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Summary

The annihilation of dark matter (DM) particles accumulated in the Sun could produce a flux of
neutrinos, which is potentially detectable with neutrino detectors/telescopes and the DM elastic
scattering cross section can be constrained. Although the process of DM capture in astrophysical
objects like the Sun is commonly assumed to be due to interactions only with nucleons, there
are scenarios in which tree-level DM couplings to quarks are absent, and even if loop-induced
interactions with nucleons are allowed, scatterings off electrons could be the dominant capture
mechanism. We consider this possibility and study in detail all the ingredients necessary to
compute the neutrino production rates from DM annihilations in the Sun (capture, annihilation
and evaporation rates) for velocity-independent and isotropic, velocity-dependent and isotropic
and momentum-dependent scattering cross sections for DM interactions with electrons and
compare them with the results obtained for the case of interactions with nucleons. Moreover,
we improve the usual calculations in a number of ways and provide analytical expressions.
Interestingly, we find that the evaporation mass in the case of interactions with electrons could
be below the GeV range, depending on the high-velocity tail of the DM distribution in the Sun,
which would open a new mass window for searching for this type of scenarios.
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CHAPTER 1

Introduction

“It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of
foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it
was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything
before us, we had nothing before us, we were all going direct to Heaven, we were all going direct
the other way—in short, the period was so far like the present period, that some of its noisiest
authorities insisted on its being received, for good or for evil, in the superlative degree of comparison
only.”
A Tale of Two Cities
Charles Dickens

The existence of non-luminous Dark Matter (DM) is by now well established, albeit only through
gravitational interactions [1]. Nearly half a century after the acceptance of DM hypothesis, the
hunt is still on to test the particle nature of DM, for a historical overview, see [2]. In some
of the most plausible scenarios, the role of DM is played by a stable particle with weak scale
interaction strength and mass (WIMP). The abundance of WIMPs from thermal production in
the early universe naturally matches the DM abundance. While WIMP candidates are absent in
the Standard Model (SM) of particle physics, they exist in some of its appealing extensions [3, 4].

Efforts to identify the particle nature of DM during the past decades have brought together the
particle physics, cosmology, and astrophysics communities, and might enable us to constrain the
nature of DM by combining the results of cosmological simulations, astrophysical observations,
and particle DM searches. In order to detect and constrain the nature of DM, four complement-
ary and competing strategies have been developed: Collider searches, Direct searches, Indirect
searches and Astrophysical probes. Collider searches try to produce DM with energetic scattering
of SM particles in the laboratory; direct and indirect searches, attempt to use the existing DM
halo of the Milky-Way to either observe a rare scattering of DM off nuclei at Earth or to measure
SM particles produced by annihilation or decays of DM. Obviously, direct and indirect methods
depend crucially on the properties of the Milky Way DM halo. For example, direct detection
experiments depend on the flux of halo DM particles streaming through the detector, which
naturally depends on the local density of DM particles. Indirect detection experiments measure
the flux of gamma-rays, or neutrinos, or anti-particles such as anti-protons, positrons, that
are products of DM annihilation or decays in astrophysical objects. More specifically, flux of
annihilation products at the detector is proportional to the product of total annihilation cross
section, the branching ratio for the given process, and the energy spectra in that channel.

In this thesis, indirect detection of DM at neutrino telescopes is studied. Galactic WIMPs which
stream through the galaxy can become gravitationally bound to a massive celestial object if after
elastically scattering off the nuclei, they lose their kinetic energy such that their velocity becomes
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smaller than the escape velocity from that body. Upon consecutive scatters, DM eventually sinks
into the core of the celestial body and leads to the build up of DM over-density localized to
a relatively small volume. In the core, the orbiting DM particles can annihilate to standard
model particles. However, not all annihilation products can emerge from the core of the body.
For example: charged particles are stopped inside the plasma of the Sun and only neutrinos
can emerge practically unscathed. Detection of these neutrinos would arguably constitute
one of the best signatures of DM annihilation, as there are no known astrophysical processes
able to replicate it. The advantage of probing this neutrino channel is that stronger bounds
on DM-proton couplings can be obtained than those inferred from direct detection methods.
While the idea is rather old, there is a renewed interest in the subject since neutrino telescopes
have become more sensitive and are now capable of probing interesting regions of the relevant
parameter space.

Contrary to previous attempts at DM detection through neutrinos from the Sun which consider
DM scattering on nucleons, we explore the possibility of DM scattering on electrons in the
Sun. We consistently evaluate the capture, evaporation and annihilation rate of DM in the
Sun. Since the mass of the electron (m, = 511 keV) is relatively close to the temperature in the
core (~ 1keV), electrons have larger velocity dispersion i.e. the targets are not at rest, whereas
nucleons can be considered to be effectively at rest. This thermal motion of the target has
several implications for the capture and evaporation rates. For example: the evaporation rate
is computed assuming that the captured DM obeys a truncated Maxwell-Boltzmann velocity
distribution; cut-off at the escape velocity at a given radius. However, simulations indicate
that the cut-off is indeed smaller than the escape velocity. We find that the evaporation rate is
very sensitive to the cut-off velocity, lowering the cut-off by only 10% can severely suppress the
evaporation rate, thereby reducing the evaporation mass to around 500 MeV, which is about
six times smaller than the standard case. We also improve the standard analysis by deriving
capture and evaporation rates for velocity and momentum dependent scattering cross sections,
including finite temperature effects. Using the above results we systematically compare the
nucleon case and the electron case for various operators. We also construct simplified models
for leptonically interacting DM and tabulate their resulting cross sections for DM-electron and
DM-nucleon elastic scattering. The rates and cross sections could then be used to study the
phenomenology of DM-electron scattering in these models.

This thesis is organized as follows: A brief overview of WIMP DM and the current status of
various DM searches are presented in chapter 2. In chapter 3 we review solar models which serve
as inputs for calculations that follow in the later chapters. In chapter 4, the concept of indirect
DM detection where we focus on the possible neutrino signals from WIMP annihilation in the
Sun is introduced along with the theoretical formalism that is required to describe thermal effects
in capture and evaporation rates. Using the formalism, in chapter 5 all the relevant rates and
neutrino flux at production are calculated for electrons, spin-dependent and spin-independent
nucleons in the Sun. The electron and nucleon case are comprehensively compared to each
other and possibly interesting regions of cross section and DM mass is identified. In chapter 6,
we survey simplified models where DM or mediator field couples to leptons only at tree level.
The relevant loop-level interactions with nucleons is computed and tabulated. Final remarks
and conclusion is presented in chapter 7.

Parts of this thesis have been published in the following articles:

[5] Dark matter in the Sun: scattering off electrons vs nucleons
Raghuveer Garani, Sergio Palomares-Ruiz

Published in JCAP 1705 (2017) no.05, 007

ARXIV:1702.02768



[6] Dark matter in the Sun: the Leptophilic Case
Raghuveer Garani, Sergio Palomares-Ruiz
in preparation






CHAPTER 2

The Search for Dark Matter: Status

Given the success of particle physics in describing the early Universe, it is well motivated to
assume that DM is a particle. Astrophysical and cosmological observations then provide a
number of constraints that any reasonable DM candidate must satisfy. The well known con-
ditions are that DM must be non-baryonic [7-9], have no electric charge [10], and be stable
on cosmological time scales, i.e. it must have a lifetime large compared to the age of the Universe.

A non trivial fact is that DM is required to be non-relativistic at matter-radiation equality [11]. Re-
lativistic DM particles wash out density perturbations at scales (small) below the free-streaming
length 0.1 Mpc (1keV/m,), resulting in suppression of small-scale structures, thus constrained
from observations of structures today. These considerations generally rule out DM particles with
m, ~ 1 keV [12, 13]. Thus Standard Model (SM) neutrinos cannot be the dominant compon-
ent of DM. Consequently, the SM of particle physics does not contain a viable DM candidate.
Therefore, the evidence for DM strongly hints at evidence for Beyond the Standard Model (BSM)
physics.

Having mentioned the known properties of DM, we turn to the description of one of the natural
generation mechanism of DM in the early Universe. In Sec. 2.1, the Weakly Interacting Massive
Particle (WIMP) paradigm is reviewed. Finally, in Sec. 2.2 WIMP DM detection methods are
briefly discussed and their current status is reviewed.

2.1 Thermal Genesis

By observing the the Cosmic Microwave Background (CMB) and fitting it to the parameters of
the concordance cosmological model ACDM, the DM abundance is obtained to be [11]

Qpph? = 0.1186 + 0.0020. 2.1)

Thus, any viable DM candidate should also satisfy the above condition. In this section, the
standard approach to the calculation of DM relic density from thermal freeze-out is reviewed,
closely following Kolb and Turner [14].

In the early Universe, WIMPs are in equilibrium with the thermal plasma. As the universe
expands and the temperature drops below the WIMP’s production rate, the number density of
these particles are exponentially suppressed. Eventually, WIMPs “freeze out” and remains a
thermal relic of the early Universe until today. Assuming WIMPs are stable particles and are
already non-relativistic, their relic abundance at decoupling can be calculated by solving the
Boltzmann equation (2.2) for the number density n, of WIMPs,

dn
<7+ 3Hn, = — (o) (g - mp,,). (2.2)
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where,

~h3E

m,T\2 _
gX( 271) e T, (2.3)

is the equilibrium number density of a WIMP dictated by Maxwell distribution, H is the Hubble
constant, g, is the degrees of freedom of DM particle y and T is the temperature. In the above

equation, the term 3Hn, stems from the fact that the universe is expanding, — (ov) n)z( is the

annihilation term and + {(ov) n_ ,, is the term for DM production.

X“I

The entropy density is given by,
2r
S(T) = ge(T) 75T, (2.4)

where g4 is the effective number of relativistic degrees of freedom, which is function that
depends slowly on the temperature 7 [15]. The assumption that entropy is conserved in a
co-moving volume makes it easier to work with scaled density ¥ = n, /s rather than the number
density, n, . The scaled density today, ¥, can be defined as

Yy = X2, (2.5)

where, s, = s(7)) defines today’s entropy to be evaluated at 7, = 2.726 K, the temperature of the
microwave background. Also, DM relic density today in units of the critical density is,

m.n m,sqY,
Q= Xx _ X070 (2.6)
Pcrit Perit

where H = 100i kms™'Mpc™' is the Hubble parameter and G is the Newton’s constant. Finally,
using Y, Boltzmann equation (2.2) can be recast in the form

day  [ng.(T)

=\ e (O - Y. 2.7)

g.(T) is the effective number of relativistic degrees of freedom parameter derived from the
thermodynamics describing the state of the Universe [15-17] and Y,, = Y,,(T) represents the
thermal equilibrium abundance.

R — geffng‘ 2 2[ . (2.8)

where, the sum runs over all particles ;i with mass m; and g; are the degrees of freedom in the
thermal plasma. K, is the modified Bessel function of the second kind of order n. Note that
Y, falls rapidly as the temperature decreases and universe expands. (ov) is the total thermally
averaged annihilation cross-section for the process yy - SM + S M,

> 99, f ds VsK, (Vs/T)pjior(s)

b (m;+m )
(ov) = . ; (2.9)
7 271 ) gim] Kym;/T))

where o;; is the total cross section for annihilation of a pair of DM particles into Standard Model
particles ij, and p;; is the momentum of the incoming particles in their center-of-mass frame.
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1 [ (s = Gmp +mp*)(s = (my = mp*) |

pPij=35

5 g (2.10)

Here, s = (p; + p j)z is the Mandelstam variable. It should be noted that only the final form of the
results are presented here, for a detailed derivation see [14]. The most complete calculation for
relic abundance of WIMP were presented in [18, 19] and has the following form,

QI = 2755 x 105 % (2.11)
X ' Gev ' " '

Thus, the problem of finding the relic abundance is reduced to evaluating Y, = Y(T = T,).
Integrating equation (2.7) from very high energies T — co to T = T, yields Y.
In order for this process to yield a the correct relic abundance, the annihilation cross section is
required to be o ~ 0.9 pb or equivalently 3 x 1072° cm?/s. Astonishingly, this is quite similar to
the value obtained for a generic electroweak mass particle annihilating through the exchange of
the electroweak gauge bosons, with (ov) ~ o’ /m)z(. Here, « is equal to g%v /4r with g, being the
weak interaction gauge coupling. In particular one might notice that this leads us to a WIMP
mass of the order of 100 GeV. This is called the "WIMP miracle" and independently provides a
strong motivation for the existence of new particles at the weak scale.

Thus, the WIMP miracle leads to testable prediction that dark matter has weak-scale interactions
with SM particles. To this end, the past few decades has seen major undertaking in constructing
experiments that search for these non-gravitational interactions of dark matter. The idea behind
these approaches as well as the current experimental status is discussed briefly in the next
section.

2.2 Detecting WIMP DM

Assuming DM is comprised of WIMPs, a diverse set of experiments is required to probe all
possible types of masses and couplings. DM may have interactions with one or more of four
categories of particles: nuclear matter, leptons, photons and other bosons, and other dark
particles. These interactions may then be probed by four complementary approaches: direct
detection, indirect detection, particle colliders, and astrophysical probes as shown in Fig. 2.1.

2.2.1 Astrophysical Probes

Interactions of DM can affect a variety of astrophysical observables such as the number density
and internal structure of galaxies. The most important effect is that of CMB spectral distortions
due to DM annihilation or decay during the early stages of matter domination [20, 21]. We do
not discuss this probe any further.

2.2.2 Collider search

DM can be produced in high-energy particle collisions. If dark matter has substantial couplings
to quarks and gluons, it can be created in proton-proton collisions at the Large Hadron Collider
(LHC). If DM particles are produced, they are likely to pass through the constituent detectors
without a trace, but their existence may be deduced by calculating the missing momentum,
similar to the case of neutrinos. Searches for DM at the LHC are therefore classified by missing
momentum, and by the nature of the visible particles that accompany the DM production.
Collider searches for DM are highly complementary to direct and indirect DM detection methods.
The main advantage of collider searches is that they do not suffer from astrophysical uncertainties.
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Energy injection
through annihilation/

decay during
recombination
Dark Matter Annihilation Detection Method
DM DM --> SM SM Relic Abundance:
Annihilation in the
early Universe
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Detection Method

Crossing Symmetry

Indirect Detection:
Annihilation/Decay
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Production at Colliders
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DM SM--> DM SM

Direct Detection

Detection Method

Capture in Stars

Figure 2.1: At present, DM detection experiments may be grouped into four categories: direct detection,
indirect detection, particle colliders and astrophysical probes. The lines connect the experimental
approaches and the characteristic cross section which they probe.

Moreover, they provide the playground to study DM in a controlled laboratory environment.
This may be used to precisely constrain many DM particle properties.

Current Status:

DM has to interact sufficiently strongly with the SM particles to yield observable signatures at
colliders. The efforts to search for DM in collider experiments are mainly focused on traditional
WIMPs, such as the neutralino. These are searched for, in model-dependent scenarios that
constrain the parameter space of UV-complete models, effective field theories and simplified
models [22-27], as well as in more model-independent searches for missing energy accompanied
by a monophoton [28], a mono-Z [29, 30], a monojet [31, 32] or a mono-Higgs [33, 34].

Recently, the use of simplified models, that typically contain a mediator particle connecting
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the DM sector to the SM, has been under intense study in DM collider searches, as opposed to
the use of effective field theories, containing non-renormalizable effective operators that are
obtained in the limit of integrating out the heavy mediator particle. The contact interaction limit
of effective non-renormalizable operators is only valid when the mediator mass is safely above
the center of mass energy of the hard scattering event, and this assumption does not generally
hold in the 13 TeV LHC. This observation has three consequences: First, the presence of the
mediator propagator has to be taken into account in predictions for the DM production signal,
as it can affect the kinematic characteristics of the events compared to the contact interaction
limit. Second, the production of the mediator particle may also result in final states other than a
DM particle pair, and these visible decay modes can be used to constrain such models. Finally,
they can alter the interplay between cosmological and collider constraints.

2.2.3 Direct Detection

If the Milky Way halo is made of WIMPs, one would expect thousands of WIMPs to stream
through the surface of Earth every second. In view of this, experiments are designed to detect
DM particles through their scattering with nuclei. This class of techniques is collectively known
as direct detection. Direct detection experiments measure the number of DM nucleus scattering
events per day per kilogram of detection material, the event rate R. The number of scattering
events is extracted by measuring the recoil energy deposited by rare WIMP-nuclei scattering
event and distinguishing them from the background interactions. This approach requires control
of low-energy backgrounds. Generally, R depends on the local density p, of DM in the solar
neighborhood, the velocity distribution of DM in the galactic halo near Earth and the mass of
DM m,. Qualitatively, the event rate R, is given as follows [35],

R ~ el <V>, (2.12)

my

where, DM number density is n, = pe/m,, o is the elastic cross section, {v) is the average relative
speed of DM with respect to the target and m, is the mass of the target nuclei. One should notice
that the event rate is directly proportional to the local DM density p,. Given a particle physics
model, the cross section can be evaluated. However, variables such as p, and (v) are estimated
using dynamical observations such as rotational curve of the Milky-Way. These quantities depend
on the DM distribution in the halo. This distribution is often quantified by some analytical
function p(r), which depends on the distance from the galactic center and it is commonly known
as the DM halo density profile. The density of DM in the local solar neighborhood is inferred
by fitting observations to models of the galactic halo. These observations include the rotational
speed of stars at the solar distance and other locations, the total projected surface density,
estimated by considering the motion of stars perpendicular to the galactic disk and microlensing.
The uncertainties involved in direct detection are likely to be significantly smaller than in most
indirect detection channels, the main contributions to systematic uncertainties come from local
DM density and velocity distribution of DM in the halo. The main disadvantage of this technique
is that the low cross section of WIMP-SM particle scattering makes the interactions quite rare,
resulting in low event rates. Despite the disadvantage, direct detection is by far the most
straightforward method of detection and discovering WIMPs.

Current Status:

The current status of direct detection searches is ambiguous with a few experiments reporting
hints for a DM signal like DAMA/LIBRA [36, 37], CoGent [38-42] and CDMS-II [43]. However,
such observations seem inconsistent among each other and are typically in conflict with the null
results of many other experiments [44-50]. Currently the XENON1T experiment [50] places
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the strongest exclusion limit in the plane of spin-independent DM-nucleon cross section and
WIMP mass for large DM masses, while LUX [48] and PandaX-II [47] have recently reported
competitive null results. The most stringent direct detection constraint to date on the WIMP-
proton spin-dependent cross section comes from the PICO-60 [51] and the LUX [52] experiments
(and below ~ 4 GeV from the PICASSO experiment [53]). A new generation of direct detection
DM experiments includes LZ [54, 55], DARWIN [56], DarkSide-20k [57, 58], PICO-250 [59]
and SuperCDMS [60].

In light of null results from WIMP direct detection experiments, there is considerable interest in
exploring new regions of DM parameter space with a variety of different techniques [61]. Mul-
tiple directions have recently been suggested for the detection of elastic and inelastic scatterings
of DM in the mass range from keV to MeV: recently proposed experiments with sensitivity to
DM-electron scattering include Refs. [5, 62-66]. Additional possible methods for detecting sub-
GeV DM include semiconductors [67, 68], superconductors [69-71], scintillating targets [72],
superfluid helium [73, 74], chemical-bond breaking [75], two-dimensional targets [76-78],
color center production in crystals [79], as well as search for bremsstrahlung radiation from a
recoiling nucleus [80, 81].

2.2.4 Indirect Detection

Among the techniques available, indirect detection is an attractive prospect to learn about
the properties of yet undiscovered WIMP DM. The strategy here is to detect signatures of
annihilation/decay of DM particles in cosmic rays. If DM is made out of WIMPs, their self-
annihilation in the early Universe would explain the observed DM abundance. Today, the same
annihilation process could contribute to the measured cosmic-ray fluxes; a clear detection of the
annihilation products would reveal information about the DM particle’s mass and interactions.
Similar signatures could be produced if dark matter is unstable and decays, providing us with
information on the lifetime of the DM particle. Indirect searches for DM aim at seeing such
annihilation or decay signals above the astrophysical backgrounds. The advantage of this method
is that while DM might be difficult to detect directly, the annihilation products of DM particles
can be easily detected. Indirect detection is sensitive to DM interactions with all standard model
particles and directly probes the annihilation process suggested by the WIMP miracle. As an
addendum, indirect searches have the potential to shed light on DM distribution beyond our
local neighbourhood. For example, the flux of gamma-rays or neutrinos from DM annihilations
in the Milky Way DM halo coming from a given direction subtending a solid angle AQ is written
as, ‘

AQ
' dE, J(Q)E, (2.13)

do

—X(E,,AQ) = @ Z BR
where, (o) is the thermal average of the total annihilation cross section times the relative
velocity, m, is the DM mass, the discrete sum is over all DM annihilation channels, BR; is the

branching ratio of DM annihilation into the i-th final state and dN;,/ dE, is the differential

gamma-ray yield of SM particles into photons for the i™ channel. The quantity J(Q), also called
the J-factor, depends crucially on the DM distribution in the halo, is as follows,

J(Q)AQ = f dQ ds p(r(s, Q))2 , (2.14)
AQ los

where the spatial integration of the square of the DM density profile p(r) is performed along

the line of sight s, for the region of observation which subtends a solid angle of AQ in the sky.

