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English Abstract 

 

The transition period in dairy cows, spanning three weeks before and after parturition, is 

characterized by complex metabolic processes required for the homeorhetic adaptation to the 

needs of late pregnancy and the onset of lactation. Adaptive failure during the periparturient 

period may impair animal health and performance. Besides liver and systemic investigations 

performed in blood, the role of adipose tissue that is mostly affected by the mobilization of body 

reserves at that time, formed a research focus. Skeletal muscle is the largest organ in the body 

and is also involved in the adaptive reactions during the transition period, but alterations of 

metabolic pathways around parturition were scarcely characterized. Therefore, the aim of this 

dissertation was to characterize the metabolome in skeletal muscle and in serum of dairy cows 

during the transition from late pregnancy to early lactation. The oxidative capacity for fatty acids 

(FA) in skeletal muscle may also contribute to reducing the metabolic load of FA, and thus we 

took the profiles of muscle and blood serum FA esters of carnitine, i.e. the acylcarnitines (ACC) 

in focus. In addition, a dietary supplementation with conjugated linoleic acids (CLA) was tested 

for potential effects on the target variables. To achieve the objectives, a targeted metabolomics 

approach was used in which up to 188 endogenous metabolites from six different compound 

classes can be quantified. The ACC metabolism was further investigated by assessing the mRNA 

abundance of carnitine acyltransferases in muscle. Results of this study indicate that FA 

oxidation, as well as the metabolism of arginine, tryptophan, phosphatidylcholines, and 

sphingomyelines were the metabolic pathways that were mainly influenced by the transition 

from late gestation to early lactation. These altered metabolic pathways may reflect dysregulated 

lipid metabolism, impaired insulin action, and increased inflammatory status in dairy cows 

around parturition. Furthermore, when combining the results with the data from the mRNA 

abundance of carnitine acyltransferases, the results also indicate that β-oxidation in muscle 

mitochondria increased around parturition, but was likely exceeding the capacity of acetyl-CoA 

utilization in the tricarboxylic acid cycle. The present dissertation adds on to understanding the 

multifaceted metabolic adaptation of dairy cows during the transition from late pregnancy to 

early lactation.



   

 
 

German Abstract 

 

Die sogenannte Transitphase bei Milchkühen umfasst einen Zeitraum von rund drei Wochen vor 

und drei Wochen nach der Geburt. Sie ist durch komplexe Stoffwechselprozesse charakterisiert, 

die für die homörhetische Anpassung an die Bedürfnisse der Spätträchtigkeit und des 

Laktationsbeginns notwendig sind. Störungen in dieser Anpassung während der Transitperiode 

können die Gesundheit und Leistungsfähigkeit der Tiere beeinträchtigen. Neben in Leber und 

Blut durchgeführten Untersuchungen steht auch das Fettgewebe, das in dieser Zeit am stärksten 

für die Mobilisierung von Körperreserven zuständig ist, im Fokus der Forschung. Der 

Skelettmuskel ist das größte Organ des Körpers und ist ebenso an den Anpassungsreaktionen 

während der Übergangszeit beteiligt. Änderungen innerhalb der Stoffwechselwege rund um die 

Geburt, wurden hier aber bisher kaum beschrieben. Deshalb war es das Ziel dieser Dissertation, 

die Veränderungen im Metabolom des Skelettmuskels und des Serums von Milchkühen während 

der Transitphase zu beschreiben. Die Oxidation von Fettsäuren (FA) im Skelettmuskel kann auch 

dazu beitragen, die metabolische Belastung durch FA zu reduzieren, weswegen die Profile der 

FA-Cartinitin-Ester (ACC) in Muskulatur und Blutserum von besonderem Interesse waren. Der 

weiteren wurde eine Supplementierung der Futterration mit konjugierten Linolsäuren (CLA) auf 

mögliche Auswirkungen auf die Zielvariablen hin untersucht. Um diese Ziele zu erreichen, 

nutzten wir einen metabolomischen Ansatz („targeted“), in dem bis zu 188 endogene 

Metaboliten aus sechs verschiedenen Stoffgruppen quantifiziert werden können. Der 

ACC-Metabolismus wurde zusätzlich durch die Bewertung der mRNA-Konzentration von 

Carnitin-Acyltransferasen in Muskelgewebe untersucht. Die Ergebnisse dieser Studie zeigen, 

dass die FA-Oxidation, sowie der Stoffwechsel von Arginin, Tryptophan, der 

Phosphatidylcholine und der Sphingomyeline hauptsächlich während der Übergangszeit von der 

späten Schwangerschaft bis zur frühen Laktation beeinflusst wurden. Diese veränderten 

Stoffwechselwege können an Dysregulationen im Fettstoffwechsel, der beeinträchtigte 

Insulinwirkung und dem erhöhten Entzündungsstatus bei Milchkühen um die Geburt beteiligt 

sein. In Kombination mit den RNA-Daten zeigt sich zudem, dass die β-Oxidation in den 

Muskelmitochondrien um die Geburt erhöht ist, aber die Kapazität der Acetyl-CoA-Nutzung im 

Tricarbonsäure -Zyklus wahrscheinlich überschritten ist. Die vorliegende Dissertation soll zum 

besseren Verständnis der vielschichtigen Stoffwechselanpassung von Milchkühen beim 

Übergang von der späten Trächtigkeit in die frühe Laktation beitragen. 
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1. Introduction 

1.1. Negative protein balance during the transition period 

The growing global demand for milk and dairy products drives the selection of cows for high 

milk yields. A significant portion of the nutrients to support milk production comes from the 

mobilization of body reserves, i. e., adipose tissue (AT) and skeletal muscle, as dry matter intake 

(DMI) is suppressed in early lactation. Pursuit of high production levels is pushing cows to 

mobilize more body reserves and thus widens the gap between energy intake and requirements. 

Modern dairy cows are thus faced with more drastic and abrupt metabolic fluctuations (Drackley 

et al., 2005) that impose a risk for metabolic disorders during the transition from late pregnancy 

to lactation which in turn will impair production profitability. 

The transition period, encompassing 3 weeks (wk) before and after calving, is characterized by 

extensive physiological and metabolic changes (Drackley, 1999). A successful and smooth 

transition period is crucial for health and performance, and thus profitability. The nutritional 

demands of the fetus increase exponentially during late gestation whereas feed intake declines 

during the last wk of gestation (NRC, 2001; Hayirli and Grummer, 2004), resulting in reduced 

nutrient intake. As a consequence, cows enter a negative nutrient balance which triggers a 

coordinated change in metabolism among multiple organs necessary to support the increased 

demands for nutrients and energy, also designated as homeorhetic adaptation (Bauman and 

Currie, 1980; Casey et al., 2009). Most research dealing with dairy science was focused on the 

negative energy balance (NEB), however, the negative protein balance (NPB) was hardly 

investigated. 

Formulating diets to meet the requirements of dairy cows for metabolizable protein (MP) during 

early lactation is very challenging, because dairy cows are unable to consume enough dry matter 

(DM) and protein to meet the mammary and non-mammary amino acid (AA) requirements. The 

protein requirements of dairy cows during the transition period are classically considered to 

comprise the needs for maintenance, body growth, and lactation (NRC, 2001), but the potential 

loss of body protein to support fetal requirements has not been taken into consideration. The 

body`s protein pool is usually supported by intestinal absorption of MP, and may also be 

repartitioned between different organs, whereby skeletal muscle forms the largest depot. The 

calculated protein balance of high-yielding dairy cows was demonstrated to decrease to a nadir 

of -600 g MP/d at 7 d post partum, thereafter it increased to reach a zero balance around 23 d 
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post partum. The authors (Bell et al., 2000) further estimated that the cows may need to mobilize 

around 1000 g tissue protein per day to meet the needs for lactation during the first 7 – 10 d post 

partum. 

When cows are in NPB, protein mobilization from endogenous tissues (e.g. skeletal muscle and 

visceral tissue) is necessary to provide AA for milk protein synthesis and protein synthesis in 

other organs, for direct oxidation as well as for hepatic gluconeogenesis. However, excessive 

mobilization can be associated with increased incidence of metabolic disorders, immune 

dysfunction, and poor lactation and reproductive performance (Drackley, 1999). The breakdown 

of muscle protein is associated with the release of 3-methylhistidine (3-MH; formed by the 

posttranslational methylation of peptide-bound histidine) which can be used as an indicator to 

characterize mobilization of muscle protein. Earlier studies have shown that protein mobilization 

rate from muscle increased from 3 wk ante partum to parturition, and then decreased until 4 wk 

post partum (Doepel et al., 2002). Further studies including assessment of 3-MH in and thickness 

of M. longissimus evidenced that protein mobilization starts before parturition, and interestingly 

even before lipid mobilization (van der Drift et al., 2012). Moreover, the latter authors observed 

a large variation in protein mobilization of cows kept under similar conditions, likely due to the 

individual differences in milk production, feed intake, metabolic adaptation to NEB, or ante 

partum fat and muscle thickness (van der Drift et al., 2012). The observation that protein 

mobilization occurred before parturition and in advance of fat mobilization indicates that protein 

mobilization might result from a pre-partum AA deficiency rather than just resulting from NEB 

(van der Drift et al., 2012). Besides the needs of lactation, AA released from muscle protein 

breakdown are also used for hepatic gluconeogenesis and thus limit the generation of ketone 

bodies (Bell et al., 2000; Schäff et al., 2013). Larsen and Kristensen (2013) estimated that 

glucogenic AA derived from muscle proteolysis are primarily utilized for milk protein synthesis. 

They concluded that only alanine is likely to contribute to the liver`s release of glucose through 

its role in the inter-organ transfer of nitrogen from catabolized AA (Larsen and Kristensen, 2013). 

They challenged the dogma that AA are significant contributors to hepatic gluconeogenesis in 

early lactation. Using a proteomics approach, Kuhla et al. (2011) reported that muscle 

breakdown products in early lactation support hepatic gluconeogenesis and milk production, and 

also provide signals regulating feed intake. 
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1.2. Skeletal muscle 

1.2.1. Structure of skeletal muscle 

Skeletal muscle, the largest internal organ in mammals, is the main labile source of AA in the 

body and metabolically very active in regulating systemic metabolism (Baskin et al., 2015; 

Lindstedt, 2016). For instance, skeletal muscle is accounting for more than 80% of 

insulin-stimulated glucose disposal and thus is quantitatively one of the most important sites of 

insulin action (Patti and Corvera, 2010). 

Skeletal muscle comprises several components including muscle fibers, connective tissues, 

motor nerves, and blood vessels. The cytoplasm of muscle fiber is called sarcoplasm, containing 

cellular organelles such as nuclei, mitochondria, endoplasmic reticulum (sarcoplasmic reticulum), 

proteasome and other cytosolic proteins. Muscle fibers (myofibrils), known as muscle cells, are 

the basic units of skeletal muscle. Within each muscle fiber, the sarcomere is a contractile unit, 

consisting of repeated units of interlocking thick myosin and thin actin myofilaments. The 

myosin is at the center of the sarcomere, whereas the actin attaches to a Z disc at the end of the 

sarcomere (Frontera and Ochala, 2015). As the myosin and actin compose most of the muscle 

proteins, any loss or modification of these proteins would affect muscle size, and probably 

leading to muscle atrophy and impaired muscle function. The degradation products from myosin 

and actin (e. g., 3-MH and 14-kDa actin fragment) (Du et al., 2004) could thus in turn reflect 

changes in skeletal muscle homeostasis. 

 

1.2.2. Muscle homeostasis: turnover of muscle protein 

Homeostasis in muscle is maintained through the dynamic turnover between protein synthesis 

and degradation. Briefly, protein synthesis is mainly controlled via several pathways whereby the 

mammalian target of rapamycin (mTOR) and the ubiquitin proteasome system (UPS) are 

considered as the major regulators of protein synthesis and protein degradation, respectively 

(McCarthy and Esser, 2010). The mTOR complex 1(mTORC1) is a crucial signaling node that 

integrates environmental cues (e. g., growth factors, stress, AA, and energy) and promotes 

protein synthesis largely through the phosphorylation of two key effectors, p70S6 Kinase 1 

(S6K1) and eIF4E Binding Protein (4EBP1) (Saxton and Sabatini, 2017). The UPS accounts for 

the main proteolytic pathway in muscle, through which proteins are selectively targeted for 
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degradation by the 20S proteasome following covalent modification with ubiquitin (Bilodeau et 

al., 2016). Both of these pathways are associated with and could be influenced by insulin. The 

mTOR pathway can not only be regulated by insulin, insulin-like growth factor 1 (IGF-1), and 

glucose, but also plays a key role in mediating insulin resistance (Liu et al., 2012; Yoon, 2017). 

Studies on muscle wasting indicate that insulin resistance accelerates the UPS thereby causing 

muscle protein degradation (Wang et al., 2006). Thus, it is conceivable that muscle homeostasis 

could influence whole-body insulin action. 

 

1.2.3. The role of muscle in systemic insulin resistance 

The aforementioned homeorhetic adaptations ensure energy and nutrient partitioning towards the 

mammary gland in the early lactation period. Decreased plasma insulin, IGF-1, leptin, and 

thyroid hormone, and increased plasma growth hormone (GH), cortisol, glucagon and 

catecholamine post partum support elevated endogenous glucose production and delivery of 

glucose and non-esterified fatty acid (NEFA) to the mammary gland (Knegsel et al., 2014). For 

instance, increased GH concentrations post partum exert lipolytic effects and thereby increase 

plasma NEFA concentrations (Houseknecht et al., 1995; Contreras et al., 2017). Meanwhile, GH 

also promotes hepatic gluconeogenesis for providing glucose needed for synthesizing milk 

lactose (Knapp et al., 1992). Growth hormone also modulates hepatic IGF-1 production via the 

Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signaling 

pathway, and promotes the utilization of NEFA in the mammary gland and in muscle by 

increasing blood flow (Renaville et al., 2002). Furthermore, glucose uptake by the muscle is 

reduced (Bell and Bauman, 1997; Spachmann et al., 2013) and skeletal muscle turns into the 

main site of oxidation of fat-derived fuels (Schäff et al., 2013). 

Skeletal muscle is a main contributor to whole-body glucose metabolism and its insulin 

sensitivity is reduced around parturition (De Koster and Opsomer, 2013). Dysregulation of 

muscle metabolism has been shown to be related with changes in insulin sensitivity (Turcotte 

and Fisher, 2008; DeFronzo and Tripathy, 2009; Collins-Hooper et al., 2015). Reduced insulin 

sensitivity is a metabolic state in which peripheral tissues, such as skeletal muscle, are less 

responsive to the anabolic effects of insulin (De Koster and Opsomer, 2013). In humans, the role 

of insulin resistance in muscle has been under investigation in subjects with type 2 diabetes 

(T2DM) (Collins-Hooper et al., 2015; Perry et al., 2016). The importance of FA and FA-derived 
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metabolites in the development of insulin resistance was addressed (Blaak, 2003, 2004, 2005). 

The severity of insulin resistance is linked with accumulation of intramuscular lipids 

(Goodpaster et al., 2001), including ceramides, diacylglycerols, and FA-CoAs (Chavez and 

Summers, 2003; Adams et al., 2004; Bell et al., 2006; Pickersgill et al., 2007; Galadari et al., 

2013). The underlying mechanisms are not entirely clear yet (Koves et al., 2008), but it has been 

proposed that lipid accumulation might be due to decreased rates of FA oxidation (FAO), 

increased rates of FA uptake, or both in insulin-resistant muscle (Turcotte and Fisher, 2008). 

 

1.2.4. Fatty acid oxidation in muscle 

The NEFA enter skeletal muscle cells through passive diffusion over the plasma membrane or 

via transport proteins such as the membrane-bound FA binding protein (FABPpm), the FA 

transport proteins (FATP), and the FA translocase CD36 (FAT/CD36) in the plasma membrane 

(Bonen et al., 1998; Turcotte and Fisher, 2008; Holloway et al., 2010; Jeppesen et al., 2011). 

Once inside the cell, FA are reversibly bound to the abundantly expressed cytoplasmic 

FA-binding protein (FABPc), which protects against the lipotoxic accumulation of free FA and 

traffics them throughout cellular compartments (Watt and Hoy, 2012). Thereafter, FA are 

activated as acyl-CoA via acyl-CoA synthetase (ACSL), bound to the acyl-CoA-binding protein 

(ACBP) to transporting in the cytosol for the final generation of energy via ß-oxidation.  

The ß-oxidation occurs in both mitochondria and peroxisomes. The mitochondria catalyze the 

ß-oxidation of short, medium, and long-chain FA, while the peroxisomes are responsible for 

special FA including very long-chain FA (> C22), and branched FA (Reddy and Hashimoto, 

2001). In mitochondria, acyl-CoA is fully degraded to acetyl-CoA. However, the final products 

in the peroxisomal ß-oxidation are short or medium-chain acyl-CoA which are transferred to the 

mitochondria for complete ß-oxidation (Reddy and Hashimoto, 2001; Schrader et al., 2015).  

