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Acronyms

Acronyms

6-DOF six-degrees-of-freedom

CPU central processing unit

DGPS differential global positioning system

ECEF earth-centered, earth-fixed

EKF extended Kalman filter

ENU east, north, up

FOG fiber optic gyroscope

g2o general graph optimization

GCP ground control point

GNSS global navigation satellite system
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GPU graphics processing unit
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Acronyms

RANSAC random sample consensus

RMS root-mean-square

RMSE root-mean-square error

RTK real time kinematic
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SFM structure from motion

SIFT scale invariant feature transformation

SLAM simultaneous localization and mapping
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UTM universal transverse mercator
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Notation

The following gives an overview of the notation used within this thesis. In general the

type of variables is indicated by the applied capitalization and font style. Non-capital

italic variables like x are used to represent scalar values. A vector is indicated by

a non-capital bold variable, for example x. Its i-th entry can be accessed by x(i).

Furthermore, a matrix is noted by a capital bold letter, for instance X. In a consistent

manner, functions denote with the introduced style their image space. Examples for

this are f : R2 → R but f : R→ R2.

Sets and transformation groups

R set of all real numbers

R+ set of all nonnegative real numbers

Rn n-dimensional real linear space

SO(3) real special orthogonal group of rotations around the origin on R3;

if R ∈ SO(3), then R>R = I and det(R) = 1

so(3) tangent space (or Lie algebra) of the special orthogonal group SO(3)

SE(3) real special Euclidean group of rigid transformations on R3; el-

ements are pairs (t,R) with translation t ∈ R3 and rotation

R ∈ SO(3)

se(3) tangent space (or Lie algebra) of the real special Euclidean group

SE(3)

Sim(3) group of similarity transformations on R3; elements are triples

(t,R, s) with translation t ∈ R3, rotation R ∈ SO(3) and scaling

s ∈ R

Operators

x̂ skew symmetric matrix of vector x ∈ Rn

x̆ initial guess of variable x

◦ pose composition operator

5



Notation

|x| absolute value of scalar x

||x||2 Euclidean norm stating length of the vector x = [x1, x2, ..., xn] by√
x21 + ...+ x2n

∀ for all

x · y scalar product (or dot product) of the vectors x = [x1, x2, ..., xn]

and y = [y1, y2, ..., yn] defined by
∑n
i=0 xiyi

x× y cross product of the two linearly independent vectors x and y defin-

ing a vector which is perpendicular to both input vectors

exp(X) exponential of quadratic matrix X given by the power series∑∞
k=0

Xk
/k!

log(X) logarithm of quadratic matrix X defined as the inverse function of

the matrix exponential

Important symbols

α angle describing the maximal visual odometry drift

b rigid body displacement describing the mapping of a 3D point p

from its initial to its final configuration according to a rigid body

motion B

B rigid body motion (or rigid-body transformation) describing how

the coordinates of a moving object change over time

C,Ci camera coordinate system, at time ti
d function describing the inverse depth of all pixels in the image plane

as d : Ω→ R+

E set of graph edges connecting vertices V in a graph G

g function describing the mapping of a grayscale image from its image

plane to the intensity values as g : Ω→ R
G 2D graph containing a set of vertices V connected by edges E

I identity matrix

I, Ii INS coordinate system, at time ti
k set of intrinsic camera calibration parameters, describing the focal

length, the principal point and the image distortion

λ geographical longitude, an angle which states for each coordinate

on earth the east or west distance to the Prime Meridian

Ω image plane ⊆ R2 containing all pixels x

p 3D point ∈ R3

π image projection, which performs the mapping from a 3D point p

to a pixel x
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Φ Euclidean distance between two vectors

Φr angle difference between two quaternions

φ geographical latitude, an angle which states for each coordinate on

earth the north or south distance to the equator

ϕ roll angle rotating around the y-axis

ψ yaw angle rotating around the z-axis

rd travel distance ration stating the mean distance from Monte Carlo

runs in relation to the optimal distance

r ray with origin in the current start vertex vs and intersecting the

goal vertex vg
rl, rr ray with origin in the current start vertex vs and direction rotated

by the angle of the maximal visual odometry drift α to the left /

right of r

R rotation matrix

σx standard deviation of the scalar random variable x

Σx covariance matrix whose element in the i, j position is the covariance

between the ith and jth elements of a random vector x

t translation vector ∈ R3

θ pitch angle rotating around the x-axis

v function describing the depth variance of all pixels in the image

plane as v : Ω→ R+

vi coordinates of a vertex ∈ R2

vg coordinates of the goal vertex ∈ R2

vs coordinates of the start vertex ∈ R2

V set of vertices of a graph G

V video coordinate system

W world coordinate system

ω axis-angle representation ∈ R3 of a rotation whereby the rotation

angle in radians is encoded as ||ω||2
x pixel ∈ R2 describing a position in the image with its x- and y-

coordinate

ξ twist coordinates ∈ R6; elements are pairs (t,ω)> with translation

t ∈ R3 and rotation ω ∈ R3
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Abstract

Unmanned aircraft systems (UASs) are often used as measuring system. Therefore,

precise knowledge of their position and orientation are required.

This thesis provides research in the conception and realization of a system which

combines GPS-assisted inertial navigation systems with the advances in the area of

camera-based navigation. It is presented how these complementary approaches can

be used in a joint framework. In contrast to widely used concepts utilizing only one

of the two approaches, a more robust overall system is realized.

The presented algorithms are based on the mathematical concepts of rigid body mo-

tions. After derivation of the underlying equations, the methods are evaluated in

numerical studies and simulations. Based on the results, real-world systems are used

to collect data, which is evaluated and discussed.

Two approaches for the system calibration, which describes the offsets between the

coordinate systems of the sensors, are proposed. The first approach integrates the

parameters of the system calibration in the classical bundle adjustment. The op-

timization is presented very descriptive in a graph based formulation. Required is

a high precision INS and data from a measurement flight. In contrast to classical

methods, a flexible flight course can be used and no cost intensive ground control

points are required. The second approach enables the calibration of inertial naviga-

tion systems with a low positional accuracy. Line observations are used to optimize

the rotational part of the offsets. Knowledge of the offsets between the coordinate

systems of the sensors allows transforming measurements bidirectional. This is the

basis for a fusion concept combining measurements from the inertial navigation sys-

tem with an approach for the visual navigation. As a result, more robust estimations

of the own position and orientation are achieved. Moreover, the map created from

the camera images is georeferenced. It is shown how this map can be used to navigate

an unmanned aerial system back to its starting position in the case of a disturbed or

failed GPS reception. The high precision of the map allows the navigation through
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Abstract

previously unexplored area by taking into consideration the maximal drift for the

camera-only navigation.

The evaluated concept provides insight into the possibility of the robust navigation

of unmanned aerial systems with complimentary sensors. The constantly increasing

computing power allows the evaluation of big amounts of data and the development

of new concept to fuse the information. Future navigation systems will use the data

of all available sensors to achieve the best navigation solution at any time.
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Zusammenfassung

Unbemannte Flugsysteme (eng.: unmanned aircraft systems, UAS) werden vermehrt

als Messsysteme eingesetzt. Dabei sind zur effizienten Nutzung Kenntnisse über ihre

Position und Orientierung erforderlich.

Die vorliegende Arbeit erforscht die Konzeption und Realisierung eines Systems,

welches GPS-gestützte inertiale Navigationssysteme mit den Fortschritten im Bereich

der kamerabasierten Navigation verknüpft. Es wird vorgestellt, wie diese zwei kom-

plementären Ansätze in einem gemeinsamen Framework vereint werden können. Im

Vergleich zu weit verbreiteten Konzepten, welche nur einen der beiden Ansätze nutzen,

wird ein robusteres Gesamtsystem realisiert.

Die präsentierten Algorithmen basieren auf dem mathematischen Konzept der Fest-

körpertransformationen. Nach erfolgter Herleitung, werden die Verfahren zunächst

in numerischen Studien und Simulationen untersucht. Aufbauend auf den erzielten

Ergebnissen werden Daten mit realen Systemen aufgezeichnet, ausgewertet und disku-

tiert.

Zur Systemkalibrierung, welche die Offsets zwischen den Koordinatensystemen der

zugrunde liegenden Sensoren bestimmt, werden zwei Verfahren vorgestellt. Der erste

Ansatz integriert die Parameter der Systemkalibrierung in den klassischen Bündel-

ausgleich. Durch die Nutzung eines auf Graphen basierenden Verfahrens wird die

Optimierung sehr anschaulich dargestellt. Der Ansatz erfordert die Nutzung eines

präzisen inertialen Navigationssystems und verwendet die Daten eines Messfluges.

Dabei ermöglicht die vorgestellte Methode eine flexible Flugplanung ohne die Nutzung

kostenintensiver Bodenkontrollpunkte. Das zweite Verfahren ermöglicht die Sys-

temkalibrierung auch für inertiale Navigationssysteme mit großen Fehlern in der

Positionsbestimmung. Um die Optimierung des Rotationsanteils der Offsets ohne

Nutzung der Positionsmessungen zu realisieren nutzt die Methode Linien als Beobach-

tungen. Die Kenntnis der Offsets zwischen den Koordinatensystemen der Sensoren

ermöglicht die Transformation von Messungen in das jeweils andere Koordinatensys-

11



Zusammenfassung

tem. Basierend darauf wird ein Konzept vorgestellt, welches die Fusion von Mes-

sungen des inertialen Navigationssystems und eines Verfahrens zur visuellen Naviga-

tion realisiert. Dies führt zu robusteren Ergebnissen in der Bestimmung von Position

und Orientierung des UAS. Darüber hinaus ist, im Gegensatz zu rein kamerabasierten

Verfahren, die erstellte Karte des überflogenen Gebietes georeferenziert. Es wird

gezeigt, wie diese Karte genutzt werden kann um ein unbemanntes Flugsystem, bei

fehlendem oder gestörtem GPS Empfang, rein kamerabasiert zum Startpunkt seiner

Mission zurückzukehren zu lassen. Dabei ermöglicht die hohe Genauigkeit der Karte

die Nutzung von Abkürzungen durch zuvor nicht besuchte Gebiete unter Beachtung

des maximalen Drifts.

Das evaluierte Konzept gibt einen Einblick in die Möglichkeiten zur robusten Navi-

gation von unbemannten Flugsystemen mit komplementären Sensoren. Die weiterhin

steigende Rechenkraft ermöglicht neben der Auswertung großer Datenmengen auch

die Entwicklung neuer Konzepte zur Datenfusion. Zukünftige Navigationssysteme,

werden die Daten aller vorhandenen Sensoren nutzen um jederzeit die bestmögliche

Navigationslösung zu berechnen.

12



CHAPTER I

Introduction

”The real voyage of discovery con-
sists not in seeking new landscapes,
but in having new eyes”

— Marcel Proust

Sensor data fusion is a sub area of applied computer science. It is based on the

principles from nature. All living creatures fuse information from their sense organs

to interact with the world and achieve their goals. This concept is emulated by

human beings, which created technology to sense the environment. Most sensors,

like cameras or microphones, are based on the model of sense organs from living

beings. Others create completely new concepts not found in nature. An example is

the positioning based on the travel time from satellite signals by a global navigation

satellite system (GNSS) like the global positioning system (GPS). All sensors have

in common, that they only perceive partial aspects of the world. Therefore it is an

essential task to fuse the information from multiple sensors to observe the situation

as precise as possible [Koc14].

In the aerial context, multiple sensors are mounted on flying platforms like airplanes,

helicopters or drones. The latter are a result from the technological development

in the last centuries, which allows to control and steer aerial platforms without a

pilot on board. They were initially developed for dangerous areas or missions by the

military forces, but are nowadays also used in civil applications. Analog to the manned

platforms multiple concepts exists, which can roughly be divided in rotary and fixed

wing systems (Figure 1.1). Platforms using rotary wings are traditionally based on

the concept of classical helicopters with one main and one tail rotor. The latter is

required to balance out the torque of the main rotor. Nowadays, small drones often

use multiple small rotors. By one half of the rotors rotating in the opposite direction of

13



1 Introduction

Figure 1.1: Left: Example of a rotary wing drone. The hexacopter of the type AR-200 is
produced by AirRobot R© GmbH & Co. KG. Right: Fixed wing drone of the type LUNA
from EMT Ingenieurgesellschaft. The UAS is currently used by the German Army.

the others, the torque is balanced out. All rotary wings platforms have the advantage

of vertical take-off and landing, which is possible at nearly every location, and the

possibility to hover. In contrast to these systems, fixed wing drones are based on

the concept of classical airplanes. They need a runway for starting and landing and

are not able to hover. Their main advantage is the great efficiency by traveling long

distances. Nowadays, also first platforms combining both concepts exist. By tilting

the rotors or even the whole wings after a vertical take-off an efficiency close to the

classical fixed wing platforms is achievable.

In the last years, an evolution of the general naming for these systems occurred.

Starting from the military phrase drone, the name unmanned aerial vehicle (UAV)

was introduced. Both terms are nowadays obsolete, but still widely used on the

internet and in articles. According to the International Civil Aviation Organization

(ICAO) the currently preferred term to describe the platform is unmanned aircraft

(UA). This name includes remotely piloted and autonomous systems as well as a

mixture of both approaches. To state that there is a ground control station and not

only the aerial vehicle, unmanned aircraft system (UAS) is enforced, which is the

phrase used in the following. An Equivalent term is remotely piloted aircraft system

(RPAS), which brings the ground control station even more into focus.

During the last decade research and development in the area created platforms in

nearly ever size. As a consequence of this diversity and the associated opportunities,

UAS are nowadays used, or at least intended, for tasks in nearly all industrial sectors.

The transfer of the pilot from the aerial platform to the ground allows smaller systems

leading in many cases to cheaper production and operation costs. The downsizing also

14



1.1 Motivation

results in hard payload restrictions and for most systems only small and light sensors

can be considered. This degrades the capability of a single sensor and brings into

focus the fusion of the collected information of all available sensors to generate the

best result for the application.

1.1 Motivation

Human beings have five traditionally recognized senses: sight, hearing, smell, taste

and touch. According to the definition of modern physiology there exist a lot more.

One of them is balance, which is sensed by the vestibular system in the inner ears.

This organ provides the angular momentums and linear accelerations of the head and

gives us the perception of spatial orientation and allows us to coordinate movements

to keep our body in balance. Another non-traditional sense is kinesthesia. It provides

information about the body movement by sensing the relative positions of neighbored

body parts [PG09]. The brain integrates its information with balance and sight in a

virtual sense of movement (Figure 1.2). Some animals have developed other senses to

improve their capabilities of localize themselves and their movement. For example,

balance

sight

kinesthesia

Figure 1.2: To determine their own movement, human beings combine sight with their sense
of balance provided by the inner ear and kinesthesia, perceiving the position of body parts.

15



1 Introduction

bats use echolocation to sense their environment by emitting ultrasound signals and

listening for the echo reflected by nearby objects. Some birds sense the magnetic field,

which allows them to perceive their current location and direction [CLD07].

Analog to the virtual sense of movement used by human beings and animals this

thesis contributes to the development of this sense for robots. Especially for mobile

platforms, the knowledge of the own pose is of particular importance. It ensures

to travel along the desired path and allows to locate all other measurements in a

consistent map. The self-localization of a platform is described as six-degrees-of-

freedom (6-DOF) pose estimation including position and orientation. Its not only of

interest for aerial platforms considered within this thesis, but also for ground based

or maritime platforms and constitutes a fundamental task for many applications in

the area of robotics, augmented reality or tracking. Various solutions have been

proposed, but the challenge to provide a low-cost, real-time and robust solution,

remains unchanged.

1.2 Why using a camera and an inertial navigation system?

Aerial photogrammetry is widely used for orthophoto and topographic map creation

and originated over 100 years ago. The generation of these models require knowledge

of the exterior orientations of the collected aerial images. These poses are deter-

minable by the usage of a bundle adjustment software [TMHF00]. Prerequisites are

a sufficient number of images from different viewpoints and a high image overlaps

between them. In the aerial photogrammetry, this is achieved by collecting images

from at least one downward looking camera while performing flight strips with a high

image side overlap. The bundle adjustment defines the problem of simultaneously

determining the observed scene geometry, the camera poses and the camera calibra-

tion parameters. Its name refers to the bundles of light rays between the observed

3D structure and the optical camera centers at the time of image exposure, which are

adjusted to optimally satisfy the corresponding pixel positions. By using only one

camera, the determined camera motion is not absolute but states a relative path at

an arbitrary scale. The scaling to real-world coordinates is usually done by measuring

the GPS positions of multiple ground control points (GCPs) in the outer regions of

the observed area. The observations of the GCPs have to be identified in the images

to determine the unknown scale factor. This makes clear that the bundle adjust-

ment is a time consuming post processing step, which has to be performed after the

measurement flight is completed.

In contrast to aerial map creation, time-critical surveillance and rescue tasks have a

high demand for a more flexible flight planning and the direct determination of object

localizations [SBKC10,BSK11]. One widely used approach is the online processing of

images to estimate the current camera pose. This is known as visual odometry, a key
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1.2 Why using a camera and an inertial navigation system?

component for the navigation with camera-based systems. For a long period, these

systems were working only with a small subset of feature points to achieve real-time

capabilities [KM07,KM09]. Nowadays, the increased computing power leads to semi-

dense and dense approaches, which achieve a superior pose estimation by processing

all image regions with gradients [ESC12,ESC14] or even the whole image [NIH+11].

Despite the great development in visual odometry, the usage of an inertial naviga-

tion system (INS) leads to the most accurate real-time pose information in outdoor

scenarios. Nowadays, measuring or surveillance flights are usually performed by a

manned aircraft equipped with a digital large-format camera and a high precision

GPS-corrected INS. This equipment enables direct georeferencing of the captured

images and therefore provides very flexible flight planning without the necessity of

GCPs. The utilization of the measured positions and attitudes for the exterior camera

orientations eliminates the need for the time consuming post processing in form of a

bundle adjustment or computational expensive visual odometry. The main drawback

is that, in addition to the expensive devices, the execution of flights with manned

aircrafts are very cost-intensive and consequently uneconomic for small areas.

There is ongoing research regarding the photogrammetric usage of small UAS with

payload capabilities of a few kilograms. This leads to a technological challenge for

the equipped sensors. They can not be freely selected anymore but have to fulfill

the hard constraints of weight and size determined by the UAS. For a wide range of

applications, and in particular for the aerial photogrammetry, these platforms are in

general equipped with a miniaturized GPS-corrected INS and a small-format camera

[Eis08]. As a result, the sensors will most likely produce less than optimal results

compared to their unconstrained counterparts.

Nevertheless, clever processing, especially with methods combing the output from

these complementary sensors, leads to accuracies suitable for most tasks. To use

the pose information of the INS as outer orientation for the images captured by the

camera, the devices have to be time synchronized and rigidly mounted. Using the

measurements from an INS without considering the mounting offsets will introduce

biases, which can highly degrade the overall system performance. Within the so

called INS-camera calibration the static coordinate system transformation between

the sensors is determined. More precisely the translational offsets (lever-arm) and the

angle misalignments (boresight) are estimated. This is known as system calibration

or more precisely INS-camera calibration.

A general framework for combining a camera and an INS is presented in Figure 1.3.

The 3D world is reconstructed out of images captured by the camera, while the INS

estimates the motion parameters. Latter can to some extend also be extracted from

the camera images. By fusing the information of both systems the 3D reconstruction

of the world is simplified and can be achieved at a lower computational cost. The
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Figure 1.3: General framework combining a camera and an INS. The fusion between the
sensor may occur at various levels while processing the measurements.

fusion between these sensors can roughly be divided into two concepts: loosely and

tightly coupled systems. Latter feed the measurements of the inertial sensors and

information extracted by the image processing in one single optimized filter. Realiza-

tions of this estimation problem were solved with an extended Kalman filter [QCZ01]

or an unscented Kalman filter [ACVT04]. For loosely coupled approaches, which are

considered in the following of this thesis, the INS and the image processing run in-

dependently, but use results from the other to improve their own performance. For

example pose information from the INS can be used to predict the motion of features

and visual information may be used to restrict the integration drift of the inertial

sensors [CLD07].

