parts
cannot originate from the tree level amplitudes. Not surprisingly, the loops usually have divergences. It
means the EFTs need to be renormalized to remove the divergences in order to get physical quantities.

1 Note that we have imposed that the particle mass scales same as the external momenta, which is valid for the pure Goldstone
ChPT. One has no such relation in general.
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2.1 Effective field theories

2.1.2 Renormalization in effective field theories

In the normal sense, EFTs are nonrenormalizable. All terms allowed by the assumed symmetries of
the theory are included in the effective Lagrangian. Only the operators with dimension 4 and less are
renormalizable according to dimensional analysis. Since the effective Lagrangian is obtained by the
Taylor expansion of the underlying full theory, it contains an infinite number of terms. Any truncation of
the series destroys the UV structure of the full theory. As a result, the truncated effective theory turns
out to be nonrenormalizable even if the full theory is renormalizable. However, the physical quantities
are free of divergences. The renormalization of a general EFT is analogous to the full theory. The only
difference is that one needs to deal with as many couplings as in the corresponding effective Lagrangian.
In a mass-independent subtraction scheme, the number of couplings to be renromalized is finite to a
given accuracy [32]. The divergences of loops are cancelled by the counter terms, i.e. the divergences of
the low-energy constants, at the corresponding order.

It is well known that different renormalization schemes lead to equivalent results for the physical
observables. In a mass-dependent subtraction scheme such as large momentum cutoff, the expansion of
an EFT breaks down since all the higher order operators in the effective Lagrangian are equally important
[33]. To guarantee the correct dimension, the loop contribution from the interaction L(n)

eff
is suppressed by

1

Λ
n′

∫ Λ d4NLk

k4NL−n′
∼ O(1), (2.14)

where NL represents the number of independent loops, n′ depends on NL and the topology of the
diagram. The factor 1

Λ
n′

comes from the low-energy constants of the Lagrangians which generate the

diagram, and the denominator is the combination of momenta from derivative couplings and propagators.2

Here we assume the momentum cutoff is of order Λ. All loops are of order 1 which breaks down the
expansion and makes the calculations impossible. However, this problem can be cured if one uses a
mass-independent subtraction scheme, e.g. dimensional regularization and minimal subtraction. In
dimensional regularization, one finds

1

Λ
n′

∫
d4NLk

k4NL−n′
∼

(m
Λ

)n′ log µ, (2.15)

where m is some dimensional parameter appearing in the effective Lagrangian and µ is the renormalization
scale. From Eq. (2.15), the loop contribution are suppressed compared with the tree level contributions.
Mass-independent subtraction scheme shares many advantages in the practical calculations. However, it
obscures the decoupling of heavy particles. The mass-independent subtraction gives rise to an incorrect
behavior at low energies. The decoupling can be implemented by integrating out the heavy particles [39].
Effects of the heavy particles in EFTs are included via higher dimension operators, which are suppressed.

If L(0) is renormalizable in the traditional sense, one cannot learn any information about the energy
scale Λ from just looking atL(0). At low energies much less than Λ,L(0) can be regarded as a fundamental
theory. Reversely, a fundamental theory can in turn become an effective theory of some other fundamental
theory at higher energies. The EFTs can be categorised to two different types depending on the structure
of the transition between the fundamental and the effective theories.

2 Here we only focus on the influence of modes of order Λ to the low energy sector, i.e. E � Λ. Hence we can ignore the
masses of the effective fields for a while.
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Chapter 2 Chiral effective theories

2.1.3 Decoupling and non-decoupling EFTs

The decoupling EFTs are derived from the renormalizable fundamental theory by integrating out the
heavy degrees of freedom leaving the light degrees of freedom. No light particles are generated in the
transition from the fundamental to effective theory. The remaining operators in Lagrangian contains
renormalizable and nonrenormalizable parts suppressed by inverse powers of Λ. It has the form of

Leff = Ld≤4 +
∑
d>4

Ld

Λ
d−4 , (2.16)

where Ld≤4 is the renormailzable part, and the second part is nonrenormalizable. At low energies,
corrections from the nonrenormalizable operators are suppressed by inverse powers of Λ. The famous
Fermi theory of weak interactions is one example of decoupling EFTs. Even the Standard Model itself
can be regarded as an effective theory of some underlying and more fundamental theory. Up to today,
there is no experimental evidence for terms with d > 4 appearing in the Standard Model. It indicates that
the Standard Model is sufficiently fundamental at the energies we can reach nowsday.

In the case that the explicit degrees of freedom of an EFT are different from those of the fundamental
theory due to some mechanism, e.g. phase transitions, we have a non-decoupling EFT. When the
light Goldstone bosons are generated by the spontaneously breaking of symmetries, these explicit light
degrees of freedom are absent in the fundamental theory. The broken symmetry relates processes with
different numbers Goldstone bosons, resulting in operators with different dimensions, the distinction
between renormalizable and nonrenormalizable parts are not meaningful anymore. One of examples of
non-decoupling EFTs is the Chiral Perturbation Theory, which will be introduced in the next section.

Usually, a fundamental theory can be translated to EFTs with different structures at a given energy,
which lead to the equivalent results. It can be stated formally as Representation Independent Theorem [40,
41] that if two fields are related nonlinearly, e.g. φ = χF[χ] with F[0] = 1, then the equivalent physical
quantities result no matter whether they are calculated with the field φ using L(φ) or with χ using
L
′(χ) = L(χF[χ]). The condition F[0] = 1 is to guarantee that the two fields have the same free field

behavior and single particle singularities. This result is quite physically expected since experiments
cannot distinguish the free particle φ from χ due to the same single-particle properties which is guaranteed
by F[0] = 1. The theorem allows us to employ various realisations or representations of EFTs. It is very
useful as it can simplify the calculations for some situations, especially for Chiral Perturbation Theory.

2.1.4 Examples of EFTs

Fermi Theory

A well-known EFT is the Fermi Theory of weak interactions. It was first proposed to explain the beta
decay in 1933. Nowdays, it is regarded as an EFT of the SM at low energies. In the SM, the weak
interactions between fermions are mediated through the W± bosons. At low energies, the momentum
transferred by the propagator W is small compared to the mass of the W, MW . Therefore, the interaction
reduces to a contact interaction via

−gµν + qµqν/M
2
W

q2
− M2

W

→
gµν

M2
W

. (2.17)
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2.1 Effective field theories

The Fermi theory of the weak interactions then can be obtained from the SM via

Leff = −
( g
√

8

)2 gµν

M2
W

JµJν = −
GF
√

2
JµJµ, (2.18)

where Jµ =
∑

i j ūiγµ(1 − γ5)Vi jd j +
∑

k ν̄kγµ(1 − γ5)l, with Vi j the Cabibbo-Kobayashi-Maskawa mixing

matrix and GF =
√

2g2

8M2
W

the Fermi coupling constant.

Heavy quark effective theory (HQET)

Heavy quark systems provide a nice platform for applications of the EFT technology. The mass of
heavy quarks mQ � ΛQCD provides a natural separation of scales. The low energy (∼ ΛQCD) effective
Lagrangian is obtained by integrating out the heavy-components of heavy quarks. It provides a simplified
description of the interactions of a single heavy quark with soft quarks and gluons. The heavy quark is
nearly on-shell because of the soft interactions. And the velocity of the heavy quark v is almost unchanged
since the change of v is suppressed as ∆v = ∆p/mQ, with ∆p ∼ ΛQCD. As an important consequence,
the momentum of the heavy quark can be decomposed as pQ = mQv + k, where v is usually setup as the
velocity of the hadron containing the heavy quark with v2

= 1, and k is the residual momentum, order of
ΛQCD. The nearly on-shell spinor is decomposed into two parts

Q(x) = e−imQv·x(hv(x) + Hv(x)), (2.19)

where hv(x) = eimQv·x 1+/v
2 Q(x) and Hv(x) = eimQ·x 1−/v

2 Q(x) are the large and small components, respectively.
Inserting Eq. (2.19) into the QCD Lagrangian LQ = Q̄(x)(i /D − mQ)Q(x) yields

LQ = h̄viv · Dhv + H̄(−iv · D − 2mQ)Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv, (2.20)

where Dµ
⊥ = Dµ

− vµv · D. It shows that the field hv describes a massless fermion and Hv describes a
fermion with mass 2mQ. Soft interactions cannot excite the heavy fermion, so we integrate it out. At the
tree level, it can be achieved by inserting the classical equation of motion for Hv

Hv =
1

2mQ + iv · D
i /D⊥hv =

1
2mQ

∞∑
n=0

(
−

iv · D
2mQ

)n
i /D⊥hv (2.21)

into Eq. (2.20). To the subleading order in 1/mQ, one finds the

LHQET = h̄viv · Dhv +
1

2mQ

(
h̄v(iD⊥)2hv + Cmag(µ)

g

2
h̄vσ ·Ghv

)
+ . . . . (2.22)

It is worth mentioning that the covariant derivative Dµ = ∂µ+ igAsµ and the field strength Gµν contain only
soft gluons. The hard gluons are integrated out and their effects are encoded into the Wilson coefficients,
e.g. Cmag(µ). The second term are referred to as the non-relativistic kinetic energy and chromo-magnetic
interaction, respectively. Lorentz invariance ensures that the Wilson coefficient of the kinetic term is not
renormalized, i.e. exactly equal to unity. However, the coefficient of the chromo-magnetic term, Cmag(µ),
receives corrections at loop levels.

The heavy quark effective Lagrangian Eq. (2.22) reveals many crucial features of heavy quark QCD.
The leading order exhibits a global spin-flavor symmetry, which leads to many important relations
between the properties of hadrons containing a single heavy quark. For more reviews on HQET, see
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Chapter 2 Chiral effective theories

Refs. [42–49] and references therein.

Soft-collinear effective theory (SCET)

As a young member of the EFTs of SM, SCET provides a new and useful tool for the QCD factorization
and the resummation of large logarithms using renormalization group evolution [50–52]. It describes the
interactions of soft and collinear degrees of freedom in the presence of hard interactions, with the large
momentum scale Q � ΛQCD. In a process involving hard interactions and energetic light states (invariant
mass m � Q) or the production of energetic jets, the highly energetic states scale in the light-cone frame
as

(p−n , p+
n , p⊥n ) ∼ (Q,m2/Q,m) = Q(1, λ2, λ), (2.23)

where n denotes a light-like 4-vector with n · p⊥ = 0 along which the energetic state moves, and λ = m/Q
is the expansion parameter of SCET. The scaling of such a collinear field remains unchanged if it interacts
with an energetic particle in the same direction n, or with a soft particle with uniform scaling as

(p−s , p+
s , p⊥s ) ∼ Q(λ2, λ2, λ2). (2.24)

The effective theory describing the interactions of collinear, Eq. (2.23), and soft, Eq. (2.24), degrees
of freedom is called SCETI. The scaling Eq. (2.24) applies to the energetic states with invariant mass
m2
� Λ

2
QCD, e.g. a jet with jet-mass m2

J � Λ
2
QCD. However, if the invariant mass is of order ΛQCD,

e.g. Mπ, the scaling Eq. (2.24) is no longer applicable. To describe such a system, a modified version,
SCETII, is introduced, in which the scaling of soft modes is Q(λ, λ, λ). In this section, only the SCETI is
considered, and from now on the subscript will be omitted for brevity.

Having the power counting of the relevant degrees of freedom Eqs. (2.23) and (2.24), we are able
to derive the SCET Lagrangian from QCD. Since the collinear and soft degrees of freedom are treated
explicitly, one splits the quark and gluon fields into a collinear and soft part

Aµ(x) → Aµc (x) + Aµs (x),

ψ(x) → ψc(x) + ψs(x). (2.25)

The effective Lagrangian for the soft part is the same as the original QCD Lagrangian due to the unique
scaling for the components of soft momenta. To derive the effective Lagrangian for the collinear fields
and soft-collinear interactions, introducing an auxiliary light-cone vector n̄ satisfying n̄2

= 0 and n · n̄ = 2,
one then splits the collinear fields into ξn(x) and Ξn(x)

ψn(x) = ξn(x) + Ξn(x) (2.26)

with ξn(x) =
/n/̄n
4 ψn(x) and Ξn(x) =

/̄n/n
4 ψn(x). The Ξn(x) describes the degrees of freedom far off-shell and

can be integrated out. Likewise to HQET, one finds

Lc = ξ̄n
/̄n
2

in · Dξn + ξ̄ni /D⊥
1

in̄ · D
i /D⊥

/̄n
2
ξn, (2.27)

where

Dµ
⊥ = Dµ

−
nµ

2
n̄ · D −

n̄µ

2
n · D.

Employing the power counting rule in Eqs. (2.23) and (2.24), the leading order SCET Lagrangian can be
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2.1 Effective field theories

written as

LSCET = ψ̄si /Dsψs −
1
4

(F s,a
µν )2

+ ξ̄n
/̄n
2

(
in · Dn + i /Dn⊥

1
in̄ · Dn

i /Dn⊥

)
ξn −

1
4

(Fn,a
µν )2

+ gξ̄nn · As
/̄n
2
ξn, (2.28)

where Fn,a
µν = i

g [Dµ,Dν]. An important difference between SCET and HQET is that the SCET Lagrangian
is not corrected by hard modes. The effect of hard modes are incorporated in the Wilson coefficients
of the external source operators. The most important feature of SCET is the decoupling of soft gluons.
Defining new fields ξ(0)

n and A(0)
n via

ξn(x) = S n(x)ξ(0)
n (x), Aµn(x) = S n(x)A(0)µ

n (x)S †n(x), (2.29)

where S n(x) denotes a time-like soft Wilson line along the direction n,

S n(x) = P exp
[
ig

∫ 0

−∞

dsn · As(x + sn)
]
, (2.30)

where P indicates the path ordering of the color matrices, the interaction between collinear and soft
modes in SCET Lc−s = ξ̄n

/̄n
2 in · Dξn changes to

Lc−s → ξ̄(0)
n
/̄n
2

in · D(0)
n ξ(0)

n , (2.31)

so that the soft gluon no longer appears in the collinear Lagrangian at leading order, which is the so-called
decoupling transformation. It can also be proven that the soft and collinear gluons decouple at the leading
order as well. The decoupling of soft and collinear modes at leading order is an important element
in factorization. A crucial aspect of the full QCD is the gauge symmetry, which can be preserved in
SCET by regarding the collinear fields and soft fields as quantum fields and background fields under
soft and/or collinear gauge transformation, respectively. Another important characteristic of the SCET
is the non-locality of operators in position space, due to the non-power suppressed derivatives along
the light-cone directions corresponding to large energies. It is also manifested as the dependence of the
Wilson coefficients on the large energy scales.

The SM as an EFT

The EFTs we introduced above belong to the top-down ones. In those cases, we integrate out the heavy
or far off-shell degrees of freedom. In general, one writes down the most general structures of Lagrangian
satisfying the underlying symmetries, then determine each Wilson coefficient by matching to the full
theory. This procedure not only applies to top-down EFTs, but also applies to bottom-up ones. In the
latter case, the Wilson coefficients can only be determined by matching to the experimental and/or lattice
data. A well known bottom-up EFT is chiral perturbation theory, which is the main topic of this work
and will be described in detail in the following sections. As mentioned before, the SM itself is widely
regarded as an EFT of some unknown and more fundamental theory. In this case, the SM serves as a
bottom-up EFT of some unknown underlying theory at leading order.

If we associate a large new scale of new physics Λ, then the SM can be regarded as the leading order
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of an EFT of the new physics at low energies L(0)
= LSM. We can do a power counting in this 1/Λ. The

first order SM correction L(1) has the form of

L
(1)

=
C
Λ
O5, (2.32)

where O5 denotes the dimension 5 operators and the Wilson coefficient C is dimensionless. Likewise, one
can construct higher order corrections with higher dimensional operators respecting the SM symmetries.
One can calculate the corrections from high orders to the SM and compare them with the experiments.
So far, no unambiguous evidence for the existence of such higher order corrections has been found.

2.2 Symmetries of QCD and chiral perturbation theory

2.2.1 Local symmetry of the QCD Lagrangian

The gauge principle has been proven to be very successful in physics to generate interactions between
matter fields through the exchange of gauge bosons. The color degree of freedom was introduced into
the quark model by Greenberg in 1964 [53], and independently by Han and Nambu in 1965 [54]. Here
the matter fields are quarks, with six different flavors. The QCD Lagrangian can be obtained from the
Lagrangian for free quarks by localizing the S U(3)C symmetry. The gauge bosons are called gluons. The
QCD Lagrangian reads

LQCD =
∑

f

q̄ f (i /D − m f )q f −
1
2

TrC(GµνG
µν), (2.33)

where the subscript f denotes the flavor, Dµ = ∂µ+igAµ with Aµ = λa

2 Aa
µ the gluon fields, Gµν = 1

ig [Dµ,Dν]
is the field strength tensor with g the S U(3)C gauge coupling constant. Here, the color index is suppressed
and λa are Gell-Mann matrices. For each quark flavor f , the quark field q f consists of a color triplet

q f =


q f ,r
q f ,g
g f ,b

 , (2.34)

with r =red, g =green and b =blue denoting the color. And the QCD Lagrangian (2.33) should be
understood as in a matrix form. Under a S UC(3) gauge transformation, the quark fields transform as

q f (x)→ q′f (x) = U(x)q f (x) = exp
[
− iθa(x)

λa

2

]
q f (x). (2.35)

In order to keep the invariance of the Lagrangian under the local transformations U(x), the gauge potential
Aµ transforms as

Aµ = Aa
µ

λa

2
→ A′µ = UAµU† +

i
g
∂µUU†. (2.36)

Under the transformation (2.35) and (2.36), it is easy to show that the covariant derivative Dµq f
transfroms as q f , i.e. Dµq f (x) → U(x)Dµq f (x), and the field strength tensor Gµν transforms as
Gµν(x) → U(x)Gµν(x)U†(x). As the result, the QCD Lagrangian (2.33) is invariant under the local
S UC(3) transformations with the field transformation (2.35) and (2.36).
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From the point of gauge invariance, the operator

Lθ =
g2θ

32π2 εµνρσTrC(GµνGρσ), (2.37)

can appear in the QCD Lagrangian as well, where εµνρσ denotes the totally antisymmetric Levi-Civita
tensor, and θ is considered as a coupling constant. Lθ is called the θ-term, which implies an P and
CP violation of the strong interactions. It is worth mentioning that different values of θ correspond to
different theories. This is different from the case of spontaneously breaking of symmetry, in which the
different values of the vacuum expectation value label different states in the same theory [35]. The θ-term
induces a neutron electric dipole moment (nEDM) of order [55, 56]

dn '
e|θ|m2

π

m3
N

' 10−16
|θ|e cm, (2.38)

and the experimental bound on the nEDM dn . 3 · 10−26 e cm [57] implies θ . 10−10. More details on
the θ-term can be found in Refs. [35].

2.2.2 Global symmetries of QCD Lagrangian

In addition to the S UC(3) local symmetry, the QCD Lagrangian (2.33) exhibits global symmetries. It is
invariant under a global U(1) transformation

q f (x)→ e−iαq f (x), (2.39)

where α is independent of x. According to Noether’s theorem, every differentiable symmetry of the action
of a physical system has a corresponding conservation law, the U(1) symmetry leads to the conserved
vector current

Vµ = q̄ fγµq f , (2.40)

where the sum in the color index is suppressed. For a conserved current, ∂µJµ = 0, the charge

Q(t) =

∫
d3xV0(~x, t) (2.41)

is time independent, and thus a conserved quantity. The conserved vector current leads to the conservation
of baryon number.

Besides the exact symmetries discussed above, the QCD Lagrangian also exhibits approximate global
symmetries. Sometimes a Lagrangian would have a symmetry if certain of the parameters were set
to zero. In that limit, the symmetry would lead to a set of interesting physical consequences. If the
parameters are ‘small’ in some sense, the consequences may be still approximately valid. If a symmetry
is not exact, the associated current and charge would be not conserved. The current divergence has the
form of

∂µJapprox
µ = f (α), (2.42)

where α is the ‘small’ parameter and f (0) = 0. In practice, the utility of an approximate symmetry is
rarely known from the Lagrangian itself, it is only evident after its predictions are checked by experiments.
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Thus far, the discussions are at the classical level. After the quantization, symmetries on the classical
level may no longer be symmetries at loop levels, which leads to the so-called anomalies. We will come
back to this topic on the next section.

The six flavors of quark are commonly classified into light and heavy quarks according to their masses
compared with the mass of typical hadrons containing only light quarks or ΛQCD. If we only consider
the light quark systems, the masses of the light quarks can be regarded as small parameters. It leads to
the approximate symmetry S UL(N f ) × S UR(N f ) × UV (1), where N f denotes the number of light quarks
under consideration. Starting from the massless QCD Lagrangian

L
0
QCD =

∑
f

q̄ f i /Dq f −
1
2

TrC(GµνG
µν),

=
∑

f

(q̄ f ,Ri /Dq f ,R + q̄ f ,Li /Dq f ,L) −
1
2

TrC(GµνG
µν), (2.43)

where q f ,L and q f ,R represent the left- and right-handed chiral components, respectively, i.e. q f ,L = PLq f

and q f ,R = PRq f , with PL,R the projection operators PL = 1
2 (1− γ5) and PR = 1

2 (1 + γ5). Due to the flavor
independence of the covariant derivatives, L0

QCD is invariant under the transformations
uL
dL
...

→ UL


uL
dL
...

 = exp
(
− i

N2
f−1∑
a

αa
Lta

)
e−iθL


uL
dL
...

 ,
uR
dR
...

→ UR


uR
dR
...

 = exp
(
− i

N2
f−1∑
a

αa
Rta

)
e−iθR


uR
dR
...

 ,
(2.44)

where UL and UR are independent unitary N f × N f matrices, ta are the corresponding generators of
the groups. It is said that L0

QCD has a classical global UL(3) × UR(3) symmetry, or in other words,
S UL(N f ) × S UR(N f ) × UV (1) × UA(1) symmetry. The associated conserved currents are

La
µ = q̄LγµtaqL, ∂µLa

µ = 0,

Ra
µ = q̄RγµtaqR, ∂µRa

µ = 0,

L0
µ = q̄LγµqL, ∂µL0

µ = 0,

R0
µ = q̄RγµqR, ∂µR0

µ = 0. (2.45)

Instead of these chiral currents, it is sometimes more convenient to use the linear combinations

Va
µ = Ra

µ + La
µ = q̄γµtaq,

Aa
µ = Ra

µ − La
µ = q̄γµγ5taq,

Vµ = R0
µ + L0

µ = q̄γµq,

Aµ = R0
µ − L0

µ = q̄γµγ5q. (2.46)

The nonzero masses of the light quarks in the QCD Lagrangian result in explicit non-vanishing
divergences of the currents Va

µ , Aa
µ and Aµ. As a consequence, the corresponding charges are no longer
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2.2 Symmetries of QCD and chiral perturbation theory

time-independent in general. The quark mass term in LQCD is q̄Mqq = q̄RMqqL + q̄LMqqR, where the
quark mass matrix can be written as

Mq =


mu 0 0
0 md 0

0 0
. . .

 . (2.47)

The existence of the mass term spoils the conservation of the charges, applying the equation of motion of
QCD, the corresponding divergences read

∂µVa
µ = iq̄[Mq, t

a]q,

∂µAa
µ = iq̄{ta,Mq}γ5q,

∂µVµ = 0,

∂µAµ = 2iq̄Mqγ5q. (2.48)

The axial anomaly has not been taken into account in this section.

2.2.3 The fate of symmetries

Depending on the dynamics of the theory, symmetries of the Lagrangian can be manifested physically in
different ways. Since the UA(1) symmetry is spoiled at the quantum level, the so-called UA(1) anomaly,
the QCD Lagrangian possesses a S UL(N f ) × S UR(N f ) × UV(1) symmetry in the chiral limit in which
the masses of light quarks are set to zero. From the symmetry consideration, one would naively expect
that the hadrons consisted of light quarks organize themselves in approximately degenerate multiplets of
irreducible representations of the symmetry group. The UV (1) symmetry results in the conservation of
baryon number and provides a classification of hadrons into mesons and baryons. The conserved charge
operators Qa

V and Qa
A have opposite parity, and they commute with the Hamiltonian H0

QCD. For each state
of positive parity, one might expect the existence of a degenerated state of negative parity. Let |+〉 be an
eigenstate of H0

QCD with eigenvalue E and having positive parity,

H0
QCD|+〉 = E|+〉, P|+〉 = +|+〉. (2.49)

Defining |ψ〉 = Qa
A|+〉, one has3

H0
QCD|ψ〉 = H0

QCDQa
A|+〉 = Qa

AH0
QCD|+〉 = EQa

A|+〉 = E|ψ〉. (2.50)

As a consequence, the state |ψ〉 is also an eigenstate of H0
QCD with eigenvalue E but with opposite parity,

P|ψ〉 = PQa
AP−1P|+〉 = −|ψ〉. (2.51)

However, such a parity doubling is not realized at the low-energy spectrum of baryons. The above
discussions are based on an assumption that the ground state of QCD is annihilated by Qa

A. Only in this
case,

Qa
A|+〉 = Qa

Aa†|0〉 =
(
[Qa

A, a
†] + a†Qa

A
)
|0〉 = |ψ〉, (2.52)

3 Of course, such a state is strictly speaking, not defined. One has to work in a finite volume and then let V → ∞. We ignore
this complication here.
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where we have used the relation [Qa
A, a

†] = −tab†, which acting on |0〉 would produce |ψ〉. If the ground
state is not annihilated by Qa

A, the last equality Eq. (2.52) breaks down and the parity doubling would
not show up. In fact, the S UA(N f ) symmetry exhibits itself as the emergence of the Goldstone bosons
through spontaneous breaking of symmetry. And the S UV (N f ) expresses itself through the approximate
degeneracy of multiplets of irreducible representations.

Due to the absence of the parity doubling for the low-lying states, it is assumed that the Qa
A do not

annihilate the QCD ground state, i.e. Qa
A|0〉 , 0, which means the ground state is not invariant under axial

transformations. The symmetry is called ‘hidden’ if it is an invariance of the Lagrangian but not of the
ground state. And thus one does not see the symmetry in the spectrum of states. This can be achieved by
two different mechanisms. The first one is by acquiring vacuum expectation values for scalar fields, e.g.
the Higgs fields for the breaking of S UEW

L (2) symmetry in the electroweak interactions. The second one
is caused by a dynamical mechanism, e.g. acquiring vacuum expectation values of the quark condensate
in QCD. The broken symmetries are not really broken, they are rather realized in a special way, generating
Nambu-Goldstone bosons or generating masses for the Higgs particles. This can be stated formally
by the Nambu-Goldstone theorem: when a generic continuous symmetry is spontaneously broken, i.e.
its currents are conserved but the ground state is not invariant under the action of the corresponding
charges, then new massless scalar particles appear in the spectrum of possible excitations, the so-called
Nambu-Goldstone bosons or just Goldstone bosons for simplicity. It is physically intuitive since one can
relate two different states by an energy costless ‘dynamical’ action, corresponding to a long-wavelength
fluctuation or massless mediation boson. If, instead, the symmetry is not exact, i.e. if it is explicitly
broken as well as spontaneously broken, then the Goldstone bosons are not exactly massless, though they
typically remain relatively light. They are sometimes called pseudo-Goldstone bosons. In general we do
not distinguish the Goldstone bosons and pseudo-Goldstone bosons.

The fact is that in the chiral limit, the QCD Lagrangian possesses the symmetry S UL(N f )×S UR(N f )×
UV (1), while the physical QCD vacuum has symmetry S UV (N f )×UV (1). The UV (1) leads to the baryon
number conservation, while the S UL(N f ) × S UV (N f ) is spontaneously broken to the subgroup S UV (N f ),
and N2

f − 1 Goldstone bosons emerge.

2.2.4 The CCWZ formalism

The general formalism for effective Lagrangians with spontaneously broken symmetries has been worked
out by Callan, Coleman, Wess, and Zumino [40, 41], the CCWZ formalism. Consider a theory in
which the Lagrangian possesses a global symmetry G, while the vacuum has the symmetry H which is a
subgroup of G, i.e. the symmetry G is spontaneously broken down to its subgroup H. Then the vacuum
manifold is the coset space G/H.

Let G be a compact, connected, semisimple Lie group with n dimensions and H be a continuous
subgroup of G. We denote with Ta the generators of H and with Xb the remaining generators chosen
such that Ta and Xb form a complete basis of generators of G, orthonormal to each other. In some
neighborhood of the identity of G, the group elements g ∈ G can be decomposed uniquely into

g = eiXbξbeiTaθa , (2.53)

where ξb and θa are real parameters. For any element g ∈ G one has

geiXbξb = g′ = eiXbξ
′
beiTaθ

′
a , (2.54)
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2.2 Symmetries of QCD and chiral perturbation theory

where ξ′ = ξ′(ξ, g) and θ′ = θ′(θ, g). Furthermore, let

h : ψ→ D(h)ψ, (2.55)

with h ∈ H, be a linear representation of the subgroup H, the transformations

g : ξ → ξ′, ψ→ D(eiTaθ
′
a)ψ (2.56)

give a nonlinear realization of the group G. It worth mentioning that there is a special case in which the
transformation of ξ can be much simplified. Introducing an automorphism R : g→ R(g) such that

Ta → Ta,

Xb → −Xb. (2.57)

Applying R to Eq. (2.54), one obtains

R(g)e−iXbξb = e−iX′bξ
′
beiTaθ

′
a . (2.58)

Then the eiTaθ
′
a can be eliminated by Eqs. (2.54) and (2.58) with a simplified result

ge2iXbξbR(g−1) = e2iXbξ
′
b . (2.59)

The result is very useful for the chiral group since the parity operator induces an automorphism which
changes the sign of the axial generators.

Let Ξ(x) ∈ G be the transformation that transforms the standard vacuum to the local field configuration

φ(x) = Ξ(x)|0〉.

where |0〉 is the vacuum state. The transformation Ξ(x) is not unique: Ξ(x)h(x), with h ∈ H, gives the
same field configuration φ(x). The CCWZ formalism is to pick up the broken generators Xb and choose

Ξ(x) = eiXbξb(x). (2.60)

Under a global symmetry transformation g ∈ G, the field configuration φ(x) is transformed to gφ(x),
which induces the transformation of Ξ: Ξ(x)→ gΞ(x). The new transformation gΞ(x) is no longer in the
form of Eq. (2.60), rather has the form of (2.54)

gΞ(x) = Ξ
′(x)h(x), (2.61)

where gΞ and Ξ
′ describe the same field configuration differ by an h ∈ H transformation. The transform-

ation h is non-trivial since it depends on the both g and Ξ(x), see Eq. (2.54). The transformation law of
the Goldstone boson field Eq. (2.61) can be written as

Ξ(x)→ gΞ(x)h−1(g,Ξ(x)). (2.62)

Any other choice of the realization gives the same results for physical observables, with different off-shell
Green functions.
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Chapter 2 Chiral effective theories

2.2.5 Chiral effective theory

The QCD Lagrangian with external sources can be written as

LQCD = L
0
QCD + q̄γµ(vµ + aµ)q − q̄(s − ipγ5)q, (2.63)

where the external sources vµ(x), aµ(x), s(x), and p(x) are hermitian, color neutral matrices in flavor space.
Note that the quark mass term is included in s(x), the QCD Lagrangian Eq. (2.33) can be recovered by
setting s(x) = Mq with the other sources vanishing. With the external sources, the global chiral symmetry
S UL(N f )×S UR(N f ) can be extended to a local chiral symmetry. The Lagrangian QCD (2.63) is invariant
under independent local transformations

qL(x)→ gL(x)qL(x), qR(x)→ gR(x)qR(x), (2.64)

which leads to the transformations of the external sources:

M ≡ (s + ip) → gR(s + ip)gL,

rµ ≡ vµ + aµ → gRrµg
†

R − i∂µgRg
†

R,

`µ ≡ vµ − aµ → gL`µg
†

L − i∂µgLg
†

L. (2.65)

For N f = 3, the couplings of photons to quarks are described by the term

eAµq̄Qγµq = eAµ(q̄LQLγ
µqL + q̄RQRγ

µqR), (2.66)

where Aµ is the photon field and

QL = QR = Q =

2/3 0 0
0 1/3 0
0 0 1/3

 .
Therefore, the interaction Eq. (2.66) can be included by setting

`µ = eAµQ, rµ = eAµQ. (2.67)

Likewise, the couplings of quarks to W±µ bosons can be included in a similar way by changing

`µ → −
e

√
2sinθW

(W+
µ T+ + h.c.), (2.68)

where θW is the Weiberg angle, Vi j are Kobayashi-Maskawa mixing matrix elements and

T+ =

0 Vud Vus
0 0 0
0 0 0

 . (2.69)

It has already been argued that the chiral symmetry of QCD is not realized in the hadronic spectrum.
We thus expect that the symmetry to be realized through the spontaneous breaking and the emergence
of Goldstone modes. If we look at the low-lying hadronic spectrum, there exist natural candidates for
this, or exactly pseudo-Goldstone bosons. The three pions correspond to the three Goldstone bosons for
N f = 2, and with four kaons and one eta correspond to the case of N f = 3. The breaking of the chiral

20



2.2 Symmetries of QCD and chiral perturbation theory

symmetry is rather an empirical result which has not been proven analytically though lattice results exist.
The chiral symmetry of QCD S UL(N f ) × S UR(N f ) is spontaneously broken to the vector subgroup

S UV (N f ) by the quark condensate 〈q̄q〉. The Goldstone boson manifold is the coset space S UL(N f ) ×
S UN(N f )/S UV (N f ), which is isomorphic to S U(N f ). There are two commonly used bases to realize the
broken chiral symmetry of QCD, the u-basis and the U-basis.

The U-basis

The unbroken generators of H and the broken generators X span the space of the generators of G. Let
T a

L and T a
R be the generators of G and act only on left- and right-handed quarks respectively. Then the

unbroken generators are T a
= T a

L + T a
R, and the broken generators are Xa

= T a
L − T a

R. We write the
elements g ∈ G in the form of

g =

(
gL 0
0 gR

)
. (2.70)

The automorphism R in Eq. (2.59) maps g−1 as

R(g−1) =

(
g−1

R 0
0 g−1

L

)
. (2.71)

The nonlinear realization e2iXbξb is chosen to have the form

exp 2i
(
Taξa 0

0 −Taξa

)
=

(
U(x) 0

0 U−1(x)

)
. (2.72)

The transformation Eq. (2.59) gives

U(x)→ gLU(x)g−1
R . (2.73)

The u-basis

The unbroken transformation have the form of Eq. (2.70) with gL = gR = h(
h 0
0 h

)
. (2.74)

The nonlinear realization eiXbξb in Eq. (2.54), i.e. ξ(x) in Eq. (2.62), has the form of

ξ(x) =

(
u(x) 0

0 u−1(x)

)
. (2.75)

Then the Eq. (2.54) (or 2.62) gives the transformation law for u(x),

u(x)→ gLu(x)h−1(x) = h(x)u(x)g−1
R , (2.76)

where h(x) is dependent on gL, gR and u(x).
Comparing Eq. (2.54) with Eq. (2.59), one sees that

U(x) = u2(x). (2.77)
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Power counting

To construct an effective theory, the next step is to specify the power counting rules. At sufficiently low
energies, it follows from the dimensional analysis that the coefficient of an operator with n derivatives
behaves as (p/Λχ)n, where p denotes the momenta of Goldstone fields and Λχ is the mass scale of the
chiral symmetry breaking. As a consequences, each derivative acting on Goldstone fields are counted as
O(p). The inclusion of external sources and their transformation properties require the derivative on U(x)
to be replaced by a covariant derivative

∂µU → DµU = ∂µU − irµU + iU`µ, (2.78)

such that the transformation of DµU under a g ∈ G is

DµU → gLDµUg−1
R . (2.79)

The associated field strength tensors read

Fµν
L = ∂µrν − ∂νrµ − i[rµ, rν],

Fµν
R = ∂µ`ν − ∂ν`µ − i[`µ, `ν]. (2.80)

The covariant derivate Dµ requires that the external sources rµ and `µ are counted as ∂µ, i.e. O(p).
In QCD Lagrangian Eq. (2.33), the quark mass term breaks the S UL(N f ) × S UR(N f ) explicitly, which

leads to the ‘small’ masses of the Goldstone bosons. It is easy to incorporate the quark mass term into
the theory by setting the scalar source s = Mq. However, Mq is a constant matrix and does not transform
under S UL(N f ) × S UR(N f ), so the quark mass term breaks the symmetry explicitly. In principle, one
can organize the effective Lagrangian in an independent expansion in both derivatives and quark masses.
It is convenient to combine these two expansion in a single one by using the relations between meson
and quark masses. The standard ChPT is defined by a simple choice of the counting rule for scalar and
pseudoscalar sources, s, p ∼ O(p2). The chiral counting rules read

U ∼ O(p0),

DµU, rµ, `µ ∼ O(p),

Fµν
L,R, s, p ∼ O(p2). (2.81)

Chiral effective Lagrangian

Note also that the QCD Lagrangian is invariant under a parity transformation, under which the fields take
the form

U ↔ U†,

`µ ↔ rµ,

s ↔ s,

p ↔ −p. (2.82)

The invariance should be considered in the construction of the effective Lagrangians.
It is expected that the leading effective Lagrangian should be free of derivatives, order of 1. However,

according to the transformation law for U(x), i.e. Eq. (2.73), the only possible operator which is invariant

22



2.2 Symmetries of QCD and chiral perturbation theory

under the transformation g is 〈U†U〉, which is only an irrelevant constant, with 〈. . . 〉 denoting the trace
in flavor space. There are no odd-power terms due to the Lorentz invariance. The nontrivial leading order
Lagrangian then has the form

L2 = α1〈DµUDµU†〉 + α2〈(s + ip)U† + U(s + ip)†〉

+iα3〈(s − ip)U† − U(s + ip)†〉, (2.83)

where the term proportional to α3 violates parity and thus can be dropped.

Now we consider the chiral effective Lagrangian of QCD in detail. The nonlinear realization U(x) of
the Goldstone fields is commonly written in the form

U(x) = exp
(
i
φ(x)
F0

)
, (2.84)

where

φ(x) =

3∑
i=1

τiφi(x) =

(
φ3 φ1 − iφ2

φ1 + iφ2 −φ3

)
=

(
π0 √

2π+

√
2π− −π0

)
, (2.85)

and

φ(x) =

8∑
a=1

λaφa(x) =


φ3 + 1√

3
φ8 φ1 − iφ2 φ4 − iφ5

φ1 + iφ2 −φ3 + 1√
3
φ8 φ6 − iφ7

φ4 + iφ5 φ6 + iφ7 − 2√
3
φ8


=


π0

+ 1√
3
η

√
2π+

√
2K+

√
2π− −π0

+ 1√
3
η
√

2K0

√
2K−

√
2K̄0

− 2√
3
η

 , (2.86)

for N f = 2 and N f = 3, respectively. Here, the τi and λa are the usual Pauli and Gell-Mann matrices, F0
is a constant and turns out to be the meson decay constant in the chiral limit. The Lagrangian Eq. (2.83)
is usually written in the form

L2 =
F2

0

4
〈DµUDµU†〉 +

F2
0

4
〈χU† + Uχ†〉, (2.87)

where

χ = 2B0Mq, (2.88)

with B0 a constant related to the quark condensate. The second term corresponds to the explicit symmetry
breaking term due to the nonvanishing quark masses. To determine the constant F0, we recall that the
pion decay constant is defined by

〈0|d̄γµγ5u|π+(p)〉 = i
Fπ
√

2
pµ. (2.89)

We can calculate the matrix-element Eq. (2.89) by taking a functional derivative with respect to aµ. At
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the lowest order (O(p2)), one gets

F0 = Fπ. (2.90)

To determine the constant B0, we calculate the vacuum expectation value of L2, i.e. U = U† = 1,

〈L2〉 = B0F2
0

N f∑
f =1

m f . (2.91)

Comparing with in QCD,

∂〈LQCD〉

∂m f
= −

1
N f
〈q̄q〉 (2.92)

with 〈q̄q〉 =
∑N f

f =1〈q̄ f q f 〉, one finds

B0 = −
1

N f F2
0

〈q̄q〉. (2.93)

In chiral limit, the flavor symmetry implies that 〈q̄ f q f 〉 is independent of flavor and thus B0 = −
1

F2
0

〈q̄ f q f 〉.

For the sake of simplicity, we will consider the N f = 3 case from now on. Inserting Eq. (2.86) into the
Lagrangian L2, one has the mass term

L2,mass = −B0(mu + md)π+π− − B0(mu + ms)K
+K− + B0(md + ms)K

0K̄0

−
1
2

B0π
0π0

+
1
√

3
B0(mu − md)π0η +

1
6

B0(mu + md + 4ms)ηη. (2.94)

In the isospin-symmetric limit mu = md = m̂, the π0η mixing term vanishes and we obtain the masses of
the Goldstone bosons (to O(p2)),

M2
π = 2B0m̂,

M2
K = B0(m̂ + ms),

M2
η =

2
3

B0(m̂ + 2ms). (2.95)

The Eqs. (2.95) satisfy the well-known Gell-Mann-Okubo relation

4M2
K = 3M2

η + M2
π. (2.96)

The construction of the higher order Lagrangians is similar to theL2, one writes down the most general
structure of the local operators satisfying the full symmetry of QCD at the given order. However, this
procedure tends to end up with far too many terms, which are usually dependent on each other. One needs
to eliminate the non independent operators and finds a minimal but still complete set of operators. The
equations of emotion of lower orders and some identities, like e.g. Cayley-Hamilton theorem, are usually
used to eliminate the redundant operators. The operators having the form of OEOM ×O

′ can be eliminated
by redefinition of the fields, and thus can be dropped. Here, OEOM is the equation of emotion derived at
lower orders. The Cayley-Hamilton theorem states that every square matrix over a commutative ring
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satisfies its own characteristic equation. The details in constructing higher order Lagrangians can be
found in Refs. [15, 36, 58, 59]. The Lagrangian for S U(N f ) at O(p4) has the form of

L4 = L0〈D
µU†DνUDµU†DνU〉

+L1〈DµU†DµU〉2 + L2〈DµU†DνU〉〈D
µU†DνU〉

+L3〈DµU†DµUDνU
†DνU〉 + L4〈DµU†DµU†〉〈χ†U + χU†〉

+L5〈DµU†DµU(χ†U + U†χ)〉

+L6〈χ
†U + χU†〉2 + L7〈χ

†U − χU†〉

+L8〈χ
†Uχ†U + χU†χU†〉

−iL9〈F
µν
R DµUDνU

†
+ FL

µνDµU†DνU〉 + L10〈U
†Fµν

R UFFµν〉

+H1〈FRµνF
µν
R + FLµνF

µν
L 〉 + H2〈χ

†χ〉, (2.97)

where the coefficients Li are called low-energy constants (LECs) in ChPT. The terms proportional to Hi
are contact terms which contain external fields only. They are not relevant for low-energy phenomenology,
but they are necessary for the computation of operator expectation values.

At above the chiral effective Lagrangians are constructed on the U-basis. The Lagrangians can also be
constructed in the u-basis. One defines

uµ = i{u†(∂µ − irµ)u − u(∂µ − i`µ)u†}, (2.98)

which transforms under S UL(N f ) × S UR(N f ) as

uµ → huµh†. (2.99)

The external sources χ and field strength tensor Fµν
L,R are combined with the Goldstone field u to form the

new quantities

χ± = u†χu† ± uχ†u,

f µν± = uFµν
L u† ± u†Fµν

R u, (2.100)

such that their transformation laws satisfy

χ± → hχ±h†,

f µν± → h f µν± h†. (2.101)

For the objects transforming as uµ, χ±, and f µν± , collectively denoted as X, a covariant derivative can be
defined as

∇µX = ∂µX + [Γµ, X], (2.102)

where the connection Γµ is defined as

Γµ =
i
2
{u†(∂µ − irµ)u + u(∂µ − i`µ)u†}. (2.103)

It is easy to show that ∇µX transforms as X as well. One useful relation which can be derived from the

25



Chapter 2 Chiral effective theories

Operator P C h.c. Chiral order
φ −φ φT φ 1
U U† UT U† 1

DµU (DµU)† (DµU)T (DµU)† p
rµ `µ −`T

µ rµ p
`µ rµ −rT

µ `µ p
χ χ† χT χ† p2

Fµν
L,R FL,Rµν −FµνT

L,R Fµν
R,L p2

Table 2.1: The transformations and chiral orders of the building blocks in the U-basis

definition of the covariant derivative and uµ is

f µν− = −(∇µuν − ∇νuµ). (2.104)

In the u-basis, the leading and next-to-leading order Lagrangian can be written as

L2 =
F2

0

2
〈uµuµ + χ+〉,

L4 = L0〈u
µuνuµuν〉 + L1〈uµuµ〉2 + L2〈uµuν〉〈uµuν〉

+L3〈uµuµuνu
ν
〉 + L4〈uµuµ〉〈χ+〉

+L5〈uµuµχ+〉 + L6〈χ+〉
2

+ L7〈χ−〉
2

+
L8

2
〈χ2

+ + χ2
−〉 − iL9〈 f

µν
+ uµuν〉

+
L10

4
〈 f+µν f µν+ − f−µν f µν− 〉

+
H1

2
〈 f+µν f µν+ + f−µν f µν− 〉 +

H2

4
〈χ2

+ − χ
2
−〉. (2.105)

At the next-to-next-to-leading order, the number of operators increases rapidly, e.g. over 100 in the
S U(3) case. However, the construction of them are the same. For convenience, we list the transformation
law of the building blocks in the U- and u- bases under chiral symmetry and C, P parity, as well as their
chiral orders in Table. 2.1 and 2.2.