In dairy cows, plasma FA are mainly composed of saturated long-chain FA including palmitate 

(C16:0) and stearate (C18:0), and oleic acid (C18:1n9c) as a monounsaturated FA (Leroy et al., 

2005; Tyburczy et al., 2008). For the mitochondrial generation of energy from long-chain FA, 

they should be transported from the cytoplasm into the mitochondrial matrix across the 

mitochondrial membranes as acylcarnitines (ACC) through a carnitine-dependent transport 

shuttle (McGarry et al., 1978). This system (Figure 1) is made up of two separate proteins 
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located in the outer (carnitine palmitoyltransferase 1; CPT1) and inner (carnitine 

palmitoyltransferase 2; CPT2) mitochondrial membranes. While CPT2 is a ubiquitous protein, 

the CPT1b is the major isoform that exists in muscle (Flanagan et al., 2010). The carnitine 

shuttle is closely associated with FAO efficiency (Bruce et al., 2009; Morash and McClelland, 

2011; Qu et al., 2016). However, most studies performed in this regard were focusing on liver 

(Mizutani et al., 1999; Dann and Drackley, 2005; Li et al., 2017). Once inside the mitochondria, 

carnitine and long-chain acyl-CoA are regenerated by CPT2, and can then be further oxidized for 

ATP production through mitochondrial β-oxidation and the tricarboxylic acid (TCA) cycle 

(Flanagan et al., 2010). Taken together, the carnitine shuttle is a relevant step to regulate 

mitochondrial FAO in skeletal muscle. 

 

 

 

 

Figure. 1. A schematic pathway illustrating the carnitine shuttle (Amended from 

https://en.wikipedia.org/wiki/Carnitine-acylcarnitine_translocase#/media/File:Acyl-CoA_from_c

ytosol_to_the_mitochondrial_matrix.svg). 

 

https://en.wikipedia.org/wiki/Carnitine-acylcarnitine_translocase#/media/File:Acyl-CoA_from_cytosol_to_the_mitochondrial_matrix.svg
https://en.wikipedia.org/wiki/Carnitine-acylcarnitine_translocase#/media/File:Acyl-CoA_from_cytosol_to_the_mitochondrial_matrix.svg
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1.3. Conjugated linoleic acids 

Conjugated linoleic acids (CLA) are a family of stereo and positional isomers of linoleic acid 

(LA, C18:2) with conjugated double bonds (C18:2n-6). For CLA there are several health claims 

including anticarcinogenic and antiatherogenic effects, immune modulation, and changes in body 

composition (Chouinard et al., 1999; Pariza, 2004). Ruminant fats, particularly dairy products, 

are the major dietary source of CLA for humans. The CLA are synthesized as an intermediate 

through the microbial biohydrogenation of dietary LA in the rumen or are synthesized 

endogenously from trans-11 C18.1 by Δ9-desaturase (Kelly et al., 1998; Griinari et al., 2000). 

The CLA include 28 known isomers, the most abundant natural isomer (70-90%) is the 

cis-9,trans-11 (c9,t11), whereas another predominant isomer, trans-10,cis-12 (t10,c12) is known 

of its dose-dependent milk fat depression (MFD) effect (Baumgard et al., 2001; Bauman et al., 

2008; Bauman et al., 2011). The CLA can also be industrially produced by alkaline 

isomerization from LA rich vegetable oils (Koba and Yanagita, 2014). Commercially available 

CLA supplements are usually provided as the equal mix of aforementioned 2 isomers. 

 

1.3.1. Use of CLA in early-lactation dairy cows 

The use of CLA supplements (mainly t10,c12 CLA) for dairy cows is aiming at a suppression of 

milk fat synthesis during early lactation (de Veth et al., 2004). The dosage-dependent MFD 

effect of t10,c12 is well described by Baumgard et al. (2001), who reported a curvilinear 

reduction of milk fat yield (25, 33 and 50%, respectively) with increasing quantities of abomasal 

infusion t10,c12 CLA (3.5, 7.0, and 14.0 g/d, respectively). Later feeding studies with varying 

supplementation lengths (i. e. from 7 to 140 d) evidenced that CLA could be used as an MFD 

agent in mid-lactation cows (Perfield et al., 2002; Peterson et al., 2003; de Veth et al., 2005; 

Moore et al., 2005; de Veth et al., 2006; Kay et al., 2007). Feeding CLA starting ante or post 

partum with different dosages (i. e. from 2.4 to 15 g/d t10,c12 CLA) resulted in decreased milk 

fat content and yield (Moore et al., 2004; Castaneda-Gutierrez et al., 2007; Odens et al., 2007; 

Pappritz et al., 2011; von Soosten et al., 2011). Two other isomers, t9,c11 and c10,t12 CLA, 

were also reported to suppress milk fat content (Saebo et al., 2005; Perfield et al., 2007). The 

molecular mechanisms of CLA-induced MFD include down-regulation of the mRNA abundance 

and (or) enzyme activity of lipid synthesis-related enzymes in the mammary gland (Bauman et 

al., 2011; Han et al., 2012). The portion of FA synthesized de novo (< C16) in milk fat is 
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decreased with feeding t10,c12 CLA (Peterson et al., 2003; Pappritz et al., 2011; Hotger et al., 

2013). Besides, the t10,c12 isomer inhibits de novo FA synthesis related genes in an in vitro 

model (Zhang et al., 2018). Therefore, the t10,c12 CLA-induced MFD is likely targeting de novo 

FA synthesis in mammary gland. 

The energy requirements for milk fat synthesis account for one-half of the energy requirement 

for milk production, therefore supplementation with CLA could be used to save energy and 

reduce the degree of negative energy balance. Supplementing 178 g/d CLA (29% t10,c12) in 

mid-lactating cows resulted in greater net energy balance (EB) when compared with cows 

receiving a CLA-free and 22 g/d (29% t10,c12) CLA supplement (Sippel et al., 2009). An 

improved EB status was observed in CLA fed lactating goats (10 g/d, 29.9% t10,c12; Baldin et 

al., 2013). However, the effects of CLA supplementation on EB in early lactation are 

inconsistent: A large dose of CLA (600 g/d, 5.6% t10,c12) resulted in an improvement of EB 

(Odens et al., 2007), but in many other studies either no or negative effects on the EB post 

partum were demonstrated (Castaneda-Gutierrez et al., 2007; Hötger et al., 2013; Schäfers et al., 

2017). Cows receiving CLA showed a more severe EB during early lactation resulting from 

decreased DMI (Pappritz et al., 2011). Besides, the evidence for CLA-induced improvement of 

EB status, and related parameters is limited (Oliveira et al., 2018).  

An explanation for insignificant CLA effects on energy metabolism in early lactation is that CLA 

induced MFD increases the available energy that can be repartitioned towards milk or milk 

protein synthesis when NEB occurs (Bauman et al., 2008). Supplementing cows with 50 g/d 

CLA (9% t10,c12) from 2 wk before to 9 wk after parturition was associated lower endogenous 

glucose production, pointing to a CLA-related improvement of whole-body energy utilization 

efficiency that enables less glucose utilization for milk fat synthesis (Hötger et al., 2013). 

Feeding 7.6 g/d each of the t10,c12 and the c9,t11 CLA isomer resulted in an attenuated 

postpartal increase of serum adiponectin thus acting towards prolongatig the peripheral insulin 

resistance and drain of nutrients towards the mammary gland (Singh et al., 2014). Likewise, a 

repartitioning of energy to AT was also observed (Harvatine et al., 2009; von Soosten et al., 

2012), suggesting a more efficient utilization of metabolizable energy. Indeed, the CLA-induced 

nutrient repartitioning effect is affected by the dosage, the formulation (e. g., rumen-protection) 

as well as the time and duration of treatment. 
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1.3.2. Effects of CLA in skeletal muscle 

Only few studies addressed the effects of CLA treatment on skeletal muscle in dairy cows (von 

Soosten et al., 2012; Kramer et al., 2013). One of the well-known effects of CLA is to modulate 

of body composition by reducing body fat and/or increasing lean body mass (Steck et al., 2007; 

Halade et al., 2009; Lehnen et al., 2015), suggesting that CLA could targets skeletal muscle 

metabolism. CLA supplementation promoted muscle FAO by upregulating expression of 

uncoupling protein (UCP), a group of mitochondrial inner membrane proteins involved in the 

combustion of stored energy into heat (Busiello et al., 2015), and CPT1 mRNA in mice (Ryder et 

al., 2001; Zabala et al., 2006; Ribot et al., 2007). In addition, studies on murine skeletal muscle 

cells showed that both the c9,t11 and the t10,c12 CLA isomers could activate AMP-activated 

protein kinase (AMPK) signaling, the principle initial fuel and energy status sensing regulator 

(Qin et al., 2009; Mohankumar et al., 2012, 2013). The activated AMPK phosphorylates 

acetyl-CoA carboxylase and inhibits its activation by citrate, thereby suppressing the synthesis of 

malonyl-CoA, which inhibits CPT1 (Ruderman et al., 2003). As consequence of activating the 

carnitine shuttle, mitochondrial β-oxidation increases. Besides, AMPK could improve muscle 

insulin sensitivity by inducing glucose transporter 4 (GLUT4) (Habegger et al., 2012; Zachariah 

Tom et al., 2014). The c9,t11 CLA activated AMPK at lower concentration (around 50 μM), 

while the t10,c12 isomer activated AMPK in a dosage-dependent manner up to 120 μM, and then 

plateaued (Mohankumar et al., 2012). Thus, it is likely that the CLA profile in muscle is 

important in affecting AMPK signaling and downstream metabolic pathways. 

 

1.4. Metabolomics, a system approach for research on dairy cows` physiology 

Metabolomics is the large-scale study of small molecules (molecular weight less than 1500 Da), 

commonly known as intermediates and products of cellular metabolism, within cells, biofluids, 

tissues or organisms in order to achieve a systemic view of metabolic status (Cambiaghi et al., 

2017). Collectively, these small molecules within a biological system are known as the 

metabolome. Since the last decades, metabolomics has widely been used for clarifying disease 

etiologies, characterizing metabolic signatures, and discovering novel biomarkers (Nordstrom 

and Lewensohn, 2010; Wishart, 2016; Trivedi et al., 2017). While transcriptomics, genomics, 

and proteomics indicate what might happen, metabolomics is aiming to identify what is 

happening in a system (Cambiaghi et al., 2017; Ceciliani et al., 2018). Thus metabolomics 
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provides a bridge in understanding the relations starting from DNA over mRNA and proteins to 

the functions of enzymes, their production of metabolites and the signaling exerted by 

phosphorylation and hormones — all in all to eventually understand the complexity of biology. 

To conduct a metabolomics study, the workflow consists of sample preparation, instrumental 

analysis, data acquisition and analysis, and biological interpretation (Brown et al., 2005; 

Cambiaghi et al., 2017). Different approaches and analytic platforms can be selected depending 

on the aim of the study, experimental design, and most importantly, the physical and chemical 

properties of the metabolome of interest. 

 

1.4.1. Metabolomics platforms and approaches 

In general, the metabolomics approaches can be divided into non-targeted and targeted 

metabolomics (Dunn, 2008; Cambiaghi et al., 2017). The non-targeted metabolomics is mainly 

discovery-based and is an unbiased method since it is attempting to capture all possible 

metabolites. It focuses on previously unknown information about how a system may respond to 

(patho-)physiological or environmental stimuli (i.e., healthy vs. diseased, supplemented vs. 

control, knockout vs. wild-type). The harvested spectra usually contain segments of 1000 

compounds, often including unknow/unidentified ones. However, the resulting spectra are often 

hard to match with corresponding metabolites due to the following reasons: 1) the available 

libraries (e.g., Livestock Metabolome Database, LMDB, http://lmdb.ca/) that contain lesser 

metabolites (1070, as per 11. April 2018) than the estimated number of metabolites in the body 

(over 100,000). 2) Peak overlap and shift are common and thus make it hard to identify separate 

peaks (Alonso et al., 2015; Riekeberg and Powers, 2017). 

In contrast, targeted metabolomics focuses on exact quantification and identification of a group 

of defined known compounds (usually in a specifically metabolic pathway) in the system driven 

by a priori hypothesis (Roberts et al., 2012). Accordingly, it is possible to optimize sample 

preparation and instrument analytical conditions based on the metabolome’s features (e.g., 

polarity, molecular weight, functional groups), which in turn reduces the number of detected 

metabolites. A typical targeted metabolomics study may cover 200 compounds (e.g., the targeted 

metabolomic kits from Biocrates Life Sciences AG) with developed protocols for each group of 

compounds. Collectively, reproducibility, sensitivity and quantification performance are better in 
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the targeted metabolomics by selecting suitable analytical methods. A targeted metabolomics 

approach was performed for the current thesis. 

The nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the 

major analytical methods to characterize the metabolome. The principle of them has been 

reviewed in detail (Darbeau, 2006; Aksenov et al., 2017). Briefly, the signal of NMR is based on 

the spin of an atomic nucleus. An NMR spectrum can provide a great deal of information about 

the chemical structure of organic compounds. 1H-NMR spectroscopy is most commonly applied 

in metabolomics research, since hydrogen is naturally abundant and is present in almost all 

organic molecules. NMR is a rapid, quantitative, highly reproducible, and non-destructive 

method that enables direct measurement on the collected samples or even in vivo (Pfeuffer et al., 

1999). In fact, samples for the NMR assay can be stored for a long time, and they are usually 

analyzed with minimum or even without sample preparation (Le Gall, 2015). These features 

have made NMR a promising platform for large-scale, high-throughput non-targeted 

metabolomics studies. However, the lower sensitivity (e.g., heavily overlapping peaks) of 

traditional one dimensional (1D)1H-NMR compared with other methods (e.g., MS, two 

dimensional 1H-NMR), limits its use in analyzing low-abundance metabolites (Pan and Raftery, 

2007; Emwas, 2015; Giskeødegård et al., 2015). 

Unlike NMR, the principle behind MS is to measure the mass-to-charge (m/z) ratio of ions at 

vacuum from ionized compounds through a magnetic field (Aksenov et al., 2017). In practice, 

the MS is usually integrated with other separation methods in order to achieve high selectivities, 

such as gas chromatography (GC) and liquid chromatography (LC) (Emwas et al., 2015; Zhao et 

al., 2015). In this manner, prepared samples are first separated in gas or liquid phase and 

subsequently are ionized via ion sources such as electron ionization (EI), chemical ionization 

(CI), and electrospray ionization (ESI) (Yin et al., 2015). In biology studies, ESI is a routine 

approach to analyze large molecules at low m/z values such as peptides. The yielded molecular 

ions, and smaller fragment ions can be detected by a mass analyzer, and then matching the 

resulting m/z with corresponding compounds in the database. To achieve accurate molecular 

identification, the selected products (also known as precursor ions) from the first MS can be 

further fragmented in a second MS to produce another group of ions (namely product ions) 

(tandem MS, also known as MS/MS or MS2) (Finehout and Lee, 2004). 



 Introduction  

12 

 

An advantage of GC-MS is the well-established MS spectra database for multiple biological 

species (e.g., National Institute of Standards Technology, NIST, https://chemdata.nist.gov/; 

(Riekeberg and Powers, 2017). This is particularly suitable for the analysis of volatile, 

thermally-stable, lower molecular weight metabolites (< 500 Da) (Emwas et al., 2015). 

Compared to GC-MS, LC-MS is a better choice for investigating higher molecular weight (100 - 

2000 Da), non-volatile, and polar compounds (Zhao et al., 2015). The disadvantages of LC-MS 

compared with GC-MS are longer analysis times and lower separation efficiency (Yin et al., 

2015). Currently, to capture a metabolome in a given condition, there is a growing trend of 

combining several of the aforementioned technologies in one study (Chen et al., 2014; Deng et 

al., 2016; Goldansaz et al., 2017). 

 

1.4.2. Metabolomics data analysis: from processing to interpretation 

Each metabolomics platform yields large and complex data sets compared with traditional lab 

assays, making data analysis procedures non-trivial, sophisticated, and time-consuming. A 

simplified workflow (Figure 2) on the acquired raw data (i. e., spectra or NMR data) in order to 

reveal alterations in specific metabolic pathways consists of preprocessing, data preparation and 

analysis, and functional interpretation (Brown et al., 2005).  

Preprocessing of the data is generally defined as those steps to convert the instrument outputs 

into metabolite concentrations (Brown et al., 2005; Enot et al., 2011; Euceda et al., 2015). 

Briefly, this procedure includes noise filtering, retention time correction, peak detection and 

integration, and chromatogram alignment. Finally, spectra are matched with the respective 

compounds in public or private databases (Tautenhahn et al., 2012; Vettukattil, 2015). 

After preprocessing the data, many approaches may be used to extract useful information from 

the data. However, statistical inference cannot be directly drawn from this set of data, because of 

the following reasons: 1) Missing values (are represented by the symbol NA, i.e., not available) 

are usually those compounds with concentrations below the limit of detection (Di Guida et al., 

2016). 2) Variation from samples that are not related to experimental design, e.g., sample 

injection that needs to be corrected, and 3) Large differences in level and ranges of metabolites 

that may influence weight of the metabolites in the subsequent analysis model (van den Berg et 

https://chemdata.nist.gov/
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al., 2006). Thus, metabolomics data sets need to be “cleaned” or processed before performing 

any statistical analysis as reviewed in detail by van den Berg et al. (2006) and Yang et al. (2015). 