To sum it up, the sensors have useful complementaries, which can compensate each

others disadvantages. This is especially important if the data quality of the individual

sensors is suboptimal on the basis of hardware miniaturization or cost savings. Clever

processing of the sensed data leads to new applications in areas like augmented reality

[KD03] or robotics [BCK16] and is expected to yield further benefits in the near future.
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1.3 Focus

This thesis develops a multi-sensor system for accurate pose estimations with a sensor

suite consisting of an INS and a camera with regard to small airborne platforms. The

usage of an INS is the standard approach for the navigation since decades. Neverthe-

less, new developments in the field of camera technology and the constantly increasing

computing power leads to improvements in the area of visual navigation. A combi-

nation of both approaches has the potential to be a low-cost and robust solution for

the real-time pose estimation.

As part of this thesis two approaches to perform the system calibration between an INS

and a camera are presented. Knowing the offsets between the underlying coordinate

systems of the two sensors allows an easy transformation between them and makes

various improvements possible. The integration of the INS pose estimations into

a simultaneous localization and mapping (SLAM) approach will reduce ambiguities

and increase the robustness by a smaller search space for the visual pose estimations.

This results also in a reduction of the required computing power and even allows the

operation in regions with poor textures. Further, the geolocations of the images are

determined by measurements of the integrated GPS receiver. As a result the 3D map

generated from these images by a SLAM approach are georeferenced. This allows the

precise camera only navigation in previously observed regions and even the usage of

shortcuts through unobserved areas. Combining the complementary sensors makes

the overall system more robust and adds a redundancy to the navigation process. In

the case of a sensor failure, the remaining one can be used to perform a controlled

termination of the current mission.

It is also an essential point of this thesis that any methodological innovation is exam-

ined closely in numerical studies and verified by real-world experiments. The latter

are realized by evaluating sensor data collected in measurement flights with aerial

platforms.

1.4 Outline

After the introduction given in the current chapter, this thesis is organized as follows:

Chapter 2 provides the basic concepts used in the following chapters. Besides a

definition of the used coordinate systems and how to convert coordinates between

them, the mathematical concept of rigid body motions is introduced. The latter are

used to describe the movement off the used sensors and also the mounting offsets

between them. The mapping principle of a camera is described. By introducing the

concepts of an INS, also a description of the operating principle of the contained

inertial measurement unit (IMU) and the GPS is provided.
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In Chapter 3 two approaches for the calibration of a sensor suite of a rigidly mounted

camera and an INS are presented. The first allows the integration of the calibration

parameters in the classical bundle adjustment without the requirement of expensive

GCP observed in the calibration flight. The second approach enables the calibration

of systems using a low-cost INS with a low positional accuracy.

Chapter 4 describes the proposed approach of developing a framework, which fuses

INS measurements with poses extracted from a visual navigation system. It is shown

how to integrate the INS measurements into the large-scale direct monocular SLAM

(LSD-SLAM) framework. Integrating precise position updates from differential cor-

rected GPS-signals leads to accurate maps of the observed area.

These maps are used in Chapter 5 to navigate an UAS in a previously visited area

without a GPS. In the presented approach, an UAS returns to its starting position by

only using its camera and the previously generated output of the SLAM procedure.

Thereby, the path planing procedure considers also shortcuts through previously not

explored areas.

Finally, this thesis is closed in Chapter 6 by giving a summary of the achieved con-

tributions and obtained results. Possible extensions and a vision of future navigation

systems are presented.
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CHAPTER II

Fundamentals

”By failing to prepare, you are
preparing to fail.”

— Benjamin Franklin

The position as well as the orientation of a moving platform is of interest in nearly

all of its applications. This results in a 6-DOF localization problem. The proposed

solution fuses measurements from a sensor suite containing a camera and an INS.

In this chapter the principles and methods which form the basis for the rest of this

thesis are introduced. The used coordinate systems and the concept of rigid body

motions are defined. Further, a short introduction of the working principles of the

used sensors and the benefits of using them in a combined approach is given.

2.1 Coordinate systems

The different sensors take measurements in their associated coordinate systems and

the fusion of these measurements requires a global coordinate system. An overview

of the different types of these coordinate systems and how to convert between them

is given in this section.

The self-localization dealt with in this thesis takes place in the three-dimensional

space that we live in and thus the considered coordinate systems are of the same

dimensionality. Two generic types of coordinates systems are used. Cartesian co-

ordinate systems describe points in space by three distance values, most frequently

named x, y and z, on three orthogonal axes. In contrast to that, spherical coordinate

systems describe a point by its radial distance to the origin and two angles, describing

a unique direction starting at the origin.
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Figure 2.1: The sensor frames as well as the global world frame are ENU coordinate systems
(green). They are local Cartesian coordinate systems with the origin tangential to the earth
ellipsoid. Further the global ECEF coordinate system (blue) is used to convert between
ENU-coordinates and GPS measurements. The latter are taken in latitude φ and longitude
λ as polar coordinates and an altitude above the ellipsoid (orange).

The known representation of GPS coordinates as latitude, longitude and altitude is

a description of a point in space with a spherical coordinate system (Figure 2.1).

Thereby, the latitude value describes the angular distance to the equator with values

from 0◦ to 90◦ up and from 0◦ to −90◦ down of the equator. In contrast, there is no

natural reference for the second angle known as longitude. The prime median at a

longitude of zero is by convention passing Greenwich, a district of London. Further,

longitude values are defined in the range between 0◦ to 360◦ growing in east direction.

The altitude value is not stated as distance from the center of earth, but above an

ellipsoid fitted to the earth surface. The world geodetic system 1984 (WGS84) defines

a reference ellipsoid, which is used for GPS measurements and also constitutes the

current standard for most applications. Nevertheless, it must be noted, that some

GPS devices do not state the altitude related to the reference ellipsoid but to the

geoid. The latter describes the shape of the earth surface within the earth gravity

field. In a good approximation, the geoid is represented by the mean sea level of the

world’s oceans. In contrast to the mathematically idealized reference ellipsoid, the

surface of the geoid is irregular. The absolute difference of up to 100 m between them

is known as undulation.

All other coordinate systems used in this thesis are Cartesian. The first to be intro-

duced is the earth-centered, earth-fixed (ECEF) coordinate system. It is used as the

basis of most satellite systems, because in contrast to the WGS84 no ellipsoid has to
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be chosen. Its origin is defined to be in the center of the earth. The positive z-axis

points through the North Pole and the xy-plane contains the equator. Thereby the

x-axis is defined to intersect the prime median and the y-axis to span a right-handed

coordinate system (Figure 2.1). As a consequence, the ECEF coordinate system ro-

tates with the earth.

Describing positions close to the earth surface with ECEF coordinates results in large

numbers, which inhibit an intuitive interpretation. As an alternative, local ground

reference frames are used. The origin of these coordinate systems is usually given

as a point in WGS84 coordinates. The up-down direction given by the z-axis is

defined to be orthogonal to the tangent plane of the reference ellipsoid. There are

two primary used definitions differing in the axes orientation. For the north, east,

down (NED) convention the x-axis points north, y-axis east and the z-axis downwards.

This coordinate system is widely used in aviation. Nevertheless, in this thesis only

the second convention named east, north, up (ENU) is considered. In this system the

x-axis points east, the y-axis north and the z-axis up (Figure 2.1). Both conventions

describe right-handed coordinate systems and a transformation between coordinates

in these frames is straight forward. The conversion between WGS84 and ENU, with

ECEF coordinates as an intermediate step, is well described by Drake [Dra02].

An often used alternative to describe global coordinates is the universal transverse

mercator (UTM) system. A map projection, which uses a two-dimensional Cartesian

coordinate system to describe a location on earth. Therefore it divides the earth

surface in sixty zones, each with a width of six degrees longitude and its favorable

transverse Mercator projection. Each of these zones can map a region from north

to south with low distortion. The division in latitude bands is not part of the UTM

system, but often used to define grid zones. A point on earth is defined by its grid

zone and position. The latter is a coordinate pair stating the easting and northing in

the zone.

2.2 Rigid body motion
The mathematical concept of Lie groups, which represent smooth topological groups,

is used to describe transformations. Examples are the three-dimensional special or-

thogonal group SO(3) for all 3D rotations and the special Euclidean group SE(3)

representing rigid body motions in the 3D space. The algebraic structures so(3) and

se(3), named Lie algebras, are vector spaces which allow a minimal representation of

the corresponding Lie groups. Some more insight of the associated theory is given in

the following definition of rigid body motions. A comprehensive introduction is given

in the book of Ma [MSKS03,Hal15].

In general, a rigid body motion B ∈ SE(3) describes how the points of a rigid object

change over time. Instead of considering the continuous path of the movement, the
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Figure 2.2: A rigid body motion B describes the movement of a rigid object, here depicted
with its coordinate system. Instead of the whole movement, this figure visualizes the mapping
from the initial to the final configuration.

mapping between the initial and the final configuration of the rigid body motion is

considered. This mapping B can be described by a rotation matrix R ∈ SO(3) and

a translation vector t ∈ R3 (Figure 2.2). Consequently, the rigid body displacement

b of a 3D point p ∈ R3 can be performed by:

b : SE(3)× R3 → R3 , (2.1)

b(B,p) = Rp + t . (2.2)

The representation of the rotational part of B in form of the overdetermined rotation

matrix R is not suitable for the optimizations performed in this thesis. Therefore,

in the following chapters two different minimal representation, namely Euler angles

and skew-symmetric matrices are used. The utilized form of the first are Z-X-Y Euler

angles (ψ, θ, ϕ) ∈ R3, called yaw, pitch and roll. These describe the rotational part of

the movement as a mapping from R3 to SO(3) by consecutive rotations around the

principal axes in the order Z, X and finally Y:

R(ψ, θ, ϕ) =

cosψ − sinψ 0

sinψ cosψ 0

0 0 1


1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

 . (2.3)

The Z-X-Y rotation order leads to singularities at θ = ±π/2. This corresponds to a

pitch angle of ±90◦, which will never be achieved with the utilized aerial platforms

and therefore does not constitute a problem. Otherwise, the rotational part of the

rigid body motion can be reformulated with a different rotation order of the Euler

angles or skew-symmetric matrices.

The latter are part of twist coordinates, which can be described by a vector ξ =

(t,ω)> ∈ R6. Thereby, t ∈ R3 describes the translational and the skew-symmetric
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matrix ω̂ ∈ so(3) the rotational part of the full motion. The rotation angle in radi-

ans is encoded as ||ω||2. An element ξ̂ ∈ se(3) can be written in its homogeneous

representation as:

ξ̂ =

(
ω̂ t

0 0

)
=


0 −ω3 ω2 t1
ω3 0 −ω1 t2
−ω2 ω1 0 t3

0 0 0 0

 . (2.4)

Given ξ, a rigid body motion is described by the matrix exponential, which is defined

as the always converging power series:

exp : se(3)→ SE(3) , (2.5)

exp(ξ) =

∞∑
k=0

ξ̂k

k!
. (2.6)

The inverse of this exponential map is defined as the matrix logarithm and therefore

fulfills the following relation:

exp(log(B)) = B . (2.7)

This leads to an alternative formulation of equation (2.2) using twist coordinates to

describe the displacement of a point p ∈ R3 according to the rigid body motion B as

follows:

b : SE(3)× R3 → R3 , (2.8)

b(B,p) = exp(ξ)p . (2.9)

The concatenation of two rigid body motions is a simple multiplication in the SE(3)

space and allows defining the pose concatenation operator:

◦ : SE(3)× SE(3)→ SE(3) , (2.10)

Bkj ◦Bji = Bkj Bji = Bki . (2.11)

This relationship can easily be utilized for the twist coordinate representation by

applying the exponential mapping stated in equation (2.6).

2.3 Camera

A digital camera is a device which collects light on an electric sensor area to form an

image of the observed area. The operating principle is based on the classical pinhole

model, whereby the object, projection center and sensor element, known as pixel,

are positioned on a line (Figure 2.3). Nowadays, cameras are equipped with lenses,

which allow the collection of more light in the same amount of time compared to the
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object projection center image

Figure 2.3: The image generation off all cameras is based on the pinhole camera. An
inverted image of the scene is captured on the sensor area by collecting light passed through
the pinhole for a fixed amount of time.

classical pinhole camera. Nevertheless, the process of image generation remains the

same. Opening the camera shutter for a very short period forms an image by collecting

light emitted or reflected from the observed objects. The different amount of light

collected for the individual pixels characterizes the created image. A mathematical

description of the image is given by the function g describing the mapping from the

image plan Ω ⊂ R2 to real numbers:

g : Ω→ R . (2.12)

In practice this relationship is often discretized by a two dimensional array of pixels

mapped to 8-bit values in the range of [0, 255]. This corresponds to a grayscale image.

To create a color image, the concept of the Bayer pattern [Bay76] is applied to nearly

all image sensors. Color filters in the basic colors red, green and blue are attached in

front of the pixels in an alternating pattern. Based on the brightness perception of

the human eye, half of these filters are green, one quarter red and one quarter blue.

Thus, each pixel only collects information for one of the three basic colors. To create

an image with three complete color channels, the missing values are interpolated.

Various settings of the camera influence the image creation process. The exposure

time, specifying the time the shutter is open and light is collected, is a critical value.

Depending on the brightness of the scenario the appropriate values for images that are

neither to dark nor to bright differ. It has also to be considered, that high exposure

values in combination with egomotion of the camera or moving objects in the scene

result in motion blur. In low light scenarios the sensor gain can be increased, which

allows the collection of more light in the same amount of time. As a downside, the

signal-to-noise ratio gets worse. Modern industrial cameras (Figure 2.4) automatically

adapt these settings in ranges defined by the user beforehand to achieve a target

brightness of the image. In contrast to the classical pinhole model, the usage of lenses
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Figure 2.4: Industrial camera Prosilica GX3300 from Allied Vision Technologies GmbH with
an attached wide-angle lens from Carl Zeiss AG. The camera allows grabbing the images in
real-time via a standard Ethernet port while the image exposure can be externally controlled
via a signal connected to a trigger jack.

leads to images which are not sharp for all mapped distances. The focus distance has

to be set. In the context of aerial images this is in nearly all cases done by setting

the focus to infinity.

To use images captured by a camera for photogrammetric measurements, the projec-

tion from a 3D point to a pixel on the sensor area is modeled. The process is described

by the intrinsic camera parameters which converts the measurements process of cam-

eras using lenses to the pinhole camera projection.

The set of intrinsic camera calibration parameters is defined by:

k = {fx, fy, ox, oy, k1, k2, k3, p1, p2} , (2.13)

whereby (fx, fy) describe the focal length and (ox, oy) the principal point of the cam-

era. Furthermore, the radial distortion with the parameters (k1, k2, k3) and the tan-

gential distortion by (p1, p2) are expressed. The projection π performs the mapping

from a transformed 3D point p = (x, y, z)> to pixel coordinates as:

π : R9 × R3 → R2 , (2.14)

π(k,p) =

(
dfxx

z
− ox + tx,

dfyy

z
− oy + ty

)>
, (2.15)

with the radial distortion factor d and the tangential distortion offsets tx and ty being

defined as follows [Bro66]:

d = 1 + k1

(
x2 + y2

z2

)
+ k2

(
x2 + y2

z2

)2

+ k3

(
x2 + y2

z2

)3

, (2.16)

tx = 2p1
xy

z
+ p2

(
3x2 + y2

z2

)
, (2.17)

ty = p1

(
x2 + 3y2

z2

)
+ 2p2

xy

z
. (2.18)
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The described camera projection assumes that the position of the 3D point is described

in the camera coordinate system. Knowledge of the extrinsic camera parameters,

describing the camera pose with its position and orientation in a global coordinate

frame, allows the transformation of a 3D point to the camera coordinate system.

This can be realized by applying the rigid body displacement of the camera pose as

described in the previous section. Altogether, the mapping from a 3D point p in the

global coordinate system to a pixel position in the image created by a camera at pose

B is given by π(k,b(B,p)) applying the previously introduced equations (2.9) and

(2.15).

2.4 Inertial navigation system

Inertial measurement system are since many years used for navigational purposes of

air, sea and ground vehicles. By measuring the acceleration, information about the

speed and position are generated by integration. The combination of accelerometers

with gyroscopes, measuring the turn rates, in one device is designated as IMU. Sum-

ming up measurements of the internal sensors over a period leads to a drift in the

determined position and orientation, which is in most outdoor applications compen-

sated by independent GPS measurements. An INS combines these two subsystems to

produce accurate pose information while moving in the 3D space. The state-of-the-

art integration techniques for those systems are realized by the application of Kalman

filtering [GWA07]. The six-dimensional pose estimation is in general stated with a

position in global latitude, longitude and altitude coordinates and the rotational part

related to the ENU frame with origin in the estimated position. Thus, the INS states

its transformation from the ENU frame to its body coordinate system (Figure 2.5).

Commercially available INS devices are very different from one another. They can

roughly be divided based on the gyroscope technology of the IMU, which has a direct

relation to the accuracy, size and cost of the whole system. Currently there are two

technologies mainly used. Namely, the more classical fiber optic gyroscope (FOG),

which are very accurate, and the uprising microelectromechanical systems (MEMS)

gyroscopes. The latter are a lot smaller and are available in various accuracy levels.

A rise of research activities in the area of MEMS technology results in improved

error characteristics, a better sensitivity and advanced fusion methods on embedded

hardware. Starting by the entry-level category, which are very cheap and tiny. They

provide an output of the device orientation and thanks to MEMS based GPS chipsets

also in the position. This device class is widely used in todays smartphones and sensor

boards. An example for latter is the Razor IMU from SparkFun Electronics, which

integrates three accelerometers, three gyroscopes and three magnetometers with an

onboard processor and a serial interface. Such sensor boards are for example used

to stabilize quadcopters. However, they are not considered in the sensor concepts
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Figure 2.5: Body coordinate system of an INS integrated into an airplane. If the coordinate
system of the platform is realized with a different orientation, the axes are usually switched
internally to match the depicted configuration.

Table 2.1: General information and stated accuracies of three selected INSs

Razor IMU Ellipse-D iTraceRT-F200-E

(SparkFun Electronics) (SBG Systems) (iMar GmbH)

size 2.8× 4.1 cm 8.7× 6.7× 3.15 cm 14.8× 14.8× 10.4 cm

weight 6 g 180 g 2400 g

gyroscopes MEMS MEMS FOG

connection serial interface USB USB

specialty no GPS dual GPS, RTK RTK

position - 1.2 m 1.8 m

2 cm + 2 ppm (RTK) 2 cm + 2 ppm (RTK)

pitch/roll n/a 0.1◦ 0.01◦

yaw n/a <0.2◦ (dual GPS) 0.025◦

velocity n/a 0.03 m/s 0.01 m/s

evaluated in this thesis. At the other end of the MEMS spectrum, there are highly

optimized INS, like the in this thesis used Ellipse-D from SBG Systems [SBG15]. This

device is smaller, lighter and cheaper but still not as accurate as the also in the real-

world evaluations utilized iMar iTraceRT-F200-E based on FOG technology [iMA13].

The specifications of the devices are stated in Table 2.1 and an approximation of the

size ratio between the devices is visualized in Figure 2.6.
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Figure 2.6: Approximated visualization of the size ratio between three selected INSs.
Left: Razor IMU from SparkFun Electronics Middle: Ellipse-D from SBG Systems Right:
iTraceRT-F200-E from iMAR Navigation GmbH

2.4.1 Inertial measurement unit

A typical IMU consists of three accelerometers, three gyroscopes, a clock and a pro-

cessing unit. The accelerometers are arranged orthogonally to each other, producing

output in 3D space. The measurement principle of an IMU is based on the second law

of motion from Newton, which states that the movement of a body is determinable,

if the forces acting on the body are known. For measurements on earth this means

that the force of gravity and the earth rotation rate have to be compensated.

Classical systems decouple the accelerometers from the angular movements of the

platform by mounting rotating gyroscopes in gimbals. As a result, the accelerometers

are held in their fixed inertial frame, which allows an easy compensation of the external

forces, producing acceleration measurements of the device. At the same time, the turn

rates are given by extracting the angles of the gimbals through potentiometer pickoffs.

