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How little things can make a big difference
(Malcolm Gladwell)





Abstract
A new development in the field of reanalyses is the incorporation of uncertainty esti-
mation capabilities. In the course of this work, a new probabilistic regional reanalysis
system for the CORDEX-EUR11 domain has been developed. It is based on the numer-
ical weather prediction model COSMO at a 12 km grid spacing. The lateral boundary
conditions of all ensemble members are provided by the global reanalysis ERA-Interim.
In the basic implementation of the system, uncertainties due to observation errors are
estimated. Atmospheric assimilation of conventional observations perturbed by means
of random samples of observation error yields estimates of the reanalysis uncertainty
conditioned to observation errors.
The data assimilation employed is a new scheme based on observation nudging that is
denoted ensemble nudging. The lower boundary of the atmosphere is regularly updated
by external snow depth, sea surface temperature and soil moisture analyses. One of
the most important purposes of reanalyses is the estimation of so-called essential cli-
mate variables. For regional reanalyses, precipitation has been identified as one of the
essential climate variables that are potentially better represented than in other climate
data sets. For that reason, the representation of precipitation in the system is assessed
in a pilot study. Based on two experiments, each of which extends over one month, a
preliminary comparison to the global reanalysis ERA-Interim, a dynamical downscaling
of the latter and the high-resolution regional reanalysis COSMO-REA6 is conducted. In
a next step, the probabilistic capabilities of the reanalysis system are assessed versus the
ECMWF-EPS in terms of six-hourly precipitation sums. The added value of the proba-
bilistic regional reanalysis system motivates the current production of a 5-year long test
reanalysis COSMO-EN-REA12 in the framework of the FP7-funded project Uncertain-
ties in Ensembles of Regional Reanalyses (UERRA).
To provide an indication of how the probabilistic reanalysis system would be config-
ured ideally for future long-term reanalyses, it is updated to a new model version of
COSMO and extended by further uncertainty estimation capabilities. Now, model error
can be accounted for by the method of stochastic perturbation of physical tendencies.
Further, uncertainties in the lateral boundary conditions are incorporated by utilizing a
global ensemble of the new numerical weather prediction model ICON. A comparative
verification of screen-level temperature as second important essential climate variable
and precipitation in a range of numerical experiments with different configurations of
the reanalysis system indicates that the best probabilistic capabilities are achieved by
accounting for as many uncertain components as possible.
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1 Introduction

Reanalyses of the past evolution of the earth system or its components are the most fre-
quently used long-term climate data sets. Reanalyses also provide a fundamental basis
for the development of adaptation and mitigation strategies (Dee et al. 2014). At the
time of writing, the paper that introduces the global reanalysis ERA-Interim (Dee et al.
2011a) has a number of 6429 citations.
Atmospheric reanalyses emerge from a reconstruction of the four-dimensional record
of the past atmospheric state, where a high degree of spatio-temporal consistency and
accuracy is strived for. They have first been proposed for climate-change studies by
Trenberth and Olson (1988) and Bengtsson and Shukla (1988). The central component
of reanalysis systems is a data assimilation algorithm that feeds historical observations
of the atmospheric state into a numerical weather prediction (NWP) model. Through
the model equations, the information content of the observations is spread in space and
time and passed from the observed to the non-observed variables. By the atmospheric
flow, it is transported to observation-sparse regions. From this process, complete and
physically consistent four-dimensional fields evolve. Data assimilation ensures that the
model state stays close to the true state of the atmosphere.
Due to these properties, reanalyses have many advantages over related climate data sets.
Their physical consistency between the variables is a major advantage over gridded ob-
servation climate data sets, e.g. the E-OBS data (Haylock et al. 2008) or HadCRUT
(Brohan et al. 2006, Jones et al. 2012, Morice et al. 2012). Via their spatio-temporal
completeness reanalyses add value to heterogeneously distributed observations which in
turn add realistic detail such as extremes on the resolved scales to the reanalysis. The
latter is beneficial compared to dynamical downscalings and hindcasts which are likewise
spatio-temporally complete climate data sets, but due to the absence of data assimila-
tion rather tend towards the model climate. Therefore, they cannot provide the same
accurate information about the evolution of weather and climate.
Finally, the meta data (observation feedback) evolving from the quality and consistency
checks that the observations are subjected to even helps to improve the instrumental
record itself. The most important components of reanalysis systems and the resulting
added value is illustrated in Figure 1.1.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Components of a reanalysis system leading to an added value of reanalyses.
Concept: The key components are an NWP model, a data assimilation al-
gorithm, observations and an observation quality control. Monitoring the
analysis increments1, temporal consistency can be controlled and biases can
be detected on time during the production. Added value: Fixed model and
data assimilation versions increase homogeneity. The NWP model enables
completeness and physical consistency. Data assimilation adds accuracy.

The pioneering reanalyses ERA-15 (Gibson et al. 1997), NASA/DAO (Bony et al.
1997a,b) and NCEP/ NCAR (Kalnay et al. 1996) have been global data sets with low
spatial resolution. Analysing the large and synoptic atmospheric scales, their main objec-
tive has been a correct representation of the general atmospheric circulation and global
averages.

Towards probabilistic regional reanalyses

In this decade, climate change and extremes on the local scale are attracting increasing
notice (Thorne and Vose 2010). This has brought forward the idea of regional reanalyses
(Mesinger et al. 2006) that zoom in to a certain geographic region of the earth, pro-
viding data at a significantly increased spatial sampling. Due to a smaller grid spacing
that allows for a better representation of model orography, land use, soil, vegetation, sea
surface temperature and land-sea contrasts the influence and interaction with the lower
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boundary conditions can be accounted for much better in regional reanalyses. Also,
scale interactions within the atmospheric flow which are important for the representa-
tion of extremes can be described better. Dynamically, abandoning the assumption of
incompressibility and choosing a non-hydrostatic formulation enables the representation
of mesoscale processes. For these reasons, the evolution of the atmosphere at a certain
point in space can be represented much more accurately than in global reanalyses. This
allows e.g. for the regional monitoring of precipitation (Jermey and Renshaw 2016).
A further novel idea that is picked up in the thesis on hand is to generate ensembles of
reanalyses from which a probability density function (PDF) of the analysed state can be
derived. It has only been in the 1990s, that the idea of computing ensembles has been
introduced to operational numerical weather prediction in the big operational centres
(Ehrendorfer 1997). However, applied to reanalysis computing ensembles is a very new
approach, overall because only recent progress in super-computing and data banks allow
for the immense computational efforts and storage and retrieval of data required.

Why is computing ensembles of reanalyses essential?
To provide an answer to this question, the importance of the probabilistic approach to nu-
merical weather prediction has to be reviewed first. In the 1960s, the mathematician and
meteorologist Edward N. Lorenz found evidence of the deterministic chaos underlying
atmospheric prediction (Lorenz 1963). In a numerical experiment, Lorenz observed that
trajectories evolving from infinitesimally differing initial conditions diverge until, after a
certain integration time, they are fully uncorrelated (Lorenz 1982, 1993). Fundamental
aspects of numerical weather prediction became clear: Numerical weather prediction is
sensitively dependent to the initial conditions and the model formulation (Lorenz 1990).
Further, due to the error growth following from by definition non-perfect initial condi-
tions and non-perfect models, the atmosphere can only be predicted over a limited time
span. Note that it can be differentiated between two kinds of uncertainties underlying
numerical weather prediction: Aleatoric uncertainty, which is a fundamental property of
the atmosphere as non-linear dynamical system that cannot be avoided and epistemic
uncertainty, which results from technical short-comings in the practice of NWP that can
be reduced in principle, e.g. by improving the model formulation.
Since non-linearities and scale interaction increase towards smaller atmospheric length
scales (Lorenz 1969), the predictability of the atmosphere is shortest at the small scales

1Note that analysis increments are mostly weighted differences between the prior distribution and the
observations. The nudging technique applied in this work corrects the model state continuously
during forward integration. Therefore, the corresponding analysis increments represent aggregates
of all changes that have been applied to the model state at a certain grid point over the duration of
an analysis cycle.
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and improves towards the large and synoptic scales. The quality of the initial conditions
depends on the capabilities of the data assimilation algorithm estimating the analysis,
the density and quality of the assimilated observations, the formulation of the numerical
weather prediction model and on the weather regime or the errors of the day (Corazza
et al. 2003).
It was soon recognized that it would not be feasible to find a fully accurate solution
to NWP given these limitations. Therefore, Epstein (1969) suggested to describe the
problem of weather forecasting as the evolution of a PDF rather than as deterministic.
Thereby, the objective is to predict the predictability of the forecasted evolution of the
atmospheric state (see e.g. Ehrendorfer (1997)).

How can ensembles be generated?
Both initial condition and model uncertainty limit atmospheric predictability. There-
fore, ensemble forecasts can be generated by perturbing either the initial conditions or
the NWP model itself or both. Using initialization techniques like breeding of growing
modes (Toth and Kalnay 1997) or singular vectors (Palmer et al. 1997), the directions of
strongest error growth in phase space can be estimated and utilized to generate sets of
physically meaningful initial conditions perturbing a deterministic analysis. Examples
for ensemble generation methods that incorporate model error are perturbed physics
ensembles, e.g. employed in Stensrud et al. (2000) or stochastic perturbation of physical
tendencies (Buizza et al. 1999). Finally, the lower boundary conditions can be perturbed
or in the case of limited-area models probabilistic lateral boundary conditions can be
employed to estimate the forecast uncertainty with respect to the uncertainty introduced
by the steering model.
A related approach is ensemble data assimilation which provides ensembles of analyses
that can directly be employed as initial conditions. The basic principle of ensemble data
assimilation methods based on ensemble Kalman filtering is to generate a background
forecast ensemble (by means of some of the above explained perturbation strategies)
and to forward-integrate it over a short time span, to estimate a flow-dependent back-
ground error covariance matrix that incorporates the structure of the error of the day
(based on the ensemble perturbations) and to correct the ensemble by combining it with
observations (Houtekamer and Mitchell 1998). Ensemble Kalman filtering techniques
are advantageous since the resulting analysis ensemble directly reflects the analysis un-
certainty that depends on the errors of the day and the density and quality of the
assimilated observations. Traditional (non-hybrid) variational techniques employ a cli-
matological forecast error structure (Talagrand and Courtier 1987, Courtier et al. 1998).
In ensemble mode every member is updated independently. Such techniques allow e.g. for
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the incorporation of observational uncertainty by assimilating perturbed observations.
A similar approach is chosen in this work using observation nudging as data assimilation
algorithm.

What does this imply for ensembles of reanalyses?
As discussed, reanalyses are estimates of the atmospheric phase space trajectory evolv-
ing from data assimilation cycles that combine short-range forecasts with observations.
Due to the absence of better estimates, reanalyses are often used as equivalent to truth
(Dee et al. 2011b). However, central to the problem of predictability, resulting from
a combination of erroneous forecasts and erroneous observations, analyses are likewise
only estimates of truth, even though analysis errors are typically significantly smaller
than forecast errors. Therefore, it is of great importance to estimate the magnitude
and distribution of the reanalysis uncertainty and to provide the resulting uncertainty
estimates to users. Just as for forecasts, the objective is to resemble the analysis error
of the ensemble mean by means of the ensemble spread to obtain a reliable uncertainty
estimate. Ensembles of reanalyses can be generated by means of the same techniques
as forecast ensembles. The estimated uncertainty structures are e.g. useful for the re-
newable energy sector which depends on spatial and situation-dependent inter-variable
error correlations of variables like wind and solar irradiation to optimally configure the
supply of power to the electricity network.

Scope and outline of this thesis

Reanalysis requires the availability of complex operational production suites whose mean-
ingful and efficient design is a key challenge. Once that a basic suite is established, it can
be used to conduct research and to advance the system stepwise. In the framework of
the FP-7 funded project Uncertainties in Ensembles of Regional Reanalyses (UERRA),
a probabilistic regional reanalysis system has been developed whose domain extends over
the European-Atlantic region (CORDEX-EUR11 domain). It is based on the limited-
area model COSMO of the COnsortium for Small-scale MOdeling. The thesis on hand
is focussed on

• the design of this new probabilistic regional reanalysis suite with dedicated devel-
opment of a new ensemble data assimilation technique

• an extension of the suite by further ensemble generation methods to enhance the
uncertainty estimation.
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Initially, the suite will be utilized to produce the test reanalysis COSMO-EN-REA12
that will span the years 2006 to 2010. The main objective of UERRA is the development
and preparation of regional reanalysis systems that will be operationally applicable by
the Copernicus Climate Change Service (C3S) that is currently built up by the European
Center for Medium-Range Weather Forecasting (ECMWF) and the European Commis-
sion. The production system has been advanced from a suite developed in the German
Hans-Ertel-Centre for Weather Research (Bollmeyer et al. 2015).
The structure of this thesis is as follows: In chapter 2, the state of the art of the field
of reanalyses is reviewed. The configuration of the new probabilistic reanalysis suite is
outlined in chapter 3. An important point is the introduction of the aforementioned new
ensemble data assimilation technique denoted ensemble nudging which allows for esti-
mating the uncertainty of a regional reanalysis with respect to observation uncertainty.
This technique will be employed for the production of the aforementioned test reanalysis
in UERRA. Chapter 4 is devoted to an evaluation of numerical experiments with the new
system. In the first part, experiments conducted with the basic implementation which
makes use of ensemble nudging are evaluated with a focus on precipitation. Firstly, it is
tested if data sets produced with the new suite bear comparison with related determinis-
tic climate data sets, e.g. the global reanalysis ERA-Interim. Secondly, the probabilistic
capabilities of the new system are verified. Then, further ensemble generation techniques
are incorporated to assess how the uncertainty estimation capabilities of the suite can
be enhanced. The central achievement of this work is a probabilistic regional reanalysis
suite for Europe based on the newest model version of COSMO which allows for estimat-
ing reanalysis uncertainty given uncertainty in the assimilated observations, in the NWP
model and in the lateral boundary conditions. In the final chapter, the main results of
this thesis are discussed and ideas for further work are outlined. Note that parts of the
abstract as well as all chapters are published in Bach et al. (2016), c©Tellus A.



2 State of the art

This chapter gives an overview of the state of the art of the field of atmospheric reanalysis.
In a first step, an overview of global, regional and probabilistic reanalyses is given.
Then, challenges of reanalysis related to climate quality and violation of conservation
laws are discussed. In the project UERRA, in which this work has been conducted,
intensive discussion on applications and user interaction has taken place. These are
briefly discussed for the sake of completeness.

2.1 Global reanalyses
The first generation of global reanalyses including ERA-15 (Gibson et al. 1997), NASA/
DAO (Bony et al. 1997a,b) and NCEP/NCAR (Kalnay et al. 1996) succeeded in rep-
resenting the major modes of climate variability that are associated with large-scale
phenomena on planetary or synoptic scales like the southern oscillation and monsoons
(Lahoz et al. 2010). Major problems encountered were the representation of the gen-
eral circulation, the hydrological cycle and the global observing system. It was soon
recognized that the evolution of the global observing system imposes a strong limit on
the usefulness of raw reanalysis data for the estimation of climate trends (WCRP 1997,
2000, Kistler et al. 2001). In the second generation, including ERA-40 (Uppala et al.
2005), JRA-25 (Onogi et al. 2007) and NCEP/DOE (Kanamitsu et al. 2002), most of
these problems remained unsolved (Lahoz et al. 2010).
The third generation of global reanalyses has shown major improvements, particularly
due to a strongly improved and extended observation stream, but also due to advanced
model versions (see e.g. Dee et al. (2011b)) and the introduction of variational bias cor-
rection (Dee 2005). It comprises ERA-Interim (Dee et al. 2011b), JRA-55 (Kobayashi
et al. 2015), NASA/MERRA (Rienecker et al. 2011) and NOAA/CFSR (Saha et al.
2010). Currently, a fourth generation of reanalyses has started to be produced or is
planned for the near future. MERRA-2, starting from 1979 is updated in near-real
time production. The production of ERA5 has started at ECMWF/Copernicus Climate
Change Service (C3S) (Hersbach and Dee 2016). A new Japanese reanalysis JRA-3Q is
planned for 2018 (see Simmons (2016)) (see summary in Table 2.1).

7



8 CHAPTER 2. STATE OF THE ART

Table 2.1: Overview of current global reanalysis data sets
Name Grid spacing Time span Reference
ERA-15 190 km 1979 - 1993 Gibson et al. (1997)
NASA/DAO 210 km 1980 - 1993 Bony et al. (1997a,b)
NCEP/NCAR 210 km 1948 - present Kalnay et al. (1996)
ERA-40 125 km 1957 - 2002 Uppala et al. (2005)
JRA-25 120 km 1979 - 2014 Onogi et al. (2007)
NCEP/DOE 210 km 1979 - present Kanamitsu et al. (2002)
ERA-Interim 80 km 1979 - present Dee et al. (2011b)
JRA-55 60 km 1958 - present Kobayashi et al. (2015)
NASA/MERRA 1979 - 2016 Rienecker et al. (2011)
NOAA/CFSR 38 km 1979 - 2011 Saha et al. (2010)
MERRA2 50 km 1979 - present
ERA5 80 km / 30 km 1979 - present Hersbach and Dee (2016)
JRA-3Q in planning

Table 2.2: Global reanalyses extending over the whole 20th century
Name Grid spacing Time span Reference
20CR 190 km 1871 - 2012 Compo et al. (2011)
ERA-20C 125 km 1900 - 2010 Poli et al. (2016)
CERA-20C 210 km 1900 - 2010 Laloyaux et al. (2016)

Understanding events like the 1877/1878 El Niño that came along with the Indian famine
(Compo et al. 2011), but also trend estimation and understanding of climate variability
has raised the need for very-long term global reanalyses. Surface pressure observations
have been found to be most suitable for assimilation. On the one hand, the observations
are available and recoverable for a very long time span (Cram et al. 2015). This is im-
portant in view of the rapid growth of the global observing system. On the other hand,
surface pressure provides essential information about the dynamics of the atmosphere
approximating the barotropic part of the flow through geostrophy (Compo et al. 2011),
while surface pressure tendencies provide information about the divergent part of the
flow.
The pioneering century reanalysis has been 20CR of NOAA-CIRES extending from 1871
to 2012 (Compo et al. 2011). The long-term global reanalysis of ECMWF comprises both
pure model simulations ERA-20CM with external forcings (Hersbach et al. 2015) and a
genuine reanalysis data set ERA-20C (Poli et al. 2016). Different from 20CR, ERA-20C
also incorporates marine wind observations. ECMWF has recently replaced ERA-20C
by CERA-20C which is based on a fully-coupled ocean-atmosphere system (Laloyaux
et al. 2016). First evaluation has shown pronounced added value (Laloyaux 2016) over
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Table 2.3: Overview of current regional reanalysis data sets
Name Grid spacing Time span Reference
NARR 32 km 1979 - present Mesinger et al. (2006)
Arctic system reanalysis 30 km 2010 - 2011 Bromwich et al. (2016)
SMHI Hirlam 22 km 1989 - 2010 Landelius et al. (2016)

5 km surface Dahlgren et al. (2016)
COSMO-REA6 6 km 1995 - 2014 Bollmeyer et al. (2015)
COSMO-REA2 2 km 2007 - 2013 Wahl et al. (2017) (accepted)
Met Office 24 km 2008 - 2009 Jermey and Renshaw (2016)
Safran 8 km 1979 - present Vidal et al. (2010)
Mera 2.5 km 1981 - 2015 Whelan and Gleeson (2016)

ERA-20C (Poli et al. 2016). The currently available reanalyses extending over the whole
20th century are summarized in Table 2.2.

