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Abstract

In the present cumulative thesis, we study a number of hadronic electroweak processes in a finite volume.
Our work is motivated by the ongoing and future lattice simulations of the strong interaction theory
called quantum chromodynamics. According to the available computational resources, the numerical
calculations are necessarily performed on lattices with a finite spatial extension.

The first part of the thesis is based on the finite volume formalism which is a standard method to
investigate the processes with the final state interactions, and in particular, the elastic hadron resonances,
on the lattice. Throughout the work, we systematically apply the non-relativistic effective field theory. The
great merit of this approach is that it encodes the low-energy dynamics directly in terms of the effective
range expansion parameters. After a brief introduction into the subject in Chapter 1, we formulate a
framework for the extraction of the ∆Nγ∗ (Chapter 2) as well as the B→ K∗ (Chapter 3) transition form
factors from lattice data. Both processes are of substantial phenomenological interest, including the
search for physics beyond the Standard Model. Moreover, we provide a proper field-theoretical definition
of the resonance matrix elements, and advocate it in comparison to the one based on the infinitely narrow
width approximation.

In the second part, which includes Chapter 4, we consider certain aspects of the doubly virtual nucleon
Compton scattering. The main objective of the work is to answer the question whether there is, in the
Regge language, a so-called fixed pole in the process. To answer this question, the unknown subtraction
function, which enters one of the dispersion relations for the invariant amplitudes, has to be determined.
The external field method provides a feasible approach to tackle this problem on the lattice. Considering
the nucleon in a periodic magnetic field, we derive a simple relation for the ground state energy shift up
to a second order in the field strength. The obtained result encodes the value of the subtraction function
at nonzero photon virtuality. The knowledge of the latter is also important to constrain the two-photon
exchange contribution to the Lamb shift in a muonic hydrogen.
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CHAPTER 1

Hadronic Electroweak Processes in a Finite
Volume

1.1 Introduction

Nowadays, the Standard Model (SM) is regarded as an extremely successful theory of the elementary
particles (leptons, quarks, gauge bosons and Higgs particle), which unites the electromagnetic, weak and
strong interactions in a mathematically elegant way [1–6]. The recent LHC discovery of the last missing
building block, the Higgs boson, is a definite triumph of the theory [7, 8].

The SM is a quantum gauge field theory, which has the invariance property under a continuous group
of local transformations. The symmetry group has a non-abelian structure:

S U(2) × U(1) × S U(3). (1.1)

Here, the S U(2) × U(1) part (the Weinberg-Salam model) is responsible for the electromagnetic and
weak interactions, mediated by the photons (γ) and weak bosons (W+,W−,Z), respectively (see Fig. 1.1).
The remaining gauge group S U(3) underlies the modern theory of the strong interaction, called quantum
chromodynamics (QCD) [9]. It describes the interaction between quarks and gluons, both of which
carry in addition three different color charges. The fact that one should have three colors guarantees the
absence of the chiral anomalies in the SM and thus its renormalizability [10].

The SM is experimentally confirmed with high precision. Nevertheless, there are currently several
experimental tensions, which are problematic to explain within the SM. These deviations are seen in the
following cases:

• Proton radius puzzle. The proton radius determined from the precise measurement of the Lamb
shift in the muonic hydrogen atom has significantly smaller values than the ones obtained from
the electron-proton scattering and hydrogen spectroscopy [11, 12]. At the same time, a proper
dispersive analysis of ep data gives a small radius [13, 14].

• Anomalous magnetic moment of muon. The measurement of muon’s g − 2 at Brookhaven leads to
the discrepancy between experiment and the theoretical prediction [15, 16].

• Anomalies in rare B meson decays. The LHCb, Belle and BaBar collaborations have observed
interesting patterns of deviations in several decay modes, in particular, in B→ K∗µ+µ− [17–20].

These experimental results have triggered a lot of activity on the theoretical side. The proposed explana-
tions fall into one of two categories: physics beyond the SM (BSM) or the strong sector of SM, described
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Chapter 1 Hadronic Electroweak Processes in a Finite Volume

Figure 1.1: Elementary particles of the Standard Model [21].

by QCD. It is important to keep in mind that all measured observables are sensitive to the hadronic
uncertainties. The latter arise due to the non-perturbative contributions of QCD. In order to quantify these
uncertainties, the strong sector of the SM should be better understood. In particular, Chapter 3 deals with
the form factors which enter the analysis of the experimental data on the B→ K∗µ+µ− process. Also, the
work presented in Chapter 4 is related to the study of the two-photon exchange contribution to the Lamb
shift.

1.2 Strong interaction

Historically, it took many years until it was finally realized that the strong interaction can be described
by a Yang-Mills theory [22]. The turning point was the discovery of asymptotic freedom in this class
of non-abelian gauge theories by Gross, Wilczek and Politzer [23, 24]. The existence of the quantum
field theories, in which the coupling constant becomes small at high energies (∼ 100 − 1000 GeV),
opened a possibility to perform the systematic calculations of different observables in pertubation theory.
Moreover, QCD exhibits the so-called confinement property at the hadronic scale (∼ 1 GeV), although it
cannot be analytically proven. Nevertheless, this property qualitatively explains, why the quarks cannot
be directly observed, but rather form color singlet states (proton, neutron, pion, etc.) . At the same time,
perturbation theory breaks down at this energy scale, since the coupling constant becomes large. In order
to obtain the meaningful results, alternative methods should be applied, as discussed below.

The quarks were first introduced in an attempt to classify the plethora of observed hadrons. The
developed scheme, called Eightfold Way (or the quark model), provided the classification of the strongly
interacting particles according to the representations of the vectorial S U(3)V group [25]. From the
modern perspective, this global (flavor) symmetry is encoded in the mathematical structure of QCD. This
symmetry is, however, approximate, since the masses of the light quarks u, d, s are not equal.

The Lagrangian of QCD has the so-called chiral symmetry in the limit of vanishing quark masses
mq → 0. It is associated with the independent rotations of the left (L)- and right (R)-chiral components
of the quark fields in the flavor space. This symmetry, is, however, spontaneously broken due to the
low-energy QCD dynamics (the formation of the quark condensate ). In other words, it ceases to be a
symmetry of the QCD vacuum. The relevant scale Λχ ≈ 1 GeV distinguishes the light quarks m f < Λχ
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1.3 Lattice gauge theory

(u, d, s) and heavy quarks m f > Λχ (c, b, t). Retaining only the light quarks, the QCD Lagrangian is
classicaly invariant under flavor symmetry group transformations

S U(N f )L × S U(N f )R × U(1)V × U(1)A , (1.2)

where N f = 2, 3. Here, the vector symmetry U(1)V corresponds to the baryon number conservation (B=0
for mesons and B=1 for baryons). It is an exact symmetry of QCD. In contrast, the axial symmetry U(1)A

is violated in the quantum theory, due to anomalies [26–28]. Further, the symmetry breaking pattern
reads

S U(N f )L × S U(N f )R −→ S U(N f )V . (1.3)

i.e. the remaining flavor group coincides with the one in the quark model. The result Eq. (1.3) further
implies the existence of the octet of the massless modes (the Goldstone bosons): the π′s, K′s and η [29,
30]. These mesons, however, acquire masses due to the explicit breaking of chiral symmetry by the mass
term in the QCD Lagrangian. Thus it is seen that the quark model is naturally incorporated in QCD.

As is well known, perturbative calculations in quantum field theories lead to ultraviolet divergences -
the loop integrals, corresponding to the Feynman diagrams, become infinite. The infinities occur due
to the ultraviolet behaviour of the integrands (large momentum, short distances). The procedure to get
rid of (subtract) them is called renormalization. At the first step, one introduces some regularization
which makes the integrals finite. At present, dimensional regularization [31] is widely used since it
preserves the underlying symmetries of the theory. In case of the renormalizable theories, all possible
divergences are eliminated by the redefinition of the bare parameters in the Lagrangian. The subtraction
is performed at some scale µ, so that the renormalized parameters (the quark masses and strong coupling
constant) become dependent on this scale and on the renormalization scheme (in QCD, it is usually the
MS scheme). Moreover, the requirement that the physical quantities (e.g., the cross sections) have to
be independent of the scale µ, leads to the notion of the running parameters. The dependence of the
parameters on µ is not arbitrary, but it is governed by the renormalization group equations. In particular,
this means that the value of the renormalized QCD coupling constant g = g(µ) (or equivalently αs =

g2

4π )
depends on the characteristic energy scale in a given process (see Fig. 1.2). Applying the Feynman rules
for QCD [32, 33], one obtains the famous one-loop result:

µ
dαs

dµ
= −b0α

2
s + . . . , b0 =

33 − 2N f

12π
, (1.4)

where the parameter b0 is positive for N f < 16. The crucial minus sign in this formula explains, why the
coupling becomes small at high energies. This fact also justifies the success of the parton model (the
predecessor of QCD) [34, 35].

1.3 Lattice gauge theory

The other distinct feature of QCD is confinement. In this case, the perturbation theory is not reliable any
more and non-perturbative methods are thus required. At present, the lattice regularized QCD (lattice
QCD, LQCD) is the only approach, which allows one to investigate the low-energy properties of strong
interaction directly from the underlying theory (QCD). It was formulated by K. Wilson in an attempt to
solve the confinement problem [39]. Moreover, he considered the limit g→ ∞ in pure Yang-Mills theory,
and showed analytically that the confinement manifests itself as a linearly rising potential between heavy
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Figure 1.2: Summary of measurements of the strong coupling
constant αs as a function of the energy scale Q (a momentum
transfer in a given process) [36].

Figure 1.3: Lattice calculation of the heavy quark
potential in SU(3) Yang-Mills theory [37]. The
parameter β = 6/g2 and rc ≈ 0.51r0, where r0 ≈

0.5 fm is the so-called Sommer scale [38].

quark and anti-quark. Some years later, M. Creutz performed the first numerical study of the confinement
in pure SU(2) gauge theory[40]. Since this pioneering work, LQCD has become a vast and important
field of research. The results of the lattice calculations and their averages are reviewed by the ”Flavour
Lattice Averaging Group" (FLAG) [41]. As an example, Fig. 1.3 shows the lattice measurement of a
static potential in pure SU(3) Yang-Mills theory [37, 42].

LQCD is based on the path integral formulation of the theory in the discretized Euclidean spacetime.
At the first step, one writes down the lattice version of the gauge and fermion actions. In the continuum,
they read

S g =
1

4g2

∫
d4xTr[F2

µν], Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν], (1.5)

S f =
∑

f

∫
d4xq̄ f [Dµγµ + m f ]q f , Dµ = ∂µ + Aµ, (1.6)

where q f (x) are the quark fields and the gluon field Aµ(x) takes the values in the su(3) Lie algebra.
Further, the Euclidean spacetime is replaced by a finite grid, as shown in Fig. 1.4. The shortest distance
between the neighbouring points, called a lattice spacing, provides a natural ultraviolet cutoff Λ ∼ 1/a,
so that the theory becomes well defined and finite. Accordingly, the derivatives in Eq. (1.5) and (1.6) are
replaced by finite differences, while a sum over all lattice points is taken instead of the integration (the
Riemann sum).

In order to preserve the gauge invariance on the lattice, one introduces the gluon field Uµ(x) as an
element of the S U(3) group. The field Uµ(x) can be considered geometrically as a gauge link connecting
the points x and x+aµ̂, where a is the lattice spacing and µ̂ is a unit vector in the µ-direction (see Fig. 1.4).
Then the gauge transformations of the quark fields q(x) and Uµ(x) take the form

q(x)→ V(x)q(x), q̄(x)→ q̄(x)V†(x), Uµ(x)→ V(x)Uµ(x)V(x + aµ̂), (1.7)

4



1.3 Lattice gauge theory

Figure 1.4: Gluon and quark fields on the lattice [36].

where V(x) ∈ SU(3) denotes an element of the gauge group.
The suitable lattice gauge action, proposed by Wilson, is given by

S g = β
∑

x, µ<ν

{
1 −

1
3

ReTr[Uµ(x)Uν(x + aµ̂)U†µ(x + aν̂)U†ν (x)]
}
. (1.8)

Here, β = 6/g2
lat, where glat is a bare coupling constant in the lattice scheme. Setting Uµ(x) = eiaAµ(x), the

continuum form of the S g, Eq. (1.5), is easily reproduced.
In practice, however, the non-zero values of the lattice spacing lead to the discretization errors. In case

of the gauge action Eq. (1.8), they are of order O(a2). To reduce the cut-off dependence, one applies the
so-called Symanzik improvement program [43, 44]. One starts with the modified (or effective) gauge
action

S g → S g + a2
∑

k

ckO(k)
6 , (1.9)

where O(k)
6 are dimension-six operators, which are allowed by lattice symmetries (the Euclidean rotational

invariance is broken, since the lattice has a finite size). By tuning the coefficients ck, it is possible to
eliminate these operators in the effective action. In this way, one arrives at O(a2) improved action [45]

The case of the lattice fermions is more complicated. The simplest discretization of the covariant
derivative Dµq(x) leads to a so-called naive fermion action. In the continuum limit, this action, however,
describes 24 = 16 fermion fields. The extra doubler fermions appear always whenever the action has a
continuum-like chiral symmetry. This fact is expressed in the Nielsen-Ninomiya theorem [46]. Also, the
chiral anomaly is absent in the theory, since it is cancelled among the doublers. One way to avoid the
doubling problem is the introduction of the additional terms in the Lagrangian, which explicitly break the
chiral symmetry. This leads to the so-called Wilson-type fermions with the action [47]

S f = a4
∑

x

q̄(x)
1
2

[∇µ + ∇∗µ + 2m]q(x) − a5
∑

x

q̄(x)
1
2
∇µ∇

∗
µq(x) + a5

∑
x

cswq̄(x)
i
4
σµνF̂µνq(x), (1.10)

where

∇µq(x) =
1
a

[Uµ(x)q(x + aµ̂) − q(x)], ∇∗µq(x) =
1
a

[q(x) − Uµ(x − aµ̂)q(x − aµ̂)]. (1.11)
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Here, σµν = i
2 [γµ, γν], and F̂µν is a lattice-site centered discretization of the gluon field strength tensor

Fµν [47]. The first term in Eq. (1.10) represents the naive action, which takes the form Eq. (1.6) in the
continuum limit. The second term, introduced by Wilson, solves the doubling problem: the doublers
acquire the mass of order O(1/a), become heavy in the limit a→ 0 and hence decouple from a theory.
This term introduces, however, the discretization errors linear in a. The improvement is achieved by
adding the third term in Eq. (1.10) and tuning the coefficient csw to eliminate the O(a) effects [48, 49].
Finally, there are alternative formulations of the lattice fermions, which are used in practice [36].

Further, the quantum theory is defined through the Euclidean-space partition function

Z =

∫
DU

∏
f

Dq fDq̄ f e−S g[U]−
∑

f q̄ f (D[U]+m f )q f , (1.12)

where f denotes a quark flavour and Dq f =
∏

x dq f (x), Dq̄ f =
∏

x dq̄ f (x). The lattice Dirac operator
D[U] can be read off, e.g., from Eq, (1.10). The DU =

∏
x,µ dUµ(x) is the (gauge-invariant) Haar

measure. The physical information is contained in the correlation functions (or Green’s functions), which
are the vacuum expectation values of the multi-local gauge-invariant operators

〈0|O(U, q, q̄)|0〉 =
1
Z

∫
DU

∏
f

Dq fDq̄ f O(U, q, q̄)e−S g[U]−
∑

f q̄ f (D[U]+m f )q f , (1.13)

It is important to mention that link variables are integrated over the SU(3) manifold. The latter is compact,
and thus gauge fixing (the Faddeev-Popov procedure) is not required. This is, however, not the case, if
one wants to extract the information from the gauge-dependent correlation functions (e.g., the gluon
propagator) [50]. The integration over quark and antiquark fields (the Grassmann variables) in Eq. (1.13)
leads to the product of the fermion determinants

∏
f det(D[U] + m f ). According to Wick’s theorem,

one also gets a series of quark propagators (D[U] + m f )−1, which connect the quark fields in O(U, q, q̄).
Hence, one ends up with an integral over N3

s × Nt × 4 × 9 variables U, where Ns/Nt are the number of
lattice points in the spatial/temporal direction.

The direct integration in Eq. (1.13) is not feasible due to the large number of variables, and one
resorts to the Monte Carlo method [51]. The idea of the method is to generate a Markov chain of gauge
configurations U(i), i = 1, . . .N with a probability distribution P(U) ∝ e−S g[U] ∏

f det(D[U] + m f ) (the
importance sampling, [52]). Then the expectation value 〈0|O(U, q, q̄)|0〉 is given as an average over these
configurations

〈0|O(U, q, q̄)|0〉 =
1
N

N∑
i=1

O(U(i)) + O(N−1/2), (1.14)

where the error of the result decreases as 1/
√

N. Here, the variable O(U) is obtained after performing the
Wick contractions in Eq. (1.13).

As an example, let us consider the two-point function of quark bilinears A(x) = ū(x)Γu(x) and
B(x) = ū(x)Γ′u(x), where the Γ,Γ′ matrices act on the spin indices. The following expression has to be
evaluated on the lattice

〈0|A(x)B(y)|0〉 =
1
N

N∑
i=1

(
−Tr

{
ΓD−1

u [U(i); x, y]Γ′D−1
u [U(i); y, x]

}
+ Tr

{
ΓD−1

u [U(i); x, x]
}

Tr
{
Γ′D−1

u [U(i); y, y]
})

+ O(N−1/2), (1.15)
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1.3 Lattice gauge theory

Connected Disconnected
gray=lots of quarks/gluons

Figure 1.5: Connected and disconnected contributions for a two-point function Eq. (1.15). The quark lines depict
the propagators obtained after Wick contractions [53].

where Du ≡ D[U] + mu, and the trace is taken over color and spin indices.

In general, the first and second term in Eq. (1.15) is referred to as a connected and a disconnected
contribution to a given correlation function, respectively (see Fig. 1.5 ). The latter is computationally
much more demanding to determine on the lattice since it requires the inversion of the Dirac operator Du

in all lattice points. It is either neglected, or estimated in an effective field theory, such as the partially
quenched chiral perturbation theory (discussed in Subsection 1.4.1).

The gauge configurations are generated for different values of a, lattice sizes and quark masses. Also,
they are stored and can be used for various purposes. Some of them are publicly available through the
International Lattice Data Grid (ILDG) [54]. To reduce the statistical errors, one generates an ensemble
of N ∼ 103 statistically independent configurations. This is done at fixed values of quark masses and
parameters of the lattice. The computational cost of an ensemble generation, however, increases with
a lattice volume. It is also inversely proportional to the quark masses, which makes the simulations at
physical pion mass to be a challenging task.

The results obtained from lattice simulations are additionally affected by systematic uncertainties.
As mentioned above, there are discretization errors, which are of order O(a2Λ2). Here, Λ is a typical
momentum scale for a given quantity. In practice, this puts a limit on the momenta of the involving
particles (Λ . 300 MeV). Another subtle issue regards the finite-volume effects. These are inevitable,
since lattice calculations are performed in a finite space-time boxes L3 × Lt, where L = aN and Lt = aNt.
The finite temporal direction leads to the excited-stated contamination, which could be, however, neglected
for Lt & 2L. The effects due to the finite spatial volume are of two kinds. For the matrix elements,
involving a single hadron in the initial and final states, they are exponentially suppressed, e−MπL, where
Mπ is the pion mass and L > 2 fm [55, 56]. Hence, the finite-volume corrections are small, if the
condition MπL & 4 is satisfied. But the quantities, containing mutli-hadron states, acquire a non-trivial
power-law dependence on the volume: the finite-volume effects fall off only as an inverse powers of the
volume. The reason behind this is the strong interaction of hadrons in the initial/final state. Moreover, the
precise knowledge of this dependence allows one to determine the scattering observables, such as phase
shifts and electroweak amplitudes, from lattice data. This topic will be considered in Section 1.5.

1.3.1 Stable hadrons

The stable hadrons are the ones, which do not decay due to the strong interaction. For instance, these are
the light pseudoscalar (π,K, η) and baryon (N,Σ,Λ,Ξ) octets. Their properties can be determined on the
lattice in a straightforward manner. Let us consider how the masses of particles are extracted. Taking a

7
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Figure 1.6: The left plot is a lattice calculation of the effective masses for π,K,N,Ξ and Ω. The right plot shows
the light hadron spectrum of QCD obtained by BMW Collaboration [59].

pion as an example, one computes a two-point correlation function

C(t) =
∑

x
〈0|Oπ(x, t)O†π(0, 0)|0〉. (1.16)

Here, Oπ(x, τ) is a field operator, which couples to the charged pion state |π+〉: 〈0|Oπ(x, t)|π+〉 , 0. It is
usually taken in the form Oπ = d̄γ4γ5u. On the other hand, by inserting a completeness relation in Eq.
(1.16), one gets the spectral decomposition of C(t)

C(t) = Z
e−Mπt

2Mπ

1 +
∑

n

Zne−∆Ent

 , (1.17)

where Mπ is the pion mass and the factors Z, Zn quantify the overlap of the pion field operator with a
given state. For instance, Z = |〈0|Oπ(0)|π+〉|2 gives a probability to create the pion by acting the operator
Oπ on the vacuum. Further, ∆En = En − Mπ > 0, where En denotes the energy of the n-th excited
state. The index n is an integer since the lattice Hamiltonian has discrete eigenvalues in a cubic box. In
particular, the energy of a free pion with 3-momentum k is given by

Eπ(k) =

√
M2
π + k2, k =

2π
L

n, n ∈ Z3. (1.18)

Here, the periodic boundary conditions on the (anti)quark fields are imposed in spatial directions:

q(x + nL) = q(x) , ∀n ∈ Z3. (1.19)

One can also impose more general twisted boundary conditions [57, 58], in which an additional phase
factor appears on the right-hand side of Eq. (1.19)

As it is seen from Eq. (1.17), after sufficiently long time t, only the ground state contributes to the
exponential decay of the correlation function C(t). To extract the hadron masses, one determines the
so-called effective mass

M =
1
a

log
(

C(t)
C(t + a)

)
. (1.20)

The left plot in Fig. 1.6 shows the lattice calculation of this quantity corresponding to the different
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Figure 1.8: Summary of the results for the pion charge
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stable hadrons. The excited-state contamination is clearly visible at small times. But later the plateau
is eventually reached, which indicates that only the ground state survives. In this way, one obtains the
spectrum of the light hadrons. The respective lattice calculations at almost physical pion masses were
performed by several lattice groups [59–61]. The result of BMW Collaboration is shown in Fig. 1.6.

It is much more complicated to determine the masses of excited states. In practice, a large basis of the
field operators and subsequent application of the variational methods are required [62]. The anisotropic
lattices, which have different (smaller) values of the lattice spacing in the time direction, are also used.
They allow one to substantially improve the resolution of the energy levels. By applying these and other
techniques, the rich excited-state spectra has been recently obtained [63–65]. These predictions will be
confronted by upcoming GlueX and PANDA experiments [66, 67].

Nowadays, the lattice calculations have reached such a level of accuracy [41], that the isospin-breaking
effects have to be taken into account. The light quarks are electrically charged and the mass difference
md − mu in the QCD Lagrangian Eq. (1.10) is non-zero. The electromagnetic effects, described by
quantum electrodynamics (QED), also change the hadron masses. The respective shifts in the values
are of order O(αem), where αem ≈ 1/137 is the fine-structure constant. This leads to the violation of the
isospin symmetry. Moreover, these two different sources of violation can be disentangled on the lattice.
Since the pioneering work [68], lattice QCD+QED simulations have become increasingly important over
the last years. For instance, the BMW Collaboration has recently performed the full lattice calculation
of the neutron-proton mass difference as well as a number of other quantities sensitive to the isospin
breaking, including a test of the Coleman-Glashow relation [69] (see Fig. 1.7).

Further, one is interested in the matrix elements of the electromagnetic and weak operators. They are
parametrized in terms of the form factors. As an example, the electromagnetic pion form factor is defined
through the current matrix element:

〈π+(p′)|Jµ(0)|π+(p)〉 = (p + p′)µFπ(Q2). (1.21)

Here, Q2 = −(p′ − p)2 > 0 is the spacelike momentum transfer, where p and p′ are the 4-momenta of
the initial and final pions, respectively. Jµ denotes the electromagnetic current, which for N f = 2 can
be taken in the form Jµ = 2

3 ūγµu − 1
3 d̄γµd. The form factor Fπ(Q2) obeys a polynomial expansion near

Q2 = 0

Fπ(Q2) = 1 −
1
6
〈r2
π〉Q

2 + O(Q4), (1.22)

9



Chapter 1 Hadronic Electroweak Processes in a Finite Volume

Figure 1.9: Effective theory of the b→ s transition. a) Short distance operator. The respective contribution to the
decay amplitude is parametrised by form factors. b) Long distance contribution from charmonium resonances.

where 〈r2
π〉 denotes the mean-square pion charge radius. This quantity has been measured both in

experiment and on the lattice. The compilation of the results is presented in Fig. 1.8. The large-Q2

kinematic region is amenable to perturbative QCD treatment [72]. However, for the intermediate values
of Q2, e.g., 0 < Q2 < 6 GeV2, lattice calculations play an important role [73, 74].

In order to determine the matrix elements of type Eq. (1.21), the three-point correlation functions have
to be evaluated:

C(t′, t; p′, p) =
∑
x,y
〈0|Oπ(y, t′)Jµ(0)O†π(x, t)|0〉 e−ip′y+ipx. (1.23)

Next, one studies the limit of large time separation between the three operators in this expression:
t′ → +∞, t → −∞. Inserting complete set of states into Eq. (1.23), the spectral decomposition of
C(t′, t; p′, p) takes the form

C(t′, t; p′, p) =
Z

2Eπ(p′)2Eπ(p)
e−Eπ(p′)t′+Eπ(p)t〈π+(p′)|Jµ(0)|π+(p)〉 . (1.24)

The desired matrix element 〈π+(p′)|Jµ(0)|π+(p)〉 can hence be extracted, because other quantities can be
determined from the two-point function.

There are more complicated matrix elements, which might contribute to the amplitude of a given
electroweak process. In particular, for the decays of type A→ A′γ∗, the long-distance effects lead to the
non-local matrix elements of the form

Tµ ∝ i
∫

d4xeiqx〈A′(p′)|T Jµ(x)O4q(0)|A(p)〉, (1.25)

where q = p − p′ denotes the four-momentum of the virtual photon γ∗. Here, O4q is a four-quark
operator, which is contained in the effective weak Hamiltonian relevant to a given transition. As seen
from Eq. (1.25), one has to calculate the four-point correlation function. This is a straightforward but
computationally demanding task. Recently, this approach has been applied in the exploratory lattice
study of the rare kaon decays K → πl+l− and K → πνν̄ [75, 76]. However, the processes involving heavy
mesons, such as B→ Kl+l− and B→ K∗l+l−, are more complicated (see Fig. 1.9). Here, further progress
is needed [77, 78].

If the operator O4q is replaced by electromagnetic current Jν, it is possible to infer the matrix element
Eq. (1.25) from the behavior of the two point function 〈A′(p′)|A(p)〉 in the presence of a weak external
electromagnetic field. This method will be discussed in Section 1.6 in the context of Compton scattering.
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Figure 1.10: World data on the ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) in the light-flavor, charm, and
beauty threshold regions [36]. Breit-Wigner parameterizations of J/ψ, ψ(2S ), and Υ(nS ), n = 1, 2, 3, 4, are also
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1.3.2 Hadron resonances

The lattice methods, described above, are straightforward as long as one deals with the matrix elements
involving one-particle initial and final states. However, most of the hadrons in nature are resonances -
they eventually decay into multiple strongly interacting particles. The classical examples include the
ρ(770),K∗(892) and ∆(1232) resonances:

ρ→ ππ, K∗ → Kπ, ∆→ Nπ. (1.26)

The resonance is sometimes seen as a peak in the cross section. Depending on the width of the peak, the
narrow and wide resonances are distinguished. This is observed nicely in the e+e− collisions, where one
measures the total cross section σ(e+e− → hadrons) as a function of the center-of-mass (CM) energy
ECM =

√
s. In practice, one plots the branching ratio R = σ(e+e− → hadrons)/σ(e+e− → µ+µ−) shown

in Fig. 1.10.
A resonance behaviour can be largely understood by considering two-body scattering processes, such
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Figure 1.11: Riemann sheets of a one–channel scattering amplitude in the s-plane. The complex poles are located
on the second Riemann sheet, whereas the bound states (the cross) on the physical one [36].

as ππ→ ππ, πN → πN and so on. For a general process p1 + p2 → p3 + p4, the corresponding T -matrix
is a function of two Mandelstam variables s = (p1 + p2)2 and t = (p1 − p3)2: T = T (s, t). It is convenient
to consider the process in the CM frame: p1 + p2 = 0. The scattering amplitude is expanded in partial
waves

T (s, t) = 4π
∞∑

l=0

l∑
m=−l

Tl(s)Ylm(p′)Y∗lm(p) , (1.27)

Here, l denotes the angular momentum; l = 0 correspond to the S-wave, l = 1 to the P-wave, and so
on. The quantity Ylm(p) is defined as Ylm(p) = |p|lYlm(p̂), where Ylm are the usual spherical harmonics
and p̂ = p/|p|. The relative 3-momenta are given by |p| = |p′| = λ1/2(m2

1,m
2
2, s)/2

√
s, where λ(x, y, z) ≡

x2 + y2 + z2 − 2xy − 2yz − 2zx is the Källen function, and m1,m2 are the masses of the hadrons in the
scattering process. The label l will be dropped for brevity.

The partial-wave amplitude T (s) depends only on s. It might be also a matrix in the channel space.
According to the properties of T = T (s), it is a double-valued function of s which is analytic on the
whole s-plane except for cuts and poles (Fig. 1.11). The resonances are associated with complex poles of
the scattering amplitude on unphysical Riemann sheets

ER = MR − i ΓR/2, sR = E2
R, (1.28)

where MR and ΓR are mass and width of the resonance, respectively. The experimental values of these
parameters can be found in PDG review [36].

The scattering amplitude T is normally split into the background (non-resonant) part and the pole part:
T = T b + T pole. This splitting is, however, not unique and process-dependent. The background term T b

is taken as a smooth function of s. In the vicinity of s = sR, the pole part T pole takes the form

T pole
αβ =

gαgβ

sR − s
, (1.29)

where gα denotes a coupling of the resonance to a given channel α = 1, 2, . . . . The pole position sR and
couplings gα characterize the properties of the resonance, i.e. they are process-independent quantities.

If observed resonance structure is narrow, the Breit-Wigner (BW) parametrization is commonly used
[79, 80]:

T pole
αβ =

bαbβ
M2

BW − iMBW ΓBW − s
. (1.30)
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1.3 Lattice gauge theory

Here, the couplings bα are related to the BW parameters of a resonance: bα =

√
8πM2

BWΓα/pα, where pα
and Γα are the relative three-momentum and partial width in the channel α, respectively. Obviously, the
total width is given by ΓBW =

∑
α Γα. Contrary to the amplitude defined in Eq. (1.29), the BW formula

is valid only near s = M2
BW in a range governed by the width ΓBW. Indeed, the amplitude in Eq. (1.30)

should not have a complex pole because it is defined on the physical sheet.

The presence of a resonance can be also interpreted as a rapid change of the phase shift near the BW
pole. The unitarity of the S -matrix allows one define the scattering amplitude T as

T =
8π
√

s
η(p cot δ(p) − ip)

, (1.31)

where the one-channel case α = 1 is taken for simplicity. The coefficient η denotes the symmetry factor;
η = 1

2 for identical particles and otherwise η = 1. Here, δ(p) stands for the phase shift. It is a function of
the CM energy E =

√
s, since p = λ1/2(m2

1,m
2
2, s)/2

√
s. The expression Eq. (1.31) clearly satisfies the

unitarity condition
i(T † − T ) = k T †T , (1.32)

where k is a kinematic factor which should be properly chosen. Neglecting the background term T b, a
comparison of Eq. (1.31) with the BW formula gives

cot δ(E) =
EBW − E
ΓBW/2

, b =

√
8πM2

BWΓ

ηp
. (1.33)

It is seen that the phase shift passes through π/2 at energy E = EBW. The total change of the phase is
δ(E > EBW) − δ(E < EBW) = π.

The resonance might be not sufficiently narrow, e.g., such as the ρ meson. In this case one should
search for a complex pole p = pR of the amplitude Eq. (1.31) on the unphysical sheet:

pR cot δ(pR) + ipR = 0. (1.34)

In practice, the effective range expansion is used to solve this equation analytically [80, 81]

p cot δ(p) = −
1
a

+
1
2

r0 p2 + O(p4), (1.35)

where the parameters a and r0 are called the scattering length and effective range, respectively. These
quantities are fixed by fitting the data to the phase shift. The expansion Eq. (1.35) is assumed to be valid
up to the resonance region. It is written for S-wave scattering but can be generalized to higher partial
waves and multiple channels. One has to keep in mind that resonance parameters determined from a BW
parametrization are, generally, process- and model-dependent, since the background term is unknown.
On the other hand, the pole parameters defined by Eq. (1.29) are free of these ambiguities. A similar
conclusion can be drawn for the matrix elements involving resonances. In particular, the corresponding
form factors can only be defined at the resonance pole.

