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Abstract

Fundamental symmetries (and their violations) play a significant role in active experi-
mental searches of Beyond the Standard Model (BSM) signatures. An example of such
phenomena is the neutron Electric Dipole Moment (EDM), a measurement of which
would be evidence for Charge-Parity (CP) violation not attributable to the basic de-
scription of the Standard Model (SM). Another example is the strange scalar quark con-
tent of the nucleon and its coupling to Weakly Interacting Massive Particles (WIMPs),
which is a candidate model for Dark Matter (DM). The theoretical understanding of
such processes is fraught with uncertainties and uncontrolled approximations. On the
other hand, methods within nuclear physics, such as Lattice Quantum Chromodynamics
(LQCD) and Effective Field Theories, are emerging as powerful tools for calculating non-
perturbatively various types of nuclear and hadronic observables. This research effort
will use such tools to investigate phenomena related to BSM physics induced within light
nuclear systems.

As opposed to LQCD which deal with quarks and gluons, in Nuclear Lattice Effective
Field Theory (NLEFT) individual nucleons—protons and neutrons—form the degrees of
freedom. From the symmetries of Quantum Chromodynamics (QCD), one can derive the
most general interaction-structures allowed on the level of these individual nucleons. In
general, this includes an infinite number of possible interactions. Utilizing the framework
of EFTs, more specifically for this work Chiral Perturbation Theory (χPT), one can
systematically expand the nuclear behavior in a finite set of relevant nuclear interactions
with a quantifiable accuracy. Fundamental parameters of this theory are related to
experiments or LQCD computations. Using this set of effective nuclear interaction-
structures, one can describe many-nucleon systems by simulating the quantum behavior
of each involved individual nucleon. The ‘ab initio’ method NLEFT introduces a spatial
lattice which is finite in its volume (FV) and allows to exploit powerful numerical tools
in the form of statistical Hybrid Monte Carlo (HMC) algorithms. The uncertainty of all
three approximations—the statistical sampling, the finite volume and the discretization
of space—can be analytically understood and used to make a realistic and accurate
estimation of associated uncertainty.

In the first part of the thesis, χPT is used to derive nuclear interactions with a pos-
sible BSM candidate up to Next-to-Leading Order (NLO) in the specific case of scalar
interactions between DM and quarks or gluons. Following this analysis, Nuclear Matrix-
Elements (NMEs) are presented for light nuclei (2H, 3He and 3H), including a complete
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uncertainty estimation. These results will eventually serve as the benchmark for the
many-body computations.

In the second part of this thesis, the framework of NLEFT is briefly presented. It is shown
how one can increase the accuracy of NLEFT by incorporating few-body forces in a non-
perturbative manner. Finite-Volume (FV) and discretization effects are investigated and
estimated for BSM NMEs on the lattice. Furthermore, it is displayed how different
boundary conditions can be used to decrease the size of FV effects and extend the scope
of available lattice momenta to the range of physical interest.
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CHAPTER 1

Introduction

1.1 Motivation

The Standard Model (SM) of particle physics is currently the most accurate and precise
theory describing fundamental physics and drives research at a global level. As the
discovery of the Higgs particle further confirmed the SMs applicability, it also denied the
existence of new physics—physics Beyond the Standard Model (BSM)—up to the TeV
scale. This absence of new microscopic signals is challenging as current theories cannot
explain macroscopic observations like the asymmetry between matter and antimatter or
the existence of Dark Matter (DM). The essential question is, therefore: where does one
expect signals beyond the Standard Model on a microscopic level and how can one describe
this?

Fundamental symmetries, as well as their violations, play a substantial role in active ex-
perimental searches of BSM physics. Examples of such phenomena are hadronic Electric
Dipole Moments (EDMs) such as the neutron EDM [6]. A measurement of this quantity
would be clear evidence for Charge-Parity (CP) violation [7] not attributable to the SM1

which could help to resolve the matter-antimatter puzzle [9]. A further illustration of
such phenomena is the Neutrinoless Double β Decay (0νββ-decay) [10]—a confirmation
of a non-zero decay rate would provide an additional amount of lepton number violation
and indicates that neutrinos may be their antiparticles. This supports a solution to the
matter-asymmetry puzzle known as leptogenesis. Another example is the strange scalar
quark content of the nucleon and its coupling to Weakly Interacting Massive Particles
(WIMPs), which is a candidate model for DM.

The variety of possible BSM theories proposes different scenarios for the description of
such effects which lead to distinctive BSM phenomena. Linking these experiments to the
fundamental level is of relevance for two reasons:
1 In principal, the ‘so-called’ θQCD-term, which is allowed by the SM or more precisely Quantum Chro-

modynamics, could also contribute to a hadronic EDM. However, thus far, no non-zero hadronic EDM
has been measured and therefore the θQCD-term is anormalously small if not zero. This puzzling (po-
tential) fine-tuning of Quantum Chromodynamics is known as the strong CP problem and could be
explained by the Peccei–Quinn formalism [8], which introduces a new pseudoscalar particle: the axion.
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Chapter 1 Introduction

• While a non-vanishing experimental signal would confirm the existence of BSM
structures and might explain the unresolved macroscopic observations, to identify
the true origin of these signals, one needs to propagate the signal from the experi-
mental target back to the level of the fundamental theory.

• Once one can accurately propagate possible BSM interactions to the level of ex-
perimental systems, it might be possible to identify special systems which feature
a coherent enhancement or suppression of such interactions. Moreover, even if one
is not able to guide experimental efforts, the reduction of theoretical uncertainties
is equally important as improving on detection uncertainties and therefore has the
potential to reduce the costs of required detectors drastically.

Complementary to the collider investigations of BSM signatures that take place at the
high-energy frontier, it is also possible to probe for these signals with experiments at
low energy via precision measurements. Sensitive low-energy tests of BSM physics in-
clude searches for nucleon, electron, and atomic EDMs and efforts to directly detect DM
through its scattering off atomic nuclei. Though there is a variety of ideas on how to
detect such signals, the common aspect of these low-energy experiments is the measure-
ment of BSM signals on a nuclear level—ranging from large nuclear cores such as Xenon
[11, 12] to planned experiments on light nuclei like Helium [13, 14]. Thus far, there is no
scientific consensus that such measurements have detected a positive signal yet. How-
ever, such experiments have already reached a sensitivity which can rule out different
BSM theories and will confront multiple further scenarios within the next years.

The theoretical descriptions of such Nuclear Matrix-Elements (NMEs) still suffer from
significant uncontrolled uncertainties—mostly associated with the nuclear many-body
methods or an inadequate treatment or relevant interactions. In case of 0νββ-decay
computations, the method-dependent extrinsic uncertainties have improved by several
factors but still can be as big as 100% [15, 16]. These uncertainties are troublesome for
multiple reasons. Because it is the ultimate goal to understand the fundamental origin
of these signals, one must eventually compare different measurements, and for this, an
accurate and precise description is needed to discriminate between different theoretical
BSM interaction structures. Therefore it is essential to understand the uncertainties of
all relevant aspects associated with the propagation of scales.

Effects of SM or BSM interactions, at the level of individual nucleons, can be described
through non-perturbative methods like Effective Field Theories [17–30] and Lattice Quan-
tum Chromodynamics (LQCD) [31]. The form of the fundamental BSM interactions
hereby constrain the number of possible nucleon-BSM contributions. Because the infinite
set of possible interactions at the nuclear level comes with de-facto unknown coefficients—
which describe their respective interaction strength—it is essential to relate the (finite)
parameters at the fundamental BSM level to the (infinite) set of parameters on the
nuclear level. This relation between the BSM model and effective nuclear description
enables the ordering of the nuclear interactions by their relevance and thus allows a sys-
tematic computation. The whole process associated with the propagation of scales is
illustrated in fig. 1.1.
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Figure 1.1: Illustration of the propagation of scales. While BSM experiments utilize large nuclear
targets (left diagram), such targets are described through the interactions between individual
nucleons (second diagram). Individual nucleons themselves are described through quarks and
gluons (third diagram) which are linked to the BSM physics (right diagram).

Due to the complexity of many-body quantum systems and limitations of computational
resources, an accurate traditional description cannot be extended to nuclear cores con-
taining more than four nucleons and thus cannot establish a direct link to experiments—if
one uses these methods only. For this reason, one must systematically compute effec-
tive nucleon-BSM interactions which are the starting point for many-body calculations.
Recently Nuclear Lattice Effective Field Theory (NLEFT) [32–36] has proven to be a
viable candidate for pushing the borders of nuclear physics in the low-energy regime and
has enabled the computation of nuclear matrix-elements for large systems. In NLEFT,
similar to LQCD, space and time are discretized on a lattice. Different to LQCD, how-
ever, is that in NLEFT individual nucleons—protons and neutrons—form the degrees of
freedom. From the symmetries of Quantum Chromodynamics (QCD), one can derive the
most general interaction structures allowed on the level of these individual nucleons. In
general, this includes an infinite number of possible interactions. Utilizing the framework
of EFTs, and more specifically for this work Chiral Perturbation Theory (χPT), one can
systematically expand the nuclear behavior in a finite set of relevant nuclear interactions
with a quantifiable accuracy. The fundamental parameters of this theory must be deter-
mined from experiments or LQCD computations. Using this set of nuclear interaction
structures, NLEFT can describe many-nucleon systems by simulating the quantum be-
havior of each involved nucleon. Lattice stochastic methods are used to calculate, for
example, the binding energies of nuclei as large as Silicon [37, 38]. To put it in a simple
way, the cost of the extended application range in the number of nucleons is given by
discretization and Finite-Volume (FV) effects (both extrinsic uncertainties) and statis-
tical fluctuations due to stochastic algorithms. An advantage of NLEFT compared to
other many-body methodologies is the capability of quantifying related uncertainties.
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Chapter 1 Introduction

1.2 Dedication of this work

The primary focus of this work is the analysis of hypothetical interactions between pos-
sible candidates for DM and SM-particles with the objective of helping to make accurate
predictions at the level of experimental systems. Because the focus is less on the na-
ture or ideas behind the postulated BSM theories, this work uses an EFT point of view.
The fundamental descriptions are expressed by their most general form constrained by
symmetries and a hierarchical relevance. More precisely, the starting point of this work
are scalar interactions—interactions which do not depend on any spin or other quantum
numbers—between DM and up (u), down (d) and strange (s) quarks as well as gluons
(incorporated by the field-strength tensor Ga

µν)

Lχ =
(
cu mu ūu+ cd md d̄d+ cs ms s̄s+ cG αsG

a
µνG

µν a
)
χ̄χ , (1.1)

where χ̄χ denotes the scalar DM bilinear. The masses mq and the strong coupling αs

are inserted for convenience and could be absorbed in the unknown DM-SM couplings
ci. These unknown effective parameters ci are constrained by the parameters of a more
fundamental theory and thus must be eventually matched. As an example, these scalar
interaction structures can be motivated via the Higgs-Portal DM [25, 39, 40]. Not re-
stricting computations to fixed values of the ci parameters allows one to make more
general predictions and thus cover a larger field of possible scenarios.

Nevertheless, there are multiple reasons for choosing this particular set of interaction
structures—the interactions of a scalar DM candidate—as the starting point for the
analysis of this work

1. Because it is the goal of this thesis to help establish an accurate connection between
fundamental symmetries and experiments, as the final step one has to accurately
build the connection between the description of individual nucleons and the predic-
tion for experimental systems. This prescription remains the same for the few- and
many-body systems of interest. As one of the first analysis of this kind, it makes
more sense to reduce the starting point to its most basic form—scalar interactions—
and, once the framework is established, build on top of that.

2. Only experiments can confirm the existence of possible BSM candidates. However,
the interpretation of such experiments is a consequence of more fundamental the-
ories. Often, there is more than just one notion for BSM theories which provides
different characteristics in describing the interaction between SM and BSM candi-
dates. For example, are the SM-BSM interactions spin-dependent? How important
are collective interactions compared to isolated interactions? To eventually identify
the fundamental source for BSM candidates, one has to compare complementary
measurements and predictions. Specifically in the case of scalar DM interactions,
collective two-nucleon phenomena are predicted to be more relevant than in the
case of spin-dependent interactions. Thus, from a theoretical point of view, a pos-
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sible entanglement of different DM scenarios would be most dominant in the case
of scalar DM interactions.

3. Collective scalar DM two-nucleon interactions have a nearly identical theoretical
shape as interactions in another test of fundamental symmetries: the 0νββ-decay.
Therefore, if one successfully implements the framework with such interactions,
one can describe another process of interest with a minimal amount of further
modifications.

4. Though the theoretical understanding of hypothetical DM scattering processes is
an exciting and ongoing field of work, the aspect of high-accuracy nuclear descrip-
tions is a relatively new to it. Because of this, the focus of the community has
been rather the accessibility of an a priori description of experimental targets than
systematically quantifying all uncertainties—especially coming from the nuclear
description and many-body framework of use. Thus, a more systematic approach,
which can provide realistic uncertainty estimations, will complement existing stud-
ies and might be able to provide an answer to the question if one can theoretically
distinguish different BSM scenarios and would signalize where to improve the de-
scription in case one is not.

5. Though the majority of low-energy DM experiments utilize large nuclear targets
like Xenon, there are also notions for setups using lighter targets like Helium. Such
lighter targets would have a higher sensitivity in case of light DM candidates. From
a theoretical perspective, such light systems are easier to describe and therefore, by
establishing this high-accuracy framework, one could also make direct connections
from experiment to fundamental symmetry.

6. And last but not least, understanding the nature of the unknowns in our galaxy like
DM was one of my motivations to study physics. After I found myself more and
more interested in quantum physics and specifically nuclear physics as one of its
manifestations, this project was the perfect opportunity to work on both fields at
the same time—an example of overlaps and thus synergies between different fields
within fundamental research.

1.3 How to measure Dark Matter

There are several ideas on how to detect possible candidates for DM. These ideas can be
categorized into DM-production, e.g., in high-energy collider investigations, or through
indirect detection of DM such as the observation of galactic gamma-ray spectra, or direct
detection experiments [see fig. 1.2]. Relevant for this work are the direct detection preci-
sion experiments which analyze potential scattering processes with the normal matter at
low energies [41]. Choosing low-energy observables allows to describe observables using
the theoretical low-energy framework of χPT and NLEFT.

5
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Figure 1.2: Different categories for DM detection experiments. The first row presents three
possible but different kinds of observations for interactions between DM (double dashed lines)
and regular matter (solid lines). The exact form of interactions and the type of DM is not
known. Thus, the exact DM-matter vertices could be different. This work focuses on the
direct detection of DM through scattering observables, which can be further categorized into
experiments measuring absolute scattering event rates or temporal variations of the scattering
rate. For more details, see the paragraphs below.

Through analysis of our galaxy one can infer a DM velocity distribution which eventu-
ally results in an expected DM interaction rate of less than 0.01 event per kg of detector
material per day [42]—much lower than background signals coming from, e.g., cosmic
rays or radioactivity in detector materials. For example, the event rate of cosmic neu-
trons at 15m water equivalent is 1 per kg per second. For this reason, one has to either
eliminate or account for background events. Most of the direct detection experiments are
placed well below the surface to protect detectors from cosmic radiation while using as
little radioactive material as possible. Other effects are isolated by active (e.g., scintil-
lating panels) and passive shielding (e.g., like hydrocarbon materials to absorb neutrons
or copper to absorb photons). Last but not least, one subtracts further non-absorbed
background events (e.g., beta decays) by analysis techniques which try to discriminate
between background and signal.

One can further categorize direct detection experiments into two strategies: experiments
which try to characterize and account for all relevant background events to highlight DM
scattering only and experiments which look for variations in the total event rate or the
event direction. While, as an advantage, the latter experiments do not need to know the
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1.3 How to measure Dark Matter

specifics of the background rates themselves, this technique requires a temporal constant
event background to work. It also requires large detector volumes.

Detector materials for such elements can be classified as crystals, superheated fluid and
gels like CF3I (COUPP [43]) or C4F10 (PICASSO [44]) and liquid novel gasses like Argon
and Xenon (e.g. LUX [11], PANDAX [12] and XENON [45]). A few examples for
crystal detector experiments are CoGeNT[46, 47], CDMS [48], SuperCDMS [49, 50] or
EDELWEISS [51], which utilize Germanium and/or Silicium crystals, or CRESST [52,
53] (CaWO4).
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Figure 1.3: Mass projections for spin-independent WIMP-nucleon cross sections. Solid lines
correspond to upper bounds of current direct detection experiments, dashed lines to planned
experiments. Shaded areas display experiments which hint a WIMP signal. The lower band is
the approximate region in which coherent neutrino scattering from supernova, solar or atmo-
spheric events will dominate. Figure taken from [54].

All of these experiments measure nuclear recoil rates in the form of three observable
interactions: ionization, phonon excitations in crystals and scintillations. These experi-
ments usually measure one or two of such observables, where a second observation can
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be used to distinguish background events from scattering events, for example, by iden-
tifying electron-only recoils. The recoil rates can be used to compute DM-nucleon cross
sections depending on the unknown DM mass by integrating over the local DM velocity
distribution. Positive indications of DM signals form colored areas in the mass-cross
section diagram fig. 1.3, while DM recoil rates consistent with zero form upper bounds
on the cross section. Current generations of experiments are in principle able to account
for all systematic sources of background signals, but the next generation of experiments
will reach the region where one expects background signals from coherent neutrino scat-
tering. Finally, direct detection experiments are constrained to particular sizes of DM
mass values because its influence on the recoil energy transfer during scattering and the
detectors energy resolution.

1.4 Organization of the thesis

This cumulative thesis is organized in seven chapters. In this chapter, the general no-
tion and motivation of the thesis is presented. The following chapter 2 is published in
Physical Review C [2] and describes the scattering of scalar DM off light nuclei. The
nuclear interactions with BSM sources are derived up to Next-to-Leading Order (NLO)
in the case of scalar interactions between DM and quarks and gluons and first of its
kind NMEs are presented for light-nuclei (2H, 3He and 3H) which include a complete
uncertainty estimation. These results are dedicated to serve as the benchmark for an
eventual NLEFT computation. Chapter 3 briefly introduces NLEFT, explains the ba-
sic idea behind overcoming the exponential scaling regarding the system size, draws the
connection between NLEFT and Chiral Effective Field Theory (χEFT) and motivates
the inclusion of few-body forces. The next chapter, chapter 4, has been accepted for
publication in European Physics Letters [3] and describes how one can include general
N -body contact interactions in stochastic lattice algorithms by generalizing the so-called
Hubbard-Stratonovitch (HS) transformation. Chapter 5 presents how external current
matrix-elements, such as scalar DM-scattering observables, could be incorporated in nu-
clear lattice computations. It is presented that the computation of physically interesting
observables limits the available parameter space of computations. As the prime conse-
quence of this section, the opposing constraints from the parameter space and from the
feasibility demands of lattice computations are contrasted. A possible solution to the
parameter space constraints is the extension of the (momentum-)range for the lattice
computations by the introduction of Twisted Boundary Conditions (TBCs). This ex-
tension, described in chapter 6 was introduced and published in Physics Review C [1].
Finally, the thesis is concluded in chapter 7.
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CHAPTER 2

First-principle calculations of Dark
Matter scattering off light nuclei

The following chapter is published in Physical Review C [2].
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We study the scattering of Dark Matter particles off various light nu-
clei within the framework of Chiral Effective Field Theory. We focus
on scalar interactions and include one- and two-nucleon scattering pro-
cesses whose form and strength are dictated by chiral symmetry. The
nuclear wave functions are calculated from Chiral Effective Field The-
ory interactions as well, and we investigate the convergence pattern
of the chiral expansion in the nuclear potential and the Dark Matter-
nucleus currents. This combined effective treatment allows us to pro-
vide a systematic uncertainty estimate of our calculations. We provide
results for 2H, 3H, and 3He nuclei which are theoretically interesting,
and the latter is a potential target for experiments. We show that
two-nucleon currents can be systematically included but are smaller
than predicted by power counting and suffer from significant theoret-
ical uncertainties even in light nuclei. We demonstrate that accurate
high-order wave functions are necessary to incorporate two-nucleon cur-
rents.



Chapter 2 First-principle calculations of Dark Matter scattering off light nuclei

2.1 Introduction

Despite the lack of a conclusive signal in a direct, indirect, or accelerator experiment,
the astrophysical and cosmological evidence for Dark Matter (DM) remains solid [55].
Direct detection experiments have greatly improved in recent decades [11, 12] and are
expected to improve even further in the near future [45, 56]. These experiments have
great potential to not only discover the existence of DM but also to unravel its nature.
The interpretation of a signal (or lack thereof) however, requires input from hadronic and
nuclear physics [42] to connect the experimental results to more fundamental interactions
between DM and Standard Model (SM) particles.

The nuclear physics aspects of DM direct detection has recently been discussed in several
Effective Field Theory (EFT) frameworks [23–29]. For instance, Ref. [24] constructed an
EFT description at the DM-nucleon level by constructing all possible interactions up
to a certain order in momentum transfer and performed shell-model calculations of the
associated nuclear responses for different target nuclei. A different approach includes the
consequences of spontaneous breaking of chiral symmetry and the associated pions as
pseudo-Goldstone bosons. Starting from a given set of interactions between DM and SM
fields (in particular light quarks and gluons), this Chiral Effective Field Theory (χEFT)
approach allows for the systematic derivation of DM-hadron interactions. In this ap-
proach, DM-nucleus scattering does not solely arise from DM-nucleon interactions but
also from two-nucleon currents arising from DM-pion interactions [25, 26, 28, 39]. The
χEFT power counting predicts a hierarchy of different terms which can be systematically
included. For example, Refs. [26, 40] investigated in detail several two-nucleon interac-
tions and performed shell-model calculations of the associated structural factors.

The effects of multi-nucleon interactions are particularly interesting as these can po-
tentially lead to a very distinct dependence of the DM-nucleus cross section on A (the
atomic number) and Z (number of protons) of the target nucleus concerning the regu-
lar DM-nucleon contributions. For instance, scalar DM-quark or DM-gluon interactions
lead to similar DM-nucleon interactions but quite distinct two-nucleon interactions. If
two-nucleon contributions can be probed by experiments on different target nuclei, it
might, therefore, be possible to unravel different DM-quark/gluon interactions even if
they both lead to spin-independent scattering processes. Two-nucleon corrections for
spin-independent scattering were studied in several previous works [25, 26, 28, 39, 57].
In general, the corrections are found to be relatively small. Reference [40] found O(10%)
corrections for 132Xe and somewhat smaller for light nuclei [57], but they can become
much more important in specific scenarios where the one-body contributions are sup-
pressed [25, 39, 58].

The above statements depend crucially on the accuracy of the nuclear calculations, which
we investigate in this work. We also apply the χEFT framework for DM scattering, but
we wish to simultaneously describe the nuclear wave functions within the same χEFT
approach. This allows for a first-principle calculation, i.e. starting from an assumed
(set of) DM-SM interaction(s), of the DM-nucleus cross sections. The complexities of
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2.1 Introduction

many-body nuclear physics limits this approach to light nuclei, and here we perform
calculations of DM scattering of the first few bound nuclei. Such nuclei are interesting
for both theoretical and experimental reasons. Theoretically, light nuclei are great testing
laboratories as they can be described from first principles to high accuracies. On the other
hand, for example, helium isotopes are potential experimental targets [13, 14] as they
are sensitive to relatively light DM (below 10 GeV) [59] and they can potentially be used
for directional detection purposes [60, 61]. Our calculations provide direct input for the
interpretation of these experiments. Very recently, Ref. [61] performed an analysis of DM
scattering of light nuclei in a similar spirit to our work but extended to the 4He case.
The main difference in the applied method to our work is that Ref. [61] applies chiral
wave functions at fixed chiral order [Next-to-Next-to-Leading Order (N2LO)] obtained
from the no-core shell model, in combination with one-nucleon currents not derived from
chiral perturbation theory but taken from Ref. [24].

In this work, we wish to investigate several essential questions: How dependent are
DM scattering cross sections on the nuclear potential and the resulting nuclear wave
functions? That is, how significant are the intrinsic nuclear uncertainties? How vital are
two-nucleon operators compared to standard one-body interactions and, crucially, how
accurately can we calculate such contributions? As mentioned, we focus on scattering
off the deuteron (2H), triton (3H), and helium isotope 3He, while results for 4He are
presented in upcoming work. These are nuclei for which we can solve the bound-state
equations with direct methods for a given nuclear potential [including Three-Nucleon
Forces (TNFs)]. We use these nuclei as theoretical laboratories and aim to extend our
framework to heavier nuclei with more sophisticated many-body techniques. Tremendous
progress has been made in recent years in first-principle calculations of medium-heavy
nuclei by use of nuclear quantum Monte Carlo methods [62] and Nuclear Lattice Effective
Field Theory (NLEFT) [38]. Anticipating similar progress for DM direct detection, our
calculations perform a benchmark for such future studies.

This paper is organized as follows. In section 2.2 we introduce the DM interactions we
focus on and introduce the chiral EFT framework. We derive the one- and two-nucleon
currents and discuss the power counting. In section 2.3 we describe the calculation of the
nuclear wave functions and the scattering cross section. We explain how we estimate the
theoretical uncertainties associated with our calculations. We present our main results
in section 2.4, where we also discuss scenarios where leading order cross sections are
suppressed, and subleading effects become dominant. Finally, we summarize and give an
outlook for future work in section 2.5.
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Chapter 2 First-principle calculations of Dark Matter scattering off light nuclei

2.2 Scalar Dark Matter currents and the chiral effective
field theory framework

In this work we focus on scalar interactions between DM and light quarks and gluons.
We assume the mediator of the interactions to be heavy with respect to the typical
momentum exchange in the DM-nucleus scattering process and use the following effective
interactions

Lχ = χ̄χ
(
cu mu ūu+ cd md d̄d+ cs ms s̄s+ cG αsG

a
µνG

µν a
)
, (2.1)

in terms of a massive DM spin-1/2 Dirac fermion χ with typical mass mχ in the GeV to
TeV range (the cases of scalar, vector, or Majorana DM particles are almost identical for
the scalar interactions under consideration). Furthermore, u, d, and s denote the light
quark fields, Ga

µν denotes the gluon field strength, αs denotes the strong coupling, and
the three coupling constants cu,d,s,G, of mass dimension (−3), parametrize the strength
of the DM-SM interactions. For convenience, we have assumed the DM-quark operators
to scale with the quark masses, mu,d,s. The Lagrangian in eq. (2.1) is taken at a scale
around 1 GeV, and at lower energies, we match to effective DM-hadron interactions. The
coefficients cu,d,s,G include contributions from potential couplings to heavier quarks which
have been integrated out [63].

We focus on scalar interactions as these are well motivated, for instance via Higgs-portal
DM, and have interesting two-nucleon currents [25, 39, 40]. There can be other inter-
actions, e.g., vector, axial-vector, or tensor interactions, but in these cases, two-nucleon
currents are expected to be more suppressed compared to single-nucleon contributions
than for scalar interactions [28]. We, therefore, leave the more general case for forthcom-
ing work.

We wish to describe the scattering process between DM and light nuclei completely
within the framework of chiral EFT. Our starting point is the Quantum Chromodynamics
(QCD) Lagrangian supplemented by the DM interactions in eq. (2.1). By constructing
the most general Lagrangian that incorporates the symmetries of the microscopic theory
(QCD supplemented with DM interactions) and their explicit and spontaneous breaking,
in terms of the relevant low-energy degrees of freedom (DM fields, pions, nucleons, and,
in principle, heavier hadrons), we obtain Chiral Perturbation Theory (χPT), which is
the low-energy equivalent of QCD. The power of χPT is that it can be used to calculate
hadronic and nuclear observables in perturbation theory where p/Λχ is the expansion
parameter depending on p, the low-momentum scale of the process, and Λχ ≃ 1 GeV on
the chiral-symmetry-breaking scale.

While χPT allows for the derivation of the form of the interactions, each term is asso-
ciated with a Low-Energy Constant (LEC) that captures the non-perturbative nature
of low-energy QCD. These LECs need to be fitted to data or calculated with non-
perturbative methods such as lattice QCD. χPT has been extended to the multi-nucleon

14
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sector where it is usually called χEFT and this has led to the derivation of the strong
nucleon-nucleon (NN) potential up to Next-to-Next-to-Next-to-Next-to-Leading Order
(N4LO) [22]. Throughout this work we apply SU(2) χPT instead of SU(3) χPT as the
extension of the latter theory to include nuclear forces has not been developed to the
same accuracy as for the SU(2) case. We, therefore, do not include dynamical effects of
the strange pseudo-Goldstone bosons: kaon- and η-mesons.

Pions play an important role in χPT as they emerge as Goldstone bosons of the sponta-
neously broken chiral symmetry of QCD to the subgroup of isospin SU(2)L×SU(2)R →
SU(2)I . Because chiral symmetry is only an approximate symmetry, being violated by
quark masses and charges and, in our case, the DM-quark scalar interactions, the pions
obtain a small mass m2

π ∼ mq. The smallness of the symmetry-breaking terms, for-
tunately, ensures that the chiral-symmetry-breaking sources can be incorporated in the
chiral expansion. The χEFT Lagrangian is then obtained by adding to all chiral-invariant
interactions, all interactions that break chiral symmetry in the same way as the quark
level chiral-symmetry-breaking sources. The infinite numbers of terms can be ordered by
the chiral index ∆ = d + n/2 − 2, where d counts the number of derivatives and quark
mass insertions (a quark mass insertion increases d by 2 because mq ∼ m2

π ∼ p2) and
n is the number of nucleon fields [17, 18]. Since we are interested in processes where a
single DM particle scatters off a nucleus, we will only consider chiral interactions that are
linear in the couplings cu,d,s,G. In what follows, we introduce Q = p/Λχ as the expansion
parameter.

To obtain the nuclear wave function we require the strong nucleon-nucleon potential. At
Leading Order (LO) [O(Q0)] the potential consists of a One-Pion Exchange (OPE) dia-
gram and two short-range nucleon-nucleon interactions [19]. At Next-to-Leading Order
(NLO) [O(Q2)] one finds corrections to the OPE diagrams, several Two-Pion Exchange
(TPE) diagrams, and subleading contact interactions [20]. At N2LO [O(Q3)] additional
TPE diagrams appear that arise from ππ-nucleon interactions with chiral index ∆ = 1,
the ci interactions [21], which also give rise to TNFs. The number of terms grows at even
higher order [22], although how many terms are relevant depends on the process under
investigation.

The LECs appearing in the potential are fitted to pion-nucleon scattering data (see,
e.g., Ref. [64]) and the few-nucleon database and then other nuclear observables can
be predicted. The scattering and bound-state equations are typically divergent, and
a coordinate-space cutoff is applied to regulate the integrals. Of course, observables
should not depend on the chosen cutoff, but in numerical calculations, explicit cutoff
independence is lost. The LECs appearing in the nucleon-nucleon potential are fitted
(at each order) for different values of the applied cutoff. By varying the chiral order
of the potential and the cutoff, we can test both the chiral convergence and the cutoff
dependence of our results, allowing for a well-defined uncertainty estimate. We provide
more details of this procedure below.
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Chapter 2 First-principle calculations of Dark Matter scattering off light nuclei

2.2.1 Currents for isoscalar and isovector DM-quark interactions

The second part of the calculation involves the chiral expansion of DM-hadron interac-
tions. For the scalar interactions under consideration, this has been studied in detail in,
for example, Refs. [25, 29, 40]. Here we repeat the analysis for completeness and add
a few comments about higher order corrections. We begin by considering scalar inter-
actions involving up and down quarks. These can be treated in χPT as ordinary quark
mass terms by replacing the usual spurion field χ,

χ = 2BM→ 2B [M− diag(mucu χ̄χ, mdcd χ̄χ)] , (2.2)

whereM = diag(mu, md) is the quark mass matrix. The leading terms in the DM chiral
Lagrangian are then given by

Lχ,q = f 2
π

4
Tr [U †χ+ Uχ†] + c1Tr(χ+)N̄N + c5N̄χ̂+N , (2.3)

where N = (p , n)T is the nucleon isospin doublet containing proton (p) and neutron (n)
fields, the Goldstone bosons are parametrized by

U(π) = u(π)2 = exp
(
iπ · τ
fπ

)
, (2.4)

where π is the pion triplet, τ are the Pauli matrices, fπ = 92.4 MeV is the pion decay
constant, and c1,5 ∼ O(1/Λχ) are LECs associated to the nucleon σ-term and strong
proton-neutron mass splitting. A hat denotes the traceless component of a chiral struc-
ture, e.g., χ̂ =

(
χ− 1

2Tr(χ)
)
, and χ± = u†χu† ± uχ†u .

We can now read off the relevant interactions beginning with DM-pion interactions

Lπ
χ,q = cπ

qπ
2 χ̄χ , cπ

q = m2
π

4
[cu(1− ε) + cd(1 + ε)] ≡ m2

π

2
c̄q(is) , (2.5)

where ε = (md−mu)/(md +mu) = 0.37±0.03 [65], and we defined the effective isoscalar
DM coupling c̄q(is) . Similarly we can read off the tree-level DM-nucleon interactions [66]

Lχ,N = cN,(is)
q N̄N χ̄χ+ cN,(iv)

q N̄τ 3N χ̄χ ,

cN,(is)
q = −4m2

πc1c̄q(is) ,

cN,(iv)
q = B(md −mu)c5

[
cu(1− 1

ε
) + cd(1 + 1

ε
)
]
≡ B(md −mu)c5c̄q(iv) , (2.6)

where cN,(is)
q and cN,(iv)

q are, respectively, the coupling strengths of the isoscalar and
isovector DM-nucleon interactions, and we defined the effective isovector DM coupling
c̄q(iv) .
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2.2 Scalar Dark Matter currents and the chiral effective field theory framework

Power counting

The DM-nucleon interactions contribute to DM-nucleus scattering via fig. 2.1(a), while
the DM-pion interactions contribute via one-nucleon and two-nucleon interactions via
figs. 2.1(b) and 2.1(c), respectively. A power-counting scheme is necessary to determine
the relative order of these and other contributions. We count powers of the generic
momentum p, where p is determined from the nuclear binding momentum which for
typical nuclei is of the order p ∼ mπ as usual in χPT. In addition, we have the momentum
transfer, q, between DM and the nucleus, which for scattering off light nuclei is expected
to be somewhat smaller, but for simplicity we treat q ∼ p.

Weinberg showed [19] that the usual χPT power counting needs to be adapted for A ≥ 2
intermediate states that contain only propagating nucleons. A diagram can then be
separated into two parts which do not contain such states (the irreducible part) and a part
which does (the reducible part). Inside an irreducible subloop, the contour integration
over the time component of the loop momentum can always be done in such a way that
the nucleon pole is avoided and the nucleon energy is of order ∼ p as in standard χPT. An
irreducible diagram can then be counted via the rules: p4/(4π)2 for each loop, 1/p for each
nucleon propagator, 1/p2 for a pion propagator, and the product of the LECs associated
to the relevant interactions. In irreducible diagrams, however, the nucleon poles cannot
be avoided, and the nucleon energy becomes ∼ p2/mN instead of ∼ p. For such reducible
diagrams we use the modified rules: p5/[(4π)2mN ] for each loop, mN/p

2 for each nucleon
propagator, 1/p2 for a pion propagator, and the product of the LECs associated to the
relevant interactions. Typically p/mN is counted as p2/Λ2

χ ∼ Q2, indicating a suppression
of two orders in the chiral counting [67].

We can apply these rules to determine the hierarchy of the diagrams in fig. 2.1. We use
c̄q(is) and c̄q(iv) defined in eqs. (2.5) and (2.6) instead of cu and cd, as the former have a
simpler power counting. As we do not know the (relative) sizes of c̄q(is) , c̄q(iv) , cs, and cG,
we have to determine the power counting for each DM interaction at the quark-gluon
level separately. For each DM interaction we denote the dominant contribution by (0),
the NLO by (1), and so on.

We begin with the isoscalar DM interactions. Figure 2.1(a) is counted as as cN,(is)
q ∼

m2
πc1c̄q(is) ∼ c̄q(is)(m2

π/Λχ), where we took into account an overall normalization common
to all diagrams. This contribution forms the LO structure at order (0).

Figure 2.1(b) contains an additional irreducible loop, one nucleon propagator, two pion
propagators, and two strong pion-nucleon vertices such that the relative scaling be-
comes

Ab ∼ cπ
q

(
p4

(4π)2

)(
1
p

)(
1
p2

)2 (
gA p

fπ

)2

∼ cπ
q

g2
A p

(4πfπ)2 ∼ c̄q(is)
m2

π

Λχ

× p

Λχ

, (2.7)

where we identified 4πfπ ∼ Λχ and counted gA ∼ 1. We obtain the familiar result [25,
39] for the isoscalar DM-quark interaction that the pion loop is suppressed by p/Λχ ∼ Q
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Chapter 2 First-principle calculations of Dark Matter scattering off light nuclei

(a) (b) (c)

(d) (e)

Figure 2.1: Diagrams contribution to DM-nucleus scattering. Solid lines correspond to nucleons,
single dashed lines correspond to pions, and double-dashed lines correspond to DM. Our analysis
focuses on the diagrams in the first row, while those in the second row only appear at higher
order.

and is therefore one order down in the chiral power counting. This contribution therefore
appears at order (1).

We now turn to fig. 2.1(c) which, compared to fig. 2.1(a), has an additional reducible loop,
one nucleon propagator, two pion propagators, and two strong pion-nucleon vertices. The
power-counting predicts

Ac ∼ cπ
q

(
p5

(4π)2mN

)(
mN

p2

)(
1
p2

)2 (
gA p

fπ

)2

∼ c̄q(is)
m2

π

Λχ

× p

Λχ

, (2.8)

such that this diagram appears at order (1) as well. higher order corrections are discussed
in the next subsection.

We can perform a similar counting for isovector DM interactions. Figure 2.1(a) is counted
as as cN,(iv)

q ∼ B(md−mu)c5c̄q(iv) ∼ c̄q(iv)(εm2
π/Λχ), which provides the leading (0) contri-

bution. It is tempting to argue that isovector DM interactions lead to small one-nucleon
currents with respect to isoscalar DM because of the additional factor ε appearing in
the scaling of the diagram. However, such a comparison depends also on the ratio of
c̄q(iv)/c̄q(is) which depends on unknown parameters in the underlying DM model and can
therefore be enhanced (see e.g. Ref. [68]). We therefore cannot compare contributions
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2.2 Scalar Dark Matter currents and the chiral effective field theory framework

from different DM operators in a model-independent way.