These systems are based on a complex mechanical setup.

The progress in electronic components leads to the development of strapdown IMUs.

In contrast to the constant inertial frame of the classical systems, all sensors are

rigidly mounted and move with the platform. The navigation computer uses the

angular measurements of the gyros to compensate the force of gravity and the earth

rotation, which now effect accelerometer measurements depending on the orientation

of the device.

The underlying concept of summing up measurements, and thus also small errors,

over time leads to drift in the absolute position and orientation. A commonly used
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sensor type to improve the accuracy are vector magnetometers, which measure the

earth’s magnetic field in one direction. Analog to the accelerometers and gyroscopes,

the typical usage are three orthogonal mounted magnetometers. Their measurements

of the local magnetic field direction and strength are combined to determine the north

direction. Magnetometers are affected by local disturbances caused by close magnetic

objects. Nevertheless, they can be used to improve the accuracy of the calculated

orientations, while the overall system remains self contained.

Another common approach is the integration of absolute pose estimations. This

concept uses the high sampling rate of the inertial sensors to fill the gap between the

drift free updates from an absolute positioning system, like GPS [Woo07].

2.4.2 Global positioning system

The NAVSTAR GPS, an acronym for navigation system with time and ranging global

positioning system, was developed on behalf of the United States Department of

Defence for military applications and later opened for worldwide civilian use. It

allows the precise determination of location, velocity and time at each position on

earth.

The principle of GPS is based on the measurement of signals constantly broadcasted

by at least 24 satellites orbiting the earth. They are positioned in six different orbits

in a manner, that at every time and any position on earth at least four satellites are

in direct line-of-sight. If an object like a mountain or a building blocks one of the

paths, the radio transmission from that satellite will not arrive at the receiver. Each

signal contains information about the satellite status, ephemeris data describing the

location of the satellite and a high-precision time stamp. The latter is generated from

a synchronized atomic clock installed in the satellite.

A GPS receiver determines the traveling time of received signals by comparing the

timestamps encoded in the satellite messages with its time at the moment of recep-

tion. Since the signals are traveling at a known speed, the distances to the satellites

can be calculated. This information combined with the transmitted locations of the

satellites allows the receiver to determine its own position by trilateration. Required

are measurements from at least four satellites, because in addition of solving for the

three positional components, the clock error of the receiver has to be corrected.

In addition to the determination of the position, receivers are also capable of deriving

their current velocity from the GPS signals by using the Doppler shift. This effect

describes how a radio signal transmitted or received by a moving object is compressed

or stretched and allows the computation of the receiver’s velocity up to an accuracy of

a few centimeters per second. An improved performance can be achieved by processing

differences in consecutive carrier phase measurements.
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Some errors, especially signal delays by changing ionospheric conditions and clock

errors, can be significant reduced by using differential measurement methods. The

usage of differential global positioning system (DGPS) requires at least one additional

reference receiver, placed at known coordinates. This receiver determines its own

position according to the methods explained before. The difference between these

values and its know position allows the generation of correction data, which is usually

transmitted wireless to a second, possible moving, receiver. This so called rover

uses the correction data to calculate more accurate estimations of its own position,

velocity and time. One special realization of the DGPS principle is a technique

called real time kinematic (RTK). Instead of the content of the signal, the carrier

wave is used for the distance estimation between the satellite and the rover. The

higher frequency of the carrier wave compared to the modulated signal leads to a

major improvement in the achievable accuracy. Instead of errors of a few meters,

accuracies in the centimeter range are possible. The difficulty is the alignment of the

carrier phase where all cycles are similar to each other. This ambiguity is resolved to

some extent by statistical methods in a differential setup. In practice, the reference

receiver transmits its observed phase of the carrier to the rover, which compares this

measurement with its own to very precisely determine its relative position.

In the context of GPS there are further aspects like the military code or the ground

control segment, which are not required to understand the work presented in this

thesis. A deeper insight is given in the book of Kaplan and Hegarthy [KH05]. They

also discuss alternative GNSS. Namely, the Russian GLONASS, the European Galileo,

the Chinese BeiDou and the Japanese QZSS program. The last three are currently not

in full service and more satellite launches are planned for these systems in the coming

years. Without limiting generality, this thesis will always refer to GPS, although the

concepts are applicable to any GNSS.
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CHAPTER III

System calibration

”We have an unknown distance yet to run,
an unknown river to explore.”

— John Wesley Powell

To achieve the best possible performance of a multisensor system, a calibration of all

existing parameters which have a direct influence on the collected data is required.

This includes parameters describing the measurement process of the individual sensors

and in addition parameters representing the relation between the sensors. The INS

and the camera are rigidly mounted on an aerial platform, which allows reusing the

results of the calibration process for following measurements flights. This enables

to fully exploit the best possible conditions to calibrate the whole system, while not

depending on calibration constraints during the data collection.

Own publication on this subject: The work presented in this chapter has been

partly published in [BSSC13], [BSSC14] c© 2014 IEEE and [BCK16] c© 2016 IEEE.

3.1 Introduction

The investigations for the INS-camera calibration performed in the last decades were

targeted at manned aircrafts equipped with high-precision INSs and aerial cameras

at high altitude. In contrast, the goal in this chapter is the direct georeferencing of

images from non-metric cameras mounted in the payload of small UASs. Two calibra-

tion procedures to determine the INS-camera calibration (Figure 3.1) are proposed.

The first approach, shows how to perform an in-flight calibration with an open source

toolkit for general graph optimization to bypass the need for a commercial bundle

adjustment package. In contrast to the second procedure, a precise INS is required
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3 System calibration

Figure 3.1: Without a system calibration, describing the offsets between the INS and camera
coordinate systems, the direct georeferencing of images collected with aerial platforms leads
to errors in the ground coordinates (orange). These errors are reduced by using the calibrated
mounting parameters during the flight mission (blue).

[BSSC13, BSSC14]. The proposed position free approach can be used for all INS

accuracy levels. Input for the calibration is a data set of time synchronized INS

poses and camera images observing a planar checkerboard pattern. The latter is

in general used to calibrate the intrinsic camera parameters, but allows with the

presented approach also the calibration of the angular misalignment of the mounting

offsets [BRS+16].

This chapter starts with an overview on related research areas. After a general defi-

nition of the INS-camera calibration problem, the two proposed approaches are pre-

sented. Both procedures are analyzed in simulated scenarios and finally real-world

results achieved with the procedures are evaluated and discussed.

3.2 Related work

A related process of the INS-camera calibration is the so called hand-eye calibration.

Given a camera mounted on a robot arm, the rigid-body transformation between the
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coordinate systems of these devices is estimated. As a result, measurements from

the acquired images can be transformed in the robot arm coordinate system. This is

necessary to interact with objects recognized and located in the images. The calibra-

tion is done by estimating the rigid body transformation from corresponding poses.

A direct solution can be computed by firstly optimizing the rotational part and solv-

ing the equations for the translation afterwards [TL89]. In contrast, it was shown

that the nonlinear optimization for rotation and translation at the same time leads

to more robust results in case of noise and measurement errors [HD95]. The motion

of the robot arm is typically obtained from encoders, whereas nearly all approaches

determine the camera movement by observing a calibration pattern. In contrast to

that, the camera poses can be determined by a structure-from-motion approach. As

a drawback, the camera movement can only be estimated up to a similarity transfor-

mation. This leads to an unknown scale, which in addition has to be estimated during

the calibration process [AHE01]. The obtained results were not as accurate as the

calibrations from methods using camera calibration patterns. However, the approach

has the advantage of being feasible without any additional equipment and therefore

allows a recalibration during operation.

The algorithms developed for the hand-eye calibration had a big influence on another

related problem: The calibration between an IMU and a camera. These devices can

be combined to a vision-aided inertial navigation system. Measurements of the IMU

in form of rotational velocities and linear accelerations can be integrated to deter-

mine the positions, velocities and attitudes of the device. During this process small

estimation errors are summed up over time, which should be corrected by an aided

sensor. Typically, this is achieved by exploiting GPS measurements, which is not pos-

sible in space, underwater or indoor applications (Chapter 2.4). An alternative is the

usage of a camera in addition to the IMU. Prerequisite for exploiting camera-based

corrections is the knowledge of the transformation between the two devices. These

offsets can be computed with modified hand-eye calibration algorithms [LD07]. The

fact that consecutive measurements from shaft encoders are uncorrelated in contrast

to data from an IMU results in different noise characteristics. Considering these time

correlations leads to a higher accuracy of the estimations [MR08]. The authors uti-

lize an extended Kalman filter (EKF) for estimating the pose transformation, which

facilitates the computation of the covariance for the estimated parameters as an in-

dicator of the achieved accuracy. In [WAL+12] the authors describe an approach for

navigating an UAS based on measurements from an IMU and a camera. By not using

a calibration pattern, they realize the online estimation of the mounting parameters

between these sensors with an EKF formulation.

To calibrate the transformation between a GPS-aided INS and a camera, the algo-

rithms for the IMU-camera calibration can be used. This is based on the fact that an

IMU is one fundamental components of an INS. The only prerequisite for applying
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a system calibration with these sensors is that the raw measurements of the IMU is

accessible. However this is not the predominantly used method to perform a system

calibration between an INS and a camera. The commercially available INSs provide

an integrated filtering process, exploiting the GPS measurements to correct the IMU

estimations. In conjunction with GPS correction signals from ground control stations

an INS accuracy in the range of a few centimeters for the position and a few hun-

dredths of a degree for the attitude is achievable. Thus, in contrast to an IMU, an

INS provides a reliable stand alone source describing its own movement. This leads

to the estimation of the rigid-body transformation between the INS and the camera

with methods similar to the hand-eye calibration. In a first step the camera move-

ment is calculated with a structure from motion (SFM) approach and refined in a

bundle adjustment procedure. The observations of ground control points are used to

scale the 3D model to real-world coordinates. In a second step, the transformation

between the two devices is estimated by relating these absolute camera poses to time

synchronized measurements from the INS. This widely used approach is known as

two step procedure [CSH00]. The advantage is that each bundle adjustment pack-

age can be used without modifications. On the other hand, the integration of the

mounting parameters as variables to optimize in the bundle adjustment is possible.

This approach is known as single-step calibration and induces a simpler calibration

of the mounting offsets due to more flexible flight courses [PF02]. The simultaneous

optimization of the rigid-body transformation between the devices and the intrinsic

camera parameters should consider correlations between these values. An analysis

of the flight pattern influence on the calibration parameters is discussed in [KHB11]

with the conclusion that the calibration parameters can be decoupled by performing

the data collection at two different altitude levels. The authors also state that at least

one GCP is needed for the estimation of the vertical lever-arm and that the addition

of further GCPs does not improve the estimation results identifiable. The system

calibration has been examined and discussed widely within the european organisa-

tion for experimental photogrammetric research (OEEPE) test on integrated sensor

orientation [HJW02]. They conclude that it is a serious alternative for applications

depending on directly geo-referenced images and flexible flight paths, even though it

does not achieve the accuracies of the classical bundle adjustment.

3.3 Problem definition

The objective of this chapter is the estimation of the rigid body transformation be-

tween a camera and an INS. The knowledge of this transformation allow a direct geo-

referencing of the images captured with the camera with pose measurements from the

INS. Precondition for this are a rigid mounting and a hardware synchronization by a

cable connecting the trigger jacks of the two devices. If these conditions are fulfilled,

the rigid body transformation (Figure 3.2) can be estimated.
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Figure 3.2: The rigid mounting of a camera and an INS induces static offsets between the
underlying coordinate systems denoted by C and I. More precisely position offsets xCI, yCI

and zCI as well as angle misalignments, here visualized in form of Euler angles yaw = ψCI,
pitch = θCI and roll = ϕCI, arise. These have to be determined in a system calibration.

The INS measures the rotation as Euler angles, namely yaw, pitch and roll, with

regard to local navigation systems. The latter are ENU coordinate systems, each

with the origin in the current device position described through a GPS measurement

in form of latitude, longitude and altitude. This implies tiny differences between the

orientations of these coordinate systems and thus also in the measured rotation for

successive timestamps. The INS-camera calibration with the presented approach will

be performed in an area of only a few hundred square meters, which allows neglecting

these differences. A fundamental description of these coordinate systems is given in

Chapter 2.1.

The world reference frame W is defined as ENU coordinate system with the origin

being approximately in the middle of the calibration area. The rigid body motion

BCiW
describes the camera pose at the middle exposure time ti, i = 1, 2, ..., n with

regard to the world frame W. Likewise specifies BIiW
the corresponding configuration

of the INS as rigid body motion.

In order to describe the rigid body motion BCiW
of the camera using the measured

rigid body motion BIiW
of the INS (Figure 3.3), the devices have to be rigidly mounted.

This induces that the offsets between them are static and especially comprises that

the rigid body motions describing the movements from the INS to the camera at

various exposure times are equal:

∀k, l ∈ {1, 2, ..., n} : BCkIk

!
= BClIl

, (3.1)

with {1, 2, ..., n} being the middle exposure times of the images. Therefore, the nota-

tion can be simplified by omitting the indices for the rigid body motion BCI describing
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BIiW

BCiW

BCI ?

world frame (W)

INS (Ii) camera (Ci)

Figure 3.3: Both, the poses of the INS frame Ii and of the camera frame Ci at time i can
be described by rigid body motions with regard to the world frame W. The estimation of
the static rigid body motion BCI between the devices (dotted arrow), enables by composition
with the INS measurements BIiW

the description of the camera poses BCiW
.

the mounting offsets. The composition with the measured INS movement leads to the

camera motion:

BCiW
= BCI BIiW

. (3.2)

Thus the knowledge of the mounting offsets is required to describe the camera poses

with the INS measurements.

Nearly every outdoor application utilizing a camera mounted on an aerial platform

induces that the camera focus has been set to infinity. Furthermore, wide-angle

lenses are frequently the right choice for a lot of tasks. The minimal distance for a

focused image and the big opening angle lead to an impractical size for the calibration

pattern (Figure 3.4) and make standard camera calibration procedures (Chapter 2.3)

laborious. An easier estimation of these parameters can be achieved by performing

an in-flight calibration, which uses a structure from motion (SFM) approach on the

images acquired during a flight. Another advantage of this is that the intrinsic camera

parameters k are estimated during real conditions, which leads to slightly different

values in comparison to a laboratory calibration due to climate and environmental

conditions [Jac01].

The calibration of the mounting offsets BCI in conjunction with the intrinsic camera

parameters k out of synchronized data from an INS and a camera is the problem

considered in this section.
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3.4 In-flight calibration

Figure 3.4: The classical checkerboard calibration for a camera equipped with wide-angle
lens and focus at infinity requires bulky calibration patterns.

3.4 In-flight calibration

The calibration performed in this section requires a precise INS, which is capable

of generating accurate pose information on its own. Devices based on fiber optic

gyroscopes, which have a stability up to some hundredths of a degree per hour, can

be one choice. In combination with RTK enhanced GPS measurements very accurate

pose information are generated. An absolute accuracy of ±2 cm in the position, 0.025◦

for the yaw angle and 0.01◦ for the attitude angles pitch and roll are achieved with

the system setup [iMA13].

Presently, no freely available bundle adjustment package is able to perform an INS-

camera calibration and the adaptation of the bundle adjustment implementations

is an error prone and time consuming task. In contrast to this, the general graph

optimization (g2o) framework [KSD+11] is directly designed for the least square op-

timization of general error functions and can be used for this purpose. The problem

has to be embedded in a factor graph by representing the parameters to be optimized

as vertices and the observations between them as edges. Further requirements are

the definition of error functions for the observations and good initial values for the

state variables. The numerical solution of the problem can be computed with an

implementation of the Levenberg-Marquardt algorithm.
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3.4.1 Objective function

In the classical bundle adjustment all camera poses are optimized according to cor-

responding pixel observations in the images. Given a number of n images associated

with the camera poses BCiW
and m 3D points pj with corresponding pixel observa-

tions xij , the optimization minimizes the projection error of the 3D points according

to:

E(k,BCiW
,pj) =

n∑
i

m∑
j

(π(k,b(BCiW
,pj))− xij)

2. (3.3)

Thereby, the projection π projects a 3D point according to the intrinsic camera pa-

rameters k and the camera pose to a pixel coordinate (Chapter 2.3). The differ-

ence between the projected and observed pixel observations are summed up to the

residuum of the optimization. A disadvantage of this formulation is the independent

optimization of the camera poses, which may introduce systematical errors to the

set of intrinsic parameters. Therefore, the joint calibration of the intrinsic camera

parameters in conjunction with the mounting offsets BCI, constraining the individual

camera poses, promises more accurate results. The latter can be realized by intro-

ducing a term which measures how well the parameters of the camera poses BCiW

in composition with the mounting offsets BCI satisfy the INS measurements. This is

realized by comparing a synthetic measurement generated out of the actual camera

pose and mounting offsets with the measured INS pose by using the inverse and the

composition of rigid body motions (Chapter 2.2) as follows:

E(BCiW
BCI) =

n∑
i

log((B−1
CI ◦BCiW

)−1 ◦BIiW
)2. (3.4)

The combined minimization of the two energies stated in equation (3.3) and equation

(3.4) forms the optimization problem.

3.4.2 Graph optimization

The non linear least square problem defined in the previous section can be optimized

by using g2o, a graph optimization framework [KSD+11]. The problem has to be

embedded in a factor graph by introducing the variables to optimize as nodes and the

observations between them as edges. In the following the restatement of the objective

function into the graph-based formulation is presented.

The calibration parameters represented as the intrinsic camera parameters k and the

mounting offsets BCI between the INS and the camera are added as nodes to the graph.

Furthermore, each 3D point pj and each camera pose BCiW
are added as a node to

the graph. Thereby, a pixel measurement connects three different nodes, namely: a

camera, a 3D point and the intrinsic calibration parameters. This constraint can be
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Ii
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BCiW
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Figure 3.5: The objective function of the stated problem can be illustrated by a hyper-graph.
The measurements (boxes) are presented as links between the nodes concerning each multiple
sets of variables (circles). For improved overview multiple state variables and measurements
of the same type are visualized in a stacked view unrelated to their number of occurrence.

realized with a hyperedge, which is able to connect an arbitrary number of nodes.

The edge of an INS measurement connects the corresponding rigid body motion of

the camera with the mounting offsets. A visualization of the graph is given in Figure

3.5.

Further, error functions, which measure how well the measurements are described by

the state variables they are connecting, are defined. The first constraint measures the

error occurring by the reprojection of a 3D point into the image, in the same form as

in equation (3.3). The error function for this constraint can be expressed as:

eij(k,BCiW
,pj) = π(k,b(BCiW

,pj))− xij . (3.5)

The resulting error vector has dimension two and is 0 if the pixel observation is

perfectly described by the state variables. The second error function states how well

the INS measurements can be described by the composition of the camera poses BCiW

and the mounting offsets BCI as in equation (3.4):

ei(BCI,BCiW
) = log((B−1

CI ◦BCiW
)−1 ◦BIiW

) . (3.6)

Using the twist representation for the rigid body motions, results in a 6-dimensional

error vector, which is 0 if the parameters perfectly satisfy the measurement.

Without limiting the generality, the whole state vector [k,BCiW
,pj ,BCI] is referred

to as y and the objective function is reformulated as follows:

E(y) =

n∑
i

m∑
j

eij(y)>Σ−1
ij eij(y) +

n∑
i

ei(y)>Σ−1
i ei(y) , (3.7)

where the information matrices are represented by the inverse covariance matrices

Σ−1
ij and Σ−1

i of the pixel observations and INS measurements. Within g2o, the

Levenberg-Marquardt (LM) algorithm is used to determine the minimum of equation
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(3.7) and therefore a good initial guess y̆ of the state vector is needed. Iteratively,

the first order Taylor expansion around the current guess y̆ is used to approximate

equation (3.7) and optimize the local increments ∆y by solving the resulting sparse

linear system. The center for the next iteration is obtained by adding the optimized

increments to the current guess. This is done by using the motion composition for the

state variables represented by rigid body motions and a simple addition for the 3D

points and intrinsic camera parameters. A detailed description of the LM algorithm

is stated by Lourakis et al. [LA09].