There are a number of electromagnetic and weak processes, which involve resonances. For instance,
the electroexcitation γ∗N → πN allows for a study of the nucleon resonances [82]. To disentangle the
resonance effects in experimental data, one is interested in the resonant contributions to the corresponding
amplitude. For a general electroweak transition γ∗P→ P1P2 or P→ P1P2γ

∗, shown in Fig. 1.12, the
amplitude Aα, α = 1, 2, . . . , can be expressed through the matrix element FR of the electromagnetic
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Chapter 1 Hadronic Electroweak Processes in a Finite Volume

Figure 1.12: Schematic representation of the electroweak amplitude in the vicinity of a narrow resonance R.

current [82]. Assuming that the resonance R has a Breit-Wigner form near E = MBW, one gets

Aα(E) =
bα FR(E)

M2
BW − E2 − iMBWΓBW

+ · · · , (1.36)

Here, the ellipses stand for the terms that are regular in the limit ΓBW → 0. The current matrix element
FR describes the RPγ∗ vertex. It can be written in terms of the gauge-invariant structures containing the
form factors, similarly to Eq. (1.21). Setting E = MBW, the imaginary part of electroweak amplitude
takes the form

ImAα(MBW) =

√
8πΓα

pαΓ2
BW

FR(E)

∣∣∣∣∣∣
E=MBW

, (1.37)

where all quantities are evaluated at E = MBW. This formula can be also understood as a definition of the
resonance matrix elements. Such a definition, however, is applicable only if the resonance is infinitely
narrow, so that the background can be neglected. A more rigorous way is to define matrix element at
the resonance pole position E = ER. Both definitions should, of course, converge for infinitely narrow
resonances. The field-theoretical study of a similar problem for the matrix elements between bound states
was first done by Mandelstam [83].

1.4 Effective field theories

The alternative description of the low-energy behaviour of QCD is based on chiral effective field theories
(chiral EFTs). The classical examples of EFT are the Fermi theory of beta decay [84] and the Euler-
Heisenberg Lagrangian [85]. In general, EFT is an approximation of a full underlying theory valid at
a given low-energy (soft) scale. In order to set up EFT, one first disentangles light and heavy degrees
of freedom in a full theory. As long as such separation of scales exists, the decoupling theorem [86]
states that the effects of heavy particles can be included into the parameters of the EFT. It means that
low-energy physics is insensitive to the physics at short distances (high energy). In other words, the heavy
particles are integrated out from the full theory. This leads to an effective field theory which contains
only the degrees of freedom relevant to a given soft scale.

The described concept can be nicely illustrated by the Euler-Heisenberg approach to light-by-light
scattering. In the full theory (QED), which contains electrons and photons, the lowest order contribution
to this process is given by the electron loop, as shown in Fig. 1.13. However, at photon energies Eγ much
below the mass of the electron Eγ � me, the electromagnetic field will be the only degree of freedom
in the EFT. Imposing Lorentz invariance, U(1) gauge invariance and the other symmetries of QED, the
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1.4 Effective field theories

Figure 1.13: Effective field theory of the light-by-light scattering for low-frequency photons Eγ � me. The
electrons are integrated out from the full theory (QED).

effective Lagrangian takes the form

Leff(Aµ) = −
1
4

FµνFµν +
α2

m4
e

{
c1(FµνFµν)2 + c2(FµνF̃µν)2

}
+ O(m−6

e ), (1.38)

where, F̃µν = 1
2ε

µναβFαβ, and Fµν = ∂νAµ − ∂µAν denotes the electromagnetic field tensor. Further,
α = e2/4π is the fine-structure constant and the factor m−4

e is added on dimensional grounds. The
O(m−6

e ) term contains an infinite tower of higher-dimensional operators. They are, however, suppressed
by the inverse powers of the electron mass me. The parameter which controls the convergence of the
perturbation expansion is the ratio Eγ/me. This is an example of the power counting. The scattering
amplitude behaves as ∼ αE4

γ/m
4. This formula is valid only for low-energy photons, since otherwise it

would violate the unitarity of the S -matrix.
In order to determine the constants c1, c2, one calculates the tree-level amplitude of the process with

Lagrangian Eq. (1.38). Then it is equated to the one-loop QED result. The constants are found to be
c1 = 1/90 and c2 = 7/360. This procedure of fixing the low-energy constants in the effective Lagrangian
is called matching.

1.4.1 Chiral perturbation theory

The effective field theory of QCD, called chiral perturbation theory (χPT), is based on the chiral symmetry.
The building blocks of the theory are hadrons, which are the appropriate degrees of freedom at low
energies. As seen from Fig. 1.6, there is a large gap between the masses of the pions and the masses of
the vector mesons, such as the ρ(770). It is accordingly possible to generate an expansion in terms of
the ratio Q/Λχ, where Q ∼ Mπ ≈ 140 MeV is a soft scale in a process, and Λχ ∼ Mρ ∼ 1 GeV is the
chiral-symmetry breaking scale. Further, EFT should have all symmetries of underlying theory, including
the chiral one. This establishes a genuine connection with QCD, in accordance with the “folk theorem"
of Weinberg [87]:

If one writes down the most general possible Lagrangian, including all terms consistent
with assumed symmetry principles, and then calculates matrix elements with this
Lagrangian to any given order of perturbation theory, the result will simply be the
most general possible S-matrix consistent with analyticity, perturbative unitarity,
cluster decomposition, and the assumed symmetry principles.

The pions interact weakly since they are pseudo-Goldstone bosons. This feature is implemented in
the non-linear realization of the chiral symmetry [88–92]. A general method for the construction of
Lagrangians consistent with broken symmetries was developed by Callan, Coleman, Wess, and Zumino
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[93, 94]. According to the pattern of chiral-symmetry breaking in QCD Eq. (1.3), the pion fields
π = (π1, π2, π3) represent the coordinates of the coset space S U(2) × S U(2)/S U(2). One introduces the
S U(2) matrix U which collects the pions. It is usually taken in the exponential form U = exp(iσ · π/Fπ),
where σ = (σ1, σ2, σ3) are Pauli matrices and Fπ ≈ 92 MeV is the pion decay constant (π+ → µ+νµ).
The matrix U transforms under the global chiral rotations as

U → RUL†, L ∈ S U(2)L, R ∈ S U(2)R (1.39)

The effective Lagrangian Leff consists of chirally-invariant part, as well as a part which explicitly breaks
the chiral symmetry. The power counting allows one to organize the Leff in the form

Leff = L(2) +L(4) + · · · , (1.40)

where the superscript refers to the number of derivatives or pion mass insertions. The leading order
Lagrangian is given by

L(2) =
F2

4
Tr

{
∂µU∂µU† + M2(U + U†)

}
. (1.41)

Here, the trace Tr is taken in flavor space. Further, F = Fπ|mu,md→0 and the pion mass M satisfies the
Gell-Mann-Oakes-Renner relation [95]

M2 = (mu + md)B, B =
|〈0|ūu|0〉|

F2
π

∣∣∣∣∣∣
mu,md→0

, (1.42)

where the constant B is proportional to the quark condensate 〈0|ūu|0〉 ≈ (−270 MeV)3. The second term
in Eq. (1.41) breaks the chiral symmetry. On the other hand, it gives a proper mass to the pions:

L
(2)
ππ =

1
2
∂µπ · ∂

µπ −
1
2

M2π2

+
1

6F2 (π · ∂µπ)(π · ∂µπ) −
1

6F2π
2∂µπ · ∂

µπ +
1

24F2 M2π4 + O(π6) , (1.43)

where the constant F2M2 was dropped.

The terms with four pion fields describe the elastic ππ scattering. The respective tree level scattering
amplitude for the generic process πa(p1)πb(p2)→ πc(p3)πd(p4) reads

T ab,cd = δabδcd s − M2
π

F2
π

+ δacδbd t − M2
π

F2
π

+ δadδbc u − M2
π

F2
π

, (1.44)

where s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2 are the Mandelstam variables satisfying the
condition s + t + u = 4M2. The result Eq. (1.44) is in complete agreement with earlier calculation
of Weinberg [96] based on the pion pole dominance [97] and the current algebra framework [98]. In
particular, one can infer the values of the scattering length aI

l for a given partial wave with angular
momentum l and isospin I. Denoting the corresponding amplitude as tI

l (s), one has aI
l = tI

l (s = 4M2
π).

Indeed, the insertion of the effective range expansion Eq. (1.35) into Eq. (1.31) shows that the scattering
length is proportional to the value of the T -matrix at threshold s = 4M2

π. In particular, the S-wave (l = 0)
scattering lengths take the values

a0
0

LO
=

7M2

32πF2 , a2
0

LO
= −

M2

16πF2 , (1.45)
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Figure 1.14: Experimental data on the S-wave scattering lengths (in fm). The black dots denote the χPT predictions
at LO, NLO and NNLO. The small ellipse indicates the result obtained on the basis of the Roy equations [99].

where LO denones the leading order.
The next-to leading order Lagrangian L(4) was worked out by Gasser and Leutwyler in their seminal

works [100, 101]. For N f = 2, it contains 7 low-energy constants li, i = 1, . . . 7, and 3 contact terms. At
order O(p4), the purpose of these constants is to absorb all one-loop divergences generated by L(2). The
values of the renormalized couplings l(r)

i , however, remain arbitrary,

l(r)
i (µ) =

γi

16π2 ln
µ2

Λ2
i

, i = 1, . . . 7, (1.46)

where γi are known coefficients, which are obtained from the cancellation of the one-loop divergences.
The parameter µ is a running scale in dimensional regularization, whereas the scales Λi are RG-invariant.
The values of l(r)

i (µ) are either estimated theoretically or determined on the lattice [41]. In general,

they should be of a natural size, provided µ ∼ Mπ. For instance, l̄3 ≡ ln M2
π

Λ2
3

= 3.16 ± 0.31 and

l̄4 ≡ ln M2
π

Λ2
4

= 4.03 ± 0.16 [41, 102]. If the values of the low-energy constants are large, this would be an
indication of substantial resonance contributions to the scattering amplitude. In this case the low-lying
meson resonances should be included as explicit degrees of freedom in the chiral EFT [103].

The scattering lengths get corrections at next-to-leading order (NLO):

a0
0

NLO
=

7M2
π

32πF2
π

1 +
9M2

π

32πF2
π

log
λ2

0

M2
π

 , a2
0

NLO
= −

M2
π

16πF2
π

1 −
M2
π

32πF2
π

log
λ2

2

M2
π

 , (1.47)

where λ0, λ2 can be expressed in terms of the scales Λ1, . . .Λ4 [100, 101]. The appearance of chiral
logarithms M2

π log M2
π is a typical feature of higher-order calculations in χPT. The two-loop (NNLO)

result for the scattering lengths was also derived [104, 105]. The further theoretical improvement was
achieved by applying Roy equations [106], which are dispersive relations for ππ scattering [107]. These
theoretical predictions are shown in Fig . 1.14. Altogether, they are confirmed by experiment to high
degree of accuracy.

The methods of chiral EFT can be extended to the N f = 3 sector, which includes strange mesons. The
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structure of the effective Lagrangian is essentially the same, except that the pseudo-Goldstone bosons are
collected into S U(3) matrix, and there are more operators at NLO, NNLO, and so on. Finally, it is also
possible to include baryons into the chiral EFT framework. This opened, e.g., the possibility to perform a
systematic study of the nuclear forces devoid of any model dependence [108, 109].

The other aspect of χPT concerns its application to lattice QCD simulations. It is useful to analyse the
dependence of the results on the quark masses, lattice spacing and spatial volume. Depending on the
formulation of the lattice action, there are different versions of χPT that should be used. A particular
example of interest is a partially quenched χPT (PQχPT) [110–112]. It allows one to estimate the
quark-disconnected contributions to the correlation functions.

The partial quenching is easily understood by considering again the vacuum expectation value of a
general operator given by Eq. (1.13). After integration over Grassmann fields, one has schematically

〈0|O(q, q̄)|0〉 ∝
∫
DAµ det(D + msea)e−S g[A] 1

D + mvalence
. . .

1
D + mvalence

(1.48)

If the masses of the sea quarks msea are chosen to be different from the masses of the valence quarks
mvalence, then the underlying theory is called partially quenched QCD (PQQCD). The matrix elements in
QCD are reproduced by setting msea = mvalence.

In order to disentangle the effects of sea and valence quarks, PQQCD has an extended quark content.
The fermionic QCD Lagrangian in Eq. (1.6) is supplemented by similar kinetic terms, corresponding to
a certain number N of the valence quarks qv and ghost fields q̃. The number N depends on the choice
of the correlation function. The purpose of the ghosts is to exactly cancel the effects of valence quarks
so that the QCD partition function is reproduced. In the chiral limit the Lagrangian of PQQCD has an
extended chiral symmetry which is spontaneously broken:

S U(N f + N |N)L × S U(N f + N |N)R −→ S U(N f + N |N)V , (1.49)

where S U(N f + N|N) denotes a graded group.
For illustration of the method, let us consider a two-point function of type Eq. (1.15), which contains

the flavour-diagonal field operators. Introducing one mass-degenerate valence quark qv, it can be rewritten
in PQQCD identically as〈

0|q̄(y)Γ′q(y)q̄(x)Γq(x)|0
〉

QCD ≡
〈
0|q̄(y)Γ′qv(y)q̄v(x)Γq(x)0|

〉
PQQCD︸                                      ︷︷                                      ︸

connected

+
〈
0|q̄(y)Γ′q(y)q̄v(x)Γqv(x)|0

〉
PQQCD︸                                      ︷︷                                      ︸

disconnected

. (1.50)

It is seen that the connected and disconnected pieces are completely disentangled – they appear in
different correlators on the right-hand side of this equation.

At the next step, the correlators are estimated in PQχPT. If msea = mvalence, the latter is identical with
χPT, as shown in Fig. 1.15. According to the pattern of the chiral symmetry breaking, the Goldstone
fields parametrize the S U(N f + N |N) group elements. There are (N f + 2N)2 − 1 such fields. The leading
order effective Lagrangian has a form similar to the one in the ordinary χPT, while the trace is replaced
by a supertrace. But there are additional operators at higher orders because the Cayley-Hamilton theorem
does not apply for graded groups [113, 114]. For instance, there is a new four-derivative operator in the
N f = 3 case. Its contribution to the physical quantities, however, starts only at next-to-next-to-leading
order. Nevertheless, the additional constants have to be accounted for in lattice fits.

The described framework has been applied to estimate the disconnected pieces in the hadronic vacuum
polarisation. The precise theoretical knowledge of the latter is important to resolve the muon g − 2
problem. It was found that the ratio of disconnected to connected contributions amounts to a few percent
in magnitude [53, 115]. This result is in qualitative agreement with the lattice determination of the
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Figure 1.15: The space of PQχPT in comparison to χPT. PQχPT provides more flexibility to perform the chiral
extrapolation of lattice data [112].

disconnected piece [116]. More recently, the disconnected diagrams in the isoscalar and isovector
channels of the ππ scattering have been also studied [117, 118].

1.4.2 Non-relativistic EFT

There are systems, in which the matter fields are non-relativistic. Typical examples include shallow
bound states or low-energy scattering. The non-relativistic nature of the problem allows one to introduce
a small expansion parameter |p|/M, where p is a typical 3-momentum in the system (soft scale), and
M is a mass of a non-relativistic particle (hard scale). The field-theoretical approach which provides a
systematic expansion of the S -matrix in this parameter is called a non-relativistic EFT. This development
was started by Caswell and Lepage, who formulated the non-relativistic QED [119]. In contrary to the
relativistic Bethe-Salpeter approach [120, 121], the framework proved to be very useful in study of the
non-relativistic two-body bound states, such as muonic hydrogen and hadronic atoms [122, 123].

Let us consider a single scalar field Φ(x) which describes the particle of mass M such as pion. The
non-relativistic effective Lagrangian reads

LNR = Φ†
(
i∂t − M +

4

2M

)
Φ +

g1

M2 (Φ†Φ†)(ΦΦ) + · · · (1.51)

where the ellipses denote the terms with higher spatial derivatives. Here, ∂t ≡ ∂/∂t and ∆ is the Laplacian.
There are in general infinite number of coupling constants gi, i = 1, . . . . The important feature of the
Lagrangian Eq. (1.51) is that the number of heavy particles is conserved in any vertex. In particular, the
two-particle sector of the non-relativistic EFT does not mix with sectors containing different numbers of
massive particles. In contrary to the relativistic theory, the non-relativistic Lagrangian does not contain
the antiparticle degrees of freedom. The effects of antiparticles are included in the low-energy constants.
This property drastically simplifies the actual calculations.

The values of the couplings gi are determined by matching to the relativistic theory, such as χPT.
According to Eq. (1.51), the free propagator has a pole at p0 = M + p2/2M. It is a non-relativistic
dispersion law, and thus results are Lorentz-invariant only approximately, up to a given order in the
expansion in 1/M. Another point concerns the normalization of one–particle states in the non–relativistic

19



Chapter 1 Hadronic Electroweak Processes in a Finite Volume

theory. It is different from the relativistic one:

〈k|p〉 = (2π)3 δ3(k − p) (non–relativistic), 〈k|q〉 = (2π)3 2w(p) δ3(k − p) (relativistic) , (1.52)

where w(p) =
√

M2 + p2. Considering a generic two-body scattering p1 + p2 → p3 + p4 (e.g., ππ
scattering), the matching condition for the scattering amplitude reads

4∏
i=1

(2w(pi))1/2TNR(p3,p4; p1,p2) = TR(p3,p4; p1,p2) . (1.53)

Here, the additional kinematic factors appear because of the different normalizations in Eq. (1.52).
For instance, the matching can be done at threshold s = 4M2. The relativistic amplitude becomes
a constant TR = a, where a is given essentially by the scattering length. However, the value of the
non-relativistic counterpart TNR is not Lorentz-invariant, but rather depends on the reference frame:
TNR = a

4M2 −
a

16M4 P2 + · · · , where P is a total 3-momentum.
In order to preserve the invariance of the non-relativistic amplitudes, a modified covariant framework

was proposed [124, 125]. In this approach, one rescales the field Φ(x) →
√

2W Φ(x), where W =√
M2 − ∆ . The normalization of the one-particle states in this theory becomes the same as in the

relativistic case. The effective Lagrangian takes the form

L = Φ†2W
(
i∂t −W

)
Φ +

c1

4
(Φ†Φ†)(ΦΦ) + · · · , (1.54)

where the ellipses stand for all possible Lorentz-invariant four-particle operators containing space
derivatives. To set up a power counting scheme, it is convenient to introduce a small parameter v, which
is the velocity of the massive particle. The mass M is counted as O(1), whereas all 3-momenta |pi| and
space derivatives ∇ as O(v). The kinetic energies Ti = w(pi) − M are of order O(v2). Also, the coupling
constant c1 ∼ O(1). The matching at tree level gives TNR = c1 = a. This result is independent of the
reference frame since the kinematic factors in Eq. (1.53) are absent in the modified theory.

The non-relativistic Lagrangian Eq. (1.54) can be used beyond the leading order. The free propagator
is given by

i〈0|TΦ(x)Φ†(y)|0〉 =

∫
d4 p

(2π)4

e−ip(x−y)

2w(p)(w(p) − p0 − iε)
(1.55)

The scattering amplitude has a simple diagrammatic structure in the non-relativistic theory, shown in
Fig. 1.16. It is given as a sum of the bubble-chain diagrams:

TNR(p3,p4; p1,p2) = c1 + c2
1ηG(P0,P) + c3

1η
2G(P0,P)2 + . . . , (1.56)

where η denotes the symmetry factor introduced in Eq. (1.31). Here, G is a one-loop integral in a moving
frame with total 4-momentum Pµ = (P0,P):

G(P0,P) =

∫
ddl

(2π)d

1
4w(l)w(P − l)(w(l) + w(P − l) − P0)

, (1.57)

where d is a number of space dimensions in dimensional regularization.
To preserve the predictive power of the non-relativistic EFT, it is important that the radiative corrections

do not violate the counting rules. For instance, this is a case in the meson χPT since the masses of
the pseudo-Goldstone bosons are treated as small parameters. In the non-relativistic EFT, however, the
power counting is destroyed by the presence of a heavy mass scale M; similarly, it is the nucleon mass
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Figure 1.16: Diagrammatic representation of the scattering amplitude in the non-relativistic EFT.

in the baryon χPT. Indeed, the integrand in Eq. (1.57) contains such a heavy mass. The resolution of
this problem consists in using a certain prescription called the threshold expansion [125, 126]. As a first
step, the integrand is expanded in inverse powers of M. Then one integrates the obtained series by taking
into account the fact that regular momentum integrals vanish in dimensional regularization:

∫
ddl

(2π)d ln = 0.
The final result takes a Lorentz-invariant form (d = 3):

G(s) =
i

16π

(
1 −

4M2

s

)1/2
=

i |p|
8π
√

s
, s = P2, (1.58)

where |p| = λ1/2(M2,M2, s)/2
√

s is the relative 3-momentum in the CM frame. Now, this expression
is counted as O(v), so that the naive power counting remains valid. It also correctly reproduces the
imaginary part of the relativistic one-loop integral in the vicinity of the elastic threshold s = 4M2.

The result Eq. (1.58) implies that the non-relativistic amplitude is Lorentz-invariant at any given order
of the expansion parameter v. Also, the low-energy constant A is proportional to the scattering length to
all orders in perturbation theory, since G(4M2) = 0. Further, the amplitude TNR contains the non-analytic
terms given by the odd powers of the relative 3-momentum p (the right-hand cut s > 4M2). In fact, the
relativistic amplitude has the same non-analytic structure near threshold s = 4M2, t = u = 0 — the
contributions from t− and u−channels are polynomials in p2 in this kinematic region [123].

After summation to all orders in Eq. (1.56), it straightforward to check that the non-relativistic
amplitude TNR satisfies the Lippmann-Schwinger equation [127]:

TNR = V + VηG(s)TNR, (1.59)

where the potential is the V = c. This shows that the non-relativistic EFT is useful not only in perturbation
theory, but also for study of bound states and resonances in the vicinity of the elastic threshold. This
conclusion is not affected by the presence of the derivative couplings in the effective Lagrangian,
Eq. (1.54).

The form of the terms with derivative couplings is dictated by the effective-range expansion of the
relativistic amplitude near threshold. At order O(v2), one gets

L2 = c2
[
(Φ†)µ(Φ†)µΦΦ − M2Φ†ΦΦ†Φ + h.c.

]
+ c3

[
Φ†(Φ†)µ − (Φ†)µΦ†

][
(Φ)µΦ − Φ(Φ)µ

]
, (1.60)

where h.c. stands for hermitian conjugate, and

(Φ)µ = (P)µΦ , (Φ†)µ = (P†)µΦ† , (P)µ = (W,−i∇) , (P†)µ = (W, i∇) . (1.61)

The constant c2 is related to the S-wave scattering parameters, while c3 is proportional to the P-wave
scattering volume. The operators of higher order can be constructed in a similar manner.

The Lippmann-Schwinger (LS) equation for the partial-wave scattering amplitude takes the form

Tl(s) = Vl(s) + Vl(s)|p|2lG(s)Tl(s), (1.62)
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Chapter 1 Hadronic Electroweak Processes in a Finite Volume

where the subscript ‘NR′ is omitted for brevity. The quantities Vl(s) are coefficients in the partial-wave
expansion of the potential, similar to Eq. (1.27). The latter can be read off from the effective Lagrangian,
Eqs. (1.54,1.60). The unitarity condition for the partial-wave amplitudes, similar to Eq. (1.32), gives

Tl(s) =
8π
√

s
η|p|2l+1

1
cot δl(s) − i

, Vl(s) =
8π
√

s
η|p|2l+1 tan δl(s) , (1.63)

where δl(s) is the scattering phase.
The main advantage of the non-relativistic framework as compared to a relativistic theory is following.

The results in the relativistic theory, e.g., in χPT, are given in terms of the renormalized parameters
that have no direct relevance to experimental data. On the other hand, the low-energy constants in the
non-relativistic EFT can be expressed directly through the parameters of the effective range expansion
(scattering length, effective range, etc.). The latter are observables that completely characterize the
low-energy properties of the hadrons. Once the matching is done, one can proceed with the Lippmann-
Schwinger equation.

1.5 Finite volume formalism

According to the discussion in Subsection 1.3.2, the resonances are not eigenstates of the QCD Hamilto-
nian. It means that the energy levels determined on the lattice do not correspond to any resonance. What
one needs are the lattice data of the phase shifts. This implies the calculation of a suitable four-point
correlation function corresponding to the two-body scattering. In order to put the external particles on
their mass-shells, one has to perform an analytic continuation of the result from Euclidean to Minkowski
momenta. In principle, such a procedure is guaranteed by the reconstruction theorem [128, 129]. How-
ever, the analytic continuation becomes an issue in a finite volume since the lattice data are obtained
only at a discrete and a finite set of three-momenta. It is consequently important to have an alternative
possibility to reach the timelike kinematic region directly from the Euclidean correlation functions.

In case of matrix elements between one-particle states, the solution is to separate the terms with
leading exponential fall-off for large Euclidean times. That is how the masses of stable hadrons and
transition form factors are determined. But the problems start to appear when trying to extract the
physical quantities in the presence of a final state interaction. Suppose one aims at computing, e.g.,
the timelike pion form factor. For that purpose the three-point correlation function, defined similar to
Eq. (1.23), should be studied in the limit t′ → +∞, t → +∞, t′ � t. One would naively get the desired
matrix element. But the latter is real on the lattice, while the pion form factor is complex in the timelike
region. The complex phase is acquired because of the ππ final state interaction. In the elastic region,
Watson’s theorem states [130]:

Fπ(s) = |Fπ(s)|eiδ(s), (1.64)

where δ(s) is the elastic ππ phase shift. Moreover, the authors of [131] arrived at the following conclusion
(the Maiani-Testa no-go theorem): in the infinite volume, the three-point correlation function in the
timelike region involves the off-shell quantities that do not vanish in the Euclidean spacetime. This result
will be discussed in Subsection 1.5.2.

The no-go theorem, however, is not relevant to the actual lattice simulations in which the observed
energy spectrum is not a continuous, but a discrete one. For instance, the energy of two non-interacting
pions in the CM frame is given by

E(p) = 2
√

M2
π + p2, p =

2π
L

n, n ∈ Z3. (1.65)
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For a physical pion mass Mπ ≈ 140 MeV and lattice size L & 3 fm, the level spacing is sizable. It means
that each energy level can be clearly disentangled on the lattice.

The actual spectrum of the ππ system will deviate from the free one because of the meson interaction.
It is a specific finite volume effect – there is a non-zero probability that two particles in a box are within
the interaction range. These corrections where studied many years ago in the context of the non-ideal
Bose gas [132]. In particular, for the ground state p = 0, one finds

E = 2Mπ −
4πa0

MπL3

1 + d1
a0

L
+ d2

a2
0

L2

 + O(L−6), (1.66)

where a0 = lim
p→0

tan δ0(p)/p is the S-wave scattering length in the channel with isospin I = 0 or I = 2.

The coefficients d1, d2 take the values d1 ≈ −2.83, d2 ≈ 6.38. The crucial importance of this result is
that the energy shift is determined entirely by the low-energy parameters of the two-body scattering
amplitude. The final expression does not depend on the explicit form of the interaction potential. This
fact can be explained as follows. The derivation of the formula assumes the large-L expansion. Since the
meson interaction is short-ranged, the wave function describing the ππ scattering takes the asymptotic
form inside the box. Its value is expressed through the phase shifts away from the interaction region. The
periodic boundary conditions lead to the eigenvalue equation for the energy. This equation provides a
relation between the on-shell quantities.

1.5.1 Lüscher’s method

A general method to extract the partial-wave phase shifts from the volume dependence of the two-body
energy spectrum was developed by Lüscher [133, 134]. The original derivation was based on the
Schrödinger equation. Lüscher also proved that the result remains valid in quantum field theory. The
non-relativistic EFT framework introduced above is equally well suited for the discussion of the method.

Let us first discuss the problem in 1+1 dimensions. Consider a non-relativistic model which describes
the scattering of two identical, spinless particles of mass M. The asymptotic value of the wave function
is given by

ψ(x) ∝ e−ip|x| + e2iδ(p)eip|x| , (1.67)

where x denotes the relative distance between particles, and p is the relative 3-momentum, so that the
total energy is E = 2M + p2/m. The periodic boundary condition ψ(0) = ψ(L) leads to a simple exact
relation between the finite-volume energy value and the phase shift at this energy:

pL + 2δ(p) = 2πn , n ∈ Z. (1.68)

This equation is a one-dimensional analogue of the so-called Lüscher formula. By setting δ ≡ 0, the
spectrum of the free theory, pn = 2πn

L , is reproduced.
In contrast to Eq. (1.66), the formula Eq. (1.68) represents a non-perturbative result. It is also

applicable in the vicinity of a resonance. If the resonance is narrow, the energy levels exbibit a peculiar
behaviour referred to as the avoided level crossing. This is illustrated in Fig. 1.17. The curves reach a
plateau at a certain energy E = ER which corresponds to the resonance mass. According to Eq. (1.33),
the width of the resonance is given by the slope: dδ(p)/dE

∣∣∣∣
E=ER

= 2/ΓR. In other words, for small
volumes the ground state energy might agree well with the resonance mass. This fact explains, why
the masses of the light resonances, such as ρ and K∗, determined by standard methods were in good
agreement with experiment (Fig. 1.6). However, in large volumes the ground state energy will eventually
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Figure 1.17: Energy levels of an interacting two-body system in the vicinity of a narrow resonance. The position of
a plateau gives the resonance mass E = ER [135].

approach the free particle energy level.
Before proceeding to the three-dimensional problem, it is useful to derive the quantization condition,

Eq. (1.68), in the non-relativistic EFT. The starting point is the LS equation given by Eq. (1.62). The
partial wave index l can be omitted, and the scattering amplitude takes the form

T =
1

V−1
0 cot δ(p) − J(p)

(1.69)

where the parameter V0 is fixed by unitarity. Further, J(p) denotes a one-loop integral [125]

J(p) =

∫ ∞

−∞

dl
2π

1
2
√

s
1

l2 − p2 . (1.70)

which is related to the Green’s function for the one-dimensional Schrödinger equation [136]. Performing
the contour integration, one obtains

J(p) =
i

4
√

sp
, V0 = 4

√
sp. (1.71)

When the system is considered in a finite volume, the integral over 3-momentum has to be replaced by
a discrete sum

J(p)→ JL(p) =
1

2
√

s
1
L

∑
n∈Z

1(
2πn
L

)2
− p2

. (1.72)

The interaction potential is not affected by the presence of a box since it contains the short-distance
physics. There are also polarisation effects associated with the propagation of the virtual particles.
The respective contributions, which are of order O(e−MπL), are assumed to be suppressed; as a rule of
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thumb the condition MπL & 4 is usually applied. In fact, they are absent in the non-relativistic EFT
since the respective momentum integrals vanish in dimensional regularization. The non-trivial volume
dependence arises only when all particles in the intermediate states go on their mass-shells. Accordingly,
the scattering amplitude in a finite volume TL reads

TL =
4
√

sp
cot δ(p) − 4

√
sp JL(p)

. (1.73)

It has simple poles which are the eigenvalues of the finite-volume Hamiltonian. These energy eigenvalues
satisfy the equation

δ(p) + φ(q) = πn , n ∈ Z , cot φ(q) = −
q
π

∑
m∈Z

1
m2 − q2 , q =

pL
2π

. (1.74)

The quantity cot φ(q) has a certain relation to the Riemann zeta function ζ(n) =
∑∞

k=1
1
kn . Indeed, it can

be easily verified that
∑∞

m=1
1

m2−q2 = −
∑∞

n=0 ζ(2n + 2)q2n. The result of summation can be expressed

through the trigonometric function:
∑

m∈Z
1

m2−q2 = −πq cot(πq). Accordingly, the quantization condition,
Eq. (1.68), is reproduced within the non-relativistic EFT framework.

The transition to 3+1 dimensions is complicated by the lack of rotational symmetry. As a result, the
admixture of the partial waves is inevitable. The partial-wave expansion of the scattering amplitude has
to be modified:

T (p3,p4; p1,p2) = 4π
∑

lm,l′m′
Tlm,l′m′(s; P)Ylm(p′)Y∗l′m′(p) , (1.75)

where P is a total 3-momentum which is quantized P = 2π
L d, d ∈ Z3. The LS equation becomes

Tlm,l′m′(s; P) = −δlm,l′m′Vl(s) − 4π
∑
l′′m′′

Vl(s)Xlm,l′′m′′Tl′′m′′,l′m′(s; P) . (1.76)

The quantity Xlm,l′′m′′ is a certain finite-volume counterpart of the one-loop integral Eq. (1.58). It can be
brought to the form [137]

Xlm,l′m′ =
|p|l+l′+1

32π2 √s
il−l′ Mlm,l′m′ , Mlm,l′m′ =

(−1)l

π3/2γ

l+l′∑
j=|l−l′ |

j∑
s=− j

i j

q j+1 Zd
js(1; q2)Clm, js,l′m′ , (1.77)

with the Lorentz factor γ =
√

1 + P2/s and the dimensionless parameter q = |p|L/2π. The coefficients
Clm, js,l′m′ are given in terms of Wigner 3 j-symbols

Clm, js,l′m′ = (−)m′ il− j+l′
√

(2l + 1)(2 j + 1)(2l′ + 1)
(

l j l′

m s −m′

) (
l j l′

0 0 0

)
. (1.78)

The function Zd
js(1; q2) is defined as a sum

Zd
js(1, q

2) =
∑
z∈Pd

Y js(z)
z2 − q2 , Pd =

{
z
∣∣∣∣ z = γ−1

(
n −

1
2

∆

)
, n ∈ Z3

}
, ∆ = d

1 +
m2

1 − m2
2

s

 . (1.79)

It should be properly regularized for the numerical evaluation.