2.2 Regional reanalyses
The field of regional reanalysis (see Table 2.3) has been pioneered by the North Ameri-
can Regional Reanalysis (Mesinger et al. 2006). An important reanalysis project is the
Arctic system reanalysis (Bromwich et al. 2016). In the framework of the EU-funded
project European Reanalysis and Observations for Monitoring (EURO4M), regional re-
analysis systems have been set up by the Met Office (Jermey and Renshaw 2016) and by
the Swedish Meteorological and Hydrological Institute (SMHI) (Landelius et al. 2016,
Dahlgren et al. 2016). Additionally, the Hirlam reanalysis by SMHI has been down-
scaled and combined with surface observations by means of optimal interpolation using
MESAN-Safran (Soci and Bazile 2013).
A reanalysis effort for Europe based on COSMO has been undertaken in the Hans-Ertel-
Centre for Weather Research (Bollmeyer et al. 2015, Simmer et al. 2016). Concurrently,
high-resolution regional reanalyses have been produced for single countries, including
a very-high resolution regional reanalysis for Germany based on COSMO (Wahl et al.
(2017), accepted) and for France (Vidal et al. 2010) using Safran. Met Eireann has
produced a regional reanalysis for Ireland and Great Britain using Hirlam (Whelan and
Gleeson 2016). At the moment, a project for a regional reanalysis of similarly high
resolution is set up for Scandinavia (personal communication, Ole-Einar Tveito, Met
Norway). The Copernicus Climate Change Service will commission the production of
regional reanalyses to European met services in the foreseeable future.
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2.3 Probabilistic reanalyses

To estimate the uncertainties underlying reanalyses, the idea of drawing multiple realiza-
tions of reanalyses has been adapted from ensemble forecasting in NWP in recent years.
The essential epistemic uncertainties (i.e. uncertainties that result from short-comings in
the NWP practice, but can be eliminated in principle) that can directly be accounted for
by operation of different perturbation schemes are errors in the assimilated observations,
model uncertainty arising for example from physical parameterization of the sub-grid
scales and errors in the lower and possibly lateral boundary conditions (in the case of
regional reanalyses).
Currently, the global ensemble reanalysis ERA5 is produced by ECMWF/Copernicus
Climate Change Service (Hersbach and Dee 2016). It incorporates uncertainties in sea
surface temperature, observations as well as in model physics (personal communication,
Andras Horanyi and Hans Hersbach, ECMWF).
In UERRA, regional probabilistic reanalysis systems are set up, some of which are in-
tended to be further developed and employed for long-term productions that will be
ordered by the Copernicus Climate Change Service. The ensemble systems are run for a
test period of at least 2006 and 2010 to learn about the individual strengths and weak-
nesses in a comparison. The developed systems comprise an 8-member system based on
ALADIN that aims to characterize the impact of perturbed observations, observation
density and physical parameterizations. Additionally, a mini ensemble comprising two
members is produced at SMHI, one of which makes use of ALADIN and one of ALARO
physics. At the Met Office, a 10 member ensemble system is set up based on UKMO and
4D-Var. It accounts for uncertainties in the lower boundaries, model error and for ob-
servational uncertainty. A further reanalysis system developed in UERRA is introduced
in this thesis and in Bach et al. (2016). For an overview of the probabilistic reanaly-
ses that are currently produced in UERRA see http://uerra.eu/work-packages/wp2/23-
description.html.

2.4 Challenges in reanalysis

Despite the obvious benefits of reanalyses, the developments in the field are far from
being concluded. As mentioned in the introduction, reanalyses have been proposed for
climate change studies initially (Trenberth and Olson 1988, Bengtsson and Shukla 1988).
This requires so-called climate quality, i.e. long-term homogeneity of the data set to al-
low for a reliable estimation of climate trends (Dee et al. 2011b). A first step towards
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this goal is the use of a fixed NWP system. The rapid growth of the global observing
system, however, is what turns the reanalysis problem complicated (WCRP 1997, 2000,
Newson 1998, Kistler et al. 2001).
Along the instrumental record, the number of observations has grown by four orders of
magnitude. The evolution of the observing system is schematically illustrated in Figure
2.1. A tremendous jump occurs at the beginning of the satellite era in 1979. In ERA-40,
it manifests as an observational shock triggered by a systematic error reduction in the
presence of model bias, see Bengtsson et al. (2004) and Figure 1 in Dee (2005). In NWP,
this effect, denoted positive observation impact, is the fundamental criterium for the op-
erational assimilation of a new observation type. In reanalysis, however, the repetitive
introduction of new observational sources leads to superimposing systematic changes
in the error characteristics of the data set. To avoid jumps at the beginning of the
satellite era, many reanalyses start only in 1979 (see Tables 2.1 and 2.3). At ECMWF,
the strategy is full transparency (Dee et al. 2011a). Any change in error characteristics
induced by new sources of uncertainties is quantified in observing system experiments.
Moreover, all available meta-data related to the observations is provided to the users
in observation feedback data to allow for post-processing such as subdividing the data
in quasi-homogeneous subsets. In the long-term reanalyses 20CR (Compo et al. 2011),
ERA-20C (Poli et al. 2016) and CERA-20C (Laloyaux et al. 2016), the exclusive assim-
ilation of surface-observations to increase homogeneity has proven feasible (see section
2.1). However, due to the strongly reduced number of observations, the accuracy of
the data sets can be expected to be decreased compared to other reanalyses (Dee et al.
2011a).
Obviously, intensive work on the observation input stream is required if climate quality
is strived for. Important methods are variational bias correction (Dee and Uppala 2008)
and homogenization using innovation statistics. A prominent example is the spatio-
temporal homogenization of the radiosonde input stream for ERA-Interim using obser-
vation feedback data from ERA-40 (Haimberger 2007). These homogenized radiosonde
data have in turn provided the benchmark for a variational bias-correction of satellite
radiance data during the production of ERA-Interim.
A further challenge of reanalysis is the violation of conservation laws through data assim-
ilation (Lahoz et al. 2010). In the presence of model bias, data assimilation introduces
source and sink terms for energy, mass and momentum. These propagate through the
whole model system (Dee 2005), e.g. leading to spin-up effects. The energy budgets and
deficient representation of the hydrological cycle in global reanalyses has e.g. been found
by Trenberth et al. (2009), Trenberth, K. E. Smith (2008), Betts et al. (2006), Bengts-
son et al. (2007). While conservation is less important for NWP, climate studies depend
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Figure 2.1: Temporal evolution of the global observing system, adapted from a graphic
of Dick Dee in the presentation of Paul Poli in ECMWF data assimila-
tion course 2015. 1938: First radiosonde networks. 1957: extension of ra-
diosonde network especially on southern hemisphere in the framework of
the International Geophysical Year. 1979: Beginning of the satellite era.
Today: High density of data such as modern remote sensing observations,
aircraft data, buoys.

heavily on conserved quantities (Lahoz et al. 2010). A new approach to improve con-
servation is to develop earth system models that fully describe all climate sub-systems
including atmosphere, ocean, trace gase, aerosols and the land surface. Through a more
realistic description of fluxes at the interfaces between the systems, this has the potential
to enable conservation (Laloyaux et al. 2016). Additionally, fully-coupled data assimila-
tion methods have to be developed. Ideally, these ensure that any change applied in one
climate sub-system entails a change in the others. However, such an approach requires
the estimation of accurate flow-dependent cross-correlations between the systems which
is only at an early stage of research.

2.5 Applications and user interaction
Reanalysis data provide a fundamental basis for climate research, but are alike needed
in many different sectors of public, e.g. in renewable energies, agriculture, risk manage-
ment, the water sector and insurance companies (see report1 on user requirements by
CORE-CLIMAX2 (COordinating earth observation data validation for RE-analysis for

1http://www.coreclimax.eu/sites/coreclimax.itc.nl/files/documents/Deliverables/WP_Reports/Deliverable-
D552-CORECLIMAX.pdf)

2http://www.coreclimax.eu/
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Figure 2.2: Temperature maps from Deutscher Klimaatlas for month of July. a) Long
time average (1961 - 1990), b) anomaly of July 2016. Based on observation
data gridded on 1-km Gauss-Krüger grid under consideration of orogra-
phy. This may be based on high-resolution regional reanalysis data in the
future.

CLIMAte ServiceS)). In climate research, global reanalyses are prominently used for the
investigation of low-frequency variability, trends and the large-scale atmospheric circula-
tion (Mitas and Clement 2006, Wright et al. 2013, Marshall 2003). Verification of climate
models (Hodges et al. 2011, Davini et al. 2012), downscaling experiments or downstream
applications like hydrological modeling benefit from reanalysis data, see e.g. Soares and
Cardoso (2012), Maurer et al. (2001).
In climate monitoring, adaptation and mitigation reanalysis data play an increasingly
important role. Climate services disseminate climate information to users on a national
(National Climate Monitoring, DWD), regional (Copernicus Climate Change Service,
coordinated by the European Commission) and global (Global Framework for Climate
Services) level. They provide data sets together with quality estimates as well as climate
indices3 and climate impact indicators4 based on essential climate variables (Bojinski

3http://climatedataguide.ucar.edu/climate-data/overview-climate-indices
4http://eea.europa.eu/data-and-maps/indicators/
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et al. 2014). Essential climate variables are a set of physical, biological and chemical
variables defined by the Global Climate Observing System (GCOS) that ought to help
“to understand and predict the evolution of climate, to guide mitigation and adapta-
tion measures, to assess risks and enable attribution of climatic events to underlying
causes, and to underpin climate services.” (Bojinski et al. 2014). Climate indices are
derived from meteorological variables, e.g. European temperature, heat waves, droughts,
hail events and extreme precipitation. Climate impact factors relate essential climate
variables to socio-economic variables to provide information about health impact due to
ozone, water-limited crop productivity or heat stress in urban areas. Figure 2.2 shows
an example from the Klimaatlas of the National Climate Monitoring of Deutscher Wet-
terdienst. Illustrated are the long-time average of screen-level temperature for Germany
in July as well as the anomaly of July 2016. Currently, this is based on traditional
in-situ observations. However, the potential of reanalyses for such applications is being
examined (personal communication, Frank Kaspar, DWD).
In recent years, users are getting increasingly involved in reanalysis efforts. In UERRA,
a whole working group is dedicated to user interaction, verification and outreach. A user
workshop1 has taken place in February, 2016. Such meetings are particularly important
to orientate the developments more towards the user requirements. At a regional reanal-
ysis workshop1 hosted by the Copernicus Climate Change Service2, the idea of involving
specific user groups in tentative verification of preliminary studies ahead of production
has been raised.

1http://uerra.eu/project-meetings/user-worshop-1.html
1https://climate.copernicus.eu/events/regional-reanalysis-workshop of the Copernicus Climate Change
Service

2http://climate.copernicus.eu/what-copernicus



3 The probabilistic regional reanalysis
suite

In this chapter, the newly developed probabilistic reanalysis suite based on COSMO is
introduced. Note that it has been advanced from a deterministic nudging regional re-
analysis system (Bollmeyer et al. 2015). The chapter is structured as follows. Firstly,
the numerical weather prediction model COSMO is introduced, where special emphasis
is put to the dynamics and numerics as well as parameterizations. Further, the model
domain and the lateral boundary conditions are discussed. An overview of the atmo-
spheric data assimilation is followed by a discussion of ensemble generation techniques
that account for different uncertainty sources relevant to regional reanalyses. In the sub-
sequent section, the analysis of the lower boundary condition including soil moisture and
temperature, sea surface temperature and snow is described, followed by an overview of
the process cycle of the newly implemented reanalysis suite integrating the aforemen-
tioned components. Note that two versions of the probabilistic regional reanalysis suite
have been implemented. In the last section of this chapter, the differences between the
two are outlined.

3.1 The numerical weather prediction model
COSMO is the limited-area numerical weather prediction model developed and main-
tained by the Consortium for Small-Scale Modelling. It is targeted at the representation
of atmospheric meso-β and meso-α-scale processes. COSMO is run in daily operations
of the operational centers that take part in the COSMO consortium, but can also be
run in climate mode (COSMO-CLM). To allow for direct comparison to other European
reanalyses or downscaling experiments, the model is set up for the CORDEX-EUR11
domain (Giorgi et al. 2009) at a horizontal grid spacing of 12 km. The domain is shown
in Figure 3.1 and its specifications are summarized in Table 3.1.

15
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Table 3.1: Domain specification
CORDEX-EUR11

Rotated North pole −162.0, 39.25
Lower left corner −23.375, −28.375
in rotated coordinates
Grid spacing 0.11◦
Number of grid points 424× 412
Number of vertical levels 40
Top of the model atmosphere 22700 m

3.1.1 Dynamics and numerics

The dynamical core of COSMO comprises prognostic equations for temperature, pres-
sure deviation from a reference profile, the three-dimensional wind vector, turbulent
kinetic energy, and specific contents of water vapour, cloud water, cloud ice, rain, snow
and graupel. Their derivation is detailed in Schättler et al. (2011). Firstly, basic bud-
get equations are formulated for momentum, mass and heat. In a next step, they are
Reynolds-averaged, i.e. split into a mean flow and zero-mean deviations. Thereby, it is
accounted for the fact that the horizontal atmospheric scales that describe mesoscale
atmospheric motion range from 100 m to 100 km. The resulting Reynolds fluxes and
stresses, e.g. turbulent fluxes of momentum, heat and constituents that describe the
feedback of the sub-grid scales on the resolved scales, are parameterized (see 3.1.2). To
allow for an application of the model to a wide range of scales, a non-hydrostatic form
of the equations is used. Apart from the assumption of a shallow atmosphere, no scale-
dependent approximations are applied. The thermodynamic variables are formulated
as sums of base-state variables and deviations from the base state, where the latter is
horizontally homogeneous, time invariant, hydrostatically balanced and only depends on
the height above the surface. Since a linearization based on the anelastic approximation
is not considered reasonable due to the large extension of the European COSMO do-
main, the main reasoning is that the horizontal base-state pressure gradient terms can
be removed in the equation of motion which reduces the error arising in the computation
of the pressure gradient force in terrain-following coordinates.
Horizontally, the set of equations is transformed to a spherical rotated latitude-longitude
grid which prevents numerical problems related to a convergence of the meridians. To
include surface terrain, the equations are vertically formulated in a terrain-following gen-
eralized Gal-Chen hybrid coordinate (Gal-Chen and Somerville 1975). Discretization on
a staggered Arakawa-C grid (Arakawa and Lamb 1981) using finite differences yields a
rectangular and regular computational grid. To improve the numerical efficiency in view
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Figure 3.1: CORDEX-EUR11 domain.

of fast sound waves that are part of the solution due to the compressibility of a non-
hydrostatic model atmosphere, mode-splitting is applied for the temporal integration of
the equations (Klemp and Wilhelmson 1978). Thereby, the equation terms related to
sound waves are integrated in small time steps while the stable slow terms are integrated
in bigger time steps. The numerical integration scheme is a two time-level, third-order
Runge-Kutta time-split scheme (Wicker and Skamarock 2002). For advection, a second-
order finite-volume scheme with strang-splitting is employed (Bott 1989). Further details
on the dynamics and numerics can be found in Doms and Baldauf (2015).

3.1.2 Physical parameterizations

Reynolds-averaging of the governing equations yields sub-grid scale terms which need
to be parameterized. These include turbulent mixing terms, clouds and precipitation
related to microphysical processes, moist convection, radiative processes, effects of sub-
grid scale orography and fluxes at the soil-atmosphere and ocean-atmosphere interface.
Optionally, the effects of lakes and sea ice are parameterized.
In the employed configuration of COSMO, cloud microphysics are parameterized by a
bulk-water continouity model. For the turbulent fluxes of momentum, heat and hu-
midity, a 1-D diagnostic closure is employed in the horizontal. It utilizes the boundary
layer approximation that assumes horizontal homogeneity so that all horizontal turbu-
lent fluxes vanish. The vertical turbulent transport is computed using a second-order
closure by Mellor and Yamada (1974) that is nothing else than a K-closure. Prandtl layer
surface fluxes of sensible heat, turbulent momentum and water vapour are formulated
in dependency of stability and roughness-length based on Louis (1979). The turbulent
fluxes of liquid and solid water are neglected.
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The radiative transfer scheme is based on the δ-two-stream solution of the radiative
transfer equation for plan-parallel horizontally homogeneous atmospheres (Ritter and
Geleyn 1992). It provides the heating rate due to radiative effects to the prognostic
equation of temperature and is updated in 15-minute intervals.
To account for a form drag of low-level flow due to blocking through pronounced sub-grid
scale orography and a generation of gravity waves, the sub-grid scale orography scheme
by Lott and Miller (1997) is employed.
Subgrid convection is parameterized by the Tiedtke scheme (Tiedtke 1989) and the ver-
tical turbulent diffusion is computed based on a prognostic equation for turbulent kinetic
energy utilizing a level 2.5 closure scheme (Doms et al. 2011).
The lower boundary condition, i.e. soil and vegetation whose presentation is crucial for
the soil-atmosphere coupling is computed by the model TERRA_ML (Schrodin and
Heise 2001) which employs 7 vertical layers. It provides surface temperature and specific
humidity at the ground based on the equation of heat conduction. Using Richard’s equa-
tion, the soil water is predicted. As diagnostic variables, evaporation and transpiration
of plants are derived from soil water content and in parts from radiation and tempera-
ture.
To represent fluxes between lakes and atmosphere, the fresh-water lake parameterization
scheme FLake described in Mironov (2008) can be switched on. Application of the sea
ice scheme developed by Mironov and Ritter (2004) allows to account for changed sea-
atmosphere interactions related to the interface’s albedo and roughness length in presence
of sea ice. For details on the parameterization schemes see Doms et al. (2011).