Discovery through indirect detection requires understanding of astrophysical backgrounds if

it involves the study of charged particles from annihilation/decay, and the signal strength is

typically subject to uncertainties in halo profiles.

10
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Similar to annihilations in the galactic center, DM captured in the Sun can also lead to observ-
able neutrino spectrum at neutrino detectors [82-88]. The fluxes of electron neutrinos and
antineutrinos at the detector are given by

do™
dT(EV‘*) = 5 L(m,,0,) (P(v -V ) (E )+ Py, - ) (E )]
Ve Td v
do’ 1 . _ . dF
dE, (E;) = @ I(m,,o,) (P(ve - V,)—— dE; (E; )+ P(v, >V )dEf (E; )] (2.15)

where, I is the total annihilation rate, d,, is the average distance Sun-Earth and dF/dE, and
dF /dE (dF /dE and dF/dE, ) are the electron (muon) neutrino and antineutrino spectra per
WIMP annihilation in the Sun. The computation of I is the main subject of the thesis, details are
described in chapters 4 and 5.

Current Status:

Several potential signals have appeared in indirect DM searches over the past few years. Most
notably, in the case of the Galactic center gamma ray excess in the GeV energy range [89,
90], an anomalous emission of gamma rays coming from the inner region of the Galaxy has
been reported. Various interpretations of this excess have been put forward, from astrophysical
processes (e.g. Refs. [91-95]) to DM annihilation (e.g. Refs. [96, 97]). Although there is strong
support for the GeV excess to arise from a population of faint, unresolved point sources, DM
interpretation has not been yet robustly excluded. However, this interpretation is challenged by
the latest constraints from dwarf spheroidal galaxies [98].

An anomalous emission line at the 3.55 keV energy from X-ray images taken by the telescope
XMM-Newton [99, 100] has been found in a stacked analysis of the Perseus cluster, Coma-
Centaurus-Ophiuchus clusters and 69 other clusters [101]. Further evidence has been gathered
also from other galaxy clusters [102, 103]. However, the status of this line is controversial. In
fact, these results are in tension with the Suzaku data [104], which show no indication of a
3.55 keV line in the Coma, Virgo and Ophiuchus clusters. On top of that, these findings are in
tension with the Hitomi observations of the Perseus cluster, which do not support an excess in
this cluster [105]. Nevertheless, the line has been recently confirmed in the summed data from
deep Chandra blank fields, the Chandra Deep Field South and COSMOS [106]. This spectral
feature can have a DM related origin, but it also may have no connection with the DM sector
and come from some atomic transition (of a potassium origin [107]) or from some systematic
errors. However, while the DM interpretation has been challenged by many independent studies
it is not in contradiction with observations of dwarf galaxies or the galactic center.

The AMS-02 experiment on board the international space station has measured the fluxes of
various charged particles in cosmic rays. The ratio of antiproton and proton fluxes exhibits an
excess over the estimated background, that has been interpreted as a signal of DM annihilations.
Intriguingly, some of the above references report good agreement with DM annihilations as
an explanation for both the AMS antiproton data and the galactic center gamma ray excess
discussed above. However, within systematic errors, secondary astrophysical production alone
can account for the data. Furthermore, a high-energy cosmic positron excess has been discovered
by PAMELA [108] and confirmed by AMS-02 [109]. While it can be produced by astrophysical
objects like pulsars or supernova remnants (see e.g. Refs. [110]).
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CHAPTER 3

Solar Models

The Sun is a natural astronomical laboratory. We are able to obtain information about the Sun
that is not accessible for other stars, due to its proximity to Earth. Precise determination of val-
ues for mass, radius, geometric shape, luminosity , chemical composition and photon/neutrino
spectrum is shown to be possible [111]. Furthermore, measurement of acoustic oscillation
modes observed at the solar surface contain information about the solar interior, at least up
to the convective zone. Geological records, comets and meteorites provide information about
the solar history as well. Combining all the observations provides possibilities to test not only
theories of stellar evolution but also new physics, in the sense of beyond the SM.

The Sun is in quasi-static main sequence phase of stellar evolution. Much of what we know
about our Sun comes from spectroscopic methods and helioseismology, for the latest review see
Ref. [112], and a compendium of results related to solar physics in Ref. [113]. This chapter
describes how a Standard Solar Model (SSM) is derived. Important inputs include chemical
abundances, opacities, equation of state and nuclear reaction rates. Much of the methodology
is not truly relevant for the calculations that follow. Hence technical details are not discussed
in detail. However, it is presented here for the completeness of the narrative. We begin with
the global description of the Sun in Sec. 3.1. We then move on to the question "how much do
we know about the solar interior ?" and the relevant physics/astrophysics behind it in Sec. 3.2;
followed by a brief description of the SSM used in the calculations that are relevant to the theme
of this thesis in Sec. 3.3.

3.1 The Sun and its Chemical Composition

The solar structure and operational definitions are briefly introduced in the section, starting from
the outside and going inwards. First, the solar wind, then the corona, followed by chromosphere,
photosphere, interior and the deep interior where nuclear reactions takes place. Distinction
between some of these layers are sometimes artificial, we do not discuss them here. The interior
of the Sun is theorized to be radiative and the intermediate regions are observed to be convect-
ive [113].

The determination of the abundance of chemical elements in the Sun is performed primarily
through spectroscopy of the photosphere. Such analysis often involve modeling of the solar
atmosphere to determine its temperature and density profile, and detailed radiation transfer
calculations that connect elemental abundances with spectral line intensities and features [112].
With the introduction of full three-dimensional radiation hydrodynamic modeling of the solar
atmosphere reasonable agreement exists among various studies [114, 115].

In Tab. 3.1 we show the relative isotope abundances used in this work, obtained from the
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solar model AGSS09 [114]. The first column is the chemical name of the element, the second
and third columns show the atomic number and atomic mass. The fourth column shows the
relative isotope abundance and column 5 is the atomic mass in units of amu. Column six and
seven show the average spin expectation value of protons, neutrons in the nuclei and the total
angular momentum of the atomic nucleus in column 6. The spin expectation values is calculated
using expressions provided in Ref. [116]. Refractory elements such as Si, Fe play an important
role in contributing to the radiative opacity in the solar interior. The mass fraction of such
metals amount to about 20% of the total metal mass fraction. Interestingly, abundances for
refractories can be determined very precisely from chondritic meteorites [117]. As it turns out
the spectroscopic abundances evolve towards meteoritic ones [114].

14

Name | Z | A | Isotope abundance | Mass (amu) <S p> S, J
H 1 [1 [1.0 1.00782503223 | 0.5 0.0 0.5
‘He |2 |4 | 1.0 4.00260325413 | 0.0 0.0 0.0
He |2 |3 | 1.0 3.0160293201 -0.081 | 0.552 | 0.5
2c 6 | 121 0.92 12.000000000 0.0 0.0 0.0
Bc 6 | 13 0.08 13.00335483507 | -0.009 | -0.172 | 0.5
N 7 | 14 | 0.99636 14.00307400443 | -0.130 | -0.106 | 1.0
BN 7 | 15 | 0.00364 15.0001088989 | -0.145 | 0.037 | 0.5
%0 |8 |16 0.9976 15.99491461957 | 0.0 0.0 0.0
70 8 | 17 | 0.0004 16.9991317565 | -0.036 | 0.508 | 2.5
80 8 | 18 | 0.0020 17.9991596129 | 0.0 0.0 0.0
Ne | 10 | 20 | 0.9048 19.9924401762 | 0.0 0.0 0.0
2INe | 10 | 21 | 0.0027 20.99384669 0.020 | 0.294 | 1.5
2Ne | 10 | 22 | 0.0925 21.991385115 0.0 0.0 0.0
BNa | 11|23 1.0 22.9897692820 | 0.2477 | 0.0199 | 1.5
Mg | 12 | 24 | 0.7899 23.985041698 | 0.0 0.0 0.0
Mg | 12| 25 | 0.10 24.98583698 0.040 | 0.376 | 2.5
Mg | 12| 26 | 0.1101 25.98259297 0.0 0.0 0.0
A1 | 13|27 1.0 26.98153853 0.333 | 0.043 | 2.5
8si | 14 | 28 | 0.9223 27.9769265346 | 0.0 0.0 0.0
Si | 14 | 29 | 0.04685 28.9764946649 | 0.054 | 0.204 | 0.5
Ne | 14 | 30 | 0.03092 29.973770136 0.0 0.0 0.0
3p 15| 31| 1.0 30.9737619984 | 0.181 | 0.032 | 0.5
323 16 | 32 | 0.9499 31.9720711744 | 0.0 0.0 0.0
333 16 | 33 | 0.0075 32.9714589098 | 0.0 0.3 1.5
343 16 | 34 | 0.0425 33.96786700 0.0 0.0 0.0
363 16 | 36 | 0.0001 35.96708071 0.0 0.0 0.0
3cl1 |17 | 35 0.7576 34.96885268 -0.094 | 0.014 | 1.5
3¢l |17 | 37 | 0.2424 36.96590260 -0.178 | 0.0 1.5
®Ar |18 | 36 | 0.003365 35.967545105 0.0 0.0 0.0
BAr | 18 | 38 | 0.000632 37.96273211 0.0 0.0 0.0
“Ar | 18 | 40 | 0.996003 39.9623831237 | 0.0 0.0 0.0
K 19 | 39 | 0.932581 38.963706486 -0.196 | 0.055 | 1.5
g 19 | 40 | 0.000117 39.96399817 0.3 -0.3 4.0
HK 19 | 41 | 0.067302 40.961825258 -0.3 0.0 1.5
“ca | 20 | 40 | 0.96941 39.962590864 0.0 0.0 0.0
2Cca | 20 | 42 | 0.00647 41.95861783 0.0 0.0 0.0
Bca | 20| 43| 0.00135 42.95876644 0.0 0.5 3.5




3.2 Probing the inner Sun

“ca |20 44| 0.02086 43.9554816 0.0 0.0 0.0
%Ca | 20 | 46 | 0.00004 45.9536890 0.0 0.0 0.0
BCca | 20 | 48 | 0.00187 47.95252277 0.0 0.0 0.0
8¢ 121145 1.0 44.9559083 0.5 0.0 1.5
“Ti | 22 | 46 | 0.0825 45.9526277 0.0 0.0 0.0
YT | 22 | 47 | 0.0744 46.9517588 0.0 0.21 2.5
BTi | 22| 48 | 0.7372 47.9479420 0.0 0.0 0.0
i | 22 | 49 | 0.0541 48.9478657 0.0 0.29 3.5
O1i | 22 | 50 | 0.0518 49.9447869 0.0 0.0 0.0
Oy | 23 | 50 | 0.0025 49.947156 0.36 0.36 6.0
Sty | 23 | 51 | 0.9975 50.9439570 0.36 0.0 3.5
O¢cr | 24 | 50 | 0.04345 49.9460418 0.0 0.0 0.0
2¢r | 24 | 52 | 0.83789 51.9405062 0.0 0.0 0.0
Bcr | 24 | 53 | 0.09501 52.9406481 0.0 0.5 1.5
cr | 24 | 54 | 0.02365 53.9388792 0.0 0.0 0.0
Mn |25 |55/ 1.0 54.9380439 0.264 | 0.0 2.5
Fe | 26 | 54 | 0.05845 53.9396090 0.0 0.0 0.0
%Fe | 26 | 56 | 0.91754 55.9349363 0.0 0.0 0.0
TFe | 26 | 57 | 0.02119 56.9353928 0.0 -0.167 | 0.5
BFe | 26 | 58 | 0.00282 57.9332744 0.0 0.0 0.0
¥Co | 27|59 1.0 58.9331943 0.25 0.0 3.5
BNi | 28 | 58 | 0.680769 57.9353424 0.0 0.0 0.0
ONi | 28 | 60 | 0.262231 59.9307859 0.0 0.0 0.0
oINi | 28 | 61 | 0.011399 60.9310556 0.0 0.5 1.5
2Ni | 28 | 62 | 0.036345 61.9283454 0.0 0.0 0.0
%Ni | 28 | 64 | 0.009256 63.9279668 0.0 0.0 0.0

Table 3.1: Relative isotope abundances: The first column is the chemical name of the element, the
second and third columns show the atomic number and atomic mass. The fourth column shows the
relative isotope abundance and column 5 is the atomic mass in units of amu. Column six and seven show
the average spin expectation value of protons, neutrons in the nuclei and the total angular momentum of
the atomic nucleus in column 6.

3.2 Probing the inner Sun

Analogous to terrestrial seismology, helioseismology provides information about the interior of
Sun by observing perturbations on the surface. Solar oscillations were first discovered while
studying velocity shifts in absorption lines on the surface by Leighton et.al. [118] in 1962. It was
found that the surface was filled with oscillatory patches of spatial coherence of a few percent of
the solar diameter. A theoretical understanding of oscillations was finally formulated a decade
later by Stein and Leibacher [119], and Ulrich [120], by modeling the Sun as a gigantic resonant
cavity, where sound waves known as pressure modes (p-modes) that are trapped between the
surface and the core oscillate.

The measurement of frequencies of thousands of global acoustic eigenmodes (or p-modes), with
angular degrees from [ = 0 up to several hundred and with precisions of the order of 1 part
in 10° , has allowed us to reconstruct the interior structure of the Sun very precisely. This is
possible because modes with different angular degree and frequencies have different turn over
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points and therefore probe different regions of the Sun. Moreover, low degree modes, those
with [ =0, 1,2 play an important role as they reach the innermost solar regions and help probe
the solar core, where solar neutrinos are produced. For two decades now, helioseismology has
provided a wealth of information on the interior structure of the Sun [111].

3.3 Standard Solar Models

A Standard Solar Model (SSM) is the final product of a sequence of other models. Primary
inputs to the solar models include chemical abundances of elements, radiative opacities and
the equation of state. Since solar models are computed with the state of the art physics of the
time and input parameters, the results of the computation vary with time, getting closer to the
actual or true solar model [121, 122]. The original motivation for computing more precise SSMs
was the solar neutrino problem. For an account of the historic overview of the development
of solar neutrino experiments and the solar abundance problem see [123] and references therein.

The underlying assumptions involved in constructing a solar model are

* Hydrostatic equilibrium: The sun is assumed to be spherically symmetric, homogeneous,
and in hydrostatic equilibrium, i.e., radiative pressure balances the forces of gravity.
Phenomena such as pulsation and rotation due to magnetic fields inside are estimated to
be negligible for computing neutrino fluxes [113].

* Energy transport is by photons: Energy transport in the deep interior is due to diffusive
transport by photons described by Rosseland mean opacities [113]. The diffusive process
strongly depends on the temperature at a given radial distance from the core. Neutrino
flux is very sensitive to the core temperature [113].

* Assumptions about energy generation: Primary production of photons and neutrinos occur
only through nuclear fusion.

* Changes in chemical abundance is only due to nuclear reactions: Changes in the local
abundance of elements occur through nuclear reactions in regions that are convectively
stable [113].

Procedure and Results

SSM is the result of the evolution of an initially fully homogeneous stellar model of one M,,
starting from the pre-main sequence, up to the present solar system age .. The SSM is required
to match all observed properties of the Sun at 7; such as the solar luminosity L, the solar radius
R,, and the surface heavy metal to hydrogen mass fraction (Z/X),. Stellar evolution models
are constructed by integrating from the core outwards and from the surface inwards, with the
requirement that the two solutions match at some mass fraction (typically, 0.1-0.2 M_). The
three adjustable quantities in the model are the initial helium and metal mass fractions Y,,; and
Z,,; respectively, and the parameter of the mixing length in the theory (ay; 1) that describes

diffusive processes. Although they are adjustable quantities, they depend on observational
constraints and are therefore correlated with each other [113].

The physics input in the SSM is rather simple and it accounts for convective and radiative trans-
port of energy, chemical evolution that is driven by nuclear reactions and gravitational settling.
Over the past two decades, since the modern version of the SSM was established there has
been the continuous improvements of the microscopic physics, particularly theoretical progress
in computing nuclear reaction rates; which has brought about some changes in the evolution
SSMs [114]. We conclude by mentioning that modeling dynamical effects in solar models from
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first principle is unlikely to provide an accurate physical picture of the Sun’s interior. It seems
unavoidable that one has to rely on sophisticated multi-dimensional simulations designed to
tackle specific problems [112].

Some results of SSM AGSS09 [114], which are potentially important for dark matter dynamics
in the Sun is presented in Fig. 3.1. The upper left panel shows the mean density p,(r) in g/cm’® as
a function of radius fraction (). The upper right panel depicts the solar mass fraction (m(r)) as
a function of radius fraction. The middle left panel depicts solar temperature (7)) as a function
of radius fraction. The middle right panel depicts electron number density n, as function of
radius fraction. The bottom left panel shows hydrostatic pressure (P) inside the sun as function
of radius fraction. The bottom right panel shows the luminosity function (L) as a function of
radius fraction. Once the chemical abundances are fixed, the solar models also generate radial
profiles for each of the elements. This is shown in Fig. 3.2, the kink in the outer most regions
(corresponding to r = 0.8) is due to uncertainties in modeling the boundary of the convective
envelope [114].
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Figure 3.1: Characteristics of a solar model: The upper left panel shows the mean density p.(r) in g/cm’
as a function of radius fraction (r). The upper right panel depicts the solar mass fraction (m(r)) as a
function of radius fraction. The middle left column depicts solar temperature (7,) as a function of radius
fraction. The middle right column depicts electron number density n, as function of radius fraction. The
bottom left panel shows hydrostatic pressure (P) inside the sun as function of radius fraction. The bottom
right panel shows the luminosity function (L) as a function of radius fraction.
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Figure 3.2: Isotope Mass Fraction as a function of solar radius: The isotope Mass Fraction as a function
of solar radius of some important elements is shown. Only those elements with fraction above 107 is
depicted.
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CHAPTER 4

Dark Matter Annihilations in the Sun: Analytics

Dark matter (DM) particles in the galactic halo could be brought into close orbits around the
Sun after scattering off solar nuclei. Subsequent scatterings could finally capture those DM
particles inside the Sun and thermalize them. It has been three decades since the effects of
DM particles accumulated in the Sun were originally considered to solve the solar neutrino
problem by modifying the energy transfer in the Sun [124-126]. However, these first papers
did not attempt to explain the physical origin of the required DM concentration, i.e., how
solar capture of galactic DM particles would proceed, which was studied for the first time in
Ref. [127] and later refined in Refs. [128, 129]. Soon after those seminal works, it was realized
that annihilations of DM particles accumulated in the Sun would give rise to a neutrino flux,
potentially detectable at neutrino detectors [82-88]. Since then, this is one of the existing
strategies to indirectly detect DM, which is in turn complementary to DM direct searches, given
that in both cases the signal would be proportional to the DM elastic scattering cross section.
Indeed, numerous studies have evaluated the prospects of detection of the potential high-energy
neutrino flux [130-187] and of that of neutrinos in the O(10-100) MeV range [188-191] using
neutrino detectors/telescopes [192-205].

Estimating the neutrino flux arising from DM annihilations in the Sun requires inputs from both
particle physics and astrophysics. The physical description of a celestial body such as the Sun,
required for accurate estimates of neutrino fluxes at production, is encoded in Standard Solar
Models (SSM) and obtained through astrophysical analysis and methods described in chapter 3.
Whereas, the dynamics of “how” DM interacts with the solar medium is entirely controlled by
principles of particle physics and statistical physics.