The scattering amplitude has simple poles which are the eigenvalues of the QCD Hamiltonian in a
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finite volume. The system of linear equations Eq. (1.76) has singular solutions if the corresponding
determinant vanishes. Using Eqs. (1.63,1.77), the determinant equation for the energy spectrum is given
by

det
(
Mlm,l′m′ − δll′δmm′ cot δl

)
= 0. (1.80)

This is the Lüscher formula for the spinless particles of unequal masses in a moving frame [138].

The obtained result is further simplified by studying the symmetry properties of the system. One has
to classify all transformations which leave the spatial volume invariant. In general, the Lorentz boost
deforms the cubic box to a rectangular parallelepiped. Accordingly, the symmetry group reduces to
certain subgroups of the cubic group. The full group-theoretical analysis of the problem can be found
in [139]. The partial diagonalization of the matrix M is achieved in the basis of a given irreducible
representation (irrep) Γ of the symmetry group (Schur’s lemma)

Dl : |lm〉 −→ Γ : |Γαln〉 =
∑

m

cΓαn
lm |lm〉 , (1.81)

where |lm〉 are the basis vectors of an irreducible representation Dl of the rotation group of total angular
momentum l. Further, α runs from 1 to the dimension of Γ, and n runs from 1 to N(Γ, l), the number
of occurrences of the irreducible representation Γ in Dl. The coefficients cΓαn

lm can be inferred from the
tables in [139]. The Lüscher formula takes the form

det
(
MΓ

ln,l′n′ − δll′δnn′ cot δl
)

= 0 , MΓ
ln,l′n′ =

∑
mm′

c Γαn ∗
lm c Γαn′

l′m′ Mlm,l′m′ . (1.82)

To apply Lüscher’s method in practice, one has to set a cut-off on the angular momentum. If resonances
are seen in the S- or P-waves, then it is plausible to neglect D- and higher partial waves. The justification
of this is that the phase shifts δl(p) behave as δl(p) ∼ p2l+1 in the vicinity of the elastic threshold. In
general, however, it is impossible to avoid the admixture of the remaining partial waves. There are still
particular cases, where the matrices MΓ become diagonal. For instance, let us consider the irrep Γ = A1
and the total momentum d = (0, 0, 1). For l ≤ 1, the matrix MA1 reads [139]

MA1 =

(
w00

√
3iw10

−
√

3iw10 w00 + 2w20

)
, wlm =

1

π3/2
√

2l + 1
γ−1q−l−1 Zd

lm(1, q2). (1.83)

According to Eq. (1.79), the non-diagonal element w10 vanishes if the masses are equal m1 = m2, and/or
in the limit d→ 0. Therefore, the S- and P-waves can be determined separately. Setting l = 0 and d = 0,
the phase shift δ0(p) satisfies the equation

δ0(p) + φ(q) = πn , n ∈ Z , cot φ(q) = −
1

2π2q

∑
r∈Z3

1
r2 − q2 . (1.84)

It looks very similar to the one-dimensional formula Eq. (1.68), except that the sum can only be calculated
only numerically.

The large-L limit of Eq. (1.84) reproduces the ground state energy of the two-particle system in
a finite volume given by Eq. (1.66). The leading correction can be obtained as follows. Having in
mind the S-wave ππ scattering, the free energy level E = 2Mπ corresponds to the limit q → 0. Then,
cot φ(q) ≈ 1

2π2q3 to a good approximation. Using the effective-range expansion for the phase shift,
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Figure 1.18: Binding energy of the deuteron at different values of the pion mass [140].

p cot δ0(p) ≈ 1/a0 + O(p2), the Lüscher formula can be easily solved:

1
pa0

+
1

2π2q3 = 0 ⇒ p2 = −
4πa0

L3 . (1.85)

Since E = 2
√

M2
π + p2 = 2Mπ + p2/Mπ + O(p4), the leading term in the 1/L expansion, Eq. (1.66), is

indeed reproduced. It is not difficult to obtain the sub-leading corrections as well [134]. The fact that the
ππ-system has energy below threshold is a final-volume effect. This has nothing to do with a two-body
bound state which is observed in the infinite volume.

An interesting aspect of the Lüscher formula concerns its application to the study of the bound states
in a finite volume. Such a possibility follows from the analytic properties of the scattering amplitude
in the complex s-plane. The energy EB of the S-wave two-body bound state in the infinite volume is a
solution of the equation

i cot δ(p)
∣∣∣∣
p=iγ

= −1 , (1.86)

where γ denotes the binding momentum of the system, so that EB = 2
√

M2 − γ2 in case of equal masses.
In a finite volume, it is convenient to rewrite Eq. (1.84) using an alternative representation of the sum for
imaginary values of the argument q:

i cot δ(p)
∣∣∣∣
p=iκ

= −1 +
∑
m,0

1
|m|κL

e−|m|κL , (1.87)

where κ is related to the finite-volume binding energy E(L)
B = 2

√
M2 − κ2. To get this formula, the sum

is transformed by first applying Poisson’s resummation formula
∑

r∈Z3 δ(3)(x − r) =
∑

m∈Z3 ei2πm·x, and
then performing the contour integration over the variable x for all m , 0.

The shallow bound states are of particular interest. They have very small binding energy |EB − 2M|
and binding momentum γ. A classical example is a deuteron consisting of a neutron and a proton. It has a
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Chapter 1 Hadronic Electroweak Processes in a Finite Volume

Figure 1.19: Energy levels of the ππ-
system from Lüscher formula with input
experimental phase shift [139].

Figure 1.20: Lattice calculation of the elastic I = 1, P = 1 ππ phase shift
for two different pion masses [146].

binding energy of 2.2 MeV and γd ∼ 40 MeV. For such systems, Eq. (1.87) has an approximate solution

E(L)
B = EB −

12γ
ML(1 − r0γ)

e−γL + O(e−
√

2γL), (1.88)

This is precisely the result derived by Lüscher in the non-relativistic quantum mechanics [55]. It can be
also expressed through asymptotic normalization coefficient A of the bound state wave function ψB(r)

ψB(r) = A
e−γr

√
4πr

, r → ∞ , |A|2 ≈
2γ

1 − r0γ
. (1.89)

As it is seen, while the polarization effects ∼ e−MπL are negligible, the finite-volume correction to the
binding energy EB is not suppressed since γ � M. This makes difficult to investigate the bound states
with current lattices. Nevertheless, such calculations were performed [140–143], although at large pion
masses ∼ 400 − 1000 MeV. The results for the deuteron are summarized in Fig. 1.18.

Returning to the study of the resonances on the lattice, the ρ(770) meson, which is a P-wave resonance,
provides a testing ground of Lüscher’s method [144]. Fig. 1.19 shows the finite-volume ground state
energy levels of the ππ-system for various total momenta P predicted by Lüscher formula with the
experimental phase shift as input. The advantage of using moving frames becomes evident: many data
points can be obtained at the same value of L [145]. To disentangle these energy levels, different types of
interpolating fields are required, including the two-pion operators. Moreover, these operators have to
transform according to a given irrep as discussed in [139].

Further, it is seen in Fig. 1.19 that the avoided level crossing is washed out, partly because the ρ
is not narrow. Accordingly, the use of Lüscher’s method becomes a necessity. The respective lattice
calculations were done by many groups. The recent works include [147–150]. Many studies concentrate
on the isospin I = 1 and I = 2 ππ scattering. In these channels the disconnected pieces are absent, at least
in the isospin limit. The values of the I = 1 phase shift δ1 obtained by Hadron Spectrum Collaboration
are shown in Fig. 1.20. The curves exhibit a typical behaviour in the vicinity of the resonance. The
latter is associated with the ρ(770) meson. To determine the resonance parameters, the data is fitted,
e.g., by effective range expansion or BW formula. The recent lattice data on the ρ meson mass mρ and
the coupling constant gρππ are summarized in Fig. 1.21. The width can be found from the equation
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Γ =
g2
ρππ

48πm2
ρ
(m2

ρ − 4m2
π)3/2.

Lüscher’s method was subsequently generalized for an arbitrary number of open two-body channels,
with arbitrary masses, spin and total momenta. The respective quantisation conditions which are valid for
CM energy below the three-body inelastic threshold can be found in [151] and references therein.

The application of the method to baryon resonances, such as the ∆(1232), is more complicated, partly
because of the signal-to-noise issues in the baryon correlation functions. One also has to make sure that
available lattice volumes are suitable to cover the resonance region. Nevertheless, such calculations are
underway and first results are expected in the near future [152]. At the same time, there is a progress in
the study of the baryon-baryon systems, such as the low-energy nucleon-nucleon scattering [153, 154].

Until now, the discussion was confined to the finite volume formalism for two-body systems below
inelastic thresholds. The latter can be understood as a limitation of Lüscher’s method. For instance, the
Roper resonance N∗(1140) is genuinely inelastic – it decays to Nππ with a branching ratio 30 − 40%.
The recent lattice study [155] indicates that this resonance should be generated in the coupled-channel
scattering including the three-body process. Accordingly, it becomes mandatory to have a similar
framework for the three-body problem in a finite volume.

The study of the three-body bound states seems to be a tractable problem. At least, this appears in a
so-called unitary limit in which the two-body scattering length is much larger then the effective range
a � r0. Such systems are common in atomic physics, such as 4He atoms. They exhibit interesting
universal low-energy properties [156, 157]. In particular, three identical bosons form a sequence of
bound states called Efimov states [158]. In the limit a→ ∞ the energy shift of a given bound state has a
simple analytic form [159, 160], similar to Eq. (1.88),

∆EB = −
cκ2|A|2

M(κL)−3/2 e−2κL/
√

3 + · · · , (1.90)

where the ellipses stand for suppressed terms and the numerical constant c ≈ −96.4. The quantity A
denotes a three-body analogue of the asymptotic normalization coefficient and κ is the binding momentum.
The infinite-volume three-body binding energy reads EB = κ2/M. It is worth mentioning that the presence
of three-body interaction is encoded solely in the constant A.

The first step towards the formulation of the method was done in [161, 162]. It was shown that the
three-body finite-volume spectrum is completely determined by the infinite volume scattering amplitude.
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Figure 1.21: Summary of the recent work on the ρ meson parameters [147]. The masses mπ and mρ are scaled with
the Sommer scale.

29



Chapter 1 Hadronic Electroweak Processes in a Finite Volume

Despite further progress [163], it is still unclear how to apply the three-body quantisation condition for
the analysis of the lattice data.

More recently, the authors of [164, 165] have proposed an equivalent, but simpler framework that
is based on the non-relativistic EFT in the particle-dimer picture. They essentially follow a bottom-up
approach: only a necessary number of the low-energy constants are included in the Lagrangian. The idea
is that one fits this minimal set of the couplings to the finite-volume energy spectrum. At the next step,
the three-body scattering amplitude can be determined numerically in the same non-relativistic EFT. This
research direction should be further explored.

1.5.2 Electroweak processes

Lüscher’s method provides a basis for the lattice study of the electroweak processes involving resonances.
More generally, one has to investigate the consequence of the final-state interaction. Before proceeding
with this topic, let us consider the content of the no-go theorem in more detail.

Having in mind the timelike form factor, one starts with the three-point correlation function in the
infinite volume

C(t′, t; k) = 〈0 |Π(k, t) Π(−k, t′) J(0) | 0〉 , (1.91)

where t′ > t > 0 and the operator J has a non-zero overlap with two-pion states in S-wave. Also, Π(k, t)
is a Fourier transform of the pion field operator:

Π(k, t) =

∫
d 3x e−ik·x Oπ(x, t) . (1.92)

Using the LSZ reduction formulas [166], it can be shown that in the limit t′ � t � 0 the correlator
C(t′, t; k) takes the form [131, 167]

C(t′, t; k) =
Z e−Ek(t+t′)

(2Ek)2

{ 1
2

[
out〈π(k)π(−k) | J(0) |0〉 + in〈π(k)π(−k) | J(0) |0〉

]
+ 2EkPk(t′)

}
, (1.93)

where in and out two-pion states are distinguished, and Ek =
√

M2
π + k2. The quantity Pk(t′) can be

written as follows:

Pk(t′) = −
∑

n

P

(
1

En(En − 2Ek − iε)

)
out〈 n | J(0) |0〉T ∗ e−(En−2 Ek)t′ , (1.94)

where the summation/integral is performed over two-pion intermediate states. Here, P stands for the
principal value,

1
x − iε

= iπδ(x) + P
1
x
. (1.95)

The quantity T is an off-shell matrix element; in the on-shell limit En → 2Ek it reduces to the S-wave
scattering amplitude of the process π(k1) + π(k2)→ n(pn),

(2π)4δ(4)(pn − k1 − k2)
(
iT (k,−k; n)

)
= out〈m |π(k)π(−k) 〉in – out〈m |π(k)π(−k) 〉out . (1.96)

In Minkowski space the correlation function is obtained by replacing t → it in the exponentials.
Using Eq. (1.95), the quantity Pk(t′) is split into two terms. The first term can be evaluated by contour
integration after expanding the integration range to (−∞,∞). Indeed for positive and large t, one can
close the contour in the lower-half plane. Since the pole En = 2Ek + iε is located outside this contour,
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1.5 Finite volume formalism

the integral becomes zero. The remaining contribution from δ(En − 2Ek) gives the expected result for the
correlator

C(t′, t; k) =
Z e−Ek(t+t′)

(2Ek)2 out〈π(k)π(−k) | J(0) |0〉 (Minkowski) . (1.97)

In Euclidean space, however, the exponent exp(−Ent′) does not allow one to integrate by contours.
Accordingly, there is a non-zero contribution from the off-shell amplitude. Moreover, Pk(t′) will
dominate the correlator since its leading behaviour for t′ → ∞ is governed by the divergent factor
∼ exp(2(Ek − Mπ)t′). Finally, the matrix element out〈π(k)π(−k) | J(0) |0〉 can not be determined on the
lattice since the energy spectrum is continuous.

The problem drastically simplifies in a finite volume, where the energy levels are discrete. The
spectrum En, n = 0, 1, . . . , satisfies the Lüscher formula. In this case the matrix element 〈En| J(0) |0〉 is a
well defined quantity on the lattice. The solution was given by Lellouch and Lüscher in their work on the
weak K → ππ decays [168]. They established a simple relation between the corresponding finite-volume
matrix elements and the physical kaon-decay amplitudes. The heuristic derivation of the result proceeds
as follows [167]. Instead of Eq. (1.91), it is convenient to consider a slightly different correlation function
in a finite volume

C(t) =

∫
V

d 3x 〈 0 |J(~x, t)J(0) | 0 〉 , (1.98)

where the volume V = L3 is taken to be asymptotically large. On the one hand, C(t) obeys the spectral
decomposition in terms of the infinite volume matrix elements

C(t)
V→∞
−−−−→

π

2(2π)3

∫
dE
E

e−Et|〈0|J(0)|ππ, E〉|2 p(E) , (1.99)

where p(E) =

√
E2

4 − M2
π. On the other side, inserting the completeness relation

∑
n |ππ, n〉〈ππ, n| = 1,

one has

C(t) = V
∑

n

|〈0|J(0)|ππ, n〉V |2e−Ent V→∞
−−−−→ V

∫
dE ρV (E) |〈0|J(0)|ππ, E〉V |2e−Et , (1.100)

where |ππ, n〉V and |ππ, E〉V denote the finite-volume two-pion states at fixed n and fixed energy E,
respectively. The purpose of the function ρV (E) is to provide the correspondence between finite volume
sums and infinite volume integrals. This quantity can be naively interpreted as the density of states at
energy E. It then follows from the Lüscher formula, Eq. (1.84), that

ρV (E) =
dn
dE

=
φ′(q) + δ′0(p)

4πp
E , (1.101)

where the derivatives are taken with respect to the variable p. The case of the operator J that has a
non-zero overlap with one-particle states |k〉 with mass M, can be considered along the same lines. A
comparison of Eqs. (1.99) and (1.100) provides the following correspondence

|ππ, E〉 ⇔ 4π

√
VEρV (E)

p(E)
|ππ, E〉V , |k = 0〉 ⇔

√
2MV |k = 0〉V . (1.102)

Next, these expressions can be used to obtain the matrix elements of any local operator. In particular
the original Lellouch-Lüscher (LL) formula for the K → ππ is reproduced. As discussed in [167], the
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Chapter 1 Hadronic Electroweak Processes in a Finite Volume

Figure 1.22: Diagrammatic representation of the two-point function in the non-relativistic EFT. The bubble integrals
are evaluated in a finite volume.

obtained formula can be also applied in small volumes, in which there are only few energy levels below
the inelastic thresholds. The polarization effects, however, still have to be exponentially suppressed.
Having that in mind, the scalar form factor in the timelike region can be determined from the equation

|〈ππ, En| J(0) |0〉|2 =
4πVE2 {δ′0(p) + φ′(q)}

p2

∣∣∣∣∣∣
E=En

|〈En|J(0)|0〉|2 . (1.103)

where all quantities on the right-hand side are evaluated at E = En. The proportionality factor in Eq.
(1.103) accounts for the different normalizations of the particle states in finite and infinite volume.

The non-relativistic EFT provides a more systematic method to obtain the LL formula for a given
electroweak process. To simplify the discussion, it is convenient to consider again the scalar form factor
in the timelike region. The effective Lagrangian in Eq. (1.54) has to be supplemented by the term which
describes the interaction of the pions with the external scalar field A(x),

LA = gA(x)J(x) = gA(x)
1
2

[Φ†Φ† + ΦΦ] + · · · (1.104)

where the ellipses stand for terms containing space derivatives. Further, one defines a two-pion operator,

On(x0; k) =
∑
k∈Ωn

∫ L

0
d3x d3y eik(x−y) Φ(x0, x)Φ(x0, y) , Ωn =

{
k =

2πz
L

, z2 = n2
}
, (1.105)

which creates the energy eigenstate |ππ, En〉 from the vacuum. At the next step, suitable two- and
three-point correlation functions are evaluated in perturbation theory. The calculation is performed in
Euclidean space, so that the finite-volume free propagator is given by

0|TΦ(x)Φ†(y)|0〉 =

∫
dp0

2π
1
L3

∑
p

eip0(x0−y0)+ip(x−y)

2w(p)(w(p) + ip0)
, w(p) =

√
M2
π + p2 . (1.106)

The two-point function has a spectral representation

D(x0 − y0; k) ≡ 〈0|On(x0; k)O†n(y0; k)|0〉 =
∑

n

|〈0|On(0; k)|En〉|
2e−En(x0−y0) , x0 > y0 (1.107)

On the other hand, the matrix element on the left-hand side of this equation can be calculated in
perturbation theory. The relevant diagrams are shown in Fig. 1.22. After summing them up, the matrix
element takes the form

D(x0 − y0; k) =
ν2

nL3

η

∫ ∞

−∞

dP0

2π
eiP0(x0−y0)

{
−iL3

4w2(k)(P0 − 2iw(k))
−

TL(P0)
(4w2(k))2(P0 − 2iw(k))2

}
,(1.108)
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Figure 1.23: Integration contour for the two-point function in a finite volume.

where νn denotes the number of different vectors z which satisfy the condition z2 = n2. The symmetry
factor η = 1

2 was pulled out. The first term in Eq. (1.108) corresponds to the free propagation of the
pions. Further, TL(P0) is the S-wave scattering amplitude in a finite volume,

TL(P0) =
8π
√

s
p cot δ(p) + p cot φ(q)

, p =

√
s
4
− M2

π , s = −P2
0. (1.109)

The form of the TL(P0) in the vicinity of the simple pole P0 = iEn can be easily found:

TL(P0) =
32π sin2 δ(pn)
δ′(pn) + φ′(qn)

1
En + iP0

+ · · · , (1.110)

where the Lüscher formula was used.
The integral in Eq. (1.108) is evaluated using Cauchy’s theorem. The integration contour is shown

in Fig. 1.23. It important that the free pole P0 = 2iw(k) does not contribute to the two-point function,
but only the poles of the T -matrix do. Indeed, recall that TL(P0) is a solution of the LS equation
TL = V(1 + GLTL), where GL denotes the finite-volume counterpart of the one-loop integral in Eq. (1.57).
Obviously, the function GL has a pole in the vicinity of P0 = 2iw(k). To satisfy the LS equation, the
scattering amplitude has to vanish in the limit P0 → 2iw(k),

TL(P0) = −iL34w2(k)(P0 − 2iw(k)) + · · · . (1.111)

Accordingly, the free poles are exactly cancelled in the integrand of Eq. (1.108).
Performing the integration over P0 and comparing the result with Eq. (1.107), one obtains

|〈0|On(0; k)|En〉| =

(64πV sin2 δ(pn)
δ′(pn) + φ′(qn)

)1/2 1
4w2(k)

1
|En − 2w(k)|

. (1.112)

The calculation of the three-point function proceeds along the same lines. The starting point is the
matrix element

〈0|On(x0; k)LA(0)|0〉 = gA(0)Fn(x0; k) , x0 > 0 , (1.113)

which has the spectral representation

〈0|On(x0; k)LA(0)|0〉 = gA(0)
∑

n

e−En x0〈0|On(0; k)|En〉〈En|J(0)|0〉 . (1.114)
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Figure 1.24: Three-point function in the non-relativistic EFT.

The diagrams which contribute to the quantity Fn(x0; k) are shown in Fig. 1.24. Summing up all
bubbles yields

Fn(x0; k) = νn

∫ ∞

−∞

dP0

2πi
eiP0 x0

TL(P0)V−1
0

4w2(k)(P0 − 2iw(k))
F̄(P0) , (1.115)

where V−1
0 =

p
8π
√

s cot δ(p). The quantity F̄(s) denotes the sum of all two-particle irreducible diagrams.
It is proportional to the amplitude of the pair creation from the vacuum in the presence of the field A(x).
The precise form of the relation is obtained after summing up all diagrams in Fig. 1.24, but in the infinite
volume:

out〈ππ, E|J(0)|0〉 ≡ F(E), F(E) = T (E)V−1
0 F̄(E) = eiδ0(p)F̄(E) cos δ0(p) . (1.116)

This is nothing but the statement of the Watson theorem, Eq. (1.64).

The contour integration in Eq. (1.115) leads to the expression

Fn(x0; k) =
∑

n

e−En x0

4w2(k)(2w(k) − En)
4pF̄(En) cot δ(pn) sin2 δ(pn)

(δ′(pn) + φ′(qn))En
. (1.117)

Using this result together with Eqs. (1.112), (1.116) and (1.114), one gets the analogue of the LL formula
for the scalar form factor in the timelike region:

|F(En)| =

√
4πVE2

n {δ
′
0(pn) + φ′(qn)}

p2
n

|〈En|J(0)|0〉| . (1.118)

This expression coincides exactly with Eq. (1.103). It enables one do determine the absolute value of the
scalar form factor in the timelike region from the finite-volume current matrix element 〈En|J(0)|0〉. The
phase of the form factor is just the S-wave scattering phase shift δ0(p).

The result of Lellouch and Lüscher was subsequently generalized to include multiple strongly-coupled
decay channels [169–171] as well as the spin [172]. It was also applied in the lattice study of the direct
CP violation in the K → ππ decay [173]. The described approach can be also used in case of a resonant
final-state interaction. In particular, Hadron Spectrum Collaboration performed the first exploratory
lattice calculation of the resonant amplitude for πγ∗ → ρ→ ππ [174]. The respective value of the cross
section is shown in Fig. 1.25.

A simple conclusion can be drawn in the approximation of an infinitely narrow resonance with a
Breit-Wigner form. In this limit the derivative of the phase shift explodes, while the quantity φ′(qn) stays
finite and thus can be neglected. According to Eq. (1.37), the scalar form factor is proportional to the
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Figure 1.25: Lattice determination of the π+γ → π+π0 cross section as a function of the ππ CM energy. The lower
panel shows the l = 1 elastic ππ scattering cross section [174].

resonance matrix element. Combining both expressions, one obtains

FR(EBW) = 2EBW V〈EBW|J(0)|0〉 , (1.119)

where EBW denotes the mass of the BW resonance. The kinematic factor properly accounts for the
normalization of states. This is precisely the result which is expected when the resonance becomes stable.
A similar formula is applicable to the two-body bound state. However, the comment after Eq. (1.37)
concerning the definition of the resonance matrix element should be kept in mind.

1.6 External field method

The finite volume formalism is a main tool to study the electroweak processes involving final-state
interactions and resonances. At the same time, there are other types of hadronic processes which can be
investigated on the lattice by using different approaches. An important case is Compton scattering.

The low-energy Compton scattering plays an indispensable role in probing the electromagnetic structure
of hadrons [175]. The non-linear hadronic response to an applied electromagnetic field is quantified
by the electric α, magnetic β as well as higher-order polarizabilities. In particular, the Euclidean space
non-relativistic effective Lagrangian, which describes the gauge-invariant interaction of the nucleon
Ψ(x, t) of mass M and charge q with an external electromagnetic field Aµ(x), is given by

Leff(A) = Ψ†(x, t)
[ (
∂

∂t
+ i q A4

)
+

(−i∇ − q A)2

2M
− µσ · B + 2π

(
αE2 − βB2

) ]
Ψ(x, t) + · · · , (1.120)

where B and E denote the magnetic and electric field, respectively. Further, µ is the magnetic moment
and the σ vector collects the Pauli matrices. The dots stand for the terms containing time derivatives of
the external field and higher-order operators. The parameters of this Lagrangian can be directly related to
the coefficients in the low-energy expansion of the real Compton scattering amplitude.
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Figure 1.26: Expansion of the hadron two-point function in an external field [176].

The Lagrangian in Eq. (1.120) corresponds to the Schrödinger equation for the spin-1/2 particle in an
external U(1) field. In case of a time-independent uniform magnetic field, there are stationary solutions
and the ground state energy takes the form

E jz(B) =

(
nL +

1
2

)
|qB|
M
− µ jz |B| − 2πβ |B|2 + O(|B|3), (1.121)

where jz = ±1/2, nL ≥ 0 is the quantum number of the Landau level. The B field is chosen along the third
axis. Accordingly, the lattice measurement of the nucleon ground state energy enables one to determine
the low-energy structure of the Compton scattering amplitude.

The external field method is based on the observation that three- and four-point correlation functions
can be determined by studying the behavior of the nucleon two-point function in a weak background
electromagnetic field [177, 178]. In particular, the Compton tensor appears as a second-order term in the
expansion in A, as illustrated in Fig. 1.26. The implementation of the external U(1) field on the lattice is
straightforward. In present lattice calculations the sea quarks do not couple to this field. Accordingly,
it is sufficient to perform the following replacement of the SU(3) links after generation of the gauge
configurations:

Uµ(x)→ Uµ(x)eiaAµ(x). (1.122)

By a suitable choice of the external field, one can access different low-energy parameters of real
Compton scattering. For instance, Fig. 1.27 shows the energy shift of the nucleon ground state in the
presence of a constant magnetic field. Since the gauge links satisfy periodic boundary conditions, the
magnetic field can take only the discrete values [180]:

B =
6π
eL2 ñez, ñ ∈ Z . (1.123)

Figure 1.27: Energy shifts induced in each spin state of the neutron (left plot) and proton (right plot) by the uniform
magnetic field [179].
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1.6 External field method
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Figure 1.28: Doubly virtual nucleon Compton scattering
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Figure 1.29: Momentum dependence of the subtrac-
tion function. The broad bands are obtained from the
phenomenological parametrizations. The comparat-
ively narrow grey band follows from the Reggeon
dominance hypothesis [184].

The outlined method is applicable to a more general case of the doubly virtual Compton scattering
γ∗N → γ∗N. This process contributes to the Lamb shift in the muonic hydrogen [181] as well as to the
electromagnetic piece of the neutron-proton mass difference [182]. In both cases one is interested in the
spin-averaged forward scattering amplitude (Fig. 1.28). It is defined in terms of the two spin-independent
amplitudes T1,T2,

1
2

∑
s

i
2

∫
d4xeiq·x〈p, s|T Jµ(x)Jν(0)|p, s〉 = T1(ν, q2)Kµν

1 + T2(ν, q2)Kµν
2 , (1.124)

where q2 denotes the photon virtuality, ν ≡ p · q/m and Kµν
i , i = 1, 2, are known tensor structures [183].

The experimental data on the structure functions completely determine the amplitude T2. The fixed-q2

dispersion relation for the amplitude T1, however, requires a subtraction. Moreover, the subtraction
function S 1 ≡ T1(0, q2) remains unknown. In principle, its elastic part is essentially given by the Born
terms, but the inelastic piece is known only at the real photon point q2 = 0 (low-energy theorem, [184]).

There are several approaches to fix the subtraction function, such as the chiral EFTs and phenomen-
ological parametrizations [185, 186]. More recently, the authors of [184] have been able to determine
its value by imposing the so-called Reggeon dominance hypothesis. They assume that the forward
scattering amplitude does not contain any fixed pole, corresponding in the Regge language to the angular
momentum J = 0. In Regge theory, such a pole generates the energy-independent contribution to the
amplitude.

The meaning of the J = 0 fixed pole can be illustrated by a simple model [187]. The propagation of a
spinless particle of mass M in the s-channel gives the following contribution to the amplitude

A(s,M) =
M2

s − M2 . (1.125)

The factor M2 ensures that in the limit of the point-like interaction M → ∞ the amplitude remains finite
The s-channel exchange can be represented as an infinite series of t-channel exchanges of different spins.
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This duality is established by applying the Taylor expansion in Eq. (1.125); for s < M2, one gets

A(s < M2,M) =
∑
J≥0

(−1)J
(
−

s2

M2

)J

(1.126)

The term of type s2J is contained in the propagator of the spin-J particle in the t-channel, in accordance
with the Feynman rules for particles of an arbitrary spin [188]. Hence, the point-like interaction, obtained
in the limit M2 → ∞, corresponds to the exchange of an object with spin J = 0.

The results on the inelastic part of the subtraction function obtained in different approaches are shown
in Fig. 1.29. In particular, the relatively narrow grey band indicates the calculation of [184]. Clearly,
these determinations suffer from systematic uncertainties that are difficult to estimate.

In order to verify the Reggeon dominance hypothesis, lattice simulations provide a model-independent
framework. The question whether there is a fixed pole in the Compton scattering is of conceptual interest.
The subtraction function can be calculated within the external field method. For that purpose, a properly
chosen external field configuration is required. The Compton scattering off pions might provide a good
starting point to investigate the feasibility of the whole approach.

To summarize, lattice calculations of the two-point correlation function in the external (background)
electromagnetic fields enable one to determine the electromagnetic properties of the nucleon and light
nuclei. At the same time, the extracted quantities, such as the magnetic moments and polarizabilities,
serve to parametrize the low-energy real Compton scattering. The freedom of choosing the external field
configuration opens the possibility to investigate some important aspects of the doubly virtual Compton
scattering as well.
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CHAPTER 2

Resonant pion production γ∗N → πN

2.1 Summary

This work concerns the pion photo(electro)production in the vicinity of the ∆(1232) resonance. The
knowledge on the respective ∆Nγ∗ transition form factors, in particular, is important to determine the
quark transition charge density which could be visualized.

At present, the lattice data of these form factors are obtained at relatively large unphysical pion masses,
so that the ∆ is treated as a stable particle. Moreover, the applicability of the chiral EFTs to extrapolate
the results down to the physical point is not guaranteed. Accordingly, it is timely to have a theoretical
framework for the extraction of the form factors in case of the unstable ∆. The finite volume formalism is
the right approach to tackle the problem.

The obtained results can be summarized as follows:

• The analogue of the Lellouch-Lüscher formula for the pion photo(electro)production amplitude is
derived.

• The field-theoretical definition of the resonance matrix elements is formulated.

• The prescription for the pole extraction of the ∆Nγ∗ form factors is provided.

• The group-theoretical analysis of the problem is done (inclusion of spin, kinematics and partial-
wave mixing).

• The limit of an infinitely narrow ∆ resonance is considered. It is explicitly verified that the two
definitions of the form factors converge into one.
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Abstract

Using the non-relativistic effective field theory framework in a finite volume, we discuss the extraction 
of the �Nγ ∗ transition form factors from lattice data. A counterpart of the Lüscher approach for the matrix 
elements of unstable states is formulated. In particular, we thoroughly discuss various kinematic settings, 
which are used in the calculation of the above matrix element on the lattice. The emerging Lüscher–Lellouch 
factor and the analytic continuation of the matrix elements into the complex plane are also considered in 
detail. A full group-theoretical analysis of the problem is made, including the partial-wave mixing and 
projecting out the invariant form factors from data.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

In recent years, the calculation of the �Nγ ∗ transition form factors on the lattice has been 
carried out, see Refs. [1–3]. The electromagnetic, axial and pseudoscalar form factors of the 
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�-resonance have been also studied [4,5]. It should be noted, however, that in these simulations 
the quark mass values are large enough so that the � is a stable particle and thus using the 
standard formalism for the analysis of the lattice data on these form factors is justified. On the 
other hand, lattice simulations with physical quark masses have already been performed. At such 
quark masses, the � is not stable anymore and the data should be analyzed properly to extract 
the parameters of the resonance (see, e.g., [6]).