3.4.3 Workflow

The initial camera poses are generated by combining the measured INS poses with

faulty mounting offsets determined out of construction drawings. First, feature points

are extracted from the images and a matching of the feature descriptions between all

image pairs is performed. A prominent approach is the use of scale invariant fea-

ture transformation (SIFT) to detect and describe feature points, which are invariant

to changes in scale, lightning condition and in some extent even rotation [Low04].

The well known random sample consensus (RANSAC) [FB81] is used to estimate

the relative transformation between the images from the matched feature points and

eliminate false matches which are not supported by the determined geometry. After-

wards, multiple feature matches observing the same 3D points are combined and a

forward intersection, resulting in coordinates of the observed 3D points, is realized.

This process is known as Structure from Motion (SfM) and delivers the initial sparse

3D structure of the observed area [HZ04]. Nevertheless, all estimated parameters con-

tain errors, which are minimized by the optimization of a non-linear function, which

is phrased as a graph. The entire workflow is depicted in Figure 3.6.

3.4.4 Numerical studies

In this section, results from numerical studies are presented to validate the proposed

approach. The main purpose of this is to analyze the influence of various flight

configuration and settings on the calibration parameters by comparing the estimations

with the known ground truth.

In the simulations the mounting parameters BCI consisting of the lever-arm compo-

nents xCI, yCI and zCI as well as the angle misalignments in form of the Euler angles

yaw = ψCI, pitch = θCI and roll = ϕCI (Figure 3.2) are set according to the ground

truth defined in Table 3.1. The initialization with θCI = 180◦ is a result of the defini-

tion of the INS frame as ENU coordinate system, while the downward directed camera

is modeled with the z-coordinate pointing in its viewing direction. The intrinsic cam-

era parameters in Table 3.1 describe the modeled camera with an image size of 3296

by 2472 pixels using a wide-angle lens, analog to the camera used in the real-world
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experiments in the next section. The simulated flight courses consist of INS poses

sampled along straight lines according to the camera exposure times, determined by

the velocity of the UAS and the frames per second of the camera. For a more realistic

flight path, the ideal poses were modified by a small random factor and the resulting

poses are considered as ground truth. One GCP was defined in the middle of the

observed area. A fixed number of additional 3D points were sampled in the environ-

ment. The corresponding pixel observations were determined by projecting the 3D

points into the images according to equation (2.15) using both, the generated camera

poses and the ground truth of the intrinsic camera parameters defined in Table 3.1.

A more realistic number of observations was produced by defining a probability of

detection of 50 % instead of using all projections of the 3D points which are in the

field of view of a camera. Concerning noise, the image observations are simulated

with an accuracy of 0.5 pixels. Further, white Gaussian noise is added to the INS

poses using a standard deviation of 0.02 m for the positional components and 0.01◦

for the rotational part represented as Euler angles.

camera INS

images INS poses

SFM
initial camera

poses
initial system

calibration

initial 3D points

and observations

graph optimization

refined camera

poses
refined 3D points

refined system

calibration

Figure 3.6: Overview of the algorithm. Data from the INS and the camera are processed
to determine the system calibration. The latter enables very accurate image georeferencing
by concatenation with the measured INS poses for subsequent flights.
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Table 3.1: This table states the initialization and ground truth values used in the experi-
ments. For an easier interpretation the difference between the values is also stated.

xCI [m] yCI [m] zCI [m] ψCI [◦] θCI [◦] ϕCI [◦]

initialization 0.130 0.100 0.100 0.000 180.000 0.000

ground truth 0.132 0.096 0.104 2.344 183.291 −1.937

difference 0.002 −0.004 0.004 2.344 3.291 −1.937

fx [pel] fy [pel] ox [pel] oy [pel] k1 [pel2] k2 [pel4]

initialization 1650.00 1650.00 1648.00 1236.00 0.00040 0.00800

ground truth 1663.31 1662.84 1651.52 1234.67 0.00076 0.00908

difference 13.31 12.84 3.52 −1.33 0.00036 0.00108

The principle of the flight configuration stated as optimal in [KHB11] was used to

define the first simulated flight course. At an altitude of 20 m two lines with a distance

of 20 m are defined (Figure 3.7a). The INS poses are sampled along these lines twice,

once in each direction. This results in an image side overlap of 50 % for poses on

adjacent lines. The same maneuver was simulated at an altitude of 30 m resulting

in a side overlap of about 66 %. Two different altitudes in combination with a GCP

were used to decouple the high correlation between the lever-arm and the focal length

as well as the principal point. The definition of 20 m strip length in conjunction with

a speed of 36 km/h and 5 images per second leads to a total number of 80 images

with more than 93 % image overlap in flight direction. This course was used in

Simulation 1, 2 and 3 by sampling an increasing number of 3D points in the observed

area. Simulation 1 was performed with 1000 points, Simulation 2 with 3000 and for

Simulation 3 a total number of 6000 points was sampled in the target area.

As expected, the results in Table 3.2 show that increasing the number of observed

3D points, which results in more constraints, leads to smaller errors for the calibra-

tion parameters. Remarkable is that the angle misalignment was nearly the same for

Simulation 2 and 3, which shows that increasing this value further will likely have

little influence on these parameters. Performing flight course (a) at two different alti-

tudes should decouple the lever-arm components from the correlated intrinsic camera

parameters as stated in [KHB11]. But the achieved optimization of the lever-arm

components are worse than their initial values representing standard measurements

out of constructions drawing with an accuracy in the range of a few millimeters. The

error in the lever arm component zCI was for all three simulations about four times

bigger than in the other directions. This was also reflected in the higher estimation

errors of the focal length parameters fx and fy correlated to zCI compared to the
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(a) Simulation 1,2,3,4,7 (b) Simulation 5 (c) Simulation 6

Figure 3.7: The three flight patterns investigated in this study are visualized in a top view.
Each line is sampled in both directions, resulting in an image overlap of approximately 100%.
The lines of course (a) were sampled at two different altitudes and the flights for (b) and (c)
were performed at only one altitude, resulting in a total number of eight flight lines for all
courses.

Table 3.2: This table shows the RMSE of the calibration parameters achieved by performing
100 MC runs for flight course (a) with an increasing number of 3D points.

xCI [m] yCI [m] zCI [m] ψCI [◦] θCI [◦] ϕCI [◦]

Sim. 1 0.00824 0.00728 0.03169 0.01237 0.00030 0.01925

Sim. 2 0.00849 0.00582 0.02167 0.01072 0.00090 0.01719

Sim. 3 0.00800 0.00588 0.01443 0.01052 0.00039 0.01762

fx [pel] fy [pel] ox [pel] oy [pel] k1 [pel2] k2 [pel4]

Sim. 1 2.39323 2.35976 0.18362 0.24893 4.1539e−5 5.1066e−5

Sim. 2 1.57664 1.57361 0.12286 0.16740 2.3002e−5 3.4519e−5

Sim. 3 1.01410 1.01957 0.07928 0.11551 1.7486e−5 2.2469e−5

principal point coordinates oy and oy correlated to xCI and yCI(Table 3.2). The per-

formed flight course was unsuccessful in decoupling the lever-arm from the instrinsic

camera parameters.

Errors in the lever-arm components transfer in their magnitude to the camera poses

and the observed 3D points. As stated before, the lever-arm can be measured out of

construction drawings with a high accuracy. Due to these observations, the lever-arm

components was fixed to the initialization in the following experiments.

In Simulation 4, the same flight and parameter configuration as in Simulation 2 was

used. The optimization leads to better results in all estimated parameters (Table 3.3).

The fixed lever-arm also removes the requirement of two flight altitudes, which were
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Table 3.3: This table shows the RMSE of the calibration parameters achieved by performing
100 MC runs for the optimization with the lever-arm values fixed to their faulty initialization
for various flight maneuvers.

xCI [m] yCI [m] zCI [m] ψCI [◦] θCI [◦] ϕCI [◦]

Sim. 4 0.002 0.004 0.004 0.01110 0.00037 0.00986

Sim. 5 0.002 0.004 0.004 0.01065 0.00123 0.01128

Sim. 6 0.002 0.004 0.004 0.02525 0.00182 0.01028

Sim. 7 0.002 0.004 0.004 0.00357 0.00009 0.00475

fx [pel] fy [pel] ox [pel] oy [pel] k1 [pel2] k2 [pel4]

Sim. 4 1.10761 1.11969 0.08950 0.13140 2.2965e−5 2.5092e−5

Sim. 5 0.78936 0.78776 0.05326 0.07603 2.8315e−5 1.8952e−5

Sim. 6 1.02642 1.02301 0.05658 0.10738 3.7536e−5 2.3544e−5

Sim. 7 0.15332 0.23633 0.10430 0.13719 2.5814e−5 1.0906e−5

established to decouple the lever arm from the intrinsic camera parameters. An inves-

tigation of the influence of the flight course was realized by performing simulations of

the patterns visualized in (Figure 3.7), whereby for each simulation a total number of

3000 points were sampled in the observed area. By performing the quadratic course

in Simulation 5 and the star pattern in Simulation 6 at an altitude of 20 m, the same

number of cameras as in all other simulations were created.

Compared with Simulation 4, the errors in Simulation 5 were slightly smaller for

the intrinsic camera parameters, but higher for the roll angle. The star pattern

performed in Simulation 6 leads to a bigger error in the yaw angle (Table 3.3). Overall

the influence of the investigated flight courses on the accuracies of the estimated

calibration parameters is small.

Another observation results from performing flight course (a) at altitudes of 200 m and

300 m in Simulation 7, which was ten times higher than in Simulation 4. As expected,

the errors in the angle misalignment were smaller due to there bigger influence on

the object points at higher altitudes. Only the estimation of the principal point is

worse compared to the other simulations. Nevertheless, the difference is in the small

subpixel range and most likely occurs on the basis of numerical calculations. It has

nearly no effect on the mapping accuracies (Table 3.3).
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3.4 In-flight calibration

Figure 3.8: The calibration of the static coordinate system offsets between an INS and
a camera enables the direct georeferencing of images collected with aerial platforms. For
the flight experiments the sensors were integrated into a payload pod, which was mounted
beneath one wing of a manned ultra-light airplane.

3.4.5 Real-world experiments

In this section, achieved results from flight experiments are presented. The equipped

INS is based on fiber optic gyroscopes, which have a stability up to some hundredths of

a degree per hour. In combination with real-time kinematic enhanced GPS measure-

ments very accurate pose information are generated. The optical system consist of a

downward looking camera with 3296×2472 pixels and a wide-angle lens with a field of

view with 54◦ in the horizontal and 42◦ in the vertical dimension. The sensors were

integrated into a payload pod, which was mounted beneath the wing of a manned

ultra light airplane used as UAS demonstrator (Figure 3.8). This platform allows

collecting data at a high altitude without the constraints from flight permissions for

small UAS. The latter are, at least in Germany, strictly regulated and moreover differ

locally. The performed flight course has to introduce measurements that constrain all

dimensions of the calibration parameters. For the utilized platform small movements

in all axes occur even for straight and level flights, which aim at a constant heading

and altitude by accomplishing immediate corrections to unintentional movements.

A total of four flights was performed within two days. At an altitude of 300 m and

above, two images per second were captured at a speed of approximately 125 km/h.

Based on the results of the numerical studies, the flights were performed as crossing

straight lines. To achieve a high image overlap, only images within a circle around
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Figure 3.9: Visualization of a flight course performed for the evaluation of the approach.
The altitude was 300 m. Only data from the central area, highlighted in the visualization,
was used for the calibration.

the central point were used (Figure 3.9). This results in a total number of nearly 700

images for the first two flights and 300 images for the other two.

According to the workflow depicted in Figure 3.6, these images were used to calculate

an initial 3D point cloud of the observed area with a SFM approach under considera-

tion of the camera poses [Wu13]. The latter were generated by a concatenation of the

INS measurements with the initial mounting offsets determined through terrestrial

measurements. The output of the SFM (Figure 3.10) was used as input for the graph

optimization. Thereby the pixel observations were introduced as measurements with

an accuracy of 1 pixel. Since no quality log files of the INS were available, the man-

ufacturer information of an accuracy of 2 cm in the position, 0.04◦ for the yaw and

0.01◦ for the pitch and roll angles [iMA13], were considered. The numerical studies

(Chapter 3.4.4) reveal that the optimization of the translational part of the mount-

ing offsets leads to a lower accuracy compared to measurements out of construction

drawings. Due to this observation, the lever-arm was fixed in the optimization to the

offsets from the construction drawings. Kersting et al. stated that the only parameter

which can not be estimated without one GCP is the vertical lever-arm, because of its

correlation to the focal length of the intrinsic camera parameters [KHB11]. By not

optimizing the lever-arm, the proposed system calibration can be performed without

GCP. This saves time and money compared to other approaches and furthermore

allows an easy recalibration before a critical mission.

The resulting parameters differ from the initial checkerboard calibration and show a

high stability for the in-flight calibrations performed with data collected in different

flights (Table 3.4). The differences between the optimized boresight angles ψCI, θCI
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Table 3.4: The optimization results of the boresight angles and the intrinsic camera pa-
rameters remain relatively constant between the different flights and differ from the initial
checkerboard calibration

ψCI [◦] θCI [◦] ϕCI [◦] fx [pel] fy [pel] ox [pel] oy [pel]

init. 0.000 0.000 0.000 3334.68 3343.50 1744.32 1238.06

Flight 1 0.846 0.215 -0.072 3342.89 3334.88 1730.60 1227.90

Flight 2 0.816 0.205 -0.068 3343.40 3335.44 1724.04 1231.19

Flight 3 0.795 0.205 -0.074 3343.73 3335.95 1725.39 1230.74

Flight 4 0.805 0.193 -0.078 3346.28 3338.36 1730.62 1234.04

k1 [pel2] k2 [pel4] k3 [pel6] p1 [pel] p2 [pel]

init. -0.0966519 0.1411390 -0.1055540 0.0000566 0.0019290

Flight 1 -0.0858842 0.0808048 -0.0183501 -0.0001805 0.0002204

Flight 2 -0.0857764 0.0798504 -0.0165184 -0.0001643 0.0002394

Flight 3 -0.0862101 0.0856143 -0.0271507 -0.0001811 0.0002657

Flight 4 -0.0890717 0.0972273 -0.0433398 -0.0002691 0.0002757

and ϕCI are very close to the stated accuracy of the INS. Small variations for the in-

trinsic camera parameters occur most likely due to different climate conditions during

flight execution.

To evaluate the accuracy of the achieved results a least-square forward intersection for

the pixel observations of five GCP was realized. The image coordinates of these points

were measured manually (Figure 3.11) and used to perform the forward intersection

once with the initial and once with the optimized camera poses. This leads to 3D

coordinates, which were compared to values measured with a mobile GPS-receiver.

The latter stated a horizontal accuracy of about 30 cm and a vertical accuracy of

about 50 cm. The results from the forward intersection are in the same range, which

shows the performance of the approach (Table 3.5). The large initial error of Flight

4 occurred most likely due to the range from 300 to 800 meters for the altitude,

which was smaller for the other flights. Nevertheless, the results using the optimized

calibration parameters for Flight 4 were in the same range as for the other flights. The

generation of the camera poses out of calibration results from Flight 1 for all flights

led to a slightly decreasing performance (Table 3.5). Given an altitude of 300 meters

and above, the accuracies are high and clearly outperform the terrestrial calibration.
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Figure 3.10: Result of the structure from motion preprocessing. Visualization of the camera
poses by their coordinate system axes and the observed 3D points (green) introduced as
vertices in the graph optimization.

Figure 3.11: Five ground control points were used to verify the accuracy of the approach.
These were placed at dominant image corners to allow easy manual measurement of their
pixel coordinates (orange circles).
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Table 3.5: These tables state the mean Euclidean distance between five ground control
points and the forward intersection of their pixel observations. The latter was performed
with camera poses generated out of INS measurements and the system calibration. The
difference using the initial and the optimized calibration (left) as well as the calibration from
Flight 1 for all flights (right) are shown

init. opt. gain

[m] [m] [factor]

Flight 1 3.17 0.53 5.98

Flight 2 2.94 0.47 6.26

Flight 3 2.02 0.37 5.46

Flight 4 4.45 0.44 10.11

opt. opt. Flight 1 gain

[m] [m] [factor]

Flight 1 0.53 0.53 1.00

Flight 2 0.47 0.55 0.85

Flight 3 0.37 0.66 0.56

Flight 4 0.44 0.58 0.76

3.5 Position free calibration

The system calibration for a camera and an accurate INS based on fiber optic gy-

roscopes can be performed with an adapted bundle adjustment as described in the

previous section. But inertial sensors based on MEMS technology have become a

serious alternative. These devices are small and lightweight at a favorable price. In

the last years, the overall performance of these devices was improved by modeling the

stochastic error more precisely [NKEES09]. Nevertheless, the error characteristics are

worse compared to classical INS and the system calibration should consider that.

In this section, an innovative calibration procedure to determine the angle misalign-

ments, also known as boresight, between the coordinate systems of an INS and a

camera is presented. All currently known approaches integrate positional information

from the INS in the optimization process. Thereby, the position errors in the range

of a few meters of INS devices without RTK negatively influence the accuracy of the

boresight estimation in state-of-the-art calibration methods. By using lines, more

precisely directions, instead of classical point features within the calibration process,

the optimization is performed without positional information and avoids being af-

fected by the corresponding noisy data. For the first time, a reliable calibration for

systems with poor positional estimations is possible. The presented approach can

be applied to images observing a checkerboard, which allows the calibration of the

intrinsic camera parameters and boresight misalignment angles from the same data

set. The high performance of the presented procedure is confirmed by evaluating

simulated and real-world experiments. Achieved results show the capability to reduce

the boresight errors to small sub-degree values.

With the presented approach, the system calibration between an INS and a camera

will become as easy as the calibration of the intrinsic camera parameters with the
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X

Y

Z

video (V)

Figure 3.12: Left: The presented approach performs the system calibration with images
observing a checkerboard. Therefore, the same data set can be used to calibrate the intrinsic
camera parameters and the offsets between the camera and the INS. The approach is evaluated
in simulations and real-world experiments, utilizing a small multicopter equipped with both
sensors. The picture shows a screenshot of the simulation framework. Right: The video
coordinate system is a world frame positioned with its origin at the upper left 3D point of
the calibration pattern and all corners within the positive xy-plane.

method from Zhang [Zha00]. It will be possible to perform the calibration of all

required system parameters from the same data set consisting of images observing a

planar calibration pattern and synchronized INS measurements (Figure 3.12).

3.5.1 System setup

The presented method does not impose any special requirements to the INS. Espe-

cially the high positional accuracies provided by the use of RTK corrections are not

necessary. The INS has to be rigidly mounted to the camera. For the latter there

are no special requirements. There is no need for a metric camera. Even rolling

shutter or zoom cameras may be used as long as there are methods to calibrate them

geometrically. The only known exception for this are some consumer cameras with a

moving sensor area.

In contrast to the in-flight calibration described in the previous section, the system

calibration presented in the following is performed with images observing a planar

checkerboard pattern from various viewpoints.
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Figure 3.13: Overview of the algorithm. Data from the INS and the camera are processed
to determine the angle misalignment between the devices, also known as boresight.

