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Introduction

This thesis consists of four essays that belong to the literature on the theory of auctions and the

theory of contests. Chapter 1 and Chapter 2 are devoted to the research on auctions and study

the role of symmetry in auction design. In Chapter 1, I show how the designer can favor one of

the bidders by choosing auction rules even if the chosen auction has to be symmetric. In Chapter

2, the symmetric revenue-maximizing auction is completely characterized. Chapter 3 and Chapter

4 contribute to the contest theory. In Chapter 3, the role of head starts in search contests is

investigated. Chapter 4 �nds optimal prize structures of elimination contests for a general form of

the designer's objective. Chapter 2 is based on joint work with Bo Chen, and Chapter 3 is based

on joint work with Bo Chen and Xiandeng Jiang.

Chapter 1 contributes to the mechanism design literature and considers the problem of fa-

voritism in auctions from the mechanism design perspective. The auction designer has one fa-

vorite among bidders and maximizes his utility by choosing an auction format conditional on the

favorite's value. Alternatively, one could think that one of the bidders can choose the auction

format he would like to participate in depending on his value. To prevent favoritism, several re-

strictions are imposed on the designer in my model. Many real-life auctions WTO and EU require

that procurement auctions conducted under their regulation have to be non-discriminatory that

is symmetric. I show that this restriction is not su�cient to prevent discrimination. Namely, even

if the designer is restricted to using anonymous and dominant strategy incentive compatible auc-

tions, she can transfer all potential revenue to her favorite and guarantee him the interim utility

at least equal to his value for any allocation rule. The equivalence of anonymity with respect

to bids and anonymity with respect to true values is also established in this case. This form of

favoritism is easily detectable. To prevent this obvious form of favoritism I add the restriction

of non-positive trasnfers. Altogether, anonymity, dominant strategy incentive compatibility and

non-positive transfers restrictions do not allow the designer to perform intra-auction favoritism,

that is there is no particular value favored in equilibrium compared to others. However, intra-

auction favoritism is still possible, where the deisgner chooses di�erent auctions for di�erent values
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of her favorite. Thus, the auction choice still depends on the favorite's value. The designer chooses

a second-price auction with pooling, where she commits to not distinguishing values in pooling

regions and using lotteries to determine a winner. To fully prevent favoritism, the deterministic

auctions restriction is added. Altogether, these restrictions allow implementing only a speci�c

class of second-price auctions with a generalized reserve price. For each bidder, this reserve price

depends on opponents' bids. The designer chooses the standard second-price auction from this

class and no favoritism is possible.

In his seminal paper, Myerson (1981) �nds the optimal auction that maximizes the revenue

of the designer. In general, for heterogeneous bidders, his construction is asymmetric. Deb and

Pai (2017) show that there exists and a symmetric auction and a Bayesian equilibrium of a new

constructed auction that implements the same expected outcome. However, their implementation

can lead to auctions with multiple equilibria where there is no reason to prefer one equilibrium

over another. In Chapter 2, multiplicity of equilibria is eliminated by considering strategy-proof

auctions. The optimal strategy-proof symmetric auction is obtained. It turns out to be a second-

price auction with a generalized reserve price de�ned in Chapter 1. Hence, for each bidder the

optimal reserve price depends on what other bidders bid in the auction.

Chapter 3 studies the e�ects of head starts in innovation contests. The model in this chapter is

similar to Taylor (1995). Chapter 3 studies continuous time version of Taylor (1995) and introduces

heterogeneity in the form of head start for one of contestants. A two �rm winner-takes-all contest

in which each �rm decides when to stop a privately observed search for innovations (with recall)

is analyzed. The �rm with a superior innovation at the outset has a head start. The �rm with

the most successful innovation at a common deadline wins. It is shown that a large head start

guarantees a �rm victory without incurring cost. However, a medium-sized head start ensures

defeat for the �rm if the deadline is su�ciently long. In the latter case, the competitor wins the

entire rent of the contest. The head start �rm may still increase its expected payo� by discarding

its initial innovation in order to indicate a commitment to search. The e�ects of early stage

information disclosure and cost advantages are studied, respectively.

Chapter 4 considers multi-stage elimination contests where agents' e�orts at di�erent stages

generate some output for the organizer. Rosen (1986) studies the similar problem where the

organizer wants to induce the same level of e�ort at all stages and maximize it. In Chapter 4, I �nd

the optimal prize structure for a general class of the organizer's prferences over stages. Depending

on these preferences, various prize structures can be optimal. If the output function depends much
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more on e�orts applied at later stages than on those applied at the earlier ones, the optimal prize

structure can be non-monotone, that is, at some stages prizes fall and the agents who are more

successful may earn less. Necessary and su�cient conditions for the optimality of such structures

are provided. I also show that for any increasing prize shape there exists an output function such

that this prize shape is optimal. Further, I consider the case of limited liability, where the principal

is not allowed to use negative prizes but can choose a contest success function (CSF). There is

always an e�cient equilibrium under which the principal is able to extract the full surplus from

the agents and the corresponding optimal prize structure is always increasing. Moreover, under

some plausible assumptions, the optimal CSF is necessary convex, which corresponds to the most

frequently used prize schemes in practice.
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Chapter 1

Favoritism in Auctions: A Mechanism Design Approach

1.1 Introduction

In this chapter, I approach the problem of favoritism in auctions from the mechanism design

perspective. Thus, I study how the designer chooses the auction format to maximize her fa-

vorite's utility under di�erent sets of restrictions on the implemented auction rules. In my model,

favoritism does not arise due to some hidden actions, unfair manipulation with bids, �ctitious

bidders, cheating or other unfair actions; rather, favoritism is solely due to the design of the

mechanism. There are two main reasons that make the problem interesting: �rst, there are some

restrictions on the auctions formats, which the designer needs to meet while choosing an auction;

and second, in addition to the knowledge of her favorite's identity, the designer has information

about how much her favorite values the good. This information can be used in the auction design,

whereby the designer can choose di�erent auctions for di�erent values of her favorite. The main

questions are what auction the designer chooses under di�erent sets of restrictions to make her

favorite better depending on his value and what is a good set of restrictions to prevent di�erent

forms of favoritism. The �rst question can be paraphrased in terms of the situation where the

bidder chooses an auction. Namely, what auction would be chosen, if one particular bidder could

choose an auction he would like to participate in.

There are many real-life auctions where the problem of favoritism is relevant. For example,

consider a situation where the principal intends to sell some good using an auction. If she is not

su�ciently informed about the market and potential buyers, she could hire an expert to design

the auction format to achieve goals such as revenue maximization, e�ciency maximization, etc.

However, the designer's incentives can di�er from those of the principal. As a result, the auction

format chosen by the designer can substantially di�er from that preferred by the principal. In

this chapter, this con�ict of interest arises in a situation where the designer has a favorite among

5



potential buyers. One possible reason for this would be a bribe from this particular buyer or

any other form of collusion. Subsequently, the designer's objective could be maximization of this

particular buyer's utility and the principal could not achieve her goal in the auction outcome. If the

principal's objective is revenue maximization and the designer chooses an auction format where the

good directly goes to her favorite, this outcome is a disaster for the principal in terms of collected

revenue, which is equal zero. Thus, the principal would like to limit the freedom of an auction

format choice given to the designer to prevent favoritism. Another situation is a government

auction; for example, a government procurement auction, where one of the participating companies

may be partially or fully owned by a government. In this case, the government could prefer to

choose the auction format that favors this company.

However, one essential requirement for the rules of a procurement is that they guarantee fair

competition. Institutions like the European Commission and the WTO set procurement guide-

lines that should ensure the absence of positive and negative discrimination. In particular, �equal

treatment, non-discrimination, mutual recognition, proportionality and transparency� (European

Comission, 2014) are required. �Each Party shall seek to avoid introducing or continuing dis-

criminatory measures that distort open procurement� (WTO, 2011). Nevertheless, statistics show

that discrimination in procurement is present. According to an estimate (PricewaterhouseCoopers

and Ecorys, 2013), the costs of corruption in public procurement in eight EU countries ranged

from e1.4 billion to e2.2 billion in 2010. More than half of foreign bribery cases occurring in-

volved obtaining a public procurement contract (OECD, 2014). 10-30% of the investment in a

publicly-funded construction project may be lost through mismanagement and corruption (CoST,

2012). The question is why the implemented legal restrictions cannot prevent discrimination and

favoritism and how legal restrictions should be changed.

It is obvious that if there are no restrictions imposed on the designer, then the designer can

simply allocate the good to her favorite and not charge him anything. This is an example of a

situation, which I call perfect favoritism. Namely, perfect favoritism is possible if the designer can

guarantee her favorite the ex-post utility higher than his value in any equilibrium of the auction.

Hence, some restrictions are needed to prevent this. Probably the most natural attempt to avoid

such obvious favoritism is to impose an anonymity restriction to eliminate direct discrimination

by identity of the bidder. Anonymity means that the allocation and transfer rules should only

depend on the submitted bids, rather than the identities of bidders. However, it emerges that

anonymity alone is not a particularly useful restriction for several reasons. First, as shown by

Deb and Pai (2017), given some asymmetric auction the designer is often able to construct an
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anonymous auction, which has an equilibrium such that it provides the same expected outcome

as the original auction. Thus, if we assume that the designer can choose an equilibrium, then

anonymity restriction alone is not a binding constraint at all. One further reason is the �rst

main result of this chapter (Theorem 1.2), showing that if there is some anonymous and dominant

strategy incentive compatible (DIC) auction that generates revenue R, then there exists another

anonymous and DIC auction that has the same allocation rule and where the whole revenue R is

transferred to the favorite. For example, the designer can implement the allocation rule of a second-

price auction and transfer all collected revenue to his favorite. Hence, the favorite either obtains

the good for free or obtains the revenue weakly higher than his value. Therefore, the designer

can implement perfect favoritism in an anonymous and dominant strategy incentive compatible

auction. This result is stronger than the result of Deb and Pai (2017) in the sense that it does

not use the fact that the designer chooses a particular equilibrium. It should be also emphasized

that if the auction is DIC, then standard anonymity restriction with respect to bids implies "true"

anonymity with respect to values in the corresponding direct auction (Theorem 1.1).

I call intra-auction favoritism a situation where the designer can discriminate bidders within

the auction (a bidder with a higher value obtains lower utility than a bidder with a lower value).

To avoid intra-auction discrimination via transfers that results to perfect favoritism, I additionally

impose the non-positive transfers restriction, which does not allow the designer to transfer collected

revenue to her favorite. I analyze the case with two bidders and show that under these three

restrictions the intra-auction favoritism is not possible and the favorite's preferred auction is a

second-price auction with pooling (Proposition 1.1). This is the second important result of the

chapter. Pooling means that the designer commits to not distinguishing among the bids in certain

regions of the values domain and using a lottery to determine a winner. Pooling is always optimal

when the favorite's and his opponent's values are su�ciently close. In this case, the winner is

determined by a lottery and the payment is lower than in a second-price auction. Additionally,

pooling may be used to reduce payments when the favorite wins. I also provide comparative statics

results concerning how the choice of mechanism depends on the favorite's value (Proposition 1.3).

Only the pooling region at the top changes its size, with all other things being equal. If the

favorite's value is too low, then the top pooling region covers the whole set of possible values and

the optimal mechanism emerges as a simple lottery.

Although intra-auction favoritism is not possible under anonymity, DIC and non-positive trans-

fers1, the designer makes the choice of the auction dependent on her favorite's value. Even if the

1This is true in the model with two bidders. If there are more than two bidders, then the intra-auction favoritism
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chosen auction is fair (non-discriminatory), this is still a form of favoritism. I call this situation

inter-auction favoritism. To illustrate the last point, consider a situation in which the designer

can only choose among two auction formats: 1) a second-price auction and 2) a symmetric lottery.

Both of these formats can be called fair. Indeed, in a second-price auction the bidder with the

highest value wins the auction and has to pay the second highest bid. In a lottery, all bidders do

not need even to make bids and thus they have the same probabilities of winning the good. How-

ever, bidders with di�erent values could still prefer one of these formats to another. For example,

if one of n bidders has a low value, he would certainly prefer a lottery rather than a second-price

auction, since it gives him a chance to obtain the good for free with probability 1/n. Meanwhile, a

bidder with a high value could prefer a second-price auction rather than a lottery, since his chances

of winning the good in the competition are high. Thus, although both described auction formats

are fair, they are not equally valued by di�erent bidders.

I show that by imposing one more restriction on the designer, it is possible to prevent any

form of favoritism. Thus, I impose a deterministic auctions restriction, which does not allow the

designer to use randomization to determine a winner if there is a unique highest bid. The third

main result characterizes a class of auctions feasible under these four restrictions as second-price

auctions with a generalized reserve price (Theorem 1.3). A generalized reserve price is di�erent

from the standard reserve price in the sense that it is unique for each bidder and depends on all bids

of his opponents. However, it is constructed in a symmetric way to preserve anonymity restriction.

Independent of the favorite's value, the auction maximizing the utility of the favorite in this class

of auctions is a standard second-price auction without any reserve price (Proposition 1.4). Thus,

this combination of four restrictions allows preventing any form of favoritism.

I also analyze what kind of favoritism is possible under di�erent subsets of restrictions. I show

that the above restrictions form a hierarchy with non-positive transfers at the top, deterministic

auctions at the bottom and anonymity+DIC in the middle (Proposition 1.5). In other words,

non-positive transfers always reduce the scope of favoritism. Anonymity helps if and only if DIC is

imposed and vice versa. Deterministic auctions only matter in combination with anonymity+DIC.

This chapter is related to papers by Deb and Pai (2017) and Azrieli and Jain (2018). They show

that for many mechanisms that are not anonymous, one can �nd a symmetric auction such that

it has a Bayes-Nash equilibrium with the same expected revenue and bidder's utilities. Manelli

and Vincent (2010) and Gershkov et al. (2013) show that in the independent private values model,

there is equivalence of Bayesian and dominant strategy implementation in expected terms. This

can still be possible.
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equivalence does not hold here due to the additional restrictions and in particular anonymity.

Collusion among buyers is studied in Graham and Marshall (1987) and Mailath and Zemsky

(1991) for second-price auctions, as well as McAfee and McMillan (1992) for �rst-price auctions.

Robinson (1985), Caillaud and Jehiel (1998), Che and Kim (2006), Marshall and Marx (2007) and

Che and Kim (2009) compare possibilities of collusion among buyers or between a buyer and seller

in di�erent auction formats. In a setting with non-transferable payments, Condorelli (2012) and

Chakravarty and Kaplan (2013) �nd the social welfare maximizing mechanism with a benevolent

designer. They show that the optimal mechanism comprises contest and lottery regions depending

on a distribution of values. In this chapter, the favorite's preferred auction under the restriction

of non-positive transfers exhibits similar properties.

Extensive literature exists on the informed principal problem (see Myerson, 1983, Maskin and

Tirole, 1990, 1992, Severinov, 2008, Mylovanov and Tröger, 2012, 2014 and Yilankaya, 1999). In

such models, the design of a mechanism can re�ect the information that the designer possesses.

Thus, the choice of the mechanism can partially or fully reveal information to the agents. In

this chapter, all main results are formulated for dominant strategy incentive compatible auctions.

Since each bidder has a dominant strategy, he does not pay attention to the information revealed

by the designer.

The remainder of this chapter is structured as follows. In the next section, I present the auction

model used in the chapter. Then, I introduce the concept of favoritism. Subsiquently, I introduce

the restrictions sequentially and discuss how they help (or ortherwise) to prevent di�erent forms

of favoritism. I conclude with a discussion of open issues. All major proofs are delegated to

Appendix 1.A.

1.2 Auction Model

The designer has to conduct an auction to sell one indivisible good (object) to a set N = {1, ..., n}

of potential bidders. The bidders are characterized by independent private values vi coming from

continuously di�erentiable distributions Fi on Vi = [vi, vi] with a positive density2. The designer

has a favorite among the bidders and without loss of generality, I assume that it is the �rst bidder3.

The designer knows the value of the favorite v1 = v∗ and maximizes his interim utility4.

2vi could be equal to +∞
3Otherwise, we can renumerate the bidders such that the favorite obtains a number 1.
4The assumption that the designer knows the favorite's value is quite natural. Since the designer wants to

maximize the utility of the favorite, their incentives are completely aligned and the favorite would like to disclose
the information about his value to the designer regardless.
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The auction proceeds in the following steps:

1. The designer announces the rules of the auction.

2. Agents simultaneously decide whether they want to participate in the auction and if yes they

make their bids.

3. The winner is determined according to the auction rules de�ned on step 1.

Each bidder i chooses a bid from a given set of admissible bids, bi ∈ {�}∪Bi, where Bi ⊂ R+

and bi = � mean that the bidder i does not participate in the bidding. By B =×ni=1 ({�} ∪ Bi)

we denote the product set of admissible bid sets. M ⊂ N is a set of bidders who participate

in the bidding, namely ∀i ∈ M : bi 6= �. The number of participating bidders is m = |M |.

I denote a vector of values v = (v1, ..., vn) ∈ ×ni=1Vi and vector of bids b = (b1, ..., bn) ∈ B.

N−i = N\{i}, v−i, b−i are used for the set of bidders without a bidder i. When the bids are

submitted, an outcome of the auction has to be determined. Denote by aj an allocation of the

object where an agent j obtains the object. By a0, I denote the allocation when the object remains

unassigned. The set of possible allocations is A = {aj}nj=0. An allocation is chosen according to

an allocation rule y : B → [0, 1]n, y(b) = (y1(b), ..., yn(b)), where yi(b) := Pr(ai|b)5. The

allocation rule determines how often each allocation is chosen. Transfer rule p : A × B → Rn,

p(a,b) = (p1(a,b), ..., pn(a,b)), where pi(a,b) speci�es how much agent i receives in the allocation

a, given that a vector of bids b is submitted. Transfers t : B→ Rn, t(b) = (t1(b), ..., tn(b)), where

ti(b) :=
∑

a∈A pi(a,b) Pr(a|b) =
n∑
j=0

pi(aj ,b) Pr(aj |b) =
n∑
j=0

pi(aj ,b)yj(b) can be computed after

the bids have been submitted, but before an allocation has been chosen.

Example 1.1. The auction format is a simple lottery, where the winner and only the winner

pays a �xed price γ independent of bids. Subsequently, the allocation rule is y(b) = (1/n, ..., 1/n),

bidder i pays −γ if he obtains the object and 0 otherwise, namely pi(aj ,b) = −γ if i = j and

pi(aj ,b) = 0 if i 6= j, and the transfers are t(b) = (−γ/n, ...,−γ/n).

The utility of an agent i who participates in the auction is

Ui(vi|a) = viI{a = ai}+ pi,

where I : A → {0, 1} is an indicator function equal to 1 if a = ai and 0 otherwise. The ex-post

5By Pr(ai|b), I mean the probability that an allocation ai∈A is chosen conditional on a vector b ∈ B is submitted.
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utility of a bidder i given vector of bids b is as follows:

Ui(vi|b) =
∑

a∈A
Ui(vi, a) Pr(a|b) = viyi(b)+ti(b).

For any vector of bidding strategies β(v) = (β1(v1), ..., βn(vn)) where βi : Vi → {�} ∪Bi, we can

de�ne the interim utility of a bidder i as an expectation of his ex-post utility taken with respect

to a vector of other bidders' values v−i, given that β(v) is played. Thus,

Ui(vi|β) = viEv−iyi(β(v)) + Ev−iti(β(v)).

When it is clear which bidding strategy we consider, I simply use Ui(vi) rather than Ui(vi|β). Each

bidder i participates in the auction, making a bid bi 6= � if and only if the individual rationality

constraint holds:

Ui(vi|β) ≥ 0. (1.1)

De�nition 1.1 (feasible auction).

A feasible auction FA = (B,y,p) is a collection of bid sets B, an allocation rule y and a

transfer rule p, such that

∀i,b 0 ≤ yi(b) ≤ 1,

∀b
∑

i
yi(b) ≤ 1,

∀i, a,b−i yi(b) = pi(a,b) = 0 if bi = �.

Any feasible auction should completely ignore bidders who do not participate in the bidding.

These bidders never receive the good or transfers. The solution concept is Bayes-Nash equilibrium

(BNE). The pro�le of bidding strategies ψ = {β∗i (vi)}ni=1 constitutes a Bayes-Nash equilibrium of

an auction if the interim utility from playing the equilibrium strategy is greater than any other

strategy, i.e. for any vi and for any βi(vi) :

viEv−iyi(β
∗(v)) + Ev−iti(β

∗(v)) ≥ (1.2)

≥ viEv−iyi(β
∗
1(v1), ..., βi(vi), ..., β

∗
n(vn))+Ev−iti(β

∗
1(v1), ..., βi(vi), ..., β

∗
n(vn)).

De�nition 1.2 (no de�cit).

An equilibrium ψ of a feasible auction FA is feasible if it does not run ex-post de�cit:

ψ :
∑n

i=1
ti(β

∗(v)) ≤ 0. (1.3)
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In any feasible equilibrium, the sum of transfers to bidders is non-positive. However, without

any further restrictions, a transfer to some particular bidder could be positive. It is important

to emphasize here that non-positive transfers are only a restriction only on equilibrium outcome.

Thus, it may not hold for any vector v, but should hold for those vectors that appear in equilibrium

ψ. Since the designer knows the value of the favorite, the auction can be such that it runs the de�cit

if the favorite makes a bid b1 di�erent from β∗1(v∗). However, this never happens in equilibrium ψ

and hence it is su�cient that
∑

i ti(β
∗(v)) ≤ 0 only for v1 = v∗ and for any v−1. This concludes

the description of a model and now we continue with a concept of favoritism.

1.3 Favoritism

Denote by Ψ(A) the set of all undominated feasible BNE of some auction A. I will now use

notation Ui(vi, ψ) to denote the interim utility of a bidder i in a particular equilibrium ψ ∈ Ψ(A).

De�nition 1.3 (favorite's preferred equilibrium).

A favorite's preferred equilibrium (FPE) ψ∗(A) : A → Ψ(A) is the equilibrium that gener-

ates the highest interim utility for the favorite given his value v∗ among all feasible undominated

equilibria, namely for any ψ ∈ Ψ(A) :

U1(v∗, ψ∗(A)) ≥ U1(v∗, ψ)

De�nition 1.4 (favorite's preferred auction).

A favorite's preferred auction (FPA) is a feasible auction that maximizes the favorite's interim

utility in FPE, namely,

FPA = arg max
FA

U1(v∗, ψ∗(FA)) (1.4)

Since the choice of an auction may generally depend on the actual value of the favorite, it

means that the favorite and all other bidders can be in di�erent information sets when the auc-

tion starts. Hence, when an auction format is announced, other bidders can make an inference

about a favorite's value. By manipulation with the auction format, the designer can exclude the

participation of some potential bidders.

Taking into account the possibility of favoritism, some restrictions can be imposed on auctions

proposed by the designer. I denote by C = {ci}Ki=1 the set of restrictions on (y,p, t). Thus, the

designer is not completely free in the choice of an auction. I introduce the following two de�nitions

to take this into account.

De�nition 1.5 (auction feasible under restrictions).
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A feasible auction under set of restrictions C (later FA(C)) is a feasible auction FA =

(B,y,p) such that (B,y,p) satisfy C.

De�nition 1.6 (favorite's preferred auction under restrictions).

A favorite's preferred auction under set of restrictions C (later FPA(C)) is a feasible under

C auction, which maximizes favorite's interim utility in FPE, namely,

FPA(C) = arg max
FA(C)

U1(v∗, ψ∗(FA(C)))

The concept of favoritism is formulated in the next de�nitions.

De�nition 1.7 (intra-auction favoritism).

The auction allows intra-auction favoritism if there exist an equilibrium ψ ∈ Ψ(A), two bidders

i, j and a vector of values v, such that vi ≥ vj and Ui(vi|β∗(v)) < Uj(vj |β∗(v)).

This de�nition means that intra-auction favoritism exists if there exist an equilibrium and two

bidders such that one of them has a greater value and at the same time a lower level of ex-post

utility in this equilibrium compared to the other. It also implies that all bidders with the same

values should obtain the same utilities. If intra-auction favoritism is possible, it means that the

designer can discriminate bidders by their identities within the same auction.

De�nition 1.8 (inter-auction favoritism).

The auction allows inter-auction favoritism if the favorite's preferred auction depends on the

favorite's value v∗.

In other words, for two di�erent values of the favorite the choice of the auction format will

di�er. Thus, even if intra-auction favoritism is not possible, the designer could favor one bidder

by a particular choice of a mechanism.

De�nition 1.9 (perfect favoritism).

Perfect favoritism is possible under set of restrictions C if there exists a feasible auction FA(C)

such that in any equilibrium in undominated strategies ψ ∈ Ψ(FA(C)) and for any v∗ ∈ V1 the

following holds

U1(v∗, ψ) ≥ v∗

Thus, perfect favoritism is possible when the designer is always able to guarantee her favorite

the interim utility greater than or equal to his value of the good. One trivial example is an

allocation of the good to the favorite independent of bids. Another example is when rather than

allocating a good she sends him a transfer pi > vi. Of course, these examples may not be feasible
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under an appropriate set of constraints. Next, we discuss what the designer can do under di�erent

sets of restrictions C.

1.4 Unrestricted Favoritism

First, suppose that C = �. Thus, no restrictions are imposed on the designer's choice of an auction.

In this case, the designer can simply give the object to her favorite for free. However, it is not the

favorite's preferred auction and it is possible to construct an even better mechanism. The next

proposition provides a characterization of FPA.

Claim 1.1 (favorite's preferred auction).

If no restrictions are imposed on the designer, the favorite's preferred auction has a favorite's

preferred equilibrium in dominant strategies ψ∗ and treats the favorite and other bidders di�erently.

The favorite obtains the object if nobody else obtains it and receives all collected revenue. All other

bids are treated as in the optimal auction proposed by Myerson (1981), where a seller's reservation

value is equal to v∗.

Proof. Since the designer is always able to transfer all collected revenue to his favorite, it is always

possible to have an equality in (1.3) and hence t1(b) = −
∑

i 6=1 ti(b). Subsequently, problem (1.4)

can be rewritten as

v∗Ev−1y1(β∗(v))− Ev−1

∑
i 6=1

ti(β
∗(v))→ max

FA

This problem is essentially similar to a problem of pro�t maximization when the seller has a

reservation value equal to v∗ and all bidders aside from the favorite participate in the bidding.

The result follows directly.

The Myerson's optimal auction allocates the good to a bidder with the highest "ironed virtual

value" φi(vi)6, provided that this value is greater than the reservation value r of a seller. The

winner should pay the amount that is equal to the lowest v̂, such that it lets him win, i.e. v̂ is the

solution to φi(v̂) = max({φj(vj)}j 6=i, r} In the model of favoritism, we can think about a favorite's

value as a reserve value of a designer and thus r = v∗. Hence, in FPA the favorite obtains the

object if all other bidders have virtual values smaller than v∗, i.e. ∀j 6= 1, φj(vj) < v∗. Suppose

that the bidder k wins in FPA. The smallest value v̂k that lets the him win the auction is always

greater than or equal to v∗. Indeed, otherwise, since φk(vk) < vk, we would have φk(v̂k) < v̂k < v∗,

which contradicts the fact that v̂ lets win the auction. Thus, when the favorite does not win the

6ϕi(vi) = vi − 1−Fi(vi)
fi(vi)

if it is increasing, otherwise ϕi(vi) is equal to a special "ironed" transformation of

vi − 1−Fi(vi)
fi(vi)

, such that it makes it monotone.
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FPA, he always receives a monetary transfer v̂ > v∗ and hence even his ex-post utility is greater

than his value.

Observation 1.1. If the designer is unrestricted, then the perfect favoritism is possible.

Since all of the collected money goes to the favorite, the actual revenue is always zero. In order

to prevent the perfect favoritism and the zero revenue, restrictions on feasible auction should

be imposed. To understand what would be the reasonable set of restrictions, I discuss what

the designer uses to implement perfect favoritism if she is unrestricted. First, we observe from

Claim 1.1 that the designer always wants to di�erentiate her favorite and all other bidders. This

possibility should be excluded and the natural way to achieve this is to impose a restriction that

requires the designer to treat all bidders equally, namely anonymity.

1.5 Anonymity

Let π : {1, ..., n} → {1, ..., n} be a permutation. Denote Θ as the set of all permutations of

n elements. Later, for simplicity, I will also use expressions like π(i) = j, where I mean that

the element in i-th position moves to j-th position when permutation π is applied. Denote by

bπ = (bπ(1), ..., bπ(i), ..., bπ(n))

De�nition 1.10 (anonymity).

A feasible auction FA is anonymous (feasible under cA) if the names of the bidders do not

matter, namely if any permutation of bids among bidders alters (y, t) symmetrically. Precisely,

for any bidders i, j ∈ N, for any allocation ak ∈ A for any permutation π ∈ Θ and for any vector

of bids b ∈ B:

Bi = Bj ,

yi(bπ(1), ..., bπ(i), ..., bπ(n)) = yπ(i)(b1, ..., bi, ..., bn),

pi(ak, bπ(1), ..., bπ(i), ..., bπ(n)) = pπ(i)(aπ(k), b1, ..., bi, ..., bn).

This de�nition means that if after a permutation π a bidder i makes a bid that an agent π(i)

has made before the permutation, he should have the same probability of winning the auction and

the same transfer at any allocation ak as the agent π(i) before the permutation at the allocation
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aπ(k). Note that this also implies that

ti(bπ(1), ..., bπ(i), ..., b(n)) =
n∑
j=0

pi(aj ,bπ)yj(bπ) =

=
n∑
j=0

pπ(i)(aπ(j),b)yπ(j)(b) =
n∑
j=0

pπ(i)(aj ,b)yj(b) =

= tπ(i)(b1, ..., bi, ..., bn).

Hence, expected transfers are also symmetric with respect to a permutation. To understand how

it works, consider an example with three bidders, and a vector of bids (b1, b2, b3). Consider now

the permuted vector of bids (b2, b3, b1). By the anonymity restriction, the probability that bidder

1 wins bidding b2, when bidder 2 bids b3 and bidder 3 bids b1, should be equal to the probability

that bidder 2 wins bidding b2 and his opponents bidding b1 and b3. Consider also the allocation

a3, i.e. the third bidder wins the good bidding b1. Accordingly, the transfer to bidder 1 in this

allocation given that he bids b2, and bidder 2 bids b3 must be equal to the transfer to bidder 2

when he bids b2 in the allocation, where bidder 1 wins and bids b1, with bidder 3 making a bid b3.

This restriction holds strong importance. Without anonymity, the designer can simply give the

object to her favorite for free. By contrast, when anonymity is imposed, the designer is no longer

able to discriminate bidders directly by making di�erent rules for di�erent bidders. However, as

shown in Deb and Pai (2017), the anonymity restriction often does not truly restrict the designer in

the ability to implement the auction that she wants. Suppose that the designer wants to implement

the nonanonymous allocation rule, such that it allocates the object to a bidder with the highest

index Ii, where Ii(vi) is some increasing function of a bidder's value.

They show that there exists an anonymous auction and an equilibrium of this auction such that

it implements the same allocation and the same expected payments as the original auction. One

of their main results is also that the designer is able to implement in a symmetric way, particularly

the optimal auction, which is not anonymous if the distributions of agents' values di�er. Indeed,

since the optimal auction allocates the object to a bidder with the highest ironed virtual value, we

can de�ne Ii(vi) = φi(vi). In terms of allocation rule, FPA only di�ers from the optimal auction

in the index function for the �rst agent, namely I1(v1) = v1. Hence, this implementability result

also holds in our model and the designer can implement FPA as an anonymous mechanism.

In Appendix 1.B, we show ex-post implementability for the case of symmetric bidders. This

theorem states that for symmetric bidders it is possible to construct an auction that has an

equilibrium such that the outcome of this equilibrium is ex-post identical in terms of allocation
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and payments to the equilibrium of FPA. This equilibrium has the property that among all

bidders with values smaller or equal than v̂ only the favorite participates and bids his true value

v∗.If there is no other bidder with a value greater than v̂, the favorite wins the object and pays

zero; otherwise, the highest bid wins the auction and this bidder pays a maximum of the second

highest bid and v̂. This payment goes to the favorite. The intuition behind this result is that when

such an auction is announced, all standard bidders with values lower than v̂ know that if they

participate they cannot end up with a pro�t in the case when there is somebody else with a value

below v̂, who participates. In this case, the revenue for the designer is also equal to zero.

This construction above � as well as one by Deb and Pai (2017) � has the weakness that there

could be many equilibria of the symmetric auction and we emphasize one particular equilibrium

where the favorite is preferred. In fact, it is assumed that the designer can choose among di�erent

equilibria. There are also n−1 similar equilibria where one of bidders participates and the others,

including the favorite, do not participate. Since our notion of perfect favoritism requires that the

favorite obtains su�ciently high utility in any equilibrium, the construction above does not allow

preventing the perfect favoritism. Hence, at this point one could think that perfect favoritism is

not possible if anonymity restriction is imposed. However, it is not true and, as we show below,

the perfect favoritism is still possible; namely, there exists an auction such that it has only one

equilibrium in undominated (in our case, it would even be dominant!) strategies that provides the

favorite with the level of utility higher than his value.

Thus, anonymity restriction itself is not su�cient for the absence of favoritism. It is clear

that the opportunity to exclude the participation of other bidders has to be disabled. Thus, we

consider dominant strategy incentive compatibility restriction.

1.6 Dominant Strategy Incentive Compatibility

De�nition 1.11 (dominant strategy incentive compatibility).

