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Introduction

This thesis consists of three self-contained essays in econometrics and statistics. It discusses
methodological topics in semi- and nonparametric statistics as well as empirical questions in fi-
nancial econometrics. My methodological contributions cover regression and times series pre-
diction techniques, which are designed to deal with complex and high-dimensional data. The
proposed statistical concepts are particularly useful for the analysis of risk in modern financial
markets, which is of major importance for example in risk management, automated trading and
for regulatory authorities. The empirical contribution of this thesis is an analysis of the role and
dynamics of price and liquidity risk of equity and debt securities in developed capital markets.
The applications in the first two chapters deal with risk on stock markets, while the third chapter
deals with risk on bond markets.

Chapters 1 and 2 are concerned with systematic time heterogeneity in econometric models dealing
with functional data. With these works I contribute in particular to the literature on functional data
analysis, a branch of statistics which has become increasingly popular within the last two decades.
The term functional data refers to the outcomes of random variables that are curve-valued, such
as human growth curves, temperature curves or implied volatility surfaces of options on finan-
cial assets. Ramsay and Silverman (2005) offer a general introduction to the topic. Functional
data analysis is useful for econometricians, for example when dealing with high frequency data
from stock markets. Stock trading takes place in continuous time over a trading day and con-
sequently the underlying population price process is most reasonably described as a continuous
time stochastic process. Densely sampled observations from this process, potentially allow to infer
curve-valued characteristics describing its moments or functional components and parameters of
an underlying population model. Motivated by this observation, the first two chapters present sta-
tistical concepts allowing to deal with dynamic features and pricing effects of such characteristics.
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CHAPTER 1. In the first chapter, which is based on joint work with Dominik Liebl, we propose
a partial functional linear regression model for panel data.1 The suggested semiparametric re-
gression framework allows analyzing time-varying marginal effects of a functional covariate on
a scalar response, in the presence of a vector-valued control variable. While the parameter of the
control variable is completely time-varying, the parameter of the functional model component is
assumed to change over a fixed number of unknown parameter regimes. This type of parame-
ter instability is motivated by recent research on multivariate panel data models as in Vogt and
Linton (2017) and Su et al. (2016). We suggest simple estimators for the regimes and the regres-
sion slopes and examine their asymptotic properties as the time and the cross section dimensions
diverge simultaneously. Our statistical model is particularly helpful for exploring time hetero-
geneity in the pricing of idiosyncratic risk. In an empirical study of the US stock market, we use
our framework to quantify when idiosyncratic risk premiums turn negative, a phenomenon which
is known as the idiosyncratic volatility puzzle. Based on a functional measure of idiosyncratic
volatility, our model identifies systematically negative risk premiums for almost half of the avail-
able trading days. The composition of the corresponding parameter regimes indicates a complex
temporal pattern of the underlying risk pricing mechanism.

CHAPTER 2. The second chapter starts from a similar notion of stock price riskiness as the ap-
plication in the first chapter. In this work I consider online prediction of spot volatility curves
for intraday stock price returns. Such curves are considered to be random functions, governing
the intraday variation of returns in continuous time. I assess the forecasting problem, which is
of particular interest for automated trading, by means of a novel component model for functional
volatility. The model incorporates an intraday shape pattern of volatility, which is supplemented
by level shifts of the curves. As a key novelty, I allow for partially systematic deviations from the
intraday shape pattern. I suggest a new distance metric learning procedure to uncover latent simi-
larity of such deviations over trading days. The quantified distance notion can be used to forecast
shape properties of the intraday volatility curve from a functional kernel regression. The accuracy
of my prediction technique is examined in an empirical study of the German stock market. The re-
sults indicate a promising performance of the mechanism when compared to relevant competitors.

While the applications of the first two chapters focus on asset price risk in equity markets, the
third chapter shifts the focus to liquidity risk of debt securities. Markets for corporate bonds are
typically less centralized and asset characteristics are less homogeneous than in stock markets.
This chapter offers an econometric assessment of market segmentation according to the effects of

1Cf. Liebl and Walders (2018) and Walders and Liebl (2017).
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liquidity risk, which helps for example institutional investors or financial authorities to evaluate
the risk of bond portfolios. It relies on a similar notion of parameter heterogeneity as in the first
chapter and adapts the model of Vogt and Linton (2017) to the case of unbalanced panel data.

CHAPTER 3. The third chapter is based on joint work with Christian Hafner, which is published
in the Journal of Fixed Income.2 It assesses systematic heterogeneity in the risk pricing for fixed
income securities and links in particular to the panel model from the first chapter. Among the
many sources of risk explaining corporate bond spreads, the role of liquidity is the least well un-
derstood. This chapter investigates the impact of liquidity risk of unknown functional form on
the yield spread over time. Heterogeneity is introduced via a latent group structure explaining
differences in nonlinear liquidity effects across groups of bonds. A key feature of the model is
that it can be estimated from highly unbalanced longitudinal data, allowing us to work with data at
minimum levels of temporal aggregation. In an extensive empirical study we apply the suggested
method to a large panel of trade data for US corporate bonds. Our procedure identifies nonlin-
ear liquidity effects for a large fraction of the securities. The classification clearly distinguishes
groups differing e.g. in bond characteristics such as spread levels, trading activity and also estab-
lished measures such as credit ratings and the time to maturity. While most groups share similar
dynamics of liquidity effects, their magnitudes as well as the interplay between different idiosyn-
cratic liquidity proxies differ substantially across groups.

The unifying theme of the three chapters in this dissertation is the analysis of systematic hetero-
geneity in disaggregate complex data. All works address instabilities of the structure of statistical
models over time or statistical units. The underlying ability to adjust statistical models automati-
cally when the empirical phenomena change, will become increasingly important, not only in the
analysis of financial markets. For example new digital consumer goods and new digital features
of existing goods such as connected cars or smart homes will produce a much larger amount and
a much more complex mix of data as it was available only twenty years ago. The resulting mixed,
large scale data will demand new statistical concepts to generate insights from highly heteroge-
neous empirical phenomena. In particular the efficient online adjustment of statistical procedures
will be a key to access the value of data from the new digital world.

2Cf. Hafner and Walders (2017).
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Chapter 1

Parameter Regimes in Partial Functional
Panel Regression

1.1 Introduction

The availability of mixed—functional and multivariate—data types and the need to analyze such
data types appropriately, has trigged the development of new statistical models and procedures.
In this work we consider the so-called partial functional linear model for scalar responses, which
combines the classical functional linear regression model (see, e.g., Hall and Horowitz, 2007)
with the classical multivariate regression model. This model was first proposed by Zhang et al.
(2007) and Schipper et al. (2008)—two mixed effects modeling approaches. The first theoretical
work is by Shin (2009), who uses a functional-principal-components-based estimation procedure
and derives convergence rates for the case of independent cross-sectional data. Recently, the par-
tial functional linear regression model was extended in several directions. Shin and Lee (2012)
consider the case of prediction, Lu et al. (2014) and Tang and Cheng (2014) focus on quantile
regression, Kong et al. (2016) consider the case of a high-dimensional multivariate model com-
ponent, Peng et al. (2016) allow for varying coefficients in the multivariate model component, and
Wang (2016) and Ding et al. (2017) are concerned with a functional single-index model compo-
nent.
Motivated by our real data application, we deviate from this literature and contribute a new partial
functional linear panel regression model with time-varying parameters allowing for K < ∞
latent parameter regimes, which can be estimated from the data. In the theoretical part of this
work we show consistency of our estimators and of our unsupervised classification procedure
identifying the K parameter regimes. In addition, we derive convergence rates of the regression
slope estimators under a double asymptotic, for which we differentiate among different asymptotic
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scenarios. These scenarios depend on the relative order of the panel dimensions n and T .
The consideration of time-varying parameters is quite novel in the literature on functional data
analysis. To the best of our knowledge, the only other work concerned with this issue is Horváth
and Reeder (2012), who focus on testing the hypothesis of a time constant parameter function in
the case of a classical fully-functional regression model. Closely related to the partial functional
linear model is the so-called Semi-Functional Partial Linear (SFPL) model proposed by Aneiros-
Pérez and Vieu (2006), where the functional component consists of a nonparametric functional
regression model instead of a functional linear regression model. The SFPL model is further
investigated by Aneiros-Pérez and Vieu (2008), Lian (2011), Zhou and Chen (2012), and Aneiros-
Pérez and Vieu (2013), among others. Readers with a general interest in functional data analysis
are referred to the textbooks of Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth
and Kokoszka (2012) and Hsing and Eubank (2015).
The usefulness of our model and the applicability of our estimation procedure is demonstrated by
means of a simulation study and a real data application. For the latter we consider the so-called
“idiosyncratic volatility puzzle” using high frequency stock-level data from the S&P 500. Our
model allows us to consider this puzzle at a much less aggregated time scale than considered so
far in the literature. This leads to new insights into the temporal heterogeneity in the pricing of
idiosyncratic risk in equity markets.
The remainder of this work is structured as follows. In sections 1.2 and 1.3 we introduce the model
and present the estimation procedure. Section 1.4 contains our main assumptions and asymptotic
results. Section 1.5 discusses the practical choice of the tuning parameters involved. The finite
sample performance of the estimators is explored in Section 1.6. Section 1.7 offers an empirical
study examining regime dependent pricing of idiosyncratic risk in the US stock market. Section
1.8 contains a short conclusion. All proofs can be found in the appendix of this chapter.

1.2 Model

We introduce a partial linear regression model for panel data, which allows us to model the time-
varying effect of a square integrable random functionXit ∈ L2([0, 1]) on a scalar response yit ∈ R
in the presence of a random, finite dimensional explanatory variable zit ∈ RP . Indexing the cross-
section units i = 1, . . . , n and points in time t = 1, . . . , T , our statistical model reads as

yit = ρt +

∫ 1

0

αt(s)Xit(s)ds+ β>t zit + εit, (1.1)

5



where ρt is a time fixed effect, αt ∈ L2([0, 1]) is a time-varying deterministic functional parameter,
βt ∈ RP is a time-varying deterministic parameter vector, and εit is a scalar error term with zero
mean and finite but potentially time heteroscedastic variances (see also our assumptions in Section
1.4).1

The unknown function-valued parameters αt, 1 ≤ t ≤ T , are assumed to differ only across
unknown time regimes Gk ⊂ {1, . . . , T}. That is, each regime Gk is associated with a regime
specific parameter function Ak ∈ L2([0, 1]), such that

αt(s) ≡ Ak(s) if t ∈ Gk. (1.2)

The regimes G1, . . . , GK form a partition of the set of periods {1, . . . , T} and do not have to
consist of subsequent periods t. The number of regimes K is fixed and does not depend on the
number of points in time T . For our theoretical analysis in Section 1.4, we also allow the joint
and the marginal distributions of Xit, zit and εit to vary over the different regimes Gk.
We have in mind a situation where Gk is a collection of periods t, which belong to the k-th risk
pricing regime as in our application. Here, the k-th regime is characterized by the function-valued
slope parameter Ak, which is the marginal effect of the functional idiosyncratic risk measure
Xit on the scalar stock price return yit, t ∈ Gk, for stocks 1 ≤ i ≤ n. The objective of our
application is to differentiate between different pricing mechanismsAk, controlling for potentially
time heterogeneous effects of additional control variables zit.
Model (1.1) nests several different specifications. It might be the case thatK = 1 and henceG1 =

{1, . . . , T}. In this situation the effect of the random function on the response is time invariant.
The classical functional or the classical multivariate linear regression model are obtained if βt = 0

or αt = 0 for all t = 1, . . . , T .

1.3 Estimation

Our objective is to estimate the model parameters Ak, βt, and the regimes G1, . . . , GK from a
sample {(yit, Xit, zit) : 1 ≤ i ≤ n, 1 ≤ t ≤ T}. For this purpose, we suggest a three-step
estimation procedure. The first step is a pre-estimation step where model (1.1) is fitted to the data
separately for each t = 1, . . . , T . This pre-estimation step reveals information about the regime
memberships, which is used in the second step, where we apply our unsupervised classification
procedure in order to estimate the regimesG1, . . . , GK . The third step is the final estimation step,
in which we improve the estimation of the functional parameter Ak by employing information

1We use the term time fixed effect in the sense that ρt is a latent time (t-) specific random variable, which is
potentially correlated with the regressors.
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about the regime membership gathered in step two. The general procedure is inspired by the work
of Vogt and Linton (2017), but differs from it as we consider a functional data context which
demands for a different estimation procedure. In the following we explain the three estimation
steps in more detail:

Step 1. In this step, we pre-estimate the parameters αt and compute the final estimates of βt
separately for each t = 1, . . . , T . Estimation starts from removing the fixed effect ρt using a
classical within-transformation. For this we denote the centered variables as ycit = yit − ȳt,
Xc
it = Xit − X̄t, zcit = zit − z̄t, and εcit = εit − ε̄t, where ȳt = n−1

∑n
i=1 yit, X̄t = n−1

∑n
i=1Xit,

z̄t = n−1
∑n

i=1 zit, and ε̄t = n−1
∑n

i=1 εit. Then, the within-transformed version of model (1.1)
is

ycit =

∫ 1

0

αt(u)Xc
it(u)du+ β>t z

c
it + εcit.

By adapting the methodology in Hall and Horowitz (2007), we estimate the slope parameter αt
using (t-wise) truncated series expansions of αt and Xc

it, i.e.

αt(s) ≈
mt∑
j=1

aj,tφ̂j,t(s) where aj,t := 〈αt, φ̂j,t〉, 1 ≤ j ≤ mt

and Xc
it(s) =

n∑
j=1

〈Xc
it, φ̂j,t〉φ̂j,t(s) ≈

mt∑
j=1

〈Xc
it, φ̂j,t〉φ̂j,t(s),

which can be used to approximate the functional
∫ 1

0
αt(u)Xc

it(u)du in the regression equation by∑mt
j=1〈Xc

it, φ̂j,t〉aj,t. Here, 〈·, ·〉 is the inner product inL2([0, 1]) and φ̂j,t denotes the eigenfunction
corresponding to the j-th largest eigenvalue λ̂j,t of the empirical covariance operator Γ̂t of {Xit :

1 ≤ i ≤ n}. The operator Γ̂t is defined as

(Γ̂tx)(u) :=

∫ 1

0

K̂X,t(u, v)x(v)dv for any x ∈ L2([0, 1])

and K̂X,t(u, v) :=
1

n

n∑
i=1

Xc
it(u)Xc

it(v).

The eigenfunctions φ̂j,t and eigenvalues λ̂j,t are defined as the solutions of the eigen-equations∫ 1

0
K̂X,t(u, v)φ̂j,t(v)dv = λ̂j,tφ̂j,t(u), where 〈φ̂j,t, φ̂`,t〉 = 1 for all j = ` and 〈φ̂j,t, φ̂`,t〉 = 0 if

j 6= `, where j, ` ∈ {1, 2, . . . , n}. This leads to the following estimators for the functional slope
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parameter αt and the slope parameter βt:

α̂t =
mt∑
j=1

âj,tφ̂j,t with âj,t = λ̂−1
j,t

1

n

n∑
i=1

〈Xc
it, φ̂j,t〉(ycit − β̂>t zcit) and

β̂t =
[
K̂z,t − Φ̂t(K̂zX,t)

]−1 [
K̂zy,t − Φ̂t

(
K̂yX,t

)]
,

where

K̂z,t :=
1

n

n∑
i=1

zcitz
c
it
>, K̂zX,t(s) := [K̂z1X,t(s), . . . , K̂zPX,t(s)]

>, K̂zy,t := [K̂z1y,t, . . . , K̂zP y,t]
>,

K̂yX,t(s) :=
1

n

n∑
i=1

ycitX
c
it(s), K̂zpX,t(s) :=

1

n

n∑
i=1

zcp,itX
c
it(s), K̂zpy,t :=

1

n

n∑
i=1

zcp,ity
c
it,

Φ̂t(g) := [Φ̂1,t(g), . . . , Φ̂P,t(g)]>, Φ̂p,t(g) :=
mt∑
j=1

〈K̂zpX,t, φ̂j,t〉〈φ̂j,t, g〉
λ̂j,t

for any g ∈ L2([0, 1]),

and Φ̂t(K̂zX,t) := [Φ̂p,t(K̂zqX,t)]1≤p≤P, 1≤q≤P ;

see Shin (2009) for similar estimators in a cross-section context.
For our theoretical analysis, we let mt = mt,nT → ∞ as n, T → ∞. In practice, the cut-off
parameter mt can be chosen, for instance, by Cross Validation (CV) or by a suitable information
criterion as introduced in Section 1.5.
Besides obtaining the final estimators β̂t for βt, this first estimation step is intended to pave the
way for the classification procedure in Step 2. With such classification we aim to distinguish
systematically large from systematically small differences between estimated functions α̂t and
α̂s across different periods t 6= s. For this purpose one could compare the magnitude of the
differences between the functions α̂t and α̂s to an appropriate threshold. However, the estimators
α̂t, α̂s are not well suited for deriving a practically useful threshold parameter. We, therefore,
suggest the following transformed estimators, for which it is straightforward to derive a valid
threshold parameter using distributional arguments (see Section 1.5):

α̂
(∆)
t :=

m∑
j=1

λ̂
1/2
j,t

σ̂ε,t
âj,tφ̂j,t, (1.3)

where σ̂2
ε,t := n−1

∑n
i=1

(
ycit − 〈α̂t, Xc

it〉+ β̂>t z
c
it

)2 and m := min1≤t≤T mt.

Step 2. In this step, we use the scaled estimators α̂(∆)
t from (1.3) to classify periods t = 1 . . . , T

into regimes G1, . . . , GK . Our classification algorithm aims to detect systematic differences in

8



the empirical distances ∆̂ts := ||α̂(∆)
t − α̂(∆)

s ||22, where ||.||22 denotes the squared L2 norm defined
as ||x||22 = 〈x, x〉 for any x ∈ L2([0, 1]).
The algorithm detects regimes by iteratively searching for large differences ∆̂ts. If ∆̂ts exceeds
the value of a threshold parameter τnT > 0, it classifies periods t and s in different regimes. The
procedure is initialized by setting S(0) := {1, . . . , T} and then iterates over k = 0, 1, 2, . . . the
following procedure:

while
∣∣S(k)

∣∣ > 0 do
select any t ∈ S(k), Ĝk+1 ← ∅, S(k+1) ← ∅
for s ∈ S(k) do

if ∆̂ts ≤ τnT then
Ĝk+1 ← Ĝk+1 ∪ {s}

else S(k+1) ← S(k+1) ∪ {s}
end if

end for
end while

where we use | · | to denote the cardinality of a set. The algorithm stops as soon as all periods t are
classified into regimes and the total number K̂ of estimated regimes Ĝ1, . . . , ĜK̂ serves as a natu-
ral estimator for the trueK. Our theoretical results show that this procedure consistently estimates
the true regimes Gk and the true number K. However, in order to improve the classification in
finite samples, we suggest to set an upper bound Kmax on K̂, such that K̂ ≤ Kmax. The practical
choice of Kmax is described in Section 1.5. In the case where Kmax is binding, the algorithm is
stopped afterKmax−1 iterations and all remaining periods t are assigned to a final regime ĜKmax .

Step 3. In this step, we build upon the regime structure determined in Step 2 in order to esti-
mate Ak, k = 1, . . . , K̂. For a regime k and any t ∈ Ĝk, let Xcc

it denote the regime specific
centered functional regressor defined as Xcc

it := Xit − |Ĝk|−1
∑

s∈Ĝk X̄s. Further we define the
corresponding k-specific empirical covariance operator Γ̃k by

(Γ̃kx)(u) :=

∫ 1

0

K̃X,k(u, v)x(v)dv for all x ∈ L2([0, 1])

where K̃X,k(u, v) :=
1

n|Ĝk|

n∑
i=1

∑
t∈Ĝk

Xcc
it (u)Xcc

it (v).

9



We obtain our final estimator Ãk for Ak, in analogy to the pre-estimator α̂t, as

Ãk =

m̃k∑
j=1

ãj,kφ̃j,k, with ãj,k = λ̃−1
j,k

1

n|Ĝk|

n∑
i=1

∑
t∈Ĝk

〈φ̃j,k, Xcc
it 〉(ycit − β̂>t zcit).

Here (λ̃j,k, φ̃j,k)1≤j≤n|Ĝk| denote the eigenvalue-eigenfunction pairs of the empirical covariance
operator Γ̃k, where λ̃j,k is the j-th largest eigenvalue. Again, for our theoretical analysis, we let
m̃k = mk,nT → ∞ as n, T → ∞. In practice the cut-off parameter m̃k can be chosen, for
instance, by CV or by a suitable information criterion as introduced in Section 1.5.

1.4 Asymptotic Theory

In the asymptotic analysis of our estimators we need to address two problems: first, there is a
classification error contaminating the estimation of Ak. Second, the estimation of t-specific pa-
rameters βt cannot be separated from the estimation of the regime specific parameter Ak. In the
following we list our theoretical assumptions, allowing us to deal with these aspects in a large
sample framework.

A1 1. For every 1 ≤ k ≤ K, the random variables {(Xit, zit, εit) : 1 ≤ i ≤ n, t ∈ Gk} are
strictly stationary and further independent over the index i for any t ∈ Gk. Beyond
that, the errors εit are centered and also independent over the index 1 ≤ t ≤ T .

2. For every 1 ≤ k ≤ K and 1 ≤ i ≤ n, the random variables {Xit : t ∈ Gk} are
L4-m-approximable in the sense of Definition 2.1 in Hörmann and Kokoszka (2010).

3. For every 1 ≤ k ≤ K and 1 ≤ i ≤ n, the random variables {zit : t ∈ Gk} are
m-dependent.

4. Suppose that ||E [X4
it] ||2 < ∞, E [z4

it] < ∞, E [ε4it] < ∞ for any 1 ≤ i ≤ n and
1 ≤ t ≤ T .

5. The error εit is independent of the covariates Xjs and zjs for any 1 ≤ i, j ≤ n and
1 ≤ t, s ≤ T .

A2 Suppose there exist constants 0 < Cλ, C
′
λ, Cθ, Ca, CzX , Cβ < ∞, such that the following

holds for every 1 ≤ k ≤ K:

1. C−1
λ j−µ ≤ λj,k ≤ Cλj

−µ and λj,k − λj+1,k ≥ C ′λj
−(µ+1), j ≥ 1 for the eigenvalues

λ1,k > λ2,k > . . . of the covariance operator Γk of Xit, t ∈ Gk and a µ > 1,
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2. E [〈Xit − E[Xit], φj,k〉4] ≤ Cθλ
2
j,k for the eigenfunction φj,k of Γk corresponding to

the j-th largest eigenvalue λj,k, j ≥ 1,

3. |〈Ak, φj,k〉| ≤ Caj
−ν , j ≥ 1,

4. |〈KzpX,k, φj,k〉| ≤ CzXj
−(µ+ν), j ≥ 1 for any 1 ≤ p ≤ P , where KzpX,k := E[(Xit −

E[Xit])(zp,it − E(zp,it))] and

5. sup1≤t≤T βp,t ≤ Cβ , for any 1 ≤ p ≤ P , with βp,t being the p-th coordinate in βt.

A3 Let n→∞ and T →∞ jointly, such that T ∝ nδ for some 0 < δ < 1 and |Gk| ∝ T .

A4 Suppose that ν > 3 max{r1, r2}, where r1 := 1 + 1
2
µ and r2 := 1+µ(1+δ)/3

2(1−δ) .

A5 Suppose that mt = mt,nT and m̃k = m̃k,nT with mt ∝ n
1

µ+2ν and m̃k ∝ (n|Gk|)
1

µ+2ν for any
1 ≤ t ≤ T and 1 ≤ k ≤ K.

A6 Consider the random vector sit := [s1,it, . . . , sP,it]
>, defined according to

sp,it := (zp,it − E[zp,it])−
∫ 1

0

(Xit(u)− E[Xit](u))

(
∞∑
j=1

〈KzpX,k, φj,k〉
λj,k

φj,k(u)

)
du, 1 ≤ p ≤ P.

Suppose that for any 1 ≤ k ≤ K the random variables {sit : 1 ≤ i ≤ n, t ∈ Gk} are
strictly stationary and further independent over the index i for any t ∈ Gk. Also, suppose
they are strictly stationary, ergodic and m-dependent over the index t for any 1 ≤ i ≤ n. In
addition, assume that E[sit|Xk] = 0, where Xk := {Xit : 1 ≤ i ≤ n, t ∈ Gk} and that the
matrix E[sits

>
it ] is positive semi-definite.

A7 1. There exists some C∆ > 0 such that for any 1 ≤ k ≤ K and any t ∈ Gk

∣∣∣∣∣∣α(∆)
t − α(∆)

s

∣∣∣∣∣∣2
2

=: ∆ts

≥ C∆ if s 6∈ Gk

= 0 if s ∈ Gk,

where α(∆)
r := σ−1

ε,l

∑∞
j=1 λ

1/2
j,l 〈αr, φj,l〉φj,l and σ2

ε,l := E[ε2ir] for r ∈ Gl.

2. The threshold parameter τnT → 0 satisfies P
(

maxt,s∈Gk ∆̂ts ≤ τnT

)
→ 1 as n, T →

∞ for all 1 ≤ k ≤ K.

Beyond the above assumptions we also suppose that the sign of the estimated eigenfunctions from
Step 1 and Step 3 of our estimation procedure coincide with their population counterparts in the
sense that

∫ 1

0
φ̂j,t(u)φj,k(u)du ≥ 0, 1 ≤ j ≤ mt and

∫ 1

0
φ̃j,k(u)φj,k(u)du ≥ 0, 1 ≤ j ≤ m̃k.

11



Assumptions A1-A6 correspond to existing standard assumptions in the literature (see Hall and
Horowitz, 2007 and Shin, 2009), adapted to our panel data version of the partial functional linear
regression model. Assumption A7 is a slightly modified version of Assumption Cτ in Vogt and
Linton (2017).
Our theoretical results establish the consistency of our classification procedure and the conver-
gence rates for the proposed regression slope estimators. We provide convergence rates of the
period-wise estimators β̂t and α̂t from Step 1 of our estimation procedure in Theorem 1.4.1.
Lemma 1.4.1 establishes uniform consistency of these estimators as well as the adjusted slope
function estimator α̂(∆)

t over t = 1, . . . , T . This is an important prerequisite for the consistency
of our classification procedure, which is established in Theorem 1.4.2. Finally, Theorem 1.4.3
establishes the convergence rate of our estimator Ãk from Step 3 of the estimation procedure.

Theorem 1.4.1 Given Assumptions A1–A6 hold, it follows for all 1 ≤ t ≤ T that∣∣∣∣∣∣β̂t − βt∣∣∣∣∣∣2 = Op

(
n−1
)

and ||α̂t − αt||22 = Op

(
n

1−2ν
µ+2ν

)
,

where ||.|| denotes the Euclidean norm and ||.||2 the L2 norm.

Theorem 1.4.1 is related to Theorems 3.1 and 3.2 in Shin (2009), though our proof deviates from
that in Shin (2009) at important instances. The above rates for α̂t correspond to the rates in the
cross-section context of Hall and Horowitz (2007). These pointwise rates provide a benchmark for
the asymptotic properties of Ãk, however the theorem is per se not sufficient for the consistency
of our classification algorithm. For this, we need the following uniform consistency results:

Lemma 1.4.1 Given Assumptions A1–A6 hold, it follows that

max1≤t≤T

∣∣∣∣∣∣β̂t − βt∣∣∣∣∣∣2 = op(1)

max1≤t≤T ||α̂t − αt||22 = op(1),

and max1≤t≤T

∣∣∣∣∣∣α̂(∆)
t − α(∆)

t

∣∣∣∣∣∣2
2

= op(1).

The following theorem establishes consistency of our classification procedure and is based on our
results in Lemma 1.4.1:

Theorem 1.4.2 Given Assumptions A1–A7 hold, it follows that

P
(
{Ĝ1, . . . , ĜK̂} 6= {G1, . . . , GK}

)
= o(1).
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The statement of Theorem 1.4.2 is twofold. First, it says that the number of regimes K is asymp-
totically correctly determined. Second, it says that the estimators Ĝk, 1 ≤ k ≤ K̂ consistently
estimate their population counterparts. This notion of classification consistency is sufficient to
obtain the following asymptotic result for the corresponding estimators Ãk, 1 ≤ k ≤ K̂ from
Step 3 of the estimation procedure:

Theorem 1.4.3 Given Assumptions A1–A7 hold, it follows for all 1 ≤ k ≤ K̂ that

∣∣∣∣∣∣Ãk − Ak∣∣∣∣∣∣2
2

=

{
Op (n−1) if δ ≥ 1+µ

2ν−1

Op

(
(nT )

1−2ν
µ+2ν

)
if δ ≤ 1+µ

2ν−1

.

Theorem 1.4.3 quantifies the extent to which the estimation error ||β̂t−βt|| contaminates the esti-
mation of Ak. In the first case (δ ≥ (1 +µ)/(2ν− 1)), n diverges relatively slowly in comparison
to T and, therefore, the contamination due to estimating βt is not negligible. This results in the
relatively slow convergence rate of n−1/2, where the attribute “slow” has to be seen in relation
to our panel context with n → ∞ and T → ∞. In the second case (δ ≤ (1 + µ)/(2ν − 1)),
n diverges sufficiently fast such that the contamination due to estimating βt becomes asymptoti-
cally negligible, which results in the faster convergence rate of (nT )(1−2ν)/(µ+2ν). The latter rate
coincides with the minimax optimal convergence result in Hall and Horowitz (2007).

1.5 Practical Choice of the Tuning Parameters

While we illuminated the large-sample properties in the previous section, we now turn to the
further specification of our estimation procedure in finite samples.
Inspired by the thresholding procedure in Vogt and Linton (2017), we suggest choosing the thresh-
old parameter τnT based on an approximate law for ∆̂ts = ||α̂(∆)

t − α̂(∆)
s ||22 under the hypothesis

that t and s belong to the same regime Gk. As argued in Section 1.A in the appendix of this
chapter, the scaling of the estimators α̂t and α̂s as suggested in (1.3) leads, for large n, to

n

2
∆̂ts =

n

2
||α̂(∆)

t − α̂(∆)
s ||22 ∼ χ2

m approximately.

Hence we recommend setting the threshold τnT to be 2/n times the pτ -quantile of a χ2
m distribu-

tion, where pτ is close to one, for instance, pτ = 0.99 or pτ = 0.999. By scaling this quantile
with 2/n, the threshold converges to zero as n tends to infinity (see Section 1.A in the appendix
for more details).
For selecting the truncation parameters mt and m̃k the literature offers two general strategies.2

2Cf. Section 2.2 in Reiss et al. (2016) and references therein.
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The first strategy is to choose the truncation parameters in order to find an optimal prediction. A
cross validation procedure is shown, e.g., in Shin (2009). The second one is to choose the cut-off
levels according to the covariance structure of the functional regressor. This is for large sample
sizes particularly convenient from a computational point of view. We thus suggest choosing mt

and m̃k according to the eigenvalue ratio criterion suggested in Ahn and Horenstein (2013). This
choice obtains according to

mt = arg max
1≤l<n

λ̂l,t/λ̂l+1,t, 1 ≤ t ≤ T

and m̃k = arg max
1≤l<n|Ĝk|

λ̃l,k/λ̃l+1,k, 1 ≤ k ≤ K̂.

For selecting Kmax we employ a standard estimate for the number of clusters from classical mul-
tivariate cluster analysis as introduced by Caliński and Harabasz (1974). This translates to our
context as follows. On an equidistant grid 0 = s1 < s2 < · · · < sL = 1 in [0, 1] we calculate
the L-vectors vt := [α̂

(∆)
t (sl)]l=1,...,L for 1 ≤ t ≤ T . Based on these quantities we employ the

maximizer

Kmax := arg max
1≤k≤(T−1)

tr
(∑k

j=1 |Cj|(vt − v̄)(vt − v̄)>
)
/(k − 1)

tr
(∑k

j=1

∑
t∈Cj(vt − cj)(vt − cj)>

)
/(T − k)

as an upper bound for K̂. Here Cj ⊂ {1, . . . , T} is the j-th cluster formed from a k-means
algorithm with cj being the corresponding centroid. We further denote v̄ := T−1

∑T
t=1 vt and

use tr(·) for the trace operator. Choosing Kmax equal to the optimal number of clusters in the
multivariate analogue of the functional classification problem leads to a comparably conservative
choice of K̂ ≤ Kmax. This guarantees a parsimonious parameterization of our model in finite
samples and improves the interpretability of the estimates.
We assess how this configuration of our estimation procedure performs in different finite-sample
environments by means of a simulation study, which is described in the next section.

1.6 Simulations

In the following simulation study we consider two different data generating processes (Scenarios
1 and 2). In both scenarios there are K = 2 parameter regimes and we set αt = A1 if t ∈ G1 =
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{1, . . . , T/2} and αt = A2 if t ∈ G2 = {T/2 + 1, . . . , T}, where

A1(u) =


√

2 sin(πu/2)− u3/2 +
√

18 sin(3πu/2) in Scenario 1

8u− 4u2 − 5u3 + 2 sin(8u) in Scenario 2

A2(u) = −2u+ 8u2 + 5u3 + 2 sin(8u) in Scenarios 1 and 2.
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−
5

0
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Figure 1.1: Regime specific Parameter Functions A1 and A2 of the two different Scenarios.

The graphs of the parameter functions are shown in Figure 1.1. Note that the distance between
the regime specific slope functions A1 and A2 is smaller in Scenario 2 than in Scenario 1, which
makes Scenario 2 the more challenging one.
For both scenarios we set βt = 5 sin(t/π) and ρt = 5 cos(t/π). We simulate the regressor zit
and the error term εit according to zit ∼ N (0, 1) and εit ∼ N (0, 1). The trajectories Xit are
obtained as Xit(u) =

∑20
j=1 θit,jφj(u) with independent scores θit,j ∼ N (0, [(j − 1/2)π]−2) and

eigenfunctions φj(u) =
√

2 sin((j − 1/2)πu). Regarding the choice of the tuning parameters we
proceed as described in Section 1.5. For selecting the threshold τnT we set pτ = 0.99.
In order to measure the precision of the classification procedure we calculate the classification
error as the number of incorrectly classified periods t divided by T . We consider the follow-
ing three different (n, T )-combinations: (i) (n, T ) = (50, 50), (ii) (n, T ) = (100, 50) and (iii)
(n, T ) = (150, 80). For each specification we generate 1000 Monte Carlo samples. The results
are reported in Table 1.1. The consistency of all parameter estimators as well as the accuracy
of the classification procedure are well reflected in our simulation results. Parameter estimates
improve with increasing n, given fixed T . The classification error is on a fairly low level, even for
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(n,T) = (50,50) Scenario 1 Scenario 2
q0.25 q0.5 avg. q0.75 sd. q0.25 q0.5 avg. q0.75 sd.