 

 

Figure. 2. Overall view of a simplified workflow of metabolomics analysis (mainly suitable for 

targeted metabolomics) from acquired raw data (i. e., spectra or NMR data) to interpretation. 

 

The key challenge of analyzing -omics data set is the high-dimensionality, that is, the number of 

variables (k, compounds) is much larger than observations (n, experimental units) (Xia et al., 

2013). In a typical metabolomics study, the k is usually several folds more than the n. This “large 

k, small n” problem, also known as “curse of dimensionality,” increases the amount of data 

needed to support the results. It often grows exponentially with the dimensionality and 

consequently, increases the probability of type 1 errors (Saccenti et al., 2014). Another challenge 

is that the aim of a metabolomic study is usually describing the pattern of metabolites, i. e. a 

cluster of metabolites in the same pathway or a group of metabolites has similar functions, but 

not a single metabolite (Cambiaghi et al., 2017). Recently, many algorithms, even machine 

learning approaches have been introduced into metabolomics data analysis (Cuperlovic-Culf, 

2018). 

Currently, there is also interest in taken both univariate and multivariate approaches into 

consideration for analysis of metabolomics data. In the univariate analysis, such as t-tests, 



 Introduction  

14 

 

ANOVA, and their correspondent non-parametrical forms like Kruskal-Wallis tests, each 

variable is considered separately in each time-point. However, the limitation of univariate 

approaches is that they do not take variable correlations or interactions into consideration 

(Saccenti et al., 2014). Thus, univariate methods might fail to discriminate between groups since 

uninformative variables might mask the difference when it is too small. Moreover, multiple 

testing corrections to compensate the “large k small n” problem might, in turn, increase the risk 

of false negatives. 

Multivariate approaches, by definition, consider all variables simultaneously (Worley and 

Powers, 2013). The principle component analysis (PCA), partial least squares discriminant 

analysis (PLS-DA), and orthogonal projections to latent structures discriminant analysis 

(OPLS-DA) are commonly used approaches and are available as packages/toolboxes in 

open-source or commercial software (e.g., R, MATLAB, and the golden standard SIMCA) (Enot 

et al., 2011; Chokkathukalam et al., 2013; Wheelock and Wheelock, 2013; Xia et al., 2015; 

Spicer et al., 2017; Rodriguez-Martinez et al., 2018). In short, PCA extracts the dominant 

sources of variation without prior knowledge of data classification, also known as an 

unsupervised method. It is usually the first step, particularly for checking outliers and group 

distributions (Worley and Powers, 2013). In contrast, the PLS-DA and OPLS-DA are supervised 

methods which aim to describe the inherent patterns between the data (X matrix, e.g., metabolites 

concentrations) with the response matrix containing response variables (Y matrix, e.g., category, 

group), thereby finding a small set of metabolites that contributes most significantly to the 

separation between groups (Worley and Powers, 2013). The discriminate models need to be 

validated to ensure that the separation performance does not result from noise in the dataset, that 

is, by chance only (Triba et al., 2015). Once the discriminate models are validated, important 

metabolites could be selected based on their weights in contributing to the model separation (Xia 

and Wishart, 2016, Cambiaghi et al., 2017). 

The final step in most of the metabolomics studies is interpretation of the data. Pathway analysis 

is performed using the selected most important metabolites to interprete biological function; that 

is, “translating” the changes in the concentrations of the metabolites into regulation of metabolic 

pathway(s). This procedure aims at describing the inter-relationship and interactions of these 

metabolites in context of the available knowledge frameworks. Relevant research questions are 

for instance: 1) How important are these metabolites in influencing a known pathway? 2) How 
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many metabolites are regulated in the given pathway? The selected metabolites from the last step 

are mapped and visualized in the pathway network, the commonly used public databases are 

KEGG, BioCyc, and Reactome (Xia et al., 2013; Xia et al., 2015; Xia and Wishart, 2016). 

 

1.4.3. Application of metabolomics in research on dairy cows 

Metabolomics approaches have been employed to reveal changes that occur in a biology system, 

and thereby facilitate and improve our understanding about rumen health, dietary changes, 

etiology of metabolic diseases, etc. They enable comprehensive identification and quantification 

of metabolites in biofluids and tissues. Most studies performed during the past years, have 

focused on blood, milk, urine and tissues like liver. However, there are only few studies in dairy 

cows that have employed metabolomics for the studying skeletal muscle (Kamila and Beata, 

2016; Goldansaz et al., 2017). 

The classical use of metabolomics is biomarker discovery for diagnosis and monitoring 

metabolic or disease status. Kenéz et al. (2016) demonstrated a notable shift of the serum 

metabolic phenotype from 42 d ante partum to 100 d post partum in dairy cows, pointing to 

disrupted lipid metabolism. The serum phosphatidylcholines (PC) have been reported as the 

most significant metabolites contributing to discriminate between healthy controls and cows with 

different stages of fatty liver (Imhasly et al., 2014). When comparing cows with different levels 

of lipolysis, PC, mainly those with diacyl-residues, sphingomyelins (SM) and ACC were found 

to be different between the groups (Humer et al., 2016). By using GC/MS, carbohydrates, FA, 

AA, even sitosterol and vitamin E isomers, etc. 2-piperidinecarboxylic acid and 

cis-9-hexadecenoic acid were identified to be closely associated with metabolic perturbations in 

ketosis (Zhang et al., 2013). By using 1H-NMR, 25 plasma metabolites, including acetoacetate, 

acetone, lactate, glucose, choline, glutamic acid, and glutamine were identified to be different 

among healthy and ketotic cows (Sun et al., 2014a). These authors further reported potential 

biomarkers in the plasma for diagnosis of milk fever and fatty liver in dairy cows (Sun et al., 

2014b; Xu et al., 2016). In addition, several metabolic pathways including Lys degradation, 

biotin metabolism, Tyr metabolism, urea cycle, Arg-Pro metabolism, protein biosynthesis, Met 

metabolism, phospholipid biosynthesis, Val-Leu-Ile degradation, betaine metabolism, Asp 

metabolism, His metabolism, and β-Ala metabolism were found to be perturbed in cows with 

ketosis during the onset and progression of the disease (Ametaj et al., 2016).  
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Metabolomics is also applied to study changes in the metabolic status of animals in response to 

different treatments. Increasing the portion of barley grain in the diet (from 30% to 45% of DM) 

in dairy cows resulted in decreased rumen pH (i. e. below 5.8 during 6 – 12 h after feeding), 

accompanied by increases in the ruminal concentrations of potentially harmful metabolites such 

as methylamine and endotoxin; in addition, enhanced concentrations of glucose, alanine, maltose, 

propionate, uracil, valerate, xanthine, and phenylacetate were reported (Ametaj et al., 2010). 

Replacing corn stover with alfalfa hay in lactating cows was associated with elevation of 55, 8, 

28, and 31 metabolites in rumen fluid, milk, serum and urine, respectively, pointing to the 

changes that occurred in glycine, serine, and threonine metabolism as well as tyrosine and 

phenylalanine metabolism (Sun et al., 2015). In the study conducted by Sundekilde et al. (2013), 

the increases in milk lactate, butyrate, isoleucine, acetate, and β-hydroxybutyrate, and the 

decrease in hippurate and fumarate were associated with the somatic cell count in milk. 

Moreover, the authors found several metabolites in milk that were associated with milk protein 

content and rennet-induced coagulation properties, which may be considered as quality markers 

for cheese milk (Sundekilde et al., 2014). In a targeted metabolomics study conducted in our 

group, a single-dose duodenal infusion of Leu in dairy cows affected multiple intermediary 

metabolic pathways including AA and energy metabolism (Sadri et al., 2017a). In another study 

conducted in our group, non-targeted metabolomics was performed for testing the effects of 

cinnamon supplement aiming to ameliorate metabolic stress in transition dairy cows. The data 

pointed lipolytic and ketogenic effects of cinnamon supplementation during the transition from 

late gestation to early lactation in dairy cows (Sadri et al., 2017). 
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2. Objectives 

As mentioned in the introduction, it is clear that the adaptation to the onset of lactation puts high 

yielding dairy cows in metabolic stress. The skeletal muscle is not only the primary labile source 

of AA, but also plays important roles in regulating the systemic metabolic homeostasis. The 

muscle metabolome is considered as a promising object to understand the shifted networks; 

however, related studies were lacking. Additionally, a rate-limiting step of FA oxidation has 

been previously attributed to the transport of FA across the mitochondrial inner membranes via 

CPT1, which converts the long-chain acyl-CoA to long-chain ACC. Furthermore, 

supplementation with CLA in early lactation cows has been associated with attenuated NEB 

degree, and were reported to affect lipid metabolism. The effect of CLA on skeletal muscle is 

unclear. Therefore, the present dissertation was aimed to determine: 

1). to characterize the serum and the skeletal muscle metabolome in context of metabolic 

changes occurring during the transition from late pregnancy to early lactation in dairy 

cows, 

2). to determine changes in serum and muscle concentrations of ACC and mRNA abundance 

of muscle carnitine acyltransferases from late pregnancy to lactation, and  

3). to test whether dietary supplementation with CLA altered these compared with 

control-fat supplemented cows.
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ABSTRACT 

 

The periparturient period in dairy cows is characterized by a complexity of metabolic processes 

required to maintain homeostasis. Skeletal muscle, the largest internal organ in mammals, serves 

a variety of important roles in maintaining body homeostasis. The objective of this study was to 

characterize serum and skeletal muscle metabolome of dairy cows during the transition from late 

pregnancy to early lactation. The metabolome was characterized in serum and M. semitendinosus 

samples collected from 21 Holstein cows at days -21, 1, 21, and 70 relative to calving using a 

targeted quantitative metabolomics approach. Out of 188 metabolites, 80 and 52, respectively, in 

serum and muscle contributed most significantly to the separation among the 4 time-points. 

Furthermore, fatty acid oxidation, arginine metabolism, tryptophan metabolism, 

phosphatidylcholine and lysophosphatidylcholines metabolism, and sphingomyeline metabolism 

were found to be the most important metabolic pathways influenced by the transition from late 

gestation to early lactation. The altered metabolic pathways may reflect changed lipid 

metabolism, impaired insulin action, and increased inflammatory status in dairy cows around 

parturition. These data contribute towards an in-depth understanding of the multifaceted 

metabolic adaptation of dairy cows during the transition from late pregnancy to early lactation. 
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INTRODUCTION 

The periparturient period in dairy cows, spanning 3 weeks before and after parturition, is 

characterized by extensive changes in metabolic, endocrine, and immune functions1. Reduced 

feed intake during the last 3 weeks of gestation and increased nutrient demand for milk synthesis 

at the onset of lactation commonly result in a negative nutrient balance2. The selection of dairy 

cows for milk yield has imposed even greater metabolic challenges and albeit the ability to cope 

with such challenges is increasingly considered by considering fitness traits in breeding 

strategies, the incidence of so called production diseases related to the metabolic stress has not 

substantially decreased3. Adaptive failure during the periparturient period may thus impair 

animal health and performance3,4 whereby dysregulated lipid metabolism, impaired insulin 

action, and increased inflammation status are the main contributors5-8. Skeletal muscle, the 

primary labile source of amino acids (AA), plays important roles in regulating the systemic 

metabolic homeostasis9. Muscle protein mobilization seems to start even before parturation10, in 

order to overcome negative nutrient balance through providing AA for milk protein synthesis, 

hepatic gluconeogenesis, and for the immune system11,12. Moreover, the oxidative capacity for 

fatty acids (FA) in skeletal muscle contributes to the reduction of the metabolic load imposed by 

lipolysis and the resulting increase of FA in the circulation and hepatic accumulation of FA12,13 . 

The quantitative contribution of skeletal muscle to FA metabolism in dairy cows during the 

periparturient period is not known. We have recently reported elevated concentrations of muscle 

long-chain acylcarnitines around parturition pointing to increased FA β-oxidation which seems 

not to be entirely met by upregulation of the downstream metabolic pathways, such as the 

tricarboxylic acid (TCA) cycle and respiratory chain14.  

Metabolomics is a powerful tool for acquiring information from whole sets of low-molecular 

weight metabolites in a sample. Therefore, the metabolome, representing the terminal 

downstream product of the genome, transcriptome, and the proteome can provide a direct 

measure of physiological changes in dairy cows15, e.g. in particular condition such as ketosis16-18, 

heat stress19, rumen health20,21 and footrot22. A targeted metabolomics performed to characterize 

phenotypes of metabolic transition from late pregnancy to early lactation in dairy cows revealed 

that the highest ranked metabolites were related to the whole-body changes in FA oxidation, 

associated with altered patterns of glycerophospholipids, and sphingolipids23. In human studies, 

the muscle metabolome is considered as a promising object to understand the metabolic 
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networks such as bioenergetic status, glucose and FA metabolism24-26; however, there are only 

few studies performed in dairy cows to explore the metabolome in skeletal muscle14,19. 

As stated above, in the dairy cow, late gestation and early lactation are characterized by a 

complexity of metabolic processes required to maintain homeostasis whereby the role of skeletal 

muscle is less well investigated than is adipose tissue and liver. Thus, the objective of this study 

was to characterize the serum and the skeletal muscle metabolome in context of metabolic 

changes occurring during the transition from late pregnancy to early lactation in dairy cows. An 

overview of the experimental design and work flow of the data processing is shown in Fig.1. 

 

 

Figure 1. A) experimental design and B) flowchart of significantly changed metabolites (SCM) 

identification and data interpretation. PCA, principal component analysis; PLS-DA, partial least 

squares discriminant analysis; VIP, variable importance in projection. 
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METHODS 

 

Animal management and sample collection 

All animal experiments were in accordance with the European Community regulations 

concerning the protection of experimental animals and the guidelines of the LAVES (Lower 

Saxony State Office for Consumer Protection and Food Safety, Germany). The experimental 

design and zootechnical data were reported previously27. Briefly, twenty one pluriparous German 

Holstein cows, housed in a free stall barn, were fed ad libitum with a partial mixed ration (PMR) 

according to the recommendations of the German Society of Nutrition Physiology (GfE, 2001). 

The PMR (6.8 MJ of NEL/kg of DM) consisted of 37.8% corn silage, 25.2% grass silage, and 37% 

concentrate (DM basis). From days in milk 1 to 182, the cows received either a dietary 

supplement, i.e., conjugated linoleic acids group (group CLA; n = 11) or a control fat 

supplement (group CTR; n = 10). The animals in the CLA group received 100 g/d encapsulated 

rumen-protected CLA (Lutrell Pure, BASF, Ludwigshafen, Germany) supplying 7.6 g of cis-9, 

trans-11 CLA and 7.6 g of trans-10, cis-12 CLA per day. The animals in the CTR group 

received 100 g/d of rumen-protected control fat supplement (Silafat, BASF) in which CLA was 

substituted by stearic acid to form an isoenergetic control diet using a FA with the same number 

of carbon atoms as in CLA. The supplements were provided with 4 kg of additional concentrate 

(8.8 MJ of NEL/kg DM). 

Muscle biopsies from M. semitendinosus were taken on d -21, 1, 21, and 70 relative to parturition. 

The biopsies were cut to pieces of about 25 mg each and weighted freshly. Afterwards the 

samples were snap-frozen in liquid nitrogen and stored at -80 °C until analysis. Blood samples 

were collected from a jugular vein on d -21, 1, 21, and 70 relative to parturition. Blood serum 

was prepared (1,500 × g at 4 °C for 20 min) and stored at -80 °C until analysis. 

 

Estimation of insulin sensitivity  

Data of serum non-esterified FA (NEFA), glucose, and insulin needed for the estimation of 

insulin sensitivity through calculating the “Revised Quantitative Insulin Sensitivity Check Index” 

(RQUICKI)28 were reported elsewhere27. 
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Targeted metabolomics measurements 

The metabolome profiles in muscle and serum were determined by liquid 

chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and flow 

injection-electrospray ionization-tandem mass spectrometry (FIA-ESI-MS/MS) analyses through 

a targeted metabolomics approach using the AbsoluteIDQTM p180 Kit (BIOCRATES Life 

Sciences AG, Innsbruck, Austria). The assay allows for the simultaneous quantification of 188 

metabolites including free carnitine (C0), 40 acylcarnitines (ACC), 21 AA (19 proteinogenic + 

citrulline + ornithine [Orn]), 19 biogenic amines, hexoses (sum of hexoses – about 90-95% 

glucose; H1), 90 glycerophospholipids (76 phosphatidylcholines [PC] and 14 

lysophosphatidylcholines [lysoPC]), and 15 sphingolipids. The abbreviations Cx:y are used to 

describe the total number of carbons and double bonds in lipid fatty acid chains, respectively. All 

analyses were performed in the Helmholtz Zentrum München, German Research Center for 

Environmental Health, Genome Analysis Center. In case of serum, 10 µL of the thawed sample 

have been applied directly to the assay. In case of muscle, frozen samples were homogenized and 

extracted using homogenization tubes with ceramic beads (1.4 mm) and a Precellys 24 

homogenizer with an integrated cooling unit (PEQLAB Biotechnology GmbH, Germany). Using 

the measured weight of the fresh muscle samples, the appropriate volume of extraction solvent 

was calculated for each individual piece of tissue. To each mg of frozen muscle tissue were 

added 3 µL of a dry ice cooled mixture of ethanol/phosphate buffer (85/15 v/v). After 

centrifugation, 10 µL of the homogenate supernatant were applied to the well plate of the p180 

kit. The assay procedures of the AbsoluteIDQTM p180 Kit, the detailed description of the tissue 

preparation and the metabolite nomenclature have been described in detail previously29,30. 