Since isospin-violating DM interactions do not lead to the DM-pion interactions in
eq. (2.5), figs. 2.1(b) and 2.1(c) do not appear at order (1), but only at higher orders
in the power counting. For instance, operators like χ̄χ π2

3 appear after an additional
insertion of the quark mass difference and are therefore suppressed by two powers in the
chiral counting. Contributions from the diagrams with topology analogous to figs. 2.1(b)
and 2.1(c) therefore only appear at order (3).

LO and NLO currents for isoscalar and isovector DM-quark interactions

The calculation of the first two diagrams in fig. 2.1(b) is straightforward. We consider
a nucleon of incoming (outgoing) momentum p (p′) and define q = p− p ′. Up to order
(1), the nucleon-DM current can be written as

Jq(is+iv)(q) =
[(
−4m2

πc1 −
9g2

Aπm
3
π

4(4πfπ)2

)
− 9g2

Aπm
3
π

4(4πfπ)2F

(
|q|

2mπ

)]
c̄q(is)

+B(md −mu)c5 c̄q(iv) τ 3
i , (2.9)

where τ 3
i acts on the isospin of the interaction nucleon and we defined a function of the

momentum transfer
F (x) = −x+ (1 + 2x2) arctan x

3x
, (2.10)

which for small momentum transfer becomes F (x) ≃ 5
9x

2 + . . . . As noted in Ref. [66],
the momentum-independent part of the isoscalar current can be identified as the first
two terms in the chiral expansion of the nucleon σ-term σπN = m̄(dmN/dm̄) where
m̄ = (mu + md)/2 is the average light quark mass. Similarly, the isovector current
can be identified as the strong proton-neutron mass splitting (mn −mp)strong ≡ δmN =
−4Bc5(md −mu). We can therefore resum higher chiral orders [66] by writing

Jq(is+iv)(q) =
[
σπN −

9g2
Aπm

3
π

4(4πfπ)2F

(
|q|

2mπ

)]
c̄q(is) −

δmN

4
c̄q(iv) τ 3

i . (2.11)

A big advantage of the resummation is that the nucleon σ-term and mass splitting have
been precisely determined

σπN = (59.1± 3.5) MeV , δmN = (2.32± 0.17) MeV , (2.12)

from, respectively, a Roy-Steiner analysis of pion-nucleon scattering [69] and Lattice
Quantum Chromodynamics (LQCD) calculations [70]. Recent LQCD calculations [71]
find a smaller number for the nucleon σ-term than the Roy-Steiner analysis. The chiral
prediction for the slope of the scalar form factor, the coefficient of q 2, is smaller by
roughly 40% than a determination based on a dispersive analysis [72], indicating that
higher order effects can be relevant for the momentum-dependent interactions.
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Chapter 2 First-principle calculations of Dark Matter scattering off light nuclei

We now turn to the two-nucleon current depicted in fig. 2.1(c) which becomes

Jq(is),2b(q) = −m2
π

(
gA

2fπ

)2 (σ1 · q1)(σ2 · q2)
(q 2

1 +m2
π)(q 2

2 +m2
π)
τ1 · τ2 c̄q(is) , (2.13)

where qi = p ′i − pi is the difference between the outgoing and incoming momentum of
nucleon i, and σi (τi) the spin (isospin) of nucleon i.

At the next order in the chiral expansion, i.e. order (2), there appear several new contri-
butions. For instance, the isoscalar and isovector one-nucleon currents can be dressed by
pion loops. However, all such contributions can be absorbed in the resummation of σπN ,
δmN , and the radius corrections [73]. That is, there appear no genuinely new topologies.
At order (3), several new contributions appear. Particularly interesting for the isoscalar
DM interactions are new two-nucleon contributions that arise, for example, from two-
derivative DM-pion-pion interactions (e.g., LEC l4 in Ref. [18]), DM-nucleon-pion inter-
actions (e.g. LEC d16 in Ref. [74]), and DM-nucleon-nucleon contact interactions. The
relevant topologies of the latter two contributions are shown in figs. 2.1(d) and 2.1(e).
For the isovector DM interactions, the first two-nucleon corrections appear as well as
discussed at the end of section 2.2.1. The corrections at this order have not been fully
calculated and will not be considered here.

2.2.2 Currents for DM-strange and DM-gluon interactions

As the interactions between DM and strange quarks and gluons in eq. (2.1) are invariant
under SU(2) chiral-symmetry transformations, the hierarchy of hadronic interactions will
be different compared to those arising from the couplings to light quarks. In particular,
the interaction between DM and pions1 only arises at higher order and the main contri-
butions arise from DM-nucleon interactions. These have been studied in many papers,
see e.g. Refs [27, 29] and references therein, and here we summarize the results. For
the interactions to strange quarks, the relevant matrix-element is the strange σ-term
σs = ms(dmN/dms) = 40 ± 10 MeV from an average of LQCD calculations [75]. For
the momentum-dependent term, which cannot be obtained from SU(2) χPT but instead
requires SU(3) χPT, we follow Ref. [40] and use a dispersive extraction [72]. This gives
for the one-nucleon current

Js(q) =
(
σs − σ̇s q

2
)
cs , (2.14)

where σ̇s = 0.3 ± 0.2 GeV−1 which, by comparison to the numerical value of the radius
correction in eq. (2.11), we label as an NLO correction. Isovector currents and two-

1 In SU(3) χPT the strange interactions would lead to DM-kaon and DM-η vertices [25]. However,
including dynamical strange mesons is not consistent with the χEFT expansion of nuclear forces that
we apply here.
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2.3 Generation of nuclear wave functions and scattering matrix-elements

nucleon currents only appear at Next-to-Next-to-Next-to-Leading Order (N3LO) and are
neglected.

For the gluonic interaction in eq. (2.1), the trace anomaly gives [63]

JG(q) = c
N,(is)
G = −cG

8π
9

[mN − σπN − σs] , (2.15)

where the σπN and σs are formally order (2) corrections which we absorb into mG
N ≡

mN − σπN − σs.

As for the interactions with strange quarks, momentum-dependent, isovector, and two-
nucleon contributions only appear at order (3). However, it was noticed in Ref. [40] that
two-nucleon currents provide numerically significant contribution to the nuclear structure
functions of 132Xe. These two-nucleon corrections arise from the DM-pion interactions

Lπ
χ,G = cG

8π
9
χ̄χ

[
(∂µπ)2 − 3

2
m2

ππ
2
]
, (2.16)

where the LECs are fixed by a comparison of the QCD and χPT energy-momentum
tensor [29]. The power-counting rules outlined in section 2.2.1 indicate that the resulting
two-nucleon terms are indeed suppressed by three orders in the chiral expansion compared
to the one-body contributions in eq. (2.15). Nevertheless, we investigate the resulting
two-nucleon contributions to estimate the size of the missing order (3) terms and to study
the numerical enhancement found in Ref. [40]. We obtain for the two-nucleon current

JG,2b(q) = −cG
8π
9

(
gA

2fπ

)2 (σ1 · q1)(σ2 · q2)
(q 2

1 +m2
π)(q 2

2 +m2
π)
τ1 · τ2

(
2q1 · q2 − 3m2

π

)
, (2.17)

where it should be stressed that there appear additional contributions at this order. In
fact, in the limit of |q1,2| ≫ mπ the two-nucleon current approaches a DM-nucleon-
nucleon contact interaction which appears at the same order in the chiral counting and
is, in general, necessary to absorb the divergence and associated cutoff dependence of
eq. (2.17). This implies that the calculation of the contribution from eq. (2.17) only
provides a rough estimate of the size of higher order corrections.

2.3 Generation of nuclear wave functions and scattering
matrix-elements

2.3.1 Matrix-elements

We consider scattering processes of the type χ(pχ) + T (pT ) → χ(p′χ) + T (p′T ), where
T denotes the target nucleus of mass mT consisting of A nucleons. We express the
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Chapter 2 First-principle calculations of Dark Matter scattering off light nuclei

spin-independent cross sections in the non-relativistic limit as [76]

dσ
dq2 = 1

64π
|MA(q2) |2

m2
Tm

2
χv

2
χ

, (2.18)

where q = pχ − p′χ is the momentum transfer from DM to the target nucleus, vχ is the
DM velocity, and MA is the spin-independent scattering matrix-element. We compute
the scattering matrix depending on the DM current Ĵ and the wave function of the target
nucleus |ΨT , jmj⟩ – with distinct total spin j and spin polarization mj

∣∣∣MA(q2)
∣∣∣2 = (2mT )2(2mχ)2

2j + 1

j∑
mj ,m′

j=−j

∣∣∣ ⟨ΨT , jm
′
j

∣∣∣ Ĵ(q2)
∣∣∣ΨT , jmj

⟩ ∣∣∣2 . (2.19)

The mass factors arise from the normalization of the relativistic particle states. In the
following, we use that the internal properties of the wave functions are independent of the
polarization mj. The spin averaging guarantees that the matrix-element is spherically
symmetric such that we are free to choose the direction of the momentum transfer q.
For convenience, we pick q = qêz. As a consequence, mj is conserved and the scattering
process is independent of the value of mj. Hence, the sum cancels against the spin
averaging. We denote |ΨT ⟩ = |ΨT , jmj⟩ from now on. The properties of the applied
wave functions are described in section 2.3.2.

To obtain the differential recoil rates measured in experiments, we have to convolve the
cross section with the DM velocity distribution in the Earth frame

dR
dq2 = 1

mT

ρχ

mχ

v
(esc)
χ∫

v
(min)
χ

d3vχ |vχ | f(|vχ |)
dσ
dq2 (vχ) , (2.20)

where ρχ is the local DM density, and v(esc)
χ ≈ 550 km/s [77] is the maximal (escape)

velocity which can be inferred from galaxy velocity distributions. The momentum transfer
q, in the non-relativistic limit, is constrained through energy conservation by a product
of the minimal DM velocity v(min)

χ and the reduced mass of the colliding system, µT =
mTmχ/(mT + mχ), times two. Hence, the upper bound for the momentum transfer is
given by

| q | ≲ 2µTv
(esc)
χ ≲ A× 2.5MeV , (2.21)

for DM masses ≥ 1 GeV and for the light nuclei we consider here. For large nuclei
the momentum transfer can become of the order of the pion mass and q 2 corrections
become more important. Since one of our primary goals is to estimate the accuracy
of DM-nucleus cross sections, we present cross sections for larger q 2 than relevant for
scattering off light nuclei, assuming the expected DM velocity distributions, in order to
test whether the accuracy of our results depends on the momentum transfer.

The scattering matrix-element can be expressed in terms of a sum over different nuclear
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2.3 Generation of nuclear wave functions and scattering matrix-elements

response functions F (ν)
i,a

∣∣∣MA(q2)
∣∣∣2 = (2mT )2(2mχ)2 σ

(is)
N

πA2

µ2
N

∣∣∣∣∣∣
∑
i,a,ν

αiF (ν)
i,a (q 2)

∣∣∣∣∣∣
2

, (2.22)

where we factored out A2 and the LO isoscalar cross section of a DM-nucleon scattering
process at zero momentum transfer

σ
(is)
N = µ2

N

π
|σπN cχ |2 . (2.23)

We have set here c̄q(is) = cχ and c̄q(iv) = cs = cG = 0. This arbitrary choice is just
for normalization purposes. αi is a dimensionless coefficient which depends on the DM
couplings. As mentioned before, we can expand F (ν)

i, a (q 2) order by order in the chiral
expansion, but, since we cannot make model-independent statements about the (relative)
sizes of the DM couplings c̄q(is) , c̄q(iv) , cs, cG, we have a separate chiral power counting for
each of the fundamental interactions. If it is necessary to consider several DM interactions
at the same time then the power counting must be aligned depending on the relative
sizes of the couplings under consideration. We discuss this in section 2.4.4 for the case
of nonzero c̄q(is) and cG. Finally, we note that we recover the global counting of Ref. [40]
once we assume the various ci to be of the same size.

We will present our results in terms of response functions F (ν)
i, a (q 2) which are classified

according to the following

1. i = {q(is), q(iv), s, G} indicating, respectively, dependence on the various DM cou-
plings we consider {c̄q(is) , c̄q(iv) , cs, cG},

2. at which chiral order ν = 0, 1, . . . in the chiral expansion of the currents they
appear. The dominant current for each DM interaction, i.e. {c̄q(is) , c̄q(iv) , cs, cG},
starts at order 0.

3. We divide higher order contributions into two-nucleon terms (a = 2b) and one-
nucleon radius (q 2) corrections (a = r).

We can now expand the structure functions appearing in the cross section as

dσ
dq2 = σ

(is)
N A2

4µ2
Nv

2
χ

∣∣∣∣∣ αq(is)

(
F (0)

q(is)

(
q2
)

+ F (1)
q(is), 2b

(
q2
)

+ F (1)
q(is), r

(
q2
)

+ . . .
)

+ αq(iv)

(
F (0)

q(iv)

(
q2
)

+ . . .
)

+ αs

(
F (0)

s

(
q2
)

+ F (1)
s, r

(
q2
)

+ . . .
)

+ αG

(
F (0)

G

(
q2
)

+ F (3)
G, 2b

(
q2
)

+ . . .
) ∣∣∣∣∣

2

. (2.24)

Here we expanded the currents up to order (1) and since there appear no new corrections
at order (2), the dots indicate missing order (3) corrections. The only order (3) correction
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Chapter 2 First-principle calculations of Dark Matter scattering off light nuclei

we explicitly consider is the two-nucleon contribution arising from the DM-gluon interac-
tions (see eq. (2.17)). We keep this term as a diagnostic tool to study the contributions
of missing higher order corrections. The dimensionless couplings αi are given by

αq(is) =
c̄q(is)

cχ

, αq(iv) =
(
− δmN

4σπN

)
c̄q(iv)

cχ

, αs =
(
σs

σπN

)
c̄s

cχ

, αG =
(
−8π

9
mG

N

σπN

)
cG

cχ

.

(2.25)
The factor of c−1

χ is an artifact of the normalization in eqs. (2.22) and (2.23). With these
definition, we obtain

F (0)
q(is)(q2) = F (0)

s (q2) = F (0)
G (q2) ,

F (0)
q(is)(0) = F (0)

s (0) = F (0)
G (0) = 1 . (2.26)

The radius corrections F (1)
q(is), r

(q2), and F (1)
s, r(q2) involve the same nuclear matrix-elements

as the order (0) one-nucleon contributions apart from an additional overall dependence
on q2. They therefore do not require additional nuclear calculations. The independent
structure functions are therefore F (0)

q(is)(q2), F (0)
q(iv)(q2), F (1)

q(is), 2b
(q2), and F (3)

G, 2b (q2), in
agreement with the findings of Ref. [40].

Although the ratio of LECs appearing in the definitions of αi ranges from small values
−δmN/(4σπN) ≃ −0.01 to large values (−8πmG

N)/(9σπN) ≃ −40, this does not reflect
the relative importance of the various terms. The αi depend on the definition of the
DM couplings cu,d,s,G in eq. (2.1). For instance, eq. (2.1) assumes that the scalar cou-
plings between light quarks and DM is proportional to the light-quark mass. While this
is a reasonable assumption, it can be easily different in specific UV-complete models.
We can only make model-independent statements about the relative sizes of different
contributions proportional to the same αi.

2.3.2 Nuclear wave functions

Our calculations are based on a momentum-space evaluation of matrix-elements that
involve the DM interactions as introduced in the previous section and nuclear wave
functions. Below, we require wave functions for 2H and 3He (and 3H) which we obtain
from solutions of the non-relativistic Schrödinger equation in momentum space.

In the case of the deuteron, we directly solve

|ψd⟩ = 1
Ed − T

V12 |ψd⟩ . (2.27)

Here, Ed is the deuteron binding energy, T is the two-nucleon (NN) kinetic energy
and V12 the NN interaction. The deuteron wave function is expanded in momentum
eigenstates | pα⟩ where α corresponds to the partial waves contributing to the deuteron
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2.3 Generation of nuclear wave functions and scattering matrix-elements

NN interaction Ed ⟨T ⟩ ⟨V ⟩ rd Qd PD AS η

AV18 -2.225 19.81 -22.04 1.967 0.270 5.76 0.884 0.0252
CDB -2.223 15.60 -17.83 1.966 0.270 4.85 0.884 0.0258
LO (Q0) Λ1 -1.989 14.26 -16.25 1.997 0.245 3.27 0.825 0.0219
LO (Q0) Λ2 -2.023 13.29 -15.32 1.990 0.230 2.54 0.833 0.0212
LO (Q0) Λ3 -2.083 12.47 -14.55 1.979 0.215 1.97 0.849 0.0205
LO (Q0) Λ4 -2.167 11.76 -13.92 1.965 0.199 1.53 0.870 0.0198
LO (Q0) Λ5 -2.272 11.15 -13.42 1.950 0.183 1.18 0.897 0.0192
NLO (Q2) Λ1 -2.191 15.40 -17.59 1.970 0.275 5.23 0.875 0.0256
NLO (Q2) Λ2 -2.199 14.25 -16.45 1.968 0.273 4.73 0.877 0.0256
NLO (Q2) Λ3 -2.206 13.49 -15.69 1.967 0.271 4.24 0.879 0.0257
NLO (Q2) Λ4 -2.211 12.92 -15.14 1.965 0.269 3.77 0.881 0.0258
NLO (Q2) Λ5 -2.213 12.48 -14.69 1.965 0.267 3.35 0.881 0.0259
N2LO (Q3) Λ1 -2.228 14.94 -17.16 1.967 0.271 4.87 0.886 0.0254
N2LO (Q3) Λ2 -2.231 13.85 -16.08 1.966 0.270 4.50 0.886 0.0256
N2LO (Q3) Λ3 -2.235 13.17 -15.40 1.964 0.270 4.12 0.888 0.0258
N2LO (Q3) Λ4 -2.237 12.69 -14.93 1.964 0.269 3.75 0.888 0.0260
N2LO (Q3) Λ5 -2.235 12.32 -14.55 1.963 0.269 3.40 0.887 0.0263
N3LO (Q4) Λ1 -2.223 23.33 -25.55 1.970 0.268 3.78 0.884 0.0255
N3LO (Q4) Λ2 -2.223 21.58 -23.80 1.972 0.271 4.19 0.884 0.0255
N3LO (Q4) Λ3 -2.223 19.63 -21.85 1.975 0.275 4.77 0.885 0.0256
N3LO (Q4) Λ4 -2.223 17.71 -19.94 1.979 0.279 5.21 0.885 0.0256
N3LO (Q4) Λ5 -2.223 16.13 -18.35 1.982 0.283 5.58 0.885 0.0256
N4LO (Q5) Λ1 -2.223 20.64 -22.86 1.970 0.271 4.28 0.884 0.0256
N4LO (Q5) Λ2 -2.223 18.89 -21.12 1.972 0.271 4.29 0.884 0.0256
N4LO (Q5) Λ3 -2.223 17.48 -19.70 1.974 0.272 4.40 0.884 0.0255
N4LO (Q5) Λ4 -2.223 16.29 -18.51 1.978 0.276 4.74 0.885 0.0256
N4LO (Q5) Λ5 -2.223 15.27 -17.50 1.981 0.280 5.12 0.885 0.0256
Expt. -2.225 [80] — — 1.975 [81] 0.286(2) [82] — 0.878(4) [83] 0.0256(4) [84]

Table 2.1: Properties of the deuteron wave functions used. The deuteron binding energy Ed,
the expectation value of the kinetic energy and of the potential are given in MeV. We also
give the point proton rms radius rd in fm, the quadrupole moment Qd in fm2 and the D-state
probability PD in precent together with the asymptotic normalization AS in fm−1 and η = AD

AS
.

bound state: the orbital angular momentum l12 = 0, 2, NN spin s12 = 1 and the total
angular momentum j12 = 1.

We consider both, modern phenomenological NN interactions and interactions based
on chiral effective theory to obtain the wave functions. The two standard choices for
phenomenological interactions are Argonne v18 (AV18) [78] and CD-Bonn (CDB) [79].
Although both interactions describe the available NN data below the pion production
threshold essentially perfectly, their properties are quite different. The CDB interaction
is much more non-local than AV18. For the deuteron, the non-observable kinetic ener-
gies, potential energies and D-state probabilities differs visibly for both models as can
be seen from table 2.1. Therefore, a comparison of results for these models is a good
indication of possible model dependences. For the radius and the quadrupole moment,
there are slight deviations from the experimental values. These can be traced back to
neglected contributions, e.g., meson-exchange currents and relativistic corrections, and
uncertainties in the correction of the measured charge radii for the finite radii of the
proton and neutron.

For the chiral interactions, we use the ones of Ref. [22]. Following the approach of
Weinberg [19, 85], the non-perturbative character of the nuclear interactions is taken
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Cutoff Λ1 Λ2 Λ3 Λ4 Λ5
R 0.8 fm 0.9 fm 1.0 fm 1.1fm 1.2 fm
Λb 600 MeV 600 MeV 600 MeV 500 MeV 400 MeV

Table 2.2: Cutoff values used to compute wave functions and the uncertainty estimates. Values
are taken from Ref. [94].

into account by expanding a nuclear potential perturbatively in the pions mass mπ and
the nucleon 3-momentum q over the chiral symmetry breaking or breakdown scale Λb.
This potential is then used in a Schrödinger equation to obtain observables of nuclear
systems.

We note that there has been some discussion of how such a non-perturbative expansion
can be made consistently in leading and higher orders [86–93]. The approach used ap-
plies all orders of the interaction non-perturbatively. This procedure has been shown
to result in a high-quality description of NN observables provided the interactions are
regulated using finite values of a cutoff. For the interactions used here, the regularization
is defined in configuration space and parameterized by a short-distance scale R. Explicit
calculations have shown that R needs to be larger than 0.8 fm. The best description of
the NN data is obtained for R = 0.9 fm. Based on the description of NN scattering
data, the breakdown scale was estimated in [22] and turns out to be dependent on the
chosen cutoff. We have summarized the available cutoff values in table 2.2 where we also
introduce the shorthand notation Λi for the various cutoff values. To finalize our discus-
sion of the NN interactions, we note that AV18 is accompanied by an Electromagnetic
(EM) interaction, which we also take into account. Additionally, we have added the same
EM interaction to the proton-proton and neutron-neutron interactions in case of CDB
and the chiral interactions. In the latter cases, we did not add the EM part to the np
interactions, since this would lead to a visible deviation of the deuteron binding energy
to experiment. However, at least for CDB, the EM contribution is consistent since the
interaction has been fitted to NN data, taking the EM contributions into account. We
stress that the EM contribution is small and of minor importance.

In table 2.1, we also summarize the properties of the deuteron wave function for the chiral
interactions at different orders of the chiral expansion Qi = (q,mπ/Λb)i, see section 2.3.3
for more details. It is seen that non-observable quantities like the D-wave probability,
the kinetic and the potential energies strongly depend on the cutoff value chosen. Radii,
binding energies, quadrupole moments, and asymptotic normalizations show much less
variation and, in higher orders, reproduce the experimental values similarly to the phe-
nomenological interactions. We stress, however, that this does not necessarily imply that
we can expect results for DM scattering that are independent of the wave function.

In order to obtain the wave functions for 3He (and 3H), we rewrite the Schrödinger
equation into Faddeev equations

|ψ12⟩ = G0 t12 P |ψ12⟩+G0 ( 1 + t12G0 ) V (3)
123 (1 + P )|ψ12⟩ , (2.28)
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2.3 Generation of nuclear wave functions and scattering matrix-elements

where we have introduced the Faddeev components |ψ12⟩. Due the antisymmetry of the
3He wave function, all Faddeev components can be related to |ψ12⟩ using permutation
operators. The combination of transpositions Pij that enters the Faddeev equations is
labeled by P = P12P23+P13P23. G0 denotes the 3N free propagator. NN interactions en-
ter via the t-matrices t12 which are obtained by solving a Lippmann-Schwinger equation
for the NN system embedded into a 3N system. Finally, for some of the phenomeno-
logical calculations, we take TNFs into account. These are first separated in three parts
again related by permutation operators V123 = V

(1)
123 + V

(2)
123 + V

(3)
123 . Only one of these

parts is required for the Faddeev equation. The equations are solved using Jacobi rela-
tive momenta. Therefore, the basis depends on two momenta, the relative momentum
in the subsystem (12) of the first two nucleons p12 and the relative momentum p3 of
the third particle with respect to the other two. The angular dependence is expanded
in corresponding orbital angular momenta l12 and l3. As in the NN system above, the
orbital angular momentum l12 is coupled with the spin of the NN system s12 to the total
two-body angular momentum j12. The orbital angular momentum l3 is coupled with the
spin of the third nucleon to a spectator angular momentum I3. j12 and I3 are finally
combined to the total angular momentum j3 = 1/2.

From the isospin t12 of the (12) subsystem and the isospin of the third nucleon, we build
the total isospin τ3 of 3He. Since we take the charge dependence of the nuclear force and
electromagnetic forces into account, both isospins τ3 = 1/2 and 3/2 contribute although
the 3/2 component is small [95]. For this work, we do not take the proton/neutron mass
difference into account but assume an average nucleon mass of mN = 938.9182 MeV. The
number of partial waves states is constrained by the maximal NN angular momentum
jmax

12 . We chose jmax
12 = 6 for the phenomenological interactions and jmax

12 = 7 for the
chiral ones. With these constraints on the partial waves and using approximately 60
momentum grids points for p12 and p3, we were able to obtain binding energies to an
accuracy of 1 keV. More details on the calculations can be found in Ref. [96].

The binding energy results together with some basic wave function properties are sum-
marized in table 2.3. The first observation is that the binding energies are generally not
in perfect agreement with the experimental value. This discrepancy can be attributed
to contributions of TNFs. For the phenomenological interactions, we have added TNFs
that have been tuned to describe the mirror nucleus 3H correctly [99]. Thereby, AV18
was augmented by the Urbana IX (URB IX) interaction [100] and CDB with the Tucson-
Melbourne (TM) force [101]. Although it is an essential strength of chiral interactions
that they are accompanied by TNFs that can be derived within the same framework,
we have not added an chiral TNFs to the chiral interactions in this work since their ad-
justment is a work in progress. We show later that our results here are not significantly
affected by URB IX and TM. We, therefore, expect that adding the chiral TNFs is not
too important for the results in this work but we stress that this needs to be verified in
a future calculation.

The table also gives results for point proton and neutron radii together with the rms
distance of two nucleons. The rather strong dependence on the interaction model is due
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NN interaction E(3He) ⟨T ⟩ ⟨V ⟩ rp rn rNN PS PP PD ⟨Ψ|Ψ⟩
AV18 -6.922 45.67 -52.59 1.871 1.677 3.127 91.47 0.065 8.465 0.998752
AV18 + URB IX -7.754 50.21 -57.97 1.770 1.601 2.966 90.63 0.131 9.241 0.998956
CDB -7.264 36.77 -44.03 1.819 1.637 3.047 92.95 0.046 7.000 0.999505
CDB + TM -7.729 38.53 -46.26 1.767 1.598 2.964 92.41 0.090 7.498 0.999589
LO (Q0) Λ1 -11.22 54.29 -65.51 1.327 1.258 2.259 95.31 0.031 4.659 0.999959
LO (Q0) Λ2 -10.92 48.71 -59.63 1.367 1.289 2.324 96.65 0.015 3.333 0.999969
LO (Q0) Λ3 -10.47 43.40 -53.87 1.424 1.334 2.416 97.58 0.008 2.410 0.999972
LO (Q0) Λ4 -10.01 38.70 -48.70 1.489 1.388 2.522 98.23 0.004 1.763 0.999976
LO (Q0) Λ5 -9.594 34.67 -44.27 1.558 1.444 2.634 98.69 0.002 1.304 0.999979
NLO (Q2) Λ1 -7.315 36.61 -43.92 1.805 1.626 3.025 92.19 0.057 7.755 0.999781
NLO (Q2) Λ2 -7.481 33.96 -41.44 1.784 1.610 2.992 93.06 0.046 6.890 0.999881
NLO (Q2) Λ3 -7.638 32.75 -40.38 1.764 1.595 2.960 93.94 0.037 6.025 0.999924
NLO (Q2) Λ4 -7.804 32.21 -40.01 1.744 1.579 2.927 94.76 0.029 5.210 0.999946
NLO (Q2) Λ5 -7.969 31.96 -39.93 1.723 1.563 2.895 95.51 0.022 4.466 0.999959
N2LO (Q3) Λ1 -7.305 35.68 -42.99 1.821 1.639 3.050 92.99 0.045 6.966 0.999771
N2LO (Q3) Λ2 -7.409 32.88 -40.29 1.806 1.628 3.027 93.61 0.039 6.357 0.999877
N2LO (Q3) Λ3 -7.540 31.63 -39.17 1.788 1.614 2.999 94.26 0.032 5.713 0.999925
N2LO (Q3) Λ4 -7.680 31.13 -38.81 1.769 1.599 2.969 94.90 0.027 5.078 0.999947
N2LO (Q3) Λ5 -7.824 30.96 -38.79 1.749 1.584 2.937 95.51 0.022 4.470 0.999960
N3LO (Q4) Λ1 -6.865 51.81 -58.67 1.884 1.691 3.148 94.79 0.027 5.189 0.998593
N3LO (Q4) Λ2 -6.871 50.74 -57.61 1.890 1.697 3.159 94.07 0.032 5.897 0.998904
N3LO (Q4) Λ3 -6.832 46.94 -53.77 1.901 1.707 3.180 93.12 0.041 6.842 0.999219
N3LO (Q4) Λ4 -6.812 42.31 -49.13 1.910 1.716 3.196 92.43 0.048 7.524 0.999481
N3LO (Q4) Λ5 -6.779 38.21 -44.99 1.921 1.725 3.215 91.89 0.053 8.052 0.999661
N4LO (Q5) Λ1 -6.790 52.31 -59.10 1.898 1.701 3.170 93.96 0.033 6.005 0.998833
N4LO (Q5) Λ2 -6.893 47.33 -54.22 1.886 1.693 3.154 93.92 0.033 6.046 0.999185
N4LO (Q5) Λ3 -6.931 43.30 -50.23 1.885 1.695 3.155 93.71 0.035 6.255 0.999424
N4LO (Q5) Λ4 -6.919 39.84 -46.76 1.893 1.702 3.169 93.17 0.040 6.786 0.999597
N4LO (Q5) Λ5 -6.872 36.75 -43.62 1.906 1.714 3.192 92.60 0.046 7.351 0.999719
Expt. -7.718 [97, 98] — — 1.776 — —- — — — —

Table 2.3: Properties of the 3He wave functions used. The 3He binding energy E(3He), the
expectation value of the kinetic energy and of the potential are given in MeV. We also give
the point proton and neutron rms radius and the rms distance of two nucleons, rp, rn and
rNN , respectively, in fm. The S-, P-, and D-state probabilities PS , PP , and PD are given in %.
The deviations of the norm of the wave functions from 1 are a measure of higher partial-wave
contributions (see text).

to a high correlation with the binding energy [102] and therefore driven by the long-
distance components of the wave function. We compare the point proton radius to an
experimental value that is based on the charge radius of 3He of rch = 1.976(15) fm
[103] and corrected for the finite proton and neutron size along the lines explained in
Ref. [94].

We also give the probability to find total orbital angular momentum L = 0, 1, 2 in our
wave functions. To obtain these numbers, we performed a recoupling of angular momenta
to an LS coupling scheme. Besides the dominant S-wave component, we find a sizable
D-wave component. The P -wave component is quite small.

The last column of the table gives results for the norm of the wave function. It can be
shown using the antisymmetry of the wave function that the scalar product of the wave
function |Ψ⟩ = (1 + P )|Ψ12⟩ is

⟨Ψ|Ψ⟩ = 3⟨ψ12|Ψ⟩ . (2.29)
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Numerically, this relation is not strictly fulfilled since higher partial waves are missing.
We use the right-hand side for the normalization of the wave function. This generally
leads to larger accuracy since the partial wave convergence of the Faddeev component
is faster than that of the wave function. The last column shows the left-hand side
of the equation. The deviation from one is small, but still, some higher partial wave
contributions are missing. Their contribution to matrix-elements is generally suppressed
when finite-range operators are considered as we do in this work.

2.3.3 Chiral expansion and uncertainty estimation

The calculation of the scattering amplitude, or equivalently the response functions, de-
pends on both the nuclear wave function (Ψ) and the DM current (Ĵ) that is sandwiched
between the wave functions. Both quantities can be expanded order by order in the chi-
ral expansion. The LO contribution to the cross section arises from combining LO wave
functions with the order (0) one-nucleon current. For isoscalar DM-quark interactions
the first corrections arise from applying NLO wave functions and from the order (1) two-
nucleon and radius corrections to the currents. For the DM-strange quark interactions,
the currents are only altered by the radius corrections, while for the remaining DM inter-
actions only the wave function is affected. Analogously, even higher order wave functions
should be combined with higher order corrections to the currents. However, whereas we
have access to N3LO and N4LO wave functions, we do not control the currents at the
same order. That is, a consistent calculation with these wave functions would also require
the calculation of missing higher order currents. This can be done with the methods of
Refs. [104, 105], but is beyond the scope of this work.

As discussed below, we find that the corrections associated to the inclusion of higher
order-currents are smaller than the corrections associated with higher order wave func-
tions. For this reason, we chose to present our uncertainty estimation based on the
variation of different orders in the wave functions but fixed current orders: We sandwich
the one- and two-nucleon currents derived in section 2.2.1 between wave functions cal-
culated from LO up to N4LO nucleon-nucleon potentials. We show that at least N3LO
wave functions are required in order to get precise results for two-nucleon currents.

To assign an uncertainty to our calculation at each order in the chiral expansion of the
wave function, we follow the scheme of Ref. [94], which we slightly modify in order to
account for missing high-order effects of the currents. The objective of this scheme is
to make a prediction for the value of the observable X with a well-defined uncertainty
estimate. In this work, the observable X corresponds to the magnitude squared of the
response functions X = | F |2, but the procedure can be used for any quantity. As we are
only able to approximate X with wave functions at finite chiral order ν, it is desirable
to quantify the uncertainty δ(ν)X associated with the approximation. The calculation of
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X(ν) is uncertain up to missing corrections proportional to Qν+1

X(ν) = X + δ(ν)X = X +
∞∑

i=1
Qν+i ∆X(ν)

i , (2.30)

where X would be the result of a fictitious infinite-order calculation. ∆X(ν)
i denotes a set

of coefficients parameterizing the uncertainty for a given order in Q – the dimensionless
expansion parameter that is given by the generic momentum p ∼ mπ ∼ q divided by the
large breakdown scale. For the numerical error estimates we use Q = max(q/Λb, mπ/Λb)
with Λb a regulator scale which depends on the coordinate-space cutoff used in the evalua-
tion of the nuclear wave functions (see table 2.2). That is, for small momentum transfers,
q is determined by mπ/Λb.

For a well-behaved expansion, all the coefficients ∆X(ν)
i are expected to be of natural

order ∆X(ν)
i ∼ X. We approximate the error by assuming that one can find a maximal

coefficient ∆X(ν)
max ≥ |∆X

(ν)
i |, which allows us to resum the series

δ(ν)X ≤ Qν
∣∣∣∆X(ν)

max

∣∣∣ ∞∑
i=1

Qi = Qν+1

1−Q
∣∣∣∆X(ν)

max

∣∣∣ . (2.31)

This uncertainty estimate is rather conservative as we have used not only the maximal
term but also assumed a coherent summation of uncertainties. To find the size of the
coefficient, we analyze the difference of the same observable at two different chiral orders
ν ′ > ν

X(ν) −X(ν′) = Qν
(
∆X(ν)

1 +O(Q)
)
. (2.32)

We finally estimate this coefficient by further taking the maximal value over all computed
differences at different chiral orders

∣∣∣∆X(ν)
max

∣∣∣ ≤ |∆Xmax | = max
ν

(∣∣∣∆X(ν)
max

∣∣∣) , ∆X(ν)
max ≃ max

ν′>ν


∣∣∣X(ν) −X(ν′)

∣∣∣
Qν+1

 . (2.33)

The final uncertainty estimate is then given by

δX(ν) ≤ Qν+1

1−Q
|∆Xmax | . (2.34)

While this method provides a conservative estimate of the uncertainty at a given chiral
order of the wave functions, we stress again that the estimate does not entirely capture
the missing higher order currents. Also, the simple procedure outlined here does not
provide a statistical interpretation of the theoretical uncertainty.
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2.4 Results and discussion

2.4.1 Convergence and uncertainty estimates

We now turn to the results of our calculation. We mainly discuss the case of the isoscalar
quark-DM interactions as they lead to the most interesting higher order currents. The
other cases are briefly discussed in section 2.4.3. As discussed above, we calculate the
structure functions that appear in eq. (2.24) for different chiral and phenomenological
wave functions. When using chiral wave functions, we present results for each order in
the chiral expansion and for different values of the cutoff used to regulate the bound-state
equations. The theoretical uncertainty of our result at each order in the chiral expansion
is obtained by the method described in section 2.3.3. In this work we focus on the nuclear
aspects of DM direct detection and we, therefore, do not show the uncertainty associated
to hadronic quantities such as the uncertainty on σπN and δmN . We refer to, for example,
Ref. [58] for discussions of the latter. We also do not include astrophysical uncertainties
related to DM direct detection [106].

We begin with discussing the results for scattering off the deuteron. In the top-panel
of fig. 2.2 we show results for |F (0)

q(is)(q2)|2 for three different values of the momentum
transfer q = |q|. At zero momentum transfer, the results are equal to unity for each
applied wave function due to the normalization of the structure functions, see eq. (2.26).
For larger values of the momentum transfer, the structure function decreases, which can
be described by a Helm form factor as discussed in the next section. We find essentially
no dependence on the order of the chiral wave function used nor on the applied cutoff
which is reflected by the tiny uncertainty bands on the results.

In the second row, we show the effect of including the higher order currents arising from
radius and two-body corrections:

|F (0+1)
q(is)

(
q2
)
|2 ≡ |F (0)

q(is)

(
q2
)

+ F (1)
q(is),2b

(
q2
)

+ F (1)
q(is),r

(
q2
)
|2 . (2.35)

Compared to the top panel, the results have shifted by only a small amount, indicating
that higher order currents only moderately modify the cross section. The uncertainty of
the total result, however, has increased significantly in particular for NLO chiral wave
functions. As we discuss in more detail below, the increase in uncertainty is caused by
a relatively large dependence of the two-body corrections on the applied wave function.
Finally, we note that the relative effect of the higher order currents seems to decrease
somewhat for larger values of the momentum transfer. This happens because of mutual
cancellations between the radius and two-nucleon corrections.