3.1.3 Lateral boundary conditions

The lateral boundaries and initial conditions are provided by the global ECMWF re-
analysis ERA-Interim (Dee et al. 2011b). 0.5◦ ERA-Interim analysis fields from 00 and
12 UTC are used, as well as +03-h, +06-h and +09-h reforecasts which comprise the
three-dimensional fields specific humidity, temperature, pressure, wind, cloud liquid and
ice water content. Additionally, the surface variables skin temperature, soil temperature
as well as the volumetric soil water, snow depth and temperature of the snow layer, skin
reservoir content, sea-ice cover and ice temperature in the first layer are included in the
lateral boundary data.
At the lateral boundary conditions, a one-way nesting following Davies (1983) is ap-
plied. The relaxation zone near the boundaries is configured such that it consists of
7 grid points which is approximately 85 km. Additionally, the model fields are drawn
towards the boundary data sets of the driving model within an upper boundary Rayleigh
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relaxation zone reaching from the model top down to approximately 235 hPa.
The regional reanalysis system does not yet provide the opportunity to assimilate satel-
lite data. However, through the lateral boundary conditions, it is provided with valuable
synoptic-scale information from various satellite products (Dee et al. 2011b) that force
the mesoscale dynamics.

3.2 Analysis of atmospheric variables
As discussed, reanalyses evolve from a physically consistent reprocessing of past obser-
vations of the atmospheric state through a numerical weather prediction model using
a data assimilation algorithm. The latter is presented here. Further, the observation
stream as well as observation pre-processing and quality control are discussed.

3.2.1 Observation nudging
The data assimilation scheme incorporated in the COSMO code is observation nudging
(Schraff 1996, 1997, Schraff and Hess 2012). It has been used in daily operations of DWD
since 1999 and has proven to be useful for reanalysis purposes (Bollmeyer et al. 2015).
In general, nudging has been used for many applications up to present including research
and development of NWP (Stauffer and Seaman 1990, 1991, Seaman et al. 1995, Schraff
1997, Schroeder et al. 2006, Deng et al. 2004, Leidner et al. 2001), research in the area of
hybrid data assimilation methods (Lei et al. 2012b,a), initialization of climate runs (Otte
et al. 2012, Baehr et al. 2014) and in ocean data assimilation (Chen et al. 2013). Even
though it is not mathematically optimal in a least-squares or maximum-likelihood sense,
at least in its current implementation in COSMO, nudging has a good performance-cost
ratio that argues for its usability for the purpose of ensemble reanalyses.
Observation nudging performs a continuous relaxation of the model variables towards
observations. This is realized through introduction of tendency terms proportional to
observation-model equivalent departures to the prognostic equations of the model, so that
the model is continuously nudged towards the observations during its forward integration.
The update equation for any prognostic variable ψ in model space is given by

∂Ψ(x, t)
∂t

= F (Ψ, x, t) +Gy ·
∑

k

Wk(x, t) · [Ψk −Ψ(xk, t)], (3.1)

where F represents the tendencies from the resolved and the parameterized sub-grid
processes and the right-hand term the analysis increment. It compounds of observation
increments being deviations between k observations Ψk that influence a model grid point
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Table 3.2: Observation stream for reanalysis
Observing system Report type Observed variable
Radiosondes PILOT Upper-air wind

TEMP Upper-air wind, temperature,
humidity
Screen-level wind,
humidity,
geopotential

Aircraft AIREP Wind, temperature
AMDAR Wind, temperature
ACARS Wind, temperature

Wind profiler Upper-air wind
Surface systems SYNOP Surface pressure,

wind, humidity
SHIP Surface pressure,

wind, humidity
DRIBU Surface pressure,

wind, humidity

x and the model equivalents Ψ(xk, t), i.e. the model state interpolated to the observa-
tion locations. The observation increments are weighted according to their horizontal
and vertical distance from the observation location using autoregressive structure func-
tions. Moreover, a quality weight and a temporal weight with a maximum value at the
observational time are applied. The sums of the weighted observation increments are
then multiplied by the nudging coefficient Gy to obtain the analysis increments. Gy has
units of inverse time and determines the characteristic relaxation time scale which is
chosen to be about 30 minutes. Before the resulting analysis increments are added to
the prognostic variables, explicit balancing is applied between the analysis increments
that correspond to different prognostic variables. This includes a hydrostatic tempera-
ture correction balancing the near-surface pressure increments and a geostrophic wind
correction.
A main advantage of nudging is the continuous and slow correction of the model that
allows for maintaining the dynamical balances between the variables through adaption
of the model state to the corrections. This is different from methods in which the anal-
ysis increments are impressed within one time step. These often suffer from substantial
spin-up effects. For further details on the implementation of nudging in COSMO please
refer to Schraff (1997) or Schraff and Hess (2012).
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3.2.2 Observation stream for atmospheric data assimilation
The observation stream that is assimilated consists basically of conventional observations.
The observation types and corresponding variables are summarized in Table 3.2. The
upper-air observations comprise radiosonde ascents (TEMP) and pilot balloon ascents
(PILOT) as well as aircraft observations which can be classified into aircraft reports
(AIREP), automatic reports of the type AMDAR (Aircraft Meteorological Data Relay)
and reports from ACARS (Aircraft Communication Addressing and Reporting System).
Surface level observations include manual and automatic reports from SYNOP stations,
manual and automatic SHIP reports and drifting buoys (DRIBU). Additionally, wind
profiler data are assimilated.

3.2.3 Observation pre-processing and quality control
The implementation of the new reanalysis suite benefits from the quality-controlled ob-
servation stream of COSMO-REA6 (Bollmeyer et al. 2015). The observations assimilated
there and corresponding quality flags are directly accessed from feedback observation
files. Thereby, the largest part of the observation pre-processing and quality control can
be skipped which saves a significant amount of computational time. Some steps, like the
assignment of the observations to the model grid due to a different grid spacing have to
be repeated. For the sake of completeness, the most important steps of pre-processing
and quality control are reviewed in this section.
The pre-processing before data assimilation includes a retrieval of reports that provide
the observations, reading them, assembling different reports, checking the quality of the
observations, checking their position and assigning them to model grid points and finally
providing all information to the data assimilation.
Firstly, the reports are assigned to grid points where particular emphasis is placed to
the vertical representativeness. This is e.g. important for humidity observations from
mountain stations in presence of low-level inversions which is complicated by significant
differences between the true terrain and model orography. Also, sea and land observa-
tions are assigned to appropriate model grid points and surface observations are checked
for their usefulness in terms of orography differences. Observations that are assimilated
in different physical units than reported are converted. Further, radiosonde and aircraft
reports, which are messaged in four unconnected reports are assembled and superadi-
abatic lapse rate checks are performed. Aircraft reports are thinned and their vertical
correlation scale is scaled down to reduce the smoothing effect of the dense observa-
tional information on the vertical profile. Humidity observations from radiosondes are
bias-corrected. The assignment of certain quality flags (active, passive or rejected) is
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explained which is encoded as numbers, e.g. a report is rejected because its height is
below the lowest model level. Further, observations that lie within 5 grid points from
the lateral boundary conditions are rejected. The quality control includes consistency
checks that are performed between individual observations and the surrounding model
grid points using prescribed observation error standard deviations to compute thresholds.
Neighboring observations are used to perform buddy or spatial consistency checks which
is particularly important for surface pressure and integrated water vapor (precipitable
water). Gross error checks are performed to find observations that exceed reasonable
limits (e.g. pressure more than 1060 hPa). In regions or reports with increased data
density redundancy checks determine observations that do not contain complementing
information and thus can be sorted out. The observation pre-processing is detailed in
Schraff and Hess (2012).

3.3 Ensemble generation methods
Uncertainties in regional reanalyses arise from nonlinear scale-interaction of the atmo-
spheric dynamics and from errors in the assimilated observations, errors in the model
formulation, numerical errors and errors in the lower and lateral boundary conditions.
In the work on hand, ensemble generation methods that yield equally likely ensemble
members are chosen. The objective is that the members exhibit temporal deviations
that reflect random error, but are equally accurate on average. In the implementation
of the reanalysis suite that will be employed for the production of a test reanalysis in
UERRA (denoted basic reanalysis suite), an ensemble nudging technique that has been
newly developed in the course of this work accounts for errors in the assimilated observa-
tions. In an experimental version of the suite that may be employed for future long-term
regional reanalyses (denoted extended reanalysis suite), options to stochastically perturb
the physical tendencies and to use an ensemble of lateral boundary conditions have been
implemented. Thereby, model error and uncertainties in the lateral boundary conditions
can be accounted for.

3.3.1 Ensemble nudging
The most obvious way for generating a nudging ensemble is to nudge the ensemble
members towards perturbed observations. This ensemble generation technique yields an
estimation of the uncertainty of a nudging reanalysis given observation uncertainties.
A perturbed observation is obtained by perturbing the original observation o by means
of a perturbation o′ sampled from a normal distribution o′ ∼ N(0, σ2

o) with zero mean
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Table 3.3: Observation error standard deviations for sea observing systems; abbrevia-
tions for variables: U/V=wind components, Φ=geopotential

Obs type Variable Error standard deviation
DRIBU U/V[m/s] 5.4
DRIBU Φ[m] 14.0
SHIP Φ[m] 14.0

and an estimated observation error variance σ2
o . This approach has first been chosen by

Environment Canada to incorporate observation uncertainty in the analysis based on an
Ensemble Kalman Filter (Houtekamer et al. 1996). An observation error as defined in the
context of data assimilation consists of a measurement component and a representativity
component, where the latter includes an error of the observation operator computing the
model equivalents at the observation locations (Hollingsworth and Lönnberg, 1986). The
employed observation error standard deviations are summarized in Tables 3.3 and 3.4.
They have been adopted from the operational nudging scheme which relies on retuned
estimates from former ECMWF and DWD global data assimilation systems.
As is the state-of-the-art procedure for perturbation of observations that exclude satellite
data (which are correlated between the channels) normally distributed, unbiased, sta-
tionary in time as well as spatio-temporally uncorrelated observation errors are assumed.
Possible spatial correlations are reduced by observation thinning. Vertical profiles from
upper-air systems are checked for super-adiabatic lapse rates inadvertently generated by
perturbation and are corrected accordingly before assimilation. The observations are
retrieved from feedback observation files from the reanalysis COSMO-REA6. The qual-
ity flags are retained and no further quality control is performed after perturbation so
that the uncertainty estimated by the ensemble arises only from observation error and
not from sets of observations differing between the ensemble members. The ensemble
members are perturbed and run in parallel independent streams that do not exchange
information.

3.3.2 Stochastic perturbation of physical tendencies

Stochastic perturbation of physical tendencies (SPPT) allows for representing model
error due to uncertainties in the sub-grid scale parameterized processes. SPPT perturbs
the sum of all parameterized tendencies in the prognostic equations by multiplicative
noise that varies smoothly in space and time. The method has first been introduced to
the medium range ensemble prediction system of the ECMWF (Buizza et al. 1999). It
has proven to have a positive impact on both reduction of analysis errors when applied
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Table 3.4: Observation error standard deviations for upper-air systems; abbrevia-
tions for variables: U/V = wind components, Φ = geopotential, T = tem-
perature, RH = relative humidity; abbreviations for observation types:
T/P/W=TEMP/PILOT/wind profiler, AI=AIREP, SY=SYNOP

Lev[hPa] U/V[m/s] Φ[m] T[K] RH[] T[K] UV[m/s] Φ[m] U/V[m/s]
T/P/W T T T AI AI SY SY

1000 2.0 4.3 1.2 0.09 1.2 2.5 7.0 3.6
850 2.4 4.4 1.0 0.13 1.0 2.5 8.0 3.6
700 2.5 5.2 0.7 0.12 0.7 3.0 8.6 5.8
500 3.4 8.4 0.4 0.13 0.5 3.5 12.1 6.8
400 3.5 9.8 0.4 0.13 0.5 4.0
300 3.7 10.7 0.5 0.14 0.6 4.0
250 3.5 11.8 0.5 0.14 0.6 4.0
200 3.5 13.2 0.6 0.14 0.7 4.0
150 3.4 15.2 0.7 0.14 0.8 4.0
100 3.3 18.1 0.8 0.14 0.9 4.0
70 3.2 19.5 0.8 0.14 1.0 4.0
50 3.2 22.5 0.9 0.14 1.1 4.0
30 3.3 25.0 0.9 0.14 1.1 4.0
20 3.6 32.0 1.0 0.14 1.2 4.0
10 4.5 40.0 1.2 0.14 1.4 4.0

in parallel with ensemble data assimilation (Schraff et al. 2016), but also to forecast
skill. Further, it has a positive impact on the reduction of model biases (Jung et al.
2005, Palmer et al. 2004, Berner et al. 2009). The implementation of SPPT in COSMO
follows closely the one in IFS, however there are small deviations. Therefore, both are
summarized briefly. In IFS, the perturbations are applied collinearly to the original
tendencies Xc so that the perturbed tendency reads

XP = (1 + rµ)Xc. (3.2)

Perturbed are the zonal and meridional velocity components, temperature and specific
humidity. All variables are perturbed by means of the same random number r so that
the perturbations of all variables are perfectly correlated. By the factor µ the pertur-
bation amplitude is tapered to zero near the earth’s surface and in the stratosphere
to maintain physical realism and reduce the risk of numerical instability. To introduce
spatio-temporal correlation, the random numbers are drawn using a spectral pattern
generator (Berner et al. 2009, Li et al. 2008). The spectral coefficients of the pattern
are described by an autoregressive process of first order AR(1), which employs random
numbers whose real and imaginary parts are independent Gaussian random numbers
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with unit variance and zero mean. Further, they are white in time and independent be-
tween different spherical harmonics. The temporal correlation between two time steps is
formulated as exponential of an inverse decorrelation time scale. For details be referred
to Palmer et al. (2004).
In COSMO, the same form of perturbed tendency equation is utilized and the same
variables are perturbed. The random number generation, however, is simplified. In a
first step, random numbers are drawn for each grid point of a coarse grid from a normal
distribution with prescribed standard deviation and maximum amplitude. To introduce
spatial correlation and obtain smooth fields, the random numbers are then interpolated
to the original grid. The same field is used for all vertical levels, however, it is tapered
to zero towards the upper and lower boundaries of the model. Every N time steps a new
field is used for perturbation. In between the fields are interpolated linearly. For further
details see Torrisi (2012).

3.3.3 Probabilistic lateral boundary conditions
In the extended set-up of the reanalysis suite for COSMO-EN-REA12 an ensemble of
lateral boundary conditions from the ICOsahedral Non-hydrostatic model (ICON) of
DWD and the Max-Planck-Institute for Meteorology (MPI) is used. ICON is a unified
modeling system for both numerical weather prediction and climate applications. Its
numerical core is formulated on an icosahedral-triangular Arakawa-C grid. This allows
for a straight-forward nesting-based mesh refinement. For further information be re-
ferred to Zängl et al. (2015). Here, an ensemble produced with the ICON ensemble data
assimilation (ICON-EDA) is employed. The latter is a hybrid combination of 3D-VAR
and a local ensemble transform Kalman filter (LETKF). In the utilized experiment, the
ensemble has been initialized by random perturbations of the initial conditions and per-
turbations applied to the fields of SST (personal communication, Alex Cress, DWD).

3.4 Analysis of sea and land-surface variables
The surface of the earth interacts with the atmosphere. It represents the lower boundary
condition to all atmospheric processes and thus has to be updated on a regular basis
to improve the turbulent fluxes at the surface- atmosphere interface. For that purpose,
different offline schemes are applied to COSMO, namely an analysis of snow depth, a
sea surface temperature (SST) analysis and a variational soil moisture analysis. Each
member is updated separately by these external analyses so that the ensemble members
do not exchange any information and are fully independent.
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3.4.1 Analysis of soil moisture

Soil moisture influences screen-level temperature and humidity, particularly at clear-
sky days with strong soil-atmosphere coupling due to high radiative impact. Moreover,
evaporation and thus precipitation depend on soil moisture. To avoid the evolution of
systematic errors, the soil water content is analysed based on a variational assimilation
of screen level temperature, whereby a horizontal decoupling is assumed to reduce the
minimization problem. The cost function for the soil moisture η at any horizontal grid
point is given by

J(η) = 1
2(T o − T (η))T R−1(T o − T (η)) + 1

2(η − ηb)T B−1(η − ηb), (3.3)

where T is the screen level temperature predicted for noon, T o are observations of screen-
level temperature and η and ηb are vectors whose dimension equals the number of anal-
ysed soil levels. The gradient of the cost function 3.3 can be solved analytically if the
linearization T (η) .= T (ηb) + Γ(η − ηb) is applied which leads to

ηa = ηb + (ΓR−1Γ + B−1)−1ΓT R−1(T o − T (ηb)), (3.4)

where Γ is the Jacobian of the relation between temperature and soil moisture contents, B
the background covariance matrix and R the observation error covariance matrix which
is assumed to be stationary and diagonal. To compute the analysis ηa, the Jacobian Γ
which measures the sensitivity of the screen level temperature to soil moisture has to be
determined. For that purpose, three additional forecasts are conducted, one of which is
a routine forecast and two are forecasts initialized with perturbed soil moisture fields.
In the first perturbed forecast, the upper three soil levels are perturbed between pore
volume and air dryness point, both of which depend on the soil type. In the second
perturbed forecast, level 4 and 5 are provided with soil moisture perturbations.
If a cold start (first start of the system) is conducted, the background covariance matrix
B is initialized with climatological values, afterwards it is updated by a cycled Kalman
filter analysis. Further information on the soil moisture analysis can be found in Schraff
and Hess (2012), Hess (2001).

3.4.2 Analysis of sea surface temperature

Sea surface temperature (SST) strongly impacts the fluxes of sensible and latent heat
over the ocean. Its spatial distribution co-determines the evolution of Rossby waves
and cyclones. To capture not only the large-scale variations, but also relevant smaller-
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scale processes such as anomalies due to up- and downwelling of the thermohaline ocean
circulation or fast temperature increases in shallow coastal areas during clear-sky days,
the SST analysis (Schraff and Hess 2012) is performed once a day at 00 UTC. Initially, the
extent of the sea ice cover is analysed by interpolating an ERA-Interim sea ice analysis
to the model grid. Furthermore, a weekly high-resolution sea ice analysis at a resolution
of 0.17◦ × 0.1◦ for the Baltic Sea is used, which is provided by the Federal Maritime
and Hydrographic Agency of Germany (BSH). A correction scheme is employed using
the ERA-Interim SST field as first-guess which is corrected by means of ship and buoy
observations from the five foregoing days. The observation increments are weighted
according to the distance between analysis and observation time, observation type as
well as the spatial distance between observation and grid point to be corrected.

