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Abstract

In this thesis, three different models of elastic shape optimization are described. All
models use phase fields to describe the elastic shapes and regularize the interface length
on some level or scale to control fine-scale structures.

First, the paradigm of stochastic dominance is transferred from finite dimensional
stochastic programming to elastic shape optimization under stochastic loads. The shapes
are optimized under the constraint, that they dominate a given benchmark shape in a
certain stochastic order. This allows for a flexible risk aversion comparison. Risk aver-
sion is handled in the constraint rather than the objective functional, which results in
an optimization over a subset of admissible shapes only. First and second order stochas-
tic dominance constraints are examined and compared. An (adaptive) Q1 finite element
scheme is used, that was implemented for two of the models described in this thesis and is
introduced here. Several stochastic loads setups and benchmark variables are discretized
and optimized.

Starting with the observation that unregularized elastic shape optimization methods
create arbitrarily fine microstructures in many scenarios, domains composited of a num-
ber of geometrical subdomains with prescribed boundary conditions are considered in the
second model. A reference subdomain is mapped to each type of geometrical subdomains
to optimize computational complexity. These are suitable to model fine scale elastic
structures, that are widespread in nature. Examples are fine-scale structures in bones or
plants, resulting from the need for a stiff and low-weight structure. The subdomains are
coupled to simulate fine-scale structures as they appear e. g. in bones (branching periodic
structures). The elastic shape is optimized only for those reference subdomains, simulat-
ing periodically repeating structures in one or more coordinate directions. The stress is
supposed to be continuous over the domain. A stress-based finite volume discretization
and an alternating optimization algorithm are used to find optimal elastic structures for
compression and shear loads.

Finally, a model considering a fine-scale material in which the elastic shape is modeled
by a phase field on the microscale is introduced. This approach further investigates the
fine-scale structures mentioned above and allows for a comparison with laminated mate-
rials and previous work on homogenization. A short introduction into homogenization is
given and the two-scale energies required for the optimization are derived and discretized.
An estimation of the scale between macro- and microscale is derived and a finite ele-
ment discretization using the Heterogeneous Multiscale Method is introduced. Numerical
results for compression and shear loads are presented.
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1. Introduction

In this thesis, we will study several problems in the context of elastic shape optimization.
In general, shape optimization aims to find an optimal shape for a certain task, for
instance, a shape that withstands certain forces as well as possible. The methods used
to model and solve those shape optimization problems are similar to the methods used
in the context of optimal control. To be precise, shape optimization can be seen as an
application of optimal control, where the control variables model the shape.

In this thesis, we will discuss three problems in the context of shape optimization: A
model for stochastic dominance constraint shape optimization, an approach to modeling
and optimizing branching patterns (fine patterns that appear e. g. in the spongiosa of
bones) in elastic materials and an approach to modeling fine-scale elastic materials where
arbitrary periodic structures can be built by the optimization on the micro-scale. All
models optimize shapes under the constraint, that the partial differential equation of
linear elasticity is solved (under given boundary conditions). The stochastic dominance
and fine-scale model use a strain-based formulation and can be seen as extensions of work
by [PRW12]. The branching model uses a stress-based formulation, which allows for an
easier introduction of the required branching type boundary conditions.

Shape optimization problems, in general, are a special kind of optimal control problems
and have been studied in many different contexts, e.g. aero- [RJA+99, Sam04] and hy-
drodynamics [DM01, HS07, NA16] and elasticity. In the context of elasticity and linear
elasticity, there is a multitude of approaches to represent the domain [DHR98, SW00,
All02, LKH05, AVCT07, AJ05, AD14, AD15], different boundary conditions (determin-
istic and stochastic) and target functionals (e. g. compliance and tracking type). The
boundary conditions of the elastic problem determine the load scenario that is simulated.
Deterministic load scenarios define a single load for each point of the boundary, while
stochastic load scenarios prescribe a set of loads and assigned probabilities, simulating a
set of scenarios that have potentially different probabilities to be realized. This kind of
boundary conditions allows for a wider variety of simulations and can be modeled in an
energy term that is either part of the target functional or can be used as a constraint,
which in turn allows for comparisons between different shapes and leads to the notion of
stochastic dominance (cf. [MS02]).

Figure 1.1 depicts the result of a one-scale optimization for a single (deterministic) load
scenario in which the shape is clamped on the lower boundary and a force is applied to
the upper boundary. On the upper boundary of both shapes, a small strip of material
is fixed. The structures consist of a hard material (black) and a much softer material
(white). The setup for both shapes is identical up to the constant that weights a term
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1. Introduction

Figure 1.1.: Examples of optimal shapes for a pressure plate scenario. The amount of
fine-scale structure in the optimal shape depends on the weighting of the
interface-length measuring term.

measuring the interface length between the two materials. That constant is β for the
left shape and 1

2
β for the right shape and its change induces finer structures in the right

shape (s. red circle: an additional beam has formed). Further reducing this weight leads
to even finer (and potentially arbitrarily fine) structures. For many scenarios, this kind of
fine-scale structure is optimal, depending on the forces and the domain. The scale of the
optimal structure can be arbitrarily small for many combinations of domains and forces,
resulting in problems that are not well-posed. This fact necessitates the introduction of
a regularizing term that introduces the length of the interface between the two materials
into the cost functional and controls the formation of microstructure. Without such a
term, arbitrarily fine microstructures might exist in the optimal shape, but the associated
characteristic function to such shapes only converges weakly (not strongly) to its limit,
which makes them unfit for the models discussed in this thesis and related work.
The structures in Figure 1.1 show some regions where the material is neither hard

(black) nor soft (white), but a (gray) “interphase” region. This is due to the discretization
using phase fields. The size of these transitional regions between hard and soft material is
also controlled by the interface term, that regularizes the shape via the interface length.
Cf. Section 2.5 for an introduction to phase fields and how the shapes converge towards
the pure phases of hard and soft material.
This thesis is organized as follows: In this chapter, we will describe some fundamental

principles and theorems used by the models described in later chapters. In Section 2.5
we will introduce phase fields and describe how to control the length of the interface
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and the size of the transitional “interphase” regions. Compared to other methods of
shape encoding, phase field functions can easily handle the formation of new holes in the
described shapes but introduce this kind of transitional region between the two phases,
which has to be regarded as a mix of phases instead of pure phases. Still, the size of these
transitional regions can be controlled. A Γ-convergence result for a term approximating
the interface length will be given and it will be shown, that the phase field tends toward
a shape containing the pure phases only.

In Chapter 3 we will describe a strain-based model of stochastic shape optimization
using linear elasticity in the context of stochastic dominance constraints. As in the other
models considered in this thesis, we try to determine which structures are necessary to
support given loads and which microstructures form for given boundary conditions. As
mentioned above, we use the partial differential equation of linear elasticity (as opposed
to the full hyperelastic equation). This choice is justified by the fact that for all scenarios
considered the deformations are small, which makes the linearization of the hyperelastic
equation a good approximation. Furthermore, the linear elastic equation removes am-
biguities created by non-unique solutions of the hyperelastic equation, as e. g. buckling
effects do not appear when using the linear terms only. Additionally, we will describe an
adaptive Q1 finite element scheme for the discretization of this model.

Next, in Chapter 4 we will consider a stress-based model of the formation of branch-
ing periodic structures in domains composited of periodic, branching periodic and non-
periodic elastic cells. This model will be discretized using a finite volume approach and
optimized using an alternating method. A suitable approach to handle singular matrices
that result from conditions to the forces will be introduced.

Finally, in Chapter 5 we will discuss a strain-based model of fine-scale linear elastic
shape optimization and compare the resulting shapes to the results presented in work by
Allaire et. al. [All02]. We have to note, that even the fine-scale model discussed in this
thesis has a fixed scale between the microscopic and macroscopic scales. Still, this model
fits into the context of shape optimization using the homogenization method (s. [All02]),
which describes the optimal microstructure in the (arbitrarily fine) limit. This structure is
always given by rank-d laminates, where d is the space dimension. For the discretization,
we will use a Q1 finite element Heterogeneous Multiscale Method (HMM).
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2. Background and fundamentals

This thesis makes constant use of the theory of linear elasticity. In this chapter, we will
introduce its basic concepts and properties and its application to shape optimization.
These concepts will be used later to define different models in the context of linear elastic
shape optimization. We will use the linear formulation of elasticity instead of the full
(hyperelastic) equation, as this form prevents non-unique deformations — like buckling
instabilities — that are introduced by the higher order terms. For small deformations
(which are usually caused by small loads, s. also [Cia88]), linear elasticity is a good
approximation of the full elastic equation.

2.1. Preliminaries

In this section, we introduce some general definitions, which are used throughout this
thesis.
We introduce some general notation in Table 2.1. and some basic norms and function

spaces in the following pages: Let α = (α1, . . . , αn) ∈ Nn be a multi-index. Define
∂αf = ∂α1

1 . . . ∂αnn f and |α| =
∑n

i=1 αi. Let k ∈ N ∪ {∞}. We define the spaces of
continuous and continuously differentiable functions on a closed domain D̄ as Ck(D̄).
The associated norm is

‖f‖C0(D̄) = sup
x∈D̄
|f(x)| and

‖f‖Ck(D̄) =
∑

|α|≤k

‖∂αf‖C0(D̄) .

C∞(D̄) := ∩k≥0C
k(D̄) denotes the Banach space, that contains functions for which ∂αf

is continuous and bounded in C0(D̄) for all α for which 0 ≤ |α| ≤ k holds for any k.
We use the standard notation for Lebesgue and Sobolev spaces on open Lipschitz-

domains D [AF03]: Lp(D) and Wm,p(D) for m ∈ N and p ∈ [1,∞]. Furthermore, we
define for any m ≥ 1 and f, g ∈ Wm,2(D), the scalar product

Dmf ·Dmg =
n∑

x1,...,xm

∂x1,...,xmf · ∂x1,...,xmg

and the seminorm
|Dmf | = (Dmf ·Dmf)

1
2 .
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2.1. Preliminaries

Rm×n the space of m× n matrices
Rn×n

sym the space of symmetric n× n matrices
Rn×n

sym,+ the space of symmetric n × n matrices with
positive determinant and

Rn×n
sym,> the space of symmetric positive definite ma-

trices.
A : B =

∑
ij AijBij the component-wise multiplication for

A,B ∈ Rm×m

C a fourth-order elasticity tensor, often a
Lamé–Navier type tensor,

D the Jacobian operator
∂i partial differentials in the i-th component,
d the spatial dimension,
D an open Lipschitz-domain in Rd,
ΓD ⊂ ∂D a boundary part where Dirichlet type bound-

ary conditions are applied,
ΓN ⊂ ∂D a boundary part, where Neumann boundary

conditions are applied,
φ deformations,
u displacements,
v a phase field variable,
χ a characteristic function,
E , J and other calligraphic
capital letters

functionals,

E, J and other bold face
capital letters

discrete functionals,

Hn n-dimensional Hausdorff measure.

Table 2.1.: Notation used throughout this thesis.

The associated norms are denoted using ‖ · ‖ and can be defined as

‖f‖Lp(D) =

(∫

D
|f |p
) 1

p

for 1 ≤ p ≤ ∞ and ‖f‖L∞(D) = inf
N⊂D,|N |=0

sup
x∈D\N

|f(x)| ,

|f |Wm,p(D) = ‖Dmf‖Lp(D) ,

‖f‖Wm,p(D) =

(
m∑

i=0

|f |p
wj,p(D)

) 1
p

for 1 ≤ p ≤ ∞ and

‖f‖Wm,∞(D) = max
0≤l≤m

‖Dlf‖L∞(D) .

In the first equation, |N | denotes the measure of the set N . Wm,2
0 (D) is defined as the

7



2. Background and fundamentals

closure of C∞c (D) := {f ∈ C∞ : supp f is compact} with respect to the norm ‖ · ‖Wm,2(D)

and W 0,p(D) = Lp(D).
To conclude this introduction on Sobolev-spaces, we state the embedding theorem for

Sobolev- and Hölder functions.

Theorem 1. Let D ⊂ Rd be a non-empty, open, bounded Lipschitz domain.

• Let m1,m2 ∈ N and p1, p2 ∈ [1,∞) with

m1 −
d

p1

≥ m2 −
d

p2

and m1 ≥ m2 .

Then a continuous embedding Wm1,p1(D) ↪→ Wm2,p2 exists and for all f ∈ Wm1,p1

and
‖f‖Wm2,p2 ≤ C(D, d,m1,m2, p1, p2)‖f‖Wm1,p1 .

If both inequalities are strict, then the embedding is compact.

• Let m ∈ N+ and p ∈ [1,∞) and for any α ∈ (0, 1), k ∈ N

m− d

p
≥ k + α .

Then, a continuous embedding Wm,p(D) ↪→ Ck,α(D̄) exists, such that for all f ∈
Wm,p(D) a representative f̄ of f exists, that fulfills f̄(x) = f(x) for almost every
x ∈ D and

‖f̄‖Ck,α(D̄) ≤ C(D, d,m, p, k, α)‖f̄‖Wm,p(D) .

If the inequality is strict, then the embedding is compact.

Proof. S. [Alt06, AF03]

For numerical simulations, we will use finite elements on quadratic elements. Let τ
denote a mesh consisting of quadratic elements, i. e. a set of elements [a, b]×[c, d] =: T ∈ τ
for a, b, c, d ∈ R with b−a = d−c fulfilling Ti∩Tj = ∅ for all Ti, Tj ∈ τ and ∪T∈τ = Dh for
a discretized version Dh of D. Denote h := mina,b{b−a}. The finite element functions will
be multilinear, i. e. in two dimensions bilinear. The respective function space is defined
as

Q1
h(Dh) = {φ : D → R : φ ∈ C0(D) , ∀T ∈ τφ|T (x1, x2) = φ1(x1)φ2(x2) , φ1 and φ2 affine}

and consist of the functions that are continuous on Dh and are affine in each coordinate
direction on each element.

8



2.2. An introduction to elasticity

2.2. An introduction to elasticity

Elasticity theory aims to describe the properties of an elastic body using a partial differ-
ential equation, utilizing a deformation of or a displacement from (equivalent) a reference
configuration. First, we introduce a basic concept of elasticity theory, that guarantees
some properties of elastic stresses and their relationship to forces. In this introduction,
we will follow along the lines of [Cia88]. We begin by introducing an important axiom.

Axiom 1 (Cauchy-Euler stress principle, cf. [Cia88, Axiom 2.2-1]). Consider the deformed
configuration D̄ϕ of an elastic body subject to forces, that are represented by densities
fϕ : Dϕ → R3 and gϕ : ΓϕN → R3. Then a vector field tϕ : D̄ϕ × {v ∈ R3 : ‖v‖ = 1} → R3

exists, that fulfills for any subdomain Aϕ ⊂ D̄ϕ:
1. At any point xϕ where the outer normal nϕ exists

tϕ(xϕ, nϕ) = gϕ(xϕ)

holds,

2. force balance is preserved:
∫

Aϕ
fϕ(xϕ) dxϕ +

∫

∂Aϕ
tϕ(xϕ, nϕ) daϕ = 0 ,

where nϕ is the normal to ∂Aϕ,

3. the angular moment balance is preserved:
∫

Aϕ
xϕ × fϕ(xϕ) dxϕ +

∫

∂Aϕ
xϕ × tϕ(xϕ, nϕ) daϕ = 0 .

The Cauchy-Euler stress principle asserts — among other things — the existence of
elementary surface forces along the boundaries of all domains of the reference configura-
tion. Among the consequences of the stress principle are the linearity and symmetry of
the stress tensor, which are described in a theorem by Cauchy.

Theorem 2 (Cauchy’s theorem, adapted from [Cia88, Theorem 2.3-1]). Consider a con-
tinuously applied body force density
fϕ : D̄ϕ → R3 and let the Cauchy stress vector field tϕ be continuously differentiable with
respect to xϕ for each n ∈ {v ∈ R3 : ‖v‖ = 1} and continuous with respect to n for
each xϕ ∈ D̄ϕ. Then the axioms of force and moment balance imply that a continuously
differentiable tensor field

Tϕ : xϕ ∈ D̄ϕ → Tϕ(xϕ) ∈ R3×3

exists, such that
tϕ(xϕ, n) = Tϕ(xϕ)n

9



2. Background and fundamentals

for all xϕ ∈ D̄ϕ and all n ∈ {v ∈ R3 : ‖v‖ = 1}. Furthermore

−divϕTϕ(xϕ) = fϕ(xϕ) for all xϕ ∈ Dϕ ,
Tϕ(xϕ) = Tϕ(xϕ)T for all xϕ ∈ D̄ϕ ,

Tϕ(xϕ)nϕ = gϕ(xϕ) for all xϕ ∈ ΓϕN .

The symmetric tensor Tϕ(ϕϕ) is called the Cauchy stress tensor at xϕ ∈ D̄ϕ. The
quantities above have all been expressed in terms of variables on the deformed domain.
As the deformation is one of the unknowns, a formulation based on variables on the
reference domain would be preferable, which is fixed and given.
Consider the Piola transform T : D̄ → R3×3 of a tensor field Tϕ and the resulting

equations
T (x) = (det∇ϕ(x))Tϕ(xϕ)∇ϕ(x)−T

for the first Piola-Kirchhoff stress tensor and

div T (x) = (det∇ϕ(x))divϕTϕ(xϕ)

for its divergence. As T (x)T = ∇ϕ(x)−1T (X)∇ϕ(x)T , the tensor T (x) is not symmetric.
Still, a symmetric stress tensor is desirable as it simplifies the constitutive equation. Thus,
we define the second Piola-Kirchhoff stress tensor

Σ(x) = ∇ϕ(x)−1T (x) = (det∇ϕ(x))∇ϕ(x)−1Tϕ(xϕ)∇ϕ(x)−T .

Theorem 3 (adapted from [Cia88, Theorems 2.6-1 and 2.6-2]). The first Piola-Kirchhoff
stress tensor satisfies

− div T (x) = f(x) for all x ∈ D ,
∇ϕ(x)T (x) = T (x)∇ϕ(x)T for all x ∈ D ,

T (x)n = g(x) for all x ∈ ΓN .

The first and third equations combined are equivalent to
∫

D
T : ∇θ dx =

∫

D
f · θ dx+

∫

ΓN

g · θ da

for all sufficiently smooth vector fields θ : D̄ → R3 which satisfy θ = 0 on ΓD.
The second Piola-Kirchhoff stress tensor satisfies

− div(∇ϕ(x)Σ(x)) = f(x) for all x ∈ D
Σ(x) = Σ(x)T for all x ∈ D

∇ϕ(x)Σ(x)n = g(x) for all x ∈ ΓN .

The first and third equations combined are equivalent to
∫

D
∇ϕ(x)Σ(x) : ∇θ dx =

∫

D
f · θ dx+

∫

ΓN

g · θ da ,

with θ as above.

10



2.3. Elastic materials

2.3. Elastic materials

A material is elastic if a mapping

T̂ r : (x, F ) ∈ D̄ × R3×3
sym,+ → T̂ (x, F ) ∈ R3×3

sym

exists, such that in any deformed configuration that a body of the considered material
can occupy, the Cauchy stress tensor Tϕ(xϕ) (where xϕ = ϕ(x)) is related to the gradient
∇ϕ(x) at the point x of the reference configuration by the constitutive equation of the
material,

Tϕ(xϕ) = T̂ r(x,∇φ(x)) .

As this equation is defined for all matrices ∇φ ∈ R3×3
sym,+, materials subjected to internal

constraints (materials that can only be deformed in a certain, restricted manner) are ruled
out.
An equivalent definition of elastic materials is the statement, that there exist mappings

T̂ : D̄ × R3×3
sym,+ → R3×3

sym , T̂ (x, F ) = (detF )T̂ r(x, F )F−T

and
Σ̂ : D̄ × R3×3

sym,+ → R3×3
sym , Σ̂(x) = (detF )F−1T̂ r(x, F )F−T

for all x ∈ D̄, F ∈ R3×3
sym,+, given as

T (x) = T̂ (x,∇ϕ(x)) and Σ(x) = Σ̂(x,∇ϕ(x))

for all x ∈ D̄.
An important property of elastic materials is, that its observable quantities are indepen-

dent of the choice of the basis in which they are computed. This principle is formulated
in the following axiom.