T−1
∑T

t=1(β̂t − βt)2 0.02 0.02 0.02 0.03 0.00 0.02 0.02 0.02 0.03 0.00
Classification Error 0.00 0.02 0.03 0.04 0.04 0.00 0.02 0.03 0.04 0.06
||Ã1 − A1||22/||A1||22 0.01 0.01 0.02 0.03 0.03 0.05 0.07 0.10 0.11 0.10
||Ã2 − A2||22/||A2||22 0.02 0.03 0.05 0.06 0.05 0.02 0.03 0.04 0.05 0.04

(n,T) = (100,50) Scenario 1 Scenario 2
q0.25 q0.5 avg. q0.75 sd. q0.25 q0.5 avg. q0.75 sd.

T−1
∑T

t=1(β̂t − βt)2 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00
Classification Error 0.00 0.00 0.02 0.04 0.04 0.00 0.00 0.02 0.02 0.04
||Ã1 − A1||22/||A1||22 0.00 0.00 0.01 0.01 0.01 0.04 0.05 0.05 0.06 0.02
||Ã2 − A2||22/||A2||22 0.02 0.02 0.04 0.04 0.04 0.01 0.02 0.03 0.03 0.02

(n,T) = (150,80) Scenario 1 Scenario 2
q0.25 q0.5 avg. q0.75 sd. q0.25 q0.5 avg. q0.75 sd.

T−1
∑T

t=1(β̂t − βt)2 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00
Classification Error 0.00 0.01 0.03 0.02 0.04 0.00 0.01 0.02 0.02 0.04
||Ã1 − A1||22/||A1||22 0.00 0.00 0.00 0.01 0.00 0.04 0.04 0.04 0.05 0.01
||Ã2 − A2||22/||A2||22 0.01 0.02 0.03 0.03 0.04 0.01 0.02 0.02 0.02 0.02

Table 1.1: Simulation Results. The quantities q0.25, q0.5, q0.75, “avg.”, and “sd.” denote the
25%, 50% and 75% quantiles, the arithmetic mean, and the standard deviation of the empirical
distribution over Monte Carlo samples.

the most challenging situations, in which the distance between the population parameters A1 and
A2 is smaller and T is of the same magnitude as n.

1.7 Regime Dependent Pricing of Idiosyncratic Risk

Emerging from the influential work of Ang et al. (2006) a considerable number of studies confirm
a negative cross-sectional correlation between idiosyncratic volatility and stock returns.3 This
finding is referred to as the “idiosyncratic volatility puzzle”, since asset pricing theory suggests
an opposite outcome. Either investors’ portfolios are well diversified in equilibrium or investors
are underdiversified. In the first case, idiosyncratic risk is diversified and the only risk to be priced
is systematic. In the second case, idiosyncratic risk matters and investors with standard risk-return
preferences asked for a premium to compensate for bearing this risk. Starting from theory it would
thus be most reasonable to expect either no relation or a positive relation between idiosyncratic
volatility and stock returns. As demonstrated in Hou and Loh (2016) the idiosyncratic volatility

3Cf. Fu (2009), Hou and Loh (2016) and references therein.
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puzzle has, to a substantial extent, remained unsolved.
In the literature, the idiosyncratic volatility puzzle is typically examined using aggregate monthly
measures of idiosyncratic volatility and returns. In contrast to that, we consider the relation be-
tween the daytime returns yit ∈ R of assets i = 1, . . . , n and disaggregate daily idiosyncratic
volatility measures Xit ∈ L2([0, 1]). Such disaggregate volatility curve Xit is intended to proxy
an idiosyncratic component in asset price variation over continuous (standardized) intraday time
[0, 1]. Formally it is obtained as an empirical measure of the random spot volatility curve of id-
iosyncratic intraday stock price returns. The continuous time asset pricing framework, in which
spot volatility is rigorously defined can be found, for instance, in Barndorff-Nielsen and Shep-
hard (2002).4 In the spirit of Ang et al. (2006), who estimate monthly varying risk premiums, we
allow for daily varying marginal premiums on idiosyncratic volatility. We implement this, using
the time-varying parameters in our novel panel regression model

yit = ρt +

∫ 1

0

αt(s)Xit(s)ds+ β>t zit + εit. (1.4)

Here ρt ∈ R is a daily fixed effect and αt ∈ L2([0, 1]) denotes the time-varying parameter func-
tion describing the marginal premium on the idiosyncratic volatility curve Xit ∈ L2([0, 1]) at
day t. The time-varying parameter vector βt ∈ RP describes the effect of additional control
variables zit ∈ RP . The term εit is a scalar error with zero mean and finite but potentially time
heteroscedastic variances. We postulate that there are only K < T different risk pricing regimes
G1, . . . , GK collecting identical parameter functions αt. As above, the common slope function
of regime k is denoted by Ak. If a coefficient function Ak is clearly negative over most of its
domain, the corresponding regime appears to be non-conform with traditional asset pricing the-
ory and thus constitutes a temporary idiosyncratic volatility puzzle. Hence, the advantage of our
model in (1.4) is its capability to segment the set of trading days into puzzling, non-puzzling and
ambiguous pricing regimes in a data-driven way.
Following Fu (2009), we define the dependent variable as the daytime log-return

yit := log(Pit(1)/Pit(0)),

where Pit(0) and Pit(1) denote the opening price and closing price of asset i at day t. As control
variable zit ∈ R we use the daily average bid-ask spread which serves as a proxy for liquidity
risk—an important pricing-relevant factor as discussed for example in Hou and Loh (2016).5

4See also Chapter 2 of this dissertation.
5See also Chapter 3 of this dissertation for a discussion of liquidity risk in the corporate bond market.
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Data. We consider intraday price data for n = 377 stocks listed on the S&P 500. Our sample con-
sists of T = 136 trading days between June 3, 2016, and December 15, 2016. Intraday stock prices
are sampled every ∆ = 10 minutes during the trading hours of the S&P 500. More concretely, for
asset i at day t we consider the last recorded transaction prices, Pit(sj), within 10-minute inter-
vals, of which the j-th interval is denoted [sj−1, sj] with s0 = 0, sJ = 1, where 1 ≤ j ≤ J = 39.
For the construction of the idiosyncratic volatility curves Xit(.), which is described below, we
make use of three Fama-French factors. The Fama-French factors were downloaded from Ken-
neth French’s homepage, while all other data were gathered from Bloomberg.6

Preprocessing. For constructing the idiosyncratic volatility curves Xit(.) we use the method
proposed in Müller et al. (2011) with a straightforward adaption to our context for estimating
idiosyncratic volatility curves instead of total volatility curves. Müller et al. (2011) propose an
estimator of the total volatility curve of asset i at day t, smoothing the points (sj, Ỹit,j), j =

1, . . . , J based on an algorithm, which allows to obtain functional principal components from
discrete noisy data. Here Ỹit,j := log(∆−1Yit(sj)

2) + q0 are scaled and logarithmized versions of
the squared intraday returns Yit(sj)2 with Yit(sj) := log(Pit(sj)/Pit(sj−1)). The points Ỹit,j , 1 ≤
j ≤ J can be interpreted as noisy evaluations of the random spot volatility curve of the underlying
continuous time return process at the corresponding points sj , 1 ≤ j ≤ J . The constant q0 = 1.27

is necessary for re-centering the involved error term, whereas technical details can be found in
Müller et al. (2011). We mainly proceed along the lines of their approach, however, instead of
using the total intraday returns Yit(sj), j = 1, . . . , J , we employ the idiosyncratic intraday return
components Y ∗it (sj), j = 1, . . . , J . This leads to a measure of the idiosyncratic volatility curve
Xit(.) rather than a measure of the total volatility curve. For computing the idiosyncratic intraday
returns Y ∗it (sj), we follow the usual approach and correct the total intraday returns Yit(sj) for
their systematic market component by regressing them on three Fama-French factors (cf. Fama
and French, 1995). We do so by estimating the functional Fama-French regression model

Yit(sj) = b0,it(sj) + b1,it ·Mt(sj) + b2,it · St + b3,it ·Ht + uit(sj), j = 1, . . . , J, (1.5)

which was proposed by Kokoszka et al. (2014). The term Mt(sj) is the intraday S&P 500 market
return, St denotes the “small minus large” factor and Ht the “high minus low” factor. St de-
scribes the difference in returns between portfolios of small and large stocks andHt describes the
difference in returns between portfolios of high and low book-to-market value stocks. For estimat-
ing the model parameters in (1.5) we use the least-squares estimators proposed by Kokoszka et
al. (2014). The idiosyncratic intraday returns are finally obtained as Y ∗it (sj) = b̂0,it(sj) + ûit(sj),
where b̂0,it(s) denotes the fitted functional intercept parameter of the (i, t)-th regression and ûit(s)

6We thank Kenneth French for making this data publicly available on his homepage.
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are the corresponding function-valued regression residuals.
Table 1.2 provides summary statistics for our sample. Figure 1.2 shows the idiosyncratic volatility
curvesXit, along with their raw scatter points, for the Apple stock at two randomly selected trading
days.
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Figure 1.2: Exemplary Volatility Curves. Idiosyncratic volatility curves Xit and raw scatter
points for the Apple Inc. stock (AAPL) at two randomly selected trading days.

Remark. Applying the method of Müller et al. (2011) in order to estimate the idiosyncratic volatil-
ity curves Xit from the idiosyncratic intraday returns Y ∗it (sj), j = 1, . . . , J , leads to “volatility
curves”, which are indeed logarithmic volatility curves (cf. Eq. (9) in Müller et al., 2011). The
log-transformation is monotonic and is thus sign-preserving what concerns the estimation of αt.
This is of particular importance when assessing the idiosyncratic volatility puzzle. Working with
log-transformed volatility objects is generally advisable, since the raw volatility measures are of-
ten heavily skewed (cf. Herskovic et al., 2016).

q0.05 q0.25 q0.5 q0.75 q0.95 avg. sd.
y (in %) -1.74 -0.56 0.01 0.60 1.79 0.02 1.16∫ 1

0
X(u)du -4.42 -3.72 -3.20 -2.63 -1.64 -3.14 0.85

||X||22 3.46 7.67 11.02 14.67 20.50 11.39 5.19
z (in %) 0.02 0.02 0.03 0.05 0.09 0.04 0.03

Table 1.2: Summary Statistics. Quantiles, means, and standard deviations of the considered
variables.
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The estimation of model (1.4) proceeds as described in Section 1.3. Using our classification algo-
rithm, we find a number of K̂ = 2 regimes, where each regime contains about the same number
of days (see right panel in Figure 1.3). Interestingly, regime memberships do not show a striking
temporal pattern, a view which is supported by the empirical transition probabilities, which are
slightly above 0.5 as reported in Table 1.3. The left panel in Figure 1.3 shows the estimated regime

k/k 1 2
1 0.43 0.57
2 0.58 0.42

Table 1.3: Empirical Relative Transition Frequencies. Table reports the empirical relative
transition frequencies, indicating the empirical probability for a trading day (column) to be in the
same/another regime as the previous day (row). The index k refers to the k-th estimated regime.

specific slope functions Ã1 and Ã2. In order to examine how idiosyncratic volatility is priced in
the daytime returns, we consider aggregate marginal effects defined according to

∫ 1

0
Ãk(u)du,

k = 1, 2. For the first regime this marginal effect is clearly negative, for the second one clearly
positive. Our classification thus separates trading days revealing an idiosyncratic volatility puz-
zle from days which are conform with asset pricing theory. Both parameter functions, however,
indicate that the intensity of the pricing varies over trading time within a day.
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Figure 1.3: Estimation Results. Estimated regime specific slope functions Ã1 and Ã2 (left panel)
and marginal effect of idiosyncratic volatility (right panel).
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In summary, our results indicate a rather complex pattern of puzzling and non-puzzling days. The
high resolution of the time scale our novel model operates on, allows us to uncover a much more
heterogeneous pricing of idiosyncratic risk than one can infer from monthly data for example (see
Ang et al., 2006 for instance). Hence, aggregating the data could thus misleadingly convolute the
puzzling and non-puzzling pricing mechanisms. This in turn might contribute to the failure of
current explanations of the idiosyncratic volatility puzzle (cf. Hou and Loh, 2016).

1.8 Conclusion

In this chapter we present a novel regression framework, which allows us to examine regime spe-
cific effects of a random function on a scalar response in the presence of a multivariate regressor
and time fixed effects. The suggested estimation procedure is designed for a panel data context.
We prove consistency of the estimators including rates of convergence and address the practical
choice of the tuning parameters involved. In summary, our framework offers a very flexible and
data-driven way of assessing heterogeneity in large panels. Our model could be extended in mul-
tiple directions for further research. For instance, establishing a connection to the work of Su et
al. (2016) would allow us to identify latent group structures in the cross section in addition to
identifying latent time-regime structures.
The statistical model is motivated by our real data application, where we explore a phenomenon
referred to as the idiosyncratic volatility puzzle. In an empirical study we search for the presence of
such a puzzle in a large panel of US stock prices. Our method allows us to separate puzzling days
from non-puzzling days. The results suggest a much more heterogeneous pricing of idiosyncratic
risk than indicated by many existing analyses in the literature.
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Appendix

In Part 1.A of this appendix we provide formal proofs for Theorems 1.4.1, 1.4.2, and 1.4.3 as well
as Lemma 1.4.1. Further, we briefly discuss the properties of the threshold τnT as suggested in
Section 1.5. In Part 1.B we provide additional results from our simulation study.

Throughout this appendix we use the symbols C and c to denote positive constants. Their precise
meaning is allowed to vary from term to term.

1.A Technical Appendix

In this part we use the following notation for norms in addition to the ones introduced in the main
body of the chapter. Given a mappingF1 : L2([0, 1])→ R, we use as norm ofF1 the operator norm
||F1||H′ := sup||f1||2=1 |F1(f1)|. Further, for an integral operator F2 : L2([0, 1])→ L2([0, 1]) with
kernel f2 ∈ L2([0, 1]× [0, 1]), denote its Hilbert-Schmidt norm as ||F2||S := ||f2||2, where in this
case || · ||2 is the L2 norm in L2([0, 1]× [0, 1]).
For the sake of readability we will proof the lemma and theorems for P = 1, while the general-
ization to P > 1 is straightforward and does not add any additional insights. In this spirit we ease
our notation by dropping boldface notation and the dependence on coordinate labels p.

Now, turning to a formal argumentation, we begin collecting a number of basic results readily
available in the functional data literature. Provided Assumption 1 holds, the random variables
{(zit, Xit, εit) : 1 ≤ i ≤ n} are iid with finite fourth moments for every 1 ≤ t ≤ T . Moment
calculations as well as the results in Hörmann and Kokoszka (2010) imply for any 1 ≤ t ≤ T as
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n→∞ that

E

[∣∣∣∣∣∣K̂zX,t −KzX,k

∣∣∣∣∣∣2
2

]
= O(n−1) (1.6)

E

[∣∣∣K̂z,t −Kz,k

∣∣∣2] = O(n−1) (1.7)

E

[∣∣∣∣∣∣K̂X,t −KX,k

∣∣∣∣∣∣2
2

]
= O(n−1), (1.8)

where the index k is such that t ∈ Gk, which we use in what follows without further reference.
In Equation (1.8) KX,k denotes the covariance function in the k-th regime, i.e. KX,k(u, v) :=

E[(Xit(u)−E[Xit](u))(Xit(v)−E[Xit](v))] and in analogyKz,k := E[(zit−E[zit])
2]. Further,

it obviously holds that

E
[
|z̄t − E[zit]|2

]
= O(n−1)

E
[∣∣∣∣X̄t − E[Xit]

∣∣∣∣2
2

]
= O(n−1),

E
[
||K̂Xε,t||22

]
= O(n−1)

E
[
|K̂zε,t|2

]
= O(n−1)

where

K̂Xε,t := n−1

n∑
i=1

Xc
itε

c
it

and K̂zε,t := n−1

n∑
i=1

zcitε
c
it.

Denote the Hilbert-Schmidt norm of the distance between t-wise empirical covariance opera-
tor and population covariance operator as Dt := ||Γ̂t − Γk||S . Note that for any 1 ≤ j ≤ n,
|λ̂j,t−λj,k| ≤ Dt almost surely (see Theorem 1 in Hall and Hosseini–Nasab, 2006 and references
therein). Since E[Dqt ] = O(n−q/2) for q = 1, 2, . . . (provided sufficiently high moments exist) it
holds that

E
[∣∣∣λ̂j,t − λj,k∣∣∣q] = O(n−q/2) q = 1, 2 . . . (1.9)

for any 1 ≤ j ≤ mt (cf. Equation A.11 in Kneip et al., 2016).
As a final observation, note that combining the results in Shin (2009) and Hall and Horowitz
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(2007) allows to conclude that for any 1 ≤ t ≤ T

||Φ̂t − Φk||2H′ =

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

〈K̂zX,t, φ̂j,t〉
λ̂j,t

φ̂j,t −
∞∑
j=1

〈KzX,k, φj,k〉
λj,k

φj,k

∣∣∣∣∣
∣∣∣∣∣
2

2

= Op

(
n

1−2ν
µ+2ν

)
, (1.10)

where we denote mt = m for simplicity, which we continue to do without further reference. The
mapping Φk : L2([0, 1])→ R is the population counterpart of Φ̂t and was implicitly used already
in Assumption 6. It is formally defined according to

Φk(g) :=
∞∑
j=1

〈KzX,k, φj,k〉
λj,k

〈φj,k, g〉 (1.11)

for any g ∈ L2([0, 1]).

Proof of Theorem 1.4.1

Consider any 1 ≤ t ≤ T , with t in some regime k, i.e. t ∈ Gk. Note that the estimator β̂t can be
written as

β̂t = B̂−1
t [K̂zy,t − Φ̂t(K̂yX,t)]

with B̂t := [K̂z,t − Φ̂t(K̂zX,t)]. Regarding the inverse in β̂t note that it follows from (1.6), (1.7),
and (1.10) in analogy to Shin (2009) that

B̂t := [K̂z,t − Φ̂t(K̂zX,t)]
P→ [Kz,k − Φk(KzX,k)] =: Bk > 0

as n → ∞, which certainly implies B̂−1
t = B−1

k + op(1) by the continuous mapping theorem,
whereasBk = E[s2

it] > 0 follows from Assumption 6. To see this also consider the decomposition
shown in (1.25). As in Shin (2009), we assess the difference

β̂t − βt = B̂−1
t

[
n−1

n∑
i=1

(
zcit − Φ̂t(X

c
it)
)

(〈Xc
it, αt〉+ εcit)

]

by splitting the term n−1
∑n

i=1

(
zcit − Φ̂t(X

c
it)
)

(〈Xc
it, αt〉+ εcit) according to
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∣∣∣∣∣n−1

n∑
i=1

(
zcit − Φ̂t(X

c
it)
)

(〈Xc
it, αt〉+ εcit)

∣∣∣∣∣ ≤ |R0,1,t|+ |R0,2,t|+ |R0,3,t|,

where, in analogy to her work,

R0,1,t := n−1

n∑
i=1

(zcit − Φk(X
c
it))ε

c
it = Op(n

−1/2)

R0,2,t := n−1

n∑
i=1

(Φk(X
c
it)− Φ̂t(X

c
it))ε

c
it = Op(n

−1/2).

due to the exogeneity of the covariates and the assumed iid nature of the error term (cf. Assumption
1). However, the remaining term we approach in a different manner:

|R0,3,t| :=

∣∣∣∣∣n−1

n∑
i=1

(zcit − Φ̂t(X
c
it))〈Xc

it, αt〉

∣∣∣∣∣
≤
∣∣∣〈K̂zX,t −KzX,k, αt〉

∣∣∣+

∣∣∣∣∣〈KzX,k, αt〉 − n−1

n∑
i=1

Φ̂t(X
c
it)〈Xc

it, αt〉

∣∣∣∣∣
≤ R1,1,t +R1,2,t

where for R1,1,t

R1,1,t :=
∣∣∣〈K̂zX,t −KzX,k, αt〉

∣∣∣
≤ ||αt||2 · ||K̂zX,t −KzX,k||2
= Op(n

−1/2)

as a consequence of (1.6). The second term, R1,2,t, in R0,3,t is defined as

R1,2,t :=

∣∣∣∣∣〈KzX,k, αt〉 − n−1

n∑
i=1

Φ̂t(X
c
it)〈Xc

it, αt〉

∣∣∣∣∣
≤ R2,1 +R2,2,t,
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with

R2,1 :=

∣∣∣∣∣
∞∑

j=m+1

〈KzX,k, φj,k〉a∗j,t

∣∣∣∣∣
R2,2,t :=

∣∣∣∣∣
m∑
j=1

〈KzX,k, φj,k〉a∗j,t −
m∑
j=1

〈K̂zX,t, φ̂j,t〉〈φ̂j,t, αt〉

∣∣∣∣∣ ,
where we used a∗j,t := 〈αt, φj,k〉 due to Assumptions 2, 4 and 5. For the first term observe R2,1 =

O
(
n

1−µ−2ν
µ+2ν

)
= O(n−1/2). The second one can be split in three parts

R2,2,t ≤ R3,1,t +R3,2,t +R3,3,t

with

R3,1,t := ||K̂zX,t −KzX,k||2
m∑
j=1

(
||φ̂j,t − φj,k||2 · ||αt||2 + |a∗j,t|

)
,

R3,2,t := ||αt||2
m∑
j=1

|〈KzX,k, φj,k〉| · ||φ̂j,t − φj,k||2

and

R3,3,t := ||KzX,k||2 · ||αt||2
m∑
j=1

||φ̂j,t − φj,k||22 + ||KzX,k||2
m∑
j=1

||φ̂j,t − φj,k||2 · |a∗j,t|.

An assessment of the asymptotic properties of R3,1,t, R3,2,t and R3,3,t requires to examine the
asymptotic properties of ||φ̂j,t − φj,k||22 explicitly. Bounds can, for example, be obtained from
Theorem 1 in Hall and Hosseini–Nasab (2006) as

||φ̂t,j − φj,k||q2 ≤
[

81/2Dt
min1≤l≤j{λj,k − λj+1,k})

]q
almost surely (1.12)

which holds for 1 ≤ j ≤ m, q = 1, 2, . . . and any size n of the cross section (see also Equation
(5.2) in Hall and Horowitz, 2007). In the context of theory for functional linear regression, Hall
and Horowitz (2007) develop asymptotic bounds on ||φ̂j,t − φj,k||22, 1 ≤ j ≤ m, which are valid
on events which occur with probability tending to one as n→∞. These bounds are particularly
helpful, when addressing (weighted) sums over estimation errors as they appear e.g. in R3,1,t–
R3,3,t. We will make use of these bounds, slightly adapting the arguments in Hall and Horowitz
(2007), in order to formulate the result more explicitly. For this purpose we consider the three
events
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1. F1,n,t :=
{
Cn

2(1+µ)
µ+2ν D2

t ≤ 1/8
}

2. F2,n,t :=
{
|λ̂j,t − λl,k|−2 ≤ 2|λj,k − λl,k|−2 ≤ Cn

2(1+µ)
µ+2ν , 1 ≤ j ≤ m, j 6= l ∈ N

}
.

3. F3,n,t := F1,n,t ∩ F2,n,t

of which the second coincides with their work and the first one is a straightforward derivative of
their arguments. Denoting the complement of a set A as Ac, note that P(F c1,n,t) = o(1) as well
as P(F c2,n,t) = o(1) due Assumptions 4–5 and root-n consistency of the empirical covariance
operator and its corresponding eigenvalues as well as assuming the constants in F1,n,t and F2,n,t

to be appropriate. Since P(F c3,n,t) ≤ P(F c1,n,t) + P(F c2,n,t), we conclude P(F c3,n,t) = o(1). We
also show that this property holds uniformly over 1 ≤ t ≤ T as (n, T ) → ∞ in the proof of
Lemma 1.4.1 below. Equation (5.21) in Hall and Horowitz (2007), reads in our notation as

||φ̂j,t − φj,k||22 ≤ 8
(

1− 4Cn
2(1+µ)
µ+2ν D2

t

)−1

R
(φ)
j,t , (1.13)

where R(φ)
j,t :=

∑
l:l 6=j

(λj,k − λl,k)−2

[∫ 1

0

∫ 1

0

(K̂X,t(u, v)−KX,k(u, v))φj,k(u)φl,k(v)dudv

]2

.

The inequality in (1.13) is valid on F2,n,t, whereas the constant C on the right hand side is the
constant in F1,n,t. On this event F1,n,t it further holds that(

1− 4Cn
2(1+µ)
µ+2ν D2

t

)−1

≤ 2

which implies, that on F3,n,t, it holds that

||φ̂j,t − φj,k||22 ≤ 16R
(φ)
j,t . (1.14)

Note that Equation (5.22) in Hall and Horowitz (2007) states that

E
[
R

(φ)
j,t

]
= O

(
j2n−1

)
(1.15)

uniformly in 1 ≤ j ≤ m (see also the corresponding proof of Equation (5.22) in Section 5.3 in
Hall and Horowitz, 2007). Note that (1.14) obviously implies that on F3,n,t,

||φ̂j,t − φj,k||2 ≤ 4
(
R

(φ)
j,t

) 1
2 (1.16)

of which the right hand side has the property E
[(
R

(φ)
j,t

)1/2
]
≤ E

[
R

(φ)
j,t

]1/2

= O
(
jn−1/2

)
uni-
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formly over 1 ≤ j ≤ m, what follows from Jensen’s inequality and (1.15).
These observations imply that

P

(
nm−3

m∑
j=1

||φ̂j,t − φj,k||22 > c

)
≤ P

(
16nm−3

m∑
j=1

R
(φ)
j,t > c

)
+ P

(
F c3,n,t

)

≤
nm−3

∑m
j=1 E

[
R

(φ)
j,t

]
c/16

+ o(1) (1.17)

by the Markov inequality. The numerator on the right hand side of (1.17) is bounded above as a
consequence of (1.15) and Assumptions 4 & 5, and thus

∑m
j=1 ||φj,t−φj,k||22 = Op (n−1m3). From

this and Assumptions 4 & 5, of which the former is slightly stronger than in Hall and Horowitz
(2007) and Shin (2009), we conclude for the first summand in R3,3,t,

||KzX,k||2 · ||αt||2
m∑
j=1

||φ̂j,t − φj,k||22 = Op(n
−1m3)

= Op

(
n

3−µ−2ν
µ+2ν

)
= Op(n

−1/2)

because ν > 3− µ/2. Note that from our observations for (1.16), we can further conclude

m∑
j=1

||φ̂j,t − φj,k||2 = Op(n
−1/2m2)

using similar arguments as before. We have n−1/2m2 = n
2−µ/2−ν
µ+2ν = o(1) by Assumption 4, which

allows to conclude in combination with (1.6) and Assumption 2, that R3,1,t = Op(n
−1/2).

Using similar arguments as for (1.17), allows us to conclude for the second term in R3,3,t:

P

(
n1/2

m∑
j=1

||φ̂j,t − φj,k||2 · |a∗j,t| > c

)
≤ P

(
4n1/2

m∑
j=1

(
R

(φ)
j,t

)1/2

Caj
−ν > c

)
+ P

(
F c3,n,t

)

≤
n1/2

∑m
j=1E

[
R

(φ)
j,t

]1/2

j−ν

c/(4Ca)
+ o(1),

where the numerator on the right hand side of the last inequality is bounded above thanks to
Assumptions 4–5 as well as our observation in (1.16). An analogue argument shows R3,2,t =

Op(n
−1/2) (see also points 3 and 4 in Assumption 2 to see this).

Combining arguments implies β̂t − βt = Op(n
−1/2) for every 1 ≤ t ≤ T , which concludes the
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proof of the first result in Theorem 1.4.1. Turning to α̂t note that

||α̂t − αt||22 ≤ 3
m∑
j=1

(âj,t − a∗j,t)2 + 3m
m∑
j=1

(a∗j,t)
2||φ̂j,t − φj,k||22 + 3

∞∑
j=m+1

(a∗j,t)
2.

The results in Hall and Horowitz (2007) and Shin (2009) immediately translate to
m
∑m

j=1(a∗j,t)
2||φ̂j,t − φj,k||22 and

∑∞
j=m+1 a

∗
j,t which are both Op

(
n

1−2ν
µ+2ν

)
. The remaining term

can be split according to

m∑
j=1

(âj,t − a∗j,t)2 ≤2
m∑
j=1

(λ̂−1
j,t 〈K̂

#
yX,t − β̂tK̂

#
zX,t, φ̂j,t〉 − a

∗
j,t)

2 + 2
m∑
j=1

(λ̂−1
j,t 〈ry,trx,t − β̂trz,trx,t, φ̂j,t〉)2

(1.18)

with K̂#
yX,t := n−1

∑n
i=1(yit − E[yit])(Xit − E[Xit]), K̂#

zX,t := n−1
∑n

i=1(zit − E[zit])(Xit −
E[Xit]), rx,t := E[Xit]−X̄t, ry,t := E[yit]− ȳt and rz,t := E[zit]− z̄t. Note that ||rx,t||2, |ry,t| and
|rz,t| all correspond to errors from parametric estimation problems and are thus of order n−1/2.
Bounds on λ̂j,t − λj,k as well as ||φ̂j,t − φj,k||2 are asymptotically equivalent for data centered
around their arithmetic mean and data centered around their population expectation. Together
with the above arguments it follows that the first term in (1.18) is asymptotically equivalent to
the corresponding term in Shin (2009), implying

∑m
j=1(λ̂−1

j,t 〈K̂
#
yX,t − β̂tK̂

#
zX,t, φ̂j,t〉 − a∗j,t)

2 =

Op

(
n

1−2ν
µ+2ν

)
. Now, define the event

F4,n,t := {|λ̂j,t − λj,k| < λj,k/2 : 1 ≤ j ≤ m}

for which we conclude P(F c4,n,t) = o(1) for any 1 ≤ t ≤ T as n→∞ as a consequence of (1.9).
On this event the second term in (1.18) can be bounded according to

m∑
j=1

(λ̂−1
j,t 〈ry,trX,t − β̂trz,trX,t, φ̂j,t〉)2 ≤ 8

m∑
j=1

λ−2
j,kr

2
y,t||rX,t||22 + 8

m∑
j=1

λ−2
j,k β̂

2
t r

2
z,t||rX,t||22

= Op

(
n

1+2µ−2µ−4ν
µ+2ν

)
= op

(
n

1−2ν
µ+2ν

)
.

Finally combining arguments yields ||α̂t − αt||22 = Op(n
1−2ν
µ+2ν ) for any 1 ≤ t ≤ T as n → ∞,

which concludes the proof of the second part of Theorem 1.4.1. �
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Proof of Lemma 1.4.1

In what follows we show that the quantities α̂(∆)
t are consistent for α(∆)

t in the L2 norm, uniformly
over 1 ≤ t ≤ T . The remaining claims in the Lemma are required for this result to hold and are
validated en route.
We begin introducing additional notation and listing a number of basic observations, which are a
consequence of the iid sampling scheme in the cross-section as well as stationarity of the regres-
sors and the error over time within regimes. Note that since the random variables {(Xit, zit, εit) t ∈
Gk, 1 ≤ i ≤ n} are stationary, expectations of the below statistics calculated from these random
variables do not vary over index t for a given regime k. In order to reduce the complexity of
our notation, however, we do not make this invariance explicit in every step. For the following
properties we also use the results in Hall and Horowitz (2007) and Hörmann and Kokoszka (2010).

• Based on the above convention for our notation, we conclude, using the results in Hörmann
and Kokoszka (2010), our first observation:

P
(

max
1≤t≤T

D2
t > c

)
≤

K∑
k=1

∑
t∈Gk

P
(
D2
t > c

)
≤ K max

1≤k≤K
|Gk|

E [D2
t ]

c
= O(nδ−1) = o(1),

since |Gk| ∝ T ∝ nδ according to Assumption 3, which we will use in what follows without
reference.

• Further, empirical variances of zit and εit behave according to

P
(

max
1≤t≤T

|K̂z,t −Kz,k|2 > c

)
≤ K max

1≤k≤K
|Gk|

n−1E [|(zit − E[zit])
2 −Kz,k|2]

c
+K max

1≤k≤K
|Gk|

E [(z̄t − E[zit])
4]

c

= O(nδ−1) +O(nδ−2) = o(1) (1.19)

and similarly

P

(
max

1≤t≤T

∣∣∣∣∣n−1

n∑
i=1

(εit − ε̄t)2 − σ2
ε

∣∣∣∣∣ > c

)
≤ K max

1≤k≤K
|Gk|

n−1E [(ε2it − σ2
ε )

2]

c
+K max

1≤k≤K
|Gk|

E [ε̄4t ]

c

= O(nδ−1) +O(nδ−2) = o(1).

• In analogy to before introduce K̂#
zε,t := n−1

∑n
i=1(zit−E[zit])(εit−E[εit]) and K̂#

Xε,t(u) :=

n−1
∑n

i=1(Xit(u) − E[Xit](u))εit as well as rε,t := ε̄t. It follows from simple moment
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calculations for the cross sectional empirical covariances between regressors and error that

P
(

max
1≤t≤T

||K̂Xε,t||22 > c

)
≤

T∑
t=1

P
(
||K̂#

Xε,t||
2
2 > c/4

)
+

T∑
t=1

P
(
||rx,t||22r2

ε,t > c/4
)

≤ K max
1≤k≤K

|Gk|
n−1σ2

ε,kE [||Xit − E[Xit]||22]

c
+K max

1≤k≤K
|Gk|

E[(ε̄t)
2]E

[
||X̄t − E[Xit]||22

]
c

= O(nδ−1) +O(nδ−2) = o(1) (1.20)

Similar arguments can be used to show

P
(

max
1≤t≤T

|K̂zε,t|2 > c

)
= O(nδ−1) +O(nδ−2) = o(1). (1.21)

• Uniform consistency of the empirical covariance K̂zX,t(u) can be shown with similar argu-
ments according to

P
(

max
1≤t≤T

||K̂zX,t −KzX,k||22 > c

)
≤

T∑
t=1

P
(
||K̂#

zX,t −KzX,k||22 > c
)

+
T∑
t=1

P
(
||rx,t||22r2

z,t > c
)

≤K max
1≤k≤K

|Gk|
n−1E [||(zit − E[zit])(Xit − E[Xit])−KzX,k||22]

c

+K max
1≤k≤K

|Gk|
E
[
r2
z,t

]
E [||rx,t||22]

c

= O(nδ−1) +O(nδ−2) = o(1). (1.22)

• Beyond the above observations, the following part of the proof requires the term
∑m

j=1 λ̂
−2
j,t ||φj,k−

φ̂j,t||22 to vanish in probability, uniformly over 1 ≤ t ≤ T .