Finally, the power counting χ ∼ O(p2) leads to the counting of the masses of Goldstone bosons Mφ as
M2
φ ∼ p2, which ensures that the Weinberg’s power counting scheme in Sec. 2.1.1 can be applied to ChPT

perfectly. Weinberg’s power counting scheme makes a systematic expansion in the chiral order/dimension
and loops possible.

2.3 Anomalies

2.3.1 The UA(1) anomaly

Thus far, we have ignored the UA(1) anomaly at the quantum level. The massless QCD Lagrangian has a
chiral symmetry S UL(N f ) × S UR(N f ) × UV (1) × UA(1) at the classical level. The classically conserved
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2.3 Anomalies

Operator P C h.c. Chiral order
u u† uT u† 1
Γµ Γ

µ
−Γ

T
µ −Γµ p

uµ −uµ uT
µ uµ p

χ± ±χ± χT
± ±χ± p2

f±µν ± f µν± ∓ f T
±µν f±µν p2

hµν −hµν hT
µν hµν p2

Table 2.2: The transformations and chiral orders of the building blocks in the u-basis

axial current is

Aµ = q̄γµγ5q, ∂µAµ = 0. (2.106)

However, we will see that the UA(1) is no longer a symmetry for the full quantum theory such that the
divergence has an anomaly

∂µAµ =
N f

8π
αsε

µναβFa
µνF

a
αβ. (2.107)

In a path integral treatment [60], the symmetries of a theory can be investigated by considering the
generating functional. Considering an infinitesimal symmetry transformation

ϕ→ ϕ′ = ϕ + ε f (ϕ), (2.108)

one has

L(ϕ′) = L(ϕ) + Jµ∂µε. (2.109)

If ε is a constant, the Lagrangian is invariant under the transformation. Considering a generating
functional

W[vµ] =

∫
[dϕ] exp

[
i
∫

d4x(L − vµJµ)
]
, (2.110)

the matrix elements involving Jµ can be obtained by the functional derivative with respect to vµ,

Jµ(x) = i
δ

δvµ(x)
ln W[vν]. (2.111)

Rewriting Eq. (2.111) as

δ ln W[vµ] = ln W[vµ + δvµ] − ln W[vµ] = −i
∫

d4xJµδvµ, (2.112)

let δvµ = −∂µε one has

δ ln W[vµ] = ln W[vµ − ∂µε] − ln W[vµ] = −i
∫

d4xε(x)∂µJµ. (2.113)
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Considering

W[vµ − ∂µε] =

∫
[dϕ] exp i

∫
d4x(L(ϕ) − (vµ − ∂µε)Jµ), (2.114)

if we change the integration variables, ∫
[dϕ] =

∫
[dϕ′]J , (2.115)

with J the Jacobian, combining with Eq. (2.109), one obtains

W[vµ − ∂µε] =

∫
[dϕ′]J exp i

∫
d4x(L(ϕ′) + vµJµ) = W[vµ]J . (2.116)

In the last equality we assume that the Jacobian J is independent of the integrated fields. If the path
integral measure is invariant under the transformation (2.108), one has J = 1 and thus

∂µJµ = 0. (2.117)

What happens in the UA(1) anomaly is that the UA(1) transformation changes the path integral measure.
For a function of Grassmann variables (z1, z2), the Jacobian is defined via∫

dz1dz2 f (z) = J

∫
dz′1dz′2 f (Cz′), (2.118)

where J = [detC]−1. The accompanying Jacobian J with the transformation ψ → ψ′ = e−iεγ5ψ and
ψ̄→ ψ̄′ = e−iεγ5ψ̄ is

J =
[
det

(
eiεγ5

)]−1[det
(
eiεγ5

)]−1, (2.119)

where the determinant runs over the spinor, flavor, color and spacetime indices. Making use of det C =

etr ln C with tr denoting the trace over the full spanned space, we write

J = e−2itr
(
εγ5

)
. (2.120)

The Jacobian is ill-defined and can be regularized via

J = lim
M→∞

exp
[
− 2itrε(x)γ5e−( /D/M)2]

, (2.121)

with Dµ the QCD covariant derivative. It can be evaluated via

lim
M→∞

trγ5e−( /D/M)2

= lim
M→∞

lim
y→x

∫
d4k

(2π)4 tr′
(
γ5e−( /D/M)2)

eik(x−y)

= lim
M→∞

lim
y→x

∫
d4k

(2π)4 eik(x−y)tr′
(
γ5e−(i/k+ /D)2/M2)

.
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It can be further evaluated via

lim
M→∞

∫
d4k

(2π)4 tr′
(
γ5e−(i/k+ /D)2/M2)

= lim
M→∞

M4
∫

d4l

(2π)4 tr′
(
γ5e−(i/l+ /D

M )2)
= lim

M→∞
M4

∫
d4l

(2π)4 tr′
(
γ5el2−2il·D/M− /D2/M2)

=
1
2

∫
d4l

(2π)4 el2 tr′
(
γ5 /D

4)
=

g2
s

64π2 N f ε
µναβFa

µνF
a
αβ, (2.122)

where tr′ denotes the full trace excluding the spacetime indices, and the following formulas are used∫
d4l

(2π)4 el2
= i

∫
d4lE

(2π)4 e−l2E =
i

16π2 , (2.123)

and

/D2
= D2

+
1
4

[γµ, γν]igsFµν. (2.124)

Applying Eqs. (2.113) and (2.116), plus the explicit symmetry breaking quark mass term, it is easy to
read off

∂µAµ = 2iq̄Mqγ5q +
N f

8π
αsε

µναβFa
µνF

a
αβ. (2.125)

Quarks do not only carry color charges, but also electromagnetic charges. The anomaly function
Eq. (2.125) is replaced by

∂µAµ = 2iq̄Mqγ5q +
α

4π
Ncε

µναβFµνF
αβ
〈Q2t〉, (2.126)

where Q = diag(2/3,−1/3, . . . ) is the quark charge matrix, Nc is the number of colors, t = λ3 or λ8,
depending on the number of flavors.

2.3.2 The Wess-Zumino-Witten action

It is easy to see that the Lagrangian L2 and L4 exhibit a larger symmetry than QCD. It is found that the
chiral anomalies cannot be expressed as local effective Lagrangians. The two Lagrangians are invariant
under the transformation φ(x)↔ −φ(x). They only contain the interactions involving an even number
of Goldstone bosons, and it is impossible to be used to describe the reaction like K+K− → π+π−π0.
Furthermore, the process π0

→ γγ cannot be described by L2 and L4.
Wess and Zumino worked out the consistency conditions which have to be satisfied in the presence of

the anomalies in 1971 [61]. In case of spontaneous symmetry breaking S UL(N f )×S UR(N f )→ S UV (N f ),
the homotopy group is trivial and a smooth interpolating field between the 4-dimensional Minkowski
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Chapter 2 Chiral effective theories

spacetime and a 5-dimensional sphere, B5, can be established. The WZW action is written as

S =

∫
B5

d4xdαL(x, α), (2.127)

where the Lagrangian is G invariant and restricted by integrability conditions. Employing Poincaré’s
lemma, the action can be cast into a closed 5-form on G/H. The terms which cannot be reduced to
4-dimensional integrals can be obtained by the generators of the fifth de Rham cohomology group
H5(G/H; R). The coset subgroup is a simple Lie group and H5 has a single generator

Ω = −
i

240π2 〈(U
−1dU)5

〉, (2.128)

which is the Wess-Zumino-Witten term. In order to describe physical processes, external sources are
included and the full action can be written in a compact n-forms as [62, 63]

S [U, `, r]WZW = −
i

240π2 Nc

∫
B5

〈Σ
5
L〉 −

i

48π2 Nc

∫
M4

[
W(U, `, r) −W(1, `, r)

]
,

(2.129)

where

W(U, `, r) = 〈U`3U†r +
1
4

U`U†rU`U†r + iUd``U†r + idrU`U†r

−iΣL`U
†rU` + ΣU†drU` − Σ

2U†rU` + Σ`d` + Σd``

−iΣ`3
+

1
2

Σ`Σ` − iΣ3`〉 − (R↔ L), (2.130)

where ΣL = U†dU, ` = dxµ`µ, r = dxµrµ and d = dxµ∂µ. The first term is an integral over the field
U(x, α) that smoothly interpolates between U(x, 0) = 1 and U(x, 1) = U(x). The integral in the second
term is over the Minkowski space only.

2.4 Chiral perturbation theory for matter fields

So far we have considered the purely mesonic sector involving the self-interactions of Goldstone
bosons and their interaction with external currents. ChPT can be extended to include matter fields, e.g.
baryons, heavy mesons and etc., which transform as irreducible representation of S UV (N f ) instead of
S UL(N f ) × S UR(N f ). Different from the Goldstone bosons, the matter fields have nonvanshing masses
in the chiral limit, i.e. as mq → 0. While the matter fields are realized by a linear representation of the
S UV (N f ), the transformation law under S UL(N f ) × S UR(N f ) is not fixed and can be described by the
CCWZ formalism Eq. (2.56).

Since the masses of matter fields do not vanish in the chiral limit, denoted as m̊, the temporal component
of the momenta of the matter fields do not correspond to a ‘small’ quantity. Therefore one has to assign a
new power counting for the matter field sectors. At low energies when the three-momentum is small, one
may count k2

− m̊2, with k the four-momentum, as O(p). Expressed in the Lagrangian level, the chiral
counting scheme for the elements of matter fields is

ψ ∼ O(p0), ∂µψ ∼ O(p0), (∂µ∂
µ

+ m̊2)ψ ∼ O(p). (2.131)
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2.4 Chiral perturbation theory for matter fields

2.4.1 Chiral perturbation theory for baryons

The construction of ChPT for matter fields is straightforward by applying the CCWZ formalism. The
transformation laws for the Goldstone fields and baryon fields (Ψ) read

u(x)→ gLu(x)h−1(x), Ψ(x)→ h(x)Ψ(x), (2.132)

for the N f = 2 case, where the proton and neutron fields are collected in a doublet

Ψ(x) =

(
p(x)
n(x)

)
. (2.133)

The local character of the transformations implies that a connection Γµ needs to be introduced to
compensate the transformation of ∂µh(x):

DµΨ(x) = (∂µ + Γµ)Ψ(x)→ h(x)DµΨ(x). (2.134)

Here the connection is Γµ = 1
2 [u†(∂µ − irµ)u + u(∂µ − i`µ)u†], as already introduced in Sec. 2.2.5.

For the spinor fields, the power counting scheme is a little subtle due to the bilinear Ψ̄ΓΨ, which can
be understood by investigating the matrix elements of a positive energy plane-wave

ψ+
p(x) = e−ip·x √

EN + mN

 χ
~σ·~p

EN+mN
χ

 , (2.135)

where χ is a two-component Pauli spinor. In the low energy limit, the lower component is suppressed with
respect to the upper component. The matrices γ5, γ5γ0, γi and σi0 couple large and small components but
not large with large, while the matrices 1, γ0, γ5γi and σi j do not. As a consequence, the chiral counting
scheme for the baryon sector are [64]

Ψ ∼ O(p0), DµΨ ∼ O(p0), (i /D − m̊N)Ψ ∼ O(p),

1, γµ, γµγ5, σµν ∼ O(p0), γ5 = O(p). (2.136)

The counting for the Goldstone bosonic fields and external fields remains the same as in purely Goldstone
bosonic ChPT.

Then the most general effective Lagrangian for πN with a single nucleon in the initial and final states has
the form of Ψ̄OΨ, where O is an operator acting on the spinor and transforming under S UL(2) × S UR(2)
as h(x)Oh(x)−1. Taking the discrete symmetries C, P and T into account, the most general effective πN
Lagrangian at leading order has the form

L
(1)
πN = Ψ̄

(
i /D − m̊N +

1
2
g̊Aγµγ5uµ

)
Ψ, (2.137)

where g̊A is the axial-vector coupling constant in the chiral limit.

To proceed to the N f = 3 case, we consider the octet of the JP
= 1

2
+ baryons. In the N f = 2 case, the

nucleons are living in a fundamental representation. However, the octet of 1
2

+ form a baryons adjoint
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representation of S UV (3). They are collected in a traceless 3 × 3 matrix B,

B =

8∑
a=1

λaBa
=


1√
2
Σ

0
+ 1√

6
Λ Σ

+ p

Σ
−

− 1√
2
Σ

0
+ 1√

6
Λ n

Ξ
−

Ξ
0

− 2√
6
Λ

 . (2.138)

The baryon fields transform as

B(x)→ h(x)B(x)h(x)−1. (2.139)

The covariant derivative acting on baryons is replaced by

DµB = ∂µ + [Γµ, B]. (2.140)

The leading order Goldstone boson (φ)-baryon Lagrangian reads

L
(1)
φB = 〈B̄(i /D − m̊B)B〉 −

D̊
2
〈B̄γµγ5{uµ, B}〉 −

F̊
2
〈B̄γµγ5[uµ, B]〉, (2.141)

where the low energy constants D̊ and F̊ determine the axial-vector coupling of baryons to the Goldstone
bosons. They are related to the axial-vector coupling constant g̊A via D̊ + F̊ = g̊A.

Like in purely Goldstone bosonic ChPT, a power counting rule can be assigned to each Feynman
diagram. In baryon ChPT, the scaling of Goldstone bosons is the same as the purely Goldstone bosonic
case. The Goldstone boson propagator is counted as O(p−2). However, since the the off-shellness of the
baryon field /k − mN is counted as O(p), the baryon propagator then scales as O(p−1). Considering the
measure of the loop integral, one can derive a chiral dimension n for a given Feynman diagram

n = 4L +
∑

k

Vk − 2Iφ − IN , (2.142)

where L, Vk, Iφ and IN are the numbers of loops, kth order vertices, Goldstone boson propagators and
nucleon propagators, respectively. Eq. (2.142) is the naive power counting rule for a Feynman diagram.
However, in practice, a Feynman diagram may produce terms whose chiral order is lower than that given
by the naive power counting. Those terms are called power counting breaking terms. It only happens in
the ChPT for matter fields. Many regularizations are proposed to address this issue. We will come back
to this issue in the next section.

2.4.2 Chiral perturbation theory for spinless matter fields

The construction of ChPT for spinless matter fields is similar with that for baryons. In this work, we
focus on the matter fields living in an anti-fundamental representation of S UV (N f ). Applying the CCWZ
formalism, the transformation law under the S UL(N f ) × S UR(N f ) for the Goldstone boson fields and
spinless matter fields, denoted by P = (P1, P2, . . . ), are

U → gLUg−1
R , u→ gLuh(x)−1

= h(x)ug−1
R ,

P→ Ph(x)−1, P† → h(x)P†. (2.143)
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2.4 Chiral perturbation theory for matter fields

The chiral covariant derivative acting on matter fields is defined as

DµP† = ∂µP† + ΓµP†, DµP = ∂µP + PΓ
†
µ. (2.144)

On the Goldstone bosonic side, one has three building blocks uµ, χ±, as well as the covariant derivatives
on them such as ∇µuν. They transform under S UL(N f ) × S UR(N f ) as

uµ → huµh−1, χ± → hχ±h−1, ∇µuν → h∇µuνh
−1, . . .

P† → hP†, DµP† → hDµP†, DµDνP
†
→ hDµDνP

†, . . . (2.145)

The power counting rule for these building blocks is

DµP(†)
∼ O(p0), DµDνP

(†)
∼ O(p0), (DµDµ

+ m2)P(†)
∼ O(p),

uµ ∼ O(p), χ± ∼ O(p2), ∇µuν ∼ O(p2), . . . , (2.146)

where m is the mass of the P field in chiral limit. Based on the transformation properties and power
counting of the blocks, it is easy to construct the effective Lagrangian to any finite order. Up to next-to-
next-to leading order, the Lagrangians describing φP interactions read [28, 65–67]

L
(1)
φP = DµPDµP† − m2PP†,

L
(2)
φP = P

[
−h0〈χ+〉 − h1χ+ + h2〈uµuµ〉 − h3uµuµ

]
P†

+DµP
[
h4〈uµuν〉 − h5{u

µ, uν}
]

DνP
† ,

L
(3)
φP =

[
i g1P[χ−, uν]D

νP† + g2P[uµ,∇µuν + ∇νuµ]DνP†

+g3P
[
uµ,∇νuρ

]
DµνρP† + g4P∇νχ+DνP† + g5P〈∇νχ+〉D

νP† + h.c.
]

+i γ1DµP f +
µνD

νP† + γ2P[uµ, f −µν]D
νP† , (2.147)

where Dµνρ
= {Dµ, {Dν,Dρ}}. The h6 term in Ref. [28] is of order O(p3) instead of O(p2), thus can be

absorbed into the terms of O(p3),

DµP[uµ, uν]DνP
†

= −P[∇µuµ, uν]DνP
†
− P[uµ,∇µuν]DνP

†
− P[uµ, uν]DµDνP

†

= −
1
2
(
P[uµ,∇µuν + ∇νu

µ]DνP
†

+ P[uµ,∇µuν − ∇νu
µ]DνP

†

+P[uµ, uν][Dµ,Dν]P
†

+ 2P[∇µuµ, uν]DνP
†)

= −
1
2

(
P[uµ,∇µuν + ∇νuµ]DνP† − P[uµ, f −µν]D

νP†

+iP[χ−, uν]D
νP† +

1
4

P[uµ, uν][uµ, uν]P
†
−

i
2

P[uµ, uν] f +
µνP

†
)

= −
1
2

(
P[uµ,∇µuν + ∇νuµ]DνP† − P[uµ, f −µν]D

νP† + iP[χ−, uν]D
νP†

)
+O(p4). (2.148)

In particular, for the two-flavor case N f = 2, the Cayley-Hamilton relation, i.e. {A, B} = A〈B〉 + B〈A〉 +
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〈AB〉 − 〈A〉〈B〉 for any arbitrary 2 × 2 matrices A and B, can be used to reduce the number of operators.
The Lagrangian for N f = 2 has been constructed in Ref. [68] in the context of S U(2) ChPT for kaons.
For completeness, the relevant terms are listed,

L
(1)
πK = DµK†DµK − M2

K K†K ,

L
(2)
πK = A1〈∆µ∆

µ
〉K†K + A2〈∆

µ
∆
ν
〉DµK†DνK + A3K†χ+K + A4〈χ+〉K

†K

L
(3)
πK = B1

(
K†

[
∆
νµ, ∆ν

]
DµK − DµK†

[
∆
νµ, ∆ν

]
K
)

+B2〈∆
µν

∆
ρ
〉
(
DµνK

†DρK + DρK†DµνK
)

+B3

(
K†

[
∆µ, χ−

]
DµK − DµK†

[
∆
µ, χ−

]
K
)
,

L
(4)
πK = C3

[
〈∆

µν
∆
ρ
〉
(
DµνK

†DρK + DρK†DµνK
)

−2
(
DµνK†∆µ∆νρDρK + DρK†∆νρ∆µDµνK

)]
+C5

(
DµK†χ+DµK − M2

K K†χ+K
)

+ C6〈χ+〉
(
DµK†DµK − M2

K K†K
)

+ . . . , (2.149)

with the notations

∆µ = −
i
2

uµ ∆µν = −
i
4

(
∇µuν + ∇νuµ

)
,

K† = P , K = P† , Dµν =
{
Dµ,Dν

}
. (2.150)

By comparing the Lagrangians, one has a relation between the two sets of LECs,

A1 = 2h3 − 4h2 , A2 = 4(h5 − h4) , A3 = −h1 , A4 = −h0 ,

B1 = 8g2 , B3 = −2g1 ,

C3 = 8g3, C5 = −2g4 , C6 = −2g5 . (2.151)

Notice that the B2 term therein is actually O(p4), which can be seen by partial integration. Instead, the
C3 term of Eq. (2.150) is in fact of O(p3). The corrected assignment can be checked from the explicit
expression of the scattering amplitudes in Ref. [69].

2.5 Power counting breaking and regularizations

In the presence of matter fields with generic masses m & Λχ, the navie power counting analysis Eq. (2.142)
is no longer valid because the loop integrals also yield terms of the form m/Λχ which spoil the power
counting [17], the so-called power counting breaking terms. Loop corrections contribute to the πN
scattering amplitude at O(p2) instead of O(p3) according to the naive power counting. To see the power
counting breaking (PCB) issue, let us consider the one-loop correction to the nucleon mass. Employing
the Lagrangian Eq. (2.137), the MS-renormalized self-energy contribution to the nucleon mass reads [17,
58]

δm = −
3g̊2

A

4F2
0

2mM2
∆, (2.152)
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where

∆ =
1

16π2

[
− 1 + log

m2

µ2 −
M2

2m2 log
M2

m2 +
2M
m

√
1 −

M2

4m2 arccos
( M
2m

)]
,

with M the pion mass. Expanding it around the small M/m, up to O(p3), one has

δm =
3g̊2

AM2

32π2F2
0

(1 − log
m2

µ2 ) −
3g̊2

AM3

32πF2
0

. (2.153)

It shows that the loop correction contributes from O(p2), instead of O(p3) obtained by naive power

counting. In Eq. (2.152), the power counting breaking term, i.e. 3g̊2
A M2

32π2F2
0
(1 − log m2

µ2 ) ∼ O(p2), is analytical
to the chiral quantity, i.e. M, and the nonanalytic part satisfies the naive power counting. It is a general
feature for the loop correction and will be the key to the covariant solutions to the PCB issue.

There have been several solutions to the PCB issue, e.g. the most well-known heavy baryon ChPT
(HBChPT) [18–20], the infrared regularization (IR) [21], and the extended-on-mass-shell (EOMS)
scheme [22]. In HBChPT, the heavy components of the anti-baryon fields are integrated out. The new
Lagrangian is organized in inverse powers of m, and the dependence of the baryon mass is removed
from the propagators. As a consequence, the only mass scale appearing in the loops is the Goldstone
boson mass and thus the PCB issue is avoided. However, the 1/m expansion sometimes leads to incorrect
low-energy analytic properties [20]. The expansion series near the anomalous threshold fails to converge
and an infinite number of terms are needed.4 A manifestly Lorentz covariant regularization scheme which
preserves the analytic structure and the power counting can also be formulated. The crucial step was
made by Ellis and Tang [71, 72]. They noted that the soft-momentum part of a loop diagram is infrared
singular and the PCB terms, coming from the hard-momentum modes only, are a local polynomial in
chiral quantities and thus can be absorbed into the LECs of the most general chiral Lagrangian. Based on
their work, Becher and Leutwyler proposed the IR scheme which isolates the infrared singular parts of
the loops by extending the Feynman parameter integration upper bound from unity to infinity [21]. Due
to the fact that the infrared regular parts of loops can be obtained by expanding the integrand in small
quantities and then integrating each term [73], the EOMS scheme was proposed, in which additional
subtractions beyond the MS scheme are performed to get rid of the PCB terms.

2.5.1 Heavy baryon ChPT

The first solution to the power counting problem is brought by Jenkins and Manohar [18] following
methods from heavy quark effective theory. The basic idea of HBChPT is to consider the nucleon
as extremely heavy, only the baryon momenta relative to the rest mass is small and concerned. The
4-momentum of baryon is decomposed as (similar with in HQET)

pµ = mvµ + kµ, (2.154)

with kµ � v · p and vµ the baryon 4-velocity satisfying v2
= 1. The baryon field is split into ‘heavy’ and

‘light’ components

Nv(x) = eimv·xP+
v Ψ(x), Hv(x) = eimv·xP−v Ψ(x), (2.155)

4 This can be overcome by using the extended propagator i/(v · k + k2/2m) instead of the strict HB propagator i/v · k, see e.g.
Ref. [70].

35



Chapter 2 Chiral effective theories

where P±v =
1±/v

2 is the projection operator. Integrating out the ‘heavy’ component, to tree-level one has

LHBChPT = N̄v

(
iv · D +

g̊A

2
/u⊥γ5

)
Nv +

∞∑
n=1

1
(2m)nL

(n)
HBChPT, (2.156)

where uµ⊥ = hµ − v · uvµ. The first term, up to the leading order can be reduced to

L
(1)
HBChPT = N̄v

(
iv · D + g̊Au · S v

)
Nv, (2.157)

where S µ
v = i

2γ5σ
µνvν = − 1

2γ5(γµ/v − vµ) obeys the following relations

S c · v = 0, S 2
v =

1 − d
4

, {S µ
v , S

ν
v } =

1
2

(vµvν − gµν), [S µ
v , S

ν
v ] = iεµναβvαS vβ.

Expressions for higher order operators can be found in Ref. [19]. HBChPT is thus a double expansion
in q/Λχ and q/m. From the Lagrangian Eq. (2.157), one can read off the baryon propagator i

v·k . The
absence of the mass scale m in the integrals makes sure that only soft modes contribute to the loops
and thus the naive power counting Eq. (2.142) is satisfied, which can be easily checked by dimensional
analysis. To examine the convergence of this 1/m expansion, we follow Becher and Leutwyler [21] and
consider the scalar form factor of the nucleon in the isospin limit,

〈N(p′)|m̂(ūu + d̄d)|N(p)〉 = ū′uσ(t), t = (p′ − p)2. (2.158)

The leading one-loop correction of this form was worked out in Ref. [17] in a Lorentz invariant formula-
tion,

σ(t) =
3g̊2

AM2m

4F2
0

[
(t − 2M2)γ(t) −

M
8πm

]
, (2.159)

where

γ(t) = −i
∫

d4k

(2π)4

1

(M2
− k2)(M2

− (k − q)2)(m2
− (p − k)2)

, (2.160)

here we denote qµ = pµ − p′µ. This function is analytic in t except for a cut along the positive real axis
from 4M2 to infinity. The function γ(t) represents a triangle graph Fig. 2.1 with one nucleon propagator
and two pion propagators, and it shows up in the πN scattering amplitude to one loop. The imaginary
part of γ(t) can be expressed as [17]

Imγ(t) =
θ(t − 4M2)

8π
√

t(4m2
− t)

arctan
(t − 4M2)(4m2

− t)

t − 2M2 . (2.161)

The analytic continuation of γ(t) to the second sheet contains a brach cut point tc = 4M2
− M4/m2,

coming from the arctan and lying just below the threshold 4M2. This is called anomalous threshold, and
turns out to be very important in the calculations for the specific physical observables. And it implies that
the form factor does not admit an expansion in powers of chiral quantities in the region near threshold.

Since the HBChPT series corresponds to the inverse power of m expansion of the relativistic result
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q

p

p′

Figure 2.1: Triangle graph. The solid, dashed and wiggly lines represent the nucleons, pions and an external scalar
source, respectively.

[19], within HBChPT,

Imγ(t)HBChPT =
t − 4M2

32πm
√

t

(
π −

t − 2M2

m
√

t − 4M2

)
, (2.162)

provides a decent representation if t is not close to the threshold. An infinite series of internal insertions
must be taken into account to properly describe the form factor near threshold. One way to solve this
problem of HBChPT is to use the extended propagator i

v·k+k2/2m
instead of i

v·k , it gives the proper analytic
behavior near threshold, see Ref. [70].

2.5.2 Analytic structures of loop integrals

A consistent and ideal way to dealing with the problem of HBChPT is to formulate a theory which has a
proper power counting and proper analytic structures as well. The first attempt in this direction was made
by Tang and Eills [71, 72]. While the anti-nucleon field are integrated out to recover the proper power
counting, Tang [71] noted that their contributions are hard-mode effect, and that the proper low-energy
expansion makes sense only if all hard-momentum effects are absorbed into the LECs. Tang noticed that
the PCB terms come from the hard-momentum modes only, and they turn out to be local polynomial in
chiral quantities and thus could be absorbed by the redefinition of the LECs. He proposed a prescription
to extract the soft part of a Feynman diagram in the following way:

• take the loop momenta to be of order p,

• make a covariant p/m expansion of the integrand,

• exchange the order of the integration and summation of the resulting power series.

Let q be the loop momentum and consider the integration over the time component q0. Closing the
contour by a semicircle at infinity, one finds that the q0 integration of a loop is given by the sum of
three contributions: (1) the semicircle; (2) the soft poles, of order p, and (3) the hard poles, of order
m. The contribution from the semicircle only produce divergences and will be removed by the usual
renormalization. A p/m expansion of the soft-pole structures, e.g. pion propagators, is not allowed
since the expansion would destroy the nonanalytic structures of the low-energy behavior. However, a
p/m expansion of the hard-pole structures is allowed because the pole is located much higher than the
loop momentum, which is of order p. This expansion destroys the hard-pole structures and removes
these poles once we truncate the expansion. However this is harmless since the low-energy EFTs only
concerns the low-energy bahavior, and the truncation of the effective Lagrangian have already spoiled
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the hard-pole structures. In step 3, even without truncating the series, the exchange of the integration
and summation also removes the hard poles. In a proper low-energy EFT, the hard-mode effects are all
encoded into the LECs.

For a closed baryon loop, the only energy scale appearing in the loop is the mass of nucleon. In
dimensional regularization, it is easy to conclude that the loop contains hard parts and no soft part due to
the absence of soft scale. A more detailed discussion can be found in Ref. [71]. Once the baryon loops
are excluded, any baryon lines are connected to external baryons by baryon number conservation. Thus
the baryon propagators are nearly on-shell and are of order p−1. For a loop containing m nearly on-shell
nucleon and n pion propagators, symbolically written as∫

d4q

(2π)4

1

[(k + q)2
− m2]m[q2

− M2]n , (2.163)

if we only consider the soft part, i.e. the integration momentum is of order p, then the loop integral
Eq. (2.163) scales under p→ tp, M → tM and (k2

− m2)→ t(k2
− m2) as∫

d4q

(2π)4

1

[(k + q)2
− m2]m[q2

− M2]n ,

→

∫
d4q

(2π)4

1

[t(k2
− m2) + 2k · q + q2]m[q2

− t2M2]n ,

=

∫
d4l

(2π)2

t4−m−2n

[(k2
− m2) + 2k · l + tl2]m[l2 − M2]n . (2.164)

Due to the presence of the t factor in the nucleon propagator on the last line, the loop integral turns out
to that it does not scale uniformly like in purely Goldstone bosons case, e.g. Eq. (2.9). t is an arbitrary
number, in the chiral limit (vanishing pion mass and external external 3-momenta), it tends to be zero.
Counted in chiral dimensions, one can see that the at leading order, the loop integral is of order p4−m−2n,
consistent with the naive power counting. It is worth mentioning that the soft parts of the loop integral
not only contains the leading order p4−m−2n, but also contains higher orders. For the soft part, q2 is small,
and can be regarded as a higher order perturbation in the nucleon propagator, thus can be expanded in
a series. However, for the hard part, the hard pole lies around 2k · q + q2

= 0, i.e. q = −2k. When q2

becomes large, the expansion breaks down. As a result, the power counting breaks down as well. Since
the soft part of loop integrals satisfies the power counting, the PCB terms can only come from the hard
part of loops. The most important step made by Tang and Ellis is to realize that the PCB terms, from the
hard parts, are just polynomials of chiral quantities.

Let us consider a loop H with I scalar internal lines,

HG = µL(4−d)
∫ L∏

l=1

ddkl

(2π)d

I∏
i=1

i

q2
i − m2

i + iε
, (2.165)

where the momentum qµi is a linear combination of the loop momentum kµi and the external momenta.
Using Feynman parameters, one obtains

HG = iI
Γ(I)µL(4−d)

∫ ∞

∞

I∏
k=1

[dαkθ(αk)]
L∏

l=1

ddkl

(2π)d

δ(1 −
∑I

j=1 α j)

[
∑I

i=1 αi(q
2
i − m2

i ) + iε]I . (2.166)
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Singularities of H arise when the contour of integration gets pinched between two or more poles of the
integrand (pinch singularities) or between poles of the integrand and endpoints of the integration contour
(endpoint singularities). Landau equations provide a useful tool for investigating the analytic properties
of a Feynman graph. The Landau equations for H are given by

for each i : either αi = 0 or q2
i = m2

i ,

for each i, µ :
I∑

i=1

αi
∂q2

i

∂kµl
= 0, (2.167)

which means that either an internal line i of H is on-shell or the Feynman parameter αi vanishes. If
αi = 0, line i does not contribute to the remaining Landau equations, and the Landau equations for H
is identical to the Landau equations for the sub-graph h of H which is obtained by shrinking line i into
a point. A solution to the Landau equations where all αis are nonzero is called the leading singularity
of H; singularities with n internal lines off shell are called (sub)n-leading singularities. It follows that
every (sub)n-leading singularity of H can be represented by a leading singularity of a subgraph where the
corresponding n internal lines have been shrunk. The complete set of singularities of a graph H is given
by the leading singularities of each subgraphs.

For a graph containing both nucleon and pion internal lines, the loop integral can be split into two
parts,

HG = IG + RG, (2.168)

where the entire low-energy analytic structure of H is collected into I, while the terms multiplied by
factors of the form mld−n

N with l and n integers, are collected in R, the regular part. I and H have
identical low-energy analytic structure, and R can be accounted for through a renormalization of the
low-energy constants. This separation can be achieved by separating out the subgraphs that lie outside
of the low-energy region. These subgraphs are referred to as regular subgraphs. The factor mld−n

N will
be singular at mN = 0 for appropriate d, thus separating out the mN = 0 singularities will ensure that
the terms multiplied by fractional powers of mN are separated out. A more detailed discussion on the
separation of irregular and regular parts Eq. (2.168) can be found in Ref. [74]. It is easy to see that the
regular parts correspond to the hard-mode effects in the loops.

2.5.3 Infrared regularization

Tang’s method indeed extracts the soft part of a Feynman graph which fulfils the power counting.
However, it relies on the chiral expansion of the loop integrals which is not always convergent. Based on
Tang’s work, Becher and Leutwyler proposed a more formal scheme to extract the soft-momentum parts,
or infrared singular parts, of a Feynman graph, which is called Infrared Regularization (IR). It relies on
the fact that the infrared singular parts of the loops can be separated from the remainder uniquely as
Eq. (2.168). Let us look at the simplest case, the self-energy. The corresponding scalar loop integral is

H(p2) =
µ(4−d)

i

∫
ddk

(2π)d

1

(k2
− M2)((p − k)2

− m2)
. (2.169)

This integral develops an infrared singularity for vanishing M due to the infrared mode of integration.
The high momentum one is free of infrared singularities and thus leads to a contribution that can be
expanded in a Taylor expansion [75]. In order to separate out the infrared parts, one uses the Feynman
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parameterization

1
ab

=

∫ 1

0
dz

1

[(1 − z)a + zb]2 ,

Performing the integration over k, one obtains

H(p2) =
Γ(2 − d/2)

(4π)d/2 md−4
∫ 1

0
dzCd/2−2, (2.170)

where C = z2
− 2αΩz(1 − z) + α2(1 − z)2 with α = M

m and Ω =
p2
−m2
−M2

2mM . The infrared singularity arises
from small values of z. Performing a change of variable z = αu, the upper limit of integration becomes
infinity as M goes to zero. One thus extract the infrared singular parts by extending the integration to∞
and define the infrared singular part by

I =
Γ(2 − d/2)

(4π)d/2 md−4
∫ ∞

0
dzCd/2−2

=
Γ(2 − d/2)

(4π)d/2 md−4αd−3
∫ ∞

0
duDd/2−2,

with D = 1 − 2Ωu + u2
+ 2αu(Ωu − 1) + α2u2. The difference between H and I is the infrared regular

part R,

R = −
Γ(2 − d/2)

(4π)d/2 md−4
∫ ∞

1
dzCd/2−2, (2.171)

so that

H = I + R. (2.172)

The infrared singularity comes from the small values of z and is excluded in the expression of R. Both I
and R are chirally symmetric by themselves, so that R can be absorbed into the low-energy constants
of the effective Lagrangian. The infrared singular part contains an overall factor α3, so that the chiral
expansion of I only consist of noninteger powers of the chiral expansion,

I = O(pd−3) + O(pd−2) + O(pd−1) + . . . , (2.173)

while the infrared regular part only contains nonnegative integer powers,

R = O(p0) + O(p) + O(p2) + . . . . (2.174)

It is instructive to interpret the decomposition of H to I and R in terms of Eq. (2.170). The infrared part
is obtained by taking the integration upper limit from 1 to∞∫ ∞

0

z

[(1 − z)a + zb]2 =
1

a(b − a)
. (2.175)

It shows that the decomposition Eq. (2.172) corresponds to the decomposition

1
ab

=
1

a(b − a)
−

1
b(b − a)

. (2.176)
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As a result, the infrared singular part reads

I =
µd−4

i

∫
ddk

(2π)d

1

(M2
− k2)(m2

− p2
+ 2p · k − M2)

. (2.177)

It differs from H in that the term k2 in the nucleon propagator is replaced by M2. And the regular part is
given by

R = −
µd−4

i

∫
ddk

(2π)d

1

(m2
− (p − k)2)(m2

− p2
+ 2p · k − M2)

. (2.178)

It is easy to see that the I part fulfils the power counting, as discussed in the last subsection, and the
regular part involves two nucleon propagators, therefore it is a hard effect.

The method can be extended to general one-loop integrals. It suffices to consider the scalar integrals,

Hmn =
µd−4

i

∫
ddk

(2π)d

1
a1a2 . . . amb1 . . . bn

, (2.179)

where ai = (qi + k)2
− M2 and b j = (p j − k)2

− m2 are inverse of the pion and nucleon propagators,
respectively. Using the formula [21]

1
a1a2 . . . am

=
(
−

∂

∂M2

)m−1
∫ 1

0
dx1· · ·

∫ 1

0
dxm−1

X
A
, (2.180)

where

X = x2(x3)2 . . . (xm)m−1, (2.181)

for m > 2 and X = 1 for m = 2. The denominator A can be obtained with the recursion relation

A = Am, A1 = a1, Al+1 = xlAl + (1 − xl)al+1, (l = 1, . . . , l − 1).

The result for A is quadratic in k, A = Ā − (k − q̄)2, where Ā is a constant of order p2, and q̄ represents a
linear combination of external momenta and is of order p. Likewise, the nucleon dominator B has the
same form B = B̄ − (P̄ − k)2 with P̄ = m2

+ O(p) and B̄ = m2
+ O(p). The integral Hmn then can be

evaluated via

Hmn =
(
−

∂

∂M2

)m−1(
−

∂

∂m2

) ∫ 1

0
dxdyXY

µd−4

i

∫
ddk

(2π)d

1
AB

, (2.182)

with ∫ 1

0
dxdy =

∫ 1

0
dx1· · ·

∫ 1

0
dxm−1

∫ 1

0
dy1· · ·

∫ 1

0
dyn−1.

As a result,

Hmn =

∫ 1

0
dxdyXY

(
−

∂

∂Ā

)m−1(
−

∂

∂B̄

)n−1
Hp→P̄−q̄,M2

→Ā,m2
→B̄. (2.183)

Splitting Hmn into regular and infrared singular parts Rmn and Imn, respectively, and comparing with the
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self-energy case, the representation for Imn reads

Imn =

∫ 1

0
dxdyXY

(
−

∂

∂Ā

)m−1(
−

∂

∂B̄

)n−1
Ip→P̄−q̄,M2

→Ā,m2
→B̄. (2.184)

The chiral expansion of the singular part Imn only contains noninteger powers for noninteger d, while the
regular part Rmn can be expanded in a Taylor expansion and can therefore be absorbed into the low-energy
constants of the Lagrangian. Therefore, Hmn can be replaced by its singular part Imn in the loop integrals,
which is the infrared renormalization condition,

HIR
mn = Imn. (2.185)

2.5.4 Extended On-Mass-Shell scheme

The most important step made by Tang was to realize that the power counting breaking violating terms
are just polynomials of chiral quantities. In IR, only the infrared singularities which obey the power
counting are calculated. Contrary to IR, one can evaluate the regular parts instead and subtract them
from the full loop integral to obtain a subtracted result that fulfils the power counting. The subtracted
regular parts representing the hard effects are absorbed into the LECs. One of these schemes is the
extended on-mass shell (EOMS) scheme [22, 76]. The central idea consists in performing additional
subtractions beyond the MS scheme. Since the regular parts are polynomials of chiral quantities, one can
expand the integrand in small quantities and then exchanging the integration and summation without
change the regular parts, see Ref. [73]. However, this procedure would destroy the infrared singular parts.
Considering a two-point loop, the integrand is expanded in small chiral quantities as

1

[(k − p)2
− m2][k2

− M2]

=

∞∑
i, j=0

(p2
− m2)i(M2) j

i! j!

[( 1

2p2 pµ
∂

∂pµ

)i( ∂

∂M2

) j 1

[(k − p)2
− m2][k2

− M2]

]
p2
−m2

=0,M2
=0

=
1

(k2
− 2k · p)(k2)

p2
−m2

=0
+ M2 1

(k2
− 2k · p)(k2)

p2
−m2

=0

+(p2
− m2)

[ 1

2m2

1

(k2
− 2k · p)2 −

1

2m2

1

(k2
− 2k · p)(k2)

−
1

(k2
− 2k · p)2k2

]
p2
−m2

=0
+ . . . , (2.186)

where [. . . ]p2
−m2

=0 means that we consider the coefficients of chiral quantities only for pµ satisfying the
on-mass-shell condition, which gives rise the name EOMS. Although the coefficients depend on pµ, after
integration of the series and evaluating each term at on-mass-shell condition p2

= m2, these coefficients
turns out to be only the functions of m2. It confirms that the regular part encodes the hard effects of loops
only. Integrating each term in Eq. (2.186), one obtains the regular part [77]

R = −
md−4

Γ(2 − d/2)

(4π)d/2(d − 3)

[
1 −

p2
− m2

2m2 +
(d − 6)(p2

− m2)2

4m4(d − 5)
+

(d − 3)M2

2m2(d − 5)
+ . . .

]
.

It coincides with the result from the expansion of R in Ref. [21]. In this example, only the first term
violates the power counting and is thus the only term which needs to be subtracted from H in order to get
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p

Figure 2.2: Self-energy graph. The solid and dashed represent the nucleons and pions, respectively.

a renormalized expression Hr
EOMS which fulfils the power counting: Hr

EOMS = H − Hsubtr with

Hsubtr =
µd−4

i

∫
ddk

(2π)d

1

k2(k2
− 2k · p)

p2
−m2 = −

md−4
Γ(2 − d/2)

(4π)d/2(d − 3)µ4−d . (2.187)

In general, the regular part R proportional to fractional powers of the heavy mass m and thus responsible
for the breaking of power counting of the loop integral Eq. (2.165) is derived in Ref. [74]. According to
the Landau equations, it is easy to see that subgraphs containing only heavy propagators and low-energy
momentum insertions are regular subgraphs which give rise to fractional powers of m [74]. These
subgraphs can not produce singularities in the low-energy region and thus belong to RG. Any subgraph of
a regular subgraph is also regular. This gives rise to the notion of a minimally contracted regular (MCR)
subgraph, i.e. a regular subgraph g that is not a subgraph of any other regular subgraph with more lines
than g. To one-loop, there are at most two different MCR subgraphs for a given graph and every internal
heavy particle line belongs to exactly one of them, the proof of this can be found in Ref. [74]. Since
different MCR subgraphs have no common lines, they do not have common subgraphs. As a consequence,
the regular part of HG is given by a sum on the MCR as follows [74]:

RG = iI
Γ(I)µ4−d

∑
g

∫ ∞

0

∏
i∈g

dαi

∫ 0

−∞

∏
j<g

(−dα j)δ
(
1 −

I∑
k=1

αk
)

×

∫
ddk

(2π)d

1(∑I
i=1 αi(q

2
i − m2

i ) + iε
)I . (2.188)

The integral can be carried out yielding

RG = −κI

∑
g

∫ ∞

1
dλλ|g|−1(1 − λ)I−|g|−1

∫ 1

0

(∏
i∈g

dzi

)
δ
(
1 −

∑
k∈g

zk

)
×

∫ 1

0

(∏
j<g

dz j

)
δ(1 −

∑
k<g

zk

)[
(1 − λ)2

∑
i, j<g

ziΩi jz j + λ2
∑
i, j∈g

ziΩi jz j

+2λ(1 − λ)
∑

i∈g, j<g

ziΩi jz j − iε
]d/2−I

, (2.189)

where |g| denotes the number of internal lines belonging to the MCR subgraphs g and

κI = (−1)I iI+1

16π2

Γ(I − d/2)

(4πµ2)d/2−2 , Ωi j =
m2

i + m2
j − (qi − q j)

2

2
. (2.190)

As an example let us look at the self-energy graph of a heavy particle shown in Fig. 2.2. It has two
subgraphs shown in Fig. 2.3 obtained by contracting 1 internal lines. They correspond to the sub-leading

43



Chapter 2 Chiral effective theories

Figure 2.3: Self-energy graph. The solid and dashed represent the nucleons and pions, respectively. The left
corresponds to the regular part.

singularities at m = 0 and M = 0, respectively. The first tadpole lying outside the low-energy region is
the MCR subgraph and thus gives rise to the regular part

RG = −κ

∫ ∞

1
dλ

[
(1 − λ)2M2

+ λ2m2
+ 2λ(1 − λ)

(m2
+ M2

− p2)
2

]d/2−2
,

which coincides with the result obtained by Becher and Leutwyler in Ref. [21]. It is straightforward
to prove that RG is analytic in the low-energy region, e.g. see Ref. [74]. Therefore, RG can be Taylor
expanded in the small chiral quantities. One can truncate the chiral expansion of RG to the order of EFT
Lagrangian, yielding the so-called PCB terms Rsubtr

G , and subtract them from the original integral HG to
obtain a EOMS renormalized loop integral

Hr
EOMS = H − Rsubtr

G . (2.191)

To see how the IR and EOMS are related to each other, let us consider an arbitrary loop integral.
After combining the propagators using the Feynman parameterization and some change of variables,
performing the loop momentum integration, the loop integral has the form

H =

∫ 1

0
dz f (z), (2.192)

where f (z) is a function depending on the external momenta, masses and the space-time dimension d.
The IR splits H into infrared singular and regular part by∫ 1

0
dz · · · =

∫ ∞

0
dz · · · −

∫ ∞

1
dz . . . . (2.193)

In the regular part, one can expand the integrand in chiral quantities and interchange summation and
integration. It leads to

RIR = −

∫ ∞

1
dz

∞∑
i=0

f (n)(0)
n!

zn

=

∞∑
i=0

f (0)(0)
(n + 1)!