Axiom 2 (Axiom of material frame-indifference). Let D̄ψ a rotated configuration of the
deformed configuration D̄ϕ, i. e. ψ = Qϕ for a rotation Q. Then

tψ(xψ, Qn) = Qtϕ(xϕ, n)

for all x ∈ D and all n ∈ {v ∈ R3 : ‖v‖ = 1}. tψ and tϕ denote the Cauchy stress vector
fields in the respective deformed configurations.

One of the consequences of this axiom is that it reduces the number of mappings
(x, F ) 7→ T̂ r(x, F ) that can be used in the constitutive equations. This statement is
stated in a more rigorous manner in the following theorem.

Theorem 4 (adapted from [Cia88, Theorem 3.3-1]). The response function T̂ r for the
Cauchy stress satisfies the axiom of frame-indifference, if and only if one of the following
equivalent statements hold:

11



2. Background and fundamentals

• T̂ r(x,QF ) = QT̂ r(x, F )QT for all F ∈ R3×3
sym,+ and all rotations Q,

• T̂ r(x, F ) = RT̂ r(x, U)RT for all F = RU ∈ R3×3
sym,+,

• There exists a mapping Σ̃ such that for the response function Σ̂ to the second Piola-
Kirchoff tensor Σ̂(x, F ) = Σ̃(x, F TF ) for all x ∈ D̄ and all F ∈ R3×3

sym,+.

2.3.1. Isotropic materials

Theorem 4 shows how an axiom on the behavior of an elastic material can influence the
structure of the Cauchy stress tensor. In this section, we will show that assumptions to
the material itself can influence the tensor in a similar manner.

Definition 5. An elastic material is isotropic at point x if the response function to the
Cauchy stress satisfies

T̂ r(x, FQ) = T̂ r(x, F )

for all F ∈ R3×3
sym,> and all rotations Q.

In other words: A material is isotropic at point x if the Cauchy stress tensor is not
altered by rotations of the reference configuration around that point. If that statement
is valid for all points, we will call the material isotropic, not specifying the point. If the
statement is invalid, we will call the material anisotropic. The property of isotropy implies
a property of the response function (which sometimes is also called isotropic):

Theorem 6 (adapted from [Cia88, Theorem 3.4-1]). A material is isotropic at point x,
if and only if there exists a mapping T̃ (x, F ) that satisfies

T̂ r(x, F ) = T̃ (x, FF T )

for all F ∈ R3×3
sym,+.

Definition 7. A material is called homogeneous, if its response function is independent
of the point considered. Materials, that are not homogeneous are called nonhomogeneous
or inhomogeneous.

The Rivlin–Ericksen representation theorem

Considering an isotropic material together with the axiom of material frame-indifference,
yields an important theorem on elastic material and a simple form of the response function.

Theorem 8 (Rivlin–Ericksen representation theorem, adapted from [Cia88, Theorem
3.6-1]). A mapping T̂ : R3×3

sym,+ → R3×3
sym satisfies the conditions for elastic materials with

response functions that are frame-indifferent and isotropic at point x ∈ D, i. e.
T̂ (QF ) = QT̂ (F )QT and

T̂ (FQ) = T̂ (F )

12



2.3. Elastic materials

for all F ∈ R3×3
sym,+ and all rotations Q, if and only if

T̂ (F ) = T̃ (FF T )

for all F ∈ R3×3
sym,+, where T̃ : R3×3

sym,> → R3×3
sym satisfies

T̃ (B) = β0(ιB)id + β1(ιB)B + β2(ιB)B2

for all B ∈ R3×3
sym,> and β0, β1 and β2 are real-valued functions of the three principal

invariations of B.

Remark 9. For a matrix A ∈ R3×3, the principal invariants are ιB = (ι1, ι2, ι3), with

ι1 = trA ,

ι2 = tr Cof A ,

ι3 = λ1λ2λ3 ,

where λ1, λ2, λ3 are the eigenvalues of A.

As a consequence of this theorem, the response functions T̂ r and Σ̂ can also be expressed
in terms of the principal invariations.

Theorem 10 (adapted from [Cia88, Theorem 3.6-2]). For an elastic material whose
response function is frame-indifferent and isotropic at point x ∈ D and an arbitrary
deformation ϕ : D̄ → R3, the Cauchy stress tensor at point xϕ = ϕ(x) is given by

Tϕ(xϕ) = T̂ r(x,∇ϕ(x)) = T̄ r(x,∇ϕ(x)∇ϕ(x)T ) ,

where the response function T̄ r(x, ·) : R3×3
sym,> → R3×3

sym is of the form

T̄ r(x,B) = β0(x, ιB)id + β1(x, ιB)B + β2(x, ιB)B2

for all B ∈ R3×3
sym,>. β0, β1, β2 are real-valued functions of the principal invariants of B.

The second Piola-Kirchhoff stress-tensor at x ∈ D is given by

Σ(x) = Σ̂(x,∇ϕ(x)) = Σ̃(x,∇ϕ(x)T∇ϕ(x)) ,

where
Σ̃ = γ0(x, ιB)id + γ1(x, ιB)B + γ2(x, ιB)B2

for all B ∈ R3×3
sym,>. γ0, γ1, γ2 are real-valued functions of the principal invariants of B.

Additionally, if either of the functions T̄ r and Σ̃ is of the given forms, the material is
isotropic at the given point x and the axiom of frame-indifference is satisfied.

13



2. Background and fundamentals

The Lamé–Navier tensor

If we assume, that the elastic material we consider is isotropic and homogeneous and that
its reference configuration is a natural state, we can show that the response function only
depends on two constants.

Theorem 11 (adapted from [Cia88, Theorem 3.8-1]). Let the given elastic material be
homogeneous and isotropic and let its reference configuration be a natural state. If the
functions γi, for i = 0, 1, 2 from Theorem 10 are differentiable at ι = (3, 3, 1), there exist
two constants λ and µ, such that the response function Σ̂ : R3×3 → R3×3

sym has the form

Σ̂(F ) = Σ̃(C) = Σ̃(E) = λ(trE)id + 2µE + o(E) , (2.1)

where C = F TF = I + 2E, F ∈ R3×3. C denotes the right Cauchy-Green strain tensor
that is associated with the quadratic form

(ε, ε) ∈ R3 × R3 → εTC(x)ε

and E the Green-St Venant strain tensor defined by

2E = C − id .

All materials considered in this thesis are defined using a (linearized) tensor of that
type.
This Lamé–Navier type of material is especially suited for filling a structure in shape

optimization, as in that case, isotropic materials are preferable (the structure is not mod-
eled by the tensor). The actual tensor is not optimized in this thesis. For an example
of material optimization by directly modifying tensor entries — so-called free material
optimization — s. [HKLS10].
To introduce the equation of linear elasticity, we again consider the boundary value

− div(id +∇u)Σ̃(E(u)) = f in D ,
u = 0 on ΓD ,

(id +∇u)Σ̃(E(u))n = g on ΓN .

Recall, that the response function Σ̃ for a material described by a Lamé–Navier tensor
satisfies

Σ̃(E) = λ(trE)id + 2νE + o(‖E‖) (2.2)

and that the Green-St Venant strain tensor is given by

E(u) =
1

2
(∇uT +∇u+∇uT∇u) . (2.3)

Linearizing equations (2.2) and (2.3) yields a linearized or linear elastic tensor

C = λ(trE)id + 2νE (2.4)
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2.3. Elastic materials

also called Lamé–Navier tensor. The tensor

ε[u] =
1

2
(∇uT +∇u) .

is called the linearized strain tensor. With these linearizations, we can formulate the
boundary value problem of linear elasticity.

− div(λ(tr ε[u])id + 2µε[u]) = f in D , (2.5)
u = 0 on ΓD ,

(λ(tr ε[u])id + 2µε[u]) = g on ΓN ,

We notice the equivalence between solving the boundary value problem and a weak form
of a partial differential equation.

Theorem 12. The task of finding a solution u for the linear boundary value problem (2.5)
is equivalent to finding a solution to

A(u, θ) = `(θ) for all θ ∈ W 1,2
0 (D) , (2.6)

where

A(u, θ) =

∫

D
λ tr ε[u] tr ε[θ] + 2µε[u] : ε[θ] dx ,

`(θ) =

∫

D
f · θ dx+

∫

ΓN

g · θ da .

W 1,2
0 (D) is defined as the space of functions in W 1,2(D) that vanish on ΓD in the sense

of traces.

Proof. Cf. [Cia88, Theorem 6.3-1]

Existence of solutions of problem (2.6) can be shown, but will not be treated here
(s. [Cia88, Chapter 6] for details), as we will not use this specific energy alone for any of
the models below.

Problem (2.6) can again be rewritten into an energy minimization problem: Solving
(2.6) is equivalent to minimizing

E [u] =
1

2
A(u, u)− `(u)

for functions u that vanish on ΓD. This is the formulation that will be used for the
problems treated in this thesis.

Up to here, all elastic objects considered have been 3-dimensional, as the theory tries
to model real-world objects. Throughout this thesis though, we will only consider 2-
dimensional elastic bodies. The whole theory presented above remains true, with minor
changes (the tensor has only the entries related to the first two dimensions etc.), mainly
reducing the number of degrees of freedom in the optimization problem. Starting from
the next section, we will always assume the spatial dimension to be d = 2.
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2. Background and fundamentals

2.4. Introduction to shape optimization

In this section, we will formulate a basic rating of shapes. Let J [v, u[v]] be a functional
depending on a design parameter v (which describes the shape) and a displacement u[v].
The design variable will be of phase field type and thus a continuous function D → R.
More details will be given below. As suggested by the notation, u depends on v, specifically
by a state equation, which is the equation of linear elasticity (discussed in Section 2.2)
in this case. In this setup, shape optimization can be formulated as a minimization of
a target functional J [v, u[v]] under the constraint that u solves the equation of linear
elasticity for the given design parameter v.
From the mathematical point of view, two fundamental questions have to be considered:

Is the optimization problem well-posed, i. e. is there a (possibly unique) solution and what
are the optimality conditions for these solutions? For insights on these questions, we refer
to [All02, Chapter 3].
We formulate the optimization problem as

min
v
J [v, u[v]] ,

s. t. u[v] = arg min
ũ
E [v, ũ] ,

where E [v, ũ] is the linear elastic energy. This energy and the target functional J [v, u[v]]
will be defined below. We have to make sure that the deformation, as well as the volume
of the shape described by v, are measured by J [v, u[v]], as not doing so will result in
trivial solutions. It is alternatively possible to prescribe a given volume for the set of
acceptable shape instead of assigning a “cost” to it. Note, that this decision influences the
set of admissible shapes, the shapes that are considered in the minimization of J [v, u[v]].
Furthermore, we have to introduce a term measuring the interface length of the consid-

ered shapes. Without such a term, in many configurations arbitrarily fine structures are
preferred, making the optimal shape undefined and the optimization problem ill-posed.
The interface-measuring term acts as a regularizer and is usually weighted by a small
constant.
Using all three of the described terms, shape optimization becomes well-defined and has

been treated in [PRW12] for a hyperelastic and linear elastic, one-scale setting. In [All02],
shape optimization using a homogenization method is described, which treats the issue
of arbitrarily fine microstructures by upscaling the microstructures into a homogenized
tensor.
The exact definitions of J [v, u[v]] and E [v, u] will vary throughout this thesis, depending

on the problems considered in the respective chapters. Still, in all cases, J will have the
structure

J [v, u[v]] =W [v, u] + νVε[v] + βLε[v] ,

for constants ν, β > 0. The compliance W [v, u] measures the deformations, Vε[v] measures
the volume of the shape described by the design parameter v and the interface term Lε[v]
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2.5. Phase fields

measures the length of the perimeter of the shapes in D̊. The values of these constants
will determine, how much material is introduced into the considered shapes and how much
microstructure is feasible.

The definition of E [v, u] will depend on the setup considered in the respective optimiza-
tion problem: There may be a deterministic or stochastic load scenario (where the latter
consists of several loads that occur with certain probabilities) and different boundary
conditions.

All functionals will be described in detail in the respective chapters.

2.5. Phase fields

In all three models discussed in this thesis, the shape in question is described by a phase
field as a design parameter. In general, a phase field is defined as a continuous function
v ∈ L2(D,R), of which two values a ∈ R and b ∈ R are identified as phases. The most
common choices are a = −1, b = 1 and a = 0, b = 1. In any case, a and b represent
different materials, e. g. a soft and hard material, void and material or a general domain
decomposition as it is used in segmentation problems.

To examine the basic properties of phase field representations, let O ⊂ D be the
subdomain represented by the phase b of a phase field. For now, assume that a = −1, b = 1
or a = 0, b = 1. Other ranges can be handled by methods similar to the ones described
in the following sections.

2.5.1. Volume measurements

To measure the volume of O, we first introduce the characteristic function of v. It is
defined by

χ(v) =
1

4
(v + 1)2 for a = −1, b = 1 and χ(v) = v for a = 0, b = 1 .

As O = {x ∈ D : χ(v(x)) = 1}, the volume is given by

Vε(O) =

∫

D
χ(v(x)) dx ,

which can be calculated for any given phase field. Note, that the volume behaves as
expected for pure phases, i. e. v = a or v = b, but admits intermediate values for values
of a < v < b. Note that in the case of a = −1, b = 1 a “mixture” of 50% hard and 50%
soft material would not have volume 1

2
with this definition of χ.

Nevertheless, we use this definition of χ(v) in two of the three models discussed in this
thesis, as it is smooth on R. The values of v that are important are the pure phases
and errors on (the relatively small) transitional regions are acceptable. The width of this
region is controlled by a parameter ε > 0, which role will be treated in more detail in the
following section.
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2. Background and fundamentals

2.5.2. Interface length

As v is continuous, there is no sharp interface, but an interface region of width ε, making
it meaningless to define a length for any ε > 0. Still, the transitional region in between
D and D \ O can be interpreted as an approximation of the circumference of O.
A more meaningful measure can be defined based on work by Modica and Mortola

[MM77]. First, let

ψ(v) :=
9

16

(
v2 − 1

)2 or ψ(v) =

{
32
π2 (1− v)v v ∈ [0, 1]

∞ else

be a double-well potential for the cases a = −1, b = 1 and a = 0, b = 1, respectively. ψ(v)
has two minima at v = a and v = b and will be used to push the phase field towards the
two phases. Let ε > 0 and define the approximated interface length

Lε[v] :=
1

2

∫

D
ε|Ov|2 +

1

ε
ψ(v) dx . (2.7)

Lε[v] consists of two weighted terms: the double-well potential and a measure of the
areas, where |Ov| 6= 0. Letting ε → 0 pushes v towards the pure phases, while an ε > 0
determines the width of the interface region where v 6∈ {a, b}. More precisely, for ε→ 0,
Lε[v] Γ-converges to the length of the interface.
To understand this type of convergence, first consider the definition:

Definition 13. Similar to [Bra06, Theorem 2.1], let X be a topological space and
Fε, F : X → [−∞,∞]. Then Fε Γ-converges to F0 iff the following conditions hold

1. lim inf inequality: For every x ∈ X0 and for every sequence xε → x

F0(x) ≤ lim inf
ε→0

Fε(xε) (2.8)

holds.

2. Recovery sequence/lim sup-inequality: For every x ∈ X0 exists a sequence xε → x
which fulfills

F0(x) ≥ lim sup
ε→0

Fε(xε) . (2.9)

To explore an important property of Γ-convergence, consider minimizers of Fε and F0:
Let mε := minxε∈Xε Fε(xε) and m0 := minx0∈X0 F0(x0) and the following definition.

Definition 14. Fε is equi-coercive if there exists a lower semicontinuous coercive function
Ψ, s. t. Fε ≥ Ψ for all ε. Cf. [DM93, Definition 7.6 and Proposition 7.7] for a more detailed
introduction.
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2.5. Phase fields

Corollary 15 (Adapted from [Bra06, Chapter 1]). Let X be a topological space. If Fε
is equi-coercive and Fε Γ-converges to F0, then minimizers mε of Fε converge to the
minimizers m0 of F0 and every cluster point of minimizing sequences is a minimum of
F0.

Proof. For equi-coercive families, equation (2.8) implies

inf F0 ≤ F0(x0) ≤ lim inf
ε→0

Fε(xε) = lim inf
ε→0

inf Fε .

Additionally, equation (2.9) leads to

inf F0 ≥ lim sup
ε→0

inf Fε .

When modeling shape optimization problems with phase field approaches, interfaces
between different material domains are smeared out: Instead of a sharp interface, an
interface region of width ε > 0 is introduced. Thus, a notion of convergence for ε → 0,
is desirable, as it provides a sense of convergence towards a limit problem. With those
definitions, we can now prove that the interface measure Lε[v] approximates the interface
of the described shape.

Theorem 16 (Adapted from [Bra06, Theorem 7.3]). For

ψ =
9

16

(
v2(x, y)− 1

)2 for a = −1 , b = 1 or ψ =
32

π
(1− v)v for a = 0 , b = 1

the functional (2.7) Γ-converges to

L0[v] =

{
Hn−1(∂{v = 1} ∩ D) if v ∈ [a, b] almost everywhere ,
∞ else .

with respect to the L1-topology.

Proof. The proof will only be given in one dimension to illustrate the concepts and will
follow along the lines of [Bra06, Theorem 7.3]. For a proof of the theorem in higher
dimensions, refer to that source.

Suppose, that Lε[vε] < ∞, let ζ > 0 and an interval I such, that vε is equal to ζ and
1−ζ at the endpoints of that interval. Then - using the algebraic inequality a2 = b2 ≥ 2ab
and a change of variables s = vε(t) - the Modical–Mortola trick (cf. [Bra06]) implies

∫

I

(
1

ε
ψ(vε) + ε|v′ε|2

)
dt ≥ 2

∫

I

√
ψ(vε)|v′ε| dt ≥ 2

∫ 1−ζ

ζ

√
ψ(s) ds =: Cζ . (2.10)

This implies, that the number of transitions between ζ and 1−ζ is bounded by a constant
A for all ε..
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Since
∫
D ψ(vε) dt ≤ εC the statement

lim
ε→0
H({x ∈ R : min

y∈{0,1}
|vε(x)− y| ≥ δ}) = 0

holds for all δ > 0. This is called the convergence vε → {0, 1} in measure. Additionally
vε → v with v piecewise constant taking values a and b only. Denote the discontinuity
points of v by S(v). Then

lim inf
ε
Lε(vε) ≥ Cζ#(S(v))

and the lower bound is achieved because ζ can be chosen freely.
For the limsup inequality take w as the solution of

w′(s) =
√
ψ(w) w(0) =

a+ b

2
.

(suppose a global solution exists for simplicity) and define wε = w( t
ε
). w is strictly

increasing and a < w(t) < b for all t. Furthermore limt→−∞w(t) = a and limt→∞w(t) = b,
which implies that

wε(t)→ w̄ =

{
a t < 0

b t ≥ 0 .
(2.11)

Every wε optimizes (2.10) in the sense that

1

ε
ψ(wε) + ε|w′ε|2 = 2

√
ψ(wε)|w′ε|

and as such provides a recovery sequence for v = w̄ as given in (2.11). For more general
v with v(t) ∈ {0, 1} we can construct a recovery sequence by gluing wε((t̄ ± t)/ε) for
t̄ ∈ S(v).

Remark 17. [Bra06, Theorem 7.3] gives an more general result: For general a, b ∈ R
and ψ ≥ 0 with ψ(v) = 0 only if v = a or v = b and ψ(v) ≥ c(|v|2 − 1), the functional
converges to a multiple of the perimeter.

Thus, Lε is a suitable measure of the interface length, for the two functions ψ(v) intro-
duced in Theorem 16, or if the appropriate constant is used. Additionally, the interface
width is determined by the parameter ε and can thus be controlled.

2.5.3. Applications to shape optimization

To model a shape optimization problem, two kinds of materials are associated with the two
phases: A hard material is used wherever v = b and a softer material is used wherever
v = a. We define the elastic energy stored in a material under a given deformation
u : D 7→ Rn as

Wδ :=

∫

D
((1− δ)χ(v) + δ)CLNε[u] : ε[u] dx . (2.12)
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In formula (2.12), δ > 0 is the ratio between hard and soft material, ε[u] = DuT+Du
2

is the
strain tensor or symmetrized gradient and CLN is a Lamé–Navier type tensor.
Let `[u] :=

∫
ΓN
g · u da and define the equilibrium displacement u ∈ W 1,2(D,Rd) as the

minimizer of the elastic free energy

E [v, u] =Wδ[u]− `[u] .