A feasible auction FA is dominant strategies incentive compatible (DIC, feasible under cDIC)

if for any bidder there exists a strategy β∗i (vi) that provides higher utility than any other strategy

independent of how the other bidders play, namely for all {βj(vj)}, j = 1, ...n:

viEv−iyi(β1(v1), ..., β∗i (vi), ..., βn(vn)) + Ev−iti(β1(v1), ..., β∗i (vi), ..., βn(vn)) ≥

≥ viEv−iyi(β1(v1), ..., βi(vi), ..., βn(vn))+Ev−iti(β1(v1), ..., βi(vi), ..., βn(vn))

Since the inequality should hold for all βj(vj), it should also hold for any constant strategies,
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∀j 6= i,∀vj : βj(vj) = bj . In turn, if the equality holds for any bids bj plugged instead of βj(vj),

this means that it would hold in expectation. Thus, the β∗i (vi) is a dominant strategy for a bidder

i if and only if for any bj ∈ {�} ∪Bi and for any βi(vi)

viyi(b1, ..., β
∗
i (vi), ..., bn) + ti(b1, ..., β

∗
i (vi), ..., bn) ≥

≥ viyi(b1, ..., βi(vi), ..., bn)+ti(b1, ..., βi(vi), ..., bn)

Although dominant strategy implementation is robust in the sense that the behavior of each

player does not depend on what others do, it can have more than one dominant strategy7. However,

in the auction setting with bidders who have private values and linear utilities, the dominant

strategy is unique if it exists. The next result shows this:

Lemma 1.1 (uniqueness of dominant strategy).

For any FA, there could be at most one dominant strategy in the sense that if there are other

dominant strategies they also provide the same allocation and transfers, namely for any two dom-

inant strategies of each player β∗i (v), β∗∗i (v) and for any bids of other bidders b−i the following

holds:

yi(b1, ..., β
∗
i , ..., bn) = yi(b1, ..., β

∗∗
i , ..., bn),

ti(b1, ..., β
∗
i , ...bn) = ti(b1, ..., β

∗∗
i , ...bn),

Proof. See Appendix 1.A.

The next simple lemma is also crucial for our further results and it only holds for anonymous

auctions.

Lemma 1.2 (universality of dominant strategy).

If b∗(v), v ∈ Vi, is a dominant strategy for a bidder i in some anonymous auction FA(C), it

is also a dominant strategy for any other bidder j with any value vj ∈ Vi ∩ Vj .

Proof. See Appendix 1.A.

Later on, when we talk about "equilibrium" we mean the unique equilibrium in dominant

strategies where all bidders use the same strategy. It is also convenient to consider direct auctions.

An auction is called direct if for any bidder i ∈ N the allowed bidding set is equal to a union

of sets of possible values, namely Bi = ∪
j∈N

Vj for any i. Subsequently, describing direct auctions,

7Here, I mean a weakly dominant strategy. If there exists a strictly dominant strategy, it is unique.
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instead of (B,y,p), I use simpli�ed notation (y, t), keeping in mind that B = ×
i∈N

( ∪
j∈N

Vj} and

ti(v) =
n∑
j=0

pi(aj ,b)yj(b). The classical revelation principle claims that without loss of generality

it is possible to restrict attention to direct mechanisms in which truth-telling is a Bayes-Nash

equilibrium. However, under anonymity restriction, it is not possible to directly apply the revela-

tion principle and preserve this restriction for a direct auction. Note that anonymity restriction

imposes constraints on allocation and transfers based on bids b, not the values. If anonymity is

the only restriction, namely C = {cA}, then the anonymity with respect to bids does not imply

the anonymity with respect to values of the direct mechanism. To illustrate this idea, consider

the auction from Proposition 1. This auction is anonymous with respect to bids, although the

bidding behavior is di�erent for di�erent bidders. Thus, bidders with the same values can make

di�erent bids in the auction. Hence, the class of anonymous direct auctions is smaller than the

class of all anonymous auctions. Hence, while considering anonymous auctions, we cannot simply

restrict our attention to direct anonymous auctions. However, under additional DIC restriction,

I can show the equivalence between anonymity with respect to bids of the original auction and

anonymity with respect to values of the corresponding direct auction.

Theorem 1.1 (anonymity with respect to valuations).

Anonymity with respect to bids of any DIC auction implies anonymity with respect to values of

the corresponding direct auction.

Proof. Suppose that each agent has a dominant strategy β∗i (v) in the original anonymous auction.

In the corresponding direct auction, then:

yi(vπ(1), ..., vπ(n)) = yi(β
∗
1(vπ(1)), ..., β

∗
n(vπ(n))) =

= yi(β
∗
π(1)(vπ(1)), ..., β

∗
π(n)(vπ(n))) =

= yπ(i)(β
∗
1(v1), ..., b∗n(vn)) = yπ(i)(v1, ..., vn),

where the �rst equality follows from Lemma 1.1, the second equality follows from Lemma 1.2, the

third equality is due to anonymity and the �nal one is again due to Lemma 1.1. The similar logic

holds for transfers.

In other words, for any feasible auction that is DIC and anonymous, the corresponding direct

auction is also anonymous. Thus, we do not exclude any feasible auctions when instead of using

original anonymous DIC auctions we consider corresponding anonymous direct auctions. Maskin

and La�ont (1979) characterizate all DIC direct mechanisms and show that the necessary and
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su�cient conditions for bidders reporting their true values are as follows:

1) yi(v) is nondecreasing in vi for all v−i, (1.5)

2) viyi(v) + ti(v) = hi(vi,v−i) +

∫ vi

vi

yi(v1, ..., q
i
, ...vn)dq (1.6)

where hi(vi,v−i) are some arbitrary functions that do not depend on the bidder i's value. Using

this characterization, we can consider auctions where all bidders report their true values.

We should note that if DIC is the only restriction, i.e. C = {cDIC}, then it is never binding

for the construction of the favorite's optimal auction, namely FPA({cDIC}) = FPA. Indeed, the

favorite's optimal auction is dominant strategy incentive compatible, since the favorite does not

participate in the bidding and his opponents have a dominant strategy to bid their true values in

the optimal auction. As Theorem 1.1 shows, imposing DIC and anonymity is indeed a binding

restriction that allows implementing only "true" anonymous auctions. However, I show below

that despite Theorem 1.1, anonymity+DIC do not prevent even perfect favoritism. It is almost

always possible to send revenue to the favorite.

Theorem 1.2 (transferring revenue to the favorite).

For any direct feasible anonymous and dominant strategy incentive compatible auction (y′,p′)

that generates the equilibrium revenue R(v∗,v−1) = −
∑n

i=1 t
′
i(v
∗,v−1) there exists another direct

feasible anonymous and dominant strategy incentive compatible auction (y′′,p′′) that has the same

allocation rule y′′(.) = y′(.) and such a transfer rule p′′(.) that implements the same equilibrium

transfers for all bidders except the favorite, namely t′′j (v
∗,v−1) = t′j(v

∗,v−1) for any j 6= 1, and the

favorite's equilibrium transfer is such that t′′1(v∗,v−1) = t′1(v∗,v−1) +R(v∗,v−1) almost always.

Proof. See Appendix 1.A.

In other words, it is almost always possible to transfer all collected revenue to the favorite

even in an anonymous and DIC auction. Almost always means that the statement is true for all

realizations of values, except those where one or more bidders' values coincide with the favorite's

value v∗. However, since the distributions of values are atomless and the number of bidders is

�nite, the probability of such event is equal to zero. The intuition behind this surprising result

is that the designer manipulates the transfer rule taking into account that the favorite bids v∗.

Then, the auction is constructed in such a way that for any value it is a dominant strategy to bid

the true value and the auction transfers all collected revenue to the bidder who submitted a bid

v∗, namely to the favorite. Since the probability that there is more than one bidder having a value

v∗ (in this case, it is not possible to transfer money to the favorite) is zero, such events do not
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a�ect the favorite's utility. In order to maintain dominant strategy incentive compatibility, the

designer should promise substantially high payments to bidders in the case when nobody bids v∗.

In general, if there is no such bidder that reports v∗, the auction would not be budget balanced.

However, since the bidder reports v∗, this is not an equilibrium path and hence the auction would

be budget balanced in equilibrium for every realization of opponents' values.

Now, consider a standard second-price auction. It is anonymous andDIC. Hence, Theorem 1.2

implies the following:

Corollary 1.1 (transferring revenue in the second-price auction).

If the designer is restricted to using only anonymous and DIC auctions, then there exists a

feasible auction that implements the same allocation rule for all bidders and the same transfers in

equilibrium for all bidders except the favorite as in the second-price auction. Instead, the favorite

receives all collected revenue and has the ex-post utility greater than his value v∗ in equilibrium

almost always.

It is possible to send the revenue collected in a second-price auction to the favorite for almost

all opponents' bids. In the constructed auction, the favorite wins if and only if he has the highest

value and almost always pays nothing in this case. If the value of the favorite is not the highest,

then the bidder with the highest value obtains the good and the favorite receives monetary transfer

equal to the second highest value. Thus, in all cases when the favorite's value is not the highest

or the second highest one, the utility obtained by the favorite is equal to the second highest value

and strictly exceeds v∗. Since the equilibrium strategy is unique due to Lemma 1.1, the following

is true:

Corollary 1.2. Anonymity and DIC together do not prevent perfect favoritism.

Thus, even a strong combination of anonymity and dominant strategy incentive compatibility

that allows to implement only those rules that are symmetric with respect to real values does

not prevent even perfect favoritism. It is important to notice here that unlike the mechanisms

discussed in the previous section this construction has the unique equilibrium in dominant strate-

gies. Although my notion of favoritism assumes that the designer can choose among equilibria

in undominated strategies, corollary 1.1 implies that the designer can construct an auction that

has the unique equilibrium in undominated strategies and in this equilibrium the favorite obtains

utility weakly greater than his value for (almost) any realization of opponent values.

Furthermore, notice that I do not claim that the proposed auction is the constrained favorite's

preferred auction. In fact, the designer can do even more for his favorite by imposing reserve
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prices, similar to the unconstrained case. However, the problem of �nding the favorite's preferred

auction is complicated in this case, because there are many anonymity constraints that have to be

satis�ed.

The auction proposed in corollary 1.1 is e�cient, namely the good is always allocated to the

bidder with the highest value. Thus, if the designer is restricted to using only e�cient auctions,

she can achieve perfect favoritism while implementing e�cient auctions. Thus, we can formulate

the following corollary.

Corollary 1.3. It is possible to achieve e�ciency and perfect favoritism simultaneously.

In order to reduce favoritism, it is important to prevent the designer from sending all revenue

to her favorite. Since anonymity and dominant strategy incentive compatibility do not restrict the

designer's ability to transfer money to her favorite, an additional restriction should be imposed.

1.7 Non-Positive Transfers

De�nition 1.12 (non-positive transfers).

A feasible auction FA satis�es non-positive transfers (NT, feasible under cNT ) if for any vector

of bids b ∈ B and any allocation a ∈ A

p(a,b) ≤ 0

This restriction is crucial for preventing favoritism. We see from Theorem 1.2 that the designer

always wants to transfer all collected revenue to her favorite. Even anonymity and DIC are

insu�cient to prevent the designer from doing this. It is clear that to prevent favoritism this

possibility should be excluded. The natural way to do this is to impose a restriction that allows

the designer to only collect money from the agents but not to give it. In other words, the principal

may want to prohibit positive transfers.

If NT is the only restriction, namely C = {cNT }, then the best that the designer can do is to

allocate the good to her favorite for sure, independent of all bids. Imposing anonymity restriction

jointly with NT, that is C = {cA, cNT }, does not particularly help. Again, with the result of Deb

and Pai (2017) the designer is still able to allocate the good to her favorite (in some equilibrium)

without extracting money from him. C = {cDIC , cNT } works in the same way as C = {cNT },

since allocating the good to the favorite independent of the bids is trivially incentive compatible.

However, the combination of all three constraints, C = {cA, cDIC , cNT } substantially limits the

scope of favoritism. In this case, as I show below, the designer has to use stochastic mechanisms
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and pool bidders having values in some regions to one speci�c value. I provide a complete solution

to the problem in the case with two bidders. In the case with many bidders, it seems impossible

to obtain an analytical solution due to the increased number of anonymity constraints that have

to be satis�ed. In general, there are n! constraints only due to anonymity. Since the problem of

maximizing the favorite's utility is asymmetric, it is incredibly di�cult to take all of them into

account. However, even the case with two bidders is su�ciently rich to shed some light on what

is happening here.

There are two bidders, with bidder 1 being a favorite and bidder 2 being his opponent. For

this case, we are able to characterize the FPA({cA, cDIC , cNT }) for any continuously di�erentiable

distribution of the opponent's value F (v), v ∈ [0, v]. Note that I allow the case when the favorite's

value is greater than any possible value of his opponent and thus v∗ > v is possible. In order to

formulate the main result, I need some additional notations. Denote G : R+ → R+,

Gx(z) =



concx 〈F (z)〉 , if z ≤ x ≤ v

concv 〈F (z)〉 , if z ≤ v < x

1 +

(
lim
q→x−

dGx(q)
dz

)
∗ (z − x), if z, v > x

1, if z, x > v


8

where concx 〈F (z)〉 is the lowest function that is concave, weakly greater than F (v) and takes a

value equal to 1 at the point z = x. It is illustrated in �gure 1.1 for the case x < v. Denote

gx(z) := dGx(z)/dz9

Proposition 1.1 (FPA under anonymity, DIC and NT).

Assume that there are only two bidders. The favorite's preferred auction under anonymity,

DIC and NT allocates the object to a bidder with the lowest gv∗(vi). In the case of equality, a

simple lottery is used to determine a winner. Transfers are computed by (1.6) with hi(vi,v−i) = 0.

Proof. See Appendix 1.A.

The auction described in Proposition 1 has a very clear economic description and is easy to

implement. I call it a second-price auction with pooling. It is possible to think about a standard

second-price auction with a slight modi�cation; namely, there are intervals on the value domain

such that if a bidder reports a value in one of these regions, he is treated as a bidder having

8 lim
q→x−

is the limit from the left at the point x. We use it to de�ne Gx(z) for values beyond the domain of F.

9If z = q ∈ {v, x} then Gx(z) is not di�erentiable. In this case, let the derivative gx(q) equal the limit from the

left of gx(z) at the point z = q, i.e. gx(q) = lim
z→q−

dGx(z)
dz

.
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Figure 1.1: Concave envelope

value in the middle of this interval. For example, assume that there is only one such "pooling" or

"lottery" interval (a, b). Suppose the second bidder has a value v2 ∈ (a, b). If a value of the favorite

v∗ is greater than b, he obtains the object and pays (a + b)/2. If v∗ ∈ (a, b) both bidders have

an equal chance 1/2 of winning the object. In the case of a win, the winner pays a, i.e. the left

bound of the interval. If v∗ < a, the second bidder obtains the object and pays v∗. The structure

of pooling and contest regions is illustrated in �gure 1.2.

There are two reasons why pooling arises in the solution. The �rst one is that it is a way for

the designer to give the object to her favorite when the opponent's value is higher. In order to

better understand this, I can formulate the following proposition:

Proposition 1.2 (pooling at the top).

For any v∗ < v, there exists a cuto� v̂ < v∗, such that the FPA({cA, cDIC , cNT }) pools all

bidders with values above v̂. This cuto� v̂(v∗) is a monotone increasing function of the favorite's

value.

Proof. See Appendix 1.A.

Thus, the designer prefers to use lottery if a value of a second bidder is higher than a value

of her favorite or lower, but su�ciently close. In the �rst case, it gives a chance to allocate the

object to her favorite and in the second case it reduces payments in the case of win.
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Figure 1.2: Second-price auction with pooling

Example 1.2. F (v) =
√
v, v ∈ [0, 1], v∗ = 0.75

By propositions 1.1 and 1.2, we know that since the distribution function is concave, the re-

stricted favorite's preferred auction is a second-price auction with one pooling region at the top.

The pooling cuto� v̂ can be computed from
√
v̂+ 1

2
√
v̂
(v∗− v̂) = 1, which gives v̂ = 0.25. Thus, the

result of the favorite's optimal auction is as follows: if the opponent has a value lower than 0.25,

the favorite obtains the object and pays an amount equal to his opponent's value. If the opponent

has a value higher than 0.25, there will be a lottery among two bidders and the winner pays 0.25.

The expected utility of the favorite in the favorite's preferred auction is 0.458, which is larger than

the utility 0.433 of a standard second-price auction and 0.375 of a standard lottery.

The second reason why pooling may be optimal is that it reduces expected payments made

by the favorite when his value is substantially higher than a value of his competitor. Indeed, in

the regions where pooling is used the graph of the cumulative distribution function lies below the

straight line and hence the average value in each such region is smaller than the middle value.

Suppose that a value of the second bidder belongs to that region. In the case of no pooling, the

�rst bidder would have to pay in expectation the amount that is equal to the average value. When

pooling is used he pays only the amount equal to the middle value and this reduces payments. We

can also observe how the FPA({cA, cDIC , cNT }) depends on the favorite's value.
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Proposition 1.3 (comparative statics).

If v∗ < v, then the only di�erence between FOA({cA, cDIC , cNT }) for di�erent values is the

size of a pooling region above the cuto� function v̂(v∗). For any v∗ > v, FPA({cA, cDIC , cNT }) is
the same as the one for v∗ = v.

Proof. See Appendix 1.A.

Thus, if the favorite's value becomes smaller, the designer wants to increase pooling in the

region of high values and keep the same allocation rule for low realizations of values. Thus, the

change of the favorite's value has only a local e�ect on the auction design. If the favorite has a

value higher than any possible value of his opponent, then the optimal auction does not depend

on the speci�c value.

One can easily see that intra-auction favoritism and perfect favoritism are not possible under

restrictions of anonymity, DIC and NT . However, inter-auction favoritism can be successively

used by the designer to make the auction better for her favorite. In the next section, I show how

any form of favoritism can be prevented by adding one additional constraint.

1.8 Deterministic Auctions

De�nition 1.13 (deterministic auctions).

A feasible auction FA is deterministic (DA, feasible under cDA) if for any two bidders i 6= j

and for any two bids bi, bj submitted by these bidders, such that bi 6= bj , the allocation is such that

yi ∈ {0, 1} and yj ∈ {0, 1}.

This restriction does not allow the designer to use any randomization in the case when submit-

ted bids are di�erent. For example, the second price with probability 1. However, a second-price

auction with pooling is not DA, because it uses randomization to determine the winner.

De�nition 1.14 (second-price auction with a generalized reserve price).

An auction is called a second-price auction with a generalized reserve price if the following is

satis�ed: {
yi(b) = 1

ti(b) = −maxj 6=i(bj , r(b−i))

}
, if bi > max

j 6=i
(bj , r(b−i))

yi(b) = ti(b) = 0, if bi < max
j 6=i

(bj , r(b−i))

where r : Rn−1 → R is a componentwise symmetric function 10.

10In the zero probability case, when there are two or more bids that are equal and the highest among all bids,
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The di�erence between a second-price auction with a generalized reserve price and a standard

second-price auction is only that the reserve price is not the same for di�erent bidders but rather

for each player it may depend on bids made by his opponents. If a generalized reserve price is a

constant function, i.e. r(x) =const ∀x ∈Rn−1, we obtain a second-price auction with a standard

reserve price. In a special case of a zero reserve price, we get a standard second-price auction. The

next important result characterizes the set of all feasible auctions.

Theorem 1.3 (auctions feasible under full set of constraints).

Any feasible anonymous, DIC, deterministic auction with nonpositive transfers is a second-

price auction with a generalized reserve price.

Proof. See Appendix 1.A.

This result shows that the set of all auctions feasible under C = {cA, cDIC , cNT , cDA} is only

a very speci�c class of auctions, described above. Hence, the ability to favor some participant is

substantially limited. The next result shows that there is actually no scope for favoritism in this

case.

Proposition 1.4 (no favoritism).

For any favorite's value v∗, the favorite's preferred auction feasible under restrictions of anonymity,

strategyproofness, nonpositive transfers and determinism is a standard second-price auction.

Proof. See Appendix 1.A.

From Theorem 1.3, we know that all the designer can do is to choose some auction from a class

of second-price auctions with a generalized reserve price. Proposition 1.4 shows that the reserve

price that makes the favorite better o� is zero. Hence, FPA({cA, cDIC , cNT , cDA}) is a standard

second-price auction.

Thus, I have shown that if the designer is allowed to use only anonymous, dominant strategy

incentive compatible, deterministic auctions such that bidders never obtain money from it, then

any kind of favoritism is impossible. The best the designer can do is always choose a second-

price auction independent of her favorite's value and value distributions. Note also that although

this set of restrictions substantially limits the freedom to choose the auction format, the revenue

maximizing auction is still available for the designer if the agents are symmetric. Indeed, in this

case the revenue maximizing auction will be the second-price auction with a reserve price that

only a symmetric lottery can be used to determine the winner who obtains the object and pays his bid if it is greater
than a generalized reserve price. Note also that due to symmetry the reserve price is the same for all agents with
the highest bids.
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can be implemented under {cA, cDIC , cNT , cDA}. Such a set of restrictions guarantees collected

revenue as the revenue in a second-price auction even if the designer only cares about the favorite.

1.9 Hierarchy of Restrictions

Based on the previous results, we can understand how the restrictions interact with each other,

namely how each restriction helps to prevent favoritism depending on the other restrictions in

place.

First, DA is a binding restriction if and only in the situation without this restriction the

favorite's optimal auction uses lotteries. As we have seen above, it can be only the case when

anonymity and DIC are imposed jointly. Next, without anonymity, the requirement of dominant

strategies does not restrict the designer, because in this case the situation is equivalent to a

situation where the designer has her own value of v∗ and there is no favorite. In this case,

the optimal mechanism is DIC even without imposing DIC. The opposite direction is also

true, namely without the DIC restriction, the requirement of anonymity does not restrict the

designer. This follows from Deb and Pai (2017) argument. Hence, we conclude that the anonymity

restriction is binding if and only if theDIC restriction is imposed and vice versa. From the previous

discussion, we have seen that NT restriction binds if DA is not imposed. Since DA is binding if

and only if a combination of anononymity+DIC is present, we are left to consider only the case

with anonymity+DIC+DA as restrictions to fully understand the role of NT. Note that in this

case the allocation rule is uniquely determined, since due to anonymity and DA the allocation

rule has to be such that the highest bid wins the auction for sure, which jointly with DIC implies

that the bidder with the highest value wins the auction. Hence, the favorite's preferred auction is

the one described in corollary 1.1, where the designer transfers all collected revenue to her favorite

in equilibrium. Thus, NT always reduces the scope of favoritism independent of other restrictions

imposed. Thus, we obtain the following result:

Proposition 1.5 (hierarchy of restrictions).

The set of restrictions comprising anonymity, DIC, NT, DA forms a hierarchy with NT at

the top, DIC + NT in the middle and DA at the bottom. NT restricts the scope of favoritism

independent of whether other constraints are imposed. DIC reduces the scope of favoritism if and

only if anonymity is imposed and vice versa. DA reduces the scope of favoritism if and only if a

combination anonymity +DIC is imposed.
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1.10 Discussion

The fact that the designer knows not only the identity of the favorite but also his value is the

main driving force of favoritism in choosing the particular auction format. If the designer did

not know the value of the favorite, a combination of anonymity and dominant strategy incentive

compatibility would turn the problem of favoritism to a problem of buyers' welfare maximization

irrespective of their identities. Hence, anonymity and dominant strategy incentive compatibility

would be a su�cient condition to prevent any kind of favoritism.

My results are robust to the imperfect knowledge of the designer. In particular, if the designer's

belief v∗d about the favorite's value is su�ciently precise, namely there exist such ε and δ such

that Pr(|v∗d − v∗| > ε) < δ, she can provide him the interim utility Ud(v∗) such that Ud(v∗) >

U(v∗)−O(max{ε, δ}), where U(v∗) is the utility of the favorite in the perfect knowledge case. When

ε and δ are su�ciently small, the favorite's expected utility approaches the perfect information

case. Thus, our results are not simply an artifact of precise information about the favorite's value.

For a set of restrictions which that comprises anonymity, DIC and non-positive transfers, I

have analyzed the case with only two bidders. The favorite's preferred auction for many agents

and one favorite would have the similar properties and would be a second-price auction with

pooling. For many agents, pooling in general is partial, namely not all bidders above some cuto�s

are pooled, although due to increased number of anonymity restrictions it is much more di�cult

to compute. In order to observe what happens when we increase the number of bidders, we

can compare a standard lottery and a second-price auction. The expected utility of the favorite

from participation in a lottery is U1(v∗) = v∗/n and from participation in a second-price auction

is U1(v∗) = Fn(v∗) ∗ (v∗ − E[v(1)|v(1) ≤ v∗]), where v(1) is the �rst-order statistic out of (n −

1) variables. Obviously, both expressions go to zero when n increases, although the speed of

convergence is 1/n in the case of a lottery and Fn(v∗) in the second-price auction. Since for any

v∗ < v we have Fn(v∗) < v∗/n we can conclude that when the number of bidders increases, all of

them would prefer a lottery to an auction11.

1.11 Conclusion

In this chapter, I have analyzed the problem of favoritism in auctions from a mechanism design

perspective. In my model, the designer has one favorite among the bidders, whose value is known

11This does not imply that a lottery is socially preferable to an auction. See Condorelli (2012) for a description
of a socially optimal mechanism.

29



to the designer. I have characterized feasible auctions that the designer can implement to maximize

the utility of her favorite under di�erent sets of restrictions on these auctions. Deb and Pai (2017)

have shown that assuming that the designer can choose between di�erent undominated equilibria,

anonymity is not a binding restriction for the designer. I have shown that even if the designer

is restricted not only by anonymity but also by dominant strategy incentive compatibility, it is

insu�cient to prevent perfect favoritism. Namely, the designer is almost always able to transfer

all collected revenue to her favorite in any auction. Hence, it is possible to guarantee him the

interim utility greater than or equal to his value in the unique equilibrium of the constructed

auction. To prevent this possibility, I additionally impose the non-positive transfers restriction.

Subsequently, the designer cannot discriminate bidders within any auction. However, although

intra-auction favoritism is not possible, the inter-auction favoritism could still be possible, whereby

the designer chooses di�erent auction formats for di�erent favorite's values. I have shown that the

favorite's preferred auction is a second-price auction with pooling where the designer commits to

not distinguishing some value reports. The size of the pooling region for the highest values depends

on the favorite's value. Thus, the designer uses inter-auction favoritism. Finally, I have shown

that it is possible to completely prevent any form of favoritism if the designer is restricted to using

only deterministic auctions in addition to anonymity, dominant strategy incentive compatibility

and non-positive transfers restrictions. In this case, any feasible mechanism is a second-price

auction with a generalized reserve price, whereby the reserve price for each bidder depends on bids

submitted by other bidders. The favorite's preferred auction in this class is a standard second-price

auction without any reserve price.

My results imply that while delegating the decision about the auction format choice to the

designer, the principal should care about how much freedom should be given to the designer and

in what way this freedom can be limited. If the �nal goal of the principal is revenue maximization,

then along with anonymity and dominant strategy incentive compatibility, restrictions of non-

positive transfers and deterministic auctions should be imposed. Non-positive transfers would help

to prevent discrimination of bidders via transfers. Determinism is used to sustain competition,

since without it the designer would like to make it less intensive by using lotteries.

Traditional problems of mechanism design (revenue maximization, e�ciency maximization,

social welfare maximization) are symmetric and hence they have symmetric solutions. I have

considered essentially asymmetric problems and have found symmetric (anonymous) solutions

for them. Thus, my results can also serve as a mathematical approach to solving such kind of

problems.
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1.A Appendix A

Proof of Lemma 1.1. Similar to Maskin and La�ont (1979), if β∗i (vi) is a dominant stratefy for

bidder i, then for bi = β∗i (vi) and for any bj ∈ {�} ∪Bj , j 6= i:

Ui(vi|b) =

∫ vi

vi

yi(b1, ..., β
∗
i (q), ..., bn))dq + hi(vi,b−i).

Since β∗i (vi) and β∗∗i (vi) are both dominant strategies:

Ui(vi|b1, ..., β∗i (vi), ..., bn) ≥ Ui(vi|b1, ..., β∗∗i (vi), ..., bn),

Ui(vi|b1, ..., β∗∗i (vi), ..., bn) ≥ Ui(vi|b1, ..., β∗i (vi), ..., bn).

Hence,

Ui(vi|b1, ..., β∗∗i (vi), ..., bn) = Ui(vi|b1, ..., β∗i (vi), ..., bn).

Taking a derivative of both sides with respect to vi we obtain for any vi:

yi(b1, ..., β
∗
i (vi), ..., bN ) = yi(b1, ..., β

∗∗
i (vi), ..., bN ).

Then,

ti(b1, ...β
∗
i (vi), ...bN ) = Ui(vi|b1, ..., β∗i (vi), ..., bN )− viyi(b1, ..., β∗i (vi), ..., bN ) =

= Ui(vi, |b1, ..., β∗∗i (vi), ..., bN )− viyi(b1, ..., β∗∗i (vi), ..., bN ) = ti(b1, ..., β
∗∗
i (vi), ...bN ).

Proof of Lemma 1.2. Suppose that β∗(v) is a dominant strategy for an agent i and consider

some value v from the intersection of possible values sets for bidders i and j :

Ui(v|b1, ..., β∗(v)
i

, ..., bN ) ≥ Ui(v|b1, ..., β(v)
i
, ..., bN ) for any β(v) and bk ∈ {�} ∪Bk, k 6= i.

This means that for any b̃:

vyi(b1, ..., β
∗(v)
i

, ..., b̃
j
, ..., bN ) + ti(b1, ..., β

∗(v)
i

, ..., b̃
j
, ..., bN ) ≥

≥ vyi(b1, ..., β(v)
i
, ..., b̃

j
, ..., bN (vN )) + ti(b1, ..., β(v)

i
, ..., b̃

j
, ..., bN ).

If we switch bids of agents i and j, by anonymity agent j should have the same allocation as an
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agent i had before. Hence, the previous inequality can be rewritten as:

vyj(b1, ..., b̃
i
, ..., β∗(v)

j
, ..., bN ) + ti(b1, ..., b̃

i
, ..., β∗(v)

j
, ..., bN ) ≥

≥ vyj(b1, ..., b̃
i
, ..., β(v)

j
, ..., bN ) + ti(b1, ..., b̃

i
, ..., β(v)

j
, ..., bN ).

Hence,

Uj(v|b1, ..., β∗(v)
j

, ..., bN ) ≥ Uj(v|b1, ..., β(v)
j
, ..., bN ).

Proof of Theorem 1.2. Step 1 (Construction of h′′i (vi,v−i)).

Consider some anonymous and DIC auction that has the allocation rule y′(v) and the transfer

rule t′(v). The new constructed auction also has to be DIC. By (1.6) functions {h′i(vi,v−i)}ni=1,

{h′′i (vi,v−i)}ni=1 have to satisfy:

t′i(v) = −viy′i(v) + h′i(vi,v−i) +

∫ vi

vi

y′i(v1, ..., q
i
, ...vn)dq (1.7)

t′′i (v) = −viy′′i (v) + h′′i (vi,v−i) +

∫ vi

vi

y′′i (v1, ..., q
i
, ...vn)dq (1.8)

It is required that the new allocation rule is the same as before. Accordingly, for any vector of

reported values v, we must have y′i(v) = y′′i (v). However, transfers should be (almost always)

the same only in equilibrium. In equilibrium, the favorite always reports v∗. Hence, only vectors

v =(v∗,v−1) can be on equilibrium path. For any i and for any v−i, de�ne

h′′i (vi,v−i) := h′i(vi,v−i) (1.9)

if at least one component of v−i is equal to v∗ and

h′′i (vi,v−i) := v∗y′′i (v1, ..., v
∗
i
, ...vn)−

∫ v∗

vi

y′′i (v1, ..., q
i
, ..., vn)dq + (1.10)

+
∑
j 6=i

vjy
′′
j (v1, ..., v

∗
i
, ...vn)−

∑
j 6=i

∫ vj

vj

y′′j (v1, ..., v
∗
i
, ..., q

j
, ..., vn)dq −

∑
j 6=i

h′′j (vj ,v−j |vi = v∗)

if none of v−i components is equal to v∗, where h′j(vj ,v−j |vi = v∗) means that the value of

component vi in v−j is replaced by v∗.

Step 2. (Computing transfers).

Equation (1.8) then uniquely de�nes t′′i (v) given y′′i (v) and h′′i (vi,v−i). Thus, if v−i has a

32



component equal to v∗, then h′′i (vi,v−i) = h′i(vi, ,v−i) and, hence,

t′′i (v) =t′i(v). (1.11)

If all components of v−i are di�erent from v∗, plugging the expression (1.10) to (1.8), using y′′ = y′

and h′′j (vj ,v−j |vi = v∗) = h′j(vj ,v−j |vi = v∗), j 6= i we obtain

t′′i (v)=− viy′i(v) +

∫ vi

v∗
y′i(v1, ..., q

i
, ...vn)dq + v∗y′i(v1, ..., v

∗
i
, ...vn) +

+
∑
j 6=i

vjy
′
j(v1, ..., v

∗
i
, ...vn)−

∑
j 6=i

∫ vj

vj

y′j(v1, ..., v
∗
i
, ..., q

j
, ..., vn)dq −

∑
j 6=i

h′j(vj ,v−j |vi = v∗) =

= −viy′i(v) +

∫ vi

v∗
y′i(v1, ..., q

i
, ...vn)dq + v∗y′i(v1, ..., v

∗
i
, ...vn) +

+
∑
j 6=i

vjy
′
j(v1, ..., v

∗
i
, ...vn)−

∑
j 6=i

t′j(v1, ..., v
∗
i
, ..., vn)−

∑
j 6=i

vjy
′
j(v1, ..., v

∗
i
, ..., vn) =

= −viy′i(v) +

∫ vi

v∗
y′i(v1, ..., q

i
, ...vn)dq + v∗y′i(v1, ..., v

∗
i
, ...vn)−

∑
j 6=i

t′j(v1, ..., v
∗
i
, ..., vn), (1.12)

where we also used that (1.7) implies
∑
j 6=i

∫ vj
vj
y′j(v1, ..., v

∗
i
, ..., q

j
, ..., vn)dq+

∑
j 6=i

h′j(vj ,v−j |vi = v∗) =∑
j 6=i

t′j(v1, ..., v
∗
i
, ..., vn) +

∑
j 6=i

vjy
′
j(v1, ..., v

∗
i
, ..., vn). Now, we need to verify that the constructed auc-

tion satis�es anonymity and in equilibrium it almost always implements the described transfers.