. (2.194)

On the other hand, in EOMS, the regular part is extracted order by order by expanding the integrand of
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the original loop in chiral quantities and interchange the summation and integration,

REOMS =

∫ 1

0
dz

∞∑
i=0

f (n)(0)
n!

zn

=

∞∑
i=0

f (0)(0)
(n + 1)!

. (2.195)

Although the domain of Eq. (2.194) is Re(n) < −1, which is totally different from in Eq. (2.195), they
are equivalent by analytic continuation.
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CHAPTER 3

Unitarization

As already discussed in the last chapter, the applicability of ChPT is restricted to the regions of low
energies where excited states in the hadronic spectrum have been integrated out. In the case of ππ
scattering this boundary is given by the mass of the lightest vector mesons, i.e. ρ(770), which appears
as a resonance in the L = 1, I = 1 channel, and the f0(500) in the I = L = 0 channel. It cannot be
reproduced by the perturbative calculation at any finite order. One also encounters low lying excitations
such as ∆(1232) in πN scattering or Λ(1405) in the strangeness S = −1 channels. There have been
many attempts to construct various methods which allows for an extension of ChPT to the regions where
resonances appear. In this chapter, we first study the elementary elements of the S -matrix of strong
interactions. Then various unitarization schemes are introduced subsequently.

3.1 Elements of S-matrix theory of strong interactions

In a scattering experiment, particles move toward each other and later on move apart. If the observations
of incoming and outgoing particles are made sufficiently early and sufficiently late, respectively, i.e. the
particles are sufficiently far apart, the interactions among the particles are sufficiently weak. The particles
behave as free particles during the observations, and thus can be described by the asymptotic states |m, in〉
or |n, out〉 for the incoming or outgoing states far away, respectively. The S -matrix can be defined as an
operator mapping incoming states to outgoing states,

〈n, out| = 〈n, in|S , and S †|m, in〉 = |m, out〉. (3.1)

Since the set of incoming states or outgoing states is complete, the S -matrix can be formally written as

S =
∑

m

|m, in〉〈m, out|. (3.2)

The orthonormality and completeness conditions imply that S is unitary

S S † = 1, and S †S = 1. (3.3)

This is a result of the conservation of probability. We are concerned with matrix elements

〈p f1
, p f2

. . . , out|pi1
, pi2

. . . , in〉 = 〈p f1
, p f2

. . . , in|S |pi1
, pi2

. . . , in〉 (3.4)
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Chapter 3 Unitarization

that describe transitions of a configuration of particles moving with momenta pi1
, pi2

, . . . into another
configuration with p f1

, p f2
. . . . The states in Eq. (3.4) may be either of ‘in’ type or ‘out’ type, so

henceforth we do not write these labels for brevity. If the particles do not interact at all in the processes,
S is simply the identity operator. To isolate the interaction part of the S -matrix, one defines the T -matrix
by

S = 1 + iT. (3.5)

The unitarity condition Eq. (3.3) implies

−i(T − T †) = T †T. (3.6)

Inserting a complete set of intermediate states into the right-hand-side (R.H.S.) of Eq. (3.6), we have

2Im〈 f |T |i〉 =
∑

n

∫ [ in∏
i=1

d3 pi

2p0
i (2π)3

]
〈 f |T †|n〉〈n|T |i〉, (3.7)

where in is the number of particles in the intermediate state |n〉. When i = f is a configuration of two
particles with momenta p1 and p2, it gives the optical theorem

ImT (p1 p2 → p1 p2) = 2kcm
√

sσtotal(p1 p2 → anything), (3.8)

where kcm is the momentum of the particles in the center-of-mass (c.m.) frame and
√

s is the total energy
in the c.m. frame.

In this work, we only consider the scattering of two particles, both in the initial and final states,

a(p1) + b(p2)→ c(p3) + d(p4) (3.9)

with pi the four-momentum for the ith particle. Given the three-momenta of the initial particles, there
would be six degrees of freedom for the finial states, ~p3 and ~p4. However, due to the conservation of the
four-momenta, the number of the degrees of freedom reduces to two, e.g. the polar angles (θ, φ) of the
particle c in the c.m. Moreover, in the c.m. frame, taking the z-axis along the initial momentum of the
particle a, then rotation invariance with respect to the z-axis requires that the elements of the T -matrix
are independent on φ, i.e. T (s, θ). Here we have taken the explicit dependence of T on the total energy
into account. Spanning the T (s, θ) in the θ-space in terms of the Legendre polynomials P`(θ), we have

T (s, θ) =

∞∑
`=0

(2` + 1)P`(cos θ)T`(s), (3.10)

where T`(s) is called the partial wave amplitude with angular momentum `. The inverse of Eq. (3.10)
can be obtained by making use of the orthonormality and completeness conditions of the Legendre
polynomials,

T`(s) =
1
2

∫ 1

−1
d cos θP`(cos θ)T (s, θ). (3.11)

Performing the partial wave decomposition on both sides of the unitarity condition Eq. (3.7), below the
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3.1 Elements of S -matrix theory of strong interactions

threshold of intermediate states with more than two particles one has

−i(T`(s)i f − T ∗` (s)i f ) =
∑

n

T`(s)inT ∗` (s) f n
|~pn|

2

4π
√

s
θ(
√

s − mthr,n), (3.12)

where Ti f represents 〈 f |T |i〉, |~pn| is the modulus of the c.m. three-momentum for the intermediate state
|n〉, and mthr,n is the threshold of the n-th channel. Due to time invariance, one has

ImT`(s) =
∑

n

T`(s)inT ∗` (s)n f
|~pn|

2

8π
√

s
θ(
√

s − mthr,n). (3.13)

It can be written in a matrix form as

ImT`(s) = T †
`
(s)ρ(s)T`(s), (3.14)

with ρ(s) a diagonal matrix with

ρ(s)i j =
|~pn|

2

8π
√

s
δi jθ(

√
s − mthr,n). (3.15)

In general, Eq. (3.14) is valid at higher energies, and ρ(s) is the generalized phase space factor. It is
related to the T -matrix via

ρ(s) = (T †
`
)−1.

T` − T †
`

2i
.(T`)

−1

=
1
2i

[
(T †

`
)−1
− (T`)

−1
]

= −ImT−1
` (s). (3.16)

The Eq. (3.16) is the basis for the K-matrix approach, which is defined as

T` =
(
K−1

+ iρ
)−1, (3.17)

hence K−1
= Re(T−1

` ).

The partial wave S -matrix is defined as

S ` = 1 + 2iρ1/2T`ρ
1/2. (3.18)

The unitarity condition Eq. (3.14) implies

S †
`
S ` = 1. (3.19)

Therefore, S ` can be parameterized as

S `(s) = e2iδ`(s). (3.20)

For a multi-channel case, the matrix element (S †
`
S `)i j = δi j means

|(S `)i1|
2

+ |(S `)i2|
2

+ · · · + |(S `)in|
2

= 1. (3.21)
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Chapter 3 Unitarization

Then one has |(S `)ii|
2
≤ 1, and it can be written as

(S `)ii = η`ie
2iδ`i , (3.22)

where η`i is called the inelasticity. For the elastic case, one has η = 1. For a two-channel process, the
matrix S ` can be written as

S ` =

(
η`e

2iδ`1 i(1 − η2)1/2ei(δ`1+δ`2)

i(1 − η2)1/2ei(δ`1+δ`2) ηe2iδ`2

)
. (3.23)

For elastic scattering one has η = 1 and unitarity of S -matrix is evident.
On the other hand, for the total energy below the inelastic threshold, the unitarity condition is

2Im〈p3 p4|T |p1 p2〉 =

∫
d4k1d4k2

(2π)2 δ(+)(k2
1 − m2

1)δ(+)(k2
2 − m2

2)

×δ(4)(p1 + p2 − p3 − p4)〈p3 p4|T |k1k2〉〈p1 p2|T |k1k2〉
∗. (3.24)

Above the threshold for inelastic scattering, a new term must be added to the R.H.S. of the Eq. (3.24)
to include the extra intermediate states allowed by the energy conservation. It requires a corresponding
change in the L.H.S., which implies that the elastic scattering matrix element has a singularity at each
energy threshold for a new allowed intermediate state. This is a very valuable result of the unitarity of
S -matrix.

Considering the scattering given by (3.9) once again, the conservation of four-momentum and the
on-shell condition p2

i = m2
i implies that only three Lorentz scalars can be formed by the momenta pi.

They are the well known Mandelstam variables s, t and u, given by

s = (p1 + p2)2
= (p3 + p4)2,

t = (p1 − p3)2
= (p2 − p4)2,

u = (p1 − p4)2
= (p2 − p3)2. (3.25)

Making use of the CPT theorem, we find that the following three processes share a common scattering
amplitude,

a(p1) + b(p2)→ c(p3) + d(p4), (s − channel),

a(p1) + c̄(−p3)→ b̄(−p2) + d(p4), (t − channel),

a(p1) + d̄(−p4)→ c(p3) + b̄(−p2), (u − channel), (3.26)

where the bar over a particle represents the corresponding anti-particle. Expressed in terms of Mandelstam
variables, we have the relation

Mab→cd(s, t, u) =Mad̄→cb̄(u, t, s) =Mac̄→b̄d(t, s, u), (3.27)

where Ma1a2→a3a4
(s, t, u) is the scattering amplitude for the process a1(p1)a2(p2) → a3(p3)a4(p4).

The analysis of the number of degrees of freedom shows that the three Mandelstam variables are not
independent, it follows that

s + t + u =

4∑
i=1

m2
i .
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3.1 Elements of S -matrix theory of strong interactions

In the c.m. frame, the three-momentum of incoming particles is

|~p1,2|
2

=
1
4s

(
s − (m1 + m2)2

)(
s − (m1 − m2)2

)
. (3.28)

The momentum transferred t is related to the scattering angle by

t = m2
1 + m2

3 −
(s + m2

1 − m2
2)(s + m2

3 − m2
4)

2s
−

cos θ
2s

√
λ(s,m2

1,m
2
2)λ(s,m2

3,m
2
4), (3.29)

where λ(a, b, c) = a2
+ b2

+ c2
− 2ab− 2ac− 2bc is the Källén function. In order to define a single-valued

t (and u) on the complex s plane, one has to introduce branch cuts with branch points (m1 ± m2)2

and (m3 ± m4)2. Usually, we set the brach cut from −∞ to max{(m1 − m2)2, (m3 − m4)2
} and from

min{(m1 + m2)2, (m3 + m4)2
} to +∞ along the real axis. If there exist discrete intermediate states, i.e.

stable single states, they will exhibit themselves as poles on the complex s plane. The continuous spectra,
intermediate multi-particle states, would contribute to the S -matrix elements with branch cuts.

With branch cuts in the s plane, it is necessary to decide which limit on approaching to the branch cut
gives the physical quantities. The perturbation theory shows that the physical amplitudes are given by the
limit on the right-hand cut from the upper-half s plane

T`(s)physical = lim
ε→0+

T`(s + iε). (3.30)

Considering a single-channel process, below the inelastic threshold, we have

S ` = 1 + 2iρ(s)T`(s), (3.31)

where

ρ(s) =

√
1 −

(m1 + m2)2

s
.

In the region (m1 − m2)2 < s < (m1 + m2)2, the T` are real. One then can define a complex function
T`(s) on the whole s-plane with analytic continuation. The unitarity condition requires that T`(s) has an
imaginary part for s > (m1 + m2)2 along the real axis, i.e. a branch cut from (m1 + m2)2 to +∞. It is the
result of the unitarity of S -matrix and the cut is usually called the unitary cut, or right-hand cut. From the
partial wave decomposition

T`(s) =
1

s − (m1 + m2)2

∫ 0

(m1+m2)2
−s

dtP`
(
1 +

2t

s − (m1 + m2)2

)
T (s, t), (3.32)

we see that when t > (m1 + m2)2, that is s < (m1 − m2)2, T (s, t) has imaginary parts. It leads to a branch
cut s < (m1 − m2)2 for the T`(s), called the left-hand cut. As a result, the left-hand cut is regarded as
‘unphysical cut’ compared with the ‘physical cut’, right-hand cut. We make the analytic continuation
from the unitary cut, which is caused by the phase space factor ρ(s), ρ(s∗) = −ρ∗(s). We specify the
physical sheet as the first Riemann sheet, starting from the upper half of the physical sheet to the lower
half by crossing over the real axis where T`(s) has only real parts. Denoting the number of Riemann
sheets with the superscripts, the analytic continuation requires

T I
` (s − iε) = T II

` (s + iε) (3.33)
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across the unitary cut. Then the Schwartz reflection principle implies that the unitarity condition reads

T I
` (s + iε) − T II

` (s + iε) = 2iT I
` (s + iε)ρ(s + iε)T II

` (s + iε), (3.34)

from which one can obtain

T II
` (s) =

T I
` (s)

S I
`(s)

, (3.35)

and

T II
` (s)

T I
` (s)

=
T I
` (s) − T I

` (s) + T II
` (s)

T I
` (s)

= 1 + 2iρ(s)T II
` (s)

= S II
` (s) =

1

S I
`(s)

. (3.36)

The zeros of the S -matrix on the first Riemann sheet correspond to poles on the second sheet, and vice
versa.

The above discussion can be generalized to multi-channel processes. Taking a double-channel system
with channel 1 ab and channel 2 cd for example, one has

S 11 = 1 + 2iρ1T11,

S 22 = 1 + 2iρ2T22,

S 12 = 2i
√
ρ1ρ2T12. (3.37)

Let us assume that opening the channel 2 needs more energy, i.e. mc+md > ma+mb. When s > (ma+mb)2,
the intermediate states |a, b〉 could be on-shell, and thus leads to imaginary part for T -matrix elements.
s > (ma + mb)2 corresponds to a right-hand cut.For the same reason, there is an extra right-hand cut for
s > (mc + md)2.Each time one crosses over the right-hand cut one ‘walks’ from a Riemann sheet to the
next one. As a consequence, one gets four Riemann sheets, which can be labelled by the sign of the ρi(s)
along the right hand cuts, e.g.

ρ1 > 0, ρ2 > 0, T I(s),

ρ1 < 0, ρ2 > 0, T II(s),

ρ1 < 0, ρ2 < 0, T III(s),

ρ1 > 0, ρ2 < 0, T IV (s). (3.38)

So far we have extended the amplitude T (s, t, u), initially defined on three disjoint physical regions,
to the whole complex plane by making using of analytic continuation. To accomplish it, one needs the
knowledge of the singularities of T (s, t, u) as a function of two of complex variables, e.g. s and t. The
singularities are always caused by on-shell intermediate states. The singularity will be a branch cut if the
intermediate state is a multi-particle state or a simply pole is the intermediate state is a single-particle
state. That unstable particles (resonances) should be represented by complex poles was first suggested by
Møller in 1946 [78]. It is worth mentioning that due to the Schwartz reflection principle, T ∗` (s) = T`(s∗),
poles in the complex plane occur in complex conjugate positions.

Experimental data frequently show peaks, bumps or dips when the cross sections are displayed as
functions of invariant energy. The most familiar way to interpreting these situations is to suppose that
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3.2 Lippmann-Schwinger equation

each peak is due to a resonance and that the phase shift δ` increases rapidly through around π/2 at the
resonance energy.

In the physical Riemann sheet, there can exist only poles on the real axis below the lowest threshold,
the bound state. Note that a pole on the real axis above the first threshold violates the unitarity condition,
Eq. (3.14), since it would imply∞ = ∞

2 which makes no sense. However, on the unphysical sheets, there
can be poles on the whole complex plane. If a pole is located above the threshold, it would be unstable
and with an imaginary part describing its width due to the allowed decay phase space. A simple picture
[79] of why poles off the real axis only can be located on the unphysical sheets can be demonstrated from
the propagator of a resonance in Breit-Wigner representation,

1

s − M2
R + iMRΓR(s)

, (3.39)

with ΓR(s) the width of the resonance for s = M2
R, and note that ΓR(s) ∝ p2`+1 with ` the spin of the

resonance. If s→ M2
R ± iε, the term iMRΓR develops an imaginary part in the physical sheet which goes

as ±iMRΓR(M2
R) so that it cannot be cancelled by the imaginary part of s since they both have the same

sign. Only if it is on the unphysical sheet, the sign is opposite and the cancellation is possible. The
existence of pole off the real axis spoils causality.

Considering a pair of poles P and P′, e.g. sP = s0 ± iγ with γ > 0, on the second sheet. Since below
the inelastic threshold we have T II

` (s − iε) = T I
` (s + iε), the pole s0 − iγ is closer to the physical region.

At the region near sP, the T`(s) has the form of

T`(s) ≈
TP

s − s0 + iγ
, (3.40)

which has the same form as the Breit-Wigner formula. From Eq. (3.40) it is clear that δ`,

δ` = arctan
ImT`
ReT`

(3.41)

changes π/2 as s passes through sP.

3.2 Lippmann-Schwinger equation

Chiral perturbation theory has been proven to be very successful in describing the static properties and
the low-energy behavior of the light pseudoscalar meson octet. The standard ChPT is organized in a
double expansion in terms of small momenta and light quark masses, it is expected to work only well at
the low energies. It is clear that the standard chiral series, keeping a finite order, can not give an analytical
structure for the possible resonances, which is absolutely a nonperturbative effect. One way to overcome
this problem is to iterate the lowest order potential in the Lippman-Schwinger equation. For simplicity,
we consider the scattering of two spinless particle masses m1, m2 and initial (final) momenta p, q (p′, q′).
The lowest interacting potential is denoted by V(p, p′, P), with P the total momentum P = p + q = p′+ q′.
Then the Lippmann-Schwinger equation for the full scattering amplitude T (p, p′, P) reads

T (p, p′, P) = V(p, p′, P) +

∫
d4l

(2π)4 V(p, l, P)G(l, P)T (l, p′, P), (3.42)
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= + + + · · ·

Figure 3.1: Diagrammatic illustration for the Lippmann-Schwinger equation.

where
G(l, P) = i

1

l2 − m2
1 + iε

1

(P − l)2
− m2

2 + iε

is the two-particle propagator. For coupled-channel cases, it should be understood in the matrix form, for
which G(l, P) = diag{Gi(l, P)} with i the channel index. It is always written in a shorthand notation

T = V + VGT

for brevity. Clearly, Eq. (3.42) is an iterative integral equation and can be expanded in powers of V ,

T = V + VGV + VGVGV + . . . , (3.43)

which is diagrammatically shown in Fig. 3.1. The solution for T is nothing else than the infinite
summation of a bubble chain in the s-channel. It is clear that this method does not generate all the
diagrams. Loops in the t- or u-channel are not taken into account. However, the scheme has proven
very successful, which indicates that the relevant infinite series needed to reproduce the structure of the
T -matrix is taken into account in Eq. (3.43). This can be explained by that the singularities associated to
t-(or u)channel are sufficiently far away from the physical region.

In principle, one has to solve the integrals in Eq. (3.43) by taking V off shell. However, at least when
dealing with an S -wave, we only need the on-shell information for approximation. The interaction kernel
V(p, p′, P) has the form of

V(p, p′, P) = Von(s) + (p2
− m2

1)V (1)
off

(s) + (q2
− m2

2)V (2)
off

(s)

+(p′2 − m2
1)V (3)

off
(s) + (q′2 − m2

2)V (4)
off

(s). (3.44)

Here the interaction kernel is restricted to purely linear off-shell terms. The same decomposition applies
to T . Making use of Eq. (3.42), one has

Ton = Von + i
∫

d4l

(2π)4

VonTon(
l2 − m2

1 + iε
)(

(P − l)2
− m2

2 + iε
)

+i
∫

d4l

(2π)4

TonV (3)
off

+ T (1)
off

Von + (l2 − m2
1)T (1)

off
V (3)

off

(P − l)2
− m2

2 + iε

+i
∫

d4l

(2π)4

TonV (4)
off

+ T (2)
off

Von +
(
(P − l)2

− m2
2
)
T (2)

off
V (4)

off

l2 − m2
1 + iε

+i
∫

d4l

(2π)4

(
T (1)

off
V (4)

off
+ T (2)

off
V (3)

off

)
. (3.45)
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3.2 Lippmann-Schwinger equation

In dimensional regularization, it can be evaluated as

Ton = Von + VonG(s)Ton

+ (s − m2
1 + m2

2)T (1)
off

V (3)
off

∆(m2
2) + (s + m2

1 − m2
2)T (2)

off
V (4)

off
∆(m2

1), (3.46)

where ∆(m2) =
∫

d4l
(2π)4

i
l2−m2

+iε
. The chiral logarithms (∆(m2)) reflects that the expansion in powers of

small quark masses is not an ordinary Taylor series, which cannot be absorbed into the redefinition of the
low energy constants of the most general Lagrangian at tree level in principle. But if we are not interested
in the Goldstone mass dependence of the amplitudes, the logarithms can be absorbed into the redefinition
of coupling constants. And when it comes to the phenomenology of scattering in a nonperturbative
region one is not interested in the behavior of the amplitudes when approaching the chiral limit, so the
contribution from the chiral logarithms are usually numerically small. One may argue that the off-shell
effects are compensated numerically by adjusting the low-energy constants. Dropping the off-shell terms,
the second line terms in Eq. (3.46), we are left with the algebraic form of the Lippmann-Schwinger
equation, the so-called one-shell approximation,

Ton(s) = Von(s) + Von(s)G(s)Ton(s), (3.47)

or

Ton(s) =
1

1 − Von(s)G(s)
Von(s), (3.48)

with G(s) the scalar loop integral

G(s) =

∫
d4l

(2π)4

i(
l2 − m2

1 + iε
)(

(P − l)2
− m2

2 + iε
) , s = P2. (3.49)

So far we have not considered the renormalization of Eq. (3.48). The loop integrals in Eq. (3.46)
are divergent. In principle, the divergence will be absorbed by the suitable counter terms. However,
summing bubble loops in s-channel violates the crossing symmetry and so that the renormalization of
the Lippmann-Schwinger equation cannot be accomplished by local effective Lagrangians which can
only produce counter terms that fulfil crossing symmetry [80]. However, the divergences of loops can
be removed by redefining the interaction kernel V properly. Let λG denote the infinite part of G, i.e.
G = Gr

+ λG, decomposing the V as

Von = Vr
on + λV , (3.50)

with

λV = VonλGVon(1 + λGVon)−1, (3.51)

it is easy to obtain

T r
on(s) = Vr

on(s) + Vr
onGr(s)T r

on. (3.52)

Instead of being absorbed by local counter terms, the divergences of loops is cancelled by an appropriate
redefinition of interaction kernel V .
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3.3 The Inverse Amplitude Method

Another attempt to extend the chiral potentials to the nonperturbative regime is the Inverse Amplitude
Method (IAM) [81–83]. The approach is successful in reproducing low-energy behavior and poles in
the amplitudes associated to the ρ and K∗ in the vector channels and the σ in the scalar channel. Chiral
partial wave amplitudes are obtained as an expansion t(s) = t2(s) + t4(s) + t6(s) + . . . , where tn ∼ O(p2n).
It satisfies elastic unitarity perturbatively:

Im t2(s) = 0, Im t4(s) = ρ(s)t2(s)2, Im t6(s) = 2ρ(s)t2(s)Re t4(s), . . . (3.53)

To one-loop order, one has

t2(s) = a0 + a1s,

t4(s) = b0 + b1s + b2s2

+
s3

π

∫
RC

ds′
Im t4(s′)

s′3(s′ − s − iε)
+ LC, (3.54)

where RC and LC represent the right-hand cut and left-hand cut, respectively. Since t2(s) is real,
g(s) = t2(s)2/t(s) has the same cuts. A dispersion relation for g(s) reads

g(s) = g(0) + g′(0)s +
1
2
g′′(0)s2

+
s3

π

∫
RC

ds′
Im g(s′)

s′3(s′ − s − iε)
+ LC(G) + PC(s), (3.55)

where PC is the pole contribution due to the possible zeros of t(s). In the elastic approximation, since

Im
1

t(s)
= Im

t(s)∗

|t(s)|2
= −

Im t(s)

|t(s)|2
= −ρ(s), (3.56)

one has

Im g(s) = −ρ(s)t2(s)2
= −Im t4(s) (3.57)

on the right-hand cut. In addition, in the low energy region,

g(s) =
t2
2

t2 + t4 + . . .
' t2 − t4 + . . . , (3.58)

one can approximate

Im g(s) ' −Im t4(s) (3.59)

on the left cut. Making use of Eq. (3.58), one finds that g(s) can be recast as:

g(s) ' t2(0) + t′2(0)s − t4(0) − t′4(0)s − t′′4 (0)
s2

2
−

s3

π

∫
RC

ds′
Im t4(s′)

s′3(s′ − s)
− LC(t4)

= t2(s) − t4(s), (3.60)
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here we have neglected the pole contribution which is of higher order and only numerically relevant
below threshold. Therefore, we arrive at the elastic formula for the IAM

t(s) '
t2
2(s)

t2(s) − t4(s)
. (3.61)

It can be extended to higher orders of ChPT [84], e.g. to NNLO,

t(s) '
t2
2(s)

t2(s) − t4(s) + t2
4(s)/t2(s) − t6(s)

. (3.62)

The generalization of the IAM to coupled channels was given in Ref. [85]. We denote the coupled-
channel amplitude by a matrix T . Expanding T−1 in powers of p2, one has

T ' T2 + T2 + . . . ,

T−1
' T−1

2 · (1 + T4 · T
−1
2 )−1

' T−1
2 · (1 − T4 · T

−1
2 ). (3.63)

The inversion of T2 may not be invertible. In order to avoid T−1, we start from Eq. (3.17) by formally
multiplying by T2 · T

−1
2 on the right and T−1

2 · T2 on the left,

T = T2 · (T2 · Re T−1
· T2 + iT2 · ρ · T2)−1

· T2. (3.64)

Using Eq. (3.63), we find

T2 · Re T−1
· T2 ' T2 − Re T4, (3.65)

and recalling that Im T4 = −T2 · ρ · T2 we finally obtain the IAM formula for coupled-channels

T = T2 · (T2 − T4)−1
· T2. (3.66)

3.4 The N/D method

After some intuitive discussions, a more thorough investigation of loop effects to generate imaginary
parts will be given in this section. Making use of the N/D method [86], we will derive the most general
structure of an arbitrary partial-wave amplitude when unphysical cuts are neglected. It is expected that
the unphysical cuts can be considered small for the amplitudes where resonances in the s- channel appear,
e.g. the case of the ρ and K∗ resonances in the P-wave ππ and Kπ scattering, respectively.

For simplicity, we first consider the elastic case. In general, a partial-wave amplitude T I
` (s), with I the

isospin, has two kinds of cuts, the right-hand cut and an unphysical cut. The right-hand cuts are required
by the unitarity and the unphysical cuts are caused by the crossing symmetry. We already have derived
(see Eq. (3.56)),

Im T−1
= −ρ(s) (3.67)

for s > sthr = (m1 + m2)2 and

ρ(s) =
p

8π
√

s
, with p =

λ1/2(s,m2
1,m

2
2)

2
√

s
(3.68)
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the c.m. three momentum, and the isospin and angular momentum indices are suppressed. For the
process of type a + a → a + a, there is only a left-hand cut for s < 0. However, for the process of
type a + b → a + b, apart from the left-hand cut s < (ma − mb)2 there also exists a circular cut for
|s| = |m2

a −m2
b|. In this work, we only consider the left-hand cuts. If we work in the complex p2-plane, all

cuts will be linear cuts and only the left- and right-hand cuts appear. In the N/D method, a partial wave
amplitude T`(s) is expressed as a quotient of two functions,

T`(s) =
N`(s)
D`(s)

, (3.69)

where the denominator D`(s) collects the right-hand cuts and the numerator N`(s) encodes the unphysical
cuts. The partial wave amplitude T`(s) near the threshold behaves as p2`

≡ ν`. Define a new quantity

T ′`(s) =
T`(s)

ν`
, (3.70)

and it can be written in the form of

T ′`(s) =
N′`(s)
D′`(s)

. (3.71)

It is easy to find that

Im D′` = Im T ′−1
` N′` = −ρ(s)N′`ν

′, s > sthr,

Im D′` = 0, s < sthr,

Im N′` = Im T ′`D
′
`, s < sleft,

Im N′` = 0, s > sleft. (3.72)

Employing a dispersion relation, one has

D′`(s) =

n−1∑
m=0

āmsm
−

(s − s0)n

π

∫ ∞

sthr

ds′
ν(s′)`ρ(s′)N′`(s′)
(s′ − s)(s′ − s0)n ,

N′`(s) =

n−`−1∑
m=0

ā′msm
+

(s − s0)n−`

π

∫ sleft

−∞

ds′
Im T`(s′)D′`(s′)

ν(s′)`(s′ − s0)n−`(s′ − s)
, (3.73)

where n is the number of subtractions needed so that

lim
s→∞

N′`
sn−` = 0. (3.74)

Eqs. (3.73) constitutes a system of integral equations, in which the input is given by Im T`(s) along
the left hand cut. However, they are not the most general solutions of Eqs. (3.72) since we have not
considered the possible zeros of T`, which can be included through poles in D′` (CDD poles). Following
Ref. [87], we write along the real axis

Im D′`(s) =
dλ(s)

ds
. (3.75)
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3.4 The N/D method

Then one has the solution

λ(s) =
∑

i

λ(si)θ(s − si) −
∫ s

sthr

ν(s′)`ρ(s′)N′`(s′)ds′, (3.76)

with θ(s) the usual Heaviside function and si the points along the real axis where T ′`(si) = 0.

It follows that

D′`(s) =

n−1∑
m=0

āmsm
−

(s − s0)n

π

∫ ∞

sthr

ds′
ν(s′)`ρ(s′)N′`(s′)
(s′ − s)(s′ − s0)n

+
(s − s0)n

π

∫ ∞

sthr

ds′
∑

i λ(si)δ(s′ − si)
s′ − s)(s′ − s0)n

=

n−1∑
m=0

āmsm
−

(s − s0)n

π

∫ ∞

sthr

ds′
ν(s′)`ρ(s′)N′`(s′)
(s′ − s)(s′ − s0)n

+
∑

i

λ(si)
π(si − s0)n

(s − s0)n

si − s

= −
(s − s0)n

π

∫ ∞

sthr

ds′
ν(s′)`ρ(s′)N′`(s′)
(s′ − s)(s′ − s0)n

+

n−1∑
m=0

ãmsm
+

∑
i

γ̃i

s − si
. (3.77)

Eq. (3.77) can also be obtained by making use of Cauchy theorem for complex integration and allowing
for the presence of poles D′` inside and along the integration contour. At the moment, we neglect the
left-hand cut. Then one has:

N′`(s) =

n−`−1∑
m=0

ã′msm
= C

n−`−1∏
i=1

(s − si). (3.78)

Dividing N′` and D′` by Eq. (3.78), one arrives at that

T ′`(s) =
1

D′`(s)
,

N′`(s) = 1,

D′`(s) = −
(s − s0)`+1

π

∫ ∞

sthr

ds′
ν(s′)`ρ(s′)

(s′ − s)(s′ − s0)`+1 +
∑̀
m=0

amsm
+

∑
i

Ri

s − si
. (3.79)

The CDD poles are associated to the possibility of elementary particles not originating from a given
potential or forces between the scattering states [88]. An advantage of the N/D method is that we have a
dispersive representation where the right cut of the inverse amplitude is treated exactly within the elastic
approximation. It is free of the s = 0 singularities of the K-matrix, since the right cut structure is that of
the dispersive relation, whose imaginary part coincides with ρ(s) on the real axis above threshold. If the
left hand cut is taken into account, it can be introduced perturbatively through N`(s).
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In QCD, we split the subtraction constants am of Eq. (3.79) into two pieces [89]

am = aL
m + aS L

m (s0), (3.80)

where the term aL
m will go as Nc and aS L

m is O(1) in the QCD 1/Nc expansion, due to that the meson-meson
scattering amplitudes go as N−1

c . In addition, the integral in Eq. (3.79) is O(1), same order of aS L
m . It

follows that in Nc → ∞ limit,

D′∞` (s) =
∑̀
m=0

aL
msm

+
∑

i

R∞i
s − si

, (3.81)

where R∞i is the leading part of Ri. It is clear that Eq. (3.81) represents tree level structures, contact and
pole terms, which have nothing to do with potential scattering which is large Nc suppressed.

Introducing the notation

T∞` (s) = ν`
( ∑̀

m=0

a`msm
+

∑
i

R∞i
s − si

)
, (3.82)

and defining g`(s) by

g`(s)ν` =
∑̀
m=0

aS L
m (s0)sm

−
(s − s0)`+1

π

∫ ∞

sthr

ds′
ν(s′)`ρ(s′)

(s′ − s)(s′ − s0)`+1 . (3.83)

We arrive at

T`(s) =
(
1/T∞` (s) + g`(s)

)−1. (3.84)

The T∞` corresponds to the tree-level structures before unitarization. The unitarization is accomplished
through the function g`(s). The formalism can be easily generalized to scattering processes with coupled-
channel cases by employing the usual matrix notation [89].

In Ref. [90], a general scheme which can be applied to any order in the chiral calculations was
represented. It is started from the the fact that unitarity implies that the inverse of a partial wave
amplitude satisfies

Im T−1(s)i j = −ρ(s)iδi j (3.85)

with the subscripts i and j referring to the physical channels. Hence one can write a once-subtracted
dispersion relation for the Im T−1

` (s), which is

T−1(s)i j = T
−1(s)i j +

(
− ãi(s0)δi j +

s − s0

π

∫ ∞

sthr

ds′
Im T−1(s′)i j

(s′ − s)(s′ − s0)

)
= T

−1(s)i j − δi j

(
ãi(s0) +

s − s0

π

∫ ∞

sthr

ds′
ρ(s′)i

(s′ − s)(s′ − s0)

)
= T

−1(s)i j + g(s)iδi j. (3.86)

Here T −1(s)i j represents the contributions from local and pole terms as well as crossed channel dynamics
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but without the right-hand cut and g(s)i is the familiar scalar loop integral:

g(s)i =

∫
d4l

(2π)4

i

(l2 − M2
i + iε)((P − l)2

− m2
i + iε)

=
1

16π2

{
ai(µ) + ln

m2
i

µ2 +
M2

i − m2
i + s

2s
ln

M2
i

m2
i

+
qi
√

s
ln

m2
i + M2

i − s − 2
√

sqi

m2
i + M2

i − s + 2
√

sqi

}
,

(3.87)

where Mi and mi are the masses of the two particles in the state i and qi is the modulus of the c.m.
three-momentum. From Eq. (3.86) one gets the T -matrix in matrix form as:

T (s) =
(
T
−1

+ g(s)
)−1

=
(
1 + T · g(s)

)−1
· T . (3.88)

61





CHAPTER 4

Effective generating functional to
next-to-next-to leading order

In Chapter 2 we have constructed the leading terms of the chiral Lagrangians for Goldstone bosons and
spinless matter fields, which are obtained by organizing the underlying Lagrangian in a chiral series at
the classical level. As we know, the classical field theory associated with a given Lagrangian is equivalent
to the set of tree-level diagrams of the corresponding quantum field theory. Disregarding the loop graphs
would violate unitarity. General power counting [14] and Sec. 2.1.1 show that graphs containing n loops
(each of loop containing Goldstone propagators) are suppressed by p2n in comparison to tree graphs. The
loop graphs therefore do not modify the low energy behavior at classical level. However, to a specific
order, one may need to consider the loop graphs generated by the Lagrangian of lower orders, e.g. at
order p4 one needs to take into account both tree-level graphs generated by Lagrangian of order p4 and
the one-loop graphs generated by the leading order Lagrangian, i.e. of order p2. In terms of the Feynman
path integral the above prescription can be written in the form

eiZ
= ei

∫
dxL4

∫
[dU]ei

∫
dxL2 , (4.1)

where the integral over the field U(x) is calculated in one-loop approximation. The explicit forms of the
Lagrangians L2 and L4 are given in Eqs. (2.87), (2.97) or (2.105).

In this chapter, we will employ the background field method to study the effective generating functional
of ChPT for spinless matter fields living in the S U(N) fundamental representation up to leading one-
loop order, i.e. O(p3). In general, loop graphs are associated with UV divergences, which need to be
renormalized. The divergences can be calculated using dimensional regularization which preserves the
relevant symmetries. For purely Goldstone bosonic ChPT, one finds that counterterms which absorb the
divergences and renormalize the theory are of order O(p4). However, in relativistic ChPT for matter
fields (e.g. baryonic ChPT), the one-loop diagrams need to be renormalized by LECs from different
orders. It is associated with the power counting breaking issue of the ChPT for matter fields due to the
presence of the new energy scale provided by the matter field mass in chiral limit. Apart from the UV
divergences, the finite parts of loop graphs contribute to various chiral orders. The terms violating the
power counting, that is power counting breaking terms, are proven to be polynomials of chiral quantities
and therefore can be absorbed by the redefinition of the LECs. With the renormalized one-loop effective
generating functional, we will provide a systematic subtraction of the power counting breaking terms at
the Lagrangian level in Sec. 4.3.
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Chapter 4 Effective generating functional to next-to-next-to leading order

4.1 One-loop effective generating functional of ChPT for spinless
matter fields

We will consider the case of the interaction between Goldstone bosons with a single matter field. The
generating functional for the correlation functions of quark currents between single matter fields is
defined via

eiZ[ j,J,J†]
=

∫
[dφ][dP][dP†] exp i

{
S φ + S φP +

∫
d4x

(
PJ† + JP†

)}
, (4.2)

where S φ =
∫

d4xLφ and S φP =
∫

d4xLφP denote the Goldstone boson and the φP chiral actions,
respectively, J and J† are the sources coupled to the spinless matter fields, and j denotes various external
fields (vector vµ, axial aµ, scalar s and pseudoscalar p). As usual, the quark mass terms will be included
in the external scalar source s. The effective chiral Lagrangians can be expanded as

Lφ =

∞∑
n=1

L
(2n)
φ , LφP =

∞∑
n=1

L
(n)
φP , (4.3)

where the superscripts denote the chiral dimension.

With the power counting scheme given in Sec. 2.1.1, up to order O(p3) the effective generating
functional of ChPT for spinless matter fields contains three different classes of contributions 1: (a) the
purely Goldstone bosonic Lagrangian to O(p4), i.e. Eqs. (2.87), (2.97) or (2.105)2; (b) the Lagrangian
for spinless matter fields to O(p3), i.e. Eqs. (2.147); (c) the one-loop effective generating functional
associated with the lowest order Lagrangian Eq. (2.87) and the first line in Eq. (2.147). The sum of these
contributions

Z = Zφφ + ZφP + Zone-loop (4.4)

generates the general solution of the Ward identities at O(p3) in the low-energy expansion. Since we
encode the quantum correction, i.e. one-loop contribution, into the effective generating functional
Zone-loop, up to one-loop level all quantities are evaluated effectively at the ‘classical’ level.

For a given LagrangianL(ϕ), the evaluation of the Feynman path integral in the one-loop approximation
can be done in a standard way [91, 92]. One expands the action

Z =

∫
d4xL(ϕ) (4.5)

in the vicinity of the classical solution ϕ̄, which is determined by the external fields through the classical

1 One reason to include the purely Goldstone boson part to O(p4) is due to the power counting rule that the Goldstone boson
propagator i/(q2

− m2
φ) is counted as O(p−2), while the matter field propagator i/(q2

− m2) is counted as O(p−1). As a result,
the O(p4) Goldstone boson Lagrangian could enter the calculation of the amplitudes for single matter fields of O(p3). One
example is given by the contribution of the wave function renormalization of the Goldstone bosons to the φ-P scattering
amplitudes at O(p3) [65].

2 Here we are not considering the WZW action.
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equations of motion. The effective one-loop generating functional is evaluated via

eiZeff =

∫
[dϕ]e

i
(
Z+ ∂Z

∂ϕϕ+ 1
2
∂2Z
∂ϕ2 ϕ

2
)
,

= NeiZ det
(∂2Z

∂ϕ2

)− 1
2 , (4.6)

with N an irrelevant number. It can be written in a more explicit form

Zeff = Z +
i
2

ln det
∂2Z

∂ϕ2 , (4.7)

where a “bar” means that all quantities are to be evaluated at the classical solution ϕ̄. The second term
corresponds to the one-loop effective generating functional.

In this section, we evaluate the generating functional for ChPT for spinless matter fields to the leading
one-loop order using the background field method. To leading order one-loop generating functional, the
relevant Lagrangian is

LLO = L2 +L
(1)
φP. (4.8)

The basic idea of the background field method is to split the fields into classical background fields
and quantum fluctuations. After integrating out the fluctuations, the resulting effective action actually
describes the one-loop contribution of the original action. If only the divergent parts of the loops are
considered, one could employ the heat kernel techniques to extract the UV divergence of the effective
action, which contains all the possible one-loop divergences and needs to be renormalized by various
counter terms provided by the LECs of the higher order Lagrangians. To this end, we perturb the fields
u(x) and P(x) around the solutions of the classical equations of motion ū(x) and P̄(x),

u2
= ū e−iη ū,

P = P̄ + h, (4.9)

where η is a traceless Hermitian matrix, η = ηaλa (a = 1, . . . ,N2
− 1). Then we substitute the decom-

positions in Eq. (4.9) into the generating functional given by Eq. (4.2). Since we work up to the leading
one-loop order, we retain only the quadratic terms in η and h from L(2)

φ and L(1)
φP while the terms linear in

the fluctuations give the equations of motion. The equations of motion of the classical fields are

∇µuµ =
i
2
(
χ− −

1
N
〈χ−〉

)
,

DµDµP† + m2P† = 0. (4.10)

For convenience, we collect the fluctuations in the following vectors

ξA =

ηa,

√
2

F0
hi

 , ξ†B =

ηb,

√
2

F0
h†j

T

, (4.11)

where i, j = 1, . . . ,N while A and B run from 1 to (N2
−1)+N for N2

−1 Goldstone boson fluctuations and
N matter field fluctuations. To second order in the fluctuations, the chiral connection Γµ, the axial-vector
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vielbein uµ and χ+ read

Γµ = Γ̄µ +
1
4

[
ūµ, η

]
+

1
8

[
η,∇µη

]
+ O(η3),

∇µη = ∂µη +
[
Γ̄µ, η

]
,

uµ = ūµ − ∇µη +
1
8
[
η, [ūµ, η]

]
+ O(η3),

χ+ = χ̄+ −
i
2
{χ̄−, η} −

1
8
{
η, {χ̄+, η}

}
+ O(η3) . (4.12)

From now on, we will neglect the bars over the classical field configurations for brevity. Using the
expressions in Eq. (4.12), the terms in the action quadratic in ξ take the form of

S quad
= −

F2
0

2

∫
dx ξA

(
DµD

µ
+ σ

)AB
ξ†B . (4.13)

Here, the covariant derivative DAB
µ is given in matrix form by

DAB
µ =

 dab
µ

1
4
√

2F0

(
P[uµ, λ

a]
)

j
1

4
√

2F0

(
[uµ, λ

b]P†
)
i Di j

µ

 , (4.14)

where

dab
µ = δab∂µ −

1
2
〈[λa, λb]Γµ〉 −

1

8F2
0

(
DµP[λa, λb]P† − P[λa, λb]DµP†

)
,

Di j
µ = δi j∂µ + (Γµ)i j , (4.15)

and the non-derivative term σAB stands for

σAB
=

σab
11 σ

a j
12

σib
21 σ

i j
22

 , (4.16)

with

σab
11 = −

1
8
〈uµ

[
λa, [uµ, λb]

]
〉 +

1
16
〈
{
λa, {χ+, λ

b
}
}
〉 +

3

32F2
0

P[uµ, λ
a][uµ, λb]P†

−
1

64F4
0

(
DµP[λa, λc]P† − P[λa, λc]DµP†

) (
DµP[λc, λb]P† − P[λc, λb]DµP†

)
,

σ
a j
12 = −

1

4
√

2F0

(
P[∇µuµ, λa]

)
j −

3

4
√

2F0

(
DµP[uµ, λa]

)
j ,

+
1

32
√

2F3
0

(
DµP[λa, λc]P† − P[λa, λc]DµP†

) (
P[uµ, λ

c]
)

j,

σib
21 =

1

4
√

2F0

(
[∇µuµ, λb]P†

)
i
+

3

4
√

2F0

(
[uµ, λb]DµP†

)
i
,

+
1

32
√

2F3
0

(
[uµ, λ

c]P†
)
i

(
DµP[λc, λb]P† − P[λc, λb]DµP†

)
,
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and

σ
i j
22 = m2δi j

−
1

32F2
0

(
[uµ, λ

c]P†
)
i

(
P[uµ, λc]

)
j . (4.17)

In each of the σ11,12,21, the last term contains more than two matter fields, and thus does not contribute to
the correlation function of operators sandwiched between single matter fields. The one-loop term in the
generating functional is a Gaussian integral over the fluctuations ξ, which can be evaluated with standard
methods [35, 91]:

eiZone-loop =

∫
[dξ] exp

−i
F2

0

2
ξA

(
DµD

µ
+ σ

)AB
ξ†B


=N

(
det

[
DµD

µ
+ σ

])−1/2

=N exp
{
−

1
2

tr log
(
DµD

µ
+ σ

)}
, (4.18)

where N is an irrelevant normalization, “tr” stands for the trace over the space-time as well as the flavor
space spanned by the basis of the ξA. The UV divergences in the generating functional Zone-loop can be
extracted by using the heat kernel expansion, and they only show up in the first few expansion coefficients.