To see this, note that E[R
(φ)
j,t ] as in (1.15) does not vary over the index t ∈ Gk within a

regime k, but potentially across regimes k = 1, . . . , K. This due to the stationarity of the
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functional regressor within regimes as postulated in Assumption 1. We thus conclude:

P

(
max

1≤t≤T

m∑
j=1

λ̂−2
j,t ||φj,k − φ̂j,t||22 > c

)

≤
T∑
t=1

P

(
m∑
j=1

λ̂−2
j,t ||φj,k − φ̂j,t||22 > c

)

≤
T∑
t=1

(
P

(
16 · 4C−2

λ

m∑
j=1

j2µR
(φ)
j,t > c

)
+ P

(
F c1,n,t

)
+ P

(
F c2,n,t

)
+ P

(
F c4,n,t

))

≤K max
1≤k≤K

|Gk|

∑m
j=1E

[
R

(φ)
j,t

]
j2µ

c · C2
λ/(16 · 4)

+
T∑
t=1

(
P
(
F c1,n,t

)
+ P

(
F c2,n,t

)
+ P

(
F c4,n,t

))
=O

(
Tn−1m3+2µ

)
+

T∑
t=1

(
P
(
F c1,n,t

)
+ P

(
F c2,n,t

)
+ P

(
F c4,n,t

))
, (1.23)

where Cλ is the constant from point 1 in Assumption 2. To obtain the second inequality,
we used once more that λ̂j,t ≥ λj,k/2 for 1 ≤ j ≤ m on F4,n,t. The sequence in (1.23) is a
null sequence because on the one hand

Tn−1m3+2µ = O
(
n

3+(1+δ)µ−2(1−δ)ν
µ+2ν

)
= o(1)

thanks to Assumption 4 and on the other hand since

T∑
t=1

P
(
F cl,n,t

)
≤ K max

1≤k≤K
|Gk|P

(
F cl,n,t

)
= o (1) , l = 1, 2, 4

as we argue next. First we observe

K max
1≤k≤K

|Gk|P(F c1,n,t) =K max
1≤k≤K

|Gk|P
(
Cn

2(1+µ)
µ+2ν D2

t > 1/8
)

≤ K max
1≤k≤K

|Gk|8Cn
2(1+µ)
µ+2ν E[D2

t ]

= O
(
n

2+(1+δ)µ−2(1−δ)ν)
µ+2ν

)
= o(1)
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for any C > 0 (cf. Assumption 4). Second, we argue that

K max
1≤k≤K

|Gk|P(F c2,n,t) = K max
1≤k≤K

|Gk|P(∃1 ≤ j ≤ m, j 6= l : |λ̂j,t − λl,k|−2 > 4|λj,k − λl,k|−2)

= K max
1≤k≤K

|Gk|P(∃1 ≤ j ≤ m, j 6= l : |λ̂j,t − λl,k| <
1

2
|λj,k − λl,k|)

≤ K max
1≤k≤K

|Gk|P(∃1 ≤ j ≤ m, j 6= l : |λ̂j,t − λj,k| >
1

2
|λj,k − λl,k|)

≤ K max
1≤k≤K

|Gk|P(Dt >
1

2
min{λj,k − λj+1,k, λj−1,k − λj,k})

≤ K max
1≤k≤K

|Gk|
E[D2

t ]

min{λj,k − λj+1,k, λj−1,k − λj,k}2/4

= O
(
Tn−1m2(1+µ)

)
= o(1)

by the fact thatDt ≥ supj |λ̂j,t−λj,k| almost surely as well as Assumptions 2–5. In lines of
our arguments from the proof of Theorem 1.4.1, we concludeK max1≤k≤K |Gk|P(F c3,n,t) =

o(1). Beyond that it holds

K max
1≤k≤K

|Gk|P(F c4,n,t) ≤ K max
1≤k≤K

|Gk|P
(

sup
1≤j≤m

|λ̂j,t − λj,k| >
1

2
λm,k

)
≤ K max

1≤k≤K
|Gk|P

(
Dt >

1

2
λm,k

)
≤ K max

1≤k≤K
|Gk|

4E [D2
t ]

λ2
m,k

= O
(
nδn

µ−2ν
µ+2ν

)
= o(1)

again thanks to Assumption 4. Note that our result in (1.23) implies in particular that

P

(
max

1≤t≤T

m∑
j=1

||φj,k − φ̂j,t||22 > c

)
= o(1),

which will be used without further reference in what follows.

• As a last observation, we note that max1≤t≤T ||αt||2 = max1≤k≤K ||Ak||2 is a constant and
does not vary in t and neither in k.

Now, turning to our concrete arguments for α̂(∆)
t , we note that the scaling which distinguishes

α̂
(∆)
t from α̂t is composed by σ̂ε,t and the empirical eigenvalues λ̂j,t ,1 ≤ j ≤ m. While the latter

33



can be treated in a comparably simple way, σ̂ε,t requires closer attention. We thus begin focusing
on this object and its constituents. For this purpose, define the event Sn,t for later use according
to

Sn,t :=

{∣∣σ̂2
ε,t − σ2

ε,k

∣∣ ≤ 1

2
σ2
ε,k

}
.

We show in a moment that
∑T

t=1 P(Scn,t) = o(1). However this requires some preparation since
σ̂2
ε,t includes estimation errors from β̂t and α̂t. We thus start arguing that (i) P(max1≤t≤T |β̂t −
βt| > c) = o(1) and (ii) P(max1≤t≤T ||α̂t − αt||2 > c) = o(1), as claimed in the lemma. Turning
to the first point, note that the estimator β̂t makes multiple use of the operator Φ̂t, which can,
starting from the Riesz-Frechet representation Theorem (cf. Shin, 2009), be handled according
to ∣∣∣∣∣∣Φ̂t − Φk

∣∣∣∣∣∣2
H′

= 3R4,1,t + 3R4,2,t + 3R4,3.

The last summand is defined as R4,3 :=
∣∣∣∣∣∣∑∞j=m+1

〈KzX,k,φj,k〉
λj,k

φj,k

∣∣∣∣∣∣2
2
, which is independent of t

and o(1) because the truncation parameter diverges at infinity and hence R4,3 is arbitrarily small
for n large enough. The remaining summands are defined and handled as follows. For the first
one we observe that

R4,1,t :=

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

(
〈K̂zX,t, φ̂j,t〉

λ̂j,t
− 〈KzX,k, φj,k〉

λj,k

)
φ̂j,t

∣∣∣∣∣
∣∣∣∣∣
2

2

≤2
m∑
j=1

(λ̂j,tλj,k)
−2
[
〈λj,kK̂zX,t − λ̂j,tKzX,k, φj,k〉+ 〈λj,kK̂zX,t, (φ̂j,t − φj,k)〉

]2

≤4
m∑
j=1

(λ̂j,tλj,k)
−2
[
〈KzX,k, φj,k〉2(λj,k − λ̂j,t)2 + 〈K̂zX,t −KzX,k, φj,k〉2λ2

j,k

]
+ 2

m∑
j=1

(λ̂j,t)
−2〈K̂zX,t, (φ̂j,t − φj,k)〉2

≤4
m∑
j=1

(λ̂j,tλj,k)
−2〈KzX,k, φj,k〉2(λj,k − λ̂j,t)2

︸ ︷︷ ︸
=:R5,1,t

+4
m∑
j=1

||K̂zX,t −KzX,k||22λ̂−2
j,t︸ ︷︷ ︸

=:R5,2,t

+ 2
m∑
j=1

λ̂−2
j,t ||K̂zX,t||22||φ̂j,t − φj,k||22︸ ︷︷ ︸

=:R5,3,t

.
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For the three summands R5,1,t, R5,2,t, R5,3,t we use our above observation as well Assumptions
1–5 to conclude the following:

Ad R5,1,t:

T∑
t=1

P

(
m∑
j=1

(λ̂j,tλj,k)
−2〈KzX,k, φj,k〉2(λj,k − λ̂j,t)2 > c

)

≤K max
1≤k≤K

|Gk|P

(
4

m∑
j=1

λ−4
j,k〈KzX,k, φj,k〉2(λj,k − λ̂j,t)2 > c

)
+K max

1≤k≤K
|Gk|P

(
F c4,n,t

)
≤K max

1≤k≤K
|Gk|

E[D2
t ]
∑m

j=1 λ
−4
j,k〈KzX,k, φj,k〉2

c/4
+ o(1)

=O(nδ−1) + o(1) = o(1).

Ad R5,2,t:

T∑
t=1

P

(
m∑
j=1

||K̂zX,t −KzX,k||22λ̂−2
j,t > c

)

≤ K max
1≤k≤K

|Gk|P

(
4

m∑
j=1

||K̂zX,t −KzX,k||22λ−2
j,k > c

)
+K max

1≤k≤K
|Gk|P(F c4,n,t)

≤ K max
1≤k≤K

|Gk|

∑m
j=1 λ

−2
j,kE

[
||K̂zX,t −KzX,k||22

]
c/4

+ o(1)

= O
(
n

1+(1+δ)µ−2(1−δ)ν
µ+2ν

)
+ o(1)

= o(1).
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Ad R5,3,t:

T∑
t=1

P

(
m∑
j=1

λ̂−2
j,t ||K̂zX,t||22||φ̂j,t − φj,k||22 > c

)

≤K max
1≤k≤K

|Gk|P

(
2||KzX,k||22

m∑
j=1

λ̂−2
j,t ||φ̂j,t − φj,k||22 > c1/2

)
+K max

1≤k≤K
|Gk|P

(
2||K̂zX,t −KzX,k||22 > c1/4

)
+K max

1≤k≤K
|Gk|P

(
2

m∑
j=1

λ̂−2
j,t ||φ̂j,t − φj,k||22 > c1/4

)
=o(1).

SinceP (max1≤t≤T R4,1,t > c) ≤
∑3

l=1

∑T
t=1 P (R5,l,t > c/3), it follows thatP (max1≤t≤T R4,1,t > c) =

o(1). For R4,2,t, defined as

R4,2,t :=

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

〈KzX,k, φj,k〉
λj,k

(φj,k − φ̂j,t)

∣∣∣∣∣
∣∣∣∣∣
2

2

,

we note this expression can be most easily handled using the almost sure bound in (1.12) according
to

K max
1≤k≤K

|Gk|P

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

〈KzX,k, φj,k〉
λj,k

(φj,k − φ̂j,t)

∣∣∣∣∣
∣∣∣∣∣
2

2

> c


≤K max

1≤k≤K
|Gk|P

(
m

m∑
j=1

〈KzX,k, φj,k〉2

λ2
j,k

∣∣∣∣∣∣φj,k − φ̂j,t∣∣∣∣∣∣2
2
> c

)

K max
1≤k≤K

|Gk|P

(
mD2

t

m∑
j=1

〈KzX,k, φj,k〉2

λ2
j,k

j2(1+µ)

C ′λ
> c

)

≤K max
1≤k≤K

|Gk|
mE[D2

t ]
∑m

j=1〈KzX,k, φj,k〉2j2(1+µ)/λ2
j,k

c · C ′λ
=O

(
mnδ−1

)
= o(1).

thanks to Assumption 2–5. In particular, these results imply

P
(

max
1≤t≤T

||Φ̂t − Φk||2H′ > c

)
= o(1). (1.24)

36



To proceed we work again on the differences (β̂t−βt) = B̂−1
t (R0,1,t +R0,2,t +R0,3,t) withR0,1,t,

R0,2,t and R0,3,t as in the proof of Theorem 1.4.1. Addressing the inverse in these differences,
define the t-wise event Qn,t := {|B̂t − Bk| ≤ 1

2
Bk}. For this event, note that

∑T
t=1 P

(
Qc
n,t

)
≤

R6,1 +R6,2, where R6,1 :=
∑T

t=1 P
(
|K̂z,t −Kz,k|2 > c

)
= o(1) as shown in (1.19). For R6,2 we

use the arguments in Shin (2009) to obtain

R6,2 :=
T∑
t=1

P
(
||Φ̂t − Φk||2H′||KzX,k||22 + (||Φ̂t − Φk||H′ + ||Φk||H′)2||K̂zX,t −KzX,k||22 > c

)
(1.25)

≤K max
1≤k≤K

|Gk|P
(
||Φ̂t − Φk||2H′||KzX,k||22 > c

)
︸ ︷︷ ︸

=:R7,1

+K max
1≤k≤K

|Gk|P
(

2||Φ̂t − Φk||2H′ ||K̂zX,t −KzX,k||22 > c1/2
)

︸ ︷︷ ︸
=:R7,2

+K max
1≤k≤K

|Gk|P
(

2||Φk||2H′||K̂zX,t −KzX,k||22 > c1/2
)

︸ ︷︷ ︸
=:R7,3

.

As shown before R7,1, R7,3 = o(1). Further

R7,2 ≤ K max
1≤k≤K

|Gk|P
(
||Φ̂t − Φk||2H′||K̂zX,t −KzX,k||22 > c1/2

)
≤ K max

1≤k≤K
|Gk|P

(
||Φ̂t − Φk||2H′ > c1/4

)
+K max

1≤k≤K
|Gk|P

(
||K̂zX,t −KzX,k||22 > c1/4

)
= o(1).

For uniform consistency of β̂t it remains to show that

• P(max1≤t≤T |R0,1,t| > c) = o(1),

• P(max1≤t≤T |R0,2,t| > c) = o(1) and

• P(max1≤t≤T |R0,3,t| > c) = o(1).
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For this we argue

P
(

max
1≤t≤T

|R0,1,t| > c

)
= P

(
max

1≤t≤T

∣∣∣∣∣n−1

n∑
i=1

(zcit − Φk(X
c
it))ε

c
it

∣∣∣∣∣ > c

)

≤ K max
1≤k≤K

|Gk|P
(∣∣∣K̂zε,t

∣∣∣2 > c2/4

)
+K max

1≤k≤K
|Gk|P

(
||Φk||2H′||K̂εX,t||22 > c2/4

)
= o(1)

due to (1.20) and (1.21). Further note for R0,2,t

P
(

max
1≤t≤T

|R0,2,t| > c

)
= P

(
max

1≤t≤T

∣∣∣Φ̂t(K̂εX,t)− Φk(K̂εX,t)
∣∣∣ > c

)
≤ K max

1≤k≤K
|Gk|P

(
||Φ̂t − Φk||H′ ||K̂εX,t||2 > c

)
≤K max

1≤k≤K
|Gk|P

(
||K̂εX,t||22 > c

)
+K max

1≤k≤K
|Gk|P

(
||Φ̂t − Φk||2H′ > c

)
=o(1)

as a consequence of (1.20) and (1.24). For the remaining terms, we argue along the same lines as
in the proof of Theorem 1.4.1:

P
(

max
1≤t≤T

|R0,3,t| > c

)
≤ P

(
max

1≤t≤T
|R1,1,t| > c

)
+ P

(
max

1≤t≤T
|R1,2,t| > c

)

P
(

max
1≤t≤T

|R1,1,t| > c

)
≤ P

(
max

1≤t≤T
||αt||2 · ||K̂zX,t −KzX ||2 > c

)
= o(1)

because of (1.22). The remaining term was shown to be bounded according to R1,2 ≤ R2,1,t +

R2,2,t, where the two summands are defined above. While R2,1 = O(n−1/2) deterministically and
independently of t, note for the second summand R2,2,t ≤ R3,1,t + R3,2,t + R3,3,t as before and
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further:

P
(

max
1≤t≤T

|R3,1,t| > c

)
≤K max

1≤k≤K
|Gk|P

(
m∑
j=1

||K̂zX,t −KzX,k||2(||φ̂j,t − φj,k||2 · ||Ak||2 + |a∗j,t|) > c

)

≤K max
1≤k≤K

|Gk|P

(
2||K̂zX,t −KzX,k||2 · ||Ak||2

m∑
j=1

||φ̂j,t − φj,k||2 > c

)

+K max
1≤k≤K

|Gk|P

(
2||K̂zX,t −KzX,k||2

m∑
j=1

|a∗j,t| > c

)

≤K max
1≤k≤K

|Gk|P

(
2||K̂zX,t −KzX,k||2 · ||Ak||24

m∑
j=1

(
R

(φ)
j,t

)1/2

> c

)
+K max

1≤k≤K
|Gk|P

(
F c3,n,t

)
+ o(1)

≤K max
1≤k≤K

|Gk|
||Ak||22 · E

[
||K̂zX,t −KzX,k||22

] 1
2
m

1
2

(∑m
j=1E

[
R

(φ)
j,t

]) 1
2

c
+ o(1) + o(1)

=O(nδ−1m2) + o(1) = o(1),

due to Assumptions 2–5 and our above observations. Further for R3,2,t similar arguments yield:

P
(

max
1≤t≤T

|R3,2,t| > c

)
≤K max

1≤k≤K
|Gk|P

(
||Ak||2

m∑
j=1

|〈KzX,k, φj,k〉| · ||φ̂j,t − φj,k||2 > c

)

≤K max
1≤k≤K

|Gk|
||Ak||22 · 16 · C2

zXm
∑m

j=1 j
−2(µ+ν)E

[
R

(φ)
j,t

]
c

+K max
1≤k≤K

|Gk|P
(
F c3,n,t

)
=O(mnδ−1) + o(1) = o(1).

Similarly, we argue for R3,3,t,

P
(

max
1≤t≤T

|R3,3,t| > c

)
≤K max

1≤k≤K
|Gk|P

(
||KzX,k||2||Ak||2

m∑
j=1

||φ̂j,t − φj,k||22 > c

)

+K max
1≤k≤K

|Gk|P

(
||KzX,k||2

m∑
j=1

||φ̂j,t − φj,k||2|a∗j,t| > c

)
= o(1)

where the first term is a null sequence as implied by (1.23). The second term is of the order
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O(nδ−1m) = o(1) which follows from analogous arguments as used for R3,2,t.
Combining our above arguments, we conclude P(max1≤t≤T (β̂t − βt)2 > c) = o(1) as claimed in
the lemma.

Now, turning to the estimation error in α̂t we employ upper bounds

P
(

max
1≤t≤T

||α̂t − αt||22 > c

)
≤ K max

1≤k≤K
|Gk|P

(
||α̂t − αt||22 > c

)
≤ R8,1 +R8,2 +R8,3 +R8,4.

While the four summands on the right and side are defined below, the term
∑∞

j=m+1 a
∗
j,t

2 does not
appear in the upper bound, as it is a null sequence and hence arbitrarily small for sufficiently large
n (cf. Assumptions 2,4 and 5). The terms R8,1 −R8,4 are as follows:

Ad R8,1:

R8,1 := K max
1≤k≤K

|Gk|P

 m∑
j=1

λ̂−2
j,t

(
n−1

n∑
i=1

〈Xc
it, φ̂j,t〉εcit

)2

> c


≤ K max

1≤k≤K
|Gk|

4
∑m

j=1 λ
−2
j,kE

[
||K̂Xε,t||22

]
c

+K max
1≤k≤K

|Gk|P
(
F c4,n,t

)
= O

(
n

1+(1+δ)µ−2(1−δ)ν
µ+2ν

)
+ o(1) = o(1)

due to Assumptions 2–5.

40



Ad R8,2:

R8,2 :=K max
1≤k≤K

|Gk|P

 m∑
j=1

λ̂−2
j,t

(
n−1

n∑
i=1

〈Xc
it, φ̂j,t〉zcit

)2

(β̂t − βt)2 > c


≤K max

1≤k≤K
|Gk|P

(
4

m∑
j=1

λ−2
j,k〈K̂zX,t, φ̂j,t〉2(β̂t − βt)2 > c

)
+K max

1≤k≤K
|Gk|P

(
F c4,n,t

)
≤K max

1≤k≤K
|Gk|P

(
m∑
j=1

λ−2
j,k〈KzX,k, φj,k〉2(β̂t − βt)2 > c

)
+ 2K max

1≤k≤K
|Gk|P

(
(β̂t − βt)2 > c

)
+K max

1≤k≤K
|Gk|P

(
||KzX,k||22

m∑
j=1

λ−2
j,k ||φj,k − φ̂j,t||

2
2 > c

)
+K max

1≤k≤K
|Gk|P

(
||KzX,k − K̂zX,t||22 > c

)
+K max

1≤k≤K
|Gk|P

(
F c4,n,t

)
=o(1)

which follows from our above observations.

Ad R8,3:

With aj,t := 〈αt, φ̂j,t〉 = 〈Ak, φ̂j,t〉, we obtain

R8,3 := K max
1≤k≤K

|Gk|P

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

(a∗j,t − aj,t)φ̂j,t

∣∣∣∣∣
∣∣∣∣∣
2

2

> c


≤ K max

1≤k≤K
|Gk|P

(
||Ak||22

m∑
j=1

∣∣∣∣∣∣φj,k − φ̂j,t∣∣∣∣∣∣2
2
> c

)
= o(1)

as a consequence of (1.23).
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Ad R8,4:

R8,4 := K max
1≤k≤K

|Gk|P

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

a∗j,t(φ̂j,t − φj,k)

∣∣∣∣∣
∣∣∣∣∣
2

2

> c


≤ K max

1≤k≤K
|Gk|P

(
m

m∑
j=1

a∗j,t
2
∣∣∣∣∣∣φ̂j,t − φj,k∣∣∣∣∣∣2

2
> c

)
= O

(
mnδ−1

)
= o(1),

which follows from the arguments used for R4,2,t, because |〈KzX,k, φj,k〉|/λj,k and |a∗j,t| are of the
same order in j. Combining arguments yields P (max1≤t≤T ||α̂t − αt||22 > c) = o(1) proving the
second claim of the Lemma.

This would already justify classification on the distances ||α̂t− α̂s||22. However, as scaled versions
of the estimators are employed the behavior of the scaling, which itself is random, needs to be
explored. Contributing to this, now turn to the event Sn,t, for which

K max
1≤k≤K

|Gk|P
(
Scn,t
)
≤K max

1≤k≤K
|Gk|P

(∣∣∣∣∣n−1

n∑
i=1

(
εcit

2 − σ2
ε,k + 2εcitr̃it + r̃2

it

)∣∣∣∣∣ > 1

2
σ2
ε,k

)

≤K max
1≤k≤K

|Gk|P

(∣∣∣∣∣n−1

n∑
i=1

(
εcit

2 − σ2
ε,k + 2εcitr̃it + r̃2

it

)∣∣∣∣∣ > 1

2
min

1≤k≤K
σ2
ε,k

)
≤R9,1 +R9,2 +R9,3

where r̃it := zcit(βt−β̂t)+〈Xc
it, αt−α̂t〉, min1≤k≤K σ

2
ε,k a constant, andR9,1−R9,3 are as follows.

Ad R9,1:

R9,1 := K max
1≤k≤K

|Gk|P

(∣∣∣∣∣n−1

n∑
i=1

(
εcit

2 − σ2
ε,k

)∣∣∣∣∣ > c

)

≤ K max
1≤k≤K

|Gk|P

(∣∣∣∣∣n−1

n∑
i=1

(
εit

2 − σ2
ε,k

)∣∣∣∣∣ > c

)
+K max

1≤k≤K
|Gk|P

(n−1

n∑
i=1

εit

)2

> c


≤ K max

1≤k≤K
|Gk|

n−1E
[(
εit

2 − σ2
ε,k

)2
]

c
+K max

1≤k≤K
|Gk|

n−1E [ε2it]

c

= o(1).
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Ad R9,2:

R9,2 :=K max
1≤k≤K

|Gk|P

(∣∣∣∣∣n−1

n∑
i=1

(εcitr̃it)

∣∣∣∣∣ > c

)
≤ R10,1 +R10,2

with R10,1 −R10,2 as follows:

R10,1 := K max
1≤k≤K

|Gk|P
(∣∣∣(βt − β̂t)K̂zε,t

∣∣∣ > c
)

≤ K max
1≤k≤K

|Gk|P
(
K̂2
zε,t > c

)
+K max

1≤k≤K
|Gk|P

(
(βt − β̂t)2 > c

)
= o(1)

by (1.21) and the above results. Further

R10,2 := K max
1≤k≤K

|Gk|P
(∣∣∣〈K̂Xε,t, αt − α̂t〉

∣∣∣ > c
)

≤ K max
1≤k≤K

|Gk|P
(
||K̂Xε,t||22 > c

)
+K max

1≤k≤K
|Gk|P

(
||αt − α̂t||22 > c

)
= o(1)

by (1.20) and the above results on α̂t.

Ad R9,3:

R9,3 :=K max
1≤k≤K

|Gk|P

(∣∣∣∣∣n−1

n∑
i=1

r̃2
it

∣∣∣∣∣ > c

)
≤K max

1≤k≤K
|Gk|P

(
|K̂z,t| · (β̂t − βt)2 > c

)
︸ ︷︷ ︸

=:R11,1

+K max
1≤k≤K

|Gk|P

(
1

n

n∑
i=1

||Xc
it||22||α̂t − αt||22 > c

)
︸ ︷︷ ︸

=:R11,2
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with R11,1 and R11,2 to be treated as follows.

R11,1 :=K max
1≤k≤K

|Gk|P
(
|Kz,k| · (β̂t − βt)2 > c

)
≤K max

1≤k≤K
|Gk|P

(
|K̂z,t −Kz,k|(β̂t − βt)2 > c

)
+K max

1≤k≤K
|Gk|P

(
|Kz,k| · (β̂t − βt)2 > c

)
≤K max

1≤k≤K
|Gk|P

(
|K̂z,t −Kz,k| > c

)
+K max

1≤k≤K
|Gk|P

(
(β̂t − βt)2 > c

)
+K max

1≤k≤K
|Gk|P

(
|Kz,k|(β̂t − βt)2 > c

)
= o(1)

by (1.19) and the above results. Further it holds that

R11,2 :=K max
1≤k≤K

|Gk|P

(
1

n

n∑
i=1

||Xc
it||22||α̂t − αt||22 > c

)

≤K max
1≤k≤K

|Gk|P

(
1

n

n∑
i=1

∣∣||Xc
it||22 − E

[
||Xc

it||22
]∣∣ · ||α̂t − αt||22 > c

)
+K max

1≤k≤K
|Gk|P

(
E
[
||Xc

it||22
]
||α̂t − αt||22 > c

)
≤K max

1≤k≤K
|Gk|

n−1E
[
(||Xc

it||22 − E [||Xc
it||22])

2
]

c
+K max

1≤k≤K
|Gk|P

(
||α̂t − αt||22 > c

)
+K max

1≤k≤K
|Gk|P

(
E
[
||Xc

it||22
]
||α̂t − αt||22 > c

)
=O(nδ−1) + o(1) + o(1) = o(1)

in light of our above findings. Combining results yields K max1≤k≤K |Gk|P
(
Scn,t
)

= o(1).

Now, finally turning to α̂(∆)
t , for sufficiently large n

P
(

max
1≤t≤T

∣∣∣∣∣∣α̂(∆)
t − α(∆)

t

∣∣∣∣∣∣2
2
> c

)
≤ K max

1≤k≤K
|Gk|P

(∣∣∣∣∣∣α̂(∆)
t − α(∆)

t

∣∣∣∣∣∣2
2
> c

)
≤ R12,1 +R12,2

with

R12,1 := K max
1≤k≤K

|Gk|P

(
m∑
j=1

(âj,t − aj,t)2 λ̂j,t
σ̂2
ε,t

> c

)

and R12,2 := K max
1≤k≤K

|Gk|P

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

(
λ̂

1/2
j,t

σ̂ε,t
φ̂j,taj,t −

λ
1/2
j,k

σε,k
φj,ka

∗
j,t

)∣∣∣∣∣
∣∣∣∣∣
2

2

> c

 .
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R12,1 can be decomposed according to

R12,1 ≤ R13,1 +R13,2 +K max
1≤k≤K

|Gk|P
(
Scn,t
)

where

R13,1 := K max
1≤k≤K

|Gk|P

(
σ−2
ε,k

m∑
j=1

λ̂−1
j,t 〈K̂zX,t, φ̂j,t〉2(βt − β̂t)2 > c

)

and R13,2 := K max
1≤k≤K

|Gk|P

(
σ−2
ε,k

m∑
j=1

λ̂−1
j,t 〈K̂Xε,t, φ̂j,t〉2 > c

)

because σ̂−2
ε,t ≤ 2σ−2

ε,k on Sn,t. Noting that σ−2
ε,k is obviously bounded above by a constant, these

terms in turn behave as follows:

R13,1 ≤K max
1≤k≤K

|Gk|P

(
m∑
j=1

λ−1
j,k〈KzX,k, φj〉2(βt − β̂t)2 > c

)
+ 2K max

1≤k≤K
|Gk|P

(
(βt − β̂t)2 > c

)
+K max

1≤k≤K
|Gk|P

(
m∑
j=1

λ−1
j,k ||K̂zX,t −KzX,k||22 > c

)
+K max

1≤k≤K
|Gk|P

(
m∑
j=1

λ−1
j,k ||φ̂j,t − φj,k||

2
2 > c

)
+K max

1≤k≤K
|Gk|P

(
F c4,n,t

)
= o(1)

which follows from our above arguments. Further we conclude

R13,2 ≤ K max
1≤k≤K

|Gk|

∑m
j=1 λ

−1
j,kE

[
||K̂Xε,t||22

]
c

+K max
1≤k≤K

|Gk|P
(
F c4,n,t

)
= O(nδ−1m1+µ) = o(1)

as consequence of Assumptions 2–5. Now turning to R12,2 note that

R12,2 ≤R14,1 +R14,2

where

R14,1 := K max
1≤k≤K

|Gk|P

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

(
λ̂

1/2
j,t σε,k

σε,kσ̂ε,t
φ̂j,t −

λ
1/2
j,k σ̂ε,t

σε,kσ̂ε,t
φj,k

)
a∗j,t

∣∣∣∣∣
∣∣∣∣∣
2

2

> c
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and

R14,2 = K max
1≤k≤K

|Gk|P

∣∣∣∣∣
∣∣∣∣∣
m∑
j=1

(a∗j,t − aj,t)
λ̂

1/2
j,t

σ̂ε,t
φ̂j,k

∣∣∣∣∣
∣∣∣∣∣
2

2

> c

 .

Note for R14,1:

R14,1 ≤ R15,1 +R15,2 +R15,3 +K max
1≤k≤K

|Gk|P(Scn,t)

with

R15,1 := K max
1≤k≤K

|Gk|P

(
m∑
j=1

(a∗j,t)
2λ̂j,t(σε,k − σ̂ε,t)2 > c

)

R15,2 := K max
1≤k≤K

|Gk|P

(
m

m∑
j=1

(a∗j,t)
2λ̂j,tσ̂

2
ε,t||φj,k − φ̂j,t||22 > c

)

R15,3 := K max
1≤k≤K

|Gk|P

(
m∑
j=1

(a∗j,t)
2σ̂2

ε,t

(
λ̂

1/2
j,t − λ

1/2
j,k

)2

> c

)
.

In order to assess the asymptotic behavior of these terms, we note that by the mean value theorem

• it holds on Sn,t that |σ̂ε,t − σε,k| ≤
√

2
σε,k
|σ̂2
ε,t − σ2

ε,k| and

• it holds on F4,n,t that |λ̂1/2
j,t − λ

1/2
j,k | ≤

(
2
λj,k

) 1
2 |λ̂j,t − λj,k|.

Adding these observations to the above allows us to conclude the following for R15,1 −R15,3:

Ad R15,1:

R15,1 =K max
1≤k≤K

|Gk|P

(
m∑
j=1

(a∗j,t)
2λ̂j,t|σε,k − σ̂ε,t|2 > c

)

≤K max
1≤k≤K

|Gk|P

(
2

σ2
ε,k

m∑
j=1

(a∗j,t)
2λj,k|σ̂2

ε,t − σ2
ε,k|2 > c

)
+K max

1≤k≤K
|Gk|P

(
F c4,n,t

)
+K max

1≤k≤K
|Gk|P

(
Scn,t
)

=o(1).
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Ad R15,2:

R15,2 ≤K max
1≤k≤K

|Gk|P

(
2mσ2

ε,k

m∑
j=1

(a∗j,t)
2λ̂j,t||φj,k − φ̂j,t||22 > c

)
+K max

1≤k≤K
|Gk|P

(
Scn,t
)

=O(mnδ−1) + o(1) = o(1)

which follows from similar arguments as the ones used for R4,2,t.

Ad R15,3:

R15,3 ≤K max
1≤k≤K

|Gk|P

(
2σ2

ε,k

m∑
j=1

(a∗j,t)
2λ−1

j,k |λ̂j,t − λj,k|
2 > c

)
+K max

1≤k≤K
|Gk|P

(
Scn,t
)

+K max
1≤k≤K

|Gk|P
(
F c4,n,t

)
≤K max

1≤k≤K
|Gk|

2σ2
ε,k

∑m
j=1(a∗j,t)

2λ−1
j,kE[D2

t ]

c
+K max

1≤k≤K
|Gk|P

(
Scn,t
)

+K max
1≤k≤K

|Gk|P
(
F c4,n,t

)
=o(1).

It remains to show that R14,2 = o(1). For this purpose note

R14,2 =K max
1≤k≤K

|Gk|P

(
m∑
j=1

(a∗j,t − aj,t)2 λ̂j,t
σ̂2
ε,t

> c

)

≤K max
1≤k≤K

|Gk|P

(
4||αt||22

m∑
j=1

||φ̂j,t − φj,k||22
λj,t
σ2
ε,k

> c

)
+K max

1≤k≤K
|Gk|P

(
F c4,n,t

)
+K max

1≤k≤K
|Gk|P

(
Scn,t
)

=o(1) + o(1) = o(1),

which follows from (1.23) and our above arguments.