3.5.2 Workflow

The proposed boresight calibration requires time synchronized images and INS poses,

whereby from the latter only the rotational part is processed. As a first step, a

standard camera calibration is performed by processing images observing a planar

checkerboard [Zha00]. Besides the camera matrix and distortion parameters, charac-

terizing the mapping of the camera (Chapter 2.3), the extrinsic camera parameters,

describing the rigid body motion of the camera in the video coordinate system V

(Figure 3.12), are obtained. The rotational part of these poses are used to trans-

form directions within the checkerboard plane from the video coordinate system in

the individual cameras. Further, an estimate of the checkerboard plane normal is

generated by the concatenation of the measured INS poses and the initial boresight

rotation, derived from construction drawings. The initializations of the normal and

the boresight will be refined in the least square optimization of the objective function,

which is introduced in the following. The entire workflow is depicted in Figure 3.13.
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3.5.3 Objective function

The optimization uses the fact that all directions dV
i ∈ R3 within the checkerboard

plane are orthogonal to the normal of the checkerboard nV ∈ R3 and consequently

the scalar products between them are zero:

dV
i · nV = 0 . (3.8)

Without loss of generality, the corresponding camera time index is used to label a

direction, even if there are multiple directions visible in one image which are indistin-

guishable with this notation. Based on the definition of the video coordinate system

(Figure 3.12), the normal nV will always be (0, 0, 1)>. Moreover, the directions from

the video coordinate system V are rotated into the coordinate systems of the cameras

Ci, and vice versa with the rotational part of the extrinsic camera parameters:

dC
i = RCiV

dV
i , (3.9)

dV
i = R−1

CiV
dC
i . (3.10)

This allows on the one hand to describe the directions in the camera coordinate

systems by applying equation (3.9) and on the other hand to reformulate equation

(3.8) as:

(R−1
CiV

dC
i ) · nV = 0 . (3.11)

In general the static transformation between the video coordinate system V and the

global world frame W, used as reference for the INS measurements, is unknown and

difficult to determine precisely. Luckily, this relation is not required for the opti-

mization. The presented approach is based on the fact, that all directions in the

checkerboard plane are planar and thus perpendicular to their normal. This rela-

tionship has to be fulfilled for all global coordinate systems. Therefore, the video

coordinate system V can be exchanged with the global INS reference frame W in

equation (3.11) to maintain:

(R−1
CiW

dC
i ) · nW = 0 . (3.12)

Based on the pose composition for the rigid body motions equation (2.11), the camera

rotation can be described as a combination of the corresponding INS measurement

RIiW
and the static boresight misalignment RCI by:

((RCIRIiW
)−1dC

i ) · nW !
= 0 . (3.13)

The INS measurements introduce small errors. Nevertheless, the resulting values in

equation (3.13) should be zero for all directions and thus will be the residuals in the

optimization process. In contrast to nV, the normal vector nW is unknown and has

to be determined within the optimization process. An initial approximation n̆W can
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X

Y

Z

α

β

n =

(

cos(α) cos(β)

sin(α) cos(β)

sin(β)

)

Figure 3.14: Used configuration to parameterize a normal n with only two angles instead of
three coordinates. This minimal representation allows formulating an unconstrained objective
function for the optimization.

be determined by calculating the cross product of two randomly chosen directions in

the checkerboard plane by:

n̆W = d̆W
i × d̆W

j = ((R̆CIRIiW
)−1dC

i )× ((R̆CIRIjW
)−1dC

j ) . (3.14)

Thereby, the local directions are rotated in the world coordinate system under appli-

cation of the non-optimized boresight R̆CI.

The normal vector is described as depicted in Figure 3.14 with two angles (α, β). By

parameterizing the boresight rotation RCI with Euler angles (ψ, θ, ϕ) according to

equation (2.3) the state vector is composed as:

y = [ψ, θ, ϕ, α, β] . (3.15)

Finally, the objective function summing up the squared residuals from multiple di-

rections can be formulated as:

E(y) =

n∑
i

(
((RCIRIiW

)−1dC
i ) · nW

)2
, (3.16)

with n representing the total number of direction observations. Thereby multiple

observations corresponding to the same image share the same INS orientation, but

are otherwise treated independently in the optimization. The minimum of equation

(3.16) is computed with a non-linear least square algorithm and therefore a good
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initial guess y̆ of the state vector is needed. The starting values for the boresight

angles can be extracted from construction drawings with sufficient accuracies in the

range of a few degrees. They are also required to initialized the normal according to

equation (3.14).

Iteratively, the first order Taylor expansion around the current guess y̆ is used to

approximate equation (3.16) and optimize the local increments ∆y by solving the

resulting sparse linear system. The center for the next iteration is obtained by adding

the optimized increments to the current guess.

3.5.4 Simulations

The usage of the robot simulation Gazebo [KH04] allows the validation of the pro-

posed approach by comparing the optimization results to the known ground truth

in a realistic scenario and gather valuable information for real-world experiments. A

quadcopter UAS was utilized as sensor platform within Gazebo [MSK+12] and steered

to observe a checkerboard while collecting synchronized camera images and INS poses

(Figure 3.12). The camera simulation provided by Gazebo was used to generate im-

ages from a downward facing camera with a resolution of 640× 480 pixels at a frame

rate of 5 Hz. The chosen opening angle of 100◦ corresponds to a wide-angle lens.

While performing the camera calibration, an image was only added to the data set if it

was sufficiently different from any previous sample. This was realized by comparing

the mean of the corner coordinates as well as size and skew of the checkerboard

between the current and all already added images. By defining different similarity

thresholds, subsets with a varying number of samples were generated from the same

video sequence. In the first experiment three different similarity thresholds were

chosen which resulted in an ascending number of samples out of the same data set

of synchronized INS poses and images. The preprocessing step of calibrating the

intrinsic and extrinsic camera parameters led for all three data sets to extraordinary

small root-mean-square (RMS) reprojection errors for the 3D checkerboard points of

0.066, 0.064 and 0.062 pixels for an increasing number of images. These values state

the achieved subpixel accuracy and also show that using more images only results in

very small improvements regarding the camera calibration. However, a high number of

images negatively influences the time needed for the preprocessing step of calibrating

the camera parameters. The processing time increased very largely from below one

minute for the first data set containing 45 images (Simulation 1) to above half an hour

for the largest set, processing a total number of 263 images (Simulation 3). This is a

consequence of the O(n3) complexity of the matrix inversion, which is used within the

LM algorithm to minimize the equation system build from checkerboard observations.

Nevertheless, using more images and their corresponding INS poses should improve
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Table 3.6: Setup for the simulations.

symbol unit initialization ground truth difference

yaw ψ [◦] -88.0 -90.0 -2.0

pitch θ [◦] 3.0 0.0 -3.0

roll ϕ [◦] 178.0 180.0 2.0

the robustness of the boresight calibration, by reducing the influence of INS errors

and outliers.

In the first three experiments with an increasing number of images and corresponding

INS poses, the INS rotations were modeled by adding white Gaussian noise with a

standard deviation of σψ = 0.2◦, σθ = 0.1◦ and σϕ = 0.1◦ to the error free rotation

information provided by the simulation. Thereby the error in the yaw angle, describing

the rotation around the z-axis, was modeled twice as big as the other angles to match

the standard error behavior of an INS. The chosen values represent the accuracies of

the device used in the real-world experiments, given hereafter, made of MEMS sensors

without any DGPS correction signals or post processing [SBG15]. The boresight

angles were initialized with errors in the range of some degrees (Table 3.6), which

represents accuracies easily achievable even without access to construction drawings

of the sensor setup.

A total number of 1000 Monte Carlo (MC) runs were performed. As expected, the

results show that the accuracies of the optimized boresight angles improve with a

higher number of input samples (Table 3.7). Even by using only a total of 45 images

and corresponding INS rotations in Simulation 1, accuracies which are smaller for

all three angles than the simulated standard deviation of the INS were achieved. On

closer inspection, however, the root-mean-square error (RMSE) of Simulation 1 shows

inconsistencies. The RMSE of the yaw angle should be higher than the results for

pitch and roll on the basis of the higher standard deviation. An increasing number

of images in Simulation 2 and Simulation 3 shows exactly this relation, but the small

number of images in Simulation 1 seems to have a negative influence on the achieved

results.

Processing the same images in MC runs with a 20 times higher standard deviation

for all INS angles led to the expected RMSE values, which were also around 20 times

larger (Table 3.8). This states, that also for INS devices with a poor performance

the approach is applicable and reduces the boresight errors from some degrees to

sub-degree values.
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Table 3.7: Results from 1000 MC runs with small INS errors of σψ = 0.2◦, σθ = 0.1◦ and
σϕ = 0.1◦.

RMSE

Sim. 1 Sim. 2 Sim. 3

# img. 45 102 263

ψ [◦] 0.077 0.081 0.043

θ [◦] 0.094 0.056 0.032

ϕ [◦] 0.069 0.050 0.029

STD

Sim. 1 Sim. 2 Sim. 3

# img. 45 102 263

ψ [◦] 0.068 0.048 0.032

θ [◦] 0.065 0.045 0.027

ϕ [◦] 0.067 0.046 0.028

Table 3.8: Results from 1000 MC runs with large INS errors of σψ = 4◦, σθ = 2◦ and
σϕ = 2◦.

RMSE

Sim. 4 Sim. 5 Sim. 6

# img. 45 102 263

ψ [◦] 1.380 0.992 0.641

θ [◦] 1.297 0.885 0.546

ϕ [◦] 1.270 0.843 0.541

STD

Sim. 4 Sim. 5 Sim. 6

# img. 45 102 263

ψ [◦] 1.375 0.991 0.641

θ [◦] 1.296 0.884 0.546

ϕ [◦] 1.270 0.843 0.541

3.5.5 Real-world experiments

The target platform is a small hexacopter equipped with a payload containing an

INS based on MEMS and a camera. As INS an Ellipse-D from SBG Systems with

standard deviations of σψ = 0.2◦, σθ = 0.1◦ and σϕ = 0.1◦, stated in the technical

data sheet [SBG15], is utilized. The camera from XIMEA captures images with a

resolution of 2048×1088 pixels and is attached to a wide-angle lens with a focal length

of 4.8 mm. The sensors are rigidly coupled and connected with a synchronization

cable for hardware trigger signals. The data collection for the system calibration

was performed without the hexacopter, by powering the dismounted payload. This

allowed an easier data collection of INS synchronized images showing the checkerboard

in different perspectives.

The system calibration was performed for seven data sets collected with this setup.

The real-world performance was evaluated by checking the consistency of the achieved

results. In [BRS+16] it is stated that increasing the samples in the data sets helps to

resolve the correlations between parameters of the boresight angles and the checker-

board normal. Based on the results in the simulations, a similarity threshold of 0.15,

which extracts up to 300 images from the data sets, was chosen. This value is a trade-
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Table 3.9: Camera calibration results from real-world experiments. The similarity thresholds
for the checkerboard corners, results in a different number of images in the seven runs. Stated
are the resulting camera parameter and the RMS reprojection error of the checkerboard
corners.

Real. 1 Real. 2 Real. 3 Real. 4 Real. 5 Real. 6 Real. 7

# img. 227 287 252 255 224 156 123

fx [pel] 899.00 899.71 904.67 899.67 904.68 900.45 900.94

fy [pel] 898.14 898.46 903.66 898.89 903.94 899.27 899.96

ox [pel] 1007.85 1008.81 1005.81 1008.87 1004.20 1007.55 1002.55

oy [pel] 561.99 559.96 557.47 560.75 558.31 556.72 557.41

RMS [pel] 0.44 1.07 0.39 0.39 0.46 0.74 0.58

Table 3.10: Position free boresight calibration results from real-world experiments. Stated
are the resulting boresight angles.

Real. 1 Real. 2 Real. 3 Real. 4 Real. 5 Real. 6 Real. 7

# img. 227 287 252 255 224 156 123

ψ [◦] 89.326 89.134 88.970 89.359 89.196 89.321 89.054

θ [◦] 0.536 0.346 0.524 0.741 0.548 0.767 0.248

ϕ [◦] 23.084 23.073 22.686 23.016 23.228 23.143 22.813

off, between the calculation time required for the standard camera calibration and the

increase in accuracies by using a bigger sample size for the boresight calibration.

The camera calibration worked properly on all data sets. The results show a high

consistency for the intrinsic camera parameters throughout the seven runs. A high

accuracy for the individual runs is proved by the small RMS reprojection errors, which

for six out of seven runs shows a subpixel accuracy (Table 3.9).

For the boresight calibration the initial angular offsets between the sensors were ex-

tracted out of the construction drawing (Figure 3.15). Here again, the achieved results

show a high consistency throughout the seven runs (Table 3.10). The initial values

as well as the mean values and standard deviations of the boresight angles are given

in Table 3.11. The results state on the one hand the already high accuracy achieved

out of the construction drawings and on the other hand that these values could still

be improved by performing the system calibration with the proposed approach.
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Figure 3.15: Construction drawing of the UAS payload with an INS (red) and a camera
(small black cube). Furthermore, there is a laser scanner, which is not used in the presented
approach, in the center of the payload.

Table 3.11: Evaluation of position free boresight calibration results from real-world experi-
ments. Stated are the initial and the mean values, along with the standard deviations, of the
optimizations from the seven data sets as well as the difference between them.

initialization mean value standard deviation difference

ψ [◦] 90.00 89.19 0.14 -0.81

θ [◦] 0.00 0.53 0.17 0.53

ϕ [◦] 22.62 23.01 0.18 0.39

3.6 Summary

In this chapter, two approaches for the system calibration of a sensor suite consisting

of a camera and an INS were presented.

The first INS-camera calibration was developed for high precision INS devices, which

create reliable pose estimations with precision in the range of a few centimeters for the

positional and small sub-degree value for the rotational components. The integration

of the calibration parameters in the bundle adjustment equation and a reformulation

in a graph structure was presented. Latter was used to estimate both, the mounting
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offsets between the devices and the intrinsic camera parameters. The high correlation

between the lever-arm of the mounting offsets and the intrinsic camera parameters can

in theory be decoupled by performing the flight maneuvers at two different altitudes.

However, the achieved results showed an accuracy of the lever-arm optimization worse

than usual measurements out of construction drawings or terrestrial measurements.

The simulations confirmed that the best results are achieved if only the intrinsic

camera parameters and the misalignment angles between the devices are optimized in

the system calibration. Moreover, this eliminated the constraint of using two different

altitudes. In conjunction with the small influence of the flight patterns a recalibration

during each operation seems possible.

The second approach was designed for the calibration of low-cost devices, which typ-

ically suffer from low position accuracies. It was shown how to estimate the angular

offsets of the boresight misalignment by using only the rotational part of the INS

measurements. The proposed procedure allows the calibration of the intrinsic camera

parameters and the boresight misalignment by processing the same data set observing

a planar checkerboard pattern. In contrast to the in-flight calibration, this was per-

formed before the flights. Nevertheless, an in-flight calibration observing the pattern

in the starting area after the take-off seems also feasible.

Knowledge of the offsets between the coordinate systems of the sensor allows the

fusion of measurements in a unified framework.
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CHAPTER IV

Georeferenced maps by INS-based SLAM

”A map does not just chart, it un-
locks and formulates meaning; it forms
bridges between here and there, between
disparate ideas that we did not know
were previously connected.”

— Reif Larsen

Knowing the current location and orientation in space is essential for a high amount

of different tasks in the robotic area. To solve this problem, approaches using various

sensors appeared in recent years. For outdoor application the usage of GPS assisted

INSs has established as the de facto standard [SCCG93]. Apart from that, processing

images captured by cameras for navigation purposes has proved to generate robust

results. On the basis on the increased computing power, the algorithm are in these

days real-time capable and reveal an alternative to the classical navigation with INS.

But instead of making the decision of which sensor to use in a specific scenario, if

applicable according to cost, size and weight constraints, it is superior to use both at

the same time. In this chapter, the data fusion of a camera and an INS in a framework

producing self-localization and georeferenced maps at the same time is shown.

Own publication on this subject: The work presented in this chapter has been

partly published in [BRS+16] c© 2016 IEEE.

4.1 Introduction

The most used sensor combination for the outdoor navigation of UASs consists of a

GPS antenna and an IMU. Their measurements are combined and filtered in a so

called INS which results in pose information describing the position and orientation

of the device at a high frequency. Nowadays, even small INS devices utilize RTK
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4 Georeferenced maps by INS-based SLAM

corrections and therefore have a positional accuracy in the range of some centimeters

(Chapter 2.4).

An alternative to the navigation with INS is the usage of camera data (Chapter

2.3). This can be realized by a real-time and robust SLAM system. Camera-based

navigation systems have the advantage of low cost and weight, but suffer from the

processing power needed for the calculation of pose information out of a huge amount

of pixel measurements. Engel et al. presented an approach called LSD-SLAM, which

runs in real-time on a central processing unit (CPU) [ESC14]. In contrast to previous

mono camera-based SLAM systems based on feature points, it uses all image regions

with gradients for pixelwise stereo comparisons over multiple frames. This leads to

a very robust tracking and detailed maps. However, utilizing only cameras causes a

drift in the estimated poses while moving the camera in new, previously not visited,

regions. The reason for this is the workflow of all SLAM algorithms, which create

pose information out of chained relative transformations to previous estimations. This

results in summing up small errors over time, similar to the integration drift for

processing the inertial sensors of an IMU.

Consequently, the INS leads to very accurate pose estimations, but provides no in-

formation about the environment. The LSD-SLAM generates very detailed maps of

the observed area, but the calculated poses have a hight tendency to drift in large

scenarios. Furthermore, the created maps have no reference to the metric or any

geodetic system. A combination of these two approaches should be able to create

very detailed, metric scaled and moreover georeferenced maps of the observed area in

real-time (Figure 4.1). The proposed algorithm for the creation of these maps is the

main contribution of the work presented in this chapter.

4.2 Related work

Using a sensor combination of an INS and a camera for the self-localization of UAS

was examined by various authors. The integration of the optical flow as vision com-

ponent into the navigation with an INS is one possibility of this type of sensor fu-

sion [WGL+08,KFN09].

Besides the optical flow, various approaches use landmarks to estimate the movement

of the camera. For example, [KSS08] combined inertial measurements of an IMU

with point landmarks tracked by stereo visual odometry in an extended Kalman filter

framework. This enables the navigation of large distances without GPS. Likewise,

most approaches utilizing a SLAM algorithm work with a small set of keypoints se-

lected by a feature detector. These points are tracked over time and the corresponding

3D points are optimized in a bundle adjustment. A famous example is the parallel

tracking and mapping (PTAM) framework [KM07]. The original purpose was the
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Figure 4.1: The proposed approach creates 3D pointclouds by performing pixelwise multi-
stereo comparisons in images captured with a monocular camera. To achieve a metric scale
and to minimize the drift measurements from an INS are utilized. The flight path of the
UAS is depicted by the blue camera poses and the image constraints between them. The
current camera pose with its coordinate system axes is depicted in red in the lower right of
the visualization.

realization of a small augmented reality workspace, but the algorithm was already

shortly after the publication applied in the area of robotics. There are various ap-

proaches using PTAM for the navigation of aerial platforms. Using its pose estimation

for a controller-based stabilization of an autonomous UAS allows the navigation with-

out additional sensors in small indoor environments [BWSS10]. A more accurate and

robust approach was presented by Weiss et al. [WAL+12]. They realized a navigation

algorithm combining a camera and an IMU. The focus, besides the integration of

PTAM into the navigation framework of the UAS, were various adaptations to work

on an on-board processor with limited processing power. One of the main drawbacks

of PTAM and its application in the UAS navigation is the scalability for large areas.

While the number of keyframes grows, the mapping threads can only perform updates

for a subset of keyframes and observed 3D points. The tracking part scales better

but is also influenced by the high number of 3D points. To overcome this issue, the
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4 Georeferenced maps by INS-based SLAM

multiple map adaption of PTAM from Castle et al. [CKM08] was adapted to realize a

fully autonomous UAS navigation in large areas [JS11]. They used the pose estima-

tion of the monocular SLAM approach on a horizontally viewing camera to correct

the drifting IMU measurements.

As an alternative to these keypoint based approaches, a more robust tracking can be

realized by using all image information instead of only a subset of pixels. It was shown,

that the convex optimization of a photometric dataterm in an energy functional results

in superior tracking performance [NIH+11]. Furthermore, a dense volumetric recon-

struction with an UAS was presented by Wendel et al. [WMG+12]. Both approaches

achieve real-time performance with a graphics processing unit (GPU).