It is well known that resonances cannot be identified with isolated energy levels in lattice 
QCD simulations which are necessarily performed in a finite volume. In order to determine the 
mass and width from the measured spectrum, one first extracts the scattering phase shift by using 
the Lüscher equation [7]. At the next step, using some parameterization for the K-matrix (e.g., 
the effective-range expansion), a continuation into the complex energy plane is performed. Res-
onances correspond to the poles of the scattering T -matrix on the second Riemann sheet, and the 
real and imaginary parts of the pole position define the mass and the width of a resonance. This 
is a pretty standard procedure that has been used in a number of recent papers [8–10]. A gen-
eralization of the approach to moving frames has been first proposed in Ref. [11], and a full 
group-theoretical analysis of the Lüscher equation in moving frames, including the issues re-
lated to the scattering of the spin-non-zero particles, has been carried out, e.g., in Refs. [12–18]. 
An alternative, albeit a closely related procedure consists in fitting the data to the energy spec-
trum by using unitarized ChPT in a finite volume [19–21]. The above approach qualitatively 
amounts to a parameterization of the K-matrix through the solution of the equations of the 
unitarized ChPT (in the infinite volume) that may a priori have a larger range of applicabil-
ity than the effective-range expansion. Note also that the approach has been generalized to 
the multichannel scattering case [22–28]. An analysis of the two-channel case has been car-
ried already out for the toy model in 1 + 1 dimensions [29] and should now be applied in 
physically interesting cases. Further, using twisted boundary conditions [30–32] to facilitate 
the accurate extraction of the resonance parameters has been advocated, e.g., in Refs. [19,20,
23], and the possibility of the partial twisting has been investigated in Refs. [31,33,34]. Last 
but not least, recently an extension of the Lüscher approach to the 3-particle case has been 
proposed by several groups [35–38], albeit there is still much more work required in this di-
rection.

As one sees from the above discussion, up to date the framework for the extraction of the 
resonance parameters (the mass and the width) from lattice data is well established (at least, for 
the resonances that do not decay into three or more particles). For the calculation of the more 
complicated quantities, e.g., the resonance form factors, the old approach that treats the resonance 
as a stable state, is still widely used, albeit it is clear that the same problems arise also here. What 
one needs is a generalization of the Lüscher finite-volume approach to the form factors. In our 
recent papers [39,40], we have formulated such a generalization, considering the form factor 
of a spinless resonance. The procedure of extracting the resonance form factor from the form 
factors of the eigenstates of the Hamiltonian, which are actually measured on the lattice, closely 
resembles the procedure of extracting the resonance pole position and also implies the analytic 
continuation into the complex energy plane by using, e.g., the effective range expansion. There 
are, however, differences as well. Most notably, as was shown in Ref. [40], in 3 + 1 dimensions, 
due to the presence of the so-called finite fixed points, the procedure of the analytic continuation 
and taking the infinite-volume limit is no more straightforward and measuring the form factor 
for at least two different energy levels is required, in order to achieve an unambiguous extraction 
of the resonance form factor.
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The present paper is a continuation and the generalization of Refs. [39,40] in two aspects:

(i) In Refs. [39,40], an elastic resonance form factor (an example: the electromagnetic form 
factor ��γ ∗) has been considered. In this paper, we address transition form factors, in 
particular, �Nγ ∗ that is more interesting from the phenomenological point of view. It turns 
out that the presence of one stable particle in the out-state (here, the nucleon) leads to crucial 
simplifications. As we shall demonstrate, the finite fixed points do not exist in this case, so 
the measurement of a single energy level (albeit at several volumes) will suffice. We shall 
discuss in detail various lattice settings, which provide an access to the measurement of the 
form factor.

(ii) All particles and currents, considered in Refs. [39,40], were scalar. On the other hand, the 
particles, whose form factors we want to calculate, have spin. In this paper, we consider the 
inclusion of spin into the formalism and carry out a full group-theoretical analysis of the 
obtained equations along the lines described in Ref. [16].

The paper is organized as follows. In Section 2, we start from defining the resonance form 
factor in the infinite volume and discuss the analytic continuation into the complex plane. The 
projection of various scalar form factors will be considered. In Section 3 we consider the kinemat-
ics, which should be used for measuring the matrix elements of a current between the eigenstates 
of the Hamiltonian. This issue is very important for performing the analytic continuation of the 
above matrix element, keeping the relative three-momentum of the photon and nucleon fixed. Fur-
ther, in Section 4, we calculate these matrix elements within the non-relativistic effective field 
theory (EFT) and demonstrate that the finite fixed points are absent, when one of the external par-
ticles is stable. The initial-state interactions, which manifest themselves in the Lüscher–Lellouch 
factor, should be properly included in order to take into account the difference in normalization 
of the matrix elements in the infinite and in a finite volume. In Section 5 we collect all bits 
and pieces and formulate a prescription for the extraction of the resonance transition form fac-
tor from data. Section 6 contains our conclusions. Finally, in Appendix A, the formulae for the 
partial-wave expansion of the photoproduction amplitudes are displayed.

2. Resonance form factor in the infinite volume

To the best of our knowledge, the procedure for calculating the matrix elements of opera-
tors between the bound state vectors in field theory has been first addressed in Ref. [41] (a very 
detailed and transparent discussion of the problem can be found in Ref. [42]). In short, the proce-
dure boils down to the following. For simplicity, consider the scalar case first. Let |P 〉 be a stable 
bound state moving with a four-momentum Pμ with PμP μ = M2

B . The fact that this is a bound 
state and not an elementary state is equivalent to the statement that 〈0|φ(x)|P 〉 = 0, where φ(x)

stands for any field which is present in the Lagrangian. Consider now an operator O(X) built 
from the elementary fields φ. The operator O(X) can be either local or non-local. In the latter 
case, X denotes the center-of-mass coordinate of the fields entering in O(X). The only require-
ment on this operator is that 〈0|O(X)|P 〉 �= 0. The Fourier-transform of the two-point function 
of the operators O has a pole at P 2 = M2

B :

i

∫
d4XeiPX〈0|T O(X)Ō(0)|0〉 = ZB

M2
B − P 2

+ regular terms at P 2 → M2
B, (2.1)
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where ZB is the wave function renormalization constant of the bound state (for the scalar opera-
tors, considered here, the conjugated operator Ō = O†).

Let us now consider the three-point function with any local operator J (the “current”). This 
function has a double pole

F(P,Q) = i2
∫

d4Xd4YeiPX−iQY 〈0|T O(X)J (0)Ō(Y )|0〉

= Z
1/2
B

M2
B − P 2

〈P |J (0)|Q〉 Z
1/2
B

M2
B − Q2

+ · · · , (2.2)

where the ellipses stand for the less singular terms. From this equation one immediately sees that 
the matrix element of a current J between the bound state vectors is defined through

〈P |J (0)|Q〉 = lim
P 2,Q2→M2

B

Z−1
B

(
M2

B − P 2)(M2
B − Q2)F(P,Q). (2.3)

Due to the Lorenz-invariance, the matrix element in the l.h.s. of this equation is a function of a 
single scalar variable t = (P − Q)2.

Note also that the expression given in Eq. (2.3) defines the matrix element between bound 
states. In a completely similar manner, it is possible to define the matrix elements between a 
bound state and an elementary state, or between two different bound states – all differences boil 
down to the proper choice of the operators O .

In case of a resonance rather than a bound system, no corresponding single-particle state 
exists in the Fock space. In the literature, one encounters two different approaches to the problem. 
One approach, which implies the definition of the form factor from the amplitudes measured at 
real energies, invokes the Breit–Wigner parameterization of the resonant amplitude and extracts 
the resonance formfactors at the energy where the scattering phase shift passes through 90◦. 
Within the second approach, the resonance form factor is defined through the continuation to the 
resonance pole position in the complex plane, as described below. Let O(X) be the operator with 
the quantum numbers of a resonance. The two-point function of the operators O develops a pole 
on the unphysical Riemann sheet in the complex plane

i

∫
d4XeiPX〈0|T O(X)Ō(0)|0〉 = ZR

sR − P 2
+ regular terms at P 2 → sR, (2.4)

where the quantities sR, ZR are now complex. The real and imaginary parts of ER = √
sR give 

the mass and the half-width of the resonance, respectively.
Further, the three-point function develops a double pole in the complex plane, and the reso-

nance matrix element of any current J is still defined by a formula similar to Eq. (2.3):

〈P |J (0)|Q〉 = lim
P 2,Q2→sR

Z−1
R

(
sR − P 2)(sR − Q2)F(P,Q). (2.5)

We would like to stress that the quantity on the l.h.s. of Eq. (2.5) is a mere notation for the 
matrix element: there exists no isolated resonance state |P 〉 in the spectrum. Again, due to the 
Lorentz-invariance, this quantity is a function of a single variable t = (P − Q)2.

The following questions arise naturally in connection to the procedure described above:

(i) Is it not possible to avoid the analytic continuation into the complex energy plane?
(ii) Experiments can only be performed for real energies. How does one perform the analytic 

continuation of the experimental data?
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In brief, answers to these question are:

(i) Relating the form factor to the measured scattering amplitudes by using, e.g., the Breit–
Wigner parameterization, yields a model-dependent result, since the background is not 
known. Consequently, the form factor, extracted at the real energies, will be process-
dependent. This problem does not arise, when an analytic continuation to the resonance 
pole is performed. The resonance matrix elements extracted through the analytic continua-
tion, are the quantities that characterize the resonance itself and not the process where they 
were determined.

(ii) The analytic continuation of the experimental data (e.g., in order to extract the magnetic 
moment of a �-resonance) is, in general, a very difficult procedure and is severely limited 
by the experimental uncertainties. However, the goal is still worth trying, see the arguments 
above.

It should be mentioned that both definitions of the form factor: on the real axis (see, e.g., [43,
44]) as well as at the resonance pole [45], have been already used for the analysis of the experi-
mental data (the latter work contains also the comparison of the resonance parameters, extracted 
by using different methods). In order to make it possible to compare lattice calculations with all 
existing experimental results, in this paper we provide the formulae which should be used on 
the real axis, as well as in the complex energy plane. Here we stress once more that only the 
definition, based on the analytic continuation, yields a resonance form factor that is devoid of 
any process-dependent ambiguities. Further, it will be explicitly demonstrated that both methods 
yield the same result in the limit of the infinitely small width.

Up to now, all particles and operators considered were scalars. In order to include the res-
onances of a generic spin, we follow closely the procedure of Ref. [46]. Let Oα(X) be the 
interpolating field for a resonance. Here, α denotes the collection of indices characterizing a 
resonance with spin (Dirac indices, vector indices). The two-point function in the vicinity of the 
resonance pole has the following behavior:

i

∫
d4XeiPX〈0|T Oα(X)Ōβ(0)|0〉 = ZRPαβ(P, sR)

sR − P 2
+ regular terms at P 2 → sR, (2.6)

where Pαβ denotes the projector on the positive energy “states”

Pαβ =
∑

ε

uα(P, ε)ūβ(P, ε), (2.7)

where the sum runs over spin projections on the third axis (ε) and uα(P, ε) denotes the solution 
of the free wave equation for a particle with a given spin.

Below, we shall give a construction of uα(P, ε) in case of the spin-1/2 and spin-3/2 particles. 
In case of the spin-1/2 particle, this quantity is given by [46]:

u(P,1/2) =
√

P 0 + ER

⎛
⎜⎜⎜⎝

1

0
P 3

P 0+ER

P 1+iP 2

P 0+ER

⎞
⎟⎟⎟⎠ ,
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u(P,−1/2) =
√

P 0 + ER

⎛
⎜⎜⎜⎝

0

1
P 1−iP 2

P 0+ER

−P 3

P 0+ER

⎞
⎟⎟⎟⎠ ,

ū(P ,1/2) =
√

P 0 + ER

(
1,0,

−P 3

P 0 + ER

,
−(P 1 − iP 2)

P 0 + ER

)
,

ū(P ,−1/2) =
√

P 0 + ER

(
0,1,

−(P 1 + iP 2)

P 0 + ER

,
P 3

P 0 + ER

)
. (2.8)

These spinors obey the Dirac equations with the complex “mass” P 2 = sR

(/P − ER)u(P, ε) = 0, ū(P , ε)(/P − ER) = 0 (2.9)

as well as the identities∑
ε

u(P, ε)ū(P, ε) = (/P + ER), ū(P, ε)u
(
P,ε′) = 2ERδεε′ . (2.10)

Note, however, that, if ER and Pμ are complex quantities, then, in general,

ū(P , ε) �= u(P, ε)†γ0. (2.11)

In case of a particle with a spin-3/2, one has to construct the solutions of the Rarita–Schwinger 
equation with a complex “mass”. To this end, we define three vectors eω with ω = ±1, 0:

e+1 = − 1√
2

(1
i

0

)
, e0 =

(0
0
1

)
, e−1 = 1√

2

( 1
−i

0

)
,

ē+1 = − 1√
2
(1,−i,0), ē0 = (0,0,1), ē−1 = 1√

2
(1, i,0). (2.12)

Further, define

f μ(P,ω) =
(

eω · P
ER

, eω + P(eω · P)

ER(P 0 + ER)

)
,

f̄ μ(P,ω) =
(

ēω · P
ER

, ēω + P(ēω · P)

ER(P 0 + ER)

)
. (2.13)

The Rarita–Schwinger wave functions are given by group-theoretical expressions corresponding 
to the addition of spins 1 and 1/2:

uμ(P,λ) =
∑
ω,ε

〈1ω1/2ε|3/2λ〉f μ(P,ω)u(P, ε),

ūμ(P,λ) =
∑
ω,ε

〈1ω1/2ε|3/2λ〉ū(P , ε)f̄ μ(P,ω), (2.14)

with 〈. . .〉 the appropriate Clebsch–Gordan coefficients. These wave functions obey the equations

(/P − ER)uμ(P,λ) = 0, Pμuμ(P,λ) = γμuμ(P,λ) = 0,

ūμ(P,λ)(/P − ER) = 0, ūμ(P,λ)Pμ = ūμ(P,λ)γμ = 0, (2.15)

and the identities
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∑
λ

uμ(P,λ)ūν(P,λ) = −/P + ER

2ER

(
gμν − 1

3
γ μγ ν − 2P μP ν

3E2
R

+ P μγ ν − P νγ μ

3ER

)
,

∑
μ

ūμ(P,λ)uμ

(
P,λ′) = −2ERδλλ′ . (2.16)

Below, we shall restrict ourselves to the case of the �Nγ ∗ transition. However, the formalism 
can be directly generalized to particles with any spin. The three-point function for this transition 
takes the form

Fμρ(P,Q) = i2
∫

d4Xd4YeiPX−iQY 〈0|T Oμ(X)J ρ(0)ψ̄(Y )|0〉

= Z
1/2
R

sR − P 2

Z
1/2
N

m2
N − Q2

∑
λ,ε

uμ(P,λ)〈P,λ|J ρ(0)|Q,ε〉ū(Q, ε) + · · · . (2.17)

Here, Oμ(X) and ψ(Y ) denote the � and nucleon interpolating field operators, respectively, 
J ρ is the electromagnetic current, sR is the �-resonance pole position in the complex plane, 
and mN is the nucleon mass. The sum runs over the � and nucleon spin projections: λ =
−3/2, −1/2, 1/2, 3/2 and ε = −1/2, 1/2. As already stated after Eq. (2.5), the matrix element 
that appears on the r.h.s. of the above equation is a mere notation: there is no stable �-state in 
the Fock space of the theory. We shall use this notation throughout the paper.

Projecting out the matrix element from Eq. (2.17), we get

〈P,λ|J ρ(0)|Q,ε〉 = lim
P 2→sR, Q2→m2

N

Z
−1/2
R

2ER

Z
−1/2
N

2mN

(
sR − P 2)(m2

N − Q2)
× ūμ(P,λ)Fμρ(P,Q)u(Q,ε). (2.18)

This matrix element can be expressed in terms of three scalar form factors (see, e.g., [47,48])

〈P,λ|J ρ(0)|Q,ε〉 =
(

2

3

)1/2

ūμ(P,λ)
{
GM(t)Kμρ

M + GE(t)Kμρ
E + GC(t)Kμρ

C

}
× u(Q,ε), (2.19)

where1

Kμρ
M = − 3

(ER + mN)2 − t

ER + mN

2mN

εμρανpαqν,

Kμρ
E = −Kμρ

M + 6i�−1(t)
ER + mN

mN

γ5ε
μσαβpαqβερωνδgσωpνqδ,

Kμρ
C = 3i�−1(t)

ER + mN

mN

γ5q
μ
(
q2pρ − (q · p)qρ

)
, (2.20)

and

p = 1

2
(P + Q), q = P − Q,

�(t) = (
(ER + mN)2 − t

)(
(ER − mN)2 − t

)
. (2.21)

1 For the Dirac matrices, we use the conventions of Ref. [49].
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KM,E,C are, respectively, the magnetic dipole, electric quadrupole and Coulomb (longitudinal) 
quadrupole covariants. In order to determine these three scalar form factors separately, it is con-
venient to work in a special kinematics. We choose both 3-momenta P and Q along the third axis. 
Further, the formulae simplify considerably in the rest-frame of the resonance P = 0. Below, we 
shall adopt this choice.

Using Eqs. (2.19) and (2.20), it is straightforward to show that, in the rest-frame of the 
�-resonance,

〈1/2|J 3(0)|1/2〉 = i
ER − Q0

ER

AGC(t),

〈1/2|J+(0)| − 1/2〉 = −i

√
1

2
A

(
GM(t) − 3GE(t)

)
,

〈3/2|J+(0)|1/2〉 = −i

√
3

2
A

(
GM(t) + GE(t)

)
, (2.22)

where

J+(0) = J 1(0) + iJ 2(0)√
2

, A = ER + mN

2mN

√
2ER

(
Q0 − mN

)
. (2.23)

Further, it can be shown that the following field operators

O3/2(X) = 1

2
(1 + Σ3)

1

2
(1 + γ0)

1√
2

(
O1(X) − iΣ3O

2(X)
)
,

O1/2(X) = 1

2
(1 − Σ3)

1

2
(1 + γ0)

1√
2

(
O1(X) + iΣ3O

2(X)
)
,

Õ1/2(X) = 1

2
(1 + Σ3)

1

2
(1 + γ0)O

3(X) (2.24)

produce the �-particles with spin projection λ = 3/2 and λ = 1/2, respectively. Here, Σ3 de-
notes the 4 × 4 matrix, describing the spin projection on the third axis. In terms of the Pauli 
matrices, it is given by Σ3 = diag(σ3, σ3). Note also that the operators O3/2 and O1/2, Õ1/2 be-
long to the different irreducible representations (irreps), G2 and G1, respectively, of the little 
group of the double cover of the cubic group, corresponding to the boost momentum along the 
third axis [16]. Moreover, there are two different operators that correspond to the spin projec-
tion λ = 1/2, whereas there exists only one operator for the projection λ = 3/2, see Eqs. (113) 
and (114) of Ref. [16].

The field operators, projecting onto the states with a given third component of the nucleon, 
are constructed trivially:

ψ̄±1/2(Y ) = ψ̄(Y )
1

2
(1 ± Σ3)

1

2
(1 + γ0). (2.25)

Using the above operators, we may construct the following three-point functions:

F̃1/2(P,Q) = i2
∫

d4Xd4YeiPX−iQY 〈0|T Õ1/2(X)J 3(0)ψ̄1/2(Y )|0〉,

F1/2(P,Q) = i2
∫

d4Xd4YeiPX−iQY 〈0|T O1/2(X)J+(0)ψ̄−1/2(Y )|0〉,

F3/2(P,Q) = i2
∫

d4Xd4YeiPX−iQY 〈0|T O3/2(X)J+(0)ψ̄1/2(Y )|0〉. (2.26)
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In the vicinity of the double pole, these functions behave as

Tr
(
F̃1/2(P,Q)

) = i

(
2

3

)1/2 Z
1/2
R

sR − P 2

Z
1/2
N

m2
N − Q2

ER − Q0

ER

BGC(t) + · · · ,

Tr
(
F1/2(P,Q)

) = i

(
2

3

)1/2 Z
1/2
R

sR − P 2

Z
1/2
N

m2
N − Q2

1

2
B

(
GM(t) − 3GE(t)

) + · · · ,

Tr
(
F3/2(P,Q)

) = i

(
2

3

)1/2 Z
1/2
R

sR − P 2

Z
1/2
N

m2
N − Q2

3

2
B

(
GM(t) + GE(t)

) + · · · , (2.27)

where the trace is performed over the Dirac indices, and

B = ER(ER + mN)

mN

|Q|. (2.28)

So, with a special choice of the interpolating operators, the problem of a particle with spin boils 
down to the spinless case, considered in the beginning of this section. The three form factors 
GC, GM, GE can be projected out individually.

3. Extracting the form factors on the lattice

Below, we adapt the formulae of the previous section and formulate the rules for projecting 
out the form factors GC, GM, GE from the Euclidean Green functions on the lattice. Let us 
first restrict ourselves to the case when the � is stable and consider the following three-point 
functions at t ′ > 0, t < 0:

R̃1/2
(
t ′, t

) = 〈0|Õ1/2
(
t ′
)
J 3(0)ψ̄

Q
1/2(t)|0〉,

R1/2
(
t ′, t

) = 〈0|O1/2
(
t ′
)
J+(0)ψ̄

Q
−1/2(t)|0〉,

R3/2
(
t ′, t

) = 〈0|O3/2
(
t ′
)
J+(0)ψ̄

Q
1/2(t)|0〉, (3.1)

where

Õ1/2
(
t ′
) =

∑
X

Õ1/2
(
X, t ′

)
,

O1/2
(
t ′
) =

∑
X

O1/2
(
X, t ′

)
,

O3/2
(
t ′
) =

∑
X

O3/2
(
X, t ′

)
,

ψ̄
Q
±1/2(t) =

∑
X

eiQXψ̄±1/2(X, t). (3.2)

The operators Õ1/2(t
′), O1/2(t

′), O3/2(t
′) describe the � at rest, whereas ψ̄Q

±1/2(t) corresponds 
to the nucleon moving with the 3-momentum Q. The operators on the r.h.s. of Eq. (3.2) are given 
in Eq. (2.24) with the substitution γ0 → γ4.
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In the limit t ′ → +∞, t → −∞ only the one-particle � and nucleon states contribute:

R̃1/2
(
t ′, t

) → e−E�t ′+EN t

4E�EN

〈0|Õ1/2(0)|1/2〉〈1/2|J 3(0)|1/2〉〈1/2|ψ̄Q
1/2(0)|0〉,

R1/2
(
t ′, t

) → e−E�t ′+EN t

4E�EN

〈0|O1/2(0)|1/2〉〈1/2|J+(0)| − 1/2〉〈−1/2|ψ̄Q
−1/2(0)|0〉,

R3/2
(
t ′, t

) → e−E�t ′+EN t

4E�EN

〈0|O3/2(0)|3/2〉〈3/2|J+(0)|1/2〉〈1/2|ψ̄Q
1/2(0)|0〉, (3.3)

where E� = m� in the rest-frame of the � and EN =
√

m2
N + Q2 (here, m� denotes the mass 

of a stable �). Further, we define the following 2-point functions

D̃1/2(t) = Tr〈0|Õ1/2(t)
¯̃O1/2(0)|0〉,

D1/2(t) = Tr〈0|O1/2(t)Ō1/2(0)|0〉,
D3/2(t) = Tr〈0|O3/2(t)Ō3/2(0)|0〉,
D±

Q(t) = Tr〈0|ψQ
±1/2(t)ψ̄

Q
±1/2(0)|0〉. (3.4)

It can be straightforwardly seen that, in the limit t ′ → +∞, t → −∞,

N Tr(R̃1/2(t
′, t))

D̃1/2(t ′ − t)

(
D+

Q(t ′)D̃1/2(−t)D̃1/2(t
′ − t)

D̃1/2(t ′)D+
Q(−t)D+

Q(t ′ − t)

)1/2

→ 〈1/2|J 3(0)|1/2〉,

−N Tr(R1/2(t
′, t))

D1/2(t ′ − t)

(
D−

Q(t ′)D1/2(−t)D1/2(t
′ − t)

D1/2(t ′)D−
Q(−t)D−

Q(t ′ − t)

)1/2

→ 〈1/2|J+(0)| − 1/2〉,

−N Tr(R3/2(t
′, t))

D3/2(t ′ − t)

(
D+

Q(t ′)D3/2(−t)D3/2(t
′ − t)

D3/2(t ′)D+
Q(−t)D+

Q(t ′ − t)

)1/2

→ 〈3/2|J+(0)|1/2〉, (3.5)

where N = √
4E�EN and the Euclidean analogs of Eqs. (2.22) read (cf., e.g., with Ref. [3]2)

〈1/2|J 3(0)|1/2〉 = E� − Q0

E�

AGC(t)

〈1/2|J+(0)| − 1/2〉 =
√

1

2
A

(
GM(t) − 3GE(t)

)
,

〈3/2|J+(0)|1/2〉 =
√

3

2
A

(
GM(t) + GE(t)

)
, (3.6)

where t = (E� − EN)2 − Q2 and the quantity A is given by Eq. (2.23) with the replacement 
ER → E�. We would like to also mention that, in case of a stable �, the above relations hold up 
to the Lorentz-non-invariant terms exponentially suppressed in a box of size L.

When the � becomes unstable, the interpretation of the above equations changes. The ratios 
given in Eq. (3.5) can be still formed, but the functions that are extracted from these ratios are 
the matrix elements of the electromagnetic current calculated between a certain eigenstate of the 
Hamiltonian in a finite volume (with the volume-dependent energy E�) and a one-nucleon state. 

2 Note the difference in sign and in a factor 2 with the third line of Eq. (4) of Ref. [3].
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The normalization constant N in these equations also changes. Namely, N = √
8w1�w2�EN , 

where w1� and w2� are the energies of the nucleon and a pion in the CM system: w1� =
(E2

� + m2
N − M2

π )/(2E�), w2� = (E2
� − m2

N + M2
π )/(2E�) and w1� + w2� = E�. In the 

infinite-volume limit, these matrix elements do not coincide with the resonance matrix elements 
defined in the previous section. Rather, the energy of any fixed level tends to the threshold value in 
this limit. Note also that, at a given energy, there may exist several eigenstates of the Hamiltonian 
in the vicinity of the resonance energy, and it is not clear, which of these matrix elements should 
be identified with the resonance matrix element we are looking for.

It is evident that the situation closely resembles the determination of the resonance pole posi-
tion from the lattice data by using the Lüscher equation. As it is well known, in order to achieve 
the goal, one has to perform an analytic continuation into the complex energy plane. A detailed 
discussion of this procedure can be found, e.g., in Ref. [40]. Below, we give a short description of 
the procedure. One first extracts the scattering phase shift at different energies from the measured 
energy spectrum and fits the quantity p3 cot δ(p) by a polynomial in p2, assuming the effective 
range expansion (here, p denotes the relative 3-momentum in the CM system). Then, one finds 
the poles of the T -matrix in the complex plane by finding the zeros of a polynomial with known 
coefficients. Below we shall prove the generalization of this procedure to the case of the matrix 
elements. Namely, the matrix elements given in Eq. (3.5) should be measured at several energies 
(corresponding to the measurement at several volumes), and the result should be fitted by some 
polynomial. Further, we shall show that, replacing p2 by p2

R in this polynomial, where pR de-
notes the value of the relative 3-momentum at the resonance pole, one obtains the resonance form 
factors defined in the previous section (up to the corrections that are exponentially suppressed 
in large volumes). This is the main result of our work. Note also that this prescription is much 
simpler than the one for the elastic �-form factor (see Ref. [40]) since, as we shall see below, no 
finite fixed points arise in the case of the transition form factor.

As it is clear from the previous discussion, in order to perform the fit, the matrix elements 
should be measured at several values of the relative 3-momentum p. These matrix elements 
depend on two kinematic variables: apart from p, there is the nucleon 3-momentum |Q| (alter-
natively, the variable t which at the resonance takes the complex value t = (ER − Q0)2 − Q2). 
Note also that fixing |Q| is equivalent to fixing t because the (complex) resonance energy ER , 
which is defined in the infinite volume, is also fixed. On the lattice, it is more convenient to fix 
the real quantity |Q|, and we stick to this choice in the following.

According to the previous discussion, our goal is to find a way to “scan” the resonance region 
in the variable p, leaving the other variable |Q| fixed. There is, however, a problem, if one 
performs this scan by doing measurements at different volumes. Namely, the momentum on the 
lattice along any axis is quantized, and the smallest nonzero momentum available is equal to 
2π/L, where L denotes the box size. Consequently, if L is varied, the quantity |Q| will change 
along with p.

We can propose at least two strategies that help to circumvent this problem:

1. The use of asymmetric boxes. Consider the box with the geometry L × L × L′ and direct Q
along the third axis. The � is in the rest frame. Changing L does not affect Q but affects p.

2. Using (partially) twisted boundary conditions. One may apply the twisting to a single quark 
in the nucleon, namely, the one that is attached to the photon (see Fig. 1). This gives an 
additional momentum to the nucleon along the third axis. The magnitude of this change is 
|Qθ | = θ/L. On the other hand, changing the cubic box size, we also change the magnitude 
of the nucleon momentum |Q|. One may adjust the value of the twisting angle θ so that the 
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Fig. 1. Twisting a single quark in the nucleon.

sum of these two effects cancels and the nucleon momentum is kept fixed. It is important to 
stress that the value of θ can be determined prior to the simulations since it depends only on 
the box size. We also note that a similar technique of twisting has been already applied in 
the past for the calculation of nucleon form factors [50].

To summarize, on the lattice we have to measure the matrix elements given in Eq. (3.5). 
These matrix elements depend on two kinematic variables: the relative 3-momentum p in the 
�-channel and the 3-momentum Q of the nucleon (the three-momentum of the photon is −Q). 
Using asymmetric boxes or twisted boundary conditions, we may scan the resonance region in 
p while keeping Q fixed. Let us now discuss how to perform the analytic continuation into the 
complex plane and extract the resonance form factors with the use of Eq. (3.6).

4. Matrix elements in a finite volume

4.1. Two-point function

In this section, we shall consider the resonance matrix elements by using the technique of 
the non-relativistic effective field theory in a finite volume. While doing so, we closely follow 
the path of Ref. [40], adapting the formulae given there, whenever necessary. To avoid problems, 
related to the mixing of the partial waves, the �-resonance is always considered in the CM frame. 
In this case, there is no S- and P -wave mixing. Neglecting the (small) P31 wave, the Lüscher 
equation [7] for the P33 wave is written as follows:

p cot δ(p) + p cotφ(q) = 0, q = pL

2π
, (4.1)

where

p cotφ(q) = − 2√
πL

{
Ẑ00

(
1;q2) ± 1√

5q2
Ẑ20

(
1;q2)}, (4.2)

and δ(p) is the P33 phase shift in the infinite volume. Further, Ẑlm(1; q2) denotes the Lüscher 
zeta-function (for the asymmetric boxes, in general), and the signs + and − are chosen for the 
irreps G1 and G2 of the little group corresponding to d = (0, 0, 1), respectively (see Ref. [16]). 
In particular, for a symmetric box, Ẑlm(1; q2) = Zlm(1; q2) and Z20(1; q2) = 0 in the CM frame 
(there is no mixing to the P31 wave in this case). For an asymmetric box with L′ = xL,

Ẑlm

(
1;q2) = 1

x

∑
n∈Z3

Ylm(r)
r2 − q2

, r1,2 = n1,2, r3 = 1

x
n3, Ẑ20

(
1;q2) �= 0. (4.3)

The matrix element of an operator Oi between the vacuum and an eigenstate of a Hamiltonian 
〈0|Oi (0)|n〉 contains two-particle reducible diagrams describing initial-state interactions, which 
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Fig. 2. Initial-state pion–nucleon interactions in the two-point function. The quantity Xi stands for the coupling of the 
operator Oi to the pion–nucleon pair in the intermediate state.

are volume-dependent (here, Oi stands for one of the operators Õ1/2, O1/2, O3/2). This matrix 
element is proportional to Ui even in case of an unstable �, where

U3/2 = 1

2
(1 + Σ3)

1

2
(1 + γ4)

1√
2

(
u1(P,3/2) − iΣ3u

2(P,3/2)
)
,

U1/2 = 1

2
(1 − Σ3)

1

2
(1 + γ4)

1√
2

(
u1(P,1/2) + iΣ3u

2(P,1/2)
)
,

Ũ1/2 = 1

2
(1 + Σ3)

1

2
(1 + γ4)u

3(P,1/2). (4.4)

This fact can be verified straightforwardly, since both the above matrix element as well as Ui are 
Dirac spinors with only one nonzero entry.