3.4.3 Analysis of snow depth
The distribution of snow cover on the ground modifies surface albedo and turbulent
fluxes and co-determines the screen-level temperature through modification of the surface
albedo that impacts the absorption of short-wave radiance. Moreover, it affects the
characteristics of large-scale air masses. The snow distribution and depth are updated
every 6 hours (Schraff and Hess 2012). The observations used for data assimilation
are SYNOP observations of total snow depth or 6-hourly precipitation sums should
the observed surface temperature fall below 0 ◦C. To identify permanently ice-covered
regions, a monthly snow depth climatology provided by ECMWF is additionally taken
into account. Depending on the horizontal and vertical distances between the locations
of the grid points to be corrected and observations, the observations within a radius
of influence are weighted to form the snow depth increments. These are added to the
field that was beforehand obtained by the forward integration of the model employing
observation nudging in the atmosphere.

3.5 Process cycle
The individual components described above have been integrated into a production
suite (using the workflow package ecflow) sketched in Figure 3.2. It is operated at
the super-computing facilities of ECMWF and works as follows: The initial conditions
at the beginning of the reanalysis period (and of the reanalysis streams, respectively)
and 3-hourly boundary conditions are provided by ERA-Interim. Every 6 hours, the
nudging runs are interrupted to perform a snow analysis. Once a day at 00 UTC the
sea surface temperature and the soil moisture undergo an update. This is conducted
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Figure 3.2: Process cycle of the probabilistic regional reanalysis system for one exem-
plary ensemble member. The cycle is repeated for all members in parallel.
All members are provided with the same lateral boundary conditions. The
tool int2lm interpolates the fields from the steering model to the COSMO
grid.

for all ensemble members separately. Note that ensemble nudging is the only ensemble
generation technique that is operationally applied for the production of the reanalysis
COSMO-EN-REA12. External parameters including leaf area index, plant cover, root
depth, carbon dioxide concentrations and an ozone maximum are updated once a day
according to a prescribed annual cycle. The three-dimensional fields of the dynamically
relevant quantities on model levels are stored in 6-hourly intervals while the surface fields
and fields on pressure and height levels are archived at an hourly frequency. The system
additionally incorporates reforecasts that are initialized in six-hourly intervals and have
twice a day lead times of 30 hours and twice a day of 6 hours. Feedback observation files
summarize information on observations and observation-analysis departures in six-hourly
intervals. Rather technical components that are not depicted in the process cycle include
the retrieval of ERA-Interim data from the Mars archive of ECMWF, the retrieval of data
needed for the analysis of the lower boundary conditions, the extraction of observation
feedback files of COSMO-REA6 from the ECFS archive, linking of files, post-processing
of the output variables to the physical units agreed in UERRA, transformation from the
data format wgrib1 to wgrib2, archiving in ECFS and archiving in Mars.
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3.6 Basic and extended reanalysis suites
Note that two versions of the probabilistic regional reanalysis suite have been imple-
mented. Here, the differences between the two are outlined. The first suite is oper-
ationally used for the production of the reanalysis COSMO-EN-REA12 comprising 21
ensemble members in UERRA and referred to as basic reanalysis suite. It makes use
of ensemble nudging and thus measures the uncertainty of the reanalysis given obser-
vation error estimates. In the second version of the system, possibilities for accounting
for uncertainties due to model error using SPPT and errors in the lateral boundary con-
ditions have been implemented (ICON ensemble). In the basic system, ERA-Interim
is employed as lateral boundary condition for all ensemble members. In the extended
version, one ICON member can be chosen as control lateral boundary condition. Alter-
natively, 20 ICON members can be utilized as probabilistic boundary conditions. Note
that for the basic reanalysis suite, COSMO version V5_0 has been chosen. Reasoning
for this has been the wish for consistency with the high-resolution regional reanalyses
COSMO-REA6 and COSMO-REA2. Only late it turned out, that there had already
been an update from REA6 to REA2. For the development of the extended reanalysis
suite, however, a further update of COSMO has been indispensable to allow for the use of
SPPT. Moreover, to allow for processing the data format grib2 of ICON, int2lm (which
interpolates the initial and boundary data and updates external data) has been updated
from V2_0 to V2_02. However, the quality of prospective reanalyses will benefit from
use of these more recent and further-developed versions.





4 Performance of the reanalysis suite

In this chapter, the capabilties of the newly developed probabilistic reanalysis suite are
demonstrated. For this purpose, a range of numerical experiments has been conducted
with the basic and extended reanalysis suites introduced in chapter 3. Initially, the exper-
iments are described. Then, basic diagnostics including analysis increments, horizontal
kinetic energy spectra, potential spin-up effects and the evolution of spread in reforecasts
are shown. The basic reanalysis system using ensemble nudging that has been developed
for the production of a test reanalysis COSMO-EN-REA12 in UERRA is evaluated sub-
sequently.
Regional reanalyses are supposed to yield consistent estimates of essential climate vari-
ables. The most important essential climate variables whose representation in regional
reanalyses potentially has an added value are low-level winds, screen-level tempera-
ture, precipitation, surface radiation budget components and cloud properties. Since in
UERRA they have been identified as the variables for which an added value should be
demonstrable compared to global reanalyses as a start (personal communication Dale
Barker, Met Office; 2nd UERRA General Meeting, Tortosa, Spain), it has been chosen
to approach the evaluation of the system by means of precipitation and screen-level tem-
perature in the first instance. Therefore, to justify its use for production, an important
question is to which extent the new system can yield data that are competitive with
related climate data sets. This is assessed by means of a comparison study in which a
comprehensive verification of precipitation against rain gauge observations is conducted.
The particularly new aspect of this work is the generation of an ensemble of reanalyses.
Therefore, the probabilistic capabilities of the new suite with respect to precipitation are
demonstrated conducting a comparison to the ECMWF-EPS (Palmer et al. 1997).
In production mode, the new reanalysis suite deploys ensemble nudging as ensemble
generation technique. However, uncertainty in the assimilated observations is not the
only source of error. Therefore, the suite has been extended by the possibility to account
for model error and for errors in the lateral boundary conditions (LBCs). To give an
indication of how a reanalysis ensemble would be ideally generated in the future, four nu-
merical experiments are comparatively verified by means of precipitation and screen-level
temperature.

31
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Table 4.1: Experiments conducted with basic and extended reanalysis suites
Name Period COSMO Int2lm Suite Method LBCs
Summer 01.06.-30.06.2011 V5_0 V2_0 basic ensemble nudging ERA-Interim
Winter 01.12.-31.12.2011 V5_0 V2_0 basic ensemble nudging ERA-Interim
EN 15.05.-15.06.2014 V5_04 V2_02 extended ensemble nudging ICON-ctrl
SPPT 15.05.-15.06.2014 V5_04 V2_02 extended SPPT ICON-ctrl
ICON 15.05.-15.06.2014 V5_04 V2_02 extended ICON ICON-ens
ESI 15.05.-15.06.2014 V5_04 V2_02 extended EN+SPPT+ICON ICON-ens

4.1 Numerical experiments

To develop the new probabilistic regional reanalysis system and tune ensemble nudging,
but also to demonstrate the system’s capabilities ahead of the production, two numer-
ical experiments have been conducted with the basic reanalysis suite during the initial
development phase of UERRA. Each of the experiments extends over one month and
comprises of 20 perturbed ensemble members and one control run which assimilates the
original unperturbed observations. The global reanalysis ERA-Interim is used as lateral
boundary conditions. To test the performance in substantially different weather regimes,
a winter (December) and a summer month (June) of 2011 have been chosen as experi-
mental periods. The experiments are referred to as summer and winter experiments.
The extended reanalysis suite is able to account for model error using stochastic per-
turbation of physical tendencies (see section 3.3.2). Further, probabilistic LBCs can be
employed. Here, a global ICON ensemble of DWD (see section 3.3.3) is used. It is con-
ceivable to replace it with the new global probabilistic reanalysis ERA5 of the ECMWF
once that it is disseminated. The experiments conducted extend from 15/05/2014 to
15/06/2015 and comprise 20 ensemble members. Three account for only one source of
uncertainty. They are referred to as EN (ensemble nudging), SPPT (stochastic pertur-
bation of physical tendencies) and ICON (ICON ensemble as LBCs). For consistency,
one ICON member has been defined as control run and is employed as LBCs for EN and
SPPT. Further, an experiment combining all three error sources denoted ESI (Ensemble
Nudging + SPPT + ICON) has been conducted. The numerical experiments are sum-
marized in Table 4.1.

4.2 Basic diagnostics
To gain first insight into the performance of the suite for COSMO-EN-REA12, basic
diagnostics and properties of the regional ensemble reanalysis system are shown. This
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includes an investigation of analysis increments, spin-up effects and an estimation of
the effective resolution of the reanalysis system using spatial kinetic energy spectra. To
provide insight into the uncertainties that are indicated by the ensemble, the evolu-
tion of average spread in reforecasts is assessed. The evaluation shown here is based
on the experiment that spans June 2011 (denoted summer experiment, see Table 4.1).
It comprises 20 ensemble members and one control run which assimilates the original
unperturbed observations. Additionally, reforecasts with a forecast horizon of 30 hours,
initialized at 00 UTC, are evaluated.

4.2.1 Analysis increments

Analysis increments are the adjustments made to the model state by data assimilation.
They provide important diagnostics of the performance of a system. Generally, under the
assumption of a constantly dense observation network, analysis increments can be used to
reveal systematic errors in the system. Systematic behavior of analysis increments hints
at biases in the NWP model or the observations or combinations. However, reanalyses
conducted over long periods are exposed to a strong increase in the density of observing
systems. Major changes here can lead to systematic changes in the behavior of the
analysis increments. Therefore, it is important to monitor analysis increments during
the production of a reanalysis, both to achieve the best possible climate quality if this is
strived for and to detect technical problems in time (Dee et al. 2011b). Usually, monthly
or annual averages are examined to filter out the effect of model biases depending on the
weather regime.
Since nudging is applied continuously during the forward integration of the model, the
analysis increments shown here represent aggregates of all changes that have been applied
to the model state at a certain grid point over 6-hourly analysis cycles. Since there is no
longer time span available, a horizontally averaged time-sequence of analysis increments
of temperature and specific humidity is shown for an arbitrarily chosen member. The
vertical structure in temperature displayed in Figure 4.1 exhibits a diurnal cycle and
is essentially persistent. A warm bias of COSMO is visible in the middle part of the
troposphere and a cold bias near the surface. During day, warm biases occur on the
lower levels between 15th and 25th of June. The amplitude of the analysis increments
of maximally ±0.5 K is relatively low compared to the standard deviation that reaches
maximum values of 1.5 K. The variability of the analysis increments is highest near the
surface and decreases with height.
The averaged analysis increments for specific humidity also have an essentially persistent
vertical structure. They indicate a moist bias in all atmospheric levels except for the
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Figure 4.1: Analysis increments for June 2011. Spatially averaged and in dependency
of model level and time of day for (a) temperature and (b) specific humid-
ity. The analysis increments are aggregated over 6-hourly analysis cycles
from 00, 06, 12 and 18 UTC. Model levels 20 and 30 are located at about
550 hPa and 100 hPa above the surface. For temperature red color indi-
cates a too warm model, blue color a too cold model. For specific humidity
red color means that the model is too moist while blue means that it is too
dry. Further, spatial standard deviations of analysis increments are shown
for (c) temperature and (d) specific humidity in dependency of model level
and time of day.

lowest one, which has a dry bias following a diurnal cycle. Near the surface, the bias
is maximally one third of the standard deviation whereas in the levels above the mean
analysis increments have approximately the same amplitude as the standard deviation.
Note that the small analysis increments in the upper levels possibly originate from a
relatively low data density, since only humidity from radiosondes is assimilated.

4.2.2 Spin-up

Spin-up effects of precipitation occur during the first few hours after the initialization
of forecasts (Betts and Ball 1999, Arpe 1991). They become apparent as an under- or
over-estimation of precipitation which occurs as a consequence of pronounced dry or
moist model biases, but also biases in temperature or due to the occurrence of gravity
waves leading to non-zero analysis increments. Since NWP models tend towards their
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Figure 4.2: Diurnal cycle of 3-hourly precipitation rates in ensemble of reforecasts
of COSMO-EN-REA12 for June 2011, initialized at 00 UTC (shown as
hatched area, 5 to 95 % percentiles, control run blue points), reanalysis
ensemble (shown as shaded area, 5 to 95 % percentiles, control run yellow
points) and corresponding rain gauge observations (black dots). Shown for
German subdomain, see Figure 4.6. The red crosses mark the median of
the reforecast ensemble at 03 and 27 hours lead time.

model climate and physical balance between the variables, moistening the model by data
assimilation often leads to an over-estimation of precipitation in the first few hours of lead
time or reversely to an under-estimation if the model has a moist humidity bias. Since
this impacts the representation of the hydrological cycle in reanalyses, it is important to
be investigated and communicated to users.
Figure 4.2 shows the diurnal cycle of 3-hourly precipitation rates in reforecasts as a
function of forecast lead time. The employed reforecasts are initialized at 00 UTC,
so that the lead time coincides with the time of day. Additionally, the diurnal cycle
of precipitation rates from analysis data is shown. The graphic illustrates that the
reforecast ensemble does not exhibit pronounced spin-up effects. Firstly, the amplitude
of the precipitation rate measured by the observations falls within the range of the
ensemble in the first 6 hours. Secondly, the median of COSMO-EN-REA12 after three
hours lead time agrees with the median of the ensemble after 27 hours which is the same
time of day. Both findings indicate that the ensemble simulates the right amount of
precipitation in the first hours of lead time. This is different for the control run which
slightly underestimates precipitation in the beginning. The analysis ensemble slightly
overestimates precipitation between 03 and 09 UTC so that in reforecasts initialized at
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Figure 4.3: Horizontal kinetic energy spectra for COSMO-EN-REA12 (yellow points)
and COSMO-REA6 (blue points) in dependence of wavelength and wave
number for June 2011. The grey area shows the uncertainty estimated
from the ensemble. The vertical lines mark the effective resolution of the
reanalysis systems. The continuous line shows k−5/3 line. The dashed yel-
low and blue lines show slopes of spectra at the mesoscale, both of which
are slightly steeper than k−5/3.

03, 06 or 09 UTC small spin-down effects may occur. Since the overestimation is much
more pronounced in the perturbed ensemble members than in the control run it must be
an effect of the observation perturbations. These possibly cause a stochastic drift shifting
the ensemble mean. From 12 hours of lead time onwards, no significant difference can
be identified between reanalysis and reforecast ensemble.
Figure 4.2 further reveals that COSMO-EN-REA12 underestimates the precipitation rate
during the afternoon and peaks too early. The peak placed too early is a well-known
problem in models with parameterized deep convection that diagnose the convective
precipitation from the grid scale environment (for COSMO see Baldauf et al. (2011)).

4.2.3 Spatial kinetic energy spectra

Horizontal kinetic energy spectra have been found to have a k−5/3 slope on the mesoscale,
see for example Skamarock (2004). Theoretically, this slope extends down to the begin-
ning of the microscale. However, in real world models a lower limit is imposed by the
grid spacing. The wave length at which the spectrum leaves the k−5/3 slope marks the
point at which smaller spatial processes are no longer fully represented, whereby the
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effective resolution of the model can be measured. Both the question if an NWP model
reproduces the k−5/3 slope and the effective resolution are interesting to investigate.
Following Bierdel et al. (2012), the effective resolution is estimated as the wavelength at
which the spectrum begins to fall steeply under the k−5/3 slope. In Figure 4.3, the hori-
zontal kinetic energy spectrum of the new system averaged over the whole experimental
time span is compared to the one of COSMO-REA6 at 6 km grid spacing (Bollmeyer
et al. 2015) which has provided the basis for the development of the system. The energy
spectra for the horizontal velocity components at a height of approximately 5 km are
computed separately and averaged afterwards. For a detailed description of the compu-
tation be referred to Bierdel et al. (2012).
At the mesoscale, linear trends are fit to both spectra in the log-log representation. These
show a slightly steeper slope than k−5/3, where the spectrum of COSMO-REA6 has a
slightly smaller deviation. Both spectra agree well with each other at the synoptic scales
and the meso-α-scale and do not have a pronounced transition to a slope of k−3 that
has been found for the larger scales. The effective resolution is about 7∆x for COSMO-
EN-REA12 and 8∆x for COSMO-REA6. This corresponds to approximately 85 km for
COSMO-EN-REA12 and 50 km for COSMO-REA6 and agrees with values described in
literature (Skamarock 2004).
Further, the horizontal kinetic energy spectra of analysis data from COSMO-EN-REA12
have been compared to the spectra of reforecasts initialized at 00 UTC and valid at 3, 10,
24 and 30 hours lead time. All agree with each other (therefore not shown), so that the
data assimilation does not have a distorting impact on the spectrum. Thus, the absence
of a spin-up effect found in the foregoing section is complemented by the absence of a
spin-up effect in the dynamics. This may be a positive effect of nudging which applies
the corrections to the model state very slowly and over a long time so that the model
dynamics maintain a high degree of balance.

4.2.4 Evolution of spread

The quality of the uncertainty that is quantified by an ensemble can only be assessed in
comparison with observations. Such a verification is conducted in the section following
this one. Here, qualitative insight into the behavior of ensemble spread over a subdomain
of Germany is provided. Figure 4.4 shows the mean temporal evolution of horizontally
averaged spread (measured in terms of standard deviation) in reforecasts, initialized at
00 UTC for temperature, zonal wind, relative humidity and geopotential. In the vertical,
the spread is largest at the lower levels for relative humidity and between 400 and 600 hPa
for the other variables. Above 400 hPa, it decreases rapidly with increasing height which
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Figure 4.4: Monthly mean evolution of horizontally averaged spread (over German sub-
domain) as a function of pressure levels and forecast lead time. Data is
from reforecasts initialized at 00 UTC for experiment for June 2011. (a)
Temperature, (b) zonal wind, (c) relative humidity and (d) geopotential.

is likely related to the Rayleigh relaxation above 235 hPa towards the steering model
(IFS/ERA-Interim) being identical for all ensemble members. As a function of lead time,
the spread decreases for relative humidity and increases for zonal velocity, geopotential
and slightly for temperature. The increase with lead time in three of the shown variables
indicates that the pure perturbation of the initial conditions by perturbation of the
assimilated observations is sufficient to allow for a reasonable development of spread.