Combining arguments implies the last statement in Lemma 1.4.1. �

Proof of Theorem 1.4.2

Using the results presented in the previous lemma it is possible to argue in analogy to the proof
of Theorem 1 in Vogt and Linton (2017) to validate the classification consistency claimed in our
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Theorem 1.4.2. For this purpose consider the set S(j) = {1, . . . , T} \
⋃
l<j Ĝl at an iteration

step 1 ≤ j ≤ K̂ − 1 of the algorithm described in Section 1.3. For a t ∈ S(j) denote the set of
indexes corresponding to the ordered distances ∆̂t(1) ≤ · · · ≤ ∆̂t(|S(j)|) as {(1), . . . , (|S(j)|)}. In
analogy, the index set corresponding to the ordered population distances ∆t[1] ≤ · · · ≤ ∆t[|S(j)|] is
denoted as {[1], . . . , [|S(j)|]}, where ∆ts is as in Assumption 7. Now, define the index κ̂ according
to ∆̂t(κ̂) < τnT < ∆̂t(κ̂+1). Its population counterpart, κ, obtains as 0 = ∆t[κ] < τnT < ∆t[κ+1]. It
holds that

P ({(1), . . . , (κ̂)} 6= {([1], . . . , [κ]}) ≤ P ({(1), . . . , (κ)} 6= {[1], . . . , [κ]}) + P(κ̂ 6= κ) (1.26)

= o(1) + o(1).

In order to prove that the first probability on the right hand side of (1.26) is a null sequence, sup-
pose that t ∈ Gk, with 1 ≤ k ≤ K. As indicated, there are κ ≥ 1 indexes in S(j) being elements
of Gk. For the corresponding distances it holds that ∆t[1] = · · · = ∆t[κ] = 0 by definition. The
remaining distances are bounded away from zero by 0 < C∆ ≤ ∆t[κ+1] ≤ · · · ≤ ∆t[|S(j)|] due to
Assumption 7.
As stated in Lemma 1.4.1, max1≤t≤T ||α̂(∆)

t − α
(∆)
t ||22 = op(1) implying that max1≤s≤T |∆̂ts −

∆ts| = op(1), which holds for any reference period t. Combining arguments allows to conclude
max1≤s≤κ ∆̂t(s) = op(1) and minκ<s≤|S(j)| ∆̂t(s) ≥ C∆ + op(1) as well as max1≤s≤κ ∆̂t[s] = op(1)

and minκ<s≤|S(j)| ∆̂t[s] ≥ C∆ + op(1). This implies that the first probability on the right hand
side of (1.26) tends to zero. Further note that the specification of the threshold in Assumption 7
immediately implies P

(
∆̂t[κ] < τnT

)
→ 1 and P

(
∆̂t[κ+1] > τnT

)
→ 1 as n → ∞ in light of

the preceding arguments. As a consequence of this P
(

∆̂t[κ] < τnT < ∆̂t[κ+1]

)
→ 1 as n → ∞,

implying that the second probability on the right hand side of (1.26) is a null sequence. �

Remark 1

For the calculation of the convergence rate of our estimator Ãk, the classification error is negligible
as a consequence of Theorem 1.4.2. To see this note that an analogous argument as in Vogt and
Linton (2017) holds in our context: let s(n, T ) be an arbitrary deterministic sequence such that
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s(n, T )→ 0 as n, T →∞. Now, note that for any constant C > 0

P
(

(s(n, T ))−1||Ãk − Ak||22 > C
)

≤ P
({

(s(n, T ))−1||Ãk − Ak||22 > C
}
∩
{
Ĝk = Gk

})
+ P

({
Ĝk 6= Gk

})
= P

(
(s(n, T ))−1||Ã∗k − Ak||22 > C

)
+ o(1),

where the quantity Ã∗k denotes the estimator Ãk calculated from {(yit, Xit, zit) : 1 ≤ i ≤ n, t ∈
Gk}, i.e. from correctly classified periods. Note in particular that the time series dependence
formulated in Assumption 1 does not affect this argument.

In light of this remark, the proof of Theorem 1.4.3 starts from the ideal oracle estimators Ã∗k rather
than their contaminated counterparts.

Remark 2

For the proof of Theorem 1.4.3, we work with classification-error-free oracle variants of the es-
timators φ̃j,k, λ̃j,k, K̃X,k, K̃zX,k, K̃z,k and Γ̃k. Such estimators, calculated from {(zit, Xit) : 1 ≤
i ≤ n, t ∈ Gk}, are denoted φ̃∗j,k, λ̃∗j,k, K̃∗X,k, K̃∗zX,k, K̃∗z,k and Γ̃∗k. In analogy to before, we further
denote the Hilbert Schmidt norm of the difference between Γ̃∗k and the population counterpart Γk

as D̃∗k := ||Γ̃∗k − Γk||S . Beyond these quantities, the estimator Ã∗k makes implicitly use of the op-
erator Φ̃∗k which estimates, in analogy to Φ̂t, the operator Φk as in (1.11). Φ̃∗k is defined according
to

Φ̃∗k(g) :=
m̃∑
j=1

〈K̃∗zX,k, φ̃∗j,k〉
λ̃∗j,k

〈φ̃∗j,k, g〉

for any g ∈ L2([0, 1]), where m̃ ≡ m̃k for simplicity of notation.
Assessing the asymptotic properties of the classification-error-free estimators, note that due to
Assumption 1 for every regime Gk, the random variables {Xit : 1 ≤ i ≤ n, t ∈ Gk} are L4

m-
approximable. Thus, for suitably large constants, the following inequalities from Hörmann and
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Kokoszka (2010) hold:7

E

[(
D̃∗k
)2
]
≤ C(n|Gk|)−1 (1.27)

E

[∣∣∣∣∣∣K̃∗X,k −KX,k

∣∣∣∣∣∣2
2

]
≤ C(n|Gk|)−1 (1.28)

E

[∣∣∣λ̃∗j,k − λj,k∣∣∣2] ≤ E

[(
D̃∗k
)2
]
≤ C(n|Gk|)−1 (1.29)

for 1 ≤ j ≤ m̃. Further note that the dependence of the random variables {(zit, Xit) : 1 ≤ i ≤
n, t ∈ Gk} is sufficiently weak, such that

E

[∣∣∣∣∣∣K̃∗zX,k −KzX,k

∣∣∣∣∣∣2
2

]
= O((n|Gk|)−1)

and further

E

[∣∣∣K̃∗z,k −Kz,k

∣∣∣2] = O((n|Gk|)−1),

which can be shown by straightforward moment calculations. In addition to that, bounds on∣∣∣∣∣∣φ̃∗j,k − φj,k∣∣∣∣∣∣2
2

can be obtained in analogy to the almost sure bound in (1.12) and the asymp-
totic bound as in (1.13)–(1.15). We make the latter precise defining the analogues to F1,n,t–F3,n,t

as

1. F̃1,n,T,k :=

{
C(n|Gk|)

2(1+µ)
µ+2ν

(
D̃∗k
)2

≤ 1/8

}
2. F̃2,n,T,k :=

{
|λ̃∗j,k − λl,k|−2 ≤ 2|λj,k − λl,k|−2 ≤ C(n|Gk|)

2(1+µ)
µ+2ν , 1 ≤ j ≤ m̃, j 6= l ∈ N

}
.

3. F̃3,n,T,k := F̃1,n,T,k ∩ F̃2,n,T,k

for which we note P(F̃ c3,n,T,k) ≤ P(F̃ c1,n,T,k) + P(F̃ c2,n,T,k) = o(1) + o(1) as (n, T ) → ∞ from
similar arguments as before. Also, as in our arguments for the t-wise estimators it holds on F̃2,n,T,k

that

||φ̃∗j,k − φj,k||22 ≤ 8

(
1− 4C(n|Gk|)

2(1+µ)
µ+2ν

(
D̃∗k
)2
)−1

R̃
(φ)
j,k , (1.30)

where R̃(φ)
j,k :=

∑
l:l 6=j

(λj,k − λl,k)−2

[∫ 1

0

∫ 1

0

(K̃∗X,k(u, v)−KX,k(u, v))φj,k(u)φl,k(v)dudv

]2

,

7Cf. Theorem 3.2 and the consequent discussion in Hörmann and Kokoszka (2010).
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from which we conclude, that on F̃3,n,T,k, it holds that

||φ̃∗j,k − φj,k||22 ≤ 16R̃
(φ)
j,k . (1.31)

The results in Hall and Horowitz (2007) also allow to conclude E
[
R̃

(φ)
j,k

]
= O (j2(n|Gk|)−1) uni-

formly in 1 ≤ j ≤ m̃ for weakly dependent random variables {Xit : 1 ≤ i ≤ n, t ∈ Gk}.

As a further important observation we note that∣∣∣∣∣∣Φ̃∗k − Φk

∣∣∣∣∣∣2
H′

= Op

(
(n|Gk|)

1−2ν
µ+2ν

)
given Assumptions 1-6 hold. This can be seen from a regression

zit − E[zit] = 〈ζ,Xit − E[Xit]〉+ sit (1.32)

in the k − th regime, where 1 ≤ t ≤ |Gk|, 1 ≤ i ≤ n and sit as in Assumption 6. Since the
functional parameter ζ is formulated as being time invariant, it can be estimated as in Hall and
Horowitz (2007) from pooled data (Xj(i,t), zj(i,t)), where 1 ≤ j(i, t) := (i− 1)|Gk|+ t ≤ n|Gk|.
As noted by Shin (2009), the resulting estimator, say ζ̂ , links to the operator Φ̃∗k according to

||ζ̂ − ζ||22 =
∣∣∣∣∣∣Φ̃∗k − Φk

∣∣∣∣∣∣2
H′
. (1.33)

The argumentation in Hall and Horowitz (2007) (cf. their Theorem 1 and corresponding proof)
transfers mutatis mutandis to a setup with weakly dependent regressors (L4

m dependence) and
weakly dependent errors (m-dependence) as is the case in our auxiliary regression (1.32). This
can be shown using the fundamental results formulated in Hörmann and Kokoszka (2010). As ζ̂
is calculated from a sample of size n|Gk|, the results in Hall and Horowitz (2007) together with
(1.33) thus imply ∣∣∣∣∣∣Φ̃∗k − Φk

∣∣∣∣∣∣2
H′

= Op

(
(n|Gk|)

1−2ν
µ+2ν

)
as claimed before.
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Proof of Theorem 1.4.3

Note that on
⋂
t∈Gk Qn,t it holds that B̂−1

t ≤ 2Bk
−1 for any t ∈ Gk, and so

P

(
n (|Gk|)−1

∣∣∣∣∣∑
t∈Gk

(β̂t − βt)2

∣∣∣∣∣ > c

)

≤P

(
4B−2

k n (|Gk|)−1

∣∣∣∣∣∑
t∈Gk

3∑
l=1

R2
0,l,t

∣∣∣∣∣ > c

)
+ P

(⋃
t∈Gk

Qc
n,t

)

≤P

(
4B−2

k n (|Gk|)−1
∑
t∈Gk

(
2∑
l=1

R2
0,l,t +R2

1,1,t +R2
2,1 +

3∑
j=1

R2
3,j,t

)
> c

)
+ |Gk|P

(
Qc
n,t

)
.

In the proof of Lemma 1.4.1 it was shown that P
(
Qc
n,t

)
= o(|Gk|−1). Regarding the remaining

term, note that due to the exogeneity of the regressors and stationary distributions within the
regimes the following holds: for any cj > 0, j = 1, 2, 3, there exist constants Cj = Cj(cj),
j = 1, 2, 3 such that

P

(
n|Gk|−1

∑
t∈Gk

R2
0,1,t > c1

)
≤
nE[R2

0,1,t]

c1

≤ C1

P

(
n|Gk|−1

∑
t∈Gk

R2
0,2,t > c2

)
≤
nE[R2

0,2,t]

c2

≤ C2

P

(
n|Gk|−1

∑
t∈Gk

R2
1,1,t > c3

)
≤ nCE[||K̂zX,t −KzX ||22]

c3

≤ C3.

Further we observe that R2,1 = o(n−1/2). Using that P(
⋃
t∈Gk F

c
3,n,t) ≤

∑
t=Gk

P(F c3,n,t) = o(1)

as shown in the proof of Lemma 1.4.1, we argue that for any constant c4, there exists a constant
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C4, such that

P

(
n|Gk|−1

∑
t∈Gk

R2
3,1,t > c4

)

≤
n||Ak||E

[
||K̂zX,t −KzX,k||42

] 1
2
E [D4

t ]
1
2 (C ′λ)

−2
(∑m

j=1 j
1+µ
)2

c · c4

+
nE
[
||K̂zX,t −KzX,k||22

] (∑m
j=1 |a∗j,t|

)2

c · c4

≤C4,

due to the stationarity of (Xit, zit), t ∈ Gk and (1.12). Beyond that we argue forR3,2,t that for any
c5 > 0 it follows from similar arguments that there exists a C5 > 0 such that

P

(
n|Gk|−1

∑
t∈Gk

R2
3,2,t > c5

)

≤
n||Ak|| · E [D2

t ] (C ′λ)
−2C2

zX

(∑m
j=1 j

1−ν
)2

c · c5

≤C5.

Finally, note that for any c6 > 0, there exists a C6 > 0 such that

P

(
n|Gk|−1

∑
t∈Gk

R2
3,3,t > c6

)

≤
2n||KzX,k||22||Ak||22(C ′λ)

−2E [D4
t ]
(∑m

j=1 j
2(1+µ)

)2

c6

+
2n||KzX,k||22(C ′λ)

−2(Ca)
2E [D2

t ]
(∑m

j=1 j
1+µ−ν

)2

c6

≤ C6

thanks to Assumptions 2–5, stationarity and once more the bound in (1.12). Combining arguments
allows us to conclude that |Gk|−1

∑
t∈Gk(β̂t−βt)

2 = Op(n
−1) as n, T →∞. We use this finding

in a moment to obtain the convergence rate for Ãk. To assess the underlying problem, we use the
following notation:

• Xcc,∗
it := Xit − ¯̄X∗k with ¯̄X∗k := 1

n|Gk|
∑

t∈Gk

∑n
i=1 Xit,
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• εcc,∗it := εit − ¯̄ε∗k with ¯̄ε∗k := 1
n|Gk|

∑
t∈Gk

∑n
i=1 εit.

The classification-error-free oracle estimator for the regime specific parameter function reads as
Ã∗k :=

∑m̃
j=1 ã

∗
j,kφ̃

∗
j,k. The basis coefficients indexed 1 ≤ j ≤ m̃ obtain as

ã∗j,k := (λ̃∗j,k)
−1 1

n|Gk|
∑
t∈Gk

n∑
i=1

〈Xcc,∗
it , φ̃∗j,k〉(ycit − zcitβ̂t)

= ã
(1)
j,k + ã

(2)
j,k ,

where

ã
(1)
j,k := (λ̃∗j,k)

−1 1

n|Gk|
∑
t∈Gk

n∑
i=1

〈Xcc,∗
it , φ̃∗j,k〉 (〈X

cc,∗
it , Ak〉+ εcc,∗it )

and

ã
(2)
j,k := (λ̃∗j,k)

−1 1

n|Gk|
∑
t∈Gk

n∑
i=1

〈Xcc,∗
it , φ̃∗j,k〉

(
zcit(βt − β̂t) + 〈 ¯̄X∗k − X̄t, Ak〉+ ¯̄ε∗k − ε̄t

)
.

The upper bound

||Ã∗k − Ak||22 =

∣∣∣∣∣
∣∣∣∣∣
m̃∑
j=1

(
ã

(1)
j,k + ã

(2)
j,k

)
φ̃∗j,k − Ak

∣∣∣∣∣
∣∣∣∣∣
2

2

(1.34)

≤ 2

∣∣∣∣∣
∣∣∣∣∣
m̃∑
j=1

ã
(1)
j,k φ̃

∗
j,k − Ak

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 2
m̃∑
j=1

(
ã

(2)
j,k

)2

(1.35)

can be obtained using the Cauchy Schwarz inequality. The first term is the estimator from Hall and
Horowitz (2007) in the case of n|Gk| pooled observations and anL4

m approximable regressor func-
tion. Along the lines of our second remark and Assumptions 1-5, it holds that

∣∣∣∣∣∣∑m̃
j=1 ã

(1)
j,k φ̃

∗
j,k − Ak

∣∣∣∣∣∣2
2

=

Op

(
n

(1+δ)(1−2ν)
µ+2ν

)
. The remaining term in (1.35) we split according to

m̃∑
j=1

(
ã

(2)
j,k

)2

≤ 3 · (R16,1 +R16,2 +R16,3).

where the terms R16,1, R16,2 and R16,3 are as follows:
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Ad R16,1:

R16,1 :=
m̃∑
j=1

(λ̃∗j,k)
−2

(
1

|Gk|
∑
t∈Gk

〈n−1

n∑
i=1

Xcc,∗
it , φ̃∗j,k〉

(
〈 ¯̄X∗k − X̄t, Ak〉

))2

≤4
m̃∑
j=1

(λj,k)
−2

(
1

|Gk|
∑
t∈Gk

||Xt − ¯̄X∗k ||22||Ak||2

)2

=Op(m̃
1+2µn−2)

on an event F̃4,n,T,k := {|λ̃∗j,k − λj,k| ≤ 1
2
λj,k : 1 ≤ j ≤ m̃}. For this event in turn, note that

P(F̃4,n,T,k)→ 1 which follows from analogous arguments, which lead to P(F4,n,t)→ 1 above.

Ad R16,2:

R16,2 :=
m̃∑
j=1

(λ̃∗j,k)
−2

(
1

n|Gk|
∑
t∈Gk

n∑
i=1

〈Xcc,∗
it , φ̃∗j,k〉 (¯̄ε∗k − ε̄t)

)2

=
m̃∑
j=1

(λ̃∗j,k)
−2

(
1

|Gk|
∑
t∈Gk

〈X̄t − ¯̄X∗k , φ̃
∗
j,k〉ε̄t

)2

≤ 4
m̃∑
j=1

(λj,k)
−2

(
1

|Gk|
∑
t∈Gk

||X̄t − ¯̄X∗k ||2ε̄t

)2

= Op(m̃
1+2µn−2)

on F̃4,n,T,k.

Ad R16,3:

R16,3 :=
m̃∑
j=1

(λ̃∗j,k)
−2

(
1

n|Gk|
∑
t∈Gk

n∑
i=1

〈Xcc,∗
it , φ̃∗j,k〉zcit

(
βt − β̂t

))2

=
m̃∑
j=1

(λ̃∗j,k)
−2

(
1

|Gk|
∑
t∈Gk

〈K̂zX,t, φ̃
∗
j,k〉
(
βt − β̂t

))2

≤
m̃∑
j=1

(λ̃∗j,k)
−2

(
1

|Gk|
∑
t∈Gk

〈K̂zX,t, φ̃
∗
j,k〉2

)(
1

|Gk|
∑
t∈Gk

(
βt − β̂t

)2
)
,
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of which it is known from before that 1
|Gk|

∑
t∈Gk

(
βt − β̂t

)2

= Op(n
−1) and

m̃∑
j=1

(λ̃∗j,k)
−2|Gk|−1

∑
t∈Gk

〈K̂zX,t, φ̃
∗
j,k〉2

≤
m̃∑
j=1

(λ̃∗j,k)
−2|Gk|−1

∑
t∈Gk

3
(
〈KzX,k, φj,k〉2 + 〈K̂zX,t −KzX,k, φ̃

∗
j,k〉2 + 〈KzX,k, φj,k − φ̃∗j,k〉2

)
.

We further conclude that on F̃4,n,T,k

m̃∑
j=1

(λ̃∗j,k)
−2〈KzX,k, φj,k〉2 ≤ 4

m̃∑
j=1

λ−2
j,k〈KzX,k, φj,k〉2 ∝

m̃∑
j=1

j2µ−2(µ+ν) = O(1)

as well as

|Gk|−1
∑
t∈Gk

m̃∑
j=1

(λ̃∗j,k)
−2〈K̂zX,t −KzX,k, φ̃

∗
j,k〉2 ≤ 2|Gk|−1

∑
t∈Gk

||K̂zX,t −KzX,k||22
m̃∑
j=1

λ−2
j,k

= Op

(
n−1n

(1+δ)(1+2µ)
µ+2ν

)
= Op

(
n

(1+δ)(1+2µ)−µ−2ν
µ+2ν

)
= op(1).

Further, we use similar arguments as before (see the proof of Theorem 1.4.1) to obtain

m̃∑
j=1

(λ̃∗j,k)
−2〈KzX,k, φ̃

∗
j,k − φj,k〉2 ≤ 4||KzX,k||22

m̃∑
j=1

||φ̃∗j,k − φj,k||22λ−2
j,k = op(1)

on F̃3,n,T,k ∩ F̃4,n,T,k, which implies
∑m̃

j=1(λ̃∗j,k)
−2〈KzX,k, φ̃

∗
j,k − φj,k〉2 = Op(1). Combining

our above statements yields
∑m̃

j=1

(
ã

(2)
j

)2

= Op(n
−1). Further, if ν > 1+µ+δ

2δ
, or equivalently

δ > (1 + µ)/(2ν − 1), then (nT )
1−2ν
µ+2ν = o(n−1) and in case ν < 1+µ+δ

2δ
, n−1 = o

(
(nT )

1−2ν
µ+2ν

)
.

Together with our Remark 1 on the classification error the result in the theorem follows. �

Threshold Choice

In order to illustrate the properties of the threshold τnT as suggested in Section 1.5, suppose
for a moment that the truncation error in regime k is negligible (i.e., λj,k ≈ 0, j ≥ m + 1)
and that the eigenvalue-eigenfunction pairs (λj,k, φj,k)j≥1 as well as the error variance σ2

ε,k of
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regime k were known. In this case our estimation procedure yields variance adjusted estimators
α̂

(∆∗)
t :=

∑m
j=1 σ

−1
ε,kλ

1/2
j,k âj,tφj,k and α̂(∆∗)

s :=
∑m

j=1 σ
−1
ε,kλ

1/2
j,k âj,sφj,k where the appropriately scaled

difference of their j-th components (n/2)1/2σ−1
ε,kλ

1/2
j,k (âj,t− âj,s) is approximately standard normal

(for large n and small temporal correlations), such that for all t, s ∈ Gk

n

2
∆∗ts :=

n

2
||α̂(∆∗)

t − α̂(∆∗)
s ||22 =

m∑
j=1

((n
2

)1/2

σ−1
ε,kλ

1/2
j,k (âj,t − âj,s)

)2

=: Qm
ts

⇒∆∗ts =
2

n
Qm
ts , where (for large n) Qm

ts ∼ χ2
m if t 6= s and Qm

ts ≈ 0 if t = s.

For accurate estimates and a small truncation error, we expect that ||α̂(∆)
t − α̂(∆)

s ||22 ≈ ||α̂
(∆∗)
t −

α̂
(∆∗)
s ||22 and hence that ∆̂ts ≈ ∆∗ts. Note that neglecting the truncation error is often justified in

practice, where a small number of eigencomponents is typically sufficient to explain virtually the
total variance (see, for instance, Aue et al., 2015 who use an essentially equivalent practical ap-
proach and successfully approximate an infinite dimensional functional time-series using a finite
dimensional VAR-model).
To achieve a consistent classification, it is necessary that the threshold parameter τnT → 0 as
n, T → ∞ since the distances ∆∗ts are null sequences. However, τnT converges so fast that τnT
remains slightly larger than the maximum within-regime distance maxs∈Gk ∆̂ts. That is, we need
to require that P

(
maxs∈Gk ∆̂ts ≤ τnT

)
→ 1 or equivalently that P

(
maxs∈Gk ∆̂ts ≥ τnT

)
→ 0 for

any t ∈ Gk. For finite samples this means requiring that P
(

maxs∈Gk ∆̂ts ≥ τnT
)
≤ ε for some

small ε > 0. Next we use the approximation ∆̂ts ≈ ∆∗ts. Observe that for a given t ∈ Gk,

P
(

max
s∈Gk

∆∗ts ≥ τnT

)
= P

( ⋃
s∈Gk

{∆∗ts ≥ τnT}

)
≤ |Gk|P

(
Qm
ts ≥

n

2
τnT

)
,

where the latter inequality follows from Boole’s inequality. From this upper bound we can learn
about τnT according to

|Gk|P
(
Qm
ts ≥

n

2
τnT

)
= ε ⇔ τnT =

2

n
F−1
m

(
1− ε

|Gk|

)
,

where F−1
m denotes the quantile function of the χ2

m-distribution. As we consider a context where
|Gk| is large (|Gk| ∝ T in Assumption A3), we expect the value of ε/|Gk| to be very close to
zero. This motivates setting τnT = (2/n)F−1

m (pτ ), for some pτ very close to one as mentioned in
Section 1.5. Note that according to Theorem A in Inglot (2010) and our assumptions in Section

57



1.4

τnT =
2

n
F−1
m

(
1− ε

|Gk|

)
≤ 2m

n
+

4

n

(
log

(
|Gk|
ε

)
+

√
m log

(
|Gk|
ε

))
→ 0

as n, T →∞, which points at the large sample validity of the proposed threshold.
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1.B Additional Simulation Results
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Figure 1.B.1: Scenario 1: Estimated Regime Parameter Functions for Sample Size (n, T ) =
(50, 50). Figure plots true parameter functions (solid black lines) versus pointwise 5% and 95%
quantiles of parameter function estimates (dashed red lines).
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Figure 1.B.2: Scenario 1: Estimated Regime Parameter Functions for Sample Size (n, T ) =
(100, 50). Figure plots true parameter functions (solid black lines) versus pointwise 5% and 95%
quantiles of parameter function estimates (dashed red lines).
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Figure 1.B.3: Scenario 1: Estimated Regime Parameter Functions for Sample Size (n, T ) =
(150, 80). Figure plots true parameter functions (solid black lines) versus pointwise 5% and 95%
quantiles of parameter function estimates (dashed red lines).
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Figure 1.B.4: Scenario 2: Estimated Regime Parameter Functions for Sample Size (n, T ) =
(50, 50). Figure plots true parameter functions (solid black lines) versus pointwise 5% and 95%
quantiles of parameter function estimates (dashed red lines).
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Figure 1.B.5: Scenario 2: Estimated Regime Parameter Functions for Sample Size (n, T ) =
(100, 50). Figure plots true parameter functions (solid black lines) versus pointwise 5% and 95%
quantiles of parameter function estimates (dashed red lines).
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Figure 1.B.6: Scenario 2: Estimated Regime Parameter Functions for Sample Size (n, T ) =
(150, 80). Figure plots true parameter functions (solid black lines) versus pointwise 5% and 95%
quantiles of parameter function estimates (dashed red lines).
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Chapter 2

Online Prediction of Intraday Stock
Volatility

2.1 Introduction

Empirical second moments of stock price returns typically vary over time. This is the case for
daily as well as intraday measures of return volatility. The complexity of such time variation is
challenging, e.g. for algorithmic trading, where many types of algorithms require online predic-
tions of intraday volatility measures. While conventional GARCH models are often adequate for
predicting discrete daily volatility measures, they have limited use in an intraday context. This is
often dedicated to pronounced intraday patterns of volatility (see for example Engle and Sokalska,
2012). Thus, for intraday algorithmic trading, approaches which explicitly take into account such
patterns are a promising direction for research.

Motivated by these observations, I suggest a novel technique designed for the online prediction
of intraday spot volatility during the trading day. Spot volatility is considered to be a smooth ran-
dom curve, governing intraday variation in the second moment of stock price returns in continuous
time. My methodology relies on separating the evolution of the level of the volatility curve from
the evolution of its intraday shape. I assume the latter to be constituted by a time invariant pattern
and irregularly recurring deviations from it. Online prediction of the volatility curve is translated
into separately online forecasting the level and the shape of the spot volatility curve.

The suggested technique relates to two strands of the literature on intraday volatility modeling.
First, it is similar to econometric works on component models for discrete time intraday volatil-
ity dynamics. Second, my approach is related to continuous time models for intraday volatility,
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which are typically concerned with modeling functional data. In the literature on discrete time
modeling, a closely related work is the one of Engle and Sokalska (2012). The authors introduce
a component model governing the volatility of 10-minute returns during the trading day. The
employed components are capable to separate daily, diurnal and intraday effects. Along with the
returns, the intraday component is finally modeled as a conventional GARCH process. Diao and
Tong (2015) use a very similar approach. Extending the model of Engle and Sokalska (2012) the
authors suggest an explicit modeling of return dynamics along with a comparable type of com-
ponent model for the second moment of 5-minute returns of the Chinese CSI 300 index. The
intraday component of volatility is modeled in terms of an EGARCH-process. In summary, these
two works explicitly model an intraday pattern of volatility as well as systematic deviations from
it. Further elements supplementing this approach can be found in Andersen et al. (2012), Dette et
al. (2016) and Christensen et al. (2017). In particular the work of Christensen et al. (2017) offers
an assessment of the relative importance of diurnal and day-specific effects in intraday volatil-
ity. In an empirical study for the 30 constituents of the Dow Jones Industrial Average the authors
confirm the important role of the diurnal pattern for intraday volatility, while substantial varia-
tion over time is left unexplained. Their findings allude to the potential of explicitly modeling
the deviations from the time invariant pattern in intraday volatility. While the component models
of Engle and Sokalska (2012) and Diao and Tong (2015) assess such problem in discrete time,
functional data models are capable to approach it in continuous intraday time. For example recent
work such as Müller et al. (2011) or Dahlhaus and Neddermeyer (2014) rely on measures of the
functional spot volatility. The latter is the volatility term governing price variation in continuous
time. Gabrys et al. (2013) examine the behavior of its structure over time and indicate potential
instabilities.

Contributing to the above literature I suggest a novel, functional variant of the discrete time com-
ponent model of Engle and Sokalska (2012). It explicitly disentangles the shape and the level of
spot volatility curves. This is particularly beneficial to the ultimate aim of predicting the contin-
uation of spot volatility once data was observed over a first part of the day. The key innovations
of this chapter are the following:

1. Besides a vertical shift governing the level of spot volatility, the suggested model incor-
porates a global and a local shape component. The global shape component is invariant
over trading days and describes a rough diurnal pattern. Deviations of the shape of the spot
volatility curve from this global pattern are modeled as a local component. The latter poten-
tially varies over trading days and is assumed to be irregularly recurring. This means that
deviations in the shape of intraday volatility from its global pattern occur repeatedly over an
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unknown set of trading days. This notion of the intraday volatility shape offers a simple and
flexible way to deal with a rich set of systematic deviations from a constant diurnal pattern.

2. Online predictions of the spot volatility curve are constructed by combining online predic-
tions of its level and its shape. As a central novelty of this chapter, the shape forecast is
generated using a functional distance metric learning approach. This technique allows to
quantify similarity of past intraday volatility curves with respect to their local shape com-
ponents. Given this data-driven distance notion for volatility shapes, a weighted average of
past available curves allows to approximate local (and global) shape features.

In an empirical study I confront this novel prediction technique with stock-level data from the Ger-
man DAX 30 index. I test the performance of my predictions against three practically motivated
benchmarks for each of the considered stocks. The results indicate superior performance of my
predictions compared to the competitors. In particular, the relative performance improves as the
amount of observed information during a day increases.

The remainder of this chapter is structured as follows. In Section 2.2, I begin with a brief review
of the asset pricing framework, which defines spot volatility. After illustrating the practical use of
such spot volatility curves, I formally define the prediction problem. Motivated by this problem,
I introduce my econometric model and the related prediction scheme in Section 2.3. This is
followed by the presentation of a benchmarking strategy to evaluate the accuracy of the forecasts
in Section 2.4. I proceed with the empirical study in Section 2.5, where I discuss the construction
of spot volatility curves from discrete return data as well as the final prediction results. Section
2.6 concludes.

2.2 Asset Pricing and Spot Volatility

The focus of this work is on the empirical exploration and prediction of the time variation in the
second moment of intraday stock price returns. In order to prepare for an econometric assessment
of this problem, I rely on a theoretical standard asset pricing model, which reviewed in this section.
I consider a stock, which is traded at days indexed t = 1, 2, . . . , where trading at each day takes
place in continuous time, say, w.l.o.g., the unit interval [0, 1]. Its log-price at a day t at some
intraday time u ∈ [0, 1] is denoted Pt(u). Along the lines of Müller et al. (2011) I assume that the
log-price dynamics can be formulated according to the stochastic differential equation

dPt(u) = µt(u)du+ Σt(u)dBt(u), u ∈ [0, 1], (2.1)
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where µt denotes a smooth random drift term and Bt a standard Brownian motion. The object
Σt is the smooth spot volatility, which will be of main interest in this work. More formally Σt is
assumed to be a random variable, taking values in L2([0, 1]), the space of square integrable func-
tions over [0, 1]. In addition to the assumption that Σt is independent ofBs for all s = 1, 2, 3 . . . , I
also require the smoothness assumptions M1-M4 in Müller et al. (2011) for the random variables
Σt and µt to hold.

As a central feature, model (2.1) allows to characterize the conditional distribution of the log-
return Pt(v)− Pt(v −∆) between between times (v −∆) ∈ (0, v) and v ∈ [0, 1], at some day t
(see e.g. Barndorff-Nielsen and Shephard (2002)). It follows from the properties of the standard
Brownian motion in (2.1) that

Pt(v)− Pt(v −∆)|µt,v,∆, IVt,v,∆ ∼ N (µt,v,∆, IVt,v,∆) , (2.2)

where

µt,v,∆ :=

∫ v

v−∆

µt(u)du

and IVt,v,∆ :=

∫ v

v−∆

Σ2
t (u)du.

The distribution stated in (2.2) implies in particular, that once the aggregated effect of the drift
term, µt,v,∆, is removed, the return distribution is exhaustively characterized by the so-called in-
tegrated volatility IVt,v,∆. The latter in turn can be determined from the spot volatility Σt(u),
u ∈ [v −∆, v]. In terms of its use for intraday trading, an accurate approximation of (2.2) is of
fundamental interest e.g. for risk management, order allocation or for the design of exit strategies.
Illustrating the latter example, consider an investor holding a position in the stock of interest at
current time τ ∈ [0, 1]. Suppose this investor wishes to obtain a decision about whether to hold
or to sell his position within the next ∆ units of time. One approach would be to implement an
algorithm liquidating the existing position, if a certain p-quantile of the approximated distribution
of Pt(τ + ∆)−Pt(τ) is below a pre-specified stop-loss threshold. Given the effect of the drift µt
is negligible (which is a priori a reasonable assumption), the required p-quantile can be obtained
from a volatility forecast characterizing the approximate return distribution as in (2.2). This ex-
ample illustrates the use of spot volatility predictions for forecasting the future return distribution
via the integrated volatility. In the above example the time horizon over which a decision has
to be made might well vary over different investor needs such as risk management requirements.
In light of this, a maximum degree of flexibility is achieved having an accurate prediction of the
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whole remaining spot volatility curve Σt(u), u ∈ [τ, 1], at that day available, rather than just some
particular values of the integrated volatility IV .