Often there are three processes for which the respective rates need to be computed. Namely,
Capture (rate of down scattering), Annihilation (rate of depletion) and Evaporation (rate of
up scattering). In order to keep the problem tractable, each of the above mentioned processes
are treated independent of the others. In this chapter the formalism required to compute the
above quantities is discussed, some of which is analytically tractable. Physically, the problem at
hand can be classified as a double Maxwell-Boltzmann (M-B) distribution scattering problem,
i.e. we are interested in the rate at which a particle at a given velocity (w) in an ensemble
that obeys M-B distribution elastically scatters off a different particle species which are also
described by M-B distribution, to a velocity (v) which can either be greater or smaller than the
initial velocity w . Evaluating the capture rate is relatively simple when compared with that of
the evaporation rate. The rate of capture depends on the properties of DM halo in the solar
neighbourhood. However, the evaporation rate is proportional to the properties of DM velocity
distribution inside the Sun. This means that we need at least a qualitative understanding of the
possible DM velocity distribution inside the Sun. The most widely used approach is to assume a
M-B distribution for the already trapped DM. Non-relativistic M-B distribution is characterized
by just the mass and the temperature of the concerned particle. Since mass is an input to the
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Chapter 4 Dark Matter Annihilations in the Sun: Analytics

problem at hand, we still need to know the effective DM temperature (after successful capture).
The analytical expressions required to evaluate DM temperature for untruncated and truncated
M-B distribution is derived and presented in section 4.2, not only for velocity independent
isotropic cross sections but also for velocity-dependent isotropic cross sections and momentum
dependent cross sections. Depending on the strength of DM-target interaction, certain subtleties
arise in the computation of evaporation rate which mostly suppress the evaporation rate (and
allow for large total annihilation rate), this discussion is deferred to the last part of this chapter
in section 4.3. Furthermore, general behavior of the results are discussed. This discussion is
consequently relevant and useful to describe various results presented in the Chapter 5.

Before evaluating the scattering rates in section 4.1, the differential equation which governs
the time evolution of number density of DM in the Sun (of course, its also applicable to any
celestial body of interest) for different “types” of DM particles is discussed. Here, “types” refer to
particle properties of DM, in order to keep the discussion complete, we consider DM which is
self conjugate, asymmetric and DM with large self-interactions.

4.0.1 Variations on a Theme

The integro-differential equation for the evolution of DM number density can be derived from
detailed balance arguments, as follows:

Self-Conjugate Particles

The rate of accumulation of DM particles in the Sun is simply governed by the Boltzmann equa-
tion; which implies that the time evolution of the total number of DM particles is proportional to
the sum of rate of capture (C,) from the DM halo of the galaxy, the rate of annihilation (A,)
and the rate of evaporation (E,). The Boltzmann equation for the number density (Nx) for self
conjugate DM particles then reads [86, 88]

dN, 5
= = Co— AN, — EgN, . (4.1)

The solution to the above first order differential equation is [86, 88]

Co tanh(x l‘/Teq)

N,(0) = (4.2)

Ao k+ %EQ Te, tanh(kt/7.,) ’

where 7., = 1/4/A,C,, is the equilibration time scale in the absence of evaporation and « =

1+ (Eg 7o,/ 2)?, with the total annihilation rate is given by I' = A, N)? /2. General behavior of
the total annihilation rate can be discerned by considering certain analytical limits of the above
equation:

* When the rate of evaporation is negligible, x — 1, E,7,, — 0, then I = C;,/2. Implying
that the total annihilation rate is proportional to the elastic scattering cross section.

* In the limit of equilibration being attained, «7 > 7,,, then the annihilation rate reads

Co

I = —2
(K + %Eoreq)

4.3)

N =
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* When the mass of DM is O(1GeV)

2
a0(52) 4.4

Asymmetric DM

The idea of asymmetric DM (ADM) is based on the observation that Q,, ~ 5Q,, are similar in
magnitude, and cannot be explained if DM is a self-conjugate WIMP. To explain the above relation,
the ideas of thermal freeze-out and baryon asymmetry were unified by invoking dynamical
mechanism where DM can share the asymmetry with baryons. Thus naturally relating the baryon
and DM asymmetries [206, 207]. If the DM particles stay in thermal equilibrium sufficiently
long, the symmetric part can be efficiently annihilated away, whereas the anti-symmetric part
yields DM number density which is exponentially suppressed, which leads to the following
relation between Qp,,, Q,,, m,, proton mass m,, baryon asymmetry 7,, and DM asymmetry 7,

Q m

e A 5.4 4.5)
Qb mp My

Generally, Candidates for ADM can arise in SUSY models [208] and models which call for strong

dynamics [209]. Leptophilic ADM has also been considered [210]. ADM models typically

predict light dark matter of mass in MeV — GeV range.

When the DM candidate under consideration is not self conjugate, DM (y) and anti-DM (y)
should be treated seperately. This leads to the following set of coupled Boltzmann equation for
DM and anti-DM reads

dN, » "
T = CO - AQNXN)E - EQNX’ (46)
dNg % X
T = CO - AQNXN/V - EQN/\—( (47)

Similar to the notation used in the case of self conjugate DM, Cé(C)g) is the capture rate of
DM (anti-DM) by scattering off particles in the Sun, A is the annihilation rate, E)(g(E)é) is the
evaporation rate of DM (anti-DM) by scattering off particles in the celestial body. If the elastic
scattering cross section of yy — xj is significant then, y can get captured by scattering off
the already captured y (i), the dynamic§ is reﬂected by the inclusion of term C)%NX (C)‘(N)-() to
the above expressions. Similarly, term E_ N, (E,N;) indicates y can be ejected out of the body
(evaporation) by scattering off the already captured y (). However, we work in the limit of
small self interactions for the sake of simplicity.

Of particular phenomenological interest is the completely anti-symmetric case, i.e. A, = 0 or
when only ys or ys are present in the solar neigbhourhood. The above equations simplify to

dNX Y
& T Com BN (4.8)
the solution for N, reads
] — ¢ Fofo
N (15) = C¥tg (T) (4.9)
[0MO}
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where 1, is the age of the Sun. In the limit of evaporation being negligible, N, (t,) = Clts. It has
been noted that asymmetric DM in the Sun could alleviate tension between solar modeling and
helioseismology [211].

Self Interacting DM case

When DM has large self interactions such that o-(yy — xx) is of the order of several hundred mb,
the time evolution of number density of DM reads

d% = Co = (4o + E5V )N} = (E, - C5V)N, . (4.10)

again, the notation used is the same as the above cases. The last term Cg”lf is the rate at which y

is captured from the halo by scattering off the previously captured y in the core; also referred to
as the self capture rate. The term Egelf is the self evaporation rate, due to the process yy — xx
that leads to the final state y to be completely ejected. The solution to the above equation reads
[176]

Cy tanh (t/7,)
NX - self > (4.11)
7, = (C5” - Ey)tanh (¢/7,) /2

N

with the effective time constant given by
self self 2 -172
T, = (CQ (AQ +E} ) + (CQ - EQ) /4) : (4.12)

The total annihilation rate is ' = A /2N§ . Some phenomenological implications of this scenario
at neutrino telescopes is discussed in [154] in the limit when evaporation can be neglected
(conservatively, when m, > 10 GeV), and [176] for a general discussion L

Common to all the above cases are the general expressions for capture, evaporation and annihil-
ation rates.
Capture

When the DM mean free path A = 1/(ny0) ~ R, also known as “weak” regime, the capture rate
then reads

R, o0 o\ £, (u) 0
C, = Z]o‘ 4ﬂr2drj; duX (—X] o A7 w(r)](; R; (w — v) |Fi(Q)|2 dv, (4.13)

my Uy

here the sum is over all the target particles i which can interact with DM. Here, F,(g) is the
nuclear form factor corresponding to a given element i, f, is the velocity distribution of DM

in the solar neighbhourhood, and p, is the local DM density 3. The calculation of capture rate
proceeds in three steps. The first step is to integrate the differential scattering rate R; (w — v)
(the rate of scattering to a lower velocity v, for a given w such that w > v). The derivation of
R; (w — v) is presented in the next section.The second step involves integrating over the initial
DM velocities (”x) and in the last step we integrate over the entire volume of the Sun in the last
step.

! Remark: At this point it is unclear whether DM with large self interactions can impact the process of stellar
evolution and the present properties of the Sun significantly ?. There are dedicated codes [212] and DarkSTEC
which have already incorporated the leading effects of DM in any stellar body, however, the case of DM with large
self interactions are not included yet.

% Details about these quantities are discussed in chapter 5.
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4.1 Differential Scattering Cross Sections and Rates

Evaporation

Assuming the captured DM is sufficiently thermalized with the solar medium, the radial number
density of DM n,(r,1), can be assumed to have an isothermal profile defined by its effective
temperature 7, (# T) and m,, in the “weak” regime. The velocity distribution is encoded in
f,(w, ), which is assumed to be M-B distribution truncated to a velocity less than or equal to
the escape velocity at a given radius. Therefore, f, (w, r) is parameterized by 7, , m, and cut-off
velocity v.(r). General method to estimate T, is outlined in section 4.2. Using the definitions
above, the evaporation rate is

RO
E, = Z jo‘ s(r)yn, (r,1) Anr? dr

the sum is over all the target particles i which can interact with DM and the factor s(r) accounts
for the suppression, relevant only when 1 << R “. Analogous to the capture, the calculation
proceeds in three steps. The first step is to integrate the differential scattering rate R; (w — v)
(the rate of scattering to a higher velocity v, for a given w such that w < v). The derivation of
R (w — v) is presented in the next section. The second step involves integrating over the initial
DM velocities (w) and finally we integrate over the entire volume of the Sun in the last step.

0,.(r) )
f @, r) 4rw? dw f Rf(w — v)dv, (4.149)

v, (r)

Annihilation

Annihilation rate reads X
fo © n)z((r, 1) 4nr* dr

Ay = (o 4v (4.15)

) ,
(R n (r, t) 4nr* dr ’
(6

where (040, ,) is the thermally averaged annihilation cross section. o4 is the annihilation cross
section and v, , is the relative velocity between the two annihilating DM particles.

Note that the rate of self capture and self evaporation, relevant for DM with large self interactions,
is easily obtained by making suitable replacements in the expressions for R (w — v).

4.1 Differential Scattering Cross Sections and Rates

In the past few decades, WIMP DM with primarily spin dependent and spin independent
interactions have been extensively probed at various direct detection experiments, and in the
context of DM annihilation in the Sun. Such interactions in the non relativistic limit result in
elastic scattering cross sections with no non trivial dependencies on velocity and momentum. In
light of null results in the search for DM at direct and indirect detection experiments, and in the
spirit of exploration, more possibilities have been considered [213-227].

Before we compute the rates in a particular model, it is helpful to understand their behavior
independent of Lagrangian parameters by phenomenologically parametrizing the differential
scattering cross section for a DM particle elastically scattering of a target i, as follows

* The discussion is relegated to section 4.3.2.
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Chapter 4 Dark Matter Annihilations in the Sun: Analytics

do—i con s't(vrel’ Ccos gcm) 0i0
— = —, 4.16
dcosf,, 2 ( )
do—i,uf l(vrel, cosf.,,) Tio [V 2n
- = — (= , (4.17)
dcosd,, 2 \ v
2
dai’qz(urel, cosf.,,) _ i (1 +m, /m, )? n | 418
dcosd,, 2 2 qo

where, n = 1,2, -1; v, and g, are reference velocity and momentum. In the context of simplified
models, the possible Lorentz structures that lead to the above parrameterization is discussed in
chapter 6. Such parameterizations have been previously considered in the context of neutrino
signals from the sun and to alleviate tensions between helioseismology and solar models. Its
worth a mention that contrary to the previous studies we provide general closed form analytical
expressions for the differential scattering rates for all the cases considered above, including
thermal motion of the target particles. Later, we apply this formalism to case when the target
particles are electrons, where it is known that thermal effects play an important role for captures,
but had not been analyzed thoroughly. As expected such analytical expressions greatly optimizes
computational time and provides a good analytical handle for the problem. Hereafter we focus
on the case of n = 1.

We consider DM particles with mass m, interacting with a thermal distribution of targets with
mass m;, such that we can work on the non-relativistic limit. Assuming the target particles follow
a Maxwell-Boltzmann velocity distribution, f;(u, r), with density »;(r) and temperature 7(r), the
differential rate at which a DM particle with velocity w scatters off a target i with velocity u and
relative angle 6, in the laboratory frame, to a final velocity v is given by

Rw—v) = fn(r) Dw —ul fi(u, r)du
2 f f dcos@—lw ule™ i @ (4.19)
7r u; (r)

where do;/dv is the differential scattering cross section,

win) = |2 :j(r) : (4.20)

is the most probable speed of the target particles at position r, and the relative velocity between
the DM and target particles is given by

lw—u|= \/w2+u2—2wu cosf . (4.21)

Now, using the notation of Refs. [128, 229], we can write the above expression in terms of
the velocity of the center of mass, s, and the velocity of the incoming DM particle in the

> Ref. [228] showed for the first time that for the case of constant cross section mean motion of the target could
be important, here we generalize to velocity-dependent isotropic and momentum dependent differential cross
sections.
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4.1 Differential Scattering Cross Sections and Rates

center-of-mass frame, ¢,

(I+p)t = w-u, (4.23)
where we have defined
u; = ﬁ . 4.24)

If we substitute u and cos 6 by s and 7, Eq. (4.19) can be expressed as

32 ! ] —u u; (r
R(w — v) = _His n(r)f dsf dt T e MO Q= s — 1) O(s +1—w)  (4.25)
ﬂwu(r)
where |
4
,u,-’izulz , u2=2uiyl~’+t2+2,ui’+sz—,u,-w2. (4.26)

On the other hand, the differential cross section do-;/dv can be written as

do; (¥ 1 do;, dcosd,
Ti _ f Ti CCOU o1 — |cos 6,41 Ao,y (4.27)
0

dv 21 dcosd,, dv

where 6, is the center-of-mass angle between the velocity of the outgoing DM particle, ¢’, and
the velocity of the incoming DM particle, ¢,

Figure 4.1: Relevant vectors in CM frame: s is the CM velocity, ¢ is the incoming DM velocity and ¢’ is
the out-going DM velocity in the CM frame. As usually done, the angle between 1,7 is 6.,,, the angle
between s, is 6/, the angle between s, is ,, and ¢,, is the azimuthal angle subtended by ¢/, s.

st's

cosf,,, =cosf, cosb, +sinf, sinf, cosd, , (4.28)

and 6, and ¢, are the center-of-mass angles of the outgoing DM particle with respect to s and
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6, is the center-of-mass zenith angle of the incoming DM particle with respect to s, see Fig. 4.1,

U)2 - 52 - t2

COS gst = 2—” . (429)
1)2 _ S2 _ t12

COS 93/ = T (430)

Therefore, we can express the differential DM scattering rate off target i, Eq. (4.25), as

4 0o 0o 27
1 ; _ do;
Rw— )= - B 2y f dr f dste™ M0 His, 1,,0) f b Gogsi+ 43D
,71'3 U; (nyw 0 0 0 COs b,

H(s,t,w,0) =Ow —|s—t) O +t—-w)OWw—|s—t)O(s+t—0). (4.32)

with

If one performs the s integral first, this product of Heaviside functions translates into the
following integration limits for s and ¢:

(for v < w)H (s,t,w,v) : (4.33)
w—v<t<v+w <<t
<t< , w—t<s<v+t,
2 2
v+ w
> <t<L 0, t—-v<s<v+t;
(for v > w)H (s, t,w,v) : (4.34)
v—w<t<v+w s <war
<t< , v—t<s<w+t,
2 2
v+ w
> <tL o0, tr—-w<s<w+t.

Finally, the full differential scattering rate is obtained by summing over all targets i, i.e, R(w —
v) = >,; R;(w — v). In what follows we also use these definitions [128]:

b
x(a,b) = f eV dy, (4.35)
R R
aj: = Mi(r) s (436)
vt w
B, = Hi-U=His @ (4.37)
”i(”)

4.1.1 Constant Cross Section: Velocity-Independent and Isotropic

We first consider velocity-independent and isotropic cross sections, which is the case usually

studied in the literature,
do—i,const(vrel’ COs ecm) _ Tio

=—, 4.38
dcosé,, 2 ( )
so that o; ., = 0, . Therefore, Eq. (4.31) reads
R’ ., (w— )= 16 'uiJr En-(r)o-- foo dtfoo dste i H*(s,t,w,v) (4.39)
iconst \/E M?(I’) w ! i,0 0 0 ,LW,V) . .
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4.1 Differential Scattering Cross Sections and Rates

Using the conditions v > w for R}, ,(w — v), and v < w for R}, ,(w — v), the integrals in
Eq. (4.39) can be performed analytically [128],

f dtf dste_uz/“"z(r)Hi(s,t,w,v)= Ui /) [X(+af ) + (6 ,6’+)e”(w ) (r)]. (4.40)
0 0 8/11/“11+

Finally, the rates R, (w — v) are given by [128]

R0 = 0) = Z i ‘ﬁ 2 i) i |rras, @) +x(pL B @ TNEO) L 4.41)

4.1.2 Velocity-Dependent Cross Section

We consider now the case of velocity-dependent and isotropic cross sections, i.e.,

doj (U €OS 6 T (b n 4.42)
dcosé,, 2 Ny ) '

rel>

so that Tiat, = 00 (Urer/ vy)", and where v,,, is the relative velocity between the DM particle and
target i,
Ve Elw—ul=+u)r=2p,1, (4.43)

and v, is an arbitrary reference velocity, which we set to v, = 220 km/s. Thus, for this particular
case, the differential scattering rates read

24+n ﬂ4+n v O_O ) 5
Ry (w—v) = N = —n,.(r)—’,; f dr f dse™" e O B (5,1, w,0). (4.44)
* Tou(r)w

For the case of n = 2, using the conditions v > w for R (w —v), and v < w for R , (w — ), the
rel
integrals in Eq. (4.44) can be performed analytically,

f dtf dsg e /) H*(s,t,w,v) =
0 0

u?(r) ! e
2p4 (“"’+ ’ 5) (i O ) (4.45)
w? 3 1 2 3 .
+(u,~2(r)+§+’;l] x(xa_ a+)+( ?(r)+2+171] x(£B_ ﬁ+)eﬂ( ?) /i ()]

Finally, the rates R;‘} (w — v) are given by
rel

2 ,u-2 v u.(r) 2 1 vow 2 vtw 2
i+ i — _ _
R rel(w —0v) = E N E”i(”) Tig (T) [(ﬂm + 5) (i e a*)

— N u,(r) ()
w’ 3 1
(u_z(r) 3 /71_])(( a_,a,)

2 2 2 2
+( 34 1] X)) <r>] .
uj (r) 2

(4.46)
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4.1.3 Momentum-Dependent Cross Section

Next, we consider the case of momentum-dependent cross sections,

do; (Vs cO86,,) O "
i,q" \"rel em/ _,OHin (1) , (4.47)
dcosé,,, 2 " \q
where /2+1
on/2+ ! n
o= Tyl U L2 B

f_ll (1 —cos@,,)"* dcos

cm

is a normalization chosen so that the total momentum-dependent and velocity-dependent cross

sections are equal, i.e., o = 0 s , if the arbitrary momentum is defined as g, = m, v, and o

is the same in both cases. In the non-relativistic limit, the 3-momentum transfer is given by

2
m
2_ 2 2 22 2
g =mylw—vl’=2m £ (1 -cosf,) = — v, (1 - cosb,) . (4.49)
Hi+
Then, the differential scattering rates read
. phn/2 Hn o
R (w—v) = %_/2[13,_+£n1(r)_1n0
4 7w w Vo
00 00 ) 2 21
xf dtf dse'™*" e 1D gE (s, 1,w,0) d¢,, (1 -cos6,,)"* .
0 0 0
(4.50)

For the case n = 2, using the conditions v > w for R:“qz(w — v), and w > v for Ri_qZ(w — v), the

integrals in Eq. (4.50) can be performed analytically. After computing the ¢, integral, one
obtains

00 00 2 2 2,2 2 2
-5 —t - —t — [ (r
27Tf dtf ds (1 _ (w N )(U N )] [36 M/ui()Hi(S,l‘,w,U)I
0 0

457
5
% 142,(';) [iv w e_az _wHv e_“i st
/’ll #[’4_ ul(r) l/tl(r)
1 w?— 2 1 R X
+(_ o _]X(i"—"”) * (‘ ! _]X(iﬁ_,ﬁ+)e“f (=)
2 ui (r) lJl 2 ui (r) l"tl

4
. B 8 Mt v u;(r) VW _2 wHU _2
qu(w —v) = ZI: V= —12 ni(r) oo ( ) [_ e e — ) e
1w -v* 1
(5 w2 (r) E)X(ia_’a+)
(l M + l) (+B_,8 )eﬂi(wz‘vz)/“iz(r)] (4.52)
2 uiz(r) Hi AP ' .
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4.2 Dark Matter Temperature: in the Knudsen Limit

4.2 Dark Matter Temperature: in the Knudsen Limit

In the “weak” regime, after DM particles are captured by the Sun, they would thermalize non-
locally by multiple interactions, with a single isothermal (iso) distribution. In this limit (Knudsen
limit), their radial distribution can be written as [88, 125, 126]

e—m)(qb(r)/TX

, (4.53)
j(;Ro eI 42 dr

nX’iSO(r, H = NX(t)

which corresponds to an isothermal sphere following the law of atmospheres, with a radial
dependence set by the gravitational potential ¢(r) = for GM(r)/ > dr’, with G the gravitational
constant and M_(r) the solar mass at radius r, and where N, (1) is the total population of DM
particles at a given time z.