In the last two rows of fig. 2.2, we study the effects of higher order currents in more
detail. In the third and fourth row, we show, respectively, the relative contribution of
the radius and two-body currents with respect to the full result shown in the second row.
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That is,

∆(r) =
|F (0+1)

q(is) (q2)|2 − |F (0)
q(is)(q2) + F (1)

q(is),2b(q2)|2

|F (0+1)
q(is) (q2)|2

,

∆(2b) =
|F (0+1)

q(is) (q2)|2 − |F (0)
q(is)(q2) + F (1)

q(is),r(q2)|2

|F (0+1)
q(is) (q2)|2

. (2.36)

Just like the order (0) structure functions, the radius corrections do not depend on
the order of the chiral wave function nor on the applied cutoff. This can be easily
understood as the current has the same form as the order (0) one-body current apart
from the dependence on F (|q|/2mπ) ≃ (5/9)|q2|/(4m2

π)+. . . [see eq. (2.11)]. The nuclear
aspects of the calculation are therefore identical. The radius correction vanishes at zero
momentum transfer and is only −2% for q = 100 MeV.

More interesting are the two-body corrections. In contrast to one-body currents, we
obtain a significant dependence on the applied wave function. If we apply NLO wave
functions the effects of two-body currents at zero momentum transfer range from ∆(2b) =
(2±15)% when using cutoff Λ1 up to 2±3 % when using cutoff Λ2, while the other cutoffs
give values in between these extremes. This large uncertainty for all cutoffs indicates that
the two-body corrections depend on aspects of the wave function not captured by the
observables given in table 2.1. For instance, the NLO wave functions already give good
agreement with experiments as far as the binding energy, radius, quadrupole moment, and
the asymptoticD/S ratio are concerned. Increasing the order of the chiral wave functions,
we observe an order-by-order convergence of the results. Using N2LO wave functions we
still observe a significant cutoff dependence of the result ranging from ∆(2b) = (3± 4)%
for Λ1 up to ∆(2b) = (1.6± 0.8)% for Λ2, but for even higher order wave functions almost
all cutoff dependence has disappeared and we obtain stable results. This can be seen in
more detail from table B.3 given in appendix B.4.

In line with previous observations [67], we find that using the cutoff Λ2, gives rise to the
fastest convergence pattern. Since all results for different Λi are consistent once the most
accurate wave functions are applied, in the following sections, we will show results using
Λ2.

In fig. 2.3 we show the analogous plots for scattering off 3He. We do not show the results
for 3H as the main features are essentially the same (see table B.3 for numerical results of
the two-nucleon matrix-elements.) Regarding one-nucleon currents, the main difference
concerning the 2H case is that already the leading structure function has a significant
uncertainty at larger momentum transfer even for N2LO wave functions. This uncertainty
reflects the more complicated nature of three-nucleon wave functions.

The two-body contributions are smaller than in the deuteron case and significantly more
uncertain. The relative two-body correction is roughly a factor 5 smaller than for 2H.
This smallness is perhaps unexpected as the relative importance of two-body currents is
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Figure 2.2: The plots show different structure functions for isoscalar quark-DM interaction
for the 2H system at three values of the momentum transfer q. From top to bottom the
panels indicate, respectively, the leading, order (0), one-nucleon isoscalar structure functions,
the full order (0+1) isoscalar structure functions including two-body and radius corrections,
the modification in percent due to the radius corrections, and the modification in percent due
to two-body corrections. Results are shown for different chiral wave functions (NLO up to
N4LO) and for the five different cutoffs given in table 2.2. The colored bands, from outermost
to innermost, correspond to averages over all cutoffs at N2LO, N3LO, and N4LO in the wave
expansion. Results for LO wave functions are not shown because the uncertainty bands are too
large.
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Target a (fm) s (fm)
2H 0.47 1.09
3H 0.38 0.96

3He 0.39 0.98

Table 2.4: Helm form factor coefficients for the order (0) response functions for 2H and 3He.
The coefficients are fitted to F (0)

q(is) for N2LO wave functions at cutoff Λ2.

naively expected to grow with A compared to the one-body results. The smallness for
3He is probably related to the spin-isospin structure of 3He and was also observed in an
analysis of pion-nucleus scattering lengths where very similar two-body currents appear
[107, 108]. We expect two-body currents to grow in denser nuclei and aim to investigate
4He in a forthcoming study.

Independent of the size, it is interesting to study how accurate we can calculate the
two-body corrections. Like for the 2H scenario, we see that using NLO wave functions
gives rise to significant uncertainties. The accuracy improves with N2LO wave functions,
but unlike the 2H case, even with the fastest-converging cutoff, Λ2, the uncertainty on
the two-body correction is roughly 100%. At least N3LO wave functions are necessary
to obtain results distinguishable from zero.

2.4.2 Discussion

We summarize our results in fig. 2.4 where we show the full isoscalar structure functions,
the radius corrections, and the two-body corrections obtained from N2LO-N4LO wave
functions using the fastest converging cutoff Λ2. We also show results using phenomeno-
logical wave functions. As is clear from the first panel and the discussions above, the
NLO corrections to the isoscalar structure functions for both 2H and 3He are small and
the impulse approximation, i.e., neglecting all two-nucleon contributions, is excellent.
The q2-dependence of the structure functions can be parametrized by a Helm form fac-
tor [109, 110] (although this is usually done for heavier nuclei) which we fitted to our
results for the leading one-nucleon response functions. We parametrize the form factor
as

F (H)(q) = 3j1(qrn)
qrn

e−(qs)2/2 ,

r2
n = c2 + 7

3
π2a2 − 5s2 ,

c = (1.23A1/3 − 0.60)fm , (2.37)

and provide fit values for a and s in table 2.4. The fitted form factors describe the full
results well over the considered range of momentum transfer. The result is also very stable
with respect to different nucleon-nucleon potentials and, essentially, all wave functions
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Figure 2.3: The plots showsdifferent structure functions for isoscalar quark-DM interaction for
the 3He system at three values of the momentum transfer q. From top to bottom the panels
indicate, respectively, the leading order (0) one-body isoscalar structure functions, the full order
(0+1) isoscalar structure functions including two-body and radius corrections, the modification
in percent due to the radius corrections, and the modification in percent due to two-body
corrections. Results are shown for different chiral wave functions (NLO up to N4LO) and for
the five different cutoffs given in table 2.2. The colored bands, from outermost to innermost,
correspond to averages over all cutoffs at N2LO, N3LO and N4LO in the wave expansion.
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Figure 2.4: The left column shows the full order (0+1) isoscalar-quark DM structure functions
for 2H (top) and 3He (bottom). The second and third columns denote, respectively, the radius
and two-nucleon corrections as defined in eq. (2.36). The uncertainty bands correspond to
chiral wave functions at N2LO, N3LO, and N4LO (from outer- to innermost: green, blue, red).
Results from using phenomenological wave functions and for the fitted Helm form factor (left
panel only) are also shown. The phenomenological wave functions for 3He are generated with
and without TNFs.

give the same results. This is not surprising as the full structure function is dominated
by the one-body scalar currents, which were found to be independent of wave-functions.
The same holds true for the radius corrections shown in the second column of fig. 2.4.

The effects of two-body currents are summarized in the third panel of fig. 2.4. Their
magnitude is very modest in the light nuclei under consideration, and in general cases, it
should be safe to neglect them. The fact that they only provide a few-percent correction
is not in good agreement with the expected size based on χEFT power counting, which
predicts effects of O(p/Λχ) ∼ O(mπ/Λχ) ∼ (10-30)%. Despite the small size of two-
nucleon contributions, it is interesting to study the accuracy with which they can be
determined as they can become more relevant in heavier nuclei [40] (as was found in
the case of neutrino-nucleus scattering [111]), in cases where one-body contributions are
canceled against other contributions [25, 39], or for non-scalar DM interactions that
lead to spin-dependent DM-nucleus scattering [26]. Furthermore, the scalar two-nucleon
currents at zero momentum transfer provide the dominant two-nucleon contribution to
nuclear σ-terms [57], which describe the dependence of the nuclear mass on the quark
masses.

Whereas the single-nucleon contributions are very stable, we find much a larger wave-
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function dependence for the two-nucleon contributions. Using N2LO chiral wave functions
we observe a 50% uncertainty on the 2H two-body matrix-elements and 100% on the 3He
matrix-elements. Both uncertainties decrease significantly once N3LO wave functions are
applied. At this and higher chiral order, the uncertainty estimates do not include the
effects of potential higher order currents. We briefly discuss these in the next section.

Results using high-order chiral wave functions are in good agreement with phenomeno-
logical wave functions. Where AV18 predicts somewhat larger two-body corrections,
CDB is in very good agreement with the results for N3LO and N4LO wave functions.
The main advantage of applying chiral wave functions is that they allow for a system-
atic uncertainty estimate. Finally, our 3He chiral wave functions do not include TNFs
which brings in a further uncertainty not quantified by the uncertainty bands. We expect
however that TNFs do not affect the results significantly as they only mildly affect the
results for phenomenological wave functions. Furthermore, the spread of phenomenolog-
ical results with and without TNFs is of the same size as the estimated uncertainty of
our N3LO results.

It is interesting to study in more detail why the two-body current matrix-elements suffer
from large uncertainties even though the NLO and N2LO 2H and 3He wave functions
describe several observable quantities quite well (see tables 2.1 and 2.3). While studying
the two-body current matrix-elements, we observed a significant correlation between the
D-wave probability of the wave function and the two-nucleon matrix-element [defined in
eq. (B.34)]. This correlation is shown in fig. 2.5. It turns out that the correlation follows
an almost linear behavior with different slopes and interceptions for 2H and 3He. The
strong dependence of the two-body correction on the D-wave probability is also seen in
the context of pion-deuteron scattering [107, 108]. The D-wave probabilities change sig-
nificantly from N2LO to N3LO chiral wave functions, see tables 2.1 and 2.3, probably due
to the appearance of new short-range interactions in the nucleon-nucleon potential. The
connection to the D-wave probability might also be interesting for LQCD calculations
of nuclear σ-terms at non-physical pion masses [57] as larger pion masses can lead to a
suppressed nucleon-nucleon tensor force and thus a reduced D-wave probability.

The observation that two-body corrections suffer from large uncertainties when using
N2LO chiral wave functions for light nuclei might indicate that the corresponding uncer-
tainties for more complex systems can be even more significant, although further study is
required to confirm this. This observation is potentially relevant for two-nucleon correc-
tions in other contexts such as calculations of neutrino scattering off 4He and 12C nuclei
[111] using N2LO chiral wave functions obtained with Quantum Monte Carlo methods.
In any case, it is worthwhile to note that wave functions with very similar properties
regarding observables such as binding energies and electromagnetic moments, can still
lead to different two-nucleon matrix-elements.
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Figure 2.5: Correlation between isoscalar two-nucleon matrix-elements and the D-wave prob-
ability. Circles and squares correspond to 2H and 3He, respectively. The sizes of the cir-
cles and squares correspond to the sizes off the cutoff – the smallest (largest) symbols repre-
sent Λ1 (Λ5). Different colors correspond to different wave functions. A linear fit results in
⟨Jq(is),2b⟩ = 4.9 · 10−3PD − 1.2 · 10−2 for 2H and ⟨Jq(is),2b⟩ = 8.2 · 10−4PD − 4.1 · 10−3 for 3He.

2.4.3 The remaining DM interactions

Having discussed in detail the isoscalar quark-DM interactions, we now briefly turn to
the remaining terms in eq. (2.1). As is clear from the parametrization of the differential
cross section in eqs. (2.24) to (2.26), the order (0) one-nucleon contributions from strange
quark-DM and gluon-DM interactions depend on the same structure function as the
isoscalar quark-DM interactions. The order (0) results can therefore be directly read
off from the top panels of figs. 2.2 and 2.3. The differential cross sections only differ
in their overall size by the dependence on different DM couplings and strong LECs, as
indicated in eq. (2.25). Similarly, the order (1) radius corrections for the strange quark-
DM interactions can be read off from the third panels of figs. 2.2 and 2.3 after appropriate
rescaling of the q2 dependence of the strange σ-term with respect to the light-quark σ-
term [see eqs. (2.11) and (2.14)]. These radius corrections are not present for isovector
quark-DM or gluon-DM interactions until order (3) currents. Furthermore, none of the
remaining DM interactions, c̄q(iv) , cs, cG, lead to two-nucleon corrections until order (3).
We discuss one such correction below.

The only nontrivial difference with respect to the isoscalar structure functions then arises
from the isospin structure τ 3

i that appears in eq. (2.11) for the leading one-nucleon current
arising from c̄q(iv) . At zero momentum transfer, the isoscalar operator counts the number
of nucleons giving rise to the factor A2 in eq. (2.22). Similarly, at q2 = 0, the isovector
interactions count the difference between the number of protons and neutrons. This

38



2.4 Results and discussion

implies that these contributions vanish for the DM-2H scattering but contribute to DM-
3He (and 3H) scattering.

To investigate the typical size of isospin-violating corrections, we choose for the DM cou-
plings in eq. (2.1) the following values cu = cd = cχ and cs = cG = 0. This choice implies
αq(is) = 1 and αq(iv) = −δmN/(2σπN) ≃ −0.02. Because of the smallness of αq(iv)/αq(is) ,
in this scenario the dominant contribution to the scattering process arises from the one-
nucleon isoscalar current2 Subleading corrections then arise from the isoscalar radius and
two-nucleon corrections and the isovector contributions. The differential cross section is
proportional to

|F(q2)|2 =
∣∣∣∣∣αq(is)

[
F (0)

q(is)

(
q2
)

+ F (1)
q(is), 2b

(
q2
)

+ F (1)
q(is), r

(
q2
)]

+ αq(iv)F (0)
q(iv)

(
q2
)∣∣∣∣∣

2

. (2.38)

In fig. 2.6, we plot the various contributions to |F(q2)|2 for scattering off 2H (left panel)
and 3He (right panel) applying N2LO chiral wave functions using the fastest converging
cutoff. As mentioned, the main contribution arises from the isoscalar contribution, which
is depicted by F (0)

q(is) . For scattering of 2H, there are no isospin-violating corrections and
the first correction arises from the interference between the isoscalar one- and two-nucleon
contributions depicted by F (0)

q(is) − F (1)
q(is), 2b

. As discussed in more detail above, the two-
nucleon corrections suffer from significant uncertainties illustrated by the red band. The
final corrections come from the order (1) one-nucleon radius corrections and are smaller
than the two-nucleon corrections over the considered range of momentum exchange. We
do not show contributions from the square of two-nucleon or radius corrections (or their
interference) as these are smaller by orders of magnitude.

The pattern is somewhat different for 3He (and 3H which is very similar and not shown).
In this case, the largest correction arises from the interference between the isoscalar and
isovector one-nucleon terms. For the choice cu = cd this correction amounts to only
(1-2)% roughly because of the smallness of αq(iv)/αq(is) , but this can change for different
parameter choices. As discussed in the previous section, the two-nucleon contributions
are rather small and suffer from O(100%) uncertainties for 3He in the case of N2LO
chiral wave functions. Despite the large uncertainty, the two-nucleon corrections are
smaller than isospin-breaking terms. This finding is different from scattering off Xe
isotopes where two-nucleon corrections were found to be larger than isospin-breaking
corrections by roughly an order of magnitude [40] for the same choices of cu and cd. It is
not unexpected as the two-nucleon corrections are expected to grow with increasing A.
Finally, radius corrections are typically smaller than isospin-violating terms.

2 Clearly other choices for cu and cd can lead to drastically different relative contributions. For instance,
the choice cu = −cd = cχ would enhance the ratio of αq(iv)/αq(is) by a factor ε−2 ≃ O(10).
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Figure 2.6: Hierarchy of contributions to |F(q2)|2 for the choice cu = cd and cs = cG = 0 using
N2LO chiral wave functions with cutoff Λ2. The diagram displays the absolute values of the
various terms. For more explanation we refer to the main text.

2.4.4 Suppressing the leading order contributions

In specific scenarios of DM, it might occur that specific values of the DM coefficients
in eq. (2.1) lead to cancellations in the leading one-nucleon contributions to the cross
sections. In such scenarios, for instance in the framework of isospin-violating DM [112],
subleading contributions to the scattering process become relatively enhanced and crucial
to include as was argued in Refs. [25, 39, 58]. In this section, we consider such a scenario
assuming nonzero isoscalar quark-DM and gluon-DM interactions at the same time. We
set cs = 0 in this section as the strange contributions are almost degenerate with respect
to the gluon contributions.

Focusing on isoscalar and gluonic interactions, we see that the differential cross section
is proportional to

F(q2) =
(
αq(is) + αG

)
F (0)

q(is)

(
q2
)

+ αq(is)

(
F (1)

q(is), r

(
q2
)

+ F (1)
q(is), 2b

(
q2
))

+ αGF (3)
G, 2b + . . .

(2.39)
where we used F (0)

q(is)(q2) = F (0)
G (q2), see eq. (2.26). We also included the order (1)

isoscalar corrections and the order (3) two-nucleon correction arising from the DM-gluon
interactions, see eq. (2.17). We stress that the order (3) currents are not complete and
that additional contributions appear at this order.

The sizes of αq(is) and αG are unknown such that we cannot determine the relative sizes
of their contributions in a model-independent way. In this section, we investigate the
case where αG/αq(is) = r and set αq(is) = 1 for simplicity. For values of | r | ≃ 1, the
order (0) isoscalar and gluon contributions are of similar size. The power counting then
predicts that the dominant corrections arise from the order (1) isoscalar corrections,
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while the (incomplete) order (3) gluon corrections are expected to be small. As discussed
in detail above, for most values of r the leading one-nucleon contributions dominate
the scattering process and the subleading terms only provide percent-level corrections.
However, around r = −1 the leading contributions are suppressed and the subleading
terms become relatively enhanced. Clearly, such a scenario corresponds to a tuning of the
fundamental couplings cu, cd, and cG, which, admittedly, is rather ad hoc. Nevertheless,
similar scenarios have been invoked to reduce the tension between positive DM and
negative DM signals in different DM direct detection experiments. Furthermore, the
tuned scenarios make higher order corrections more relevant allowing for a test of the
chiral power counting to higher orders.

We investigate a scenario where a value of r is chosen such that the order (1) currents
corrections provide a 50% correction to the differential cross section at q2 = 0. For the
deuteron, this turns out to require r = r0 ≃ −0.96. Clearly, the choice for 50% is arbitrary
and for values of −2 − r0 < r < r0 the corrections become larger. In the top panels of
fig. 2.7 we plot | F(q2) |2 for different orders of the current for scattering off 2H using
N2LO (top-left panel) and N3LO (top-right panel) chiral wave functions. The green
line just includes the order (0) one-nucleon contribution. Because of the cancellation
between αq(is) and αG, F(q2) is suppressed by (1 + r0)2 with respect to fig. 2.6. The
blue line and band also include the order (1) two-nucleon and radius corrections. The
uncertainty for N2LO wave functions is significant, but much reduced once we apply
N3LO wave functions. By construction, the inclusion of the order (1) currents enhances
the differential cross section by 50% at zero momentum transfer, but due to the radius
corrections this enhancement becomes smaller for larger momentum transfer.

We repeat this analysis for scattering off 3He. Because the order (1) corrections are
smaller in this case, we need to further tune r = r0 ≃ −0.99 in order to obtain a 50%
correction. In this case, the uncertainties for N2LO wave functions are large enough to
cover the order (0) one-nucleon contributions (the green line), but the results improve
significantly once N3LO wave functions are applied. Radius corrections are relatively
more important such that F(q2) vanishes for |q| ≃ 90 MeV.

As discussed in section 2.3.3, the uncertainty bands do not cover the effects of missing
higher order currents. To investigate this, we also included the contributions from the
order (3) two-nucleon correction F (3)

G, 2b. The result is depicted by the red line and bands
in fig. 2.7. Although the power counting indicates that these contributions should be
suppressed by Q2 ∼ m2

π/Λ2
b ∼ 0.05 concerning the order (1) currents, they are actually

of similar size. Also, for N2LO wave functions the uncertainties are large enough to get
a result consistent with zero for both 2H and 3He. The uncertainty improves once we
use N3LO wave functions, but we still find that adding formally higher order corrections
suppresses F(q2), and thus the differential cross section, by roughly a factor 2.5 (7) for
2H (3He).

The significant impact of formally higher order contributions might seem to indicate
that the power counting is not working satisfactorily. It must be stressed, however,
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Figure 2.7: Plots corresponding to the scenario with nonzero isoscalar and gluonic DM inter-
actions discussed in section 2.4.4. The coefficient r has been chosen such that the order (1)
currents provide a 50% correction to the leading order results. We plot the square of the re-
sponse functions | F |2 (q2). The upper (lower) row represents 2H (3He) results, while the left
(right) panel corresponds to N2LO (N3LO) chiral wave functions using cutoff Λ2. The green
bands correspond to the leading contribution, while the blue and red bands include the order
(1) and order (3) currents, respectively.
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that we have not included the full order (3) currents, which would consist of many
additional terms. In particular, as discussed below eq. (2.17), the order (3) two-nucleon
current requires a structure function that appears at the same order for renormalization
purposes. Furthermore, it might be that for denser nuclei the chiral series shows better
convergence because the order (1) two-nucleon currents could be less suppressed than in
light nuclei. Nevertheless, the calculated order (3) contributions can be taken as an order-
of-magnitude estimate of the uncertainty due to higher order corrections to the currents,
indicating that scenarios, where one-nucleon contributions are suppressed, might suffer
from sizable additional uncertainties.

2.5 Summary and outlook

In this work, we have performed calculations of DM scattering off light nuclei within
the framework of chiral perturbation theory. A major aspect is that both ingredients of
the calculations, i.e., the nuclear wave functions and the DM-nucleus interactions, are
derived from chiral EFT. In this way, we can test the convergence of the chiral series and
provide a systematic uncertainty estimate that goes beyond simple cutoff variations. We
have focused for now on the lightest bound nuclei, 2H, 3H, and 3He, as these systems are
simple enough such that the bound-state and scattering equations can be solved with
direct methods to very high accuracy and precision. These nuclei are therefore great
theoretical tools to study the framework and provide the first step towards calculations
on heavier systems with other many-body methods. Furthermore, there has been a
recent interest in using helium isotopes as DM direct detection targets as light targets
are more sensitive to relatively light DM and 3He can potentially be used for directional
DM detection.

We have focused on one particular class of DM interactions at the quark-gluon level,
namely scalar interactions that can be parametrized by four parameters describing in-
teractions between light quarks, gluons, and DM particles. At leading order in the chiral
expansion, each scalar interaction gives rise to an interaction between DM and a single
nucleon, while at higher orders also two-nucleon interactions appear. Our framework
allows for the systematic inclusion of these and other higher order effects. Two-nucleon
interactions are particularly interesting as they can give rise to a different dependence
of the DM-nucleus cross section on the atomic number. In fact, we observed that two-
nucleon interactions are much larger for 2H-DM than for 3He-DM or 3H-DM scattering,
although in both cases the effects are modest.

We find that the impulse approximation, where it is assumed that the DM-nucleus in-
teractions arise from a sum of DM-nucleon interactions, works well for the scalar DM
interactions under investigation. We have provided expressions in terms of Helm form
factors fitted to our results that can be used in future studies of DM direct detection
using light-nuclear targets. The smallness of two-nucleon contributions for light nuclei,
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at the few-percent level, justifies the approach of Ref. [61] at least for scalar DM interac-
tions. The smallness of two-nucleon corrections is somewhat unexpected as they appear
at next-to-leading order in the chiral expansion indicating a relative contribution at the
(10-30)% level. The specific spin-isospin properties and/or the diluteness of light nuclei
might be the cause for this suppression, and we aim to investigate this soon with studies
of the deeper-bound 4He.

Because two-nucleon corrections are expected to grow for heavier nuclei, as explicitly
found in Ref. [40], we studied how accurate these contributions can be calculated. We
found a significant dependence on the applied nuclear wave function due to a strong cor-
relation between the D-wave probability of the considered nucleus and the two-nucleon
matrix-element. As such, at least N3LO chiral nuclear wave functions are required to
accurately calculate two-nucleon corrections. Whether this is unique to the scalar in-
teractions we investigated here or generalizes to other interactions such as vector or
axial-vector currents remains to be seen. We plan to perform such calculations in future
work. This analysis is also relevant beyond the topic of DM direct detection as two-
nucleon currents are found to be essential for, for example, neutrino-nucleus scattering
[111].

Finally, we studied a specific scenario where one-nucleon contributions are suppressed due
to a cancellation mechanism such that two-nucleon corrections become crucial to include
[25, 58]. While the systematic nature of our framework allows for controlled calculations
of such scenarios, we found that the missing higher order currents can become relevant.
However, as the currents at higher orders have not been fully developed, a more careful
analysis has to be postponed.

As becomes clear from the above discussion, much work still remains to be done. Our
calculations need to be generalized to other DM interactions along the lines of Ref. [28].
Furthermore, we need to extend the calculations to heavier nuclei. As the four-nucleon
system can be solved with methods analogous to those applied here, our first target is the
4He nucleus. This system is interesting as it is a candidate for a direct-detection target
[13] and is much denser then nuclei considered in this work. More specifically, we want to
study the correlation between the D-wave probability and isoscalar two-nucleon matrix-
elements. In recent years, major progress has been made in first-principle calculations of
light- to medium-heavy nuclei. It would be extremely interesting to use methods such as
nuclear lattice EFT [38], the Jacobi no-core shell model [113], and quantum Monte Carlo
methods [62] to perform systematic calculations on heavier systems for the fascinating
problem of DM direct detection.
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CHAPTER 3

Nuclear Lattice Effective Field Theory

3.1 Introduction

Most low-energy high-precision experiments which probe fundamental symmetries Be-
yond the Standard Model (BSM) use heavy nuclear targets. Theoretical studies of such
complex A-nucleon systems, with the number of nucleons well beyond the few-body
regime (A ≳ 3), must capture the collective quantum behavior of the individual con-
stituents. The range of nuclear targets includes Silicon (A ∼ 28), Argon (A ∼ 40),
Germanium (A ∼ 70) and Xenon (A ∼ 132) in the case of Dark Matter (DM) experi-
ments. It is especially valuable to have a variety of different nuclear test systems because
only a collection of distinctive scattering responses will be able to disentangle the more
fundamental behavior of possible DM particles. If one wants to understand fundamen-
tal symmetries and possible extensions to the Standard Model (SM) theoretically, then
one must be able to describe a variety of nuclear systems by the fundamental degrees
of freedom. One must first bridge the scale from the SM-BSM intersection to the level
of individual nucleons and secondly one must utilize nuclear many-body methods to
describe experimental systems.

The bridge between SM and individual nucleons is mostly built by exploiting an Effective
Field Theory (EFT), such as Chiral Effective Field Theory (χEFT)—which was used in
the previous chapter 2—and through numerical simulations of the SM degrees of free-
dom in terms of Lattice Quantum Chromodynamics (LQCD). Most importantly, it is
possible to systematically construct an EFT at the level of individual nucleons which can
be used to compute the Nuclear Matrix-Elements (NMEs) on the many-nucleon level.
While χEFT and LQCD will improve the knowledge about the relevance of individ-
ual nuclear-BSM interactions, at the same time many-body computations must provide
complementary information about collective few-nucleon effects.

The available toolkit for computing nuclear observables can be split in three different
regimes

1. traditional few-body methods like techniques for solving the Schrödinger, Fad-
deev[114] and Faddeev-Yakubowsky[115] equations,

47



Chapter 3 Nuclear Lattice Effective Field Theory

2. ‘ab initio’ many-body methods for example like Coupled Cluster[116] computa-
tions, the No-Core Shell Model[117], Greens Function Monte Carlo[62], In-Medium
Similarity Renormalization Group[118] and Nuclear Lattice Effective Field Theory
(NLEFT)[32],

3. many-body models1 such as the Shell Model[119] and Density Functional The-
ory[120].

To drastically simplify the idea behind many-body methods in nuclear physics: one has
to trade off the accuracy of computations by making simplifying assumptions to gain
access to larger systems. As an example, if one considers the description of individ-
ual nucleon interactions just as an input to computations—neglecting the corresponding
uncertainties—then traditional few-body methods will produce numerically exact results
for the given input. The ‘ab initio’ many-body methods usually truncate the domain
of the computation. For instance, lattice methods discretize the a priori continuous
space which enables the numerical treatment of a problem. It is essential for ‘ab initio’
many-body methods to recover the non-truncated results of computations in the limit of
removing the truncation. Concerning lattice methods, this corresponds to shrinking the
lattice spacing to zero: the so-called continuum limit. Last but not least, many-body
models make uncontrolled approximations which cannot be easily quantified. As an il-
lustration in Shell Model computations, the individual nucleons of the outermost shell
are assumed to interact with a core representing the remaining nucleons. Though predic-
tions of many-body models can qualitatively reproduce results with high precision, it is
in principle not possible to guarantee accuracy by solely relying on a single many-body
model computation only.

In addition to the tradeoff between system accessibility and accuracy of the computational
method of choice, unfortunately, one cannot take the individual interactions of nucleons
as exact input without uncertainty (in case one truly wants to make predictions for
experimental observables). However, by using Chiral Perturbation Theory (χPT) to
describe nuclear forces, it is possible to estimate and to quantify uncertainties in the
description of individual nucleons. To fully understand the collective uncertainty of
the nuclear description in many-nucleon systems, one must propagate the individual
nucleon uncertainties to the observable of choice. Thus, one must execute several many-
body computations for slightly different nuclear inputs to obtain a complete estimation
of all uncertainties. This requirement constrains the range of many-body methods of
choice. If one wants to make accurate predictions for many-body observables, then it is
crucial that the many-body method can propagate the uncertainties of individual nucleon
1 I have to emphasize the inconsistent usage of the word ‘model’ and ‘theory’ in physics. In my definition,

which formed through the accumulation of several expert opinions, the difference between a model
and a theory is that a theory provides an intrinsic framework to systematically increase its accuracy.
The enhancing of the description must be possible prior to the computation of observables. Example
candidates for theories are EFTs because of their power counting scheme. On the other hand, to
improve a model, one uses an iterative improvement scheme which enhances the description post the
computation of observables: first one computes a known observable, and secondly one adjusts the
description to match the outcome.
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interactions to the level of many-nucleon observations and the size of the many-body
method approximations can be estimated and quantified.

As mentioned above, there is a vast range of available many-body methods. However,
the choice for the remaining part of this work is the NLEFT framework for the following
reasons

1. NLEFT is a lattice theory. Thus its basis is defined by the discretization of space
and time within a finite volume. For this reason, the extraction of physical results
manifests in continuum limits2 and infinite volume extrapolations. As will be pre-
sented in chapter 5, the functional dependence is known and, in principal, can be
improved to arbitrary precision.

2. One computes the path integral for the chiral Lagrangian with nucleons as funda-
mental degrees of freedom. Thus NLEFT has the most direct link to the fundamen-
tal theory. One must not make any further simplifications to obtain the interactions
which build the basis of nuclear computations. A priori there are no constraints on
the allowed form of interactions and any few-nucleon forces can be incorporated.
Chapter 4 presents a specific example how to incorporate such few-nucleon forces.

3. Nuclear interactions must be regularized and renormalized to make it possible to
make physical predictions. In traditional frameworks, this is mostly done by intro-
ducing a cutoff. One must ask if there is a consistent way to regularize for example
two- and three-nucleon interactions. In lattice methods, the lattice spacing acts
as an ultra-violet cutoff. The lattice theory is renormalized by matching the Low-
Energy Constants (LECs) of the theory to experimental observables. On the one
hand, this correlates the lattice spacing with the nuclear description—making it
more challenging to obtain continuum results. On the other hand, this is one of
the few existing prescriptions which is able to regularize nuclear forces in an en-
tirely consistent way. There are notions on how to improve lattice actions in a
way which makes it possible to analyze the continuum limit while not affecting the
regularizations. These notions will be briefly addressed in chapter 5.

4. The introduction of Hubbard-Stratonovitch (HS) transformation on the level of the
Lagrangian enables to linearize the action in the density operator, effectively render-
ing the many-nucleon problem as many uncorrelated single-nucleon computations.
Thus, the exponential scaling in terms of nucleon degrees of freedom becomes poly-
nomial3 and much larger systems can be accessed. More will be discussed in this
and the following chapter.

2 Here, one must be more precise with the definition of continuum limits. Because it is not possible
to remove the cutoff in non-perturbative nuclear computations which make use of chiral forces, it is
even theoretically not possible to make NLEFT computation at zero spatial lattice spacing. In this
context, the continuum limit does not mean the removal of the cutoff but the removal of discretization
effects. Ideas on how to possibly disentangle these two effects will be discussed in chapter 5.

3 Note that the reduced nuclear scaling gets accompanied by a stochastic lattice integration with po-
tential sign problem.
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5. Additional to the reduced scaling in terms of involved nucleons, also the number
of quantum channels scales polynomially because one expresses the nuclear wave
function as a Slater determinant of single-nucleon wave functions—without any
approximations. The scaling is briefly mentioned in the next section.

6. Because one works with a lattice basis, it is straightforward to have massive com-
putational parallelization. For this, also see appendix C.

7. The direct link of NLEFT to other lattice methods; specifically to LQCD. The
direct connections can be used two-fold, on the one hand one can use existing
LQCD-techniques to improve NLEFT computations. On the other hand, because
both NLEFT and LQCD make use of the lattice basis, it is in principle possible
to directly match NLEFT energy levels to LQCD energy levels, circumventing the
uncertainties of the intermediate continuum4 and infinite volume extrapolations.

3.2 The NLEFT formalism

The starting point for NLEFT (see also [32]) is the lattice partition function for nuclear
observables

Z(ν)
χ ∝

∫
DψDψ∗Dπ exp

{
−S(ν)

χ [ψ∗,ψ,π]
}
. (3.1)

Hereby, ψ and ψ∗ are Grassmann numbers which represent the nucleon fields and the
real number π represents the pion field. Besides the dependence on spacetime, the
nucleon fields have two spin- (spin up and down) and two isospin-components (proton
and neutron) while the pion has three isospin-components (π+, π0 and π−). The path
integral in NLEFT is discrete in spacetime and placed inside a finite volume L4. Thus,
the path integrations can be factorized with the following definitions

DψDψ∗ ≡
∏
n∈L4

∏
s,t∈{↑,↓}

dψs,t(n) dψ∗s,t(n) , Dπ ≡
∏
n∈L4

∏
t∈{±,0}

dπt(n) . (3.2)

The action S(ν)
χ is constructed from a chiral Lagrange density and infinit volume at chiral

order ν. For example, the leading order action in terms of operators in the infinite volume

4 Even if it is not possible to do NLEFT computations for the same exact lattice spacing and Finite
Volume as LQCD, the extrapolation range and thus the propagated uncertainties are smaller compared
to the continuum and infinite volume limits.
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continuum limit must be equal to

S(LO)
χ

[
ψ̂
∗
, ψ̂, π̂

]
=
∫

d4xL(LO)
χ

[
ψ̂
∗
, ψ̂, π̂

]
(3.3)

=
∫

d4x

[
−1

2
∇π̂ ·∇π̂ − 1

2
m2

ππ̂ · π̂

+ψ̂† · i∂0ψ̂ + ψ̂† · ∆
2mN

ψ̂ − gA

2fπ
ψ̂
† · τσ ·∇π̂ · ψ̂

−1
2
cSU(4)

(
ψ̂
† · ψ̂

)(
ψ̂
† · ψ̂

)
− 1

2
cI

(
ψ̂
† · τ · ψ̂

)
·
(
ψ̂
† · τ · ψ̂

)]
.

In the above equation, the hat denotes fields (operators) which act on the Fock space,
vectors denote spatial, spin- and isospin-components of the operators and a dot denotes
the scalar product in isospin and/or spin space. The definition of the scalar product goes
as follows: neighboring objects in the same dimension have the same indices and one
sums over all open numbers, e.g.,

ψ̂
†
· τσ ·∇π̂ · ψ̂ =

∑
b,s,s′

∑
a,t,t′

ψ̂∗s′,t′(n) τa
t′t σ

b
s′s

[
∇b π̂a(n)

]
ψ̂s,t(n) . (3.4)

The remaining quantities are defined as follows:

mπ — the pion mass (mπ = 138.04 MeV),
mN — the nucleon mass (mN = 938.92 MeV),
fπ — the pion decay constant (fπ = 92.4 MeV),
gA — the nucleon axial charge (gA = 1.27),
σ — the Pauli spin matrix vector and
τ — the Pauli isospin matrix vector.

Note that the above Lagrangian has no time derivatives for pions. Thus, nucleons in-
stantaneously exchange pions, and one cannot compute matrix-elements for external pion
sources.

This chapter focuses on the effects of discretizing time. The effects of discretizing (spatial)
space within a finite volume will be discussed in chapter 5. Furthermore, this chapter fo-
cuses on another, similar but equivalent derivation of NLEFT, compared to the standard
derivation of [32].

Instead of deriving NLEFT from the path integral formalism, in a non-relativistic frame-
work one can equivalently express the idea of NLEFT by utilizing a Hamiltonian operator.
One constructs an effective potential utilizing the interactions present in the Lagrangian,
and instead of computing correlators in the path integral formalism, one can equivalently
solve the Schrödinger equation and compute observables using the eigenvectors of the
A-body Hamiltonian

Ĥ |ψi⟩ = Ei |ψi⟩ . (3.5)
The major problem with this method is the scaling in terms of involved nucleons: the di-
mension of the Hamiltonian scales with the spatial volume V squared, or equivalently size
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of the basis B squared. But because the potential operator correlates each nucleon with
another nucleon, the total space must correspond to an operator product of individual
spaces and therefore the total scaling S is non-polynomial in A. This is the reason why
traditional methods are not able to solve problems with sufficient accuracy for A > 4

S =
(

A∏
a=1
∥B∥

)2

= ∥B∥2A . (3.6)

Similarly to solving the Schrödinger equation, one can look at the large time projection
properties of the Hamiltonian

Z(T ) := ⟨ψ| exp{−ĤT}|ψ⟩ = ⟨ψ0|ψ0⟩ e−E0T + ⟨ψ1|ψ1⟩ e−E1T + · · · . (3.7)

For sufficiently large times5 T , the temporal decay of the matrix-element is dominated
by the smallest energy of the system E0. One can extract information about the wave
function or excited energy levels Ei > E0 by inserting additional operators in the matrix-
element or by explicitly manipulating the input wave function (e.g., by using Gramm-
Schmidt like procedures within the temporal propagation). For the purpose of this sec-
tion, the Hamiltonian of choice is normal ordered Ĥ = :Ĥ:—that is all annihilation
operators are promoted to the right side of an operator product. It does not make sense
to work with a non-normal ordered Hamiltonian in a non-relativistic framework. In this
context, one can exactly reproduce the starting point by discretizing time

Z(aTNT ) =
⟨
ψ
∣∣∣∣ (exp{−aT : Ĥ :}

)NT

∣∣∣∣ψ⟩ . (3.8)

Next, one expresses the exponential of the normal ordered Hamiltonian by the normal or-
dered exponential of the Hamiltonian. Expanding both expressions, it is straightforward
to show that this is equivalent up to additional corrections coming at order a2

T

Z(aTNT ) =
⟨
ψ
∣∣∣ T̂ (aT )NT

∣∣∣ψ⟩+O
(
a2

T

)
, T̂ (aT ) := : exp{−aT Ĥ} : . (3.9)

NLEFT calculations compute the matrix-elements for a given input wave function |ψ⟩
of the so-called transfer matrix T̂ (aT ) for a finite temporal spacing aT . Indeed, one can
directly proof that nuclear path integral is equal to the trace of products of transfer
matrices for different time steps [121]. The controlled approximation NLEFT makes is
that the corrections at order a2

T are assumed to be small and can be removed by an
extrapolation procedure6 with aT → 0 for NT →∞. In case of the ground state energy

5 The scale for ‘largeness’ is defined by the energy separation (E1 − E0)T ≫ 1.
6 Up to this date, NLEFT computations have only demonstrated a temporal continuum analysis for

two-nucleon systems [32]. It remains to be tested how much further many-body correlations affect the
temporal continuum limit.
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this corresponds to

E0 = lim
aT→0

lim
NT→∞

 1
aT

log


⟨
ψ
∣∣∣ T̂ (aT )NT

∣∣∣ψ⟩⟨
ψ
∣∣∣ T̂ (aT )NT +1

∣∣∣ψ⟩
 . (3.10)

At this point, one has not made any statements about the basis of choice, and therefore,
a priori there are no further benefits in computing the large-time projected matrix-
elements of the transfer matrix compared to computing eigenvalues of the Hamiltonian
from a scaling point of view. However, this reformulation of the problem allows employing
powerful tools with a better scaling in terms of ‘ab initio’ degrees of freedom.