Step 3. (Check anonymity of (y′′, t′′)).

Since (y′, t′) is an anonymous auction and y′′ = y′, the allocation rule is trivially symmet-

ric. Now, consider t′′(v). If v−i has a component equal to v∗, then t′′i (v) =t′i(v). Since t′i(v) is

symmetric, then t′′i (v) is also symmetric. If all components of v−i are di�erent from v∗, then

t′′i (v) is described by expression (1.12), which does not depend on {vi}ni=1 and has only symmetric

functions inside. Thus, anonymity is satis�ed.

Step 4. (Equilibrium transfers).

In equilibrium the favorite reports v∗. Hence, (1.11) implies that t′′i (v
∗,v−1) =t′i(v

∗,v−1) for

all bidders, except the favorite. Since the number of bidders is �nite and the distributions are

strictly increasing the probability that some other bidder is going to report v∗ is zero. Thus,

the favorite's transfer in equilibrium is almost always described by (1.12) and plugging v1 = v∗,

we obtain t′′1(v∗,v−1) = −
∑
j 6=1

t′j(v
∗,v−1) = t′1(v∗,v−1) + R(v∗,v−1). The no-de�cit requirement

is trivially satis�ed in equilibrium, because the constructed auction transfers all revenue to the

favorite making the budget balanced. This completes the proof.

Lemma 1.3. If {cA, cDIC , cNT } ⊂ C, then in any direct FA(C): hi(0,v−i) = 0 for any i, v−i
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Proof of Lemma 1.3. Suppose that bidder i has a value vi = 0. Then, by (1.6)

ti(v) = Ui(v) = hi(0,v−i)

Since cNT ∈ C, we should have hi(0,v−i) = ti(v) ≤ 0 for any v−i. Simultaneously, Ui(v) has to

be positive otherwise it would not be the dominant strategy to report the true value and bidder

i could exclude himself from participation. Hence, hi(0,v−i) ≥ 0 should also hold for any v−i.

Combining last two inequalities we have hi(0,v−i) = 0.

Proof of Proposition 1.1. Using characterization (1.6) and Lemma 1.3, transfers ti(v1, v2) are

fully determined by the allocation rule yi(v1, v2). Since the function Gx has a di�erent form de-

pending on a relationship between v∗ and v, we consider possible cases separately.

Case 1. v∗ ≤ v.
By the anonymity restriction we need to specify an allocation rule only on the cone Γ =

{v =(v1, v2) ∈ [0, v]2 : v1 ≥ v2}. Indeed, suppose we have speci�ed some allocation rule on Γ.

Then, for all reported values (v1, v2) 6∈ Γ we have v2 > v1. Since for v2 > v1 the bid vector

(v2, v1) ∈ Γ, we know the allocation probabilities y1(v2, v1) and y2(v2, v1). Then, by anonymity we

have the allocation for (v1, v2) 6∈ Γ as y1(v1, v2) = y2(v2, v1) and y2(v1, v2) = y1(v2, v1).

To illustrate our proof we plot for convenience simultaneously two things on the same �gure.

The �rst one is a graph of a distribution function F (v) of the opponent's value. The second one

is the value space (v1, v2). The auction described in the statement implies that the whole value

space is cut into a certain number of triangles and rectangles (see �gure 1.3 as an example). I use

Ri to talk about region i on the �gure 1.3. The rectangles can be only of two types: 1) interior

rectangles, like R2, in general there could be many of them; and 2) at most one boundary rectangle

with values v1 ≥ v∗ inside, like R4. For all pairs (v1, v2) inside each such rectangle y1(v1, v2) = 1

and y2(v1, v2) = 0. Triangles can be of three types: 1) interior triangles like R3, 2) the unique

boundary triangle containing v1 = v2 = 0, like R1, 3) the unique boundary triangle with values

v1 ≥ v∗ inside, like R5. If a triangle is the region, where gv∗(v1) is constant (R1, R5 on �gure 1.3),

then y1(v1, v2) = y2(v1, v2) = 1/2, for all pairs (v1, v2) inside this triangle. If a triangle lies in the

region, where gv∗(v1) is strictly decreasing (R3 on Figure 3), then y1(v1, v2) = 1 and y2(v1, v2) = 0.

Our task is to prove that the described allocation is indeed optimal for the favorite having a value

v∗.

Using a notation k(v1, v2) := y1(v1, v2) + y2(v1, v2), where 0 ≤ k(v1, v2) ≤ 1, we can rewrite
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Figure 1.3: Illustration of a proof
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the interim utility of the �rst agent:

U1(v∗) =

∫ v

0
(v∗y1(v∗, v2) + t1(v∗, v2))f(v2)dv2 =

∫ v

0
(

∫ v∗

0
y1(v1, v2)dv1)f(v2)dv2 =

=

∫ v∗

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v∗

0

∫ v

v1

y1(v1, v2)f(v2)dv2dv1 =

=

∫ v∗

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v∗

0

∫ v

v1

y2(v2, v1)f(v2)dv2dv1 =

=

∫ v∗

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v∗

0

∫ v

v2

y2(v1, v2)f(v1)dv1dv2 =

=

∫ v∗

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v∗

0

∫ v

v2

[k(v1, v2)− y1(v1, v2)]f(v1)dv1dv2, (1.13)

where the equality in the �rst line follows from (1.6) and Lemma 1.3, the next one is changing the

order of integration, then we apply anonymity, and �nally we switch notations of v1 and v2 in the

second summand. Here, we can notice that it is always optimal to put k(v1, v2) = 1 for any v1, v2.

This means that it is never optimal to throw the object away. From now onwards, I will skip the

term
∫ v∗

0

∫ v
v2
k(v1, v2)f(v1)dv1dv2, which is constant in the FPA(C). Now, we need to maximize

(1.13) subject to monotonicity constraints (1.5).

I prove that even separately in each of the described regions, i.e. neglecting global monotonicity

constraints, it is not possible to change an allocation rule to increase utility of the favorite. Denote

by z1, z2, ... such points where gv∗(v1) changes its type from linear to strictly concave and vice

versa. Suppose that there exists any interior or boundary triangle with (0, 0) inside, called R1,

such that gv∗(v1) is linear for any v1 ∈ R1 and y1(v1, v2) 6= 1/2 for some (v1, v2) ∈ R1. Due to

anonymity on the diagonal y1(v, v) = 1/2 for any v and due to monotonicity y1(v1, v2) ≥ 1/2 in

each of the regions. Thus, y1(v1, v2) > 1/2 is only possible in the low-right corner of the triangle

R1, which I denote by A1 ⊂ R1. But if it is the case, we can reduce y1(v1, v2) by a small ε > 012.

In R1 the following holds:
∫ ∫

A1
εf(v2)dv1dv2 <

∫ ∫
A1
εf(z1)dv1dv2 and

∫ ∫
A1
εf(v1)dv1dv2 >∫ ∫

A1
εf(z1)dv1dv2. The change in utility is:

∆U1 = −
∫ ∫

A1

εf(v2)dv1dv2 +

∫ ∫
A1

εf(v1)dv1dv2 >

> −
∫ ∫

A1

εf(z1)dv1dv2 +

∫ ∫
A1

εf(z1)dv1dv2 > 0

Hence, it is not possible to improve upon y1(v1, v2) = 1/2 in the region R1.

12Strictly speaking, we cannot always reduce allocation probability by ε everywhere, since it could prove to
be lower than 1/2 and violate monotonicity constraint. Thus, in the points where it occurs, we only reduce by
y1(v1, v2)− 1/2. Hence, the decrease is min{ε, y1(v1, v2)− 1/2}. But it matters only in the region with at least one
dimension of order ε and hence it would be a second-order e�ect, which we can neglect.
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Now consider any interior rectangle R2. I claim that it is always optimal to give the object to

the �rst agent. I use the similar logic as above. Assume that it is not true and there exists a subset

A2 ⊂ R2 : for any (v1, v2) ∈ A2 we have y1(v1, v2) < 1. Due to monotonicity, it could only be the

upper-left corner. Now we increase probability of allocation to the �rst agent by ε in A2
13. In R2

the following inequalities hold
∫ ∫

A2
εf(v2)dv1dv2 >

∫ ∫
A2
εf(z1)dv1dv2 and

∫ ∫
A1
εf(v1)dv1dv2 <∫ ∫

A1
εf(z1)dv1dv2. Hence, the utility change is:

∆U1 =

∫ ∫
A2

εf(v2)dv1dv2 −
∫ ∫

A2

εf(v1)dv1dv2 >

>

∫ ∫
A2

εf(z1)dv1dv2 −
∫ ∫

A2

εf(z1)dv1dv2 > 0

So it is never optimal to put y1(v1, v2) < 1 anywhere in R2 , i.e. in the FPA(C) the �rst agent

always get the object in R2.

While considering any interior or boundary triangle R3 such that gv∗(v1) is strictly increasing

for any v1 ∈ R3, we notice that for any point (v1, v2) ∈ R3 the following relation holds: f(v1) <

f(v2). Hence, from (1.13) it is optimal even pointwise in R3 to make y(v1, v2) as high as possible,

i.e. y(v1, v2) = 1.

Boundary rectangle R4 and boundary triangle R5 such that (v∗, v2) ∈ R4 ∩R5 for any v2 ≤ v∗

are speci�c regions. The logic of a proof is a modi�ed logic of the proof for regions R1 and R2. We

start from R4 and assume that for some A4 ⊂ R4 it is optimal to allocate the good to the favorite

with a probability y1(v1, v2) < 1. Again, it could only be the upper-low corner of the rectangle.

We again increase probability of allocation in A4 by ε14. The change in utility is:

∆U1 =

∫ ∫
A4∩{v1≤v∗}

εf(v2)dv1dv2 −
∫ ∫

A4

εf(v1)dv1dv2

In this region
∫ ∫

A4∩{v1≤v∗} εf(v2)dv1dv2 >
∫ ∫

A4∩{v1≤v∗} εf(z2)dv1dv2 and
∫ ∫

A4
εf(v1)dv1dv2 <∫ ∫

A4∩{v1≤v∗} εf(z2)dv1dv2. Hence, ∆U > 0 and y1(v1, v2) = 1 must be optimal.

In R5 we need to show that y1(v1, v2) = 1/2 is optimal. By contrast, assume that there is

A5 ⊂ R5 in the low-right corner where y1(v1, v2) > 1/2. As before, reduce allocation probability

by ε15. Since
∫ ∫

A5∩{v1≤v∗} εf(v2)dv1dv2 <
∫ ∫

A5∩{v1≤v∗} εf(z2)dv1dv2 and
∫ ∫

A5
εf(v1)dv1dv2 >∫ ∫

A5∩{v1≤v∗} εf(z2)dv1dv2, the utility change is:

∆U1 = −
∫ ∫

A5∩{v1≤v∗}
εf(v2)dv1dv2 +

∫ ∫
A5

εf(v1)dv1dv2 > 0

13min{ε, 1− y1(v1,v2)}
14min{ε, 1− y1(v1,v2)}
15min{ε, y1(v1, v2)− 1/2}.
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Thus, y1(v1, v2) = 1/2 is optimal in R5.

Since we worked with each region independently, this proof holds for any number and any

combination of these regions. Since for any distribution function we can divide the subset of

values below the diagonal v1 = v2 into regions of described values, we can apply the above logic

to any distribution function and corresponding partition.

To complete the proof, we must show that the global monotonicity conditions are satis�ed.

Indeed, y1(v1, v2) ∈ {1, 1/2} for any v1 > v2. The regions where y1(v1, v2) = 1/2 are only the

triangles close to the diagonal. Thus, the proposed auction is indeed monotone. Transfers are

chosen according to (1.6) taking into account that by Lemma 1.3 we have hi(0,v−i) = 0.

Case 2. v∗ > v.

The idea here is to consider the characterization for the case v∗ = v which follows from the

previous case, and then to show for v∗ > v that for all (v1, v2) such that v1 ∈ (v, v∗] and v2 < v1

the optimal allocation is y(v1, v2) = 1, and for all (v1, v2) such that (v1, v2) ∈ [0, v] × [0, v] the

allocation remains unchanged.

Indeed, suppose we consider v∗ > v. Then, similarly to the previous case we obtain the

following.

U1(v∗) =

∫ v

0
(v∗y1(v∗, v2) + t1(v∗, v2))f(v2)dv2 =

∫ v

0
(

∫ v∗

0
y1(v1, v2)dv1)f(v2)dv2 =

=

∫ v

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v

0

∫ v

v1

y1(v1, v2)f(v2)dv2dv1 =

=

∫ v

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v

0

∫ v

v1

y2(v2, v1)f(v2)dv2dv1 =

=

∫ v

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v

0

∫ v

v2

y2(v1, v2)f(v1)dv1dv2 =

=

∫ v

0

∫ v∗

v2

y1(v1, v2)f(v2)dv1dv2 +

∫ v

0

∫ v

v2

[k(v1, v2)− y(v1, v2)]f(v1)dv1dv =

= U1(v) +

∫ v

0

∫ v∗

v
y1(v1, v2)f(v2)dv1dv2

Hence, it is optimal to have y1(v1, v2) = 1 if v1 > v. At the same time, it does not violate

monotonicity constraint. Thus, the optimal allocation for v1 ≤ v when v∗ > v should coincide

with the allocation for v1 ≤ v, when v∗ = v. The auction described in the statement implements

exactly this allocation16. Once again, transfers can be computed according to (1.6) taking into

account that by Lemma 1.3 we have hi(0,v−i) = 0.

Proof of Proposition 1.2. Since distribution F (v) is atomless, we have F (v) < 1 for any v < v.

16The allocation for (v1, v2) : v < v1 ≤ v2 does not a�ect the utility of the favorite. For de�niteness sake, in the
statement we have speci�ed y(v1, v2) = 1 for v < v1 ≤ v2 .
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Thus, 1 = Gv∗(v
∗) > F (v∗) for any v∗ < v. Since Gv∗(v) and F (v) are di�erent at v = v∗, it

means that v = v∗ belongs to a subset where Gv∗(v) is linear, i.e. there is a pooling interval (v̂, ̂̂v)

such that v∗ ∈ (v̂, ̂̂v). v̂ is a point, tangent line from which goes directly to (v∗, 1). By construction

gv∗(v) = const for v > v∗ and hence v > v∗ is a pooling region. This implies that all values v > v̂

must be pooled.

To show monotonicity of v̂ as a function of v∗, suppose that it is not true, i.e. there exist v∗1 and

v∗2 such that v∗1 < v∗2 and v̂(v∗1) > v̂(v∗2). By de�nition of Gv∗ the following holds: Gv∗2 (v̂(v∗1)) ≥
F (v̂(v∗1)). Since Gv∗1 (v∗1) − Gv∗1 (v̂(v∗1)) = 1 − F (v̂(v∗1)) > Gv∗2 (v∗1) − Gv∗2 (v̂(v∗1)) we must have

gv∗1 (v̂(v∗1)) > gv∗2 (v̂(v∗1)). Then

Gv∗1 (v̂(v∗2)) = Gv∗1 (v̂(v∗1))− (v̂(v∗1)− v̂(v∗2))gv∗1 (v̂(v∗1))

= F (v̂(v∗1))− (v̂(v∗1)− v̂(v∗2))gv∗1 (v̂(v∗1))

< F (v̂(v∗1))− (v̂(v∗1)− v̂(v∗2))gv∗2 (v̂(v∗1)) = F (v̂(v∗2))

However, Gv∗1 (v̂(v∗2)) < F (v̂(v∗2)) is impossible by construction of Gv∗1 . Thus, v̂(v∗) has to be

monotone.

Proof of Proposition 1.3. The result follows from the proof of Proposition 1.1. Suppose v∗ < v.

If the favorite's value changes, the corresponding change of the FPA({cA, cDIC , cNT }) is related
to the change of the function Gv∗(v). The only change of this function happens on the sub-

set [v̂(v∗), v], which is a pooling region. For all favorite's values above the maximal possible

value of his opponent, the function Gv∗(v) is the same function for all v∗, which brings the same

FPA({cA, cDIC , cNT }) for all v∗ > v.

Proof of Theorem 1.3. Step 1:

First, consider a value vi of a bidder i such that vi < maxj 6=i{vj}. Then, due to DA, anonymity

and monotonicity condition (1.5), the bidder i should receive the object with zero probability and

yi(v1, ..., q
i
, ...vn) = 0 for all q ≤ vi. Indeed, to show this, suppose that yi(v1, ..., vi, ..., vn) =

1 for some vi < maxj 6=i{vj}. Then, monotonicity implies that yi(v1, ...,maxj 6=i{vj}, ...vn) = 1.

However, due to anonymity the bidder k who has the value vk = maxj 6=i{vj} should also have

probability of assigning the good equal to one. Thus, we obtain that yi(v1, ...,maxj 6=i{vj}, ...vn) =

yk(v1, ...,maxj 6=i{vj}, ...vn) = 1, which contradicts feasibility. Thus, all bidders whose value is not

the highest one should receive the good with zero probability, namely if vi < maxj 6=i{vj}, then
yi(v) = 0.

Step 2:

From Step 1, it follows that for any realization of values there could be only two possible

cases: 1) the bidder with the highest value obtains the object for sure, 2) nobody gets the object.
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Monotonicity constraint (1.5) implies that if for some vector of values bidder i receives the good,

he should also receive the good when he has a higher value keeping values of his opponents �xed.

Thus, for any FA(C) there is a cuto� ri for each bidder, which can depend on other bidders'

values, such that the bidder obtains the object with a probability of 1 if and only if his value is

1) the greatest among values of other bidders and 2) greater or equal than the cuto� ri. Thus,

yi(v) = 1 if and only if vi > maxj 6=i(vj , ri), otherwise yi(v) = 0.

Step 3:

Now we need to understand how these values {ri}ni=1, or essentially reserve values, are con-

structed. First, notice that for each bidder i his reserve value ri can depend on his opponents'

bids. Hence, ri can depend on v1, ..., vi−1, vi+1, ..., vn. By anonymity, the allocation probability

for a bidder i should not be a�ected by any permutation of other players' bids. Hence, ri has to

be a symmetric function of n − 1 variables ri : Rn−1 → R. Then, again due to anonymity, since

the allocation rule must be symmetric among bidders, then for any bidders i and j and for any

x ∈Rn−1 the function ri(x) and rj(x) have to be equal, ri(x) =rj(x). Hence, the reserve value

function should be common for all bidders: r1(x) = ... =rn(x) =r(x).

Step 4:

Take any bidder i : vi < maxj 6=i{vj}. Then, from Step 1 we have yi(v1, ..., q
i
, ...vn) = 0 for all

q ≤ vi. Hence, from (1.6) we have

ti(v) = Ui(v) = hi(vi,v−i)

Since transfers have to be non-positive, it follows that ∀v−i: hi(vi,v−i) ≤ 0. However, simul-

taneously to satisfy DIC, utility of bidder i has to be at least non-negative, otherwise he could

refrain himself from participation. Thus, it must be the case that hi(vi,v−i) ≥ 0. Combining the

two inequalities we obtain hi(vi,v−i) = 0. It means that transfers are uniquely de�ned when the

allocation is chosen. Thus, plugging the obtained allocation rule and hi(vi,v−i) = 0 to (1.6) we

get ti(v) = −maxj 6=i(vj , r(v−i)) if and only if vi > maxj 6=i(vj , r(v−i)), and ti(v) = 0 otherwise.

Since we have yi(v) = 1 if and only if vi > maxj 6=i(vj , r(v−i)), the statement follows.

Proof of Proposition 1.4. From the proof of Theorem 3, the utility of any bidder under the

full set of restrictions C = {cA, cDIC , cNT , cDA} must be Ui(v) =
∫ vi
vi
yi(v1, ..., q

i
, ...vn)dq, where

yi(v) = 1 if and only if vi > maxj 6=i(vj , ri(v−i)), otherwise yi(v) = 0. The choice of a reserve value

function completely determines the auction format. Hence, the utility of each bidder including

the favorite can be written as follows:

Ui(v) =

∫ vi

maxj 6=i(vj ,ri(v−i))
yi(v1, ..., q

i
, ...vn)dq =

= max{0, vi −max
j 6=i

(vj , ri(v−i))}
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Hence, making positive reserve prices can only reduce the utility of each bidder including the

favorite. Thus, it is optimal to put zero reserve price, so ri(x) = 0 ∀x ∈Rn−1.

1.B Appendix B

Assumption 1.1 (symmetric bidders). ∀i, j ∈ N : Vi = Vj = V and Fi(v) = Fj(v) = F (v)

Proposition 1.6 (ex-post equivalence of unrestricted and anonymity-restricted favoritism).

If bidders are symmetric and C = {cA} then there exists FA(C) = (B̂, ŷ,p̂) such that it has an

equilibrium ψ̂, in which B̂ = [v, v], M̂ = MFPA, p̂(a, b̂(v)) = pFPA(a,bFPA(v)), ŷ(b̂(v)) = yFPA(bFPA(v)),

where b̂(v) and bFPA(v) stand for the biddings in the equilibrium ψ̂ of FA(C) and ψ∗ of FPA

respectively.

Proof of Proposition 1.6. I prove the theorem by directly constructing the equivalent anony-

mous auction FA(C). Consider the set of admissible bids equal to the set of possible values,

B = [v, v]. Denote v̂ as the smallest value such that v∗ = v̂− 1−F (v̂)
f(v̂) . If no solution to this equation

exists, assume v̂ = v. The allocation rule is such that the bidder with the highest bid wins, i.e.

ŷ(b1, ..., bi, ..., bm) = (0, ...., 1
i
, ..., 0) if bi > bj for any j 6= i. If k ≥ 2 bidders make exactly the

same bids, there is a symmetric lottery between them with 1/k being a probability of securing

the good for each of them. Transfers p̂(b) are such that if there is only one bid on the interval

[v, v̂], then this bidder pays nothing, although if there are two or more bidders who make bids

from this interval, all of them should pay v̂. If the winning bid is greater than v̂, the payment is

the maximum between the second highest bid and v̂. Subsequently, there is an equilibrium ψ̂, in

which the favorite bids v∗, all bidders with values smaller than v̂ do not participate in the bidding

and all bidders with values greater than v̂ participate and bid their true values. This equilibrium

outcome is always the same as in the FPA.
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Chapter 2

Non-discriminatory Strategyproof Optimal Auction

2.1 Introduction

In a seminal paper, Myerson (1981) characterizes the revenue maximizing mechanisms for auction-

ing a single indivisible object to buyers who have independent and private valuations (IPV) of the

object. Such a mechanism allocates the object to an agent with the highest �virtual valuation�,

which depends on this agent's actual valuation and her valuation distribution. If bidders are ex-

ante symmetric, i.e., their valuations are drawn from the same distribution, revenue maximization

can be achieved by implementing a second-price auction with a common reserve price. Second-

price auction is an anonymous (symmetric) and dominant strategy incentive compatible (DIC),

or strategyproof, mechanism. Anonymity means that the allocations and transfers depend only

on bidders' bids but not on bidders' identities (names, races, nationalities, and etc.). Dominant

strategy incentive compatibility However, when bidders are ex-ante asymmetric, then Myerson's

optimal auction is not symmetric anymore. In reality, agents are often ex-ante asymmetric, for ex-

ample, foreign �rms and domestic �rms can be characterized by di�erent distributions. Meanwhile,

mechanism designers can be restricted to use only symmetric mechanisms to avoid descrimination.

Hence, the following natural question arises. Namely, what would be the optimal mechanism under

the restriction of anonymity. The surprising answer to this question is given by Deb and Pai (2017).

They demonstrate that the optimal mechanism is ex-ante implementable in a symmetric way. Pre-

cisely, there is a symmetric auction that has an equilibrium with the same ex-post allocation rule

and interim utilities as that of the asymmetric optimal auction. However, this equivalence holds

only in the sense of bayesian incentive compatibility (BIC). It means that even though the initial

mechanism is dominant strategy incentive compatible (DIC), its implementation is only bayesian
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incentive compatible. Hence, many important properties of the mechanism are lost.1 Even more

crucial issue is that BIC implementation does not exclude multiplicity of equilibria. For example,

the mechanisms from Deb and Pai (2017) generically have many equilibria and some of them could

be symmetric equilibria. However, only one particular equilibrium is chosen. Hence, the results

obtained by Deb and Pai (2017) crucually rely on the asumption that the designer can pick the

preferred equilibrium. In this chapter, we are interested in �nding the optimal mechanism that

preserves anonymity and DIC together. This mechanism is robust and has a unique equilibrium

in undominated strategies.

There is a literature on BIC-DIC equivalence. Manelli and Vincent (2010), Gershkov et al.

(2013) show that in IPV models any Bayes-Nash equilibrium outcome can also be achived in

expectation in some mechanism that implements dominant strategies. However, in this chapter,

the anonymity restriction breaks this equivalence.

Azrieli and Jain (2018) generalize Deb and Pai (2017) from auction setting to a symmetric

implementation of a general social choice function. However, Azrieli and Jain (2018) obtain this

generalization by using abstract message spaces. In particular, they allow agents to report their

names in messages. Then the designer can make the mechanism depend on the reported names.

On need only to care that there exists and equilibrium where every bidder reports his name

truthfully. At the same time, there could be many equilibria where agents strategically misreport

their names.

The methedology used in this chapter is closely related to the methodology used in Chap-

ter 1that considers a question of favoritism in auctions. In Chapter 1, the designer is interested

in maximizing the utility of her favored bidder and is restricted by the anonymity and DIC con-

straints. In this chapter we �nd the auction which maximizes the revenue of the seller under the

same two constraints. We have shown in Chapter 1 that anonymity and DIC constraints imply

that anonymity of original auction transfers to anonymity of the corresponding direct auction. We

also employ this characterization to construct the optimal anonymous DIC auction.

In the next section we present our model and show our main result that the optimal anony-

mous DIC mechanism is a second-price auction with specially constructed reserve prices. Each

bidder's reserve price depends on the bids and the value distributions of her competitors. However,

the constructions of the reserve prices are symmetric for the bidders and satisfy the anonymity

restriction.
1Some of them are the following. Bidders should know each others' value distributions. It is possible that a

bidder has to pay eventually without obtaining the object. Multiple equilibria may also arise.
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2.2 Main Model

There is one indivisible object that can be sold to one of n buyers (bidders). Buyer i has a privately

known valuation of the object, vi, which is drawn indepently from a continuously di�erentiable

destibution Fi on [0, v], v ∈ (0,+∞]. Each bidder i submits a bid bi ∈ R+, and all bids are

submitted simultaneously and independently of each other. The objective of the designer is to

maximize her expected revenue. A mechanism M := (y, t) is a collection of an allocation rule

y :Rn+ → [0, 1]n, y(b) = (y1(b), ..., yn(b)) and a transfer rule t :Rn+ → Rn, t(b) = (t1(b), ..., tn(b)).

For each bidder, yi(b) is the probability of bidder i getting the object and ti(b) is the transfer to

agent i, where b := (b1, ...bn) is a vector of submitted bids. Bidder i's utility is

Ui =


viy(b) + ti if i obtains the object,

ti otherwise.
(2.1)

The di�erence from the standard literature on revenue maximization is that we require the mech-

anism to be anonymous and implements dominant strategies.

Let π : {1, ..., n} → {1, ..., n} be a permutation. Denote Θ to be the set of all permutations of

N elements. The expression π(i) = j means that the element in i-th position is permuted to j-th

position. We denote π−1 as the inverse of the permutation of π. To simplify notations, for any

vector x = (x1, ..., xn) we use π(x) to denote the vector obtained after permutation π is applied.

Thus, π(x) := (xπ(1), ..., xπ(n)).

De�nition 2.1. A mechanism M is anonymous if under a permutation of bids, its allocations

and payments are permuted. Formally, for any permutation π,

y(π(b)) = π(y(b)) and t(π(b)) = π(t(b)).

We now consider dominant strategy implementation. Although dominant strategy implemen-

tation is quite robust in the sense that the behavior of an agent does not depend on the strategies

of her opponents, there could still be a problem of multiple equilibria in a mechanism, because

each agent can have more than one dominant strategy. Lemmas 1.1 and 1.2 and Theorem 1.1 from

Chapter 1are crucial for our results.

Together they imply that if we apply the revelation principle and consider only mechanisms in

which bidders report their valuations directly, instead of considering mechanisms that implement

dominant strategies, we can directly consider anonymous dominant strategy incentive compatible
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(DIC) direct mechanisms.

The following standard lemma due to Maskin and La�ont (1979) characterizes all DIC direct

mechanisms.

Lemma 2.1 (Maskin and La�ont (1979)). A direct mechanism is dominant strategy incentive

compatible if and only if for each agent:

1. yi(v) is nondecreasing in vi for all v−i.

2. There exist functions {Ci(v−i)} such that

viyi(v) + ti(v) = Ci(v−i) +

∫ vi

0
yi(v1, ..., q

i
, ...vN )dq. (2.2)

Thus, the designer's problem is:

max
{yi(.)},{ti(.)}

E[R] = E[−
∑
i

ti(v)] (2.3)

subject to: (2.4)

yi(v1, ..., vN ) = yπ(i)(vπ(1), ..., vπ(N)) (2.5)

ti(v1, ..., vN ) = tπ(i)(vπ(1), ..., vπ(N)) (2.6)

0 ≤ yi(v) ≤ 1,
∑
i

yi(v) ≤ 1 (2.7)

yi(v) is nondecreasing in vi for all v−i (2.8)

viyi(v) + ti(v) = Ci(v−i) +

∫ vi

0
yi(v1, ..., q

i
, ...vN )dq (2.9)

We solve this problem under the following assumption on the monotonicity of cross hazard

rates.2

Assumption 2.1. For any i, j the function hi,j(·) := 1−Fi(·)
fj(·) is decreasing.

2This asumption is not new in the mechanism design literature. See, for example, Krähmer and Strausz (2015)
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This assumption is a generalization of the standard decreasing inverse harzard rate assumption

made in the mechanism design literature to the case in which the anonymity restriction is present.

Then we can obtain the following result.

Proposition 2.1. The optimal anonymous DIC auction is a second-price auction with di�erent

reserve prices for di�erent bidders. Each bidder's reserve price depends on her opponents' bids

and valuation distributions, and it is determined in the following equation:

rk =

∑
π∈Θ

(1− Fπ−1(k)(rk))Πj 6=π−1(k)fj(vπ(j))∑
π∈Θ

fπ−1(k)(rk)Πj 6=π−1(k)fj(vπ(j))
(2.10)

The intuition behind this result is as follows. As we know from Theorem 1.1, the auction must

treat agents' reported valuations in a symmetric way. Hence, any feasible auction must allocate

the object to a bidder with the highest bid or pool some bids. In the optimal auction, pooling

may arise only if some ironing procedure is necessary, as in Myerson (1981). By Asumption 1 we

exclude those cases where ironing is necessary. Hence, the object should be allocated to a bidder

with the highest bid. Then, by the DIC restriction, the winner should pay the second highest bid.

The most interesting aspect of the mechanism is the optimal reserve prices. The reserve price

for each bidder depends both on the actual valuations and the valuation distributions of all her

opponents. However, the constructions of all reserve prices are symmetric.

Proof of Proposition 2.1.

E[R] = E[−
∑
i

ti(v)]

= E[−
∑
i

(Ui(v)− viyi(v))]

= E[−
∑
i

(Ci(vviyi(v))]

=

∫
· · ·
∫

v

(−
∑
i

(Ci(v−i) +

∫ vi

0
yi(v1, ..., q

i
, ...vn)dq−viyi(v))f1(v1)...fn(vn)dv1...dvn.

It is standard that {Ci(v−i)}i=1,...,n are set to be as low as possible to satisfy the individual

rationality constraints. Due to Lemma 2.1, Ci(v−i) ≡ 0.

Using standard technique of integration by parts we obtain the following representation of

revenue:

∫
· · ·
∫

v

∑
i

yi(v)(vi −
1− Fi(vi)
fi(vi)

)f1(v1)...fn(vn)dv1...dvn (2.11)
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Now we must take into account the anonymity constraint. Denote Θ as the set of all per-

mutation functions. There are n! elements in this set. Then, for any allocation rule, if we know

the allocation at some vector v =(v1, v2..., vn), by anonymity we also know the allocation at each

vector π(v) = (vπ(1), vπ(2), ..., vπ(n)), which is a permutation of v.

In order to �nd the optimal allocation, we do pointwise maximization and then check that

all monotonicity constraints hold. Suppose, we take some allocation y(v) := (y1(v), ..., yn(v)).

Consider some bidders l, k and assume without loss of generality that vk > vl. We will �rst �x the

allocation for other bidders and distribute the rest allocation probability between bidders l and k.

Denote q(v) := 1−
∑
j 6=k.l

yj(v) and q(v) := yl(v)+yk(v). By de�nition q(v) ≤q(v).