In contrast to this research, where keypoint-based or dense approaches were used, the

semi-dense LSD-SLAM, using all image regions with gradients [ESC14], is investigated

and adapted in this chapter. This promises a robust tracking and more detailed map-

ping compared to the keypoint-based approaches, while being less computationally

intensive than the dense algorithms. To overcome the drift of the LSD-SLAM, INS

measurements are utilized. By integrating filtered INS pose information in the math-

ematical formulation of the LSD-SLAM, the pose estimations and map quality is

improved without the need of additional computational power. Quiet the contrary,

some parts like the identification of loop closure becomes less expensive because of a

smaller search region on the basis of more accurate pose estimations.

4.3 Definitions

The world frame W is defined as an ENU coordinate system (Chapter 2.1) with its

origin being approximately in the middle of the flight area.

According to the general definition of rigid body motions (Chapter 2.2), BCiW
de-

scribes the camera pose at the middle exposure time ti, i = 1, 2, ..., n with regard to

the world frame W. Likewise, BCjCi
specifies the rigid body motion of the camera

pose from time ti to tj which describes the transformation between the corresponding

coordinate frames.

To describe an image, the mapping from the image plane Ω ⊆ R2 to the gray-values

as the function g : Ω → R is defined. Likewise, the inverse depth map d : Ω → R+

and the corresponding depth variance v : Ω→ R+ are specified.

4.4 LSD-SLAM

This section gives a brief overview of the LSD-SLAM algorithm, which is mandatory

to understand the INS-based LSD-SLAM introduced afterwards. A more detailed

description is given by the original publication of Engel et al. [ESC14].
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The LSD-SLAM algorithm computes a real-time estimation of the position and ori-

entation of a moving camera, also known as pose, in an unknown scene. At the same

time, the approach generates a map of the observed environment. The algorithm

is divided in a map building and a tracking part which are executed on multiple

CPU cores to achieve real-time performance. Both parts operate on keyframes, cre-

ated from new frames based on a weighted combination of distance and angle to the

previous keyframes.

4.4.1 Tracking

The tracker estimates the pose transformation BCjCi
from the latest keyframe gi to

a new camera frame gj by the direct minimization of the photometric error. This

is achieved by evaluating the intensity difference of the keyframe pixels x ∈ Ωi and

their mapped positions in the image plane Ωj of the new frame:

r : R2 × SE(3)→ R , (4.1)

r(x,BCjCi
) = (gi(x)− gj(w(x, di(x),BCjCi

)))2 , (4.2)

whereby the warp function w : R2 × R × SE(3) → R2 performs the mapping of a

pixel x from the keyframe gi to the new image gj [ESC14]. This is realized by using

the inverse depth estimate of the keyframe di(x) to generate a 3D point p which is

transformed to the coordinate system of the new camera by b(BCjCi
,p) and then

projected into the image plane gj .

Thus, the overall energy function that is minimized in the tracking process is given

by the sum of all residuals for pixels with an inverse depth:

E(BCjCi
) =

∑
x∈Ωi| di(x)>0

sx · r(x,BCjCi
) , (4.3)

where sx defines a robustness increasing weighting scheme based on the size and

smoothness of the residuum r(x,BCjCi
) as well as the inverse depth variance of the

pixel v(x) as defined in [ESC14]. This least square problem is solved with an itera-

tively reweighed Gauss-Newton approach.

The resulting pose estimation is compared to a threshold defined for a weighted

combination of position and angle differences to the latest keyframe. If it is lower,

the image information of the current frame is used to refine the inverse depth map

of the keyframe it was tracked on, otherwise, it will become a new keyframe. In this

case its inverse depth map gets initialized by the propagation of information from the

previous keyframe.
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4 Georeferenced maps by INS-based SLAM

4.4.2 Mapping

The mapping is executed in a separate thread, independent of the tracking frequency.

After a new keyframe is generated by the tracking process, the previous keyframe

gets finalized and consequently processed by the mapping. The mapping part only

operates on finalized keyframes, which implies that the inverse depth maps of these

frames are not updated anymore. To find image constraints between the new finalized

keyframe and spatial close keyframes, direct image alignments are performed. In ad-

dition to the photometric error defined in equation (4.2), a depth residual, penalizing

incompatible inverse depth values, is evaluated. This is possible because, in contrast

to the tracking, both frames have an inverse depth map at this stage of the algorithm.

As a consequence, the scale between the frames is observable and considered as ad-

ditional parameter in the direct image alignment. Thus, the pose transformations

between keyframes are estimated as elements of Sim(3), which adds the scale as an

additional degree of freedom. By an abuse of notation, this Sim(3) transformations

are represented by the same symbol B as for the rigid body motion defined in the

SE(3) domain.

The global map containing the pose information of all keyframes is continuously

optimized within g2o, the general graph optimization framework [KGS+11]. There-

fore, the problem is embedded in a factor graph by introducing the camera poses

BCiW
∈ Sim(3) as nodes, representing variables to optimize, and the tracked con-

straints BCjCi
∈ Sim(3) between them as edges. An error function for these con-

straints connecting two camera poses can be defined as follows:

eji(BCiW
,BCjW

) = log(B−1
CjW
◦BCjCi

◦BCiW
) , (4.4)

whereby the logarithmic map transforms the rigid body motion to its twist coordi-

nates. This results in an error vector of dimension seven, which is 0 if the image

constraint perfectly describes the transformation between the two camera poses. The

final energy that is minimized can be stated as follows:

E(BC1W, ...,BCnW) =
∑

BCjCi

e>ji Σ
−1
ji eji , (4.5)

whereby Σ−1
ji represents the inverse covariance matrix of the twist coordinates. The

g2o framework uses the Levenberg-Marquardt algorithm to compute a numerical so-

lution of equation (4.5) and therefore needs a good initial guess of the state vector.

4.5 INS-based LSD-SLAM

This section describes the adaptations to the LSD-SLAM framework, which utilize

measurements from an INS to make the camera-based navigation more robust. The
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Figure 4.2: The input image on the left is tracked with respect to the inverse depth map of
the latest keyframe displayed on the right. The metric scaling of the proposed approach leads
to absolute depth information. The applied color coding fades from green (≥30 m) over red
(15 m) to black (≤7.5 m). Image regions without gradients are represented in their original
greyscale intensity.

original LSD-SLAM implementation offers clear benefits over the feature point ap-

proaches in terms of map details and scalability for large regions. Nevertheless, it

suffers from the fundamental disadvantage of a monocular SLAM approach, alias the

unknown scale drift. Small tracking errors sum up over time and lead to a drift in

the calculated camera pose. In comparison to a stereo camera setup, this drift is even

bigger because of the unknown scale of the scene. To detect regions already observed

and perform a loop closure, Engel et al. apply, in addition to the spatial distance be-

tween keyframes, the appearance-based image comparison FAB-MAP [CN08]. This

approach costs additional computing power and is likely to fail in similar-looking

outdoor regions.

The usage of an additional sensor in form of a GPS-based INS leads to independent

pose measurements in outdoor environments. To achieve an easy fusion with an INS,

the coordinate system of the camera should be adapted to the navigational frame of

the INS. Therefore, each camera pose BCiW
is initialized with the composition of the

associated INS pose BIiW
and the mounting offsets between the devices BCI. The

latter can be determined in a system calibration beforehand (Chapter 3). The ini-

tialization of the original LSD-SLAM algorithm is performed by generating a random

depth map with a mean depth of one and a high depth variance for all image regions

with gradients larger than a defined threshold. The alternative approach realized in

this thesis is based on a stereo initialization using pose information from the associ-

ated INS measurements. This allows the generation of an initial depth map in metric

scale, by calculating depth estimates for all pixels with gradients above a threshold

based on the transformation between the two frames (Figure 4.2).
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4.5.1 Modified Tracking

The INS measurements provide an upper bound for the camera-based pose estimation,

and thus are able to minimize the drift of the LSD-SLAM poses. Therefore, the

pose optimization stated in equation (4.3) is performed while constraining the pose

update BCjCi
to be in the standard deviation range of the corresponding INS pose

composition:

BIjIi
= BIjW

◦(BIiW
)−1 , (4.6)

BCjCi
∈ [BIjIi

−4σI,BIjIi
+4σI] . (4.7)

Using 4σI corresponds to the fact that the tracking update compares two independent

INS poses and for both, the error is for more than 95% of the samples in the range

of two times the standard deviation. Thus, the difference between the pose update

and the corresponding INS measurements is limited to be smaller than 2 · 2σI = 4σI.

This constraint is in some rare cases too strict. Nevertheless, the produced results are

more accurate compared to the usage of 6σI as maximum distance for the calculated

update based on empirical data.

4.5.2 Modified Mapping

The change in the tracking part can only limit the drift, but not eliminate it. In

order to achieve this goal, the corresponding INS measurement and the mounting

offsets between the sensors are added in the factor graph as unary edges to each

node representing a camera pose. Consequently, new error function constraining the

camera poses can be defined as follows:

ei(BCiW
) = log((BCI ◦BIiW

)−1 ◦BCiW
) . (4.8)

This results in an error vector, which is 0 if the camera pose estimation is perfectly

described by the corresponding composition of the INS measurement and mounting

offsets. Adding this constraint to the factor graph extends equation (4.5) to the

overall energy:

E(BC1W, ...,BCnW) =
∑

BCjCi

e>ji Σ
−1
ji eji +

∑
BCiW

e>i Σ−1
i ei , (4.9)

whereby Σ−1
ji and Σ−1

i represent the inverse covariance matrices of the twist coordi-

nates. Adding these edges to the graph eliminates the scale drift and makes the scale

estimation performed in the LSD-SLAM algorithm superfluous. This allows using

SE(3) instead of Sim(3) constraints in the factor graph (Figure 4.3).
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BCiW
BCjW

BCjCi

(a) LSD-SLAM
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(b) INS-based

Figure 4.3: The objective function of the mapping stage can be illustrated by a graph. The
measurements (boxes) are connected to the variables (circles). Here, the latter are the camera
poses. In addition to constraints based on image information between the camera poses, two
edges are added to each camera pose representing the corresponding INS measurement and
the mounting offsets between the devices.

4.6 Simulations

In this section, results from simulations are presented to validate the proposed ap-

proach. The main purpose of this is to analyze the effect of the described integration

of INS measurements in the SLAM process by comparing the estimations for the

camera poses and the created map with the known ground truth.

4.6.1 Setup

Using the robot simulation Gazebo [KH04] allows testing the approach in a realistic

scenario and gather valuable information for real-world experiments. The modeling,

control and simulation of a quadcopter UAS within Gazebo were developed by Meyer

et al. [MSK+12]. The generated pose information are on the one hand used as ground

truth in the evaluation and on the other hand the basis for the generation of the noisy

INS data. For the latter, white Gaussian noise is added to the poses using a standard

deviation of σI = (0.02 m, 0.02 m, 0.04 m, 0.1◦, 0.1◦, 0.2◦)>, with the first three values

related to the positional components and the last three describing the rotational part

of the pose as Euler angles. Thereby the altitude as well as the rotation around the

z-axis are chosen twice as big as the other components to model the standard error

behavior of an INS. The used values represent the accuracies of a small INS with

RTK-corrected satellite navigation measurements [SBG15].

Furthermore, the camera simulation provided by Gazebo is used to generate images

from a downward facing camera with 640× 480 pixels at a frame rate of 30 Hz. The
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Figure 4.4: Rendered image of the 3D model ’The City’ from Herminio Nieves. The textured
mesh is used as environment in the simulations. Captured images of this model contain, a
mixture of regions with a lot of gradients (most houses), some gradients (sidewalks) and no
gradients (streets).

chosen camera aperture angle of 100◦ corresponds to a wide-angle lens. The mounting

offset between the camera and the INS is known in the simulation. For real-world

experiments they can be estimated by performing a system calibration of the sensor

setup from data collected in a previous flight (Chapter 3). The 3D model ’The City’

created by Herminio Nieves is used as environment in the evaluation (Figure 4.4). He

published this [Nie15] and other models free for commercial and non commercial use.

4.6.2 Performance measures

The results are evaluated in two different ways. On the one hand the pose estimation

is compared to the ground truth and on the other hand a matching between the

generated point cloud and the 3D mesh, used as environment in the simulation, is

performed.

Thereby, the pose comparison is realized separately for the translational and rotational

part. Comparing two positions using the Euclidean norm is straightforward by using

the scalar product as follows:

Φ : R3 × R3 → R+ , (4.10)

Φ(ti, tj) =
√

[ti − tj ] · [ti − tj ] . (4.11)
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The rotational part of the tracked poses is compared according to the angle difference

between the unit quaternions qi and qj by:

Φr : SO(3)× SO(3)→ [0, π] , (4.12)

Φr(qi,qj) = 2 arccos(|qi · qj |) . (4.13)

Using the absolute value of the scalar product is necessary due to the ambiguity in the

quaternion representation as q and−q describe the same rotation [Huy09]. In contrast

to comparing Euler angles with the Euclidean norm, the used metric reflects the

distance. A smaller value always corresponds to a smaller rotation. Furthermore, the

metric is geometrically meaningful as it represents the angle between two orientations,

which is exactly twice the angle between the corresponding unit quaternions.

The second performance measure is the difference between the generated point clouds

and the 3D mesh used as environment. For each point, the smallest distance to the

mesh is determined. The visualization of the point to mesh distances allows an easy

interpretation and comparison of the achieved results.

4.6.3 Evaluation

MC simulations with 100 trials were performed for the original LSD-SLAM, versions

integrating only the tracking or mapping modification and the presented approach

using both modifications. The latter will in the following be referred to as INS-based.

The first evaluated data set was created from a straight flight path at a constant

altitude. This simple path without any maneuvers or course corrections shows the

main problem of the monocular SLAM approach. Even without large scale changes,

the tracked poses show a clear drift. The usage of the proposed approach using INS

measurements as additional information prevents the pose drift.

The Euclidean difference of the translation error is visualized over time (Figure 4.5).

The results of the LSD-SLAM grow linearly. At the end of the data set, after 60

seconds, the mean error is approximately five meters. Using the proposed tracking

modification limits the error, but cannot eliminate the drift. At the end of the data

set a mean error roughly half as large as using LSD-SLAM without this modification

is stated. The exclusive usage of the mapping modification eliminates the drift, but

leads to a sawtooth wave. This pattern is based on the workflow of the mapping

modification which only operates on keyframes. Between these, the tracking estimates

the current pose relative to the latest keyframe. One unexpected observation is that

the combination of the tracking and mapping modification in the INS-based LSD-

SLAM seems to eliminate the sawtooth wave completely. Furthermore, this leads to

an overall smaller error. The mean values of the MC runs for the proposed approach

are smooth and the corresponding standard deviations are small.
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The metric defined in equation (4.13) is used to analyze the difference between the

rotational part of the pose estimations and the ground truth (Figure 4.6). The mean

value of the total angular error for the original LSD-SLAM grows slowly after the first

few seconds and is at the end of the sequence still below two degree. This states, that

the orientation estimation is more reliable compared to the positional results produced

by the monocular SLAM system. Again, the proposed tracking modification reduces

the error of the LSD-SLAM. The mapping modification shows in the beginning also

the sawtooth pattern, but becomes a lot smoother afterwards. In contrast to the
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Figure 4.5: Mean Euclidean norm of the translation difference to the ground truth data for
a straight flight path from 100 MC runs. The tracking modification limits the position drift
of the algorithm to roughly one half of the LSD-SLAM results. The mapping modification
leads to a sawtooth wave, which is smoothed in the INS-based LSD-SLAM. The latter com-
bines both modifications. For clarification, its mean error in combination with the standard
deviation (colored region) is depicted in the lower plot.
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Figure 4.6: Mean angular error between the estimations and the ground truth data for a
straight flight path from 100 Monte Carlo runs. The results show that the influence of the
tracking modification is rather small. The combination of both modifications in the INS-
based LSD-SLAM results only in the first few seconds in more accurate pose estimations
compared to the modified mapping.

(a) LSD-SLAM (b) INS-based

Figure 4.7: Absolute distance of the generated maps, represented as point clouds, to the
ground truth mesh. The straight flight from bottom to the top of the visualized area leads
to bigger errors in the end region of the LSD-SLAM results, due to the pose drift (left).
Using INS information eliminates the drift, which leads to a much more accurate point cloud
(right). Histograms of the distances are displayed to the right of the color bars.
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position difference, the combination of these modifications does lead to a smaller

error in the first few seconds and is nearly the same afterwards. However, the results

show that also the drift in the rotational part of the pose estimation gets eliminated.

The proposed approach limits the position error to the centimeter range and produces

also very small errors in the rotational component. This allows the creation of maps

in a metric scale with only small deviations from the ground truth model (Figure

4.7). As expected, the LSD-SLAM point cloud shows small differences to the ground

truth directly after the initialization and higher differences in the upper region of the
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Figure 4.8: Mean Euclidean norm of the translation difference to the ground truth data for
a circular flight course from 100 Monte Carlo runs. The mean and the standard deviation
(colored region) of the LSD-SLAM pose estimations are improving in second half of the data
set and the error starts to grow again after the final loop closure at 120 seconds. The same
behavior is, to a lesser extent, also recognizable in the INS-based LSD-SLAM results.
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Figure 4.9: Mean angular error between the estimations and the ground truth data for a
circular flight course from 100 Monte Carlo runs. The loop closure at 120 seconds reduces
the error for the LSD-SLAM estimations, but leads to slightly worse poses for the INS-based
LSD-SLAM. The standard deviations (colored regions around the mean curves) shows the
great improvement of the INS-based approach regarding the robustness.

visualization, corresponding to the end of the flight path. For the INS-based LSD-

SLAM results only some points in the outer region reveal a higher distance to the

mesh. These points were most likely created by only one image correspondence and

not updated by additional observations. It must be noted that the visualized error

of the point cloud seems to be a lot smaller than the positional error of the camera

poses produced by the original LSD-SLAM. This inconsistency is explained by the

evaluation, which compares the distance of each point to its closest point in the mesh

instead of its real correspondence. Especially in the evaluated scenario with mainly

flat roofs, this has a positive effect on the distance between the point cloud and the

3D model.

In the second data set, the quadcopter was controlled with a gamepad in the simu-

lation environment. This results in some rough but realistic movements in form of

swings while performing course corrections. These movements were tracked without

any problems and show the high performance of the LSD-SLAM algorithm. The flight

course of this data set is a circular route at nearly constant altitude (Figure 4.1). This

course allows the algorithm to perform a loop closure and propagate correction to the

preceding pose estimations. However, all plots show the poses at the time they were

tracked and not the final estimates of the factor graph optimization. Thus, the

slowly decreasing error in the translational part of the pose estimations occurring in

the second half of the data set (Figure 4.8) is not the result of the back propagated

information from the final loop closure. A closer inspection of the visualization of

one realization on this data set (Figure 4.1) reveals many edges in the factor graph
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(a) LSD-SLAM

(b) INS-based

Figure 4.10: Absolute distance of the generated maps, represented as point clouds, to the
ground truth mesh. The loop course starting in the lower right leads to large errors in the
upper left region, where the distance to the starting point is largest. Using INS information
eliminates the drift, which leads to a much more accurate point cloud. Histograms of the
distances are displayed to the right of the color bars.
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between the camera poses in the second half of the data set. These constraints have

a strong positive effect on the factor graph optimization and result in decreasing the

error. Also, the final loop closure occurs slowly by adding more and more constraints

between the camera poses to the graph and, as a consequence, the loop closure does

not result in a big jump (Figure 4.8). The mean angular error of the original LSD-

SLAM implementation grows in the first 40 seconds to nearly two degree and shows a

very high variance in the performed MC runs. In contrast to this, applying the INS-

based modifications limit the error to less then half a degree. In the first few seconds

the error starts growing slightly and even decreases slightly afterwards. During the

last seconds, at the time of the loop closure, the high number of graph edges constrain-

ing the relation between camera poses lowers the overall accuracy by some amount.

Also the variance of the angular error is limited to smaller values, which shows the

increased robustness achieved by integrating INS measurements in the LSD-SLAM

(Figure 4.9).

The accurate pose estimations have a direct influence on the generated world map.

Visualizing the differences between the point cloud and the ground truth depicts the

great results produced in real-time by the proposed approach (Figure 4.10).

4.7 Real-world experiments

The payload described in Chapter 3.5.5 was attached to a hexacopter (Figure 4.11).