Together with the tree level generating functional, up to leading one-loop order, the effecitve generating
functional is

Zeff = Zφφeff
+ ZφP

eff
+ Zone-loop, (4.19)

with

Zφφeff
=

∫
d4x

(
L2 +L4

)
,

ZφP
eff

=

∫
d4x

(
L

(1)
φP +L

(2)
φP +L

(3)
φP

)
,

Zone-loop =
i
2

tr log
(
DµD

µ
+ σ

)
, (4.20)

Notice that all quantities are to be evaluated at the classical solution. What remains to be done is to
evaluate the determinant of log

(
DµD

µ
+ σ

)
. This determinant is a formal object which contains UV

divergences and requires to be renormalized. In the following section we determine the UV divergences
which can be given in a closed form. The finite part of the determinant cannot be given in a closed form.
However it may be expanded in powers of the external fields. We will work it out and extract the power
counting breaking terms based on this expansion later on.

4.2 Renormalization

The UV divergences of the generating functional Zone-loo can be extracted by making use of the heat
kernel expansion since they only show up in the first few expansion coefficients. The short-distance
properties of the operatorDAB

= (DµDµ
+ σ)AB are governed by the d’Alembertian �. In d-dimensional
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Minkowski space the exponential kernel associated with � is given by

〈x|e−λ�|y〉 = i(4πλ)−d/2ez2/4λ, (4.21)

where λ is taken on the positive imaginary axis and z = x − y. To extract the leading short-distance
behavior we write the kernel e−λD in the form [93]

〈x|e−λD|y〉 = i(4πλ)d/2ez2/4λH(x|λ|y), (4.22)

where the kernel H(x|λ|y) satisfies the differential equation

∂

∂λ
H +

1
λ

zµDµH − DµDµ
+ σH = 0 (4.23)

and the boundary condition

H(x|0|x) = 1. (4.24)

The d-dimensional determinant ofD can then by defined as [15]

ln det D = −

∫ i∞

0

dλ
λ

tr e−λD

= −i(4π)−d/2
∫ i∞

0
dλλ−1−d/2

∫
dxTr H(x|λ|x), (4.25)

where “Tr” is defined via tr =
∫

dxTr. The UV divergences produced by the loops show up at the lower
end of the integration over λ: det D has poles at d = 0, 2, 4, . . . . Using the Taylor expansion

H(x|λ|y) = H0(x|y) + λH1(x|y) + λ2H2(x|y) + . . . (4.26)

we find

i
2

ln det D = −

∫
dx

[1
d

Tr H0(x|x) +
1

4π(d − 2)
Tr H1(x|x)

+
1

(4π)2(d − 4)
Tr H2(x|x) + . . .

]
. (4.27)

The differential equation (4.23) implies the recursion relations:

(zµDµ
+ n + 1)Hn+1(x|y) + DµDµHn(x|y) + σHn(x|y) = 0,

zµDµH0(x|y) = 0, (4.28)

which can be used to determine Hn(x|x). Putting n = 1, x = y we get

H2(x|x) =
1
2

DµDµH1(x|x) −
1
2
σ(x)H1(x|x). (4.29)
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The value of DµDµH1(x|x) can be obtained by first applying DµDµ to the recursion relation with n = 0

DµDµ(1 + zνD
ν)H1(x|y) + DµDµ(−DνD

ν
+ σ(x))H0(x|y)

= (DµDµ
+ Dµg

µνDν + DµzνD
µDν)H1(x|y) − (DµDµ)2H0(x|y) + DµDµσH0(x|y)

= (3DµDµ
+ zνDµDµDν)H1(x|y) − (DµDµ)2H0(x|y) + DµDµσH0(x|y) (4.30)

and then taking x = y we have:

3DµDµH1(x|x) = (DµDµ)2H0(x|x) − [Dµ, [D
µ, σ]]H0(x|x)

−2[Dµ, σ]DµH0(x|x) − σDµDµH0(x|x). (4.31)

Likewise, the derivatives of H0 can be obtained by repeatedly applying the differential opterator Dµ to
the differential equation and using the definition

DµDν − DνDµ = Γµν. (4.32)

In this manner one easily finds

H0(x|x) = 1,

DµH0(x|x) = 0,

DµDνH0(x|x) =
1
2

Γµν,

(DµDµ)2H0(x|x) =
1
2

ΓµνΓ
µν,

H1(x|x) = −σ(x)H0(x|x). (4.33)

Putting them together we obtain

H2(x|x) =
1
12

ΓµνΓ
µν

+
1
2
σ2
−

1
6

[Dµ, [D
µ, σ]]. (4.34)

The last term does not contribute to trH2 since it gives rise to a total derivatives.
We use the ζ-function technique to specify the finite part of the determinant, which is defined by

ln detµD = −
d
ds

∣∣∣∣
s=0

1
2
µ2s

Γ(s)

∫ ∞

0
dλλs−1tr e−λD. (4.35)

The first three terms in the series expansion of H produce poles at s = 2, s = 1 and = 0, respectively. The
pole at s = 0 is responsible for the scale dependence of the finite part:

µ
∂

∂µ
ln detµD = −(4π)−2

∫
dx TrH2(x|x). (4.36)

Back to the case of ChPT for spinless matter fields, as we are only interested in the UV divergences,
we only consider the terms having a 1/(d − 4) pole. We haveDAB

= (DµD
µ

+ σ)AB, and the associated
“field strength" tensor [Dµ,Dν] is denoted as Fµν:

FAB
µν =

− 1
2 〈[λ

a, λb]Aµν〉 + Σ
ab
11 Σ

a j
12

Σ
ib
21 Γ

i j
µν + Σ

i j
22

 , (4.37)
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where 3

Aµν = Γµν +
1

4F2
0

(
2DµP†DνP − 2DνP

†DµP + P†[Dµ,Dν]P − [Dµ,Dν]P
†P

)
+

1

(4F2
0)2 [P†DµP − DµP†P, P†DνP − DνP

†P],

Σ
ab
11 =

1

32F2
0

(
P[uµ, λ

a][uν, λ
b]P† − P[uν, λ

a][uµ, λ
b]P†

)
,

Σ
a j
12 =

1

4
√

2F0

(
DµP[uν, λ

a] − DνP[uµ, λ
a] + P[∇µuν − ∇νuµ, λ

a]
)

j

−
1

32
√

2F3
0

[
(DµP[λa, λc]P† − P[λa, λc]DµP†)

(
P[uν, λ

c]
)

j − (µ↔ ν)
]
,

Σ
ib
21 =

1

4
√

2F0

(
[uν, λ

b]DµP† − [uµ, λ
b]DνP

†
+ [∇µuν − ∇νuµ, λ

b]P†
)
i

−
1

32
√

2F3
0

[(
[uµ, λ

c]P†
)
i(DνP[λc, λb]P† − P[λc, λb]DνP

†) − (µ↔ ν)
]
,

Σ
i j
22 =

1

32F2
0

[(
[uµ, λ

c]P†
)
i
(
P[uν, λ

c]
)

j −
(
[uν, λ

c]P†
)
i
(
P[uµ, λ

c]
)

j

]
, (4.38)

with

Γµν = [Dµ,Dν] = ∂µΓν − ∂νΓµ + [Γµ,Γν] . (4.39)

In dimensional regularization, the relevant term reads

Zdiv
one-loop =

1

2(4π)d/2µ
d−4

Γ
(
2 −

d
2
) ∫

d4x Tr
( 1
12
FµνF

µν
+

1
2
σ2

)
. (4.40)

To get the final result, we make use of the equations of motion for the classical fields and the identities:

Γµν = [Dµ,Dν] =
1
4

[uµ, uν] −
i
2

f +
µν,

∇µuν − ∇νuµ = − f −µν, (4.41)

one obtains all possible one-loop divergences. Up to O(p3), those relevant for single matter fields read

Zdiv
φP = −

λ

F2
0

∫
dd x

[m2

24
P〈uµuµ〉P

†
+

m2

24
N PuµuµP† +

7
12

DµP〈uµuν〉DνP
†

+
7

24
N DµP{uµ, uν}DνP

†
−

3
64

N
(
P[uµ,∇µuν + ∇νuµ]DνP† + h.c.

)
+

N
6

i DµP f +
µνD

νP† +
11
96

N P[uµ, f −µν]D
νP†

]
, (4.42)

3 Note that P is a 1 × N vector, and P† is a N × 1 vector. As a result, P†P is a N × N matrix.
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where λ = µd−4[(4π)d/2(d − 4)]−1. Two relations used in deriving Eq. (4.42) are

DµP{uν,∇µuν}P
†

+ P{uν,∇µuν}D
µP†

= DµP{uν,∇µuν}P
†
− DµP{uν,∇µuν}P

†
+ O(p4)

= O(p4), (4.43)

and

DµP[uµ, uν]DνP
†

= −P[∇µuµ, uν]DνP
†
− P[uµ,∇µuν]DνP

†
− P[uµ, uν]DµDνP

†

= −
1
2
(
P[uµ,∇µuν + ∇νu

µ]DνP
†

+ P[uµ,∇µuν − ∇νu
µ]DνP

†

+P[uµ, uν][Dµ,Dν]P
†

+ 2P[∇µuµ, uν]DνP
†)

= −
1
2

(
P[uµ,∇µuν + ∇νuµ]DνP† − P[uµ, f −µν]D

νP†

+iP[χ−, uν]D
νP† +

1
4

P[uµ, uν][uµ, uν]P
†
−

i
2

P[uµ, uν] f +
µνP

†
)

= −
1
2

(
P[uµ,∇µuν + ∇νuµ]DνP† − P[uµ, f −µν]D

νP† + iP[χ−, uν]D
νP†

)
+O(p4). (4.44)

In order to obtain a finite one-loop effective action, the UV divergences in Eq. (4.42) need to be
cancelled by those of the LECs

L =
∑

i

hiOi =
∑

i

[
hr

i (µ) + h0
i λ

]
Oi , (4.45)

where cr
i (µ) is the finite part of the ci and is scale-dependent. From Eq. (4.42) and Eq. (2.147), it is easy

to read off the divergent parts of the corresponding LECs, which up to O(p3) are given by

h0
0 = h0

1 = 0, h0
2 =

m2

24
, h0

3 = −
m2

24
N, h0

4 =
7
12
, h0

5 = −
7
24

N,

g0
1 = 0, g0

2 = −
3
64

N, g0
3,4,5 = 0, γ0

1 =
N
6
, γ0

2 =
11
96

N . (4.46)

These coefficients determine the scale dependence of the corresponding renormalized LECs, and the
pertinent renormalization group equations read

∂hr
i (µ)
∂µ

= −
h0

i

16π2 . (4.47)

From Eq. (4.46), one clearly sees that the one-loop divergences also renormalize the LECs at a lower
order (here, the hi’s). For N = 3, the values of h0

i and g0
i agree with those found in an explicit calculation

of the scattering amplitudes [65].

We have checked that integrating out the Goldstone boson fluctuations leads to the divergence structure
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Chapter 4 Effective generating functional to next-to-next-to leading order

of the purely Goldstone boson effective action for N flavors [94]:

Zdiv,φ
φ = −λ

∫
dd x

[ N
48
〈uµuνu

µuν〉 +
1
16
〈uµuµ〉2 +

1
8
〈uµuν〉〈u

µuν〉

+
N
24
〈uµuµuνu

ν
〉 +

1
8
〈uµuµ〉〈χ+〉 +

N
8
〈uµuµχ+〉 +

N2
+ 2

16N2 〈χ+〉
2

+
N2
− 4

16N
〈χ2

+〉 −
N
12

i〈 f +
µνu

µuν〉 −
N
24
〈 f +
µν f +µν

〉

]
. (4.48)

Yet, as can be expected, Zdiv
φ also gets contributions due to the presence of the matter field loops. The

matter fields are expected to be much heavier than the Goldstone bosons, and therefore their effects
in loops on the properties of Goldstone bosons might be irrelevant, at least for the ChPT of QCD.
Nevertheless, they contribute to the divergence of the generational functional, which is given here for
completeness

Zdiv,P
φ = −λ

∫
dd x

[ 1
96
〈uµuνu

µuν〉 −
1

96
〈uµuµuνu

ν
〉 −

i
24
〈 f +
µνu

µuν〉 −
1
48
〈 f +
µν f +µν

〉

]
. (4.49)

For a specific number of light flavors, the additional relations, e.g. the Cayley-Hamilton theorem,
could be used to remove the additional terms in Eqs. (4.48) and (4.49) (e.g. 〈uµuνu

µuν〉 for N = 2, 3).
The Cayley-Hamilton theorem states that every square matrix over a commutative ring satisfies its own
characteristic equation. For the two-dimensional case, the theorem implies the relation

{A, B} = A〈B〉 + B〈A〉 + 〈AB〉 − 〈A〉〈B〉, (4.50)

for arbitrary 2 × 2 matrices A and B. For the S U(3) case, one has

〈uµuνuµuν〉 = −2〈uµuµuνuν〉 +
1
2
〈uµuµ〉2 + 〈uµuν〉〈uµuν〉. (4.51)

For comparison, we list the divergences of LECs related to φφ interaction at O(p4) for purely Goldstone
bosonic ChPT and ChPT for spinless matter fields for N = 2 and N = 3, respectively, in Table 4.1. Note
that although the one-loop effective operators in Eqs. (4.48) and (4.49) are counted as O(p4), they could
enter the φP interaction at O(p3).

4.3 Subtraction of power counting breaking terms

In last section, the one-loop effective generating functional is expanded in a series of poles at d =

0, 2, 4, . . . , see Eq. (4.27). The UV divergences correspond to the term d = 4 in dimensional regularization.
To obtain the finite part, one has to sum infinite terms. Alternatively, the determinant of the differentialD
can be calculated in a series expansion in powers of the external fields. One can calculate the finite part
of the determinant by treating the external fields as perturbations. If the external fields are switched off

(vµ = aµ = p = 0, s =M), the differential operatorD0 = � + M2 [15].

To this end, we splitD into a Klein-Gordon operatorD0 for free fields and a remaining interaction part
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4.3 Subtraction of power counting breaking terms

c0
i Oi

purely Goldstone bosonic ChPT Including spinless matter
N f = 2 N f = 3 N f = 2 N f = 3

L0
1 〈uµuµ〉2 1

12
3
32

7
96

19
192

L0
2 〈uµuν〉2 1

6
3
16

17
96

19
96

L0
3 〈(uµuµ)2

〉 0 0 0 − 1
32

L0
4 〈uµuµ〉〈χ+〉

1
8

1
8

1
8

1
8

L0
5 〈uµuµχ+〉

1
4

3
8

1
4

3
8

L0
6 〈χ+〉

2 3
32

11
144

3
32

11
144

L0
7 〈χ−〉

2 0 0 0 0
L0

8 〈χ+χ+〉 0 5
48 0 5

48
L0

9 −i〈 f +
µνu

µuν〉 1
6

1
4

5
24

7
24

L0
10

1
2 〈 f

+
µν f +µν

〉 −1
6 −1

4 − 5
24 − 7

24

Table 4.1: The renormalization of O(p4) LECs for purely Goldstone bosonic ChPT and ChPT for spinless matter
fields.

δr: D
AB

= D
AB
0 + δAB

r . Then the determinant can be calculated in an expansion of the interaction term:

i
2

tr logD =
i
2

tr log
(
D0 + δr

)
=

i
2

tr
{
logD0 + log

(
1 − δr∆

)}
=

i
2

tr logD0 −
i
2

tr(δr∆) −
i
4

tr(δr∆δr∆) −
i
6

tr(δr∆δr∆δr∆) + . . . , (4.52)

where ∆ is the inverse of −D0:

∆
AB(x − y) = δAB

∫
dd p

(2π)d

e−ip(x−y)

p2
− m2

A + iε
, (4.53)

and the remainder δr is

δr = {Γ̂
µ, ∂µ} + Γ̂

µ
Γ̂µ + σ̂ , (4.54)

with σ̂AB
= σAB

− m2
Aδ

AB. Here Γ̂µ is defined via DAB
µ = δAB∂µ + Γ̂

AB
µ which means

Γ̂
AB
µ =

− 1
2 〈[λ

a, λb]Γµ〉 −
1

8F2
0

(
DµP[λa, λb]P† − P[λa, λb]DµP†

)
, 1

4
√

2F0

(
P[uµ, λ

a]
)

j
1

4
√

2F0

(
[uµ, λ

b]P†
)
i, Γ

i j
µ

 , (4.55)

and the expression for σAB is listed in Eq. (4.16).

The first term
i
2

tr logD0 in Eq. (4.52) is an irrelevant constant. The second term tr δr∆ is the set of all
tadpole graphs. The third term collects all the two-point loop graphs, etc. Since the external fields vµ
and s (aµ and p) correspond to terms with an even (odd) number of boson fields, following the counting
scheme used in Refs. [15, 16], we count vµ and s −M as O(φ2), where φ here should be understood as
representing both the Goldstone boson and matter fields. Thus, Γ̂µ and σ̂ are of O(φ2). The the one-loop
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functional up to O(φ4), i.e. with at most four external meson fields, can be calculated as [95]

Zone-loop
= −

i
2

tr
[

ˆσ(x)∆(0) + Γ̂
µ(x)Γ̂µ(x)∆(0)

]
−

i
4

tr
[ {

Γ̂
µ(x), ∂x

µ

}
∆(x − y)

{
Γ̂
ν(y), ∂yν

}
∆(y − x)

+2
{
Γ̂
µ(x), ∂x

µ

}
∆(x − y)σ̂(y)∆(y − x)

+2Γ̂
µ(x)Γ̂µ(x)∆(x − y)σ̂(y)∆(y − x)

]
+ O(φ6)

= −
i
2

tr
[
σ̂(x)∆(0) + Γ̂

µ(x)Γ̂µ(x)∆(0)
]

−
i
4

tr
[
Γ̂
µ(x)∂x

µ∆(x − y)Γ̂ν(y)∂yν∆(y − x)

+Γ̂
µ(x)∂x

ν∆(x − y)Γ̂ν(y)∂yµ∆(y − x)

+Γ̂
µ(x)∂x

µ∂
x
ν∆(x − y)Γ̂ν(y)∆(y − x)

+Γ̂
µ(x)∆(x − y)Γ̂ν(y)∂yµ∂

y
ν∆(y − x)

+2Γ̂
µ(x)∂x

µ∆(x − y)σ̂(y)∆(y − x)

+2Γ̂
µ(x)∆(x − y)σ̂(y)∂yµ∆(y − x)

+σ̂(x)∆(x − y)σ̂(y)∆(y − x)
]

+ O(φ6).

When the light quark masses are different, the free Klein-Gordon propagator is not diagonal in the
cartesian basis spanned by λ1, λ2, . . . , λN2

−1. It is more convenient to use the physical basis such as
λπ

+

= − 1√
2
(λ1

+ iλ2) and so on, in which we have

D
PQ
0 = δPQ(� + M2

P). (4.56)

In this notation, the one-loop functional to O(φ4) can be written as [16]

Zone-loop
=

i
2

∑
P

∫
d4x∆P(0)σ̂PP(x) +

i
4

∑
P,Q

[
∆P(0) + ∆Q(0)

]
Γ̂µPQ(x)Γ̂µQP(x)

+
∑
P,Q

∫
d4xd4y

[
MPQ
µν (x − y)Γ̂µPQ(x)Γ̂νQP(y) + KPQ

µ (x − y)Γ̂µPQ(x)σ̂QP(y)

+JPQ(x − y)σ̂PQ(x)σ̂QP(y)
]

+ O(φ6), (4.57)

where

MPQ
µν (z) =

i
4

(
∂µ∆P∂ν∆Q + ∂ν∆P∂µ∆Q − ∂µν∆P∆Q − ∆P∂µν∆Q

)
,

KPQ
µ (z) =

i
2

(∂µ∆P∆Q − ∆P∂µ∆Q),

JPQ(z) = −
i
4

∆P∆Q, (4.58)

with ∆P(z) = ∆(z,M2
P) defined as the free propagator for a spinless field of mass MP in d-dimension. The
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explicit expressions of various kernels in terms of loop integrals in momentum space have the form

K
PQ
a (x − y) =

∫
d4 p

(2π)2 e−ip(x−y)
K

PQ
a (p), (4.59)

with

MPQ
µν (p) = −gµνB00(p2,m2

P,m
2
Q)

−
1
4

pµpν
[
B0(p2,m2

P,m
2
Q) + 4B1(p2,m2

P,m
2
Q) + 4B11(p2,m2

P,m
2
Q)

]
,

KPQ
µ (p) = ipµ

[
1
2

B0(p2,m2
P,m

2
Q) + B1(p2,m2

P,m
2
Q)

]
,

JPQ(p) =
1
4

B0(p2,m2
P,m

2
Q), (4.60)

where the loop functions B0, B1, B00 and B11 are defined in Appendix A.

With the expressions of the kernel Eq. (4.59), one may read off the one-loop graphs directly from the
determinant Eq. (4.57) up to four external legs. This means that the amplitudes of Pφ scattering can
be read off straightforward up to O(p3). However, as mentioned in Sec. 2.1.1, the one-loop effective
functional Eq. (4.57) contains power counting breaking terms, which should be absent in a well-defined
low-energy effective theory. In the EOMS scheme, those terms are removed by shifting the LECs by
finite parts. In the following we will calculate the power counting breaking terms with dimensional
regularization with the MS scheme, in which any loop integral involving matter field propagators contains
terms starting from O(1).

The loops involving only matter field propagators do not play any dynamical role in the low-energy
effective field theory, neither do they introduce non-analyticity in the quark masses, and thus can be
absorbed into a redefinition of the LECs. As a result, the explicit closed matter field loops are not
necessary to be included in the calculation. Thus, the Goldstone boson part of the one-loop functional is
identical to that in the standard Goldstone boson ChPT, which can be found in Refs. [16]. The PCB terms
of interest are from the loops containing both Goldstone boson and matter field internal propagators.
They correspond to the terms of MPQ

µν , KPQ
µ and JPQ in Eq. (4.57) with P and Q in different blocks

(Goldstone bosons and matter fields). Since we are only interested in the single matter field sector, which
is the sector relevant for processes with a single matter field in both initial and final states and can be
studied using the effective Lagragians in Eq. (2.147), and the terms contributing at orders lower than
that required by Eq. (2.142), we only need the following terms of Γ̂µ and σ̂ for calculating the PCB part,
which is of O(p2), of the one-loop generating functional

Γ̂
′AB
µ =

1

4
√

2F0

 0
(
P[uµ, λ

a]
)

j(
[uµ, λ

b]P†
)
i

0

 ,
σ̂′AB

=
3

4
√

2F0

 0 −
(
DµP[uµ, λ

a]
)

j(
[uµ, λ

b]DµP†
)
i

0

 . (4.61)

Since the elements of Γ
′
µ and σ′ are of O(p), the PCB terms of loops only refer to the O(1) terms of

the loop integrals. As a result, they are independent of the internal Goldstone boson masses. Therefore,
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the relevant one-loop generating functional to O(φ4) can be rewritten in the form

Z′one-loop
=

∫
d4xd4y

d4 p

(2π)4 e−ip(x−y)

×

{1
8

〈
Γ̂
′µν(x)Γ̂′µν(y)

〉 [
B0(p2,m2, 0) + 4B1(p2,m2, 0) + 4B11(p2,m2, 0)

]
−

〈
Γ̂
′
µ(x)Γ̂′µ(y)

〉 B00(p2,m2, 0) +
p2

4
(
B0(p2,m2, 0) + 4B1(p2,m2, 0) + 4B1(p2,m2, 0)

)
+

〈
∂µΓ̃

′µ(x)σ̂(y)
〉 B0(p2,m2, 0)

2
+ B1(p2,m2, 0)

 +
1
4

B0(p2,m2, 0)
〈
σ̂′(x)σ̂′(y)

〉 }
,

=

∫
d4xd4y

d4 p

(2π)4 e−ip(x−y)
{
−

〈
Γ̂
′
µ(x)Γ̂′µ(y)

〉
B11(p2,m2, 0)

−
1
4

〈
∂µΓ

′
ν∂
ν
Γ
′µ
〉

B0(p2,m2, 0) + 4B1(p2,m2, 0) + 4B11(p2,m2, 0)

+
〈
∂µΓ̃

′µ(x)σ̂(y)
〉 B0(p2,m2, 0)

2
+ B1(p2,m2, 0)

 +
1
4

B0(p2,m2, 0)
〈
σ̂′(x)σ̂′(y)

〉 }
,(4.62)

where we have defined Γ̂
′
µν = ∂µΓ̂

′
ν − ∂νΓ̂

′
µ + [Γ̂′µ, Γ̂

′
ν], and

Γ̃
′AB
µ =

1

4
√

2F0

 0
(
P[uµ, λ

a]
)

j

−
(
[uµ, λ

b]P†
)
i

0

 . (4.63)

Since all the operators in Eq. (4.62) are of O(p2), we can extract the PCB terms by keeping only the
O(p0) part of these loop functions. In the EOMS scheme, the PCB terms come from the leading chiral
expansion of one-loop functions A0(m2) and B0(m2,m2, 0). The closed matter loop A0(m2) is infrared
regular, and the regular part of the loop integral B0(p2,m2,M2) can be expanded as [96]

Breg.
0 (p2,m2,M2) =

Γ(2 − d/2)

(4π)d/2(d − 3)

(
m
µ

)d−4 [
1 −

p2
− m2

2m2 +
(d − 6)(p2

− m2)2

4m4(d − 5)

+
(d − 3)M2

2m2(d − 5)
+ · · ·

]
. (4.64)

More explicitly, using Eq. (A.4), the infrared regular PCB parts of the loop functions are

APCB
0 (m2) = −

m2

16π2 log
m2

µ2 ,

BPCB
0 (p2,m2, 0) =

1

16π2

1 − log
m2

µ2

 ,
BPCB

1 (p2,m2, 0) = −
1

16π2

1 − 1
2

log
m2

µ2

 ,
BPCB

00 (p2,m2, 0) =
m2

288π2

2 − 3 log
m2

µ2

 , (4.65)
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and

BPCB
11 (p2,m2, 0) =

1

144π2

8 − 3 log
m2

µ2

 . (4.66)

Applying the results of Eqs. (4.65), (4.66) and the equations of motion for the classical background
fields, it is easy to obtain the PCB terms of interest:

ZPCB
one-loop =

1

16π2F2
0

∫
d4x

{ m2

144

2 − 3log
m2

µ2

 〈PP†
〉 〈

uµuµ
〉

+
m2 N
144

2 − 3log
m2

µ2

 〈PuµuµP†
〉

+
7

72

5 − 3log
m2

µ2

 〈DµPDνP†
〉 〈

uµuν
〉

+
7N
144

5 − 3log
m2

µ2

 〈DµP
{
uµ, uν

}
DνP†

〉 }
. (4.67)

One can subtract these PCB terms in Eq. (4.67) to get a consistent power counting. Within the EOMS
scheme, they are absorbed into the redefinition of the LECs of O(p2) as

L
(2)
φP =

5∑
i=0

hiOi =

5∑
i=0

hr
i (µ) + h0

i λ +
1

16π2F2
0

hPCB
i

Oi , (4.68)

where Oi represent local operators in the Lagrangian of O(p2), µ is the scale of dimensional regularization,
λ = µd−4(4π)−d/2/(d−4), hr

i (µ) are the UV finite and scale-dependent part of the LECs hi, the coefficients
h0

i of the UV divergence ∼ λ have been given in Eq. (4.46), and hPCB
i are the PCB parts. From Eq. (2.147)

and Eq. (4.67), they can be easily read off as

hPCB
0 = 0, hPCB

2 = −m2
 1

72
−

1
48

log
m2

µ2

 , hPCB
3 = m2

 N
72
−

N
48

log
m2

µ2

 ,
hPCB

1 = 0, hPCB
4 = −

7
72

5 − 3 log
m2

µ2

 , hPCB
5 =

7N
144

5 − 3 log
m2

µ2

 . (4.69)

Note that we have dropped the tadpole loops with matter field propagators completely. For N = 3, the
expressions of hPCB

i agree with those found in an explicit calculation of the charmed-meson–Goldstone-
boson scattering amplitudes [65].
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CHAPTER 5

One-loop analysis of interactions between D
mesons and Goldstone bosons

In last chapter, we have systematically studied the effective generating functional of ChPT for spinless
matter fields in the fundamental representation of S U(N) up to O(p3). This kind of theory can be applied
to the scattering between light pseudoscalar mesons and pseudoscalar heavy mesons, S U(2) ChPT for
kaons, three-flavor ChPT involving charmed mesons, and other relevant cases with the same pattern of
spontaneous symmetry breaking and spinless matter fields.

The application of S U(2) ChPT for spinless matter fields to kaon-pion scattering while treating the
kaons as matter fields ensures a better convergence of chiral expansion than that of S U(3) ChPT which
treats the kaons as Goldstone bosons as well [68]. This theory is often used in the chiral extrapolation
of lattice results at unphysical up and down quark masses to the physical values, see, e.g. Ref. [97].
While there are lots of data for the Kπ scattering, no direct experimental data for Dπ scattering exists.
Nevertheless, there have been lattice calculations of the scattering lengths for the scattering of a light
pseudoscalar meson off a charmed meson [29, 98–101]. The investigation of the S -wave scattering
processes in the charmed D-meson sector is important for the understanding of the 0+ strange and
non-strange charmed mesons [28, 29, 102–108].

The hadronic interaction between charmed D mesons and the Goldstone bosons φ of the spontaneous
breaking of chiral symmetry of the strong interaction (D-φ interaction for short hereafter) is important
for the understanding of the chiral dynamics of QCD and the interpretation of the hadron spectrum in
the heavy hadron sector. Many investigations have been devoted to study it in the last decade, partly
triggered by the observation of the charm-strange meson D∗s0(2317) with JP

= 0+ in 2003 [109, 110].
The D∗s0(2317) couples to the DK channel, and being below the DK threshold it decays into the isospin
breaking channel Dsπ. In order to unravel its nature, theorists study the D-φ interaction and intend to
extract the information encoded in it. For instance, the D∗s0(2317) is interpreted as a DK molecule [27]
by using a chiral unitary approach to the S -wave D-φ interaction [102, 104, 105]. In these works, the
LO amplitudes from the heavy meson ChPT [111–113] are used as the kernels of resumed amplitudes.
Extensions to the NLO can be found in Refs. [28, 103, 108, 114, 115].

In the meantime, significant progress has also been made in lattice QCD [116, 117]. Using the Lüscher
formalism and its extension to coupled channels (for early works on this topic, see e.g. Refs. [118, 119]),
scattering lengths and recently phase shifts for the Dφ interaction have been calculated at unphysical
quark masses [29, 98–101, 120]. The first calculation only concerns the channels free of disconnected
Wick contractions [29, 98], i.e., Dπ with isospin I = 3/2, DK̄ with I = 0, 1, DsK and Dsπ. The channels
with disconnected Wick contractions such as Dπ with I = 1/2 and DK with I = 0 were calculated
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Chapter 5 One-loop analysis of interactions between D mesons and Goldstone bosons

later in Refs. [99–101]. On the one hand, the lattice results can be used to determine the low-energy
constants (LECs) in the chiral Lagrangian [29, 65, 115, 121, 122]. On the other hand, with these lattice
calculations more insights into the nature of the D∗s0(2317) and other positive-parity charmed mesons are
obtained. In particular, in Ref. [29], it is concluded that the lattice calculation of other channels performed
there supports the interpretation that D∗s0(2317) is dominantly a DK hadronic molecule. In addition, using
the parameters fixed in that work, energy levels in the I = 1/2 channel were computed in Ref. [123], and a
remarkable agreement with the lattice results reported in Ref. [120] was found. This agreement was taken
to be as a strong evidence that the particle listed as D∗0(2400) in the Review of Particle Physics [50] in fact
corresponds to two states with poles located at

(
2105+6

−8 − i 102+10
−12

)
MeV and

(
2451+36

−26 − i 134+7
−8

)
MeV,

respectively [123], similar to the well-known two-pole scenario of the Λ(1405) [90]. In this scenario,
the puzzle that the non-strange D∗0(2400) has a mass larger than the strange partner D∗s0(2317) can be
easily understood. The poles were searched for in unitarized ChPT with the interaction kernel computed
at NLO. In view of the phenomenological importance of the D∗s0(2317) and D∗0(2400), it is crucial to
check the stability of the NLO predictions by extending to the next-to-next-to-leading order (NNLO),
which is one of the purposes of this chapter.

In Ref. [124], the D-φ scattering lengths were calculated in the framework of nonrelativistic heavy
meson ChPT [111–113] to the leading one-loop order in the heavy quark limit. Nevertheless, as
mentioned by the authors and confirmed by Ref. [125], this nonrelavistic formulation neglects sizeable
recoil corrections.1 The calculations in various unitarized versions of ChPT in Refs. [28, 29, 121, 122] are
performed in a covariant formalism, but only up to NLO as mentioned above. The first NNLO calculation
of the scattering lengths was given by Ref. [125] using the EOMS scheme. However, the calculation in
that work is perturbative while the interactions in certain channels are definitely nonperturbative. For
instance, in the channel with (S , I) = (1, 0), where S and I represent strangeness and isospin, respectively,
the existence of the D∗s0(2317) below the DK threshold calls for a nonperturbative treatment of the DK
interaction or inclusion of an explicit field for the D∗s0(2317). In addition, all the NNLO counter term
contributions are neglected in Ref. [125] due to the poorly known LECs. Here, we intend to present
a detailed covariant description of the D-φ interaction up to NNLO in the framework of UChPT, and
the EOMS approach which preserves the proper analytic structure of the amplitudes will be used in
renormalization procedure.

In this chapter, we will discuss the D-φ scattering in general and give the scattering amplitude up to
O(p3). To unitarize the one-loop potentials, the unitarization formulae obtained in Chapter 3 need to be
modified to accommodate the one-loop potentials. Then we will fix the values of the LECs by fitting to
the available lattice data of the S -wave D-φ scattering lengths. Then we search for poles in the unitarized
amplitudes, and study their trajectories with varying pion mass.

5.1 D-φ scattering

5.1.1 Analyticity

We consider the two-body scattering D1(p1)φ1(p2)→ D2(p3)φ2(p4). The matrix elements for a scattering
are written in terms of an invariant amplitude −iM. The S -matrix for 2→ 2 scattering is related toM by

〈p3 p4|S |p1 p2〉 = I − i(2π)4δ4(p1 + p2 − p3 − p4)
M(p1 p2; p3 p4)

(2E1)1/2(2E2)1/2(2E3)1/2(2E4)1/2 , (5.1)

1 It is, however, known since a long time that in the heavy baryon approach such recoil corrections can easily be incorporated
by using as the propagator i/(v · l − l2/2m) instead of simply i/v · l [70].
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s=HMD+MΦL
2

u=HMD+MΦL
2

t=4MΦ
2

t=0

s=0u=0

Figure 5.1: The Mandelstam plane. The Mandelstam triangle is the region bounded by the thick lines: s =

(MD + Mφ)2, u = (MD + Mφ)2 and t = 4M2
φ. The upper part of the Mandelstam triangle is marked in dark gray,

which is surrounded by the previous three lines and the one corresponding to t = 0. The physical regions are
marked in light gray.

with the normalization
〈p′|p〉 = (2π)3δ3(p − p′).

The scattering process is on-shell, hence, p2
1 = M2

D1
, p2

2 = M2
φ1

, p2
3 = M2

D2
and p2

4 = M2
φ2

, with MD1
(Mφ1

)
and MD2

(Mφ2
) the masses of the incoming and outgoing D mesons (Goldstone bosons), respectively. In

addition, the Mandelstam variables are defined as

s = (p1 + p2)2 , t = (p1 − p3)2 , u = (p1 − p4)2 , (5.2)

which satisfy the relation s + t + u = M2
D1

+ M2
φ1

+ M2
D2

+ M2
φ2

. In the Mandelstam s-t plane, the
kinematical region of the Dφ scattering is defined as the domain where the Kibble function [126]
Φ = t

[
su − (M2

D − M2
φ)2

]
is non-negative. The plane is depicted in Fig. 5.1, where the bottom-right,

bottom-left and top areas in light gray denote the s-, u- and t-channel physical regions, respectively. The
interior of the triangle surrounded by lines of s = (MD + Mφ)2, u = (MD + Mφ)2 and t = 4M2

φ is called
the Mandelstam triangle, where the scattering amplitude is real and analytical.

Expressed in terms of Mandelstam variables, each of the amplitudes for a specific scattering can
be denoted by AD1φ1→D2φ2

(s, t). We are mostly interested in the partial wave physical amplitudes
A`(s)D1φ1→D2φ2

(s), which are defined via (3.10)

AD1φ1→D2φ2
(s, t(s, cos θ)) =

∑
`

(1 + 2`)P`(cos θ)A`(s)D1φ1→D2φ2
. (5.3)

Here, the Mandelstam variable t is expressed in terms of s and the scattering angle θ,

t(s, cos θ) = M2
D1

+ M2
D2
−

1
2s

(
s + M2

D1
− M2

φ1

) (
s + M2

D2
− M2

φ2

)
−

cos θ
2s

√
λ(s,M2

D1
,M2

φ1
)λ(s,M2

D2
,M2

φ2
) . (5.4)
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with λ(a, b, c) = a2
+ b2

+ c2
− 2ab − 2bc − 2ac the Källén function. Then the unitarity relation in terms

ofA`(s) has the form

A`(s)D1φ1→D2φ2
−A`(s)∗D2φ2→D1φ1

=
∑

n

2ipnA`(s)Dnφn→D2φ2
A`(s)∗Dnφn→D1φ1

, (5.5)

with

pn(s) =
1

2
√

s

√(
s − (MDn

+ Mφn
)2)(s − (MDn

− Mφn
)2) (5.6)

the phase space of the two-particle intermediate states with the masses MDn
and Mφn

.
The partial wave amplitudeA`(s)D1φ1→D2φ2

is a function of energy s, which is analytic everywhere
except for poles and cuts connected to the kinetic and dynamic singularities (see e.g. [127–129]). The
kinematic singularities are defined by the unitarity relation Eq. (5.5) and by explicit expressions of the
helicity amplitudes for nonzero spins which is absent in our case. The singularities due to two-body
unitarity, i.e. Eq. (5.5), are square-root branch points at each threshold. Usually the cuts are drawn from
the branch points (threshold) to positive infinity in the s plane. The thresholds involved for Dφ scattering
as well as a possible resonance D∗s0(2317) are shown in Fig. 5.2.2

s @MeVD
DΠ
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DsΠ
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DK
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63

DΗ

24
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24
64

DsΗ

25
16

D
s0

* H2317L Ds1H2460L

Figure 5.2: Involved thresholds, D∗s0(2317) and Ds1(2460).

The dynamic singularities are associated with an interaction mechanism. The cuts from dynamic
singularities are drawn to the left along the real axis from the lowest s-channel threshold. In some cases
they may overlap with the unitarity cuts, thus occupying the whole real axis. The overlapping of the
left-hand and right-hand cuts violates the real analyticity of amplitudes and need more consideration
in detail. For a given matrix element A(s), which contains an infinite number of diagrams, the left-
hand and right-hand cuts may overlap. However, each diagram has non-overlapping cuts. Therefore
in each diagram there is a gap between the cuts, and the “amplitudes” corresponding to the diagram
are real-analytic functions of s. Hence we may “conclude” that each matrix element is a real-analytic
function. The standard way of taking both the unitarity and dynamic singularities into account is the
N/D method in Sec. 3.4. In the framework of N/D method [129, 130] one can show that the overlapping
of the left-hand and right-hand cuts does not jeopardize the usual analytic properties of the amplitudes
under the condition that the cuts do not overlap in the matrix product p̂ξ̂, where p̂ is the diagonal matrix
of momenta and ξ̂ is the matrix of left-hand discontinuities.

5.1.2 Relations between the isospin and physical amplitudes

In this work we do not consider the effect of isospin violation. It is more convenient to study the
scattering amplitudes in the isospin basis instead of the particle basis. The scattering amplitudes in
the isospin basis can be classified by two quantum numbers, the strangeness S and isospin I of the

2 The Ds1(2460), can be interpreted as a resonance of the D∗K as a heavy quark spin partner of D∗s0(2317), is also shown in the
figure.
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5.1 D-φ scattering

scattering system. Hereafter, the scattering amplitudes with the definite strangeness and isospin are called
strangeness-isospin amplitudes for short. We will give the relations between the scattering amplitudes in
isospin basis and in particle basis.

A direct product of two irreducible representations of the S U(2) isospin group can be decomposed
into a sum of irreducible representations. In what follows, the Clebsch-Gordan coefficients follows the
Condon-Shortley convention, which assigns that 〈I1, I1; I2, I2|I, I〉 are real and 〈I1, I1; I2, I − I1|I, I〉 are
positive for all I1, I2, I.

Before we give the relations between the scattering amplitudes in isospin basis and in particle basis,
one needs to specify the phase convention for the isospin eigenstates. In principle, there is an arbitrariness
of the overall phase between the physical states and isospin states. When an assignment is given, however,
the charge conjugate relations are specified as a consequence since the G-parity of the physical states are
definite. Taking the pion triplet for example, if the assignments reads

|π+
〉 = −|1,+1〉, |π0

〉 = |1, 0〉, |π−〉 = |1,−1〉, (5.7)

then the charge conjugation must be

C|π±〉 = |π∓〉, C|π0
〉 = |π0

〉 (5.8)

in order to guarantee G|π±,0〉 = −|π±,0〉. Since by definition,

G|I, I3〉 = Ce−iπI2 |I, I3〉 = (−1)I−I3C|I,−I3〉.

Acting on |π+
〉 for instance, G|π+

〉 = Ce−iπI2 |π+
〉 = −Ce−iπI2 |1,+1〉 = −C|1,−1〉 = −C|π−〉 = −|π+

〉,
hence C|π−〉 = |π+

〉. The other charge conjugation relations can be derived in the same way.

Given the phase conventions

|D+
〉 = −|

1
2
,+

1
2
〉 , |D0

〉 = |
1
2
,−

1
2
〉,

|D̄0
〉 = +|

1
2
,+

1
2
〉 , |D−〉 = |

1
2
,−

1
2
〉,

|K+
〉 = +|

1
2
,+

1
2
〉 , |K0

〉 = |
1
2
,−

1
2
〉,

|K̄0
〉 = −|

1
2
,+

1
2
〉 , |K−〉 = |

1
2
,−

1
2
〉, (5.9)

the charge conjugate operation gives

C|D±〉 = |D∓〉 , C|D0
〉 = |D̄0

〉 , C|D̄0
〉 = |D0

〉 .