The tool of choice is the so-called Hubbard-Stratonovitch transformation7, which can be
best explained in terms of second quantization. If the Hamiltonian of the system is com-
posed of purely non-interacting operators—one-body operators—the system is exactly
described by a Slater determinant8 of individual nucleon wave functions. Thus the total
scaling would be polynomial in terms of the involved nucleons. Moreover, this is the
basic idea of the HS transformation: rewrite two-body operators in terms of one-body
operators.

Suppose the interacting part of the system can be rewritten as

V̂ = −1
2
∑

i,j∈I

vij ρ̂iρ̂j , (3.11)

where the density operators correspond to an arbitrary pair of creation and annihilation
operators with the only constraint that any product of density operators commute under
normal ordering. In the case of nucleons the indices represent the spin, isospin and
discretized coordinates of the nucleons

i, j ∈ I ≡
{
(s, t,n)

∣∣∣s ∈ {↑, ↓} , t ∈ {p, n} , n ∈ L3
}
. (3.12)

Because the transfer matrix is a normal ordered operator, one can permute individual
terms and thus factorize transfer the matrix in terms of pairs of density operators for
each possible pair of indices. At this point one can complete the squares to obtain

T̂ (aT ) = : e−Ĥ0aT
∏

i,j∈I

(
exp

{
vij

2
ρ̂iρ̂jaT

})
: (3.13)

= : e−Ĥ0aT

√
(2π)∥I∥ det(v)

∫
dϕ exp

−1
2
∑

i,j∈I

ϕi(v−1)ijϕj +
√
aT

∑
i∈I

ϕiρ̂i

 : ,

(3.14)

7 Historically more correct, the transformation should be called Gaussian Quadrature, but for some
reason, the literature has fixated its terminology to HS transformation.

8 Or permanent in case of bosons.
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where each component of the vector ϕ is real and ∥I∥ denotes the number of elements
in I. This integral is well defined if all the eigenvalues of v are greater than zero9. Thus,
this transformation has effectively rendered the transfer matrix as a one-body operator
dependent on the auxiliary field

T̂ (aT ) =
∫

dϕP (ϕ) T̂ (1)(aT ,ϕ) , T̂ (1)(aT ,ϕ) ≡ : exp
{
−Ĥ0aT +

√
aT

∑
i

ϕiρ̂i

}
: , (3.15)

where the quadratic ϕ dependence and the determinant was absorbed in a probability
distribution P (ϕ). Expectation values of this operator can be expressed by Slater deter-
minants of individual one-body wave functions10 corresponding to a polynomial scaling
in A

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψA⟩

⇒ ⟨Ψ|T̂ (aT )|Ψ⟩ =
∫

dϕP (ϕ) det
(
⟨ψi|T̂ (1)(aT ,ϕ)|ψj⟩i,j≤A

)
. (3.16)

The action of multiple iterations of the transfer matrix for different time slices is given
by the action of the product of all one-body transfer matrices on the one-body wave
functions. For each time slice, one introduces and integrates over another auxiliary field
vector. Here one should also mention that while other methods must construct final state
quantum numbers by contracting each individual nucleon spin and angular momenta
index, NLEFT takes this into account by the definition of the Slater determinant. One
only must make sure that the trial state overlaps with the state of choice and its quantum
numbers.

At this point one has to emphasize the above derivation relied on three assumptions
only:

• the temporal continuum extrapolation is well behaved (which is guaranteed for
nuclear spectra and an appropriate choice for lattice parameters),

• the potential of the system is described by a two-body interaction and

• the (spatial) basis for the computation is discrete.

While the last point holds true for any numerical computation by definition, this also
means that one does not necessarily have to work in a traditional lattice basis (spatial
cubic volume with equal distanced lattice spacings in each direction). One could also

9 If all the eigenvalues of v are smaller than zero, one can substitute v = −v and thus the linear term
in the density in eq. (3.14) becomes imaginary.

10 One has to stress that the size of the Hilbert space is not reduced in this case. The HS transformation
just allows selecting a subspace which is sufficient to completely describe the action of one-body
operators. Nevertheless, the action of the operator within the subspace is equivalent to the action of
the operator in the whole space.
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picture scenarios where one describes the operators in proper eigenfunctions of the sys-
tems like Kohn-Sham orbitals for molecular systems or also Harmonic Oscillator states
for Shell Model applications.

The second point is more critical in terms of the proposed analysis of DM NMEs because,
as described in the previous section, it is essential to include chiral high-order wave
functions systematically. For wave functions at Next-to-Next-to-Leading Order (N2LO),
one already has to include Three-Nucleon Forces (TNFs). In the next chapter, an idea on
how to generalize the HS transformation to include general N -body forces is presented.
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We present a general auxiliary field transformation which generates ef-
fective interactions containing all possible N-body contact terms. The
strength of the induced terms can analytically be described in terms
of general coefficients associated with the transformation and thus are
controllable. This transformation provides a novel way for sampling 3-
and 4-body (and higher) contact interactions non-perturbatively in lat-
tice quantum Monte Carlo simulations. As a proof of principle, we show
that our method reproduces the exact solution for a two-site quantum
mechanical problem.



Chapter 4 Sampling general N-body interactions with auxiliary fields

4.1 Introduction

The introduction of auxiliary fields, e.g., via the Hubbard-Stratonovitch (HS) transfor-
mation [122, 123], as a means of linearizing the interaction term of the Hamiltonian in
terms of its density operator is common practice in many areas of theoretical physics,
and is particularly prevalent in condensed matter and nuclear physics [124, 125]. Upon
linearization of the theory, the problem becomes that of many particles undergoing one-
body interactions with the fluctuating background auxiliary field. In occupation number
formalism, the problem becomes very similar to that of non-interacting (amongst them-
selves) particles, which in some cases can be evaluated via steepest-descent methods
(e.g. 1-D Ising model). At the very least, the transformation greatly facilitates numeri-
cal treatment of the many-body problem [33, 62, 126, 127]. In path integral formalisms
that involve Grassmann fields, the transformation is essential as it reduces the Lagrangian
to terms bilinear in fermionic fields, which can subsequently be integrated out exactly
via Grassmann gaussian integration (e.g. bosonization of fermionic theories [128]). The
HS transformation is ideal for theories that initially have 2-body interactions (i.e., terms
quadratic in the density operator). In principle, many-body interactions can be linearized
through recursive application of the HS transformation, but at the cost of introducing
numerous auxiliary fields. Also, in the framework of time-dependent mean-field theory,
Ref. [129] worked out how the HS transformation can be utilized to describe many-body
interactions through a non-linear effective interaction. In contrast, in this Letter, we
present a way to linearize the effective interaction and provide explicit derivations for
this transformation. A transformation that naturally includes 3-body interactions, for
example, would be beneficial for studying ultra-cold gases of polar molecules, where
3-body (and higher) interactions can be tuned to become dominant [130, 131].

In this Letter, we detail a generalization of the HS transformation that includes two-body
and all possible higher contact interactions that involves only one auxiliary field. The
standard HS transformation can be viewed as a particular limit of this general transfor-
mation. Our transformation, in principle, induces all possible n-body interactions λ(n)ρ̂n

where ρ̂ is the density operator. The coefficients λ(n), which are known as low energy
coefficients (LECs) in an Effective Field Theory framework, are analytically determined
and controllable through a set of accompanying coefficients cj. These coefficients cj con-
trol the coupling of the density operator with the jth power of the auxiliary field in the
linearized theory. The numerical implementation of this transformation is trivial as the
sampling of the fields can be obtained from known distributions. For 2-flavor fermionic
systems (e.g., nucleons), this transformation allows for complete control of contact inter-
actions up to 4-body in nature.
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4.2 Formalism

Consider the following integral which is intended to correspond to the interacting part
of a partition function at a single space-time point

Zc,N ≡
∞∫
−∞

dϕPN(ϕ) exp

−
2N−1∑
j=1

cjϕ
j ρ̂

 , (4.1)

where PN(ϕ) is the normalized probability distribution

PN(ϕ) = N

Γ
(

1
2N

)e−ϕ2N

. (4.2)

Here, ϕ is an auxiliary field which couples to the fermionic density operator1 ρ̂ = ∑
f ψ̄fψf ,

where f = 1, · · · , F runs over the different fermion species at a given site, N ≥ 1 and the
coefficients cj can be complex in general. Also, for the integral to converge, the leading
exponent is not allowed to be odd in ϕ. Because the density operators at different
spacetime points commute, we present only the derivation for a single point.

The argument of the exponential in eq. (4.1) describes interaction vertices with an in-
coming and outgoing fermionic field (the density operator) and from one to 2N − 1
auxiliary fields associated with interaction strength cj. The integral is normalized such
that Zc,N → 1 for cj → 0. The result of the integration over the largest exponent of ϕ
times another polynomial in ϕ is given by

∞∫
−∞

dϕ e−ϕ2N
ϕ2k =

Γ
(

1+2k
2N

)
N

N→∞−→ 2
1 + 2k

, ∀k ∈ N0, N ∈ N . (4.3)

It is sufficient to only consider polynomials in even powers of ϕ because of the symmetry
of the integration – odd powers vanish.

In this work we identify the integral Zc,N with an effective action consisting of general
2k-fermionic field vertices

Zλ ≡ exp
{
−
∞∑

k=1
λ(k)ρ̂k

}
. (4.4)

To emphasize different notations in the following context: an object with upper index
without parenthesis denotes the power of an object (e.g. ρ̂k), while an object with upper
1 In this work we concentrate on central interactions. It would be an interesting exercise to extend the

framework to more general interactions corresponding to quantum number dependent densities like
ρ̂i ≡ ψ̄Γiψ by introducing an auxiliary field ϕi for each matrix component i. Eventually, the coupling
coefficients cj must be replaced by tensors structures to form scalar quantities. As an example, Γi

could represent a Pauli spin matrix for nucleon degrees of freedom. However, this task is beyond the
scope of this work.
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index within parenthesis corresponds to a label for the object within a given set (e.g.
λ(k)). We expand Zc,N and Zλ in powers of the density operator ρ̂ and systematically
match order-by-order, relating the auxiliary field interactions to the induced many-body
forces. Using Faà di Bruno’s formula [132] we find that

Zc,N =
∞∑

M=0
Z(M)

c,N ρ̂M , (4.5)

Z(M)
c,N =

⌊(2N−1)M/2⌋∑
k=⌈M/2⌉

Γ
(

1+2k
2N

)
Γ
(

1
2N

) ∑
m∈M(2k)

NM

2k∏
j=1

[
(−cj)mj

mj!

]
(4.6)

where the sum runs over the set

M(2k)
NM =

m ∈ N2k
0

∣∣∣∣∣∣
 2k∑

j=1
j mj = 2k

 ∧
 2k∑

j=1
mj = M

 ∧ (j ≥ 2N ⇒ mj = 0)

 , (4.7)

and

Zλ =
∞∑

M=0
Z(M)

λ ρ̂M , Z(M)
λ =

∑
m∈M(M)

M∏
k=1


(
−λ(k)

)mk

mk!

 (4.8)

where the sum in Z(M)
λ is over the set

M(M) =
{
m ∈ NM

0

∣∣∣∣∣
M∑

k=1
kmk = M

}
. (4.9)

As the highest coefficient λ(k) (in terms of k) in eq. (4.8) is given by λ(M) and is also
linear in exactly this coefficient (because if mM = 1 then mj ̸=M = 0), one can recursively
determine all coefficients λ(M) for M > 0 by

Z(M)
λ = −λ(M) + Z(M)

λ

∣∣
λ(M)→0 = Z(M)

c,N , Z(1)
λ

∣∣
λ(1)→0 = 0 . (4.10)

Note that one can prove by induction that each coefficient λ(M) is proportional to a sum
where each term is a products ofM fermion auxiliary-field coefficients2: λ(M) ∝ cj1 · · · cjM

.
Furthermore, when matching both expansions in eq. (4.10), in general, it is not possible
to guarantee that terms at higher orders M , with M larger than the number available
coefficients M > (2N−1), agree. Thus, one can only guarantee that forces are correctly
induced up to order (2N−1), and therefore one must pick N large enough to reproduce
all relevant forces; e.g., (2N−1) ≥ F . If this is the case, than any normal ordered matrix-
elements with expansion coefficients in eqs. (4.6) and (4.8) with M > (2N−1) must result
in zero, and thus matrix-elements of the expansions agree to all orders.

2 Because each fermion-auxiliary field interaction has exactly one incoming and outgoing fermion line,
a diagram with M incoming and outgoing fermion lines (and without fermion loops) must be propor-
tional to exactly M vertices and thus M different cj coefficients.
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N = 1 N = 2 N =∞, cj>3 = 0

λ(1) 0 γ3,1c2
1
3c2

λ(2) − 1
4c

2
1 −

(
1
8 −

γ2
3,1
2

)
c2

2− 1
4c1c3− 1

2γ3,1c
2
1− 3

8γ3,1c
2
3 − 1

6c
2
1 − 2

45c
2
2 − 1

5c1c3 − 1
14c

2
3

λ(3) 0
(

1
8 −

γ2
3,1
2

)
c2

1c2 +
(

5
32 −

3γ2
3,1
8

)
c2c

2
3

2
45c

2
1c2 + 8

2835c
3
2 + 8

105c1c2c3 + 2
63c2c

2
3

+ 1
2γ3,1c1c2c3 + 1

3γ
3
3,1c

3
2

λ(4) 0
(

γ2
3,1
8 −

1
96

)
c4

1 − γ3
3,1
2 c2

1c
2
2 −(

3
64 −

3γ2
3,1

16

)
c2

1c
2
3

1
180c

4
1 + 4

14175c
4
2 + 1

105c
3
1c3 − 52

10395c
2
2c

2
3 −

5
7644c

4
3

−γ3,1
8 c1c

3
3 −

(
1
8 −

γ2
3,1
2

)
c1c

2
2c3 −

γ3,1+3γ3
3,1

8 c2
2c

2
3

− 4
945c

2
1c

2
2+ 13

3150c
2
1c

2
3− 16

1575c1c
2
2c3− 1

1155c1c
3
3

−
(

1
192 −

γ4
3,1
4

)
c4

2 −
(

15
512 −

9γ2
3,1

128

)
c4

3

Table 4.1: We show the results of the matching for N = 1, N = 2, and N = ∞ with all
cj>3 = 0. The first column is the Hubbard-Stratonovich case, which produces only a two-body
interaction. We repeatedly used Γ(x) = (x − 1)Γ(x − 1) to simplify many N = 2 coefficients,
and use the shorthand γ3,1 = Γ(3/4)/Γ(1/4). We provide a Mathematica notebook useful for
generating the λ(M) for a given N in the Supplementary Material [3].

In table 4.1 we show the coefficients of the induced forces up to the order of four-body
forces (M = 4) for three different choices of N .

To avoid numerical sign problems, one hopes to find a set of cj that are all real for a given
set of λ(1) . . . λ(M). Identifying when this is possible is known as the truncated Hamburger
moments problem[133, 134], and the solution is to consider the square matrices

Λ(k)
ij = (i+ j)!×Z(i+j)

λ , (4.11)

where i and j start at 0 and each go to k. When the determinants of all the Λ(k) are
positive for k from 1 to ⌈M/2⌉, one can find a set of entirely real cj. When M is odd,
one may include λ(M+1) and adjust it to help satisfy the positivity conditions. The
determinants of the first Λ(k) for the first two k are

det Λ(1) = −2λ(2) (4.12)

det Λ(2) = −4
(

4
[
λ(2)

]3
+ 9

[
λ(3)

]2
− 12λ(2)λ(4)

)
,

and we see that requiring the determinant of Λ(1) to be positive means requiring an
attractive two-body force, a familiar result from the Hubbard-Stratonovich case.
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4.3 Numerical results
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Figure 4.1: E(τ)/κ for different systems. All systems were studied with 2× 108 measurements.
Some systems show a Signal-To-Noise problem and others yield an easy extraction of a con-
stant plateau in the long-time limit. The left panels all show two-fermion systems and the
corresponding right panels show the three-fermion systems with the same parameters. In the
top (middle) [bottom] two panels we show a system with repulsive (absent) [attractive] two-
body forces. Red (blue) [green] points correspond to repulsive (absent) [attractive] three-body
forces. The blue points were sampled according to the HS distribution P1 and the other points
according to P∞. The data in the middle two panels were generated with P∞ and coefficients
cj = 0 for j > 3 tuned to exactly cancel the two-body force, and we show dashed lines for the
corresponding non-interacting energies.

To demonstrate the efficacy of our transformation, we consider a system of 3 different
fermion species f interacting on a two-site model (with sites {0, 1}) with the following
Hamiltonian,

Ĥ = κ

−3
3∑

f=1

∑
⟨i,j⟩

âf,iâ
†
f,j + λ(2) ∑

i∈{0,1}
ρ̂2

i + λ(3) ∑
i∈{0,1}

ρ̂3
i

 , (4.13)
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where â†f,i (âf,i) is a creation (annihilation) operator for a fermion of species f at site i and
ρ̂i = ∑

f â
†
f,iâf,i is the number operator at site i. Here the sum over ⟨i, j⟩ ∈ {(0, 1), (1, 0)}

represents nearest neighbor hoppings between the two sites, and κ is a dimensionful
parameter that sets the dynamical scale of our problem. As is evident in eq. (4.13), λ(2)

and λ(3) represent the size of two- and three-body interactions (relative to κ), respectively,
and are dimensionless. A positive (negative) value of λ(i) indicates a repulsive (attractive)
interaction. We quote results in units of κ. The two-site model can be diagonalized and its
spectrum directly determined from its eigenvalues. We use the transfer matrix formalism
[33] to obtain this spectrum3. With the spectrum in hand, we compare these results with
those obtained from a stochastic lattice projection calculation [33] where the introduction
of auxiliary fields via our transformation is needed. A detailed description of these
calculations is in preparation [135]. In what follows, we give a succinct description.

The projection method extracts the lowest energy level E in the spectrum of the system
via

E = − lim
τ→∞

∂τ logZ[τ,ΨT ] , (4.14)

where Z is given by

Z[τ,ΨT ] ≡ ⟨ΨT |e−τ :Ĥ:|ΨT ⟩ =
∫ (∏

x

dϕxPN(ϕx)
)
K[τ,ϕ, cj,ΨT ], (4.15)

ΨT is an initial trial wavefunction, and ϕ indicates the collection of all ϕ over x, all space
(both sites) and time from 0 to τ .

After discretizing time τ → aτNτ , the exponential of the normal ordered Hamiltonian gets
replaced by the normal ordered exponential of the Hamiltonian—the so-called transfer
matrix[33]. This introduces a quadratic error in the time discretization

e−aτ :Ĥ: = : e−aτ Ĥ : +O(a2
τ ) . (4.16)

In the last step of the eq. (4.15) we have applied our transformation with its associated
probability distribution PN(ϕ) at each spacetime point and introduced K which is a func-
tional of ϕ and depends explicitly on the coefficients cj, the trial wavefunction ΨT , and
the time separation τ . The form of PN(ϕ) depends on the order N of the transformation
that is applied. For the work presented here, we consider the two extreme cases

N = 1 P1(ϕ) = 1√
π

exp
(
−ϕ2

)
(4.17)

N =∞ P∞(ϕ) =

1/2 |ϕ| < 1
0 otherwise

(4.18)

3 We compare the spectrum obtained from the transfer matrix (instead of direct diagonalization of the
Hamiltonian) since it incorporates lattice discretization effects. This enables a direct comparison with
our lattice projection calculations.
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Chapter 4 Sampling general N-body interactions with auxiliary fields

The case N = 1 corresponds to the gaussian distribution of the original Hubbard-
Stratonovich transformation (and thus only λ(2) is nonzero), whereas for N = ∞ we
have uniform sampling and in principle all allowed many-body contact interactions. In
the N =∞ case, there are in principle an infinite number of cj—we set them all to zero
for j > 3.

As our trial wavefunction for multifermion systems |ΨT ⟩ we pick a direct product state
of single-particle ground state wavefunctions, |ψf⟩ = 1√

2 [a†f,0 − a
†
f,1]|0⟩ for each flavor f .

The direct product structure allows us to write the functional K in eq. (4.15) as

K[τ,ϕ, cj,ΨT ] =
(
K−1[τ ;ϕ, cj]

)α
(4.19)

where α is the number of fermion types and

K−1[τ ;ϕ, cj ] = 1
2

(
K−1[0, τ ; 0, 0;ϕ, cj ]−K−1[0, τ ; 1, 0;ϕ, cj ]

−K−1[1, τ ; 0, 0;ϕ, cj ] +K−1[1, τ ; 1, 0;ϕ, cj ]
)
, (4.20)

After introducing a time discretization τ = aτ t, the K matrix is given by

K[i, t; i′, t′;ϕ, cj] ≡ δi,i′δt,t′ + aτδ⟨i,i′⟩δt,t′+1 + δi,i′δt,t′+1
(
c1ϕi,t + c2ϕ

2
i,t + c3ϕ

3
i,t − 1

)
.

(4.21)

Here we have used the fact that we let cj = 0 for j > 3. We attach the indices i and
t on the auxiliary field to indicate that there exists auxiliary fields for each spatial and
temporal point.

Because we work with discretized time, we analyze the discretized version of eq. (4.14),

E(τ) ≡ − 1
aτ

log
(
Z[τ + aτ ,ΨT ]
Z[τ,ΨT ]

)
(4.22)

and search for constant plateaus at long times to numerically determine the τ → ∞
limit.

In fig. 4.1 we show the numerical results of E(τ)/κ for combinations of λ(M) where
λ(2) ∈ {±1.74, 0.0} and λ(3) ∈ {±0.245, 0.0} for two and three-fermion systems. For
calculations with λ(3) = 0.0, ϕ was sampled according to the HS distribution P1 and
all other calculations sampled according to P∞. The solid lines correspond to the exact
answers from diagonalization of the transfer matrix, and the dashed lines correspond
to non-interacting energies. We note that for all two-fermion calculations, both N = 1
and N =∞ calculations agree with each other, regardless of the value of λ(3), since the
3-body interaction plays no role. Furthermore, with λ(2) = 0.0 but nonzero λ(3), the
two-fermion system reproduces the non-interacting result. In the three-fermion system,
the effects of λ(3) are apparent and agree well with exact diagonalization.
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Note that the coefficients cj can be complex in general. The bottom row of fig. 4.1 (with
negative λ(2), corresponding to an attractive two-body force) satisfies the determinant
conditions and has the cleanest statistical results since we have chosen a set of only real c
coefficients. The other rows have statistical fluctuations that are harder to tame, which is
unsurprising as they violate the determinant conditions and have complex c coefficients.
A quantitative analysis will be given in [135], as well as an analysis of signal-to-noise
behavior for the different systems.

4.4 Summary and discussion

The HS transformation has been a useful tool for making analytic and numerical progress
in problems of physical interest and is a special case of the transformation described in
this work. Our transformation, which uses a self-interacting auxiliary field, allows for the
direct inclusion of controllable many-body forces into numerical calculations.

Choosing a degree of auxiliary field self-interaction fixes the sampling distribution and
limits the types of fermion/auxiliary-field interaction vertices. These interactions, in
turn, generate a slew of n-body forces. Sampling a normal distribution for the auxiliary
field recovers the original HS transformation, while uniform sampling in principle allows
for the independent control of all possible n-body forces, while intermediate distributions
yield correlated forces.

We have demonstrated that on a two-site model, different sampling techniques reproduce
the exact results in a variety of cases, correctly handling all combinations of attractive,
repulsive, and absent two-body forces with attractive and repulsive three-body forces.
While even the agreement of the one-body energies found with the different methods is
nontrivial, the agreement of the two-body systems between methods and agreement of
three-body systems with exact results indicate a solid understanding and definite control
over many-fermion interactions.

Similar to the situation of the original HS transformation with repulsive two-body inter-
actions, there exist certain combinations of many-body forces which are only achievable
with complex cj. Such cases are in general susceptible to numerical sign problems for any
auxiliary field distribution [134], though this is not guaranteed and in some systems can
be avoided [136, 137]. Because the c coefficients appear nonlinearly in the higher-body λ
coefficients, there is not a unique set of cs that yield a particular set of λs. However, one
may still use the determinant conditions [eqs. (4.11) and (4.12)] to check whether a set
of forces described by a set of λs suffers from a sign problem arising from complex cj.

It would be interesting to consider sampling by more generic functions such as PN(ϕ) =
exp(−∑n α

(n)ϕn) with multiple tuneable ϕ self-interactions, or cases where ϕ is restricted
to only a finite set of values, such as ±1. For field-theoretic applications, it may prove
fruitful to understand how the renormalization of different λ(M) control renormalization
of the parameters cj.
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Chapter 4 Sampling general N-body interactions with auxiliary fields

We expect our transformation to be useful in a variety of physical systems where many-
body interactions are relevant. Numerical applications may include density functional
theory approaches to nuclear physics [138], the nonperturbative inclusion of multinucleon
forces into Nuclear Lattice Effective Field Theory (NLEFT) which might unlock precision
characterizations of halo nuclei, the study of systems near the Efimov threshold such as
cold atoms (see Refs. [139, 140] and references therein), systems at high density, and any
other system where contact interactions need stochastic implementation.
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CHAPTER 5

Currents within a box

5.1 Introduction

As it was demonstrated in chapter 2, Dark Matter (DM)-nuclei scattering observables can
be parameterized as Nuclear Matrix-Elements (NMEs) of external DM-current operators
Ĵχ and nuclear states ψN ⟨

Ĵχ(q)
⟩

=
⟨
ψN

∣∣∣ Ĵχ(q)
∣∣∣ψN

⟩
. (5.1)

The external DM current operator Ĵχ in general depends on the external momentum
exchange q. The most simple exchange current, the isoscalar light quark exchange cur-
rent at leading order Ĵ (LO)

q(is) , is simply given by an one-nucleon contact interaction (see
fig. 2.1(a)), which shifts the momentum of one of the nucleons. For a two-nucleon bound
state this results in

⟨
Ĵ

(LO)
q(is) (q)

⟩
=
∫ d3p

(2π)3

∫ d3p′

(2π)3 δ
(3)
(
p′ − p− q

2

)
ψ∗ (p′)ψ(p)

=
∫ d3p

(2π)3ψ
∗
(
p+ q

2

)
ψ(p) =

∫
d3x exp

{
ix · q

2

}
|ψ (x) |2 , (5.2)

where the current coupling constant has been set to one in respective units. The vectors
p and x represent the relative particle coordinates, e.g. the relative momentum in terms
of its single nucleon momenta is given by p = (p1− p2)/2. Moreover, because this NME
corresponds to an one-nucleon operator, the exchange-momentum q is divided by two.

Even though this current operator is relatively easy to implement, it is the most dom-
inant operator for scalar DM scattering observables. Compared to the corresponding
two-nucleon currents, it makes up more than 97% of the differential cross section for
light nuclear targets [chapter 2] and at the order of 80% for a Xenon target [40]. This
supposed to remain true for other potential DM-quark or gluon interactions, e.g., spin-
dependent interactions, because two-nucleon operators are predicted to appear at higher
chiral orders as in the case of scalar DM interactions.

69



Chapter 5 Currents within a box

The objective of this chapter is to understand how to compute such current matrix-
elements for nuclear bound-states on a lattice within a Finite-Volume (FV)—in the
following I will denote this by box. An example of a nuclear box analysis of matrix-
elements was carried out by [141] in the case of radiative capture reactions. As discussed
in chapter 3, the advantage of box computations, compared to traditional methods, is
the improved scaling of resources in terms of involved degrees of freedom. In principle, it
is possible to express all theory-space truncations by the finite (spatial) volume L3 and
lattice spacing aL, which enables the reduction or removal of the effects of all unphysical
simplifications/approximations. To express it more directly: the box prescriptions are
defined by their limits—FV and lattice discretization procedures are formulated such
that in the infinite volume and continuum limit, one recovers the physical results

⟨Ĵphys⟩ = lim
aL→0

lim
L→∞

⟨ĴaL,L⟩ . (5.3)

Note that the spatial continuum limit is generally not obtainable in Nuclear Lattice
Effective Field Theory (NLEFT) because nuclear forces must be regularized—which is a
priori done by the spatial lattice spacing. If one wants to take the continuum limit, one
must disentangle the discretization effects from the cutoff effects. The most common ideas
are the introduction of an additional cutoff which is independent of the lattice spacing,
or the improvement of the implemented operators such that one reduces discretization
effects. These two procedures are described in this chapter. Even if one does not execute
a continuum limit in actual computations, the analysis presented in this chapter can be
useful to estimate the magnitude of uncertainty coming from the discretization.

An additional idea for executing the continuum limit in NLEFT computations without
introducing another cutoff involves estimating the uncertainty due to the chiral trunca-
tions. As a starting point for this idea, one can picture the following scenario: suppose
one finds a range of spatial lattice spacings where observables are independent of the
cutoff. The variation of the lattice spacing just changes discretization effects. If one
can find such a range, then one could make a continuum extrapolation which does not
remove the cutoff. It only accounts for discretization effects. In praxis, it is generally
not possible to find such a range in which no cutoff effects are observable. However,
one knows that the cutoff dependence should decrease if one increases the chiral order
of the nuclear interactions. Thus, similar to the uncertainty estimation in section 2.3.3,
one could take raw lattice data at a finite lattice spacing but at different chiral orders
to estimate the chiral truncation uncertainty. This uncertainty estimation includes the
uncertainties coming from the cutoff (or the chiral breakdown scale to be more precise).
If this chiral truncation uncertainty estimation is accurate, then these raw data points
are—within their uncertainty—independent of the cutoff. Thus one can propagate these
uncertainties and execute the continuum limit. It remains to be tested if one can suc-
cessfully implement such an uncertainty estimation scheme to compute observables in
the continuum limit in NLEFT.

This procedure is illustrated in fig. 5.1 for synthetic lattice data which was generated
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according to

X(ν)(aL, Q) = Xexp

[
1 +

Na∑
n=1

∆X(2n)
aL

(γaL)2n +
Nν∑

m=ν

∆X(m)
ν (aL)Qm

]
, (5.4)

where: X(ν)(aL, Q) — is the chiral observable at order ν (for the LO one has ν = 2 and
increments by one afterwards),

Q — is the chiral expansion parameter (Q ∼ mπ/Λb ≈ 130/500),
γ — is a problem relevant energy scale (e.g., γ ∼

√
mNED ≈ 50MeV),

∆X(2n)
aL

— are the discretization errors without cutoff dependence (which are
removable by a continuum extrapolation). These uncertainties
follow an uniform distribution ∆X(2n)

aL
∼ U(0.2, 0.6),

∆X(m)
ν (aL) — are the a priori cutoff dependent chiral truncation uncertainties

(which are not defined at aL = 0). Different uncertainties are
generated for each of the lattice spacings and follow an uniform
distribution: ∆X(m)

ν (aL) ∼ U(−0.7, 0.7).

The boundaries of the uniform distributions as well as the series truncations (Na = 3
and Nν = 5) are arbitrarily chosen in problem relevant dimensions.
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Figure 5.1: Schematic illustration for the idea on how to do a continuum limit extrapolation—
with the objective to eliminate discretization effects—in NLEFT. At first one must compute
the observable X(ν)(aL) at different chiral orders ν = {LO, NLO, N2LO, · · · } and at different
lattice spacings aL [diagram (a)]. Next, one must estimate the chiral truncation uncertainty
[diagram (b)] in a similar spirit as was presented in section 2.3.3. From this, one can propagate
the chiral uncertainty, which incorporates the effects of the theory cutoff, by extrapolating to
the continuum [diagram (c)]. The dashed line corresponds to the (in this case known) effects
of discretization without cutoff dependence and the deviations from this line are effects of
the chiral truncation errors. This plot was created using synthetic data generated according
eq. (5.4). It remains to be shown if it is possible to repeat this analysis in a meaningful way for
actual nuclear lattice data [more specifically, if eq. (5.4) indeed describes nuclear lattice data].
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Chapter 5 Currents within a box

Ideally, one would like to analytically describe the FV and continuum limit convergence
pattern and thus either estimate the size of uncertainties or even use different information
to extrapolate to the physical limit. In the best case scenario, one can find a functional
dependence of the convergence pattern which scales independently of the exact shape of
the current and wave functions. This desired scaling independence does not mean that
the NMEs of the currents are independent of the current or wave function; just that
the scaling of the result in aL or L behaves similarly for different currents and wave
functions. Indeed, this convergence pattern will depend on how one discretizes space,
e.g., on the specific implementation of the derivative, or how one limits the spatial extent,
for instance by choosing the boundary conditions of the volume. But, if the NMEs of
the currents of interest are regular, e.g., that the kernel of the integral in eq. (5.2) is
smooth, and the wave function is finite in extent (which is the case when ψ(x) goes
exponentially fast to zero for x > L/2), then it is the hope that the aL- and L-scaling
of the convergence pattern is relatively independent on the explicit form of nuclear wave
function and currents.

This chapter presents a feasibility study for nuclear currents within a box with the goal
to estimate uncertainties coming from the box prescription, to find the parameter space
needed for accurate computations and to identify possible bottlenecks or showstoppers
for large-scale stochastic many-nucleon computations.

5.2 Analytical solutions to separable potentials

In this section an analytically soluble separable potential

⟨p′|V̂ |p⟩ = V (p′,p) = −g∗(p′)g(p) , (5.5)

which mimics short-ranged nucleon-nucleon interactions, is chosen to determine a nuclear
bound-state wave function and to compare analytical solutions to the corresponding
numerical FV lattice counterparts.

5.2.1 Two-body solutions to separable potentials

As the start pointing one solves the Schrödinger equation in the infinite volume and
continuum

p2

2µ
ψ(p)−

∫ d3p′

(2π)3 g
∗(p)g(p′)ψ(p′) = EB ψ(p) , EB < 0 , (5.6)

where µ = mN/2 is the reduced two-nucleon mass and EB is the binding energy of the
state, e.g. fixed to the binding energy to the Deuteron EB

!= ED = −2.225MeV. From
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5.2 Analytical solutions to separable potentials

the previous equation one can infer that the integral over the potential is a constant

G ≡
∫ d3p′

(2π)3 g(p
′)ψ(p′) , (5.7)

times the separable part of the potential g∗(p). Thus, one can factorize the solution for
the wave function and solve the problem recursively

ψ(p) = Gg∗(p)
p2/2µ− EB

⇒ G =
∫ d3p

(2π)3 g(p) Gg∗(p)
p2/2µ− EB

⇒ 2µ
∫ d3p

(2π)3
| g(p) |2

p2 + γ2 = 1 ,

(5.8)

where γ2 = −2µEB is the binding momentum. Since the denominator of eq. (5.8) is
independent of the direction of p, it is useful to first compute the angular integration
before solving the integral equation for the binding momentum

∞∫
0

dp
2π
p2 Γ(p)
p2 + γ2

!= 1 , Γ(p) ≡ 2µ
(2π)2

∫
dΩ | g(p) |2 ≥ 0 . (5.9)

5.2.2 Specific choice of potential

The chosen potential for the comparisons between the physical and the box results is
defined by its separable part

g(p) = ḡ
√

8π M4

(p2 +M2)2 , M, ḡ ∈ R . (5.10)

In principle the choice is arbitrary, but to guarantee that the potential behaves smoothly
in the ultra-violet limit, e.g., under discretization, one must avoid singularities. In coor-
dinate space, the potential will have the from

⟨r′|V̂ |r⟩ = | ḡ |2 f(M,γ) exp {−M(r + r′)} , (5.11)

which is always finite for finite M (no r → 0 divergency). The usual Yukawa like
denominator would result in a 1/r scaling in coordinate space. The M4 numerator
is chosen to mimic contact interactions. If one takes M → ∞, the potential would
be constant in p and p′ and thus correspond to a delta function in coordinate space.
However, to reproduce the Deuteron binding energy, one must solve eq. (5.9) and match
ḡ

Γ(p) = | ḡ |2 16M8µ

(p2 +M2)4 ⇒ ḡ
!= 2(γ +M)2√

µM3 (γ2 + 5M2 + 4γM)
. (5.12)
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The correlation of ḡ with M can be interpreted as a renormalizing procedure for the
potential, if one views M as a regulator. However, for finite M , the problem is well
defined and a priori one has not introduced any external regulators like cutoffs. This
choice for the potential allows to make continuum limit extrapolations in the discretized
form of this problem. Nevertheless, as will be pointed out later on, M needs to be
sufficiently large compared to the box parameters in order to ensure infinite volume
convergence, but sufficiently small to ensure continuum convergence.

Since the potential is now fixed, one can compute the proper normalized wave function
in momentum and coordinate space

ψM(p) =
√

8M5(γ +M)5

8M2 + 5γM + γ2
1

(M2 + p2)2

√
8πγ

(γ2 + p2)
M→∞−→

√
8πγ

(γ2 + p2)
,

ψM(r) =
∫ d3p

(2π)3 e
ip·r ψM(|p |) = 4π

(2π)3

∫
dp p2 sin(pr)

pr
ψM(p) M→∞−→

√
γ

2π
e−γr

r
.