4.3 Evaluation of the basic reanalysis suite
The goal of this section is to demonstrate the capabilities of the basic reanalysis suite in
terms of a verification against independent observations. As discussed in the introduc-
tion to this chapter, in UERRA precipitation has been identified as the variable (next to
screen-level temperature) for which an added value should be demonstrable compared
to global reanalyses.
To show why this can be expected let us compare the monthly precipitation climatologies
of June 2011, derived from ERA-Interim and from the ensemble mean of COSMO-EN-
REA12 (see Figure 4.5). As anticipated, the regional reanalysis is capable of representing
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Figure 4.5: Monthly precipitation climatologies for Germany for June 2011. Based
on ensemble mean of (a) COSMO-EN-REA12 and (c) ERA-Interim. (b)
Uncertainty (spread) of the monthly integrated precipitation estimated by
COSMO-EN-REA12.

mesoscale variability, while ERA-Interim rather shows large-scale patterns. Therefore,
the precipitation fields of COSMO-EN-REA12 can be expected to agree much better
with observations which would offer the possibility to monitor precipitation on a much
more local scale. This is investigated in the next sections. The probabilistic reanalysis
system further allows for the estimation of the uncertainties in such precipitation clima-
tologies. The spread of the monthly integrated precipitation resulting from the summer
experiment (see Table 4.1) is shown in Figure 4.5. The estimated uncertainty has a
pronounced spatial variability and a large maximum value of 40 to 45 mm. Regions of
large spread coincide with regions of large integrated precipitation amounts. Here, these
regions are located in Eastern Germany as well as over the Alps. The large spread of
up to 45 mm substantiates the value of uncertainty estimation in reanalysis, e.g. for ap-
plication in monthly climatologies as provided by near-real time climate monitoring (for
an example see the Deutscher Klimaatlas, described in Kaspar et al. (2013) or 2.5).
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Figure 4.6: Rain gauges used for verification. The grey stations are used for the proba-
bilistic verification, the white ones are additionally used for the determinis-
tic verification.

The experiments from which precipitation is evaluated in the following comprise 20 en-
semble members and one nature or control run that assimilates the original observations
and extend over the months of June 2011 and additionally December 2011. They are
referred to as summer and winter experiments (see Table 4.1) of COSMO-EN-REA12.
Precipitation is not assimilated so that the analysis is independent of the verifying ob-
servation. Due to a slow and continuous correction by nudging it can be assumed that
the fields are in dynamical balance. This is supported by the absence of spin-up effects
shown in section 4.2.2. Therefore, the reanalysed precipitation fields can directly be used
so that an evaluation of them is shown instead of precipitation from reforecasts. Note
that the verifying rain gauge observations are regarded as free of errors which can be seen
as contradictory to the assumption of error prone observations for ensemble generation.
However, due to a lack of knowledge about the distribution of observation errors of rain
gauges it is assumed that they are negligible compared to the errors of the model-based
analysis.
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The subsequent evaluation of precipitation focuses on two research questions:

1. Does the ensemble nudging reanalysis system at 12 km resolution have an added
value?

2. What are the probabilistic capabilities of the ensemble?

The goal that is pursued in the first part of the evaluation is to compare the basic system
to the global reanalysis ERA-Interim and downscaling data (that are used for many of
the same applications) and to demonstrate how its probabilistic capabilities score for a
short time span. For this purpose, precipitation from all involved data sets is verified
on the original grids. This is considered useful since users will most probably use the
highly-resolved data rather than interpolate it to a coarse grid.
In the second part, the probabilistic capabilities of COSMO-EN-REA12 are assessed.
Due to the lack of a global reanalysis ensemble at the time of writing, the regional
reanalysis data are compared to forecasts from the ECMWF-EPS. Again, both systems
are compared on the original grids (ECMWF-EPS interpolated to a regular grid of
approximately 25 km grid spacing).

4.3.1 Deterministic performance
Initially, each ensemble member is verified separately. It is assessed if the ensemble mem-
bers from the ensemble nudging experiments bear comparison with their corresponding
control run, the global reanalysis ERA-Interim, the high-resolution regional reanaly-
sis COSMO-REA6 (Bollmeyer et al. 2015) and a dynamical downscaling from ERA-
Interim using COSMO at 6 km grid spacing, COSMO-DOWN6 (denoted "COSMO-DS"
in Bollmeyer et al. (2015)). In this context, dynamical downscaling means that a free
model run is started from initial conditions provided by COSMO-REA6. This run is
provided with three-hourly lateral boundary conditions from ERA-Interim. Since no ob-
servations are assimilated the model state will approach its model climate in the interior
of the domain after a certain time. The downscaling is useful to show the difference
to the reanalysis data sets in which data assimilation adds realistic mesoscale informa-
tion. ERA-Interim (ECMWF) is based on the spectral model IFS with a grid spacing
of about 0.7 ◦ and a 12-hourly 4D-Var cycle (Dee et al. 2011b). Analysis data from 00
and 12 UTC as well as +03-h, +06-h and +09h reforecasts are employed. The nudging
regional reanalysis COSMO-REA6 is based on the COSMO model at 6 km grid spacing
and 40 vertical levels. It makes use of ERA-Interim as lateral boundary conditions and
is involved in the evaluation to see the difference in performance at a bisection of the
grid spacing which is required to effort the computation of a 20 member ensemble.



42 CHAPTER 4. PERFORMANCE OF THE REANALYSIS SUITE

Due to difficulties related to the international exchange of precipitation observations with
high temporal resolution, the verification is confined to a German subdomain which has
a very dense network comprising 1034 rain gauge stations (see Figure 4.6). To each of
the stations the nearest neighbor from the model grid points is assigned. It happens that
one grid point of the coarser resolved reanalysis ERA-Interim is assigned to multiple rain
gauge stations. The verification is based on 3-hourly precipitation sums.
Figure 4.7 shows the frequency bias, the log odds ratio as well as the equitable threat
score for the summer experiment in the left column and the winter experiment in the
right column. All scores are computed based on a contingency table for binary events.
As thresholds, 0.1 mm/3h, 1 mm/3h, 2.5 mm/3h and 5 mm/3h have been chosen which
exhibit high-enough base rates (shown in Figure 4.8) to be considered fair for a compar-
ison including ERA-Interim and the short experimental periods that extend only over
30 days. To estimate the sampling uncertainty of the scores 1000 bootstrap samples are
performed based on days as entities.

4.3.1.1 Frequency bias

The frequency bias (Donaldson et al. 1975) shown in Figure 4.7 a) and b) together with
the base rates shown in comparison with the observations in Figure 4.8 is useful to assess
systematic errors. It tests the agreement of the marginal distributions of precipitation
events in the reanalysis compared to the observed events

FB = a+ b

a+ c
∈ [0,∞] (4.1)

with a hits, b false alarms, c misses (and d correct negatives, see scores hereafter).
ERA-Interim heavily overestimates the number of precipitation events at 0.1 mm/3h and
1 mm/3h and underestimates it at 2.5 mm/3h and 5 mm/3h. This is also revealed by the
base rate of ERA-Interim which is over-rated at 0.1 mm/3h and too small at 5 mm/3h.
However, at 1 mm/3h in winter, the bias is almost perfect. In summer, the control run
of COSMO-EN-REA12 and COSMO-REA6 have a virtually perfect frequency bias at
the threshold 1 mm/3h. The boxplot shows that the ensemble members scatter evenly
around the control. Going to higher thresholds the bias for both COSMO-REA6 and
COSMO-EN-REA12 reveals an increasing underestimation of precipitation, whereby the
observation perturbations have a positive impact improving the bias of the ensemble
members compared to the one of the control run. In winter, COSMO-EN-REA6 and
COSMO-EN-REA12 have a frequency bias close to 1, whereby the latter is the best
system regarded over all shown decision thresholds. The observation perturbations have
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a positive impact at the higher thresholds.

4.3.1.2 Log odds ratio

The log odds ratio (Stephenson 2000) displayed in Figure 4.7 c) and d) gives insight into
the spatio-temporal coherence of reanalyses and observations. It measures the ratio of
the odds of making a hit (hits compared to misses) to the odds of making a false alarm
(false alarms compared to correct negatives)

LOR = log
(
ad

bc

)
∈ [−∞,+∞]. (4.2)

It is positively orientated and gives better scores to rarer events due to a high weight
of the correct negatives d. The score is best for COSMO-REA6 and clearly worst for
the downscaling. The superiority of COSMO-REA6 compared to the control run of
COSMO-EN-REA12 shows the loss of accuracy due to the bisection of the grid size.
The inferiority of the downscaling confirms the added value in accuracy of the reanalysis
data sets due to data assimilation. In summer, there is no significant difference between
ERA-Interim and ensemble nudging. In winter, ERA-Interim has a better log odds ratio
than ensemble nudging.

4.3.1.3 Equitable threat score

The equitable threat score shown Figure 4.7 e) and f) measures the fraction of hits of
the sum of all precipitation events in reanalysis and observations. Supplementary, it
accounts for hits due to random chance. It is defined by

ETS = a− arandom

a+ b+ c
(4.3)

with

arandom = (a+ c)(a+ b)
n

, (4.4)

where n is the total number of events. Again, COSMO-REA6 performs best for 1 mm/3h
while the downscaling is the worst system. COSMO-EN-REA12 and ERA-Interim ex-
hibit no significant difference except for 1 mm/3h where ERA-Interim outperforms the
new system in the winter experiment. In the summer experiment, nudging has a more
positive influence on accuracy going from 6 (downscaling) to 12 km grid spacing (nudg-
ing) than in winter.
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Figure 4.7: Verification measures (a) and (b) frequency bias, (c) and (d) log odds ratio,
(e) and (f) equitable threat score based on the (2 × 2) contingency table
for binary events as a function of threshold for 3-hourly accumulated pre-
cipitation. The left panels show the summer experiment (June 2011), the
right ones the winter experiment (December 2011). The control run of the
ensemble nudging experiments is depicted in yellow and the nudging en-
semble as boxplots. ERA-Interim is presented in red, COSMO-REA6 in
blue and COSMO-DOWN6 in green. The solid lines represent the median
of 1000 bootstrap samples while the hatched areas are 95 % confidence in-
tervals. For each of the ensemble members, 1000 bootstrap samples have
been drawn. The grey shaded area presents the 95 % confidence interval of
the resulting 20000 bootstrap samples.
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Figure 4.8: Base rates of threshold exceedance for 3-hourly accumulated precipitation
for the (a) summer and (b) winter experiments. Sample size approximately
255000.

4.3.1.4 Discussion

The first research question posed above does the ensemble nudging reanalysis system
at 12 km resolution have an added value compared to global reanalyses and dynamical
downscalings has guided the evaluation in this section. As preliminary answer to this
question it is found that the accuracy of ensemble nudging is comparable to the one
of ERA-Interim. Thus, there is no added value in accuracy at the small precipitation
thresholds chosen to have a fair amount of events in the relatively short experimental
periods. A comparison to COSMO-REA6 yields that the system looses the significant
added value going from 6 km to 12 km grid spacing for the sake of a 20 plus 1 member
ensemble. Compared to the dynamical downscaling COSMO-DOWN6, there is still an
added value in accuracy (except for the ETS in winter) even though the system has only
12 instead of 6 km grid size.
The findings regarding accuracy of precipitation on small thresholds are different from the
ones of Jermey and Renshaw (2016), who also find an added value for their regional re-
analysis system at these ranges. This may be enabled through a significantly longer time
span of 2 years and may also arise from assimilation of remote sensing and satellite data.
One of the major applications of regional reanalysis data will certainly be monitoring
of extreme events. However, to show an added value in accuracy at very high precipi-
tation thresholds, a much longer data set must be available to obtain reliable statistics.
Potentially, also the grid spacing and ensemble size have to be significantly increased
for that purpose. Still, higher precipitation amounts are assessed in the probabilistic
verification where the ECMWF-EPS at a resolution higher than ERA-Interim is chosen
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for comparison. Different from the measures of accuracy, the frequency bias reveals a
clear added value of the new regional reanalysis system compared to ERA-Interim. The
frequency bias of all regional systems is nearly perfect and best for COSMO-EN-REA12
in winter.

4.3.2 Probabilistic performance

The probabilistic capabilities of an ensemble include consistency, accuracy, reliability,
resolution and sharpness as well as absence of conditional and unconditional biases (An-
derson 1997, Murphy 1973b, Wilks 1995). As there is no global ensemble reanalysis data
available at the moment these properties are compared to 6-hourly accumulated precip-
itation sums from +06-hour ECMWF-EPS forecasts based on IFS (Palmer et al. 1997).
The used reanalysis data from COSMO-EN-REA12 and the ECMWF-EPS forecasts are
valid at 06 and 18 UTC. Note that there is no ECMWF-EPS data with higher temporal
resolution available. However, for the evaluation of the deterministic performance of
our system shown in the foregoing section all data is available at 3-hourly resolution
which limits allowable spatio-temporal displacements of precipitating systems compared
to 6-hourly accumulations. An improved positioning of precipitation would be beneficial
for regional reanalyses. For these reasons, 3-hourly precipitation sums have been used
in section 4.3.1 and 6-hourly ones are employed here.
In a first step, for most of the scores computed in the following sections probabilities
have to be estimated from the ensemble. The event probability p(yi) is estimated using
a beta-binominal model with a flat beta prior (Agresti and Hitchcock 2005) which leads
to

p(yi) = i+ 1
Nens + 2 , (4.5)

where i is the number of the ensemble member (the members are sorted in ascending
order) and Nens the total number of ensemble members. This relation has the advantage
that the estimated probability can neither become 0 nor 1 which would be equal to
the statement of a deterministic forecast or analysis. As a start, the consistency of
COSMO-EN-REA12 is assessed making use of analysis rank histograms.

4.3.2.1 Consistency

Consistency means that the ensemble members and the observations are drawn from the
same PDF so that all members are equally likely to represent truth (Anderson 1996,
Hamill and Colucci 1997). This is the case if the analysis rank histogram corresponding
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Figure 4.9: Analysis rank histograms for 6-hourly accumulated precipitation for (a) the
summer experiment and (b) the winter experiment of COSMO-EN-REA12.

to the ensemble is approximately flat. The analysis rank histograms shown in Figure 4.9
are computed based on 6-hourly precipitation sums of the ensemble nudging summer and
winter experiments. The dashed lines indicate the frequency at which the histograms
would be perfectly flat. To avoid a distortion through a random distribution of no-
precipitation observations between a no-precipitation ensemble, the events at which both
the ensemble and the observation indicate “no precipitation” are omitted.
For the summer experiment shown in a), slight overestimation of the lowest rank and
the highest rank can be observed which indicates a too narrow ensemble PDF and thus
under-dispersiveness. The overweighting of the lowest rank arises from events at which
the whole ensemble overestimates precipitation. Observations ranked to the highest bin
result from the opposite. The under-dispersiveness is reflected by the negative β-score
of −0.53 (Keller and Hense 2011), which is computed based on a fit of a β-distribution
to the bin values of the analysis rank histogram.
The analysis rank histogram for the winter experiment displayed in Figure 4.9 b) reveals
a stronger underestimation of uncertainties through a more pronounced u-shaped form,
quantitatively measured by a more negative beta score of −1.39. Obviously, it occurs
quite frequently that the whole ensemble over-estimates precipitation. This can e.g. arise
from the ensemble being too confident about the position of a frontal system so that all
members misplace precipitation.
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4.3.2.2 Skill measured by Brier score and CRPS

The Brier score (Brier 1950) is a scalar summary measure of accuracy for dichotomous
quantities. The score is equal to the mean squared deviation between n pairs of ensemble
probability pk for the exceedance of a threshold c given by

pk = #{yi, 1 ≤ i ≤ N |yi ≥ c}
Nens

(4.6)

and binary observations ok with

ok =





1 if o ≥ c

0 else.
(4.7)

It is given by

BS = 1
n

n∑

k=1
(pk − ok)2 (4.8)

with 0 ≤ BS ≤ 1 and BS = 0 for a perfect ensemble system. The Brier skill score given
by

BSS = 1− BS

BSref

(4.9)

is useful to compare the accuracy of COSMO-EN-REA12 and the ECMWF-EPS as ref-
erence system. In that constellation, COSMO-EN-REA12 has skill or an added value if
BSS > 0. Figure 4.10 shows the Brier skill score for precipitation from both COSMO-
EN-REA12 experiments accumulated over 6 hours with +06-hour ECMWF-EPS fore-
casts valid at 06 and 18 UTC as a reference. For the summer experiment, COSMO-
EN-REA12 has unconditionally more accuracy than the ECMWF-EPS. At 0.1 mm/6h,
the percentage improvement of COSMO-EN-REA12 is about 38 % for the median of
1000 bootstrap samples. For the other thresholds it is about 18 %. In winter ensemble
nudging performs poorer than the ECMWF-EPS except for the 0.1 mm/6h threshold
and is approximately comparable at 0.5 mm/6h. For both seasons, the Brier skill score
declines with increasing threshold. In winter, its relative lack of accuracy increases with
increasing threshold. The Brier score indicates that the regional ensemble is capable of
a better probabilistic representation of summer precipitation for the chosen thresholds.
To take into account the whole range of precipitation amounts, the continuous ranked
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Figure 4.10: Brier skill score of COSMO-EN-REA12 versus ECMWF-EPS for 6-hourly
accumulated precipitation. The summer experiment is illustrated in dark
grey and the winter experiment in light grey. The solid lines represent the
medians and the shading the sampling uncertainty as given by the 95%
quantile of 1000 bootstrap samples.

probability score CRPS (Hersbach 2000) is employed which is given by

CRPS =
∫ ∞

−∞
[Pf (x)− Po(x)]2dx (4.10)

where

Po(x) =





0, x < o

1, x ≥ o
(4.11)

is the Heaviside function that goes from 0 to 1. The predicted variable x equals the
observation o and Pf is the cumulative distribution function of the forecast or analysis
probability (Wilks 1995). Analogously to the BSS, a CRPSS skill score can be defined.
1000 bootstrap samples are drawn and it is obtained CRPSS ∈ [−0.01, 0.00, 0.012] for
the winter and CRPSS ∈ [−0.02, 0.00, 0.016] for the summer experiment, where the
triple represents the 5 %-percentile, the median and the 95 %-percentile. These results
show that under consideration of the whole range of precipitation amounts COSMO-EN-
REA12 and the ECMWF-EPS have comparable probabilistic accuracy.
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The CRPSS is most suitable to obtain an indication if the regional ensemble has an
added value in convective regimes. To quantify that, a subset from the 5th to the 8th
of June 2011 is chosen from the summer experiment. During these days, strong small-
scale convective activity has been observed over large parts of Germany. Drawing 1000
bootstrap samples, it is obtained CRPSS ∈ [0.0032, 0.43, 0.53]. Even though the large
spread between the quantiles shows a pronounced uncertainty due to a strongly reduced
sampling size, this result indicates a clear potential for an added value of COSMO-EN-
REA12 over the ECMWF-EPS in convective regimes.
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Figure 4.11: Decomposition of the Brier score: 5 to 95% quantiles of 1000 bootstrap
samples of reliability [a) and b)] and resolution [c) and d)] for the summer
(left) and winter (right) experiments. The thin dotted lines indicate the
maximally achievable resolution if the reliability was perfect (uncertainty
component).
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A decomposition of the Brier score into a reliability, a resolution and an uncertainty
component (Murphy 1973a) is depicted in Figure 4.11. It is

BS = 1
n

n∑

i=1
Ni(yi − oi)2

︸ ︷︷ ︸
Reliability

− 1
n

n∑

i=1
Ni(oi − o)2

︸ ︷︷ ︸
Resolution

+ o(1− o)︸ ︷︷ ︸
Uncertainty

, (4.12)

where n is the total sample size subdivided in I subsamples of size Ni with n =
I∑

i=1
Ni.

oi is the relative frequency of precipitation observations conditioned to the ensemble
probabilities yi in the subsamples I. It is given by

oi = p(oi = 1|yi) = 1
Ni

∑

k∈Ni

ok, (4.13)

where o is the sample climatology of the observations

o = 1
n

n∑

k=1
ok = 1

n

I∑

i=1
Nioi, (4.14)

which is a weighted average of the conditional relative frequency of observations assigned
to I subsamples. The decomposition including estimates of sampling uncertainty based
on 1000 bootstrap samples shows that the superiority of COSMO-EN-REA12 in summer
can be traced back to a significantly better reliability component while the resolution of
both systems differs hardly within the uncertainty intervals. Thus, the agreement be-
tween the observed frequencies conditioned to the ensemble probabilities and the ensem-
ble probabilities themselves is much better for COSMO-EN-REA12 (reliability), whereas
both systems are similarly able to issue probabilities that deviate significantly from the
climatological base rate (resolution). In winter, the superiority of the ECMWF-EPS
arises due to a better resolution component while the reliability is only better at the
higher thresholds.