The calculation of the volume-dependent factor in the matrix element proceeds by using the 
same technique as in the derivation of Eq. (46) of Ref. [40]. Namely, we calculate the two-point 
function of the operators Oi , Ōi in the non-relativistic effective field theory below the inelastic 
threshold. According to the discussion above, the coupling of the operator Oi to the pion–nucleon 
state in the effective theory is described by a local vertex XiUi , where the scalar function Xi =
X

(0)
i + X

(1)
i p2 + · · · contains the terms with 0, 2, . . . derivatives. Here, p2 stands for the relative 

momentum squared of the pion–nucleon pair in the CM system. Note that the Xi contain only 
short-range physics and are the same in a finite and in the infinite volume. Explicit values of X(m)

i

are not important, because the Xi cancel in the final expressions.
Summing now up the pion–nucleon bubble diagrams as shown in Fig. 2, it is seen that the 

Euclidean two-point function takes the form

〈0|Oi (x0)Ōi (y0)|0〉

= UiXi

{ ∞∫
−∞

dP0

2π
eiP0(x0−y0)V

(−iJ (P0) − J 2(P0)T (P0)
)}

XiŪi, (4.5)

where

J (P0) = 1

V

∑
k

1

2w1(k)2w2(k)

1

P0 − i(w1(k) + w2(k))
, (4.6)

w1(k) =
√

m2
N + k2, w2(k) = √

M2
π + k2, V is the lattice volume and T (P0) denotes the pion–

nucleon scattering amplitude in a finite volume3

T (P0) = 8π
√

s

p cot δ(p) + p cotφ(q)
, s = −P 2

0 , (4.7)

and p is the relative momentum in the CM frame, corresponding to the total energy 
√

s.

3 Note that here we use a different normalization in the partial-wave expansion of the T -matrix than in Ref. [40].
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Next, we perform the integration over the variable P0, using Cauchy’s theorem. It can be 
shown that only the poles of T (P0) contribute to this integral. In the vicinity of the n-th pole, this 
function is given by

T (P0) = 8πE2
n

w1nw2n

sin2 δ(pn)

δ′(pn) + φ′(qn)

1

En + iP0
+ · · · , (4.8)

where En are the eigenenergies in the box, pn is the corresponding relative 3-momentum, qn =
pnL/(2π), and w1n = (E2

n +m2
N −M2

π)/(2En), w2n = (E2
n −m2

N +M2
π)/(2En). The derivatives 

are taken with respect to the variable p, so that φ′(q) = dφ(q)/dp = (L/2π)dφ(q)/dq .
Performing the integration over p0 and using the Lüscher equation

1

V

∑
k

1

2w1(k)2w2(k)

1

w1(k) + w2(k) − En

= pn cot δ(pn)

8πEn

, (4.9)

we finally get

〈0|Oi (x0)Ōi (y0)|0〉
= UiXi

{
V

∑
n

e−En(x0−y0)
cos2 δ(pn)

δ′(pn) + φ′(qn)

p2
n

8πw1nw2n

}
XiŪi . (4.10)

On the other hand,4

〈0|Oi (x0)Ōi (y0)|0〉 =
∑
n

e−En(x0−y0)

4w1nw2n

〈0|Oi (0)|n〉〈n|Ōi (0)|0〉. (4.11)

Comparing these two equations, we finally get

∣∣〈0|Oi (0)|n〉∣∣ = UiXiV
1/2

(
cos2 δ(pn)

|δ′(pn) + φ′(qn)|
p2

n

2π

)1/2

. (4.12)

4.2. Three-point function

Next, let us consider the current matrix elements in a finite volume Fi = Fi(p, |Q|), i =
1, 2, 3, which appear on the r.h.s. of Eq. (3.5). The derivation which is given below is essentially 
similar to Eqs. (65)–(70) of Ref. [40]. We start from the calculation of the three-point function, 
summing up the bubble diagrams in the non-relativistic effective theory. There are two types of 
diagrams, which are shown in Fig. 3 to which one has to add the diagrams obtained by adding 
any number of pion loops to the initial states interaction (see Fig. 4). The self-energy insertions 
in the outgoing nucleon line can be safely ignored since the nucleon is a stable particle (see 
discussion below) and hence such diagrams lead to the exponentially suppressed contributions in 
a finite volume. As a result, the matrix element is written as a sum of two contributions

〈0|Oi (x0)J
a(0)|Q,ε〉 = UiXi

∞∫
−∞

dP0

2π
eiP0x0

p cot δ(p)

8π
√

s
T (P0)

× (−iJ (P0)F̄
(A)
i

(
p, |Q|) + F̂

(B)
i

(
p, |Q|)), (4.13)

4 The normalization of the one-particle states here differs from the one used in Ref. [40]. Here, we use the normalization 
〈p|q〉 = 2p0V δpq .
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Fig. 3. Typical diagrams contributing to the �Nγ ∗ transition form factor: (A) point vertex and emission of the photon 
from the external nucleon line; (B) emission of the photon from the internal lines. As in Fig. 2, the quantity Xi stands 
for the coupling of the operator Oi to the pion–nucleon pair in the intermediate state.

Fig. 4. Initial-state pion–nucleon interactions in the �Nγ ∗ transition form factor. The quantity F̄i denotes the sum of all 
irreducible diagrams.

where F (A)
i (p, |Q|) does not depend on L (up to the exponentially suppressed contributions) and 

the indices a, ε have been suppressed for brevity.
The diagrams of the type (B) can be potentially dangerous. Indeed in the case of the elastic 

form factor, such diagrams lead to the so-called finite fixed points, see Ref. [40]. However, the 
fact that one of the external particles (the nucleon) is stable simplifies matters considerably. As 
shown in Section 4.2.2 (see Eq. (4.39)), in that case the quantity F̂ (B)

i (p, |Q|)) can be written as 
a product of two factors:

F̂
(B)
i

(
p, |Q|) = −iJ (P0)F̄

(B)
i

(
p, |Q|), (4.14)

where F̄ (B)
i (p, |Q|), again, does not depend on L up to the exponentially suppressed contribu-

tions. Physically, this corresponds to the Taylor expansion of the pion propagator attached to the 
nucleon in diagram Fig. 5: this propagator shrinks to a point (a similar discussion holds when 
the photon is attached to the nucleon line) and the contributions of diagrams (B) to the matrix 
element are equivalent to the one of diagrams (A).

Consequently, we can rewrite Eq. (4.13)

〈0|Oi (x0)J
a(0)|Q,ε〉

= UiXi

∞∫
−∞

dP0

2π
eiP0x0

(−iJ (P0)
)p cot δ(p)

8π
√

s
T (P0)F̄i

(
p, |Q|), (4.15)

where F̄i(p, |Q|) = F̄
(A)
i (p, |Q|) + F̄

(B)
i (p, |Q|) denotes the full irreducible amplitude for the 

πN → γ ∗N transition.
Performing now the Cauchy integral over P0 and comparing to the spectral representation of 

the three-point function, we get

〈0|Oi (0)|n〉 1

4w1nw2n

Fi

(
pn, |Q|) = XiUi

cos2 δ(pn)

δ′(pn) + φ′(qn)

p2
n

8πw1nw2n

F̄i

(
pn, |Q|). (4.16)
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From Eqs. (4.12) and Eq. (4.16) one obtains

∣∣F̄i

(
pn, |Q|)∣∣ = V 1/2

(
cos2 δ(pn)

|δ′(pn) + φ′(qn)|
p2

n

2π

)−1/2∣∣Fi

(
pn, |Q|)∣∣. (4.17)

Before we proceed further, an important remark is in order. As already discussed in Section 2, 
the form factor can be defined either on the real energy axis, or at the resonance pole (although, 
strictly speaking, only the latter definition is a rigorous one, the former is process-dependent). 
Below we shall provide the formulae which enable one to “translate” lattice data into one of these 
definitions.

4.2.1. Real energy axis
On the real energy axis, the infinite-volume matrix element, corresponding to the scattering 

process πN → γ ∗N at low energies, is given by a geometric series of the pion–nucleon bubbles 
in the final state. This series sums up into the following expression:

Ai

(
p, |Q|) = p cot δ(p)

p cot δ(p) − ip
F̄i

(
p, |Q|) = eiδ(p) cos δ(p)F̄i

(
p, |Q|). (4.18)

Here, we have assumed that the quantity F̄i(p, |Q|) has a smooth infinite-volume limit (see the 
proof below). The amplitudes Ai are proportional to the linear combinations of the so-called 
transverse magnetic (M), transverse electric (E) and scalar (S) multipoles. The latter appear in 
the partial wave decomposition of the πN → γ ∗N scattering amplitude (see Appendix A for the 
details) and can be extracted from the analysis of the experimental data. The multipoles contain 
information on the resonance states.5

Note that Eq. (4.18) is nothing but Watson’s theorem, which indeed holds near the 
�-resonance in the elastic region. At a first glance, Ai(p, |Q|) vanishes when δ = 90o. In order 
to show that this is not the case, we rewrite Eq. (4.18) as follows:

Ai

(
p, |Q|) = eiδ(p)

p3
sin δ(p)p3 cot δ(p)F̄i

(
p, |Q|), (4.19)

Assuming that the effective-range expansion holds in the resonance region, one may write

p3 cot δ(p)
.= h

(
p2) = −1

a
+ 1

2
rp2 + · · · , (4.20)

where a is the P -wave scattering volume and r is the effective range. The function h(p2) should 
have a zero at p2 = p2

A, where the scattering phase passes through 90◦. It is easy to get con-
vinced that the quantity F̄i(p, |Q|) should have a pole exactly at the same value of p2. This pole 
corresponds to the exchange of the bare � in the s-channel (since our effective non-relativistic 
Lagrangian does not include the explicit �, the pole will manifest itself in the divergence on 
the perturbative series at p2 = p2

A). Consequently, not the quantity F̄i(p, |Q|) alone, but the 
product p3 cot δ(p)F̄i(p, |Q|) is a low-energy polynomial that can be safely expanded in the 
resonance region and that, in general, does not vanish at p2 = p2

A. It follows from this that the 
multipoles Ai , defined by Eq. (4.19), take finite values at the resonance.

Finally, combining the above equations, we arrive at an analogue of the Lüscher–Lellouch 
equation for the photoproduction amplitude in the elastic region

5 We would like to mention here that in Ref. [51] the calculation of the deuteron photodisintegration amplitude in a 
finite volume was addressed by using a slightly different technique.
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Ai

(
pn, |Q|) = eiδ(pn) V 1/2

(
1

|δ′(pn) + φ′(qn)|
p2

n

2π

)−1/2∣∣Fi

(
pn, |Q|)∣∣. (4.21)

Eq. (4.21) comprises one of the main results of the present article. It allows to extract the multi-
pole amplitudes from lattice data.

In order to obtain the �Nγ ∗ matrix elements FA
i , defined on the real axis, one parameterizes 

the imaginary parts of the multipoles through the matrix element of the electromagnetic current 
between N and � states (see, e.g., Ref. [43]). Then, in the narrow width approximation, for the 
amplitudes Ai (p, |Q|) we get:

∣∣ImAi

(
pA, |Q|)∣∣ =

√
8π

pAΓ

∣∣FA
i

(
pA, |Q|)∣∣, (4.22)

where all quantities are real and taken at the Breit–Wigner pole p = pA, the Γ is the total width 
of the �-resonance.

4.2.2. Complex energy plane
Next, we consider the extraction of the form factor at the resonance pole. This implies the 

analytic continuation of the above result into the complex p-plane. In order to do this, let us first 
consider the two-point function in the infinite volume

〈0|Oi(x)Ōi(y)|0〉 =
∫

d4P

(2π)4
eiP (x−y)Di

(
P 2), (4.23)

where, in the CM system Pμ = (P0, 0) the quantity Di(P
2) takes the form (cf. Eq. (4.5))

Di

(
P 2) = UiXi

(−iJ∞(P0) − J 2∞(P0)T∞(P0)
)
XiŪi . (4.24)

Here, the quantities J∞(P0) and T∞(P0) denote the infinite-volume counterparts of the quantities 
defined by Eqs. (4.6) and (4.7). In the Minkowski space, with P0 = i

√
s, these quantities are 

given by

J∞(P0) = − p

8π
√

s
, T∞(P0) = 8π

√
s

p cot δ(p) − ip
. (4.25)

These expressions are valid on the first Riemann sheet. On the second sheet, the relative momen-
tum p changes sign.

Suppose now that the scattering amplitude T∞(P0) has a pole at s = sR on the second Rie-
mann sheet. Writing down the effective-range expansion in a form of Eq. (4.20), one first finds 
the pole position in the complex plane from the equation

−1

a
+ 1

2
rp2

R + · · · = −ip3
R. (4.26)

Further, in the vicinity of the pole p = pR we get

p2(p cot δ(p) + ip
) = (s − sR)

(
2pRh′(p2

R

) + 3ip2
R

)w1Rw2R

2pRsR
+ O

(
(s − sR)2) (4.27)

where w1R =
√

m2
N + p2

R , w2R =
√

M2
π + p2

R , sR = E2
R = (w1R + w2R)2 and the derivative of 

h is taken with respect to the variable p2. Using this expansion, one may obtain the value of the 
wave function renormalization constant at the pole:
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Di(s) → UiXi

ZR

sR − s
XiŪi + regular terms at s → sR,

ZR =
(

pR

8πER

)2( 16πp3
RE3

R

w1Rw2R(2pRh′(p2
R) + 3ip2

R)

)
. (4.28)

The three-point function in the infinite volume is given by

〈0|Oi(x)J a(0)|Q,ε〉
= UiXi

∫
d4P

(2π)4
eiPx

(−iJ∞(P0)
)p cot δ(p)

8π
√

s
T∞(P0)F̄i

(
p, |Q|), (4.29)

where F̄i(p, |Q|) is the same as in Eq. (4.15).
Next, we assume that the two-particle irreducible part F̄i(pn, |Q|) can be analytically contin-

ued into the complex plane. Separating the pole contribution in the three-point function, we get 
our final expression for the resonance matrix element FR

i , evaluated at the pole

FR
i

(
pR, |Q|) = Z

1/2
R F̄i

(
pR, |Q|). (4.30)

As a test of our final formula, let us consider the case when the resonance is infinitely narrow. 
Then, the pole tends to the real axis, and ER → En, pR → pn. Still, we assume that the (real) 
energy ER is above the two-particle threshold.

First, we can express the amplitudes Ai through FR
i :

Ai

(
pR, |Q|) = Z

−1/2
R FR

i

(
pR, |Q|). (4.31)

Further, since h(p2) = p3 cot δ(p), at the resonance we have

2pRh′(p2
R

) + 3ip2
R = − p3

Rδ′(pR)

sin2 δ(pR)
. (4.32)

Moreover, in the vicinity of an infinitely narrow resonance, the derivative of the phase shift 
behaves as

δ′(pR) = 2

Γ

pRER

w1Rw2R

, (4.33)

where Γ is the Breit–Wigner width of the resonance. The renormalization constant ZR becomes

ZR = −pRΓ

8π
, (4.34)

and we finally obtain

∣∣ImAi

(
pR, |Q|)∣∣ =

√
8π

pRΓ

∣∣FR
i

(
pR, |Q|)∣∣, (4.35)

where pR → pA. This formula coincides exactly with Eq. (4.22).
Further, in the limit considered, the derivative of the phase shift explodes (see Eq. (4.33)) 

whereas the quantity φ′(qn) stays finite. Consequently, one may neglect φ′(qn) in all formulae. 
Expressing the quantity F̄i(pR, |Q|) through Fi(pR, |Q|) by using Eq. (4.17) and substituting in 
Eq. (4.30), we arrive at a fairly simple result in this limit:

FR
i

(
pn, |Q|) = V 1/2

(
En

2w1nw2n

)1/2

Fi

(
pn, |Q|). (4.36)



A. Agadjanov et al. / Nuclear Physics B 886 (2014) 1199–1222 1217

Fig. 5. A potentially dangerous diagram which involves the irreducible vertex F̄i . A diagram where the photon is attached 
to the nucleon line, can be treated similarly. The case when the photon is attached to a local πN → γ ∗N vertex is trivial, 
because, obviously, the corresponding diagram is a low-energy polynomial.

Note that the factor in front of Fi on the r.h.s. of the above equation exactly accounts for the 
difference in the normalization of the one- and two-particle states in a finite volume (we remind 
the reader that the energy ER lies above threshold, so that the resonance still decays into the 
two-particle state, albeit with an infinitesimally small rate).

4.3. Analytic continuation of the loop diagram

Finally, we want to demonstrate that the analytic continuation of the quantity F̄i(pn, |Q|)
into the complex plane is possible. In case of the elastic form factor, this procedure has led 
to serious difficulties due the existence of the so-called finite fixed points [40]. However, such 
difficulties do not arise in case of the transition form factors, as can be easily seen by considering 
the potentially dangerous triangle diagram where the photon is attached to the pion line (see 
Fig. 5). For simplicity, we neglect all numerators, which are low-energy polynomials. In the 
rest-frame of the �-resonance, the diagram shown in Fig. 5 is equal to

I = 1

V

∑
l

1

8w1(l)w2(−l)w2(Q − l)
1

(w1(l) + w2(−l) − En)(w1(l) + w2(Q − l) − Q0)
.

(4.37)

This diagram can be simplified by using the following algebraic identity (see Ref. [39])

1

4w1(l)w2(−l)
1

(w1(l) + w2(−l) − En)
= 1

2En(l2 − p2
n)

+ non-singular terms. (4.38)

Since the second denominator in Eq. (4.37) is non-singular, up to the exponentially suppressed 
terms we get

I = 1

V

∑
l

1

2En(l2 − p2
n)

1

2

1∫
−1

dy
1

2ŵ2(ŵ1 + ŵ2 − Q0)
, (4.39)

where

ŵ1 =
√

m2
N + p2

n, ŵ2 =
√

M2
π + p2

n + Q2 − 2|Q|pny. (4.40)

Since the first factor on the r.h.s. of Eq. (4.39) can be replaced by pn cot δ(pn) from the Lüscher 
equation, and the remaining integral over y is a low-energy polynomial, we see that the quan-
tity p2I is a low-energy polynomial in p2 as well. No finite fixed points arise and the analytic 
continuation can be performed without any problem. Moreover, there exist only exponentially 
suppressed corrections to the infinite-volume limit. Finally, it is now easy to check that the 
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quantity F̂ (B)
i (p, |Q|) in Eq. (4.13) can be decomposed as in Eq. (4.14), with the irreducible 

vertex F̄ (B)
i (p, |Q|) containing only exponentially suppressed finite-volume corrections. The 

same method can be used for the calculation of the three-point function in the infinite volume, 
see Eq. (4.29). The sum over the momentum l in Eq. (4.39) is replaced by the integral and 
gives a pion–nucleon loop, whereas the remainder is again identified with the irreducible vertex 
F̄

(B)
i (p, |Q|).

5. A prescription for the measurement of the transition form factors

This section contains a short summary of all our findings. We give a prescription for calculat-
ing the �Nγ ∗ transition form factors on the lattice, in the rest-frame of the �-resonance:

1. The matrix elements Fi = Fi(p, |Q|) in the right-hand side of Eq. (3.5) are functions of 
the kinematic variables p and |Q|. Measure these matrix elements at different values of the 
variable p in the resonance region, keeping the other variable fixed, as explained in Section 3. 
The scattering phase should be measured at the same values of p.

2. The multipoles for the pion photoproduction are given by

Ai

(
pn, |Q|) = eiδ(pn) V 1/2

(
p2

n

2π |δ′(pn) + φ′(qn)|
)−1/2∣∣Fi

(
pn, |Q|)∣∣. (5.1)

3. The resonance matrix elements, defined at real energies, are proportional to the imaginary 
part of the multipoles at p = pA, where the phase shift passes through 90◦. In the narrow 
width approximation one has

∣∣ImAi

(
pA, |Q|)∣∣ =

√
8π

pAΓ

∣∣FA
i

(
pA, |Q|)∣∣. (5.2)

4. In order to extract the matrix element at the resonance pole, we first multiply each Fi by the 
pertinent Lüscher–Lellouch factor

F̄i

(
pn, |Q|) = V 1/2

(
cos2 δ(pn)

|δ′(pn) + φ′(qn)|
p2

n

2π

)−1/2

Fi

(
pn, |Q|). (5.3)

5. Further, we fit the functions p3 cot δ(p)F̄i(p, |Q|) by the effective-range formula

p3 cot δ(p)F̄i

(
p, |Q|) = Ai

(|Q|) + p2Bi

(|Q|) + · · · . (5.4)

6. Finally, we evaluate the resonance matrix elements by substitution

FR
i

(
pR, |Q|) = ip−3

R Z
1/2
R

(
Ai

(|Q|) + p2
RBi

(|Q|) + · · ·). (5.5)

The quantities pR and ZR should be evaluated separately from the measured phase shifts. 
Note that the form factors are related to the resonance matrix elements via the formulae given 
in Eq. (3.6). The kinematic factors in front of the form factors are low-energy polynomials.
We emphasize again that, from the two definitions of the resonance matrix elements, given 
above, only the one which implies the analytic continuation to the resonance pole, yields the 
result which is process-independent.
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6. Conclusions

(i) In this paper, we have formulated an explicit prescription for the measurement of the �Nγ ∗
transition form factors on the lattice. The � is considered as a resonance, not as a stable 
particle. The spins of all particles are included, and three different scalar form factors are 
projected out.

(ii) The framework is based on the use of the non-relativistic effective field theory in a finite 
volume. This is in accordance with the assumption of validity of the effective range expan-
sion in the vicinity of a resonance that is used for performing the analytic continuation into 
the complex plane. If this assumption proves to be very restrictive, our approach can be 
easily adapted for the use of the alternative techniques (e.g., expanding the amplitude in the 
vicinity of some point near the resonance energy, rather than expanding around threshold).

(iii) The extraction of the elastic resonance form factors from data is a rather subtle procedure 
due to the presence of the so-called finite fixed points. In case of the transition form fac-
tors, considered in the present paper, the method is straightforward. The complexity of the 
extraction is similar to the one of determining the energy and width of the �-resonance. 
For this reason, we believe that the lattice study of the transition form factors may become 
feasible in a foreseeable future.

(iv) The extraction of the form factors have been carried out in the rest-frame of the 
�-resonance. There are no serious obstacles to carrying out the same procedure in the 
moving frames as well, except the mixing between S- and P -waves which takes place, if 
the � is not at the rest.
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Appendix A. Photoproduction amplitudes

In this appendix, we shall establish the connection between our photoproduction amplitude, 
defined in non-relativistic effective field theory with the relativistic amplitude. Note that in the 
present paper we deal with the P -wave in the γ ∗p → π0p channel with the total isospin I = 3/2
and total spin J = 3/2. Below, we give the expressions, using the relativistic normalization of 
the Dirac spinors [49].

The relativistic photoproduction amplitude can be written in the rest frame of the pion–
nucleon system as

T = 8πEχ†(2)Fχ(1), (A.1)

where E is the total energy of the πN system. The Pauli spinors χ(1), χ(2) carry the information 
on the spin states of the nucleons.
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The matrix F has a decomposition (see, e.g., [44])

F = iσ̃ · εF1 + (σ · q̂)
(
ε · (σ × k̂)

)
F2 + i(q̃ · ε)(σ · k̂)F3 + i(q̃ · ε)(σ · q̂)F4

+ i(k̂ · ε)(σ · k̂)F5 + i(k̂ · ε)(σ · q̂)F6 − ε0
[
i(σ · q̂)F7 + i(σ · k̂)F8

]
, (A.2)

where εμ = (ε0, ε) is the photon polarization vector, k̂ = k/|k| and q̂ = q/|q| are the unit vectors 
for the photon and pion momenta respectively, and ã = a − (a · k̂)k̂ is a vector with purely trans-
verse components. The eight amplitudes F1, ..., F8 are functions of three independent variables, 
e.g., the total energy E, the pion angle θ , and the four-momentum squared of the virtual photon, 
Q2 = k2 − ω2 > 0.

Current conservation additionally implies that

|k|F5 = ωF8, |k|F6 = ωF7. (A.3)

Further, the six independent amplitudes F1, ..., F6 have a multipole decomposition

F1 =
∑
l≥0

{
(lMl+ + El+)P ′

l+1 + [
(l + 1)Ml− + El−

]
P ′

l−1

}
,

F2 =
∑
l≥1

[
(l + 1)Ml+ + lMl−

]
P ′

l ,

F3 =
∑
l≥1

[
(El+ − Ml+)P ′′

l+1 + ((El− + Ml−)P ′′
l−1

]
,

F4 =
∑
l≥2

(Ml+ − El+ − Ml− − El−)P ′′
l , (A.4)

F5 =
∑
l≥0

[
(l + 1)L1+P ′

l+1 − lLl−P ′
l−1

]
,

F6 =
∑
l≥1

[
lL1− − (l + 1)Ll+

]
P ′

l ,

where l is a pion angular momentum and the sign ± refers to the total spin J = l ± 1/2. The 
P ′

l are the derivatives of the Legendre polynomials Pl = Pl(cos θ). Note that in the literature the 
longitudinal transitions are often described by Sl± multipoles, related to the Ll± by

Sl± = |k|Ll±/ω. (A.5)

In case of scattering in the channel with the quantum numbers of the �-resonance, we retain only 
�± = 1 + partial wave and choose the momentum k̂ along the third axis. The pertinent scattering 
amplitudes then take the form

T̃1/2 = √
4π

[√
1

3
χ

†
−1/2Y11(q̂) +

√
2

3
χ

†
1/2Y10(q̂)

]
χ1/2Ã1/2,

T1/2 = √
4π

[√
1

3
χ

†
−1/2Y11(q̂) +

√
2

3
χ

†
1/2Y10(q̂)

]
χ−1/2A1/2,

T3/2 = √
4π

[
χ

†
1/2Y11(q̂)

]
χ1/2A3/2. (A.6)

Further, in order to relate the amplitudes Ai to the multipoles M, E, S, we make the following 
choice of the polarization vectors
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i = 1 : ε0 = |k|
Q

, ε = 1

Q
(0,0,ω),

i = 2 : ε0 = 0, ε = 1√
2
(1, i,0),

i = 3 : ε0 = 0, ε = 1√
2
(1, i,0). (A.7)

Below, we shall demonstrate the procedure explicitly for the choice i = 1. Retaining only 
the �± = 1 + partial wave in Eq. (A.4) and substituting the explicit polarization vectors from 
Eq. (A.7) into Eq. (A.2), one obtains:

F = Q

|k|
[−6i(σ · k̂) cos θ + 2i(σ · q̂)

]
S1+ (A.8)

The expression χ†(2) (σ · k̂) cos θχ(1) can be brought into the form

χ†(2)(σ · k̂) cos θχ(1) =
√

2

3

√
4π

[√
1

3
χ

†
−1/2Y11(q̂) +

√
2

3
χ

†
1/2Y10(q̂)

]
χ(1)

− 1

3

√
4π

[√
2

3
χ

†
−1/2Y11(q̂) −

√
1

3
χ

†
1/2Y10(q̂)

]
χ(1). (A.9)

On the other hand, since

χ†(2)(σ · q̂)χ(1) = √
4π

[√
2

3
χ

†
1/2Y10(q̂) −

√
1

3
χ

†
−1/2Y11(q̂)

]
χ(1), (A.10)

the quantity χ†(2) (σ · q̂)χ(1) gives a J = 1/2 contribution only. Consequently, the J = 3/2
partial wave contribution to the relativistic amplitude of Eq. (A.1) is

T̃1/2 =
(

−16πiE
√

2
Q

|k|S1+
)√

4π

[√
1

3
χ

†
−1/2Y11(q̂) +

√
2

3
χ

†
1/2Y10(q̂)

]
χ1/2. (A.11)

Comparing this formula with Eq. (A.6), we finally obtain

Ã1/2 = −16πiE
√

2
Q

|k|S1+. (A.12)

The two other cases in Eq. (A.7) can be considered along the same lines. We get

A1/2 = −1

2
(3E1+ + M1+)(−16πiE), (A.13)

A3/2 =
√

3

2
(E1+ − M1+)(−16πiE).
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CHAPTER 3

Rare B → K∗l+l− decay

3.1 Summary

At present, there are several rare B meson decay modes that are very promising in the search for physics
beyond the Standard Model. The B → K∗l+l− is, in particular, regarded as one of the most important
processes, since the polarization of the K∗(892) resonance results in many observables. Recently, the
LCHb and Belle collaborations have seen an interesting pattern of deviations from the SM predictions in
this mode.

The form factors of the corresponding hadronic matrix elements, which enter the analysis of the
experimental data, are one of the sources of the theoretical uncertainties. They have been recently
determined on the lattice. Although this is the first unquenched lattice calculation, the K∗ was stable due
to the large value of the pion mass.

The present work considers a scenario when the K∗ eventually decays into πK, and the finite volume
formalism for the analysis of the lattice data has to be applied. The results can be summarized as follows:

• The two-channel analogue of the Lellouch-Lüscher formula is re-derived in the non-relativistic
EFT. This allows one the determine the approximate value of the decay amplitude in the low-recoil
region.

• The procedure to determine the B→ K∗ form factors at the complex pole position is worked out.

• The presence of the ηK threshold is taken into account. One could expect that the effect of this
threshold might be seen in the lattice data.

• The infinitely-narrow width approximation of the results in the two-channel problem is studied. It
is shown that, even though taking this limit is more involved in the multi-channel case, the final
expressions have a simple form.
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Abstract

The extraction of the B → K∗ transition form factors from lattice data is studied, applying non-
relativistic effective field theory in a finite volume. The possible mixing of πK and ηK states is taken into 
account. The two-channel analogue of the Lellouch–Lüscher formula is reproduced. Due to the resonance 
nature of the K∗, an equation is derived, which allows to determine the form factors at the pole position in 
a process-independent manner. The infinitely-narrow width approximation of the results is discussed.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Rare B decay modes provide one of the best opportunities in the search for physics beyond the 
Standard Model (BSM). Among them, B → K∗l+l− is regarded as one of the most important 
channels, as the polarization of the K∗ allows a precise angular reconstruction resulting in many 
observables which can be tested in the Standard Model (SM) and its extensions [1–6]. In 2013, 
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LHCb [7] published the first analysis of a set of optimized observables, presenting an interesting 
pattern of deviations, confirmed by later measurements with a larger statistics [8], as well as by a 
recent analysis from the Belle Collaboration [9]. A first interpretation of this pattern of deviation 
was proposed [10], where the Wilson coefficient C9 of the pertinent semileptonic operator (and, 
possibly, other coefficients as well), received contribution from the BSM physics. Further exper-
imental results have indicated deviations concerning the branching ratios of B → K∗μ+μ−, but 
also Bs → φμ+μ− and B → Kμ+μ−, with the possibility of a violation of lepton flavor univer-
sality between electron and muon modes [11–13]. These results triggered lots of activities on the 
theoretical side and, in particular, their consequences on global fits are being studied [14–16]. In 
these global fits, a special attention has to be paid to the theoretical uncertainties arising from the 
form factors of the corresponding hadronic matrix elements, which affect the branching ratios 
involved in the fit. In the low recoil region, which will be our main focus here, these form factors 
are mostly known from light cone sum rules, which suffer from relatively large uncertainties [17,
18]. It would thus be particularly interesting to have information on these quantities from lattice 
QCD simulations. Also, the method used to calculate these form factors could be applied to other 
interesting processes as, for example, B → K∗γ .

Recently, the first unquenched lattice QCD calculations of the B → K∗ form factors have 
appeared [19–21] (see also Refs. [22–28] for quenched results). Although this work represents 
a major progress in the field, the simulations have been performed at such quark mass values 
that the K∗(892) resonance has been treated as a stable particle. Correspondingly, the standard 
methods of the lattice QCD could be used for the analysis of the data. However, they are not 
applicable anymore, when the K∗ eventually decays into πK .

The following question has to be addressed: how to compute the matrix elements involv-
ing two strongly interacting particles in the in- or out-state? Briefly, the answer is given by 
the so-called Lellouch–Lüscher method [29]. It is a generalization of the Lüscher finite-volume 
approach [30], which provides a method to extract the elastic phase shifts and the resonance pa-
rameters (the mass and width) from the two-particle discrete energy levels spectrum, measured 
on the lattice.

At the next step, it should be understood, how to define the matrix elements involving res-
onances such as K∗, ρ, or �. As it has been argued in Refs. [31,32], the only plausible field-
theoretical definition necessitates an analytic continuation of the matrix element to the resonance 
pole position in the complex plane. Therefore, strictly speaking, the corresponding form factor 
can only be defined at the resonance pole. The other well known definition of the form factor is 
based on the Breit–Wigner parameterization of the resonant amplitude (see, e.g., Refs. [33,34]). 
However, this definition yields a model- and process-dependent result, since the background is 
unknown. If the width of the resonance is not very small (it is roughly 50 MeV in the case of the 
K∗(892)), using different definitions might have an effect on the extracted observables.