The collected images are rectified according to the distortion values estimated by

the camera calibration and a pixel binning is performed. The latter downscales the

images by a factor of four to 512× 272 pixels. As a result, real-time performance at

a framerate of 25 Hz on a standard Laptop with an Intel R© CoreTM i7-3632QM CPU

was achieved. A downside of the pixel binning is that a lot of details captured in the

original images are not used.

Figure 4.11: Hexacopter of the type AR-200 from AirRobot R© GmbH & Co. KG equipped
with the multi sensor payload.
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4 Georeferenced maps by INS-based SLAM

Figure 4.12: Real-world result of the LSD-SLAM. The generated map shows the big drift
in the estimated camera position. Loop closure had to be deactivated, because of a high
number of incorrect matches due to repetitive structures.

Figure 4.13: Real-world results of the INS-based LSD-SLAM. Top: Selection of already rec-
tified and downscaled input images. Middle: Top view of the created map with visualization
of the flight path and camera poses. Bottom: Side view of the created map.
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In the evaluated scenario a large amount of the region is covered by grass and only

some man-made objects with straight lines and large gradients are in the scene. This

makes it quite difficult for the LSD-SLAM. The tracking works fine, but the similar-

ities in the scene leads to a high amount of false loop closure in the map building

part. It should be possible to tune the algorithm to perform better in this scenario.

However, with the INS in the sensor setup the drift is eliminated. As a result, loop

closures are not required to eliminate errors summed up in the tracking process. The

parameter controlling the strictness for accepted loop closures was set to prevent there

creation. As a drawback the camera only LSD-SLAM is not able to detect already

observed regions and has no possibilities to eliminate the drift (Figure 4.12). In con-

trast, the visualization of the map from the presented INS-based LSD-SLAM shows

a consistent point cloud (Figure 4.13).

4.8 Summary

In this chapter an approach which fuses measurements from an INS into a semi-dense

monocular SLAM algorithm was presented. It was shown how INS measurements

can be used within the tracking and mapping parts of the LSD-SLAM workflow to

generate metric depth maps and eliminate the drift.

As a consequence, the generated point clouds of the observed areas are also metric and

furthermore, due to the utilized GPS measurements, georeferenced. On the basis of

RTK corrections, the created maps are accurate in the centimeter range. In contrast

to other computational intensive camera-based algorithms, the results of the presented

approach are generated in real-time and thus suitable for the UAS navigation.

The created maps describe the environment with a lot of details and can be used

for various tasks. For example they should allow to perform a change detection or

can be used as reference data for the robust navigation in scenarios without GPS

measurements.
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CHAPTER V

Map-based UAS homing using shortcuts

”Now that I’m here, where am I?”

— Janis Joplin

In the previous chapter was shown how to build georeferenced maps by combining the

measurements of an INS and a camera. Thereby, the accurate localization is mainly

based on the INS measurements, while the camera images allow to build a highly

accurate map of the observed environment. If the GPS fails, the performance of the

self-localization degrades because of drift characteristics of the inertial sensors and

the monocular SLAM approach. This is critical if the INS was used to perform the

flight control of the system. The orientation of the platform can as a substitute be

extracted from the image stream collected by the camera, but due to the increasing

drift it is safer to abort the current mission.

In this chapter, will be shown how to use a georeferenced map and current camera

images to return an UAS to its starting position in the case of an GPS outage. Thereby

shortcuts, which ensure to reenter areas previously explored, are considered.

Own publication on this subject: The work presented in this chapter has been

partly published in [BCK17] c© 2017 IEEE.

5.1 Introduction

Two critical aspect of UAS are the flight control and the navigation in large outdoor

scenarios. For a long time these tasks were almost exclusively based on readings from

inertial sensors corrected by GPS measurements in a so called inertial navigation

system (INS). In contrast to the manned aviation, the navigation systems in most

UAS are not redundant. A long-lasting GPS outage is for nearly all currently available
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H

Figure 5.1: The UAS started at the heliport and flew along the solid path. At its current
position the GPS fails and the platform starts an autonomous homing. The safest approach
would follow the exact path the UAS was using to reach its current location. But this path
can be quite long compared to the direct connection (dotted). However, a positional drift may
occur, resulting in missing the heliport (dotted / dashed). This can probably be determined
and corrected by inspecting the travel distance. A safer and more efficient approach aims to
intersect the previous path close to the goal position (dashed). This is the main concept of
the proposed path planning approach.

UAS a major problem. Without a pilot takeover, most systems initiate an emergency

landing in this situation. The critical aspect is that the maneuver is most likely

initiated at the current UAS position, regardless of the suitability of the area for a

safe landing procedure.

Nearly all UAS are equipped with a camera for the real-time visualization of the

observed area. The proposed approach uses these images in combination with the

INS measurements for an efficient homing strategy. During normal operation the

data from all sensors is fused to create a metric map of the area with a simultaneous

localization and mapping (SLAM) approach [BRS+16]. In the case of a GPS outage,

only the camera and the previously generated map are used to return to the take-off

position. The path planning procedure uses shortcuts through unobserved areas to

minimizes the travel distance. In doing so, it is ensured to reach the goal by taking

into consideration the maximal drift of the pure visual navigation (Figure 5.1).

5.2 Related work

Visual homing of an autonomous system describes the process of the system guiding

itself to a previous location on the basis of visual sensor inputs. It is a problem

worked on since decades and due to the lower processing power the first systems used

non-visual sensors like radio beacons or an INS to return to a particular location. The

vision-based approaches can be divided according to their operating principle in two

categories.

A group of approaches performs a direct association of visual patterns and steering

commands without a world model. Examples are the road following by Pomerleau
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[Pom90] and the navigation along forest trails by Giusti et al. [GGC+16]. Both

approaches were realized with a neural net. A homing based on scene familiarity has

been proposed by Nelson. The procedure looks for the best match of the current view

to a set of previous collected images, saved with associated directions of movement

[Nel91].

Other approaches are based on maps that store the position of objects and locations

in a common reference frame. Errors are incorporated in the map by noisy sensor

measurements and moving objects. The discrepancies between the map and the actual

environment may be a problem for the path planning [MF03]. These uncertainties

have nicely been covered in the work of Valencia et al. [VACP11] by using the Pose

SLAM graph directly as belief roadmap to perform a collision free path planning

along the route with the lowest accumulated robot pose uncertainty. A method using

a graph of poses generated with a bundle adjustment as basis for the path planning

has been proposed in [SMRN10]. All these approaches consider only the already tra-

versed trajectory as feasible and obstacle free, which is a valid and useful assumption,

especially for the ground based navigation.

In contrast, the in the following processed scenario considers an UAS with a down-

ward looking camera at a fixed altitude without obstacles. As a result, the usage

of shortcuts through previously not visited areas is possible. This navigational task

has not been covered before in literature. The proposed algorithm works analog to

the navigational abilities of dogs [TWBM97]. Chapuis validated in experiments that

dogs have a metric representation from previous incomplete explorations. They use

shortcuts between known areas, whereby they perform a safety strategy to make a

correction in the case of bad direction estimate [Cha88]. The main idea of this con-

cept, already transfered to the UAS context, is visualized in Figure 5.1. One major

prerequisite for safe shortcuts by navigating an UAS through previously unexplored

areas is the knowledge of the drift for pose estimation from pure visual odometry. A

comprehensive theoretical analysis has been performed by Liu et al. [LJHW14]. They

state that the drift is a random process that will not increase linearly and in some

situations even may decrease. However, they declare that the end-point drift of visual

odometry algorithms is generally between 1 % and 5 % of the traveled distance.

5.3 Problem description

In this section, the fundamental concept of the proposed UAS homing approach is

explained. During normal operation, the INS-based LSD-SLAM (Chapter 4) is used

to build a map in the form of a metric and georeferenced 3D point cloud of the ob-

served environment and perform a self-localization at the same time. The integration

of measurements from an INS in the LSD-SLAM algorithm eliminates the drift and

generates metric depth map estimations for the processed images. As a consequence,
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Figure 5.2: Visualization of the LSD-SLAM output. The flight path of the UAS is depicted
by the blue keyframes and the image constraints between them. The current camera pose is
depicted in red with its coordinate system axes

the generated point clouds of the observed areas are also metric and furthermore, due

to the utilized GPS measurements, georeferenced. On the basis of RTK corrections,

the created maps are accurate in the centimeter range. In contrast to other computa-

tional intensive camera-based algorithms, the results of the approach are generated in

real-time and thus suitable for the UAS navigation. The approach generates a factor

graph that consists of keyframes and image constraints between them (Figure 5.2).

In the case of an GPS outage, the platform returns to its start position by only using

camera images and the previously generated outputs of the metric SLAM. The most

secure approach would follow the previously traveled path in reverse. However, this

may imply a really large detour, compared with the direct connection to the starting

point. By leaving previously exploited areas, the own position is estimated based

on visual odometry [ESC13]. Thereby, the relative estimates between the collected

images lead to a drift in the self-localization, which in the given scenario can only be

corrected by reentering an area observed in the previous map building phase.

The problem considered is the path planning for homing an UAS along a fast and at

the same time safe path by only using the current camera images and the previously

generated output of a metric SLAM.
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5.4 Path planning using shortcuts

5.4 Path planning using shortcuts

By using the output of the INS-based LSD-SLAM as basis for planning, a path back

to the starting position is determined under consideration of safe shortcuts. In the

following the problem is defined in a more abstract representation and the algorithm

to perform the path planning is formulated.

5.4.1 Problem definition

In contrast to most approaches, especially the ones for ground based robots, the area

contains no obstacles. Further, the planning is performed in the xy-plane. Dropping

the z-coordinate is straightforward for missions which are completely performed at a

fixed altitude.

The factor graph, generated by the INS-based LSD-SLAM during normal operation

of the UAS, is rephrased as a 2D graph G = (V,E). Thereby, the Cartesian coordi-

nates of the keyframes describe the vertices V and each, except the first, keyframe is

connected with its direct predecessor by an edge added to E. If the current position

does not coincide with the last keyframe, it is added as new vertex vn to V and an

edge which connects vn with the vertex of the last keyframe to E. By traveling in

previously not visited areas visual odometry is used to perform a self-localization.

This leads to an integration drift that is bounded by a known factor in relation to

the traveled distance. The latter can be transformed to the maximal angular drift

α. The graph describes the path already observed during normal operation and any

intersection with the edges E allows performing an accurate localization of the UAS

by comparing the current camera image with the previously generated map.

By defining the current position as start vs ∈ V and the first keyframe as goal vg ∈ V ,

the problem of UAS homing is reformulated to the search of a path between these

two vertices. Thereby, the path is not exclusively bound to the edges E already

in the graph, but using a shortcut needs to consider the maximal angular drift α to

guarantee an intersection with one of the graph edges E. A solution needs to converge

in any scenario and the distance of the traveled path should be close to the distance

of the direct connection between the start and goal vertex.

5.4.2 Algorithm description

Each vertex is described by its coordinates vi = [xi, yi]
>. The shortest path between

the start vertex vs and the goal vertex vg is the direct connection, which is part of

the following ray:

r = vs + λ[vg − vs] , (5.1)
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with λ ∈ R+. The maximal angular drift α allows defining a left and a right ray

enclosing the drift area:

rl = vs + λR(α)[vg − vs] , (5.2)

rr = vs + λR(−α)[vg − vs] , (5.3)

with the rotation matrix R ∈ SO(2). Further, the Euclidean norm is used to describe

the distance between two vertices by using the scalar product as follows:

Φ : R2 × R2 → R+ , (5.4)

Φ(vi,vj) =
√

[vi − vj ] · [vi − vj ] . (5.5)

The path planning is performed shortly after the UAS looses the GPS signal. There-

fore, the starting pose can be treated as accurate and the uncertainties from small

errors in the position or heading may be covered by increasing the maximal angular

drift slightly.

A temporary graph Gt = (Vt, Et) is created to efficiently work with the graph entities

within the drift area. This graph is created from G as follows:

1. Add temporary vertices at the intersections between the maximal drift rays rl
and rr with the edges in E.

2. For each new vertex, add two temporary edges connecting the vertex with the

source and target vertex of the original edge it intersects.

3. Remove all vertices and edges outside the drift area. (This can be performed

very efficiently by temporarily disabling the entities in a so called graph filter-

ing.)

For each change of the target ray r the temporary graph Gt is updated. As a first

step, the original graph G is recreated by removing the temporary vertices and edges

as well as the graph filter. Then the temporary graph Gt is created as described

above.

The proposed approach follows the workflow depicted in Figure 5.3. The contained

cases are visualized in Figure 5.4 and defined as follows:

1. Direct connection: Within the drift area exists a path between vs and vg which

only contains edges in Et. By following this path the goal position vg will be

reached (Figure 5.4a).

2. Ray to ray connection: There exists a valid sequence of vertices s = (vl, ...,vr)

connecting a vertex placed on the left ray with a vertex located on the right ray

only by edges in Et. A sequence is considered as valid, if it is either close or
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Direct

connection?

Ray to ray
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Figure 5.3: Flowchart visualizing the workflow of the proposed algorithm to navigate from
a start to a goal position.

(a) Direct connection (b) Ray to ray connection (c) Rotate ray directions

Figure 5.4: The three cases of the proposed approach. The algorithm investigates the
intersections (red stars) between the graph (black lines) and the maximal drift rays (outer
green lines, spanning the green area).

connected to the goal vertex. Regarding the first option, a sequence is considered

as close, if for all vertices vi the distance to the goal vertex vg is less than the

distance between the start and the goal vertex (Figure 5.4b):

∀vi ∈ s : Φ(vi,vg) < Φ(vs,vg) . (5.6)

Alternatively, a valid sequence contains or is connected to the goal vertex vg
by edges in Et. If a valid sequence has been found it is safe to travel and

the random drift determines where the graph is intersected. The intersection
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becomes the new vs and as a consequence the rays defined in equation (5.1),

(5.2) and (5.3) have to be updated.

3. Rotate ray directions: If neither a direct nor a valid ray to ray connection exists

in the temporary graph Gt (Figure 5.4c), the directions of the target ray r as

well as of the rays rl and rr enclosing the drift area are adapted. By entering

this case for the first time with the current start vertex vs, all rotation angles

that would rotate either the left ray rl or the right ray rl on a vertex in V are

determined. Note that this evaluates the vertices in the original graph G. By

discarding all angles, with an absolute value larger than the maximal angular

drift α, it is guaranteed that the goal vertex is placed in the new drift area after

the rotation is applied. The angles are sorted according to their absolute values.

Now and in all following iterations of this case with the current start vertex vs,

one angle is removed from the sorted list and the initial directions of the three

rays r, rl and rr are rotated accordingly.

An example of a complete path planning sequence visualizing the iterated cases is

given in Figure 5.5.

(a) Ray to ray

connection

(b) Rotate ray

directions

(c) Ray to ray

connection

(d) Rotate ray

directions

(e) Direct con-

nection

Figure 5.5: Sequence of steps performed to reach the goal in the presented scenario. For
each new start position, the path considered first aims at the goal position and investigates
the intersections (red stars) between the graph (black lines) and the maximal drift rays (outer
green lines, spanning the green area).

5.4.3 Algorithm convergence

In the following, the proof for the convergence of the proposed algorithm is stated.

For reasons of clarity, two Lemmas are formulated and proofed first.
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Lemma 1. After a finite number of ray to ray connections a direct connection will

be found.

Proof. In the previous section two options for a valid ray to ray connection were

defined:

1. Close: The intersection from traveling, which is used as new start vertex in the

next iteration, is always closer to vg than vs to vg.

2. Connected to vg: It is possible to intersect the known path behind the goal

vertex. This case has to be investigated further if the new start vertex has

a larger distance to vg than the distance between the current start vertex vs
and vg. The latter will be referred as Φ1 = Φ(vs,vg) in the following. If this

happens only once, the distance to vg will always be decreased in the following

iterations. After another detour according to the same principle, the distance

from the new start vertex to vg will be smaller than Φ1. This is based on the

fact, that the connection to vg was enclosed by the drift area before the first

detour. Therefore, the distance to vg will also be decreased in this situation.

By constantly decreasing the distance to vg a direct connection will be found, at the

latest when the new vs is located on the edge directly connected to vg.

Lemma 2. For each start vertex vs at least one rotation angle in the rotate ray

directions case will result in a direct connection or ray to ray connection.

Proof. By adding an edge for each new keyframe to its predecessor, there exist exactly

one path between the start vertex vs and the goal vertex vg. Both vertices are located

in the drift area enclosed by the two rays rl and rr.

There exists one rotation that places rl on vg and one which does the same for rr.

In one of these two instances, the path directly connected to vg will proceed in the

drift area. Based on the fact that there exists a connection between vs and vg, an

intersection vi with rl or rr will be found by traversing the edges starting from vg:

1. Intersections with both rays: corresponds to an intersection with vs which re-

sults in a direct connection

2. Intersection with the other ray: ray to ray connection

3. Intersection with the same ray: rotate ray directions

If the new intersection vi occurs with the same ray vg is placed on, the path between

vg and vi is traversed and the vertex closest to the other ray is determined. The

drift area is rotated in a way that the other ray intersect this vertex, which becomes

the new vi. This results in a connection between vg and vi within the drift area.
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Traversing from vi away from vg will continue in the drift area. A new intersection

vi with rl or rr will be found and investigated as described above. Because there

exists a path between vs and vg, iterating this procedure will converge in either a

direct connection or a ray to ray connection.

Theorem 1. The proposed algorithm will always converge in the goal position.

Proof. As depicted in Figure 5.3 and described in the previous section, the algorithm

iterates through three cases:

1. Direct connection: Follow the connection and reach the goal position.

2. Ray to ray connection: Lemma 2 states that after a finite number of ray to ray

connections, a direct connection will be found.

3. Rotate ray directions: According to Lemma 1, there will always a rotation be

found which results in a direct connection or a ray to ray connection.

According to these observations a direct connection that leads to the goal position

will always be found.

5.5 Numerical studies

As a first evaluation of the presented approach, MC simulations on random graphs

were performed. The latter represent flight courses from the take-off positions to the

locations of the GPS loss. To generate a graph, n vertices were sampled at random

coordinates in a square area with a side length of x meter. For each new vertex an

edge connecting it with its predecessor was added to the graph. This resulted in a

random graphs with n vertices and n− 1 edges. The first vertex was used as take-off

position and the last vertex as the start coordinate for the UAS homing. The created

graphs look quite chaotic and in most cases are no flight maneuvers an operator would

plan for an UAS (Figure 5.6). Nevertheless, the random graphs allow evaluating the

approach in a comprehensive number of experiments, which with a high probability

detect any problems and weaknesses of the procedure.

Three series of MC runs were performed, each with a different combination of the

graph configuration parameters n and x. Further, a maximal drift ratio of 5 % in

relation to the traveled distance was defined. For each configuration 1000 random

graphs were generated and the path planning for each graph was realized in 100 MC

runs. The mean distance used to reach the goal was calculated for each set of 100 MC

runs. This value was divided by the optimal solution, characterized by the Euclidean
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(a) 10 vertices (b) 100 vertices

Figure 5.6: The random graphs allow an intensive evaluation of the presented approach.
The first vertex is considered as take-off position the UAS wants return to and the last vertex
as coordinate of the UAS at the time of the GPS outage.

distance between the start and the goal vertex, to form the travel distance ratio as

follows:

rd =
1

100

∑100
i=1 di

Φ(vs,vg)
, (5.7)

with di stating the travel distance used to reach the goal in the i-th MC run. Thus,

a rd of two states that on average the distance is twice the optimal solution. Further

would a value of one point out that the algorithm produced for all runs the optimal

solution. The latter is not possible because of the positional drift which has to be

considered, but the closer the results are to one, the better. For each of the three

configurations the quantiles of the mean traveled distance ratio from the 1000 random

graphs were calculated (Table 5.1). The absolute time and distance savings are a lot

bigger for data set 2 compared to data set 1 due to the larger size of the area. However,

Table 5.1: Travel distance ratio (achieved mean / optimal). Quantiles of 1000 random
graphs for each data set, with 100 MC runs per graph.

data set vertices square side length 50 % 95 % 99 %

1 10 500 1.010 1.160 1.479

2 10 5000 1.011 1.139 1.449

3 100 500 1.002 1.021 1.093
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H
H

Figure 5.7: Suboptimal planning. Left: A connection inside the drift area of the visual
odometry (green) may lead to large detours. Right: In the visualized scenario, the planning
will result in a relocalization at one point on the marked edges (red). An optimal solution
would plan a detour using an interim goal (blue).

the evaluation based on the ratio eliminates this difference as expected. The increase

in the number of vertices for data set 3 leads to better results. This is based on

the higher number of edges resulting in more ray to ray connections while targeting

the goal directly. Following this optimal direction more often, avoids detours and

decreases the used travel distance.