(5.13)

Note that the asymptotic expressions have the correct M →∞ behavior which matches
the result of delta function potentials. The densities of the wave functions for different
values of M (colors) are visualized in the two left diagrams in fig. 5.2 (regular plot and
log-plot). As is evident from the long-range part of the wave function plot, for sufficiently
large r, the density decays exponentially to zero (with slope γ). Only for values with
M ≈ γ, the asymptotic behavior of the potential affects the wave function itself, and
thus one sees a mixed convergence pattern. Furthermore, fig. 5.2 demonstrates that the
short-range aspect of the potential (the size of M) dictates the extension of the wave
function—for large values of M , the density is sharply peaked, while small values of M
broaden the structure.

Finally, inserting the results of eq. (5.13) in eq. (5.2), one can compute the expected
current matrix-element results

⟨
Ĵ

(LO)
q(is) (q)

⟩
= 8π

∞∫
0

dr r2 sin
(

qr
2

)
qr

|ψM(r) |2 M→∞−→ 4γ
q

arccot
(

4γ
q

)
. (5.14)

Results for the currents for different values of M are visualized in the right diagram
of fig. 5.2. The current expectation values seem to have a drastic dependence on the
short-range aspect of the potential. One can understand this dependence by analyzing
the kernel of eq. (5.14). Expanding for small q values, one has

sin
(

qr
2

)
qr

≈ 1− 1
2 · 3!

(
qr

2

)2
, (5.15)

and thus, the more area the wave function density contains for small r, the less is sub-
tracted off from the current density result. This discretization dependence has potentially
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Figure 5.2: Analytic results for the wave function densities [wave function defined in eq. (5.13)]
and current NMEs [eq. (5.14)] for different values of M in units of the binding momentum γ.
Note that the left diagram and the middle diagram are the same but on different scales (regular
vs. log scale).

high relevance for lattice results, where the lattice spacing plays the role of the regulator
and would make a continuum analysis essential to the computation of current matrix-
elements.

5.3 Currents within the box

5.3.1 Living within a box

For the definition used in this work, a box has two basic properties: space is finite with
some form of periodicity (usually periodic boundary conditions), and space is discrete.
Combining both effects, the infinite space of RN becomes the finite space NN

L with
L = aLNL, where aL is the lattice spacing and LN the volume of the space. One usually
introduces the box in coordinate space, but it is not essential to do so. For example, one
could introduce a finite discrete and periodic volume in momentum space and obtain the
same results. One only has to require a proper definition of the Fourier Transformation
(FT) (and normalization of delta functions). Also, in principal one can also work in a
just discretized but infinite space or a finite but continuous space.

If one discretizes coordinate space, derivatives correspond to finite step differences and
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Chapter 5 Currents within a box

Coordinate Space Momentum Space
Finite and periodic Discrete
Discrete Finite and periodic

Table 5.1: Effects of discretization and FV on different spaces.

the integral measure becomes a sum. In the most simple cases this becomes

R
N 7→ aLZ

N ≡
{
aLn|n ∈ ZN

}
, (5.16)∫

r∈RN

dNr f(r) 7→ aN
L

∑
n∈ZN

f(aLn) , (5.17)

∆̂f(r = aLn) 7→
N∑

i=1

f(aL[n+ êi])− 2f(aLn) + f(aL[n− êi])
a2 . (5.18)

Because the exponential of the kernel of a FT to momentum space has the argument
aLn · p, any function in momentum space is periodic in p

f̃(p) = aN
L

∑
n∈Z

f(aLn) exp {iaLp · n} ,

⇒ f̃(p) = f̃
(
p+ 2π

aL

n
)
∀p ∈ RN ,∀f̃ ∈ C(R) ,∀n ∈ Z . (5.19)

Furthermore, because the momentum operator is defined as the FT of the derivative, the
allowed momenta depend on the realization of the derivative

p̂2f̃(p) = FT(∆̂f(x)) = 2
a2

L

N∑
i=1

[1− cos(piaL)] f̃(p) . (5.20)

Here, the so-called ‘one-step derivative’ or ‘order a2 improved derivative’ has been pre-
sented. The naming scheme is related to the range of the differences: f(aL[n + 1êi]) or
the order at which corrections appear (p2 − p̂2)f̃(p) = f̃(p)O(a2). This can be further
generalized by defining

∆̂(NS)f(r = aLn) 7→ 1
a2

NS∑
nS=0

∑
d=±1

N∑
i=1

ω(NS)
ns

f(aL[n+ dnsêi])

with
[
p2 −

(
p̂(NS)

)2
]
f̃(p) = f̃(p)O

(
a2NS

)
, (5.21)

where NS is the number of derivative steps and the ω(NS)
ns

coefficients have been matched
to fulfill the second part of the equation. In the same manner, one can define derivatives
corresponding to odd powers of p. This improvement of derivatives can be used to make
a continuum analysis without affecting the actual size of the lattice spacing—if unitless
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combinations of a and other problem relevant parameters are small, then one does not
see much improvement when improving the derivative order.

Similarly, if one limits coordinate space to a FV and requires that all functions are
periodic at the boundaries f(r) = f(r + êiL) for all i = 1, . . . , N and for all f ∈ C(R),
then one can simply reuse the previous result and revert the procedure. Hence

p ∈ 2π
L
Z

N . (5.22)

In order to fulfill all of the previous conditions, one introduces functions within the box
by choosing one of the following replacements (and uses FTs to get the same function in
respective Fourier transformed space)

f(r = aLn) 7→
∑

m∈ZN

f(aLn+ Lm) , (5.23)

f̃

(
p2 = 4π2

L2 n
2
)
7→ f̃

 2
a2

L

NS∑
nS=0

∑
d=±1

N∑
i=1

ω(NS)
ns

cos
(

2πaLnidns

L

) . (5.24)

Of the two, eq. (5.24) is more practical because it corresponds to a finite sum of terms.

In the next section, first estimates of corrections associated with the box computation
are analytically computed.

5.3.2 Estimation of discretization errors

The discretization errors can be estimated by the corrections coming from the imple-
mentation of the derivatives. For example, the kinetic Hamiltonian for a simple one step
derivative becomes

Ĥ0 7→ Ĥ0,aL
= 1

2µ
2
aL

2

3∑
i=1

[1− cos(p̂iaL)] , (5.25)

∆aL
(Ĥ0) ≡ Ĥ0,aL

− Ĥ0 = −aL
2

4!µ

3∑
i=1

p̂4
i +O

(
aL

4p̂6
i

)
. (5.26)

If one views the discretization as a perturbation to the continuum result, than the differ-
ence of the discretized result to the continuum result can be computed in perturbation
theory. The leading correction is the matrix-element of the continuum wave function
with this continuous correction operator ⟨ψM |∆aL

(Ĥ0)|ψM⟩.

To simplify the computation of the expectation value, for this specific separable potential
case one can use the spherical symmetry of the wave function (S-wave): each matrix-
element for different p̂i will have the same result. Hence the total result is equal to three
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times the result of one direction. In case of the z direction, pz = p cos θ, this results in

⟨ψM |∆aL
(Ĥ0)|ψM⟩ = −3aL

2

24µ

∫ d3p

(2π)3 |ψM(p) |2 p4 cos4 θ (5.27)

= − aL
2

80π2µ

∫
dp p2p4 |ψM(p) |2 (5.28)

= − aL
2γM4(5γ +M)

40µ (γ2 + 8M2 + 5γM)
. (5.29)

Note that for M → ∞, this expression diverges. However, since M is viewed as a
constant parameter, the goal of this task is just the estimation of uncertainties. The
result is that the discretization errors of kinetic terms profit from small values of M .
One can understand this by analyzing the shape of the wave function (fig. 5.2): the
smaller the slopes of the wave function, the smaller the needed lattice spacing for an
accurate approximation of the derivative.

5.3.3 Estimation of Finite-Volume errors

The same perturbative analysis can be done for FV effects[142–145]. The leading con-
tribution is given by

⟨ψ|∆L(Ĥ)|ψ⟩ =
∑
|n |=1

∫
R3

d3r′ d3r ψM(r′)V (r, r′)ψM (| r + nL |) , (5.30)

which expresses the corrections coming from the overlap of shifted-by-one-box-copies of
the wave function. Higher order contributions are given by |n | > 1. Expanding the
result of the integration in α = γ/M , one has

⟨∆L(Ĥ)⟩ = − 6γ
µL

e−γL
[
1 + 35α

8
+O

(
α2
)]

+ γ4L2

8µα3 e
−ML

[
1 + α

35γL+ 72
8γL

+O
(
α2
)]

. (5.31)

Note that one recovers the well known (short-range dynamics independent) two-body
bound state FV dependence for M →∞

⟨∆L(Ĥ)⟩ M→∞−→ − 6γ
µL

exp {−γL} . (5.32)

This expression is less problematic in M (compared to the discretization effects) because
the only assumptions which has been made was the asymptotic behavior of the wave in
the regions with r > L/2. This is true if M > γ and thus the further corrections result
in terms proportional to exp{−ML} and γ/M .
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In contrast to the discretization analysis, the FV dependence profits from rather large
values in M . This study views M as a parameter, this means one can find an optimal
value for M in order to minimize the total error coming from discretization and FV
effects. Computation time scales with the number of lattice points NL = L/aL, and
therefore one would like to keep NL as small as possible. Requiring both corrections to
be equal to a fixed value, e.g., ⟨∆L(Ĥ)⟩ (M0)

!= 10% != ⟨∆aL
(Ĥ)⟩ (M0), one can solve for

an optimal M0 which minimizes NL. This monotonously growing NL(M) dependence is
shown in fig. 5.3, which suggests to take minimal values for M .
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Figure 5.3: Convergence pattern of box parameters depending on parameter M . In the first
[second] column, the shaded area displays the allowed values for aL [L], for a given M , such that
the discretization [FV] effects of the energy are smaller than 10%. The third column displays
the minimal values for NL which correspond to a 10% correction of the binding energy for both
discretization and FV effects individually.

5.4 Results

In this section, the results of the box computations are compared to the analytical results.
The results in the box are implemented on a spatial lattice of size N3

L through the use of
eq. (5.24) for three different derivative step sizes NS = 1, 2 and 3. The wave function and
energy levels are obtained by diagonalizing the corresponding box Hamiltonian where the
potential parameter M was fixed to M = 2. Furthermore, the coupling ḡ was fixed to
the infinite volume continuum result (the analytical result). Thus, in the limit of L→∞
and aL → 0, results must converge against their analytical counterpart. Current NMEs
are computed by sandwiching the box current operator matrices with obtained box wave
functions. The following diagrams show absolute values for the box computations as well
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as relative errors
∆OaL,L ≡

OaL,L −O0,∞

O0,∞
. (5.33)

101

102

|E
a L

,L
| M

eV

NS = 1 NS = 2
aL = 0 and L =

aL = 0.001 MeV 1

aL = 0.003 MeV 1

aL = 0.006 MeV 1

aL = 0.009 MeV 1

NS = 3

0.1 0.2

L [MeV] 1

10 1

100

101

102

103

104

|
E a

L,
L| 

%

0.1 0.2

L [MeV] 1
0.1 0.2

L [MeV] 1

Figure 5.4: Box results of the binding energy for different lattice spacings aL depending on the
box extend L. Results are presented for different implementations of the derivative with step
range NS [see eq. (5.24)].

Figure 5.4 displays the volume dependence of the binding energy for different lattice
spacings and different implementations of the derivative. The maximal number of lattice
points is fixed to max(NL) = 25 because of memory limitations. Therefore, computa-
tions for smaller lattice spacings correspond to computation for smaller volumes. For all
implementations of different derivatives, one observes an exponential decay of the bind-
ing energy in the spatial extent. However, the linear slope of the density in the relative
error plot is limited to a sub-interval. Next-to-Leading Order (NLO) FV corrections are
expected to influence the lower non-linear L part and discretization effects dominate the
large L energy corrections. One can recognize that the energy corrections for large L are
consequences of the discretization prescription for two reasons: one can observe that the
computations with NS = 1, 2 seem to be independent on L for L ≳ 0.2 MeV−1, and the
improvement of the derivative shrinks the size of the correction for similar L and aL.

The absolute values for the box results of the current matrix-elements are displayed
in fig. 5.5 and the difference to the analytic counterparts in fig. 5.6. Because of the
periodicity in the momentum structure, the matrix-elements are only displayed until
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Figure 5.5: Absolute values of box current results for different values of L and aL depending on
the momentum exchange q. Results are presented for different implementations of the derivative
with step range NS [see eq. (5.24)].

qmax = 4π/aL/2. Note that the lattice spacing defines the range of allowed momenta and
therefore different columns have a different q-range and values within this range. As is ev-
ident from the diagrams, the agreement between box results and analytical counterparts
is better for smaller values of q—a consequence of the coordinate space discretization
which induces periodicity for functions of momenta. The dips in the functional form of
the current matrix-elements in fig. 5.6 correspond to a relative switch of the sign (note
that the absolute value is plotted). For large lattice spacings, increasing the number
of lattice points—corresponding to increasing the volume—has a positive effect on the
size of the correction. However, for aL ∼ 0.008MeV−1, the effect is seemingly less rele-
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Figure 5.6: Relative difference of box current results compared to analytical results for different
values of L and aL depending on the momentum exchange q. Results are presented for different
implementations of the derivative with step range NS [see eq. (5.24)]. The central black line
indicates the sub-precent threshold.

vant. On the other hand, the larger the lattice spacing, the more significant the effect of
improving the implementation of the derivative. An important note is that the results
within an exchange-momentum range q ∈ [0, 100]MeV are of physical interest. Using this
implementation of box observables, this essentially requires lattice spacings at the order
of aL ∼ 0.01MeV−1 or box volumes above L ∼ 0.2MeV−1. Otherwise, the momentum
lattice is too coarse in the region of interest. Fortunately, it seems possible to obtain
results within in the sub-percent precision regime as long as the lattice volume is large
enough L ∼ 0.2MeV−1.
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5.5 Summary and conclusion

In this chapter, it was explained how one converts continuum and infinite volume observ-
ables to discretized FV observables. Analytical estimations based on exact computations
for a separable potential have been made to approximate FV and discretization effects.
Finally, numerical computations in the box were compared to the analytical infinite vol-
ume continuum results. The analysis has shown that it is possible to compute simple
external current matrix-element within a box formalism. However, there are several
constraints which make the procedure, in general, more difficult.

From a general field theory point of view, it seems that cutoff effects, induced by the
potential, could drastically influence the results of current matrix-elements. As it was
shown, this seems not to be the case for the one-nucleon currents and potentials consid-
ered in chapter 2. However, it may be that the cutoff dependence might become more
problematic for two-nucleon currents, which have a nontrivial spin-angular momentum
structure. To answer this question definitely, one must repeat the analysis of this chapter
for chiral interactions.

Additionally, from the box point of view, discretization errors seem to be somewhat sen-
sitive to hard potentials, while FV effects are more sensitive to soft potentials. Here one
does not have a free parameter M to minimize the associated uncertainties and it remains
an open question, which effect is more dominant. As mentioned in the introduction of
this chapter, if one wants to remove discretization effects, one must try disentangle the
regularization from the discretization effects. For example, one could try to improve the
implementation of the operators (e.g., derivatives) to prove that results are converged.
It is not possible to make a straightforward continuum limit extrapolation on the lattice
because the lattice spacing is the required ultra-violet cutoff of the theory. However, it
might be possible to absorb the effect of the cutoff within a chiral uncertainty estimation
and extrapolate these results to the continuum. Similarly to the previous paragraph,
the next step for a successful implementation is the repetition of this analysis for chiral
interactions with the additional quantification of nuclear uncertainties.

Another difficulty might be the volume dependence of different current NMEs. While
wave functions seem to converge exponentially against their infinite volume counterpart,
it is a priori not apparent that a similar convergence can be expected from external
current matrix-elements. Expanding such matrix-elements in unitless quantities, one
must in principle include a term given by qL ∼ 4πL/L, which is independent of the
volume size. Fortunately, for test problem considered here, the results converge against
their analytical counterpart in the infinite volume limit. Unless one does not find a
general description for such matrix-elements, this convergence pattern must be analyzed
for different current operator matrix-elements case by case.

In conclusion, it seems to be possible to compute one-nucleon current NME on the
lattice and, as the next step, one should extend the analysis to chiral potentials before
analyzing different current NMEs. Because chiral potentials are local and thus diagonal
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in coordinate space, diagonalization computations can be extended to larger values of
NL and thus allow a more careful analysis of the convergence pattern for fixed exchange
momentum values.

Last but not least, it is the long-term goal to evaluate NMEs of currents in Hybrid
Monte Carlo (HMC) computations. Currently, NLEFT computations make use of actions
renormalized to lattice spacings aL ∈ {0.010, 0.008, 0.007, 0.005} MeV−1 [36]—matching
the range of presented benchmarks. Because of time constraints, the range of spatial
lattice points in most recent Monte Carlo simulations is at the order of NL ∼ 8 [146].
As presented in this section: in order to reach a relative uncertainty in the few percent
regime for the NME presented in this chapter, one must at least double this number.
In addition, to probe momentum values of physical interest, this constraint must be
fulfilled as well—independent of the current operator. If one is not able to overcome
this obstacle, then there is no need to continue the box analysis and should use already
existing methods.

The strategy for realizing computations of external current NME within the framework
of NLEFT is two-fold. On the one hand, the implementation of the NLEFT algorithm
on Graphics Processing Units (GPUs) could drastically reduce the computational costs
and allow the access to larger box volumes for same lattice spacings. For first steps in
this direction see appendix C. On the other hand, it is known from Lattice Quantum
Chromodynamics (LQCD) that it is possible to reduce FV effects by adjusting the bound-
ary conditions of the box[147]. This adjustment of boundary conditions also affects the
range of allowed lattice momenta with the potential to probe smaller momentum values
at fixed box volumes. The implementation of such Twisted Boundary Conditions (TBCs)
is presented in the next chapter.
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CHAPTER 6

Applying Twisted Boundary Conditions
for few-body nuclear systems

The following chapter is published in Physical Review C [1].
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We describe and implement Twisted Boundary Conditions for the
deuteron and triton systems within Finite-Volumes using the Nuclear
Lattice Effective Field Theory formalism. We investigate the Finite-
Volume dependence of these systems with different twists angles. We
demonstrate how various Finite-Volume information can be used to im-
prove calculations of binding energies in such a framework. Our results
suggest that with an appropriate twisting of boundaries, infinite-volume
binding energies can be reliably extracted from calculations using mod-
est volume sizes with cubic length L ≈ 8 − 14 fm. Of particular im-
portance are our derivation and numerical verification of three-body
analogs of ‘i-periodic’ twist angles that eliminate the Leading Order
Finite-Volume effects to the three-body binding energy.



Chapter 6 Applying Twisted Boundary Conditions for few-body nuclear systems

6.1 Introduction

Numerical simulations of nuclear observables often utilize Finite-Volume (FV) to per-
form calculations. Lattice Quantum Chromodynamics (LQCD) calculations of quarks
and gluons, for example, utilize cubic volumes with spatial length L typically of size
∼ 4− 6 fm. Nuclear Lattice Effective Field Theory (NLEFT) calculations using nucleon
degrees of freedom, on the other hand, employ volumes that are an order of magnitude
larger. Despite being intrinsically stochastic, both methods have calculated nuclear bind-
ing energies of light hadronic systems with impressive, quantitative uncertainties. Recent
LQCD calculations, albeit at unphysical pion masses, have calculated the binding ener-
gies of S-shell nuclei and light hyper nuclei [148–155]. NLEFT calculations have readily
performed binding-energy calculations of P -shell nuclei [34, 37, 126, 156, 157] and some
medium mass nuclei [38]. With ever increasing computer resources, calculations of such
systems will become even more precise.

All of these calculations, however, suffer from a systematic error that cannot be reduced
from increased computer resources: The calculated energies in a FV differ from their
infinite-volume counterparts. In principle, this FV error can be removed by performing
calculations of energies in multiple volumes followed by an extrapolation to infinite-
volume. In practice, this is very difficult due to the enormous computational costs of
performing calculations in multiple volumes. However, the number of different volume
calculations needed to perform a reliable extrapolation may not be exceedingly large if
the functional dependence of the FV correction is known. For the two-body system with
periodic boundary conditions, for example, the FV correction to the binding energy is
well known and the Leading Order (LO) contribution scales as exp(−κL)/L, where κ is
the binding momentum [143, 158]. In [159] the functional dependence for three identical
bosons in a FV (with periodic boundary conditions) and at the unitary limit was derived,
and was also determined to fall off exponentially with volume size. For higher A-body
systems, the dependence is also expected to be exponential, but a general formula is yet
to be determined.

Periodic Boundary Conditions (PBCs) are a specific case of Twisted Boundary Condi-
tions (TBCs) [160] at the faces of the cubic volume. These ‘twist’ conditions can be
parametrized by a vector of angles θi at each boundary, with range 0 ≤ θi < 2π, such
that

ψ(x+ nL) = eiθ·nψ(x) . (6.1)
Equation (6.1) shows that θi = 0 corresponds to PBCs, while θi = π gives anti-Periodic
Boundary Conditions (aPBCs). In LQCD, TBCs are equivalent to introducing a back-
ground U(1) gauge field imposed on the quarks, subsequently endowing them with an
arbitrary momentum dependent on the twist angle [161, 162]. With TBCs momentum
states are no longer restricted to the discrete modes within a box with PBCs, and there-
fore calculations with different twist boundary conditions will give rise to different FV
corrections. As initially found within condensed matter calculations, averaging results
with different twist angles significantly cancels FV effects [163]. This has motivated the
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use of ‘twist averaging’ in LQCD calculations to reduce the FV dependence in hadronic
masses [164] and more recently to calculations of phases of nuclear matter in dense as-
trophysical environments [165].

Because of the non-linear nature of interactions in the non-perturbative regime between
quarks and gluons and also between nucleons, twist averaging does not entirely eliminate
FV effects. To what extent it does eliminate FV effects is an open question, and most
certainly depends on the nature of interactions. In [147] the behavior of FV corrections
for the two-body system was investigated for specific sets of twist angles. It was found
that certain linear combinations of twist angles indeed reduce significantly FV effects.
Just as important, it was shown that a particular set of twist angles (θi = π/2), dubbed
‘i-periodic’, also significantly reduced the LO exponential dependence of the FV.

In this paper we extend the work done in [147] to three-body systems. Except for
particular three-body limits (see, e.g., [159]), analytic calculations in this regime are not
possible, and we utilize the NLEFT formalism to perform our calculations. In this case,
nucleons are the relevant degrees of freedom, not quarks, and therefore twist angles are
applied to nucleon state functions directly. We perform a detailed statistical analysis
of our calculations, accounting for and propagating all relevant systematic errors in our
extrapolations. From our analysis, we find the analogs of ‘i-periodic’ angles for the
three-body system, which not only reduce FV effects, but cancels exactly the LO FV
contribution.

Our paper is organized as follows: In section 6.2 we discuss the formalism for the im-
plementation of twisted boundaries on general terms. We then derive in section 6.3 the
LO non-relativistic FV corrections (with twists), focusing on the two- and three-body
systems. We describe in detail in section 6.4 the application of twists within NLEFT
algorithms, which we coded specifically for this work. Included in this same section is
an enumeration of sources of systematic errors due to lattice artifacts and the FV, and
a detailed discussion of our error analysis used to propagate errors. We present results
of the two-body (deuteron) system and the three-body (triton) system in sections 6.5
and 6.6, respectively. We reserve section 6.7 for a discussion of discretization effects and
the potential impact they have on extensive twist calculations. Finally, we recapitulate
our findings and discuss possible future applications in section 6.8.

6.2 Implementation of Twisted Boundary Conditions for
N-body systems

Assuming a non-relativistic N -body system, this system’s state can be written as a
linear combination of tensor products of the individual particle states which include
their internal quantum numbers,

|N1(I1, S1)⟩ ⊗ · · · ⊗ |NN(IN , SN)⟩ ,
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where Ii and Si refer to the isospin and spin of the ith nucleon, respectively. To realize such
states computationally, an appropriate bra basis, either in configuration or momentum
space, must be used. For example, momentum space calculations using a finite cube with
PBCs would utilize a discrete momentum basis pn = 2πn/L, where n represents a triplet
of integers. With an eye towards our lattice simulations presented in later sections, we
adopt a discretized coordinate basis: r 7→ an, where a is the lattice spacing between
lattice nodes. We denote this discretized basis as |n⟩. We stress that the results of this
section do not depend on the choice of basis, however.

A spatial cutoff L is introduced by limiting the basis to a cubic box of volume L3 with
application of particular boundary conditions at the faces of the cube. This introduces
FV effects (errors) that can only be removed by extrapolating to infinite-volume, L→∞.
In this paper, we focus our analysis mainly on these FV effects for the lattice. Objects
defined inside the box, such as matrix-elements of operators using the discretized basis
|n⟩, will be denoted with a subscript L to differentiate them from their infinite-volume
counterparts.

The most commonly used boundary conditions are PBCs, where the wave function is
periodically continued outside of the box1, which in turn produces images of the wave
function outside of the original cubic volume. Periodic boundary conditions are just a
subset of the more general TBCs defined as follows:

⟨xi + Ln|ΨL⟩i N = ⟨xi|ΨL⟩i N e
iϕi·n, ∀xi ∈ L3 , ∀n ∈ Z3 . (6.2)

The variable ϕi ∈ R3 represents the twisted boundary angle of the ith particle with
components for each spatial direction. Suppressing the spin and isospin components, one
can now define a basis for the discretized box (with NL nodes in each spatial direction
where L = aNL) which satisfies TBCs and is useful for computing matrix-elements,

|Ni,L⟩ =
∑
n∈Z3

Ni,L(n) |n⟩i = 1
√
M

3
∑

m∈Z3

n∈N3
L

Ni,L(n+NLm) · |n+NLm⟩i

= 1
√
M

3
∑

m∈Z3

n∈N3
L

Ni,L(n) eiϕi·m e−iϕi·n/NL eiϕi·n/NL |n+ Lm⟩i

=:
∑
n∈N3

L

Ñi,L(n) |n⟩ϕi
i , (6.3)

where we have used the following definitions,

M3 :=
∑
m∈Z3

1 , Ñi,L(n) := Ni,L(n) · e−iϕi·n/NL .

All phases can be absorbed by the newly defined basis states |n⟩ϕi
i and the wave function

1 This kind of behavior can also be defined for a finite continuous space.
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Ñi,L(n). This new ‘twisted basis’, which we denote collectively by {|n⟩ϕi
i }, can be un-

derstood as a grid of vectors multiplied by a phase associated with the different images
of the original cube:

|nϕi⟩i := 1
√
M

3
∑
m∈Z3

eiϕi·(n+NLm)/NL · |n+NLm⟩i (6.4)

Note that this description of twisted boundary states is in general different from the
twisting convention used in LQCD. In LQCD one directly applies twists to the quarks
and, in principle, there are different associated twist angles for each quark flavor. In
our case, the twists are directly applied to the configuration space coordinates of the
nucleons. Thus the number of twists is directly related to the number of nucleons – for
N -nucleons one could choose N different twist angles.

We note that for numerical simulations, there is some freedom in how one implements
TBCs. Typically TBCs are applied at the boundaries of the box where the application of
the phase ϕi only occurs when a particle passes the boundary. We have instead chosen to
apply twists incrementally ∝ ϕi/NL each time a particle changes its coordinates within
the volume. In this manner, the accumulation of the entire phase ϕi also occurs when a
particle passes a boundary. In fig. 6.1 we provide a schematic comparison of our twist
basis to the case where twists are applied at the boundaries only. In the demonstrated
case of anti-periodic boundaries, one has that the wave function flips its sign after a shift
in L, ψ(x + eL) = −ψ(x), |e| = 1. The upper two diagrams (figs. 6.1(a) and 6.1(b))
use a basis where the boundary conditions are just applied at the edges of the spatial
box. For this basis, the wave function only changes its phase when the particle ‘hops’
outside of the box fig. 6.1(b) but stays the same if moving within the box fig. 6.1(a).
The lower diagrams (figs. 6.1(c) and 6.1(d)) use the previously defined twisted boundary
basis where a partial phase is applied each time a particle changes its spatial direction.
After NL steps in the same spatial direction, the accumulated phase becomes π, and
thus the wave function changes its sign. This behavior also holds true at the boundaries.
However, it depends on the direction of the ‘hops’.

The main reason for including the twisted boundary phases at each particle ‘hop’ is that
this procedure ensures translational invariance at each point on the lattice, including the
boundaries, and is thus more amenable to the NLEFT formalism. As a consequence of
the translational invariance, the momentum modes in the lattice are well defined,

⟨p |x ⟩ϕi
i = exp

(2πi
L
x · np

)
δ(3) (Lp− 2πnp − ϕi) . (6.5)

The delta function in eq. (6.5) shows that the allowed momenta inside the box are shifted
by the twists for each particle,

p = 2πnp + ϕi

L
. (6.6)

It is therefore possible to induce a non-zero Center of Mass (CM) energy for the zero
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(a) Twist at boundaries
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(b) Twist at boundaries
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(c) Twist at each ‘hop’
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(d) Twist at each ‘hop’

Figure 6.1: A demonstration of the different choices of twisted boundary basis for a simple
2-dimensional lattice with anti-periodic boundary conditions in spatial direction (ϕ = π). The
phase of the particles is represented by the direction of the red arrow.

momentum modes, which is proportional to the twist angles,

E
(CM)
0 = P 2

0
2MCM

= 1
2MCM

(
N∑

i=1
ϕi

)2

. (6.7)

This CM motion must be accounted for when comparing calculations of the relative
binding energies of N -body systems. We note that twist angles subject to the constraint
that ϕ1 + · · ·+ ϕN = 0 will induce no CM motion.

To conclude this section, we consider the matrix-element of some arbitrary operator O
using the basis in eq. (6.4),

⟨mϕ1
1 , · · · ;mϕN

N |O|n
ϕ1
1 , · · · ;nϕN

N ⟩ . (6.8)
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As the operator O can be written in terms of products over creation and annihilation
operators, it suffices to consider the following term,

∑
n′∈Z3

a†i (n′ + l )ai(n′) |nϕi⟩i = 1
√
M

3
∑
m∈Z3

eiϕi·(n+NLm)/NL |n+ l +NLm⟩i

= |(n+ l)ϕi⟩i e
−iϕi·l/NL . (6.9)

This term is off-diagonal in the basis of creation and annihilation operators, and repre-
sents a ‘hopping term’ from site n to site n + l. Equation (6.9) explicitly shows how a
particle picks up an incremental phase through such a translation between sites. More
generally, any operator O with non zero off-diagonal matrix-elements in creation and
annihilation operators will be modified by a phase within the ‘twisted basis’,

⟨mϕ1
1 , · · · ;mϕN

N |O|n
ϕ1
1 , · · · ;nϕN

N ⟩

= ⟨m0
1 , · · · ;m0

N |O|n0
1 , · · · ;n0

N⟩ exp
(
i

N∑
i=1
ϕi/NL · (ni −mi)

)
. (6.10)

Therefore the off-diagonal N -body matrix-element with TBCs are equal to the N -body
matrix-element with PBCs multiplied by a phase that depends on the twist angles. It
is important to stress that these matrix-elements still represent a hermitian matrix if
the evaluated operator is hermitian as well. In other words, twisted boundaries do not
induce (extra) sign oscillations.

6.3 Non-relativistic Finite-Volume effects

As already mentioned, the FV corrections as a function of twist angles have been pre-
viously determined in [147] in the form of quantization conditions. If one assumes the
interaction is S-wave dominated and therefore ignores the mixing angle, and D-wave con-
tributions (and higher), the FV corrections can be expanded in a series of exponentials
with amplitudes that depend on the twist angles. We provide the three lowest orders in
this expansion, with their accompanying twist angle dependence, in table 6.1. We will
use these functional forms to perform our fits of our deuteron twist calculations in later
sections.

An analogous expansion of the general three-body system is unfortunately not known.
To motivate our functional form that we use for fitting our triton results, we present a
non-relativistic derivation of FV corrections. This derivation follows that of [144, 145,
166–168] and provides the LO FV dependence of the binding energy. The exponential
dependence of higher-order terms can, in principle, be determined using this method,
but the exact form of the amplitude at each order is only known if the complete form
of the asymptotic many-body wave function can be determined, which is not the case
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here. As such, these unknown amplitudes are folded into our systematic uncertainties as
described in later sections.

To arrive at our final expression of the LO FV twist-dependent correction for the three-
body system, we first present the derivation for the two-body case as originally shown
in [145]. For non-relativistic systems within a FV of spatial size L3 with periodic bound-
ary conditions, the physical quantities inside the box overlap with copies of themselves.
As an example the potential represented in L3 is given by

VL(r) =
∑
n∈Z3

V (r + nL) , ∀ r ∈ L3 , (6.11)

where V is the infinite-volume representation of the potential. Accordingly a bound
solution to the Schrödinger equation will also have a similar form of periodicity(

Ĥ0 + V̂L

)
|ψL⟩ = EL(L) |ψL⟩ , ⟨r + nL|ψL⟩ = ⟨r|ψL⟩ . (6.12)

As the FV solution should converge against the infinite-volume solution for increasing L,
one can define the FV energy shift by its deviation from the infinite-volume solution,

∆EL(L) := EL(L)− E∞ , (6.13)

which should converge to zero for large L. When rewriting the FV wave function as
periodic copies of the infinite-volume wave function plus corrections

|ψL⟩ = |ψ0⟩+ λ |ϵ⟩ , ⟨r|ψ0⟩ :=
∑
n∈Z3

⟨r + nL|ψ∞⟩ , ∀r ∈ L3 , (6.14)

the FV energy shift can be rewritten with infinite-volume quantities only2

∆EL(L) = ⟨ψ0|η⟩
⟨ψ0|ψ0⟩

+ λ∗
⟨ϵ|η⟩
⟨ψ0|ψ0⟩

. (6.15)

The state |η⟩ is the result of the difference operator ĤL − E∞ acting on the state |ψ0⟩.
Note that this result is completely general in terms of the number of nucleons. For the
two-body case gives one has

⟨ψ0|η⟩ = ⟨ψ0|ĤL − E∞|ψ0⟩ (6.16)

=
∫

L3
d x1

∫
L3
diffx2 ψ

∗
0(x1,x2) [HL(x1,x2)− E∞]ψ0(x1,x2) ,

where it is assumed that the Hamiltonian is local. As the next step, the infinite-volume

2 It still depends on the FV Hamiltonian ĤL, which can be rewritten as copies of the infinite-volume
Hamiltonian.
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information are implemented according to eq. (6.14)

⟨ψ0|η⟩ =
∫

d x1d x2
∑

ni,j∈Z3

ψ∗∞(x1 + n1,1L,x2 + n1,2L)

[H0 + V (x1 + n2,1L,x2 + n2,2L)− E∞]ψ∞(x1 + n3,1L,x2 + n3,2L) . (6.17)

In the following, it is useful to transform to a relative Jacobi coordinate system r =
x2 − x1, R = (x1 + x2)/2. Assuming that the center of mass motion is zero, which will
be the case in all our calculations that follow, one has

⟨ψ0|η⟩ =
∫

L3
r

d r
∑

ni∈Z3
r

ψ∗∞(r + n1L) [H0 + V (r + n2L)− E∞]ψ∞(r + n3L) . (6.18)

The vectors ni are obtained by the individual two body coordinates, ni = ni,2−ni,1, and
the subscript r denotes quantities that depend on these relative vectors. For n2 = n3
one has the infinite-volume Schrödinger operator acting on its infinite-volume solution,
which provides the eigenvalue E∞. Thus only terms with unequal n2, n3 remain

⟨ψ0|η⟩ =
∑

n1,n2∈Z

∑
n3 ̸=n2

∫
d r ψ∗∞(r + n1L)V (r + n2L)ψ∞(r + n3L) . (6.19)

As ψ∞(r) ∝ e−κr/µr (and κ2 = −2µE∞ being the binding momentum with the relative
mass µ) in asymptotic regions r outside of the finite range of the potential, i.e. V (r) ≈ 0,
the LO contributions of eq. (6.19) are given by n1 = 0 = n2 and n3 being a unit vector
(six different choices for three spacial dimensions and two directions each). Furthermore,
the second term in eq. (6.15) containing the state |ϵ⟩ scales as e−2κr and thus only appears
at higher orders [166]. For the deuteron one finds

∆E(LO)
L (L) =

∑
|n |=1

∫
d r ψ∗∞(r)V (r)ψ∞(r + nL) . (6.20)

The inclusion of arbitrary TBCs is realized by including a phase3 according to eq. (6.2)

⟨x1 + n1L,x2 + n2L|ψ∞⟩ 7→ ⟨x1,x2|ψ∞⟩ e−iϕ1·n1−iϕ2·n2 . (6.21)

When executing the coordinate transformation, the relevant term dotted into the relative
box vector n = n2 − n1 is now given by θ = (ϕ2 − ϕ1)/2 and thus the relative wave
function transforms as

⟨r + nL|ψ∞⟩ 7→ ⟨r|ψ∞⟩ e−iθ·n . (6.22)
Thus, to obtain the LO FV energy shift for general TBCs, the previous result for periodic

3 Note the relative minus sign of the phase. This sign for the infinite-volume wave function phase ensures
that the wave function on the lattice transforms as in eq. (6.2).
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boundary conditions simply gets multiplied by this phase

∆E(LO)
L (L,θ) =

∑
|n |=1

∫
d r ψ∗∞(r)V (r)ψ∞(r + nL)e−iθ·n . (6.23)

The expression above only depends on the relative twist angle θ since we choose twist
angles that ensure zero CM motion, i.e. ϕ1 + ϕ2 = 0.

The exponential dependence of the FV corrections shown in table 6.1 can be reproduced
from this derivation, which in turn comes from the asymptotic behavior of the infinite-
volume wave function. For example, in the case of the S-wave, one finds [145]

∆E(LO)
L (L,θ) = −

√
πAκ

µ

∑
|n |=1

ψ∗∞(nL) = −3 |Aκ |2
e−κL

µL
, (6.24)

where the information of the wave function in the asymptotic region was used. Fur-
thermore Aκ is the amplitude of the wave function which depends on properties of the
interaction, such as the the scattering length or the binding momentum κ =

√
−2µE∞.

Next-to-Leading Order (NLO) terms can be obtained by systematically allowing the
displacement vector n to be larger, e.g. the NLO corresponds to |n | =

√
2 and so on.

Though the box size scaling as well as the twist dependence of the FV corrections can be
computed using this method, to obtain the size of the amplitudes Aκ of the exponential
decay for FV energy shifts, the exact form of the asymptotic wave function needs to be
known, which in turn depends on the specific form of the interaction.