Although a M-B distribution, Eq. (4.57), is not an exact solution of the collisional Boltzmann
equation in the optically thin regime (the Knudsen limit) [128, 230, 231], one can obtain a
solution for the isothermal approximation by requiring the distribution to satisfy its first energy
moment and solving for 7. In the case of the collisionless Boltzmann equation, for a steady
state equilibrium distribution without evaporation, the energy moment equation implies no net
flow of energy [125], i.e.,

RO
> f &(r, Tysv)4nr dr =0, (4.54)
— Jo
where
&(r, T,\/’ Uc) = fd3w n)(,isa(r) f/‘\/,iso(w’ r) deu n,-(r)fl-(u, r) Jio lw — ul <AE1> (4.55)

is the energy transfer per unit volume and time, and where the velocity distribution functions
are given in Egs. (5.19) and (5.20), which we reproduce here (in the DM case, for the isothermal
approximation),

1
fwr) = ———— 0 (4.56)
[ 3 3
7 u; (r)
% ()~ w)
e O (r)-w
f/‘\(,iso(w’ 7‘) = ) N (457)
2 3 W _ 2w o)
v, (Erf( 0, ) i e X)
where u,(r) is defined in Eq. (4.20),
27,
b, = | — . (4.58)
ny
v.(r) is the (position-dependent) cutoff velocity of the DM distribution and
V'dcos6,, do;
(AE;) = f AE (w,u,cos6,,) (4.59)
-1 o9 dcosf,,
with AE; being the energy transferred to the DM particle after one collision,
My 2 o
AEi = 7 (U —-w ) . (4‘.60)

In terms of the incoming velocities and the scattering angle in the laboratory frame, 6, and in
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terms of the scattering angle in the center-of-mass frame, 6,,,, Eq. (4.60) reads [125]

_ M 2 2
AE;(w,u,cos0,,) = T (1 —cosb,,) (u —u;w” +2u; _wu cos 0) . (4.61)
Hi+

More explicitly, in terms of the gravitational potential ¢(r) (see Eq. (5.21)), Eq. (4.54) can be
written as

R, 0 rue(r)
Zf dri*nirye ™ f dww’ Friso@s7)
— Jo 0
00 1
X f duu® fi(u,r) f dcosfoglw—ul(AE;) = 0. (4.62)
0 -1

4.2.1 Constant Cross section: Velocity-Independent and Isotropic

For the usually considered case, constant (velocity-independent and isotropic) scattering cross
section, the expression for the cos 6 integral reads

] me 1 3
fdcos@lw—ul(AEi) = — — (1 Gw+w) + @+ 4w) - w’ lw-ul
= 607, wu

~(@p+ Dw=- @ +H)@+whH]. (463
One can also perform analytically the velocity integrals. If there is no cutoff in the DM velocity

distribution, i.e., v.(r) = oo, the equation to be solved to obtain the solution for T, can be written
as [125]

Ro m, m; m,T, +m To(r))'/? iy 0
Zf a0 n;i(r) £ 3 ( S ) (Te(r) - TX) e v PAdr=0. (4.64)
Y ' (m; + mX) m,m;

On the other hand, if there is a (position-dependent) cutoff on the DM velocity distribution at
v.(r) and we define 7.(r) = mxvz(r)/z , then

N, e HOT,

Erf L) N G e T | ax fRO dr r? eIy
T nT 0

X

Ei,const(r’

T To) =

TIT, _ )
Erf( L) ] ¢ [1 (% T (r) + Tc(r))

f 2
Ty

- (% Te(r))z - (% To(r)+ Ty +T, c(r)) (T -1, |

T.(r) | T.(r)
nT,

1/2 T.(r) T.(r)
+ (,ui To(r) + TX) (T@(r) - TX) Erf[\/T—X + m T@(r)]} ) (4.65)

2\2

1 (lﬁ To(r) + Tc(”)) - (Te(r) B TX)]
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4.2.2 Velocity-Dependent Cross Section: vfe,

In a similar way, for o, » o v%,, the expression for the cos 6 integral reads
*“rel

rel>

1 m, 1
f dcosfOlw —ul(AE;) = — [(ul(6w+u)+(w+6u))(w—u) |w — ul
-1 140ﬂ1+vo wu

~(6p; + Dw= (g +6))w+uw)]. (4.66)

Again, the velocity integrals can be performed analytically. In the case with no cutoff in the DM
velocity distribution, the equivalent equation to Eq. (4.64) is

Ro m,m; m;T, +m, To(r))? My 0
Zf a0 mi(r) < 3 ( X O ) (Te(r) - TX) e v FAdr=0. (4.67)

The expression for €, 2, with cutoff at a velocity v.(r) reads

N oM I,
€2, (nTT) = ad

x»te
Erf T(r)|  [4T.() T 4 fR@ dr 2 eI,
T, nT, 0
5 > . o T ~T(N/T,
X— [|—— % n;(r) ;2’0 Erf (D) | ¢
my N7y Yo H; To(r) N

3 34 ?
( T T2(r) - 2T2(r) - ( % TO(r)) ] (To(r) -T, - Tc(r))

[ 2 2 3#1'3 Té(”)] l
+9u; T.(r)Ty(r) — 12 TX To(r)—18u; To(r) —4T (r) — —— —— | T.(r)

4 T.(r)
#i Te() To(r) —(T;;”+,,f;;21>)(- o), b T (r)
AT, 6 T.0n 3000 )Tc(r)
5 T,
(T LY RO ()) (To(r) T)]
T.(r) T.r)
+ (T, +u T, (r)) (T@(r)—TX)Erf(\/T—X+’uiT—®(r)}} (4.68)

4.2.3 Momentum-Dependent Cross Section: q2

For ¢*-dependent cross sections, the results are the same as for the v7,,-dependent case, except
from a constant factor,

4 (m,vy\?
€Ty ):5( ;o ) €2 (T, T). (4.69)

Therefore, the temperature T, in the isothermal approximation for the Urel -dependent and ¢*-
dependent cases, with the cross sections as defined in this work, is the same as long as condition
of no net energy flow, Eq. (4.54), is applied.
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4.2.4 Correction to the Temperature Calculation: Including Evaporation

So far, as done always in the literature, to compute the temperature of the isothermal distribution
in the optically thin regime, we have assumed there is not net flow of energy carried away by
DM particles, i.e., DM particles are assumed to be confined within the Sun. However, for low
DM masses (typically below a few GeV), evaporation from the Sun is very efficient, so there
is indeed a net flux of energy. Indeed, a correction becomes crucial to even find a solution in
some cases. Therefore, Eq. (4.54) needs to be modified in order to take into account the energy
carried out of the Sun by the evaporated DM particles, i.e.,

Zf &rT,,T.)4nr dr—Zf €cvapi(> Tys T, .)47rr2dr, (4.70)

where, in general,

eml’l(r’ X’T‘) - fd3 )(no(r t)f)(,iso(w, r) [f

0,(r)

W

K (w—v)do+ f K (w— v) dv] , 4.71)
with the rates K;' (w — v) being equivalent to R} (w — v), but including AE;, i.e

K;(w —v)

fn(r) Llw — u| AE; fiu,r) d’u

AE; Ri(w — v) = 7)‘ (v - w®) Riw - v) . (4.72)

If there is a cutoff in the DM velocity distribution such that w < v.(r) < v,(r), then Eq. (4.71) gets
simplified to

v,.(1) 00
€evapiTs Tys Tp) = f Ny iso(s 1) fiso@W, 1) 4rw® dw f K '(w—v)dv. (4.73)
0 v, (r)

Therefore, although the left-hand sides of Eq. (4.70) for v’,-dependent and ¢*-dependent
cross sections are proportional, the right-hand sides are not, which results in slightly different
temperatures for low masses, for which the right-hand side matters. Also notice that we have
not included the suppression factor appearing in the general expression of the evaporation rate,
Eq. (4.14), because the approximation of the isothermal distribution is only valid in the Knudsen
limit, for which s(r) = 1.

4.3 Propagation of Dark Matter in the Sun

4.3.1 Mean Free Path
The total mean free path of DM particles in the solar medium is defined as ) = i fi_l(r),
where fi_l(r) = (o;)(r)n,(r) is the partial mean free path for DM interactions with a thermal

averaged scattering cross section (o;)(r) off targets with density n;(r). This thermal average is
performed over the two initial (DM and targets) velocity distributions, i.e.,

() = n(r) (o)) = ni(r) f dw f,w,r) f du fiw, ) ow,u) . (4.74)

For velocity-independent and isotropic cross sections, with or without velocity cutoff, trivially,

(o) r) =00 - (4.75)
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2
rel

For the v
average reads

-dependent cross sections considered in this work, o 2, vZ,, Eq. (4.42), the thermal

Tio To(r)
(@2 Y1) = =5 6p, —>
*Urel UO mX

(4.76)

i To(N+T,
BV K My )+ By 1) (527t ) (1= KD 1)

8 W) 1y, 7 () + (L= 1K) 7o 51 ’

where the position-dependent normalizations are given by

PAGILAG)

(4.77)

1 (vc(r)

3
6 VA, \ (r)) 50\ _ 2 w0 —2eEm
b Erf( 55 Vi 5o € g

Yoore(n =1

e—vz(r)/v)z(

Yo =1- (4.78)

#i To(r) (v‘m)z (vcm)
3V (1 To(r) + T,) \ti) L vy Erf(w) _ 2 ) e

X \/;UX

with 5(r) = 2T,(r)/m, and v} = 2T, /m,. In case of no cutoff, T} 7x(r) = Z;;,(r) = 1. The
subscript LT E indicates that DM is in local thermodynamic equilibrium, i.e. T, = T (r) = T, (7).

The calculation of the mean free path is mainly relevant in the conduction limit (optically thick
regime), i.e., when T,(r) = Ty(r) and f(K) = 1, in which Eq. (4.76) gets simplified as

o, To(r)
(0,2 )(r) = _20 O, = XiLTE > 4.79)
*Urel U() mX

Similarly, for ¢*-dependent cross sections, dO‘i’qz/d cos 6, o 4%, Eq. (4.47),

mX Uy

2
(o‘i’qz)(r, V) = ( ) <0—i,ufg,>(r’ ), (4.80)

do

and thus, the mean free paths for vrzel—dependent and ¢°-dependent cross sections coincide, as

long as o is the same and ¢, = m, v, for the cross sections as defined here.

4.3.2 Suppression Factor

The suppression factor s(r) that accounts for the fraction of DM particles with velocities larger
than the escape velocity (after the first interaction) that escape the Sun is defined as [232]

S(F) = Mg Nearr (1) €™ (4.81)

where 7(r) = fr Fo ¢ '(#")dr’ is the optical depth in the radial direction. The optical depth in a
generic direction, denoted by the angle with respect to the radial direction, 6,, is given by

lo(r,cos6,)
(r,cos6,) = f e @Hdl, (4.82)
0

where I (r,cos6,) = —rcosf, + \|R3 - r* sin’6, and r’ = \/12 +r° +21r cos, .
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The factor n,,,(r) takes into account that DM particles move in non-radial orbits and is defined as

1
Nang(r) = e’ f ¥(0,) e "% d cos b, (4.83)
-1

where y(6,) is the DM distribution in the polar angle. This was estimated in Ref. [232] assuming
an isotropic distribution (y,(6,) = 1/2) and including an approximate correction from the dipolar
contribution (y,(6,) « cos6,). In order to allow for a smooth transition between the optically
thin and thick regimes, the estimate of Ref. [232] can be modified as [189]

1— —-107(r)/7
Nang () = % i(—r) : (4.84)
Note that for T < 3, this is a better estimate of Mang(7) than that of Ref. [232]. However, also note
that this factor has extra dependencies on y; and on the type of interaction, but we do not refine
it any further here.
The factor n,,,,,,,(r) takes into account the possibility of DM particles escaping even after interacting
several times. Following Ref. [232], we have estimated it in the general case when the probability

of one DM particle with energy E, loosing a fraction of energy Ex(r) = TE—(Xr) — ¢(r) after one
[0}

2 ~ ~
interaction, with ¢(r) = 2 “") the local dimensionless escape energy, is given by 1 — ¢ E(/%0),

= 2T,
instead of simply EX(r)/&)(r), the latter being valid when this probability is small. In this
case [232],

S 1 A\ n .
nmult(r) = eT(r) ZL dE)((r) (ﬁ (1 B €_E"’(r)/¢(r)) ) (e_r(r) Tl’l(‘r)) e_EX(r)
n=0 : !

oF (: 1+ d(:7() (4.85)

where the first term in the integral represents the probability that the DM particle looses at least
an energy EX(r) after n interactions, the second term is the probability of n scatterings and the
third term is the initial DM distribution above the escape velocity. The result is the confluent
hypergeometric limit function (F, (;b;z). In order to correct for the fact that the probability
of scattering to higher energies is finite because the medium is not at zero temperature and
to correct the collision rate to take into account the targets thermal velocity in the DM-target
relative velocity, in analogy with Ref. [232], finally we estimate it as

2 .
Mt (1) = oF (§ 1+ 3 ¢(”)§T(V)) . (4.86)

In the limit ¢(r) > 1, which applies to most of the relevant parameter space, this factor reduces
€0 Nymy(r) = €377 [232]. In the opposite limit, ¢(r) < 1, Ny (r) = Iy (2 V/7(r)), where Iy(x)
is the modified Bessel function of the first kind of order 0.

4.4 A Note on the Numerical Implementation of Erf

During the course of this study, spurious numerical results were encountered for the capture and
evaporation rates at small u (~ 0.01) ©. The origin of the inconsistent results was traced to the
default intrinsic implementation of error function in standard programming language libraries
(including the latest versions Fortran, Mathematica and C++). In this section, issue regarding
the error function is briefly illustrated and a reasonable solution is proposed.

® Differential scattering rates are strictly positive definite; however, contrary numerical results were obtained
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4.4 A Note on the Numerical Implementation of Erf

From the derivation of the differential scattering rates, it is clear that the functional form
generally involves differences of two error functions, with similar but different arguments, see
Egs. (4.41), (4.46), and (4.52). To recap, consider the expression for the rate of down scattering
(R7) when the target particles are protons, for constant isotropic cross section

Ry = 0 = 2= 22 2 0 [eca )+ x(=p o) AP0 (4.87)
Vropow
with y(a, b) defined in Eq. (4.35). In practice
x(a,b) = g (Erf[b] — Erf[a]). (4.88)

As discussed in the beginning of this chapter, we'’re often tasked with integrating Eq. (4.87) in
final velocity v. Spurious functional behavior of R* translates to spurious numerical results for
the capture and evaporation rate, upon integration.

General implementation of the Erf (and complimentary Erf) in most programming languages
utilizes (unless otherwise specified) the following routine obtained by Chebyshev fitting [233].
Below is the routine presented in Numerical Recipes [233] for the complimentary error function:

FUNCTION erfcc(x)

REAL*8 erfcc,x

IReturns the complementary error function erfc(x)

I with fractional error everywhere less than 1.2d-7

REAL*8 t,z

z=abs (x)

t=1.d0/(1.d0+0.5d0*z)
erfcc=t*exp(-z*%z-1.26551223d0+t*(1.00002368d0+t* (.37409196d0+
$ t*(.09678418d0+t*(-.18628806d0+t*(.27886807d0+t*(-1.13520398d0+
$ t*(1.48851587d0+t*(-.82215223d0+t*.17087277d0)))))))))

if (x.1t.0.d®) erfcc=2.d0-erfcc

return

END

Notice that the prescribed fractional error for this routine ~ 107,

Alternatively, the integral representation of Erf can be used at arbitrary precision. Erf written
in terms of incomplete Gamma functions is

Erf(z) = \/_y( 2,2 %), (4.89)

with .
7(a,x)=f “ledr. (4.90)
0

Now We evaluate R, , for the following set of parameters, v — 0.002042409, w — 0.002314015
and ¥~ — 34932.84; and graphically illustrate the evaluation in Fig. 4.2, blue dashed line
corresponds to values of R, obtained with the default implementation of the Erf, and solid
gold when integral representation Eq. (4.89) is used. Notice that the curves coincide for large
values of u but not for small values of y. Thus the artificial cancellations inherent in the fitting
formula presented above is cured by the usage of the more exact expression Eq. (4.89).

37



Chapter 4 Dark Matter Annihilations in the Sun: Analytics

————— Default

\
\
\
\
i
|
!
|
I
I
!
I
:
1
H Cured
I
I
I
I
I

|

I

1

|

|

1

1

1

1

1

1

1

1

0.012

. . . . . . Ly
0.014 0.016 0.018

Figure 4.2: Differential rate R’ . as a function u: The function R_,,,, evaluated at v — 0.002042409,

w — 0.002314015 and u~> — 34932.84. Blue dashed line corresponds to values of R, obtained with the

const
default implementation of the Erf (the fitting formula), and solid gold when integral representation
Eq. (4.89) is used.
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CHAPTER 5

Scattering off Electrons vs Nucleons

The possibility of DM particles having no direct couplings to quarks, but only to leptons, the
so-called leptophilic scenarios, has been extensively considered in the literature; to alleviate
the conflict of the DM interpretation [228, 234-240] between the signal observed at the DAMA
experiment [37] and the null results of other direct searches [45, 47-49, 241-245], for future
strategies to search for sub-GeV DM particles with direct detection experiments [62, 246-248],
within the context of cosmic-ray anomalies in order to explain the positron, but not antiproton,
excess [210, 249-253] seen by different experiments [108, 254-258], to reduce the tension of
the observed anomaly in the muon magnetic moment [259] or as potential signals in collider
searches [260].

Even in the case of tree-level DM couplings to electrons, in general, loop-induced DM-quark
couplings are also present by coupling photons to virtual leptons [228]. Therefore, DM would
be captured in the Sun by both, interactions off solar electrons via tree-level processes and
interactions off solar nuclei via loop processes. However, there are cases in which no loop-induced
DM-quark contribution is present, such as axial vector couplings and thus, only DM capture by
electrons is possible. Neutrino signals for leptophilic scenarios have been considered in Ref. [228].
In that work, a constant (velocity-independent and isotropic) cross section was assumed to
compute the solar capture rate of DM particles. However, DM-electron (and DM-nucleon)
interactions could have a more complicated structure and non-trivial dependencies on the
relative velocity (v.;) and the scattering angle (6,,,) do appear for various operators [213-227].
Indeed, these possibilities, assuming couplings only to quarks, have been recently considered in
the context of high-energy neutrino signals from the Sun [165, 170, 174], to reduce the tension
between solar models and helioseismological data [211, 261-265], and to allow for a better
compatibility among different results from direct searches [266-282].

In this chapter, we present general results for the solar DM capture, annihilation and evaporation
rates, as well as for the resulting neutrino fluxes from DM annihilations at production, for
the cases of interactions with electrons with constant, v7,-dependent and transfer momentum
(¢»)-dependent elastic scattering cross sections. All our results are compared to those obtained
for the case of DM interactions with nucleons. We perform all computations taking into account
thermal effects and study their importance. Moreover, we improve over the common calculation
of the rates in a number of ways. We consistently compute the temperature in the regime of
weak cross sections (Knudsen limit or optically thin regime) for each case including the effect
of evaporation and the truncation of the DM velocity distribution, for which we also consider
several cutoff velocities. We compute the minimum DM mass for which evaporation is not
efficient enough to reduce the number of captured DM particles and find that, for the case of
DM-electron scatterings, depending on the cutoff velocity, the minimum testable mass could
be significantly smaller (below GeV) than the usually quoted evaporation mass in the case of
DM-nucleon interactions. Finally, we compare the neutrino rates at production resulting from
capture by electrons and nuclei. This is relevant to evaluate the importance of electron capture
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Chapter 5 Scattering off Electrons vs Nucleons

in leptophilic scenarios, which will be studied elsewhere [6].

This chapter is organized as follows. In Section 5.2 we describe different types of interactions
we consider. In Section 5.3 we review the calculation of the capture rate and compare the
results of capture by solar electrons and nuclei. In Section 5.4 we describe the velocity and
radial distribution of DM particles in the Sun once equilibrium is attained and show the resulting
temperature in the optically thin regime for the different types of interactions and targets
(electrons and nuclei). With this at hand, we write down the expression for the annihilation rate.
In Section 5.5 we review the calculation of the evaporation rate and illustrate our results. In
Section 5.6 we compute the minimum testable mass below which evaporation is very effective
for the different cases under study, including the case of asymmetric DM. In Section 5.7 we
compare the neutrino rates at production obtained for capture by electrons and by nuclei for the
different cross sections we consider. Note that, some of the equations presented in chapter 4 is
repeated here for clarity.