C|K±〉 = |K∓〉 , C|K0
〉 = |K̄0

〉 , C|K̄0
〉 = |K0

〉 .

According to the conventions Eq. (5.9) and Clebsch-Gordan coefficients, the relations between isospin
and physical amplitudes can be easily obtained. Taking the scattering DK → DK for example, the
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physical states are related to the isospin states by

|D+K+
〉 = −|

1
2
,+

1
2
〉D|

1
2
,+

1
2
〉φ = −|1,+1〉I ,

|D+K0
〉 = −|

1
2
,+

1
2
〉D|

1
2
,−

1
2
〉φ = −

√
1
2
|1, 0〉I −

√
1
2
|0, 0〉I ,

|D0K+
〉 = +|

1
2
,−

1
2
〉D|

1
2
,+

1
2
〉φ =

√
1
2
|1, 0〉I −

√
1
2
|0, 0〉I ,

|D0K0
〉 = +|

1
2
,−

1
2
〉D|

1
2
,−

1
2
〉φ = |1,−1〉I , (5.10)

with the subscript I denoting the isospin of the scattering system. It follows that

AD+K+
→D+K+ = AI=1

DK→DK ,

AD+K0
→D+K0 =

1
2
A

I=1
DK→DK +

1
2
A

I=0
DK→DK ,

AD0K+
→D0K+ =

1
2
A

I=1
DK→DK +

1
2
A

I=0
DK→DK ,

AD0K0
→D0K0 =A

I=1
DK→DK ,

AD+K0
→D0K+ = −

1
2
A

I=1
DK→DK +

1
2
A

I=0
DK→DK ,

AD0K+
→D+K0 = −

1
2
A

I=1
DK→DK +

1
2
A

I=0
DK→DK . (5.11)

Likewise, since

|D+K̄0
〉 = +|

1
2
,+

1
2
〉D|

1
2
,+

1
2
〉φ = |1,+1〉I ,

|D+K−〉 = −|
1
2
,+

1
2
〉D|

1
2
,−

1
2
〉φ = −

√
1
2
|1, 0〉I −

√
1
2
|0, 0〉I ,

|D0K̄0
〉 = −|

1
2
,−

1
2
〉D|

1
2
,+

1
2
〉φ = −

√
1
2
|1, 0〉I +

√
1
2
|0, 0〉I ,

|D0K−〉 = |
1
2
,−

1
2
〉D|

1
2
,−

1
2
〉φ = |1,−1〉I , (5.12)

one finds

AD+K̄0
→D+K̄0 =A

I=1
DK̄→DK̄ ,

AD+K−→D+K− =
1
2
A

I=1
DK̄→DK̄ +

1
2
A

I=0
DK̄→DK̄ ,

AD0K̄0
→D0K̄0 =

1
2
A

I=1
DK̄→DK̄ +

1
2
A

I=0
DK̄→DK̄ ,

AD0K−→D0K− =A
I=1
DK̄→DK̄ ,

AD+K−→D0K̄0 =
1
2
A

I=1
DK̄→DK̄ −

1
2
A

I=0
DK̄→DK̄ ,

AD0K̄0
→D+K− =

1
2
A

I=1
DK̄→DK̄ −

1
2
A

I=0
DK̄→DK̄ . (5.13)
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The relations for Dπ → Dπ scattering can be obtained in the same way. The isospin of the pions is
I = 1, thus we have

|D+π+
〉 = |1,+1〉|

1
2
,+

1
2
〉 = |

3
2
,+

3
2
〉I ,

|D0π+
〉 = −|1,+1〉|

1
2
,−

1
2
〉 = −

√
1
3
|
3
2
,+

1
2
〉 −

√
2
3
|
1
2
,+

1
2
〉I ,

|D+π0
〉 = −|1, 0〉|

1
2
,+

1
2
〉 = −

√
2
3
|
3
2
,+

1
2
〉I +

√
1
3
|
1
2
,+

1
2
〉I ,

|D0π0
〉 = |1, 0〉|

1
2
,−

1
2
〉 =

√
2
3
|
3
2
,−

1
2
〉I +

√
1
3
|
1
2
,−

1
2
〉I ,

|D+π−〉 = −|1,−1〉|
1
2
,+

1
2
〉 = −

√
1
3
|
3
2
,−

1
2
〉I +

√
2
3
|
1
2
,−

1
2
〉I ,

|D0π−〉 = |1,−1〉|
1
2
,−

1
2
〉 = |

3
2
,−

3
2
〉I . (5.14)

It follows

AD+π+
→D+π+ =A

I= 3
2

Dπ→Dπ,

AD0π+
→D0π+ =

1
3
A

I= 3
2

Dπ→Dπ +
2
3
A

I= 1
2

Dπ→Dπ,

AD+π0
→D+π0 =

2
3
A

I= 3
2

Dπ→Dπ +
1
3
A

I= 1
2

Dπ→Dπ,

AD0π0
→D0π0 =

2
3
A

I= 3
2

Dπ→Dπ +
1
3
A

I= 1
2

Dπ→Dπ,

AD+π−→D+π− =
1
3
A

I= 3
2

Dπ→Dπ +
2
3
A

I= 1
2

Dπ→Dπ,

AD0π−→D0π−
=A

I= 3
2

Dπ→Dπ,

AD0π+
→D+π0 =

√
2

3
A

I= 3
2

Dπ→Dπ −

√
2

3
A

I= 1
2

Dπ→Dπ,

AD+π+
→D0π+ =

√
2

3
A

I= 3
2

Dπ→Dπ −

√
2

3
A

I= 1
2

Dπ→Dπ,

AD0π0
→D+π−

= −

√
2

3
A

I= 3
2

Dπ→Dπ +

√
2

3
A

I= 1
2

Dπ→Dπ,

AD+π−→D0π0 = −

√
2

3
A

I= 3
2

Dπ→Dπ +

√
2

3
A

I= 1
2

Dπ→Dπ. (5.15)

One of the particles in the processes Dη → Dη, Dsη → Dsη, Dsπ → Dsπ, DsK → DsK and
DsK̄ → DsK̄ is isospin zero, thus their amplitudes own definite total ispspin, which are equal to the
isospin of the other particles. Straightforwardly we have

A
I= 1

2
Dη→Dη =AD+η→D+η = AD0η→D0η

,

A
I=0
Dsη→Dsη

=AD+
s η→D+

s η
, (5.16)
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and

A
I=1
Dsπ→Dsπ

=AD+
s π

+
→D+

s π
+ = AD+

s π
0
→D+

s π
0 = AD+

s π
−
→D+

s π
− ,

A
I= 1

2
DsK→DsK =AD+

s K+
→D+

s K+ = AD+
s K0
→D+

s K0 ,

ADsK̄→DsK̄ =AD+
s K−→D+

s K− = AD+
s K̄0
→D+

s K̄0 . (5.17)

In above equations, the Mandelstam variables s, t and u are dropped, they should be understood as
A(s, t, u).

On the other hand, one can construct the amplitudes with definite isospin and strangeness in terms of
physical amplitudes. Another interesting property of the amplitudes is the crossing symmetry, which
states that the following processes:

a + b → c + d, (s − channel)

c̄ + b → ā + d, (t − channel)

a + d̄ → c + b̄, (u − channel) (5.18)

share the same amplitudeA. In detail, it implies

AD+K+
→D+K+(s, t, u) = AD+K−→D+K−(u, t, s),

AD+K0
→D+K0(s, t, u) = AD+K̄0

→D+K̄0(u, t, s),

AD+K0
→D0K+(s, t, u) = AD+K−→D0D̄K̄0(u, t, s),

AD+π+
→D+π+(s, t, u) = AD+π−→D+π−(u, t, s),

AD0π+
→D0π+(s, t, u) = AD0π−→D0π−

(u, t, s),

AD+π0
→D+π0(s, t, u) = AD+π0

→D+π0(u, t, s),

AD0π+
→D+π0(s, t, u) = AD0π0

→D+π−
(u, t, s),

AD+η→D+η(s, t, u) = AD+η→D+η(u, t, s),

AD+
s η→D+

s η
(s, t, u) = AD+

s η→D+
s η

(u, t, s),

AD+
s π

+
→D+

s π
+(s, t, u) = AD+

s π
−
→D+

s π
−(u, t, s),

AD+
s K+
→D+

s K+(s, t, u) = AD+
s K−→D+

s K−(u, t, s). (5.19)

Making use of the crossing symmetry and isospin symmetry, all of the strangeness-isospin amplitudes
can be related to ten amplitudes of the physical processes. We begin with the single-channel interactions.
There are four single-channels in total. The corresponding quantum numbers of (S , I) are (−1, 0), (−1, 1),
(0, 3/2) and (2, 1/2). Their strangeness-isospin amplitudes are related to the physical-process amplitudes
by

A
(−1,0)
DK̄→DK̄

(s, t, u) = 2AD+K+
→D+K+(u, t, s) −AD0K−→D0K−(s, t, u) , (5.20)

A
(−1,1)
DK̄→DK̄

(s, t, u) =AD0K−→D0K−(s, t, u) , (5.21)

A
(0,3/2)
Dπ→Dπ(s, t, u) =AD+π+

→D+π+(s, t, u) , (5.22)

A
(2,1/2)
DsK→DsK(s, t, u) =AD+

s K+
→D+

s K+(s, t, u) . (5.23)
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For the coupled channels with (S , I) = (1, 0), the strangeness-isospin amplitudes read

A
(1,0)
DK→DK(s, t, u) = 2AD0K−→D0K−(u, t, s) −AD+K+

→D+K+(s, t, u) , (5.24)

A
(1,0)
Dsη→Dsη

(s, t, u) =AD+
s η→D+

s η
(s, t, u) , (5.25)

A
(1,0)
Dsη→DK(s, t, u) = −

√
2AD+

s K−→D0η
(u, t, s) . (5.26)

For the coupled channels with (S , I) = (1, 1), one has

A
(1,1)
Dsπ→Dsπ

(s, t, u) =AD+
s π

0
→D+

s π
0(s, t, u) , (5.27)

A
(1,1)
DK→DK(s, t, u) =AD+K+

→D+K+(s, t, u) , (5.28)

A
(1,1)
DK→Dsπ

(s, t, u) =
√

2AD+
s K−→D0π0(u, t, s) . (5.29)

For (S , I) = (0, 1/2), there are three channels: Dπ,Dη and DsK̄. The isospin relations are given by

A
(0,1/2)
Dπ→Dπ(s, t, u) =

3
2
AD+π+

→D+π+(u, t, s) −
1
2
AD+π+

→D+π+(s, t, u) , (5.30)

A
(0,1/2)
Dη→Dη(s, t, u) =AD+η→D+η(s, t, u) , (5.31)

A
(0,1/2)
DsK̄→DsK̄

(s, t, u) =AD+
s K+
→D+

s K+(u, t, s) , (5.32)

A
(0,1/2)
Dη→Dπ(s, t, u) =

√
3AD0η→D0π0(s, t, u) , (5.33)

A
(0,1/2)
DsK̄→Dπ

(s, t, u) =
√

3AD+
s K−→D0π0(s, t, u) , (5.34)

A
(0,1/2)
DsK̄→Dη

(s, t, u) =AD+
s K−→D0η

(s, t, u) . (5.35)

5.2 D-φ interactions in ChPT for spinless matter fields

It is well-known that ChPT [14–16] has become an useful and standard tool in studying the hadron
interaction at low energies. Based on Weinberg’s power counting rules [14], great achievements have
been obtained both in the pure mesonic sector and the one including matter fields such as baryons,
the latter known as baryon ChPT. In this section, we study the interactions between charmed mesons
and Goldstone bosons with ChPT in which the spinless charmed mesons are regarded as matter fields
since they have nonvanishing masses in the chiral limit. We are interested in the S U(3) case and the
pseudoscalar charmed mesons can be collected in a fundamental representation P : D = (D0,D+,D+

s ),
and the light Goldstone bosons are in an octet,

φ =


1√
2
π0

+ 1√
6
η π+ K+

π− − 1√
2
π0

+ 1√
6
η K0

K− K̄0
− 2√

6
η

 . (5.36)

In Chaper 4, we have obtained the effective generating functional up to O(p3), i.e. leading one-loop order,
which is free of UV divergences and fulfils the power counting. One can read off the scattering amplitudes
for D-φ from the generating functional Eqs. (4.19) and (4.57), taking into account the redefinition of
LECs Eqs. (4.45) and (4.68).

In this section we exhibit the complet sef of independent D-φ scattering amplitudes on the basis of the

87



Chapter 5 One-loop analysis of interactions between D mesons and Goldstone bosons

Tree H1L Tree H2L Tree H3L

Loop H1L Loop H2L Loop H3L Loop H4L

Figure 5.3: The 1-point irreducible (1PI) Feynman diagrams for D-φ scattering up to leading one-loop order. The
solid (dashed) lines represent the D (Goldstone) mesons. The square stands for the contact vertex coming from
Lagrangian L(2)

Dφ, while the filled circle denotes an insertion from L(3)
Dφ. All other vertices are generated either by

L
(1)
Dφ or L(2)

φφ .

phycial states. They correspond to the ten physical processes listed in the second column in Table 5.1.
All the other amplitudes can be obtained by either crossing symmetry or time-reversal invariance. In
what follows, we fill first give the tree-level amplitudes which can be reduced into a common structure
but with different coefficients because of S U(3) symmetry. Then the loop amplitudes will be given.

5.2.1 Tree-level amplitudes

The Feynman diagrams of the tree-level contribution to the scattering amplitudes are displayed in the first
line of Fig. 5.3. Since we do not consider the exchange of resonances, such contributions are encoded in
the contact terms for the D-φ scattering. When calculating the Feynman diagrams, all the bare parameters,
such as the decay constant F0 and the masses, are maintained. They will be replaced by the corresponding
physical quantities when the renormalization is performed. The LO, i.e. O(p), tree amplitude is the
Weinberg–Tomozawa term 3, and has the following form,

A
(1)(s, t, u) = CLO

s − u

4F2
0

, (5.37)

where the coefficients CLO for different physical processes are listed in Table 5.1. The Weinberg-
Tomozawa term depends only on the pion decay constant due to the fact that it originates from the kinetic
term in L(1)

Dφ, which is a result of the spontaneous breaking of chiral symmetry in QCD.

The O(p2) Lagrangian L(2)
Dφ generates the tree-level contribution at NLO as

A
(2)(s, t, u) =

1

F2
0

[
−4h0C

(2)
0 + 2h1C

(2)
1 − 2C(2)

24 H24(s, t, u) + 2C(2)
35 H35(s, t, u)

]
, (5.38)

where the coefficients are shown in Table 5.1, and the functions H24(s, t, u) and H35(s, t, u) are defined by

H24(s, t, u) = 2h2 p2 · p4 + h4 (p1 · p2 p3 · p4 + p1 · p4 p2 · p3) , (5.39)

H35(s, t, u) = h3 p2 · p4 + h5 (p1 · p2 p3 · p4 + p1 · p4 p2 · p3) . (5.40)

3 As the vector charmed mesons are not taken into account, there is no Born term due to the exchange of these mesons.
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Table 5.1: The coefficients in the LO and NLO tree-level amplitudes of the 10 relevant physical processes. The
Gell-Mann-Okubo mass relation, 3M2

η = 4M2
K − M2

π, is used to simplify the coefficients when necessary.

Physical processes CLO C
(2)
0 C

(2)
1 C

(2)
24 C

(2)
35

1 D0K− → D0K− 1 M2
K −M2

K 1 1
2 D+K+

→ D+K+ 0 M2
K 0 1 0

3 D+π+
→ D+π+ 1 M2

π −M2
π 1 1

4 D+η→ D+η 0 M2
η −1

3 M2
π 1 1

3
5 D+

s K+
→ D+

s K+ 1 M2
K −M2

K 1 1
6 D+

s η→ D+
s η 0 M2

η
4
3

(
M2
π − 2M2

K

)
1 4

3
7 D+

s π
0
→ D+

s π
0 0 M2

π 0 1 0
8 D0η→ D0π0 0 0 − 1√

3
M2
π 0 1√

3
9 D+

s K− → D0π0
− 1√

2
0 − 1

2
√

2

(
M2

K + M2
π

)
0 1√

2

10 D+
s K− → D0η −

√
3
2 0 1

2
√

6

(
5M2

K − 3M2
π

)
0 − 1√

6

Table 5.2: The coefficients in the NNLO tree-level amplitudes of the 10 relevant physical processes.

physical process C
(3)
1a C

(3)
1b C

(3)
23

1 D0K− → D0K− M2
K 0 1

2 D+K+
→ D+K+ 0 0 0

3 D+π+
→ D+π+ M2

π 0 1
4 D+η→ D+η 0 0 0
5 D+

s K+
→ D+

s K+ M2
K 0 1

6 D+
s η→ D+

s η 0 0 0
7 D+

s π
0
→ D+

s π
0 0 0 0

8 D0η→ D0π0 0 0 0
9 D+

s K− → D0π0
− 1√

2
M2

K
1√
2

(
M2

K − M2
π

)
− 1√

2

10 D+
s K− → D0η −

√
3
2 M2

K
1√
6

(
M2
π − M2

K

)
−

√
3
2

Finally, the tree-level amplitude at O(p3) reads

A
(3)(s, t, u) =

1

F2
0

{
4g1

[
C

(3)
1a (p1 + p3) · (p2 + p4) + C

(3)
1b (p1 + p3) · p2

]
+ 4C(3)

23 G23(s, t, u)
}
, (5.41)

with

G23(s, t, u) = −g2 p2 · p4(p1 + p3) · (p2 + p4)

+2g3
[
(p1 · p2)(p1 · p4)p1 · (p2 + p4) + (p1 → p3)

]
. (5.42)

The corresponding coefficients can be found in Table 5.2. The C(3)
1b term survives only for inelastic

scattering processes.
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5.2.2 One-loop contribution

The one-loop connected graphs for D-φ scattering are shown in the second line of Fig. 5.3. All the
vertices in the loop graphs originate from the Lagrangians L(1)

Dφ and L(2)
φφ which are free of unknown

LECs. Similar to the tree-level amplitudes, it suffices to calculate the loop amplitudes for the 10 physical
processes. They read

A
loop
D0K−→D0K−

(s, t) =
1

16F4

{
F

(DK)
DK (s, t) + 2F (DK)

DK (u, t) +
3
2
F

(Dsη)
DK (u, t)

+
1
2
F

(Dsπ)
DK (u, t) + (s − u)

(
Iη + 2IK + Iπ

)
−4(s − u)

[
J

00
π (t) + 2J00

K (t)
] }
,

A
loop
D+K+

→D+K+(s, t) =
1

16F4

{
F

(Dsπ)
DK (s, t) + F

(DK)
DK (u, t) − 4(s − u)

[
J

00
π (t) − J00

K (t)
]}
,

A
loop
D+π+

→D+π+(s, t) =
1

16F4

{
F

(Dπ)
Dπ (s, t) + 3F (Dπ)

Dπ (u, t) + F
(DsK)
Dπ (u, t)

+
4
3

(s − u)
(
2Iπ + IK

)
− 4(s − u)

[
2J00

π (t) +J
00
K (t)

] }
,

A
loop
D+η→D+η

(s, t) =
1

16F4

[
3
2
F

(DsK)
Dη (s, t) +

3
2
F

(DsK)
Dη (u, t)

]
,

A
loop
D+

s K+
→D+

s K+(s, t) =
1

16F4

[
F

(DsK)
DsK (s, t) + F

(DsK)
DsK (u, t) +

3
2
F

(Dη)
DsK (u, t)

+
3
2
F

(Dπ)
DsK (u, t) + (s − u)

(
Iη + 2I + Iπ

)
−12(s − u)J00

K (t)
]
,

A
loop
D+

s η→D+
s η

(s, t) =
1

16F4

[
3F (DK)

Dsη
(s, t) + 3F (DK)

Dsη
(u, t)

]
,

A
loop
D+

s π
0
→D+

s π
0(s, t) =

1

16F4

[
F

(DK)
Dsπ

(s, t) + F
(DK)
Dsπ

(u, t)
]
,

A
loop
D0η→D0π0(s, t) =

√
3

64F4

[
F

(DsK)
Dη (s, t) + F

(DsK)
Dπ (s, t) + 2G(DsK)

Dη,Dπ(s, t) + (s↔ u)
]
, (5.43)

A
loop
D+

s K−→D0π0(s, t) =

√
2

16F4

{1
2

[
F

(Dπ)
DsK (s, t) + F

(Dπ)
Dπ (s, t) + 2G(Dπ)

DsK,Dπ(s, t)
]

+
1
4

[
F

(DsK)
DsK (s, t) + F

(DsK)
Dπ (s, t) + 2G(DsK)

DsK,Dπ(s, t)
]

−
s − u
12

(
3Iη + 11Iπ + 10IK

)
+

∆DsD

24

(
3Iη − 5Iπ + 2IK

)
−

(
1
K

(ηK)
DsK,Dπ(s, t) +

2
K

(ηK)
DsK,Dπ(s, t)

)
−

(
5
3

1
K

(Kπ)
DsK,Dπ(s, t) +

2
K

(Kπ)
DsK,Dπ(s, t)

) }
, (5.44)
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and

A
loop
D+

s K−→D0η
(s, t) =

√
6

16F4

{1
4

(
F

(DsK)
DsK (s, t) + F

(DsK)
Dη (s, t) + 2G(DsK)

DsK,Dη(s, t)
)

−
1
2

(
F

(DK)
DsK (u, t) + F

(DK)
Dη (u, t) + G

(DK)
DsK,Dη(u, t) + G

(DK)
Dsη,DK(u, t)

)
+

(
1
K

(Kπ)
DsK,Dη(s, t) − 2

K
(Kπ)
DsK,Dη(s, t)

)
−

(
1
K

(ηK)
DsK,Dη(s, t) +

2
K

(ηK)
DsK,Dη(s, t)

)
+

∆DsD

6
(5M2

η + 8M2
K − M2

π)
(
2H1

Kπ(t) +HKπ(t)
)

−
∆DsD

3
(M2

η − 4M2
K + M2

π)
(
2H1

ηK(t) +HηK(t)
)

+
∆DsD

8

(
Iη + Iπ − 2IK

)
−

s − u
4

(
Iη + Iπ + 6IK

) }
, (5.45)

where we have defined ∆ab = M2
a − M2

b , Σab = M2
a + M2

b ,

F
(cd)

ab (s, t) =
[
3(s − M2

a) + (s − M2
c )

]
I −

(
s − Σbc

)2
Hcd(s) + 2

(
t − 2M2

b

)
H

00
cd (s)

+2
(
s − ∆ab

) (
s − Σbc

)
H

1
cd(s) −

(
s − ∆ab

)2
H

11
cd (s) , (5.46)

G
(e f )
ab,cd(s, t) =

1
2

∆
2
bdHe f (s) +

1
2

(
∆ac − ∆bd

)2
H

11
e f (s) − ∆bd

(
∆ac − ∆bd

)
H

1
e f (s),

1
K

(e f )
ab,cd(s, t) = ∆ac

{
1
2
I f +

1
2

t
[
He f (t) +H

1
e f (t)

]
−H

00
e f (t) − tH11

e f (t)
}
,

2
K

(e f )
ab,cd(s, t) = −3(s − u)H00

e f (t) − ∆ac

[1
6

(6Σde + 6∆d f − 13∆bd)H1
e f (t)

+
1
6

(3Σde + 3∆d f − 2∆bd)He f (t) − 3∆bdH
11
e f (t)

]
, (5.47)

and

Ia =
1

16π2 A0(M2
a),

H
tensor
ab (s) =

1

16π2 Btensor(s,M2
a ,M

2
b),

J
tensor
a (s) =

1

16π2 Btensor(s,M2
a ,M

2
a), (5.48)

with A0(m2) and Btensor(s,m2
1,m

2
2) the standard loop functions in Appendix A.

5.2.3 Renormalization

In the previous sections, the 1PI Feynman graphs are all calculated, which are related to the so-called am-
putated amplitudes. To derive the S -matrix elements, one should perform wave function renormalization.
Moreover, in the end, all the bare parameters should be replaced by the corresponding physical ones.
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Wave function renormalization

To perform the wave function renormalization, one multiplies the external lines with the square roots of
the wave function renormalization constants of the corresponding fields and takes them on the mass shell.
In perturbation theory, if the calculation is done up to a certain order (up to O(p3) in our case), the wave
function renormalization is equivalent to taking the graphs in Fig. 5.4 into account. All the higher order
contributions beyond the required accuracy are ignored.

+ + +

Figure 5.4: Feynman diagrams for the wave function renormalization at O(p3).

Hence, when taking wave function renormalization into consideration, the scattering amplitude
becomes

A(s, t) = A
(1)
tree(s, t) +A

(2)
tree(s, t) +A

(3)
tree(s, t) +A

(3)
loop(s, t) +A

(3)
wf (s, t) . (5.49)

The first three terms are tree contribution given in Section 5.2.1, while the fourth term is the loop
contribution discussed in Section 5.2.2. The last termAwf(s, t) corresponds to the contribution from the
wave function renormalization. It can be obtained from the LO amplitude in combination with the wave
function renormalization constants. For instance, considering the scattering process D1φ1 → D2φ2, it is
given by

A
(3)
wf (s, t) =

1
2

(δZD1
+ δZφ1

+ δZD2
+ δZφ2

)A(1)
tree(s, t) , (5.50)

with δZ = Z− 1 andZ is the wave function renormalization constant up to the order considered. To
be explicit, the wave function renormalization constants for D and Ds are ZD = ZDs

= 1 and for the
Goldstone bosons are

Zπ = 1 −
1

F2
0

[
8L4(2M2

K + M2
π) + 8L5M2

π +
1
3
IK +

2
3
Iπ

]
,

ZK = 1 −
1

F2
0

[
8L4(2M2

K + M2
π) + 8L5M2

K +
1
2
IK +

1
4
Iπ +

1
4
Iη

]
,

Zη = 1 −
1

F2
0

[
8L4(2M2

K + M2
π) +

8
3

L5(4M2
K − M2

π) + IK

]
, (5.51)

Note that in the above expressions, the UV divergence of the loop functions is not subtracted on purpose.
This is due to the fact that the Z’s are not physical observables such that they might be divergent,
namely the LECs L4 and L5 are not sufficient to absorb the UV divergence in those expressions. The UV
divergence cancellation as well as the PCB terms absorption will be discussed in the following section at
the level of the S -matrix elements. As one will see, the S -matrix elements are free of any divergence.
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5.2 D-φ interactions in ChPT for spinless matter fields

Extended-On-Mass-Shell subtraction scheme

The loop integrals in the amplitude shown in Eq. (5.49) is UV divergent, and we need renormalization to
absorb the divergences by counterterms. Moreover, PCB terms show up in the chiral expansion if we
use dimensional regularization with the MS scheme. It is necessary to get rid of them to have a good
power counting. We will use the EOMS subtraction scheme which has the proper analyticity and correct
power counting for the amplitudes. The essence of the EOMS scheme is to perform two subsequent
subtractions: the MS subtraction and the EOMS finite subtraction.

In the MS subtraction, the UV divergent parts are extracted and then cancelled by the divergences in
the bare LECs, which are separated into finite and divergent parts as follows:

hi = hr
i (µ) +

αi

16π2F2
0

R , g j = gr
j(µ) +

β j

16π2F2
0

R , Lk = Lr
k(µ) +

Γk

32π2 R , (5.52)

where R = 2
d−4 +γE −1− ln(4π), with γE the Euler constant, and d is the number of space-time dimension.

The coefficients αi (i = 0, · · · , 5), β j ( j = 1, 2, 3) and Γk (k = 4, 5) are given by (4.46)

α0 = 0, α1 = 0, α2 =
M2

0

48
, α3 = −

M2
0

16
, α4 =

7
24
, α5 = −

7
16
,

β1 = 0, β2 = −
9

128
, β3 = 0, Γ4 =

1
8
, Γ5 =

3
8
.

Eventually, the PCB terms are absorbed by decomposing the MS-renormalized LECs in the O(p2)
Lagrangian via

hr
i (µ) = h̃i +

δi

16π2F2
0

M2
0 , (5.53)

with the coefficient δi (i = 0, · · · , 5) defined by

δ0 = δ1 = 0 , δ2 = −
1
72

+
1

48
log

M2
0

µ2 , δ3 =
1

24
−

1
16

log
M2

0

µ2 ,

δ4 = −
35

72M2
0

+
7

24M2
0

log
M2

0

µ2 , δ5 =
35

48M2
0

−
7

16M2
0

log
M2

0

µ2 . (5.54)

They can be read off from Eq. (4.69) by setting N = 3. The other LECs such as gr
j(µ) and Lr

k(µ) are
untouched when performing the finite EOMS subtraction. The PCB part of the LECs (5.54) is equivalent
to replacing the loop functions F (cd)

ab (s, t) in Eq. (5.46) by F (cd)
ab (s, t)PCB in the amplitudes and then

performing the chiral expansion with respect to the chiral quantities. The power counting breaking term
of F (cd)

ab (s, t) is of O(p2) and its explicit form reads

F
(cd)

ab (s, t)PCB
=

1

16π2

2(s − M2
a)(s − M2

c )
1
2

log
M2

c

µ2 − 1
 − (s − M2

a)2
8
9
−

1
3

log
M2

c

µ2


−(s − Mc)2

1 − log
M2

c

µ2

 + 2(t − 2M2
b)M2

c

1
9
−

1
6

log
M2

c

µ2

 . (5.55)

As a consequence, one can simply obtain the amplitudes both free of UV divergences and PCB by
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Chapter 5 One-loop analysis of interactions between D mesons and Goldstone bosons

replacing the functions F (cd)
ab (s, t) by F (cd)

ab (s, t) − F (cd)
ab (s, t)PCB and ignoring the UV divergence, i.e.

terms proportial to R, in loop functions. After the two steps described above, we have obtained the full
renormalized amplitudes. For the sake of easy practical usage, the chiral-limit D meson mass M0 and
the chiral-limit decay constant F0 should be further related to the corresponding physical quantities
according to the following expressions:

M2
D = M0

2
+ 2 (h0 + h1)M2

π + 4 h0 M2
K , (5.56)

M2
Ds

= M0
2

+ 2 (h0 − h1)M2
π + 4 (h0 + h1)M2

K , (5.57)

Fπ = F0 +
1

2F0

(
2Ir

π + I
r
K
)

+
4M2

π

F0

(
Lr

4 + Lr
5
)

+
8M2

K

F0
Lr

4 . (5.58)

Here, we rewrite F0 in terms of Fπ rather than FK and Fη. This is the convention to be used throughout.
Alternatively, one can also rewrite it in terms of FK or Fη, and the difference is of higher order. The loop
functions and LECs with a superscript r stand for their finite parts, namely, the contributions proportional
to the UV divergence R are removed.

5.2.4 Unitarization

To study the nonperturbative effect, we unitarize the obtained amplitudes Eq. (5.49). Phenomenologically,
it is now well-known that the unitarized amplitudes can well describe the scattering data for the pion and
kaon systems up to 1.2 GeV, see e.g. Refs. [131, 132]. The unitarization is equivalent to a resumation of
the s-channel potentials, and can extend the applicable energy range of the perturbative amplitudes. We
thus expect that these amplitudes allow for a description of the lattice data at pion masses higher than the
conventional ChPT. Yet, there is no rigorous proof a priori. For varying the quark masses (or equivalently
the masses of the Goldstone bosons), it provides a way to performing the chiral extrapolation of lattice
simulation results or studying the quark mass dependence of physical quantities.

Before unitarization, the partial wave projection to S -wave is performed

A
(S ,I)
`

(s)D1φ1→D2φ2
=

1
2

∫ 1

−1
d cos θ P`(cos θ)A(S ,I)

D1φ1→D2φ2
(s, t(s, cos θ)) , (5.59)

with ` = 0. Here, the Mandelstam variable t is expressed in terms of s and the scattering angle θ, i.e.
Eq. (5.4). From Eq. (5.4), one sees that at each of the thresholds of D1φ1 and D2φ2, i.e. when s takes
one of the following two values

s1 = (MD1
+ Mφ1

)2 , s2 = (MD2
+ Mφ2

)2 , (5.60)

t is independent of cos θ. Taking s = s1 for instance, the S -wave amplitude becomes

A
(S ,I)
`=0 (s1)D1φ1→D2φ2

= A
(S ,I)
D1φ1→D2φ2

(s1, t(s1)) . (5.61)

This means that the S -wave amplitude at threshold can be obtained directly from the full amplitude by
setting the energy squared at its threshold value. However, note that this simple recipe can only be used
for the single channel case. For coupled channels, it is necessary to perform the partial wave projection
using Eq. (5.59). Before unitarization, it is helpful to use matrix notation to denote the partial wave
amplitudes with definite strangeness S and isospin I. In the matrix notation, the subscript D1φ1 → D2φ2
is redundant. For single channels, this is apparent since the process is specified uniquely by (S , I). For
coupled channels, taking (S , I) = (1, 1) for example, there are four processes: Dsπ→ Dsπ, DK → DK,
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5.2 D-φ interactions in ChPT for spinless matter fields

DK → Dsπ and its time reversal process. Using time reversal invariance, one can write

A
(1,1)
`

(s) =

A(1,1)
`

(s)Dsπ→Dsπ
A

(1,1)
`

(s)DK→Dsπ

A
(1,1)
`

(s)DK→Dsπ
A

(1,1)
`

(s)DK→DK

 . (5.62)

Later on, we will refer to the amplitudes for a given process in the isospin basis by A(S ,I)
`

(s)i j, with i
and j being channel indices. Unitarization of the scattering amplitudes will be discussed in the matrix
notation in the following.

In the present work, we will consider two different versions of unitarization for the sake of comparison
and for quantifying the inherent model-dependence of such approaches. For the sake of simplicity and
generality, all the quantum number indices of the amplitudes such as S , I and ` will be suppressed in this
section. That is to say T ,A, and N, which will appear later on, are T (S ,I)

`
,A(S ,I)

`
and N(S ,I)

`
, respectively,

for our case.

The first approach we will use is the one proposed in Ref. [90], which is denoted by UChPT throughout
this paper. The unitarized two-body scattering amplitude has the form [90]

T (s) = [1 − N(s) ·G(s)]−1
· N(s), (5.63)

where the function G(s) encodes the two-body right-hand cut and is given by the two-point loop function

G(s)i = i
∫

d4q

(2π)4

1

(q2
− M2

Di
+ iε)((P − q)2

− M2
φi

+ iε)
, s ≡ P2 . (5.64)

Note that G(s)i is counted as O(p) and its explicit expression is

G(s)i =
1

16π2

{
a(µ) + ln

M2
Di

µ2 +
s − M2

Di
+ M2

φi

2s
ln

M2
φi

M2
Di

+
σi

2s
[
ln

(
s − M2

φi
+ M2

Di
+ σi

)
− ln

(
−s + M2

φi
− M2

Di
+ σi

)
+ ln

(
s + M2

φi
− M2

Di
+ σi

)
− ln

(
−s − M2

φi
+ M2

Di
+ σi

)]}
, (5.65)

with σi = {[s − (Mφi
+ MDi

)2][s − (Mφi
− MDi

)2]}1/2 and µ the renormalization scale. One can define a

µ-independent parameter ã ≡ a(µ)+ ln
(
M2

Di
/µ2

)
, since a change of µ in the logarithm can be compensated

by a(µ). Notice that the parameter ã in G(s) of Eq. (5.65) cannot be absorbed by redefining the LECs. It
is introduced through the dispersion integral along the right-hand cut, and is a free parameter in principle.
The only constraint here is from the requirement of a proper power counting: while all other terms
in Eq. (5.65) are of order O(p), ã should be much smaller than 1 so that its presence will not cause a
breaking of the power counting if we expand the resumed amplitude to a certain order, i.e. ã = O(p).

While the right-hand cut effect is collected in the G(s) function, the N(s) function is free of any
two-body right-hand cut. It, however, may include the left-hand cuts due to the crossed channels. Up to
NNLO, i.e. leading one-loop order, the amplitudes Eq. (5.49) contains right-hand cuts which come from
s-channel loops, thus can not serve as the kernel N(s). The kernel N(s) can be obtained perturbatively by
matching to the standard ChPT amplitudes order by order. It is easy to find

N(s) = A
(1)(s) +A

(2)(s) +A
(3)(s) −A(1)(s) ·G(s) · A(1)(s), (5.66)
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Chapter 5 One-loop analysis of interactions between D mesons and Goldstone bosons

whereA(n)(s) stand for the partial wave amplitudes from the perturbative calculation with the superscript
n denoting the chiral order. Notice that the right hand cut from the NNLO amplitude is subtracted in the
last term in order to avoid double counting in the unitarization.

The second approach to unitarize amplitudes is the inverse amplitde method (IAM) [81, 132, 133], or
see Sec. 3.3. In our case, the IAM unitarized amplitude has the form

T (s) = T̃ (1)(s) ·
[
T̃ (1)(s) − T̃ (2)(s)

]−1
· T̃ (1)(s), (5.67)

where

T̃ (1)(s) ≡ A(1)(s) , T̃ (2)(s) ≡ A(2)(s) +A
(3)(s) . (5.68)

The above assignments guarantee that the unitarized amplitudes exactly obey unitarity when the perturb-
atively unitary equations are employed, i.e.,

ImA(1)(s) = 0 , ImA(2)(s) = 0 , ImA(3)(s) = A
(1)(s) ρ̃(s)A(1)(s)† , (5.69)

with ρ̃(s) = diag{ρ̃(s)i}, ρ̃(s)i = −qi/(8π
√

s) and qi is the magnitude of the c.m. three-momentum in the
ith channel.

5.3 Numerical analysis

5.3.1 Scattering lengths and pion mass dependence

Given definite strangeness S and isospin I, the S -wave scattering lengths of the ith channel are related to
the diagonal elements of the T -matrix, 4

a(S ,I)
i = −

1
8π(MDi

+ Mφi
)
T (S ,I)
`=0 (sth)ii , sth = (MDi

+ Mφi
)2 . (5.70)

Here, MDi
and Mφi

denote the masses of the charmed meson and Goldstone boson φ in the channel i,
respectively, and T (S ,I)

`=0 (sth) stands for the S -wave unitarized amplitude at threshold using either UChPT
given by Eq. (5.63) or IAM given by Eq. (5.67).

Due to the short lifetime of the charmed meson, there are no experimental data for D-φ scattering
lengths. Nevertheless, lattice QCD calculations in the last a few years provide very valuable information
on the interaction between the charmed mesons and light pseudoscalar mesons [29, 98–100]. Since the
lattice calculations were performed at several unphysical pion masses, in order to describe these lattice
data, one should know the pion mass dependence of the scattering lengths. This is achieved by replacing
all the quantities in the expressions by the pion mass dependent ones. For the involved meson masses, we
have

MK =

√
M̊2

K + M2
π/2 , MD = M̊D + (h1 + 2h0)

M2
π

M̊D

, MDs
= M̊Ds

+ 2h0
M2
π

M̊Ds

. (5.71)

Note that all the formulae shown above are of NLO for the pion mass dependence. 5 Here the LEC h1

4 We are using the sign convention such that the scattering length for a repulsive interaction is negative.
5 In Eq. (5.71), although the formula we used for the kaon mass is a LO expression in S U(3) ChPT, it contains two parts:

the part ∼ M̊2
K proportional to B0ms remains in the S U(2) chiral limit and is regarded as a LO contribution of the pion mass
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can be fixed by the mass difference between D and Ds. Using these two equations, one has [28]

h1 =
M2

Ds
− M2

D

4(M2
K − M2

π)
= 0.4266 , (5.72)

where the physical values for the meson masses are used, i.e., Mπ = 138 MeV, MK = 496 MeV,
MD = 1867 MeV and MDs

= 1968 MeV.6 The pion decay constant should also be substituted by [16]

Fπ = F0

1 − 2µπ − µK +
4M2

π

F2
0

[
Lr

4(µ) + Lr
5(µ)

]
+

8M2
K

F2
0

Lr
4(µ)

 , (5.73)

where MK is understood as the one in Eq. (5.71), and µφ is a scale dependent function for the Goldstone
boson φ

µφ =
M2
φ

32π2F2
0

ln
M2
φ

µ2 . (5.74)

So far, except for h1, the LECs Lr
4, Lr

5 and h0 and the chiral limit quantities M̊K , M̊D, M̊Ds
and F0 are

all unknown. Since we will fit to the lattice results on the scattering lengths calculated in Ref. [29], we
choose to fix the above mentioned quantities from fitting to the lattice data calculated using the same
gauge configurations. In addition, the kaon decay constant FK data are also included to have a bigger
data set for fixing F0 and Lr

4,5. The pion mass dependence of FK is given by [16]

FK = F0

{
1 −

3
4

(
µπ + 2µK + µη

)
+

4M2
π

F2
0

Lr
4(µ) +

4M2
K

F2
0

[
2Lr

4(µ) + Lr
5(µ)

] }
, (5.75)

with M2
η = (4M2

K − M2
π)/3 and MK given by Eq. (5.71).

The lattice data for MK , MD and MDs
are taken from Ref. [29]. There are four data sets for each

quantity, corresponding to the four ensembles (labelled by M007, M010, M020 and M030) with pion
mass approximately 301.1 MeV, 363.8 MeV, 511.0 MeV and 617.0 MeV, in order. Since the same
ensembles are employed in Ref. [134], we take the data for fπ and fK from Ref. [134], where fπ =

√
2Fπ

and fK =
√

2FK . Those lattice data are well described as shown in Fig. 5.5 7 when the parameters take
the values given in Table 5.3. Our fitting values for Lr

4,5 are consistent with the determinations given in
Refs. [135, 136]. Therein, the values are obtained at µ = Mη, and the corresponding values transformed
to µ = Mρ can be found in Ref. [137].

5.3.2 Fits to lattice data on the scattering lengths

Introduction to the fitting procedure

Since all the necessary preparations are completed, we proceed to the description of the lattice QCD data
of the S -wave scattering lengths. There are two points to be discussed before carrying out the fits.

dependence, while the part related to B0mu/d ∼ M2
π/2 vanishes in the S U(2) chiral limit and is thus a NLO contribution. In

this sense, we spelled out the pion mass dependence for all of the masses and decay constants consistently up to the order M2
π .

6 The mass of the η is always expressed in terms of Mπ and MK through the Gell-Mann–Okubo mass relation, 3 M2
η = 4M2

K−M2
π .

7 We have neglected the subtleties due to the use of mixed action gauge configurations in the lattice calculations, which in
principle requires to use the partially quenched ChPT instead of the standard one for the chiral extrapolation, and the effect of
finite lattice spacing, see Ref. [134].
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Figure 5.5: Chiral extrapolation of masses and decay constants. All the lattice data are obtained from the same
ensembles, namely M007-M030. Data for MK , MD and MDs

is taken from Ref. [29] and the one for Fπ and FK
from Ref. [134]. Except for MDs

, the data errors are so tiny that we do not show them explicitly in the plots. The
vertical dashed line corresponds to the physical pion mass.

Table 5.3: Parameters for chiral extrapolation. Lr
4 and Lr

5 are obtained at µ = Mρ (= 775.5 MeV). The masses and
decay constant in the chiral limit are in units of MeV. h0 and h1 and dimensionless. The asterisk marks an input
value.

M̊K M̊D M̊Ds
h0 h1 F0 103

· Lr
4 103

· Lr
5

560.41 1940.4 2061.2 0.0172 0.4266∗ 73.31 0.0095 1.3264

The first one is related to the lattice data. From Ref. [29], 20 data for 5 channels are available.
Amongst the five channels, the Dsπ with (S , I) = (1, 1) can actually couple the isovector DK channel
while the other four are single channels. Although in Ref. [29] only the Dsπ interpolating operator was
constructed and used, the propagation of all the quarks should know about the presence of the coupled
DK channel with (S , I) = (1, 1) because the channel-coupling in this case does not require disconnected
Wick contractions which were not included in Ref. [29]. Thus, we will describe the Dsπ data using a
coupled-channel unitarized amplitude.

In addition, lattice QCD results were published in the last two years for two more channels: Dπ
with (S , I) = (0, 1/2) [99] and DK with (S , I) = (1, 0) [100]. These channels are more difficult since
both of them involve disconnected Wick contractions, 8 but they are also more interesting as they can
provide valuable information for the lightest scalar charmed mesons in the corresponding channels.
The calculation for the Dπ scattering was performed using N f = 2 gauge configurations, and the DK
calculation has results from both N f = 2 and N f = 2 + 1 gauge configurations. Because the amplitudes
derived here are based on S U(3) ChPT, we will only include in the fits the new result with N f = 2 + 1,
i.e. a(1,0)

DK→DK = −1.33(20) fm obtained at Mπ = 156 MeV, and the unitarized amplitude used in the fits

8 It is shown in Ref. [138] that as long as the singly disconnected Wick contractions contribute, which is the case for the
isoscalar DK channel, they are of LO in both the 1/Nc and chiral expansion. Therefore, they cannot be neglected.
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is obtained including the Dsη coupled channel. Notice that these new lattice calculations use gauge
configurations and actions different from those in Ref. [29], the chiral-limit masses for the kaon and
charmed mesons should take different values from those given in Table 5.3. Because the physical masses
of the involved ground state mesons such as the kaon and charmed mesons were reproduced rather well
with the lattice setup used in Ref. [100] (for details, see Ref. [101]), the chiral-limit values of the involved
meson masses and F0 are determined by requiring them to coincide with the corresponding phyiscal
values at the physical pion mass, namely, M̊K = 486.3 MeV, M̊D = 1862.3 MeV, M̊Ds

= 1967.7 MeV
and F0 = 76.23 MeV. The values for the LECs in the extrapolating expressions of these quantities are the
same as those listed in Table 5.3.