The above example is just one out of several situations, in which it is desirable to obtain an accurate
prediction of a missing piece of the spot volatility curve. Equivalently to obtaining this prediction
in terms of Σt, I will develop my arguments for its logarithm

σt(u) := log (Σt) (u)

in what follows. Working with log-volatility is common in the literature (see for example Engle
and Sokalska, 2012 and Müller et al., 2011) and particularly appealing in my context, since mul-
tiplicative components in Σt translate into additive components in σt as will be discussed in the
next section.
Given the bijective transformation1 σt of the spot volatility Σt and neglecting the issue of curve
construction from discrete data, the final prediction problem can be formulated as follows. Being
at present time τ ∈ [τmin, 1), 0 < τmin < 1 at day T + 1, suppose that (i) a sample of T past
log-spot volatility curves {σt : 1 ≤ t ≤ T} and (ii) an estimate of the first part σLT+1,τ of the
curve σT+1 on [0, τ ] are available to the researcher. The objective is to predict from this informa-
tion σRT+1,τ , the (logarithmic) spot volatility on the second part of the day, i.e. the curve σT+1 on
[τ, 1]. The fact that present time τ is allowed to proceed through (τmin, 1), turns this situation into
an online prediction problem. The lower bound τmin on τ can be viewed as governing a minimum
amount of information, which is required to be available at day T + 1. In what follows I will
always suppose τ to be in (τmin, 1) without further reference.

Designing a suitable technique in order to approach the above forecasting problem is the central
objective of my work. Such a technique consists of two building blocks. First, the spot volatility
curves need to be recovered from discrete data. Second, the information in these past curves need
to be processed in order to obtain a forecast for σRT+1,τ . While the issue of fitting spot volatility
from discrete data is postponed to Section 2.5, I suggest a model and the corresponding forecasting
scheme in the next section.

1In what follows I will refer to σt simply as the spot volatility for stylistic reasons. I only distinguish logarithmic
spot volatility and spot volatility where both objects appear at the same time.
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2.3 Econometric Modeling

The prediction problem defined in the previous section is known as the curve continuation problem
in the functional data literature. A number of recent papers is concerned with this specific problem
(cf. Goldberg et al., 2014, Kraus, 2015 and Recaredo and José, 2015), while a wider literature
deals with the reconstruction of fragmented or partially observed functional data (cf. Delaigle
and Hall, 2013, Kneip and Liebl, 2017 and Liebl and Rameseder, 2017). Instead of employing
these mostly theoretically oriented procedures, my approach is motivated from the econometric
literature on intraday volatility modeling. As argued in Section 2.1, recent work points at the
potential of identifying a diurnal pattern of intraday volatility as well as systematic deviations
from it. I suggest to explore such contributions to the intraday spot volatility curve, in order to
tackle the above prediction problem. To do so, I will introduce a component model for σt in Part
2.3.1. The model’s implications for σLt,τ and σRt,τ are subsequently employed for the design of a
prediction scheme, which is discussed in Part 2.3.2.
Throughout this section, I assume, that a set of spot volatility curves, σLt,τ , σRt,τ , σt, 1 ≤ t ≤ T as
well as σLT+1,τ is available to the econometrician. For the sample up to day T

σt(u) =

σLt,τ (u) if u ∈ [0, τ ]

σRt,τ (u) if u ∈ [τ, 1]

defines the two sub-trajectories σLt,τ and σRt,τ , 1 ≤ t ≤ T in analogy to day T + 1.

2.3.1 A Component Model for Spot Volatility

In the discrete time context, Engle and Sokalska (2012) and Diao and Tong (2015) both use a
multiplicative component model for the intraday volatility, which leads to an additive component
model for the log-volatility. Their models can easily be transferred to the functional context, which
I consider. More concretely, I postulate the logarithmic spot volatility curve σt at day t to evolve
according to

σt(u) = νt + s(u) + qt(u) + et(u). (2.3)

The first three summands on the right hand side of (2.3) are the model’s systematic components
while et denotes an error term. The role of these four terms can be summarized as follows:

(i) The term νt denotes a random, real-valued daily level component. It induces vertical shifts
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of the spot volatility curve and is assumed to vary across trading days according to an
ARMA(p,q)-process. νt can be understood as the slowly varying component in σt as the
process varies only across but not within trading days.

(ii) The term s(u) ∈ L2([0, 1]) is the model’s global shape component, which determines the
rough form of the curve apart from vertical shifts. It is deterministic and assumed to be
constant across different trading days.

(iii) The third component, qt ∈ L2([0, 1]) is the local shape component. This function-valued
random variable reflects smooth day-specific deviations in the shape of σt from the global
shape component s.2 As with s, qt does not induce vertical shifts to the spot volatility curve,
as made precise below.

(iv) The term et is a smooth random error function with values in L2([0, 1]). I assume this error
to have the following properties:

(A.1) The functions {et : 1 ≤ t ≤ T} are independent across days t and have a zero mean in
the sense that, E[et](u) = 0 and E[det(u)/du] = 0 in the L2-norm for all 1 ≤ t ≤ T .

(A.2) et is independent of νs and qs for any 1 ≤ t, s ≤ T .

(A.3) For any τ ∈ (τmin, 1) there exists a constant ce,τ > 0, such that∫ τ

0

∣∣∣∣det(u)

du
− des(u)

du

]
du ≤ ce,τ almost surely (2.4)

for any 1 ≤ t 6= s ≤ T .

Assumptions A.1 and A.2 are standard assumptions as they appear e.g. in functional re-
gression analysis. Intuitively Assumption A.3 can be thought of as a limitation of the error
contribution to shape differences between different volatility curves.

The interplay of the three systematic components in (2.3) allows for a rich time variation of the
stochastic spot volatility curve. This variation refers to two time scales. While the inter-day
variation of σt is driven by νt, qt and et, the intraday dynamics are determined by s, qt and et.
Apart from the error function et, the local shape component qt is the only component which
varies over both time scales. Such property makes qt a flexible device to catch deviations of the
spot volatility from a global shape.

2Note that the two shape components inherit the smoothness of σt which follows from the assumptions for Σt

indicated in Section 2.2.
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The way I model qt below is inspired by the desire to capture shapes, which are specific to re-
curring environments. These environments are thought of as a convolution of regularly recurring
phenomena such as weekday effects and irregularly recurring generic market situations, for ex-
ample a bullish stock market paired with a bearish market for corporate bonds. In this particular
example investors might have ceteris paribus an incentive to build up new or to strengthen exist-
ing positions in stocks by transferring money from the bond to the stock market. The resulting
increased demand for stocks will most likely impact not only the first but also the second moment
of their prices and in particular their intraday variation. Beyond this simplified example there are
a number of situations, which occur repeatedly also in finite samples, given the considered time
span is sufficiently large. More than that, I assume that there are in general just finitely many
generic situations: Put differently, I assume that all shape-relevant generic situations can be clas-
sified into a finite number of categories.

In order to embed this intuition in model (2.3), I assume qt to be a random variable with a support
consisting of J <∞ distinct elements {Qj : 1 ≤ j ≤ J}, where J is a fixed quantity. Re-framing
this assumption in terms of trading days, I suppose that there are nonempty sets P1, . . . ,PJ ⊂
{1, . . . , T, T + 1}, which collect similar local shape components. In particular I assume the sets
Pj , 1 ≤ j ≤ J , which I simply refer to as environments, to form a partition of the set of trading
days {1, . . . , T, T + 1}. The local shape components differ across these environments and are
constant within the environments3 in the sense that

qt = Qj almost surely, if t ∈ Pj (2.5)

and ∫ 1

0

|Qj(u)−Ql(u)| du > CQ > 0 for j 6= l. (2.6)

The constant CQ is to be understood as a lower bound on the heterogeneity across different en-
vironments. Note that the L1 distance in (2.6) is calculated over the entire intraday trading time
[0, 1]. Beyond this I also suppose differences between the local shape components to satisfy the
following local assumption:

(A.4) Consider any t, s such that t ∈ Pj , s ∈ Pl, 1 ≤ j 6= l ≤ J . Suppose that for any
3Equality in Equation (2.5) is meant in terms of the L2-norm.
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τ ∈ (τmin, 1), there exist constants C1,τ , C2,τ > 0 such that∫ τ

0

∣∣∣∣dqt(u)

du
− dqs(u)

du

]
du > 2ce,τ + C1,τ almost surely (2.7)

and ∫ 1

τ

|qt(u)− qs(u)| du > C2,τ almost surely, (2.8)

where ce,τ is the constant from Assumption A.3.

Intuitively, the two statements in Assumption A.4 guarantee the local shape component to be suf-
ficiently different across environments on both parts of the day. In particular derivatives of qt on
the first half of the day are well distinguishable relative to the error term: The lower bound in
(2.7) can be thought of as a restriction governing the signal-to-noise relation. The larger shape
differences between errors are allowed to be, the more pronounced differences between distinct
local shape components need to be.

Beyond the recurring nature of qt, I alluded to the level-invariance of both, the local and the global
shape components. They are assumed to exclusively affect the shape of σt, but not its level in terms
of vertical shifts. More formally, I suppose that for any 1 ≤ t ≤ T + 1∫ 1

0

s(u)du = 0 and
∫ 1

0

qt(u)du = 0 almost surely. (2.9)

The condition in (2.9) is not very restrictive, as a necessary scaling is implicitly incorporated in
the shift term νt.

The distribution of the curves σt is per se not strictly stationary given the above assumptions. In
particular, the distribution of the local shape component might depend on time due to regularly
recurring phenomena such as seasonal effects and further due to potentially non-stationary effects
of market factors. Also, a time-variant covariance structure of the error et might contribute to
deviations from stationarity. The lack of stationarity might be problematic for conventional es-
timation techniques. However, the model has two implications, which are particularly useful for
prediction but do not rely on time-invariant distributions:

1. The components s and qt are level-invariant in the sense of (2.9). This implies together with

73



the independence of et and νt that

E

[∫ 1

0

σt(u)du

∣∣∣∣ νt] = νt + E

[∫ 1

0

et(u)du

∣∣∣∣ νt] = νt. (2.10)

In light of (2.10), the level component νt can be interpreted as the error-free logarithmic
equivalent to the daily integrated volatility.

2. The component-induced shape of the spot volatility curve can be inferred - up to an error
- from derivatives and thus irrespective of νt. To see this, I note that the derivative curve
corresponding to σt reads as

dσt(u)

du
=

ds(u)

du
+

dqt(u)

du
+

det(u)

du
, u ∈ [0, 1], 1 ≤ t ≤ T

and consequently∣∣∣∣dσt(u)

du
− dσs(u)

du

∣∣∣∣ =

∣∣∣∣dqt(u)

du
− dqs(u)

du
+

des(u)

du
− det(u)

du

∣∣∣∣ , u ∈ [0, 1], 1 ≤ t, s ≤ T.

Hence, Assumptions A.2–A.4 imply that for any τ ∈ (τmin, 1)

∫ τ

0

∣∣∣∣dσt(u)

du
− dσs(u)

du

∣∣∣∣
 ≤ ce,τ if t, s ∈ Pj, 1 ≤ j ≤ J

> ce,τ + C1,τ if t ∈ Pj, s ∈ Pl, 1 ≤ j 6= l ≤ J
(2.11)

almost surely. Both statements in (2.11) follow from the triangle inequality.

The preceding observations can be summarized as follows. First, the modeling of level and shape
effects can be separated by integration and differentiation. Second, differences in derivative curves
are potentially capable to uncover information about the underlying environments. Next, I will
argue that the above two aspects can be used for the ultimate problem of forecasting the curve
σRT+1,τ .

2.3.2 Prediction

The curves σLt,τ and σRt,τ inherit the structure of σt as given in (2.3). Formally a decomposition of
the model’s components into pre-τ and post-τ parts obtains according to

σt(u) =

σLt,τ (u) = νt + sLτ (u) + qLt,τ (u) + eLt,τ (u) if u ∈ [0, τ ]

σRt,τ (u) = νt + sRτ (u) + qRt,τ (u) + eRt,τ (u) if u ∈ [τ, 1],
(2.12)
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where superscripts L andR indicate, in analogy to before, left and right pieces of the correspond-
ing trajectories of s, qt and et when split at τ . Based on these quantities, my strategy to predict
σRT+1,τ from σLT+1,τ as well as curves σt, 1 ≤ t ≤ T , can be structured in two steps. In a first step,
I predict the two shape components, sRτ and in particular qRT+1,τ . In a second step I forecast the
level component νT+1. The two steps are made concrete below.

Predicting the Shape Components
Intuitively the suggested technique can be motivated by an optimal but infeasible procedure. Sup-
pose for a moment that all environments Pj , 1 ≤ j ≤ J were known and that T + 1 ∈ Pj for
some j. Given reasonably accurate level approximations

ν̂t :=

∫ 1

0

σt(u)du, 1 ≤ t ≤ T,

the average of level-adjusted curves

1∣∣P−j ∣∣
∑
t∈P−j

(
σRt,τ (u)− ν̂t

)
=

sRτ (u) +
1∣∣P−j ∣∣

∑
t∈P−j

qRt,τ (u)

+
1∣∣P−j ∣∣

∑
t∈P−j

(
(νt − ν̂t) + eRt,τ (u)

)
(2.13)

= sRτ (u) +QR
j,τ (u) +

1∣∣P−j ∣∣
∑
t∈P−j

(
(νt − ν̂t) + eRt,τ (u)

)
(2.14)

with P−j := Pj \ {T + 1} and QR
j,τ (u) = Qj(u), u ∈ [τ, 1], ideally resembles σRT+1,τ − νT+1.

The average on the right hand side of (2.14) constitutes the prediction error, which is thought of
as being small given a sufficiently large number of summands |P−j |.

The ideal prediction in (2.13) however, is infeasible as the environmentsP1, . . . ,PJ are unknown.
Nevertheless, information about the environment trading day T+1 belongs to can be inferred from
shapes of volatility curves on [0, τ ], which is motivated by my observation in Equation (2.11).
Thus, the key to approximating the average in (2.13) is to identify for which curves {σLt,τ : 1 ≤
t ≤ T} shapes are close to the one of σLT+1,τ . Intuitively I approach this problem by quantifying
a metric from the sample up to day T , which distinguishes different shapes in an optimal way,
whereas optimality refers to the underlying prediction problem. Then, at day T + 1, σLT+1,τ is
compared in this optimal metric to the curves {σLt,τ : 1 ≤ t ≤ T}. The resulting distances are
subsequently employed to form a weighted average resembling the ideal one in (2.13).
More precisely, I suggest a functional distance metric learning procedure in the spirit of recent
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developments in the machine learning literature. There, the quantification of an optimal distance
between (vector-valued) data points is for example popularly applied for image recognition such as
face classification (see, for example, Guillaumin et al., 2009). Two recent surveys on multivariate
distance metric learning are offered by Kulis (2013) and Bellet et al. (2013). While the majority
of works are concerned with (binary) classification problems, Weinberger and Tesauro (2007) and
Xiao et al. (2009) consider distance metric learning for regression. I use their technique rather
than the classification procedures as a starting point, since in small or medium-sized samples the
number J of patterns might be relatively large compared to T . From a pragmatic viewpoint one
can also argue that the finite support of qt is a potentially rough approximation for buckets of
similar curves: from this less restrictive perspective the underlying situation does not define a
classification problem.
Motivated by these observations and the framework in Weinberger and Tesauro (2007), I define
for each τ a semi-metric dα between two volatility curves σLt,τ , σLs,τ on [0, τ ] according to

dα(σLt,τ , σ
L
s,τ ) :=

∫ τ

0

α(u)

∣∣∣∣∣dσLt,τ (u)

du
−

dσLs,τ (u)

du

∣∣∣∣∣ du. (2.15)

Here, α is a smooth functional weighting parameter, which is restricted to be weakly positive on
[0, τ ], i.e. α(u) ≥ 0 for any u ∈ [0, τ ].4 In theory this parameter can be constant over the whole
interval, as differences between local shape components are sufficiently pronounced compared to
the error term as guaranteed by Assumption A.4. For finite samples, however, the introduction of
a non-constant weighting potentially improves the distinction between different shapes. Given a
fixed α, of which the choice is discussed in a moment, the average in (2.13) can be approximated
by

T∑
t=1

ωT+1,t

(
σRt,τ (u)− ν̂t

)
, (2.16)

where

ωT+1,t :=
kT+1,t∑T
s=1 kT+1,s

(2.17)

and kT+1,t := κ
(
dα(σLt,τ , σ

L
T+1,τ )

)
. (2.18)

Here κ denotes a univariate second order kernel function. In the definition of the weights in
(2.18) I follow Weinberger and Tesauro (2007) and do not incorporate a bandwidth parameter, as

4For simplicity of notation, I drop the dependence of α on τ .
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the distance function dα implicitly defines an appropriate scaling when the norm of α is allowed
to vary.
The average in (2.16) is my ultimate prediction for the shape components of σRT+1,τ . If α guaran-
tees for any t, the distance dα(σLt,τ , σ

L
T+1,τ ) to be sufficiently large, if t and T + 1 are in different

environments, and close to zero if these days are in the same environment, the shape forecast in
(2.16) is close to its ideal oracle counterpart in (2.13). The introduction of a non-constant weight
α should hence more sharply distinguish different environments from information on [0, τ ]. I sug-
gest to choose α in a data-driven way, such that this desire is well reflected in the sample up to
day T . For this purpose I select α as the minimizer of the loss function

LT (α) :=
T∑
t=1

∫
[τ,1]

∣∣∣∣∣dσRt,τ (u)

du
−

T∑
s=1,s 6=t

ω̃t,s
dσRs,τ (u)

du

∣∣∣∣∣ du, (2.19)

which depends on the parameter of interest through the weights ω̃t,s. The latter are in analogy to
(2.17) defined as

ω̃t,s :=

kt,s/
∑T

r=1,r 6=t kt,r if t 6= s

0 if t = s.
(2.20)

and kt,s := κ
(
dα(σLs,τ , σ

L
t,τ )
)

(2.21)

similar to a cross validation procedure. Intuitively, the loss functionLT (α) measures the accuracy
with which the local shape component of a curve σRt,τ can be predicted from the remaining curves.
I use derivative functions rather than the original curves as this allows to abstract from the level
component, which needed to be estimated and thus introduced an additional error.
The weighted average

∑T
s=1,s 6=t ω̃t,s

dσRs,τ (u)

du
in (2.19) resembles the prediction from a functional

kernel regression (see e.g. Section 5.4 in Ferraty and Vieu, 2006) for pairs of derivative curves(
dσLt,τ (u)

du
,
dσRt,τ (u)

du

)
, 1 ≤ t ≤ T

using kernel κ, semi-metric dα and a bandwidth equal to 1. There are two key differences of my
approach to a conventional functional kernel regression. First, the support of qt contains only
J < ∞ elements, which reduces the burden from a curse of dimensionality, which is extreme in
the case of (infinite) dimensional functional data. Second the distance notion in a functional kernel
regression is typically chosen a priori, while it is selected in a data-driven way in my approach.5

5See also Section 13.6 in Ferraty and Vieu (2006) for a discussion of the role of the distance metric in the context
of functional kernel regressions.
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Turning to the implementation, note that minimizingLT (α) is in principle an infinite dimensional
optimization problem. In order to translate such optimization into a feasible problem, I restrict
the search for an optimal α, which I required to be smooth, to a finite dimensional space. A par-
ticularly parsimonious though quite flexible specification within the class of smooth, continuous
and positive functions is the density of the beta distribution. Inspired by this, I suggest to search
for an optimal parameter α through the set of functions

A :=
{
α ∈ L2([0, τ ]) : ∃a1, a2 > 0 : α(u) = u(a1−1)(1− u)(a2−1) ∀u ∈ [0, τ ]

}
.

Functions in A do not integrate to unity, because there is no scaling constant as in the case of
the density of a beta distribution.6 The choice of α thus comes along with an implicit band-
width choice for computing the weights in (2.17) and (2.18). Weighting functions in A are com-
pletely characterized by the two parameters a1 and a2, and so one may denote α(u) = αa1,a2(u).
The optimization of the loss function in (2.19) consequently translates into a bivariate minimiza-
tion problem. More specifically, I define the optimal weighting scheme as α∗ = αa∗1,a∗2 , where
(a∗1, a

∗
2) := arg mina1,a2>0 LT (αa1,a2), or equivalently

α∗ := arg min
α∈A
LT (α). (2.22)

From this optimal α, the final shape prediction obtains as in (2.16), whereas the weights are deter-
mined from (2.17) and (2.18), using dα∗ as the underlying distance function. Denote the resulting
optimal weights ω∗T+1,t, 1 ≤ t ≤ T . In order to obtain a forecast of σRT+1,τ , this shape prediction
is supplemented with a level prediction, which is discussed next.

Predicting the Level Component
Adding to the above prediction of the shape of σRT+1,τ , my strategy to predict the level effect νT+1

relies on two sources of information. The first one is the level of the available sub-trajectory
σLT+1,τ . The second source of information is given by the time series variation of ν̂t over trading
days t = 1, . . . , T . I combine these two sources of information in a parametric time series model.
As the true, unobserved level component νt was postulated to follow an ARMA(p,q)-process, I
start from an ARMA(1,1) model for ν̂t. As indicated above, I enrich such model by incorporating
the vertical position of σLT+1,τ as an additional covariate. The resulting ARMAX regression reads
as

ν̂t = β0 + β1ν̂t−1 + β2(ν̂Lt,τ − ν̂Lt−1,τ ) + β3εt−1 + εt, (2.23)

6Also functions in A differ from the beta density as they are defined on [0, τ ], rather than the unit interval.
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where εt is an iid error term and ν̂Lt,τ := τ−1
∫ τ

0
σLt,τ (u)du the approximated level of σLt,τ .7 Apart

from the updating, which is specific to the online prediction problem at hand, the use of ARMA-
models is embedded in the tradition of forecasting realized volatility by time series models (cf.
Andersen et al., 2006). The additional covariate (ν̂Lt,τ − ν̂Lt−1,τ ) in (2.23) can be thought of as
enriching the information from the last trading day t− 1 in the autoregressive term by the partial
information observed at day t. Such partial information at day t, i.e. the estimated level ν̂Lt,τ ,
carries substantial information about ν̂t, as can be seen from

ν̂t ≈ ν̂Lt,τ · τ +

∫ 1

τ

σRt,τ (u)du. (2.24)

The relation in (2.24) is only approximate due to the construction of the curves σLt,τ ,σRt,τ and σt
from discrete price data, as will be discussed in Section 2.5. For the same reason, as well as the
presence of an error function et in my component model, the estimated levels of σLt,τ and σRt,τ most
likely differ in contrast to the true latent level in (2.12).
Assuming the disturbances in (2.23) additionally to be Gaussian, the parameter estimates β̂0, β̂1, β̂2

and β̂3 can be obtained using a standard likelihood based estimation procedure (cf. Durbin and
Koopman, 2001). Based on these estimates model (2.23) allows to predict νT+1 (ν̂T+1) from all
available information up to time τ at day T + 1 according to

ν̆T+1 = β̂0 + β̂1ν̂T + β̂2(ν̂LT+1,τ − ν̂LT,τ ) + β̂3ε̂T , (2.25)

where ε̂T denotes the residual of period T . The forecast in (2.25) can be expected to be more ac-
curate for larger values of τ . Intuitively, this is because the information contained in the updating
term (ν̂LT+1,τ − ν̂LT,τ ) increases in τ , which is also likely to be reflected in the magnitude of β̂2

relative to β̂1.

Combining Shape and Level Predictions
The combination of the preceding shape and level predictions is straightforward. The final pre-
diction of σRT+1,τ obtains as

σ̂RT+1,τ := ν̆T+1 +
T∑
t=1

ω∗T+1,t

(
σRt,τ (u)− ν̂t

)
. (2.26)

The prediction mechanism from above certainly depends on the point in time τ , until which there
is data available. In practice the parameters α and βj , j = 0, 1, 2, 3 should thus be quantified for

7For simplicity of notation I suppress the dependence of βj , j = 0, 1, 2, 3 as well as εt on τ , which indeed might
differ across different values of τ .
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all desired prediction horizons in advance. Due to the parsimonious parameterization, however,
the computational burden related to this is low.
The forecast in (2.26) does not explicitly match the levels nor the derivatives of σLT+1,τ and σ̂RT+1,τ

at τ . I do not incorporate such matching, because of the construction of σLT+1,τ , which can only be
recovered from prices observed until time τ . Hence the point σLT+1,τ (τ) is likely to be estimated
with low accuracy, which is obviously problematic for its use in the prediction scheme. The un-
derlying phenomenon is illustrated in the empirical work in Section 2.5.

For a fixed τ , the prediction σ̂RT+1,τ can retrospectively be compared to σRT+1,τ in order to assess
the predictive accuracy. I discuss my strategy to evaluate this accuracy in the next section.

2.4 Forecast Evaluation

Evaluating the accuracy of conventional volatility forecasts is typically difficult as the underlying
object of interest is latent. As in the case of realized volatility however, an ex post estimate of the
intraday volatility curve can be computed once all information at day T + 1 has been observed.
This allows to use a retrospective comparison of the prediction and the ex post estimate as a
performance measure. Hence, I compute the deviation of my forecast σ̂RT+1,τ in (2.26) from the
ex post estimate σRT+1,τ according to

∫ 1

τ

(
σ̂RT+1,τ (u)− σRT+1,τ (u)

)2
du, (2.27)

which serves as a prediction error. Studying absolute forecast errors, however, is typically lim-
ited to the search for patterns and the examination of error dynamics over time. Relative errors,
i.e. absolute errors compared to errors from other prediction mechanisms, allow in addition to
interpret magnitudes. Hence I assess the performance of predictions generated by the component
model by benchmarking. More specifically, I compare the error in (2.27) to the forecast errors of
three different competitors. In detail these benchmarks obtain as follows.

1. The first competitor is an adaption of the updated RiskMetrics (RM) volatility prediction
technique as outlined in Zumbach (2007). While it was initially designed for scalar or
multivariate measures, such as realized (co-) volatility, its adaption to the context of spot
volatility curves is straightforward. Formally, the prediction for σRT+1,τ obtains as

σ̂R,RMT+1,τ (u) =
K∑
k=1

gkσ̃
R,k
T+1,τ (u), (2.28)
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where the functions σ̃R,kT+1,τ are predictions from a number of K different exponentially
weighted moving averages (EWMA’s) from past available curves σRT−j,τ , j = 0, 1, . . . ,M .
These averages enter the final prediction σ̂R,RMT+1,τ with different weights, denoted gk. The
latter are, in analogy to Proietti (2014), computed for k = 1, . . . , K according to

gk = log(γ0/γk)

[
K∑
l=1

log(γ0/γl)

]−1

with γk = γ1ρ
k−1, 2 ≤ k ≤ K, γ0 = 1560, γ1 = 4 and ρ = 21/2.

The single EWMA’s σ̃R,kT+1,τ constituting (2.28) differ in the parameter governing the decay
of the weights associated with past volatility curves. More concrete the k-th EWMA is
defined according to

σ̃R,kT+1,τ (u) =
M∑
j=0

(1− λk)j∑M
l=0(1− λk)l

σRT−j,τ (u)

where λk = 1− exp{−γ−1
k }.

Thanks to this simple form of the individual EWMA’s, the final prediction σ̂R,RMT+1,τ can be
re-stated as a weighted average of the curves σRT,τ , . . . , σRT−M,τ .8 In terms of my component
model, the accuracy of σ̂R,RMT+1,τ will depend on how well the dynamics of the level and local
shape components can be approximated by this simple autoregressive structure.

2. As the second competitor I use a variant of the component model in Section 2.3. It relies
on two simplifying assumptions, which are (i) variation in the spot volatility is dominantly
due to a level-effect and (ii) dynamics of the level follow a random walk (RW). Given these
two assumptions a simple predictor for σRT+1,τ can be computed according to

σ̂R,RWT+1,τ = ν̂T + T−1

T∑
t=1

(
σRt,τ (u)− ν̂t

)
. (2.29)

The average in (2.29) distinguishes in particular from my forecast in (2.26) as it does not
incorporate any information from day T + 1.

3. A last predictor addresses another case of the model in (2.3). Perceiving that variation in the
spot volatility across trading days is exclusively due to the error term et, a suitable forecast

8Cf. Proietti (2014).
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of σRT+1,τ obtained as

σ̂R,Mean
T+1,τ = T−1

T∑
t=1

σRt,τ (u). (2.30)

The prediction in (2.30) is simply the mean function of available spot volatility curves eval-
uated on [τ, 1]. Clearly, it does not incorporate any of the dynamic or local features of the
original component model.

In summary, the three competitors can be interpreted as addressing three particular cases of the
model. The first competitor illuminates the case in which the level and the local shape component
evolve according to a simple autoregressive structure over trading days. The second and third
benchmarks postulate reduced dynamics of the level and the shape components.
Regarding the choice of the above competitors, I rely on practically motivated approaches rather
than functional data models such as Müller et al. (2011) or Kraus (2015). The three benchmarks
can readily be applied to the curves, which are constructed for the use in my prediction framework
from Section 2.3. In particular they do not require any other estimation or data processing steps
as would be the case with functional principal components for example.

From the competing forecasts in (2.28), (2.29) and (2.30) I finally calculate relative errors accord-
ing to

E
(j)
T+1,τ :=

∫ 1

τ

(
σ̂RT+1,τ (u)− σRT+1,τ (u)

)2
du∫ 1

τ

(
σ̂R,jT+1,τ (u)− σRT+1,τ (u)

)2

du
, j ∈ {RM,RW,Mean}. (2.31)

The errorsE(j)
T+1,τ indicate a superior performance of the estimation approach from Section 2.5.3,

whenever they take values smaller than one. Beyond E(j)
T+1,τ , the difference 1 − E

(j)
T+1,τ can be

interpreted as relative accuracy gain of my forecast compared to benchmark j. Based on these
relative errors (accuracy gains) I will interpret my results in the empirical study, which is dis-
cussed next.

2.5 Stock Volatility in the German DAX 30

In the following empirical study I confront my component model with data from the German stock
market. For this purpose I begin with a brief description of the data. In a next step I discuss an
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approach to construct curves σt, σRt and σLt from the intraday price data. The curves computed
that way are subsequently used to examine the predictive accuracy of the procedure suggested in
Section 2.3.2. I test my method separately for 29 stocks, rather than just for a single one, in order
to avoid spurious findings. For each single stock, I also illustrate how predictions change when
current time τ proceeds.

2.5.1 Data

The data I employ are intraday stock prices for 29 constituents of the German DAX 30 index.9

The sample covers 140 trading days between 03−06−2016 and 16−12−2016 as well as another
59 days between 08− 09− 2017 and 01− 12− 2017. Data for the first part of the sample, which
is used as a training sample, were gathered from Bloomberg, while data for the second part, the
test sample, were extracted from Thomson Reuters Eikon.10 For every stock and every trading
day I obtain high and low prices over 1 minute-intervals for every minute between 09:00 a.m. and
05:30 p.m. I re-scale time to the unit interval [0, 1] complying with the preceding sections. In
what follows I denote the standardized time stamp of the j-th minute lj ∈ [0, 1]. The first minute
is labeled l1 = 0 and the last minute at a trading day is labeled ln = 1, with n = 8.5 · 60 = 510.
For each 1-minute interval I proceed with the average between highest and lowest price, say Pt,j
for the j-th minute at trading day t. As I operate the same way for all stocks, I leave out indexes
labeling the single assets.

2.5.2 Recovering Spot Volatility Curves

From the discrete price data I obtain spot volatility curves separately for each stock at each trad-
ing day. The component model I introduced is, without further restrictions, not compatible with
principal-components-based methods due to the lack of stationarity. Hence, I proceed in a differ-
ent, more practically oriented vein, which can be structured into three steps. In a first step I calcu-
late log-returns and remove a potential trend. In a second step the log-transformation suggested
in Müller et al. (2011) is applied to the squared detrended returns. The resulting transformed
data can be interpreted as noisy discrete points on the logarithmic spot volatility curve. In a third
step I fit a standard nonparametric regression curve through these points, which yields my final
construction of the (log-) spot volatility curve.
Formally this three step procedure, of which the first two steps mainly follow Müller et al. (2011),
obtains as follows. Given prices, Pt,1, . . . , Pt,n at day t, the corresponding (scaled) log-returns are

9Due to missing data in the training sample, I exclude the Deutsche Börse Stock.
10I would like to thank the Institute for Financial Economics and Stastics at the University of Bonn as well as the

ZEF/ZEI in Bonn for allowing me to access the data.
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denoted rt,j := n1/2(log(Pt,j)− log(Pt,j−1)). In order to remove the effect of a potential drift term
as in (2.1), I compute a Nadaraya-Watson smoother with GCV-optimal bandwidth and Gaussian
kernel through the points {(lj, rt,j), j = 2, 3, . . . , n}. Denoting the resulting fit at design points
lj as µ̂t(lj), I proceed with calculating de-trended returns r′t,j := rt,j − µ̂t(lj). The latter are
subsequently transformed according to

Vt,j := log
(
(r′t,j)

2
)

+ 1.27,

which can be interpreted as noisy values of the logarithmic spot volatility curve at points lj . For the
last step, I use once more a Nadaraya-Watson regression with Gaussian kernel, this time through
the points {(lj, Vt,j), j = 2, 3, . . . , n} to obtain a smooth regression curve. Again, for bandwidth
selection I rely on Generalized Cross Validation. The resulting curve is, by slight abuse of nota-
tion, denoted σt.11

From the constructed curves σt, I sample the sub-trajectories σRt,τ (u) by simply evaluating σt on
[τ, 1]. Regarding the left, i.e. the initial part σLt,τ (u), of the spot volatility curve, note that σt, is
smoothed using a symmetric kernel. Thus, values of the fitted curve σt(u), with u ≤ τ close to
τ include information from returns sampled after τ , i.e. returns indexed by lj > τ . This however
does not reflect the situation in T + 1, where τ labels current time. Although information after
τ is certainly available for past curves, I mimic the construction mechanism on [0, τ ] at a day
T + 1 also for curves in the training sample. In this spirit, I apply the above three step procedure
again, this time to price data {Pt,j : 0 ≤ lj ≤ τ}, to obtain the curves σLt,τ . Due to the separate
construction of σLt,τ and σRt,τ , the points σLt,τ (τ) and σRt,τ (τ) not necessarily coincide, as I alluded
to in Part 2.3.2. In the first place, this reflects the difference between latent population curves and
their empirical counterparts, which are estimated from discrete price data. I illustrate the behavior
of σLt,τ and σRt,τ close to τ as well as ten exemplary volatility curves σt in Figure 2.1.
I test the accuracy of the predictions from my component model for different levels of τ . More
concrete, I consider values of τ in the set {0.4, 0.5, 0.6, 0.7}. Thus, the curves σLt,τ are fitted for
each τ separately, while the corresponding right-hand-side parts σRt,τ can simply be obtained by
sampling for each τ from the complete trajectory σt. Next I employ the curves σLt,τ and σRt,τ in the
prediction context outlined in the preceding sections.