Sample handling was performed by a Hamilton Microlab STARTM robot (Hamilton Bonaduz AG, 

Bonaduz, Switzerland) and a Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, UK), 

beside standard laboratory equipment. Mass spectrometric analyses were done on an API 4000 

triple quadrupole system (Sciex Deutschland GmbH, Darmstadt, Germany) equipped with a 

1200 Series HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Germany) and a HTC 

PAL auto sampler (CTC Analytics, Zwingen, Switzerland) controlled by the software Analyst 

1.6.1. Data evaluation for quantification of metabolite concentrations and quality assessment was 

performed with the MetIDQ™ software package, which is an integral part of the AbsoluteIDQ™ 

Kit. Internal standards were used as reference for the calculation of metabolite concentrations. 
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The concentrations of the serum samples were given in µM, the concentrations of the tissue 

samples in pmol/mg wet tissue and the concentrations of tissue homogenate in µM. The LOD 

was set to three times the values of zero samples (PBS for serum, ethanol/phosphate buffer for 

tissue homogenate). 

 

Data processing and identification of significantly changed metabolites 

Statistical analyses of the metabolomics data were performed according to previously published 

protocols using MetaboAnalyst 3.031,32. As quality control, variables containing more than 50% 

missing values (i. e., values lower than LOD) were not considered for the statistical analysis. The 

k-nearest neighbors (KNN) algorithm was used to estimate the values of missing data in 

remaining variables. In the preliminary data mining, no treatment effects or its interactions with 

time were observed; thus, the data of 2 groups were merged (Supplemental Fig. 1). Data were 

generalized log (glog) transformed and then Pareto-scaled to correct for heteroskedasticity, to 

reduce the skewness of the data, and to reduce mask effects33. Multivariate approaches including 

principal component analysis (PCA), and partial least squares discriminant analysis (PLS-DA) 

were performed. The PCA, an un-supervised method, was used to visualize clusters and trends of 

the datasets. The PLS-DA, a supervised method, was conducted to perform classification and to 

identify those metabolites showing significant differences among the 4-time points. To validate 

class discrimination and to avoid overfitting of the PLS-DA model, 10-fold cross-validation and 

2000 times permutation tests were performed. Variable importance in projection (VIP), 

representing the weighted sum of squares of the PLS loading, which takes the amount of 

orthogonal variance explained by each component into account, were used to rank the 

metabolites based on their importance (VIP score > 1) in discriminating different time-points. 

Additionally, a one-way ANOVA with Tukey’s HSD test was performed on the data to further 

confirm the significance of important metabolites identified using PCA and PLS-DA models. 

The threshold of significance was set at false discovery rate (FDR) < 0.10. Those metabolites 

that were identified as significantly changed metabolites (SCM) in serum and muscle were 

manually classified into different metabolic pathway based on prior knowledge, PubChem 

(https://pubchem.ncbi.nlm.nih.gov/), Human Metabolome Database (http://www.hmdb.ca/), and 

KEGG (http://www.genome.jp/kegg/). 

 

https://pubchem.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg/
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Correlation analyses 

The Spearman’s rank-order correlation was used to reveal correlations between muscle and 

serum metabolome, blood NEFA, glucose, insulin, as well as RQUICKI using PROC CORR of 

SAS, release 9.4 (SAS Institute Inc., Cary, NC). 

 

RESULTS 

RQUICKI 

As shown in Fig. 2, RQUICKI tended to decrease on d 1 as compared to d 21 (P = 0.106). 

 

 

 

Figure 2. Time course of the estimated insulin sensitivity as measured by the revised 

quantitative insulin sensitivity check index (RQUICKI) in dairy cows during late gestation and 

early lactation (P = 0.106). Data are means ± SEM. 
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Muscle and serum metabolome 

In our experimental setup we wanted to compare metabolomics signatures from intrinsic muscle 

metabolism and milk. In total, 184 and 176 metabolites in muscle and serum, respectively, 

passed the data quality check. The PCA score plots show clear separations between pre- and post 

partum periods in both muscle and serum metabolites (Supplemental Fig. 2A and B). The 

PLS-DA score plots of muscle and serum data again represented a clear separation among the 4 

time-points. The 2 PLS-DA models identified 5 components with satisfactory modeling and 

predictive abilities around 80% (in case of both R2 and Q2; Supplemental Fig. 3A and C). To 

avoid model overfitting, 2000 times random permutation tests were performed (P = 0/2000; 

Supplemental Fig. 2B and D), indicating that the models were valid. Using the validated 

PLS-DA models (Supplemental Fig. 4A and B), a total of 52 metabolites in muscle and of 80 in 

serum that contributed most significantly (VIP > 1.0; ANOVA P < 0.10) to the separation among 

the 4 time-points were identified and are presented in the Supplemental Table 1. Out of the SCM 

in muscle and serum, 31 metabolites were common between muscle and serum (Fig. 3A). 

Heatmap of the SCM in muscle and serum also depicted time-dependent alterations in muscle 

and serum metabolome (Fig. 3B and C). 

 

Characterization of the key metabolic pathways 

Five potential metabolic pathways were selected based on the SCM in muscle and serum. The 

metabolites involved in these potential metabolic pathways are presented as heat maps in Figs. 

4-8. FA oxidation, arginine (Arg) metabolism, tryptophan (Trp) metabolism, PC and lysoPC 

metabolism, and sphingomyeline (SM) metabolism were found to be the most important 

metabolic pathways influenced by the transition from late gestation to early lactation. 
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Figure 3. A) Venn diagram of significantly changed metabolites in muscle and serum. Patterns 

of muscle (B) and serum (C) significantly changed metabolites on d -21, 1, 21 to 70 days relative 

to parturition are shown in heatmap. 
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Figure 4. Heatmap of significantly changed metabolites related to carnitine shuttle in A) muscle 

and B) serum of dairy cows on d -21, 1, 21 to 70 days relative to parturition. 

 

 

 

Figure 5. Heatmap of significantly changed metabolites related to arginine metabolism in A) 

muscle and B) serum of dairy cows on d -21, 1, 21 to 70 days relative to parturition. 
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Figure 6. Heatmap of significantly changed metabolites related to tryptophan metabolism in 

muscle and serum of dairy cows on d -21, 1, 21 to 70 days relative to parturition. 

 

 

Figure 7. Heatmap of significantly changed metabolites related to phosphatidylcholine (PC) and 

lysophosphatidylcholines (LysoPC) metabolism in A) muscle and B) serum of dairy cows on d 

-21, 1, 21 to 70 days relative to parturition 
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Figure 8. Heatmap of significantly changed metabolites related to sphingomyelins (SM) 

metabolism in A) muscle and B) serum of dairy cows on d -21, 1, 21 to 70 days relative to 

parturition. 

 

Association of muscle and serum SCM with conventional metabolic parameters 

In Fig. 9 the significant (P < 0.10, |r| > 0.2) spearman's rank correlation coefficients between 

blood serum parameters (NEFA, glucose, insulin, and RQUICKI) and identified SCM in muscle 

and serum are presented. Most of the muscle long-chain ACC (C14-C18) were positively 

correlated with NEFA and negatively with RQUICKI. Serum long-chain ACC (C14 and C16) 
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were positively correlated with NEFA and negatively with glucose, whereas serum short-chain 

ACC (C5) and C0 were correlated negatively with NEFA and positively with insulin. Serum 

acetylcarnitine (C2) was negatively correlated with RQUICKI. 

Muscle long-chain (> C32) diacyl-phosphatidylcholines (PC aa) and acyl-alkyl- 

phosphatidylcholines ae (PC ae) were negatively correlated with NEFA and positively with 

glucose and insulin. Additionally, muscle PC ae C36:4 was negatively correlated with RQUICKI. 

Serum shorter-chain PC aa (C30 and C28:1) were found to be negatively correlated with serum 

glucose and insulin. Serum lysoPC a C18:2 along with lysoPC C24:0 were negatively correlated 

with NEFA and positively with RQUICKI. Muscle SM C20:2, was found to be negatively 

correlated with NEFA and positively with insulin. 

Most of the metabolites related to Arg metabolism including muscle and serum asymmetric 

dimethylarginine (ADMA), glutamine (Gln), and muscle Orn, trans-4-hydroxyproline 

(t4-OH-Pro) were negatively correlated with NEFA, and positively with glucose and insulin. In 

contrast, positive correlations were observed between muscle Arg, and serum creatinine and 

symmetric dimethylarginine (SDMA) with NEFA. Moreover, muscle Arg was negatively 

correlated with insulin and RQUICKI. There was a negative correlation observed between serum 

SDMA and glucose. Serum t4-OH-Pro was negatively correlated with insulin and glucose. 

Muscle Trp and serotonin were positively correlated with NEFA and negatively with glucose and 

insulin. 

Serum histidine (His), and tyrosine (Tyr) were negatively correlated with NEFA and positively 

with glucose. Serum Tyr was positively correlated with insulin. Serum Tyr and methionine 

sulfoxide (Met-SO) were positively correlated with RQUICKI. Muscle H1 was positively 

correlated with NEFA, and negatively with insulin. Muscle taurine was positively correlated with 

glucose and insulin but negatively with RQUICKI. 
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Figure 9. Correlations between muscle (A, C, E, G) and serum (B, D, F, H) metabolites with 

conventionally used parameters (P < 0.10). (NEFA: A and B; Glucose: C and D; Insulin: E and F; 

and RQUICKI: G and H). The bars shows spearman's rank correlation coefficients. 
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DISCUSSION 

Carnitine and the majority of the ACC were identified as SCM in both muscle and serum. 

Accumulated concentrations of ACC in both muscle and serum, varying in carbon chain length, 

were observed around parturition and were associated with greater NEFA concentrations and a 

trend for reduced RQUICKI. In dairy cows, plasma FA is mainly comprised of saturated FA, 

including palmitate (C16:0) and stearate (C18:0), and oleic acid (C18:1n9c) as a 

monounsaturated FA34,35. For generating energy, long-chain FA need to be transported from the 

cytoplasm into the mitochondrial matrix across the mitochondrial membranes through a 

carnitine-dependent transport shuttle. Dysregulation of carnitine metabolism may lead to 

incomplete mitochondrial FA oxidation, resulting in accumulation of ACC, which may be 

associated with the development of insulin resistance36-38. Most lipid-derived ACC were elevated 

around parturition, which is consistent with the lactation-induced rise in circulating FA. Most 

long-chain ACC species in muscle were decreased from d 1 to d 21, with little or no changes 

afterwards, suggesting insufficient adaptation of their metabolism in response to the metabolic 

load of FA around calving (Fig. 4A and B). Taken together, in metabolic situations when FA 

availability is high, β-oxidation is elevated and/or glucose metabolism is impaired, depletion of 

several TCA cycle intermediates is likely, so that the mitochondrial status around parturition is 

compromised. 

Arginine, metabolically interconvertible with the AA proline (Pro) and glutamate (Glu), serves 

as a precursor for synthesis of protein, nitric oxide (NO), creatinine, polyamines, agmatine, and 

urea. Metabolism of Arg through nitric oxide synthase (NOS) or arginase39 regulates the 

biosynthesis of these physiologically important metabolites, pointing also to important 

pathophysiological events, such as insulin resistance and tissue regeneration. Dimethylarginine 

(DMA) consists of ADMA and SDMA. The ADMA is an endogenous inhibitor of NO synthase 

through displacing Arg from the substrate binding site. Increased circulating ADMA levels 

impair the endothelium-derived NO-mediated vasodilation40. In muscle, elevated ADMA 

inhibited glucose uptake, pointing to its association with insulin resistance41. Indeed, the 

circulating ADMA concentrations are related with insulin sensitivity42. This could be explained 

by the NO pathway as this pathway is inhibited in case of diabetic condition43,44. In the current 

study, the greater muscle and serum concentrations of ADMA observed on d -21 and d 1 
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compared to other 2 time-points (Fig. 5A and B), might reflect reduced insulin sensitivity in 

dairy cows around calving. 

Creatinine is produced non-enzymatically from muscle creatine and phosphocreatinine and is 

excreted in blood proportional to muscle mass45. In the present study, the concentrations of 

creatinine in muscle and serum were higher on d -21 and 1 compared with the other time-points 

(Fig. 5A and B), suggesting that probably increased skeletal muscle degradation may have 

induced a decrease in muscle mass on d 21 and 70. 

Polyamines (mainly putrescine, spermidine, spermine), mainly synthesized from L-Arg, are 

small aliphatic polycations. They are involved in many functions including oxidation, and 

autophagy, due to their natural affinity with negatively charged molecules such as DNA, RNA 

and proteins46. Elevated concentrations of polyamines were observed in muscle hypertrophy and 

regeneration, probably reflecting the stimulation of DNA synthesis and cell proliferation47,48. As 

the precursor of spermidine and spermine, putrescine was found to be associated with tumor 

necrosis factor, and consequently with inflammation46. In the current study, the concentrations of 

putrescine in serum increased from d -21 to d 1 (Fig. 5B), probably reflecting an inflammatory 

status in dairy cows during this period6. 

In addition to its indispensable role in protein synthesis, Trp is the precursor in two important 

metabolic pathways during the course of its degradation. In mammals, Trp is metabolized via 2 

metabolic pathways including biosynthesis of serotonin and kynurenine. The major non-protein 

route of Trp metabolism that accounts for 95% of total body Trp metabolism is the kynurenine 

pathway, leading to the formation of nicotinamide adenosine dinucleotide (NAD). Kynurenine is 

the first stable intermediate that is formed in the kynurenine pathway49,50. The key enzymes of 

the kynurenine pathway are activated by the stress hormones or inflammatory factors49,51,52, and 

consequently the metabolites derived from this pathway were reported to contribute to the 

development of insulin resistance53. The remaining portions of Trp are hydroxylated for the 

synthesis of serotonin. Serotonin is not only a key neurotransmitter but also a modulator of cell 

proliferation, insulin action, and cytokine production54,55. An imbalance of these 2 metabolic 

pathways have been shown to be involved in the development of insulin resistance such as type 2 

diabetes mellitus (T2DM)53,56. In the current study, the increase in the Trp concentrations in 

muscle from d -21 to d 21 (Fig. 6) was accompanied by increased kynurenine/Trp ratios in serum. 

The kynurenine/Trp ratio is used for evaluation of the enzyme that catalyzes the conversion of 
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Trp into kynurenine57. The rising kynurenine/Trp ratio from d -21 to d 21 may thus suggest that 

less Trp was entering the serotonin pathway in favor of the kynurenine pathway around 

parturition. In turn, this is likely linked with the development of insulin resistance53. 

Phosphatidylcholines form the largest portion (around 50%) of the total cellular membrane 

phospholipids, and are important for membrane properties, cell integrity, and cellular signaling58. 

Manipulation of cellular membrane composition in muscle, especially the PC: 

phosphatidylethanolamine (PE) ratio was reversely associated with insulin sensitivity59,60. In the 

current study, muscle PC were predominantly decreased from d -21 to d 70 (Fig. 7A). In addition, 

muscle PC ae 36.4 was negatively correlated with RQUICKI (Fig. 9G); thus, likely reflecting a 

status of insulin resistance. Disruption of PC content might induce triacylglyceride (TAG) 

accumulation in liver and greater oxidative challenges61,62. The PC aa are essential for hepatic 

secretion of very low-density lipoprotein (VLDL), which is responsible for the TAG package 

and export from the liver, whereas PC ae also act as antioxidants in the circulation61,63. Previous 

studies have shown a perturbation in the serum PC and lysoPC patterns in dairy cows in response 

to excessive lipolysis64,65 and lactation challenges23,66. Imhasly et al. (2014) observed a reduction 

in the longer PC (> 36) in cows diagnosed with hepatic lipidosis. Likewise, Humer et al. (2016) 

reported a similar PC perturbation, i.e., PC with more than 40 carbons were reduced in cows 

undergoing extensive lipolysis cows in the early post partum period. The authors of the 

aforementioned study speculated that the longer PC might protect from high lipid mobilization 

via a currently unknow mechanism64. Interestingly, in outr study, serum PC aa and PC ae showed 

different pattern (Fig. 7B). The serum PC aa seems to be more influenced by degree of saturation 

than chain length. From the 14 serum PC aa identified as SCM, only polyunsaturated FA (PUFA) 

PC aa carrying 30 to 36 carbon were decreased from d -21 to d 1 and increased thereafter. This 

might indicate a shift from PUFA towards saturated and/or monosaturated FA (MUFA) PC in 

the membrane during the peripartum period. These changes might result in an increase of 

membrane stiffness which may be associated with abnormalities in glucose transporters (GLUT) 

translocation in muscle67. This is supported, at least in part, by increased serum glucose from d 

-21 to d 1. 