There is an additional effect, which is due to the presence of the ηK threshold. For phys-
ical quark masses, it is approximately 150 MeV above the K∗ mass, and this value will be 
reduced when the light quark masses, used in the simulations, are higher. One could expect 
that the effect of this threshold might be seen in the data. The recent lattice calculation by the 
Hadron Spectrum Collaboration, however, indicates that the coupling between the ηK and πK

channels remains small even at the pion mass as large as roughly 400 MeV [35,36]. Neverthe-
less, the two-channel problem has to be addressed. Although of academic interest in the present 
context, a similar theoretical framework could be useful, e.g., for the lattice extraction of the 
electromagnetic form factors of the �(1405) resonance (see Refs. [37,38] for the recent lattice 
results).
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Recently, the Lellouch–Lüscher method has been generalized to include multiple strongly-
coupled decay channels [39–42]. In particular, the authors of Ref. [41] provide general formulas 
for spinless particles, which are also valid for the B → πK(ηK) transition. On the contrary, the 
extraction of the form factors at the resonance pole in the multi-channel case has not been studied 
yet. It has been done only in the one-channel problem [31]. In the present work, we fill this gap 
by considering the πK–ηK coupled-channel system.

In order to establish a relation between the finite volume quantities, measured on the lattice, 
and infinite volume observables, a systematic theoretical framework is needed. We apply the 
so-called non-relativistic effective field theory in a finite volume in its covariant formulation 
[43,44]. We find this approach algebraically simpler than the one based on the Bethe–Salpeter 
equation (see, e.g., Refs. [45,46]). In the end, both methods have the same range of applicability 
and one arrives at the same results.

The paper is organized as follows: In section 2, we introduce form factors governing the 
B → K∗ transition. We also consider the proper kinematics, which should be used in lattice 
measurements of matrix elements. Further, in section 3, we set up the non-relativistic effective 
field theory in a finite volume. The two-channel analogue of the Lellouch–Lüscher formula is 
re-derived. In section 4, we obtain the equation for the extraction of the form factors at the 
resonance pole in the two-channel case. Additionally, in view of different opinions expressed in 
the literature (see, e.g., Refs. [47,48]), we address the issue of defining the photon virtuality at 
the resonance pole. In section 5, we consider the infinitely small width approximation for our 
results. Section 6 contains our conclusions.

2. Matrix elements on the lattice

2.1. Formalism

The effective theory of the b → s decays is based on the weak Hamiltonian [49–54]

Heff = −4GF√
2

V ∗
tsVtb

∑
i

CiWi , (1)

where GF denotes the Fermi constant, Vts, Vtb are elements of the CKM matrix and the Ci are 
Wilson coefficients. In the SM, one has 10 effective local operators Wi . Such a description is 
applicable at energies much below the masses of the weak gauge bosons.

The seven B → K∗ form factors are contained in the matrix elements of the W7, W9 and W10
operators:

W7 = mbe

16π2
s̄σμνPRbFμν, W9 = e2

16π2
s̄γ μPLb �̄γμ�,

W10 = e2

16π2
s̄γ μPLb �̄γμγ 5�, (2)

where Fμν is the electromagnetic field strength tensor, and

PL/R = 1
2 (1 ∓ γ 5), σμν = i

2 [γ μ, γ ν]. (3)

They are defined, in Minkowski space, through the following expressions (see, e.g., Ref. [20]):

〈V (k,λ)|s̄γ μb|B(p)〉 = 2iV (q2)

mB + mV

εμνρσ ε∗
ν kρpσ , (4)
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〈V (k,λ)|s̄γ μγ 5b|B(p)〉
= 2mV A0(q

2)
ε∗ · q
q2

qμ + (mB + mV )A1(q
2)

(
ε∗μ − ε∗ · q

q2
qμ

)

− A2(q
2)

ε∗ · q
mB + mV

[
(p + k)μ − m2

B − m2
V

q2
qμ

]
, (5)

qν〈V (k,λ)|s̄σμνb|B(p)〉 = 2T1(q
2)εμρτσ ε∗

ρpτ kσ , (6)

qν〈V (k,λ)|s̄σμνγ 5b|B(p)〉 = iT2(q
2)[(ε∗ · q)(p + k)μ − ε∗μ(m2

B − m2
V )]

+ iT3(q
2)(ε∗ · q)

[
q2

m2
B − m2

V

(p + k)μ − qμ

]
, (7)

where q = p − k is a momentum transfer to the lepton pair, and ε(k, λ) denotes a polarization 
vector of the vector meson (K∗) with momentum k and spin polarization λ = 1, 2, 3 (see, e.g., 
Ref. [20]). Here, it is assumed that the K∗ is a stable particle with mass mV and appropriate 
quantum numbers.

There are also contributions of non-local operators to the full decay amplitude. However, 
the method described below does not yet allow to deal with them. Thus, we will consider the 
decay process in the low recoil region and assume that these contributions are small, so that the 
amplitude, extracted from lattice data, coincides approximately with the full one. In fact, there 
are some arguments that this is true in this kinematic region at least for most of the operators 
involved, see Refs. [55–59].

2.2. Finite volume

Since lattice simulations are performed in a finite spatial volume, the continuous rotational 
symmetry is broken down to the cubic one. Consequently, some particular irreducible represen-
tations (irreps) of the cubic group, or its subgroups in the moving frames, should be chosen. 
Taking into account the fact that, at energies below multi-particle thresholds the neglect of D-
and higher partial waves seems to be justified, in order to clearly extract the P-wave scattering 
phase shift through the Lüscher equation, it is preferable to choose irreps, in which no mixing 
between S- and P-waves occurs. For that purpose, we consider the process in the K∗ rest frame:

k = 0, p = q = 2π

L
d, d ∈ Z3, (8)

where L denotes the side length of the volume, V = L3. When the K∗ is not at rest, only some 
of the form factors can be extracted without mixing. We provide the details in Appendix A. In 
the following, we write down the expressions for the current matrix elements, when the d vector 
is chosen along the third axis d = (0, 0, n). The two other cases, d = (n, n, 0) and d = (n, n, n)

can be treated along the same lines.
The polarization vector of the free massive spin-1 particle with momentum k takes the form:

εμ(k,λ) =
(

k · ε(λ)

mV

, ε(λ) + k · ε(λ)

mV (k0 + mV )
k
)

, (9)

where the arbitrary vectors ε(λ) form an orthonormal basis. In particular, one can choose them as

ε(+) = 1√
2
(1, i,0), ε(−) = 1√

2
(1,−i,0), ε(0) = (0,0,1). (10)
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Obviously, the polarization vectors εμ(k, λ) satisfy the gauge invariance condition

kμ · εμ(k,λ) = 0, λ = +,−,0. (11)

Further, the Eqs. (4)–(7) first have to be rewritten in the Euclidean space. This can be done by 
applying the prescription

aE
μ = (a, ia0), γ E

μ = (−iγ , γ0), γ E
5 = γ 5, μ = 1,2,3,4, (12)

where aμ is an arbitrary four-momentum in Minkowski space. The superscript E will be sup-
pressed from now on.

With this in mind, we pick up the following current matrix elements

〈V (+)|J (+)|B(p)〉 = −2imV |q|V (q2)

mB + mV

,

〈V (0)|i(EB − mV )JA + |q|J (0)
A |B(p)〉 = −2imV |q|A0(q

2),

〈V (+)|J (+)
A |B(p)〉 = −i(mB + mV )A1(q

2),

〈V (0)|i(EB − mV )J
(0)
A − |q|JA|B(p)〉 = 8mBmV A12(q

2),

〈V (+)|i(EB − mV )I (+) + |q|I (+)
0 |B(p)〉 = 2imV |q|T1(q

2),

〈V (+)|i(EB − mV )I
(+)
A + |q|I (+)

0A |B(p)〉 = −i(m2
B − m2

V )T2(q
2),

〈V (0)|I (0)
A |B(p)〉 = − 4mBmV

mB + mV

T23(q
2), (13)

where EB =
√

m2
B + q2 is energy of the B meson, and 〈V (+)| is a state vector with a positive 

circular polarization,

〈V (+)| = 〈V (1)| − i〈V (2)|√
2

. (14)

Here, the current operators are given by

J (±) = 1√
2
s̄(γ1 ± iγ2)b, J

(±)
A = 1√

2
s̄(γ1 ± iγ2)γ5b,

J
(0)
A = s̄γ3γ5b, JA = s̄γ4γ5b, I

(0)
A = s̄σ34γ5b,

I
(±)
0 = 1√

2
s̄(σ13 ± iσ23)b, I

(±)
0A = 1√

2
s̄(σ13 ± iσ23)γ5b,

I (±) = 1√
2
s̄(σ14 ± iσ24)b, I

(±)
A = 1√

2
s̄(σ14 ± iσ24)γ5b, (15)

and the quantities A12(q
2), T23(q

2) are related to the form factors through

A12(q
2) = (mB + mV )2(m2

B − m2
V − q2)A1(q

2) − λA2(q
2)

16mBm2
V (mB + mV )

, (16)

T23(q
2) = mB + mV

8mBm2
V

[(
m2

B + 3m2
V − q2

)
T2(q

2) − λT3(q
2)

m2
B − m2

V

]
, (17)

where λ ≡ λ(m2
B, m2

V , q2) = [(mB +mV )2 − q2][(mB −mV )2 − q2] denotes the Källén triangle 
function. In the following, we denote the matrix elements Eq. (13) shortly as FM , M = 1, . . . , 7.
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Table 1
Extraction of matrix elements in the irreps without partial-wave mixing.

Little group Irrep Form factor

C4v E V , A1, T1, T2
A1 A0, A12, T23

When the K∗ is taken at rest, it is necessary to consider lattice simulations in asymmetric 
boxes (see below). These boxes, which are of the type L × L × L′, have the same symmetry 
properties as the symmetric ones boosted in the d = (0, 0, n) direction. In Table 1, the irreps 
of the corresponding little group, where the matrix elements Eq. (13) should be measured, are 
listed.

The states 〈V (±)|, 〈V (0)| are created by acting with the following local field operators, trans-
forming according to these irreps, on the vacuum state 〈0|:

O(±)
E (0, t) = 1√

2

∑
x

(
O1(x, t) ∓ iO2(x, t)

)
, O(0)

A1
(0, t) =

∑
x

O3(x, t), (18)

where Oi(x) are spatial components of the vector field potential (see, e.g., Ref. [60]). Such 
operators are constructed out of the local quark bilinears. In practice, it is important to add also 
meson–meson-type non-local operators in lattice simulations. These can be constructed along 
the lines described in Ref. [60].

Until now, the K∗ has been assumed to be a stable vector meson. When the K∗ becomes a 
resonance in lattice simulations, the matrix elements of Eq. (13) can still be measured. However, 
one gets the matrix elements of the current between a one-meson state |B(p)〉 and a certain 
eigenstate of the finite-volume Hamiltonian. The mass mV is now replaced by the discrete energy 
En of the n-th eigenstate (n = 0, 1, . . .). The dependence of the energy En on the volume is not 
suppressed exponentially (unlike the case of a stable K∗) [30]. A similar statement holds for the 
quantities FM .

The matrix elements FM are functions of the total center-of mass (CM) energy En and 
3-momentum |q| of the B meson: FM = FM(En, |q|). As it has been previously discussed in 
case of the �Nγ ∗ transition in Ref. [31], in order to determine the form factors at the K∗ res-
onance pole, the quantities FM should be measured at different values of the energy En (for a 
given value of n), while keeping |q| fixed. Again, this could be achieved by applying asymmetric 
volumes with asymmetry along the third axes L ×L ×L′ or (partial) twisting in the b-quark (see 
Ref. [31] for more details).

Below, we study in detail the extraction of the form factors on the real energy axis as well 
as at the complex resonance pole. We emphasize once more, that only the definition, which 
implies the analytic continuation, leads to the process-independent values of the resonance form 
factors.

3. Lellouch–Lüscher formula

3.1. Infinite volume

In this section, the analogue of the Lellouch–Lüscher formula in the two-channel case is 
reproduced. For that purpose, we apply the non-relativistic effective field theory in a finite volume 
along the lines of Refs. [32,31]. We generalize the formulas given there appropriately so that they 
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can suit our needs. In the following, the K∗ is taken at rest, so that there is no S- and P-wave 
mixing.

Further, we specify the matrix elements of the scattering amplitude. The actual physics can 
not, of course, depend on the chosen parameterization. In the literature, there exists a parame-
terization of the S-matrix due to Stapp et al. [61]. In this work, we rather follow the one from 
Refs. [39,62] and write the T -matrix in terms of three real parameters: the so-called eigenphases 
δ1(p1), δ2(p2) and mixing parameter ε(E)

T = 8π
√

s

⎛
⎝ 1

p1
(c2

εe
iδ1 sin δ1 + s2

ε eiδ2 sin δ2)
1√

p1p2
cεsε(e

iδ1 sin δ1 − eiδ2 sin δ2)

1√
p1p2

cεsε(e
iδ1 sin δ1 − eiδ2 sin δ2)

1
p2

(c2
εe

iδ2 sin δ2 + s2
ε eiδ1 sin δ1)

⎞
⎠ ,

(19)

where sε ≡ sin ε(E), cε ≡ cos ε(E). Here, p1 and p2 denote the relative 3-momenta in the πK

and ηK channels, respectively. They are related to the total energy E through the equations

|p1| = λ(m2
π ,m2

K, s)

2
√

s
, |p2| =

λ(m2
η,m

2
K, s)

2
√

s
, (20)

where s = E2. We note that the eigenphases δ1, δ2 have the meaning of phase shifts in the 
corresponding channels πK and ηK , respectively, only in the decoupling limit ε → 0. Other-
wise, their behavior with energy is non-trivial (see, e.g., Refs. [63,64]). Firstly, thanks to the 
no-crossing theorem [65], the curves of the functions δ1(E), δ2(E) cannot intersect. Secondly, 
assuming the Breit–Wigner approximation, it can be shown that only one of these curves crosses 
π/2 in the vicinity of the resonance energy (see below). Lattice data should not be in contradic-
tion with these properties.

On the other hand, the T -matrix obeys Lippmann–Schwinger equation (see Ref. [32]):

T = V + V GT, (21)

where the angular momentum index l has been suppressed. Here, V denotes a potential and G(s)

is a loop function matrix given by

G =
(

ip1
8π

√
s

0

0 ip2
8π

√
s

)
. (22)

In Eq. (21), all quantities have been taken on the energy shell p1 = p′
1, p2 = p′

2, where p1, p2
and p′

1, p
′
2 are respective relative momenta in the initial and final two-particle states.

The parameterization of the potential V in terms of parameters δ1(p1), δ2(p2) and ε(E) is 
obtained readily from Eqs. (19) and (21):

V = 8π
√

s

⎛
⎝ 1

p1
(t1 + s2

ε t) − 1√
p1p2

cεsεt

− 1√
p1p2

cεsεt
1
p2

(t2 − s2
ε t)

⎞
⎠ , (23)

where ti ≡ tan δi(pi) and t = t2 − t1. Clearly, the potential matrix V is real and symmetric.

3.2. Finite volume

3.2.1. Two-point function
We return to the derivation of the two-channel Lellouch–Lüscher formula. Our goal is to 

calculate the two- and three-point correlation functions relevant to the B → K∗ form factors. Let 
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Fig. 1. Two-point function D(x0 − y0) in the non-relativistic effective field theory in a finite volume. The grey circle, 
square, and triangle depict different couplings in the πK–ηK system. The quantities X1, X2 are couplings of the operator 
O to the respective channels. Similar diagrams are obtained by replacements X1 → X2 and X2 → X1.

O(x) be a local operator with quantum numbers of the K∗ that transforms according to the given 
irrep, as provided explicitly in Eq. (18). According to the methodology of the lattice calculations, 
one is interested in the Euclidean two-point function of the form

D(x0 − y0) = 〈0|O(x0)O†(y0)|0〉, (24)

where O(t) is given by the Fourier transformation of the O(x) in the rest frame:

O(t) =
∑

x

O(x, t). (25)

Note that we always work in the limit of zero lattice spacing, in which the right-hand side of 
Eq. (25) contains an integral over the finite volume instead of a sum over the lattice sites.

It is clear from the spectral representation1 of the function D(x0 − y0),

D(x0 − y0) =
∑
n

e−En(x0−y0)|〈0|O(0)|En〉|2, (26)

that energy levels En can be extracted by studying the decay pattern of D(x0 − y0) in the formal 
limit x0 → +∞, y0 → −∞.

The diagrammatic representation of the two-point function Eq. (24) within the non-relativistic 
effective field theory below the inelastic threshold is shown in Fig. 1. The quantities Xα, α =
1, 2, denote the couplings of the operator O to respective channels. Since the corresponding 
Lagrangian contains terms with arbitrary number of spatial derivatives, one has Xα = Aα +
Bαp2

α +· · · , where Aα, Bα, . . . contain only short-range physics. Here, p2
α, α = 1, 2, are external

relative 3-momenta squared in the corresponding channels. Although the expansion for Xα is 
written in the CM frame, it can be brought to the covariant form in an arbitrary moving frame 
(see Ref. [44]). It is important to note that quantities Xα will drop out in the final result.

After summing up all two-particle reducible diagrams, the two-point function reads

D(x0 − y0) = V
+∞∫

−∞

dP0

2π
eiP0(x0−y0)XT [GL(P0) + GL(P0)TL(P0)GL(P0)]X, (27)

where XT = (X1, X2), V is the lattice volume, and GL denotes a finite-volume counterpart of 
the loop function matrix Eq. (22):

GL =
(− p1

8π
√

s
cotφ(p1) 0

0 − p2
8π

√
s

cotφ(p2)

)
, s = −P 2

0 . (28)

1 In this work, we use a different form from Ref. [31] normalization of the eigenstates of the total Hamiltonian. While 
the single B-meson state in a finite volume is still normalized, according to 〈B(p)|B(p)〉 = 2EB , the normalization of 
the two-particle states En is given by 〈En|En〉 = 1.
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Here, φ(pα) are the volume-dependent functions that are related to the Lüscher zeta-function. 
They are given by the following expressions in the irreps of interest E and A1 (see, e.g., 
Ref. [60]):

cotφE(pα) = − 1

π3/2ηα

{
Ẑ00(1;η2

α) − 1√
5η2

α

Ẑ20(1;η2
α)

}
, (29)

cotφA1(pα) = − 1

π3/2ηα

{
Ẑ00(1;η2

α) + 2√
5η2

α

Ẑ20(1;η2
α)

}
, (30)

where ηα = pαL/2π . The Lüscher zeta-function Ẑlm(1; η2) for generic asymmetric volumes 
L × L × L′ with L′ = xL reads

Ẑlm(1;η2) = 1

x

∑
n∈Z3

Ylm(r)
r2 − η2

, r1,2 = n1,2 , r3 = 1

x
n3 , Ẑ20(1;η2) �= 0 . (31)

Further, the TL-matrix is a scattering amplitude in a finite volume that is defined formally also 
through a Lippmann–Schwinger equation with the same potential V :

TL = V + V GLTL. (32)

Substituting the potential V , Eq. (23), into this equation, we obtain:

TL = 8π
√

s

f (E)

(
1
p1

[t1τ1(t2 + τ2) + s2
ε τ1τ2t] − 1√

p1p2
cεsετ1τ2t

− 1√
p1p2

cεsετ1τ2t
1
p2

[t2τ2(t1 + τ1) − s2
ε τ1τ2t]

)
, (33)

where τα ≡ tanφ(pα) and

f (E) ≡ (t1 + τ1)(t2 + τ2) + s2
ε (t2 − t1)(τ2 − τ1). (34)

The two-channel Lüscher equation [39,66,67], which allows to determine the infinite-volume 
T -matrix elements [39,68,69], follows directly from Eq. (34)

(t1 + τ1)(t2 + τ2) + s2
ε (t2 − t1)(τ2 − τ1)

∣∣
E=En

= 0, (35)

where all quantities are taken at the energies E = En of the simple poles of the TL-matrix, or 
equivalently, the eigenvalues of the corresponding strong Hamiltonian in a finite volume.

The integral Eq. (27) is evaluated by applying Cauchy’s theorem. It can be shown explicitly 
that only the poles of the TL(P0)-matrix contribute to the integral, while free poles cancel in the 
integrand [32,41]. The residues of the TL(P0) factorize in the n-th pole P0 = iEn:

T
αβ
L = fαfβ

En + iP0
+ · · · . (36)

Here, the quantities f1, f2 can be brought to the following form by applying the Lüscher equa-
tion:

f 2
1 = 8π

√
s

p1

τ 2
1 (t2 + τ2 − s2

ε t)

f ′(E)

∣∣∣∣
E=En

, f 2
2 = 8π

√
s

p2

τ 2
2 (t1 + τ1 + s2

ε t)

f ′(E)

∣∣∣∣
E=En

, (37)

where f ′(E) ≡ df (E)/dE. Performing the integration over P0, we get

D(x0 − y0) = V
64π2E2

n

∑
n

e−En(x0−y0)

[ 2∑
α=1

Xαpα(En)τ
−1
α (En)fα(En)

]2

. (38)
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Fig. 2. Diagrams contributing to the B → K∗ transition in a finite volume (see Fig. 1 for notations). The quantities 
F̄M

α (E, |q|), α = 1, 2, are volume-independent up to exponentially suppressed contributions.

Comparing this equation with the spectral representation Eq. (26), we finally obtain

|〈0|O(0)|En〉| = V1/2

8πEn

∣∣∣∣
2∑

α=1

Xαpα(En)τ
−1
α (En)fα(En)

∣∣∣∣. (39)

3.2.2. Three-point function
We proceed to evaluate the current matrix elements FM(E, |q|) in a finite volume. To this 

end, we start from the quantity

�M(x0,p) = 〈0|O(x0)J
M(0)|B(p)〉, M = 1, . . .7. (40)

Here, the JM(0) denote the operators in the matrix elements of Eq. (13). Inserting a complete set 
of states, we get the spectral representation of �M(x0, p)

�M(x0,p) =
∑
n

e−Enx0〈0|O(0)|En〉FM(En, |q|). (41)

Diagrammatically, the B → K∗ transition matrix elements are shown in Fig. 2. The quantities 
F̄M

α (E, |q|), α = 1, 2, denote the sum of all two-particle irreducible diagrams in the respective 
channels. They do not depend on the volume up to exponentially suppressed contributions. The 
volume dependence arises due to the final-state meson interaction. We note that the diagrams, 
in which the photon is attached to one of the internal lines or the B meson external line do not 
contribute to the matrix elements of flavor changing neutral currents. As a result, summing up 
the bubble diagrams we obtain

�M(x0,p) = V−1/2

+∞∫
−∞

dP0

2π
eiP0x0XT [GL(P0) + GL(P0)TL(P0)GL(P0)]F̄M(P0, |q|),

(42)

where F̄M(P0, |q|) denotes a two-component vector with elements F̄M
α (P0, |q|). Similarly to 

the case of the two-point function, only the poles of the TL(P0)-matrix contribute to the integral. 
Integrating over P0, one gets

�M(x0,p) = V−1/2

64π2E2
n

∑
n

e−Enx0

2∑
α,β=1

[Xαpα(En)τ
−1
α (En)fα(En)]

× [pβ(En)τ
−1
β (En)fβ(En)F̄

M
β (En, |q|)]. (43)
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Comparing this formula with Eq. (41) and using Eq. (39), we arrive at the final result:

|FM(En, |q|)| = V−1

8πE

∣∣p1τ
−1
1 f1 F̄M

1 + p2τ
−1
2 f2 F̄M

2

∣∣∣∣∣∣
E=En

. (44)

The last step that needs to be done is to relate the above defined quantities F̄M
1 , F̄M

2 to the 
(infinite-volume) decay amplitudes AM

1 (B → πKl+l−) and AM
2 (B → ηKl+l−) through the 

two-channel Watson theorem. After summing up the two-particle reducible diagrams in the infi-
nite volume, one gets

AM = (1 − V G)−1F̄M, (45)

or

AM = T V −1F̄M, (46)

where the Lippmann–Schwinger equation has been used. We obtain:

AM
1 = 1√

p1
(uM

1 cεe
iδ1 − uM

2 sεe
iδ2), AM

2 = 1√
p2

(uM
2 cεe

iδ2 + uM
1 sεe

iδ1), (47)

where

uM
1 = (

√
p1cεF̄

M
1 + √

p2sεF̄
M
2 ) cos δ1, uM

2 = (
√

p2cεF̄
M
2 − √

p1sεF̄
M
1 ) cos δ2. (48)

We have arrived at the two-channel analog of the Lellouch–Lüscher formula for the B → K∗
transition. Note that, writing Eq. (44) in terms of the amplitudes uM

1 , uM
2 , one obtains the ex-

pressions similar to ones given in Ref. [39]. Later, we will consider the limit of this result, when 
the K∗ resonance is infinitely narrow.

Hence, in the two-channel case, two quantities F̄M
1 , F̄M

2 and their relative sign have to be de-
termined from one equation, whereas in the one-channel case, only one quantity for one equation 
was involved. Consequently, one needs at least three different measurements at the same energy. 
This involves the extraction of the excited energy levels (see Ref. [39]). An alternative would 
be to measure the same energy level in asymmetric volumes of type yL × yL × L′ for different 
values of parameter y and L′ fixed. Also, as long as one does not insist on keeping the variable 
|q| fixed and is ready to perform a two-variable fit for the quantities F̄M

α , (partial) twisting in 
the s-quark or boosts can be applied. Then, the spectrum becomes dependent on the value of the 
twisting angle and/or the boost momentum. Although this option appears to be promising [69], 
the (potentially large) S- and P-wave mixing is inevitable in this case.

4. Form factors at the K∗ resonance pole

The current matrix elements involving resonances have the proper field-theoretical meaning 
only if they are analytically continued to the resonance pole position. The advantage of such a 
definition is that it is process-independent. On the other hand, the definition based on the Breit–
Wigner parameterization is, generally, not free of process- and model-dependent ambiguities, 
since the non-resonant background is unknown.

4.1. Effective-range expansion

The first step towards the pole extraction of the B → K∗ form factors consists in the deter-
mination of the K∗ resonance position. As is well known, the resonances are associated with 
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complex poles of the scattering amplitude T on unphysical Riemann sheets in the energy plane 
(s plane). The T -matrix itself is analytic on the whole plane except for cuts and poles. Here we 
will assume that all distant singularities from the pole do not affect the determination of its posi-
tion. Thus, from the analytic structure of the functions p1(E), p2(E), Eq. (20), the only relevant 
singularities for our purpose are two cuts, which run from branch points at the threshold energies 
E1 = mK + mπ and E2 = mK + mη, respectively, along the positive axis to infinity. The imag-
inary parts of the pα(s), α = 1, 2, change the sign, when one goes from one sheet to another 
through these cuts. The four Riemann sheets are classified according to the signs of Imp1 and 
Imp2 (see, e.g., Ref. [70]). For example, on the sheet II one has Imp1 < 0 and Imp2 > 0, etc.

Further, it is convenient to formulate the problem in the K-matrix formalism. The l = 1
partial-wave amplitude T is defined in terms of K-matrix as follows:

T = (8π
√

s)(K−1 − iP )−1, (49)

where P = diag(p1, p2) is a diagonal matrix. A comparison of this equation with Eq. (21) leads 
to the conclusion that the K-matrix is proportional to the potential V :

K = (8π
√

s)−1V. (50)

The poles of the scattering amplitude T appear as the complex solutions of the secular equation, 
which we write as

det(PK−1P − iP 3) = 0. (51)

The explicit form of this equation is different on each Riemann sheet. For instance, if one is 
interested in the solutions on the sheets II and III, then the matrix P must be chosen as PII =
diag(−p1, p2) and PIII = diag(−p1, −p2), respectively. The change of sign of momenta p1
and/or p2 is equivalent to the transition from one sheet to another.

The analytic properties of the K-matrix ensure that the PK−1P function obeys a polynomial 
expansion of the form (see Refs. [70,71])

PK−1P = A + B(E − E0) + · · · , (52)

where E0 is an arbitrary point on the real axis, around which the Taylor expansion is made. The 
formula Eq. (52) is a multi-channel generalization of the well-known effective-range approxima-
tion [72]. Its additional advantage is the freedom to choose the value of the energy E0: one does 
not need to start the expansion at threshold energies, as it is usually done. Consequently, the con-
vergence of the series in Eq. (52) could be substantially improved. Also, the analytic continuation 
to the resonance pole position will not be spoiled by the presence of the distant singularities. This 
expansion, in particular, might be useful in case of the ρ resonance, when lattice simulations are 
performed at nearly physical quark masses.

In principle, one could also expand the K-matrix, see, e.g., Refs. [70,73]. However, such an 
expansion contains pole terms, which makes the fitting to data more complicated, although not 
impossible. In fact both parameterizations of the K-matrix have been recently used in the lattice 
study of the resonances in the coupled πK–ηK system [35,36].

The procedure to determine the resonance pole position consists in the following steps:

a) The K-matrix is numerically extracted on the lattice, by applying the Lüscher approach;
b) The parameters A, B, . . . are fitted to lattice data;
c) Eq. (51) is solved on each unphysical Riemann sheet. The complex solution, which is nu-

merically closest to the πK, ηK thresholds is identified with the K∗ resonance pole.
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Next, we assume that the K∗ resonance is located on the sheet II. Other cases can be studied 
along the same lines.

4.2. Pole extraction of the form factors

We proceed with the evaluation of two- and three-point functions in the infinite volume. Af-
terwards, the result will be analytically continued to the resonance pole. The two-point function 
in Minkowski space is given by

i 〈0|T [O(x)O†(y)]|0〉 =
∫

d4P

(2π)4
e−iP (x−y)D(P 2), (53)

where the function D(P 2) reads

D(P 2) = XT [GII (s) + GII (s)TII (s)GII (s)]X. (54)

Here, P 2 = s and the loop function GII (s) is chosen as

GII (s) =
(− ip1

8π
√

s
0

0 ip2
8π

√
s

)
. (55)

The form of the GII guaranties that the scattering amplitude T , which is obtained from the 
Lippmann–Schwinger equation,

TII = (V −1 − GII )
−1, (56)

has poles on the sheet II. The simplest way to determine the TII -matrix is to make the replace-
ments τ1 → −i, τ2 → +i in Eqs. (33), (34). We get

TII = 8π
√

s

h(E)

(
1
p1

[t1(1 − it2) + s2
ε t] − 1√

p1p2
cεsεt

− 1√
p1p2

cεsεt
1
p2

[t2(1 + it1) − s2
ε t]

)
, (57)

where the quantity h(E) is given by

h(E) ≡ (t1 − i)(t2 + i) + 2is2
ε (t2 − t1). (58)

The resonance pole position E = ER ≡ √
sR is obtained from the equation

h(ER) = 0. (59)

Inverting the integral Eq. (53) and performing the integration over all variables, we get

D(P 2) = ZR

sR − P 2
, (60)

where ZR is the (complex) wave-function renormalization constant of the resonance. From 
Eq. (60) it follows that

ZR = lim
P 2→sR

(sR − P 2)D(P 2). (61)

On the other hand, the T (s)-matrix on the second Riemann sheet has a pole at P 2 = sR . In 
the vicinity of the pole, one has

T
αβ
II (s) = hαhβ

sR − P 2
+ · · · . (62)
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Here, the quantities h1, h2 are given by

h2
1 = −8π

√
s

p1

2E(t2 + i − s2
ε t)

h′(E)

∣∣∣∣
E=ER

, h2
2 = −8π

√
s

p2

2E(t1 − i + s2
ε t)

h′(E)

∣∣∣∣
E=ER

, (63)

where h′(E) ≡ dh(E)/dE. Consequently, we obtain the renormalization constant ZR:

ZR = − 1

64π2E2
R

[ 2∑
α=1

(−1)α Xαpα(ER)hα(ER)

]2

. (64)

The calculation of the three-point function in the infinite volume proceeds in a similar manner. 
One gets

i 〈0|T [O(x)JM(0)]|B(p)〉 =
∫

d4P

(2π)4
e−iP x�M(P,p), (65)

where the quantity �M(P, p) in the frame P μ = (P0, 0), pμ = (

√
m2

B + q2, q) reads

�M(P,p) = XT [GII (s) + GII (s)TII (s)GII (s)]F̄M(P0, |q|). (66)

Further, recall that the irreducible amplitudes F̄M
α (P0, |q|), α = 1, 2, are analytic functions in 

the complex energy plane. Then, following Refs. [74,75], in which the case of matrix elements 
between the bound states has been first studied, we define the current matrix elements at the 
resonance pole as

FM
R = lim

P 2→sR

Z
−1/2
R (sR − P 2)�(P,p). (67)

Using Eqs. (62), (66), (67), we arrive at the final result:

FM
R (ER, |q|) = − i

8πE

(
p1h1F̄

M
1 − p2h2F̄

M
2

)∣∣∣∣
E=ER

. (68)

Note that one still has an overall sign ambiguity in this formula. The corresponding form factors 
can be read off from Eq. (13), in which the kinematic factors are low-energy polynomials.

In order to reproduce the one-channel result of Ref. [31], the mixing between the channels 
should be neglected. Then, h(E) takes the form

h(E) = (t1 − i)(t2 + i). (69)

So, one has at the pole position either t1(ER) = +i or t2(ER) = −i. Consider, for instance, the 
first alternative t1(ER) − i = 0. The derivative h′(E) at E = ER reads

h′(ER) = (t2(ER) + i)t ′1(ER), (70)

so that the quantities h1, h2 are given by

h2
1 = − 16πE2

p1t
′
1(E)

∣∣∣∣
E=ER

, h2
2 = 0. (71)

Consequently, from Eq. (68) we obtain

FM
R (ER, |q|) =

√
p1

4π t ′1(E)
F̄M

1 (E, |q|)
∣∣∣∣
E=ER

. (72)

A similar formula holds for the Kη channel.
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Fig. 3. The factorization of the amplitudes at the resonance pole (see Fig. 2 for notations). The photon virtuality, given 
by Eq. (73), is complex.