Now in (2.11) we can consider only the terms associated with yl and yk, since the other

probabilities are �xed. We substitute yl by q − yk in the maximization function (2.11) and then

have ∫
· · ·
∫

v

[yk(v)(vk −
1− Fk(vk)
fk(vk)

) +

+(q(v)− yk(v))(vl −
1− Fl(vl)
fl(vl)

)]f1(v1)...fn(vn)dv1...dvn

=

∫
· · ·
∫

v

[yk(v)((vk −
1− Fk(vk)
fk(vk)

)− (vl −
1− Fl(vl)
fl(vl)

)) +

+q(v)(vl −
1− Fl(vl)
fl(vl)

)]f1(v1)...fn(vn)dv1...dvn.

To maximize properly the above term under anonymity constraint, we need to maximize the

integral of the following term, which considers together all points which are permutations of each

other:

q(v)
∑
π∈Θ

[vl −
1− Fπ−1(l)(vl)

fπ−1(l)(vl)
]Πjfj(vπ(j)) (2.12)

+ yk(v)(
∑
π∈Θ

[vk −
1− Fπ−1(k)(vk)

fπ−1(k)(vk)
]Πjfj(vπ(j))−

∑
π∈Θ

[vl −
1− Fπ−1(l)(vl)

fπ−1(l)(vl)
])Πjfj(vπ(j).

We omit for a while the term associated with q(v) and focus only on the term associated

with yk(v). Now, consider a permutation S ∈ Θ such that it switches the positions of k and l,

without a�ecting the other positions. Thus, S(j) = j for all j 6= k, l, S(k) = S−1(k) = l, and

S(l) = S−1(l) = k. Since in the last expression we have summands with respect to all possible

permutations, the value of the expression will not change if we replace π(·) by Sπ(.) := S(π(.)) in

the second summand. We also notice that Sπ−1(.), the inverse permutation of Sπ(.), is equal to
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π−1(S(.)). Thus, we have

yk(
∑
π∈Θ

[vk −
1− Fπ−1(k)(vk)

fπ−1(k)(vk)
]Πjfj(vπ(j))−

∑
π∈Θ

[vl −
1− Fπ−1(S(l))(vl)

fπ−1(S(l))(vl)
]Πjfj(vS(π(j))))

= yk(
∑
π∈Θ

[vk − vl]Πjfj(vπ(j)) +
∑
π∈Θ

[
1− Fπ−1(S(l))(vl)

fπ−1(S(l))(vl)
Πjfj(vS(π(j))))−

−
1− Fπ−1(k)(vk)

fπ−1(k)(vk)
Πjfj(vπ(j))]

= yk(
∑
π∈Θ

[vk − vl]Πjfj(vπ(j)) +
∑
π∈Θ

[
1− Fπ−1(k)(vl)

fπ−1(k)(vl)
Πjfj(vS(π(j))))−

−
1− Fπ−1(k)(vk)

fπ−1(k)(vk)
Πjfj(vπ(j))]

= yk(
∑
π∈Θ

[vk − vl]Πjfj(vπ(j)) +
(
(1− Fπ−1(k)(vl))fπ−1(l))(vk)

−(1− Fπ−1(k)(vk))fπ−1(l)(vl)
)
Πj 6=π−1(k),π−1(l)fj(vπ(j))

= yk(
∑
π∈Θ

[vk − vl]Πjfj(vπ(j)) +

+(
1− Fπ−1(k)(vl)

fπ−1(l)(vl)
−

1− Fπ−1(k)(vk)

fπ−1(l)(vk)
)fπ−1(l)(vl)fπ−1(l)(vk)Πj 6=π−1(k),π−1(l)fj(vπ(j))

Since by assumption vk > vl and
1−Fi(v)
fj(v) is decreasing, it is optimal to set yk = q and yl = 0.

Now we need to �nd the optimal value for q. Notice that (2.12) has the following form:

q(v)
∑
π∈Θ

[vk −
1− Fπ−1(k)(vk)

fπ−1(k)(vk)
]Πjfj(vπ(j)) (2.13)

Hence, q(v) should be equal to q(v) if
∑
π∈Θ

[vk−
1−Fπ−1(k)(vk)

fπ−1(k)(vk) ]Πjfj(vπ(j)) ≥ 0 and zero otherwise.

Keeping {vj}j 6=k constant, consider Φ(vk) ≡
∑
π∈Θ

[vk−
1−Fπ−1(k)(vk)

fπ−1(k)(vk) ]Πjfj(vπ(j)). We will show that

this function is monotonely increasing and there exists a unique point rk such that Φk(rk) = 0. If

Φk(rk) = 0 then

∑
π∈Θ

[rk −
1− Fπ−1(k)(rk)

fπ−1(k)(rk)
]Πjfj(vπ(j)) = 0 (2.14)

Hence, rk satis�es the following equation:

rk =

∑
π∈Θ

(1− Fπ−1(k)(rk))Πj 6=π−1(k)fj(vπ(j))∑
π∈Θ

fπ−1(k)(rk)Πj 6=π−1(k)fj(vπ(j))
(2.15)

If the derivative Φ
′
k of the function Φk has the same sign the uniqueness of rk is guaranteed.
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Since all inverse hazard rates are decreasing by assumption, the derivative of Φk is always positive:

Φ
′
k(rk) =

∑
π∈Θ

[1−

(
1− Fπ−1(k)(rk)

fπ−1(k)(rk)

)′
]Πjfj(vπ(j)) > 0 (2.16)

Thus, q(v) =q(v) if vk > rk and q(v) = 0 if vk ≤ rk. Essentially, when choosing the allocation

between bidders k, l, we compare their valuations and allocate the good to the bidder with a

higher valuation, provided that this valuation is also higher than the reserve price determined

from (2.15). Following this procedure we choose the buyer with the highest valuation and he

receives the good if his valuation is higher than his reserve price. The price that she needs to pay

is then the maximum between the second highest valuation and the reserve price for this buyer.

All monotonicity constraints are trivially satis�ed in such an allocation. The only constraint left

to be vari�ed is that the reserve prices are symmetric for all bidders. To show this, consider two

bidders m,n and show that rm and rn depend on the bids of their respective opponents in the

same way. To show this, we use the same trick as above. In the summation, we replace π with

Sπ, where S is such permutation that switches the positions of m and n. Consider bidder m when

bidder n has a valuation vn = v̂. Then the following equalities hold:

rm =

∑
π∈Θ

(1− Fπ−1(m)(rm))Πj 6=π−1(m)fj(vπ(j))∑
π∈Θ

fπ−1(m)(rm)Πj 6=π−1(m)fj(vπ(j))
=

=

∑
π∈Θ

(1− Fπ−1(S(m))(rm))Πj 6=π−1(S(m))fj(vS(π(j)))∑
π∈Θ

fπ−1(S(m))(rm)Πj 6=π−1(S(m))fj(vS(π(j)))
=

=

∑
π∈Θ

(1− Fπ−1(n)(rm))Πj 6=π−1(n)fj(vS(π(j)))∑
π∈Θ

fπ−1(n)(rm)Πj 6=π−1(n)fj(vS(π(j)))
=

=

∑
π∈Θ

(1− Fπ−1(n)(rm))fπ−1(m)(vS(π(π−1(m))))Πj 6=π−1(n),π−1(m)fj(vS(π(j)))∑
π∈Θ

fπ−1(n)(rm)fπ−1(m)(vS(π(π−1(m))))Πj 6=π−1(n),π−1(m)fj(vS(π(j)))
=

=

∑
π∈Θ

(1− Fπ−1(n)(rm))fπ−1(m)(vn)Πj 6=π−1(n),π−1(m)fj(vπ(j))∑
π∈Θ

fπ−1(n)(rm)fπ−1(m)(vn)Πj 6=π−1(n),π−1(m)fj(vπ(j))
=

=

∑
π∈Θ

(1− Fπ−1(n)(rm))fπ−1(m)(v̂)Πj 6=π−1(n),π−1(m)fj(vπ(j))∑
π∈Θ

fπ−1(n)(rm)fπ−1(m)(v̂)Πj 6=π−1(n),π−1(m)fj(vπ(j))

The last expression represents exactly the reserve price for a bidder n, if bidder m has a

valuation v̂. Hence, the constructed mechanism is indeed anonymous.
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Chapter 3

Head Starts and Doomed Losers:

Contest via Search

3.1 Introduction

�[U]nfortunately, for every Apple out there, there are a thousand other companies . .

. like Woolworth, Montgomery Ward, Borders Books, Blockbuster Video, American

Motors and Pan Am Airlines, that once `ruled the roost' of their respective industries,

to only get knocked o� by more innovative competitors and come crashing down.�

(Forbes, January 8, 2014)

This chapter studies innovation contests, which are widely observed in a variety of industries.

In many innovation contests, some �rms have head starts: One �rm has a more advanced ex-

isting technology than its rivals at the outset of a competition. The opening excerpt addresses

a prominent phenomenon that is often observed in innovation contests: Companies with a head

start ultimately lose a competition in the long run. It seems that having a head start sometimes

results in being trapped. The failure of Nokia, the former global mobile communications giant,

to compete with the rise of Apple's iPhone is one example. James Surowiecki (2013) pointed out

that Nokia's focus on (improving) hardware, its existing technology, and neglect of (innovating)

software contributed to the company's downfall. In his point of view, this was �a classic case of

a company being enthralled (and, in a way, imprisoned) by its past success� (New Yorker Times,

September 3, 2013).

Motivated by these observations, we investigate the e�ects of head starts on �rms' competi-

tion strategies and payo�s in innovation contests. Previous work on innovation contests focuses

on reduced form games and symmetric players, and previous work on contests with head starts

considers all-pay auctions with either sequential bidding or simultaneous bidding. By contrast,
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we consider a stochastic contest model in which one �rm has a superior existing innovation at the

outset of the contest and �rms' decisions are dynamic. The main contribution of our study is the

identi�cation of the long-run e�ects of a head start. In particular, in a certain range of the head

start value, the head start �rm becomes the ultimate loser in the long run and its competitor (or

competitors) bene�ts greatly from its initial apparent �disadvantage�. The key insight to the above

phenomenon is that a large head start (e.g., a patent) indicates a �rm's demise as an innovator.

Speci�cally, the model we develop in Section 3.3 entails two �rms and one �xed prize. At the

beginning of the game, each �rm may or may not have an initial innovation. Whether a �rm has

an initial innovation, as well as the value of the initial innovation if this �rm has one, is common

knowledge. If a �rm conducts a search for innovations, it incurs a search cost. As long as a

�rm continues searching, innovations arrive according to a Poisson process. The value of each

innovation is drawn independently from a �xed distribution. The search activity and innovation

process of each �rm are privately observed. At any time point before a common deadline, each �rm

decides whether to stop its search process. At the deadline, each �rm releases its most e�ective

innovation to the public, and the one whose released innovation is deemed superior wins the prize.

First, we consider equilibrium behavior in the benchmark case, in which no �rm has any

innovation initially, in Section 3.4. We divide the deadline-cost space into three regions (as in

�gure 3.1). For a given deadline, (1) if the search cost is relatively high, there are two equilibria, in

each of which one �rm searches until it discovers an innovation and the other �rm does not search;

(2) if the search cost is in the middle range, each �rm searches until it discovers an innovation;

(3) if the search cost is relatively low, each �rm searches until it discovers an innovation with a

value above a certain positive cut-o� value. In the third case, the equilibrium cut-o� value strictly

increases as the deadline extends and the arrival rate of innovations increases, and it strictly

decreases as the search cost increases.

We then extend the benchmark case to include a head start: The head start �rm is assigned

a better initial innovation than its competitor, called the latecomer. Section 3.5 considers equi-

librium behavior in the case with a head start and compares equilibrium payo�s across �rms, and

Section 3.6 analyzes the e�ects of a head start on each �rm's equilibrium payo�.

Firms' equilibrium strategies depend on the value of the head starter's initial innovation (head

start). Our main �ndings concern the case in which the head start lies in the middle range. In

this range, the head starter loses its incentive to search because of its high initial position. The

latecomer takes advantage of that and searches more actively, compared to when there is no head

start.
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An immediate question is: who does the head start favor? When the deadline is short, the

latecomer does not have enough time to catch up, and thus the head starter obtains a higher

expected payo� than the latecomer does. When the deadline is long, the latecomer is highly likely

to obtain a superior innovation than the head starter, and thus the latecomer obtains a higher

expected payo�. In the latter case, the latecomer's initial apparent �disadvantage�, in fact, puts

it in a more favorable position than the head starter. When the deadline is su�ciently long, the

head starter is doomed to lose the competition with a payo� of zero because of its unwillingness

to search, and all bene�ts of the head start goes to the latecomer.

Then, does the result that the latecomer is in a more favorable position than the head starter

when the deadline is long imply that the head start hurts the head starter and bene�ts the

latecomer in the long run? Focus on the case in which the latecomer does not have an initial

innovation. When the search cost is relatively low, the head start, in fact, always bene�ts the

head starter, but the bene�t ceases as the deadline extends. It also bene�ts the latecomer when

the deadline is long. When the search cost is relatively high, the head start could potentially hurt

the head starter.

If the head start is large, neither �rm will conduct a search, because the latecomer is deterred

from competition. In this scenario, no innovation or technological progress is created, and the head

starter wins the contest directly. If the head start is small, both �rms play the same equilibrium

strategy as they do when neither �rm has an initial innovation. In both cases, the head start

bene�ts the head starter and hurts the latecomer.

Section 3.7.1 extends our model to include stages at which the �rms sequentially have an

option to discard their initial innovation before the contest starts. Suppose that both �rms'

initial innovations are of values in the middle range and that the deadline is long. If the head

starter can take the �rst move in the game, it can increase its expected payo� by discarding its

initial innovation and committing to search. When search cost is low, by sacri�cing the initial

innovation, the original head starter actually makes the competitor the new head starter; this new

head starter has no incentive to discard its initial innovation or to search any more. It is possible

that by discarding the head start, the original head starter may bene�t both �rms. When search

cost is high, discarding the initial innovation is a credible threat to the latecomer, who will �nd the

apparent leveling of the playing �eld discouraging to conducting a high-cost search. As a result,

the head starter suppresses the innovation progress.

In markets, some �rms indeed give up head starts (Ulhøi, 2004), and our result provides a

partial explanation of this phenomenon. For example, Tesla gave up its patents for its advanced
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technologies on electric vehicles at an early stage of its business.1 While there may be many

reasons for doing so, one signi�cant reason is to maintain Tesla's position as a leading innovator

in the electronic vehicle market.2 As Elon Musk (2014), the CEO of Tesla, wrote,

technology leadership is not de�ned by patents, which history has repeatedly shown to

be small protection indeed against a determined competitor, but rather by the ability

of a company to attract and motivate the world's most talented engineers.3

Whilst Tesla keeps innovating to win a large share of the future market, its smaller competitors

have less incentive to innovate since they can directly adopt Tesla's technologies. One conjecture

which coincides with our result is that �Tesla might be planning to distinguish itself from the

competitors it helps . . . by inventing and patenting better electric cars than are available today�

(Discovery Newsletter, June 13, 2014).

Section 3.7.2 considers intermediate information disclosure. Suppose the �rms are required to

reveal their discoveries at an early time point after the starting of the contest, how would �rms

compete against each other? If the head start is in the middle range, before the revelation point, the

head starter will conduct a search, whereas the latecomer will not. If the head starter obtains a very

good innovation before that point, the latecomer will be deterred from competition. Otherwise, the

head starter is still almost certain to lose the competition. Hence, such an information revelation

at an early time point increases both the expected payo� to the head starter and the expected

value of the winning innovation.

Section 3.8 compares the e�ects of a head start to those of a cost advantage and points out

a signi�cant di�erence. A cost advantage reliably encourages a �rm to search more actively for

innovations, whereas it discourages the �rm's competitor.

Section 3.9 concludes this chapter. The overarching message this chapter conveys is that a

market regulator who cares about long-run competitions in markets may not need to worry too

much about the power of the current market dominating �rms if these �rms are not in excessively

high positions. In the long run, these �rms are to be defeated by latecomers. On the other hand, if

the dominating �rms are in excessively high positions, which deters entry, a regulator can intervene

the market.
1Toyota also gave up patents for its hydrogen fuel cell vehicles at an early stage.
2Another reason is to help the market grow faster by the di�usion of its technologies. A larger market increases

demand and lowers cost.
3See �All Our Patent Are Belong To You,� June 12, 2014, on http://www.teslamotors.com/blog/all-our-patent-

are-belong-you.
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3.2 Literature

There is a large literature on innovation contests. Most work considers reduced form models

(Fullerton and McAfee, 1999; Moldovanu and Sela, 2001; Baye and Hoppe, 2003; Che and Gale,

2003).4 Head starts are studied in various forms of all-pay auctions. Leininger (1991), Konrad

(2002), and Konrad and Leininger (2007) model a head start as a �rst-mover advantage in a

sequential all-pay auction and study the �rst-mover's performance. Casas-Arce and Martinez-

Jerez (2011), Siegel (2014), and Seel (2014) model a head start as a handicap in a simultaneous

all-pay auction and study the e�ect on the head starter. Kirkegaard (2012) and Seel and Wasser

(2014) also model a head start as a handicap in a simultaneous all-pay auction but study the e�ect

on the auctioneer's expected revenue. Segev and Sela (2014) analyzes the e�ect a handicap on the

�rst mover in a sequential all-pay auction. Unlike these papers, we consider a framework in which

players' decisions are dynamic.

The literature considering settings with dynamic decisions is scarce, and most studies focus

on symmetric players. The study by Taylor (1995) is the most prominent.5 In his symmetric

T -period private search model, there is a unique equilibrium in which players continue searching

for innovations until they discover one with a value above a certain cut-o�. We extend Taylor's

model to analyze the e�ects of a head start and �nd the long-run e�ects of the head start, which

is our main contribution.

Seel and Strack (2013, 2016) and Lang et al. (2014) also consider models with dynamic deci-

sions. Same as in our model, in these models each player also solves an optimal stopping problem.

However, the objectives and the results of these papers are di�erent from ours. In the models

of Seel and Strack (2013, 2016), each player decides when to stop a privately observed Brown-

ian motion with a drift. In their earlier model, there is no deadline and no search cost and a

process is forced to stop when it hits zero. They �nd that players do not stop their processes

immediately even if the drift is negative. In their more resent model, each search incurs a cost

that depends on the stopping time. This more recent study �nds that when noise vanishes the

equilibrium outcome converges to the symmetric equilibrium outcome of an all-pay auction. Lang

et al. (2014) consider a multi-period model in which each player decides when to stop a privately

observed stochastic points-accumulation process. They �nd that in equilibrium the distribution

4Also see, for example, Hillman and Riley (1989), Baye et al. (1996), Krishna and Morgan (1998), Che and Gale
(1998), Cohen and Sela (2007), Schöttner (2008), Bos (2012), Siegel (2009, 2010, 2014), Kaplan et al. (2003), and
Erkal and Xiao (2015).

5Innovation contests were modeled as a race in which the �rst to reach a de�ned �nishing line gains a prize, e.g.,
Loury (1979), Lee and Wilde (1980), and Reinganum (1981, 1982).
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over successes converges to the symmetric equilibrium distribution of an all-pay auction when the

deadline is long.

Our study also contributes to the literature on information disclosure in innovation contests.

Aoyagi (2010), Ederer (2010), Goltsman and Mukherjee (2011), and Wirtz (2013) study how much

information on intermediate performances a contest designer should disclose to the contestants.

Unlike what we do, these papers consider two-stage games in which the value of a contestant's

innovation is its total outputs from the two stages. Bimpikis et al. (2014) and Halac et al. (2017)

study the problem of designing innovation contests, which includes both the award structures and

the information disclosure policies. Halac et al. (2017) consider a model in which each contestant

searches for innovations, but search outcomes are binary. A contest ends after the occurrence of

a single breakthrough, and a contestant becomes more and more pessimistic over time if there

has been no breakthrough. Bimpikis et al. (2014) consider a model which shares some features

with Halac et al. (2017). In the model, an innovation happens only if two breakthroughs are

achieved by the contestants, the designer decides whether to disclose the information on whether

the �rst breakthrough has been achieved by a contestant, and intermediate awards can be used.

In both models, contestants are symmetric. In contrast, the contestants in our model are always

asymmetric. Rieck (2010) studies information disclosure in the two-period case of Taylor's (1995)

model. In contrast to our �nding, he shows that the contest designer prefers concealing the outcome

in the �rst stage. Unlike all the above papers, Gill (2008), Yildirim (2005), and Akcigit and Liu

(2015) address the incentives for contestants, rather than the designer, to disclose intermediate

outcomes.

Last but most importantly, our study contributes to the literature on the relationship between

market structure and incentive for R&D investment. The debate over the e�ect of market structure

on R&D investment dates back to Schumpeter (1934, 1942).6 Due to the complexity of the R&D

process, earlier theoretical studies tend to focus on one facet of the process. Gilbert and Newbery

(1982), Fudenberg et al. (1983), Harris and Vickers (1985a,b, 1987), Judd (2003), Grossman and

Shapiro (1987), and Lippman and McCardle (1987) study preemption games. In these models, an

incumbent monopolist has more incentive to invest in R&D than a potential entrant. In fact, a

potential entrant sees little chance to win the competition, because of a lag at the starting point

of the competition, and is deterred from competition. In our model, the intuition for the result in

the case of a large head start is similar to this �preemption e�ect�, except that no �rm invests in

our case.
6See Gilbert (2006) for a comprehensive survey.
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By contrast, Arrow (1962) and Reinganum (1983, 1985) show, in their respective models, that

an incumbent monopolist has less incentive to innovate than a new entrant.7 The cause for this

is what is called the �replacement e�ect� by Tirole (1997). While an incumbent monopolist can

increase its pro�t by innovating, it has to lose the pro�t from the old technology once it adopts a

new technology. This e�ectively reduces the net value of the new technology to the incumbent. It

is then natural that a �rm who has a lower value of an innovation has less incentive to innovate,

which is exactly what happens in our model with asymmetric costs. On the other hand, our

main result, on medium-sized head start, has an intuition very similar to the �replacement e�ect�.

Rather than a reduction in the value of an innovation to the head starter, a head start decreases

the increase in the probability of winning from innovating. In both Reinganum's models and

our model, an incumbent could have a lower probability of winning than a new entrant. However,

di�erent from her models, in our model an incumbent (head starter) can also have a lower expected

payo� than a new entrant (latecomer).

3.3 The Model

Firms and Tasks

There are two risk neutral �rms, Firm 1 and Firm 2, competing for a prespeci�ed prize, normalized

to 1, in the contest. Time is continuous, and each �rm searches for innovations before a deadline T .

At the deadline T , each �rm releases to the public the best innovation it has discovered, and the

�rm who releases a superior innovation wins the prize. If no �rm has discovered any innovation,

the prize is retained. If there is a tie between the two �rms, the prize is randomly allocated to

them with equal probability.

At any time point t ∈ [0, T ) before the deadline, each �rm decides whether to continue searching

for innovations. If a �rm continues searching, the arrival of innovations in this �rm follows a

Poisson process with an arrival rate of λ. That is, the probability of discovering m innovations

in an interval of length δ is e−λδ(λδ)m

m! . The values of innovations are drawn independently from

a distribution F , de�ned on (0, 1] with F (0) := lima→0 F (a) = 0. F is continuous and strictly

increasing over the domain.

Each �rm's search cost is c > 0 per unit of time. We assume that c < λ, because if c > λ the

cost is so high that no �rm is going to conduct a search. To illustrate this claim, suppose Firm 2

does not search, Firm 1 will not continue searching if it has an innovation with a value above 0,

7Doraszelski (2003) generalizes the models of Reinganum (1981, 1982) to a history-dependent innovation process
model and shows, in some circumstances, the catching-up behavior in equilibrium.
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whereas Firm 1's instantaneous gain from searching at any moment when it has no innovation is

lim
δ→0

∑+∞
m=1

e−λδ(λδ)m

m! − cδ
δ

= λ− c,

which is negative if c > λ.

Information

The search processes of the two �rms are independent and with recall. Whether the opponent

�rm is actively searching is unobservable; whether a �rm has discovered any innovation, as well

as the values of discovered innovations, is private information until the deadline T .

For convenience, we say a �rm is in a state a ∈ [0, 1] at time t if the value of the best innovation

it has discovered by time t is a, where a = 0 means that the �rm has no innovation. The initial

states of Firm 1 and Firm 2 are denoted by aI1 and aI2, respectively. Firms' initial states are

commonly known.

Strategies

In our model, each �rm's information on its opponent is not updated. Hence, the game is static,

although the �rms' decisions are dynamic. Then, the solution concept we use is Nash equilibrium.

In accordance with the standard result from search theory that each �rm's optimal strategy is a

constant cut-o� rule, we make the following assumption.8

Assumption 3.1. We focus on equilibria that consist of constant cut-o� rules: Denote â∗i as

an equilibrium strategy. â∗i ∈ Si := {−1} ∪ [aIi , 1].

If a constant cut-o� strategy â∗i ∈ [aIi , 1] is played, at any time point t ∈ [0, T ), Firm i stops

searching if it is in a state above â∗i and continues searching if in a state below or at â∗i .
9 The

strategy âi = −1 represents that Firm i does not conduct a search.

Suppose both �rms have no initial innovation. Without this assumption, for any given strategy

played by a �rm's opponent, there is a constant cut-o� rule being the �rm's best response. Such

a cut-o� value being above zero is the unique best response strategy, ignoring elements associated

with zero probability events. However, in the cases in which a �rm is indi�erent between continuing

searching and not if it is in state 0, this �rm has (uncountably) many best response strategies.

8See Lippman and McCall (1976) for the discussion on optimal stopping strategies for searching with �nite
horizon and recall.

9Once Firm i stops searching at some time point it shall not search again later.
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The above assumption helps us to focus on the two most natural strategies: not to search at all

and to search with 0 as the cut-o�.10 A full justi�cation for this assumption is provided in the

appendix.

Let P̃ [a|âi, aIi ] denote the probability of Firm i ending up in a state below a if it adopts a

strategy âi and its initial state is aIi ; let E[cost|âi] denote Firm i's expected cost on search if it

adopts a strategy âi. Firm i's ex ante expected utility is

Ui =

∫ 1

0
P [a|â−i, aI−i]dP [a|âi, aIi ]− E[cost|âi].

Now, we are ready to study equilibrium behavior. Before solving the head start case, we �rst

look at the case with no initial innovation.

3.4 The Symmetric-Firms Benchmark (aI1 = aI2 = 0)

In this section, we look at the benchmark case, in which both �rms start with no innovation. It

is in the spirit of Taylor's (1995), except that it is in continuous time. The equilibrium strategies

are presented below.11

Theorem 3.1. Suppose aI1 = aI2 = 0.

i. If c ∈ [1
2λ(1 + e−λT ), λ), there are two equilibria, in each of which one �rm searches with 0

as the cut-o� and the other �rm does not search.

ii. If c ∈ [1
2λ(1− e−λT ), 1

2λ(1 + e−λT )), there is a unique equilibrium, in which both �rms search

with 0 as the cut-o�.

iii. If c ∈ (0, 1
2λ(1− e−λT )), there is a unique equilibrium, in which both �rms search with a∗ as

the cut-o�, where a∗ > 0 is the unique value that satis�es

1

2
λ[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
= c. (3.1)

Proof. See Appendix 3.A.2.

10Without this assumption, there can be additional best response strategies of the following type: a �rm ran-
domizes between searching and not searching until a time T ′ < T with cuto� 0 and stops at T ′ even if no discovery
was made.

11When search cost is low, the equilibrium is unique even without Assumption 3.1. When search is high, without
Assumption 3.1, there are additional symmetric equilibria of the following type: each �rm randomizes between not
participating and participating until a time T ′ < T with 0 as the cuto�.
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Figure 3.1

The result is illustrated in �gure 3.1. The deadline-cost space is divided into three regions.12

In Region 1, the search cost is so high that it is not pro�table for both �rms to innovate. In Region

2, both �rms would like to conduct a search in order to discover an innovation with any value,

but none has the incentive to spend additional e�ort to �nd an innovation with a high value. In

Region 3, both �rms exert e�orts to �nd an innovation with a value above a certain level. In this

case, a �rm in the cut-o� state is indi�erent between continuing and stopping searching. This is

represented by equation (3.1), in which 1 − e−λT [1−F (a∗)] is the probability of a �rm's opponent

ending up in a state above a∗ and 1
2 [1− F (a∗)] is the increase in the probability of winning if the

�rm, in state a∗, obtains a new innovation. Hence, this equation represents that, in the cut-o�

state, the instantaneous increase in the probability of winning from continuing searching equals

the instantaneous cost of searching. As T goes to in�nity, c = λ
2 becomes the separation line for

Case [i] and Case [iii].

Generally, there is no closed form solution for the cut-o� value in Case [iii]. However, if the

search cost is very low, we have a simple approximation for it.

Corollary 3.1. Suppose aI1 = aI2 = 0. When c is small, a∗ ≈ F−1
(

1−
√

2c
λ2T

)
.

Proof. First, we assume that λT [1−F (a∗)] is small, and we come back to check that it is implied

12An � area� we say is the interior of the corresponding area.
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by that c is small. Applying equation (3.1), we have

c

λ
=

1

2
[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
≈ 1

2
λT [1− F (a∗)]2

⇔[1− F (a∗)]2 ≈ 2c

λ2T

⇔a∗ ≈ F−1

(
1−

√
2c

λ2T

)
and λT [1− F (a∗)] ≈

√
2cT .

For later reference we, based on the previous theorem, de�ne a function a∗ : (0, λ)× [0,+∞)→

[0, 1] where

a∗(c, T ) =


0 for c ∈ [1

2λ(1− e−λT ), λ)

the a∗ that solves (3.1) for c ∈ (0, 1
2λ(1− e−λT )).

A simple property which will be used in later sections is stated below.

Lemma 3.1. In Region 3, a∗(c, T ) is strictly increasing in T (and λ) and strictly decreasing in c.

There are two observations. One is that a∗(c, T ) = 0 if c ≥ λ
2 . The other is that a∗(c, T )

converges to F−1(1 − 2c
λ ) as T goes to in�nity if c < λ

2 , which derives from taking the limit of

equation (3.1) w.r.t. T . Let us denote a∗L as the limit of a∗(c, T ) w.r.t. T :

a∗L := lim
T→+∞

a∗(c, T ) =


0 for c ≥ λ

2 ,

F−1(1− 2c
λ ) for c < λ

2 .

We end this section by presenting a full rent dissipation property of the contest when the

deadline approaches in�nity.

Lemma 3.2. Suppose aI1 = aI2 = 0. If c < λ
2 , each �rm's expected payo� in equilibrium goes to 0

as the deadline T goes to in�nity.

Proof. See Appendix 3.A.2.

The intuition is as follows. The instantaneous increase in the expected payo� from searching for

a �rm who is in state a∗(c, T ), the value of the equilibrium cut-o�, is 0 (it is indi�erent between

continuing searching and not). If the deadline is �nite, a �rm in a state below a∗(c, T ) has a

positive probability of winning even if it stops searching. Hence, the �rms have positive rents in
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the contest. As the deadline approaches in�nity, there is no di�erence between being in a state

below a∗(c, T ) and at a∗(c, T ), because the �rm will lose the contest for sure if it does not search.

In either case the instantaneous increase in the expected payo� from searching is 0. Hence, in the

limit the �rms' rents in the contest are fully dissipated.

Though the equilibrium expected payo� goes to 0 in the limit, it is not monotonically decreasing

to 0 as the deadline approaches in�nity, because each �rm's expected payo� converges to 0 as the

deadline approaches 0 as well.13

3.5 Main Results: Exogenous Head Starts (aI1 > aI2)

In this section, we add head starts into the study. Without loss of generality, we assume that

Firm 1 has a better initial innovation than does Firm 2 before competition begins, i.e., aI1 > aI2.

We �rst derive the equilibrium strategies, and then we explore equilibrium properties.

3.5.1 Equilibrium Strategies

Theorem 3.2. Suppose aI1 > aI2.

1. For aI1 > F−1(1 − c
λ), there is a unique equilibrium, in which no �rm searches, and thus

Firm 1 wins the prize.

2. For aI1 = F−1(1− c
λ), there are many equilibria. In one equilibrium, both �rms do not search.

In the other equilibria, Firm 1 does not search and Firm 2 searches with a value â2 ∈ [aI2, a
I
1]

as the cut-o�.

3. For aI1 ∈ (a∗(c, T ), F−1(1 − c
λ)), there is a unique equilibrium, in which Firm 1 does not

search and Firm 2 searches with aI1 as the cut-o� .

4. For aI1 = a∗(c, T ), there are two equilibria. In one equilibrium, both �rms search with aI1 as

the cut-o�. In the other equilibrium, Firm 1 does not search and Firm 2 searches with aI1 as

the cut-o�.

5. For aI1 ∈ (0, a∗(c, T )), there is a unique equilibrium, in which both �rms search with a∗(c, T )

as the cut-o�.

Proof. See Appendix 3.A.3.

Remark. Case [4] and [5] exist only when c ≤ 1
2λ[1− e−λT ] (Region 3).
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Figure 3.2: Thresholds (when c < λ
2

(1− e−λT ) ).

The thresholds in the theorem are depicted in �gure 3.2. The leading case is Case [3], when

the head start is in the middle range. A head start reduces the return of a search, in terms of the

increase in the probability of winning. Having a su�ciently large initial innovation, Firm 1 loses

incentive to search because the marginal increase in the probability of winning from searching

for Firm 1 is too small compared to the marginal cost of searching, whether Firm 2 searches or

not. Firm 2 takes advantage of that and commits to search until it discovers an innovation better

than Firm 1's initial innovation. Hence, compared to its equilibrium behavior in the benchmark

case, Firm 2 is more active in searching (in terms of a higher cut-o� value) when Firm 1 has a

medium-sized head start, and a larger value of head start forces Firm 2 to search more actively.