4.3.2.3 Reliability diagrams

Reliability diagrams display the observed frequencies conditioned to the ensemble prob-
abilities versus the latter (Wilks 1995). Theoretically, the ensemble probability and the
conditional frequency of occurrence are equivalent for a reliable ensemble system. Then,
the reliability curve agrees with the diagonal of the diagram.
However, due to limited sample sizes reliability diagrams cannot be expected to be
exactly diagonal. To account for that, Bröcker and Smith (2007) have developed con-
sistency resampling. This method estimates intervals of observed frequencies for which
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Figure 4.12: Reliability diagrams for 0.1 mm/6h [a) and c)] and 5 mm/6h decision
thresholds [b) and d)] for the summer (upper row) and winter experiments
(lower row). The grey shaded area represents consistency intervals for the
ECMWF-EPS and the black hatched one for COSMO-EN-REA12 . These
represent the areas within which the ensemble is reliable. The dashed ver-
tical and horizontal lines represent the climatological observed frequency
of the events.
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the ensemble system is still reliable given sampling uncertainty. The estimated intervals
are plotted over the bin means ranging from the 5 % to the 95 % percentiles. Reliability
is then shown by the extent to which the observed relative frequencies fall within the
consistency bars.
In a so-called resampling cycle, the whole vector of reanalysis probabilities having sample
size N is sampled into a new order. In a next step, a corresponding set of binary obser-
vations is generated. For that purpose, an independent uniformly distributed random
variable of sample size N is drawn. Running through all indices, the random variable
is assigned 1 where it is smaller than the resampled reanalysis probability and 0 in all
other places. By definition, the resampled probability vector is reliable for the new bi-
nary observations. This cycle is repeated 1000 times.
Figure 4.12 shows reliability diagrams for 6-hourly precipitation sums from COSMO-EN-
REA12 and the ECMWF-EPS. Instead of bars, the consistency intervals are illustrated as
polygonal lines. For all experiments and thresholds, the ECMWF-EPS except 5 mm/6h
in winter exhibits over-forecasting of the observed frequencies. In the summer experi-
ment, COSMO-EN-REA12 is well-calibrated at both thresholds.
In winter at 0.1 mm/6h, small conditional biases are observable. The small ensemble
probabilities are associated with slight under-forecasting while the higher ones are as-
sociated with slight over-forecasting. Such a form of a reliability curve indicates an
under-dispersive ensemble that is too confident about specific events so that similar er-
rors occur in many of the ensemble members. In winter, at the 5 mm/6h threshold the
ensemble has a conditional bias at the higher ensemble probabilities. Here, the ensemble
is again over-confident so that it over-estimates the observed frequencies. A possible
reason for that could be spatio-temporal displacement errors of frontal systems that are
similar in most of the members. Just like the reliability component of the decomposed
Brier score, the reliability curves show an added value of COSMO-EN-REA12 compared
to the ECMWF-EPS.

4.3.2.4 Resolution and discrimination

The ROC (Receiver Operating Characteristic) curve is a signal detection curve for bi-
nary data whereby the probability of detection is displayed versus the false alarm rate
for probabilistic decision thresholds which are illustrated as points (Mason 1982). In
a perfect ensemble system the curve would run from (0,0) to (0,1) to (1,1), i.e. low
decision thresholds correspond to high probabilities of detection and high false alarm
rates whereas higher decision thresholds should come along with lower probabilities of
detection and lower false alarm rates. The closer the curve is to the diagonal the less
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Figure 4.13: ROC curve measures. (a) Exemplary ROC curves for 0.1 mm/6h. (b)
Absolute values for the area under the ROC curve (AUC) for differ-
ent thresholds. (c) Percentage improvement (PI) in terms of AUC of
COSMO-EN-REA12 over the ECMWF-EPS for the summer (black box-
plots) and winter experiments (grey boxplots). COSMO-EN-REA12 is de-
picted in black and the ECMWF-EPS in grey in the upper two pictures.
In c) the summer experiment is illustrated in black and the winter experi-
ment in grey.
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the ensemble system can discriminate between events and the less resolution it has.
An exemplary ROC curve is displayed in Figure 4.13 a). It shows the resolution of the
probabilistic regional reanalysis system in comparison to the ECMWF-EPS based on 6-
hourly precipitation sums accumulated to 06 and 18 UTC for a threshold of 0.1 mm/6h.
On first sight, the ROC curves COSMO-EN-REA12 and the ECMWF-EPS seem to be
comparable. However, for the higher decision thresholds, the ECMWF-EPS is shifted to
higher probabilities of detection and higher probabilities of false detection compared to
COSMO-EN-REA12. This is probably rooted in a much higher base rate of the IFS (see
Figure 4.8) at this small threshold which has been observed by means of the frequency
bias of ERA-Interim and might be similar for the IFS version that the used ECMWF-
EPS is based on.
Figure 4.13 b) shows the area under the ROC curve (AUC) which allows for an easier
comparison for different experiments and thresholds. Optimally, the AUC is 1. Below a
value of 0.75 depicted as dashed line the discriminative capabilities of an ensemble system
can be regarded as poor. It can be observed that both systems can discriminate between
events that happen and events that do not happen up to a threshold of 10 mm/6h. Here,
the ECMWF-EPS falls under the 0.75 line while COSMO-EN-REA12 retains an area
under the ROC curve of about 0.85. Above that threshold, COSMO-EN-REA12 keeps
discrimination for the summer experiment.
To quantify the quality of COSMO-EN-REA12 relative to the ECMWF-EPS, a per-
centage of improvement is computed for the AUC including 1000 bootstrap samples to
incorporate sampling uncertainty. This is illustrated as black boxplots for summer and
grey boxplots for winter in Figure 4.13 c). As discussed, the two systems are comparable
for the smallest threshold. At 1 mm/6h and 2.5 mm/6h COSMO-EN-REA12 is slightly
worse while from 5mm/6h upwards it is increasingly superior which is consistently more
pronounced in winter. This is one of the most important features that argues for using
estimates of precipitation as essential climate variables from regional reanalyses.

4.3.2.5 Discussion

Summarising the evaluation of the basic probabilistic performance measures applied to a
verification of precipitation discussed in this section, a tentative answer can be given to
the second research question posed above. What are the probabilistic capabilities of the
ensemble? The analysis rank histograms show that the ensemble is quite well calibrated
for the summer experiment. In winter, a more pronounced under-dispersiveness can be
observed. A comparative verification to 6-hourly accumulated precipitation sums from
the ECMWF-EPS (due to a lack of global reanalysis ensemble data that will soon be
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available from ERA5, ECMWF) reveals that the overall probabilistic accuracy of the two
systems is more or less the same for the experimental periods. This is a good result, since
the ECMWF-EPS is one of the world-wide gold-standard ensemble prediction systems.
However, computed for a subset of the data that is dominated by small-scale convection,
the CRPSS indicates even a clear added value of the regional ensemble.
The resolution is comparable at the lower precipitation thresholds, while an added value
can be observed for COSMO-EN-REA12 at higher thresholds as shown by the per-
centage improvement of the area under the ROC curve. Also, a clear added value in
reliability becomes apparent. All in all, for the experimental period, the probabilistic
regional reanalysis system demonstrates to yield an ensemble with good probabilistic
capabilities.

4.4 Evaluation of the extended reanalysis suite
In the foregoing section, experiments with the basic reanalysis suite have been evaluated.
There, observation error is accounted for by employing the newly-developed technique
of ensemble nudging. Here, experiments with an extended reanalysis suite incorporating
further uncertainty sources are assessed. Additionally to ensemble nudging, stochastic
perturbation of physical tendencies (see sections 3.3.2 and 4.1) is utilized to stochasti-
cally account for model error due to the parameterized terms in the prognostic equations.
Further, an ensemble of the global model ICON is engaged as probabilistic lateral bound-
ary conditions (see sections 3.3.3 and 4.1).
In total, four experiments including reforecasts initialized at 00 UTC have been con-
ducted. All comprise of 20 ensemble members and assimilate conventional observations
and wind profilers using nudging. Further, one ICON run has been chosen as determinis-
tic lateral boundary condition that is employed instead of ERA-Interim in the reanalysis
system configurations that do not use perturbed LBCs. The experiments extend from
15/05/2014 to 15/06/2014. During this time span, various weather situations occur, in-
cluding isolated strong convective cells, dry days and widespread convective and frontal
precipitation. For an overview of the experiments see section 4.1.
The goal of this section is to provide an indication of which configuration of the re-
analysis system is most suitable for future probabilistic reanalyses based on COSMO
and nudging. For UERRA, 5 years of a test reanalysis are produced using ensemble
nudging. However, it is conceivable to employ the system for a longer-term reanalysis
in the future so that it is worth knowing how an improved reanalysis ensemble can be
obtained. In the subsequent evaluation, the probabilistic capabilities of the different
system configurations are assessed with a focus on two research questions:
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Figure 4.14: Monthly precipitation climatologies for Germany for May 15, 2014 to
June 15, 2014. Left panels: ensemble mean of precipitation accumulated
over experimental period in (a) EN, (c) SPPT, (e) ICON, (g) ESI. Right
panels: corresponding spread of (b) EN, (d) SPPT, (f) ICON, (h) ESI.
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1. How would a reanalysis ensemble be generated ideally with respect to precipitation?

2. Which reanalysis system shows the best probabilistic capabilities with respect to
screen-level temperature?

As discussed, precipitation is one of the two essential climate variables for which an
improvement is anticipated in regional reanalyses. Therefore, the future probabilis-
tic regional reanalysis system should represent it as good as possible. In the second
part, a comparative verification of screen-level temperature as second important essen-
tial climate variable is conducted. Note that the results are discussed with a focus on
improvement over the basic reanalysis system using ensemble nudging.

4.4.1 Evaluation of precipitation
For the verification of precipitation, analysis data accumulated over 6 hours is used. Just
as before, 1034 rain gauge stations over a German subdomain provide an observational
reference (see Figure 4.6). To each station, a unique nearest neighbor grid point is
assigned. Again, it is not accounted for observation errors of the rain gauges.
Figure 4.14 depicts monthly precipitation climatologies for all grid points based on the
ensemble means of the experiments. All show similar precipitation patterns. However,
the spread of the monthly integrated precipitation sums reveals pronounced differences.
The experiment combining all uncertainty sources ESI, for example, shows a region with
a significantly more pronounced spatial extension of 10 to 20 mm uncertainty. Also, the
spread reaches values up to 60 mm while it takes maximum values of 40 mm in the other
experiments. In the following, the differences between the system configurations will
be observed in more detail. First, the consistency of the different ensemble reanalysis
systems is tested using analysis rank histograms. This is followed by an assessment of the
probabilistic accuracy based on the Brier score. Moreover, resolution and reliability are
investigated in terms of a decomposition of the Brier score as well as reliability diagrams
and ROC curve measures.

4.4.1.1 Consistency

Figure 4.15 compares analysis rank histograms of the four experiments conducted with
the extended reanalysis suite. As discussed in section 4.3.2.1, analysis rank histograms
provide information about the consistency of an ensemble system. This means that
they reflect if the ensemble members and observations are drawn from the same PDF so
that all members are equally likely. Further, rank histograms indicate under- or over-
dispersiveness and under- or over-forecasting biases. Events at which both ensemble and
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Figure 4.15: Analysis rank histograms for 6-hourly accumulated precipitation from ex-
periments verified by means of 1034 German rain gauges depicted in Fig-
ure 4.6. (a) EN, (b) SPPT, (c) ICON, (d) ESI.

observations indicate “no precipitation” are omitted. All ensembles show a u-shaped
form. The β-score (Keller and Hense 2011) reveals that the ICON -experiment is slightly
better (β = −0.66) than the SPPT -experiment (β = −0.73). EN is significantly less
under-dispersive having a β-score of -0.36 and ESI shows a nearly flat analysis rank
histogram (β = −0.12). Reason for the under-and over-forecasting biases that most
probably lead to the u-shaped form may be spatial displacements of precipitating sys-
tems that the ensemble as a whole is too confident of. A possible explanation for the
superiority of the experiments incorporating observation uncertainty may be that the
observation perturbations induce a better spatial spread of the position of convective
cells or fronts. This may originate from perturbations in the assimilated observations
that trigger or dampen convection in single ensemble members so that wider PDFs are
estimated. Such effects are also supposable for SPPT, however, the variance of the per-
turbations is possibly too weakly tuned compared to the magnitude of the observation
perturbations. In the experiment combining all uncertainty sources ESI, a projection
of the perturbations on each other may potentially be the cause leading to the best
consistency.

4.4.1.2 Brier score and its decomposition

Figure 4.16 depicts the Brier score and its decomposition into reliability and resolution.
The score measures the probabilistic accuracy depending on decision thresholds (see sec-
tion 4.3.2.2 or Brier (1950)). The more ensemble members issue an event if it occurs, the
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Figure 4.16: Brier score and its decomposition for 6-hourly accumulated precipitation
from experiments: ensemble nudging (EN ) in green, stochastic perturba-
tion of physical tendencies (SPPT ) in blue, probabilistic lateral boundary
conditions (ICON ) in orange and combined (ESI ) in red. a) Brier score,
b) Brier reliability, c) Brier resolution. The thin dashed black line in c)
marks the maximally achievable resolution in a perfectly reliable ensemble
system (uncertainty component).

better the Brier score will be. Being negatively oriented, it is best for the experiment
combining all perturbation methods ESI, second best for EN and slightly worse for the
SPPT and ICON experiments. This is reflected by the reliability component, which is
significantly better for ESI and EN, but best for ESI. Again, the observation perturba-
tions show to have a positive impact on the representation of the observed frequencies
by the ensemble. The resolution component provides information about the capability
of the ensemble to issue PDFs that significantly deviate from climatology. It is also by
far best for ESI. Note that for this experiment the resolution reaches only approximately
one third of the potential resolution that would be achieved if the reliability was per-
fect. Reason for that is that the reliability is strongly reduced compared to the summer
and winter experiments evaluated before. The reliability diagrams shown next reveal
similar.
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Figure 4.17: Reliability diagrams for a) 0.1 mm/6h and b) 5 mm/6h decision thresholds
for experiments: ensemble nudging (EN ) in green, stochastic perturbation
of physical tendencies (SPPT ) in blue, probabilistic lateral boundary con-
ditions (ICON ) in orange and combined (ESI ) in red. The hatched areas
represent consistency intervals within which the ensemble is reliable. The
dashed vertical and horizontal lines represent the climatological observed
frequency of the events.

4.4.1.3 Reliability

The reliability diagrams shown in Figure 4.17 indicate how well the different ensem-
ble configurations are calibrated. As outlined in section 4.3.2.3, the observed frequencies
conditioned to the ensemble probabilities would ideally be predicted by the latter. Again,
1000 cycles of consistency resampling are conducted to measure in which range of ob-
served frequencies the systems are reliable given sampling uncertainty due to a limited
sample size. At both the 0.1 mm/6h and the 5 mm/6h threshold, the ensemble systems
tend to over-forecast the observed frequencies. While ICON and SPPT are reliable for
the small observed frequencies at both thresholds and EN at the larger threshold, the
combined experiment ESI suffers from an unconditional wet bias that expresses in an
overestimation of the observed frequencies for all ensemble probabilities. However, at the
higher ensemble probabilities the over-forecasting of ESI is less pronounced than in all
other ensemble systems. Different from the 2011 experiments with the basic reanalysis
suite, none of the experiments with the extended reanalysis suite indicates really good
reliability properties at the chosen thresholds.
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Figure 4.18: ROC curve measures. a) Exemplary ROC curves for 0.1mm, b) absolute
values for the area under the ROC curve (AUC) for different thresholds.
Experiments: ensemble nudging (EN ) in green, stochastic perturbation of
physical tendencies (SPPT ) in blue, probabilistic lateral boundary condi-
tions (ICON ) in orange and combined (ESI ) in red.

4.4.1.4 Resolution and discrimination

ROC curves plot the probability of detection versus the false alarm rate for probabilis-
tic decision thresholds illustrated as points. As discussed, the curve runs ideally from
(0,0) to (0,1) to (1,1), where low decision thresholds correspond to high probabilities
of detection and high false alarm rates and higher decision thresholds correspond to
lower probabilities of detection and lower false alarm rates. The closer the curve is to
the diagonal the less the ensemble system can discriminate between events and the less
resolution it has. See section 4.3.2.4 for more details.
Figure 4.18 a) compares ROC curves for all experiments conducted with the extended
reanalysis suite. Just as before, a decision threshold of 0.1 mm/6h is chosen as example.
The SPPT experiment is closest to the diagonal, followed by ICON, EN and ESI. Thus,
the combined experiment can best discriminate between events that occur and ones that
do not occur. The decision thresholds are shifted towards higher probabilities of detec-
tion and higher false alarm rates in the order ESI, EN, ICON, SPPT.
Figure 4.18 b) shows the area under the ROC curve (AUC) which allows for an eas-
ier comparison for different experiments and thresholds. For an ensemble system with
perfect resolution, the AUC is 1 while a value of 0.75 indicates poor discriminative ca-
pabilities. The hierarchy between the experiments is for all thresholds just as observed
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for 0.1 mm/6h. ESI is best and SPPT is worst. ESI and EN retain discrimination to a
threshold of 10 mm/6h. At this threshold, the AUCs of ICON and SPPT fall under the
no-skill line.