By investigating the outliers of the numerical studies two special cases were identified.

They are depicted in Figure 5.7. The left image shows that a direct connection

between the start and goal vertex can be quite long. The visualized instance shows

an extreme situation that is very unlikely to happen. Nevertheless, also simpler

detours following the same scheme may occur and in all these cases the presented

algorithm will traverse the direct connection. Most of these detours could be prevented

by traversing the direct connection, but performing a new planing according to the

presented approach after a distance threshold is exceeded. This small adaption will

very likely lead to new shortcuts. The second type of detours the algorithm will

produce is also visualized in the right image of Figure 5.7. By using the heuristic that

only movements which contain the goal in the visual odometry drift area are valid,

the depicted shortcut using an interim goal will be missed.

5.6 Simulations

The robot simulation Gazebo [KH04] was used to test the approach in a realistic

scenario and gather valuable information for real-world experiments. The modeling,

control and simulation of a quadcopter UAS within Gazebo were developed by Meyer

et al. [MSK+12]. The pose information of the quadcopter are on the one hand used

as ground truth in the evaluation and on the other hand the basis for the generation

of noisy INS data. For the latter, white Gaussian noise was added to the poses using

a standard deviation of σt = (0.02 m, 0.02 m, 0.04 m) for the positional components

and σr = (0.1◦, 0.1◦, 0.2◦) for the rotational components represented by Euler angles.

Thereby the altitude as well as the rotation around the z-axis are chosen twice as

big as the other components to model the standard error behavior of an INS. The
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Figure 5.8: Mean and standard deviation of the camera only LSD-SLAM drift from 100
MC runs for two straight level flights courses in Gazebo.

modeled values represent the accuracies of a small INS with RTK-corrected GPS

measurements [SBG15]. Furthermore, the camera simulation provided by Gazebo

was used to generate images from a downward facing camera with 640 × 480 pixels

at a frame rate of 30 Hz. The chosen aperture angle of 100◦ corresponds to a wide-

angle lens. The mounting offsets between the camera and the INS are known. As

environment the 3D model ’The City’ created by Herminio Nieves was used. He

published this [Nie15] and other models free for commercial and non commercial use.

The drift of the LSD-SLAM was analyzed by performing MC runs for two different

directions at a straight flight. The error behavior shows a linear increase and is quite

similar for both directions (Figure 5.8). At a travel distance of 100 m the drift is

characterized by a mean value of µ = 6.03 m and a standard deviation of σ = 3.23 m

for one direction as well as µ = 5.37 m and σ = 3.62 m for the other. These values

are quite high compared to analyses stated in literature [LJHW14] and may be a

consequence of the 3D world that is partly without texture (Figure 4.4). However,

the large drift can be handled by increasing the upper bound of the angular error

to 10◦. This value corresponds to an error of 17.63 % in the travel distance, which

covers for both evaluated directions more than three times the standard deviation

added to the mean. The high value will result in some detours during the planning

but guarantees convergence.

The evaluation of the proposed approach was realized with MC runs in Gazebo as

follows. The initial path was traveled according to a list of waypoints which describe
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Figure 5.9: Mean and standard deviation of the Euclidean distance between the pose es-
timation and the ground truth from 100 MC runs performing an UAS homing in Gazebo.
INS-based LSD-SLAM was used before the GPS outage around 350 s and the original LSD-
SLAM afterwards.

the path depicted in Figure 5.5. This path as well as the map were created for

each run from scratch and differ slightly due to the non-deterministic design of the

LSD-SLAM. At the last waypoint, the GPS outage is simulated and the UAS uses

the proposed algorithm to return autonomously to its take-off position. Thereby the

direction of the UAS are updated every second based on the current pose estimate of

the LSD-SLAM.

The Euclidean distance between the ground truth and the pose estimations shows the

expected increase in uncertainty while traveling in unexplored areas and drops again

when the LSD-SLAM creates loop closures by adding constraints between the latest

and previously created keyframes (Figure 5.9). In the end of the investigated scenario

a mean distance of about 0.25 m is obtained, which is roughly three times higher than

the accuracy achieved with the INS-based LSD-SLAM used before the GPS outage.

This value depends on the camera resolution as well as the ground sample distance

and will differ in other setups. The time at which the runs successfully performed the

loop closure differs slightly, which is apparent by the slowly decreasing mean value.

The small standard deviations in the last seconds state that the relocalization worked

in all runs.

The path information of the MC runs is visualized in Figure 5.10. It shows the change

in the course direction at crossing the previous path the first time and how the drift

in the visual odometry influences the flight course. After successfully performing a
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Figure 5.10: The path information of 100 MC runs for returning to the start position at
(0, 0) after a simulated GPS outage in Gazebo. The path information is plotted on top of
the map created by a single run before the GPS outage.

loop closure to relocalize, the last meters are traversed for each run along the previous

path to reach the start position.

Traveling according to waypoints till the GPS outage occurs covered a mean travel

distance of 251.85 m. The direct connection back to the take-off position had a mean

distance of 100.5 m and the path actually traveled by steering commands from the

planning algorithm based on LSD-SLAM pose estimations lead to a mean distance of

108.53 m. This results in a travel distance ratio, according to equation (5.7), of 1.08

which is good, especially under consideration of the high maximal angular error of

10 %.

5.7 Real-world experiments

The same hardware setup as described in the real-world evaluation of the position

free system calibration (Chapter 3.5.5) and the INS-based LSD-SLAM (Chapter 4.7)

was used.
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5 Map-based UAS homing using shortcuts

To estimate the upper bound of the positional drift, MC runs on two data sets recorded

while performing straight flights were performed. The nondeterministic LSD-SLAM

leads for multiple runs to differing pose estimations (Figure 5.11). The evaluation

results in a mean value of µ = 8.04 m and a standard deviation of σ = 4.62 m for one

direction as well as µ = 6.4 m and σ = 4.31 m for the other (Figure 5.12).

Although nearly the whole area observed by the camera contains gradients large

enough to perform pixel-wise stereo matching by the LSD-SLAM, the drift is larger

compared to the Gazebo simulation performed in the previous section. This may

be the result of repetitive structures in the form of a lot of grass covering the area.
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Figure 5.11: Path visualization of the real-world LSD-SLAM drift. The two plots show the
INS path with an error in the range of a few centimeters (black) and MC runs performed on
the same data set (colors).

Figure 5.12: Mean and standard deviation of the camera only LSD-SLAM drift from MC
runs for two straight level flights courses in the real-world. The INS path, with an error in
the range of a few centimeters, is used as ground truth.
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Figure 5.13: Real-world scenario. The copter starts at position ”0” with the INS-based
LSD-SLAM and switches to the original LSD-SLAM at ”1”. A loop closure to a previously
generated keyframe is performed at position ”2”. Top: Visualization of the LSD-SLAM re-
sults showing the created map, keyframes and image constraints. Bottom Distance between
the pose estimation of the LSD-SLAM and the INS measurements.

Nevertheless, the estimation errors can be handled by setting the maximal drift ac-

cordingly and the only drawback is that the shortcut algorithm will plan larger detours

to ensure reentering previously visited areas. The bigger problem is the number of

false loop-closures, which happen because of the repetitive structures in the area.

This was already observed in the evaluation of real-world experiments with the LSD-

SLAM (Chapter 4.7). The previously used workaround to switch off the loop closures

detection and rely on the accurate INS information does not work for the shortcut

algorithm. The algorithm requires recognizing previously visited areas in the camera

images to perform a relocalization and eliminate the drift. By increasing the strict-

ness for loop closures most of the false loop closure, but at the same time a lot of real

loop closures, are eliminated. The detection of previously visited areas did not work

reliable in the outdoor area covered by the available flight permission. The flight visu-

alized in Figure 5.13 shows that the detection of only one connection to the previous

path will already reduce the error of the pose estimation. More connection would add

additional constraints to the mapping part of the LSD-SLAM and decrease the error
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5 Map-based UAS homing using shortcuts

of the pose estimation even more. This is presented as proof of concept, although it

was not possible to perform a successful homing with the presented shortcut algorithm

in the test area.

5.8 Summary

An approach which performs a path planning for UAS using a previous build map and

actual camera images was presented. The travel distance is minimized by exploiting

safe shortcut through unexplored areas. Therefore, a very fast heuristic to perform a

local path optimization which produces almost optimal results in nearly all situations

is used.

After the proof of convergence, the approach was evaluated in extensive numerical

studies. A realistic scenario was realized in the simulation framework Gazebo. The

first part of the flights used the INS-based LSD-SLAM and a switch to the original

LSD-SLAM was performed after a simulated GPS outtake. To return to the take-off

position, the path planning was realized with the presented algorithm and resulted

in a relocalization in the previously visited area close to the take-off position. Based

on the simulations in Gazebo, real-world experiments were performed. Thereby, the

concept was proofed by showing how the loop-closure to previous keyframes reduces

the localization error.
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CHAPTER VI

Summary and conclusions

”An idea which can be used only once
is a trick. If one can use it more than
once it becomes a method.”

— George Polya and Gabor Szegö

This chapter summarizes the contributions of the thesis and gives an outlook on

possible subsequent work and future navigation systems. The contributions can be

divided into the methodology developed in the area of system calibration and the

presented approach fusing INS and camera data for real-time navigation. Stating

subsequent work shows possible developments resulting from the contributions of this

thesis. The outlook for future navigation systems will be discussed in a more general

context.

6.1 Contributions

This thesis made contributions in the context of multi-sensor navigation with UAS.

The proposed approaches combine GPS-assisted INS, used since decades for naviga-

tional purposes, and cameras. Latter, or rather the images produces by them, contain

lots of information. Nowadays, the increased computing power allow the evaluation of

the image data for various task. In this thesis the focus is their usage for navigational

purposes. Combining the advantages of these sensors, leads to the development of a

powerful framework for the UAS pose estimation.

System calibration

In this part of the thesis the system calibration of a sensor suite consisting of an INS

and a camera is investigated. The transformation between the coordinate systems
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6 Summary and conclusions

of the sensors can be described as a rigid body motion with six degrees of freedom.

Two approaches, which are capable for the calibration of these offsets with sensors of

different accuracy levels, are realized. The first considers the calibration of a camera

rigidly mounted to a high-precision INS. By formulating a graph based approach, the

integration of the mounting offsets in the bundle adjustment is straight forward and

allows the calibration of the system with data from a measurement flight. The second

approach enables the calibration of systems using a low-cost INS, which especially

suffer from bad accuracies in the positional component. The novel contributions are:

1. Graphical formulation of a single step bundle adjustment.

Integrating the calibration parameters in the bundle adjustment is superior

to two-step approaches, which first perform a classical bundle adjustment and

optimize for the system parameters afterwards. By formulating the problem in

a graph based structure, the integration of the system calibration parameters

in the bundle adjustment are realized by a clear and descriptive approach.

2. System calibration without GCPs.

Related work states that at least one GCP is needed for the calibration of

the mounting offsets between a camera and an INS. Fixing the components of

the lever-arm to their initial values extracted from construction drawing allows

the calibration without any GCP. This was proved by real-world experiments

performing the system calibration of a sensor suite integrated in an ultra-light

airplane.

3. Boresight calibration without position measurements.

Low-cost INS suffer from errors in the positional component in the range of a

few meters. The presented approach performs the boresight calibration using

only the rotational components of the INS.

Navigation

In the second part of this thesis, the semi-dense monocular LSD-SLAM framework is

extended by exploiting measurements from an INS. Both sensors are rigidly mounted,

which allows the calibration of the mounting offsets with one of the methods de-

scribed in the first part of the thesis. The integration of INS measurements in the

camera-based SLAM approach leads to several superior characteristics. The novel

contributions are:

1. Increased robustness and map quality for the LSD-SLAM.

In the evaluated outdoor scenarios, the integration of GPS-aided INS measure-

ments into the LSD-SLAM approach compensates the scale-drift. This results

in more accurate pose estimations and maps generated by the algorithm. As
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a consequence the search region for possible loop closures gets smaller and the

robustness of the overall system increases.

2. Homing for UAS using shortcuts.

The maps created by the INS-based LSD-SLAM are very accurate, which allows

using them as a reference for missions with no or disturbed GPS reception. In

the case of a GPS failure the maps can be used to navigate the UAS to its

start position. An approach which uses the knowledge of the maximal visual

odometry drift to perform this homing procedure by taking into consideration

shortcuts through unexplored areas was presented.

6.2 The way ahead

The contributions of this thesis show that the multi-sensor navigation has the capabil-

ity to be the robust framework needed for the save operation of UAS in the controlled

airspace. Self-localization of aerial platforms is a basic skill, which is not only needed

for the successful navigation from one place to another, but also to avoid collisions

by sending its own position to other platforms with a transponder.

Future work should investigate the proposed procedures in more detail. Besides a

general evaluation, which aims to adapt the approaches to be suitable for GPS mea-

surements without RTK corrections, each of the presented approaches has its own

subsequent works.

The graph-based calibration shows the capability for cost-saving in-flight calibrations

without any GCP. A rejection of images, based on a similarity threshold evaluating

the INS poses, will accelerate the computations and enable a recalibration during

missions. To make use of its full potential, the achievable accuracies and the influence

of flight patterns have to be investigated in more detail.

The evaluation of the position free boresight calibration shows that using more data

samples increases the robustness of the INS-camera calibration, but leads to a cubic

growing processing time for the initial determination of the extrinsic orientations

by a standard camera calibration procedure. As an alternative, an incremental SFM

approach could be used to calculate the extrinsic orientation of all collected images and

not only a subset, which should have a positive effect on the calibration results [Wu13].

The integration of the filtered INS poses in the LSD-SLAM shows a high potential.

Instead of the filtered INS pose, it is possible to integrate the inertial measurements in

the form of accelerations and angular rates in LSD-SLAM approach without the usage

of GPS measurements. This would be a nice application for GPS denied or distorted

environments if the produced navigation solutions show less drift compared to INS

or camera only approaches and results additionally in detailed semi-dense maps of

the environment. An alternative approach for low cost projects, would be the usage
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of a cheap GPS device to only use GPS measurements to cope with the drift of the

LSD-SLAM.

The highly accurate maps created by the presented INS-based LSD-SLAM are the

perfect foundation for a pure visual navigation. This was shown by describing a

solution for the drone homing task in the case of a GPS failure. Nevertheless, the

UAS homing would benefit from a global solution in multiple ways. This should

cover the special cases encountered in the numerical studies. In some rare cases a

better performance can be expected by allowing travel directions with the goal located

outside of the uncertainty area. Furthermore, a global approach allows stating the

worst and expected travel distance for returning to the starting position in advance.

In the context of UAS homing, this allows the evaluation if returning to the start

position is safe under consideration of the current battery level or the search for an

alternative landing area is the better option. In the case of a complete INS failure,

instead of the here considered GPS outage, the LSD-SLAM may also be considered

for UAS flight control.

6.3 Future navigation systems
The usage of GPS or any other GNSS signals for the navigation is the key component

in all outdoor applications up to the present day. However, the signal get blocked by

any obstacles, or even water, in the direct line of sight to the satellites and as a con-

sequence the approach is unusable for indoor, underground and undersea navigation.

Nevertheless, in outdoor scenarios with a clear view of the sky the higher performance

compared to all other currently known approaches emphasizes the superior suitability

of the GPS for navigation purposes.

A drawback is the low power of the signal at the Earth’s surface. The official U.S

government information state that the GPS signals are transmitted with enough power

to ensure that, after being affected by the free space path loss for a traveling distance

of 20 200 km, at least a power level of −158.5 dBW for the signal of the L1 band is left

at the earth surface [Nat08]. This level is so low that the wanted signal gets lost in the

noise and can only be extracted by a correlation exploiting the repetitive structure of

the GPS code. Due to this low power level, the signal can become unavailable because

of natural interference, a system glitch or intentional jamming.

In nearly all countries it is a violation of the law to use devices that block, jam or

interfere with authorized radio communications like phone or GPS signals. Neverthe-

less, devices which are created for the interference with GPS signals are on the market

and can be bought by anyone [Bra10]. According to reports in the international press,

GPS malfunctions on a large scale occurred in regions with tense political situations.

In the end of March 2016 North Korea started to jam from five regions in the coun-

try the GPS signals in South Korea. This violates international agreements and is
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a threat to civil vessels and airplanes [Nic16]. Another case in October 2016, social

media entries from people in central Moscow stated that GPS relying phone apps

stopped working or showed a location in the area of the Moscow’s Vnukovo airport,

which is 29 km away. The relocation to the airport leads to the assumption that the

purpose is to prevent drones flying over the Kremlin. Most firmwares of commercial

drones integrate no fly zones around airports in their firmware and start an emergency

landing because of the relocation [Ass16].

The vulnerability of the GPS principal was known a long time before this serious

incidents occurred. Consequently, alternative navigation techniques are an active re-

search area. For example, the Defense Advanced Research Projects Agency (DARPA)

of the U.S. Department of Defense runs multiple research programs with the goal to

develop a navigation system with the accuracy level GPS achieves already today, but

is resistant to jamming. To quote one, the DARPA proposal ”Precise Robust Iner-

tial Guidance for Munitions: Advanced Inertial Micro Sensors” has the objective to

develop a miniature, high-performance and self-contained navigation system based

on inertial sensors [DAR15]. In this context, a contract with a funding of 4.3 mil-

lion dollar was awarded to the HRL Laboratories LLC, a research and development

laboratory owned by The Boeing Company and General Motors. The goal of the re-

search is to combine a MEMS Coriolis vibratory gyroscope and an atomically-stable

frequency reference without introducing unintended noise. This would lead to a new

class of inertial sensors with a highly improved performance at small weight, size and

power requirements [HRL16].

A widely used and also in this thesis considered approach is the usage of images

generated by cameras. The contained information content is high and as a result of

increasing computing power and new algorithmic approaches the usability for navi-

gational aspects constantly expand. However, the dependence on the weather is a big

problem for the reliability, as clouds may block the view in the aerial context or the

lack of sunlight is critical for daylight cameras. A possible workaround is the usage

of different spectral bands, or even a multispectral setup.

Another promising approach is to integrate new sensor technologies into existing

systems. One example is the depth sensor in Google’s Tango platforms. Tango

is designed to run on a phone or tablet and determine the pose of the device in

real-time within an indoor environment. The combination of measurements from

inertial sensors and a depth camera in sophisticated algorithms leads to accurate

SLAM systems without using GPS or other external sources. The platform leads

to applications in the areas of indoor navigation, augmented reality and even size

measurements of physical objects [Edd15,DSM+17].

Despite naming the drawbacks of the GPS and also the progress in alternative fields

of research, the capabilities of GPS measurements are outstanding and should be used
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in current systems. In the context of SLAM approaches it leads to the most accurate

maps in outdoor scenarios. In non critical mapping tasks it is also common to plan

measuring flights at the time with the best possible GPS satellite constellation for

the area of interest. The created maps can be used as a reference in the case of GPS

failures for following surveys in the same region.

Nevertheless, the vulnerability and the need for the solutions to navigation in area

without GPS reception will promote new technologies. The development of alterna-

tives with the same or even a better accuracy compared to GPS will change navigation

systems in the long-term perspective. Whatever the future holds in store for us, one

thing is certain: The navigation systems of the future will integrate complementary

sensors and fuse their information to receive the most accurate and robust solution

in each situation.
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l’espace chez les mammifères: détour, raccourci et retour. PhD thesis,
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