The other point concerns the LECs to be determined. There are 7 unknown LECs in total: h2, h3,
h4, h5, g1, g2 and g3. As mentioned in Ref. [29], h2 (h3) and h4 (h5) are largely correlated. Therefore,
redefinitions of the LECs are employed to reduce these correlations, which are

h24 = h2 + h′4 , h35 = h3 + 2 h′5 , h′4 = h4M̄2
D , h′5 = h5M̄2

D. (5.76)

The new parameters h24, h35, h′4 and h′5 will be determined in our fits. The average of the physical masses
of the charmed D and Ds mesons, M̄D = (Mphy

D + Mphy
Ds

)/2, is introduced to make the four new parameters
dimensionless. Similarly, for the LECs from the NNLO contact terms, g2 and g3 are largely correlated
with each other, and it is better to redefine these LECs as

g23 = g′2 − 2g′3 , g′1 = g1M̄D , g′2 = g2M̄D , g′3 = g3M̄3
D. (5.77)

The parameters g′1, g23 and g′3 have a dimension of inverse mass and will be fixed from fitting to the
lattice data. One can fix g′1 and g23 separately only when the coupled-channel unitarized amplitudes
are used, i.e. from fitting to the lattice results of the Dsπ and the isoscalar DK scattering lengths. The
single-channel unitarized amplitudes is only sensitive to the combination g123 = g23 − g

′
1, instead of g′1

and g23 separately, and g′3.

Results

We will try different fit procedures. In the fit UChPT-6(a), all of the 20 data points for 5 channels, with
pion masses from 301 MeV up to 617 MeV, in Ref. [29] as well as the N f = 2 + 1 datum for the isoscalar
DK channel, with an almost physical pion mass of 156 MeV, in Ref. [100] are taken into consideration.
We notice that there are two possibilities for a scattering length to be negative in our sign convention: a
repulsive interaction, and an attractive interaction with a bound state pole below the threshold. In the
(S , I) = (1, 0) channel, there is the well-known state D∗s0(2317) below the DK threshold which was not
included as an explicit degree of freedom in our theory. Because the number of data is small but the
number of parameters is large, a direct fit to these lattice data might result in solutions which are not
physically acceptable. For instance, within the range of the parameters of a direct fit, the (S , I) = (1, 0)
DK channel could even be repulsive which is reflected by the fact that the kernel of the unitarized
amplitude takes a positive value at the threshold. Given that the LO interaction in the corresponding DK
channel is the most attractive one among all the charmed meson–Goldstone boson scattering processes,
see Table II in Ref. [29] for instance, we regard such a situation as unacceptable. Therefore, we put
a constraint by hand requiring that when all the particles take their physical values there is a bound
state pole in the (S , I) = (1, 0) channel at 2317 MeV. Following Ref. [29], this is done by adjusting the
subtraction constant ã in the loop function G(s) in the unitarized amplitude, Eq. (5.63), to produce the
pole at the right position. The resulting values of the LECs from the fit are shown in Table 6.3.

However, a pion mass larger than 600 MeV is definitely too large for the chiral extrapolation using
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Chapter 5 One-loop analysis of interactions between D mesons and Goldstone bosons

Table 5.4: Values of the LECs from the 6-channel fits using the method of UChPT. The hi’s are dimensionless, and
the g′1, g23 and g′3 are in GeV−1.

UChPT-6(a) UChPT-6(b) UChPT-6(a′) UChPT-6(b′)
no prior no prior with prior with prior

h24 0.79+0.10
−0.09 0.76+0.10

−0.09 0.83+0.11
−0.10 0.80+0.10

−0.10
h35 0.73+0.50

−0.38 0.81+0.95
−0.62 0.43+0.23

−0.23 0.40+0.33
−0.29

h′4 −1.49+0.55
−0.57 −1.56+0.61

−0.65 −1.33+0.60
−0.60 −1.72+0.64

−0.63
h′5 −11.47+2.24

−2.79 −15.38+4.81
−7.20 −4.25+0.65

−0.66 −2.60+0.84
−0.87

g′1 −1.66+0.31
−1.59 −2.44+0.57

−0.64 −1.10+0.18
−0.23 −1.90+0.58

−0.35
g23 −1.24+0.28

−1.51 −2.00+0.52
−0.51 −0.70+0.19

−0.24 −1.48+0.61
−0.37

g′3 2.12+0.55
−0.45 2.85+1.41

−0.96 0.98+0.15
−0.14 0.58+0.20

−0.19

χ2/d.o.f. 31.52
21−7 = 2.25 13.43

16−7 = 1.49 77.72−23.34
21−7 = 3.88 51.71−16.60

16−7 = 3.90

the standard ChPT. The unitarized approach arguably has a larger convergence range than the standard
ChPT. But the range is not known a priori. Therefore, for the sake of comparison, we perform another fit,
denoted as UChPT-6(b), using the same method but excluding the lattice data at Mπ = 617 MeV. The
fit results are shown in the third column of Table 6.3. One can see that the values of all the LECs from
these two fits are similar, but those from UChPT-6(b) have larger uncertainties as a result of being less
constrained. The fit results from both fits are plotted in Fig. 5.6. The bands represent the variation of
the scattering lengths with respect to the LECs within 1-σ standard deviation. As we can see, both fits
describe the lattice data reasonably well with the exception that the isoscalar DK scattering length around
Mπ = 156 MeV is too large in comparison with the lattice result. However, both fits are consistent with
the N f = 2 lattice result for DK at a pion mass around 266 MeV which was not included in the fits. We
notice that the lattice ensemble for the Mπ = 156 MeV datum has a rather small volume with MπL ≈ 2.3.
It is a bit too small for Lüscher’s finite volume formalism to be strictly applicable, and thus this datum
might bear a large systematic uncertainty. The isospin-3/2 Dπ→ Dπ scattering length vanishes at the
chiral limit as required by chiral symmetry. Lattice discretization often breaks chiral symmetry. However,
due to the use of the domain-wall action for the valence quarks in the lattice calculation of the pionic
channels, the chiral behavior is protected in our case. For related discussions in mixed-action ChPT, we
refer to Refs. [139–142].

In both fits, the values of all the LECs except for h′5 turn out to be of a natural size. However, the
absolute value of the dimensionless LEC h′5 is too large to be natural. This means that the absolute value
of h′5 is so large that this single term would give a contribution larger than the LO amplitude. It would
spoil the convergence, and thus the perturbative expansion, at least for some quantities (although for
some other quantities, due to fine-tuned cancellation the sum of the NLO contribution could still be
much smaller than the LO one). Therefore, we try to constrain all the LECs to natural values following
Ref. [143] which discusses the use of the Bayesian method in effective field theories. Following that
paper, the so-called augmented chi-squared can be defined by 9

χ2
aug = χ2

+ χ2
prior , (5.78)

9 The method in Ref. [143] was only derived for the case that the dependence on the parameters to be fitted is linear. Although
our case is non-linear and thus the augmented χ2 lacks a strict statistical meaning, we still try this method as the χ2 defined in
this way comprises a "naturalness prior" so as to favor natural values for the LECs.
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Figure 5.6: Comparison of the results of the 6-channel fits (without a prior χ2) to the lattice data of the scattering
lengths. UχPT-6(a): solid blue line with red band, UχPT-6(b): dashed blue line with green band. The filled circles
are lattice results in Ref. [29], and the filled square (not included in the fits) and diamond are taken from Ref. [100].

where χ2 is the usual chi-squared used in the standard least chi-squared fit and χ2
prior is a prior chi-squared

encoding the naturalness requirement of the fit parameters. In our specific case, the χ2
prior is set to be the

sum of squares of the fit LECs. This means that we require the dimensionless LECs h(′)
i ’s to be O(1) and

g′i’s to be O(1 GeV−1). The results by minimizing the augmented chi-squared are listed in the last two
columns in Table 6.3, denoted as UChPT-6(a′) and UChPT-6(b′), where the values for χ2 are given with
χ2

prior subtracted. One sees that the value of h′5 gets more natural at the price of a larger χ2. A comparison
of the scattering lengths with the lattice data in various channels is given in Fig. 5.7, and one can see that
the lattice data in all six channels can still be described reasonably well.

It turns out that in all of these fits |h′5| > |h
′
4|, which is consistent with the Nc counting |h′4| =

O(|h′5|/Nc) [29]. The values of the hi’s are different from those obtained in Ref. [29]. The reason may
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Figure 5.7: Comparison of the results of the 6-channel fits (with a prior χ2) to the lattice data of the scattering
lengths. UχPT-6(a): solid blue line with red band, UχPT-6(b): dashed blue line with green band. The filled circles
are lattice results in Ref. [29], and the filled square (not included in the fits) and diamond are taken from Ref. [100].
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be attributed to the use of the EOMS scheme in this work, and all of h2,3,4,5 absorb a power counting
breaking contribution, see Eq. (5.53). For the case of the Dsπ, the scattering length does not vanish at
the limit of a vanishing pion mass. This is due to the presence of the DK-loop in the coupled-channel
amplitude which has a nonvanishing contribution in the S U(2) chiral limit. We have checked that the
elastic contribution tends to zero as Mπ approaches zero as required by chiral symmetry.

Table 5.5: Values of the LECs from the 4-channel fits using both the methods of UChPT and IAM. The hi’s are
dimensionless, and the g123 = g23 − g

′ and g′3 are in GeV−1.

UChPT-4 IAM-4
h24 0.50+0.09

−0.10 0.53+0.07
−0.07

h35 −0.89+0.93
−0.91 −0.59+1.04

−1.11
h′4 1.23+1.03

−1.08 0.64+0.66
−0.66

h′5 −3.09+4.69
−4.72 −6.08+6.05

−5.99
g123 0.18+0.18

−0.18 0.23+0.21
−0.22

g′3 1.01+0.87
−0.86 1.42+1.08

−1.10

χ2/d.o.f. 13.59
16−6 = 1.36 13.97

16−6 = 1.40

For comparison, we also perform fits with just the four single-channel data, i.e. the Dsπ and isoscalar
DK data are excluded. For this case, we use two different unitarization methods: UChPT, to be denoted
as UChPT-4, and IAM, to be denoted as IAM-4. We did not use the IAM approach in the 6-channel fits
because this approach is not suitable to unitarize a perturbative amplitude with a zero LO contribution.
As can be seen from Eq. (5.67), if the LO amplitude vanishes the unitarized one will vanish as well. This
happens to the case of the Dsπ. The UChPT approach is free of this problem. The results of these two
fits are compiled in Table 5.5. Notice that in this case g′1 and g23 cannot be determined separately, and
the effective combined parameter is g123 = g23 − g

′
1. One sees that the values of LECs from the fits using

different unitarization methods are consistent with each other, 10 but are only marginally consistent with
those in the 6-channel fits. In addition, the uncertainties are quite large. More lattice simulations are
apparently necessary to pin down the LEC values. A comparison of the results of the 4-channel fits to the
lattice data in these channels are plotted in Fig. 5.8.

For reference, the values for the scattering lengths extrapolated to the physical pion mass are presented
in Table 5.6. The chiral limit values in Table 5.3 are adopted for all the 16 channels when performing the
chiral extrapolation . Here we only show the results using the 6-channel fits to the data with the pion
mass up to 511 MeV, i.e. UChPT-6(b) and UChPT-6(b′). We notice that the numerical results of the
scattering lengths extrapolated to the physical pion masses in some channels differ from those obtained
in Ref. [29]. This could indicate that the uncertainties are underestimated as the S U(3) formalism for
UChPT was applied to pion masses higher than 500 MeV. We expect that the situation will improve when
lattice results at lower pion masses are availble.

10 However, not all of the LECs in these different unitarization methods ought to take the same values. One can see this
by expanding the IAM resummed amplitude up to O(p3). Considering the single channel case for simplicity, one has
TIAM(s) = A(1)(s) + A(2)(s) + A(3)(s) + [A(2)(s)]2/A(1)(s) + O(p4). It is different from that of UChPT, TUChPT(s) =

A
(1)(s) +A(2)(s) +A(3)(s) + O(p4). Thus, the LECs in the O(p3) Lagrangian could take different values.
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Figure 5.8: Comparison of the results of the 4-channel fits to the lattice data of the scattering lengths. UχPT-4:
solid red line with blue band, IAM-4: dashed red line with green band. The lattice data are taken from Ref. [29].

Table 5.6: Predictions of the scattering lengths at physical pion mass using the LECs determined in the 6-channel
fits UChPT-6(b) and UChPT-6(b′) in units of fm.

a(S ,I)
ii UChPT-6(b) UChPT-6(b′)

a(−1,0)
DK̄→DK̄

1.76+0.39
−0.31 0.93+0.15

−0.15

a(−1,1)
DK̄→DK̄

−0.40+0.01
−0.01 −0.45+0.01

−0.02

a
(0, 1

2 )
Dπ→Dπ 0.65+0.11

−0.09 0.42+0.04
−0.05

a
(0, 1

2 )
Dη→Dη −0.18+0.04

−0.04 + i 0.00+0.01
−0.00 −0.21+0.05

−0.04 + i 0.01+0.01
−0.01

a
(0, 1

2 )
DsK̄→DsK̄

−1.37+0.21
−0.04 + i 0.61+0.45

−0.02 −0.47+0.06
−0.07 + i 0.50+0.18

−0.16

a
(0, 3

2 )
Dπ→Dπ −0.14+0.01

−0.01 −0.15+0.01
−0.01

a(1,0)
DK→DK −1.04+0.06

−0.03 −1.50+0.13
−0.26

a(1,0)
Dsη→Dsη

−0.62+0.02
−0.03 + i 0.01+0.01

−0.00 −0.76+0.05
−0.05 + i 0.05+0.00

−0.01

a(1,1)
Dsπ→Dsπ

−0.01+0.01
−0.01 −0.01+0.01

−0.01

a(1,1)
DK→DK −1.11+0.23

−0.09 + i 0.77+0.27
−0.04 −0.82+0.59

−0.38 + i 1.64+0.01
−0.11

a
(2, 1

2 )
DsK→DsK −0.25+0.01

−0.02 −0.32+0.01
−0.01
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5.4 Dynamically generated resonances

5.4 Dynamically generated resonances

The unitary S -matrix could have poles in the complex energy (
√

s) plane in the region not far from
the relevant thresholds. Bound states and resonances are poles located on the physical and unphysical
Riemann sheets, respectively. Different Riemann sheets are characterized by the sign of the imaginary part
of the loop function on the right branch cuts. Each loop function Gi(s) has two sheets: the physical/first
Riemann sheet and the unphysical/second Riemann sheet, denoted as Gi

I(s) and Gi
II(s), respectively. The

expression in Eq. (5.65) defines the physical Riemann sheet, while the expression on the second sheet is
given by analytic continuation via [131]

Gi
II(s + iε) = Gi

I(s + iε) − 2i Im Gi
I(s + iε). (5.79)

For the n-channel case, there exist 2n Riemann sheets in total. Different sheets can be accessed by
properly choosing the loop functions Gi

I/II(s). We use the sign of the imaginary part of Gi(s) above
threshold to indicate the Gi

I/II(s). In this convention, for the coupled-channel case, the first Riemann
sheet is labelled as (+,+,+, . . .), while (−,+,+, . . .), (−,−,+, . . .), (−,−,−, . . .) and so on correspond to
the second, third, fourth, . . . sheets, respectively. Normally, at a given energy s, only the sheet which can
be reached from the physical one by crossing the branch cut from s + iε to s − iε between the thresholds
thrn−1 and thrn, has a significant impact on physical observables.

The physical meson masses and decay constant are employed in the pole searching, and the obtained
poles are listed in Table. 5.7. For the (S , I) = (1, 0) coupled-channel system, in addition to the pole at
√

s = 2.317 GeV on the physical sheet, which corresponds to D∗s0(2317) and was used as a condition to
constrain the parameters, using the central values of the parameters we also found a pair of poles with a
small but nonvanishing imaginary part on the second Riemann sheet,

√
s = (2.439± i0.01) GeV. The only

work which reported an analogous pole is Ref. [115], where a virtual state at
√

s = 2.356 GeV below DK
threshold on the second Riemann sheet was reported in an NLO calculation including DK,Dsη and Dsη

′

channels. We check whether such a pole exists using the parameters from the NLO fits in Ref. [29], and
found that only part of the allowed parameter space allows for the pole on the unphysical Riemann sheet.
Moreover, the effect of this virtual state pole located at

√
s = 2.356 GeV on the physical amplitude is

negligible in the NLO calculation, as can be seen from the left column of Fig. 5.9. However, the pole on
the second Riemann sheet in the NNLO calculation can have a non-negligible effect on specific physical
amplitudes, as shown in the right column of Fig. 5.9. These different behaviors are mainly due to different
locations of the poles. Nevertheless, we see that the lattice data on the scattering lengths are insufficient
to constrain the parameters, and as a result, calculations at different orders may even have a sizeable
discrepancy in amplitudes not far from thresholds. More lattice data on Dφ scattering observables are
needed to better pin down the LECs.

In addition, we also found a pair of poles
√

s = (2.534 ± i0.097) GeV on the second Riemann
sheet which are not included in Table 5.7. They have a negligible effect on physical amplitudes and
would disappear if the u- and t-channels are turned off. Likewise, we do not include the following
poles in Table 5.7 since they are located far from the physical region and have little effect: poles at
√

s = (2.448 ± i0.049) GeV and (2.267 ± i0.099) GeV on the third Riemann sheet for (S , I) = (1, 0) and
(1, 1), respectively; poles at (2.257 ± i0.018) GeV on the second Riemann sheet in the (−1, 0) DK̄ → DK̄
channel.

It is well-known that the unitarization approach, relying on right-hand unitarity and the on-shell
approximation, has the problem of violation of unitarity when the left-hand cut occurs in the on-shell
potential. For instance, the left-hand cut in the KK̄ → KK̄ amplitude leads a violation of unitarity for the
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Figure 5.9: Absolute values of amplitudes for (S , I) = (1, 0) in NLO and NNLO calculations, respectively.
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Table 5.7: Poles in the coupled-channel amplitudes based on UChPT-6(b) in Table 4 of Ref. [65]. Physical masses
and decay constants are used to obtain the poles. The Riemann sheets on which the poles are located are indicated
in the last column.

(S , I) Channel Thr(MeV) Re(MeV) Im(MeV) RS
(1, 0) DK → DK 2363 2317 0 I

Dsη→ Dsη 2535 2439 ±10 II
(1, 1) Dsπ→ Dsπ 2106 2378 ±19 II

DK → DK 2363

Table 5.8: Poles in the single-channel amplitudes based on UChPT-6(b) in Table 4 of Ref. [65]. Physical masses
are used to obtain the poles. The Riemann sheets on which the poles are located are indicated in the last column.

(S , I) Channel Thr(MeV) Re(MeV) Im(MeV) RS
(1, 0) DK → DK 2363 2277 0 I

2436 ±15 II
(0, 1/2) Dπ→ Dπ 2005 2107 ±82 II

ππ scattering in the ππ–KK̄ coupled-channel system [144, 145]. 11 The same unitarity violation happens
to the Dφ scattering with (S , I) = (0, 1/2), which has three coupled channels: Dπ, Dη and DsK̄. One of
the left-hand cuts from the inelastic channel DsK̄ → Dη amplitude, from (1.488 GeV)2 to (2.318 GeV)2,
overlaps with the right-hand cut starting from the Dπ threshold, which can be verified by the discontinuity
across the real axis below the Dπ threshold. Although this left-hand cut is not numerically important, its
presence together with other left-hand cuts and right-hand cuts make the whole real axis nonanalytic.
Since Eq. (5.63) was derived using the N/D method neglecting the left-hand cuts, its continuation to
the complex plane near the left-hand cut is untrustworthy. As a result, the coupled-channel amplitudes
obtained from Eq. (5.63) do not have the correct analytic properties even in the relevant energy region.
Consequently, a pair of pole at (2.046 ± i0.050) GeV are found on the first Riemann sheet for the
coupled-channel (S , I) = (0, 1/2) amplitude. As we know, poles on the first Riemann sheet can only
be located on the real axis below the lowest threshold, which are associated with bound states. A pole
on the first sheet with a nonvanishing imaginary part or above the lowest threshold is inconsistent with
causality. The appearance of the pole on the first sheet in the coupled-channel (S , I) = (0, 1/2) is due to
the existence of the coupled-channel cut. The left-hand cuts stem from the one-loop potentials, and are
absent in the NLO cases.

If we consider only the single-channel Dπ for (S , I) = (0, 1/2), there is no such a problem as it comes
from the left-hand cut of the inelastic channels. We searched for poles in the single-channel amplitude,
and found a pair of poles in the second Riemann sheet given in Table 5.8,12 corresponding to the lower
pole at (2.105 − i0.102) GeV of the two-pole structure of D∗0(2400) advocated in Ref. [123].

In addition, we also investigated the pole movements with varying pion masses. The pion mass
dependence trajectories of the poles can provide us with useful information about the properties of

11 As pointed out by Refs [144, 146], the unitarity violation is numerically small in the ππ–KK̄ case, hence no serious problem
was caused there.

12 Notice that the poles found in both the single-channel and coupled-channel unitarized NLO amplitudes are similar to each
other in Ref. [28].
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Chapter 5 One-loop analysis of interactions between D mesons and Goldstone bosons

the different states, as discussed, e.g., in Ref. [147]. The Mπ trajectory for the pole corresponding to
D∗s0(2317) is plotted in Fig. 5.10. The pole positions on the first Riemann sheet, which are identified as
the pole mass, are shown as the solid line. The dotted line stands for the trajectory of the DK threshold.
From Fig. 5.10, one can see that the D∗s0(2317) always stays below the corresponding DK threshold as a
bound state for a wide range of Mπ. The trajectory of D∗s0(2317) is quite similar to the NLO fit result, as
shown in Ref. [115].

Figure 5.10: The trajectory of the pole D∗s0(2317) with varying Mπ.

Figure 5.11: The trajectory of the pole around 2.1 GeV for the single-channel (S , I) = (0, 1/2) with varying Mπ.

On the contrary, the pion mass dependence trajectory of the pole around 2.1 GeV on the second
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5.4 Dynamically generated resonances

Riemann sheet for the single-channel (S , I) = (0, 1/2) in Table 5.8 is quite complicated, as shown in
Fig. 5.11. As the value of Mπ increases from MPhy

π , both the real and imaginary parts of the pole tend to
decrease on the second Riemann sheet. At some point around 3.2MPhy

π , the real part of the pole becomes
lower than the corresponding Dπ threshold. When Mπ increases to around 3.6MPhy

π , the pair of poles hits
the real axis below the threshold and these become two virtual states on the second Riemann sheet. If
we further increase the pion mass, one of the virtual poles would move along the real axis away from
the threshold, while the other one moves towards the threshold and becomes a bound state of the first
Riemann sheet at 3.8MPhy

π . If we keep increasing Mπ, both the virtual state and bound state move away
from the threshold along the real axis. The behavior of the pole is similar to the corresponding ones
in Refs. [28, 115] as well as the pion mass dependence of the f0(500) in Ref. [148]. It is a general
phenomenon for S -wave states.
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CHAPTER 6

Including vector charmed mesons

Heavy quark effective theory (HQEF), see Refs. [44–49] or Sec. 2.1.4, provides a successful way to
investigating physics of hadrons containing a single-heavy quark (c, d quark for instance). For the heavy
mesons, heavy quark spin symmetry implies that the pseudoscalar and vector mesons can be assigned to
the same multiplet. The Dφ interaction is of great importance in understanding the heavy-light meson
spectrum on one hand, and serves as a nice playground to combine heavy quark symmetry and chiral
symmetry on the other hand. The Dφ interaction can give guidance for D∗φ, Bφ and B∗φ interactions,
since similarities among them exist due to heavy quark spin and flavor symmetries [111–113]. Heavy
quark symmetries relate the pseudoscalar D mesons to the vector D∗ as well as to the bottom analogues.

The aim of this chapter is to present a full calculation of Dφ scattering using the EOMS scheme within
a manifestly Lorentz invariant chiral effective theory with explicit vector charmed mesons, to be denoted
as D∗, up to NNLO, i.e. the leading one-loop order. In Chapter 5, the Dφ scattering amplitudes are
presented up to NNLO in the absence of the D∗. A systematic calculation including the D∗ mesons is
given for the first time here. In order to judge the importance of the D∗, a selection of all the diagrams
which survives in the limit of heavy quark is used to fit to the lattice data. Then a complete calculation
including the D∗ mesons is then considered. It is important to check whether the full finite c-quark mass
effects, corresponding to including the D∗ which are degenerate with the D mesons in the heavy quark
limit, are sizeable.

6.1 Theoretical framework

6.1.1 Effective Lagrangian

To set up the effective Lagrangian, we first specify the corresponding power counting rules including
the charmed vector mesons D∗, which serve as spin-1 matter fields. They transform under the chiral
symmetry same to spinless matter fields (2.143),

D∗†µ → h(x)D∗†µ , D∗µ → D∗µh(x)−1. (6.1)

At low energies, the counting rules for the Goldstone bosons are same to that without D∗. The
nonvanishing masses of the D and D∗ in the chiral limit introduce new scales M0 and M∗0, both counted
as O(1). As a consequence, at low energies, the temporal components of the momenta of the D and
D∗ are counted as O(1), while the spatial components are counted as O(p). Therefore, the virtuality
q2
− M(∗)2

0 in the propagators scales as O(p), and thus the heavy meson propagators scale as O(p−1). The
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Chapter 6 Including vector charmed mesons

Goldstone boson propagators are counted as O(p−2) as usual. Based on the counting rules for the vertices
and propagators, one can assign a chiral order for a given Feynman diagram, and hence for any physical
quantities. As discussed in Sec. 2.5, the presence of the matter fields lead to the notable PCB issue. The
EOMS scheme can be extended to ChPT for multi-matter fields.

Given the chiral transformation and the power counting discussed above, one can construct the effective
Lagrangian relevant to D-φ scattering amplitudes up to NNLO,

Leff =

2∑
i=1

L
(2i)
φφ +

3∑
j=1

L
( j)
Dφ +

3∑
k=1

L
(k)
D∗φ

+

3∑
l=1

L
(l)
D∗Dφ

(6.2)

with the superscripts specifying the chiral dimensions. Here D∗µ = (D∗0,D∗+,D∗+s )µ denotes the D∗

meson fields. The part for the Goldstone and spinless matter sector
∑2

i=1L
(2i)
φφ +

∑3
j=1L

( j)
Dφ is same to that

without D∗, i.e. Eqs. (2.87, 2.97, 2.105 and 2.147). The relevant terms for the interaction between the D∗

and the Goldstone bosons are [111–113]1

L
(1)
D∗φ

= −
1
2
F
µν
F
†
µν + M∗20 D∗νD∗†ν ,

L
(2)
D∗φ

= D∗µ
[
h̃0〈χ+〉 + h̃1χ+

]
Dµ∗† , (6.3)

with h̃0,1 analogous to h0,1 and Fµν = (DµD∗ν −DνD
∗
µ).

Finally, the LO axial coupling has the form

L
(1)
D∗Dφ

= i g0

(
D∗µuµD† − D uµD∗†µ

)
. (6.4)

As pointed out in Refs. [24, 149], the resonance-exchange contributions of O(p2) and O(p3) can be taken
into account by shifting the coupling in the LO resonance-exchange contribution and the LECs in the
contact terms. This also holds true for our case. Thus, we do not need the O(p2) and O(p3) terms for the
D∗Dφ coupling.

6.1.2 Chiral potentials up to leading one-loop order

Up to NNLO, the Feynman diagrams needed for our calculation are displayed in Fig. 6.1. Accordingly,
the chiral potential for the process D1(p1)φ1(p2)→ D2(p3)φ2(p4) can be written as

VD1φ1→D2φ2
(s, t) = V

(WT)
LO +V

(EX)
LO +V

(CT)
NLO +V

(CT)
NNLO +V

(Loop)
NNLO. (6.5)

As usual, the Mandelstam variables are defined by s = (p1 + p2)2 and t = (p1 − p3)2, while u can be
obtained via u =

∑2
i=1(M2

Di
+ M2

φi
) − s − t. The potentials at tree-level are given by

V
(WT)
LO (s, t) = CLO

s − u

4F2
0

, (6.6)

V
(EX)
LO (s, t) = CS

g2
0

F2
0

FS (s, t) + CU
g2

0

F2
0

FU(s, t) , (6.7)

1 The other terms in NLO and NNLO Lagrangians do not contribute to the NNLO Dφ scattering and therefore are not explicitly
shown here.[125]
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(d) (e) (f)

(g)

(k)(j)(i)

(h)

(a)

(l) (m) (n)
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(p) (q) (r)

(s)

(tA) (tB) (tC) (tD)

Figure 6.1: Feynman diagrams contributing to Dφ scattering up to NNLO with explicit D∗ mesons. The dashed, solid and double-solid lines stand for Goldstone
bosons φ, pseudo-scalar D mesons and vector D∗ mesons, respectively. The dot, square and diamond represent vertices coming from Lagrangians of O(p1), O(p2)
and O(p3), in order.
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Chapter 6 Including vector charmed mesons

V
(CT)
NLO(s, t) =

1

F2
0

[
− 4h0C

(2)
0 + 2h1C

(2)
1 − 2C(2)

24H24(s, t) + 2C(2)
35H35(s, t)

]
, (6.8)

V
(CT)
NNLO(s, t) =

4g1

F2
0

[
C

(3)
1a (p1 + p3) · (p2 + p4) + C

(3)
1b (p1 + p3) · p2

]
+

4C(3)
23G23(s, t)

F2
0

, (6.9)

where the involved coefficients corresponding to various scattering processes are shown in Table 6.1. The
functions in the D∗-exchange potentials read

FS (s, t) =
(p1 + p2) · p4(p1 + p2) · p2 − M∗20 p2 · p4

M∗20 (s − M∗20 )
, (6.10)

FU(s, t) =
(p1 − p4) · p2(p1 − p4) · p4 − M∗20 p2 · p4

M∗20 (u − M∗20 )
. (6.11)

The functions in the NLO potentials read

H24(s, t, u) = 2h2 p2 · p4 + h4 (p1 · p2 p3 · p4 + p1 · p4 p2 · p3) , (6.12)

H35(s, t, u) = h3 p2 · p4 + h5 (p1 · p2 p3 · p4 + p1 · p4 p2 · p3) , (6.13)

while the one in the NNLO potentials is

G23(s, t, u) = −g2 p2 · p4(p1 + p3) · (p2 + p4)

+2g3
[
(p1 · p2)(p1 · p4)p1 · (p2 + p4) + (p1 → p3)

]
. (6.14)

As for the one-loop potentials at NNLO, the parts without explicit D∗ mesons can be found in the last
chapter and the ones involving explicit D∗ states are too lengthy to be shown here. Note that V(Loop)

NNLO
in Eq. (6.5) contains the contribution from wave function renormalization as well. We performed
renormalization of the one-loop potentials using the so-called EOMS scheme. In this scheme, the
UV divergence are absorbed by the counterterms when the bare LECs are expressed in terms of the
renormalized ones via

M2
0 = Mr2

0 (µ) + βM2
0

R

16π2F2
0

,

M∗20 = M∗r2
0 (µ) + βM∗20

R

16π2F2
0

,

hi = hr
i (µ) + βhi

R

16π2F2
0

, (i = 0, 1, · · · , 5)

g j = gr
j(µ) + βg j

R

16π2F2
0

, ( j = 0, 1, 2, 3). (6.15)

Here, µ is the scale introduced in dimensional regularization. Then additional subtractions are performed
by splitting the UV-renormalized LECs via

hr
i (µ) = h̄i +

β̄hi

16π2F2
0

, (i = 1, 2, · · · , 5) ,

(6.16)
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Table 6.1: The coefficients in the D∗ exchanging tree-level amplitudes of the 10 relevant physical processes.

Physical processes CLO CS CU C
(2)
0 C

(2)
1 C

(2)
24 C

(2)
35 C

(3)
1a C

(3)
1b C

(3)
23

1 D0K− → D0K− 1 0 2 M2
K −M2

K 1 1 M2
K 0 1

2 D+K+
→ D+K+ 0 0 0 M2

K 0 1 0 0 0 0
3 D+π+

→ D+π+ 1 0 2 M2
π −M2

π 1 1 M2
π 0 1

4 D+η→ D+η 0 1
3

1
3 M2

η − 1
3 M2

π 1 1
3 0 0 0

5 D+
s K+

→ D+
s K+ 1 0 2 M2

K −M2
K 1 1 M2

K 0 1
6 D+

s η→ D+
s η 0 4

3
4
3 M2

η
4
3 (M2

π − 2M2
K) 1 4

3 0 0 0
7 D+

s π
0
→ D+

s π
0 0 0 0 M2

π 0 1 0 0 0 0
8 D0η→ D0π0 0 1√

3
1√
3

0 − 1√
3

M2
π 0 1√

3
0 0 0

9 D+
s K− → D0π0

− 1√
2

√
2 0 0 − 1

2
√

2
(M2

K + M2
π) 0 1√

2
− 1√

2
M2

K
1√
2
(M2

K − M2
π) − 1√

2

10 D+
s K− → D0η −

√
3
2

√
2
3 −

√
8
3 0 1

2
√

6
(5M2

K − 3M2
π) 0 − 1√

6
−

√
3
2 M2

K
1√
6
(M2

π − M2
K) −

√
3
2
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Chapter 6 Including vector charmed mesons

gr
0(µ) = ḡ0 +

β̄g0

16π2F2
0

, (6.17)

such that the PCB terms from the one-loop potentials are canceled. The remaining LECs g1, g2 and g3
are untouched at the chiral order we are working. The β-functions and the coefficients β̄hi

and β̄g0
are

given in Appendix B.
Having the amplitudes in Eq. (6.5), one needs to unitarize it. In this section, we employ the first

unitarization discussed in last chapter. The N(s) function is modified to

N(s) = V
(WT+EX)
LO (s) +V

(CT)
NLO(s) +V

(CT+Loop)
NNLO (s) −V(WT+EX)

LO (s) ·G(s) · V(WT+EX)
LO (s). (6.18)

6.2 Numerical analysis

The LECs in Lagrangian Eq. (6.2) can be determined by fitting the scattering lengths to Lattice data.
However, due to the poverty of the available data, in order to reduce the number of free parameters, a
set of LECs are determined by symmetries, e.g. one has h̃1 = h1 and h̃0 = h0.2 3 Then the pion mass
dependence of the masses of the vector mesons reads, consistent with the general expression derived in
Ref. [150],

MD∗ = M̊D∗ + (h̃1 + 2h̃0)
M2
π

M̊D∗
, MD∗s

= M̊D∗s
+ 2h̃0

M2
π

M̊D∗s

. (6.19)

Here, M̊D∗ and M̊D∗s
denote the corresponding two-flavor chiral limit masses, which can be estimated by

the relations

M̊D∗ − M̊D ' MPhy
D∗
− MPhy

D , M̊D∗s
− M̊Ds

' MPhy
D∗s
− MPhy

Ds
, (6.20)

with MPhy
D∗

and MPhy
D∗s

denoting the corresponding physical masses, 2.008 GeV and 2.112 GeV, respectively.

The DD∗π axial coupling constant g0 is fixed by the decay width ΓD∗+→D0π+ . To one-loop order, the axial
coupling is corrected by a one-loop part, gr

= g0 + gone-loop. The axial relation between the axial coupling
g defined here and the coupling g which is employed usually in the heavy meson ChPT [111–113, 151] is
gr

=
√

MDMD∗g. Following Ref. [152], we take g = 0.570 ± 0.006, determined by calculating the decay
width of the process D∗+ → D0π+, and then one gets gr

' (1103.3 ± 11.6) MeV.

6.2.1 Contribution of vector charmed mesons in heavy quark limit

In this section, contributions from vector charmed mesons will be included explicitly in order to quantify
their influences on the S -wave scattering lengths. The diagrams that survive in the heavy quark limit, see
also Ref. [125], are taken into account and shown in Fig. 6.2. Those diagrams vanishing in the heavy
quark limit are suppressed by 1/mc and therefore are neglected.

To compare with the result of the case without D∗ explicitly included, we utilize the same fit procedures.
In parallel to the four kinds of 6-channel fits in the previous section, we refit the S -wave scattering
lengths and the results are shown in Table 6.2. In each case, the LECs as well as the chi-squared are

2 Analogous to Eq. (5.72), it is easy to see that h̃1 =
(
M2

D∗s
− M2

D∗
)
/[4(M2

K − M2
π)] = 0.472, which is close to h1 numerically.

3 As discussed in Ref. [122], the beraking of heavy quark spin symmetry is only about 3%. Therefore, to a good approximation,
we impose these two heavy-quark limit relations.
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(b) (c)

(d) (e) (f)

(a)

Figure 6.2: Feynman diagrams (including the vector charmed mesons) that survive in the heavy quark limit.

almost same as before. This implies that the influence of D∗ to the S -wave scattering lengths is marginal
and it is a good approximation to exclude them in the calculation.

Table 6.2: Values of the LECs from the 6-channel fits (including explicit D∗) using the method of UChPT. The hi’s
are dimensionless, and the g′1, g23 and g′3 are in GeV−1.

UChPT-6(a) UChPT-6(b) UChPT-6(a′) UChPT-6(b′)
no prior no prior with prior with prior

h24 0.80+0.08
−0.08 0.80+0.10

−0.09 0.85+0.10
−0.10 0.85+0.10

−0.10
h35 0.82+0.60

−0.48 0.98+0.97
−0.64 0.50+0.23

−0.23 0.59+0.30
−0.29

h′4 −1.27+0.52
−0.51 −1.40+0.59

−0.62 −1.22+0.58
−0.57 −1.59+0.62

−0.61
h′5 −11.61+2.53

−3.07 −15.06+4.86
−7.31 −3.87+0.67

−0.69 −2.48+0.84
−0.83

g′1 −2.94+0.99
−0.36 −2.69+0.51

−0.61 −1.45+0.20
−0.30 −1.90+0.39

−0.43
g23 −2.56+0.99

−0.31 −2.28+0.46
−0.48 −1.10+0.21

−0.31 −1.51+0.40
−0.45

g′3 2.15+0.60
−0.49 2.80+1.42

−0.96 0.91+0.15
−0.15 0.56+0.19

−0.19
χ2/d.o.f. 29.36

21−7 = 2.10 13.75
16−7 = 1.53 74.22−21.56

21−7 = 3.76 50.06−15.96
16−7 = 3.79

6.2.2 Complete contribution of vector charmed mesons

In this section, a complete contribution of vector charmed mesons to the Dφ scattering is considered,
i.e. including the one-loop diagrams that vanish in the heavy quark limit. It will give us a hint on the
importance of the finite mass effect of c-quark in charm sector.

Compared to the NLO fits [28, 115], the NNLO fits have larger χ2 values, even though three more
LECs gi (i = 1, 2, 3) are included in the fits. This could be because the unitarization method we use works
better for the tree-level potentials than one-loop ones. On the one hand, the left-hand cuts, stemming from
the t- and u- channels, appear in the one-loop potentials, which would cause the problem of violation
of right-hand unitarity in the region where the left- and right- cuts overlap, see more discussions in the
next section. On the other hand, the off-shell effects are partially included in the unitarized amplitudes if
the one-loop potentials are employed. Both of the above-mentioned effects have non-trivial analytical
structures and could make the NNLO unitarization much more cumbersome than the NLO one. Related
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Chapter 6 Including vector charmed mesons

to this is the fact that the scattering length a(1,1)
Dsπ→Dsπ

remains sizeable in the S U(2) chiral limit of Mπ → 0,

as shown in Figs. 6.3 and 6.4. This was also the case in Ref. [65].4

Table 6.3: Values of the LECs from the 6-channel fits using the method of UChPT. The hi’s are dimensionless, and
the g′1, g23 and g′3 are in GeV−1.

UChPT-6(a) UChPT-6(b) UChPT-6(a′) UChPT-6(b′)
no prior no prior with prior with prior

h24 0.44+0.07
−0.07 0.49+0.08

−0.08 0.52+0.09
−0.09 0.61+0.10

−0.10
h35 0.49+0.68

−0.57 1.03+1.20
−0.91 −0.19+0.23

−0.22 0.27+0.27
−0.26

h′4 −0.06+0.48
−0.46 −0.66+0.54

−0.54 −0.31+0.55
−0.53 −1.07+0.60

−0.60
h′5 −20.23+3.04

−3.53 −23.91+6.83
−8.98 −6.33+0.66

−0.67 −3.68+0.75
−0.76

g′1 −2.17+0.27
−0.32 −2.79+0.55

−2.53 −1.56+0.12
−0.14 −1.74+0.16

−0.20
g23 −1.83+0.21

−0.25 −2.33+0.44
−0.49 −1.28+0.14

−0.15 −1.38+0.17
−0.21

g′3 3.20+0.67
−0.57 3.83+1.71

−1.31 0.92+0.14
−0.14 0.19+0.18

−0.18

χ2/d.o.f. 43.81
21−7 = 3.13 14.26

16−7 = 1.58 143.78−45.36
21−7 = 7.03 69.95−20.08

16−7 = 5.54

Among various fits, UChPT-6(b) has the smallest χ2, which is also true for the previous fits without
D∗ [65]. In addition, the fits with and without dynamical D∗ have similar values of the chi-squared
and the LECs, which indicates that the influence of the D∗ on the quantities in question is small. This
conffirms the conclusion in the previous subsection.

4 It is due to the nonvanishing M̊K in loops contributing to the Dsπ → Dsπ potential in the S U(2) chiral limit. Near the
Dsπ threshold, the u- and t-channel loops dominate in the S U(2) chiral limit, which indicates that the left-hand cuts are
non-negligible. In the NLO case, the scattering length a(1,1)

Dsπ→Dsπ
is negligible in the S U(2) chiral limit [29, 115].
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Figure 6.3: The results of the UChPT-6(b) fits to the lattice data of the scattering lengths. The filled circles are
lattice results in Ref. [29], and the filled square (not included in the fits because it refers to N f = 2) and diamond
are taken from Ref. [100].
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Figure 6.4: The results of the UChPT-6(b′) fits to the lattice data of the scattering lengths. The filled circles are
lattice results in Ref. [29], and the filled square (not included in the fits because it refers to N f = 2) and diamond
are taken from Ref. [100].
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CHAPTER 7

Aspects of the low-energy constants in the
chiral Lagrangian for charmed mesons

Ideally, the low-energy constants (LECs) should be pinned down by comparing with (or performing fits
to) experimental or lattice QCD data of selected observables in certain processes, as done in the last two
chapters. Since these values of LECs should be universal, consequently, predictions for other processes
or physical quantities can be made. For instance, the LECs of the fundamental πN interaction [23, 24,
153–156], which are fixed by fitting to experimental πN scattering data, are employed to make predictions
in ππN physics, see e.g.Ref. [157] and NN physics, see Ref. [158] for a review. However, things become
cumbersome when there are not sufficiently many data or, even worse, no good data for fixing the LECs.
Furthermore, even if the LECs have been extracted or estimated using some procedure, the reliability of
these values still needs to be further analyzed.

A phenomenological approach to estimate the LECs was discussed in detail in Refs. [159–161], and is
traditionally referred to as the resonance saturation. Therein, phenomenological Lagrangians respecting
chiral symmetry including explicit meson resonances are constructed and then the resonance fields are
integrated out to generate contributions to the LECs in the mesonic ChPT Lagrangian at tree level in
terms of the resonance couplings and masses. It was found that whenever the vector and axial vector
mesons contribute, they almost saturate the empirical values of the LECs, which is a modern version
of the vector meson dominance hypothesis. Similarly, the resonance exchange model also provides a
fairly good phenomenological description of the LECs in the chiral Lagrangian for the pion-nucleon
interactions, c.f. Ref. [162], where it is found that the ∆ resonance provides the dominant contribution to
some of the LECs, i.e., c3 and c4.1 In view of the success achieved in both the purely mesonic ChPT
and baryon ChPT, the resonance exchange method will be discussed in this paper to estimate the LECs
related to the interactions between charmed D mesons and Goldstone bosons (φ), which are badly known
because no experimental data for t Dφ scattering are available and almost all the existing extractions
result from fitting to lattice results of scattering lengths for certain channels. The scarcity of data and the
model dependence of the unitarization method cause discrepancies among the extracted values for some
of the LECs.