4.3. Photon virtuality

The analytic continuation to the resonance pole yields the quantity FM
R (ER, |q|). Below, we 

would like to briefly discuss a few conceptual issues, related to the interpretation of this quantity. 
Namely, we wish to know:

• What is the photon virtuality q2 for the resonance form factor, extracted at the pole?
• How should one compare with the experimental results?

In the literature, different statements have been made on this issue so far. We think that a clarifi-
cation is needed at this point.

According to the procedure, which is proposed in the present paper (see also Ref. [31]), the 
finite-volume matrix element is measured at different two-particle energies En(L) and a fixed 
value of |q|. After that, an analytic continuation is performed to the complex resonance pole, 
keeping |q| fixed. Further, the photon virtuality becomes complex at the pole

q2 =
(

ER −
√

m2
B + q2

)2

− q2 . (73)

On the other hand, in Refs. [47,48], where the ρ → πγ ∗ transition form factor is considered, 
the authors simultaneously parameterize the energy- and q2-dependence of the measured matrix 
element by some phenomenological fit function and perform the analytic continuation to the 
complex value of energy at a fixed q2. The quantity q2 is taken real at the pole.

Having two different procedures for the determination of the matrix element at the pole, it 
seems that the result is not unique. In order to show that the form factor can be uniquely defined, 
we note that the residue of the full amplitude at the pole should factorize in the product of the 
resonance form factor and the vertex, describing the transition of a resonance into the final state, 
see Fig. 3. The background becomes irrelevant, which leads to the determination of the form 
factor at the pole in a process-independent manner. From this figure it is clear that the photon 
virtuality, defined through the use of the 4-momentum conservation, coincides with the one given 
in Eq. (73) and thus must be complex. One could of course consider the electroproduction ampli-
tude at a different (even at a real) photon virtuality as well. However, in this case, the background 
does not vanish completely, so the continuation to the pole does not make sense, since the result 
is process-dependent anyway. It should be stressed that this argument equally holds both in the 
analysis of the data from the electroproduction experiments as well as for the results of lattice 
QCD simulations.

Another argument addresses the analytic properties of the amplitudes which are extrapolated 
into the complex plane. We have shown that the irreducible amplitudes are low-energy poly-
nomials in the vicinity of a resonance in the CM energy E, if the photon 3-momentum |q| is 
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fixed (see Ref. [31]). This fact implies that the analytic continuation to the complex energies is 
robust. To the best of our knowledge, no such statement exists in case of the function of two 
independent variables E, q2 that might render the analytic continuation unstable. It remains to 
be seen, whether the information about the analytic properties of the form factors in the variable 
q2 can be reasonably included. This could greatly constrain the fit and would be very useful in 
the analysis of the presently available data, which correspond to different values of q2 (see, e.g., 
Refs. [47,48]).

5. Infinitely narrow width

In this section, for illustrative purposes, we consider the case of a resonance with an infinitely 
narrow width having in mind the hypothetical case of a K∗ pole located above the ηK threshold 
with a very small width. The arguments follow the path of Ref. [31], where the same problem 
has been considered in case of the elastic scattering (see also Ref. [42]). It has been shown there 
that, in the limit of the infinitely narrow width, the matrix element, measured on the lattice, coin-
cides with the infinite-volume resonance form factor up to a constant, which takes into account 
the difference between the normalization of the one- and two-particle states in a finite volume. 
However, the multi-channel case is more subtle, since different two-particle states occur, and the 
relation between the infinite- and finite-volume matrix elements becomes obscure. Still, as we 
will see, the final result has exactly the same form as in the one-channel problem.2

We start with the two-body potential from Eq. (23), which can be written in the following 
form

V = 8π
√

sP −1/2OṼ OT P −1/2 , (74)

where

P = diag (p1,p2) , Ṽ = diag (t1, t2) , O =
(

cε −sε
sε cε

)
. (75)

Suppose that the resonance behavior near the (real) energy E = E0 emerges in the quantity 
t1 = tan δ1, whereas the quantity t2 stays regular in this energy interval. Then, in the vicinity of 
E = E0, one can write

δ1(E) = δR(E) + φ(E) , tan δR(E) = �0/2

E0 − E
, (76)

and assume that a (small) background phase φ(E) stays regular. Further, one may straightfor-
wardly ensure that

cot δ1(E) = EBW − E

�/2
+ · · · , (77)

where

EBW = E0 − �0

2
tanφ(EBW) ,

�

2
= �0

2
(1 + tan2 φ(EBW)) . (78)

This shows that, in the vicinity of a narrow resonance, one can always get rid of the background 
phase by a redefinition of the resonance parameters. We note that the second background phase 

2 Inadvertently, in Ref. [31], the factor V−1/2 was missing on the right-hand side of the counterpart of Eq. (42).
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still remains. The quantities EBW and � are the Breit–Wigner mass and width of the (narrow) 
resonance.

In the vicinity of a narrow resonance, the scattering amplitude Eq. (19), which can be repre-
sented on the first Riemann sheet as

T = 8π
√

sP −1/2OT̃ OT P −1/2, T̃ = diag (eiδ1 sin δ1, e
iδ2 sin δ2), (79)

becomes

Tαβ = bαbβ

sBW − s − i
√

sBW �
+ regular terms at E → EBW , (80)

where sBW = E2
BW . Here, the quantities b1, b2 are given by

b1 =
√

8πsBW�

p1
cε , b2 =

√
8πsBW�

p2
sε , (81)

and the regular terms emerge from the contribution of t2.
In order to find a complex pole on the second Riemann sheet, one has to solve the secular 

equation, Eq. (59), h(ER) = 0. Recalling that t1, t2 are single-valued functions and using the 
explicit representation of t1 from Eq. (77), at E = ER we get

t1(ER) = �/2

EBW − ER

= i(t2 + i) − 2is2
ε t2

t2 + i − 2is2
ε

∣∣∣∣
E=ER

. (82)

5.1. Real axis

On the real energy axis, one can introduce the infinite-volume quantities (“form factors”), 
which parameterize the imaginary parts of the decays amplitudes AM

1 , AM
2 in the vicinity of the 

Breit–Wigner resonance. We denote these volume-independent matrix elements as FM
A (E, |q|). 

In analogy to the one-channel case (see, e.g. Refs. [33,34,42]), we consider the resonance ex-
change mechanism at tree level, as shown in Fig. 4. Consequently, the amplitudes AM

1 , AM
2 near 

E = EBW read

AM
α (E, |q|) = bαFM

A (EBW , |q|)
E2

BW − E2 − iEBW�
+ · · · , α = 1,2, (83)

where the ellipses stand for the terms emerging from the regular contributions in Eq. (80). Setting 
further E = EBW , we get the imaginary parts of the AM

α

ImAM
1 (EBW , |q|) =

√
8π

p1�
FM

A (EBW , |q|)cε + O(1) ,

ImAM
2 (EBW , |q|) =

√
8π

p2�
FM

A (EBW , |q|)sε + O(1) . (84)

Note that the leading terms in this expression are of order �−1/2, and the sub-leading O(1) terms 
emerge from the regular contributions.

Further, comparing Eqs. (47) and (84), we see that the following condition has to be satisfied 
at the Breit–Wigner pole E = EBW :

uM
2 (EBW , |q|) = O(1), (85)
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Fig. 4. Decay amplitudes AM
α , α = 1, 2, in the vicinity of the infinitely narrow K∗ . The quantities bα, α = 1, 2, denote 

the couplings of the K∗ to the respective channels at E = EBW .

while for the amplitudes uM
1 (EBW , |q|) one has

uM
1 (EBW , |q|) = √

p1cε ImAM
1 (E, |q|)∣∣

En→EBW
+ √

p2sε ImAM
2 (E, |q|)∣∣

En→EBW
, (86)

or

uM
1 (EBW , |q|) =

√
8π

�
FM

A (EBW , |q|) + O(1) = O(�−1/2) . (87)

Consequently, in the limit � → 0, the leading contribution to the AM
α comes from uM

1 .
However, the amplitudes uM

α , α = 1, 2 are not low-energy polynomials in the vicinity of E =
EBW . In order to establish quantities, which have such a property, we first note that in case of 
a very narrow resonance, the function cotδ1(E) is a polynomial in E (see Eq. (77)). It can be 
further assumed that the mixing parameter sε(E) and cot δ2(E) are also low-energy polynomials 
in the vicinity of the resonance. Furthermore, even if the radius of convergence of the modified 
effective range expansion, Eq. (52), is assumed to be much larger than the width �, it is still 
limited from above by the distance to the nearest threshold. Since the limit � → 0 is considered 
here, it is natural to assume that the mixing parameter sε(E) and cot δ2(E) are also low-energy 
polynomials in the vicinity of the resonance. It is then straightforward to check that the functions

ũM
α = uM

α

sin δα

(88)

are low-energy polynomials. Indeed, the irreducible amplitudes F̄M
α , α = 1, 2, diverge at E =

EBW , due to the propagation of the bare K∗ in the s-channel (see Ref. [31]). According to 
Eqs. (48) and (88), this divergence is exactly canceled in the amplitudes ũM

α , α = 1, 2. Conse-
quently, they can be safely expanded in the vicinity of the narrow resonance. This property, in 
particular, is important, if one considers an analytic continuation into the complex plane.

Rewriting the two-channel Lellouch–Lüscher formula in terms of ũM
α , we get

∣∣FM(En, |q|)∣∣ = V−1

√
8πE

(
a1ũ

M
1 + a2ũ

M
2

)∣∣∣∣
E=En

, (89)

where the quantities a1, a2 are given by

a2
1 = t2

1
t2 + τ2 − s2

ε (τ2 − τ1)

f ′(E)

∣∣∣∣
E=En

,

a2
2 = t2

2
t1 + τ1 + s2

ε (τ2 − τ1)

f ′(E)

∣∣∣∣
E=En

. (90)

Evaluating the quantities a1, a2 in the limit of the infinitely narrow width is somewhat less triv-
ial than in the one-channel case. In order to proceed further here, let us first recall the line 
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of reasoning used in the one-channel case. In this case, the Lüscher equation has a simple 
form

δ1 + ϕ1 = nπ , n ∈ Z , tanϕ1 = τ1 . (91)

For sufficiently small �, this equation will have a solution at En = EBW +O(�). At this energy, 
the quantities t1, τ1 are of order O(1). However, the derivatives of t1 and τ1 behave differently 
at En → EBW . One has t ′1 = δ′

1/ cos2 δ1 and τ ′
1 = ϕ′

1/ cos2 ϕ1, where cos2 δ1 = cos2 ϕ1, due to 
the Lüscher equation. According to Eq. (77), the derivative of the phase shift δ1 diverges as �−1

whereas ϕ′
1 stays finite as En → EBW , since it is a kinematical function that does not contain 

any small scales of order �. Consequently, as En → EBW and � → 0, one may neglect τ ′
1 as 

compared to t ′1.
A similar argument can be carried out in the two-channel case, rewriting the Lüscher equation 

in the form

δ1 + ϕ1 = nπ , tanϕ1 = τ1(t2 + τ2) + s2
ε t2(τ2 − τ1)

t2 + τ2 − s2
ε (τ2 − τ1)

. (92)

The function ϕ1 is not purely kinematical as it contains t2. However, it still does not contain small 
scales of order �. Consequently, the derivatives of ϕ1 are finite and the quantities τ ′

1, τ
′
2 are of 

order O(1), while t ′1 = O(�−1).
Next, retaining only the most divergent terms in f ′(En) at En → EBW , one gets

f ′(En → EBW) = t ′1
(
t2 + τ2 − s2

ε (τ2 − τ1)
)∣∣

En→EBW
+ · · · . (93)

Consequently, the quantities a2
1, a2

2 take the values

a2
1 = t2

1

t ′1

∣∣∣∣
En→EBW

= �

2
+ O(�2),

a2
2 = t2

2

t ′1
t1 + τ1 + s2

ε (τ2 − τ1)

t2 + τ2 − s2
ε (τ2 − τ1)

∣∣∣∣
En→EBW

= O(�). (94)

Hence, it follows that the leading contribution to the matrix element FM(En, |q|) in the limit 
� → 0 comes only from the term, proportional to ũM

1 , whereas the second term is sub-leading. 
As a result, we obtain

∣∣FM(En, |q|)∣∣ = V−1

√
2En

∣∣FM
A (En, |q|)∣∣ + O(�1/2), En = EBW + O(�). (95)

As seen, the Lellouch–Lüscher formula has a fairly simple form in the vicinity of the Breit–
Wigner resonance: the infinite-volume quantities FM

A (EBW , |q|) are equal to the current matrix 
elements FM(EBW , |q|), measured on the lattice, up to a normalization factor (note that, in 
Ref. [31], a different normalization of the states has been used). The form factors can be found 
from Eq. (13).

5.2. Complex plane

The values of the form factors at the resonance pole in the infinitely narrow width limit can be 
determined along the same lines, as discussed above. We again express the final result Eq. (68)
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through the amplitudes ũM
1 , ũM

2 to get

FM
R (ER, |q|) = 1√

4π

(
r1ũ

M
1 + r2ũ

M
2

)∣∣
E=ER

. (96)

Here, the quantities r1, r2 read

r2
1 = t2

1
t2 + i − 2is2

ε

h′(E)

∣∣∣∣
E=ER

,

r2
2 = t2

2
t1 − i + 2is2

ε

h′(E)

∣∣∣∣
E=ER

. (97)

Since the functions ũM
α are low-energy polynomials in the vicinity of the Breit–Wigner pole, one 

can analytically continue them from the real axis to the pole. Consequently, in the limit � → 0, 
their values at the pole and at the real axis are equal, up to the terms of order O(�). We note that 
this procedure cannot be applied to the uM

α . Calculating the quantities r1, r2 at ER → EBW , we 
get

r2
1 = t2

1

t ′1

∣∣∣∣
ER→EBW

= �

2
+ O(�2) ,

r2
2 = t2

1

t ′1
t2 + i − 2is2

ε

t1 − i + 2is2
ε

∣∣∣∣
ER→EBW

= O(�). (98)

As on the real axis, the leading contribution to the FM
R is dominated by the ũM

1 term in Eq. (96). 
The final expression takes the form

FM
R (ER, |q|)∣∣

�→0 = FM
A (EBW , |q|) + O(�1/2). (99)

As expected, for infinitely narrow resonance, the form factors FM
A (E, |q|) and FM

R (E, |q|), de-
fined on the real energy axis and complex plane, respectively, coincide.

6. Conclusions

In this work, we have studied the extraction of the B → K∗ transition form factors on the 
lattice. We have taken into account, in particular, the possible admixture of the ηK to πK final 
states. To this end, we have applied the non-relativistic effective field theory in a finite volume 
and reproduced the two-channel analogue of the Lellouch–Lüscher formula, which allows to 
extract the B → K∗l+l− decay amplitude in the low-recoil region.

Since the K∗ is a resonance, the corresponding current matrix elements are properly defined 
and free of process-dependent ambiguities only if the analytic continuation in the complex energy 
plane to the resonance pole position is performed. Consequently, we have set up a framework for 
the determination of the form factors at the K∗ pole. This is a generalization of the one-channel 
formula, which has been derived in Ref. [31]. In addition, we have discussed in detail the consis-
tent determination of the photon virtuality at the resonance pole.

Finally, we have considered the limit of an infinitely small width in our results. The equations 
in the multi-channel case are more involved and this limit cannot be performed in a straight-
forward manner. Nevertheless, we have demonstrated that, even in the multi-channel case, the 
current matrix element measured on the lattice is equal to the one in the infinite volume, up to a 
normalization factor that does not depend on the dynamics. This result represents a useful check 
of our framework.
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Appendix A. The B → K∗ form factors in rest frame of the B meson

Since the πK–ηK system is in the P-wave, it is preferable to extract the finite-volume energy 
spectrum in the reference frame, in which the K∗ has non-zero 3-momentum. Consequently, as 
an alternative to the case considered in the main text, we also consider the following kinematics:

p = 0, k = −q = 2π

L
d, d = (0,0, n) . (A.1)

The current matrix elements of Eq. (13) in this moving frame take the form

〈V (k,+)|J (+)|B〉 = −2imB |q|V (q2)

mB + mV

,

〈V (k,0)|i(mB − EV )JA + |q|J (0)
A |B〉 = −2imB |q|A0(q

2),

〈V (k,+)|J (+)
A |B〉 = −i(mB + mV )A1(q

2),

〈V (k,0)|i(mB − EV )J
(0)
A − |q|JA|B〉 = 8mBmV A12(q

2),

〈V (k,+)|i(mB − EV )I (+) + |q|I (+)
0 |B〉 = 2imB |q|T1(q

2),

〈V (k,+)|i(mB − EV )I
(+)
A + |q|I (+)

0A |B〉 = −i(m2
B − m2

V )T2(q
2),

〈V (k,0)|I (0)
A |B〉 = − 4mBmV

mB + mV

T23(q
2), (A.2)

where EV =
√

m2
V + q2 is energy of the K∗ meson, which is treated as a stable particle. As 

seen from Eq. (A.1) (see, e.g., also Ref. [60]), the matrix elements should be measured in the 
irreps E and A1 of the little group C4v . However, because K∗ is not at rest now, the S- and 
P-waves mix in the irrep A1. Consequently, only the form factors V , A1, T1, and T2 could be 
extracted by applying formulas that are similar to the ones given in the previous sections. For 
other form factors A0, A12, T23 one should either assume that the mixing is small, or use more 
general equations, derived in Ref. [41], which include it.

Further, one applies the following operators to create the states 〈V (k, ±)|, 〈V (k, 0)| from the 
vacuum:

O(±)
E (k, t) = 1√

2

∑
x

eikx(O1(x, t) ∓ iO2(x, t)
)
, O(0)

A1
(k, t) =

∑
x

eikxO3(x, t). (A.3)

When the K∗ becomes unstable, the mass mV should be replaced by the CM energy value E∗
n

of the two-particle state in a finite volume. Then, the matrix elements Eq. (A.2) are functions of 
E∗

n and |q|. Analogously, in order to keep |q| fixed at different values of energy E∗
n , one could 

resort to asymmetric volumes of type L × L × L′ or twist the s-quark.
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CHAPTER 4

Low-energy nucleon Compton scattering

4.1 Summary

The main objective of the work is to test the Reggeon dominance hypothesis by means of lattice
simulations. The existence of the so-called fixed pole in the nucleon Compton scattering amplitude
is still an open question. For that purpose, one has to determine the relevant subtraction function in
forward doubly virtual Compton scattering. A comparison of the result with its recent phenomenological
determination, based on the aforementioned hypothesis, will shed more light on the issue. Also, one
might obtain a better constraint on the two-photon exchange contribution to the Lamb shift in muonic
hydrogen.

The external field method provides a feasible approach to investigate the low-energy Compton scatter-
ing on the lattice. The obtained results can be summarized as follows:

• An appropriate external magnetic field configuration is found, which is suitable for the extraction
of the subtraction function at nonzero photon virtuality.

• The energy shift of a nucleon in a static periodic magnetic field is calculated in the non-relativistic
EFT. It is shown that the second-order correction in the external field strength is proportional to
the value of the subtraction function.

• The practical applicability of the result is discussed. The upper bound on the magnetic field
strength and the lower bound on the value of the photon virtuality are estimated.
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I. INTRODUCTION

The doubly virtual Compton scattering process has
several important phenomenological implications at low
energies. The analysis of the proton-neutron mass differ-
ence1 [3–6] relies on the knowledge of the relevant spin-
independent invariant amplitudes T1 and T2. The same
amplitudes appear in the study of the Lamb shift in the
muonic hydrogen (see, e.g., Refs. [7–9]).
The experimental data on the structure functions com-

pletely determine the amplitude T2. However, they do not
fix the subtraction function S1 in the dispersion relation for
the amplitude T1. This function depends on the photon
virtuality q2. The low-energy theorem establishes a relation
between the value of the S1ðq2Þ at q2 ¼ 0 and the magnetic
polarizability of the nucleon. Further, the asymptotic
behavior of this function for large spacelike q2 is fixed
by the operator product expansion in QCD [6,10,11]. The
behavior of the function at intermediate values of q2 is,
however, completely arbitrary. Earlier calculations of the
forward Compton scattering amplitude within chiral effec-
tive field theories at low photon virtualities have been
carried out in Refs. [12–15]. The latest calculations of the
quantity S1 are contained in Refs. [7,9,16–19]. The con-
vergence of the chiral expansion is, however, questionable
even at very low q2. Further, several authors have used
phenomenological parametrizations of the function S1 in
their calculations [5,6,8]. Unfortunately, this introduces a
systematic uncertainty in the calculated observables that is
very hard to control.
An interesting possibility to determine the subtraction

function S1 was discussed in Refs. [3,4]. If the forward
scattering amplitude does not contain any so-called fixed
pole (this issue is related to the so-called Reggeon
dominance hypothesis), then S1ðq2Þ for all q2 < 0 is

uniquely determined by the dispersion integral over the
electroproduction cross sections in the physical region.
Therefore, if one could calculate the function S1ðq2Þ
directly and compare with the result obtained by using
the Reggeon dominance hypothesis, in principle one would
be able to answer a question, whether a fixed pole is present
in the forward Compton amplitude or not (for the recent
phenomenological evaluation of S1, see Refs. [4,20,21]).
For instance, note that the universality hypothesis, stated in
Ref. [22], does not exclude the presence of a fixed pole
in T1. Further, a calculation of S1ðq2Þ would allow one to
evaluate the proton-neutron electromagnetic mass shift
and the two-photon exchange contribution to the muonic
hydrogen Lamb shift in a manner devoid of any model
dependence. Hence, there is strong interest in a direct
calculation of the function S1ðq2Þ.
At present, lattice QCD is the only first-principle

approach capable of handling the above problem. There
are two ways to determine S1. In the first method, one
directly calculates the four-point function that describes
Compton scattering. This is a straightforward but computa-
tionally very demanding task. Until now, this approach has
been used in the computation of light-by-light scattering
[23], and also in the study of the long-distance effects in
rare kaon decays [24,25]. An alternative method is based
on the observation that the Compton scattering amplitude
can be inferred from the behavior of the nucleon two-point
function in the presence of a weak external electromagnetic
field. In recent years, the external field method has become
a powerful tool to study the electromagnetic properties
of the nucleon and light nuclei. In particular, it has been
used for the case of a constant and uniform magnetic field
[26–28]. Such a field configuration allows one to determine
the magnetic moments and magnetic polarizabilities
through the extracted energy shift induced by the magnetic
field. By applying nonuniform and time-dependent fields,
one can determine spin polarizabilities as well (see, e.g.,
Refs. [29,30]). Hence, the external field approach for the
calculation of S1 should be feasible in practice.

1Note that, recently, a substantial progress has been achieved in
the direct evaluation of this difference on the lattice [1,2]. A
comparison of different approaches provides constaints on the
behavior of the Compton amplitudes.
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In this paper, we demonstrate that measuring the energy
shift of a single nucleon state in a static periodic magnetic
field on the lattice enables one to determine the function
S1ðq2Þ at nonzero values of q2. Unlike a constant magnetic
field, which generates the harmonic oscillator potential and
Landau levels, in the present case the spectrum and the
eigenstates of the Hamiltonian can not be obtained ana-
lytically. Nevertheless, the energy is still conserved in the
static magnetic field and, as long as the potential remains
“small,” perturbation theory can be applied to the free
energy spectrum (there is a similar approach in solid-state
physics, which is called the nearly free electron model, and
more generally, the empty lattice approximation [31]). We
show that, at second order in the magnetic field strength,
the energy shift of the one-nucleon ground state is propor-
tional to the quantity S1ðq2Þ. The limits of applicability of
this perturbative expression are also discussed.

II. COMPTON SCATTERING

Let us start with the basic definitions. The Compton
scattering amplitude is given by

Tμνðp0; s0;p; s; qÞ ¼ i
2

Z
d4xeiq·xhp0; s0jTjμðxÞjνð0Þjp; si:

ð1Þ

Here, jμðxÞ denotes the electromagnetic current, q is the
four-momentum of the final photon, pðp0Þ and sðs0Þ are
the four-momenta and spins of the initial (final) nucleon,
respectively. Considering forward scattering p0 ¼ p and
performing the spin-averaging in Eq. (1), one arrives at

Tμνðp; qÞ ¼ 1

2

X
s

Tμνðp; s;p; s;qÞ: ð2Þ

The tensor Tμνðp; qÞ is related to the invariant
amplitudes T1, T2 through the expression (see, e.g.,
Refs. [4,32,33]):

Tμνðp; qÞ ¼ T1ðν; q2ÞKμν
1 þ T2ðν; q2ÞKμν

2 ; ð3Þ

where the kinematic structures Kμν
1 , Kμν

2 read

Kμν
1 ¼ qμqν − gμνq2;

Kμν
2 ¼ 1

m2
fðpμqν þ pνqμÞp · q − gμνðp · qÞ2 − pμpνq2g:

ð4Þ

Here, m is the nucleon mass and ν≡ p · q=m. The
subtraction function S1 is defined as

S1ðq2Þ ¼ T1ð0; q2Þ: ð5Þ

The quantity S1ðq2Þ can be split into the elastic and
inelastic parts (see, e.g., Ref. [4]). The elastic part is
singular at q2 → 0, whereas the inelastic part is regular
and is related to the nucleon magnetic polarizability at
q2 ¼ 0. Note that the quantity S1ðq2Þ is real, because in this
kinematical region there are no multi-particle singularities.
Indeed, introducing theMandelstam variable s¼ðpþqÞ2¼
m2þ2mνþq2, it is immediately seen that, for ν ¼ 0 and
q2 < 0, we have s < m2, meaning that one is below the
inelastic threshold.
It is well known that the Compton tensor given in Eq. (1)

can be obtained by expanding the two-point function of a
nucleon in an external electromagnetic field to second
order. Introducing the notation AμðxÞ for the external
potential, it is actually seen that the nucleon propagator
can be expanded as follows:

h0jTΨðxÞΨðyÞj0iA ¼ h0jTΨðxÞΨðyÞj0i0 þ
i
1!

Z
d4zAμðzÞh0jTΨðxÞΨðyÞjμðzÞj0i0

þ i2

2!

Z
d4zd4vAμðzÞAνðvÞh0jTΨðxÞΨðyÞjμðzÞjνðvÞj0i0 þ � � � : ð6Þ

Here, ΨðxÞ denotes the (composite) nucleon field
operator in QCD and the subscript “0” refers to the
quantities evaluated in QCD without any external field.
Note that Eq. (6) is written down for connected
matrix elements (the subscript “conn” is omitted
everywhere for brevity). Further, performing the Fourier
transform in Eq. (6), amputating the external nucleon legs,
and putting external nucleons on the mass shell, we see
that the nucleon electromagnetic vertex hp0; s0jjμð0Þjp; si
emerges at order A. At order A2, as already mentioned,
the scattering amplitude given in Eq. (1) is obtained from

the matrix element h0jTΨðxÞΨðyÞjμðzÞjνðvÞj0i0, and
so on.
On the other hand, since one is below the inelastic

threshold, one may describe the nucleon two-point function
within the nonrelativistic effective field theory as well,
matching the couplings of the effective Lagrangian to the
pertinent expressions in QCD. The advantage of this
approach will become apparent, when the energy spectrum
of a system in a finite box will be considered, as in the
nonrelativistic effective theory, the energy levels are
obtained by merely solving the Schrödinger equation.
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In the present work we consider the matching and the
subsequent calculation of the energy shift in a very con-
densed manner. A detailed treatment of these issues, as well
as a thorough study of the finite-volume spectrum of the
Hamiltonian with periodic potentials wil be the subject of a
separate publication [34]. In brief, the procedure looks as
follows. At the first stage, the matching of the relativistic and
nonrelativistic theories is carried out in the infinite volume.
The matching ensures that the on-shell coefficients in the
expansion of the two-point function up to and including
OðA2Þ are reproduced in the nonrelativistic theory. At the
next step, one uses the nonrelativistic Hamiltonian, whose
couplings are fixed through the matching, to calculate the
energy levels in a finite volume. Note that this procedure
is self-consistent, since the couplings of the effective
Hamiltonian encode solely the short-range physics that does
not get altered by placing the system in a large box.
Above, we have already written down the expansion of

the nucleon two-point function in the external field in QCD.
Now, we want to do the same in the effective theory. The
corresponding Lagrangian, which describes the gauge-
invariant interaction of the nucleon with an external
electromagnetic field, has the following general form:

Leff ¼ L0 þ L1 þ L2 þ � � � : ð7Þ

Here, L0 is the free nucleon Lagrangian (we remind the
reader that we are below the inelastic cuts),

L0 ¼ ψ†2Wði∂t −WÞψ ; W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −∇2

p
: ð8Þ

In the above expression, ψðxÞ is a two-component field
that describes the nonrelativistic nucleon. It is seen that
the relativistic dispersion relation for the energy of the
free nucleon with the three-momentum p, wð pÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
, is satisfied. Also, the factor 2W ensures that

the one-particle states have the relativistic normalization
(see, e.g., Refs. [35,36]).
Further, L1 is linear in the external field Aμ, L2 is

quadratic in Aμ, and so on. Note that L1 and L2 should
contain an infinite set of operators with an arbitrary
number of space derivatives, which act on the fermion
and external fields. This differs from the situation for
vanishing q2 (the pertinent Lagrangian is given, e.g., in
Ref. [29]). However, as we shall see, the infinite
number of terms will effectively sum up in a single
function.
Applying the equation of motion to eliminate the time

derivatives, and performing partial integration, L1 and L2

can be brought into the form

L1 ¼
X
m;n¼0

AμðxÞ½∂i1…∂inψ
†
s0 ðxÞ�Γi1…in;j1…jm;μ

s0s ½∂j1…∂jmψ sðxÞ�;

L2 ¼
X

l;m;n¼0

AνðxÞ½∂μ1…∂μlAμðxÞ�½∂i1…∂inψ
†
s0 ðxÞ�Πi1…in;j1…jm;μ1…μl;μν

s0s ½∂j1…∂jmψ sðxÞ�; ð9Þ

where Γi1…in;j1…jm;μ
s0s and Πi1…in;j1…jm;μ1…μl;μν

s0s denote low-energy constants. The Latin indices run from 1 to 3 (only space
derivatives), whereas the Greek indices run from 0 to 3. The derivatives in the square brackets act only on the function
within the brackets. Also, as a convention, the values m, n ¼ 0 correspond to no derivatives in Eq. (9).
The comparison of the two-point functions at OðAÞ, calculated in the different theories, leads to the matching

condition

X
m;n¼0

ð−ip0Þi1…ð−ip0ÞinðipÞj1…ðipÞjmΓ
i1…in;j1…jm;μ
s0s ¼ hp0; s0jjμð0Þjp; si: ð10Þ

The expression of the second derivative of the two-point function with respect to the external field in the effective theory
consists of two parts: the contribution from L2 and the nucleon pole term, denoted by Uμνðp0; s0;p; s; qÞ, which is obtained
by the insertion of two vertices L1. The latter can be expressed through the nucleon vertex (an explicit expression is given
below). The matching condition at OðA2Þ takes the form

X
l;m;n¼0

ð−ip0Þi1…ð−ip0ÞinðipÞj1…ðipÞjmðiqÞμ1…ðiqÞμlΠ
i1…in;j1…jm;μ1…μl;μν
s0s ¼ Tμνðp0; s0;p; s;qÞ −Uμνðp0; s0;p; s; qÞ:

ð11Þ

As can be seen, the low-energy constants of the effective field theory are uniquely fixed by the Taylor expansion of the
nucleon vertex and the Compton scattering amplitude in the external three-momenta.