For shape optimization, a target functional, i. e. the functional by which admissible
shapes are rated, has to be defined. For the computations described here, a compliance
type functional is used: Let ν, β ∈ R+ and

J [v, u] = 2Wδ[v, u] + νVε[v] + βLε[v] . (2.13)

Optimizing (2.13) over v and u does not give useful results in the shape optimization
context. Instead, minimizing J [v] = J [v, u[v]] where u[v] = arg minu E [v, u] over v only
considers the equilibrium displacements for each shape under given loads (which will be
defined by boundary conditions).

Lemma 18. Let v ∈ W 1,2(D) with a ≤ v ≤ b and arg minu E [v, u[v]] ∈ W 1,2, then

Γ – lim
ε→0

J [vε, u] = J [v, u]

with respect to the L1(D)-topology.

For a proof of this lemma cf. [PRW12] (using some arguments of [Bra02]).
Be reminded, that not all double-well potentials ψ(v) ensure that a ≤ v ≤ b: The

potential

ψ(v) =

{
32
π2 (1− v)v v ∈ [0, 1]

∞ else

does ensure v is within the bounds, as the energy is ∞ else, while the potential
ψ(v) := 9

16
(v2 − 1)

2 allows v 6∈ [−1, 1]. In numerical applications, this fact is not relevant
as long as the outliers only form a low dimensional (0-dimensional) subset, which is true
in most applications.
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3. Stochastic dominance constraints
in shape optimization

In this chapter, we will pick up concepts of risk aversion from finite dimensional stochastic
optimization. There are two lines of research that have been pursued in this context: Risk
aversion in the objective functional and risk aversion using constraints. Risk aversion
via risk measures (statistical parameters) was described in [PR07], practically meaningful
risk measures have been identified enabling multi-period decision making. In this context,
there have been mean-risk models in a two-stage linear setting [Ahm06, Kri05], a two-stage
mixed-integer linear setting [ST06, RV08] and in a multistage setting [AR15, Sha12].
The other line of research focuses on risk aversion using constraints and concepts of

stochastic dominance. Instead of risk minimization, this approach bounds the risk us-
ing partial orders on random variables, defining acceptable sets by comparison with a
benchmark. Orders on families of random variables have been considered in [MS02]. The
incorporation of dominance constraints into stochastic programs was done by Dentcheva
and Ruszczyński [DHR07, DR03, DR04, DR08] in several settings, concerning finite and
infinite Banach spaces for the decision variables.
Stochastic dominance in optimization under uncertainty has been considered on the

topics of basic analysis of models [DR03, DHR07, Lue08, GNS08, GGS11, DR13, DR14],
algorithm development [RR08, DR10, DS10], and industrial applications e. g. [CGS09,
FMRZ11, DGG+11].
In the context of shape optimization, uncertainty has attracted considerable attention.

Multi-load approaches take into account a fixed (usually small) number of load configura-
tions, cf. [AJ05, GRB03]. There are applications of robust worst-case shape optimization
in [BTN02]. In the context of beam models [Mel01] and aerodynamic design [SS15, SS09]
there have been discussions of shape optimization with stochastic loading. In [CHP+09]
an efficient optimization approach of the expected value of compliance and tracking type
cost functionals under stochastic loads has been developed. This approach makes use of
representations of cost and stochastic loads as linear combinations of basic modes and has
also been used for the optimization of risk-averse cost measures [CHP+11].
Allaire and Dapogny used adapted duality techniques to derive an efficient algorithm

for a linearization of the cost functional in a worst case optimization scenario [AD14]
and investigated different types of uncertainties in [AD15]. In the latter, they investigate
minimized stochastic cost functionals and risk measures, such as the expected cost of the
failure probabilities. Their approach is based on the Taylor expansion of the risk measure
and implies a deterministic algorithm with a cost depending on the number of realizations

22



3.1. Basic concepts of stochastic dominance

of the random configuration.
Dambrine, Dapogny and Harbrecht researched elastic shape optimization with stochas-

tic surface loads and developed a deterministic algorithm that minimized the expected
cost [DDH15]. This algorithm relies on the fact, that the objective functional and its
gradient are determined by the first-order moments of the surface load and on an efficient
optimization of the integrals in question in six dimensions.

Furthermore, Pach described the concept of stochastic dominance in the context of
parametric shape optimization in [Pac14].

The model and results described in this chapter have been published in [CRST17].
To the best knowledge of the authors of that publication, there is no further work on
numerical techniques for risk-averse shape optimization handling general, nonanticipative
domains as variables.

In this context, a benchmark is introduced that defines the set of admissible shapes
as the shapes that are smaller than the benchmark in a certain order, where there are
multiple options to chose that order. In this thesis, the stochastic orders are defined by
considering a given set of scenarios defined by certain probabilities and loads. Contrary
to the models of shape optimization, that enforce risk aversion through the objective
functional and find a shape minimizing that objective functional, this approach allows us
to compare shapes and find the most suitable one out of the set of admissible shapes.

In this chapter, we will first define the basic concepts of stochastic orders and stochastic
dominance. Then, we will define stochastic energies that can be used as constraints
for an optimization problem. Here, several scenarios are introduced as realizations of
a stochastic variable. The stochastic functionals will be rewritten so that they can be
evaluated using only finitely many evaluations of the underlying elastic energies. Finally,
some modifications have to be made to allow a numerical evaluation of all terms appearing
in any of the functionals.

3.1. Basic concepts of stochastic dominance

This section gives a short introduction to stochastic orderings and stochastic dominance.
The motivation for this field arises from the need to classify general stochastic quantities,
e. g. bets, investments or risks of failure. Pointwise or statewise comparison of stochastic
quantities is — in general — not of interest and comparing basic properties like the mean
does not yield sufficient insight into which scenarios might fail and whether those scenarios
are of high or low risk. Thus, more meaningful stochastic orders are needed, some of which
will be introduced below. For a deeper insight, we refer to [BMRM16] and [MS02].

First, let us define some basic concepts of probability theory. For these definitions, we
follow along the lines of [BMRM16].

Definition 19. Let X be a real-valued stochastic variable. Define the cumulative distri-
bution function by

FX(t) := PX((−∞, t])
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3. Stochastic dominance constraints in shape optimization

and the survival function by
F̄X(t) := 1− FX(t) .

Furthermore, the integrated survival function is given as

ΠX(t) :=

∫ ∞

t

F̄ (z) dz .

For some representations, we will also need the quantile function

qX(t) := inf{x|F (x) ≥ t} .

All functions defined in Definition 19 can be used to classify random variables. This
idea will be used in the next section to create orderings that sort random variables by
“risk”, in an appropriate sense.

3.1.1. Stochastic orderings

An order on random variables is denoted as a stochastic order. These orders compare
random variables in different ways to enable more useful measures than e. g. comparing
the mean.
In the following, we define two well known stochastic orders and discuss some of their

properties. The first order we will consider is the “usual stochastic order”, which com-
pares the survival function (and thus the cumulative distribution function) of two random
variables.

Definition 20. Let X and Y be random variables. Then the usual stochastic order �st

is defined as
X �st Y ⇔ F̄X(t) ≤ F̄Y (t) for all t .

Additionally, the notation X =st Y iff X �st Y and Y �st X is used occasionally.

To rephrase, for every value t, the order �st compares the probability of stochastic
variables exceeding that given value t. The usual stochastic order can also be defined using
quantile functions, which will be useful to prove other equivalent formulations further
below.

Lemma 21. Let X and Y be random variables.

X �st Y ⇔ qX(t) ≤ qY (t)

for all t ∈ (0, 1).

Proof. This proof has been adapted from [BMRM16, Theorem 2.2.3].
Let t ∈ (0, 1) and X �st Y . Then

[qX(t),∞) = inf{x : FX(x) ≥ t} ⊇ inf{x : FY (x) ≥ t} = [qY (t),∞)
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3.1. Basic concepts of stochastic dominance

and thus qX(p) ≤ qY (p).
Now let qX(t) ≤ qY (t) for all t ∈ (0, 1) and let U be uniformly distributed on (0, 1).

Then {qX(U(ω)) ≤ t} ⊇ {qY (U(ω)) ≤ t} for all t ∈ R and

FX(t) = P[qX(U) ≤ t] ≥ P[qY (U) ≤ t] = FY (x)

for all t ∈ R. Thus X �st Y .

Another common way of defining stochastic orders is by verifying E[f(X)] ≤ E[f(Y )]
for a suitable class of functions f , where the expected values exist. Which class is chosen
determines the stochastic order defined and allows for an easy insight into the relationships
between those orders. For the usual stochastic order, the definition using expected values
is achieved using increasing functions.

Lemma 22. Let X and Y be random variables. Then the following statements are equiv-
alent:

1. X �st Y ,

2. There exist two random variables X̂ and Ŷ on the same probability space with
X̂ =st X and Ŷ =st Y and P[X̂ ≤ Ŷ ] = 1,

3. f(X) �st f(Y ) for all increasing functions f .

4. E[f(X)] ≤ E[f(Y )] for all increasing functions f .

Proof. This proof has been adapted from [BMRM16, Theorem 2.2.5].
We prove:

1⇔ 2 Let U be a uniformly distributed random variable on (0, 1). Then F−1
X (U) =st X

and F−1
Y (U) =st Y and by Lemma 21 we can conclude that P[F−1

X (U) ≤ F−1
Y (U)] =

1.

To prove the inverse statement, suppose that X̂ and Ŷ are two random variables on
the same probability space and P[X̂ ≤ Ŷ ] = 1. From the definition of the cumulative
distribution function, for every t ∈ R the relation

{ω ∈ Ω|X̂(ω) > t} ⊆ {ω ∈ Ω|Ŷ (ω) > t}

holds. Thus, FX(t) ≥ FY (t) for all t.

1⇔ 3 Consider X̂ and Ŷ as above. Then P[f(X̂) ≤ f(Ŷ )] = 1 and thus f(X) �st f(Y ).

Statement 1 immediately from statement 3 with f(x) = x.
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3. Stochastic dominance constraints in shape optimization

1⇔ 4 As above, E[X] = E[X̂] ≤ E[Ŷ ] = E[Y ] and with statement 2 E[f(X)] ≤ E[f(Y )]
for all increasing functions f for which both values exist.

Finally, observe that the indicator function χ(x,∞) is increasing. Thus
FX(x) = E[χ(x,∞)(X) ≤ E[χ(x,∞)(Y )] = FY (x).

The class of functions considered in condition 4 characterizes the stochastic order and is
a common way to define it. Considering a second important example of stochastic orders
will clarify, why this formulation is convenient:

Definition 23. The increasing convex order is defined by

X �icx Y ⇔ ΠX [t] ≤ ΠY [t] for all t ∈ R .

Π denotes the integrated survival function, as given in Definition 19. Again, the notation
X =icx Y iff X �icx Y and Y �icx X is defined.

This order — like the usual stochastic order — can be defined by several equivalent
statements, which reveal different properties of �icx.

Lemma 24. The following properties are equivalent

1. X �icx Y ,

2. E[(X − t)+] ≤ E[(Y − t)+] for all t ∈ R,

3. E[f(X)] ≤ E[f(Y )] for all increasing convex functions f .

Proof. This proof has been adapted from [BMRM16, Theorem 2.3.2].
We prove the following equivalences:

2⇔ 3 (X− t)+ is increasing and convex for all t ∈ R and every increasing convex function
f can be written as the limit of positive linear combinations of functions
fa(x) = (x− d)+.

1⇔ 2 The equation E[X] =
∫∞

0
F̄X(x) dx holds for any X non-negative with finite mean.

Accordingly, E[(X − t)+] =
∫∞
t
F̄X(x) dx = ΠX(t) for any such X. We conclude,

that ΠX [t] ≤ ΠY [t]⇔ E[(X − t)+] ≤ E[(Y − t)+].

Condition 3 illustrates the importance of defining stochastic orders using the expected
value and a given class of functions, as it makes �st and �icx easily comparable. We can
immediately deduce as a consequence of Lemma 24 and Lemma 22, that X �st Y implies
X �icx Y and that the opposite implication does not hold.
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3.1.2. Stochastic dominance

The definition of stochastic dominance arises out of the desire to avoid risks: In our
context, lower values corresponding to lower risk of failure are preferred. Thus, X being
stochastically dominant to Y implies that X has a lower risk of failure than Y (contrary to
the notion used in financial models, where high values are often preferred). All methods
described in this chapter can be applied in such a context, too, in almost all cases by
small and straightforward changes to the inequalities.

This risk aversion can be defined in various ways, one of which is first and second order
stochastic dominance.

Definition 25. Let X and Y be random variables.

1. X first-order dominates Y if and only if

F̄X(t) ≤ F̄Y (t) for all t .

2. X second-order dominates Y if and only if

Πx(t) ≤ ΠY (t) for all t .

3. Consistent with the definitions above, zeroth-order stochastic dominance can be
defined as a statewise comparison.

We say “X is n-th-order dominant over Y ” if X n-th-order dominates Y . Note, that
first-order dominance can be equivalently defined by X �1 Y ⇔ Fx(t) ≥ FY (t) for all t.
In the following, we will denote first-order dominance as �1 and second-order dominance
as �2. These will be the only orders of stochastic dominance that will be explored in more
detail here. Lemmas 22 and 24 imply that �1=�st and �2=�icx, which in turn implies
that X �1 Y ⇒ X �2 Y . In more general terms every order of stochastic dominance
(higher orders of stochastic dominance can be defined iteratively) defines a stochastic
order and, as a consequence of definition 25, X �k Y ⇒ X �l Y if and only if k ≤ l. The
opposite implication does not hold.

Example

To get a better understanding of what stochastic dominance means, we will consider an
example: Suppose, there were three lotteries that would determine the price of a new car
by a fair die roll (P[1] = P[2] = · · · = P[6] = 1

6
). Based on the outcome between 1 and 6,

the lotteries would require the player to pay a certain price. Table 3.1 lists the prices for
each possible result.

Lottery A would let the player win the car for free if the result of the die roll was 1,
for 1000$ if it was a two etc. We can easily see, that lottery B does not give a better
result than lottery A for each state (for the result 2, lottery B is worse). Still, lottery B is
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3. Stochastic dominance constraints in shape optimization

1 2 3 4 5 6
A 0 1000 1000 10000 20000 20000
B 0 5000 1000 0 20000 20000
C 0 1000 2000 10000 18000 20000

Table 3.1.: Prices for the three lotteries depending on the outcome of the die roll.

clearly better for any player, who prefers lower risk, as P[B ≤ 5000] > P[A ≤ 5000]. This
fact is represented in the cumulative distribution functions of A and B (s. Figure 3.1) and
results in A �1 B. In this sense, first-order dominance guarantees that lottery B is not
more risky for the player than lottery A (and less risky, if A 6=1 B as it is for the A and
B described here).

Now consider lottery C. As FC(1000) < FA(1000), C does not first-order dominate A,
but it does require the player to pay a lower price than lottery A when the die rolls a 5. In
this sense, lottery C is suitable for players, who accept higher risks for some values, as long
as they are compensated in the higher price regions. This trade-off is what second-order
stochastic dominance guarantees. For the given variables, we can compute ΠC(t) < ΠA(t)
for all t ∈ R directly from Table 3.1 and thus conclude, that indeed C �2 A.

1000 5000 10000 20000

0.2

0.4

0.6

0.8

1

t

F (t) A
B
C

Figure 3.1.: Cumulative distribution functions of random variables A, B and C.
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3.2. Application to discrete stochastic variables

The conditions described above have to be checked at an infinite number of points, even
when using discrete stochastic variables, e. g. a finite number of scenarios for which an
admissible shape is compared to a benchmark shape. To reduce the computational cost
of the inequality constraints, a formulation which allows checking only a finite number of
constraints is more practical. Such formulations can be derived using some properties of
the underlying stochastic order (s. also [MS02, Subsection 8.1.2]). First, we will consider,
where the first and second order dominance constraint have to be checked to ensure that
they hold.

Theorem 26. Let X and Y be random variables with discrete distributions and K the
number of scenarios. Then

1. X �1 Y if and only if P[X ≤ η] ≥ P[Y ≤ η] for all η ∈ {Y (ωi) : 1 ≤ i ≤ K}

2. X �2 Y if and only if E[X − η]+ ≤ E[Y − η]+ for all η ∈ {Y (ωi) : 1 ≤ i ≤ K}

Proof. Following [MS02] and [Pac14], we prove several statements:
1 ⇒ follows immediately from the definitions. For ⇐, we consider three cases

Let η ∈ [yn−1, yn) for 2 ≤ n ≤ K. The fact that Y is discrete (yn−1 and yn are consecutive
points) implies

P[Y ≤ η] = P[Y ≤ yn−1] ≤ P[X ≤ y−1] ≤ P[X ≤ η] .

Let η < y1. In this case P[Y ≤ η] = 0 ≤ P[X ≤ η].

Let η > yK . P[X ≤ yK ] ≤ P[X ≤ η] holds true due to the monotonicity of the distribu-
tion function. Together with the assumption, this implies P[Y ≤ yK ] = 1 and with
P[Y ≤ yK ] ≤ P[X ≤ yK ] the inequation P[X ≤ η] = 1 ≤ P[Y ≤ η].

To prove 2, let X �2 Y and deduce the required statement from the definitions. To
prove ⇐, define

AC [η] := E[C − η]+ =
K∑

n=1

πCn [cn − η]+

for C = X or C = Y and cn = xn if C = X and cn = yn if C = Y . From the assumption,
we get AX(yn) ≤ AY (yn) for all n ∈ {1, . . . , K}. AY is convex and piecewise linear on
each of the intervals (−∞, y1], (yn, yn+1] for n ∈ {2, . . . , K} and (yK ,∞).
Again, consider three cases:
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3. Stochastic dominance constraints in shape optimization

Let η ≤ y1. Choose a η0 ≤ η with η0 ≤ x1 and define the set

K ′ := {n ∈ {1, . . . , K} : xn ≤ y1} .
Then

AX [η0]− AX [y1] =
K∑

n=1

πXn xn − η0 −
∑

n/∈K′

πXn xn +
∑

n/∈K′

πXn y1

=
∑

n/∈K′

πXn y1 − η0 +
∑

n∈K′

πXn xn

≤
∑

n/∈K′

πXn y1 − η0 +
∑

n∈K′

xXn y1

= y1 − η0 . (3.1)

Additionally,

AY (η0)− AY (y1) =
K∑

n=1

πYn yn − η0 −
K∑

n=1

πYn yn + y1 = y1 − η0 (3.2)

using that for η ≤ y1, the statement AY (η) =
∑K

n=1 π
Y
n yn − η holds.

Now let λ ∈ [0, 1], such that η = λη0 + (1− λ)y1. As AX is convex, we derive using
(3.1), (3.2) and the assumption

AX(η) = λAX(η0) + (1− λ)AX(y1)

= AX(y1) + λ(AX(η0)− AX(y1))

≤ AX(y1) + λ(y1 − η0)

≤ AY (y1) + λ(y1 − η0)

= AY (y1) + λ(AY (η0)− AY (y1))

= AY (λη0 + (1− λ)y1) = AY (η) .

Let yn−1 ≤ η ≤ yn. Consider

AX(η) = λAX(yn−1) + (1− λ)AX(yn)

≤ λAY (yn−1) + (1− λ)AY (yn)

= AY (λyn−1 + (1− λ)yn) = AY (η) .

Let η ≥ yK . AX and AY are non-negative and non-decreasing. Then the assumption
implicates

0 ≤ AX(η) ≤ AX(yK) ≤ AY (yK) = 0

which shows AX(η) = AY (η) = 0.

This concludes the proof.

Theorem 26 implies that it is sufficient to check random variables against a finite number
of realizations.
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3.3. The stochastic dominance problem

Stochastic dominance optimization uses the stochastic orders that were introduced in the
previous sections to compare admissible shapes against a given benchmark shape while
minimizing another property, in our case the volume (and an additional regularization
term). As the benchmark shape defines a lower limit to the stability of the admissible
shapes, the optimal shape will be a shape of minimal volume, that is “at least as stable”
as the benchmark shape in the sense of first or second-order stochastic dominance.