5.1 Dark Matter in the Local Neighbourhood

The differential capture rate is proportional to the the number of DM particles (n,) and the

velocity distribution of DM in the solar neighbourhood f,(u) ! hence it is of some importance
to have a good understanding of the properties of the DM population in the solar neighbourhood.

Consider the spatial distribution of the DM density p, (r) in the Milky Way. Determining the rota-
tion curve (which is directly an indicator of p, (r), since the curves simply trace the gravitational
potential) of the Milky Way is a tedious task since all observations are necessarily done from
within the Galactic plane. In spite of the dreadful situation, we can fairly estimate the local
density of DM via indirect astrophysical methods and N-body simulations of Milky Way like
halos [283-285]. According to PDG [1] the local DM density is

GeV
Py (10) = p, = (039 £0.03) - (1.2£0.2) - (1 £ Syip) —» (5.1)
cm
where, 6,,, < 0.2 accounts for the possible non-sphericity of the Milky Way halo [286]. The

impact of uncertainties on direct and indirect DM searches has been extensively studied in the
literature, see [287] for a recent review. In this study, we conservatively take p, =03 GeV/cm3 .
Since p, is an overall normalization, the results presented here can be rescaled conveniently.

Recently, simulation of Milky Way like galaxies, including baryonic effects have become realistic
and robust. Thus, we can estimate the DM velocity distribution and local density better, see
[288] for a recent review on the topic. However, due to differences in hydrodynamical approach,
cosmological parameters, and definitions of physical quantities, the simulations analyzed in
[288] exhibit a variety of local velocity distributions. In Fig. 5.1 the local DM velocity distri-
butions f(v) in the Galactic rest frame for Miky Way-like halos in different hydrodynamical
simulations (solid colored lines) which have the farthest velocity distribution from the Stand-
ard Halo Model (SHM) Maxwellian with a peak velocity of 220 km/s (dashed black line) is
shown [288]. The halos shown in Fig. 5.1 are g2.79e12 from NIHAO [289], E3 from EAGLE
HR [290], 1536 from MaGICC [291], and h258 from Sloane et.al. [292]. Thus, there exists a
large variation in local velocity distributions between the results of different simulations.

In this study we simply consider a M-B distribution of DM in the galactic rest frame 2. It is known

! The differential recoil rate is proportional to n, and the velocity distribution at Earth f,(«) in direct detection
experiments.

2 To obtain velocity distribution at the Sun, f(v) is boosted to the solar frame f5() = f(Jv+v,), and for the distribution
at Earth, f(v) is boosted to the lab frame f,(v) = f(lv + vg)).
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Figure 5.1: Predictions for DM velocity distribution in the galactic rest frame from hydrodynamic
simulations:Local DM speed distributions in the Galactic rest frame for Miky Way-like halos in different
hydrodynamical simulations (solid colored lines) which have the farthest speed distribution from the
SHM Maxwellian with a peak speed of 220 km/s (dashed black line) [288].

that deviation from M-B distribution does not significantly change the capture rate for constant
spin dependent and independent cross sections, where the corrections are of order 10%, and
< 50% for heavy DM [293]. Since the capture rate is sensitive to small DM velocities in the
halo, changes to the high velocity part of the distribution does not greatly impact capture rate,
but changes in the most probable DM velocity (rms — velocity) mostly contributes to corrections.
Using a more realistic distribution such as the one shown in Fig. 5.1 is expected to yield 10 — 50%
correction (barring NIHAO) to the capture rates for constant spin dependent and independent
cross sections, however a quantitative study on the impact on velocity and momentum dependent
cross sections is lacking.

5.2 Scattering Cross Sections

The scattering rates that govern the capture and evaporation rates of DM particles in the Sun
scale with the scattering cross section in the Knudsen limit (optically thin regime). For the case
of interactions off free electrons, the single-particle total (constant) cross section, which appears
in the scattering rates, is simply given by o, = 0,,. However, in the case of interactions off
nuclei i, depending on the type of interactions, either spin-dependent (SD) or spin-independent
(SI), the total (constant) DM-nucleus cross sections, at zero momentum transfer, are given, in
terms of the DM-proton and DM-neutron cross sections, by

2
. \2 ~ SD
i\ 40+ 1) , i T00
oo = (—] —— <Sp,i>+s1gn<apan)(#) —2(S.0| o (5.2)
’up 3Jl My 0-p,0
7\2 ~ SI
Ha, ) i Tho
7o = (—] Z; + (A; - Z) sign(f, f,) (—”) 2 o, (5.3)
/lp “n O-[J,O
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where g, (& i /n) is the reduced mass of the DM-nucleus i (DM-proton/neutron) system, o-ls,%
(0' ) and o (0' o) are the SD and SI elastic scattering DM cross section off protons (neutrons),

respectlvely, ) Al and J; are the atomic number, the mass number and the total angular
momentum of the nucleus i, and (S i) and (S, ;) are the expectation values of the spins of

protons and neutrons averaged over all nucleons, which we take® from Refs. [116, 294-297]

(see Ref. [298] for a review). The quantities a, (f,) and a, (f,) are the axial (scalar) four-fermion

-2 SD -2 SD -2 SI _ ~2 SI
DM-nucleon couplings. As usually done, we assume [, 07, o = fi;, 00, i, 00 = fi, 0, o and the

same sign for the couplings, so Egs. (5.2) and (5.3) get 51mp1iﬁed as

M N\2
Aa Y 4+ 1)

SD i 1

>0 = | —| ———= s S , 5.4

o3 (ﬁ,,) 37 [Spi + (8,0 o3 (5.4)
=~ N\2
A,

ol = (—f"] ATy (5.5)
Hy

In the case of SD cross sections, the coupling with protons is the one which is mainly probed
because almost all DM interactions are off hydrogen.

However, only in the case of constant cross sections, the scattering rate directly depends on
the total cross section. For velocity-dependent and momentum-dependent cross sections, the
differential cross section enters the calculation. In addition to the usual constant (velocity-
independent and isotropic) cross section case, we also consider v%;-dependent (isotropic) and
¢*-dependent cross sections, where v, and g are the relative DM-target velocity and the transfer
momentum, respectively The differential cross sections (in the limit of zero transfer momentum®)

for the constant, v2,-dependent and ¢*-dependent cases can be written as

do; const(Vrel» €08 Oep) _ Yo 5.6)
d cos 6., 2’ ’

dai,vfel (Uyep» COS O,ry) _ i ( Vet )2 57
dcosé,, 2 \y ) ° ’

Ao 2Ot 08 bem) 0y (1 +m, [m))’ ( q )2 (5.8)
dcosf,, 2 2 a0/ .

where 6, is the center-of-mass scattering angle, v, and ¢, are a reference relative velocity
and transfer momentum, and m, and m; are the DM and target i masses, respectively. The

mass—dependent term in Eq. (5.8) is included so that the total ¢>-dependent cross section is

equal to the v%;-dependent cross section when ¢, = m, vy and o is the same in both cases,

Le, oy =00 =0 (0e1/00)*. In this work, we use v, = 220 km/s. See Sec. 4.1 for further

comments, definitions and for a description of how the differential cross sections enter the
calculation of the differential scattering rates.

5.3 Capture of Dark Matter by the Sun

DM particles from the galactic halo could get eventually captured by the Sun if, after scattering
off solar targets (nuclei and electrons), they lose energy so that their resulting velocity is lower
than the Sun’s escape velocity at a distance r from the center of the Sun, v,(r). The capture rate
of DM particles with mass m, for weak cross sections, for which the probability of interaction is

% For '*N, we take (S i) = —0.130 and (S, 1) = —0.106, which we obtain by considering the proton and neutron as
if they were the only unpaired nucleon within the odd- group model [116].

* In the case of interactions with nuclei, when the wavelength corresponding to the transfer momentum ¢ is small
compared to the nuclear size, the cross section is suppressed with increasing ¢. This is taken into account by the
nuclear form factor, which we discuss in the next section.
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small, is (to good approximation) given by

R, e £ (w) 01
Cgeak = Zf 47rr2drf du Br | 1o w(r)f R; (w — v) |Fl»(q)|2 dv, (5.9)
— Jo 0 “\m uy 0

X

where the sum is over all possible targets. We consider electrons and 29 nuclei as targets and use
their density and temperature distributions as determined within the standard solar model [114,
299] (see Ref. [300] for a recent update). The factor R; (w — v) (and the analogous R; (w — v))
is the differential scattering rate at which a DM particle with velocity w scatters off a target
with mass m; to a final velocity v < w (v > w). They are explicitly given in Sec. 4.1 for constant,
v%;-dependent and ¢*-dependent cross sections.

The nuclear form factor for nucleus i is |F ,-(q)lz, which we approximate as the one corresponding
to a Gaussian nuclear density distribution with root-mean-square radius r; (i.e., equal to that of
a uniform sphere of radius +/5/3r,), i.e.,

2 2
|Fi(q)f=e "1 (5.10)

For SI interactions [301],
r;=(0.894;" +03) fm, (5.11)

and given that the nuclear density distribution is different from the spin distribution [302], for
SD interactions [303],

3
he 2 1.7A!% ~0.28 -0.78 (A}“ ~3.8+ \/(A}/3 ~38) + 0.2]) fm . (5.12)

! 2
For electrons and hydrogen, F,(¢%) = Fy(¢*) = 1.

A few comments are in order. Note that a more realistic Woods-Saxon nuclear density distribution
(for SI interactions) results in a form factor which is very similar to Eq. (5.10) for relatively low
qr; values [116, 296]. Moreover, Eq. (5.9) is strictly correct if target nuclei are assumed to be
at rest (for electrons and hydrogen, it is always correct as F e(qz) =F H(qz) = 1). In that case:
g = m;m, (w? — v¥). Otherwise, up-scatterings with a final velocity below the escape velocity
must also be considered (a term with the R; (w — v) factor) and the nuclear form factor cannot
be factored out, but has to be included in the calculation of the differential scattering rates
R; (w — v) and R} (w — v). However, the former correction is negligible and, given the current
uncertainties, the fact that we are not using more accurate nuclear response functions [215, 226,
227] and that in the end factoring out the nuclear form factor represents at most an overall 10%
(much smaller in the constant case) reduction with respect to the results from Eq. (5.9) for the
case of SI interactions only, we do not refine the calculation further and consider the form factor
as computed in the zero-temperature limit (but not the differential scattering rates), so that it
can be factored out in Eq. (5.9) and the analytical expressions in Sec. 4.1 can be used.

The local DM density is given by p, = 0.3 GeV/cem?®, R, is the Sun radius and f, (u,) is the halo
velocity distribution seen by an observer moving at speed v, the speed of the Sun with respect
to the DM rest frame,

1 1
Jo, () = 3 f1 feal \/u)z( + vé +2u, v, cosb) dcosd, , (5.13)

where u, is the DM velocity at infinity in the Sun’s rest frame, cos 6, is the angle between the DM
and the solar system velocities and f,, (ug,) is the DM velocity distribution in the galactic rest
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frame, which is assumed to be a M-B distribution (the so-called standard halo model) and thus,

3 u 3(14)(—0@) 3(1¢X+v®)
— —_ X - 21)2 _ - 2,;{2
Jo, () = 27 o0, e d e ] , (5.14)
with w?(r) = u)z( + vﬁ(r), the square of the DM velocity at a distance r from the center of the Sun.
We take the values v, = 220 km/s for the velocity of the Sun with respect to the DM rest frame

and thus, v, = 270 km/s = +/3/2v, for the velocity dispersion. Actually, f,, (1, ) does not extend

beyond the local galactic escape velocity, veg gu = 533*31 km/s at 90% confidence level [304].
However, this represents a correction on the capture rate below the percent level [293], much
smaller than the very same form of the velocity distribution [162, 182, 293]. Finally, note that
we are assuming the Sun to be in free space, but the presence of the planets (mainly Jupiter)
could affect the solar capture rate®, mainly for heavier DM particles for which the low-velocity
tail is more important [313]. Nevertheless, it has been recently shown that planetary diffusion
of DM particles in and out of the solar loss cone (orbits crossing the Sun) would result in a
complete cancellation of the effect, so the free-space approximation is very accurate, as long
as gravitational equilibrium has been reached (in the case of constant scattering cross sections

off nucleons, for m, = 100 GeV, this occurs for P » 107** c¢m? for SD interactions and for

3> 107 em? for SI interactions) [314].

On the other hand, Eq. (5.9) is only valid for weak scattering cross sections, such that the
probability of interaction is very small: the capture rate cannot grow indefinitely with the cross
section. The saturation value for the capture rate is set by the geometrical cross section of the
Sun (when the probability of interaction and capture is equal to one) [189, 315],

com p 00 WA (Ry) P 3 v2(R,)
CE™ = 7R% (m—’;)fo du, f, (u,) X@ = 7R3, (m—") % (1 +3 — ]g(ve,vd), (5.15)

u X Va

where (v), = v/8/(37) v, is the average speed in the DM rest frame and the factor &(v, v,) takes
into account the suppression due to the motion of the Sun (£(v, = 0,v,) = 1),

31%
3% 3
vie i+ \/g w (v + 300 (Re) +303) Erf( \/;z_j)

— (5.16)
203 +302(R,)

E(vg,vy) =

For the chosen values of v, and vy, £(v, = 220km/s,v,; = 270km/s) =~ 0.81. Finally, in order to
allow for a smooth transition between these two regimes, we estimate the capture rate as [189]

C, = Ol (1 - e‘Cém/Cgm) . (5.17)

In the left panels of Fig. 5.2, we show the capture rates as a function of the DM mass for the
case of DM-electron interactions (solid red curves), DM-nucleon SD interactions (dashed green
curves) and DM-nucleon SI interactions (dot-dashed blue curves), for constant cross sections
with oy = 10™* cm? (top panels), v%;-dependent cross sections with T = 107* cm? (middle
panels) and for cross sections with q2 dependence with o = 107 cm? (bottom panels). In
each panel, we also indicate the geometric limit (dashed black curve), Eq. (5.15). We stress
again that even for leptophilic DM models, in general, interactions with nucleons are possible
via loop processes, so the capture rates by nuclei are relevant and need to be considered.

In the case of constant cross sections (top-left panel), for high DM masses, capture by nuclei is
several orders of magnitude (up to two for SD and four for SI) larger than capture by electrons.

> See Refs. [305-312] for discussions about the effects of the Sun and planets on the DM capture rate by the Earth.
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The differences decrease for lower masses and capture by electrons is comparable or larger for
m, < 1 GeV, which can be relevant if the DM velocity distribution has a cutoff at v .(r) < v,(r)

(see below). The results for vrel -dependent and ¢°-dependent cross sections are similar to each
other (for the normalizations used in this work). Unlike for constant cross sections, in these
cases, at high masses the capture rate by electrons is a factor of a few larger than capture by
nuclei via SD interactions and the differences with respect to the SI capture rate decrease, being
of three orders of magnitude. These results can be understood from the even more important
impact of thermal effects for these cross sections as compared to the constant case and can have
important consequences in some models [6]. Moreover, the SD capture rate is much smaller than
the SI case (up to four orders of magnitude). Overall, the capture rate via Urel -dependent and
¢*-dependent cross sections is a factor of about four, three and two orders of magnitude larger
than the case with constant cross sections (assuming the same o, for all cases) for capture by
electrons, SI and SD interactions off nucleons, respectively.

In the right panels of Fig. 5.2, we illustrate the impact of thermal effects on the capture rates.
From Eq. 5.18, we see that the behavior of the ratio of the full capture rate to the capture
rate at zero temperature (Cy /ngo) is driven by two competing factors: the ratio of the solar
temperature to the DM escape energy, 2T/(m, vﬁ(r)) = uiz(r)/ (u; vg(r)), where u,(r) is the most
probable speed of the targets at position r, and the ratio of the targets thermal speed to the
escape velocity. Whereas a larger average kinetic energy of the DM particles suppresses capture,
thermal effects enlarge the range of velocities contributing to it. For the same cases of the left
panels, we show the ratio of the capture rates obtained using the thermal distribution of the
target particles with respect to the capture rates obtained in the limit 7,(r) = 0, i.e., when the
targets are at rest.

In the case of velocity-independent and isotropic cross sections, as discussed in Ref. [228]
and as can be seen in the top-right panel, thermal effects represent an order of magnitude
correction if the target particles are electrons. However, the correction in the case of interactions
with nucleons is very small for m, > 1 GeV. These differences can be explained by the larger

thermal speed of electrons as compared to that for nuclei i by a factor /m;/m,. In the case of
rel -dependent and ¢*-dependent cross sections, thermal effects on the capture rates by electrons
are very important and represent an increase of three orders of magnitude in the range of masses
we show. This can be understood from the extra uz(r) / v% ~ few GeV/m; factors in the differential
scattering rates R 2 (w—v)and R qz(w — v) (see Sec. 4.1). For these cross sections, even in the

case of capture by nucleons thermal effects cannot always be neglected. For m, > 1 GeV, for
DM nucleon 1nteract1ons the increase in the capture rate is of a few tens of percent for both,
re] -dependent and ¢°-dependent cross sections, although for SI interactions the correction is
negligible for vZ,-dependent cross sections. On the other hand, for m, < 1 GeV, for all cases,
thermal effects suppress the capture rates contrary to the results at higher masses, given that
2T, /(m,v2(r)) ~ 0.1 GeV/m, and u7(r)/v;(r) ~ 0.1 GeV/m; . Analytically, when the target particle
is either proton or electron, for a constant scattering cross section the following relation holds

2
Ef esc
dCo  wmm ( ) 5.18)
=0 ~ e S¢ = . .
dCO 1+ m)( m/yvgsc
me’p 2T)(

This explains the dip in the ratios for the case of DM-nucleon interactions at m, ~ 0.1 GeV.
Finally, as mentioned above, we have checked that the correct calculation of the capture rate by
nucleons (mainly for SI interactions), i.e., including the form factor in the R; (w — v) factors,
only represents a decrease of < 10% with respect to the results shown here.

For completeness, the capture rate of DM for scattering off individual elements in the Sun is
depicted in Figs. 5.3, 5.4 and 5.5 for SI interactions, and Figs. 5.6, 5.7, 5.8 for SD interactions
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with nucleons for all the cases considered here.
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Figure 5.2: Capture rates as a function of the DM mass, for DM-electron interactions (solid red curves),
DM-nucleon SD interactions (dashed green curves) and DM-nucleon SI interactions (dot-dashed blue
curves). Left panels: capture rates for the three types of interactions. The geometric capture rate is also
shown (dashed black curves.) Right panels: ratio of capture rates with respect to the limit of targets at
rest (T, (r) = 0). Top panels: constant (velocity-independent and isotropic) scattering cross section with

i = 107 ecm?. Middle panels: v2,-dependent scattering cross section with T = 10~* em?®. Bottom

1
panels: ¢*-dependent scattering cross section with 0= 107 em?.
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Figure 5.3: Capture Rate per individual element for constant cross section, SI: The legend corresponds
to only the dominant target elements considered.
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Figure 5.5: Capture Rate per individual element for momentum dependent cross section, SI: The
legend corresponds to only the dominant target elements considered.

50



5.3 Capture of Dark Matter by the Sun

1027 ¢ — — e — — —
[ : : ] — Total
i | | : s ] — v
102 _constant: gy =107 em? — He3
: : — a3
N14
10%° — N15
— o017
Ne21
1024k - == Na
-- Mg25
-- Al
1023 -=- Si29
-- Ph
= 533
| 10% al
hR c37
© 102 E41
@) Ca43
1020 i — Mn
- : < Fe57
----- Co
Lot Ni61
1018
1017

1016
10°

Figure 5.6: Capture Rate per individual element for constant cross section, SD: The legend corresponds
to only the dominant target elements considered.

51



Chapter 5 Scattering off Electrons vs Nucleons

1077 —— e —— ————rrrry —— ——
[ : : ] — Total
: | | : : ] =
107 | Umiope=10""2em? ] — Hes3
s : : ] — cs
[ ] N14
10 — N15
— o017
Ne21
1024k == Na
-- Mg25
-- A
1023 - = Si29
-- Ph
= 533
| 102} al
heR c37
© 102 E41
@) Ca43
- Mn
Fe57
----- Co
Lo Ni61
1018
107

1o s
s

Figure 5.7: Capture Rate per individual element for velocity dependent isotropic cross section, SD:
The legend corresponds to only the dominant target elements considered.

52



5.3 Capture of Dark Matter by the Sun

1077 ———rrrr ———rrr —— —— ——
[ : : ] — Total
: | | | | ] =
107k sopp=10""em? ] — He3
= 1 — c3
] N14
1025 — N15
— o17
Ne21
1024k - == Na
-- Mg25
-- A
1023 -- Si29
-- Ph
= 533
\ 10% cl
hR c37
© 102 E41
@) Ca43
o | Mn
F Fe57
3 Co
Lot . Ni61
1018 |
1017

1016
10-

Figure 5.8: Capture Rate per individual element for momentum dependent cross section, SD: The
legend corresponds to only the dominant target elements considered.