Table 6.1: Twist dependence of different orders for the S-wave deuteron FV effects.
Order Scaling in L Twist dependence

LO exp(−κL)/L 2 (cos(θx) + cos(θy) + cos(θz))
NLO exp(−

√
2κL)/(

√
2L) 4 (cos(θx) cos(θy) + cos(θx) cos(θz) + cos(θy) cos(θz))

N2LO exp(−
√

3κL)/(
√

3L) 8 cos(θx) cos(θy) cos(θz)

We now turn to the three-body system. Here the only difference is that the full potential
now contains three pair interactions (neglecting the three-body interaction which, when
included, gives rise to the same FV dependence). Thus the state |η⟩ now produces the
LO term [159]

∆E(LO)
L (L, {ϕi = 0}) =

3∑
i=1

∑
(ni,nj ,nk)∈Mi

v(ni,nj,nk) , (6.25)
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where v(ni,nj,nk) is the three-body analog of eq. (6.19),

v(ni,nj,nk) :=∫
d3
xi

∫
d3
yi ψ

∗
∞(xi,yi)Vi(xi)ψ∞(xi − (nj + nk)L,yi + 1√

3
(nj + nk − 2ni)L) . (6.26)

Here xi = rj − rk and x2 = (rj + rk − 2ri)/
√

3 are a particular choice of Jacobi coordi-
nates which describe the three body system. The set Mi is chosen such that eq. (6.25)
reassemble the LO difference of the FV Hamiltonian and the infinite-volume energy –
e.g. the vectors are chosen such that the hyper radius ρ2 = ∑

i(ri + niL)2 is minimal
while nj ̸= nk,

Mi := minρ

({
(ni,nj,nk) ∈ Z9

∣∣∣∣∣ {i, j, k} = {1, 2, 3} and nj − nk ̸= 0
})

. (6.27)

Similar to the two-body case, an extension of this result to twisted boundaries is given
by multiplying this expression with a phase containing a sum over all twist angles:

∆E(LO)
L ({ϕi}) =

3∑
i=1

∑
(ni,nj ,nk)∈Mi

v(ni,nj,nk) e−i
∑3

l=1 ϕl·nl , (6.28)

where in this case we express the twist angles in the single-particle basis. Equation (6.28)
gives the LO twist-dependent FV dependence of the three-body system. As we will nu-
merically verify later, appropriate choices of twist angles can eliminate this LO depen-
dence.

6.4 Applying twists within the NLEFT formalism

To study the effects of the FV on two- and three-body systems, we perform calculations
on a discretized space-time lattice within a cubic volume. Our implementation follows
closely that of the Nuclear Lattice Effective Field Theory (NLEFT) formalism. Though
the NLEFT algorithm is well documented (for a review of NLEFT, see [33]), we provide
a cursory description of our algorithm mainly to point out differences with past NLEFT
calculations and to describe our implementation of TBCs within the NLEFT formalism.

6.4.1 Twists on the transfer matrix

To obtain results of nuclear observables on a lattice, one computes the trace of products
of the transfer matrix, M, which in our case is identified with the chiral interaction of
nucleons. Formally, the transfer matrix in Euclidean time is given by the normal-ordered
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exponential of the corresponding effective Hamiltonian,

M := : exp (−Hat) : . (6.29)

The spectrum of H can be ascertained from eigenvalues of the transfer matrix M,

M|ψn⟩ = ϵn |ψn⟩ , ϵ0 > ϵi , ∀ i > 0 . (6.30)

In particular, the ground state energy E0 of the system is related to the largest eigenvalue
of M, which we denote as ϵ0, and can be obtained through the following logarithmic
derivative

E0 = − log(ϵ0)
at

. (6.31)

The Lagrangian which generates the transfer matrix contains the LO chiral contact in-
teractions given in, for example, [127]. Effectively one obtains a two-body force as well
as the one-pion exchange at LO,

V (LO)
χ (q) = V

(LO)
NN (q) + V

(LO)
πN (q) , (6.32)

where

V
(LO)

πN (q) = −
(
gA

2fπ

)2 (σ1 · q) (σ2 · q)
q2 +m2

π

(τ1 · τ2) . (6.33)

Here the nucleon mass and the pion mass are set their physical value mN = 938.92
MeV and mπ = 134.98 MeV. The pion decay constant is fπ = 92.2 MeV and the axial
coupling has a strength of gA = 1.29 respecting the Goldberger-Treiman discrepancy for
representing the strong πNN -coupling. Furthermore the momentum q = p′ − p is the
nucleon momentum transfer. In this work, the contact potential was implemented using
a gaussian-like smearing in momentum space similar to the one used in [32],

V
(LO)

NN (q) = (cSU4 + cI τ1 · τ2 + cS σ1 · σ2 + cSI τ1 · τ2 σ1 · σ2) e−b4q4
. (6.34)

Furthermore, the coefficients (cSU4 , cS, cI , cSI) were related to each other through the LO
singlet and triplet coefficients CS and CT when evaluating nucleonic matrix-elements,

cSU4 = 1
16

(3cS + 3cT ) cS = 1
16

(−3cS + cT ) (6.35)

cI = 1
16

(3cS − cT ) cSI = 1
16

(−cS − cT ) .

The contact interactions were fitted to reproduce the deuteron binding energy as well as
the 3S1 scattering length. We tabulate their values, as well as other parameters relevant
to our simulations, in table 6.2. To reduce the dimensionality of the problem, the spin
breaking part of the pion exchange was assumed to be small and computations with this
part were done for one specified spin channel only. This induced a small error when
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Table 6.2: Numerical values of parameters used in our simulations.
1/aL 1/aT cS cT ∆(n) b4
MeV MeV 10−5 MeV−2 10−5 MeV−2 O(a2·n) MeV4

100 150 −4.2000 −6.0513 O(a2·4) 0.07

comparing to the ‘experimental result’ at the order of 0.05 MeV for the deuteron.

Because of our ‘low-order’ interaction, we do not expect to have a perfect agreement for
the three-body energy levels when compared to experiment. However, since the goal of
this paper is to emphasize the dependence of the binding energy of few-body systems on
FV corrections, this level of simplicity for the nucleon interactions is sufficient. As such,
one should compare calculated energy levels in a fixed volume to their converged results
for large (infinite) volumes instead of to the experimental results themselves.

Furthermore, at this order, our potential does not contain any derivatives acting on the
nucleon coordinates and therefore does not induce translations on the nucleon states.
The inclusion of TBCs is therefore realized by implementing eq. (6.10) for the kinetic
Hamiltonian operators only.

As a final comment, we point out that the normal ordering of the transfer matrix for two
nucleons M(2) is exact at order a2

t ,

M(2) = 1− at

(
H

(1)
0 +H

(2)
0 + V (1,2)

)
+ a2

tH
(1)
0 H

(2)
0 . (6.36)

To identify the CM motion of such a system, one can rewrite the absolute momenta
of the individual particles as combinations of the CM momentum P and the relative
momentum q,

M(2) = 1 − at

(
H

(rel)
0 +H

(CM)
0 + V (rel)

)
+ a2

t

1
4
(
H

(rel)
0 +H

(CM)
0

)2
−
(
P · q
MCM

)2
 .

(6.37)

Equation (6.37) shows that the term of second order in at couples CM motion to relative
motion for non-zero CM momenta. Thus the procedure of subtracting the CM motion
from the computed spectrum is more complicated. If one computes the spectrum of
a two-nucleon system using general twisted boundaries, the energy eigenvalues of the
transfer matrix are shifted by the non-zero CM contributions generated by these twists.
This also holds true for more general N -body systems as well. For this current work
we avoid the extra complication of non-zero CM coupling by utilizing twists that induce
zero CM motion, which is determined by the following constraint,

N∑
n=1
ϕn = 0 . (6.38)
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6.4.2 Identification of systematic errors and description of error
analysis

NLEFT calculations employ Monte Carlo methods to estimate the ground state energy
of N -body systems. Because such methods are intrinsically stochastic, the extracted
energies have an associated statistical uncertainty. Because the dimensions of our systems
are small compared to the stochastic computations, we can extract our energies via
direct diagonalization of the transfer matrix. Our energies therefore have no statistical
uncertainty.

Nevertheless, our results are not completely free of ‘errors’, as there still exists sources
of theoretical and systematic uncertainties which can induce an effect on the final result.
We enumerate these sources here and discuss each in turn below:

• FV effects

• Discretization errors

• Numerical/rounding errors

• Uncertainties associated with the fitting of lattice parameters (LECs on the lattice
for NLEFT)

Since the aim of our study is the analysis of the FV dependence of the ground state
binding energy, the uncertainties associated with the fitting procedure of LECs are ne-
glected. We also neglect the errors associated with discretization, which are connected
to the implementation of the derivatives and the fitting of the LECs. In LQCD, when
one wants to rigorously compute physical observables, one also has to take the a → 0
continuum limit. Here a careful accounting of the discretization errors is needed to per-
form a robust extrapolation. In NLEFT this procedure is more complicated since the
interactions themselves are cutoff dependent at a given order in the effective expansion.
In our case, we do not perform a continuum analysis since, again, we only focus on com-
paring the computed energies in a FV to their infinite-volume counterparts. As such, all
our calculations use the same lattice spacing. However, even though we do not include
any systematics due to finite lattice spacing in our error propagation, we do observe dis-
cretization errors, particularly for large twist angles. We defer this point to section 6.7
where we discuss these observations in detail.

Our numerical errors are associated with the solving procedure only, which involves a
Lanczos-like iteration for diagonalizing the transfer matrix and obtaining eigenvalues.
This method of solving does not introduce any statistical errors. These numerical errors
are of the order ϵ = e−Eat ≤ 10−5, which corresponds to an energy error budget of4

δEϵ ≤
δϵ

aT ϵ
≃ 0.002 MeV . (6.39)

4 For convenience in presentation, we will always denote FV effects using the symbol ∆, while errors
and uncertainties used for the error estimation and propagation are labeled with the symbol δ.
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In contrast to the previous errors, which are volume independent, we note that the FV
energy corrections are only asymptotically diminishing if the potential vanishes within
the cubic volume. Formally the FV needs to be of size L/2 ≳ R, where V (R) ≃ 0.
Furthermore, for small boxes, NLO FV corrections become more relevant. As an example,
the functional form of the LO FV expression of the energy shift for two-body states does
not perfectly describe our numerical results. This discrepancy holds particularly true at
small volumes since the complete energy shift includes higher order corrections described
by several exponential functions of different exponents and amplitudes (see table 6.1 for
the deuteron case). Since one of our objectives of this study is to use calculations within
small volumes to extract infinite-volume observables, we must explicitly take into account
the errors from neglecting NLO (and higher) FV effects. We do this by estimating the
size of the NLO FV systematic error, ∆E(NLO)

L (L), and inflating our binding energy
uncertainties by this amount when performing our fitting and error analysis

∆E(NLO)
L (L, ϕ) 7→ δ(∆E(LO)

L (L, ϕ)) . (6.40)

We stress that ∆EL denotes the analytic form of the FV corrections, while quantities
labeled with a small delta, δ, are treated as uncertainties of the computation and fitting
procedure.

In principle, this NLO FV term should be interpreted as a weight for the fitting procedure
which increases the relevance of data points at larger box sizes (where NLO FV effects
become less important).

With the sources of errors described above, we parametrize the total uncertainty for the
binding energy, δ(EL − E∞), by the following terms,

δ(EL − E∞) ≃ δ(∆E(LO)
L (L, ϕ)) + δEϵ =: δEL(L, ϕ) + δEϵ (6.41)

Note that one can assume that the errors associated with this effect might be correlated,
e.g., that each data point for a given twist is shifted in the same direction by the NLO FV
corrections. To emphasize this, in the case of the deuteron, the known twist dependence
of the NLO effects have also been computed.

Our final objective is to extract the infinite-volume binding energy E∞ as well as the
coefficients obtained by fitting the LO FV behavior ∆E(LO)

L (L, ϕ). To estimate the un-
certainties of the fitted parameters, we employed a bootstrap-like procedure in our fitting
process. We first performed calculations of binding energies at different values of L and
twist angles ϕ (for the entire set of computations see table 6.3). We designate the collec-
tion of such results as D0. From D0 we generated Ns new distributions Di by sampling
data points within D0 assuming the data points were randomly distributed5 within the
interval δE(L). Finally, the spread in our fits of the new distributions Di provided the
variations in our fit parameters. Thus, the error as well as the mean value of the fitting
5 Quantitatively similar results have been obtained for a gaussian distribution and a uniform distribu-

tion. The propagated errors of the uniform distribution have slightly more spread.
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parameters F were obtained by sampling the new distributions P (F ) of fitted parameters
(which contain Ns data points),

µF =
∫

dF FP (F ) , ∆F (±α) ↔
µF±∆F (±α)∫

µF

dF P (F ) = ±α . (6.42)

In our analysis, α = 0.341 was chosen to give 1-σ confidence intervals. The overall χ2

per degrees of freedom χ2
avg is given by an average over all individual fit χ2 for each fit

of distributions Di.

χ2
avg := 1

Ns

Ns∑
i=1

χ2
d.o.f.(Di) (6.43)

6.5 Two-body system: the deuteron

As shown in section 6.3 it is possible to analytically compute the FV corrections of
the binding energy for a two-body system. In general this correction depends on the
associated boundary angles θ in relative coordinates, the box size L as well as infinite-
volume quantities,

EL − E∞ ≃ ∆E(LO)
L (L,θ) = −N (LO) e

−κL

κL

3∑
i=1

cos (θi) . (6.44)

Here κ is the binding momentum κ2 = −mNE∞ > 0 and N (LO) is a numerical amplitude
which in general depends on the binding energy and the nucleon mass as well as the
angular momentum quantum numbers. The boundary angle θ is defined for the rela-
tive system and can be associated with the shift of the relative momentum. Thus the
individual nucleon twists ϕi can be related to θ by

θ = ϕ2 − ϕ1
2

.

The NLO FV effect are parametrized as follows

∆E(NLO)
L (L) = e−κL

κL

(
A

(NLO)
1 (θ) e−(

√
2−1)κL + A

(NLO)
2 (θ) 1

κL

)
. (6.45)

Because the deuteron is mostly S-wave, the factor containing higher partial wave con-
tributions is set to zero, A(NLO)

2 (θ) = 0. Since the main goal of the paper is to analyze
the three-body FV effects, where this dependence is not as trivial as in the deuteron
case (and analytic forms are not in general known), we initially choose twist independent
NLO errors. Such a choice is conservative and one in which we apply to the triton case
as well. Furthermore, for error estimation, the error amplitude A(NLO)

1 (θ) is assumed to
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6.5 Two-body system: the deuteron

Table 6.3: Parameters for the computation: number of twist angle combination, maximal box
size, number of sampled distributions for the error analysis and the lattice spacial spacing.

System NΦ NL,max Ns a/fm
Deuteron 41 20 1000 1.97

Triton 121 7 1000 1.97

be of the order of the fitted amplitudes N (LO), and we therefore set A(NLO)
1 (0) = N (LO).

We also choose twists that are anti-parallel to ensure zero CMS motion. Lastly each
spatial direction is boosted equally by ϕ2 = ϕ = −ϕ1 resulting in θ = ϕ. Therefore the
FV energy correction amplitude is proportional to a single cosine factor depending on
the twist angle ϕ,

∆ELO
L (L, ϕ) = −3N LO e−κL

κL
cos(ϕ) =: ALO(ϕ)e

−κL

κL
. (6.46)

We have performed calculations using 41 different twist boundary conditions, each at
multiple volumes L = aNL with NL from 3 to 20 and a spatial lattice spacing a = 1.97
fm. In fig. 6.2 we show a small subset of our twist calculations with their corresponding
fits. The infinite-volume binding energy of the deuteron E∞ as well as the coefficients
in front of the exponential ALO(ϕ), shown in fig. 6.3, have been extracted from the
computed data points using both a constrained fitting procedure where we enforce the
same infinite-volume E∞ but different amplitude coefficient for all distributions, and
from individual fitting procedures where we make no constraint on E∞. The cumulative
average of Ns = 1000 distributions within the data errors results in χ2

avg = 0.36. The
normalized amplitudes A(ϕ) := ALO(ϕ)/ALO

max = − cos(ϕ) with ALO
max = max(|A(ϕ)LO|)

have been fitted to f(ϕ) = c1A(ϕ) + c2 (fig. 6.3).

To emphasize the convergence of the twist averaging, we show in fig. 6.4 the relative
deviation of the extracted binding energies and the infinite-volume binding energy using
various fit ranges (from NL,start = 4 to NL,end = NL) for periodic boundary fits, periodic
and anti-periodic constrained fits, and fits with ‘i-periodic’ twists. In fig. 6.4, one can
see results obtained without making use of the fitting error propagation – results which
would have been obtained without making explicit use of the NLO FV corrections.

We find that aPBC + PBC average results improve and particularly i-Periodic Boundary
Condition (iPBC) greatly improve the precision of FV results compared to PBC results.
These findings are in complete agreement with those of [147] and gives us confidence
that our implementation of twists is correctly done. Since the computational costs grow
exponentially with the size of the box, studies computing ground state binding ener-
gies can greatly profit using such twists, particularly if similar conditions hold for more
complicated N -body systems.

Examination of fig. 6.3 shows that, for the two-body case with zero induced CM twists,
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Figure 6.2: Selected individual fits of two-body binding energy depending on FV for L = aNL

with NL from 4 to 20 and a = 1.97 fm. EB =
(
−2.172+0.000

−0.001

)
MeV and χ2

avg = 0.36 have
been similar for each twist configuration according to error propagation. The error bars and
error bands correspond to 1-σ. Data points and bands are slightly shifted in NL direction for
visualization purposes.

the iPBCs are superior to an average over several twists. We notice an apparent offset
in our calculations, particularly around ϕ = π, which can be seen by comparing the data
points to the analytic red line in fig. 6.3. Indeed, an integration over all twists points
in fig. 6.3 results in an offset at the order δE∞ = −0.04 × δ∆ELO

L (L, 0). This offset
leads to a larger uncertainty in our extracted energies, compared with iPBCs, even when
averaging over small sets of twists, as shown in fig. 6.4. As we show in the next section,
similar offsets are also seen in our three-body calculations. We return to the subject of
this offset in section 6.7.

Since the NLO FV twist dependence for the deuteron is analytically known, we have also
performed fits using this dependence for several fitting ranges. This analysis is based on
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Figure 6.3: Fit of two-body coefficient A(ϕ) depending on relative twist angle (ϕ1, ϕ2) = (ϕ,−ϕ)
with χ2

avg = 0.92. The blue line correspond to a fit of the form f(ϕ) = c1A(ϕ)+c2, while the red
line is the theoretical prediction A(ϕ) = − cos(ϕ). The error bars and error bands correspond
to 1-σ.

the error propagation explained in section 6.4.2, where the NLO twist dependence and
scaling of the FV effects are extracted from table 6.1. Again the deuteron is assumed to
be purely S-wave and in this case the Next-to-Next-to-Leading Order (N2LO) is assumed
to be twist independent. We provide the fit results in fig. 6.5 and the corresponding fitting
errors in fig. 6.6. We find that the obtained data interval is consistent with the infinite-
volume result for each fitting range (though the errors, especially for small ranges, are
exceptionally large). Nevertheless the size of the uncertainties for an aPBC plus PBC
average are just slightly smaller than the uncertainties for just PBCs. This is the case
since for both twists the error amplitude ANLO1(ϕ) are maximal in ϕ. For the combined
fit one nevertheless has relatively more data points than parameters and thus the total
error of the fitted parameters reduced. For the iPBCs, on the other hand, the NLO errors
are entirely removed, and thus accuracy is better compared to the previous twists.

Although our individual fits of E∞ at different volumes are consistent within uncertain-
ties, as shown in fig. 6.6, we find that our χ2

avg per degree of freedom are typically below
one (χ2

avg ≈ 1/3). As expected, this indicates that our results are correlated and/or our
errors have been overestimated. Indeed, one source of overestimation comes from the fact

105



Chapter 6 Applying Twisted Boundary Conditions for few-body nuclear systems

6 7 8 9 10 11
NL

0

2

4

6

8

10

12

∆
E

[%
]

Periodic Boundaries

Periodic and Antiperiodic Average

i-Periodic Boundaries

Figure 6.4: Relative error of the extracted binding energy for a given fit range compared to
the infinite-volume result. This fit ignores the NLO FV errors.

that we have conservatively assigned the magnitudes of the error to be roughly of the
same size as the fitted amplitude: A(NLO)

1 (0) ≈ N LO. Nevertheless, these results allow a
quantitative comparison since the overestimation is multiplicative and thus the relative
size of the errors stay the same. For NL ≥ 15, as a result of the analysis, the FV errors
are of the size of the numerical precision and therefore twist independent.

6.6 Three-body case: the triton

The exact form of FV corrections for the general three-body case has not been determined
to date. In [159], however, the three-body LO FV corrections for three identical particles
with PBCs (ϕi = 0 for i = 1, 2, 3) in the unitary limit was derived,

∆ELO
L (L, {ϕi = 0}) = N LO

P B

exp
(
− 2√

3κL
)

(κL)3/2 . (6.47)

Though this form is not rigorously applicable for our system (our system is not at the
unitary limit), it is sufficient for our analysis we describe below. We stress that our main
conclusions of this section do not depend on the specific FV functional dependence shown
in eq. (6.47).

As was done in the two-body case, we assume that the NLO FV corrections come from
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Figure 6.5: Example fits for a fit range from NL ∈ [4, 20] with χ2
avg = 0.33. Fit errors include

twist dependent NLO FV correction information. The error bars correspond to 1-σ.

additional powers of (κL)−1 for different partial-wave channels as well as suppressed
terms coming from the overlap of diagonally shifted images of the wave functions6 with
the original wave function,

∆E(NLO)
L (L, {ϕi = 0}) = N (NLO)

1,P B

exp
(
−
√

8
3κL

)
(κL)3/2 +N (NLO)

2,P B

exp
(
−
√

2
3κL

)
(κL)5/2 . (6.48)

We also assume the amplitude to the NLO corrections to be of the size of the LO ampli-
tude and again set N (LO)

P B =N (NLO)
i,P B in the expressions above.

As discussed in section 6.3, the effects of general TBCs in an N -body system is obtained

6 The argument of the wave function gets shifted by one box size in two different directions:
ψ(n) 7→ ψ(n+ (e1 + e2)L)
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Figure 6.6: Fit range dependence of deuteron binding energy. Fit errors include twist dependent
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by multiplying the wave function in a box by a phase related to the twists whenever one
leaves the box (eq. (6.28))

∆E(LO)
L ({ϕi}) =

3∑
i=1

∑
(ni,nj ,nk)∈Mi

v(ni,nj,nk) ei
∑3

l=1 ϕl·nl .

Instead of a factor of 3× 2× 2× 3 (spatial dimensions × sign of vector × permutations
of (j, k) for fixed i × permutations of i) when executing the sum over all neighboring
lattice vectors, the restriction (ni,nj,nk) ∈ Mi [eq. (6.27)] reduces the sum to factors
involving cosines that depend on the twist angles 7,

7 It is interesting to study this scenario in the N -body case as well. Since one expects no directional
dependence of the LO FV energy shift in the unitary limit of N -identical bosons, one can assume that
the general twist dependence of this shift can be expressed by eq. (6.50) when changing 3 to N . We
are currently studying the twist dependence in the N -body fermionic case [169].
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∆E(LO)
L (L, {ϕi}) = A(LO)({ϕi})

exp
(
− 2√

3κL
)

(κL)3/2 (6.49)

A(LO)({ϕi}) = N
(LO)
P B

9

3∑
i,j=1

cos(ej · ϕi) . (6.50)

Again, as in the two-body case, we restrict ourselves to equal boosts in each spatial
direction ej · ϕi = ϕi ∈ [0, 2π] and the sum of all twist angles is constrained to zero to
ensure zero CM motion. To analyze the twist-angle dependence of the LO FV corrections,
calculations were performed using three different angle orientations,

(ϕ1, ϕ2, ϕ3) = (ϕ,−ϕ, 0) , (ϕ, ϕ,−2ϕ) , (ϕ, 2ϕ,−3ϕ) (6.51)

The number of different computed configurations can be found in table 6.3, selected
energy fits from our calculated distributions are displayed in fig. 6.7 and the corresponding
amplitudes coming from all our fits as well as their predictions can be found in fig. 6.8.

In contrast to the two-body case, the extrapolated infinite-volume energy, as well as their
average χ2

avg of individual fits, depend on the twists, as can be seen by comparing the
top and bottom panels of fig. 6.8. This is to be expected since we have used in our fits
a FV functional form (eq. (6.47)) that does not represent our system exactly. Errors in
the fitted amplitudes and energies can, and most certainly are, correlated in this case
(compare top and center panels of fig. 6.8). We can explicitly see how such correlations
come about by considering the following example. Let us assume that the exact LO FV
expression is parametrized by

∆E(LO)
L,exact(L, ϕ) = A(LO)(ϕ)

[
∆E(LO)

L,used(L, 0) + ∆E(LO)
L,corr(L)

]
,

where ∆E(LO)
L,used(L, 0) is given by eq. (6.47) and ∆E(LO)

L,corr(L) its correction. The extracted
infinite-volume energy will have an explicit dependence on the twist angles since

E(L, ϕ) = E∞ + ∆E(LO)
L,exact(L, ϕ) + δE(L)

= E∞ + A(LO)(ϕ)
[
∆E(LO)

L,used(L, 0) + ∆E(LO)
L,corr(L)

]
+ δE(L) (6.52)

= E∞ + δE∞(L, ϕ) + ∆E(LO)
L,used(L, ϕ) + δE(L) . (6.53)

The expression above shows how errors in the form of the fitting function ∆E(LO)
L,used can in-

duce twist angle dependence and correlations δE∞(L, ϕ) on our extrapolated energies E∞.
Comparing eqs. (6.52) and (6.53), we note that as A(LO)(ϕ)→ 0, one has δE∞(L, ϕ)→ 0.
Thus the fitting expression, regardless of form, becomes exact in this limit.

Returning to fig. 6.7, we find that the shape of the LO FV corrections is similar to
that of the two-body deuteron system. In particular, one finds energies converging from
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Figure 6.7: Individually selected three-body fits for a fit range from NL ∈ [3, 7] which cor-
responds to L = aNL with a = 1.97 fm. Extracted infinite-volume energies, amplitudes and
average χ2 can be extracted from fig. 6.8. The error bars and error bands correspond to 1-σ.
Data points and bands are slightly shifted in NL direction for visualization purposes.

below and above the infinite-volume energy. However, because of the dimensionality of
the problem, the accessible box sizes were not sufficiently large to enter the asymptotic
region where the error bands overlap.

The amplitude fits in the center panel of fig. 6.8 suggests that certain twist angle combi-
nations have significantly reduced FV corrections (i.e. when A(ϕ) := −A(ϕ)/A(0) = 0),
similar to the iPBC case in the two-body system8. Indeed, from the predicted shape of
the amplitude twist dependence in eqs. (6.49) and (6.50), the three-body analogue to

8 The term ‘i-periodic’ in the two-body case refers to angles that produce a purely imaginary phase (i.e.
θ = π/2), and that also significantly reduce LO FV effects. For the three-body case, we designate the
term ‘i-periodic analogues’ to refer to twist angles that eliminate the LO FV effects, but are not in
general purely imaginary.
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iPBCs occurs for twist angles that solve the following equation,

3∑
j=1

cos(ϕ1 · ej) + cos(ϕ2 · ej) + cos((ϕ1 + ϕ2) · ej) = 0 . (6.54)
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If one twists each spatial direction equivalently, this reduces to

cos(ϕ1) + cos(ϕ2) + cos(ϕ1 + ϕ2) = 0 . (6.55)

Note that the analogue to iPBC twists are not unique in the three-body system, as
opposed to the deuteron case. In particular, there is a one-dimensional set of values for
ϕ which eliminate the LO FV effect. In fig. 6.8, for example, the iPBC analogue twist
angles correspond to the values of ϕ where the solid curves of A(ϕ) = 0 (center panel).

As found in the deuteron case, we point out here that our numerical results deviate from
their predictions in the regions of higher twist momenta, e.g. for the blue ϕ1 = −ϕ2,
ϕ3 = 0 line, this data is inconsistent within errors with the prediction at twist angles
around pϕ1 = 0.8π/L. For the red ϕ1 = ϕ2, ϕ3 = 2ϕ1 and the green ϕ2 = 2ϕ1, ϕ3 = 3ϕ1
line, the discrepancies are prominent once pϕ3 = 0.6 π/L and pϕ3 = 0.6 π/L respectively.
We return to this topic in section 6.7.

In fig. 6.9 we give a contour plot which shows all the allowed iPBC analog twist values
for the three-body system investigated in this paper. The contour itself represents the
left-hand-side of eq. (6.55) and thus the predicted relative amplitude of the LO FV
corrections. The maximal values correspond to the dark blue regions (periodic and other
boundaries) and the minima to the white regions (‘i-periodic’ boundaries). The solid line
corresponds to the exact solutions of eq. (6.55) and the points are the locations of pairs
of (ϕ1, ϕ2) which were used for in our numerical investigations. The larger points give
the numerically extracted twist angles that are consistent (within errors) with A(ϕ) = 0,
results which are valid to all orders of the FV corrections. The data points of fig. 6.9
use the same color designations as in fig. 6.8. The results in the middle panel of fig. 6.8
represent cross-sections of fig. 6.9 along the dotted lines and thus the data points share
a 2π periodicity.

Similar to the two-body case, we find that a complete averaging of twists does not entirely
remove FV effects in the three-body system.

6.7 Comment on discretization effects

As already pointed out, we find systematic differences between our numerical results and
their predictions in regions of large twist angles ϕ ≳ 0.6π, as can be seen from figs. 6.3
and 6.8. Also for the three-body case, due to the periodicity of the twist angles, one
would expect all our numerical results to be equivalent at ϕ = π, in addition to having
an agreement with their analytic predictions. We now present arguments that show that
these discrepancies originate most likely from discretization errors. Because the disper-
sion relation for free particles in a discrete space follows cosine and sine functions instead
of the analytic p2/2m, depending on the implementation of the derivatives, derivations
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Figure 6.9: Contour plot for three-body iPBC analogues. The contour expresses the rel-
ative amplitude of the predicted analytic LO FV corrections depending on the twists:
A(LO)(ϕ1, ϕ2,−ϕ1 − ϕ2) (eq. (6.50)). The black line correspond to the solutions for the three-
body iPBC analogues: A(LO) = 0 (eq. (6.55)) and the points (both large and small) represent
the twist angles we have used in our study. The larger points have been identified with the
numerically found iPBC analogues extracted from fig. 6.8 (see text). As in fig. 6.8 the color
code represents data for a fixed ratio of ϕ2/ϕ1: (blue, red, green) = (−1,1,2).

are expected to appear at higher orders. Consider the following picture of a simple
discrete ‘one-step’ derivative in the context of TBCs

∂2
x,af(r) := 1

a2

(
eiϕxa/Lf(r + aex)− 2f(r) + e−iϕxa/Lf(r − aex)

)
. (6.56)

If one now computes the expectation value of the momentum operator squared ⟨pϕ 2
x,a⟩

for a given wave function ψ and twist angle ϕ, then expands this wave function and
rewrites this with the continuum expectation values of the momentum operator for pe-
riodic boundaries

⟨pn
x⟩ :=

∫
d xψ∗(x) (−i∂n

x )ψ(x) , (6.57)
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one finds that

⟨pϕ 2
x,a⟩ = ⟨(px + ϕx/L)2⟩ − a2

12
⟨(px + ϕx/L)4⟩+O(a4) . (6.58)

As the first term in eq. (6.58) can be identified with the continuum limit twist momen-
tum, the expectation value of the momentum operator squared obtains a negative shift
for a non-zero lattice spacing. Such a shift scales as a2(ϕ/L)2 plus higher terms for a
‘single-step’ derivative. These results are entirely consistent with our findings of a re-
duced offset in our numerical results for large shift angles since in our computations the
potential was purely local and the only structure affected by twists was the kinetic en-
ergy operator. Therefore the total energy of all the computed states experience a shift to
more negative values compared to the continuum limit – the larger the twist momentum
(modulo periodicity), the bigger the shift. As this effect is most dominant for small boxes
and the FV shift exponentially decays as well, the magnitude of the exponential decay
is eventually smaller compared to the result in a continuous space. Definitive proof that
our offsets are indeed due to discretization effects would require calculations performed at
smaller lattice spacings, as well as the use of higher order improved differencing schemes.
We are actively investigating this.

6.8 Conclusion

In this paper, we investigated the effects of TBCs on two- and three-body nuclear systems.
We performed investigations using the NLEFT formalism, with appropriate modifications
to affect twisted boundaries and utilized a simplified NN interaction. We benchmarked
our two-body results to known analytic results from [147], and extended the analysis in
the two-body sector to additional twist angles. We performed the same analysis to the
three-body (triton) sector, where we derived the three-body iPBC analog quantization
condition and numerically verified their corresponding FV cancellations. As opposed to
the deuteron case, we found multiple iPBC analog twist possibilities in the three-body
sector.

We have attempted a detailed analysis of our fitting and extraction routines, where we
enumerate all (known) sources of systematic errors. Where possible, we assign realistic
errors or very conservative errors in our error budget. We find that, in both two-body and
three-body systems, results obtained with iPBC analogs were superior to twist averaging,
under the constraint that the allowed twists preserved zero CM motion. In our three-
body calculations, we found correlations and twist-angle dependence in our extrapolated
binding energies. As we demonstrated, this finding is to be expected since the LO FV
functional form we used to extract our results was derived for three particles at the
unitary limit [159], which does not describe our system exactly.
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Our analysis suggests that discretization effects also influence FV effects for non-zero
twists. We have provided formal arguments to support this finding, and we intend to
do a more detailed analysis of this effect using several lattice spacings as well as more
complex A-body systems to confirm this.

Our work also shows that the implementation of twisted boundaries for N -body systems
within the NLEFT formalism is, in principle, relatively simple. One merely has to mul-
tiply off-diagonal matrix-elements of the transfer matrix by a phase associated with the
twists. One might fear that this procedure increases sign oscillations during stochastic
computations. However, the corresponding operators remain hermitian, and the eigen-
vectors and corresponding eigenvalues remain real. Furthermore, though in this case
only two-body interactions were considered, this can be readily generalized to N -body
interactions.

In this study, we applied twists to nucleon degrees of freedom within a non-relativistic
formulation. We found that the iPBC analogue twists exactly cancelled the LO FV
effects. This is a contrast to LQCD calculations that employ twists (or partial twists)
since here the twists are applied directly to quarks. The interactions, in this case, can
also depend on the twist angles due to a propagation of pions around the torus. As such,
we do not expect exact cancellation of LO FV effects, but rather a suppression. It would
be interesting to quantify this level of suppression from LQCD studies that utilizes our
iPBC analogue twist-angle condition in eqs. (6.54) and (6.55).

The most intriguing aspect of this work is the demonstration of iPBC analog twists for
the three-body sector, which have vastly reduced FV corrections compared to PBCs.
This raises the question of whether or not there exists more general iPBC analog twists
for N -body systems. The possibility of iPBC analog twist angles for higher N -body
systems would be an outstanding finding for FV numerical simulations since this would
allow for calculations in smaller volumes accompanied by their significant reduction in
computational costs. Our findings in the three-body sector, coupled with our current
investigations of more general N -body systems [169], provides credence that analogs of
iPBC angles exist for non-relativistic N -body systems in general.
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CHAPTER 7

Conclusion

Summary and conlcusion

Low-energy high precision experiments are a powerful tool for analyzing extensions of the
Standard Model (SM) of particle physics—complementing and sometimes even surpass-
ing ongoing efforts at higher energies in their discovery potential. This work discussed a
procedure which takes possible interactions of Beyond the Standard Model (BSM) can-
didates with SM particles, propagates them to the nuclear level and computes scattering
observables through external current low-energy Nuclear Matrix-Elements (NMEs). The
specific example for this analysis were hypothetical scalar Dark Matter (DM) interactions
with quarks and gluons. A chiral power counting expansion in the DM-nucleon current
structure has been presented and few-nucleon matrix-elements, which characterize the
scattering of DM and light nuclear targets (2H, 3H and 3He), have been computed and
analyzed. The feasibility of computing such matrix-elements within nuclear lattice com-
putations has been demonstrated, but it was shown that the nuclear lattice method has
to overcome several obstacles in order to achieve similar accuracy as traditional methods.
Two extensions of the nuclear lattice method which help to overcome those obstacles, a
prescription for including few-body forces and a prescription for accessing lattice matrix-
elements at arbitrary momenta, have been presented.

The second chapter of this thesis focussed on the derivation of Leading Order (LO) and
Next-to-Leading Order (NLO) DM-nucleon current structures for scalar DM quark and
gluon interactions. This effective ansatz allows to connect BSM theories to the level
of individual nucleons by matching the a priori unknown effective coefficients at the
quark-gluon level. The DM interactions with nucleons were derived using Chiral Per-
turbation Theory (χPT) and can be characterized into three categories related to the
dependence of operators on the effective BSM coefficients: isospin scalar light quark in-
teractions with DM, isospin vector light quark interactions with DM and strange quarks
and gluon interactions with DM. Since the effective BSM coefficients are a priori un-
known, without making any model assumptions one can just compare operators within
one category with each other. The analysis presented in this work incorporated all for this
comparison relevant uncertainties—including the uncertainties coming from the nuclear
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sector. Traditional methods (the Schrödinger and Faddeev equations in this case) have
been used to compute DM-2H, 3H and 3He scattering responses. As a result, the work
concludes that one-nucleon interactions are under control and can be well described by
the impulse approximation (coherent behavior of individual nucleons) for the analyzed
systems. Two-body currents are smaller than expected by the chiral power counting
and come with more considerable relative uncertainties. Even though the total mag-
nitude is smaller than predicted by power counting, the relevance of these two-nucleon
currents is expected to grow for larger systems. These two-nucleon DM interaction un-
certainties seem to be strongly correlated with the accuracy of the nuclear description
but can be controlled by increasing the accuracy [e.g., the N3LO chiral order or higher in
the description of nuclear forces for the bound states]. The control of two-nucleon DM
scattering uncertainties is essential because, in the case of scalar DM, this is one of the
only ways to disentangle the fundamental behavior of DM with quarks and gluons. It is
an ongoing project to extend this work to 4He, a target for proposed experiments, and
spin-dependent DM interactions with quarks and gluons.