11In order to improve the readability, I do not distinguish explicitly between the true, latent curves and the curves
constructed from discrete data.
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Figure 2.1: Exemplary Volatility Curves. Left Panel: constructed logarithmic spot volatility
curves σLt,τ , σRt,τ and σt for the Adidas Stock at 2016 − 06 − 03. Right Panel: ten exemplary
logarithmic spot volatility curves for the Adidas stock between 2016−06−03 and 2016−06−16.

2.5.3 Prediction

As indicated, I split the available data in a training and a test sample. The former collects the first
available T = 140 trading days in the set Tr := {1, . . . , T}. The latter collects the last 59 trading
days in the set Te := {T + 1, . . . , T + 59}. The training sample is used for two purposes. First
I obtain for every considered level of τ the functional weight α∗ and estimates β̂0, β̂1, β̂2, β̂3 from
the curves in Tr as described in Section 2.3. Second, I use these curves to calculate the shape
prediction in (2.26). For quantifying the functional weighting parameter and also for the final
shape prediction, I choose a Gaussian kernel for κ in (2.18) and (2.21). Given the information
from the training sample, I use my technique described in Section 2.3 to obtain forecasts for the
curves in the test sample Te. One-step-ahead level predictions are obtained iteratively through
Te, while the ARMAX parameters are not re-estimated. Also, I do not predict the first curve in
the test sample because of the temporal gap between Tr and Te.

I generate one-step-ahead predictions from the three competitors introduced in Section 2.4 in the
following configuration. For the RiskMetrics-type prediction, I set the number of EWMA’s
equal to K = 5 and the window length to M = 9. In order to guarantee a fair comparison, I

85



calculate relative errors only for days T + 10, . . . , T + 59 in Te. The EWMA-based forecasts
thus rely exclusively on data from the test sample. Predictions σR,RWT+h,τ from the random walk
benchmark are calculated for h = 2, 3, . . . , 59. I iteratively update the level forecast and also the
function valued term in (2.29) according to

σ̂R,RWT+h,τ = ν̂T+h−1 + (T + h− 1)−1

T+h−1∑
t=1

(
σRt,τ (u)− ν̂t

)
, for h = 2, . . . , 59. (2.32)

In analogy to this, I also update the third competitor, i.e. the mean function, when proceeding in
the test sample. Such updating operates according to

σ̂R,Mean
T+h,τ = (T + h− 1)−1

T+h−1∑
t=1

σRt,τ (u), for h = 2, . . . , 59. (2.33)

Turning to the results, I will focus on medians of relative errors E(j)
T+h,τ as the key performance

indicator. In the first place I consider median relative errors on the stock level. For a compari-
son across different values of τ , I further consider medians of the pooled errors, where pooling
proceeds over time and assets. I consider medians rather than means due to their robustness with
respect to outliers, which are likely to occur asymmetrically as relative errors are bounded below
by 0. My strategy to deal with different values of current time τ , is to begin the discussion with
a reference case in which τ = 0.5. Subsequently I examine changes in the results when τ takes
values in {0.4, 0.6, 0.7}.

For the case τ = 0.5 Figure 2.2 displays the key-results. Detailed stock-level findings are provided
in Tables 2.B.4-2.B.6 in the appendix of this chapter.
The median relative errors visualized in Figure 2.2 document the success of my novel predic-
tion technique. The most serious competitor is, as expected, the combination of exponentially
weighted moving averages as in the RiskMetrics framework. Nevertheless this competitor is
outperformed in median by up to 31% (BASF) which is, in the context of predicting stock volatil-
ity, a substantial amount. My predictions beat the EWMA-based competitor for 24 out of the 29

stocks. For 9 stocks the relative accuracy gain is greater than 10%, for 16 greater than 5%. The
worst performance is delivered for the ProSiebenSat.1 Media and the Beiersdorf stocks (for both
the median relative error is about 1.09). The average of median relative errors however is at 90%

and thus well below one.
The solid performance of the predictions from my component model is even more visible for the
random walk competitor. The relative accuracy gain ranges up to 56% in median (BASF), while for
only 4 out of 29 stocks the performance is slightly worse [median errors: 1.01 (DTE), 1.02 (HEN),
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Figure 2.2: Median Relative Performances for τ = 0.5. Figure shows median relative errors
for different competitors. The x-axis in the barplots is constituted by the different assets (see Table
2.A.1 in the appendix). Blue indicates bars below 1, red bars are above 1. The violin plots in the
bottom-right panel depict the distribution of the medians in the barplots over assets. Numbers
below the violins are means of medians.

1.03 (LIN) and 1.04 (PSM)]. Averaged over the 29 stocks, the median relative error amounts to
approximately 86%, or, equivalently, a performance gain of about 14%. This is 4 percentage points
better than the corresponding number for the EWMA-based competitor. Compared to the latter,
relative errors are, overall, also slightly less dispersed (see Table 2.1).
My forecasting technique most clearly outperforms the mean, which is the simplest competitor.
For all but the ProSiebenSat.1 Media stock, predictions from my model are, in median, better.
Median relative errors are for 6 stocks even below 50% and for 18 stocks below 70%. The best
performance amounts to a median relative error of 31% for the Allianz stock, while the average
of median relative errors is at 66%. Overall, my novel procedure thus appears to be substantially
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Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max

τ = 0.4
RM 0.06 0.47 0.67 0.93 1.28 1.70 0.60 10.54
RW 0.14 0.50 0.67 0.89 1.11 1.44 0.44 5.23
Mean 0.06 0.30 0.47 0.69 0.99 1.36 0.52 7.42

τ = 0.5
RM 0.07 0.44 0.65 0.91 1.25 1.74 0.60 11.02
RW 0.07 0.43 0.61 0.86 1.10 1.49 0.48 6.46
Mean 0.05 0.27 0.44 0.67 1.00 1.43 0.56 6.75

τ = 0.6
RM 0.07 0.40 0.62 0.89 1.25 1.78 0.63 9.46
RW 0.08 0.36 0.53 0.82 1.12 1.71 0.59 9.30
Mean 0.05 0.25 0.39 0.64 1.03 1.60 0.64 8.28

τ = 0.7
RM 0.05 0.33 0.57 0.85 1.27 1.85 0.71 16.28
RW 0.06 0.25 0.44 0.76 1.26 2.08 0.82 14.16
Mean 0.04 0.19 0.33 0.62 1.13 1.98 0.79 10.94

Table 2.1: Summary of Pooled Relative Performances. Table summarizes the distribution of
pooled relative errors for different competitors. IQR refers to the interquartile range. Pooling
proceeds over stocks and periods in the test sample.

more accurate than the mean for the considered prediction problem.

Turning to the relative performance for values of τ in {0.4, 0.6, 0.7}, I present the major results
in Table 2.1 and Figure 2.3. In order to get a more tractable error measure I pool, for a given τ ,
relative errors for each competitor over trading days and assets. I also provide stock level results
in analogy to the case of τ = 0.5 in the appendix (see Tables 2.B.1-2.B.3, Tables 2.B.7-2.B.12
and Figures 2.B.1-2.B.3).
Overall the impression from the reference case τ = 0.5 qualitatively transfers to the remaining
cases. For all considered values of τ my predictions clearly outperform all competitors. In analogy
to the above discussion, the RiskMetrics-type competitor is for all values of τ the most serious
one. Relative accuracy gains are a bit higher for the random walk competitor and striking for the
mean.
Interestingly, the relative performance of my predictions improves as τ increases. This holds true
across all competitors. When comparing the cases τ = 0.4 and τ = 0.7 for example, the medians
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Figure 2.3: Pooled Relative Performances across different τ ’s. Figure reports the distributions
of pooled relative errors for different competitors. The first three panels show standard kernel
density estimates of the corresponding empirical distributions.

of pooled relative errors drop between 7 percentage points for the mean and 13 percentage points
for the random walk competitor. This phenomenon appears to be monotonic in τ . At the same
time however, interquartile ranges of the relative errors tend to increase, also monotonically in τ .
The error distributions in Figure 2.3 offer a detailed view on the effect of increasing the value of
τ . Supporting the above finding, probability mass shift towards zero as τ increases. This goes
along with decreasing medians, but also with increasing probability mass in the right tail of the
distributions.
These findings are also reflected in the number of assets for which a competitor is (in median)
outperformed. As documented in Table 2.2 the number of successful cases grows in almost all
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configurations as τ becomes larger.

τ RiskMetrics Random Walk Mean
0.4 23 26 28
0.5 24 25 28
0.6 25 27 29
0.7 27 29 29

Table 2.2: Successful Cases. Table reports for each τ and each competitor the number of stocks,
for which the median relative error was below 1.

The documented phenomenon of increasing performance of my technique for larger values of τ
matches the intuition: in contrast to the competitors, the prediction in (2.26) takes the increasing
information content in σLT+1,τ explicitly into account. For increasing τ the importance of this
information obviously increases, relative to the information from previous curves.

2.6 Conclusion

In this Chapter I considered the problem of predicting the smooth daily spot volatility curve of
intraday stock price returns from partially observed information. For this purpose I introduced a
novel component model. The model attributes the evolution of spot volatility over trading days
to two systematic effects: a level effect and a shape effect. I model the former as a scalar level
component which evolves according to a parametric time series process across trading days. I
composed the shape effect by a global and a local shape component. The local shape component
models random dynamic deviations from the deterministic curve-valued global shape component.
Together they drive the form of the spot volatility curve beyond its vertical position. As a major
novelty in this work, the local shape component was a recurring phenomenon, meaning that devi-
ations of the spot volatility shape from its global shape component repeatedly occur over trading
days.
I used the implications of my component model to design a two-step prediction mechanism to
tackle the forecasting problem. This mechanism relies on separate level and shape predictions.
The former was generated by an ARMA-model, which I enriched by an updating term. Such
term incorporated already observed information at the day of interest. I constructed the shape
prediction from a weighted average of past level-adjusted curves. The weights in this average were
determined by a novel distance metric learning procedure. The resulting semi-metric between
sub-trajectories of spot volatility curves allowed to identify similar local shape components across
curves.
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In an empirical study I tested the performance of this mechanism for 29 stocks in the German
DAX 30 index. The results indicated a decent accuracy of the predictions, when benchmarked
against three competitors. All of these were outperformed for the vast majority of stocks, for all
considered amounts of partially observed information. I found that the relative performance of
my predictions increased with the amount of available information at the day of interest: the more
returns had been observed already during the day, the more accurate my predictions became rel-
ative to the competing approaches.

The current work points at a number of issues left for future research. In particular the exploration
of theoretical properties of the introduced distance metric learning technique is an important topic.
In this context I also consider an extension of this work to a panel data framework to be potentially
beneficial. From an empirical viewpoint, the inclusion of additional explanatory variables appears
to be particularly promising: it is likely that other variables such as the trading volume or liquidity
measures carry predictive content for the continuation of the spot volatility curve.
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Appendix

2.A Company Shortcuts

i Shortcut Full Name
1 ADS Adidas
2 ALV Allianz
3 BAS BASF
4 BAY Bayer
5 BEI Beiersdorf
6 BMW BMW
7 CBK Commerzbank
8 CON Continental
9 DAI Daimler
10 DBK Deutsche Bank
11 DPW Deutsche Post
12 DTE Deutsche Telekom
13 EOA E.ON
14 FME Fresenius Medical Care
15 FRE Fresenius
16 HEI HeidelbergCement
17 HEN Henkel
18 IFX Infineon Technologies
19 LHA Deutsche Lufthansa
20 LIN Linde
21 MRK Merck
22 MUV MunichRe
23 PSM ProSiebenSat.1 Media
24 RWE RWE
25 SAP SAP
26 SIE Siemens
27 TKA ThyssenKrupp
28 VNA Vonovia
29 VOW Volkswagen

Table 2.A.1: Company Shortcuts.
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2.B Stock Level Results

Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.28 0.52 0.63 0.87 1.15 1.66 0.52 8.37
ALV 0.16 0.37 0.69 0.93 1.17 1.54 0.48 3.20
BAS 0.25 0.42 0.52 0.74 1.06 1.39 0.54 10.54
BAY 0.43 0.59 0.70 0.97 1.30 1.53 0.60 2.03
BEI 0.30 0.57 0.79 1.16 1.60 2.01 0.80 4.46
BMW 0.21 0.40 0.64 0.99 1.36 1.67 0.72 5.13
CBK 0.39 0.65 0.79 1.01 1.32 1.78 0.53 3.69
CON 0.29 0.40 0.68 0.95 1.27 1.51 0.60 3.03
DAI 0.11 0.47 0.62 0.85 1.41 1.95 0.79 4.74
DBK 0.19 0.44 0.68 0.95 1.32 1.69 0.63 4.19
DPW 0.33 0.56 0.64 0.90 1.42 2.08 0.78 4.05
DTE 0.14 0.49 0.63 0.91 1.20 1.57 0.57 2.92
EOA 0.13 0.48 0.63 0.88 1.27 1.73 0.64 2.37
FME 0.15 0.49 0.69 0.88 1.26 1.75 0.58 3.00
FRE 0.32 0.54 0.69 1.00 1.46 1.69 0.77 4.71
HEI 0.21 0.55 0.67 0.90 1.14 1.50 0.47 2.65
HEN 0.39 0.75 0.92 1.02 1.19 1.29 0.26 2.01
IFX 0.12 0.43 0.58 0.90 1.39 1.84 0.81 2.51
LHA 0.24 0.57 0.71 1.06 1.41 2.29 0.70 3.01
LIN 0.33 0.55 0.68 0.94 1.09 1.39 0.41 2.56
MRK 0.23 0.47 0.70 0.92 1.12 1.45 0.42 2.55
MUV 0.11 0.44 0.71 0.87 1.29 1.54 0.58 1.83
PSM 0.25 0.48 0.76 1.12 1.45 1.86 0.70 4.62
RWE 0.06 0.30 0.61 1.02 1.41 1.76 0.80 3.74
SAP 0.28 0.42 0.65 0.85 1.20 1.49 0.55 3.83
SIE 0.21 0.56 0.78 0.96 1.22 1.69 0.44 2.34
TKA 0.13 0.44 0.70 0.93 1.22 1.46 0.52 2.75
VNA 0.41 0.59 0.74 0.99 1.19 1.50 0.45 3.22
VOW 0.21 0.40 0.59 0.89 1.20 2.02 0.61 3.03

Table 2.B.1: L2-Errors Relative to Adapted RiskMetrics Competitor for τ = 0.4. Table
reports minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error
relative to the error L2 prediction error from the RiskMetrics-type competitor as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.33 0.57 0.71 0.86 1.14 1.42 0.42 4.01
ALV 0.32 0.40 0.46 0.67 0.96 1.39 0.51 5.23
BAS 0.17 0.38 0.49 0.73 0.96 1.23 0.47 1.89
BAY 0.39 0.70 0.78 0.97 1.07 1.42 0.28 1.87
BEI 0.31 0.53 0.69 0.93 1.13 1.31 0.43 1.90
BMW 0.29 0.46 0.58 0.78 0.97 1.26 0.38 2.65
CBK 0.37 0.60 0.78 0.94 1.17 1.40 0.39 2.54
CON 0.21 0.45 0.64 0.85 1.14 1.68 0.50 2.26
DAI 0.24 0.53 0.65 0.90 1.12 1.73 0.47 3.33
DBK 0.14 0.48 0.61 0.80 0.98 1.20 0.36 2.37
DPW 0.31 0.52 0.70 0.90 1.02 1.27 0.32 1.59
DTE 0.36 0.57 0.70 0.98 1.18 1.56 0.48 4.55
EOA 0.41 0.61 0.77 0.92 1.25 1.47 0.47 2.75
FME 0.28 0.50 0.63 0.88 1.10 1.34 0.47 1.59
FRE 0.32 0.51 0.66 0.83 1.04 1.51 0.37 3.86
HEI 0.21 0.49 0.70 0.93 1.10 1.42 0.40 1.87
HEN 0.47 0.76 0.92 1.02 1.12 1.28 0.20 1.62
IFX 0.34 0.55 0.71 0.93 1.11 1.79 0.40 3.92
LHA 0.36 0.56 0.71 0.89 1.10 1.28 0.39 2.95
LIN 0.49 0.66 0.81 1.01 1.17 1.51 0.36 1.88
MRK 0.39 0.52 0.73 0.89 1.04 1.54 0.32 2.30
MUV 0.18 0.37 0.63 0.89 1.20 1.46 0.57 3.36
PSM 0.18 0.63 0.75 1.01 1.35 1.74 0.61 3.31
RWE 0.15 0.42 0.56 0.83 1.13 1.35 0.57 2.19
SAP 0.36 0.56 0.66 0.85 1.11 1.31 0.45 2.33
SIE 0.40 0.61 0.83 0.97 1.16 1.39 0.33 3.38
TKA 0.18 0.54 0.61 0.80 0.97 1.32 0.36 2.74
VNA 0.23 0.51 0.75 0.88 1.08 1.42 0.33 4.37
VOW 0.27 0.39 0.52 0.76 1.03 1.90 0.51 3.24

Table 2.B.2: L2-Errors Relative to Random Walk Competitor for τ = 0.4. Table reports
minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error relative
to the error L2 prediction error from random walk / constant shape competitor as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.12 0.44 0.59 0.83 1.16 1.67 0.57 2.74
ALV 0.12 0.18 0.23 0.33 0.63 1.12 0.40 7.42
BAS 0.11 0.21 0.29 0.48 0.92 1.21 0.63 4.14
BAY 0.43 0.56 0.74 0.87 1.05 1.30 0.31 2.54
BEI 0.20 0.35 0.52 0.67 0.98 1.20 0.46 3.64
BMW 0.16 0.23 0.31 0.52 0.75 1.03 0.44 2.05
CBK 0.37 0.51 0.63 0.79 1.01 1.10 0.39 2.03
CON 0.09 0.24 0.40 0.52 0.82 1.00 0.41 1.43
DAI 0.09 0.30 0.41 0.63 0.87 1.33 0.46 2.55
DBK 0.09 0.23 0.31 0.44 0.60 0.83 0.29 2.25
DPW 0.19 0.35 0.51 0.65 0.97 1.51 0.47 2.17
DTE 0.24 0.41 0.52 0.76 0.99 1.54 0.47 3.16
EOA 0.12 0.47 0.59 0.86 1.16 1.44 0.58 2.69
FME 0.20 0.26 0.38 0.56 0.78 0.90 0.39 1.49
FRE 0.13 0.37 0.44 0.59 1.05 1.40 0.61 3.32
HEI 0.21 0.41 0.53 0.74 0.96 1.32 0.43 2.69
HEN 0.32 0.68 0.75 0.91 1.13 1.34 0.37 2.39
IFX 0.11 0.31 0.42 0.65 1.05 1.58 0.63 2.33
LHA 0.19 0.43 0.56 0.79 0.96 1.26 0.39 1.59
LIN 0.34 0.56 0.65 0.87 1.03 1.28 0.38 3.82
MRK 0.26 0.47 0.57 0.76 0.98 1.30 0.41 3.32
MUV 0.06 0.23 0.36 0.53 0.75 1.11 0.39 2.45
PSM 0.20 0.43 0.78 1.06 1.57 2.70 0.80 3.94
RWE 0.09 0.25 0.36 0.59 0.86 1.35 0.50 3.21
SAP 0.18 0.27 0.42 0.80 1.06 1.40 0.64 2.81
SIE 0.46 0.57 0.70 0.88 1.04 1.40 0.35 2.14
TKA 0.20 0.36 0.46 0.60 0.82 1.69 0.36 4.70
VNA 0.12 0.39 0.50 0.66 0.91 1.15 0.42 2.21
VOW 0.15 0.25 0.36 0.51 0.78 1.17 0.42 1.66

Table 2.B.3: L2-Errors Relative to Mean for τ = 0.4. Table reports minimum,r-quantiles (q(r)),
interquartile range and maximum of the L2 prediction error relative to the error L2 prediction
error from the mean (constant level / constant shape competitor) as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.26 0.45 0.68 0.83 1.11 1.70 0.43 8.57
ALV 0.08 0.31 0.65 0.87 1.34 1.69 0.68 2.92
BAS 0.15 0.39 0.50 0.69 1.22 1.84 0.72 11.02
BAY 0.26 0.60 0.72 1.02 1.24 1.62 0.53 3.63
BEI 0.23 0.55 0.81 1.09 1.66 2.48 0.86 4.50
BMW 0.22 0.40 0.55 0.91 1.43 1.81 0.88 2.49
CBK 0.30 0.56 0.77 0.98 1.30 1.69 0.53 3.85
CON 0.13 0.46 0.65 0.93 1.21 1.52 0.56 3.03
DAI 0.11 0.45 0.63 0.89 1.27 2.24 0.65 3.83
DBK 0.25 0.48 0.68 0.95 1.31 1.67 0.63 3.52
DPW 0.26 0.44 0.67 0.90 1.28 2.25 0.61 3.35
DTE 0.16 0.47 0.64 0.86 1.14 1.61 0.50 2.32
EOA 0.20 0.45 0.59 0.85 1.16 1.64 0.57 2.38
FME 0.13 0.47 0.65 0.94 1.29 1.56 0.64 2.66
FRE 0.22 0.54 0.68 0.92 1.44 1.80 0.76 4.35
HEI 0.20 0.44 0.66 0.85 1.24 1.36 0.58 2.34
HEN 0.36 0.79 0.91 1.01 1.21 1.48 0.30 1.91
IFX 0.18 0.41 0.63 0.87 1.28 1.80 0.65 3.99
LHA 0.22 0.53 0.65 1.06 1.52 2.45 0.87 3.48
LIN 0.24 0.51 0.69 0.87 1.11 1.35 0.43 2.63
MRK 0.29 0.49 0.66 0.88 1.14 1.59 0.48 4.91
MUV 0.15 0.43 0.62 0.82 1.09 1.44 0.46 1.76
PSM 0.22 0.46 0.74 1.09 1.44 2.06 0.71 6.59
RWE 0.07 0.29 0.49 0.99 1.41 1.85 0.92 2.93
SAP 0.18 0.38 0.61 0.90 1.11 1.38 0.51 2.78
SIE 0.18 0.42 0.72 0.87 1.13 1.58 0.41 2.37
TKA 0.11 0.45 0.71 0.92 1.15 1.58 0.44 3.97
VNA 0.26 0.51 0.72 0.95 1.23 1.49 0.50 4.68
VOW 0.16 0.37 0.59 0.87 1.27 1.95 0.68 2.55

Table 2.B.4: L2-Errors Relative to Adapted RiskMetrics Competitor for τ = 0.5. Table
reports minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error
relative to the error L2 prediction error from the RiskMetrics-type competitor as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.25 0.50 0.66 0.90 1.13 1.43 0.47 3.85
ALV 0.12 0.31 0.40 0.56 0.86 1.71 0.46 3.88
BAS 0.20 0.31 0.38 0.62 0.99 1.32 0.61 2.00
BAY 0.49 0.71 0.82 0.97 1.13 1.24 0.31 1.47
BEI 0.28 0.47 0.68 0.91 1.09 1.37 0.40 2.65
BMW 0.26 0.36 0.49 0.68 0.99 1.19 0.50 2.49
CBK 0.37 0.54 0.79 0.91 1.12 1.38 0.33 2.13
CON 0.20 0.38 0.54 0.76 1.11 1.61 0.57 2.69
DAI 0.19 0.44 0.63 0.86 1.26 1.72 0.63 4.54
DBK 0.07 0.39 0.55 0.72 0.91 1.24 0.36 2.42
DPW 0.29 0.38 0.60 0.88 1.06 1.34 0.46 2.45
DTE 0.27 0.51 0.63 1.01 1.25 1.58 0.62 6.46
EOA 0.38 0.57 0.73 0.91 1.18 1.46 0.44 3.35
FME 0.28 0.44 0.52 0.82 1.07 1.29 0.54 1.56
FRE 0.31 0.47 0.63 0.80 0.99 1.72 0.35 3.03
HEI 0.18 0.46 0.64 0.94 1.05 1.41 0.41 1.92
HEN 0.43 0.73 0.87 1.02 1.17 1.51 0.30 2.04
IFX 0.18 0.52 0.62 0.92 1.08 1.97 0.47 4.25
LHA 0.41 0.56 0.65 0.81 1.11 1.54 0.46 3.93
LIN 0.34 0.61 0.85 1.03 1.14 1.41 0.29 3.69
MRK 0.47 0.59 0.73 0.87 1.04 1.53 0.31 3.42
MUV 0.16 0.38 0.54 0.73 1.11 1.39 0.57 4.35
PSM 0.19 0.57 0.83 1.04 1.37 1.93 0.54 3.79
RWE 0.12 0.37 0.49 0.73 0.96 1.20 0.47 2.02
SAP 0.32 0.43 0.55 0.84 1.04 1.37 0.48 2.76
SIE 0.41 0.67 0.78 0.93 1.09 1.31 0.31 4.00
TKA 0.16 0.45 0.65 0.81 1.02 1.46 0.38 4.12
VNA 0.11 0.45 0.68 0.83 1.11 1.75 0.43 3.08
VOW 0.19 0.35 0.51 0.73 1.08 1.73 0.56 4.00

Table 2.B.5: L2-Errors Relative to the Random Walk Competitor for τ = 0.5. Table reports
minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error relative
to the error L2 prediction error from random walk / constant shape competitor as in Section 2.4.

97



Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.16 0.39 0.53 0.80 1.20 1.67 0.66 2.74
ALV 0.06 0.17 0.23 0.31 0.59 1.34 0.36 6.75
BAS 0.13 0.19 0.28 0.45 0.90 1.19 0.62 4.54
BAY 0.42 0.62 0.72 0.91 1.07 1.44 0.34 1.91
BEI 0.21 0.37 0.52 0.67 1.06 1.52 0.54 3.66
BMW 0.13 0.20 0.31 0.48 0.76 1.05 0.45 1.91
CBK 0.37 0.45 0.65 0.79 1.03 1.24 0.38 1.69
CON 0.13 0.21 0.37 0.51 0.80 1.03 0.43 1.97
DAI 0.09 0.26 0.40 0.62 0.92 1.54 0.53 2.79
DBK 0.05 0.21 0.33 0.43 0.54 0.96 0.21 2.60
DPW 0.19 0.33 0.45 0.63 1.02 1.46 0.57 5.25
DTE 0.17 0.38 0.49 0.73 1.06 1.66 0.57 3.68
EOA 0.20 0.39 0.54 0.83 1.13 1.46 0.59 2.33
FME 0.20 0.27 0.36 0.57 0.73 0.96 0.38 1.43
FRE 0.12 0.35 0.45 0.58 1.04 1.48 0.59 3.89
HEI 0.17 0.39 0.52 0.67 0.98 1.32 0.46 2.32
HEN 0.33 0.66 0.75 0.91 1.18 1.50 0.42 2.76
IFX 0.18 0.28 0.40 0.68 1.15 1.55 0.75 2.70
LHA 0.20 0.39 0.53 0.77 0.96 1.26 0.43 2.98
LIN 0.24 0.49 0.62 0.82 1.09 1.39 0.47 6.39
MRK 0.33 0.47 0.54 0.75 0.97 1.48 0.43 3.86
MUV 0.08 0.23 0.30 0.49 0.75 1.26 0.44 2.25
PSM 0.19 0.51 0.78 1.03 1.48 2.43 0.70 3.83
RWE 0.09 0.23 0.34 0.47 0.87 1.45 0.54 3.39
SAP 0.16 0.28 0.41 0.65 1.07 1.27 0.66 2.40
SIE 0.39 0.56 0.69 0.81 1.06 1.22 0.37 2.31
TKA 0.15 0.32 0.47 0.63 0.97 1.93 0.50 3.50
VNA 0.07 0.34 0.50 0.66 0.96 1.35 0.46 2.64
VOW 0.11 0.22 0.32 0.51 0.78 1.29 0.46 2.36

Table 2.B.6: L2-Errors Relative to the Mean for τ = 0.5. Table reports minimum,r-quantiles
(q(r)), interquartile range and maximum of the L2 prediction error relative to the error L2 pre-
diction error from the mean (constant level / constant shape competitor) as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.18 0.42 0.63 0.79 1.12 1.69 0.49 8.77
ALV 0.07 0.30 0.53 0.92 1.32 1.84 0.79 2.53
BAS 0.19 0.28 0.46 0.67 1.11 2.06 0.64 9.46
BAY 0.13 0.57 0.69 1.03 1.53 1.83 0.83 3.59
BEI 0.25 0.51 0.81 1.01 1.44 2.44 0.63 4.35
BMW 0.16 0.37 0.52 0.88 1.25 1.59 0.73 4.39
CBK 0.13 0.43 0.66 0.92 1.24 1.52 0.58 3.76
CON 0.11 0.38 0.64 0.88 1.07 1.40 0.44 3.29
DAI 0.15 0.39 0.59 0.87 1.35 2.26 0.76 5.29
DBK 0.16 0.44 0.67 0.91 1.34 1.97 0.67 4.33
DPW 0.09 0.44 0.60 0.94 1.23 1.83 0.63 3.40
DTE 0.19 0.51 0.64 0.84 1.11 1.60 0.46 4.40
EOA 0.15 0.35 0.53 0.74 1.03 1.50 0.51 2.98
FME 0.29 0.44 0.64 0.89 1.29 1.48 0.65 3.42
FRE 0.15 0.50 0.67 0.96 1.46 1.70 0.79 3.52
HEI 0.09 0.38 0.57 0.78 1.23 1.65 0.66 3.58
HEN 0.26 0.73 0.84 1.03 1.19 1.51 0.35 2.60
IFX 0.13 0.43 0.60 0.83 1.27 1.86 0.67 4.61
LHA 0.22 0.39 0.63 0.98 1.67 2.30 1.04 3.34
LIN 0.23 0.48 0.67 0.89 1.13 1.31 0.46 4.31
MRK 0.27 0.53 0.64 0.84 1.11 1.77 0.47 4.04
MUV 0.18 0.36 0.54 0.78 1.04 1.34 0.50 2.37
PSM 0.19 0.43 0.67 1.08 1.37 1.86 0.70 6.11
RWE 0.08 0.36 0.51 0.98 1.34 1.77 0.83 3.59
SAP 0.16 0.31 0.56 0.83 1.13 1.42 0.58 2.39
SIE 0.14 0.36 0.65 0.86 1.16 1.48 0.51 2.68
TKA 0.11 0.51 0.68 0.86 1.18 1.73 0.50 3.96
VNA 0.18 0.48 0.73 0.89 1.24 1.58 0.51 3.74
VOW 0.16 0.38 0.55 0.94 1.13 1.66 0.58 3.27

Table 2.B.7: L2-Errors Relative to Adapted RiskMetrics Competitor for τ = 0.6. Table
reports minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error
relative to the error L2 prediction error from the RiskMetrics-type competitor as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.24 0.47 0.61 0.89 1.12 1.69 0.50 6.54
ALV 0.10 0.26 0.32 0.50 0.92 1.98 0.60 3.23
BAS 0.11 0.28 0.35 0.55 1.10 1.44 0.75 2.49
BAY 0.36 0.70 0.83 0.99 1.12 1.39 0.29 2.71
BEI 0.27 0.43 0.64 0.90 1.10 1.56 0.47 4.31
BMW 0.16 0.28 0.38 0.59 0.90 1.24 0.52 5.24
CBK 0.15 0.43 0.59 0.95 1.20 1.52 0.61 3.43
CON 0.08 0.26 0.43 0.69 1.00 1.43 0.57 5.06
DAI 0.14 0.32 0.51 0.78 1.33 2.02 0.82 5.87
DBK 0.10 0.27 0.47 0.59 0.96 1.82 0.49 3.46
DPW 0.12 0.28 0.50 0.84 1.08 1.59 0.58 3.86
DTE 0.23 0.50 0.70 0.95 1.46 2.00 0.76 9.30
EOA 0.19 0.46 0.59 0.84 1.09 1.45 0.49 3.59
FME 0.31 0.37 0.48 0.77 1.02 1.30 0.54 2.68
FRE 0.29 0.38 0.53 0.71 0.99 1.90 0.45 2.70
HEI 0.12 0.37 0.54 0.78 1.26 1.55 0.72 2.11
HEN 0.25 0.63 0.84 1.01 1.14 1.71 0.30 2.48
IFX 0.14 0.42 0.55 0.88 1.20 2.10 0.65 3.24
LHA 0.29 0.42 0.55 0.83 1.03 1.52 0.47 3.04
LIN 0.30 0.63 0.77 1.00 1.19 1.70 0.43 8.05
MRK 0.45 0.55 0.66 0.79 1.07 1.92 0.41 3.83
MUV 0.09 0.28 0.46 0.66 1.04 1.48 0.58 5.34
PSM 0.23 0.55 0.80 1.07 1.30 2.01 0.50 6.12
RWE 0.14 0.36 0.47 0.67 0.92 1.33 0.46 3.38
SAP 0.22 0.40 0.46 0.72 0.98 1.48 0.52 3.45
SIE 0.26 0.50 0.75 0.92 1.01 1.29 0.26 5.33
TKA 0.21 0.38 0.49 0.81 1.27 1.78 0.78 3.46
VNA 0.08 0.43 0.62 0.76 1.15 2.02 0.53 2.91
VOW 0.21 0.33 0.42 0.65 1.12 1.73 0.70 4.38