53



Chapter 5 Scattering off Electrons vs Nucleons

5.4 Dark Matter Distribution and Annihilation rate in the Sun

After DM particles are trapped inside the Sun, successive scatterings with the target material
(nuclei and electrons), which is in local thermodynamic equilibrium (LTE), would thermalize
them at a temperature T, (r). Therefore, the velocity distributions of target and DM particles can
be assumed to have a M-B form,

1 m, ' _me
fiu,r) = —( L ) e o™ | (5.19)
\/; 2T(r)
—w? v} (r) _
fw,r) = ‘ O(r) ~ w) (5.20)

[ 33 0\ 2 0 (/e 7
s UX(F) (El‘f(v)((r)) \/7_T 0, () e X

where T (r) and v, (r) = ) T,(r)/m, are the solar temperature and the thermal DM velocity at a

distance r from the center of the Sun, respectively. Whereas in the case of large scattering cross
sections (conduction limit or optically thick regime), DM particles would also be in LTE with the
solar medium, i.e., T, (r) = Te(r), in the case of weak cross sections (Knudsen limit or optically
thin regime), the DM distribution could be approximated as being isothermal, i.e., with a single
temperature, T, .

Note that we have included a cutoff in the DM velocity distribution, v.(r), which in general
depends on the position (a valid assumption for circular orbits) and it is usually assumed to
be equal to the escape velocity at a distance r from the center of the Sun, v.(r) = v,(r), but we
also consider another possibility, v.(r) = 0.9v,(r). The last choice is motivated by the fact that
the bulk of evaporation and annihilation takes place in the solar core and for DM particles only
passing through the core such a cutoff is a reasonable approximation to the actual distribution
function [128]. As apparent from the comparison of the results of this approximation with those
of Refs. [128, 231], the actual non-thermal distribution (obtained by solving the collisional
Boltzmann equation numerically) cannot be accurately mimicked by the approximate radial and
truncated velocity distributions assumed in this work (and in most works in the literature). This
has already been noted long ago, as the distribution function is locally non-isotropic with radial
orbits always dominating and the local temperature in the Knudsen limit is not uniform [230].

As we will assume, in the case of weak cross sections, after DM particles are captured by the
Sun, they would thermalize non-locally by multiple interactions, with a single isothermal (iso)
distribution. In this limit (Knudsen limit), their radial distribution can be written as [88, 125,

126]
~m,$(N/T,

fORO ™A 4 dp

which corresponds to an isothermal sphere following the law of atmospheres, with a radial
dependence set by the gravitational potential ¢(r) = for GM(r)/ > dr’, with G the gravitational
constant and M(r) the solar mass at radius r, and where N, (7) is the total population of DM
particles at a given time ¢.

(5.21)

1, iso (7 1) = NX(t)

A relatively simple semi-analytical method to treat the problem in the Knudsen limit was
proposed in Ref. [125]. By assuming a Maxwell-Boltzmann velocity distribution for the DM and
target particles, one can obtain a solution to the isothermal assumption by requiring the DM
distribution to satisfy its first energy moment and solving for 7, . By imposing that there is no
net heat transferred between the two gases, the equation to be solved reads [125]

RO
Zf &, T,,0.) drr*dr=0, (5.22)
— Jo
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where
(r.T,.0,) = f FPwn, (1 16) fyiso@. 1) f duny(r) fu, r) oo lw — ul(AE;) (5.23)

is the energy transfer per unit volume and time, with (AE;) being the energy transfer per
collision averaged over the scattering angle and 1y iso(r 1o) (see Eq. (5.21)) and n,(r) being the
radial distributions of DM particles and targets i, respectively. As we mentioned above, this
approximation relies on the assumption of a uniform and locally isotropic Maxwell-Boltzmann
distribution for the DM particles, conditions which do not hold in a realistic situation [128, 230,
231]. Indeed, the above approximation overestimates the efficiency of energy transfer by a
factor of a few, which depends on the DM and target mass ratio [230, 316, 317]. Baring in mind
the approximated nature of this approach, which is the usual one followed in the literature,
we also compute the DM distribution function in the Knudsen limit in this way. However, we
implement two semi-analytical corrections. First, we perform the calculation with a cutoff in the
DM velocity distribution, in order to be consistent with the inputs used for the computation of
the annihilation and evaporation rates. Second, we also include the energy flow in the form of
evaporated DM particles that escape the Sun, which is relevant for DM masses of a few GeV and
below, so that the final equation we solve is

R, , R, 5
Zi: fo &, T,,v,)4nr” dr = Z fo €evap,i (1> Ty» v) 4mr”dr (5.24)

where €, (1, T,,v.) is defined in Sec. 4.2. Indeed, when there is a velocity cutoff, in the case
of interactions with electrons, unless this correction is included, wrong solutions are found for
m, < 1.1 GeV and m, < 1.5 GeV and there are no solutions for m, < 0.4 GeV and m, < 0.5 GeV,
for v.(r) = v,(r) and v.(r) = 0.9 v,(r), respectively. All the relevant expressions for different types
of cross sections (velocity-independent and isotropic, velocity-dependent and isotropic and
momentum-dependent) and with a generic cutoff in the DM velocity distribution are provided in
Sec. 4.2.

In Fig. 5.9 we show the results for the temperature as a function of the DM mass in the one-zone
model or isothermal approximation for electrons (red curves), nucleons with SD (green curves)
and SI (blue curves) interactions, for the case of no cutoff, v.(r) = oo, (solid curves), v.(r) = v,(r)
(dashed curves) and v,.(r) = 0.9 v,(r) (dotted curves). We show the temperatures for constant (top
panel), vfel-dependent (bottom-left panel) and ¢*-dependent (bottom-right panel) cross sections.
For m, > 2 GeV, the temperatures for the three velocity distributions are practically equal, i.e.,
the cutoff has no effect. This can be understood by the fact that the larger the mass the lower
the typical velocities of the DM particles and thus, the high-velocity tail of the distribution is less
important. Notice also that all results converge in the large mass limit. For m, < 2 GeV, the lower
the cutoff velocity, the lower the temperature, but the differences are never larger than 10% for
all shown cases. For these low masses, the temperature in the case of interactions off electrons
is slightly larger than that obtained when DM interacts with nucleons, being relatively larger
for v%,;-dependent and ¢*-dependent cross sections. Notice also that, in the case of interactions
with nucleons, the temperatures for the three cross section dependencies are very similar. In the
case of thermalization with electrons, constant cross sections result in a bit lower temperatures
than the other two cases (up to ~ 10%), the differences getting reduced for low-cutoff velocities.
Whereas for the no-cutoff case, for which the correction due to evaporation is negligible, the
temperatures for vrzel—dependent and ¢*-dependent cross sections (as defined in this work) are
exactly equal (see Sec. 4.2), for the case with cutoff, v7,-dependent cross sections result in
slightly larger temperatures. Overall, the differences in the temperatures for the cases under
consideration are small for the relevant range of masses and have a small impact on the final

neutrino fluxes.
On the other hand, in the case of large scattering cross sections (conduction limit or optically
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Figure 5.9: DM temperature as a function of the DM mass in the isothermal approximation, in units
of the solar core temperature, T, = 7,(0), for DM scattering off electrons (red curves), off nucleons
via SD interactions (green curves) and off nucleons via SI interactions (blue curves), and for three DM
velocity distributions: without cutoff (solid curves), with a cutoff at v.(r) = v,(r) (dashed curves) and
with a cutoff at v.(r) = 0.9v,(r) (dotted curves). Top panel: constant (velocity-independent and isotropic)
scattering cross sections. Bottom-left panel: v’,-dependent scattering cross sections. Bottom-right panel:

¢*>-dependent scattering cross sections.

thick regime), DM particles thermalize locally; i.e., T, =Ty(r), and the DM radial distribution
can be approximated as [229, 317]

A7 1) do)
T.(r) )3/2 fr a(r) d- +m, d, ,
n rt)=n N\ =—= exp|— - dr'|, (5.25)
L Lte( 1) = 1y prp o(0) (T® 0 p A o)

. o R .
where n, ;g o(?) is set by the normalization fo °ny, e 4rr* dr = N, (t). For an admixture of
targets, a good approximation for the dimensionless thermal diffusivity a(r) is represented by
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the weighted mean of the single-target solutions [229, 232],

a(r) = 6 )" 67 (r) () (5.26)

where «(y;) is the thermal diffusivity for a single target and it is tabulated as a function of
Wi = m,/m; in Ref. [229] for constant cross sections and in Ref. [262] for velocity-dependent
and momentum-dependent cross sections. The total mean free path of DM particles in the solar
medium is defined as ¢7'(r) = X fl-_l(r), where ¢,(r) = ((o;)(r) ni(r))_l is the partial mean free
path for DM interactions at a distance r from the center of the Sun with a thermal averaged
scattering cross section (o;)(r) off targets i with density n;(r). This thermal average is performed
over the DM and target velocity distributions and is given by

(o)(r) = f d’w f,w, r) f d*u fiw, r) o, u) . (5.27)

The expressions for this thermal average for different types of cross sections (constant, velocity-
dependent and momentum-dependent) are given in Sec. 4.3.1.
The transition from one regime to the other is indicated by the so-called Knudsen number,

€(0) [ 31,0
K 7 . I‘X = —Zﬂ'Gp@(O) mX . (528)

where r, is the approximate scale height of the DM distribution, with p.(0) the density at the
solar center. The Knudsen limit corresponds to K = . Note that the definition of the Knudsen
number should in principle be a function of the position in the Sun. Nevertheless, given that
most of the DM would be concentrated in the center of the Sun, this is sufficient for our purposes
and a more accurate definition is beyond the scope of this paper.

Although the actual solution of the problem can only be obtained by solving the collisional
Boltzmann equation, however, an approximate solution can be considered by interpolating
between the optically thin (K > 1) and the optically thick (K <« 1) regimes. In order to do so,
we follow Refs. [212, 315], which motivated by the results of Ref. [229], approximated the DM
radial and velocity distribution as

n(r,0) fw,r) = F(K)n, e(r,0) fpre@, r) + (1 = 1K) ni50(n 0 fiso@, 1) (5.29)
f(K) = ;2 , (5.30)
1 + (K/Ky)

where K, = 0.4 is the value of the Knudsen number for which DM particles transport energy
most efficiently [229]. This value was obtained by assuming a spherical harmonic oscillator
potential and keeping the mean free path as a constant throughout the entire star, which is also
the reason why we used the position-independent definition in Eq. (5.28). Note that a given K,
which marks the transition from one regime to the other, corresponds to different values of o,
for different types of cross sections [264] and targets.

Once the DM distribution is known, we can compute the annihilation rate A, defined as

~ fd3w1 fd3w2 T AUy fORO n (r,1) f, (g, r)n,(r,1) f,(w,, 1) 4 dr

A 3 , (5.31)
( fORO n,(r,t) 4r? dr)
where we have used
fd3w n (r,0) f,(w,r) =n,(r,t) = {(K)n, ;7 1) + (1 = {(K)) n, 5, 1) (5.32)
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in the denominator and where o4, is the DM annihilation cross section times the relative
velocity of the two DM particles, v, = |u{2 - w}l. In generalf gV, =a+b 1?2()(, but in this work,
our default case is that of an s-wave annihilation cross section corresponding to a thermal DM
candidate, i.e., (T 40,) = 3 X 10720 cm?/s, where () denotes thermal average over the two DM
velocity distributions. In such a case, Eq. (5.31) simplifies as

Ry 2 2
°ni(r,t)4nr- dr
Jo "y (5.33)

Ao = (Tay,)

> -
R 2

(fo ° n(r,t)dnr dr)

Note that for p-wave annihilations, for vfel—dependent and ¢*-dependent cross sections equilib-

rium would be attained for smaller values of o, than for the constant case, but we will not

discuss this possibility here.

5.5 Evaporation Rate of Dark Matter from the Sun

In general, for sufficiently small DM masses, below a few GeV, interactions with the targets of
the solar medium would bring most of the DM particles to velocities above the escape velocity
v,(r), so that they can evaporate from the Sun. The evaporation rate is given by

RO
E, = Z jo‘ s(r)yn, (r,1) 4nr* dr

where the factor s(r) accounts for the suppression of the fraction of DM particles that, even after
acquiring a velocity larger than the escape velocity, would actually escape from the Sun due to
further interactions in their way out, and can be written as [232]

0,.(r) )
@, r) 4rw? dw f RI(w — v)dv. (5.34)
v,(r)

s(r) = nang(r) nmult(r) e—T(I’) s (535)

where 7(r) = fr Ro ¢~ '(¥')dr is the optical depth at radius r. The factors Nang () @nd 77,,,(r), which
take into account that DM particles travel in non-radial trajectories and that multiple scatterings
are possible, are described in Sec. 4.3.2. Although the result for the factors in s(r) is based on a
calculation for a velocity-independent and isotropic cross section [232], lacking a better estimate,
we also use it for the other cases under study. In the optically thin regime, the suppression factor
s(r) is nearly one, but we always included it in the calculations.

Note that, to keep it general, we should have considered a term with R; (w — v) corresponding to
down-scatterings to velocities above the escape velocity and hence, the limits for the R} (w — v)
and R; (w — v) integrals would be (v,(r),w) and (w, =), respectively. Moreover, a priori, the
nuclear form factor for the case of interactions off nuclei must be included too. Whereas
in the R; (w — v) term, the nuclear form factor can be factored out by computing it in the
zero-temperature limit, in that limit, the contribution from the R; (w — v) term is exactly zero.
However, for non-zero temperatures, the form factor has to be included in the calculation of
the R (w — v) term, so an analogous simplification to the one for the R; (w — v) term cannot be
made. Nevertheless, if the DM velocity distribution has a cutoff at v.(r) < v,(r), the R; (w — v)
term is absent and, for the case of the Sun, the nuclear form factors can be approximated to one
(at these velocities gr; < 1). In such cases, which are the ones we consider in this work, the
evaporation rate is given by the usual expression, Eq. (5.34).

In Fig. 5.10 we show the evaporation rates for constant (top panels), v,-dependent (middle
panels) and qz—dependent (bottom panels) cross sections, in the case of DM-electron (red curves),
DM-nucleon SD (green curves) and DM-nucleon SI (blue curves) interactions. We consider the
same cases depicted in Fig. 5.2, i.e., cross sections in the optically thin regime (left panels), but
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also show the results for large cross sections in the optically thick regime (right panels). In all
the panels we show the results of a DM velocity distribution with a cutoff at v.(r) = v,(r) (solid
lines) and v.(r) = 0.9v,(r) (dashed lines). The usual exponential fall off at large masses, due to

2
—me (12T s clearly visible. Besides

the dependence of the evaporation rate per unit volume on e
this, there are a number of other features worth noticing.
In the case of interactions with electrons, the effect of the modification of the high-velocity
tail of the DM distribution is striking, with a huge impact for masses above 0(0.1) GeV, for
which evaporation is very suppressed in the case of v.(r) = 0.9v,(r). On the other hand, in the
case of interactions with nucleons, the evaporation rates are only moderately modified when a
different cutoff in the DM velocity distribution is considered. This can be understood by the mass
scales involved in the problem. Electrons, being light compared to the DM particles, carry little
momentum, so that in the case of DM-electron interactions only DM particles with velocities close
to the escape velocity are susceptible of gaining enough energy to escape after one interaction.
In practice, the differential scattering rate R; (w — v) for interactions with electrons peaks at DM
velocities w close to the escape velocity, whereas for the case of scattering off nucleons it has a
broader shape. Therefore, a maximum velocity smaller than the escape velocity significantly
suppresses evaporation in the former case. This has important consequences on the available
parameter space, as we will discuss below.

Moreover, whereas in the Knudsen limit the evaporation rate scales linearly with the scattering
cross section, for large cross sections, the suppression of evaporation results in a slower-than-
linear increase with the cross section. Therefore, although in the optically thin regime the
evaporation rate for SI interactions is larger than for SD interactions due to the coherent
enhancement of the cross section in the first case, this very same enhancement implies a shorter
mean free path and hence, a larger suppression of the evaporation rate for SI cross sections
in the optically thick regime. The relative suppression of the rate in the case of interactions
with electrons is similar to the case of DM-nucleon SD interactions. We also note that the
behavior of the evaporation rates in the case of v2,-dependent cross sections is very similar to
that of ¢*-dependent cross sections. We find that, in these two cases, the evaporation rates
corresponding to DM interactions with electrons are larger than for scatterings off nucleons.
In addition, although in general low masses enter the optically thick regime for smaller cross
sections (see Eq. (5.28)), for vrzel-dependent and qz-dependent cross sections this effect is more

pronounced (see Egs. (4.76) and (4.80)).
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Figure 5.10: Evaporation rates as a function of the DM mass, for DM-electron interactions (red curves),
DM-nucleon SD interactions (green curves) and DM-nucleon SI interactions (blue curves), with a velocity

cutoff at v.(r) = v,(r) (solid curves) and at v,(r) = 0.9v,(r) (dashed curves). Left panels: optically thin
regime. Right panels: optically thick regime. Top panels: constant (velocity-independent and isotropic)
scattering cross section for o7;, = 107 cm? and i = 107 ecm?®. Middle panels: vZ,-dependent scattering
cross section for o, = 107* c¢m? and i = 107 ecm?. Bottom panels: ¢*-dependent scattering cross

section for o, = 107* cm? and o= 107 cm?.
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5.6 Evaporation mass

Once all the ingredients are computed, we are interested in knowing what is the minimum DM
mass which is testable,6 i.e., which is the minimum DM mass for which DM particles are not
evaporated. In order to determine this mass we first consider the evolution of the total number
of DM particles in the Sun, which is governed by the following equation:

dNX(t)
dr

= Co— Ao No(t) = E; N (D) . (5.36)

The solution of this equation, computed at the present time (¢ = ¢, = 4.57 Gyr), is given by [86,
88]

C tanh(xt,/7..)
Nolto) = 3|22 — e : (5.37)
o K+5Eg Teq tanh(k tQ/Teq)
where 7., = 1/+4/A,C, is the equilibration time scale in the absence of evaporation and

kK = {1+ (E, Teq/2)2. For the usual value assumed for the thermal annihilation cross sec-

tion, (o40,,) = 3% 107° em’/s, and for o,y 2 107 em?, 039 2 107 em® and o))y 2 107 cm?
for constant cross sections (much smaller for the other cases), equilibrium is reached (k75 > 7,
tanh(k 1o/ Teq) = 1). In the limit when evaporation is important, « > 1, N, = Cy/Eg, and the
number of accumulated DM particles decreases exponentially with decreasing mass (in the
optically thin regime). In the limit when evaporation is negligible, x = 1, N, = | |C, /A, and the
number of accumulated DM particles decreases with increasing mass (as m;” * for large masses).

Given these considerations, one can define the minimum testable mass or evaporation mass’ as

that for which the number of captured DM particles approaches C,/E, at the 10% level [319]

CQ(mevap)
NX(mevap) - E@(Tevap) =0.1 NX(mevap) , (538)
In the limit when equilibrium has been reached, i.e., k#; > Teqo It CAN be written as
1
Ee(mevap) Teq(mevap) = N . (5.39)

In the optically thin regime, this results in the evaporation mass to increase with the scattering
cross section and to decrease with the annihilation cross section. However, when the scattering
cross section is large enough and the suppression factor s(r) becomes important, the evaporation
mass decreases with the scattering cross section, so the minimum testable DM mass attains
a maximum value around the transition between the two regimes [189, 232]. Note that for
very small scattering cross sections, equilibrium is not reached, the effects of evaporation are
negligible and the number of DM particles scales as N, ~ C,1,. In this case, there is no
evaporation mass, but the total number of DM particles in the Sun would be too small to give
rise to any measurable signal.