Because many DM experiments utilize much bigger nuclear systems (A ≳ 28), with
individual nucleon numbers well beyond the range of traditional few-body methods, one
must utilize many-body methods in order to make theoretical predictions. These many-
body methods make simplifications and approximations in order to access larger systems.
As it was demonstrated in chapter 2, it is essential to control all relevant uncertainties
if one wants to disentangle different theories for DM. For this reason, the many-body
method of choice must be able to not only quantify all the uncertainties coming from
the nuclear description but, additionally, must be able to quantify the simplifications
made by the method itself. The third chapter briefly motivates the basic idea behind
Nuclear Lattice Effective Field Theory (NLEFT)—the stochastic many-body method
used in this work. It is presented how this lattice method with individual nucleons as
degrees of freedom makes it possible to access larger systems and how it is related to
Chiral Effective Field Theory (χEFT).

As one of the essential prerequisites for accurate many-body methods, NLEFT must be
able to include Three-Nucleon Forces (TNFs). The fourth chapter derives a formalism,
which makes it possible to extend any stochastic lattice method in such a way that one
can include any local N -body contact interaction. The basic idea is the generalization
of the Hubbard-Stratonovitch (HS) transformation. A background field, which interacts
with the fundamental degrees of freedom of the theory (nucleons in the case of NLEFT),
is introduced in such a way that the new theory can be computed more efficiently. By
the introduction of this general background or auxiliary field, one induces an arbitrary
amount of freely tunable coefficients which must be matched to reproduce the original
theory. Once one has stochastically integrated out the auxiliary fields, the original theory
is exactly obtained. It was found that different choices of freely tunable parameters
come with different stabilities in the stochastic integration. This stability is related to a
more fundamental problem: the sign problem—specific nuclear interactions increase the
standard deviations of stochastic computations. It remains to be tested if or how much
the non-perturbative inclusion of few-body forces will affect the stochastic uncertainties
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of nuclear lattice computations. Also, it is an interesting task to further generalize this
technique such that one can include quantum number dependent interactions and long
range interactions.

The fifth chapter presents a feasibility study for box computations—defined by a discrete
basis within a finite but periodic space—for the most dominant scalar DM NME. A simple
separable potential model, which mimics the short-range part of nuclear interactions,
is used in analytical and numerical box computations. The numerical box results are
compared to the analytical result to identify the infinite volume and continuum limit
convergence behavior as well as the desired parameter space for accurate computations.
Results do converge with reasonable precision for direct diagonalization methods and
within the investigated parameter space range. In general, NME box computations seem
feasible. It remains an ongoing investigation how extrapolation procedures, specifically
the continuum limit can be realized for realistic interactions. Different notions of such an
analysis, which do not affect the required cutoff of the theory, are presented in the fifth
chapter. It is intended that a similar analysis will be executed for chiral interactions.
However, lattice stochastic computations must be extended to, (a), meet the accuracy
demands in terms of Finite-Volume (FV) effects and, (b), guarantee sufficient overlap
between the set of allowed box momentum values and the physically relevant range
of the DM momentum transfer values. While demand (a) generally depends on the
nuclear wave function and operator used in the computation, demand (b) is true for
any momentum dependent NME. One possible extension to meet these two demands is
given by increasing the spatial lattice notes by a factor of ∼ 23 or larger in order to have
sufficient predictability. First steps into implementing the stochastic NLEFT algorithm
on Graphics Processing Units (GPUs) are promising, with the potential to drastically
increase the size of accessible volumes by a factor of more than 43.

Complementary to brute forcing algorithms to larger systems, in Lattice Quantum Chro-
modynamics (LQCD) exists a notion which makes it possible to access desired predictions
and simultaneously increase the accuracy of small volume computations by tuning the
boundary conditions within the box. The implementation of such Twisted Boundary
Conditions (TBCs) in the NLEFT algorithm is presented in chapter 6. It is presented
that one can extract similarly precise results for binding energies for systems of 1/23 this
size but carefully chosen boundary conditions. Furthermore, the a priori discrete range
of box momenta can be scanned continuously by choosing different twist angles—making
it possible to compute physically interesting current NME for any box size. It is still
an open task to implement TBCs in the stochastic lattice algorithm and analyze their
potential effect on sign oscillations—which most probably are unaffected because of the
Hermitian implementation of the TBCs.

In conclusion, uncertainty estimates using a traditional framework emphasize that single-
nucleon interactions are well under control for the light nuclei systems considered in this
thesis. For these systems, the two-nucleon matrix-elements, which are primarily relevant
to identify the nature of BSM structures, are smaller than expected but also heavily
dependent on the accuracy in the description of the nuclear interactions. To make reliable

119



Chapter 7 Conclusion

estimates for experiments, one must execute several computations to understand the
propagated uncertainty coming from the nuclear description. It is possible to compute
such NMEs of BSM current operators on the lattice. While further investigations have
to be made for realistic descriptions of nuclear interactions at larger system sizes, no
potential showstopper1 was identified in this thesis. However, in order to make reliably
accurate estimates of such NMEs, one has to execute several computations for the same
observable:

Nruns = Nν ×Nmb = Nν × (NL ×NaL
×NaT

) , (7.1)
where Nν is the number of different chiral interactions and Nmb the number of computa-
tions for a reliable many-body estimate. In the case of NLEFT, the number of estimates
is a product of the number of runs for different lattice volumes (L3) and different spatial
and temporal discretization spacings (aL and aT ). A minimal set for NLEFT current
NMEs computations2 is at the order of Nruns = 81, where each coefficient was chosen to
be equal to three (in order to see a slope for extrapolation procedures). This is challeng-
ing because computations without or with incomplete uncertainty estimations require a
fraction of the computational effort compared to full computations. Moreover, this does
not even include the additional time spent on the analysis of uncertainties. Even though
the scientific community emphasizes the need for such complete uncertainty estimations,
studies without these estimates still dominate the literature—independent of the utilized
many-body method.

Last but not least, the specific candidate for representing the BSM theory considered
in this thesis was DM. However, because this work considered an effective approach
for describing the extensions to the standard model, it is quite general in its predictive
capabilities. For example, the theoretical description of the Neutrinoless Double β Decay
(0νββ-decay), which might help to resolve the nature of neutrinos and therefore helps
to resolve the matter asymmetry puzzle, is very similar to the theoretical description
associated with scalar DM. Thus, once such a framework is established, it can be used
to address multiple problems at once.

1 The only remaining showstopper I can think of is unexpected additional sign oscillations in stochastic
many-body computations. This was not investigated in this thesis.

2 It is possible to insert a set of different NMEs in one run of a NLEFT computations at close to no
additional cost.
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APPENDIX A

Scattering currents and recoil rates

This chapter demonstrates how one can obtain differential cross sections as well as the
differential recoil ratios for the elastic scattering process of a Dark Matter (DM) particle
χ hitting a target nucleus T

χ(pχ) + T (pT ) 7→ χ(p′χ) + T (p′T ) . (A.1)

pT

pχ

p′T

p′χ

2

=: −i (2π)4δ(4)
(
pχ + pT − p′χ − p′T

)
M(pχ, pT , p

′
χ, p
′
T )

Figure A.1: Definition of the elastic scattering amplitude for the DM particle χ hitting a target
T . The amplitude is related to the cross section for an elastic two-to-two particle scattering
process [see eq. (A.2)].

The starting point is for cross sections taken from [170, page 200], which relates any
two-to-two relativistic scattering matrix-element to a differential cross section

dσ = S

4
√

(pχ · pT )2 −m2
χm

2
T

[
d3p′χ
(2π)3

1
2Ep′

χ

d3p′T
(2π)3

1
2Ep′

T

]

× (2π)4δ(4)
(
pχ + pT − p′χ − p′T

) ∣∣∣M(pχ, pT , p
′
χ, p
′
T )
∣∣∣2 . (A.2)
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Appendix A Scattering currents and recoil rates

Herby Epa
:=

√
m2

a + p2
a is the relativistic energy of the particle a, S is a constant

containing the symmetry factors of the amplitude [the number of permutations; S = 1
in the scenario of chapter 2] and the amplitude is defined according to fig. A.1.

In the case of this work, the the target is a composite object, more generally an N -nucleon
bound state. The computation of amplitudes or equivalently matrix-elements for bound
states is discussed in the next section.

A.1 Bound state matrix-elements

This section follows the normalization convention of [171].

As a first step, one can analyze the action of operators acting on one nucleon line only

= −ig
∑
A

∫
dx 4

[
χ̄(x) ΓA

χ χ(x)
] [
N †(x) ΓA

N N(x)
]
. (A.3)

For now, the exact form of the DM field χ regarding spin or other symmetries is not
relevant. Thus, one expresses the external matrix-element of this field by⟨

χ(p′χ)
∣∣∣ χ̄(x) ΓA

χ χ(x)
∣∣∣ χ(pχ)

⟩
=
⟨
ΓA

χ

⟩
e−i(pχ−p′

χ)·x . (A.4)

The non-relativistic nucleon field is expressed by [172]

N̂(x) :=
∑

i,s=↑,↓

∫ d3p

(2π)3
1√

2mN

us vi e
−ip·x b̂is(p) , (A.5)

where u and v are Pauli spinors for the spin and isospin component of the nucleon and
the nucleon states are defined by the action of the creation operator b̂†i,s(p) on the vacuum
state √

2mN b̂
†
is(p) |0⟩ := |Nis(p)⟩ . (A.6)

These Fock-space operators must fulfill the anti-commutation relations{
b̂†i′s′(p′) , b̂is(p)

}
= (2π)3 δ(3) (p′ − p) δi′i δs′s , (A.7){

b̂i′s′(p′) , b̂is(p)
}

= 0 =
{
b̂†i′s′(p′) , b̂†is(p)

}
.

To describe bound states within the framework of a field theory in the non-relativistic
limit, one must make a similar state definition for precisely these bound states. Since
bound states are compound objects, one now also has to deal with more than just two
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A.1 Bound state matrix-elements

spin (s =↑, ↓) and isospin (i = p, n) polarizations. Furthermore, the total internal spin S
couples with the bound state angular momentum L resulting in the total spin quantum
number J . Thus, to use the bound state in eq. (A.2), one needs the normalization of the
form

⟨Ni′s′(p′) | Nis(p)⟩ = 2mN (2π)3 δ(3) (p′ − p) δi′i δs′s (A.8)

⟨Bα′(P ′) | Bα(P )⟩ != 2mB (2π)3 δ(3) (P ′ − P ) δα′α , (A.9)

where α′ and α are a collective set of channel quantum numbers which uniquely determine
the nuclear state (e.g., the isospin polarization and total spin J).

A.1.1 Two body bound states

Because the DM interactions are acting on individual nucleon lines, one has to compute
the action of the action of single nucleon operators on this bound state. A desirable
description of the bound state in terms of single nucleon operators is given by

|Bα(P )⟩ := C
∑
i1,i2

∑
s1,s2

∫ d3p1
(2π)3

∫ d3p2
(2π)3

× ψ
α;( i1i2

s1s2)
(p1,p2) |Ni1s1(p1);Ni2s2(p2)⟩ (2π)3δ(3)(p1 + p2 − P ) . (A.10)

The constant C is the normalization of the state, P the center of mass momentum
and ψ the bound state wave function—a negative energy solution to the two-nucleon
Schrödinger equation. For example, one can express the wave function by its partial
wave components L, S, I and J with the fixed quantum numbers α = (J,MJ ;MI). In
this case, the wave function corresponds to sums of Clebsch-Gordan coefficients times
the partial wave components

ψ(J,MJ ;MI);
(

i1i2
s1s2

)(p1,p2) =
∑
LS

∑
MLMS

⟨ 1
2
i1,

1
2
i2

∣∣∣∣ IMI

⟩⟨ 1
2
s1,

1
2
s2

∣∣∣∣SMS

⟩

× ⟨LML, SMS | JMJ ⟩Y ∗LML
(p̂1 − p2)ψ(LS)J ;I

(∣∣∣∣ p1 − p2
2

∣∣∣∣) .

Here, it was used that the wave momentum-space dependent component in a partial
wave basis does not depend on polarization components and the angular dependence is
described by spherical harmonics.

To simplify the notation in the following context, the individual nucleon spin and isospin
quantum numbers will be indicated by one combined subscript only, e.g., for the previous
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case

|Bα(P )⟩ = C
∑
a,b

∫ d3p1
(2π)3

∫ d3p2
(2π)3 ψα;ab(p1,p2) |Na(p1);Nb(p2)⟩ (2π)3δ(3)(p1 + p2 − P ) .

(A.11)

Figure A.2: Possible choices for contracting the nucleon lines for the bound state wave functions.
The triangle represents the two-nucleon bound state and the lines correspond to individual
nucleon lines. The order of lines symbolizes how nucleon operators are contracted.

Next, one would like to determine the normalization of the bound state. When evaluating
the matrix-element for two-nucleon states, one has to contract the nucleon operators in
all possible ways (see fig. A.2)

⟨Na′ ;Nb′ |Na;Nb⟩ = ⟨0|N̂a′N̂b′N̂bN̂a|0⟩+ ⟨0|N̂a′N̂b′N̂bN̂a|0⟩ = δa′aδb′b − δb′aδa′b . (A.12)

Thus the normalization is given by

⟨
Bα′(P ′)

∣∣ Bα(P )
⟩

= | C |2 (2π)3δ(3) (P ′ − P )√2mN
4∑

a,b

∫
d3p1
(2π)3

×
[
ψ∗α′;ab(p1,P − p1)ψα;ab(p1,P − p1)− ψ∗α′;ba(P − p1,p1)ψα;ab(p1,P − p1)

]
. (A.13)

Since the wave function is completely antisymmetric in the exchange of nucleons, the
terms in parenthesis are actually the same modulo a minus sign. Also, when shifting the
momentum by p1 7→ p + P /2 one can use the fact that the wave function just depends
on the relative momentum and thus apply the orthonormality of the wave function

∑
a,b

∫ d3p

(2π)3 ψ
∗
α′;ab(p)ψα;ab(p) = δαα′

⇒ ⟨Bα′(P ′) | Bα(P )⟩ = | C |2 (2π)3δ(3) (P ′ − P )
√

2mN
4 × 2 δαα′ . (A.14)

Thus, to agree with the single-nucleon state convention, the normalization must be chosen
as follows

C = 1√
2
×
√

2MB
1

√
2mN

2 . (A.15)

The first factor of 1/
√

2 comes from the fact that the individual nucleon quantum numbers
are not fixed—the nucleons can completely interchange their position and flip the wave
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function. This is similar when going from the relative momentum basis to an also anti-
symmetric second quantization basis of nucleon fields: one has to include a factor of
1/
√
N !,

|k1,k2⟩reg. mom. = 1√
2!
|k1,k2⟩sec. quant. . (A.16)

Next, one has to compute the matrix-element of an one-nucleon operator N̂(x)ΓN̂(x),
where Γ is in general matrix in spin and isospin space. The matrix-element is, as before,
given by the sum over all possible contractions (see fig. A.3)

⟨
Bα′(P ′)

∣∣∣ N̂(x)ΓN̂(x)
∣∣∣Bα(P )

⟩
= 2MB

2(2mN)2

∑
a,a′,b,b′

∏
n=1,2

(∫ d3pn

(2π)3

∫ d3p′n
(2π)3

)

× (2π)3 δ(3)(p′1 + p′2 − P ′) (2π)3 δ(3)(p1 + p2 − P )
× ψ∗α′;a′b′(p′1,p′2)ψα;ab(p1,p2)

⟨
Na′ ;Nb′

∣∣∣ N̂ †(x)ΓN̂(x)
∣∣∣Na;Nb

⟩
. (A.17)

For simplifying purposes it was assumed that MB′
α

= MB = MBα .

= + + +1-Body

Figure A.3: Diagramatic interpretation of an one-nucleon operator matrix-elements for a two-
nucleon bound state.

When summing over all possible contractions one finds anti-symmetric patterns similar
to the normalization part [fig. A.3]. Hereby one can show that the results of such anti-
symmetric structures are actually the same. As an example: for the result where the the
operator is inserted on the upper (first) nucleon line one finds

Γ

= 2MB

2(2mN )2

∑
a,a′,b,b′

∏
n=1,2

(∫
d3pn

(2π)3

∫
d3p′n
(2π)3

)

× (2π)3 δ(3)(p′1 + p′2 − P ′) (2π)3 δ(3)(p1 + p2 − P )

× ψ∗α′;a′b′(p′1,p′2)
⟨
Na′ ;Nb′

∣∣∣ N̂ †(x)ΓN̂(x)
∣∣∣Na;Nb

⟩
ψα;ab(p1,p2) . (A.18)

with the result of the contraction

⟨
Na′ ;Nb′

∣∣∣ N̂ †(x)ΓN̂(x)
∣∣∣Na;Nb

⟩
=
√

2mN
4×
[(
u†a′v

†
a′Γvaua

) e−i(p1−p′
1)·x

√
2mN

2

]
×(2π)3δ(3)(p′2−p2) δbb′ .

(A.19)
The square root of the masses to the power of 4 is coming from the normalization of the
states, the matrix-element from the operator field contractions and the delta function
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from the blank nucleon line contraction. On the other hand, when contracting the first
incoming nucleon with the second outgoing nucleon, one finds

⟨
Na′ ;Nb′

∣∣∣ N̂ †(x)ΓN̂(x)
∣∣∣Na;Nb

⟩
= −
√

2mN
4×
[(
u†b′v

†
b′Γvaua

) e−i(p1−p′
2)·x

√
2mN

2

]
×(2π)3δ(3)(p′1−p2) δa′b .

(A.20)
Last but not least, one can relabel the integrations and sums according to (p′1, a′, b′ ↔
p′2, b

′, a′) and the part of eq. (A.17) containing eq. (A.20) is equal to the part of eq. (A.17)
containing eq. (A.19). And, again, when simultaneously interchanging the components
of the wave function (p′1, a′, b′ ↔ p′2, b

′, a′), one obtains an additional minus sign

ψ∗α′;a′b′(p′1,p′2) = −ψ∗α′;b′a′(p′2,p′1) . (A.21)

Most interestingly, this is also true the other way around—relabeling the non primed
indices and momenta. Because of this, one can simply interchange for example the
indices where the operator is inserted on the first nucleon line such that one obtains the
same structure where the operator is inserted on the second nucleon line (times (−1)2

for interchanging the primed and non-primed wave function). Accordingly, the sum over
all four possible contractions is equal to four times one of the diagrams. Note that the
factor of four appears because of the normalization choice of the wave function which
includes another factor of one half (symmetry factor). Thus, the result of an one-nucleon
operator matrix-element is equal to four times the matrix-element, where the operator is
inserted on one nucleon line (see fig. A.4).

= 4 = 2 S S1-Body

Figure A.4: Matrix-element of one-nucleon operator for a two-nucleon bound state is equal two
four times the result for a specific contraction in terms of a regular momentum basis. In case
one chooses the second quantization basis (counting of twisted line contractions within states),
this makes two times the insertion on one nucleon line.

Combing all this one finds⟨
Bα′(P ′)

∣∣∣ N̂(x)ΓN̂(x)
∣∣∣ Bα(P )

⟩
= 2 MB

mN

e−i(P−P ′)·x ∑
a,b,a′

∫ d3p

(2π)3 ψ
′∗
α′;a′b

(∣∣∣∣p− q2
∣∣∣∣) ⟨Γ⟩a′a ψα;ab(p)

=: 2 2MB

2mN

e−i(P−P ′)·xFΓ(q) , (A.22)
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where it was used that the wave function only depends on the relative momenta and
with q ≡ P −P ′. Finally combining this with the DM only matrix-element eq. (A.4) to
obtain the full scattering amplitude eq. (A.3) one finds

iM(pχ, pT , p
′
χ, p
′
T ) = 2 MB

mN

×
∑
A

FΓA(q)
⟨
ΓA

χ

⟩
. (A.23)

This can be repeated for two-nucleon operators Ô = (N̂ †Γ1N̂)(N̂ †Γ2N̂). The things
which will be different can be identified in a straightforward manner: On the one hand,
the symmetry factor will not change. Because one just has two-nucleon lines at proposal,
once one has contracted the first single nucleon operator, the next one is fixed. Note
that symmetry factors for one- and two-nucleon operators will be different once one
computes matrix-elements of N -nucleon bound states with N > 2. On the other hand,
since the operator consists out of four nucleon fields, one will obtain an additional factor
of 1/

√
2mN

2 from the state normalization. The overall exponential of the momenta is
not affected by the shape of the operator, one will always obtain −i(pin− pout) ·x. Thus,
the result is of the form
⟨
Bα′(P ′)

∣∣∣ [N̂ †(x)Γ1N̂(x)
] [
N̂ †(x)Γ2N̂(x)

] ∣∣∣ Bα(P )
⟩

= 2 2MB

(2mN)2 e
−i(P−P ′)·x

×
∑
a,a′

∑
b,b′

∫ d3p′1
(2π)3

∫ d3p1
(2π)3 ψ

∗
α′;a′b′(p′1,P ′ − p′1) ⟨Γ1⟩a′a ⟨Γ2⟩b′b ψα;ab(p1,P − p1) . (A.24)

The whole procedure can be generalized in a straight forward manner to any N -nucleon
bound state and M -nucleon operator. Besides the mass factors coming from the normal-
ization of the Fock-space states, one only has to consider the possible permutations of
nucleon lines.

A.2 Recoil rates

This section presents how one obtains the differential cross section per recoil energy in
the lab frame of the target

dσ

dER

, ER := q2

2mT

,

where q is the recoil momentum of the target with mass mT . Again one starts with the
equation for the differential cross section

dσ = S

4
√

(pχ · pT )2 −m2
χm

2
T

[
d3p′χ
(2π)3

1
2Ep′

χ

d3p′T
(2π)3

1
2Ep′

T

]

× (2π)4δ(4)
(
pχ + pT − p′χ − p′T

) ∣∣∣M(pχ, pT , p
′
χ, p
′
T )
∣∣∣2 . (eq. (A.2))
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In the Lab frame of the target, one finds for the three-vectors

pχ = γ mχvχ , pT = 0 , p′T = q , p′χ = pχ − q , (A.25)

where γ is the relativistic Lorentz factor. Also, in the case of this work, the scattering
amplitude M depends on the momentum transfer q, or more precisely q2. One can
simplify the denominator once one substitutes these expressions in the denominator of
eq. (A.2) √

(pχ · pT )2 −m2
χm

2
T = mT

∣∣∣pχ

∣∣∣ . (A.26)

It is preferable to execute the p′χ integration since one wants to work with E(q) later on.
Last but not least, for this work, S = 1, since one can distinguish between DM and any
other nuclear target

dσ = 1
4·2·2mT

∣∣∣pχ

∣∣∣
[
d3q

(2π)3
1

E ′χE
′
T

]
(2π) δ(1)

(
Eχ + ET − E ′χ − E ′T

) ∣∣∣M(q2)
∣∣∣2 . (A.27)

Note that the energies still depend on the three momenta, e.g., E ′χ depends on pχ · q.
In the next step, one has to split up the q integration in its angular and radial parts.
Afterwards one can relate the radial part to the relativistic target energy

dE ′T = d
(√

m2
T + q2

)
= | q |
E ′T

dq ⇒ d3q

(2π)3 = dϕ dx dE ′T | q | . (A.28)

Plugging this back into eq. (A.2), executing the angular integration and using the fact
that one can choose the orientation of the coordinate system to simplify the azimuthal
ϕ integration, one obtains

dσ = (2π)·(2π)
16·(2π)3 mT

∣∣∣pχ

∣∣∣ dE ′T | q |
∣∣∣M(q2)

∣∣∣2 1∫
−1

dx
1

E ′χ(x)
δ(1)

(
Eχ + ET − E ′χ(x)− E ′T

)
.

(A.29)
The solution of the integration over the delta function is given by

1∫
−1

dx
1

E ′χ(x)
δ(1)

(
Eχ + ET − E ′χ(x)− E ′T

)
=
∑

i

1
E ′χ(xi)

1
|∂xE ′χ(xi)|

, (A.30)

where xi are the zeros of the argument of the delta function within the range |xi | ≤ 1.
The derivative of the energy E ′χ(x) with respect to x can fortunately be expressed with
E ′χ(x) itself

∂xE
′
χ(x) = ∂x

(√
m2

χ + p2
χ + q2 − 2 | q | |pχ|x

)
=
− | q | |pχ|
E ′χ(x)

. (A.31)
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The only remaining task is the computation of the zeros of the delta function

Eχ + ET − E ′T −
√
m2

χ + p2
χ + q2 − 2 | q | |pχ|x = 0 , (A.32)

or

2 | q | |pχ| ≥ 2 | q | |pχ|x = m2
χ + p2

χ + q2 − (Eχ + ET − E ′T )2 ≥ −2 | q | |pχ| . (A.33)

Further simplifying this equation one has

m2
χ + p2

χ + q2 − (Eχ + ET − E ′T )2 = q2 + (2Eχ + ET − E ′T ) (E ′T − ET ) . (A.34)

In the non-relativistic limit the energy difference of the target will be given by the change
in the kinetic energy E ′T − ET = q2/2mT + O(q4) and, additionally one can use that
the relativistic energy of the DM particle (mχ ≳ 103MeV) is larger than the target recoil
energy Eχ ≫ ET − E ′T = q2/mT ≲ 1MeV, one has

2 | q | |pχ| ≥ q2(1 + Eχ/mT ) ⇒ | q | ≤
2|pχ|

1 + Eχ/mT

≃ 2µT |vχ| , (A.35)

where µT is the reduced mass of the DM and target particle. The approximation in
eq. (A.35) is for non-relativistic DM with vχ ≪ 1 and Eχ = mχ.

To conclude this for elastic DM scattering with a target T , the differential cross section
is given by

dσ = 1
32π
|M(q2) |2

mT |pχ|2
dE ′T , | q | ≤

2|pχ|
1 + Eχ/mT

, (A.36)

which becomes in the limit for non-relativistic DM particles

dE ′T = d
(√

m2
T + 2mTER

)
= mT

E ′T
dER ≃ dER (A.37)

and
dσ

dER

= 1
32π
|M(q2) |2

mTm2
χv

2
χ

, | q | ≤ 2µTvχ . (A.38)

And finally, one obtains the differential recoil rate by averaging the differential cross
section over the DM velocity distribution (see also [76])

dR

dER

= ξT

mT

ρ0
χ

mχ

∫
vmin

d3v vfE(v) dσ
dER

. (A.39)

Here, the parameters are

• ρ0
χ ≃ 0.3GeV/cm3, the DM energy density at the Earths location
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• fE(v), the DM velocity distribution in the Earth’s frame. Ref. [76] uses a truncated
Maxwell-Boltzmann distribution corresponding to an isothermal sphere density pro-
file for the DM. One can relate the distribution on Earth to the distribution in the
galaxy by fE(v) = fG(v + vE) with

fG(v) = exp(−v2/v2
0)

(v0
√
π

3)erf(vesc/v0)− 2v3
0π(vesc/v0)exp(−v2

esc/v
2
0)

(A.40)

normalized to ∫
v≤vesc

d3v
fG(v)
v

= 1 (A.41)

with v0 = 220km/s and vesc = 544km/s.

• vmin is the minimal velocity for the DM to hit a target at rest such that it has
momentum q after the scattering process. It is given by 2µTvmin ≃ q =

√
2mTER

as shown above. This is the reason why heavy target detectors find it easier to mea-
sure heavy DM: since the smallest detected recoil energy is limited by the detector
resolution, one desires relatively large recoil energies. In case of light DM, this ratio
improves if mT is light as well.

• ξT is the target ‘mass fraction’ taking into account numeric abundances (see [112]).
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APPENDIX B

Operator partial wave decomposition

The primary objective of this work is the computation of Nuclear Matrix-Elements
(NMEs) with a complete estimation of all relevant uncertainties. For this reason, one
has to compute multiple matrix-elements for the same observable but different param-
eter sets. An important part of these uncertainty estimations involves the variation of
chiral orders: one has to sandwich the same operator with several wave functions at
different chiral orders. Therefore, from a computational point of view, it is desirable to
have the operators in a portable basis which is adjustable the input basis of the nuclear
wave functions. In the case of this work, the nuclear states are expressed in a partial
wave decomposed basis in momentum space (see also [96, Apppendix A-E]). This section
describes the newly developed framework which was used to numerically cast operators
in a partial wave basis.

B.1 The idea

The basic idea behind the reusability of operators is the Wigner-Eckart theorem: the
matrix-element of an operator can be expressed by a Clebsch-Goran coefficient times a
reduced matrix-element (following the convention of [173])

⟨j′m′j|Ôξmξ
|jmj⟩ =

⟨
j mj, ξ mξ

∣∣∣ j′m′j ⟩ ⟨j′∥∥∥Ôξ

∥∥∥j⟩ . (B.1)

If it is possible to to extract the so called reduced matrix-element, which is independent
on polarization quantum numbers m, then one can reduce the total number of sums and
integrations. As will be presented later, this also allows to make further use conservation
laws.

To numerically implement this theorem in an efficient way, we project the matrix-elements
on their associated operator rank ξ and mξ

O(j′j)ξmξ
:= ξ̂

ĵ′

∑
mjm′

j

⟨
j mj, ξ mξ

∣∣∣ j′m′j ⟩ ⟨j′m′j|Ô|jmj⟩ , (B.2)
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where â := 2a + 1. Note that for scalar operators ξ = 0 = mξ, this becomes an average
over all diagonal elements

O(j′j)00 = δjj′
1
ĵ

∑
m

⟨
jm

∣∣∣ Ô ∣∣∣ jm⟩ . (B.3)

Furthermore, one can reobtian the original matrix-element by summing over the operator
channels ⟨

j′m′
∣∣∣ Ô ∣∣∣ jm⟩ =

∞∑
ξ=0

∑
|mξ|≤ξ

⟨
j mj, ξ mξ

∣∣∣ j′m′j ⟩O(j′j)ξmξ
. (B.4)

The two mj,m
′
j sums are effectively replaced by the ξ and mξ sums. This is, for the

operators evaluated in this work, more practical because for spin independent operators,
mξ = 0 and the expansion converged with correction in the sub-precent regime after
ξ = 2.

Eventually, one is interested in computing cross section and thus one needs the spin
averaged amplitude squared

∣∣∣M(j)
∣∣∣2 := 1

ĵ

∑
mjm′

j

∣∣∣∣M(j)
m′

jmj

∣∣∣∣2 . (B.5)

Using the previous projection on the operator ranks, one can rewrite the amplitude by
its partial wave decomposition

M(j)
m′

jmj
=
∑
ξmξ

⟨
j mj, ξ mξ

∣∣∣ j m′j ⟩M(jj)ξmξ
, (B.6)

and therefore the spin averaged amplitude squared becomes
∣∣∣M(j)

∣∣∣2 = 1
ĵ

∑
mjm′

j

M(j)
m′

jmj

(
M(j)

m′
jmj

)∗
=
∑
ξmξ

1
ξ̂

∣∣∣M(jj)ξmξ

∣∣∣2 . (B.7)

B.2 Partial wave basis of nuclear states

B.2.1 Two-nucleon states

In terms of a partial wave basis for the nuclear states in a (ls)j coupling scheme, defined
by the representation of spin states

|α,mj⟩ = |(ls)jmj⟩ =
∑

mlms

⟨ l ml, sms | j mj ⟩ |jmj⟩ , (B.8)
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the result for the operator decomposition is given by

O(α′α)ξmξ
(p′, p, q) = ξ̂

ĵ′

∑
m′

jmj

⟨
j mj, ξ mξ

∣∣∣ j′m′j ⟩ ⟨ (l′s′)j′m′j | Ô(p′,p, q) | (ls)jmj⟩ (B.9)

= (−)2ξ
√
ĵ l̂′ ŝ′ ξ̂

∑
λσ


j ξ j′

l λ l′

s σ s′

 O( (l′l)λ
(s′s)σ

)
ξmξ

(p′, p, q) (B.10)

where the total spin decomposed operator can be factorized in an angular momentum-
and spin-dependent part

O( (l′l)λ
(s′s)σ

)
ξmξ

(p′, p, q) :=
∑

mλmσ

⟨λmλ, σ mσ | ξ mξ ⟩

×
∫

dp̂′
∫

dp̂O(L)
(l′l)λmλ

(p̂′, p̂)O(S)
(s′s)σmσ

(p′,p, q) (B.11)

the angular momentum-dependent part is a function of spherical harmonics while the
spin-dependent part evaluates the remaining matrix-element

O(L)
(l′l)λmλ

(p̂′, p̂) := λ̂

l̂′

∑
m′

l
ml

⟨ l ml, λmλ | l′m′l ⟩ Y ∗l′m′
l
(p̂′)Ylml

(p̂) (B.12)

O(S)
(s′s)σmσ

(p′,p, q) := σ̂

ŝ′
∑

m′
sms

⟨ sms, σ mσ | s′m′s ⟩ ⟨s′m′s|Ô(p′,p, q)|sms⟩ . (B.13)

Conservation laws which simplify the angular-integration in eq. (B.11) can be applied
depending on the spin matrix-elements of the operator O(S)

(s′s)σmσ
. Note that this matrix-

element does not depend on isospin. This is the case because the isospin can be factored
out is thus computed individually in the same manner. Following this procedure, the
matrix-element for two-nucleon systems can be expressed by

M(jj)ξmξ
=
∑
α,α′

∫
dp12 p

2
12

∫ dp′12 p
′2
12

(2π)3 ψ∗α′(p′12) O(α′α)ξmξ
(p′12, p12, q) ψα(p12) , (B.14)

for wave functions normalized to∑
α

∫
dp12 p

2
12 |ψα(p12) |2 = 1 . (B.15)

B.2.2 Three-nucleon states

In case of the three-nucleon states of a fixed total momentum j3, the following cou-
pling scheme was employed. One first considers the (12)-subsystem and couples the spin
s12 ∈ {0, 1} to the angular momentum l12 forming a subsystem total spin j12. Next one
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Appendix B Operator partial wave decomposition

couples the third nucleon spin s3 to the remaining angular momentum l3 forming the
total subsystem spin I3. Finally the subsystem spins are coupled to a total spin j3 with
polarization mj3

|α,mj3⟩ :=
∣∣∣((l12, s12)j12, (l3, s3)I3

)
j3mj3

⟩
. (B.16)

For three-nucleon states, the matrix-element is given by

M(j′
3j3)ξmξ

=
∑
α,α′

∫
dp12 p

2
12

∫
dp3 p

2
3

∫ dp′12 p
′2
12

(2π)3

∫ dp′3 p′23
(2π)3

× ψ∗α′(p′12, p
′
3) O

(123)
(α′α)ξmξ

(p′12, p
′
3, p12, p3, q) ψα(p12, p3) (B.17)

with the partial wave decomposed operator

O(123)
(α′α)ξmξ

=
∑

mj′
3

mj3

∑
ξ12mξ12

∑
ξ3mξ3

⟨
j3 mj3 , ξ mξ

∣∣∣ j′3 mj′
3

⟩
⟨ ξ12 mξ12 , ξ3 mξ3 | ξ mξ ⟩

× (−)−j12+j′
12+I3−I′

3−j3+j′
3+ξ12−ξ3+ξ

√
ĵ′12 Î

′
3 ξ̂ ĵ3


ξ3 ξ ξ12
I3 j3 j12
I ′3 j′3 j′12

O(12)
(α′α)ξ12mξ12

O(3)
(α′α)ξ3mξ3

,

(B.18)

which can be rewritten by individual decomposed operators of each sub system. Note
that O(S) just depends on the quantum numbers of the subsystem (S) and one only has
to compute sums over the operator dimensions.
In the derivation of this decomposition, the following identity1 was used

ξ̂

ĵ′3

∑
mj12 mI3

∑
mj′

12
mI′

3

∑
mj3

mj′
3

⟨
j12mj12 , ξ12mξ12

∣∣∣ j′12mj′
12

⟩⟨
I3mI3 , ξ3mξ3

∣∣∣ I ′3mI′
3

⟩
× ⟨ j12mj12 , I3mI3 | j3mj3 ⟩

⟨
j′12mj′

12
, I ′3mI′

3

∣∣∣ j′3mj′
3

⟩⟨
j3mj3 , ξ mξ

∣∣∣ j′3mj′
3

⟩
= (−)−j12+j′

12+I3−I′
3−j3+j′

3+ξ12−ξ3+ξ
√

ˆj′12 Î
′
3 ξ̂ ĵ3 ⟨ ξ12mξ12 , ξ3mξ3 | ξ mξ ⟩


ξ3 ξ ξ12
I3 j3 j12
I ′3 j′3 j′12

 .

(B.19)

B.3 Advantage of operator decomposition

Because spin-independent DM scattering has been invested one finds that mξ = 0. Also,
operators usually converge relatively fast in terms of their ranks: σ ≤ 2. These facts
1 This identity was analytically derived and test with Fortran for ji, ξi ∈

{
0, 1

2 , · · · 3
}

).
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B.3 Advantage of operator decomposition

drastically reduces the number of sums compared to the case where one has to sum over
all ml,ms,mj, · · · polarizations. Also, besides the reduction of sums in terms of the
polarization quantum numbers, one can use a further trick to analytically execute one of
the angular integrations. The spin matrix-element [see eq. (B.13)] is in the most cases
proportional to structures |k| := |p + αp′ + βq|. Because the absolute of the vector k
just dependents on the difference of azimuthal angles ϕp−ϕ′p (using q = qêz), it is useful
to split up the angular integrations and introduce new angles∫

dϕp

∫
dϕ′p 7→

∫
dϕ

∫
dΦ (B.20)

with

ϕ := ϕp − ϕ′p Φ :=
ϕp + ϕ′p

2
⇒ ϕp = Φ + ϕ

2
ϕ′p = Φ− ϕ

2
. (B.21)

Using this transformation one obtains

O(L)
(l′l)λmλ

(p̂′, p̂) := λ̂

l̂′

∑
m′

l
ml

⟨ l ml, λmλ | l′m′l ⟩ Yl′m′
l
(x′, 0) Ylml

(x, 0) eiϕml × eimλ( ϕ
2−Φ) ,

(B.22)

where it was used that ml +mλ = m′l, and thus

−m′l ϕ′p +ml ϕp = ml +m′l
2

ϕ+ (ml −m′l) Φ = (ml + mλ

2
)ϕ−mλ Φ . (B.23)

In the special case where mξ = 0, one knows that mλ = −mσ and thus one can redefine
eq. (B.11) to absorb one integration in the spin matrix-element

O( (l′l)λ
(s′s)σ

)
ξmξ

(p′, p, q) =
∑

mλmσ

⟨λmλ, σ mσ | ξ 0 ⟩

×
∫

dx′
∫

dx
∫

dϕ Õ(L)
(l′l)λmλ

(x′, x, ϕ) Õ(S)
(s′s)σmσ

(p′, p, q, x′, x, ϕ) (B.24)

with

Õ(L)
(l′l)λmλ

(x′, x, ϕ) := λ̂

l̂′

∑
m′

l
ml

⟨
l ml, λmλ

∣∣ l′m′l ⟩ Yl′m′
l
(x′, 0) Ylml

(x, 0) eiϕml (B.25)

Õ(S)
(s′s)σmσ

(p′, p, q, x′, x, ϕ) := σ̂

ŝ′

∑
m′

sms

⟨
sms, σ mσ

∣∣ s′m′s ⟩ ∫ dΦ ⟨s′m′s|Ô(p′,p, q)|sms⟩ × eimσ(Φ−ϕ
2 )

(B.26)

In most of the cases, the last expression is actually either Φ independent or easy to
integrate. This drastically reduces the numerically scaling and is eventually used for
computation.
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B.4 Example: Dark Matter two-nucleon operator

p1

p2

pχ

q

p′χ

p′1

p′2

k2 k1

1

Figure B.1: DM-nucleon interaction through two-body pion exchange. DM corresponds to
double dashed lines, pions to dashed lines and nucleons to solid lines. The wiggly line just
visualizes the momentum transfer and is in principle absent. The arrows indicate the direction
of the momentum three-vectors.