To begin, let us formulate the target functional for the stochastic dominance problem:
We use a phase field with pure phases a = −1 and b = 1 as design variable and the target
functional introduced in Section 2.4, which is again defined in this one-scale, strain-based
context as

W [v, u] =

∫

D
C(v)ε[u] : ε[u] dx , (3.3)

Vε[v] =

∫

D
χ(v) dx , (3.4)

Lε[v] =
1

2

∫

D
ε|Ov|2 +

1

ε
ψ(v) dx . (3.5)

Note, that Vε[v] and Lε[v] have been introduced in Section 2.5 together with
χ(v) = 1

4
(v + 1)2.

The total free energy is defined as

E [v, u] =W [v, u]− `[v]

where `[v] =
∫

ΓN
g ·u da is the boundary term incorporating the boundary forces g on ΓN .

The stochastic dominance optimization problem is formulated using a benchmark object
described by a design variable vb and a random variable describing displacements, which
is denoted as ω. We define for a γ > 0

G[v] = Vε[v] + γLε[v]

as the functional to minimize and formulate a stochastic constraint optimization problem

min
v
G[v]

s. t. W [v][ω] � W [vb][ωb] .

For the order �, either �1 or �2 is used. The regularization term Lε[v] is applied to
the target functional G instead of the constraint, such that the constraint only measures
stochastic orders of deformations resulting from stochastic forces acting on the shape given
by the phase field v. The regularization just serves as a measure to prevent arbitrarily
fine structures and is not directly dependent on the stochastic variables used here. Thus,
it is advisable to not apply it in terms used in stochastic orders.
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3. Stochastic dominance constraints in shape optimization

We use the methodology described above to consider W [v] in the target functional,
utilizing the equation P[W [v, u[v]] ≤ η] =

∑K
k=1 πkW [v, u[v](ωk)]. First-order dominance

can be rewritten as an inequality that has to hold for all j:

W [v, u[v]] �1 W [vb, u[v]] (3.6)

⇔
K∑

k=1

πkH(W [vb, ωj]−W [v, ωk]) ≥
K∑

k=1

πkH(W [vb, ωj]−W [vb, ωk]) .

Similarly, second-order dominance turns into

W [v, u[v]] �2 W [vb, u[v]] (3.7)

⇔
K∑

k=1

πk max{W [vb, ωj]−W [v, ωk], 0} ≤
K∑

k=1

πk max{W [vb, ωj]−W [vb, ωk], 0} .

These formulas are not suitable to be used in numerical optimization because they are
not differentiable. Thus, we have to use smooth approximations of H(x) and max{x, 0},
which will be discussed when needed in the next section.

3.4. Discretization

The domain will be discretized using multi-linear finite elements on an adaptive mesh
composed of quadratic finite elements discretizing [0, 1]2. The mesh is structured using a
quad-tree as underlying hierarchical data structure. Here, we prescribe that the difference
in levels along element faces is at most one level, i. e. there is at most one hanging node on
each edge that is shared by two elements. We denote the space of continuous, piecewise
bilinear finite elements by Q1

h(Dh), where h is a piecewise constant mesh size function.
Values at the hanging nodes are obtained by interpolation from the nodes that are sharing
the same edge.
Consider a quad-tree T (also known as full four-ary tree), i. e. a tree in which every

node has either zero or four children. This data structure can be used to hierarchically
partition two-dimensional space, in our case the domain D = [0, 1]2. The root of T
represents the whole domain D and with every level, the domain is sectioned into four
quadrants. Figure 3.2 shows an example of such a mesh and the associated quad-tree.
This mesh type implements an adaptive structured mesh with elements, that only differ

by scale and translation. Thus, basis functions on the elements remain simple and can
be evaluated in a computationally efficient manner. Finite element nodes can easily be
identified and enumerated using hash keys and a hash map. The details will be described
in the next section.

Refinement

When an element T ∈ τ is marked for refinement, the level-one transitions between
elements have to be ensured. Thus, all neighbor elements TN ∈ τ with TN ∩ T 6= ∅ have

32



3.4. Discretization

Figure 3.2.: Example of a quad-tree and the corresponding finite element mesh.

to be considered and recursively refined, if they are on a coarser level than T . Figure 3.3
shows an example for the refinement of a single element which requires a neighboring
element to be refined first.

Figure 3.3.: Left : Example of element neighborhood (in gray) to be considered when
refining an element (marked in black): light gray elements are considered,
but no action is needed, gray elements need to be refined in order to limit the
number of hanging nodes on edges to at most 1. Middle: Same mesh after the
top right element has been refined. Right : Mesh after completed refinement.

The resulting algorithm can be implemented as lined out by the pseudo code in Algo-
rithm 1: The function refine(T ) checks the neighbors of T and recursively calls itself if
necessary, then replaces an element T by its four child elements of the next finer level.
The algorithm terminates, because each element has to be refined at most once, because
refining every element refines all marked elements and transforms an admissible mesh into
an admissible mesh.

The nodes of the finite element mesh are identified using a hash key: for a node
x ∈ Q1

h(Dh), the hash key is defined as h = [level|x1|x2|x3], where level is the level
of the element containing the node, x1 and x2 are the cartesian coordinates in multiples
of the local mesh width 2−level and x3 = 0 is reserved for a 3D version of this mesh, which is
not used in this thesis but is implemented using oct-trees instead of quad-trees. With this
structure, global node labelings can be implemented using hash-maps (unordered_map in
C++) for good lookup performance.

When neighboring elements have different levels, hanging nodes are created on the
shared edge (see Figure 3.2 for an example), which cannot be used as degrees of freedom
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Algorithm 1: Mesh refinement with neighbor level checking.
Data: An admissible mesh with a set R of elements marked for refinement
Result: An admissible mesh where at least all elements in R have been refined
for T ∈ R do

refine(T )
end

Function refine(T )
for TN ∈ {neighbors of T} do

if level (TN) < level (T )− 1 then
refine(TN)

end
end
T ← 4 elements of level(T )+1

(as that could lead to non-continuous functions). To avoid unusually complicated supports
of basis functions, it is advisable to still assemble using standard hat basis functions for
each element, i. e. including the hanging nodes, redistributing the associated values in a
postprocessing step.
In the following, we consider the handling of hanging nodes via prolongation and restric-

tion operators. Let u be a piecewise bilinear, globally continuous finite element function,
which is uniquely defined by its values on all degrees of freedom. Let x be a hanging node
and nx1 and nx2 the nodes that share the edge with x on the coarser of the two neighboring
elements. As u is required to be globally continuous, the value at the hanging node is
determined by the average of the adjacent nodes sharing the same edge. Thus, we can
define the prolongation operator P as

Pu(xi) =

{
1
2

(u(nx1) + u(nx2)) if xi is a hanging node
u(xi) else

and write û = Pu.
To define the restriction operator R, consider a finite element operator L assembled on

the full set of all nodes. The equation

Lû · û = LPu · Pu = P TLPu · u .

has to hold true and we can deduce R = P T .
It is important to note that neither P nor R is invertible and that R 6= P−1, not even

in the sense of a pseudo inverse! As an equivalent statement, in general, RPu 6= u.
The assembling of finite element operators and finite element functions can be executed

on the full mesh, using the usual hat basis functions for Q1
h(Dh) finite elements. All

required quantities then have to be restricted or prolongated as necessary.
The mesh has been implemented using the QuocMesh library [QM].
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3.4.1. Discretization of energies

Having defined a mesh for finite elements, we can now discretize the continuous energies
discussed above. This will allow us to numerically solve the constraint optimization
problem resulting from the continuous problem. We follow the usual path of discretizing
all required quantities into functions in Q1

h(Dh) using an interpolation operator Ih and
replacing all integrals by a suitable quadrature rule.

First, the phase field v and deformation u are approximated by V ∈ Q1
h(D) and

U ∈ Q1
h,ΓD

(Dh), respectively, defining the space Q1
h,ΓD

(Dh) as the subset of Q1
h(Dh) with

vanishing trace on ΓD. Furthermore, we require that V |ΓN = 1 for discrete phase field
functions V . The volume and interface measuring terms (cf. (3.4) and (3.5)) are approx-
imated by

Vε(V ) :=
∑

T∈T

|T |
∑

k∈KT

ωkIh(χ(V (qk)))

Lε[V ] :=
1

2

∑

T∈T

|T |
∑

k∈KT

ωkε|∇V (qk)|2 +
1

ε
Ih(Ψ(V (qk))) ,

for any V ∈ Q1
h(Dh). KT denotes the index set of a quadrature rule and for k ∈ KT , the

quadrature weights are denoted by ωk and the quadrature points by qk. For the energies
defined in this chapter, we use the center of mass quadrature rule (k ∈ {1}, ω1 = 1 and
q̄1 = (1

2
, 1

2
)t), as this rule is exact on bilinear functions on quadratic finite elements. As

tensor we set C(V ) = ((1− δ)χ(V ) + V )CLN , where CLN is a Lamé–Navier type tensor,
as introduced in (2.4). The compliance term W [v, u[v]] (defined in (3.3)) is discretized as

W[V, U [V ]] :=
1

2

∑

T∈T

|T |
∑

k∈KT

ωk((1− δ)Ih(χ(V (qk))) + δ)CLNε[U(qk)] : ε[U(qk)]

The Dirichlet boundary ΓD and the inhomogeneous Neumann boundary ΓN are resolved
on the adaptive rectangular mesh.

Next, we discretize ` as

l[U ] :=
∑

∂T∈ΓN

∑

k∈K∂T

ωΓN ,kIh(g(qΓN ,k) · U(qΓN ,k)) .

For k ∈ K∂T , quadrature weights and quadrature points of a suitable quadrature rule on
ΓN are defined by ωΓN ,k and qΓN ,k. We obtain the discrete elastic energy

E[V, U ] := W[V, U ]− l[U ] .

The discrete cost functional, which is used to define the stochastic constraints, is given
by

J[V, U ] := 2W[V, U ] + νVε[V ] + βLε[V ]

for ν, β > 0.
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3. Stochastic dominance constraints in shape optimization

The stochastic constraints can again be reduced to checking a finite number of con-
straints. As mentioned above, approximated versions of the Heaviside and max function
are used to discretize the dominance constraints. Let α > 0 and

Hα(x) :=
1

1 + exp(−2αx)
,

maxα{x, 0} :=

√
x2 + α + x

2

be approximations of H(x) and max{x, 0}, respectively. These functions Hα and maxα
are smooth and differentiable and allow to optimize first and second order dominance
expressions numerically. To gain convergence to the exact expressions it is necessary to
let α→ 0.
The first-order dominance condition W [v, u[v][ω]] �1 W [vb, u[v][ω]] is approximated

using the formulation given in (3.6) and the smoothed Heaviside function Hα(x), which
leads to

K∑

k=1

πkHαW[Vb, U [Vb][ωj]])−W[V, U [V ][ωk]]

≤
K∑

k=1

πkHαW[Vb, U [Vb][ωj]])−W[Vb, U [Vb][ωk]] for all j = 1, . . . , K .

Similarly, the second-order dominance condition W [v, u[v][ω]] �2 W [vb, u[vb][ω]] is ap-
proximated using the smoothed max function maxα{x, 0} and the formulation given in
(3.7):

maxα{W[V, U [V ][ωk]]−W[Vb, U [Vb][ωj], 0}
≤ maxα{W[Vb, U [Vb][ωk]]−W[Vb, U [Vb][ωj]], 0} for all j = 1, . . . , K .

The discretized optimization problem can now be written as

min
v

G[V ] (3.8)

s. t. W[V ] �W[Vb] ,

where
G[V ] = Vε[V ] + γLε[V ] .

for a γ > 0 and � being �1 or �2.
Problem (3.8) is optimized using the IPOPT package [WB06], which uses an interior

point method to optimize the constrained problem. The optimizations are started with
relatively large ε > 0 (phase field regularization) and α > 0 (stochastic regularization)
parameters. After an IPOPT optimization has converged (i. e. the interior point method

36



3.5. Numerical Results

found an iterand satisfying the required thresholds given in [WB06, Section 2.5]), the
mesh is adaptively refined where the phase field is steep and, ε and α are decreased by a
factor the optimization is restarted. The optimization algorithm has converged once an
optimization run of IPOPT has converged for values ε < tolε and α < tolα, where tolε > 0
and tolα > 0 are threshold values for the respective parameters.
To be able to calculate the derivatives of the constraints (which are required by IPOPT),

we have to provide them using a formulation, that is suitable for numerical computation.
Let δ denote the Gateaux-derivative. The derivative of G[V ] can be computed directly
as δVG[V ](Θ) = δVV

ε[V ](Θ) + βδVL
ε[V ](Θ) with

δVV
ε[V ](Θ) =

∑

T∈T

|T |
∑

k∈KT

ωk∂V χ(V (qk))Θ dx and

δVL
ε[V ](Θ) =

∑

T∈T

|T |
∑

k∈KT

ωkε∇V (qk) · ∇Θ +
1

2ε
Ih(∂V Ψ(V (qk))Θ) dx, .

For the derivative δV (W[V, U [V ]]) = ∂VW[V, U [V ]] + ∂UW[V, U [V ]](∂VU [V ]) it is advis-
able to use the dual formulation, as a direct approach is computationally expensive. We
define

P := (∂2
UUE[V, U [V ]]−1)(∂UW[V, U [V ]]) (3.9)

(the dual problem) and consider

δVW[V, U [V ]]Θ = ∂VW[V, U [V ]]Θ + ∂2
UUE[V, U [V ]](P )(∂VU [V ]Θ)

= ∂VW[V, U [V ]]Θ− ∂2
UUE[V, U [V ]]P (∂2

UUE
−1[V, U [V ]](∂2

UVE[V, U [V ]])Θ)

= ∂VW[V, U [V ]]Θ− ∂2
UVE[V, U [V ]]PΘ .

For the second equation, we use the implicit function theorem which states that

∂VU [V ] = −(∂2
UUE

−1[V, U [V ]])(∂2
UVE[V, U [V ]])

in a neighborhood of V . Note, that we could use the same procedure to find δV J[V, U [V ]],
if we incorporated Vε[V ] and Lε[V ] in the constraint.

For the energies W[V, U [V ]] and E[V, U ] described here, (3.9) is solved by P = 2U and
thus, the derivative of W[V, U [V ]] can be written as

δVW[V, U [V ]] = −∂VWδ[V, U ]

using δVW[V, U ](Θ) = 1
2

∑
T∈T |T |

∑
k∈KT ωk(1 − δ)Ih(∂V χ(V ))ΘCLNε[U(qk)] : ε[U(qk)]

and δVVε[V ] and δVLε[V ].

3.5. Numerical Results

In this chapter, numerical result for two stochastic setups — a pressure plate and a
cantilever — are presented. As domain we choose D = [0, 1]2, as parameters for the
Lamé–Navier tensor λ = µ = 80, for the soft material a factor δ = 10−4 and for G a
weight of γ = 0.015625.
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3. Stochastic dominance constraints in shape optimization

Cantilever

The first application is the shape optimization of a 2D cantilever. The cantilever is
fixed on the left-hand side, which implies that u obeys homogeneous Dirichlet boundary
conditions. On three segments of the lower boundary, piecewise constant loads are applied.
In each scenario, a single load is applied to one of the segments. Different directions,
probabilities and absolute values of loads are compared using two different stochastic
loading configurations as depicted in the first and second row of Figure 3.4, respectively.
The optimization was started with a regularization parameter of ε = 0.025, which was

multiplied by 0.75 after each mesh refinement until ε = 5.93 · 10−3 was reached for the
first-order dominance in the varying load and probability configuration and ε = 7.91 ·10−3

was reached in all other cantilever configurations. The regularization parameter of the
smoothed Heaviside and max functions α was initialized with 1 and decreased until it
reached 1.95 · 10−3. The results of the optimization for first and second-order dominance
are shown in Figure 3.4, the resulting stresses in the optimal shapes in Figure 3.5.
We compare two different setups of 15 scenarios: One with equal absolute value and

equal probability of the loads and one with three different absolute values and probabilities
for the loads on the three different bottom boundary parts (with ratios for probabilities
1, 2

3
and 1

3
and for loads 1, 2 and 3, where the strongest and least likely loads are furthest

to the right).
The resulting volumes are listed under the corresponding phase field of the optimal

shapes and benchmark. In the plots of the cumulative distribution function and dis-
tributed survival functions, the values for the benchmark shapes are plotted in red, the
values for the respective result in blue. The inequalities required for these functions are
clearly fulfilled for all optimized shapes, i. e. the cumulative distribution function for the
first-order dominance jumps earlier than the one of the benchmark and the integrated
survival function of the second-order dominance results remains below the one of the
benchmark. In terms of the cumulative distribution function this allows for later jumps
for some scenarios, if these derivations are compensated for later in the appropriate inte-
gral sense.

Pressure plate

As a second application, we consider a 2D carrier plate. In this construction, the support-
ing construction between a floor slab and an upper plate is optimized, where the lower
boundary is the Dirichlet boundary and the forces act on parts of the upper boundary.
Here, the stochastic loads consist of 10 scenarios consisting of 10 single loads.
In this setup the absolute value and probability of the loads vary in between the different

scenarios: High probability loads come with small absolute value (ratio 1 : 4 for both
absolute value and probability). The phase field parameter ε was initialized with 3.13·10−2

and multiplied by 0.75 after each mesh refinement until a value of 1.32 ·10−2 was reached.
α was decreased from 1 to 1.95 · 10−3 and 7.81 · 10−3 for the first- and second-order
optimizations, respectively.
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3.6. Conclusion

The load configurations, benchmark shape and results are displayed in Figure 3.6 (again,
in the plots, the values corresponding to the benchmark shaped are drawn in red, the val-
ues of the results in blue). The cumulative distribution functions and integrated survival
function show, that the dominance constraints are fulfilled for both first- and second-order
dominance constraints. Figure 3.7 depicts the stresses resulting from the different loads
on the optimal shape.

3.6. Conclusion

We formulated a model that considers risk aversion in the context of linear elasticity
in the constraints of an optimization problem. The numerical optimization is done on
an adaptive finite element mesh using quadratic Q1

h(Dh) elements and an interior point
method. The results show shapes that dominate the benchmark while still reducing the
volume.

The model could easily be extended to 3D elasticity, where the adaptive mesh would
allow for fine structures to form without making the optimization computationally in-
feasible. Furthermore, real-world benchmarks could be used to e. g. find cost-effective
alternatives to machined parts in the context of engineering.
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3. Stochastic dominance constraints in shape optimization
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Figure 3.4.: Results for first- and second-order stochastic dominance in the cantilever
scenario and corresponding cumulative distribution and survival functions
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Figure 3.5.: Thresholded von Mises stresses for the scenario in the cantilever setup, first-
and second-order dominance for the equal load and probability setup (row
one and two, color-coded as 0 4.99 and 0 4.85) and
the varying load and varying probability setup (row three and four, color-
coded as 0 9.05 and 0 6.87). Stresses bigger than the
maximum value of the scale are mapped to red.
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3. Stochastic dominance constraints in shape optimization
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Figure 3.6.: Results for first- and second-order stochastic dominance in the carrier plate
scenario and corresponding cumulative distribution as well as survival func-
tions

Figure 3.7.: Thresholded stresses for each scenario in the weighted carrier plate setup,
first- and second-order dominance, color-coded as 0 3.21 and
0 3.24. Stresses bigger than the maximum value of the scale are
mapped to red.
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4. Composite materials and
branching structures

The formation of microstructures is a common phenomenon in elastic shape optimization
(we refer to [Ben95] and [All02] for an overview of these topics). Depending on the
geometry of the computational domain and the loads applied to it, microstructures appear
and can form periodic or branching-type structures. This phenomenon is supported by
microstructures appearing in many different areas of nature, e. g. branching patterns in
or near the compacta of bones. These microstructures usually form fine-scale structures
of a particular size, i. e. a fixed ratio between the macroscopic object and the fine-scale
structure exists.