In the present study, serum PC ae presented a chain length related pattern: serum PC ae 

containing shorter FA moieties (< 38) were predominantly decreased from d -21 to d 1, whereas 

those containing longer FA (> 42) followed a reverse pattern (Fig. 7B). This might suggest that 



 Manuscript 1  

36 

 

the shorter PC ae are more important in acting as serum antioxidants61,63, as oxidative stress is 

increased around calving. Based on previous studies64,67,68 and on our observations, we thus 

speculate that not only the carbon chain length, but also the position of the double bonds and 

conformation of the PC may determine the membrane-related cell functions during the transition 

from late pregnancy to early lactation. LysoPC, a PC breakdown product, is a major 

lysophospholipid in plasma and tissues69. It is not only involved in the transportation of the 

glycerophospholipid components such as FA, phosphatidylglycerol and choline between tissues, 

but also is a major phospholipid of the oxidized low-density lipoproteins70. As an effector of 

FA-induced insulin resistance71, plasma lysoPC levels were changed in subjects with T2DM72. 

Greater levels of lysoPC a C18:0, but not unsaturated ones, were reported in obese subjects, 

suggesting that shorter and saturated lysoPC may play a role in impaired insulin signaling 

observed in these subjects64,73. In the present study, muscle short and saturated lysoPC (lysoPC a 

C14:0) concentrations were greater on d -21 and d 1, than thereafter (Fig. 7A). However, serum 

lysoPC a C18:2 concentrations showed almost a reverse pattern as compared with that of lysoPC 

a C14:0 (Fig. 7B), and were positively correlated with RQUICKI (Fig. 9H). In humans, 

unsaturated lysoPC were associated with improved insulin sensitivity74. Whether lysoPC acts in 

the same manner in dairy cows is currently unknown; however, the different patterns observed in 

their profiles during the transition from late pregnancy to early lactation in the present study may 

reflect a contribution of these metabolites in the adaptive processes likely including insulin 

signaling. 

In the present study, the concentrations of most SM and hydroxysphingomyelins (SM OH) in 

muscle and serum reached a nadir at parturition and increased post partum. The SM, making up 

about 10-15% of lipids within the plasma membrane, are a molecularly diverse group of 

phospholipids. They are composed of a backbone of ceramide base and a phosphocholine head 

group75,76. SM is knowingly regulating the physical properties of membranes, while ceramide has 

been suggested as a therapeutic target for T2DM77,78. Remodeling of SM and ceramide 

metabolism is recently noted in the development of insulin resistance. In human and dairy cows, 

circulating ceramide levels were observed inversely correlated with insulin sensitivity5,64,79,80. 

The de novo synthesis of ceramide, that is, condensation of palmitate and serine (Ser), may 

attributed to insulin resistance79,81. The activation of sphingomyelinase and subsequent 

hydrolysis of SM to produce ceramide in response to pro-inflammatory signals is also well 
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characterized in dairy cows79. In the present study, muscle and serum SM that identified as SCM 

(Fig. 8) and serum total SM were principally decreased from d -21 to d 1 and then increased 

thereafter, likely reflecting elevated circulation profiles. 

 

CONCLUSIONS 

Out of 188 metabolites, 52 metabolites in muscle and 80 metabolites in serum contributed most 

significantly to the separation among the 4 time-points. Based on the SCM in muscle and serum, 

five potential metabolic pathways including FA oxidation, Arg metabolism, Trp metabolism, PC 

and lysoPC metabolism, and SM metabolism were found to be the most important metabolic 

pathways impacted by the transition from late gestation to early lactation. The altered metabolic 

pathways are intriguing and warrant further study. These data contribute towards an in-depth 

understanding of the metabolic and physiological changes occurring in dairy cows during the 

transition from late pregnancy to early lactation and identifies metabolic pathways for future 

targeted analysis. 
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S. Figure 1. ANOVA-simultaneous component analysis (ASCA) of group (CLA 

supplementation and Control), time (d -21, 1, 21 and 70) and group × time interaction dairy 

cow’s A) muscle and B) serum metabolites. The effects were tested by 1,000 times of 

permutation tests based on separation distance. The histogram shows the group separation 

distance formed by these datasets randomly reassigned class labels. The red arrow represents the 

group separation distance of the original classifier. The further away to the right of the 

distribution formed by randomly permuted data, the more significant the discrimination. Only 

time effects reached significant value. 
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S. Figure 2. PCA score plots of dairy cows A) muscle; and B) serum metabolites on d -21, 1, 21 

and 70 days relative to parturition of the first two principal components. Each symbol represents 

the principal components of one cow at one sampling day. Arrows with different colors indicate 

directions of pattern shift from d -21 to d 1 (Red) and from d 1 to d 70 (Blue). 
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S. Figure 3. Validation of partial least squares-discriminant (PLS-DA) model discriminating 

dairy cow’s muscle and serum metabolites from late gestation to early lactation. Prediction 

accuracy, R2 (Goodness of fit) and Q2 (Predictive ability) of PLS-DA models of A) muscle and C) 

serum using different number of components were calculated by 10-fold cross-validation. The 

red asterisk (*) indicates the best classifier which used in the current model. The PLS-DA model 

of B) muscle and D) serum were further validated by 2,000 times of permutation tests based on 

separation distance. The histogram shows the group separation distance formed by these datasets 

randomly reassigned class labels. The red arrow represents the group separation distance of the 

original classifier. The further away to the right of the distribution formed by randomly permuted 

data, the more significant the discrimination. The p-value is calculated as the proportion of the 

times that class separation based on randomly labeled sample is at least as good as the one based 

on the original data. 
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S. Figure 1. PLS-DA scores plots of dairy cows A) muscle; and B) serum metabolites showing a 

significant separation among d -21, 1, 21 and 70 days relative to parturition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Manuscript 1  

49 

 

S. Table. 1. Complete list of Muscle and serum significantly changed metabolites (SCM) 

selected based on VIP > 1.0 obtained from PLS-DA model and false discovery rate (FDR) < 0.10 

from ANOVA, respectively. 

Tissue Metabolites VIP FDR 

Muscle 

ADMA 2.615 < 0.0001 
Arg 1.061 < 0.0001 
C0 1.050 < 0.0001 
C12 1.065 < 0.0001 
C14:1-OH 1.027 < 0.0001 
C14:2 1.287 < 0.0001 
C14:2-OH 1.160 < 0.0001 
C16:1 1.202 < 0.0001 
C16:2 2.035 < 0.0001 
C16:2-OH 1.152 < 0.0001 
C16-OH 1.009 < 0.0001 
C18:1-OH 1.008 < 0.0001 
C18:2 1.617 < 0.0001 
C4 1.079 < 0.0001 
C4:1 2.115 < 0.0001 
C5 1.229 < 0.0001 
C5:1 1.180 < 0.0001 
C5-OH 1.688 < 0.0001 
C6 1.305 < 0.0001 
C9 1.411 < 0.0001 
Creatinine 1.784 < 0.0001 
Gln 2.345 < 0.0001 
H1 1.218 < 0.0001 
lysoPC a C14:0 1.097 0.0009 
Orn 1.848 < 0.0001 
PC aa C32:3 1.040 < 0.0001 
PC aa C34:2 1.976 < 0.0001 
PC aa C34:3 2.965 0.0009 
PC aa C34:4 2.282 < 0.0001 
PC aa C36:0 1.516 < 0.0001 
PC aa C36:2 1.123 < 0.0001 
PC aa C36:3 1.419 < 0.0001 
PC aa C42:5 1.345 < 0.0001 
PC ae C34:0 1.087 < 0.0001 
PC ae C34:1 1.182 < 0.0001 
PC ae C34:3 1.919 < 0.0001 
PC ae C36:1 1.016 0.0006 
PC ae C36:2 1.702 < 0.0001 
PC ae C36:3 1.823 < 0.0001 
PC ae C36:4 1.357 < 0.0001 
PC ae C38:0 1.128 0.0083 
PC ae C40:6 1.121 < 0.0001 
PC ae C42:5 1.140 < 0.0001 
PC ae C44:5 1.014 < 0.0001 
Pro 1.413 < 0.0001 
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Ser 1.107 < 0.0001 
Serotonin 2.113 0.0002 
SM C16:1 1.014 0.0007 
SM C20:2 2.958 < 0.0001 
t4-OH-Pro 1.884 < 0.0001 
Taurine 1.258 < 0.0001 
Trp 1.096 0.0002 

Serum 

ADMA 2.238 < 0.0001 
C0 2.057 < 0.0001 
C10 1.329 < 0.0001 
C10:2 1.028 < 0.0001 
C14 1.050 < 0.0001 
C14:1-OH 1.134 < 0.0001 
C14:2 1.201 < 0.0001 
C16 1.010 < 0.0001 
C16:1 1.108 < 0.0001 
C16:1-OH 1.084 < 0.0001 
C16:2 1.075 < 0.0001 
C16:2-OH 1.097 < 0.0001 
C16-OH 1.214 < 0.0001 
C18:1-OH 1.234 < 0.0001 
C2 1.292 < 0.0001 
C3 1.090 < 0.0001 
C3:1 1.076 < 0.0001 
C3-OH 1.052 < 0.0001 
C4 1.659 < 0.0001 
C4:1 1.248 < 0.0001 
C5 1.361 < 0.0001 
C5:1 1.163 < 0.0001 
C5:1-DC 1.191 < 0.0001 
C5-M-DC 1.127 < 0.0001 
C5-OH 1.297 < 0.0001 
C6:1 1.163 < 0.0001 
C6-OH 1.252 < 0.0001 
C7-DC 1.177 < 0.0001 
C8 1.103 < 0.0001 
C9 1.013 < 0.0001 
Creatinine 1.570 < 0.0001 
Gln 1.432 < 0.0001 
Glu 1.772 < 0.0001 
H1 1.373 < 0.0001 
His 1.376 < 0.0001 
Leu 1.346 < 0.0001 
Lys 1.032 < 0.0001 
lysoPC a C18:2 1.066 0.0002 
lysoPC a C24:0 1.170 < 0.0001 
lysoPC a C28:1 1.157 < 0.0001 
Met-SO 1.534 0.0001 
PC aa C28:1 1.533 < 0.0001 
PC aa C30:0 1.035 < 0.0001 
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PC aa C30:2 1.017 < 0.0001 
PC aa C32:2 1.200 < 0.0001 
PC aa C32:3 1.981 < 0.0001 
PC aa C34:2 1.643 < 0.0001 
PC aa C34:4 1.442 < 0.0001 
PC aa C36:2 1.572 < 0.0001 
PC aa C36:3 1.290 < 0.0001 
PC aa C38:1 1.293 < 0.0001 
PC aa C42:0 1.062 < 0.0001 
PC aa C42:1 1.012 0.0013 
PC aa C42:5 1.089 < 0.0001 
PC aa C42:6 1.674 < 0.0001 
PC ae C30:2 1.090 < 0.0001 
PC ae C32:1 1.075 < 0.0001 
PC ae C32:2 1.025 < 0.0001 
PC ae C34:2 1.559 < 0.0001 
PC ae C34:3 2.025 < 0.0001 
PC ae C36:2 1.830 < 0.0001 
PC ae C36:3 1.381 < 0.0001 
PC ae C36:4 1.631 < 0.0001 
PC ae C38:3 1.098 < 0.0001 
PC ae C42:0 1.018 < 0.0001 
PC ae C42:2 1.412 < 0.0001 
PC ae C42:3 1.319 0.0024 
PC ae C42:4 1.237 0.0249 
PC ae C44:4 1.363 < 0.0001 
PC ae C44:5 1.184 < 0.0001 
Phe 1.416 < 0.0001 
Putrescine 1.029 < 0.0001 
SDMA 1.286 < 0.0001 
Serotonin 1.783 0.0002 
SM C20:2 1.553 < 0.0001 
SM OH C16:1 1.112 < 0.0001 
SM OH C22:1 1.078 < 0.0001 
t4-OH-Pro 1.027 < 0.0001 
total DMA 2.005 < 0.0001 
Tyr 1.137 < 0.0001 
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ABSTRACT 

 

Acylcarnitines (ACC) are formed when fatty acid (FA)-CoA enters the mitochondria 

for β-oxidation and the tricarboxylic acid (TCA) cycle through the carnitine shuttle. 

Concentrations of ACC may vary depending on the metabolic conditions, but can 

accumulate when rates of β-oxidation exceed those of TCA. This study aimed to 

characterize muscle and blood serum acylcarnitine profiles, to determine the mRNA 

abundance of muscle carnitine acyltransferases, and to test whether dietary 

supplementation (from d 1 in milk) with conjugated linoleic acids (CLA; 100 g/d; 

each 12% of trans-10, cis-12 and cis-9, trans-11 CLA; n = 11) altered these compared 

with control-fat supplemented cows (CTR; n = 10). Blood samples and biopsies from 

M. semitendinosus were collected on d -21, 1, 21, and 70 relative to parturition. 

Serum and muscle ACC profiles were quantified using a targeted metabolomics 

approach. The CLA supplement did not affect the variables examined. The serum 

concentration of free carnitine decreased with the onset of lactation. The 

concentrations of acetylcarnitine (C2), hydroxybutyrylcarnitine (C4-OH), and the sum 

of short-chain ACC (C2-C5) in serum were greater from d -21 to 21 than thereafter. 

The serum concentrations of long-chain ACC tetradecenoylcarnitine (C14:1), and 

octadecenoylcarnitine (C18:1) concentrations were greater on d 1 and 21 compared 

with d -21. Muscle carnitine remained unchanged, whereas short and medium- chain 

ACC, including propenoylcarnitine (C3:1), C4-OH, hydroxyhexanoylcarnitine 

(C6-OH), hexenoylcarnitine (C6:1), and pimelylcarnitine (C7-DC) were increased on 

d 21 compared with d -21, and decreased thereafter. In muscle, the concentrations of 

long-chain ACC (from C14 to C18) were elevated on d 1. The mRNA abundance of 

carnitine palmitoyltransferase 1, muscle isoform (CPT1B) increased 2.8-fold from d 

-21 to d 1 (P = 0.02), followed by a decline to nearly prepartum values by d 70, 

whereas that of CPT2 did not change over time. The majority of serum and muscle 

short-chain and long-chain ACC were positively correlated with the FA 

concentrations in serum, whereas serum carnitine and C5 were negatively correlated 
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with FA. Time-related changes in the serum and muscle ACC profiles were 

demonstrated, that were not affected by the CLA supplement at the dosage used in the 

present study. The elevated concentrations of long-chain ACC species in muscle and 

of serum C2 around parturition point to incomplete FA oxidation, likely due to 

insufficient metabolic adaptation in response to the load of FA around parturition. 

 

Key Words: acylcarnitine, carnitine shuttle, skeletal muscle, conjugated linoleic acid, 

early lactation 

 

INTRODUCTION 

The transition from late gestation through early lactation in dairy cow is associated 

with a substantial mobilization of body reserves, in particular fat, leading to a marked 

increase in circulating concentrations of fatty acids (FA) which are oxidized by 

hepatic and extrahepatic tissues as an energy source (Grummer, 1993). However, in 

the liver, the oxidative capacity for FA and also for exporting FA via very low-density 

lipoproteins (VLDL) is limited and thus fatty liver may result from increased lipolysis 

(Grummer, 2008). Peroxisomal β-oxidation, as an auxiliary pathway for oxidizing FA 

during extensive NEFA mobilization, helps to dampen accumulation of fat in the liver 

(Grum et al., 1994, 1996, 2002). In addition, the oxidative capacity for FA in other 

tissues such as skeletal muscle may also contribute in reducing the metabolic load of 

FA on the liver (Kuhla et al., 2011; Schäff et al., 2013), though the quantitative 

contribution of skeletal muscle to FA metabolism in dairy cows during the 

periparturient is not known. 

In dairy cows, plasma FA mainly comprise saturated FA, including palmitic acid 

(C16:0) and stearic acid (C18:0), and oleic acid (C18:1n9c) as a monounsaturated FA 

(Leroy et al., 2005; Tyburczy et al., 2008). For generating energy from long-chain FA, 

they need to be transported from the cytoplasm into the mitochondrial matrix across 

the mitochondrial membranes through a carnitine-dependent transport shuttle. This 

transport system is regulated by carnitine acyltransferases, i.e. carnitine 
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palmitoyltransferase 1 (CPT1; present in the mitochondrial outer membrane), and 

CPT2 (located on the matrix side of the inner membrane) (Flanagan et al., 2010; 

Schooneman et al., 2014). Once inside the mitochondria, carnitine and long-chain 

acyl-CoA are regenerated by CPT2, which can then be further oxidized via the 

tricarboxylic acid (TCA) cycle and respiratory chain to provide ATP (Schooneman et 

al., 2013). Deficiencies in these enzymes or impaired functions, or depletion of TCA 

cycle intermediates may lead to incomplete mitochondrial FA oxidation, resulting in 

accumulation of acylcarnitines (ACC), which may be associated with development of 

insulin resistance as documented in human studies (Adams et al., 2009; Mihalik et al., 

2010; Sun et al., 2016).  