In Fig. 5.11 we show (in reverse order) the evaporation mass as a function of the scattering
cross section o;, for the same cases depicted in Fig. 5.10, i.e., interactions with electrons (red

® Note that the high-energy tail of the evaporating DM particles could also be used to probe masses below the
evaporation mass [318].
7 For the relevant range of scattering cross sections, other possible, equally good, definitions for the evaporation

CG(mevap)
AO(mcvap)
E, = 0 limit is of a factor of « (it coincides with Eq. (5.39) for « = V11 -1 and fo > Toq).

mass are: dN, /dm, (m,,,) = 0; or |N, (m,,) - tanh(t,/7.,)| = @ N, (m,,,,), when the departure from the
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Figure 5.11: Evaporation mass as a function of the scattering cross section (in reverse order). Same
cases as in Fig. 5.10, i.e., DM scattering off electrons (red curves), off nucleons via SD interactions (green
curves) and off nucleons via SI interactions (blue curves) and for two DM velocity distributions: with

a cutoff at v.(r) = v,(r) (solid curves) and with a cutoff at v.(r) = 0.9v,(r) (dashed curves). Top panel:

constant (velocity-independent and isotropic) scattering cross sections. Bottom-left panel: v7,;-dependent

scattering cross sections. Bottom-right panel: ¢*-dependent scattering cross sections.

curves), with nucleons via SD interactions (green curves) and with nucleons via SI interactions
(blue curves), for a velocity cutoff at v.(r) = v,(r) (solid curves) and with a cutoff at v.(r) =
0.9v,(r) (dashed curves), and for constant (top panel), vfel—dependent (bottom-left panel) and
¢*-dependent (bottom-right panel) cross sections.

For DM masses to the left of the curves, evaporation is very efficient and DM particles evaporate
from the Sun. For a DM distribution with a cutoff at the escape velocity, the evaporation mass
is slightly larger for interactions with electrons. This is always the case for constant cross
sections. However, for v,-dependent and ¢*-dependent cross sections, the transition to the
optically thick regime occurs for smaller values of o, for DM-electron interactions than for
DM-nucleon interactions, which has to do with the different mass dependence of the mean free
path in each case. Whereas in the case of constant cross sections, the evaporation mass for

DM-nucleon SD interactions is always slightly smaller than for SI interactions, for vrzel-dependent
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and ¢°-dependent cross sections, this only happens in the optically thin regime. Nevertheless,
the most interesting and new features appear for DM velocity distributions with a cutoff at
v.(r) = 0.9v,(r). While this velocity cutoff has a very small impact for DM interactions with
nucleons, as could have been anticipated from the previous results, in the case of interactions
with electrons, the evaporation mass can be substantially reduced below the GeV range, down
t0 Meyy, ~ (0.5 — 0.6) GeV for most values of the cross sections or even to m,, ~ 0.2 GeV for
some extreme cases, which significantly opens this region of the parameter space, making it
potentially testable with neutrino detectors. Therefore, in order to correctly assess the impact of
this effect and given the importance of the high-velocity tail in the calculation of the evaporation

mass, an accurate evaluation of the equilibrium DM distribution deserves a dedicated analysis.

5.6.1 Asymmetric DM

The time evolution of number density of ADM in the Sun has already been discussed in the
previous chapter 4.0.1, here we recapitulate

dNX o
= = CS - EXN,, (5.40)
the solution for N, reads
1 — e Folo
N(1) = Ct, [X—] (5.41)
EQIO

Since annihilation is absent in the ADM scenario, previous definition of the evaporation mass
does not hold. For ADM, evaporation mass is defined as the minimum mass for which the
capture process dominates over the evaporation process. Quantitatively, the minimum mass
which satisfies the following condition® [320].

—Et
l_e—oo > l, (5.42)
Egt, 2

is used to numerically evaluate the evaporation mass. In Fig. 5.12 we show the evaporation mass
as a function of the scattering cross section o, for the ADM scenario, for the same cases depicted
in Fig. 5.11, i.e., interactions with electrons (red curves), with nucleons via SD interactions
(green curves) and with nucleons via SI interactions (blue curves), for a velocity cutoff at
v.(r) = v,(r) (solid curves) and with a cutoff at v.(r) = 0.9 v,(r) (dashed curves), and for constant
(top panel), vfel—dependent (bottom-left panel) and ¢*-dependent (bottom-right panel) cross
sections. Qualitatively, the results are very similar to the standard case, however few comments
follow. The evaporation mass is approximately larger than the standard case by ~ GeV in all
cases, for o, ~ 1pb. Since the annihilation rate is 0, the rate of depletion of DM is lower than
the standard case, this naturally leads to slightly larger evaporation masses. Features due to
the cut-off dependence of the velocity distribution is also similar to the that of the standard
case. Reference [320] provides evaporation mass for ADM scenario for various momentum and
velocity dependent cross sections including re-scattering effects relevant for large cross sections
Tio > 107%° cm?, however they do not consider the case of DM scattering off electrons.

dw . .
8 X — (), is an equivalently good measure.

m b

63



Chapter 5 Scattering off Electrons vs Nucleons

10732 T T T
'
1033 \ Constant
'
'
34
10 !
'
1035 !
'
1036 '
'
'
— 1037
S 10 '
'
E 1038 H
O '
— '
103
S \
< H
-40 '
b 10 ' Electrons: v. =,
'
10741 ' Electrons: v.=0.9v,
' Nucleons SD: v, =,
'
1042 . Nucleons SD: v.=0.9v,
N Nucleons SI: v, =,
1043 '
' Nucleons SI: v, = 0.9,
'
104 )
'
10450t L L L

-

1072 T T 103 . .
2 2
1033} Vrel 1033 7
1034} 1034
10} 103
1036} 1036
~ 1037t C\I’_‘ 1037
E 1038L E 1038
O [
— .
o 107%° o 10%
'SF ‘@F
40| -40
b 10 Electrons: v, = v, b 10 Electrons: v, = v,
1041} Electrons: v, =0.9v, 10741 Electrons: v, =0.9v,
Nucleons SD: v, =, Nucleons SD: v, =,
1042} Nucleons SD: v.=0.9w, 1042 Nucleons SD: v.=0.9w,
0 Nucleons SI: v. =, 3 Nucleons SI: v. =,
107°F Nucleons Sl: v, =0.9v, 10 Nucleons Sl: v, =0.9v,
104} 1044
1045La 20y L s 1045 ale 00w NP NP
0 6 7 0 1 2 3 4 5 6 7
Meyap [GeV]

Figure 5.12: Asymmetric DM: Evaporation mass as a function of the scattering cross section (in
reverse order). Same cases as in Fig. 5.10, i.e., DM scattering off electrons (red curves), off nucleons via
SD interactions (green curves) and off nucleons via SI interactions (blue curves) and for two DM velocity
distributions: with a cutoff at v.(r) = v,(r) (solid curves) and with a cutoff at v.(r) = 0.9v,(r) (dashed
curves). Top panel: constant (velocity-independent and isotropic) scattering cross sections. Bottom-left
panel: v2,-dependent scattering cross sections. Bottom-right panel: ¢*-dependent scattering cross sections.

5.7 Neutrino Production Rates from DM Annihilations in the Sun

The neutrino production rate from DM annihilations in the Sun is proportional to the annihilation
rate of the DM particles accumulated in the Sun and it is given by I' = A N; /2, which after the
solution of Eq. (5.36), i.e., Eq. (5.37), results in

tanh(x 7,/ ‘req) 2

1
~-C,

3 (5.43)

L(m,,0;0) =
o K+ % Eq 7oq tanh(k 15 /Teq)
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Figure 5.13: Neutrino production rates as a function of the DM mass. Same cases as in the left panels
of Fig. 5.10. Note the different values of o, for the top and bottom panels.

It depends on the DM mass, the scattering cross section and on the annihilation cross section.
Therefore, in the limit for which equilibration is attained, « 7., > Tego it reads

1 C
F(mX,O'i’O) = 5 % . (5.44)
(K + 5 E, Teq)

although in our computations we keep the exact form of Eq. (5.43).
Once all the ingredients are at hand, we can compare the resulting neutrino rates at production

for the case of capture by electrons and by nucleons in the Sun. As already mentioned, even if DM
has only tree-level couplings to electrons, loop-induced processes could give rise to interactions
with nucleons. Here we compare the relative importance of the different cases considered in this
work. In Fig. 5.13 we show the neutrino production rates for the same cases depicted in the left

panels of Fig. 5.10, i.e., interactions in the Knudsen limit with o7, = 10~ cm? for constant cross

sections (top panel) and o7, = 10~* cm? for v?,;-dependent cross sections (bottom-left panel)

and for ¢>-dependent cross sections (bottom-right panel).
For sufficiently large masses (above the evaporation mass), for which capture and annihilation
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rates are in equilibrium, the neutrino production rates are proportional to the capture rates,
I' = C,/2, and hence for all cases, the same behavior described for Fig. 5.2 is obtained. For low
masses, equilibrium is attained between capture and evaporation and the neutrino production

rate is suppressed by the large evaporation rate, I' = A, (CG /Eo)2 /2. Notice that for very low
masses, the suppression of the evaporation rate results in the increase of the neutrino production
rates, so there is a minimum in the neutrino production rates,” which lies at m, ~ (0.3 -0.5) GeV
for the three types of cross sections we study if the DM velocity distribution extends up to v,(r).
Although the form of the high-velocity tail does not have a strong impact when DM scatters off
nucleons, in the case of interactions with electrons, this minimum shifts to m, ~ (0.1 - 0.2) GeV
for v,(r) = 0.9v,(r) and the neutrino production rate is significant for masses m, 2 0.4 GeV for

constant cross sections and m, 2 0.5 GeV for vfel—dependent and ¢*>-dependent cross sections.
This is to be compared to the minimum DM mass for which there could be a significant neutrino
production rate in the case of interactions with nucleons (and with electrons with v.(r) = v,(r)),
the commonly quoted lower limit m, > 3 GeV.

Above the evaporation mass, the neutrino production rates for DM-nucleon SI interactions are
the largest for the three types of cross sections (for the normalizations used here). For constant
DM-nucleon SD cross sections, these rates are larger than for scatterings off electrons. However,
for urzel-dependent and ¢*-dependent cross sections, the relative importance gets inverted, being
the case of interactions with electrons the most favorable one, because of the larger enhancement
due to thermal effects. This illustrates how, for some scenarios, interactions with electrons could

give rise to the largest signals in neutrino detectors/telescopes [6].

We also provide the equilibration contours for all the cases considered: we plot the equilibration
parameter (kt,/7.,) with respect to mass and the relevant cross section. The equilibration
cross section can be read off from the plots by following the O-line contour. In Fig. 5.14 we
show the contours for the constant cross section case. In Fig. 5.15 we show the contours
for the vZ,-dependent cross section. In Fig. 5.16 we show the contours for the ¢>-dependent
cross section. In all of these Figs. the left column corresponds to the case v.(r) = v,(r), the
right columns correspond to the case v.(r) = 0.9v,(r). The upper panels are for DM-electron
scattering. The middle panels for DM-nucleon SD interactions, and the lower panels correspond
to DM-nucleon SI interactions. From these plots we see that for constant isotropic cross sections,

equilibrium is reached for o, 2 1072 cm?, O'f,% > 107" cm? and O'IS,IO > 107" cm?®. For
2

v%;-dependent cross sections, equilibrium is reached for o, , 2 107 cm?, o-ls,% > 107 cm?

and o-ffo > 107 cm?. Similarly, for ¢°-dependent cross sections, equilibrium is reached for

Tep 2 107% cm?, O'IS,% > 107" cm? and Uifo > 107" cm?.

? The rise of the flux at low masses, being much smaller than that at m, 2 GeV, has no measurable effect.
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Figure 5.14: Equilibration contours as a function of the DM mass and constant elastic scattering
cross section: The left column corresponds to the case v,.(r) = v,(r), the right columns correspond to the
case v,(r) = 0.9v,(r). The upper panels are for DM-electron scattering. The middle panels for DM-nucleon
SD interactions, and the lower panels correspond to DM-nucleon SI interactions.
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Figure 5.15: Equilibration contours as a function of the DM mass and velocity dependent elastic
scattering cross section: The left column corresponds to the case v.(r) = v,(r), the right columns
correspond to the case v.(r) = 0.9v,(r). The upper panels are for DM-electron scattering. The middle
panels for DM-nucleon SD interactions, and the lower panels correspond to DM-nucleon SI interactions.
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Figure 5.16: Equilibration contours as a function of the DM mass and momentum dependent elastic
scattering cross section: The left column corresponds to the case v.(r) = v,(r), the right columns
correspond to the case v.(r) = 0.9v,(r). The upper panels are for DM-electron scattering. The middle
panels for DM-nucleon SD interactions, and the lower panels correspond to DM-nucleon SI interactions.
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CHAPTER 6

Models

Predictions from well motivated UV theories such as the Minimal Supersymmetric Standard
Model (MSSM) hint at the existence of DM at the electroweak scale. In recent years, several
experiments have reported signals that may be interpreted as a hint for DM [36, 38-40, 43,
108, 321-324]. While some of these signals have lost significance [324], others have persisted
in some tension with data from a plethora of other experiments [36]. However, none of these
signals could be conveniently accommodated in the MSSM. In light of these null discoveries,
there has been a renewed interest in studies of general DM models. A particular topic of recent
interest is in the effective operator analysis [213, 269, 325], where the detailed UV structure of
the underlying interactions between the dark sector and SM sector are abstracted away, leaving
an effective 4-point contact interaction operators. Many studies approach the DM problem by
constructing a list of 4—particle-interactions with Lorentz—invariant combinations of y*, 8" and
spinor—/vector—indices up to mass dimension 5 or even 6, depending on the case. Generally,
there is no explanation of how these operators may arise from a fundamental theory making
it difficult to judge how exhaustive the lists of operators are, and how the effective model is
connected to realistic fundamental theories and their couplings. Here, we follow a “simplified“
approach presented in [23, 326, 327] and consider the scenario where DM couples universally
to all leptons in SM (Leptophilic DM). In a simplified approach, renormalizable Lagrangian is
constructed with only one DM candidate and a single mediator which connects DM and SM
sectors. Of course, there exist limitations to this approach [26].

The discussion so far in this thesis has concentrated on model independent analysis of DM
annihilation rate in the Sun for DM scattering off of electrons and nucleons. Now we will study
realistic models. An important observation is that for mp;, > 5 GeV, the total annihilation rate I
is proportional to the elastic scattering cross section of DM and the target particles in the Sun.
In this chapter we focus on the calculation of tree-level DM-electron * elastic scattering cross
sections (o) and possible loop-level DM-nucleon elastic scattering cross sections in leptophilic
DM models, in the non-relativistic limit. Since the three-momentum exchange in these processes
is O(keV), the effective theory analysis holds in the limit of large mediator mass (> GeV).
Moreover, it is well recognized that the effective operator approximation can break down if
the mediating particles are not heavy enough; however, there has been very few studies of the
features of the effective operator analysis which are robust.

The goal of this chapter is to provide expressions for DM-target particle elastic scattering cross
sections for leptonically interacting DM. In particular, we address the following questions: Are
the matrix elements for DM-electron scattering unsuppressed, or suppressed by factors of the
relative velocity or momentum transfer ? Given a leptophilic Lagrangian, does it generate sizable

! Contrary to direct detection experiments where electrons are bound to atoms or nuclei, electrons in the Sun can be
treated as free particles; which inevitably results in significantly large o, for interactions in the Sun.
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interactions with nucleons at loop level ?

Elements of the scattering matrix element can be suppressed by factors proportional to the
relative velocity, or to the ratio of the momentum transfer to dark matter or target mass. For
non-relativistic DM, these factors are all small. Thus it is common to focus on scattering matrix
elements with no velocity or momentum suppression, since these terms will typically dominate
the scattering cross section at leading order. However, velocity- or momentum-suppressed
terms can dominate if the unsuppressed terms have very small coefficients. Given that thermal
effects in the capture process results in enhanced annihilation rates when the target particles are
electrons, we therefore provide a complete treatment of the velocity-and momentum-suppressed
terms as well.

The subject of leptophilic models is vast and they are particularly rich in phenomenology and
experimentally ill constrained. However, we do not consider all aspects of the subject matter.
Particularly, we do not address the following issues: the exact origin of the interaction terms
considered from UV complete theories (see Ref. [327] for a recent review), possible impact on
CP violation in the lepton sector and the loop-induced CP violation in the quark sector and the
possible interplay with DM; the neutrino spectra from DM annihilation and the phenomenology
of the annihilation processes themselves is not considered. For example: one can induce
model-independent loop level annihilation to quarks, which could be relevant for light DM
with masses close to the evaporation mass, or when non-perturbative effects in the annihilation
process become relevant [328]. The interplay between Indirect, Direct and Collider searches in
leptophilic models is not studied. Given the topic of this study, we simply focus on DM-SM elastic
scattering. This chapter is organized as follows: simplified models considered are presented in
section 6.1. The resulting elastic scattering cross sections are tabulated in section 6.2.

6.1 Simplified Models

We have decided to limit the discussion to scalar, fermion and vector DM only, which can also
lead to s-channel annihilation processes 2. In the spirit of the simplified models, the smallest
possible number of degrees of freedom should be added to the SM, i.e. the following prescription
is used:

* The SM is extended by the addition of a DM particle, which is absolutely stable and a
mediator which is assumed to be much heavier than DM.

* The new operators of the models are renormalizable and consistent with the symmetries
of the theory, i.e. Lorentz invariance, S U.(3) x U(1),,, gauge invariance.

* In the SM, global symmetries such as baryon and lepton number are anomalous, but
they can be treated as exact symmetries at the renormalizable level. So, we require that
simplified models respect baryon and lepton number.

Using the above recipe, the simplified interaction Lagrangians considered here are tabulated in
Tab. 6.1, with references to the resulting DM-target scattering cross sections listed in column
3. Irrespective of the case at hand, y denotes DM particle, and [ is the SM lepton field. We
closely follow the notation and discussion provided in Ref. [325]. Some common definitions and
variables used are described in Tab. 6.2.

A few comments regarding the calculation are in order:

2 Models where interactions are of the Yukawa type inevitable lead to t-channel annihilation as well. We consider
only two such examples.
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DM Mediator | Summary Table -L;,

Scalar (x) Scalar(¢) 6.3 gXXT,\/qﬁ + g+ g,75)l¢

Scalar (y) | Fermion () 6.4 (g Pr + grPr)ly + h.c.

Scalar (y) | Vector (¢) 6.5 g)(Tg;Xdﬁ" + Iy, (9, + V59 )8
Fermion (y) | Scalar (¢) 6.6 XG5+ ghysxd + g, + g,75)ld
Fermion (y) | Vector (¢") 6.7 /\?)_/“(g"y, + ghysxd'+

1y, (gy + gays)le!
Vector (y) Scalar (¢) 6.8 g X'd + lgg + gpys)le
Vector (y) | Fermion (1) 6.9 y,(9. P + gr PRI +h.c.

Table 6.1: Simplified Leptophilic Lagrangians: List of all considered leptophilic simplified models.

Quantity Definition
k Incoming DM 4-momenta
K=k-gq Outgoing DM 4-momenta
p 4-momenta of the incoming target particle
p+gq 4-momenta of the outgoing target particle
q 3-momentum transfer for the process
Hyn Reduced mass of DM-nucleon system
z Atomic Number

Table 6.2: Notations: The relevant variable is listed in the first column, and the corresponding definition
in the second column
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!
X, K, N, p,

X’ k}t N7 p,u

N, p, X N, p,

X Ky N, py X ku N, pu

Figure 6.1: DM-nucleus interaction induced by a charged lepton loop and photon exchange at 1-loop
(top) and 2-loop (bottom).
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* We conservatively work in the limit of heavy mediator mass. We do not account for possible

renormalization group flow and operator mixing.

DM-electron scattering at tree-level: In all of the models considered here, tree-level DM-
electron elastic scattering occurs through r-channel diagrams. All differential scattering
cross sections that are listed in the summary tables 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, and 6.9 , is
the result of an expansion in m,/m,. Phenomenologically we are interested only in DM
mass > O(GeV), hence the expansion is justified. As noted in the literature, many of the
Lorentz structures considered here lead to momentum dependent elastic scattering cross
sections.

DM-nucleon scattering at 1-loop: Even in a leptophilic model, one does induce model
independently, loop level couplings to quarks from photon exchange between virtual
leptons and the quarks as shown in Fig. 6.1. The lepton running in the loop can be
any charged lepton to which the DM couples. Diagrams with a photon replaced by a
7° or a Higgs boson are also possible, however they are power suppressed by either
k—Kk)?/ M;) 4 OF by the Yukawa couplings times the higgs propagator and thus negligible.
In the context of leptophilic models considered here, models with vector mediators lead
to 1-loop interactions with quarks. These models are scalar-DM with vector-mediator
(see, Tab. 6.5), fermion-DM with vector-mediator (see, Tab. 6.7) and vector-DM with
fermion-mediator (see, Tab. 6.9). To illustrate some general features, we consider the
example of fermion-DM with a vector-mediator: the one loop contribution involves the
integral over loop momenta of the form [228]

f d4q Tr
(4n)*

with ¢ = k = k' + g and k, k" the incoming momenta as denoted in Fig. 6.1 and T, €
{1, 5, ¥, Y455 Y, ¥y} the possible Dirac structures obtained in the heavy mediator limit.

g +my
re ,2 2 ’yll

2
q —m qg —m

dm | 6.1)




6.1 Simplified Models

The one loop contribution is non-zero only for vector like interactions °. The calculation
is straight forward, and performed in the minimal subtraction scheme (MS) with the
extensive use of computer packages FeynCalc [329] , PackageX [330] and LoopTools [331].