In the context of multiscale materials, homogenization has emerged as an important con-
cept to upscale the microscopic properties to the macroscale. This methodology has been
described in [CD99, Mil02] and in detail in [All02]. The concept of homogenization also
extends to many engineering applications (cf. [MBD+15] and [NNWSA11] for examples).
This chapter can be seen as preliminary work to understand the formation of branching mi-
crostructures in elastic shape optimization and to develop a homogenization type approach
to this kind of problem. Alternatively, true two-scale materials can be approached numer-
ically by the Heterogeneous Multiscale Method (HMM) [EE05, EE03, EEH03, EMZ05],
which explicitly simulates periodic microstructures at given points of the macroscopic
domain.

In this chapter, we study domains that can be decomposed into several subdomains
and compatibility conditions will be considered. Each subdomain will be a quadratic cell
on which a shape will be optimized and can represent locally periodic or branching type
structures. The model discussed in this chapter is an extension of models described by
Vantzos [Van15] and Luethen [Lüt16]. In this chapter, domains that can be decomposed
into several subdomains and compatibility conditions will be considered. Each subdomain
will be a quadratic cell on which a shape will be optimized.

In contrast to the two other models discussed in this thesis, the shapes in this chapter
will be modeled using a stress-based formulation of linear elasticity and will be optimized
using an alternating algorithm.
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4. Composite materials and branching structures

4.1. Problem formulation

Let Dcomp ⊂ R2 be a domain composited of several open subdomains Di, i ∈ I for an
index set I, s. t. ∪i∈ID̄i = ¯Dcomp and Di ∩ Dj = ∅ for all i, j ∈ I. Each subdomain is a
rectangle [a1, a2]× [b1, b2] and

1. is either a facet of an adjacent subdomain (e.g. there is a subdomain (a2, a3)×(b1, b2)
sharing that facet {a2} × (b1, b2) with the subdomain (a1, a2)× (b1, b2) ),

2. or splits into two facets (of equal length) of two adjacent subdomains (e.g. there are
subdomains (a2, a3)×(b1,

b1+b2
2

) and (a2, a3)×( b1+b2
2
, b2) whose facets {a2}×(b1,

b1+b2
2

)

and {a2} × ( b1+b2
2
, b2) result from a splitting of the facet {a2} × (b1, b2) ),

3. or is on the facets resulting from a splitting of a facet of an adjacent subdomain (as
described in item 2),

4. or is a boundary facet.

See Figure 4.1 for a sketch of these domain types. The four facets of each subdomain can
be of different types.
We assume, that Dcomp and Di for all i are Lipschitz-domains and that each subdomain
Di contains a certain part of the elastic object — the shape which will be optimized.
Denote the associated characteristic function of the elastic object as χi and consider the
continuous extension to D̄i in BV (cf. [AFP00, Remark 3.22]). Considering the functions
χi as functions on Dcomp, the shape we are investigating is defined via

∑M
i=1 χi, where M

is the number of subdomains.
Each subdomain Di (also sometimes denoted as a geometrical subdomain) has a refer-

ence domain assigned. Several geometric subdomains can have the same reference domain.
This reference domain is mapped onto the geometric subdomains by a combination of a
translation, a rotation by a multiple of π

2
and a reflection along symmetry axes. Shapes

and forces are updated on reference domains and then transferred onto geometric sub-
domains. Neighboring geometrical subdomains using the same reference domain build
periodical structures. An example is depicted in Figure 4.2.
The resulting domain consists of periodic subdomains, branching subdomains, that

have branching boundary conditions in one direction (perpendicular to the boundary of
the domain) and periodic boundary conditions in the other, corner subdomains that have
branching periodic boundary conditions in both coordinate directions and coupling subdo-
mains, that have branching boundary conditions perpendicular to the domain boundary
and couple the corner and branching cells parallel to the boundary.
Only one reference domain of each type is simulated, as all subdomains of the same type

are identical (up to translations, rotations and reflections). As a consequence, the domain
sketched in Figure 4.2 can later be numerically optimized by simulating the thirteen
reference domains only.

44



4.1. Problem formulation

Di

1

Di

2

Di

3

Di

∂Dcomp
4

Figure 4.1.: The different local subdomain configurations of a single facet.

4.1.1. Elastic energy and compliance

To optimize the shape, we again use an elastic energy to solve the linear elastic equation.
This elastic energy is (again) defined as E [v, u] : L2(D, [−1, 1])×W 1,2(D,Rd)→ R,

E [v, u] =
1

2

∫

D
Cε[u] : ε[u] dx−

∫

ΓN

f · u da . (4.1)

We recall, that in Chapter 2 the symmetrized gradient ε[u] = Dut+Du
2

and a fourth order
tensor C have been introduced. Using the relation

σ = Cε[u]

the displacements can be connected to the stress, which describes the internal forces
associated with the displacements u. As the equilibrium displacement is a uniquely de-
termined minimizer of (4.1) (up to rigid body motions), it is possible to equivalently use
the stress in the formulation of the elastic shape optimization problem. This formulation
is used here, as it allows for a simpler and more elegant formulation of branching type
problems (compared to the rather involved formulations of this kind of problems using
displacements and strains).

Following the ideas of [Van15, Lüt16] we now derive the minimization problem for
stresses by rewriting the compliance

∫
D Cε[u] : ε[u] dx in terms of stresses

W [v] =
1

2

∫

D
C−1σ : σ dx =

1

2
min
τ∈Σad

∫

D
Cτ : τ dx =:W [τ, v] , (4.2)

where τ is minimized over the admissible set of

Σad = {σ = σt, div σ = 0, σ is compatible with boundary conditions} (4.3)
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4. Composite materials and branching structures

Figure 4.2.: Sketch of a composite domain consisting of periodic cells ( ), branching pe-
riodic cells ( ), double branching periodic corner cells ( ) and
coupling cells ( ).

of symmetric, divergence-free stress tensors that are compatible with the prescribed
boundary conditions. The general term “boundary conditions” refers to the conditions
imposed by the respective types of facets (as described above). In this chapter, the phase
field v will be chosen to have the pure phases a = δ and b = 1 as a regularized version
of a = 0 and b = 1. This leads to a regularization that is slightly different from the
one used in the other chapters. Instead of forcing it towards the pure phases and adding
a regularization parameter δ in the tensor, we directly force the phase field towards a
regularized version of the pure phases. Note, that the results presented in Section 2.5 still
hold true, requiring only minor modifications in the statements and proofs.
When Kohn and Wirth analyzed the expected branching periodic structures in [KW14,

KW15], they chose the Poisson ratio ν = 0 to simplify the analysis. This assumption is not
expected to have a strong influence on the results, as optimal structures (and structures
close to the optimum) consist of truss-like structures, for which lateral contractions are
not of major importance. To achieve compatible results, let C(v) = vCLN , where CLN
is the elastic tensor of the linearized Lamé–Navier model (s. (2.4)), setting the Poisson
ratio ν = 0 in this chapter. We define this tensor by its inverse using Young’s modulus E
and ν. These values can be converted from and to λ and µ by

E =
µ(3λ+ 2µ)

λ+ µ
, ν =

λ

2(λ+ µ)
,

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

For a motivation of these constants and their physical meaning, we refer to [Cia88, Chap-
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4.1. Problem formulation

ter 3.8]. The Lamé–Navier tensor can now be given in Voigt notation as

C−1
LN =

1

E




1 −ν 0
−ν 1 0
0 0 2 + 2ν


 .

With this choice we obtain

C−1
LN =

1

E




1 0 0
0 1 0
0 0 2


 .

and we can rewrite the application of the tensor to stresses as

C−1τ : τ =
1

2µv

(
τ 2

11 + τ 2
22

)
+

1

µv
τ 2

12 =
1

2µv
|τ |2 .

The compliance energy (4.2) then simplifies to

W [v, τ ] =

∫

Di

1

2µv
|τ |2 dx .

In addition to measuring deformations in terms of stresses, the shape has to be associ-
ated with a cost as well. The stresses σ have no direct influence on these terms, as they
measure quantities of the shape only. Thus, the simplifications made inW [v] remain true.
We measure the volume of a shape by integrating an approximated characteristic function

Vε[v] =

∫

Di
χ[v] dx

where χ[v] = v (v ∈ [δ, 1] as noted above) and the perimeter by

Lε[v] =

∫

Di

1

ε
ψ(v) +

ε

2
|∇v|2 dx .

The function

ψ(v) =

{
32
π2 (1− v)(v − δ) v ∈ [δ, 1]

∞ else

denotes a double-well potential suitable for the phase field that is used here. Its minima
are v = δ and v = 1.
The target functional J [v] can then be (as in the other chapters) written as

J [v] =W [v] + νVε[v] + βLε[v] (4.4)

for ν, β > 0. Note, that the structure of J [v, τ ] does not differ from the strain based
formulation. The only differences are the usage of σ instead of ε[u] and the change
in phase field values representing the pure phases. As neither of these changes has a
fundamental influence on the solution of the linear elastic equation, we expect that the
resulting optimal shapes are similar to the ones, that would result from a suitable strain
based formulation of the same problem.
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4. Composite materials and branching structures

4.2. Discretization

In this section, the question how to computationally minimize over the set of admissible
stresses will be discussed. The conditions to σ prescribed by Σad in (4.3) have to be
transcribed into equations using quantities of a suitable discretization. This discretization
is constructed using a finite volume method.
Again, let Dcomp ⊂ [0, 1]2 and Di ⊂ Dcomp a subdomain as described above, Dh,i a finite

decomposition of Di into N ×N rectangular elements of equal size and denote the cell at
position i, j by Tij. Let Xh be the set of nodes and

Eh :=
{
T ij ∩ T kl : 0 ≤ i, k < M, 0 ≤ j, l < N, i 6= k ∨ j 6= l

}

∪
{
T ij ∩ ∂D : 0 ≤ i < M, 0 ≤ j < N

}

the set of edges in Dh,i. For each cell, a local indexing is introduced by numbering the
edges counterclockwise, starting at the top (s. Figure 4.3 for an example).
To discretize admissible stresses, we again consider the definition of Σad of (4.3). The

symmetry of the stress tensor then transforms into a balance of torques: If r = (x1, x2)T ,
let r⊥ = (−x2, x1)T . Then

0 =

∫

T

σ21 − σ12 dx (4.5)

=

∫

T

div σr⊥ + σt : 5r⊥ dx =

∫

T

div(σr⊥) dx

=

∫

∂T

n · (σr⊥) da =

∫

∂T

r × (ν · σ) da .

The first equality holds since div σ = 0 and∇r⊥ =

(
0 1
−1 0

)
, the third holds due to Gauss’

theorem and the fourth because r× x = r⊥ · x. Equation (4.5) constitutes a conservation
law along the edges of an element. Similarly, the divergence-free stress transforms into a
balance of forces, which are defined as average forces across edges ej of an element T as

fj =

∫
ej
nj · σ dl
∫
ej

dl
.

Figure 4.3 gives two examples of force discretizations on finite volume elements. Denoting
as fi the force vector on edge i and as fi,j its j-th component, we can conclude that

0 =

∫

T

div σ dx =

∫

∂T

ν · σ ds =
4∑

j=1

∫

ej

ν · σ ds

= (f1,1 + f4,1)− (f2,2 + f3,2) .
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4.2. Discretization

e1
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e4

e1
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e3

e4
Figure 4.3.: Discretization of forces as vector-valued degrees of freedom on the interior cells

of the finite volume mesh (left) and on a facet with prescribed branching-type
boundary conditions (right). The numbering of the edges is displayed on the
left.

The conservation laws can easily be enforced by the finite volume method by adding
the respective equations for each cell to a constraint matrix A. This matrix is part of a
linear system Af = b and has a block structure, that is induced by the three different
types of conditions on the forces.

A =



Af

At

Abc


 , b =




0
0
bbc


 .

The index f refers to the block prescribing the force balance, the index t to the conser-
vation of torque and the index bc to the blocks defining the boundary conditions. The
equations leading to all blocks have been described above.

To discretize the required energy functionals, a discretization of |σ|2 is needed. From
the definition of the discretized forces, we conclude for each cell
∫

e1

σ21 = hf1,1 dl ,

∫

e1

σ22 = hf1,2 dl ,

∫

e2

σ11 = hf2,1 dl ,

∫

e2

σ12 = hf2,2 dl ,

∫

e3

σ21 = hf3,1 dl ,

∫

e3

σ22 = hf3,2 dl ,

∫

e4

σ11 = hf4,1 dl ,

∫

e4

σ12 = hf4,2 dl .

With these equations at hand, we rewrite (using the notation e1 and e2 for the unit
vectors)

|σ|2 = |e1σ|2 + |e2σ|2

=
1

2

(
|n2 · σ|2 + |n4 · σ|2

)
+

1

2

(
|n1 · σ|2 + |n3 · σ|2

)

≈ 1

2

4∑

i=1

2∑

j=1

|fi,j|2 .

Using this approximation, we can discretize the stored elastic energy using the formula

E[V ] =
1

2

∑

T

h2

4∑

i=1

2∑

j=1

(fi,j(T ))2

V E
,
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4. Composite materials and branching structures

with fi(T ) denoting the force vectors on the edges of the cell T , subject to the constraint
Af = b.

Optimizing the forces

The main difference between algorithms optimizing a single branching or periodic cell
[Van15, Lüt16] and the algorithm optimizing a domain consisting of several cells described
here is in the constraints to the forces, which in the multi-cell case also contain coupling
conditions between cells. Finding the energetically optimal deformation is achieved by
solving

min
1

2
f tMf ,

s. t. Af = b .

Using a Lagrangian, this problem can be rewritten into a single system of equations
[Lüt16]. First consider

L =
1

2
f tMf + λt(b−Af) .

A solution of the constraint optimization is given by a saddle point of L. There ∂fL = 0
and — because M is invertible — we can conclude

f = M−1Atλ and (4.6)
Af = AM−1Atλ = b .

These equations define forces f and a dual solution λ. If A is regular, Z = AM−1At is
regular, too. Finding the optimal deformation has now reduced to solving Zλ = b, which
can be achieved by a number of efficient numerical methods depending on the actual
dimensions of the matrix. Note that kerAt = {0} implies that Z is positive definite
(which implies invertibility).

Rank considerations

In general kerAt 6= {0}, but equality can be achieved by removing certain rows of A, i. e.
conditions to the forces. Which rows can be removed depends on the number of different
cell types set up of cells of these cell types.
For domains consisting of a single subdomainDi with either periodic, branching periodic

or non-periodic boundary conditions, the linear dependencies can be reduced to a small
number of cases (cf. [Lüt16]). For composite domains consisting of several subdomains
with different coupling and boundary conditions on the other hand, the number, type
and complexity of linear dependencies increases. An algorithm to analyze the rank of the
constraint matrix resulting of such domains can be designed by considering the structure
of the corresponding system of equations:
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4.2. Discretization

Each row in A represents a constraint on admissible forces and for all but the boundary
conditions, the corresponding right-hand side entries equal 0. A set of linear dependent
rows ofA represents a number of equations, of which one can be replaced by a combination
of the others if the corresponding right-hand side entries are compatible. To define the
correct meaning of “compatible”, consider the corresponding right-hand side entries bi
and the weights of the linear dependency equation which solves

∑
i∈I aiAi = 0 for certain

rows (ai)i∈I =: Ai of A and a suitable index set I. An equation Fi can be replaced
by Aj, j ∈ I \ {i}, iff ∑j∈I ajbj = 0, as in that case

∑
j∈I\{i} ajAj already solves the

equation Ai with right-hand side bi. This check can be numerically implemented using
e. g. a QR-decomposition to find a basis of the kernel of A. The matrix can then be
regularized by iteratively removing redundant equations until A has full (column-)rank.
Usually, the basis vectors of the kernel of A consist of a medium to large number entries

of several cell types. Especially when increasing the number of different cells in a domain
Dcomp, this reduces the precision of the numerical solution, i. e. the admissibility of the
forces. Thus, this method is only suitable up to a certain number of cell types and a
certain numerical precision (s. below).
The alternative of using the unmodified version of A and finding admissible forces via a

pseudo-inverse or least-square type optimization is computationally much more expensive
and in practice not feasible for larger instances of the optimization problem. Thus, we
only use the full-rank (i. e. modified) version of A for computing the results shown below.

Discretized periodicity conditions

For finding optimal forces for a given shape and domain, the boundary conditions on facets
of subdomain Dh,i have to be discretized. As we use a finite volume discretization scheme,
the conditions on the values on ∂Dh can be discretized in a straightforward manner.

Definition 27. Let Dh,i be a finite volume subdomain. As described in section 4.1, each
facet of F the subdomain Dh,i is of one four types. Let {ei}i be the set of edges in F .
Then, those types can be discretized as follows:

1. F is a facet F̄ of an adjacent subdomain Dh,j. Let {ēi}i be the set of edges in F̄ ,
numbered s. t. ek = ēk for all k ∈ {0, . . . , |{ei}i|}. Then this type of boundary
condition is discretized by identifying the edges ek and ēk , i. e. prescribing f(ek) =
f(ēk) for all k in the given index set.

2. F splits into two facets F̄1 and F̄2 (of equal length) of two adjacent subdomains Dh,j1
and Dh,j2 . Let {ē1

i }i and {ē2
i }i be the sets of edges in Dh,j1 and Dh,j2 , respectively,

numbered s. t. ek = e1
k ∪ e2

k for all k ∈ {0, . . . , |{ei}i|}. Then this type of boundary
condition is discretized by setting f(ek) = 1

2
(f(ē1

k) + f(ē2
k)).

3. F is the result of a splitting as given in 2. Then the forces on that facet are
discretized as described above.
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4. Composite materials and branching structures

4. F is a boundary facet. Then the forces are given by a force density
∫
F
v dl∫

F
dl
f .

These conditions have to be combined with the equations on stresses given in Chap-
ter 4.2 to create the linear system Af = b.

Phase field optimization

Given optimal forces across the domain D and a non-optimal phase field v, an algorithm
can be designed to successively improve the phase field towards a (local) minimum. In
the method described here, an algorithm of Gauss-Seidel type is used, i .e. an algorithm
that improves the phase field values on the discrete elements T ∈ Dh,i one by one for all
subdomains Dh,i, finding minv J [v].

4.2.1. The alternating algorithm

To solve the optimization problem, i. e. to find a (local) minimum of the energy an
alternating algorithm is employed.

Algorithm 2: Alternating optimization algorithm
Data: Boundary data, initial values v0 and f0, ε > 0
Result: A phase field v approximating the optimal shape for the given boundary

data.
f = f0;
v = v0;
do

vl = v;
optimizeForces(v, f);
optimizePhasefield(f, v);

while ‖v − vl‖ > ε;

This algorithm alternates between optimizing the phase forces f and the phase field
v, leaving the non-optimized quantity fixed. Based on the assumption that close to the
optimum both forces and phase field change only very little in each iteration (because the
current iterand only has a close-to-optimal energy), the change of the phase field is used
as a measure of convergence.

Optimizing the deformations

To find the optimal forces (i. e. optimizeForces(v, f)) for an existing phase field, we
solve the system of equations defined in (4.6) using a Cholesky solver. For the results
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4.2. Discretization

presented here the CHOLMOD [CDHR08] solver (which is part of the Suitesparse package),
which provides an efficient parallel implementation of this type of solver, was used.

In this step, the rank deficiency of the force constraint matrix A has to be addressed.
For a given set up, the set of constraints that have to be removed is fixed, so finding these
constraints can be a pre-processing step and the respective constraints are then not added
to the matrix A when it is built. Thus, this step only requires a negligible amount of
computing performance.

Optimizing the phase field

The implementation of the function optimizePhasefield(f, v), i. e. the function find-
ing the optimal phase field for existing forces is realized by a Gauss-Seidel type iteration
that optimizes the values of single cells one by one and iterates that procedure.

Let us consider the discretized version of the energy J [v], that was given in (4.4)

J[V ] := min
τ∈Σad

∑

T

JT [V ] with

JT [V ] =
|σ(T )|2
V (T )

+ νV (T ) +
β

ε

32

π2
(V (T )− δ)(1− V (T ))

+
βε

4

4∑

i=1

(V (T )− V (T (i)))2

h2
.