NUCLEON IN A PERIODIC MAGNETIC FIELD PHYSICAL REVIEW D 95, 031502(R) (2017)

031502-3

RAPID COMMUNICATIONS



III. ENERGY SHIFT

Up to now, we have considered the problem in a generic
external field. We next limit ourselves to a static periodic
magnetic field of the form

B ¼ ð0; 0; B3Þ; B3 ¼ −B cosðωx2Þ; ð12Þ

where B denotes the strength of the field and the real
parameter ω takes nonzero values. The components of the
gauge field AμðxÞ read

A1 ¼
B
ω
sinðωx2Þ; A0 ¼ A2 ¼ A3 ¼ 0: ð13Þ

The parameter ω allows one to scan the virtuality of the
photon.
Since lattice simulations are performed in a finite spatial

volume, the magnetic flux is quantized [37]. Consequently,
the parameter ω can take only particular values (see, e.g.,
Refs. [38,39]),

ω ¼ 2πN
L

; N ∈ Znf0g; ð14Þ

whereas the field strength B is not quantized. Here, L
denotes the spatial size of the lattice. The quantization
condition Eq. (14) also guaranties the proper implemen-
tation of the magnetic field on a torus [38]. We note that,
for ω ≠ 0, there exists an alternative procedure that
implies the quantization of the field strength B instead
of ω [38]. In the present paper, however, we do not
consider this option.
The quantum-mechanical Hamiltonian, which acts on

the single-nucleon wave function as a differential operator,
can be straightforwardly derived from the effective
Lagrangian, Eq. (7). It is convenient to first rescale the
nucleon field,

ψð x; tÞ → 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð ∇Þp ψð x; tÞ: ð15Þ

The terms in the Hamiltonian can be again ordered,
according to the powers of Aμ:

H ¼ H0 þH1 þH2 þOðA3Þ: ð16Þ

For instance, the free Hamiltonian reads H0 ¼ Wð∇Þδs0s,
and so on. To the best of our knowledge, an analytic
solution of the Schrödinger equation in the periodic
magnetic field is not available in the literature. For this
reason, we resort to perturbation theory. The solutions
must obey periodic boundary conditions. Denoting
the Hilbert-state vector in the nonrelativistic theory,
corresponding to the unperturbed solution, by jkn; sii,
one has

hhxjkn; sii ¼
1

L3=2 e
i kn xχs; ð17Þ

where χs denotes a Pauli spinor and

wð knÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ k2

n

q
; kn¼

2πn
L

; n∈Z3: ð18Þ

These vectors are normalized, according to
hhkm; s0jkn; sii ¼ δmnδs0s.
Next, we evaluate the energy shift of the nucleon ground

state up to order A2. Since the unperturbed solution is
twofold degenerate due to the nucleon spin, one should use
perturbation theory for the degenerate states. First, one may
check that the first-order energy shift vanishes identically
for ω ≠ 0, since, in this case, hh0; sjH1j0; s0ii ¼ 0 due to
three-momentum conservation. Further, in order to deter-
mine the spin-averaged shift δE at second order, the
calculation of the diagonal matrix elements suffices,

δE ¼ 1

2

X
s

ðδE0
s þ δEs

00Þ; ð19Þ

where the first contribution (the nucleon pole term) emerges
from the second iteration of H1 and the second term is the
matrix element of H2. The explicit expressions are

δE0
s ¼

X
kn≠ 0

X
σ

hh 0; sjH1j kn; σiihh kn; σjH1j 0; sii
wð 0Þ − wð knÞ

;

δEs
00 ¼ hh0; sjH2j0; sii: ð20Þ

The calculation of these corrections is straightforward, and
we obtain

δE0
s¼

B2

8mω2
½FðωÞþFð−ωÞ�;

δEs
00 ¼−

B2

4mω2
½T11ð0;s;0;s; q̂Þ−U11ð0;s;0;s;q̂Þ�; ð21Þ

where ω ¼ ð0;ω; 0Þ, q̂ ¼ ð0;ωÞ and

FðωÞ ¼
X
σ

h 0; sjj1ð0Þjω; σihω; σjj1ð0Þj 0; si
2wðωÞðwð 0Þ − wðωÞÞ : ð22Þ

The crucial step in getting these formulas has been to apply
the matching conditions Eqs. (10) and (11). Note also that
here, having used thematching condition, we switched back
to the relativistic normalization of the state vectors.
It remains to calculate the quantity U11ð0; s; 0; s; q̂Þ.

Inserting a complete set of the one-nucleon states into the
pertinent matrix element and using the matching condition
Eq. (10) once more, we obtain

U11ð0; s; 0; s; q̂Þ ¼ −
1

2
½FðωÞ þ Fð−ωÞ�: ð23Þ
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Finally, adding everything together, we get a remarkably
simple formula for the spin-averaged energy shift

δE ¼ B2

4m
T1ð0;−ω2Þ þOðB3Þ

¼ B2

4m
S1ð−ω2Þ þOðB3Þ; ð24Þ

where the expression for the spin-averaged tensor Eq. (3)
has been explicitly used. This is the main result of the
present work. Note that the quantity S1 here is the full one
and not the inelastic part only.

IV. DISCUSSION AND CONCLUSIONS

The applicability of the formula Eq. (24) is limited for
several reasons. First, the strength of the magnetic field has
to be chosen sufficiently small, so that perturbation theory
provides a meaningful result. A necessary condition for this
is that the structure of the perturbed and the unperturbed
spectrum remains the same.
An estimate for the upper bound on the magnitude of B

can be obtained as follows. It can be straightforwardly
checked that using the periodic external field, Eq. (13),
in the Schrödinger equation leads to a periodic potential
with magnitude V0 ¼ e2B2=ð2mω2Þ and period d ¼ ω−1.
Considering a single period as a potential well, perturbation
theory is applicable, if the well is shallow enough, so that
no bound states are formed (in the periodic potential, the
band structure arises instead of the isolated energy levels).
Using, for simplicity, the known formula for the square well
gives the condition eB < 2ω2. Of course, this should only
be considered as a crude order-of-magnitude estimate of the
critical value of B. Note also that, from the point of view of
phenomenological applications, the region of the small ω2

(smaller than a few GeV2) is the most relevant one.
As seen from Eq. (24), the perturbative result is valid up

to terms of order B3. Albeit, in principle, it is possible to
give some crude estimate of the neglected terms by using
ChPT, it is important to note that the validity of the formula
can be checked a posteriori on the lattice—by ensuring that
the energy shift grows quadratically with B.
On the other hand, the value of B should be large enough

so that the energy shift δE is measurable. Moreover, the
accuracy of the extraction should be sufficient to allow for a
disentanglement of the inelastic and elastic contributions.
The latter is given by [4]

Sel1 ðq2Þ ¼ −
4m2

q2ð4m2 − q2Þ fG
2
Eðq2Þ −G2

Mðq2Þg; ð25Þ

where GE, GM denote the electric and magnetic form
factors, respectively. Further, the inelastic contribution at
q2 ¼ 0 is related to the magnetic polarizability by [4]

Sinel1 ð0Þ ¼ −
κ2

4m2
−
m
α
βM; ð26Þ

where κ denotes the anomalous magnetic moment of a
nucleon and α is the fine-structure constant. Experimental
values for the proton and neutron polarizabilities are βpM ¼
ð3.15� 0.50Þ × 10−4 fm3 [40] and βnM ¼ ð3.65� 1.50Þ ×
10−4 fm3 [41], respectively. As already mentioned, little is
known about the q2 dependence of S1ðq2Þ. For a crude
estimate, however, we assume that [4]

Sinel1 ðq2Þ ¼ Sinel1 ð0Þ
ð1 − q2=0.71 GeV2Þ2 : ð27Þ

Using now Eq. (24), it is immediately seen that the inelastic
shift δEinel obeys the following relation:

eB ¼
�
16παmδEinel

Sinel1 ðq2Þ
�

1=2
¼ c × jδEinelj1=2: ð28Þ

Taking now −q2 ¼ ω2
max ¼ 2 GeV2 as the upper bound

of the interval, we get a crude estimate of the coefficient
c ¼ 0.90 GeV3=2 for the proton and c ¼ 0.83 GeV3=2 for
the neutron. Note that, using a rather generous estimate
jδEinelj ¼ 0.05m, the bound Eq. (28) at −q2 ¼ ω2 is
comfortably consistent with the upper bound eB < 2ω2,
except very small values of ω2.
The total energy shift δE ¼ δEel þ δEinel can be much

larger than the inelastic shift alone, especially as ω2 is
small. As seen from Eq. (25), the elastic contribution
is singular as ω2 → 0, whereas the inelastic contribution
is regular. As an order-of-magnitude estimate, one may ask,
at what value of ω2 the magnitude of the inelastic contri-
bution amounts to a 10% of the singular piece of the elastic
contribution, which behaves like 1=ω2. The estimate gives
ω2
min ¼ 0.11 GeV2 for the proton and ω2

min ¼ 0.05 GeV2

for the neutron. Of course, setting a lower bound on the
ω2-interval critically depends on our ability to extract the
proton and neutron form factors on the lattice with high
accuracy. Note also that, even for the lowest value of ω2

min,
the quantity MπL is of order 4—in other words, the
calculations can be performed at the volumes which are
feasible at present (here, Mπ is the pion mass).
Another interesting issue is the study of the limit ω → 0.

In the present framework, this limit is singular and is
intertwined with the limit L → ∞. Indeed, recall that the
values of ω are quantized: ω ¼ 2πN=L. For nonzero values
of N, the limit ω → 0 thus implies L → ∞. In addition, the
Landau levels are bound even if L → ∞, which violates the
condition of the weak B field. We expect that the alternative
setting for the periodic magnetic field on the lattice
(quantized B, ω not quantized), see Ref. [38], which has
not been considered in the present paper, will be more
advantageous for studying the limit ω → 0. Also, this
different approach will allow one to continuously scan
the interval of interest in the variable q2. We plan to address
these and other issues in a forthcoming work [34].
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To summarize, our final expression, Eq. (24), enables
one to directly extract the subtraction function S1ðq2Þ from
the lattice measurement of the nucleon energy levels in a
periodic external magnetic field.
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4.2 Supplement

4.2 Supplement

This section provides the extended derivation of the formula for the energy shift of the nucleon ground
state given by Eq. (26) in the paper. There are several approaches to arrive at the final expression, and
two of them are discussed below. The open issues, which will be studied in the upcoming large paper, are
summarized at the end of the supplement.

Method I

The first method is based on the application of the non-relativistic EFT in a finite volume. It follows
closely the discussion of the original paper. The starting point is the quantum-mechanical Hamiltonian
which acts on the single-nucleon wave function as a differential operator. It is defined as the 00-component
of energy–momentum tensor:

ψ†Hψ =
∂Leff

∂(∂tψ)
∂tψ − g

00Leff . (4.1)

First rescaling the nucleon field, ψ→ [2W(∇)]−1/2 ψ in the non-relativistic effective Lagrangian and then
applying Eq. (4.1), one gets:

H = H0 + H1 + H2 + O(A3), (4.2)

where

H0 = W(∇)δs′s,

H1 = −
1

√
2W(∇)

∑
m,n=0

(−∂i1) . . . (−∂in) Γ
i1...in, j1... jm, µ
s′s Aµ(x)∂ j1 . . . ∂ jm

1
√

2W(∇)
,

H2 = −
1

√
2W(∇)

∑
l,m,n=0

(−∂i1) . . . (−∂in) Π
i1...in, j1... jm, µ1...µl, µν
s′s [∂µ1 . . . ∂µl Aµ(x)]Aν(x)

× ∂ j1 . . . ∂ jm
1

√
2W(∇)

. (4.3)

Here, the derivatives in the square brackets act only on the function within the brackets.

At the next step, degenerate perturbation theory is applied to determine the energy shift. The total
spin-averaged shift takes the form

δE = δE(1) + δE(2) + O(B3) , (4.4)

where δE(1) and δE(2) denote the first- and second-order term, respectively. The first-order correction
reads

δE(1) =
1
2

∑
s

〈〈0, s|H1|0, s〉〉 ≡
1
2

∑
s

∫ L

0
d3xψ(0)†

0,s (x)H1ψ
(0)
0,s(x) , (4.5)

where |kn, s〉〉 denotes the state vector in the non-relativistic theory that corresponds to the unperturbed
solution. Accordingly, the wave function ψ(0)

0,s(x) takes the form

ψ(0)
n,s(x) =

1
L3/2 eiknxχs . (4.6)
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Here, χs denotes the Pauli spinor. The general matrix element of the operator H1 is given by

〈〈p′, s′|H1|p, s〉〉 = −
1
L3

∫ L

0
d3x e−ip′x 1

√
2W(∇)

× (4.7)

×
∑

m,n=0

(−∂i1) . . . (−∂in) Γ
i1...in, j1... jm, µ
s′s Aµ(x)∂ j1 . . . ∂ jm

1
√

2W(∇)
eipx .

Integrating by parts, and using the fact that the electromagnetic potential Aµ(x) vanishes at the integration
limits because of the quantization condition for the ω, one obtains:

〈〈p′, s′|H1|p, s〉〉 = −
Ãµ(p − p′)

L3
√

4w(p′)w(p)

∑
m,n=0

(−ip′)i1 . . . (−ip′)in(ip) j1 . . . (ip) jmΓ
i1...in, j1... jm, µ
s′s . (4.8)

Here, Ãµ(q) denotes the Fourier transform of the field Aµ(x, 0),

Ãµ(q) =

∫ L

0
d3x eiqxAµ(x, 0), (4.9)

which explicitly reads

Ã1(q) =
B

2iω
L3[δq+ω − δq−ω], Ã0 = Ã2 = Ã3 = 0, ω = (0, ω, 0) , 0 . (4.10)

In this expression, the sum is precisely the same as in the matching condition at O(A),∑
m,n=0

(−ip′)i1 . . . (−ip′)in(ip) j1 . . . (ip) jmΓ
i1...in, j1... jm, µ
s′s = 〈p′, s′| jµ(0)|p, s〉. (4.11)

Accordingly, the matrix element of the operator H1 takes the value

〈〈p′, s′|H1|p, s〉〉 = −
〈p′, s′| jµ(0)|p, s〉
√

4w(p′)w(p)
1
L3 Ãµ(p − p′) . (4.12)

Setting p = p′ = 0 and s′ = s in Eq. (4.12), it is seen that the first-order correction to the energy shift
vanishes:

δE(1) = 0. (4.13)

As expected, this result follows from the three-momentum conservation at the vertex of the three-point
function.

The second-order contribution to the energy shift consists of two parts:

δE(2) =
1
2

∑
s

(δE′s + δEs
′′) , (4.14)

The first term emerges from the second iteration of the operator H1:

δE′s =
∑
kn, 0

∑
σ

〈〈0, s|H1|kn, σ〉〉〈〈kn, σ|H1|0, s〉〉
w(0) − w(kn)

. (4.15)

It is evaluated by using Eqs. (4.12) and (4.10),
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δE′s =
1

4m

( B
ω

)2 ∑
kn,0

∑
σ

〈0, s| j1(0)|kn, σ〉〈kn, σ| j1(0)|p, s〉
4w(kn)(w(0) − w(kn))

[
δkn+ω + δkn−ω

]
. (4.16)

The second term is given by the matrix element of the operator H2,

δE′′s = 〈〈0, s|H2|0, s〉〉 . (4.17)

One has:

〈〈p′, s′|H2|p, s〉〉 = −
1
L3

∫ L

0
d3x e−ip′x 1

√
2W(∇)

× (4.18)

×
∑

l,m,n=0

(−∂i1) . . . (−∂in) Π
i1...in, j1... jm, µ1...µl, µν
s′s [∂µ1 . . . ∂µl Aµ(x)]Aν(x) ×

× ∂ j1 . . . ∂ jm
1

√
2W(∇)

eipx . (4.19)

The integration leads to the expression

〈〈p′, s′|H2|p, s〉〉 = −
1

L3
√

4w(p′)w(p)
(4.20)

×
∑

l,m,n=0

(−ip′)i1 . . . (−ip′)in(ip) j1 . . . (ip) jmΠ
i1...in, j1... jm, µ1...µl, µν
s′s Iµ1...µl,µν ,

where the integral Iµ1...µl,µν reads

Iµ1...µl,µν =

∫ L

0
d3x [∂µ1 . . . ∂µl Aµ(x)]Aν(x) . (4.21)

This integral has a non-zero value for µ1 = · · · = µl = 2, µ = ν = 1 and for even l,

I2...2,11 =
L3

2

( B
ω

)2
(iω)l, l = 0, 2, . . . . (4.22)

Inserting this value into Eq. (4.20), one gets

〈〈p′, s|H2|p, s〉〉 = −
1

2
√

4w(p′)w(p)

( B
ω

)2
(4.23)

×
∑

l,m,n=0

(−ip′)i1 . . . (−ip′)in(ip) j1 . . . (ip) jm (iω) . . . (iω)︸        ︷︷        ︸
l copies

Π
i1...in, j1... jm, µ1...µl, 11
ss .

Further, using the matching condition at O(A2),∑
l,m,n=0

(−ip′)i1 . . . (−ip′)in(ip) j1 . . . (ip) jm(iq)µ1 . . . (iq)µlΠ
i1...in, j1... jm, µ1...µl, µν
s′s =

= T µν(p′, s′; p, s; q) − Uµν(p′, s′; p, s; q) , (4.24)

and setting p = p′ = 0 and s′ = s, the expression for the second energy correction δE′′s takes a compact
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form:

δE′′s = −
1

4m

( B
ω

)2 [
T 11(0, s; 0, s; q̂) − U11(0, s; 0, s; q̂)

]
, (4.25)

where q̂ = (0,ω).
It remains to determine the quantity U11(0, s; 0, s; q̂), which is a component of the Compton tensor

U11(0, s; 0, s; q̂) =
i
2

∫
d4xeiq̂·x〈〈0, s|T j1(x) j1(0)|0, s〉〉 . (4.26)

It is defined in the non-relativistic EFT, such that the completeness relation contains only the one-nucleon
states:

1
L3

∑
kn

∑
σ

|kn, σ〉〉〈〈kn, σ|

2w(kn)
= 1. (4.27)

Inserting this expression into Eq. (4.26) and using the property of the step function∫ ∞

−∞

dx0eip0 x0θ(x0) =
i

p0
, (4.28)

one obtains

U11(0, s; 0, s; q̂) =
i
2

∑
kn

∑
σ

{
iδkn−ω

〈〈0, s| j1(0)|kn, σ〉〉〈〈kn, σ| j1(0)|0, s〉〉
2w(kn)(w(0) − w(kn))

+ [ω↔ −ω]
}
. (4.29)

In this expression, the current matrix elements are evaluated in the non-relativistic EFT. They are given
precisely by the sum on the left-hand side of the matching condition in Eq. (4.11). Accordingly, the
summation over kn gives

U11(0, s; 0, s; q̂) = F(ω) + F(−ω), (4.30)

where

F(ω) = −
∑
σ

〈0, s| j1(0)|ω, σ〉〈ω, σ| j1(0)|0, s〉
4w(ω)(w(0) − w(ω))

. (4.31)

Finally, summing up all contributions up to O(B2), the spin-averaged total energy shift of the ground
state is given by

δE = −
1

4m

( B
ω

)2 1
2

∑
s

T 11(0, s; 0, s; q̂) + O(B3) =
B2

4m
T1(0,−ω2) + O(B3) . (4.32)

This completes the derivation of the main result.

Method II

In the second approach, one works directly with the expansion of the nucleon two-point function in
the external electromagnetic field, as given in Eq. (6) of the paper. To project onto the states with the
zero three-momentum and a given spin component s, one performs the Fourier transformation of the
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expressions in Eq. (6),
C = C(0) + C(1) + C(2) + O(A3), (4.33)

where

C =
1
L3

∫ L
d3xd3y 〈0|TΨs(x)Ψ̄s(y)|0〉A , (4.34)

C(0) =
1
L3

∫ L
d3xd3y 〈0|TΨs(x)Ψ̄s(y)|0〉 , (4.35)

C(1) =
i

L3

∫ L
d3xd3yd4z Aµ(z)〈0|TΨs(x)Ψ̄s(y) jµ(z)|0〉 , (4.36)

C(2) =
i2

2L3

∫ L
d3xd3yd4zd4v Aµ(z)Aν(v)〈0|TΨs(x)Ψ̄s(y) jµ(z) jν(v)|0〉 . (4.37)

Here, Ψs(x) denotes the nucleon interpolating field with spin component s. To simplify the discussion,
the calculation will be done in Minkowski spacetime. The completeness relation takes the form

1
L3

∑
k

∑
σ

|k, σ〉〈k, σ|
2ω(k)

+ · · · = 1 , (4.38)

where the dots stand for the excited states contributions; they will be neglected altogether by taking the
limit x0 − y0 → +∞ (the time extent of the lattice is assumed to be infinite).

Let us start with the matrix element C(0) that describes the free propagation of the nucleon. Using the
translation invariance for an arbitrary operator O(x),

O(x) = e−iP̂xO(0)eiP̂x, P̂ = (P̂0, P̂) , (4.39)

it takes the form

C(0) =
1
L6

∑
k

1
2w(k)

∫ L
d3xd3y θ(x0 − y0)e−ik(x−y)eiw(k)(x0−y0)〈0|Ψs(0)|k, s〉〈k, s|Ψ̄s(0)|0〉 . (4.40)

Integrating over all variables, one gets

C(0) =
Zseim(x0−y0)

2m
, Zs = 〈0|Ψs(0)|0, s〉〈0, s|Ψ̄s(0)|0〉 . (4.41)

The two-point function in the presence of the external magnetic field can be written in a similar
manner:

C =
Zs(B)eiEs(B)(x0−y0)

2Es(B)
, Zs(B) = 〈0|Ψs(0)|Es(B), s〉〈Es(B), s|Ψ̄s(0)|0〉 . (4.42)

Here, Es(B) is the energy of the nucleon ground state. Considering a weak periodic magnetic field

B = (0, 0,−B cos(ωx2)), ω =
2πN

L
, N ∈ Z\{0}, (4.43)

the functions Es(B) and Zs(B) obey the polynomial expansions

Es(B) = m + ξs(ω)B + ηs(ω)B2 + O(B3) , Zs(B) = Zs + αs(ω)B + βs(ω)B2 + O(B3) . (4.44)
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The unknown quantities ξs(ω), ηs(ω), αs(ω), and βs(ω) depend on the frequency ω.

The correlator C(1) is evaluated in a similar manner. One has

C(1) =
i

L9

∑
k,l

1
4w(k)w(l)

∫ L
d3xd3yd3zdz0 A1(z)θ(x0 − z0)θ(z0 − y0)

× e−ik(x−z)eiw(k)(x0−z0)e−il(z−y)eiw(l)(z0−y0)〈0|Ψs(0)|k, s〉〈k, s| j1(0)|l, s〉〈l, s|Ψ̄s(0)|0〉 . (4.45)

The summation over the three-momentum simplifies the expression:

C(1) = i
eim(x0−y0)

4m2L3

∫ L
d3zdz0 A1(z)θ(x0 − z0)θ(z0 − y0)〈0|Ψs(0)|0, s〉〈0, s| j1(0)|0, s〉〈0, s|Ψ̄s(0)|0〉 ,(4.46)

or,

C(1) = i
Zseim(x0−y0)

4m2L3 (x0 − y0)〈0, s| j1(0)|0, s〉
∫ L

d3z A1(z) , (4.47)

The integral over the periodic electromagnetic potential vanishes, and so

C(1) = 0. (4.48)

The limit of the uniform magnetic field should be handled with care, by first providing the nonzero
three-momentum to the nucleons.

The calculation of the second-order matrix element C(2) proceeds as follows. First inserting the
completeness relation and using translation invariance, one gets

C(2) = i2
Zseim(x0−y0)

8m2L3

∫ L
d3zd3vdλ0dv0 A1(z)A1(v)θ(x0 − λ0 − v0)θ(v0 − y0)〈0, s|T j1(λ) j1(0)|0, s〉 ,(4.49)

where λ0 = z0 − v0 is a new integration variable, while λ = (λ0, z − v). It is then straightforward to verify
the identity

〈0, s|T j1(λ) j1(0)|0, s〉 = −
2i
L3

∑
q

∫ ∞

−∞

dq0

2π
e−iqλT 11(0, s; 0, s; q) , λ = z − v , (4.50)

which holds for a sufficiently large L. The correlator C(2) takes the form

C(2) = i
Zseim(x0−y0)

4m2L6

∑
q

∫ ∞

−∞

dq0

2π

∫ L
d3zd3vdλ0dv0

× A1(z)A1(v)θ(x0 − λ0 − v0)θ(v0 − y0)e−iqλT 11(0, s; 0, s; q) . (4.51)

Next, the integration over v0 gives∫
dv0 θ(x0 − λ0 − v0)θ(v0 − y0) = (x0 − y0 − λ0)θ(x0 − y0 − λ0) . (4.52)
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Accordingly,

C(2) = i
Zseim(x0−y0)

4m2L6

∑
q

Ã1(q)Ã1(−q)I(0, s; 0, s; q) , (4.53)

where Ã1(q) is defined in Eq. (4.9). The quantity I(0, s; 0, s; q) reads

I(0, s; 0, s; q) =

∫ ∞

−∞

dq0

2π

∫ x0−y0

−∞

dλ0 (x0 − y0 − λ0)e−iq0λ0T 11(0, s; 0, s; q) . (4.54)

The shift of the variable λ0 → x0 − y0 − λ0 and the partial integration over q0 gives

I(0, s; 0, s; q) = −i
∫ ∞

−∞

dq0

2π

∫ ∞

0
dλ0 eiq0λ0

∂

∂q0

[
e−iq0(x0−y0)T 11(0, s; 0, s; q)

]
. (4.55)

Integrating over λ0, one obtains

I(0, s; 0, s; q) =

∫ ∞

−∞

dq0

2π
e−iq0(x0−y0)

q0 + iε

[
−i(x0 − y0)T 11(0, s; 0, s; q) +

∂

∂q0
T 11(0, s; 0, s; q)

]
, (4.56)

where the iε prescription ensures the convergence of the integral. Further, the contour integration leads to
the following expression:

I(0, s; 0, s; q) = −(x0 − y0)T 11(0, s; 0, s; q̄) − i
∂

∂q0
T 11(0, s; 0, s; q)

∣∣∣∣
q=q̄

, q̄ = (0,q) . (4.57)

Finally, inserting this result into Eq. (4.53) and summing over q, the correlator C(2) takes the value

C(2) = i
Zseim(x0−y0)

8m2L3

( B
ω

)2 [
− (x0 − y0)T 11(0, s; 0, s; q̂)− (4.58)

−
i
2
∂

∂q0
T 11(0, s; 0, s; q)

∣∣∣∣
q=q̂
−

i
2
∂

∂q0
T 11(0, s; 0, s; q)

∣∣∣∣
q=−q̂

]
, (4.59)

where the symmetry property of the Compton tensor, T11(0, s; 0, s; q̂) = T11(0, s; 0, s;−q̂), q̂ = (0,ω),
was used.

Next, combining Eqs. (4.44) and (4.42), one gets the Taylor expansion of the two-point function in the
magnetic field strength:

C =
Zseim(x0−y0)

2m

{
1 + iξs(ω)B(x0 − y0) + iηs(ω)B2(x0 − y0) + · · ·

}
(4.60)

where only the terms that are linear in x0 − y0 are explicitly shown. The unknown coefficients ξs(ω) and
ηs(ω) are determined from a comparison of the left- and right-hand sides in Eq. (4.33),

ξs(ω) = 0, ηs(ω) = −
1

4mω2 T11(0, s; 0, s; q̂) . (4.61)

The quantities αs(ω) and βs(ω) can be found in a similar fashion. In particular, αs(ω) = 0, while βs(ω) is
given as a certain linear combination of the tensor component T11(0, s; 0, s; q̂) and its derivative. As it is
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Chapter 4 Low-energy nucleon Compton scattering

seen, the first-order correction to the energy shift vanishes, while the spin-averaged second-order term
reproduces the original formula.

Outlook

Let us summarize several aspects of the work that have to be studied (in progress):

• The limit of a constant magnetic field (ω→ 0) has to be numerically investigated. In particular,
one has to see, how the energy spectrum in the periodic potential transforms into the Landau
levels. In practice, it is problematic to perform the zero frequency limit on the lattice because the
frequency ω takes only discrete values. Accordingly, the alternative setting on the lattice (ω is
arbitrary, but B is quantized) should be considered in detail.

• The finite volume corrections to the extracted quantities have to be studied. In particular, the
Compton tensor in a finite volume can be estimated in the chiral EFT. However, since the rotational
symmetry is broken, there is no one-to-one correspondence between the energy shift and the
subtraction function. This conceptual problem has to be better understood.

• Depending on the practical lattice implementation of the external field method, there might be
the Wick contractions that lead to quark-disconnected diagrams in the Compton tensor. Since
the numerical evaluation of such diagrams is expensive, it is important to estimate, how large is
their contribution to the correlation function. The partially quenched χPT provides a systematic
framework to study the problem.
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CHAPTER 5

Summary

Hadronic electroweak processes, such as pion photo(electro)production and Compton scattering, play
an indispensable role in probing the structure of the hadrons. Other types of processes, such as rare B
meson decays, are important in the search for physics beyond the Standard Model.

Lattice QCD is a truly first-principle method to explore the non-perturbative aspects of the strong force.
Based on the path integral formulation of QCD in the Euclidean spacetime, it enables one to determine
the low-energy observables, such as the masses of the stable hadrons and the matrix elements of the
gauge-invariant operators. While the temporal direction of the lattice should be large enough to suppress
the excited state contamination, its spatial size is always finite.

The lattice study of the processes involving hadron resonances is a more complicated matter. Due to
the final state interaction, the standard techniques for the analysis of the lattice data can not be used any
more. However, the finite volume formalism provides a systematic approach to extract the scattering
observables in the two-body sector from the finite-volume energy spectrum. At the same time, a proper
field-theoretical definition of the resonance matrix elements is called for.

Lattice simulations with background (external) fields open a possibility to study the electromagnetic
structure of the nucleon and light nuclei. The external field method is also well suited to investigate some
important features of low-energy nucleon Compton scattering.

The results of the thesis can be summarized as follows:

• In Chapter 2, we considered the pion photo(electro)production process in the vicinity of the ∆(1232)
resonance. We provide a theoretical framework for the lattice determination of the ∆Nγ∗ transition
form factors in case of the unstable ∆. After the full group-theoretical analysis of the problem, the
analogue of the Lellouch-Lüscher formula for the pion production amplitude is derived. Further,
we give a field-theoretical definition of the matrix elements involving resonances. The prescription
for the pole extraction of the ∆Nγ∗ form factors is provided. The limit of an infinitely narrow ∆ in
the obtained results is also considered.

• In Chapter 3, we investigated the rare B → K∗l+l− decay mode in the kinematic region of low
hadron recoil. Considering a scenario with an unstable K∗, we take into account the presence of
the ηK threshold. We reproduce the two-channel analogue of the Lellouch-Lüscher formula within
the non-relativistic EFT. Next, we give a procedure to determine the B→ K∗ form factors at the
complex pole position in the coupled-channel case. It is shown that the two definitions of the form
factors coincide in the limit of the infinitely narrow K∗. It becomes less trivial to arrive at such a
conclusion in the multi-channel problem.

• In Chapter 4, we proposed an idea on how to determine the unknown subtraction function in the
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Chapter 5 Summary

forward doubly virtual Compton scattering on the lattice. We evaluate the energy shift of the
nucleon ground state in a static periodic magnetic field. The second-order term in the obtained
expression is found to be proportional to the value of the subtraction function at nonzero photon
virtuality. We also discuss the limits of applicability of the result. In particular, the upper bound on
the magnetic field strength and the lower bound on the value of the photon virtuality are estimated.
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5.1 Outlook

At present, the finite volume formalism is fully developed in the two-body sector below three-body
thresholds. The method is well suited for lattice practitioners to extract the scattering observables from
lattice data. Nevertheless, its application to the baryon resonances is not an easy task, and first preliminary
results on the ∆ should be expected in the near future.

New questions arise in the three-body sector. In principle, the finite-volume quantization condition
is derived, but its form is not suitable for the analysis of the lattice data. The main problem consists in
the convenient choice of the low-energy parameters (infinite-volume obesrvables). For instance, in the
two-body sector, this is the phase shift that can be determined from the Lüscher formula.

Recently, the quantization condition has been derived within the non-relativistic EFT in the particle-
dimer picture [164, 165]. It has been argued that the particle-dimer couplings represent a good choice
of the parameters providing a simple parametrization of the three-body scattering amplitude. The idea
is that one starts with a minimal set of the low-energy constants. After imposing a certain ultraviolet
cutoff, they are fitted to the finite-volume energy spectrum. Adding the higher-spin dimers, the procedure
is repeated until the fit does not improve any more. Once the parameters are fixed, the infinite-volume
integral equations for the scattering amplitude are solved at the same cutoff value. The feasibility of the
framework has been demonstrated by the numerical calculation of the three-body spectrum in a simple
model.

The apparent simplicity of the proposed approach calls for several improvements and subsequent
application of the framework to the real-world problems. The following open issues have to be addressed.

• Conceptual improvements of the particle-dimer formalism. Having in mind the lattice study of
the Roper resonance N(1440), the case of non-indentical particles carrying a nonzero spin has to
be considered. Further, higher partial waves have to be systematically included. Accordingly, the
group-theoretical aspects of the (inevitable) partial-wave mixing should be studied. The coupling
of the two- and three-body channels has to be taken into account. Given the advantage of using
the moving frames, the whole framework should be accordingly modified, incorporating also
relativistic kinematics.

• Three-body analogue of the Lellouch-Lüscher formula. The important application of the developed
formalism will be the study of the hadronic electroweak processes involving three-body final state
interaction. One interesting example is the omega photoproduction γp → pω → p(πππ) that
might help to reveal some missing baryon resonances [189]. The main goal is to obtain a certain
generalization of the Lellouch-Lüscher formula.

• Three-neutron resonances. The experimental evidence of such systems is still lacking [190]. At the
same time, a possible resonant tetraneutron state has been recently reported [191]. The quantum
Monte Carlo calculations of few-neutron systems also suggest that a three-neutron resonance
should exist below the tetraneutron resonance, and its energy is potentially measurable. Clearly,
this topic will a subject of the future lattice simulations. From a theoretical standpoint, one
should study, how the particle-dimer formalism gets modified in the presence of the long-range
interactions. In case of the nucleons, the long-range part of the potential is dominated by the
one-pion exchange. The inclusion of the pions in the theory, however, will not spoil the original
idea of the proposal.
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