4.4.1.5 Discussion

The question guiding the comparative examination of the experiments conducted with
the extended reanalysis suite in this section is how a regional ensemble reanalysis system
would be ideally configured in the future. Here, this has been assessed with respect to
the probabilistic representation of precipitation as essential climate variable.
Even though, due to the limited experimental time span of just one month length, a
decisive conclusion cannot be drawn, the results give a relatively clear indication. In
nearly all respects, the configuration of the extended reanalysis suite combining obser-
vation, model and LBC uncertainty (ESI ) yields the best results. Firstly, it has the
best probabilistic accuracy. Also, the system is most consistent between observations
and ensemble PDF having the flattest analysis rank histogram. Further, it shows to be
most reliable and to have best discriminative capabilities. This is both confirmed by the
decomposition of the Brier score as well as by reliability diagrams and ROC curve mea-
sures. However, the reliability diagrams reveal an unconditional over-forecasting bias of
the observed frequencies. This is due to a systematic over-estimation of the base rates at
the chosen decision thresholds (not shown) and even though it is less pronounced for the
ESI configuration, it is a weakness of the system. Since this has not been observed for
the basic reanalysis suite, it should be investigated if it is a problem of the new COSMO
model version or ICON replacing the ERA-Interim boundary conditions or due to the
weather regime.

Figure 4.19: Approximately 800 European SYNOP stations used for the verification of
screen-level temperature in the experiments conducted with the extended
reanalysis suite.
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4.4.2 Evaluation of screen-level temperature

To assess the representation of screen-level temperature in the different configurations of
the extended reanalysis suite, hourly data from reforecasts initialized at 00 UTC is veri-
fied. To avoid a distortion of the scores due to orography differences, the four grid points
nearest to each SYNOP station are searched, where the one with the smallest altitude
difference to the model orography is assigned to the station. Further, only stations whose
altitude is less than 150m above or below the model orography are included. Addition-
ally, a height correction is conducted assuming a moist adiabatic lapse rate. The stations
are depicted in Figure 4.19. Even though it is questionable to make use of the mean of
ensemble systems, it is common practice. Therefore, the accuracy of the ensemble mean
is assessed first. This is followed by an evaluation of the probabilistic accuracy making
use of the CRPS. A decomposition of the latter gives an indication of the reliability and
resolution of the systems for screen-level temperature. Finally, the uncertainty estima-
tion capabilities of the system are investigated by means of a newly developed form of
the spread-skill ratio. Since the central question is how an improvement over the basic
reanalysis suite using ensemble nudging as only ensemble generation technique can be
achieved, skill scores are employed for all measures to assess a potential added value.

4.4.2.1 Accuracy of the ensemble mean

The root-mean squared error measures the spatially and temporally averaged squared
difference between forecasts and observations. Its advantage is that it retains the units
of the forecast variable, so that it is easily interpretable as forecast error magnitude.
However, due to the squares it does not indicate the direction of deviations and gives
greater weight to greater deviations. RMSE is defined as

RMSE =

√√√√ 1
N

N∑

i=1
(yi − oi)2, (4.15)

where N is the sample size including all grid and time points, yi is the ith model value
(here ensemble mean) and oi the corresponding observation. For a perfectly accurate
forecast, the RMSE is zero. A skill score can be formulated based on MSE such that

MSESS = 1− MSE

MSEref

. (4.16)

The mean-squared error MSE which is the square of the RMSE can be decomposed into
the forecast error variance, an observation error variance and a squared bias between
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Figure 4.20: Measures of accuracy of the ensemble mean of screen-level temperature
from reforecasts initialized at 00 UTC, verified against European SYNOP
observations. a) RMSE, b) skill score based on MSE, c) MAE, d) skill
score based on MAE. The thin black dashed lines in the left panels rep-
resent the temporal average of the accuracy measures of the EN experi-
ment. Experiments: ensemble nudging (EN ) in green, stochastic pertur-
bation of physical tendencies (SPPT ) in blue, probabilistic lateral bound-
ary conditions (ICON ) in orange and combined (ESI ) in red. The error
bars in the right panels represent the 5 to 95 % percentiles of the skill
scores resulting from 1000 bootstrap cycles.

forecast and observations (Murphy and Winkler 1987). Since an ensemble cannot ac-
count for systematic errors and observation errors, the MSE is cleaned from an estimated
observation error variance and a squared bias before drawing its square root.
Figure 4.20 shows the cleaned RMSE of the ensemble for all experiments. The obser-
vation error variance is assumed to be 2.0 K while the bias is estimated from the data,
depending on lead-time. The RMSE evolves similarly for all experiments. Its average
value is approximately 1.5 K. The increase in forecast error with lead time naturally
reflects the error growth during forward integration. Note that this evolution of RMSE
has also been found for forecasts initialized from a deterministic analysis using KENDA
at 2.8 km grid spacing. The corresponding experiments have been conducted for the
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development of KENDA and extend over the same experimental period (Schraff et al.
(2016); personal communication, Christoph Schraff, DWD).
To assess a potential added value of the different system configurations over ensemble
nudging, a bootstrapped skill score as defined in equation 4.16 is shown in Figure 4.20.
A systematic advantage of one of the system configurations over ensemble nudging is not
apparent. The experiment combining all uncertainty sources ESI is comparable to EN
except for 22 and 23 hours lead time where it is superior. Between 16 and 19 hours lead
time the ensemble mean of ICON yields a small but significant improvement.
As second measure of accuracy of the ensemble mean, the mean absolute error MAE is
applied. It quantifies the average absolute deviation between forecast and observation

MAE = 1
N

N∑

i=1
|yi − oi|. (4.17)

The evolution and magnitude of the MAE shown in Figure 4.20 are very similar to the
one observed for RMSE. However, giving equal weight to all magnitudes of forecast error,
i.e. less to large errors than RMSE, the MAE of ESI is smaller at a range of lead times.
This is revealed by the skill score given by

MAESS = 1− MAE

MAEref

, (4.18)

using EN as reference. Beginning from 7 hours lead time, the bootstrapped skill score
reveals a significant improvement of up to 5 % for ESI and a small improvement for
ICON between 10 and 15 UTC. SPPT achieves maximally comparable skill.

4.4.2.2 Probabilistic accuracy

In a next step, the probabilistic accuracy of the experiments is assessed. Taking into
account the values of all ensemble members, the continuous ranked probability score
(Hersbach 2000) is most suitable for this purpose. As discussed, it measures the dis-
tance of the ensemble members from the observation in terms of cumulative distribution
functions. The CRPS is negatively oriented and better the sharper the ensemble is dis-
tributed around the observation.
Figure 4.21 depicts the CRPS for all experiments. The evolution with forecast lead time
is similar to the one of MSE and MAE displayed in Figure 4.20. However, the CRPS
averaged over all lead times is approximately 1.0 K which is 0.5 K less than the average
magnitude of MAE and RMSE. The fact that the CRPS equals the MAE for one real-
ization (Hersbach 2000) shows the added value of an ensemble over ensemble means or
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Figure 4.21: CRPS and its decomposition for reforecasts of screen-level temperature
initialized at 00 UTC, verified against European SYNOP observations. a)
CRPS, the thin black line represents the temporal average of the CRPS
of the EN experiment, b) skill score based on CRPS, the error bars repre-
sent the 5 to 95 % percentiles of the skill scores resulting from 1000 boot-
strap cycles, c) resolution component of the CRPS normalized by uncer-
tainty, 1 for a perfectly reliable ensemble system, d) reliability component
of the CRPS normalized by uncertainty, 0 for a perfectly reliable ensemble
system. Experiments: ensemble nudging (EN ) in green, stochastic pertur-
bation of physical tendencies (SPPT ) in blue, probabilistic lateral bound-
ary conditions (ICON ) in orange and combined (ESI ) in red.

single realizations. The skill score based on CRPS is computed analogously to the ones
based on MAE and RMSE and its temporal evolution depicted in Figure 4.21 is similar
(see Figure 4.20). Differently, ESI has positive skill of up to 10 % for all forecast lead
times when measured in terms of CRPS. The ICON and SPPT experiments, however,
are inferior, particularly during the first hours of lead time. Afterwards, ICON is com-
parable to EN, while SPPT shows skill from +19 to +23 hours. The initial inferiority
of ICON and SPPT may be rooted in the slow development of sufficient spread in these
configurations.
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Hersbach (2000) shows how the CRPS can be decomposed into reliability, resolution and
uncertainty, which can be done for any proper scoring rule (Bröcker 2009). In Figure
4.21 the reliability and resolution components of the decomposed CRPS are shown.
Both are normalized by the uncertainty component. The resolution component of the
CRPS measures if the assessed ensemble system is capable of issuing case dependent
probability forecasts. It is sensitive to the average ensemble spread and outliers. For a
perfect ensemble system, the reliability component is zero and the resolution equals the
uncertainty component. Thus, the resolution normalized by uncertainty is optimally 1.
Figure 4.21 reveals that all experiments have similar resolution which reaches between
60 and 70 % of the uncertainty.
The reliability part of the CRPS is closely related to the consistency measured by analysis
rank histograms. It tests, if the cumulative distribution function of an ensemble behaves
such that the frequency of the observation falling below the middle of a bin confined
by two ensemble members i and i + 1 is equal to the frequency given by the number of
member i and the total number of members N . Here, a large and significant improvement
of ESI over EN can be observed which increases with lead time. From approximately 12
hours lead time EN, ICON and SPPT have comparable reliability while ESI is distinctly
superior.

4.4.2.3 Uncertainty estimation

To conclude the evaluation of screen-level temperature, the uncertainty estimation ca-
pabilities of the different ensemble generation techniques employed in the extended re-
analysis suite experiments are assessed. For this purpose, a spread-skill measure derived
from a ratio of spread and mean-squared error is employed (personal communication,
Rita Glowienka-Hense, Meteorological Institute of the University of Bonn). Note that
the measure is not proper (Gneiting and Raftery 2007). However, it is able to measure
if an ensemble yields a reliable uncertainty estimation. It is given by

ESS = 1− Anova
1 + Anova− 2ρ(ȳ, o)

√
Anova

. (4.19)

In this equation, the term Anova is obtained by an analysis of variance which decom-
poses the total variability of a set of probability forecasts into a variability part due
to meteorological variability and one due to ensemble spread. Anova is equal to the
explained variance of the meteorological variability so that 1 − Anova is the explained
variance of the ensemble spread. ρ(ȳ, o) is the correlation between the ensemble mean ȳ
and the observations o. The ESS is perfect, if the correlation between ensemble mean
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Figure 4.22: Ensemble spread score for screen-level temperature reforecasts initialized
at 00 UTC verified against European SYNOP observations. a) Ensemble
spread score, b) skill score based on ensemble spread score, the error bars
in represent the 5 to 95 % percentiles of the skill scores resulting from
1000 bootstrap cycles. Experiments: ensemble nudging (EN ) in green,
stochastic perturbation of physical tendencies (SPPT ) in blue, probabilis-
tic lateral boundary conditions (ICON ) in orange and combined (ESI ) in
red.

and observation is perfect and the ensemble is fully sharp so that there is zero spread.
Note that both the reforecast data and the observations are standardized to zero mean
and unit standard deviation. For details on the method of analysis of variance, be re-
ferred to von Storch and Zwiers (1999).
Figure 4.22 compares the evolution of the ESS with lead time for the EN, SPPT, ICON
and ESI experiments. The ESS of all experiments improves to its best value between
10 and 13 UTC and declines afterwards. Its evolution reminds of a diurnal cycle. For
the combined experiment it reaches a value of approximately 0.8 while it is only 0.5 for
the other experiments. Initially, EN is superior to SPPT and ICON. However, towards
the end it settles down to a similar level of ESS. The percentage improvement based on
ESS using EN as reference underpins the clear advantage of the ESI experiment which
increases up to 100 % with increasing lead time.

4.4.2.4 Discussion

In the foregoing section, the question of how a prospective regional ensemble reanalysis
system would be ideally generated has been assessed by means of precipitation. Here,
this is complemented by a verification of screen-level temperature which is an in equal
measure important essential climate variable. The evaluation yields similarly clear re-
sults as the evaluation of precipitation, stating that an improvement over pure ensemble
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nudging as applied in the basic reanalysis suite is achieved by accounting for model error,
observation error and uncertainties in the lateral boundary conditions.
Indicated by a skill score that is formulated in terms of mean absolut error, the accuracy
of the ensemble mean is best for the ESI configuration. Measured in terms of root-mean
squared error, no systematic improvement over ensemble nudging is found. The contin-
uous ranked probability score, however, shows an even more pronounced improvement
of the ESI configuration, particularly in terms of reliability. The resolution component
is only improved in the first and last hours of lead time. Note that the score also shows
the added value of an ensemble, since the probabilistic accuracy is reduced by about
one third compared to the MAE of the ensemble mean which equals the CRPS for one
realization. Finally, the uncertainty estimation as measured by a spread-skill ratio is
strongly improved (up to 100 %) for the ESI experiment.



5 Summary, discussion and outlook

In this chapter, the most important points of this thesis are summarized and discussed.
Afterwards, ideas for further developments are outlined in an outlook.

5.1 Summary and discussion
Regional reanalyses are data sets that are relatively new in climate research. They have
promising attributes including spatio-temporal completeness, accuracy and consistency
between the variables. Particularly appealing is their significantly increased spatial sam-
pling and the fact that they analyse the atmospheric mesoscale additionally to the large
scales which are represented in global reanalyses. Thereby, regional reanalyses newly
offer the possibility to monitor climate on a local scale. Compared to the widely-used
dynamical downscalings of global reanalyses using limited-area models, the observations
assimilated in regional reanalyses add accurate mesoscale details to the 4-dimensional
fields evolving from the reanalysis process. Therefore, they allow not only for the as-
sessment of frequency distributions, but also for an examination of weather situations
realistic in space and time.
In recent years, it has been recognized that uncertainty estimation is similarly important
in reanalysis as in numerical weather prediction, even though analysis errors usually have
much smaller amplitudes than forecast errors. Still, since users tend to use reanalysis
data as equivalent to truth, it is of great importance to provide them with uncertainty
estimates. In the framework of this thesis, a probabilistic regional reanalysis system for
Europe based on the limited-area model COSMO has been implemented for the first
time. For that purpose, a new ensemble technique based on observation nudging has
been developed. The work has been conducted in the framework of the European project
Uncertainties in Ensembles of Regional Reanalyses (UERRA), in which predominantly
European met services have taken part. This has required to configure the reanalysis
system in an operational framework with high demands to the quality of the implemen-
tation. Since the data will be made accessible to the public in the MARS archive of
ECMWF, they have to fulfill high quality standards. Only close cooperation with DWD
has allowed for developing a reanalysis system with sufficient capabilities.

71
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The basic implementation of the probabilistic regional reanalysis system developed in
the course of this work will be employed to produce a test ensemble reanalysis extending
over 5 years in the framework of UERRA. The suite is set up for the CORDEX-EUR11
domain at a grid spacing of 12 km. Using the newly developed method of ensemble
nudging as data assimilation scheme, the production configuration of the system allows
for estimating the sensitivity of the reanalysis to uncertainties in the observations, i.e.
representativity errors, errors in the observation operators as well as measurement er-
rors and their projection on the model dynamics. An extended version of the system
additionally provides capabilities for probabilistically accounting for model error and
uncertainties in the LBCs.
For the evaluation of the new system, six numerical experiments have been conducted,
each of which extends over one month. Initially, basic diagnostics of the performance
of the reanalysis system have been assessed. This has been followed by an evaluation
of the basic reanalysis suite conducting a comprehensive evaluation of precipitation by
means of two numerical experiments. In a third step, four numerical experiments with
the extended reanalysis suite have been evaluated to figure out how a prospective sys-
tem would be ideally configured and which uncertainty sources should be accounted for.
Here, precipitation and screen-level temperature have been assessed. Note that the eval-
uation periods of one month length are too short for drawing decisive conclusions on the
quality of the new system. It can be expected that once that the 5-year reanalysis data
set will be available the results might not anymore look entirely the same. Still, the
pilot studies have been useful to observe tendencies for the reanalysis system’s quality.
In the next two sections, the results from the experiments with the basic and extended
reanalysis systems are discussed.

5.1.1 Evaluation of the basic reanalysis suite

The deterministic verification of precipitation shows that the accuracy of COSMO-EN-
REA12 is comparable to ERA-Interim and thus suffers the loss of the clear added value
that can be observed for the same system in higher resolution as shown by the reanalysis
COSMO-REA6. By tendency, the accuracy of the ensemble nudging runs is slightly bet-
ter in summer than in winter. However, different from ERA-Interim the frequency bias
is nearly perfect. Not surprising, there is a strong added value observable in accuracy
compared to a dynamical downscaling from ERA-Interim at a 6 km grid spacing.
While the bisection of the grid spacing relative to COSMO-REA6 leads to a degrada-
tion of accuracy, a clear benefit of the system is the ensemble mode. The analysis rank
histograms show a nearly perfectly calibrated ensemble in summer. In winter, the under-
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dispersiveness is more pronounced. As shown by the CRPS, the probabilistic accuracy
taking into account the whole range of precipitation amounts and all meteorological sit-
uations having occurred in the analysed months is comparable to the ECMWF-EPS.
However, with atmospheric conditions favorable for the development of smaller-scale
convective regimes, a distinct added value could be found compared to ECMWF-EPS
precipitation fields.
COSMO-EN-REA12 proves to have a significantly better reliability, while the resolution
component of the Brier score is a bit worse in winter for the chosen decision thresholds.
The discriminative capabilities as summarized by the area under the ROC curve show a
percentage improvement of up to 50 % compared to the ECMWF-EPS which shows that
the higher grid resolution of regional reanalyses has well an added value, particularly at
the higher precipitation thresholds. This is required for monitoring of extreme events
on increasingly short time scales (personal communication, Blaz Curnik, European En-
vironmental Agency; 3rd UERRA general meeting, Meteo France, Toulouse). All in all
it can be summarized that the basic implementation of the regional ensemble reanalysis
system that will be employed in production mode shows good probabilistic and uncer-
tainty estimation capabilities even though the results would be even better if a 6 km grid
spacing could be employed analogously to COSMO-REA6. However, this trade-off has
to be made to allow for a comprehensive uncertainty estimation using a certain number
of ensemble members which is an essential new information for all users of data sets of
essential climate variables.
Note that before the suite can be run operationally meeting the standards defined in
UERRA, final steps have to be made, i.e. programs for post-processing of the output
variables (e.g. compute horizontal wind speed from horizontal velocity components),
transformation from data format wgrib1 to wgrib2 and archiving to the MARS archive
have to be incorporated in the production system.