Table 2.B.8: L2-Errors Relative to Random Walk Competitor for τ = 0.6. Table reports
minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error relative
to the error L2 prediction error from random walk / constant shape competitor as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.16 0.35 0.48 0.83 1.18 1.86 0.70 5.66
ALV 0.05 0.16 0.20 0.31 0.62 1.64 0.41 5.18
BAS 0.08 0.17 0.23 0.42 1.02 1.75 0.79 5.69
BAY 0.35 0.55 0.71 0.94 1.14 1.46 0.43 5.16
BEI 0.17 0.33 0.46 0.70 1.11 1.94 0.65 3.79
BMW 0.08 0.17 0.24 0.44 0.61 1.04 0.37 2.11
CBK 0.14 0.34 0.55 0.75 0.97 1.35 0.42 2.71
CON 0.06 0.18 0.30 0.46 0.68 1.32 0.38 2.08
DAI 0.06 0.21 0.35 0.56 0.95 2.13 0.60 3.83
DBK 0.08 0.18 0.28 0.43 0.58 1.03 0.30 3.27
DPW 0.11 0.28 0.35 0.71 0.92 1.37 0.57 8.28
DTE 0.15 0.37 0.46 0.71 1.22 1.97 0.76 5.83
EOA 0.15 0.29 0.46 0.69 1.01 1.55 0.56 2.53
FME 0.22 0.26 0.35 0.56 0.66 1.17 0.31 2.68
FRE 0.19 0.27 0.43 0.53 1.00 1.50 0.57 3.38
HEI 0.08 0.28 0.41 0.66 1.06 1.44 0.65 3.15
HEN 0.17 0.57 0.73 0.89 1.30 1.68 0.58 3.33
IFX 0.12 0.19 0.41 0.66 1.15 1.59 0.74 2.72
LHA 0.19 0.30 0.48 0.74 0.91 1.24 0.43 7.55
LIN 0.28 0.42 0.55 0.78 1.20 1.81 0.65 6.09
MRK 0.36 0.42 0.49 0.71 1.01 1.96 0.51 6.45
MUV 0.06 0.19 0.28 0.49 0.72 1.63 0.43 2.73
PSM 0.16 0.47 0.75 0.99 1.31 2.28 0.57 3.49
RWE 0.12 0.26 0.33 0.44 0.83 1.61 0.50 4.65
SAP 0.14 0.25 0.30 0.69 1.05 1.46 0.75 4.71
SIE 0.22 0.36 0.62 0.79 1.01 1.30 0.39 2.17
TKA 0.16 0.26 0.42 0.60 1.12 2.37 0.70 3.63
VNA 0.06 0.31 0.46 0.63 0.93 1.64 0.47 2.92
VOW 0.11 0.21 0.29 0.46 0.86 1.22 0.57 2.91

Table 2.B.9: L2-Errors Relative to Mean for τ = 0.6. Table reports minimum,r-quantiles (q(r)),
interquartile range and maximum of the L2 prediction error relative to the error L2 prediction
error from the mean (constant level / constant shape competitor) as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.18 0.40 0.53 0.81 1.16 1.81 0.63 8.40
ALV 0.10 0.23 0.59 0.84 1.44 1.68 0.85 4.40
BAS 0.15 0.29 0.43 0.76 1.13 2.40 0.70 10.32
BAY 0.18 0.37 0.61 0.92 1.32 1.59 0.71 4.37
BEI 0.13 0.37 0.68 0.95 1.63 2.71 0.95 7.12
BMW 0.06 0.18 0.45 0.86 1.09 1.60 0.64 16.28
CBK 0.06 0.37 0.59 0.94 1.46 2.54 0.86 5.27
CON 0.08 0.35 0.49 0.76 1.02 1.65 0.53 6.28
DAI 0.05 0.38 0.55 0.82 1.39 2.68 0.84 6.09
DBK 0.12 0.33 0.53 0.85 1.43 2.50 0.90 6.40
DPW 0.14 0.27 0.50 0.88 1.37 2.18 0.87 5.63
DTE 0.20 0.37 0.62 0.89 1.36 1.96 0.74 3.30
EOA 0.14 0.22 0.45 0.74 1.04 1.50 0.59 3.78
FME 0.12 0.34 0.55 0.90 1.12 1.46 0.58 3.29
FRE 0.15 0.48 0.64 1.01 1.51 1.94 0.86 3.99
HEI 0.14 0.36 0.55 0.76 1.15 1.61 0.60 4.73
HEN 0.29 0.72 0.85 1.00 1.35 1.89 0.50 3.00
IFX 0.10 0.33 0.53 0.90 1.37 1.73 0.84 5.78
LHA 0.12 0.28 0.64 0.96 1.53 1.79 0.90 7.28
LIN 0.10 0.38 0.54 0.79 1.12 1.40 0.58 4.18
MRK 0.20 0.39 0.63 0.81 1.23 1.85 0.60 4.07
MUV 0.12 0.30 0.48 0.75 1.01 1.36 0.53 3.71
PSM 0.22 0.44 0.69 0.85 1.28 1.81 0.60 3.28
RWE 0.05 0.24 0.39 0.72 1.21 1.55 0.82 5.29
SAP 0.10 0.28 0.49 0.91 1.36 1.99 0.86 2.55
SIE 0.18 0.41 0.57 0.80 1.15 1.66 0.58 6.11
TKA 0.14 0.33 0.60 0.86 1.38 2.19 0.79 5.90
VNA 0.20 0.45 0.63 0.90 1.11 1.61 0.48 5.98
VOW 0.13 0.35 0.51 0.85 1.15 1.75 0.64 3.01

Table 2.B.10: L2-Errors Relative to Adapted RiskMetrics Competitor for τ = 0.7. Table
reports minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error
relative to the error L2 prediction error from the RiskMetrics-type competitor as in Section 2.4.

102



Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.17 0.38 0.51 0.92 1.36 1.95 0.85 6.51
ALV 0.12 0.16 0.23 0.48 0.86 2.21 0.63 5.10
BAS 0.07 0.19 0.30 0.63 1.20 1.86 0.90 8.60
BAY 0.10 0.53 0.65 0.98 1.20 1.36 0.55 3.92
BEI 0.13 0.23 0.53 0.91 1.41 2.64 0.87 6.62
BMW 0.06 0.16 0.26 0.45 0.73 1.49 0.47 5.75
CBK 0.06 0.33 0.55 0.90 1.40 2.21 0.85 14.16
CON 0.08 0.18 0.33 0.58 0.87 1.53 0.54 11.47
DAI 0.06 0.20 0.35 0.68 1.78 2.95 1.42 5.30
DBK 0.06 0.17 0.28 0.51 1.28 2.16 1.00 5.27
DPW 0.18 0.21 0.42 0.69 1.15 1.96 0.73 4.78
DTE 0.19 0.34 0.50 0.95 1.81 3.15 1.30 11.60
EOA 0.06 0.28 0.50 0.83 1.10 1.48 0.60 3.33
FME 0.11 0.27 0.41 0.66 1.10 2.63 0.69 3.09
FRE 0.16 0.34 0.49 0.71 1.15 2.05 0.66 3.62
HEI 0.18 0.28 0.47 0.75 1.19 1.67 0.72 3.77
HEN 0.22 0.61 0.78 0.98 1.54 1.92 0.76 2.68
IFX 0.12 0.30 0.50 0.98 1.39 2.08 0.88 6.45
LHA 0.17 0.29 0.44 0.73 0.97 1.50 0.52 2.24
LIN 0.16 0.41 0.69 0.86 1.16 1.83 0.47 6.63
MRK 0.24 0.41 0.58 0.77 1.55 2.55 0.97 6.62
MUV 0.09 0.17 0.37 0.68 1.21 1.88 0.84 11.43
PSM 0.17 0.54 0.76 1.00 1.47 2.26 0.72 3.42
RWE 0.17 0.25 0.33 0.58 0.89 1.49 0.56 4.29
SAP 0.13 0.20 0.43 0.79 1.29 1.94 0.86 4.10
SIE 0.15 0.43 0.65 0.89 1.11 2.18 0.47 7.23
TKA 0.22 0.30 0.44 0.66 1.61 2.81 1.17 11.55
VNA 0.10 0.31 0.52 0.70 1.15 2.11 0.63 6.20
VOW 0.08 0.22 0.33 0.63 1.04 1.93 0.71 4.34

Table 2.B.11: L2-Errors Relative to Random Walk Competitor for τ = 0.7. Table reports
minimum,r-quantiles (q(r)), interquartile range and maximum of the L2 prediction error relative
to the error L2 prediction error from random walk / constant shape competitor as in Section 2.4.
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Stock Min q(0.1) q(0.25) q(0.5) q(0.75) q(0.9) IQR Max
ADS 0.13 0.28 0.40 0.78 1.45 1.97 1.05 6.09
ALV 0.08 0.12 0.17 0.31 0.74 1.76 0.57 6.38
BAS 0.05 0.14 0.24 0.38 1.13 2.07 0.89 7.34
BAY 0.09 0.34 0.59 0.92 1.20 1.65 0.61 7.66
BEI 0.12 0.18 0.40 0.70 1.40 2.61 0.99 8.04
BMW 0.04 0.11 0.19 0.33 0.53 1.38 0.34 2.89
CBK 0.04 0.31 0.47 0.72 1.35 1.98 0.89 10.94
CON 0.06 0.13 0.27 0.42 0.71 1.36 0.44 3.76
DAI 0.04 0.16 0.27 0.51 1.21 2.76 0.94 5.65
DBK 0.05 0.13 0.19 0.39 0.73 1.35 0.54 7.92
DPW 0.12 0.18 0.29 0.68 1.21 1.73 0.92 7.46
DTE 0.16 0.26 0.39 0.79 1.45 2.53 1.06 5.48
EOA 0.05 0.18 0.41 0.73 1.02 1.40 0.62 6.24
FME 0.09 0.17 0.29 0.46 0.73 1.61 0.45 3.88
FRE 0.12 0.25 0.39 0.64 1.19 1.50 0.80 5.60
HEI 0.16 0.22 0.42 0.60 0.98 1.41 0.56 4.11
HEN 0.16 0.53 0.66 0.92 1.39 1.99 0.73 3.89
IFX 0.07 0.22 0.36 0.74 1.25 1.71 0.89 3.70
LHA 0.10 0.20 0.36 0.69 0.90 1.32 0.55 6.81
LIN 0.12 0.32 0.50 0.71 1.19 2.05 0.69 6.61
MRK 0.19 0.33 0.45 0.64 1.15 2.77 0.70 6.90
MUV 0.08 0.12 0.23 0.47 0.86 2.52 0.63 3.71
PSM 0.20 0.44 0.67 0.96 1.38 2.12 0.71 3.22
RWE 0.10 0.19 0.25 0.39 0.73 1.63 0.49 6.18
SAP 0.09 0.15 0.29 0.72 1.30 2.23 1.00 5.11
SIE 0.13 0.35 0.54 0.77 1.06 2.07 0.53 4.72
TKA 0.14 0.23 0.36 0.51 1.55 2.73 1.18 10.72
VNA 0.07 0.23 0.40 0.62 0.94 1.59 0.54 5.05
VOW 0.06 0.17 0.22 0.45 0.97 1.37 0.75 2.91

Table 2.B.12: L2-Errors Relative to Mean for τ = 0.7. Table reports minimum,r-quantiles
(q(r)), interquartile range and maximum of the L2 prediction error relative to the error L2 pre-
diction error from the mean (constant level / constant shape competitor) as in Section 2.4.
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Figure 2.B.1: Median Relative Performances for τ = 0.4. Figure shows median relative errors
for different competitors. The x-axis in the barplots is constituted by the different assets (see Table
2.A.1 in the appendix). Blue indicates bars below 1, red bars are above 1. The violin plots in the
bottom-right panel depict the distribution of the medians in the barplots over assets. Numbers
below the violins are means of medians.
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Figure 2.B.2: Median Relative Performances for τ = 0.6. The panels are to be interpreted as
in Figure 2.B.1.
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Figure 2.B.3: Median Relative Performances for τ = 0.7. The panels are to be interpreted as
in Figure 2.B.1.

107



Chapter 3

Heterogeneous Liquidity Effects in
Corporate Bond Spreads

3.1 Introduction

Yield spreads of corporate bonds reflect multiple sources of risk. While credit risk is typically
considered to be the most dominant driver, recent work points at the fundamental importance
of liquidity risk.1 The precise individual contributions of risk factors to the yield spread is of
particular interest for investors, bond issuers as well regulatory authorities and central banks.
Such information allows to improve risk management for bond portfolios, the timing and design
of new bond issues as well as the regulatory assessment of asset riskiness and implementation of
monetary policy.
According to Engle and Lange (2001), liquidity of an asset is the ability to transact at low cost. In
their seminal work, Amihud and Mendelson (1986) introduced the idea that investors demand a
premium for holding an illiquid asset. For bonds, this premium is to be viewed as one constituent
of the yield spread. Liquidity premiums are typically difficult to extract from data as liquidity is
latent. Furthermore, the way how a premium enters the yield spread is unknown and is likely to
differ across assets.
The preceding remarks ultimately motivate the research questions addressed in this chapter: (i)
in which way does idiosyncratic liquidity risk affect bond spreads, (ii) how do these effects vary
over time, and (iii) what governs the differences of liquidity risk across assets? Using two differ-
ent proxies for idiosyncratic bond liquidity, we find that their contribution to the yield spread is in
many cases highly nonlinear, when controlling for market liquidity. This nonlinearity is particu-
larly pronounced in times of low liquidity as it was the case, for example, during the 2008 financial

1See for example Longstaff et al. (2005).
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crisis. However, the magnitude and range of the premium varies considerably among classes of
bonds: in our data we identify one large class with moderate effects and one smaller class with
large effects. These classes are among other characteristics distinguished by the spread level, the
financial strength of the issuer as well as the size of the bonds. Interestingly, dynamic features of
liquidity effects in the yield spreads seem to be quite similar for the majority of groups.
A number of recent studies has addressed the link between corporate bond liquidity and its con-
tribution to yield spreads, e.g. Friewald et al. (2012), Dick-Nielsen (2012), Chen et al. (2007)
and Houweling et al. (2005). The vast majority of these findings are gathered from trade data,
which typically are temporally aggregated in order to construct a balanced panel, from which
sub-samples are taken of bonds with similar time to maturity and rating class. The coefficients
of the liquidity proxies in linear panel data regressions are then estimated for each sub-sample
separately. Dick-Nielsen (2012) estimates linear panel regressions for a priori chosen subsamples
employing a linear combination of liquidity measures as a new proxy. In particular, his results
confirm the presence of liquidity effects on corporate bond spreads, varying over time, time to
maturity, and rating classes. Based on similar data, Friewald et al. (2012) take a slightly different
approach and estimate a linear panel model as well as Fama-MacBeth cross sectional regressions
using a battery of classical liquidity measures. Effects of rating classes as well as changes in
marginal effects of the liquidity measures in times of financial stress are covered using dummy
variables. Their main finding confirms the presence of liquidity effects, which are particularly
pronounced in times of financial turmoil.
While Friewald et al. (2012) and Dick-Nielsen (2012) aggregate all data to weekly, monthly and
quarterly observations, Chen et al. (2007) employ even yearly data in a very similar framework.
All studies basically find positive relations between measures of illiquidity and corporate bond
spreads, while the magnitude of identified effects varies among different levels of temporal ag-
gregation.
Contributing to this strand of literature, the three novelties of our work can be summarized as
follows.

1. Our framework is capable to deal with nonlinear effects of idiosyncratic liquidity risk on
yield spreads in excess to the effect of market liquidity. This allows to examine the inter-
play between different facets of bond illiquidity as addressed by different measures. For
example, a deterioration of liquidity indicated by one measure might affect the yield spread
differently in situations of high or low liquidity as indicated by another measure. Resulting
mixed effects are a source of potential nonlinearity. Further, nonlinearities may also arise
in a feasible regression even if the true liquidity-spread relation is linear, depending on the
relation between the true but unobserved liquidity variable and its approximation.
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2. We estimate liquidity effects based on event time models, thus avoiding high levels of tem-
poral aggregation and loss of information. Despite the high degree of non-synchronous
trading, common components of the regression functions can still be estimated using time
series and cross sectional variation.

3. Our approach allows for substantial heterogeneity of liquidity effects across bonds. We
avoid subjective divisions into subsamples by endowing the model with a latent group struc-
ture, which can be estimated from the data using standard cluster algorithms. In particular,
there is no classification based on time-varying quantities such as time to maturity or the
rating, avoiding inconsistencies when classifying bonds based on data over a large time
horizon.

The remainder of this chapter is structured as follows. Section 3.2 introduces the formal model,
presents estimation procedures, and addresses inferential questions and corresponding statistical
tests. In Section 3.3 liquidity measures and their adaptation to the model framework are discussed.
Section 3.4 offers an application of the outlined procedure to trade data from the US corporate
bond market between 2004 and 2012. Finally, Section 3.5 concludes.

3.2 An Econometric Assessment of Liquidity Risk

In the following we present our semiparametric panel data model with a latent group structure
in event time. For a formal presentation of the framework, index the available bonds by i ∈
{1, ..., N} =: N. Suppose that for each bond there are observations over time available on a
bond-specific time-scale. Precisely, for an i ∈ N denote the ordered set of corresponding time
stamps as Ti, with cardinality Ti := |Ti|. These sets might well vary over the index i as is most
likely the case with event times. For simplicity of notation we use a generic time index t ∈ Ti for
a given i ∈ N.
Given these time scales, suppose that for each bond i ∈ N a sample of time series observations
{(yit,xit, zit) : t ∈ Ti} is available, where yit denotes the spread, zit is an L-vector of control
variables, and the vector xit ∈ I ⊂ Rm collects m idiosyncratic liquidity measures, with values
in some set I, independent of the index i.
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3.2.1 Model Formulation and Estimation

We suggest incorporating nonlinear effects of idiosyncratic liquidity in a regression model ac-
cording to

yit = Mi(xit) + γ>i zit + εit, (3.1)

where Mi : I → R denotes an unknown smooth function. The term Mi(xit) represents the
effect of idiosyncratic liquidity xit on the yield spread, while the term γ>i zit describes the effects
of control variables zit. These controls incorporate information on bond characteristics and the
market environment, including market liquidity. Their bond-specific marginal effects are collected
in the parameter vector γi. Regarding an intercept in model 3.1, we note that constants inMi(xit)

and γ>i zit are certainly not separately identifiable.
For the above model we rely on the following set of standard assumptions. Importantly, we sup-
pose that for all i ∈ N, the random variables {(εit,xit, zit) : t ∈ Ti} are strictly stationary and
ergodic. Further, the covariates are assumed to be exogenous in the sense that for any i, j ∈ N,
εit |= (xjs, zjs) for any t ∈ Ti, s ∈ Tj . We assume the errors to be independent across time and
bonds, i.e. εit |= εjs, for any i, j ∈ N, t ∈ Ti, s ∈ Tj . Also, we require for any bond i ∈ N

the errors {εit : t ∈ Ti} to be normally distributed with mean 0 and bond specific variance σ2
i .

Suppose further that for both xit and zit, moments of sufficiently high order exist and that they are
not perfectly correlated.
As a central feature of model (3.1) we postulate a latent group structure determining heterogeneity
of liquidity effects. As in Vogt and Linton (2017) and Su et al. (2016), we assume that cross
sectional units are organized in K groups, denoted G1, ..., GK , which form an unknown partition
of the index set N. Within a group, the nonparametric regression function is identical among
assets, i.e. ∀k = 1, ..., K it holds that

Mi = gk ∀i ∈ Gk. (3.2)

The functions gk : I → R are the group specific liquidity effects - the quantity of main economic
interest. Note that the parameters in γi might vary across bonds, also within a group. Hence, the
only (a priori) common feature of two assets i, j ∈ Gk is the liquidity effect gk. Across groups we
assume these functions to be sufficiently different in the L2-metric.
Model (3.1) can be interpreted not only as a generalization of the classical linear panel regression
model, but also of the longitudinal data models presented in Vogt and Linton (2017) and Su et
al. (2016). It should be noted that the fully parametric linear models estimated in Friewald et
al. (2012) and Dick-Nielsen (2012) are comparable to (3.1) in the sense that they also possess
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a group structure, which is, however, determined by the rating class and time to maturity and is
hence assumed to be known a priori.
Another important difference between the aforementioned models and (3.1) is the time dimension.
As indicated, the time scales Ti collect bond-specific event times and are allowed to differ across
assets. The precise meaning of an event, which depends on the trading activity of a bond, is
introduced in Section 3.3. Reading (3.1) as a conventional panel data model, standard estimation
techniques would suffer from unbalanced observations in practice, because trading is typically
highly non-synchronous even at a daily level.
Our estimation strategy adapts the idea of Vogt and Linton (2017) to our setup. The procedure can
be structured into three stages. The first stage is concerned with the estimation of the unknown
parameters in E[yit|xit, zit] for each i ∈ N from time series variation. At the second stage we
construct groupsG1, . . . , GK from the results of the first stage. At a third stage common regression
curves gk are finally (re-) estimated using information from the two previous stages.
Compared to conventional panel data techniques, our strategy allows in particular to employ vari-
ation over the unbalanced time scales as well as variation over assets to estimate the common, i.e.
group specific, component of the regression functions in (3.1). The implementation proceeds as
follows.

First Stage
At the first stage, event time model (3.1) is estimated for each bond i ∈ N separately from cor-
responding time series data {(yit, xit, zit) : t ∈ Ti}. This is implemented running N times a
penalized maximum likelihood approach. The smooth component of the regression is modeled
using splines due to their numerical convenience and flexibility. We decide to approximate the
functions Mi by thinplate regression splines (see Section 4.1.5 in Wood, 2006) of bond-specific
dimension. The penalty order of the spline approximation for Mi is set to two for all bonds, en-
suring that all functions Mi are estimated under the same notion of smoothness. Regarding the
choice of the spline basis for Mi, note that multiplicative mixed effects between the m measures
of illiquidity are allowed explicitly.
Given the spline approximation of the function Mi, our model in (3.1) can be restated as a mul-
tiple regression model under an identification constraint for the smooth terms.2 Corresponding
coefficients of the truncated basis expansion of Mi are collected in the vector λi.
The roughness penalty to be employed in the objective function is the well known scaled quadratic
form νiλ

>
i Siλi. Here Si is a square matrix constituted by the second derivatives of elements in

the corresponding spline basis3 and νi > 0 is a tuning parameter. The latter is determined using
2In particular, as in Wood (2006) pp. 163-164 we impose the constraints

∑
t∈Ti

Mi(xit) =
∑

t∈Ti
bi(t) = 0.

3See Wood (2003) or the aforementioned section in Wood (2006) for details.
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generalized cross validation. For efficiency of notation we collect all but the tuning parameter in
the vector θi := [λ>i , γ

>
i , σ

2
i ]
> and denote the unpenalized Gaussian log-likelihood as Li(θi). The

final objective function is the penalized likelihood given by

Li,p(θi) = Li(θi)− 1/2νiλ
>
i Siλi. (3.3)

The estimator θ̂i maximizes (3.3) respecting the imposed identification constraints. Then, the
estimator M̂i(x), x ∈ I, is simply a linear combination of the basis functions evaluated at x.
The weights in this linear combination are the coordinates in θ̂i estimating λi. Denoting the Ti-
vector of residuals ε̂i and the influence matrix Pi, the estimator of the error variance is obtained
as σ̂2

i =
ε̂>i ε̂i

Ti−tr(Pi) .

Second Stage
Along the lines of Vogt and Linton (2017), we suggest to employ the estimates M̂i from the
previous stage to classify bonds into groupsGk. For this purpose, a hierarchical cluster algorithm
appears particularly suited as it (i) offers a natural notion of a distance between groups, and (ii) is
computationally efficient even for a large number of bonds. For any cluster algorithm we need a
suitable metric to measure the distance between two regression functions. Since these are smooth,
the L2 metric is an appropriate choice, which for two unknown population functions Mi and Mj

is defined by

∆i,j :=

(∫
I
(Mi(x)−Mj(x))2dx

)1/2

. (3.4)

In the same way, we define ∆̂i,j to be the L2 distance between M̂i and M̂j . Intuitively, given
i, j ∈ Gk these functions should be close to each other and so should be ∆̂i,j and ∆i,j = 0. Based
on this metric, a hierarchical cluster algorithm yields a set of clusters, for a given number of K
groups, including distances between clusters.
The statistics literature offers a number of cost criteria allowing to select the number of groups
K from distances (see e.g. Charrad et al., 2014 for an overview). We suggest to employ one such
cost criterion in order to obtain an estimate K̂. Given this estimate, ultimate outcomes of the stage
are estimated groups Ĝ1, ..., ĜK̂ .
Regarding implementation we note that, depending on the number of bondsN and the number of
liquidity measuresm, this stage might be computationally demanding, because it involvesO(N2)

computations of m dimensional integrals.

Third Stage
In a third step the group specific liquidity effects gk are estimated. Following Vogt and Linton
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(2017) this is implemented by averaging over estimated curves within groups. Unweighted aver-
aging however might lead to inefficient estimation of gk, because error variances σ2

i are allowed
to vary over bonds i, also within groups Gk. We hence suggest to obtain an estimate ĝk of the
group function gk at x ∈ I by weighted averaging according to

ĝk(x) :=
∑
i∈Ĝk

wikM̂i(x)

where weights are defined as

wik :=
σ̂−1
i∑

j∈Ĝk σ̂
−1
j

.

This weighting scheme ideally leads to an efficient estimator of ĝk, given the assumption of inde-
pendent errors across i. Note that controlling for potential correlation is infeasible in our case as
it would require temporally balanced data.

3.2.2 Inference

A large fraction of existing studies find significant linear liquidity effects from temporally aggre-
gated data, but the results are specific to the level of aggregation. In our event time study, the
type of liquidity effect is a priori unclear, which motivates to test the form of the effect from the
data. To do so, we suggest an approximate (conditional) two-step testing procedure. It is designed
to conclude whether there is (i) no effect, (ii) a linear or (iii) a nonlinear effect for each bond
separately after the first stage regressions. In particular, we test in a first step whether liquidity
effects are significant at all. Subsequently it is tested for which bonds the liquidity effect, condi-
tional on being significant, deviates from linearity. Note that the first-mentioned test also allows
a pre-classification: bonds that do not show any significant liquidity effect will be classified in a
separate group, say Ĝ0. All regression functions M̂i with i ∈ Ĝ0 are not used in the second and
third stages.
Approaching the aforementioned procedure more formally, we consider the following two testing
problems, P1 and P2:

P1

H(1)
0 : Mi(x) = 0 ∀x ∈ I

versus

H(1)
1 : ∃u ⊂ I : Mi(x) 6= 0 for x ∈ u.
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For the second testing problem, define the set of all linear functions defined over I as

M :=
{
f : I → R : ∃β ∈ Rm : f(x) = β>x ∀x ∈ I

}
.

Formally, we wish to test whether the function Mi is in this setM or not, i.e.

P2

H(2)
0 : Mi ∈M

versus

H(2)
1 : Mi /∈M.

Hypothesis H(1)
0 is tested separately for all i ∈ N. Analogously, the testing problem P2 is con-

sidered separately for different bonds i ∈ N \ Ĝ0. For both hypotheses, corresponding F-tests are
readily available, because the spline approximation of Mi nests a zero function as well as a linear
model. Denoting the (unscaled) deviances4 of the null and alternative models as D0 and D1, the
test statistic obtains as

F =
(D0 −D1)/(df1 − df0)

D1/(Ti − df1)
. (3.5)

The quantities df0 and df1 are the model’s (effective) degrees of freedom, defined as the trace of
the corresponding influence matrix. For calculating F , we follow the advice in Wood (2006) and
use estimates obtained from the maximization of the unpenalized likelihood in case of both testing
problems. Under the null hypothesis, the test statistic in (3.5) is approximatelyF df1−df0

Ti−df1 -distributed
for large |Ti|, which we use to obtain corresponding critical values and p-values.

3.3 Corporate Bond Liquidity

In the previous section we described a modeling approach allowing to identify the effect of an
m-vector of idiosyncratic liquidity proxies, xit, on the yield spread given a bond specific event
time scale. In this section we make the proxies in xit, the time scale as well as our control variable
for market liquidity precise.

4For the definition, see Wood (2006), p.69 in the case of GLMs and p. 191 in the case of GAMs.
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3.3.1 Idiosyncratic Liquidity

The literature offers a battery of liquidity proxies, designed to cover a range of different facets of
illiquidity. Most common proxies in empirical studies are directly or indirectly measured bid-ask
spreads, measures of the trading activity and measures of the price impact of transactions.
In this work we focus onm = 2 measures of idiosyncratic corporate bond illiquidity. The first one
is a variant of the well-established Amihud (2002)-measure for the price impact. The second one
is a measure of costs from so-called imputed round-trip trades as suggested by Feldhütter (2011).
In order to introduce these measures more formally, let us first discuss the considered time scale in
more detail, recalling that one of our aims is to estimate liquidity effects at low levels of temporal
aggregation.
As both of the above liquidity measures are calculated over fixed time intervals, temporal aggre-
gation cannot be avoided completely. We consider intervals of one day for this purpose, which is
a plausible compromise between a low level of aggregation (yielding larger Ti’s) and exclusion
of very thinly traded bonds (yielding smaller N ). Thus, we finally define as an event (in the time
scale sense) a calendar day at which for the considered bond there are sufficiently many transac-
tions available to calculate the liquidity measures. We refer to such days as active trading days.

The liquidity proxy of Amihud (2002) explores how a trade changes the price relative to a dollar
of traded volume. His measure of the price impact of a trade obtains as the absolute return of a
trade divided by the traded volume, and is typically averaged over a fixed time horizon such as
a day. Large price impacts are considered to indicate low liquidity. In order to achieve greater
numerical stability, we consider a variant of this measure obtained by replacing the volume by
the log-volume. In more formal terms, we label the temporally ordered transactions of a bond i,
τ = 1, 2, . . . , Sit at some active trading day t. Further we denote the reported price and volume
on transaction τ as pit,τ and volit,τ , whereas pit,0 is the last available price before day t. The
corresponding return on transaction τ obtains as rit,τ := (pit,τ − pit,τ−1)/pit,τ−1. Our variant of
the Amihud (2002)-measure of price impact obtains as

x1,it :=
1

Sit

Sit∑
τ=1

|rit,τ |
log(volit,τ )

.

The second measure we use addresses illiquidity by inferring transaction costs from imputed
round-trips as introduced by Feldhütter (2011). A round-trip trade describes the cycle of buy-
ing (selling) and re-selling (re-buying) a given amount of an asset within a short period of time.
Indeed, empirically oftentimes trades with similar volume occur within a small time interval, after
no other transactions were recorded for a longer period of time. According to Feldhütter (2011)
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these trades are likely to be transactions constituting a round-trip-trade. Dick-Nielsen (2012) sug-
gest to measure imputed round-trip costs (IRC), i.e. the transaction costs within such a cycle as
the scaled range of transaction prices. For our purposes their measure can be calculated at day t
for bond i according to

x2,it :=
1

|IRTit|
∑

r∈IRTit

maxτ∈IRTit,r pit,τ −minτ∈IRTit,r pit,τ

maxτ∈IRTit,r pit,τ
,

where the set IRTit collects sets of transactions at that day sharing the same volume. For example
if the volumes reported on transactions τ1, τ2 and τ3 at day t coincide, the triple (τ1, τ2, τ3) con-
stitutes an imputed round-trip, if there is no further transaction with the same volume. The r-th
element in IRTit, i.e. the r-th imputed round-trip, is denoted IRTit,r. As is also the case with our
first measure x1,it, large values of x2,it indicate low liquidity.
Model (3.1) enables us to discover rich mixed effects between the two liquidity measures. Besides
theoretical moment conditions, it was assumed that xit takes values in I, a subset of Rm, where in
our case m = 2. This assumption seems to be weak, but for practical purposes it deserves closer
attention: a reliable estimation of Mi over all I in a first stage regression will require the data to
cover also the boundaries of the interval sufficiently well. Simply defining I as set spanned by
minima and maxima of x1 and x2 over all bonds and active trading days will usually not lead to
such a situation. We therefore suggest to standardize the liquidity measures according to

xj,it :=
xj,it −mint∈Ti xj,it

maxt∈Ti xj,it −mint∈Ti xj,it
, j = 1, 2. (3.6)

Hence, every bond also covers boundary regions of I, which is the unit plane [0, 1]2. In what
follows, we collect the two liquidity proxies in a vector xit = [x1,it,x2,it]

>, serving as argument
of Mi.

3.3.2 Market Liquidity

The above measures allow to examine the effect of idiosyncratic liquidity on the yield spread,
which is the object of main interest in our work. In most situations not only idiosyncratic but also
market liquidity is priced. Hence, we suggest to control for the market environment, including a
market liquidity proxy in the set of control variables collected in zit. For this purpose we rely on
the intraday price dispersion as suggested by Han and Zhou (2006). As argued in their work, price
dispersion within a day is, in the absence of news about fundamentals, mainly due to the bid-ask
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spread and thus a well suited proxy for liquidity.
Formally we obtain a market-aggregate of their measure as follows. For a bond i at day t ∈ Ti
denote the empirical r-quantile of transaction prices {pit,τ : 1 ≤ τ ≤ Sit} asQit(r). Inspired by
the measure in Han and Zhou (2006), we calculate from these quantiles the scaled price disper-
sions dit := (Qit(0.9)−Qit(0.1))/p̄it, where the denominator is the mean price. The individual
measures dit are then aggregated to obtain our market liquidity proxy according to

Dt :=
1

|Nt|
∑
i∈Nt

dit,

where the index set Nt collects all bonds, for which a measure dit can be calculated at day t.
In analogy to the idiosyncratic liquidity measures, large values of Dt are to be interpreted as an
indication of low market liquidity.

3.4 Empirical Evidence: The US Corporate Bond Market

We confront the approach outlined in the previous sections with data for the US corporate bond
market. The primary reason is the availability of rich data on corporate bond transactions. As
imposed by the US Financial Regulatory Authority, almost all important brokers and dealers in
the US are obliged to report every transaction. This data has been used recently e.g. by Dick-
Nielsen (2012) or Friewald et al. (2012). In this section, after a description of the data and its
processing, we discuss the empirical estimation results for our approach.