T (i) denotes the cell adjacent to T across the edge ei and h the mesh width (the length
of an edge in the uniform mesh). To find a minimum of J[V ] for the phase field V (T )
on an element T for a fixed phase field V (T (i)) on the neighbor cells, we apply Newton’s
method. A rescaling is used to overcome difficulties due to the singularity at v(T ) = 0,
namely, we compute the minimum of the rescaled function using V (T ) 7→ JT (e−V ).

To ensure a good performance of Newton’s method, it is important to choose a suitable
initialization of χ. Consider the local terms of the cost functional (dropping the non-local
last perimeter term):

Jloc
T [V ] =

|σ|2
V

+ νV +
β

ε

32

π2
(V − δ)(1− V ) . (4.7)

We note that the function can have no more than two minima: For |σ| � 1, |σ|/χ is the
dominant term only close to 0, creating a minimum at χ� 1. For other values of σ, the
only minimum is at χ = 1.

To find the location of the second potential minimum, we compute the derivative of
(4.7):

∂V J
loc
T [V ] = ν − |σ|

2

V 2
+
β

ε

32

π2
(1− 2V + δ) .

Assuming the minimum is not located at V = 1, we compute

V 2 =
|σ|2
ν

+
β

ε

32

π2
(1 + δ) =: Vc .
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4. Composite materials and branching structures

To initialize the phase field, we can compare the two minima and choose a value depending
on which one is the global minimum.

Vinitial =

{
Jloc
T [Vc] if Jloc

T [Vc] ≤ Jloc
T [1]

1 else .

Assuming v ≤ 1 and δ � 1, we can then approximate the positions of the minima of
JC(v) with 1 and Vc := |σ|

√
π2

32
ε
β
. We note, that JC(Vc) ≤ Jc(1) if |σ| / β

2

√
π2

32
ε
β

=: σ̂.
Thus, we initialize the phase field using

Vinitial =

{
Vc if |σ| ≤ σ̂

1 else .
(4.8)

In the approximations used above, we neglected some (presumably small) terms of JC(v).
As Vinitial is used only as an initialization for Newton’s method, the introduced inaccuracies
have no influence on the resulting optimized phase field.
Starting from the second iteration of the alternating descent algorithm, the phase field

can also be initialized using the result of the last phase field optimization. However,
this approach is prone to becoming stuck in local minima. On the other hand, reinitial-
izing the phase field between iterations of the alternating descent algorithm introduces
the possibility of increasing energies in the phase field optimization step, but — in the
applications discussed here — did not lead to a non-convergent algorithm overall. For all
results presented in this chapter, the simplified initialization (4.8) was used to initialize
Newton’s method in every phase field optimization step.
Algorithm 3 summarizes the complete algorithm, that was used to optimize the phase

field V for given forces f . This completes the set of algorithms necessary to implement
Algorithm 2.

Parallelization

Each step of Algorithm 2 can be computed in parallel over all subdomains: The phase
field optimization does (by definition of the model) not depend on neighboring subdomains
and can thus be started concurrently on all subdomains. The solution of the system of
equations in optimizeForces is parallelized by the implementation of Cholesky’s method
in Suitesparse. The straightforward distribution of subdomains to processes yields a
close-to-optimal speedup factor.

4.3. Results

The results in this section are computed on a quadratic domain D ⊆ [0, 1]2, composed
of several quadratic subdomains with different periodicity conditions. The center of the
domain was always filled with periodic subdomains, around which a varying number of
branching periodic and coupling subdomains were placed.
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4.3. Results

Algorithm 3: Gauss-Seidel algorithm to optimize the phase field
Data: Initial values Vinit, forces f , desired tolerance tol
Result: An approximation of the required tolerance tol of an optimal structure

given as a discrete phase field V
Vdiff =∞;
while Vdiff > tol do

Vlast = V ;
for T ∈ τ do

V|T = 1;
if ∂vJT [1] ≥ 0 then

Find arg minx JT [x] using Newton’s method;
if x ∈ [δ, 1] then

V|T = x;
else

if x < δ then
V|T = δ;

else
V|T = 1;

end
end

end
end
Vdiff = ‖V − Vlast‖;

end
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4. Composite materials and branching structures

4.3.1. A simple example

First, a simple example for a decomposition of a rectangular domain into quadratic sub-
domains is considered. Figure 4.4 illustrates this kind of domain. All subdomains are of
equal size, the colors indicate the different reference subdomains: The blue subdomains in
the middle are top-bottom and left-right periodic, the light blue subdomains are periodic
parallel to the boundary and have a branching condition in the perpendicular direction,
the green subdomains at the corners have branching boundary conditions regarding their
left-right and top-bottom boundaries and the light green subdomains couple the light blue
and green subdomains to allow force transfer from the edge to the center of the domain.
These subdomains are required, as diagonal forces could only be transmitted through the
single point that is in the cut of blue and green subdomains, which is impossible in our
model. Forces are applied to all boundaries at certain parts which model an incoming
load that may be derived from a branching type structure.

4.3.2. Symmetry assumptions

The “simple example” assumes symmetries along axes through the middle of the domain
parallel to its coordinate axes. This assumption is not true for optimal structures with
respect to general loads. Optimizing shapes for a load for which the optimal shape does
not show these symmetries (e. g. shear loads), leads to a shape that shows some clearly
non-optimal structure. This is not a problem of the algorithm (which finds the best shape
possible in a given model), but an indication that the wrong domain decomposition, i. e.
the wrong model was chosen for this particular set up.
To find a more plausible shape, the types of subdomains used have to be adapted:

Instead of assuming the “coupling subdomains” on each side of the periodic subdomains
on the outer strips are symmetric, two different coupling subdomains per layer can be
used (s. Figure 4.4). This composition of subdomains allows for a break of symmetry and
thus a larger set of admissible shapes, in which the optimum no longer shows implausible
structures like mechanically useless kinks or edges.
This observation leads to the challenge of finding the minimal number of different

subdomains for a given scenario, for which the optimal structure is “plausible”. A larger
number of subdomains can always be utilized, but two different reference subdomains
admitting the same optimal structure is proof of wasted computational resources as a
model using the same reference subdomain instead would have been more efficient and
would have yielded the same result.

4.3.3. Additional layers

The next logical step is to add more layers of subdomains towards the boundary to
the model described in Section 4.3.1, thus creating domains that consist of a central
periodic region and two or three boundary layers. On these domains, the forces above
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4.3. Results

Figure 4.4.: Decomposition of a quadratic domain into quadratic reference subdomains of
four (left) and five (right) different types.

are applied. Figure 4.5 depicts these domains. Again, different colors indicate different
reference subdomains.

To allow non-symmetric structures, there are two types of coupling (reference) subdo-
mains in each layer. For the layers with more than one coupling subdomain per edge and
corner, only one of these reference subdomains is allowed to be non-symmetric, as numer-
ical experiments showed, that optimizations using more non-symmetric subdomains did
not produce meaningfully different results.

Figure 4.5.: Decomposition of a quadratic domain into nine and thirteen different types
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4. Composite materials and branching structures

4.3.4. Results

To test the model, compression and shear loads were applied to the domain types discussed
above.

Figure 4.6.: Types of applied loads: Compression (left) and shear (right)

For all domain types, the subdomains were discretized using M ×N cells using values
M = 200 and N = 200. On each cell of the outer layer, forces were applied on the
intervals [2

6
M, 3

6
M ] × {l2}, [4

6
M, 5

6
M ] × {l2} and {l1} × [2

6
N, 3

6
N ], {l1} × [4

6
N, 5

6
N ] on

horizontal and vertical boundaries (l1, l2 ∈ {0, 1}), respectively, to simulate a setup that
promotes the creation of branching type structures in the computational domain Dh,comp.
The directions of these forces are depicted in Figure 4.6 for the compression and shear
scenario.

Compression loads

For the pressure load given in Figure 4.6, optimal shapes were computed on the domains
consisting of five, nine and thirteen different reference subdomains. Trying to optimize
shapes for the compression load setup on a four-subdomain setup already results in im-
plausible structures: The enforced symmetry prevents the algorithm from allowing a slight
difference in the coupling subdomains to compensate for the non-symmetrical structures
in the branching subdomains — especially when the algorithm has not reached the opti-
mal shape yet. A comparison of the optimal shape for four and five reference subdomains
can be found in Figure 4.7. In all setups, pillar-like structures support the load on the
boundary through branching structures and transfer this load to a mesh-like structure in
the center of the domain. The corner and coupling subdomains connect the branching
periodic pillars and minimize the loads appearing in parallel to the boundary. The nine
and thirteen subdomain setups (s. Figure 4.8 and Figure 4.9, respectively), extend the
structures visible in the five reference subdomain setup without introducing fundamen-
tal changes, which indicates that the model used is suitable for approximate branching
structures that support the applied loads.
When using higher numbers of reference subdomains, the limits of the optimization

algorithm become apparent: At certain points in the domain — the points where the top
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4.4. Conclusion

left coupling subdomain and the inner corner subdomain connect — structural artifacts
(s. magnification) appear that can be explained by a difference in thickness between the
two coupling structures. While these structures clearly are non-optimal, the algorithm
fails to optimize the structure any further, oscillating at changes of order 10−10 for the
nine subdomain setup and 10−9 for the thirteen subdomain setup. More exact solution
cannot be expected for the thirteen subdomain type setup, as the system of equations
defining the forces can only be solved with an accuracy of order 10−8 for some of the
forces that are only implicitly defined by linear dependencies (cf. Section 4.2).

Shear loads

Shear loads (as given in Fig. 4.6) were applied on the domains consisting of five, nine and
thirteen reference subdomains. A symmetry break again already occurred on the four-
subdomain setup (s. Fig. 4.10) and had to be circumvented by introducing an additional
reference subdomain. This necessity can be explained by noting that the structures in
the center and branching periodic subdomains are not symmetric (contrary to the com-
pression scenario), making a non-symmetric coupling subdomain optimal, which cannot
be modeled by a single, mirrored reference subdomain.

Again, the forces are transferred to the center of the domain by branching type struc-
tures. The corner and coupling subdomains show a larger tendency towards minimizing
deformations by forces in parallel to the boundary. As there are no forces in the perpen-
dicular direction, no structures to support them are present.

The results for nine (Figure 4.11) and thirteen reference subdomains (Figure 4.12)
extend the result for five reference subdomains in a compatible manner. The coupling
subdomains on both ends of the branching boundary become more similar but using
the same reference subdomain for both still results in an implausible structure due to
inadmissible symmetry assumptions.

Contrary to the compression scenario, the alternating algorithm optimizes the shear
scenario more accurately (most likely because the forces can be determined with higher
accuracy).

4.4. Conclusion

We developed a shape optimization model for domains composed of subdomains of various
types and extended an alternating descent algorithm to optimize shapes on that domain
under different load configurations. The algorithm is capable of optimizing shapes on
domains composed of an arbitrary number of reference subdomains, however numerical
stability suffers when the proposed method of regularizing the force constraint matrix is
applied. Therefore another method of finding the optimal forces could be developed, to
allow for a more reliable energy minimization in some scenarios.

Furthermore, the ratio of width and height of the subdomains in each layer could be
optimized as well, to allow for a larger set of different structures to be considered. This has
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4. Composite materials and branching structures

been described for one subdomain in [Lüt16], but would be computationally challenging
if applied on the scenario described in this thesis without modification.
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Figure 4.7.: Optimal shape (top) and von Mises stresses (bottom) for compression loads
using four reference subdomains and non-optimal structure caused by inad-
missibly assumed symmetry (left) compared to the optimal shape for shear
loads using five reference subdomains (right). The von Mises stresses are
color-coded using the colorbar on the set [V > 0.5].
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Figure 4.8.: Compression result for nine reference subdomains (top) and von Mises stresses
color-coded using the colorbar on the set [V > 0.5] (bottom).
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4.4. Conclusion

Figure 4.9.: The optimal shape for the compression load case and a setup using thirteen
reference subdomains is depicted (top) and von Mises stresses using the col-
orbar on the set [V > 0.5] (bottom).
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4. Composite materials and branching structures

Figure 4.10.: Optimal shape for shear loads using four reference subdomains and non-
optimal structure caused by inadmissibly assumed symmetry (left) compared
to the optimal shape for shear loads using five reference subdomains (right).
Top row: optimal structures, bottom row: von Mises stresses encoded using
the colorbar on the sets where [V > 0.5].

64



4.4. Conclusion

Figure 4.11.: Optimal structure for shear loads using nine reference subdomains (top)
and von Mises stresses color-coded using the colorbar on the set
[V > 0.5] (bottom). 65



4. Composite materials and branching structures

Figure 4.12.: The optimal shape (top) and von Mises stresses (bottom) for the shear load
case and the same setup as in Fig. 4.9 is displayed with two regions being
magnified on the right. Again together with the optimal shape (top) the
associated von Mises stresses are rendered (bottom) and colorcoded using
the colorbar on the set [V > 0.5].
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5. Fine-scale elastic shape
optimization

In this chapter, we will explore a model that does not avoid the formation of microstructure
in the optimization by using regularization, but uses a fine-scale approach to explicitly
model the microstructure on a separate micro-scale. It has a defined and fixed factor of
length and volume between this micro-scale and the macroscopic domain D, also denoted
as the macro-scale. For this reason, we call this model fine-scale, as opposed to two-scale
models, where the scaling factor tends to infinity (and thus the micro-scale is arbitrarily
small in comparison to the macro-scale).

From [All02] we know that for a two-scale elastic shape optimization problem, solutions
admit an arbitrarily fine laminate of at most rank d, where d is the spatial dimension, on
the micro-scale. In the model described there, the factor between macro and micro-scale
is not fixed, but the micro-scale is arbitrarily smaller in an appropriate sense.

Multiscale materials have been studied in many contexts, analytically and numerically.
Starting with Hashin [Has62] in 1962, notable contributions include Grabovsky and Kohn
[GK95], Tartar et. al. [Tar85, MT85] and Allaire et. al. [All02, AJ05, AD14, AD15].
Numerical methods for optimizing this kind of material have been described in [BT10a,
BT10b, BT14, CGRS14, CGLR17]. A useful method for numerical simulation of such
materials is the method of Heterogeneous Multiscale Elements (HMM) [EE03, EE05,
EEH03, EMZ05]. This method models fine-scale materials by inserting a micro-scale cell
at each quadrature point. It has found applications for a variety of numerical problem, not
just fine-scale elasticity. It has been used e. g. in [Ohl05] in the context of an advection-
diffusion problem, in [AG11] for the wave equation and in [HOV16] for the time-harmonic
Maxwell’s equation.

As mentioned in previous chapters, in the context described here, homogenization is an
often used concept: The micro-scale properties are transformed into an effective macro-
scopic behavior, i. e. a locally homogeneous macroscopic material, that behaves like the
multiscale material on the macro-scale, transforming a tensor C(y), that depends on the
fine-scale, into an effective one-scale tensor C∗. For a more formal introduction to that
concept cf. [All02, Chapter 1].

In the context of elastic shape optimization, design parameters on the micro-scale have
usually been restricted to low dimensional representations of certain sets of structures,
e. g. ellipsoidal holes [CGRS14]. To the best of our knowledge, there is no prior work on a
full dimensional modeling of possible shapes on the micro-scale, neither using phase fields
nor similar methods.
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5. Fine-scale elastic shape optimization

5.1. Elasticity of a fine-scale material

In this section, we will define the elastic fine-scale material and describe, how it will be
used to find a solution for a fine-scale elastic shape optimization problem.
Consider an elastic body composed of a material which properties are defined by a

microstructure. This microstructure consists of two materials: One hard (full) material
and a second much softer material. These two materials can be combined to form arbitrary
structures.
Let D ⊂ R denote the object domain with Dirichlet boundary conditions on a set

ΓD ⊂ ∂D and Neumann boundary conditions on a set ΓN ⊂ ∂D. On ΓD the object is
fixed and on ΓN boundary forces are applied. Elastic deformations will be described by
φ = id + u, where u = u(x) is called the displacement of each point x ∈ D, as introduced
in Chapter 2. Furthermore, define the microscopic cell C = [0, 1]2, which will be used to
model periodic microscopic structures at each point of the macroscopic domain D.
Let C be an elasticity tensor (that will be defined in more detail below) and define

boundary forces g ∈ L2(ΓN ,Rd) on ΓN ⊂ ∂D. As mentioned, let ΓD ⊂ ∂D denote
the part of the boundary where Dirichlet boundary conditions enforce ū(x) = 0, define
the space enforcing these boundary conditions as W 1,2

ΓD
(D) := {u ∈ W 1,2 : u|ΓD(D) =

0 in the sense of traces } and define the fine-scale elastic displacement as u(x, y) = ū(x)+
ũ(x, y), where ū ∈ W 1,2

ΓD
(D) denotes the macroscopic component and ũ(x, ·) ∈ W 1,2

per(C) for
x ∈ D and denotes the microscopic periodic part. The space

W 1,2
per(C) =: {ũ ∈ W1,2 : ũ periodic on C}

consists of all functions on C that are suitable to model an infinitely repeating periodic
mesh of shapes.
The microscopic component is coupled to the macroscopic component via the displace-

ments — or equivalently stresses — at every macroscopic point x, which are transformed
to an affine displacement on the microscale, which induces these stresses uniformly on the
microscopic cell. Figure 5.1 sketches this coupling and these affine displacements inducing
the three pure stresses in two dimensions. For the fine-scale model, we obtain an affine-
periodic setting in which the affine component is represented by the macroscale while the
periodic component represents the microscopic structures.
Using the fine-scale displacement, we can define fine-scale energies

W [v, u] :=
1

2

∫

D

∫

C
C(x, y)ε[ū(x) + ũ(x, y)] : ε[ū(x) + ũ(x, y)] dy dx ,

`[u] :=

∫

ΓN

g(x) · ū(x) da .

The energy W [v, u] is the fine-scale equivalent of the bilinear form introduced in Theo-
rem 12. The strain tensor is defined as ε[u] = Du+Dut

2
. The corresponding elastic energy

as is defined as
E [v, u] =W [v, u]− `[u] ,
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5.1. Elasticity of a fine-scale material

σ

C

σ =

(
σ11 σ12

σ12 σ22

)

σ11

σ22

σ12

Figure 5.1.: Displacements on the macroscale are translated into affine displacements on
the microscale. Sample fine-scale configuration (left) and displacements re-
sulting in the pure stresses on a periodic cell for the three degrees of freedom
in a two-dimensional elasticity tensor.

The micro-scale is here again defined via an elastic problem. The material parameters
(and thus the elastic tensor C on the micro-scale) are given by a phase field v : D → R
using −1 and 1 as the pure phases. Let CLN be a Lamé–Navier type elastic tensor (as
introduced in (2.4)), χ(v) = 1

4
(v + 1)2 and δ � 1. Then for fixed x

C(x, y) := ((1− δ)χ(v(y)) + δ)CLN

defines the elastic tensor C at position y and a smooth transition between a hard and a
soft material.

As mentioned above, homogenization is a technique that transfers the properties of
multiscale material onto a macroscopic property, in this case, an elasticity tensor. The
fine-scale formulation of the limit problem is
∫

D

∫

C

1

2
C(x, y)(ε[ū](x) + ε[ũ](x, y)) : (ε[φ](x) + ε[ψ](x, y)) dy dx =

∫

ΓN

g(x) · φ(x) da .

Note, that there is now a microscopic test function ψ alongside with the macroscopic test
function φ.
Let R[u] := ū(x) + ũ(x, y) for u ∈ W 1,2

ΓD
and ũ solving the correction problem

∫

C

1

2
C(x, y)(ε[ū](x) + ε[ũ](x, y)) : ε[ψ](x, y) = 0

for all ψ ∈ W 1,2
per(C). Then, an effective tensor C∗ can also be defined variationally as

1

2
C∗(x)ε[ū](x) : ε[ū](x) =

∫

C

1

2
C(x, y)ε[R[u]](x, y) : ε[R[u]](x, y)dy . (5.1)
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5. Fine-scale elastic shape optimization

Symmetry assumptions on C∗ lead to the equations

C∗ijkl = C∗εij : εkl = C∗εij+kl : εij+kl − C∗εij−kl : εij−kl , (5.2)

where εij = 1
2
(ei ⊗ ej + ej ⊗ ei) and εij+kl = 1

2
(εij + εkl), εij−kl = 1

2
(εij − εkl)..