At the Next-to-Leading Order (NLO) for the isoscalar scattering currents one finds a
two-nucleon operator where the DM particle interacts with the nucleons via a two-pion
exchange [see fig. B.1]. The matrix-element in a single nucleon momentum basis is given
by

⟨
p′1,p

′
1

∣∣∣ Ĵq(is),2b

∣∣∣p1,p1

⟩
= −2cχ

(
gA

2fπ

)2 (
σ1 · k1

k2
1 +m2

π

)(
σ2 · k2

k2
1 +m2

π

)
τ1 · τ2 , (B.27)

with the axial coupling gA = 1.27, the pion constant fπ = 92.4 MeV, the average pion
mass mπ = 138.04 MeV. The unknown coupling of this operator cχ (between the pions
and DM) corresponds to the strength of the interaction and the additional factor of two
comes from the number of nucleon line contractions. The single nucleon momenta are
expressed in terms of relative and total momenta

p := p1 − p2
2

, p′ := p′1 − p′2
2

, P := p1 + p2 , P ′ := p1 + p2 , (B.28)

k1 = q

2
+ p− p′ , k2 = q

2
− p+ p′ . (B.29)

The partial wave decomposed isospin structure can be found in table B.1.
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t′ t ξt mξt O(t′t)ξtmξt

0 0 0 0 −3
1 1 0 0 1

Table B.1: Operator partial wave decompositions for O = τ1 ·τ2 according to eq. (B.2). Elements
have been evaluated for two-nucleon states. All other matrix-elements for different ξt, mξt are
zero.

The spin-momentum decomposition structure of the operator

Õ(S,q)
(s′s)σmσ

:= − σ̂
ŝ′

∑
msm′

s

⟨ sms, σ mσ | s′m′s ⟩

×
∫

dΦ ⟨s′m′s |σ1 · k1σ2 · k2 | sms⟩ eimσ(Φ−ϕ/2) , (B.30)

for the angles of the relative momenta ϕ := ϕp − ϕ′p and Φ := ϕp+ϕ′
p

2 is given by eleven
channels presented in table B.2 for cχ = 1 in respective units.

s′ s σ mσ Õ(S,q)
(s′s)σmσ

0 0 0 0 −2π(α− 2γ)
0 1 1 −1

√
6πβq

0 1 1 1
√

6πβ∗q
1 0 1 −1

√
2πβq

1 0 1 1
√

2πβ∗q
1 1 0 0 2

3π(α− 2γ)
1 1 2 −2 2

√
5
3πβ

2

1 1 2 −1 4
√

5
3πβδ

1 1 2 0 1
3

√
10π

(
α + 3δ2 − 3 | β |2 − 2γ − 3

4q
2
)

1 1 2 1 −4
√

5
3πβ

∗δ

1 1 2 2 2
√

5
3π(−β∗)2

Table B.2: Partial wave decomposition of the spin operator in eq. (B.30) for all non-zero spin
channels. The coefficients α, β and γ are defined in eq. (B.31).

The coefficients used table B.2 are given by

α := p2 + p′2 −
(
q

2

)2
β := eiϕp sin(θp)− p′ sin(θ′p) (B.31)

γ := pp′
(
cos(θp) cos(θ′p) + cos(ϕ) sin(θp) sin(θp)

)
δ := p cos(θp)− p′ cos(θ′p) .
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Furthermore, the momenta k1,2 and denominator itself are given by

k2
1,2 = α− 2γ ± δq + 1

2
q2 ⇒ (k2

1 +m2
π)(k2

2 +m2
π) =

(
α− 2γ + 1

2
q2 +m2

π

)2
− δ2q2 .

(B.32)
This structure is spin independent. All these terms are combined and numerically inte-
grated to obtain the total partial wave decomposed operator.

B.5 Current normalization

We have normalized our currents such that the scattering amplitude is given as
∣∣∣MT (q2)

∣∣∣2 = (2mT )2(2mχ)2
∞∑

ξ=0

∣∣∣ ⟨ΨT , j
∣∣∣ Ĵ(q2, ξ)

∣∣∣ΨT , j
⟩ ∣∣∣2 . (B.33)

In the limit of q → 0, one can show that for spin-conserving structures, only contributions
with ξ = 0 survive. Following eq. (2.24), we further define

⟨Ĵa⟩T :=

⟨
ΨT , j

∣∣∣ Ĵa(q2, ξ)
∣∣∣ΨT , j

⟩
A |σπN cχ |

∣∣∣∣∣∣
ξ=0

. (B.34)

For benchmarking purposes, we present the expectation values for the isoscalar quark-DM
two-nucleon contributions at q = 0 in table B.3. We estimate the numerical uncertainty
to be below the 1%-level with respect to the value of each matrix-element.
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NN interaction ⟨Ĵq(is),2b⟩2H ⟨Ĵq(is),2b⟩3H ⟨Ĵq(is),2b⟩3He

AV18 + URB IXF / 2.62·10−3 2.52·10−3

AV18 1.58·10−4 2.62·10−3 2.83·10−3

CDB + TM / 1.38·10−3 1.51·10−3

CDB 1.17·10−4 1.47·10−3 1.62·10−3

NIJM 1.57·10−4 / /
LO (Q0) Λ1 2.28·10−3 -1.46·10−3 -1.45·10−3

LO (Q0) Λ2 -5.95·10−4 -1.77·10−3 -1.77·10−3

LO (Q0) Λ3 -2.66·10−3 -2.01·10−3 -2.02·10−3

LO (Q0) Λ4 -4.12·10−3 -2.20·10−3 -2.22·10−3

LO (Q0) Λ5 -5.13·10−3 -2.36·10−3 -2.38·10−3

NLO (Q2) Λ1 1.17·10−4 1.48·10−3 1.62·10−3

NLO (Q2) Λ2 8.80·10−3 7.08·10−4 8.18·10−4

NLO (Q2) Λ3 6.09·10−3 2.72·10−5 1.08·10−4

NLO (Q2) Λ4 3.70·10−3 -5.47·10−4 -4.91·10−4

NLO (Q2) Λ5 1.65·10−3 -1.01·10−3 -9.78·10−4

N2LO (Q3) Λ1 1.10·10−4 1.37·10−3 1.51·10−3

N2LO (Q3) Λ2 8.59·10−3 7.25·10−4 8.39·10−4

N2LO (Q3) Λ3 6.17·10−3 1.06·10−4 1.93·10−4

N2LO (Q3) Λ4 3.97·10−3 -4.39·10−4 -3.75·10−4

N2LO (Q3) Λ5 2.04·10−3 -8.98·10−4 -8.55·10−4

N3LO (Q4) Λ1 7.31·10−3 7.54·10−4 8.61·10−4

N3LO (Q4) Λ2 1.09·10−4 1.66·10−3 1.81·10−3

N3LO (Q4) Λ3 1.29·10−4 2.21·10−3 2.38·10−3

N3LO (Q4) Λ4 1.37·10−4 2.44·10−3 2.62·10−3

N3LO (Q4) Λ5 1.38·10−4 2.50·10−3 2.69·10−3

N4LO (Q5) Λ1 1.06·10−4 1.62·10−3 1.77·10−3

N4LO (Q5) Λ2 1.13·10−4 1.77·10−3 1.92·10−3

N4LO (Q5) Λ3 1.18·10−4 1.91·10−3 2.07·10−3

N4LO (Q5) Λ4 1.25·10−4 2.10·10−3 2.27·10−3

N4LO (Q5) Λ5 1.27·10−4 2.20·10−3 2.38·10−3

Table B.3: Central values for spin-independent isoscalar-quark two-pion-exchange operators
Ĵq(is),2b for all applied wave functions at zero momentum transfer q = 0. Fore more details, we
refer to appendix B.4.
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APPENDIX C

NLEFT on GPUs

This chapter presents the ongoing effort to implement a new generation Nuclear Lattice
Effective Field Theory (NLEFT) algorithm in a massively parallel and scalable manner
and to make use of modern High Performance Computing (HPC) structures.

As it was presented in chapter 3, the nuclear path integral is reformulated through the
application of the transfer matrix on multi-nucleon states. The Hubbard-Stratonovitch
(HS) transformation is then used to linearize the transfer matrix which recasts the ex-
ponential scaling in the number of nucleons to a polynomial scaling at the cost of an
additional multi-dimensional integration. This multi-dimensional integration is numeri-
cally implemented through a stochastic Hybrid Monte Carlo (HMC) integration. Current
NLEFT algorithms are parallelized in the number of stochastic samples (HMC trajecto-
ries), which effectively farm a massive integration over many independent cores. Even
though this implementation is scalable, it is yet not possible to extend the scaling in terms
of number of nucleons and the lattice sizes. This requires a more sophisticated imple-
mentation which must communicate intermediate results between individual computing
units.

In order to minimize power consumption while allowing highly parallel computations,
many core architectures like Graphics Processing Units (GPUs) have become increasingly
popular. As it will be presented in this section, NLEFT is a perfect candidate for an
implementation on GPUs because of its memory demands—whole HMC iterations can
be executed on a single GPU.

The work presented in this chapter is the product of the collaboration1 with the JSC2

and especially Paul F. Baumeister—without whom the implementation on GPUs would
not have been possible.

1 I would like to emphasize that this collaboration exists because of the IAS colloquium 2016. It is not
possible to evolve interdisciplinary synergies without reducing barriers, e.g., by providing a proper
infrastructure.

2 Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany.
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Appendix C NLEFT on GPUs

C.1 Hybrid Monte Carlo integration

As it was presented in chapter 3, the nuclear path integral is cast into a matrix-element
of the so-called transfer matrix and the application of the transfer matrix on nuclear
states can be written as the integration over a probability-density times a determinant

Z(NT ) = ⟨Ψ|T̂NT |Ψ⟩ =
NT∏

nt=1

(∫
dϕPN(ϕnt |0, 1)

)
det

n′
a,na

∣∣∣⟨ψn′
a

∣∣∣ T̂ (1)(ϕ1) · · · T̂ (1)(ϕNt)
∣∣∣ψna

⟩∣∣∣ ,
(C.1)

where: nt ∈ {1, · · · , NT} — the index for time slice,
na ∈ {1, · · · , A} — the index for the nucleon,
PN(x|µ, σ2) — the probability density for variable x ∼ N(µ, σ2) following

a normal distribution with mean µ and variance σ2.

Furthermore, in the most simple case of a single contact interaction, the transfer matrix
is given by

T̂ (1)(aT ,ϕ) ≡ : exp
{
−Ĥ0aT +

√
aT c ϕρ̂

}
: . (C.2)

Here, Ĥ0 is the kinetic Hamiltonian, aT the temporal lattice spacing and ρ̂ a nucleon-
number operator. The original action contains a contact term V̂ = −c/2ρ̂ρ̂ with c > 0. In
general the transfer matrix acts on coordinate, spin and isospin space. This will become
relevant later on. For the sake of brevity, one can rewrite this as

Z(NT ) =
∫

D[ϕ] P̄N (ϕ) det |F (ϕ, NT )| , (C.3)

with: ϕ — the collective vector of auxiliary fields for all time slices
D[ϕ] — the measure as a product of all individual ϕnt intergations
P̄N(ϕ) — the collective product of normal distributions for all ϕnt

F (ϕ, NT ) — the fermion matrix defined by the action of the transfer matrix and
eventual matrix-element. The square matrix has A2 entries.

Clearly, for sufficiently large NT and considering that one has additional field components
for each lattice site N3

L, the NT ×N3
L dimensional integral cannot be computed directly.

One must apply statistical Monte Carlo integration techniques like importance sampling
to approximate the integral

1
NH

NH∑
nH=1

O(ϕ(nH)) NH→∞−→
∫

D[ϕ]PD(ϕ)O(ϕ) ≡ ⟨O⟩ . (C.4)

Here, the auxiliary fields follow the distribution ϕ(nH) ∼ D and PD is the associated
probability density. In the context of nuclear physics, one usually calls the collection of
fields which follow the distribution D an ensemble of configurations.

144



C.1 Hybrid Monte Carlo integration

As the first guess, one could identify the product of densities P̄N(ϕ) in eq. (C.3) as the
Markov Chain (MC) probability distribution PD(ϕ) and the Slater determinant of the
fermion matrix F [ϕ] as the observable O(ϕ). Because the collective probability distribu-
tion of the auxiliary fields at different time slices is a product of normal distributions with
mean µ = 0 and variance σ2 = 1, the generation of the ensemble is easy and inexpensive.
However, the sum converges relatively slowly. This is the case because certain regions
of the integration correspond to minimal values for the observable. For example, the
determinant is zero if two nucleons with the same quantum numbers accidentally hop on
the same site.

In order to optimize the rate of convergence for the summation, the next idea is to include
the fermion determinant det |F (ϕ)| into the probability distribution PD(ϕ). Thus the
MC knows which values cause minimal integration results and weights them accordingly.
Note that one has to take more care in this case. Defining N−T ≡ NT − 1, explicitly
writing the temporal dimensions in the exponents and multiplying by unity in terms of
a normal distribution, one has

Z(N−T )
Z(NT )

=
∫

DN−
T [ϕ] P̄N−

T
N (ϕ) det |F (ϕ, N−T )|∫

DNT [ϕ] P̄NT
N (ϕ) det |F (ϕ, NT )|

×
∫

dϕNT
P (ϕNT

|0, 1) NT→∞−→ exp{aTE0} .

(C.5)
If one slightly reorders terms and introduces an one in terms of the fermion determinant
at NT steps, one finally finds

Z(N−T )
Z(NT )

=
∫

DNT [ϕ] P̄NT
N (ϕ) det |F (ϕ, NT )|∫

DNT [ϕ] P̄NT
N (ϕ) det |F (ϕ, NT )|︸ ︷︷ ︸

!=PD(ϕ)

det |F (ϕ, N−T )|
det |F (ϕ, NT )|︸ ︷︷ ︸

!=O(ϕ)

. (C.6)

Thus the fermion determinant is incorporated in the probability distribution PD which is
used to generate new configurations and the observable effectively becomes the ratio of
the fermion determinants at two different time slices. Note that one has a determinant
in the denominator of the observable, however, since a zero determinant also corresponds
to zero probability, one is relatively safe.

The preferred choice for generating an ensemble or MC of fields is based on the Metropolis-
Hastings algorithm [174, 175]. Given a configuration ϕ one wants to generate a new
configuration ϕ′ with transition probability PT (ϕ′|ϕ). The Markov process asymptoti-
cally generates configurations ϕ ∼ D if D is ergodic and it is a stationary distribution.
A sufficient but not necessary requirement is that detailed balance is fulfilled, e.g., it is
equally likely to find inverse transitions

PD(ϕ)PT (ϕ′|ϕ) = PD(ϕ′)PT (ϕ|ϕ′) . (C.7)

Practically, the transition probability PT (ϕ′|ϕ) is a product of the proposal probability
PP (ϕ′|ϕ) of choosing a new configuration ϕ′ given ϕ and the acceptance probability
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Appendix C NLEFT on GPUs

PA(ϕ′|ϕ), which describes how likely it is to keep ϕ′ given ϕ

PT (ϕ′|ϕ) = PA(ϕ′|ϕ)PP (ϕ′|ϕ) . (C.8)

A proper choice for acceptance distribution which fulfills detailed balance is given in the
Metropolis algorithm by

PA(ϕ′|ϕ) = min
(

1, PD(ϕ′)
PD(ϕ)

PP (ϕ|ϕ′)
PP (ϕ′|ϕ)

)
. (C.9)

The ‘so-called’ Hybrid Monte Carlo algorithm [176] is used to update the fields by intro-
ducing a specific proposal probability PP (ϕ′|ϕ). Thus, once one has defined the proposal
probability, one has to verify that this choice enables detailed balance [eq. (C.7)].

The probability density in eq. (C.6) can be adjusted by the introduction of another
auxiliary field π

PD(ϕ) =
∫

D[π]P̃D[π,ϕ] ∝
∫

D[π]
∫

D[ϕ] exp {−H(π,ϕ)} ,

H(π,ϕ) = π2

2
+ ϕ2

2
− log(det |F (ϕ)|) , (C.10)

where the normalization factors have been left out. As the notation in eq. (C.10) already
suggests, the argument of the exponential looks like a Hamiltonian where π is the conju-
gate momentum to ϕ. Thus one can make use of the Hamiltonian equations of motions
to evolve the fields without changing the value of H(π,ϕ)

π̇ = − ∂

∂ϕ
H(π,ϕ) , ϕ̇ = ∂

∂π
H(π,ϕ) . (C.11)

The specific (improper) proposal density suggested by the HMC algorithm is an unique
and deterministic mapping from {π,ϕ} → {π′,ϕ′}, depending on an additional external
parameter τ , namely a delta function for the configuration pair

PP ({π′,ϕ′}|{π,ϕ}, τ) = δ ({π′,ϕ′} − {π(τ),ϕ(τ)}) . (C.12)

The quantities {π(τ),ϕ(τ)} in eq. (C.12) are the Molecular Dynamics (MD) evolved
fields, e.g., they are the solutions to the Hamiltonian equations of motions at MD flow
time τ with initial conditions {π(0),ϕ(0)} = {π,ϕ}. In other words, for a pair of input
fields {π,ϕ} one proposes the evolved fields {π(τ),ϕ(τ)}.

The acceptance probability for new configurations given the old configurations depends
on the energy difference for old and new values of the Hamiltonian

PA ({π′,ϕ′}|{π,ϕ}) = min (1, exp {H(π′,ϕ′)−H(π,ϕ)}) . (C.13)

Note that if it is possible to use an exact MD integration, the Hamiltonian will be constant
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C.1 Hybrid Monte Carlo integration

and independent of the flow time. Thus the acceptance rate would be one. Once one
implements a numerical derivative, this will not be the case. Here, the MD flow time
parameter τ provides a control on how much the fields are changing and eventually
determines the acceptance rate. It is usually tuned to PA (ϕ′|ϕ, τ) ≈ 2/3 to generate
sufficiently decorrelated configurations in an acceptable amount of time.

Finally, the marginalized transition probability is given by

PT (ϕ′|ϕ, τ) =
∫

D[π]P̄N(π)
∫

D[π′]PP ({π′,ϕ′}|{π,ϕ}, τ)PA ({π′,ϕ′}|{π,ϕ}) ,
(C.14)

and one can indeed show that it fulfills detailed balance. The only important quantity
is that the MD integration remains reversible

PP ({π′,ϕ′}|{π,ϕ}, τ) = PP ({−π,ϕ}|{−π′,ϕ′}, τ) . (C.15)

One is not able to guarantee detailed balance if this is not the case. Typically, one
employs a leap frog [see fig. C.1] integrator to ensure reversibility.

Finally, the computation of the observable is given by the sum over nH = 1, · · ·NH pairs
{π(nH),ϕ(nH)}, but since the observable does not depend on π, one does not need to
store the π fields. They exist just for the purpose of evolving ϕ.

From a practical point of view, the ensemble of ϕ fields is generated in the following
manner. Initially, one computes a normal distributed ϕ(0,0) field. This does in principal
not follow the correct distribution, but suffices as a starting point. Next, one generates
a normal distributed π(0,0) field and computes the initial H(π(0,0),ϕ(0,0)). Because the π
fields indeed follow a normal distribution, one can trust these values from the beginning.
As the next step, one numerically integrates the equation of motion to obtain ϕ(0,NM )

and π(0,NM ), where nM is the number of molecular dynamic integration steps. At this
point one tests the acceptance of the new configurations at (0, NM) against the initial
configurations (0, 0) and if positive {π(0,0),ϕ(0,0)} ← {π(0,nM ),ϕ(0,nM )}, otherwise the
initial configurations stay the same. Following this, one repeats the same procedure with
nH → nH + 1 but chooses ϕ(nH + 1, 0) to be the last accepted field. The same procedure
for the NLEFT algorithm is presented in fig. C.2. In the next section, this will be worked
out in detail for NLEFT.
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C.2 Hybrid Monte Carlo implementation for NLEFT

C.2.1 Computational details

In the update procedure for the auxiliary fields, one has to compute the derivatives of
the Hamiltonian with respect to the HS auxiliary field ϕ and its conjugated momentum
field π. While the derivative of the Hamiltonian with respect to π is straight forward

ϕ̇ = ∂

∂π
H(π,ϕ) = π , (C.16)

the derivative of the Hamiltonian with respect to ϕ—the computation of the ‘so-called’
force term—is the bottle neck of the computation because it involves both, the inverse
and the derivative of the fermion determinant with respect to ϕ

π̇ = − ∂

∂ϕ
H(π,ϕ) = −ϕ+ ∂

∂ϕ
log(det |F (ϕ)|) = −ϕ+ Tr

[
F−1(ϕ) ∂

∂ϕ
F (ϕ)

]
. (C.17)

Once one has computed the trace in the previous equation, the discretized update is
straightforwardly implemented through, e.g., a leapfrog algorithm [see fig. C.1]. Explicitly
writing out all indices for the computation of the force term, one has

Fn′
AnA

(ϕ) =
∑
n′

rnr

∑
n′

cnc

ψ∗n′
an′

rn′
c
Tn′

rnr;n′
cnc

(ϕ)ψnanrnc
, (C.18)

Tnr1 nrNT
;nc1 ncNT

(ϕ) ≡
NT−1∏
nt=1

∑
nrnt

∑
ncnt

T (1)
nrnt

nrnt+1 ;ncncnt+1
(ϕnrnt

nt)

 , (C.19)

T
(1)
n′

rnr;n′
cnc

(ϕnrnt) = δn′
rnr
δn′

cnc
− aT (H0)n′

rnr
δn′

cnc
−
√
aT c ϕnrntδn′

rnr
δn′

cnc
, (C.20)

where: nt ∈ {1, · · · , NT} — the index for time slice,
nr ∈ {1, · · · , N3

L} — the index for spatial sites,
na ∈ {1, · · · , A} — the index for the nucleon,
nc ∈ {↑, ↓} ⊗ {p, n} — the combined spin and isospin index for respective nu-

cleon.

In practice one does not compute the product of the transfer matrix over all time slices
as depicted in eq. (C.19), but rather the euclidian time evolve wave function, e.g., one
applies the transfer matrix at a given time slice to the wave function and repeats the
procedure

←
ψnt+1;nanrnc

≡
∑
n′

rn′
c

T
(1)
nrn′

r;ncn′
c
(aT , ϕn′

rnt)
←
ψnt;nan′

rn′
c

(C.21)
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import  numpy  as  np
class  LeapfrogIntegrator(object):
    #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    def  __init__(self,  Force,  Nvec):
        """Input:
                  function  Force  −−−  computes  the  force  term  for  given  configuration  phi
                  int            Nvec    −−−  size  of  the  configuration  vectors
              Usage:
                  leapfrog  =  LeapfrogIntegrator(Force,  Nvec)
                  phi1,  pi1  =  leapfrog.integrate(N_M,  eps)
                  phi2,  pi2  =  leapfrog.integrate(N_M,  eps,  phi=phi1)
                  phi3,  pi3  =  leapfrog.integrate(N_M,  eps,  phi=phi2,  pi=−pi2)
        """
        self.Force  =  Force
        self.Nvec    =  Nvec
    #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    def  _update_pi(self,  phi,  pi,  step_size):
        return  pi  +  step_size*self.Force(phi)
    #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    def  _update_phi(self,  phi,  pi,  step_size):
        return  phi  +  step_size*pi
    #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    def  integrate(self,  N_M,  step_size,  phi=None,  pi=None):
        """Input:
                  int        N_M              −−−  number  of  Molecular  Dynamics  steps
                  double  step_size  −−−  step  size  of  Molecular  Dynamics  steps
                  vector  phi,  pi      −−−  configurations  (optional)
        """
        if  pi  is  None:
            pi  =  np.random.normal(size=self.Nvec)
        if  phi  is  None:
            phi  =  np.random.normal(size=self.Nvec)
        for  n  in  range(N_M):
            phi  =  self._update_phi(phi,  pi,  step_size/2)
            pi    =  self._update_pi(  phi,  pi,  step_size    )
            phi  =  self._update_phi(phi,  pi,  step_size/2)
        return  phi,  pi

Figure C.1: Example for a numerical leapfrog integration implemented in python. Input to the
integrator is a function Force which implements eq. (C.17). The integration depends on the
input configuration phi, the number of MD steps N_M and the respective step size step_size.
This integrator is reversible, e.g, phi1==phi3 (up to Force precision).

→
ψnt−1;nanrnc

≡
∑
n′

rn′
c

T
(1)
nrn′

r;ncn′
c
(aT , ϕn′

rnt)
→
ψnt;nan′

rn′
c
, (C.22)

where the arrows indicate the direction of evolution, e.g., ‘→’ corresponds to the trajec-
tory of auxiliary fields ϕn′

t
from n′t = NT → n′t = nt and ‘←’ to n′t = 1 → n′t = nt and

the boundaries (independent of direction) are as follows ψNT ;nanrnc ≡ ψ1;nanrnc ≡ ψnanrnc .
Note that there is a difference if one evolves the fields from nt = 1 to NT/2 or from
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nt = NT to NT/2, because the evolution tracks in general depend on different auxiliary
fields, e.g. ϕnrNT−1 ̸= ϕnr2. Thus a matrix matrix multiplication becomes a matrix vector
multiplication.

Also, since one has vectors at both ends of the product for computing the fermion matrix,
one can update both ends in parallel and compute the fermion matrix eq. (C.18) as a
scalar product at any time step nt in the allowed interval

Fn′
ana

(ϕ) =
∑
nrnc

(→
ψnt;n′

anrnc

)∗ ←
ψnt;nanrnc

, nt ∈ {1, · · · , NT} . (C.23)

Finally, the remaining task is the computation of the derivative of the fermion matrix

∂

∂ϕnrnt

Fn′
ana

(ϕ) =
∑
n′

rn′
c

(→
ψnt;n′

an′
rn′

c

)∗ (∂
∂ϕnrnt

←
ψnt;nan′

rn′
c
(ϕn′

rnt , · · · )
)

=
∑
n′

rn′
c

(→
ψnt;n′

an′
rn′

c

)∗ ∑
n̄′

rn̄′
c

(
∂

∂ϕnrnt

T
(1)
n′

rn̄′
r;n′

cn̄′
c
(aT , ϕn′

rnt)
)
←
ψnt−1;nan̄′

rn̄′
c

=
√
aT c

∑
n′

c

(→
ψnt;n′

anrn′
c

)∗ ←
ψnt−1;nanrn′

c
, (C.24)

where it was first used that only the ‘from the right evolved field’ at n′t = nt depends on
nt and the definition of the transfer matrix was used to compute the derivative of the
auxiliary field. Finally, to compute the force term needed for the auxiliary field update,
one needs the fermion matrix (time independent) and the wave functions at each time
step.

C.2.2 Hybrid Monte Carlo workflow

In contrast to Lattice Quantum Chromodynamics (LQCD), in NLEFT the system specific
fermion determinant is included in the computation of the ensemble of auxiliary fields
and thus the ensemble depends on the nuclear state. It is not worthwhile to export the
configurations but rather generate them when needed. Fortunately, the generation of an
ensemble is also less expansive than in LQCD computations. For this reason, the wave
function and or fermion determinant are more important quantities of the computation.

In this section, the workflow for computing the auxiliary field computations ϕ(nH ,nM ),
π(nH ,nM ) and the wave functions ψ(nH ,nM ) for all time slices is presented. Hereby, nH =
1, · · · , NH is the size of the HMC ensemble and nM = 1, · · · , NM is the number of
MD steps in the intermediate integration. While it is expected that increasing NH is
correlated with decreasing the statistical uncertainty of the result, NM influences the
correlation between different configurations. The workflow is also visualized in fig. C.2
and the following listings correspond to the numbers in the figure.
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(0) To evaluate the wave function from time slice nt = 1 to time slice nt = NT , one
needs the auxiliary field ϕ at the respective time slice. The initial auxiliary field is
sampled according to a normal distribution

ϕ(0,0) ∼ N(µ = 0, σ = 1) , π(0,0) ∼ N(µ = 0, σ = 1) .

Note that this is a bad first approximation for ϕ. For this reason, in the beginning of
a sampling procedure, one does several HMC updates nH = Ntherm before actually
measuring an observable to ensure that our distribution is sufficiently thermalized.

(1) One evaluates the wave function from the first time slice to the last by multiplying
with the transfer matrix which depends on the auxiliary field of the respective time
slice [see eqs. (C.21) and (C.22)]. This can be done through a pinch update by
evaluating the wave function from the left and from the right. Once the wave
functions are available at all time slices, one can compute the fermion matrix.

(2) One computes the Hamiltonian of the system [eq. (C.10)] given by

H[ϕ(nH ,nM ),π(nH ,nM )] =
∑
nrnt

1
2
(
π(nH ,nM )

nrnt

)2
+1

2
(
ϕ(nH ,nM )

nrnt

)2
−log

(
det

∣∣∣F (ϕ(nH ,nM )
)∣∣∣) .

(C.25)
Because all the quantities are already available, this can be completely done in
parallel.

• One now enters the HMC workflow. Here all the values ϕ(nH ,0), ψ(nH ,0) and H(nH ,0)

are stored.

(A) One executes an HMC step to update π(nH ,0) → π(nH+1,0), ϕ(nH ,0) → ϕ(nH+1,0) and
ψ(nH ,0) → ψ(nH+1,0).

– One now enters the MD workflow. An initial random field π(nH ,0), according
to a normal distribution with µ = 0 and σ = 1, is sampled.

(B) One executes an MD step to update π(nH ,nM ) → π(nH ,nM +1), ϕ(nH ,nM ) →
ϕ(nH ,nM +1) and ψ(nH ,nM ) → ψ(nH ,nM +1).

(3) One updates ϕ(nH ,nM ) according to

ϕ(nH ,nM +1/2)
nrnt

= ϕ(nH ,nM )
nrnt

+ ϵ

2
π(nH ,nM )

nrnt
, (C.26)

where ϵ is the MD step size and the factor of one half is coming from the
leapfrog procedure. This changes for different MD integrators.

∗ One obtains the updated wave function ψ(nH ,nM +1/2) depending on the
updated auxiliary field ϕ(nH ,nM +1/2) like in (1).
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(4) One updates the auxiliary π field to π(nH ,nM +1) according to

π(nH ,nM +1)
nrnt

= π(nH ,nM )
nrnt

− ϵ ∂

∂ϕ
(nH ,nM +1/2)
nrnt

H
(
π(nH ,nM ),ϕ(nH ,nM +1/2)

)
, (C.27)

where the derivative of the fermion determinant is given by eq. (C.24).

∗ Repeat (3) to obtain ϕ(nH ,nM +1).

∗ Repeat (1) to obtain ψ(nH ,nM +1).

– Repeat (B) until nM = NM .

(5) Measure the Hamiltonian H(nH ,NM ) like in (2) and compare to the stored value
of the Hamiltonian H(nH ,0). Sample a random (uniform) number 0 ≤ r ≤ 1
and compare r to the exponential of the difference of these Hamiltonians to
decide whether to accept or reject the new configuration [Eq. (C.13)]

r ≤ exp
{
+H(nH ,0) −H(nH ,NM )

}
⇒ Accept the new configuration.

(6) Store the new configurations [or the old, depending on (5)]

accept : H(nH+1,0) = H(nH ,NM ) ψ(nH+1,0) = H(nH ,NM ) ϕ(nH+1,0) = H(nH ,NM )

reject : H(nH+1,0) = H(nH ,0) ψ(nH+1,0) = H(nH ,0) ϕ(nH+1,0) = H(nH ,0) .

• Repeat (A) until nH = Ntherm without measuring the observable O(ϕ(nH ,0))

• Repeat (A) until nH = NH and measure the observable O(ϕ(nH ,0)).

C.3 Implementation on GPUs and intermediate results

The code is implemented in C++, as it allows the same level of hardware control as C,
but makes it possible to create more expressive algorithms for a high level description.
For example, operator overloading is useful for writing intuitive code. Also, C++ offers
template metaprogramming which makes it possible to maintain multiple code versions
in a comfortable way. Additionally, template metaprogramming offers a rich toolbox
for performance tuning of a code: template parameters allow the compiler to evaluate
important decisions at compile time and thus produces more efficient code. Example
candidates for such compile time parameters are, e.g., the lattice spacings aL and aT , or
the temporal and spatial numbers of nodes NT and N3

L. Another advantage of C++ is the
direct compatibility with CUDA.

In order to structure the application such that sufficient parallelism can be exposed,
one needs to analyze the different levels with respect to data dependencies. Dependent
data sets make it very hard or even impossible to achieve a reasonable efficiency by

152



C.3 Implementation on GPUs and intermediate results

Parallel update
Dual update
Copy/Shift
Temporary

Stored during MD

Start ϕ(0,0)
(0)

ψ(0,0)

(1)

exp{−H(0,0)}

(2)

ϕ(nH ,nM ) ψ(nH ,nM ) π(nH ,nM )

π(nH ,0)

ϕ(nH ,nM +1)

(3)

ψ(nH ,nM +1)

(1)

π(nH ,nM +1)

(4)

(B) Molecular Dynamics Step

Molecular Dynamics Workflow

(A) Hybrid Monte Carlo Step

Repeat. If nH > Nterm measure O.

exp{−H(nH+1,0)}

(5)

ϕ(nH+1,0) ψ(nH+1,0)

(6)

If nM < NM repeat step: nm 7→ nm + 1

Figure C.2: HMC workflow of the algorithm including the MD updates. For a detailed de-
scription see the enumeration in appendix C.2.2. The numbers in the figure correspond to the
numbers in the enumeration. For the sake of simplicity, this figure does not show the leapfrog
steps where, one updates the ϕ fields in half steps, e.g., ϕ(nH ,nM ) → ϕ(nH ,nM +1/2).
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parallelization. An example for such dependencies is where, e.g., the next computation
depends on the previous computations. Levels with dependencies are

• the update of the wave functions at different temporal slices [step (1)],

• the update of any HMC configurations and [step (A)]

• the update of any MD configurations [step (B)].

Levels with exposable parallelism are

• any spacial operation on the N3
L lattice sites,

• any operation on the Nc = 4 channels,

• any operation on the A nucleons and

• the computation of different streams of HMC trajectories.

This holds true for ψ, ϕ and π. So one could easily distribute work to more than 2
million threads in the extreme case of NL=32 and A=20. While different independent
HMC trajectories can be farmed on different independent threads, the parallelization in
N3

L×Nc×A is implemented on GPUs. This additional parallelization inN3
L×Nc×A

is completely new to NLEFT.

C.3.1 A trial implementation

The first step towards having a completely scalable NLEFT code in the exposable paral-
lelism dimensions is given by the implementation of the kernel operation: the temporal
evolution of the wave function (and accordingly the computation of the fermion determi-
nant) [step (1) in the HMC flow]. To do so, we implemented a trial version of the kinetic
energy operator in sixth order finite difference discretization (NS = 6) and the potential
operator in CUDA for NVIDIA GPUs [P100 GPU]. We computed the action of the transfer
matrix on initial wave functions and the computation of the final scalar product to obtain
the fermion matrix [eqs. (C.21) and (C.23)].

The chosen data layout for the wave function is double* Psi[NT][NL*NL*NL][2*A4*Nc]
so the innermost index loops over Nc channels. A4 is the number of nucleons padded to
a multiple of 4. The dimension with [2] represents the real and imaginary part. NT=12
time steps are performed before the inner product is evaluated. In order to get meaning-
ful measurements, 343 iterations of the core operations are executed where each iteration
performs 5558 floating point operations per nucleon and lattice site. 1536 of these flops
are spent in apply-vij—the application of the potential operator. Furthermore, there is
one inner product that needs to be evaluated after the temporal sweep corresponding to
the computation of the fermion matrix. In Fig. C.3, one can observe up to 500GFlop/s
as peak performance. This is about 10 % of the nominal machine performance of the
P100 GPU. Favorable are large lattice sizes and nucleon numbers that are multiples of
8. The corner values for the timings shown in fig. C.3 can be found in table C.1.
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Figure C.3: Benchmark performance results for 343 applications of the transfer matrix. Oper-
ation throughput (top) and raw timings (bottom). The left column shows the scaling in the
number of nucleons A for different volumes and the right column shows the volume dependence
N3

L for different nucleon numbers. Larger lattice sizes correspond to longer runtimes but also
higher performance values.

Kernel Scaling Calls A=4 NL=4 A=32 NL=4 A=4 NL=32 A=32 NL=32
apply-vij AN3

L 4116 6.0 12.8 % 8.0 4.3 % 294.8 43.7 % 1335.6 30.6 %
Laplace-z AN3

L 4116 10.1 21.5 % 10.0 5.3 % 195.7 29.0 % 1541.5 35.3 %
Laplace-y AN3

L 4116 9.4 20.0 % 10.2 5.4 % 76.5 11.3 % 429.1 9.8 %
Laplace-x AN3

L 4116 10.3 21.9 % 10.1 5.4 % 74.7 11.1 % 411.7 9.4 %
innerprod A2N3

L 343 2.1 4.5 % 86.0 45.8 % 24.4 3.6 % 586.6 13.4 %
treereduc A2 log NL 3087 8.6 18.2 % 62.9 33.5 % 8.0 1.2 % 62.9 1.4 %

Table C.1: Four selected profiles in milliseconds (and percent) for the six most important kernels.
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First results are very promising, e.g., we could verify the expected scaling. Further
investigations are intended. As can be seen in fig. C.3, one has not reached the peak
performance of the GPU, yet, and thus one can expect that the same scaling continues.
It remains to be seen how much the implementation of the HMC workflow will affect
the scaling and for which parameters one reaches the memory limit of the GPU. The
implementation of the HMC workflow are expected to be worked out soon and results
will be published in the near future.
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