Serum ACC undergo time-related changes in dairy cows during the transition from 

late pregnancy to early lactation (Kenéz et al., 2016) and differ between cows 

experiencing excessive versus low lipolysis as classified via the serum FA 

concentrations post partum (Humer et al., 2016). The plasma ACC profile may reflect 

the intra-mitochondrial acyl-CoA pattern; however, it is not clear to what extent 

circulating levels of ACC reflect tissue ACC metabolism, as plasma ACC represent 

the sum from different tissues, mainly skeletal muscle and liver (Schooneman et al., 

2014; Xu et al., 2016).  

Supplementation with trans-10, cis-12 CLA is used to reduce milk fat content in 

early-lactation dairy cows as a dietary strategy in order to improve energy status to 

counteract the physiological negative energy balance (Sippel et al., 2009; Schlegel et 

al., 2012). The trans-10, cis-12 isomer is referred as the most effective isomer 

lowering milk fat content mainly through inhibition of de novo FA synthesis in the 

mammary gland, accompanied by a reduction of FA uptake from triacylglycerol rich 

lipoproteins due to inhibition of lipoprotein lipase activity (Bauman et al., 2011). A 

number studies have examined the effects of CLA on hepatic lipid metabolism in 

growing beef cattle (Shibani et al., 2011) or dairy cows (Schlegel et al., 2012) through 

assessing expression of genes involved in lipid metabolism; but to our knowledge 

there is no evidence evaluating the effects of CLA on lipid metabolism in ruminant 
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skeletal muscle. Considering skeletal muscle as principal contributor to the serum 

ACC pool (Koves et al., 2008), we tested the hypothesis that dietary supplementation 

with CLA may alter the expression of muscle carnitine acyltransferases in conjunct 

with free carnitine and ACC profiles in both serum and muscle of dairy cows as 

compared with control-fat supplemented cows to address potential changes in the 

capacity for mitochondrial β-oxidation of FA in skeletal muscle in context with the 

negative energy balance typical for early lactation. Using serum samples and biopsies 

from semitendinosus muscle, we aimed to determine changes in serum and muscle 

concentrations of ACC and muscle expression of CPT1B and CPT2 mRNA related to 

treatment and time from late pregnancy to lactation.  

 

MATERIAL AND METHODS 

Animals, Treatment, and Experimental Design 

All animal experiments were in accordance with the European Community 

regulations concerning the protection of experimental animals and the guidelines of 

the LAVES (Lower Saxony State Office for Consumer Protection and Food Safety, 

Germany, File Number 33.14.42502-04-071/07). The experimental design and 

zootechnical data were reported previously (Pappritz et al., 2011a). A subset of 

animals and samples from this study, i.e., only multiparous cows, was considered for 

the current study. Briefly, 21 Holstein cows, housed in a free stall barn were fed ad 

libitum with a partial mixed ration (PMR) according to the recommendations of the 

German Society of Nutrition Physiology (GfE, 2001). The PMR (6.8 MJ of NEL/kg of 

DM) consisted of 37.8% corn silage, 25.2% grass silage, and 37% concentrate (DM 

basis). At 1 DIM, cows were allotted to either the CLA group (n = 11) or the control 

group (CTR; n = 10). The animals in the CLA group received 100 g/d encapsulated 

rumen-protected CLA (Lutrell Pure, BASF SE, Ludwigshafen, Germany) supplying 

7.6 g of cis-9, trans-11 CLA and 7.6 g of trans-10, cis-12 CLA per day. The animals 

in the CTR group received 100 g/d of rumen-protected control fat supplement (Silafat, 

BASF) in which CLA was substituted by stearic acid to form an isoenergetic control 



 Manuscript 2  

57 

 

diet using a fatty acid with the same number of carbon atoms as in CLA. The 

supplements were provided with 4 kg of additional concentrate (8.8 MJ of NEL/kg 

DM) from DIM 1 throughout the observation period. 

 

Blood and Muscle Tissue Sampling 

Blood samples were taken from the jugular vein on d -21, 1, 21, and 70 relative to 

parturition using evacuated tubes. Cows were sampled after the morning milking 

before they had access to the new fresh ration. Blood samples were allowed to clot 

and centrifuged at 1,500 × g at 4 °C for 20 min. Serum was recovered and frozen 

(-80 °C) until analysis. Muscle biopsies (M. semitendinosus) were collected on d -21, 

1, 21, and 70 relative to parturition and were snap-frozen in liquid nitrogen and stored 

at -80 °C until analysis. 

 

Estimation of insulin sensitivity  

Data needed for the estimation of insulin sensitivity were reported elsewhere 

(Pappritz et al., 2011a). Insulin sensitivity was estimated by calculating the “Revised 

Quantitative Insulin Sensitivity Check Index” (RQUICKI) from the data of blood 

glucose, insulin, and FA (Holtenius and Holtenius, 2007). 

 

Acylcarnitine Profiling 

The acylcarnitine profiles in muscle and serum were determined by FIA-ESI-MS/MS 

profiling through targeted metabolomics using the AbsoluteIDQTM p180 Kit 

(BIOCRATES Life Sciences AG, Innsbruck, Austria). Free carnitine and 40 

acylcarnitines (Cx:y) were simultaneously quantified. The abbreviations Cx:y are 

used to describe the total number of carbons and double bonds of all chains, 

respectively. All analyses were performed in the Helmholtz Zentrum München 

(GmbH), German Research Center for Environmental Health, Genome Analysis 

Center. In case of serum, 10 µL of the thawed sample have been applied directly to 

the assay. In case of muscle, 25 mg of frozen samples were homogenized and 
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extracted using homogenization tubes with ceramic beads (1.4 mm) and a Precellys 

24 homogenizer with an integrated cooling unit (PEQLAB Biotechnology GmbH, 

Germany). To each mg of frozen muscle tissue were added 3 µL of a dry ice cooled 

mixture of ethanol/phosphate buffer (85/15 v/v). After centrifugation, 10 µL of the 

homogenate supernatant were applied to the well plate of the p180 kit. The assay 

procedures of the AbsoluteIDQTM p180 Kit, the detailed description of the tissue 

preparation and the metabolite nomenclature have been described in detail previously 

(Zukunft et al., 2013 and 2018). Sample handling was performed by a Hamilton 

Microlab STARTM robot (Hamilton Bonaduz AG, Bonaduz, Switzerland) and a 

Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, UK), beside standard 

laboratory equipment. Mass spectrometric analyses were done on an API 4000 triple 

quadrupole system (Sciex Deutschland GmbH, Darmstadt, Germany) equipped with a 

1200 Series HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Germany) 

and a HTC PAL auto sampler (CTC Analytics, Zwingen, Switzerland) controlled by 

the software Analyst 1.6.1. Data evaluation for quantification of metabolite 

concentrations and quality assessment was performed with the MetIDQ™ software 

package, which is an integral part of the AbsoluteIDQ™ kit. Internal standards were 

used as reference for the calculation of metabolite concentrations. The concentrations 

of the plasma samples were given in µM, the concentrations of the tissue samples in 

pmol/mg tissue and the concentrations of tissue homogenate in µM. 

 

RNA Extraction and Quantitative real-time Reverse Transcription-PCR 

The preparation of the samples including RNA extraction and cDNA synthesis was 

described in detail previously (Saremi et al., 2012a,b; Sadri et al., 2015). 

Quantification of the mRNA of the targeted genes was performed in an Mx3000P 

cycler (Agilent, Santa Clara, CA) and in accordance with MIQE guidelines (Bustin et 

al., 2009). Primers sequences and the real-time PCR conditions are shown in Table 1.  

The reaction was performed in triplicate in a total volume of 10 μL consisting of 2 μL 

of cDNA (diluted 1:4) as template, 1 μL of primer mix, 2 μL of water, and 5 μL of the 

DyNAmo ColorFlash SYBR Green qPCR Kit master mix (Thermo Scientific, 
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Germany). For each PCR run, a negative-template control for quantitative PCR, as 

well as a negative-template control and no-reverse transcriptase control of cDNA 

were included. A standard curve was generated using serial dilutions of cDNA to 

calculate efficiency-corrected relative quantities of the targets (run-specific target 

amplification efficiency). A set of 2 inter-run calibrators was used for each PCR plate 

to correct for run to run variation. The mRNA abundance of the target genes was 

normalized using the 4 most stable reference genes (Saremi et al., 2012a), namely 

Emerin (EMD), RNA polymerase II (POLR2A), eukaryotic translation initiation 

factor 3 (EIF3K), and low-density lipoprotein receptor–related protein 10 (LRP10) 

using qBasePLUS 2.0 (Biogazelle, Ghent, Belgium). 

 

Table 1. Characteristics of the primers and the real-time PCR conditions 

Gene1 Sequence (5' -3') 
NCBI  

accession no. 

Length 

(bp) 

Annealing 

conditions 

(s/°C) 

Mean 

efficiency 

CPT1B         

Forward GCAGATGATGGCTATGGA 
NM_001034349.2 78 20/61 90.2 

Reverse GGAGAACTTGCTGGAGAC 

CPT2      

Forward GTAGCCAGTAAGCACTATTC 
NM_001045889.2 180 60/59 97.0 

Reverse CCAAGTCTTACCTCCTGATA 

EMD      

Forward GCCCTCAGCTTCACTCTCAGA 
NM_203361 100 45/59 95.5 

Reverse GAGGCGTTCCCGATCCTT 

POLR2A      

Forward GAAGGGGGAGAGACAAACTG 
X63564 86 60/60 100.4 

Reverse GGGAGGAAGAAGAAAAAGGG 

EIF3K      

Forward CCAGGCCCACCAAGAAGAA 
NM_001034489 180 60/59 89.8 

Reverse TTATACCTTCCAGGAGGTCCATGT 

LRP10      

Forward CCAGAGGATGAGGACGATGT 
BC149232 125 45/59 98.4 

Reverse ATAGGGTTGCTGTCCCTGTG 
 

1CPT1B = carnitine palmitoyltransferase 1, muscle isoform; CPT2 = carnitine 

palmitoyltransferase 2; EMD = emerin; POLR2A = RNA polymerase II; EIF3K = 

eukaryotic translation initiation factor 3; LRP10 = low-density lipoprotein 

receptor–related protein 10. 
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Statistical Analysis  

Statistical analysis of the data was carried out using SAS software (version 9.2; SAS 

Institute Inc., Cary, NC). The data were tested for normality before analysis using the 

UNIVARIATE procedure. When the data were not normally distributed (BW, BCS, 

DMI, and blood glucose, insulin, NEFA, and RQUICKI), they were transformed 

using a log10 transformation before analysis. Body weight, BCS, DMI, blood 

metabolites and mRNA data were analyzed using repeated measures in the MIXED 

procedure of SAS. The model included treatment, time, and interaction of treatment × 

time as the fixed effects and cow as the random effect. No significant effect of 

treatment or interaction of treatment × time were observed on the tested variables. 

Therefore, data from the 2 feeding groups were merged for the final statistical 

analysis of the data. The appropriate covariance structure for all repeated statements 

was determined according to the Akaike's information criterion (AIC) and Bayesian 

information criterion (BIC). The Tukey-Kramer adjustment was applied to account 

for multiple comparisons. The threshold of significance was set at P < 0.05; trends 

were declared at 0.05 < P < 0.10. 

Serum and muscle ACC data was analyzed with MetaboAnalyst 3.0 (Xia et al., 2015). 

A preliminary statistical analysis of the data showed no significant effect of treatment 

or interaction of treatment × time. Thus, data from the 2 feeding groups were merged 

for the final statistical analysis. The k-nearest neighbors (KNN) algorithm was used to 

estimate the values of missing data. Metabolites with more than 50% of missing 

values (i. e., values lower then LOD) were omitted. Data were generalized log (glog) 

transformed and Pareto-scaled to correct for heteroskedasticity, to reduce the 

skewness of the data, and to reduce mask effects (van den Berg et al., 2006). Principle 

component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and 

variable importance of projection (VIP) were conducted to identify those metabolites 

showing significant differences among the 4 time-points. The PLS-DA models were 

validated by 10-fold cross validation and 2000 times permutation tests (Figures 3 and 

4; Szymanska et al., 2012). The VIP score was used to rank the metabolites based on 
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their importance in discriminating different time-points. In addition, a one-way 

ANOVA followed by Tukey’s HSD test was performed on the data, in order to further 

confirm the significance of important metabolites identified from PCA and PLS-DA. 

The threshold of significance was set at false discovery rate (FDR) < 0.10.  

The Spearman’s rank-order correlation was used to reveal correlations between AC 

profiles, mRNA data, and RQUICKI using PROC CORR. The P values were adjusted 

for multiple comparisons by calculating FDR using PROC MULTTEST. The cut-off 

condition of correlation analyses was set as |ρ| > 0.20 and FDR < 0.10. 

 

RESULTS 

BW, BCS, and DMI 

Neither BW nor BCS and DMI were different between groups. As shown in Figure 1 

for the merged groups, both BW and BCS decreased with time (P < 0.0001), whereas 

DMI increased with time (P = 0.0002). 

 

RQUICKI 

For RQUICKI, no treatment effects were observed, but and it tended to decrease by 

about 4% from d 1 to d 21 (Figure 2; P = 0.106). 

 

Acylcarnitine Profiles in Serum 

The serum ACC concentrations were not influenced by CLA supplementation, but 

changes related to time were observed. With unsupervised and supervised pattern 

recognition analyses, clear separations between d -21 and post partum time-points in 

serum were observed (Figures 3A and 3B). Moreover, the top 15 ACC that 

contributed most significantly to the separation between the 4 time-points were 

identified by the respective validated PLS-DA model and VIP (Figures 3C and 3D). 

In order to further confirm the specificity and significance of important metabolites 

identified from PCA and PLS-DA, we performed univariate analysis using one-way 

ANOVA and Tukey’s HSD test on each metabolite. In total, 7 serum ACC and 3 
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related indices changed over time (VIP > 1.0, FDR < 0.10, Figure 4). The serum 

concentrations of free carnitine decreased with the onset of lactation. The serum 

concentrations of acetylcarnitine (C2), butyrylcarnitine (C4), and sum of the 

short-chain ACC concentrations (C2-C5) were elevated around parturition compared 

to d 70. The serum concentrations of hydroxybutyrylcarnitine (C4-OH) and 

octadecenoylcarnitine (C18:1) increased from d -21 to d 21 and then remained 

unchanged. The CPT1 ratio, the ratio of free carnitine to the sum of palmitoylcarnitine 

and stearoylcarnitine [carnitine/(C16:1+C18:0)] decreased with the onset of lactation. 

The CPT2 ratio [(C16:0+C18:1)/C2] was higher after parturition compared to 

prepartum values. 