* No loop induced DM-nucleon scattering: Consider Fermion-DM and pseudo-scalar/axial-
vector mediator (see, Tabs. 6.6, 6.7). Then, I', = y5 or ¥,/¥s in Eq. (6.1),respectively; the
trace vanish to all loop orders. Thus, pseudo-scalar or axial vector coupling to leptons does
not induce DM-quark interactions at loop-level.

* DM-nucleon scattering at 2-loop: Again, for the case of Fermion DM, when I', = 1 in
the above expression, the loop integral vanishes. Then, leading DM interaction with
quarks is generated at 2-loops, see fig. 6.1. In this work, typical models with scalar
mediators lead to 2-loop interactions with quarks. These models are scalar-DM with scalar
mediator (see, Tab. 6.3), scalar-DM with fermion mediator (see, Tab. 6.4), fermion-DM
with scalar mediator (see, Tab. 6.6), and vector-DM with scalar mediator (see, Tab. 6.8).
In the following sub-section we discuss the model with scalar-DM and scalar mediator and
estimate the 2-loop cross section using approximations. However, with the intention of
deriving accurate 2-loop expression we have also performed the full 2-loop calculation
including massive propagators using the Mellin-Barnes technique [332, 333]. Where we
have extensively used the Mathematica package AMBRE [334, 335] and MBsums [336].
Due to the tedious nature of the involved expressions they are not presented here. Its
important to note that technical workings of the Mellin-Barnes method deserve an entire
chapter. Such techniques are often employed in higher order QCD calculations.

6.1.1 Example: Scalar DM and Scalar Mediator

In this simplified model we consider DM to be a complex scalar singlet y, with a neutral real
scalar singlet mediator ¢ which interacts with SM leptons / universally with scalar g, and pseudo
scalar g, couplings. To simplify, the interactions between ¢ and SM higgs at tree level is forbidden
and we disregard self interaction terms. The interaction part of the Lagrangian reads

= L = 9 X x0 + g, +ig,ys)lo, (6.2)

For elastic scattering with leptons, the amplitude is given by

Iy _ .
M~ —=iiy(g, + ig,ys)u;. (6.3)
t— m¢

in the non relativistic limit, the bilinear u(g, + ig,ys)u ~ g;m, +g,q - S, where S is the spin of the
target particle. The differential scattering cross section in the CM reads

e 2 2 2 2
do” I [gzﬂ (1 " q—] " gf,q—J. 6.4)

dcos 6 327rm;§ ’ m)z( 4m? 4m)2(

Turning to the case of loop induced elastic scattering with nucleons. Notice that the most
dominant contribution to the scattering process only appears at 2-loop, involving an exchange of
2-photons, see Fig. 6.1. Instead of completely solving the 2-loop integrals, Ref. [228] evaluated
the amplitude for DM-nucleon scattering by first constructing dimension 6 operator y' y F o FY
(through 1-loop diagrams with leptons running in the loop, evaluated in the limit ¢* < ml2 ; using
the low energy theorem [337]) and then matching it onto the nucleon current. Thus solving two
1-loop integrals rather than a much complicated 2-loop integral. The amplitude for y N - y N

% The statement is also true for tensor like interactions, but not considered in this work
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reads

1 5 995 0 N+
M~§a§mt XniZ;?ZZFRUql)(u}zV 27 | (6.5)
)

Qo = \/6(0.3 + 0.89A1/3)_1 fm™! is the nuclear coherence scale [338], and Fg(lgl) is the form
factor that accounts for 2-photon exchange with the nucleon,

4! © P 2 o2 2
Fa@=g f e ], Fria o T T TE ) o0

P-(1-xx3*+1
(1 -2x)Ig

X [cosh ((1-20ig) - sinh ((1 - 2x)iq)),

with dimensionless variables, [ = |I| /Q, and § = |q| / Q.

Let us remark that the expression Eq. (6.5)is an excellent approximation when / = y, 7, however,
on comparison of the result of the full 2-loop integrals with that given above, differences of
~ 100% were found for the case when electrons were running in the loop. Thus the above
approximation is a very good indicator of the order of magnitude and does not significantly
change the results *.

The differential cross section in the limit of large mediator mass reads,

doV 1 4 .99, 10}

: 2 2
B — = Fir(lqD- 6.7
dcos@* 4608 ﬂaem mg Hyn m)z( mzz &gl (6.7)

Notice that no loop level interactions with nucleons is possible when g, = 0. The relevant figure
of merit to estimate the relative importance of loop induced interactions, in the limit g, — 0 and

[ = 7, is the ratio
do sl 1
R,y = ~ 8 x 10° = ——F£*(lq)). (6.8)

For DM of mass ~ 10GeV, and N = p (proton) the ratio R,, ~ 10°. For heavier nucleon targets
such as Fe, the ratio can be ~ O(1), hence could be important. For the case of constant cross
section (< 1 pb), this implies that the total annihilation rate P*¢ ~ 1072 R,y - T¥ N Where the
superscript indicates y e indicates that the capture is through scattering off electrons, and y N
scattering off nucleon N. In the end this results in competitive bounds on o, for DM around
GeV and poorer bounds for TeV scale DM compared to bounds obtained by direct detection
experiments.

6.2 Cross Sections for DM-Electron Elastic Scattering in Leptophilic
Models

In Tab. 6.3 the relevant cross sections are listed for the model with a complex scalar DM (y) and
a real scalar mediator (¢). Interactions with nucleons only arise at 2-loop level.

In Tab. 6.4 the relevant cross sections are listed for the model with a scalar DM (y) and a charged
fermion mediator (1) (Yukawa like interactions with leptons). Interactions with nucleons arise
at 2-loop level.

4 The statement is qualitatively true for all the 2-loop results presented here
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Model: Scalar DM - Scalar Mediator -L,, = QXXTXfﬁ +1(g, + ig,ys)lp
2 2 2 2
do** g

Elastic scattering y — e S 2Me [y 4 |4 g 4

dcos 6" 32zrm m? 2 P4 m?

¢ X e X

do 1 g ﬂiN Q-
Elastic scattering y — N (2-loo = =F

gx ~ N (2-loop) dcos6® 46087 cm s ml m? (laD
Comments The 2-photon exchange form factor F(|g|)

is defined in Eq.( 6.6).

Table 6.3: Scalar DM and Scalar Mediator: Cross sections for DM-electron elastic scattering, and
DM-nucleon interactions at 2-loop in the heavy lepton limit.

Model: Scalar DM - Fermion Mediator L =79 P+ ggPr)lxy +h.c.

Elastic scattering y — e

2, 2)\2
do¥* (9L+9R) mg( q ]
= 1+
2 2
(4

* 2
dcos6 64nmm;, m,

2
deN 1 4 4(gL+gR)IuNQ
Elastic scattering y — N (2-loo = Aoy L' ————— X 0F
gx - N (2oop) G S F = 9162 %m 2k itlah
Comments Note that there are more terms « g7 - gz,

but are power suppressed in m,;z
The 2-photon exchange form factor F(|gl) is
defined in Eq.( 6.6).

Table 6.4: Scalar DM and Fermion Mediator: Cross sections for DM-electron elastic scattering, and
DM-nucleon interactions at 2-loop in the heavy lepton limit.
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Model: Scalar DM - Vector Mediator L, =9 XT5HX¢” + Zyﬂ(gu + ysgpv)lqﬁ"
doe 2 2 2 2
Elastic scattering y — e — = 9 m€4 g1+ q_2 + gjz,vq—2
d cos @ 8 md) m, .
dO’XN 2 2 2 2 2
Elastic scattering y — N (1-loop) — = g 9 'ujN z? F2(|q|)L% 1- q _ 4 5
dcosé 8 7 m, 2p,N(m,, +my) 4m3,
1 2 2 .
-x(1 - +m; +i0
Comments L, = Lem f dx(1 - x)Log M1 = g > o
T Jo H

is the 1-loop integral, u is chosen to be 100 GeV.
F(|g)) is the usual Helm form factor defined
in Eq. 6.9.
Notice that do*“ is independent of m, .

Table 6.5: Scalar DM and Vector Mediator: Cross sections for tree-level DM—electron elastic scattering,
and DM-nucleon scattering at 1-loop.

In Tab. 6.5 the relevant cross sections are listed for the model with a complex scalar DM (y)
and a vector mediator (¢). Interactions with nucleons arise at 1-loop level, proportional to the
Helm form factor. For a real scalar DM the interactions with ¢ vanish.

The Helm form factor is given by [339]

F(g) = 3e_’(2s2/2[sin(/<r) — krcos(kr)]/(kr)’, (6.9)

with s = 1 fm, r = \R?> - 55%, R = 1.24"° fm, and ¥ ~ ¢°.

In Tab. 6.6 the relevant cross sections are listed for the model with a fermion DM (y) and a
scalar mediator (¢). Interactions with nucleons arise at 2-loop level.

In Tab. 6.7 the relevant cross sections are listed for the model with a fermion DM (y) and a
vector mediator (¢"). Interactions with nucleons arise at 1-loop level for vector like interactions
and they vanish for axial-vector type interactions.

In Tab. 6.8 the relevant cross sections are listed for the model with a vector DM () and a neutral
scalar mediator (¢). Interactions with nucleons arise at 2-loop level.

In Tab. 6.9 the relevant cross sections are listed for the model with a vector DM (y) and a

charged fermion mediator (). Interactions with nucleons are tensor like and arise at 1-loop
level.
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Model: Fermion DM - Scalar Mediator

~ Ly =G} +ig5ysive + g, +ig,ys)e

Elastic scattering y — e

do*¢
dcos 6" 4ﬂm¢

oo ) )

(9595
m2q
L

Elastic scattering y — N (2-loop)

dO"\/N 1 Z4 :u/\/N /’t/\(N Q()

2
dcos® 2887 m¢ ml ml FR(lql) [(g g)() [4m,\,)]+

1 2
o 7 “XN“*N QOFR<|q|)(<g g% —]

Comments

g' = ¢¥ = 0 results in no interactions with nucleons
at all loop orders.
The 2-photon exchange form factor Fy(|gl) is
defined in Eq.( 6.6).

Table 6.6: Fermion DM and Scalar Mediator: Cross sections for tree-level DM-electron elastic scattering,
and DM-nucleon scattering at 2-loop in the heavy lepton limit.
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Model: Fermion DM - Vector Mediator — Ly = X7,(9Y + g ysx ¢ +
,(gy + ghys)ld'

do¥¢
dcosd” 47rm¢

2 2
((@;%) +3(g5gy) ) 2]
47rm¢ m,

Elastic scattering y — e

< ((g59)” +3(95g)) +

Elastic scattering y — N (1-loop)

o 2
= 2 P gL} ((q;glvf +3(g%g})’ (f—z))
my

dcos§* 87 m,

—x(1 —x)q2 +ml2 +i0

2

o 1
Comments L,=—= f dx (1 — x)Log

gy = gV, = 0 results in no interactions with nucleons
L, is the 1-loop integral, y is chosen to be 100 GeV.
F(|g|) is the usual Helm form factor defined
in Eq. 6.9.

Table 6.7: Fermion DM and Vector Mediator: Cross sections for tree-level DM—-electron elastic scattering,
and DM-nucleon scattering at 1-loop.

Model: Vector DM - Scalar Mediator Loy = gy, X0+ lgs +igpys)lg

do** g [ .m q 2 4
Elastic scattering y — e = — |1+ =+ 9 —
8X dcosd”  16am’ Is m? 2m? Ir 4m?
¢ X e X

do*V 1 Ju
Elastic scattering y — N (2-loop) = at 7t g 05 LN%FRU D
dcos@§” 46087 mg m)( ml
Comments The 2-photon exchange form factor F(|gl) is

defined in Eq.( 6.6).

Table 6.8: Vector DM and Scalar Mediator: Cross sections for tree-level DM-electron elastic scattering,
and DM-nucleon scattering at 2-loop in the heavy lepton limit
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Model: Vector DM - Fermion Mediator

_‘Einl = ﬁVM(QLPL + gRPR)l/\/'u + h.c.

Elastic scattering y — e

do* (ngR)Z m? (1 _ q_z)

* = 2 2 2
dcos6 167wm, m; 2m;,

Elastic scattering y — N (1-loop)

2
doV 22 m? j 2
_ = (ngR) e;n ZZ F2(|q|) é )(;V q2 B(Z)(qZ’le’le)
dcos6 16 g my me my

Comments

By(¢*,m;, m?) is the 2-point Passarino Veltman function.
F(lg)) is the Helm form factor defined
in Eq. 6.9.

Table 6.9: Vector DM and Fermion Mediator: Cross sections for tree-level DM—-electron elastic scattering,

and DM-nucleon scattering at 1-loop.
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CHAPTER [

Summary and Outlook

There is undeniable evidence that DM exists in the present Universe [1]. Lack of an unambiguous,
smoking-gun signal in experiments searching for a non-gravitational interaction of DM leaves
the determination of its particle physics properties to be an open problem. There are several well
motivated particle DM candidates [285], however the focus of this work has been the primarily
WIMPs. The topic of this thesis has been to develop new techniques that could test the particle
nature of DM with neutrino telescopes. We particularly study in detail how DM particles in the
galactic halo could be brought into close orbits around the Sun after scattering off solar elements
and be captured in the gravitational potential of the Sun. The annihilation of DM particles
accumulated in the Sun can result in flux of neutrinos with energies of the order of the DM
mass from decays of heavy hadrons, gauge bosons and tau leptons [82—-88, 130-187] and with
energies from tens to few hundred MeV from decays of stopped mesons and muons [188-191],
which are potentially detectable with neutrino detectors/telescopes [192-205].

In chapter 2, creation of WIMPs in the early Universe through thermal freeze-out has been
reviewed. Complementarity of the various detection methods for WIMPs and their present
status has been briefly illustrated. We can conclude that the WIMP paradigm is in mild tension
with current experimental results. In several well-motivated scenarios of WIMP dark matter, a
significant part of the parameter space has already been excluded, but there is still a variety of
interesting models which are consistent with all current constraints.

In chapter 3, the standard solar models are described, which serve as inputs for the calcula-
tions that follow in chapter 4 and chapter 5. The main results from chapter 4, 5 and 6 are
summarized below. The process of capture in astrophysical objects like the Sun is commonly
assumed to be due to interactions with nucleons. However, in leptophilic scenarios, in which
only couplings to leptons are present at tree level, capture via interactions off electrons could
be the only possibility to trap DM particles [228]. Moreover, scattering cross sections for
DM-electron (and DM-nucleon) interactions, rather than being constant, could depend on the
relative velocity (v.;) and the scattering angle (6.,,) [213-227]. Indeed, even if loop-induced
interactions with nucleons are, in general, possible, scatterings off electrons could be the dom-
inant capture mechanism in models with scalar mediators and axial-vector mediators (chapter 6).

In this thesis, we have considered DM scatterings off electrons and have studied the different
ingredients (capture, annihilation and evaporation) entering the calculation of the neutrino pro-
duction rates from DM annihilations in the Sun for three type of generic interactions: constant
(velocity-independent and isotropic), vfel—dependent (and isotropic) and ¢*-dependent cross
sections (Section 5.2). To the best of our knowledge, the possibility of capture via DM-electron
interactions had only been considered for the case of constant cross sections and for masses for

which evaporation can be neglected (mx > 10 GeV) [228]. Here, we have presented detailed
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analytical and numerical results for the differential scattering rates for three different types of
cross sections and generic target particles (Sec. 4.1), which enter the calculation of the capture
(Sec. 5.3) and evaporation (Sec. 5.5) rates; we have presented refinements in the calculation
of the temperature in the isothermal approximation (Sec. 4.2), which slightly modify the DM
distribution in the Sun with respect to the standard case (Sec. 5.4) and thus, could affect the
annihilation and evaporation rates; and we have also computed the mean free path of DM
particles for each type of cross section in generic terms (Sec. 4.3.1), which is relevant for the
computation of the DM distribution in the Sun and for the suppression factor appearing in the
evaporation rate (Sec. 4.3.2). Moreover, we have also investigated the effects of the truncation
of the DM distribution at a velocity smaller than the escape velocity.

Given that for leptophilic DM models loop-induced interactions with nucleons would, in general,
be present, we compare all our results on DM capture by electrons to those obtained for DM
capture by nuclei. All our computations of capture rates take into account thermal effects (left
panels of Fig. 5.2), which are very important for interactions off electrons [228], but are usually
neglected for scatterings off nucleons (here presented for the first time for vfel—dependent and
¢*>-dependent cross sections). Indeed, for DM-electron scatterings the enhancement of the cap-
ture rate with respect to the zero-temperature limit could be up to three orders of magnitude for
v%;-dependent and ¢*-dependent cross sections. On the other hand, we confirm the well-known
fact that, in the case of constant cross sections, thermal effects are negligible for capture by
nucleons, but we note that for v;-dependent and ¢*-dependent cross sections, these effects

could be significant (see the right panels of Fig. 5.2).

For low DM masses (typically of a few GeV), evaporation is a very effective process to reduce
the number of DM particles accumulated in the Sun [83, 88, 124-126, 128, 232, 316, 317], so
we have also evaluated the evaporation mass as a function of the scattering cross section, i.e.,
the minimum mass for which DM could remained trapped in the Sun (Section 5.6). Whereas
for the case of nucleons the evaporation mass does not depend much on the cutoff (comparing
v.(r) = v,(r) and v.(r) = 0.9v,(r)) of the DM velocity distribution (Fig. 5.11), for interactions
with electrons, the presence of a cutoff v.(r) < v,(r) could have important implications, shifting
the evaporation mass below the GeV range, down to few-hundred MeV, and opening up a new
region in the parameter space suitable to be tested in the future. A definite answer regarding this
possibility would require the use of the correct DM distribution and thus, solving the collisional
Boltzmann equation, which is beyond the scope of this thesis.

In chapter 6, we have considered elementary leptophilic simplified models and illustrated that ¢*
and vfel-dependent DM-electron elastic scattering cross sections naturally arise in these models,
we have also shown that DM-nucleon elastic scattering is generally loop suppressed. Neverthe-
less, 1-loop DM-nucleon interactions can dominate over DM-electron interactions for certain
choice of model and their parameters. Whereas, in some models considered here DM-electron
interactions always dominate over 2-loop DM-nucleon interactions. We have summarized the
obtained cross sections in a list of tables; for a model with scalar DM with a scalar mediator
see Tab. 6.3, scalar DM with a fermion mediator in Tab. 6.4, scalar DM with vector mediator
in Tab. 6.5. Similarly, fermion DM with a scalar mediator in Tab. 6.6, fermion DM with vector
mediator in Tab. 6.7. For vector DM with scalar mediator in Tab. 6.8 and vector DM with fermion

mediator in Tab. 6.9.

Finally, we have compared the neutrino rates at production resulting from (s-wave) annihil-
ations of DM particles after being captured either by solar electrons or nuclei for constant,
vfel—dependent and ¢*>-dependent scattering cross sections (Fig. 5.13). We have found that, for
the normalizations of the cross sections considered in this work, capture by electrons would
result in neutrino rates about two orders of magnitude smaller than those obtained in the case of
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DM-nucleon SD interactions for constant cross sections, whereas in the case of v2,-dependent and

¢*>-dependent cross sections, interactions off electrons result in a larger neutrino production rate.
For the three type of cross sections, the most efficient process is via DM-nucleon SI interactions,
although stronger limits exist in this case [45, 47-49, 241-245].

So far, there is no conclusive evidence of the existence of DM, other than from its gravitational
interactions. Therefore, investigating different and complementary techniques to search for DM is
of crucial importance. Here, we have studied one of the existing strategies to indirectly detect DM,
which is in turn complementary to DM direct searches. Indeed, the phenomenological approach
discussed in much detail in this work represents the first step in evaluating the relevance of DM
capture in leptophilic scenarios and of their potential signals at neutrino detectors/telescopes [6].
In the coming decade, we expect more data and increased experimental sensitivities: ton-scale
direct detection experiments such as XENONnT, LZ or DARWIN will further push the sensitivity
to the scattering cross section of dark matter with nucleons all the way to the neutrino floor;
indirect detection experiments such as HyperKamiokande, Juno, IceCube, which is sensitive
to Spin-Dependent scattering of nucleons in the Sun will also greatly improve in sensitivity.
Experiments such as CTA or AMS-02 will probe even smaller values of the annihilation cross
section of dark matter. We end with the hope that the discussion provided in this thesis can
help in effectively constraining DM-electron cross section independent of Direct detection and
Collider experiments.
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