3.4.1 Data

We employ trade data for a large number of US corporate bonds gathered from TRACE (Trade
Reporting and Compliance Engine). Furthermore, we employ Thomson Reuters’ Eikon, CUSIP
and COMPUSTAT data to obtain bond and issuer characteristics as well as returns of the Dow
Jones Industrial Average index. Spreads are constructed using reference yields from the daily
sovereign yield curve, obtained from the data set provided by Gurkaynak et al. (2006).
The considered sample covers the time between 2004-01-01 and 2012-12-31. Inspired by Dick-
Nielsen (2012), we discard earlier observations as the coverage of TRACE was much lower in its
initial stage, at which dominantly large investment grade bonds were taken into account.
In order to deal with errors in the data, we first employ the filter suggested in Dick-Nielsen (2009).
Then, inspired by the median filter, we cope with potential outliers deleting all trades for which
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the reported price deviates by more than 10% from its daily median.5 For a given bond, we also
remove trading days with less than three transactions. At any point in time, only bonds with time
to maturity between one and thirty years are considered. Furthermore, we remove securities with
less than 50 active trading days.
From the remaining observations, we calculate for each bond a daily spread by averaging over the
calculated intraday spreads. The liquidity measures are computed from the intraday observations
as outlined in Section 3.3. Finally, our sample comprises 4512 bonds of 1167 issuers. Thus, the
number of assets is smaller than in other studies, but the sample still covers the full range of bond
characteristics.

Interest Rate and Equity Market Controls
We employ three control variables capturing level, slope and curvature effects of the risk free yield
curve. Each one is calculated from the daily US sovereign yield curve reported in Gurkaynak et
al. (2006). Shifts in the level are reflected by the mean yield over all available maturities, while
the slope is calculated as the spread between yields at 29 years and 1 year time to maturity. A
curvature effect is captured by the so-called butterfly spread, defined as the difference between
the yield at time to maturity 15 years and the mean from yields corresponding to 29 years and 1

year time to maturity.
As corporate bond yields typically exhibit a dependence on equity dynamics, we also consider
daily returns of the Dow Jones Industrial Average index.

Bond Characteristics and Issuer Information
The bond characteristics used in the analysis are the time to maturity (maturity dates), dummies
signaling embedded call options, (fixed) coupon rates, Standard & Poor’s (S&P) bond ratings as
well as the original amount issued. The considered information on the issuing firms comprises
the S&P quality rank, Fitch long term credit ratings and industry classifications.
A summary table (Table 3.A.1) is provided in the appendix.

3.4.2 Estimating Liquidity Effects

We follow the three-step procedure as described in Section 3.4.2 using model (3.1) in levels.
In Section 3.3 we introduced a standardization of the liquidity measures, the effect of which can
be inferred from Figure 3.A.1 in the appendix. Marginal distributions of x1,it and x2,it are both
heavily right-skewed when pooling the proxies over assets and time. This indicates the dominance
of situations with high idiosyncratic liquidity relative to peaks of illiquidity. Such peaks are for

5Cf. Friewald et al. (2012) and references therein.
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the vast majority of bonds during the 2008 financial crisis or within the following year. The cor-
relation between x1,it and x2,it amounts to 55% when pooling data over bonds i and days t.

First Stage: Bond Specific Event Time Regressions
For the first stage regressions, we collect the aforementioned interest rate and equity market control
variables, the bond’s time to maturity, three autoregressive terms as well as the market liquidity
proxy described in Section 3.3 in the vector of controls zit. We employ a bond specific complexity
of the spline approximation forMi, the basis dimension of which is chosen to depend on the sample
size according to b10 · T 2/9

i c.6

To reduce the marginal impact of single data points, we remove outliers as identified by Cook’s
distances. After deleting such outliers, we relabel lags accordingly. Furthermore, the liquidity
measures are again transformed according to (3.6) in order to ensure that minimum and maximum
are at zero and one, respectively.
A battery of specification tests is applied to the fitted regressions. First of all, we run Augmented
Dickey Fuller (ADF) tests on the residual series. Using a specific lag length of b(Ti − 1)1/3c and
no trend or constant, the presence of a unit root is rejected for 91 per cent of the assets at the 5 per
cent level. The results of tests for residual autocorrelation are summarized in Table 3.1.

p > 0.10 p > 0.05 p > 0.01

Ljung-Box 0.62 0.70 0.81
Box-Pierce 0.63 0.71 0.82

Table 3.1: Residual Correlation. Share of estimated models for which the tests deliver a p-value
as indicated. The lag lengths for the two Box tests are both set to ten.

The Box tests indicate that for a majority of the regressions there is negligible autocorrelation in
the residuals. For example, at the 1 percent level this holds true for more than 81 per cent of the
residual series.

Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)
Adjusted R2 0.63 0.86 0.94 0.97 0.98
Explained Deviance 0.68 0.88 0.95 0.98 0.99

Table 3.2: Adjusted R2’s and Explained Deviances of first Stage Regressions. Table reports
quantiles of the empirical distribution of adjusted R2’s and explained deviances over different
bonds.

Table 3.2 reports classical goodness-of-fit measures. As 90 per cent of the regressions yield an
adjusted R2 higher than 63 per cent, we regard the quality of the corresponding fits as globally

6See the discussion and corresponding reference in Wood (2006), p. 157.
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satisfactory, a view supported by the explained deviances. To more clearly isolate the importance
of the idiosyncratic liquidity effect, we run the tests shown in Section 3.2 for problems P1 and P2.
Table 3.3 summarizes the results for P1.

p < 0.10 p < 0.05 p < 0.01 p < 0.001

Share of Regressions 0.77 0.72 0.63 0.52

Table 3.3: Test Results for Problem P1. Quantiles of the empirical distributions of p-values
across regressions for the F-Test shown in (3.5) in Section 3.2.

For about 77% of the bonds, the idiosyncratic liquidity effect is significant at the 10 per cent level.
For almost half of the bonds it is even significant at the 1 per cent level. Whether this effect is
linear is tested using the F-test shown in Section 3.2. The corresponding results are provided in
Table 3.4.

p < 0.10 p < 0.05 p < 0.01 p < 0.001

F-Test (Full Sample) 0.67 0.61 0.49 0.37
F-Test (Reduced Sample, p < 0.1) 0.60 0.56 0.46 0.36
F-Test (Reduced Sample, p < 0.05) 0.57 0.54 0.54 0.36

Table 3.4: Test Results for Problem P2. Quantiles of the empirical distributions of p-values
across regressions for the F-Test in (3.5) with parametric (linear) liquidity contribution (additive,
no mixed effects) in the null model. The reduced samples consist of all bonds for which there is a
significant liquidity effect at the level indicated in parentheses.

The findings reported in Table 3.4 show an obvious tendency: for the majority of the bonds for
which there is a significant liquidity effect, this effect is significantly nonlinear. Note however that
this finding does not imply that M̂i is nonlinear in all directions as the tested hypothesis is that of
joint linearity.
It may also be the case that, depending on the value of the remaining component in xit, one
component of liquidity has linear effects in some situations and non-linear ones in others. This
is of particular economic interest: for example, is the effect of the price impact higher in times
of high or low transaction-costs in round-trips? The suggested model (3.1) allows to answer such
questions explicitly from data.
Figure 3.1 as well as Figures 3.B.1 and 3.B.2 in the appendix illustrate the contributions of the
measures x1 and x2 to the yield spreads in different situations. First, Figure 3.1 shows the effect
along the main diagonal, i.e. the evaluation of M̂i at liquidity measures taking all the same values.
Second, 3.B.1 shows the effects of the measure of price impact, x1, in cases of high or low imputed
round-trip costs. Finally, Figure 3.B.2 shows the effect of the IRC’s for situations of high or low
intraday price impact.
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Figure 3.1: Effects of Idiosyncratic Liquidity along the Main Diagonal. Figure shows (point-
wise) quantiles of M̂i([x, x]) for different values of x, calculated over bonds i, having significant
liquidity effects at the 10 per cent level according to test P1.

The cross-section distributions of the main diagonal values of M̂i (Figure 3.1) reveal substantial
differences of liquidity effects, which become more pronounced as both coordinates in xit ap-
proach 1. More concretely, the distributions are more dispersed in this situation and probability
mass shifts to the right, meaning that when both considered measures indicate lower liquidity,
the liquidity contribution to the yield spread increases for the majority of bonds. Interestingly
there is however also a fraction of bonds for which the effect of idiosyncratic illiquidity remains
negligible or even decreases in times of low idiosyncratic liquidity. As Figures 3.B.1 and 3.B.2
suggest, the impact of a single idiosyncratic liquidity measure strongly depends on the level of
the other measure. In particular heterogeneity of liquidity effects among bonds is much higher if
one single measure indicates low liquidity.
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Second Stage: Classification of Regression Curves
In the first stage, a number of 3254 bonds were found to have significant liquidity effects at the
5 per cent level. As indicated in Section 3.2, all other bonds are pre-classified to be members of
the group Ĝ0. In order to avoid obtaining groups having only one or two members, we further
discard bonds for which M̂i takes extreme values. To be precise, we calculate values of M̂i on a
grid in I containing 400 points and delete those assets having values of M̂i which are below the
1% quantile or above the 99% quantile of the distribution of the pooled values. Focusing on the
resulting set of 2936 bonds, estimated curves M̂i are clustered using Ward’s algorithm, based on
the dissimilarity measure in (3.4).7

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°
°°°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°
°°

°°

°°

°°

°°°°

°°

°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°°°

°°
°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°
°°

°° °°

°°

°°

°°°°
°°
°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°°°
°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°° °°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°
°°°°

°°

°°

°°

°°
°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°
°°

°°

°° °°

°°

°°

°°
°°°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°

°°

°°°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°
°°

°°

°°

°°°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°
°°

°°

°°°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°° °°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°
°°

°°

°°

°°

°°
°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°
°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°°°

°°

°°

°°
°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°°°

°°°°

°°

°°

°°

°°

°°°°

°°
°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°° °°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°°°

°°

°°°°

°°

°°

°°°°

°°

°°

°°°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°° °°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°
°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°
°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°°°°°

°°

°°

°°°°

°°

°°

°°

°°

°°°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°
°°

°°

°°°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°°°°°

°°°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°°°

°°
°°

°°

°°°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°
°°°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°°°
°°

°°

°° °°

°°
°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°°°

°°
°°

°°

°°

°°

°°

°°
°°

°°

°°

°°°°

°°

°°°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°
°°

°°

°°

°°
°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°
°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °° °°

°°

°°

°°

°°
°°

°°

°°

°°°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°°°

°°

°°

°°

°°

°° °°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°
°°°°

°°

°°

°°°°
°°

°°°°°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°
°°

°°
°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°°°

°° °°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°° °°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°
°°

°°°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°°°°°

°°

°°

°°

°°

°° °°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°°°

°°

°°
°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°
°°

°°

°°

°°

°°
°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°°°
°°°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°
°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°°°

°°

°°
°°

°°

°°

°°

°°

°°
°°

°°

°°°°

°°

°°

°°
°°

°° °°

°°

°°

°°

°°

°°

°° °°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°
°°

°°

°°

°°

°°°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°° °°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°° °°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°
°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°°

°° °°

°°

°°

°°

°°

°°°°

Group 1
Group 2
Group 3
Group 4
Group 5

Figure 3.2: Radial Dendrogram from Clustering Liquidity Effects. The dendrogram displays
group and distance structures for estimated liquidity effects M̂i. Classification results are indi-
cated by the color scheme.

To estimate the number of groups, we employ the McClain index as described e.g. in Charrad
et al. (2014). We set the lower and upper bounds to be 3 and 15, avoiding the appearance of

7Regarding implementation, we used the algorithm outlined in Murtagh and Legendre (2014).
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very small or very large groups. For comparison, note that in Dick-Nielsen (2012) the number of
classes resulting from rating/time to maturity buckets is determined to be 15 (both, in pre- and
post-subprime crisis samples). According to the McClain criterion, we find the optimal number
of clusters to be K̂ = 5. This appears to be quite robust to the choice of the cost function: the
Silhouette and Dunn indexes as described in Charrad et al. (2014) suggest K̂ = 5 and K̂ = 7.
The five clusters constructed by Ward’s algorithm are depicted in Figure 3.2.
The algorithm identifies two large classes, k = 1, 2, accounting together for about 74% of the as-
sets. The remaining bonds are found to constitute three more groups of smaller size. Remarkably,
as can be seen from Figure 3.2, groups 2 and 3 are considered to be close to each other but have a
large distance to the remaining clusters. Another bucket is formed by the remaining three classes
k = 1, 4, 5.
Table 3.B.1 in the appendix summarizes the basic bond characteristics within the different groups.
Groups 2 and 3 comprise on average larger bonds than the remaining groups what concerns the
initial amount issued. Classes 4 and 5 collect the smallest bonds on average. Table 3.B.2 and Fig-
ures 3.B.3-3.B.5 in the appendix report the distribution of maturity years and shares of investment-
grade / speculative-grade assets and issuers within the different classes. Bonds in groups 2 and 3

appear to mature substantially later than in the other classes, in which the average maturity year
is between 3 years (k = 1, 5) and 5 years (k = 4) smaller. Beyond that, bonds in the largest
group k = 2 also receive the best credit ratings on average. In sharp contrast to that, the fifth
group collects bonds with substantially worse average rating. Numerically, shares of investment
grade bonds range from 68% (group 5) to 91% (group 2), while the shares in the remaining groups
are between 75% and 85%. In lines with this observation issuers in the second group receive on
average the highest quality ranks, while firms in the fifth group receive the lowest quality ranks
(see Table 3.B.3 in the appendix).
Interestingly, as reported in Table 3.B.4 in the appendix, the level of spreads seems to be somewhat
smaller in the largest group k = 2. This is contrasted by the remaining groups revealing in
tendency higher levels: in particular the fifth group contributes to this result. The dissimilarity of
groups 2 and 5 also transfers to the trading activity. Bonds in the second group are most actively
traded while bonds in the last group are least actively traded as reported in Table 3.B.5 in the
appendix. Regarding the number of trades, the remaining groups are located between these two
extremes, whereas the third group appears to be closer to the second and the first and fourth group
closer to the fifth class. As we alluded to before, the cluster algorithm seems to confirm this result
also with respect to the dissimilarity between the different regression functions, as can be seen
from Figure 3.2.
Furthermore, Table 3.B.6 reports the distribution of issuers’ industry classifications within the
different groups. These distributions however do not show a striking pattern which would allow

124



to distinguish groups.

Third Stage: Estimation of Group specific Liquidity Effects
Given the classification of the second stage, we obtain group specific curves ĝk as the weighted av-
erage of estimated regression functions M̂i belonging to group k. The resulting estimates ĝ1, ..., ĝ5

are depicted in Figures 3.3 and 3.4. Further Figure 3.B.6 in the appendix shows corresponding
heat plots.
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Figure 3.3: Estimated Regression Functions by Group. Figure reports estimates ĝ1, . . . , ĝ5.
The units on the (vertical) z-axis differ across panels of the figure.

The effects of idiosyncratic liquidity on the yield spreads are most pronounced in group 5 as
becomes visible in Figure 3.4. Classes 1 and 4 also show substantial effects, while the liquidity
contribution to the yield spread is only moderate in classes 2 and 3.
What concerns shapes of the functions ĝk, our model distinguishes between three types of pricing
illiquidity. For groups 1 and 4 dominantly one of the two illiquidity proxies is priced, while both
are nearly symmetrically priced in groups 2 and 5. For the third group the liquidity effect is am-
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biguous. While the first group and the fourth group share a similar generic type of liquidity effect,
the exact pricing is opposite: in class k = 1 bond spreads are almost exclusively effected by illiq-
uidity as measured by the price impact. For the fourth group liquidity effects are largely driven by
the imputed round-trip costs. For groups 2 and 5 both measures appear to jointly govern the con-
tribution of illiquidity to the spread. In particular the liquidity effect increases nonlinearly along
the main diagonal, i.e. in situations, in which both of our measures indicate the same magnitude
of illiquidity. For the second group the liquidity effect is not as symmetric as in the fifth group: in
case of low costs from imputed round-trips, the Amihud (2002)-measure has a particularly large
impact on the liquidity effect. In the third group the impact of the liquidity proxies on the yield
spread is highly nonlinear. For some values of the measures it is even slightly counter-intuitive,
as e.g. the price impact has a decreasing marginal effect on the yield spread in some situations.
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Figure 3.4: Estimated Regression Functions by Group: Common Scale. Figure reports esti-
mates ĝ1, . . . , ĝ5 on a common scale on all axes.

The estimates ĝk now also allow us to assess differences in liquidity effects between groups nu-
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merically. Central questions of economic relevance are twofold: first, do the effects vary equally
strong for different degrees of illiquidity among groups? And second: which combination of
liquidity measures maximizes the distinction between groups? The first question can simply be
tackled considering the difference between ranges of function values, i.e.

Rk := max
x∈I

ĝk(x)−min
x∈I

ĝk(x) (3.7)

for k = 1, ..., K̂. We addressed the second question already visually and quantify these obser-
vations by comparing functions ĝk and ĝl according to the location of their maximum distance,
i.e.

Dk,l := arg max
x∈I
|ĝk(x)− ĝl(x)| . (3.8)

The results for Rk as well as locations of maxima and minima are reported in Table 3.5, the
locations maximum differences in Table 3.6.

Group 1 Group 2 Group 3 Group 4 Group 5
Rk 1.33 0.14 0.98 1.63 3.39
arg max (1,0.21) (1,0) (0.63,0) (0,1) (1,1)
arg min (0,1) (0,0) (1,0.89) (1,0) (0,0)

Table 3.5: Range of Function Values, Maximizer and Minimizer of ĝk. Table reports rounded
values. In rows two and three, the first coordinate refers to the measure of price impact, the secod
one to the imputed round-trip costs.

The most striking observation is that group functions have, in most cases, optima as well as max-
imum differences at the boundaries of their support. Except for the fourth group the maximum is
for all groups attained at a large value of the price impact measure. Group 5, which was identified
to have the largest liquidity effect, attains a minimum at (0, 0) and a maximum at (1, 1). This
behavior matches the intuition: large values of x1 and x2 mean high illiquidity, which tends to
imply large (idiosyncratic) liquidity premiums.
The range of function values over I is comparably small for the largest group. The opposite is
true for the groups with more substantial liquidity effects, k = 1, 4, 5, in particular for the fifth
group. Between groups 5 and 2, for example, the difference can be quantified with a scaling factor
close to 24. For those bonds which tend to have higher spreads, shorter maturities, worse ratings
and smaller sizes, the effects of liquidity vary much stronger.
Differences as quantified by Dk,l confirm the intuition gathered from above: remarkably, for al-
most all groups, differences to other groups are most pronounced for extreme values of the id-
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Group 1 Group 2 Group 3 Group 4
Group 2 (1,0.26)
Group 3 (1,0.63) (1,0.89)
Group 4 (1,0) (0,1) (0.95,1)
Group 5 (1,1) (1,1) (1,1) (1,0.74)

Table 3.6: Locations of maximum Level Differences Dk,l. Table reports rounded locations of
level differences as in (3.8).

iosyncratic liquidity measures. The magnitude of liquidity contributions particularly often dis-
criminates groups in situations of a high intraday price impact.

3.4.3 Time Variation of Liquidity Effects

Our estimation procedure revealed substantial differences of magnitudes, shapes and interpreta-
tions of the functions ĝk between groups. Whether this translates into different function values
over time certainly depends on the evolution of liquidity proxies over time. We assess the dynam-
ics of liquidity and its effects of the yield spreads as follows.
What concerns the dynamics of the liquidity proxies, we calculate a daily average liquidity mea-
sure

xj,kt :=
1

|Nkt|
∑
i∈Nkt

xj,it, j = 1, 2 (3.9)

for each group k ∈ {1, ..., K̂}. The set Nkt ⊂ Ĝk comprises all members of group k for which
there is an observation at day t. Figures 3.B.7 and 3.B.8 in the appendix visualize the group
specific time series of the two measures xj,kt, smoothed by averaging within rolling windows.
In analogy we compute the time series of average liquidity effects within an estimated group k
according to

ĝk(x)t :=
1

|Nkt|
∑
i∈Nkt

ĝk(xit).

Again, to improve the visualization, we calculate rolling means for each series. Figure (3.5) allows
to compare average idiosyncratic liquidity effects between groups.
Figures 3.B.7 and 3.B.8 indicate very similar dynamics of the liquidity proxies over time. Both
measures jump to a global peak during the financial crisis. Interestingly, in the run-up to the crisis
our proxies already show a slight increase starting from the bankruptcy of New Century Financial.
Turning to the resulting impact on the yield spreads, the most striking observation is that the series
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Figure 3.5: Effect of Idiosyncratic Liquidity. Figure reports smoothed values of ĝk(x)t over
time. Smoothing proceeds according to a (left-sided) rolling mean with a window length of 10
trading days. Vertical dashed lines are at 2007 − 04 − 02 (New Century Financial bankruptcy)
and 2008− 09− 15 (Lehman Brothers bankruptcy).

corresponding to groups k = 1, 4, 5 tend to have a very similar behavior up to a scaling factor.
This impression is indeed particularly supported by the 2008 financial crisis: for all such groups,
the liquidity contribution increases quite exactly at Lehman Brothers’ bankruptcy. The magnitude
of this increase differs among groups and, in particular, is more than thirty basis points for the
fifth group. Note that this increase is in excess to the effect of (declining) market liquidity, which
we controlled for in our regression model.
Albeit the absolute levels differ among groups, timing and direction of changes are quite similar
between most groups. This is underlined by the empirical correlation between function values
among groups. As can be seen from Figure 3.B.9 in the appendix, correlations are between 49

and 87 per cent, when discarding the third group. Average liquidity effects of the latter are slightly
negatively correlated to the series from the other groups. This emphasizes the ambiguous role of
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the third group.
In light of the above observations—apart from the third group—it appears that liquidity effects (i)
are similar among bonds up to scale, and (ii) differ substantially only in times of financial turmoil.

3.5 Conclusion

In this work we introduced a novel way of estimating idiosyncratic liquidity effects in corporate
bond yield spreads from an unbalanced panel of securities. The suggested semiparametric lon-
gitudinal data model enables us to avoid high degrees of temporal aggregation as typically found
in the related literature. We allow for a latent group structure in the cross section dimension to
govern similarities and dissimilarities in the effects of idiosyncratic illiquidity. The group struc-
ture can be estimated from the data. The actual liquidity effects are allowed to reflect a potentially
nonlinear interplay between different facets of bond illiquidity.
In our empirical study, we estimated idiosyncratic liquidity effects as well as groups of assets
sharing similar effects from transaction data of about 4500 bonds traded in the US. Controlling
for market illiquidity, we found significant and significantly nonlinear effects for the majority of
assets. Based on the similarity of estimated liquidity effects in the L2 metric, we classified assets
into five groups. The largest group collected high-rated bonds mostly having moderate spread
levels, longer maturities and high quality issuers. The effects of illiquidity on the yield spread were
found to be quite small, even in the 2008 financial crisis. This was particularly sharply contrasted
by one smaller group. Such group contained high-yield bonds with worse average ratings and
smaller times to maturity. At the beginning of the crisis, idiosyncratic liquidity contributions
jumped by more than 30 basis points in excess to the effect of market liquidity.
An analysis of group specific effects showed that, in particular for extreme values of the liquidity
proxies, functions differed among groups. The groups to distinguish in that respect were par-
ticularly the largest and the smaller high-risk group. Although the effects of illiquidity differed
considerably in their functional form, function values were substantially and positively correlated
over time for four out of five groups.
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Appendix

3.A Data Summary

Quantiles Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)
Spread (%) 0.39 0.75 1.59 3.31 6.00
Trades/Day/Bond 3.00 5.00 9.00 18.00 34.00
Active Trad. Days/Bond 75.00 119.00 224.00 443.25 755.90
Mean Rate Yield Curve (%) 3.09 3.69 4.21 4.65 4.90
Slope Yield Curve (%-pts.) -0.19 0.50 2.63 3.93 4.37
Butterfly Spread Yield Curve (%-pts.) 0.16 0.42 1.32 1.78 2.02
DJIA Returns (%) -1.25 -0.47 0.05 0.55 1.21

Table 3.A.1: Summary Statistics. Table reports p-Quantiles,Q(p), calculated from the empirical
distribution of the pooled sample.

131



Stand. Price Impact

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Stand. Imputed Round−Trip Costs

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Market Liquidity

0.005 0.015 0.025

0
50

10
0

15
0

20
0

25
0

Figure 3.A.1: Distribution of Liquidity Measures. Distributions are calculated from pooled
data.
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3.B Additional Results
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Figure 3.B.1: Idiosyncratic Liquidity Effect: Price Impact. Figure shows (pointwise) quantiles
of M̂i([x1,x2]) for x2 = 0.1 (solid line) and x2 = 0.9 (dashed lines), calculated over bonds i
having significant liquidity effects at 10 per cent according to test P1.
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Figure 3.B.2: Idiosyncratic Liquidity Effect: Imputed Round-Trip Costs. Figure shows
(pointwise) quantiles of M̂i([x1,x2]) for x1 = 0.1 (solid line) and x1 = 0.9 (dashed lines),
calculated over bonds i having significant liquidity effects at 10 per cent according to test P1.
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Group 1 Group 2 Group 3 Group 4 Group 5
Number of Bonds 708 1475 286 228 239
Share of Fixed Rate Bonds 0.92 0.95 0.91 0.90 0.87
Share of Callable Bonds 0.64 0.71 0.75 0.58 0.63
Median Coupon Rate* 6.36 5.75 6.25 6.38 6.38
Median Amt. Issued (Mio USD) 350 500 375 300 300

Table 3.B.1: Bond Characteristics in Estimated Groups Coupons: *where applicable.

Group 1 Group 2 Group 3 Group 4 Group 5
Mean Maturity Year 2015 2018 2018 2013 2015
Share of Investment Grade Issuer* 0.74 0.80 0.80 0.78 0.73
Share of Speculative Grade Issuers* 0.26 0.20 0.20 0.22 0.27
Share of Investment Grade Bonds** 0.79 0.91 0.82 0.85 0.68
Share of Speculative Grade Bonds** 0.21 0.09 0.18 0.15 0.32

Table 3.B.2: Maturity Dates and Ratings by Group. Shares reflect only Issuers/Bonds for which
a rating was available. *According to S&P Long Term Issuer Rating, **According to Fitch Rating

Group 1 Group 2 Group 3 Group 4 Group 5
A+ 0.04 0.05 0.05 0.05 0.04
A 0.07 0.08 0.08 0.09 0.05
A- 0.07 0.09 0.08 0.05 0.05
B+ 0.17 0.16 0.16 0.16 0.15
B 0.16 0.20 0.20 0.17 0.14
B- 0.18 0.15 0.19 0.17 0.21
C 0.07 0.04 0.03 0.07 0.10
D 0.04 0.02 0.04 0.04 0.05
No Rank 0.20 0.21 0.17 0.19 0.21

Table 3.B.3: S&P Quality Ranks of Firms by Group.

Quantiles Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)
Group 1 0.47 0.83 1.70 3.17 5.41
Group 2 0.40 0.65 1.20 2.19 3.75
Group 3 0.58 1.10 1.93 3.29 5.55
Group 4 0.48 0.76 1.55 3.75 6.71
Group 5 0.45 0.95 2.09 4.25 7.25

Table 3.B.4: Spreads by Group in %.
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Quantiles Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90)
Group 1 3 5 8 16 30
Group 2 4 6 11 21 39
Group 3 3 5 9 17 30
Group 4 3 5 9 17 33
Group 5 3 5 8 15 28

Table 3.B.5: Number of Trades per Bond and Day by Group.
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Group 1 Group 2 Group 3 Group 4 Group 5
Accommodation and Food Services 0.02 0.02 0.04 0.01 0.02
Admin., Support, Waste Manag. and Remediation Serv. 0.02 0.01 0.01 0.01 0.00
Agriculture, Forestry, Fishing and Hunting 0.00 0.00 0.00 0.01 0.00
Arts, Entertainment, and Recreation 0.01 0.00 0.02 0.02 0.02
Construction 0.02 0.01 0.17 0.18 0.04
Finance and Insurance 0.15 0.16 0.01 0.01 0.17
Health Care and Social Assistance 0.02 0.02 0.08 0.08 0.02
Information 0.09 0.08 0.32 0.34 0.05
Manufacturing 0.31 0.33 0.07 0.07 0.30
Mining, Quarrying, and Oil and Gas Extraction 0.07 0.07 0.01 0.01 0.06
Other Services (except Public Administration) 0.00 0.00 0.00 0.01 0.03
Professional, Scientific and Technical Services 0.02 0.01 0.05 0.02 0.02
Real Estate and Rental and Leasing 0.02 0.01 0.04 0.06 0.03
Retail Trade 0.05 0.05 0.11 0.04 0.05
Transportation and Warehousing 0.04 0.04 0.02 0.14 0.12
Utilities 0.13 0.15 0.04 0.02 0.03
Wholesale Trade 0.03 0.02 0.01 0.01 0.02

Table 3.B.6: Industries in Estimated Groups. Distribution of industries within groups. Companies are classified according to NAICS
keys.
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Figure 3.B.3: Distribution of Maturity Years by Group. Red vertical lines are at the mean
maturity years.
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Figure 3.B.4: Distribution of Fitch Bond Ratings by Group. Bonds without available rating
were discared in the calculation.
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were discared in the calculation.
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Figure 3.B.6: Heat plots of estimated Liquidity Effects by Group.
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Figure 3.B.7: Price Impact Measure over Time by Group. Means are calculated in rolling
windows of length 10 days. Vertical dashed lines are at 2007− 04− 02 (New Century Financial
bankruptcy) and 2008− 09− 15 (Lehman Brothers bankruptcy).
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Figure 3.B.8: Imputed Round-Trip Costs over Time by Group. Means are calculated in rolling
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Recaredo, J. and José, R. (2015). Prediction Bands for Functional Data Based on Depth Mea-
sures. Working paper No. 24606, Universidad Carlos III de Madrid. Departamento de Es-
tadı́stica..

Reiss, P.T. and Goldsmith, J. and Shang, H.L. and Ogden, R.T. (2016). Methods for Scalar-
on-Function Regression. International Statistical Review, 85 (2): 228-249.

Schipper, M., Taylor, J.M.G. and Lin, X. (2008). Generalized Monotonic Functional Mixed
Models with Application to Modelling Normal Tissue Complications. Journal of the Royal
Statistical Society: Series C, 57 (2): 149–163.

Shin, H. (2009). Partial Functional Linear Regression. Journal of Statistical Planning and Infer-
ence, 139 (10): 3405–3418.

Shin, H. and Lee, M.H. (2012). On Prediction Rate in Partial Functional Linear Regression.
Journal of Multivariate Analysis. 103 (1): 93–106.

Su, L. and Shi, Z. and Phillips, P.C.B. (2016). Identifying Latent Structures in Panel Data.
Econometrica, 84 (6): 2215–2264.

Tang, Q.G. and Cheng, L.S. (2014). Partial Functional Linear Quantile Regression. Science
China Mathematics, 57 (12): 2589–2608.

Vogt, M. and Linton, O. (2017). Classification of Non-Parametric Regression Functions in Lon-
gitudinal Data Models. Journal of the Royal Statistical Society: Series B, 79 (1): 5–275.

Walders, F. and Liebl, D. (2017). Parameter Regimes in Partially Functional Linear Regression
for Panel Data. In: Functional Statistics and Related Fields, Aneiros, G., Bongiorno, E.G., Cao,
R., Vieu, P. (Editors). Springer. 261–274.

Wang, G. and Feng, X.N. and Chen, M. (2016). Functional Partial Linear Single-Index Model.
Scandinavian Journal of Statistics, 43 (1): 261–274.

Weinberger, K. Q. and Tesauro, G. (2007). Metric Learning for Kernel Regression. In: Pro-
ceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, 2,
612–619.

Wood, S.N. (2003). Thin Plate Regression Splines. Journal of the Royal Statistical Society: Series
B, 65 (1): 95–114.

Wood, S.N. (2006). Generalized Additive Models: An Introduction with R. CRC Press.

150



Xiao, B., Yang, X., Xu, Y. and Zha, H. (2009). Learning Distance Metric for Regression by
Semidefinite Programming with Application to Human Age Estimation. In: Proceedings of the
17th ACM International Conference on Multimedia., 451–460.

Zhang, D., Lin, X. and Sowers, M.F. (2007). Two-Stage Functional Mixed Models for Evaluating
the Effect of Longitudinal Covariate Profiles on a Scalar Outcome. Biometrics, 63 (2): 351–362.

Zhou, J. and Chen, M. (2012). Spline Estimators for Semi-Functional Linear Model. Statistics
& Probability Letters, 82 (3): 505–513.

Zumbach, G. (2007). The Riskmetrics 2006 Methodology. Available at SSRN:
https://ssrn.com/abstract=1420185 or http://dx.doi.org/10.2139/ssrn.1420185.

151


	Introduction
	Parameter Regimes in Partial Functional Panel Regression
	Introduction
	Model
	Estimation
	Asymptotic Theory
	Practical Choice of the Tuning Parameters
	Simulations
	Regime Dependent Pricing of Idiosyncratic Risk
	Conclusion

	Appendix
	Technical Appendix
	Additional Simulation Results

	Online Prediction of Intraday Stock Volatility
	Introduction
	Asset Pricing and Spot Volatility
	Econometric Modeling
	A Component Model for Spot Volatility
	Prediction

	Forecast Evaluation
	Stock Volatility in the German DAX 30
	Data
	Recovering Spot Volatility Curves
	Prediction

	Conclusion

	Appendix
	Company Shortcuts
	Stock Level Results

	Heterogeneous Liquidity Effects in Corporate Bond Spreads
	Introduction
	An Econometric Assessment of Liquidity Risk
	Model Formulation and Estimation
	Inference

	Corporate Bond Liquidity
	Idiosyncratic Liquidity
	Market Liquidity

	Empirical Evidence: The US Corporate Bond Market
	Data
	Estimating Liquidity Effects
	Time Variation of Liquidity Effects

	Conclusion

	Appendix
	Data Summary
	Additional Results

	References