Furthermore, in this chapter we will investigate model-independent positivity constraints on the Dφ
interaction as well. Similar to the case for the ππ [163–167] and πN [168, 169] scattering, these constraints
will be derived in the upper part of the Mandelstam triangle (with t > 0) based on axiomatic principles of
the S -matrix theory such as analyticity, unitarity and crossing symmetry. After applying the obtained
constraints to the chiral perturbative and EOMS-renormalized amplitudes, e.g., given in Chapter 5, one

1 Note that there is also an important contribution from the ρ-meson to c4.
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Chapter 7 Aspects of the low-energy constants in the chiral Lagrangian for charmed mesons

obtains restrictions on the involved LECs at a certain given order. These axiomatic constraints will be
confronted with the numerical values of the LECs determined through various phenomenological fits to
lattice data.

7.1 Low-energy constants and resonance exchanges

As mentioned in last chapter, the pseudoscalar and vector charmed mesons are related to each other via
heavy-quark spin symmetry. One can construct ChPT for heavy mesons by treating the pseudoscalars
and the vectors simultaneously in a spin multiplet. The scattering processes of the Goldstone bosons off

the pseudoscalar and vector charmed mesons can thus be described by the same chiral Lagrangian at low
energies. So far, most of the available information for LECs was obtained from fitting to the lattice data of
the S -wave scattering lengths for the Dφ systems. It has been shown by explicit calculations that the D∗

contribution is negligible in these quantities [65, 114]. Hence, we can focus on the Lagrangian without
the D∗, and keep in mind that such a theory is basically equivalent to the one with the D∗ explicitly
included when discussing the S -wave Dφ scattering.

In this section, the LO chiral Lagrangians for various resonances are discussed and constructed. Then
making use of the approach of resonance exchange to analyze the resonance contributions to the LECs of
Dφ Lagrangian. The corresponding numerical results are given subsequently.

7.1.1 Chiral resonance Lagrangians

The saturation of LECs by the contributions from resonances is based on scale separation such that the
low-energy effective Lagrangian contains only the low-lying degrees of freedom and the resonances at
the hard scale are considered to be integrated out. The local operators in the Lagrangian are constructed
in terms of the effective degrees of freedom, while the high-energy contribution including the effects
from resonances enter the LECs, which are coefficients of the operators. In principle, the LECs can be
calculated in the full theory by a matching procedure. In the case of the chiral Lagrangian, since we
cannot solve the nonperturbative QCD analytically, we may match the chiral Lagrangian containing only
the low-lying degrees of freedom to the one with resonances, which is applicable in a larger energy range
phenomenologically despite the more complicated renormalization and power counting issues related to
the large masses and instability of the resonances. For such a matching, one expects that the resonances
with relatively low masses contribute dominantly to the LECs.

To analyze the resonance contributions to the chiral LECs, the chiral resonance Lagrangians are
necessary. We will first introduce the Lagrangians related to excited charmed mesons, with the orbital
angular momentum between the charmed quark and light quark ` ≤ 1, then the ones concerning the
light-flavor mesonic excitations will be discussed.

The excited charmed mesons with ` ≤ 1 include D∗0 with JP
= 0+, D′1 and D1 with JP

= 1+,
and D∗2 with JP

= 2+.2 Though more and more candidates for states with ` ≥ 2 were discovered
experimentally [170–172], their classifications in the charmed spectra still need to be investigated or
confirmed. Furthermore, their contributions should be smaller than those with ` ≤ 1 because of higher
masses as mentioned above. Hence we do not include them in our analysis.

For the scalar D∗0 SU(3) triplet, D∗0 = (D∗00 ,D
∗+
0 ,D∗+s0 ), the corresponding Lagrangian is

LD∗0Dφ = g0

(
D∗0uµDµD† +DµDuµD∗†0

)
. (7.1)

2 Note that the D∗ vector mesons with JP = 1− are treated as the spin partner of the D as discussed at the beginning of this
section.
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TS U

D∗
0

D∗
0

S , V , T

Figure 7.1: Diagrams for the resonance-exchange contribution to Dφ scattering.

The coupling g0 will be determined via the LO calculation of the decay D∗0 → D+π−.
As for the tensor D∗2 triplet, D∗2 = (D∗02 ,D

∗+
2 ,D∗+s2 ), the lowest-order Lagrangian for the D∗2DΦ

interaction
LD∗2DΦ ∝ D∗2,µν{D

µ, uν}D† + h.c., (7.2)

is of second chiral order. Physically, the coupling of a tensor charmed meson to a pseudoscalar charmed
meson and a light pseudoscalar is in a D-wave, and starts from O(p2). Thus, the exchange of tensor
charmed mesons will not contribute to the LECs in the O(p2) and O(p3) Lagrangians, and its contribution
starts from O(p4) in the chiral expansion.

The axial vector charmed mesons D1 and D′1 do not contribute to the LECs in the chiral Lagrangian for
the Dφ interactions since there is no D(′)

1 Dφ coupling due to parity conservation. Yet, they will contribute
to those in the D∗φ Lagrangian. At leading order of the heavy quark expansion, such contributions are
equal to those of the D∗0 and D∗2 to the Dφ Lagrangian.

Therefore, among the excited charmed mesons, we only need to take into account the exchange of
the scalar ones for our purpose of estimating resonance contributions to the O(p2) and O(p3) LECs.
With the above Lagrangians, we can then calculate the Dφ scattering amplitudes by exchanging the D∗0
whose Feynman diagrams are shown in Fig. 7.1 (see the first and third diagrams). It is evident that they
contribute to Dφ scattering in both the s- and u-channels.

For the light-flavor mesonic resonances, the low-lying vector, scalar and tensor states will be considered.
They contribute to Dφ scattering in t-channel, see the second Feynman diagram in Fig. 7.1. For the vector
resonance, the involved interactions read [159, 160]

LVφφ =
i gV
√

2
〈V̂µνu

µuν〉 , (V̂µν ≡ ∂µVν − ∂νVµ) ,

LDDV = i gDDV

{
D Vµ(∂µD†) − (∂µD) VµD†

}
, (7.3)

where Vµ denotes the vector meson multiplet of interest with its explicit form given by

Vµ =


ρ0
√

2
+ ω√

2
ρ+ K∗+

ρ− −
ρ0
√

2
+ ω√

2
K∗0

K∗− K̄∗0 φ̃


µ

. (7.4)

Here, the ideal mixing scheme betweenω1 andω8, i.e., ω1 =
√

2/3ω+
√

1/3φ̃ andω8 =
√

1/3ω−
√

2/3φ̃,
is employed to construct the physical ω and φ̃. Note that we have denoted the physical φ(1020) by the
symbol φ̃ in order to avoid possible confusion with the notation for the matrix of Goldstone bosons.

123



Chapter 7 Aspects of the low-energy constants in the chiral Lagrangian for charmed mesons

The Lagrangians concerning the scalar resonance exchange take the following form [159, 160]

LSφφ = cd〈S uµuµ〉 + cm〈Sχ+〉 + c̃d S 1〈uµuµ〉 + c̃m S 1〈χ+〉 ,

LDDS = gDDS D S D† + g̃DDS DD†S 1 , (7.5)

with S 1 and S denoting the scalar singlet and octet, respectively. In Eqs. (7.3) and (7.5), the Lagrangians
for the coupling of the light-flavor resonances to the Goldstone bosons are taken from Refs. [159, 160].

Finally, we also consider the light-flavor tensor resonances with quantum numbers 2++, denoted by
T µν. We construct the Lagrangian for the DDT coupling as

LDDT = gDDTDµDT µν
DνD

†. (7.6)

The 2++ mesons are described by the symmetric hermitian fields [173]

Tµν = T 0
µν

λ0
√

2
+

1
√

2

8∑
i=1

λiT
i
µν, Tµν = Tνµ , (7.7)

where the singlet and octet components are

T 0
= f 0

2 , and
1
√

2

8∑
i=1

λiT
i
=


a0

2√
2

+
f 8
2√
6

a+
2 K∗+2

a−2 −
a0

2√
2

+
f 8
2√
6

K∗02

K∗−2 K̄∗02 −
2 f 8

2√
6

 , (7.8)

respectively.
To estimate the contribution of 2++ mesons to LECs of Dφ Lagrangian, the coupling of the tensor

meson to the Goldstone bosons is needed as well, which can be constructed as [173]

L = −
1
2
〈TµνD

µν,ρσ
T Tρσ〉 + 〈TµνJµνT 〉, JµνT ≡ gT {u

µ, uν} , (7.9)

where JµνT is the tensor current and

Dµν,ρσ
T = (D2

+ M2
T )

[
1
2

(gµρgνσ + gµσgνρ) − gµνgρσ
]

+ gρσDµ
D
ν

+ gµνDρ
D
σ
−

1
2

(gνσDµ
D
ρ

+ gρνDµ
D
σ

+ gµσDρ
D
ν

+ gρµDσ
D
ν).

(7.10)

7.1.2 Integrating out resonances

In essence, the contribution of a resonance to LECs is the coefficients of a local expansion of the effective
nonlocal generating potential obtained by integrating out the resonance. Usually it can be achieved by
two different ways. The first one is to integrate out the resonance using the path integral and then make an
expansion (chiral expansion for our case). The second method is to calculate certain physical processes
with and without the resonances respectively, and then match the two results to fix the contribution of the
resonances to LECs, usually associated with a local expansion.

To see it more clearly, we evaluate the contribution of the tensor mesons with 2++ to Dφ LECs by
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7.1 Low-energy constants and resonance exchanges

integrating out the tensor mesons at tree level, see also Eq. (2.3). From the Lagrangian (7.9) one obtains
the equation of motion for the tensor mesons

Tρσ = (Dµν,ρσ
T )−1JµνT . (7.11)

At tree level, integrating out a field is equivalent to replacing the field by its classical solution of motion.
Inserting the EoM for the tensor mesons, i.e. Eq. (7.11), into LDDT , we get

LDDT = L
(2)
DDT + O(p4),

L
(2)
DDT =

gDDT

M2
T

DµDJµνT DνD
†

=
gDDTgT

M2
T

DµD{uµ, uν}DνD
†.

(7.12)

Here we have employed the chiral expansion by regarding the momenta of the tensor is of order O(p)
since it couples to gT {u

µ, uν}. It is then easy to see that the light-tensor mesons contribute to the LECs
and only contribute to h5 up to O(p2). The contribution is

hT
5 =

gDDTgT

M2
T

. (7.13)

Since the pesudoscalar charmed mesons D and vector charmed mesons D∗ can be assigned into a
doublet in the heavy quark limit as discussed in the last chaper, one may wonder about the contribution
of the D∗ to the LECs of Dφ Lagrangian. In what follows we investigate the contribution of D∗ by
integrating out the D∗. The relevant Lagrangian can be written as

LDD∗φ = D∗µD
µνD∗ν + ig0(D∗µuµD† − DuµD∗†µ ), (7.14)

where

D
µν

= (D2
− M2

D∗)g
µν
−D

ν
D
µ. (7.15)

The effective generating functional at tree-level is

eiZeff[D,φ]
=

∫
[dD∗dD∗†]eiLDD∗φ

= N exp
(
i(ig0)2

∫
d4xd4yD(x)uµ(x)Dµν

F (x − y)uν(y)D†(y)
)
, (7.16)

where N is an irrelevant normalization constants and

Dµν
F (x − y) =

∫
d4 p

(2π)4 e−ip(x−y) −1

p2
− M2

D∗

(
gµν −

pµpν

M2
D∗

)
(7.17)

is the D∗ propagator. To make the chiral quantities more explicit, we define l = p − p0 with p2
0 = M2

D.
Then

Zeff = (ig0)2
∫

d4xd4y
d4l

(2π)4 D(x)uµ(x)uν(y)D†(y)
1

l2 + 2l · p0 − ∆
2

(
gµν −

pµpν

M2
D∗

)
e−ip(x−y) (7.18)

with ∆ = M2
D∗ − M2

D. In ChPT, the momenta of D and D∗ are treated as large. The theory works in the
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low energy region where l � p, and thus l is regarded as a chiral quantity. In this convention, we have
the match

pµuνD† → −i∂µ(uνD†), p0µuνD† → −iuν∂µD†. (7.19)

In other words, it is equivalent to imposing D on-shell and at the same time operator product expanding
uν(y)D†(y) as:

uν(y)D†(y) = uν(x)D†(x) + (y − x)α∂α
(
uν(x)D†(x)

)
+

1
2

(y − x)α(y − x)β∂α∂β
(
uν(x)D†(x)

)
+ · · · . (7.20)

Here, ∂µ indicates a small momentum lµ, which means that it only acts on the Goldstone fields, and · · ·
denotes the higher order contributions.

The first term of Eq. (7.18), i.e. the term proportional to gµν, is evaluated as:

L
gµν
eff

= (ig0)2DuµuµD†
∫

d4y
d4l

(2π)2 e−il(x−y) −1

l2 + 2l · p0 − ∆
2

+(ig0)2Duµ(∂αuµ)D†
∫

d4y
d4l

(2π)2 e−il(x−y) −1

l2 + 2l · p0 − ∆
2 (y − x)α

+
1
2

(ig0)2Duµ(∂α∂βuµ)D†
∫

d4y
d4l

(2π)2 e−il(x−y) −1

l2 + 2l · p0 − ∆
2 (y − x)α(y − x)β + . . .

= g2
0DuµuµD†

1

−∆
2 g

2
0Duµ(∂αuµ)D†

∫
d4l

∂

i∂lα
δ4(l)

1

l2 + 2l · p0 − ∆
2

+
1
2
g2

0Duµ(∂α∂βuµ)D†
∫

d4l
∂2

i2∂lβ∂lα
δ4(l)

1

l2 + 2l · p0 − ∆
2 + . . .

= −DuµuµD†
g2

0

∆
2 Duµ(∂αuµ)∂αD†

2g2
0

∆
4

+Duµ(∂α∂
αuµ)D†

g2
0

∆
4 − Duµ(∂α∂βuµ)∂α∂βD†

4g2
0

∆
6 + . . . , (7.21)

where ∆
2

= M2
D∗ − M2

D. Similarly, the second term of Eq. (7.18) can be evaluated as:

L
pµpν
eff

= (ig0)2Duµ(x)uνD
†(y)

∫
d4y

d4l

(2π)2 e−il(x−y) −1

l2 + 2l · p0 − ∆
2

(
−

pµpν

M2
D∗

)
+ . . .

=
g̃2

M2
D∗

Duµ(x)∂µ∂ν
(
uνD†(y)

) ∫
d4y

d4l

(2π)2 e−il(x−y) 1

l2 + 2l · p0 − ∆
2 + . . .

= −
g2

0

M2
D∗

(Duµ∂µ∂ν(u
νD†)

∆
2 −

2Duµ∂µ∂ν
(
(∂αuν)∂αD†

)
∆

4 −
Duµ∂µ∂ν

(
(∂α∂

αuν)D†
)

∆
4

+
4Duµ∂µ∂ν

(
(∂α∂βu

ν)∂α∂βD†
)

∆
6

)
+ . . . (7.22)
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Making use of integration by parts, it can be simplified as

L
pµpν
eff

= −
g2

0

M2
D∗

(Duµuν∂µ∂νD
†

∆
2 +

Duµ(∂νu
ν)∂µD†

∆
2 +

Duµ(∂µuν)∂νD
†

∆
2 +

Duµ(∂µ∂νu
ν)D†

∆
2

−
2Duµ(∂αuν)∂µ∂ν∂

αD†

∆
4 −

2Duµ(∂ν∂αuν)∂µ∂
αD†

∆
4 −

2Duµ(∂µ∂αuν)∂ν∂
αD†

∆
4

−
Duµ(∂α∂

αuν)∂µ∂νD
†

∆
4 +

4Duµ(∂α∂βu
ν)∂µ∂ν∂

α∂βD†

∆
6

)
+ . . . , (7.23)

where Σ
2

= M2
D∗ + M2

D and we used the integration by parts in the last step. Putting Lgµν and Lpµpν

together, up to O(p3) we have

Leff = −DuµuµD†
g2

0

∆
2 +

g2
0

∆
2(Σ2

+ ∆
2)
DµD{uµ, uν}DνD

†

+
g2

0Σ
2

4∆
4(Σ2

+ ∆
2)

D
(
[uµ, [Dν, u

µ]] + [uµ, [D
µ, uν]]

)
D
νD† +

1

4∆
4 D [uµ, [Dν, uρ]]D

µνρD† + h.c.

(7.24)

By comparing Eq. (7.24) with Eq. (2.147) one obtains the contribution of D∗ to the LECs

hD∗
3 = −hD∗

5 (∆ + Σ) =
g2

0

∆
, (7.25)

gD∗
1 = gD∗

2
∆

2

Σ
2 = gD∗

3 ∆
2

=
g2

0

4(∆2
+ Σ

2)∆2 .

From the above calculations, one may notice that the contribution of D∗ is arranged in a chiral

expansion whose coefficients is proportional to
pχ
∆

. In contrast to
pχ
Λχ

, the expansion with
pχ
∆

has a bad
convergence property. It implies that the first terms can not be treated as a good approximation of the
contribution of D∗. A numerical analysis shows the contribution of D∗ to LECs, i.e. Eq. (7.25), is large
and thus implies that its contribution to Dφ scattering is nonnegligible. However a more detailed analysis
shows that the contribution of D∗ to Dφ scattering at different orders would compensate with each other
significantly, which leads to a negligible contribution in total. It is in agreement with the conclusion that
the local chiral expansion of the effective potential is not well defined and makes the obtained LECs
untrustworthy. Furthermore, in the limit of heavy quark, D and D∗ are treated as a spin multiplet. The
Lagrangian describing the interaction of Dφ and D∗φ shares the same form and LECs. Hence in the
following sections, we focus on the contribution of resonances to the LECs of the Lagrangian describing
the interaction between the multiplet and Goldstone bosons.

7.1.3 Resonance contributions to the LECs

Alternatively, one can evaluate the contribution of resonances to LECs by mathching the amplitudes
between with and without resonances explicitly. The resonance-exchange amplitudes, corresponding to
the Feynman diagrams in Fig. 7.1, are calculated and their explicit expressions are given for completeness.
For a given amplitude, we use capital subscripts, S , T and U, to label the channels and superscripts,
D∗0, V (vector) and S (scalar), to mark which resonance is exchanged. The coefficients appearing in the
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amplitudes are listed in Table 7.1.

• D∗0 exchange: (m =
◦

MD∗0
)

A
D∗0
S (s, t, u) = C

D∗0
S
g2

0

F2
0

p1 · p2 p3 · p4

s − m2 ,

A
D∗0
U (s, t, u) = C

D∗0
U
g2

0

F2
0

p1 · p4 p2 · p3

u − m2 . (7.26)

• Light-flavor vector meson exchange:

A
V
T (s, t, u) = CV

T
gDDVgV

F2
0

 (p1 − p3) · p2 (p1 + p3) · p4

M2
V − t

− (p2 ↔ p4)

 . (7.27)

• Light-flavor scalar meson exchange:

A
S
T (s, t, u) =

2gDDS

{
C

S 8
T,m − C

S 8
T,d p2 · p4

}
3F2

0(M2
S 8 − t)

+
4g̃DDS

{
C

S 1
T,m − C

S 1
T,d p2 · p4

}
F2

0(M2
S 1 − t)

. (7.28)

Table 7.1: Coefficients for the resonance-exchange amplitudes.

Physical Processes C
D∗0
S C

D∗0
U C

V
T C

S 8
T,m C

S 8
T,d C

S 1
T,m C

S 1
T,d

D0K− → D0K− 0 2
√

2 M2
K 1 M2

K 1

D+K+
→ D+K+ 0 0 0 −2M2

K −2 M2
K 1

D+π+
→ D+π+ 0 2

√
2 M2

π 1 M2
π 1

D+η→ D+η 1
3

1
3 0 1

3 (5M2
π − 8M2

K) −1 M2
η 1

D+
s K+

→ D+
s K+ 0 2

√
2 M2

K 1 M2
K 1

D+
s η→ D+

s η
4
3

4
3 0 2

3 (8M2
K − 5M2

π) 2 M2
η 1

D+
s π→ D+

s π 0 0 0 −2M2
π −2 M2

π 1

D0η→ D0π0
√

1
3

√
1
3 0

√
3M2

π

√
3 0 0

D+
s K− → D0π0 √

2 0 −1 3
2
√

2
(M2

K + M2
π) 3√

2
0 0

D+
s K− → D0η

√
2
3 −2

√
2
3 −

√
3

√
3
8 (3M2

π − 5M2
K) −

√
3
2 0 0

In order to calculate the tree-level resonance-exchange contribution to the LECs, these Born-term
amplitudes are expanded in powers of s − M2

0 , M2
φ and t and then compared with the contact term

contributions given in Eqs. (5.38) and (5.41). Consequently, the D∗0-exchange contributions to the LECs
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are

hD∗0
5 = −

g2
0

2∆
2
0

,

g
D∗0
1 = g

D∗0
2 = g

D∗0
3 ∆

2
0 = −

g2
0

8∆
2
0

, (7.29)

with the difference of the squared masses, ∆
2
0 ≡

◦

M∗20 −

◦

M2
0 , where

◦

M∗0 is the chiral limit mass of the D∗0.

The light vector mesons contribute to g1 and g2 as follows

gV
1 = gV

2 = −
gDDV gV

2
√

2 M2
V

. (7.30)

From the above equations, we note that light vector-meson exchange does not contribute to any LEC in
the O(p2) Lagrangian, which is different from the pion-nucleon case in Ref. [162]. This is due to the fact
that the Lorentz index of the vector is contracted with the Gamma matrices in the nucleon case, but in
our case with those of the derivatives of the D mesons. For a t-channel exchange, this partial derivative
contributes as O(p1). Together with the O(p2) Vφφ vertex the t-channel vector-meson exchange thus
starts to contribute at O(p3).

The light-flavor scalar mesons contribute as

hS
0 = −

g̃DDS c̃m

M2
S 1

+
gDDS cm

3M2
S 8

, hS
1 = −

gDDS cm

M2
S 8

,

hS
2 =

g̃DDS c̃d

M2
S 1

−
gDDS cd

3M2
S 8

, hS
3 = −

gDDS cd

M2
S 8

. (7.31)

Here, MS 1 and MS 8 denote the masses of singlet and octet scalars, respectively. Without entering the
discussion about which values should be used for the light scalar multiplets, we make use of large Nc
and set MS = MS 1

= MS 8
, as done in Ref. [162]. Furthermore, the singlet couplings can be expressed in

terms of the octet ones through the relations: c̃m,d = cm,d/
√

3 and g̃DDS = gDDS /
√

3. By imposing these
large-Nc relations, the above expressions in Eqs. (7.31) are reduced to

hS
0 = 0 , hS

1 = −
gDDS cm

M2
S

, hS
2 = 0 , hS

3 = −
gDDS cd

M2
S

. (7.32)

One sees that the LECs h0 and h2 receive no contribution from the light scalar mesons in the large-Nc
limit. In fact, these two LECs, together with h4, are of one order higher in the 1/Nc expansion in
comparison with hi(i = 1, 3, 5) [107, 108].

As shown in last section, the exchange of light tensor mesons with JPC
= 2++ contributes only to h5,

which is of the form

hT
5 =

gDDTgT

M2
T

, (7.33)

with gDDT and gT the coupling constants for D-D-tensor and π-π-tensor vertices, respectively, see
Eqs. (7.6) and (7.9).
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7.1.4 Numerical results

To obtain numerical estimates for the LECs, we need to know the resonance couplings. However, not all
of the involved couplings are really known. Thus, for the measurable ones (g̃, g0, gV , cd, cm and gT ), we
will extract the values from experimental data, and for the ones in the vertices where not all three particles
can on go shell simultaneously (gDDV , gDDS and gDDT ), we will take model values for an estimate.

The numerical value of the resonance coupling g0 can be obtained by calculating the decay width
Γ(D∗0 → D+π−). At LO, we have

Γ(D∗0 → D+π−) =
1

4π
|g2

0|

F2
0

(
mD∗0

√
M2
π + |~qπ|

2
− M2

π

)2

m2
D∗0

, (7.34)

with ~qπ the pion momentum in the rest frame of the initial particle. Comparing with the empirical value
taken from the Particle Data Group [174], we get

|g0| = 0.68 ± 0.05 . (7.35)

The couplings of the light-flavor resonances to the Goldstone bosons, gV and cm,d, have been used in
many studies of the chiral resonance Lagrangian, and we take the updated determinations in Ref. [175]

|gV | = 0.0846 ± 0.0008 ,

|cm| = (80 ± 21) MeV ,

|cd | = (26 ± 7) MeV . (7.36)

From the decay width of the f2(1270) → ππ [174], we get |gT | = 28 MeV. Note that, as discussed in
Ref. [162], if the πN LEC c1 is completely saturated by scalar exchange, a positive cm is demanded.
Together with the constraint 4cmcd = F2

0 , see e.g. Ref. [176], we will set cm,d > 0 in the following.
For the troublesome couplings, we take the following values:

gDDV = 1.46 ,

gDDS = 5058 MeV ,

gDDT = 3.9 × 10−3 MeV−1 , (7.37)

The value of gDDV is taken from the analysis of the DDV vertex using light-cone QCD sum rules [177].
For the gDDS , we have utilized the large-Nc relation gDDS =

√
3g̃DDS , and take the value gDDσ used in

Ref. [178], which was extracted from the parity doubling model of Ref. [179], for g̃DDS . There is no
available modeling of gDDT , and we thus estimate it using QCD sum rules in Appendix C. The problem
is that it is hard to quantify the uncertainty of these parameters. Yet, there is evidence that these model
values are of the right order: the dimensionless values for gDDV , gDDS /Λhad ∼ 5 and gDDT Λhad ∼ 4,
where Λhad = O(1 GeV) is a typical hadronic scale, have more or less natural sizes of O(1).

For the masses involved in our numerical estimate, we take

◦

M � MD =
1
2

(Mphy.
D + Mphy.

Ds
) = 1918 MeV ,

◦

M∗0 � MD∗0
=

1
2

(Mphy.
D∗0

+ Mphy.
D∗s0

) = 2318 MeV ,

MV = 764 MeV , MS = 980 MeV , MT = 1270 MeV , (7.38)
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Table 7.2: Estimates of the resonance contributions to the LECs. Here h0,2,4, which vanish in the large-Nc limit,
are not shown. The columns starting with D∗0, V , S and T list the contributions from the exchange of the scalar
charmed mesons, light-flavor vector, scalar and tensor mesons, respectively. The last column sums over all these
contributions.

LEC D∗0 V S T Total

h1 0 0 0.4 0 0.4

h3 0 0 0.1 0 2.3

h5 [GeV−2] −0.1 0 0 ±0.1 [−0.5,−0.3]

g1 [GeV−2] −0.03 ∓0.07 0 0 [−0.04, 0.1]

g2 [GeV−2] −0.03 ∓0.07 0 0 [−0.04, 0.1]

g3 [GeV−4] 0.02 0 0 0 0.02

where the chiral limit masses are identified with the corresponding averaged physical masses, which is
acceptable given the accuracy we are aiming at. To be consistent with using the values of gV and cm,d
given above, the values for MV and MS are also taken from Ref. [175]. The mass for the tensor multiplet
is chosen to be the mass of f2(1270) following Ref. [173].

With the resonance couplings and masses specified above, we are now in the position to estimate the
resonance contributions to the LECs based on the analytical expressions, Eqs. (7.29-7.33). The numerical
results are shown in Table 7.2 and the sum of various contributions is given in the last column. Because of
the poor knowledge on the values of the off-shell couplings gDDV,DDS ,DDT , no reasonable error estimate
can be made here. Furthermore, the signs of gV,T are not fixed, hence contributions from the t-channel
exchanges of the light-flavor vector and tensor mesons might be either positive or negative as listed in
Table 7.2, and they also take two possible values in the last column of the table due to interference with
the contribution from the scalar charmed mesons.

7.1.5 Comparison with results from unitarized ChPT (UChPT)

We compare the estimates of the LECs with those from fits to the lattice data on of scattering lengths of
some selected channels at the NLO and NNLO in the framework of UChPT [90] (and references therein)
in Table 7.3 and Table 7.4, respectively, where the definitions of the combinations of the LECs are given
in Eq. (5.76 and 5.77).3 The following observations can be made:

(i) Provided that a positive value of cm is chosen, h1 is saturated by the light scalar exchange, which is
similar to the LEC c1 in the πN case [162]. The value of h1 is fixed through the mass difference
between strange and nonstrange charmed mesons, which is then adopted in these fits. One sees that

3 The notations of the LECs adopted in Ref. [122] are connected to ours by h0 = 2c0 , h1 = −2c1 ,

h24 = 2
[
c24 + 2c4(1 −

M̄2
D

m2
P

)
]
, h35 = −2

[
c35 + 2c5(1 −

M̄2
D

m2
P

)
]
, h′4 = −4c4

M̄2
D

m2
P

, h′5 = 2c5
M̄2

D

m2
P

,

with mP = 1.9721 GeV specified in Ref. [122] and M̄D = (Mphy
D + Mphy

Ds
)/2.
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Table 7.3: Comparison of the values of the LECs from the estimate using resonances with those from fits to lattice
data in various formulations of unitarized ChPT at NLO. The LECs in this table are dimensionless.

LEC Table V [29] Table
VIII [29]

HQS [122] χ-SU(3) [122] Resonance

h0 0.01 0.01 0.03 0.03 0

h1 0.42 0.42 0.43 0.43 0.4

h24 −0.10+0.05
−0.06 0.10+0.05

−0.06 −0.12 ± 0.05 −0.14 ± 0.04 0

h35 0.25+0.13
−0.13 0.26+0.09

−0.10 0.23 ± 0.09 0.12 ± 0.08 [−1.4, 0.1]

h′4 −0.32+0.35
−0.34 −0.30+0.31

−0.28 −0.20 ± 0.31 −0.83 ± 0.30 0

h′5 −1.88+0.63
−0.61 −1.94+0.46

−0.38 −1.82 ± 0.57 −1.00 ± 0.40 [−0.7, 0]

the estimate here is in a good agreement with the empirical value. The agreement in turn might
indicate that the model estimate for gDDS is reasonable.

(ii) Because we only have the absolute values for gV and gT , one sees that the estimates from exchan-
ging resonances are roughly consistent with those determined from the various NLO UChPT fits,
while there are tensions when comparing with those from the NNLO UChPT fits in Ref. [65]. While
there are quite a few fit parameters at NNLO, not many lattice data exist. On the one hand, more
lattice calculations on observables for the scattering processes between heavy mesons and light
mesons would be welcome to better pin down the LECs at NNLO. On the other hand, as pointed
out in Ref. [159], the values of the LECs, which are scale-dependent in general, are dominated
by the resonances only when the renormalization scale µ is not too far away from the resonance
region. The NLO fit results are obtained with µ = 1 GeV, i.e. the scale appearing in the subtraction
constant a(µ), which is around the masses of the light vector and scalar resonances. However, the
NNLO fit results in Ref. [65] are obtained by setting µ = M̄D = 1.92 GeV for convenience. Note
that the scale-dependence of the NNLO LECs stems both from the renormalization of the one-loop
amplitude using EOMS scheme and the unitarization procedure accompanied by the subtraction
constant a(µ).

7.2 Positivity constraints on the Dφ interactions

In this section, positivity constraints on the Dφ interactions will be derived by using basic axiomatic
principles of S -Matrix theory, such as unitarity, analyticity and crossing symmetry. Such constraints are
important in the sense that model-independent information for the Dφ interactions is provided. When
employed in ChPT, they are translated into a much more practical form, i.e. positivity bounds on the
LECs. In general, these involved LECs are unknown and not fixed by chiral symmetry. Furthermore,
the number of the LECs increases when going to higher orders. Therefore, such bounds are of great
use, especially for those which can not be measured directly in experiments such as the Dφ interactions
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Table 7.4: Comparison of the values of the LECs from the estimate using resonances with those from various fits to
lattice data in unitarized ChPT at NNLO.

LEC UχPT-6a [65] UχPT-6b [65] UχPT-6a′ [65] UχPT-6b′ [65] Resonance

h0 0.02 0.02 0.02 0.02 0

h1 0.43 0.43 0.43 0.43 0.4

h24 0.79+0.10
−0.09 0.76+0.10

−0.09 0.83+0.11
−0.10 0.80+0.10

−0.10 0

h35 0.73+0.50
−0.38 0.81+0.95

−0.62 0.43+0.23
−0.23 0.40+0.33

−0.29 [−1.4, 0.1]

h′4 −1.49+0.55
−0.57 −1.56+0.61

−0.65 −1.33+0.60
−0.60 −1.72+0.64

−0.63 0

h′5 −11.47+2.24
−2.79 −15.38+4.81

−7.20 −4.25+0.65
−0.66 −2.60+0.84

−0.87 [−0.7, 0]

g′1 [GeV−1] −1.66+0.31
−1.59 −2.44+0.57

−0.64 −1.10+0.18
−0.23 −1.90+0.58

−0.35 [−0.2,−0.1]

g23 [GeV−1] −1.24+0.28
−1.51 −2.00+0.52

−0.51 −0.70+0.19
−0.24 −1.48+0.61

−0.37 [−0.5,−0.2]

g′3 [GeV−1] 2.12+0.55
−0.45 2.85+1.41

−0.96 0.98+0.15
−0.14 0.58+0.20

−0.19 0.14

under consideration. In what follows, details on the derivation of these constraints as well as practical
applications of the bounds on the Dφ interactions will be presented.

7.2.1 Positivity constraints implied by dispersion relations

For elastic Dφ scattering, the Mandelstam triangle is the region bounded by s = (MD + Mφ)2, u =

(MD + Mφ)2 and t = 4M2
φ in the Mandelstam plane as displayed in Fig. 5.1. Inside the Mandelstam

triangle, the scattering amplitude is analytic and real, see e.g. Ref. [180] for an early application in
the context baryon ChPT. Following Refs. [165, 169], we restrict ourselves to the upper part of the
Mandelstam triangle with t ≥ 0. Using unitarity, analyticity and crossing symmetry, an n-time subtracted
fixed-t dispersion relation for the elastic Dφ scattering amplitude with definite (S , I) can be written as

dn

dsnM
(S ,I)
Dφ→Dφ(s, t) =

n!
π

∫ +∞

(MD+Mφ)2
dx′

[
δII′

ImM(S ,I′)
Dφ→Dφ(x′ + iε, t)

(x′ − s)n+1

+(−1)nCII′
us

ImM(S ,I′)
Dφ̄→Dφ̄

(x′ + iε, t)

(x′ − u)n+1

]
, (7.39)

where φ̄ denotes the antiparticle of φ, and CII′
us represents the u-s crossing matrix which is defined as

A
I(u, t, s) = CII′

usA
I′(s, t, u), (7.40)

where we have written explicitly all of the three Mandelstam variables so as to make the u-s crossing
explicit, and Csu is defined by exchanging the s- and u-channel amplitudes in the above equation. The
matrices satisfy CII′

us CI′J
su = δIJ . We want to mention that the imaginary part ofM is positive definite
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above threshold.4 Besides, we have assumed that all the processes involved in the dispersion relation are
single-channel interactions such that the integration starts at the corresponding thresholds. The case with
multi-channel interactions will be discussed later. Both imaginary parts in the brackets in Eq. (7.39) are
positive definite when x′ is above threshold, i.e. x′ > (MD + Mφ)2.5 In addition, the s-channel coefficient

δII′ is always non-negative. However, the u-channel one (−1)nCII′
us is sometimes not. The aim is therefore

to construct certain combinations of the Dφ amplitudes with different isospins such that

dn

dsn

[
αI
M

(S ,I)
Dφ→Dφ(s, t)

]
≥ 0 . (7.41)

where summation over I is assumed. In combination with Eq. (7.39), a sufficient condition for the above
positivity condition to hold is given by

αIδII′
≥ 0 , αICII′

us ≥ 0 (for even n) . (7.42)

For the multi-channel case, all the cuts from the coupled channels need to be taken into account,
and the integration should start from the lowest threshold. Taking the process DK → DK as an
example, the integration in the (S , I) = (1, 1) channel will start at the Dsπ threshold rather than its
physical DK threshold. Since the imaginary part Im T (1,1)

DK→DK(x′ + iε, t) could be negative in the region
x′ ∈

[
(MDs

+ Mπ)2, (MD + MK)2
]
, the positivity condition in Eq. (7.41) is not applicable any more.

However, as discussed in Ref. [166], in the multi-channel case, the positivity conditions hold for
processes of the type a + b → a + b such that ma + mb is the lightest threshold for both the s- and
u-channels. This statement is obtained from the condition that the dispersion relation in Eq. (7.39) is true
and that t ≥ 0 which ensures the positivity of the Legendre polynomials for all partial waves. For details
we refer to Section IV in Ref. [166]. With this statement, amongst all the Dφ scattering channels, only
Dπ→ Dπ and Dsπ→ Dsπ survive.

In order to derive positivity constraints on the Dπ→ Dπ and Dsπ→ Dsπ scattering amplitudes, we
need to know the explicit forms of the u-s crossing matrices for these two processes, which are

Cus =

(
− 1

3
4
3

2
3

1
3

)
, for Dπ→ Dπ , and Cus = 1 , for Dsπ→ Dsπ . (7.43)

For the Dπ case, the matrix is arranged such that the first channel refers to I = 1/2 and the second to
I = 3/2. From now on, we will focus on the n = 2 case, which is the minimal number of subtractions in
the dispersion integral required by the Froissart bound [181].

For Dπ → Dπ, the upper-part of the Mandelstam triangle is RDπ = {(s, t)|s ≤ (MD + Mπ)
2, s + t ≥

(MD − Mπ)
2, 0 ≤ t ≤ 4M2

π}. When (s, t) ∈ RDπ, a sufficient condition for d2

ds2

{
αI
M

I
Dπ→Dπ(s, t)

}
≥ 0 is

given by 2α3/2
≥ α1/2

≥ 0. We choose the following three combinations of α1/2 and α3/2 to get bounds
on three physical scattering amplitudes:

α1/2
= 0 , α3/2

= 1 : − d2

ds2AD+π+
→D+π+(s, t) ≥ 0 ,

α1/2
= 2

3 , α
3/2

= 1
3 : − d2

ds2AD0π+
→D0π+(s, t) ≥ 0 ,

α1/2
= 1

3 , α
3/2

= 2
3 : − d2

ds2AD+π0
→D+π0(s, t) ≥ 0 ,

(7.44)

4 Here, we follow the convention S = 1 + i (2π)4δ(4)(
∑

i pi −
∑

f p f )M , to define the scattering amplitudeM(s, t).
5 Since for each partial wave `, ImM`(s) = 2|~k|

√
s |M`(s)|2 ≥ 0 above threshold and the Legendre polynomials P`(cos θ) ≥ 0 for

t ≥ 0 (or equivalently cos θ ≥ 1), one has ImM(S ,I)(s, t) =
∑∞
`=0(2` + 1) P`(t) ImM(S ,I)

` (s) ≥ 0.
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withA = −M.
For Dsπ→ Dsπ, the upper-part of the Mandelstam triangle is RDsπ

= {(s, t)|s ≤ (MDs
+ Mπ)2, s + t ≥

(MDs
− Mπ)2, 0 ≤ t ≤ 4M2

π}. When (s, t) ∈ RDsπ
, a sufficient condition for d2

ds2

{
αI
M

I
Dsπ→Dsπ

(s, t)
}
≥ 0 is

α1
≥ 0. Choosing α1

= 1, one has

−
d2

ds2AD+
s π

+
→D+

s π
+(s, t) ≥ 0 . (7.45)

In the above, we have written the constraints in terms of the scattering amplitudes which are either
explicitly given in Chapter 5 or easily obtainable by using crossing symmetry and isospin symmetry.
Hence their analytical expressions up to NNLO are all known and can be inserted into the above
inequalities to obtain bounds on the LECs, which will be discussed in the next section.

7.2.2 Positivity bounds on the LECs

The representation of the Dφ scattering amplitudes in the manifestly Lorentz covariant framework
obtained in Chapter 5 is suitable to obtain reliable bounds on the LECs, since it possesses the correct
analytic behavior inside the Mandelstam triangle. In the covariant formalism for the S U(3) case, the NLO
(tree-level) Dφ amplitudes were first given by Ref. [28] and then followed by Refs. [29, 121, 122]. These
amplitudes can be employed to derive positivity bounds on the LECs with the help of the inequalities
given in Eq. (7.44) and Eq. (7.45). Note that, throughout this work, we follow the notations of Ref. [29],
and the results from other works with different notations can be easily adopted to ours.

Bounds up to O(p2)

Inserting the amplitudes up to NLO into Eqs. (7.44) and (7.45), the constraints on the scattering amp-
litudes turn into bounds on the LECs h4 and h5. Each inequality leads to one bound on the LECs. The
intersection of all of the obtained bounds has a simple form{

h4 − h5 ≥ 0
h4 ≥ 0

, or equivalently
{

h′4 − h′5 ≥ 0
h′4 ≥ 0

. (7.46)

Here, the parameters h4 and h5 are in units of GeV−2, while h′4 and h′5 are dimensionless. The region
restricted by the bounds on h′4 and h′5 in Eq. (7.46) is depicted as the light yellow area in Fig. 7.2.
Two different sets of fitting values from Refs. [29, 122] which resum the NLO scattering amplitudes in
different ways are shown for comparison:6

(i) The first set is taken from Ref. [29]. There are two different fits: one with 5 parameters which are
four LECs and one subtraction constant used to regularize the loop integral (cf. Table V therein),
and the other with 4 parameters with the subtraction constant fixed from reproducing the D∗s0(2317)
mass in the (S , I) = (1, 0) channel (cf. Table VIII therein). The 1-σ regions, with the parameter
correlations in the fits taken into account, from these two fits for the values for h′4 and h′5 are shown
by the regions surrounded by the green dot-dashed line (for the 5-parameters fit) and by magenta
dashed line (for the 4-parameter fit).

6 The results in Ref. [121] are not taken into consideration, since the preliminary lattice data [98], which are different from the
final ones in Ref. [29], are used to perform fits there.
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Figure 7.2: Comparison of the NLO positivity bounds for h′4 and h′5 with their values obtained from fitting to the
lattice data using unitarized ChPT at NLO. The positivity-bound region is depicted in light yellow bounded by the
lines h′4 = 0 and h′4 − h′5 = 0. The area in light blue denotes the region where the bound h′4 − h′5 ≥ 0 is respected
while h′4 ≥ 0 is violated. The green dot-dashed and magenta dashed ellipses represent the 1-σ regions for h′4 and h′5
from the 5- and 4-parameter fits in Ref. [29], respectively. The red dot and blue square with error bars, denoted by
AGW-HQS and AGW-χSU(3), respectively, are taken from Ref. [122].

(ii) The second set is taken from Ref. [122]. In that work, a special renormalization scheme is proposed
to deal with the so-called power counting breaking terms appearing in the loop functions. In
Fig. 7.2, the blue square and red dot represent the fit values taken from χ-SU(3) fit and HQS
fit, which correspond to different regularizations of the scalar two-point scalar loop integral, in
Ref. [122], respectively.

As can be seen from Fig. 7.2, the fit values from Ref. [29] are only marginally consistent with the
region allowed by the bounds. The LEC values from the HQS fit in Ref. [122] has a small overlap with
the positivity bound, while the ones from the χ-SU(3) fit are completely outside the region derived from
positivity.

Bounds up to O(p3)

Inserting the Dφ amplitudes up to NNLO into the positivity constraints in Eqs. (7.44) and (7.45), one
gets bounds on the LECs at the NNLO level, which are

h4 − h5 − 24MD νD g3 ≥ f (2)
D+π+

→D+π+(s, t), (s, t) ∈ RDπ ,

h4 − h5 + 24MD νD g3 ≥ f (2)
D0π+

→D0π+(s, t), (s, t) ∈ RDπ ,

h4 − h5 ≥ f (2)
D+π0

→D+π0(s, t), (s, t) ∈ RDπ ,

h4 ≥ f (2)
D+

s π
+
→D+

s π
+(s, t), (s, t) ∈ RDsπ

,

(7.47)

where

νD ≡
s − u
4MD

, and f (2)
process(s, t) ≡

F2
π

2
d2

ds2A
loop
process(s, t).
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Each bound would become more stringent if one always sets f (2)
process(s, t) at its maximum inside RDπ (or

RDsπ
). Numerically, we find

max{ f (2)
D+π+

→D+π+(s, t)} = max{ f (2)
D0π+

→D0π+(s, t)} = 0.34,

max{ f (2)
D+π0

→D+π0(s, t)} = 0.28 (7.48)

in the region (s, t) ∈ RDπ, and
max{ f (2)

D+
s π

+
→D+

s π
+(s, t)} = 0.15 (7.49)

in the region (s, t) ∈ RDsπ
. By further using the condition |νD| ≤ ν

th
D(t) = Mπ + t/(4MD) ≤ Mπ + M2

π/MD,
one finally obtains the following bounds{

h′4 − h′5 − 24|g′3|(MD + Mπ)Mπ/M̄D ≥ 1.25 ,
h′4 ≥ 0.55 ,

(7.50)

which are expressed in terms of h′4, h′5 and g′3. Comparing with the O(p2) bounds given in Eq. (7.46), the
O(p3) bounds are much more stringent.