In Case [1], Firm 1's head start is so large that Firm 2 is deterred from competition because

Firm 2 has little chance to win if it searches. Firm 1 wins the prize without incurring any cost.

Moreover, it is independent of the deadline T .

In Case [5], in which Firm 1's head start is small, the head start has no e�ect on either �rm's

equilibrium strategy, and both �rms search with a∗(c, T ) as the cut-o�, same as in the benchmark

case. The only e�ect of the head start is an increase in Firm 1's probability of winning (and a

decrease in Firm 2's).

In brief, a comparison of Theorem 3.2 and Theorem 3.1 shows that a head start of Firm 1 does

not alter its own equilibrium behavior but Firm 2's. The e�ect on Firm 2's equilibrium strategy is

13In fact, by taking the derivative of (3.12) (as in the appendix) w.r.t. T , one can show that the derivative at
T = 0 is λ− c > 0 and that, if c < λ

2
, (3.12) is increasing in T for T < min{ 1

λ
ln λ

c
, 1
λ

ln λ
λ−2c
} and decreasing in T

for T > max{ 1
λ

ln λ
c
, 1
λ

ln λ
λ−2c
}.
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not monotone in the head start of Firm 1. The initial state of Firm 2, the latecomer, is irrelevant

to the equilibrium strategies. Figure 3.3 illustrates how each �rm's equilibrium strategy changes

as the value of the initial innovation of Firm 1, the head starter, varies.

a∗(c,T ) 1

-1

0

a∗(c,T )

1

aI1

â1

(a) Firm 1

a∗(c,T ) 1

-1

0

a∗(c,T )

F−1(1− c
λ

)

1

F−1(1− c
λ

)

aI1

â2

(b) Firm 2

Figure 3.3: Firms' equilibrium cut-o� values as the value of Firm 1's initial innovation, aI1,
varies.

Figure 3.4 illustrates Firm 2'the best responses (when it has no initial innovation) to Firm 1's

strategies for various values of Firm 1's initial states. The case in which Firm 1 has a high-value

initial innovation is signi�cantly di�erent from the case in which Firm 1 has no initial innovation.

Turning back to Case [3] in the previous result, we notice that the lower bound for this

case to happen does not converge to the upper bound as the deadline approaches in�nity, i.e.,

a∗L < F−1(1− c
λ). The simplest but most interesting result of this study, the case of �head starts

and doomed losers�, derives.

Corollary 3.2. Suppose aI1 ∈ (a∗L, F
−1(1− c

λ)).

1. Firm 2's (Firm 1's) probability of winning increases (decreases) in the deadline.

2. As T goes to in�nity, Firm 2's probability of winning goes to 1, and Firm 1's goes to 0.

Proof. In equilibrium Firm 1 does not search and Firm 2 searches with aI1 as the cut-o�. Firm 2's

probability of winning is thus

1− e−λT [1−F (aI1)],
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Figure 3.4: Best response projections for Firm 2 as aI1 takes values in {−1, α, α′, α′′}
(c < λ

2
(1− e−λT ) and aI2 = 0 ).

BR1 represents Firm 2's best responses when no �rm has an initial innovation. If Firm 1
does not search, Firm 2 would search with 0 as the cut-o�. If Firm 1 searches with 0 as the
cut-o�, Firm 2 would search with a cut-o� higher than the equilibrium cut-o�. As Firm 1
further rises its cut-o�, Firm 2 would �rst rise its cut-o� and then lower its cut-o�. When the
deadline is long, Firm 2 would not search if Firm 1's cut-o� is high. BR2 and BR3 represent
Firm 2's best responses when Firm 1 has an initial innovation with a value slightly above
a∗(c, T ), the equilibrium cut-o� when there is no initial innovation. In this case, if Firm 1
does not search, Firm 2's best response is to search with the value Firm 1's initial innovation
as the cut-o�. If Firm 1 searches with a cut-o� slightly above the value of its initial innovation,
Firm 2's best response is still to search with the value of Firm 1's initial innovation as the
cut-o�. Once Firm 1's cut-o� is greater than a certain value, Firm 2 would not search. BR4
represents Firm 2's best responses when Firm 1 has a high-value initial innovation. In this
case, if Firm 1 does not search, Firm 2 would still search with the value of Firm 1's initial
innovation as the cut-o�; if Firm 1 searches, Firm 2 would have no incentive to search. On
the other hand, when the value of Firm 1's initial innovation is above a∗(c, T ), Firm 1's best
response to any strategy of Firm 2 is not to search.
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which is increasing in T , and it converges to 1 as T goes in�nity. Firm 1's probability of winning

is e−λT [1−F (aI1)], which is, in the contrast, decreasing in T , and it converges to 0 as T approaches

in�nity.

This property results from our assumption that search processes are with recall. The larger

the head start is, the smaller the marginal increase in the probability of winning from searching

is, given any strategy played by the latecomer. Hence, even if the head starter knows that in the

long run the latecomer will almost surely obtain an innovation with a value higher than its initial

innovation, the head starter is not going to conduct a search as long as the instantaneous increase

in the probability of winning is smaller than the instantaneous cost of searching.

3.5.2 Payo� Comparison across Firms

A natural question arises: which �rm does a head start favor? Will Firm 1 or Firm 2 achieve a

higher expected payo�? To determine that, we need a direct comparison of the two �rms' expected

payo�s. When aI1 ∈ (a∗(c, T ), F−1(1− c
λ)), the di�erence between the payo�s of Firm 1 and Firm

2 is14

DF (T, aI1) := e−λT [1−F (aI1)] − (1− e−λT [1−F (aI1)])(1− c

λ[1− F (aI1)]
). (3.2)

The head start of Firm 1 favors Firm 1 (Firm 2) if DF (T, aI1) > (<)0.

DF (T, aI1) is increasing in aI1 and decreasing in T . Hence, a longer deadline tends toward to

favor Firm 2 when the head start is in the middle range. Since

DF (0, aI1) = 1 > 0

and

lim
T→∞

DF (T, aI1) = −(1− c

λ[1− F (aI1)]
) < 0 for any aI < F−1(1− c

λ
),

there must be a unique T̂ (aI1) > 0 such that DE(T̂ (aI1), aI1) = 0. The following result derives.

Proposition 3.1. For aI1 ∈ (a∗L, F
−1(1− c

λ)), there is a unique T̂ (aI1) > 0 such that Firm 1 (Firm

2) obtains a higher expected payo� if T < (>)T̂ (aI1).

141 − e−λT [1−F (aI1)] is Firm 2's probability of obtaining an innovation better than Firm 1's initial innovation,
aI1, and

1
λ[1−F (aI1)]

is the unconditional expected interarrival time of innovations with a value higher than aI1. The

second term in DF (T, aI1) thus represents the expected payo� of Firm 2.
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That is, for any given value of the head start in the middle range (a∗L, F
−1(1− c

λ)), the head

start favors the latecomer (head starter) if the deadline is long (short). The e�ects of a head start

do not vanish as the deadline approaches in�nity. In fact, as the deadline approaches in�nity, the

head start eventually pushes the whole share of the surplus to Firm 2.

Lemma 3.3. As the deadline increases to in�nity,

1. for aI1 ∈ (0, a∗L), both Firms' equilibrium payo�s converge to 0;

2. for aI1 ∈ (a∗L, F
−1(1 − c

λ)), Firm 1's equilibrium payo� converges to 0, whereas Firm 2's

equilibrium payo� converges to 1− c
λ[1−F (aI1)]

∈ (0, 1
2).

Proof. [1] follows from Lemma 3.2. [2] follows from Corollary 3.2 and the limit of Firm 2's expected

payo�

(1− e−λT [1−F (aI)])

(
1− c

λ[1− F (aI1)]

)
(3.3)

w.r.t. T .

A comparison to Lemma 3.2 shows that, just as having no initial innovation, when Firm 1

has an innovation whose value is not of very high, its expected payo� still converges to 0 as the

deadline becomes excessively long. When there is no initial innovation, the expected total surplus

for the �rms (i.e., the sum of the two �rms' expected payo�) converges to 0. In contrast, when

there is a head start with a value above a∗L, the expected total surplus is strictly positive even when

the deadline approaches in�nity. However, as it approaches in�nity, this total surplus created by

the head start of Firm 1 goes entirely to Firm 2, the latecomer, if the head start is in the middle

range. The intuition is as follows. For Firm 1, it is clear that its probability of winning converges

to 0 as the deadline goes to in�nity. For Firm 2, we �rst look at the case that aI1 = F−1(1− c
λ). In

this case Firm 2 is indi�erent between searching and not searching, and thus the expected payo�

is 0. As the deadline approaches in�nity, both expected cost of searching and the probability of

winning converges to 1, if Firm 2 conducts a search. Then, if aI1 is below F−1(1− c
λ) (but above

a∗L), as the deadline approaches in�nity, Firm 2's probability of winning still goes to 1, but the

expected cost of searching drops to a value below 1 because it adopts a lower cut-o� for stopping.

Hence, Firm 2's expected payo� converges to a positive value.

The relationship between the rank order of the two Firms' payo�s and the deadline is illustrated

in �gure 3.5, in each of which Firm 2 obtains a higher expected payo� at each point in the colored

area. (a) is for the cases in which c ≤ λ
2 . In these cases a longer deadline tends to favor the
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latecomer. (b) and (c) are for the cases in which c > λ
2 . In these cases, the rank order is not

generally monotone in the deadline and the head start.
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Figure 3.5: When (aI1, T ) lies in the colored area, the head start favors the latecomer.

We notice in all the �gures that if the deadline is su�ciently short, a head start is ensured to

bias toward Firm 1, whereas if it is long, only a relatively large head start biases toward Firm 1.

3.6 E�ects of Head Starts on Payo�s

In this section, we study the e�ects of a head start on both �rms' payo�s. Suppose Firm 2 has

no initial innovation, who does a head start of Firm 1 bene�t or hurt? The previous comparison

between Theorem 3.1 and Theorem 3.2 already shows that a head start aI1 bene�ts Firm 1 and
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hurts Firm 2 if aI1 < a∗(c, T ) or aI1 > F−1(1 − c
λ). In the former case, which happens only when

a∗(c, T ) > 0 (Region 3 of �gure 3.1), both �rms search with a∗(c, T ) as the cut-o�, the same as

when there is no head start, and the head start increases Firm 1's probability of winning and

decreases Firm 2's. As the deadline goes to in�nity, the expected payo�s to both �rms converge

to 0, with the e�ect of the head start disappearing. In the latter case, Firm 1 always obtains a

payo� of 1, and Firm 2 always 0.

The interesting case occurs then when the head start is in the middle range, aI1 ∈ (a∗(c, T ), F−1(1−
c
λ)), which will be the focus in the remaining parts of this study. To answer the above question

regarding the head start being in the middle range, we �rst analyze the case that point (c, T ) lies

in Regions 2 and 3 (in �gure 3.1), and then we turn to analyze the case of Region 1.

3.6.1 Regions 2 and 3

In the previous section, we showed that for T being su�ciently long, Firm 1 is almost surely going

to lose the competition if aI1 is in the middle range. Although it seems reasonable that in this case

a head start may make Firm 1 worse o�, the following proposition shows that this conjecture is

not true.

Proposition 3.2. Suppose aI2 = 0. In Regions 2 and 3, in which c < 1
2λ(1 + e−λT ), a head start

aI1 > 0 always bene�ts Firm 1, compared to the equilibrium payo� it gets in the benchmark case.

To give the intuition, we consider the case of a∗(c, T ) > 0. Suppose Firm 1 has a head start

aI1 = a∗(c, T ). As shown in Case [4] of Theorem 3.2, we have the following two equilibria: in one

equilibrium both �rms search with a∗(c, T ) as the cut-o�; in another equilibrium Firm 1 does not

search and Firm 2 searches with a∗(c, T ) as the cut-o�. Firm 1 is indi�erent between these two

equilibria, hence its expected payo�s from both equilibria are e−λT [1−F (a∗(c,T ))], the probability

of Firm 2 �nding no innovation with a value higher than a∗(c, T ). However, Firm 1's probability

of winning increases in its head start, hence a larger head start gives Firm 1 a higher expected

payo�.

The above result itself corresponds to expectation. What unexpected is the mechanism through

which Firm 1 gets better o�. As a head start gives Firm 1 a higher position, we would expect that

it is better o� by (1) having a better chance to win and (2) spending less on searching. Together

with Theorem 3.2, the above proposition shows that Firm 1 is better o� purely from an increase

in the probability of winning when aI1 < a∗(c, T ); purely from spending nothing on searching when

aI1 ∈ (a∗(c, T ), F−1(1 − c
λ)) (though there could be a loss from a decrease in the probability of
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winning); from an increase in the probability of winning and a reduction in the cost of searching

when aI1 > F−1(1− c
λ).

In contrast to the e�ect of a head start of Firm 1 on Firm 1's own expected payo�, the e�ect

on Firm 2's expected payo� is not clear-cut. Instead of giving a general picture of the e�ect, we

present some properties in the following.

Proposition 3.3. Suppose aI2 = 0.

1. A head start aI1 ∈ (0, F−1(1− c
λ)) hurts Firm 2 if the deadline T is su�ciently small.

2. If c < λ
2 , a head start aI1 ∈ (a∗L, F

−1(1 − c
λ)) bene�ts Firm 2 if the deadline is su�ciently

long.

Proof. See Appendix 3.A.3.

Case [1] occurs because a head start of Firm 1 reduces Firm 2's probability of winning and may

increase its expected cost of searching. Case [2] follows from Propositions 3.2 and 3.1. Because a

head start of Firm 1 always bene�ts Firm 1 and a long deadline favors Firm 2, a head start must

also bene�t Firm 2 if the deadline is long.15

Figure 3.6 illustrates how Firm 2's equilibrium payo� changes as Firm 1's head start increases.

In particular, a head start of Firm 1 slightly above a∗(c, T ), the equilibrium cut-o� when there is

no initial innovation, bene�ts Firm 2 if a∗(c, T ) is low. Some more conditions under which a head

start bene�ts or hurts the latecomer are given below.

-1 0 α̃ ˜̃α F−1(1− c
λ

) 1

When a∗(c, T ) = α̃

When a∗(c, T ) = ˜̃α

aI1

U2

Figure 3.6: Firm 2's equilibrium payo�s as a∗(c, T ) varies.

Proposition 3.4. In Region 2 and 3, in which c < 1
2λ(1 + e−λT ),

15Alternatively, it also follows from Lemmas 3.2 and 3.3. If the deadline is very long and the head start of Firm
1 is in the middle range, Firm 2's payo� converges to 0 same as in the benchmark case and some positive value in
head start case.
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1. if

(1− e−λT [1−F (a∗(c,T ))])− 1

2
(1− e−2λT ) > 0, (3.4)

there exists a ãI1 ∈ (a∗(c, T ), F−1(1 − c
λ)) such that the head start aI1 hurts Firm 2 if aI1 ∈

(ãI1, F
−1(1− c

λ)) and bene�ts Firm 2 if aI1 ∈ (a∗(c, T ), ãI1);

2. if (3.4) holds in the opposite direction, any head start aI1 ∈ (a∗(c, T ), F−1(1− c
λ)) hurts Firm

2.

Proof. See Appendix 3.A.3.

The �rst term on the left side of inequality (3.4) is Firm 2's probability of winning in the

equilibrium in which Firm 2 searches and Firm 1 does not search in the limiting case that Firm 1

has a head start of a∗(c, T ). The second term, excluding the minus sign, is Firm 1's probability

of winning when there is no head start. The expected searching costs are the same in both cases.

The following corollary shows some scenarios in which inequality (3.4) holds.

Corollary 3.3. In Region 2, when a∗(c, T ) = 0, inequality (3.4) holds.

This shows that for search cost lying in the middle range, a head start of Firm 1 must bene�t

Firm 2, if it is slightly above 0. The simple intuition is as follows. When Firm 1 has such a small

head start, Firm 2's cut-o� value of searching increases by only a little bit, and thus the expected

cost of searching also increases slightly. However, the increase in Firm 2's probability of winning

is very large, because Firm 1, when having a head start, does not search any more. Thus, in this

case Firm 2 is strictly better o�.

Lastly, even though Firm 1 does not search when the head start aI1 > a∗(c, T ), it seems that a

low search cost may bene�t Firm 2. On the contrary, a head start of Firm 1 would always hurt

Firm 2 when the search cost is su�ciently small.

Corollary 3.4. For any �xed deadline T , if the search cost is su�ciently small, inequality (3.4)

holds in the opposite direction.

Proof. As c being close to 0, a∗(c, T ) is close to 1, and thus the term on left side of inequality (3.4)

is close to −1
2(1− e−2λT ) < 0.

That is because when c is close to 0, a∗(c, T ) is close to 1, and the interval in which Firm 1

does not search while Firm 2 searches is very small, and thus the chance for Firm 2 to win is too

low when aI1 > a∗(c, T ), even though the expected cost of searching is low as well.
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3.6.2 Region 1

Since there are multiple equilibria in the benchmark case when (c, T ) lies in Region 1, whether a

head start hurts or bene�ts a �rm depends on which equilibrium we compare to. If we compare

the two equilibria in each of which Firm 1 does not search and Firm 2 searches, then the head

start bene�ts Firm 1 and hurts Firm 2. If we compare to the other equilibrium in the benchmark

case, the outcome is not clear-cut.

Proposition 3.5. Suppose aI2 = 0. In Region 1, in which c > 1
2λ(1 + e−λT ) and a∗(c, T ) = 0, for

aI1 ∈ (0, F−1(1− c
λ)), if

(1− e−λT )(1− c

λ
)− e−λT [1−F (aI1)] < 0, (3.5)

Firm 1's equilibrium payo� is higher than its expected payo� in any equilibrium in the benchmark

case. If the inequality holds in the opposite direction, Firm 1's equilibrium payo� is lower than its

payo� in the equilibrium in which Firm 1 searches and Firm 2 does not search in the benchmark

case.

This result is straightforward. The �rst term on the left side of inequality (3.5) is Firm 1's

expected payo� in the equilibrium in which Firm 1 searches and Firm 2 does not in the benchmark

case and the second term, excluding the minus sign, is its expected payo� when there is no head

start.

Moreover, the left hand side of inequality (3.5) strictly increases in T , and it reaches −1 when

T approaches 0 and 1 − c
λ when T approaches in�nity. The intermediate value theorem insures

that inequality (3.5) holds in the opposite direction for the deadline T being large.

As a result of the above property, when the head start is small and the deadline is long, in an

extended game in which Firm 1 can publicly discard its head start before the contest starts, there

are two subgame perfect equilibria: in one equilibrium, Firm 1 does not discard its head start and

Firm 2 searches with the Firm 1's initial innovation value as the cut-o�; in the other equilibrium,

Firm 1 discards the head start and searches with 0 as the cut-o� and Firm 2 does not search.

Hence, there is the possibility that Firm 1 can improve its expected payo� if it discards its head

start.

Last, we discuss Firm 2's expected payo�. The result is also straightforward.

Proposition 3.6. Suppose aI2 = 0. In Region 1, in which c > 1
2λ(1 + e−λT ), for aI1 ∈ (0, F−1(1−

c
λ)), Firm 2's equilibrium payo� is
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• less than its expected payo� in the equilibrium in which Firm 1 does not search and Firm 2

searches in the benchmark case, and

• higher than the payo� in the equilibrium in which Firm 1 searches and Firm 2 does not

search in the benchmark case.

Proof. Compared to the equilibrium in which Firm 2 searches in the benchmark case, in the

equilibrium when Firm 1 has a head start, Firm 2 has a lower expected probability of winning and

a higher expected cost because of a higher cut-o�, and and thus a lower expected payo�. But this

payo� is positive.

3.7 Extended Dynamic Models (aI1 > aI2)

In this section, we study two extended models.

3.7.1 Endogenous Head Starts

We �rst study how the �rms would play if each �rm has the option to discard its initial innovation

before the contest starts. Formally, a game proceeds as below.

Model∗:

• Stage 1: Firm i decides whether to discard its initial innovation.

• Stage 2: Firm i's opponent decides whether to discard its initial innovation.

• Stage 3: Upon observing the outcomes in the previous stages, both �rms simultaneously

start playing the contest as described before.

The incentive for a head starter to discard its initial innovation when the latecomer has no

initial innovation has been studied in the previous section. The focus of the section is on the

case in which both �rms have an initial innovation in the middle range.16 The main result of this

section is as follows.

Proposition 3.7. Suppose aI1, a
I
2 ∈ (a∗L, F

−1(1 − c
λ)). In Model∗ with Firm 1 having the �rst

move, there is a T̆ (aI1, a
I
2) > 0 such that

16As shown in Proposition 3.2, when (c, T ) lies in Regions 2 and 3, the head starter with a medium-sized initial
innovation has no incentive to discard its head start if the latecomer has a no innovation. The head starter would
also have no incentive to discard its initial innovation when the latecomer has a low-value initial innovation.
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• if T > T̆ (aI1, a
I
2), there is a unique subgame perfect equilibrium (SPE), in which Firm 1

discards its initial innovation and searches with aI2 as the cut-o� and Firm 2 keeps its initial

innovation and does not search;

• if T < T̆ (aI1, a
I
2), subgame perfect equilibria exist, and in each equilibrium Firm 2 searches

with aI1 as the cut-o� and Firm 1 keeps its initial innovation and does not search.

Proof. See Appendix 3.A.4.

This proposition shows that in the prescribed scenario Firm 1 is better o� giving up its initial

innovation if the deadline is long.17 The intuition is simple. For the deadline being long, Firm 1's

expected payo� is low, because its probability of winning is low. By giving up its initial innovation,

it makes Firm 2 the head starter, and thus Firm 1 obtains a higher expected payo� than before

by committing to searching whereas Firm 2 has no incentive to search. Yet the reasoning for the

case in which c ≤ λ
2 di�ers from that for the case in which c > λ

2 . After Firm 1 discards its

initial innovation, Firm 2 turns to the new head start �rm. In the former case, Firm 2 would then

have no incentive to discard its initial innovation any more as shown in Proposition 3.2, and its

dominant strategy in the subgame is not to search whether Firm 1 is to search or not. In the latter

case, Firm 2 may have the incentive to discard its initial innovation and search if the deadline is

17Discarding a head start is one way to give up one's initial leading position. In reality, a more practical
and credible way is to give away the head start innovation. A head start �rm could give away it patent
for its technology. By doing so, any �rm can use this technology for free. That is, every �rm's initial state
becomes aI1. If �rms can enter the competition freely, the value of the head start technology is approximately
zero to any single �rm, because everyone has approximately zero probability to win with this freely obtained
innovation. For a head start being in the middle range, the market is not large enough to accommodate two
�rms to compete. Hence, to model giving away head starts with free entry to the competition, we can study a
competition between two �rms but with some modi�ed prize allocation rules. Formally, the game proceeds as below.

Model∗∗:

• Stage 1: Firm 1 decides whether to give away its initial innovation.

• Stage 2: Upon observing the stage 1 outcome, Firm 1 and Firm 2 simultaneously start playing the contest
as described before.

• If Firm 1 gives away its initial innovation:

� Both �rms' states at time 0 become aI1.

� The prize is retained if no �rm is in a state above aI1 at the deadline T .

� The �rm with a higher state, which is higher than aI1, at the deadline wins.

• If Firm 1 retains its initial innovation, the �rm with a higher state at the deadline wins.

Suppose aI1 ∈ (a∗L, F
−1(1− c

λ
)). If the deadline is long, in Model∗∗ there are two subgame perfect equilibria. In

one equilibrium, Firm 1 gives away its initial innovation and searches with aI1 as the cut-o� and Firm 2 does not
search. In the other equilibrium, Firm 1 retains its initial innovation and does not search and Firm 2 searches with
aI1 as the cut-o�. However, forward induction selects the �rst equilibrium as the re�ned equilibrium, because giving
away a head start is a credible signal of Firm 1 to commit to search.
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long. However, discarding the initial innovation is a credible threat for Firm 1 to deter Firm 2

from doing that.

Remark. When the deadline is su�ciently long, by giving up the initial innovation, Firm 1

makes itself better o� but Firm 2 worse o�. However, if the deadline is not too long, by doing

so, Firm 1 can bene�t both �rms. This is because the total expected cost of searching after Firm

1 discards its initial innovation is lower than before and hence there is an increase in the total

surplus for the two �rms. It is then possible that both �rms get a share of the increase in the

surplus. We illustrate that in the following example.

Example 3.1. Suppose F is the uniform distribution, c = 1
3 , λ = 1, aI1 = 1

2 , and a
I
2 = 1

3 . If

Firm 1 discards its initial innovation, then its expected payo� would be 1
2(1− e−

T
3 ), and Firm 2's

expected payo� would be e−
T
3 ; if Firm 1 does not discard its initial innovation, then its expected

payo� would be e−
T
2 , and Firm 2's expected payo� would be 1

3(1− e−
T
2 ).

Firm 1 would be better o� by discarding its initial innovation if T > 2.52. If T ∈ (2.52, 3.78),

by discarding the initial innovation, Firm 1 makes both �rms better o�. If T is larger, then doing

so would only make Firm 2 worse o�.

The previous result is conditional on Firm 1 having the �rst move. If Firm 2 has the �rst move,

it may, by discarding its initial innovation, be able to prevent Firm 1 from discarding its own head

start and committing to searching. However, if the deadline is not su�ciently long, Firm 1 would

still have the incentive to discard its initial innovation.

Proposition 3.8. Suppose aI1, a
I
2 ∈ (a∗L, F

−1(1 − c
λ)). In Model∗ with Firm 2 having the �rst

move, there is a T̂ (aI1, a
I
2) > 0 such that

• for T > T̂ (aI1, a
I
2), there is a unique SPE, in which Firm 2 discards its initial innovation and

searches with aI2 as the cut-o� and Firm 1 keeps the initial innovation and does not search;

• for T ∈ (T̆ (aI1, a
I
2), T̂ (aI1, a

I
2)), there is a unique SPE, in which Firm 2 keeps its initial

innovation and does not search and Firm 1 discards its initial innovation and searches with

aI1 as cut-o�;

• for T < T̆ (aI1, a
I
2), subgame perfect equilibria exist, and in each equilibrium Firm 2 searches

with cut-o� aI1 and Firm 1 keeps its initial innovation and does not search.

Proof. See Appendix 3.A.4.

In the middle range of the deadline, even though Firm 2 can credibly commit to searching and

scare Firm 1 away from competition by discarding its initial innovation, it is not willing to do so,
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yet Firm 1 would like to discard its initial innovation and commit to searching. This is because

Firm 1's initial innovation is of a higher value than Firm 2's. The cut-o� value of the deadline at

which Firm 2 is indi�erent between discarding the initial innovation to commit to searching, and

keeping the initial innovation, is higher than that of Firm 1.

3.7.2 Intermediate Information Disclosure

In the software industry, it is common to preannounce with a long lag to launch (Bayus et al.,

2001). Many �rms do that by describing the expected features or demonstrating prototypes at

trade shows. Many other �rms publish their �ndings in a commercial disclosure service, such as

Research Disclosure, or in research journals.18 Suppose there is a regulator who would like to

impose an intermediate information disclosure requirement on innovation contests. What are the

e�ects of the requirement on �rms' competition strategies and the expected value of the winning

innovation. Speci�cally, suppose there is a time point t0 ∈ (0, T ) at which both �rms have to

reveal everything they have, how would �rms compete against each other?

When the head start aI1 is larger the threshold F−1(1 − c
λ), it is clear that no �rm has an

incentive to conduct any search. When the head start is below this threshold, if t0 is very close to T ,

information revelation has little e�ect on the �rms' strategies. Both �rms will play approximately

the same actions before time t0 as they do when there is no revelation requirement. After time

t0, the �rm in a higher state at time t0 stops searching. The other �rm searches with this higher

state as the cut-o� if this higher state is below F−1(1 − c
λ), and stops searching as well if it is

higher than F−1(1− c
λ).

Our main �nding in this part regards the cases in which the head start is in the middle range

and the deadline is su�ciently far from the information revelation point.19 That is, �rms have to

reveal their progress at an early stage of a competition.

Proposition 3.9. Suppose at a time point t0 ∈ (0, T ) both �rms have to reveal their discoveries.

For aI1 ∈ (a∗L, F
−1(1 − c

λ)) and aI2 < aI1, if T − t0 is su�ciently large, there is a unique subgame

perfect equilibrium, in which

• Firm 1 searches with F−1(1− c
λ) as the cut-o� before time t0 and stops searching from time

t0;

18Over 90% of the world's leading companies have published disclosures in Research Disclosure's pages (see
www.researchdisclosure.com).

19Generally, for the cases in which aI1 < a∗L, there are many subgame perfect equilibria, including two equilibria
in each of which one �rm searches with F−1(1 − c

λ
) as the cut-o� between time 0 and time t0 and the other �rm

does not.
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• Firm 2 does not search before time t0 and searches with aI1 as the cut-o� from time t0 if

aI1 < F−1(1− c
λ).

Proof. See Appendix 3.A.4.

In the proof, we show that between time 0 and time t0, the dominant action of Firm 2 is not

to search, given that the equilibria in the subgames from time t0 are described as in Theorem 3.2.

If Firm 1 is in a state higher than the threshold F−1(1 − c
λ) at time t0, Firm 2's e�ort will be

futile if it searches before time t0. If Firm 1 is in a state in between its initial state aI1 and and

the threshold F−1(1− c
λ) at time t0, Firm 2 has the chance to get into a state above the threshold

F−1(1− c
λ) and thus a continuation payo� of 1, but this instantaneous bene�t only compensates

the instantaneous cost of searching. Firm 2 also has the chance to get into a state above that of

Firm 1 but below the threshold F−1(1 − c
λ) at time t0, which results in a continuation payo� of

approximately 0 if the deadline is su�ciently long, whereas it obtains a strictly positive payo� if

it does not search before time t0. It is thus not worthwhile for Firm 2 to conduct a search before

time t0. If Firm 2 does not search before time t0, Firm 1 then has the incentive to conduct a

search if the deadline is far from t0. If it does not search, it obtains a payo� of approximately 0

when T − t0 is su�ciently large. If it conducts a search before time t0, the bene�t from getting

into a higher state can compensate the cost.

An early stage revelation requirement therefore hurts the latecomer and bene�ts the head

starter. It gives the head starter a chance to get a high-value innovation so as to deter the

latecomer from competition. It also increases the expected value of the winning innovation.

3.8 Discussion: Asymmetric Costs (aI1 = aI2 = 0, c1 < c2)

In this section, we show that, compared to the e�ects of head starts, the e�ects of cost advantages

are simpler. A head start probably discourages a �rm from conducting searching and can either

discourage its competitor from searching or encourage its competitor to search more actively. In

contrast, a cost advantage encourages a �rm to search more actively and discourages its opponent.

We now assume that the value of pre-speci�ed prize to Firm i, i = 1, 2, is Vi and that the

search cost is for Firm i is Ci per unit of time. However, at each time point Firm i only makes a

binary decision on whether to stop searching or to continue searching. Whether it is pro�table to

continue searching depends on the ratio of Ci
Vi

rather than the scale of Vi and Ci. Therefore, we

can normalize the valuation of each player to be 1 and the search cost to be Ci
Vi

=: ci. W.l.o.g, we
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assume c1 < c2. For convenience, we de�ne a function

I(ai|aj , ci) := λ

∫ ā

ai

[Z(a|aj)− Z(ai|aj)]dF (a)− ci,

where Z(a|aj) is de�ned, in Lemma 3.5 in the appendix, as Firm j's probability of ending up in

a state below a if it searches with aj as the cut-o�. We emphasize on the most important case,

in which both �rms' search costs are low.

Proposition 3.10. For 0 < c1 < c2 <
1
2λ(1−e−λT ), there must exist a unique equilibrium (a∗1, a

∗
2),

in which a∗1 > a∗2 ≥ 0. Speci�cally,

1. if I
(

0|F−1
(

1−
√

2c1
λ(1−e−λT )

)
, c2

)
> 0, the unique equilibrium is a pair of cut-o� rules

(a∗1, a
∗
2), a∗1 > a∗2 > 0, that satisfy

λ

∫ ā

a∗i

[
Z(a|a∗j , T )− Z(a∗i |a∗j , T )

]
dF (a) = ci;

2. if I
(

0|F−1
(

1−
√

2c1
λ(1−e−λT )

)
, c2

)
≤ 0, the unique equilibrium is a pair of cut-o� rules(

F−1
(

1−
√

2c1
λ(1−e−λT )

)
, 0
)
.

Proof. See Appendix 3.A.5.

The existence of equilibrium is proved by using Brouwer's �xed point theorem. As expected,

a cost (valuation) advantage would drive a �rm to search more actively than its opponent. The

following statement shows that while an increase in cost advantage of the �rm in advantage would

make the �rm more active in searching and its opponent less active, a further cost disadvantage

of the �rm in disadvantage would make both �rms less active in searching.

Proposition 3.11. For 0 < c1 < c2 <
1
2λ(1 − e−λT ) and I

(
0|F−1

(
1−

√
2c

λ(1−e−λT )

)
, c2

)
> 0,

in which case there is a unique equilibrium (a∗1, a
∗
2), a∗1, a

∗
2 > 0,

1. for �xed c2,
∂a∗1
∂c1

< 0 and
∂a∗2
∂c1

> 0;

2. for �xed c1,
∂a∗1
∂c2

< 0 and
∂a∗2
∂c2

< 0.

Proof. See Appendix 3.A.5.