5.2. Shape optimization

With the methods described in Chapter 5.1 it is possible to compute the macroscopic
(equilibrium) displacement ū[v] from the microscopic shape parameters v. Let J [v, u[v]]
be a cost functional, that can depend on the fine-scale displacement u as well as the
microscopic parameters v. As introduced in Chapter 2, shape optimization asks for an
optimal shape w. r. t. J [v, u[v]], i. e. a shape that minimizes J [v, u[v]], described via a
macroscopic parametrization of the microscopic parameter v.

5.2.1. Deterministic fine-scale shape optimization

The optimization of the fine-scale energies follows the same principles as optimization
of a one-scale elastic shape optimization problem. There are two methods to find such
an optimal shape: The first is minimizing J [v, u[v]] — where u[v] is the equilibrium
displacement induced by v — and making use of a dual problem to introduce the relation
between u and the elastic minimization problem and evaluating the micro-scale when
needed in the energies J [v, u[v]] and E [v, u[v]]. The second method is minimizing the
Lagrangian

L[v, u, p] = J − ∂uE(p) ,

calculating the optimal shape and equilibrium displacement in parallel.
Let us first consider the approach of minimizing J [v, u[v]] using a dual problem. We

need to define a deterministic target functional, that will be minimized in order to find
the optimal shape. In analogy to the one-scale functional, define volume and interface
terms as

Vε[v] :=

∫

D

∫

C
χ(v(x, y)) dy dx ,

Lε[v] :=

∫

D

∫

C

1

2
ε|Ov(x, y)|2 +

1

ε
ψ(v(x, y)) dx .
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5.2. Shape optimization

The fine-scale target functional takes the form

J [v, u[v]] = 2W [v, u[v]] + νVε[v] + βLε[v]

=

∫

D

∫

C
C(x, y)ε[ū[v](x) + ũ[v](x, y)] : ε[ū[v](x) + ũ[v](x, y)] dy dx

+ ν

∫

D

∫

C
χ(v(x, y))(x, y) dy dx

+ β
1

2

∫

D

∫

C
ε|Ov(x, y)|2 +

1

ε
ψ(v(x, y)) dy dx .

for ν, β > 0. All terms of J [v, u[v]] are fine-scale equivalents of the one-scale compliance
energy terms: The target energy again is composted of weighted terms measuring the
deformation, the volume and the interface length, were the latter two are defined using
the micro-scale phase field. For the optimization, the derivative

J ′[v] = ∂vJ [v, u[v]] + ∂uJ [v, û[v]](∂vu[v])

is required. To avoid the computationally very expensive derivative ∂vû[v], we employ
a dual problem: Find the dual solution p = (p̄[v], p̃[v]) ∈ W 1,2

ΓD
as weak solution of the

problem
∂uuE [v, u[v]](p) = ∂uJ [v, u[v]]

with E [v, u[v]] = 1
2

∫
D

∫
C Cε[u] : ε[u] dy dx for all φ ∈ W 1,2

ΓD
. In the case described here, the

dual solution is p[v] = 2u[v].

Corollary 28. For E [v, u[v]] and J [v, u[v]] as defined above, the solution of the dual
problem is given by p = 2u. Thus, the derivative can be written as

δvJ [v] =

∫

D

∫

C
(∂vC)(y)ε[u[v]](x, y) : ε[u[v]](x, y) dy dx .

Proof. The condition on p given by the dual problem is

∂uuE [v, u[v]](p) = ∂uJ [v, u[v]] .

Calculating the derivatives, this equation can be rewritten as
∫

D

∫

C
Cε[p] : ε[θ] dy dx = 2

∫

D

∫

C
ε[u] : ε[θ] dy dx

and is solved by p = 2u.
Now, we can rewrite the derivative

δvJ [v, u[v]](θ) = ∂vJ [v, u[v]](θ) + ∂2
uuE [v, u[v]](p)(∂vu[v](θ) (5.3)

= ∂vJ [v, u[v]](θ)− ∂2
uuE [v, u[v]](p)(∂2

uuE−1[v, u[v]](∂2
uvE [v, u[v]])(θ))

= ∂vJ [v, u[v]](θ)− ∂2
uvE [v, u[v]](p)(θ)
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5. Fine-scale elastic shape optimization

and inserting the formulas given above we conclude

δvJ [v] = ∂vJ [v, u[v]]−
∫

D

∫

C
(∂vC)(v)(y)ε[u[v]](x) : ε[p[v]](x) dy dx

=

∫

D

∫

C
(∂vC)(v)(y)ε[u[v]](x) : ε[u[v]](x) dy dx .

The second equation of (5.3) makes use of the implicit function theorem, which – applied
to this case – states, that

∂vu[v] = −(∂2
uuE−1[v, u[v]])(∂2

uvE [v, u[v]]

in a neighborhood of v. This concludes the proof.

Now we have to compute ∂vC∗(x). First, recall that the entries of C∗ can be calculated
using εij as described in (5.2). In analogy to (5.1), define the local cost functional for
fixed i, j, k, l as

JC [v, w] :=

∫

C
C(v)(y)(εij±kl + ε[w[v]](x, y)) : (εij±kl + ε[w[v]](x, y)) dy ,

and let w∗ij±kl solve the local correction problem

∫

C
C(v)(y)(εij±kl + ε[w](x, y)) : ε[ψ](x, y) dy = 0

for all ψ ∈ W 1,2
per(C) and fixed x. This implies ∂wJc[v, wij±kl[v]] = 0.

Define Jc[v] = Jc[v, w∗ij±kl[v]] and conclude ∂vJC [v] = ∂vJc[v, w∗ij±kl[v]]. This enables us
to calculate the variation of the local cost JC [V ] in direction w.
Recall, that C(x, y) := ((1− δ)χ(v(y)) + δ)CLN and consider

∂vJC [v](θ) = ∂εJC [v + εθ]|ε=0 = ∂εJC [v + εθ, wij±kl]|ε=0

= ∂ε

∫

C
C(v + εθ)(y)

(
εij±kl + ε[w∗ij±kl[v]](x, y)

)

:
(
εij±kl + ε[w∗ij±kl[v]](x, y)

)
dy|ε=0

= ∂ε

∫

C
((1− δ)χ(v + εθ) + δ)CLN

(
εij±kl + ε[w∗ij±kl[v]](x, y)

)

:
(
εij±kl + ε[w∗ij±kl[v]](x, y)

)
dy|ε=0

=

∫

C
(1− δ)χ(v)θCLN

(
εij±kl + ε[w∗ij±kl[v]](x, y)

)

:
(
εij±kl + ε[w∗ij±kl[v]](x, y)

)
dy .
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5.2. Shape optimization

Then, the variation of the effective elasticity tensor in a direction w is

∂vC
∗
ijkl[v](θ) =

∫

C
(1− δ) ∂

∂v
χ(v)θ

((
εij+kl + ε[w∗ij+kl[v]](x, y)

)
:
(
εij+kl + ε[w∗ij+kl[v]](x, y)

)

−
(
εij−kl + ε[w∗ij−kl[v]](x, y)

)
:
(
εij−kl + ε[w∗ij−kl[v]](x, y)

))
dy .

With this formula it is possible to evaluate the variation of C∗ijkl in every single component
of C∗. Thus, it is of course also possible to evaluate the variation of C∗ε[u](x) : ε[u](x) dx
(as in (5.1)) directly by writing u as a linear combination of basis functions.
As all energies and derivatives are now easily computable, basic shape optimization

problems reduce to an energy descent algorithm. Alternatively, instead of introducing a
dual problem, we can use a Lagrangian formulation and optimize all variables in parallel.
For most cases discussed in this thesis, we chose the formulation using a dual problem,
as this formulation tends to be more stable than the Lagrangian formulation and reduces
the size of the matrices, that are used in numerical applications.

Lagrangian approach

Another approach for optimizing the fine-scale optimization problem is to find a saddle-
point of the Lagrangian directly. This method is less stable than the method described
above, but allows for easy computations of the Hessian and thus the optimization by
Newton’s method, which converges quadratically in a neighborhood around the solution.
We begin by defining a bilinear form that will help to simplify the notation of the

Lagrangian functionals.

Definition 29. Let

a(v)(u, p) = a(v)((ū, ũ), (p̄, p̃))

:=
1

2
C(v)(x, y)(ε[ū](x) + ε[ũ](x, y)) : (ε[p̄](x) + ε[p̃](x, y))

∂va(v)(θ)(u, p) = ∂v
1

2
C(v)(θ)(ε[ū](x) + ε[ũ](x, y)) : (ε[p̄](x) + ε[p̃](x, y))

and ∂ūa(v)((ū, ũ), (p̄, p̃)), ∂ũa(v)((ū, ũ), (p̄, p̃)), ∂p̄a(v)((ū, ũ), (p̄, p̃)), ∂p̃a(v)((ū, ũ), (p̄, p̃))
the partial derivatives of a(v). The bilinear form a(v)(u, p)(x, y) depends on x and y, but
for the sake of clarity, the (x, y) dependency will be often omitted.

As in section 5.1, C(v)(x, y) is defined as

C(v)(x, y) = ((1− δ)χ(v(x, y)) + δ)CLN

for given δ > 0 and CLN .
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5. Fine-scale elastic shape optimization

Consider the target functional

J [v, u] = 2

∫

D

∫

C
a(v)((ū, ũ), (ū, ũ))(x, y) dy dx

+ ν

∫

D

∫

C
χ(v(x, y))(x, y) dy dx

+
β

2

∫

D

∫

C
ε|Ov(x, y)|2 +

1

ε
ψ(v(x, y)) dy dx ,

for ν, β > 0.
The Lagrangian can be written as a combination of the target functional, the elasticity

constraint, and a dual variable, encoding the constrained optimization problem. Let

L[v, u, p] = J − E,u(p)

= 2

∫

D

∫

C
a(v)((ū, ũ), (ū, ũ))(x, y) dy dx

+ ν

∫

D

∫

C
χ(v(x, y)) dy dx

+ β
1

2

∫

D

∫

C
ε|Ov(x, y)|2 +

1

ε
ψ(v(x, y)) dx

− 2

∫

D

∫

C
a(v)((ū, ũ), (p̄, p̃))(x, y) dy dx

+

∫

ΓN

g(x) · p̄(x) da ,

where the dual variable p = (p̄(x), p̃(x, y)) is defined to have compatible notation with
u = (ū(x), ũ(x, y)) and v = v(x, y).
Solutions to the optimization problem are critical points of the Lagrangian L[v, u, p],

which solve

DL[v, u, p] =



∂vL[v, u, p]
∂uL[v, u, p]
∂pL[v, u, p]


 = 0 .

Explicit formulas for the derivatives of L[v, u, p] can be found in Appendix A.1.
The variation ∂vL[v, u, p] is defined on microscopic domains only, thus creating a fine-

scale material. ∂uL[v, u, p] = 0 defines the dual problem that was already introduced in
Chapter 5.2.1 and ∂pL[v, u, p] is the variation in the control parameters, describing the
change of energy that is induced by a change of displacement in a given direction.

Constraints to the micro-scale

Due to periodic boundary conditions, the micro-scale phase field is not unique to trans-
lations. As too many possibilities to build the same structure is detrimental to most
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5.3. Finite element discretization

numerical algorithms, it is preferable to introduce a constraint that limits each possible
configuration to a single translation. We choose to fix the center of mass at the center of
the domain: Let

M1 :=
1

M

∫

C
χ(v(y))y dy

where M =
∫
C χ(v(y)) dy is the mass in the domain C. Adding the constraint

M1 =

(
1

2
,
1

2

)

eliminates the ambiguities created by phase field translations. Note, that restricting
the rotation of potentially rotationally symmetric structures is not required, as periodic
boundary conditions already prevent rotations of the microscopic cell C.

Rotational degrees of freedom

The alignment of periodic cells with certain axes restricts the number of possible structures
to those, which are periodic in these exact cells. One approach that allows a larger set
of different structures (e. g. rotated laminates) is the introduction of degrees of freedoms
α ∈ [0, 2π) which represent the rotation of a cell C. Let Rα(ũ) be the matrix encoding a
rotation by α. Then the Lagrangian takes the form

L[v, u, p, α] = J [v, u, α]− ∂uE [v, u, α](p)

= 2

∫

D

∫

C
a(v)((ū, Rα(ũ)), (ū, Rα(ũ)))(x, y) dy dx

+ ν

∫

D

∫

C
χ(v(x, y)) dy dx

+ β
1

2

∫

D

∫

C
ε|Ov(x, y)|2 +

1

ε
ψ(v(x, y)) dx

− 2

∫

D

∫

C
a(v)((ū, Rα(ũ)), (p̄, Rα(p̃)))(x, y) dy dx

+

∫

ΓN

g(x) · p̄(x) da ,

It is important to note that the introduction of rotations to the degrees of freedom leads
to most microstructures representing laminates, modeling their optimality (as described
in [All02]), but also reducing the number of different microstructures observed in optimal
shapes. Thus, this approach is not examined in depth in this thesis.

5.3. Finite element discretization

For the numerical treatment, the Heterogeneous Multiscale Method (HMM) (cf. [EE03,
EE05, EEH03, EMZ05]) can be directly applied. This method models microscopic do-
mains C inside a macroscopic domain D by inserting these microscopic domains at each
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5. Fine-scale elastic shape optimization

quadrature point, associating a separate set of micro-scale parameters for all these micro-
scopic cells. It was implemented using the finite element mesh introduced in Section 3.4
and the QuocMesh library [QM]. As illustrated in Figure 5.2, those microscopic cells
again consist of a finite element mesh that uses the same finite element functions as the
macroscopic mesh. Still, functions on the macroscopic domain D and the microscopic
cells C should and will be clearly distinguished.

Figure 5.2.: HMM finite elements model the micro-scale explicitly by inserting a micro-
scale finite element mesh at every quadrature point of the macroscopic finite
element mesh.

Let Q1
h(Dh) be a space of quadratic multilinear Finite Elements and let T s. t.

∪T̄∈T T̄ = Dh. For evaluation of C, the micro-scale C also has to be discretized. Therefore,
introduce a multilinear Finite Element space Tmicro, s. t. ∪T̃∈Tmicro

T̃ = C. The quantities
v, u = (ū, ũ) and p = (p̄, p̃) are discretized as functions in Q1

h(Dh) and Q1
h(Dh)×Q1

h(Ch),
respectively and denoted as V , U = (Ū , Ũ) and P = (P̄ , P̃ ). For an easier notation, we
introduce index sets I and J , s. t. T = ∪i∈I T̄i and Tmicro = ∪j∈J T̃j.
Furthermore, we define the local mesh sizes Hi = diam T̄i and H = maxi∈I Hi for the

macro-scale mesh and, analogously, hi and h for the micro-scale mesh.

5.3.1. The discrete problem

Optimizing a discretized version of

minJ [v, u[v]] ,

u[v] = arg min
ũ
E [v, ũ]

can be achieved by using the discretized energies of J[V, U ] and E[V, U ] as given above
and introducing a discrete dual problem

∂UUE [V, U [V ]](P ) = ∂UJ [V, U [V ]]Θ ,
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5.3. Finite element discretization

where P = (P̄ [V ], P̃ [V ]) ∈ Q1
h(Dh) × Q1

h(Ch). Then, in analogy to the continuous calcu-
lations above

δV J[V, U [V ]]Θ = ∂V J[V, U [V ]]Θ + ∂2
UUE[V, U [V ]](P )(∂VU [v])Θ

= ∂V J[V, U [V ]]Θ− ∂2
UUE[V, U [V ]]P (∂2

UUE
−1[V, U [V ]](∂2

UVE[V, U [V ]])Θ)

= ∂V J[V, U [V ]]Θ− ∂2
UVE[V, U [V ]]PΘ .

Note, that in our case, the solution to the dual problem is always given as P = 2U . Next,
we discretize the local cost functional:

JC [v, w] :=
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃lC(V )(εij±kl + ε[W [V ]](q̄,q̃l)) : (εij±kl + ε[W [V ]](q̄,q̃l)) ,

where q̄ is the macroscopic quadrature point at which this local cost is evaluated. The
local correction problem transforms into

∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃lC(q̃l)(εij±kl + ε[W ](q̄, q̃l)) : ε[ψ](q̄, q̃l) = 0 . (5.4)

for all ψ ∈ Vh. Denote the solution of problem given in (5.4) as W ∗
ij±kl. This implies

∂WJC [V,Wij±kl[V ]] = 0. Define JC [V ] = JC [V,W ∗
ij±kl[V ]] and conclude

∂V JC [V ] = ∂V Jc[V,W
∗
ij±kl[V ]] .

Now, we can minimize J[V, U [V ]] by using Algorithm 4 or a similar method.

Algorithm 4: Sketch of gradient descent type algorithm using a dual problem.
Data: Initial values Vinit, a macroscopic domain D with given quadrature rule and a

defined microscopic cell C. Boundary values on D.
Result: An approximation of an optimal structure given as a discrete phase field V .

1. Optimize microscopic cells C for all quadrature points and all basis loads εij±kl;

2. Find a combination of the load in terms of basis loads εij±kl on Dh;

3. Evaluate J[V, U [V ]] and δV J[V, U [V ]] using the local solutions for εij±kl and the
expression of macroscopic loads in terms of these basis loads;

4. Update V using a gradient descent step (or another suitable algorithm);

Remark 30. The exact type of descent algorithm is not relevant, as long as the chosen
algorithm is sufficiently stable. This can e. g. be achieved by using an appropriate step
size control like the Armijo [Arm66] step size control for the gradient descent algorithm.
Additionally, a constraint optimization can be used to introduce constraints to the vol-

ume. This can allow us to move the volume cost out of the energy J[V, U [V ]] and into a
constraint.
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5. Fine-scale elastic shape optimization

We now discretize the energy functionals needed for the Lagrangian approach. As
D = C = [0, 1]2, we get Q1

h(Dh) = Q1
h(Ch). Let q̄k, ω̄k be quadrature points and weights

of a quadrature rule on T and q̃k, ω̃k points and weights of a quadrature rule on Tmicro.
The index sets for the quadrature points and weights on elements T̄ ∈ I and T̃ ∈ J will
be denoted as K̄T̄ and K̃T̃ .

The target functional J [v, u] is discretized as

J[V, U ] =
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄kC
∗(v)(q̄k)ε[Ū ](q̄k) : ε[Ū ](q̄k)

=
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃la(V )((Ū , Ũ), (Ū , Ũ))(q̄k, q̃l)

+ ν
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃lχ(V (q̄k, q̃l))

+ β
1

2

∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l
(
ε|OV (q̄k, q̃l)|2 +

1

ε
ψ(V (q̄k, q̃l))

)

and similarly, the elastic energy E [v, u] as

E[V, U ] =
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
1

2
C∗(v)(q̄k)ε[Ū(q̄k)] : ε[Ū(q̄k)]−

∑

qΓN,k

wΓn,kg(qΓN ,k) · U(qΓN ,k)

=
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃la(V )((Ū , Ũ), (Ū , Ũ))(q̄k, q̃l)

−
∑

∂T̄∈ΓN

∑

k∈K∂T̄

wΓn,kg(qΓN ,k) · Ū(qΓN ,k) ,

where qΓN ,k, wΓN ,k are quadrature points and weights of a quadrature rule on ΓN . Both
energies are discretized in a straightforward manner, as all required quantities already
exists on the finite element spaces. Furthermore, χ and ψ can be applied to the discretized
quantities without modifications.

In a similar fashion, the Lagrangian L[v, u] is discretized using the energies J[V, U ] and
E[V, U ]. Again, all quantities are discretized in a straightforward manner and no not
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5.4. Specific patterns on the micro-scale

require any non-canonical modification, which results in the formula

L[V, U, P ] = J[V, U ]− E,U [V, U ](P )

= 2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃la(V )((Ū , Ũ), (Ū , Ũ))

+ ν
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃lχ(V (q̄k, q̃l))

+ β
1

2

∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l
(
ε|OV (q̄k, q̃l)|2 +

1

ε
ψ(V (q̄k, q̃l))

)

−
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃la(V )((Ū , Ũ), (P̄ , P̃ ))

+
∑

∂T̄∈ΓN

∑

k∈K∂T̄

ωΓn,kg(qΓN ,k) · P (qΓN ,k) .