 

Acylcarnitine Profiles in Skeletal Muscle 

The muscle ACC concentrations did not differ between the groups, but changes 

related to time were observed. Score plots of PCA and PLS-DA of dairy cow’s 

muscle ACC are presented in Figure 5A and 5B. The top 15 metabolites that 

contributed most significantly to the observed separation are shown in Figure 5C. The 

top 15 metabolites contributing most significantly (VIP score > 1) to the observed 

separation are shown in Figure 5C. Time course of the selected metabolites identified 

to have a VIP score > 1.0, and FDR < 0.10 are shown in Figure 6. The muscle 

concentrations of carnitine remained unchanged (data not shown). Muscle short and 

medium-chain ACC, including propenoylcarnitine (C3:1), C4-OH, 

hydroxyhexanoylcarnitine (C6-OH), hexenoylcarnitine (C6:1), were elevated from d 

-21 to d 21 and decreased thereafter. Muscle long-chain ACC including 

tetradecanoylcarnitine (C14), C14:1, hexadecanoylcarnitine (C16), 

hydroxyhexadecenoylcarnitine (C16:1-OH), C18:1, hydroxyoctadecenoylcarnitine 

(C18:1-OH), and sum of the long-chain ACC (C12-C18) changed over time (P < 

0.002) and followed a similar pattern; that is, they increased from d -21 to d 1, 

declined to nearly pre-partum values by d 21 and then remained unchanged. The 

CPT1 ratio in muscle was decreased from d -21 to a nadir on d 1, and then increased 

thereafter. In contrast, the muscle CPT2 ratio increased towards parturition, and then 

decreased thereafter. 
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Figure 1. Time course of body weight (A), body condition score (B), and dry matter 

intake (C) in dairy cows during late gestation and early lactation. Data are means ± 

standard error of the mean (SEM). Time effect: P < 0.0001 (body weight and body 

condition score) and 0.0002 (dry matter intake).  
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Figure 2. Time course of the estimated insulin sensitivity as measured by the revised 

quantitative insulin sensitivity check index (RQUICKI) in dairy cows during late 

gestation and early lactation (P = 0.106). Data are means ± SEM. 
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Figure 3. Score plots of principal component analysis (PCA, A) and Partial least 

squares-discriminant (PLS-DA, B) of dairy cow’s serum acylcarnitine on d -21 (Red), 

1 (Green), 21 (Blue), and 70 (Cyan) relative to calving. Top 15 metabolites that 

contributed most significantly to the separation between the 4 time-points were 

identified according to weights in PLS-DA model by using variable importance in 

projection (VIP, C). The PLS-DA model was further validated by 2000 times of 

permutation tests based on separation distance (D). The histogram shows the group 

separation distance formed by these datasets randomly reassigned class labels. The 

red arrow represents the group separation distance of the original classifier. The 

further away to the right of the distribution formed by randomly permuted data, the 

more significant the discrimination. The p-value is calculated as the proportion of the 

times that class separation based on randomly labeled sample is at least as good as the 

one based on the original data. 
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Figure 4. Time course of selected metabolites in serum of dairy cows identified to 

have a VIP (variable importance in projection) score > 1.0, and FDR < 0.1: free 

carnitine (C0, A), acetylcarnitine (C2, B), butyrylcarnitine (C4, C), (D) 

hydroxybutyrylcarnitine (C4-OH, D), decanoylcarnitine (C10, E), 

tetradecenoylcarnitine (C14:1, F), octadecenoylcarnitine (C18:1, G), carnitine 

palmitoyltransferase (CPT)1 ratio (H), CPT2 ratio (I), and sum of short-chain 

acylcarnitine (Short-chain ACC; C2-C5, J). Data are means ± SEM. Differences 

between different time points identified by post-hoc testing (Tukey’s HSD) after 

ANOVA are indicated by different letters. 
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Figure 5. Score plots of principal component analysis (PCA, A) and Partial least 

squares-discriminant (PLS-DA, B) of dairy cow’s muscle acylcarnitine on d -21 (Red), 

1 (Green), 21 (Blue), and 70 (Cyan) relative to calving. Top 15 metabolites that 

contributed most significantly to the separation between the 4 time-points were 

identified according to weights in PLS-DA model by using variable importance in 

projection (VIP, C). The PLS-DA model were further validated by 2000 times of 

permutation tests based on separation distance (D). The histogram shows the group 

separation distance formed by these datasets randomly reassigned class labels. The 

red arrow represents the group separation distance of the original classifier. The 

further away to the right of the distribution formed by randomly permuted data, the 

more significant the discrimination. The p-value is calculated as the proportion of the 

times that class separation based on randomly labeled sample is at least as good as the 

one based on the original data. 
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Figure 6. Time course of selected metabolites in muscle of dairy cows identified to 

have a VIP (variable importance in projection) score > 1.0, and FDR < 0.1: 

propionylcarnitine (C3, A), propenoylcarnitine (C3:1, B), hydroxybutyrylcarnitine 

(C4-OH, C), glutaconylcarnitine (C5:1-DC, D), Hydroxyhexanoylcarnitine (C6-OH, 

E), hexenoylcarnitine (C6:1, F), pimelylcarnitine (C7-DC, G), tetradecanoylcarnitine 

(C14, H), tetradecenoylcarnitine (C14:1, I), hexadecanoylcarnitine (C16, J), 

hydroxyhexadecanoylcarnitine (C16-OH, K), hydroxyhexadecenoylcarnitine 

(C16:1-OH, L), octadecenoylcarnitine (C18:1, M), hydroxyoctadecenoylcarnitine 

(C18:1-OH, N), sum of the long-chain acylcarnitine (Long-chain ACC; C12+, O), 

carnitine palmitoyltransferase (CPT)1 ratio (P), and CPT2 ratio (Q). Data are means ± 

SEM. Differences between different time points identified by post-hoc testing 

(Tukey’s HSD) after ANOVA are indicated by different letters. 



 Manuscript 2  

69 

 

mRNA Abundance of Carnitine Acyl Transferases in Skeletal Muscle 

No differences were observed between the treatment groups, and thus merged data 

were analyzed for time-dependent effects. The mRNA abundance of CPT1B increased 

2.8-fold from d -21 to d 1 (P = 0.02), followed by a decline to nearly prepartum 

values by d 70 (Figure 7). The mRNA abundance of CPT2 remained unchanged over 

time. 

 

 

Figure 7. Time course of muscle mRNA abundance (means ± SEM) of carnitine 

acyltransferases (CPT1B and CPT2) in dairy cows during late gestation and early 

lactation. Differences between different time points identified by post-hoc testing 

(Tukey’s HSD) after ANOVA are indicated by different letters. 
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Associations of Acylcarnitine Profiles with Conventional Parameters and mRNA 

Abundance 

As shown in Figure 8, across all time-points, correlation analysis revealed a negative 

correlation between serum FA and CPT1 ratio in muscle and serum (P < .0001; ρ = 

-0.46 and -0.66, respectively). Positive correlations were observed between serum FA 

with most of the muscle and serum long-chain ACC (C14-C18. P < 0.03; ρ > 0.25), 

several muscle short- and medium-chain ACC (C3, C4, C6, C7, C10 derived ACC, 

and C12:1. P < 0.03; ρ > 0.246), serum C2 (P < .0001; ρ = 0.44), and C4-OH (P < 

0.01; ρ = 0.30) as well as muscle CPT2 ratio (P < .0001; ρ = 0.46). Moreover, FA 

concentrations were positively related with the CPT1B mRNA abundance (P < .0001; 

ρ = 0.64). RQUICKI were neither associated with the aforementioned ACC nor 

mRNA abundance. 

 

 

 

Figure 8. Significant Spearman's rank-order correlation coefficient (ρ) between serum 

FA concentration with muscle (A) and serum (B) ACC profiles as well as mRNA 

abundance. The P values were adjusted for multiple comparisons by calculating the 

false discovery ratio (FDR). The cut-off condition of correlation analyses was set as 

|ρ| > 0.20 and FDR < 0.10. 
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DISCUSSION 

Skeletal muscle is important for coping with the increasing concentrations of FA at 

the end of pregnancy and the onset of lactation. The capacity of oxidizing FA is likely 

changing depending on the supply with FA and the physiological status of the animal. 

We herein characterized the longitudinal changes in ACC both in the circulation and 

in skeletal muscle in dairy cows during the transition from pregnancy into lactation by 

means of targeted metabolomics and investigated whether dietary supplementation 

(from d 1 in milk) with CLA altered these compared with control-fat supplemented 

cows. In laboratory animals, CLA supplementation has been associated with 

metabolic changes favoring the increase of lipolysis, the reduction of lipoprotein 

lipase activity, accompanied by the oxidation of FA in the adipose and muscle tissues, 

due to increased CPT-1 activity and action, or possibly as a result of inhibiting 

adipocyte differentiation (Botelho et al., 2005; Churruca et al., 2009; Lehnen et al., 

2015). In contrast to our hypothesis, the treatment with CLA tested in the animal 

feeding trial from which the samples were obtained did not affect the variables 

targeted herein and also other “classical” variables used to characterize the metabolic 

effects like e.g. FA. In consequence, the groups could be pooled thus increasing 

sample size. The reasons for the lack of a CLA response in the examined variables are 

not known, but are likely related to the dosage used and the availability of the CLA 

isomers in the intermediary metabolism as well as the timing of the supplementation 

which started only with the first day in milk. The CLA dosages commonly used in 

dairy cows are far below those tested in laboratory animals and in humans. However, 

for the main targeted effect in dairy cows, i.e., milk fat reduction, the relatively low 

dosages are, as manifold proven, effective. Also the CLA-treated animals in our study 

had 12% less milk fat than the control cows; this effect was evident after 28 d of 

lactation and CLA supplementation (Pappritz et al., 2011a). However, the transfer of 

CLA into milk was low and largely limited to the trans-10, cis-12 isoform (0.03% 

versus 0.004% in the control group; Pappritz et al., 2011a). In a more detailed approach 

using cows fitted with ruminal and duodenal cannulas, the actual duodenal availability 

of trans-10, cis-12 CLA was determined to be low, i.e., between 5 and 16% (Pappritz et 
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al., 2011b), though this is in accordance with the protection rate of 9-34% reported for 

the calcium salts of the CLA (de Veth et al., 2005). Pappritz et al. (2011b) have shown 

that major portions of the CLA reaching the duodenum are excreted via milk (36-48%) 

or faeces (~ 50%), and thus only a small proportion of the CLA, i.e. 2-14%, may reach 

different tissues and cells. Using the same CLA treatment in primiparous cows that 

were sequentially slaughtered during lactation, Von Soosten et al. (2013) reported only 

low tissue concentrations. For example, in adipose tissues maximally 0.02% of total FA 

were trans-10, cis-12 CLA in supplemented cows; the CLA content in control cows 

remained below the limit of detection (<0.01% of total FA). In skeletal muscle tissue, 

CLA were not detectable (Von Soosten et al., 2013). We thus speculate that a 

substantially higher dose of CLA would be required to affect FA oxidation in muscle 

and/or the studied muscle was less sensitive and responsive to CLA. In the current 

study, muscle samples were biopsied only from the M. semitendinosus, and we also 

did not determine muscle fiber type composition in the samples. Skeletal muscle, a 

heterogeneous and highly structured tissue, is composed of a set of fiber types 

differing in their functional and metabolic profiles (Gunawan et al., 2007) and it is 

probable that the response of skeletal muscle to the CLA supplement is fiber type 

dependent and thus warrants further investigation.  

As expected, we observed greater FA serum concentrations around calving and in the 

first weeks of lactation pointing to increased lipolysis around parturition as a response 

to the massively augmented need for energy to accomplish fetal growth and milk 

synthesis. Carnitine and its acyl esters, i.e. ACC, are indispensable for the 

mitochondrial β-oxidation of FA through facilitating the transfer of long-chain FA 

from the cytoplasm to the mitochondrial matrix across the mitochondrial membranes. 

Once inside mitochondria, the enzyme CPT2 reconverts the ACC back into free 

carnitine and the respective long-chain acyl-CoA, which can then be oxidized for 

ATP production through β-oxidation and the TCA cycle (Schooneman et al., 2013). 

Carnitine is mainly synthesized in the liver from the essential AA lysine and 

methionine (Krajcovicová-Kudlácková et al., 2000). Skeletal muscle, harboring the 

highest concentrations, is unable to synthesize carnitine and thus needs to take 
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carnitine from blood. In accordance with a previous study (Schooneman et al., 2014), 

we observed carnitine levels being unchanged in muscle but decreasing in serum, 

likely due to increased carnitine excretion in milk (Shennan et al., 1998) and its 

uptake by the muscle to maintain the intracellular concentrations. In addition, 

carnitine maintains the balance between free and esterified CoA, and is required for 

the mitochondrial efflux of excess acyl groups (Sharma and Black, 2009). Thus, 

changes in individual serum and tissue ACC may imply changes in specific metabolic 

pathways, and is therefore commonly used in neonatal screening for metabolic 

disturbances (Meyburg et al., 2002). The C2, the shortest ACC, derives from 

acetyl-CoA via the action of carnitine acetyltransferase for transport out of the 

mitochondria (Flanagan et al., 2010). Acetylcarnitine is the universal degradation 

product of all metabolic substrates, and is thus the most abundant ACC in the tissues 

and circulation. In the current study, serum C2 concentrations were elevated around 

parturition, pointing to an increased FA β-oxidation in mitochondria relative to the 

TCA cycle flux. In addition, C4-OH which can be derived from the CoA ester of the 

ketone body 3-hydroxybutyrate (Soeters et al., 2012; Schooneman et al., 2013) had 

higher concentrations around parturition in both serum and muscle. The higher 

C4-OH concentration which is thought to reflect ketogenesis (Xu et al., 2016) is also 

consistent with an excess pool of acetyl-CoA around parturition. Amino acid 

catabolism is a source of odd-chain species such as C3 and C5 (Flanagan et al., 2010). 

In the current study, muscle concentrations of C3 and C3:1 were slightly higher in 

after than before calving, whereas those in serum did not show time-dependent 

changes. These data imply that most lipid-derived ACC increased around parturition, 

which is consistent with the lactation-induced rise in circulating FA. 

We hypothesized that lactation-induced alterations in the ACC profiles are caused by 

incomplete FA oxidation, as long-chain ACC species were elevated around parturition 

in both serum and muscle (more notable in the latter). Most long-chain ACC species 

in muscle decreased from d 1 to d 21, with little or no changes afterwards, suggesting 

insufficient adaptation of their metabolism in response to the metabolic load of FA 

around parturition. However, it should be noted that due to the study design, we were 
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unable to assess potential changes during the first days after calving, a period of rapid 

and substantial metabolic changes in dairy cows. It is likely that FA oxidation should 

be in relative excess to oxidation in TCA and respiratory chain in order to guarantee 

continuous supply of energy. Peroxisomal β-oxidation, independent of 

carnitine-mediated transport, is the second pathway through which long-chain FA can 

be oxidized, and unlike mitochondrial β-oxidation, is not regulated by energy 

demands of the cell (Osmundsen et al., 1991; Drackley, 1999). For bovine liver, the 

relative contribution of peroxisomal β-oxidation to total oxidative capacity has been 

shown to be >50%, suggesting that this pathway may be a component of the 

adaptations of FA metabolism in liver during the periparturient period, and thus 

helping the liver to cope with the large influx of NEFA from body fat mobilization 

(Grum et al., 1994, 1996, 2002). The main function of peroxisomal β-oxidation is the 

shortening of the NEFA chains, preparing them to be completely oxidized in the 

mitochondria (Drackley, 1999). The role of peroxisomes in metabolism of FA in the 

skeletal muscle of ruminants has not been determined. It is also probable that 

peroxisomal oxidation plays a role as an "overflow" pathway to oxidize FA in muscle 

of dairy cows during extensive NEFA mobilization that warrants future 

investigations.  

The CPT1 ratio, as a potential marker for CPT1 deficiency (Fingerhut et al., 2001), 

which is a rate limiting enzyme for long-chain FA entry into the mitochondria for 

β-oxidation, was also evaluated. An elevation of this ratio has been described in CPT1 

deficiency (Fingerhut et al., 2001). In this study, the ratio significantly decreased with 

the onset of lactation in both serum and muscle, reflecting increased mitochondrial 

entrance of long-chain FA. Incomplete FA β-oxidation downstream of CPT1 is 

associated with elevated levels of plasma ACC (Koves et al., 2008), as acyl-CoA in 

the mitochondrial matrix can be converted into ACC for transport out of the 

mitochondria (Koves et al., 2008; Millington and Stevens 2011; Violante et al., 2013). 

The CPT2 ratio, calculated as the ratio of C16:0+C18:1 to C2, is a potential marker to 

describe CPT2 deficiency (Gempel et al., 2002). Deficiency of CPT2 is associated 

with a pronounced elevation of C16:0 and C18:1 ACC, while C2 is low, pointing to a 
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significant reduction in long-chain FA oxidation. In the present study, the ratio was 

increased around parturition, likely indicating deficiency and/or impaired CPT2 

functions. In this situation, long-chain ACC cannot be converted to their 

corresponding acyl-CoA esters, resulting in accumulation of long-chain ACC in the 

mitochondrial matrix which are subsequently transported out of the mitochondria to 

the blood stream (Flanagan et al., 2010; Schooneman et al., 2013). It has been shown 

that high-fat overfeeding and an increased lipid exposure to skeletal muscle was 

associated with an increased expression of genes involved in the FA β-oxidation 

pathway, including CPT1 that regulates the entry of acyl-CoA into the mitochondrial 

matrix (Muoio and Newgard, 2006; Noland et al., 2007; Turner et al., 2007). 

Interestingly, in the current study, the mRNA abundance of CPT1B (muscle isoform) 

increased 2.8-fold from d -21 to d 1, followed by a decline thereafter, whereas that of 

CPT2 remained unchanged over time. These data may suggest a physiological 

increase in the capacity of long-chain fatty acyl-CoA entry into muscle mitochondria 

around parturition, but does not seem to coincide with upregulation of downstream 

metabolic pathways, such as the TCA cycle and respiratory chain. Thus, it is likely 

that post-CPT1 events including deficiency, or impaired in CPT2 function and 

depletion of several TCA cycle intermediates cause an accumulation of ACC in 

skeletal muscle around parturition.  