The intuition is simple. When the cost of the �rm in advantage decreases, this �rm would

be more willing to search, while the opponent �rm would be discouraged because the marginal

increase in the probability of winning from continuing searching in any state is reduced, and
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c2 \ c1 Region 1 Region 2 Region 3

Region 1 (a∗1, a
∗
2)

(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)

(0,−1)

Region 2 / (0, 0) (0,−1)

Region 3 / / (0,−1), (−1, 0)

Table 3.1: Equilibria in all non-marginal cases.

therefore the opponent �rm would lower its cut-o�. When the cost of the �rm at a disadvantage

increases, the �rm would be less willing to search, and the opponent �rm would consider it less

necessary to search actively because the probability of winning in any state has increased.

A comparison between the equilibrium strategies in this model and that of the benchmark

model can be made.

Corollary 3.5. For 0 < c1 < c2 <
1
2λ(1 − e−λT ) and I

(
0|F−1

(
1−

√
2c

λ(1−e−λT )

)
, c2

)
> 0, in

which case there is a unique equilibrium (a∗1, a
∗
2), a∗1 > a∗2 > 0, a∗1 and a∗2 satisfy

1. a∗1 < a∗(c, T ) for the corresponding c = c2 > c1;

2. a∗2 < a∗(c, T ) for the corresponding c = c1 < c2.

Based on the benchmark model, a cost reduction for Firm 1 will result in both �rms searching

with cut-o�s below the original one; a cost increase for Firm 2 will certainly result in Form 2

searching with a cut-o� below the original one.

The equilibrium for the other non-marginal cases (conditional on c1 < c2), together with the

above case, are stated in Table 3.1 without proof. The regions in Table 3.1 are the same as in

Figure 3.1. The row (column) number indicates in which region c1 (c2) lies, and each element

in each cell represents a corresponding equilibrium. For example, the element in the cell at the

second row and the second column means that for c1, c2 ∈ (1
2λ(1− e−λT ), 1

2λ(1 + e−λT )), there is

a unique equilibrium, in which both �rms search with cut-o� 0. This shows that Firm 1 is more

active in searching than is Firm 2.

Remark. Similar results can be found in a model with the same search cost but with di�erent

arrival rates of innovations for the two �rms.
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3.9 Concluding Remarks

In this chapter, we studied the long-run e�ects of head starts in innovation contests in which each

�rm decides when to stop a privately observed repeated sampling process before a preset deadline.

Unlike an advantage in innovation cost or innovation ability, which encourages a �rm to search

more actively for innovations and discourages its opponent, a head start has non-monotone e�ects.

The head starter is discouraged from searching if the head start is large, and its strategy remains

the same if the head start is small. The latecomer is discouraged from searching if the head start

is large but is encouraged to search more actively if it is in the middle range. Our main �nding

is that, if the head start is in the middle range, in the long run, the head starter is doomed to

lose the competition with a payo� of zero and the latecomer will take the entire surplus for the

competing �rms. As a consequence, our model can exhibit either the �preemption e�ect� or the

�replacement e�ect�, depending on the value of the head start.

Our results have implications on antitrust problems. Market regulators have concerns that the

existence of market dominating �rms, such as Google, may hinder competitions, and they take

measures to curb the monopoly power of these companies. For instance, the European Union voted

to split Google into smaller companies.20 Our results imply that in many cases the positions of the

dominant �rms are precarious. In the long run, they will be knocked o� their perch. These �rms'

current high positions, in fact, may promote competitions in the long run because they encourage

their rivals to exert e�orts to innovate and reach high targets. Curbing the power of the current

dominating �rms may bene�t the society and these �rms' rivals in the short run, but in the long

run it hurts the society because it discourages innovation. However, the the dominating �rms'

positions are excessively high, which deters new �rms from entering the the market, a market

regulator could take some actions.

The results have also implications on R&D policies. When selecting an R&D policy, policy

makers have to consider both the nature of the R&D projects and the market structure. If the

projects are on radical innovations, subsidizing innovation costs e�ectively increases competition

when the market is blank (no advanced substitutive technology exists in the market). However,

when there is a current market dominating �rm with an existing advanced technology, a subsidy

may not be e�ective. The dominating �rm has no incentive to innovate, and the latecomer, even

if it is subsidized, will not innovate more actively.

In our model we have only one head starter and one latecomer. The model can be extended to

20�Google break-up plan emerges from Brussels,� Financial Times, November 21, 2014.
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include more than two �rms, and similar results still hold. One extension is to study the designing

problem in our framework. For example, one question is how to set the deadline. If the designer

is impatient, she may want to directly take the head starter's initial innovation without holding a

contest; if she is patient, she may set a long deadline in order to obtain a better innovation. Some

other extensions include: to consider a model with a stochastic number of �rms; to consider a

model with cumulative scores with or without regret instead of a model with repeated sampling.

3.A Appendix

3.A.1 Preliminaries

To justify Assumption 3.1, we show in the following that, for any given strategy played by a �rm's

opponent, there is a constant cut-o� rule being the �rm's best response. If the cut-o� value is

above zero, it is actually the unique best response strategy, ignoring elements associated with zero

probability events. We argue only for the case that both �rms' initial states are 0. The arguments

for the other cases are similar and thus are omitted.

Suppose aI1 = aI2 = 0. For a given strategy played by Firm j, we say at time t

ati := inf{ã ∈ A|Firm i weakly prefers stopping to continuing searching in state ã}

is Firm i's lower optimal cut-o� and

āti := inf{ã ∈ A|Firm i strictly prefers stopping to continuing searching in state ã}

is Firm i's upper optimal cut-o� .

Lemma 3.4. Suppose aI1 = aI2 = 0. For any �xed strategy played by Firm j, Firm i's best response

belongs to one of the three cases.

i. Not to search: āti = ati = −1 for all t ∈ [0, T ],

ii. Search with a constant cut-o� rule âi ≥ 0: āti = ati = âi ≥ 0 for all t ∈ [0, T ].

iii. Both not to search and search until being in a state above 0: āti = 0 and ati = −1 for all

t ∈ [0, T ).

Proof of Lemma 3.4. Fix a strategy of Firm j. Let P (a) denote the probability of Firm j

ending up in a state below a at time T . P (a) is either constant in a or strictly increasing in a.

It is a constant if and only if Firm j does not search.21 If this is the case, Firm i's best response
21More generally, it is constant if and only if the opponent �rm conducts search with a measure 0 over [0, T ].

81



is to continue searching with a �xed cut-o� âti = āti = ati = 0 for all t. In the following, we study

the case in which P (a) is strictly increasing in a.

Step 1. We argue that, given a �xed strategy played by Firm j, Firm i's best response is a

(potentially history-dependent) cut-o� rule. Suppose at time t Firm i is in a state ã ∈ [0, 1]. If it

is strictly marginally pro�table to stop (continue) searching at t, then it is also strictly marginally

pro�table to continue searching if it is in a state higher (lower) than ã. Let the upper and lower

optimal cut-o�s at time t be āti and a
t
i, respectively, as de�ned previously.

Step 2. We show that {āti}Tt=0 and {ati}Tt=0 should be history-independent. We use a discrete

version to approximate the continuous version. Take any t̃ ∈ [0, T ). Let {tl}kl=0, where tl − tl−1 =
T−t̃
k =: δ for l = 1, ..., k, be a partition of the interval [t̃, T ]. Suppose Firm i can only make decisions

at {tl}kl=0 in the interval [t̃, T ]. Let {ātl}k−1
l=0 and {atl}k−1

l=0 be the corresponding upper and lower

optimal cut-o�s, respectively, and Gδ(a) be Firm i's probability of discovering no innovation with

a value above a in an interval δ.

At tk−1, for Firm i in a state a, if it stops searching, the expected payo� is P (a); if it continues

searching, the expected payo� is

Gδ(a)P (a) +

∫ 1

a
P (ã)dGδ(ã)− δci

=P (a) +

∫ 1

a
[P (ã)− P (a)]dGδ(ã)− δci.

The �rm strictly prefers continuing searching if and only if searching in the last period strictly

increases its expected payo�,

eδ(a) :=

∫ 1

a
[P (ã)− P (a)]dGδ(ã)− δci > 0.

eδ(a) strictly decreases in a and eδ(1) ≤ 0. Because eδ(0) can be either negative or positive, we

have to discuss several cases.

Case 1. If eδ(0) < 0, Firm i is strictly better o� stopping searching in any state a ∈ [0, 1]. Thus,

ātk−1 = atk−1 = −1.

Case 2. If eδ(0) = 0, Firm i is indi�erent between stopping searching and continuing searching

with 0 as the cut-o�, if it is in state 0; strictly prefers stopping searching, if it is in any state above

0. Then ātk−1 = 0 and atk−1 = −1.

Case 3. If eδ(0) > 0 ≥ lima→0 e
δ(a), Firm i is strictly better o� continuing searching in state 0,

but stopping searching once it is in a state above 0. Thus, ātk−1 = atk−1 = 0.

Case 4. If lima→0 e
δ(a) > 0, then Firm i's is strictly better o� stopping searching if it is in a

state above âtk−1 and continuing searching if it is in a state below âtk−1 , where the optimal cut-o�
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âtk−1 > 0 is the unique value of a that satis�es,∫ 1

a
[P (ã)− P (a)]dGδ(ã)− δc = 0.

Thus, in this case ātk−1 = atk−1 = âtk−1 .

Hence, the continuation payo� at tk−1 ≥ 0 for Firm i in a state a ∈ [0, 1] is

ω(a) =

P (a) +
∫ 1
a [P (ã)− P (a)]dGδ(ã)− δc for a < atk−1

P (a) for a ≥ atk−1 .

Then, we look at the time point tk−2. In the following, we argue that ātk−2 = ātk−1 . The

argument for atk−2 = atk−1 is very similar and thus is omitted.

First, we show that ātk−2 ≤ ātk−1 . Suppose ātk−2 > ātk−1 . Suppose Firm i is in state ātk−2 at

time tk−2. Suppose Firm i searches between tk−2 and tk−1. If it does not discover any innovation

with a value higher than ātk−2 , then at the end of this period it stops searching and takes ātk−2 .

However, ātk−2 > ātk−1 implies

0 =

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)− δci

<

∫ 1

ātk−1

[P (ã)− P (ātk−1)]dGδ(ã)− δc ≤ 0.

The search cost is not compensated by the increase in the probability of winning from searching

between tk−2 and tk−1, and thus the �rm strictly prefers stopping searching to continuing searching

at time tk−2, which contradicts the assumption that ātk−2 is the upper optimal cut-o�. Hence, it

must be the case that ātk−2 ≤ ātk−1 .

Next, we show that ātk−2 = ātk−1 .

In Case 1, it is straightforward that Firm i strictly prefers stopping searching at tk−2, since

it is for sure not going to search between tk−1 and tk. Hence, Firm i stops searching before tk−1,

and ātk−2 = ātk−1 = atk−2 = atk−1 = −1.

For ātk−1 ≥ 0, we prove by contradiction that ātk−2 < ātk−1 is not possible. Suppose the

inequality holds. If Firm i stops searching at tk−2, it would choose to continue searching at

tk−1, and its expected continuation payo� at tk−2 is ω(ātk−2). If the �rm continues searching, its

expected continuation payo� is

ω(ātk−2) +

∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)− δc. (3.6)
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In Cases 2 and 3, ātk−1 = 0 implies ātk−2 = −1. Then,∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)− δci

=

∫ 1

−1
[P (a)]dGδ(a)− δci

=eδ(−1)

≥0

which means that Firm i in state 0 is weakly better o� continuing searching between tk−2 and

tk−1, which implies that ātk−2 ≥ 0, resulting in a contradiction.

For Case 4, in which ātk−1 > 0, we have in (3.6)∫ 1

ātk−2

[ω(a)− ω(ātk−2)]dGδ(a)

=

∫ ātk−1

ātk−2

[(
P (a) +

∫ 1

a
[P (ã)− P (a)]dGδ(ã)

)
−
(
P (ātk−2) +

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

)]
dGδ(a)

+

∫ 1

ātk−1

[
P (a)−

(
P (ātk−2) +

∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

)]
dGδ(a)

=

∫ 1

ātk−2

[
P (a)− P (ātk−2)

]
dGδ(a) +

∫ ātk−1

ātk−2

[∫ 1

a
[P (ã)− P (a)]dGδ(ã)

]
dGδ(a)

−
∫ 1

ātk−2

[∫ 1

ātk−2

[P (ã)− P (ātk−2)]dGδ(ã)

]
dGδ(a)

=Gδ(ātk−2)

∫ 1

ātk−2

[
P (a)− P (ātk−2)

]
dGδ(a) +

∫ ātk−1

ātk−2

[∫ 1

a
[P (ã)− P (a)]dGδ(ã)

]
dGδ(a)

>0.

Hence, at tk−2 Firm i would strictly prefer continuing searching, which again contradicts the

assumption that ātk−2 is the upper optimal cut-o�. Consequently, ātk−2 = ātk−1 .

By backward induction from tk−1 to t0, we have āt0 = ātk−1 . Taking the limit we get

āt = lim
δ→0

āT−δ =: ā for all t ∈ [0, T ).

Similarly,

at = lim
δ→0

aT−δ =: a for all t ∈ [0, T ).

In addition, ā 6= a when and only when ā = 0 and a = −1.

As a consequence, Firm i's best response is not to search, if ā = a = −1; to continue searching
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if it is in a state below ā and to stop searching once the �rm in a state above ā, if ā = a ≥ 0.

In brief, the above property is proved by backward induction. Take Case [ii] for example. If

at the last moment a �rm is indi�erent between continuing and stopping searching when it is in

a certain state, which means the increase in the probability of winning from continuing searching

equals the cost of searching, and therefore there is no gain from searching. Immediately before the

last moment the �rm should also be indi�erent between continuing searching and not given the

same state. This is because, if the �rm reaches a higher state from continuing searching, it weakly

prefers not to search at the last moment, and thus the increase in the probability of winning from

continuing searching at this moment equals the cost of searching as well. By induction, the �rm

should be indi�erent between continuing and stopping searching in the same state from the very

beginning.

In Case [iii], Firm i generally has uncountably many best response strategies. By Assump-

tion 3.1, we rule out most strategies and consider only two natural strategies: not to search at all

and to search with 0 as the cut-o�.

Lemma 3.5. Suppose a �rm's initial state is 0, and she searches with a cut-o� â ≥ 0. Then, the

�rm's probability of ending up in a state below a ∈ [0, 1] at time T is

Z(a|â, T ) =


0 if a = 0

e−λT [1−F (a)] if 0 < a ≤ â

e−λT [1−F (â)] +
[
1− e−λT [1−F (â)]

] F (a)−F (â)
1−F (â) if a > â.

1−e−λT [1−F (â)] is the probability that the �rm stops searching before time T, and F (a)−F (â)
1−F (â) is

the conditional probability that the innovation above the threshold the �rm discovers is in between

â and a.

Proof of Lemma 3.5. For a = 0, it is clear that Z(a|â, T ) = 0.

For 0 < a ≤ â,

Z(a|â, T ) =

∞∑
l=0

e−λT (λT )l

l!
F l(a) = e−λT [1−F (a)].

For a > â, we approximate it by a discrete time model. Let {tl}kl=0, where 0 = t0 < t1 < ... <

tk = T , be a partition of the interval [0, T ], and let δl = tl − tl−1 for l = 1, 2, ..., k. De�ne π as

‖ π ‖= max
1≤l≤k

|δl|.
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Then,

Z(a|â, T ) =Z(â|â, T ) + lim
‖π‖→0

k∑
l=1

Z(a|â, tl−1)

[ ∞∑
n=1

e−λδl(λδl)
n

n!
[Fn(a)− Fn(â)]

]

=Z(â|â, T ) + lim
‖π‖→0

k∑
l=1

e−λtl−1[1−F (â)]λe−λδl
(
[F (a)− F (â)] +O(δl)

)
δl

=Z(â|â, T ) +

∫ T

0
λe−λt[1−F (â)][F (a)− F (â)]dt

=Z(â|â, T ) +
[
1− e−λT [1−F (â)]

] F (a)− F (â)

1− F (â)
,

where the second term on the right hand side of each equality is the �rm's probability of ending

up in a state between â and a. The term Z(â|â, tn) used here is a convenient approximation when

δl is small. The second equality is derived from the fact that

∞∑
n=2

(λδl)
n

n!
[Fn(a)− Fn(a∗)] <

λ2δ2
l

2(1− λδl)
= o(δl).

Lemma 3.6. Given a > a′, Z(a|ã, T )− Z(a′|ã, T )

1. is constant in ã for ã ≥ a;

2. strictly decreases in ã for ã ∈ (a′, a);

3. strictly increases in ã for ã ≤ a′.

This single-peaked property says that the probability of ending up in a state between a′ and a

is maximized if a �rm chooses strategy a′.

Proof of Lemma 3.6. First, we show that 1−e−λTx
x strictly decreases in x over (0, 1] as follows.

De�ne s := λT and take x1, x2, 0 < x1 < x2 ≤ 1, we have

1− e−sx1

x1
>

1− e−sx2

x2
,

implied by

∂(1− e−sx1)x2 − (1− e−sx2)x1

∂s
= x1x2(e−sx1 − e−sx2) ≥ 0 (= 0 i� s = 0) and

(1− e−sx1)x2 − (1− e−sx2)x1 = 0 for s = 0.
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Next, de�ne x := 1− F (a), x′ := 1− F (a′), and x̃ := 1− F (ã). We have

Z(a|ã, T )− Z(a′|ã, T ) =


e−λTx − e−λTx′ for ã ≥ a

(1− e−λTx′)− (1− e−λT x̃)xx̃ for ã ∈ (a′, a)

(1− e−λT x̃)x
′−x
x̃ for ã ≤ a′.

It is independent of ã for ã ≥ a, strictly increasing in x̃ and thus strictly decreasing in ã for ã ≤ a′,
and strictly decreasing in x̃ and thus strictly increasing in ã for ã ≤ a′.

Lemma 3.7. Suppose Firm j with initial state 0 plays a strategy âj. Then, the instantaneous

gain on payo� from searching for Firm i in a state a is

λ

∫ 1

ai

[Z(a|âj , T )− Z(ai|âj , T )]dF (a)− c.

Proof of Lemma 3.7. For convenience, denote H(a) as Z(a|âj , T ) for short. The instantaneous

gain from searching for Firm i in a state ai is

lim
δ→0

(
e−λδH(ai) + λδe−λδ

[∫ 1
ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

)
−H(ai)

δ

= lim
δ→0

−(1− e−λδ)H(ai) + λδe−λδ
[∫ 1
ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

δ

= lim
δ→0

−λδe−λδH(ai) + λδe−λδ
[∫ 1
ai
H(a)dF (a) + F (ai)H(ai)

]
+ o(δ)− δc

δ

=− λH(ai) + λ

[∫ 1

ai

H(a)dF (a) + F (ai)H(ai)

]
− c

=λ

∫ 1

ai

[Z(a|âj , T )− Z(ai|âj , T )] dF (a)− c.

3.A.2 Proofs for the Benchmark Case

Proof of Theorem 3.1. We prove the theorem case by case.

Case[i]. When Firm i does not search, Firm j's best response is to search with cut-o� 0. For
1
2λ(1 + e−λT ) ≤ c, when Firm j searches with any cut-o� aj ≥ 0, Firm i's best response is not to
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search, since the instantaneous gain from searching for Firm i in state 0 is

λ

∫ 1

0
Z(a|aj , T )dF (a)− c

≤λ
∫ 1

0
Z(a|0, T )dF (a)− c

=λ

∫ 1

0

[
e−λT + (1− e−λT )F (a)]dF (a)− c

=λ

[
e−λT +

1

2
(1− e−λT )

]
− c

=
1

2
λ(1 + e−λT )− c

≤0 (= 0 i�
1

2
λ(1 + e−λT ) = c),

where the �rst inequality follows from Lemma 3.6. Hence, there are two pure strategy equilibria,

in each of which one �rm does not search and the other �rm searches with 0 as the cut-o�, and if
1
2λ(1 + e−λT ) = c there is also an equilibrium in which both �rms search with 0 as the cut-o�.

Case [ii]. First, we show that any strategy with a cut-o� value higher than zero is a dominated

strategy. When Firm j does not search, Firm i prefers searching with 0 as the cut-o� to any

other strategy. Suppose Firm j searches with âj ≥ 0 as the cut-o�. The instantaneous gain from

searching for Firm i in a state ai > 0 is

λ

∫ 1

ai

[Z(a|âj , T )− Z(ai|âj , T )]dF (a)− c

≤λ
∫ 1

ai

[Z(a|ai, T )− Z(ai|ai, T )]dF (a)− c

=
1

2
λ(1− e−λT )[1− F (ai)]

2 − c

<0,

where the �rst inequality follows from Lemma 3.6. Hence, once Firm i is in a state above 0, it

has no incentive to continue searching any more. In this case, Firm i prefers either not to conduct

any search or to search with 0 as the cut-o� to any strategy with a cut-o� value higher than zero.

Second, we show that the prescribed strategy pro�le is the unique equilibrium. It is su�cient

to show that searching with 0 as the cut-o� is the best response to searching with 0 as the cut-o�.

Suppose Firm j searches with 0 as the cut-o�, the instantaneous gain from searching for Firm i
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in state a = 0 is

λ

∫ 1

0
Z(a|0, T )dF (a)− c

=
1

2
λ(1 + e−λT )− c

>0.

That is, Firm i is strictly better o� continuing searching if it is in state 0, and strictly better

o� stopping searching once it is in a state above 0. Hence, the prescribed strategy pro�le is the

unique equilibrium.

Case [iii]. First, we prove that among the strategy pro�les in which each �rm searches with a

cut-o� higher than 0, the prescribed symmetric strategy pro�le is the unique equilibrium. Suppose

a pair of cut-o� rules (a∗1, a
∗
2), in which a∗1, a

∗
2 > 0, is an equilibrium, then Firm i in state a∗i is

indi�erent between continuing searching and not. That is, by Lemma 3.7, we have

λ

∫ 1

a∗i

[
Z(a|a∗j , T )− Z(a∗i |a∗j , T )

]
dF (a)− c = 0. (3.7)

Suppose a∗1 6= a∗2. W.l.o.g., we assume a∗1 < a∗2. Then,

c =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)

>λ

∫ 1

a∗2

[Z(a|a∗2, T )− Z(a∗2|a∗2, T )]dF (a)

>λ

∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a) = c

resulting in a contradiction. Hence, it must be the case that a∗1 = a∗2.

Next, we show the existence of equilibrium by deriving the unique equilibrium cut-o� value

a∗ := a∗1 = a∗2 explicitly. Applying Lemma 3.5 to (3.7), we have

λ

∫ 1

a∗

[
1− e−λT [1−F (a∗)]

] F (a)− F (a∗)

1− F (a∗)
dF (a) = c

⇔1

2
[1− F (a∗)]

[
1− e−λT [1−F (a∗)]

]
=
c

λ
. (3.8)

The existence of a solution is ensured by the intermediate value theorem: when F (a∗) = 1,

the term on the left hand side of (3.8) equals to 0, smaller than c
λ ; when F (a∗) = 0, it equals to

1−e−λT
2 , larger than or equals to c

λ . The uniqueness of the solution is insured by that the term on

the left hand side of the above equality is strictly decreasing in a∗.
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Second, we show that there is no equilibrium in which one �rm searches with 0 as the cut-o�.

Suppose Firm j searches with 0 as the cut-o�. The instantaneous gain from searching for Firm i

in a state ai > 0 is

λ

∫ 1

ai

[Z(a|0, T )− Z(ai|0, T )]dF (a)− c

=λ

∫ 1

ai

(1− e−λT )[F (a)− F (ai)]dF (a)− c

=
1

2
λ(1− e−λT )[1− F (ai)]

2 − c, (3.9)

which is positive when ai = 0 and negative when ai = 1. By the intermediate value theorem, there

must be a value âi > 0 such that (3.9) equals 0 when ai = âi. Hence, Firm i's best response is to

search with âi as the cut-o�. However, if Firm i searches with âi as the cut-o�, it is not Firm j's

best response to search with 0 as the cut-o�, because

0 =

∫ 1

âj

[Z(a|0, T )− Z(âj |0, T )]dF (a)− c

<

∫ 1

âj

[Z(a|âj , T )− Z(âj |âj , T )]dF (a)− c

<

∫ 1

0
[Z(a|âj , T )− Z(0|âj , T )]dF (a)− c,

which means that Firm j strictly prefers continuing searching when it is in a state slightly above

0.

Last, we show that there is no equilibrium in which one �rm does not search. Suppose Firm j

does not search. Firm i's best response is to search with 0 as the cut-o�. However, Firm j then

strictly prefers searching when it is in state 0, since the instantaneous gain from searching for the

�rm in state 0 is again

λ

∫ 1

0
Z(a|ai, T )dF (a)− c > 0.

Proof of Lemma 3.2. The expected total cost of a �rm who searches with a cut-o� a ≥ 0 is

c

[∫ T

0

∂(1− Z(a|a, t))
∂t

tdt+ TZ(a|a, T )

]
=(1− e−λT [1−F (a)])

c

λ[1− F (a)]
, (3.10)

which strictly increases in a. In Regions 2 and 3, in equilibrium, the probability of winning for
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each �rm is

1

2
[1− Z2(0|a∗(c, T ), T )]

=
1

2
(1− e−2λT ), (3.11)

and thus the expected payo� to each �rm is the di�erence between the expected probability of

winning (3.11) and the expected search cost (3.10), setting a to be a∗(a, T ):

1

2
(1− e−2λT )− (1− e−λT [1−F (a∗(c,T ))])

c

λ[1− F (a∗(c, T ))]
. (3.12)

The limit of (3.12) as T approaches in�nity is 0.

3.A.3 Proofs for the Head Start Case

First, we state two crucial lemmas for the whole section.

Lemma 3.8.

1. For aI1 > a∗(c, T ), not to search is Firm 1's strictly dominant strategy.

2. For aI1 = a∗(c, T ), not to search is Firm 1's weakly dominant strategy. If Firm 2 searches

with cut-o� aI1, Firm 1 is indi�erent between not to search and search with aI1 as the cut-o�;

Otherwise, Firm 1 strictly prefers not to search.

Proof of Lemma 3.8. Suppose Firm 2 does not search, Firm 1's best response is not to search.

Suppose Firm 2 searches with cut-o� a2 ≥ aI1. If Firm 1 searches with cut-o� a1 ≥ aI1, following

from Lemma 3.6, the instantaneous gain from searching for Firm 1 in any state a1 ≥ aI1 ≥ a∗(c, T )

is

λ

∫ 1

a1

[Z(a|a2, T )− Z(a1|a2, T )]dF (a)− c

≤λ
∫ 1

a∗(c,T )
[Z(a|a∗(c, T ), T )− Z(a∗(c, T )|a∗(c, T ), T )]dF (a)− c, (3.13)

where equality holds if and only if a1 = a2 = a∗(c, T ). The right hand side of inequality (3.13) is

less than or equal to 0 (it equals to 0 i� c ≥ 1
2λ[1− e−λT ]). Hence, the desired results follow.

Lemma 3.9.

1. For aI1 > F−1(1− c
λ), not to search is Firm 2's strictly dominant strategy.
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2. For aI1 = F−1(1 − c
λ), not to search is Firm 2's weakly dominant strategy. If Firm 1 does

not search, Firm 2 is indi�erent between not to search and search with any â2 ∈ [aI2, a
I
1] as

the cut-o�. If Firm 1 searches, Firm 2's strictly prefers not to search.

Proof of Lemma 3.9. If Firm 1 does not search, the instantaneous gain from searching for Firm

2 in a state a2 ≤ aI1 is

lim
δ→0

λδe−λδ[1− F (aI1)] + o(δ)− cδ
δ

= λ[1− F (aI1)]− c

< 0 in Case [1]

= 0 in Case [2].

If Firm 1 searches, Firm 2's instantaneous gain is even lower. Hence, the desired results follow.

Proof of Theorem 3.2. [1],[2], and [3] directly follow from Lemmas 3.8 and 3.9. We only need

to prove [4] and [5] in the following.

[4]. Following Lemma 3.8, if Firm 2 searches with cut-o� aI1, Firm 1 has two best responses:

not to search and search with cut-o� aI1. If Firm 1 searches with cut-o� aI1, the instantaneous gain

from searching for Firm 2 is

λ

∫ 1

aI1

Z(a|aI1, T )dF (a)− c

=λ

∫ 1

aI1

[
e−λT [1−F (aI1)] + (1− e−λT [1−F (aI1)])

F (a)− F (aI1)

1− F (aI1)

]
dF (a)− c

=
1

2
λ(1 + e−λT [1−F (aI1)])[1− F (aI1)]− c

>λ[1− F (aI1)]− c

>0

if it is in a state a2 < aI1 = a∗(c, T ); it is

λ

∫ 1

a2

[Z(a|aI1, T )− Z(a2|aI1, T )]dF (a)− c < 0

if it is in a state a2 > aI1 = a∗(c, T ). Hence, the two prescribed strategy pro�les are equilibria.

[5]. First, there is no equilibrium in which either �rm does not search. If Firm 2 does not

search, Firm 1's best response is not to search. However, if Firm 1 does not search, Firm 2's best

response is to search with cut-o� aI1 rather than not to search. If Firm 2 searches with cut-o� aI1,

then not to search is not Firm 1's best response, because the instantaneous gain from searching
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for Firm 1 in state aI1 is

λ

∫ 1

aI1

[Z(a|aI1, T )− Z(aI1|aI1, T )]dF (a)− c

=
1

2
λ(1− e−λT [1−F (aI1)])[1− F (aI1)]− c

>0,

where inequality holds because aI1 < a∗(c, T ).

Next, we argue that there is no equilibrium in which either �rm searches with cut-o� aI1.

Suppose Firm i searches with cut-o� aI1. Firm j's best response is to search with a cut-o� âj ∈
[aI1, a

∗(c, T )). This is because the instantaneous gain from searching for Firm j in a state a′ ≥ aI1
is

λ

∫ 1

a′
p2[Z(a|aI1, T )− Z(a′|aI1, T )]dF (a)− c. (3.14)

(3.14) is larger than 0 when a′ = aI1. It is less than 0 if a′ = a∗(c, T ), because by Lemma 3.6 we

have

λ

∫ 1

a∗
p2[Z(a|aI1, T )− Z(a∗|aI1, T )]dF (a)− c

<λ

∫ 1

a∗(c,T )
[Z(a|a∗(c, T ), T )− Z(a∗|a∗(c, T ), T )]dF (a)− c

=0.

Then, the intermediate value theorem and the strict monotonicity yield the unique cut-o� value

of âj ∈ (aI1, a
∗(c, T )).

However, if Firm j searches with cut-o� âj ∈ [aI1, a
∗(c, T )), Firm i's best response is to search

with a cut-o� value âi ∈ (âj , a
∗(c, T )) rather than aI1, because the instantaneous gain from search-

ing for Firm i in a state ã is

λ

∫ 1

ã
[Z(a|â1, T )− Z(ã|â1, T )]dF (a)− c

< 0 for ã = a∗(c, T )

> 0 for ã = â1

and it is monotone w.r.t. ã. This results in contradiction. Hence, there is no equilibrium in which

either �rm searches with aI1 as the cut-o�.

Last, we only need to consider the case in which each �rm searches with a cut-o� higher than

aI1. Following the same argument as in the proof of Theorem 3.1, we have (a∗(c, T ), a∗(c, T )) being

the unique equilibrium.
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Proof of Proposition 3.2. We apply Theorem 3.2 here for the analysis. We only need to show

the case for aI1 ∈ (a∗(c, T ), F−1(1 − c
λ)). In this case, Firm 1 does not to search and Firm 2

searches with aI1 as the cut-o�. Now, take the limit aI1 → a∗(c, T ) from the right hand side of

a∗(c, T ). In the limit, where Firm 2 searches with a∗(c, T ) as the cut-o�, Firm 1 weakly prefers

not to search. If aI1 = a∗(c, T ), Firm 1 is actually indi�erent between searching and not. Hence, a

head start in the limit makes Firm 1 weakly better o�. Firm 1's payo� when it does not search is

e−λT [1−F (aI1)], the probability of Firm 2 ending up in a state below aI1, is strictly increasing in aI1.

Hence, a higher value of the head start makes Firm 1 even better o�.

Proof of Proposition 3.3. [1]. For T being small, a∗(c, T ) = 0. DM (0, aI1) = 0, and the partial

derivative of DM (T, aI1) w.r.t. T when T is small is

∂DM (T, aI1)

∂T
= λ(1− aI1)e−λT (1−aI1)[1− c

λ(1− aI1)
]− λe−2λT + ce−λT ,

which equals to −λaI1 < 0 at the limit of T = 0.

[2]. Follows from Propositions 3.1 and 3.2.

Proof of Proposition 3.4. DM (T, aI1) is strictly decreasing in aI1, and it goes to the opposite of

(3.12), which is less than 0, as aI1 goes to F−1(1− c
λ), and

(1− e−λT [1−F (a∗(c,T ))])− 1

2
(1− e−2λT ) (3.15)

as aI1 goes to a∗(c, T ). Hence, if (3.15) is positive, Case 1 yields from the intermediate value

theorem; Case 2 holds if (3.15) is negative.

3.A.4 Proofs for the Extended Models

Proof of Proposition 3.7. We argue that, to determine a subgame perfect equilibrium, we only

need to consider two kinds of strategies pro�les:

a Firm 1 retains its initial innovation and does not search, and Firm 2 searches with aI1 as the

cut-o�;

b Firm 1 discards its initial innovation and searches with aI2 as the cut-o�, and Firm 2 retains

its initial innovation.