In order to compare the values of h′4 and h′5 from the fits to the lattice data using unitarized ChPT
at NNLO with these bounds, we choose to fix g′3 at three typical values: the central and the two
extremes within the 1-σ region of each fit. For convenience, we define a function of g′3, g(g′3) ≡
1.25 + 24|g′3|(MD + Mπ)Mπ/M̄D, and rewrite the bounds in Eq. (7.50) as{

h′4 − h′5 ≥ g(g′3) ,
h′4 ≥ 0.55 .

(7.51)

Notice that the bounds depend on the renormalization scale µ since the loop contributions f (2)
process(s, t) are

involved. The NNLO bounds in Eq. (7.50) and Eq. (7.51) are obtained by setting µ = M̄D in accordance
with Ref. [65]. The comparison is shown in Fig. 7.3. The bounds displayed in the graphs in the first,
second and third column correspond to taking the central, the lowest and the largest value in each fit
for g′3, respectively. As seen from the plots, no fit completely obeys the bounds. For UChPT-6(a)
and UChPT-6(b), the fit values are consistent with the first bound in Eq. (7.50) while they violate the
second one, i.e., the one restricting h′4 only. Both bounds are violated in the fits for UChPT-6(a′) and
UChPT-6(b′), which are the ones with a prior, which requires all of the LECs (made dimensionless) to be
take natural values of order O(1).

These comparisons, however, have to be interpreted with caution. The positivity bounds in Eq. (7.46)
and (7.50) were derived using the perturbative scattering amplitudes, while the fits in Ref. [29, 65, 122]
were performed using resummed amplitudes with perturbative kernels. The resummed amplitudes using
various unitarization approaches in the literature break the crossing symmetry, which, however, is one
of the main components in deriving the positivity bounds through dispersion relations. It is thus not
surprising that the LECs determined in the UChPT fits do not respect the positivity bounds. Nevertheless,
we notice that all of these fits prefer a negative value for h4 while the positivity bound requires it to be
positive.
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Figure 7.3: Comparison of the positivity bounds for h′4 and h′5 with their 6-channel NNLO fit values. The graphs in
the first, second and third column correspond to the case that g′3 is fixed at its lowest, central and largest value,
respectively. The blue dots with error bars represent the fitting values of h′4 and h′5 from different fits: UChPT-6(a),
UChPT-6(b), UChPT-6(a′) and UChPT-6(b′), see Ref. [65]. The NNLO positivity-bound region is in light yellow
bounded by the lines h′4 = 0.55 and h′4 − h′5 = g(g′3). The area in light blue denotes the region where the bound
h′4 − h′5 ≥ g(g′3) is respected while h′4 ≥ 0.55 is violated.

138



CHAPTER 8

Summary

In this thesis we have investigated the interactions between charmed pseudoscalar mesons D and
Goldstone bosons φ within the framework of chiral perturbation theory (ChPT) to third chiral order in a
manifestly Lorentz-invariant form.

After constructing the chiral Lagrangian for spinless matter fields living in a fundamental S U(N)
representation, we have given the explicit generating functional for Green functions of at most four
external fields up to O(p3), i.e. the leading one-loop order, in Chapter 4. The associated loops bring
ultraviolet (UV) divergences to the theory, which need to be renormalized. To remove the UV divergences
we have employed the heat kernel techniques to extract the terms with a pole at d = 4, which correspond
to the UV divergences in dimensional regularization. Then those UV divergences are absorbed by the
counter terms, i.e. the low-energy constants (LECs), in both the O(p2) and O(p3) Lagrangians. Besides
the UV divergences, the loops also lead to the existence of the so-called power counting breaking (PCB)
terms due to the inclusion of the new scale, the nonvanishing mass of the matter fields. We have derived
the PCB terms in the one-loop effective generating functional in the extended-on-mass-shell (EOMS)
scheme at the Lagrangian level. They are absorbed into a redefinition of the O(p2) LECs. After removing
the UV divergences and PCB terms, we have obtained a covariant chiral effective generating functional
free of UV divergences and PCB terms up to the next-to-next leading order (NNLO). The framework
can be used for any theories with spontaneous symmetry breaking of S U(N)L × S U(R)R to S U(N)V
with spinless matter fields in the fundamental representation. Examples in QCD of the matter fields are
ground state pseudoscalar mesons except for the pions such as kaons1 and heavy mesons.

In Chapter 5 we have investigated the D-φ scattering with the amplitudes obtained in Chapter 4 by
setting N = 3 and treating the charmed pseudoscalar mesons as the matter fields. The complete analytical
expressions for the amplitudes and the redefinition of LECs to remove UV divergences and PCB terms
are given explicitly. In order to describe the S -wave scattering lengths at unphysically high pion masses
and to study the possible dynamically generated resonances that are absent in the Lagrangian, e.g. the
D∗s0(2317), at relatively high energies, which is a nonperturbative effect, two different unitarization
procedures are employed. Since the lattice simulations are performed with fixed charm and strange
quark masses with varying up and down quark masses, we have derived the corresponding pion mass
dependences of the scattering lengths by extrapolation of the involved masses and the pion decay constant.
In order to determine the LECs, we have performed fits to scattering lengths in a few channels computed
in lattice QCD at various unphysical pion masses. We tried different fitting procedures with and without
a naturalness constraint. It turns out that the absolute value of h′5 could be quite large if the naturalness
constraint is not enforced. We want to stress that more lattice simulations in different channels are

1 If this is fixed at its physical value.
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Chapter 8 Summary

necessary for a better determination of the involved LECs and a better understanding of the scalar and
axial-vector charmed mesons. When the LECs are well constrained, we can make reliable predictions in
the channels which have not been calculated on the lattice and in the bottom sector utilizing heavy quark
flavor or spin symmetry.

In addition, we also investigated possible dynamically generated resonances using the unitarized
scattering amplitudes by analytic continuation. It is worth noticing that a pair of poles with nonvanishing
imaginary parts are found on the physical Riemann sheet in the coupled-channel (S , I) = (0, 1/2)
amplitude, which are at odds with causality. The issue is caused by the coupled-channel left-hand cut,
which is not taken into account in the unitarization procedure we used. It may be avoided by using a
single-channel potential if we only focus on the region near the Dπ threshold. In the end, we studied the
trajectories of the poles corresponding to the D∗s0(2317) and a resonance in the (S , I) = (0, 1/2) channel
with varying the pion mass. They exhibit similar behaviors as in the NLO case given by Ref. [115].
To summarize, the LECs are badly determined due to the scarcity of available data. Thus to come to
firmer conclusions, more lattice data are required, as also concluded from investigations based on the
resonance-exchange model and S -matrix properties in Chapter 7.

In Chapter 6, contributions from vector charmed mesons D∗ were included explicitly in order to
quantify their influences on the S -wave scattering lengths. We have calculated the potential for the
scattering of Goldstone bosons off pseudoscalar charmed mesons including the vector charmed mesons
as explicit degrees of freedom up to the NNLO in a framework of covariant ChPT. We have explicitly
shown that the UV divergences and PCB terms from one-loop potentials are absorbed by a redefinition of
the LECs, collected in Appendix B. For an easy comparison to the previous case without including D∗

explicitly, we have used a similar fit procedure as in Chapter 5. In order to access the importance of the
contribution of D∗, a selection of the diagrams which survives in the limit of heavy quark is used to fit to
the lattice data. It turns out that the influence of D∗ to the S -wave scattering lengths is marginal in the
heavy quark limit. A complete calculation including the D∗ is given subsequently to evaluate the full
contribution of D∗. The numerical fit implies that the full influence of D∗ is marginal and it is a good
approximation to exclude them in the calculation.

Due to the large number of LECs and the scarcity of available data, the reliability of the LECs
determined in Chapters 5 and 6 needs to be further analyzed. In Chapter 7 we have estimated the LECs
in the NLO and NNLO chiral Lagrangian for the Dφ interaction using resonance saturation. These LECs
receive contributions from exchanging the scalar charmed mesons, the light-flavor vector, scalar and
tensor mesons. We found that h1 is entirely saturated by the light scalar-meson exchange. The resulting
estimates are consistent with the NLO UChPT fitting results in Refs. [29, 122], while sizeable deviation
from the determinations with the NNLO UChPT, see Chapter 5, are found.

In parallel, with the help of axiomatic S -matrix principles, such as unitarity, analyticity and crossing
symmetry, we derived positivity constraints on the Dπ and Dsπ scattering amplitudes in upper parts of
Mandelstam triangles, RDπ and RDsπ

, respectively. In combination with the corresponding scattering
amplitudes calculated in ChPT using the EOMS scheme, the constraints are then translated into a set of
bounds on the LECs. At order O(p2), the bounds are independent of the Mandelstam variables s, t and
hence have unique forms throughout RDπ or RDsπ

. At order O(p3), the most stringent bounds are obtained
by zooming inside the upper part of the Mandelstam triangle such that they can easily be employed and
implemented to constrain future analyses. Finally, as a first use of these bounds, the values of LECs
in the literature are compared with them. The comparison shows that the bounds, in particular the one
constraining h4 only, are badly violated in all the previous determinations from fitting to lattice data
using UChPT. The most probable reason for this is that the UChPT amplitudes violate crossing symmetry
which is the basis of deriving the positivity bounds.

For a more reasonable comparison, one needs to derive positivity bounds for the unitarized amplitudes.
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One possible attack to the problem could come from using the method proposed in Ref. [182] where
the author proposed a crossing-symmetric amplitude for the process γπ → ππ combining the inverse
amplitude method, which is one of the unitarization approaches, and the Roy equation. In our case, the
problem is much more involved due to different masses and coupled channels. Whether such a method
can lead to a feasible procedure still needs to be seen.
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APPENDIX A

One-loop integrals

In this Appendix we give the definition for the one-loop integrals employed in this work as well as the
explicit formulae for derivatives of one-loop integrals, which can be used to extract the regular part of
loop integrals.

A.1 Definition of the one-loop integrals

p1

q,m1

pN

q + kN−1, mN

q + k1, m2

p2

pN−1

Figure A.1: A general one-loop diagram. The pi denotes the external momentum, q and q + ki represent the internal
momenta and mi is the corresponding propagator mass. The dashed line indicates the possible remaining structure
of internal propagators associated with external momenta.

Consider a general one-loop diagram Fig. A.1, the N-point one-loop integral contained in this diagram
is [183]

T N
µ1,...µp

=
(2πµ)4−d

iπ2

∫
ddk

kµ1
· · · kµp[

k2
− m2

1
][(

k + q1)2
− m2

2
]
. . .

[(
k + qN−1

)2
− m2

N
] , (A.1)

where the momenta ki that appear in the denominators are related to he external momenta pi as

ki =

i∑
j=1

p j. (A.2)

The denominator arises from the propagators running in the loop. P, the number of ks in the numerator,
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Appendix A One-loop integrals

determines the Lorentz tensor structure of the integral, i.e. P = 0 denotes a scalar integral, P = 1 a vector
integral, etc. Following the notation of Ref. [184] we set T 1

= A, T 2
= B, T 3

= C, T 4
= D, etc.

A.1.1 Scalar integrals

One-point function

A0(m2) =
(2πµ)4−d

iπ2

∫
ddk

1

k2
− m2 .

Two-point function

B0(p2
1,m

2
1,m

2
2) =

(2πµ)4−d

iπ2

∫
ddk

1

[k2
− m2

1][(k + p1)2
− m2

2]
.

Threee-point function

C0(p2
1, p2

2, p2
12,m

2
1,m

2
2,m

2
3)

=
(2πµ)4−d

iπ2

∫
ddk

1

[k2
− m2

1][(k + p1)2
− m2

2][(k + p1 + p2)2
− m2

3]
.

Four-point function

D0(p2
1, p2

2, p2
3, p2

4, p2
12, p2

23,m
2
1,m

2
2,m

2
3,m

2
4)

=
(2πµ)4−d

iπ2

∫
ddk

1

[k2
− m2

1][(k + p1)2
− m2

2][(k + p1 + p2)2
− m2

3][(k + p1 + p2 + p3)2
− m2

4]
.

Above we have used the abbreviation pi j = pi + p j.

A.1.2 Tensor decomposition

The integrals with a tensor structure can be reduced to linear combinations of Lorentz covariant tensors
constructed from the metric tensor gµν and a linearly independent set of the momenta [185]. The choice of
this basis is not unique. For the integrals up to the four-point function the decomposition reads explicitly

Bµ = k1µB1,

Bµν = gµνB00 + k1µk1νB11,

Bµνρ = (gµνk1ρ + gνρk1µ + gµρk1ν)B001 + k1µk1νk1ρB111,

Cµ = k1µC1 + k2µC2 =

2∑
i=1

kiµCi,

Cµν = gµνC00 +

2∑
i, j=1

kiµk jνCi j,

Cµνρ =

2∑
i=1

(gµνkiρ + gνρkiµ + gµρkiν)C00i +

2∑
i, j,`=1

kiµk jνk`ρCi j`,

144



A.1 Definition of the one-loop integrals

Dµ =

3∑
i=3

kiµDi,

Dµν = gµνD00 +

3∑
i, j=1

kiµk jνDi j,

Dµνρ =

3∑
i=1

(gµνkiρ + gνρkiµ + gµρkiν)D00i +

3∑
i, j,`=1

kiµk jνk`ρDi j`,

Dµνρσ = (gµνgρσ + gµρgνσ + gµσgνρ)D0000

+

3∑
i, j=1

(gµνkiρk jσ + gνρkiµk jσ + gµρkiνk jσ + gµσkiνk jρ + gνσkiµk jρ + gρσkiµk jν)D00i j

+

3∑
i, j,`,m=1

kiµk jνk`ρkmσDi j`m. (A.3)

In terms of these notations, the loop integrals A and B involved in the calculations are given as
following:

A0(m2
a) = −m2

a

(
R + ln

m2
a

µ2

)
,

B0(p2,m2
a,m

2
b) = −R + 1 − ln

m2
b

µ2 +
∆ab + p2

2p2 ln
m2

b

m2
a

+
p2
− (ma − mb)2

p2 ρab(p2) ln
ρab(p2) − 1

ρab(p2) + 1
,

B1(p2,m2
a,m

2
b) =

1

2p2

[
A0(m2

a) − A0(m2
b) − (p2

+ ∆ab)B0(p2,m2
a,m

2
b)
]
,

B00(p2,m2
a,m

2
b) =

1

12p2

[
(p2

+ ∆ab)A0(m2
a) + (p2

− ∆ab)A0(m2
b) +

(
4p2m2

a − (p2
+ ∆ab)2)B0(p2,m2

a,m
2
b)
]

−
1

18
(p2
− 3m2

a − 3m2
b),

B11(p2,m2
a,m

2
b) =

1

3p4

[
(2p2

+ ∆ab)A0(m2
b) − (p2

+ ∆ab)A0(m2
a) −

(
p2m2

a − (p2
+ ∆ab)2)B0(p2,m2

a,m
2
b)
]

+
1

18p2 (p2
− 3m2

a − 3m2
b), (A.4)

where ∆ab = m2
a − m2

b,

ρab(p2) =

√√
p2
− (ma + mb)2

p2
− (ma − mb)2 (A.5)

and R =
2

d − 4
+ γE − 1 − ln 4π, with γE the Euler’s constant, γE = 0.57721 . . . .
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A.2 Derivatives of one-loop integrals

As discussed in Chapter 2, the PCB terms of loop integrals are regular with respect to the chiral quantities.
That means one can extract the PCB terms by Taylor expansion with chiral quantities, i.e. by taking
derivatives of loop integrals with respect to chiral quantities. In this section, we investigate the PCB terms
by calculating the derivatives of loop integrals. We adapt the derivatives of two-, three- and four-point
functions calculated by Devaraj and Stuart [186, 187].

A.2.1 Derivatives of the two-point loop function

Performing the usual Feynman parameterization of the two-point loop integral one obtains

B0(p2,m2
1,m

2
2) = (−1)i(4π)2−d/2

Γ
(
2 −

d
2
) ∫ 1

0
dz

[
az2

+ bz + c
] d

2−2, (A.6)

where a = −p2, b = p2
− m2

1 + m2
2, c = m2

1 − iε. It follows that

∂

∂p2 B0(p2,m2
1,m

2
2) = (−1)i(4π)2−d/2

Γ
(
3 −

d
2
) ∫ 1

0
dz

z(z − 1)

(az2
+ bz + c)3−d/2 ,

∂

∂m2
1

B0(p2,m2
1,m

2
2) = (−1)i(4π)2−d/2

Γ
(
3 −

d
2
) ∫ 1

0
dz

z − 1

(az2
+ bz + c)3−d/2 . (A.7)

The partial derivative with respect to m2
2 can be easily obtained due to that B0 is symmetric in its mass

arguments. On the other hand, integrating B0 by parts one finds

B0(p2,m2
1,m

2
2) = (−1)i(4π)2−d/2

Γ
(
2 −

d
2
)[ ∫ 1

0
d
(
z(az2

+ bz + c)d/2−2
)
−

∫ 1

0
dz

z( d
2 − 2)(2az + b)

(az2
+ bz + c)3−d/2

]
= (−1)i(4π)2−d/2

Γ
(
2 −

d
2
)[

(m2
2)d/2−2

+ (2 −
d
2

)
∫ 1

0
dz

z(2az + b)

(az2
+ bz + c)3−d/2

]
= B0(0,m2

2,m
2
2) + (−1)i(4π)2−d/2

Γ
(
3 −

d
2
) ∫ 1

0
dz

z(2az + b)

(az2
+ bz + c)3−d/2 . (A.8)

Therefore, one has

(−1)i(4π)2−d/2
Γ
(
3 −

d
2
) ∫ 1

0
dz

z(2az + b)

(az2
+ bz + c)3−d/2 = B0(p2,m2

1,m
2
2) − B0(0,m2

2,m
2
2). (A.9)

We write [188]

z(z − 1)

az2
+ bz + c

= α0 + β1
z(2az + b)

az2
+ bz + c

+ β0
2az + b

az2
+ bz + c

, (A.10)

in which

α0 = −
b
a

2a + b

b2
− 4ac

, β1 =
1
a

b2
− 2ac + ab

b2
− 4ac

, β0 =
c
a

2a + b

b2
− 4ac

. (A.11)
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The integral of last term of Eq. (A.11) can be evaluated as:

(−1)i(4π)2−d/2
Γ
(
3 −

d
2
) ∫ 1

0
dz

2az + b

(az2
+ bz + c)3−d/2

= (−1)i(4π)2−d/2
Γ
(
3 −

d
2
) ∫ 1

0

d(az2
+ bz + c)

(az2
+ bz + c)3−d/2

= (−1)i(4π)2−d/2
Γ
(
2 −

d
2
)[

cd/2−2
− (a + b + c)d/2−2]

= B0(0,m2
1,m

2
1) − B0(0,m2

2,m
2
2). (A.12)

Inserting Eqs. (A.9) and (A.12) into Eq. (A.7) one obtains the derivative of B0 function with respect to
p2. The derivatives with respect to masses can be obtained in a similar way. Following the notation of
Ref. [186], the derivatives of the two-point functions read

∂

∂p2 B0(p2,m2
1,m

2
2) =

1

p2D

[
B0(0,m2

1,m
2
1)(−p2

+ m2
1 − m2

2)m2
1

−(p2
+ m2

1 − m2
2)(p2

− m2
1 + m2

2 + m2
2B0(0,m2

2,m
2
2)

+B0(p2,m2
1,m

2
2)
(
− m4

1 + (p2
+ 2m2

2)m2
1 − m4

2 + p2m2
)]

=
1
D

[(
− p2

+ m2
1 + m2

2
)
p2
− A0(m2

2)
(
p2

+ m2
1 − m2

2
)

−A0(m2
1)
(
p2
− m2

1 + m2
2
)

+ B0(p2,m2
1,m

2
2)
(
p2(m2

1 + m2
2) − (m2

1 − m2
2)2)],

(A.13)

∂

∂m2
1

B0(p2,m2
1,m

2
2) =

1

m2
1D

[
− A0(m2

1)
(
− p2

+ m2
1 + m2

2
)

+m2
1

(
2A0(m2

2) −
(
p2
− m2

1 + m2
2
)(

B0(p2,m2
1,m

2
2) − 1

))]
, (A.14)

where

D =
(
m4

1 − 2(p2
+ m2

2)m2
1 + (p2

− m2
2)2). (A.15)

After some calculations, some special cases read

∂

∂p2 B0(p2,m2, 0)
∣∣∣∣
p2

=m2 = −
m2

+ A0(m2)

2m4 ,

∂

∂M2 B0(m2,m2,M2)
∣∣∣∣
M2

=0
=

3m2
− A0(m2)

2m4 ,

(A.16)

where we have used the symmetry of the loop functions under permutation of its mass arguments and

B0(0,m2,m2) =
d/2 − 2

m2 A0(m2),

B0(m2,m2, 0) =
d/2 − 1

m2(d − 3)
A0(m2). (A.17)
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As a consequence, the regular part of a two-point function B0(s,m2,M2) with m the mass of matter field
and M the Goldstone boson mass reads

Breg.
0 (s,m2,M2) = B0(m2,m2, 0)

+(s − m2)
∂

∂s
B0(s,m2, 0)

∣∣∣∣
s=m2

+M2 ∂

∂M2 B0(m2,m2,M2)
∣∣∣∣
M2

=0
+ · · ·

=
(
1 − ln

m2

µ2

)
−

s − m2

2m2

(
1 − ln

m2

µ2

)
+

M2

2m2

(
3 + ln

m2

µ2

)
+ · · · , (A.18)

which is identical to Eq. (C.3) in Ref. [65].

A.2.2 Derivatives of the three-point loop function

The derivatives of the three-point function can be expressed as a sum of the scalar three-point function
and mass-derivatives of the two-point function. To see this one writes

∂

∂m2
1

B0(p2,m2
1,m

2
2) = −

∫ 1

0
dx

1 − x

p2x2
+ (m2

2 − m2
1 − p2)x + m2

1

,

∂

∂m2
2

B0(p2,m2
1,m

2
2) = −

∫ 1

0
dx

x

p2x2
+ (m2

2 − m2
1 − p2)x + m2

1

. (A.19)

The Feynman parameter representation of the scalar three-point function reads

C0(p2
1, p2

2, p2
12,m

2
1,m

2
2,m

2
3) =

∫ 1

0
dx

∫ x

0
dy

1

(ax2
+ by2

+ cxy + dx + ey + f )3−d/2

=

∫ 1

0
dx

∫ x

0
dy

1

D3−d/2
c

, (A.20)

where

a = −p2
1, b = −p2

2, c = p2
1 + p2

2 − p2
12,

d = p2
1 + m2

1 − m2
2, e = p2

12 − p2
1 + m2

2 − m2
3, f = −m2

1. (A.21)

The derivatives of C0 with respect to any argument can be written as

C′0 = (3 −
d
2

)
∫ 1

0
dx

∫ x

0
dy
αx2 x2

+ α
y2y2αxyxy + αxx + αyy + α1

D4−d/2
c

, (A.22)

where the coefficients αi are summarized in Table. A.1. They can be expressed as linear combinations of
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A.2 Derivatives of one-loop integrals

C′0 w.r.t. αx2 α
y2 αxy αx αy α1

p2
1 1 0 -1 -1 1 0

p2
2 0 1 -1 0 0 0

p2
12 0 0 1 0 -1 0

m2
1 0 0 0 -1 0 1

m2
2 0 0 0 1 -1 0

m2
3 0 0 0 0 1 0

Table A.1: Coefficients αi in Eq. (A.22) for derivatives of C0.

C0 and mass-derivatives of B0. The basis can be constructed as [186]

I1 = (3 −
d
2

)
∫ 1

0
dx

∫ x

0
dy
y(2by + cx + e)

D4−d/2
c

,

I2 = (3 −
d
2

)
∫ 1

0
dx

∫ x

0
dy
y(2ax + cy + d)

D4−d/2
c

,

I3 = (3 −
d
2

)
∫ 1

0
dx

∫ x

0
dy

x(2by + cx + e)

D4−d/2
c

,

I4 = (3 −
d
2

)
∫ 1

0
dx

∫ x

0
dy

2ax + cy + d

D4−d/2
c

,

I5 = (3 −
d
2

)
∫ 1

0
dx

∫ x

0
dy

2by + cx + e

D4−d/2
c

,

I6 = (3 −
d
2

)
∫ 1

0
dx

∫ x

0
dy

dx + ey + 2 f

D4−d/2
c

.

Using partial integration and the Feynman parametrization of Eqs. (A.19) and (A.22) one can show
that

I1 = C0 −
∂

∂m2
3

B0(p2
12,m

2
1,m

2
3),

I2 = −
∂

∂m2
3

B0(p2
2,m

2
2,m

2
3) +

∂

∂m2
3

B0(p2
12,m

2
1,m

2
3),

I3 = −
∂

∂m2
3

B0(p2
12,m

2
1,m

2
3) +

∂

∂m2
2

B0(p2
1,m

2
1,m

2
2),

I4 =
( ∂

∂m2
1

+
∂

∂m2
3

)
B0(p2

12,m
2
1,m

2
3) −

( ∂

∂m2
2

+
∂

∂m2
3

)
B0(p2

2,m
2
2,m

2
3),

I5 =
( ∂

∂m2
1

+
∂

∂m2
2

)
B0(p2

1,m
2
1,m

2
2) −

( ∂

∂m2
1

+
∂

∂m2
3

)
B0(p2

12,m
2
1,m

2
3),

I6 =
( ∂

∂m2
2

+
∂

∂m2
3

)
B0(p2

2,m
2
2,m

2
3). (A.23)
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One can perform the decomposition of C′0 in terms of the above basis

C′0 =

6∑
i=1

βiIi. (A.24)

By comparison of coefficients we get a set of linear equations

0 0 c 0 0 0
2b c 0 0 0 0
c 2a 2b 0 0 0
0 0 e 2a c d
e d 0 c 2b e
0 0 0 d e 2 f





β1
β2
β3
β4
β5
β6


=



αx2

α
y2

αxy
αx
αy
α1


. (A.25)

From the equations Eq. (A.25) one can solve for the βi and thus express C′0 as a sum over C0 and
massive-derivatives of B0.

A.2.3 Derivative of the four-point loop function

The derivatives of the four-point loop functions can be obtained in analogy to that of the three-point
functions. The scalar four-point function in terms of Feynman parameters is given by

D0(p2
1, p2

2, p2
3, p2

4, p2
12, p2

23,m
2
1,m

2
2,m

2
3,m

2
4) =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

1

D4−d/2
d

, (A.26)

where Dd = ax2
+ by2

+ cz2
+ dxy + exz + f yz + gx + hy + iz + j with

a = −p2
1, b = −p2

2, c = −p2
3,

d = p2
1 + p2

2 − p2
12, e = p2

12 + p2
23 − p2

2 − p2
4, f = p2

2 + p2
3 − p2

23,

g = p2
1 + m2

1 − m2
2, h = p2

12 − p2
1 + m2

2 − m2
3, i = p2

4 − p2
12 + m2

3 − m2
4,

j = −m2
1. (A.27)

We can choose a set of basis integrals as follows,

I1 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dzz

∂

∂z
1

D4−d/2
d

,

I2 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dzx

∂

∂z
1

D4−d/2
d

,

I3 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dzy

∂

∂z
1

D4−d/2
d

,

I4 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dzz

∂

∂y

1

D4−d/2
d

,

I5 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dzx

∂

∂y

1

D4−d/2
d

,
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I6 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

∂

∂y

y

D4−d/2
d

,

I7 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

∂

∂y

1

D4−d/2
d

,

I8 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dzz

∂

∂x
1

D4−d/2
d

,

I9 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

∂

∂x
x

D4−d/2
d

,

I10 =

∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz
∂

∂z
z

D4−d/2
d

. (A.28)

After some calculations, e.g. see Ref. [187], one finds

I1 =
∂

∂m2
4

C0(1, 2, 4) − D0,

I2 =
∂

∂m2
2

C0(1, 2, 4) +
∂

∂m2
4

C0(1, 2, 4) −
∂

∂m2
2

C0(1, 2, 3) −
∂

∂m2
3

C0(1, 2, 3),

I3 =
∂

∂m2
4

C0(1, 2, 4) −
∂

∂m2
3

C0(1, 2, 3),

I4 =
∂

∂m2
4

C0(1, 3, 4) −
∂

∂m2
4

C0(1, 2, 4),

I5 =
∂

∂m2
3

C0(1, 3, 4) +
∂

∂m2
4

C0(1, 3, 4) −
∂

∂m2
2

C0(1, 2, 4) −
∂

∂m2
4

C0(1, 2, 4),

I6 =
∂

∂m2
3

C0(1, 3, 4) +
∂

∂m2
4

C0(1, 3, 4) −
∂

∂m2
4

C0(1, 2, 4),

I7 =
∂

∂m2
1

C0(1, 3, 4) +
∂

∂m2
3

C0(1, 3, 4) +
∂

∂m2
4

C0(1, 3, 4)

−
∂

∂m2
1

C0(1, 2, 4) −
∂

∂m2
2

C0(1, 2, 4) −
∂

∂m2
4

C0(1, 2, 4),

I8 =
∂

∂m2
4

C0(2, 3, 4) −
∂

∂m2
4

C0(1, 3, 4),

I9 =
∂

∂m2
2

C0(2, 3, 4) +
∂

∂m2
3

C0(2, 3, 4) +
∂

∂m2
4

C0(2, 3, 4)

−
∂

∂m2
3

C0(1, 3, 4) −
∂

∂m2
4

C0(1, 3, 4),

I10 =
∂

∂m2
4

C0(1, 2, 4). (A.29)

Here the arguments of C0 indicate the propagators, labelled according to their appearance in D0, e.g.
C0(1, 2, 4) represents D0 with the fourth propagator omitted C0(1, 2, 4) = C0(p2

1, p2
23, p2

4,m
2
1,m

2
2,m

2
4).
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D′0 w.r.t. αz2 α
y2 αx2 αxy αxz αzy αz αy αx α1

p2
1 0 0 1 -1 0 0 0 1 -1 0

p2
2 0 1 0 -1 1 -1 0 0 0 0

p2
3 1 0 0 0 0 -1 0 0 0 0

p2
4 0 0 0 0 1 0 -1 0 0 0

p2
12 0 0 0 0 1 -1 0 1 -1 0

p2
23 0 0 0 0 -1 1 0 0 0 0

m2
1 0 0 0 0 0 0 0 0 -1 1

m2
2 0 0 0 0 0 0 0 -1 1 0

m2
3 0 0 0 0 0 0 -1 1 0 0

m2
4 0 0 0 0 0 0 1 0 0 0

Table A.2: Coefficients αi in Eq. (A.30) for derivatives of D0.

Using the Feynman parameter representation for D0 any derivative of D0 can be written as

D′0 = (4 −
d
2

)
∫ 1

0
dx

∫ x

0
dy

∫ y

0
dz

αx2 x2
+ α

y2y2
+ αz2z2

+ αxyxyαxzzx + αyzyz + αxx + αyy + αzz + α1

D5−d/2
d

, (A.30)

where the coefficients αi are given in Table A.2.

On the other hand the derivatives of D0 can be decomposed into a sum over the basis integrals Ii of
Eq. (A.28)

D′0 =

10∑
i=1

βiIi, (A.31)

where the coefficients βi can be solved by a set of linear equations

−4c 0 0 −2 f 0 c 0 −2e c −3c
0 0 −2 f 0 0 −3b 0 0 b b
0 −2e 0 0 −2d a 0 0 −3a a
0 −2 f −2e 0 −4b −d 0 0 −d d
−2e −4c 0 −2d −2 f e 0 −4a −e −e
−2 f 0 −4c −4b 0 − f 0 −2d f − f
−2i 0 0 −2h 0 i −2 f −2g i −i
0 0 −2i 0 0 −h −4b 0 h h
0 −2i 0 0 −2h g −2d 0 −g g

0 0 0 0 0 j −2h 0 j j





β1
β2
β3
β4
β5
β6
β7
β8
β9
β10



= 2



αz2

α
y2

αx2

αxy
αxz
αyz
αz
αy
αx
α1



. (A.32)
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APPENDIX B

Renormalization of LECs within EOMS scheme

B.0.1 β-functions

The β-functions in Eq. (6.15) read

βM2
0

= −
4g2

0(3m2
D − m2

D∗)
9

,

βM∗20
=

4g2
0m2

D(3m2
D∗ − m2

D)

3m2
D∗

,

βh0
=

11 g2
0 m2

D

24 m2
D∗

,

βh1
=

5 g2
0 m2

D

8 m2
D∗

,

βh2
=

m2
D(m4

D∗ − 22 g2
0 m2

D∗ + 4 g4
0)

48 m4
D∗

,

βh3
=
−9 m2

Dm4
D∗ + 18 g2

0(3 m2
Dm2

D∗ + 16m4
D∗) + 4g4

0(m2
D + 2m2

D∗)

144 m4
D∗

,

βh4
=

1
24

7 − 10 g2
0

m2
D∗

+
4 g4

0

m4
D∗

 ,
βh5

= −
7
16

+
9 g2

0

8m2
D∗
−

13 g4
0

18m4
D∗

,

βg0
= −g0 m2

D∗ + g3
0

7
4
−

5 m2
D

4 m2
D∗

 ,
βg1

=
−41 g2

0 m2
D∗ + 30 g4

0

288 m4
D∗

,

βg2
= −

9
128

+
67 g2

0

288 m2
D∗
−

3 g4
0

16 m4
D∗

,

βg3
= 0 . (B.1)
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B.0.2 Coefficients of finite shifts

In this appendix, we express the EOMS subtractions in terms of the standard loop function. The explicit
coefficients of the finite shifts in Eq. (6.17) are

β̄h2
=

−m2
D

72
−

1
144

31m2
D

m2
D∗

+ 3

 g2
0 +

m2
D

(
m2

D∗ − 7m2
D

)
72m4

D∗(mD − mD∗)(mD + mD∗)
g4

0


+

− 1
48

+
3m2

D − 4m2
D∗

24m2
Dm2

D∗ − 24m4
D∗
g2

0 +
−3m4

D + 6m2
Dm2

D∗ − 4m4
D∗

12m4
D∗(mD − mD∗)

2(mD + mD∗)
2 g

4
0

 A0(m2
D)

+

−8m4
D + 8m2

Dm2
D∗ + m4

D∗

24m2
Dm2

D∗
(
m2

D − m2
D∗

) g2
0 +
−2m4

D + 5m2
Dm2

D∗ − 2m4
D∗

12m4
D∗

(
m2

D − m2
D∗

)2 g4
0

 A0(m2
D∗)

+

 1
24

8m2
D

m2
D∗

+
m2

D∗

m2
D

+ 9

 g2
0 +

m2
D + m2

D∗

6m4
D∗

g4
0

 B0(m2
D, 0,m

2
D∗) , (B.2)

β̄h3
=

m2
D

24
+

 3m2
D

4m2
D∗

+
1
6

 g2
0 +

7m4
D − 65m2

Dm2
D∗ + 112m4
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216m4
D∗

(
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 1
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1
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0 +
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=
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D

) g3
0

 B0(m2
D∗ , 0,m

2
D)

−


(
m2

D + 3m2
D∗

)2

6m2
D∗

g2
0

C0(m2
D∗ , 0,m

2
D, 0,m

2
D,m

2
D∗) , (B.6)

β̄h0
=

11m2
D

36m2
D∗
g2

0 +
11

24m2
D∗
g2

0A0(m2
D∗) −

11
(
m2

D + m2
D∗

)
24m2

D∗
g2

0B0(m2
D, 0,m

2
D∗) , (B.7)

β̄h1
=

5m2
D

12m2
D∗
g2

0 +
5

8m2
D∗
g2

0A0(m2
D∗) −

5
(
m2

D + m2
D∗

)
8m2

D∗
g2

0B0(m2
D, 0,m

2
D∗) . (B.8)

Here the involved scalar one-loop integrals stand for their finite parts only, which are obtained from the
original ones, defined in Appendix A, by performing the MS − 1 subtraction.
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APPENDIX C

Estimate of the coupling constant gDDT via QCD
sum rules

In this Appendix, we estimate the unknown off-shell coupling constant gDDT using QCD sum rules,
following the procedure in, e.g., Refs. [189, 190]. To be specific, we will calculate the D0D−a+

2 coupling.
The standard procedure for computing a coupling constant in the method of QCD sum rules is to consider
the three-point correlation function, which in our case is given by

Πµν(p′, p, q) = i2
∫

d4x
∫

d4y ei(−p′x+yp)
〈0|T { jD0

(x) jD−(y) ja
+
2
µν(0)}|0〉, (C.1)

where q = p′ − p denotes the momentum transfer. The interpolating currents that we use for the D0, D−

and a+
2 mesons are

jD0
(x) = iū(x)γ5c(x) ,

jD−(x) = ic̄(x)γ5d(x) ,

ja
+
2
µν(x) =

i
2

d̄(x)(γµ
↔

Dν +γν
↔

Dµ)u(x) ,

(C.2)

where
↔

Dµ= (
−→
Dµ −

←−
Dµ)/2.

One can calculate the correlation function in two different ways. On the one hand, the correlation
function in Eq. (C.1) can be computed by inserting a complete sets of appropriate hadronic states with
the same quantum numbers as the interpolating currents. Following the usual procedure, we obtain

Π
had
µν (p′2, p2, q2) =

〈0| jD0
|D0(p′)〉〈0| jD−

|D−(p)〉〈0| ja
+
2
µν |a

+
2 (q, ε)〉

(p′2 − m2
D)(p2

− m2
D)(q2

− m2
a)

× 〈D0(p′)a+
2 (q, ε)|D+(p)〉 + . . . ,

(C.3)

where the ellipses represent the contributions of the excited states and the continuum. The matrix
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elements above are parameterized as follows [190]

〈0| jD
|D(p)〉 = i

m2
D fD

mc + mq
,

〈0| ja
+
2
µν |a

+
2 (q, ε)〉 = m3

a faε
∗(λ)
µν ,

〈D0(p′)a+
2 (q, ε)|D+(p)〉 = gDDa2

ε(λ)
αβ p′αpβ,

(C.4)

where fD, fa are the decay constants of D0(D−) and a+
2 mesons, and gDDa2

is the form factor of the DDT
coupling under consideration. Substituting the above matrix elements into Eq. (C.3), the correlation
function takes the form

Π
had
µν (p′2, p2, q2) = i2

 m2
D fD

mc + mq

2 gDDa2
fam3

a

(p′2 − m2
D)(p2

− m2
D)(q2

− m2
a)

×

1 −
1

3m2
a

(p2
+ p′2 + 2q2) −

1

3m4
a

[
(p2
− p′2)2

− (q2)2
] (p′µpν + p′νpµ) + . . . ,

(C.5)

where only the Lorentz structure (p′µpν + p′νpµ) is kept, and the following relation has been used,∑
λ

ε(λ)
µν ε

∗(λ)
αβ =

1
2

TµαTνβ +
1
2

TµβTνα −
1
3

TµνTαβ, (C.6)

with Tµν = −gµν + qµqν/m
2
a.

On the other hand, the correlation function can be calculated at the quark-gluon level using the QCD
operator product expansion (OPE) method. It is convenient to evaluate it in the fixed-point gauge:
(x − x0)µAa

µ(x) = 0, where x0 is an arbitrary point in the coordinate space and could be chosen at the
origin. Then, in the deep Euclidean region, the potential can be expressed in terms of the field strength
tensor Gµν = λaGa

µν/2 as [191]

Aµ(x) =
1
2

xνGνµ(0) +
1
3

xαxνDαGνµ(0) + O(x3) . (C.7)

Since we are not aiming at a precise calculation, we will only keep the vacuum condensate of the
lowest dimension, that is the quark condensate. Considering only the Lorentz structure (p′µpν + p′νpµ)
and using the double dispersion relation, we find

Πµν(p′2, p2, q2) = Π(p′2, p2, q2)(p′µpν + p′νpµ) + ..., (C.8)

Π(p′2, p2, q2) =

∫
ds1ds2

ρpert(s1, s2, q
2)

(s1 − p′2)(s2 − p2)
+ Π

qq(p′2, p2, q2), (C.9)

where

ρpert(s1, s2, q
2) = −

3

8π2λ5/2 (s1 + s2 − t − 2m2
c)
{
(s1s2 + m4

c)(λ + 3t(s1 + s2 − t))

− 3m2
c(s1 + s2 − t)

[
(s1 − s2)2

− t(s1 + s2)
] }
,

(C.10)
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with λ = (s1 + s2 − t)2
− 4s1s2, and

Π
qq(p′2, p2, q2) =

1
4

mc〈q̄q〉
 1

p′2 − m2
c

+
1

p2
− m2

c

 1

q2 . (C.11)

In order to suppress the contribution from the excited states, we perform a double Borel transformation
in both variables p′2 and p2 to the correlation functions in Eqs. (C.5) and (C.9). Using the quark-hadron
duality, we obtain

Π(M2
B,M

′2
B , q

2) = i2
gDDa2

fam3
a

q2
− m2

a

 m2
D fD

mc + mq

2 1 − 2(q2
+ m2

D)

3m2
a

+
q4

3m4
a

 e−m2
D/M

2
B−m2

D/M
′2
B

=

∫ s0
1

s1min

∫ s0
2

s2min

ds1ds2ρ
pert(s1, s2, q

2)e−s1/M
2
B−s2/M

′2
B . (C.12)

It is clear that the coupling gDDa2
is in fact given by a form factor as a function of the Euclidean

momentum Q2
= −q2 which will be denoted by g(a2)

DDa2
(Q2), where the superscript means that the meson

a+
2 is off-shell while the D mesons are on-shell since the correlation function is evaluated in the space-like

region Q2 > 0.
We neglect the light quark masses and use the following values for numerical analysis: mc = 1.27 GeV,

mD = 1.87 GeV, ma = 1.32 GeV, 〈q̄q〉 = (−0.24)3 GeV, fD = 0.207 GeV [190], and fa = 0.041 [192].

Furthermore, s1min = m2
c and s2min =

m2
c

m2
c−s1

q2
+ m2

c . Since the dependence of the form factor on M2
B and

M′2B is weak, one can use set M′2B = M2
B [189].

The window for the Borel mass M2
B can be determined by requiring both the dominance of the ground

state hadronic poles and the convergence of OPE. The quark condensate contribution would disappear if
the double Borel transformation is performed in the variables p′2 and p2. In order to estimate the lower
bound of M2

B, we choose to perform the double Borel transformation in variables p2 and q2, and assume
the lower bound is same as that in the double Borel transformation in p′2 and p2. The lower limit of M2

B
is estimated by requiring |Πqq(p′2,M2

B,M
2
B)/Πpert(p′2,M2

B,M
2
B)| to be smaller than 25% for Euclidean

momentum p′2. At the same time, the upper bound of the Borel mass M2
B can be estimated by requiring

the pole contribution (PC) to be larger than 75% which is defined by

PC =

∫ s0
1

s1min
ds1

∫ s0
2

s2min
ds2ρ

pert(s1, s2, q
2)e−s1/M

2
B−s2/M

2
B∫ ∞

s1min
ds1

∫ ∞
s2min

ds2ρ
pert(s1, s2, q

2)e−s1/M
2
B−s2/M

2
B

. (C.13)

The parameters s0
1 and s0

2 are chosen around the region where the variation of coupling constant
g

(a2)
DDa2

(Q2) is minimal. Given a value of Q2, we obtain a corresponding g(a2)
DDa2

(Q2). From the above

requirements, the Borel window we use here is M2
B ∼ [3.2 GeV2, 4.0 GeV2]. We take M2

B = 3.6 GeV2

for estimating the form factor g(a2)
DDa2

(Q2), and the values of s0
1 and s0

2 are chosen to increase slightly from

around 6.0 GeV2 to 8.5 GeV2 as increasing Q2 from 5 GeV2 to 12 GeV2. Since we are only able to
calculate the form factor in the deep Euclidean region, we need to extrapolate it to Q2

= 0 to get the
coupling constant. The extrapolation is rather model-dependent. To be specific, we simply take the form
g

(a2)
DDa2

(Q2) = A exp
(
−Q2/B

)
used in Refs. [189, 193] despite that no physical reasoning is behind this

parametrization. With this form, we fit to a few points in the Euclidean region, and get A = 10.1 GeV−1
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Figure C.1: Momentum dependence of the DDa2 form factor (for off-shell a2). The dots give the results from QCD
sum rules, and the solid line gives the extrapolation.

and B = 1.9 GeV2. Finally, we get an estimate for the coupling constant as

gDDT ≈ gDDa2
(0) ≈ 3.9 GeV−1. (C.14)

It should be noted that such an estimate bears a large uncertainty which we do not know how to quantify,
and the resulting value can only be regarded as an order-of-magnitude estimate.
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