 

CONCLUSIONS 

The serum and muscle concentrations of the ACC as well as the mRNA expression of 

the carnitine acyltransferases – CPT1B and CPT2 changed with time, but they were 

not affected by the CLA supplement at the dosage used. Muscle carnitine remained 

unchanged despite a decline in the serum concentrations, likely due to increased 

carnitine excretion with milk and its uptake by the muscle to maintain the intracellular 

concentrations. The elevated concentrations of muscle long-chain ACC species and 

serum C2 around parturition point to increased FA β-oxidation which does not seem 

to coincide with an upregulation of downstream metabolic pathways, such as the TCA 

cycle and respiratory chain.  
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5. General discussion and future research prospective 

Experimental design and treatment effect 

The treatment with CLA did not affect the variables targeted in this project. Thus, the 

groups were merged to increase sample size. The reasons for the lack of a CLA 

response in the examined variables are not known, but are likely related to the dosage 

used and the availability of the CLA isomers in the intermediary metabolism as well 

as the timing of the supplementation which started only with the first day in milk. The 

applied CLA dosage, although being in the common range for the primarily targeted 

effect in dairy cows, i.e. milk fat reduction (Pappritz et al., 2011a), is far below those 

tested in laboratory animals and in humans. Using the same CLA treatment in 

primiparous cows that were sequentially slaughtered during lactation, Von Soosten et 

al. (2013) reported only low tissue concentrations of trans-10, cis-12 CLA and those 

of skeletal muscle tissue were not detectable. Thus, it is likely that the CLA treatment 

was not effective enough to elicit a response at tissue level, and thus affect the 

variables tested herein. 

 

Altered metabolic pathways point to insulin resistance around parturition 

In dairy cows, late gestation and early lactation periods are associated with a moderate 

degree of reduced peripheral tissue insulin sensitivity (De Koster and Opsomer, 2013). 

This promotes mobilization of body reserves and facilitates the adequate supply of 

nutrients to the foetus and mammary tissue (Bell, 1995; Bell and Bauman, 1997). 

Maternal insulin resistance is considered as a part of the homeorhetic adaptations in 

the periparturient cow, which may manifest as decreased insulin sensitivity or 

decreased insulin responsiveness. A state of insulin resistance has been ascribed to 

multiple factors, including growth hormone (Smith et al., 1997) and several potential 

mediators such as tumor necrosis factor-alpha, NEFA, adiponectin, resistin, and other 

adipokines and/or adipomyokines (Havel, 2002; Kirwan et al., 2002; Pires et al., 2007; 

Choi, 2016). Skeletal muscle, the largest internal organ in mammals, is a highly 

metabolic active tissue and is crucial for maintaining metabolic homeostasis. Thus, 
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development of insulin resistance across skeletal muscle tissue is certainly a 

significant factor in the peripheral insulin resistance in the periparturient cow. In the 

current project, FA oxidation, Arg metabolism, Trp metabolism, PC and lysoPC 

metabolism, and SM metabolism were found to be the most important metabolic 

pathways influenced by the transition from late gestation to early lactation 

(Manuscript 2). The altered metabolic pathways point to dysregulated lipid 

metabolism (Manuscript 2 and 3), and insulin resistance in dairy cows around 

parturition (Manuscript 3). Dysregulated lipid metabolism in the skeletal muscle has 

been linked to lipid-induced insulin resistance, that is characterized by elevated 

plasma FA in human studies (Savage et al., 2007; Samuel et al., 2010; Zhang et al., 

2013a). The underlying molecular mechanisms responsible for lipid-induced insulin 

resistance are not yet well understood, but likely comprise the following aspects: 1) a 

mismatch between FA oxidation and downstream metabolic pathway such as the TCA, 

2) inflammatory cytokines that cause endoplasmic reticulum stress and mitochondrial 

dysfunction, and 3) production of bioactive lipids (Goodpaster et al., 2001; 

Hotamisligil and Erbay, 2008; Muoio, 2010; Coen and Goodpaster, 2012; Jornayvaz 

and Shulman, 2012; Newgard, 2012; Schooneman et al., 2013). However, insulin 

sensitivity, estimated by calculating the RQUICKI (Holtenius and Holtenius, 2007), 

only tended to decrease by about 4% from d 1 to d 21 and does not indeed illustrate 

the occurrence of insulin resistance (Manuscript 2). The RQUICKI is calculated based 

on the logarithmic transformation of the fasting glucose, NEFA, and insulin and its 

use has been well proven in human medicine (Muniyappa et al., 2008). During the 

past decade, this surrogate index has also been extensively used for predicting insulin 

resistance in dairy cows. However, the applicability of this index needs further 

investigations and validations (De Koster and Opsomer, 2013). The fasting state in 

humans is critical in order to gets reliable estimation of insulin resistance using the 

surrogate indexes (Muniyappa et al., 2008). In contrast to nonruminants, because of 

the continuous flow of digesta to the small intestine, the secretion of bile, enzymes, 

and digestive juices is continuous in ruminants and thus they are not subjected to large 
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diurnal changes. Therefore, in dairy cows, it is not possible to reach a fasting state 

whereby insulin and glucose levels are in a balanced state (De Koster and Opsomer, 

2013). In addition, late gestation and early lactation periods in dairy cows are 

associated with substantial changes in the concentrations of glucose, insulin, NEFA, 

and BHBA, and thus probably reduce the suitability of this surrogate index to be used 

in periparturient cows (De Koster and Opsomer, 2013).  

Taken together, this project contributes to an in-depth understanding of the changes in 

the different metabolic pathways in insulin-sensitive muscle tissue, and may help to 

identify metabolic pathways for future targeted analyses, and thereby may help 

unraveling the underlying pathogenesis of insulin resistance in the periparturient 

cows. 

 

Post-CPT1 events may play important roles in regulating FA oxidation 

Alterations in muscle FA oxidation are considered as major contributors in the 

development of insulin resistance, though the exact underlying molecular mechanisms 

linking mitochondrial FA flux, capability of FA oxidation and downstream utilization, 

and insulin resistance are not yet fully understood. Our results point to increased FA 

β-oxidation which does not seem to coincide with an upregulation of downstream 

metabolic pathways (Manuscript 2). After entry into the mitochondrial matrix, 

FA-CoA is metabolized to acetyl-CoA through β-oxidation. Thereafter, acetyl-CoA 

generated from both β-oxidation and glycolysis enters the TCA cycle. A rate-limiting 

step of FA oxidation has been previously attributed to the transport of FA across the 

mitochondrial inner membranes via CPT1, which converts the long-chain acyl-CoA to 

long-chain acylcarnitine. Accumulation of malonyl-CoA, generated from acetyl-CoA 

via acetyl-CoA carboxylase 2 (ACC2) (Aguer et al., 2015), is a potent allosteric 

inhibitor of CPT1 and thereby resulting in accumulation of cytosolic long-chain FA 

and decreasing FA oxidation rates.  

However, recently several post-CPT1 events have also been suggested as potential 

factors influencing FA oxidation and utilization. Kim et al. (2000) have suggested that 
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defects at both CPT1 and mitochondrial content levels (reflected by citrate synthase 

activity) could contribute to the reduced lipid oxidation in human skeletal muscle. 

Additionally, lipid-induced insulin resistance in skeletal muscle was associated with 

decreased mitochondrial number, lower levels of TCA intermediates, decrement in 

electron transport chain activity, and defect in mitochondrial oxidative 

phosphorylation (Petersen et al., 2004, Ritov et al., 2005, Befroy et al., 2007, Koves et 

al., 2008). More in-depth analysis is required to unravel molecular processes that 

underlie mechanisms of post-CPT1 events including TCA cycle enzymes and/or 

intermediates causing the accumulation of long-chain ACC in muscle of dairy cows 

around parturition.  
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6. Summary 

The transition from late gestation to early lactation in dairy cows is characterized by 

extensive changes in metabolic, endocrine, and immune functions. The adaptation to 

these physiological changes is highly variable and compromised adaptation may result 

in production diseases. The characterization of the skeletal muscle metabolome is of 

special interest, since this tissue is not only the primary labile source of amino acids, 

but also plays important roles in regulating the systemic metabolic homeostasis. In 

human studies, the muscle metabolome is considered as a promising object to 

understand the metabolic networks such as bioenergetic status, glucose and fatty acid 

(FA) metabolism; however, there are only few studies performed in dairy cows to 

explore the metabolome in skeletal muscle. Therefore, the experiment conducted 

herein aimed 1) to characterize the serum and the skeletal muscle metabolome in 

context of the metabolic changes occurring during the transition from late pregnancy 

to early lactation in dairy cows, 2) to determine changes in serum and muscle 

concentrations of acylcarnitines (ACC) and mRNA abundance of muscle carnitine 

acyltransferases from late pregnancy to lactation, and 3) to test whether dietary 

supplementation with conjugated linoleic acids (CLA) may alter these when 

compared with control-fat supplemented cows. 

For the present experiment 21 pluriparous German Holstein cows were studied from d 

21 prepartum until d 70 post partum. The animals were allocated to two different 

feeding groups, receiving either a CLA (100 g/d per cow; each 12% of trans-10, 

cis-12 and cis-9, trans-11 CLA) or a control-fat dietary supplementation from d 1 post 

partum throughout the observation period. Samples from skeletal muscle, and blood 

were collected on d -21, 1, 21, and 70 relative to calving.  

Within manuscript 1, we aimed to unravel metabolic pathway shifts in skeletal 

muscle and serum from late gestation to early lactation. A target metabolomics 

approach was applied to discover the longitudinal patterns of metabolites from 

skeletal muscle and serum from 21 d before to 70 d after parturition. Out of 188 

metabolites, 80 in serum and 52 in muscle, respectively, contributed most 

significantly to the separation among the 4 time-points. Furthermore, FA oxidation, 
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arginine metabolism, tryptophan metabolism, phosphatidylcholine (PC) and 

lysophosphatidylcholines (LysoPC) metabolism, and sphingomyeline (SM) 

metabolism were found to be the most important metabolic pathways influenced by 

the transition from late gestation to early lactation. The altered metabolic pathways 

may reflect dysregulated lipid metabolism, impaired insulin action, and increased 

inflammatory status in dairy cows around parturition. 

Based on the aforementioned findings, the aim of manuscript 2 was to characterize 

muscle and blood serum ACC profiles, to determine the mRNA abundance of muscle 

carnitine acyltransferases, and to test whether dietary supplementation with CLA 

altered these compared with control-fat supplemented cows. The CLA supplement did 

not affect the variables examined. The serum concentration of free carnitine decreased 

with the onset of lactation. The majority of serum and muscle short-chain and 

long-chain ACC was positively correlated with the FA concentrations in serum, 

whereas serum carnitine and C5 were negatively correlated with FA. Time-related 

changes in the serum and muscle ACC profiles as well as the mRNA expression of 

the carnitine acyltransferases – CPT1B and CPT2 were demonstrated, that were not 

affected by the CLA supplement at the dosage used in the present study. Muscle 

carnitine remained unchanged despite a decline in the serum concentrations, likely 

due to increased carnitine excretion with milk and its uptake by the muscle to 

maintain the intracellular concentrations. The elevated concentrations of long-chain 

ACC species in muscle (from C14 to C18) and of serum acetylcarnitine (C2) around 

parturition point to incomplete FA oxidation, likely due to insufficient metabolic 

adaptation in response to the load of FA around parturition. 

In summary, these results show that targeted metabolomics provides a powerful 

approach to expand the understanding of the changes in metabolic pathways during 

the transition from late gestation to early lactation. More research, i.e., untargeted 

metabolomics, proteomics and transcriptomics is warranted to elucidate intermediates 

causing the accumulation of long-chain ACC in muscle of dairy cows around 

parturition. 
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7. Zusammenfassung 

Die Übergangszeit von der späten Trächtigkeit zur frühen Laktation ist bei 

Milchkühen durch umfangreiche Veränderungen der Stoffwechsel-, Hormon- und 

Immunfunktionen charakterisiert. Die Anpassung an diese physiologischen 

Veränderungen ist sehr variabel und eine beeinträchtigte Anpassung kann zu 

Produktionskrankheiten führen. Die Besonderheiten des Skelettmuskel-Stoffwechsels 

sind von besonderem Interesse, weil dieses Gewebe nicht nur die Hauptquelle für 

Aminosäuren ist, sondern auch eine wichtige Rolle bei der Regulierung der 

systemischen Stoffwechsel-Homöostase spielt. In humanen Studien gilt das 

Muskelmetabolom zum Verständnis der Stoffwechselnetzwerke wie Bioenergiestatus, 

Glukose- und Fettsäure(FA)-Metabolismus als vielversprechend; es gibt jedoch nur 

wenige Studien über den Stoffwechsel im Skelettmuskel von Milchkühen. Daher 

waren die hier gezeigten Untersuchungen auf folgende Aspekte konzentriert: 1) auf 

die Charakterisierung des Serum- und des Skelettmuskel-Metaboloms im Kontext der 

Veränderungen, die während der Übergangszeit von der späten Trächtigkeit zur 

frühen Laktation bei Milchkühen auftreten, 2) auf die Bestimmung von 

Konzentrationsänderungen von Acylcarnitinen (ACC) in Serum und Muskelgewebe 

und der Menge der mRNA von Carnitin-Acyltransferasen im Muskel, und 3) auf den 

möglichen Einfluss von mit dem Futter supplementierten konjugierten Linolsäuren 

(CLA). 

Dafür wurden 21 pluripare Kühe der Rasse Deutsche Holstein im Zeitraum von 21 

Tagen vor bis 70 Tage nach der Geburt untersucht. Die Tiere wurden in zwei 

Fütterungsgruppen eingeteilt und erhielten während des Beobachtungszeitraums 

entweder eine CLA-Zulage (100 g/Tag pro Kuh; jeweils 12% trans-10,cis-12 und 

cis-9,trans-11 CLA) oder eine Kontroll-Fett Nahrungsergänzung ab Tag 1 nach der 

Geburt. Skelettmuskel- und Blutproben wurden an Tag -21, 1, 21 und 70, bezogen auf 

die Kalbung, gewonnen. 

Im ersten Manuskript wurden die Verschiebungen in den Stoffwechselwegen in 

Skelettmuskel und Serum von der späten Trächtigkeit bis zur frühen Laktation 
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charakterisiert. Dazu wurde ein gezielter („targeted“) Metabolomik-Ansatz verwendet, 

um die longitudinalen Veränderungen der Metaboliten zu erfassen. Von 188 

Metaboliten trugen 80 im Serum bzw. 52 im Muskel am stärksten zur Trennung 

zwischen den vier Zeitpunkten bei. Außerdem wurden die FA-Oxidation, der Arginin-, 

Tryptophan-, Phosphatidylcholin- (PC), Lysophosphatidylcholin- (LysoPC), und 

Sphingomyelin-(SM) Metabolismus als die hauptsächlich während der Transitphase 

veränderten Stoffwechelwege identifiziert. Diese veränderten Stoffwechselwege 

könnten den fehlregulierten Fettstoffwechsel, die beeinträchtigte Insulinwirkung und 

den erhöhten Entzündungsstatus bei Kühen um die Geburt wiederspiegeln. 

Basierend auf den oben genannten Ergebnissen, wurden, wie im zweiten Manuskript 

beschreiben, die ACC-Profile im Muskel und Blutserum charakterisiert und die 

Menge an Carnitin-Acyltransferasen-mRNA im Muskel bestimmt. Zudem wurde 

gestestet, ob die Fütterung mit CLA diese Variablen im Vergleich zu mit 

Kontroll-Fett gefütterten Kühen, verändert. Die CLA-Gabe hatte keinen Einfluss auf 

die untersuchten Variablen. Die Serumkonzentration an freiem Carnitin sank mit dem 

Beginn der Laktation. Die Mehrheit der kurz- und langkettigen- ACC in Serum und 

Muskel korrelierte positiv mit den FA-Konzentrationen im Serum, während 

Serum-Carnitin und C5 negativ mit FA korrelierten. Zeitbedingte Veränderungen im 

Serum- und Muskel-ACC-Profil, sowie die mRNA-Expression der 

Carnitin-Acyltransferasen - CPT1B und CPT2 konnten nachgewiesen werden, 

Muskel-Carnitin blieb unverändert, hingegen waren abnehmende 

Serumkonzentrationen zu beobachten. Möglicherweise war dies durch eine erhöhte 

Carnitinausscheidung mit der Milch und die Aufnahme in die Muskulatur zur 

Aufrechterhaltung der intrazellulären Konzentrationen begründet. Die erhöhten 

Konzentrationen von langkettigen ACC-Formen im Muskel (von C14 bis C18) und 

von Serumacetylcarnitin (C2) um den Zeitpunkt der Geburt herum, deuten auf eine 

unvollständige FA-Oxidation; möglicherweise wegen einer unzureichenden 

metabolischen Anpassung als Reaktion auf die Belastung durch FA um die Geburt.  
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Zusammenfassend, zeigen diese Ergebnisse, dass der verwendete, gezielte 

Metabolomics-Analytik eine geeignete Methode darstellt, um das Verständnis für die 

Veränderungen der Stoffwechselwege während der Transitphase der Milchkuh zu 

erweitern. Mit Nutzung von „OMICS-Methoden“ wie ungezielte („non-targeted“) 

Metabolomics, Proteomics und Transcriptomics, könnten die Zwischenprodukte, die 

die Anhäufung von langkettigen ACC im Muskel von Milchkühen im geburtsnahem 

Zeitraum verursachen, klären helfen. 
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