First, suppose c < λ
2 (1+e−λT ). If Firm 1 retains the initial innovation, it will have no incentive

to search, and Firm 2 is indi�erent between discarding the initial innovation and not. In either
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case, Firm 2 searches with aI1 as the cut-o�. Given that Firm 1 has discarded its initial innovation,

Firm 2 has no incentive to discard its initial innovation as shown in Proposition 3.2.

Second, suppose c > λ
2 (1 + e−λT ). In the subgame in which both �rms discard their initial

innovation, there are two equilibria, in each of which one �rm searches with 0 as the cut-o� and

the other �rm does not search. Hence, to determine a subgame perfect equilibrium, we have to

consider another two strategy pro�les, in addition to [a] and [b]:

c Firm 1 discards its initial innovation and searches with 0 as the cut-o�, and Firm 2 discards

its initial innovation and does not search.

d Firm 1 discards its initial innovation and does not search, and Firm 2 discards its initial

innovation and searches with 0 as the cut-o�.

However, we can easily rule out [c] and [d] from the candidates for equilibria. In [c], Firm 2

obtains a payo� of 0. It can deviate by retaining its initial innovation so as to obtain a positive

payo�. Similarly, in [d], Firm 1 can deviate by retaining its initial innovation to obtain a positive

payo� rather than 0.

Last, it remains to compare Firm 1's payo� in [a] and [b]. In [a], Firm 1's payo� is

e−λT [1−F (aI1)]. (3.16)

In [b], it is

(1− e−λT [1−F (aI2)])(1− c

λ[1− F (aI2)]
). (3.17)

The di�erence between these two payo�s, (3.17) and (3.16), is increasing in T , and it equals

−1 when T = 0 and goes to 1− c
λ[1−F (aI2)]

> 0 as T approaches in�nity. Hence, the desired result

is implied by the intermediate value theorem.

Proof of Proposition 3.8. The backward induction is similar to the proof of Proposition 3.7,

and thus is omitted.

Proof of Proposition 3.9. The equilibrium for the subgame starting from time t0 derives from

Theorem 3.2. Suppose at time t0, Firm i is in a state a0
i , where max{a0

1, a
0
2} ≥ aI1. Assume

a0
i > a0

j . If a
0
i > F−1(1− c

λ), then Firm i obtains a continuation payo� of 1, and Firm j obtains 0.

If a0
i ∈ (a∗(c, T − t0), F−1(1− c

λ)), then Firm i obtains a continuation payo� of e−λ(T−t0)[1−F (a0
i )],

and Firm j obtains (1− e−λ(T−t0)[1−F (a0
i )])(1− c

λ[1−F−1(a0
i )]

).

To prove this result, we �rst show that not to search before t0 is Firm 2's best response

regardless of Firm 1's action before time t0. It is equivalent to showing that not to search before
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t0 is Firm 2's best response if Firm 2 knows that Firm 1 is de�nitely going to be in any state

a0
1 ≥ a∗L at time t0.

As we have shown before, for any a0
1 ≥ (>)F−1(1− c

λ), Firm 2 (strictly) prefers not to conduct

searching before time t0.

If a0
1 ∈ [a∗L, F

−1(1 − c
λ)), Firm 2's unique best response before time t0 is not to search. The

instantaneous gain from searching at any time point before t0 for Firm 2 in a state below a0
1 is

λ
[
[1− F (F−1(1− c

λ
))] +

∫ F−1(1− c
λ

)

a0
1

e−λ(T−t0)[1−F (a)]dF (a)

− [1− F (a0
1)](1− e−λ(T−t0)[1−F (a0

i )])(1− c

λ[1− F−1(a0
i )]

)
]
− c

=λ
[ ∫ F−1(1− c

λ
)

a0
1

e−λ(T−t0)[1−F (a)]dF (a)

− [1− F (a0
1)](1− e−λ(T−t0)[1−F (a0

i )])(1− c

λ[1− F−1(a0
i )]

)
]
,

which is strictly negative when T − t0 is su�ciently large, and thus conducting a search before

time t0 actually makes Firm 2 strictly worse o� in this case.

Next, we show that Firm 1's best response before time t0 is to search with F−1(1 − c
λ) as

the cut-o�, if Firm 2 does not search before t0. To see this, look at the instantaneous gain from

searching for Firm 1 in a state below F−1(1− c
λ):

λ
[
[1− F (F−1(1− c

λ
))]

+

∫ F−1(1− c
λ

)

aI1

e−λ(T−t0)[1−F (a)]dF (a)− [1− F (aI1)]e−λ(T−t0)[1−F (aI1)]
]
− c

=

∫ F−1(1− c
λ

)

aI1

e−λ(T−t0)[1−F (a)]dF (a)− [1− F (aI1)]e−λ(T−t0)[1−F (aI1)]

>

∫ F−1(1− c
λ

)

ã
e−λ(T−t0)[1−F (a)]dF (a)− [1− F (ã)]e−λ(T−t0)[1−F (aI1)]

>(1− c

λ
− F (ã))e−λ(T−t0)[1−F (ã)] − [1− F (ã)]e−λ(T−t0)[1−F (aI1)]

=e−λ(T−t0)[1−F (aI1)][1− c

λ
− F (ã)]

(
eλ(T−t0)[F (ã)−F (aI1)] − 1− F (ã)

1− c
λ − F (ã)

)
,

where ã is any value in (aI1, F
−1(1 − c

λ)). The term on the right hand side of the last equality is

strictly positive if T − t0 is su�ciently large. Hence, the desired result yields.
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3.A.5 Proofs for the Case with Asymmetric Costs

Proposition 3.12. If 0 < c1 < c2 <
1
2λ(1 − e−λT ) there exists a pure strategy equilibrium (a∗1,

a∗2) with a∗1, a
∗
2 ≥ 0.

Proof of Proposition 3.12. We prove the existence of equilibrium by applying Brouwer's �xed

point theorem. First, same as in the previous proofs, if Firm j searches with a cut-o� âj ≥ 0, the

instantaneous gain from searching for Firm i in state 0 is

λ

∫ 1

0
Z(a|1, T )− ci > 0,

and thus Firm i is better o� continuing searching if it is in state 0.

Next, let us de�ne for each Firm j a critical value

αj = sup{aj ∈ [0, 1] | I(0|αj , ci) = λ

∫ 1

0
[Z(a|αj)− Z(0|αj)]dF (a)− ci > 0}.

Suppose there is a αj ∈ (0, 1) such that

I(0|αj , ci) = λ

∫ 1

0
[Z(a|αj)− Z(0|αj)]dF (a)− ci = 0.

For any âj ∈ [0, αj ],

I(0|âj , ci) ≥ 0 and

I(1|âj , ci) < 0.

By the intermediate value theorem and the strict monotonicity of Q(a|âj , ci) in a, there must exist

a unique ãi ∈ [0, 1) such that

I(ãi|âj , ci) = 0.

That is, if Firm j searches with cut-o� âj , Firm i's best response is to search with cut-o� ãi.

For any âj ∈ (αj , 1], if the set is not empty,

I(0|âj , ci) < 0.

That is, Firm i's best response is to search with cut-o� 0.
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Then, we could de�ne two best response functions BRi : [0, 1]→ [0, 1] where

BRi(âj) :=

0 for âj ∈ (αj , 1] if it is not empty

ãi where I(ãi|âj , ci) = 0 for âj ∈ [0, αj ].

It is also easy to verify that BRi is a continuous function over [0, 1]. Hence, we have a continuous

self map BR : [0, 1]2 → [0, 1]2 where

BR = (BR1, BR2)

on a compact set, and by Brouwer's �xed point theorem, there must exist of a pure strategy

equilibrium in which each Firm searches with a cut-o� higher than or equal to 0.

Proof of Proposition 3.10. First, using the same arguments as in the proof of Proposition 3.1,

we claim that if there exists an equilibrium it must be the case that each �rm searches with a

cut-o� higher than or equal to 0 with one strictly positive value for one �rm.

Next, we show that there can be no equilibrium in which Firm 2 searches with a cut-o� â2 > 0

and Firm 1 searches with cut-o� 0. Such a strategy pro�le (0, â2) is an equilibrium if and only if

λ

∫ 1

0
[Z(a|â2, T )− Z(0|â2, T )]dF (a)− c1 ≤ 0, and

λ

∫ 1

â2

[Z(a|0, T )− Z(â2|0, T )]dF (a)− c2 = 0.

However,

0 = λ

∫ 1

â2

[Z(a|0, T )− Z(â2|0, T )]dF (a)− c2

< λ

∫ 1

â2

[Z(a|â2, T )− Z(â2|â2, T )]dF (a)− c2

< λ

∫ 1

0
[Z(a|â2, T )− Z(0|â2, T )]dF (a)− c1 ≤ 0,

resulting in a contradiction.

Next, we derive the necessary and su�cient conditions for the existence of an equilirbium in

which Firm 2 searches with a cut-o� 0 and Firm 1 searches with a cut-o� strictly higher than 0.
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A pair of cut-o� rules (â1, 0), â1 > 0, is an equilibrium if and only if

λ

∫ 1

â1

[Z(a|0, T )− Z(â1|0, T )]dF (a)− c1 = 0 and (3.18)

λ

∫ 1

0
[Z(a|â1, T )− Z(0|â1, T )]dF (a)− c2 ≤ 0, (3.19)

where

(3.18)⇔1

2
λ(1− e−λT )[1− F (â1)]2 − c = 0⇔ âj = F−1

(
1−

√
2c1

λ(1− e−λT )

)
. (3.20)

Then, (3.20) and (3.19) together imply that (âi, 0) is an equilibrium if and only if

I

(
0|F−1

(
1−

√
2c1

λ(1− e−λT )

)
, c2

)
≤ 0. (3.21)

We will see that if (3.21) holds there is no other equilibrium.

When (3.21) does not hold, there is a unique equilibrium, in which each �rm searches with a

cut-o� strictly higher than 0. Because by Proposition 3.12 an equilibrium must exists. Let (a∗1, a
∗
2)

be such an equilibrium. We �rst show that a∗1 > a∗2 must hold by proof by contradiction, and then

we show that it must be a unique equilibrium. Such a pair (a∗1, a
∗
2) is an equilibrium if and only if

λ

∫ 1

a∗i

[Z(a|a∗j , T )− Z(a∗i |a∗j , T )]dF (a) = ci for i = 1, 2 and j 6= i. (3.22)

Suppose a∗1 ≤ a∗2. Applying Lemma 3.6, we have

c1 =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)

≥λ
∫ 1

a∗2

[Z(a|a∗2, T )− Z(a∗2|a∗2, T )]dF (a)

≥λ
∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a) = c2,

resulting in a contradiction.

Then, we show the uniqueness of the equilibrium for Cases [1] − [3] by contradiction. For

Case [1] we show that the solution to (3.22) is unique, and for Cases [2] and [3] we show that

there can be no equilibrium in which each �rm searches with a cut-o� higher than 0 coexisting

with equilibrium
(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)
. We can prove all of them together. Suppose there

are two equilibria (a∗1, a
∗
2) and (ã∗1, ã

∗
2), where (a∗1, a

∗
2) is a solution to (3.22) and (ã∗1, ã

∗
2) is either
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(
F−1

(
1−

√
2c1

λ(1−e−λT )

)
, 0
)
or a solution to (3.22). It is su�cient to show that the following two

cases are not possible:

1. ã∗1 > a∗1 > a∗2 > ã∗2 ≥ 0 and

2. a∗1 > ã∗1 > a∗2 > ã∗2 ≥ 0.

Suppose ã∗1 > a∗1 > a∗2 > ã∗2 ≥ 0. Applying Lemma 3.6 we have

0 =λ

∫ 1

a∗1

[Z(a|a∗2, T )− Z(a∗1|a∗2, T )]dF (a)− c1

<λ

∫ 1

ã∗1

[Z(a|a∗2, T )− Z(ã∗1|a∗2, T )]dF (a)− c1

<λ

∫ 1

ã∗1

[Z(a|ã∗2, T )− Z(ã∗1|ã∗2, T )]dF (a)− c1 = 0,

resulting in a contradiction.

Suppose a∗1 > ã∗1 > a∗2 > ã∗2 ≥ 0. Applying Lemma 3.6 again, we have

0 ≥λ
∫ 1

ã∗2

[Z(a|ã∗1, T )− Z(ã∗2|ã∗1, T )]dF (a)− c2

>λ

∫ 1

a∗2

[Z(a|ã∗1, T )− Z(a∗2|ã∗1, T )]dF (a)− c2

>λ

∫ 1

a∗2

[Z(a|a∗1, T )− Z(a∗2|a∗1, T )]dF (a)− c2 = 0,

resulting in another contradiction.

Proof of Proposition 3.11. For �xed c2 we have

∂a∗2
∂a∗1

= −

∂
∫ 1
a∗2

[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]dF (a)

∂a∗1

∂
∫ 1
a∗2

[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]dF (a)

∂a∗2

=

∫ 1
a∗2

∂[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]
∂a∗1

dF (a)

∂Z(a∗2|a∗1,T )
∂a∗2

< 0.

Then,

∂a∗1
∂c1

= − −1

λ
∫ 1
a∗1

[
∂[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]

∂a∗2

∂a∗2
∂a∗1
− ∂Z(a∗1|a∗2,T )

a∗1

]
dF (a)

< 0 and

∂a∗2
∂c1

=
∂a∗2
∂a∗1

∂a∗1
∂c1

> 0.
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For �xed c1 we have

∂a∗1
∂a∗2

= −

∂
∫ 1
a∗1

[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]dF (a)

∂a∗2

∂
∫ 1
a∗1

[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]dF (a)

∂a∗1

=

∫ 1
a∗1

∂[Z(a|a∗2,T )−Z(a∗1|a∗2,T )]
∂a∗2

dF (a)

∂Z(a∗1|a∗2,T )
∂a∗1

> 0.

Then,

∂a∗2
∂c2

= − −1

λ
∫ 1
a∗2

[
∂[Z(a|a∗1,T )−Z(a∗2|a∗1,T )]

∂a∗1

∂a∗1
∂a∗2
− ∂Z(a∗2|a∗1,T )

a∗2

]
dF (a)

< 0 and

∂a∗1
∂c1

=
∂a∗1
∂a∗2

∂a∗2
∂c2

< 0.

101



102



Chapter 4

Optimal Prize Structures in Elimination Contests

4.1 Introduction

Many real-life interactions among di�erent agents such as elections, the implementation of inno-

vations, promotion tournaments and sports can be well described and analyzed through contest

models. Many contests involve multiple stages where the number of agents compete at successive

stages until the winner is �nally determined. The most prominent model sharing this feature is the

sequential elimination contest, which is commonly known from playo� rounds in sports competi-

tions. This model is also a good description of many corporate tournaments where employees from

low hierarchical levels compete for promotions to higher hierarchical levels. This contest structure

is also found in politics, where candidates compete in localized contests and where the winners

subsequently often compete against each other at higher levels. R&D can also be described by

such tournaments, where the �rm with the most e�cient technology wins the market1.

In this chapter, we look for the optimal prize structure of a sequential elimination contest

that maximizes the pro�t of the designer. Existing literature mainly considers the objective

of maximizing agents' e�orts in the tournament (usually either the average level or the e�ort

in the �nal round). The prize pool is usually assumed to be a �xed amount of money, which

can be distributed to the agents according to their performance. We think that this is a suitable

assumption for one-stage simultaneous tournaments, but in multi-stage tournaments, the designer's

valuation of various stages may di�er. Thus, we allow for an arbitrary form of the designer's

objective. We assume that agents' e�orts at di�erent stages produce the output according to some

output function, which de�nes how exactly the designer values various combinations of e�orts at

di�erent stages. In our model, the prize pool is not �xed, as the designer can pay the contestants

1An example of multi-stage R&D contest is Pre-commercial Procurement used in EU. Here, �rms participate
in a R&D multi-stage contest where competing projects are evaluated phase-by-phase (e.g., proposal, prototype,
testing) and competitors are eliminated sequentially (European Comission, 2007)
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any amount of money. The designer's problem is to choose the prize structure that maximizes the

designer' pro�t, which is the di�erence between the value of the produced output and the value

of the prizes distributed to the agents. This problem can be seen in many real-life applications.

For example, the owners of a �rm care about their pro�t, not the average level of e�ort applied

by the workers. Moreover, they can value the e�orts of workers at higher positions more than

the e�orts of those at lower positions(a higher position means a later stage in our model). As we

show, in this case, the optimal prize structure would drastically di�er from the one that is optimal

when the average level of e�orts is maximized. Hence, the results obtained in the literature for

multi-stage elimination under the objective of total (or average) e�ort maximization are not valid

in the general case. For example, in his classical paper, Rosen (1986) shows that the optimal prize

structure is linear with a bigger prize gap in the �nal round. Our results show that this is not true

in general. The prize structure can be not only concave or convex but also non-monotone.

We �nd that depending on the output function various prize structures might be optimal. The

prize at the �rst stage is always negative, and thus, it is essentially an entry fee. The equilibrium

level of e�ort is e�cient and by appropriate choice of entry fee, the designer is able to extract

the full surplus. The structure of other prizes can di�er substantially depending on the output

function. We consider an example of a sport tournament to illustrate the result when the prize

structure is increasing. We also provide an example in which the output function depends only on

one parameter, where for various values of this parameter �ve types of prize structures might be

optimal: (1) increasing concave prize structure, (2) increasing linear prize structure, 3) Increasing

convex prize structure, 4) winner-take-all structure, and (5) decreasing prize structure with the

big prize to the winner. The last case with negative prize di�erences is the most interesting of

all cases. It turns out that if the designer values e�orts at each stage much more than the e�orts

at the previous stage, the di�erence between the prizes at these stages could be negative. Thus,

the participants who survive longer may receive smaller prizes than those eliminated at the earlier

stages. We refer to this structure as a trap structure. Since non-monotonicity of prize structures

with respect to stages is new in the contests literature, we study this issue in detail and provide

su�cient conditions for both monotonicity and non-monotonicity of prize structures.

Decreasing prize structures are not observed in real-life direct contests very often. One possible

explanation is that they require unlimited liability and substantial payments from participants.

It may not be feasible to make such contracts in real-life contests. However, in indirect real-life

contests, that is situations that are not directly tournaments but can be thought as tournaments,

"prizes" can be decreasing. The following story may be an example of such situation. Students who
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are interested in careers in academia participate in a real-life contest called �getting tenured�. This

contest can be seen as a multi-stage elimination tournament where the stages are: 1) Undergrad-

uate, 2) Master, 3) PhD, 4) Junior faculty and 5) Tenured faculty. One may agree that the prize

when an average student is eliminated at stage 1)�gets an average job for an undergraduate�may

be higher than the prize he gets when he is eliminated at stage 4) as it could be di�cult for an

untenured researcher to get a good job in industry2.

We also investigate the possible optimal types of prize structure shapes. We �nd that any

shape with increasing prizes would be optimal for some speci�c designer's preferences over stages.

This result says that apriori the designer cannot favor any particular class of prize structures, for

example convex, concave, or linear. Speci�c valuations of di�erent stages by the designer should

be taken into account.

Then, we consider the case of limited liability when the designer is not allowed to allocate

negative prizes. Hence, the obtained optimal prize structure is not feasible in this case. We add

one more degree of freedom for the designer, in which she can optimize. Not only is optimization

with respect to the prize structure available, but also the choice of a contest success function (CSF)

is possible. It means that at each stage, she can specify the probability of an agent moving to the

next stage depending on realized e�orts. The important result here is that it is still possible to

implement e�ciency and extract full surplus from agents even with limited liability by choosing

CSF in a special way from the class of Tullock functions. With this additional degree of freedom,

it is possible to avoid non-monotone structures. The optimal prize structure would be always

increasing.

This chapter is structured as follows. In the next section, we provide a literature review. Then,

we describe our main model and solve for the optimal prize structure. Next, we investigate some

properties of the solution and provide an example to illustrate the solution. Then we show that

any increasing shape of prize structure may be optimal for a certain designer's valuation of stages.

Finally, we consider the limited liability case and allow the designer to choose a CSF. The last

section concludes and summarizes the chapter.

4.2 Literature Review

The literature about tournaments, for example, that concerning lottery contests, R&D, patents,

or innovation implementation, is surveyed by Konrad et al. (2009) in detail. The classic work that

describes simple tournaments is Lazear and Rosen (1981). They consider the case of the simple
2I would like to thank an anonymous referee for this example.
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simultaneous one-stage tournament and compare rank-order wage schemes with wages based on

individual output and �nd that for risk-neutral agents, both wage schemes allocate resources in

an e�cient way. The playo� or elimination tournaments considered in this chapter were analyzed

for the �rst time in Rosen (1986), to which this chapter is largely related. While Rosen (1986)

describes a double-elimination tournament with multiple stages, we allow for a multi-elimination

tournament; in other respects, the contest architecture is the same in both studies. Further,

di�erent from this chapter, in Rosen (1986) there is a �xed prize pool. The designer's objective is

simply to maximize the same constant level of e�ort of all agents through the tournament. He has

found that the optimal incentive scheme is such that the di�erence between prizes at all stages is

the same. That is, the optimal prize growth is linear. It is true for all stages except the last one.

Since the contest will not continue, the prize spread between the �rst and the second places should

be signi�cantly larger compared with the prize spreads between the �nal and the semi-�nal, the

semi-�nal and the quarter-�nal, and so on. It is also never optimal to pay losers in the �rst round

because it lowers their incentives to put forth an e�ort. The result of this work is a particular

case of our study in which the output function is simply a sum of all e�orts. In other cases, the

optimal prize structure seriously di�ers from Rosen's optimal structure. We show that the optimal

prize structure strongly depends on the output function and that only in a separable linear case

it coincides with Rosen's optimal structure.

Skaperdas (1996) gives an axiomatic characterization of contest success functions. Under a

set of reasonable axioms the probability that an individual i wins a contest has a form f(xi)∑
j f(xj)

,

where xj is the e�ort of individual j. We use such functions in our model. Clark and Riis (1998)

generalize Skaperdas results for the asymmetric setting.

Further, there are several papers that study the e�ciency in contests. Chung (1996) discusses a

rent-seeking model where productive e�orts increase the single rent for which agents compete. He

considers a winner-take-all contest with linear costs. For this setup, he shows that the equilibrium

e�orts are always greater than socially optimal ones. However, this is not the case in this chapter

because e�orts in our model do not increase prizes directly and all agents are assumed to be risk-

neutral. Hence, in our setting the designer is always able to implement the e�cient level of e�ort

and extract the whole rent from the contestants.

There are several papers where optimal prize structures in simultaneous one-stage contests are

considered. Moldovanu and Sela (2001) show that for convex cost functions it is optimal to give

positive prizes not only to the winner, although for concave and linear cost functions, the winner-

take-all structure is optimal. In a similar framework, Sha�er (2006) compares payo�s and e�orts
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arising from exogenously given prizes with those from e�ort-dependent prizes. Cohen and Sela

(2007) characterize the optimal e�ort-dependent prize structure in the one-stage all-pay auction

setup. Depending on the designer's objective, they �nd that the optimal reward may decrease or

increase with the players' e�orts.

Schweinzer and Segev (2012) analyze simultaneous Tullock contests. They give necessary and

su�cient conditions under which there is an equilibrium under the winner-take-all structure and

show that if it exists, then it is unique. If it does not exist, they construct a prize structure with

several prizes, under which an equilibrium exists. Though we consider a multi-stage tournament

instead of a simultaneous tournament, the condition for the existence of a symmetric pure strategy

equilibrium is the same.

Though the architectural structure of the contest and the number of stages are �xed in this

chapter, there are several papers that consider the question of optimal tournament design. Fu

and Lu (2012) show that for a �xed prize pool and a linear cost function, under the objective

of maximization of the total e�ort, the optimal structure is such that at each state only one

contestant is eliminated until the �nal, and the single winner takes over the entire prize. However,

in this chapter, we show that for a classical elimination tournament, the winner-take-all structure

is almost never optimal unless the cost function is linear. Gradstein and Konrad (1999) allow the

designer to choose the number of stages in a contest and the way the agents are matched. They

show that the optimal number of stages crucially depends on the particular Tullock function.

The role of punishment (negative prize) for losers in a one-stage tournament was discussed in

Moldovanu et al. (2012) and Thomas and Wang (2013). The multi-stage contests considered in

this chapter allow allocating negative prizes not only to the losers but also to the contestants who

have been successful in every stage but one. Thus, in the optimum, we obtain not only negative

prizes for the losers at the �rst stage, but actually decreasing and non-monotone prize schemes.

Kolmar and Sisak (2014) analyze the public good provision by heterogeneous players. The

contest prizes are �nanced from taxation. This is similar to our model because, at each stage in

our model, the prizes are paid from the revenue, generated by the agents. Kolmar and Sisak show

how multiple prizes can be used to achieve e�ciency.

Further, there are several papers, such as Gürtler and Kräkel (2010), Parreiras and Rubinchik

(2010), Ryvkin (2007) that consider tournament settings with heterogeneous agents. We discuss

complications which arise in our model if we allow for heterogeneity of agents.
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4.3 Main Model

The tournament begins with mN players and proceeds sequentially through N stages. At each

stage, all participants who survived up to the current stage are randomly selected into groups.

They compete within groups, and only one winner from each group moves to the next stage. This

situation is well-known for m = 2, which is the case of football playo�s and tennis tournaments.

Winners move to the next round and losers are eliminated from the subsequent play. In the next

round other groups are randomly drawn, and again, half of the participants are excluded from

further competition. In a general case there are mN+1−n agents at the stage n who are distributed

to mN+1−n/m = mN−n groups. Each agent competes in a group of m contestants. The top

prize WN+1 is awarded to the winner of the �nal match, who has won N matches overall. Other

�nalists, that is losers at the �nal stage, are awarded the second place and get the prize WN for

having won N − 1 stages and losing the last one. In earlier stages, all participants eliminated at

the same stage get equal prizes. We denoteWn as the prize for the losers at stage n.We emphasize

that each agent receives exactly one prize only at the stage where he is eliminated.

In our main model equally talented players are considered. The probability of agent i moving

to the next round P (xi,n,x−i,n) is the function of an agent's level of e�ort xi,n at that stage and

a vector of e�ort levels of competitors x−i,n in the same group. It is assumed to be symmetric,

increasing in xi,n and decreasing in each component of x−i,n. In this section the probability of

winning a match at some particular stage is assumed to be the following Tullock function:

P (xi,n,x−i,n) =
xai,n

xai,n +
∑
j 6=i

xaj,n
,

where a > 0 is a constant parameter and the sum is taken across contestants in the group with

agent i. In real life this means that there are some observable characteristics that are connected

with levels of e�ort and show whose e�ort is higher, but not perfectly.

Here we come to the crucial part of our model, namely, the output function, which determines,

how the designer values agents' e�orts at di�erent stages. Denote xn = (xi,n,x−i,n) as a vector

of agents' e�orts at stage n. Let Π(x1, ...,xN ) be some concave, increasing in each component,

continuously di�erentiable output function of e�orts that is symmetric with respect to di�erent

e�orts at the same stage. We emphasize that the output function is not necessarily separable with

respect to e�ort levels at di�erent stages. In the existing literature, only speci�c examples are

considered. For example, the designer's objective is to maximize either the level of e�ort at the
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�nal or the average level of e�ort through the whole tournament. In this chapter, we characterize

the optimal prize structure for a general form of an output function.

When the prize structure is announced, agents choose their e�orts by considering the an-

nounced prize structure. If the prize structure Ω = {W1, ...,WN ,WN+1} is announced, the pro�t

of the designer corresponds to the di�erence between the output produced by the agents and the

total amount of prizes.

Π(x1(Ω), ...,xN (Ω))− (
∑
n

(mN+1−n −mN−n)Wn +WN+1). (4.1)

At each stage, every player who has survived up to this point chooses his e�ort. However,

applying the level of e�ort x is accompanied by the costs equal to C(x) = xγ , γ > 0. A player's

decision of how much e�ort to spend in any match depends on a cost-bene�t analysis. Higher

e�ort increases the probability of winning this match and moving to the next stage but involves

higher costs.

We assume that the e�orts of contestants are socially desirable. In orther words, we assume

that there exists a unique positive vector of levels of e�orts at all stages, xe, that maximizes the

social surplus, that is, xe = arg maxx{Π(x1, ...,xN )−
∑
n

∑
j
C(xj,n)}, which can be found from the

�rst-order condition:

∂Π(xe1, ...,x
e
N )

∂xi,n
= C ′(xen). (4.2)

Suppose that some prize structure Ω is announced. Denote Vn as the value of participation

in the tournament for every player at stage n. Since all players are assumed to be symmetric,

this value of participation is equal for all players. It consists of two components. The �rst one

is the prize, which is earned if the match is lost, and the player is eliminated. This event occurs

with the probability 1 − P (xi,n,x−i,n). The other is the value of moving to the next stage if the

match is won. The probability of this event is P (xi,n,x−i,n). Either way, he also incurs costs

of e�ort C(xi,n). Instead of participation in the contest, agents can choose not to participate at

all, which brings them reservation utility 03. We assume unlimited liability in this section, that

is, the designer is able to allocate negative prizes for agents, provided that their participation

constraint holds. Agents are assumed to be risk-neutral4. The solution concept is a sub-game

3Instead of 0 it could also be some positive number uR. All results are largely the same, with the only change
being a parallel shift of the whole prize structure upwards. The shape of the prize structure and the di�erences
between prizes remain unchanged.

4For risk-averse agents, we can use the similar techniques by using a concave function U(W ) instead of W and
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perfect equilibrium. We also restrict our attention to symmetric equilibria. Therefore, we can

write the agent's problem recursively as follows:

Vi,n = max
xi,n≥0

(1−
xai,n

xai,n +
∑
j 6=i

xaj,n
)Wn +

xai,n
xai,n +

∑
j 6=i

xaj,n
Vi,n+1 − C(xi,n). (4.3)

4.4 Solution and Main Results

4.4.1 Solution to agents' problem

We start with the solution to the agents' problem (4.3). Existence of symmetric equilibria with a

positive level of e�ort depends on the relation between γ and a. The solution is described in the

following lemma. Index i is skipped because we consider a symmetric solution. We use ∆Wn to

denote the prize spread between prizes at stages n and n+ 1, that is ∆Wn = Wn+1 −Wn.

Lemma 4.1. Suppose that
N∑
j=n

κj−n∆Wj ≥ 0 for all 1 ≤ n ≤ N.

If a > m
m−1γ there is no symmetric equilibrium in pure strategies.

If a ≤ m
m−1γ there is a unique symmetric equilibrium in pure strategies such that the level of

e�ort x∗n at stage n, given the prize structure Ω, does not depend on the prizes at all earlier stages

and increases with an increase in the prize di�erence at that stage and at all later stages with

decreasing weights:

γm2

a(m− 1)
C(x∗n) = ∆Wn + κ∆Wn+1 + κ2∆Wn+2 + ...+ κN−n∆WN , (4.4)

where κ = (γ−a)m+a
γm2 ,

and x∗n = 0 if ∆Wn + κ∆Wn+1 + κ2∆Wn+2 + ...+ κN−n∆WN < 0.

Proof. See Appendix 4.A.

If the condition on prize di�erences (
N∑
j=n

κj−n∆Wj ≥ 0 for each n) does not hold, the levels

of e�orts will be zero at all stages, where
N∑
j=n

κj−n∆Wj < 0. However, as we show below, when

the designer chooses the optimal structure, this is never the case and the e�cient level of e�orts

is implemented.

Lemma 4.1 can be used to �nd the optimal prize scheme. From this moment we consider only

the case a ≤ m
m−1γ, when the symmetric equilibrium in pure strategies exists.

∆U(Wn) = U(Wn+1)− U(Wn) instead of ∆Wn = Wn+1 −Wn in what follows. However, the e�ciency is lost and
the characterization of the optimal prize structure would be more complex.
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4.4.2 Designer's problem

The designer knows how agents choose e�orts (from Lemma 4.1). Thus, she maximizes the pro�t,

given by expression (4.3), subject to the agents' participation constraint. Thus, the designer's

problem can be written by using prize spreads in the following way:

Π(x1(Ω), ...,xN (Ω))−mNW1 −(
∑
n
mN−n∆Wn) =⇒ max

Ω
, (4.5)

s.t.V1 > 0.

Solving this problem, we can formulate the following proposition:

Proposition 4.1. The optimal prize structure implements the e�cient level of e�orts in the

equilibrium at all stages, i.e., x∗n = xen for each n.

Proof. See Appendix 4.A.

The result is intuitive since there is no private information and the agents are risk neutral. One

can also notice that if the designer does not value e�orts at some stage at all, then the equilibrium

level of e�orts in that stage would be equal to zero.

If we take the equilibrium levels of e�orts from Proposition 1 and rewrite equations (2.12), we

can formulate the following result:

Proposition 4.2. The optimal prize structure satis�es the following:

W1 = − γκm2

a(m− 1)
C(x∗1)q,

∆Wn =
γm2

a(m− 1)
(C(x∗n)− κC(x∗n+1)), n 6= N, (4.6)

∆WN =
γm2

a(m− 1)
C(x∗N ),

where {x∗n} satis�es:
∂Π(x∗1, ...,x

∗
N )

∂xi,n
= C ′(x∗n).

Proof. See Appendix 4.A.

This result suggests that the prize structure must be constructed as follows. First, the prize

at the �rst stage is always non-positive and depends on the e�cient level of e�orts at this stage.