5.1.2 Evaluation of the extended reanalysis suite

The evaluation of the extended reanalysis suite with respect to the essential climate
variables of precipitation and screen-level temperature has been guided by the question
of how a prospective system could be improved by incorporating further uncertainty
sources. To give a tentative answer to this question, four numerical experiments have
been assessed, three of which just account for either observational uncertainty (ensem-
ble nudging) or model uncertainty (stochastic perturbation of physical tendencies) or
uncertainty in the LBCs (ICON ensemble). A further experiment combines all pertur-
bation methods. Even though the experimental period is short, the results give a quite
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clear indication. The probabilistic scores compared for the four numerical experiments
by means of precipitation show that the system combining all perturbations methods is
systematically superior in the experimental period. It is most consistent as measured by
analysis rank histograms, has the best probabilistic accuracy as illustrated by the Brier
score, is most reliable and can best issue case-dependent PDFs that significantly deviate
from the climatology. Similar is shown by the verification of screen-level temperature.
Both the skill scores formulated based on mean-absolute error and CRPS indicate the
superiority of perturbing observations, model and LBCs. Thus, both the ensemble mean
and the ensemble as a whole are improved. Very important, the uncertainty estima-
tion capabilities measured by a new form of spread-skill ratio strongly gain reliability
when accounting for the three employed sources of error. Since the ensemble nudging
experiment scores second best in nearly every respect, a further important result of
this evaluation is that in the basic reanalysis suite the most suitable single-perturbation
method has been chosen. All in all, the results entail the recommendation to incorporate
as many uncertainty sources in a prospective reanalysis system as possible.

5.2 Outlook
Compared to global reanalyses, the field of regional reanalyses is only in its beginning.
So far, mainly basic configurations of regional reanalysis systems have been set up. A
novel idea is the computation of probabilistic reanalyses. This has been picked up in the
work on hand.
At the University of Bonn, the feasibility of technically setting up deterministic and
probabilistic regional reanalysis suites has been demonstrated (Hans-Ertel Centre for
Weather Research, 2011-2014; UERRA, 2014-now). This opens the possibility for head-
ing towards suites of higher stage. To conclude this work, ideas for further advancement
of the COSMO reanalysis systems are discussed. These relate to data assimilation and
model development, the observation stream, ensemble generation techniques and verifi-
cation of reanalysis data.

5.2.1 Data assimilation and model development

The currently available regional reanalysis systems based on COSMO employ observa-
tion nudging as data assimilation technique. Nudging has been used successfully in daily
operations of DWD for nearly 20 years. However, it is an empirical method that is
not mathematically optimal in a maximum-likelihood or least-squares sense, at least in
the employed implementation. Rather, a time-constant nudging coefficient determines
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how strongly the model is drawn towards the observations per time interval. Moreover,
nudging uses temporally constant auto-regressive weighting functions for the spreading
of observational information and can thus not sufficiently account for the error of the
day. The Hans-Ertel-Centre has initialized the development of a new ensemble reanalysis
system (personal communication, Roland Potthast, DWD). This system will be based
on the new implementation of a local ensemble transform Kalman filter KENDA for
the convective scale (Schraff et al. 2016). Since the LETKF requires the background
ensemble to sample the subspace of uncertainty as efficiently as possible to obtain a
meaningful analysis, diverse ensemble generation methods and covariance inflation tech-
niques are employed with KENDA. Particularly the use of perturbed lateral boundary
conditions has proven beneficial. Additionally, experiments have shown that a number
of at least 40 ensemble members is required to obtain reasonable Gaussian statistics.
Combined with the need for an ensemble of lateral boundary conditions, this poses a
challenge to the applicability of the LETKF for the purpose of reanalysis. Initially, the
idea of adding perturbations from a 40-member ICON-ensemble to the global reanaly-
ses ERA-Interim (Dee et al. 2011a) or ERA5 (Hersbach and Dee 2016) will be tested.
The latter is beneficial, since it will allow for retaining the high-quality global reanalysis
data. These can certainly not be reproduced at similar quality with the resources that
the Hans-Ertel Centre or DWD have on disposal. However, this approach will require an
additional computation of 40 global ICON-members. Also, it has to be assessed if the
ICON perturbations added to IFS/ERA-Interim will be instantly dampened by COSMO
through gravity waves or strong precipitation due to dynamical imbalances. One of the
most important advantages of replacing nudging by KENDA will be the positive effect
on daily NWP operations that can be expected from testing the system over long time
spans. Similarly important is the possibility of the LETKF to incorporate satellite data
which has not proven feasible for nudging, related to the computation of the analysis in
model space.
A further possibility for advancement is offered by the update of the lower boundary
conditions through the external data assimilation schemes that are applied offline to the
output of COSMO. In the future, satellite radiances may be incorporated in the assim-
ilation for the analysis of snow distribution, soil moisture and sea surface temperature.
This is done in the land data assimilation system LDAS for the land surface scheme
H-Tessel of ECMWF (Rosnay et al. 2016).
An idea for the farer-distant future is the use of earth-system models that fully describe
the dynamics of all climate sub-systems, i.e. atmosphere, ocean, cryosphere, biosphere,
land-surface and aerosols and tracer gases. In recent years, intensive development of
such coupled earth system models and coupled data assimilation has been initialized.
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These models have the potential to improve the representation of the hydrological cycle
and conservation in general as e.g. fluxes between the interfaces of the subsystems are
better described. In the Transregional Collaborative Research Centre 32 Patterns in
Soil-Vegetation-Atmosphere-Systems, under lead of the Meteorological Institute of the
University of Bonn, a system including COSMO as atmospheric model, CLM as land
surface model and Parflow as three-dimensional ground water flow model (TerrSysMP)
is developed. Currently, KENDA is tested as atmospheric data assimilation component
for the system. It is planned to perform a short test reanalysis with TerrSysMP-KENDA
for a small sub-domain of Germany extending over North Rhine-Westphalia (personal
communication, Clarissa Figura).
An aspect that is related to model development is concerned with the representation of
different meteorological variables in COSMO. Since the data is planned to be dissemi-
nated for public use, the model might be tuned to achieve better accuracy for some essen-
tial climate variables that may be of less importance in numerical weather prediction or
are post-processed before further use. In principle, such statistical post-processing steps
correcting for biases or even calibrating the ensemble are also well conceivable within
the reanalysis suite before the data are archived. However, since the dynamical balances
between the variables being one of the major advantages of reanalyses are destroyed by
post-processing, it is recommendable to offer both the original and the post-processed
fields, so that the users can choose the ones fulfilling their requirements.

5.2.2 Incorporation of uncertainties

In the work on hand, methodologies to account for uncertainties of reanalyses have been
implemented and initial experiments have been conducted. The methods include en-
semble nudging, stochastic perturbation of physical tendencies and perturbed lateral
boundary conditions. They account for observation error, model error and uncertain-
ties introduced by the steering model. All techniques are suitable for the generation
of equally-likely ensemble members. An experiment with a perturbed physics ensemble
with 20 unique combinations of tuning parameters (personal communication, Christoph
Gebhardt, DWD; Andrea Montani, Arpa Emilia-Romagna) has yielded ensemble mem-
bers with very different biases and has therefore not been incorporated in the suite.
Different aspects of the ensemble generation methods are improvable. In its current
implementation, ensemble nudging makes use of random samples from a full normal dis-
tribution with zero mean and an estimated observation error standard deviation. With
low probability this can yield large observation perturbations. To prevent this, it is
planned to draw random samples from a truncated normal distribution in the future.
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Besides, the size of the observation error standard deviations has to be re-estimated. At
present, rather old estimates that have been used originally for the observation quality
control are employed. Further, possibilities for accounting for spatio-temporally corre-
lated observation errors should be explored, at least for the upper-air observing systems
in which the measurements do not have a sufficient spatial separation to be assumed
uncorrelated.
The configuration of SPPT in the extended reanalysis suite makes use of relatively small
variances for drawing the random numbers used for perturbation. Reason for that have
been model aborts related to the appearence of 2∆x-waves in COSMO. At DWD, these
entailed the adjustment of a divergence dampening factor over steep terrain to improve
numerical stability. For the development of the extended reanalysis suite, this resulted
in a renewal of the COSMO version and replication of the performed experiments. At
the same time, the variance of the perturbations was scaled down in the reanalysis sys-
tem to improve stability (personal communication, Christoph Schraff, DWD). Should
SPPT be utilized for the production of a longer-term reanalysis, the regulation of the
corresponding tuning parameters should be assessed in a couple of sensitivity studies.
In the current configuration of the extended reanalysis system, ICON is employed as
lateral boundary conditions. The suite offers the possibility to make use of either only
one realization or of an ICON ensemble. In the future, the global reanalysis ERA5 of
ECMWF (Hersbach and Dee 2016) may be incorporated as ensemble of LBCs. As dis-
cussed, it comprises ten members and is easily portable to the extended reanalysis suite.
This work has shown that the reanalysis ensemble and subsequent reforecasts are system-
atically underdispersive. A major problem that has been recognized is the insufficient
representation of displacement errors of frontal or convective systems in mesoscale en-
sembles. The best results are obtained by combining ensemble nudging with stochastic
perturbation of physical tendencies and an ensemble of lateral boundary conditions. It
may be considered to include perturbation of even more components of the reanalysis
system. To give an example, the uncertainty in the lower boundary conditions might be
accounted for. At DWD, perturbation of soil moisture fields (Schraff et al. 2016) and sea
surface temperature (personal communication, Alexander Cress, DWD) has turned out
to be a valuable source of spread. In the current implementation, this is only implicitly
accounted for by updating the lower boundary conditions of each member separately.
Finally, the observation density is a major factor of reanalysis uncertainty. In principle,
computing ensembles of reanalyses offers the possibility to assimilate different subsets of
the available observations in different ensemble members to quantify the related uncer-
tainty. However, such techniques can also be employed for experiments in the develop-
ment phases. Thereby, a most suitable observation stream with respect to accuracy and
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long-term homogeneity could be identified and assimilated in each ensemble member to
retain the objective of equally-likely ensemble members.

5.2.3 Observation stream

Up to present, not much attention has been paid to the observation stream of the COSMO
reanalysis systems. As discussed in in chapter 2, the changing observation density and
measurement accuracy have significant impact on the usefulness of reanalysis data for
long-term trend monitoring. So far, the goal has been to implement basic reanalysis
suites that can then be stepwise advanced. However, if the data are planned to be
employed for trend analyses in the future, it is recommendable to invest work on the
observations that are being assimilated.
Currently, the observations are retrieved from the data base of DWD. The observation
quality control is conducted by the standard operational scheme. However, this quality
control is not able to take into account temporally changing observing system charac-
teristics. To give an example, Vaisala RS92 radiosondes have a dry bias near saturation.
For many years, this bias has been corrected for in the pre-processing of the obser-
vation data. Recently, the data are directly corrected after measurement so that the
bias-correction conducted in COSMO is not longer necessary (personal communication,
Christoph Schraff, DWD). It has to be carefully checked that such double-corrections
and related problems are excluded.
Further, the temporal availability and density of all incorporated observation types
should be investigated. Temperature observations from aircrafts, for example, are only
available from the early 1990s. Problems related to the explosion of the global observing
system due to satellite data from 1979 have been discussed in section 2.4. Such a sudden
large amount of additional observations can lead to a significant reduction of root-mean
squared error in the presence of model bias, which introduces spurious signals to the time
series. To quantify the impact of certain observational sources, observation simulation
or data denial experiments could be conducted following the example of ECMWF. The
potential of adaptive observation thinning to obtain an approximately constant obser-
vation density might be tested. In any case, all meta data should be made accessible
for users to allow for full transparency. An idea that has been discussed is to use the
quality-controlled observation input of the global reanalyses from the observational data
base that is currently built up at ECMWF. Further, it may be examined if the homoge-
nized radiosonde record by Haimberger (2007) can be used for assimilation in the future.
Concluding, an improvement of the observation stream is considered to be a working
step of great priority for the further development of the COSMO reanalysis suites.
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5.2.4 Verification

A fundamental aspect of reanalysis projects is verification with independent observations.
This gives beneficial feedback to the development of reanalysis systems and quantifies
improvements. Further, it helps to inform users about strengths and weaknesses of the
systems.
In the framework of this thesis, precipitation has been in the focus of verification. In
the future, the employed deterministic and probabilistic scores may be complemented
by use of scores that account for spatial characteristics of precipitating systems. Ex-
amples may be neighborhood methods, object-based techniques, scale separation and
approaches that account for field deformation. Additionally, the set of verified variables
will be extended, e.g. upper-air profiles should be included. Once that a longer time
span of COSMO-EN-REA12 will be available, it will further be interesting to investigate
how the uncertainty in the ensemble reflects in climate indices.
A major problem of reanalysis is that few independent data remain for verification since
most of the data are being assimilated. Potentially, the feedback files of the reanalyses
might be checked for observations that are set passive in redundancy checks and thus not
assimilated, but actually have a good quality. Also, the potential of verification using
modern high-density observation sources like MODE-S aircraft data (de Haan 2011) that
are not yet assimilated can be explored.
A special aspect of reanalysis is the fact that analysis errors are typically smaller than
forecast errors. Therefore, it is much more important to account for observation errors
when verifying reanalysis data (personal communication, Christoph Schraff, DWD; Hans
Hersbach, ECMWF). In principle, there exists a range of suitable methods in literature,
see e.g. Röpnack et al. (2013), Saetra et al. (2004), Bowler (2006), Hamill (2001). How-
ever, these do not seem to have found their way to frequent application yet. Since the
Hans-Ertel Centre for Weather Research currently focuses on evaluation of reanalysis
data rather than on production, the development of further deterministic and proba-
bilistic scores that take into account observation error may be interesting and valuable.
Further, a more detailed investigation of the trade-off between the effective resolution
of COSMO and the number of ensemble members is required. This may be investigated
by producing experimental ensembles at different grid spacings and by quantifying the
sensitivity of probabilistic scores to the number of ensemble members in bootstrapping
experiments. In principal, the discussions in UERRA seem to have turned towards
computing both deterministic high-resolution regional reanalyses and complementary
probabilistic ones with coarser grids. At the Royal Netherlands Meteorological Institute
(KNMI) it is planned to explore statistical techniques for estimating the uncertainties
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of high-resolution reanalyses using coarser ensembles (personal communication, Maarten
Pflieger, KNMI, Copernicus Workshop on Regional Reanalyses).
Finally, verification of regional reanalyses naturally comprises comparison to related
data sets. It has emerged that taking a look at certain variables with a range of scores
is rather impractical to obtain a simple picture of the performance of different systems.
At the Met Office, a so-called NWP index1 is computed in daily operations which takes
into account the skill scores of a set of different variables (screen-level temperature,
wind speed and direction, precipitation, total cloud amount, cloud base height, near-
surface visibility) based on root-mean squared error with persistence as a reference. The
skill scores of all parameters are then combined to a single value using weights that
reflect the importance of the meteorological variables. Keune et al. (2014) show how
spatio-temporal dependencies between different variables resulting from the atmospheric
dynamics can be incorporated into such a verification to obtain a more realistic estima-
tion of skill. Certainly, a score like the NWP index is not useful to obtain deep insight
into the performance of a reanalysis system. However, complemented by the ability to
account for correlations between the most important essential climate variables it might
help to make decisions, e.g. which system should be run operationally by the Copernicus
Climate Change Service.

1http://www.metoffice.gov.uk/research/weather/numerical-modelling/verification/uk-nwp-index-doc
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Appendix





Reanalysis output

Table 1: Output variables and grib parameter id
Output field GRIB2 WMO GRIB1 COSMO
Model level parameters
Cloud cover 260257 29.201
Pressure 54 1.2
Specific cloud liquid water content 246 31.201
Specific cloud ice water content 247 33.201
Specific humidity 133 51.2
Temperature 130 11.2
Zonal velocity 131 33.2
Vertical velocity 132 34.2
Pressure level parameters
Cloud cover 260257 29.201
Geopotential height 156 6.2
Specific cloud liquid water content 246 31.201
Specific cloud ice water content 247 33.202
Relative humidity 157 52.2
Temperature 130 11.2
Zonal velocity 131 33.2
Vertical velocity 132 34.2
Height level parameters
Cloud cover 260257 29.201
Pressure 54 1.2
Specific cloud liquid water content 246 31.201
Specific cloud ice water content 247 33.202
Relative humidity 157 52.2
Temperature 130 11.2
Wind speed 10 post-processed
Wind direction 3031 post-processed
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Table 2: Output variables and grib parameter id
Output field GRIB2 WMO GRIB1 COSMO
Surface level parameters
Precipitation and humidity
Percolation 260430 90.2
Surface air relative humidity 260242 52.2
Surface runoff 174008 90.2
Total column water vapour 137
Total precipitation 228228 61.2
Surface level parameters
Accumulated radiation fluxes
Albedo 260509 84.2
Evaporation 260259 57.2
Time-integrated surface latent heat flux 147 121.2
Time-integrated surface sensible heat flux 146 122.2
Time-integrated surface direct solar radiation 260264 22.01
Time-integrated surface net solar radiation 176 111.2
Time-integrated surface solar radiation downwards 169 post-processed
Time-integrated surface net thermal radiation 177 112.2
Time-integrated suface thermal radiation downwards 175 25.201
Temperature and wind speed
10 m wind speed 207 32.2
10 m wind direction 260260 31.2
10 m wind gust speed 49 187.201
Surface air maximum temperature 201 15.2
Surface air minimum temperature 202 16.2
Surface air temperature 167 11.2
Skin temperature 235 11.2
Pressure
Mean sea level pressure 151 2.2
Surface pressure 134 1.2
Cloud properties
High cloud cover 3075 75.2
Low cloud cover 3073 73.2
Medium cloud cover 3074 74.2
Total cloud cover 228164 71.2
Snow
Snow density 33 133.201
Snow depth 3066 66.2
Snow depth water equivalent 228141
Snow fall water equivalent 228144 123.201
Soil
Liquid non-frozen volumetic soil moisture 260210 220.201
Volumetric soil water 260199 198.201
Soil heat flux 260364 16.201
Soil temperature 260360 197.201



Levels, reforecast horizon and output
frequencies

Table 3: Output levels of different level types
Model levels Pressure levels [hPa] Height levels [m]
0,..,40 100,150,200,250, 15,30,50,75,

300,400,500,600, 100,150,200,
700,750,800,825, 250,300,400,
850,875,900,925, 500
950,975,1000

Table 4: Reforecast horizon
00 UTC 06 UTC 12 UTC 18 UTC
+ 30h + 06h + 30h +06h

Table 5: Output frequencies
Model levels Pressure levels Height levels Surface
Reanalysis
6h 1h 1h 1h
Reforecasts
1h (+01,...,+06) 1h (+01,...,+06) 1h (+01,...,+06) 1h (+01,...,+06)
3h (+09,...,+30) 3h (+09,...,+30) 3h (+09,...,+30) 3h (+09,...,+30)
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