Finally, we derive the discrete fine-scale elastic shape optimization problem, which
demands for a critical point of DL[V, U, P ], all of which fulfill

DL[V, U, P ] =



∂VL[V, U, P ]
∂UL[V, U, P ]
∂PL[V, U, P ]


 = 0 .

Explicit formulas for first and second derivatives of the Lagrangian can be found in
Appendix A.2.

For finding a saddle point of L[V, U, P ], Newton’s method can be used. This takes
advantage of the easily computable second derivatives to improve convergence for starting
points in a region around the solution and still yields convergence for other starting points,
if a suitable step size control is used.

5.4. Specific patterns on the micro-scale

We are now able to numerically optimize a fine-scale elastic structure (both using a dual
problem and using the Lagrangian formulation), but still need to answer the remaining
question of how to determine the ratio between the macro and the micro-scale. To this
end, we investigate the influence of the interface length term and the respective scaling
parameter.

The parameter β determines the scale of the microstructure: A smaller β allows for more
repetitions, thus “zooming out” of the periodic structure: When scaling C — i. e. when the
dimensions of C change in comparison to the macro-scale — the interface term Lε scales
linearly, whileW and Vε scale quadratically. Thus, J [v, ū[v]] is not scale-invariant and in
turn β, the constant for Lε has an influence on the scale of optimal structures. To better
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5. Fine-scale elastic shape optimization

understand that phenomenon, we will consider a cell in a periodic lattice, which in this
section is described as a one-scale model (not a two-scale or even fine-scale model). We
will apply a constant stress in x2 direction, for which the optimal shape is an ideal rank-
one laminate (as described in [All02]) and adapt pproaches described in [All02, Chapters
1.4 and 1.3] to model a displacement on one cell of a periodic lattice containing such a
laminate.

Figure 5.3.: Periodic structure and two periodic cell that result in that same periodic
structure when extended.

Figure 5.3 depicts a periodic structure as it is used here and two cells, one containing
one repetition of the laminate (gray line) and one that is “zoomed out” to contain two
repetitions (dashed gray line). When periodically extended, both cells produce the same
periodic lattice. Note, that translations of the laminate in directions perpendicular to
its “layers” result in the same laminated structure as well, when the cell is periodically
extended (s. Section 5.2.1, Constraints to the micro-scale). Thus, the structure is non-
unique (as translations do not change the lattice).
We denote the elasticity tensors of the materials of the laminate as A (hard) and B

(soft) and the cell as C. On C, we prescribe constant stresses σ11 = σ12 = 0 and σ22 6= 0
and consider a displacement (

νd(x)
d(x)

)
.

which main contribution exists in the x2 direction. The displacement in x1 direction is a
result of the coupling by the Poisson ratio ν only. In the given scenario, it is admissible
to assume, that the displacement is affine in each phase. Note, that the following com-
putations use this idealized setup as well as some approximations in the computations.
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5.4. Specific patterns on the micro-scale

Thus, it can only result in an estimate of the microscale frequency, from which actual
(numerically) optimized results might differ to a certain extent. Thus, the function d(x)
is given as

d(x) := χ(x1)a · x+ (1− χ(x1))b · x+ c(x1) . (5.5)

for a, b ∈ R and c(x1) piecewise constant to ensure that d(x) is continuous in R2. The
continuity of d(x) over the cell C implies further conditions on a and b: At the interface
between two phases c(x1) is discontinuous. Consider two points x and y on that interface.
We deduce

(a− b) · x = (a− b) · y
and that there exists a real number t ∈ R with

b− a = te1 ,

Using this t, equation (5.5) can be rewritten as

d(x) = a · x+ (1− χ(x1))tx1 + c(x1) .

Assuming for the elasticity tensors A = C and B = δC, we conclude from the jump
condition at the interface (Aa)e1 = (Bb)e1, that

t =
(A−B)i2k2ak · e1

Bi2k2(e1)k · e1

=
(A−B)12k2ak

B1212

.

Inserting the entries of the Lamé–Navier Tensor, this simplifies to

t =
(A−B)12k2ak

B1212

=
(A−B)1212a1 + (A−B)1222a2

δE
1−ν2

1−ν
2

=

(1−δ)E
1−ν2

1−ν
2
a1

δE
1−ν2

1−ν
2

,

leading to the equations

t =
(1− δ)
δ

a1 and b− a =
(1− δ)a1

δ
e1 .

Now b can be written as (
b1

b2

)
=

(
1
δ
a1

a2

)
,

expressing b in terms of a and δ.
Following along the lines of [All02, Chapter 1.4], we can deduce a formula for the

homogenized stress on a laminated material (we have σ11 = σ12 = 0 and σ22 6= 0): Let σA
and σB denote the elasticity tensors of two materials A and B. Then the homogenized
stress

σ∗ = ασA + (1− α)σB ,

where α is the local density (the limit of the characteristic functions).
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5. Fine-scale elastic shape optimization

Recall, that for the Lamé–Navier tensor the equation


σ11

σ22

σ12


 =

E

1− ν2




1 ν 0
ν 1 0
0 0 1−ν

2





ε11

ε22

2ε12




holds (using Voigt notation). We can derive the equations

εP22 =
1

EP
σP22

εP11 =
ν

EP
σP22 ,

for P = A or P = B and EA = E, EB = δE. Together with the previous computations,
these formulas implicate equations for

a2 =
σ∗22

E(α + (1− δ)δ)
a1 = −σ

∗
22

E

and thus for the deformation on both the hard and soft phase.

5.4.1. Low-dimension optimization problem

If the cell matches a perfectly integral repetition of the periodic structure, any greater
integral number of repetitions of the microstructure in the unit cell would be equally
well-suited, but for given a and b as well as given material parameters this is not a
valid assumption. A general cell might contain a non-integral number of repetitions and
thus conflict with the periodic boundary conditions. This leads to an increase in the
deformation energy, which corrects the non-periodic displacements which in turn favors
finer microstructures, i. e. a higher number of repetitions in the unit cell (or a higher
microstructure frequency) because more repetitions lower the necessary correction. Let
k be the number of repetitions of microstructures in the cell C. (As an example, k = 1
corresponds to a laminate with one soft and one hard part per unit cell.)
We still assume that the optimal microstructure for prescribed stresses is a rank-one

laminate (in accordance with [All02]).
Let us first investigate how a perfectly periodic structure would be composed. For

now, assume k = 1. For the displacement u(x) at x, denote f(x) := u2(x, 1) and let
x1, x2 ∈ [0, 1] and c1 ∈ R s. t.

f(x) =





a1x+ c1 x ∈ [0, x1)

b1(x− x1) + a1x1 + c1 x ∈ [x1, x2)

a1(x− x1) + b1(x2 − x1) + a1x1 + c1 x ∈ [x1, 1] .
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5.5. Results

For a perfectly periodic function, f(0) = f(1) holds. This is true, if x2 = x1 + s for
s := a1

a1−b1 . Let x1 + s =: xs from here on.
In general (precisely, if x2 6= xs) there will be no exact periodicity, so additional defor-

mation energy has to be invested to correct the displacement. If k is incremented by 1, s
is halved i. e. |x2 − xs| → 0 for k → ∞. Accordingly, a bigger k is preferred if the given
a, b and α do not result in a perfectly periodic structure.
Let us now model the deformation energy of the periodicity violation: Consider the

k = 1 case and let x1, x2 maximal s. t. [x1, x2] is a soft phase. Let s be the optimal
width of a soft phase (s. t. perfect periodicity would be achieved). Then x2 = x1 + 1−α

k

for an α ∈ R. We can assume w l. o. g., that x1 = 0. The periodicity violation will be
approximated by a linear deformation on the soft part only, at most of the size of a unit
cell:

(a− b)(x2 − xs) = (a− b)(1− α
k
− s) mod 1 (5.6)

Note, that moving the periodicity violation to the soft material is admissible, as correcting
the loss of periodicity in the hard material would result in a much higher deformation
energy. The term of interest is the deformation energy of (5.6), which can be written as

−
(α− 1)

(
λν2 + ν

(
ν2 + 1

2

)) ( (a−b)(1−ks−α)
k

mod 1
)2

k
=:Wp .

Now we minimize
min
k,α

2W [a, b] + να + 2βk +Wp , (5.7)

for k and α, for ν, β > 0 under the constraint α ∈ {0, 1}. As W [a, b] is independent of k,
(5.7) simplifies to

min
k,α

να + 2βk +Wp . (5.8)

which is a two-dimensional constraint optimization problem.
Solving (5.8) allows for an estimate on the influence of β on the number of repetitions

of the microstructure in a single unit cell C and in turn to find a suitable β > 0 for which
the optimal shape shows a single representation of the microstructure per unit cell. That
in turn later allows for the maximal resolution for a given depth.

5.5. Results

The fine-scale model was applied to a pressure and a shear scenario, that were designed
to allow a comparison of the result with the laminates, as described by Allaire [All02].
The setup for both loads scenario D = [0, 1]2 compression or shear loads on two and all
boundaries, respectively. We expect a uniform microstructure across the whole domain,
which will model laminates on the scale determined by β.
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5. Fine-scale elastic shape optimization

The macroscopic domain D and the microscopic domain C were discretized using Q1

finite elements on [0, 1]2. The macroscopic domain consisted of 16 elements, each contain-
ing one quadrature point at their center at which the microscopic domains were placed
and evaluated. On the microscale, the center-of-mass quadrature is used.

5.5.1. Compression load

In this setup, compression loads of value ‖F‖ = 1 were applied on top and bottom of the
macroscopic domain D and periodic boundary conditions were prescribed on the left and
right boundary, effectively modeling an infinite strip of periodically repeating structures.
For the Lamé–Navier tensor, parameters λ = µ = 80 were chosen. The volume and

interface terms of the target functional J [V, U [V ]] were chosen as ν = 0.01 and β =
0.00256, respectively, where β was optimized to enforce one repetition of the microscale
per cell Ch. The parameter relating the hard and soft material was set to δ = 10−4 and
the phase field parameter was set to ε = 0.05. The optimization was initialized with a
guess of the optimal structure. No constraints on the center of gravity were necessary for
this setup.
For the compression load, an optimal microstructure is a rank-one laminate in the direc-

tion of loads. This is reflected by the result of the fine-scale optimization: All simulated
cells show the same pillar-like structure, which is a suitable phase field representation of
a laminate of a hard and a soft material.

D C

Optimal laminates

Figure 5.4.: Compression load scenario and optimized fine-scale structure (left), which
models the optimal laminate (right).

As expected, there is no variation in microstructure over the macroscopic domain.
Figure 5.4 shows one representation of the microstructure and the macroscopic quadrature
point (bottom) as well as the expected microstructure (top).

5.5.2. Shear load

Here, shear loads of magnitude ‖F‖ = 1 were applied on top and bottom boundary, again
modeling a strip of infinitely repeating elastic structures. The finite element setup is the
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5.6. Conclusion

same as in the compression case, using 16 macroscopic elements containing on quadrature
point (i. e. microscopic cell) each.

For the Lamé–Navier tensor, parameters again λ = µ = 80 were chosen. The volume
and interface terms of the target functional J [V, U [V ]] were chosen as ν = 0.016 and β =
0.001, respectively, where the choice of β should enforce one repetition of the microscale
per cell Ch. The parameter relating the hard and soft material was set to δ = 10−4 and
the phase field parameter was set to ε = 0.025. The optimization was again initialized
with a guess of the optimal structure.

The expected microstructure is a rank-two laminate. This can be modeled by the phase
field as a cross-structure, which — if periodically extended — shows the same topological
structure.

D C

Optimal laminates

Figure 5.5.: Shear load scenario and optimized fine-scale structure (left), which approxi-
mates the optimal laminate (right).

In Figure 5.5 the optimal laminate is sketched (top) as well as the microstructure
resulting from the numerical optimization. Again, the microstructure does not vary over
the macroscopic domain.

5.6. Conclusion

We developed an algorithm to optimize fine-scale materials under a given set of boundary
conditions. To make the algorithm more efficient, adaptive mesh refinement could be
introduced to both the macro-scale and micro-scale. Here, a posteriori error estimates
can be a useful tool to determine, which elements to refine. Some work on multiscale error
estimates has been done by Liu et. al. in [LCYC15] for a priori estimates and Rumpf et. al.
in [CGLR17] for a posteriori error estimates.

Furthermore, introducing model adaptivity we could only model those parts of the
domain using the fine-scale model, where the optimal structure cannot be approximated
by a one-scale approach. This can be useful to reduce the computational cost when
optimizing more general domains and setups as the ones described above.
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A. Derivatives of two-scale
functionals

A.1. Continuous quantities

Partial derivatives of the Lagrangian:

∂vL[v, u, p](ν) = 2

∫

D

∫

C
∂va(v)(ν)((ū, ũ), (ū, ũ))(x, y) dy dx

+ ν

∫

D

∫

C
∂vχ(v(x, y))ν(x, y) dy dx

+ β
1

2

∫

D

∫

C
εOv(x, y)Oν +

1

ε
∂vψMM(v(x, y))ν dy dx

− 2

∫

D

∫

C
∂va(v)(θ)((ū, ũ), (p̄, p̃))(x, y) dy dx ,

∂uL[v, u, p](θ, ν) =

(
2

∫

D

∫

C
∂ūa(v)((ū, ũ), (ū, ũ))(θ)(x, y) dy dx

−2

∫

D

∫

C
∂ūa(v)((ū, ũ), (p̄, p̃))(θ)(x, y) dy dx ,

2

∫

D

∫

C
∂ũa(v)((ū, ũ), (ū, ũ))(ν)(x, y) dy dx

−2

∫

D

∫

C
∂ũa(v)((ū, ũ), (p̄, p̃))(ν)(x, y) dy dx

)
,

∂pL[v, u, p](θ, ν) =

(
− 2

∫

D

∫

C
∂p̄a(v)((ū, ũ), (p̄, p̃))(θ)(x, y) dy dx+

∫

ΓN

g(x) · θ(x) da ,

− 2

∫

D

∫

C
∂p̃a(v)((ū, ũ), (p̄, p̃))(ν)(x, y) dy dx

)
.
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A. Derivatives of two-scale functionals

Second partial derivatives of the Lagrangian:

∂2
vvL[v, u, p](ν1)(ν2) = 2

∫

D

∫

C
∂2
vva(v)(ν1)(ν2)((ū, ũ), (ū, ũ))(x, y) dy dx

+ ν

∫

D

∫

C
∂2
vvχ(v(x, y))ν1ν2(x, y) dy dx

+ β
1

2

∫

D

∫

C
εOν2Oν1 +

1

ε
∂2
vvψMM(v(x, y))ν1ν2 dx

− 2

∫

D

∫

C
∂2
vva(v)(ν1)(ν2)((ū, ũ), (p̄, p̃))(x, y) dy dx ,

∂2
vuL[v, u, p](ν1)(θ2, ν2) =

(
2

∫

D

∫

C
∂2
vūa(v)(ν1)((ū, ũ), (ū, ũ))(θ2)(x, y) dy dx

−2

∫

D

∫

C
∂2
vūa(v)(ν1)((ū, ũ), (p̄, p̃))(θ2) dy dx ,

2

∫

D

∫

C
∂2
vũa(v)(ν1)((ū, ũ), (ū, ũ))(ν2)(x, y) dy dx

−2

∫

D

∫

C
∂2
vũa(v)(ν1)((ū, ũ), (p̄, p̃))(ν2) dy dx

)
,

∂2
vpL[v, u, p](ν1)(θ2, ν2) =

(
− 2

∫

D

∫

C
∂2
vp̄a(v)(ν1)((ū, ũ), (p̄, p̃))(θ2)(x, y) dy dx ,

−2

∫

D

∫

C
∂2
vp̃a(v)(ν1)((ū, ũ), (p̄, p̃))(ν2)(x, y) dy dx

)
,

∂2
uuL[v, u, p](θ1, ν1)(θ2, ν2) =

({
2

∫

D

∫

C
∂2
ūūa(v)((ū, ũ), (ū, ũ))(θ1)(θ2)(x, y) dy dx ,

2

∫

D

∫

C
∂ūũa(v)((ū, ũ), (ū, ũ))(θ1)(ν2)(x, y) dy dx

−2

∫

D

∫

C
∂2
ūũa(v)((ū, ũ), (p̄, p̃))(θ1)(ν2)(x, y) dy dx

}
,

{
2

∫

D

∫

C
∂2
ũūa(v)((ū, ũ), (ū, ũ))(ν1)(θ2)(x, y) dy dx

−2

∫

D

∫

C
∂2
ũūa(v)((ū, ũ), (p̄, p̃))(ν1)(θ2)(x, y) dy dx ,

2

∫

D

∫

C
∂2
ũũa(v)((ū, ũ), (ū, ũ))(ν1)(ν2)(x, y) dy dx

})
,
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A.2. Discretized quantities

∂2
upL[v, u, p](θ1, ν1)(θ2, ν2) =

({
− 2

∫

D

∫

C
∂2
ūp̄a(v)((ū, ũ), (p̄, p̃))(θ1)(θ2)(x, y) dy dx ,

−2

∫

D

∫

C
∂2
ūp̃a(v)((ū, ũ), (p̄, p̃))(θ1)(ν2)(x, y) dy dx

}
,

{
−2

∫

D

∫

C
∂2
ũp̄a(v)((ū, ũ), (p̄, p̃))(ν1)(θ2)(x, y) dy dx ,

−2

∫

D

∫

C
∂2
ũp̃a(v)((ū, ũ), (p̄, p̃))(ν1)(ν2)(x, y) dy dx

})
,

∂2
ppL[v, u, p](θ1, ν1)(θ2, ν2) =

({
0 ,−2

∫

D

∫

C
∂2
p̄p̃a(v)((ū, ũ), (p̄, p̃))(θ1)(ν2)(x, y) dy dx

}
,

{
−2

∫

D

∫

C
∂2
p̃p̄a(v)((ū, ũ), (p̄, p̃))(ν1)(θ2)(x, y) dy dx , 0

})
.

A.2. Discretized quantities

Discretized first derivatives:

∂VL[V, U, P ](ν) =

2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂V a(V )(ν)((Ū , Ũ), (Ū , Ũ))(q̄k, q̃l)

+ ν
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂V χ(V (x, y))ν(q̄k, q̃l)

+ β
1

2

∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃lεOV (x, y)Oν +
1

ε
∂V ψMM(V (x, y))ν

− 2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂V a(V )(θ)((Ū , Ũ), (P̄ , P̃ ))(q̄k, q̃l) ,
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A. Derivatives of two-scale functionals

∂UL[V, U, P ](θ, ν) =(
2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂Ūa(V )((Ū , Ũ), (Ū , Ũ))(θ)(q̄k, q̃l)

−2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂Ūa(V )((Ū , Ũ), (P̄ , P̃ ))(θ)(q̄k, q̃l) ,

2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂Ũa(V )((Ū , Ũ), (Ū , Ũ))(ν)(q̄k, q̃l)

−2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂Ũa(V )((Ū , Ũ), (P̄ , P̃ ))(ν)(q̄k, q̃l)

)
,

∂PL[V, U, P ](θ, ν) =(
− 2

∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂P̄a(V )((Ū , Ũ), (P̄ , P̃ ))(θ)(q̄k, q̃l)

+
∑

∂T̄∈ΓN

∑

k∈K∂T̄

ωΓn,kg(pΓn,k) · θ(pΓn,k) da ,

−2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂P̃a(V )((Ū , Ũ), (P̄ , P̃ ))(ν)(q̄k, q̃l)

)
.

Discretized versions of the second derivatives:

∂2
V VL[V, U, P ](ν1)(ν2)

= 2
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂
2
V V a(V )(ν1)(ν2)((Ū , Ũ), (Ū , Ũ))(q̄k, q̃l)

+ ν
∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂
2
V V χ(V (q̄k, q̃l))ν1ν2(q̄k, q̃l)

+ β
1

2

∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃
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A.2. Discretized quantities
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ŨŨ
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A. Derivatives of two-scale functionals

∂2
UPL[V, U, P ](θ1, ν1)(θ2, ν2)

=

({
− 2

∑

T̄∈T

|T̄ |
∑

k∈K̄T̄

ω̄k
∑

T̃∈Tmicro

|T̃ |
∑

l∈K̃T̃

ω̃l∂
2
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