Thus, we can think about it as the entry fee. It is used in order to extract the full rent from the
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agents5. Next, the optimal prize spread at some particular stage depends on the e�cient level of

e�ort at that stage and the next stage. The higher the desirable level of e�ort at some stage is,

the higher the optimal di�erence in prizes between this and the next stage is. The e�ect of the

e�cient level of e�ort at the next stage is opposite. A higher e�cient level of e�ort at the next

stage implies smaller prize di�erence at the current stage. If the di�erence between e�cient levels

of e�ort is not too large or simply negative (i.e. e�cient level of e�orts is decreasing), the prize

structure is increasing because C(x∗n) − κC(x∗n+1) > 0. However, if the e�cient level of e�orts

at the next stage is much higher, then prize spread would be necessarily negative. Finally, the

di�erence in prizes for the winner and other �nalists is necessary positive. Hence, we get the

following corollary.

Corollary 4.1. 1. The optimal prize structure is monotone and increasing with respect to

stages if and only if C(xen) ≥ κC(xen+1) for n = 1, ..., N − 1.

2. If at some stage the e�cient level of e�ort is much lower than that at the next stage, namely

C(xen) < κC(xen+1), the optimal prize at the next stage must be lower than the current prize:

Wn+1 < Wn.

Since κ = (γ−a)m+a
γm2 < γm

γm2 = 1
m in order to satisfy C(xen) < κC(xen+1), the e�cient level

of e�ort at stage n + 1 must be much higher. The intuition behind this result is that negative

prize di�erence at the current stage, which makes the next prize lower, will also put agents in the

situation where they strongly do not want to lose at the next stage. Otherwise, they would simply

prefer taking the prize of the current round and not going further. The prize for the winner would

be so big that every agent would bene�t from going further and being closer to it, even if the prize

structure decreases at some point. Indeed,

Vn − Vn−1 = (1− κ)
N∑

k=n−1

κk−n+1∆Wk =
(1− κ)γm2

a(m− 1)
C(x∗n−1) ≥ 0. (4.7)

We can show also that the prize for the winner is always the biggest prize. Indeed, the sum of

later prize spreads starting from any stage is positive:

5If reservation utility is greater than zero uR > 0, then the expression for the prize at the �rst stage in Propo-
sition!4.2 must be changed to W1 = uR −

∑
n

κn∆Wn. Essentially, this is a parallel shift of the optimal prize

structure.
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N∑
k=n

∆Wk =

N−1∑
k=n

γm2

a(m− 1)
(C(x∗n)− κC(x∗n+1)) +

γm2

a(m− 1)
C(x∗N ) =

=
N∑

k=n+1

γm2

a(m− 1)
(1− κ)C(x∗k) +

γm2

a(m− 1)
C(x∗n) ≥ 0.

4.4.3 Example of a sport tournament

Consider pairwise elimination tournament with 2N players that proceeds sequentially through N

stages. For example, if N = 4 we have 16 players who play �rstly eighth-�nals, then quarter-�nals,

then semi-�nals, and the �nal at the last stage. According to this scheme the playo� rounds of

many sports are conducted. Assume that there is a representative fan, who wants to buy a ticket

for each match at each stage and has the following utility function:

U(xn, n) = xn
√
n− pn, (4.8)

where xn is the average level of e�ort in a match and pn is the price at the stage n. We multiply

e�orts at stage n on a square root of n to re�ect the importance of later stages. The cost function is

C(x) = x2. CSF has the following form: P (xi,n,x−i,n) =
xi,n

xi,n+
∑
j 6=i

xj,n
The contest designer extracts

full surplus from a fan and charges pn = xn
√
n. Thus, the output function Π(x1, ...,xN ) =∑N

n=1 2N−nxn
√
n. Proposition 4.1 implies that the equilibrium level of e�ort coincides with the

e�cient one xen = arg maxxn≥0(xn
√
n − 2x2

n) = 0.25
√
n. Thus, the equilibrium level of e�ort

increases in later stages with a speed of
√
n. Applying Proposition 4.2 and considering that γ = 2,

a = 1, m = 2, and κ = 3/8 we have the following optimal prize structure:

W1 = − 3

16
,

∆Wn =
5n− 3

16
, n 6= N,

∆WN = N/2.

Going back from di�erences to levels we have W1 = − 3
16 , W2 = − 1

16 , W3 = 3
8 , ...,Wn =

(5n−11)n
32 , ...,WN+1 = (5N+5)N

32 . Thus, the prizes at the �rst and the second stages are negative,

and then, it grows with an increasing rate of order n2. In this example of a sport tournament, the

prize structure is strictly increasing everywhere. However, we can construct a simple example to

illustrate that it is not always true.
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4.4.4 Example with di�erent optimal structures

In this section, we provide a simple but rich enough example to illustrate di�erent optimal struc-

tures.

Suppose that the output function has the following form:

Π(.) =
∑
n

(λn
∑
i

xi,n), λ > 0.

Costs are quadratic:

C(x) = x2

Thus, the designer cares about the average level of e�orts at di�erent stages. The parameter

λ determines the weights she attaches to di�erent stages.

Then, we can apply Proposition 4.2 and get the following optimal prize structure:

∆Wn =
m2

m− 1

λ2n

2
(1− κλ2), n 6= N,

∆WN =
m2

m− 1

λ2N

2
.

Now we consider several cases for the parameter λ :

1. λ < 1 (Figure 4.1). In this case, the designer values the later stages less than the earlier

stages. The optimal prize structure is increasing (1− κλ2 > 0) and concave (λ2n decreases

with larger values of n, and hence, ∆Wn falls)6.

Figure 4.1: Concave prize shape

6At the last stage, the prize structure is not necessary concave.
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2. λ = 1 (Figure 4.2). All stages are equally important. The optimal prize structure is linearly

increasing with a jump in the �nal (∆Wn = const > 0, n 6= N). This result is the case

of Rosen (1986), where the designer maximizes the same average level of e�ort during the

tournament.

Figure 4.2: Linear prize shape

3. 1 < λ <
√

1
κ (Figure 4.3). The designer values the later stages more, but not drastically.

The optimal prize structure is increasing (1−κλ2 > 0) and convex (λ2n increases with larger

values on n, and hence, ∆Wn increases).

Figure 4.3: Convex prize shape

4. λ =
√

1
κ (Figure 4.4). The optimal prize structure is winner-take-all (all prize spreads equal

to zero ∆Wn = 0, except the �rst and the last stages). Further, there are several papers

where the winner-take-all structure turns out to be optimal in other settings (Krishna and

Morgan, 1998, Moldovanu and Sela, 2001).

5. λ >
√

1
κ (Figure 4.5). The designer values the later stages drastically more than the earlier

ones. As 1− κλ2 < 0, the prize spread ∆Wn should be negative for all intermediate stages
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Figure 4.4: Winner-take-all

of the tournament. Therefore, the optimal prize structure is decreasing, with a large �nal

prize being awarded to the winner. This is an example of a "trap structure". When the

designer values each subsequent stage much more than the previous one, her valuation of

the �nal is so high that she tries to make the gap between the prize for the winner and

prizes for the other �nalists as high as possible. Thus, using negative prize di�erences - and,

hence, negative prizes - the designer puts agents in a situation where they are punished more

if they go closer to the �nal and lose there. At the later stages, stakes become extremely

large, which enforces very high levels of e�orts, as is needed by the principal. Though the

prizes become more negative and agents who survive longer obtain smaller prizes at all stages

except the �nal, the value from surviving until the later stages increases because the agent

gets closer to the �nal prize.

Figure 4.5: Trap
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4.4.5 (Non-)Monotonicity of prize structures

In the previous discussion, we have shown that optimal prize structures may vary a lot. In other

words, the shape of a prize structure may not be only convex or concave but even non-monotone

or decreasing. Here, we consider the case of a separable output function and directly address the

question of monotonicity, not in terms of the e�cient level of e�orts but in terms of the output

function.

We assume here that the output function is separable with respect to di�erent stages, that

is, Π(x1(Ω), ...,xN (Ω)) =
∑
n

Πn(xn(Ω)).7 To begin with, suppose that ∂Πn(x,...,x)
∂xn

≥ ∂Πn+1(x,...,x)
∂xn+1

for any x, which means that e�orts at earlier stages are more important for the designer than at

later stages. Then, the equilibrium level of e�orts falls during the contest and γm2

a(m−1)(C(x∗n) −

κC(x∗n+1)) ≥ 08. Hence, all prize spreads are non-negative and the prize structure is increasing.

However, in real-life situations, this assumption usually does not hold. Thus, we need to consider a

more plausible case where ∂Πn(x∗n)
∂xn

<
∂Πn+1(x∗n+1)

∂xn+1
, that is, e�orts at later stages are more important

than at the earlier ones. This is a natural assumption in many real-life situations such as corporate

tournaments and sports tournaments. For example, in application to a �rm, this would mean

that the activities of workers at higher levels of corporate hierarchies are more important than

the activities of those at lower ones. In a sport tournament, the assumption means that the

performance of contestants in last rounds is valued more than in the early ones. This case is not

only the most reasonable but also the most interesting one: the prize structure is not necessarily

monotone here.

The main result here is that if the valuations of e�ort do not increase too much from each stage

to the next stage, and, simultaneously, the output function is concave enough, then the optimal

prize structure is always non-decreasing. The inverted conditions together serve as su�cient

conditions for "trap" structures. The exact statement is the following9:

Proposition 4.3. 1. If ∂Πn+1(x,...,x)
∂xn+1

≤ 1
κ
∂Πn(x,...,x)

∂xn
and x∂Πn(x,...,x)

∂xn
is decreasing for all x and

n, then the optimal prize structure is increasing at all stages. If the inequality is strict and

x∂Πn(x,...,x)
∂xn

is strictly decreasing, then the optimal prize structure is strictly increasing.

2. If at some stage n, the opposite holds, that is, ∂Πn+1(x,...,x)
∂xn+1

≥ 1
κ
∂Πn(x,...,x)

∂xn
and x∂Πn(x,...,x)

∂xn
is

7In many real-life applications, this is a reasonable assumption. For example, it is natural to assume that
for sports events the revenues from selling tickets on semi-�nal matches do not depend on the teams' e�orts in
quarter-�nals.

8As ∂Πn(.)
∂xi,n

= C′(x∗n), a decrease of the derivative of the output function would lead to a decrease of the

equilibrium level of e�orts.
9For simplicity of notations we skip index i because all agents are treated in the same way.
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increasing for all x, then the optimal prize is decreasing at stage n. If the inequality is strict

and x∂Πn(x,...,x)
∂xn

is strictly increasing then the optimal prize is also strictly decreasing at this

stage. Hence, the optimal prize structure would be non-monotone10.

Proof. See Appendix 4.A.

However, these conditions are only su�cient, not necessary conditions.11 The most interesting

�nding is in the second part of this proposition, which implies that if the designer values some

stage su�ciently higher than the previous one, the prize at this stage must be lower than the

prize at the previous stage. The intuition here is similar to the intuition in the 5th case of the

example. Agents react to the prize spreads at all later stages. By decreasing prize at some stage,

the designer is able to increase e�orts applied at that stage.

4.4.6 Variability of optimal prize structures

As we have seen in an example, many shapes of prize structures can be optimal for speci�c output

functions. Here, we show that the class of prize structures that may be optimal is very large.

In fact, any increasing shape is optimal for some output function. To show it we start with the

following observation:

Claim 4.1. For any levels of e�orts x1, ..., xN there exists an output function such that these e�ort

levels are implemented in equilibrium under the optimal prize structure.

Proof. Consider some arbitrary levels of e�orts x1, ...xN at di�erent stages. Then we can notice

that for these e�orts there exists a separable output function Π(x1, ...,xN ) =
∑
n

Πn(xn) such that

these e�orts would be implemented in equilibrium under the optimal prize structure. For each

xn we can �nd a concave, increasing in each component, continuously di�erentiable symmetric

function Πn(xn) : ∂Πn(xn,...,xn)
∂xn

= C ′(xn). Then, by Proposition 4.1, x1, ...xN are implemented in

the equilibrium under the optimal prize structure.

Thus, any levels of e�orts may arise as the equilibrium levels of e�orts for a particular prize

structure.

Now, consider some increasing shape of a prize structure, that is, {∆W1, ...,∆WN} such that

∆Wn ≥ 0. For this prize shape construct e�ort levels at di�erent stages by the following recursive

procedure:

10This is because the prize di�erence in the �nal is always positive.
11See our previous example
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xN : C(xN ) =
a(m− 1)

γm2
∆WN ,

xN−1 : C(xN−1) =
a(m− 1)

γm2
∆WN−1 + κC(xN ),

...

xn : C(xn) =
a(m− 1)

γm2
∆Wn + κC(xn+1),

...

The construction is valid because ∆Wn ≥ 0 implies that xn are nonnegative. By Claim 4.1 there is

an output function such that these levels of e�orts are the equilibrium ones under the optimal prize

structure. Note also that the constructed e�orts and the given prize shape satis�es the system

(4.6). Hence, by Proposition ?? it is the optimal shape, that is, ∆W ∗n = ∆Wn for any stage n.

Thus, we can formulate the following result.

Proposition 4.4. For any increasing shape of prize structure ∆W1, ...∆WN ≥ 0, there exists an

output function Π(x1, ...,xN ) such that this prize shape is optimal.

There are two important things that we should mention in relation to this result. The �rst

one is that this result is about the optimality of the prize structure shape and not the prize

structure itself. That is, we do not state anything concerning prize W1 for the losers of the

�rst stage. Second, since our recursive procedure has to generate non-negative values of e�orts,
a(m−1)
γm2 ∆Wn+κC(xn+1) has to be positive. A su�cient condition for this is positive prize spreads

∆Wn ≥ 0. Thus, for some decreasing prize structures, this procedure would not work. Thus,

although the set of prize structures that might be optimal is large which includes all increasing

prize structures, a non-monotone prize structure can always be suboptimal.

4.5 Limited liability and the optimal CSF

From the previous discussion we know that the optimal prize at the �rst stageW1 = − γm2

a(m−1)C(x∗1)

is always non-positive (and even negative if the designer values the e�orts at the �rst stage). We

have already seen that in some cases the optimal prize structure is decreasing at some stages and,

hence, non-monotone. In many real-life situations, negative or decreasing prizes are not feasible.

In this section, we impose one additional restriction on the optimal prize structure, namely, limited

liability. It means that the designer is not allowed to make prizes negative. Thus, the optimal

prize structure under unlimited liability is not feasible under limited liability. The main result here
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suggests that if the su�cient conditions as in Proposition 3 hold, then the optimal prize structure

would be close to the optimal one in the case of unlimited liability with only one change at the

�rst stage. That is, W1 = 0 and ∂Π(.)
∂xi,n

= m
a(m−1)γC

′(x∗n) and the rest remains the same. However,

since the e�cient level of e�ort is not implementable anymore, the pro�t of the principal reduces

in comparison with the case of unlimited liability.

Now, we show how the designer can implement the e�cient levels of e�orts and extract the full

surplus from contestants if she is given one more degree of freedom with respect to the construction

of a contest. We assume that the designer not is only free to choose a prize structure but also

can implement any CSF. In modeling real-life situations, this can sometimes be a reasonable

assumption. If we consider a sport tournament, it is hard to believe that the designer can somehow

a�ect the probability of a win, provided that rules of a game are given. However, if we consider

a promotion tournament, the owner of a �rm can make decisions about the way of competition

between workers, and our assumption is much more plausible here.

In this section, we can drop our previous assumption about the particular form of the cost

function. Thus, instead of C(x) = xγ , in this part, it can be any cost function C(x) such that

equation (4.2) has the unique interior solution.

In the previous sections, CSF was assumed to be the following Tullock function: P (xi,n,x−i,n) =
xai,n

xai,n+
∑
j 6=i

xaj,n
. We have shown that if degree of convexity of a cost function xγ is low, that is

a > m
m−1γ, it is not possible to induce positive e�orts in a symmetric equilibrium. However,

if the designer can choose a contest success function, then, as we show below, for any cost function

she is able to implement the e�cient level of e�orts in the equilibrium. Moreover, this function

can be found in the class of Tullock functions: P (xi,n,x−i,n) =
f(xi,n)

f(xi,n)+
∑
j 6=i

f(xj,n) .

Thus, in this section, we ask the following question: if the designer could choose any P (xi,n,x−i,n),

which one is better in the sense of maximizing the pro�t under limited liability?

Let us suppose that we can �nd some CSF that satis�es the following condition for every e > 0:

P ′xi,n(e, e)

P (e, e)
=
C ′(e)

C(e)
. (4.9)

Then, using the similar arguments as in the previous section, we can write the following system

of equations, which de�nes our optimal prize structure and the equilibrium after choosing a CSF

satisfying (4.9):
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∂Π(.)

∂xi,n
= C ′(x∗n),

W1 = 0,

∆Wn = mC(x∗n).

We can now see that all e�orts at all stages are e�cient, and the designer is still able to extract

the whole surplus from the agents without allocating negative prizes. Hence, any probability

function that satis�es (4.9) would be an optimal CSF. We can also notice that any optimal CSF

does not depend on the output function Π(.). Thus, irrespective of how the principal values e�orts

of agents, she should choose the same CSF at all stages.

We have not shown yet the existence of such probabilistic functions that satisfy (4.9). Now, we

demonstrate that such a function always exists. That is, for any cost function C(x) we can �nd

a contest success function from the class of Tullock functions P (xi,n,x−i,n) =
f(xi,n)

f(xi,n)+
∑
j 6=i

f(xj,n) ,

which satis�es su�cient condition (4.9).

Lemma 4.2. For any function C(x) take f(x) = C
m
m−1 (x). Then P (xi,n,x−i,n) =

f(xi,n)
f(xi,n)+

∑
j 6=i

f(xj,n)

satis�es the following condition:
P ′xi,n (e,e)

P (e,e) = C′(e)
C(e) .

Proof. See Appendix 4.A.

This lemma shows how the optimal CSF is constructed. Thus, the following must be true:

Proposition 4.5. The following structure of the elimination contest is optimal:

1. P (xi,n,x−i,n) =
f(xi,n)

f(xi,n)+
∑
j 6=i

f(xj,n) , where f(x) = C
m
m−1 (x)

2. W1 = 0, ∆Wn = mC(x∗n),

where x∗n : ∂Π(.)
∂xi,n

= C ′(x∗n).

Proof. See Appendix 4.A.

This is our main result here. We can compare it with Proposition 4.2. If the designer is

able to choose the CSF, then the optimal prize structure is always non-decreasing and satis�es

the limited liability requirement. Thus, there is no need to implement "trap" and other non-

monotone structures. The intuition behind this result is that the optimal CSF makes agents

indi�erent between participation at each stage and choosing zero level of e�ort. Hence, at each
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stage, Vn = Wn. If we compare this to the results from the previous section we see that, in fact,

the whole dynamic structure of the tournament is broken because the value of participation at

each stage equals the prize at that stage. Therefore, for contestants, this tournament is equivalent

to participation in a sequence of independent one-stage tournaments. Thus, the prize di�erence

must be non-negative at each stage because this prize di�erence is equivalent to the prize in the

particular one-stage tournament.

If designer's valuation of e�ort is increasing with later stages, then the optimal prize structure

would be convex because prize spreads, ∆Wn = mC(x∗n), would be increasing. In our opinion,

this explains why one can observe convex prize structures very often in real-life tournaments.

4.6 Discussion

In this chapter, we considered elimination contests and studied how the optimal prize structure

depends on the objective of the designer. E�orts of agents at di�erent stages of a tournament

generate output for the principal according to some output function. Depending on this function

we characterized the optimal prize structure in the tournament that gives the highest pro�t for

the designer. We showed that the optimal prize structure is also e�cient. Sometimes, the optimal

prize structure is non-monotone if the designer's valuation of e�orts at some stage is much higher

than that at the previous stage. To illustrate the variability of optimal structures we gave a

simple example where di�erent prize structures were optimal, depending on one parameter. Some

of these structures have already been characterized as optimal in the existing literature; however,

this is not the case for non-monotone and decreasing prize schemes. For example, under the "trap"

structure, prizes for agents are smaller at the later stages than at the earlier ones. If the prize

at the �rst stage is negative, it means that all prizes at all later stages would also be negative,

except the prize for the winner of the tournament. Further, we provided necessary and su�cient

conditions for the optimality of non-monotone structures.

In addition, we considered the case of limited liability, where the designer is not able to o�er

negative prizes but is free to choose a contest success function. We showed that though prizes

cannot be negative, the optimal choice of CSF enables us to implement e�cient levels of e�orts

and extract the full surplus with only positive prizes. The optimal CSF does not depend on the

output function. Thus, irrespective of how the principal values e�orts at di�erent stages, it is

optimal to choose the same CSF.

The assumptions about the constant rate of elimination, equal cost functions and contest
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success function at all stages make it possible to get an analytical solution for the optimal prize

structure in the form as in Proposition 4.2. It would be interesting to consider a model with

heterogeneous agents. Unfortunately, due to increased complexity of the model, we are unable

to obtain the analytical results for this case. The problem is that if agents are ex-ante di�erent,

the continuation payo� depends on the current opponent's type and on all other competitors'

types. Hence, Proposition 4.1 does not hold anymore and the equilibrium levels of e�orts are

di�erent from the e�cient ones. However, the logic of the analysis suggests that non-monotone

prize structures would be optimal also for a setup with heterogeneous agents. Further, there is no

reason to think that relaxing assumptions or considering heterogeneous agents would help avoid

non-monotone and decreasing prize structures in the optimum.

4.A Appendix

Proof of Lemma 4.1. First, assume that the solution to the agent's problem is interior. We

prove that the conditions for that are exactly those as speci�ed in the statement of this lemma.

Di�erentiating (2.1) with respect to xi,n for 1 ≤ n ≤ N, we get the �rst-order condition:
F.O.C.:

axa−1
i,n

∑
j 6=i

xaj,n(
xai,n +

∑
j 6=i

xaj,n

)2 (Vi,n+1 −Wn) = C ′(xi,n).

In the symmetric equilibrium we skip index i later and thus have:

Vn+1 −Wn =
m2

m− 1

x∗n
a
C ′ (x∗n) =

m2

m− 1

γ

a
C (x∗n) . (4.10)

Taking C(x∗n) from the previous equation and substituting it into the value function we get

the following di�erence equation for Vn:

Vn =
m− 1

m
Wn +

1

m
Vn+1 −

m− 1

m2

Vn+1 −Wn

γ/a
.

Writing it recursively we get

Vn+1 −Wn = ∆Wn + κ∆Wn+1 + κ2∆Wn+2 + ...+ κN−n+1∆WN , (4.11)

where κ = (γ−a)m+a
γm2 .

Then,

123



m2

m− 1

γ

a
C (x∗n) = Vn+1 −Wn = ∆Wn + κ∆Wn+1 + κ2∆Wn+2 + ...+ κN−n+1∆WN .

Obviously, the level of e�orts does not depend on prizes at the previous stages and is greater than

zero if ∆Wn + κ∆Wn+1 + κ2∆Wn+2 + ...+ κN−n+1∆WN > 0.

Now, we show, when the interior solution is an equilibrium, that is:

x∗n ∈ Argmax
xn≥0
{(1− xan

xan + (m− 1)(x∗n)a
)Wn +

xan
xan + (m− 1)(x∗n)a

Vn+1 − C(xn)}.

Consider the case a = m
m−1γ. Then, κ = 0, Vn = Wn, Vn+1 −Wn = mC(x∗n). Hence, we need to

show that

x∗n ∈ Argmax
xn≥0
{ xan
xan + (m− 1)(x∗n)a

mC(x∗n)− C(xn)}.

Denote

Qn(xn) :=
xan

xan + (m− 1)(x∗n)a
mC(x∗n)− C(xn).

Notice that Qn(x∗n) = 0. Hence, we need to show that Qn(xn) ≤ 0 for all xn > 0. Denote

xan = f(xn). Then we need to show that

mf(xn)C(x∗n)− f(xn)C(xn)−mC(xn)f(x∗n) + f(x∗n)C(xn) ≤ 0.

If a = m
m−1γ then f(xn) = C

m
m−1 (x). Hence, the last inequality can be rewritten as

(mC(x∗n)− C(xn))C
1

m−1 (xn)− (m− 1)C(x∗n)C
1

m−1 (x∗n) ≤ 0.

The derivative of the left-hand side is equal to the following expression:

m

m− 1
C ′(xn)C

1
m−1 (xn)

C(x∗n)− C(xn)

C(xn)
.

For xn < x∗n, this expression is positive. For xn > x∗n, it is negative. Hence, Qn(xn) attains

maximum at xn = x∗n, which guarantees that the interior stationary point is a global maximizer.

However, it is not a unique maximizer. Since Vn = Wn, applying x∗n gives the same payo� as

applying zero level of e�ort at each stage.

Next, in the case a < m
m−1γ we have κ > 0. By the similar arguments, the interior solution to

F.O.C. would be a unique global maximizer.

Now, we show that if a > m
m−1γ, there is no symmetric equilibrium in pure strategies. If it
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exists, then continuation values satisfy (4.11). Since we supposed that
N∑
j=n

κj−n∆Wj ≥ 0, equality

(4.11) implies that Vn+1−Wn ≥ ∆Wn. On the other hand, since a > m
m−1γ we have κ < 0. Hence,

the same equality (1.13) implies Vn+1 < Wn+1. Hence, we obtain a contradiction which means

that there is no symmetric equilibrium in pure strategies.

Proof of Proposition 4.1. From the proof of Lemma 4.1, we know that

V1 = W1 +
∑
n

κn∆Wn.

Hence, we can rewrite the designer's problem (4.5) as

Π(x1(Ω), ...,xN (Ω))−mNW1 − (
∑
n

mN−n∆Wn) =⇒ max
Ω
,

s.t.W1 +
∑
n

κn∆Wn ≥ 0.

We can notice that the participation constraint must be binding because otherwise, it would

be possible to decrease W1 and increase the pro�t. Considering this, we can substitute W1 =

−
∑
n
κn∆Wn into the pro�t function:

Π(x1(Ω), ...,xN(Ω)) +mN
∑
n

κn∆Wn − (
∑
n

mN−n∆Wn) =⇒ max
Ω

First, we note that from Lemma 4.1 for any 1 ≤ n ≤ N the following is true:

∂x∗n
∂∆Wn

=
a(m− 1)

m2γC ′(x∗n)
.

Next, we take �rst-order conditions:

∂

∂∆Wn
: mN+1−n ∂Π(x1(Ω), ...,xN (Ω))

∂xi,n

∂x∗n
∂∆Wn

+

+mN+1−(n−1) ∂Π(x1(Ω), ...,xN (Ω))

∂xi,n−1

∂x∗n−1

∂∆Wn
+

+...+mN ∂Π(x1(Ω), ...,xN (Ω))

∂xi,1

∂x∗1
∂∆Wn

= mN−n −mNκn,
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∂

∂∆Wn−1
: mN+1−(n−1)∂Π(x1(Ω), ...,xN (Ω))

∂xi,n−1

∂x∗n−1

∂∆Wn−1
+ ...+

+ mN ∂Π(x1(Ω), ...,xN (Ω))

∂xi,1

∂x∗1
∂∆Wn−1

= mN−(n−1) −mNκn−1.

As we have already noticed,

∂x∗n−1

∂∆Wn−1
=

a(m− 1)

m2γC ′(x∗n−1)
.

Using Lemma 4.1 we can get the following:

∂x∗n−1

∂∆Wn
= κ

a(m− 1)

m2γC ′(x∗n−1)
= κ

∂x∗n−1

∂∆Wn−1
.

Substituting the last expression into the F.O.C. we obtain

mN+1−n∂Π(x1(Ω), ...,xN (Ω))

∂xi,n

a(m− 1)

m2γC ′(x∗n)
+ κ(mN−(n−1) −mNκn−1) =

= mN−n −mNκn.

Hence,

∂Π(x1(Ω), ...,xN (Ω))

∂xi,n
= C ′(x∗n).

This holds for every n 6= 1.

For n = 1 the following holds:

mN ∂Π(x1(Ω), ...,xN (Ω))

∂xi,1

∂x∗1
∂∆W1

= mN−1 − κmN .

Hence,

∂Π(x1(Ω), ...,xN (Ω))

∂xi,1
=
mN−1 − κmN

mN
∗ m

2γC ′(x∗1)

a(m− 1)
= C ′(x∗1).

The only thing we need to explain is why the F.O.C. gives us the optimum. The equilibrium

under the proposed prize structure coincides with the social optimum, that is x∗ = xe, and

simultaneously, the designer is able to extract full surplus from agents. Hence, the obtained prize

structure is optimal.
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Proof of Proposition 4.2. The expressions for the equilibrium e�ort levels follow from Propo-

sition 4.1.

Then, for any 1 ≤ n ≤ N − 1, we can express ∆Wn by using the expression for two consequent

e�ort levels from Lemma 4.1:

∆Wn =
γm2

a(m− 1)
(C(x∗n)− κC(x∗n+1)), n 6= N

∆WN =
γm2

a(m− 1)
C(x∗N )

For W1 we have the following from the previous equations and the proof of Proposition 4.1:

W1 = −
∑
n

κn∆Wn =

= − γm2

a(m− 1)

[
κNC(x∗N ) +

N−1∑
n=1

κn(C(x∗n)− κC(x∗n+1))

]
= − γκm2

a(m− 1)
C(x∗1)

Proof of Proposition 4.3. From Proposition 4.2 for n 6= N and a separable output function

∆Wn =
γm2

a(m− 1)
(C(x∗n)− κC(x∗n+1)), n 6= N,

∂Πn(.)

∂xn
= C ′(x∗n).

The second equality can be equivalently rewritten as

x∗n
∂Πn(.)

∂xn
= γC(x∗n).

Assume that properties in part (1) hold in a non-strict sense. Then, we have

C(x∗n) = x∗n
∂Πn(x∗n, ..., x

∗
n)

∂xn
/γ ≥ κx∗n

∂Πn+1(x∗n, ..., x
∗
n)

∂xn+1
/γ ≥

≥ κx∗n+1

∂Πn+1(x∗n+1, ..., x
∗
n+1)

∂xn+1
/γ = κC(x∗n+1).

Thus, ∆Wn ≥ 0 for n 6= N.

In the �nal ∆WN = γm2

a(m−1)C(x∗N ), which is always non-negative.
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The proof for the case with strict inequalities in part (1) and that for the whole part (2) are

similar.

Proof of Lemma 4.2.

P ′xi,n(e, e)

P (e, e)
=

f ′(e)
∑
j 6=i

f(e)

(f(e) +
∑
j 6=i

f(e))2
/

 f(e)

f(e) +
∑
j 6=i

f(e)

 =

=
m− 1

m

f ′(e)

f(e)
=
m− 1

m

m

m− 1

C
m
m−1

−1(e)

C
m
m−1 (e)

C ′(e) =
C ′(e)

C(e)

Proof of Proposition 4.5. The agent's problem is

Vi,n = max
xi,n

(1− P (xi,n,x−i,n))Wn + P (xi,n,x−i,n)Vi,n+1 − C(xi,n).

Let us assume that Vi,n+1 −Wn ≥ 0 and the solution is interior and show later that this is

true. Then,

P ′xi,n(xi,n,x−i,n)(Vi,n+1 −Wn) = C ′(xi).

Denote the interior symmetric solution to this equation by x∗n. Then, it satis�es the following:

P ′xi,n(x∗n,x
∗
n)(Vn+1 −Wn) = C ′(x∗n).

From Lemma 4.2 if P (xi,n,x−i,n) =
f(xi,n)

f(xi,n)+
∑
j 6=i

f(xj,n) , where f(x) = C
m
m−1 (x), then

P ′xi,n (e,e)

P (e,e) =

C′(e)
C(e)

Thus,

P (x∗n,x
∗
n)(Vn+1 −Wn) = C(x∗n).

Then, due to symmetry of the CSF,

C(x∗n) =
1

m
(Vn+1 −Wn).

Substituting this in the value function we obtain

Vn = (1− 1

m
)Wn +

1

m
Vn+1 −

1

m
(Vn+1 −Wn) = Wn.
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Thus, agents' valuations of the participation in each stage would be exactly equal to the prize

at that stage. Thus, this solution coincides with the solution obtained in Lemma 4.1 for a = m
m−1γ.

To argue that this interior solution is an equilibrium we could just repeat the argument from the

proof of Lemma 4.1 for a = m
m−1γ.

Then,

C(x∗n) =
1

m
(Wn+1 −Wn) =

1

m
∆Wn

Thus, the level of e�ort at the particular stage depends only on the prize increase at that stage.

Now, the designer can optimize with respect to the prize structure:

Π(x1(Ω), ...,xN (Ω))−mNW1 − (
∑
n

mN−n∆Wn) =⇒ max
Ω
,

s.t. limited liability: Wi ≥ 0.

We must notice here that the participation constraint is automatically satis�ed in the case

with non-negative prizes because agents always have an opportunity to apply zero level of e�ort.

Now, we assume that there is no limited liability constraint and W1 = 0. If the solution for

this reduced problem satis�es limited liability, we have the solution to the whole problem.

F.O.C. for the reduced problem is

mN+1−n∂Π(x1(Ω), ...,xN (Ω))

∂xi,n

∂x∗n
∂∆Wn

= mN−n.

The response of the e�ort to the change of a prize is

∂x∗n
∂∆Wn

=
1

m

1

C ′(x∗n)
.

We substitute the last equation in the F.O.C.

mN+1−n∂Π(x1(Ω), ...,xN (Ω))

∂xi,n

1

m

1

C ′(x∗n)
= mN−n.

Hence,

∂Π(x1(Ω), ...,xN (Ω))

∂xi,n
= C ′(x∗n).

Thus, the equilibrium e�ort level is e�cient. Simultaneously, the designer obtains the whole

surplus from the agents: V1 = W1 = 0. Thus, we have got the solution to the reduced problem,

which implements the e�cient level of e�ort and extracts the whole surplus. Since all prize spreads
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are non-negative, the limited liability restriction is satis�ed. Hence, the reduced solution is also

the solution to the whole problem and the proposed structure is optimal.
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